name
stringlengths
12
178
code_snippet
stringlengths
8
36.5k
score
float64
3.26
3.68
flink_ExecutionEnvironment_registerType_rdh
/** * Registers the given type with the serialization stack. If the type is eventually serialized * as a POJO, then the type is registered with the POJO serializer. If the type ends up being * serialized with Kryo, then it will be registered at Kryo to make sure that only tags are * written. * * @param type * The class of the type to register. */ public void registerType(Class<?> type) { if (type == null) { throw new NullPointerException("Cannot register null type class."); } TypeInformation<?> typeInfo = TypeExtractor.createTypeInfo(type); if (typeInfo instanceof PojoTypeInfo) { config.registerPojoType(type); } else { config.registerKryoType(type); } }
3.26
flink_ExecutionEnvironment_clearJobListeners_rdh
/** * Clear all registered {@link JobListener}s. */ @PublicEvolving public void clearJobListeners() { this.jobListeners.clear(); } /** * Triggers the program execution asynchronously. The environment will execute all parts of the * program that have resulted in a "sink" operation. Sink operations are for example printing * results ({@link DataSet#print()}, writing results (e.g. {@link DataSet#writeAsText(String)}, * {@link DataSet#write(org.apache.flink.api.common.io.FileOutputFormat, String)}, or other * generic data sinks created with {@link DataSet#output(org.apache.flink.api.common.io.OutputFormat)}. * * <p>The program execution will be logged and displayed with a generated default name. * * @return A {@link JobClient}
3.26
flink_ExecutionEnvironment_registerCachedFile_rdh
/** * Registers a file at the distributed cache under the given name. The file will be accessible * from any user-defined function in the (distributed) runtime under a local path. Files may be * local files (which will be distributed via BlobServer), or files in a distributed file * system. The runtime will copy the files temporarily to a local cache, if needed. * * <p>The {@link org.apache.flink.api.common.functions.RuntimeContext} can be obtained inside * UDFs via {@link org.apache.flink.api.common.functions.RichFunction#getRuntimeContext()} and * provides access {@link org.apache.flink.api.common.cache.DistributedCache} via {@link org.apache.flink.api.common.functions.RuntimeContext#getDistributedCache()}. * * @param filePath * The path of the file, as a URI (e.g. "file:///some/path" or * "hdfs://host:port/and/path") * @param name * The name under which the file is registered. * @param executable * flag indicating whether the file should be executable */ public void registerCachedFile(String filePath, String name, boolean executable) { this.f1.add(new Tuple2<>(name, new DistributedCacheEntry(filePath, executable))); }
3.26
flink_ExecutionEnvironment_registerTypeWithKryoSerializer_rdh
/** * Registers the given Serializer via its class as a serializer for the given type at the * KryoSerializer. * * @param type * The class of the types serialized with the given serializer. * @param serializerClass * The class of the serializer to use. */ public void registerTypeWithKryoSerializer(Class<?> type, Class<? extends Serializer<?>> serializerClass) { config.registerTypeWithKryoSerializer(type, serializerClass);}
3.26
flink_ExecutionEnvironment_getJobListeners_rdh
/** * Gets the config JobListeners. */ protected List<JobListener> getJobListeners() { return jobListeners;} /** * Gets the parallelism with which operation are executed by default. Operations can * individually override this value to use a specific parallelism via {@link Operator#setParallelism(int)}. Other operations may need to run with a different parallelism * - for example calling {@link DataSet#reduce(org.apache.flink.api.common.functions.ReduceFunction)} over the entire set * will insert eventually an operation that runs non-parallel (parallelism of one). * * @return The parallelism used by operations, unless they override that value. This method returns {@link ExecutionConfig#PARALLELISM_DEFAULT}
3.26
flink_ExecutionEnvironment_createLocalEnvironmentWithWebUI_rdh
/** * Creates a {@link LocalEnvironment} for local program execution that also starts the web * monitoring UI. * * <p>The local execution environment will run the program in a multi-threaded fashion in the * same JVM as the environment was created in. It will use the parallelism specified in the * parameter. * * <p>If the configuration key 'rest.port' was set in the configuration, that particular port * will be used for the web UI. Otherwise, the default port (8081) will be used. */ @PublicEvolving public static ExecutionEnvironment createLocalEnvironmentWithWebUI(Configuration conf) { checkNotNull(conf, "conf"); if (!conf.contains(RestOptions.PORT)) { // explicitly set this option so that it's not set to 0 later conf.setInteger(RestOptions.PORT, RestOptions.PORT.defaultValue()); } return createLocalEnvironment(conf, -1); }
3.26
flink_ExecutionEnvironment_fromParallelCollection_rdh
// private helper for passing different call location names private <X> DataSource<X> fromParallelCollection(SplittableIterator<X> iterator, TypeInformation<X> type, String callLocationName) { return new DataSource<>(this, new ParallelIteratorInputFormat<>(iterator), type, callLocationName); }
3.26
flink_ExecutionEnvironment_createLocalEnvironment_rdh
/** * Creates a {@link LocalEnvironment} which is used for executing Flink jobs. * * @param configuration * to start the {@link LocalEnvironment} with * @param defaultParallelism * to initialize the {@link LocalEnvironment} with * @return {@link LocalEnvironment} */ private static LocalEnvironment createLocalEnvironment(Configuration configuration, int defaultParallelism) { final LocalEnvironment localEnvironment = new LocalEnvironment(configuration); if (defaultParallelism > 0) { localEnvironment.setParallelism(defaultParallelism); } return localEnvironment; }
3.26
flink_ExecutionEnvironment_setRestartStrategy_rdh
/** * Sets the restart strategy configuration. The configuration specifies which restart strategy * will be used for the execution graph in case of a restart. * * @param restartStrategyConfiguration * Restart strategy configuration to be set */ @PublicEvolving public void setRestartStrategy(RestartStrategies.RestartStrategyConfiguration restartStrategyConfiguration) { config.setRestartStrategy(restartStrategyConfiguration); }
3.26
flink_ExecutionEnvironment_fromCollection_rdh
/** * Creates a DataSet from the given iterator. Because the iterator will remain unmodified until * the actual execution happens, the type of data returned by the iterator must be given * explicitly in the form of the type information. This method is useful for cases where the * type is generic. In that case, the type class (as given in {@link #fromCollection(Iterator, * Class)} does not supply all type information. * * <p>Note that this operation will result in a non-parallel data source, i.e. a data source * with a parallelism of one. * * @param data * The collection of elements to create the data set from. * @param type * The TypeInformation for the produced data set. * @return A DataSet representing the elements in the iterator. * @see #fromCollection(Iterator, Class) */ public <X> DataSource<X> fromCollection(Iterator<X> data, TypeInformation<X> type) { return new DataSource<>(this, new IteratorInputFormat<>(data), type, Utils.getCallLocationName()); }
3.26
flink_ExecutionEnvironment_setDefaultLocalParallelism_rdh
/** * Sets the default parallelism that will be used for the local execution environment created by * {@link #createLocalEnvironment()}. * * @param parallelism * The parallelism to use as the default local parallelism. */ public static void setDefaultLocalParallelism(int parallelism) { defaultLocalDop = parallelism; }
3.26
flink_ExecutionEnvironment_createRemoteEnvironment_rdh
/** * Creates a {@link RemoteEnvironment}. The remote environment sends (parts of) the program to a * cluster for execution. Note that all file paths used in the program must be accessible from * the cluster. The execution will use the specified parallelism. * * @param host * The host name or address of the master (JobManager), where the program should be * executed. * @param port * The port of the master (JobManager), where the program should be executed. * @param parallelism * The parallelism to use during the execution. * @param jarFiles * The JAR files with code that needs to be shipped to the cluster. If the * program uses user-defined functions, user-defined input formats, or any libraries, those * must be provided in the JAR files. * @return A remote environment that executes the program on a cluster. */ public static ExecutionEnvironment createRemoteEnvironment(String host, int port, int parallelism, String... jarFiles) { RemoteEnvironment rec = new RemoteEnvironment(host, port, jarFiles); rec.setParallelism(parallelism); return rec; }
3.26
flink_ExecutionEnvironment_getRestartStrategy_rdh
/** * Returns the specified restart strategy configuration. * * @return The restart strategy configuration to be used */ @PublicEvolving public RestartStrategyConfiguration getRestartStrategy() { return config.getRestartStrategy(); } /** * Sets the number of times that failed tasks are re-executed. A value of zero effectively * disables fault tolerance. A value of {@code -1} indicates that the system default value (as * defined in the configuration) should be used. * * @param numberOfExecutionRetries * The number of times the system will try to re-execute failed * tasks. * @deprecated This method will be replaced by {@link #setRestartStrategy}. The {@link RestartStrategies.FixedDelayRestartStrategyConfiguration}
3.26
flink_ExecutionEnvironment_readFile_rdh
// ------------------------------------ File Input Format // ----------------------------------------- public <X> DataSource<X> readFile(FileInputFormat<X> inputFormat, String filePath) { if (inputFormat == null) { throw new IllegalArgumentException("InputFormat must not be null."); } if (filePath == null) { throw new IllegalArgumentException("The file path must not be null."); } inputFormat.setFilePath(new Path(filePath));try { return createInput(inputFormat, TypeExtractor.getInputFormatTypes(inputFormat)); } catch (Exception e) { throw new InvalidProgramException(("The type returned by the input format could not be automatically determined. " + "Please specify the TypeInformation of the produced type explicitly by using the ") + "'createInput(InputFormat, TypeInformation)' method instead."); } }
3.26
flink_ExecutionEnvironment_getDefaultLocalParallelism_rdh
// -------------------------------------------------------------------------------------------- // Default parallelism for local execution // -------------------------------------------------------------------------------------------- /** * Gets the default parallelism that will be used for the local execution environment created by * {@link #createLocalEnvironment()}. * * @return The default local parallelism */ public static int getDefaultLocalParallelism() { return defaultLocalDop; }
3.26
flink_ExecutionEnvironment_resetContextEnvironment_rdh
/** * Un-sets the context environment factory. After this method is called, the call to {@link #getExecutionEnvironment()} will again return a default local execution environment, and it * is possible to explicitly instantiate the LocalEnvironment and the RemoteEnvironment. */ protected static void resetContextEnvironment() { contextEnvironmentFactory = null; f0.remove(); }
3.26
flink_ExecutionEnvironment_setParallelism_rdh
/** * Sets the parallelism for operations executed through this environment. Setting a parallelism * of x here will cause all operators (such as join, map, reduce) to run with x parallel * instances. * * <p>This method overrides the default parallelism for this environment. The {@link LocalEnvironment} uses by default a value equal to the number of hardware contexts (CPU cores * / threads). When executing the program via the command line client from a JAR file, the * default parallelism is the one configured for that setup. * * @param parallelism * The parallelism */ public void setParallelism(int parallelism) {config.setParallelism(parallelism); }
3.26
flink_ExecutionEnvironment_configure_rdh
/** * Sets all relevant options contained in the {@link ReadableConfig} such as e.g. {@link PipelineOptions#CACHED_FILES}. It will reconfigure {@link ExecutionEnvironment} and {@link ExecutionConfig}. * * <p>It will change the value of a setting only if a corresponding option was set in the {@code configuration}. If a key is not present, the current value of a field will remain untouched. * * @param configuration * a configuration to read the values from * @param classLoader * a class loader to use when loading classes */ @PublicEvolving public void configure(ReadableConfig configuration, ClassLoader classLoader) { configuration.getOptional(DeploymentOptions.JOB_LISTENERS).ifPresent(listeners -> registerCustomListeners(classLoader, listeners)); configuration.getOptional(PipelineOptions.CACHED_FILES).ifPresent(f -> { this.cacheFile.clear(); this.cacheFile.addAll(DistributedCache.parseCachedFilesFromString(f)); }); configuration.getOptional(PipelineOptions.NAME).ifPresent(jobName -> this.getConfiguration().set(PipelineOptions.NAME, jobName)); config.configure(configuration, classLoader); }
3.26
flink_ExecutionEnvironment_readTextFileWithValue_rdh
/** * Creates a {@link DataSet} that represents the Strings produced by reading the given file line * wise. This method is similar to {@link #readTextFile(String, String)}, but it produces a * DataSet with mutable {@link StringValue} objects, rather than Java Strings. StringValues can * be used to tune implementations to be less object and garbage collection heavy. * * <p>The {@link java.nio.charset.Charset} with the given name will be used to read the files. * * @param filePath * The path of the file, as a URI (e.g., "file:///some/local/file" or * "hdfs://host:port/file/path"). * @param charsetName * The name of the character set used to read the file. * @param skipInvalidLines * A flag to indicate whether to skip lines that cannot be read with the * given character set. * @return A DataSet that represents the data read from the given file as text lines. */ public DataSource<StringValue> readTextFileWithValue(String filePath, String charsetName, boolean skipInvalidLines) { Preconditions.checkNotNull(filePath, "The file path may not be null."); TextValueInputFormat format = new TextValueInputFormat(new Path(filePath)); format.setCharsetName(charsetName); format.setSkipInvalidLines(skipInvalidLines); return new DataSource<>(this, format, new ValueTypeInfo<>(StringValue.class), Utils.getCallLocationName()); } // ----------------------------------- Primitive Input Format // --------------------------------------- /** * Creates a {@link DataSet} that represents the primitive type produced by reading the given * file line wise. This method is similar to {@link #readCsvFile(String)} with single field, but * it produces a DataSet not through {@link org.apache.flink.api.java.tuple.Tuple1}. * * @param filePath * The path of the file, as a URI (e.g., "file:///some/local/file" or * "hdfs://host:port/file/path"). * @param typeClass * The primitive type class to be read. * @return A {@link DataSet}
3.26
flink_ExecutionEnvironment_createCollectionsEnvironment_rdh
/** * Creates a {@link CollectionEnvironment} that uses Java Collections underneath. This will * execute in a single thread in the current JVM. It is very fast but will fail if the data does * not fit into memory. parallelism will always be 1. This is useful during implementation and * for debugging. * * @return A Collection Environment */ @PublicEvolving public static CollectionEnvironment createCollectionsEnvironment() { CollectionEnvironment v18 = new CollectionEnvironment(); v18.setParallelism(1); return v18; }
3.26
flink_ExecutionEnvironment_createProgramPlan_rdh
/** * Creates the program's {@link Plan}. The plan is a description of all data sources, data * sinks, and operations and how they interact, as an isolated unit that can be executed with an * {@link PipelineExecutor}. Obtaining a plan and starting it with an executor is an alternative * way to run a program and is only possible if the program consists only of distributed * operations. * * @param jobName * The name attached to the plan (displayed in logs and monitoring). * @param clearSinks * Whether or not to start a new stage of execution. * @return The program's plan. */ @Internal public Plan createProgramPlan(String jobName, boolean clearSinks) { checkNotNull(jobName); if (this.sinks.isEmpty()) { if (wasExecuted) { throw new RuntimeException(("No new data sinks have been defined since the " + "last execution. The last execution refers to the latest call to ") + "'execute()', 'count()', 'collect()', or 'print()'."); } else { throw new RuntimeException(("No data sinks have been created yet. " + "A program needs at least one sink that consumes data. ") + "Examples are writing the data set or printing it.");} } final PlanGenerator generator = new PlanGenerator(sinks, config, getParallelism(), f1, jobName); final Plan plan = generator.generate(); // clear all the sinks such that the next execution does not redo everything if (clearSinks) { this.sinks.clear(); wasExecuted = true; }return plan; }
3.26
flink_ExecutionEnvironment_execute_rdh
/** * Triggers the program execution. The environment will execute all parts of the program that * have resulted in a "sink" operation. Sink operations are for example printing results ({@link DataSet#print()}, writing results (e.g. {@link DataSet#writeAsText(String)}, {@link DataSet#write(org.apache.flink.api.common.io.FileOutputFormat, String)}, or other generic * data sinks created with {@link DataSet#output(org.apache.flink.api.common.io.OutputFormat)}. * * <p>The program execution will be logged and displayed with the given job name. * * @return The result of the job execution, containing elapsed time and accumulators. * @throws Exception * Thrown, if the program executions fails. */ public JobExecutionResult execute(String jobName) throws Exception { final JobClient jobClient = executeAsync(jobName); try { if (configuration.getBoolean(DeploymentOptions.ATTACHED)) { lastJobExecutionResult = jobClient.getJobExecutionResult().get(); } else { lastJobExecutionResult = new DetachedJobExecutionResult(jobClient.getJobID()); } jobListeners.forEach(jobListener -> jobListener.onJobExecuted(lastJobExecutionResult, null)); } catch (Throwable t) { // get() on the JobExecutionResult Future will throw an ExecutionException. This // behaviour was largely not there in Flink versions before the PipelineExecutor // refactoring so we should strip that exception. Throwable strippedException = ExceptionUtils.stripExecutionException(t); jobListeners.forEach(jobListener -> { jobListener.onJobExecuted(null, strippedException); }); ExceptionUtils.rethrowException(strippedException); } return lastJobExecutionResult; }
3.26
flink_ExecutionEnvironment_readCsvFile_rdh
// ----------------------------------- CSV Input Format --------------------------------------- /** * Creates a CSV reader to read a comma separated value (CSV) file. The reader has options to * define parameters and field types and will eventually produce the DataSet that corresponds to * the read and parsed CSV input. * * @param filePath * The path of the CSV file. * @return A CsvReader that can be used to configure the CSV input. */ public CsvReader readCsvFile(String filePath) { return new CsvReader(filePath, this); }
3.26
flink_ExecutionEnvironment_getLastJobExecutionResult_rdh
/** * Returns the {@link org.apache.flink.api.common.JobExecutionResult} of the last executed job. * * @return The execution result from the latest job execution. */ public JobExecutionResult getLastJobExecutionResult() { return this.lastJobExecutionResult; }
3.26
flink_ExecutionEnvironment_initializeContextEnvironment_rdh
// -------------------------------------------------------------------------------------------- // Methods to control the context environment and creation of explicit environments other // than the context environment // -------------------------------------------------------------------------------------------- /** * Sets a context environment factory, that creates the context environment for running programs * with pre-configured environments. Examples are running programs from the command line. * * <p>When the context environment factory is set, no other environments can be explicitly used. * * @param ctx * The context environment factory. */ protected static void initializeContextEnvironment(ExecutionEnvironmentFactory ctx) { contextEnvironmentFactory = Preconditions.checkNotNull(ctx); f0.set(ctx); }
3.26
flink_ExecutionEnvironment_getJobName_rdh
/** * Gets the job name. If user defined job name is not found in the configuration, the default * name based on the timestamp when this method is invoked will return. * * @return A job name. */ private String getJobName() { return configuration.getString(PipelineOptions.NAME, "Flink Java Job at " + Calendar.getInstance().getTime()); } // -------------------------------------------------------------------------------------------- // Instantiation of Execution Contexts // -------------------------------------------------------------------------------------------- /** * Creates an execution environment that represents the context in which the program is * currently executed. If the program is invoked standalone, this method returns a local * execution environment, as returned by {@link #createLocalEnvironment()}
3.26
flink_GSCommitRecoverable_getComponentBlobIds_rdh
/** * Returns the list of component blob ids, which have to be resolved from the temporary bucket * name, prefix, and component ids. Resolving them this way vs. storing the blob ids directly * allows us to move in-progress blobs by changing options to point to new in-progress * locations. * * @param options * The GS file system options * @return The list of component blob ids */ List<GSBlobIdentifier> getComponentBlobIds(GSFileSystemOptions options) { String temporaryBucketName = BlobUtils.getTemporaryBucketName(finalBlobIdentifier, options); List<GSBlobIdentifier> componentBlobIdentifiers = componentObjectIds.stream().map(temporaryObjectId -> BlobUtils.getTemporaryObjectName(finalBlobIdentifier, temporaryObjectId)).map(temporaryObjectName -> new GSBlobIdentifier(temporaryBucketName, temporaryObjectName)).collect(Collectors.toList()); f0.trace("Resolved component blob identifiers for blob {}: {}", finalBlobIdentifier, componentBlobIdentifiers); return componentBlobIdentifiers; }
3.26
flink_AvroParquetRecordFormat_createReader_rdh
/** * Creates a new reader to read avro {@link GenericRecord} from Parquet input stream. * * <p>Several wrapper classes haven be created to Flink abstraction become compatible with the * parquet abstraction. Please refer to the inner classes {@link AvroParquetRecordReader}, * {@link ParquetInputFile}, {@code FSDataInputStreamAdapter} for details. */ @Override public Reader<E> createReader(Configuration config, FSDataInputStream stream, long fileLen, long splitEnd) throws IOException { // current version does not support splitting. checkNotSplit(fileLen, splitEnd); return new AvroParquetRecordReader<E>(AvroParquetReader.<E>builder(new ParquetInputFile(stream, fileLen)).withDataModel(getDataModel()).build()); }
3.26
flink_AvroParquetRecordFormat_getProducedType_rdh
/** * Gets the type produced by this format. This type will be the type produced by the file source * as a whole. */ @Override public TypeInformation<E> getProducedType() {return type; }
3.26
flink_AvroParquetRecordFormat_restoreReader_rdh
/** * Restores the reader from a checkpointed position. It is in fact identical since only {@link CheckpointedPosition#NO_OFFSET} as the {@code restoredOffset} is support. */ @Override public Reader<E> restoreReader(Configuration config, FSDataInputStream stream, long restoredOffset, long fileLen, long splitEnd) throws IOException { // current version does not support splitting. checkNotSplit(fileLen, splitEnd); checkArgument(restoredOffset == CheckpointedPosition.NO_OFFSET, "The restoredOffset should always be NO_OFFSET"); return createReader(config, stream, fileLen, splitEnd); }
3.26
flink_AvroParquetRecordFormat_isSplittable_rdh
/** * Current version does not support splitting. */ @Override public boolean isSplittable() { return false; }
3.26
flink_Tuple4_of_rdh
/** * Creates a new tuple and assigns the given values to the tuple's fields. This is more * convenient than using the constructor, because the compiler can infer the generic type * arguments implicitly. For example: {@code Tuple3.of(n, x, s)} instead of {@code new * Tuple3<Integer, Double, String>(n, x, s)} */ public static <T0, T1, T2, T3> Tuple4<T0, T1, T2, T3> of(T0 f0, T1 f1, T2 f2, T3 f3) { return new Tuple4<>(f0, f1, f2, f3); }
3.26
flink_Tuple4_equals_rdh
/** * Deep equality for tuples by calling equals() on the tuple members. * * @param o * the object checked for equality * @return true if this is equal to o. */ @Override public boolean equals(Object o) { if (this == o) { return true; } if (!(o instanceof Tuple4)) { return false; }@SuppressWarnings("rawtypes") Tuple4 tuple = ((Tuple4) (o)); if (f0 != null ? !f0.equals(tuple.f0) : tuple.f0 != null) { return false; } if (f1 != null ? !f1.equals(tuple.f1) : tuple.f1 != null) { return false; } if (f2 != null ? !f2.equals(tuple.f2) : tuple.f2 != null) { return false; } if (f3 != null ? !f3.equals(tuple.f3) : tuple.f3 != null) {return false; } return true; }
3.26
flink_Tuple4_copy_rdh
/** * Shallow tuple copy. * * @return A new Tuple with the same fields as this. */ @Override @SuppressWarnings("unchecked") public Tuple4<T0, T1, T2, T3> copy() { return new Tuple4<>(this.f0, this.f1, this.f2, this.f3); }
3.26
flink_Tuple4_toString_rdh
// ------------------------------------------------------------------------------------------------- // standard utilities // ------------------------------------------------------------------------------------------------- /** * Creates a string representation of the tuple in the form (f0, f1, f2, f3), where the * individual fields are the value returned by calling {@link Object#toString} on that field. * * @return The string representation of the tuple. */ @Override public String toString() { return ((((((("(" + StringUtils.arrayAwareToString(this.f0)) + ",") + StringUtils.arrayAwareToString(this.f1)) + ",") + StringUtils.arrayAwareToString(this.f2)) + ",") + StringUtils.arrayAwareToString(this.f3)) + ")"; }
3.26
flink_Tuple4_setFields_rdh
/** * Sets new values to all fields of the tuple. * * @param f0 * The value for field 0 * @param f1 * The value for field 1 * @param f2 * The value for field 2 * @param f3 * The value for field 3 */ public void setFields(T0 f0, T1 f1, T2 f2, T3 f3) { this.f0 = f0; this.f1 = f1; this.f2 = f2; this.f3 = f3; }
3.26
flink_EvictingWindowSavepointReader_reduce_rdh
/** * Reads window state generated using a {@link ReduceFunction}. * * @param uid * The uid of the operator. * @param function * The reduce function used to create the window. * @param readerFunction * The window reader function. * @param keyType * The key type of the window. * @param reduceType * The type information of the reduce function. * @param outputType * The output type of the reader function. * @param <K> * The type of the key. * @param <T> * The type of the reduce function. * @param <OUT> * The output type of the reduce function. * @return A {@code DataStream} of objects read from keyed state. * @throws IOException * If savepoint does not contain the specified uid. */ public <K, T, OUT> DataStream<OUT> reduce(String uid, ReduceFunction<T> function, WindowReaderFunction<T, OUT, K, W> readerFunction, TypeInformation<K> keyType, TypeInformation<T> reduceType, TypeInformation<OUT> outputType) throws IOException { WindowReaderOperator<?, K, StreamRecord<T>, W, OUT> operator = WindowReaderOperator.evictingWindow(new ReduceEvictingWindowReaderFunction<>(readerFunction, function), keyType, windowSerializer, reduceType, env.getConfig()); return readWindowOperator(uid, outputType, operator);}
3.26
flink_EvictingWindowSavepointReader_process_rdh
/** * Reads window state generated without any preaggregation such as {@code WindowedStream#apply} * and {@code WindowedStream#process}. * * @param uid * The uid of the operator. * @param readerFunction * The window reader function. * @param keyType * The key type of the window. * @param stateType * The type of records stored in state. * @param outputType * The output type of the reader function. * @param <K> * The type of the key. * @param <T> * The type of the records stored in state. * @param <OUT> * The output type of the reader function. * @return A {@code DataStream} of objects read from keyed state. * @throws IOException * If the savepoint does not contain the specified uid. */ public <K, T, OUT> DataStream<OUT> process(String uid, WindowReaderFunction<T, OUT, K, W> readerFunction, TypeInformation<K> keyType, TypeInformation<T> stateType, TypeInformation<OUT> outputType) throws IOException { WindowReaderOperator<?, K, StreamRecord<T>, W, OUT> operator = WindowReaderOperator.evictingWindow(new ProcessEvictingWindowReader<>(readerFunction), keyType, windowSerializer, stateType, env.getConfig()); return readWindowOperator(uid, outputType, operator); }
3.26
flink_EvictingWindowSavepointReader_aggregate_rdh
/** * Reads window state generated using an {@link AggregateFunction}. * * @param uid * The uid of the operator. * @param aggregateFunction * The aggregate function used to create the window. * @param readerFunction * The window reader function. * @param keyType * The key type of the window. * @param inputType * The type information of the accumulator function. * @param outputType * The output type of the reader function. * @param <K> * The type of the key. * @param <T> * The type of the values that are aggregated. * @param <ACC> * The type of the accumulator (intermediate aggregate state). * @param <R> * The type of the aggregated result. * @param <OUT> * The output type of the reader function. * @return A {@code DataStream} of objects read from keyed state. * @throws IOException * If savepoint does not contain the specified uid. */ public <K, T, ACC, R, OUT> DataStream<OUT> aggregate(String uid, AggregateFunction<T, ACC, R> aggregateFunction, WindowReaderFunction<R, OUT, K, W> readerFunction, TypeInformation<K> keyType, TypeInformation<T> inputType, TypeInformation<OUT> outputType) throws IOException { WindowReaderOperator<?, K, StreamRecord<T>, W, OUT> operator = WindowReaderOperator.evictingWindow(new AggregateEvictingWindowReaderFunction<>(readerFunction, aggregateFunction), keyType, windowSerializer, inputType, env.getConfig()); return readWindowOperator(uid, outputType, operator); }
3.26
flink_SocketClientSink_open_rdh
// ------------------------------------------------------------------------ // Life cycle // ------------------------------------------------------------------------ /** * Initialize the connection with the Socket in the server. * * @param openContext * the context. */ @Override public void open(OpenContext openContext) throws Exception { try { synchronized(lock) { createConnection(); } } catch (IOException e) { throw new IOException((("Cannot connect to socket server at " + hostName) + ":") + port, e); } }
3.26
flink_SocketClientSink_getCurrentNumberOfRetries_rdh
// ------------------------------------------------------------------------ // For testing // ------------------------------------------------------------------------ int getCurrentNumberOfRetries() { synchronized(lock) { return retries; } }
3.26
flink_SocketClientSink_invoke_rdh
/** * Called when new data arrives to the sink, and forwards it to Socket. * * @param value * The value to write to the socket. */ @Override public void invoke(IN value) throws Exception { byte[] msg = schema.serialize(value); try { outputStream.write(msg); if (autoFlush) { outputStream.flush(); } } catch (IOException e) { // if no re-tries are enable, fail immediately if (maxNumRetries == 0) { throw new IOException(((((("Failed to send message '" + value) + "' to socket server at ") + hostName) + ":") + port) + ". Connection re-tries are not enabled.", e); } LOG.error(((((("Failed to send message '" + value) + "' to socket server at ") + hostName) + ":") + port) + ". Trying to reconnect...", e); // do the retries in locked scope, to guard against concurrent close() calls // note that the first re-try comes immediately, without a wait! synchronized(lock) { IOException lastException = null; retries = 0; while (isRunning && ((maxNumRetries < 0) || (retries < maxNumRetries))) { // first, clean up the old resources try { if (outputStream != null) {outputStream.close(); } } catch (IOException ee) { LOG.error("Could not close output stream from failed write attempt", ee); } try { if (client != null) { client.close(); } } catch (IOException ee) { LOG.error("Could not close socket from failed write attempt", ee); } // try again retries++; try { // initialize a new connection createConnection(); // re-try the write outputStream.write(msg); // success! return; } catch (IOException ee) { lastException = ee; LOG.error("Re-connect to socket server and send message failed. Retry time(s): " + retries, ee); } // wait before re-attempting to connect lock.wait(CONNECTION_RETRY_DELAY);} // throw an exception if the task is still running, otherwise simply leave the // method if (isRunning) { throw new IOException(((((((("Failed to send message '" + value) + "' to socket server at ") + hostName) + ":") + port) + ". Failed after ") + retries) + " retries.", lastException); } } } }
3.26
flink_SocketClientSink_close_rdh
/** * Closes the connection with the Socket server. */ @Overridepublic void close() throws Exception { // flag this as not running any more isRunning = false; // clean up in locked scope, so there is no concurrent change to the stream and client synchronized(lock) { // we notify first (this statement cannot fail). The notified thread will not continue // anyways before it can re-acquire the lock lock.notifyAll(); try { if (outputStream != null) { outputStream.close(); } } finally { if (client != null) { client.close(); } } } }
3.26
flink_SocketClientSink_createConnection_rdh
// ------------------------------------------------------------------------ // Utilities // ------------------------------------------------------------------------ private void createConnection() throws IOException { client = new Socket(hostName, port); client.setKeepAlive(true); client.setTcpNoDelay(true); outputStream = client.getOutputStream(); }
3.26
flink_JoinWithSolutionSetSecondDriver_initialize_rdh
// -------------------------------------------------------------------------------------------- @Override @SuppressWarnings("unchecked") public void initialize() throws Exception { final TypeSerializer<IT2> solutionSetSerializer; final TypeComparator<IT2> solutionSetComparator; // grab a handle to the hash table from the iteration broker if (taskContext instanceof AbstractIterativeTask) { AbstractIterativeTask<?, ?> iterativeTaskContext = ((AbstractIterativeTask<?, ?>) (taskContext)); String identifier = iterativeTaskContext.brokerKey(); Object table = SolutionSetBroker.instance().get(identifier); if (table instanceof CompactingHashTable) { this.hashTable = ((CompactingHashTable<IT2>) (table)); solutionSetSerializer = this.hashTable.getBuildSideSerializer();solutionSetComparator = this.hashTable.getBuildSideComparator().duplicate(); } else if (table instanceof JoinHashMap) { this.objectMap = ((JoinHashMap<IT2>) (table)); solutionSetSerializer = this.objectMap.getBuildSerializer(); solutionSetComparator = this.objectMap.getBuildComparator().duplicate(); } else { throw new RuntimeException("Unrecognized solution set index: " + table); } } else { throw new Exception("The task context of this driver is no iterative task context."); } TaskConfig config = taskContext.getTaskConfig(); ClassLoader classLoader = taskContext.getUserCodeClassLoader(); TypeSerializer<IT1> probeSideSerializer = taskContext.<IT1>getInputSerializer(0).getSerializer(); TypeComparatorFactory<IT1> probeSideComparatorFactory = config.getDriverComparator(0, classLoader); this.probeSideComparator = probeSideComparatorFactory.createComparator(); ExecutionConfig executionConfig = taskContext.getExecutionConfig(); objectReuseEnabled = executionConfig.isObjectReuseEnabled(); if (objectReuseEnabled) { solutionSideRecord = solutionSetSerializer.createInstance(); probeSideRecord = probeSideSerializer.createInstance(); } TypePairComparatorFactory<IT1, IT2> factory = taskContext.getTaskConfig().getPairComparatorFactory(taskContext.getUserCodeClassLoader()); pairComparator = factory.createComparator12(this.probeSideComparator, solutionSetComparator); }
3.26
flink_JoinWithSolutionSetSecondDriver_setup_rdh
// -------------------------------------------------------------------------------------------- @Override public void setup(TaskContext<FlatJoinFunction<IT1, IT2, OT>, OT> context) { this.taskContext = context; this.running = true; }
3.26
flink_InputGateDeploymentDescriptor_getConsumedPartitionType_rdh
/** * Returns the type of this input channel's consumed result partition. * * @return consumed result partition type */ public ResultPartitionType getConsumedPartitionType() { return f1; }
3.26
flink_InputGateDeploymentDescriptor_getConsumedSubpartitionIndexRange_rdh
/** * Return the index range of the consumed subpartitions. */ public IndexRange getConsumedSubpartitionIndexRange() { return consumedSubpartitionIndexRange; }
3.26
flink_DistCp_isLocal_rdh
// ----------------------------------------------------------------------------------------- // HELPER METHODS // ----------------------------------------------------------------------------------------- private static boolean isLocal(final ExecutionEnvironment env) { return env instanceof LocalEnvironment; }
3.26
flink_AsyncDynamicTableSinkBuilder_setMaxBufferedRequests_rdh
/** * * @param maxBufferedRequests * the maximum buffer length. Callbacks to add elements to the buffer * and calls to write will block if this length has been reached and will only unblock if * elements from the buffer have been removed for flushing. * @return {@link ConcreteBuilderT} itself */ public ConcreteBuilderT setMaxBufferedRequests(int maxBufferedRequests) { this.maxBufferedRequests = maxBufferedRequests; return ((ConcreteBuilderT) (this)); }
3.26
flink_AsyncDynamicTableSinkBuilder_m0_rdh
/** * * @param maxInFlightRequests * maximum number of uncompleted calls to submitRequestEntries that * the SinkWriter will allow at any given point. Once this point has reached, writes and * callbacks to add elements to the buffer may block until one or more requests to * submitRequestEntries completes. * @return {@link ConcreteBuilderT} itself */ public ConcreteBuilderT m0(int maxInFlightRequests) { this.maxInFlightRequests = maxInFlightRequests; return ((ConcreteBuilderT) (this)); }
3.26
flink_AsyncDynamicTableSinkBuilder_setMaxBatchSize_rdh
/** * * @param maxBatchSize * maximum number of elements that may be passed in a list to be written * downstream. * @return {@link ConcreteBuilderT} itself */public ConcreteBuilderT setMaxBatchSize(int maxBatchSize) { this.maxBatchSize = maxBatchSize; return ((ConcreteBuilderT) (this)); }
3.26
flink_AsyncDynamicTableSinkBuilder_setMaxTimeInBufferMS_rdh
/** * * @param maxTimeInBufferMS * the maximum amount of time an element may remain in the buffer. In * most cases elements are flushed as a result of the batch size (in bytes or number) being * reached or during a snapshot. However, there are scenarios where an element may remain in * the buffer forever or a long period of time. To mitigate this, a timer is constantly * active in the buffer such that: while the buffer is not empty, it will flush every * maxTimeInBufferMS milliseconds. * @return {@link ConcreteBuilderT} itself */ public ConcreteBuilderT setMaxTimeInBufferMS(long maxTimeInBufferMS) { this.maxTimeInBufferMS = maxTimeInBufferMS; return ((ConcreteBuilderT) (this)); }
3.26
flink_AsyncDynamicTableSinkBuilder_setMaxBufferSizeInBytes_rdh
/** * * @param maxBufferSizeInBytes * a flush will be attempted if the most recent call to write * introduces an element to the buffer such that the total size of the buffer is greater * than or equal to this threshold value. * @return {@link ConcreteBuilderT} itself */ public ConcreteBuilderT setMaxBufferSizeInBytes(long maxBufferSizeInBytes) { this.maxBufferSizeInBytes = maxBufferSizeInBytes; return ((ConcreteBuilderT) (this)); }
3.26
flink_MetricQueryService_createMetricQueryService_rdh
/** * Starts the MetricQueryService actor in the given actor system. * * @param rpcService * The rpcService running the MetricQueryService * @param resourceID * resource ID to disambiguate the actor name * @return actor reference to the MetricQueryService */ public static MetricQueryService createMetricQueryService(RpcService rpcService, ResourceID resourceID, long maximumFrameSize) { String endpointId = (resourceID == null) ? METRIC_QUERY_SERVICE_NAME : (METRIC_QUERY_SERVICE_NAME + "_") + resourceID.getResourceIdString(); return new MetricQueryService(rpcService, endpointId, maximumFrameSize); }
3.26
flink_MetricQueryService_replaceInvalidChars_rdh
/** * Lightweight method to replace unsupported characters. If the string does not contain any * unsupported characters, this method creates no new string (and in fact no new objects at * all). * * <p>Replacements: * * <ul> * <li>{@code space : . ,} are replaced by {@code _} (underscore) * </ul> */ private static String replaceInvalidChars(String str) { char[] chars = null; final int strLen = str.length(); int pos = 0; for (int i = 0; i < strLen; i++) { final char c = str.charAt(i); switch (c) { case ' ' : case '.' : case ':' : case ',' : if (chars == null) { chars = str.toCharArray(); } chars[pos++] = '_'; break; default : if (chars != null) { chars[pos] = c; } pos++; } } return chars == null ? str : new String(chars, 0, pos); }
3.26
flink_SimpleOperatorFactory_of_rdh
/** * Create a SimpleOperatorFactory from existed StreamOperator. */ @SuppressWarnings("unchecked") public static <OUT> SimpleOperatorFactory<OUT> of(StreamOperator<OUT> operator) { if (operator == null) { return null; } else if ((operator instanceof StreamSource) && (((StreamSource) (operator)).getUserFunction() instanceof InputFormatSourceFunction)) { return new SimpleInputFormatOperatorFactory<OUT>(((StreamSource) (operator))); } else if ((operator instanceof UserFunctionProvider) && (((UserFunctionProvider<Function>) (operator)).getUserFunction() instanceof OutputFormatSinkFunction)) { return new SimpleOutputFormatOperatorFactory<>(((OutputFormatSinkFunction<?>) (((UserFunctionProvider<Function>) (operator)).getUserFunction())).getFormat(), operator); } else if (operator instanceof AbstractUdfStreamOperator) { return new SimpleUdfStreamOperatorFactory<OUT>(((AbstractUdfStreamOperator) (operator))); } else { return new SimpleOperatorFactory<>(operator); } }
3.26
flink_WatermarkAssignerOperator_processWatermark_rdh
/** * Override the base implementation to completely ignore watermarks propagated from upstream (we * rely only on the {@link WatermarkGenerator} to emit watermarks from here). */ @Override public void processWatermark(Watermark mark) throws Exception { // if we receive a Long.MAX_VALUE watermark we forward it since it is used // to signal the end of input and to not block watermark progress downstream if ((mark.getTimestamp() == Long.MAX_VALUE) && (currentWatermark != Long.MAX_VALUE)) { if ((idleTimeout > 0) && currentStatus.equals(WatermarkStatus.IDLE)) { // mark the channel active emitWatermarkStatus(WatermarkStatus.ACTIVE); } currentWatermark = Long.MAX_VALUE; output.emitWatermark(mark); } }
3.26
flink_StreamNonDeterministicPhysicalPlanResolver_resolvePhysicalPlan_rdh
/** * Try to resolve the NDU problem if configured {@link OptimizerConfigOptions#TABLE_OPTIMIZER_NONDETERMINISTIC_UPDATE_STRATEGY} is in `TRY_RESOLVE` * mode. Will raise an error if the NDU issues in the given plan can not be completely solved. */ public static List<RelNode> resolvePhysicalPlan(List<RelNode> expanded, TableConfig tableConfig) { OptimizerConfigOptions.NonDeterministicUpdateStrategy handling = tableConfig.getConfiguration().get(OptimizerConfigOptions.TABLE_OPTIMIZER_NONDETERMINISTIC_UPDATE_STRATEGY); if (handling == NonDeterministicUpdateStrategy.TRY_RESOLVE) { Preconditions.checkArgument(expanded.stream().allMatch(rel -> rel instanceof StreamPhysicalRel)); StreamNonDeterministicUpdatePlanVisitor planResolver = new StreamNonDeterministicUpdatePlanVisitor(); return expanded.stream().map(rel -> ((StreamPhysicalRel) (rel))).map(planResolver::visit).collect(Collectors.toList()); } // do nothing, return original relNodes return expanded;}
3.26
flink_ExecutionConfigAccessor_fromConfiguration_rdh
/** * Creates an {@link ExecutionConfigAccessor} based on the provided {@link Configuration}. */ public static ExecutionConfigAccessor fromConfiguration(final Configuration configuration) { return new ExecutionConfigAccessor(checkNotNull(configuration)); }
3.26
flink_ExecutionConfigAccessor_fromProgramOptions_rdh
/** * Creates an {@link ExecutionConfigAccessor} based on the provided {@link ProgramOptions} as * provided by the user through the CLI. */ public static <T> ExecutionConfigAccessor fromProgramOptions(final ProgramOptions options, final List<T> jobJars) { checkNotNull(options); checkNotNull(jobJars); final Configuration configuration = new Configuration(); options.applyToConfiguration(configuration); ConfigUtils.encodeCollectionToConfig(configuration, PipelineOptions.JARS, jobJars, Object::toString); return new ExecutionConfigAccessor(configuration); }
3.26
flink_TGetQueryIdReq_findByThriftIdOrThrow_rdh
/** * Find the _Fields constant that matches fieldId, throwing an exception if it is not found. */ public static _Fields findByThriftIdOrThrow(int fieldId) { _Fields fields = findByThriftId(fieldId); if (fields == null) throw new IllegalArgumentException(("Field " + fieldId) + " doesn't exist!"); return fields; }
3.26
flink_TGetQueryIdReq_isSet_rdh
/** * Returns true if field corresponding to fieldID is set (has been assigned a value) and false * otherwise */ public boolean isSet(_Fields field) {if (field == null) { throw new IllegalArgumentException(); } switch (field) { case OPERATION_HANDLE : return isSetOperationHandle(); } throw new IllegalStateException(); }
3.26
flink_TGetQueryIdReq_findByName_rdh
/** * Find the _Fields constant that matches name, or null if its not found. */ public static _Fields findByName(String name) { return byName.get(name);}
3.26
flink_TGetQueryIdReq_findByThriftId_rdh
/** * Find the _Fields constant that matches fieldId, or null if its not found. */ public static _Fields findByThriftId(int fieldId) { switch (fieldId) { case 1 : // OPERATION_HANDLE return OPERATION_HANDLE; default : return null; } }
3.26
flink_TGetQueryIdReq_isSetOperationHandle_rdh
/** * Returns true if field operationHandle is set (has been assigned a value) and false otherwise */ public boolean isSetOperationHandle() {return this.operationHandle != null; }
3.26
flink_RequestJobsWithIDsOverview_readResolve_rdh
/** * Preserve the singleton property by returning the singleton instance */ private Object readResolve() { return INSTANCE; }
3.26
flink_RequestJobsWithIDsOverview_hashCode_rdh
// ------------------------------------------------------------------------ @Override public int hashCode() { return RequestJobsWithIDsOverview.class.hashCode(); }
3.26
flink_OuterJoinPaddingUtil_padLeft_rdh
/** * Returns a padding result with the given left row. * * @param leftRow * the left row to pad * @return the reusable null padding result */ public final RowData padLeft(RowData leftRow) { return joinedRow.replace(leftRow, rightNullPaddingRow); }
3.26
flink_OuterJoinPaddingUtil_m0_rdh
/** * Returns a padding result with the given right row. * * @param rightRow * the right row to pad * @return the reusable null padding result */ public final RowData m0(RowData rightRow) { return joinedRow.replace(leftNullPaddingRow, rightRow); }
3.26
flink_StopWithSavepointTerminationManager_stopWithSavepoint_rdh
/** * Enforces the correct completion order of the passed {@code CompletableFuture} instances in * accordance to the contract of {@link StopWithSavepointTerminationHandler}. * * @param completedSavepointFuture * The {@code CompletableFuture} of the savepoint creation step. * @param terminatedExecutionStatesFuture * The {@code CompletableFuture} of the termination step. * @param mainThreadExecutor * The executor the {@code StopWithSavepointTerminationHandler} * operations run on. * @return A {@code CompletableFuture} containing the path to the created savepoint. */ public CompletableFuture<String> stopWithSavepoint(CompletableFuture<CompletedCheckpoint> completedSavepointFuture, CompletableFuture<Collection<ExecutionState>> terminatedExecutionStatesFuture, ComponentMainThreadExecutor mainThreadExecutor) { FutureUtils.assertNoException(// the completedSavepointFuture could also be completed by // CheckpointCanceller which doesn't run in the mainThreadExecutor completedSavepointFuture.handleAsync((completedSavepoint, throwable) -> { stopWithSavepointTerminationHandler.handleSavepointCreation(completedSavepoint, throwable); return null; }, mainThreadExecutor).thenRun(() -> // the execution termination has to run in a // separate Runnable to disconnect it from any // previous task failure handling FutureUtils.assertNoException(terminatedExecutionStatesFuture.thenAcceptAsync(stopWithSavepointTerminationHandler::handleExecutionsTermination, mainThreadExecutor)))); return stopWithSavepointTerminationHandler.getSavepointPath(); }
3.26
flink_ArrowWriter_getFieldWriters_rdh
/** * Gets the field writers. */ public ArrowFieldWriter<IN>[] getFieldWriters() { return fieldWriters; }
3.26
flink_ArrowWriter_write_rdh
/** * Writes the specified row which is serialized into Arrow format. */ public void write(IN row) { for (int i = 0; i < fieldWriters.length; i++) { fieldWriters[i].write(row, i); } }
3.26
flink_ArrowWriter_finish_rdh
/** * Finishes the writing of the current row batch. */ public void finish() { root.setRowCount(fieldWriters[0].getCount()); for (ArrowFieldWriter<IN> fieldWriter : fieldWriters) { fieldWriter.finish(); } }
3.26
flink_ArrowWriter_reset_rdh
/** * Resets the state of the writer to write the next batch of rows. */ public void reset() { root.setRowCount(0); for (ArrowFieldWriter fieldWriter : fieldWriters) { fieldWriter.reset(); } }
3.26
flink_S3RecoverableFsDataOutputStream_write_rdh
// ------------------------------------------------------------------------ // stream methods // ------------------------------------------------------------------------ @Override public void write(int b) throws IOException { f1.write(b); }
3.26
flink_S3RecoverableFsDataOutputStream_persist_rdh
// ------------------------------------------------------------------------ // recoverable stream methods // ------------------------------------------------------------------------ @Override public ResumeRecoverable persist() throws IOException {lock(); try { f1.flush(); openNewPartIfNecessary(f0); // We do not stop writing to the current file, we merely limit the upload to the // first n bytes of the current file return upload.snapshotAndGetRecoverable(f1); } finally { unlock(); } }
3.26
flink_S3RecoverableFsDataOutputStream_openNewPartIfNecessary_rdh
// ------------------------------------------------------------------------ private void openNewPartIfNecessary(long sizeThreshold) throws IOException { final long fileLength = f1.getPos();if (fileLength >= sizeThreshold) { lock(); try { uploadCurrentAndOpenNewPart(fileLength); } finally { unlock(); } } }
3.26
flink_S3RecoverableFsDataOutputStream_lock_rdh
// ------------------------------------------------------------------------ // locking // ------------------------------------------------------------------------ private void lock() throws IOException { try { lock.lockInterruptibly(); } catch (InterruptedException e) { Thread.currentThread().interrupt(); throw new IOException("interrupted"); } }
3.26
flink_S3RecoverableFsDataOutputStream_newStream_rdh
// ------------------------------------------------------------------------ // factory methods // ------------------------------------------------------------------------ public static S3RecoverableFsDataOutputStream newStream(final RecoverableMultiPartUpload upload, final FunctionWithException<File, RefCountedFileWithStream, IOException> tmpFileCreator, final long userDefinedMinPartSize) throws IOException { checkArgument(userDefinedMinPartSize >= S3_MULTIPART_MIN_PART_SIZE); final RefCountedBufferingFileStream fileStream = boundedBufferingFileStream(tmpFileCreator, Optional.empty()); return new S3RecoverableFsDataOutputStream(upload, tmpFileCreator, fileStream, userDefinedMinPartSize, 0L); }
3.26
flink_SupportsReadingMetadata_supportsMetadataProjection_rdh
/** * Defines whether projections can be applied to metadata columns. * * <p>This method is only called if the source does <em>not</em> implement {@link SupportsProjectionPushDown}. By default, the planner will only apply metadata columns which * have actually been selected in the query regardless. By returning {@code false} instead the * source can inform the planner to apply all metadata columns defined in the table's schema. * * <p>If the source implements {@link SupportsProjectionPushDown}, projections of metadata * columns are always considered before calling {@link #applyReadableMetadata(List, DataType)}. */ default boolean supportsMetadataProjection() { return true; }
3.26
flink_BytesKeyNormalizationUtil_putNormalizedKey_rdh
/** * Writes the normalized key of given record. The normalized key consists of the key serialized * as bytes and the timestamp of the record. * * <p>NOTE: The key does not represent a logical order. It can be used only for grouping keys! */ static <IN> void putNormalizedKey(Tuple2<byte[], StreamRecord<IN>> record, int dataLength, MemorySegment target, int offset, int numBytes) { byte[] data = record.f0; if (dataLength >= numBytes) { putBytesArray(target, offset, numBytes, data); } else { // whole key fits into the normalized key putBytesArray(target, offset, dataLength, data); int v1 = offset + numBytes; offset += dataLength; long valueOfTimestamp = record.f1.asRecord().getTimestamp() - Long.MIN_VALUE; if ((dataLength + TIMESTAMP_BYTE_SIZE) <= numBytes) { // whole timestamp fits into the normalized key target.putLong(offset, valueOfTimestamp); offset += TIMESTAMP_BYTE_SIZE; // fill in the remaining space with zeros while (offset < v1) { target.put(offset++, ((byte) (0))); } } else { // only part of the timestamp fits into normalized key for (int i = 0; offset < v1; offset++ , i++) { target.put(offset, ((byte) (valueOfTimestamp >>> ((7 - i) << 3)))); } } } }
3.26
flink_CombineValueIterator_set_rdh
/** * Sets the interval for the values that are to be returned by this iterator. * * @param first * The position of the first value to be returned. * @param last * The position of the last value to be returned. */ public void set(int first, int last) { this.last = last; this.position = first; this.iteratorAvailable = true; }
3.26
flink_InputSelection_from_rdh
/** * Returns a {@code Builder} that uses the input mask of the specified {@code selection} as * the initial mask. */ public static Builder from(InputSelection selection) { Builder builder = new Builder(); builder.inputMask = selection.inputMask; return builder; }
3.26
flink_InputSelection_areAllInputsSelected_rdh
/** * Tests if all inputs are selected. * * @return {@code true} if the input mask equals -1, {@code false} otherwise. */ public boolean areAllInputsSelected() { return inputMask == (-1L); } /** * Fairly select one of the two inputs for reading. When {@code inputMask} includes two inputs * and both inputs are available, alternately select one of them. Otherwise, select the * available one of {@code inputMask}, or return {@link InputSelection#NONE_AVAILABLE} to * indicate no input is selected. * * <p>Note that this supports only two inputs for performance reasons. * * @param availableInputsMask * The mask of all available inputs. * @param lastReadInputIndex * The index of last read input. * @return the index of the input for reading or {@link InputSelection#NONE_AVAILABLE} (if {@code inputMask} is empty or the inputs in {@code inputMask}
3.26
flink_InputSelection_select_rdh
/** * Selects an input identified by the given {@code inputId}. * * @param inputId * the input id numbered starting from 1 to 64, and `1` indicates the first * input. Specially, `-1` indicates all inputs. * @return a reference to this object. */ public Builder select(int inputId) { if ((inputId > 0) && (inputId <= 64)) { inputMask |= 1L << (inputId - 1); } else if (inputId == (-1L)) { inputMask = -1L; } else { throw new IllegalArgumentException("The inputId must be in the range of 1 to 64, or be -1."); } return this; }
3.26
flink_InputSelection_build_rdh
/** * Build normalized mask, if all inputs were manually selected, inputMask will be normalized * to -1. */ public InputSelection build(int inputCount) { long allSelectedMask = (1L << inputCount) - 1; if (inputMask == allSelectedMask) { inputMask = -1; } else if (inputMask > allSelectedMask) {throw new IllegalArgumentException(String.format("inputMask [%d] selects more than expected number of inputs [%d]", inputMask, inputCount)); } return build(); }
3.26
flink_InputSelection_isInputSelected_rdh
/** * Tests if the input specified by {@code inputId} is selected. * * @param inputId * The input id, see the description of {@code inputId} in {@link Builder#select(int)}. * @return {@code true} if the input is selected, {@code false} otherwise. */ public boolean isInputSelected(int inputId) { return (inputMask & (1L << (inputId - 1))) != 0; }
3.26
flink_InMemoryPartition_appendRecord_rdh
// -------------------------------------------------------------------------------------------------- /** * Inserts the given object into the current buffer. This method returns a pointer that can be * used to address the written record in this partition. * * @param record * The object to be written to the partition. * @return A pointer to the object in the partition. * @throws IOException * Thrown when the write failed. */ public final long appendRecord(T record) throws IOException { long pointer = this.writeView.m1(); try { this.serializer.serialize(record, this.writeView); this.recordCounter++; return pointer;} catch (EOFException e) { // we ran out of pages. // first, reset the pages and then we need to trigger a compaction // int oldCurrentBuffer = this.writeView.resetTo(pointer); // for (int bufNum = this.partitionPages.size() - 1; bufNum > oldCurrentBuffer; // bufNum--) { // this.availableMemory.addMemorySegment(this.partitionPages.remove(bufNum)); // } throw e; } }
3.26
flink_InMemoryPartition_resetOverflowBuckets_rdh
/** * resets overflow bucket counters and returns freed memory and should only be used for resizing * * @return freed memory segments */ public ArrayList<MemorySegment> resetOverflowBuckets() { this.numOverflowSegments = 0; this.nextOverflowBucket = 0; ArrayList<MemorySegment> result = new ArrayList<MemorySegment>(this.overflowSegments.length); for (int i = 0; i < this.overflowSegments.length; i++) { if (this.overflowSegments[i] != null) { result.add(this.overflowSegments[i]); } } this.overflowSegments = new MemorySegment[2]; return result;}
3.26
flink_InMemoryPartition_getBlockCount_rdh
/** * * @return number of segments owned by partition */ public int getBlockCount() { return this.partitionPages.size(); }
3.26
flink_InMemoryPartition_getPartitionNumber_rdh
// -------------------------------------------------------------------------------------------------- /** * Gets the partition number of this partition. * * @return This partition's number. */ public int getPartitionNumber() { return this.partitionNumber; }
3.26
flink_InMemoryPartition_setPartitionNumber_rdh
/** * overwrites partition number and should only be used on compaction partition * * @param number * new partition */ public void setPartitionNumber(int number) { this.partitionNumber = number; }
3.26
flink_InMemoryPartition_allocateSegments_rdh
/** * attempts to allocate specified number of segments and should only be used by compaction * partition fails silently if not enough segments are available since next compaction could * still succeed * * @param numberOfSegments * allocation count */ public void allocateSegments(int numberOfSegments) { while (getBlockCount() < numberOfSegments) { MemorySegment next = this.availableMemory.nextSegment(); if (next != null) { this.partitionPages.add(next); } else { return; } } }
3.26
flink_InMemoryPartition_setIsCompacted_rdh
/** * sets compaction status (should only be set <code>true</code> directly after compaction and * <code>false</code> when garbage was created) * * @param compacted * compaction status */ public void setIsCompacted(boolean compacted) { this.compacted = compacted; }
3.26
flink_InMemoryPartition_isCompacted_rdh
/** * * @return true if garbage exists in partition */ public boolean isCompacted() { return this.compacted; }
3.26
flink_InMemoryPartition_m0_rdh
/** * number of records in partition including garbage * * @return number record count */ public long m0() {return this.recordCounter; }
3.26
flink_InMemoryPartition_resetRWViews_rdh
/** * resets read and write views and should only be used on compaction partition */ public void resetRWViews() {this.writeView.resetTo(0L); this.readView.setReadPosition(0L);}
3.26
flink_InMemoryPartition_resetRecordCounter_rdh
/** * sets record counter to zero and should only be used on compaction partition */ public void resetRecordCounter() { this.recordCounter = 0L; }
3.26
flink_InMemoryPartition_clearAllMemory_rdh
/** * releases all of the partition's segments (pages and overflow buckets) * * @param target * memory pool to release segments to */ public void clearAllMemory(List<MemorySegment> target) { // return the overflow segments if (this.overflowSegments != null) { for (int k = 0; k < this.numOverflowSegments; k++) { target.add(this.overflowSegments[k]);} } // return the partition buffers target.addAll(this.partitionPages); this.partitionPages.clear(); }
3.26