name
stringlengths
12
178
code_snippet
stringlengths
8
36.5k
score
float64
3.26
3.68
flink_DefaultConfigurableOptionsFactory_setLogFileNum_rdh
/** * The maximum number of files RocksDB should keep for logging. * * @param logFileNum * number of files to keep * @return this options factory */ public DefaultConfigurableOptionsFactory setLogFileNum(int logFileNum) { Preconditions.checkArgument(logFileNum > 0, "Invalid configuration: Must keep at least one log file."); configuredOptions.put(LOG_FILE_NUM.key(), String.valueOf(logFileNum)); return this; }
3.26
flink_DefaultConfigurableOptionsFactory_getLogLevel_rdh
// -------------------------------------------------------------------------- // Configuring RocksDB's info log. // -------------------------------------------------------------------------- private InfoLogLevel getLogLevel() { return InfoLogLevel.valueOf(getInternal(LOG_LEVEL.key()).toUpperCase()); }
3.26
flink_DefaultConfigurableOptionsFactory_getMaxWriteBufferNumber_rdh
// -------------------------------------------------------------------------- // The maximum number of write buffers that are built up in memory. // -------------------------------------------------------------------------- private int getMaxWriteBufferNumber() { return Integer.parseInt(getInternal(MAX_WRITE_BUFFER_NUMBER.key())); }
3.26
flink_DefaultConfigurableOptionsFactory_getMaxSizeLevelBase_rdh
// -------------------------------------------------------------------------- // Maximum total data size for a level, i.e., the max total size for level-1 // -------------------------------------------------------------------------- private long getMaxSizeLevelBase() { return MemorySize.parseBytes(getInternal(MAX_SIZE_LEVEL_BASE.key())); }
3.26
flink_DefaultConfigurableOptionsFactory_getBlockCacheSize_rdh
// -------------------------------------------------------------------------- // The amount of the cache for data blocks in RocksDB // -------------------------------------------------------------------------- private long getBlockCacheSize() { return MemorySize.parseBytes(getInternal(BLOCK_CACHE_SIZE.key())); }
3.26
flink_DefaultConfigurableOptionsFactory_configure_rdh
/** * Creates a {@link DefaultConfigurableOptionsFactory} instance from a {@link ReadableConfig}. * * <p>If no options within {@link RocksDBConfigurableOptions} has ever been configured, the * created RocksDBOptionsFactory would not override anything defined in {@link PredefinedOptions}. * * @param configuration * Configuration to be used for the ConfigurableRocksDBOptionsFactory * creation * @return A ConfigurableRocksDBOptionsFactory created from the given configuration */ @Override public DefaultConfigurableOptionsFactory configure(ReadableConfig configuration) { for (ConfigOption<?> option : CANDIDATE_CONFIGS) {Optional<?> newValue = configuration.getOptional(option); if (newValue.isPresent()) { checkArgumentValid(option, newValue.get()); this.configuredOptions.put(option.key(), newValue.get().toString()); } } return this; }
3.26
flink_DefaultConfigurableOptionsFactory_getInternal_rdh
/** * Returns the value in string format with the given key. * * @param key * The configuration-key to query in string format. */ private String getInternal(String key) { Preconditions.checkArgument(configuredOptions.containsKey(key), ("The configuration " + key) + " has not been configured."); return configuredOptions.get(key); }
3.26
flink_DefaultConfigurableOptionsFactory_getMaxBackgroundThreads_rdh
// -------------------------------------------------------------------------- // Maximum number of concurrent background flush and compaction threads // -------------------------------------------------------------------------- private int getMaxBackgroundThreads() { return Integer.parseInt(getInternal(MAX_BACKGROUND_THREADS.key())); }
3.26
flink_ResourceManagerRuntimeServicesConfiguration_fromConfiguration_rdh
// ---------------------------- Static methods ---------------------------------- public static ResourceManagerRuntimeServicesConfiguration fromConfiguration(Configuration configuration, WorkerResourceSpecFactory defaultWorkerResourceSpecFactory) throws ConfigurationException { final String strJobTimeout = configuration.getString(ResourceManagerOptions.JOB_TIMEOUT); final Time jobTimeout; try { jobTimeout = Time.milliseconds(TimeUtils.parseDuration(strJobTimeout).toMillis()); } catch (IllegalArgumentException e) { throw new ConfigurationException((("Could not parse the resource manager's job timeout " + "value ") + ResourceManagerOptions.JOB_TIMEOUT) + '.', e); } final WorkerResourceSpec defaultWorkerResourceSpec = defaultWorkerResourceSpecFactory.createDefaultWorkerResourceSpec(configuration); final SlotManagerConfiguration slotManagerConfiguration = SlotManagerConfiguration.fromConfiguration(configuration, defaultWorkerResourceSpec); final boolean enableFineGrainedResourceManagement = configuration.getBoolean(ClusterOptions.ENABLE_FINE_GRAINED_RESOURCE_MANAGEMENT); return new ResourceManagerRuntimeServicesConfiguration(jobTimeout, slotManagerConfiguration, enableFineGrainedResourceManagement); }
3.26
flink_PermanentBlobCache_m0_rdh
/** * Delete the blob file with the given key. * * @param jobId * ID of the job this blob belongs to (or <tt>null</tt> if job-unrelated) * @param blobKey * The key of the desired BLOB. */ private boolean m0(JobID jobId, BlobKey blobKey) { final File localFile = new File(BlobUtils.getStorageLocationPath(storageDir.deref().getAbsolutePath(), jobId, blobKey)); if ((!localFile.delete()) && localFile.exists()) { log.warn("Failed to delete locally cached BLOB {} at {}", blobKey, localFile.getAbsolutePath()); return false; } return true; }
3.26
flink_PermanentBlobCache_run_rdh
/** * Cleans up BLOBs which are not referenced anymore. */ @Override public void run() { synchronized(jobRefCounters) { Iterator<Map.Entry<JobID, RefCount>> entryIter = jobRefCounters.entrySet().iterator(); final long currentTimeMillis = System.currentTimeMillis(); while (entryIter.hasNext()) { Map.Entry<JobID, RefCount> entry = entryIter.next(); RefCount ref = entry.getValue(); if (((ref.references <= 0) && (ref.keepUntil > 0)) && (currentTimeMillis >= ref.keepUntil)) { JobID jobId = entry.getKey(); final File localFile = new File(BlobUtils.getStorageLocationPath(storageDir.deref().getAbsolutePath(), jobId)); /* NOTE: normally it is not required to acquire the write lock to delete the job's storage directory since there should be no one accessing it with the ref counter being 0 - acquire it just in case, to always be on the safe side */ readWriteLock.writeLock().lock();boolean success = false; try { blobCacheSizeTracker.untrackAll(jobId); FileUtils.deleteDirectory(localFile); success = true; } catch (Throwable t) { log.warn("Failed to locally delete job directory " + localFile.getAbsolutePath(), t); } finally { readWriteLock.writeLock().unlock(); } // let's only remove this directory from cleanup if the cleanup was // successful // (does not need the write lock) if (success) { entryIter.remove(); } } } } }
3.26
flink_PermanentBlobCache_getStorageLocation_rdh
/** * Returns a file handle to the file associated with the given blob key on the blob server. * * @param jobId * ID of the job this blob belongs to (or <tt>null</tt> if job-unrelated) * @param key * identifying the file * @return file handle to the file * @throws IOException * if creating the directory fails */ @VisibleForTesting public File getStorageLocation(JobID jobId, BlobKey key) throws IOException { checkNotNull(jobId); return BlobUtils.getStorageLocation(storageDir.deref(), jobId, key); }
3.26
flink_PermanentBlobCache_readFile_rdh
/** * Returns the content of the file for the BLOB with the provided job ID the blob key. * * <p>The method will first attempt to serve the BLOB from the local cache. If the BLOB is not * in the cache, the method will try to download it from the HA store, or directly from the * {@link BlobServer}. * * <p>Compared to {@code getFile}, {@code readFile} makes sure that the file is fully read in * the same write lock as the file is accessed. This avoids the scenario that the path is * returned as the file is deleted concurrently by other threads. * * @param jobId * ID of the job this blob belongs to * @param blobKey * BLOB key associated with the requested file * @return The content of the BLOB. * @throws java.io.FileNotFoundException * if the BLOB does not exist; * @throws IOException * if any other error occurs when retrieving the file. */ @Override public byte[] readFile(JobID jobId, PermanentBlobKey blobKey) throws IOException { checkNotNull(jobId); checkNotNull(blobKey); final File localFile = BlobUtils.getStorageLocation(storageDir.deref(), jobId, blobKey); readWriteLock.readLock().lock(); try { if (localFile.exists()) { blobCacheSizeTracker.update(jobId, blobKey); return FileUtils.readAllBytes(localFile.toPath()); } } finally { readWriteLock.readLock().unlock(); } // first try the distributed blob store (if available) // use a temporary file (thread-safe without locking) File incomingFile = createTemporaryFilename();try { try { if (blobView.get(jobId, blobKey, incomingFile)) { // now move the temp file to our local cache atomically readWriteLock.writeLock().lock(); try { checkLimitAndMoveFile(incomingFile, jobId, blobKey, localFile, log, null); return FileUtils.readAllBytes(localFile.toPath()); } finally { readWriteLock.writeLock().unlock(); } } } catch (Exception e) { log.info("Failed to copy from blob store. Downloading from BLOB server instead.", e);} final InetSocketAddress currentServerAddress = serverAddress; if (currentServerAddress != null) { // fallback: download from the BlobServer BlobClient.downloadFromBlobServer(jobId, blobKey, incomingFile, currentServerAddress, blobClientConfig, numFetchRetries); readWriteLock.writeLock().lock(); try {checkLimitAndMoveFile(incomingFile, jobId, blobKey, localFile, log, null); return FileUtils.readAllBytes(localFile.toPath()); } finally { readWriteLock.writeLock().unlock(); } } else { throw new IOException("Cannot download from BlobServer, because the server address is unknown."); }} finally { // delete incomingFile from a failed download if ((!incomingFile.delete()) && incomingFile.exists()) { log.warn("Could not delete the staging file {} for blob key {} and job {}.", incomingFile, blobKey, jobId); } } }
3.26
flink_PermanentBlobCache_releaseJob_rdh
/** * Unregisters use of job-related BLOBs and allow them to be released. * * @param jobId * ID of the job this blob belongs to * @see #registerJob(JobID) */ @Override public void releaseJob(JobID jobId) { checkNotNull(jobId); synchronized(jobRefCounters) { RefCount ref = jobRefCounters.get(jobId); if ((ref == null) || (ref.references == 0)) { log.warn("improper use of releaseJob() without a matching number of registerJob() calls for jobId " + jobId); return; } --ref.references; if (ref.references == 0) { ref.keepUntil = System.currentTimeMillis() + cleanupInterval; } } }
3.26
flink_PermanentBlobCache_registerJob_rdh
/** * Registers use of job-related BLOBs. * * <p>Using any other method to access BLOBs, e.g. {@link #getFile}, is only valid within calls * to <tt>registerJob(JobID)</tt> and {@link #releaseJob(JobID)}. * * @param jobId * ID of the job this blob belongs to * @see #releaseJob(JobID) */ @Override public void registerJob(JobID jobId) { checkNotNull(jobId); synchronized(jobRefCounters) { RefCount ref = jobRefCounters.get(jobId); if (ref == null) { ref = new RefCount(); jobRefCounters.put(jobId, ref); } else { // reset cleanup timeout ref.keepUntil = -1;} ++ref.references; } }
3.26
flink_PermanentBlobCache_getFile_rdh
/** * Returns the path to a local copy of the file associated with the provided job ID and blob * key. * * <p>We will first attempt to serve the BLOB from the local storage. If the BLOB is not in * there, we will try to download it from the HA store, or directly from the {@link BlobServer}. * * @param jobId * ID of the job this blob belongs to * @param key * blob key associated with the requested file * @return The path to the file. * @throws java.io.FileNotFoundException * if the BLOB does not exist; * @throws IOException * if any other error occurs when retrieving the file */ @Override public File getFile(JobID jobId, PermanentBlobKey key) throws IOException { checkNotNull(jobId); return getFileInternal(jobId, key); }
3.26
flink_OverWindowPartitionedOrderedPreceding_following_rdh
/** * Set the following offset (based on time or row-count intervals) for over window. * * @param following * following offset that relative to the current row. * @return an over window with defined following */ public OverWindowPartitionedOrderedPreceding following(Expression following) { optionalFollowing = Optional.of(following); return this; }
3.26
flink_OverWindowPartitionedOrderedPreceding_as_rdh
/** * Assigns an alias for this window that the following {@code select()} clause can refer to. * * @param alias * alias for this over window * @return the fully defined over window */ public OverWindow as(Expression alias) { return new OverWindow(alias, partitionBy, orderBy, preceding, optionalFollowing); }
3.26
flink_LogUrlUtil_getValidLogUrlPattern_rdh
/** * Validate and normalize log url pattern. */ public static Optional<String> getValidLogUrlPattern(final Configuration config, final ConfigOption<String> option) { String pattern = config.getString(option); if (StringUtils.isNullOrWhitespaceOnly(pattern)) { return Optional.empty(); } pattern = pattern.trim(); String scheme = pattern.substring(0, Math.max(pattern.indexOf(SCHEME_SEPARATOR), 0)); if (scheme.isEmpty()) { return Optional.of((HTTP_SCHEME + SCHEME_SEPARATOR) + pattern); } else if (HTTP_SCHEME.equalsIgnoreCase(scheme) || HTTPS_SCHEME.equalsIgnoreCase(scheme)) { return Optional.of(pattern); } else { LOG.warn("Ignore configured value for '{}': unsupported scheme {}", option.key(), scheme); return Optional.empty(); } }
3.26
flink_DateTimeUtils_fromTimestamp_rdh
// UNIX TIME // -------------------------------------------------------------------------------------------- public static long fromTimestamp(long ts) { return ts; }
3.26
flink_DateTimeUtils_toSQLDate_rdh
// -------------------------------------------------------------------------------------------- // java.sql Date/Time/Timestamp --> internal data types // -------------------------------------------------------------------------------------------- /** * Converts the internal representation of a SQL DATE (int) to the Java type used for UDF * parameters ({@link java.sql.Date}). */public static Date toSQLDate(int v) { // note that, in this case, can't handle Daylight Saving Time final long v0 = v * MILLIS_PER_DAY; return new Date(v0 - LOCAL_TZ.getOffset(v0)); }
3.26
flink_DateTimeUtils_timestampToTimestampWithLocalZone_rdh
// -------------------------------------------------------------------------------------------- // TIMESTAMP to TIMESTAMP_LTZ conversions // -------------------------------------------------------------------------------------------- public static TimestampData timestampToTimestampWithLocalZone(TimestampData ts, TimeZone tz) { return TimestampData.fromInstant(ts.toLocalDateTime().atZone(tz.toZoneId()).toInstant()); }
3.26
flink_DateTimeUtils_monthly_rdh
/** * Whether this is in the YEAR-TO-MONTH family of intervals. */ public boolean monthly() { return ordinal() <= MONTH.ordinal(); }
3.26
flink_DateTimeUtils_parseDate_rdh
/** * Returns the epoch days since 1970-01-01. */ public static int parseDate(String dateStr, String fromFormat) { // It is OK to use UTC, we just want get the epoch days // TODO use offset, better performance long ts = internalParseTimestampMillis(dateStr, fromFormat, TimeZone.getTimeZone("UTC")); ZoneId zoneId = ZoneId.of("UTC"); Instant instant = Instant.ofEpochMilli(ts); ZonedDateTime zdt = ZonedDateTime.ofInstant(instant, zoneId); return ymdToUnixDate(zdt.getYear(), zdt.getMonthValue(), zdt.getDayOfMonth()); }
3.26
flink_DateTimeUtils_toInternal_rdh
/** * Converts the Java type used for UDF parameters of SQL TIMESTAMP type ({@link java.sql.Timestamp}) to internal representation (long). * * <p>Converse of {@link #toSQLTimestamp(long)}. */ public static long toInternal(Timestamp ts) { long time = ts.getTime(); return time + LOCAL_TZ.getOffset(time); }
3.26
flink_DateTimeUtils_getValue_rdh
/** * Returns the TimeUnit associated with an ordinal. The value returned is null if the * ordinal is not a member of the TimeUnit enumeration. */ public static TimeUnit getValue(int ordinal) { return (ordinal < 0) || (ordinal >= CACHED_VALUES.length) ? null : CACHED_VALUES[ordinal]; }
3.26
flink_DateTimeUtils_ymdhms_rdh
/** * Appends year-month-day and hour:minute:second to a buffer; assumes they are valid. */ private static StringBuilder ymdhms(StringBuilder b, int year, int month, int day, int h, int m, int s) { ymd(b, year, month, day); b.append(' '); hms(b, h, m, s);return b; }
3.26
flink_DateTimeUtils_addMonths_rdh
/** * Adds a given number of months to a date, represented as the number of days since the epoch. */ public static int addMonths(int date, int m) { int y0 = ((int) (extractFromDate(TimeUnitRange.YEAR, date))); int m0 = ((int) (extractFromDate(TimeUnitRange.MONTH, date))); int d0 = ((int) (extractFromDate(TimeUnitRange.DAY, date))); m0 += m; int deltaYear = ((int) (DateTimeUtils.floorDiv(m0, 12))); y0 += deltaYear; m0 = ((int) (DateTimeUtils.floorMod(m0, 12))); if (m0 == 0) {y0 -= 1; m0 += 12; } int last = lastDay(y0, m0); if (d0 > last) { d0 = last; } return ymdToUnixDate(y0, m0, d0); }
3.26
flink_DateTimeUtils_isValidValue_rdh
/** * Returns whether a given value is valid for a field of this time unit. * * @param field * Field value * @return Whether value */ public boolean isValidValue(BigDecimal field) { return (field.compareTo(BigDecimal.ZERO) >= 0) && ((limit == null) || (field.compareTo(limit) < 0)); }
3.26
flink_DateTimeUtils_toTimestampData_rdh
// -------------------------------------------------------------------------------------------- // Numeric -> Timestamp conversion // -------------------------------------------------------------------------------------------- public static TimestampData toTimestampData(long v, int precision) { switch (precision) { case 0 : if ((MIN_EPOCH_SECONDS <= v) && (v <= f1)) { return timestampDataFromEpochMills(v * MILLIS_PER_SECOND); } else { return null; } case 3 : return timestampDataFromEpochMills(v); default :throw new TableException(((("The precision value '" + precision) + "' for function ") + "TO_TIMESTAMP_LTZ(numeric, precision) is unsupported,") + " the supported value is '0' for second or '3' for millisecond."); } }
3.26
flink_DateTimeUtils_parseTimestampTz_rdh
/** * Parse date time string to timestamp based on the given time zone string and format. Returns * null if parsing failed. * * @param dateStr * the date time string * @param tzStr * the time zone id string */ private static long parseTimestampTz(String dateStr, String tzStr) throws ParseException { TimeZone tz = TIMEZONE_CACHE.get(tzStr); return parseTimestampMillis(dateStr, DateTimeUtils.TIMESTAMP_FORMAT_STRING, tz); }
3.26
flink_DateTimeUtils_fromTemporalAccessor_rdh
/** * This is similar to {@link LocalDateTime#from(TemporalAccessor)}, but it's less strict and * introduces default values. */ private static LocalDateTime fromTemporalAccessor(TemporalAccessor accessor, int precision) {// complement year with 1970 int year = (accessor.isSupported(YEAR)) ? accessor.get(YEAR) : 1970; // complement month with 1 int month = (accessor.isSupported(MONTH_OF_YEAR)) ? accessor.get(MONTH_OF_YEAR) : 1; // complement day with 1 int day = (accessor.isSupported(DAY_OF_MONTH)) ? accessor.get(DAY_OF_MONTH) : 1; // complement hour with 0 int hour = (accessor.isSupported(HOUR_OF_DAY)) ? accessor.get(HOUR_OF_DAY) : 0; // complement minute with 0 int minute = (accessor.isSupported(MINUTE_OF_HOUR)) ? accessor.get(MINUTE_OF_HOUR) : 0; // complement second with 0 int second = (accessor.isSupported(SECOND_OF_MINUTE)) ? accessor.get(SECOND_OF_MINUTE) : 0; // complement nano_of_second with 0 int nanoOfSecond = (accessor.isSupported(NANO_OF_SECOND)) ? accessor.get(NANO_OF_SECOND) : 0; if (precision == 0) { nanoOfSecond = 0; } else if (precision != 9) { nanoOfSecond = ((int) (floor(nanoOfSecond, powerX(10, 9 - precision)))); }return LocalDateTime.of(year, month, day, hour, minute, second, nanoOfSecond); }
3.26
flink_DateTimeUtils_timestampCeil_rdh
/** * Keep the algorithm consistent with Calcite DateTimeUtils.julianDateFloor, but here we take * time zone into account. */ public static long timestampCeil(TimeUnitRange range, long ts, TimeZone tz) { // assume that we are at UTC timezone, just for algorithm performance long offset = tz.getOffset(ts); long utcTs = ts + offset; switch (range) { case f3 : return ceil(utcTs, MILLIS_PER_HOUR) - offset; case DAY : return ceil(utcTs, MILLIS_PER_DAY) - offset; case MILLENNIUM : case CENTURY : case DECADE : case MONTH : case YEAR : case QUARTER : case WEEK : int days = ((int) ((utcTs / MILLIS_PER_DAY) + EPOCH_JULIAN)); return (julianDateFloor(range, days, false) * MILLIS_PER_DAY) - offset; default : // for MINUTE and SECONDS etc..., // it is more effective to use arithmetic Method throw new AssertionError(range); } }
3.26
flink_DateTimeUtils_ymd_rdh
/** * Appends year-month-day to a buffer; assumes they are valid. */ private static StringBuilder ymd(StringBuilder b, int year, int month, int day) {int4(b, year); b.append('-'); int2(b, month); b.append('-'); int2(b, day); return b; }
3.26
flink_DateTimeUtils_subtractMonths_rdh
/** * Finds the number of months between two dates, each represented as the number of days since * the epoch. */public static int subtractMonths(int date0, int date1) { if (date0 < date1) { return -subtractMonths(date1, date0);} // Start with an estimate. // Since no month has more than 31 days, the estimate is <= the true value. int m = (date0 - date1) / 31; while (true) { int date2 = addMonths(date1, m); if (date2 >= date0) { return m; } int date3 = addMonths(date1, m + 1); if (date3 > date0) { return m; } ++m; } }
3.26
flink_DateTimeUtils_timestampMillisToDate_rdh
// -------------------------------------------------------------------------------------------- // TIMESTAMP to DATE/TIME utils // -------------------------------------------------------------------------------------------- /** * Get date from a timestamp. * * @param ts * the timestamp in milliseconds. * @return the date in days. */ public static int timestampMillisToDate(long ts) {int days = ((int) (ts / MILLIS_PER_DAY)); if (days < 0) { days = days - 1; } return days; }
3.26
flink_DateTimeUtils_unixTimestamp_rdh
/** * Returns the value of the argument as an unsigned integer in seconds since '1970-01-01 * 00:00:00' UTC. */ public static long unixTimestamp(String dateStr, String format, TimeZone tz) { long ts = internalParseTimestampMillis(dateStr, format, tz); if (ts == Long.MIN_VALUE) { return Long.MIN_VALUE; } else { // return the seconds return ts / 1000; } }
3.26
flink_DateTimeUtils_of_rdh
/** * Returns a {@code TimeUnitRange} with a given start and end unit. * * @param startUnit * Start unit * @param endUnit * End unit * @return Time unit range, or null if not valid */ public static TimeUnitRange of(TimeUnit startUnit, TimeUnit endUnit) { return MAP.get(new Pair<>(startUnit, endUnit)); }
3.26
flink_DateTimeUtils_m0_rdh
/** * Get time from a timestamp. * * @param ts * the timestamp in milliseconds. * @return the time in milliseconds. */ public static int m0(long ts) { return ((int) (ts % MILLIS_PER_DAY)); }
3.26
flink_DateTimeUtils_toLocalDate_rdh
// -------------------------------------------------------------------------------------------- // Java 8 time conversion // -------------------------------------------------------------------------------------------- public static LocalDate toLocalDate(int date) {return julianToLocalDate(date + EPOCH_JULIAN);}
3.26
flink_DateTimeUtils_toSQLTime_rdh
/** * Converts the internal representation of a SQL TIME (int) to the Java type used for UDF * parameters ({@link java.sql.Time}). */ public static Time toSQLTime(int v) {// note that, in this case, can't handle Daylight Saving Time return new Time(v - LOCAL_TZ.getOffset(v)); }
3.26
flink_DateTimeUtils_formatDate_rdh
/** * Helper for CAST({date} AS VARCHAR(n)). */ public static String formatDate(int date) { final StringBuilder buf = new StringBuilder(10); formatDate(buf, date);return buf.toString(); }
3.26
flink_DateTimeUtils_timestampFloor_rdh
// -------------------------------------------------------------------------------------------- // Floor/Ceil/Convert tz // -------------------------------------------------------------------------------------------- public static long timestampFloor(TimeUnitRange range, long ts, TimeZone tz) { // assume that we are at UTC timezone, just for algorithm performance long v160 = tz.getOffset(ts); long utcTs = ts + v160; switch (range) { case f3 :return floor(utcTs, MILLIS_PER_HOUR) - v160; case DAY : return floor(utcTs, MILLIS_PER_DAY) - v160; case MILLENNIUM : case CENTURY : case DECADE : case MONTH : case YEAR : case QUARTER : case WEEK : int days = ((int) ((utcTs / MILLIS_PER_DAY) + EPOCH_JULIAN)); return (julianDateFloor(range, days, true) * MILLIS_PER_DAY) - v160;default : // for MINUTE and SECONDS etc..., // it is more effective to use arithmetic Method throw new AssertionError(range); } }
3.26
flink_DateTimeUtils_parseTimestampData_rdh
// -------------------------------------------------------------------------------------------- // Parsing functions // -------------------------------------------------------------------------------------------- public static TimestampData parseTimestampData(String dateStr) throws DateTimeException { // Precision is hardcoded to match signature of TO_TIMESTAMP // https://issues.apache.org/jira/browse/FLINK-14925 return parseTimestampData(dateStr, 3); }
3.26
flink_DateTimeUtils_toSQLTimestamp_rdh
/** * Converts the internal representation of a SQL TIMESTAMP (long) to the Java type used for UDF * parameters ({@link java.sql.Timestamp}). */ public static Timestamp toSQLTimestamp(long v) {return new Timestamp(v - LOCAL_TZ.getOffset(v)); }
3.26
flink_DateTimeUtils_hms_rdh
/** * Appends hour:minute:second to a buffer; assumes they are valid. */ private static StringBuilder hms(StringBuilder b, int h, int m, int s) { int2(b, h); b.append(':'); int2(b, m); b.append(':'); int2(b, s); return b; }
3.26
flink_DateTimeUtils_parseTimestampMillis_rdh
/** * Parse date time string to timestamp based on the given time zone and format. Returns null if * parsing failed. * * @param dateStr * the date time string * @param format * date time string format * @param tz * the time zone */ private static long parseTimestampMillis(String dateStr, String format, TimeZone tz) throws ParseException { SimpleDateFormat formatter = FORMATTER_CACHE.get(format); formatter.setTimeZone(tz); return formatter.parse(dateStr).getTime(); }
3.26
flink_LargeRecordHandler_createSerializer_rdh
// -------------------------------------------------------------------------------------------- private TypeSerializer<Object> createSerializer(Object key, int pos) { if (key == null) { throw new NullKeyFieldException(pos); } try { TypeInformation<Object> info = TypeExtractor.getForObject(key); return info.createSerializer(executionConfig); } catch (Throwable t) { throw new RuntimeException("Could not create key serializer for type " + key); } }
3.26
flink_LargeRecordHandler_hasData_rdh
// -------------------------------------------------------------------------------------------- public boolean hasData() { return recordCounter > 0; }
3.26
flink_LargeRecordHandler_addRecord_rdh
// -------------------------------------------------------------------------------------------- @SuppressWarnings("unchecked") public long addRecord(T record) throws IOException { if (recordsOutFile == null) { if (closed) { throw new IllegalStateException("The large record handler has been closed."); } if (recordsReader != null) { throw new IllegalStateException("The handler has already switched to sorting."); } LOG.debug("Initializing the large record spilling..."); // initialize the utilities { final TypeComparator<?>[] keyComps = comparator.getFlatComparators(); numKeyFields = keyComps.length; Object[] v1 = new Object[numKeyFields]; comparator.extractKeys(record, v1, 0); TypeSerializer<?>[] keySers = new TypeSerializer<?>[numKeyFields]; TypeSerializer<?>[] tupleSers = new TypeSerializer<?>[numKeyFields + 1]; int[] keyPos = new int[numKeyFields]; for (int i = 0; i < numKeyFields; i++) { keyPos[i] = i; keySers[i] = createSerializer(v1[i], i); tupleSers[i] = keySers[i]; } // add the long serializer for the offset tupleSers[numKeyFields] = LongSerializer.INSTANCE; keySerializer = new TupleSerializer<>(((Class<Tuple>) (Tuple.getTupleClass(numKeyFields + 1))), tupleSers); keyComparator = new TupleComparator<>(keyPos, keyComps, keySers); keyTuple = keySerializer.createInstance(); } // initialize the spilling final int totalNumSegments = memory.size(); final int segmentsForKeys = (totalNumSegments >= (2 * MAX_SEGMENTS_FOR_KEY_SPILLING)) ? MAX_SEGMENTS_FOR_KEY_SPILLING : Math.max(MIN_SEGMENTS_FOR_KEY_SPILLING, totalNumSegments - MAX_SEGMENTS_FOR_KEY_SPILLING); List<MemorySegment> recordsMemory = new ArrayList<MemorySegment>(); List<MemorySegment> keysMemory = new ArrayList<MemorySegment>(); for (int i = 0; i < segmentsForKeys; i++) { keysMemory.add(memory.get(i)); } for (int i = segmentsForKeys; i < totalNumSegments; i++) { recordsMemory.add(memory.get(i)); } recordsChannel = ioManager.createChannel(); keysChannel = ioManager.createChannel(); recordsOutFile = new FileChannelOutputView(ioManager.createBlockChannelWriter(recordsChannel), memManager, recordsMemory, memManager.getPageSize()); keysOutFile = new FileChannelOutputView(ioManager.createBlockChannelWriter(keysChannel), memManager, keysMemory, memManager.getPageSize()); } final long offset = recordsOutFile.getWriteOffset(); if (offset < 0) { throw new RuntimeException("wrong offset"); }Object[] keyHolder = new Object[numKeyFields]; comparator.extractKeys(record, keyHolder, 0); for (int i = 0; i < numKeyFields; i++) { keyTuple.setField(keyHolder[i], i); } keyTuple.setField(offset, numKeyFields); keySerializer.serialize(keyTuple, keysOutFile); serializer.serialize(record, recordsOutFile); recordCounter++; return offset; }
3.26
flink_RuntimeSerializerFactory_hashCode_rdh
// -------------------------------------------------------------------------------------------- @Override public int hashCode() { return clazz.hashCode() ^ serializer.hashCode();}
3.26
flink_ResolveCallByArgumentsRule_adaptArguments_rdh
/** * Adapts the arguments according to the properties of the {@link Result}. */ private List<ResolvedExpression> adaptArguments(Result inferenceResult, List<ResolvedExpression> resolvedArgs) { return IntStream.range(0, resolvedArgs.size()).mapToObj(pos -> { final ResolvedExpression argument = resolvedArgs.get(pos); final DataType argumentType = argument.getOutputDataType(); final DataType expectedType = inferenceResult.getExpectedArgumentTypes().get(pos); if (!supportsAvoidingCast(argumentType.getLogicalType(), expectedType.getLogicalType())) { return resolutionContext.postResolutionFactory().cast(argument, expectedType); } return argument; }).collect(Collectors.toList()); }
3.26
flink_ResolveCallByArgumentsRule_getOptionalTypeInference_rdh
/** * Temporary method until all calls define a type inference. */ private Optional<TypeInference> getOptionalTypeInference(FunctionDefinition definition) { if ((((definition instanceof ScalarFunctionDefinition) || (definition instanceof TableFunctionDefinition)) || (definition instanceof AggregateFunctionDefinition)) || (definition instanceof TableAggregateFunctionDefinition)) { return Optional.empty(); } final TypeInference inference = definition.getTypeInference(resolutionContext.typeFactory()); if (inference.getOutputTypeStrategy() != TypeStrategies.MISSING) { return Optional.of(inference); } else { return Optional.empty(); } }
3.26
flink_ResolveCallByArgumentsRule_prepareInlineUserDefinedFunction_rdh
/** * Validates and cleans an inline, unregistered {@link UserDefinedFunction}. */ private FunctionDefinition prepareInlineUserDefinedFunction(FunctionDefinition definition) { if (definition instanceof ScalarFunctionDefinition) { final ScalarFunctionDefinition sf = ((ScalarFunctionDefinition) (definition)); UserDefinedFunctionHelper.prepareInstance(resolutionContext.configuration(), sf.getScalarFunction()); return new ScalarFunctionDefinition(sf.getName(), sf.getScalarFunction()); } else if (definition instanceof TableFunctionDefinition) { final TableFunctionDefinition tf = ((TableFunctionDefinition) (definition)); UserDefinedFunctionHelper.prepareInstance(resolutionContext.configuration(), tf.getTableFunction()); return new TableFunctionDefinition(tf.getName(), tf.getTableFunction(), tf.getResultType()); } else if (definition instanceof AggregateFunctionDefinition) { final AggregateFunctionDefinition af = ((AggregateFunctionDefinition) (definition)); UserDefinedFunctionHelper.prepareInstance(resolutionContext.configuration(), af.getAggregateFunction()); return new AggregateFunctionDefinition(af.getName(), af.getAggregateFunction(), af.getResultTypeInfo(), af.getAccumulatorTypeInfo()); } else if (definition instanceof TableAggregateFunctionDefinition) { final TableAggregateFunctionDefinition taf = ((TableAggregateFunctionDefinition) (definition)); UserDefinedFunctionHelper.prepareInstance(resolutionContext.configuration(), taf.getTableAggregateFunction()); return new TableAggregateFunctionDefinition(taf.getName(), taf.getTableAggregateFunction(), taf.getResultTypeInfo(), taf.getAccumulatorTypeInfo()); } else if (definition instanceof UserDefinedFunction) { UserDefinedFunctionHelper.prepareInstance(resolutionContext.configuration(), ((UserDefinedFunction) (definition))); } return definition; }
3.26
flink_FlinkRelBuilder_watermark_rdh
/** * Build watermark assigner relational node. */ public RelBuilder watermark(int rowtimeFieldIndex, RexNode watermarkExpr) { final RelNode input = build(); final RelNode relNode = LogicalWatermarkAssigner.create(cluster, input, rowtimeFieldIndex, watermarkExpr); return push(relNode); }
3.26
flink_FlinkRelBuilder_windowAggregate_rdh
/** * Build window aggregate for either aggregate or table aggregate. */ public RelBuilder windowAggregate(LogicalWindow window, GroupKey groupKey, List<NamedWindowProperty> namedProperties, Iterable<AggCall> aggCalls) { // build logical aggregate // Because of: // [CALCITE-3763] RelBuilder.aggregate should prune unused fields from the input, // if the input is a Project. // // the field can not be pruned if it is referenced by other expressions // of the window aggregation(i.e. the TUMBLE_START/END). // To solve this, we config the RelBuilder to forbidden this feature. final LogicalAggregate aggregate = ((LogicalAggregate) (super.transform(t -> t.withPruneInputOfAggregate(false)).push(build()).aggregate(groupKey, aggCalls).build())); // build logical window aggregate from it final RelNode windowAggregate; if (isTableAggregate(aggregate.getAggCallList())) { windowAggregate = LogicalWindowTableAggregate.create(window, namedProperties, aggregate); } else { windowAggregate = LogicalWindowAggregate.create(window, namedProperties, aggregate);}return push(windowAggregate); }
3.26
flink_FlinkRelBuilder_aggregate_rdh
/** * Build non-window aggregate for either aggregate or table aggregate. */ @Override public RelBuilder aggregate(RelBuilder.GroupKey groupKey, Iterable<RelBuilder.AggCall> aggCalls) { // build a relNode, the build() may also return a project RelNode relNode = super.aggregate(groupKey, aggCalls).build(); if (relNode instanceof LogicalAggregate) { final LogicalAggregate logicalAggregate = ((LogicalAggregate) (relNode)); if (isTableAggregate(logicalAggregate.getAggCallList())) { relNode = LogicalTableAggregate.create(logicalAggregate); } else if (isCountStarAgg(logicalAggregate)) { final RelNode newAggInput = push(logicalAggregate.getInput(0)).project(literal(0)).build(); relNode = logicalAggregate.copy(logicalAggregate.getTraitSet(), ImmutableList.of(newAggInput)); } } return push(relNode); }
3.26
flink_FlinkRelBuilder_pushFunctionScan_rdh
/** * {@link RelBuilder#functionScan(SqlOperator, int, Iterable)} cannot work smoothly with aliases * which is why we implement a custom one. The method is static because some {@link RelOptRule}s * don't use {@link FlinkRelBuilder}. */ public static RelBuilder pushFunctionScan(RelBuilder relBuilder, SqlOperator operator, int inputCount, Iterable<RexNode> operands, List<String> aliases) { Preconditions.checkArgument(operator instanceof BridgingSqlFunction.WithTableFunction, "Table function expected."); final RexBuilder rexBuilder = relBuilder.getRexBuilder(); final RelDataTypeFactory typeFactory = relBuilder.getTypeFactory(); final List<RelNode> inputs = new LinkedList<>();for (int i = 0; i < inputCount; i++) { inputs.add(0, relBuilder.build()); } final List<RexNode> operandList = CollectionUtil.iterableToList(operands); final RelDataType functionRelDataType = rexBuilder.deriveReturnType(operator, operandList); final List<RelDataType> fieldRelDataTypes; if (functionRelDataType.isStruct()) { fieldRelDataTypes = functionRelDataType.getFieldList().stream().map(RelDataTypeField::getType).collect(Collectors.toList());} else { fieldRelDataTypes = Collections.singletonList(functionRelDataType); } final RelDataType rowRelDataType = typeFactory.createStructType(fieldRelDataTypes, aliases); final RexNode call = rexBuilder.makeCall(rowRelDataType, operator, operandList); final RelNode functionScan = LogicalTableFunctionScan.create(relBuilder.getCluster(), inputs, call, null, rowRelDataType, Collections.emptySet()); return relBuilder.push(functionScan); }
3.26
flink_SplitEnumeratorContext_registeredReadersOfAttempts_rdh
/** * Get the currently registered readers of all the subtask attempts. The mapping is from subtask * id to a map which maps an attempt to its reader info. * * @return the currently registered readers. */ default Map<Integer, Map<Integer, ReaderInfo>> registeredReadersOfAttempts() { throw new UnsupportedOperationException(); }
3.26
flink_SplitEnumeratorContext_assignSplit_rdh
/** * Assigns a single split. * * <p>When assigning multiple splits, it is more efficient to assign all of them in a single * call to the {@link #assignSplits(SplitsAssignment)} method. * * @param split * The new split * @param subtask * The index of the operator's parallel subtask that shall receive the split. */ default void assignSplit(SplitT split, int subtask) { assignSplits(new SplitsAssignment<>(split, subtask)); }
3.26
flink_SplitEnumeratorContext_sendEventToSourceReader_rdh
/** * Send a source event to a source reader. The source reader is identified by its subtask id and * attempt number. It is similar to {@link #sendEventToSourceReader(int, SourceEvent)} but it is * aware of the subtask execution attempt to send this event to. * * <p>The {@link SplitEnumerator} must invoke this method instead of {@link #sendEventToSourceReader(int, SourceEvent)} if it is used in cases that a subtask can have * multiple concurrent execution attempts, e.g. if speculative execution is enabled. Otherwise * an error will be thrown when the split enumerator tries to send a custom source event. * * @param subtaskId * the subtask id of the source reader to send this event to. * @param attemptNumber * the attempt number of the source reader to send this event to. * @param event * the source event to send. */ default void sendEventToSourceReader(int subtaskId, int attemptNumber, SourceEvent event) { throw new UnsupportedOperationException(); }
3.26
flink_ArrayData_createElementGetter_rdh
// ------------------------------------------------------------------------------------------ // Access Utilities // ------------------------------------------------------------------------------------------ /** * Creates an accessor for getting elements in an internal array data structure at the given * position. * * @param elementType * the element type of the array */ static ElementGetter createElementGetter(LogicalType elementType) { final ElementGetter v0; // ordered by type root definition switch (elementType.getTypeRoot()) { case CHAR : case VARCHAR : v0 = ArrayData::getString; break; case BOOLEAN : v0 = ArrayData::getBoolean; break; case BINARY : case VARBINARY : v0 = ArrayData::getBinary; break; case DECIMAL : final int decimalPrecision = getPrecision(elementType); final int decimalScale = getScale(elementType); v0 = (array, pos) -> array.getDecimal(pos, decimalPrecision, decimalScale); break; case TINYINT : v0 = ArrayData::getByte; break; case SMALLINT : v0 = ArrayData::getShort; break; case INTEGER : case DATE : case TIME_WITHOUT_TIME_ZONE : case INTERVAL_YEAR_MONTH : v0 = ArrayData::getInt; break; case BIGINT : case INTERVAL_DAY_TIME : v0 = ArrayData::getLong; break; case FLOAT : v0 = ArrayData::getFloat; break; case DOUBLE : v0 = ArrayData::getDouble; break; case TIMESTAMP_WITHOUT_TIME_ZONE : case TIMESTAMP_WITH_LOCAL_TIME_ZONE : final int timestampPrecision = getPrecision(elementType); v0 = (array, pos) -> array.getTimestamp(pos, timestampPrecision); break; case TIMESTAMP_WITH_TIME_ZONE : throw new UnsupportedOperationException(); case ARRAY : v0 = ArrayData::getArray; break;case MULTISET : case MAP : v0 = ArrayData::getMap; break; case ROW : case STRUCTURED_TYPE :final int rowFieldCount = getFieldCount(elementType); v0 = (array, pos) -> array.getRow(pos, rowFieldCount); break; case DISTINCT_TYPE : v0 = createElementGetter(((DistinctType) (elementType)).getSourceType()); break; case RAW : v0 = ArrayData::getRawValue; break; case NULL :case SYMBOL :case UNRESOLVED : default : throw new IllegalArgumentException(); }if (!elementType.isNullable()) { return v0; } return (array, pos) -> { if (array.isNullAt(pos)) { return null; } return v0.getElementOrNull(array, pos); }; }
3.26
flink_CalciteSchemaBuilder_asRootSchema_rdh
/** * Creates a {@link CalciteSchema} with a given {@link Schema} as the root. * * @param root * schema to use as a root schema * @return calcite schema with given schema as the root */ public static CalciteSchema asRootSchema(Schema root) { return new SimpleCalciteSchema(null, root, ""); }
3.26
flink_WebLogAnalysis_getDocumentsDataSet_rdh
// ************************************************************************* // UTIL METHODS // ************************************************************************* private static DataSet<Tuple2<String, String>> getDocumentsDataSet(ExecutionEnvironment env, ParameterTool params) { // Create DataSet for documents relation (URL, Doc-Text) if (params.has("documents")) { return env.readCsvFile(params.get("documents")).fieldDelimiter("|").types(String.class, String.class); } else { System.out.println("Executing WebLogAnalysis example with default documents data set."); System.out.println("Use --documents to specify file input."); return WebLogData.getDocumentDataSet(env); } }
3.26
flink_WebLogAnalysis_coGroup_rdh
/** * If the visit iterator is empty, all pairs of the rank iterator are emitted. Otherwise, no * pair is emitted. * * <p>Output Format: 0: RANK 1: URL 2: AVG_DURATION */ @Override public void coGroup(Iterable<Tuple3<Integer, String, Integer>> ranks, Iterable<Tuple1<String>> visits, Collector<Tuple3<Integer, String, Integer>> out) { // Check if there is a entry in the visits relation if (!visits.iterator().hasNext()) { for (Tuple3<Integer, String, Integer> next : ranks) { // Emit all rank pairs out.collect(next); } } }
3.26
flink_WebLogAnalysis_main_rdh
// ************************************************************************* // PROGRAM // ************************************************************************* public static void main(String[] args) throws Exception { LOGGER.warn(DATASET_DEPRECATION_INFO); final ParameterTool params = ParameterTool.fromArgs(args); final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment(); env.getConfig().setGlobalJobParameters(params); // get input data DataSet<Tuple2<String, String>> documents = getDocumentsDataSet(env, params); DataSet<Tuple3<Integer, String, Integer>> ranks = getRanksDataSet(env, params); DataSet<Tuple2<String, String>> visits = getVisitsDataSet(env, params); // Retain documents with keywords DataSet<Tuple1<String>> filterDocs = documents.filter(new FilterDocByKeyWords()).project(0); // Filter ranks by minimum rank DataSet<Tuple3<Integer, String, Integer>> filterRanks = ranks.filter(new FilterByRank()); // Filter visits by visit date DataSet<Tuple1<String>> filterVisits = visits.filter(new FilterVisitsByDate()).project(0); // Join the filtered documents and ranks, i.e., get all URLs with min rank and keywords DataSet<Tuple3<Integer, String, Integer>> joinDocsRanks = filterDocs.join(filterRanks).where(0).equalTo(1).projectSecond(0, 1, 2); // Anti-join urls with visits, i.e., retain all URLs which have NOT been visited in a // certain time DataSet<Tuple3<Integer, String, Integer>> result = joinDocsRanks.coGroup(filterVisits).where(1).equalTo(0).with(new AntiJoinVisits()); // emit result if (params.has("output")) { result.writeAsCsv(params.get("output"), "\n", "|"); // execute program env.execute("WebLogAnalysis Example"); } else { System.out.println("Printing result to stdout. Use --output to specify output path."); result.print(); } }
3.26
flink_WebLogAnalysis_filter_rdh
/** * Filters for records of the visits relation where the year of visit is equal to a * specified value. The URL of all visit records passing the filter is emitted. * * <p>Output Format: 0: URL 1: DATE */ @Override public boolean filter(Tuple2<String, String> value) throws Exception { // Parse date string with the format YYYY-MM-DD and extract the year String dateString = value.f1; int year = Integer.parseInt(dateString.substring(0, 4)); return year == YEARFILTER; }
3.26
flink_BigIntComparator_putNormalizedKey_rdh
/** * Adds a normalized key containing the normalized number of bits and MSBs of the given record. * 1 bit determines the sign (negative, zero/positive), 31 bit the bit length of the record. * Remaining bytes contain the most significant bits of the record. */ @Override public void putNormalizedKey(BigInteger record, MemorySegment target, int offset, int len) { // add normalized bit length (the larger the length, the larger the value) int bitLen = 0; if (len > 0) { final int signum = record.signum(); bitLen = record.bitLength(); // normalize dependent on sign // from 0 to Integer.MAX // OR from Integer.MAX to 0 int normBitLen = (signum < 0) ? Integer.MAX_VALUE - bitLen : bitLen; // add sign if (signum >= 0) { normBitLen |= 1 << 31; } for (int i = 0; (i < 4) && (len > 0); i++ , len--) { final byte b = ((byte) (normBitLen >>> (8 * (3 - i)))); target.put(offset++, b);} } // fill remaining bytes with most significant bits int bitPos = bitLen - 1; for (; len > 0; len--) { byte b = 0; for (int bytePos = 0; (bytePos < 8) && (bitPos >= 0); bytePos++ , bitPos--) { b <<= 1; if (record.testBit(bitPos)) { b |= 1; } } // the last byte might be partially filled, but that's ok within an equal bit length. // no need for padding bits. target.put(offset++, b); } }
3.26
flink_TypeInformationSerializationSchema_deserialize_rdh
// ------------------------------------------------------------------------ @Override public T deserialize(byte[] message) { if (dis != null) { dis.setBuffer(message); } else { dis = new DataInputDeserializer(message); } try { return serializer.deserialize(dis); } catch (IOException e) { throw new RuntimeException("Unable to deserialize message", e); } }
3.26
flink_TypeInformationSerializationSchema_isEndOfStream_rdh
/** * This schema never considers an element to signal end-of-stream, so this method returns always * false. * * @param nextElement * The element to test for the end-of-stream signal. * @return Returns false. */ @Override public boolean isEndOfStream(T nextElement) { return false;}
3.26
flink_MultipleJobsDetails_getJobs_rdh
// ------------------------------------------------------------------------ public Collection<JobDetails> getJobs() { return jobs; }
3.26
flink_CompositeTypeSerializerUtil_m1_rdh
/** * Overrides the existing nested serializer's snapshots with the provided {@code nestedSnapshots}. * * @param compositeSnapshot * the composite snapshot to overwrite its nested serializers. * @param nestedSnapshots * the nested snapshots to overwrite with. */ public static void m1(CompositeTypeSerializerSnapshot<?, ?> compositeSnapshot, TypeSerializerSnapshot<?>... nestedSnapshots) {NestedSerializersSnapshotDelegate delegate = new NestedSerializersSnapshotDelegate(nestedSnapshots); compositeSnapshot.setNestedSerializersSnapshotDelegate(delegate); }
3.26
flink_CompositeTypeSerializerUtil_constructIntermediateCompatibilityResult_rdh
/** * Constructs an {@link IntermediateCompatibilityResult} with the given array of nested * serializers and their corresponding serializer snapshots. * * <p>This result is considered "intermediate", because the actual final result is not yet built * if it isn't defined. This is the case if the final result is supposed to be {@link TypeSerializerSchemaCompatibility#compatibleWithReconfiguredSerializer(TypeSerializer)}, * where construction of the reconfigured serializer instance should be done by the caller. * * <p>For other cases, i.e. {@link TypeSerializerSchemaCompatibility#compatibleAsIs()}, {@link TypeSerializerSchemaCompatibility#compatibleAfterMigration()}, and {@link TypeSerializerSchemaCompatibility#incompatible()}, these results are considered final. * * @param newNestedSerializers * the new nested serializers to check for compatibility. * @param nestedSerializerSnapshots * the associated nested serializers' snapshots. * @return the intermediate compatibility result of the new nested serializers. */ public static <T> IntermediateCompatibilityResult<T> constructIntermediateCompatibilityResult(TypeSerializer<?>[] newNestedSerializers, TypeSerializerSnapshot<?>[] nestedSerializerSnapshots) { Preconditions.checkArgument(newNestedSerializers.length == nestedSerializerSnapshots.length, "Different number of new serializers and existing serializer snapshots."); TypeSerializer<?>[] nestedSerializers = new TypeSerializer[newNestedSerializers.length]; // check nested serializers for compatibility boolean nestedSerializerRequiresMigration = false; boolean hasReconfiguredNestedSerializers = false; for (int i = 0; i < nestedSerializerSnapshots.length; i++) { TypeSerializerSchemaCompatibility<?> compatibility = resolveCompatibility(newNestedSerializers[i], nestedSerializerSnapshots[i]); // if any one of the new nested serializers is incompatible, we can just short circuit // the result if (compatibility.isIncompatible()) { return IntermediateCompatibilityResult.definedIncompatibleResult(); } if (compatibility.isCompatibleAfterMigration()) { nestedSerializerRequiresMigration = true; } else if (compatibility.isCompatibleWithReconfiguredSerializer()) { hasReconfiguredNestedSerializers = true; nestedSerializers[i] = compatibility.getReconfiguredSerializer(); } else if (compatibility.isCompatibleAsIs()) { nestedSerializers[i] = newNestedSerializers[i]; } else { throw new IllegalStateException("Undefined compatibility type."); } } if (nestedSerializerRequiresMigration) { return IntermediateCompatibilityResult.definedCompatibleAfterMigrationResult(); } if (hasReconfiguredNestedSerializers) { return IntermediateCompatibilityResult.undefinedReconfigureResult(nestedSerializers);} // ends up here if everything is compatible as is return IntermediateCompatibilityResult.definedCompatibleAsIsResult(nestedSerializers); }
3.26
flink_CompositeTypeSerializerUtil_m0_rdh
/** * Delegates compatibility checks to a {@link CompositeTypeSerializerSnapshot} instance. This * can be used by legacy snapshot classes, which have a newer implementation implemented as a * {@link CompositeTypeSerializerSnapshot}. * * @param newSerializer * the new serializer to check for compatibility. * @param newCompositeSnapshot * an instance of the new snapshot class to delegate compatibility * checks to. This instance should already contain the outer snapshot information. * @param legacyNestedSnapshots * the nested serializer snapshots of the legacy composite * snapshot. * @return the result compatibility. */public static <T> TypeSerializerSchemaCompatibility<T> m0(TypeSerializer<T> newSerializer, CompositeTypeSerializerSnapshot<T, ? extends TypeSerializer> newCompositeSnapshot, TypeSerializerSnapshot<?>... legacyNestedSnapshots) { checkArgument(legacyNestedSnapshots.length > 0); return newCompositeSnapshot.internalResolveSchemaCompatibility(newSerializer, legacyNestedSnapshots); }
3.26
flink_ProgressiveTimestampsAndWatermarks_createMainOutput_rdh
// ------------------------------------------------------------------------ @Override public ReaderOutput<T> createMainOutput(PushingAsyncDataInput.DataOutput<T> output, WatermarkUpdateListener watermarkUpdateListener) { // At the moment, we assume only one output is ever created! // This assumption is strict, currently, because many of the classes in this implementation // do not // support re-assigning the underlying output checkState((currentMainOutput == null) && (currentPerSplitOutputs == null), "already created a main output"); final WatermarkOutput watermarkOutput = new WatermarkToDataOutput(output, watermarkUpdateListener); IdlenessManager idlenessManager = new IdlenessManager(watermarkOutput); final WatermarkGenerator<T> watermarkGenerator = watermarksFactory.createWatermarkGenerator(watermarksContext); currentPerSplitOutputs = new SplitLocalOutputs<>(output, idlenessManager.getSplitLocalOutput(), watermarkUpdateListener, timestampAssigner, watermarksFactory, watermarksContext); currentMainOutput = new StreamingReaderOutput<>(output, idlenessManager.getMainOutput(), timestampAssigner, watermarkGenerator, currentPerSplitOutputs); return currentMainOutput; }
3.26
flink_ResourceUri_getUri_rdh
/** * Get resource unique path info. */ public String getUri() { return uri; }
3.26
flink_ResourceUri_m0_rdh
/** * Get resource type info. */ public ResourceType m0() { return resourceType; }
3.26
flink_EitherSerializer_getRightSerializer_rdh
// ------------------------------------------------------------------------ // Accessors // ------------------------------------------------------------------------ public TypeSerializer<R> getRightSerializer() {return rightSerializer; }
3.26
flink_EitherSerializer_isImmutableType_rdh
// ------------------------------------------------------------------------ // TypeSerializer methods // ------------------------------------------------------------------------ @Override public boolean isImmutableType() { return false; }
3.26
flink_EitherSerializer_snapshotConfiguration_rdh
// ------------------------------------------------------------------------ // Serializer configuration snapshotting & compatibility // ------------------------------------------------------------------------ @Override public JavaEitherSerializerSnapshot<L, R> snapshotConfiguration() { return new JavaEitherSerializerSnapshot<>(this); }
3.26
flink_IterateExample_main_rdh
// ************************************************************************* // PROGRAM // ************************************************************************* public static void main(String[] args) throws Exception { // Checking input parameters final ParameterTool params = ParameterTool.fromArgs(args); // set up input for the stream of integer pairs // obtain execution environment and set setBufferTimeout to 1 to enable // continuous flushing of the output buffers (lowest latency) StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment().setBufferTimeout(1); // make parameters available in the web interface env.getConfig().setGlobalJobParameters(params); // create input stream of integer pairs DataStream<Tuple2<Integer, Integer>> inputStream; if (params.has("input")) { FileSource<String> fileSource = FileSource.forRecordStreamFormat(new TextLineInputFormat(), new Path(params.get("input"))).build(); inputStream = env.fromSource(fileSource, WatermarkStrategy.noWatermarks(), "Tuples Source").map(new FibonacciInputMap()); } else { System.out.println("Executing Iterate example with default input data set.");System.out.println("Use --input to specify file input."); GeneratorFunction<Long, Tuple2<Integer, Integer>> dataGenerator = new RandomFibonacciGenerator(); DataGeneratorSource<Tuple2<Integer, Integer>> generatorSource = new DataGeneratorSource<>(dataGenerator, BOUND, RateLimiterStrategy.perSecond(20), Types.TUPLE(Types.INT, Types.INT)); inputStream = env.fromSource(generatorSource, WatermarkStrategy.noWatermarks(), "Generated tuples Source"); } // create an iterative data stream from the input with 5 second timeout IterativeStream<Tuple5<Integer, Integer, Integer, Integer, Integer>> it = inputStream.map(new InputMap()).iterate(5000L); // apply the step function to get the next Fibonacci number // increment the counter and split the output SingleOutputStreamOperator<Tuple5<Integer, Integer, Integer, Integer, Integer>> step = it.process(new Step()); // close the iteration by selecting the tuples that were directed to the // 'iterate' channel in the output selector it.closeWith(step.getSideOutput(ITERATE_TAG)); // to produce the final get the input pairs that have the greatest iteration counter // on a 1 second sliding window DataStream<Tuple2<Tuple2<Integer, Integer>, Integer>> numbers = step.map(new OutputMap()); // emit results if (params.has("output")) { numbers.sinkTo(FileSink.<Tuple2<Tuple2<Integer, Integer>, Integer>>forRowFormat(new Path(params.get("output")), new SimpleStringEncoder<>()).withRollingPolicy(DefaultRollingPolicy.builder().withMaxPartSize(MemorySize.ofMebiBytes(1)).withRolloverInterval(Duration.ofSeconds(10)).build()).build()); } else {System.out.println("Printing result to stdout. Use --output to specify output path."); numbers.print(); } // execute the program env.execute("Streaming Iteration Example"); }
3.26
flink_DeployParser_parseDeployOutput_rdh
/** * Parses the output of a Maven build where {@code deploy:deploy} was used, and returns a set of * deployed modules. */ public static Set<String> parseDeployOutput(File buildResult) throws IOException { try (Stream<String> linesStream = Files.lines(buildResult.toPath())) { return parseDeployOutput(linesStream); } }
3.26
flink_StandaloneHaServices_getResourceManagerLeaderRetriever_rdh
// ------------------------------------------------------------------------ // Services // ------------------------------------------------------------------------ @Override public LeaderRetrievalService getResourceManagerLeaderRetriever() { synchronized(lock) { checkNotShutdown(); return new StandaloneLeaderRetrievalService(f0, DEFAULT_LEADER_ID); } }
3.26
flink_ParquetRowDataBuilder_createWriterFactory_rdh
/** * Create a parquet {@link BulkWriter.Factory}. * * @param rowType * row type of parquet table. * @param conf * hadoop configuration. * @param utcTimestamp * Use UTC timezone or local timezone to the conversion between epoch time * and LocalDateTime. Hive 0.x/1.x/2.x use local timezone. But Hive 3.x use UTC timezone. */ public static ParquetWriterFactory<RowData> createWriterFactory(RowType rowType, Configuration conf, boolean utcTimestamp) { return new ParquetWriterFactory<>(new FlinkParquetBuilder(rowType, conf, utcTimestamp)); }
3.26
flink_TaskManagerConfiguration_fromConfiguration_rdh
// -------------------------------------------------------------------------------------------- // Static factory methods // -------------------------------------------------------------------------------------------- public static TaskManagerConfiguration fromConfiguration(Configuration configuration, TaskExecutorResourceSpec taskExecutorResourceSpec, String externalAddress, File tmpWorkingDirectory) { int numberSlots = configuration.getInteger(TaskManagerOptions.NUM_TASK_SLOTS, 1); if (numberSlots == (-1)) { numberSlots = 1; } final String[] tmpDirPaths = ConfigurationUtils.parseTempDirectories(configuration); final Duration rpcTimeout = configuration.get(AkkaOptions.ASK_TIMEOUT_DURATION); f0.debug("Messages have a max timeout of " + rpcTimeout); final Duration slotTimeout = configuration.get(TaskManagerOptions.SLOT_TIMEOUT); Duration finiteRegistrationDuration; try { finiteRegistrationDuration = configuration.get(TaskManagerOptions.REGISTRATION_TIMEOUT); } catch (IllegalArgumentException e) { f0.warn("Invalid format for parameter {}. Set the timeout to be infinite.", TaskManagerOptions.REGISTRATION_TIMEOUT.key()); finiteRegistrationDuration = null; } final boolean exitOnOom = configuration.getBoolean(TaskManagerOptions.KILL_ON_OUT_OF_MEMORY); final String taskManagerLogPath = configuration.getString(ConfigConstants.TASK_MANAGER_LOG_PATH_KEY, System.getProperty("log.file")); final String taskManagerStdoutPath; final String taskManagerLogDir; if (taskManagerLogPath != null) { final int extension = taskManagerLogPath.lastIndexOf('.'); taskManagerLogDir = new File(taskManagerLogPath).getParent(); if (extension > 0) { taskManagerStdoutPath = taskManagerLogPath.substring(0, extension) + ".out"; } else { taskManagerStdoutPath = null; } } else { taskManagerStdoutPath = null; taskManagerLogDir = null; } final RetryingRegistrationConfiguration retryingRegistrationConfiguration = RetryingRegistrationConfiguration.fromConfiguration(configuration); return new TaskManagerConfiguration(numberSlots, TaskExecutorResourceUtils.generateDefaultSlotResourceProfile(taskExecutorResourceSpec, numberSlots), TaskExecutorResourceUtils.generateTotalAvailableResourceProfile(taskExecutorResourceSpec), tmpDirPaths, rpcTimeout, slotTimeout, finiteRegistrationDuration, configuration, exitOnOom, taskManagerLogPath, taskManagerStdoutPath, taskManagerLogDir, externalAddress, tmpWorkingDirectory, retryingRegistrationConfiguration);}
3.26
flink_RefCountedTmpFileCreator_apply_rdh
/** * Gets the next temp file and stream to temp file. This creates the temp file atomically, * making sure no previous file is overwritten. * * <p>This method is safe against concurrent use. * * @return A pair of temp file and output stream to that temp file. * @throws IOException * Thrown, if the stream to the temp file could not be opened. */ @Override public RefCountedFileWithStream apply(File file) throws IOException { final File directory = tempDirectories[nextIndex()]; while (true) { try { if (file == null) { final File newFile = new File(directory, ".tmp_" + UUID.randomUUID()); final OutputStream out = Files.newOutputStream(newFile.toPath(), StandardOpenOption.CREATE_NEW); return RefCountedFileWithStream.newFile(newFile, out); } else { final OutputStream out = Files.newOutputStream(file.toPath(), StandardOpenOption.APPEND); return RefCountedFileWithStream.restoredFile(file, out, file.length()); } } catch (FileAlreadyExistsException ignored) { // fall through the loop and retry } } }
3.26
flink_WindowKeySerializer_equals_rdh
// ------------------------------------------------------------------------------------------ @Override public boolean equals(Object obj) { return (obj instanceof WindowKeySerializer) && keySerializer.equals(((WindowKeySerializer) (obj)).keySerializer); }
3.26
flink_WindowKeySerializer_serializeToPages_rdh
/** * Actually, the return value is just for saving checkSkipReadForFixLengthPart in the * mapFromPages, the cost is very small. * * <p>TODO so, we can remove this return value for simplifying interface. */ @Overridepublic int serializeToPages(WindowKey record, AbstractPagedOutputView target) throws IOException { target.writeLong(record.getWindow()); keySerializer.serializeToPages(record.getKey(), target); // We cannot return the num of bytes skipped by keySerializer. The return value is to help // better relocate the start offset where the data is located, and the offset we need here // is the offset that we started to write. // Consider this case: // |----First segment----|Second Segment| // |--------Left 10 bytes|--------------| // In fact, we will write 8 bytes in the first segment and skip the next two bytes. At this // time, its offset should also be 0. return 0; }
3.26
flink_ProtobufInternalUtils_underScoreToCamelCase_rdh
/** * convert underscore name to camel name. */ public static String underScoreToCamelCase(String name, boolean capNext) { return SchemaUtil.toCamelCase(name, capNext); }
3.26
flink_SplitDataProperties_splitsPartitionedBy_rdh
/** * Defines that data is partitioned using an identifiable method across input splits on the * fields defined by field expressions. Multiple field expressions must be separated by the * semicolon ';' character. All records sharing the same key (combination) must be contained in * a single input split. * * <p><b> IMPORTANT: Providing wrong information with SplitDataProperties can cause wrong * results! </b> * * @param partitionMethodId * An ID for the method that was used to partition the data across * splits. * @param partitionFields * The field expressions of the partitioning keys. * @return This SplitDataProperties object. */ public SplitDataProperties<T> splitsPartitionedBy(String partitionMethodId, String partitionFields) { if (partitionFields == null) { throw new InvalidProgramException("PartitionFields may not be null."); } String[] partitionKeysA = partitionFields.split(";"); if (partitionKeysA.length == 0) { throw new InvalidProgramException("PartitionFields may not be empty."); } this.splitPartitionKeys = getAllFlatKeys(partitionKeysA); if (partitionMethodId != null) { this.splitPartitioner = new SourcePartitionerMarker<>(partitionMethodId); } else { this.splitPartitioner = null; } return this; }
3.26
flink_SplitDataProperties_splitsGroupedBy_rdh
/** * Defines that the data within an input split is grouped on the fields defined by the field * expressions. Multiple field expressions must be separated by the semicolon ';' character. All * records sharing the same key (combination) must be subsequently emitted by the input format * for each input split. * * <p><b> IMPORTANT: Providing wrong information with SplitDataProperties can cause wrong * results! </b> * * @param groupFields * The field expressions of the grouping keys. * @return This SplitDataProperties object. */ public SplitDataProperties<T> splitsGroupedBy(String groupFields) { if (groupFields == null) { throw new InvalidProgramException("GroupFields may not be null."); } String[] groupKeysA = groupFields.split(";"); if (groupKeysA.length == 0) { throw new InvalidProgramException("GroupFields may not be empty."); }if (this.splitOrdering != null) {throw new InvalidProgramException("DataSource may either be grouped or sorted."); } this.splitGroupKeys = getAllFlatKeys(groupKeysA); return this; }
3.26
flink_SplitDataProperties_getAllFlatKeys_rdh
// ///////////////////// FLAT FIELD EXTRACTION METHODS private int[] getAllFlatKeys(String[] fieldExpressions) { int[] allKeys = null; for (String keyExp : fieldExpressions) { Keys.ExpressionKeys<T> ek = new Keys.ExpressionKeys<>(keyExp, this.type); int[] flatKeys = ek.computeLogicalKeyPositions(); if (allKeys == null) { allKeys = flatKeys; } else { // check for duplicates for (int key1 : flatKeys) { for (int key2 : allKeys) { if (key1 == key2) { throw new InvalidProgramException("Duplicate fields in field expression " + keyExp); } } } // append flat keys int oldLength = allKeys.length; int newLength = oldLength + flatKeys.length; allKeys = Arrays.copyOf(allKeys, newLength); System.arraycopy(flatKeys, 0, allKeys, oldLength, flatKeys.length); } } return allKeys; }
3.26
flink_SplitDataProperties_splitsOrderedBy_rdh
/** * Defines that the data within an input split is sorted on the fields defined by the field * expressions in the specified orders. Multiple field expressions must be separated by the * semicolon ';' character. All records of an input split must be emitted by the input format in * the defined order. * * <p><b> IMPORTANT: Providing wrong information with SplitDataProperties can cause wrong * results! </b> * * @param orderFields * The field expressions of the grouping key. * @param orders * The orders of the fields. * @return This SplitDataProperties object. */ public SplitDataProperties<T> splitsOrderedBy(String orderFields, Order[] orders) { if ((orderFields == null) || (orders == null)) { throw new InvalidProgramException("OrderFields or Orders may not be null."); } String[] orderKeysA = orderFields.split(";"); if (orderKeysA.length == 0) { throw new InvalidProgramException("OrderFields may not be empty."); } else if (orders.length == 0) { throw new InvalidProgramException("Orders may not be empty"); } else if (orderKeysA.length != orders.length) { throw new InvalidProgramException("Number of OrderFields and Orders must match."); } if (this.splitGroupKeys != null) { throw new InvalidProgramException("DataSource may either be grouped or sorted."); } this.splitOrdering = new Ordering(); for (int i = 0; i < orderKeysA.length; i++) { String keyExp = orderKeysA[i]; Keys.ExpressionKeys<T> ek = new Keys.ExpressionKeys<>(keyExp, this.type); int[] flatKeys = ek.computeLogicalKeyPositions(); for (int key : flatKeys) { // check for duplicates for (int okey : splitOrdering.getFieldPositions()) { if (key == okey) { throw new InvalidProgramException("Duplicate field in field expression " + keyExp); } } // append key this.splitOrdering.appendOrdering(key, null, orders[i]); } } return this; }
3.26
flink_SplitDataProperties_m0_rdh
/** * Defines that data is partitioned across input splits on the fields defined by field * positions. All records sharing the same key (combination) must be contained in a single input * split. * * <p><b> IMPORTANT: Providing wrong information with SplitDataProperties can cause wrong * results! </b> * * @param partitionFields * The field positions of the partitioning keys. * @return This SplitDataProperties object. */ public SplitDataProperties<T> m0(int... partitionFields) { return this.splitsPartitionedBy(null, partitionFields); }
3.26
flink_ListViewSerializer_transformLegacySerializerSnapshot_rdh
/** * We need to override this as a {@link LegacySerializerSnapshotTransformer} because in Flink * 1.6.x and below, this serializer was incorrectly returning directly the snapshot of the * nested list serializer as its own snapshot. * * <p>This method transforms the incorrect list serializer snapshot to be a proper {@link ListViewSerializerSnapshot}. */ @Override public <U> TypeSerializerSnapshot<ListView<T>> transformLegacySerializerSnapshot(TypeSerializerSnapshot<U> legacySnapshot) { if (legacySnapshot instanceof ListViewSerializerSnapshot) {return ((TypeSerializerSnapshot<ListView<T>>) (legacySnapshot)); } else { throw new UnsupportedOperationException(legacySnapshot.getClass().getCanonicalName() + " is not supported."); }}
3.26
flink_RocksDBNativeMetricOptions_m3_rdh
/** * {{@link RocksDBNativeMetricMonitor}} Whether to expose the column family as a variable.. * * @return true is column family to expose variable, false otherwise. */ public boolean m3() { return this.columnFamilyAsVariable; }
3.26
flink_RocksDBNativeMetricOptions_enableBackgroundErrors_rdh
/** * Returns accumulated number of background errors. */ public void enableBackgroundErrors() {this.properties.add(RocksDBProperty.BackgroundErrors.getRocksDBProperty()); }
3.26
flink_RocksDBNativeMetricOptions_enableEstimateNumKeys_rdh
/** * Returns estimated number of total keys in the active and unflushed immutable memtables and * storage. */ public void enableEstimateNumKeys() {this.properties.add(RocksDBProperty.EstimateNumKeys.getRocksDBProperty()); }
3.26
flink_RocksDBNativeMetricOptions_enableEstimateLiveDataSize_rdh
/** * Returns an estimate of the amount of live data in bytes. */ public void enableEstimateLiveDataSize() { this.properties.add(RocksDBProperty.EstimateLiveDataSize.getRocksDBProperty()); }
3.26
flink_RocksDBNativeMetricOptions_enableCompactionPending_rdh
/** * Returns 1 if at least one compaction is pending; otherwise, returns 0. */ public void enableCompactionPending() { this.properties.add(RocksDBProperty.CompactionPending.getRocksDBProperty()); }
3.26