name
stringlengths
12
178
code_snippet
stringlengths
8
36.5k
score
float64
3.26
3.68
flink_JoinOperator_projectTuple15_rdh
/** * Projects a pair of joined elements to a {@link Tuple} with the previously selected * fields. Requires the classes of the fields of the resulting tuples. * * @return The projected data set. * @see Tuple * @see DataSet */ public <T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14> ProjectJoin<I1, I2, Tuple15<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14>> projectTuple15() { TypeInformation<?>[] fTypes = extractFieldTypes(fieldIndexes); TupleTypeInfo<Tuple15<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14>> tType = new TupleTypeInfo<Tuple15<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14>>(fTypes); return new ProjectJoin<I1, I2, Tuple15<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14>>(this.ds1, this.ds2, this.keys1, this.keys2, this.hint, this.fieldIndexes, this.isFieldInFirst, tType, this); }
3.26
flink_JoinOperator_projectTuple11_rdh
/** * Projects a pair of joined elements to a {@link Tuple} with the previously selected * fields. Requires the classes of the fields of the resulting tuples. * * @return The projected data set. * @see Tuple * @see DataSet */ public <T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10> ProjectJoin<I1, I2, Tuple11<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>> projectTuple11() { TypeInformation<?>[] fTypes = extractFieldTypes(fieldIndexes); TupleTypeInfo<Tuple11<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>> tType = new TupleTypeInfo<Tuple11<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>>(fTypes); return new ProjectJoin<I1, I2, Tuple11<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>>(this.ds1, this.ds2, this.keys1, this.keys2, this.hint, this.fieldIndexes, this.isFieldInFirst, tType, this); }
3.26
flink_JoinOperator_projectTuple20_rdh
/** * Projects a pair of joined elements to a {@link Tuple} with the previously selected * fields. Requires the classes of the fields of the resulting tuples. * * @return The projected data set. * @see Tuple * @see DataSet */ public <T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19> ProjectJoin<I1, I2, Tuple20<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19>> projectTuple20() { TypeInformation<?>[] v85 = extractFieldTypes(fieldIndexes); TupleTypeInfo<Tuple20<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19>> tType = new TupleTypeInfo<Tuple20<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19>>(v85); return new ProjectJoin<I1, I2, Tuple20<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19>>(this.ds1, this.ds2, this.keys1, this.keys2, this.hint, this.fieldIndexes, this.isFieldInFirst, tType, this); }
3.26
flink_JoinOperator_projectTupleX_rdh
// -------------------------------------------------------------------------------------------- // BEGIN_OF_TUPLE_DEPENDENT_CODE // GENERATED FROM org.apache.flink.api.java.tuple.TupleGenerator. /** * Chooses a projectTupleX according to the length of {@link org.apache.flink.api.java.operators.JoinOperator.JoinProjection#fieldIndexes}. * * @return The projected DataSet. * @see org.apache.flink.api.java.operators.JoinOperator.ProjectJoin */ @SuppressWarnings("unchecked") public <OUT extends Tuple> ProjectJoin<I1, I2, OUT> projectTupleX() { ProjectJoin<I1, I2, OUT> projectJoin = null; switch (fieldIndexes.length) { case 1 : projectJoin = ((ProjectJoin<I1, I2, OUT>) (projectTuple1())); break; case 2 : projectJoin = ((ProjectJoin<I1, I2, OUT>) (projectTuple2())); break; case 3 : projectJoin = ((ProjectJoin<I1, I2, OUT>) (projectTuple3()));break; case 4 : projectJoin = ((ProjectJoin<I1, I2, OUT>) (projectTuple4())); break; case 5 : projectJoin = ((ProjectJoin<I1, I2, OUT>) (projectTuple5())); break; case 6 : projectJoin = ((ProjectJoin<I1, I2, OUT>) (projectTuple6())); break; case 7 : projectJoin = ((ProjectJoin<I1, I2, OUT>) (projectTuple7()));break; case 8 : projectJoin = ((ProjectJoin<I1, I2, OUT>) (projectTuple8())); break; case 9 : projectJoin = ((ProjectJoin<I1, I2, OUT>) (projectTuple9())); break; case 10 : projectJoin = ((ProjectJoin<I1, I2, OUT>) (projectTuple10())); break; case 11 : projectJoin = ((ProjectJoin<I1, I2, OUT>) (projectTuple11())); break; case 12 : projectJoin = ((ProjectJoin<I1, I2, OUT>) (projectTuple12())); break; case 13 : projectJoin = ((ProjectJoin<I1, I2, OUT>) (projectTuple13())); break; case 14 : projectJoin = ((ProjectJoin<I1, I2, OUT>) (projectTuple14())); break; case 15 : projectJoin = ((ProjectJoin<I1, I2, OUT>) (projectTuple15())); break; case 16 : projectJoin = ((ProjectJoin<I1, I2, OUT>) (projectTuple16())); break;case 17 : projectJoin = ((ProjectJoin<I1, I2, OUT>) (projectTuple17())); break; case 18 : projectJoin = ((ProjectJoin<I1, I2, OUT>) (projectTuple18())); break; case 19 : projectJoin = ((ProjectJoin<I1, I2, OUT>) (projectTuple19())); break; case 20 : projectJoin = ((ProjectJoin<I1, I2, OUT>) (projectTuple20())); break; case 21 : projectJoin = ((ProjectJoin<I1, I2, OUT>) (projectTuple21())); break; case 22 : projectJoin = ((ProjectJoin<I1, I2, OUT>) (projectTuple22())); break; case 23 :projectJoin = ((ProjectJoin<I1, I2, OUT>) (projectTuple23())); break; case 24 : projectJoin = ((ProjectJoin<I1, I2, OUT>) (projectTuple24())); break; case 25 : projectJoin = ((ProjectJoin<I1, I2, OUT>) (projectTuple25())); break; default : throw new IllegalStateException("Excessive arity in tuple."); } return projectJoin; }
3.26
flink_JoinOperator_projectTuple1_rdh
/** * Projects a pair of joined elements to a {@link Tuple} with the previously selected * fields. Requires the classes of the fields of the resulting tuples. * * @return The projected data set. * @see Tuple * @see DataSet */ public <T0> ProjectJoin<I1, I2, Tuple1<T0>> projectTuple1() { TypeInformation<?>[] fTypes = extractFieldTypes(fieldIndexes); TupleTypeInfo<Tuple1<T0>> tType = new TupleTypeInfo<Tuple1<T0>>(fTypes); return new ProjectJoin<I1, I2, Tuple1<T0>>(this.ds1, this.ds2, this.keys1, this.keys2, this.hint, this.fieldIndexes, this.isFieldInFirst, tType, this); }
3.26
flink_JoinOperator_equalTo_rdh
/** * Continues a Join transformation and defines the fields of the second join {@link DataSet} that should be used as join keys. * * <p>The resulting {@link DefaultJoin} wraps each pair of joining elements into a * {@link Tuple2}, with the element of the first input being the first field of the * tuple and the element of the second input being the second field of the tuple. * * @param fields * The fields of the second join DataSet that should be used as keys. * @return A DefaultJoin that represents the joined DataSet. */ @Override public DefaultJoin<I1, I2> equalTo(String... fields) { return createDefaultJoin(new Keys.ExpressionKeys<>(fields, input2.getType())); } /** * Continues a Join transformation and defines a {@link KeySelector} function for the * second join {@link DataSet}. * * <p>The KeySelector function is called for each element of the second DataSet and * extracts a single key value on which the DataSet is joined. * * <p>The resulting {@link DefaultJoin} wraps each pair of joining elements into a * {@link Tuple2}
3.26
flink_JoinOperator_extractFieldTypes_rdh
// END_OF_TUPLE_DEPENDENT_CODE // ----------------------------------------------------------------------------------------- private TypeInformation<?>[] extractFieldTypes(int[] fields) { TypeInformation<?>[] fieldTypes = new TypeInformation[fields.length]; for (int i = 0; i < fields.length; i++) { TypeInformation<?> typeInfo; if (isFieldInFirst[i]) { if (fields[i] >= 0) {typeInfo = ((TupleTypeInfo<?>) (ds1.getType())).getTypeAt(fields[i]); } else {typeInfo = ds1.getType(); } } else if (fields[i] >= 0) { typeInfo = ((TupleTypeInfo<?>) (ds2.getType())).getTypeAt(fields[i]); } else { typeInfo = ds2.getType(); } fieldTypes[i] = typeInfo; } return fieldTypes; }
3.26
flink_JoinOperator_projectTuple19_rdh
/** * Projects a pair of joined elements to a {@link Tuple} with the previously selected * fields. Requires the classes of the fields of the resulting tuples. * * @return The projected data set. * @see Tuple * @see DataSet */public <T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18> ProjectJoin<I1, I2, Tuple19<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18>> projectTuple19() { TypeInformation<?>[] fTypes = extractFieldTypes(fieldIndexes); TupleTypeInfo<Tuple19<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18>> tType = new TupleTypeInfo<Tuple19<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18>>(fTypes); return new ProjectJoin<I1, I2, Tuple19<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18>>(this.ds1, this.ds2, this.keys1, this.keys2, this.hint, this.fieldIndexes, this.isFieldInFirst, tType, this); }
3.26
flink_JoinOperator_projectTuple5_rdh
/** * Projects a pair of joined elements to a {@link Tuple} with the previously selected * fields. Requires the classes of the fields of the resulting tuples. * * @return The projected data set. * @see Tuple * @see DataSet */ public <T0, T1, T2, T3, T4> ProjectJoin<I1, I2, Tuple5<T0, T1, T2, T3, T4>> projectTuple5() { TypeInformation<?>[] fTypes = extractFieldTypes(fieldIndexes); TupleTypeInfo<Tuple5<T0, T1, T2, T3, T4>> tType = new TupleTypeInfo<Tuple5<T0, T1, T2, T3, T4>>(fTypes); return new ProjectJoin<I1, I2, Tuple5<T0, T1, T2, T3, T4>>(this.ds1, this.ds2, this.keys1, this.keys2, this.hint, this.fieldIndexes, this.isFieldInFirst, tType, this); }
3.26
flink_JoinOperator_projectTuple17_rdh
/** * Projects a pair of joined elements to a {@link Tuple} with the previously selected * fields. Requires the classes of the fields of the resulting tuples. * * @return The projected data set. * @see Tuple * @see DataSet */ public <T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16> ProjectJoin<I1, I2, Tuple17<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16>> projectTuple17() {TypeInformation<?>[] fTypes = extractFieldTypes(fieldIndexes); TupleTypeInfo<Tuple17<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16>> tType = new TupleTypeInfo<Tuple17<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16>>(fTypes); return new ProjectJoin<I1, I2, Tuple17<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16>>(this.ds1, this.ds2, this.keys1, this.keys2, this.hint, this.fieldIndexes, this.isFieldInFirst, tType, this); }
3.26
flink_JoinOperator_projectTuple13_rdh
/** * Projects a pair of joined elements to a {@link Tuple} with the previously selected * fields. Requires the classes of the fields of the resulting tuples. * * @return The projected data set. * @see Tuple * @see DataSet */ public <T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12> ProjectJoin<I1, I2, Tuple13<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12>> projectTuple13() {TypeInformation<?>[] fTypes = extractFieldTypes(fieldIndexes); TupleTypeInfo<Tuple13<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12>> tType = new TupleTypeInfo<Tuple13<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12>>(fTypes); return new ProjectJoin<I1, I2, Tuple13<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12>>(this.ds1, this.ds2, this.keys1, this.keys2, this.hint, this.fieldIndexes, this.isFieldInFirst, tType, this); }
3.26
flink_JoinOperator_projectFirst_rdh
/** * Continues a ProjectJoin transformation and adds fields of the first join input. * * <p>If the first join input is a {@link Tuple} {@link DataSet}, fields can be selected by * their index. If the first join input is not a Tuple DataSet, no parameters should be * passed. * * <p>Fields of the first and second input can be added by chaining the method calls of * {@link org.apache.flink.api.java.operators.JoinOperator.JoinProjection#projectFirst(int...)} and * {@link org.apache.flink.api.java.operators.JoinOperator.JoinProjection#projectSecond(int...)}. * * @param firstFieldIndexes * If the first input is a Tuple DataSet, the indexes of the * selected fields. For a non-Tuple DataSet, do not provide parameters. The order of * fields in the output tuple is defined by to the order of field indexes. * @return An extended JoinProjection. * @see Tuple * @see DataSet */ protected JoinProjection<I1, I2> projectFirst(int... firstFieldIndexes) { boolean isFirstTuple; isFirstTuple = (ds1.getType() instanceof TupleTypeInfo) && (firstFieldIndexes.length > 0);if ((!isFirstTuple) && (firstFieldIndexes.length != 0)) { // field index provided for non-Tuple input throw new IllegalArgumentException("Input is not a Tuple. Call projectFirst() without arguments to include it."); } else if (firstFieldIndexes.length > (22 - this.fieldIndexes.length)) { // to many field indexes provided throw new IllegalArgumentException("You may select only up to twenty-two (22) fields in total."); } int offset = this.fieldIndexes.length; if (isFirstTuple) { // extend index and flag arrays this.fieldIndexes = Arrays.copyOf(this.fieldIndexes, this.fieldIndexes.length + firstFieldIndexes.length); this.isFieldInFirst = Arrays.copyOf(this.isFieldInFirst, this.isFieldInFirst.length + firstFieldIndexes.length); // copy field indexes int maxFieldIndex = numFieldsDs1; for (int i = 0; i < firstFieldIndexes.length; i++) { // check if indexes in range Preconditions.checkElementIndex(firstFieldIndexes[i], maxFieldIndex); this.isFieldInFirst[offset + i] = true; this.fieldIndexes[offset + i] = firstFieldIndexes[i]; } } else { // extend index and flag arrays this.fieldIndexes = Arrays.copyOf(this.fieldIndexes, this.fieldIndexes.length + 1); this.isFieldInFirst = Arrays.copyOf(this.isFieldInFirst, this.isFieldInFirst.length + 1); // add input object to output tuple this.isFieldInFirst[offset] = true; this.fieldIndexes[offset] = -1; } return this; }
3.26
flink_JoinOperator_projectTuple22_rdh
/** * Projects a pair of joined elements to a {@link Tuple} with the previously selected * fields. Requires the classes of the fields of the resulting tuples. * * @return The projected data set. * @see Tuple * @see DataSet */ public <T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21> ProjectJoin<I1, I2, Tuple22<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21>> projectTuple22() { TypeInformation<?>[] fTypes = extractFieldTypes(fieldIndexes); TupleTypeInfo<Tuple22<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21>> tType = new TupleTypeInfo<Tuple22<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21>>(fTypes); return new ProjectJoin<I1, I2, Tuple22<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21>>(this.ds1, this.ds2, this.keys1, this.keys2, this.hint, this.fieldIndexes, this.isFieldInFirst, tType, this); }
3.26
flink_JoinOperator_projectTuple3_rdh
/** * Projects a pair of joined elements to a {@link Tuple} with the previously selected * fields. Requires the classes of the fields of the resulting tuples. * * @return The projected data set. * @see Tuple * @see DataSet */ public <T0, T1, T2> ProjectJoin<I1, I2, Tuple3<T0, T1, T2>> projectTuple3() { TypeInformation<?>[] fTypes = extractFieldTypes(fieldIndexes); TupleTypeInfo<Tuple3<T0, T1, T2>> tType = new TupleTypeInfo<Tuple3<T0, T1, T2>>(fTypes); return new ProjectJoin<I1, I2, Tuple3<T0, T1, T2>>(this.ds1, this.ds2, this.keys1, this.keys2, this.hint, this.fieldIndexes, this.isFieldInFirst, tType, this); }
3.26
flink_JoinOperator_projectTuple7_rdh
/** * Projects a pair of joined elements to a {@link Tuple} with the previously selected * fields. Requires the classes of the fields of the resulting tuples. * * @return The projected data set. * @see Tuple * @see DataSet */ public <T0, T1, T2, T3, T4, T5, T6> ProjectJoin<I1, I2, Tuple7<T0, T1, T2, T3, T4, T5, T6>> projectTuple7() { TypeInformation<?>[] fTypes = extractFieldTypes(fieldIndexes); TupleTypeInfo<Tuple7<T0, T1, T2, T3, T4, T5, T6>> v60 = new TupleTypeInfo<Tuple7<T0, T1, T2, T3, T4, T5, T6>>(fTypes); return new ProjectJoin<I1, I2, Tuple7<T0, T1, T2, T3, T4, T5, T6>>(this.ds1, this.ds2, this.keys1, this.keys2, this.hint, this.fieldIndexes, this.isFieldInFirst, v60, this); }
3.26
flink_JoinOperator_projectTuple2_rdh
/** * Projects a pair of joined elements to a {@link Tuple} with the previously selected * fields. Requires the classes of the fields of the resulting tuples. * * @return The projected data set. * @see Tuple * @see DataSet */ public <T0, T1> ProjectJoin<I1, I2, Tuple2<T0, T1>> projectTuple2() { TypeInformation<?>[] fTypes = extractFieldTypes(fieldIndexes); TupleTypeInfo<Tuple2<T0, T1>> tType = new TupleTypeInfo<Tuple2<T0, T1>>(fTypes); return new ProjectJoin<I1, I2, Tuple2<T0, T1>>(this.ds1, this.ds2, this.keys1, this.keys2, this.hint, this.fieldIndexes, this.isFieldInFirst, tType, this); }
3.26
flink_JoinOperator_projectTuple6_rdh
/** * Projects a pair of joined elements to a {@link Tuple} with the previously selected * fields. Requires the classes of the fields of the resulting tuples. * * @return The projected data set. * @see Tuple * @see DataSet */ public <T0, T1, T2, T3, T4, T5> ProjectJoin<I1, I2, Tuple6<T0, T1, T2, T3, T4, T5>> projectTuple6() { TypeInformation<?>[] fTypes = extractFieldTypes(fieldIndexes); TupleTypeInfo<Tuple6<T0, T1, T2, T3, T4, T5>> tType = new TupleTypeInfo<Tuple6<T0, T1, T2, T3, T4, T5>>(fTypes); return new ProjectJoin<I1, I2, Tuple6<T0, T1, T2, T3, T4, T5>>(this.ds1, this.ds2, this.keys1, this.keys2, this.hint, this.fieldIndexes, this.isFieldInFirst, tType, this); }
3.26
flink_JoinOperator_projectTuple16_rdh
/** * Projects a pair of joined elements to a {@link Tuple} with the previously selected * fields. Requires the classes of the fields of the resulting tuples. * * @return The projected data set. * @see Tuple * @see DataSet */ public <T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15> ProjectJoin<I1, I2, Tuple16<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15>> projectTuple16() { TypeInformation<?>[] fTypes = extractFieldTypes(fieldIndexes); TupleTypeInfo<Tuple16<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15>> tType = new TupleTypeInfo<Tuple16<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15>>(fTypes); return new ProjectJoin<I1, I2, Tuple16<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15>>(this.ds1, this.ds2, this.keys1, this.keys2, this.hint, this.fieldIndexes, this.isFieldInFirst, tType, this); }
3.26
flink_JoinOperator_withPartitioner_rdh
/** * Sets a custom partitioner for this join. The partitioner will be called on the join keys to * determine the partition a key should be assigned to. The partitioner is evaluated on both * join inputs in the same way. * * <p>NOTE: A custom partitioner can only be used with single-field join keys, not with * composite join keys. * * @param partitioner * The custom partitioner to be used. * @return This join operator, to allow for function chaining. */ public JoinOperator<I1, I2, OUT> withPartitioner(Partitioner<?> partitioner) { if (partitioner != null) { keys1.validateCustomPartitioner(partitioner, null); keys2.validateCustomPartitioner(partitioner, null); } this.customPartitioner = getInput1().clean(partitioner); return this;}
3.26
flink_JoinOperator_projectTuple12_rdh
/** * Projects a pair of joined elements to a {@link Tuple} with the previously selected * fields. Requires the classes of the fields of the resulting tuples. * * @return The projected data set. * @see Tuple * @see DataSet */ public <T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11> ProjectJoin<I1, I2, Tuple12<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11>> projectTuple12() { TypeInformation<?>[] v69 = extractFieldTypes(fieldIndexes); TupleTypeInfo<Tuple12<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11>> tType = new TupleTypeInfo<Tuple12<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11>>(v69); return new ProjectJoin<I1, I2, Tuple12<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11>>(this.ds1, this.ds2, this.keys1, this.keys2, this.hint, this.fieldIndexes, this.isFieldInFirst, tType, this); }
3.26
flink_JoinOperator_projectTuple23_rdh
/** * Projects a pair of joined elements to a {@link Tuple} with the previously selected * fields. Requires the classes of the fields of the resulting tuples. * * @return The projected data set. * @see Tuple * @see DataSet */ public <T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22> ProjectJoin<I1, I2, Tuple23<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22>> projectTuple23() { TypeInformation<?>[] fTypes = extractFieldTypes(fieldIndexes); TupleTypeInfo<Tuple23<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22>> tType = new TupleTypeInfo<Tuple23<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22>>(fTypes); return new ProjectJoin<I1, I2, Tuple23<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22>>(this.ds1, this.ds2, this.keys1, this.keys2, this.hint, this.fieldIndexes, this.isFieldInFirst, tType, this); }
3.26
flink_TableOperatorWrapper_isClosed_rdh
/** * Checks if the wrapped operator has been closed. * * <p>Note that this method must be called in the task thread. */ public boolean isClosed() { return closed; }
3.26
flink_NumericSummaryAggregator_aggregate_rdh
/** * Add a value to the current aggregation. */ @Override public void aggregate(T value) { if (value == null) { nullCount++; } else if (isNan(value)) { nanCount++;} else if (isInfinite(value)) { infinityCount++; } else { nonMissingCount++; min.aggregate(value); f0.aggregate(value); sum.aggregate(value); double doubleValue = value.doubleValue(); double delta = doubleValue - mean.value(); mean = mean.add(delta / nonMissingCount); m2 = m2.add(delta * (doubleValue - mean.value())); } }
3.26
flink_NumericSummaryAggregator_combine_rdh
/** * combine two aggregations. */ @Override public void combine(Aggregator<T, NumericColumnSummary<T>> otherSameType) { NumericSummaryAggregator<T> other = ((NumericSummaryAggregator<T>) (otherSameType));nullCount += other.nullCount; nanCount += other.nanCount; infinityCount += other.infinityCount; if (nonMissingCount == 0) { nonMissingCount = other.nonMissingCount;min = other.min; f0 = other.max; sum = other.sum; mean = other.mean; m2 = other.m2;} else if (other.nonMissingCount != 0) { long combinedCount = nonMissingCount + other.nonMissingCount;min.combine(other.min); f0.combine(other.max); sum.combine(other.sum); double deltaMean = other.mean.value() - mean.value(); mean = mean.add((deltaMean * other.nonMissingCount) / combinedCount); m2 = m2.add(other.m2).add((((deltaMean * deltaMean) * nonMissingCount) * other.nonMissingCount) / combinedCount); nonMissingCount = combinedCount; } }
3.26
flink_Pattern_m0_rdh
/** * Specifies that this pattern is optional for a final match of the pattern sequence to happen. * * @return The same pattern as optional. * @throws MalformedPatternException * if the quantifier is not applicable to this pattern. */ public Pattern<T, F> m0() { checkIfPreviousPatternGreedy(); quantifier.optional(); return this; } /** * Specifies that this pattern can occur {@code one or more} times. This means at least one and * at most infinite number of events can be matched to this pattern. * * <p>If this quantifier is enabled for a pattern {@code A.oneOrMore().followedBy(B)} and a * sequence of events {@code A1 A2 B} appears, this will generate patterns: {@code A1 B} and * {@code A1 A2 B}. See also {@link #allowCombinations()}. * * @return The same pattern with a {@link Quantifier#looping(ConsumingStrategy)}
3.26
flink_Pattern_next_rdh
/** * Appends a new group pattern to the existing one. The new pattern enforces strict temporal * contiguity. This means that the whole pattern sequence matches only if an event which matches * this pattern directly follows the preceding matching event. Thus, there cannot be any events * in between two matching events. * * @param group * the pattern to append * @return A new pattern which is appended to this one */ public GroupPattern<T, F> next(Pattern<T, F> group) { return new GroupPattern<>(this, group, ConsumingStrategy.STRICT, afterMatchSkipStrategy); }
3.26
flink_Pattern_within_rdh
/** * Defines the maximum time interval in which a matching pattern has to be completed in order to * be considered valid. This interval corresponds to the maximum time gap between events. * * @param withinType * Type of the within interval between events * @param windowTime * Time of the matching window * @return The same pattern operator with the new window length */ public Pattern<T, F> within(Time windowTime, WithinType withinType) {if (windowTime != null) { windowTimes.put(withinType, windowTime); } return this; }
3.26
flink_Pattern_subtype_rdh
/** * Applies a subtype constraint on the current pattern. This means that an event has to be of * the given subtype in order to be matched. * * @param subtypeClass * Class of the subtype * @param <S> * Type of the subtype * @return The same pattern with the new subtype constraint */public <S extends F> Pattern<T, S> subtype(final Class<S> subtypeClass) { Preconditions.checkNotNull(subtypeClass, "The class cannot be null."); if (condition == null) { this.condition = new SubtypeCondition<F>(subtypeClass); } else { this.condition = new RichAndCondition<>(condition, new SubtypeCondition<F>(subtypeClass)); } @SuppressWarnings("unchecked") Pattern<T, S> result = ((Pattern<T, S>) (this)); return result; }
3.26
flink_Pattern_or_rdh
/** * Adds a condition that has to be satisfied by an event in order to be considered a match. If * another condition has already been set, the new one is going to be combined with the previous * with a logical {@code OR}. In other case, this is going to be the only condition. * * @param condition * The condition as an {@link IterativeCondition}. * @return The pattern with the new condition is set. */ public Pattern<T, F> or(IterativeCondition<F> condition) { Preconditions.checkNotNull(condition, "The condition cannot be null."); ClosureCleaner.clean(condition, ClosureCleanerLevel.RECURSIVE, true); if (this.condition == null) { this.condition = condition; } else { this.condition = new RichOrCondition<>(this.condition, condition); } return this; }
3.26
flink_Pattern_times_rdh
/** * Specifies that the pattern can occur between from and to times with time interval corresponds * to the maximum time gap between previous and current event for each times. * * @param from * number of times matching event must appear at least * @param to * number of times matching event must appear at most * @param windowTime * time of the matching window between times * @return The same pattern with the number of times range applied * @throws MalformedPatternException * if the quantifier is not applicable to this pattern. */ public Pattern<T, F> times(int from, int to, @Nullable Time windowTime) { checkIfNoNotPattern(); checkIfQuantifierApplied(); this.quantifier = Quantifier.times(quantifier.getConsumingStrategy()); if (from == 0) { this.quantifier.optional(); from = 1; } this.times = Times.of(from, to, windowTime); return this; } /** * Specifies that this pattern can occur the specified times at least. This means at least the * specified times and at most infinite number of events can be matched to this pattern. * * @return The same pattern with a {@link Quantifier#looping(ConsumingStrategy)}
3.26
flink_Pattern_notFollowedBy_rdh
/** * Appends a new pattern to the existing one. The new pattern enforces that there is no event * matching this pattern between the preceding pattern and succeeding this one. * * <p><b>NOTE:</b> There has to be other pattern after this one. * * @param name * Name of the new pattern * @return A new pattern which is appended to this one */public Pattern<T, T> notFollowedBy(final String name) { if (quantifier.hasProperty(QuantifierProperty.OPTIONAL)) { throw new UnsupportedOperationException(("Specifying a pattern with an optional path to NOT condition is not supported yet. " + "You can simulate such pattern with two independent patterns, one with and the other without ") + "the optional part."); } return new Pattern<>(name, this, ConsumingStrategy.NOT_FOLLOW, afterMatchSkipStrategy); }
3.26
flink_Pattern_m1_rdh
/** * Specifies exact number of times that this pattern should be matched and time interval * corresponds to the maximum time gap between previous and current event for each times. * * @param times * number of times matching event must appear * @param windowTime * time of the matching window between times * @return The same pattern with number of times applied * @throws MalformedPatternException * if the quantifier is not applicable to this pattern. */ public Pattern<T, F> m1(int times, @Nullable Time windowTime) { checkIfNoNotPattern();checkIfQuantifierApplied(); Preconditions.checkArgument(times > 0, "You should give a positive number greater than 0."); this.quantifier = Quantifier.times(quantifier.getConsumingStrategy()); this.times = Times.of(times, windowTime); return this; }
3.26
flink_Pattern_getAfterMatchSkipStrategy_rdh
/** * * @return the pattern's {@link AfterMatchSkipStrategy.SkipStrategy} after match. */ public AfterMatchSkipStrategy getAfterMatchSkipStrategy() { return afterMatchSkipStrategy; }
3.26
flink_Pattern_greedy_rdh
/** * Specifies that this pattern is greedy. This means as many events as possible will be matched * to this pattern. * * @return The same pattern with {@link Quantifier#greedy} set to true. * @throws MalformedPatternException * if the quantifier is not applicable to this pattern. */public Pattern<T, F> greedy() { checkIfNoNotPattern(); checkIfNoGroupPattern(); this.quantifier.greedy(); return this;}
3.26
flink_Pattern_where_rdh
/** * Adds a condition that has to be satisfied by an event in order to be considered a match. If * another condition has already been set, the new one is going to be combined with the previous * with a logical {@code AND}. In other case, this is going to be the only condition. * * @param condition * The condition as an {@link IterativeCondition}. * @return The pattern with the new condition is set. */ public Pattern<T, F> where(IterativeCondition<F> condition) { Preconditions.checkNotNull(condition, "The condition cannot be null."); ClosureCleaner.clean(condition, ClosureCleanerLevel.RECURSIVE, true); if (this.condition == null) { this.condition = condition; } else { this.condition = new RichAndCondition<>(this.condition, condition); } return this; }
3.26
flink_Pattern_until_rdh
/** * Applies a stop condition for a looping state. It allows cleaning the underlying state. * * @param untilCondition * a condition an event has to satisfy to stop collecting events into * looping state * @return The same pattern with applied untilCondition */ public Pattern<T, F> until(IterativeCondition<F> untilCondition) { Preconditions.checkNotNull(untilCondition, "The condition cannot be null"); if (this.untilCondition != null) { throw new MalformedPatternException("Only one until condition can be applied."); } if (!quantifier.hasProperty(QuantifierProperty.LOOPING)) { throw new MalformedPatternException("The until condition is only applicable to looping states."); } ClosureCleaner.clean(untilCondition, ClosureCleanerLevel.RECURSIVE, true); this.untilCondition = untilCondition; return this; }
3.26
flink_Pattern_m2_rdh
/** * Appends a new group pattern to the existing one. The new pattern enforces non-strict temporal * contiguity. This means that a matching event of this pattern and the preceding matching event * might be interleaved with other events which are ignored. * * @param group * the pattern to append * @return A new pattern which is appended to this one */ public GroupPattern<T, F> m2(Pattern<T, F> group) { return new GroupPattern<>(this, group, ConsumingStrategy.SKIP_TILL_ANY, afterMatchSkipStrategy); }
3.26
flink_Pattern_followedBy_rdh
/** * Appends a new group pattern to the existing one. The new pattern enforces non-strict temporal * contiguity. This means that a matching event of this pattern and the preceding matching event * might be interleaved with other events which are ignored. * * @param group * the pattern to append * @return A new pattern which is appended to this one */ public GroupPattern<T, F> followedBy(Pattern<T, F> group) { return new GroupPattern<>(this, group, ConsumingStrategy.SKIP_TILL_NEXT, afterMatchSkipStrategy); }
3.26
flink_Pattern_followedByAny_rdh
/** * Appends a new pattern to the existing one. The new pattern enforces non-strict temporal * contiguity. This means that a matching event of this pattern and the preceding matching event * might be interleaved with other events which are ignored. * * @param name * Name of the new pattern * @return A new pattern which is appended to this one */ public Pattern<T, T> followedByAny(final String name) { return new Pattern<>(name, this, ConsumingStrategy.SKIP_TILL_ANY, afterMatchSkipStrategy); }
3.26
flink_Pattern_begin_rdh
/** * Starts a new pattern sequence. The provided pattern is the initial pattern of the new * sequence. * * @param group * the pattern to begin with * @return the first pattern of a pattern sequence */ public static <T, F extends T> GroupPattern<T, F> begin(Pattern<T, F> group) { return new GroupPattern<>(null, group, ConsumingStrategy.STRICT, AfterMatchSkipStrategy.noSkip());}
3.26
flink_DistributedCache_getFile_rdh
// ------------------------------------------------------------------------ public File getFile(String name) {if (name == null) { throw new NullPointerException("name must not be null"); } Future<Path> future = cacheCopyTasks.get(name); if (future == null) { throw new IllegalArgumentException((("File with name '" + name) + "' is not available.") + " Did you forget to register the file?"); } try { final Path v3 = future.get(); URI tmp = v3.makeQualified(v3.getFileSystem()).toUri(); return new File(tmp); } catch (ExecutionException e) { throw new RuntimeException("An error occurred while copying the file.", e.getCause()); } catch (Exception e) { throw new RuntimeException(("Error while getting the file registered under '" + name) + "' from the distributed cache", e); } }
3.26
flink_DistributedCache_parseCachedFilesFromString_rdh
/** * Parses a list of distributed cache entries encoded in a string. Can be used to parse a config * option described by {@link org.apache.flink.configuration.PipelineOptions#CACHED_FILES}. * * <p>See {@link org.apache.flink.configuration.PipelineOptions#CACHED_FILES} for the format. * * @param files * List of string encoded distributed cache entries. */ public static List<Tuple2<String, DistributedCacheEntry>> parseCachedFilesFromString(List<String> files) { return files.stream().map(ConfigurationUtils::parseMap).map(m -> Tuple2.of(m.get("name"), new DistributedCacheEntry(m.get("path"), Optional.ofNullable(m.get("executable")).map(Boolean::parseBoolean).orElse(false)))).collect(Collectors.toList()); }
3.26
flink_DistributedCache_writeFileInfoToConfig_rdh
// ------------------------------------------------------------------------ // Utilities to read/write cache files from/to the configuration // ------------------------------------------------------------------------ public static void writeFileInfoToConfig(String name, DistributedCacheEntry e, Configuration conf) { int num = conf.getInteger(CACHE_FILE_NUM, 0) + 1; conf.setInteger(CACHE_FILE_NUM, num); conf.setString(CACHE_FILE_NAME + num, name); conf.setString(CACHE_FILE_PATH + num, e.filePath); conf.setBoolean(f0 + num, e.isExecutable || new File(e.filePath).canExecute()); conf.setBoolean(CACHE_FILE_DIR + num, e.isZipped || new File(e.filePath).isDirectory()); if (e.blobKey != null) { conf.setBytes(CACHE_FILE_BLOB_KEY + num, e.blobKey); } }
3.26
flink_MutableConfig_of_rdh
/** * Creates a new {@link Configuration}. * * @param config * A readable configuration. * @return A mutable Configuration. */ public static Configuration of(ReadableConfig config) { if (!(config instanceof Configuration)) { throw new IllegalStateException("Unexpected implementation of ReadableConfig: " + config.getClass()); } return new Configuration(((Configuration) (config))); }
3.26
flink_ManagedTableFactory_discoverManagedTableFactory_rdh
/** * Discovers the unique implementation of {@link ManagedTableFactory} without identifier. */static ManagedTableFactory discoverManagedTableFactory(ClassLoader classLoader) { return FactoryUtil.discoverManagedTableFactory(classLoader, ManagedTableFactory.class); }
3.26
flink_WindowAggregateQueryOperation_getSize_rdh
/** * Size of a {@link WindowType#TUMBLE} or {@link WindowType#SLIDE} window. Empty for {@link WindowType#SESSION} window. * * @return size of a window */ public Optional<ValueLiteralExpression> getSize() { return Optional.of(size); }
3.26
flink_WindowAggregateQueryOperation_getSlide_rdh
/** * Slide of {@link WindowType#SLIDE} window. Empty for other windows. * * @return slide of a slide window */ public Optional<ValueLiteralExpression> getSlide() {return Optional.of(slide); }
3.26
flink_ArrayResultIterator_next_rdh
// ------------------------------------------------------------------------- // Result Iterator Methods // ------------------------------------------------------------------------- @Nullable @Override public RecordAndPosition<E> next() { if (pos < num) { recordAndPosition.setNext(records[pos++]); return recordAndPosition; } else { return null; } }
3.26
flink_ArrayResultIterator_set_rdh
// ------------------------------------------------------------------------- // Setting // ------------------------------------------------------------------------- /** * Sets the records to be returned by this iterator. Each record's {@link RecordAndPosition} * will have the same offset (for {@link RecordAndPosition#getOffset()}. The first returned * record will have a records-to-skip count of {@code skipCountOfFirst + 1}, following the * contract that each record needs to point to the position AFTER itself (because a checkpoint * taken after the record was emitted needs to resume from after that record). */ public void set(final E[] records, final int num, final long offset, final long skipCountOfFirst) { this.records = records; this.num = num; this.pos = 0; this.recordAndPosition.set(null, offset, skipCountOfFirst); }
3.26
flink_ZooKeeperLeaderElectionHaServices_cleanupZooKeeperPaths_rdh
/** * Cleans up leftover ZooKeeper paths. */ private void cleanupZooKeeperPaths() throws Exception { deleteOwnedZNode(); tryDeleteEmptyParentZNodes(); }
3.26
flink_ZooKeeperLeaderElectionHaServices_tryDeleteEmptyParentZNodes_rdh
/** * Tries to delete empty parent znodes. * * <p>IMPORTANT: This method can be removed once all supported ZooKeeper versions support the * container {@link org.apache.zookeeper.CreateMode}. * * @throws Exception * if the deletion fails for other reason than {@link KeeperException.NotEmptyException} */ private void tryDeleteEmptyParentZNodes() throws Exception { // try to delete the parent znodes if they are empty String remainingPath = getParentPath(getNormalizedPath(curatorFrameworkWrapper.asCuratorFramework().getNamespace())); final CuratorFramework nonNamespaceClient = curatorFrameworkWrapper.asCuratorFramework().usingNamespace(null); while (!isRootPath(remainingPath)) { try { nonNamespaceClient.delete().forPath(remainingPath);} catch (KeeperException.NotEmptyException ignored) { // We can only delete empty znodes break; } remainingPath = getParentPath(remainingPath); } }
3.26
flink_ZooKeeperLeaderElectionHaServices_createLeaderRetrievalService_rdh
// /////////////////////////////////////////////// // LeaderElection/-Retrieval-related methods // /////////////////////////////////////////////// @Override protected LeaderRetrievalService createLeaderRetrievalService(String componentId) { // Maybe use a single service for leader retrieval return ZooKeeperUtils.createLeaderRetrievalService(curatorFrameworkWrapper.asCuratorFramework(), ZooKeeperUtils.getLeaderPath(componentId), configuration); }
3.26
flink_GSCommitRecoverableSerializer_deserializeCommitRecoverable_rdh
/** * Deserializes a commit recoverable from the input stream. * * @param dataInputStream * The input stream * @return The commit recoverable * @throws IOException * On underlying failure */ static GSCommitRecoverable deserializeCommitRecoverable(DataInputStream dataInputStream) throws IOException { // finalBlobId String finalBucketName = dataInputStream.readUTF(); String finalObjectName = dataInputStream.readUTF(); GSBlobIdentifier finalBlobIdentifier = new GSBlobIdentifier(finalBucketName, finalObjectName);// componentObjectIds ArrayList<UUID> componentObjectIds = new ArrayList<>(); int count = dataInputStream.readInt(); for (int i = 0; i < count; i++) { long msbValue = dataInputStream.readLong(); long lsbValue = dataInputStream.readLong(); UUID componentObjectId = new UUID(msbValue, lsbValue); componentObjectIds.add(componentObjectId); } GSCommitRecoverable recoverable = new GSCommitRecoverable(finalBlobIdentifier, componentObjectIds); LOGGER.trace("Deserialized commit recoverable {}", recoverable); return recoverable; }
3.26
flink_GSCommitRecoverableSerializer_getVersion_rdh
/** * The serializer version. Note that, if this changes, then the version of {@link GSResumeRecoverableSerializer} must also change, because it uses this class to serialize * itself, in part. * * @return The serializer version. */ @Override public int getVersion() { return f0; }
3.26
flink_GSCommitRecoverableSerializer_serializeCommitRecoverable_rdh
/** * Writes a commit recoverable to a data output stream. * * @param recoverable * The commit recoverable * @param dataOutputStream * The data output stream * @throws IOException * On underlyilng failure */ static void serializeCommitRecoverable(GSCommitRecoverable recoverable, DataOutputStream dataOutputStream) throws IOException { // finalBlobIdentifier dataOutputStream.writeUTF(recoverable.finalBlobIdentifier.bucketName); dataOutputStream.writeUTF(recoverable.finalBlobIdentifier.objectName); // componentObjectIds dataOutputStream.writeInt(recoverable.componentObjectIds.size()); for (UUID componentObjectId : recoverable.componentObjectIds) { dataOutputStream.writeLong(componentObjectId.getMostSignificantBits()); dataOutputStream.writeLong(componentObjectId.getLeastSignificantBits()); } }
3.26
flink_OneShotLatch_trigger_rdh
/** * Fires the latch. Code that is blocked on {@link #await()} will now return. */ public void trigger() { synchronized(lock) { triggered = true;lock.notifyAll(); } }
3.26
flink_OneShotLatch_await_rdh
/** * Waits until {@link OneShotLatch#trigger()} is called. Once {@code #trigger()} has been called * this call will always return immediately. * * <p>If the latch is not triggered within the given timeout, a {@code TimeoutException} will be * thrown after the timeout. * * <p>A timeout value of zero means infinite timeout and make this equivalent to {@link #await()}. * * @param timeout * The value of the timeout, a value of zero indicating infinite timeout. * @param timeUnit * The unit of the timeout * @throws InterruptedException * Thrown if the thread is interrupted while waiting. * @throws TimeoutException * Thrown, if the latch is not triggered within the timeout time. */ public void await(long timeout, TimeUnit timeUnit) throws InterruptedException, TimeoutException { if (timeout < 0) { throw new IllegalArgumentException("time may not be negative"); } if (timeUnit == null) { throw new NullPointerException("timeUnit"); } if (timeout == 0) { await(); } else { final long deadline = System.nanoTime() + timeUnit.toNanos(timeout); long millisToWait; synchronized(lock) { while ((!triggered) && ((millisToWait = (deadline - System.nanoTime()) / 1000000) > 0)) { lock.wait(millisToWait);} if (!triggered) { throw new TimeoutException(); } } } }
3.26
flink_OneShotLatch_awaitQuietly_rdh
/** * Calls {@link #await(long, TimeUnit)} and transforms any {@link InterruptedException} or * {@link TimeoutException} into a {@link RuntimeException}. */ public void awaitQuietly(long timeout, TimeUnit timeUnit) { try { await(timeout, timeUnit); } catch (InterruptedException | TimeoutException e) { throw new RuntimeException(e); } }
3.26
flink_OneShotLatch_reset_rdh
/** * Resets the latch so that {@link #isTriggered()} returns false. */ public void reset() { synchronized(lock) { triggered = false; } }
3.26
flink_YarnResourceManagerDriver_initializeInternal_rdh
// ------------------------------------------------------------------------ // ResourceManagerDriver // ------------------------------------------------------------------------ @Override protected void initializeInternal() throws Exception { isRunning = true; final YarnContainerEventHandler yarnContainerEventHandler = new YarnContainerEventHandler(); try { resourceManagerClient = f0.createResourceManagerClient(yarnHeartbeatIntervalMillis, yarnContainerEventHandler); resourceManagerClient.init(yarnConfig); resourceManagerClient.start(); final RegisterApplicationMasterResponse registerApplicationMasterResponse = registerApplicationMaster(); getContainersFromPreviousAttempts(registerApplicationMasterResponse); taskExecutorProcessSpecContainerResourcePriorityAdapter = new TaskExecutorProcessSpecContainerResourcePriorityAdapter(registerApplicationMasterResponse.getMaximumResourceCapability(), ExternalResourceUtils.getExternalResourceConfigurationKeys(flinkConfig, YarnConfigOptions.EXTERNAL_RESOURCE_YARN_CONFIG_KEY_SUFFIX)); } catch (Exception e) { throw new ResourceManagerException("Could not start resource manager client.", e); } nodeManagerClient = yarnNodeManagerClientFactory.createNodeManagerClient(yarnContainerEventHandler); nodeManagerClient.init(yarnConfig); nodeManagerClient.start(); }
3.26
flink_YarnResourceManagerDriver_getYarnStatus_rdh
// ------------------------------------------------------------------------ // Utility methods // ------------------------------------------------------------------------ /** * Converts a Flink application status enum to a YARN application status enum. * * @param status * The Flink application status. * @return The corresponding YARN application status. */private FinalApplicationStatus getYarnStatus(ApplicationStatus status) { if (status == null) { return FinalApplicationStatus.UNDEFINED; } else { switch (status) { case SUCCEEDED : return FinalApplicationStatus.SUCCEEDED; case FAILED : return FinalApplicationStatus.FAILED; case CANCELED : return FinalApplicationStatus.KILLED; default : return FinalApplicationStatus.UNDEFINED; } }}
3.26
flink_YarnResourceManagerDriver_m0_rdh
// ------------------------------------------------------------------------ // Internal // ------------------------------------------------------------------------ private void m0(Priority priority, List<Container> containers) { final Optional<TaskExecutorProcessSpecContainerResourcePriorityAdapter.TaskExecutorProcessSpecAndResource> taskExecutorProcessSpecAndResourceOpt = taskExecutorProcessSpecContainerResourcePriorityAdapter.getTaskExecutorProcessSpecAndResource(priority); Preconditions.checkState(taskExecutorProcessSpecAndResourceOpt.isPresent(), "Receive %s containers with unrecognized priority %s. This should not happen.", containers.size(), priority.getPriority()); final TaskExecutorProcessSpec taskExecutorProcessSpec = taskExecutorProcessSpecAndResourceOpt.get().getTaskExecutorProcessSpec(); final Resource resource = taskExecutorProcessSpecAndResourceOpt.get().getResource(); final Queue<CompletableFuture<YarnWorkerNode>> pendingRequestResourceFutures = requestResourceFutures.getOrDefault(taskExecutorProcessSpec, new LinkedList<>()); log.info("Received {} containers with priority {}, {} pending container requests.", containers.size(), priority, pendingRequestResourceFutures.size()); final Iterator<Container> containerIterator = containers.iterator(); final Iterator<AMRMClient.ContainerRequest> pendingContainerRequestIterator = getPendingRequestsAndCheckConsistency(priority, resource, pendingRequestResourceFutures.size()).iterator(); int numAccepted = 0; while (containerIterator.hasNext() && pendingContainerRequestIterator.hasNext()) { final Container container = containerIterator.next(); final AMRMClient.ContainerRequest pendingRequest = pendingContainerRequestIterator.next(); final ResourceID resourceId = getContainerResourceId(container); final CompletableFuture<YarnWorkerNode> requestResourceFuture = pendingRequestResourceFutures.poll(); Preconditions.checkState(requestResourceFuture != null); if (pendingRequestResourceFutures.isEmpty()) { requestResourceFutures.remove(taskExecutorProcessSpec); } requestResourceFuture.complete(new YarnWorkerNode(container, resourceId)); startTaskExecutorInContainerAsync(container, taskExecutorProcessSpec, resourceId); removeContainerRequest(pendingRequest); numAccepted++; } int numExcess = 0; while (containerIterator.hasNext()) { returnExcessContainer(containerIterator.next()); numExcess++; } log.info("Accepted {} requested containers, returned {} excess containers, {} pending container requests of resource {}.", numAccepted, numExcess, pendingRequestResourceFutures.size(), resource); }
3.26
flink_RecoverableMultiPartUploadImpl_snapshotAndGetRecoverable_rdh
/** * Creates a snapshot of this MultiPartUpload, from which the upload can be resumed. * * <p>Data buffered locally which is less than {@link org.apache.flink.fs.s3.common.FlinkS3FileSystem#S3_MULTIPART_MIN_PART_SIZE * S3_MULTIPART_MIN_PART_SIZE}, and cannot be uploaded as part of the MPU and set to S3 as * independent objects. * * <p>This implementation currently blocks until all part uploads are complete and returns a * completed future. */ @Override public S3Recoverable snapshotAndGetRecoverable(@Nullable final RefCountedFSOutputStream incompletePartFile) throws IOException {final String incompletePartObjectName = safelyUploadSmallPart(incompletePartFile); // make sure all other uploads are complete // this currently makes the method blocking, // to be made non-blocking in the future awaitPendingPartsUpload(); final String objectName = currentUploadInfo.getObjectName(); final String uploadId = currentUploadInfo.getUploadId(); final List<PartETag> completedParts = currentUploadInfo.getCopyOfEtagsOfCompleteParts(); final long sizeInBytes = currentUploadInfo.getExpectedSizeInBytes(); if (incompletePartObjectName == null) { return new S3Recoverable(objectName, uploadId, completedParts, sizeInBytes); } else { return new S3Recoverable(objectName, uploadId, completedParts, sizeInBytes, incompletePartObjectName, incompletePartFile.getPos()); } }
3.26
flink_RecoverableMultiPartUploadImpl_newUpload_rdh
// ------------------------------------------------------------------------ // factory methods // ------------------------------------------------------------------------ public static RecoverableMultiPartUploadImpl newUpload(final S3AccessHelper s3AccessHelper, final Executor uploadThreadPool, final String objectName) throws IOException { final String multiPartUploadId = s3AccessHelper.startMultiPartUpload(objectName); return new RecoverableMultiPartUploadImpl(s3AccessHelper, uploadThreadPool, multiPartUploadId, objectName, new ArrayList<>(), 0L, Optional.empty()); }
3.26
flink_RecoverableMultiPartUploadImpl_uploadPart_rdh
/** * Adds a part to the uploads without any size limitations. * * <p>This method is non-blocking and does not wait for the part upload to complete. * * @param file * The file with the part data. * @throws IOException * If this method throws an exception, the RecoverableS3MultiPartUpload * should not be used any more, but recovered instead. */ @Override public void uploadPart(RefCountedFSOutputStream file) throws IOException { // this is to guarantee that nobody is // writing to the file we are uploading. checkState(file.isClosed()); final CompletableFuture<PartETag> future = new CompletableFuture<>(); f0.add(future); final long partLength = file.getPos(); currentUploadInfo.registerNewPart(partLength); file.retain();// keep the file while the async upload still runs uploadThreadPool.execute(new UploadTask(s3AccessHelper, currentUploadInfo, file, future)); }
3.26
flink_FlinkVersion_rangeOf_rdh
/** * Returns all versions within the defined range, inclusive both start and end. */ public static Set<FlinkVersion> rangeOf(FlinkVersion start, FlinkVersion end) { return Stream.of(FlinkVersion.values()).filter(v -> (v.ordinal() >= start.ordinal()) && (v.ordinal() <= end.ordinal())).collect(Collectors.toCollection(LinkedHashSet::new)); }
3.26
flink_FlinkVersion_current_rdh
/** * Returns the version for the current branch. */public static FlinkVersion current() { return values()[values().length - 1]; }
3.26
flink_VersionedIOReadableWritable_getCompatibleVersions_rdh
/** * Returns the compatible version values. * * <p>By default, the base implementation recognizes only the current version (identified by * {@link #getVersion()}) as compatible. This method can be used as a hook and may be overridden * to identify more compatible versions. * * @return an array of integers representing the compatible version values. */ public int[] getCompatibleVersions() { return new int[]{ getVersion() }; }
3.26
flink_BinaryArrayData_calculateFixLengthPartSize_rdh
/** * It store real value when type is primitive. It store the length and offset of variable-length * part when type is string, map, etc. */ public static int calculateFixLengthPartSize(LogicalType type) { // ordered by type root definition switch (type.getTypeRoot()) { case BOOLEAN : case TINYINT : return 1; case CHAR : case VARCHAR : case BINARY : case VARBINARY : case DECIMAL : case BIGINT : case DOUBLE : case TIMESTAMP_WITHOUT_TIME_ZONE : case TIMESTAMP_WITH_LOCAL_TIME_ZONE : case INTERVAL_DAY_TIME : case ARRAY : case MULTISET : case MAP : case ROW : case STRUCTURED_TYPE : case RAW : // long and double are 8 bytes; // otherwise it stores the length and offset of the variable-length part for types // such as is string, map, etc. return 8; case TIMESTAMP_WITH_TIME_ZONE : throw new UnsupportedOperationException(); case SMALLINT : return 2; case INTEGER : case FLOAT : case DATE : case TIME_WITHOUT_TIME_ZONE : case INTERVAL_YEAR_MONTH : return 4; case DISTINCT_TYPE : return calculateFixLengthPartSize(((DistinctType) (type)).getSourceType()); case NULL :case SYMBOL : case UNRESOLVED : default : throw new IllegalArgumentException(); } }
3.26
flink_BinaryArrayData_fromPrimitiveArray_rdh
// ------------------------------------------------------------------------------------------ // Construction Utilities // ------------------------------------------------------------------------------------------ public static BinaryArrayData fromPrimitiveArray(boolean[] arr) { return fromPrimitiveArray(arr, BOOLEAN_ARRAY_OFFSET, arr.length, 1); }
3.26
flink_AbstractOrcColumnVector_createFlinkVectorFromConstant_rdh
/** * Create flink vector by hive vector from constant. */ public static ColumnVector createFlinkVectorFromConstant(LogicalType type, Object value, int batchSize) { return createFlinkVector(m0(type, value, batchSize), type); }
3.26
flink_AbstractOrcColumnVector_m0_rdh
/** * Create a orc vector from partition spec value. See hive {@code VectorizedRowBatchCtx#addPartitionColsToBatch}. */ private static ColumnVector m0(LogicalType type, Object value, int batchSize) { switch (type.getTypeRoot()) { case CHAR : case VARCHAR : case BINARY : case VARBINARY : return createBytesVector(batchSize, value); case BOOLEAN : return createLongVector(batchSize, ((Boolean) (value)) ? 1 : 0); case TINYINT : case SMALLINT : case INTEGER : case BIGINT : return createLongVector(batchSize, value); case DECIMAL : DecimalType decimalType = ((DecimalType) (type)); return createDecimalVector(batchSize, decimalType.getPrecision(), decimalType.getScale(), value); case FLOAT : case DOUBLE : return createDoubleVector(batchSize, value); case DATE : if (value instanceof LocalDate) { value = Date.valueOf(((LocalDate) (value))); } return createLongVector(batchSize, toInternal(((Date) (value)))); case TIMESTAMP_WITHOUT_TIME_ZONE : return TimestampUtil.createVectorFromConstant(batchSize, value); default : throw new UnsupportedOperationException("Unsupported type: " + type); } }
3.26
flink_ContinuousEventTimeTrigger_of_rdh
/** * Creates a trigger that continuously fires based on the given interval. * * @param interval * The time interval at which to fire. * @param <W> * The type of {@link Window Windows} on which this trigger can operate. */ public static <W extends Window> ContinuousEventTimeTrigger<W> of(Time interval) { return new ContinuousEventTimeTrigger<>(interval.toMilliseconds()); }
3.26
flink_CompactingHashTable_getMinPartition_rdh
/** * * @return number of memory segments in the smallest partition */ private int getMinPartition() { int v69 = Integer.MAX_VALUE; for (InMemoryPartition<T> p1 : this.partitions) { if (p1.getBlockCount() < v69) { v69 = p1.getBlockCount(); } } return v69; }
3.26
flink_CompactingHashTable_close_rdh
/** * Closes the hash table. This effectively releases all internal structures and closes all open * files and removes them. The call to this method is valid both as a cleanup after the complete * inputs were properly processed, and as an cancellation call, which cleans up all resources * that are currently held by the hash join. If another process still access the hash table * after close has been called no operations will be performed. */ @Override public void close() { // make sure that we close only once synchronized(this.stateLock) { if (this.closed) { return; } this.closed = true; } LOG.debug("Closing hash table and releasing resources."); // release the table structure releaseTable(); // clear the memory in the partitions clearPartitions(); }
3.26
flink_CompactingHashTable_getOverflowSegmentCount_rdh
/** * * @return number of memory segments used in overflow buckets */ private int getOverflowSegmentCount() { int result = 0; for (InMemoryPartition<T> p : this.partitions) { result += p.numOverflowSegments;} return result; }
3.26
flink_CompactingHashTable_fillCache_rdh
/** * utility function that inserts all entries from a bucket and its overflow buckets into the * cache * * @return true if last bucket was not reached yet * @throws IOException */ private boolean fillCache() throws IOException { if (currentBucketIndex >= table.numBuckets) { return false; } MemorySegment bucket = table.buckets[currentSegmentIndex]; // get the basic characteristics of the bucket final int partitionNumber = bucket.get(currentBucketOffset + HEADER_PARTITION_OFFSET); final InMemoryPartition<T> partition = table.partitions.get(partitionNumber); final MemorySegment[] overflowSegments = partition.overflowSegments; int countInSegment = bucket.getInt(currentBucketOffset + HEADER_COUNT_OFFSET); int numInSegment = 0; int posInSegment = currentBucketOffset + BUCKET_POINTER_START_OFFSET; int bucketOffset = currentBucketOffset; // loop over all segments that are involved in the bucket (original bucket plus overflow // buckets) while (true) { while (numInSegment < countInSegment) { long pointer = bucket.getLong(posInSegment); posInSegment += f0; numInSegment++; T target = table.buildSideSerializer.createInstance(); try { target = partition.readRecordAt(pointer, target);cache.add(target); } catch (IOException e) { throw new RuntimeException("Error deserializing record from the Hash Table: " + e.getMessage(), e); } } // this segment is done. check if there is another chained bucket final long v151 = bucket.getLong(bucketOffset + HEADER_FORWARD_OFFSET); if (v151 == BUCKET_FORWARD_POINTER_NOT_SET) { break; } final int overflowSegNum = ((int) (v151 >>> 32)); bucket = overflowSegments[overflowSegNum]; bucketOffset = ((int) (v151)); countInSegment = bucket.getInt(bucketOffset + HEADER_COUNT_OFFSET); posInSegment = bucketOffset + BUCKET_POINTER_START_OFFSET; numInSegment = 0; } currentBucketIndex++; if ((currentBucketIndex % bucketsPerSegment) == 0) { currentSegmentIndex++; currentBucketOffset = 0; } else { currentBucketOffset += HASH_BUCKET_SIZE; } return true; }
3.26
flink_CompactingHashTable_getInitialTableSize_rdh
/** * tries to find a good value for the number of buckets will ensure that the number of buckets * is a multiple of numPartitions * * @return number of buckets */ private static int getInitialTableSize(int numBuffers, int bufferSize, int numPartitions, int recordLenBytes) { final long totalSize = ((long) (bufferSize)) * numBuffers; final long numRecordsStorable = totalSize / (recordLenBytes + RECORD_OVERHEAD_BYTES); final long bucketBytes = numRecordsStorable * RECORD_OVERHEAD_BYTES; long numBuckets = (bucketBytes / (2 * HASH_BUCKET_SIZE)) + 1; numBuckets += numPartitions - (numBuckets % numPartitions); return numBuckets > Integer.MAX_VALUE ? Integer.MAX_VALUE : ((int) (numBuckets)); }
3.26
flink_CompactingHashTable_m0_rdh
// -------------------------------------------------------------------------------------------- // Access to the entries // -------------------------------------------------------------------------------------------- @Override public <PT> HashTableProber<PT> m0(TypeComparator<PT> probeSideComparator, TypePairComparator<PT, T> pairComparator) { return new HashTableProber<PT>(probeSideComparator, pairComparator); }
3.26
flink_CompactingHashTable_getEntryIterator_rdh
/** * * @return Iterator over hash table * @see EntryIterator */ public MutableObjectIterator<T> getEntryIterator() { return new EntryIterator(this); }
3.26
flink_CompactingHashTable_open_rdh
// ------------------------------------------------------------------------ // life cycle // ------------------------------------------------------------------------ /** * Initialize the hash table */ @Override public void open() { synchronized(stateLock) { if (!closed) { throw new IllegalStateException("currently not closed."); } closed = false; } // create the partitions final int partitionFanOut = getPartitioningFanOutNoEstimates(this.availableMemory.size()); createPartitions(partitionFanOut); // set up the table structure. the write behind buffers are taken away, as are one buffer // per partition final int numBuckets = getInitialTableSize(this.availableMemory.size(), this.segmentSize, partitionFanOut, this.avgRecordLen); initTable(numBuckets, ((byte) (partitionFanOut))); }
3.26
flink_CompactingHashTable_getMemoryConsumptionString_rdh
/** * * @return String containing a summary of the memory consumption for error messages */ private String getMemoryConsumptionString() { return (((((((((((("numPartitions: " + this.partitions.size()) + " minPartition: ") + getMinPartition()) + " maxPartition: ") + getMaxPartition()) + " number of overflow segments: ") + getOverflowSegmentCount()) + " bucketSize: ") + this.buckets.length) + " Overall memory: ") + getSize()) + " Partition memory: ") + getPartitionSize(); }
3.26
flink_CompactingHashTable_createPartitions_rdh
// -------------------------------------------------------------------------------------------- // Setup and Tear Down of Structures // -------------------------------------------------------------------------------------------- private void createPartitions(int numPartitions) { this.partitions.clear(); ListMemorySegmentSource memSource = new ListMemorySegmentSource(this.availableMemory); for (int i = 0; i < numPartitions; i++) { this.partitions.add(new InMemoryPartition<T>(this.buildSideSerializer, i, memSource, this.segmentSize, pageSizeInBits)); } this.compactionMemory = new InMemoryPartition<T>(this.buildSideSerializer, -1, memSource, this.segmentSize, pageSizeInBits); }
3.26
flink_CompactingHashTable_resizeHashTable_rdh
/** * Attempts to double the number of buckets * * @return true on success * @throws IOException */ @VisibleForTesting boolean resizeHashTable() throws IOException { final int newNumBuckets = 2 * this.numBuckets; final int bucketsPerSegment = this.bucketsPerSegmentMask + 1; final int newNumSegments = (newNumBuckets + (bucketsPerSegment - 1)) / bucketsPerSegment; final int additionalSegments = newNumSegments - this.buckets.length; final int numPartitions = this.partitions.size(); if (this.availableMemory.size() < additionalSegments) { for (int i = 0; i < numPartitions; i++) { compactPartition(i); if (this.availableMemory.size() >= additionalSegments) { break; } } } if ((this.availableMemory.size() < additionalSegments) || this.closed) { return false; } else { this.isResizing = true;// allocate new buckets final int startOffset = (this.numBuckets * HASH_BUCKET_SIZE) % this.segmentSize; final int oldNumBuckets = this.numBuckets; final int oldNumSegments = this.buckets.length; MemorySegment[] mergedBuckets = new MemorySegment[newNumSegments]; System.arraycopy(this.buckets, 0, mergedBuckets, 0, this.buckets.length); this.buckets = mergedBuckets; this.numBuckets = newNumBuckets; // initialize all new buckets boolean oldSegment = startOffset != 0; final int startSegment = (oldSegment) ? oldNumSegments - 1 : oldNumSegments; for (int i = startSegment, bucket = oldNumBuckets; (i < newNumSegments) && (bucket < this.numBuckets); i++) { MemorySegment seg; int bucketOffset; if (oldSegment) { // the first couple of new buckets may be located on an old // segment seg = this.buckets[i]; for (int k = oldNumBuckets % bucketsPerSegment; (k < bucketsPerSegment) && (bucket < this.numBuckets); k++ , bucket++) { bucketOffset = k * HASH_BUCKET_SIZE; // initialize the header fields seg.put(bucketOffset + HEADER_PARTITION_OFFSET, assignPartition(bucket, ((byte) (numPartitions)))); seg.putInt(bucketOffset + HEADER_COUNT_OFFSET, 0); seg.putLong(bucketOffset + HEADER_FORWARD_OFFSET, BUCKET_FORWARD_POINTER_NOT_SET); }} else { seg = getNextBuffer(); // go over all buckets in the segment for (int k = 0; (k < bucketsPerSegment) && (bucket < this.numBuckets); k++ , bucket++) { bucketOffset = k * HASH_BUCKET_SIZE; // initialize the header fields seg.put(bucketOffset + HEADER_PARTITION_OFFSET, assignPartition(bucket, ((byte) (numPartitions)))); seg.putInt(bucketOffset + HEADER_COUNT_OFFSET, 0); seg.putLong(bucketOffset + HEADER_FORWARD_OFFSET, BUCKET_FORWARD_POINTER_NOT_SET); } } this.buckets[i] = seg; oldSegment = false;// we write on at most one old segment } int hashOffset; int hash; int pointerOffset; long pointer; IntArrayList hashList = new IntArrayList(NUM_ENTRIES_PER_BUCKET);LongArrayList pointerList = new LongArrayList(NUM_ENTRIES_PER_BUCKET); IntArrayList overflowHashes = new IntArrayList(64); LongArrayList overflowPointers = new LongArrayList(64); // go over all buckets and split them between old and new buckets for (int i = 0; i < numPartitions; i++) { InMemoryPartition<T> partition = this.partitions.get(i); final MemorySegment[] overflowSegments = partition.overflowSegments; int posHashCode; for (int j = 0, bucket = i; (j < this.buckets.length) && (bucket < oldNumBuckets); j++) {MemorySegment segment = this.buckets[j]; // go over all buckets in the segment belonging to the partition for (int k = bucket % bucketsPerSegment; (k < bucketsPerSegment) && (bucket < oldNumBuckets); k += numPartitions , bucket += numPartitions) {int bucketOffset = k * HASH_BUCKET_SIZE; if (((int) (segment.get(bucketOffset + HEADER_PARTITION_OFFSET))) != i) { throw new IOException((("Accessed wrong bucket! wanted: " + i) + " got: ") + segment.get(bucketOffset + HEADER_PARTITION_OFFSET)); } // loop over all segments that are involved in the bucket (original bucket // plus overflow buckets) int countInSegment = segment.getInt(bucketOffset + HEADER_COUNT_OFFSET); int numInSegment = 0; pointerOffset = bucketOffset + BUCKET_POINTER_START_OFFSET; hashOffset = bucketOffset + BUCKET_HEADER_LENGTH; while (true) { while (numInSegment < countInSegment) { hash = segment.getInt(hashOffset); if (((hash % this.numBuckets) != bucket) && ((hash % this.numBuckets) != (bucket + oldNumBuckets))) { throw new IOException((((("wanted: " + bucket) + " or ") + (bucket + oldNumBuckets)) + " got: ") + (hash % this.numBuckets)); } pointer = segment.getLong(pointerOffset); hashList.add(hash); pointerList.add(pointer); pointerOffset += f0; hashOffset += HASH_CODE_LEN;numInSegment++; } // this segment is done. check if there is another chained bucket final long forwardPointer = segment.getLong(bucketOffset + HEADER_FORWARD_OFFSET); if (forwardPointer == BUCKET_FORWARD_POINTER_NOT_SET) { break; } final int v115 = ((int) (forwardPointer >>> 32)); segment = overflowSegments[v115]; bucketOffset = ((int) (forwardPointer)); countInSegment = segment.getInt(bucketOffset + HEADER_COUNT_OFFSET); pointerOffset = bucketOffset + BUCKET_POINTER_START_OFFSET; hashOffset = bucketOffset + BUCKET_HEADER_LENGTH; numInSegment = 0; } segment = this.buckets[j]; bucketOffset = k * HASH_BUCKET_SIZE; // reset bucket for re-insertion segment.putInt(bucketOffset + HEADER_COUNT_OFFSET, 0); segment.putLong(bucketOffset + HEADER_FORWARD_OFFSET, BUCKET_FORWARD_POINTER_NOT_SET); // refill table if (hashList.size() != pointerList.size()) {throw new IOException((("Pointer and hash counts do not match. hashes: " + hashList.size()) + " pointer: ") + pointerList.size()); } int newSegmentIndex = (bucket + oldNumBuckets) / bucketsPerSegment; MemorySegment newSegment = this.buckets[newSegmentIndex]; // we need to avoid overflows in the first run int oldBucketCount = 0; int newBucketCount = 0; while (!hashList.isEmpty()) { hash = hashList.removeLast(); pointer = pointerList.removeLong(pointerList.size() - 1); posHashCode = hash % this.numBuckets; if ((posHashCode == bucket) && (oldBucketCount < NUM_ENTRIES_PER_BUCKET)) { bucketOffset = (bucket % bucketsPerSegment) * HASH_BUCKET_SIZE; insertBucketEntryFromStart(segment, bucketOffset, hash, pointer, partition.getPartitionNumber()); oldBucketCount++; } else if ((posHashCode == (bucket + oldNumBuckets)) && (newBucketCount < NUM_ENTRIES_PER_BUCKET)) { bucketOffset = ((bucket + oldNumBuckets) % bucketsPerSegment) * HASH_BUCKET_SIZE; insertBucketEntryFromStart(newSegment, bucketOffset, hash, pointer, partition.getPartitionNumber()); newBucketCount++; } else if ((posHashCode == (bucket + oldNumBuckets)) || (posHashCode == bucket)) { overflowHashes.add(hash);overflowPointers.add(pointer); } else { throw new IOException((((("Accessed wrong bucket. Target: " + bucket) + " or ") + (bucket + oldNumBuckets)) + " Hit: ") + posHashCode); } } hashList.clear(); pointerList.clear(); } } // reset partition's overflow buckets and reclaim their memory this.availableMemory.addAll(partition.resetOverflowBuckets()); // clear overflow lists int bucketArrayPos; int bucketInSegmentPos; MemorySegment bucket; while (!overflowHashes.isEmpty()) { hash = overflowHashes.removeLast(); pointer = overflowPointers.removeLong(overflowPointers.size() - 1); posHashCode = hash % this.numBuckets; bucketArrayPos = posHashCode >>> this.bucketsPerSegmentBits; bucketInSegmentPos = (posHashCode & this.bucketsPerSegmentMask) << NUM_INTRA_BUCKET_BITS; bucket = this.buckets[bucketArrayPos]; insertBucketEntryFromStart(bucket, bucketInSegmentPos, hash, pointer, partition.getPartitionNumber()); } overflowHashes.clear(); overflowPointers.clear(); } this.isResizing = false; return true; }}
3.26
flink_CompactingHashTable_getSize_rdh
/** * Size of all memory segments owned by this hash table * * @return size in bytes */ private long getSize() { long numSegments = 0; numSegments += this.availableMemory.size(); numSegments += this.buckets.length; for (InMemoryPartition<T> p : this.partitions) { numSegments += p.getBlockCount(); numSegments += p.numOverflowSegments; } numSegments += this.compactionMemory.getBlockCount(); return numSegments * this.segmentSize; }
3.26
flink_CompactingHashTable_insertBucketEntryFromStart_rdh
/** * IMPORTANT!!! We pass only the partition number, because we must make sure we get a fresh * partition reference. The partition reference used during search for the key may have become * invalid during the compaction. */ private void insertBucketEntryFromStart(MemorySegment bucket, int bucketInSegmentPos, int hashCode, long pointer, int partitionNumber) throws IOException { boolean checkForResize = false; // find the position to put the hash code and pointer final int count = bucket.getInt(bucketInSegmentPos + HEADER_COUNT_OFFSET); if (count < NUM_ENTRIES_PER_BUCKET) { // we are good in our current bucket, put the values bucket.putInt((bucketInSegmentPos + BUCKET_HEADER_LENGTH) + (count * HASH_CODE_LEN), hashCode);// hash code bucket.putLong((bucketInSegmentPos + BUCKET_POINTER_START_OFFSET) + (count * f0), pointer);// pointer bucket.putInt(bucketInSegmentPos + HEADER_COUNT_OFFSET, count + 1);// update count } else { // we need to go to the overflow buckets final InMemoryPartition<T> p = this.partitions.get(partitionNumber); final long originalForwardPointer = bucket.getLong(bucketInSegmentPos + HEADER_FORWARD_OFFSET); final long forwardForNewBucket; if (originalForwardPointer != BUCKET_FORWARD_POINTER_NOT_SET) { // forward pointer set final int overflowSegNum = ((int) (originalForwardPointer >>> 32)); final int segOffset = ((int) (originalForwardPointer)); final MemorySegment seg = p.overflowSegments[overflowSegNum]; final int obCount = seg.getInt(segOffset + HEADER_COUNT_OFFSET); // check if there is space in this overflow bucket if (obCount < NUM_ENTRIES_PER_BUCKET) { // space in this bucket and we are done seg.putInt((segOffset + BUCKET_HEADER_LENGTH) + (obCount * HASH_CODE_LEN), hashCode);// hash code seg.putLong((segOffset + BUCKET_POINTER_START_OFFSET) + (obCount * f0), pointer);// pointer seg.putInt(segOffset + HEADER_COUNT_OFFSET, obCount + 1);// update count return; } else { // no space here, we need a new bucket. this current overflow bucket will be the // target of the new overflow bucket forwardForNewBucket = originalForwardPointer; } } else { // no overflow bucket yet, so we need a first one forwardForNewBucket = BUCKET_FORWARD_POINTER_NOT_SET; } // we need a new overflow bucket MemorySegment overflowSeg; final int overflowBucketNum; final int overflowBucketOffset; // first, see if there is space for an overflow bucket remaining in the last overflow // segment if (p.nextOverflowBucket == 0) { // no space left in last bucket, or no bucket yet, so create an overflow segment overflowSeg = getNextBuffer(); overflowBucketOffset = 0; overflowBucketNum = p.numOverflowSegments; // add the new overflow segment if (p.overflowSegments.length <= p.numOverflowSegments) { MemorySegment[] newSegsArray = new MemorySegment[p.overflowSegments.length * 2]; System.arraycopy(p.overflowSegments, 0, newSegsArray, 0, p.overflowSegments.length); p.overflowSegments = newSegsArray; } p.overflowSegments[p.numOverflowSegments] = overflowSeg; p.numOverflowSegments++; checkForResize = true; } else { // there is space in the last overflow bucket overflowBucketNum = p.numOverflowSegments - 1; overflowSeg = p.overflowSegments[overflowBucketNum]; overflowBucketOffset = p.nextOverflowBucket << NUM_INTRA_BUCKET_BITS; } // next overflow bucket is one ahead. if the segment is full, the next will be at the // beginning // of a new segment p.nextOverflowBucket = (p.nextOverflowBucket == this.bucketsPerSegmentMask) ? 0 : p.nextOverflowBucket + 1;// insert the new overflow bucket in the chain of buckets // 1) set the old forward pointer // 2) let the bucket in the main table point to this one overflowSeg.putLong(overflowBucketOffset + HEADER_FORWARD_OFFSET, forwardForNewBucket); final long v48 = (((long) (overflowBucketNum)) << 32) | ((long) (overflowBucketOffset)); bucket.putLong(bucketInSegmentPos + HEADER_FORWARD_OFFSET, v48); // finally, insert the values into the overflow buckets overflowSeg.putInt(overflowBucketOffset + BUCKET_HEADER_LENGTH, hashCode);// hash code overflowSeg.putLong(overflowBucketOffset + BUCKET_POINTER_START_OFFSET, pointer);// pointer // set the count to one overflowSeg.putInt(overflowBucketOffset + HEADER_COUNT_OFFSET, 1); if (checkForResize && (!this.isResizing)) { // check if we should resize buckets if (this.buckets.length <= getOverflowSegmentCount()) { resizeHashTable(); } } }}
3.26
flink_CompactingHashTable_insertOrReplaceRecord_rdh
/** * Replaces record in hash table if record already present or append record if not. May trigger * expensive compaction. * * @param record * record to insert or replace * @throws IOException */ public void insertOrReplaceRecord(T record) throws IOException { if (this.closed) { return; } final int searchHashCode = MathUtils.jenkinsHash(this.buildSideComparator.hash(record)); final int posHashCode = searchHashCode % this.numBuckets; // get the bucket for the given hash code final MemorySegment originalBucket = this.buckets[posHashCode >> this.bucketsPerSegmentBits]; final int originalBucketOffset = (posHashCode & this.bucketsPerSegmentMask) << NUM_INTRA_BUCKET_BITS; MemorySegment bucket = originalBucket; int bucketInSegmentOffset = originalBucketOffset; // get the basic characteristics of the bucket final int partitionNumber = bucket.get(bucketInSegmentOffset + HEADER_PARTITION_OFFSET); final InMemoryPartition<T> partition = this.partitions.get(partitionNumber); final MemorySegment[] overflowSegments = partition.overflowSegments; this.buildSideComparator.setReference(record); int countInSegment = bucket.getInt(bucketInSegmentOffset + HEADER_COUNT_OFFSET); int numInSegment = 0; int posInSegment = bucketInSegmentOffset + BUCKET_HEADER_LENGTH; // loop over all segments that are involved in the bucket (original bucket plus overflow // buckets) while (true) { while (numInSegment < countInSegment) { final int thisCode = bucket.getInt(posInSegment); posInSegment += HASH_CODE_LEN; // check if the hash code matches if (thisCode == searchHashCode) { // get the pointer to the pair final int pointerOffset = (bucketInSegmentOffset + BUCKET_POINTER_START_OFFSET) + (numInSegment * f0); final long pointer = bucket.getLong(pointerOffset); // deserialize the key to check whether it is really equal, or whether we had // only a hash collision T valueAtPosition = partition.readRecordAt(pointer); if (this.buildSideComparator.equalToReference(valueAtPosition)) { long newPointer = insertRecordIntoPartition(record, partition, true); bucket.putLong(pointerOffset, newPointer); return; } } numInSegment++; } // this segment is done. check if there is another chained bucket long newForwardPointer = bucket.getLong(bucketInSegmentOffset + HEADER_FORWARD_OFFSET); if (newForwardPointer == BUCKET_FORWARD_POINTER_NOT_SET) { // nothing found. append and insert long pointer = insertRecordIntoPartition(record, partition, false); if (countInSegment < NUM_ENTRIES_PER_BUCKET) { // we are good in our current bucket, put the values bucket.putInt((bucketInSegmentOffset + BUCKET_HEADER_LENGTH) + (countInSegment * HASH_CODE_LEN), searchHashCode);// hash code bucket.putLong((bucketInSegmentOffset + BUCKET_POINTER_START_OFFSET) + (countInSegment * f0), pointer);// pointer bucket.putInt(bucketInSegmentOffset + HEADER_COUNT_OFFSET, countInSegment + 1);// update count } else { insertBucketEntryFromStart(originalBucket, originalBucketOffset, searchHashCode, pointer, partitionNumber); } return; } final int overflowSegNum = ((int) (newForwardPointer >>> 32)); bucket = overflowSegments[overflowSegNum]; bucketInSegmentOffset = ((int) (newForwardPointer)); countInSegment = bucket.getInt(bucketInSegmentOffset + HEADER_COUNT_OFFSET); posInSegment = bucketInSegmentOffset + BUCKET_HEADER_LENGTH; numInSegment = 0; } }
3.26
flink_CompactingHashTable_getPartitionSize_rdh
/** * Size of all memory segments owned by the partitions of this hash table excluding the * compaction partition * * @return size in bytes */ private long getPartitionSize() { long numSegments = 0; for (InMemoryPartition<T> p : this.partitions) { numSegments += p.getBlockCount(); } return numSegments * this.segmentSize; }
3.26
flink_CompactingHashTable_buildTableWithUniqueKey_rdh
// ------------------------------------------------------------------------ // adding data to the hash table // ------------------------------------------------------------------------ public void buildTableWithUniqueKey(final MutableObjectIterator<T> input) throws IOException { // go over the complete input and insert every element into the hash table T value; while (this.running && ((value = input.next()) != null)) { insertOrReplaceRecord(value); } }
3.26
flink_CompactingHashTable_compactPartition_rdh
/** * Compacts (garbage collects) partition with copy-compact strategy using compaction partition * * @param partitionNumber * partition to compact * @throws IOException */ private void compactPartition(final int partitionNumber) throws IOException { // do nothing if table was closed, parameter is invalid or no garbage exists if ((this.closed || (partitionNumber >= this.partitions.size())) || this.partitions.get(partitionNumber).isCompacted()) { return; } // release all segments owned by compaction partition this.compactionMemory.clearAllMemory(availableMemory); this.compactionMemory.allocateSegments(1); this.compactionMemory.pushDownPages(); T tempHolder = this.buildSideSerializer.createInstance(); final int numPartitions = this.partitions.size(); InMemoryPartition<T> partition = this.partitions.remove(partitionNumber); MemorySegment[] overflowSegments = partition.overflowSegments; long pointer; int pointerOffset; int bucketOffset; final int bucketsPerSegment = this.bucketsPerSegmentMask + 1; for (int i = 0, bucket = partitionNumber; (i < this.buckets.length) && (bucket < this.numBuckets); i++) { MemorySegment segment = this.buckets[i]; // go over all buckets in the segment belonging to the partition for (int k = bucket % bucketsPerSegment; (k < bucketsPerSegment) && (bucket < this.numBuckets); k += numPartitions , bucket += numPartitions) {bucketOffset = k * HASH_BUCKET_SIZE; if (((int) (segment.get(bucketOffset + HEADER_PARTITION_OFFSET))) != partitionNumber) { throw new IOException((("Accessed wrong bucket! wanted: " + partitionNumber) + " got: ") + segment.get(bucketOffset + HEADER_PARTITION_OFFSET)); } // loop over all segments that are involved in the bucket (original bucket plus // overflow buckets) int countInSegment = segment.getInt(bucketOffset + HEADER_COUNT_OFFSET); int numInSegment = 0; pointerOffset = bucketOffset + BUCKET_POINTER_START_OFFSET; while (true) { while (numInSegment < countInSegment) { pointer = segment.getLong(pointerOffset); tempHolder = partition.readRecordAt(pointer, tempHolder); pointer = this.compactionMemory.appendRecord(tempHolder); segment.putLong(pointerOffset, pointer); pointerOffset += f0; numInSegment++; } // this segment is done. check if there is another chained bucket final long forwardPointer = segment.getLong(bucketOffset + HEADER_FORWARD_OFFSET);if (forwardPointer == BUCKET_FORWARD_POINTER_NOT_SET) { break; } final int overflowSegNum = ((int) (forwardPointer >>> 32)); segment = overflowSegments[overflowSegNum]; bucketOffset = ((int) (forwardPointer));countInSegment = segment.getInt(bucketOffset + HEADER_COUNT_OFFSET);pointerOffset = bucketOffset + BUCKET_POINTER_START_OFFSET; numInSegment = 0; } segment = this.buckets[i]; } } // swap partition with compaction partition this.compactionMemory.setPartitionNumber(partitionNumber); this.partitions.add(partitionNumber, compactionMemory); this.partitions.get(partitionNumber).overflowSegments = partition.overflowSegments; this.partitions.get(partitionNumber).numOverflowSegments = partition.numOverflowSegments; this.partitions.get(partitionNumber).nextOverflowBucket = partition.nextOverflowBucket; this.partitions.get(partitionNumber).setIsCompacted(true); // this.partitions.get(partitionNumber).pushDownPages(); this.compactionMemory = partition; this.compactionMemory.resetRecordCounter(); this.compactionMemory.setPartitionNumber(-1); this.compactionMemory.overflowSegments = null; this.compactionMemory.numOverflowSegments = 0; this.compactionMemory.nextOverflowBucket = 0; // try to allocate maximum segment count this.compactionMemory.clearAllMemory(this.availableMemory); int maxSegmentNumber = this.getMaxPartition(); this.compactionMemory.allocateSegments(maxSegmentNumber); this.compactionMemory.resetRWViews(); this.compactionMemory.pushDownPages(); }
3.26
flink_CompactingHashTable_assignPartition_rdh
/** * Assigns a partition to a bucket. * * @param bucket * bucket index * @param numPartitions * number of partitions * @return The hash code for the integer. */ private static byte assignPartition(int bucket, byte numPartitions) { return ((byte) (bucket % numPartitions)); }
3.26
flink_CompactingHashTable_getMaxPartition_rdh
/** * * @return number of memory segments in the largest partition */ private int getMaxPartition() { int maxPartition = 0; for (InMemoryPartition<T> p1 : this.partitions) { if (p1.getBlockCount() > maxPartition) { maxPartition = p1.getBlockCount(); } } return maxPartition; }
3.26
flink_TableMetaStoreFactory_finishWritingTable_rdh
/** * After data has been inserted into table, some follow-up works related to metastore may * need be done like report statistic to metastore. */ default void finishWritingTable(Path tablePath) throws Exception { }
3.26
flink_MetricRegistryConfiguration_getScopeFormats_rdh
// ------------------------------------------------------------------------ // Getter // ------------------------------------------------------------------------ public ScopeFormats getScopeFormats() { return scopeFormats; }
3.26
flink_MetricRegistryConfiguration_fromConfiguration_rdh
// ------------------------------------------------------------------------ // Static factory methods // ------------------------------------------------------------------------ /** * Create a metric registry configuration object from the given {@link Configuration}. * * @param configuration * to generate the metric registry configuration from * @param maximumFrameSize * the maximum message size that the RPC system supports * @return Metric registry configuration generated from the configuration */ public static MetricRegistryConfiguration fromConfiguration(Configuration configuration, long maximumFrameSize) { ScopeFormats v0; try { v0 = ScopeFormats.fromConfig(configuration); } catch (Exception e) { LOG.warn("Failed to parse scope format, using default scope formats", e); v0 = ScopeFormats.fromConfig(new Configuration()); } char delim; try {delim = configuration.getString(MetricOptions.SCOPE_DELIMITER).charAt(0); } catch (Exception e) { LOG.warn("Failed to parse delimiter, using default delimiter.", e); delim = '.'; }// padding to account for serialization overhead final long messageSizeLimitPadding = 256; return new MetricRegistryConfiguration(v0, delim, maximumFrameSize - messageSizeLimitPadding); }
3.26
flink_VertexInputInfoComputationUtils_m0_rdh
/** * Compute the {@link JobVertexInputInfo} for a {@link DistributionPattern#POINTWISE} edge. This * computation algorithm will evenly distribute subpartitions to downstream subtasks according * to the number of subpartitions. Different downstream subtasks consume roughly the same number * of subpartitions. * * @param sourceCount * the parallelism of upstream * @param targetCount * the parallelism of downstream * @param numOfSubpartitionsRetriever * a retriever to get the number of subpartitions * @param isDynamicGraph * whether is dynamic graph * @return the computed {@link JobVertexInputInfo} */ static JobVertexInputInfo m0(int sourceCount, int targetCount, Function<Integer, Integer> numOfSubpartitionsRetriever, boolean isDynamicGraph) { final List<ExecutionVertexInputInfo> executionVertexInputInfos = new ArrayList<>(); if (sourceCount >= targetCount) { for (int index = 0; index < targetCount; index++) { int start = (index * sourceCount) / targetCount; int end = ((index + 1) * sourceCount) / targetCount; IndexRange partitionRange = new IndexRange(start, end - 1); IndexRange subpartitionRange = computeConsumedSubpartitionRange(index, 1, () -> numOfSubpartitionsRetriever.apply(start), isDynamicGraph, false); executionVertexInputInfos.add(new ExecutionVertexInputInfo(index, partitionRange, subpartitionRange)); } } else { for (int partitionNum = 0; partitionNum < sourceCount; partitionNum++) { int start = (((partitionNum * targetCount) + sourceCount) - 1) / sourceCount; int end = ((((partitionNum + 1) * targetCount) + sourceCount) - 1) / sourceCount; int numConsumers = end - start; IndexRange partitionRange = new IndexRange(partitionNum, partitionNum); // Variable used in lambda expression should be final or effectively final final int finalPartitionNum = partitionNum; for (int i = start; i < end; i++) { IndexRange subpartitionRange = computeConsumedSubpartitionRange(i, numConsumers, () -> numOfSubpartitionsRetriever.apply(finalPartitionNum), isDynamicGraph, false); executionVertexInputInfos.add(new ExecutionVertexInputInfo(i, partitionRange, subpartitionRange)); } } } return new JobVertexInputInfo(executionVertexInputInfos); }
3.26
flink_VertexInputInfoComputationUtils_computeVertexInputInfoForAllToAll_rdh
/** * Compute the {@link JobVertexInputInfo} for a {@link DistributionPattern#ALL_TO_ALL} edge. * This computation algorithm will evenly distribute subpartitions to downstream subtasks * according to the number of subpartitions. Different downstream subtasks consume roughly the * same number of subpartitions. * * @param sourceCount * the parallelism of upstream * @param targetCount * the parallelism of downstream * @param numOfSubpartitionsRetriever * a retriever to get the number of subpartitions * @param isDynamicGraph * whether is dynamic graph * @param isBroadcast * whether the edge is broadcast * @return the computed {@link JobVertexInputInfo} */ static JobVertexInputInfo computeVertexInputInfoForAllToAll(int sourceCount, int targetCount, Function<Integer, Integer> numOfSubpartitionsRetriever, boolean isDynamicGraph, boolean isBroadcast) { final List<ExecutionVertexInputInfo> executionVertexInputInfos = new ArrayList<>(); IndexRange partitionRange = new IndexRange(0, sourceCount - 1); for (int i = 0; i < targetCount; ++i) { IndexRange subpartitionRange = computeConsumedSubpartitionRange(i, targetCount, () -> numOfSubpartitionsRetriever.apply(0), isDynamicGraph, isBroadcast); executionVertexInputInfos.add(new ExecutionVertexInputInfo(i, partitionRange, subpartitionRange)); } return new JobVertexInputInfo(executionVertexInputInfos); }
3.26
flink_VertexInputInfoComputationUtils_computeConsumedSubpartitionRange_rdh
/** * Compute the consumed subpartition range for a subtask. This computation algorithm will evenly * distribute subpartitions to downstream subtasks according to the number of subpartitions. * Different downstream subtasks consume roughly the same number of subpartitions. * * @param consumerSubtaskIndex * the subtask index * @param numConsumers * the total number of consumers * @param numOfSubpartitionsSupplier * a supplier to get the number of subpartitions * @param isDynamicGraph * whether is dynamic graph * @param isBroadcast * whether the edge is broadcast * @return the computed subpartition range */ @VisibleForTesting static IndexRange computeConsumedSubpartitionRange(int consumerSubtaskIndex, int numConsumers, Supplier<Integer> numOfSubpartitionsSupplier, boolean isDynamicGraph, boolean isBroadcast) { int consumerIndex = consumerSubtaskIndex % numConsumers; if (!isDynamicGraph) { return new IndexRange(consumerIndex, consumerIndex); } else { int numSubpartitions = numOfSubpartitionsSupplier.get(); if (isBroadcast) { // broadcast results have only one subpartition, and be consumed multiple times. checkArgument(numSubpartitions == 1); return new IndexRange(0, 0); } else {checkArgument(consumerIndex < numConsumers); checkArgument(numConsumers <= numSubpartitions); int start = (consumerIndex * numSubpartitions) / numConsumers; int nextStart = ((consumerIndex + 1) * numSubpartitions) / numConsumers; return new IndexRange(start, nextStart - 1);} } }
3.26
flink_StringUtf8Utils_encodeUTF8_rdh
/** * This method must have the same result with JDK's String.getBytes. */ public static byte[] encodeUTF8(String str) { byte[] bytes = allocateReuseBytes(str.length() * MAX_BYTES_PER_CHAR); int len = encodeUTF8(str, bytes); return Arrays.copyOf(bytes, len); }
3.26
flink_HiveFunctionDefinitionFactory_createFunctionDefinitionFromHiveFunction_rdh
/** * Create a FunctionDefinition from a Hive function's class name. Called directly by {@link org.apache.flink.table.module.hive.HiveModule}. */ public FunctionDefinition createFunctionDefinitionFromHiveFunction(String name, String functionClassName, Context context) {Class<?> functionClz; try { functionClz = context.getClassLoader().loadClass(functionClassName); LOG.info("Successfully loaded Hive udf '{}' with class '{}'", name, functionClassName); } catch (ClassNotFoundException e) { throw new TableException(String.format("Failed to initiate an instance of class %s.", functionClassName), e);} if (UDF.class.isAssignableFrom(functionClz)) { LOG.info("Transforming Hive function '{}' into a HiveSimpleUDF", name); return new HiveSimpleUDF(new HiveFunctionWrapper<>(functionClz), hiveShim); } else if (GenericUDF.class.isAssignableFrom(functionClz)) { LOG.info("Transforming Hive function '{}' into a HiveGenericUDF", name); return new HiveGenericUDF(new HiveFunctionWrapper<>(functionClz), hiveShim); } else if (GenericUDTF.class.isAssignableFrom(functionClz)) { LOG.info("Transforming Hive function '{}' into a HiveGenericUDTF", name); return new HiveGenericUDTF(new HiveFunctionWrapper<>(functionClz), hiveShim); } else if ((GenericUDAFResolver2.class.isAssignableFrom(functionClz) || GenericUDAFResolver.class.isAssignableFrom(functionClz)) || UDAF.class.isAssignableFrom(functionClz)) { if (GenericUDAFResolver2.class.isAssignableFrom(functionClz)) { LOG.info("Transforming Hive function '{}' into a HiveGenericUDAF without UDAF bridging", name); return new HiveGenericUDAF(new HiveFunctionWrapper<>(functionClz), false, true, hiveShim); } else if (GenericUDAFResolver.class.isAssignableFrom(functionClz)) { LOG.info("Transforming Hive function '{}' into a HiveGenericUDAF without UDAF bridging", name); return new HiveGenericUDAF(new HiveFunctionWrapper<>(functionClz), false, false, hiveShim); } else { LOG.info("Transforming Hive function '{}' into a HiveGenericUDAF with UDAF bridging", name); return new HiveGenericUDAF(new HiveFunctionWrapper<>(functionClz), true, false, hiveShim); } } else { throw new IllegalArgumentException(String.format("HiveFunctionDefinitionFactory cannot initiate FunctionDefinition for class %s", functionClassName)); }}
3.26