name
stringlengths
12
178
code_snippet
stringlengths
8
36.5k
score
float64
3.26
3.68
flink_SynchronousChainedCombineDriver_close_rdh
// -------------------------------------------------------------------------------------------- @Override public void close() { try { sortAndCombine(); } catch (Exception e) { throw new ExceptionInChainedStubException(this.taskName, e); } this.outputCollector.close(); dispose(false); }
3.26
flink_SynchronousChainedCombineDriver_getStub_rdh
// -------------------------------------------------------------------------------------------- public Function getStub() { return this.combiner; }
3.26
flink_AbstractExternalTwoInputPythonFunctionOperator_getLeftInputType_rdh
// ---------------------------------------------------------------------- // Getters // ---------------------------------------------------------------------- protected TypeInformation<IN1> getLeftInputType() { return inputTypeInfo1; }
3.26
flink_AdaptiveBatchScheduler_tryGetConsumedResultsInfo_rdh
/** * Get information of consumable results. */ private Optional<List<BlockingResultInfo>> tryGetConsumedResultsInfo(final ExecutionJobVertex jobVertex) { List<BlockingResultInfo> consumableResultInfo = new ArrayList<>();DefaultLogicalVertex logicalVertex = logicalTopology.getVertex(jobVertex.getJobVertexId()); Iterable<DefaultLogicalResult> consumedResults = logicalVertex.getConsumedResults(); for (DefaultLogicalResult consumedResult : consumedResults) { final ExecutionJobVertex producerVertex = getExecutionJobVertex(consumedResult.getProducer().getId()); if (producerVertex.isFinished()) { BlockingResultInfo resultInfo = checkNotNull(blockingResultInfos.get(consumedResult.getId())); consumableResultInfo.add(resultInfo); } else { // not all inputs consumable, return Optional.empty() return Optional.empty(); } }return Optional.of(consumableResultInfo); }
3.26
flink_AdaptiveBatchScheduler_computeVertexParallelismStoreForDynamicGraph_rdh
/** * Compute the {@link VertexParallelismStore} for all given vertices in a dynamic graph, which * will set defaults and ensure that the returned store contains valid parallelisms, with the * configured default max parallelism. * * @param vertices * the vertices to compute parallelism for * @param defaultMaxParallelism * the global default max parallelism * @return the computed parallelism store */@VisibleForTestingpublic static VertexParallelismStore computeVertexParallelismStoreForDynamicGraph(Iterable<JobVertex> vertices, int defaultMaxParallelism) { // for dynamic graph, there is no need to normalize vertex parallelism. if the max // parallelism is not configured and the parallelism is a positive value, max // parallelism can be computed against the parallelism, otherwise it needs to use the // global default max parallelism. return computeVertexParallelismStore(vertices, v -> { if (v.getParallelism() > 0) { return getDefaultMaxParallelism(v); } else { return defaultMaxParallelism; } }, Function.identity()); }
3.26
flink_ExistingSavepoint_readKeyedState_rdh
/** * Read keyed state from an operator in a {@code Savepoint}. * * @param uid * The uid of the operator. * @param function * The {@link KeyedStateReaderFunction} that is called for each key in state. * @param keyTypeInfo * The type information of the key in state. * @param outTypeInfo * The type information of the output of the transform reader function. * @param <K> * The type of the key in state. * @param <OUT> * The output type of the transform function. * @return A {@code DataSet} of objects read from keyed state. * @throws IOException * If the savepoint does not contain operator state with the given uid. */ public <K, OUT> DataSource<OUT> readKeyedState(String uid, KeyedStateReaderFunction<K, OUT> function, TypeInformation<K> keyTypeInfo, TypeInformation<OUT> outTypeInfo) throws IOException { OperatorState operatorState = metadata.getOperatorState(uid); KeyedStateInputFormat<K, VoidNamespace, OUT> inputFormat = new KeyedStateInputFormat<>(operatorState, stateBackend, env.getConfiguration(), new KeyedStateReaderOperator<>(function, keyTypeInfo)); return env.createInput(inputFormat, outTypeInfo); }
3.26
flink_ExistingSavepoint_readUnionState_rdh
/** * Read operator {@code UnionState} from a {@code Savepoint}. * * @param uid * The uid of the operator. * @param name * The (unique) name for the state. * @param typeInfo * The type of the elements in the state. * @param <T> * The type of the values that are in the union state. * @return A {@code DataSet} representing the elements in state. * @throws IOException * If the savepoint path is invalid or the uid does not exist. */ public <T> DataSource<T> readUnionState(String uid, String name, TypeInformation<T> typeInfo) throws IOException { OperatorState operatorState = metadata.getOperatorState(uid); ListStateDescriptor<T> descriptor = new ListStateDescriptor<>(name, typeInfo); UnionStateInputFormat<T> v8 = new UnionStateInputFormat<>(operatorState, env.getConfiguration(), stateBackend, descriptor); return env.createInput(v8, typeInfo); } /** * Read operator {@code UnionState} from a {@code Savepoint} when a custom serializer was used; * e.g., a different serializer than the one returned by {@code TypeInformation#createSerializer}. * * @param uid * The uid of the operator. * @param name * The (unique) name for the state. * @param typeInfo * The type of the elements in the state. * @param serializer * The serializer used to write the elements into state. * @param <T> * The type of the values that are in the union state. * @return A {@code DataSet}
3.26
flink_ExistingSavepoint_m0_rdh
/** * Read window state from an operator in a {@code Savepoint}. This method supports reading from * any type of window. * * @param assigner * The {@link WindowAssigner} used to write out the operator. * @return A {@link WindowReader}. */ public <W extends Window> WindowReader<W> m0(WindowAssigner<?, W> assigner) { Preconditions.checkNotNull(assigner, "The window assigner must not be null"); TypeSerializer<W> windowSerializer = assigner.getWindowSerializer(env.getConfig()); return m0(windowSerializer); }
3.26
flink_ExistingSavepoint_window_rdh
/** * Read window state from an operator in a {@code Savepoint}. This method supports reading from * any type of window. * * @param windowSerializer * The serializer used for the window type. * @return A {@link WindowReader}. */ public <W extends Window> WindowReader<W> window(TypeSerializer<W> windowSerializer) { Preconditions.checkNotNull(windowSerializer, "The window serializer must not be null"); return new WindowReader<>(env, metadata, stateBackend, windowSerializer); }
3.26
flink_ExistingSavepoint_readListState_rdh
/** * Read operator {@code ListState} from a {@code Savepoint} when a custom serializer was used; * e.g., a different serializer than the one returned by {@code TypeInformation#createSerializer}. * * @param uid * The uid of the operator. * @param name * The (unique) name for the state. * @param typeInfo * The type of the elements in the state. * @param serializer * The serializer used to write the elements into state. * @param <T> * The type of the values that are in the list state. * @return A {@code DataSet} representing the elements in state. * @throws IOException * If the savepoint path is invalid or the uid does not exist. */ public <T> DataSource<T> readListState(String uid, String name, TypeInformation<T> typeInfo, TypeSerializer<T> serializer) throws IOException { OperatorState operatorState = metadata.getOperatorState(uid); ListStateDescriptor<T> descriptor = new ListStateDescriptor<>(name, serializer); ListStateInputFormat<T> inputFormat = new ListStateInputFormat<>(operatorState, env.getConfiguration(), stateBackend, descriptor); return env.createInput(inputFormat, typeInfo); }
3.26
flink_ExistingSavepoint_readBroadcastState_rdh
/** * Read operator {@code BroadcastState} from a {@code Savepoint} when a custom serializer was * used; e.g., a different serializer than the one returned by {@code TypeInformation#createSerializer}. * * @param uid * The uid of the operator. * @param name * The (unique) name for the state. * @param keyTypeInfo * The type information for the keys in the state. * @param valueTypeInfo * The type information for the values in the state. * @param keySerializer * The type serializer used to write keys into the state. * @param valueSerializer * The type serializer used to write values into the state. * @param <K> * The type of keys in state. * @param <V> * The type of values in state. * @return A {@code DataSet} of key-value pairs from state. * @throws IOException * If the savepoint path is invalid or the uid does not exist. */ public <K, V> DataSource<Tuple2<K, V>> readBroadcastState(String uid, String name, TypeInformation<K> keyTypeInfo, TypeInformation<V> valueTypeInfo, TypeSerializer<K> keySerializer, TypeSerializer<V> valueSerializer) throws IOException { OperatorState operatorState = metadata.getOperatorState(uid); MapStateDescriptor<K, V> descriptor = new MapStateDescriptor<>(name, keySerializer, valueSerializer); BroadcastStateInputFormat<K, V> inputFormat = new BroadcastStateInputFormat<>(operatorState, env.getConfiguration(), stateBackend, descriptor); return env.createInput(inputFormat, new TupleTypeInfo<>(keyTypeInfo, valueTypeInfo)); }
3.26
flink_SolutionSetPlanNode_getSolutionSetNode_rdh
// -------------------------------------------------------------------------------------------- public SolutionSetNode getSolutionSetNode() { return ((SolutionSetNode) (this.template)); }
3.26
flink_SolutionSetPlanNode_accept_rdh
// -------------------------------------------------------------------------------------------- @Override public void accept(Visitor<PlanNode> visitor) {if (visitor.preVisit(this)) { visitor.postVisit(this); } }
3.26
flink_DefaultJobLeaderService_containsJob_rdh
// ----------------------------------------------------------- // Testing methods // ----------------------------------------------------------- /** * Check whether the service monitors the given job. * * @param jobId * identifying the job * @return True if the given job is monitored; otherwise false */ @Override @VisibleForTesting public boolean containsJob(JobID jobId) { Preconditions.checkState(DefaultJobLeaderService.State.STARTED == state, "The service is currently not running."); return jobLeaderServices.containsKey(jobId); }
3.26
flink_DefaultJobLeaderService_start_rdh
// ------------------------------------------------------------------------------- // Methods // ------------------------------------------------------------------------------- @Override public void start(final String initialOwnerAddress, final RpcService initialRpcService, final HighAvailabilityServices initialHighAvailabilityServices, final JobLeaderListener initialJobLeaderListener) { if (DefaultJobLeaderService.State.CREATED != state) { throw new IllegalStateException("The service has already been started."); } else { f0.info("Start job leader service."); this.ownerAddress = Preconditions.checkNotNull(initialOwnerAddress); this.rpcService = Preconditions.checkNotNull(initialRpcService); this.highAvailabilityServices = Preconditions.checkNotNull(initialHighAvailabilityServices); this.jobLeaderListener = Preconditions.checkNotNull(initialJobLeaderListener); state = DefaultJobLeaderService.State.STARTED; } }
3.26
flink_BigDecSerializer_readBigDecimal_rdh
// -------------------------------------------------------------------------------------------- // Static Helpers for BigInteger Serialization // -------------------------------------------------------------------------------------------- public static BigDecimal readBigDecimal(DataInputView source) throws IOException { final BigInteger unscaledValue = BigIntSerializer.readBigInteger(source); if (unscaledValue == null) { return null; } final int scale = source.readInt(); // fast-path for 0, 1, 10 if (scale == 0) { if (unscaledValue == BigInteger.ZERO) { return BigDecimal.ZERO; } else if (unscaledValue == BigInteger.ONE) { return BigDecimal.ONE; } else if (unscaledValue == BigInteger.TEN) { return BigDecimal.TEN; } } // default return new BigDecimal(unscaledValue, scale); }
3.26
flink_DataViewUtils_createStateId_rdh
// -------------------------------------------------------------------------------------------- private static String createStateId(int fieldIndex, String fieldName) { return (("agg" + fieldIndex) + "$") + fieldName; }
3.26
flink_DataViewUtils_createDistinctViewDataType_rdh
/** * Creates a special {@link DataType} for DISTINCT aggregates. */ public static DataType createDistinctViewDataType(DataType keyDataType, int filterArgs, int filterArgsLimit) { final DataType valueDataType; if (filterArgs <= filterArgsLimit) { valueDataType = DataTypes.BIGINT().notNull(); } else { valueDataType = DataTypes.ARRAY(DataTypes.BIGINT().notNull()).bridgedTo(long[].class);} return MapView.newMapViewDataType(keyDataType, valueDataType);} /** * Creates a special {@link DistinctViewSpec}
3.26
flink_DataViewUtils_extractDataViews_rdh
/** * Searches for data views in the data type of an accumulator and extracts them. */ public static List<DataViewSpec> extractDataViews(int aggIndex, DataType accumulatorDataType) { final LogicalType accumulatorType = accumulatorDataType.getLogicalType(); if ((!accumulatorType.is(ROW)) && (!accumulatorType.is(STRUCTURED_TYPE))) { return Collections.emptyList(); } final List<String> v1 = getFieldNames(accumulatorType); final List<DataType> fieldDataTypes = accumulatorDataType.getChildren(); final List<DataViewSpec> specs = new ArrayList<>(); for (int fieldIndex = 0; fieldIndex < fieldDataTypes.size(); fieldIndex++) { final DataType fieldDataType = fieldDataTypes.get(fieldIndex); final LogicalType fieldType = fieldDataType.getLogicalType(); if (isDataView(fieldType, ListView.class)) { specs.add(new ListViewSpec(createStateId(aggIndex, v1.get(fieldIndex)), fieldIndex, fieldDataType.getChildren().get(0))); } else if (isDataView(fieldType, MapView.class)) { specs.add(new MapViewSpec(createStateId(aggIndex, v1.get(fieldIndex)), fieldIndex, fieldDataType.getChildren().get(0), false)); } if (fieldType.getChildren().stream().anyMatch(c -> hasNested(c, t -> isDataView(t, DataView.class)))) { throw new TableException("Data views are only supported in the first level of a composite accumulator type."); } } return specs; }
3.26
flink_DataViewUtils_adjustDataViews_rdh
/** * Modifies the data type of an accumulator regarding data views. * * <p>For performance reasons, each data view is wrapped into a RAW type which gives it {@link LazyBinaryFormat} semantics and avoids multiple deserialization steps during access. * Furthermore, a data view will not be serialized if a state backend is used (the serializer of * the RAW type will be a {@link NullSerializer} in this case). */ public static DataType adjustDataViews(DataType accumulatorDataType, boolean hasStateBackedDataViews) { final Function<DataType, TypeSerializer<?>> serializer; if (hasStateBackedDataViews) { serializer = dataType -> NullSerializer.INSTANCE; } else { serializer = ExternalSerializer::of; } return DataTypeUtils.transform(accumulatorDataType, new DataViewsTransformation(serializer)); }
3.26
flink_TaskDeploymentDescriptorFactory_shouldOffload_rdh
/** * Determine whether shuffle descriptors should be offloaded to blob server. * * @param shuffleDescriptorsToSerialize * shuffle descriptors to serialize * @param numConsumers * how many consumers this serialized shuffle descriptor should be sent * @return whether shuffle descriptors should be offloaded to blob server */ private boolean shouldOffload(ShuffleDescriptorAndIndex[] shuffleDescriptorsToSerialize, int numConsumers) { return (shuffleDescriptorsToSerialize.length * numConsumers) >= offloadShuffleDescriptorsThreshold; }
3.26
flink_LatencyTrackingStateFactory_m0_rdh
/** * Create latency tracking state if enabled. */ public static <K, N, V, S extends State> InternalKvState<K, N, ?> m0(InternalKvState<K, N, ?> kvState, StateDescriptor<S, V> stateDescriptor, LatencyTrackingStateConfig latencyTrackingStateConfig) throws Exception { if (latencyTrackingStateConfig.isEnabled()) { return new LatencyTrackingStateFactory<>(kvState, stateDescriptor, latencyTrackingStateConfig).createState(); } return kvState; }
3.26
flink_JavaRecordBuilderFactory_setField_rdh
/** * Set record field by index. If parameter index mapping is provided, the index is mapped, * otherwise it is used as is. * * @param i * index of field to be set * @param value * field value */ void setField(int i, Object value) { if (paramIndexMapping != null) { args[paramIndexMapping[i]] = value; } else { args[i] = value; } }
3.26
flink_SortPartitionOperator_m0_rdh
/** * Returns whether using key selector or not. */ public boolean m0() { return useKeySelector; }
3.26
flink_SortPartitionOperator_translateToDataFlow_rdh
// -------------------------------------------------------------------------------------------- // Translation // -------------------------------------------------------------------------------------------- protected SingleInputOperator<?, T, ?> translateToDataFlow(Operator<T> input) { String name = "Sort at " + sortLocationName; if (useKeySelector) { return translateToDataFlowWithKeyExtractor(input, ((Keys.SelectorFunctionKeys<T, ?>) (keys.get(0))), orders.get(0), name); } // flatten sort key positions List<Integer> allKeyPositions = new ArrayList<>(); List<Order> allOrders = new ArrayList<>(); for (int i = 0, length = keys.size(); i < length; i++) { int[] sortKeyPositions = keys.get(i).computeLogicalKeyPositions(); Order order = orders.get(i); for (int sortKeyPosition : sortKeyPositions) { allKeyPositions.add(sortKeyPosition); allOrders.add(order); } } Ordering partitionOrdering = new Ordering(); for (int i = 0, length = allKeyPositions.size(); i < length; i++) { partitionOrdering.appendOrdering(allKeyPositions.get(i), null, allOrders.get(i)); } // distinguish between partition types UnaryOperatorInformation<T, T> operatorInfo = new UnaryOperatorInformation<>(getType(), getType()); SortPartitionOperatorBase<T> noop = new SortPartitionOperatorBase<>(operatorInfo, partitionOrdering, name); noop.setInput(input); if (this.getParallelism() < 0) { // use parallelism of input if not explicitly specified noop.setParallelism(input.getParallelism()); } else { // use explicitly specified parallelism noop.setParallelism(this.getParallelism()); } return noop; }
3.26
flink_SortPartitionOperator_sortPartition_rdh
/** * Appends an additional sort order with the specified field in the specified order to the local * partition sorting of the DataSet. * * @param field * The field expression referring to the field of the additional sort order of the * local partition sorting. * @param order * The order of the additional sort order of the local partition sorting. * @return The DataSet with sorted local partitions. */ public SortPartitionOperator<T> sortPartition(String field, Order order) { if (useKeySelector) { throw new InvalidProgramException("Expression keys cannot be appended after a KeySelector"); } ensureSortableKey(field); keys.add(new Keys.ExpressionKeys<>(field, getType())); orders.add(order); return this; }
3.26
flink_BufferCompressor_compressToIntermediateBuffer_rdh
/** * Compresses the given {@link Buffer} using {@link BlockCompressor}. The compressed data will * be stored in the intermediate buffer of this {@link BufferCompressor} and returned to the * caller. The caller must guarantee that the returned {@link Buffer} has been freed when * calling the method next time. * * <p>Notes that the compression will always start from offset 0 to the size of the input {@link Buffer}. */ public Buffer compressToIntermediateBuffer(Buffer buffer) { int compressedLen; if ((compressedLen = compress(buffer)) == 0) { return buffer; } internalBuffer.setCompressed(true); internalBuffer.setSize(compressedLen); return internalBuffer.retainBuffer(); }
3.26
flink_BufferCompressor_compress_rdh
/** * Compresses the given {@link Buffer} into the intermediate buffer and returns the compressed * data size. */ private int compress(Buffer buffer) { checkArgument(buffer != null, "The input buffer must not be null."); checkArgument(buffer.isBuffer(), "Event can not be compressed."); checkArgument(!buffer.isCompressed(), "Buffer already compressed."); checkArgument(buffer.getReaderIndex() == 0, "Reader index of the input buffer must be 0."); checkArgument(buffer.readableBytes() > 0, "No data to be compressed."); checkState(internalBuffer.refCnt() == 1, "Illegal reference count, buffer need to be released."); try { int compressedLen; int length = buffer.getSize(); MemorySegment memorySegment = buffer.getMemorySegment(); // If buffer is on-heap, manipulate the underlying array directly. There are two main // reasons why NIO buffer is not directly used here: One is that some compression // libraries will use the underlying array for heap buffer, but our input buffer may be // a read-only ByteBuffer, and it is illegal to access internal array. Another reason // is that for the on-heap buffer, directly operating the underlying array can reduce // additional overhead compared to generating a NIO buffer. if (!memorySegment.isOffHeap()) { compressedLen = blockCompressor.compress(memorySegment.getArray(), buffer.getMemorySegmentOffset(), length, internalBufferArray, 0); } else { // compress the given buffer into the internal heap buffer compressedLen = blockCompressor.compress(buffer.getNioBuffer(0, length), 0, length, internalBuffer.getNioBuffer(0, internalBuffer.capacity()), 0); } return compressedLen < length ? compressedLen : 0; } catch (Throwable throwable) { // return the original buffer if failed to compress return 0; } }
3.26
flink_BufferCompressor_compressToOriginalBuffer_rdh
/** * The difference between this method and {@link #compressToIntermediateBuffer(Buffer)} is that * this method will copy the compressed data back to the input {@link Buffer} starting from * offset 0. * * <p>The caller must guarantee that the input {@link Buffer} is writable. */ public Buffer compressToOriginalBuffer(Buffer buffer) { int compressedLen; if ((compressedLen = compress(buffer)) == 0) { return buffer; } // copy the compressed data back int memorySegmentOffset = buffer.getMemorySegmentOffset(); MemorySegment segment = buffer.getMemorySegment(); segment.put(memorySegmentOffset, internalBufferArray, 0, compressedLen); return new ReadOnlySlicedNetworkBuffer(buffer.asByteBuf(), 0, compressedLen, memorySegmentOffset, true); }
3.26
flink_PhysicalFile_deleteIfNecessary_rdh
/** * Delete this physical file if there is no reference count from logical files (all discarded), * and this physical file is closed (no further writing on it). * * @throws IOException * if anything goes wrong with file system. */ public void deleteIfNecessary() throws IOException { synchronized(this) { if (((!isOpen()) && (!deleted)) && (this.logicalFileRefCount.get() <= 0)) { if (outputStream != null) {try { outputStream.close(); } catch (IOException e) { LOG.warn("Fail to close output stream when deleting file: {}", filePath); } } if (deleter != null) { deleter.perform(filePath); } this.deleted = true;} } }
3.26
flink_PhysicalFile_isOpen_rdh
/** * * @return whether this physical file is still open for writing. */ public boolean isOpen() { return (!closed) && (outputStream != null); }
3.26
flink_PhysicalFile_innerClose_rdh
/** * Close the physical file, stop reusing. * * @throws IOException * if anything goes wrong with file system. */ private void innerClose() throws IOException { closed = true; if (outputStream != null) { outputStream.close(); outputStream = null;} }
3.26
flink_DependencyTree_getKey_rdh
/** * We don't use the {@link Dependency} as a key because we don't want lookups to be dependent on * scope or the optional flag. * * @param dependency * @return */ @VisibleForTesting static String getKey(Dependency dependency) { return (((((dependency.getGroupId() + ":") + dependency.getArtifactId()) + ":") + dependency.getVersion()) + ":") + dependency.getClassifier().orElse("(no-classifier)"); }
3.26
flink_StreamSource_isCanceledOrStopped_rdh
/** * Checks whether the source has been canceled or stopped. * * @return True, if the source is canceled or stopped, false is not. */ protected boolean isCanceledOrStopped() { return canceledOrStopped; }
3.26
flink_StreamSource_markCanceledOrStopped_rdh
/** * Marks this source as canceled or stopped. * * <p>This indicates that any exit of the {@link #run(Object, Output, OperatorChain)} method * cannot be interpreted as the result of a finite source. */ protected void markCanceledOrStopped() { this.canceledOrStopped = true; }
3.26
flink_LocatableInputSplit_hashCode_rdh
// -------------------------------------------------------------------------------------------- @Override public int hashCode() { return this.f0; }
3.26
flink_LocatableInputSplit_getHostnames_rdh
/** * Returns the names of the hosts storing the data this input split refers to * * @return the names of the hosts storing the data this input split refers to */ public String[] getHostnames() { return this.hostnames; }
3.26
flink_BinaryRawValueData_toObject_rdh
// ------------------------------------------------------------------------------------------ // Public Interfaces // ------------------------------------------------------------------------------------------ @Override public T toObject(TypeSerializer<T> serializer) { if (javaObject == null) { try { javaObject = InstantiationUtil.deserializeFromByteArray(serializer, m0(serializer)); } catch (IOException e) { throw new FlinkRuntimeException(e); } } return javaObject; }
3.26
flink_BinaryRawValueData_materialize_rdh
// ------------------------------------------------------------------------------------ // Internal methods // ------------------------------------------------------------------------------------ @Override protected BinarySection materialize(TypeSerializer<T> serializer) { try { byte[] bytes = InstantiationUtil.serializeToByteArray(serializer, javaObject); return new BinarySection(new MemorySegment[]{ MemorySegmentFactory.wrap(bytes) }, 0, bytes.length); } catch (IOException e) { throw new RuntimeException(e); } }
3.26
flink_BinaryRawValueData_fromBytes_rdh
/** * Creates a {@link BinaryStringData} instance from the given bytes with offset and number of * bytes. */ public static <T> BinaryRawValueData<T> fromBytes(byte[] bytes, int offset, int numBytes) { return new BinaryRawValueData<>(new MemorySegment[]{ MemorySegmentFactory.wrap(bytes) }, offset, numBytes); }
3.26
flink_BinaryRawValueData_fromObject_rdh
// ------------------------------------------------------------------------------------------ // Construction Utilities // ------------------------------------------------------------------------------------------ /** * Creates a {@link BinaryRawValueData} instance from the given Java object. */ public static <T> BinaryRawValueData<T> fromObject(T javaObject) { if (javaObject == null) {return null; } return new BinaryRawValueData<>(javaObject); }
3.26
flink_OneInputStateTransformation_transform_rdh
/** * Method for passing user defined operators along with the type information that will transform * the OperatorTransformation. * * <p><b>IMPORTANT:</b> Any output from this operator will be discarded. * * @param factory * A factory returning transformation logic type of the return stream * @return An {@link StateBootstrapTransformation} that can be added to a {@link Savepoint}. */ public StateBootstrapTransformation<T> transform(SavepointWriterOperatorFactory factory) { return new StateBootstrapTransformation<>(stream, operatorMaxParallelism, factory); }
3.26
flink_OneInputStateTransformation_keyBy_rdh
/** * Partitions the operator state of a {@link OperatorTransformation} using field expressions. A * field expression is either the name of a public field or a getter method with parentheses of * the {@code OperatorTransformation}'s underlying type. A dot can be used to drill down into * objects, as in {@code "field1.getInnerField2()"}. * * @param fields * One or more field expressions on which the state of the {@link OperatorTransformation} operators will be partitioned. * @return The {@code OperatorTransformation} with partitioned state (i.e. KeyedStream) */
3.26
flink_OneInputStateTransformation_m0_rdh
/** * It creates a new {@link KeyedOperatorTransformation} that uses the provided key for * partitioning its operator states. * * @param keySelector * The KeySelector to be used for extracting the key for partitioning. * @return The {@code BootstrapTransformation} with partitioned state. */ public <K> KeyedStateTransformation<K, T> m0(KeySelector<T, K> keySelector) { TypeInformation<K> keyType = TypeExtractor.getKeySelectorTypes(keySelector, stream.getType()); return new KeyedStateTransformation<>(stream, operatorMaxParallelism, keySelector, keyType); }
3.26
flink_OneInputStateTransformation_setMaxParallelism_rdh
/** * Sets the maximum parallelism of this operator. * * <p>The maximum parallelism specifies the upper bound for dynamic scaling. It also defines the * number of key groups used for partitioned state. * * @param maxParallelism * Maximum parallelism * @return The operator with set maximum parallelism */ @PublicEvolving public OneInputStateTransformation<T> setMaxParallelism(int maxParallelism) { this.operatorMaxParallelism = OptionalInt.of(maxParallelism); return this; }
3.26
flink_PythonTableUtils_createTableFromElement_rdh
/** * Create a table from {@link PythonDynamicTableSource} that read data from input file with * specific {@link DataType}. * * @param tEnv * The TableEnvironment to create table. * @param filePath * the file path of the input data. * @param schema * The python data type. * @param batched * Whether to read data in a batch * @return Table with InputFormat. */ public static Table createTableFromElement(TableEnvironment tEnv, String filePath, DataType schema, boolean batched) { TableDescriptor.Builder builder = TableDescriptor.forConnector(PythonDynamicTableFactory.IDENTIFIER).option(PythonDynamicTableOptions.INPUT_FILE_PATH, filePath).option(PythonDynamicTableOptions.BATCH_MODE, batched).schema(Schema.newBuilder().fromRowDataType(schema).build()); return tEnv.from(builder.build()); }
3.26
flink_CastRule_canFail_rdh
/** * Returns true if the {@link CastExecutor} can fail at runtime. */default boolean canFail(LogicalType inputLogicalType, LogicalType targetLogicalType) { return false; }
3.26
flink_CastRule_create_rdh
/** * Create a casting context. */ static Context create(boolean isPrinting, boolean legacyBehaviour, ZoneId zoneId, ClassLoader classLoader) { return new Context() { @Override public boolean isPrinting() { return isPrinting; } @Override public boolean legacyBehaviour() { return legacyBehaviour; } @Override public ZoneId getSessionZoneId() { return zoneId; } @Override public ClassLoader getClassLoader() { return classLoader; } }; }
3.26
flink_ProcessPythonEnvironmentManager_getBootLog_rdh
/** * Returns the boot log of the Python Environment. */ public String getBootLog() throws Exception { File bootLogFile = new File((resource.baseDirectory + File.separator) + "flink-python-udf-boot.log"); String v5 = "Failed to create stage bundle factory!"; if (bootLogFile.exists()) { byte[] output = Files.readAllBytes(bootLogFile.toPath()); v5 += String.format(" %s", new String(output, Charset.defaultCharset())); }return v5; }
3.26
flink_ProcessPythonEnvironmentManager_createRetrievalToken_rdh
/** * Returns an empty RetrievalToken because no files will be transmit via ArtifactService in * process mode. * * @return The path of empty RetrievalToken. */ public String createRetrievalToken() throws IOException { File retrievalToken = new File(resource.baseDirectory, ("retrieval_token_" + UUID.randomUUID().toString()) + ".json"); if (retrievalToken.createNewFile()) { final DataOutputStream dos = new DataOutputStream(new FileOutputStream(retrievalToken)); dos.writeBytes("{\"manifest\": {}}"); dos.flush();dos.close(); return retrievalToken.getAbsolutePath(); } else { throw new IOException("Could not create the RetrievalToken file: " + retrievalToken.getAbsolutePath()); } }
3.26
flink_CoFeedbackTransformation_addFeedbackEdge_rdh
/** * Adds a feedback edge. The parallelism of the {@code Transformation} must match the * parallelism of the input {@code Transformation} of the upstream {@code Transformation}. * * @param transform * The new feedback {@code Transformation}. */ public void addFeedbackEdge(Transformation<F> transform) { if (transform.getParallelism() != this.getParallelism()) { throw new UnsupportedOperationException(((("Parallelism of the feedback stream must match the parallelism of the original" + " stream. Parallelism of original stream: ") + this.getParallelism()) + "; parallelism of feedback stream: ") + transform.getParallelism()); } f0.add(transform); }
3.26
flink_CoFeedbackTransformation_getWaitTime_rdh
/** * Returns the wait time. This is the amount of time that the feedback operator keeps listening * for feedback elements. Once the time expires the operation will close and will not receive * further elements. */ public Long getWaitTime() { return waitTime; }
3.26
flink_CoFeedbackTransformation_getFeedbackEdges_rdh
/** * Returns the list of feedback {@code Transformations}. */public List<Transformation<F>> getFeedbackEdges() { return f0; }
3.26
flink_HiveInspectors_toInspectors_rdh
/** * Get an array of ObjectInspector from the give array of args and their types. */ public static ObjectInspector[] toInspectors(HiveShim hiveShim, Object[] args, DataType[] argTypes) { assert args.length == argTypes.length; ObjectInspector[] argumentInspectors = new ObjectInspector[argTypes.length]; for (int i = 0; i < argTypes.length; i++) { Object constant = args[i]; if (constant == null) { argumentInspectors[i] = TypeInfoUtils.getStandardJavaObjectInspectorFromTypeInfo(HiveTypeUtil.toHiveTypeInfo(argTypes[i], false)); } else { PrimitiveTypeInfo primitiveTypeInfo = ((PrimitiveTypeInfo) (HiveTypeUtil.toHiveTypeInfo(argTypes[i], false))); constant = getConversion(getObjectInspector(primitiveTypeInfo), argTypes[i].getLogicalType(), hiveShim).toHiveObject(constant); argumentInspectors[i] = getObjectInspectorForPrimitiveConstant(primitiveTypeInfo, constant, hiveShim); } } return argumentInspectors; }
3.26
flink_HiveInspectors_getConversion_rdh
/** * Get conversion for converting Flink object to Hive object from an ObjectInspector and the * corresponding Flink DataType. */ public static HiveObjectConversion getConversion(ObjectInspector inspector, LogicalType dataType, HiveShim hiveShim) { if (inspector instanceof PrimitiveObjectInspector) { HiveObjectConversion conversion; if ((((((((((inspector instanceof BooleanObjectInspector) || (inspector instanceof StringObjectInspector)) || (inspector instanceof ByteObjectInspector)) || (inspector instanceof ShortObjectInspector)) || (inspector instanceof IntObjectInspector)) || (inspector instanceof LongObjectInspector)) || (inspector instanceof FloatObjectInspector)) || (inspector instanceof DoubleObjectInspector)) || (inspector instanceof BinaryObjectInspector)) || (inspector instanceof VoidObjectInspector)) {conversion = IdentityConversion.INSTANCE; } else if (inspector instanceof DateObjectInspector) { conversion = hiveShim::toHiveDate; } else if (inspector instanceof TimestampObjectInspector) { conversion = hiveShim::toHiveTimestamp; } else if (inspector instanceof HiveCharObjectInspector) { conversion = o -> o == null ? null : new HiveChar(((String) (o)), ((CharType) (dataType)).getLength()); } else if (inspector instanceof HiveVarcharObjectInspector) { conversion = o -> o == null ? null : new HiveVarchar(((String) (o)), ((VarCharType) (dataType)).getLength()); } else if (inspector instanceof HiveDecimalObjectInspector) { conversion = o -> o == null ? null : HiveDecimal.create(((BigDecimal) (o))); } else if (inspector instanceof HiveIntervalYearMonthObjectInspector) { conversion = o -> { if (o == null) { return null; } else { Period period = ((Period) (o)); return new HiveIntervalYearMonth(period.getYears(), period.getMonths()); } }; } else if (inspector instanceof HiveIntervalDayTimeObjectInspector) { conversion = o -> { if (o == null) { return null; } else { Duration duration = ((Duration) (o)); return new HiveIntervalDayTime(duration.getSeconds(), duration.getNano()); } }; } else { throw new FlinkHiveUDFException("Unsupported primitive object inspector " + inspector.getClass().getName()); } // if the object inspector prefers Writable objects, we should add an extra conversion // for that // currently this happens for constant arguments for UDFs if (((PrimitiveObjectInspector) (inspector)).preferWritable()) { conversion = new WritableHiveObjectConversion(conversion, hiveShim); } return conversion; } if (inspector instanceof ListObjectInspector) { HiveObjectConversion eleConvert = getConversion(((ListObjectInspector) (inspector)).getListElementObjectInspector(), ((ArrayType) (dataType)).getElementType(), hiveShim); return o -> { if (o == null) { return null; } Object[] array = ((Object[]) (o)); List<Object> result = new ArrayList<>(); for (Object v14 : array) { result.add(eleConvert.toHiveObject(v14)); } return result; }; } if (inspector instanceof MapObjectInspector) { MapObjectInspector v15 = ((MapObjectInspector) (inspector)); MapType kvType = ((MapType) (dataType)); HiveObjectConversion keyConversion = getConversion(v15.getMapKeyObjectInspector(), kvType.getKeyType(), hiveShim); HiveObjectConversion valueConversion = getConversion(v15.getMapValueObjectInspector(), kvType.getValueType(), hiveShim); return o -> { if (o == null) { return null; } Map<Object, Object> map = ((Map) (o)); Map<Object, Object> result = CollectionUtil.newHashMapWithExpectedSize(map.size()); for (Map.Entry<Object, Object> entry : map.entrySet()) { result.put(keyConversion.toHiveObject(entry.getKey()), valueConversion.toHiveObject(entry.getValue())); } return result; }; } if (inspector instanceof StructObjectInspector) { StructObjectInspector structInspector = ((StructObjectInspector) (inspector)); List<? extends StructField> structFields = structInspector.getAllStructFieldRefs(); List<RowType.RowField> rowFields = ((RowType) (dataType)).getFields(); HiveObjectConversion[] conversions = new HiveObjectConversion[structFields.size()]; for (int i = 0; i < structFields.size(); i++) { conversions[i] = getConversion(structFields.get(i).getFieldObjectInspector(), rowFields.get(i).getType(), hiveShim); } return o -> { if (o == null) {return null; } Row row = ((Row) (o)); List<Object> result = new ArrayList<>(row.getArity()); for (int i = 0; i < row.getArity(); i++) { result.add(conversions[i].toHiveObject(row.getField(i))); } return result; }; } throw new FlinkHiveUDFException(String.format("Flink doesn't support convert object conversion for %s yet", inspector)); }
3.26
flink_HiveInspectors_getArgInspectors_rdh
/** * Get object inspector for each function argument. */ public static ObjectInspector[] getArgInspectors(HiveShim hiveShim, HiveFunctionArguments arguments) { ObjectInspector[] inspectors = new ObjectInspector[arguments.size()]; for (int i = 0; i < inspectors.length; i++) { if (arguments.isLiteral(i)) { Object constant = arguments.getArg(i); PrimitiveTypeInfo primitiveTypeInfo = ((PrimitiveTypeInfo) (HiveTypeUtil.toHiveTypeInfo(arguments.getDataType(i), false))); constant = getConversion(getObjectInspector(primitiveTypeInfo), arguments.getDataType(i).getLogicalType(), hiveShim).toHiveObject(constant); inspectors[i] = getObjectInspectorForPrimitiveConstant(primitiveTypeInfo, constant, hiveShim); } else { inspectors[i] = TypeInfoUtils.getStandardJavaObjectInspectorFromTypeInfo(HiveTypeUtil.toHiveTypeInfo(arguments.getDataType(i), false)); }} return inspectors; }
3.26
flink_HiveInspectors_getObjectInspector_rdh
/** * Get Hive {@link ObjectInspector} for a Flink {@link LogicalType}. */ public static ObjectInspector getObjectInspector(LogicalType flinkType) { return getObjectInspector(HiveTypeUtil.toHiveTypeInfo(flinkType, true)); }
3.26
flink_RetryRule_evaluate_rdh
/** * Retry a test in case of a failure with a specific exception. * * @throws Throwable */ @Override public void evaluate() throws Throwable { for (int currentRun = 0; currentRun <= timesOnFailure; currentRun++) {try { statement.evaluate(); break;// success } catch (Throwable t) {if ((expectedException != null) && expectedException.isAssignableFrom(t.getClass())) { throw t; } LOG.warn(String.format("Test run failed (%d/%d).", currentRun, timesOnFailure + 1), t); if ((!exceptionClass.isAssignableFrom(t.getClass())) || (currentRun >= timesOnFailure)) { // Throw the failure if retried too often, or if it is the wrong exception throw t; }} } }
3.26
flink_MapNode_computeOperatorSpecificDefaultEstimates_rdh
/** * Computes the estimates for the Map operator. We assume that by default, Map takes one value * and transforms it into another value. The cardinality consequently stays the same. */ @Override protected void computeOperatorSpecificDefaultEstimates(DataStatistics statistics) { this.estimatedNumRecords = getPredecessorNode().getEstimatedNumRecords();}
3.26
flink_SlidingEventTimeWindows_of_rdh
/** * Creates a new {@code SlidingEventTimeWindows} {@link WindowAssigner} that assigns elements to * time windows based on the element timestamp and offset. * * <p>For example, if you want window a stream by hour,but window begins at the 15th minutes of * each hour, you can use {@code of(Time.hours(1),Time.minutes(15))},then you will get time * windows start at 0:15:00,1:15:00,2:15:00,etc. * * <p>Rather than that,if you are living in somewhere which is not using UTC±00:00 time, such as * China which is using UTC+08:00,and you want a time window with size of one day, and window * begins at every 00:00:00 of local time,you may use {@code of(Time.days(1),Time.hours(-8))}. * The parameter of offset is {@code Time.hours(-8))} since UTC+08:00 is 8 hours earlier than * UTC time. * * @param size * The size of the generated windows. * @param slide * The slide interval of the generated windows. * @param offset * The offset which window start would be shifted by. * @return The time policy. */public static SlidingEventTimeWindows of(Time size, Time slide, Time offset) { return new SlidingEventTimeWindows(size.toMilliseconds(), slide.toMilliseconds(), offset.toMilliseconds()); }
3.26
flink_ListStateDescriptor_getElementSerializer_rdh
/** * Gets the serializer for the elements contained in the list. * * @return The serializer for the elements in the list. */ public TypeSerializer<T> getElementSerializer() { // call getSerializer() here to get the initialization check and proper error message final TypeSerializer<List<T>> rawSerializer = getSerializer(); if (!(rawSerializer instanceof ListSerializer)) { throw new IllegalStateException(); } return ((ListSerializer<T>) (rawSerializer)).getElementSerializer(); }
3.26
flink_AbstractExternalDataStreamPythonFunctionOperator_getOutputTagById_rdh
// ---------------------------------------------------------------------- // Side outputs // ---------------------------------------------------------------------- protected OutputTag<?> getOutputTagById(String id) { Preconditions.checkArgument(sideOutputTags.containsKey(id)); return sideOutputTags.get(id); }
3.26
flink_ManuallyTriggeredScheduledExecutorService_trigger_rdh
/** * Triggers the next queued runnable and executes it synchronously. This method throws an * exception if no Runnable is currently queued. */ public void trigger() { final Runnable next; synchronized(queuedRunnables) { next = queuedRunnables.removeFirst();} next.run(); }
3.26
flink_ManuallyTriggeredScheduledExecutorService_numQueuedRunnables_rdh
/** * Gets the number of Runnables currently queued. */ public int numQueuedRunnables() { synchronized(queuedRunnables) { return queuedRunnables.size(); } }
3.26
flink_ManuallyTriggeredScheduledExecutorService_triggerNonPeriodicScheduledTasksWithRecursion_rdh
/** * Triggers all non-periodically scheduled tasks. In contrast to {@link #triggerNonPeriodicScheduledTasks()}, if such a task schedules another non-periodically * schedule task, then this new task will also be triggered. */ public void triggerNonPeriodicScheduledTasksWithRecursion() { while (!nonPeriodicScheduledTasks.isEmpty()) { final ScheduledTask<?> scheduledTask = nonPeriodicScheduledTasks.poll(); if (!scheduledTask.isCancelled()) { scheduledTask.execute(); } } }
3.26
flink_ManuallyTriggeredScheduledExecutorService_triggerNonPeriodicScheduledTask_rdh
/** * Triggers a single non-periodically scheduled task. * * @throws NoSuchElementException * If there is no such task. */ public void triggerNonPeriodicScheduledTask() { final ScheduledTask<?> poll = nonPeriodicScheduledTasks.remove(); if (poll != null) { poll.execute(); } }
3.26
flink_ManuallyTriggeredScheduledExecutorService_shutdown_rdh
// ------------------------------------------------------------------------ // service shutdown // ------------------------------------------------------------------------ @Override public void shutdown() { shutdown = true; }
3.26
flink_ManuallyTriggeredScheduledExecutorService_execute_rdh
// ------------------------------------------------------------------------ // (scheduled) execution // ------------------------------------------------------------------------ @Override public void execute(@Nonnull Runnable command) { synchronized(queuedRunnables) { queuedRunnables.addLast(command); } }
3.26
flink_ManuallyTriggeredScheduledExecutorService_triggerAllNonPeriodicTasks_rdh
// ------------------------------------------------------------------------ // Execution triggering and access to the queued tasks // ------------------------------------------------------------------------ /** * Executes all runnable and scheduled non-periodic tasks until none are left to run. This is * essentially a combination of {@link #triggerAll()} and {@link #triggerNonPeriodicScheduledTasks()} that allows making a test agnostic of how exactly a * runnable is passed to the executor. */ public void triggerAllNonPeriodicTasks() { while ((numQueuedRunnables() > 0) || (!nonPeriodicScheduledTasks.isEmpty())) { triggerAll(); triggerNonPeriodicScheduledTasks();} }
3.26
flink_ManuallyTriggeredScheduledExecutorService_triggerScheduledTasks_rdh
/** * Triggers all registered tasks. */ public void triggerScheduledTasks() { triggerPeriodicScheduledTasks();triggerNonPeriodicScheduledTasks(); }
3.26
flink_ManuallyTriggeredScheduledExecutorService_submit_rdh
// ------------------------------------------------------------------------ // non-implemented future task methods // ------------------------------------------------------------------------ @Override public <T> Future<T> submit(Callable<T> task) { throw new UnsupportedOperationException(); }
3.26
flink_ManuallyTriggeredScheduledExecutorService_triggerAll_rdh
/** * Triggers all {@code queuedRunnables}. */ public void triggerAll() { while (numQueuedRunnables() > 0) {trigger(); } }
3.26
flink_ClusterEntrypoint_runClusterEntrypoint_rdh
// Helper methods // -------------------------------------------------- public static void runClusterEntrypoint(ClusterEntrypoint clusterEntrypoint) { final String clusterEntrypointName = clusterEntrypoint.getClass().getSimpleName(); try { clusterEntrypoint.startCluster(); } catch (ClusterEntrypointException e) { LOG.error(String.format("Could not start cluster entrypoint %s.", clusterEntrypointName), e); System.exit(STARTUP_FAILURE_RETURN_CODE); } int returnCode; Throwable throwable = null; try { returnCode = clusterEntrypoint.getTerminationFuture().get().processExitCode(); } catch (Throwable e) { throwable = ExceptionUtils.stripExecutionException(e); returnCode = RUNTIME_FAILURE_RETURN_CODE; } LOG.info("Terminating cluster entrypoint process {} with exit code {}.", clusterEntrypointName, returnCode, throwable); System.exit(returnCode); }
3.26
flink_ClusterEntrypoint_closeClusterComponent_rdh
/** * Close cluster components and deregister the Flink application from the resource management * system by signalling the {@link ResourceManager}. * * @param applicationStatus * to terminate the application with * @param shutdownBehaviour * shutdown behaviour * @param diagnostics * additional information about the shut down, can be {@code null} * @return Future which is completed once the shut down */ private CompletableFuture<Void> closeClusterComponent(ApplicationStatus applicationStatus, ShutdownBehaviour shutdownBehaviour, @Nullable String diagnostics) { synchronized(lock) { if (clusterComponent != null) { switch (shutdownBehaviour) { case GRACEFUL_SHUTDOWN : return clusterComponent.stopApplication(applicationStatus, diagnostics); case PROCESS_FAILURE : default : return clusterComponent.stopProcess(); } } else { return CompletableFuture.completedFuture(null); } } } /** * Clean up of temporary directories created by the {@link ClusterEntrypoint}
3.26
flink_ClusterEntrypoint_m0_rdh
/** * Returns the port range for the common {@link RpcService}. * * @param configuration * to extract the port range from * @return Port range for the common {@link RpcService} */ protected String m0(Configuration configuration) { if (ZooKeeperUtils.isZooKeeperRecoveryMode(configuration)) { return configuration.getString(HighAvailabilityOptions.HA_JOB_MANAGER_PORT_RANGE); } else { return String.valueOf(configuration.getInteger(JobManagerOptions.PORT)); } }
3.26
flink_ClusterEntrypoint_generateClusterConfiguration_rdh
// -------------------------------------------------- // Internal methods // -------------------------------------------------- private Configuration generateClusterConfiguration(Configuration configuration) { final Configuration resultConfiguration = new Configuration(Preconditions.checkNotNull(configuration)); final String webTmpDir = configuration.getString(WebOptions.TMP_DIR); final File uniqueWebTmpDir = new File(webTmpDir, "flink-web-" + UUID.randomUUID()); resultConfiguration.setString(WebOptions.TMP_DIR, uniqueWebTmpDir.getAbsolutePath()); return resultConfiguration; }
3.26
flink_NettyShuffleEnvironment_close_rdh
/** * Tries to shut down all network I/O components. */ @Override public void close() { synchronized(lock) { if (isClosed) { return; } LOG.info("Shutting down the network environment and its components."); // terminate all network connections try { LOG.debug("Shutting down network connection manager"); connectionManager.shutdown(); } catch (Throwable t) { LOG.warn("Cannot shut down the network connection manager.", t); } // shutdown all intermediate results try { LOG.debug("Shutting down intermediate result partition manager"); resultPartitionManager.shutdown(); } catch (Throwable t) { LOG.warn("Cannot shut down the result partition manager.", t); }// make sure that the global buffer pool re-acquires all buffers try { networkBufferPool.destroyAllBufferPools(); } catch (Throwable t) { LOG.warn("Could not destroy all buffer pools.", t); }// destroy the buffer pool try { networkBufferPool.destroy(); } catch (Throwable t) { LOG.warn("Network buffer pool did not shut down properly.", t); } // delete all the temp directories try { fileChannelManager.close(); } catch (Throwable t) { LOG.warn("Cannot close the file channel manager properly.", t); } try { gracefulShutdown(10, TimeUnit.SECONDS, batchShuffleReadIOExecutor); } catch (Throwable t) { LOG.warn("Cannot shut down batch shuffle read IO executor properly.", t); } try { batchShuffleReadBufferPool.destroy(); } catch (Throwable t) { LOG.warn("Cannot shut down batch shuffle read buffer pool properly.", t); } isClosed = true; } }
3.26
flink_NettyShuffleEnvironment_getResultPartitionManager_rdh
// Properties // -------------------------------------------------------------------------------------------- @VisibleForTesting public ResultPartitionManager getResultPartitionManager() { return resultPartitionManager; }
3.26
flink_NettyShuffleEnvironment_registerLegacyNetworkMetrics_rdh
/** * Registers legacy network metric groups before shuffle service refactoring. * * <p>Registers legacy metric groups if shuffle service implementation is original default one. * * @deprecated should be removed in future */ @SuppressWarnings("DeprecatedIsStillUsed") @Deprecated public void registerLegacyNetworkMetrics(MetricGroup metricGroup, ResultPartitionWriter[] producedPartitions, InputGate[] inputGates) {NettyShuffleMetricFactory.registerLegacyNetworkMetrics(config.isNetworkDetailedMetrics(), metricGroup, producedPartitions, inputGates); }
3.26
flink_DynamicPartitionPruningUtils_isNewSource_rdh
/** * Returns true if the source is FLIP-27 source, else false. */ private static boolean isNewSource(ScanTableSource scanTableSource) { ScanTableSource.ScanRuntimeProvider provider = scanTableSource.getScanRuntimeProvider(ScanRuntimeProviderContext.INSTANCE); if (provider instanceof SourceProvider) { return true; } else if (provider instanceof TransformationScanProvider) { Transformation<?> transformation = ((TransformationScanProvider) (provider)).createTransformation(name -> Optional.empty()); return transformation instanceof SourceTransformation; } else if (provider instanceof DataStreamScanProvider) { // Suppose DataStreamScanProvider of sources that support dynamic filtering will use // new Source. It's not reliable and should be checked. // TODO FLINK-28864 check if the source used by the DataStreamScanProvider is // actually a new source. This situation will not generate wrong result because it's // handled when translating BatchTableSourceScan. The only effect is the physical // plan and the exec node plan have DPP nodes, but they do not work in runtime. return true; } // TODO supports more return false; }
3.26
flink_DynamicPartitionPruningUtils_isSuitableJoin_rdh
/** * Judge whether the join node is suitable one for dpp pattern. */ public static boolean isSuitableJoin(Join join) { // Now dynamic partition pruning supports left/right join, inner and semi // join. but now semi join can not join reorder. if ((((join.getJoinType() != JoinRelType.INNER) && (join.getJoinType() != JoinRelType.SEMI)) && (join.getJoinType() != JoinRelType.LEFT)) && (join.getJoinType() != JoinRelType.RIGHT)) { return false; } JoinInfo v2 = join.analyzeCondition(); return !v2.leftKeys.isEmpty(); }
3.26
flink_DynamicPartitionPruningUtils_canConvertAndConvertDppFactSide_rdh
/** * Judge whether the input RelNode can be converted to the dpp fact side. If the input RelNode * can be converted, this method will return the converted fact side whose partitioned table * source will be converted to {@link BatchPhysicalDynamicFilteringTableSourceScan}, If not, * this method will return the origin RelNode. */ public static Tuple2<Boolean, RelNode> canConvertAndConvertDppFactSide(RelNode rel, ImmutableIntList joinKeys, RelNode dimSide, ImmutableIntList dimSideJoinKey) { DppFactSideChecker dppFactSideChecker = new DppFactSideChecker(rel, joinKeys, dimSide, dimSideJoinKey); return dppFactSideChecker.canConvertAndConvertDppFactSide(); }
3.26
flink_DynamicPartitionPruningUtils_visitDimSide_rdh
/** * Visit dim side to judge whether dim side has filter condition and whether dim side's * source table scan is non partitioned scan. */ private void visitDimSide(RelNode rel) { // TODO Let visitDimSide more efficient and more accurate. Like a filter on dim table or // a filter for the partition field on fact table. if (rel instanceof TableScan) { TableScan scan = ((TableScan) (rel)); TableSourceTable table = scan.getTable().unwrap(TableSourceTable.class);if (table == null) { return; } if (((!hasFilter) && (table.abilitySpecs() != null)) && (table.abilitySpecs().length != 0)) { for (SourceAbilitySpec spec : table.abilitySpecs()) { if (spec instanceof FilterPushDownSpec) { List<RexNode> predicates = ((FilterPushDownSpec) (spec)).getPredicates(); for (RexNode predicate : predicates) { if (isSuitableFilter(predicate)) { hasFilter = true; } } } } } CatalogTable catalogTable = table.contextResolvedTable().getResolvedTable(); if (catalogTable.isPartitioned()) { hasPartitionedScan = true;return; } // To ensure there is only one source on the dim side. setTables(table.contextResolvedTable()); } else if (rel instanceof HepRelVertex) { visitDimSide(((HepRelVertex) (rel)).getCurrentRel()); } else if ((rel instanceof Exchange) || (rel instanceof Project)) { visitDimSide(rel.getInput(0));} else if (rel instanceof Calc) { RexProgram origProgram = ((Calc) (rel)).getProgram(); if ((origProgram.getCondition() != null) && isSuitableFilter(origProgram.expandLocalRef(origProgram.getCondition()))) { hasFilter = true;} visitDimSide(rel.getInput(0)); } else if (rel instanceof Filter) { if (isSuitableFilter(((Filter) (rel)).getCondition())) { hasFilter = true; } visitDimSide(rel.getInput(0)); } else if (rel instanceof Join) { Join join = ((Join) (rel)); visitDimSide(join.getLeft()); visitDimSide(join.getRight()); } else if (rel instanceof BatchPhysicalGroupAggregateBase) {visitDimSide(((BatchPhysicalGroupAggregateBase) (rel)).getInput()); } else if (rel instanceof Union) { Union union = ((Union) (rel)); for (RelNode input : union.getInputs()) { visitDimSide(input); } } }
3.26
flink_DynamicPartitionPruningUtils_isSuitableFilter_rdh
/** * Not all filter condition suitable for using to filter partitions by dynamic partition * pruning rules. For example, NOT NULL can only filter one default partition which have a * small impact on filtering data. */ private static boolean isSuitableFilter(RexNode filterCondition) { switch (filterCondition.getKind()) { case AND : List<RexNode> conjunctions = RelOptUtil.conjunctions(filterCondition); return isSuitableFilter(conjunctions.get(0)) || isSuitableFilter(conjunctions.get(1));case OR : List<RexNode> disjunctions = RelOptUtil.disjunctions(filterCondition); return isSuitableFilter(disjunctions.get(0)) && isSuitableFilter(disjunctions.get(1)); case NOT : return isSuitableFilter(((RexCall) (filterCondition)).operands.get(0)); case EQUALS : case GREATER_THAN : case GREATER_THAN_OR_EQUAL :case LESS_THAN :case LESS_THAN_OR_EQUAL : case NOT_EQUALS : case IN : case LIKE : case CONTAINS : case SEARCH : case IS_FALSE : case IS_NOT_FALSE : case IS_NOT_TRUE : case IS_TRUE : // TODO adding more suitable filters which can filter enough partitions after // using this filter in dynamic partition pruning. return true; default : return false; } }
3.26
flink_CompilerHints_addUniqueFields_rdh
/** * Adds multiple FieldSets to be unique * * @param uniqueFieldSets * A set of unique FieldSet */ public void addUniqueFields(Set<FieldSet> uniqueFieldSets) { if (this.uniqueFields == null) { this.uniqueFields = new HashSet<FieldSet>(); } this.uniqueFields.addAll(uniqueFieldSets); }
3.26
flink_CompilerHints_getUniqueFields_rdh
// -------------------------------------------------------------------------------------------- // Uniqueness // -------------------------------------------------------------------------------------------- /** * Gets the FieldSets that are unique * * @return List of FieldSet that are unique */ public Set<FieldSet> getUniqueFields() { return this.uniqueFields; }
3.26
flink_CompilerHints_copyFrom_rdh
// -------------------------------------------------------------------------------------------- // Miscellaneous // -------------------------------------------------------------------------------------------- protected void copyFrom(CompilerHints source) { this.outputSize = source.outputSize; this.outputCardinality = source.outputCardinality; this.avgOutputRecordSize = source.avgOutputRecordSize;this.filterFactor = source.filterFactor; if ((source.uniqueFields != null) && (source.uniqueFields.size() > 0)) { if (this.uniqueFields == null) { this.uniqueFields = new HashSet<FieldSet>(); } else { this.uniqueFields.clear(); } this.uniqueFields.addAll(source.uniqueFields); }}
3.26
flink_CompilerHints_getOutputSize_rdh
// -------------------------------------------------------------------------------------------- // Basic Record Statistics // -------------------------------------------------------------------------------------------- public long getOutputSize() { return outputSize; }
3.26
flink_CompilerHints_addUniqueField_rdh
/** * Adds a field as having only unique values. * * @param field * The field with unique values. */ public void addUniqueField(int field) { if (this.uniqueFields == null) { this.uniqueFields = new HashSet<FieldSet>(); } this.uniqueFields.add(new FieldSet(field)); }
3.26
flink_InputPriorityGraphGenerator_calculatePipelinedAncestors_rdh
/** * Find the ancestors by going through PIPELINED edges. */ @VisibleForTesting List<ExecNode<?>> calculatePipelinedAncestors(ExecNode<?> node) { List<ExecNode<?>> ret = new ArrayList<>(); AbstractExecNodeExactlyOnceVisitor ancestorVisitor = new AbstractExecNodeExactlyOnceVisitor() { @Override protected void m0(ExecNode<?> node) { boolean v18 = false;if (!boundaries.contains(node)) { List<InputProperty> inputProperties = node.getInputProperties(); for (int i = 0; i < inputProperties.size(); i++) { // we only go through PIPELINED edges if (inputProperties.get(i).getDamBehavior().stricterOrEqual(f0)) { continue; } v18 = true; node.getInputEdges().get(i).getSource().accept(this); } } if (!v18) { ret.add(node); } } }; node.accept(ancestorVisitor); return ret; }
3.26
flink_TaskExecutionState_getID_rdh
/** * Returns the ID of the task this result belongs to * * @return the ID of the task this result belongs to */public ExecutionAttemptID getID() { return this.executionId; }
3.26
flink_TaskExecutionState_getAccumulators_rdh
/** * Gets flink and user-defined accumulators in serialized form. */ public AccumulatorSnapshot getAccumulators() { return accumulators; }
3.26
flink_TaskExecutionState_getExecutionState_rdh
/** * Returns the new execution state of the task. * * @return the new execution state of the task */ public ExecutionState getExecutionState() { return this.executionState; }
3.26
flink_TaskExecutionState_equals_rdh
// -------------------------------------------------------------------------------------------- @Override public boolean equals(Object obj) { if (obj instanceof TaskExecutionState) { TaskExecutionState v0 = ((TaskExecutionState) (obj)); return (v0.executionId.equals(this.executionId) && (v0.executionState == this.executionState)) && ((v0.throwable == null) == (this.throwable == null)); } else { return false; } }
3.26
flink_TaskExecutionState_getError_rdh
// -------------------------------------------------------------------------------------------- /** * Gets the attached exception, which is in serialized form. Returns null, if the status update * is no failure with an associated exception. * * @param userCodeClassloader * The classloader that can resolve user-defined exceptions. * @return The attached exception, or null, if none. */ public Throwable getError(ClassLoader userCodeClassloader) { if (this.throwable == null) { return null; } else { return this.throwable.deserializeError(userCodeClassloader); } }
3.26
flink_FlinkStatement_clearWarnings_rdh
// TODO We currently do not support this, but we can't throw a SQLException here because we want // to support jdbc tools such as beeline and sqlline. @Override public void clearWarnings() throws SQLException { }
3.26
flink_FlinkStatement_execute_rdh
/** * Execute a sql statement. Notice that the <code>INSERT</code> statement in Flink would return * job id as result set. * * @param sql * any SQL statement * @return True if there is result set for the statement. * @throws SQLException * the thrown exception. */ @Override public boolean execute(String sql) throws SQLException { StatementResult result = executeInternal(sql); if (result.isQueryResult() || (result.getResultKind() == ResultKind.SUCCESS_WITH_CONTENT)) { currentResults = new FlinkResultSet(this, result); hasResults = true; return true;} hasResults = false; return false; }
3.26
flink_FlinkStatement_executeQuery_rdh
/** * Execute a SELECT query. * * @param sql * an SQL statement to be sent to the database, typically a static SQL <code>SELECT * </code> statement * @return the select query result set. * @throws SQLException * the thrown exception */ @Override public ResultSet executeQuery(String sql) throws SQLException { StatementResult result = executeInternal(sql); if (!result.isQueryResult()) { result.close(); throw new SQLException(String.format("Statement[%s] is not a query.", sql)); } currentResults = new FlinkResultSet(this, result); hasResults = true; return currentResults; }
3.26
flink_IntCounter_toString_rdh
// ------------------------------------------------------------------------ // Utilities // ------------------------------------------------------------------------ @Override public String toString() { return "IntCounter " + this.localValue; }
3.26
flink_IntCounter_add_rdh
// ------------------------------------------------------------------------ // Primitive Specializations // ------------------------------------------------------------------------ public void add(int value) { localValue += value; }
3.26