name
stringlengths
12
178
code_snippet
stringlengths
8
36.5k
score
float64
3.26
3.68
flink_ExecNodePlanDumper_dagToString_rdh
/** * Converts an {@link ExecNode} DAG to a string as a tree style. * * <p>The following DAG of {@link ExecNode} * * <pre>{@code Sink1 Sink2 * | | * Filter3 Filter4 * \ / * Join * / \ * Filter1 Filter2 * \ / * Project * | * Scan}</pre> * * <p>would be converted to the tree style as following: * * <pre>{@code Join(reuse_id=[2]) * :- Filter1 * : +- Project(reuse_id=[1]) * : +- Scan * +- Filter2 * +- Reused(reference_id=[1]) * * Sink1 * +- Filter3 * +- Reused(reference_id=[2]) * * Sink2 * +- Filter4 * +- Reused(reference_id=[2])}</pre> * * @param nodes * the ExecNodes to convert * @return the plan of ExecNode */ public static String dagToString(List<ExecNode<?>> nodes) { Preconditions.checkArgument((nodes != null) && (!nodes.isEmpty()), "nodes should not be null or empty."); if (nodes.size() == 1) { return treeToString(nodes.get(0)); } // nodes that stop visit when meet them final List<ExecNode<?>> stopVisitNodes = new ArrayList<>(); final StringBuilder sb = new StringBuilder(); final DagReuseInfo reuseInfo = new DagReuseInfo(nodes, new ArrayList<>()); final ExecNodeVisitor visitor = new ExecNodeVisitorImpl() { @Override public void visit(ExecNode<?> node) { int visitedTimes = reuseInfo.addVisitedTimes(node); boolean isFirstVisit = visitedTimes == 1; if (isFirstVisit) { super.visit(node); } int reuseId = reuseInfo.getReuseId(node);boolean isReuseNode = reuseId >= 0; if (((node instanceof CommonExecLegacySink) || (node instanceof CommonExecSink)) || (isReuseNode && isFirstVisit)) { if (isReuseNode) { reuseInfo.setFirstVisited(node, true); } String reusePlan = doConvertTreeToString(node, reuseInfo, false, stopVisitNodes, false); sb.append(reusePlan).append(System.lineSeparator()); if (isReuseNode) { // update visit info after the reuse node visited stopVisitNodes.add(node); reuseInfo.setFirstVisited(node, false); } } } }; nodes.forEach(visitor::visit); if (sb.length() > 0) { // delete last line separator sb.deleteCharAt(sb.length() - 1); } return sb.toString(); }
3.26
flink_CheckpointCommitter_setOperatorId_rdh
/** * Internally used to set the operator ID after instantiation. * * @param id * @throws Exception */ public void setOperatorId(String id) throws Exception { this.operatorId = id; }
3.26
flink_CheckpointCommitter_setJobId_rdh
/** * Internally used to set the job ID after instantiation. * * @param id * @throws Exception */ public void setJobId(String id) throws Exception { this.jobId = id; }
3.26
flink_TPCHQuery3_m0_rdh
// ************************************************************************* // PROGRAM // ************************************************************************* public static void m0(String[] args) throws Exception { LOGGER.warn(DATASET_DEPRECATION_INFO); final ParameterTool params = ParameterTool.fromArgs(args); if (((!params.has("lineitem")) && (!params.has("customer"))) && (!params.has("orders"))) { System.err.println(" This program expects data from the TPC-H benchmark as input data."); System.err.println(" Due to legal restrictions, we can not ship generated data."); System.out.println(" You can find the TPC-H data generator at http://www.tpc.org/tpch/."); System.out.println(" Usage: TPCHQuery3 --lineitem <path> --customer <path> --orders <path> [--output <path>]"); return; } final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment(); env.getConfig().setGlobalJobParameters(params); // get input data DataSet<Lineitem> lineitems = getLineitemDataSet(env, params.get("lineitem")); DataSet<Customer> customers = getCustomerDataSet(env, params.get("customer")); DataSet<Order> orders = getOrdersDataSet(env, params.get("orders")); // Filter market segment "AUTOMOBILE" customers = customers.filter(new FilterFunction<Customer>() { @Override public boolean filter(Customer c) { return c.getMktsegment().equals("AUTOMOBILE"); } }); // Filter all Orders with o_orderdate < 12.03.1995 orders = orders.filter(new FilterFunction<Order>() { private final DateFormat format = new SimpleDateFormat("yyyy-MM-dd"); private final Date date = format.parse("1995-03-12"); @Override public boolean filter(Order o) throws ParseException { return format.parse(o.getOrderdate()).before(date); } }); // Filter all Lineitems with l_shipdate > 12.03.1995 lineitems = lineitems.filter(new FilterFunction<Lineitem>() { private final DateFormat format = new SimpleDateFormat("yyyy-MM-dd"); private final Date date = format.parse("1995-03-12"); @Override public boolean filter(Lineitem l) throws ParseException {return format.parse(l.getShipdate()).after(date); } }); // Join customers with orders and package them into a ShippingPriorityItem DataSet<ShippingPriorityItem> customerWithOrders = customers.join(orders).where(0).equalTo(1).with(new JoinFunction<Customer, Order, ShippingPriorityItem>() { @Override public ShippingPriorityItem m1(Customer c, Order o) { return new ShippingPriorityItem(o.getOrderKey(), 0.0, o.getOrderdate(), o.getShippriority()); } }); // Join the last join result with Lineitems DataSet<ShippingPriorityItem> result = // Group by l_orderkey, o_orderdate and o_shippriority and compute revenue // sum customerWithOrders.join(lineitems).where(0).equalTo(0).with(new JoinFunction<ShippingPriorityItem, Lineitem, ShippingPriorityItem>() { @Override public ShippingPriorityItem join(ShippingPriorityItem i, Lineitem l) { i.setRevenue(l.getExtendedprice() * (1 - l.getDiscount())); return i; } }).groupBy(0, 2, 3).aggregate(Aggregations.SUM, 1); // emit result if (params.has("output")) {result.writeAsCsv(params.get("output"), "\n", "|"); // execute program env.execute("TPCH Query 3 Example"); } else { System.out.println("Printing result to stdout. Use --output to specify output path."); result.print(); } }
3.26
flink_TPCHQuery3_getLineitemDataSet_rdh
// ************************************************************************* // UTIL METHODS // ************************************************************************* private static DataSet<Lineitem> getLineitemDataSet(ExecutionEnvironment env, String lineitemPath) { return env.readCsvFile(lineitemPath).fieldDelimiter("|").includeFields("1000011000100000").tupleType(TPCHQuery3.Lineitem.class); }
3.26
flink_CharVarCharTrimPadCastRule_stringExceedsLength_rdh
// --------------- // Shared methods // --------------- static String stringExceedsLength(String strTerm, int targetLength) { return (methodCall(strTerm, "length") + " > ") + targetLength; }
3.26
flink_HiveParserExpressionWalker_walk_rdh
/** * walk the current operator and its descendants. */ protected void walk(Node nd) throws SemanticException { // Push the node in the stack opStack.push(nd); // While there are still nodes to dispatch... while (!opStack.empty()) { Node node = opStack.peek(); if ((node.getChildren() == null) || getDispatchedList().containsAll(node.getChildren())) { // Dispatch current node if (!getDispatchedList().contains(node)) { dispatch(node, opStack); opQueue.add(node); } opStack.pop(); continue; } // Add a single child and restart the loop for (Node childNode : node.getChildren()) { if (!getDispatchedList().contains(childNode)) { if (shouldByPass(childNode, node)) { retMap.put(childNode, null); } else { opStack.push(childNode); } break; } } } // end while }
3.26
flink_HiveParserExpressionWalker_shouldByPass_rdh
/** * We should bypass subquery since we have already processed and created logical plan (in * genLogicalPlan) for subquery at this point. SubQueryExprProcessor will use generated plan and * creates appropriate ExprNodeSubQueryDesc. */ private boolean shouldByPass(Node childNode, Node parentNode) { if ((parentNode instanceof HiveParserASTNode) && (((HiveParserASTNode) (parentNode)).getType() == HiveASTParser.TOK_SUBQUERY_EXPR)) { HiveParserASTNode parentOp = ((HiveParserASTNode) (parentNode)); // subquery either in WHERE <LHS> IN <SUBQUERY> form OR WHERE EXISTS <SUBQUERY> form // in first case LHS should not be bypassed assert (parentOp.getChildCount() == 2) || (parentOp.getChildCount() == 3); return (parentOp.getChildCount() != 3) || (childNode != parentOp.getChild(2)); } return false; }
3.26
flink_HiveParserUnparseTranslator_addIdentifierTranslation_rdh
/** * Register a translation for an identifier. */ public void addIdentifierTranslation(HiveParserASTNode identifier) { if (!enabled) { return; } assert identifier.getToken().getType() == HiveASTParser.Identifier; String replacementText = identifier.getText(); replacementText = HiveParserBaseSemanticAnalyzer.unescapeIdentifier(replacementText); replacementText = HiveUtils.unparseIdentifier(replacementText, conf); addTranslation(identifier, replacementText); }
3.26
flink_HiveParserUnparseTranslator_addCopyTranslation_rdh
/** * Register a "copy" translation in which a node will be translated into whatever the * translation turns out to be for another node (after previously registered translations have * already been performed). Deferred translations are performed in the order they are * registered, and follow the same rules regarding overlap as non-copy translations. * * @param targetNode * node whose subtree is to be replaced * @param sourceNode * the node providing the replacement text */ public void addCopyTranslation(HiveParserASTNode targetNode, HiveParserASTNode sourceNode) { if (!enabled) { return; } if (targetNode.getOrigin() != null) { return; } CopyTranslation copyTranslation = new CopyTranslation(); copyTranslation.targetNode = targetNode; copyTranslation.sourceNode = sourceNode; copyTranslations.add(copyTranslation); }
3.26
flink_LastValueAggFunction_getArgumentDataTypes_rdh
// -------------------------------------------------------------------------------------------- // Planning // -------------------------------------------------------------------------------------------- @Override public List<DataType> getArgumentDataTypes() {return Collections.singletonList(valueDataType); }
3.26
flink_LastValueAggFunction_createAccumulator_rdh
// -------------------------------------------------------------------------------------------- @Override public RowData createAccumulator() { GenericRowData acc = new GenericRowData(2); acc.setField(0, null); acc.setField(1, Long.MIN_VALUE); return acc; }
3.26
flink_IntMaximum_add_rdh
// ------------------------------------------------------------------------ // Primitive Specializations // ------------------------------------------------------------------------ public void add(int value) { this.max = Math.max(this.max, value); }
3.26
flink_IntMaximum_toString_rdh
// ------------------------------------------------------------------------ // Utilities // ------------------------------------------------------------------------ @Override public String toString() { return "IntMaximum " + this.max; }
3.26
flink_SourceTestSuiteBase_addCollectSink_rdh
/** * Add a collect sink in the job. */ protected CollectIteratorBuilder<T> addCollectSink(DataStream<T> stream) { TypeSerializer<T> serializer = stream.getType().createSerializer(stream.getExecutionConfig()); String accumulatorName = "dataStreamCollect_" + UUID.randomUUID(); CollectSinkOperatorFactory<T> factory = new CollectSinkOperatorFactory<>(serializer, accumulatorName); CollectSinkOperator<T> operator = ((CollectSinkOperator<T>) (factory.getOperator())); CollectStreamSink<T> sink = new CollectStreamSink<>(stream, factory); sink.name("Data stream collect sink"); stream.getExecutionEnvironment().addOperator(sink.getTransformation()); return new CollectIteratorBuilder<>(operator, serializer, accumulatorName, stream.getExecutionEnvironment().getCheckpointConfig()); }
3.26
flink_SourceTestSuiteBase_testMultipleSplits_rdh
/** * Test connector source with multiple splits in the external system * * <p>This test will create 4 splits in the external system, write test data to all splits, and * consume back via a Flink job with 4 parallelism. * * <p>The number and order of records in each split consumed by Flink need to be identical to * the test data written into the external system to pass this test. There's no requirement for * record order across splits. * * <p>A bounded source is required for this test. */ @TestTemplate @DisplayName("Test source with multiple splits") public void testMultipleSplits(TestEnvironment testEnv, DataStreamSourceExternalContext<T> externalContext, CheckpointingMode semantic) throws Exception { // Step 1: Preparation TestingSourceSettings sourceSettings = TestingSourceSettings.builder().setBoundedness(Boundedness.BOUNDED).setCheckpointingMode(semantic).build(); TestEnvironmentSettings envOptions = TestEnvironmentSettings.builder().setConnectorJarPaths(externalContext.getConnectorJarPaths()).build(); Source<T, ?, ?> source = tryCreateSource(externalContext, sourceSettings); // Step 2: Write test data to external system int splitNumber = 4; List<List<T>> testRecordsLists = new ArrayList<>(); for (int v14 = 0; v14 < splitNumber; v14++) { testRecordsLists.add(generateAndWriteTestData(v14, externalContext, sourceSettings)); } // Step 3: Build and execute Flink job StreamExecutionEnvironment v15 = testEnv.createExecutionEnvironment(envOptions); DataStreamSource<T> v16 = v15.fromSource(source, WatermarkStrategy.noWatermarks(), "Tested Source").setParallelism(splitNumber); CollectIteratorBuilder<T> iteratorBuilder = addCollectSink(v16); JobClient jobClient = submitJob(v15, "Source Multiple Split Test"); // Step 4: Validate test data try (CloseableIterator<T> resultIterator = iteratorBuilder.build(jobClient)) { // Check test result LOG.info("Checking test results"); checkResultWithSemantic(resultIterator, testRecordsLists, semantic, null); } }
3.26
flink_SourceTestSuiteBase_generateAndWriteTestData_rdh
// ----------------------------- Helper Functions --------------------------------- /** * Generate a set of test records and write it to the given split writer. * * @param externalContext * External context * @return List of generated test records */ protected List<T> generateAndWriteTestData(int splitIndex, DataStreamSourceExternalContext<T> externalContext, TestingSourceSettings testingSourceSettings) { List<T> testRecords = externalContext.generateTestData(testingSourceSettings, splitIndex, ThreadLocalRandom.current().nextLong()); LOG.info("Writing {} records for split {} to external system", testRecords.size(), splitIndex); externalContext.createSourceSplitDataWriter(testingSourceSettings).writeRecords(testRecords); return testRecords; }
3.26
flink_SourceTestSuiteBase_testSourceMetrics_rdh
/** * Test connector source metrics. * * <p>This test will create 4 splits in the external system first, write test data to all splits * and consume back via a Flink job with parallelism 4. Then read and compare the metrics. * * <p>Now test: numRecordsIn */@TestTemplate @DisplayName("Test source metrics") public void testSourceMetrics(TestEnvironment testEnv, DataStreamSourceExternalContext<T> externalContext, CheckpointingMode semantic) throws Exception { TestingSourceSettings sourceSettings = TestingSourceSettings.builder().setBoundedness(Boundedness.CONTINUOUS_UNBOUNDED).setCheckpointingMode(semantic).build(); TestEnvironmentSettings envOptions = TestEnvironmentSettings.builder().setConnectorJarPaths(externalContext.getConnectorJarPaths()).build(); final int splitNumber = 4; final List<List<T>> testRecordCollections = new ArrayList<>(); for (int i = 0; i < splitNumber; i++) { testRecordCollections.add(generateAndWriteTestData(i, externalContext, sourceSettings)); } // make sure use different names when executes multi times String sourceName = "metricTestSource" + testRecordCollections.hashCode();final StreamExecutionEnvironment env = testEnv.createExecutionEnvironment(envOptions); final DataStreamSource<T> dataStreamSource = env.fromSource(tryCreateSource(externalContext, sourceSettings), WatermarkStrategy.noWatermarks(), sourceName).setParallelism(splitNumber); dataStreamSource.sinkTo(new DiscardingSink<>()); final JobClient jobClient = env.executeAsync("Metrics Test"); final MetricQuerier queryRestClient = new MetricQuerier(new Configuration()); final ExecutorService executorService = Executors.newCachedThreadPool(); try { waitForAllTaskRunning(() -> getJobDetails(new RestClient(new Configuration(), executorService), testEnv.getRestEndpoint(), jobClient.getJobID())); waitUntilCondition(() -> { // test metrics try { return checkSourceMetrics(queryRestClient, testEnv, jobClient.getJobID(), sourceName, getTestDataSize(testRecordCollections)); } catch (Exception e) {// skip failed assert try return false; } }); } finally { // Clean up executorService.shutdown(); killJob(jobClient); } }
3.26
flink_SourceTestSuiteBase_generateTestDataForWriter_rdh
/** * Generate a set of split writers. * * @param externalContext * External context * @param splitIndex * the split index * @param writer * the writer to send data * @return List of generated test records */ protected List<T> generateTestDataForWriter(DataStreamSourceExternalContext<T> externalContext, TestingSourceSettings sourceSettings, int splitIndex, ExternalSystemSplitDataWriter<T> writer) { final List<T> testRecordCollection = externalContext.generateTestData(sourceSettings, splitIndex, ThreadLocalRandom.current().nextLong()); LOG.debug("Writing {} records to external system", testRecordCollection.size()); writer.writeRecords(testRecordCollection); return testRecordCollection; }
3.26
flink_SourceTestSuiteBase_getTestDataSize_rdh
/** * Get the size of test data. * * @param collections * test data * @return the size of test data */ protected int getTestDataSize(List<List<T>> collections) { int v78 = 0; for (Collection<T> collection : collections) { v78 += collection.size(); } return v78; }
3.26
flink_SourceTestSuiteBase_checkSourceMetrics_rdh
/** * Compare the metrics. */ private boolean checkSourceMetrics(MetricQuerier queryRestClient, TestEnvironment testEnv, JobID jobId, String sourceName, long allRecordSize) throws Exception { Double sumNumRecordsIn = queryRestClient.getAggregatedMetricsByRestAPI(testEnv.getRestEndpoint(), jobId, sourceName, MetricNames.IO_NUM_RECORDS_IN, null); return Precision.equals(allRecordSize, sumNumRecordsIn); }
3.26
flink_SourceTestSuiteBase_testScaleDown_rdh
/** * Test connector source restart from a savepoint with a lower parallelism. * * <p>This test will create 4 splits in the external system first, write test data to all splits * and consume back via a Flink job with parallelism 4. Then stop the job with savepoint, * restart the job from the checkpoint with a lower parallelism 2. After the job has been * running, add some extra data to the source and compare the result. * * <p>The number and order of records in each split consumed by Flink need to be identical to * the test data written into the external system to pass this test. There's no requirement for * record order across splits. */ @TestTemplate @DisplayName("Test source restarting with a lower parallelism") public void testScaleDown(TestEnvironment testEnv, DataStreamSourceExternalContext<T> externalContext, CheckpointingMode semantic) throws Exception { restartFromSavepoint(testEnv, externalContext, semantic, 4, 4, 2); }
3.26
flink_SourceTestSuiteBase_checkResultWithSemantic_rdh
/** * Compare the test data with the result. * * <p>If the source is bounded, limit should be null. * * @param resultIterator * the data read from the job * @param testData * the test data * @param semantic * the supported semantic, see {@link CheckpointingMode} * @param limit * expected number of the data to read from the job */ protected void checkResultWithSemantic(CloseableIterator<T> resultIterator, List<List<T>> testData, CheckpointingMode semantic, Integer limit) { if (limit != null) { Runnable runnable = () -> CollectIteratorAssertions.assertThat(resultIterator).withNumRecordsLimit(limit).matchesRecordsFromSource(testData, semantic); assertThatFuture(runAsync(runnable)).eventuallySucceeds(); } else { CollectIteratorAssertions.assertThat(resultIterator).matchesRecordsFromSource(testData, semantic); } }
3.26
flink_SourceTestSuiteBase_testSavepoint_rdh
/** * Test connector source restart from a savepoint. * * <p>This test will create 4 splits in the external system first, write test data to all * splits, and consume back via a Flink job. Then stop the job with savepoint, restart the job * from the checkpoint. After the job has been running, add some extra data to the source and * compare the result. * * <p>The number and order of records in each split consumed by Flink need to be identical to * the test data written into the external system to pass this test. There's no requirement for * record order across splits. */ @TestTemplate @DisplayName("Test source restarting from a savepoint") public void testSavepoint(TestEnvironment testEnv, DataStreamSourceExternalContext<T> externalContext, CheckpointingMode semantic) throws Exception { restartFromSavepoint(testEnv, externalContext, semantic, 4, 4, 4); }
3.26
flink_SourceTestSuiteBase_testSourceSingleSplit_rdh
/** * Test connector source with only one split in the external system. * * <p>This test will create one split in the external system, write test data into it, and * consume back via a Flink job with 1 parallelism. * * <p>The number and order of records consumed by Flink need to be identical to the test data * written to the external system in order to pass this test. * * <p>A bounded source is required for this test. */ @TestTemplate @DisplayName("Test source with single split") public void testSourceSingleSplit(TestEnvironment testEnv, DataStreamSourceExternalContext<T> externalContext, CheckpointingMode semantic) throws Exception { // Step 1: Preparation TestingSourceSettings sourceSettings = TestingSourceSettings.builder().setBoundedness(Boundedness.BOUNDED).setCheckpointingMode(semantic).build(); TestEnvironmentSettings envSettings = TestEnvironmentSettings.builder().setConnectorJarPaths(externalContext.getConnectorJarPaths()).build(); Source<T, ?, ?> source = tryCreateSource(externalContext, sourceSettings); // Step 2: Write test data to external system List<T> testRecords = generateAndWriteTestData(0, externalContext, sourceSettings); // Step 3: Build and execute Flink job StreamExecutionEnvironment execEnv = testEnv.createExecutionEnvironment(envSettings); DataStreamSource<T> stream = execEnv.fromSource(source, WatermarkStrategy.noWatermarks(), "Tested Source").setParallelism(1); CollectIteratorBuilder<T> iteratorBuilder = addCollectSink(stream); JobClient jobClient = submitJob(execEnv, "Source Single Split Test"); // Step 5: Validate test data try (CollectResultIterator<T> resultIterator = iteratorBuilder.build(jobClient)) { // Check test result LOG.info("Checking test results"); checkResultWithSemantic(resultIterator, singletonList(testRecords), semantic, null); } // Step 5: Clean up waitForJobStatus(jobClient, singletonList(JobStatus.FINISHED)); }
3.26
flink_SourceTestSuiteBase_testScaleUp_rdh
/** * Test connector source restart from a savepoint with a higher parallelism. * * <p>This test will create 4 splits in the external system first, write test data to all splits * and consume back via a Flink job with parallelism 2. Then stop the job with savepoint, * restart the job from the checkpoint with a higher parallelism 4. After the job has been * running, add some extra data to the source and compare the result. * * <p>The number and order of records in each split consumed by Flink need to be identical to * the test data written into the external system to pass this test. There's no requirement for * record order across splits. */ @TestTemplate @DisplayName("Test source restarting with a higher parallelism") public void testScaleUp(TestEnvironment testEnv, DataStreamSourceExternalContext<T> externalContext, CheckpointingMode semantic) throws Exception { restartFromSavepoint(testEnv, externalContext, semantic, 4, 2, 4); }
3.26
flink_TieredStorageResultSubpartitionView_readNettyPayload_rdh
// ------------------------------- // Internal Methods // ------------------------------- private Optional<Buffer> readNettyPayload(NettyPayloadManager nettyPayloadManager) throws IOException { NettyPayload nettyPayload = nettyPayloadManager.poll(); if (nettyPayload == null) { return Optional.empty(); } else { checkState(nettyPayload.getSegmentId() == (-1)); Optional<Throwable> error = nettyPayload.getError(); if (error.isPresent()) { m0(); throw new IOException(error.get()); } else { return nettyPayload.getBuffer(); } } }
3.26
flink_CompressionUtils_extractTarFileUsingTar_rdh
// See // https://github.com/apache/hadoop/blob/7f93349ee74da5f35276b7535781714501ab2457/hadoop-common-project/hadoop-common/src/main/java/org/apache/hadoop/fs/FileUtil.java private static void extractTarFileUsingTar(String inFilePath, String targetDirPath, boolean gzipped) throws IOException {inFilePath = makeSecureShellPath(inFilePath); targetDirPath = makeSecureShellPath(targetDirPath); String untarCommand = (gzipped) ? String.format("gzip -dc '%s' | (cd '%s' && tar -xf -)", inFilePath, targetDirPath) : String.format("cd '%s' && tar -xf '%s'", targetDirPath, inFilePath); Process process = new ProcessBuilder("bash", "-c", untarCommand).start(); int exitCode = 0; try { exitCode = process.waitFor(); } catch (InterruptedException e) { Thread.currentThread().interrupt(); throw new IOException("Interrupted when untarring file " + inFilePath); } if (exitCode != 0) { throw new IOException((("Error untarring file " + inFilePath) + ". Tar process exited with exit code ") + exitCode); } }
3.26
flink_CompressionUtils_extractTarFileUsingJava_rdh
// Follow the pattern suggested in // https://commons.apache.org/proper/commons-compress/examples.html private static void extractTarFileUsingJava(String inFilePath, String targetDirPath, boolean gzipped) throws IOException { try (InputStream fi = Files.newInputStream(Paths.get(inFilePath));InputStream bi = new BufferedInputStream(fi);final TarArchiveInputStream tai = new TarArchiveInputStream(gzipped ? new GzipCompressorInputStream(bi) : bi)) { final File targetDir = new File(targetDirPath); TarArchiveEntry entry; while ((entry = tai.getNextTarEntry()) != null) { unpackEntry(tai, entry, targetDir); } } }
3.26
flink_PersistentMetadataCheckpointStorageLocation_createMetadataOutputStream_rdh
// ------------------------------------------------------------------------ @Override public CheckpointMetadataOutputStream createMetadataOutputStream() throws IOException { return new FsCheckpointMetadataOutputStream(fileSystem, metadataFilePath, checkpointDirectory); }
3.26
flink_PatternStream_inEventTime_rdh
/** * Sets the time characteristic to event time. */ public PatternStream<T> inEventTime() { return new PatternStream<>(builder.inEventTime()); } /** * Applies a process function to the detected pattern sequence. For each pattern sequence the * provided {@link PatternProcessFunction} is called. In order to process timed out partial * matches as well one can use {@link TimedOutPartialMatchHandler} as additional interface. * * @param patternProcessFunction * The pattern process function which is called for each detected * pattern sequence. * @param <R> * Type of the resulting elements * @return {@link DataStream}
3.26
flink_PatternStream_inProcessingTime_rdh
/** * Sets the time characteristic to processing time. */ public PatternStream<T> inProcessingTime() { return new PatternStream<>(builder.inProcessingTime()); }
3.26
flink_PatternStream_sideOutputLateData_rdh
/** * Send late arriving data to the side output identified by the given {@link OutputTag}. A * record is considered late after the watermark has passed its timestamp. * * <p>You can get the stream of late data using {@link SingleOutputStreamOperator#getSideOutput(OutputTag)} on the {@link SingleOutputStreamOperator} resulting from the pattern processing operations. */ public PatternStream<T> sideOutputLateData(OutputTag<T> lateDataOutputTag) { return new PatternStream<>(builder.withLateDataOutputTag(lateDataOutputTag)); }
3.26
flink_TriFunctionWithException_unchecked_rdh
/** * Convert at {@link TriFunctionWithException} into a {@link TriFunction}. * * @param triFunctionWithException * function with exception to convert into a function * @param <A> * first input type * @param <B> * second input type * @param <C> * third input type * @param <D> * output type * @return {@link BiFunction} which throws all checked exception as an unchecked exception. */ static <A, B, C, D> TriFunction<A, B, C, D> unchecked(TriFunctionWithException<A, B, C, D, ?> triFunctionWithException) { return (A a,B b,C c) -> {try { return triFunctionWithException.apply(a, b, c); } catch (Throwable t) { ExceptionUtils.rethrow(t); // we need this to appease the compiler :-( return null; } }; }
3.26
flink_DataExchangeMode_getForForwardExchange_rdh
// ------------------------------------------------------------------------ public static DataExchangeMode getForForwardExchange(ExecutionMode mode) { return FORWARD[mode.ordinal()]; }
3.26
flink_DataExchangeMode_select_rdh
/** * Computes the mode of data exchange to be used for a given execution mode and ship strategy. * The type of the data exchange depends also on whether this connection has been identified to * require pipeline breaking for deadlock avoidance. * * <ul> * <li>If the connection is set to be pipeline breaking, this returns the pipeline breaking * variant of the execution mode {@link org.apache.flink.runtime.io.network.DataExchangeMode#getPipelineBreakingExchange(org.apache.flink.api.common.ExecutionMode)}. * <li>If the data exchange is a simple FORWARD (one-to-one communication), this returns * {@link org.apache.flink.runtime.io.network.DataExchangeMode#getForForwardExchange(org.apache.flink.api.common.ExecutionMode)}. * <li>If otherwise, this returns {@link org.apache.flink.runtime.io.network.DataExchangeMode#getForShuffleOrBroadcast(org.apache.flink.api.common.ExecutionMode)}. * </ul> * * @param shipStrategy * The ship strategy (FORWARD, PARTITION, BROADCAST, ...) of the runtime * data exchange. * @return The data exchange mode for the connection, given the concrete ship strategy. */ public static DataExchangeMode select(ExecutionMode executionMode, ShipStrategyType shipStrategy, boolean breakPipeline) { if ((shipStrategy == null) || (shipStrategy == ShipStrategyType.NONE)) { throw new IllegalArgumentException("shipStrategy may not be null or NONE"); } if (executionMode == null) { throw new IllegalArgumentException("executionMode may not mbe null"); } if (breakPipeline) { return getPipelineBreakingExchange(executionMode); } else if (shipStrategy == ShipStrategyType.FORWARD) { return getForForwardExchange(executionMode); } else {return getForShuffleOrBroadcast(executionMode); } }
3.26
flink_DataSetUtils_partitionByRange_rdh
/** * Range-partitions a DataSet using the specified key selector function. */ public static <T, K extends Comparable<K>> PartitionOperator<T> partitionByRange(DataSet<T> input, DataDistribution distribution, KeySelector<T, K> keyExtractor) { final TypeInformation<K> keyType = TypeExtractor.getKeySelectorTypes(keyExtractor, input.getType()); return new PartitionOperator<>(input, PartitionMethod.RANGE, new Keys.SelectorFunctionKeys<>(input.clean(keyExtractor), input.getType(), keyType), distribution, Utils.getCallLocationName()); }
3.26
flink_DataSetUtils_sample_rdh
/** * Generate a sample of DataSet by the probability fraction of each element. * * @param withReplacement * Whether element can be selected more than once. * @param fraction * Probability that each element is chosen, should be [0,1] without replacement, * and [0, ∞) with replacement. While fraction is larger than 1, the elements are expected * to be selected multi times into sample on average. * @param seed * random number generator seed. * @return The sampled DataSet */ public static <T> MapPartitionOperator<T, T> sample(DataSet<T> input, final boolean withReplacement, final double fraction, final long seed) { return input.mapPartition(new SampleWithFraction<T>(withReplacement, fraction, seed)); }
3.26
flink_DataSetUtils_zipWithIndex_rdh
/** * Method that assigns a unique {@link Long} value to all elements in the input data set. The * generated values are consecutive. * * @param input * the input data set * @return a data set of tuple 2 consisting of consecutive ids and initial values. */ public static <T> DataSet<Tuple2<Long, T>> zipWithIndex(DataSet<T> input) { DataSet<Tuple2<Integer, Long>> elementCount = countElementsPerPartition(input); return input.mapPartition(new RichMapPartitionFunction<T, Tuple2<Long, T>>() { long start = 0; @Override public void open(OpenContext openContext) throws Exception { super.open(openContext); List<Tuple2<Integer, Long>> offsets = getRuntimeContext().getBroadcastVariableWithInitializer("counts", new BroadcastVariableInitializer<Tuple2<Integer, Long>, List<Tuple2<Integer, Long>>>() { @Override public List<Tuple2<Integer, Long>> initializeBroadcastVariable(Iterable<Tuple2<Integer, Long>> data) { // sort the list by task id to // calculate the correct offset List<Tuple2<Integer, Long>> sortedData = new ArrayList<>(); for (Tuple2<Integer, Long> datum : data) { sortedData.add(datum); } Collections.sort(sortedData, new Comparator<Tuple2<Integer, Long>>() { @Override public int compare(Tuple2<Integer, Long> o1, Tuple2<Integer, Long> o2) { return o1.f0.compareTo(o2.f0); }}); return sortedData; } }); // compute the offset for each partition for (int i = 0; i < getRuntimeContext().getIndexOfThisSubtask(); i++) { start += offsets.get(i).f1; } } @Override public void mapPartition(Iterable<T> values, Collector<Tuple2<Long, T>> out) throws Exception { for (T value : values) { out.collect(new Tuple2<>(start++, value)); } } }).withBroadcastSet(elementCount, "counts"); }
3.26
flink_DataSetUtils_zipWithUniqueId_rdh
/** * Method that assigns a unique {@link Long} value to all elements in the input data set as * described below. * * <ul> * <li>a map function is applied to the input data set * <li>each map task holds a counter c which is increased for each record * <li>c is shifted by n bits where n = log2(number of parallel tasks) * <li>to create a unique ID among all tasks, the task id is added to the counter * <li>for each record, the resulting counter is collected * </ul> * * @param input * the input data set * @return a data set of tuple 2 consisting of ids and initial values. */ public static <T> DataSet<Tuple2<Long, T>> zipWithUniqueId(DataSet<T> input) { return input.mapPartition(new RichMapPartitionFunction<T, Tuple2<Long, T>>() { long maxBitSize = getBitSize(Long.MAX_VALUE); long shifter = 0; long start = 0; long taskId = 0; long label = 0; @Override public void m0(OpenContext openContext) throws Exception { super.open(openContext); shifter = getBitSize(getRuntimeContext().getNumberOfParallelSubtasks() - 1); taskId = getRuntimeContext().getIndexOfThisSubtask(); } @Override public void mapPartition(Iterable<T> values, Collector<Tuple2<Long, T>> out) throws Exception { for (T value : values) { label = (start << shifter) + taskId; if ((getBitSize(start) + shifter) < maxBitSize) { out.collect(new Tuple2<>(label, value)); start++; } else {throw new Exception("Exceeded Long value range while generating labels"); } } } }); }
3.26
flink_DataSetUtils_countElementsPerPartition_rdh
/** * Method that goes over all the elements in each partition in order to retrieve the total * number of elements. * * @param input * the DataSet received as input * @return a data set containing tuples of subtask index, number of elements mappings. */ public static <T> DataSet<Tuple2<Integer, Long>> countElementsPerPartition(DataSet<T> input) { return input.mapPartition(new RichMapPartitionFunction<T, Tuple2<Integer, Long>>() { @Override public void mapPartition(Iterable<T> values, Collector<Tuple2<Integer, Long>> out) throws Exception { long counter = 0; for (T value : values) { counter++; } out.collect(new Tuple2<>(getRuntimeContext().getIndexOfThisSubtask(), counter)); } }); }
3.26
flink_DataSetUtils_getBitSize_rdh
// ************************************************************************* // UTIL METHODS // ************************************************************************* public static int getBitSize(long value) { if (value > Integer.MAX_VALUE) { return 64 - Integer.numberOfLeadingZeros(((int) (value >> 32))); } else { return 32 - Integer.numberOfLeadingZeros(((int) (value))); } }
3.26
flink_DataSetUtils_summarize_rdh
// -------------------------------------------------------------------------------------------- // Summarize // -------------------------------------------------------------------------------------------- /** * Summarize a DataSet of Tuples by collecting single pass statistics for all columns. * * <p>Example usage: * * <pre>{@code Dataset<Tuple3<Double, String, Boolean>> input = // [...] * Tuple3<NumericColumnSummary,StringColumnSummary, BooleanColumnSummary> summary = DataSetUtils.summarize(input) * * summary.f0.getStandardDeviation() * summary.f1.getMaxLength()}</pre> * * @return the summary as a Tuple the same width as input rows */ public static <R extends Tuple, T extends Tuple> R summarize(DataSet<T> input) throws Exception { if (!input.getType().isTupleType()) { throw new IllegalArgumentException("summarize() is only implemented for DataSet's of Tuples"); } final TupleTypeInfoBase<?> inType = ((TupleTypeInfoBase<?>) (input.getType())); DataSet<TupleSummaryAggregator<R>> result = input.mapPartition(new MapPartitionFunction<T, TupleSummaryAggregator<R>>() { @Override public void mapPartition(Iterable<T> values, Collector<TupleSummaryAggregator<R>> out) throws Exception { TupleSummaryAggregator<R> aggregator = SummaryAggregatorFactory.create(inType); for (Tuple value : values) { aggregator.aggregate(value); } out.collect(aggregator); } }).reduce(new ReduceFunction<TupleSummaryAggregator<R>>() { @Override public TupleSummaryAggregator<R> reduce(TupleSummaryAggregator<R> agg1, TupleSummaryAggregator<R> agg2) throws Exception { agg1.combine(agg2); return agg1; } }); return result.collect().get(0).result(); }
3.26
flink_DataSetUtils_sampleWithSize_rdh
/** * Generate a sample of DataSet which contains fixed size elements. * * <p><strong>NOTE:</strong> Sample with fixed size is not as efficient as sample with fraction, * use sample with fraction unless you need exact precision. * * @param withReplacement * Whether element can be selected more than once. * @param numSamples * The expected sample size. * @param seed * Random number generator seed. * @return The sampled DataSet */ public static <T> DataSet<T> sampleWithSize(DataSet<T> input, final boolean withReplacement, final int numSamples, final long seed) { SampleInPartition<T> sampleInPartition = new SampleInPartition<>(withReplacement, numSamples, seed); MapPartitionOperator mapPartitionOperator = input.mapPartition(sampleInPartition); // There is no previous group, so the parallelism of GroupReduceOperator is always 1. String callLocation = Utils.getCallLocationName(); SampleInCoordinator<T> sampleInCoordinator = new SampleInCoordinator<>(withReplacement, numSamples, seed); return new GroupReduceOperator<>(mapPartitionOperator, input.getType(), sampleInCoordinator, callLocation); }
3.26
flink_FlinkZooKeeperQuorumPeer_setRequiredProperties_rdh
/** * Sets required properties to reasonable defaults and logs it. */ private static void setRequiredProperties(Properties zkProps) { // Set default client port if (zkProps.getProperty("clientPort") == null) { zkProps.setProperty("clientPort", String.valueOf(DEFAULT_ZOOKEEPER_CLIENT_PORT)); LOG.warn("No 'clientPort' configured. Set to '{}'.", DEFAULT_ZOOKEEPER_CLIENT_PORT); }// Set default init limit if (zkProps.getProperty("initLimit") == null) { zkProps.setProperty("initLimit", String.valueOf(DEFAULT_ZOOKEEPER_INIT_LIMIT)); LOG.warn("No 'initLimit' configured. Set to '{}'.", DEFAULT_ZOOKEEPER_INIT_LIMIT); } // Set default sync limit if (zkProps.getProperty("syncLimit") == null) { zkProps.setProperty("syncLimit", String.valueOf(DEFAULT_ZOOKEEPER_SYNC_LIMIT)); LOG.warn("No 'syncLimit' configured. Set to '{}'.", DEFAULT_ZOOKEEPER_SYNC_LIMIT); } // Set default data dir if (zkProps.getProperty("dataDir") == null) { String dataDir = String.format("%s/%s/zookeeper", System.getProperty("java.io.tmpdir"), UUID.randomUUID().toString()); zkProps.setProperty("dataDir", dataDir); LOG.warn("No 'dataDir' configured. Set to '{}'.", dataDir); } int peerPort = DEFAULT_ZOOKEEPER_PEER_PORT; int leaderPort = DEFAULT_ZOOKEEPER_LEADER_PORT; // Set peer and leader ports if none given, because ZooKeeper complains if multiple // servers are configured, but no ports are given. for (Map.Entry<Object, Object> entry : zkProps.entrySet()) { String key = ((String) (entry.getKey())); if (entry.getKey().toString().startsWith("server.")) { String value = ((String) (entry.getValue())); String[] parts = value.split(":"); if (parts.length == 1) { String address = String.format("%s:%d:%d", parts[0], peerPort, leaderPort); zkProps.setProperty(key, address); LOG.info("Set peer and leader port of '{}': '{}' => '{}'.", key, value, address); } else if (parts.length == 2) { String address = String.format("%s:%d:%d", parts[0], Integer.valueOf(parts[1]), leaderPort); zkProps.setProperty(key, address); LOG.info("Set peer port of '{}': '{}' => '{}'.", key, value, address); } } } } /** * Write 'myid' file to the 'dataDir' in the given ZooKeeper configuration. * * <blockquote> * * Every machine that is part of the ZooKeeper ensemble should know about every other machine in * the ensemble. You accomplish this with the series of lines of the form * server.id=host:port:port. The parameters host and port are straightforward. You attribute the * server id to each machine by creating a file named myid, one for each server, which resides * in that server's data directory, as specified by the configuration file parameter dataDir. * * </blockquote> * * @param zkProps * ZooKeeper configuration. * @param id * The ID of this {@link QuorumPeer}
3.26
flink_FlinkZooKeeperQuorumPeer_main_rdh
// ------------------------------------------------------------------------ public static void main(String[] args) { try { // startup checks and logging EnvironmentInformation.logEnvironmentInfo(LOG, "ZooKeeper Quorum Peer", args); final ParameterTool params = ParameterTool.fromArgs(args); final String zkConfigFile = params.getRequired("zkConfigFile"); final int peerId = params.getInt("peerId"); // Run quorum peer runFlinkZkQuorumPeer(zkConfigFile, peerId); } catch (Throwable t) { LOG.error("Error running ZooKeeper quorum peer: " + t.getMessage(), t); System.exit(-1); } }
3.26
flink_FlinkZooKeeperQuorumPeer_runFlinkZkQuorumPeer_rdh
// ------------------------------------------------------------------------ /** * Runs a ZooKeeper {@link QuorumPeer} if further peers are configured or a single {@link ZooKeeperServer} if no further peers are configured. * * @param zkConfigFile * ZooKeeper config file 'zoo.cfg' * @param peerId * ID for the 'myid' file */ public static void runFlinkZkQuorumPeer(String zkConfigFile, int peerId) throws Exception { Properties zkProps = new Properties(); try (InputStream inStream = new FileInputStream(new File(zkConfigFile))) { zkProps.load(inStream); } LOG.info("Configuration: " + zkProps); // Set defaults for required properties setRequiredProperties(zkProps); // Write peer id to myid file writeMyIdToDataDir(zkProps, peerId);// The myid file needs to be written before creating the instance. Otherwise, this // will fail. QuorumPeerConfig v5 = new QuorumPeerConfig(); v5.parseProperties(zkProps); if (v5.isDistributed()) { // Run quorum peer LOG.info("Running distributed ZooKeeper quorum peer (total peers: {}).", v5.getServers().size()); QuorumPeerMain qp = new QuorumPeerMain(); qp.runFromConfig(v5); } else { // Run standalone LOG.info("Running standalone ZooKeeper quorum peer."); ZooKeeperServerMain zk = new ZooKeeperServerMain(); ServerConfig sc = new ServerConfig(); sc.readFrom(v5); zk.runFromConfig(sc); } }
3.26
flink_AbstractStreamingWriter_commitUpToCheckpoint_rdh
/** * Commit up to this checkpoint id. */protected void commitUpToCheckpoint(long checkpointId) throws Exception {helper.commitUpToCheckpoint(checkpointId); }
3.26
flink_ContaineredTaskManagerParameters_create_rdh
// ------------------------------------------------------------------------ // Factory // ------------------------------------------------------------------------ /** * Computes the parameters to be used to start a TaskManager Java process. * * @param config * The Flink configuration. * @param taskExecutorProcessSpec * The resource specifics of the task executor. * @return The parameters to start the TaskManager processes with. */ public static ContaineredTaskManagerParameters create(Configuration config, TaskExecutorProcessSpec taskExecutorProcessSpec) { // obtain the additional environment variables from the configuration final HashMap<String, String> envVars = new HashMap<>(); final String prefix = ResourceManagerOptions.CONTAINERIZED_TASK_MANAGER_ENV_PREFIX; for (String key : config.keySet()) {if (key.startsWith(prefix) && (key.length() > prefix.length())) { // remove prefix String envVarKey = key.substring(prefix.length()); envVars.put(envVarKey, config.getString(key, null)); } } // done return new ContaineredTaskManagerParameters(taskExecutorProcessSpec, envVars); }
3.26
flink_ContaineredTaskManagerParameters_toString_rdh
// ------------------------------------------------------------------------ @Override public String toString() { return (((("TaskManagerParameters {" + "taskExecutorProcessSpec=") + taskExecutorProcessSpec) + ", taskManagerEnv=") + taskManagerEnv) + '}'; }
3.26
flink_ContaineredTaskManagerParameters_getTaskExecutorProcessSpec_rdh
// ------------------------------------------------------------------------ public TaskExecutorProcessSpec getTaskExecutorProcessSpec() { return taskExecutorProcessSpec; }
3.26
flink_SlidingProcessingTimeWindows_m1_rdh
/** * Creates a new {@code SlidingProcessingTimeWindows} {@link WindowAssigner} that assigns * elements to time windows based on the element timestamp and offset. * * <p>For example, if you want window a stream by hour,but window begins at the 15th minutes of * each hour, you can use {@code of(Time.hours(1),Time.minutes(15))},then you will get time * windows start at 0:15:00,1:15:00,2:15:00,etc. * * <p>Rather than that,if you are living in somewhere which is not using UTC±00:00 time, such as * China which is using UTC+08:00,and you want a time window with size of one day, and window * begins at every 00:00:00 of local time,you may use {@code of(Time.days(1),Time.hours(-8))}. * The parameter of offset is {@code Time.hours(-8))} since UTC+08:00 is 8 hours earlier than * UTC time. * * @param size * The size of the generated windows. * @param slide * The slide interval of the generated windows. * @param offset * The offset which window start would be shifted by. * @return The time policy. */ public static SlidingProcessingTimeWindows m1(Time size, Time slide, Time offset) { return new SlidingProcessingTimeWindows(size.toMilliseconds(), slide.toMilliseconds(), offset.toMilliseconds()); }
3.26
flink_SlidingProcessingTimeWindows_m0_rdh
/** * Creates a new {@code SlidingProcessingTimeWindows} {@link WindowAssigner} that assigns * elements to sliding time windows based on the element timestamp. * * @param size * The size of the generated windows. * @param slide * The slide interval of the generated windows. * @return The time policy. */ public static SlidingProcessingTimeWindows m0(Time size, Time slide) { return new SlidingProcessingTimeWindows(size.toMilliseconds(), slide.toMilliseconds(), 0); }
3.26
flink_FileSourceRecordEmitter_emitRecord_rdh
/** * The {@link RecordEmitter} implementation for {@link FileSourceReader}. * * <p>This updates the {@link FileSourceSplit} for every emitted record. Because the {@link FileSourceSplit} points to the position from where to start reading (after recovery), the current * offset and records-to-skip need to always point to the record after the emitted record. */ @Internalfinal class FileSourceRecordEmitter<T, SplitT extends FileSourceSplit> implements RecordEmitter<RecordAndPosition<T>, T, FileSourceSplitState<SplitT>> { @Override public void emitRecord(final RecordAndPosition<T> element, final SourceOutput<T> output, final FileSourceSplitState<SplitT> splitState) { output.collect(element.getRecord()); splitState.setPosition(element.getOffset(), element.getRecordSkipCount()); }
3.26
flink_TimestampsAndWatermarksOperator_m0_rdh
/** * Override the base implementation to completely ignore statuses propagated from upstream. */ @Override public void m0(WatermarkStatus watermarkStatus) throws Exception { }
3.26
flink_TimestampsAndWatermarksOperator_processWatermark_rdh
/** * Override the base implementation to completely ignore watermarks propagated from upstream, * except for the "end of time" watermark. */ @Override public void processWatermark(Watermark mark) throws Exception { // if we receive a Long.MAX_VALUE watermark we forward it since it is used // to signal the end of input and to not block watermark progress downstream if (mark.getTimestamp() == Long.MAX_VALUE) { wmOutput.emitWatermark(Watermark.MAX_WATERMARK); } }
3.26
flink_CompensatedSum_delta_rdh
/** * The correction term. */ public double delta() { return delta; }
3.26
flink_CompensatedSum_value_rdh
/** * The value of the sum. */ public double value() { return value; }
3.26
flink_CompensatedSum_add_rdh
/** * Increments the Kahan sum by adding two sums, and updating the correction term for reducing * numeric errors. */ public CompensatedSum add(CompensatedSum other) { double correctedSum = other.value() + (delta + other.delta()); double updatedValue = value + correctedSum; double updatedDelta = correctedSum - (updatedValue - value); return new CompensatedSum(updatedValue, updatedDelta); }
3.26
flink_SlotProfile_getPreferredLocations_rdh
/** * Returns the preferred locations for the slot. */ public Collection<TaskManagerLocation> getPreferredLocations() { return preferredLocations; }
3.26
flink_SlotProfile_getReservedAllocations_rdh
/** * Returns a set of all reserved allocation ids from the execution graph. It will used by {@link PreviousAllocationSlotSelectionStrategy} to support local recovery. In this case, a vertex * cannot take an reserved allocation unless it exactly prefers that allocation. * * <p>This is optional and can be empty if unused. */ public Set<AllocationID> getReservedAllocations() { return reservedAllocations; }
3.26
flink_SlotProfile_priorAllocation_rdh
/** * Returns a slot profile for the given resource profile, prior allocations and all prior * allocation ids from the whole execution graph. * * @param taskResourceProfile * specifying the required resources for the task slot * @param physicalSlotResourceProfile * specifying the required resources for the physical slot to * host this task slot * @param preferredLocations * specifying the preferred locations * @param priorAllocations * specifying the prior allocations * @param reservedAllocations * specifying all reserved allocations * @return Slot profile with all the given information */ public static SlotProfile priorAllocation(final ResourceProfile taskResourceProfile, final ResourceProfile physicalSlotResourceProfile, final Collection<TaskManagerLocation> preferredLocations, final Collection<AllocationID> priorAllocations, final Set<AllocationID> reservedAllocations) { return new SlotProfile(taskResourceProfile, physicalSlotResourceProfile, preferredLocations, priorAllocations, reservedAllocations); }
3.26
flink_SlotProfile_getPhysicalSlotResourceProfile_rdh
/** * Returns the desired resource profile for the physical slot to host this task slot. */ public ResourceProfile getPhysicalSlotResourceProfile() {return physicalSlotResourceProfile; }
3.26
flink_SlotProfile_getTaskResourceProfile_rdh
/** * Returns the desired resource profile for the task slot. */ public ResourceProfile getTaskResourceProfile() { return taskResourceProfile; }
3.26
flink_SlotProfile_getPreferredAllocations_rdh
/** * Returns the desired allocation ids for the slot. */ public Collection<AllocationID> getPreferredAllocations() { return preferredAllocations; }
3.26
flink_LongMinimum_add_rdh
// ------------------------------------------------------------------------ // Primitive Specializations // ------------------------------------------------------------------------ public void add(long value) { this.min = Math.min(this.min, value); }
3.26
flink_LongMinimum_toString_rdh
// ------------------------------------------------------------------------ // Utilities // ------------------------------------------------------------------------ @Override public String toString() { return "LongMinimum " + this.min; }
3.26
flink_StreamingSemiAntiJoinOperator_processElement1_rdh
/** * Process an input element and output incremental joined records, retraction messages will be * sent in some scenarios. * * <p>Following is the pseudo code to describe the core logic of this method. * * <pre> * if there is no matched rows on the other side * if anti join, send input record * if there are matched rows on the other side * if semi join, send input record * if the input record is accumulate, state.add(record, matched size) * if the input record is retract, state.retract(record) * </pre> */ @Override public void processElement1(StreamRecord<RowData> element) throws Exception { RowData input = element.getValue(); AssociatedRecords associatedRecords = AssociatedRecords.of(input, true, rightRecordStateView, joinCondition); if (associatedRecords.isEmpty()) { if (isAntiJoin) { collector.collect(input); } } else // there are matched rows on the other side if (!isAntiJoin) { collector.collect(input); } if (RowDataUtil.isAccumulateMsg(input)) { // erase RowKind for state updating input.setRowKind(RowKind.INSERT); leftRecordStateView.addRecord(input, associatedRecords.size()); } else { // input is retract // erase RowKind for state updating input.setRowKind(RowKind.INSERT); leftRecordStateView.retractRecord(input); } }
3.26
flink_StreamingSemiAntiJoinOperator_processElement2_rdh
/** * Process an input element and output incremental joined records, retraction messages will be * sent in some scenarios. * * <p>Following is the pseudo code to describe the core logic of this method. * * <p>Note: "+I" represents "INSERT", "-D" represents "DELETE", "+U" represents "UPDATE_AFTER", * "-U" represents "UPDATE_BEFORE". * * <pre> * if input record is accumulate * | state.add(record) * | if there is no matched rows on the other side, skip * | if there are matched rows on the other side * | | if the matched num in the matched rows == 0 * | | if anti join, send -D[other]s * | | if semi join, send +I/+U[other]s (using input RowKind) * | | if the matched num in the matched rows > 0, skip * | | otherState.update(other, old+1) * | endif * endif * if input record is retract * | state.retract(record) * | if there is no matched rows on the other side, skip * | if there are matched rows on the other side * | | if the matched num in the matched rows == 0, this should never happen! * | | if the matched num in the matched rows == 1 * | | if semi join, send -D/-U[other] (using input RowKind) * | | if anti join, send +I[other] * | | if the matched num in the matched rows > 1, skip * | | otherState.update(other, old-1) * | endif * endif * </pre> */ @Overridepublic void processElement2(StreamRecord<RowData> element) throws Exception { RowData input = element.getValue(); boolean isAccumulateMsg = RowDataUtil.isAccumulateMsg(input); RowKind inputRowKind = input.getRowKind(); input.setRowKind(RowKind.INSERT);// erase RowKind for later state updating AssociatedRecords associatedRecords = AssociatedRecords.of(input, false, leftRecordStateView, joinCondition); if (isAccumulateMsg) { // record is accumulate rightRecordStateView.addRecord(input); if (!associatedRecords.isEmpty()) { // there are matched rows on the other side for (OuterRecord outerRecord : associatedRecords.getOuterRecords()) { RowData other = outerRecord.record; if (outerRecord.numOfAssociations == 0) { if (isAntiJoin) { // send -D[other] other.setRowKind(RowKind.DELETE); } else { // send +I/+U[other] (using input RowKind) other.setRowKind(inputRowKind);} collector.collect(other); // set header back to INSERT, because we will update the other row to state other.setRowKind(RowKind.INSERT); }// ignore when number > 0 leftRecordStateView.updateNumOfAssociations(other, outerRecord.numOfAssociations + 1); } }// ignore when associated number == 0 } else { // retract input rightRecordStateView.retractRecord(input); if (!associatedRecords.isEmpty()) { // there are matched rows on the other side for (OuterRecord outerRecord : associatedRecords.getOuterRecords()) { RowData other = outerRecord.record; if (outerRecord.numOfAssociations == 1) { if (!isAntiJoin) { // send -D/-U[other] (using input RowKind) other.setRowKind(inputRowKind); } else { // send +I[other] other.setRowKind(RowKind.INSERT); } collector.collect(other); // set RowKind back, because we will update the other row to state other.setRowKind(RowKind.INSERT); }// ignore when number > 0 leftRecordStateView.updateNumOfAssociations(other, outerRecord.numOfAssociations - 1); } }// ignore when associated number == 0 } }
3.26
flink_HiveParserTypeCheckProcFactory_getColumnExprProcessor_rdh
/** * Factory method to get ColumnExprProcessor. */ public HiveParserTypeCheckProcFactory.ColumnExprProcessor getColumnExprProcessor() { return new HiveParserTypeCheckProcFactory.ColumnExprProcessor(); }
3.26
flink_HiveParserTypeCheckProcFactory_getFuncExprNodeDescWithUdfData_rdh
/** * This function create an ExprNodeDesc for a UDF function given the children (arguments). * It will insert implicit type conversion functions if necessary. Currently this is only * used to handle CAST with hive UDFs. So no need to check flink functions. */ public static ExprNodeDesc getFuncExprNodeDescWithUdfData(String udfName, TypeInfo typeInfo, ExprNodeDesc... children) throws UDFArgumentException { FunctionInfo fi; try { fi = HiveParserUtils.getFunctionInfo(udfName); } catch (SemanticException e) { throw new UDFArgumentException(e); } if (fi == null) { throw new UDFArgumentException(udfName + " not found."); } GenericUDF genericUDF = fi.getGenericUDF(); if (genericUDF == null) { throw new UDFArgumentException(udfName + " is an aggregation function or a table function."); } // Add udfData to UDF if necessary if (typeInfo != null) { if (genericUDF instanceof SettableUDF) { ((SettableUDF) (genericUDF)).setTypeInfo(typeInfo); } } List<ExprNodeDesc> childrenList = new ArrayList<>(children.length); childrenList.addAll(Arrays.asList(children)); return ExprNodeGenericFuncDesc.newInstance(genericUDF, udfName, childrenList); }
3.26
flink_HiveParserTypeCheckProcFactory_convert_rdh
// temporary type-safe casting private static Map<HiveParserASTNode, ExprNodeDesc> convert(Map<Node, Object> outputs) { Map<HiveParserASTNode, ExprNodeDesc> converted = new LinkedHashMap<>(); for (Map.Entry<Node, Object> v13 : outputs.entrySet()) { if ((v13.getKey() instanceof HiveParserASTNode) && ((v13.getValue() == null) || (v13.getValue() instanceof ExprNodeDesc))) {converted.put(((HiveParserASTNode) (v13.getKey())), ((ExprNodeDesc) (v13.getValue()))); } else { LOG.warn("Invalid type entry " + v13); } } return converted; }
3.26
flink_HiveParserTypeCheckProcFactory_getDateTimeExprProcessor_rdh
/** * Factory method to get DateExprProcessor. */ public HiveParserTypeCheckProcFactory.DateTimeExprProcessor getDateTimeExprProcessor() {return new HiveParserTypeCheckProcFactory.DateTimeExprProcessor(); }
3.26
flink_HiveParserTypeCheckProcFactory_getNumExprProcessor_rdh
/** * Factory method to get NumExprProcessor. */ public HiveParserTypeCheckProcFactory.NumExprProcessor getNumExprProcessor() { return new HiveParserTypeCheckProcFactory.NumExprProcessor(); }
3.26
flink_HiveParserTypeCheckProcFactory_convertSqlOperator_rdh
// try to create an ExprNodeDesc with a SqlOperator private ExprNodeDesc convertSqlOperator(String funcText, List<ExprNodeDesc> children, HiveParserTypeCheckCtx ctx) throws SemanticException { SqlOperator sqlOperator = HiveParserUtils.getSqlOperator(funcText, ctx.getSqlOperatorTable(), SqlFunctionCategory.USER_DEFINED_FUNCTION); if (sqlOperator == null) {return null; } List<RelDataType> relDataTypes = children.stream().map(ExprNodeDesc::getTypeInfo).map(t -> { try { return HiveParserTypeConverter.convert(t, ctx.getTypeFactory()); } catch (SemanticException e) {throw new <e>FlinkHiveException();} }).collect(Collectors.toList()); List<RexNode> operands = new ArrayList<>(children.size()); for (ExprNodeDesc child : children) { if (child instanceof ExprNodeConstantDesc) { operands.add(HiveParserRexNodeConverter.convertConstant(((ExprNodeConstantDesc) (child)), ctx.getCluster())); } else { operands.add(null); } } TypeInfo returnType = HiveParserTypeConverter.convert(HiveParserUtils.inferReturnTypeForOperandsTypes(sqlOperator, relDataTypes, operands, ctx.getTypeFactory())); return new SqlOperatorExprNodeDesc(funcText, sqlOperator, children, returnType); }
3.26
flink_HiveParserTypeCheckProcFactory_processGByExpr_rdh
/** * Function to do groupby subexpression elimination. This is called by all the processors * initially. As an example, consider the query select a+b, count(1) from T group by a+b; Then * a+b is already precomputed in the group by operators key, so we substitute a+b in the select * list with the internal column name of the a+b expression that appears in the in input row * resolver. * * @param nd * The node that is being inspected. * @param procCtx * The processor context. * @return exprNodeColumnDesc. */public static ExprNodeDesc processGByExpr(Node nd, Object procCtx) throws SemanticException { // We recursively create the exprNodeDesc. Base cases: when we encounter // a column ref, we convert that into an exprNodeColumnDesc; when we // encounter // a constant, we convert that into an exprNodeConstantDesc. For others we // just // build the exprNodeFuncDesc with recursively built children. HiveParserASTNode expr = ((HiveParserASTNode) (nd)); HiveParserTypeCheckCtx ctx = ((HiveParserTypeCheckCtx) (procCtx)); // bypass only if outerRR is not null. Otherwise we need to look for expressions in outerRR // for // subqueries e.g. select min(b.value) from table b group by b.key // having key in (select .. where a = min(b.value) if ((!ctx.isUseCaching()) && (ctx.getOuterRR() == null)) { return null; } HiveParserRowResolver input = ctx.getInputRR(); ExprNodeDesc desc = null; if ((input == null) || (!ctx.getAllowGBExprElimination())) { return null; } // If the current subExpression is pre-calculated, as in Group-By etc. ColumnInfo colInfo = input.getExpression(expr); // try outer row resolver HiveParserRowResolver v5 = ctx.getOuterRR(); if ((colInfo == null) && (v5 != null)) { colInfo = v5.getExpression(expr); } if (colInfo != null) { desc = new ExprNodeColumnDesc(colInfo); HiveParserASTNode source = input.getExpressionSource(expr); if (source != null) { ctx.getUnparseTranslator().addCopyTranslation(expr, source); } return desc; } return desc; }
3.26
flink_HiveParserTypeCheckProcFactory_getNullExprProcessor_rdh
/** * Factory method to get NullExprProcessor. */ public HiveParserTypeCheckProcFactory.NullExprProcessor getNullExprProcessor() { return new HiveParserTypeCheckProcFactory.NullExprProcessor(); }
3.26
flink_HiveParserTypeCheckProcFactory_getStrExprProcessor_rdh
/** * Factory method to get StrExprProcessor. */ public HiveParserTypeCheckProcFactory.StrExprProcessor getStrExprProcessor() { return new HiveParserTypeCheckProcFactory.StrExprProcessor(); }
3.26
flink_HiveParserTypeCheckProcFactory_getBoolExprProcessor_rdh
/** * Factory method to get BoolExprProcessor. */ public HiveParserTypeCheckProcFactory.BoolExprProcessor getBoolExprProcessor() { return new HiveParserTypeCheckProcFactory.BoolExprProcessor(); }
3.26
flink_HiveParserTypeCheckProcFactory_getIntervalExprProcessor_rdh
/** * Factory method to get IntervalExprProcessor. */ public HiveParserTypeCheckProcFactory.IntervalExprProcessor getIntervalExprProcessor() { return new HiveParserTypeCheckProcFactory.IntervalExprProcessor(); }
3.26
flink_HiveParserTypeCheckProcFactory_getDefaultExprProcessor_rdh
/** * Factory method to get DefaultExprProcessor. */ public HiveParserTypeCheckProcFactory.DefaultExprProcessor getDefaultExprProcessor() { return new HiveParserTypeCheckProcFactory.DefaultExprProcessor(); }
3.26
flink_HiveParserTypeCheckProcFactory_isDescendant_rdh
// Returns true if des is a descendant of ans (ancestor) private boolean isDescendant(Node ans, Node des) { if (ans.getChildren() == null) {return false; } for (Node v120 : ans.getChildren()) { if (v120 == des) { return true; } if (isDescendant(v120, des)) { return true;} } return false; }
3.26
flink_FlinkBushyJoinReorderRule_findBestOrder_rdh
/** * Find best join reorder using bushy join reorder strategy. We will first try to reorder all * the inner join type input factors in the multiJoin. Then, we will add all outer join factors * to the top of reordered join tree generated by the first step. If there are factors, which * join condition is true, we will add these factors to the top in the final step. */ private static RelNode findBestOrder(RelBuilder relBuilder, LoptMultiJoin multiJoin) { // Reorder all the inner join type input factors in the multiJoin. List<Map<Set<Integer>, JoinPlan>> foundPlansForInnerJoin = reorderInnerJoin(relBuilder, multiJoin); Map<Set<Integer>, JoinPlan> lastLevelOfInnerJoin = foundPlansForInnerJoin.get(foundPlansForInnerJoin.size() - 1); JoinPlan bestPlanForInnerJoin = getBestPlan(lastLevelOfInnerJoin); JoinPlan containOuterJoinPlan; // Add all outer join factors in the multiJoin (including left/right/full) on the // top of tree if outer join condition exists in multiJoin. if (multiJoin.getMultiJoinRel().isFullOuterJoin() || outerJoinConditionExists(multiJoin)) { containOuterJoinPlan = addOuterJoinToTop(bestPlanForInnerJoin, multiJoin, relBuilder); } else { containOuterJoinPlan = bestPlanForInnerJoin; } JoinPlan finalPlan; // Add all cross join factors whose join condition is true to the top. if (containOuterJoinPlan.factorIds.size() != multiJoin.getNumJoinFactors()) { finalPlan = addCrossJoinToTop(containOuterJoinPlan, multiJoin, relBuilder); } else { finalPlan = containOuterJoinPlan; } final List<String> fieldNames = multiJoin.getMultiJoinRel().getRowType().getFieldNames(); return createTopProject(relBuilder, multiJoin, finalPlan, fieldNames); }
3.26
flink_FlinkBushyJoinReorderRule_foundNextLevel_rdh
/** * Found possible join plans for the next level based on the found plans in the prev levels. */ private static Map<Set<Integer>, JoinPlan> foundNextLevel(RelBuilder relBuilder, List<Map<Set<Integer>, JoinPlan>> foundPlans, LoptMultiJoin multiJoin) { Map<Set<Integer>, JoinPlan> currentLevelJoinPlanMap = new LinkedHashMap<>(); int foundPlansLevel = foundPlans.size() - 1;int joinLeftSideLevel = 0; int joinRightSideLevel = foundPlansLevel; while (joinLeftSideLevel <= joinRightSideLevel) { List<JoinPlan> joinLeftSidePlans = new ArrayList<>(foundPlans.get(joinLeftSideLevel).values()); int planSize = joinLeftSidePlans.size(); for (int i = 0; i < planSize; i++) { JoinPlan joinLeftSidePlan = joinLeftSidePlans.get(i); List<JoinPlan> joinRightSidePlans; if (joinLeftSideLevel == joinRightSideLevel) { // If left side level number equals right side level number. We can remove those // top 'i' plans which already judged in right side plans to decrease search // spaces. joinRightSidePlans = new ArrayList<>(joinLeftSidePlans); if (i > 0) { joinRightSidePlans.subList(0, i).clear(); } } else { joinRightSidePlans = new ArrayList<>(foundPlans.get(joinRightSideLevel).values()); } for (JoinPlan joinRightSidePlan : joinRightSidePlans) { Optional<JoinPlan> newJoinPlan = buildInnerJoin(relBuilder, joinLeftSidePlan, joinRightSidePlan, multiJoin); if (newJoinPlan.isPresent()) { JoinPlan existingPlanInCurrentLevel = currentLevelJoinPlanMap.get(newJoinPlan.get().factorIds); // check if it's the first plan for the factor set, or it's a better plan // than the existing one due to lower cost. if ((existingPlanInCurrentLevel == null) || newJoinPlan.get().betterThan(existingPlanInCurrentLevel)) { currentLevelJoinPlanMap.put(newJoinPlan.get().factorIds, newJoinPlan.get()); } } } } joinLeftSideLevel++; joinRightSideLevel--; } return currentLevelJoinPlanMap; }
3.26
flink_FlinkBushyJoinReorderRule_createTopProject_rdh
/** * Creates the topmost projection that will sit on top of the selected join ordering. The * projection needs to match the original join ordering. Also, places any post-join filters on * top of the project. */ private static RelNode createTopProject(RelBuilder relBuilder, LoptMultiJoin multiJoin, JoinPlan finalPlan, List<String> fieldNames) { List<RexNode> newProjExprs = new ArrayList<>(); RexBuilder rexBuilder = multiJoin.getMultiJoinRel().getCluster().getRexBuilder(); List<Integer> newJoinOrder = new ArrayList<>(finalPlan.factorIds); int nJoinFactors = multiJoin.getNumJoinFactors(); List<RelDataTypeField> fields = multiJoin.getMultiJoinFields(); // create a mapping from each factor to its field offset in the join // ordering final Map<Integer, Integer> factorToOffsetMap = new HashMap<>(); for (int pos = 0, fieldStart = 0; pos < nJoinFactors; pos++) { factorToOffsetMap.put(newJoinOrder.get(pos), fieldStart); fieldStart += multiJoin.getNumFieldsInJoinFactor(newJoinOrder.get(pos)); } for (int currFactor = 0; currFactor < nJoinFactors; currFactor++) { // if the factor is the right factor in a removable self-join, // then where possible, remap references to the right factor to // the corresponding reference in the left factor Integer leftFactor = null; if (multiJoin.isRightFactorInRemovableSelfJoin(currFactor)) { leftFactor = multiJoin.getOtherSelfJoinFactor(currFactor); } for (int fieldPos = 0; fieldPos < multiJoin.getNumFieldsInJoinFactor(currFactor); fieldPos++) { int newOffset = requireNonNull(factorToOffsetMap.get(currFactor), () -> "factorToOffsetMap.get(currFactor)") + fieldPos; if (leftFactor != null) { Integer leftOffset = multiJoin.getRightColumnMapping(currFactor, fieldPos); if (leftOffset != null) {newOffset = requireNonNull(factorToOffsetMap.get(leftFactor), "factorToOffsetMap.get(leftFactor)") + leftOffset; } } newProjExprs.add(rexBuilder.makeInputRef(fields.get(newProjExprs.size()).getType(), newOffset));} } relBuilder.clear(); relBuilder.push(finalPlan.relNode); relBuilder.project(newProjExprs, fieldNames); // Place the post-join filter (if it exists) on top of the final projection. RexNode postJoinFilter = multiJoin.getMultiJoinRel().getPostJoinFilter(); if (postJoinFilter != null) { relBuilder.filter(postJoinFilter); } return relBuilder.build(); }
3.26
flink_FlinkBushyJoinReorderRule_reorderInnerJoin_rdh
/** * Reorder all the inner join type input factors in the multiJoin. * * <p>The result contains the selected join order of each layer and is stored in a HashMap. The * number of layers is equals to the number of inner join type input factors in the multiJoin. * E.g. for inner join case ((A IJ B) IJ C): * * <p>The stored HashMap of first layer in the result list is: [(Set(0), JoinPlan(Set(0), A)), * (Set(1), JoinPlan(Set(1), B)), (Set(2), JoinPlan(Set(2), C))]. * * <p>The stored HashMap of second layer is [(Set(0, 1), JoinPlan(Set(0, 1), (A J B))), (Set(0, * 2), JoinPlan(Set(0, 2), (A J C))), (Set(1, 2), JoinPlan(Set(1, 2), (B J C)))]. * * <p>The stored HashMap of third layer is [(Set(1, 0, 2), JoinPlan(Set(1, 0, 2), ((B J A) J * C)))]. */ private static List<Map<Set<Integer>, JoinPlan>> reorderInnerJoin(RelBuilder relBuilder, LoptMultiJoin multiJoin) { int numJoinFactors = multiJoin.getNumJoinFactors(); List<Map<Set<Integer>, JoinPlan>> foundPlans = new ArrayList<>(); // First, we put all join factors in MultiJoin into level 0. Map<Set<Integer>, JoinPlan> firstLevelJoinPlanMap = new LinkedHashMap<>(); for (int i = 0; i < numJoinFactors; i++) { if (!multiJoin.isNullGenerating(i)) { Set<Integer> set1 = new HashSet<>(); Set<Integer> set2 = new LinkedHashSet<>(); set1.add(i); set2.add(i); RelNode joinFactor = multiJoin.getJoinFactor(i); firstLevelJoinPlanMap.put(set1, new JoinPlan(set2, joinFactor)); } } foundPlans.add(firstLevelJoinPlanMap); // If multiJoin is full outer join, we will reorder it in method addOuterJoinToTop(). if (multiJoin.getMultiJoinRel().isFullOuterJoin()) { return foundPlans; } // Build plans for next levels until the found plans size equals the number of join factors, // or no possible plan exists for next level. while (foundPlans.size() < numJoinFactors) { Map<Set<Integer>, JoinPlan> nextLevelJoinPlanMap = foundNextLevel(relBuilder, new ArrayList<>(foundPlans), multiJoin); if (nextLevelJoinPlanMap.size() == 0) {break; } foundPlans.add(nextLevelJoinPlanMap); } return foundPlans; }
3.26
flink_FlinkBushyJoinReorderRule_getBestPlan_rdh
/** * Get the best plan for current level by comparing cost. */ private static JoinPlan getBestPlan(Map<Set<Integer>, JoinPlan> levelPlan) { JoinPlan bestPlan = null; for (Map.Entry<Set<Integer>, JoinPlan> entry : levelPlan.entrySet()) { if ((bestPlan == null) || entry.getValue().betterThan(bestPlan)) { bestPlan = entry.getValue(); } } return bestPlan; }
3.26
flink_RowtimeValidator_getRowtimeComponents_rdh
// utilities public static Optional<Tuple2<TimestampExtractor, WatermarkStrategy>> getRowtimeComponents(DescriptorProperties properties, String prefix) { // create timestamp extractor TimestampExtractor extractor; Optional<String> t = properties.getOptionalString(prefix + ROWTIME_TIMESTAMPS_TYPE); if (!t.isPresent()) { return Optional.empty(); } switch (t.get()) { case ROWTIME_TIMESTAMPS_TYPE_VALUE_FROM_FIELD : String field = properties.getString(prefix + ROWTIME_TIMESTAMPS_FROM); extractor = new ExistingField(field); break; case ROWTIME_TIMESTAMPS_TYPE_VALUE_FROM_SOURCE : extractor = StreamRecordTimestamp.INSTANCE; break; case ROWTIME_TIMESTAMPS_TYPE_VALUE_CUSTOM : Class<TimestampExtractor> clazz = properties.getClass(prefix + ROWTIME_TIMESTAMPS_CLASS, TimestampExtractor.class); extractor = EncodingUtils.decodeStringToObject(properties.getString(prefix + ROWTIME_TIMESTAMPS_SERIALIZED), clazz); break; default : throw new ValidationException("Unsupported rowtime timestamps type: " + t.get()); } // create watermark strategy WatermarkStrategy v10;String s = properties.getString(prefix + ROWTIME_WATERMARKS_TYPE); switch (s) {case ROWTIME_WATERMARKS_TYPE_VALUE_PERIODIC_ASCENDING : v10 = new AscendingTimestamps(); break; case ROWTIME_WATERMARKS_TYPE_VALUE_PERIODIC_BOUNDED : long delay = properties.getLong(prefix + ROWTIME_WATERMARKS_DELAY); v10 = new BoundedOutOfOrderTimestamps(delay); break; case ROWTIME_WATERMARKS_TYPE_VALUE_FROM_SOURCE : v10 = PreserveWatermarks.INSTANCE; break; case ROWTIME_WATERMARKS_TYPE_VALUE_CUSTOM : Class<WatermarkStrategy> clazz = properties.getClass(prefix + ROWTIME_WATERMARKS_CLASS, WatermarkStrategy.class); v10 = EncodingUtils.decodeStringToObject(properties.getString(prefix + ROWTIME_WATERMARKS_SERIALIZED), clazz); break; default : throw new RuntimeException("Unsupported rowtime timestamps type: " + s); } return Optional.of(new Tuple2<>(extractor, v10)); }
3.26
flink_PlanProjectOperator_map_rdh
// TODO We should use code generation for this. @SuppressWarnings("unchecked") @Override public R map(Tuple inTuple) throws Exception { for (int i = 0; i < fields.length; i++) {f2.setField(inTuple.getField(f1[i]), i); } return ((R) (f2)); }
3.26
flink_PartitionOperatorBase_getPartitionMethod_rdh
// -------------------------------------------------------------------------------------------- public PartitionMethod getPartitionMethod() {return this.partitionMethod; }
3.26
flink_PartitionOperatorBase_executeOnCollections_rdh
// -------------------------------------------------------------------------------------------- @Override protected List<IN> executeOnCollections(List<IN> inputData, RuntimeContext runtimeContext, ExecutionConfig executionConfig) { return inputData; }
3.26
flink_TaskStatsRequestCoordinator_handleSuccessfulResponse_rdh
/** * Handles the successfully returned tasks stats response by collecting the corresponding * subtask samples. * * @param requestId * ID of the request. * @param executionIds * ID of the sampled task. * @param result * Result of stats request returned by an individual task. * @throws IllegalStateException * If unknown request ID and not recently finished or cancelled * sample. */ public void handleSuccessfulResponse(int requestId, ImmutableSet<ExecutionAttemptID> executionIds, T result) { synchronized(lock) { if (isShutDown) { return; } final String ids = executionIds.stream().map(ExecutionAttemptID::toString).collect(Collectors.joining(", ")); if (log.isDebugEnabled()) { log.debug("Collecting stats sample {} of tasks {}", requestId, ids); } PendingStatsRequest<T, V> pending = pendingRequests.get(requestId); if (pending != null) { pending.m0(executionIds, result); // Publish the sample if (pending.isComplete()) { pendingRequests.remove(requestId); rememberRecentRequestId(requestId); pending.completePromiseAndDiscard(); } } else if (recentPendingRequestIds.contains(requestId)) { if (log.isDebugEnabled()) { log.debug("Received late stats sample {} of tasks {}", requestId, ids); } } else if (log.isDebugEnabled()) { log.debug(String.format("Unknown request ID %d.", requestId)); } } }
3.26
flink_TaskStatsRequestCoordinator_shutDown_rdh
/** * Shuts down the coordinator. * * <p>After shut down, no further operations are executed. */ public void shutDown() { synchronized(lock) { if (!isShutDown) { log.info("Shutting down task stats request coordinator."); for (PendingStatsRequest<T, V> pending : pendingRequests.values()) {pending.discard(new RuntimeException("Shut down")); } pendingRequests.clear(); recentPendingRequestIds.clear(); isShutDown = true; } }}
3.26
flink_TaskStatsRequestCoordinator_m0_rdh
/** * Collects result from one of the tasks. * * @param executionId * ID of the Task. * @param taskStatsResult * Result of the stats sample from the Task. */protected void m0(ImmutableSet<ExecutionAttemptID> executionId, T taskStatsResult) { checkDiscarded(); if (pendingTasks.remove(executionId)) { statsResultByTaskGroup.put(executionId, taskStatsResult); } else if (isComplete()) { throw new IllegalStateException("Completed"); } else { throw new IllegalArgumentException("Unknown task " + executionId); } }
3.26
flink_TaskStatsRequestCoordinator_handleFailedResponse_rdh
/** * Handles the failed stats response by canceling the corresponding unfinished pending request. * * @param requestId * ID of the request to cancel. * @param cause * Cause of the cancelling (can be <code>null</code>). */ public void handleFailedResponse(int requestId, @Nullable Throwable cause) { synchronized(lock) { if (isShutDown) { return; }PendingStatsRequest<T, V> pendingRequest = pendingRequests.remove(requestId); if (pendingRequest != null) { log.info("Cancelling request {}", requestId, cause);pendingRequest.discard(cause); rememberRecentRequestId(requestId); } } }
3.26
flink_KvStateInfo_getKeySerializer_rdh
/** * * @return The serializer for the key the state is associated to. */ public TypeSerializer<K> getKeySerializer() { return keySerializer; }
3.26
flink_KvStateInfo_duplicate_rdh
/** * Creates a deep copy of the current {@link KvStateInfo} by duplicating all the included * serializers. * * <p>This method assumes correct implementation of the {@link TypeSerializer#duplicate()} * method of the included serializers. */ public KvStateInfo<K, N, V> duplicate() { final TypeSerializer<K> dupKeySerializer = keySerializer.duplicate(); final TypeSerializer<N> dupNamespaceSerializer = namespaceSerializer.duplicate(); final TypeSerializer<V> dupSVSerializer = stateValueSerializer.duplicate(); if (((dupKeySerializer == keySerializer) && (dupNamespaceSerializer == namespaceSerializer)) && (dupSVSerializer == stateValueSerializer)) { return this; } return new KvStateInfo<>(dupKeySerializer, dupNamespaceSerializer, dupSVSerializer); }
3.26
flink_KvStateInfo_getStateValueSerializer_rdh
/** * * @return The serializer for the values kept in the state. */ public TypeSerializer<V> getStateValueSerializer() { return stateValueSerializer; }
3.26
flink_KMeansDataGenerator_main_rdh
/** * Main method to generate data for the {@link KMeans} example program. * * <p>The generator creates to files: * * <ul> * <li><code>&lt; output-path &gt;/points</code> for the data points * <li><code>&lt; output-path &gt;/centers</code> for the cluster centers * </ul> * * @param args * <ol> * <li>Int: Number of data points * <li>Int: Number of cluster centers * <li><b>Optional</b> String: Output path, default value is {tmp.dir} * <li><b>Optional</b> Double: Standard deviation of data points * <li><b>Optional</b> Double: Value range of cluster centers * <li><b>Optional</b> Long: Random seed * </ol> * @throws IOException */ public static void main(String[] args) throws IOException { // check parameter count if (args.length < 2) { System.out.println("KMeansDataGenerator -points <num> -k <num clusters> [-output <output-path>] [-stddev <relative stddev>] [-range <centroid range>] [-seed <seed>]");System.exit(1); } // parse parameters final ParameterTool params = ParameterTool.fromArgs(args); final int numDataPoints = params.getInt("points");final int k = params.getInt("k"); final String v3 = params.get("output", System.getProperty("java.io.tmpdir")); final double stddev = params.getDouble("stddev", RELATIVE_STDDEV); final double range = params.getDouble("range", DEFAULT_VALUE_RANGE); final long firstSeed = params.getLong("seed", DEFAULT_SEED); final double absoluteStdDev = stddev * range; final Random random = new Random(firstSeed); // the means around which data points are distributed final double[][] means = uniformRandomCenters(random, k, f0, range); // write the points out BufferedWriter pointsOut = null; try { pointsOut = new BufferedWriter(new FileWriter(new File((v3 + "/") + POINTS_FILE))); StringBuilder buffer = new StringBuilder(); double[] point = new double[f0]; int nextCentroid = 0; for (int i = 1; i <= numDataPoints; i++) { // generate a point for the current centroid double[] centroid = means[nextCentroid]; for (int d = 0; d < f0; d++) {point[d] = (random.nextGaussian() * absoluteStdDev) + centroid[d]; } writePoint(point, buffer, pointsOut); nextCentroid = (nextCentroid + 1) % k; } } finally { if (pointsOut != null) { pointsOut.close(); } } // write the uniformly distributed centers to a file BufferedWriter centersOut = null;try { centersOut = new BufferedWriter(new FileWriter(new File((v3 + "/") + CENTERS_FILE))); StringBuilder buffer = new StringBuilder(); double[][] centers = uniformRandomCenters(random, k, f0, range); for (int i = 0; i < k; i++) { writeCenter(i + 1, centers[i], buffer, centersOut); } } finally { if (centersOut != null) { centersOut.close(); } } System.out.println((((("Wrote " + numDataPoints) + " data points to ") + v3) + "/") + POINTS_FILE); System.out.println((((("Wrote " + k) + " cluster centers to ") + v3) + "/") + CENTERS_FILE); }
3.26
flink_MetadataV2Serializer_serializeOperatorState_rdh
// ------------------------------------------------------------------------ // version-specific serialization // ------------------------------------------------------------------------ @Override protected void serializeOperatorState(OperatorState operatorState, DataOutputStream dos) throws IOException { checkState(!operatorState.isFullyFinished(), "Could not support finished Operator state in state serializers."); // Operator ID dos.writeLong(operatorState.getOperatorID().getLowerPart()); dos.writeLong(operatorState.getOperatorID().getUpperPart()); // Parallelism int parallelism = operatorState.getParallelism(); dos.writeInt(parallelism); dos.writeInt(operatorState.getMaxParallelism()); // this field was "chain length" before Flink 1.3, and it is still part // of the format, despite being unused dos.writeInt(1); // Sub task states Map<Integer, OperatorSubtaskState> subtaskStateMap = operatorState.getSubtaskStates(); dos.writeInt(subtaskStateMap.size()); for (Map.Entry<Integer, OperatorSubtaskState> entry : subtaskStateMap.entrySet()) { dos.writeInt(entry.getKey()); serializeSubtaskState(entry.getValue(), dos); } }
3.26