name
stringlengths
12
178
code_snippet
stringlengths
8
36.5k
score
float64
3.26
3.68
hudi_ParquetUtils_filterParquetRowKeys_rdh
/** * Read the rowKey list matching the given filter, from the given parquet file. If the filter is empty, then this will * return all the rowkeys. * * @param filePath * The parquet file path. * @param configuration * configuration to build fs object * @param filter * record keys filter * @param readSchema * schema of columns to be read * @return Set Set of pairs of row key and position matching candidateRecordKeys */ private static Set<Pair<String, Long>> filterParquetRowKeys(Configuration configuration, Path filePath, Set<String> filter, Schema readSchema) { Option<RecordKeysFilterFunction> v1 = Option.empty(); if ((filter != null) && (!filter.isEmpty())) { v1 = Option.of(new RecordKeysFilterFunction(filter)); } Configuration conf = new Configuration(configuration); conf.addResource(FSUtils.getFs(filePath.toString(), conf).getConf()); AvroReadSupport.setAvroReadSchema(conf, readSchema); AvroReadSupport.setRequestedProjection(conf, readSchema); Set<Pair<String, Long>> rowKeys = new HashSet<>(); long rowPosition = 0;try (ParquetReader reader = AvroParquetReader.builder(filePath).withConf(conf).build()) { Object obj = reader.read(); while (obj != null) { if (obj instanceof GenericRecord) { String recordKey = ((GenericRecord) (obj)).get(HoodieRecord.RECORD_KEY_METADATA_FIELD).toString(); if ((!v1.isPresent()) || v1.get().apply(recordKey)) { rowKeys.add(Pair.of(recordKey, rowPosition)); } obj = reader.read(); rowPosition++; } } } catch (IOException e) { throw new HoodieIOException("Failed to read row keys from Parquet " + filePath, e); } // ignore return rowKeys; }
3.26
hudi_ParquetUtils_readRangeFromParquetMetadata_rdh
/** * Parse min/max statistics stored in parquet footers for all columns. */ @SuppressWarnings("rawtype") public List<HoodieColumnRangeMetadata<Comparable>> readRangeFromParquetMetadata(@Nonnull Configuration conf, @Nonnull Path parquetFilePath, @Nonnull List<String> cols) { ParquetMetadata metadata = readMetadata(conf, parquetFilePath); // NOTE: This collector has to have fully specialized generic type params since // Java 1.8 struggles to infer them Collector<HoodieColumnRangeMetadata<Comparable>, ?, Map<String, List<HoodieColumnRangeMetadata<Comparable>>>> groupingByCollector = Collectors.groupingBy(HoodieColumnRangeMetadata::getColumnName); // Collect stats from all individual Parquet blocks Map<String, List<HoodieColumnRangeMetadata<Comparable>>> columnToStatsListMap = ((Map<String, List<HoodieColumnRangeMetadata<Comparable>>>) (metadata.getBlocks().stream().sequential().flatMap(blockMetaData -> blockMetaData.getColumns().stream().filter(f -> cols.contains(f.getPath().toDotString())).map(columnChunkMetaData -> { Statistics stats = columnChunkMetaData.getStatistics(); return // NOTE: In case when column contains only nulls Parquet won't be creating // stats for it instead returning stubbed (empty) object. In that case // we have to equate number of nulls to the value count ourselves HoodieColumnRangeMetadata.<Comparable>create(parquetFilePath.getName(), columnChunkMetaData.getPath().toDotString(), convertToNativeJavaType(columnChunkMetaData.getPrimitiveType(), stats.genericGetMin()), convertToNativeJavaType(columnChunkMetaData.getPrimitiveType(), stats.genericGetMax()), stats.isEmpty() ? columnChunkMetaData.getValueCount() : stats.getNumNulls(), columnChunkMetaData.getValueCount(), columnChunkMetaData.getTotalSize(), columnChunkMetaData.getTotalUncompressedSize()); })).collect(groupingByCollector))); // Combine those into file-level statistics // NOTE: Inlining this var makes javac (1.8) upset (due to its inability to infer // expression type correctly) Stream<HoodieColumnRangeMetadata<Comparable>> stream = columnToStatsListMap.values().stream().map(this::getColumnRangeInFile); return stream.collect(Collectors.toList()); }
3.26
hudi_ParquetUtils_fetchRecordKeysWithPositions_rdh
/** * Fetch {@link HoodieKey}s with row positions from the given parquet file. * * @param configuration * configuration to build fs object * @param filePath * The parquet file path. * @param keyGeneratorOpt * instance of KeyGenerator. * @return {@link List} of pairs of {@link HoodieKey} and row position fetched from the parquet file */ @Override public List<Pair<HoodieKey, Long>> fetchRecordKeysWithPositions(Configuration configuration, Path filePath, Option<BaseKeyGenerator> keyGeneratorOpt) { List<Pair<HoodieKey, Long>> hoodieKeysAndPositions = new ArrayList<>(); long position = 0; try (ClosableIterator<HoodieKey> iterator = m0(configuration, filePath, keyGeneratorOpt)) { while (iterator.hasNext()) {hoodieKeysAndPositions.add(Pair.of(iterator.next(), position)); position++; } return hoodieKeysAndPositions; } }
3.26
hudi_ParquetUtils_getRowCount_rdh
/** * Returns the number of records in the parquet file. * * @param conf * Configuration * @param parquetFilePath * path of the file */ @Override public long getRowCount(Configuration conf, Path parquetFilePath) { ParquetMetadata footer; long rowCount = 0; footer = readMetadata(conf, parquetFilePath); for (BlockMetaData b : footer.getBlocks()) { rowCount += b.getRowCount(); } return rowCount; }
3.26
hudi_FlinkTables_createTable_rdh
/** * Creates the hoodie flink table. * * <p>This expects to be used by driver. */ public static HoodieFlinkTable<?> createTable(Configuration conf) { HoodieWriteConfig writeConfig = FlinkWriteClients.getHoodieClientConfig(conf, true, false); return HoodieFlinkTable.create(writeConfig, HoodieFlinkEngineContext.DEFAULT); }
3.26
hudi_HoodieLSMTimelineManifest_toJsonString_rdh
// ------------------------------------------------------------------------- // Utilities // ------------------------------------------------------------------------- public String toJsonString() throws IOException { return JsonUtils.getObjectMapper().writerWithDefaultPrettyPrinter().writeValueAsString(this); }
3.26
hudi_HoodieWriteStat_setPath_rdh
/** * Set path and tempPath relative to the given basePath. */ public void setPath(Path basePath, Path path) { this.path = path.toString().replace(basePath + "/", ""); }
3.26
hudi_EmbeddedTimelineServerHelper_createEmbeddedTimelineService_rdh
/** * Instantiate Embedded Timeline Server. * * @param context * Hoodie Engine Context * @param config * Hoodie Write Config * @return TimelineServer if configured to run * @throws IOException */ public static Option<EmbeddedTimelineService> createEmbeddedTimelineService(HoodieEngineContext context, HoodieWriteConfig config) throws IOException {if (config.isEmbeddedTimelineServerEnabled()) { Option<String> hostAddr = context.getProperty(EngineProperty.EMBEDDED_SERVER_HOST); EmbeddedTimelineService timelineService = EmbeddedTimelineService.getOrStartEmbeddedTimelineService(context, hostAddr.orElse(null), config); updateWriteConfigWithTimelineServer(timelineService, config); return Option.of(timelineService); } else { return Option.empty(); } }
3.26
hudi_SparkInsertOverwritePartitioner_getSmallFiles_rdh
/** * Returns a list of small files in the given partition path. */ @Override protected List<SmallFile> getSmallFiles(String partitionPath) { // for overwrite, we ignore all existing files. So do not consider any file to be smallFiles return Collections.emptyList(); }
3.26
hudi_CleanPlanActionExecutor_requestClean_rdh
/** * Creates a Cleaner plan if there are files to be cleaned and stores them in instant file. * Cleaner Plan contains absolute file paths. * * @param startCleanTime * Cleaner Instant Time * @return Cleaner Plan if generated */ protected Option<HoodieCleanerPlan> requestClean(String startCleanTime) { final HoodieCleanerPlan cleanerPlan = requestClean(context); Option<HoodieCleanerPlan> option = Option.empty(); if (nonEmpty(cleanerPlan.getFilePathsToBeDeletedPerPartition()) && (cleanerPlan.getFilePathsToBeDeletedPerPartition().values().stream().mapToInt(List::size).sum() > 0)) { // Only create cleaner plan which does some work final HoodieInstant cleanInstant = new HoodieInstant(State.REQUESTED, HoodieTimeline.CLEAN_ACTION, startCleanTime); // Save to both aux and timeline folder try { table.getActiveTimeline().saveToCleanRequested(cleanInstant, TimelineMetadataUtils.serializeCleanerPlan(cleanerPlan)); LOG.info("Requesting Cleaning with instant time " + cleanInstant); } catch (IOException e) { LOG.error("Got exception when saving cleaner requested file", e); throw new HoodieIOException(e.getMessage(), e); } option = Option.of(cleanerPlan); } return option; }
3.26
hudi_HoodieDataBlock_list2Iterator_rdh
/** * Converts the given list to closable iterator. */ static <T> ClosableIterator<T> list2Iterator(List<T> list) { Iterator<T> iterator = list.iterator(); return new ClosableIterator<T>() { @Override public void close() { // ignored } @Override public boolean hasNext() { return iterator.hasNext(); } @Override public T next() { return iterator.next(); } }; }
3.26
hudi_HoodieDataBlock_getRecordIterator_rdh
/** * Batch get of keys of interest. Implementation can choose to either do full scan and return matched entries or * do a seek based parsing and return matched entries. * * @param keys * keys of interest. * @return List of IndexedRecords for the keys of interest. * @throws IOException * in case of failures encountered when reading/parsing records */ public final <T> ClosableIterator<HoodieRecord<T>> getRecordIterator(List<String> keys, boolean fullKey, HoodieRecordType type) throws IOException { boolean fullScan = keys.isEmpty(); if (enablePointLookups && (!fullScan)) { return lookupRecords(keys, fullKey); } // Otherwise, we fetch all the records and filter out all the records, but the // ones requested ClosableIterator<HoodieRecord<T>> allRecords = getRecordIterator(type); if (fullScan) { return allRecords; } HashSet<String> keySet = new HashSet<>(keys); return FilteringIterator.getInstance(allRecords, keySet, fullKey, this::getRecordKey); }
3.26
hudi_HoodieDataBlock_getEngineRecordIterator_rdh
/** * Batch get of keys of interest. Implementation can choose to either do full scan and return matched entries or * do a seek based parsing and return matched entries. * * @param readerContext * {@link HoodieReaderContext} instance with type T. * @param keys * Keys of interest. * @param fullKey * Whether the key is full or not. * @param <T> * The type of engine-specific record representation to return. * @return An iterator containing the records of interest in specified type. */ public final <T> ClosableIterator<T> getEngineRecordIterator(HoodieReaderContext<T> readerContext, List<String> keys, boolean fullKey) { boolean fullScan = keys.isEmpty(); // Otherwise, we fetch all the records and filter out all the records, but the // ones requested ClosableIterator<T> allRecords = getEngineRecordIterator(readerContext); if (fullScan) { return allRecords; } HashSet<String> keySet = new HashSet<>(keys); return FilteringEngineRecordIterator.getInstance(allRecords, keySet, fullKey, record -> Option.of(readerContext.getValue(record, readerSchema, keyFieldName).toString())); }
3.26
hudi_HoodieFileGroup_getLatestFileSlice_rdh
/** * Gets the latest slice - this can contain either. * <p> * - just the log files without data file - (or) data file with 0 or more log files */ public Option<FileSlice> getLatestFileSlice() { // there should always be one return Option.fromJavaOptional(getAllFileSlices().findFirst()); }
3.26
hudi_HoodieFileGroup_addLogFile_rdh
/** * Add a new log file into the group. * * <p>CAUTION: the log file must be added in sequence of the delta commit time. */ public void addLogFile(CompletionTimeQueryView completionTimeQueryView, HoodieLogFile logFile) { String baseInstantTime = getBaseInstantTime(completionTimeQueryView, logFile); if (!fileSlices.containsKey(baseInstantTime)) { fileSlices.put(baseInstantTime, new FileSlice(fileGroupId, baseInstantTime)); } fileSlices.get(baseInstantTime).addLogFile(logFile); }
3.26
hudi_HoodieFileGroup_addNewFileSliceAtInstant_rdh
/** * Potentially add a new file-slice by adding base-instant time A file-slice without any data-file and log-files can * exist (if a compaction just got requested). */ public void addNewFileSliceAtInstant(String baseInstantTime) { if (!fileSlices.containsKey(baseInstantTime)) { fileSlices.put(baseInstantTime, new FileSlice(fileGroupId, baseInstantTime)); } }
3.26
hudi_HoodieFileGroup_getAllFileSlices_rdh
/** * Provides a stream of committed file slices, sorted reverse base commit time. */ public Stream<FileSlice> getAllFileSlices() { if (!timeline.empty()) { return fileSlices.values().stream().filter(this::isFileSliceCommitted); } return Stream.empty(); }
3.26
hudi_HoodieFileGroup_getAllFileSlicesIncludingInflight_rdh
/** * Get all the file slices including in-flight ones as seen in underlying file system. */ public Stream<FileSlice> getAllFileSlicesIncludingInflight() { return fileSlices.values().stream(); }
3.26
hudi_HoodieFileGroup_getLatestFileSlicesIncludingInflight_rdh
/** * Get the latest file slices including inflight ones. */public Option<FileSlice> getLatestFileSlicesIncludingInflight() { return Option.fromJavaOptional(getAllFileSlicesIncludingInflight().findFirst()); }
3.26
hudi_HoodieFileGroup_isFileSliceCommitted_rdh
/** * A FileSlice is considered committed, if one of the following is true - There is a committed data file - There are * some log files, that are based off a commit or delta commit. */ private boolean isFileSliceCommitted(FileSlice slice) { if (!compareTimestamps(slice.getBaseInstantTime(), LESSER_THAN_OR_EQUALS, lastInstant.get().getTimestamp())) { return false; } return timeline.containsOrBeforeTimelineStarts(slice.getBaseInstantTime()); }
3.26
hudi_HoodieFileGroup_addBaseFile_rdh
/** * Add a new datafile into the file group. */ public void addBaseFile(HoodieBaseFile dataFile) { if (!fileSlices.containsKey(dataFile.getCommitTime())) { fileSlices.put(dataFile.getCommitTime(), new FileSlice(fileGroupId, dataFile.getCommitTime())); } fileSlices.get(dataFile.getCommitTime()).setBaseFile(dataFile);}
3.26
hudi_HoodieFileGroup_getLatestFileSliceBefore_rdh
/** * Obtain the latest file slice, upto an instantTime i.e < maxInstantTime. * * @param maxInstantTime * Max Instant Time * @return the latest file slice */public Option<FileSlice> getLatestFileSliceBefore(String maxInstantTime) { return Option.fromJavaOptional(getAllFileSlices().filter(slice -> compareTimestamps(slice.getBaseInstantTime(), LESSER_THAN, maxInstantTime)).findFirst()); }
3.26
hudi_HoodieFileGroup_getAllBaseFiles_rdh
/** * Stream of committed data files, sorted reverse commit time. */ public Stream<HoodieBaseFile> getAllBaseFiles() { return getAllFileSlices().filter(slice -> slice.getBaseFile().isPresent()).map(slice -> slice.getBaseFile().get()); }
3.26
hudi_HoodieFileGroup_getLatestFileSliceBeforeOrOn_rdh
/** * Obtain the latest file slice, upto a instantTime i.e <= maxInstantTime. */ public Option<FileSlice> getLatestFileSliceBeforeOrOn(String maxInstantTime) { return Option.fromJavaOptional(getAllFileSlices().filter(slice -> compareTimestamps(slice.getBaseInstantTime(), LESSER_THAN_OR_EQUALS, maxInstantTime)).findFirst()); }
3.26
hudi_HoodieIndexID_isPartition_rdh
/** * Is this ID a Partition type ? * * @return True if this ID of PartitionID type */ public final boolean isPartition() { return getType() == Type.PARTITION; }
3.26
hudi_HoodieIndexID_isFileID_rdh
/** * Is this ID a FileID type ? * * @return True if this ID of FileID type */ public final boolean isFileID() { return getType() == Type.FILE; }
3.26
hudi_HoodieIndexID_asBase64EncodedString_rdh
/** * Get the Base64 encoded version of the ID. */ public String asBase64EncodedString() { throw new HoodieNotSupportedException("Unsupported hash for " + getType()); }
3.26
hudi_HoodieIndexID_isColumnID_rdh
/** * Is this ID a ColumnID type ? * * @return True if this ID of ColumnID type */ public final boolean isColumnID() { return getType() == Type.COLUMN; }
3.26
hudi_HoodieMultiTableStreamer_populateTableExecutionContextList_rdh
// commonProps are passed as parameter which contain table to config file mapping private void populateTableExecutionContextList(TypedProperties properties, String configFolder, FileSystem fs, Config config) throws IOException { List<String> tablesToBeIngested = getTablesToBeIngested(properties);logger.info("tables to be ingested via MultiTableDeltaStreamer : " + tablesToBeIngested); TableExecutionContext executionContext; for (String table : tablesToBeIngested) { String[] tableWithDatabase = table.split("\\."); String database = (tableWithDatabase.length > 1) ? tableWithDatabase[0] : "default"; String currentTable = (tableWithDatabase.length > 1) ? tableWithDatabase[1] : table; String configProp = (((HoodieStreamerConfig.INGESTION_PREFIX + database) + Constants.DELIMITER) + currentTable) + Constants.INGESTION_CONFIG_SUFFIX;String oldConfigProp = (((HoodieStreamerConfig.OLD_INGESTION_PREFIX + database) + Constants.DELIMITER) + currentTable) + Constants.INGESTION_CONFIG_SUFFIX; String configFilePath = getStringWithAltKeys(properties, configProp, oldConfigProp, Helpers.getDefaultConfigFilePath(configFolder, database, currentTable)); checkIfTableConfigFileExists(configFolder, fs, configFilePath); TypedProperties tableProperties = UtilHelpers.readConfig(fs.getConf(), new Path(configFilePath), new ArrayList<>()).getProps(); properties.forEach((k, v) -> {if (tableProperties.get(k) == null) {tableProperties.setProperty(k.toString(), v.toString()); } });final HoodieStreamer.Config cfg = new HoodieStreamer.Config(); // copy all the values from config to cfg String targetBasePath = resetTarget(config, database, currentTable); Helpers.deepCopyConfigs(config, cfg); String overriddenTargetBasePath = getStringWithAltKeys(tableProperties, HoodieStreamerConfig.TARGET_BASE_PATH, true); cfg.targetBasePath = (StringUtils.isNullOrEmpty(overriddenTargetBasePath)) ? targetBasePath : overriddenTargetBasePath; if (cfg.enableMetaSync && StringUtils.isNullOrEmpty(tableProperties.getString(HoodieSyncConfig.META_SYNC_TABLE_NAME.key(), ""))) { throw new HoodieException("Meta sync table field not provided!"); } populateTransformerProps(cfg, tableProperties); populateSchemaProviderProps(cfg, tableProperties); executionContext = new TableExecutionContext(); executionContext.setProperties(tableProperties); executionContext.setConfig(cfg); executionContext.setDatabase(database); executionContext.setTableName(currentTable); this.tableExecutionContexts.add(executionContext); } }
3.26
hudi_HoodieMultiTableStreamer_sync_rdh
/** * Creates actual HoodieDeltaStreamer objects for every table/topic and does incremental sync. */ public void sync() { for (TableExecutionContext context : tableExecutionContexts) {try { new HoodieStreamer(context.getConfig(), jssc, Option.ofNullable(context.getProperties())).sync(); successTables.add(Helpers.getTableWithDatabase(context));} catch (Exception e) { logger.error("error while running MultiTableDeltaStreamer for table: " + context.getTableName(), e); failedTables.add(Helpers.getTableWithDatabase(context)); } } logger.info("Ingestion was successful for topics: " + successTables); if (!failedTables.isEmpty()) { logger.info("Ingestion failed for topics: " + failedTables);} }
3.26
hudi_HoodieAvroHFileReader_getSharedHFileReader_rdh
/** * Instantiates the shared HFile reader if not instantiated * * @return the shared HFile reader */ private Reader getSharedHFileReader() { if (!sharedReader.isPresent()) { synchronized(sharedLock) { if (!sharedReader.isPresent()) { sharedReader = Option.of(getHFileReader()); } } } return sharedReader.get(); }
3.26
hudi_HoodieAvroHFileReader_filterRowKeys_rdh
/** * Filter keys by availability. * <p> * Note: This method is performant when the caller passes in a sorted candidate keys. * * @param candidateRowKeys * - Keys to check for the availability * @return Subset of candidate keys that are available */ @Override public Set<Pair<String, Long>> filterRowKeys(Set<String> candidateRowKeys) { // candidateRowKeys must be sorted SortedSet<String> sortedCandidateRowKeys = new TreeSet<>(candidateRowKeys); synchronized(sharedLock) { if (!sharedScanner.isPresent()) { // For shared scanner, which is primarily used for point-lookups, we're caching blocks // by default, to minimize amount of traffic to the underlying storage sharedScanner = Option.of(getHFileScanner(getSharedHFileReader(), true)); } return // Record position is not supported for HFile sortedCandidateRowKeys.stream().filter(k -> { try {return isKeyAvailable(k, sharedScanner.get()); } catch (IOException e) { LOG.error("Failed to check key availability: " + k); return false; } }).map(key -> Pair.of(key, HoodieRecordLocation.INVALID_POSITION)).collect(Collectors.toSet()); } }
3.26
hudi_HoodieAvroHFileReader_getHFileReader_rdh
/** * Instantiate a new reader for HFile files. * * @return an instance of {@link HFile.Reader} */ private Reader getHFileReader() { if (content.isPresent()) { return HoodieHFileUtils.createHFileReader(fs, path, content.get()); } return HoodieHFileUtils.createHFileReader(fs, path, config, hadoopConf); }
3.26
hudi_HoodieAvroHFileReader_readRecords_rdh
/** * NOTE: THIS SHOULD ONLY BE USED FOR TESTING, RECORDS ARE MATERIALIZED EAGERLY * <p> * Reads all the records with given schema and filtering keys. */ public static List<IndexedRecord> readRecords(HoodieAvroHFileReader reader, List<String> keys, Schema schema) throws IOException { Collections.sort(keys); return toStream(reader.getIndexedRecordsByKeysIterator(keys, schema)).collect(Collectors.toList()); }
3.26
hudi_SparkRDDReadClient_tagLocation_rdh
/** * Looks up the index and tags each incoming record with a location of a file that contains the row (if it is actually * present). Input RDD should contain no duplicates if needed. * * @param hoodieRecords * Input RDD of Hoodie records * @return Tagged RDD of Hoodie records */public JavaRDD<HoodieRecord<T>> tagLocation(JavaRDD<HoodieRecord<T>> hoodieRecords) throws HoodieIndexException { return HoodieJavaRDD.getJavaRDD(index.tagLocation(HoodieJavaRDD.of(hoodieRecords), context, hoodieTable)); }
3.26
hudi_SparkRDDReadClient_readROView_rdh
/** * Given a bunch of hoodie keys, fetches all the individual records out as a data frame. * * @return a dataframe */ public Dataset<Row> readROView(JavaRDD<HoodieKey> hoodieKeys, int parallelism) { assertSqlContext(); JavaPairRDD<HoodieKey, Option<Pair<String, String>>> lookupResultRDD = checkExists(hoodieKeys); JavaPairRDD<HoodieKey, Option<String>> keyToFileRDD = lookupResultRDD.mapToPair(r -> new Tuple2<>(r._1, convertToDataFilePath(r._2))); List<String> paths = keyToFileRDD.filter(keyFileTuple -> keyFileTuple._2().isPresent()).map(keyFileTuple -> keyFileTuple._2().get()).collect(); // record locations might be same for multiple keys, so need a unique list Set<String> uniquePaths = new HashSet<>(paths); Dataset<Row> originalDF = null; // read files based on the file extension name if ((paths.size() == 0) || paths.get(0).endsWith(HoodieFileFormat.PARQUET.getFileExtension())) { originalDF = sqlContextOpt.get().read().parquet(uniquePaths.toArray(new String[uniquePaths.size()])); } else if (paths.get(0).endsWith(HoodieFileFormat.ORC.getFileExtension())) { originalDF = sqlContextOpt.get().read().orc(uniquePaths.toArray(new String[uniquePaths.size()])); } StructType schema = originalDF.schema(); JavaPairRDD<HoodieKey, Row> keyRowRDD = originalDF.javaRDD().mapToPair(row -> { HoodieKey key = new HoodieKey(row.getAs(HoodieRecord.RECORD_KEY_METADATA_FIELD), row.getAs(HoodieRecord.PARTITION_PATH_METADATA_FIELD)); return new Tuple2<>(key, row); }); // Now, we need to further filter out, for only rows that match the supplied hoodie keys JavaRDD<Row> rowRDD = keyRowRDD.join(keyToFileRDD, parallelism).map(tuple -> tuple._2()._1()); return sqlContextOpt.get().createDataFrame(rowRDD, schema); }
3.26
hudi_SparkRDDReadClient_checkExists_rdh
/** * Checks if the given [Keys] exists in the hoodie table and returns [Key, Option[FullFilePath]] If the optional * FullFilePath value is not present, then the key is not found. If the FullFilePath value is present, it is the path * component (without scheme) of the URI underlying file */ public JavaPairRDD<HoodieKey, Option<Pair<String, String>>> checkExists(JavaRDD<HoodieKey> hoodieKeys) { return HoodieJavaRDD.getJavaRDD(index.tagLocation(HoodieJavaRDD.of(hoodieKeys.map(k -> new HoodieAvroRecord<>(k, null))), context, hoodieTable)).mapToPair(hr -> new Tuple2<>(hr.getKey(), hr.isCurrentLocationKnown() ? Option.of(Pair.of(hr.getPartitionPath(), hr.getCurrentLocation().getFileId())) : Option.empty())); }
3.26
hudi_SparkRDDReadClient_m0_rdh
/** * Return all pending compactions with instant time for clients to decide what to compact next. * * @return */ public List<Pair<String, HoodieCompactionPlan>> m0() { HoodieTableMetaClient metaClient = HoodieTableMetaClient.builder().setConf(hadoopConf).setBasePath(hoodieTable.getMetaClient().getBasePath()).setLoadActiveTimelineOnLoad(true).build(); return CompactionUtils.getAllPendingCompactionPlans(metaClient).stream().map(instantWorkloadPair -> Pair.of(instantWorkloadPair.getKey().getTimestamp(), instantWorkloadPair.getValue())).collect(Collectors.toList()); }
3.26
hudi_SparkRDDReadClient_filterExists_rdh
/** * Filter out HoodieRecords that already exists in the output folder. This is useful in deduplication. * * @param hoodieRecords * Input RDD of Hoodie records. * @return A subset of hoodieRecords RDD, with existing records filtered out. */ public JavaRDD<HoodieRecord<T>> filterExists(JavaRDD<HoodieRecord<T>> hoodieRecords) { JavaRDD<HoodieRecord<T>> recordsWithLocation = tagLocation(hoodieRecords); return recordsWithLocation.filter(v1 -> !v1.isCurrentLocationKnown()); }
3.26
hudi_SparkRDDReadClient_addHoodieSupport_rdh
/** * Adds support for accessing Hoodie built tables from SparkSQL, as you normally would. * * @return SparkConf object to be used to construct the SparkContext by caller */ public static SparkConf addHoodieSupport(SparkConf conf) { conf.set("spark.sql.hive.convertMetastoreParquet", "false"); return conf;}
3.26
hudi_StringUtils_join_rdh
/** * <p> * Joins the elements of the provided array into a single String containing the provided list of elements. * </p> * * <p> * No separator is added to the joined String. Null objects or empty strings within the array are represented by empty * strings. * </p> * * <pre> * StringUtils.join(null) = null * StringUtils.join([]) = "" * StringUtils.join([null]) = "" * StringUtils.join(["a", "b", "c"]) = "abc" * StringUtils.join([null, "", "a"]) = "a" * </pre> */ public static <T> String join(final String... elements) { return join(elements, EMPTY_STRING); }
3.26
hudi_StringUtils_nullToEmpty_rdh
/** * Returns the given string if it is non-null; the empty string otherwise. * * @param string * the string to test and possibly return * @return {@code string} itself if it is non-null; {@code ""} if it is null */ public static String nullToEmpty(@Nullable String string) { return string == null ? "" : string; }
3.26
hudi_StringUtils_emptyToNull_rdh
/** * Returns the given string if it is nonempty; {@code null} otherwise. * * @param string * the string to test and possibly return * @return {@code string} itself if it is nonempty; {@code null} if it is empty or null */ @Nullable public static String emptyToNull(@Nullable String string) { return stringIsNullOrEmpty(string) ? null : string; }
3.26
hudi_StringUtils_split_rdh
/** * Splits input string, delimited {@code delimiter} into a list of non-empty strings * (skipping any empty string produced during splitting) */ public static List<String> split(@Nullable String input, String delimiter) { if (isNullOrEmpty(input)) { return Collections.emptyList(); } return Stream.of(input.split(delimiter)).map(String::trim).filter(s -> !s.isEmpty()).collect(Collectors.toList()); }
3.26
hudi_HoodieDataTableValidator_readConfigFromFileSystem_rdh
/** * Reads config from the file system. * * @param jsc * {@link JavaSparkContext} instance. * @param cfg * {@link Config} instance. * @return the {@link TypedProperties} instance. */private TypedProperties readConfigFromFileSystem(JavaSparkContext jsc, Config cfg) { return UtilHelpers.readConfig(jsc.hadoopConfiguration(), new Path(cfg.propsFilePath), cfg.configs).getProps(true); }
3.26
hudi_RDDBucketIndexPartitioner_doPartitionAndCustomColumnSort_rdh
/** * Sort by specified column value. The behaviour is the same as `RDDCustomColumnsSortPartitioner` * * @param records * @param partitioner * @return */ private JavaRDD<HoodieRecord<T>> doPartitionAndCustomColumnSort(JavaRDD<HoodieRecord<T>> records, Partitioner partitioner) { final String[] sortColumns = sortColumnNames; final SerializableSchema schema = new SerializableSchema(HoodieAvroUtils.addMetadataFields(new Schema.Parser().parse(table.getConfig().getSchema()))); Comparator<HoodieRecord<T>> v2 = ((Comparator) ((t1, t2) -> { FlatLists.ComparableList obj1 = FlatLists.ofComparableArray(t1.getColumnValues(schema.get(), sortColumns, consistentLogicalTimestampEnabled)); FlatLists.ComparableList obj2 = FlatLists.ofComparableArray(t2.getColumnValues(schema.get(), sortColumns, consistentLogicalTimestampEnabled)); return obj1.compareTo(obj2); })); return records.mapToPair(record -> new Tuple2<>(record, record)).repartitionAndSortWithinPartitions(new Partitioner() { @Override public int numPartitions() { return partitioner.numPartitions(); } @Override public int m0(Object key) { return partitioner.getPartition(((HoodieRecord) (key)).getKey()); } }, v2).map(Tuple2::_2); }
3.26
hudi_RDDBucketIndexPartitioner_doPartition_rdh
/** * Execute partition using the given partitioner. * If sorting is required, will do it within each data partition: * - if sortColumnNames is specified, apply sort to the column (the behaviour is the same as `RDDCustomColumnsSortPartitioner`) * - if table requires sort or BulkInsertSortMode is not None, then sort by record key within partition. * By default, do partition only. * * @param records * @param partitioner * a default partition that accepts `HoodieKey` as the partition key * @return */ public JavaRDD<HoodieRecord<T>> doPartition(JavaRDD<HoodieRecord<T>> records, Partitioner partitioner) { if ((sortColumnNames != null) && (sortColumnNames.length > 0)) { return doPartitionAndCustomColumnSort(records, partitioner); } else if (table.requireSortedRecords() || (table.getConfig().getBulkInsertSortMode() != BulkInsertSortMode.NONE)) { return doPartitionAndSortByRecordKey(records, partitioner); } else { // By default, do partition only return records.mapToPair(record -> new Tuple2<>(record.getKey(), record)).partitionBy(partitioner).map(Tuple2::_2); } }
3.26
hudi_RDDBucketIndexPartitioner_doPartitionAndSortByRecordKey_rdh
/** * Sort by record key within each partition. The behaviour is the same as BulkInsertSortMode.PARTITION_SORT. * * @param records * @param partitioner * @return */ private JavaRDD<HoodieRecord<T>> doPartitionAndSortByRecordKey(JavaRDD<HoodieRecord<T>> records, Partitioner partitioner) { if (table.getConfig().getBulkInsertSortMode() == BulkInsertSortMode.GLOBAL_SORT) { LOG.warn("Bucket index does not support global sort mode, the sort will only be done within each data partition"); } Comparator<HoodieKey> v5 = ((Comparator) ((t1, t2) -> t1.getRecordKey().compareTo(t2.getRecordKey()))); return records.mapToPair(record -> new Tuple2<>(record.getKey(), record)).repartitionAndSortWithinPartitions(partitioner, v5).map(Tuple2::_2); }
3.26
hudi_HoodieHeartbeatClient_stopHeartbeatTimer_rdh
/** * Stops the timer of the given heartbeat. * * @param heartbeat * The heartbeat to stop. */ private void stopHeartbeatTimer(Heartbeat heartbeat) { LOG.info("Stopping heartbeat for instant " + heartbeat.getInstantTime()); heartbeat.getTimer().cancel(); heartbeat.setHeartbeatStopped(true); LOG.info("Stopped heartbeat for instant " + heartbeat.getInstantTime()); }
3.26
hudi_HoodieHeartbeatClient_stopHeartbeatTimers_rdh
/** * Stops all timers of heartbeats started via this instance of the client. * * @throws HoodieException */ public void stopHeartbeatTimers() throws HoodieException { instantToHeartbeatMap.values().stream().filter(this::isHeartbeatStarted).forEach(this::stopHeartbeatTimer); }
3.26
hudi_HoodieHeartbeatClient_start_rdh
/** * Start a new heartbeat for the specified instant. If there is already one running, this will be a NO_OP * * @param instantTime * The instant time for the heartbeat. */ public void start(String instantTime) { LOG.info("Received request to start heartbeat for instant time " + instantTime);Heartbeat heartbeat = instantToHeartbeatMap.get(instantTime); ValidationUtils.checkArgument((heartbeat == null) || (!heartbeat.isHeartbeatStopped()), "Cannot restart a stopped heartbeat for " + instantTime); if ((heartbeat != null) && heartbeat.isHeartbeatStarted()) { // heartbeat already started, NO_OP } else { Heartbeat newHeartbeat = new Heartbeat(); newHeartbeat.setHeartbeatStarted(true); instantToHeartbeatMap.put(instantTime, newHeartbeat); // Ensure heartbeat is generated for the first time with this blocking call. // Since timer submits the task to a thread, no guarantee when that thread will get CPU // cycles to generate the first heartbeat. updateHeartbeat(instantTime); newHeartbeat.getTimer().scheduleAtFixedRate(new HeartbeatTask(instantTime), this.heartbeatIntervalInMs, this.heartbeatIntervalInMs); } }
3.26
hudi_HoodieHeartbeatClient_stop_rdh
/** * Stops the heartbeat and deletes the heartbeat file for the specified instant. * * @param instantTime * The instant time for the heartbeat. * @throws HoodieException */ public void stop(String instantTime) throws HoodieException { Heartbeat heartbeat = instantToHeartbeatMap.get(instantTime); if (isHeartbeatStarted(heartbeat)) { stopHeartbeatTimer(heartbeat); HeartbeatUtils.deleteHeartbeatFile(fs, basePath, instantTime); LOG.info("Deleted heartbeat file for instant " + instantTime); } }
3.26
hudi_HoodieHeartbeatClient_isHeartbeatStarted_rdh
/** * Whether the given heartbeat is started. * * @param heartbeat * The heartbeat to check whether is started. * @return Whether the heartbeat is started. * @throws IOException */ private boolean isHeartbeatStarted(Heartbeat heartbeat) { return ((heartbeat != null) && heartbeat.isHeartbeatStarted()) && (!heartbeat.isHeartbeatStopped()); }
3.26
hudi_BaseVectorizedColumnReader_nextInt_rdh
/** * return zero. */protected static final class NullIntIterator extends IntIterator { @Override int nextInt() { return 0; }
3.26
hudi_SparkHoodieHBaseIndex_canIndexLogFiles_rdh
/** * Mapping is available in HBase already. */ @Override public boolean canIndexLogFiles() { return true; }
3.26
hudi_SparkHoodieHBaseIndex_locationTagFunction_rdh
/** * Function that tags each HoodieRecord with an existing location, if known. */ private <R> Function2<Integer, Iterator<HoodieRecord<R>>, Iterator<HoodieRecord<R>>> locationTagFunction(HoodieTableMetaClient metaClient) { // `multiGetBatchSize` is intended to be a batch per 100ms. To create a rate limiter that measures // operations per second, we need to multiply `multiGetBatchSize` by 10. Integer multiGetBatchSize = config.getHbaseIndexGetBatchSize(); return (partitionNum, hoodieRecordIterator) -> { boolean updatePartitionPath = config.getHbaseIndexUpdatePartitionPath(); RateLimiter limiter = RateLimiter.create(multiGetBatchSize * 10, TimeUnit.SECONDS); // Grab the global HBase connection synchronized(SparkHoodieHBaseIndex.class) { if ((SparkHoodieHBaseIndex.hbaseConnection == null) || SparkHoodieHBaseIndex.hbaseConnection.isClosed()) { SparkHoodieHBaseIndex.hbaseConnection = getHBaseConnection(); } } List<HoodieRecord<R>> taggedRecords = new ArrayList<>(); try (HTable hTable = ((HTable) (SparkHoodieHBaseIndex.hbaseConnection.getTable(TableName.valueOf(tableName))))) { List<Get> statements = new ArrayList<>(); List<HoodieRecord> currentBatchOfRecords = new LinkedList<>(); // Do the tagging. HoodieTimeline completedCommitsTimeline = metaClient.getCommitsTimeline().filterCompletedInstants(); while (hoodieRecordIterator.hasNext()) { HoodieRecord rec = hoodieRecordIterator.next(); statements.add(generateStatement(rec.getRecordKey())); currentBatchOfRecords.add(rec); // iterator till we reach batch size if (hoodieRecordIterator.hasNext() && (statements.size() < multiGetBatchSize)) { continue; } // get results for batch from Hbase Result[] results = doGet(hTable, statements, limiter); // clear statements to be GC'd statements.clear(); for (Result result : results) { // first, attempt to grab location from HBase HoodieRecord currentRecord = currentBatchOfRecords.remove(0); if (result.getRow() == null) { taggedRecords.add(currentRecord); continue; } String keyFromResult = Bytes.toString(result.getRow()); String commitTs = Bytes.toString(result.getValue(SYSTEM_COLUMN_FAMILY, COMMIT_TS_COLUMN)); String fileId = Bytes.toString(result.getValue(SYSTEM_COLUMN_FAMILY, FILE_NAME_COLUMN)); String partitionPath = Bytes.toString(result.getValue(SYSTEM_COLUMN_FAMILY, PARTITION_PATH_COLUMN)); if (!HoodieIndexUtils.checkIfValidCommit(completedCommitsTimeline, commitTs)) { // if commit is invalid, treat this as a new taggedRecord taggedRecords.add(currentRecord); continue; } // check whether to do partition change processing if (updatePartitionPath && (!partitionPath.equals(currentRecord.getPartitionPath()))) {// delete partition old data record HoodieRecord emptyRecord = new HoodieAvroRecord(new HoodieKey(currentRecord.getRecordKey(), partitionPath), new EmptyHoodieRecordPayload()); emptyRecord.unseal(); emptyRecord.setCurrentLocation(new HoodieRecordLocation(commitTs, fileId)); emptyRecord.seal(); // insert partition new data record currentRecord = new HoodieAvroRecord(new HoodieKey(currentRecord.getRecordKey(), currentRecord.getPartitionPath()), ((HoodieRecordPayload) (currentRecord.getData()))); taggedRecords.add(emptyRecord); taggedRecords.add(currentRecord); } else { currentRecord = new HoodieAvroRecord(new HoodieKey(currentRecord.getRecordKey(), partitionPath), ((HoodieRecordPayload) (currentRecord.getData()))); currentRecord.unseal(); currentRecord.setCurrentLocation(new HoodieRecordLocation(commitTs, fileId)); currentRecord.seal(); taggedRecords.add(currentRecord); // the key from Result and the key being processed should be same assert currentRecord.getRecordKey().contentEquals(keyFromResult); } } } } catch (IOException e) { throw new <e>HoodieIndexException("Failed to Tag indexed locations because of exception with HBase Client");} finally { limiter.stop(); } return taggedRecords.iterator(); }; }
3.26
hudi_SparkHoodieHBaseIndex_getBatchSize_rdh
/** * Calculate putBatch size so that sum of requests across multiple jobs in a second does not exceed * maxQpsPerRegionServer for each Region Server. Multiplying qpsFraction to reduce the aggregate load on common RS * across topics. Assumption here is that all tables have regions across all RS, which is not necessarily true for * smaller tables. So, they end up getting a smaller share of QPS than they deserve, but it might be ok. * <p> * Example: int putBatchSize = batchSizeCalculator.getBatchSize(10, 16667, 1200, 200, 100, 0.1f) * </p> * <p> * Expected batchSize is 8 because in that case, total request sent to a Region Server in one second is: * * 8 (batchSize) * 200 (parallelism) * 10 (maxReqsInOneSecond) * 10 (numRegionServers) * 0.1 (qpsFraction)) => * 16000. We assume requests get distributed to Region Servers uniformly, so each RS gets 1600 requests which * happens to be 10% of 16667 (maxQPSPerRegionServer), as expected. * </p> * <p> * Assumptions made here * <li>In a batch, writes get evenly distributed to each RS for that table. Since we do writes only in the case of * inserts and not updates, for this assumption to fail, inserts would have to be skewed towards few RS, likelihood * of which is less if Hbase table is pre-split and rowKeys are UUIDs (random strings). If this assumption fails, * then it is possible for some RS to receive more than maxQpsPerRegionServer QPS, but for simplicity, we are going * ahead with this model, since this is meant to be a lightweight distributed throttling mechanism without * maintaining a global context. So if this assumption breaks, we are hoping the HBase Master relocates hot-spot * regions to new Region Servers. * * </li> * <li>For Region Server stability, throttling at a second level granularity is fine. Although, within a second, the * sum of queries might be within maxQpsPerRegionServer, there could be peaks at some sub second intervals. So, the * assumption is that these peaks are tolerated by the Region Server (which at max can be maxQpsPerRegionServer). * </li> * </p> */ public int getBatchSize(int numRegionServersForTable, int maxQpsPerRegionServer, int numTasksDuringPut, int maxExecutors, float qpsFraction) { int numRSAlive = numRegionServersForTable; int maxReqPerSec = getMaxReqPerSec(numRSAlive, maxQpsPerRegionServer, qpsFraction); int numTasks = numTasksDuringPut; int maxParallelPutsTask = Math.max(1, Math.min(numTasks, maxExecutors)); int multiPutBatchSizePerSecPerTask = Math.max(1, ((int) (Math.ceil(maxReqPerSec / maxParallelPutsTask)))); LOG.info("HbaseIndexThrottling: qpsFraction :" + qpsFraction); LOG.info("HbaseIndexThrottling: numRSAlive :" + numRSAlive); LOG.info("HbaseIndexThrottling: maxReqPerSec :" + maxReqPerSec); LOG.info("HbaseIndexThrottling: numTasks :" + numTasks); LOG.info("HbaseIndexThrottling: maxExecutors :" + maxExecutors); LOG.info("HbaseIndexThrottling: maxParallelPuts :" + maxParallelPutsTask); LOG.info("HbaseIndexThrottling: numRegionServersForTable :" + numRegionServersForTable); LOG.info("HbaseIndexThrottling: multiPutBatchSizePerSecPerTask :" + multiPutBatchSizePerSecPerTask); return multiPutBatchSizePerSecPerTask; }
3.26
hudi_SparkHoodieHBaseIndex_doMutations_rdh
/** * Helper method to facilitate performing mutations (including puts and deletes) in Hbase. */ private void doMutations(BufferedMutator mutator, List<Mutation> mutations, RateLimiter limiter) throws IOException { if (mutations.isEmpty()) { return; } // report number of operations to account per second with rate limiter. // If #limiter.getRate() operations are acquired within 1 second, ratelimiter will limit the rest of calls // for within that second limiter.tryAcquire(mutations.size()); mutator.mutate(mutations); mutator.flush(); mutations.clear(); }
3.26
hudi_SparkHoodieHBaseIndex_addShutDownHook_rdh
/** * Since we are sharing the HBaseConnection across tasks in a JVM, make sure the HBaseConnection is closed when JVM * exits. */ private void addShutDownHook() {if (null == shutdownThread) { shutdownThread = new Thread(() -> { try { hbaseConnection.close(); } catch (Exception e) {// fail silently for any sort of exception } }); Runtime.getRuntime().addShutdownHook(shutdownThread); } }
3.26
hudi_SparkHoodieHBaseIndex_m0_rdh
/** * Only looks up by recordKey. */ @Override public boolean m0() { return true; }
3.26
hudi_SparkHoodieHBaseIndex_close_rdh
/** * Ensure that any resources used for indexing are released here. */ @Override public void close() { LOG.info("No resources to release from Hbase index"); }
3.26
hudi_DirectWriteMarkers_create_rdh
/** * Creates a marker file based on the full marker name excluding the base path and instant. * * @param markerName * the full marker name, e.g., "2021/08/13/file1.marker.CREATE" * @return path of the marker file */ public Option<Path> create(String markerName) { return create(new Path(markerDirPath, markerName), true); }
3.26
hudi_DirectWriteMarkers_deleteMarkerDir_rdh
/** * Deletes Marker directory corresponding to an instant. * * @param context * HoodieEngineContext. * @param parallelism * parallelism for deletion. */ public boolean deleteMarkerDir(HoodieEngineContext context, int parallelism) { return FSUtils.deleteDir(context, fs, markerDirPath, parallelism); } /** * * @return {@code true} if marker directory exists; {@code false}
3.26
hudi_HoodieBackedTableMetadataWriter_updateFromWriteStatuses_rdh
/** * Update from {@code HoodieCommitMetadata}. * * @param commitMetadata * {@code HoodieCommitMetadata} * @param instantTime * Timestamp at which the commit was performed */ @Override public void updateFromWriteStatuses(HoodieCommitMetadata commitMetadata, HoodieData<WriteStatus> writeStatus, String instantTime) { processAndCommit(instantTime, () -> { Map<MetadataPartitionType, HoodieData<HoodieRecord>> partitionToRecordMap = HoodieTableMetadataUtil.convertMetadataToRecords(engineContext, commitMetadata, instantTime, getRecordsGenerationParams()); // Updates for record index are created by parsing the WriteStatus which is a hudi-client object. Hence, we cannot yet move this code // to the HoodieTableMetadataUtil class in hudi-common. HoodieData<HoodieRecord> updatesFromWriteStatuses = getRecordIndexUpdates(writeStatus); HoodieData<HoodieRecord> additionalUpdates = getRecordIndexAdditionalUpdates(updatesFromWriteStatuses, commitMetadata); partitionToRecordMap.put(RECORD_INDEX, updatesFromWriteStatuses.union(additionalUpdates)); updateFunctionalIndexIfPresent(commitMetadata, instantTime, partitionToRecordMap); return partitionToRecordMap; }); closeInternal(); }
3.26
hudi_HoodieBackedTableMetadataWriter_prepRecords_rdh
/** * Tag each record with the location in the given partition. * The record is tagged with respective file slice's location based on its record key. */ protected HoodieData<HoodieRecord> prepRecords(Map<MetadataPartitionType, HoodieData<HoodieRecord>> partitionRecordsMap) { // The result set HoodieData<HoodieRecord> allPartitionRecords = engineContext.emptyHoodieData(); HoodieTableFileSystemView fsView = HoodieTableMetadataUtil.getFileSystemView(metadataMetaClient); for (Map.Entry<MetadataPartitionType, HoodieData<HoodieRecord>> entry : partitionRecordsMap.entrySet()) { final String partitionName = entry.getKey().getPartitionPath(); HoodieData<HoodieRecord> records = entry.getValue(); List<FileSlice> fileSlices = HoodieTableMetadataUtil.getPartitionLatestFileSlices(metadataMetaClient, Option.ofNullable(fsView), partitionName); if (fileSlices.isEmpty()) { // scheduling of INDEX only initializes the file group and not add commit // so if there are no committed file slices, look for inflight slices fileSlices = getPartitionLatestFileSlicesIncludingInflight(metadataMetaClient, Option.ofNullable(fsView), partitionName);} final int v134 = fileSlices.size(); ValidationUtils.checkArgument(v134 > 0, ("FileGroup count for MDT partition " + partitionName) + " should be >0"); List<FileSlice> finalFileSlices = fileSlices; HoodieData<HoodieRecord> rddSinglePartitionRecords = records.map(r -> { FileSlice slice = finalFileSlices.get(HoodieTableMetadataUtil.mapRecordKeyToFileGroupIndex(r.getRecordKey(), v134)); r.unseal(); r.setCurrentLocation(new HoodieRecordLocation(slice.getBaseInstantTime(), slice.getFileId())); r.seal(); return r; }); allPartitionRecords = allPartitionRecords.union(rddSinglePartitionRecords); } return allPartitionRecords; }
3.26
hudi_HoodieBackedTableMetadataWriter_m3_rdh
/** * Validates the timeline for both main and metadata tables to ensure compaction on MDT can be scheduled. */ protected boolean m3(Option<String> inFlightInstantTimestamp, String latestDeltaCommitTimeInMetadataTable) { // we need to find if there are any inflights in data table timeline before or equal to the latest delta commit in metadata table. // Whenever you want to change this logic, please ensure all below scenarios are considered. // a. There could be a chance that latest delta commit in MDT is committed in MDT, but failed in DT. And so findInstantsBeforeOrEquals() should be employed // b. There could be DT inflights after latest delta commit in MDT and we are ok with it. bcoz, the contract is, the latest compaction instant time in MDT represents // any instants before that is already synced with metadata table. // c. Do consider out of order commits. For eg, c4 from DT could complete before c3. and we can't trigger compaction in MDT with c4 as base instant time, until every // instant before c4 is synced with metadata table. List<HoodieInstant> pendingInstants = f1.reloadActiveTimeline().filterInflightsAndRequested().findInstantsBeforeOrEquals(latestDeltaCommitTimeInMetadataTable).getInstants(); if (!pendingInstants.isEmpty()) { checkNumDeltaCommits(metadataMetaClient, dataWriteConfig.getMetadataConfig().getMaxNumDeltacommitsWhenPending()); LOG.info(String.format("Cannot compact metadata table as there are %d inflight instants in data table before latest deltacommit in metadata table: %s. Inflight instants in data table: %s", pendingInstants.size(), latestDeltaCommitTimeInMetadataTable, Arrays.toString(pendingInstants.toArray()))); return false; } // Check if there are any pending compaction or log compaction instants in the timeline. // If pending compact/logCompaction operations are found abort scheduling new compaction/logCompaction operations. Option<HoodieInstant> pendingLogCompactionInstant = metadataMetaClient.getActiveTimeline().filterPendingLogCompactionTimeline().firstInstant(); Option<HoodieInstant> v149 = metadataMetaClient.getActiveTimeline().filterPendingCompactionTimeline().firstInstant(); if (pendingLogCompactionInstant.isPresent() || v149.isPresent()) { LOG.warn(String.format("Not scheduling compaction or logCompaction, since a pending compaction instant %s or logCompaction %s instant is present", v149, pendingLogCompactionInstant)); return false; } return true; }
3.26
hudi_HoodieBackedTableMetadataWriter_compactIfNecessary_rdh
/** * Perform a compaction on the Metadata Table. * <p> * Cases to be handled: * 1. We cannot perform compaction if there are previous inflight operations on the dataset. This is because * a compacted metadata base file at time Tx should represent all the actions on the dataset till time Tx. * <p> * 2. In multi-writer scenario, a parallel operation with a greater instantTime may have completed creating a * deltacommit. */ protected void compactIfNecessary(BaseHoodieWriteClient writeClient, String latestDeltacommitTime) { // Trigger compaction with suffixes based on the same instant time. This ensures that any future // delta commits synced over will not have an instant time lesser than the last completed instant on the // metadata table. final String v144 = writeClient.createNewInstantTime(false); // we need to avoid checking compaction w/ same instant again. // let's say we trigger compaction after C5 in MDT and so compaction completes with C4001. but C5 crashed before completing in MDT. // and again w/ C6, we will re-attempt compaction at which point latest delta commit is C4 in MDT. // and so we try compaction w/ instant C4001. So, we can avoid compaction if we already have compaction w/ same instant time. if (metadataMetaClient.getActiveTimeline().filterCompletedInstants().containsInstant(v144)) { LOG.info(String.format("Compaction with same %s time is already present in the timeline.", v144)); } else if (writeClient.scheduleCompactionAtInstant(v144, Option.empty())) { LOG.info("Compaction is scheduled for timestamp " + v144); writeClient.compact(v144); } else if (metadataWriteConfig.isLogCompactionEnabled()) { // Schedule and execute log compaction with suffixes based on the same instant time. This ensures that any future // delta commits synced over will not have an instant time lesser than the last completed instant on the // metadata table. final String logCompactionInstantTime = HoodieTableMetadataUtil.createLogCompactionTimestamp(latestDeltacommitTime); if (metadataMetaClient.getActiveTimeline().filterCompletedInstants().containsInstant(logCompactionInstantTime)) { LOG.info(String.format("Log compaction with same %s time is already present in the timeline.", logCompactionInstantTime));} else if (writeClient.scheduleLogCompactionAtInstant(logCompactionInstantTime, Option.empty())) { LOG.info("Log compaction is scheduled for timestamp " + logCompactionInstantTime); writeClient.logCompact(logCompactionInstantTime); } } }
3.26
hudi_HoodieBackedTableMetadataWriter_isBootstrapNeeded_rdh
/** * Whether initialize operation needed for this metadata table. * <p> * Rollback of the first commit would look like un-synced instants in the metadata table. * Action metadata is needed to verify the instant time and avoid erroneous initializing. * <p> * TODO: Revisit this logic and validate that filtering for all * commits timeline is the right thing to do * * @return True if the initialization is not needed, False otherwise */ private boolean isBootstrapNeeded(Option<HoodieInstant> latestMetadataInstant) { if (!latestMetadataInstant.isPresent()) { LOG.warn("Metadata Table will need to be re-initialized as no instants were found"); return true; } final String latestMetadataInstantTimestamp = latestMetadataInstant.get().getTimestamp(); if (latestMetadataInstantTimestamp.startsWith(SOLO_COMMIT_TIMESTAMP)) { // the initialization timestamp is SOLO_COMMIT_TIMESTAMP + offset return false; } return false; }
3.26
hudi_HoodieBackedTableMetadataWriter_update_rdh
/** * Update from {@code HoodieRollbackMetadata}. * * @param rollbackMetadata * {@code HoodieRollbackMetadata} * @param instantTime * Timestamp at which the rollback was performed */ @Override public void update(HoodieRollbackMetadata rollbackMetadata, String instantTime) { if (initialized && (f0 != null)) { // The commit which is being rolled back on the dataset final String commitToRollbackInstantTime = rollbackMetadata.getCommitsRollback().get(0); // Find the deltacommits since the last compaction Option<Pair<HoodieTimeline, HoodieInstant>> deltaCommitsInfo = CompactionUtils.getDeltaCommitsSinceLatestCompaction(metadataMetaClient.getActiveTimeline()); // This could be a compaction or deltacommit instant (See CompactionUtils.getDeltaCommitsSinceLatestCompaction) HoodieInstant compactionInstant = deltaCommitsInfo.get().getValue(); HoodieTimeline deltacommitsSinceCompaction = deltaCommitsInfo.get().getKey(); // The deltacommit that will be rolled back HoodieInstant deltaCommitInstant = new HoodieInstant(false, HoodieTimeline.DELTA_COMMIT_ACTION, commitToRollbackInstantTime); validateRollback(commitToRollbackInstantTime, compactionInstant, deltacommitsSinceCompaction); // lets apply a delta commit with DT's rb instant(with special suffix) containing following records: // a. any log files as part of RB commit metadata that was added // b. log files added by the commit in DT being rolled back. By rolled back, we mean, a rollback block will be added and does not mean it will be deleted. // both above list should only be added to FILES partition. String rollbackInstantTime = createRollbackTimestamp(instantTime); processAndCommit(instantTime, () -> HoodieTableMetadataUtil.convertMetadataToRecords(engineContext, f1, rollbackMetadata, instantTime)); if (deltacommitsSinceCompaction.containsInstant(deltaCommitInstant)) { LOG.info("Rolling back MDT deltacommit " + commitToRollbackInstantTime); if (!getWriteClient().rollback(commitToRollbackInstantTime, rollbackInstantTime)) { throw new HoodieMetadataException("Failed to rollback deltacommit at " + commitToRollbackInstantTime); } } else { LOG.info(String.format("Ignoring rollback of instant %s at %s. The commit to rollback is not found in MDT", commitToRollbackInstantTime, instantTime)); } closeInternal(); } }
3.26
hudi_HoodieBackedTableMetadataWriter_preWrite_rdh
/** * Allows the implementation to perform any pre-commit operations like transitioning a commit to inflight if required. * * @param instantTime * time of commit */ protected void preWrite(String instantTime) { // Default is No-Op }
3.26
hudi_HoodieBackedTableMetadataWriter_enablePartitions_rdh
/** * Enable metadata table partitions based on config. */ private void enablePartitions() { final HoodieMetadataConfig v0 = dataWriteConfig.getMetadataConfig(); if (dataWriteConfig.isMetadataTableEnabled() || f1.getTableConfig().isMetadataPartitionAvailable(FILES)) { this.enabledPartitionTypes.add(FILES);} if (v0.isBloomFilterIndexEnabled() || f1.getTableConfig().isMetadataPartitionAvailable(BLOOM_FILTERS)) {this.enabledPartitionTypes.add(BLOOM_FILTERS); }if (v0.isColumnStatsIndexEnabled() || f1.getTableConfig().isMetadataPartitionAvailable(COLUMN_STATS)) { this.enabledPartitionTypes.add(COLUMN_STATS); } if (dataWriteConfig.isRecordIndexEnabled() || f1.getTableConfig().isMetadataPartitionAvailable(RECORD_INDEX)) { this.enabledPartitionTypes.add(RECORD_INDEX); } if (f1.getFunctionalIndexMetadata().isPresent()) { this.enabledPartitionTypes.add(FUNCTIONAL_INDEX); } }
3.26
hudi_HoodieBackedTableMetadataWriter_updateFunctionalIndexIfPresent_rdh
/** * Update functional index from {@link HoodieCommitMetadata}. */ private void updateFunctionalIndexIfPresent(HoodieCommitMetadata commitMetadata, String instantTime, Map<MetadataPartitionType, HoodieData<HoodieRecord>> partitionToRecordMap) { f1.getTableConfig().getMetadataPartitions().stream().filter(partition -> partition.startsWith(HoodieTableMetadataUtil.PARTITION_NAME_FUNCTIONAL_INDEX_PREFIX)).forEach(partition -> { HoodieData<HoodieRecord> functionalIndexRecords; try { functionalIndexRecords = getFunctionalIndexUpdates(commitMetadata, partition, instantTime); } catch (Exception e) { throw new <e>HoodieMetadataException("Failed to get functional index updates for partition " + partition); } partitionToRecordMap.put(FUNCTIONAL_INDEX, functionalIndexRecords); }); }
3.26
hudi_HoodieBackedTableMetadataWriter_m2_rdh
/** * Update from {@code HoodieRestoreMetadata}. * * @param restoreMetadata * {@code HoodieRestoreMetadata} * @param instantTime * Timestamp at which the restore was performed */ @Override public void m2(HoodieRestoreMetadata restoreMetadata, String instantTime) { f1.reloadActiveTimeline(); // Fetch the commit to restore to (savepointed commit time) HoodieInstant restoreInstant = new HoodieInstant(State.REQUESTED, HoodieTimeline.RESTORE_ACTION, instantTime); HoodieInstant requested = HoodieTimeline.getRestoreRequestedInstant(restoreInstant); HoodieRestorePlan restorePlan = null; try { restorePlan = TimelineMetadataUtils.deserializeAvroMetadata(f1.getActiveTimeline().readRestoreInfoAsBytes(requested).get(), HoodieRestorePlan.class); } catch (IOException e) { throw new HoodieIOException(("Deserialization of restore plan failed whose restore instant time is " + instantTime) + " in data table", e); } final String restoreToInstantTime = restorePlan.getSavepointToRestoreTimestamp(); LOG.info(("Triggering restore to " + restoreToInstantTime) + " in metadata table"); // fetch the earliest commit to retain and ensure the base file prior to the time to restore is present List<HoodieFileGroup> filesGroups = f0.getMetadataFileSystemView().getAllFileGroups(FILES.getPartitionPath()).collect(Collectors.toList()); boolean cannotRestore = filesGroups.stream().map(fileGroup -> fileGroup.getAllFileSlices().map(fileSlice -> fileSlice.getBaseInstantTime()).anyMatch(instantTime1 -> HoodieTimeline.compareTimestamps(instantTime1, LESSER_THAN_OR_EQUALS, restoreToInstantTime))).anyMatch(canRestore -> !canRestore); if (cannotRestore) { throw new HoodieMetadataException(String.format("Can't restore to %s since there is no base file in MDT lesser than the commit to restore to. " + "Please delete metadata table and retry", restoreToInstantTime)); } // Restore requires the existing pipelines to be shutdown. So we can safely scan the dataset to find the current // list of files in the filesystem. List<DirectoryInfo> dirInfoList = listAllPartitionsFromFilesystem(instantTime); Map<String, DirectoryInfo> dirInfoMap = dirInfoList.stream().collect(Collectors.toMap(DirectoryInfo::getRelativePath, Function.identity())); dirInfoList.clear(); BaseHoodieWriteClient<?, I, ?, ?> writeClient = getWriteClient(); writeClient.restoreToInstant(restoreToInstantTime, false); // At this point we have also reverted the cleans which have occurred after the restoreToInstantTime. Hence, a sync // is required to bring back those cleans. try { initMetadataReader(); Map<String, Map<String, Long>> partitionFilesToAdd = new HashMap<>(); Map<String, List<String>> partitionFilesToDelete = new HashMap<>(); List<String> partitionsToDelete = new ArrayList<>(); fetchOutofSyncFilesRecordsFromMetadataTable(dirInfoMap, partitionFilesToAdd, partitionFilesToDelete, partitionsToDelete); // Even if we don't have any deleted files to sync, we still create an empty commit so that we can track the restore has completed. // We cannot create a deltaCommit at instantTime now because a future (rollback) block has already been written to the logFiles. // We need to choose a timestamp which would be a validInstantTime for MDT. This is either a commit timestamp completed on the dataset // or a timestamp with suffix which we use for MDT clean, compaction etc. String v116 = HoodieTableMetadataUtil.createRestoreTimestamp(writeClient.createNewInstantTime(false)); processAndCommit(v116, () -> HoodieTableMetadataUtil.convertMissingPartitionRecords(engineContext, partitionsToDelete, partitionFilesToAdd, partitionFilesToDelete, v116)); closeInternal(); } catch (IOException e) { throw new HoodieMetadataException("IOException during MDT restore sync", e); } }
3.26
hudi_HoodieBackedTableMetadataWriter_initializeFromFilesystem_rdh
/** * Initialize the Metadata Table by listing files and partitions from the file system. * * @param initializationTime * - Timestamp to use for the commit * @param partitionsToInit * - List of MDT partitions to initialize * @param inflightInstantTimestamp * - Current action instant responsible for this initialization */private boolean initializeFromFilesystem(String initializationTime, List<MetadataPartitionType> partitionsToInit, Option<String> inflightInstantTimestamp) throws IOException { if (anyPendingDataInstant(f1, inflightInstantTimestamp)) { return false; } // FILES partition is always required and is initialized first boolean filesPartitionAvailable = f1.getTableConfig().isMetadataPartitionAvailable(FILES); if (!filesPartitionAvailable) { partitionsToInit.remove(FILES); partitionsToInit.add(0, FILES); // Initialize the metadata table for the first time metadataMetaClient = initializeMetaClient(); } else { // Check and then open the metadata table reader so FILES partition can be read during initialization of other partitions initMetadataReader(); // Load the metadata table metaclient if required if (metadataMetaClient == null) { metadataMetaClient = HoodieTableMetaClient.builder().setConf(hadoopConf.get()).setBasePath(metadataWriteConfig.getBasePath()).setTimeGeneratorConfig(dataWriteConfig.getTimeGeneratorConfig()).build(); } } // Already initialized partitions can be ignored partitionsToInit.removeIf(metadataPartition -> f1.getTableConfig().isMetadataPartitionAvailable(metadataPartition)); // Get a complete list of files and partitions from the file system or from already initialized FILES partition of MDT List<DirectoryInfo> partitionInfoList; if (filesPartitionAvailable) { partitionInfoList = listAllPartitionsFromMDT(initializationTime); } else // if auto initialization is enabled, then we need to list all partitions from the file system if (dataWriteConfig.getMetadataConfig().shouldAutoInitialize()) { partitionInfoList = listAllPartitionsFromFilesystem(initializationTime); } else { // if auto initialization is disabled, we can return an empty list partitionInfoList = Collections.emptyList(); } Map<String, Map<String, Long>> partitionToFilesMap = partitionInfoList.stream().map(p -> { String partitionName = HoodieTableMetadataUtil.getPartitionIdentifier(p.getRelativePath()); return Pair.of(partitionName, p.getFileNameToSizeMap()); }).collect(Collectors.toMap(Pair::getKey, Pair::getValue)); for (MetadataPartitionType partitionType : partitionsToInit) { // Find the commit timestamp to use for this partition. Each initialization should use its own unique commit time. String commitTimeForPartition = generateUniqueCommitInstantTime(initializationTime); LOG.info((("Initializing MDT partition " + partitionType.name()) + " at instant ") + commitTimeForPartition); Pair<Integer, HoodieData<HoodieRecord>> fileGroupCountAndRecordsPair; try { switch (partitionType) { case FILES : fileGroupCountAndRecordsPair = initializeFilesPartition(partitionInfoList);break; case BLOOM_FILTERS : fileGroupCountAndRecordsPair = initializeBloomFiltersPartition(initializationTime, partitionToFilesMap); break; case COLUMN_STATS : fileGroupCountAndRecordsPair = initializeColumnStatsPartition(partitionToFilesMap); break; case RECORD_INDEX : fileGroupCountAndRecordsPair = initializeRecordIndexPartition(); break; case FUNCTIONAL_INDEX : fileGroupCountAndRecordsPair = initializeFunctionalIndexPartition(); break; default : throw new HoodieMetadataException("Unsupported MDT partition type: " + partitionType); } } catch (Exception e) { String metricKey = (partitionType.getPartitionPath() + "_") + HoodieMetadataMetrics.BOOTSTRAP_ERR_STR; metrics.ifPresent(m -> m.setMetric(metricKey, 1)); LOG.error((("Bootstrap on " + partitionType.getPartitionPath()) + " partition failed for ") + metadataMetaClient.getBasePath(), e); throw new HoodieMetadataException((partitionType.getPartitionPath() + " bootstrap failed for ") + metadataMetaClient.getBasePath(), e); } LOG.info(String.format("Initializing %s index with %d mappings and %d file groups.", partitionType.name(), fileGroupCountAndRecordsPair.getKey(), fileGroupCountAndRecordsPair.getValue().count())); HoodieTimer partitionInitTimer = HoodieTimer.start(); // Generate the file groups final int fileGroupCount = fileGroupCountAndRecordsPair.getKey(); ValidationUtils.checkArgument(fileGroupCount > 0, ("FileGroup count for MDT partition " + partitionType.name()) + " should be > 0"); initializeFileGroups(f1, partitionType, commitTimeForPartition, fileGroupCount); // Perform the commit using bulkCommit HoodieData<HoodieRecord> records = fileGroupCountAndRecordsPair.getValue(); bulkCommit(commitTimeForPartition, partitionType, records, fileGroupCount); metadataMetaClient.reloadActiveTimeline(); f1.getTableConfig().setMetadataPartitionState(f1, partitionType, true); // initialize the metadata reader again so the MDT partition can be read after initialization initMetadataReader(); long totalInitTime = partitionInitTimer.endTimer(); LOG.info(String.format(("Initializing %s index in metadata table took " + totalInitTime) + " in ms", partitionType.name())); } return true; }
3.26
hudi_HoodieBackedTableMetadataWriter_listAllPartitionsFromMDT_rdh
/** * Function to find hoodie partitions and list files in them in parallel from MDT. * * @param initializationTime * Files which have a timestamp after this are neglected * @return List consisting of {@code DirectoryInfo} for each partition found. */ private List<DirectoryInfo> listAllPartitionsFromMDT(String initializationTime) throws IOException { List<DirectoryInfo> dirinfoList = new LinkedList<>(); List<String> allPartitionPaths = f0.getAllPartitionPaths().stream().map(partitionPath -> (dataWriteConfig.getBasePath() + "/") + partitionPath).collect(Collectors.toList()); Map<String, FileStatus[]> partitionFileMap = f0.getAllFilesInPartitions(allPartitionPaths); for (Map.Entry<String, FileStatus[]> entry : partitionFileMap.entrySet()) { dirinfoList.add(new DirectoryInfo(entry.getKey(), entry.getValue(), initializationTime)); } return dirinfoList; }
3.26
hudi_HoodieBackedTableMetadataWriter_processAndCommit_rdh
/** * Processes commit metadata from data table and commits to metadata table. * * @param instantTime * instant time of interest. * @param convertMetadataFunction * converter function to convert the respective metadata to List of HoodieRecords to be written to metadata table. */ private void processAndCommit(String instantTime, ConvertMetadataFunction convertMetadataFunction) { Set<String> partitionsToUpdate = m1(); if (initialized && (f0 != null)) { // convert metadata and filter only the entries whose partition path are in partitionsToUpdate Map<MetadataPartitionType, HoodieData<HoodieRecord>> partitionRecordsMap = convertMetadataFunction.convertMetadata().entrySet().stream().filter(entry -> partitionsToUpdate.contains(entry.getKey().getPartitionPath())).collect(Collectors.toMap(Map.Entry::getKey, Map.Entry::getValue)); commit(instantTime, partitionRecordsMap); } }
3.26
hudi_HoodieBackedTableMetadataWriter_generateUniqueCommitInstantTime_rdh
/** * Returns a unique timestamp to use for initializing a MDT partition. * <p> * Since commits are immutable, we should use unique timestamps to initialize each partition. For this, we will add a suffix to the given initializationTime * until we find a unique timestamp. * * @param initializationTime * Timestamp from dataset to use for initialization * @return a unique timestamp for MDT */ private String generateUniqueCommitInstantTime(String initializationTime) { // if its initialized via Async indexer, we don't need to alter the init time if (HoodieTableMetadataUtil.isIndexingCommit(initializationTime)) { return initializationTime; } // Add suffix to initializationTime to find an unused instant time for the next index initialization. // This function would be called multiple times in a single application if multiple indexes are being // initialized one after the other. for (int offset = 0; ; ++offset) { final String commitInstantTime = HoodieTableMetadataUtil.createIndexInitTimestamp(initializationTime, offset); if (!metadataMetaClient.getCommitsTimeline().containsInstant(commitInstantTime)) { return commitInstantTime; } } }
3.26
hudi_HoodieBackedTableMetadataWriter_m0_rdh
/** * Initialize the metadata table if needed. * * @param dataMetaClient * - meta client for the data table * @param inflightInstantTimestamp * - timestamp of an instant in progress on the dataset * @throws IOException * on errors */ protected boolean m0(HoodieTableMetaClient dataMetaClient, Option<String> inflightInstantTimestamp) throws IOException { HoodieTimer timer = HoodieTimer.start(); List<MetadataPartitionType> partitionsToInit = new ArrayList<>(MetadataPartitionType.values().length); try { boolean exists = metadataTableExists(dataMetaClient); if (!exists) { // FILES partition is always required partitionsToInit.add(FILES); } // check if any of the enabled partition types needs to be initialized // NOTE: It needs to be guarded by async index config because if that is enabled then initialization happens through the index scheduler. if (!dataWriteConfig.isMetadataAsyncIndex()) {Set<String> completedPartitions = dataMetaClient.getTableConfig().getMetadataPartitions(); LOG.info("Async metadata indexing disabled and following partitions already initialized: " + completedPartitions); // TODO: fix the filter to check for exact partition name, e.g. completedPartitions could have func_index_datestr, // but now the user is trying to initialize the func_index_dayhour partition. this.enabledPartitionTypes.stream().filter(p -> (!completedPartitions.contains(p.getPartitionPath())) && (!FILES.equals(p))).forEach(partitionsToInit::add); } if (partitionsToInit.isEmpty()) { // No partitions left to initialize, since all the metadata enabled partitions are either initialized before // or current in the process of initialization. initMetadataReader(); return true; } // If there is no commit on the dataset yet, use the SOLO_COMMIT_TIMESTAMP as the instant time for initial commit // Otherwise, we use the timestamp of the latest completed action. String initializationTime = dataMetaClient.getActiveTimeline().filterCompletedInstants().lastInstant().map(HoodieInstant::getTimestamp).orElse(SOLO_COMMIT_TIMESTAMP); // Initialize partitions for the first time using data from the files on the file system if (!initializeFromFilesystem(initializationTime, partitionsToInit, inflightInstantTimestamp)) { LOG.error("Failed to initialize MDT from filesystem");return false; } metrics.ifPresent(m -> m.updateMetrics(HoodieMetadataMetrics.INITIALIZE_STR, timer.endTimer())); return true; } catch (IOException e) { LOG.error("Failed to initialize metadata table. Disabling the writer.", e); return false; } }
3.26
hudi_HoodieBackedTableMetadataWriter_getFileNameToSizeMap_rdh
// Returns a map of filenames mapped to their lengths Map<String, Long> getFileNameToSizeMap() { return filenameToSizeMap; }
3.26
hudi_HoodieBackedTableMetadataWriter_getFunctionalIndexUpdates_rdh
/** * Loads the file slices touched by the commit due to given instant time and returns the records for the functional index. * * @param commitMetadata * {@code HoodieCommitMetadata} * @param indexPartition * partition name of the functional index * @param instantTime * timestamp at of the current update commit */ private HoodieData<HoodieRecord> getFunctionalIndexUpdates(HoodieCommitMetadata commitMetadata, String indexPartition, String instantTime) throws Exception { HoodieFunctionalIndexDefinition indexDefinition = getFunctionalIndexDefinition(indexPartition); List<Pair<String, FileSlice>> partitionFileSlicePairs = new ArrayList<>(); HoodieTableFileSystemView fsView = HoodieTableMetadataUtil.getFileSystemView(metadataMetaClient); commitMetadata.getPartitionToWriteStats().forEach((dataPartition, value) -> {List<FileSlice> fileSlices = getPartitionLatestFileSlicesIncludingInflight(metadataMetaClient, Option.ofNullable(fsView), dataPartition);fileSlices.forEach(fileSlice -> { // Filter log files for the instant time and add to this partition fileSlice pairs List<HoodieLogFile> logFilesForInstant = fileSlice.getLogFiles().filter(logFile -> logFile.getDeltaCommitTime().equals(instantTime)).collect(Collectors.toList()); partitionFileSlicePairs.add(Pair.of(dataPartition, new FileSlice(fileSlice.getFileGroupId(), fileSlice.getBaseInstantTime(), fileSlice.getBaseFile().orElse(null), logFilesForInstant))); }); }); int parallelism = Math.min(partitionFileSlicePairs.size(), dataWriteConfig.getMetadataConfig().getFunctionalIndexParallelism()); Schema v103 = getProjectedSchemaForFunctionalIndex(indexDefinition, f1); return getFunctionalIndexRecords(partitionFileSlicePairs, indexDefinition, f1, parallelism, v103, hadoopConf); }
3.26
hudi_HoodieBackedTableMetadataWriter_deletePendingIndexingInstant_rdh
/** * Deletes any pending indexing instant, if it exists. * It reads the plan from indexing.requested file and deletes both requested and inflight instants, * if the partition path in the plan matches with the given partition path. */ private static void deletePendingIndexingInstant(HoodieTableMetaClient metaClient, String partitionPath) { metaClient.reloadActiveTimeline().filterPendingIndexTimeline().getInstantsAsStream().filter(instant -> REQUESTED.equals(instant.getState())).forEach(instant -> { try { HoodieIndexPlan indexPlan = deserializeIndexPlan(metaClient.getActiveTimeline().readIndexPlanAsBytes(instant).get()); if (indexPlan.getIndexPartitionInfos().stream().anyMatch(indexPartitionInfo -> indexPartitionInfo.getMetadataPartitionPath().equals(partitionPath))) { metaClient.getActiveTimeline().deleteInstantFileIfExists(instant); metaClient.getActiveTimeline().deleteInstantFileIfExists(getIndexInflightInstant(instant.getTimestamp())); } } catch (IOException e) { LOG.error("Failed to delete the instant file corresponding to " + instant); } }); }
3.26
hudi_HoodieBackedTableMetadataWriter_listAllPartitionsFromFilesystem_rdh
/** * Function to find hoodie partitions and list files in them in parallel. * * @param initializationTime * Files which have a timestamp after this are neglected * @return List consisting of {@code DirectoryInfo} for each partition found. */ private List<DirectoryInfo> listAllPartitionsFromFilesystem(String initializationTime) { List<SerializablePath> pathsToList = new LinkedList<>(); pathsToList.add(new SerializablePath(new CachingPath(dataWriteConfig.getBasePath())));List<DirectoryInfo> v54 = new LinkedList<>(); final int fileListingParallelism = metadataWriteConfig.getFileListingParallelism(); SerializableConfiguration conf = new SerializableConfiguration(f1.getHadoopConf()); final String dirFilterRegex = dataWriteConfig.getMetadataConfig().getDirectoryFilterRegex(); final String datasetBasePath = f1.getBasePath(); SerializablePath serializableBasePath = new SerializablePath(new CachingPath(datasetBasePath)); while (!pathsToList.isEmpty()) { // In each round we will list a section of directories int numDirsToList = Math.min(fileListingParallelism, pathsToList.size()); // List all directories in parallel engineContext.setJobStatus(this.getClass().getSimpleName(), ("Listing " + numDirsToList) + " partitions from filesystem"); List<DirectoryInfo> processedDirectories = engineContext.map(pathsToList.subList(0, numDirsToList), path -> { FileSystem fs = path.get().getFileSystem(conf.get()); String relativeDirPath = FSUtils.getRelativePartitionPath(serializableBasePath.get(), path.get()); return new DirectoryInfo(relativeDirPath, fs.listStatus(path.get()), initializationTime); }, numDirsToList); pathsToList = new LinkedList<>(pathsToList.subList(numDirsToList, pathsToList.size())); // If the listing reveals a directory, add it to queue. If the listing reveals a hoodie partition, add it to // the results. for (DirectoryInfo dirInfo : processedDirectories) { if (!dirFilterRegex.isEmpty()) { final String relativePath = dirInfo.getRelativePath(); if ((!relativePath.isEmpty()) && relativePath.matches(dirFilterRegex)) { LOG.info((("Ignoring directory " + relativePath) + " which matches the filter regex ") + dirFilterRegex); continue; } } if (dirInfo.isHoodiePartition()) { // Add to result v54.add(dirInfo);} else { // Add sub-dirs to the queue pathsToList.addAll(dirInfo.getSubDirectories().stream().map(path -> new SerializablePath(new CachingPath(path.toUri()))).collect(Collectors.toList())); } } } return v54; }
3.26
hudi_HoodieBackedTableMetadataWriter_getRecordIndexUpdates_rdh
/** * Return records that represent update to the record index due to write operation on the dataset. * * @param writeStatuses * {@code WriteStatus} from the write operation */ private HoodieData<HoodieRecord> getRecordIndexUpdates(HoodieData<WriteStatus> writeStatuses) { HoodiePairData<String, HoodieRecordDelegate> recordKeyDelegatePairs = null; // if update partition path is true, chances that we might get two records (1 delete in older partition and 1 insert to new partition) // and hence we might have to do reduce By key before ingesting to RLI partition. if (dataWriteConfig.getRecordIndexUpdatePartitionPath()) { recordKeyDelegatePairs = writeStatuses.map(writeStatus -> writeStatus.getWrittenRecordDelegates().stream().map(recordDelegate -> Pair.of(recordDelegate.getRecordKey(), recordDelegate))).flatMapToPair(Stream::iterator).reduceByKey((recordDelegate1, recordDelegate2) -> { if (recordDelegate1.getRecordKey().equals(recordDelegate2.getRecordKey())) { if ((!recordDelegate1.getNewLocation().isPresent()) && (!recordDelegate2.getNewLocation().isPresent())) { throw new HoodieIOException((("Both version of records do not have location set. Record V1 " + recordDelegate1.toString()) + ", Record V2 ") + recordDelegate2.toString()); } if (recordDelegate1.getNewLocation().isPresent()) { return recordDelegate1; } else { // if record delegate 1 does not have location set, record delegate 2 should have location set. return recordDelegate2; } } else { return recordDelegate1; } }, Math.max(1, writeStatuses.getNumPartitions())); } else { // if update partition path = false, we should get only one entry per record key. recordKeyDelegatePairs = writeStatuses.flatMapToPair(((SerializableFunction<WriteStatus, Iterator<? extends Pair<String, HoodieRecordDelegate>>>) (writeStatus -> writeStatus.getWrittenRecordDelegates().stream().map(rec -> Pair.of(rec.getRecordKey(), rec)).iterator()))); } return recordKeyDelegatePairs.map(writeStatusRecordDelegate -> { HoodieRecordDelegate recordDelegate = writeStatusRecordDelegate.getValue(); HoodieRecord hoodieRecord = null; Option<HoodieRecordLocation> newLocation = recordDelegate.getNewLocation(); if (newLocation.isPresent()) { if (recordDelegate.getCurrentLocation().isPresent()) { // This is an update, no need to update index if the location has not changed // newLocation should have the same fileID as currentLocation. The instantTimes differ as newLocation's // instantTime refers to the current commit which was completed. if (!recordDelegate.getCurrentLocation().get().getFileId().equals(newLocation.get().getFileId())) { final String msg = String.format("Detected update in location of record with key %s from %s " + " to %s. The fileID should not change.", recordDelegate, recordDelegate.getCurrentLocation().get(), newLocation.get()); LOG.error(msg); throw new HoodieMetadataException(msg); } // for updates, we can skip updating RLI partition in MDT } else { hoodieRecord = HoodieMetadataPayload.createRecordIndexUpdate(recordDelegate.getRecordKey(), recordDelegate.getPartitionPath(), newLocation.get().getFileId(), newLocation.get().getInstantTime(), dataWriteConfig.getWritesFileIdEncoding()); } } else { // Delete existing index for a deleted record hoodieRecord = HoodieMetadataPayload.createRecordIndexDelete(recordDelegate.getRecordKey()); }return hoodieRecord; }).filter(Objects::nonNull); }
3.26
hudi_HoodieBackedTableMetadataWriter_performTableServices_rdh
/** * Optimize the metadata table by running compaction, clean and archive as required. * <p> * Don't perform optimization if there are inflight operations on the dataset. This is for two reasons: * - The compaction will contain the correct data as all failed operations have been rolled back. * - Clean/compaction etc. will have the highest timestamp on the MDT and we won't be adding new operations * with smaller timestamps to metadata table (makes for easier debugging) * <p> * This adds the limitations that long-running async operations (clustering, etc.) may cause delay in such MDT * optimizations. We will relax this after MDT code has been hardened. */ @Overridepublic void performTableServices(Option<String> inFlightInstantTimestamp) { HoodieTimer metadataTableServicesTimer = HoodieTimer.start(); boolean allTableServicesExecutedSuccessfullyOrSkipped = true; BaseHoodieWriteClient<?, I, ?, ?> writeClient = getWriteClient(); try { // Run any pending table services operations. runPendingTableServicesOperations(writeClient); Option<HoodieInstant> lastInstant = metadataMetaClient.reloadActiveTimeline().getDeltaCommitTimeline().filterCompletedInstants().lastInstant(); if (!lastInstant.isPresent()) { return; } // Check and run clean operations. String latestDeltacommitTime = lastInstant.get().getTimestamp(); LOG.info(("Latest deltacommit time found is " + latestDeltacommitTime) + ", running clean operations."); cleanIfNecessary(writeClient, latestDeltacommitTime); // Do timeline validation before scheduling compaction/logCompaction operations. if (m3(inFlightInstantTimestamp, latestDeltacommitTime)) { compactIfNecessary(writeClient, latestDeltacommitTime); } writeClient.archive(); LOG.info("All the table services operations on MDT completed successfully"); } catch (Exception e) { LOG.error("Exception in running table services on metadata table", e); allTableServicesExecutedSuccessfullyOrSkipped = false; throw e; } finally { long timeSpent = metadataTableServicesTimer.endTimer(); metrics.ifPresent(m -> m.updateMetrics(HoodieMetadataMetrics.TABLE_SERVICE_EXECUTION_DURATION, timeSpent)); if (allTableServicesExecutedSuccessfullyOrSkipped) { metrics.ifPresent(m -> m.incrementMetric(HoodieMetadataMetrics.TABLE_SERVICE_EXECUTION_STATUS, 1)); } else { metrics.ifPresent(m -> m.incrementMetric(HoodieMetadataMetrics.TABLE_SERVICE_EXECUTION_STATUS, -1)); } } }
3.26
hudi_HoodieBackedTableMetadataWriter_initializeFileGroups_rdh
/** * Initialize file groups for a partition. For file listing, we just have one file group. * <p> * All FileGroups for a given metadata partition has a fixed prefix as per the {@link MetadataPartitionType#getFileIdPrefix()}. * Each file group is suffixed with 4 digits with increments of 1 starting with 0000. * <p> * Let's say we configure 10 file groups for record level index partition, and prefix as "record-index-bucket-" * File groups will be named as : * record-index-bucket-0000, .... -> ..., record-index-bucket-0009 */ private void initializeFileGroups(HoodieTableMetaClient dataMetaClient, MetadataPartitionType metadataPartition, String instantTime, int fileGroupCount) throws IOException { // Remove all existing file groups or leftover files in the partition final Path partitionPath = new Path(metadataWriteConfig.getBasePath(), metadataPartition.getPartitionPath()); FileSystem fs = metadataMetaClient.getFs(); try { final FileStatus[] existingFiles = fs.listStatus(partitionPath); if (existingFiles.length > 0) { LOG.warn("Deleting all existing files found in MDT partition " + metadataPartition.getPartitionPath()); fs.delete(partitionPath, true); ValidationUtils.checkState(!fs.exists(partitionPath), "Failed to delete MDT partition " + metadataPartition); } } catch (FileNotFoundException ignored) { // If the partition did not exist yet, it will be created below } // Archival of data table has a dependency on compaction(base files) in metadata table. // It is assumed that as of time Tx of base instant (/compaction time) in metadata table, // all commits in data table is in sync with metadata table. So, we always start with log file for any fileGroup. // Even though the initial commit is a bulkInsert which creates the first baseFiles directly, we still // create a log file first. This ensures that if any fileGroups of the MDT index do not receive any records // during initial commit, then the fileGroup would still be recognized (as a FileSlice with no baseFiles but a // valid logFile). Since these log files being created have no content, it is safe to add them here before // the bulkInsert. final String msg = String.format("Creating %d file groups for partition %s with base fileId %s at instant time %s", fileGroupCount, metadataPartition.getPartitionPath(), metadataPartition.getFileIdPrefix(), instantTime); LOG.info(msg); final List<String> fileGroupFileIds = IntStream.range(0, fileGroupCount).mapToObj(i -> HoodieTableMetadataUtil.getFileIDForFileGroup(metadataPartition, i)).collect(Collectors.toList()); ValidationUtils.checkArgument(fileGroupFileIds.size() == fileGroupCount); engineContext.setJobStatus(this.getClass().getSimpleName(), msg); engineContext.foreach(fileGroupFileIds, fileGroupFileId -> { try { final Map<HeaderMetadataType, String> blockHeader = Collections.singletonMap(HeaderMetadataType.INSTANT_TIME, instantTime); final HoodieDeleteBlock block = new HoodieDeleteBlock(Collections.emptyList(), false, blockHeader); HoodieLogFormat.Writer writer = HoodieLogFormat.newWriterBuilder().onParentPath(FSUtils.getPartitionPath(metadataWriteConfig.getBasePath(), metadataPartition.getPartitionPath())).withFileId(fileGroupFileId).withDeltaCommit(instantTime).withLogVersion(HoodieLogFile.LOGFILE_BASE_VERSION).withFileSize(0L).withSizeThreshold(metadataWriteConfig.getLogFileMaxSize()).withFs(dataMetaClient.getFs()).withRolloverLogWriteToken(HoodieLogFormat.DEFAULT_WRITE_TOKEN).withLogWriteToken(HoodieLogFormat.DEFAULT_WRITE_TOKEN).withFileExtension(HoodieLogFile.DELTA_EXTENSION).build(); writer.appendBlock(block); writer.close(); } catch (InterruptedException e) { throw new <e>HoodieException((("Failed to created fileGroup " + fileGroupFileId) + " for partition ") + metadataPartition.getPartitionPath()); } }, fileGroupFileIds.size()); }
3.26
hudi_CleanerUtils_rollbackFailedWrites_rdh
/** * Execute {@link HoodieFailedWritesCleaningPolicy} to rollback failed writes for different actions. * * @param cleaningPolicy * @param actionType * @param rollbackFailedWritesFunc */ public static void rollbackFailedWrites(HoodieFailedWritesCleaningPolicy cleaningPolicy, String actionType, Functions.Function0<Boolean> rollbackFailedWritesFunc) { switch (actionType) { case HoodieTimeline.CLEAN_ACTION : if (cleaningPolicy.isEager()) { // No need to do any special cleanup for failed operations during clean return; } else if (cleaningPolicy.isLazy()) { LOG.info("Cleaned failed attempts if any"); // Perform rollback of failed operations for all types of actions during clean rollbackFailedWritesFunc.apply(); return; } // No action needed for cleaning policy NEVER break; case COMMIT_ACTION : // For any other actions, perform rollback of failed writes if (cleaningPolicy.isEager()) { LOG.info("Cleaned failed attempts if any"); rollbackFailedWritesFunc.apply(); return; } break;default : throw new IllegalArgumentException("Unsupported action type " + actionType); } }
3.26
hudi_CleanerUtils_getCleanerMetadata_rdh
/** * Get Latest Version of Hoodie Cleaner Metadata - Output of cleaner operation. * * @return Latest version of Clean metadata corresponding to clean instant * @throws IOException */ public static HoodieCleanMetadata getCleanerMetadata(HoodieTableMetaClient metaClient, byte[] details) throws IOException { CleanMetadataMigrator metadataMigrator = new CleanMetadataMigrator(metaClient); HoodieCleanMetadata cleanMetadata = TimelineMetadataUtils.deserializeHoodieCleanMetadata(details); return metadataMigrator.upgradeToLatest(cleanMetadata, cleanMetadata.getVersion()); }
3.26
hudi_CleanerUtils_convertToHoodieCleanFileInfoList_rdh
/** * Convert list of cleanFileInfo instances to list of avro-generated HoodieCleanFileInfo instances. * * @param cleanFileInfoList * @return */ public static List<HoodieCleanFileInfo> convertToHoodieCleanFileInfoList(List<CleanFileInfo> cleanFileInfoList) { return cleanFileInfoList.stream().map(CleanFileInfo::toHoodieFileCleanInfo).collect(Collectors.toList()); }
3.26
hudi_CleanerUtils_getCleanerPlan_rdh
/** * Get Latest version of cleaner plan corresponding to a clean instant. * * @param metaClient * Hoodie Table Meta Client * @return Cleaner plan corresponding to clean instant * @throws IOException */ public static HoodieCleanerPlan getCleanerPlan(HoodieTableMetaClient metaClient, byte[] details) throws IOException { CleanPlanMigrator cleanPlanMigrator = new CleanPlanMigrator(metaClient);HoodieCleanerPlan cleanerPlan = TimelineMetadataUtils.deserializeAvroMetadata(details, HoodieCleanerPlan.class); return cleanPlanMigrator.upgradeToLatest(cleanerPlan, cleanerPlan.getVersion()); }
3.26
hudi_ActiveAction_getPendingAction_rdh
/** * A COMPACTION action eventually becomes COMMIT when completed. */ public String getPendingAction() { return getPendingInstant().getAction(); }
3.26
hudi_HoodieCreateHandle_close_rdh
/** * Performs actions to durably, persist the current changes and returns a WriteStatus object. */ @Override public List<WriteStatus> close() { LOG.info((("Closing the file " + writeStatus.getFileId()) + " as we are done with all the records ") + recordsWritten); try { if (isClosed()) { // Handle has already been closed return Collections.emptyList(); } markClosed(); if (fileWriter != null) { fileWriter.close(); fileWriter = null; } setupWriteStatus(); LOG.info(String.format("CreateHandle for partitionPath %s fileID %s, took %d ms.", writeStatus.getStat().getPartitionPath(), writeStatus.getStat().getFileId(), writeStatus.getStat().getRuntimeStats().getTotalCreateTime())); return Collections.singletonList(writeStatus); } catch (IOException e) { throw new HoodieInsertException("Failed to close the Insert Handle for path " + path, e); } }
3.26
hudi_HoodieCreateHandle_setupWriteStatus_rdh
/** * Set up the write status. * * @throws IOException * if error occurs */ protected void setupWriteStatus() throws IOException { HoodieWriteStat stat = writeStatus.getStat(); stat.setPartitionPath(writeStatus.getPartitionPath()); stat.setNumWrites(recordsWritten); stat.setNumDeletes(recordsDeleted); stat.setNumInserts(insertRecordsWritten); stat.setPrevCommit(HoodieWriteStat.NULL_COMMIT); stat.setFileId(writeStatus.getFileId()); stat.setPath(new Path(config.getBasePath()), path); stat.setTotalWriteErrors(writeStatus.getTotalErrorRecords()); long fileSize = FSUtils.getFileSize(fs, path); stat.setTotalWriteBytes(fileSize); stat.setFileSizeInBytes(fileSize); RuntimeStats runtimeStats = new RuntimeStats(); runtimeStats.setTotalCreateTime(timer.endTimer()); stat.setRuntimeStats(runtimeStats); }
3.26
hudi_HoodieCreateHandle_doWrite_rdh
/** * Perform the actual writing of the given record into the backing file. */ @Override protected void doWrite(HoodieRecord record, Schema schema, TypedProperties props) { Option<Map<String, String>> recordMetadata = record.getMetadata(); try { if ((!HoodieOperation.isDelete(record.getOperation())) && (!record.isDelete(schema, config.getProps()))) { if (record.shouldIgnore(schema, config.getProps())) { return; } MetadataValues metadataValues = new MetadataValues().setFileName(path.getName()); HoodieRecord populatedRecord = record.prependMetaFields(schema, writeSchemaWithMetaFields, metadataValues, config.getProps()); if (preserveMetadata) { fileWriter.write(record.getRecordKey(), populatedRecord, writeSchemaWithMetaFields); } else { fileWriter.writeWithMetadata(record.getKey(), populatedRecord, writeSchemaWithMetaFields); } // Update the new location of record, so we know where to find it next record.unseal(); record.setNewLocation(newRecordLocation); record.seal(); recordsWritten++; insertRecordsWritten++; } else { recordsDeleted++; } writeStatus.markSuccess(record, recordMetadata); // deflate record payload after recording success. This will help users access payload as a // part of marking // record successful. record.deflate(); } catch (Throwable t) { // Not throwing exception from here, since we don't want to fail the entire job // for a single record writeStatus.markFailure(record, t, recordMetadata); LOG.error("Error writing record " + record, t); } }
3.26
hudi_HoodieCreateHandle_write_rdh
/** * Writes all records passed. */ public void write() { Iterator<String> keyIterator; if (hoodieTable.requireSortedRecords()) { // Sorting the keys limits the amount of extra memory required for writing sorted records keyIterator = recordMap.keySet().stream().sorted().iterator(); } else { keyIterator = recordMap.keySet().stream().iterator(); } while (keyIterator.hasNext()) { final String key = keyIterator.next(); HoodieRecord<T> record = recordMap.get(key); write(record, useWriterSchema ? writeSchemaWithMetaFields : writeSchema, config.getProps()); } }
3.26
hudi_DeletePartitionUtils_m0_rdh
/** * Check if there are any pending table service actions (requested + inflight) on a table affecting the partitions to * be dropped. * <p> * This check is to prevent a drop-partition from proceeding should a partition have a table service action in * the pending stage. If this is allowed to happen, the filegroup that is an input for a table service action, might * also be a candidate for being replaced. As such, when the table service action and drop-partition commits are * committed, there will be two commits replacing a single filegroup. * <p> * For example, a timeline might have an execution order as such: * 000.replacecommit.requested (clustering filegroup_1 + filegroup_2 -> filegroup_3) * 001.replacecommit.requested, 001.replacecommit.inflight, 0001.replacecommit (drop_partition to replace filegroup_1) * 000.replacecommit.inflight (clustering is executed now) * 000.replacecommit (clustering completed) * For an execution order as shown above, 000.replacecommit and 001.replacecommit will both flag filegroup_1 to be replaced. * This will cause downstream duplicate key errors when a map is being constructed. * * @param table * Table to perform validation on * @param partitionsToDrop * List of partitions to drop */ public static void m0(HoodieTable table, List<String> partitionsToDrop) { List<String> instantsOfOffendingPendingTableServiceAction = new ArrayList<>(); // ensure that there are no pending inflight clustering/compaction operations involving this partition SyncableFileSystemView fileSystemView = ((SyncableFileSystemView) (table.getSliceView())); // separating the iteration of pending compaction operations from clustering as they return different stream types Stream.concat(fileSystemView.getPendingCompactionOperations(), fileSystemView.getPendingLogCompactionOperations()).filter(op -> partitionsToDrop.contains(op.getRight().getPartitionPath())).forEach(op -> instantsOfOffendingPendingTableServiceAction.add(op.getLeft())); fileSystemView.getFileGroupsInPendingClustering().filter(fgIdInstantPair -> partitionsToDrop.contains(fgIdInstantPair.getLeft().getPartitionPath())).forEach(x -> instantsOfOffendingPendingTableServiceAction.add(x.getRight().getTimestamp())); if (instantsOfOffendingPendingTableServiceAction.size() > 0) { throw new HoodieDeletePartitionException((((("Failed to drop partitions. " + "Please ensure that there are no pending table service actions (clustering/compaction) for the partitions to be deleted: ") + partitionsToDrop) + ". ") + "Instant(s) of offending pending table service action: ") + instantsOfOffendingPendingTableServiceAction.stream().distinct().collect(Collectors.toList())); } }
3.26
hudi_ViewStorageProperties_createProperties_rdh
/** * Initialize the {@link #FILE_NAME} meta file. */ public static void createProperties(String basePath, FileSystemViewStorageConfig config, Configuration flinkConf) throws IOException { Path propertyPath = getPropertiesFilePath(basePath, flinkConf.getString(FlinkOptions.WRITE_CLIENT_ID)); FileSystem fs = FSUtils.getFs(basePath, HadoopConfigurations.getHadoopConf(flinkConf));fs.delete(propertyPath, false); try (FSDataOutputStream outputStream = fs.create(propertyPath)) { config.getProps().store(outputStream, "Filesystem view storage properties saved on " + new Date(System.currentTimeMillis()));} }
3.26
hudi_ViewStorageProperties_loadFromProperties_rdh
/** * Read the {@link FileSystemViewStorageConfig} with given table base path. */ public static FileSystemViewStorageConfig loadFromProperties(String basePath, Configuration conf) { Path propertyPath = getPropertiesFilePath(basePath, conf.getString(FlinkOptions.WRITE_CLIENT_ID)); LOG.info("Loading filesystem view storage properties from " + propertyPath); FileSystem fs = FSUtils.getFs(basePath, HadoopConfigurations.getHadoopConf(conf)); Properties props = new Properties(); try { try (FSDataInputStream v6 = fs.open(propertyPath)) { props.load(v6); } return FileSystemViewStorageConfig.newBuilder().fromProperties(props).build(); } catch (IOException e) { throw new HoodieIOException("Could not load filesystem view storage properties from " + propertyPath, e); } }
3.26
hudi_ExecutionStrategyUtil_transform_rdh
/** * Transform IndexedRecord into HoodieRecord. * * @param indexedRecord * indexedRecord. * @param writeConfig * writeConfig. * @return hoodieRecord. * @param <T> */ public static <T> HoodieRecord<T> transform(IndexedRecord indexedRecord, HoodieWriteConfig writeConfig) { GenericRecord record = ((GenericRecord) (indexedRecord)); Option<BaseKeyGenerator> keyGeneratorOpt = Option.empty(); if (!writeConfig.populateMetaFields()) {try { TypedProperties typedProperties = new TypedProperties(writeConfig.getProps()); keyGeneratorOpt = Option.of(((BaseKeyGenerator) (HoodieSparkKeyGeneratorFactory.createKeyGenerator(typedProperties)))); } catch (IOException e) { throw new HoodieIOException("Only BaseKeyGenerators are supported when meta columns are disabled ", e);} } String key = KeyGenUtils.getRecordKeyFromGenericRecord(record, keyGeneratorOpt); String partition = KeyGenUtils.getPartitionPathFromGenericRecord(record, keyGeneratorOpt); HoodieKey hoodieKey = new HoodieKey(key, partition); HoodieRecordPayload avroPayload = new RewriteAvroPayload(record); HoodieRecord hoodieRecord = new HoodieAvroRecord(hoodieKey, avroPayload); return hoodieRecord; }
3.26
hudi_CommitUtils_getCommitActionType_rdh
/** * Gets the commit action type for given table type. * Note: Use this API only when the commit action type is not dependent on the write operation type. * See {@link CommitUtils#getCommitActionType(WriteOperationType, HoodieTableType)} for more details. */ public static String getCommitActionType(HoodieTableType tableType) { switch (tableType) { case COPY_ON_WRITE : return HoodieActiveTimeline.COMMIT_ACTION; case MERGE_ON_READ : return HoodieActiveTimeline.DELTA_COMMIT_ACTION; default : throw new HoodieException("Could not commit on unknown table type " + tableType); } }
3.26
hudi_CommitUtils_getValidCheckpointForCurrentWriter_rdh
/** * Process previous commits metadata in the timeline to determine the checkpoint given a checkpoint key. * NOTE: This is very similar in intent to DeltaSync#getLatestCommitMetadataWithValidCheckpointInfo except that * different deployment models (deltastreamer or spark structured streaming) could have different checkpoint keys. * * @param timeline * completed commits in active timeline. * @param checkpointKey * the checkpoint key in the extra metadata of the commit. * @param keyToLookup * key of interest for which checkpoint is looked up for. * @return An optional commit metadata with latest checkpoint. */ public static Option<String> getValidCheckpointForCurrentWriter(HoodieTimeline timeline, String checkpointKey, String keyToLookup) { return ((Option<String>) (timeline.getWriteTimeline().filterCompletedInstants().getReverseOrderedInstants().map(instant -> { try { HoodieCommitMetadata commitMetadata = HoodieCommitMetadata.fromBytes(timeline.getInstantDetails(instant).get(), HoodieCommitMetadata.class); // process commits only with checkpoint entries String v12 = commitMetadata.getMetadata(checkpointKey); if (StringUtils.nonEmpty(v12)) {// return if checkpoint for "keyForLookup" exists. return readCheckpointValue(v12, keyToLookup); } else { return Option.empty(); }} catch (IOException e) { throw new <e>HoodieIOException("Failed to parse HoodieCommitMetadata for " + instant.toString()); } }).filter(Option::isPresent).findFirst().orElse(Option.empty()))); }
3.26