name
stringlengths
12
178
code_snippet
stringlengths
8
36.5k
score
float64
3.26
3.68
flink_ZooKeeperStateHandleStore_hasLock_rdh
// --------------------------------------------------------------------------------------------------------- // Protected methods // --------------------------------------------------------------------------------------------------------- /** * Checks whether a lock is created for this instance on the passed ZooKeeper node. * * @param rootPath * The node that shall be checked. * @return {@code true} if the lock exists; {@code false} otherwise. */ private boolean hasLock(String rootPath) throws Exception { final String normalizedRootPath = normalizePath(rootPath); try { return client.checkExists().forPath(getInstanceLockPath(normalizedRootPath)) != null; } catch (KeeperException.NoNodeException e) { // this is the case if the node is marked for deletion or already deleted return false; } }
3.26
flink_ZooKeeperStateHandleStore_writeStoreHandleTransactionally_rdh
// this method is provided for the sole purpose of easier testing @VisibleForTesting void writeStoreHandleTransactionally(String path, byte[] serializedStoreHandle) throws Exception { // Write state handle (not the actual state) to ZooKeeper. This is expected to be smaller // than the state itself. This level of indirection makes sure that data in ZooKeeper is // small, because ZooKeeper is designed for data in the KB range, but the state can be // larger. Create the lock node in a transaction with the actual state node. That way we can // prevent race conditions with a concurrent delete operation. client.inTransaction().create().withMode(CreateMode.PERSISTENT).forPath(path, serializedStoreHandle).and().create().withMode(CreateMode.PERSISTENT).forPath(getRootLockPath(path)).and().create().withMode(CreateMode.EPHEMERAL).forPath(getInstanceLockPath(path)).and().commit();}
3.26
flink_FsStateBackend_getBasePath_rdh
// ------------------------------------------------------------------------ // Properties // ------------------------------------------------------------------------ /** * Gets the base directory where all the checkpoints are stored. The job-specific checkpoint * directory is created inside this directory. * * @return The base directory for checkpoints. * @deprecated Deprecated in favor of {@link #getCheckpointPath()}. */ @Deprecated public Path getBasePath() { return getCheckpointPath(); }
3.26
flink_FsStateBackend_toString_rdh
// ------------------------------------------------------------------------ // utilities // ------------------------------------------------------------------------ @Override public String toString() { return (((((("File State Backend (" + "checkpoints: '") + getCheckpointPath()) + "', savepoints: '") + getSavepointPath()) + ", fileStateThreshold: ") + fileStateThreshold) + ")"; }
3.26
flink_FsStateBackend_createCheckpointStorage_rdh
// ------------------------------------------------------------------------ // initialization and cleanup // ------------------------------------------------------------------------ @Override public CheckpointStorageAccess createCheckpointStorage(JobID jobId) throws IOException { checkNotNull(jobId, "jobId"); return new FsCheckpointStorageAccess(getCheckpointPath(), getSavepointPath(), jobId, getMinFileSizeThreshold(), getWriteBufferSize()); }
3.26
flink_FsStateBackend_createKeyedStateBackend_rdh
// ------------------------------------------------------------------------ // state holding structures // ------------------------------------------------------------------------ @Override public <K> AbstractKeyedStateBackend<K> createKeyedStateBackend(Environment env, JobID jobID, String operatorIdentifier, TypeSerializer<K> keySerializer, int numberOfKeyGroups, KeyGroupRange keyGroupRange, TaskKvStateRegistry kvStateRegistry, TtlTimeProvider ttlTimeProvider, MetricGroup metricGroup, @Nonnull Collection<KeyedStateHandle> stateHandles, CloseableRegistry cancelStreamRegistry) throws BackendBuildingException { TaskStateManager taskStateManager = env.getTaskStateManager(); LocalRecoveryConfig localRecoveryConfig = taskStateManager.createLocalRecoveryConfig(); HeapPriorityQueueSetFactory priorityQueueSetFactory = new HeapPriorityQueueSetFactory(keyGroupRange, numberOfKeyGroups, 128); LatencyTrackingStateConfig v5 = latencyTrackingConfigBuilder.setMetricGroup(metricGroup).build(); return new HeapKeyedStateBackendBuilder<>(kvStateRegistry, keySerializer, env.getUserCodeClassLoader().asClassLoader(), numberOfKeyGroups, keyGroupRange, env.getExecutionConfig(), ttlTimeProvider, v5, stateHandles, AbstractStateBackend.getCompressionDecorator(env.getExecutionConfig()), localRecoveryConfig, priorityQueueSetFactory, m0(), cancelStreamRegistry).build(); }
3.26
flink_FsStateBackend_getWriteBufferSize_rdh
/** * Gets the write buffer size for created checkpoint stream. * * <p>If not explicitly configured, this is the default value of {@link CheckpointingOptions#FS_WRITE_BUFFER_SIZE}. * * @return The write buffer size, in bytes. */ public int getWriteBufferSize() { return writeBufferSize >= 0 ? writeBufferSize : CheckpointingOptions.FS_WRITE_BUFFER_SIZE.defaultValue(); }
3.26
flink_FsStateBackend_m0_rdh
/** * Gets whether the key/value data structures are asynchronously snapshotted, which is always * true for this state backend. */ public boolean m0() { return true; }
3.26
flink_FsStateBackend_getCheckpointPath_rdh
/** * Gets the base directory where all the checkpoints are stored. The job-specific checkpoint * directory is created inside this directory. * * @return The base directory for checkpoints. */ @Nonnull @Override public Path getCheckpointPath() { // we know that this can never be null by the way of constructor checks // noinspection ConstantConditions return super.getCheckpointPath(); }
3.26
flink_FsStateBackend_getMinFileSizeThreshold_rdh
/** * Gets the threshold below which state is stored as part of the metadata, rather than in files. * This threshold ensures that the backend does not create a large amount of very small files, * where potentially the file pointers are larger than the state itself. * * <p>If not explicitly configured, this is the default value of {@link CheckpointingOptions#FS_SMALL_FILE_THRESHOLD}. * * @return The file size threshold, in bytes. */ public int getMinFileSizeThreshold() { return fileStateThreshold >= 0 ? fileStateThreshold : MathUtils.checkedDownCast(FS_SMALL_FILE_THRESHOLD.defaultValue().getBytes()); }
3.26
flink_FsStateBackend_configure_rdh
// ------------------------------------------------------------------------ // Reconfiguration // ------------------------------------------------------------------------ /** * Creates a copy of this state backend that uses the values defined in the configuration for * fields where that were not specified in this state backend. * * @param config * the configuration * @return The re-configured variant of the state backend */ @Override public FsStateBackend configure(ReadableConfig config, ClassLoader classLoader) {return new FsStateBackend(this, config, classLoader); }
3.26
flink_CompiledPlan_printJsonString_rdh
/** * Like {@link #asJsonString()}, but prints the result to {@link System#out}. */ default CompiledPlan printJsonString() { System.out.println(this.asJsonString()); return this; }
3.26
flink_CompiledPlan_writeToFile_rdh
/** * Writes this plan to a file using the JSON representation. This operation will fail if the * file already exists, even if the content is different from this plan. * * @param file * the target file * @throws TableException * if the file cannot be written. */ default void writeToFile(File file) { writeToFile(file, false); }
3.26
flink_ThreadInfoSample_m0_rdh
/** * Constructs a collection of {@link ThreadInfoSample}s from a collection of {@link ThreadInfo} * samples. * * @param threadInfos * the collection of {@link ThreadInfo}. * @return the collection of the corresponding {@link ThreadInfoSample}s. */ public static Map<Long, ThreadInfoSample> m0(Collection<ThreadInfo> threadInfos) { return threadInfos.stream().collect(Collectors.toMap(ThreadInfo::getThreadId, threadInfo -> new ThreadInfoSample(threadInfo.getThreadState(), threadInfo.getStackTrace()))); }
3.26
flink_RecordWriter_close_rdh
/** * This is used to broadcast streaming Watermarks in-band with records. */public abstract void broadcastEmit(T record) throws IOException; /** * Closes the writer. This stops the flushing thread (if there is one). */ public void close() { // make sure we terminate the thread in any case if (outputFlusher != null) { outputFlusher.terminate(); try { outputFlusher.join(); } catch (InterruptedException e) { // ignore on close // restore interrupt flag to fast exit further blocking calls Thread.currentThread().interrupt(); } } }
3.26
flink_RecordWriter_notifyFlusherException_rdh
/** * Notifies the writer that the output flusher thread encountered an exception. * * @param t * The exception to report. */ private void notifyFlusherException(Throwable t) { if (flusherException == null) { LOG.error("An exception happened while flushing the outputs", t); flusherException = t; volatileFlusherException = t;} }
3.26
flink_RecordWriter_setMetricGroup_rdh
/** * Sets the metric group for this RecordWriter. */ public void setMetricGroup(TaskIOMetricGroup metrics) { targetPartition.setMetricGroup(metrics); }
3.26
flink_RecordWriter_m2_rdh
/** * This is used to send LatencyMarks to a random target channel. */ public void m2(T record) throws IOException { checkErroneous(); int targetSubpartition = rng.nextInt(numberOfChannels); emit(record, targetSubpartition); }
3.26
flink_ThrowingRunnable_unchecked_rdh
/** * Converts a {@link ThrowingRunnable} into a {@link Runnable} which throws all checked * exceptions as unchecked. * * @param throwingRunnable * to convert into a {@link Runnable} * @return {@link Runnable} which throws all checked exceptions as unchecked. */static Runnable unchecked(ThrowingRunnable<?> throwingRunnable) { return () -> { try { throwingRunnable.run(); } catch (Throwable t) { ExceptionUtils.rethrow(t); } }; }
3.26
flink_RocksDBPriorityQueueConfig_getRocksDBPriorityQueueSetCacheSize_rdh
/** * Gets the cache size of rocksDB priority queue set. It will fall back to the default value if * it is not explicitly set. */ public int getRocksDBPriorityQueueSetCacheSize() { return rocksDBPriorityQueueSetCacheSize == UNDEFINED_ROCKSDB_PRIORITY_QUEUE_SET_CACHE_SIZE ? ROCKSDB_TIMER_SERVICE_FACTORY_CACHE_SIZE.defaultValue() : rocksDBPriorityQueueSetCacheSize; }
3.26
flink_RocksDBPriorityQueueConfig_getPriorityQueueStateType_rdh
/** * Gets the type of the priority queue state. It will fall back to the default value if it is * not explicitly set. */ public PriorityQueueStateType getPriorityQueueStateType() { return priorityQueueStateType == null ? TIMER_SERVICE_FACTORY.defaultValue() : priorityQueueStateType; }
3.26
flink_ProjectedRowData_from_rdh
/** * Create an empty {@link ProjectedRowData} starting from a {@link Projection}. * * <p>Throws {@link IllegalStateException} if the provided {@code projection} array contains * nested projections, which are not supported by {@link ProjectedRowData}. * * @see Projection * @see ProjectedRowData */ public static ProjectedRowData from(Projection projection) { return new ProjectedRowData(projection.toTopLevelIndexes()); }
3.26
flink_ProjectedRowData_getArity_rdh
// --------------------------------------------------------------------------------------------- @Override public int getArity() { return indexMapping.length; }
3.26
flink_WebMonitorUtils_loadWebSubmissionExtension_rdh
/** * Loads the {@link WebMonitorExtension} which enables web submission. * * @param leaderRetriever * to retrieve the leader * @param timeout * for asynchronous requests * @param responseHeaders * for the web submission handlers * @param localAddressFuture * of the underlying REST server endpoint * @param uploadDir * where the web submission handler store uploaded jars * @param executor * to run asynchronous operations * @param configuration * used to instantiate the web submission extension * @return Web submission extension * @throws FlinkException * if the web submission extension could not be loaded */ public static WebMonitorExtension loadWebSubmissionExtension(GatewayRetriever<? extends DispatcherGateway> leaderRetriever, Time timeout, Map<String, String> responseHeaders, CompletableFuture<String> localAddressFuture, Path uploadDir, Executor executor, Configuration configuration) throws FlinkException { if (isFlinkRuntimeWebInClassPath()) { try { final Constructor<?> webSubmissionExtensionConstructor = Class.forName("org.apache.flink.runtime.webmonitor.WebSubmissionExtension").getConstructor(Configuration.class, GatewayRetriever.class, Map.class, CompletableFuture.class, Path.class, Executor.class, Time.class); return ((WebMonitorExtension) (webSubmissionExtensionConstructor.newInstance(configuration, leaderRetriever, responseHeaders, localAddressFuture, uploadDir, executor, timeout))); } catch (ClassNotFoundException | NoSuchMethodException | InstantiationException | InvocationTargetException | IllegalAccessException e) { throw new FlinkException("Could not load web submission extension.", e); } } else { throw new FlinkException("The module flink-runtime-web could not be found in the class path. Please add " + "this jar in order to enable web based job submission."); } }
3.26
flink_WebMonitorUtils_find_rdh
/** * Finds the Flink log directory using log.file Java property that is set during startup. */ public static LogFileLocation find(Configuration config) { final String logEnv = "log.file"; String logFilePath = System.getProperty(logEnv); if (logFilePath == null) { LOG.warn("Log file environment variable '{}' is not set.", logEnv); logFilePath = config.getString(WebOptions.LOG_PATH);} // not configured, cannot serve log files if ((logFilePath == null) || (logFilePath.length() < 4)) { LOG.warn("JobManager log files are unavailable in the web dashboard. " + "Log file location not found in environment variable '{}' or configuration key '{}'.", logEnv, WebOptions.LOG_PATH.key()); return new LogFileLocation(null, null, null); } String outFilePath = logFilePath.substring(0, logFilePath.length() - 3).concat("out"); File logFile = resolveFileLocation(logFilePath); File logDir = null; if (logFile != null) { logDir = resolveFileLocation(logFile.getParent()); } LOG.info("Determined location of main cluster component log file: {}", logFilePath); LOG.info("Determined location of main cluster component stdout file: {}", outFilePath); return new LogFileLocation(logFile, resolveFileLocation(outFilePath), logDir); }
3.26
flink_WebMonitorUtils_resolveFileLocation_rdh
/** * Verify log file location. * * @param logFilePath * Path to log file * @return File or null if not a valid log file */ private static File resolveFileLocation(String logFilePath) { File logFile = new File(logFilePath); return logFile.exists() && logFile.canRead() ? logFile : null; }
3.26
flink_WebMonitorUtils_isFlinkRuntimeWebInClassPath_rdh
/** * Returns {@code true} if the optional dependency {@code flink-runtime-web} is in the * classpath. */ private static boolean isFlinkRuntimeWebInClassPath() { try { Class.forName(WEB_FRONTEND_BOOTSTRAP_CLASS_FQN); return true; } catch (ClassNotFoundException e) { // class not found means that there is no flink-runtime-web in the classpath return false; } }
3.26
flink_MemoryMappedBoundedData_finishWrite_rdh
/** * Finishes the current region and prevents further writes. After calling this method, further * calls to {@link #writeBuffer(Buffer)} will fail. */ @Override public void finishWrite() throws IOException { assert currentBuffer != null; currentBuffer.flip(); fullBuffers.add(currentBuffer); currentBuffer = null;// fail further writes fast file.close();// won't map further regions from now on }
3.26
flink_MemoryMappedBoundedData_createWithRegionSize_rdh
/** * Creates new MemoryMappedBoundedData, creating a memory mapped file at the given path. Each * mapped region (= ByteBuffer) will be of the given size. */ public static MemoryMappedBoundedData createWithRegionSize(Path memMappedFilePath, int regionSize) throws IOException { final FileChannel fileChannel = FileChannel.open(memMappedFilePath, StandardOpenOption.READ, StandardOpenOption.WRITE, StandardOpenOption.CREATE_NEW); return new MemoryMappedBoundedData(memMappedFilePath, fileChannel, regionSize); }
3.26
flink_MemoryMappedBoundedData_create_rdh
// ------------------------------------------------------------------------ // Factories // ------------------------------------------------------------------------ /** * Creates new MemoryMappedBoundedData, creating a memory mapped file at the given path. */ public static MemoryMappedBoundedData create(Path memMappedFilePath) throws IOException { return createWithRegionSize(memMappedFilePath, Integer.MAX_VALUE); }
3.26
flink_MemoryMappedBoundedData_alignSize_rdh
/** * Rounds the size down to the next multiple of the {@link #PAGE_SIZE}. We need to round down * here to not exceed the original maximum size value. Otherwise, values like INT_MAX would * round up to overflow the valid maximum size of a memory mapping region in Java. */ private static int alignSize(int maxRegionSize) { checkArgument(maxRegionSize >= PAGE_SIZE); return maxRegionSize - (maxRegionSize % PAGE_SIZE); }
3.26
flink_MemoryMappedBoundedData_getSize_rdh
/** * Gets the number of bytes of all written data (including the metadata in the buffer headers). */ @Override public long getSize() { long size = 0L; for (ByteBuffer bb : fullBuffers) { size += bb.remaining(); } if (currentBuffer != null) { size += currentBuffer.position(); } return size; }
3.26
flink_MemoryMappedBoundedData_close_rdh
/** * Unmaps the file from memory and deletes the file. After calling this method, access to any * ByteBuffer obtained from this instance will cause a segmentation fault. */ public void close() throws IOException { IOUtils.closeQuietly(file);// in case we dispose before finishing writes for (ByteBuffer bb : fullBuffers) {PlatformDependent.freeDirectBuffer(bb); } fullBuffers.clear(); if (currentBuffer != null) { PlatformDependent.freeDirectBuffer(currentBuffer); currentBuffer = null; } // To make this compatible with all versions of Windows, we must wait with // deleting the file until it is unmapped. // See also // https://stackoverflow.com/questions/11099295/file-flag-delete-on-close-and-memory-mapped-files/51649618#51649618 Files.delete(filePath); }
3.26
flink_WindowedOperatorTransformation_reduce_rdh
/** * Applies the given window function to each window. The window function is called for each * evaluation of the window for each key individually. The output of the window function is * interpreted as a regular non-windowed stream. * * <p>Arriving data is incrementally aggregated using the given reducer. * * @param reduceFunction * The reduce function that is used for incremental aggregation. * @param function * The window function. * @return The data stream that is the result of applying the window function to the window. */ @Internal public <R> BootstrapTransformation<T> reduce(ReduceFunction<T> reduceFunction, ProcessWindowFunction<T, R, K, W> function) { // clean the closures function = input.clean(function); reduceFunction = input.clean(reduceFunction); WindowOperator<K, T, ?, R, W> operator = builder.reduce(reduceFunction, function); SavepointWriterOperatorFactory factory = (timestamp, path) -> new StateBootstrapWrapperOperator<>(timestamp, path, operator); return new BootstrapTransformation<>(input, operatorMaxParallelism, timestamper, factory, keySelector, keyType); }
3.26
flink_WindowedOperatorTransformation_process_rdh
/** * Applies the given window function to each window. The window function is called for each * evaluation of the window for each key individually. The output of the window function is * interpreted as a regular non-windowed stream. * * <p>Note that this function requires that all data in the windows is buffered until the window * is evaluated, as the function provides no means of incremental aggregation. * * @param function * The window function. * @return The data stream that is the result of applying the window function to the window. */@PublicEvolving public <R> BootstrapTransformation<T> process(ProcessWindowFunction<T, R, K, W> function) { WindowOperator<K, T, ?, R, W> operator = builder.process(function); SavepointWriterOperatorFactory factory = (timestamp, path) -> new StateBootstrapWrapperOperator<>(timestamp, path, operator); return new BootstrapTransformation<>(input, operatorMaxParallelism, timestamper, factory, keySelector, keyType); }
3.26
flink_WindowedOperatorTransformation_apply_rdh
/** * Applies the given window function to each window. The window function is called for each * evaluation of the window for each key individually. The output of the window function is * interpreted as a regular non-windowed stream. * * <p>Note that this function requires that all data in the windows is buffered until the window * is evaluated, as the function provides no means of incremental aggregation. * * @param function * The window function. * @param resultType * Type information for the result type of the window function * @return The data stream that is the result of applying the window function to the window. */ public <R> BootstrapTransformation<T> apply(WindowFunction<T, R, K, W> function, TypeInformation<R> resultType) { function = input.clean(function); WindowOperator<K, T, ?, R, W> operator = builder.apply(function); SavepointWriterOperatorFactory factory = (timestamp, path) -> new StateBootstrapWrapperOperator<>(timestamp, path, operator); return new BootstrapTransformation<>(input, operatorMaxParallelism, timestamper, factory, keySelector, keyType); }
3.26
flink_WindowedOperatorTransformation_m0_rdh
/** * Applies the given window function to each window. The window function is called for each * evaluation of the window for each key individually. The output of the window function is * interpreted as a regular non-windowed stream. * * <p>Arriving data is incrementally aggregated using the given aggregate function. This means * that the window function typically has only a single value to process when called. * * @param aggFunction * The aggregate function that is used for incremental aggregation. * @param windowFunction * The window function. * @return The data stream that is the result of applying the window function to the window. * @param <ACC> * The type of the AggregateFunction's accumulator * @param <V> * The type of AggregateFunction's result, and the WindowFunction's input * @param <R> * The type of the elements in the resulting stream, equal to the WindowFunction's * result type */ @PublicEvolving public <ACC, V, R> BootstrapTransformation<T> m0(AggregateFunction<T, ACC, V> aggFunction, ProcessWindowFunction<V, R, K, W> windowFunction) { checkNotNull(aggFunction, "aggFunction"); checkNotNull(windowFunction, "windowFunction"); TypeInformation<ACC> accumulatorType = TypeExtractor.getAggregateFunctionAccumulatorType(aggFunction, input.getType(), null, false); return aggregate(aggFunction, windowFunction, accumulatorType); }
3.26
flink_WindowedOperatorTransformation_evictor_rdh
/** * Sets the {@code Evictor} that should be used to evict elements from a window before emission. * * <p>Note: When using an evictor window performance will degrade significantly, since * incremental aggregation of window results cannot be used. */ @PublicEvolving public WindowedOperatorTransformation<T, K, W> evictor(Evictor<? super T, ? super W> evictor) { builder.evictor(evictor); return this; }
3.26
flink_WindowedOperatorTransformation_aggregate_rdh
/** * Applies the given window function to each window. The window function is called for each * evaluation of the window for each key individually. The output of the window function is * interpreted as a regular non-windowed stream. * * <p>Arriving data is incrementally aggregated using the given aggregate function. This means * that the window function typically has only a single value to process when called. * * @param aggregateFunction * The aggregation function that is used for incremental aggregation. * @param windowFunction * The window function. * @param accumulatorType * Type information for the internal accumulator type of the aggregation * function * @return The data stream that is the result of applying the window function to the window. * @param <ACC> * The type of the AggregateFunction's accumulator * @param <V> * The type of AggregateFunction's result, and the WindowFunction's input * @param <R> * The type of the elements in the resulting stream, equal to the WindowFunction's * result type */ @PublicEvolving public <ACC, V, R> BootstrapTransformation<T> aggregate(AggregateFunction<T, ACC, V> aggregateFunction, ProcessWindowFunction<V, R, K, W> windowFunction, TypeInformation<ACC> accumulatorType) { checkNotNull(aggregateFunction, "aggregateFunction"); checkNotNull(windowFunction, "windowFunction"); checkNotNull(accumulatorType, "accumulatorType"); if (aggregateFunction instanceof RichFunction) { throw new UnsupportedOperationException("This aggregate function cannot be a RichFunction."); } // clean the closures windowFunction = input.clean(windowFunction); aggregateFunction = input.clean(aggregateFunction); WindowOperator<K, T, ?, R, W> operator = builder.aggregate(aggregateFunction, windowFunction, accumulatorType); SavepointWriterOperatorFactory factory = (timestamp, path) -> new StateBootstrapWrapperOperator<>(timestamp, path, operator); return new BootstrapTransformation<>(input, operatorMaxParallelism, timestamper, factory, keySelector, keyType); }
3.26
flink_WindowedOperatorTransformation_trigger_rdh
/** * Sets the {@code Trigger} that should be used to trigger window emission. */ @PublicEvolving public WindowedOperatorTransformation<T, K, W> trigger(Trigger<? super T, ? super W> trigger) { builder.trigger(trigger); return this; }
3.26
flink_PartitioningProperty_isComputablyPartitioned_rdh
/** * Checks, if this property represents a partitioning that is computable. A computable * partitioning can be recreated through an algorithm. If two sets of data are to be * co-partitioned, it is crucial, that the partitioning schemes are computable. * * <p>Examples for computable partitioning schemes are hash- or range-partitioning. An example * for a non-computable partitioning is the implicit partitioning that exists though a globally * unique key. * * @return True, if this enum constant is a re-computable partitioning. */ public boolean isComputablyPartitioned() { return ((this == HASH_PARTITIONED) || (this == RANGE_PARTITIONED)) || (this == f0); }
3.26
flink_PartitioningProperty_isPartitionedOnKey_rdh
/** * Checks if this property presents a partitioning that is not random, but on a partitioning * key. * * @return True, if the data is partitioned on a key. */ public boolean isPartitionedOnKey() { return isPartitioned() && (this != RANDOM_PARTITIONED); }
3.26
flink_TableColumn_physical_rdh
/** * Creates a regular table column that represents physical data. */ public static PhysicalColumn physical(String name, DataType type) { Preconditions.checkNotNull(name, "Column name can not be null."); Preconditions.checkNotNull(type, "Column type can not be null."); return new PhysicalColumn(name, type); }
3.26
flink_TableColumn_getName_rdh
/** * Returns the name of this column. */ public String getName() { return name; }
3.26
flink_TableColumn_getType_rdh
/** * Returns the data type of this column. */ public DataType getType() { return this.type; }
3.26
flink_TableColumn_metadata_rdh
/** * Creates a metadata column from metadata of the given column name or from metadata of the * given alias (if not null). * * <p>Allows to specify whether the column is virtual or not. */public static MetadataColumn metadata(String name, DataType type, @Nullable String metadataAlias, boolean isVirtual) { Preconditions.checkNotNull(name, "Column name can not be null."); Preconditions.checkNotNull(type, "Column type can not be null."); return new MetadataColumn(name, type, metadataAlias, isVirtual); }
3.26
flink_TableColumn_asSummaryString_rdh
/** * Returns a string that summarizes this column for printing to a console. */ public String asSummaryString() { final StringBuilder sb = new StringBuilder(); sb.append(name); sb.append(": "); sb.append(type); explainExtras().ifPresent(e -> { sb.append(" "); sb.append(e); }); return sb.toString(); }
3.26
flink_TableColumn_computed_rdh
/** * Creates a computed column that is computed from the given SQL expression. */ public static ComputedColumn computed(String name, DataType type, String expression) { Preconditions.checkNotNull(name, "Column name can not be null."); Preconditions.checkNotNull(type, "Column type can not be null."); Preconditions.checkNotNull(expression, "Column expression can not be null.");return new ComputedColumn(name, type, expression); }
3.26
flink_TableColumn_of_rdh
/** * * @deprecated Use {@link #computed(String, DataType, String)} instead. */ @Deprecated public static TableColumn of(String name, DataType type, String expression) { return computed(name, type, expression); }
3.26
flink_TableColumn_m0_rdh
/** * Creates a metadata column from metadata of the given column name. * * <p>Allows to specify whether the column is virtual or not. */ public static MetadataColumn m0(String name, DataType type, boolean isVirtual) { return metadata(name, type, null, isVirtual); }
3.26
flink_DownTimeGauge_getValue_rdh
// ------------------------------------------------------------------------ @Override public Long getValue() { final JobStatus status = jobStatusProvider.getState(); // not running any more -> finished or not on leader if (status.isTerminalState()) { return NO_LONGER_RUNNING; } final long runningTimestamp = jobStatusProvider.getStatusTimestamp(JobStatus.RUNNING);final long failingTimestamp = jobStatusProvider.getStatusTimestamp(JobStatus.FAILING); if (failingTimestamp <= runningTimestamp) { return f0; } else { // we use 'Math.max' here to avoid negative timestamps when clocks change return Math.max(System.currentTimeMillis() - failingTimestamp, 0); } }
3.26
flink_Plan_getDefaultParallelism_rdh
/** * Gets the default parallelism for this job. That degree is always used when an operator is not * explicitly given a parallelism. * * @return The default parallelism for the plan. */ public int getDefaultParallelism() { return this.defaultParallelism; }
3.26
flink_Plan_getJobId_rdh
/** * Gets the ID of the job that the dataflow plan belongs to. If this ID is not set, then the * dataflow represents its own independent job. * * @return The ID of the job that the dataflow plan belongs to. */ public JobID getJobId() { return jobId; }
3.26
flink_Plan_getPostPassClassName_rdh
/** * Gets the optimizer post-pass class for this job. The post-pass typically creates utility * classes for data types and is specific to a particular data model (record, tuple, Scala, ...) * * @return The name of the class implementing the optimizer post-pass. */ public String getPostPassClassName() { return "org.apache.flink.optimizer.postpass.JavaApiPostPass"; }
3.26
flink_Plan_registerCachedFile_rdh
/** * Register cache files at program level. * * @param entry * contains all relevant information * @param name * user defined name of that file * @throws java.io.IOException */ public void registerCachedFile(String name, DistributedCacheEntry entry) throws IOException { if (!this.cacheFile.containsKey(name)) { this.cacheFile.put(name, entry); } else { throw new IOException(("cache file " + name) + "already exists!"); } }
3.26
flink_Plan_setJobId_rdh
/** * Sets the ID of the job that the dataflow plan belongs to. If this ID is set to {@code null}, * then the dataflow represents its own independent job. * * @param jobId * The ID of the job that the dataflow plan belongs to. */ public void setJobId(JobID jobId) { this.jobId = jobId; }
3.26
flink_Plan_setJobName_rdh
/** * Sets the jobName for this Plan. * * @param jobName * The jobName to set. */ public void setJobName(String jobName) { checkNotNull(jobName, "The job name must not be null.");this.jobName = jobName; }
3.26
flink_Plan_getDataSinks_rdh
/** * Gets all the data sinks of this job. * * @return All sinks of the program. */ public Collection<? extends GenericDataSinkBase<?>> getDataSinks() { return this.sinks; }
3.26
flink_Plan_accept_rdh
// ------------------------------------------------------------------------ /** * Traverses the job depth first from all data sinks on towards the sources. * * @see Visitable#accept(Visitor) */ @Override public void accept(Visitor<Operator<?>> visitor) { for (GenericDataSinkBase<?> sink : this.sinks) { sink.accept(visitor); } }
3.26
flink_Plan_getJobName_rdh
/** * Gets the name of this job. * * @return The name of the job. */ public String getJobName() { return this.jobName; }
3.26
flink_Plan_getCachedFiles_rdh
/** * Return the registered cached files. * * @return Set of (name, filePath) pairs */ public Set<Entry<String, DistributedCacheEntry>> getCachedFiles() { return this.cacheFile.entrySet(); }
3.26
flink_Plan_setExecutionConfig_rdh
/** * Sets the runtime config object defining execution parameters. * * @param executionConfig * The execution config to use. */ public void setExecutionConfig(ExecutionConfig executionConfig) { this.executionConfig = executionConfig; }
3.26
flink_Plan_setDefaultParallelism_rdh
/** * Sets the default parallelism for this plan. That degree is always used when an operator is * not explicitly given a parallelism. * * @param defaultParallelism * The default parallelism for the plan. */ public void setDefaultParallelism(int defaultParallelism) { checkArgument((defaultParallelism >= 1) || (defaultParallelism == ExecutionConfig.PARALLELISM_DEFAULT), "The default parallelism must be positive, or ExecutionConfig.PARALLELISM_DEFAULT if the system should use the globally configured default."); this.defaultParallelism = defaultParallelism; }
3.26
flink_Plan_addDataSink_rdh
// ------------------------------------------------------------------------ /** * Adds a data sink to the set of sinks in this program. * * @param sink * The data sink to add. */public void addDataSink(GenericDataSinkBase<?> sink) { checkNotNull(sink, "The data sink must not be null."); if (!this.sinks.contains(sink)) { this.sinks.add(sink); } }
3.26
flink_CachingLookupFunction_lookupByDelegate_rdh
// -------------------------------- Helper functions ------------------------------ private Collection<RowData> lookupByDelegate(RowData keyRow) throws IOException { try { Preconditions.checkState(delegate != null, "User's lookup function can't be null, if there are possible cache misses."); long loadStart = System.currentTimeMillis(); Collection<RowData> lookupValues = delegate.lookup(keyRow); updateLatestLoadTime(System.currentTimeMillis() - loadStart); loadCounter.inc(); return lookupValues; } catch (Exception e) { // TODO: Should implement retry on failure logic as proposed in FLIP-234 numLoadFailuresCounter.inc(); throw new IOException(String.format("Failed to lookup with key '%s'", keyRow), e); } }
3.26
flink_CachingLookupFunction_open_rdh
/** * Open the {@link CachingLookupFunction}. * * <p>In order to reduce the memory usage of the cache, {@link LookupCacheManager} is used to * provide a shared cache instance across subtasks of this function. Here we use {@link #functionIdentifier()} as the id of the cache, which is generated by MD5 of serialized bytes * of this function. As different subtasks of the function will generate the same MD5, this * could promise that they will be served with the same cache instance. * * @see #functionIdentifier() */ @Override public void open(FunctionContext context) throws Exception { // Get the shared cache from manager cacheIdentifier = functionIdentifier(); f0 = LookupCacheManager.getInstance().registerCacheIfAbsent(cacheIdentifier, f0); // Register metrics f1 = new InternalCacheMetricGroup(context.getMetricGroup(), LOOKUP_CACHE_METRIC_GROUP_NAME); if (!(f0 instanceof LookupFullCache)) { loadCounter = new SimpleCounter(); f1.loadCounter(loadCounter); numLoadFailuresCounter = new SimpleCounter(); f1.numLoadFailuresCounter(numLoadFailuresCounter); } else { initializeFullCache(((LookupFullCache) (f0)), context); } // Initialize cache and the delegating function f0.open(f1); if (delegate != null) { delegate.open(context); } }
3.26
flink_StreamRecord_equals_rdh
// Utilities // ------------------------------------------------------------------------ @Override public boolean equals(Object o) { if (this == o) { return true; } else if ((o != null) && (getClass() == o.getClass())) { StreamRecord<?> that = ((StreamRecord<?>) (o)); return ((this.hasTimestamp == that.hasTimestamp) && ((!this.hasTimestamp) || (this.timestamp == that.timestamp))) && (this.value == null ? that.value == null : this.value.equals(that.value)); } else { return false; } }
3.26
flink_StreamRecord_getTimestamp_rdh
/** * Returns the timestamp associated with this stream value in milliseconds. */ public long getTimestamp() { if (hasTimestamp) {return timestamp; } else { return Long.MIN_VALUE; // throw new IllegalStateException( // "Record has no timestamp. Is the time characteristic set to 'ProcessingTime', or // " + // "did you forget to call 'DataStream.assignTimestampsAndWatermarks(...)'?"); } }
3.26
flink_StreamRecord_replace_rdh
/** * Replace the currently stored value by the given new value and the currently stored timestamp * with the new timestamp. This returns a StreamElement with the generic type parameter that * matches the new value. * * @param value * The new value to wrap in this StreamRecord * @param timestamp * The new timestamp in milliseconds * @return Returns the StreamElement with replaced value */ @SuppressWarnings("unchecked") public <X> StreamRecord<X> replace(X value, long timestamp) { this.timestamp = timestamp; this.value = ((T) (value)); this.hasTimestamp = true; return ((StreamRecord<X>) (this)); }
3.26
flink_StreamRecord_copy_rdh
// ------------------------------------------------------------------------ // Copying // ------------------------------------------------------------------------ /** * Creates a copy of this stream record. Uses the copied value as the value for the new record, * i.e., only copies timestamp fields. */ public StreamRecord<T> copy(T valueCopy) { StreamRecord<T> copy = new StreamRecord<>(valueCopy); copy.timestamp = this.timestamp; copy.hasTimestamp = this.hasTimestamp; return copy; }
3.26
flink_StreamRecord_getValue_rdh
// ------------------------------------------------------------------------ // Accessors // ------------------------------------------------------------------------ /** * Returns the value wrapped in this stream value. */ public T getValue() { return value; }
3.26
flink_ErrorInfo_getException_rdh
/** * Returns the serialized form of the original exception. */ public SerializedThrowable getException() { return exception; }
3.26
flink_ErrorInfo_handleMissingThrowable_rdh
/** * Utility method to cover FLINK-21376. * * @param throwable * The actual exception. * @return a {@link FlinkException} if no exception was passed. */ public static Throwable handleMissingThrowable(@Nullable Throwable throwable) { return throwable != null ? throwable : new FlinkException("Unknown cause for Execution failure (this might be caused by FLINK-21376)."); }
3.26
flink_WindowSavepointReader_process_rdh
/** * Reads window state generated without any preaggregation such as {@code WindowedStream#apply} * and {@code WindowedStream#process}. * * @param uid * The uid of the operator. * @param readerFunction * The window reader function. * @param keyType * The key type of the window. * @param stateType * The type of records stored in state. * @param outputType * The output type of the reader function. * @param <K> * The type of the key. * @param <T> * The type of the records stored in state. * @param <OUT> * The output type of the reader function. * @return A {@code DataStream} of objects read from keyed state. * @throws IOException * If the savepoint does not contain the specified uid. */ public <K, T, OUT> DataStream<OUT> process(String uid, WindowReaderFunction<T, OUT, K, W> readerFunction, TypeInformation<K> keyType, TypeInformation<T> stateType, TypeInformation<OUT> outputType) throws IOException { WindowReaderOperator<?, K, T, W, OUT> operator = WindowReaderOperator.process(readerFunction, keyType, windowSerializer, stateType); return readWindowOperator(uid, outputType, operator); }
3.26
flink_WindowSavepointReader_evictor_rdh
/** * Reads from a window that uses an evictor. */ public EvictingWindowSavepointReader<W> evictor() { return new EvictingWindowSavepointReader<>(env, metadata, stateBackend, windowSerializer); }
3.26
flink_WindowSavepointReader_aggregate_rdh
/** * Reads window state generated using an {@link AggregateFunction}. * * @param uid * The uid of the operator. * @param aggregateFunction * The aggregate function used to create the window. * @param readerFunction * The window reader function. * @param keyType * The key type of the window. * @param accType * The type information of the accumulator function. * @param outputType * The output type of the reader function. * @param <K> * The type of the key. * @param <T> * The type of the values that are aggregated. * @param <ACC> * The type of the accumulator (intermediate aggregate state). * @param <R> * The type of the aggregated result. * @param <OUT> * The output type of the reader function. * @return A {@code DataStream} of objects read from keyed state. * @throws IOException * If savepoint does not contain the specified uid. */public <K, T, ACC, R, OUT> DataStream<OUT> aggregate(String uid, AggregateFunction<T, ACC, R> aggregateFunction, WindowReaderFunction<R, OUT, K, W> readerFunction, TypeInformation<K> keyType, TypeInformation<ACC> accType, TypeInformation<OUT> outputType) throws IOException { WindowReaderOperator<?, K, R, W, OUT> v1 = WindowReaderOperator.aggregate(aggregateFunction, readerFunction, keyType, windowSerializer, accType); return readWindowOperator(uid, outputType, v1); }
3.26
flink_WindowSavepointReader_reduce_rdh
/** * Reads window state generated using a {@link ReduceFunction}. * * @param uid * The uid of the operator. * @param function * The reduce function used to create the window. * @param readerFunction * The window reader function. * @param keyType * The key type of the window. * @param reduceType * The type information of the reduce function. * @param outputType * The output type of the reader function. * @param <K> * The type of the key. * @param <T> * The type of the reduce function. * @param <OUT> * The output type of the reduce function. * @return A {@code DataStream} of objects read from keyed state. * @throws IOException * If savepoint does not contain the specified uid. */ public <K, T, OUT> DataStream<OUT> reduce(String uid, ReduceFunction<T> function, WindowReaderFunction<T, OUT, K, W> readerFunction, TypeInformation<K> keyType, TypeInformation<T> reduceType, TypeInformation<OUT> outputType) throws IOException { WindowReaderOperator<?, K, T, W, OUT> operator = WindowReaderOperator.reduce(function, readerFunction, keyType, windowSerializer, reduceType);return readWindowOperator(uid, outputType, operator); }
3.26
flink_TestingSinkSettings_getCheckpointingMode_rdh
/** * Checkpointing mode required for the sink. */ public CheckpointingMode getCheckpointingMode() { return checkpointingMode; }
3.26
flink_CountWindow_getId_rdh
/** * Gets the id (0-based) of the window. */ public long getId() { return id; }
3.26
flink_CountWindow_snapshotConfiguration_rdh
// ------------------------------------------------------------------------ @Override public TypeSerializerSnapshot<CountWindow> snapshotConfiguration() { return new CountWindow.Serializer.CountWindowSerializerSnapshot(); }
3.26
flink_CoGroupDriver_setup_rdh
// ------------------------------------------------------------------------ @Override public void setup(TaskContext<CoGroupFunction<IT1, IT2, OT>, OT> context) {this.taskContext = context; this.running = true; }
3.26
flink_EmbeddedRocksDBStateBackend_getRocksDBOptions_rdh
/** * Gets {@link org.rocksdb.Options} for the RocksDB instances. * * <p>The options created by the factory here are applied on top of the pre-defined options * profile selected via {@link #setPredefinedOptions(PredefinedOptions)}. If the pre-defined * options profile is the default ({@link PredefinedOptions#DEFAULT}), then the factory fully * controls the RocksDB options. */ @Nullable public RocksDBOptionsFactory getRocksDBOptions() { return rocksDbOptionsFactory; }
3.26
flink_EmbeddedRocksDBStateBackend_setDbStoragePaths_rdh
/** * Sets the directories in which the local RocksDB database puts its files (like SST and * metadata files). These directories do not need to be persistent, they can be ephemeral, * meaning that they are lost on a machine failure, because state in RocksDB is persisted in * checkpoints. * * <p>If nothing is configured, these directories default to the TaskManager's local temporary * file directories. * * <p>Each distinct state will be stored in one path, but when the state backend creates * multiple states, they will store their files on different paths. * * <p>Passing {@code null} to this function restores the default behavior, where the configured * temp directories will be used. * * @param paths * The paths across which the local RocksDB database files will be spread. */ public void setDbStoragePaths(String... paths) { if (paths == null) { localRocksDbDirectories = null; } else if (paths.length == 0) { throw new IllegalArgumentException("empty paths");} else { File[] pp = new File[paths.length]; for (int i = 0; i < paths.length; i++) { final String rawPath = paths[i]; final String path;if (rawPath == null) { throw new IllegalArgumentException("null path"); } else { // we need this for backwards compatibility, to allow URIs like 'file:///'... URI uri = null; try { uri = new Path(rawPath).toUri(); } catch (Exception e) { // cannot parse as a path } if ((uri != null) && (uri.getScheme() != null)) { if ("file".equalsIgnoreCase(uri.getScheme())) { path = uri.getPath(); } else { throw new IllegalArgumentException(("Path " + rawPath) + " has a non-local scheme"); } } else { path = rawPath; } } pp[i] = new File(path); if (!pp[i].isAbsolute()) { throw new IllegalArgumentException("Relative paths are not supported"); } } localRocksDbDirectories = pp; } }
3.26
flink_EmbeddedRocksDBStateBackend_setPriorityQueueStateType_rdh
/** * Sets the type of the priority queue state. It will fallback to the default value, if it is * not explicitly set. */ public void setPriorityQueueStateType(PriorityQueueStateType priorityQueueStateType) { this.priorityQueueConfig.setPriorityQueueStateType(priorityQueueStateType); }
3.26
flink_EmbeddedRocksDBStateBackend_setRocksDBMemoryFactory_rdh
/** * Set RocksDBMemoryFactory. */ public void setRocksDBMemoryFactory(RocksDBMemoryFactory rocksDBMemoryFactory) { this.rocksDBMemoryFactory = checkNotNull(rocksDBMemoryFactory); }
3.26
flink_EmbeddedRocksDBStateBackend_mergeConfigurableOptions_rdh
// ------------------------------------------------------------------------ // utilities // ------------------------------------------------------------------------ private ReadableConfig mergeConfigurableOptions(ReadableConfig base, ReadableConfig onTop) { if (base == null) { base = new Configuration(); } Configuration configuration = new Configuration(); for (ConfigOption<?> option : RocksDBConfigurableOptions.CANDIDATE_CONFIGS) {Optional<?> baseValue = base.getOptional(option); Optional<?> topValue = onTop.getOptional(option); if (topValue.isPresent() || baseValue.isPresent()) { Object validValue = (topValue.isPresent()) ? topValue.get() : baseValue.get(); RocksDBConfigurableOptions.checkArgumentValid(option, validValue); configuration.setString(option.key(), validValue.toString()); } } return configuration; }
3.26
flink_EmbeddedRocksDBStateBackend_setWriteBatchSize_rdh
/** * Sets the max batch size will be used in {@link RocksDBWriteBatchWrapper}, no positive value * will disable memory size controller, just use item count controller. * * @param writeBatchSize * The size will used to be used in {@link RocksDBWriteBatchWrapper}. */ public void setWriteBatchSize(long writeBatchSize) { checkArgument(writeBatchSize >= 0, "Write batch size have to be no negative."); this.writeBatchSize = writeBatchSize; }
3.26
flink_EmbeddedRocksDBStateBackend_setDbStoragePath_rdh
/** * Sets the path where the RocksDB local database files should be stored on the local file * system. Setting this path overrides the default behavior, where the files are stored across * the configured temp directories. * * <p>Passing {@code null} to this function restores the default behavior, where the configured * temp directories will be used. * * @param path * The path where the local RocksDB database files are stored. */ public void setDbStoragePath(String path) { setDbStoragePaths(path == null ? null : new String[]{ path });}
3.26
flink_EmbeddedRocksDBStateBackend_setRocksDBOptions_rdh
/** * Sets {@link org.rocksdb.Options} for the RocksDB instances. Because the options are not * serializable and hold native code references, they must be specified through a factory. * * <p>The options created by the factory here are applied on top of the pre-defined options * profile selected via {@link #setPredefinedOptions(PredefinedOptions)} and user-configured * options from configuration set by {@link #configure(ReadableConfig, ClassLoader)} with keys * in {@link RocksDBConfigurableOptions}. * * @param optionsFactory * The options factory that lazily creates the RocksDB options. */ public void setRocksDBOptions(RocksDBOptionsFactory optionsFactory) { this.rocksDbOptionsFactory = optionsFactory; }
3.26
flink_EmbeddedRocksDBStateBackend_getNumberOfTransferThreads_rdh
/** * Gets the number of threads used to transfer files while snapshotting/restoring. */ public int getNumberOfTransferThreads() { return numberOfTransferThreads == UNDEFINED_NUMBER_OF_TRANSFER_THREADS ? CHECKPOINT_TRANSFER_THREAD_NUM.defaultValue() : numberOfTransferThreads; }
3.26
flink_EmbeddedRocksDBStateBackend_m0_rdh
/** * Gets the configured local DB storage paths, or null, if none were configured. * * <p>Under these directories on the TaskManager, RocksDB stores its SST files and metadata * files. These directories do not need to be persistent, they can be ephermeral, meaning that * they are lost on a machine failure, because state in RocksDB is persisted in checkpoints. * * <p>If nothing is configured, these directories default to the TaskManager's local temporary * file directories. */ public String[] m0() { if (localRocksDbDirectories == null) { return null; } else { String[] paths = new String[localRocksDbDirectories.length]; for (int i = 0; i < paths.length; i++) { paths[i] = localRocksDbDirectories[i].toString();} return paths; } }
3.26
flink_EmbeddedRocksDBStateBackend_configure_rdh
// ------------------------------------------------------------------------ // Reconfiguration // ------------------------------------------------------------------------ /** * Creates a copy of this state backend that uses the values defined in the configuration for * fields where that were not yet specified in this state backend. * * @param config * The configuration. * @param classLoader * The class loader. * @return The re-configured variant of the state backend */ @Override public EmbeddedRocksDBStateBackend configure(ReadableConfig config, ClassLoader classLoader) {return new EmbeddedRocksDBStateBackend(this, config, classLoader); }
3.26
flink_EmbeddedRocksDBStateBackend_createKeyedStateBackend_rdh
// ------------------------------------------------------------------------ // State holding data structures // ------------------------------------------------------------------------ @Overridepublic <K> AbstractKeyedStateBackend<K> createKeyedStateBackend(Environment env, JobID jobID, String operatorIdentifier, TypeSerializer<K> keySerializer, int numberOfKeyGroups, KeyGroupRange keyGroupRange, TaskKvStateRegistry kvStateRegistry, TtlTimeProvider ttlTimeProvider, MetricGroup metricGroup, @Nonnull Collection<KeyedStateHandle> stateHandles, CloseableRegistry cancelStreamRegistry) throws IOException { return createKeyedStateBackend(env, jobID, operatorIdentifier, keySerializer, numberOfKeyGroups, keyGroupRange, kvStateRegistry, ttlTimeProvider, metricGroup, stateHandles, cancelStreamRegistry, 1.0); }
3.26
flink_EmbeddedRocksDBStateBackend_getMemoryConfiguration_rdh
// ------------------------------------------------------------------------ // Parameters // ------------------------------------------------------------------------ /** * Gets the memory configuration object, which offers settings to control RocksDB's memory * usage. */public RocksDBMemoryConfiguration getMemoryConfiguration() { return memoryConfiguration; }
3.26
flink_EmbeddedRocksDBStateBackend_setPredefinedOptions_rdh
// ------------------------------------------------------------------------ // Parametrize with RocksDB Options // ------------------------------------------------------------------------ /** * Sets the predefined options for RocksDB. * * <p>If user-configured options within {@link RocksDBConfigurableOptions} is set (through * flink-conf.yaml) or a user-defined options factory is set (via {@link #setRocksDBOptions(RocksDBOptionsFactory)}), then the options from the factory are applied on * top of the here specified predefined options and customized options. * * @param options * The options to set (must not be null). */ public void setPredefinedOptions(@Nonnull PredefinedOptions options) { predefinedOptions = checkNotNull(options); }
3.26
flink_EmbeddedRocksDBStateBackend_ensureRocksDBIsLoaded_rdh
// ------------------------------------------------------------------------ // static library loading utilities // ------------------------------------------------------------------------ @VisibleForTesting static void ensureRocksDBIsLoaded(String tempDirectory) throws IOException { ensureRocksDBIsLoaded(tempDirectory, NativeLibraryLoader::getInstance); }
3.26
flink_EmbeddedRocksDBStateBackend_supportsNoClaimRestoreMode_rdh
// ------------------------------------------------------------------------ // State backend methods // ------------------------------------------------------------------------ @Override public boolean supportsNoClaimRestoreMode() { // We are able to create CheckpointType#FULL_CHECKPOINT. (we might potentially reupload some // shared files when taking incremental snapshots) return true; }
3.26
flink_EmbeddedRocksDBStateBackend_isIncrementalCheckpointsEnabled_rdh
/** * Gets whether incremental checkpoints are enabled for this state backend. */ public boolean isIncrementalCheckpointsEnabled() { return enableIncrementalCheckpointing.getOrDefault(CheckpointingOptions.INCREMENTAL_CHECKPOINTS.defaultValue()); }
3.26
flink_EmbeddedRocksDBStateBackend_setNumberOfTransferThreads_rdh
/** * Sets the number of threads used to transfer files while snapshotting/restoring. * * @param numberOfTransferThreads * The number of threads used to transfer files while * snapshotting/restoring. */ public void setNumberOfTransferThreads(int numberOfTransferThreads) { Preconditions.checkArgument(numberOfTransferThreads > 0, "The number of threads used to transfer files in EmbeddedRocksDBStateBackend should be greater than zero."); this.numberOfTransferThreads = numberOfTransferThreads; }
3.26
flink_EmbeddedRocksDBStateBackend_getPredefinedOptions_rdh
/** * Gets the currently set predefined options for RocksDB. The default options (if nothing was * set via {@link #setPredefinedOptions(PredefinedOptions)}) are {@link PredefinedOptions#DEFAULT}. * * <p>If user-configured options within {@link RocksDBConfigurableOptions} is set (through * flink-conf.yaml) of a user-defined options factory is set (via {@link #setRocksDBOptions(RocksDBOptionsFactory)}), then the options from the factory are applied on * top of the predefined and customized options. * * @return The currently set predefined options for RocksDB. */ @VisibleForTesting public PredefinedOptions getPredefinedOptions() { if (predefinedOptions == null) { predefinedOptions = PredefinedOptions.DEFAULT; } return predefinedOptions; }
3.26