name
stringlengths
12
178
code_snippet
stringlengths
8
36.5k
score
float64
3.26
3.68
flink_PythonOperatorChainingOptimizer_buildOutputMap_rdh
/** * Construct the key-value pairs where the value is the output transformations of the key * transformation. */ private static Map<Transformation<?>, Set<Transformation<?>>> buildOutputMap(List<Transformation<?>> transformations) { final Map<Transformation<?>, Set<Transformation<?>>> outputMap = new HashMap<>(); final Queue<Transformation<?>> toTransformQueue = Queues.newArrayDeque(transformations); final Set<Transformation<?>> alreadyTransformed = Sets.newIdentityHashSet(); while (!toTransformQueue.isEmpty()) { Transformation<?> transformation = toTransformQueue.poll(); if (!alreadyTransformed.contains(transformation)) { alreadyTransformed.add(transformation); for (Transformation<?> v21 : transformation.getInputs()) { Set<Transformation<?>> outputs = outputMap.computeIfAbsent(v21, i -> Sets.newHashSet()); outputs.add(transformation); } toTransformQueue.addAll(transformation.getInputs()); } } return outputMap; }
3.26
flink_PythonOperatorChainingOptimizer_replaceInput_rdh
// ----------------------- Utility Methods ----------------------- private static void replaceInput(Transformation<?> transformation, Transformation<?> oldInput, Transformation<?> newInput) { try { if (((((((transformation instanceof OneInputTransformation) || (transformation instanceof FeedbackTransformation)) || (transformation instanceof SideOutputTransformation)) || (transformation instanceof ReduceTransformation)) || (transformation instanceof LegacySinkTransformation)) || (transformation instanceof TimestampsAndWatermarksTransformation)) || (transformation instanceof PartitionTransformation)) { final Field v44 = transformation.getClass().getDeclaredField("input"); v44.setAccessible(true); v44.set(transformation, newInput); } else if (transformation instanceof SinkTransformation) { final Field inputField = transformation.getClass().getDeclaredField("input"); inputField.setAccessible(true); inputField.set(transformation, newInput); final Field transformationField = DataStream.class.getDeclaredField("transformation"); transformationField.setAccessible(true); transformationField.set(((SinkTransformation<?, ?>) (transformation)).getInputStream(), newInput); } else if (transformation instanceof TwoInputTransformation) { final Field inputField; if (((TwoInputTransformation<?, ?, ?>) (transformation)).getInput1() == oldInput) { inputField = transformation.getClass().getDeclaredField("input1"); } else { inputField = transformation.getClass().getDeclaredField("input2"); } inputField.setAccessible(true); inputField.set(transformation, newInput); } else if ((transformation instanceof UnionTransformation) || (transformation instanceof AbstractMultipleInputTransformation)) { final Field inputsField = transformation.getClass().getDeclaredField("inputs"); inputsField.setAccessible(true); List<Transformation<?>> newInputs = Lists.newArrayList();newInputs.addAll(transformation.getInputs()); newInputs.remove(oldInput); newInputs.add(newInput); inputsField.set(transformation, newInputs); } else if (transformation instanceof AbstractBroadcastStateTransformation) { final Field inputField; if (((AbstractBroadcastStateTransformation<?, ?, ?>) (transformation)).getRegularInput() == oldInput) { inputField = transformation.getClass().getDeclaredField("regularInput"); } else { inputField = transformation.getClass().getDeclaredField("broadcastInput"); } inputField.setAccessible(true); inputField.set(transformation, newInput); } else { throw new RuntimeException("Unsupported transformation: " + transformation); } } catch (NoSuchFieldException | IllegalAccessException e) { // This should never happen throw new RuntimeException(e); } }
3.26
flink_PythonOperatorChainingOptimizer_optimize_rdh
/** * Perform chaining optimization. It will returns the chained transformations and the * transformation after chaining optimization for the given transformation. */ public static Tuple2<List<Transformation<?>>, Transformation<?>> optimize(List<Transformation<?>> transformations, Transformation<?> targetTransformation) { final Map<Transformation<?>, Set<Transformation<?>>> outputMap = buildOutputMap(transformations); final LinkedHashSet<Transformation<?>> chainedTransformations = new LinkedHashSet<>(); final Set<Transformation<?>> alreadyTransformed = Sets.newIdentityHashSet(); final Queue<Transformation<?>> toTransformQueue = Queues.newArrayDeque(); toTransformQueue.add(targetTransformation); while (!toTransformQueue.isEmpty()) { final Transformation<?> toTransform = toTransformQueue.poll(); if (!alreadyTransformed.contains(toTransform)) { alreadyTransformed.add(toTransform); final ChainInfo chainInfo = chainWithInputIfPossible(toTransform, outputMap); chainedTransformations.add(chainInfo.newTransformation);chainedTransformations.removeAll(chainInfo.oldTransformations); alreadyTransformed.addAll(chainInfo.oldTransformations); // Add the chained transformation and its inputs to the to-optimize list toTransformQueue.add(chainInfo.newTransformation); toTransformQueue.addAll(chainInfo.newTransformation.getInputs()); if (toTransform == targetTransformation) { targetTransformation = chainInfo.newTransformation; } } } return Tuple2.of(new ArrayList<>(chainedTransformations), targetTransformation); }
3.26
flink_HybridShuffleConfiguration_getFullStrategyReleaseBufferRatio_rdh
/** * The proportion of buffers to be released. Used by {@link HsFullSpillingStrategy}. */ public float getFullStrategyReleaseBufferRatio() { return fullStrategyReleaseBufferRatio; }
3.26
flink_HybridShuffleConfiguration_getSpillingStrategyType_rdh
/** * Get {@link SpillingStrategyType} for hybrid shuffle mode. */ public SpillingStrategyType getSpillingStrategyType() { return spillingStrategyType; }
3.26
flink_HybridShuffleConfiguration_getSelectiveStrategySpillBufferRatio_rdh
/** * The proportion of buffers to be spilled. Used by {@link HsSelectiveSpillingStrategy}. */ public float getSelectiveStrategySpillBufferRatio() { return selectiveStrategySpillBufferRatio; }
3.26
flink_HybridShuffleConfiguration_getMaxBuffersReadAhead_rdh
/** * Determine how many buffers to read ahead at most for each subpartition to prevent other * consumers from starving. */ public int getMaxBuffersReadAhead() { return maxBuffersReadAhead; }
3.26
flink_HybridShuffleConfiguration_getRegionGroupSizeInBytes_rdh
/** * Segment size of hybrid spilled file data index. */ public int getRegionGroupSizeInBytes() { return regionGroupSizeInBytes; }
3.26
flink_HybridShuffleConfiguration_getBufferRequestTimeout_rdh
/** * Maximum time to wait when requesting read buffers from the buffer pool before throwing an * exception. */ public Duration getBufferRequestTimeout() { return bufferRequestTimeout;}
3.26
flink_HybridShuffleConfiguration_getFullStrategyReleaseThreshold_rdh
/** * When the number of buffers that have been requested exceeds this threshold, trigger the * release operation. Used by {@link HsFullSpillingStrategy}. */ public float getFullStrategyReleaseThreshold() { return fullStrategyReleaseThreshold; }
3.26
flink_HybridShuffleConfiguration_getBufferPoolSizeCheckIntervalMs_rdh
/** * Check interval of buffer pool's size. */ public long getBufferPoolSizeCheckIntervalMs() { return bufferPoolSizeCheckIntervalMs; }
3.26
flink_HybridShuffleConfiguration_getNumRetainedInMemoryRegionsMax_rdh
/** * Max number of hybrid retained regions in memory. */ public long getNumRetainedInMemoryRegionsMax() { return numRetainedInMemoryRegionsMax; }
3.26
flink_FileSource_forRecordStreamFormat_rdh
// ------------------------------------------------------------------------ // Entry-point Factory Methods // ------------------------------------------------------------------------ /** * Builds a new {@code FileSource} using a {@link StreamFormat} to read record-by-record from a * file stream. * * <p>When possible, stream-based formats are generally easier (preferable) to file-based * formats, because they support better default behavior around I/O batching or progress * tracking (checkpoints). * * <p>Stream formats also automatically de-compress files based on the file extension. This * supports files ending in ".deflate" (Deflate), ".xz" (XZ), ".bz2" (BZip2), ".gz", ".gzip" * (GZip). */public static <T> FileSourceBuilder<T> forRecordStreamFormat(final StreamFormat<T> streamFormat, final Path... paths) {return forBulkFileFormat(new StreamFormatAdapter<>(streamFormat), paths); }
3.26
flink_FileSource_forBulkFileFormat_rdh
/** * Builds a new {@code FileSource} using a {@link BulkFormat} to read batches of records from * files. * * <p>Examples for bulk readers are compressed and vectorized formats such as ORC or Parquet. */ public static <T> FileSourceBuilder<T> forBulkFileFormat(final BulkFormat<T, FileSourceSplit> bulkFormat, final Path... paths) { checkNotNull(bulkFormat, "reader"); checkNotNull(paths, "paths"); checkArgument(paths.length > 0, "paths must not be empty"); return new FileSourceBuilder<>(paths, bulkFormat); }
3.26
flink_FileSource_forRecordFileFormat_rdh
/** * Builds a new {@code FileSource} using a {@link FileRecordFormat} to read record-by-record * from a a file path. * * <p>A {@code FileRecordFormat} is more general than the {@link StreamFormat}, but also * requires often more careful parametrization. * * @deprecated Please use {@link #forRecordStreamFormat(StreamFormat, Path...)} instead. */ @Deprecated public static <T> FileSourceBuilder<T> forRecordFileFormat(final FileRecordFormat<T> recordFormat, final Path... paths) { return forBulkFileFormat(new FileRecordFormatAdapter<>(recordFormat), paths); }
3.26
flink_SqlJsonValueFunctionWrapper_explicitTypeSpec_rdh
/** * Copied and modified from the original {@link SqlJsonValueFunction}. * * <p>Changes: Instead of returning {@link Optional} this method returns null directly. */ private static RelDataType explicitTypeSpec(SqlOperatorBinding opBinding) { if (((opBinding.getOperandCount() > 2) && opBinding.isOperandLiteral(2, false)) && (opBinding.getOperandLiteralValue(2, Object.class) instanceof SqlJsonValueReturning)) { return opBinding.getOperandType(3); } return null; }
3.26
flink_StateWithExecutionGraph_updateTaskExecutionState_rdh
/** * Updates the execution graph with the given task execution state transition. * * @param taskExecutionStateTransition * taskExecutionStateTransition to update the ExecutionGraph * with * @param failureLabels * the failure labels to attach to the task failure cause * @return {@code true} if the update was successful; otherwise {@code false} */ boolean updateTaskExecutionState(TaskExecutionStateTransition taskExecutionStateTransition, CompletableFuture<Map<String, String>> failureLabels) { // collect before updateState, as updateState may deregister the execution final Optional<AccessExecution> maybeExecution = executionGraph.findExecution(taskExecutionStateTransition.getID()); final Optional<String> maybeTaskName = executionGraph.findVertexWithAttempt(taskExecutionStateTransition.getID()); final ExecutionState desiredState = taskExecutionStateTransition.getExecutionState(); boolean successfulUpdate = getExecutionGraph().updateState(taskExecutionStateTransition); if (successfulUpdate && (desiredState == ExecutionState.FAILED)) {final AccessExecution execution = maybeExecution.orElseThrow(NoSuchElementException::new); final String taskName = maybeTaskName.orElseThrow(NoSuchElementException::new); final ExecutionState currentState = execution.getState(); if (currentState == desiredState) { failureCollection.add(ExceptionHistoryEntry.create(execution, taskName, failureLabels));onFailure(ErrorInfo.handleMissingThrowable(taskExecutionStateTransition.getError(f0))); } } return successfulUpdate;}
3.26
flink_AllGroupReduceDriver_setup_rdh
// ------------------------------------------------------------------------ @Override public void setup(TaskContext<GroupReduceFunction<IT, OT>, OT> context) {this.taskContext = context; }
3.26
flink_AllGroupReduceDriver_prepare_rdh
// -------------------------------------------------------------------------------------------- @Override public void prepare() throws Exception { final TaskConfig config = this.taskContext.getTaskConfig();this.strategy = config.getDriverStrategy(); switch (this.strategy) { case ALL_GROUP_REDUCE_COMBINE : if (!(this.taskContext.getStub() instanceof GroupCombineFunction)) { throw new Exception("Using combiner on a UDF that does not implement the combiner interface " + GroupCombineFunction.class.getName()); } case ALL_GROUP_REDUCE : case ALL_GROUP_COMBINE : break; default : throw new Exception("Unrecognized driver strategy for AllGroupReduce driver: " + this.strategy.name()); } this.serializer = this.taskContext.<IT>getInputSerializer(0).getSerializer(); this.input = this.taskContext.getInput(0); ExecutionConfig executionConfig = taskContext.getExecutionConfig(); this.objectReuseEnabled = executionConfig.isObjectReuseEnabled(); if (LOG.isDebugEnabled()) { LOG.debug(("AllGroupReduceDriver object reuse: " + (this.objectReuseEnabled ? "ENABLED" : "DISABLED")) + "."); } }
3.26
flink_S3Recoverable_m0_rdh
// ------------------------------------------------------------------------ public String m0() { return uploadId; }
3.26
flink_LeaderRetrievalUtils_retrieveLeaderInformation_rdh
/** * Retrieves the leader pekko url and the current leader session ID. The values are stored in a * {@link LeaderInformation} instance. * * @param leaderRetrievalService * Leader retrieval service to retrieve the leader connection * information * @param timeout * Timeout when to give up looking for the leader * @return LeaderInformation containing the leader's rpc URL and the current leader session ID * @throws LeaderRetrievalException */ public static LeaderInformation retrieveLeaderInformation(LeaderRetrievalService leaderRetrievalService, Duration timeout) throws LeaderRetrievalException { LeaderInformationListener listener = new LeaderInformationListener(); try { leaderRetrievalService.start(listener); return listener.getLeaderInformationFuture().get(timeout.toMillis(), TimeUnit.MILLISECONDS); } catch (Exception e) { throw new LeaderRetrievalException("Could not retrieve the leader address and leader " + "session ID.", e); } finally { try { leaderRetrievalService.stop(); } catch (Exception fe) { LOG.warn("Could not stop the leader retrieval service.", fe); } } }
3.26
flink_RecordAndPosition_getRecord_rdh
// ------------------------------------------------------------------------ public E getRecord() { return record; }
3.26
flink_RecordAndPosition_toString_rdh
// ------------------------------------------------------------------------ @Override public String toString() { return String.format("%s @ %d + %d", record, offset, recordSkipCount); }
3.26
flink_HadoopOutputFormatBase_writeObject_rdh
// -------------------------------------------------------------------------------------------- // Custom serialization methods // -------------------------------------------------------------------------------------------- private void writeObject(ObjectOutputStream out) throws IOException { super.write(out); out.writeUTF(mapredOutputFormat.getClass().getName()); jobConf.write(out); }
3.26
flink_HadoopOutputFormatBase_open_rdh
/** * create the temporary output file for hadoop RecordWriter. * * @param taskNumber * The number of the parallel instance. * @param numTasks * The number of parallel tasks. * @throws java.io.IOException */ @Overridepublic void open(int taskNumber, int numTasks) throws IOException { // enforce sequential open() calls synchronized(OPEN_MUTEX) { if (Integer.toString(taskNumber + 1).length() > 6) { throw new IOException("Task id too large."); } TaskAttemptID taskAttemptID = TaskAttemptID.forName((("attempt__0000_r_" + String.format(("%" + (6 - Integer.toString(taskNumber + 1).length())) + "s", " ").replace(" ", "0")) + Integer.toString(taskNumber + 1)) + "_0"); this.jobConf.set("mapred.task.id", taskAttemptID.toString()); this.jobConf.setInt("mapred.task.partition", taskNumber + 1); // for hadoop 2.2 this.jobConf.set("mapreduce.task.attempt.id", taskAttemptID.toString()); this.jobConf.setInt("mapreduce.task.partition", taskNumber + 1); this.context = new TaskAttemptContextImpl(this.jobConf, taskAttemptID); this.outputCommitter = this.jobConf.getOutputCommitter(); JobContext jobContext = new JobContextImpl(this.jobConf, new JobID()); this.outputCommitter.setupJob(jobContext); this.recordWriter = this.mapredOutputFormat.getRecordWriter(null, this.jobConf, Integer.toString(taskNumber + 1), new HadoopDummyProgressable()); } }
3.26
flink_HadoopOutputFormatBase_configure_rdh
// -------------------------------------------------------------------------------------------- // OutputFormat // -------------------------------------------------------------------------------------------- @Override public void configure(Configuration parameters) { // enforce sequential configure() calls synchronized(f0) { // configure MR OutputFormat if necessary if (this.mapredOutputFormat instanceof Configurable) { ((Configurable) (this.mapredOutputFormat)).setConf(this.jobConf); } else if (this.mapredOutputFormat instanceof JobConfigurable) { ((JobConfigurable) (this.mapredOutputFormat)).configure(this.jobConf); } } }
3.26
flink_HadoopOutputFormatBase_close_rdh
/** * commit the task by moving the output file out from the temporary directory. * * @throws java.io.IOException */ @Override public void close() throws IOException { // enforce sequential close() calls synchronized(CLOSE_MUTEX) { this.recordWriter.close(new HadoopDummyReporter()); if (this.outputCommitter.needsTaskCommit(this.context)) { this.outputCommitter.commitTask(this.context); } } }
3.26
flink_SqlJsonUtils_createArrayNode_rdh
/** * Returns a new {@link ArrayNode}. */ public static ArrayNode createArrayNode() { return MAPPER.createArrayNode();}
3.26
flink_SqlJsonUtils_getNodeFactory_rdh
/** * Returns the {@link JsonNodeFactory} for creating nodes. */ public static JsonNodeFactory getNodeFactory() { return MAPPER.getNodeFactory(); } /** * Returns a new {@link ObjectNode}
3.26
flink_SqlJsonUtils_serializeJson_rdh
/** * Serializes the given {@link JsonNode} to a JSON string. */ public static String serializeJson(JsonNode node) { try { // For JSON functions to have deterministic output, we need to sort the keys. However, // Jackson's built-in features don't work on the tree representation, so we need to // convert the tree first. final Object convertedNode = MAPPER.treeToValue(node, Object.class); return MAPPER.writeValueAsString(convertedNode); } catch (JsonProcessingException e) { throw new TableException("JSON object could not be serialized: " + node.asText(), e); } }
3.26
flink_StateMap_releaseSnapshot_rdh
/** * Releases a snapshot for this {@link StateMap}. This method should be called once a snapshot * is no more needed. * * @param snapshotToRelease * the snapshot to release, which was previously created by this state * map. */ public void releaseSnapshot(StateMapSnapshot<K, N, S, ? extends StateMap<K, N, S>> snapshotToRelease) { }
3.26
flink_SerializableHadoopConfigWrapper_writeObject_rdh
// ------------------------------------------------------------------------ private void writeObject(ObjectOutputStream out) throws IOException { out.defaultWriteObject(); // we write the Hadoop config through a separate serializer to avoid cryptic exceptions when // it // corrupts the serialization stream final DataOutputSerializer ser = new DataOutputSerializer(256); hadoopConfig.write(ser); out.writeInt(ser.length()); out.write(ser.getSharedBuffer(), 0, ser.length()); }
3.26
flink_IterationTailTask_initialize_rdh
// -------------------------------------------------------------------------------------------- @Override protected void initialize() throws Exception { super.initialize(); // sanity check: the tail has to update either the workset or the solution set if ((!isWorksetUpdate) && (!isSolutionSetUpdate)) { throw new RuntimeException("The iteration tail doesn't update workset or the solution set.");} // set the last output collector of this task to reflect the iteration tail state update: // a) workset update, // b) solution set update, or // c) merged workset and solution set update Collector<OT> outputCollector = null; if (isWorksetUpdate) { outputCollector = createWorksetUpdateOutputCollector(); // we need the WorksetUpdateOutputCollector separately to count the collected elements if (isWorksetIteration) { worksetUpdateOutputCollector = ((WorksetUpdateOutputCollector<OT>) (outputCollector)); } } if (isSolutionSetUpdate) { if (isWorksetIteration) { outputCollector = createSolutionSetUpdateOutputCollector(outputCollector); } else // Bulk iteration with termination criterion { outputCollector = new Collector<OT>() { @Override public void collect(OT record) { } @Override public void close() { } }; } if (!isWorksetUpdate) { solutionSetUpdateBarrier = SolutionSetUpdateBarrierBroker.instance().get(brokerKey()); } } setLastOutputCollector(outputCollector); }
3.26
flink_ColumnStats_copy_rdh
/** * Create a deep copy of "this" instance. * * @return a deep copy */ public ColumnStats copy() { if ((maxValue != null) || (f0 != null)) { return new ColumnStats(this.ndv, this.nullCount, this.avgLen, this.maxLen, this.maxValue, this.f0); } else { return new ColumnStats(this.ndv, this.nullCount, this.avgLen, this.maxLen, this.max, this.min); } }
3.26
flink_ColumnStats_merge_rdh
/** * Merges two column stats. When the stats are unknown, whatever the other are, we need return * unknown stats. The unknown definition for column stats is null. * * @param other * The other column stats to merge. * @return The merged column stats. */ public ColumnStats merge(ColumnStats other, boolean isPartitionKey) { if ((this == UNKNOWN) || (other == UNKNOWN)) { return UNKNOWN; } Long ndv; if (isPartitionKey) { ndv = combineIfNonNull(Long::sum, this.ndv, other.ndv); } else { ndv = combineIfNonNull(Long::max, this.ndv, other.ndv); } Long nullCount = combineIfNonNull(Long::sum, this.nullCount, other.nullCount); Double avgLen = combineIfNonNull((a1, a2) -> (a1 + a2) / 2, this.avgLen, other.avgLen); Integer maxLen = combineIfNonNull(Math::max, this.maxLen, other.maxLen); Number maxValue = combineIfNonNull((n1, n2) -> n1.doubleValue() > n2.doubleValue() ? n1 : n2, this.maxValue, other.maxValue); Number minValue = combineIfNonNull((n1, n2) -> n1.doubleValue() < n2.doubleValue() ? n1 : n2, this.f0, other.f0); @SuppressWarnings("unchecked") Comparable max = combineIfNonNull((c1, c2) -> ((Comparable) (c1)).compareTo(c2) > 0 ? c1 : c2, this.max, other.max); @SuppressWarnings("unchecked") Comparable min = combineIfNonNull((c1, c2) -> ((Comparable) (c1)).compareTo(c2) < 0 ? c1 : c2, this.min, other.min); if ((max != null) || (min != null)) { return new ColumnStats(ndv, nullCount, avgLen, maxLen, max, min); } else { return new ColumnStats(ndv, nullCount, avgLen, maxLen, maxValue, minValue); }}
3.26
flink_ColumnStats_getMaxValue_rdh
/** * Deprecated because Number type max/min is not well supported comparable type, e.g. {@link java.util.Date}, {@link java.sql.Timestamp}. * * <p>Returns null if this instance is constructed by {@link ColumnStats.Builder}. */ @Deprecated public Number getMaxValue() { return maxValue; }
3.26
flink_ColumnStats_getMax_rdh
/** * Returns null if this instance is constructed by {@link ColumnStats#ColumnStats(Long, Long, * Double, Integer, Number, Number)}. */ public Comparable<?> getMax() {return max; } /** * Deprecated because Number type max/min is not well supported comparable type, e.g. {@link java.util.Date}, {@link java.sql.Timestamp}. * * <p>Returns null if this instance is constructed by {@link ColumnStats.Builder}
3.26
flink_ColumnStats_getMin_rdh
/** * Returns null if this instance is constructed by {@link ColumnStats#ColumnStats(Long, Long, * Double, Integer, Number, Number)}. */ public Comparable<?> getMin() { return min; }
3.26
flink_HttpHeader_m0_rdh
/** * Returns the name of this HTTP header. * * @return the name of this HTTP header */ public String m0() { return name; }
3.26
flink_HttpHeader_getValue_rdh
/** * Returns the value of this HTTP header. * * @return the value of this HTTP header */public String getValue() { return value; }
3.26
flink_ConnectedStreams_process_rdh
/** * Applies the given {@link KeyedCoProcessFunction} on the connected input streams, thereby * creating a transformed output stream. * * <p>The function will be called for every element in the input streams and can produce zero or * more output elements. Contrary to the {@link #flatMap(CoFlatMapFunction)} function, this * function can also query the time and set timers. When reacting to the firing of set timers * the function can directly emit elements and/or register yet more timers. * * @param keyedCoProcessFunction * The {@link KeyedCoProcessFunction} that is called for each * element in the stream. * @param <R> * The type of elements emitted by the {@code CoProcessFunction}. * @return The transformed {@link DataStream}. */ @Internal public <K, R> SingleOutputStreamOperator<R> process(KeyedCoProcessFunction<K, IN1, IN2, R> keyedCoProcessFunction, TypeInformation<R> outputType) { TwoInputStreamOperator<IN1, IN2, R> operator; if ((inputStream1 instanceof KeyedStream) && (inputStream2 instanceof KeyedStream)) { operator = new KeyedCoProcessOperator<>(inputStream1.clean(keyedCoProcessFunction)); } else { throw new UnsupportedOperationException("KeyedCoProcessFunction can only be used " + "when both input streams are of type KeyedStream."); } return transform("Co-Keyed-Process", outputType, operator); }
3.26
flink_ConnectedStreams_flatMap_rdh
/** * Applies a CoFlatMap transformation on a {@link ConnectedStreams} and maps the output to a * common type. The transformation calls a {@link CoFlatMapFunction#flatMap1} for each element * of the first input and {@link CoFlatMapFunction#flatMap2} for each element of the second * input. Each CoFlatMapFunction call returns any number of elements including none. * * @param coFlatMapper * The CoFlatMapFunction used to jointly transform the two input DataStreams * @param outputType * {@link TypeInformation} for the result type of the function. * @return The transformed {@link DataStream} */ public <R> SingleOutputStreamOperator<R> flatMap(CoFlatMapFunction<IN1, IN2, R> coFlatMapper, TypeInformation<R> outputType) { return transform("Co-Flat Map", outputType, new CoStreamFlatMap<>(inputStream1.clean(coFlatMapper))); }
3.26
flink_ConnectedStreams_getType2_rdh
/** * Gets the type of the second input. * * @return The type of the second input */ public TypeInformation<IN2> getType2() { return inputStream2.getType(); }
3.26
flink_ConnectedStreams_map_rdh
/** * Applies a CoMap transformation on a {@link ConnectedStreams} and maps the output to a common * type. The transformation calls a {@link CoMapFunction#map1} for each element of the first * input and {@link CoMapFunction#map2} for each element of the second input. Each CoMapFunction * call returns exactly one element. * * @param coMapper * The CoMapFunction used to jointly transform the two input DataStreams * @param outputType * {@link TypeInformation} for the result type of the function. * @return The transformed {@link DataStream} */ public <R> SingleOutputStreamOperator<R> map(CoMapFunction<IN1, IN2, R> coMapper, TypeInformation<R> outputType) { return transform("Co-Map", outputType, new CoStreamMap<>(inputStream1.clean(coMapper))); }
3.26
flink_ConnectedStreams_keyBy_rdh
/** * KeyBy operation for connected data stream. Assigns keys to the elements of input1 and input2 * using keySelector1 and keySelector2 with explicit type information for the common key type. * * @param keySelector1 * The {@link KeySelector} used for grouping the first input * @param keySelector2 * The {@link KeySelector} used for grouping the second input * @param keyType * The type information of the common key type. * @return The partitioned {@link ConnectedStreams} */ public <KEY> ConnectedStreams<IN1, IN2> keyBy(KeySelector<IN1, KEY> keySelector1, KeySelector<IN2, KEY> keySelector2, TypeInformation<KEY> keyType) { return new ConnectedStreams<>(environment, inputStream1.keyBy(keySelector1, keyType), inputStream2.keyBy(keySelector2, keyType)); }
3.26
flink_ConnectedStreams_getFirstInput_rdh
/** * Returns the first {@link DataStream}. * * @return The first DataStream. */ public DataStream<IN1> getFirstInput() { return inputStream1; }
3.26
flink_ConnectedStreams_getType1_rdh
/** * Gets the type of the first input. * * @return The type of the first input */ public TypeInformation<IN1> getType1() { return inputStream1.getType(); }
3.26
flink_SqlGatewayOptionsParser_getSqlGatewayOptions_rdh
// -------------------------------------------------------------------------------------------- private static Options getSqlGatewayOptions() { Options options = new Options(); options.addOption(OPTION_HELP); options.addOption(DYNAMIC_PROPERTY_OPTION);return options; }
3.26
flink_SqlGatewayOptionsParser_parseSqlGatewayOptions_rdh
// -------------------------------------------------------------------------------------------- // Line Parsing // -------------------------------------------------------------------------------------------- public static SqlGatewayOptions parseSqlGatewayOptions(String[] args) { try { DefaultParser parser = new DefaultParser();CommandLine line = parser.parse(getSqlGatewayOptions(), args, true); return new SqlGatewayOptions(line.hasOption(SqlGatewayOptionsParser.OPTION_HELP.getOpt()), line.getOptionProperties(DYNAMIC_PROPERTY_OPTION.getOpt())); } catch (ParseException e) { throw new SqlGatewayException(e.getMessage()); } }
3.26
flink_SqlGatewayOptionsParser_printHelpSqlGateway_rdh
// -------------------------------------------------------------------------------------------- // Help // -------------------------------------------------------------------------------------------- /** * Prints the help for the client. */ public static void printHelpSqlGateway(PrintStream writer) { writer.println(); printHelpForStart(writer); }
3.26
flink_OperationTreeBuilder_addAliasToTheCallInAggregate_rdh
/** * Add a default name to the call in the grouping expressions, e.g., groupBy(a % 5) to groupBy(a * % 5 as TMP_0) or make aggregate a named aggregate. */ private List<Expression> addAliasToTheCallInAggregate(List<String> inputFieldNames, List<Expression> expressions) { int attrNameCntr = 0; Set<String> usedFieldNames = new HashSet<>(inputFieldNames); List<Expression> result = new ArrayList<>(); for (Expression groupingExpression : expressions) { if ((groupingExpression instanceof UnresolvedCallExpression) && (!ApiExpressionUtils.isFunction(groupingExpression, BuiltInFunctionDefinitions.AS))) { String tempName = getUniqueName("TMP_" + attrNameCntr, usedFieldNames); attrNameCntr += 1; usedFieldNames.add(tempName); result.add(unresolvedCall(BuiltInFunctionDefinitions.AS, groupingExpression, valueLiteral(tempName))); } else { result.add(groupingExpression); } } return result; }
3.26
flink_OperationTreeBuilder_addColumns_rdh
/** * Adds additional columns. Existing fields will be replaced if replaceIfExist is true. */ public QueryOperation addColumns(boolean replaceIfExist, List<Expression> fieldLists, QueryOperation child) { final List<Expression> newColumns; if (replaceIfExist) { final List<String> fieldNames = child.getResolvedSchema().getColumnNames(); newColumns = ColumnOperationUtils.addOrReplaceColumns(fieldNames, fieldLists); } else { newColumns = new ArrayList<>(fieldLists); newColumns.add(0, unresolvedRef("*")); } return project(newColumns, child, false); }
3.26
flink_OperationTreeBuilder_aliasBackwardFields_rdh
/** * Rename fields in the input {@link QueryOperation}. */ private QueryOperation aliasBackwardFields(QueryOperation inputOperation, List<String> alias, int aliasStartIndex) { if (!alias.isEmpty()) { List<String> namesBeforeAlias = inputOperation.getResolvedSchema().getColumnNames(); List<String> namesAfterAlias = new ArrayList<>(namesBeforeAlias); for (int i = 0; i < alias.size(); i++) { int withOffset = aliasStartIndex + i;namesAfterAlias.remove(withOffset); namesAfterAlias.add(withOffset, alias.get(i)); } return this.alias(namesAfterAlias.stream().map(ApiExpressionUtils::unresolvedRef).collect(Collectors.toList()), inputOperation); } else { return inputOperation; } }
3.26
flink_OperationTreeBuilder_getUniqueName_rdh
/** * Return a unique name that does not exist in usedFieldNames according to the input name. */ private String getUniqueName(String inputName, Collection<String> usedFieldNames) { int i = 0; String resultName = inputName; while (usedFieldNames.contains(resultName)) {resultName = (resultName + "_") + i; i += 1; } return resultName; }
3.26
flink_FlinkSemiAntiJoinJoinTransposeRule_setJoinAdjustments_rdh
/** * Sets an array to reflect how much each index corresponding to a field needs to be adjusted. * The array corresponds to fields in a 3-way join between (X, Y, and Z). X remains unchanged, * but Y and Z need to be adjusted by some fixed amount as determined by the input. * * @param adjustments * array to be filled out * @param nFieldsX * number of fields in X * @param nFieldsY * number of fields in Y * @param nFieldsZ * number of fields in Z * @param adjustY * the amount to adjust Y by * @param adjustZ * the amount to adjust Z by */private void setJoinAdjustments(int[] adjustments, int nFieldsX, int nFieldsY, int nFieldsZ, int adjustY, int adjustZ) { for (int i = 0; i < nFieldsX; i++) { adjustments[i] = 0; } for (int i = nFieldsX; i < (nFieldsX + nFieldsY); i++) { adjustments[i] = adjustY; } for (int i = nFieldsX + nFieldsY; i < ((nFieldsX + nFieldsY) + nFieldsZ); i++) { adjustments[i] = adjustZ; } }
3.26
flink_ZookeeperModuleFactory_createModule_rdh
/** * A {@link SecurityModuleFactory} for {@link ZooKeeperModule}. */public class ZookeeperModuleFactory implements SecurityModuleFactory { @Overridepublic SecurityModule createModule(SecurityConfiguration securityConfig) { return new ZooKeeperModule(securityConfig); }
3.26
flink_VertexFlameGraphFactory_createFullFlameGraphFrom_rdh
/** * Converts {@link VertexThreadInfoStats} into a FlameGraph. * * @param sample * Thread details sample containing stack traces. * @return FlameGraph data structure */ public static VertexFlameGraph createFullFlameGraphFrom(VertexThreadInfoStats sample) { EnumSet<Thread.State> included = EnumSet.allOf(Thread.State.class); return createFlameGraphFromSample(sample, included); }
3.26
flink_VertexFlameGraphFactory_createOnCpuFlameGraph_rdh
/** * Converts {@link VertexThreadInfoStats} into a FlameGraph representing actively running * (On-CPU) threads. * * <p>Includes threads in states Thread.State.[RUNNABLE, NEW]. * * @param sample * Thread details sample containing stack traces. * @return FlameGraph data structure */ public static VertexFlameGraph createOnCpuFlameGraph(VertexThreadInfoStats sample) { EnumSet<Thread.State> v2 = EnumSet.of(Thread.State.RUNNABLE, Thread.State.NEW); return createFlameGraphFromSample(sample, v2); }
3.26
flink_VertexFlameGraphFactory_createOffCpuFlameGraph_rdh
/** * Converts {@link VertexThreadInfoStats} into a FlameGraph representing blocked (Off-CPU) * threads. * * <p>Includes threads in states Thread.State.[TIMED_WAITING, BLOCKED, WAITING]. * * @param sample * Thread details sample containing stack traces. * @return FlameGraph data structure. */ public static VertexFlameGraph createOffCpuFlameGraph(VertexThreadInfoStats sample) { EnumSet<Thread.State> included = EnumSet.of(Thread.State.TIMED_WAITING, Thread.State.BLOCKED, Thread.State.WAITING); return createFlameGraphFromSample(sample, included); }
3.26
flink_VertexFlameGraphFactory_m0_rdh
// Note that Thread.getStackTrace() performs a similar logic - the stack trace returned // by this method will not contain lambda references with it. But ThreadMXBean does collect // lambdas, so we have to clean them up explicitly. private static StackTraceElement[] m0(StackTraceElement[] stackTrace) { StackTraceElement[] result = new StackTraceElement[stackTrace.length]; final String v11 = System.getProperty("java.version"); final Pattern lambdaClassName = (v11.compareTo("21") >= 0) ? JDK21_LAMBDA_CLASS_NAME : LAMBDA_CLASS_NAME;for (int i = 0; i < stackTrace.length; i++) { StackTraceElement element = stackTrace[i]; Matcher matcher = lambdaClassName.matcher(element.getClassName()); if (matcher.find()) { // org.apache.flink.streaming.runtime.io.RecordProcessorUtils$$Lambda$773/0x00000001007f84a0 // --> // org.apache.flink.streaming.runtime.io.RecordProcessorUtils$$Lambda$0/0x0 // This ensures that the name is stable across JVMs, but at the same time // keeps the stack frame in the call since it has the method name, which // may be useful for analysis. String newClassName = matcher.replaceFirst("$10/$20"); result[i] = new StackTraceElement(newClassName, element.getMethodName(), element.getFileName(), element.getLineNumber()); } else { result[i] = element; } }return result; }
3.26
flink_PartitionLoader_loadPartition_rdh
/** * Load a single partition. * * @param partSpec * the specification for the single partition * @param srcPaths * the paths for the files used to load to the single partition * @param srcPathIsDir * whether the every path in {@param srcPaths} is directory or not. If true, * it will load the files under the directory of the every path. If false, every path in * {@param srcPaths} is considered as single file, and it will load the single file for * every path. */ public void loadPartition(LinkedHashMap<String, String> partSpec, List<Path> srcPaths, boolean srcPathIsDir) throws Exception { Optional<Path> pathFromMeta = metaStore.getPartition(partSpec); Path path = pathFromMeta.orElseGet(() -> new Path(metaStore.getLocationPath(), generatePartitionPath(partSpec))); overwriteAndMoveFiles(srcPaths, path, srcPathIsDir); commitPartition(partSpec, path); }
3.26
flink_PartitionLoader_loadNonPartition_rdh
/** * Load a non-partition files to output path. * * @param srcPaths * the paths for the files used to load to the single partition * @param srcPathIsDir * whether the every path in {@param srcPaths} is directory or not. If true, * it will load the files under the directory of the every path. If false, every path in * {@param srcPaths} is considered as single file, and it will load the single file for * every path. */ public void loadNonPartition(List<Path> srcPaths, boolean srcPathIsDir) throws Exception { Path tableLocation = metaStore.getLocationPath(); overwriteAndMoveFiles(srcPaths, tableLocation, srcPathIsDir); commitPartition(new LinkedHashMap<>(), tableLocation); metaStore.finishWritingTable(tableLocation); }
3.26
flink_PartitionLoader_moveFiles_rdh
/** * Moves files from srcDir to destDir. */ private void moveFiles(List<Path> srcPaths, Path destDir, boolean srcPathIsDir) throws Exception { if (srcPathIsDir) { // if the src path is still a directory, list the directory to get the files that needed // to be moved. for (Path srcDir : srcPaths) { if (!srcDir.equals(destDir)) { FileStatus[] srcFiles = listStatusWithoutHidden(fs, srcDir); if (srcFiles != null) { for (FileStatus srcFile : srcFiles) { moveFile(srcFile.getPath(), destDir); } } } }} else { for (Path v13 : srcPaths) { moveFile(v13, destDir); } } }
3.26
flink_PartitionLoader_loadEmptyPartition_rdh
/** * The flink job does not write data to the partition, but the corresponding partition needs to * be created or updated. * * <p>The partition does not exist, create it. * * <p>The partition exists: * * <pre> * if overwrite is true, delete the path, then create it; * if overwrite is false, do nothing; * </pre> */ public void loadEmptyPartition(LinkedHashMap<String, String> partSpec) throws Exception { Optional<Path> pathFromMeta = metaStore.getPartition(partSpec); if (pathFromMeta.isPresent() && (!overwrite)) { commitPartition(partSpec, pathFromMeta.get()); return; } Path path = new Path(metaStore.getLocationPath(), generatePartitionPath(partSpec)); if (pathFromMeta.isPresent()) { fs.delete(pathFromMeta.get(), true); fs.mkdirs(path); } commitPartition(partSpec, path); }
3.26
flink_PartitionLoader_commitPartition_rdh
/** * Reuse of PartitionCommitPolicy mechanisms. The default in Batch mode is metastore and * success-file. */ private void commitPartition(LinkedHashMap<String, String> partitionSpec, Path path) throws Exception { PartitionCommitPolicy.Context context = new CommitPolicyContextImpl(partitionSpec, path); for (PartitionCommitPolicy policy : policies) { if (policy instanceof MetastoreCommitPolicy) { if (partitionSpec.isEmpty()) { // Non partition table skip commit meta data. continue; } ((MetastoreCommitPolicy) (policy)).setMetastore(metaStore); } policy.commit(context); } }
3.26
flink_SourceCoordinator_aggregate_rdh
/** * Update the {@link Watermark} for the given {@code key)}. * * @return the new updated combined {@link Watermark} if the value has changed. {@code Optional.empty()} otherwise. */ public Optional<Watermark> aggregate(T key, Watermark watermark) { Watermark oldAggregatedWatermark = getAggregatedWatermark(); WatermarkElement watermarkElement = new WatermarkElement(watermark); WatermarkElement oldWatermarkElement = watermarks.put(key, watermarkElement); if (oldWatermarkElement != null) { orderedWatermarks.remove(oldWatermarkElement); } orderedWatermarks.add(watermarkElement); Watermark newAggregatedWatermark = getAggregatedWatermark(); if (newAggregatedWatermark.equals(oldAggregatedWatermark)) { return Optional.empty(); } return Optional.of(newAggregatedWatermark); }
3.26
flink_SourceCoordinator_deserializeCheckpoint_rdh
/** * Restore the state of this source coordinator from the state bytes. * * @param bytes * The checkpoint bytes that was returned from {@link #toBytes(long)} * @throws Exception * When the deserialization failed. */ private EnumChkT deserializeCheckpoint(byte[] bytes) throws Exception { try (ByteArrayInputStream bais = new ByteArrayInputStream(bytes);DataInputStream in = new DataInputViewStreamWrapper(bais)) {final int coordinatorSerdeVersion = readAndVerifyCoordinatorSerdeVersion(in); int enumSerializerVersion = in.readInt(); int serializedEnumChkptSize = in.readInt(); byte[] serializedEnumChkpt = readBytes(in, serializedEnumChkptSize); if ((coordinatorSerdeVersion != SourceCoordinatorSerdeUtils.VERSION_0) && (bais.available() > 0)) { throw new IOException("Unexpected trailing bytes in enumerator checkpoint data"); } return enumCheckpointSerializer.deserialize(enumSerializerVersion, serializedEnumChkpt); } }
3.26
flink_SourceCoordinator_handleRequestSplitEvent_rdh
// --------------------- private methods ------------- private void handleRequestSplitEvent(int subtask, int attemptNumber, RequestSplitEvent event) { LOG.info("Source {} received split request from parallel task {} (#{})", operatorName, subtask, attemptNumber); // request splits from the enumerator only if the enumerator has un-assigned splits // this helps to reduce unnecessary split requests to the enumerator if (!context.hasNoMoreSplits(subtask)) { enumerator.handleSplitRequest(subtask, event.hostName()); } }
3.26
flink_SourceCoordinator_toBytes_rdh
// --------------------- Serde ----------------------- /** * Serialize the coordinator state. The current implementation may not be super efficient, but * it should not matter that much because most of the state should be rather small. Large states * themselves may already be a problem regardless of how the serialization is implemented. * * @return A byte array containing the serialized state of the source coordinator. * @throws Exception * When something goes wrong in serialization. */ private byte[] toBytes(long checkpointId) throws Exception { return writeCheckpointBytes(enumerator.snapshotState(checkpointId), enumCheckpointSerializer); }
3.26
flink_SortingThread_go_rdh
/** * Entry point of the thread. */ @Override public void go() throws InterruptedException { boolean alive = true; // loop as long as the thread is marked alive while (isRunning() && alive) { final CircularElement<E> element = this.dispatcher.take(SortStage.SORT); if ((element != EOF_MARKER) && (element != SPILLING_MARKER)) { if (element.getBuffer().size() == 0) { element.getBuffer().reset(); this.dispatcher.send(SortStage.READ, element); continue; } LOG.debug("Sorting buffer {}.", element.getId()); this.sorter.sort(element.getBuffer());LOG.debug("Sorted buffer {}.", element.getId()); } else if (element == EOF_MARKER) { LOG.debug("Sorting thread done."); alive = false; } this.dispatcher.send(SortStage.SPILL, element); } }
3.26
flink_FlinkConvertletTable_convertTryCast_rdh
// Slightly modified version of StandardConvertletTable::convertCast private RexNode convertTryCast(SqlRexContext cx, final SqlCall call) { RelDataTypeFactory typeFactory = cx.getTypeFactory(); final SqlNode leftNode = call.operand(0); final SqlNode rightNode = call.operand(1); final RexNode valueRex = cx.convertExpression(leftNode); RelDataType type; if (rightNode instanceof SqlIntervalQualifier) { type = typeFactory.createSqlIntervalType(((SqlIntervalQualifier) (rightNode))); } else if (rightNode instanceof SqlDataTypeSpec) { SqlDataTypeSpec dataType = ((SqlDataTypeSpec) (rightNode)); type = dataType.deriveType(cx.getValidator()); if (type == null) { type = cx.getValidator().getValidatedNodeType(dataType.getTypeName()); } } else { throw new IllegalStateException("Invalid right argument type for TRY_CAST: " + rightNode); } type = typeFactory.createTypeWithNullability(type, true); if (SqlUtil.isNullLiteral(leftNode, false)) { final SqlValidatorImpl validator = ((SqlValidatorImpl) (cx.getValidator())); validator.setValidatedNodeType(leftNode, type); return cx.convertExpression(leftNode); } return cx.getRexBuilder().makeCall(type, FlinkSqlOperatorTable.TRY_CAST, Collections.singletonList(valueRex)); }
3.26
flink_TemporalTableJoinUtil_isRowTimeTemporalTableJoinCondition_rdh
/** * Check if the given rexCall is a rewrote join condition on event time. */ public static boolean isRowTimeTemporalTableJoinCondition(RexCall call) { // (LEFT_TIME_ATTRIBUTE, RIGHT_TIME_ATTRIBUTE, LEFT_KEY, RIGHT_KEY, PRIMARY_KEY) return (call.getOperator() == TemporalJoinUtil.TEMPORAL_JOIN_CONDITION()) && (call.operands.size() == 5); }
3.26
flink_TemporalTableJoinUtil_isEventTimeTemporalJoin_rdh
/** * Check if the given join condition is an initial temporal join condition or a rewrote join * condition on event time. */ public static boolean isEventTimeTemporalJoin(@Nonnull RexNode joinCondition) { RexVisitor<Void> temporalConditionFinder = new RexVisitorImpl<Void>(true) { @Override public Void visitCall(RexCall call) { if (((call.getOperator() == TemporalJoinUtil.INITIAL_TEMPORAL_JOIN_CONDITION()) && TemporalJoinUtil.isInitialRowTimeTemporalTableJoin(call)) || isRowTimeTemporalTableJoinCondition(call)) { // has initial temporal join condition or throw new Util.FoundOne(call); } return super.visitCall(call); } }; try { joinCondition.accept(temporalConditionFinder); } catch (Util.FoundOne found) { return true; } return false; }
3.26
flink_ViewUpdater_notifyOfAddedView_rdh
/** * Notifies this ViewUpdater of a new metric that should be regularly updated. * * @param view * metric that should be regularly updated */ public void notifyOfAddedView(View view) { synchronized(lock) { toAdd.add(view); } }
3.26
flink_ViewUpdater_notifyOfRemovedView_rdh
/** * Notifies this ViewUpdater of a metric that should no longer be regularly updated. * * @param view * metric that should no longer be regularly updated */ public void notifyOfRemovedView(View view) { synchronized(lock) { toRemove.add(view); } }
3.26
flink_FeedbackTransformation_getFeedbackEdges_rdh
/** * Returns the list of feedback {@code Transformations}. */ public List<Transformation<T>> getFeedbackEdges() { return feedbackEdges; }
3.26
flink_FeedbackTransformation_addFeedbackEdge_rdh
/** * Adds a feedback edge. The parallelism of the {@code Transformation} must match the * parallelism of the input {@code Transformation} of this {@code FeedbackTransformation} * * @param transform * The new feedback {@code Transformation}. */ public void addFeedbackEdge(Transformation<T> transform) { if (transform.getParallelism() != this.getParallelism()) { throw new UnsupportedOperationException((((("Parallelism of the feedback stream must match the parallelism of the original" + " stream. Parallelism of original stream: ") + this.getParallelism()) + "; parallelism of feedback stream: ") + transform.getParallelism()) + ". Parallelism can be modified using DataStream#setParallelism() method"); } feedbackEdges.add(transform);}
3.26
flink_FeedbackTransformation_getWaitTime_rdh
/** * Returns the wait time. This is the amount of time that the feedback operator keeps listening * for feedback elements. Once the time expires the operation will close and will not receive * further elements. */ public Long getWaitTime() { return waitTime; }
3.26
flink_SerializedThrowable_printStackTrace_rdh
// ------------------------------------------------------------------------ // Override the behavior of Throwable // ------------------------------------------------------------------------ @Override public void printStackTrace(PrintStream s) { s.print(fullStringifiedStackTrace); s.flush(); }
3.26
flink_SerializedThrowable_get_rdh
// ------------------------------------------------------------------------ // Static utilities // ------------------------------------------------------------------------ public static Throwable get(Throwable serThrowable, ClassLoader loader) { if (serThrowable instanceof SerializedThrowable) { return ((SerializedThrowable) (serThrowable)).deserializeError(loader); } else { return serThrowable; } }
3.26
flink_RegisteredOperatorStateBackendMetaInfo_deepCopy_rdh
/** * Creates a deep copy of the itself. */ @Nonnull public RegisteredOperatorStateBackendMetaInfo<S> deepCopy() { return new RegisteredOperatorStateBackendMetaInfo<>(this); }
3.26
flink_SpillChannelManager_m0_rdh
/** * Removes a channel reader/writer from the list of channels that are to be removed at shutdown. * * @param channel * The channel reader/writer. */ synchronized void m0(FileIOChannel channel) { openChannels.remove(channel); }
3.26
flink_SpillChannelManager_registerChannelToBeRemovedAtShutdown_rdh
/** * Adds a channel to the list of channels that are to be removed at shutdown. * * @param channel * The channel id. */ synchronized void registerChannelToBeRemovedAtShutdown(FileIOChannel.ID channel) { channelsToDeleteAtShutdown.add(channel); }
3.26
flink_SpillChannelManager_registerOpenChannelToBeRemovedAtShutdown_rdh
/** * Adds a channel reader/writer to the list of channels that are to be removed at shutdown. * * @param channel * The channel reader/writer. */ synchronized void registerOpenChannelToBeRemovedAtShutdown(FileIOChannel channel) {openChannels.add(channel); }
3.26
flink_SpillChannelManager_unregisterChannelToBeRemovedAtShutdown_rdh
/** * Removes a channel from the list of channels that are to be removed at shutdown. * * @param channel * The channel id. */ synchronized void unregisterChannelToBeRemovedAtShutdown(FileIOChannel.ID channel) { channelsToDeleteAtShutdown.remove(channel); }
3.26
flink_TieredStorageIdMappingUtils_convertId_rdh
/** * Utils to convert the Ids to Tiered Storage Ids, or vice versa. */
3.26
flink_CepRuntimeContext_addAccumulator_rdh
// ----------------------------------------------------------------------------------- // Unsupported operations // ----------------------------------------------------------------------------------- @Override public <V, A extends Serializable> void addAccumulator(final String name, final Accumulator<V, A> accumulator) { throw new UnsupportedOperationException("Accumulators are not supported."); }
3.26
flink_JoinSpec_getJoinKeySize_rdh
/** * Gets number of keys in join key. */ @JsonIgnore public int getJoinKeySize() { return leftKeys.length; }
3.26
flink_HivePartitionUtils_getAllPartitions_rdh
/** * Returns all HiveTablePartitions of a hive table, returns single HiveTablePartition if the * hive table is not partitioned. */ public static List<HiveTablePartition> getAllPartitions(JobConf jobConf, String hiveVersion, ObjectPath tablePath, List<String> partitionColNames, List<Map<String, String>> remainingPartitions) { List<HiveTablePartition> allHivePartitions = new ArrayList<>(); try (HiveMetastoreClientWrapper client = HiveMetastoreClientFactory.create(HiveConfUtils.create(jobConf), hiveVersion)) { String dbName = tablePath.getDatabaseName(); String tableName = tablePath.getObjectName(); Table hiveTable = client.getTable(dbName, tableName); Properties tableProps = HiveReflectionUtils.getTableMetadata(HiveShimLoader.loadHiveShim(hiveVersion), hiveTable); if ((partitionColNames != null) && (partitionColNames.size() > 0)) { List<Partition> partitions = new ArrayList<>(); if (remainingPartitions != null) { List<String> partitionNames = getPartitionNames(remainingPartitions, partitionColNames, JobConfUtils.getDefaultPartitionName(jobConf)); partitions.addAll(client.getPartitionsByNames(dbName, tableName, partitionNames)); } else { partitions.addAll(client.listPartitions(dbName, tableName, ((short) (-1)))); } for (Partition partition : partitions) { HiveTablePartition hiveTablePartition = toHiveTablePartition(partitionColNames, tableProps, partition); allHivePartitions.add(hiveTablePartition); } } else { allHivePartitions.add(new HiveTablePartition(hiveTable.getSd(), tableProps)); } } catch (TException e) { throw new FlinkHiveException("Failed to collect all partitions from hive metaStore", e); } return allHivePartitions; }
3.26
flink_HivePartitionUtils_createPartitionSpec_rdh
/** * Creates a {@link CatalogPartitionSpec} from a Hive partition name string. Example of Hive * partition name string - "name=bob/year=2019". If the partition name for the given partition * column is equal to {@param defaultPartitionName}, the partition value in returned {@link CatalogPartitionSpec} will be null. */ public static CatalogPartitionSpec createPartitionSpec(String hivePartitionName, String defaultPartitionName) { String[] partKeyVals = hivePartitionName.split("/"); Map<String, String> spec = CollectionUtil.newHashMapWithExpectedSize(partKeyVals.length); for (String keyVal : partKeyVals) { String[] kv = keyVal.split("="); String partitionValue = unescapePathName(kv[1]); spec.put(unescapePathName(kv[0]), partitionValue.equals(defaultPartitionName) ? null : partitionValue); } return new CatalogPartitionSpec(spec); }
3.26
flink_HivePartitionUtils_parsePartitionValues_rdh
/** * Parse partition string specs into object values. */ public static Map<String, Object> parsePartitionValues(Map<String, String> partitionSpecs, String[] fieldNames, DataType[] fieldTypes, String defaultPartitionName, HiveShim shim) { checkArgument(fieldNames.length == fieldTypes.length); List<String> fieldNameList = Arrays.asList(fieldNames); Map<String, Object> partitionColValues = new HashMap<>(); for (Map.Entry<String, String> spec : partitionSpecs.entrySet()) { String partitionKey = spec.getKey(); String valueString = spec.getValue(); int index = fieldNameList.indexOf(partitionKey); if (index < 0) { throw new IllegalStateException(String.format("Partition spec %s and column names %s doesn't match", partitionSpecs, fieldNameList)); } LogicalType partitionType = fieldTypes[index].getLogicalType(); final Object value = restorePartitionValueFromType(shim, valueString, partitionType, defaultPartitionName); partitionColValues.put(partitionKey, value); } return partitionColValues; }
3.26
flink_Tuple1_toString_rdh
// ------------------------------------------------------------------------------------------------- // standard utilities // ------------------------------------------------------------------------------------------------- /** * Creates a string representation of the tuple in the form (f0), where the individual fields * are the value returned by calling {@link Object#toString} on that field. * * @return The string representation of the tuple. */ @Override public String toString() { return ("(" + StringUtils.arrayAwareToString(this.f0)) + ")"; }
3.26
flink_Tuple1_setFields_rdh
/** * Sets new values to all fields of the tuple. * * @param f0 * The value for field 0 */ public void setFields(T0 f0) { this.f0 = f0; }
3.26
flink_Tuple1_equals_rdh
/** * Deep equality for tuples by calling equals() on the tuple members. * * @param o * the object checked for equality * @return true if this is equal to o. */ @Override public boolean equals(Object o) { if (this == o) { return true; } if (!(o instanceof Tuple1)) { return false; } @SuppressWarnings("rawtypes") Tuple1 tuple = ((Tuple1) (o)); if (f0 != null ? !f0.equals(tuple.f0) : tuple.f0 != null) { return false; } return true;}
3.26
flink_HiveTableSink_toStagingDir_rdh
// get a staging dir private String toStagingDir(String stagingParentDir, Configuration conf) throws IOException { if (!stagingParentDir.endsWith(Path.SEPARATOR)) { stagingParentDir += Path.SEPARATOR; } // TODO: may append something more meaningful than a timestamp, like query ID stagingParentDir += ".staging_" + System.currentTimeMillis(); Path path = new Path(stagingParentDir); FileSystem fs = path.getFileSystem(conf); Preconditions.checkState(fs.exists(path) || fs.mkdirs(path), "Failed to create staging dir " + path); fs.deleteOnExit(path); return stagingParentDir; }
3.26
flink_JsonRowSchemaConverter_convert_rdh
/** * Converts a JSON schema into Flink's type information. Throws an exception if the schema * cannot converted because of loss of precision or too flexible schema. * * <p>The converter can resolve simple schema references to solve those cases where entities are * defined at the beginning and then used throughout a document. */ @SuppressWarnings("unchecked") public static <T> TypeInformation<T> convert(String jsonSchema) {Preconditions.checkNotNull(jsonSchema, "JSON schema"); final ObjectMapper mapper = JacksonMapperFactory.createObjectMapper(); mapper.getFactory().enable(Feature.ALLOW_COMMENTS).enable(Feature.ALLOW_UNQUOTED_FIELD_NAMES).enable(Feature.ALLOW_SINGLE_QUOTES); final JsonNode v1;try { v1 = mapper.readTree(jsonSchema); } catch (IOException e) { throw new IllegalArgumentException("Invalid JSON schema.", e); } return ((TypeInformation<T>) (convertType("<root>", v1, v1))); }
3.26
flink_MaterializedCollectStreamResult_processRecord_rdh
// -------------------------------------------------------------------------------------------- @Override protected void processRecord(RowData row) {synchronized(resultLock) { boolean isInsertOp = (row.getRowKind() == RowKind.INSERT) || (row.getRowKind() == RowKind.UPDATE_AFTER); // Always set the RowKind to INSERT, so that we can compare rows correctly (RowKind will // be ignored), row.setRowKind(RowKind.INSERT); // insert if (isInsertOp) { processInsert(row); } else // delete { processDelete(row); } } }
3.26
flink_MaterializedCollectStreamResult_processInsert_rdh
// -------------------------------------------------------------------------------------------- private void processInsert(RowData row) { // limit the materialized table if ((materializedTable.size() - validRowPosition) >= maxRowCount) { cleanUp(); }materializedTable.add(row); f0.put(row, materializedTable.size() - 1); }
3.26
flink_CustomHeadersDecorator_getCustomHeaders_rdh
/** * Returns the custom headers added to the message. * * @return The custom headers as a collection of {@link HttpHeader}. */ @Override public Collection<HttpHeader> getCustomHeaders() { return customHeaders; }
3.26
flink_CustomHeadersDecorator_addCustomHeader_rdh
/** * Adds a custom header to the message. Initializes the custom headers collection if it hasn't * been initialized yet. * * @param httpHeader * The header to add. */ public void addCustomHeader(HttpHeader httpHeader) { if (customHeaders == null) { customHeaders = new ArrayList<>(); } customHeaders.add(httpHeader); }
3.26