name
stringlengths
12
178
code_snippet
stringlengths
8
36.5k
score
float64
3.26
3.68
flink_SubtaskStateStats_m0_rdh
/** * Returns the size of the checkpointed state at this subtask. * * @return Checkpoint state size of the sub task. */ public long m0() { return stateSize; }
3.26
flink_SubtaskStateStats_getPersistedData_rdh
/** * * @return the total number of persisted bytes during the checkpoint. */ public long getPersistedData() { return persistedData; }
3.26
flink_SubtaskStateStats_getEndToEndDuration_rdh
/** * Computes the duration since the given trigger timestamp. * * <p>If the trigger timestamp is greater than the ACK timestamp, this returns <code>0</code>. * * @param triggerTimestamp * Trigger timestamp of the checkpoint. * @return Duration since the given trigger timestamp. */ public long getEndToEndDuration(long triggerTimestamp) { return Math.max(0, ackTimestamp - triggerTimestamp); }
3.26
flink_SubtaskStateStats_getProcessedData_rdh
/** * * @return the total number of processed bytes during the checkpoint. */ public long getProcessedData() { return processedData; }
3.26
flink_SubtaskStateStats_getCheckpointedSize_rdh
/** * Returns the incremental state size. * * @return The incremental state size. */ public long getCheckpointedSize() { return checkpointedSize; }
3.26
flink_SubtaskStateStats_getAckTimestamp_rdh
/** * Returns the timestamp when the acknowledgement of this subtask was received at the * coordinator. * * @return ACK timestamp at the coordinator. */ public long getAckTimestamp() { return ackTimestamp; }
3.26
flink_AbstractHeapPriorityQueue_clear_rdh
/** * Clears the queue. */ public void clear() { final int arrayOffset = getHeadElementIndex(); Arrays.fill(queue, arrayOffset, arrayOffset + size, null); size = 0; }
3.26
flink_AbstractHeapPriorityQueue_iterator_rdh
/** * Returns an iterator over the elements in this queue. The iterator does not return the * elements in any particular order. * * @return an iterator over the elements in this queue. */ @Nonnull @Override public CloseableIterator<T> iterator() { return new HeapIterator(); }
3.26
flink_GatewayRetriever_getNow_rdh
/** * Returns the currently retrieved gateway if there is such an object. Otherwise it returns an * empty optional. * * @return Optional object to retrieve */ default Optional<T> getNow() { CompletableFuture<T> leaderFuture = getFuture(); if (leaderFuture != null) { if (leaderFuture.isCompletedExceptionally() || leaderFuture.isCancelled()) { return Optional.empty(); } else if (leaderFuture.isDone()) { try { return Optional.of(leaderFuture.get()); } catch (Exception e) { // this should never happen throw new FlinkRuntimeException("Unexpected error while accessing the retrieved gateway.", e); } } else { return Optional.empty(); } } else { return Optional.empty(); } }
3.26
flink_TimeIntervalTypeInfo_hashCode_rdh
// ---------------------------------------------------------------------------------------------- @Override public int hashCode() { return Objects.hash(clazz, serializer, comparatorClass); }
3.26
flink_CoreOptions_fileSystemConnectionLimit_rdh
/** * The total number of input plus output connections that a file system for the given scheme may * open. Unlimited be default. */ public static ConfigOption<Integer> fileSystemConnectionLimit(String scheme) { return ConfigOptions.key(("fs." + scheme) + ".limit.total").intType().defaultValue(-1); }
3.26
flink_CoreOptions_fileSystemConnectionLimitTimeout_rdh
/** * If any connection limit is configured, this option can be optionally set to define after * which time (in milliseconds) stream opening fails with a timeout exception, if no stream * connection becomes available. Unlimited timeout be default. */ public static ConfigOption<Long> fileSystemConnectionLimitTimeout(String scheme) { return ConfigOptions.key(("fs." + scheme) + ".limit.timeout").longType().defaultValue(0L); }
3.26
flink_CoreOptions_fileSystemConnectionLimitOut_rdh
/** * The total number of output connections that a file system for the given scheme may open. * Unlimited be default. */ public static ConfigOption<Integer> fileSystemConnectionLimitOut(String scheme) { return ConfigOptions.key(("fs." + scheme) + ".limit.output").intType().defaultValue(-1); }
3.26
flink_CoreOptions_fileSystemConnectionLimitIn_rdh
/** * The total number of input connections that a file system for the given scheme may open. * Unlimited be default. */ public static ConfigOption<Integer> fileSystemConnectionLimitIn(String scheme) { return ConfigOptions.key(("fs." + scheme) + ".limit.input").intType().defaultValue(-1); }
3.26
flink_CoreOptions_fileSystemConnectionLimitStreamInactivityTimeout_rdh
/** * If any connection limit is configured, this option can be optionally set to define after * which time (in milliseconds) inactive streams are reclaimed. This option can help to prevent * that inactive streams make up the full pool of limited connections, and no further * connections can be established. Unlimited timeout be default. */ public static ConfigOption<Long> fileSystemConnectionLimitStreamInactivityTimeout(String scheme) { return ConfigOptions.key(("fs." + scheme) + ".limit.stream-timeout").longType().defaultValue(0L); }
3.26
flink_PrioritizedOperatorSubtaskState_getPrioritizedRawOperatorState_rdh
/** * Returns an immutable list with all alternative snapshots to restore the raw operator state, * in the order in which we should attempt to restore. */ @Nonnull public List<StateObjectCollection<OperatorStateHandle>> getPrioritizedRawOperatorState() { return prioritizedRawOperatorState; }
3.26
flink_PrioritizedOperatorSubtaskState_getPrioritizedManagedOperatorState_rdh
// ----------------------------------------------------------------------------------------------------------------- /** * Returns an immutable list with all alternative snapshots to restore the managed operator * state, in the order in which we should attempt to restore. */@Nonnull public List<StateObjectCollection<OperatorStateHandle>> getPrioritizedManagedOperatorState() { return prioritizedManagedOperatorState; }
3.26
flink_PrioritizedOperatorSubtaskState_resolvePrioritizedAlternatives_rdh
/** * This helper method resolves the dependencies between the ground truth of the operator * state obtained from the job manager and potential alternatives for recovery, e.g. from a * task-local source. */ <T extends StateObject> List<StateObjectCollection<T>> resolvePrioritizedAlternatives(StateObjectCollection<T> jobManagerState, List<StateObjectCollection<T>> alternativesByPriority, BiFunction<T, T, Boolean> approveFun) { // Nothing to resolve if there are no alternatives, or the ground truth has already no // state, or if we can assume that a rescaling happened because we find more than one // handle in the JM state // (this is more a sanity check). if ((((alternativesByPriority == null) || alternativesByPriority.isEmpty()) || (!jobManagerState.hasState())) || (jobManagerState.size() != 1)) { return Collections.singletonList(jobManagerState); } // As we know size is == 1 T reference = jobManagerState.iterator().next(); // This will contain the end result, we initialize it with the potential max. size. List<StateObjectCollection<T>> approved = new ArrayList<>(1 + alternativesByPriority.size()); for (StateObjectCollection<T> alternative : alternativesByPriority) { // We found an alternative to the JM state if it has state, we have a 1:1 // relationship, and the approve-function signaled true. if ((((alternative != null) && alternative.hasState()) && (alternative.size() == 1)) && BooleanUtils.isTrue(approveFun.apply(reference, alternative.iterator().next()))) { approved.add(alternative); } } // Of course we include the ground truth as last alternative. approved.add(jobManagerState); return Collections.unmodifiableList(approved); }
3.26
flink_PrioritizedOperatorSubtaskState_getJobManagerManagedOperatorState_rdh
// ----------------------------------------------------------------------------------------------------------------- /** * Returns the managed operator state from the job manager, which represents the ground truth * about what this state should represent. This is the alternative with lowest priority. */ @Nonnull public StateObjectCollection<OperatorStateHandle> getJobManagerManagedOperatorState() { return lastElement(prioritizedManagedOperatorState); }
3.26
flink_PrioritizedOperatorSubtaskState_computePrioritizedAlternatives_rdh
/** * This method creates an alternative recovery option by replacing as much job manager state * with higher prioritized (=local) alternatives as possible. * * @param jobManagerState * the state that the task got assigned from the job manager (this * state lives in remote storage). * @param alternativesByPriority * local alternatives to the job manager state, ordered by * priority. * @param identityExtractor * function to extract an identifier from a state object. * @return prioritized state alternatives. * @param <STATE_OBJ_TYPE> * the type of the state objects we process. * @param <ID_TYPE> * the type of object that represents the id the state object type. */ <STATE_OBJ_TYPE extends StateObject, ID_TYPE> List<StateObjectCollection<STATE_OBJ_TYPE>> computePrioritizedAlternatives(StateObjectCollection<STATE_OBJ_TYPE> jobManagerState, List<StateObjectCollection<STATE_OBJ_TYPE>> alternativesByPriority, Function<STATE_OBJ_TYPE, ID_TYPE> identityExtractor) { if (((alternativesByPriority != null) && (!alternativesByPriority.isEmpty())) && jobManagerState.hasState()) { Optional<StateObjectCollection<STATE_OBJ_TYPE>> mergedAlternative = tryComputeMixedLocalAndRemoteAlternative(jobManagerState, alternativesByPriority, identityExtractor); // Return the mix of local/remote state as first and pure remote state as second // alternative (in case that we fail to recover from the local state, e.g. because // of corruption). if (mergedAlternative.isPresent()) { return Arrays.asList(mergedAlternative.get(), jobManagerState); } } return Collections.singletonList(jobManagerState); }
3.26
flink_PrioritizedOperatorSubtaskState_isRestored_rdh
// ----------------------------------------------------------------------------------------------------------------- /** * Returns true if this was created for a restored operator, false otherwise. Restored operators * are operators that participated in a previous checkpoint, even if they did not emit any state * snapshots. */ public boolean isRestored() { return restoredCheckpointId != null; }
3.26
flink_PrioritizedOperatorSubtaskState_getPrioritizedRawKeyedState_rdh
/** * Returns an immutable list with all alternative snapshots to restore the raw keyed state, in * the order in which we should attempt to restore. */ @Nonnull public List<StateObjectCollection<KeyedStateHandle>> getPrioritizedRawKeyedState() { return prioritizedRawKeyedState; }
3.26
flink_PrioritizedOperatorSubtaskState_m0_rdh
/** * Returns the managed keyed state from the job manager, which represents the ground truth about * what this state should represent. This is the alternative with lowest priority. */ @Nonnull public StateObjectCollection<KeyedStateHandle> m0() { return lastElement(prioritizedManagedKeyedState); }
3.26
flink_HadoopRecoverableFsDataOutputStream_waitUntilLeaseIsRevoked_rdh
/** * Called when resuming execution after a failure and waits until the lease of the file we are * resuming is free. * * <p>The lease of the file we are resuming writing/committing to may still belong to the * process that failed previously and whose state we are recovering. * * @param path * The path to the file we want to resume writing to. */ private static boolean waitUntilLeaseIsRevoked(final FileSystem fs, final Path path) throws IOException { Preconditions.checkState(fs instanceof DistributedFileSystem); final DistributedFileSystem dfs = ((DistributedFileSystem) (fs)); dfs.recoverLease(path); final Deadline deadline = Deadline.now().plus(Duration.ofMillis(f0)); boolean isClosed = dfs.isFileClosed(path);while ((!isClosed) && deadline.hasTimeLeft()) { try { Thread.sleep(500L); } catch (InterruptedException e1) { throw new IOException("Recovering the lease failed: ", e1); } isClosed = dfs.isFileClosed(path); } return isClosed; }
3.26
flink_HadoopRecoverableFsDataOutputStream_revokeLeaseByFileSystem_rdh
/** * Resolve the real path of FileSystem if it is {@link ViewFileSystem} and revoke the lease of * the file we are resuming with different FileSystem. * * @param path * The path to the file we want to resume writing to. */ private static boolean revokeLeaseByFileSystem(final FileSystem fs, final Path path) throws IOException { if (fs instanceof ViewFileSystem) { final ViewFileSystem vfs = ((ViewFileSystem) (fs)); final Path resolvePath = vfs.resolvePath(path); final FileSystem resolveFs = resolvePath.getFileSystem(fs.getConf()); return waitUntilLeaseIsRevoked(resolveFs, resolvePath); } return waitUntilLeaseIsRevoked(fs, path); }
3.26
flink_HadoopRecoverableFsDataOutputStream_safelyTruncateFile_rdh
// ------------------------------------------------------------------------ // Reflection utils for truncation // These are needed to compile against Hadoop versions before // Hadoop 2.7, which have no truncation calls for HDFS. // ------------------------------------------------------------------------ private static void safelyTruncateFile(final FileSystem fileSystem, final Path path, final HadoopFsRecoverable recoverable) throws IOException { ensureTruncateInitialized(); revokeLeaseByFileSystem(fileSystem, path); // truncate back and append boolean truncated; try { truncated = truncate(fileSystem, path, recoverable.offset()); } catch (Exception e) { throw new IOException("Problem while truncating file: " + path, e); } if (!truncated) { // Truncate did not complete immediately, we must wait for // the operation to complete and release the lease. revokeLeaseByFileSystem(fileSystem, path); } }
3.26
flink_CoGroupWithSolutionSetSecondDriver_m0_rdh
// -------------------------------------------------------------------------------------------- @Override @SuppressWarnings("unchecked") public void m0() throws Exception { final TypeComparator<IT2> solutionSetComparator; // grab a handle to the hash table from the iteration broker if (taskContext instanceof AbstractIterativeTask) { AbstractIterativeTask<?, ?> v2 = ((AbstractIterativeTask<?, ?>) (taskContext)); String v3 = v2.brokerKey(); Object table = SolutionSetBroker.instance().get(v3); if (table instanceof CompactingHashTable) { this.hashTable = ((CompactingHashTable<IT2>) (table)); f0 = this.hashTable.getBuildSideSerializer(); solutionSetComparator = this.hashTable.getBuildSideComparator().duplicate(); } else if (table instanceof JoinHashMap) { this.objectMap = ((JoinHashMap<IT2>) (table)); f0 = this.objectMap.getBuildSerializer(); solutionSetComparator = this.objectMap.getBuildComparator().duplicate(); } else { throw new RuntimeException("Unrecognized solution set index: " + table); }} else { throw new Exception("The task context of this driver is no iterative task context.");} TaskConfig config = taskContext.getTaskConfig(); ClassLoader classLoader = taskContext.getUserCodeClassLoader(); TypeComparatorFactory<IT1> probeSideComparatorFactory = config.getDriverComparator(0, classLoader); this.probeSideSerializer = taskContext.<IT1>getInputSerializer(0).getSerializer(); this.probeSideComparator = probeSideComparatorFactory.createComparator(); ExecutionConfig executionConfig = taskContext.getExecutionConfig(); objectReuseEnabled = executionConfig.isObjectReuseEnabled(); if (objectReuseEnabled) { solutionSideRecord = f0.createInstance(); } TypePairComparatorFactory<IT1, IT2> factory = taskContext.getTaskConfig().getPairComparatorFactory(taskContext.getUserCodeClassLoader());pairComparator = factory.createComparator12(this.probeSideComparator, solutionSetComparator); }
3.26
flink_CoGroupWithSolutionSetSecondDriver_setup_rdh
// -------------------------------------------------------------------------------------------- @Override public void setup(TaskContext<CoGroupFunction<IT1, IT2, OT>, OT> context) { this.taskContext = context; this.running = true; }
3.26
flink_ExecutionFailureHandler_getFailureHandlingResult_rdh
/** * Return result of failure handling. Can be a set of task vertices to restart and a delay of * the restarting. Or that the failure is not recoverable and the reason for it. * * @param failedExecution * is the failed execution * @param cause * of the task failure * @param timestamp * of the task failure * @return result of the failure handling */ public FailureHandlingResult getFailureHandlingResult(Execution failedExecution, Throwable cause, long timestamp) { return handleFailure(failedExecution, cause, timestamp, failoverStrategy.getTasksNeedingRestart(failedExecution.getVertex().getID(), cause), false); }
3.26
flink_ExecutionFailureHandler_getGlobalFailureHandlingResult_rdh
/** * Return result of failure handling on a global failure. Can be a set of task vertices to * restart and a delay of the restarting. Or that the failure is not recoverable and the reason * for it. * * @param cause * of the task failure * @param timestamp * of the task failure * @return result of the failure handling */ public FailureHandlingResult getGlobalFailureHandlingResult(final Throwable cause, long timestamp) { return handleFailure(null, cause, timestamp, IterableUtils.toStream(schedulingTopology.getVertices()).map(SchedulingExecutionVertex::getId).collect(Collectors.toSet()), true); }
3.26
flink_BooleanValueComparator_supportsSerializationWithKeyNormalization_rdh
// -------------------------------------------------------------------------------------------- // unsupported normalization // -------------------------------------------------------------------------------------------- @Override public boolean supportsSerializationWithKeyNormalization() { return false; }
3.26
flink_AnswerFormatter_format_rdh
/** * TPC-DS answer set has three kind of formats, recognize them and convert to unified format. * * @param originFile * origin answer set file from TPC-DS. * @param destFile * file to save formatted answer set. * @throws Exception */ private static void format(File originFile, File destFile) throws Exception { BufferedReader reader = new BufferedReader(new FileReader(originFile)); BufferedWriter writer = new BufferedWriter(new FileWriter(destFile)); String line; List<Integer> colLengthList; List<String> content = new ArrayList<>(); while ((line = reader.readLine()) != null) { content.add(line); } if (isFormat1(content)) { colLengthList = Arrays.stream(content.get(1).split(REGEX_SPLIT_BAR)).map(col -> col.length()).collect(Collectors.toList()); writeContent(writer, content, colLengthList); } else if (isFormat2(content)) { colLengthList = Arrays.stream(content.get(1).split(f0)).map(col -> col.length()).collect(Collectors.toList()); writeContent(writer, content, colLengthList); } else {writeContent(writer, content, null); } reader.close(); writer.close(); }
3.26
flink_PythonCsvUtils_createCsvBulkWriterFactory_rdh
/** * Util for creating a {@link BulkWriter.Factory} that wraps {@link CsvBulkWriter#forSchema}. */ public static BulkWriter.Factory<RowData> createCsvBulkWriterFactory(CsvSchema schema, DataType physicalDataType) { return CsvFileFormatFactory.createCsvBulkWriterFactory(schema, ((RowType) (physicalDataType.getLogicalType()))); }
3.26
flink_PythonCsvUtils_createRowDataToCsvFormatConverterContext_rdh
/** * Util for creating a {@link RowDataToCsvConverters.RowDataToCsvConverter.RowDataToCsvFormatConverterContext}. */ public static RowDataToCsvFormatConverterContext createRowDataToCsvFormatConverterContext(CsvMapper mapper, ContainerNode<?> container) { return new RowDataToCsvConverters.RowDataToCsvConverter.RowDataToCsvFormatConverterContext(mapper, container); }
3.26
flink_PythonCsvUtils_createCsvReaderFormat_rdh
/** * Util for creating a {@link CsvReaderFormat}. */ public static CsvReaderFormat<Object> createCsvReaderFormat(CsvSchema schema, DataType dataType) { Preconditions.checkArgument(dataType.getLogicalType() instanceof RowType); return new CsvReaderFormat<>(CsvMapper::new, ignored -> schema, JsonNode.class, new CsvToRowDataConverters(false).createRowConverter(LogicalTypeUtils.toRowType(dataType.getLogicalType()), true), InternalTypeInfo.of(dataType.getLogicalType()), false); }
3.26
flink_SubtaskConnectionDescriptor_getInputSubtaskIndex_rdh
// ------------------------------------------------------------------------ public int getInputSubtaskIndex() { return inputSubtaskIndex; }
3.26
flink_SubtaskConnectionDescriptor_write_rdh
// ------------------------------------------------------------------------ // Serialization // ------------------------------------------------------------------------ @Override public void write(DataOutputView out) { throw new UnsupportedOperationException("This method should never be called"); }
3.26
flink_DataSourceTask_initOutputs_rdh
/** * Creates a writer for each output. Creates an OutputCollector which forwards its input to all * writers. The output collector applies the configured shipping strategy. */ private void initOutputs(UserCodeClassLoader cl) throws Exception { this.chainedTasks = new ArrayList<ChainedDriver<?, ?>>(); this.eventualOutputs = new ArrayList<RecordWriter<?>>(); this.output = BatchTask.initOutputs(this, cl, this.config, this.chainedTasks, this.eventualOutputs, getExecutionConfig(), getEnvironment().getAccumulatorRegistry().getUserMap()); }
3.26
flink_DataSourceTask_initInputFormat_rdh
/** * Initializes the InputFormat implementation and configuration. * * @throws RuntimeException * Throws if instance of InputFormat implementation can not be * obtained. */ private void initInputFormat() { ClassLoader userCodeClassLoader = getUserCodeClassLoader(); // obtain task configuration (including stub parameters) Configuration taskConf = getTaskConfiguration(); this.config = new TaskConfig(taskConf); final Pair<OperatorID, InputFormat<OT, InputSplit>> operatorIdAndInputFormat; InputOutputFormatContainer formatContainer = new InputOutputFormatContainer(config, userCodeClassLoader); try { operatorIdAndInputFormat = formatContainer.getUniqueInputFormat(); this.format = operatorIdAndInputFormat.getValue(); // check if the class is a subclass, if the check is required if (!InputFormat.class.isAssignableFrom(this.format.getClass())) { throw new RuntimeException(((("The class '" + this.format.getClass().getName()) + "' is not a subclass of '") + InputFormat.class.getName()) + "' as is required."); } } catch (ClassCastException ccex) { throw new RuntimeException("The stub class is not a proper subclass of " + InputFormat.class.getName(), ccex); } Thread thread = Thread.currentThread(); ClassLoader original = thread.getContextClassLoader(); // configure the stub. catch exceptions here extra, to report them as originating from the // user code try { thread.setContextClassLoader(userCodeClassLoader); this.format.configure(formatContainer.getParameters(operatorIdAndInputFormat.getKey())); } catch (Throwable t) { throw new RuntimeException("The user defined 'configure()' method caused an error: " + t.getMessage(), t); } finally { thread.setContextClassLoader(original); } // get the factory for the type serializer this.serializerFactory = this.config.getOutputSerializer(userCodeClassLoader); }
3.26
flink_DataSourceTask_getLogString_rdh
/** * Utility function that composes a string for logging purposes. The string includes the given * message and the index of the task in its task group together with the number of tasks in the * task group. * * @param message * The main message for the log. * @param taskName * The name of the task. * @return The string ready for logging. */ private String getLogString(String message, String taskName) { return BatchTask.constructLogString(message, taskName, this); }
3.26
flink_BlobCacheService_setBlobServerAddress_rdh
/** * Sets the address of the {@link BlobServer}. * * @param blobServerAddress * address of the {@link BlobServer}. */ public void setBlobServerAddress(InetSocketAddress blobServerAddress) { permanentBlobCache.setBlobServerAddress(blobServerAddress); transientBlobCache.setBlobServerAddress(blobServerAddress); }
3.26
flink_HiveParserDDLSemanticAnalyzer_getPartitionSpec_rdh
// get partition metadata public static Map<String, String> getPartitionSpec(HiveParserASTNode ast) { HiveParserASTNode partNode = null; // if this ast has only one child, then no partition spec specified. if (ast.getChildCount() == 1) { return null; } // if ast has two children // the 2nd child could be partition spec or columnName // if the ast has 3 children, the second *has to* be partition spec if ((ast.getChildCount() > 2) && (ast.getChild(1).getType() != HiveASTParser.TOK_PARTSPEC)) { throw new ValidationException(ast.getChild(1).getType() + " is not a partition specification"); } if (ast.getChild(1).getType() == HiveASTParser.TOK_PARTSPEC) { partNode = ((HiveParserASTNode) (ast.getChild(1))); }if (partNode != null) { return getPartSpec(partNode); } return null; }
3.26
flink_HiveParserDDLSemanticAnalyzer_getFullyQualifiedName_rdh
// generate a name of the form a.b.c public static String getFullyQualifiedName(HiveParserASTNode ast) { if (ast.getChildCount() == 0) { return ast.getText(); } else if (ast.getChildCount() == 2) { return (getFullyQualifiedName(((HiveParserASTNode) (ast.getChild(0)))) + ".") + getFullyQualifiedName(((HiveParserASTNode) (ast.getChild(1))));} else if (ast.getChildCount() == 3) { return (((getFullyQualifiedName(((HiveParserASTNode) (ast.getChild(0)))) + ".") + getFullyQualifiedName(((HiveParserASTNode) (ast.getChild(1))))) + ".") + getFullyQualifiedName(((HiveParserASTNode) (ast.getChild(2)))); } else { return null; } }
3.26
flink_HiveParserDDLSemanticAnalyzer_validatePartitionValues_rdh
/** * Certain partition values are are used by hive. e.g. the default partition in dynamic * partitioning and the intermediate partition values used in the archiving process. Naturally, * prohibit the user from creating partitions with these reserved values. The check that this * function is more restrictive than the actual limitation, but it's simpler. Should be okay * since the reserved names are fairly long and uncommon. */ private void validatePartitionValues(Map<String, String> partSpec) { for (Map.Entry<String, String> e : partSpec.entrySet()) { for (String s : reservedPartitionValues) { String value = e.getValue(); if ((value != null) && value.contains(s)) { throw new ValidationException(ErrorMsg.RESERVED_PART_VAL.getMsg(((("(User value: " + e.getValue()) + " Reserved substring: ") + s) + ")")); } }} }
3.26
flink_HiveParserDDLSemanticAnalyzer_getColPath_rdh
// get the column path // return column name if exists, column could be DOT separated. // example: lintString.$elem$.myint // return table name for column name if no column has been specified. public static String getColPath(HiveParserASTNode node, String dbName, String tableName, Map<String, String> partSpec) { // if this ast has only one child, then no column name specified. if (node.getChildCount() == 1) { return tableName; } HiveParserASTNode columnNode = null; // Second child node could be partitionspec or column if (node.getChildCount() > 1) { if (partSpec == null) { columnNode = ((HiveParserASTNode) (node.getChild(1))); } else { columnNode = ((HiveParserASTNode) (node.getChild(2))); } } if (columnNode != null) { if (dbName == null) { return (tableName + ".") + QualifiedNameUtil.getFullyQualifiedName(columnNode); } else { return (tableName.substring(dbName.length() + 1) + ".") + QualifiedNameUtil.getFullyQualifiedName(columnNode); } } else { return tableName; } }
3.26
flink_HiveParserDDLSemanticAnalyzer_getPartitionSpecs_rdh
// Get the partition specs from the tree private List<Map<String, String>> getPartitionSpecs(CommonTree ast) { List<Map<String, String>> partSpecs = new ArrayList<>(); // get partition metadata if partition specified for (int childIndex = 0; childIndex < ast.getChildCount(); childIndex++) { HiveParserASTNode v202 = ((HiveParserASTNode) (ast.getChild(childIndex))); // sanity check if (v202.getType() == HiveASTParser.TOK_PARTSPEC) { Map<String, String> partSpec = getPartSpec(v202); partSpecs.add(partSpec); } } return partSpecs; }
3.26
flink_HiveParserDDLSemanticAnalyzer_convertAlterTableAddParts_rdh
/** * Add one or more partitions to a table. Useful when the data has been copied to the right * location by some other process. */ private Operation convertAlterTableAddParts(String[] qualified, CommonTree ast) { // ^(TOK_ALTERTABLE_ADDPARTS identifier ifNotExists? // alterStatementSuffixAddPartitionsElement+) boolean ifNotExists = ast.getChild(0).getType() == HiveASTParser.TOK_IFNOTEXISTS; Table tab = getTable(new ObjectPath(qualified[0], qualified[1])); boolean isView = tab.isView(); m0(tab); int numCh = ast.getChildCount(); int start = (ifNotExists) ? 1 : 0; String currentLocation = null; Map<String, String> currentPartSpec = null; // Parser has done some verification, so the order of tokens doesn't need to be verified // here. List<CatalogPartitionSpec> specs = new ArrayList<>(); List<CatalogPartition> partitions = new ArrayList<>(); for (int num = start; num < numCh; num++) { HiveParserASTNode child = ((HiveParserASTNode) (ast.getChild(num))); switch (child.getToken().getType()) { case HiveASTParser.TOK_PARTSPEC : if (currentPartSpec != null) { specs.add(new CatalogPartitionSpec(currentPartSpec)); Map<String, String> v268 = new HashMap<>(); if (currentLocation != null) { v268.put(TABLE_LOCATION_URI, currentLocation); } partitions.add(new CatalogPartitionImpl(v268, null)); currentLocation = null; } currentPartSpec = getPartSpec(child); validatePartitionValues(currentPartSpec);// validate reserved values break; case HiveASTParser.TOK_PARTITIONLOCATION : // if location specified, set in partition if (isView) { throw new ValidationException("LOCATION clause illegal for view partition"); } currentLocation = HiveParserBaseSemanticAnalyzer.unescapeSQLString(child.getChild(0).getText()); break; default : throw new ValidationException("Unknown child: " + child); } } // add the last one if (currentPartSpec != null) { specs.add(new CatalogPartitionSpec(currentPartSpec)); Map<String, String> props = new HashMap<>(); if (currentLocation != null) { props.put(TABLE_LOCATION_URI, currentLocation); } partitions.add(new CatalogPartitionImpl(props, null)); } ObjectIdentifier tableIdentifier = (tab.getDbName() == null) ? parseObjectIdentifier(tab.getTableName()) : catalogRegistry.qualifyIdentifier(UnresolvedIdentifier.of(tab.getDbName(), tab.getTableName())); return new AddPartitionsOperation(tableIdentifier, ifNotExists, specs, partitions); }
3.26
flink_HiveParserDDLSemanticAnalyzer_convertDescribeTable_rdh
/** * A query like this will generate a tree as follows "describe formatted default.maptable * partition (b=100) id;" TOK_TABTYPE TOK_TABNAME --> root for tablename, 2 child nodes mean DB * specified default maptable TOK_PARTSPEC --> root node for partition spec. else columnName * TOK_PARTVAL b 100 id --> root node for columnName formatted */ private Operation convertDescribeTable(HiveParserASTNode ast) { HiveParserASTNode tableTypeExpr = ((HiveParserASTNode) (ast.getChild(0))); String dbName = null; String tableName; String colPath; Map<String, String> partSpec; HiveParserASTNode tableNode; // process the first node to extract tablename // tablename is either TABLENAME or DBNAME.TABLENAME if db is given if (tableTypeExpr.getChild(0).getType() == HiveASTParser.TOK_TABNAME) { tableNode = ((HiveParserASTNode) (tableTypeExpr.getChild(0))); if (tableNode.getChildCount() == 1) { tableName = tableNode.getChild(0).getText(); } else if (tableNode.getChildCount() == 2) { dbName = tableNode.getChild(0).getText(); tableName = (dbName + ".") + tableNode.getChild(1).getText(); } else { // tablemname is CATALOGNAME.DBNAME.TABLENAME, which is not supported yet. // todo: fix it in FLINK-29343 throw new ValidationException("Describe a table in specific catalog is not supported in HiveDialect," + " please switch to Flink default dialect."); } } else { throw new ValidationException(tableTypeExpr.getChild(0).getText() + " is not an expected token type"); } // process the second child,if exists, node to get partition spec(s) partSpec = QualifiedNameUtil.getPartitionSpec(tableTypeExpr); // process the third child node,if exists, to get partition spec(s) colPath = QualifiedNameUtil.getColPath(tableTypeExpr, dbName, tableName, partSpec); if (partSpec != null) { handleUnsupportedOperation("DESCRIBE PARTITION is not supported"); } if (!colPath.equals(tableName)) { handleUnsupportedOperation("DESCRIBE COLUMNS is not supported"); } boolean isExt = false; boolean isFormatted = false; if (ast.getChildCount() == 2) {int descOptions = ast.getChild(1).getType(); isExt = descOptions == HiveASTParser.KW_EXTENDED; isFormatted = descOptions == HiveASTParser.KW_FORMATTED;if (descOptions == HiveASTParser.KW_PRETTY) { handleUnsupportedOperation("DESCRIBE PRETTY is not supported."); } } ObjectIdentifier tableIdentifier = parseObjectIdentifier(tableName); return new HiveExecutableOperation(new DescribeTableOperation(tableIdentifier, isExt || isFormatted)); }
3.26
flink_HiveParserDDLSemanticAnalyzer_convertShowFunctions_rdh
/** * Add the task according to the parsed command tree. This is used for the CLI command "SHOW * FUNCTIONS;". * * @param ast * The parsed command tree. */ private Operation convertShowFunctions(HiveParserASTNode ast) { if (ast.getChildCount() == 2) { assert ast.getChild(0).getType() == HiveASTParser.KW_LIKE; throw new ValidationException("SHOW FUNCTIONS LIKE is not supported yet"); } return new ShowFunctionsOperation(); }
3.26
flink_ExternalPythonKeyedProcessOperator_setCurrentKey_rdh
/** * As the beam state gRPC service will access the KeyedStateBackend in parallel with this * operator, we must override this method to prevent changing the current key of the * KeyedStateBackend while the beam service is handling requests. */ @Override public void setCurrentKey(Object key) { if (inBatchExecutionMode(getKeyedStateBackend())) { super.setCurrentKey(key);} keyForTimerService = key; }
3.26
flink_ExternalPythonKeyedProcessOperator_processTimer_rdh
/** * It is responsible to send timer data to python worker when a registered timer is fired. The * input data is a Row containing 4 fields: TimerFlag 0 for proc time, 1 for event time; * Timestamp of the fired timer; Current watermark and the key of the timer. * * @param timeDomain * The type of the timer. * @param timer * The internal timer. * @throws Exception * The runnerInputSerializer might throw exception. */ private void processTimer(TimeDomain timeDomain, InternalTimer<Row, Object> timer) throws Exception { Object namespace = timer.getNamespace(); byte[] encodedNamespace; if (VoidNamespace.INSTANCE.equals(namespace)) { encodedNamespace = null; } else { namespaceSerializer.serialize(namespace, baosWrapper); encodedNamespace = baos.toByteArray(); baos.reset(); } Row timerData = timerHandler.buildTimerData(timeDomain, internalTimerService.currentWatermark(), timer.getTimestamp(), timer.getKey(), encodedNamespace); timerDataSerializer.serialize(timerData, baosWrapper); pythonFunctionRunner.processTimer(baos.toByteArray()); baos.reset();elementCount++; checkInvokeFinishBundleByCount(); emitResults(); }
3.26
flink_AbstractCheckpointStats_getTaskStateStats_rdh
/** * Returns the task state stats for the given job vertex ID or <code>null</code> if no task with * such an ID is available. * * @param jobVertexId * Job vertex ID of the task stats to look up. * @return The task state stats instance for the given ID or <code>null</code>. */ public TaskStateStats getTaskStateStats(JobVertexID jobVertexId) { return taskStats.get(jobVertexId); }
3.26
flink_AbstractCheckpointStats_getAllTaskStateStats_rdh
/** * Returns all task state stats instances. * * @return All task state stats instances. */public Collection<TaskStateStats> getAllTaskStateStats() { return taskStats.values(); }
3.26
flink_AbstractCheckpointStats_getLatestAckTimestamp_rdh
/** * Returns the ack timestamp of the latest acknowledged subtask or <code>-1</code> if none was * acknowledged yet. * * @return Ack timestamp of the latest acknowledged subtask or <code>-1</code>. */ public long getLatestAckTimestamp() { SubtaskStateStats subtask = getLatestAcknowledgedSubtaskStats(); if (subtask != null) { return subtask.getAckTimestamp(); } else { return -1; } }
3.26
flink_AbstractPagedInputView_getHeaderLength_rdh
/** * * @return header length. */ public int getHeaderLength() { return headerLength; }
3.26
flink_AbstractPagedInputView_getCurrentSegment_rdh
// -------------------------------------------------------------------------------------------- // Page Management // -------------------------------------------------------------------------------------------- /** * Gets the memory segment that will be used to read the next bytes from. If the segment is * exactly exhausted, meaning that the last byte read was the last byte available in the * segment, then this segment will not serve the next bytes. The segment to serve the next bytes * will be obtained through the {@link #nextSegment(MemorySegment)} method. * * @return The current memory segment. */ public MemorySegment getCurrentSegment() { return this.currentSegment; }
3.26
flink_AbstractPagedInputView_read_rdh
// -------------------------------------------------------------------------------------------- // Data Input Specific methods // -------------------------------------------------------------------------------------------- @Overridepublic int read(byte[] b) throws IOException { return read(b, 0, b.length); }
3.26
flink_AbstractPagedInputView_clear_rdh
/** * Clears the internal state of the view. After this call, all read attempts will fail, until * the {@link #advance()} or {@link #seekInput(MemorySegment, int, int)} method have been * invoked. */ protected void clear() { this.currentSegment = null; this.positionInSegment = this.headerLength; this.limitInSegment = headerLength; }
3.26
flink_AbstractPagedInputView_getCurrentSegmentLimit_rdh
/** * Gets the current limit in the memory segment. This value points to the byte one after the * last valid byte in the memory segment. * * @return The current limit in the memory segment. * @see #getCurrentPositionInSegment() */ public int getCurrentSegmentLimit() { return this.limitInSegment; } /** * The method by which concrete subclasses realize page crossing. This method is invoked when * the current page is exhausted and a new page is required to continue the reading. If no * further page is available, this method must throw an {@link EOFException}. * * @param current * The current page that was read to its limit. May be {@code null}, if this * method is invoked for the first time. * @return The next page from which the reading should continue. May not be {@code null}. If the input is exhausted, an {@link EOFException}
3.26
flink_AbstractPagedInputView_seekInput_rdh
/** * Sets the internal state of the view such that the next bytes will be read from the given * memory segment, starting at the given position. The memory segment will provide bytes up to * the given limit position. * * @param segment * The segment to read the next bytes from. * @param positionInSegment * The position in the segment to start reading from. * @param limitInSegment * The limit in the segment. When reached, the view will attempt to switch * to the next segment. */ protected void seekInput(MemorySegment segment, int positionInSegment, int limitInSegment) { this.currentSegment = segment; this.positionInSegment = positionInSegment; this.limitInSegment = limitInSegment; }
3.26
flink_AbstractPagedInputView_advance_rdh
/** * Advances the view to the next memory segment. The reading will continue after the header of * the next segment. This method uses {@link #nextSegment(MemorySegment)} and {@link #getLimitForSegment(MemorySegment)} to get the next segment and set its limit. * * @throws IOException * Thrown, if the next segment could not be obtained. * @see #nextSegment(MemorySegment) * @see #getLimitForSegment(MemorySegment) */ public void advance() throws IOException { doAdvance(); }
3.26
flink_FactoryUtils_loadAndInvokeFactory_rdh
/** * Loads all factories for the given class using the {@link ServiceLoader} and attempts to * create an instance. * * @param factoryInterface * factory interface * @param factoryInvoker * factory invoker * @param defaultProvider * default factory provider * @param <R> * resource type * @param <F> * factory type * @throws RuntimeException * if no or multiple resources could be instantiated * @return created instance */ public static <R, F> R loadAndInvokeFactory(final Class<F> factoryInterface, final FactoryInvoker<F, R> factoryInvoker, final Supplier<F> defaultProvider) { final ServiceLoader<F> factories = ServiceLoader.load(factoryInterface); final List<R> instantiatedResources = new ArrayList<>(); final List<Exception> errorsDuringInitialization = new ArrayList<>(); for (F factory : factories) { try { R resource = factoryInvoker.invoke(factory); instantiatedResources.add(resource); f0.info("Instantiated {}.", resource.getClass().getSimpleName()); } catch (Exception e) { f0.debug("Factory {} could not instantiate instance.", factory.getClass().getSimpleName(), e); errorsDuringInitialization.add(e); } } if (instantiatedResources.size() == 1) { return instantiatedResources.get(0);}if (instantiatedResources.isEmpty()) { try {return factoryInvoker.invoke(defaultProvider.get()); } catch (Exception e) { final RuntimeException exception = new RuntimeException("Could not instantiate any instance."); final RuntimeException defaultException = new RuntimeException("Could not instantiate default instance.", e); exception.addSuppressed(defaultException); errorsDuringInitialization.forEach(exception::addSuppressed); throw exception; } } throw new RuntimeException("Multiple instances were created: " + instantiatedResources); }
3.26
flink_QueryOperation_asSerializableString_rdh
/** * Returns a string that fully serializes this instance. The serialized string can be used for * storing the query in e.g. a {@link org.apache.flink.table.catalog.Catalog} as a view. * * @return detailed string for persisting in a catalog * @see Operation#asSummaryString() */ default String asSerializableString() { throw new UnsupportedOperationException("QueryOperations are not string serializable for now."); }
3.26
flink_ContinuousEnumerationSettings_toString_rdh
// ------------------------------------------------------------------------ @Override public String toString() { return (("ContinuousEnumerationSettings{" + "discoveryInterval=") + discoveryInterval) + '}'; }
3.26
flink_DataSource_getSplitDataProperties_rdh
/** * Returns the {@link org.apache.flink.api.java.io.SplitDataProperties} for the {@link org.apache.flink.core.io.InputSplit}s of this DataSource for configurations. * * <p>SplitDataProperties can help to generate more efficient execution plans. * * <p><b> IMPORTANT: Incorrect configuration of SplitDataProperties can cause wrong results! * </b> * * @return The SplitDataProperties for the InputSplits of this DataSource. */ @PublicEvolving public SplitDataProperties<OUT> getSplitDataProperties() {if (this.splitDataProperties == null) { this.splitDataProperties = new SplitDataProperties<OUT>(this); } return this.splitDataProperties; }
3.26
flink_DataSource_getInputFormat_rdh
/** * Gets the input format that is executed by this data source. * * @return The input format that is executed by this data source. */ @Internal public InputFormat<OUT, ?> getInputFormat() { return this.inputFormat;}
3.26
flink_DataSource_translateToDataFlow_rdh
// -------------------------------------------------------------------------------------------- protected GenericDataSourceBase<OUT, ?> translateToDataFlow() { String v0 = (this.name != null) ? this.name : ((("at " + dataSourceLocationName) + " (") + inputFormat.getClass().getName()) + ")"; if (v0.length() > 150) { v0 = v0.substring(0, 150); } @SuppressWarnings({ "unchecked", "rawtypes" }) GenericDataSourceBase<OUT, ?> source = new GenericDataSourceBase(this.inputFormat, new OperatorInformation<OUT>(getType()), v0); source.setParallelism(parallelism); if (this.parameters != null) { source.getParameters().addAll(this.parameters); } if (this.splitDataProperties != null) { source.setSplitDataProperties(this.splitDataProperties); } return source; }
3.26
flink_DataSource_getParameters_rdh
/** * * @return Configuration for the InputFormat. */public Configuration getParameters() { return this.parameters; }
3.26
flink_DataSource_withParameters_rdh
/** * Pass a configuration to the InputFormat. * * @param parameters * Configuration parameters */ public DataSource<OUT> withParameters(Configuration parameters) { this.parameters = parameters; return this; }
3.26
flink_FieldAccessorFactory_getAccessor_rdh
/** * Creates a {@link FieldAccessor} for the field that is given by a field expression, which can * be used to get and set the specified field on instances of this type. * * @param field * The field expression * @param config * Configuration object * @param <F> * The type of the field to access * @return The created FieldAccessor */ @Internal public static <T, F> FieldAccessor<T, F> getAccessor(TypeInformation<T> typeInfo, String field, ExecutionConfig config) { // In case of arrays if ((typeInfo instanceof BasicArrayTypeInfo) || (typeInfo instanceof PrimitiveArrayTypeInfo)) { try { return new FieldAccessor.ArrayFieldAccessor<>(Integer.parseInt(field), typeInfo); } catch (NumberFormatException ex) { throw new CompositeType.InvalidFieldReferenceException("A field expression on an array must be an integer index (that might be given as a string)."); } // In case of basic types } else if (typeInfo instanceof BasicTypeInfo) { try { int pos = (field.equals(ExpressionKeys.SELECT_ALL_CHAR)) ? 0 : Integer.parseInt(field); return FieldAccessorFactory.getAccessor(typeInfo, pos, config); } catch (NumberFormatException ex) { throw new CompositeType.InvalidFieldReferenceException((((("You tried to select the field \"" + field) + "\" on a ") + typeInfo.toString()) + ". A field expression on a basic type can only be \"*\" or \"0\"") + " (both of which mean selecting the entire basic type)."); } // In case of Pojos } else if (typeInfo instanceof PojoTypeInfo) { FieldExpression decomp = decomposeFieldExpression(field); PojoTypeInfo<?> v6 = ((PojoTypeInfo) (typeInfo)); int fieldIndex = v6.getFieldIndex(decomp.head); if (fieldIndex == (-1)) { throw new CompositeType.InvalidFieldReferenceException(((("Unable to find field \"" + decomp.head) + "\" in type ") + typeInfo) + "."); } else { PojoField pojoField = v6.getPojoFieldAt(fieldIndex); TypeInformation<?> fieldType = v6.getTypeAt(fieldIndex); if (decomp.tail == null) { @SuppressWarnings("unchecked") FieldAccessor<F, F> innerAccessor = new FieldAccessor.SimpleFieldAccessor<>(((TypeInformation<F>) (fieldType)));return new FieldAccessor.PojoFieldAccessor<>(pojoField.getField(), innerAccessor); } else { @SuppressWarnings("unchecked") FieldAccessor<Object, F> innerAccessor = FieldAccessorFactory.getAccessor(((TypeInformation<Object>) (fieldType)), decomp.tail, config); return new FieldAccessor.PojoFieldAccessor<>(pojoField.getField(), innerAccessor); } } // In case of case classes } else if (typeInfo.isTupleType() && ((TupleTypeInfoBase) (typeInfo)).isCaseClass()) { TupleTypeInfoBase tupleTypeInfo = ((TupleTypeInfoBase) (typeInfo)); FieldExpression decomp = decomposeFieldExpression(field); int fieldPos = tupleTypeInfo.getFieldIndex(decomp.head); if (fieldPos < 0) { throw new CompositeType.InvalidFieldReferenceException("Invalid field selected: " + field); } if (decomp.tail == null) { if (scalaProductFieldAccessorFactory != null) { return scalaProductFieldAccessorFactory.createSimpleProductFieldAccessor(fieldPos, typeInfo, config); } else { throw new IllegalStateException("Scala products are used but Scala API is not on the classpath."); } } else { @SuppressWarnings("unchecked") FieldAccessor<Object, F> innerAccessor = getAccessor(tupleTypeInfo.getTypeAt(fieldPos), decomp.tail, config); if (scalaProductFieldAccessorFactory != null) { return scalaProductFieldAccessorFactory.createRecursiveProductFieldAccessor(fieldPos, typeInfo, innerAccessor, config); } else { throw new IllegalStateException("Scala products are used but Scala API is not on the classpath."); } } // In case of tuples } else if (typeInfo.isTupleType() && (typeInfo instanceof TupleTypeInfo)) { TupleTypeInfo tupleTypeInfo = ((TupleTypeInfo) (typeInfo)); FieldExpression decomp = decomposeFieldExpression(field); int v18 = tupleTypeInfo.getFieldIndex(decomp.head); if (v18 == (-1)) { try { v18 = Integer.parseInt(decomp.head); } catch (NumberFormatException ex) { throw new CompositeType.InvalidFieldReferenceException(((("Tried to select field \"" + decomp.head) + "\" on ") + typeInfo.toString()) + " . Only integer values are allowed here.");} } if (decomp.tail == null) { @SuppressWarnings("unchecked") FieldAccessor<T, F> result = new FieldAccessor.SimpleTupleFieldAccessor(v18, tupleTypeInfo); return result; } else { @SuppressWarnings("unchecked") FieldAccessor<?, F> innerAccessor = getAccessor(tupleTypeInfo.getTypeAt(v18), decomp.tail, config); @SuppressWarnings("unchecked") FieldAccessor<T, F> result = new FieldAccessor.RecursiveTupleFieldAccessor(v18, innerAccessor, tupleTypeInfo); return result; } // Default statement } else { throw new CompositeType.InvalidFieldReferenceException((("Cannot reference field by field expression on " + typeInfo.toString()) + "Field expressions are only supported on POJO types, tuples, and case classes. ") + "(See the Flink documentation on what is considered a POJO.)"); } }
3.26
flink_AllWindowedStream_allowedLateness_rdh
/** * Sets the time by which elements are allowed to be late. Elements that arrive behind the * watermark by more than the specified time will be dropped. By default, the allowed lateness * is {@code 0L}. * * <p>Setting an allowed lateness is only valid for event-time windows. */ @PublicEvolving public AllWindowedStream<T, W> allowedLateness(Time lateness) { final long millis = lateness.toMilliseconds(); checkArgument(millis >= 0, "The allowed lateness cannot be negative."); this.allowedLateness = millis; return this; }
3.26
flink_AllWindowedStream_m1_rdh
/** * Applies the given window function to each window. The window function is called for each * evaluation of the window. The output of the window function is interpreted as a regular * non-windowed stream. * * <p>Note that this function requires that all data in the windows is buffered until the window * is evaluated, as the function provides no means of incremental aggregation. * * @param function * The process window function. * @return The data stream that is the result of applying the window function to the window. */ @PublicEvolving public <R> SingleOutputStreamOperator<R> m1(ProcessAllWindowFunction<T, R, W> function, TypeInformation<R> resultType) { String callLocation = Utils.getCallLocationName(); function = input.getExecutionEnvironment().clean(function); return apply(new InternalIterableProcessAllWindowFunction<>(function), resultType, callLocation); }
3.26
flink_AllWindowedStream_trigger_rdh
/** * Sets the {@code Trigger} that should be used to trigger window emission. */ @PublicEvolving public AllWindowedStream<T, W> trigger(Trigger<? super T, ? super W> trigger) { if ((windowAssigner instanceof MergingWindowAssigner) && (!trigger.canMerge())) { throw new UnsupportedOperationException("A merging window assigner cannot be used with a trigger that does not support merging."); } this.trigger = trigger; return this; }
3.26
flink_AllWindowedStream_m0_rdh
/** * Applies the given window function to each window. The window function is called for each * evaluation of the window for each key individually. The output of the window function is * interpreted as a regular non-windowed stream. * * <p>Arriving data is incrementally aggregated using the given reducer. * * @param reduceFunction * The reduce function that is used for incremental aggregation. * @param function * The process window function. * @return The data stream that is the result of applying the window function to the window. */ @PublicEvolving public <R> SingleOutputStreamOperator<R> m0(ReduceFunction<T> reduceFunction, ProcessAllWindowFunction<T, R, W> function) { TypeInformation<R> resultType = getProcessAllWindowFunctionReturnType(function, input.getType()); return reduce(reduceFunction, function, resultType); }
3.26
flink_AllWindowedStream_apply_rdh
/** * Applies the given window function to each window. The window function is called for each * evaluation of the window for each key individually. The output of the window function is * interpreted as a regular non-windowed stream. * * <p>Arriving data is incrementally aggregated using the given reducer. * * @param reduceFunction * The reduce function that is used for incremental aggregation. * @param function * The window function. * @param resultType * Type information for the result type of the window function * @return The data stream that is the result of applying the window function to the window. * @deprecated Use {@link #reduce(ReduceFunction, AllWindowFunction, TypeInformation)} instead. */ @Deprecated public <R> SingleOutputStreamOperator<R> apply(ReduceFunction<T> reduceFunction, AllWindowFunction<T, R, W> function, TypeInformation<R> resultType) {if (reduceFunction instanceof RichFunction) { throw new UnsupportedOperationException("ReduceFunction of apply can not be a RichFunction."); } // clean the closures function = input.getExecutionEnvironment().clean(function); reduceFunction = input.getExecutionEnvironment().clean(reduceFunction); String callLocation = Utils.getCallLocationName(); String udfName = "AllWindowedStream." + callLocation; String opName; KeySelector<T, Byte> keySel = input.getKeySelector(); OneInputStreamOperator<T, R> operator; if (evictor != null) { @SuppressWarnings({ "unchecked", "rawtypes" }) TypeSerializer<StreamRecord<T>> streamRecordSerializer = ((TypeSerializer<StreamRecord<T>>) (new StreamElementSerializer(input.getType().createSerializer(getExecutionEnvironment().getConfig())))); ListStateDescriptor<StreamRecord<T>> stateDesc = new ListStateDescriptor<>("window-contents", streamRecordSerializer); opName = ((((((((("TriggerWindow(" + windowAssigner) + ", ") + stateDesc) + ", ") + trigger) + ", ") + evictor) + ", ") + udfName) + ")"; operator = new EvictingWindowOperator<>(windowAssigner, windowAssigner.getWindowSerializer(getExecutionEnvironment().getConfig()), keySel, input.getKeyType().createSerializer(getExecutionEnvironment().getConfig()), stateDesc, new InternalIterableAllWindowFunction<>(new ReduceApplyAllWindowFunction<>(reduceFunction, function)), trigger, evictor, allowedLateness, lateDataOutputTag); } else { ReducingStateDescriptor<T> stateDesc = new ReducingStateDescriptor<>("window-contents", reduceFunction, input.getType().createSerializer(getExecutionEnvironment().getConfig())); opName = ((((((("TriggerWindow(" + windowAssigner) + ", ") + stateDesc) + ", ") + trigger) + ", ") + udfName) + ")"; operator = new WindowOperator<>(windowAssigner, windowAssigner.getWindowSerializer(getExecutionEnvironment().getConfig()), keySel, input.getKeyType().createSerializer(getExecutionEnvironment().getConfig()), stateDesc, new InternalSingleValueAllWindowFunction<>(function), trigger, allowedLateness, lateDataOutputTag); } return input.transform(opName, resultType, operator).forceNonParallel(); }
3.26
flink_AllWindowedStream_getExecutionEnvironment_rdh
// ------------------------------------------------------------------------ // Utilities // ------------------------------------------------------------------------ public StreamExecutionEnvironment getExecutionEnvironment() { return input.getExecutionEnvironment(); }
3.26
flink_AllWindowedStream_minBy_rdh
/** * Applies an aggregation that gives the minimum element of the pojo data stream by the given * field expression for every window. A field expression is either the name of a public field or * a getter method with parentheses of the {@link DataStream DataStreams} underlying type. A dot * can be used to drill down into objects, as in {@code "field1.getInnerField2()"}. * * @param field * The field expression based on which the aggregation will be applied. * @param first * If True then in case of field equality the first object will be returned * @return The transformed DataStream. */ public SingleOutputStreamOperator<T> minBy(String field, boolean first) { return aggregate(new ComparableAggregator<>(field, input.getType(), AggregationType.MINBY, first, input.getExecutionConfig())); }
3.26
flink_AllWindowedStream_aggregate_rdh
/** * Applies the given window function to each window. The window function is called for each * evaluation of the window for each key individually. The output of the window function is * interpreted as a regular non-windowed stream. * * <p>Arriving data is incrementally aggregated using the given aggregate function. This means * that the window function typically has only a single value to process when called. * * @param aggregateFunction * The aggregation function that is used for incremental aggregation. * @param windowFunction * The process window function. * @param accumulatorType * Type information for the internal accumulator type of the aggregation * function * @param resultType * Type information for the result type of the window function * @return The data stream that is the result of applying the window function to the window. * @param <ACC> * The type of the AggregateFunction's accumulator * @param <V> * The type of AggregateFunction's result, and the WindowFunction's input * @param <R> * The type of the elements in the resulting stream, equal to the WindowFunction's * result type */ @PublicEvolvingpublic <ACC, V, R> SingleOutputStreamOperator<R> aggregate(AggregateFunction<T, ACC, V> aggregateFunction, ProcessAllWindowFunction<V, R, W> windowFunction, TypeInformation<ACC> accumulatorType, TypeInformation<V> aggregateResultType, TypeInformation<R> resultType) { checkNotNull(aggregateFunction, "aggregateFunction"); checkNotNull(windowFunction, "windowFunction"); checkNotNull(accumulatorType, "accumulatorType");checkNotNull(aggregateResultType, "aggregateResultType"); checkNotNull(resultType, "resultType"); if (aggregateFunction instanceof RichFunction) { throw new UnsupportedOperationException("This aggregate function cannot be a RichFunction."); } // clean the closures windowFunction = input.getExecutionEnvironment().clean(windowFunction); aggregateFunction = input.getExecutionEnvironment().clean(aggregateFunction);final String callLocation = Utils.getCallLocationName(); final String udfName = "AllWindowedStream." + callLocation;final String opName = windowAssigner.getClass().getSimpleName(); final String opDescription; final KeySelector<T, Byte> v43 = input.getKeySelector(); OneInputStreamOperator<T, R> operator; if (evictor != null) { @SuppressWarnings({ "unchecked", "rawtypes" }) TypeSerializer<StreamRecord<T>> streamRecordSerializer = ((TypeSerializer<StreamRecord<T>>) (new StreamElementSerializer(input.getType().createSerializer(getExecutionEnvironment().getConfig()))));ListStateDescriptor<StreamRecord<T>> stateDesc = new ListStateDescriptor<>("window-contents", streamRecordSerializer); opDescription = ((((((((("TriggerWindow(" + windowAssigner) + ", ") + stateDesc) + ", ") + trigger) + ", ") + evictor) + ", ") + udfName) + ")"; operator = new EvictingWindowOperator<>(windowAssigner, windowAssigner.getWindowSerializer(getExecutionEnvironment().getConfig()), v43, input.getKeyType().createSerializer(getExecutionEnvironment().getConfig()), stateDesc, new InternalAggregateProcessAllWindowFunction<>(aggregateFunction, windowFunction), trigger, evictor, allowedLateness, lateDataOutputTag);} else { AggregatingStateDescriptor<T, ACC, V> stateDesc = new AggregatingStateDescriptor<>("window-contents", aggregateFunction, accumulatorType.createSerializer(getExecutionEnvironment().getConfig())); opDescription = ((((((("TriggerWindow(" + windowAssigner) + ", ") + stateDesc) + ", ") + trigger) + ", ") + udfName) + ")"; operator = new WindowOperator<>(windowAssigner, windowAssigner.getWindowSerializer(getExecutionEnvironment().getConfig()), v43, input.getKeyType().createSerializer(getExecutionEnvironment().getConfig()), stateDesc, new InternalSingleValueProcessAllWindowFunction<>(windowFunction), trigger, allowedLateness, lateDataOutputTag); } return input.transform(opName, resultType, operator).setDescription(opDescription).forceNonParallel(); }
3.26
flink_AllWindowedStream_sideOutputLateData_rdh
/** * Send late arriving data to the side output identified by the given {@link OutputTag}. Data is * considered late after the watermark has passed the end of the window plus the allowed * lateness set using {@link #allowedLateness(Time)}. * * <p>You can get the stream of late data using {@link SingleOutputStreamOperator#getSideOutput(OutputTag)} on the {@link SingleOutputStreamOperator} resulting from the windowed operation with the same {@link OutputTag}. */ @PublicEvolving public AllWindowedStream<T, W> sideOutputLateData(OutputTag<T> outputTag) {Preconditions.checkNotNull(outputTag, "Side output tag must not be null."); this.lateDataOutputTag = input.getExecutionEnvironment().clean(outputTag); return this; }
3.26
flink_AllWindowedStream_process_rdh
/** * Applies the given window function to each window. The window function is called for each * evaluation of the window. The output of the window function is interpreted as a regular * non-windowed stream. * * <p>Note that this function requires that all data in the windows is buffered until the window * is evaluated, as the function provides no means of incremental aggregation. * * @param function * The process window function. * @return The data stream that is the result of applying the window function to the window. */ @PublicEvolving public <R> SingleOutputStreamOperator<R> process(ProcessAllWindowFunction<T, R, W> function) { String callLocation = Utils.getCallLocationName(); function = input.getExecutionEnvironment().clean(function); TypeInformation<R> resultType = getProcessAllWindowFunctionReturnType(function, getInputType());return apply(new InternalIterableProcessAllWindowFunction<>(function), resultType, callLocation); }
3.26
flink_AllWindowedStream_sum_rdh
/** * Applies an aggregation that sums every window of the pojo data stream at the given field for * every window. * * <p>A field expression is either the name of a public field or a getter method with * parentheses of the stream's underlying type. A dot can be used to drill down into objects, as * in {@code "field1.getInnerField2()"}. * * @param field * The field to sum * @return The transformed DataStream. */ public SingleOutputStreamOperator<T> sum(String field) { return aggregate(new SumAggregator<>(field, input.getType(), input.getExecutionConfig())); }
3.26
flink_AllWindowedStream_maxBy_rdh
/** * Applies an aggregation that gives the maximum element of the pojo data stream by the given * field expression for every window. A field expression is either the name of a public field or * a getter method with parentheses of the {@link DataStream}S underlying type. A dot can be * used to drill down into objects, as in {@code "field1.getInnerField2()"}. * * @param field * The field expression based on which the aggregation will be applied. * @param first * If True then in case of field equality the first object will be returned * @return The transformed DataStream. */ public SingleOutputStreamOperator<T> maxBy(String field, boolean first) { return aggregate(new ComparableAggregator<>(field, input.getType(), AggregationType.MAXBY, first, input.getExecutionConfig())); }
3.26
flink_AllWindowedStream_reduce_rdh
/** * Applies the given window function to each window. The window function is called for each * evaluation of the window for each key individually. The output of the window function is * interpreted as a regular non-windowed stream. * * <p>Arriving data is incrementally aggregated using the given reducer. * * @param reduceFunction * The reduce function that is used for incremental aggregation. * @param function * The process window function. * @param resultType * Type information for the result type of the window function * @return The data stream that is the result of applying the window function to the window. */ @PublicEvolving public <R> SingleOutputStreamOperator<R> reduce(ReduceFunction<T> reduceFunction, ProcessAllWindowFunction<T, R, W> function, TypeInformation<R> resultType) { if (reduceFunction instanceof RichFunction) { throw new UnsupportedOperationException("ReduceFunction of reduce can not be a RichFunction."); } // clean the closures function = input.getExecutionEnvironment().clean(function); reduceFunction = input.getExecutionEnvironment().clean(reduceFunction); String callLocation = Utils.getCallLocationName(); String udfName = "AllWindowedStream." + callLocation; String opName; KeySelector<T, Byte> keySel = input.getKeySelector(); OneInputStreamOperator<T, R> operator; if (evictor != null) { @SuppressWarnings({ "unchecked", "rawtypes" }) TypeSerializer<StreamRecord<T>> streamRecordSerializer = ((TypeSerializer<StreamRecord<T>>) (new StreamElementSerializer(input.getType().createSerializer(getExecutionEnvironment().getConfig())))); ListStateDescriptor<StreamRecord<T>> stateDesc = new ListStateDescriptor<>("window-contents", streamRecordSerializer); opName = ((((((((("TriggerWindow(" + windowAssigner) + ", ") + stateDesc) + ", ") + trigger) + ", ") + evictor) + ", ") + udfName) + ")"; operator = new EvictingWindowOperator<>(windowAssigner, windowAssigner.getWindowSerializer(getExecutionEnvironment().getConfig()), keySel, input.getKeyType().createSerializer(getExecutionEnvironment().getConfig()), stateDesc, new InternalIterableProcessAllWindowFunction<>(new ReduceApplyProcessAllWindowFunction<>(reduceFunction, function)), trigger, evictor, allowedLateness, lateDataOutputTag);} else { ReducingStateDescriptor<T> stateDesc = new ReducingStateDescriptor<>("window-contents", reduceFunction, input.getType().createSerializer(getExecutionEnvironment().getConfig())); opName = ((((((("TriggerWindow(" + windowAssigner) + ", ") + stateDesc) + ", ") + trigger) + ", ") + udfName) + ")"; operator = new WindowOperator<>(windowAssigner, windowAssigner.getWindowSerializer(getExecutionEnvironment().getConfig()), keySel, input.getKeyType().createSerializer(getExecutionEnvironment().getConfig()), stateDesc, new InternalSingleValueProcessAllWindowFunction<>(function), trigger, allowedLateness, lateDataOutputTag); } return input.transform(opName, resultType, operator).forceNonParallel(); }
3.26
flink_AllWindowedStream_min_rdh
/** * Applies an aggregation that gives the minimum value of the pojo data stream at the given * field expression for every window. * * <p>A field expression is either the name of a public field or a getter method with * parentheses of the {@link DataStream}S underlying type. A dot can be used to drill down into * objects, as in {@code "field1.getInnerField2()"}. * * @param field * The field expression based on which the aggregation will be applied. * @return The transformed DataStream. */ public SingleOutputStreamOperator<T> min(String field) { return aggregate(new ComparableAggregator<>(field, input.getType(), AggregationType.MIN, false, input.getExecutionConfig())); }
3.26
flink_AllWindowedStream_max_rdh
/** * Applies an aggregation that gives the maximum value of the pojo data stream at the given * field expression for every window. A field expression is either the name of a public field or * a getter method with parentheses of the {@link DataStream DataStreams} underlying type. A dot * can be used to drill down into objects, as in {@code "field1.getInnerField2()"}. * * @param field * The field expression based on which the aggregation will be applied. * @return The transformed DataStream. */ public SingleOutputStreamOperator<T> max(String field) { return aggregate(new ComparableAggregator<>(field, input.getType(), AggregationType.MAX, false, input.getExecutionConfig())); }
3.26
flink_AllWindowedStream_evictor_rdh
/** * Sets the {@code Evictor} that should be used to evict elements from a window before emission. * * <p>Note: When using an evictor window performance will degrade significantly, since * incremental aggregation of window results cannot be used. */ @PublicEvolving public AllWindowedStream<T, W> evictor(Evictor<? super T, ? super W> evictor) { this.evictor = evictor; return this; }
3.26
flink_PartialCachingAsyncLookupProvider_of_rdh
/** * Build a {@link PartialCachingAsyncLookupProvider} from the specified {@link AsyncLookupFunction} and {@link LookupCache}. */ static PartialCachingAsyncLookupProvider of(AsyncLookupFunction asyncLookupFunction, LookupCache cache) { return new PartialCachingAsyncLookupProvider() { @Override public LookupCache getCache() { return cache; } @Override public AsyncLookupFunction createAsyncLookupFunction() { return asyncLookupFunction; } }; }
3.26
flink_TaskExecutorManager_getTotalRegisteredResources_rdh
// --------------------------------------------------------------------------------------------- // slot / resource counts // --------------------------------------------------------------------------------------------- public ResourceProfile getTotalRegisteredResources() { return taskManagerRegistrations.values().stream().map(TaskManagerRegistration::getTotalResource).reduce(ResourceProfile.ZERO, ResourceProfile::merge); }
3.26
flink_TaskExecutorManager_clearPendingTaskManagerSlots_rdh
/** * clear all pending task manager slots. */ public void clearPendingTaskManagerSlots() { if (!resourceAllocator.isSupported()) { return; } if (!pendingSlots.isEmpty()) { this.pendingSlots.clear(); declareNeededResourcesWithDelay(); } }
3.26
flink_TaskExecutorManager_occupySlot_rdh
// --------------------------------------------------------------------------------------------- // TaskExecutor slot book-keeping // --------------------------------------------------------------------------------------------- public void occupySlot(InstanceID instanceId) { taskManagerRegistrations.get(instanceId).occupySlot(); }
3.26
flink_TaskExecutorManager_isTaskManagerRegistered_rdh
// --------------------------------------------------------------------------------------------- // TaskExecutor (un)registration // --------------------------------------------------------------------------------------------- public boolean isTaskManagerRegistered(InstanceID instanceId) { return taskManagerRegistrations.containsKey(instanceId); }
3.26
flink_TaskExecutorManager_checkTaskManagerTimeoutsAndRedundancy_rdh
// --------------------------------------------------------------------------------------------- // TaskExecutor idleness / redundancy // --------------------------------------------------------------------------------------------- private void checkTaskManagerTimeoutsAndRedundancy() { if (!taskManagerRegistrations.isEmpty()) { long currentTime = System.currentTimeMillis(); ArrayList<TaskManagerRegistration> timedOutTaskManagers = new ArrayList<>(taskManagerRegistrations.size()); // first retrieve the timed out TaskManagers for (TaskManagerRegistration taskManagerRegistration : taskManagerRegistrations.values()) { if ((currentTime - taskManagerRegistration.getIdleSince()) >= taskManagerTimeout.toMilliseconds()) { // we collect the instance ids first in order to avoid concurrent modifications // by the // ResourceAllocator.releaseResource call timedOutTaskManagers.add(taskManagerRegistration); } } int slotsDiff = (redundantTaskManagerNum * numSlotsPerWorker) - getNumberFreeSlots(); if (slotsDiff > 0) { if (pendingSlots.isEmpty()) { // Keep enough redundant taskManagers from time to time. int requiredTaskManagers = MathUtils.divideRoundUp(slotsDiff, numSlotsPerWorker); m1(requiredTaskManagers); } else { LOG.debug("There are some pending slots, skip allocate redundant task manager and wait them fulfilled."); } } else { // second we trigger the release resource callback which can decide upon the // resource release int maxReleaseNum = (-slotsDiff) / numSlotsPerWorker; releaseIdleTaskExecutors(timedOutTaskManagers, Math.min(maxReleaseNum, timedOutTaskManagers.size())); } } }
3.26
flink_TaskExecutorManager_removePendingTaskManagerSlots_rdh
/** * remove unused pending task manager slots. * * @param unusedResourceCounter * the count of unused resources. */ public void removePendingTaskManagerSlots(ResourceCounter unusedResourceCounter) { if (!resourceAllocator.isSupported()) { return; } Preconditions.checkState(unusedResourceCounter.getResources().size() == 1); Preconditions.checkState(unusedResourceCounter.getResources().contains(defaultSlotResourceProfile)); int wantedPendingSlotsNumber = pendingSlots.size() - unusedResourceCounter.getResourceCount(defaultSlotResourceProfile); pendingSlots.entrySet().removeIf(ignore -> pendingSlots.size() > wantedPendingSlotsNumber); declareNeededResourcesWithDelay(); }
3.26
flink_TaskExecutorManager_declareNeededResources_rdh
/** * DO NOT call this method directly. Use {@link #declareNeededResourcesWithDelay()} instead. */ private void declareNeededResources() { resourceAllocator.declareResourceNeeded(getResourceDeclaration()); }
3.26
flink_TaskExecutorManager_allocateWorkers_rdh
/** * Allocate a number of workers based on the input param. * * @param workerNum * the number of workers to allocate * @return the number of successfully allocated workers */ private int allocateWorkers(int workerNum) { int allocatedWorkerNum = 0; for (int i = 0; i < workerNum; ++i) { if (allocateWorker(defaultSlotResourceProfile).isPresent()) { ++allocatedWorkerNum; } else { break; } } return allocatedWorkerNum; }
3.26
flink_StreamWindowSQLExample_createTempFile_rdh
/** * Creates a temporary file with the contents and returns the absolute path. */ private static String createTempFile(String contents) throws IOException { File tempFile = File.createTempFile("orders", ".csv"); tempFile.deleteOnExit(); FileUtils.writeFileUtf8(tempFile, contents); return tempFile.toURI().toString(); }
3.26
flink_DoubleZeroConvergence_isConverged_rdh
/** * Returns true, if the aggregator value is zero, false otherwise. * * @param iteration * The number of the iteration superstep. Ignored in this case. * @param value * The aggregator value, which is compared to zero. * @return True, if the aggregator value is zero, false otherwise. */ @Override public boolean isConverged(int iteration, DoubleValue value) {return value.getValue() == 0; }
3.26
flink_SortMergeResultPartition_writeLargeRecord_rdh
/** * Spills the large record into the target {@link PartitionedFile} as a separate data region. */ private void writeLargeRecord(ByteBuffer record, int targetSubpartition, DataType dataType, boolean isBroadcast) throws IOException { // a large record will be spilled to a separated data region fileWriter.startNewRegion(isBroadcast); List<BufferWithChannel> toWrite = new ArrayList<>(); Queue<MemorySegment> segments = new ArrayDeque<>(freeSegments); while (record.hasRemaining()) { if (segments.isEmpty()) { fileWriter.writeBuffers(toWrite); toWrite.clear(); segments = new ArrayDeque<>(freeSegments); } int toCopy = Math.min(record.remaining(), networkBufferSize); MemorySegment writeBuffer = checkNotNull(segments.poll()); writeBuffer.put(0, record, toCopy); NetworkBuffer buffer = new NetworkBuffer(writeBuffer, buf -> { }, dataType, toCopy); BufferWithChannel bufferWithChannel = new BufferWithChannel(buffer, targetSubpartition); updateStatistics(bufferWithChannel, isBroadcast); toWrite.add(compressBufferIfPossible(bufferWithChannel)); } fileWriter.writeBuffers(toWrite); releaseFreeBuffers(); }
3.26
flink_GroupReduceIterator_reduce_rdh
// ------------------------------------------------------------------------------------------- @Override public final void reduce(Iterable<IN> values, Collector<OUT> out) throws Exception { for (Iterator<OUT> iter = reduceGroup(values); iter.hasNext();) { out.collect(iter.next()); } }
3.26
flink_TypeInferenceUtil_createInvalidInputException_rdh
/** * Returns an exception for invalid input arguments. */ public static ValidationException createInvalidInputException(TypeInference typeInference, CallContext callContext, ValidationException cause) { return new ValidationException(String.format("Invalid input arguments. Expected signatures are:\n%s", generateSignature(typeInference, callContext.getName(), callContext.getFunctionDefinition())), cause); }
3.26