name
stringlengths
12
178
code_snippet
stringlengths
8
36.5k
score
float64
3.26
3.68
flink_StateTtlConfig_m0_rdh
/** * Sets the ttl time. * * @param ttl * The ttl time. */ @Nonnull public Builder m0(@Nonnull Time ttl) { this.ttl = ttl;return this; }
3.26
flink_StateTtlConfig_setStateVisibility_rdh
/** * Sets the state visibility. * * @param stateVisibility * The state visibility configures whether expired user value can be * returned or not. */ @Nonnull public Builder setStateVisibility(@Nonnull StateVisibility stateVisibility) { this.stateVisibility = stateVisibility; return this; }
3.26
flink_StateTtlConfig_disableCleanupInBackground_rdh
/** * Disable default cleanup of expired state in background (enabled by default). * * <p>If some specific cleanup is configured, e.g. {@link #cleanupIncrementally(int, * boolean)} or {@link #cleanupInRocksdbCompactFilter(long)} or {@link #cleanupInRocksdbCompactFilter(long, Time)} , this setting does not disable it. */ @Nonnull public Builder disableCleanupInBackground() { isCleanupInBackground = false; return this; }
3.26
flink_StateTtlConfig_setTtlTimeCharacteristic_rdh
/** * Sets the time characteristic. * * @param ttlTimeCharacteristic * The time characteristic configures time scale to use for * ttl. */ @Nonnull public Builder setTtlTimeCharacteristic(@Nonnull TtlTimeCharacteristic ttlTimeCharacteristic) { this.ttlTimeCharacteristic = ttlTimeCharacteristic; return this; }
3.26
flink_AsynchronousBufferFileWriter_writeBlock_rdh
/** * Writes the given block asynchronously. * * @param buffer * the buffer to be written (will be recycled when done) * @throws IOException * thrown if adding the write operation fails */ @Override public void writeBlock(Buffer buffer) throws IOException { try { // if successfully added, the buffer will be recycled after the write operation addRequest(new BufferWriteRequest(this, buffer)); } catch (Throwable e) { // if not added, we need to recycle here buffer.recycleBuffer(); ExceptionUtils.rethrowIOException(e); } }
3.26
flink_ShortValue_getMaxNormalizedKeyLen_rdh
// -------------------------------------------------------------------------------------------- @Override public int getMaxNormalizedKeyLen() { return 2; }
3.26
flink_ShortValue_setValue_rdh
/** * Sets the encapsulated short to the specified value. * * @param value * the new value of the encapsulated short. */ public void setValue(short value) { this.value = value; }
3.26
flink_ShortValue_getBinaryLength_rdh
// -------------------------------------------------------------------------------------------- @Override public int getBinaryLength() { return 2; }
3.26
flink_ShortValue_read_rdh
// -------------------------------------------------------------------------------------------- @Override public void read(DataInputView in) throws IOException { this.value = in.readShort(); }
3.26
flink_SingleInputUdfOperator_setSemanticProperties_rdh
/** * Sets the semantic properties for the user-defined function (UDF). The semantic properties * define how fields of tuples and other objects are modified or preserved through this UDF. The * configured properties can be retrieved via {@link UdfOperator#getSemanticProperties()}. * * @param properties * The semantic properties for the UDF. * @see UdfOperator#getSemanticProperties() */ @Internal public void setSemanticProperties(SingleInputSemanticProperties properties) { this.udfSemantics = properties;this.analyzedUdfSemantics = false; }
3.26
flink_SingleInputUdfOperator_withParameters_rdh
// -------------------------------------------------------------------------------------------- // Fluent API methods // -------------------------------------------------------------------------------------------- @Override public O withParameters(Configuration parameters) { this.parameters = parameters;@SuppressWarnings("unchecked") O returnType = ((O) (this)); return returnType; }
3.26
flink_SingleInputUdfOperator_getBroadcastSets_rdh
// -------------------------------------------------------------------------------------------- // Accessors // -------------------------------------------------------------------------------------------- @Override@Internal public Map<String, DataSet<?>> getBroadcastSets() { return this.broadcastVariables == null ? Collections.<String, DataSet<?>>emptyMap() : Collections.unmodifiableMap(this.broadcastVariables); }
3.26
flink_SingleInputUdfOperator_returns_rdh
/** * Adds a type information hint about the return type of this operator. This method can be used * in cases where Flink cannot determine automatically what the produced type of a function is. * That can be the case if the function uses generic type variables in the return type that * cannot be inferred from the input type. * * <p>In most cases, the methods {@link #returns(Class)} and {@link #returns(TypeHint)} are * preferable. * * @param typeInfo * The type information for the returned data type. * @return This operator using the given type information for the return type. */ public O returns(TypeInformation<OUT> typeInfo) { requireNonNull(typeInfo, "TypeInformation must not be null"); fillInType(typeInfo); @SuppressWarnings("unchecked") O returnType = ((O) (this)); return returnType; }
3.26
flink_SingleInputUdfOperator_withForwardedFields_rdh
/** * Adds semantic information about forwarded fields of the user-defined function. The forwarded * fields information declares fields which are never modified by the function and which are * forwarded at the same position to the output or unchanged copied to another position in the * output. * * <p>Fields that are forwarded at the same position are specified by their position. The * specified position must be valid for the input and output data type and have the same type. * For example <code>withForwardedFields("f2")</code> declares that the third field of a Java * input tuple is copied to the third field of an output tuple. * * <p>Fields which are unchanged copied to another position in the output are declared by * specifying the source field reference in the input and the target field reference in the * output. {@code withForwardedFields("f0->f2")} denotes that the first field of the Java input * tuple is unchanged copied to the third field of the Java output tuple. When using a wildcard * ("*") ensure that the number of declared fields and their types in input and output type * match. * * <p>Multiple forwarded fields can be annotated in one ({@code withForwardedFields("f2; f3->f0; * f4")}) or separate Strings ({@code withForwardedFields("f2", "f3->f0", "f4")}). Please refer * to the JavaDoc of {@link org.apache.flink.api.common.functions.Function} or Flink's * documentation for details on field references such as nested fields and wildcard. * * <p>It is not possible to override existing semantic information about forwarded fields which * was for example added by a {@link org.apache.flink.api.java.functions.FunctionAnnotation.ForwardedFields} class annotation. * * <p><b>NOTE: Adding semantic information for functions is optional! If used correctly, * semantic information can help the Flink optimizer to generate more efficient execution plans. * However, incorrect semantic information can cause the optimizer to generate incorrect * execution plans which compute wrong results! So be careful when adding semantic information. * </b> * * @param forwardedFields * A list of field forward expressions. * @return This operator with annotated forwarded field information. * @see org.apache.flink.api.java.functions.FunctionAnnotation * @see org.apache.flink.api.java.functions.FunctionAnnotation.ForwardedFields */ public O withForwardedFields(String... forwardedFields) { if (this.udfSemantics == null) { // extract semantic properties from function annotations setSemanticProperties(extractSemanticAnnotations(getFunction().getClass())); } if ((this.udfSemantics == null) || this.analyzedUdfSemantics) { // discard analyzed semantic properties setSemanticProperties(new SingleInputSemanticProperties()); SemanticPropUtil.getSemanticPropsSingleFromString(this.udfSemantics, forwardedFields, null, null, this.getInputType(), this.getResultType()); } else if (udfWithForwardedFieldsAnnotation(getFunction().getClass())) { // refuse semantic information as it would override the function annotation throw new SemanticProperties.InvalidSemanticAnnotationException(("Forwarded field information " + "has already been added by a function annotation for this operator. ") + "Cannot overwrite function annotations."); } else { SemanticPropUtil.getSemanticPropsSingleFromString(this.udfSemantics, forwardedFields, null, null, this.getInputType(), this.getResultType()); } @SuppressWarnings("unchecked") O returnType = ((O) (this)); return returnType; }
3.26
flink_Sink_metadataConsumer_rdh
/** * Returns a metadata consumer, the {@link SinkWriter} can publish metadata events of type * {@link MetaT} to the consumer. * * <p>It is recommended to use a separate thread pool to publish the metadata because * enqueuing a lot of these messages in the mailbox may lead to a performance decrease. * thread, and the {@link Consumer#accept} method is executed very fast. */ @Experimental default <MetaT> Optional<Consumer<MetaT>> metadataConsumer() { return Optional.empty();}
3.26
flink_SlideWithSizeAndSlideOnTime_as_rdh
/** * Assigns an alias for this window that the following {@code groupBy()} and {@code select()} * clause can refer to. {@code select()} statement can access window properties such as window * start or end time. * * @param alias * alias for this window * @return this window */ public SlideWithSizeAndSlideOnTimeWithAlias as(Expression alias) { return new SlideWithSizeAndSlideOnTimeWithAlias(alias, timeField, size, slide); }
3.26
flink_CustomSinkOperatorUidHashes_setCommitterUidHash_rdh
/** * Sets the uid hash of the committer operator used to recover state. * * @param committerUidHash * uid hash denoting the committer operator * @return {@link SinkOperatorUidHashesBuilder} */ public SinkOperatorUidHashesBuilder setCommitterUidHash(String committerUidHash) { this.committerUidHash = committerUidHash; return this;}
3.26
flink_CustomSinkOperatorUidHashes_setGlobalCommitterUidHash_rdh
/** * Sets the uid hash of the global committer operator used to recover state. * * @param globalCommitterUidHash * uid hash denoting the global committer operator * @return {@link SinkOperatorUidHashesBuilder} */ public SinkOperatorUidHashesBuilder setGlobalCommitterUidHash(String globalCommitterUidHash) { this.globalCommitterUidHash = globalCommitterUidHash; return this; }
3.26
flink_CustomSinkOperatorUidHashes_builder_rdh
/** * Creates a builder to construct {@link CustomSinkOperatorUidHashes}. * * @return {@link SinkOperatorUidHashesBuilder} */public static SinkOperatorUidHashesBuilder builder() { return new SinkOperatorUidHashesBuilder(); }
3.26
flink_CustomSinkOperatorUidHashes_build_rdh
/** * Constructs the {@link CustomSinkOperatorUidHashes} with the given uid hashes. * * @return {@link CustomSinkOperatorUidHashes} */ public CustomSinkOperatorUidHashes build() { return new CustomSinkOperatorUidHashes(writerUidHash, committerUidHash, globalCommitterUidHash); }
3.26
flink_CustomSinkOperatorUidHashes_setWriterUidHash_rdh
/** * Sets the uid hash of the writer operator used to recover state. * * @param writerUidHash * uid hash denoting writer operator * @return {@link SinkOperatorUidHashesBuilder} */ public SinkOperatorUidHashesBuilder setWriterUidHash(String writerUidHash) { this.writerUidHash = writerUidHash; return this; }
3.26
flink_AbstractFileStateBackend_resolveCheckpoint_rdh
// ------------------------------------------------------------------------ // Initialization and metadata storage // ------------------------------------------------------------------------ @Override public CompletedCheckpointStorageLocation resolveCheckpoint(String pointer) throws IOException { return AbstractFsCheckpointStorageAccess.resolveCheckpointPointer(pointer); }
3.26
flink_AbstractFileStateBackend_validatePath_rdh
// ------------------------------------------------------------------------ // Utilities // ------------------------------------------------------------------------ /** * Checks the validity of the path's scheme and path. * * @param path * The path to check. * @return The URI as a Path. * @throws IllegalArgumentException * Thrown, if the URI misses scheme or path. */ private static Path validatePath(Path path) { final URI uri = path.toUri(); final String scheme = uri.getScheme(); final String pathPart = uri.getPath(); // some validity checks if (scheme == null) { throw new IllegalArgumentException("The scheme (hdfs://, file://, etc) is null. " + "Please specify the file system scheme explicitly in the URI."); } if (pathPart == null) { throw new IllegalArgumentException("The path to store the checkpoint data in is null. " + "Please specify a directory path for the checkpoint data."); } if ((pathPart.length() == 0) || pathPart.equals("/")) { throw new IllegalArgumentException("Cannot use the root directory for checkpoints."); } return path; }
3.26
flink_AbstractFileStateBackend_getCheckpointPath_rdh
// ------------------------------------------------------------------------ /** * Gets the checkpoint base directory. Jobs will create job-specific subdirectories for * checkpoints within this directory. May be null, if not configured. * * @return The checkpoint base directory */ @Nullable public Path getCheckpointPath() { return baseCheckpointPath; }
3.26
flink_WindowedStateTransformation_aggregate_rdh
/** * Applies the given window function to each window. The window function is called for each * evaluation of the window for each key individually. The output of the window function is * interpreted as a regular non-windowed stream. * * <p>Arriving data is incrementally aggregated using the given aggregate function. This means * that the window function typically has only a single value to process when called. * * @param aggregateFunction * The aggregation function that is used for incremental aggregation. * @param windowFunction * The window function. * @param accumulatorType * Type information for the internal accumulator type of the aggregation * function * @return The data stream that is the result of applying the window function to the window. * @param <ACC> * The type of the AggregateFunction's accumulator * @param <V> * The type of AggregateFunction's result, and the WindowFunction's input * @param <R> * The type of the elements in the resulting stream, equal to the WindowFunction's * result type */ @PublicEvolving public <ACC, V, R> StateBootstrapTransformation<T> aggregate(AggregateFunction<T, ACC, V> aggregateFunction, ProcessWindowFunction<V, R, K, W> windowFunction, TypeInformation<ACC> accumulatorType) { checkNotNull(aggregateFunction, "aggregateFunction"); checkNotNull(windowFunction, "windowFunction"); checkNotNull(accumulatorType, "accumulatorType"); if (aggregateFunction instanceof RichFunction) { throw new UnsupportedOperationException("This aggregate function cannot be a RichFunction."); } // clean the closures windowFunction = input.getExecutionEnvironment().clean(windowFunction); aggregateFunction = input.getExecutionEnvironment().clean(aggregateFunction); WindowOperator<K, T, ?, R, W> operator = builder.aggregate(aggregateFunction, windowFunction, accumulatorType); SavepointWriterOperatorFactory factory = (timestamp, path) -> new StateBootstrapWrapperOperator<>(timestamp, path, operator); return new StateBootstrapTransformation<>(input, operatorMaxParallelism, factory, keySelector, keyType); }
3.26
flink_WindowedStateTransformation_process_rdh
/** * Applies the given window function to each window. The window function is called for each * evaluation of the window for each key individually. The output of the window function is * interpreted as a regular non-windowed stream. * * <p>Note that this function requires that all data in the windows is buffered until the window * is evaluated, as the function provides no means of incremental aggregation. * * @param function * The window function. * @return The data stream that is the result of applying the window function to the window. */ @PublicEvolving public <R> StateBootstrapTransformation<T> process(ProcessWindowFunction<T, R, K, W> function) { WindowOperator<K, T, ?, R, W> operator = builder.process(function); SavepointWriterOperatorFactory factory = (timestamp, path) -> new StateBootstrapWrapperOperator<>(timestamp, path, operator); return new StateBootstrapTransformation<>(input, operatorMaxParallelism, factory, keySelector, keyType); }
3.26
flink_WindowedStateTransformation_evictor_rdh
/** * Sets the {@code Evictor} that should be used to evict elements from a window before emission. * * <p>Note: When using an evictor window performance will degrade significantly, since * incremental aggregation of window results cannot be used. */ @PublicEvolving public WindowedStateTransformation<T, K, W> evictor(Evictor<? super T, ? super W> evictor) {builder.evictor(evictor); return this; }
3.26
flink_WindowedStateTransformation_reduce_rdh
/** * Applies the given window function to each window. The window function is called for each * evaluation of the window for each key individually. The output of the window function is * interpreted as a regular non-windowed stream. * * <p>Arriving data is incrementally aggregated using the given reducer. * * @param reduceFunction * The reduce function that is used for incremental aggregation. * @param function * The window function. * @return The data stream that is the result of applying the window function to the window. */ @Internal public <R> StateBootstrapTransformation<T> reduce(ReduceFunction<T> reduceFunction, ProcessWindowFunction<T, R, K, W> function) { // clean the closures function = input.getExecutionEnvironment().clean(function); reduceFunction = input.getExecutionEnvironment().clean(reduceFunction); WindowOperator<K, T, ?, R, W> operator = builder.reduce(reduceFunction, function); SavepointWriterOperatorFactory factory = (timestamp, path) -> new StateBootstrapWrapperOperator<>(timestamp, path, operator); return new StateBootstrapTransformation<>(input, operatorMaxParallelism, factory, keySelector, keyType); }
3.26
flink_WindowedStateTransformation_m0_rdh
// Aggregation Function // ------------------------------------------------------------------------ /** * Applies the given aggregation function to each window. The aggregation function is called for * each element, aggregating values incrementally and keeping the state to one accumulator per * key and window. * * @param function * The aggregation function. * @return The data stream that is the result of applying the fold function to the window. * @param <ACC> * The type of the AggregateFunction's accumulator * @param <R> * The type of the elements in the resulting stream, equal to the AggregateFunction's * result type */ @PublicEvolving public <ACC, R> StateBootstrapTransformation<T> m0(AggregateFunction<T, ACC, R> function) { checkNotNull(function, "function"); if (function instanceof RichFunction) { throw new UnsupportedOperationException("This aggregation function cannot be a RichFunction."); } TypeInformation<ACC> accumulatorType = TypeExtractor.getAggregateFunctionAccumulatorType(function, input.getType(), null, false); return aggregate(function, accumulatorType); }
3.26
flink_WindowedStateTransformation_trigger_rdh
/** * Sets the {@code Trigger} that should be used to trigger window emission. */ @PublicEvolvingpublic WindowedStateTransformation<T, K, W> trigger(Trigger<? super T, ? super W> trigger) { builder.trigger(trigger); return this; }
3.26
flink_WindowedStateTransformation_apply_rdh
/** * Applies the given window function to each window. The window function is called for each * evaluation of the window for each key individually. The output of the window function is * interpreted as a regular non-windowed stream. * * <p>Note that this function requires that all data in the windows is buffered until the window * is evaluated, as the function provides no means of incremental aggregation. * * @param function * The window function. * @param resultType * Type information for the result type of the window function * @return The data stream that is the result of applying the window function to the window. */ public <R> StateBootstrapTransformation<T> apply(WindowFunction<T, R, K, W> function, TypeInformation<R> resultType) { function = input.getExecutionEnvironment().clean(function); WindowOperator<K, T, ?, R, W> operator = builder.apply(function); SavepointWriterOperatorFactory factory = (timestamp, path) -> new StateBootstrapWrapperOperator<>(timestamp, path, operator); return new StateBootstrapTransformation<>(input, operatorMaxParallelism, factory, keySelector, keyType); }
3.26
flink_TumblingProcessingTimeWindows_of_rdh
/** * Creates a new {@code TumblingProcessingTimeWindows} {@link WindowAssigner} that assigns * elements to time windows based on the element timestamp, offset and a staggering offset, * depending on the staggering policy. * * @param size * The size of the generated windows. * @param offset * The offset which window start would be shifted by. * @param windowStagger * The utility that produces staggering offset in runtime. * @return The time policy. */ @PublicEvolvingpublic static TumblingProcessingTimeWindows of(Time size, Time offset, WindowStagger windowStagger) { return new TumblingProcessingTimeWindows(size.toMilliseconds(), offset.toMilliseconds(), windowStagger); }
3.26
flink_QuickSort_sort_rdh
/** * Sort the given range of items using quick sort. {@inheritDoc } If the recursion depth falls * below {@link #getMaxDepth}, then switch to {@link HeapSort}. */ public void sort(final IndexedSortable s, int p, int r) { int recordsPerSegment = s.recordsPerSegment(); int recordSize = s.recordSize(); int maxOffset = recordSize * (recordsPerSegment - 1); int pN = p / recordsPerSegment; int pO = (p % recordsPerSegment) * recordSize; int rN = r / recordsPerSegment; int rO = (r % recordsPerSegment) * recordSize; sortInternal(s, recordsPerSegment, recordSize, maxOffset, p, pN, pO, r, rN, rO, m1(r - p)); }
3.26
flink_QuickSort_sortInternal_rdh
/** * Sort the given range of items using quick sort. If the recursion depth falls below {@link #getMaxDepth}, then switch to {@link HeapSort}. * * @param s * paged sortable * @param recordsPerSegment * number of records per memory segment * @param recordSize * number of bytes per record * @param maxOffset * offset of a last record in a memory segment * @param p * index of first record in range * @param pN * page number of first record in range * @param pO * page offset of first record in range * @param r * index of last-plus-one'th record in range * @param rN * page number of last-plus-one'th record in range * @param rO * page offset of last-plus-one'th record in range * @param depth * recursion depth * @see #sort(IndexedSortable, int, int) */ private static void sortInternal(final IndexedSortable s, int recordsPerSegment, int recordSize, int maxOffset, int p, int pN, int pO, int r, int rN, int rO, int depth) {while (true) { if ((r - p) < 13) { // switch to insertion sort int i = p + 1; int iN; int iO; if (pO == maxOffset) { iN = pN + 1; iO = 0; } else { iN = pN; iO = pO + recordSize; } while (i < r) { int v10 = i; int jN = iN; int jO = iO; int jd = v10 - 1; int jdN; int jdO; if (jO == 0) { jdN = jN - 1; jdO = maxOffset; } else { jdN = jN; jdO = jO - recordSize; } while ((v10 > p) && (s.compare(jdN, jdO, jN, jO) > 0)) {s.swap(jN, jO, jdN, jdO); v10 = jd; jN = jdN; jO = jdO; jd--; if (jdO == 0) { jdN--; jdO = maxOffset; } else { jdO -= recordSize; } } i++;if (iO == maxOffset) { iN++; iO = 0; } else {iO += recordSize; } } return; } if ((--depth) < 0) { // switch to heap sort alt.sort(s, p, r); return; } int rdN; int rdO; if (rO == 0) { rdN = rN - 1; rdO = maxOffset; } else {rdN = rN; rdO = rO - recordSize; } int m = (p + r) >>> 1; int mN = m / recordsPerSegment; int mO = (m % recordsPerSegment) * recordSize; // select, move pivot into first position m0(s, mN, mO, pN, pO); m0(s, mN, mO, rdN, rdO);m0(s, pN, pO, rdN, rdO); // Divide int i = p; int iN = pN; int v23 = pO; int j = r; int jN = rN; int jO = rO; int ll = p; int llN = pN; int llO = pO; int rr = r; int rrN = rN; int rrO = rO; int cr; while (true) { i++; if (v23 == maxOffset) { iN++; v23 = 0;} else { v23 += recordSize; } while (i < j) { if ((cr = s.compare(iN, v23, pN, pO)) > 0) { break; } if (0 == cr) { ll++; if (llO == maxOffset) { llN++; llO = 0; } else { llO += recordSize; } if (ll != i) { s.swap(llN, llO, iN, v23); } } i++; if (v23 == maxOffset) { iN++; v23 = 0; } else { v23 += recordSize; } } j--; if (jO == 0) { jN--; jO = maxOffset; } else { jO -= recordSize; } while (j > i) { if ((cr = s.compare(pN, pO, jN, jO)) > 0) { break; } if (0 == cr) { rr--; if (rrO == 0) { rrN--; rrO = maxOffset; } else { rrO -= recordSize; } if (rr != j) { s.swap(rrN, rrO, jN, jO); } } j--; if (jO == 0) { jN--; jO = maxOffset; } else { jO -= recordSize; } } if (i < j) { s.swap(iN, v23, jN, jO); } else { break; } } j = i; jN = iN; jO = v23; // swap pivot- and all eq values- into position while (ll >= p) { i--; if (v23 == 0) { iN--; v23 = maxOffset; } else { v23 -= recordSize; } s.swap(llN, llO, iN, v23); ll--; if (llO == 0) { llN--; llO = maxOffset; } else { llO -= recordSize; } } while (rr < r) { s.swap(rrN, rrO, jN, jO); rr++; if (rrO == maxOffset) { rrN++; rrO = 0;} else { rrO += recordSize; } j++; if (jO == maxOffset) { jN++; jO = 0; } else { jO += recordSize; } } // Conquer // Recurse on smaller interval first to keep stack shallow assert i != j; if ((i - p) < (r - j)) { sortInternal(s, recordsPerSegment, recordSize, maxOffset, p, pN, pO, i, iN, v23, depth); p = j; pN = jN; pO = jO; } else { sortInternal(s, recordsPerSegment, recordSize, maxOffset, j, jN, jO, r, rN, rO, depth); r = i; rN = iN; rO = v23; } } }
3.26
flink_QuickSort_m1_rdh
/** * Deepest recursion before giving up and doing a heapsort. Returns 2 * ceil(log(n)). */ protected static int m1(int x) { if (x <= 0) { throw new IllegalArgumentException("Undefined for " + x); } return (32 - Integer.numberOfLeadingZeros(x - 1)) << 2; }
3.26
flink_QuickSort_m0_rdh
/** * Fix the records into sorted order, swapping when the first record is greater than the second * record. * * @param s * paged sortable * @param pN * page number of first record * @param pO * page offset of first record * @param rN * page number of second record * @param rO * page offset of second record */ private static void m0(IndexedSortable s, int pN, int pO, int rN, int rO) {if (s.compare(pN, pO, rN, rO) > 0) { s.swap(pN, pO, rN, rO); } }
3.26
flink_HsSubpartitionConsumer_getSubpartitionBacklog_rdh
// ------------------------------- // Internal Methods // ------------------------------- @SuppressWarnings("FieldAccessNotGuarded") private int getSubpartitionBacklog() { if ((memoryDataView == null) || (diskDataView == null)) { return 0; } return Math.max(memoryDataView.getBacklog(), diskDataView.getBacklog()); }
3.26
flink_HsSubpartitionConsumer_setDiskDataView_rdh
/** * Set {@link HsDataView} for this subpartition, this method only called when {@link HsSubpartitionFileReader} is creating. */ void setDiskDataView(HsDataView diskDataView) { synchronized(lock) { checkState(this.diskDataView == null, "repeatedly set disk data view is not allowed."); this.diskDataView = diskDataView; } }
3.26
flink_HsSubpartitionConsumer_setMemoryDataView_rdh
/** * Set {@link HsDataView} for this subpartition, this method only called when {@link HsSubpartitionFileReader} is creating. */ void setMemoryDataView(HsDataView memoryDataView) { synchronized(lock) { checkState(this.memoryDataView == null, "repeatedly set memory data view is not allowed."); this.memoryDataView = memoryDataView; } }
3.26
flink_BackgroundTask_finishedBackgroundTask_rdh
/** * Creates a finished background task which can be used as the start of a background task chain. * * @param <V> * type of the background task * @return A finished background task */ static <V> BackgroundTask<V> finishedBackgroundTask() { return new BackgroundTask<>(); }
3.26
flink_BackgroundTask_initialBackgroundTask_rdh
/** * Creates an initial background task. This means that this background task has no predecessor. * * @param task * task to run * @param executor * executor to run the task * @param <V> * type of the result * @return initial {@link BackgroundTask} representing the task to execute */ static <V> BackgroundTask<V> initialBackgroundTask(SupplierWithException<? extends V, ? extends Exception> task, Executor executor) { return new BackgroundTask<>(FutureUtils.completedVoidFuture(), task, executor); }
3.26
flink_BackgroundTask_m1_rdh
/** * Runs the given task after this background task has completed (normally or exceptionally). * * @param task * task to run after this background task has completed * @param executor * executor to run the task * @param <V> * type of the result * @return new {@link BackgroundTask} representing the new task to execute */ <V> BackgroundTask<V> m1(SupplierWithException<? extends V, ? extends Exception> task, Executor executor) { return new BackgroundTask<>(terminationFuture, task, executor); }
3.26
flink_BackgroundTask_abort_rdh
/** * Abort the execution of this background task. This method has only an effect if the background * task has not been started yet. */ void abort() { isAborted = true; }
3.26
flink_JobStatusPollingUtils_getJobResult_rdh
/** * Polls the {@link JobStatus} of a job periodically and when the job has reached a terminal * state, it requests its {@link JobResult}. * * @param dispatcherGateway * the {@link DispatcherGateway} to be used for requesting the details * of the job. * @param jobId * the id of the job * @param scheduledExecutor * the executor to be used to periodically request the status of the * job * @param rpcTimeout * the timeout of the rpc * @param retryPeriod * the interval between two consecutive job status requests * @return a future that will contain the job's {@link JobResult}. */ static CompletableFuture<JobResult> getJobResult(final DispatcherGateway dispatcherGateway, final JobID jobId, final ScheduledExecutor scheduledExecutor, final Time rpcTimeout, final Time retryPeriod) { return pollJobResultAsync(() -> dispatcherGateway.requestJobStatus(jobId, rpcTimeout), () -> dispatcherGateway.requestJobResult(jobId, rpcTimeout), scheduledExecutor, retryPeriod.toMilliseconds()); }
3.26
flink_DeclarationRewriter_extractLocalVariable_rdh
/** * * @return new name. */ private String extractLocalVariable(JavaParser.VariableDeclaratorIdContext decId, JavaParser.TypeTypeContext typeType, boolean forceNewName) { String name = decId.getText(); if (forceNewName || allVarNames.contains(name)) { // here we assume that the original code can be successfully compiled. // that is to say, the scope of two variables with the same name will not // overlap. String newName = CodeSplitUtil.newName("local"); replaceMap.put(name, newName); newLocalVariables.append(typeType.getText()).append(" ").append(newName).append(";\n"); return newName; } else { newLocalVariables.append(typeType.getText()).append(" ").append(name).append(";\n"); allVarNames.add(name);return name; } }
3.26
flink_GenericInMemoryCatalogStoreFactory_createCatalogStore_rdh
/** * Catalog store factory for {@link GenericInMemoryCatalogStore}. */ @Internal public class GenericInMemoryCatalogStoreFactory implements CatalogStoreFactory { @Override public CatalogStore createCatalogStore() { return new GenericInMemoryCatalogStore(); }
3.26
flink_CommonTestUtils_containsCause_rdh
/** * Checks whether the given throwable contains the given cause as a cause. The cause is not * checked on equality but on type equality. * * @param throwable * Throwable to check for the cause * @param cause * Cause to look for * @return True if the given Throwable contains the given cause (type equality); otherwise false */ public static boolean containsCause(Throwable throwable, Class<? extends Throwable> cause) { Throwable current = throwable; while (current != null) { if (cause.isAssignableFrom(current.getClass())) {return true; } current = current.getCause(); } return false; }
3.26
flink_CommonTestUtils_createTempFile_rdh
/** * Creates a temporary file that contains the given string. The file is written with the * platform's default encoding. * * <p>The temp file is automatically deleted on JVM exit. * * @param contents * The contents to be written to the file. * @return The temp file URI. */ public static String createTempFile(String contents) throws IOException {File f = File.createTempFile("flink_test_", ".tmp"); f.deleteOnExit(); try (BufferedWriter out = new BufferedWriter(new FileWriter(f))) { out.write(contents); } return f.toURI().toString(); }
3.26
flink_CommonTestUtils_setEnv_rdh
// ------------------------------------------------------------------------ // Manipulation of environment // ------------------------------------------------------------------------ public static void setEnv(Map<String, String> newenv) {m0(newenv, true); }
3.26
flink_CommonTestUtils_assertThrows_rdh
/** * Checks whether an exception with a message occurs when running a piece of code. */ public static void assertThrows(String msg, Class<? extends Exception> expected, Callable<?> code) { try { Object result = code.call(); Assert.fail("Previous method call should have failed but it returned: " + result); } catch (Exception e) { assertThat(e, instanceOf(expected)); assertThat(e.getMessage(), containsString(msg)); } }
3.26
flink_CommonTestUtils_waitUtil_rdh
/** * Wait util the given condition is met or timeout. * * @param condition * the condition to wait for. * @param timeout * the maximum time to wait for the condition to become true. * @param errorMsg * the error message to include in the <code>TimeoutException</code> if the * condition was not met before timeout. * @throws TimeoutException * if the condition is not met before timeout. * @throws InterruptedException * if the thread is interrupted. */ public static void waitUtil(Supplier<Boolean> condition, Duration timeout, String errorMsg) throws TimeoutException, InterruptedException { waitUtil(condition, timeout, Duration.ofMillis(1), errorMsg); }
3.26
flink_CommonTestUtils_blockForeverNonInterruptibly_rdh
/** * Permanently blocks the current thread. The thread cannot be woken up via {@link Thread#interrupt()}. */ public static void blockForeverNonInterruptibly() { final Object lock = new Object(); // noinspection InfiniteLoopStatement while (true) { try { // noinspection SynchronizationOnLocalVariableOrMethodParameter synchronized(lock) { lock.wait(); } } catch (InterruptedException ignored) { } } }
3.26
flink_CommonTestUtils_createCopySerializable_rdh
/** * Creates a copy of an object via Java Serialization. * * @param original * The original object. * @return The copied object. */ public static <T extends Serializable> T createCopySerializable(T original) throws IOException { if (original == null) { throw new IllegalArgumentException(); } ByteArrayOutputStream baos = new ByteArrayOutputStream(); ObjectOutputStream oos = new ObjectOutputStream(baos); oos.writeObject(original); oos.close(); baos.close(); ByteArrayInputStream bais = new ByteArrayInputStream(baos.toByteArray()); try (ObjectInputStream ois = new ObjectInputStream(bais)) { @SuppressWarnings("unchecked") T copy = ((T) (ois.readObject())); return copy; } catch (ClassNotFoundException e) { throw new IOException(e); } }
3.26
flink_CommonTestUtils_m0_rdh
// This code is taken slightly modified from: http://stackoverflow.com/a/7201825/568695 // it changes the environment variables of this JVM. Use only for testing purposes! @SuppressWarnings("unchecked") public static void m0(Map<String, String> newenv, boolean clearExisting) { try { Map<String, String> env = System.getenv(); Class<?> clazz = env.getClass(); Field field = clazz.getDeclaredField("m"); field.setAccessible(true); Map<String, String> map = ((Map<String, String>) (field.get(env))); if (clearExisting) { map.clear(); } map.putAll(newenv); // only for Windows Class<?> processEnvironmentClass = Class.forName("java.lang.ProcessEnvironment"); try { Field theCaseInsensitiveEnvironmentField = processEnvironmentClass.getDeclaredField("theCaseInsensitiveEnvironment"); theCaseInsensitiveEnvironmentField.setAccessible(true); Map<String, String> cienv = ((Map<String, String>) (theCaseInsensitiveEnvironmentField.get(null))); if (clearExisting) { cienv.clear(); } cienv.putAll(newenv); } catch (NoSuchFieldException ignored) { } } catch (Exception e1) { throw new RuntimeException(e1); } }
3.26
flink_TableFactoryUtil_findAndCreateTableSource_rdh
/** * Creates a {@link TableSource} from a {@link CatalogTable}. * * <p>It considers {@link Catalog#getFactory()} if provided. */ @SuppressWarnings("unchecked") public static <T> TableSource<T> findAndCreateTableSource(@Nullable Catalog catalog, ObjectIdentifier objectIdentifier, CatalogTable catalogTable, ReadableConfig configuration, boolean isTemporary) { TableSourceFactory.Context context = new TableSourceFactoryContextImpl(objectIdentifier, catalogTable, configuration, isTemporary); Optional<TableFactory> factoryOptional = (catalog == null) ? Optional.empty() : catalog.getTableFactory(); if (factoryOptional.isPresent()) { TableFactory v2 = factoryOptional.get(); if (v2 instanceof TableSourceFactory) { return ((TableSourceFactory<T>) (v2)).createTableSource(context); } else { throw new ValidationException("Cannot query a sink-only table. " + "TableFactory provided by catalog must implement TableSourceFactory"); } } else { return findAndCreateTableSource(context); } }
3.26
flink_TableFactoryUtil_buildCatalogStoreFactoryContext_rdh
/** * Build a {@link CatalogStoreFactory.Context} for opening the {@link CatalogStoreFactory}. * * <p>The configuration format should be as follows: * * <pre>{@code table.catalog-store.kind: {identifier} * table.catalog-store.{identifier}.{param1}: xxx * table.catalog-store.{identifier}.{param2}: xxx}</pre> */ public static Context buildCatalogStoreFactoryContext(Configuration configuration, ClassLoader classLoader) { String identifier = configuration.getString(CommonCatalogOptions.TABLE_CATALOG_STORE_KIND); String catalogStoreOptionPrefix = (CommonCatalogOptions.TABLE_CATALOG_STORE_OPTION_PREFIX + identifier) + "."; Map<String, String> options = new DelegatingConfiguration(configuration, catalogStoreOptionPrefix).toMap(); CatalogStoreFactory.Context context = new FactoryUtil.DefaultCatalogStoreContext(options, configuration, classLoader); return context; }
3.26
flink_TableFactoryUtil_findAndCreateCatalogStoreFactory_rdh
/** * Finds and creates a {@link CatalogStoreFactory} using the provided {@link Configuration} and * user classloader. * * <p>The configuration format should be as follows: * * <pre>{@code table.catalog-store.kind: {identifier} * table.catalog-store.{identifier}.{param1}: xxx * table.catalog-store.{identifier}.{param2}: xxx}</pre> */ public static CatalogStoreFactory findAndCreateCatalogStoreFactory(Configuration configuration, ClassLoader classLoader) { String identifier = configuration.getString(CommonCatalogOptions.TABLE_CATALOG_STORE_KIND); CatalogStoreFactory catalogStoreFactory = FactoryUtil.discoverFactory(classLoader, CatalogStoreFactory.class, identifier); return catalogStoreFactory; }
3.26
flink_TableFactoryUtil_m0_rdh
/** * Creates a table sink for a {@link CatalogTable} using table factory associated with the * catalog. */public static Optional<TableSink> m0(Catalog catalog, TableSinkFactory.Context context) { TableFactory tableFactory = catalog.getTableFactory().orElse(null); if (tableFactory instanceof TableSinkFactory) { return Optional.ofNullable(((TableSinkFactory) (tableFactory)).createTableSink(context)); } return Optional.empty(); }
3.26
flink_TableFactoryUtil_findCatalogModificationListenerList_rdh
/** * Find and create modification listener list from configuration. */public static List<CatalogModificationListener> findCatalogModificationListenerList(final ReadableConfig configuration, final ClassLoader classLoader) { return configuration.getOptional(TableConfigOptions.TABLE_CATALOG_MODIFICATION_LISTENERS).orElse(Collections.emptyList()).stream().map(identifier -> FactoryUtil.discoverFactory(classLoader, CatalogModificationListenerFactory.class, identifier).createListener(new CatalogModificationListenerFactory.Context() { @Override public ReadableConfig getConfiguration() { return configuration; } @Override public ClassLoader getUserClassLoader() { return classLoader; } })).collect(Collectors.toList()); }
3.26
flink_TableFactoryUtil_isLegacyConnectorOptions_rdh
/** * Checks whether the {@link CatalogTable} uses legacy connector sink options. */ public static boolean isLegacyConnectorOptions(@Nullable Catalog catalog, ReadableConfig configuration, boolean isStreamingMode, ObjectIdentifier objectIdentifier, CatalogTable catalogTable, boolean isTemporary) { // normalize option keys DescriptorProperties properties = new DescriptorProperties(true); properties.putProperties(catalogTable.getOptions()); if (properties.containsKey(ConnectorDescriptorValidator.CONNECTOR_TYPE)) { return true; } else { try { // try to create legacy table source using the options, // some legacy factories may use the 'type' key TableFactoryUtil.findAndCreateTableSink(catalog, objectIdentifier, catalogTable, configuration, isStreamingMode, isTemporary); // success, then we will use the legacy factories return true; } catch (Throwable ignore) { // fail, then we will use new factories return false; } } }
3.26
flink_TableFactoryUtil_findAndCreateTableSink_rdh
/** * Creates a {@link TableSink} from a {@link CatalogTable}. * * <p>It considers {@link Catalog#getFactory()} if provided. */ @SuppressWarnings("unchecked") public static <T> TableSink<T> findAndCreateTableSink(@Nullable Catalog catalog, ObjectIdentifier objectIdentifier, CatalogTable catalogTable, ReadableConfig configuration, boolean isStreamingMode, boolean isTemporary) { TableSinkFactory.Context context = new TableSinkFactoryContextImpl(objectIdentifier, catalogTable, configuration, !isStreamingMode, isTemporary); if (catalog == null) { return findAndCreateTableSink(context); } else { return createTableSinkForCatalogTable(catalog, context).orElseGet(() -> findAndCreateTableSink(context)); } }
3.26
flink_AvroFactory_extractAvroSpecificSchema_rdh
/** * Extracts an Avro {@link Schema} from a {@link SpecificRecord}. We do this either via {@link SpecificData} or by instantiating a record and extracting the schema from the instance. */ public static <T> Schema extractAvroSpecificSchema(Class<T> type, SpecificData specificData) { Optional<Schema> newSchemaOptional = m0(type); return newSchemaOptional.orElseGet(() -> specificData.getSchema(type)); }
3.26
flink_AvroFactory_m0_rdh
/** * Extracts an Avro {@link Schema} from a {@link SpecificRecord}. We do this by creating an * instance of the class using the zero-argument constructor and calling {@link SpecificRecord#getSchema()} on it. */ private static Optional<Schema> m0(Class<?> type) { try { SpecificRecord instance = ((SpecificRecord) (type.newInstance())); return Optional.ofNullable(instance.getSchema()); } catch (InstantiationException | IllegalAccessException e) { LOG.warn("Could not extract schema from Avro-generated SpecificRecord class {}: {}.", type, e); return Optional.empty(); } }
3.26
flink_AvroFactory_create_rdh
/** * Creates Avro Writer and Reader for a specific type. * * <p>Given an input type, and possible the current schema, and a previously known schema (also * known as writer schema) create will deduce the best way to initialize a reader and writer * according to the following rules: * * <ul> * <li>If type is an Avro generated class (an {@link SpecificRecord} then the reader would use * the previousSchema for reading (if present) otherwise it would use the schema attached * to the auto generated class. * <li>If the type is a GenericRecord then the reader and the writer would be created with the * supplied (mandatory) schema. * <li>Otherwise, we use Avro's reflection based reader and writer that would deduce the * schema via reflection. If the previous schema is also present (when restoring a * serializer for example) then the reader would be created with both schemas. * </ul> */ static <T> AvroFactory<T> create(Class<T> type, @Nullable Schema currentSchema, @Nullable Schema previousSchema) { final ClassLoader cl = Thread.currentThread().getContextClassLoader(); if (SpecificRecord.class.isAssignableFrom(type)) { return fromSpecific(type, cl, Optional.ofNullable(previousSchema)); } if (GenericRecord.class.isAssignableFrom(type)) { return fromGeneric(cl, currentSchema); } return fromReflective(type, cl, Optional.ofNullable(previousSchema)); }
3.26
flink_AvroFactory_getSpecificDataForClass_rdh
/** * Creates a {@link SpecificData} object for a given class. Possibly uses the specific data from * the generated class with logical conversions applied (avro >= 1.9.x). * * <p>Copied over from {@code SpecificData#getForClass(Class<T> c)} we do not use the method * directly, because we want to be API backwards compatible with older Avro versions which did * not have this method */ public static <T extends SpecificData> SpecificData getSpecificDataForClass(Class<T> type, ClassLoader cl) { try { Field specificDataField = type.getDeclaredField("MODEL$"); specificDataField.setAccessible(true); return ((SpecificData) (specificDataField.get(((Object) (null)))));} catch (IllegalAccessException e) { throw new FlinkRuntimeException("Could not access the MODEL$ field of avro record", e); } catch (NoSuchFieldException e) { return new SpecificData(cl); } }
3.26
flink_SelectByMinFunction_reduce_rdh
/** * Reduce implementation, returns smaller tuple or value1 if both tuples are equal. Comparison * highly depends on the order and amount of fields chosen as indices. All given fields (at * construction time) are checked in the same order as defined (at construction time). If both * tuples are equal in one index, the next index is compared. Or if no next index is available * value1 is returned. The tuple which has a smaller value at one index will be returned. */ @SuppressWarnings({ "unchecked", "rawtypes" }) @Override public T reduce(T value1, T value2) throws Exception { for (int position : fields) { // Save position of compared key // Get both values - both implement comparable Comparable comparable1 = value1.getFieldNotNull(position); Comparable comparable2 = value2.getFieldNotNull(position); // Compare values int comp = comparable1.compareTo(comparable2); // If comp is smaller than 0 comparable 1 is smaller. // Return the smaller value. if (comp < 0) {return value1; } else if (comp > 0) { return value2; } } return value1; }
3.26
flink_LookupFunctionProvider_of_rdh
/** * Helper function for creating a static provider. */ static LookupFunctionProvider of(LookupFunction lookupFunction) { return () -> lookupFunction; }
3.26
flink_ReadOnlySlicedNetworkBuffer_getMemorySegment_rdh
/** * Returns the underlying memory segment. * * <p><strong>BEWARE:</strong> Although we cannot set the memory segment read-only it should be * handled as if it was!. * * @return the memory segment backing this buffer */ @Override public MemorySegment getMemorySegment() { return getBuffer().getMemorySegment(); }
3.26
flink_ArchivedExecution_getAttemptId_rdh
// -------------------------------------------------------------------------------------------- // Accessors // -------------------------------------------------------------------------------------------- @Override public ExecutionAttemptID getAttemptId() { return attemptId; }
3.26
flink_StopWithSavepointTerminationHandlerImpl_terminateSuccessfully_rdh
/** * Handles the successful termination of the {@code StopWithSavepointTerminationHandler}. * * @param completedSavepoint * the completed savepoint */ private void terminateSuccessfully(CompletedCheckpoint completedSavepoint) { result.complete(completedSavepoint.getExternalPointer()); }
3.26
flink_StopWithSavepointTerminationHandlerImpl_terminateExceptionally_rdh
/** * Handles the termination of the {@code StopWithSavepointTerminationHandler} exceptionally * without triggering a global job fail-over but restarting the checkpointing. It does restart * the checkpoint scheduling. * * @param throwable * the error that caused the exceptional termination. */ private void terminateExceptionally(Throwable throwable) { checkpointScheduling.startCheckpointScheduler(); result.completeExceptionally(throwable); }
3.26
flink_StopWithSavepointTerminationHandlerImpl_terminateExceptionallyWithGlobalFailover_rdh
/** * Handles the termination of the {@code StopWithSavepointTerminationHandler} exceptionally * after triggering a global job fail-over. * * @param unfinishedExecutionStates * the unfinished states that caused the failure. * @param savepointPath * the path to the successfully created savepoint. */ private void terminateExceptionallyWithGlobalFailover(Iterable<ExecutionState> unfinishedExecutionStates, String savepointPath) { StopWithSavepointStoppingException inconsistentFinalStateException = new StopWithSavepointStoppingException(savepointPath, jobId);log.warn("Inconsistent execution state after stopping with savepoint. At least one" + " execution is still in one of the following states: {}.", StringUtils.join(unfinishedExecutionStates, ", "), inconsistentFinalStateException); scheduler.handleGlobalFailure(inconsistentFinalStateException); result.completeExceptionally(inconsistentFinalStateException); }
3.26
flink_DeclarativeSlotManager_checkInit_rdh
// --------------------------------------------------------------------------------------------- // Internal utility methods // --------------------------------------------------------------------------------------------- private void checkInit() { Preconditions.checkState(started, "The slot manager has not been started."); }
3.26
flink_DeclarativeSlotManager_start_rdh
// --------------------------------------------------------------------------------------------- // Component lifecycle methods // --------------------------------------------------------------------------------------------- /** * Starts the slot manager with the given leader id and resource manager actions. * * @param newResourceManagerId * to use for communication with the task managers * @param newMainThreadExecutor * to use to run code in the ResourceManager's main thread * @param newResourceAllocator * to use for resource (de-)allocations * @param newBlockedTaskManagerChecker * to query whether a task manager is blocked */ @Override public void start(ResourceManagerId newResourceManagerId, Executor newMainThreadExecutor, ResourceAllocator newResourceAllocator, ResourceEventListener newResourceEventListener, BlockedTaskManagerChecker newBlockedTaskManagerChecker) { LOG.debug("Starting the slot manager."); this.resourceManagerId = Preconditions.checkNotNull(newResourceManagerId); mainThreadExecutor = Preconditions.checkNotNull(newMainThreadExecutor); resourceEventListener = Preconditions.checkNotNull(newResourceEventListener);taskExecutorManager = taskExecutorManagerFactory.apply(newMainThreadExecutor, newResourceAllocator); blockedTaskManagerChecker = Preconditions.checkNotNull(newBlockedTaskManagerChecker); started = true; registerSlotManagerMetrics(); }
3.26
flink_DeclarativeSlotManager_checkResourceRequirementsWithDelay_rdh
// --------------------------------------------------------------------------------------------- // Requirement matching // --------------------------------------------------------------------------------------------- /** * Depending on the implementation of {@link ResourceAllocationStrategy}, checking resource * requirements and potentially making a re-allocation can be heavy. In order to cover more * changes with each check, thus reduce the frequency of unnecessary re-allocations, the checks * are performed with a slight delay. */ private void checkResourceRequirementsWithDelay() { if (requirementsCheckDelay.toMillis() <= 0) { checkResourceRequirements(); } else if ((requirementsCheckFuture == null) || requirementsCheckFuture.isDone()) { requirementsCheckFuture = new CompletableFuture<>(); scheduledExecutor.schedule(() -> mainThreadExecutor.execute(() -> { checkResourceRequirements(); Preconditions.checkNotNull(requirementsCheckFuture).complete(null); }), requirementsCheckDelay.toMillis(), TimeUnit.MILLISECONDS); } }
3.26
flink_DeclarativeSlotManager_reportSlotStatus_rdh
/** * Reports the current slot allocations for a task manager identified by the given instance id. * * @param instanceId * identifying the task manager for which to report the slot status * @param slotReport * containing the status for all of its slots * @return true if the slot status has been updated successfully, otherwise false */ @Override public boolean reportSlotStatus(InstanceID instanceId, SlotReport slotReport) { checkInit(); LOG.debug("Received slot report from instance {}: {}.", instanceId, slotReport); if (taskExecutorManager.isTaskManagerRegistered(instanceId)) { if (slotTracker.notifySlotStatus(slotReport)) { checkResourceRequirementsWithDelay(); } return true; } else { LOG.debug("Received slot report for unknown task manager with instance id {}. Ignoring this report.", instanceId); return false; } }
3.26
flink_DeclarativeSlotManager_close_rdh
/** * Closes the slot manager. * * @throws Exception * if the close operation fails */ @Override public void close() throws Exception { LOG.info("Closing the slot manager."); suspend(); }
3.26
flink_DeclarativeSlotManager_freeSlot_rdh
/** * Free the given slot from the given allocation. If the slot is still allocated by the given * allocation id, then the slot will be marked as free and will be subject to new slot requests. * * @param slotId * identifying the slot to free * @param allocationId * with which the slot is presumably allocated */ @Override public void freeSlot(SlotID slotId, AllocationID allocationId) { checkInit(); LOG.debug("Freeing slot {}.", slotId); slotTracker.notifyFree(slotId); checkResourceRequirementsWithDelay(); }
3.26
flink_DeclarativeSlotManager_clearResourceRequirements_rdh
// --------------------------------------------------------------------------------------------- // Public API // --------------------------------------------------------------------------------------------- @Override public void clearResourceRequirements(JobID jobId) { checkInit(); maybeReclaimInactiveSlots(jobId); jobMasterTargetAddresses.remove(jobId); resourceTracker.notifyResourceRequirements(jobId, Collections.emptyList()); }
3.26
flink_DeclarativeSlotManager_getNumberRegisteredSlots_rdh
// --------------------------------------------------------------------------------------------- // Legacy APIs // --------------------------------------------------------------------------------------------- @Override public int getNumberRegisteredSlots() { return taskExecutorManager.getNumberRegisteredSlots(); }
3.26
flink_DeclarativeSlotManager_checkResourceRequirements_rdh
/** * Matches resource requirements against available resources. In a first round requirements are * matched against free slot, and any match results in a slot allocation. The remaining * unfulfilled requirements are matched against pending slots, allocating more workers if no * matching pending slot could be found. If the requirements for a job could not be fulfilled * then a notification is sent to the job master informing it as such. * * <p>Performance notes: At it's core this method loops, for each job, over all free/pending * slots for each required slot, trying to find a matching slot. One should generally go in with * the assumption that this runs in numberOfJobsRequiringResources * numberOfRequiredSlots * * numberOfFreeOrPendingSlots. This is especially important when dealing with pending slots, as * matches between requirements and pending slots are not persisted and recomputed on each call. * This may required further refinements in the future; e.g., persisting the matches between * requirements and pending slots, or not matching against pending slots at all. * * <p>When dealing with unspecific resource profiles (i.e., {@link ResourceProfile#ANY}/{@link ResourceProfile#UNKNOWN}), then the number of free/pending slots is not relevant because we * only need exactly 1 comparison to determine whether a slot can be fulfilled or not, since * they are all the same anyway. * * <p>When dealing with specific resource profiles things can be a lot worse, with the classical * cases where either no matches are found, or only at the very end of the iteration. In the * absolute worst case, with J jobs, requiring R slots each with a unique resource profile such * each pair of these profiles is not matching, and S free/pending slots that don't fulfill any * requirement, then this method does a total of J*R*S resource profile comparisons. * * <p>DO NOT call this method directly. Use {@link #checkResourceRequirementsWithDelay()} * instead. */ private void checkResourceRequirements() { final Map<JobID, Collection<ResourceRequirement>> missingResources = resourceTracker.getMissingResources(); if (missingResources.isEmpty()) { taskExecutorManager.clearPendingTaskManagerSlots(); return; } final Map<JobID, ResourceCounter> unfulfilledRequirements = new LinkedHashMap<>(); for (Map.Entry<JobID, Collection<ResourceRequirement>> resourceRequirements : missingResources.entrySet()) { final JobID jobId = resourceRequirements.getKey(); final ResourceCounter unfulfilledJobRequirements = tryAllocateSlotsForJob(jobId, resourceRequirements.getValue()); if (!unfulfilledJobRequirements.isEmpty()) { unfulfilledRequirements.put(jobId, unfulfilledJobRequirements); } }if (unfulfilledRequirements.isEmpty()) { return;} ResourceCounter freePendingSlots = ResourceCounter.withResources(taskExecutorManager.getPendingTaskManagerSlots().stream().collect(Collectors.groupingBy(PendingTaskManagerSlot::getResourceProfile, Collectors.summingInt(x -> 1)))); for (Map.Entry<JobID, ResourceCounter> unfulfilledRequirement : unfulfilledRequirements.entrySet()) { freePendingSlots = tryFulfillRequirementsWithPendingSlots(unfulfilledRequirement.getKey(), unfulfilledRequirement.getValue().getResourcesWithCount(), freePendingSlots); } if (!freePendingSlots.isEmpty()) { taskExecutorManager.removePendingTaskManagerSlots(freePendingSlots); } }
3.26
flink_DeclarativeSlotManager_suspend_rdh
/** * Suspends the component. This clears the internal state of the slot manager. */ @Override public void suspend() { if (!started) {return; } LOG.info("Suspending the slot manager."); slotManagerMetricGroup.close(); resourceTracker.clear(); if (taskExecutorManager != null) { taskExecutorManager.close(); for (InstanceID registeredTaskManager : taskExecutorManager.getTaskExecutors()) { unregisterTaskManager(registeredTaskManager, new SlotManagerException("The slot manager is being suspended.")); } } taskExecutorManager = null; resourceManagerId = null; resourceEventListener = null; blockedTaskManagerChecker = null; started = false; }
3.26
flink_DeclarativeSlotManager_internalTryAllocateSlots_rdh
/** * Tries to allocate slots for the given requirement. If there are not enough slots available, * the resource manager is informed to allocate more resources. * * @param jobId * job to allocate slots for * @param targetAddress * address of the jobmaster * @param resourceRequirement * required slots * @return the number of missing slots */ private int internalTryAllocateSlots(JobID jobId, String targetAddress, ResourceRequirement resourceRequirement) { final ResourceProfile v15 = resourceRequirement.getResourceProfile(); // Use LinkedHashMap to retain the original order final Map<SlotID, TaskManagerSlotInformation> availableSlots = new LinkedHashMap<>(); for (TaskManagerSlotInformation freeSlot : slotTracker.getFreeSlots()) { if (!isBlockedTaskManager(freeSlot.getTaskManagerConnection().getResourceID())) { availableSlots.put(freeSlot.getSlotId(), freeSlot); } } int numUnfulfilled = 0; for (int v19 = 0; v19 < resourceRequirement.getNumberOfRequiredSlots(); v19++) { final Optional<TaskManagerSlotInformation> reservedSlot = slotMatchingStrategy.findMatchingSlot(v15, availableSlots.values(), this::getNumberRegisteredSlotsOf); if (reservedSlot.isPresent()) { allocateSlot(reservedSlot.get(), jobId, targetAddress, v15); availableSlots.remove(reservedSlot.get().getSlotId()); } else { // exit loop early; we won't find a matching slot for this requirement int numRemaining = resourceRequirement.getNumberOfRequiredSlots() - v19; numUnfulfilled += numRemaining; break; } } return numUnfulfilled; }
3.26
flink_DeclarativeSlotManager_allocateSlot_rdh
/** * Allocates the given slot. This entails sending a registration message to the task manager and * treating failures. * * @param taskManagerSlot * slot to allocate * @param jobId * job for which the slot should be allocated for * @param targetAddress * address of the job master * @param resourceProfile * resource profile for the requirement for which the slot is used */private void allocateSlot(TaskManagerSlotInformation taskManagerSlot, JobID jobId, String targetAddress, ResourceProfile resourceProfile) { final SlotID slotId = taskManagerSlot.getSlotId(); LOG.debug("Starting allocation of slot {} for job {} with resource profile {}.", slotId, jobId, resourceProfile); final InstanceID instanceId = taskManagerSlot.getInstanceId(); if (!taskExecutorManager.isTaskManagerRegistered(instanceId)) { throw new IllegalStateException(("Could not find a registered task manager for instance id " + instanceId) + '.'); } final TaskExecutorConnection taskExecutorConnection = taskManagerSlot.getTaskManagerConnection(); final TaskExecutorGateway gateway = taskExecutorConnection.getTaskExecutorGateway(); final AllocationID allocationId = new AllocationID(); slotTracker.notifyAllocationStart(slotId, jobId); taskExecutorManager.markUsed(instanceId); pendingSlotAllocations.put(slotId, allocationId); // RPC call to the task manager CompletableFuture<Acknowledge> requestFuture = gateway.requestSlot(slotId, jobId, allocationId, resourceProfile, targetAddress, resourceManagerId, taskManagerRequestTimeout); CompletableFuture<Void> slotAllocationResponseProcessingFuture = requestFuture.handleAsync((Acknowledge acknowledge,Throwable throwable) -> { final AllocationID currentAllocationForSlot = pendingSlotAllocations.get(slotId); if ((currentAllocationForSlot == null) || (!currentAllocationForSlot.equals(allocationId))) { LOG.debug("Ignoring slot allocation update from task executor {} for slot {} and job {}, because the allocation was already completed or cancelled.", instanceId, slotId, jobId); return null; } if (acknowledge != null) { LOG.trace("Completed allocation of slot {} for job {}.", slotId, jobId); slotTracker.notifyAllocationComplete(slotId, jobId); } else { if (throwable instanceof SlotOccupiedException) { SlotOccupiedException exception = ((SlotOccupiedException) (throwable)); LOG.debug("Tried allocating slot {} for job {}, but it was already allocated for job {}.", slotId, jobId, exception.getJobId()); // report as a slot status to force the state transition // this could be a problem if we ever assume that the task // executor always reports about all slots slotTracker.notifySlotStatus(Collections.singleton(new SlotStatus(slotId, taskManagerSlot.getResourceProfile(), exception.getJobId(), exception.getAllocationId()))); } else { LOG.warn("Slot allocation for slot {} for job {} failed.", slotId, jobId, throwable); slotTracker.notifyFree(slotId); } checkResourceRequirementsWithDelay(); } return null; }, mainThreadExecutor); FutureUtils.assertNoException(slotAllocationResponseProcessingFuture); }
3.26
flink_FrontMetricGroup_getLogicalScope_rdh
/** * * @deprecated work against the LogicalScopeProvider interface instead. */ @Override @Deprecated public String getLogicalScope(CharacterFilter filter, char delimiter) { return parentMetricGroup.getLogicalScope(getDelimiterFilter(this.settings, filter), delimiter, this.settings.getReporterIndex()); }
3.26
flink_SchemaTestUtils_open_rdh
/** * Opens the given schema with a mock initialization context. * * @param schema * to open * @throws RuntimeException * if the schema throws an exception */ public static void open(DeserializationSchema<?> schema) { try { schema.open(new DummyInitializationContext()); } catch (Exception e) {throw new RuntimeException(e); } }
3.26
flink_TableSinkFactory_createTableSink_rdh
/** * Creates and configures a {@link TableSink} based on the given {@link Context}. * * @param context * context of this table sink. * @return the configured table sink. */ default TableSink<T> createTableSink(Context context) {return createTableSink(context.getObjectIdentifier().toObjectPath(), context.getTable()); }
3.26
flink_DataStreamSink_name_rdh
/** * Sets the name of this sink. This name is used by the visualization and logging during * runtime. * * @return The named sink. */ public DataStreamSink<T> name(String name) { transformation.setName(name); return this; }
3.26
flink_DataStreamSink_disableChaining_rdh
/** * Turns off chaining for this operator so thread co-location will not be used as an * optimization. * * <p>Chaining can be turned off for the whole job by {@link org.apache.flink.streaming.api.environment.StreamExecutionEnvironment#disableOperatorChaining()} * however it is not advised for performance considerations. * * @return The sink with chaining disabled */ @PublicEvolving public DataStreamSink<T> disableChaining() { this.transformation.setChainingStrategy(ChainingStrategy.NEVER); return this; } /** * Sets the slot sharing group of this operation. Parallel instances of operations that are in * the same slot sharing group will be co-located in the same TaskManager slot, if possible. * * <p>Operations inherit the slot sharing group of input operations if all input operations are * in the same slot sharing group and no slot sharing group was explicitly specified. * * <p>Initially an operation is in the default slot sharing group. An operation can be put into * the default group explicitly by setting the slot sharing group to {@code "default"}
3.26
flink_DataStreamSink_setDescription_rdh
/** * Sets the description for this sink. * * <p>Description is used in json plan and web ui, but not in logging and metrics where only * name is available. Description is expected to provide detailed information about the sink, * while name is expected to be more simple, providing summary information only, so that we can * have more user-friendly logging messages and metric tags without losing useful messages for * debugging. * * @param description * The description for this sink. * @return The sink with new description. */ @PublicEvolving public DataStreamSink<T> setDescription(String description) { transformation.setDescription(description); return this; }
3.26
flink_DataStreamSink_setParallelism_rdh
/** * Sets the parallelism for this sink. The degree must be higher than zero. * * @param parallelism * The parallelism for this sink. * @return The sink with set parallelism. */ public DataStreamSink<T> setParallelism(int parallelism) { transformation.setParallelism(parallelism); return this; }
3.26
flink_DataStreamSink_uid_rdh
/** * Sets an ID for this operator. * * <p>The specified ID is used to assign the same operator ID across job submissions (for * example when starting a job from a savepoint). * * <p><strong>Important</strong>: this ID needs to be unique per transformation and job. * Otherwise, job submission will fail. * * @param uid * The unique user-specified ID of this transformation. * @return The operator with the specified ID. */ @PublicEvolving public DataStreamSink<T> uid(String uid) { transformation.setUid(uid); return this; }
3.26
flink_DataStreamSink_setUidHash_rdh
/** * Sets an user provided hash for this operator. This will be used AS IS the create the * JobVertexID. * * <p>The user provided hash is an alternative to the generated hashes, that is considered when * identifying an operator through the default hash mechanics fails (e.g. because of changes * between Flink versions). * * <p><strong>Important</strong>: this should be used as a workaround or for trouble shooting. * The provided hash needs to be unique per transformation and job. Otherwise, job submission * will fail. Furthermore, you cannot assign user-specified hash to intermediate nodes in an * operator chain and trying so will let your job fail. * * <p>A use case for this is in migration between Flink versions or changing the jobs in a way * that changes the automatically generated hashes. In this case, providing the previous hashes * directly through this method (e.g. obtained from old logs) can help to reestablish a lost * mapping from states to their target operator. * * @param uidHash * The user provided hash for this operator. This will become the JobVertexID, * which is shown in the logs and web ui. * @return The operator with the user provided hash. */ @PublicEvolving public DataStreamSink<T> setUidHash(String uidHash) { if (!(transformation instanceof LegacySinkTransformation)) { throw new UnsupportedOperationException("Cannot set a custom UID hash on a non-legacy sink"); } transformation.setUidHash(uidHash); return this; }
3.26
flink_DataStreamSink_setMaxParallelism_rdh
/** * Sets the max parallelism for this sink. * * <p>The maximum parallelism specifies the upper bound for dynamic scaling. The degree must be * higher than zero and less than the upper bound. * * @param maxParallelism * The max parallelism for this sink. * @return The sink with set parallelism. */ public DataStreamSink<T> setMaxParallelism(int maxParallelism) { OperatorValidationUtils.validateMaxParallelism(maxParallelism, true); transformation.setMaxParallelism(maxParallelism); return this; }
3.26
flink_DataStreamSink_setResources_rdh
/** * Sets the resources for this sink, the minimum and preferred resources are the same by * default. * * @param resources * The resources for this sink. * @return The sink with set minimum and preferred resources. */ private DataStreamSink<T> setResources(ResourceSpec resources) { transformation.setResources(resources, resources); return this; }
3.26
flink_DataStreamSink_m1_rdh
/** * Returns the transformation that contains the actual sink operator of this sink. */ @Internal public Transformation<T> m1() { return transformation; }
3.26
flink_DataStreamSink_slotSharingGroup_rdh
/** * Sets the slot sharing group of this operation. Parallel instances of operations that are in * the same slot sharing group will be co-located in the same TaskManager slot, if possible. * * <p>Operations inherit the slot sharing group of input operations if all input operations are * in the same slot sharing group and no slot sharing group was explicitly specified. * * <p>Initially an operation is in the default slot sharing group. An operation can be put into * the default group explicitly by setting the slot sharing group with name {@code "default"}. * * @param slotSharingGroup * which contains name and its resource spec. */ @PublicEvolving public DataStreamSink<T> slotSharingGroup(SlotSharingGroup slotSharingGroup) { transformation.setSlotSharingGroup(slotSharingGroup); return this; }
3.26
flink_VertexFlameGraph_waiting_rdh
// Indicates that it is waiting for the first samples to creating the flame graph public static VertexFlameGraph waiting() { return new VertexFlameGraph(-3, null);}
3.26
flink_PackagingTestUtils_assertJarContainsServiceEntry_rdh
/** * Verifies that the given jar contains a service entry file for the given service. * * <p>Caution: This only checks that the file exists; the content is not verified. */ public static void assertJarContainsServiceEntry(Path jarPath, Class<?> service) throws Exception { final URI jar = jarPath.toUri(); try (final FileSystem fileSystem = FileSystems.newFileSystem(new URI("jar:file", jar.getHost(), jar.getPath(), jar.getFragment()), Collections.emptyMap())) { assertThat(fileSystem.getPath("META-INF", "services", service.getName())).exists(); } }
3.26
flink_PackagingTestUtils_assertJarContainsOnlyFilesMatching_rdh
/** * Verifies that all files in the jar match one of the provided allow strings. * * <p>An allow item ending on a {@code "/"} is treated as an allowed parent directory. * Otherwise, it is treated as an allowed file. * * <p>For example, given a jar containing a file {@code META-INF/NOTICES}: * * <p>These would pass: * * <ul> * <li>{@code "META-INF/"} * <li>{@code "META-INF/NOTICES"} * </ul> * * <p>These would fail: * * <ul> * <li>{@code "META-INF"} * <li>{@code "META-INF/NOTICE"} * <li>{@code "META-INF/NOTICES/"} * </ul> */ public static void assertJarContainsOnlyFilesMatching(Path jarPath, Collection<String> allowedPaths) throws Exception { final URI jar = jarPath.toUri(); try (final FileSystem fileSystem = FileSystems.newFileSystem(new URI("jar:file", jar.getHost(), jar.getPath(), jar.getFragment()), Collections.emptyMap())) { try (Stream<Path> walk = Files.walk(fileSystem.getPath("/"))) { walk.filter(file -> !Files.isDirectory(file)).map(file -> file.toAbsolutePath().toString()).map(file -> file.startsWith("/") ? file.substring(1) : file).forEach(file -> assertThat(allowedPaths).as("Bad file in JAR: %s", file).anySatisfy(allowedPath -> { if (allowedPath.endsWith("/")) { assertThat(file).startsWith(allowedPath); } else { assertThat(file).isEqualTo(allowedPath); }})); } } }
3.26