name
stringlengths
12
178
code_snippet
stringlengths
8
36.5k
score
float64
3.26
3.68
hudi_HoodieLogFileReader_prev_rdh
/** * This is a reverse iterator Note: At any point, an instance of HoodieLogFileReader should either iterate reverse * (prev) or forward (next). Doing both in the same instance is not supported WARNING : Every call to prev() should be * preceded with hasPrev() */ @Override public HoodieLogBlock prev() throws IOException { if (!this.reverseReader) { throw new HoodieNotSupportedException("Reverse log reader has not been enabled"); } long blockSize = inputStream.readLong(); long blockEndPos = inputStream.getPos(); // blocksize should read everything about a block including the length as well try { inputStream.seek(reverseLogFilePosition - blockSize); } catch (Exception e) { // this could be a corrupt block inputStream.seek(blockEndPos); throw new CorruptedLogFileException("Found possible corrupted block, cannot read log file in reverse, " + "fallback to forward reading of logfile"); } boolean hasNext = hasNext(); reverseLogFilePosition -= blockSize; lastReverseLogFilePosition = reverseLogFilePosition; return next(); }
3.26
hudi_Types_isTighterThan_rdh
/** * Returns whether this DecimalType is tighter than `other`. If yes, it means `this` * can be casted into `other` safely without losing any precision or range. */ public boolean isTighterThan(PrimitiveType other) { if (other instanceof DecimalType) { DecimalType dt = ((DecimalType) (other)); return ((precision - scale) <= (dt.precision - dt.scale)) && (scale <= dt.scale); } if (other instanceof IntType) { return isTighterThan(get(10, 0));} return false; }
3.26
hudi_Types_get_rdh
// Experimental method to support defaultValue public static Field get(int id, boolean isOptional, String name, Type type, String doc, Object defaultValue) { return new Field(isOptional, id, name, type, doc, defaultValue); }
3.26
hudi_Types_fieldByName_rdh
/** * Case-sensitive get field by name */ public Field fieldByName(String name) { if (nameToFields == null) { nameToFields = Arrays.stream(fields).collect(Collectors.toMap(Field::name, field -> field)); } return nameToFields.get(name); }
3.26
hudi_Types_isWiderThan_rdh
/** * Returns whether this DecimalType is wider than `other`. If yes, it means `other` * can be casted into `this` safely without losing any precision or range. */ public boolean isWiderThan(PrimitiveType other) { if (other instanceof DecimalType) { DecimalType dt = ((DecimalType) (other)); return ((precision - scale) >= (dt.precision - dt.scale)) && (scale > dt.scale); } if (other instanceof IntType) { return isWiderThan(get(10, 0)); }return false; }
3.26
hudi_SqlQueryPreCommitValidator_validateRecordsBeforeAndAfter_rdh
/** * Takes input datasets 1) before commit started and 2) with inflight commit. Perform required validation * and throw error if validation fails */ @Override public void validateRecordsBeforeAndAfter(Dataset<Row> before, Dataset<Row> after, final Set<String> partitionsAffected) { String hoodieTableName = "staged_table_" + TABLE_COUNTER.incrementAndGet(); String hoodieTableBeforeCurrentCommit = hoodieTableName + "_before"; String hoodieTableWithInflightCommit = hoodieTableName + "_after"; before.registerTempTable(hoodieTableBeforeCurrentCommit); after.registerTempTable(hoodieTableWithInflightCommit); JavaSparkContext jsc = HoodieSparkEngineContext.getSparkContext(getEngineContext()); SQLContext sqlContext = new SQLContext(jsc); String[] queries = getQueriesToRun(); Arrays.asList(queries).parallelStream().forEach(query -> validateUsingQuery(query, hoodieTableBeforeCurrentCommit, hoodieTableWithInflightCommit, sqlContext)); }
3.26
hudi_SafeParquetRecordReaderWrapper_createValue_rdh
/** * We could be in concurrent fetch and read env. We need to ensure new ArrayWritable as ParquetReader implementation * reuses same ArrayWritable for all reads which will cause corruption when buffering. So, we create a new * ArrayWritable here with Value class from parquetReader's value and an empty array. */ @Override public ArrayWritable createValue() { // Call createValue of parquetReader to get size and class type info only Writable[] emptyWritableBuf = new Writable[numValueFields]; return new ArrayWritable(valueClass, emptyWritableBuf); }
3.26
hudi_HoodieSimpleBucketLayout_determinesNumFileGroups_rdh
/** * Bucketing controls the number of file groups directly. */ @Override public boolean determinesNumFileGroups() { return true; }
3.26
hudi_ByteBufferBackedInputStream_getPosition_rdh
/** * Returns current position of the stream */ public int getPosition() { return buffer.position() - bufferOffset; }
3.26
hudi_ByteBufferBackedInputStream_m0_rdh
/** * Copies at most {@code length} bytes starting from position {@code pos} into the target * buffer with provided {@code offset}. Returns number of bytes copied from the backing buffer * * NOTE: This does not change the current position of the stream and is thread-safe * * @param pos * absolute position w/in stream to read from * @param targetBuffer * target buffer to copy into * @param offset * target buffer offset to copy at * @param length * length of the sequence to copy * @return number of bytes copied */ public int m0(long pos, byte[] targetBuffer, int offset, int length) { int bufferPos = bufferOffset + ((int) (pos)); if (bufferPos > buffer.limit()) { throw new IllegalArgumentException(String.format("Can't read past the backing buffer boundary (offset %d, length %d)", pos, buffer.limit() - bufferOffset)); } else if (length > targetBuffer.length) { throw new IllegalArgumentException(String.format("Target buffer is too small (length %d, buffer size %d)", length, targetBuffer.length)); } // Determine total number of bytes available to read int available = Math.min(length, buffer.limit() - bufferPos); // Get current buffer position in the backing array System.arraycopy(buffer.array(), bufferPos, targetBuffer, offset, available); return available; }
3.26
hudi_ByteBufferBackedInputStream_seek_rdh
/** * Seeks to a position w/in the stream * * NOTE: Position is relative to the start of the stream (ie its absolute w/in this stream), * with following invariant being assumed: * <p>0 <= pos <= length (of the stream)</p> * * This method is NOT thread-safe * * @param pos * target position to seek to w/in the holding buffer */ public void seek(long pos) { buffer.reset();// to mark int offset = buffer.position(); // NOTE: That the new pos is still relative to buffer's offset int newPos = offset + ((int) (pos)); if ((newPos > buffer.limit()) || (newPos < offset)) { throw new IllegalArgumentException(String.format("Can't seek past the backing buffer (limit %d, offset %d, new %d)", buffer.limit(), offset, newPos)); } buffer.position(newPos); }
3.26
hudi_HoodieConsistentBucketLayout_determinesNumFileGroups_rdh
/** * Bucketing controls the number of file groups directly. */ @Override public boolean determinesNumFileGroups() { return true; }
3.26
hudi_HoodieConsistentBucketLayout_layoutPartitionerClass_rdh
/** * Consistent hashing will tag all incoming records, so we could go ahead reusing an existing Partitioner */ @Override public Option<String> layoutPartitionerClass() { return Option.empty(); }
3.26
hudi_TypeUtils_getValueToEnumMap_rdh
/** * Maps values from the provided Enum's {@link Class} into corresponding values, * extracted by provided {@code valueMapper} */ public static <EnumT extends Enum<EnumT>> Map<String, EnumT> getValueToEnumMap(@Nonnull Class<EnumT> klass, @Nonnull Function<EnumT, String> valueMapper) { return Arrays.stream(klass.getEnumConstants()).collect(Collectors.toMap(valueMapper, Function.identity())); }
3.26
hudi_TypeUtils_unsafeCast_rdh
/** * This utility abstracts unsafe type-casting in a way that allows to * <ul> * <li>Search for such type-casts more easily (just searching for usages of this method)</li> * <li>Avoid type-cast warnings from the compiler</li> * </ul> */ @SuppressWarnings("unchecked") public static <T> T unsafeCast(Object o) { return ((T) (o)); }
3.26
hudi_QuickstartConfigurations_sql_rdh
/** * Creates the tool to build hoodie table DDL. */ public static Sql sql(String tableName) { return new Sql(tableName); }
3.26
hudi_ConfigProperty_key_rdh
/** * Create a OptionBuilder with key. * * @param key * The key of the option * @return Return a OptionBuilder. */ public static PropertyBuilder key(String key) { Objects.requireNonNull(key); return new PropertyBuilder(key); }
3.26
hudi_ConfigProperty_markAdvanced_rdh
/** * Marks the config as an advanced config. */ public ConfigProperty<T> markAdvanced() { return new ConfigProperty<>(key, defaultValue, docOnDefaultValue, doc, sinceVersion, deprecatedVersion, inferFunction, validValues, true, alternatives); }
3.26
hudi_HoodieSparkKeyGeneratorFactory_getKeyGeneratorClassNameFromType_rdh
/** * * @param type * {@link KeyGeneratorType} enum. * @return The key generator class name for Spark based on the {@link KeyGeneratorType}. */ public static String getKeyGeneratorClassNameFromType(KeyGeneratorType type) { switch (type) { case SIMPLE : return SimpleKeyGenerator.class.getName(); case COMPLEX : return ComplexKeyGenerator.class.getName(); case TIMESTAMP : return TimestampBasedKeyGenerator.class.getName(); case CUSTOM : return CustomKeyGenerator.class.getName(); case NON_PARTITION : return NonpartitionedKeyGenerator.class.getName(); case GLOBAL_DELETE : return GlobalDeleteKeyGenerator.class.getName(); default : throw new HoodieKeyGeneratorException("Unsupported keyGenerator Type " + type); } }
3.26
hudi_HoodieSparkKeyGeneratorFactory_getKeyGenerator_rdh
/** * Instantiate {@link BuiltinKeyGenerator}. * * @param properties * properties map. * @return the key generator thus instantiated. */ public static Option<BuiltinKeyGenerator> getKeyGenerator(Properties properties) { TypedProperties typedProperties = new TypedProperties(); typedProperties.putAll(properties); if (Option.ofNullable(properties.get(HoodieWriteConfig.KEYGENERATOR_CLASS_NAME.key())).map(v -> v.equals(NonpartitionedKeyGenerator.class.getName())).orElse(false)) { return Option.empty();// Do not instantiate NonPartitionKeyGen } else { try { return Option.of(((BuiltinKeyGenerator) (HoodieSparkKeyGeneratorFactory.createKeyGenerator(typedProperties)))); } catch (ClassCastException cce) {throw new HoodieIOException("Only those key generators implementing BuiltInKeyGenerator interface is supported with virtual keys"); } catch (IOException e) { throw new HoodieIOException("Key generator instantiation failed ", e); } } }
3.26
hudi_HoodieSparkKeyGeneratorFactory_inferKeyGeneratorTypeFromWriteConfig_rdh
/** * Infers the key generator type based on the record key and partition fields. * If neither of the record key and partition fields are set, the default type is returned. * * @param props * Properties from the write config. * @return Inferred key generator type. */ public static KeyGeneratorType inferKeyGeneratorTypeFromWriteConfig(TypedProperties props) { String partitionFields = props.getString(KeyGeneratorOptions.PARTITIONPATH_FIELD_NAME.key(), null); String recordsKeyFields = props.getString(KeyGeneratorOptions.RECORDKEY_FIELD_NAME.key(), null); return inferKeyGeneratorType(Option.ofNullable(recordsKeyFields), partitionFields); }
3.26
hudi_HoodieSparkKeyGeneratorFactory_convertToSparkKeyGenerator_rdh
/** * Convert hoodie-common KeyGenerator to SparkKeyGeneratorInterface implement. */ public static String convertToSparkKeyGenerator(String keyGeneratorClassName) { return COMMON_TO_SPARK_KEYGENERATOR.getOrDefault(keyGeneratorClassName, keyGeneratorClassName); }
3.26
hudi_BucketStreamWriteFunction_m0_rdh
/** * Determine whether the current fileID belongs to the current task. * (partition + curBucket) % numPartitions == this taskID belongs to this task. */ public boolean m0(int bucketNumber, String partition) { final int partitionIndex = (partition.hashCode() & Integer.MAX_VALUE) % parallelism; int globalIndex = partitionIndex + bucketNumber; return BucketIdentifier.mod(globalIndex, parallelism) == taskID; }
3.26
hudi_BucketStreamWriteFunction_bootstrapIndexIfNeed_rdh
/** * Get partition_bucket -> fileID mapping from the existing hudi table. * This is a required operation for each restart to avoid having duplicate file ids for one bucket. */ private void bootstrapIndexIfNeed(String partition) { if (OptionsResolver.isInsertOverwrite(config)) { // skips the index loading for insert overwrite operation. return; } if (bucketIndex.containsKey(partition)) { return; } LOG.info(String.format("Loading Hoodie Table %s, with path %s", this.metaClient.getTableConfig().getTableName(), (this.metaClient.getBasePath() + "/") + partition)); // Load existing fileID belongs to this task Map<Integer, String> bucketToFileIDMap = new HashMap<>(); this.writeClient.getHoodieTable().getHoodieView().getLatestFileSlices(partition).forEach(fileSlice -> { String fileId = fileSlice.getFileId(); int v12 = BucketIdentifier.bucketIdFromFileId(fileId); if (isBucketToLoad(v12, partition)) { LOG.info(String.format("Should load this partition bucket %s with fileId %s", v12, fileId)); // Validate that one bucketId has only ONE fileId if (bucketToFileIDMap.containsKey(v12)) {throw new RuntimeException(String.format("Duplicate fileId %s from bucket %s of partition %s found " + "during the BucketStreamWriteFunction index bootstrap.", fileId, v12, partition));} else { LOG.info(String.format("Adding fileId %s to the bucket %s of partition %s.", fileId, v12, partition)); bucketToFileIDMap.put(v12, fileId); } } }); bucketIndex.put(partition, bucketToFileIDMap); }
3.26
hudi_ExpressionEvaluators_getInLiteralVals_rdh
// ------------------------------------------------------------------------- // Utilities // ------------------------------------------------------------------------- /** * Returns the IN expression literal values. */ private static Object[] getInLiteralVals(List<Expression> childExprs) { List<Object> vals = new ArrayList<>(); for (int i = 1; i < childExprs.size(); i++) { vals.add(ExpressionUtils.getValueFromLiteral(((ValueLiteralExpression) (childExprs.get(i))))); } return vals.toArray(); }
3.26
hudi_ExpressionEvaluators_fromExpression_rdh
/** * Converts specific call expression to the evaluator. * <p>Two steps to bind the call: * 1. map the evaluator instance; * 2. bind the field reference; * * <p>Normalize the expression to simplify the subsequent decision logic: * always put the literal expression in the RHS. */ public static Evaluator fromExpression(CallExpression expr) { FunctionDefinition funDef = expr.getFunctionDefinition(); List<Expression> childExprs = expr.getChildren(); boolean normalized = childExprs.get(0) instanceof FieldReferenceExpression; if (BuiltInFunctionDefinitions.NOT.equals(funDef)) { Not evaluator = Not.getInstance(); Evaluator childEvaluator = fromExpression(((CallExpression) (childExprs.get(0)))); return evaluator.bindEvaluator(childEvaluator); } if (BuiltInFunctionDefinitions.AND.equals(funDef)) { And evaluator = And.getInstance(); Evaluator v6 = fromExpression(((CallExpression) (childExprs.get(0)))); Evaluator evaluator2 = fromExpression(((CallExpression) (childExprs.get(1)))); return evaluator.bindEvaluator(v6, evaluator2);} if (BuiltInFunctionDefinitions.OR.equals(funDef)) { Or evaluator = Or.getInstance(); Evaluator evaluator1 = fromExpression(((CallExpression) (childExprs.get(0)))); Evaluator evaluator2 = fromExpression(((CallExpression) (childExprs.get(1)))); return evaluator.bindEvaluator(evaluator1, evaluator2);} // handle unary operators if (BuiltInFunctionDefinitions.IS_NULL.equals(funDef)) { FieldReferenceExpression rExpr = ((FieldReferenceExpression) (childExprs.get(0))); return IsNull.getInstance().bindFieldReference(rExpr); } else if (BuiltInFunctionDefinitions.IS_NOT_NULL.equals(funDef)) { FieldReferenceExpression rExpr = ((FieldReferenceExpression) (childExprs.get(0))); return IsNotNull.getInstance().bindFieldReference(rExpr); } boolean hasNullLiteral = childExprs.stream().anyMatch(e -> (e instanceof ValueLiteralExpression) && (ExpressionUtils.getValueFromLiteral(((ValueLiteralExpression) (e))) == null)); if (hasNullLiteral) { return AlwaysFalse.m2(); } // handle IN specifically if (BuiltInFunctionDefinitions.IN.equals(funDef)) { ValidationUtils.checkState(normalized, "The IN expression expects to be normalized"); In in = In.getInstance(); FieldReferenceExpression rExpr = ((FieldReferenceExpression) (childExprs.get(0))); in.bindFieldReference(rExpr); in.bindVals(getInLiteralVals(childExprs)); return in; } NullFalseEvaluator evaluator; // handle binary operators if (BuiltInFunctionDefinitions.EQUALS.equals(funDef)) { evaluator = EqualTo.m1(); } else if (BuiltInFunctionDefinitions.NOT_EQUALS.equals(funDef)) { evaluator = NotEqualTo.getInstance(); } else if (BuiltInFunctionDefinitions.LESS_THAN.equals(funDef)) { evaluator = (normalized) ? LessThan.getInstance() : GreaterThan.getInstance(); } else if (BuiltInFunctionDefinitions.GREATER_THAN.equals(funDef)) { evaluator = (normalized) ? GreaterThan.getInstance() : LessThan.getInstance();} else if (BuiltInFunctionDefinitions.LESS_THAN_OR_EQUAL.equals(funDef)) { evaluator = (normalized) ? LessThanOrEqual.getInstance() : GreaterThanOrEqual.getInstance(); } else if (BuiltInFunctionDefinitions.GREATER_THAN_OR_EQUAL.equals(funDef)) { evaluator = (normalized) ? GreaterThanOrEqual.getInstance() : LessThanOrEqual.getInstance(); } else { throw new AssertionError("Unexpected function definition " + funDef); } FieldReferenceExpression rExpr = (normalized) ? ((FieldReferenceExpression) (childExprs.get(0))) : ((FieldReferenceExpression) (childExprs.get(1))); ValueLiteralExpression vExpr = (normalized) ? ((ValueLiteralExpression) (childExprs.get(1))) : ((ValueLiteralExpression) (childExprs.get(0))); evaluator.bindVal(vExpr).bindFieldReference(rExpr); return evaluator; }
3.26
hudi_RollbackUtils_getRollbackPlan_rdh
/** * Get Latest version of Rollback plan corresponding to a clean instant. * * @param metaClient * Hoodie Table Meta Client * @param rollbackInstant * Instant referring to rollback action * @return Rollback plan corresponding to rollback instant * @throws IOException */ public static HoodieRollbackPlan getRollbackPlan(HoodieTableMetaClient metaClient, HoodieInstant rollbackInstant) throws IOException { // TODO: add upgrade step if required. final HoodieInstant requested = HoodieTimeline.getRollbackRequestedInstant(rollbackInstant); return TimelineMetadataUtils.deserializeAvroMetadata(metaClient.getActiveTimeline().readRollbackInfoAsBytes(requested).get(), HoodieRollbackPlan.class); }
3.26
hudi_TransactionUtils_getInflightAndRequestedInstants_rdh
/** * Get InflightAndRequest instants. * * @param metaClient * @return */ public static Set<String> getInflightAndRequestedInstants(HoodieTableMetaClient metaClient) { // collect InflightAndRequest instants for deltaCommit/commit/compaction/clustering Set<String> timelineActions = CollectionUtils.createImmutableSet(HoodieTimeline.REPLACE_COMMIT_ACTION, HoodieTimeline.COMPACTION_ACTION, HoodieTimeline.DELTA_COMMIT_ACTION, HoodieTimeline.COMMIT_ACTION); return metaClient.getActiveTimeline().getTimelineOfActions(timelineActions).filterInflightsAndRequested().getInstantsAsStream().map(HoodieInstant::getTimestamp).collect(Collectors.toSet()); }
3.26
hudi_TransactionUtils_resolveWriteConflictIfAny_rdh
/** * Resolve any write conflicts when committing data. * * @param table * @param currentTxnOwnerInstant * @param thisCommitMetadata * @param config * @param lastCompletedTxnOwnerInstant * @param pendingInstants * @return * @throws HoodieWriteConflictException */public static Option<HoodieCommitMetadata> resolveWriteConflictIfAny(final HoodieTable table, final Option<HoodieInstant> currentTxnOwnerInstant, final Option<HoodieCommitMetadata> thisCommitMetadata, final HoodieWriteConfig config, Option<HoodieInstant> lastCompletedTxnOwnerInstant, boolean reloadActiveTimeline, Set<String> pendingInstants) throws HoodieWriteConflictException { WriteOperationType operationType = thisCommitMetadata.map(HoodieCommitMetadata::getOperationType).orElse(null); if (config.needResolveWriteConflict(operationType)) {// deal with pendingInstants Stream<HoodieInstant> completedInstantsDuringCurrentWriteOperation = getCompletedInstantsDuringCurrentWriteOperation(table.getMetaClient(), pendingInstants); ConflictResolutionStrategy resolutionStrategy = config.getWriteConflictResolutionStrategy(); if (reloadActiveTimeline) {table.getMetaClient().reloadActiveTimeline(); }Stream<HoodieInstant> instantStream = Stream.concat(resolutionStrategy.getCandidateInstants(table.getMetaClient(), currentTxnOwnerInstant.get(), lastCompletedTxnOwnerInstant), completedInstantsDuringCurrentWriteOperation); final ConcurrentOperation thisOperation = new ConcurrentOperation(currentTxnOwnerInstant.get(), thisCommitMetadata.orElse(new HoodieCommitMetadata())); instantStream.forEach(instant -> { try { ConcurrentOperation otherOperation = new ConcurrentOperation(instant, table.getMetaClient()); if (resolutionStrategy.hasConflict(thisOperation, otherOperation)) { LOG.info(((("Conflict encountered between current instant = " + thisOperation) + " and instant = ") + otherOperation) + ", attempting to resolve it..."); resolutionStrategy.resolveConflict(table, thisOperation, otherOperation); } } catch (IOException io) { throw new <io>HoodieWriteConflictException("Unable to resolve conflict, if present"); } }); LOG.info("Successfully resolved conflicts, if any"); return thisOperation.getCommitMetadataOption(); } return thisCommitMetadata; }
3.26
hudi_TransactionUtils_getLastCompletedTxnInstantAndMetadata_rdh
/** * Get the last completed transaction hoodie instant and {@link HoodieCommitMetadata#getExtraMetadata()}. * * @param metaClient * @return */ public static Option<Pair<HoodieInstant, Map<String, String>>> getLastCompletedTxnInstantAndMetadata(HoodieTableMetaClient metaClient) { Option<HoodieInstant> hoodieInstantOption = metaClient.getActiveTimeline().getCommitsTimeline().filterCompletedInstants().lastInstant(); return getHoodieInstantAndMetaDataPair(metaClient, hoodieInstantOption); }
3.26
hudi_HoodieRecordPayload_preCombine_rdh
/** * When more than one HoodieRecord have the same HoodieKey in the incoming batch, this function combines them before attempting to insert/upsert by taking in a schema. * Implementation can leverage the schema to decide their business logic to do preCombine. * * @param oldValue * instance of the old {@link HoodieRecordPayload} to be combined with. * @param schema * Payload related schema. For example use schema to overwrite old instance for specified fields that doesn't equal to default value. * @param properties * Payload related properties. For example pass the ordering field(s) name to extract from value in storage. * @return the combined value */ @PublicAPIMethod(maturity = ApiMaturityLevel.EVOLVING) default T preCombine(T oldValue, Schema schema, Properties properties) { return preCombine(oldValue, properties); }
3.26
hudi_HoodieRecordPayload_combineAndGetUpdateValue_rdh
/** * This methods lets you write custom merging/combining logic to produce new values as a function of current value on storage and whats contained * in this object. Implementations can leverage properties if required. * <p> * eg: * 1) You are updating counters, you may want to add counts to currentValue and write back updated counts * 2) You may be reading DB redo logs, and merge them with current image for a database row on storage * </p> * * @param currentValue * Current value in storage, to merge/combine this payload with * @param schema * Schema used for record * @param properties * Payload related properties. For example pass the ordering field(s) name to extract from value in storage. * @return new combined/merged value to be written back to storage. EMPTY to skip writing this record. */default Option<IndexedRecord> combineAndGetUpdateValue(IndexedRecord currentValue, Schema schema, Properties properties) throws IOException { return combineAndGetUpdateValue(currentValue, schema); }
3.26
hudi_HoodieRecordPayload_getOrderingValue_rdh
/** * This method can be used to extract the ordering value of the payload for combining/merging, * or 0 if no value is specified which means natural order(arrival time is used). * * @return the ordering value */ @PublicAPIMethod(maturity = ApiMaturityLevel.STABLE) default Comparable<?> getOrderingValue() { // default natural order return 0; }
3.26
hudi_HoodieRecordPayload_getInsertValue_rdh
/** * Generates an avro record out of the given HoodieRecordPayload, to be written out to storage. Called when writing a new value for the given * HoodieKey, wherein there is no existing record in storage to be combined against. (i.e insert) Return EMPTY to skip writing this record. * Implementations can leverage properties if required. * * @param schema * Schema used for record * @param properties * Payload related properties. For example pass the ordering field(s) name to extract from value in storage. * @return the {@link IndexedRecord} to be inserted. */ @PublicAPIMethod(maturity = ApiMaturityLevel.STABLE) default Option<IndexedRecord> getInsertValue(Schema schema, Properties properties) throws IOException { return getInsertValue(schema); } /** * This method can be used to extract some metadata from HoodieRecordPayload. The metadata is passed to {@code WriteStatus.markSuccess()} and * {@code WriteStatus.markFailure()}
3.26
hudi_RocksDBDAO_init_rdh
/** * Initialized Rocks DB instance. */ private void init() { try { LOG.info("DELETING RocksDB persisted at " + rocksDBBasePath); FileIOUtils.deleteDirectory(new File(rocksDBBasePath)); managedHandlesMap = new ConcurrentHashMap<>(); managedDescriptorMap = new ConcurrentHashMap<>(); // If already present, loads the existing column-family handles final DBOptions v0 = new DBOptions().setCreateIfMissing(true).setCreateMissingColumnFamilies(true).setWalDir(rocksDBBasePath).setStatsDumpPeriodSec(300).setStatistics(new Statistics()); v0.setLogger(new Logger(v0) { @Override protected void log(InfoLogLevel infoLogLevel, String logMsg) { switch (infoLogLevel) { case DEBUG_LEVEL : LOG.debug("From Rocks DB : {}", logMsg); break; case WARN_LEVEL :LOG.warn("From Rocks DB : {}", logMsg); break; case ERROR_LEVEL : case FATAL_LEVEL : LOG.error("From Rocks DB : {}", logMsg); break; case HEADER_LEVEL : case NUM_INFO_LOG_LEVELS : case INFO_LEVEL : default : LOG.info("From Rocks DB : {}", logMsg); break; } } }); final List<ColumnFamilyDescriptor> managedColumnFamilies = loadManagedColumnFamilies(v0); final List<ColumnFamilyHandle> v2 = new ArrayList<>(managedColumnFamilies.size()); FileIOUtils.mkdir(new File(rocksDBBasePath));rocksDB = RocksDB.open(v0, rocksDBBasePath, managedColumnFamilies, v2);ValidationUtils.checkArgument(v2.size() == managedColumnFamilies.size(), "Unexpected number of handles are returned"); for (int index = 0; index < v2.size(); index++) { ColumnFamilyHandle handle = v2.get(index); ColumnFamilyDescriptor descriptor = managedColumnFamilies.get(index); String familyNameFromHandle = new String(handle.getName()); String familyNameFromDescriptor = new String(descriptor.getName()); ValidationUtils.checkArgument(familyNameFromDescriptor.equals(familyNameFromHandle), "Family Handles not in order with descriptors"); managedHandlesMap.put(familyNameFromHandle, handle);managedDescriptorMap.put(familyNameFromDescriptor, descriptor); } } catch (RocksDBException | IOException re) { LOG.error("Got exception opening Rocks DB instance ", re); throw new HoodieException(re); } }
3.26
hudi_RocksDBDAO_put_rdh
/** * Perform single PUT on a column-family. * * @param columnFamilyName * Column family name * @param key * Key * @param value * Payload * @param <T> * Type of Payload */ public <K extends Serializable, T extends Serializable> void put(String columnFamilyName, K key, T value) { try { byte[] payload = serializePayload(value); getRocksDB().put(managedHandlesMap.get(columnFamilyName), SerializationUtils.serialize(key), payload); } catch (Exception e) { throw new HoodieException(e); } }
3.26
hudi_RocksDBDAO_prefixSearch_rdh
/** * Perform a prefix search and return stream of key-value pairs retrieved. * * @param columnFamilyName * Column Family Name * @param prefix * Prefix Key * @param <T> * Type of value stored */ public <T extends Serializable> Stream<Pair<String, T>> prefixSearch(String columnFamilyName, String prefix) { ValidationUtils.checkArgument(!closed); final HoodieTimer timer = HoodieTimer.start(); long timeTakenMicro = 0; List<Pair<String, T>> results = new LinkedList<>(); try (final RocksIterator it = getRocksDB().newIterator(managedHandlesMap.get(columnFamilyName))) {it.seek(getUTF8Bytes(prefix)); while (it.isValid() && new String(it.key()).startsWith(prefix)) { long beginTs = System.nanoTime(); T val = SerializationUtils.deserialize(it.value()); timeTakenMicro += (System.nanoTime() - beginTs) / 1000; results.add(Pair.of(new String(it.key()), val)); it.next(); } } LOG.info((((((((("Prefix Search for (query=" + prefix) + ") on ") + columnFamilyName) + ". Total Time Taken (msec)=") + timer.endTimer()) + ". Serialization Time taken(micro)=") + timeTakenMicro) + ", num entries=") + results.size()); return results.stream(); }
3.26
hudi_RocksDBDAO_deleteInBatch_rdh
/** * Helper to add delete operation in batch. * * @param batch * Batch Handle * @param columnFamilyName * Column Family * @param key * Key */ public <K extends Serializable> void deleteInBatch(WriteBatch batch, String columnFamilyName, K key) { try { batch.delete(managedHandlesMap.get(columnFamilyName), SerializationUtils.serialize(key)); } catch (Exception e) { throw new HoodieException(e); } }
3.26
hudi_RocksDBDAO_writeBatch_rdh
/** * Perform a batch write operation. */ public void writeBatch(BatchHandler handler) { try (WriteBatch batch = new WriteBatch()) { handler.apply(batch); getRocksDB().write(new WriteOptions(), batch); } catch (RocksDBException re) { throw new HoodieException(re); } }
3.26
hudi_RocksDBDAO_close_rdh
/** * Close the DAO object. */ public synchronized void close() { if (!closed) { closed = true; managedHandlesMap.values().forEach(AbstractImmutableNativeReference::close); managedHandlesMap.clear(); managedDescriptorMap.clear(); getRocksDB().close(); try { FileIOUtils.deleteDirectory(new File(rocksDBBasePath)); } catch (IOException e) { throw new HoodieIOException(e.getMessage(), e); } } }
3.26
hudi_RocksDBDAO_dropColumnFamily_rdh
/** * Note : Does not delete from underlying DB. Just closes the handle. * * @param columnFamilyName * Column Family Name */ public void dropColumnFamily(String columnFamilyName) { ValidationUtils.checkArgument(!closed); managedDescriptorMap.computeIfPresent(columnFamilyName, (colFamilyName, descriptor) -> { ColumnFamilyHandle handle = managedHandlesMap.get(colFamilyName); try { getRocksDB().dropColumnFamily(handle); handle.close(); } catch (RocksDBException e) {throw new <e>HoodieException(); } managedHandlesMap.remove(columnFamilyName); return null; }); }
3.26
hudi_RocksDBDAO_getRocksDB_rdh
/** * Create RocksDB if not initialized. */ private RocksDB getRocksDB() {return rocksDB;}
3.26
hudi_RocksDBDAO_addColumnFamily_rdh
/** * Add a new column family to store. * * @param columnFamilyName * Column family name */ public void addColumnFamily(String columnFamilyName) { ValidationUtils.checkArgument(!closed); managedDescriptorMap.computeIfAbsent(columnFamilyName, colFamilyName -> { try {ColumnFamilyDescriptor descriptor = getColumnFamilyDescriptor(StringUtils.getUTF8Bytes(colFamilyName)); ColumnFamilyHandle handle = getRocksDB().createColumnFamily(descriptor); managedHandlesMap.put(colFamilyName, handle); return descriptor; } catch (RocksDBException e) { throw new <e>HoodieException();} });}
3.26
hudi_RocksDBDAO_get_rdh
/** * Retrieve a value for a given key in a column family. * * @param columnFamilyName * Column Family Name * @param key * Key to be retrieved * @param <T> * Type of object stored. */ public <K extends Serializable, T extends Serializable> T get(String columnFamilyName, K key) { ValidationUtils.checkArgument(!closed); try { byte[] val = getRocksDB().get(managedHandlesMap.get(columnFamilyName), SerializationUtils.serialize(key)); return val == null ? null : SerializationUtils.deserialize(val); } catch (Exception e) { throw new HoodieException(e); } }
3.26
hudi_RocksDBDAO_iterator_rdh
/** * Return Iterator of key-value pairs from RocksIterator. * * @param columnFamilyName * Column Family Name * @param <T> * Type of value stored */ public <T extends Serializable> Iterator<T> iterator(String columnFamilyName) { return new IteratorWrapper<>(getRocksDB().newIterator(managedHandlesMap.get(columnFamilyName))); }
3.26
hudi_RocksDBDAO_prefixDelete_rdh
/** * Perform a prefix delete and return stream of key-value pairs retrieved. * * @param columnFamilyName * Column Family Name * @param prefix * Prefix Key * @param <T> * Type of value stored */ public <T extends Serializable> void prefixDelete(String columnFamilyName, String prefix) { ValidationUtils.checkArgument(!closed); LOG.info((("Prefix DELETE (query=" + prefix) + ") on ") + columnFamilyName); final RocksIterator it = getRocksDB().newIterator(managedHandlesMap.get(columnFamilyName)); it.seek(getUTF8Bytes(prefix)); // Find first and last keys to be deleted String firstEntry = null; String lastEntry = null; while (it.isValid() && new String(it.key()).startsWith(prefix)) { String result = new String(it.key()); it.next(); if (firstEntry == null) { firstEntry = result; } lastEntry = result; } it.close(); if (null != firstEntry) { try { // This will not delete the last entry getRocksDB().deleteRange(managedHandlesMap.get(columnFamilyName), getUTF8Bytes(firstEntry), getUTF8Bytes(lastEntry)); // Delete the last entry getRocksDB().delete(getUTF8Bytes(lastEntry)); } catch (RocksDBException e) { LOG.error("Got exception performing range delete"); throw new HoodieException(e); } } }
3.26
hudi_RocksDBDAO_loadManagedColumnFamilies_rdh
/** * Helper to load managed column family descriptors. */ private List<ColumnFamilyDescriptor> loadManagedColumnFamilies(DBOptions dbOptions) throws RocksDBException { final List<ColumnFamilyDescriptor> managedColumnFamilies = new ArrayList<>();final Options options = new Options(dbOptions, new ColumnFamilyOptions()); List<byte[]> existing = RocksDB.listColumnFamilies(options, rocksDBBasePath); if (existing.isEmpty()) { LOG.info("No column family found. Loading default"); managedColumnFamilies.add(m0(RocksDB.DEFAULT_COLUMN_FAMILY)); } else { LOG.info("Loading column families :" + existing.stream().map(String::new).collect(Collectors.toList())); managedColumnFamilies.addAll(existing.stream().map(RocksDBDAO::getColumnFamilyDescriptor).collect(Collectors.toList())); } return managedColumnFamilies; }
3.26
hudi_RocksDBDAO_delete_rdh
/** * Perform a single Delete operation. * * @param columnFamilyName * Column Family name * @param key * Key to be deleted */ public <K extends Serializable> void delete(String columnFamilyName, K key) { try { getRocksDB().delete(managedHandlesMap.get(columnFamilyName), SerializationUtils.serialize(key)); } catch (Exception e) { throw new HoodieException(e); } }
3.26
hudi_RocksDBDAO_putInBatch_rdh
/** * Helper to add put operation in batch. * * @param batch * Batch Handle * @param columnFamilyName * Column Family * @param key * Key * @param value * Payload * @param <T> * Type of payload */ public <K extends Serializable, T extends Serializable> void putInBatch(WriteBatch batch, String columnFamilyName, K key, T value) { try { byte[] keyBytes = SerializationUtils.serialize(key); byte[] payload = serializePayload(value); batch.put(managedHandlesMap.get(columnFamilyName), keyBytes, payload);} catch (Exception e) { throw new HoodieException(e); } }
3.26
hudi_ImmutableTriple_getMiddle_rdh
/** * {@inheritDoc } */ @Override public M getMiddle() { return middle; }
3.26
hudi_ImmutableTriple_getLeft_rdh
// ----------------------------------------------------------------------- /** * {@inheritDoc } */ @Override public L getLeft() { return left; }
3.26
hudi_ImmutableTriple_of_rdh
/** * <p> * Obtains an immutable triple of from three objects inferring the generic types. * </p> * * <p> * This factory allows the triple to be created using inference to obtain the generic types. * </p> * * @param <L> * the left element type * @param <M> * the middle element type * @param <R> * the right element type * @param left * the left element, may be null * @param middle * the middle element, may be null * @param right * the right element, may be null * @return a triple formed from the three parameters, not null */ public static <L, M, R> ImmutableTriple<L, M, R> of(final L left, final M middle, final R right) { return new ImmutableTriple<L, M, R>(left, middle, right); }
3.26
hudi_ImmutableTriple_getRight_rdh
/** * {@inheritDoc } */ @Override public R getRight() { return right; }
3.26
hudi_HoodieEmptyRecord_readRecordPayload_rdh
/** * NOTE: This method is declared final to make sure there's no polymorphism and therefore * JIT compiler could perform more aggressive optimizations */ @Override protected final T readRecordPayload(Kryo kryo, Input input) { this.type = kryo.readObject(input, HoodieRecordType.class); this.orderingVal = ((Comparable<?>) (kryo.readClassAndObject(input))); // NOTE: [[EmptyRecord]]'s payload is always null return null; }
3.26
hudi_HoodieEmptyRecord_writeRecordPayload_rdh
/** * NOTE: This method is declared final to make sure there's no polymorphism and therefore * JIT compiler could perform more aggressive optimizations */ @Override protected final void writeRecordPayload(T payload, Kryo kryo, Output output) { kryo.writeObject(output, type); // NOTE: Since [[orderingVal]] is polymorphic we have to write out its class // to be able to properly deserialize it kryo.writeClassAndObject(output, orderingVal); }
3.26
hudi_Pipelines_compact_rdh
/** * The compaction tasks pipeline. * * <p>The compaction plan operator monitors the new compaction plan on the timeline * then distributes the sub-plans to the compaction tasks. The compaction task then * handle over the metadata to commit task for compaction transaction commit. * The whole pipeline looks like the following: * * <pre> * /=== | task1 | ===\ * | plan generation | ===> hash | commit | * \=== | task2 | ===/ * * Note: both the compaction plan generation task and commission task are singleton. * </pre> * * @param conf * The configuration * @param dataStream * The input data stream * @return the compaction pipeline */ public static DataStreamSink<CompactionCommitEvent> compact(Configuration conf, DataStream<Object> dataStream) { DataStreamSink<CompactionCommitEvent> compactionCommitEventDataStream = // make the distribution strategy deterministic to avoid concurrent modifications // on the same bucket files // plan generate must be singleton dataStream.transform("compact_plan_generate", TypeInformation.of(CompactionPlanEvent.class), new CompactionPlanOperator(conf)).setParallelism(1).setMaxParallelism(1).keyBy(plan -> plan.getOperation().getFileGroupId().getFileId()).transform("compact_task", TypeInformation.of(CompactionCommitEvent.class), new CompactOperator(conf)).setParallelism(conf.getInteger(FlinkOptions.COMPACTION_TASKS)).addSink(new CompactionCommitSink(conf)).name("compact_commit").setParallelism(1);// compaction commit should be singleton compactionCommitEventDataStream.getTransformation().setMaxParallelism(1); return compactionCommitEventDataStream; }
3.26
hudi_Pipelines_boundedBootstrap_rdh
/** * Constructs bootstrap pipeline for batch execution mode. * The indexing data set is loaded before the actual data write * in order to support batch UPSERT. */ private static DataStream<HoodieRecord> boundedBootstrap(Configuration conf, RowType rowType, DataStream<RowData> dataStream) { final RowDataKeyGen rowDataKeyGen = RowDataKeyGen.instance(conf, rowType); // shuffle by partition keys dataStream = dataStream.keyBy(rowDataKeyGen::getPartitionPath); return rowDataToHoodieRecord(conf, rowType, dataStream).transform("batch_index_bootstrap", TypeInformation.of(HoodieRecord.class), new BatchBootstrapOperator<>(conf)).setParallelism(conf.getOptional(FlinkOptions.INDEX_BOOTSTRAP_TASKS).orElse(dataStream.getParallelism())).uid(opUID("batch_index_bootstrap", conf)); }
3.26
hudi_Pipelines_bootstrap_rdh
/** * Constructs bootstrap pipeline. * The bootstrap operator loads the existing data index (primary key to file id mapping), * then send the indexing data set to subsequent operator(usually the bucket assign operator). * * @param conf * The configuration * @param rowType * The row type * @param dataStream * The data stream * @param bounded * Whether the source is bounded * @param overwrite * Whether it is insert overwrite */ public static DataStream<HoodieRecord> bootstrap(Configuration conf, RowType rowType, DataStream<RowData> dataStream, boolean bounded, boolean overwrite) { final boolean globalIndex = conf.getBoolean(FlinkOptions.INDEX_GLOBAL_ENABLED); if (overwrite || OptionsResolver.isBucketIndexType(conf)) { return rowDataToHoodieRecord(conf, rowType, dataStream); } else if ((bounded && (!globalIndex)) && OptionsResolver.isPartitionedTable(conf)) { return boundedBootstrap(conf, rowType, dataStream); } else { return streamBootstrap(conf, rowType, dataStream, bounded); } }
3.26
hudi_Pipelines_bulkInsert_rdh
/** * Bulk insert the input dataset at once. * * <p>By default, the input dataset would shuffle by the partition path first then * sort by the partition path before passing around to the write function. * The whole pipeline looks like the following: * * <pre> * | input1 | ===\ /=== |sorter| === | task1 | (p1, p2) * shuffle * | input2 | ===/ \=== |sorter| === | task2 | (p3, p4) * * Note: Both input1 and input2's dataset come from partitions: p1, p2, p3, p4 * </pre> * * <p>The write task switches to new file handle each time it receives a record * from the different partition path, the shuffle and sort would reduce small files. * * <p>The bulk insert should be run in batch execution mode. * * @param conf * The configuration * @param rowType * The input row type * @param dataStream * The input data stream * @return the bulk insert data stream sink */ public static DataStreamSink<Object> bulkInsert(Configuration conf, RowType rowType, DataStream<RowData> dataStream) { WriteOperatorFactory<RowData> operatorFactory = BulkInsertWriteOperator.getFactory(conf, rowType); if (OptionsResolver.isBucketIndexType(conf)) { // TODO support bulk insert for consistent bucket index if (OptionsResolver.isConsistentHashingBucketIndexType(conf)) { throw new HoodieException("Consistent hashing bucket index does not work with bulk insert using FLINK engine. Use simple bucket index or Spark engine."); } String indexKeys = OptionsResolver.getIndexKeyField(conf); int numBuckets = conf.getInteger(FlinkOptions.BUCKET_INDEX_NUM_BUCKETS); BucketIndexPartitioner<HoodieKey> partitioner = new BucketIndexPartitioner<>(numBuckets, indexKeys); RowDataKeyGen keyGen = RowDataKeyGen.instance(conf, rowType); RowType rowTypeWithFileId = BucketBulkInsertWriterHelper.rowTypeWithFileId(rowType); InternalTypeInfo<RowData> typeInfo = InternalTypeInfo.of(rowTypeWithFileId); boolean needFixedFileIdSuffix = OptionsResolver.isNonBlockingConcurrencyControl(conf); Map<String, String> bucketIdToFileId = new HashMap<>(); dataStream = dataStream.partitionCustom(partitioner, keyGen::getHoodieKey).map(record -> BucketBulkInsertWriterHelper.rowWithFileId(bucketIdToFileId, keyGen, record, indexKeys, numBuckets, needFixedFileIdSuffix), typeInfo).setParallelism(conf.getInteger(FlinkOptions.WRITE_TASKS));// same parallelism as write task to avoid shuffle if (conf.getBoolean(FlinkOptions.WRITE_BULK_INSERT_SORT_INPUT)) { SortOperatorGen sortOperatorGen = BucketBulkInsertWriterHelper.getFileIdSorterGen(rowTypeWithFileId);dataStream = dataStream.transform("file_sorter", typeInfo, sortOperatorGen.createSortOperator(conf)).setParallelism(conf.getInteger(FlinkOptions.WRITE_TASKS));// same parallelism as write task to avoid shuffle ExecNodeUtil.setManagedMemoryWeight(dataStream.getTransformation(), (conf.getInteger(FlinkOptions.WRITE_SORT_MEMORY) * 1024L) * 1024L); } return dataStream.transform(opName("bucket_bulk_insert", conf), TypeInformation.of(Object.class), operatorFactory).uid(opUID("bucket_bulk_insert", conf)).setParallelism(conf.getInteger(FlinkOptions.WRITE_TASKS)).addSink(DummySink.INSTANCE).name("dummy");} final String[] v10 = FilePathUtils.extractPartitionKeys(conf); if (v10.length > 0) { RowDataKeyGen rowDataKeyGen = RowDataKeyGen.instance(conf, rowType); if (conf.getBoolean(FlinkOptions.WRITE_BULK_INSERT_SHUFFLE_INPUT)) { // shuffle by partition keys // use #partitionCustom instead of #keyBy to avoid duplicate sort operations, // see BatchExecutionUtils#applyBatchExecutionSettings for details. Partitioner<String> partitioner = (key, channels) -> KeyGroupRangeAssignment.assignKeyToParallelOperator(key, KeyGroupRangeAssignment.computeDefaultMaxParallelism(conf.getInteger(FlinkOptions.WRITE_TASKS)), channels); dataStream = dataStream.partitionCustom(partitioner, rowDataKeyGen::getPartitionPath); } if (conf.getBoolean(FlinkOptions.WRITE_BULK_INSERT_SORT_INPUT)) { String[] sortFields = v10; String v14 = "sorter:(partition_key)"; if (conf.getBoolean(FlinkOptions.WRITE_BULK_INSERT_SORT_INPUT_BY_RECORD_KEY)) { String[] recordKeyFields = conf.getString(FlinkOptions.RECORD_KEY_FIELD).split(","); ArrayList<String> sortList = new ArrayList<>(Arrays.asList(v10)); Collections.addAll(sortList, recordKeyFields); sortFields = sortList.toArray(new String[0]); v14 = "sorter:(partition_key, record_key)"; } SortOperatorGen sortOperatorGen = new SortOperatorGen(rowType, sortFields); // sort by partition keys or (partition keys and record keys) dataStream = dataStream.transform(v14, InternalTypeInfo.of(rowType), sortOperatorGen.createSortOperator(conf)).setParallelism(conf.getInteger(FlinkOptions.WRITE_TASKS)); ExecNodeUtil.setManagedMemoryWeight(dataStream.getTransformation(), (conf.getInteger(FlinkOptions.WRITE_SORT_MEMORY) * 1024L) * 1024L); } } return // follow the parallelism of upstream operators to avoid shuffle dataStream.transform(opName("hoodie_bulk_insert_write", conf), TypeInformation.of(Object.class), operatorFactory).setParallelism(conf.getInteger(FlinkOptions.WRITE_TASKS)).addSink(DummySink.INSTANCE).name("dummy"); }
3.26
hudi_Pipelines_rowDataToHoodieRecord_rdh
/** * Transforms the row data to hoodie records. */ public static DataStream<HoodieRecord> rowDataToHoodieRecord(Configuration conf, RowType rowType, DataStream<RowData> dataStream) { return dataStream.map(RowDataToHoodieFunctions.create(rowType, conf), TypeInformation.of(HoodieRecord.class)).setParallelism(dataStream.getParallelism()).name("row_data_to_hoodie_record"); }
3.26
hudi_Pipelines_hoodieStreamWrite_rdh
/** * The streaming write pipeline. * * <p>The input dataset shuffles by the primary key first then * shuffles by the file group ID before passing around to the write function. * The whole pipeline looks like the following: * * <pre> * | input1 | ===\ /=== | bucket assigner | ===\ /=== | task1 | * shuffle(by PK) shuffle(by bucket ID) * | input2 | ===/ \=== | bucket assigner | ===/ \=== | task2 | * * Note: a file group must be handled by one write task to avoid write conflict. * </pre> * * <p>The bucket assigner assigns the inputs to suitable file groups, the write task caches * and flushes the data set to disk. * * @param conf * The configuration * @param dataStream * The input data stream * @return the stream write data stream pipeline */ public static DataStream<Object> hoodieStreamWrite(Configuration conf, DataStream<HoodieRecord> dataStream) { if (OptionsResolver.isBucketIndexType(conf)) { HoodieIndex.BucketIndexEngineType bucketIndexEngineType = OptionsResolver.getBucketEngineType(conf); switch (bucketIndexEngineType) { case SIMPLE : int bucketNum = conf.getInteger(FlinkOptions.BUCKET_INDEX_NUM_BUCKETS); String indexKeyFields = OptionsResolver.getIndexKeyField(conf); BucketIndexPartitioner<HoodieKey> partitioner = new BucketIndexPartitioner<>(bucketNum, indexKeyFields); return dataStream.partitionCustom(partitioner, HoodieRecord::getKey).transform(opName("bucket_write", conf), TypeInformation.of(Object.class), BucketStreamWriteOperator.getFactory(conf)).uid(opUID("bucket_write", conf)).setParallelism(conf.getInteger(FlinkOptions.WRITE_TASKS)); case CONSISTENT_HASHING : if (OptionsResolver.isInsertOverwrite(conf)) { // TODO support insert overwrite for consistent bucket index throw new HoodieException("Consistent hashing bucket index does not work with insert overwrite using FLINK engine. Use simple bucket index or Spark engine."); } return dataStream.transform(opName("consistent_bucket_assigner", conf), TypeInformation.of(HoodieRecord.class), new ProcessOperator<>(new ConsistentBucketAssignFunction(conf))).uid(opUID("consistent_bucket_assigner", conf)).setParallelism(conf.getInteger(FlinkOptions.BUCKET_ASSIGN_TASKS)).keyBy(record -> record.getCurrentLocation().getFileId()).transform(opName("consistent_bucket_write", conf), TypeInformation.of(Object.class), BucketStreamWriteOperator.getFactory(conf)).uid(opUID("consistent_bucket_write", conf)).setParallelism(conf.getInteger(FlinkOptions.WRITE_TASKS)); default : throw new HoodieNotSupportedException("Unknown bucket index engine type: " + bucketIndexEngineType); } } else { WriteOperatorFactory<HoodieRecord> operatorFactory = StreamWriteOperator.getFactory(conf); return // shuffle by fileId(bucket id) // Key-by record key, to avoid multiple subtasks write to a bucket at the same time dataStream.keyBy(HoodieRecord::getRecordKey).transform("bucket_assigner", TypeInformation.of(HoodieRecord.class), new KeyedProcessOperator<>(new BucketAssignFunction<>(conf))).uid(opUID("bucket_assigner", conf)).setParallelism(conf.getInteger(FlinkOptions.BUCKET_ASSIGN_TASKS)).keyBy(record -> record.getCurrentLocation().getFileId()).transform(opName("stream_write", conf), TypeInformation.of(Object.class), operatorFactory).uid(opUID("stream_write", conf)).setParallelism(conf.getInteger(FlinkOptions.WRITE_TASKS)); }}
3.26
hudi_Pipelines_cluster_rdh
/** * The clustering tasks pipeline. * * <p>The clustering plan operator monitors the new clustering plan on the timeline * then distributes the sub-plans to the clustering tasks. The clustering task then * handle over the metadata to commit task for clustering transaction commit. * The whole pipeline looks like the following: * * <pre> * /=== | task1 | ===\ * | plan generation | ===> hash | commit | * \=== | task2 | ===/ * * Note: both the clustering plan generation task and commission task are singleton. * </pre> * * @param conf * The configuration * @param rowType * The input row type * @param dataStream * The input data stream * @return the clustering pipeline */ public static DataStreamSink<ClusteringCommitEvent> cluster(Configuration conf, RowType rowType, DataStream<Object> dataStream) { DataStream<ClusteringCommitEvent> clusteringStream = // plan generate must be singleton // plan generate must be singleton dataStream.transform("cluster_plan_generate", TypeInformation.of(ClusteringPlanEvent.class), new ClusteringPlanOperator(conf)).setParallelism(1).setMaxParallelism(1).keyBy(plan -> // make the distribution strategy deterministic to avoid concurrent modifications // on the same bucket files plan.getClusteringGroupInfo().getOperations().stream().map(ClusteringOperation::getFileId).collect(Collectors.joining())).transform("clustering_task", TypeInformation.of(ClusteringCommitEvent.class), new ClusteringOperator(conf, rowType)).setParallelism(conf.getInteger(FlinkOptions.CLUSTERING_TASKS)); if (OptionsResolver.sortClusteringEnabled(conf)) { ExecNodeUtil.setManagedMemoryWeight(clusteringStream.getTransformation(), (conf.getInteger(FlinkOptions.WRITE_SORT_MEMORY) * 1024L) * 1024L); } DataStreamSink<ClusteringCommitEvent> clusteringCommitEventDataStream = clusteringStream.addSink(new ClusteringCommitSink(conf)).name("clustering_commit").setParallelism(1);// clustering commit should be singleton clusteringCommitEventDataStream.getTransformation().setMaxParallelism(1); return clusteringCommitEventDataStream; }
3.26
hudi_HoodieIngestionService_startIngestion_rdh
/** * Entrypoint to start ingestion. * <p> * Depends on the ingestion mode, this method will * <li>either start a loop as implemented in {@link #startService()} for continuous mode * <li>or do one-time ingestion as implemented in {@link #ingestOnce()} for non-continuous mode */ public void startIngestion() { if (ingestionConfig.getBoolean(INGESTION_IS_CONTINUOUS)) { LOG.info("Ingestion service starts running in continuous mode"); start(this::onIngestionCompletes); try { waitForShutdown(); } catch (Exception e) { throw new HoodieIngestionException("Ingestion service was shut down with exception.", e); } LOG.info("Ingestion service (continuous mode) has been shut down."); } else { LOG.info("Ingestion service starts running in run-once mode"); ingestOnce(); LOG.info("Ingestion service (run-once mode) has been shut down."); } }
3.26
hudi_HoodieIngestionService_onIngestionCompletes_rdh
/** * A callback method to be invoked after ingestion completes. * <p> * For continuous mode, this is invoked once after exiting the ingestion loop. */ protected boolean onIngestionCompletes(boolean hasError) { return true; }
3.26
hudi_HoodieIngestionService_requestShutdownIfNeeded_rdh
/** * To determine if shutdown should be requested to allow gracefully terminate the ingestion in continuous mode. * <p> * Subclasses should implement the logic to make the decision. If the shutdown condition is met, the implementation * should call {@link #shutdown(boolean)} to indicate the request. * * @see PostWriteTerminationStrategy */ protected boolean requestShutdownIfNeeded(Option<HoodieData<WriteStatus>> lastWriteStatus) { return false; }
3.26
hudi_HoodieIngestionService_startService_rdh
/** * The main loop for running ingestion in continuous mode. */ @Overrideprotected Pair<CompletableFuture, ExecutorService> startService() { ExecutorService executor = Executors.newFixedThreadPool(1); return Pair.of(CompletableFuture.supplyAsync(() -> { try { while (!isShutdownRequested()) { long ingestionStartEpochMillis = System.currentTimeMillis(); ingestOnce(); boolean requested = requestShutdownIfNeeded(Option.empty()); if (!requested) { sleepBeforeNextIngestion(ingestionStartEpochMillis); } } } finally { executor.shutdownNow(); } return true; }, executor), executor); }
3.26
hudi_WriteMetadataEvent_builder_rdh
/** * Returns the builder for {@link WriteMetadataEvent}. */ public static Builder builder() { return new Builder();}
3.26
hudi_WriteMetadataEvent_mergeWith_rdh
/** * Merges this event with given {@link WriteMetadataEvent} {@code other}. * * @param other * The event to be merged */ public void mergeWith(WriteMetadataEvent other) { ValidationUtils.checkArgument(this.taskID == other.taskID); // the instant time could be monotonically increasing this.instantTime = other.instantTime; this.lastBatch |= other.lastBatch;// true if one of the event lastBatch is true List<WriteStatus> statusList = new ArrayList<>(); statusList.addAll(this.writeStatuses); statusList.addAll(other.writeStatuses); this.writeStatuses = statusList; }
3.26
hudi_WriteMetadataEvent_isReady_rdh
/** * Returns whether the event is ready to commit. */ public boolean isReady(String currentInstant) { return lastBatch && this.instantTime.equals(currentInstant); }
3.26
hudi_WriteMetadataEvent_emptyBootstrap_rdh
// ------------------------------------------------------------------------- // Utilities // ------------------------------------------------------------------------- /** * Creates empty bootstrap event for task {@code taskId}. * * <p>The event indicates that the new instant can start directly, * there is no old instant write statuses to recover. */ public static WriteMetadataEvent emptyBootstrap(int taskId) { return WriteMetadataEvent.builder().taskID(taskId).m0(BOOTSTRAP_INSTANT).writeStatus(Collections.emptyList()).bootstrap(true).build(); }
3.26
hudi_HoodieAvroUtils_needsRewriteToString_rdh
/** * Helper for recordNeedsRewriteForExtendedAvroSchemaEvolution. Returns true if schema type is * int, long, float, double, or bytes because avro doesn't support evolution from those types to * string so some intervention is needed */ private static boolean needsRewriteToString(Schema schema) { switch (schema.getType()) { case INT : case LONG : case FLOAT : case DOUBLE : case BYTES : return true; default : return false; } }
3.26
hudi_HoodieAvroUtils_getRecordKeyPartitionPathSchema_rdh
/** * Fetch schema for record key and partition path. */ public static Schema getRecordKeyPartitionPathSchema() { List<Schema.Field> toBeAddedFields = new ArrayList<>(); Schema recordSchema = Schema.createRecord("HoodieRecordKey", "", "", false); Schema.Field recordKeyField = new Schema.Field(HoodieRecord.RECORD_KEY_METADATA_FIELD, METADATA_FIELD_SCHEMA, "", JsonProperties.NULL_VALUE); Schema.Field v30 = new Schema.Field(HoodieRecord.PARTITION_PATH_METADATA_FIELD, METADATA_FIELD_SCHEMA, "", JsonProperties.NULL_VALUE); toBeAddedFields.add(recordKeyField); toBeAddedFields.add(v30); recordSchema.setFields(toBeAddedFields); return recordSchema; }
3.26
hudi_HoodieAvroUtils_wrapValueIntoAvro_rdh
/** * Wraps a value into Avro type wrapper. * * @param value * Java value. * @return A wrapped value with Avro type wrapper. */ public static Object wrapValueIntoAvro(Comparable<?> value) { if (value == null) { return null;} else if ((value instanceof Date) || (value instanceof LocalDate)) { // NOTE: Due to breaking changes in code-gen b/w Avro 1.8.2 and 1.10, we can't // rely on logical types to do proper encoding of the native Java types, // and hereby have to encode value manually LocalDate localDate = (value instanceof LocalDate) ? ((LocalDate) (value)) : ((Date) (value)).toLocalDate(); return DateWrapper.newBuilder(DATE_WRAPPER_BUILDER_STUB.get()).setValue(((int) (localDate.toEpochDay()))).build(); } else if (value instanceof BigDecimal) { Schema valueSchema = DecimalWrapper.SCHEMA$.getField("value").schema(); BigDecimal upcastDecimal = tryUpcastDecimal(((BigDecimal) (value)), ((LogicalTypes.Decimal) (valueSchema.getLogicalType()))); return DecimalWrapper.newBuilder(DECIMAL_WRAPPER_BUILDER_STUB.get()).setValue(AVRO_DECIMAL_CONVERSION.toBytes(upcastDecimal, valueSchema, valueSchema.getLogicalType())).build(); } else if (value instanceof Timestamp) { // NOTE: Due to breaking changes in code-gen b/w Avro 1.8.2 and 1.10, we can't // rely on logical types to do proper encoding of the native Java types, // and hereby have to encode value manually Instant instant = ((Timestamp) (value)).toInstant(); return TimestampMicrosWrapper.newBuilder(TIMESTAMP_MICROS_WRAPPER_BUILDER_STUB.get()).setValue(instantToMicros(instant)).build(); } else if (value instanceof Boolean) { return BooleanWrapper.newBuilder(BOOLEAN_WRAPPER_BUILDER_STUB.get()).setValue(((Boolean) (value))).build(); } else if (value instanceof Integer) { return IntWrapper.newBuilder(INT_WRAPPER_BUILDER_STUB.get()).setValue(((Integer) (value))).build(); } else if (value instanceof Long) { return LongWrapper.newBuilder(LONG_WRAPPER_BUILDER_STUB.get()).setValue(((Long) (value))).build(); } else if (value instanceof Float) {return FloatWrapper.newBuilder(FLOAT_WRAPPER_BUILDER_STUB.get()).setValue(((Float) (value))).build(); } else if (value instanceof Double) { return DoubleWrapper.newBuilder(DOUBLE_WRAPPER_BUILDER_STUB.get()).setValue(((Double) (value))).build(); } else if (value instanceof ByteBuffer) { return BytesWrapper.newBuilder(BYTES_WRAPPER_BUILDER_STUB.get()).setValue(((ByteBuffer) (value))).build(); } else if ((value instanceof String) || (value instanceof Utf8)) { return StringWrapper.newBuilder(STRING_WRAPPER_BUILDER_STUB.get()).setValue(value.toString()).build(); } else { throw new UnsupportedOperationException(String.format("Unsupported type of the value (%s)", value.getClass())); } }
3.26
hudi_HoodieAvroUtils_jsonBytesToAvro_rdh
/** * Convert json bytes back into avro record. */ public static GenericRecord jsonBytesToAvro(byte[] bytes, Schema schema) throws IOException {ByteArrayInputStream bio = new ByteArrayInputStream(bytes); JsonDecoder jsonDecoder = DecoderFactory.get().jsonDecoder(schema, bio); GenericDatumReader<GenericRecord> reader = new GenericDatumReader<>(schema); return reader.read(null, jsonDecoder); }
3.26
hudi_HoodieAvroUtils_getNestedFieldValAsString_rdh
/** * Obtain value of the provided field as string, denoted by dot notation. e.g: a.b.c */ public static String getNestedFieldValAsString(GenericRecord record, String fieldName, boolean returnNullIfNotFound, boolean consistentLogicalTimestampEnabled) { Object obj = getNestedFieldVal(record, fieldName, returnNullIfNotFound, consistentLogicalTimestampEnabled); return StringUtils.objToString(obj); }
3.26
hudi_HoodieAvroUtils_generateProjectionSchema_rdh
/** * Generate a reader schema off the provided writeSchema, to just project out the provided columns. */ public static Schema generateProjectionSchema(Schema originalSchema, List<String> fieldNames) { Map<String, Field> schemaFieldsMap = originalSchema.getFields().stream().map(r -> Pair.of(r.name().toLowerCase(), r)).collect(Collectors.toMap(Pair::getLeft, Pair::getRight)); List<Schema.Field> projectedFields = new ArrayList<>(); for (String fn : fieldNames) { Schema.Field field = schemaFieldsMap.get(fn.toLowerCase()); if (field == null) { throw new HoodieException(((("Field " + fn) + " not found in log schema. Query cannot proceed! ") + "Derived Schema Fields: ") + new ArrayList<>(schemaFieldsMap.keySet())); } else { projectedFields.add(new Schema.Field(field.name(), field.schema(), field.doc(), field.defaultVal())); } } Schema projectedSchema = Schema.createRecord(originalSchema.getName(), originalSchema.getDoc(), originalSchema.getNamespace(), originalSchema.isError()); projectedSchema.setFields(projectedFields); return projectedSchema; }
3.26
hudi_HoodieAvroUtils_toJavaDate_rdh
/** * convert days to Date * <p> * NOTE: This method could only be used in tests * * @VisibleForTesting */ public static Date toJavaDate(int days) { LocalDate date = LocalDate.ofEpochDay(days); ZoneId defaultZoneId = ZoneId.systemDefault(); ZonedDateTime zonedDateTime = date.atStartOfDay(defaultZoneId); return new Date(zonedDateTime.toInstant().toEpochMilli()); }
3.26
hudi_HoodieAvroUtils_convertValueForSpecificDataTypes_rdh
/** * This method converts values for fields with certain Avro/Parquet data types that require special handling. * * @param fieldSchema * avro field schema * @param fieldValue * avro field value * @return field value either converted (for certain data types) or as it is. */ public static Object convertValueForSpecificDataTypes(Schema fieldSchema, Object fieldValue, boolean consistentLogicalTimestampEnabled) { if (fieldSchema == null) { return fieldValue; } else if (fieldValue == null) { checkState(isNullable(fieldSchema)); return null; } return convertValueForAvroLogicalTypes(resolveNullableSchema(fieldSchema), fieldValue, consistentLogicalTimestampEnabled); }
3.26
hudi_HoodieAvroUtils_rewriteRecord_rdh
/** * Given an Avro record with a given schema, rewrites it into the new schema while setting fields only from the new * schema. * <p> * NOTE: This method is rewriting every record's field that is record itself recursively. It's * caller's responsibility to make sure that no unnecessary re-writing occurs (by preemptively * checking whether the record does require re-writing to adhere to the new schema) * <p> * NOTE: Here, the assumption is that you cannot go from an evolved schema (schema with (N) fields) * to an older schema (schema with (N-1) fields). All fields present in the older record schema MUST be present in the * new schema and the default/existing values are carried over. * <p> * This particular method does the following: * <ol> * <li>Create a new empty GenericRecord with the new schema.</li> * <li>For GenericRecord, copy over the data from the old schema to the new schema or set default values for all * fields of this transformed schema</li> * <li>For SpecificRecord, hoodie_metadata_fields have a special treatment (see below)</li> * </ol> * <p> * For SpecificRecord we ignore Hudi Metadata fields, because for code generated * avro classes (HoodieMetadataRecord), the avro record is a SpecificBaseRecord type instead of a GenericRecord. * SpecificBaseRecord throws null pointer exception for record.get(name) if name is not present in the schema of the * record (which happens when converting a SpecificBaseRecord without hoodie_metadata_fields to a new record with it). * In this case, we do NOT set the defaults for the hoodie_metadata_fields explicitly, instead, the new record assumes * the default defined in the avro schema itself. * TODO: See if we can always pass GenericRecord instead of SpecificBaseRecord in some cases. */ public static GenericRecord rewriteRecord(GenericRecord oldRecord, Schema newSchema) { GenericRecord newRecord = new GenericData.Record(newSchema); boolean isSpecificRecord = oldRecord instanceof SpecificRecordBase; for (Schema.Field f : newSchema.getFields()) { if (!(isSpecificRecord && isMetadataField(f.name()))) { copyOldValueOrSetDefault(oldRecord, newRecord, f); } } return newRecord; }
3.26
hudi_HoodieAvroUtils_recordToBytes_rdh
/** * TODO serialize other type of record. */ public static Option<byte[]> recordToBytes(HoodieRecord record, Schema schema) throws IOException {return Option.of(HoodieAvroUtils.indexedRecordToBytes(record.toIndexedRecord(schema, new Properties()).get().getData())); }
3.26
hudi_HoodieAvroUtils_avroToJson_rdh
/** * Convert a given avro record to json and return the encoded bytes. * * @param record * The GenericRecord to convert * @param pretty * Whether to pretty-print the json output */ public static byte[] avroToJson(GenericRecord record, boolean pretty) throws IOException { DatumWriter<Object> writer = new GenericDatumWriter<>(record.getSchema()); ByteArrayOutputStream out = new ByteArrayOutputStream(); JsonEncoder jsonEncoder = EncoderFactory.get().jsonEncoder(record.getSchema(), out, pretty); writer.write(record, jsonEncoder); jsonEncoder.flush(); return out.toByteArray(); }
3.26
hudi_HoodieAvroUtils_avroToBytes_rdh
/** * Convert a given avro record to bytes. */ public static byte[] avroToBytes(GenericRecord record) { return indexedRecordToBytes(record); }
3.26
hudi_HoodieAvroUtils_rewriteEvolutionRecordWithMetadata_rdh
// TODO Unify the logical of rewriteRecordWithMetadata and rewriteEvolutionRecordWithMetadata, and delete this function. public static GenericRecord rewriteEvolutionRecordWithMetadata(GenericRecord genericRecord, Schema newSchema, String fileName) { GenericRecord newRecord = HoodieAvroUtils.rewriteRecordWithNewSchema(genericRecord, newSchema, new HashMap<>()); // do not preserve FILENAME_METADATA_FIELD newRecord.put(HoodieRecord.FILENAME_META_FIELD_ORD, fileName); return newRecord; }
3.26
hudi_HoodieAvroUtils_bytesToAvro_rdh
/** * Convert serialized bytes back into avro record. */ public static GenericRecord bytesToAvro(byte[] bytes, Schema writerSchema, Schema readerSchema) throws IOException { BinaryDecoder decoder = DecoderFactory.get().binaryDecoder(bytes, BINARY_DECODER.get()); BINARY_DECODER.set(decoder); GenericDatumReader<GenericRecord> reader = new GenericDatumReader<>(writerSchema, readerSchema); return reader.read(null, decoder); }
3.26
hudi_HoodieAvroUtils_fromJavaDate_rdh
/** * convert Date to days * <p> * NOTE: This method could only be used in tests * * @VisibleForTesting */ public static int fromJavaDate(Date date) { long millisUtc = date.getTime(); long millisLocal = millisUtc + TimeZone.getDefault().getOffset(millisUtc); int julianDays = Math.toIntExact(Math.floorDiv(millisLocal, MILLIS_PER_DAY)); return julianDays; }
3.26
hudi_HoodieAvroUtils_addMetadataFields_rdh
/** * Adds the Hoodie metadata fields to the given schema. * * @param schema * The schema * @param withOperationField * Whether to include the '_hoodie_operation' field */ public static Schema addMetadataFields(Schema schema, boolean withOperationField) { int newFieldsSize = HoodieRecord.HOODIE_META_COLUMNS.size() + (withOperationField ? 1 : 0); List<Schema.Field> parentFields = new ArrayList<>(schema.getFields().size() + newFieldsSize); Schema.Field commitTimeField = new Schema.Field(HoodieRecord.COMMIT_TIME_METADATA_FIELD, METADATA_FIELD_SCHEMA, "", JsonProperties.NULL_VALUE); Schema.Field commitSeqnoField = new Schema.Field(HoodieRecord.COMMIT_SEQNO_METADATA_FIELD, METADATA_FIELD_SCHEMA, "", JsonProperties.NULL_VALUE); Schema.Field recordKeyField = new Schema.Field(HoodieRecord.RECORD_KEY_METADATA_FIELD, METADATA_FIELD_SCHEMA, "", JsonProperties.NULL_VALUE); Schema.Field partitionPathField = new Schema.Field(HoodieRecord.PARTITION_PATH_METADATA_FIELD, METADATA_FIELD_SCHEMA, "", JsonProperties.NULL_VALUE); Schema.Field v17 = new Schema.Field(HoodieRecord.FILENAME_METADATA_FIELD, METADATA_FIELD_SCHEMA, "", JsonProperties.NULL_VALUE);parentFields.add(commitTimeField); parentFields.add(commitSeqnoField); parentFields.add(recordKeyField); parentFields.add(partitionPathField); parentFields.add(v17); if (withOperationField) {final Schema.Field operationField = new Schema.Field(HoodieRecord.OPERATION_METADATA_FIELD, METADATA_FIELD_SCHEMA, "", JsonProperties.NULL_VALUE); parentFields.add(operationField); } for (Schema.Field field : schema.getFields()) { if (!isMetadataField(field.name())) {Schema.Field newField = new Schema.Field(field.name(), field.schema(), field.doc(), field.defaultVal()); for (Map.Entry<String, Object> prop : field.getObjectProps().entrySet()) { newField.addProp(prop.getKey(), prop.getValue()); } parentFields.add(newField); } } Schema mergedSchema = Schema.createRecord(schema.getName(), schema.getDoc(), schema.getNamespace(), false); mergedSchema.setFields(parentFields); return mergedSchema; }
3.26
hudi_HoodieAvroUtils_getNestedFieldVal_rdh
/** * Obtain value of the provided field, denoted by dot notation. e.g: a.b.c */ public static Object getNestedFieldVal(GenericRecord record, String fieldName, boolean returnNullIfNotFound, boolean consistentLogicalTimestampEnabled) { String[] parts = fieldName.split("\\."); GenericRecord valueNode = record; for (int i = 0; i < parts.length; i++) { String part = parts[i]; Object val; try { val = HoodieAvroUtils.getFieldVal(valueNode, part, returnNullIfNotFound); } catch (AvroRuntimeException e) { if (returnNullIfNotFound) { return null; } else { throw new HoodieException((((fieldName + "(Part -") + parts[i]) + ") field not found in record. Acceptable fields were :") + valueNode.getSchema().getFields().stream().map(Field::name).collect(Collectors.toList())); } } if (i == (parts.length - 1)) { // return, if last part of name if (val == null) { return null; } else { Schema fieldSchema = valueNode.getSchema().getField(part).schema(); return convertValueForSpecificDataTypes(fieldSchema, val, consistentLogicalTimestampEnabled); } } else if (!(val instanceof GenericRecord)) { if (returnNullIfNotFound) { return null; } else { throw new HoodieException("Cannot find a record at part value :" + part); } } else { valueNode = ((GenericRecord) (val)); }} // This can only be reached if the length of parts is 0 if (returnNullIfNotFound) {return null;} else { throw new HoodieException((fieldName + " field not found in record. Acceptable fields were :") + valueNode.getSchema().getFields().stream().map(Field::name).collect(Collectors.toList())); } }
3.26
hudi_HoodieAvroUtils_recordNeedsRewriteForExtendedAvroTypePromotion_rdh
/** * Avro does not support type promotion from numbers to string. This function returns true if * it will be necessary to rewrite the record to support this promotion. * NOTE: this does not determine whether the writerSchema and readerSchema are compatible. * It is just trying to find if the reader expects a number to be promoted to string, as quick as possible. */ public static boolean recordNeedsRewriteForExtendedAvroTypePromotion(Schema writerSchema, Schema readerSchema) { if (writerSchema.equals(readerSchema)) { return false; } switch (readerSchema.getType()) { case RECORD : Map<String, Schema.Field> v112 = new HashMap<>(); for (Schema.Field field : writerSchema.getFields()) { v112.put(field.name(), field); } for (Schema.Field field : readerSchema.getFields()) { if (v112.containsKey(field.name())) { if (recordNeedsRewriteForExtendedAvroTypePromotion(v112.get(field.name()).schema(), field.schema())) { return true; } } } return false; case ARRAY : if (writerSchema.getType().equals(ARRAY)) { return recordNeedsRewriteForExtendedAvroTypePromotion(writerSchema.getElementType(), readerSchema.getElementType()); } return false; case MAP : if (writerSchema.getType().equals(MAP)) { return recordNeedsRewriteForExtendedAvroTypePromotion(writerSchema.getValueType(), readerSchema.getValueType()); } return false; case UNION : return recordNeedsRewriteForExtendedAvroTypePromotion(getActualSchemaFromUnion(writerSchema, null), getActualSchemaFromUnion(readerSchema, null)); case ENUM : case STRING : case BYTES : return needsRewriteToString(writerSchema); default : return false;} }
3.26
hudi_HoodieAvroUtils_getNestedFieldSchemaFromRecord_rdh
/** * Get schema for the given field and record. Field can be nested, denoted by dot notation. e.g: a.b.c * * @param record * - record containing the value of the given field * @param fieldName * - name of the field * @return */ public static Schema getNestedFieldSchemaFromRecord(GenericRecord record, String fieldName) { String[] parts = fieldName.split("\\."); GenericRecord valueNode = record; int i = 0; for (; i < parts.length; i++) { String part = parts[i]; Object val = valueNode.get(part); if (i == (parts.length - 1)) { return resolveNullableSchema(valueNode.getSchema().getField(part).schema()); } else { if (!(val instanceof GenericRecord)) { throw new HoodieException("Cannot find a record at part value :" + part); } valueNode = ((GenericRecord) (val)); } } throw new HoodieException("Failed to get schema. Not a valid field name: " + fieldName); }
3.26
hudi_HoodieAvroUtils_getNestedFieldSchemaFromWriteSchema_rdh
/** * Get schema for the given field and write schema. Field can be nested, denoted by dot notation. e.g: a.b.c * Use this method when record is not available. Otherwise, prefer to use {@link #getNestedFieldSchemaFromRecord(GenericRecord, String)} * * @param writeSchema * - write schema of the record * @param fieldName * - name of the field * @return */ public static Schema getNestedFieldSchemaFromWriteSchema(Schema writeSchema, String fieldName) { String[] parts = fieldName.split("\\."); int v70 = 0; for (; v70 < parts.length; v70++) { String part = parts[v70]; Schema v72 = writeSchema.getField(part).schema(); if (v70 == (parts.length - 1)) { return resolveNullableSchema(v72); } } throw new HoodieException("Failed to get schema. Not a valid field name: " + fieldName); } /** * Returns the string value of the given record {@code rec} and field {@code fieldName}
3.26
hudi_HoodieAvroUtils_getRootLevelFieldName_rdh
/** * Obtain the root-level field name of a full field name, possibly a nested field. * For example, given "a.b.c", the output is "a"; given "a", the output is "a". * * @param fieldName * The field name. * @return Root-level field name */ public static String getRootLevelFieldName(String fieldName) { return fieldName.split("\\.")[0]; }
3.26
hudi_HoodieAvroUtils_addCommitMetadataToRecord_rdh
/** * Adds the Hoodie commit metadata into the provided Generic Record. */ public static GenericRecord addCommitMetadataToRecord(GenericRecord record, String instantTime, String commitSeqno) { record.put(HoodieRecord.COMMIT_TIME_METADATA_FIELD, instantTime); record.put(HoodieRecord.COMMIT_SEQNO_METADATA_FIELD, commitSeqno); return record; }
3.26
hudi_HoodieAvroUtils_rewriteRecords_rdh
/** * Converts list of {@link GenericRecord} provided into the {@link GenericRecord} adhering to the * provided {@code newSchema}. * <p> * To better understand conversion rules please check {@link #rewriteRecord(GenericRecord, Schema)} */ public static List<GenericRecord> rewriteRecords(List<GenericRecord> records, Schema newSchema) { return records.stream().map(r -> rewriteRecord(r, newSchema)).collect(Collectors.toList()); }
3.26
hudi_HoodieAvroUtils_getRecordColumnValues_rdh
/** * Gets record column values into one object. * * @param record * Hoodie record. * @param columns * Names of the columns to get values. * @param schema * {@link SerializableSchema} instance. * @return Column value if a single column, or concatenated String values by comma. */ public static Object getRecordColumnValues(HoodieRecord record, String[] columns, SerializableSchema schema, boolean consistentLogicalTimestampEnabled) { return getRecordColumnValues(record, columns, schema.get(), consistentLogicalTimestampEnabled); }
3.26
hudi_HoodieAvroUtils_getFieldVal_rdh
/** * Obtain value of the provided key, when set returnNullIfNotFound false, * it is consistent with avro after 1.10 */ public static Object getFieldVal(GenericRecord record, String key, boolean returnNullIfNotFound) { Schema.Field v56 = record.getSchema().getField(key); if (v56 == null) { if (returnNullIfNotFound) { return null; } else { // Since avro 1.10, arvo will throw AvroRuntimeException("Not a valid schema field: " + key) // rather than return null like the previous version if record doesn't contain this key. // Here we simulate this behavior. throw new AvroRuntimeException("Not a valid schema field: " + key); } } else { return record.get(v56.pos()); } }
3.26
hudi_HoodieAvroUtils_unwrapAvroValueWrapper_rdh
/** * Unwraps Avro value wrapper into Java value. * * @param avroValueWrapper * A wrapped value with Avro type wrapper. * @return Java value. */public static Comparable<?> unwrapAvroValueWrapper(Object avroValueWrapper) { if (avroValueWrapper == null) { return null; } else if (avroValueWrapper instanceof DateWrapper) { return LocalDate.ofEpochDay(((DateWrapper) (avroValueWrapper)).getValue()); } else if (avroValueWrapper instanceof DecimalWrapper) { Schema valueSchema = DecimalWrapper.SCHEMA$.getField("value").schema(); return AVRO_DECIMAL_CONVERSION.fromBytes(((DecimalWrapper) (avroValueWrapper)).getValue(), valueSchema, valueSchema.getLogicalType()); } else if (avroValueWrapper instanceof TimestampMicrosWrapper) { return microsToInstant(((TimestampMicrosWrapper) (avroValueWrapper)).getValue()); } else if (avroValueWrapper instanceof BooleanWrapper) { return ((BooleanWrapper) (avroValueWrapper)).getValue(); } else if (avroValueWrapper instanceof IntWrapper) { return ((IntWrapper) (avroValueWrapper)).getValue(); } else if (avroValueWrapper instanceof LongWrapper) { return ((LongWrapper) (avroValueWrapper)).getValue(); } else if (avroValueWrapper instanceof FloatWrapper) { return ((FloatWrapper) (avroValueWrapper)).getValue(); } else if (avroValueWrapper instanceof DoubleWrapper) { return ((DoubleWrapper) (avroValueWrapper)).getValue(); } else if (avroValueWrapper instanceof BytesWrapper) { return ((BytesWrapper) (avroValueWrapper)).getValue(); } else if (avroValueWrapper instanceof StringWrapper) { return ((StringWrapper) (avroValueWrapper)).getValue(); } else if (avroValueWrapper instanceof GenericRecord) { // NOTE: This branch could be hit b/c Avro records could be reconstructed // as {@code GenericRecord) // TODO add logical type decoding GenericRecord v128 = ((GenericRecord) (avroValueWrapper)); return ((Comparable<?>) (v128.get("value"))); } else { throw new UnsupportedOperationException(String.format("Unsupported type of the value (%s)", avroValueWrapper.getClass())); } } }
3.26
hudi_HoodieAvroUtils_removeFields_rdh
/** * Given an Avro record and list of columns to remove, this method removes the list of columns from * the given avro record using rewriteRecord method. * <p> * To better understand how it removes please check {@link #rewriteRecord(GenericRecord, Schema)} */ public static GenericRecord removeFields(GenericRecord record, Set<String> fieldsToRemove) { Schema newSchema = removeFields(record.getSchema(), fieldsToRemove); return rewriteRecord(record, newSchema); }
3.26
hudi_HoodieAvroUtils_rewriteRecordWithNewSchema_rdh
/** * Given avro records, rewrites them with new schema. * * @param oldRecords * oldRecords to be rewritten * @param newSchema * newSchema used to rewrite oldRecord * @param renameCols * a map store all rename cols, (k, v)-> (colNameFromNewSchema, colNameFromOldSchema) * @return a iterator of rewritten GenericRecords */ public static Iterator<GenericRecord> rewriteRecordWithNewSchema(Iterator<GenericRecord> oldRecords, Schema newSchema, Map<String, String> renameCols, boolean validate) { if ((oldRecords == null) || (newSchema == null)) { return Collections.emptyIterator();} return new Iterator<GenericRecord>() { @Override public boolean hasNext() { return oldRecords.hasNext(); } @Override public GenericRecord next() { return rewriteRecordWithNewSchema(oldRecords.next(), newSchema, renameCols, validate); } }; }
3.26
hudi_HoodieAvroUtils_convertValueForAvroLogicalTypes_rdh
/** * This method converts values for fields with certain Avro Logical data types that require special handling. * <p> * Logical Date Type is converted to actual Date value instead of Epoch Integer which is how it is * represented/stored in parquet. * <p> * Decimal Data Type is converted to actual decimal value instead of bytes/fixed which is how it is * represented/stored in parquet. * * @param fieldSchema * avro field schema * @param fieldValue * avro field value * @return field value either converted (for certain data types) or as it is. */ private static Object convertValueForAvroLogicalTypes(Schema fieldSchema, Object fieldValue, boolean consistentLogicalTimestampEnabled) { if (fieldSchema.getLogicalType() == LogicalTypes.date()) { return LocalDate.ofEpochDay(Long.parseLong(fieldValue.toString())); } else if ((fieldSchema.getLogicalType() == LogicalTypes.timestampMillis()) && consistentLogicalTimestampEnabled) { return new Timestamp(Long.parseLong(fieldValue.toString())); } else if ((fieldSchema.getLogicalType() == LogicalTypes.timestampMicros()) && consistentLogicalTimestampEnabled) { return new Timestamp(Long.parseLong(fieldValue.toString()) / 1000); } else if (fieldSchema.getLogicalType() instanceof LogicalTypes.Decimal) { Decimal dc = ((Decimal) (fieldSchema.getLogicalType())); DecimalConversion decimalConversion = new DecimalConversion(); if (fieldSchema.getType() == Type.FIXED) { return decimalConversion.fromFixed(((GenericFixed) (fieldValue)), fieldSchema, LogicalTypes.decimal(dc.getPrecision(), dc.getScale())); } else if (fieldSchema.getType() == Type.BYTES) { ByteBuffer byteBuffer = ((ByteBuffer) (fieldValue)); BigDecimal convertedValue = decimalConversion.fromBytes(byteBuffer, fieldSchema, LogicalTypes.decimal(dc.getPrecision(), dc.getScale())); byteBuffer.rewind(); return convertedValue; } } return fieldValue; }
3.26
hudi_HoodieAvroUtils_sanitizeName_rdh
/** * Sanitizes Name according to Avro rule for names. * Removes characters other than the ones mentioned in https://avro.apache.org/docs/current/spec.html#names . * * @param name * input name * @param invalidCharMask * replacement for invalid characters. * @return sanitized name */ public static String sanitizeName(String name, String invalidCharMask) { if (INVALID_AVRO_FIRST_CHAR_IN_NAMES_PATTERN.matcher(name.substring(0, 1)).matches()) {name = INVALID_AVRO_FIRST_CHAR_IN_NAMES_PATTERN.matcher(name).replaceFirst(invalidCharMask); } return INVALID_AVRO_CHARS_IN_NAMES_PATTERN.matcher(name).replaceAll(invalidCharMask); }
3.26