project
stringclasses 2
values | commit_id
stringlengths 40
40
| target
int64 0
1
| func
stringlengths 26
142k
| idx
int64 0
27.3k
|
---|---|---|---|---|
qemu | a8170e5e97ad17ca169c64ba87ae2f53850dab4c | 0 | static void bonito_pciconf_writel(void *opaque, target_phys_addr_t addr,
uint64_t val, unsigned size)
{
PCIBonitoState *s = opaque;
PCIDevice *d = PCI_DEVICE(s);
DPRINTF("bonito_pciconf_writel "TARGET_FMT_plx" val %x\n", addr, val);
d->config_write(d, addr, val, 4);
}
| 2,922 |
FFmpeg | 3e0f7126b53b395d9e79df57b2e626eb99ad846b | 1 | void ff_snow_vertical_compose97i_sse2(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, DWTELEM *b3, DWTELEM *b4, DWTELEM *b5, int width){
long i = width;
while(i & 0xF)
{
i--;
b4[i] -= (W_DM*(b3[i] + b5[i])+W_DO)>>W_DS;
b3[i] -= (W_CM*(b2[i] + b4[i])+W_CO)>>W_CS;
b2[i] += (W_BM*(b1[i] + b3[i])+4*b2[i]+W_BO)>>W_BS;
b1[i] += (W_AM*(b0[i] + b2[i])+W_AO)>>W_AS;
}
asm volatile (
"jmp 2f \n\t"
"1: \n\t"
"mov %6, %%"REG_a" \n\t"
"mov %4, %%"REG_S" \n\t"
snow_vertical_compose_sse2_load(REG_S,"xmm0","xmm2","xmm4","xmm6")
snow_vertical_compose_sse2_add(REG_a,"xmm0","xmm2","xmm4","xmm6")
snow_vertical_compose_sse2_move("xmm0","xmm2","xmm4","xmm6","xmm1","xmm3","xmm5","xmm7")
snow_vertical_compose_sse2_r2r_add("xmm0","xmm2","xmm4","xmm6","xmm0","xmm2","xmm4","xmm6")
snow_vertical_compose_sse2_r2r_add("xmm1","xmm3","xmm5","xmm7","xmm0","xmm2","xmm4","xmm6")
"pcmpeqd %%xmm1, %%xmm1 \n\t"
"pslld $31, %%xmm1 \n\t"
"psrld $29, %%xmm1 \n\t"
"mov %5, %%"REG_a" \n\t"
snow_vertical_compose_sse2_r2r_add("xmm1","xmm1","xmm1","xmm1","xmm0","xmm2","xmm4","xmm6")
snow_vertical_compose_sse2_sra("3","xmm0","xmm2","xmm4","xmm6")
snow_vertical_compose_sse2_load(REG_a,"xmm1","xmm3","xmm5","xmm7")
snow_vertical_compose_sse2_sub("xmm0","xmm2","xmm4","xmm6","xmm1","xmm3","xmm5","xmm7")
snow_vertical_compose_sse2_store(REG_a,"xmm1","xmm3","xmm5","xmm7")
"mov %3, %%"REG_c" \n\t"
snow_vertical_compose_sse2_load(REG_S,"xmm0","xmm2","xmm4","xmm6")
snow_vertical_compose_sse2_add(REG_c,"xmm1","xmm3","xmm5","xmm7")
snow_vertical_compose_sse2_sub("xmm1","xmm3","xmm5","xmm7","xmm0","xmm2","xmm4","xmm6")
snow_vertical_compose_sse2_store(REG_S,"xmm0","xmm2","xmm4","xmm6")
"mov %2, %%"REG_a" \n\t"
snow_vertical_compose_sse2_add(REG_a,"xmm0","xmm2","xmm4","xmm6")
snow_vertical_compose_sse2_sra("2","xmm0","xmm2","xmm4","xmm6")
snow_vertical_compose_sse2_add(REG_c,"xmm0","xmm2","xmm4","xmm6")
"pcmpeqd %%xmm1, %%xmm1 \n\t"
"pslld $31, %%xmm1 \n\t"
"psrld $30, %%xmm1 \n\t"
"mov %1, %%"REG_S" \n\t"
snow_vertical_compose_sse2_r2r_add("xmm1","xmm1","xmm1","xmm1","xmm0","xmm2","xmm4","xmm6")
snow_vertical_compose_sse2_sra("2","xmm0","xmm2","xmm4","xmm6")
snow_vertical_compose_sse2_add(REG_c,"xmm0","xmm2","xmm4","xmm6")
snow_vertical_compose_sse2_store(REG_c,"xmm0","xmm2","xmm4","xmm6")
snow_vertical_compose_sse2_add(REG_S,"xmm0","xmm2","xmm4","xmm6")
snow_vertical_compose_sse2_move("xmm0","xmm2","xmm4","xmm6","xmm1","xmm3","xmm5","xmm7")
snow_vertical_compose_sse2_sra("1","xmm0","xmm2","xmm4","xmm6")
snow_vertical_compose_sse2_r2r_add("xmm1","xmm3","xmm5","xmm7","xmm0","xmm2","xmm4","xmm6")
snow_vertical_compose_sse2_add(REG_a,"xmm0","xmm2","xmm4","xmm6")
snow_vertical_compose_sse2_store(REG_a,"xmm0","xmm2","xmm4","xmm6")
"2: \n\t"
"sub $16, %%"REG_d" \n\t"
"jge 1b \n\t"
:"+d"(i)
:
"m"(b0),"m"(b1),"m"(b2),"m"(b3),"m"(b4),"m"(b5):
"%"REG_a"","%"REG_S"","%"REG_c"");
}
| 2,923 |
qemu | d82ca915875ac55ba291435f7eb4fe7bfcb2cecb | 1 | int qemu_fclose(QEMUFile *f)
{
int ret = 0;
qemu_fflush(f);
if (f->close)
ret = f->close(f->opaque);
g_free(f);
return ret;
}
| 2,924 |
qemu | 60fe637bf0e4d7989e21e50f52526444765c63b4 | 1 | static bool block_is_active(void *opaque)
{
return block_mig_state.blk_enable == 1;
}
| 2,925 |
FFmpeg | 29638d4db90d5e3fc107c1beb40808f53cc7acaa | 1 | static void filter1(int32_t *dst, const int32_t *src, int32_t coeff, ptrdiff_t len)
{
int i;
for (i = 0; i < len; i++)
dst[i] -= mul23(src[i], coeff);
}
| 2,926 |
FFmpeg | 0044a8f80df366643bcfaf74011e41a2658c88f8 | 1 | static int mpegts_write_end(AVFormatContext *s)
{
MpegTSWrite *ts = s->priv_data;
MpegTSWriteStream *ts_st;
MpegTSService *service;
AVStream *st;
int i;
/* flush current packets */
for(i = 0; i < s->nb_streams; i++) {
st = s->streams[i];
ts_st = st->priv_data;
if (ts_st->payload_index > 0) {
mpegts_write_pes(s, st, ts_st->payload, ts_st->payload_index,
ts_st->payload_pts);
}
}
put_flush_packet(&s->pb);
for(i = 0; i < ts->nb_services; i++) {
service = ts->services[i];
av_freep(&service->provider_name);
av_freep(&service->name);
av_free(service);
}
av_free(ts->services);
for(i = 0; i < s->nb_streams; i++) {
st = s->streams[i];
av_free(st->priv_data);
}
return 0;
}
| 2,927 |
FFmpeg | 90fc00a623de44e137fe1601b91356e8cd8bdd54 | 1 | static int microdvd_probe(AVProbeData *p)
{
unsigned char c;
const uint8_t *ptr = p->buf;
int i;
if (AV_RB24(ptr) == 0xEFBBBF)
ptr += 3; /* skip UTF-8 BOM */
for (i=0; i<3; i++) {
if (sscanf(ptr, "{%*d}{}%c", &c) != 1 &&
sscanf(ptr, "{%*d}{%*d}%c", &c) != 1 &&
sscanf(ptr, "{DEFAULT}{}%c", &c) != 1)
return 0;
ptr += strcspn(ptr, "\n") + 1;
}
return AVPROBE_SCORE_MAX;
}
| 2,928 |
FFmpeg | 6021615bbe393381f23b34a7cd0dcfd1a42687ba | 0 | static void draw_char(AVCodecContext *avctx, int c)
{
AnsiContext *s = avctx->priv_data;
int fg = s->fg;
int bg = s->bg;
if ((s->attributes & ATTR_BOLD))
fg += 8;
if ((s->attributes & ATTR_BLINK))
bg += 8;
if ((s->attributes & ATTR_REVERSE))
FFSWAP(int, fg, bg);
if ((s->attributes & ATTR_CONCEALED))
fg = bg;
ff_draw_pc_font(s->frame->data[0] + s->y * s->frame->linesize[0] + s->x,
s->frame->linesize[0], s->font, s->font_height, c, fg, bg);
s->x += FONT_WIDTH;
if (s->x >= avctx->width) {
s->x = 0;
hscroll(avctx);
}
}
| 2,930 |
FFmpeg | 0025f7408a0fab2cab4a950064e4784a67463994 | 0 | static av_always_inline int vorbis_residue_decode_internal(vorbis_context *vc,
vorbis_residue *vr,
unsigned ch,
uint8_t *do_not_decode,
float *vec,
unsigned vlen,
unsigned ch_left,
int vr_type)
{
GetBitContext *gb = &vc->gb;
unsigned c_p_c = vc->codebooks[vr->classbook].dimensions;
uint8_t *classifs = vr->classifs;
unsigned pass, ch_used, i, j, k, l;
unsigned max_output = (ch - 1) * vlen;
int ptns_to_read = vr->ptns_to_read;
if (vr_type == 2) {
for (j = 1; j < ch; ++j)
do_not_decode[0] &= do_not_decode[j]; // FIXME - clobbering input
if (do_not_decode[0])
return 0;
ch_used = 1;
max_output += vr->end / ch;
} else {
ch_used = ch;
max_output += vr->end;
}
if (max_output > ch_left * vlen) {
av_log(vc->avctx, AV_LOG_ERROR, "Insufficient output buffer\n");
return AVERROR_INVALIDDATA;
}
av_dlog(NULL, " residue type 0/1/2 decode begin, ch: %d cpc %d \n", ch, c_p_c);
for (pass = 0; pass <= vr->maxpass; ++pass) { // FIXME OPTIMIZE?
int voffset, partition_count, j_times_ptns_to_read;
voffset = vr->begin;
for (partition_count = 0; partition_count < ptns_to_read;) { // SPEC error
if (!pass) {
setup_classifs(vc, vr, do_not_decode, ch_used, partition_count);
}
for (i = 0; (i < c_p_c) && (partition_count < ptns_to_read); ++i) {
for (j_times_ptns_to_read = 0, j = 0; j < ch_used; ++j) {
unsigned voffs;
if (!do_not_decode[j]) {
unsigned vqclass = classifs[j_times_ptns_to_read + partition_count];
int vqbook = vr->books[vqclass][pass];
if (vqbook >= 0 && vc->codebooks[vqbook].codevectors) {
unsigned coffs;
unsigned dim = vc->codebooks[vqbook].dimensions;
unsigned step = FASTDIV(vr->partition_size << 1, dim << 1);
vorbis_codebook codebook = vc->codebooks[vqbook];
if (vr_type == 0) {
voffs = voffset+j*vlen;
for (k = 0; k < step; ++k) {
coffs = get_vlc2(gb, codebook.vlc.table, codebook.nb_bits, 3) * dim;
for (l = 0; l < dim; ++l)
vec[voffs + k + l * step] += codebook.codevectors[coffs + l];
}
} else if (vr_type == 1) {
voffs = voffset + j * vlen;
for (k = 0; k < step; ++k) {
coffs = get_vlc2(gb, codebook.vlc.table, codebook.nb_bits, 3) * dim;
for (l = 0; l < dim; ++l, ++voffs) {
vec[voffs]+=codebook.codevectors[coffs+l];
av_dlog(NULL, " pass %d offs: %d curr: %f change: %f cv offs.: %d \n",
pass, voffs, vec[voffs], codebook.codevectors[coffs+l], coffs);
}
}
} else if (vr_type == 2 && ch == 2 && (voffset & 1) == 0 && (dim & 1) == 0) { // most frequent case optimized
voffs = voffset >> 1;
if (dim == 2) {
for (k = 0; k < step; ++k) {
coffs = get_vlc2(gb, codebook.vlc.table, codebook.nb_bits, 3) * 2;
vec[voffs + k ] += codebook.codevectors[coffs ];
vec[voffs + k + vlen] += codebook.codevectors[coffs + 1];
}
} else if (dim == 4) {
for (k = 0; k < step; ++k, voffs += 2) {
coffs = get_vlc2(gb, codebook.vlc.table, codebook.nb_bits, 3) * 4;
vec[voffs ] += codebook.codevectors[coffs ];
vec[voffs + 1 ] += codebook.codevectors[coffs + 2];
vec[voffs + vlen ] += codebook.codevectors[coffs + 1];
vec[voffs + vlen + 1] += codebook.codevectors[coffs + 3];
}
} else
for (k = 0; k < step; ++k) {
coffs = get_vlc2(gb, codebook.vlc.table, codebook.nb_bits, 3) * dim;
for (l = 0; l < dim; l += 2, voffs++) {
vec[voffs ] += codebook.codevectors[coffs + l ];
vec[voffs + vlen] += codebook.codevectors[coffs + l + 1];
av_dlog(NULL, " pass %d offs: %d curr: %f change: %f cv offs.: %d+%d \n",
pass, voffset / ch + (voffs % ch) * vlen,
vec[voffset / ch + (voffs % ch) * vlen],
codebook.codevectors[coffs + l], coffs, l);
}
}
} else if (vr_type == 2) {
unsigned voffs_div = FASTDIV(voffset << 1, ch <<1);
unsigned voffs_mod = voffset - voffs_div * ch;
for (k = 0; k < step; ++k) {
coffs = get_vlc2(gb, codebook.vlc.table, codebook.nb_bits, 3) * dim;
for (l = 0; l < dim; ++l) {
vec[voffs_div + voffs_mod * vlen] +=
codebook.codevectors[coffs + l];
av_dlog(NULL, " pass %d offs: %d curr: %f change: %f cv offs.: %d+%d \n",
pass, voffs_div + voffs_mod * vlen,
vec[voffs_div + voffs_mod * vlen],
codebook.codevectors[coffs + l], coffs, l);
if (++voffs_mod == ch) {
voffs_div++;
voffs_mod = 0;
}
}
}
}
}
}
j_times_ptns_to_read += ptns_to_read;
}
++partition_count;
voffset += vr->partition_size;
}
}
}
return 0;
}
| 2,931 |
FFmpeg | a6191d098a03f94685ae4c072bfdf10afcd86223 | 0 | static int init_quantization_noise(DCAEncContext *c, int noise)
{
int ch, band, ret = 0;
c->consumed_bits = 132 + 493 * c->fullband_channels;
if (c->lfe_channel)
c->consumed_bits += 72;
/* attempt to guess the bit distribution based on the prevoius frame */
for (ch = 0; ch < c->fullband_channels; ch++) {
for (band = 0; band < 32; band++) {
int snr_cb = c->peak_cb[band][ch] - c->band_masking_cb[band] - noise;
if (snr_cb >= 1312) {
c->abits[band][ch] = 26;
ret |= USED_26ABITS;
} else if (snr_cb >= 222) {
c->abits[band][ch] = 8 + mul32(snr_cb - 222, 69000000);
ret |= USED_NABITS;
} else if (snr_cb >= 0) {
c->abits[band][ch] = 2 + mul32(snr_cb, 106000000);
ret |= USED_NABITS;
} else {
c->abits[band][ch] = 1;
ret |= USED_1ABITS;
}
}
}
for (band = 0; band < 32; band++)
for (ch = 0; ch < c->fullband_channels; ch++) {
c->consumed_bits += bit_consumption[c->abits[band][ch]];
}
return ret;
}
| 2,932 |
FFmpeg | b77e26b28525f366c5f978214b230a5324bedf81 | 0 | static void hevc_await_progress(HEVCContext *s, HEVCFrame *ref,
const Mv *mv, int y0, int height)
{
int y = FFMAX(0, (mv->y >> 2) + y0 + height + 9);
if (s->threads_type == FF_THREAD_FRAME )
ff_thread_await_progress(&ref->tf, y, 0);
}
| 2,933 |
FFmpeg | 3f50965b28d0c4ef10dde0bf2f7a9f78fa36b378 | 0 | static inline void h264_loop_filter_luma_intra_c(uint8_t *pix, int xstride, int ystride, int alpha, int beta)
{
int d;
for( d = 0; d < 16; d++ ) {
const int p2 = pix[-3*xstride];
const int p1 = pix[-2*xstride];
const int p0 = pix[-1*xstride];
const int q0 = pix[ 0*xstride];
const int q1 = pix[ 1*xstride];
const int q2 = pix[ 2*xstride];
if( FFABS( p0 - q0 ) < alpha &&
FFABS( p1 - p0 ) < beta &&
FFABS( q1 - q0 ) < beta ) {
if(FFABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){
if( FFABS( p2 - p0 ) < beta)
{
const int p3 = pix[-4*xstride];
/* p0', p1', p2' */
pix[-1*xstride] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3;
pix[-2*xstride] = ( p2 + p1 + p0 + q0 + 2 ) >> 2;
pix[-3*xstride] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3;
} else {
/* p0' */
pix[-1*xstride] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
}
if( FFABS( q2 - q0 ) < beta)
{
const int q3 = pix[3*xstride];
/* q0', q1', q2' */
pix[0*xstride] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3;
pix[1*xstride] = ( p0 + q0 + q1 + q2 + 2 ) >> 2;
pix[2*xstride] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3;
} else {
/* q0' */
pix[0*xstride] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
}
}else{
/* p0', q0' */
pix[-1*xstride] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
pix[ 0*xstride] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
}
}
pix += ystride;
}
}
| 2,934 |
FFmpeg | 324ff59444ff5470bb325ff1e2be7c4b054fc944 | 0 | void ff_interleave_add_packet(AVFormatContext *s, AVPacket *pkt,
int (*compare)(AVFormatContext *, AVPacket *, AVPacket *))
{
AVPacketList **next_point, *this_pktl;
this_pktl = av_mallocz(sizeof(AVPacketList));
this_pktl->pkt = *pkt;
#if FF_API_DESTRUCT_PACKET
FF_DISABLE_DEPRECATION_WARNINGS
pkt->destruct = NULL; // do not free original but only the copy
FF_ENABLE_DEPRECATION_WARNINGS
#endif
pkt->buf = NULL;
av_dup_packet(&this_pktl->pkt); // duplicate the packet if it uses non-alloced memory
if (s->streams[pkt->stream_index]->last_in_packet_buffer) {
next_point = &(s->streams[pkt->stream_index]->last_in_packet_buffer->next);
} else
next_point = &s->packet_buffer;
if (*next_point) {
if (compare(s, &s->packet_buffer_end->pkt, pkt)) {
while (!compare(s, &(*next_point)->pkt, pkt))
next_point = &(*next_point)->next;
goto next_non_null;
} else {
next_point = &(s->packet_buffer_end->next);
}
}
assert(!*next_point);
s->packet_buffer_end = this_pktl;
next_non_null:
this_pktl->next = *next_point;
s->streams[pkt->stream_index]->last_in_packet_buffer =
*next_point = this_pktl;
}
| 2,935 |
FFmpeg | 8eb76217d0137b7adad438f6c923310fbc1fc4c1 | 1 | static int ipvideo_decode_block_opcode_0x7(IpvideoContext *s, AVFrame *frame)
{
int x, y;
unsigned char P[2];
unsigned int flags;
/* 2-color encoding */
P[0] = bytestream2_get_byte(&s->stream_ptr);
P[1] = bytestream2_get_byte(&s->stream_ptr);
if (P[0] <= P[1]) {
/* need 8 more bytes from the stream */
for (y = 0; y < 8; y++) {
flags = bytestream2_get_byte(&s->stream_ptr) | 0x100;
for (; flags != 1; flags >>= 1)
*s->pixel_ptr++ = P[flags & 1];
s->pixel_ptr += s->line_inc;
} else {
/* need 2 more bytes from the stream */
flags = bytestream2_get_le16(&s->stream_ptr);
for (y = 0; y < 8; y += 2) {
for (x = 0; x < 8; x += 2, flags >>= 1) {
s->pixel_ptr[x ] =
s->pixel_ptr[x + 1 ] =
s->pixel_ptr[x + s->stride] =
s->pixel_ptr[x + 1 + s->stride] = P[flags & 1];
s->pixel_ptr += s->stride * 2;
/* report success */
return 0; | 2,937 |
qemu | 75b0713e189a981e5bfd087d5f35705446bbb12a | 1 | void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data,
BIOSLinker *linker, GArray *dsm_dma_arrea,
uint32_t ram_slots)
{
GSList *device_list;
device_list = nvdimm_get_plugged_device_list();
/* NVDIMM device is plugged. */
if (device_list) {
nvdimm_build_nfit(device_list, table_offsets, table_data, linker);
g_slist_free(device_list);
}
/*
* NVDIMM device is allowed to be plugged only if there is available
* slot.
*/
if (ram_slots) {
nvdimm_build_ssdt(table_offsets, table_data, linker, dsm_dma_arrea,
ram_slots);
}
}
| 2,938 |
FFmpeg | ae2d2d6c41c3b55ba06a021a3681a3173502423f | 1 | int msmpeg4_decode_picture_header(MpegEncContext * s)
{
int code;
#if 0
{
int i;
for(i=0; i<s->gb.size_in_bits; i++)
printf("%d", get_bits1(&s->gb));
// get_bits1(&s->gb);
printf("END\n");
#endif
if(s->msmpeg4_version==1){
int start_code, num;
start_code = (get_bits(&s->gb, 16)<<16) | get_bits(&s->gb, 16);
if(start_code!=0x00000100){
fprintf(stderr, "invalid startcode\n");
num= get_bits(&s->gb, 5); // frame number */
s->pict_type = get_bits(&s->gb, 2) + 1;
if (s->pict_type != I_TYPE &&
s->pict_type != P_TYPE){
fprintf(stderr, "invalid picture type\n");
#if 0
{
static int had_i=0;
if(s->pict_type == I_TYPE) had_i=1;
if(!had_i) return -1;
#endif
s->qscale = get_bits(&s->gb, 5);
if (s->pict_type == I_TYPE) {
code = get_bits(&s->gb, 5);
if(s->msmpeg4_version==1){
if(code==0 || code>s->mb_height){
fprintf(stderr, "invalid slice height %d\n", code);
s->slice_height = code;
}else{
/* 0x17: one slice, 0x18: two slices, ... */
if (code < 0x17){
fprintf(stderr, "error, slice code was %X\n", code);
s->slice_height = s->mb_height / (code - 0x16);
switch(s->msmpeg4_version){
case 1:
case 2:
s->rl_chroma_table_index = 2;
s->rl_table_index = 2;
s->dc_table_index = 0; //not used
break;
case 3:
s->rl_chroma_table_index = decode012(&s->gb);
s->rl_table_index = decode012(&s->gb);
s->dc_table_index = get_bits1(&s->gb);
break;
case 4:
msmpeg4_decode_ext_header(s, (2+5+5+17+7)/8);
if(s->bit_rate > MBAC_BITRATE) s->per_mb_rl_table= get_bits1(&s->gb);
else s->per_mb_rl_table= 0;
if(!s->per_mb_rl_table){
s->rl_chroma_table_index = decode012(&s->gb);
s->rl_table_index = decode012(&s->gb);
s->dc_table_index = get_bits1(&s->gb);
s->inter_intra_pred= 0;
break;
s->no_rounding = 1;
/* printf("qscale:%d rlc:%d rl:%d dc:%d mbrl:%d slice:%d \n",
s->qscale,
s->rl_chroma_table_index,
s->rl_table_index,
s->dc_table_index,
s->per_mb_rl_table,
s->slice_height);*/
} else {
switch(s->msmpeg4_version){
case 1:
case 2:
if(s->msmpeg4_version==1)
s->use_skip_mb_code = 1;
else
s->use_skip_mb_code = get_bits1(&s->gb);
s->rl_table_index = 2;
s->rl_chroma_table_index = s->rl_table_index;
s->dc_table_index = 0; //not used
s->mv_table_index = 0;
break;
case 3:
s->use_skip_mb_code = get_bits1(&s->gb);
s->rl_table_index = decode012(&s->gb);
s->rl_chroma_table_index = s->rl_table_index;
s->dc_table_index = get_bits1(&s->gb);
s->mv_table_index = get_bits1(&s->gb);
break;
case 4:
s->use_skip_mb_code = get_bits1(&s->gb);
if(s->bit_rate > MBAC_BITRATE) s->per_mb_rl_table= get_bits1(&s->gb);
else s->per_mb_rl_table= 0;
if(!s->per_mb_rl_table){
s->rl_table_index = decode012(&s->gb);
s->rl_chroma_table_index = s->rl_table_index;
s->dc_table_index = get_bits1(&s->gb);
s->mv_table_index = get_bits1(&s->gb);
s->inter_intra_pred= (s->width*s->height < 320*240 && s->bit_rate<=II_BITRATE);
break;
/* printf("skip:%d rl:%d rlc:%d dc:%d mv:%d mbrl:%d qp:%d \n",
s->use_skip_mb_code,
s->rl_table_index,
s->rl_chroma_table_index,
s->dc_table_index,
s->mv_table_index,
s->per_mb_rl_table,
s->qscale);*/
if(s->flipflop_rounding){
s->no_rounding ^= 1;
}else{
s->no_rounding = 0;
//printf("%d %d %d %d %d\n", s->pict_type, s->bit_rate, s->inter_intra_pred, s->width, s->height);
s->esc3_level_length= 0;
s->esc3_run_length= 0;
#ifdef DEBUG
printf("*****frame %d:\n", frame_count++);
#endif
return 0;
| 2,939 |
qemu | b106ad9185f35fc4ad669555ad0e79e276083bd7 | 1 | int64_t qcow2_alloc_clusters(BlockDriverState *bs, int64_t size)
{
int64_t offset;
int ret;
BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC);
offset = alloc_clusters_noref(bs, size);
if (offset < 0) {
return offset;
}
ret = update_refcount(bs, offset, size, 1, QCOW2_DISCARD_NEVER);
if (ret < 0) {
return ret;
}
return offset;
}
| 2,940 |
qemu | 12d4536f7d911b6d87a766ad7300482ea663cea2 | 1 | void vm_stop(int reason)
{
do_vm_stop(reason);
}
| 2,941 |
qemu | e83980455c8c7eb066405de512be7c4bace3ac4d | 1 | int virtio_bus_device_plugged(VirtIODevice *vdev)
{
DeviceState *qdev = DEVICE(vdev);
BusState *qbus = BUS(qdev_get_parent_bus(qdev));
VirtioBusState *bus = VIRTIO_BUS(qbus);
VirtioBusClass *klass = VIRTIO_BUS_GET_CLASS(bus);
VirtioDeviceClass *vdc = VIRTIO_DEVICE_GET_CLASS(vdev);
DPRINTF("%s: plug device.\n", qbus->name);
if (klass->device_plugged != NULL) {
klass->device_plugged(qbus->parent);
}
/* Get the features of the plugged device. */
assert(vdc->get_features != NULL);
vdev->host_features = vdc->get_features(vdev, vdev->host_features);
return 0;
}
| 2,942 |
FFmpeg | d371c3c2e2830d9783465ecfe1ab7d93351083b7 | 1 | static int config_input_props(AVFilterLink *inlink)
{
AVFilterContext *ctx = inlink->dst;
Frei0rContext *s = ctx->priv;
if (!(s->instance = s->construct(inlink->w, inlink->h))) {
av_log(ctx, AV_LOG_ERROR, "Impossible to load frei0r instance");
return AVERROR(EINVAL);
}
return set_params(ctx, s->params);
} | 2,944 |
qemu | f9a8b5530d438f836f9697639814f585aaec554d | 1 | int qdev_prop_check_globals(void)
{
GlobalProperty *prop;
int ret = 0;
QTAILQ_FOREACH(prop, &global_props, next) {
ObjectClass *oc;
DeviceClass *dc;
if (prop->used) {
continue;
}
if (!prop->user_provided) {
continue;
}
oc = object_class_by_name(prop->driver);
oc = object_class_dynamic_cast(oc, TYPE_DEVICE);
if (!oc) {
error_report("Warning: global %s.%s has invalid class name",
prop->driver, prop->property);
ret = 1;
continue;
}
dc = DEVICE_CLASS(oc);
if (!dc->hotpluggable && !prop->used) {
error_report("Warning: global %s.%s=%s not used",
prop->driver, prop->property, prop->value);
ret = 1;
continue;
}
}
return ret;
}
| 2,945 |
FFmpeg | 2da0d70d5eebe42f9fcd27ee554419ebe2a5da06 | 1 | static inline void RENAME(rgb32ToUV)(uint8_t *dstU, uint8_t *dstV, uint8_t *src1, uint8_t *src2, int width)
{
int i;
assert(src1==src2);
for(i=0; i<width; i++)
{
const int a= ((uint32_t*)src1)[2*i+0];
const int e= ((uint32_t*)src1)[2*i+1];
const int l= (a&0xFF00FF) + (e&0xFF00FF);
const int h= (a&0x00FF00) + (e&0x00FF00);
const int r= l&0x3FF;
const int g= h>>8;
const int b= l>>16;
dstU[i]= ((RU*r + GU*g + BU*b)>>(RGB2YUV_SHIFT+1)) + 128;
dstV[i]= ((RV*r + GV*g + BV*b)>>(RGB2YUV_SHIFT+1)) + 128;
}
}
| 2,947 |
FFmpeg | acb2c79c2102026747468dcafa6780ab1094b3c5 | 1 | static av_cold void init_vlcs(FourXContext *f)
{
static VLC_TYPE table[8][32][2];
int i;
for (i = 0; i < 8; i++) {
block_type_vlc[0][i].table = table[i];
block_type_vlc[0][i].table_allocated = 32;
init_vlc(&block_type_vlc[0][i], BLOCK_TYPE_VLC_BITS, 7,
&block_type_tab[0][i][0][1], 2, 1,
&block_type_tab[0][i][0][0], 2, 1, INIT_VLC_USE_NEW_STATIC);
}
}
| 2,949 |
qemu | 44b6789299a8acca3f25331bc411055cafc7bb06 | 1 | static BlockAIOCB *blkverify_aio_writev(BlockDriverState *bs,
int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
BlockCompletionFunc *cb, void *opaque)
{
BDRVBlkverifyState *s = bs->opaque;
BlkverifyAIOCB *acb = blkverify_aio_get(bs, true, sector_num, qiov,
nb_sectors, cb, opaque);
bdrv_aio_writev(s->test_file, sector_num, qiov, nb_sectors,
blkverify_aio_cb, acb);
bdrv_aio_writev(bs->file, sector_num, qiov, nb_sectors,
blkverify_aio_cb, acb);
return &acb->common;
}
| 2,951 |
qemu | fa166538743d4e28de7374c41332c3e448826f4b | 1 | static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
uint64_t offset, uint64_t bytes,
QEMUIOVector *qiov, int flags)
{
BlockDriver *drv = bs->drv;
int64_t sector_num;
unsigned int nb_sectors;
if (drv->bdrv_co_preadv) {
return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
}
sector_num = offset >> BDRV_SECTOR_BITS;
nb_sectors = bytes >> BDRV_SECTOR_BITS;
assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
if (drv->bdrv_co_readv) {
return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
} else {
BlockAIOCB *acb;
CoroutineIOCompletion co = {
.coroutine = qemu_coroutine_self(),
};
acb = bs->drv->bdrv_aio_readv(bs, sector_num, qiov, nb_sectors,
bdrv_co_io_em_complete, &co);
if (acb == NULL) {
return -EIO;
} else {
qemu_coroutine_yield();
return co.ret;
}
}
} | 2,952 |
qemu | 50a3efb0f05bcfbe04201d4ebac0b96551a1b551 | 1 | static void bdrv_close(BlockDriverState *bs)
{
BdrvAioNotifier *ban, *ban_next;
assert(!bs->job);
assert(!bs->refcnt);
bdrv_drained_begin(bs); /* complete I/O */
bdrv_flush(bs);
bdrv_drain(bs); /* in case flush left pending I/O */
if (bs->drv) {
BdrvChild *child, *next;
bs->drv->bdrv_close(bs);
bs->drv = NULL;
bdrv_set_backing_hd(bs, NULL, &error_abort);
if (bs->file != NULL) {
bdrv_unref_child(bs, bs->file);
bs->file = NULL;
}
QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
/* TODO Remove bdrv_unref() from drivers' close function and use
* bdrv_unref_child() here */
if (child->bs->inherits_from == bs) {
child->bs->inherits_from = NULL;
}
bdrv_detach_child(child);
}
g_free(bs->opaque);
bs->opaque = NULL;
atomic_set(&bs->copy_on_read, 0);
bs->backing_file[0] = '\0';
bs->backing_format[0] = '\0';
bs->total_sectors = 0;
bs->encrypted = false;
bs->sg = false;
QDECREF(bs->options);
QDECREF(bs->explicit_options);
bs->options = NULL;
bs->explicit_options = NULL;
QDECREF(bs->full_open_options);
bs->full_open_options = NULL;
}
bdrv_release_named_dirty_bitmaps(bs);
assert(QLIST_EMPTY(&bs->dirty_bitmaps));
QLIST_FOREACH_SAFE(ban, &bs->aio_notifiers, list, ban_next) {
g_free(ban);
}
QLIST_INIT(&bs->aio_notifiers);
bdrv_drained_end(bs);
}
| 2,953 |
qemu | 0fbc20740342713f282b118b4a446c4c43df3f4a | 1 | static void kvm_add_routing_entry(KVMState *s,
struct kvm_irq_routing_entry *entry)
{
struct kvm_irq_routing_entry *new;
int n, size;
if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
n = s->nr_allocated_irq_routes * 2;
if (n < 64) {
n = 64;
}
size = sizeof(struct kvm_irq_routing);
size += n * sizeof(*new);
s->irq_routes = g_realloc(s->irq_routes, size);
s->nr_allocated_irq_routes = n;
}
n = s->irq_routes->nr++;
new = &s->irq_routes->entries[n];
memset(new, 0, sizeof(*new));
new->gsi = entry->gsi;
new->type = entry->type;
new->flags = entry->flags;
new->u = entry->u;
set_gsi(s, entry->gsi);
}
| 2,954 |
FFmpeg | dadc43eee4d9036aa532665a04720238cc15e922 | 1 | PCA *ff_pca_init(int n){
PCA *pca;
if(n<=0)
pca= av_mallocz(sizeof(*pca));
pca->n= n;
pca->z = av_malloc_array(n, sizeof(*pca->z));
pca->count=0;
pca->covariance= av_calloc(n*n, sizeof(double));
pca->mean= av_calloc(n, sizeof(double));
return pca; | 2,955 |
FFmpeg | f748e3b5a219061db021d8b6b7ebb097c65f23c5 | 0 | static int nuv_header(AVFormatContext *s)
{
NUVContext *ctx = s->priv_data;
AVIOContext *pb = s->pb;
char id_string[12];
double aspect, fps;
int is_mythtv, width, height, v_packs, a_packs, ret;
AVStream *vst = NULL, *ast = NULL;
avio_read(pb, id_string, 12);
is_mythtv = !memcmp(id_string, "MythTVVideo", 12);
avio_skip(pb, 5); // version string
avio_skip(pb, 3); // padding
width = avio_rl32(pb);
height = avio_rl32(pb);
avio_rl32(pb); // unused, "desiredwidth"
avio_rl32(pb); // unused, "desiredheight"
avio_r8(pb); // 'P' == progressive, 'I' == interlaced
avio_skip(pb, 3); // padding
aspect = av_int2double(avio_rl64(pb));
if (aspect > 0.9999 && aspect < 1.0001)
aspect = 4.0 / 3.0;
fps = av_int2double(avio_rl64(pb));
if (fps < 0.0f) {
if (s->error_recognition & AV_EF_EXPLODE) {
av_log(s, AV_LOG_ERROR, "Invalid frame rate %f\n", fps);
return AVERROR_INVALIDDATA;
} else {
av_log(s, AV_LOG_WARNING, "Invalid frame rate %f, setting to 0.\n", fps);
fps = 0.0f;
}
}
// number of packets per stream type, -1 means unknown, e.g. streaming
v_packs = avio_rl32(pb);
a_packs = avio_rl32(pb);
avio_rl32(pb); // text
avio_rl32(pb); // keyframe distance (?)
if (v_packs) {
vst = avformat_new_stream(s, NULL);
if (!vst)
return AVERROR(ENOMEM);
ctx->v_id = vst->index;
ret = av_image_check_size(width, height, 0, s);
if (ret < 0)
return ret;
vst->codecpar->codec_type = AVMEDIA_TYPE_VIDEO;
vst->codecpar->codec_id = AV_CODEC_ID_NUV;
vst->codecpar->width = width;
vst->codecpar->height = height;
vst->codecpar->bits_per_coded_sample = 10;
vst->sample_aspect_ratio = av_d2q(aspect * height / width,
10000);
#if FF_API_R_FRAME_RATE
vst->r_frame_rate =
#endif
vst->avg_frame_rate = av_d2q(fps, 60000);
avpriv_set_pts_info(vst, 32, 1, 1000);
} else
ctx->v_id = -1;
if (a_packs) {
ast = avformat_new_stream(s, NULL);
if (!ast)
return AVERROR(ENOMEM);
ctx->a_id = ast->index;
ast->codecpar->codec_type = AVMEDIA_TYPE_AUDIO;
ast->codecpar->codec_id = AV_CODEC_ID_PCM_S16LE;
ast->codecpar->channels = 2;
ast->codecpar->channel_layout = AV_CH_LAYOUT_STEREO;
ast->codecpar->sample_rate = 44100;
ast->codecpar->bit_rate = 2 * 2 * 44100 * 8;
ast->codecpar->block_align = 2 * 2;
ast->codecpar->bits_per_coded_sample = 16;
avpriv_set_pts_info(ast, 32, 1, 1000);
} else
ctx->a_id = -1;
if ((ret = get_codec_data(pb, vst, ast, is_mythtv)) < 0)
return ret;
ctx->rtjpg_video = vst && vst->codecpar->codec_id == AV_CODEC_ID_NUV;
return 0;
}
| 2,956 |
qemu | 0188fadb7fe460d8c4c743372b1f7b25773e183e | 1 | setup_return(CPUARMState *env, struct target_sigaction *ka,
abi_ulong *rc, abi_ulong frame_addr, int usig, abi_ulong rc_addr)
{
abi_ulong handler = ka->_sa_handler;
abi_ulong retcode;
int thumb = handler & 1;
uint32_t cpsr = cpsr_read(env);
cpsr &= ~CPSR_IT;
if (thumb) {
cpsr |= CPSR_T;
} else {
cpsr &= ~CPSR_T;
}
if (ka->sa_flags & TARGET_SA_RESTORER) {
retcode = ka->sa_restorer;
} else {
unsigned int idx = thumb;
if (ka->sa_flags & TARGET_SA_SIGINFO)
idx += 2;
if (__put_user(retcodes[idx], rc))
return 1;
retcode = rc_addr + thumb;
}
env->regs[0] = usig;
env->regs[13] = frame_addr;
env->regs[14] = retcode;
env->regs[15] = handler & (thumb ? ~1 : ~3);
cpsr_write(env, cpsr, 0xffffffff);
return 0;
}
| 2,957 |
FFmpeg | 83b707613181c01fd4e9d25dda6787af439d2e41 | 1 | static void floor_fit(vorbis_enc_context *venc, vorbis_enc_floor *fc,
float *coeffs, uint_fast16_t *posts, int samples)
{
int range = 255 / fc->multiplier + 1;
int i;
float tot_average = 0.;
float averages[fc->values];
for (i = 0; i < fc->values; i++) {
averages[i] = get_floor_average(fc, coeffs, i);
tot_average += averages[i];
}
tot_average /= fc->values;
tot_average /= venc->quality;
for (i = 0; i < fc->values; i++) {
int position = fc->list[fc->list[i].sort].x;
float average = averages[i];
int j;
average *= pow(tot_average / average, 0.5) * pow(1.25, position/200.); // MAGIC!
for (j = 0; j < range - 1; j++)
if (ff_vorbis_floor1_inverse_db_table[j * fc->multiplier] > average)
break;
posts[fc->list[i].sort] = j;
}
}
| 2,959 |
FFmpeg | c4ba5198ea48f8f648d85a853ea46e29001c12c8 | 1 | void av_destruct_packet(AVPacket *pkt)
{
int i;
av_free(pkt->data);
pkt->data = NULL; pkt->size = 0;
for (i = 0; i < pkt->side_data_elems; i++)
av_free(pkt->side_data[i].data);
av_freep(&pkt->side_data);
pkt->side_data_elems = 0;
}
| 2,960 |
qemu | f3a06403b82c7f036564e4caf18b52ce6885fcfb | 1 | GuestFileWrite *qmp_guest_file_write(int64_t handle, const char *buf_b64,
bool has_count, int64_t count,
Error **errp)
{
GuestFileWrite *write_data = NULL;
guchar *buf;
gsize buf_len;
int write_count;
GuestFileHandle *gfh = guest_file_handle_find(handle, errp);
FILE *fh;
if (!gfh) {
return NULL;
}
fh = gfh->fh;
buf = g_base64_decode(buf_b64, &buf_len);
if (!has_count) {
count = buf_len;
} else if (count < 0 || count > buf_len) {
error_setg(errp, "value '%" PRId64 "' is invalid for argument count",
count);
g_free(buf);
return NULL;
}
write_count = fwrite(buf, 1, count, fh);
if (ferror(fh)) {
error_setg_errno(errp, errno, "failed to write to file");
slog("guest-file-write failed, handle: %" PRId64, handle);
} else {
write_data = g_malloc0(sizeof(GuestFileWrite));
write_data->count = write_count;
write_data->eof = feof(fh);
}
g_free(buf);
clearerr(fh);
return write_data;
}
| 2,961 |
FFmpeg | 0e4b185a8df12c7b42642699a8df45e0de48de07 | 1 | static int rtp_parse_mp4_au(RTPDemuxContext *s, const uint8_t *buf)
{
int au_headers_length, au_header_size, i;
GetBitContext getbitcontext;
RTPPayloadData *infos;
infos = s->rtp_payload_data;
if (infos == NULL)
return -1;
/* decode the first 2 bytes where the AUHeader sections are stored
length in bits */
au_headers_length = AV_RB16(buf);
if (au_headers_length > RTP_MAX_PACKET_LENGTH)
return -1;
infos->au_headers_length_bytes = (au_headers_length + 7) / 8;
/* skip AU headers length section (2 bytes) */
buf += 2;
init_get_bits(&getbitcontext, buf, infos->au_headers_length_bytes * 8);
/* XXX: Wrong if optionnal additional sections are present (cts, dts etc...) */
au_header_size = infos->sizelength + infos->indexlength;
if (au_header_size <= 0 || (au_headers_length % au_header_size != 0))
return -1;
infos->nb_au_headers = au_headers_length / au_header_size;
infos->au_headers = av_malloc(sizeof(struct AUHeaders) * infos->nb_au_headers);
/* XXX: We handle multiple AU Section as only one (need to fix this for interleaving)
In my test, the FAAD decoder does not behave correctly when sending each AU one by one
but does when sending the whole as one big packet... */
infos->au_headers[0].size = 0;
infos->au_headers[0].index = 0;
for (i = 0; i < infos->nb_au_headers; ++i) {
infos->au_headers[0].size += get_bits_long(&getbitcontext, infos->sizelength);
infos->au_headers[0].index = get_bits_long(&getbitcontext, infos->indexlength);
infos->nb_au_headers = 1;
return 0;
| 2,962 |
FFmpeg | 0d194ee51ed477f843900e657a7edbcbecdffa42 | 0 | static void vc1_mc_4mv_chroma(VC1Context *v, int dir)
{
MpegEncContext *s = &v->s;
H264ChromaContext *h264chroma = &v->h264chroma;
uint8_t *srcU, *srcV;
int uvmx, uvmy, uvsrc_x, uvsrc_y;
int k, tx = 0, ty = 0;
int mvx[4], mvy[4], intra[4], mv_f[4];
int valid_count;
int chroma_ref_type = v->cur_field_type, off = 0;
int v_edge_pos = s->v_edge_pos >> v->field_mode;
if (!v->field_mode && !v->s.last_picture.f.data[0])
return;
if (s->flags & CODEC_FLAG_GRAY)
return;
for (k = 0; k < 4; k++) {
mvx[k] = s->mv[dir][k][0];
mvy[k] = s->mv[dir][k][1];
intra[k] = v->mb_type[0][s->block_index[k]];
if (v->field_mode)
mv_f[k] = v->mv_f[dir][s->block_index[k] + v->blocks_off];
}
/* calculate chroma MV vector from four luma MVs */
if (!v->field_mode || (v->field_mode && !v->numref)) {
valid_count = get_chroma_mv(mvx, mvy, intra, 0, &tx, &ty);
chroma_ref_type = v->reffield;
if (!valid_count) {
s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][0] = 0;
s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][1] = 0;
v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
return; //no need to do MC for intra blocks
}
} else {
int dominant = 0;
if (mv_f[0] + mv_f[1] + mv_f[2] + mv_f[3] > 2)
dominant = 1;
valid_count = get_chroma_mv(mvx, mvy, mv_f, dominant, &tx, &ty);
if (dominant)
chroma_ref_type = !v->cur_field_type;
}
if (v->field_mode && chroma_ref_type == 1 && v->cur_field_type == 1 && !v->s.last_picture.f.data[0])
return;
s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][0] = tx;
s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][1] = ty;
uvmx = (tx + ((tx & 3) == 3)) >> 1;
uvmy = (ty + ((ty & 3) == 3)) >> 1;
v->luma_mv[s->mb_x][0] = uvmx;
v->luma_mv[s->mb_x][1] = uvmy;
if (v->fastuvmc) {
uvmx = uvmx + ((uvmx < 0) ? (uvmx & 1) : -(uvmx & 1));
uvmy = uvmy + ((uvmy < 0) ? (uvmy & 1) : -(uvmy & 1));
}
// Field conversion bias
if (v->cur_field_type != chroma_ref_type)
uvmy += 2 - 4 * chroma_ref_type;
uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
if (v->profile != PROFILE_ADVANCED) {
uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
} else {
uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
}
if (!dir) {
if (v->field_mode) {
if ((v->cur_field_type != chroma_ref_type) && v->cur_field_type) {
srcU = s->current_picture.f.data[1];
srcV = s->current_picture.f.data[2];
} else {
srcU = s->last_picture.f.data[1];
srcV = s->last_picture.f.data[2];
}
} else {
srcU = s->last_picture.f.data[1];
srcV = s->last_picture.f.data[2];
}
} else {
srcU = s->next_picture.f.data[1];
srcV = s->next_picture.f.data[2];
}
if(!srcU)
return;
srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
if (v->field_mode) {
if (chroma_ref_type) {
srcU += s->current_picture_ptr->f.linesize[1];
srcV += s->current_picture_ptr->f.linesize[2];
}
off = v->second_field ? s->current_picture_ptr->f.linesize[1] : 0;
}
if (v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
|| s->h_edge_pos < 18 || v_edge_pos < 18
|| (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
|| (unsigned)uvsrc_y > (v_edge_pos >> 1) - 9) {
s->vdsp.emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize,
8 + 1, 8 + 1, uvsrc_x, uvsrc_y,
s->h_edge_pos >> 1, v_edge_pos >> 1);
s->vdsp.emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize,
8 + 1, 8 + 1, uvsrc_x, uvsrc_y,
s->h_edge_pos >> 1, v_edge_pos >> 1);
srcU = s->edge_emu_buffer;
srcV = s->edge_emu_buffer + 16;
/* if we deal with range reduction we need to scale source blocks */
if (v->rangeredfrm) {
int i, j;
uint8_t *src, *src2;
src = srcU;
src2 = srcV;
for (j = 0; j < 9; j++) {
for (i = 0; i < 9; i++) {
src[i] = ((src[i] - 128) >> 1) + 128;
src2[i] = ((src2[i] - 128) >> 1) + 128;
}
src += s->uvlinesize;
src2 += s->uvlinesize;
}
}
/* if we deal with intensity compensation we need to scale source blocks */
if (v->mv_mode == MV_PMODE_INTENSITY_COMP) {
int i, j;
uint8_t *src, *src2;
src = srcU;
src2 = srcV;
for (j = 0; j < 9; j++) {
for (i = 0; i < 9; i++) {
src[i] = v->lutuv[src[i]];
src2[i] = v->lutuv[src2[i]];
}
src += s->uvlinesize;
src2 += s->uvlinesize;
}
}
}
/* Chroma MC always uses qpel bilinear */
uvmx = (uvmx & 3) << 1;
uvmy = (uvmy & 3) << 1;
if (!v->rnd) {
h264chroma->put_h264_chroma_pixels_tab[0](s->dest[1] + off, srcU, s->uvlinesize, 8, uvmx, uvmy);
h264chroma->put_h264_chroma_pixels_tab[0](s->dest[2] + off, srcV, s->uvlinesize, 8, uvmx, uvmy);
} else {
v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1] + off, srcU, s->uvlinesize, 8, uvmx, uvmy);
v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2] + off, srcV, s->uvlinesize, 8, uvmx, uvmy);
}
}
| 2,963 |
qemu | d9bce9d99f4656ae0b0127f7472db9067b8f84ab | 1 | PPC_OP(addc)
{
T2 = T0;
T0 += T1;
if (T0 < T2) {
xer_ca = 1;
} else {
xer_ca = 0;
}
RETURN();
}
| 2,966 |
qemu | e4f4fb1eca795e36f363b4647724221e774523c1 | 1 | static void spapr_phb_class_init(ObjectClass *klass, void *data)
{
PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
DeviceClass *dc = DEVICE_CLASS(klass);
HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass);
hc->root_bus_path = spapr_phb_root_bus_path;
dc->realize = spapr_phb_realize;
dc->props = spapr_phb_properties;
dc->reset = spapr_phb_reset;
dc->vmsd = &vmstate_spapr_pci;
set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
hp->plug = spapr_phb_hot_plug_child;
hp->unplug = spapr_phb_hot_unplug_child;
} | 2,968 |
FFmpeg | adb7372f7495927a226edf9b8e1d0ac9453985ea | 1 | int swr_convert(struct SwrContext *s, uint8_t *out_arg[SWR_CH_MAX], int out_count,
const uint8_t *in_arg [SWR_CH_MAX], int in_count){
AudioData * in= &s->in;
AudioData *out= &s->out;
if (!swr_is_initialized(s)) {
av_log(s, AV_LOG_ERROR, "Context has not been initialized\n");
return AVERROR(EINVAL);
}
while(s->drop_output > 0){
int ret;
uint8_t *tmp_arg[SWR_CH_MAX];
#define MAX_DROP_STEP 16384
if((ret=swri_realloc_audio(&s->drop_temp, FFMIN(s->drop_output, MAX_DROP_STEP)))<0)
return ret;
reversefill_audiodata(&s->drop_temp, tmp_arg);
s->drop_output *= -1; //FIXME find a less hackish solution
ret = swr_convert(s, tmp_arg, FFMIN(-s->drop_output, MAX_DROP_STEP), in_arg, in_count); //FIXME optimize but this is as good as never called so maybe it doesn't matter
s->drop_output *= -1;
in_count = 0;
if(ret>0) {
s->drop_output -= ret;
if (!s->drop_output && !out_arg)
return 0;
continue;
}
av_assert0(s->drop_output);
return 0;
}
if(!in_arg){
if(s->resample){
if (!s->flushed)
s->resampler->flush(s);
s->resample_in_constraint = 0;
s->flushed = 1;
}else if(!s->in_buffer_count){
return 0;
}
}else
fill_audiodata(in , (void*)in_arg);
fill_audiodata(out, out_arg);
if(s->resample){
int ret = swr_convert_internal(s, out, out_count, in, in_count);
if(ret>0 && !s->drop_output)
s->outpts += ret * (int64_t)s->in_sample_rate;
return ret;
}else{
AudioData tmp= *in;
int ret2=0;
int ret, size;
size = FFMIN(out_count, s->in_buffer_count);
if(size){
buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
ret= swr_convert_internal(s, out, size, &tmp, size);
if(ret<0)
return ret;
ret2= ret;
s->in_buffer_count -= ret;
s->in_buffer_index += ret;
buf_set(out, out, ret);
out_count -= ret;
if(!s->in_buffer_count)
s->in_buffer_index = 0;
}
if(in_count){
size= s->in_buffer_index + s->in_buffer_count + in_count - out_count;
if(in_count > out_count) { //FIXME move after swr_convert_internal
if( size > s->in_buffer.count
&& s->in_buffer_count + in_count - out_count <= s->in_buffer_index){
buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
copy(&s->in_buffer, &tmp, s->in_buffer_count);
s->in_buffer_index=0;
}else
if((ret=swri_realloc_audio(&s->in_buffer, size)) < 0)
return ret;
}
if(out_count){
size = FFMIN(in_count, out_count);
ret= swr_convert_internal(s, out, size, in, size);
if(ret<0)
return ret;
buf_set(in, in, ret);
in_count -= ret;
ret2 += ret;
}
if(in_count){
buf_set(&tmp, &s->in_buffer, s->in_buffer_index + s->in_buffer_count);
copy(&tmp, in, in_count);
s->in_buffer_count += in_count;
}
}
if(ret2>0 && !s->drop_output)
s->outpts += ret2 * (int64_t)s->in_sample_rate;
return ret2;
}
}
| 2,969 |
qemu | 3c0c47e3464f3c54bd3f1cc6d4da2cbf7465e295 | 1 | static void spapr_machine_2_6_class_options(MachineClass *mc)
{
sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
spapr_machine_2_7_class_options(mc);
smc->dr_cpu_enabled = false;
SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
}
| 2,970 |
FFmpeg | b4800b8b7dfba22117d8edd02164b00c83ae3753 | 1 | static int mxf_add_metadata_set(MXFContext *mxf, void *metadata_set)
{
mxf->metadata_sets = av_realloc(mxf->metadata_sets, (mxf->metadata_sets_count + 1) * sizeof(*mxf->metadata_sets));
if (!mxf->metadata_sets)
return -1;
mxf->metadata_sets[mxf->metadata_sets_count] = metadata_set;
mxf->metadata_sets_count++;
return 0;
} | 2,971 |
qemu | b8d8720892f7912e8a2621b30ebac0e9a48e89e3 | 1 | monitor_read_memory (bfd_vma memaddr, bfd_byte *myaddr, int length,
struct disassemble_info *info)
{
CPUDebug *s = container_of(info, CPUDebug, info);
if (monitor_disas_is_physical) {
cpu_physical_memory_read(memaddr, myaddr, length);
} else {
cpu_memory_rw_debug(s->cpu, memaddr, myaddr, length, 0);
}
return 0;
}
| 2,972 |
FFmpeg | ddbcc48b646737c8bff7f8e28e0a69dca65509cf | 0 | static int ftp_type(FTPContext *s)
{
const char *command = "TYPE I\r\n";
const int type_codes[] = {200, 0};
if (!ftp_send_command(s, command, type_codes, NULL))
return AVERROR(EIO);
return 0;
}
| 2,974 |
FFmpeg | e20ebe491c17388a312e04ff060c217ecfafc914 | 0 | static int shorten_decode_frame(AVCodecContext *avctx, void *data,
int *got_frame_ptr, AVPacket *avpkt)
{
AVFrame *frame = data;
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
ShortenContext *s = avctx->priv_data;
int i, input_buf_size = 0;
int ret;
/* allocate internal bitstream buffer */
if (s->max_framesize == 0) {
void *tmp_ptr;
s->max_framesize = 8192; // should hopefully be enough for the first header
tmp_ptr = av_fast_realloc(s->bitstream, &s->allocated_bitstream_size,
s->max_framesize + FF_INPUT_BUFFER_PADDING_SIZE);
if (!tmp_ptr) {
av_log(avctx, AV_LOG_ERROR, "error allocating bitstream buffer\n");
return AVERROR(ENOMEM);
}
memset(tmp_ptr, 0, s->allocated_bitstream_size);
s->bitstream = tmp_ptr;
}
/* append current packet data to bitstream buffer */
if (1 && s->max_framesize) { //FIXME truncated
buf_size = FFMIN(buf_size, s->max_framesize - s->bitstream_size);
input_buf_size = buf_size;
if (s->bitstream_index + s->bitstream_size + buf_size + FF_INPUT_BUFFER_PADDING_SIZE >
s->allocated_bitstream_size) {
memmove(s->bitstream, &s->bitstream[s->bitstream_index],
s->bitstream_size);
s->bitstream_index = 0;
}
if (buf)
memcpy(&s->bitstream[s->bitstream_index + s->bitstream_size], buf,
buf_size);
buf = &s->bitstream[s->bitstream_index];
buf_size += s->bitstream_size;
s->bitstream_size = buf_size;
/* do not decode until buffer has at least max_framesize bytes or
* the end of the file has been reached */
if (buf_size < s->max_framesize && avpkt->data) {
*got_frame_ptr = 0;
return input_buf_size;
}
}
/* init and position bitstream reader */
init_get_bits(&s->gb, buf, buf_size * 8);
skip_bits(&s->gb, s->bitindex);
/* process header or next subblock */
if (!s->got_header) {
if ((ret = read_header(s)) < 0)
return ret;
*got_frame_ptr = 0;
goto finish_frame;
}
/* if quit command was read previously, don't decode anything */
if (s->got_quit_command) {
*got_frame_ptr = 0;
return avpkt->size;
}
s->cur_chan = 0;
while (s->cur_chan < s->channels) {
unsigned cmd;
int len;
if (get_bits_left(&s->gb) < 3 + FNSIZE) {
*got_frame_ptr = 0;
break;
}
cmd = get_ur_golomb_shorten(&s->gb, FNSIZE);
if (cmd > FN_VERBATIM) {
av_log(avctx, AV_LOG_ERROR, "unknown shorten function %d\n", cmd);
*got_frame_ptr = 0;
break;
}
if (!is_audio_command[cmd]) {
/* process non-audio command */
switch (cmd) {
case FN_VERBATIM:
len = get_ur_golomb_shorten(&s->gb, VERBATIM_CKSIZE_SIZE);
while (len--)
get_ur_golomb_shorten(&s->gb, VERBATIM_BYTE_SIZE);
break;
case FN_BITSHIFT:
s->bitshift = get_ur_golomb_shorten(&s->gb, BITSHIFTSIZE);
break;
case FN_BLOCKSIZE: {
unsigned blocksize = get_uint(s, av_log2(s->blocksize));
if (blocksize > s->blocksize) {
av_log(avctx, AV_LOG_ERROR,
"Increasing block size is not supported\n");
return AVERROR_PATCHWELCOME;
}
if (!blocksize || blocksize > MAX_BLOCKSIZE) {
av_log(avctx, AV_LOG_ERROR, "invalid or unsupported "
"block size: %d\n", blocksize);
return AVERROR(EINVAL);
}
s->blocksize = blocksize;
break;
}
case FN_QUIT:
s->got_quit_command = 1;
break;
}
if (cmd == FN_BLOCKSIZE || cmd == FN_QUIT) {
*got_frame_ptr = 0;
break;
}
} else {
/* process audio command */
int residual_size = 0;
int channel = s->cur_chan;
int32_t coffset;
/* get Rice code for residual decoding */
if (cmd != FN_ZERO) {
residual_size = get_ur_golomb_shorten(&s->gb, ENERGYSIZE);
/* This is a hack as version 0 differed in the definition
* of get_sr_golomb_shorten(). */
if (s->version == 0)
residual_size--;
}
/* calculate sample offset using means from previous blocks */
if (s->nmean == 0)
coffset = s->offset[channel][0];
else {
int32_t sum = (s->version < 2) ? 0 : s->nmean / 2;
for (i = 0; i < s->nmean; i++)
sum += s->offset[channel][i];
coffset = sum / s->nmean;
if (s->version >= 2)
coffset = s->bitshift == 0 ? coffset : coffset >> s->bitshift - 1 >> 1;
}
/* decode samples for this channel */
if (cmd == FN_ZERO) {
for (i = 0; i < s->blocksize; i++)
s->decoded[channel][i] = 0;
} else {
if ((ret = decode_subframe_lpc(s, cmd, channel,
residual_size, coffset)) < 0)
return ret;
}
/* update means with info from the current block */
if (s->nmean > 0) {
int32_t sum = (s->version < 2) ? 0 : s->blocksize / 2;
for (i = 0; i < s->blocksize; i++)
sum += s->decoded[channel][i];
for (i = 1; i < s->nmean; i++)
s->offset[channel][i - 1] = s->offset[channel][i];
if (s->version < 2)
s->offset[channel][s->nmean - 1] = sum / s->blocksize;
else
s->offset[channel][s->nmean - 1] = (sum / s->blocksize) << s->bitshift;
}
/* copy wrap samples for use with next block */
for (i = -s->nwrap; i < 0; i++)
s->decoded[channel][i] = s->decoded[channel][i + s->blocksize];
/* shift samples to add in unused zero bits which were removed
* during encoding */
fix_bitshift(s, s->decoded[channel]);
/* if this is the last channel in the block, output the samples */
s->cur_chan++;
if (s->cur_chan == s->channels) {
uint8_t *samples_u8;
int16_t *samples_s16;
int chan;
/* get output buffer */
frame->nb_samples = s->blocksize;
if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
return ret;
for (chan = 0; chan < s->channels; chan++) {
samples_u8 = ((uint8_t **)frame->extended_data)[chan];
samples_s16 = ((int16_t **)frame->extended_data)[chan];
for (i = 0; i < s->blocksize; i++) {
switch (s->internal_ftype) {
case TYPE_U8:
*samples_u8++ = av_clip_uint8(s->decoded[chan][i]);
break;
case TYPE_S16HL:
case TYPE_S16LH:
*samples_s16++ = av_clip_int16(s->decoded[chan][i]);
break;
}
}
}
*got_frame_ptr = 1;
}
}
}
if (s->cur_chan < s->channels)
*got_frame_ptr = 0;
finish_frame:
s->bitindex = get_bits_count(&s->gb) - 8 * (get_bits_count(&s->gb) / 8);
i = get_bits_count(&s->gb) / 8;
if (i > buf_size) {
av_log(s->avctx, AV_LOG_ERROR, "overread: %d\n", i - buf_size);
s->bitstream_size = 0;
s->bitstream_index = 0;
return AVERROR_INVALIDDATA;
}
if (s->bitstream_size) {
s->bitstream_index += i;
s->bitstream_size -= i;
return input_buf_size;
} else
return i;
}
| 2,975 |
qemu | fd56e0612b6454a282fa6a953fdb09281a98c589 | 0 | static PCIReqIDCache pci_req_id_cache_get(PCIDevice *dev)
{
PCIDevice *parent;
PCIReqIDCache cache = {
.dev = dev,
.type = PCI_REQ_ID_BDF,
};
while (!pci_bus_is_root(dev->bus)) {
/* We are under PCI/PCIe bridges */
parent = dev->bus->parent_dev;
if (pci_is_express(parent)) {
if (pcie_cap_get_type(parent) == PCI_EXP_TYPE_PCI_BRIDGE) {
/* When we pass through PCIe-to-PCI/PCIX bridges, we
* override the requester ID using secondary bus
* number of parent bridge with zeroed devfn
* (pcie-to-pci bridge spec chap 2.3). */
cache.type = PCI_REQ_ID_SECONDARY_BUS;
cache.dev = dev;
}
} else {
/* Legacy PCI, override requester ID with the bridge's
* BDF upstream. When the root complex connects to
* legacy PCI devices (including buses), it can only
* obtain requester ID info from directly attached
* devices. If devices are attached under bridges, only
* the requester ID of the bridge that is directly
* attached to the root complex can be recognized. */
cache.type = PCI_REQ_ID_BDF;
cache.dev = parent;
}
dev = parent;
}
return cache;
}
| 2,976 |
qemu | b6fcf32d9b851a83dedcb609091236b97cc4a985 | 0 | static void test_visitor_out_struct_nested(TestOutputVisitorData *data,
const void *unused)
{
int64_t value = 42;
Error *err = NULL;
UserDefNested *ud2;
QObject *obj;
QDict *qdict, *dict1, *dict2, *dict3, *userdef;
const char *string = "user def string";
const char *strings[] = { "forty two", "forty three", "forty four",
"forty five" };
ud2 = g_malloc0(sizeof(*ud2));
ud2->string0 = g_strdup(strings[0]);
ud2->dict1.string1 = g_strdup(strings[1]);
ud2->dict1.dict2.userdef1 = g_malloc0(sizeof(UserDefOne));
ud2->dict1.dict2.userdef1->string = g_strdup(string);
ud2->dict1.dict2.userdef1->base = g_new0(UserDefZero, 1);
ud2->dict1.dict2.userdef1->base->integer = value;
ud2->dict1.dict2.string2 = g_strdup(strings[2]);
ud2->dict1.has_dict3 = true;
ud2->dict1.dict3.userdef2 = g_malloc0(sizeof(UserDefOne));
ud2->dict1.dict3.userdef2->string = g_strdup(string);
ud2->dict1.dict3.userdef2->base = g_new0(UserDefZero, 1);
ud2->dict1.dict3.userdef2->base->integer = value;
ud2->dict1.dict3.string3 = g_strdup(strings[3]);
visit_type_UserDefNested(data->ov, &ud2, "unused", &err);
g_assert(!err);
obj = qmp_output_get_qobject(data->qov);
g_assert(obj != NULL);
g_assert(qobject_type(obj) == QTYPE_QDICT);
qdict = qobject_to_qdict(obj);
g_assert_cmpint(qdict_size(qdict), ==, 2);
g_assert_cmpstr(qdict_get_str(qdict, "string0"), ==, strings[0]);
dict1 = qdict_get_qdict(qdict, "dict1");
g_assert_cmpint(qdict_size(dict1), ==, 3);
g_assert_cmpstr(qdict_get_str(dict1, "string1"), ==, strings[1]);
dict2 = qdict_get_qdict(dict1, "dict2");
g_assert_cmpint(qdict_size(dict2), ==, 2);
g_assert_cmpstr(qdict_get_str(dict2, "string2"), ==, strings[2]);
userdef = qdict_get_qdict(dict2, "userdef1");
g_assert_cmpint(qdict_size(userdef), ==, 2);
g_assert_cmpint(qdict_get_int(userdef, "integer"), ==, value);
g_assert_cmpstr(qdict_get_str(userdef, "string"), ==, string);
dict3 = qdict_get_qdict(dict1, "dict3");
g_assert_cmpint(qdict_size(dict3), ==, 2);
g_assert_cmpstr(qdict_get_str(dict3, "string3"), ==, strings[3]);
userdef = qdict_get_qdict(dict3, "userdef2");
g_assert_cmpint(qdict_size(userdef), ==, 2);
g_assert_cmpint(qdict_get_int(userdef, "integer"), ==, value);
g_assert_cmpstr(qdict_get_str(userdef, "string"), ==, string);
QDECREF(qdict);
qapi_free_UserDefNested(ud2);
}
| 2,977 |
qemu | ba14414174b72fa231997243a9650feaa520d054 | 0 | void bdrv_info_stats(Monitor *mon, QObject **ret_data)
{
QObject *obj;
QList *devices;
BlockDriverState *bs;
devices = qlist_new();
for (bs = bdrv_first; bs != NULL; bs = bs->next) {
obj = qobject_from_jsonf("{ 'device': %s, 'stats': {"
"'rd_bytes': %" PRId64 ","
"'wr_bytes': %" PRId64 ","
"'rd_operations': %" PRId64 ","
"'wr_operations': %" PRId64
"} }",
bs->device_name,
bs->rd_bytes, bs->wr_bytes,
bs->rd_ops, bs->wr_ops);
assert(obj != NULL);
qlist_append_obj(devices, obj);
}
*ret_data = QOBJECT(devices);
}
| 2,979 |
qemu | f04db28b86654d1c7ff805b40eff27bba6b0f686 | 0 | static block_number_t eckd_block_num(BootMapPointer *p)
{
const uint64_t sectors = virtio_get_sectors();
const uint64_t heads = virtio_get_heads();
const uint64_t cylinder = p->eckd.cylinder
+ ((p->eckd.head & 0xfff0) << 12);
const uint64_t head = p->eckd.head & 0x000f;
const block_number_t block = sectors * heads * cylinder
+ sectors * head
+ p->eckd.sector
- 1; /* block nr starts with zero */
return block;
}
| 2,980 |
qemu | 2ad7ca4c81733cba5c5c464078a643aba61044f8 | 0 | static int colo_packet_compare_other(Packet *spkt, Packet *ppkt)
{
trace_colo_compare_main("compare other");
trace_colo_compare_ip_info(ppkt->size, inet_ntoa(ppkt->ip->ip_src),
inet_ntoa(ppkt->ip->ip_dst), spkt->size,
inet_ntoa(spkt->ip->ip_src),
inet_ntoa(spkt->ip->ip_dst));
return colo_packet_compare(ppkt, spkt);
}
| 2,983 |
qemu | 2633a2d015b0ba57432f1e11970cc080eb5119a3 | 0 | static inline void tcg_out_qemu_st(TCGContext *s, const TCGArg *args, int opc)
{
int addr_reg, data_reg, data_reg2, bswap;
#ifdef CONFIG_SOFTMMU
int mem_index, s_bits;
# if TARGET_LONG_BITS == 64
int addr_reg2;
# endif
uint32_t *label_ptr;
#endif
#ifdef TARGET_WORDS_BIGENDIAN
bswap = 1;
#else
bswap = 0;
#endif
data_reg = *args++;
if (opc == 3)
data_reg2 = *args++;
else
data_reg2 = 0; /* suppress warning */
addr_reg = *args++;
#ifdef CONFIG_SOFTMMU
# if TARGET_LONG_BITS == 64
addr_reg2 = *args++;
# endif
mem_index = *args;
s_bits = opc & 3;
/* Should generate something like the following:
* shr r8, addr_reg, #TARGET_PAGE_BITS
* and r0, r8, #(CPU_TLB_SIZE - 1) @ Assumption: CPU_TLB_BITS <= 8
* add r0, env, r0 lsl #CPU_TLB_ENTRY_BITS
*/
tcg_out_dat_reg(s, COND_AL, ARITH_MOV,
TCG_REG_R8, 0, addr_reg, SHIFT_IMM_LSR(TARGET_PAGE_BITS));
tcg_out_dat_imm(s, COND_AL, ARITH_AND,
TCG_REG_R0, TCG_REG_R8, CPU_TLB_SIZE - 1);
tcg_out_dat_reg(s, COND_AL, ARITH_ADD, TCG_REG_R0,
TCG_AREG0, TCG_REG_R0, SHIFT_IMM_LSL(CPU_TLB_ENTRY_BITS));
/* In the
* ldr r1 [r0, #(offsetof(CPUState, tlb_table[mem_index][0].addr_write))]
* below, the offset is likely to exceed 12 bits if mem_index != 0 and
* not exceed otherwise, so use an
* add r0, r0, #(mem_index * sizeof *CPUState.tlb_table)
* before.
*/
if (mem_index)
tcg_out_dat_imm(s, COND_AL, ARITH_ADD, TCG_REG_R0, TCG_REG_R0,
(mem_index << (TLB_SHIFT & 1)) |
((16 - (TLB_SHIFT >> 1)) << 8));
tcg_out_ld32_12(s, COND_AL, TCG_REG_R1, TCG_REG_R0,
offsetof(CPUState, tlb_table[0][0].addr_write));
tcg_out_dat_reg(s, COND_AL, ARITH_CMP, 0, TCG_REG_R1,
TCG_REG_R8, SHIFT_IMM_LSL(TARGET_PAGE_BITS));
/* Check alignment. */
if (s_bits)
tcg_out_dat_imm(s, COND_EQ, ARITH_TST,
0, addr_reg, (1 << s_bits) - 1);
# if TARGET_LONG_BITS == 64
/* XXX: possibly we could use a block data load or writeback in
* the first access. */
tcg_out_ld32_12(s, COND_EQ, TCG_REG_R1, TCG_REG_R0,
offsetof(CPUState, tlb_table[0][0].addr_write) + 4);
tcg_out_dat_reg(s, COND_EQ, ARITH_CMP, 0,
TCG_REG_R1, addr_reg2, SHIFT_IMM_LSL(0));
# endif
tcg_out_ld32_12(s, COND_EQ, TCG_REG_R1, TCG_REG_R0,
offsetof(CPUState, tlb_table[0][0].addend));
switch (opc) {
case 0:
tcg_out_st8_r(s, COND_EQ, data_reg, addr_reg, TCG_REG_R1);
break;
case 1:
if (bswap) {
tcg_out_bswap16(s, COND_EQ, TCG_REG_R0, data_reg);
tcg_out_st16_r(s, COND_EQ, TCG_REG_R0, addr_reg, TCG_REG_R1);
} else {
tcg_out_st16_r(s, COND_EQ, data_reg, addr_reg, TCG_REG_R1);
}
break;
case 2:
default:
if (bswap) {
tcg_out_bswap32(s, COND_EQ, TCG_REG_R0, data_reg);
tcg_out_st32_r(s, COND_EQ, TCG_REG_R0, addr_reg, TCG_REG_R1);
} else {
tcg_out_st32_r(s, COND_EQ, data_reg, addr_reg, TCG_REG_R1);
}
break;
case 3:
if (bswap) {
tcg_out_bswap32(s, COND_EQ, TCG_REG_R0, data_reg2);
tcg_out_st32_rwb(s, COND_EQ, TCG_REG_R0, TCG_REG_R1, addr_reg);
tcg_out_bswap32(s, COND_EQ, TCG_REG_R0, data_reg);
tcg_out_st32_12(s, COND_EQ, data_reg, TCG_REG_R1, 4);
} else {
tcg_out_st32_rwb(s, COND_EQ, data_reg, TCG_REG_R1, addr_reg);
tcg_out_st32_12(s, COND_EQ, data_reg2, TCG_REG_R1, 4);
}
break;
}
label_ptr = (void *) s->code_ptr;
tcg_out_b(s, COND_EQ, 8);
/* TODO: move this code to where the constants pool will be */
if (addr_reg != TCG_REG_R0) {
tcg_out_dat_reg(s, COND_AL, ARITH_MOV,
TCG_REG_R0, 0, addr_reg, SHIFT_IMM_LSL(0));
}
# if TARGET_LONG_BITS == 32
switch (opc) {
case 0:
tcg_out_ext8u(s, COND_AL, TCG_REG_R1, data_reg);
tcg_out_dat_imm(s, COND_AL, ARITH_MOV, TCG_REG_R2, 0, mem_index);
break;
case 1:
tcg_out_ext16u(s, COND_AL, TCG_REG_R1, data_reg);
tcg_out_dat_imm(s, COND_AL, ARITH_MOV, TCG_REG_R2, 0, mem_index);
break;
case 2:
if (data_reg != TCG_REG_R1) {
tcg_out_dat_reg(s, COND_AL, ARITH_MOV,
TCG_REG_R1, 0, data_reg, SHIFT_IMM_LSL(0));
}
tcg_out_dat_imm(s, COND_AL, ARITH_MOV, TCG_REG_R2, 0, mem_index);
break;
case 3:
if (data_reg != TCG_REG_R1) {
tcg_out_dat_reg(s, COND_AL, ARITH_MOV,
TCG_REG_R1, 0, data_reg, SHIFT_IMM_LSL(0));
}
if (data_reg2 != TCG_REG_R2) {
tcg_out_dat_reg(s, COND_AL, ARITH_MOV,
TCG_REG_R2, 0, data_reg2, SHIFT_IMM_LSL(0));
}
tcg_out_dat_imm(s, COND_AL, ARITH_MOV, TCG_REG_R3, 0, mem_index);
break;
}
# else
if (addr_reg2 != TCG_REG_R1) {
tcg_out_dat_reg(s, COND_AL, ARITH_MOV,
TCG_REG_R1, 0, addr_reg2, SHIFT_IMM_LSL(0));
}
switch (opc) {
case 0:
tcg_out_ext8u(s, COND_AL, TCG_REG_R2, data_reg);
tcg_out_dat_imm(s, COND_AL, ARITH_MOV, TCG_REG_R3, 0, mem_index);
break;
case 1:
tcg_out_ext16u(s, COND_AL, TCG_REG_R2, data_reg);
tcg_out_dat_imm(s, COND_AL, ARITH_MOV, TCG_REG_R3, 0, mem_index);
break;
case 2:
if (data_reg != TCG_REG_R2) {
tcg_out_dat_reg(s, COND_AL, ARITH_MOV,
TCG_REG_R2, 0, data_reg, SHIFT_IMM_LSL(0));
}
tcg_out_dat_imm(s, COND_AL, ARITH_MOV, TCG_REG_R3, 0, mem_index);
break;
case 3:
tcg_out_dat_imm(s, COND_AL, ARITH_MOV, TCG_REG_R8, 0, mem_index);
tcg_out32(s, (COND_AL << 28) | 0x052d8010); /* str r8, [sp, #-0x10]! */
if (data_reg != TCG_REG_R2) {
tcg_out_dat_reg(s, COND_AL, ARITH_MOV,
TCG_REG_R2, 0, data_reg, SHIFT_IMM_LSL(0));
}
if (data_reg2 != TCG_REG_R3) {
tcg_out_dat_reg(s, COND_AL, ARITH_MOV,
TCG_REG_R3, 0, data_reg2, SHIFT_IMM_LSL(0));
}
break;
}
# endif
tcg_out_bl(s, COND_AL, (tcg_target_long) qemu_st_helpers[s_bits] -
(tcg_target_long) s->code_ptr);
# if TARGET_LONG_BITS == 64
if (opc == 3)
tcg_out_dat_imm(s, COND_AL, ARITH_ADD, TCG_REG_R13, TCG_REG_R13, 0x10);
# endif
*label_ptr += ((void *) s->code_ptr - (void *) label_ptr - 8) >> 2;
#else /* !CONFIG_SOFTMMU */
if (GUEST_BASE) {
uint32_t offset = GUEST_BASE;
int i;
int rot;
while (offset) {
i = ctz32(offset) & ~1;
rot = ((32 - i) << 7) & 0xf00;
tcg_out_dat_imm(s, COND_AL, ARITH_ADD, TCG_REG_R1, addr_reg,
((offset >> i) & 0xff) | rot);
addr_reg = TCG_REG_R1;
offset &= ~(0xff << i);
}
}
switch (opc) {
case 0:
tcg_out_st8_12(s, COND_AL, data_reg, addr_reg, 0);
break;
case 1:
if (bswap) {
tcg_out_bswap16(s, COND_AL, TCG_REG_R0, data_reg);
tcg_out_st16_8(s, COND_AL, TCG_REG_R0, addr_reg, 0);
} else {
tcg_out_st16_8(s, COND_AL, data_reg, addr_reg, 0);
}
break;
case 2:
default:
if (bswap) {
tcg_out_bswap32(s, COND_AL, TCG_REG_R0, data_reg);
tcg_out_st32_12(s, COND_AL, TCG_REG_R0, addr_reg, 0);
} else {
tcg_out_st32_12(s, COND_AL, data_reg, addr_reg, 0);
}
break;
case 3:
/* TODO: use block store -
* check that data_reg2 > data_reg or the other way */
if (bswap) {
tcg_out_bswap32(s, COND_AL, TCG_REG_R0, data_reg2);
tcg_out_st32_12(s, COND_AL, TCG_REG_R0, addr_reg, 0);
tcg_out_bswap32(s, COND_AL, TCG_REG_R0, data_reg);
tcg_out_st32_12(s, COND_AL, TCG_REG_R0, addr_reg, 4);
} else {
tcg_out_st32_12(s, COND_AL, data_reg, addr_reg, 0);
tcg_out_st32_12(s, COND_AL, data_reg2, addr_reg, 4);
}
break;
}
#endif
}
| 2,984 |
FFmpeg | 8b27f76bf8790536afccb96780b5feb9c65636be | 0 | static av_cold int indeo3_decode_init(AVCodecContext *avctx)
{
Indeo3DecodeContext *s = avctx->priv_data;
s->avctx = avctx;
s->width = avctx->width;
s->height = avctx->height;
avctx->pix_fmt = PIX_FMT_YUV410P;
build_modpred(s);
iv_alloc_frames(s);
return 0;
}
| 2,986 |
qemu | a8170e5e97ad17ca169c64ba87ae2f53850dab4c | 0 | static uint32_t cuda_readl (void *opaque, target_phys_addr_t addr)
{
return 0;
}
| 2,987 |
qemu | a50c7c869a4fa1c78b4c38d3419566dd25d32e90 | 0 | int AES_set_encrypt_key(const unsigned char *userKey, const int bits,
AES_KEY *key) {
u32 *rk;
int i = 0;
u32 temp;
if (!userKey || !key)
return -1;
if (bits != 128 && bits != 192 && bits != 256)
return -2;
rk = key->rd_key;
if (bits==128)
key->rounds = 10;
else if (bits==192)
key->rounds = 12;
else
key->rounds = 14;
rk[0] = GETU32(userKey );
rk[1] = GETU32(userKey + 4);
rk[2] = GETU32(userKey + 8);
rk[3] = GETU32(userKey + 12);
if (bits == 128) {
while (1) {
temp = rk[3];
rk[4] = rk[0] ^
(AES_Te4[(temp >> 16) & 0xff] & 0xff000000) ^
(AES_Te4[(temp >> 8) & 0xff] & 0x00ff0000) ^
(AES_Te4[(temp ) & 0xff] & 0x0000ff00) ^
(AES_Te4[(temp >> 24) ] & 0x000000ff) ^
rcon[i];
rk[5] = rk[1] ^ rk[4];
rk[6] = rk[2] ^ rk[5];
rk[7] = rk[3] ^ rk[6];
if (++i == 10) {
return 0;
}
rk += 4;
}
}
rk[4] = GETU32(userKey + 16);
rk[5] = GETU32(userKey + 20);
if (bits == 192) {
while (1) {
temp = rk[ 5];
rk[ 6] = rk[ 0] ^
(AES_Te4[(temp >> 16) & 0xff] & 0xff000000) ^
(AES_Te4[(temp >> 8) & 0xff] & 0x00ff0000) ^
(AES_Te4[(temp ) & 0xff] & 0x0000ff00) ^
(AES_Te4[(temp >> 24) ] & 0x000000ff) ^
rcon[i];
rk[ 7] = rk[ 1] ^ rk[ 6];
rk[ 8] = rk[ 2] ^ rk[ 7];
rk[ 9] = rk[ 3] ^ rk[ 8];
if (++i == 8) {
return 0;
}
rk[10] = rk[ 4] ^ rk[ 9];
rk[11] = rk[ 5] ^ rk[10];
rk += 6;
}
}
rk[6] = GETU32(userKey + 24);
rk[7] = GETU32(userKey + 28);
if (bits == 256) {
while (1) {
temp = rk[ 7];
rk[ 8] = rk[ 0] ^
(AES_Te4[(temp >> 16) & 0xff] & 0xff000000) ^
(AES_Te4[(temp >> 8) & 0xff] & 0x00ff0000) ^
(AES_Te4[(temp ) & 0xff] & 0x0000ff00) ^
(AES_Te4[(temp >> 24) ] & 0x000000ff) ^
rcon[i];
rk[ 9] = rk[ 1] ^ rk[ 8];
rk[10] = rk[ 2] ^ rk[ 9];
rk[11] = rk[ 3] ^ rk[10];
if (++i == 7) {
return 0;
}
temp = rk[11];
rk[12] = rk[ 4] ^
(AES_Te4[(temp >> 24) ] & 0xff000000) ^
(AES_Te4[(temp >> 16) & 0xff] & 0x00ff0000) ^
(AES_Te4[(temp >> 8) & 0xff] & 0x0000ff00) ^
(AES_Te4[(temp ) & 0xff] & 0x000000ff);
rk[13] = rk[ 5] ^ rk[12];
rk[14] = rk[ 6] ^ rk[13];
rk[15] = rk[ 7] ^ rk[14];
rk += 8;
}
}
return 0;
}
| 2,988 |
qemu | bae8196d9f97916de6323e70e3e374362ee16ec4 | 0 | static void coroutine_fn mirror_pause(BlockJob *job)
{
MirrorBlockJob *s = container_of(job, MirrorBlockJob, common);
mirror_drain(s);
}
| 2,989 |
qemu | a31f053129f378ff0e8f6e855b3f35d21143b9ef | 0 | static Coroutine *coroutine_new(void)
{
const size_t stack_size = 1 << 20;
CoroutineUContext *co;
CoroutineThreadState *coTS;
struct sigaction sa;
struct sigaction osa;
struct sigaltstack ss;
struct sigaltstack oss;
sigset_t sigs;
sigset_t osigs;
jmp_buf old_env;
/* The way to manipulate stack is with the sigaltstack function. We
* prepare a stack, with it delivering a signal to ourselves and then
* put setjmp/longjmp where needed.
* This has been done keeping coroutine-ucontext as a model and with the
* pth ideas (GNU Portable Threads). See coroutine-ucontext for the basics
* of the coroutines and see pth_mctx.c (from the pth project) for the
* sigaltstack way of manipulating stacks.
*/
co = g_malloc0(sizeof(*co));
co->stack = g_malloc(stack_size);
co->base.entry_arg = &old_env; /* stash away our jmp_buf */
coTS = coroutine_get_thread_state();
coTS->tr_handler = co;
/*
* Preserve the SIGUSR2 signal state, block SIGUSR2,
* and establish our signal handler. The signal will
* later transfer control onto the signal stack.
*/
sigemptyset(&sigs);
sigaddset(&sigs, SIGUSR2);
pthread_sigmask(SIG_BLOCK, &sigs, &osigs);
sa.sa_handler = coroutine_trampoline;
sigfillset(&sa.sa_mask);
sa.sa_flags = SA_ONSTACK;
if (sigaction(SIGUSR2, &sa, &osa) != 0) {
abort();
}
/*
* Set the new stack.
*/
ss.ss_sp = co->stack;
ss.ss_size = stack_size;
ss.ss_flags = 0;
if (sigaltstack(&ss, &oss) < 0) {
abort();
}
/*
* Now transfer control onto the signal stack and set it up.
* It will return immediately via "return" after the setjmp()
* was performed. Be careful here with race conditions. The
* signal can be delivered the first time sigsuspend() is
* called.
*/
coTS->tr_called = 0;
kill(getpid(), SIGUSR2);
sigfillset(&sigs);
sigdelset(&sigs, SIGUSR2);
while (!coTS->tr_called) {
sigsuspend(&sigs);
}
/*
* Inform the system that we are back off the signal stack by
* removing the alternative signal stack. Be careful here: It
* first has to be disabled, before it can be removed.
*/
sigaltstack(NULL, &ss);
ss.ss_flags = SS_DISABLE;
if (sigaltstack(&ss, NULL) < 0) {
abort();
}
sigaltstack(NULL, &ss);
if (!(oss.ss_flags & SS_DISABLE)) {
sigaltstack(&oss, NULL);
}
/*
* Restore the old SIGUSR2 signal handler and mask
*/
sigaction(SIGUSR2, &osa, NULL);
pthread_sigmask(SIG_SETMASK, &osigs, NULL);
/*
* Now enter the trampoline again, but this time not as a signal
* handler. Instead we jump into it directly. The functionally
* redundant ping-pong pointer arithmentic is neccessary to avoid
* type-conversion warnings related to the `volatile' qualifier and
* the fact that `jmp_buf' usually is an array type.
*/
if (!setjmp(old_env)) {
longjmp(coTS->tr_reenter, 1);
}
/*
* Ok, we returned again, so now we're finished
*/
return &co->base;
}
| 2,990 |
qemu | e3af7c788b73a6495eb9d94992ef11f6ad6f3c56 | 0 | static AddressParts gen_lea_modrm_0(CPUX86State *env, DisasContext *s,
int modrm)
{
int def_seg, base, index, scale, mod, rm;
target_long disp;
bool havesib;
def_seg = R_DS;
index = -1;
scale = 0;
disp = 0;
mod = (modrm >> 6) & 3;
rm = modrm & 7;
base = rm | REX_B(s);
if (mod == 3) {
/* Normally filtered out earlier, but including this path
simplifies multi-byte nop, as well as bndcl, bndcu, bndcn. */
goto done;
}
switch (s->aflag) {
case MO_64:
case MO_32:
havesib = 0;
if (rm == 4) {
int code = cpu_ldub_code(env, s->pc++);
scale = (code >> 6) & 3;
index = ((code >> 3) & 7) | REX_X(s);
if (index == 4) {
index = -1; /* no index */
}
base = (code & 7) | REX_B(s);
havesib = 1;
}
switch (mod) {
case 0:
if ((base & 7) == 5) {
base = -1;
disp = (int32_t)cpu_ldl_code(env, s->pc);
s->pc += 4;
if (CODE64(s) && !havesib) {
base = -2;
disp += s->pc + s->rip_offset;
}
}
break;
case 1:
disp = (int8_t)cpu_ldub_code(env, s->pc++);
break;
default:
case 2:
disp = (int32_t)cpu_ldl_code(env, s->pc);
s->pc += 4;
break;
}
/* For correct popl handling with esp. */
if (base == R_ESP && s->popl_esp_hack) {
disp += s->popl_esp_hack;
}
if (base == R_EBP || base == R_ESP) {
def_seg = R_SS;
}
break;
case MO_16:
if (mod == 0) {
if (rm == 6) {
base = -1;
disp = cpu_lduw_code(env, s->pc);
s->pc += 2;
break;
}
} else if (mod == 1) {
disp = (int8_t)cpu_ldub_code(env, s->pc++);
} else {
disp = (int16_t)cpu_lduw_code(env, s->pc);
s->pc += 2;
}
switch (rm) {
case 0:
base = R_EBX;
index = R_ESI;
break;
case 1:
base = R_EBX;
index = R_EDI;
break;
case 2:
base = R_EBP;
index = R_ESI;
def_seg = R_SS;
break;
case 3:
base = R_EBP;
index = R_EDI;
def_seg = R_SS;
break;
case 4:
base = R_ESI;
break;
case 5:
base = R_EDI;
break;
case 6:
base = R_EBP;
def_seg = R_SS;
break;
default:
case 7:
base = R_EBX;
break;
}
break;
default:
tcg_abort();
}
done:
return (AddressParts){ def_seg, base, index, scale, disp };
}
| 2,991 |
qemu | 45416789e8ccced568a4984af61974adfbfa0f62 | 0 | static int omap_validate_local_addr(struct omap_mpu_state_s *s,
target_phys_addr_t addr)
{
return addr >= OMAP_LOCALBUS_BASE && addr < OMAP_LOCALBUS_BASE + 0x1000000;
}
| 2,992 |
qemu | 32bafa8fdd098d52fbf1102d5a5e48d29398c0aa | 0 | int net_init_bridge(const NetClientOptions *opts, const char *name,
NetClientState *peer, Error **errp)
{
const NetdevBridgeOptions *bridge;
const char *helper, *br;
TAPState *s;
int fd, vnet_hdr;
assert(opts->type == NET_CLIENT_OPTIONS_KIND_BRIDGE);
bridge = opts->u.bridge;
helper = bridge->has_helper ? bridge->helper : DEFAULT_BRIDGE_HELPER;
br = bridge->has_br ? bridge->br : DEFAULT_BRIDGE_INTERFACE;
fd = net_bridge_run_helper(helper, br, errp);
if (fd == -1) {
return -1;
}
fcntl(fd, F_SETFL, O_NONBLOCK);
vnet_hdr = tap_probe_vnet_hdr(fd);
s = net_tap_fd_init(peer, "bridge", name, fd, vnet_hdr);
snprintf(s->nc.info_str, sizeof(s->nc.info_str), "helper=%s,br=%s", helper,
br);
return 0;
}
| 2,993 |
qemu | a7812ae412311d7d47f8aa85656faadac9d64b56 | 0 | static inline void t_gen_raise_exception(uint32_t index)
{
tcg_gen_helper_0_1(helper_raise_exception, tcg_const_tl(index));
}
| 2,994 |
qemu | ad96090a01d848df67d70c5259ed8aa321fa8716 | 0 | uint64_t ram_bytes_total(void)
{
return last_ram_offset;
}
| 2,995 |
FFmpeg | fe70c1f45f108c73ebb9c23009e271a96336796f | 0 | void ff_g729_postfilter(DSPContext *dsp, int16_t* ht_prev_data, int* voicing,
const int16_t *lp_filter_coeffs, int pitch_delay_int,
int16_t* residual, int16_t* res_filter_data,
int16_t* pos_filter_data, int16_t *speech, int subframe_size)
{
int16_t residual_filt_buf[SUBFRAME_SIZE+10];
int16_t lp_gn[33]; // (3.12)
int16_t lp_gd[11]; // (3.12)
int tilt_comp_coeff;
int i;
/* Zero-filling is necessary for tilt-compensation filter. */
memset(lp_gn, 0, 33 * sizeof(int16_t));
/* Calculate A(z/FORMANT_PP_FACTOR_NUM) filter coefficients. */
for (i = 0; i < 10; i++)
lp_gn[i + 11] = (lp_filter_coeffs[i + 1] * formant_pp_factor_num_pow[i] + 0x4000) >> 15;
/* Calculate A(z/FORMANT_PP_FACTOR_DEN) filter coefficients. */
for (i = 0; i < 10; i++)
lp_gd[i + 1] = (lp_filter_coeffs[i + 1] * formant_pp_factor_den_pow[i] + 0x4000) >> 15;
/* residual signal calculation (one-half of short-term postfilter) */
memcpy(speech - 10, res_filter_data, 10 * sizeof(int16_t));
residual_filter(residual + RES_PREV_DATA_SIZE, lp_gn + 11, speech, subframe_size);
/* Save data to use it in the next subframe. */
memcpy(res_filter_data, speech + subframe_size - 10, 10 * sizeof(int16_t));
/* long-term filter. If long-term prediction gain is larger than 3dB (returned value is
nonzero) then declare current subframe as periodic. */
*voicing = FFMAX(*voicing, long_term_filter(dsp, pitch_delay_int,
residual, residual_filt_buf + 10,
subframe_size));
/* shift residual for using in next subframe */
memmove(residual, residual + subframe_size, RES_PREV_DATA_SIZE * sizeof(int16_t));
/* short-term filter tilt compensation */
tilt_comp_coeff = get_tilt_comp(dsp, lp_gn, lp_gd, residual_filt_buf + 10, subframe_size);
/* Apply second half of short-term postfilter: 1/A(z/FORMANT_PP_FACTOR_DEN) */
ff_celp_lp_synthesis_filter(pos_filter_data + 10, lp_gd + 1,
residual_filt_buf + 10,
subframe_size, 10, 0, 0, 0x800);
memcpy(pos_filter_data, pos_filter_data + subframe_size, 10 * sizeof(int16_t));
*ht_prev_data = apply_tilt_comp(speech, pos_filter_data + 10, tilt_comp_coeff,
subframe_size, *ht_prev_data);
}
| 2,997 |
FFmpeg | 6fbb21d6858b9d0152f89e1b30ffe683a9d33948 | 0 | static int asink_query_formats(AVFilterContext *ctx)
{
BufferSinkContext *buf = ctx->priv;
AVFilterFormats *formats = NULL;
AVFilterChannelLayouts *layouts = NULL;
unsigned i;
int ret;
if (buf->sample_fmts_size % sizeof(*buf->sample_fmts) ||
buf->sample_rates_size % sizeof(*buf->sample_rates) ||
buf->channel_layouts_size % sizeof(*buf->channel_layouts) ||
buf->channel_counts_size % sizeof(*buf->channel_counts)) {
av_log(ctx, AV_LOG_ERROR, "Invalid size for format lists\n");
#define LOG_ERROR(field) \
if (buf->field ## _size % sizeof(*buf->field)) \
av_log(ctx, AV_LOG_ERROR, " " #field " is %d, should be " \
"multiple of %d\n", \
buf->field ## _size, (int)sizeof(*buf->field));
LOG_ERROR(sample_fmts);
LOG_ERROR(sample_rates);
LOG_ERROR(channel_layouts);
LOG_ERROR(channel_counts);
#undef LOG_ERROR
return AVERROR(EINVAL);
}
if (buf->sample_fmts_size) {
for (i = 0; i < NB_ITEMS(buf->sample_fmts); i++)
if ((ret = ff_add_format(&formats, buf->sample_fmts[i])) < 0)
return ret;
ff_set_common_formats(ctx, formats);
}
if (buf->channel_layouts_size || buf->channel_counts_size ||
buf->all_channel_counts) {
for (i = 0; i < NB_ITEMS(buf->channel_layouts); i++)
if ((ret = ff_add_channel_layout(&layouts, buf->channel_layouts[i])) < 0)
return ret;
for (i = 0; i < NB_ITEMS(buf->channel_counts); i++)
if ((ret = ff_add_channel_layout(&layouts, FF_COUNT2LAYOUT(buf->channel_counts[i]))) < 0)
return ret;
if (buf->all_channel_counts) {
if (layouts)
av_log(ctx, AV_LOG_WARNING,
"Conflicting all_channel_counts and list in options\n");
else if (!(layouts = ff_all_channel_counts()))
return AVERROR(ENOMEM);
}
ff_set_common_channel_layouts(ctx, layouts);
}
if (buf->sample_rates_size) {
formats = NULL;
for (i = 0; i < NB_ITEMS(buf->sample_rates); i++)
if ((ret = ff_add_format(&formats, buf->sample_rates[i])) < 0)
return ret;
ff_set_common_samplerates(ctx, formats);
}
return 0;
}
| 2,998 |
FFmpeg | 70d54392f5015b9c6594fcae558f59f952501e3b | 0 | void avcodec_set_dimensions(AVCodecContext *s, int width, int height){
s->coded_width = width;
s->coded_height= height;
s->width = width;
s->height = height;
}
| 2,999 |
qemu | c23c15d30b901bb447cdcada96cae64c0046d146 | 1 | int qemu_acl_remove(qemu_acl *acl,
const char *match)
{
qemu_acl_entry *entry;
int i = 0;
QTAILQ_FOREACH(entry, &acl->entries, next) {
i++;
if (strcmp(entry->match, match) == 0) {
QTAILQ_REMOVE(&acl->entries, entry, next);
return i;
}
}
return -1;
} | 3,000 |
qemu | 8be487d8f184f2f721cabeac559fb7a6cba18c95 | 1 | static uint64_t sdhci_read(void *opaque, hwaddr offset, unsigned size)
{
SDHCIState *s = (SDHCIState *)opaque;
uint32_t ret = 0;
switch (offset & ~0x3) {
case SDHC_SYSAD:
ret = s->sdmasysad;
break;
case SDHC_BLKSIZE:
ret = s->blksize | (s->blkcnt << 16);
break;
case SDHC_ARGUMENT:
ret = s->argument;
break;
case SDHC_TRNMOD:
ret = s->trnmod | (s->cmdreg << 16);
break;
case SDHC_RSPREG0 ... SDHC_RSPREG3:
ret = s->rspreg[((offset & ~0x3) - SDHC_RSPREG0) >> 2];
break;
case SDHC_BDATA:
if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
ret = sdhci_read_dataport(s, size);
DPRINT_L2("read %ub: addr[0x%04x] -> %u(0x%x)\n", size, (int)offset,
ret, ret);
return ret;
}
break;
case SDHC_PRNSTS:
ret = s->prnsts;
break;
case SDHC_HOSTCTL:
ret = s->hostctl | (s->pwrcon << 8) | (s->blkgap << 16) |
(s->wakcon << 24);
break;
case SDHC_CLKCON:
ret = s->clkcon | (s->timeoutcon << 16);
break;
case SDHC_NORINTSTS:
ret = s->norintsts | (s->errintsts << 16);
break;
case SDHC_NORINTSTSEN:
ret = s->norintstsen | (s->errintstsen << 16);
break;
case SDHC_NORINTSIGEN:
ret = s->norintsigen | (s->errintsigen << 16);
break;
case SDHC_ACMD12ERRSTS:
ret = s->acmd12errsts;
break;
case SDHC_CAPAREG:
ret = s->capareg;
break;
case SDHC_MAXCURR:
ret = s->maxcurr;
break;
case SDHC_ADMAERR:
ret = s->admaerr;
break;
case SDHC_ADMASYSADDR:
ret = (uint32_t)s->admasysaddr;
break;
case SDHC_ADMASYSADDR + 4:
ret = (uint32_t)(s->admasysaddr >> 32);
break;
case SDHC_SLOT_INT_STATUS:
ret = (SD_HOST_SPECv2_VERS << 16) | sdhci_slotint(s);
break;
default:
qemu_log_mask(LOG_UNIMP, "SDHC rd_%ub @0x%02" HWADDR_PRIx " "
"not implemented\n", size, offset);
break;
}
ret >>= (offset & 0x3) * 8;
ret &= (1ULL << (size * 8)) - 1;
DPRINT_L2("read %ub: addr[0x%04x] -> %u(0x%x)\n", size, (int)offset, ret, ret);
return ret;
}
| 3,002 |
FFmpeg | 6c91afe4973f25f050c8b704b62a8367fc5e7a8c | 1 | static av_always_inline void predict_slice_buffered(SnowContext *s, slice_buffer * sb, IDWTELEM * old_buffer, int plane_index, int add, int mb_y){
Plane *p= &s->plane[plane_index];
const int mb_w= s->b_width << s->block_max_depth;
const int mb_h= s->b_height << s->block_max_depth;
int x, y, mb_x;
int block_size = MB_SIZE >> s->block_max_depth;
int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size;
int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size;
const uint8_t *obmc = plane_index ? ff_obmc_tab[s->block_max_depth+s->chroma_h_shift] : ff_obmc_tab[s->block_max_depth];
int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
int ref_stride= s->current_picture->linesize[plane_index];
uint8_t *dst8= s->current_picture->data[plane_index];
int w= p->width;
int h= p->height;
if(s->keyframe || (s->avctx->debug&512)){
if(mb_y==mb_h)
return;
if(add){
for(y=block_h*mb_y; y<FFMIN(h,block_h*(mb_y+1)); y++){
// DWTELEM * line = slice_buffer_get_line(sb, y);
IDWTELEM * line = sb->line[y];
for(x=0; x<w; x++){
// int v= buf[x + y*w] + (128<<FRAC_BITS) + (1<<(FRAC_BITS-1));
int v= line[x] + (128<<FRAC_BITS) + (1<<(FRAC_BITS-1));
v >>= FRAC_BITS;
if(v&(~255)) v= ~(v>>31);
dst8[x + y*ref_stride]= v;
}
}
}else{
for(y=block_h*mb_y; y<FFMIN(h,block_h*(mb_y+1)); y++){
// DWTELEM * line = slice_buffer_get_line(sb, y);
IDWTELEM * line = sb->line[y];
for(x=0; x<w; x++){
line[x] -= 128 << FRAC_BITS;
// buf[x + y*w]-= 128<<FRAC_BITS;
}
}
}
return;
}
for(mb_x=0; mb_x<=mb_w; mb_x++){
add_yblock(s, 1, sb, old_buffer, dst8, obmc,
block_w*mb_x - block_w/2,
block_h*mb_y - block_h/2,
block_w, block_h,
w, h,
w, ref_stride, obmc_stride,
mb_x - 1, mb_y - 1,
add, 0, plane_index);
}
if(s->avmv && mb_y < mb_h && plane_index == 0)
for(mb_x=0; mb_x<mb_w; mb_x++){
AVMotionVector *avmv = s->avmv + (s->avmv_index++);
const int b_width = s->b_width << s->block_max_depth;
const int b_stride= b_width;
BlockNode *bn= &s->block[mb_x + mb_y*b_stride];
if (bn->type)
continue;
avmv->w = block_w;
avmv->h = block_h;
avmv->dst_x = block_w*mb_x - block_w/2;
avmv->dst_y = block_h*mb_y - block_h/2;
avmv->src_x = avmv->dst_x + (bn->mx * s->mv_scale)/8;
avmv->src_y = avmv->dst_y + (bn->my * s->mv_scale)/8;
avmv->source= -1 - bn->ref;
avmv->flags = 0;
}
}
| 3,004 |
qemu | f516511ea84d8bb3395d6ea95a7c7b80dc2a05e9 | 1 | static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
struct elfhdr *exec,
struct image_info *info,
struct image_info *interp_info)
{
abi_ulong sp;
abi_ulong u_argc, u_argv, u_envp, u_auxv;
int size;
int i;
abi_ulong u_rand_bytes;
uint8_t k_rand_bytes[16];
abi_ulong u_platform;
const char *k_platform;
const int n = sizeof(elf_addr_t);
sp = p;
#ifdef CONFIG_USE_FDPIC
/* Needs to be before we load the env/argc/... */
if (elf_is_fdpic(exec)) {
/* Need 4 byte alignment for these structs */
sp &= ~3;
sp = loader_build_fdpic_loadmap(info, sp);
info->other_info = interp_info;
if (interp_info) {
interp_info->other_info = info;
sp = loader_build_fdpic_loadmap(interp_info, sp);
}
}
#endif
u_platform = 0;
k_platform = ELF_PLATFORM;
if (k_platform) {
size_t len = strlen(k_platform) + 1;
if (STACK_GROWS_DOWN) {
sp -= (len + n - 1) & ~(n - 1);
u_platform = sp;
/* FIXME - check return value of memcpy_to_target() for failure */
memcpy_to_target(sp, k_platform, len);
} else {
memcpy_to_target(sp, k_platform, len);
u_platform = sp;
sp += len + 1;
}
}
/* Provide 16 byte alignment for the PRNG, and basic alignment for
* the argv and envp pointers.
*/
if (STACK_GROWS_DOWN) {
sp = QEMU_ALIGN_DOWN(sp, 16);
} else {
sp = QEMU_ALIGN_UP(sp, 16);
}
/*
* Generate 16 random bytes for userspace PRNG seeding (not
* cryptically secure but it's not the aim of QEMU).
*/
for (i = 0; i < 16; i++) {
k_rand_bytes[i] = rand();
}
if (STACK_GROWS_DOWN) {
sp -= 16;
u_rand_bytes = sp;
/* FIXME - check return value of memcpy_to_target() for failure */
memcpy_to_target(sp, k_rand_bytes, 16);
} else {
memcpy_to_target(sp, k_rand_bytes, 16);
u_rand_bytes = sp;
sp += 16;
}
size = (DLINFO_ITEMS + 1) * 2;
if (k_platform)
size += 2;
#ifdef DLINFO_ARCH_ITEMS
size += DLINFO_ARCH_ITEMS * 2;
#endif
#ifdef ELF_HWCAP2
size += 2;
#endif
size += envc + argc + 2;
size += 1; /* argc itself */
size *= n;
/* Allocate space and finalize stack alignment for entry now. */
if (STACK_GROWS_DOWN) {
u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
sp = u_argc;
} else {
u_argc = sp;
sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
}
u_argv = u_argc + n;
u_envp = u_argv + (argc + 1) * n;
u_auxv = u_envp + (envc + 1) * n;
info->saved_auxv = u_auxv;
info->arg_start = u_argv;
info->arg_end = u_argv + argc * n;
/* This is correct because Linux defines
* elf_addr_t as Elf32_Off / Elf64_Off
*/
#define NEW_AUX_ENT(id, val) do { \
put_user_ual(id, u_auxv); u_auxv += n; \
put_user_ual(val, u_auxv); u_auxv += n; \
} while(0)
/* There must be exactly DLINFO_ITEMS entries here. */
#ifdef ARCH_DLINFO
/*
* ARCH_DLINFO must come first so platform specific code can enforce
* special alignment requirements on the AUXV if necessary (eg. PPC).
*/
ARCH_DLINFO;
#endif
NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
NEW_AUX_ENT(AT_ENTRY, info->entry);
NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
#ifdef ELF_HWCAP2
NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
#endif
if (u_platform) {
NEW_AUX_ENT(AT_PLATFORM, u_platform);
}
NEW_AUX_ENT (AT_NULL, 0);
#undef NEW_AUX_ENT
info->auxv_len = u_argv - info->saved_auxv;
put_user_ual(argc, u_argc);
p = info->arg_strings;
for (i = 0; i < argc; ++i) {
put_user_ual(p, u_argv);
u_argv += n;
p += target_strlen(p) + 1;
}
put_user_ual(0, u_argv);
p = info->env_strings;
for (i = 0; i < envc; ++i) {
put_user_ual(p, u_envp);
u_envp += n;
p += target_strlen(p) + 1;
}
put_user_ual(0, u_envp);
return sp;
}
| 3,005 |
qemu | eca1bdf415c454093dfc7eb983cd49287c043967 | 1 | void cpu_reset(CPUM68KState *env)
{
memset(env, 0, offsetof(CPUM68KState, breakpoints));
#if !defined (CONFIG_USER_ONLY)
env->sr = 0x2700;
#endif
m68k_switch_sp(env);
/* ??? FP regs should be initialized to NaN. */
env->cc_op = CC_OP_FLAGS;
/* TODO: We should set PC from the interrupt vector. */
env->pc = 0;
tlb_flush(env, 1); | 3,006 |
qemu | f61eddcb2bb5cbbdd1d911b7e937db9affc29028 | 0 | static int serial_parse(const char *devname)
{
static int index = 0;
char label[32];
if (strcmp(devname, "none") == 0)
return 0;
if (index == MAX_SERIAL_PORTS) {
fprintf(stderr, "qemu: too many serial ports\n");
exit(1);
}
snprintf(label, sizeof(label), "serial%d", index);
serial_hds[index] = qemu_chr_new(label, devname, NULL);
if (!serial_hds[index]) {
fprintf(stderr, "qemu: could not connect serial device"
" to character backend '%s'\n", devname);
return -1;
}
index++;
return 0;
}
| 3,007 |
qemu | ba14414174b72fa231997243a9650feaa520d054 | 0 | void do_info_migrate(Monitor *mon, QObject **ret_data)
{
QDict *qdict;
MigrationState *s = current_migration;
if (s) {
switch (s->get_status(s)) {
case MIG_STATE_ACTIVE:
qdict = qdict_new();
qdict_put(qdict, "status", qstring_from_str("active"));
migrate_put_status(qdict, "ram", ram_bytes_transferred(),
ram_bytes_remaining(), ram_bytes_total());
if (blk_mig_active()) {
migrate_put_status(qdict, "disk", blk_mig_bytes_transferred(),
blk_mig_bytes_remaining(),
blk_mig_bytes_total());
}
*ret_data = QOBJECT(qdict);
break;
case MIG_STATE_COMPLETED:
*ret_data = qobject_from_jsonf("{ 'status': 'completed' }");
break;
case MIG_STATE_ERROR:
*ret_data = qobject_from_jsonf("{ 'status': 'failed' }");
break;
case MIG_STATE_CANCELLED:
*ret_data = qobject_from_jsonf("{ 'status': 'cancelled' }");
break;
}
assert(*ret_data != NULL);
}
}
| 3,008 |
qemu | 917507b01efea8017bfcb4188ac696612e363e72 | 0 | static abi_long do_connect(int sockfd, abi_ulong target_addr,
socklen_t addrlen)
{
void *addr;
if (addrlen < 0)
return -TARGET_EINVAL;
addr = alloca(addrlen);
target_to_host_sockaddr(addr, target_addr, addrlen);
return get_errno(connect(sockfd, addr, addrlen));
}
| 3,009 |
qemu | 3a86a0fa76b5103a122b6e817b3827b2837f4956 | 0 | static GenericList *qmp_input_next_list(Visitor *v, GenericList **list,
Error **errp)
{
QmpInputVisitor *qiv = to_qiv(v);
GenericList *entry;
StackObject *so = &qiv->stack[qiv->nb_stack - 1];
if (so->entry == NULL) {
return NULL;
}
entry = g_malloc0(sizeof(*entry));
if (*list) {
so->entry = qlist_next(so->entry);
if (so->entry == NULL) {
g_free(entry);
return NULL;
}
(*list)->next = entry;
}
return entry;
}
| 3,010 |
qemu | 880a7578381d1c7ed4d41c7599ae3cc06567a824 | 0 | int gdbserver_start(const char *port)
{
GDBState *s;
char gdbstub_port_name[128];
int port_num;
char *p;
CharDriverState *chr;
if (!port || !*port)
return -1;
port_num = strtol(port, &p, 10);
if (*p == 0) {
/* A numeric value is interpreted as a port number. */
snprintf(gdbstub_port_name, sizeof(gdbstub_port_name),
"tcp::%d,nowait,nodelay,server", port_num);
port = gdbstub_port_name;
}
chr = qemu_chr_open("gdb", port);
if (!chr)
return -1;
s = qemu_mallocz(sizeof(GDBState));
if (!s) {
return -1;
}
s->env = first_cpu; /* XXX: allow to change CPU */
s->chr = chr;
qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
gdb_chr_event, s);
qemu_add_vm_stop_handler(gdb_vm_stopped, s);
return 0;
}
| 3,011 |
FFmpeg | aac46e088d67a390489af686b846dea4987d8ffb | 0 | static void sbr_qmf_analysis(DSPContext *dsp, FFTContext *mdct, const float *in, float *x,
float z[320], float W[2][32][32][2])
{
int i, k;
memcpy(W[0], W[1], sizeof(W[0]));
memcpy(x , x+1024, (320-32)*sizeof(x[0]));
memcpy(x+288, in, 1024*sizeof(x[0]));
for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
// are not supported
dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
for (k = 0; k < 64; k++) {
float f = z[k] + z[k + 64] + z[k + 128] + z[k + 192] + z[k + 256];
z[k] = f;
}
//Shuffle to IMDCT
z[64] = z[0];
for (k = 1; k < 32; k++) {
z[64+2*k-1] = z[ k];
z[64+2*k ] = -z[64-k];
}
z[64+63] = z[32];
mdct->imdct_half(mdct, z, z+64);
for (k = 0; k < 32; k++) {
W[1][i][k][0] = -z[63-k];
W[1][i][k][1] = z[k];
}
x += 32;
}
}
| 3,012 |
qemu | eabb7b91b36b202b4dac2df2d59d698e3aff197a | 0 | static void tcg_out_op(TCGContext *s, TCGOpcode opc,
const TCGArg args[TCG_MAX_OP_ARGS],
const int const_args[TCG_MAX_OP_ARGS])
{
/* 99% of the time, we can signal the use of extension registers
by looking to see if the opcode handles 64-bit data. */
TCGType ext = (tcg_op_defs[opc].flags & TCG_OPF_64BIT) != 0;
/* Hoist the loads of the most common arguments. */
TCGArg a0 = args[0];
TCGArg a1 = args[1];
TCGArg a2 = args[2];
int c2 = const_args[2];
/* Some operands are defined with "rZ" constraint, a register or
the zero register. These need not actually test args[I] == 0. */
#define REG0(I) (const_args[I] ? TCG_REG_XZR : (TCGReg)args[I])
switch (opc) {
case INDEX_op_exit_tb:
tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_X0, a0);
tcg_out_goto(s, tb_ret_addr);
break;
case INDEX_op_goto_tb:
#ifndef USE_DIRECT_JUMP
#error "USE_DIRECT_JUMP required for aarch64"
#endif
assert(s->tb_jmp_offset != NULL); /* consistency for USE_DIRECT_JUMP */
s->tb_jmp_offset[a0] = tcg_current_code_size(s);
/* actual branch destination will be patched by
aarch64_tb_set_jmp_target later, beware retranslation. */
tcg_out_goto_noaddr(s);
s->tb_next_offset[a0] = tcg_current_code_size(s);
break;
case INDEX_op_br:
tcg_out_goto_label(s, arg_label(a0));
break;
case INDEX_op_ld8u_i32:
case INDEX_op_ld8u_i64:
tcg_out_ldst(s, I3312_LDRB, a0, a1, a2);
break;
case INDEX_op_ld8s_i32:
tcg_out_ldst(s, I3312_LDRSBW, a0, a1, a2);
break;
case INDEX_op_ld8s_i64:
tcg_out_ldst(s, I3312_LDRSBX, a0, a1, a2);
break;
case INDEX_op_ld16u_i32:
case INDEX_op_ld16u_i64:
tcg_out_ldst(s, I3312_LDRH, a0, a1, a2);
break;
case INDEX_op_ld16s_i32:
tcg_out_ldst(s, I3312_LDRSHW, a0, a1, a2);
break;
case INDEX_op_ld16s_i64:
tcg_out_ldst(s, I3312_LDRSHX, a0, a1, a2);
break;
case INDEX_op_ld_i32:
case INDEX_op_ld32u_i64:
tcg_out_ldst(s, I3312_LDRW, a0, a1, a2);
break;
case INDEX_op_ld32s_i64:
tcg_out_ldst(s, I3312_LDRSWX, a0, a1, a2);
break;
case INDEX_op_ld_i64:
tcg_out_ldst(s, I3312_LDRX, a0, a1, a2);
break;
case INDEX_op_st8_i32:
case INDEX_op_st8_i64:
tcg_out_ldst(s, I3312_STRB, REG0(0), a1, a2);
break;
case INDEX_op_st16_i32:
case INDEX_op_st16_i64:
tcg_out_ldst(s, I3312_STRH, REG0(0), a1, a2);
break;
case INDEX_op_st_i32:
case INDEX_op_st32_i64:
tcg_out_ldst(s, I3312_STRW, REG0(0), a1, a2);
break;
case INDEX_op_st_i64:
tcg_out_ldst(s, I3312_STRX, REG0(0), a1, a2);
break;
case INDEX_op_add_i32:
a2 = (int32_t)a2;
/* FALLTHRU */
case INDEX_op_add_i64:
if (c2) {
tcg_out_addsubi(s, ext, a0, a1, a2);
} else {
tcg_out_insn(s, 3502, ADD, ext, a0, a1, a2);
}
break;
case INDEX_op_sub_i32:
a2 = (int32_t)a2;
/* FALLTHRU */
case INDEX_op_sub_i64:
if (c2) {
tcg_out_addsubi(s, ext, a0, a1, -a2);
} else {
tcg_out_insn(s, 3502, SUB, ext, a0, a1, a2);
}
break;
case INDEX_op_neg_i64:
case INDEX_op_neg_i32:
tcg_out_insn(s, 3502, SUB, ext, a0, TCG_REG_XZR, a1);
break;
case INDEX_op_and_i32:
a2 = (int32_t)a2;
/* FALLTHRU */
case INDEX_op_and_i64:
if (c2) {
tcg_out_logicali(s, I3404_ANDI, ext, a0, a1, a2);
} else {
tcg_out_insn(s, 3510, AND, ext, a0, a1, a2);
}
break;
case INDEX_op_andc_i32:
a2 = (int32_t)a2;
/* FALLTHRU */
case INDEX_op_andc_i64:
if (c2) {
tcg_out_logicali(s, I3404_ANDI, ext, a0, a1, ~a2);
} else {
tcg_out_insn(s, 3510, BIC, ext, a0, a1, a2);
}
break;
case INDEX_op_or_i32:
a2 = (int32_t)a2;
/* FALLTHRU */
case INDEX_op_or_i64:
if (c2) {
tcg_out_logicali(s, I3404_ORRI, ext, a0, a1, a2);
} else {
tcg_out_insn(s, 3510, ORR, ext, a0, a1, a2);
}
break;
case INDEX_op_orc_i32:
a2 = (int32_t)a2;
/* FALLTHRU */
case INDEX_op_orc_i64:
if (c2) {
tcg_out_logicali(s, I3404_ORRI, ext, a0, a1, ~a2);
} else {
tcg_out_insn(s, 3510, ORN, ext, a0, a1, a2);
}
break;
case INDEX_op_xor_i32:
a2 = (int32_t)a2;
/* FALLTHRU */
case INDEX_op_xor_i64:
if (c2) {
tcg_out_logicali(s, I3404_EORI, ext, a0, a1, a2);
} else {
tcg_out_insn(s, 3510, EOR, ext, a0, a1, a2);
}
break;
case INDEX_op_eqv_i32:
a2 = (int32_t)a2;
/* FALLTHRU */
case INDEX_op_eqv_i64:
if (c2) {
tcg_out_logicali(s, I3404_EORI, ext, a0, a1, ~a2);
} else {
tcg_out_insn(s, 3510, EON, ext, a0, a1, a2);
}
break;
case INDEX_op_not_i64:
case INDEX_op_not_i32:
tcg_out_insn(s, 3510, ORN, ext, a0, TCG_REG_XZR, a1);
break;
case INDEX_op_mul_i64:
case INDEX_op_mul_i32:
tcg_out_insn(s, 3509, MADD, ext, a0, a1, a2, TCG_REG_XZR);
break;
case INDEX_op_div_i64:
case INDEX_op_div_i32:
tcg_out_insn(s, 3508, SDIV, ext, a0, a1, a2);
break;
case INDEX_op_divu_i64:
case INDEX_op_divu_i32:
tcg_out_insn(s, 3508, UDIV, ext, a0, a1, a2);
break;
case INDEX_op_rem_i64:
case INDEX_op_rem_i32:
tcg_out_insn(s, 3508, SDIV, ext, TCG_REG_TMP, a1, a2);
tcg_out_insn(s, 3509, MSUB, ext, a0, TCG_REG_TMP, a2, a1);
break;
case INDEX_op_remu_i64:
case INDEX_op_remu_i32:
tcg_out_insn(s, 3508, UDIV, ext, TCG_REG_TMP, a1, a2);
tcg_out_insn(s, 3509, MSUB, ext, a0, TCG_REG_TMP, a2, a1);
break;
case INDEX_op_shl_i64:
case INDEX_op_shl_i32:
if (c2) {
tcg_out_shl(s, ext, a0, a1, a2);
} else {
tcg_out_insn(s, 3508, LSLV, ext, a0, a1, a2);
}
break;
case INDEX_op_shr_i64:
case INDEX_op_shr_i32:
if (c2) {
tcg_out_shr(s, ext, a0, a1, a2);
} else {
tcg_out_insn(s, 3508, LSRV, ext, a0, a1, a2);
}
break;
case INDEX_op_sar_i64:
case INDEX_op_sar_i32:
if (c2) {
tcg_out_sar(s, ext, a0, a1, a2);
} else {
tcg_out_insn(s, 3508, ASRV, ext, a0, a1, a2);
}
break;
case INDEX_op_rotr_i64:
case INDEX_op_rotr_i32:
if (c2) {
tcg_out_rotr(s, ext, a0, a1, a2);
} else {
tcg_out_insn(s, 3508, RORV, ext, a0, a1, a2);
}
break;
case INDEX_op_rotl_i64:
case INDEX_op_rotl_i32:
if (c2) {
tcg_out_rotl(s, ext, a0, a1, a2);
} else {
tcg_out_insn(s, 3502, SUB, 0, TCG_REG_TMP, TCG_REG_XZR, a2);
tcg_out_insn(s, 3508, RORV, ext, a0, a1, TCG_REG_TMP);
}
break;
case INDEX_op_brcond_i32:
a1 = (int32_t)a1;
/* FALLTHRU */
case INDEX_op_brcond_i64:
tcg_out_brcond(s, ext, a2, a0, a1, const_args[1], arg_label(args[3]));
break;
case INDEX_op_setcond_i32:
a2 = (int32_t)a2;
/* FALLTHRU */
case INDEX_op_setcond_i64:
tcg_out_cmp(s, ext, a1, a2, c2);
/* Use CSET alias of CSINC Wd, WZR, WZR, invert(cond). */
tcg_out_insn(s, 3506, CSINC, TCG_TYPE_I32, a0, TCG_REG_XZR,
TCG_REG_XZR, tcg_invert_cond(args[3]));
break;
case INDEX_op_movcond_i32:
a2 = (int32_t)a2;
/* FALLTHRU */
case INDEX_op_movcond_i64:
tcg_out_cmp(s, ext, a1, a2, c2);
tcg_out_insn(s, 3506, CSEL, ext, a0, REG0(3), REG0(4), args[5]);
break;
case INDEX_op_qemu_ld_i32:
case INDEX_op_qemu_ld_i64:
tcg_out_qemu_ld(s, a0, a1, a2, ext);
break;
case INDEX_op_qemu_st_i32:
case INDEX_op_qemu_st_i64:
tcg_out_qemu_st(s, REG0(0), a1, a2);
break;
case INDEX_op_bswap64_i64:
tcg_out_rev64(s, a0, a1);
break;
case INDEX_op_bswap32_i64:
case INDEX_op_bswap32_i32:
tcg_out_rev32(s, a0, a1);
break;
case INDEX_op_bswap16_i64:
case INDEX_op_bswap16_i32:
tcg_out_rev16(s, a0, a1);
break;
case INDEX_op_ext8s_i64:
case INDEX_op_ext8s_i32:
tcg_out_sxt(s, ext, MO_8, a0, a1);
break;
case INDEX_op_ext16s_i64:
case INDEX_op_ext16s_i32:
tcg_out_sxt(s, ext, MO_16, a0, a1);
break;
case INDEX_op_ext_i32_i64:
case INDEX_op_ext32s_i64:
tcg_out_sxt(s, TCG_TYPE_I64, MO_32, a0, a1);
break;
case INDEX_op_ext8u_i64:
case INDEX_op_ext8u_i32:
tcg_out_uxt(s, MO_8, a0, a1);
break;
case INDEX_op_ext16u_i64:
case INDEX_op_ext16u_i32:
tcg_out_uxt(s, MO_16, a0, a1);
break;
case INDEX_op_extu_i32_i64:
case INDEX_op_ext32u_i64:
tcg_out_movr(s, TCG_TYPE_I32, a0, a1);
break;
case INDEX_op_deposit_i64:
case INDEX_op_deposit_i32:
tcg_out_dep(s, ext, a0, REG0(2), args[3], args[4]);
break;
case INDEX_op_add2_i32:
tcg_out_addsub2(s, TCG_TYPE_I32, a0, a1, REG0(2), REG0(3),
(int32_t)args[4], args[5], const_args[4],
const_args[5], false);
break;
case INDEX_op_add2_i64:
tcg_out_addsub2(s, TCG_TYPE_I64, a0, a1, REG0(2), REG0(3), args[4],
args[5], const_args[4], const_args[5], false);
break;
case INDEX_op_sub2_i32:
tcg_out_addsub2(s, TCG_TYPE_I32, a0, a1, REG0(2), REG0(3),
(int32_t)args[4], args[5], const_args[4],
const_args[5], true);
break;
case INDEX_op_sub2_i64:
tcg_out_addsub2(s, TCG_TYPE_I64, a0, a1, REG0(2), REG0(3), args[4],
args[5], const_args[4], const_args[5], true);
break;
case INDEX_op_muluh_i64:
tcg_out_insn(s, 3508, UMULH, TCG_TYPE_I64, a0, a1, a2);
break;
case INDEX_op_mulsh_i64:
tcg_out_insn(s, 3508, SMULH, TCG_TYPE_I64, a0, a1, a2);
break;
case INDEX_op_mov_i32: /* Always emitted via tcg_out_mov. */
case INDEX_op_mov_i64:
case INDEX_op_movi_i32: /* Always emitted via tcg_out_movi. */
case INDEX_op_movi_i64:
case INDEX_op_call: /* Always emitted via tcg_out_call. */
default:
tcg_abort();
}
#undef REG0
}
| 3,014 |
qemu | dd673288a8ff73ad77fcc1c255486d2466a772e1 | 0 | void kvm_arch_reset_vcpu(CPUX86State *env)
{
env->exception_injected = -1;
env->interrupt_injected = -1;
env->xcr0 = 1;
if (kvm_irqchip_in_kernel()) {
env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
KVM_MP_STATE_UNINITIALIZED;
} else {
env->mp_state = KVM_MP_STATE_RUNNABLE;
}
}
| 3,015 |
qemu | 245f7b51c0ea04fb2224b1127430a096c91aee70 | 0 | static void tight_pack24(VncState *vs, uint8_t *buf, size_t count, size_t *ret)
{
uint32_t *buf32;
uint32_t pix;
int rshift, gshift, bshift;
buf32 = (uint32_t *)buf;
if ((vs->clientds.flags & QEMU_BIG_ENDIAN_FLAG) ==
(vs->ds->surface->flags & QEMU_BIG_ENDIAN_FLAG)) {
rshift = vs->clientds.pf.rshift;
gshift = vs->clientds.pf.gshift;
bshift = vs->clientds.pf.bshift;
} else {
rshift = 24 - vs->clientds.pf.rshift;
gshift = 24 - vs->clientds.pf.gshift;
bshift = 24 - vs->clientds.pf.bshift;
}
if (ret) {
*ret = count * 3;
}
while (count--) {
pix = *buf32++;
*buf++ = (char)(pix >> rshift);
*buf++ = (char)(pix >> gshift);
*buf++ = (char)(pix >> bshift);
}
}
| 3,016 |
qemu | a8170e5e97ad17ca169c64ba87ae2f53850dab4c | 0 | static void slow_bar_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
{
AssignedDevRegion *d = opaque;
uint16_t *out = (uint16_t *)(d->u.r_virtbase + addr);
DEBUG("slow_bar_writew addr=0x" TARGET_FMT_plx " val=0x%04x\n", addr, val);
*out = val;
}
| 3,017 |
qemu | a8170e5e97ad17ca169c64ba87ae2f53850dab4c | 0 | static uint64_t gic_thiscpu_read(void *opaque, target_phys_addr_t addr,
unsigned size)
{
GICState *s = (GICState *)opaque;
return gic_cpu_read(s, gic_get_current_cpu(s), addr);
}
| 3,018 |
qemu | 2c62f08ddbf3fa80dc7202eb9a2ea60ae44e2cc5 | 0 | int isa_vga_mm_init(hwaddr vram_base,
hwaddr ctrl_base, int it_shift,
MemoryRegion *address_space)
{
ISAVGAMMState *s;
s = g_malloc0(sizeof(*s));
s->vga.vram_size_mb = VGA_RAM_SIZE >> 20;
vga_common_init(&s->vga);
vga_mm_init(s, vram_base, ctrl_base, it_shift, address_space);
s->vga.con = graphic_console_init(s->vga.update, s->vga.invalidate,
s->vga.screen_dump, s->vga.text_update,
s);
vga_init_vbe(&s->vga, address_space);
return 0;
}
| 3,021 |
qemu | 7385aed20db5d83979f683b9d0048674411e963c | 0 | float64 helper_fitod(CPUSPARCState *env, int32_t src)
{
/* No possible exceptions converting int to double. */
return int32_to_float64(src, &env->fp_status);
}
| 3,022 |
FFmpeg | 6ac9afd16e385fc450c58b8a3fb44baa99ea4af9 | 0 | audio_get_output_timestamp(AVFormatContext *s1, int stream,
int64_t *dts, int64_t *wall)
{
AlsaData *s = s1->priv_data;
snd_pcm_sframes_t delay = 0;
*wall = av_gettime();
snd_pcm_delay(s->h, &delay);
*dts = s1->streams[0]->cur_dts - delay;
}
| 3,023 |
qemu | 922453bca6a927bb527068ae8679d587cfa45dbc | 0 | static void do_vm_stop(RunState state)
{
if (runstate_is_running()) {
cpu_disable_ticks();
pause_all_vcpus();
runstate_set(state);
vm_state_notify(0, state);
qemu_aio_flush();
bdrv_flush_all();
monitor_protocol_event(QEVENT_STOP, NULL);
}
}
| 3,024 |
qemu | 1cf0d2b8352a2df35919030b84dbfc713ee9b9be | 0 | static int vt82c686b_pm_initfn(PCIDevice *dev)
{
VT686PMState *s = DO_UPCAST(VT686PMState, dev, dev);
uint8_t *pci_conf;
pci_conf = s->dev.config;
pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_VIA);
pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_VIA_ACPI);
pci_config_set_class(pci_conf, PCI_CLASS_BRIDGE_OTHER);
pci_config_set_revision(pci_conf, 0x40);
pci_set_word(pci_conf + PCI_COMMAND, 0);
pci_set_word(pci_conf + PCI_STATUS, PCI_STATUS_FAST_BACK |
PCI_STATUS_DEVSEL_MEDIUM);
/* 0x48-0x4B is Power Management I/O Base */
pci_set_long(pci_conf + 0x48, 0x00000001);
/* SMB ports:0xeee0~0xeeef */
s->smb_io_base =((s->smb_io_base & 0xfff0) + 0x0);
pci_conf[0x90] = s->smb_io_base | 1;
pci_conf[0x91] = s->smb_io_base >> 8;
pci_conf[0xd2] = 0x90;
register_ioport_write(s->smb_io_base, 0xf, 1, smb_ioport_writeb, &s->smb);
register_ioport_read(s->smb_io_base, 0xf, 1, smb_ioport_readb, &s->smb);
apm_init(&s->apm, NULL, s);
acpi_pm_tmr_init(&s->tmr, pm_tmr_timer);
acpi_pm1_cnt_init(&s->pm1_cnt, NULL);
pm_smbus_init(&s->dev.qdev, &s->smb);
return 0;
}
| 3,025 |
qemu | 7ccb84a91618eda626b12ce83d62cfe678cfc58f | 0 | restore_sigcontext(CPUM68KState *env, struct target_sigcontext *sc, int *pd0)
{
int temp;
__get_user(env->aregs[7], &sc->sc_usp);
__get_user(env->dregs[1], &sc->sc_d1);
__get_user(env->aregs[0], &sc->sc_a0);
__get_user(env->aregs[1], &sc->sc_a1);
__get_user(env->pc, &sc->sc_pc);
__get_user(temp, &sc->sc_sr);
env->sr = (env->sr & 0xff00) | (temp & 0xff);
*pd0 = tswapl(sc->sc_d0);
}
| 3,026 |
qemu | 492c30af2567a59413c064f88eb81e1691865195 | 0 | void DMA_run (void)
{
}
| 3,027 |
qemu | 0eb28a42284ec32e6f283985d2d638474a05eba4 | 0 | static void set_blocksize(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
DeviceState *dev = DEVICE(obj);
Property *prop = opaque;
uint16_t value, *ptr = qdev_get_prop_ptr(dev, prop);
Error *local_err = NULL;
const int64_t min = 512;
const int64_t max = 32768;
if (dev->realized) {
qdev_prop_set_after_realize(dev, name, errp);
return;
}
visit_type_uint16(v, &value, name, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
if (value < min || value > max) {
error_set(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE,
dev->id?:"", name, (int64_t)value, min, max);
return;
}
/* We rely on power-of-2 blocksizes for bitmasks */
if ((value & (value - 1)) != 0) {
error_setg(errp,
"Property %s.%s doesn't take value '%" PRId64 "', it's not a power of 2",
dev->id ?: "", name, (int64_t)value);
return;
}
*ptr = value;
}
| 3,028 |
qemu | 927766c7d34275ecf586020cc5305e377cc4af10 | 0 | static void load_linux(FWCfgState *fw_cfg,
const char *kernel_filename,
const char *initrd_filename,
const char *kernel_cmdline,
hwaddr max_ram_size)
{
uint16_t protocol;
int setup_size, kernel_size, initrd_size = 0, cmdline_size;
uint32_t initrd_max;
uint8_t header[8192], *setup, *kernel, *initrd_data;
hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
FILE *f;
char *vmode;
/* Align to 16 bytes as a paranoia measure */
cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
/* load the kernel header */
f = fopen(kernel_filename, "rb");
if (!f || !(kernel_size = get_file_size(f)) ||
fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
MIN(ARRAY_SIZE(header), kernel_size)) {
fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
kernel_filename, strerror(errno));
exit(1);
}
/* kernel protocol version */
#if 0
fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
#endif
if (ldl_p(header+0x202) == 0x53726448) {
protocol = lduw_p(header+0x206);
} else {
/* This looks like a multiboot kernel. If it is, let's stop
treating it like a Linux kernel. */
if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
kernel_cmdline, kernel_size, header)) {
return;
}
protocol = 0;
}
if (protocol < 0x200 || !(header[0x211] & 0x01)) {
/* Low kernel */
real_addr = 0x90000;
cmdline_addr = 0x9a000 - cmdline_size;
prot_addr = 0x10000;
} else if (protocol < 0x202) {
/* High but ancient kernel */
real_addr = 0x90000;
cmdline_addr = 0x9a000 - cmdline_size;
prot_addr = 0x100000;
} else {
/* High and recent kernel */
real_addr = 0x10000;
cmdline_addr = 0x20000;
prot_addr = 0x100000;
}
#if 0
fprintf(stderr,
"qemu: real_addr = 0x" TARGET_FMT_plx "\n"
"qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
"qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
real_addr,
cmdline_addr,
prot_addr);
#endif
/* highest address for loading the initrd */
if (protocol >= 0x203) {
initrd_max = ldl_p(header+0x22c);
} else {
initrd_max = 0x37ffffff;
}
if (initrd_max >= max_ram_size-ACPI_DATA_SIZE)
initrd_max = max_ram_size-ACPI_DATA_SIZE-1;
fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
if (protocol >= 0x202) {
stl_p(header+0x228, cmdline_addr);
} else {
stw_p(header+0x20, 0xA33F);
stw_p(header+0x22, cmdline_addr-real_addr);
}
/* handle vga= parameter */
vmode = strstr(kernel_cmdline, "vga=");
if (vmode) {
unsigned int video_mode;
/* skip "vga=" */
vmode += 4;
if (!strncmp(vmode, "normal", 6)) {
video_mode = 0xffff;
} else if (!strncmp(vmode, "ext", 3)) {
video_mode = 0xfffe;
} else if (!strncmp(vmode, "ask", 3)) {
video_mode = 0xfffd;
} else {
video_mode = strtol(vmode, NULL, 0);
}
stw_p(header+0x1fa, video_mode);
}
/* loader type */
/* High nybble = B reserved for QEMU; low nybble is revision number.
If this code is substantially changed, you may want to consider
incrementing the revision. */
if (protocol >= 0x200) {
header[0x210] = 0xB0;
}
/* heap */
if (protocol >= 0x201) {
header[0x211] |= 0x80; /* CAN_USE_HEAP */
stw_p(header+0x224, cmdline_addr-real_addr-0x200);
}
/* load initrd */
if (initrd_filename) {
if (protocol < 0x200) {
fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
exit(1);
}
initrd_size = get_image_size(initrd_filename);
if (initrd_size < 0) {
fprintf(stderr, "qemu: error reading initrd %s: %s\n",
initrd_filename, strerror(errno));
exit(1);
}
initrd_addr = (initrd_max-initrd_size) & ~4095;
initrd_data = g_malloc(initrd_size);
load_image(initrd_filename, initrd_data);
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
stl_p(header+0x218, initrd_addr);
stl_p(header+0x21c, initrd_size);
}
/* load kernel and setup */
setup_size = header[0x1f1];
if (setup_size == 0) {
setup_size = 4;
}
setup_size = (setup_size+1)*512;
kernel_size -= setup_size;
setup = g_malloc(setup_size);
kernel = g_malloc(kernel_size);
fseek(f, 0, SEEK_SET);
if (fread(setup, 1, setup_size, f) != setup_size) {
fprintf(stderr, "fread() failed\n");
exit(1);
}
if (fread(kernel, 1, kernel_size, f) != kernel_size) {
fprintf(stderr, "fread() failed\n");
exit(1);
}
fclose(f);
memcpy(setup, header, MIN(sizeof(header), setup_size));
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
option_rom[nb_option_roms].name = "linuxboot.bin";
option_rom[nb_option_roms].bootindex = 0;
nb_option_roms++;
}
| 3,029 |
qemu | ef1e1e0782e99c9dcf2b35e5310cdd8ca9211374 | 0 | void unregister_savevm(DeviceState *dev, const char *idstr, void *opaque)
{
SaveStateEntry *se, *new_se;
char id[256] = "";
if (dev) {
char *path = qdev_get_dev_path(dev);
if (path) {
pstrcpy(id, sizeof(id), path);
pstrcat(id, sizeof(id), "/");
g_free(path);
}
}
pstrcat(id, sizeof(id), idstr);
QTAILQ_FOREACH_SAFE(se, &savevm_state.handlers, entry, new_se) {
if (strcmp(se->idstr, id) == 0 && se->opaque == opaque) {
QTAILQ_REMOVE(&savevm_state.handlers, se, entry);
if (se->compat) {
g_free(se->compat);
}
g_free(se->ops);
g_free(se);
}
}
}
| 3,030 |
qemu | ae261c86aaed62e7acddafab8262a2bf286d40b7 | 0 | static int get_cluster_offset(BlockDriverState *bs,
VmdkExtent *extent,
VmdkMetaData *m_data,
uint64_t offset,
int allocate,
uint64_t *cluster_offset)
{
unsigned int l1_index, l2_offset, l2_index;
int min_index, i, j;
uint32_t min_count, *l2_table, tmp = 0;
if (m_data)
m_data->valid = 0;
if (extent->flat) {
*cluster_offset = extent->flat_start_offset;
return 0;
}
l1_index = (offset >> 9) / extent->l1_entry_sectors;
if (l1_index >= extent->l1_size) {
return -1;
}
l2_offset = extent->l1_table[l1_index];
if (!l2_offset) {
return -1;
}
for (i = 0; i < L2_CACHE_SIZE; i++) {
if (l2_offset == extent->l2_cache_offsets[i]) {
/* increment the hit count */
if (++extent->l2_cache_counts[i] == 0xffffffff) {
for (j = 0; j < L2_CACHE_SIZE; j++) {
extent->l2_cache_counts[j] >>= 1;
}
}
l2_table = extent->l2_cache + (i * extent->l2_size);
goto found;
}
}
/* not found: load a new entry in the least used one */
min_index = 0;
min_count = 0xffffffff;
for (i = 0; i < L2_CACHE_SIZE; i++) {
if (extent->l2_cache_counts[i] < min_count) {
min_count = extent->l2_cache_counts[i];
min_index = i;
}
}
l2_table = extent->l2_cache + (min_index * extent->l2_size);
if (bdrv_pread(
extent->file,
(int64_t)l2_offset * 512,
l2_table,
extent->l2_size * sizeof(uint32_t)
) != extent->l2_size * sizeof(uint32_t)) {
return -1;
}
extent->l2_cache_offsets[min_index] = l2_offset;
extent->l2_cache_counts[min_index] = 1;
found:
l2_index = ((offset >> 9) / extent->cluster_sectors) % extent->l2_size;
*cluster_offset = le32_to_cpu(l2_table[l2_index]);
if (!*cluster_offset) {
if (!allocate) {
return -1;
}
// Avoid the L2 tables update for the images that have snapshots.
*cluster_offset = bdrv_getlength(extent->file);
bdrv_truncate(
extent->file,
*cluster_offset + (extent->cluster_sectors << 9)
);
*cluster_offset >>= 9;
tmp = cpu_to_le32(*cluster_offset);
l2_table[l2_index] = tmp;
/* First of all we write grain itself, to avoid race condition
* that may to corrupt the image.
* This problem may occur because of insufficient space on host disk
* or inappropriate VM shutdown.
*/
if (get_whole_cluster(
bs, extent, *cluster_offset, offset, allocate) == -1)
return -1;
if (m_data) {
m_data->offset = tmp;
m_data->l1_index = l1_index;
m_data->l2_index = l2_index;
m_data->l2_offset = l2_offset;
m_data->valid = 1;
}
}
*cluster_offset <<= 9;
return 0;
}
| 3,031 |
qemu | d4c430a80f000d722bb70287af4d4c184a8d7006 | 0 | static int get_phys_addr_v6(CPUState *env, uint32_t address, int access_type,
int is_user, uint32_t *phys_ptr, int *prot)
{
int code;
uint32_t table;
uint32_t desc;
uint32_t xn;
int type;
int ap;
int domain;
uint32_t phys_addr;
/* Pagetable walk. */
/* Lookup l1 descriptor. */
table = get_level1_table_address(env, address);
desc = ldl_phys(table);
type = (desc & 3);
if (type == 0) {
/* Section translation fault. */
code = 5;
domain = 0;
goto do_fault;
} else if (type == 2 && (desc & (1 << 18))) {
/* Supersection. */
domain = 0;
} else {
/* Section or page. */
domain = (desc >> 4) & 0x1e;
}
domain = (env->cp15.c3 >> domain) & 3;
if (domain == 0 || domain == 2) {
if (type == 2)
code = 9; /* Section domain fault. */
else
code = 11; /* Page domain fault. */
goto do_fault;
}
if (type == 2) {
if (desc & (1 << 18)) {
/* Supersection. */
phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
} else {
/* Section. */
phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
}
ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
xn = desc & (1 << 4);
code = 13;
} else {
/* Lookup l2 entry. */
table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
desc = ldl_phys(table);
ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
switch (desc & 3) {
case 0: /* Page translation fault. */
code = 7;
goto do_fault;
case 1: /* 64k page. */
phys_addr = (desc & 0xffff0000) | (address & 0xffff);
xn = desc & (1 << 15);
break;
case 2: case 3: /* 4k page. */
phys_addr = (desc & 0xfffff000) | (address & 0xfff);
xn = desc & 1;
break;
default:
/* Never happens, but compiler isn't smart enough to tell. */
abort();
}
code = 15;
}
if (xn && access_type == 2)
goto do_fault;
/* The simplified model uses AP[0] as an access control bit. */
if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
/* Access flag fault. */
code = (code == 15) ? 6 : 3;
goto do_fault;
}
*prot = check_ap(env, ap, domain, access_type, is_user);
if (!*prot) {
/* Access permission fault. */
goto do_fault;
}
*phys_ptr = phys_addr;
return 0;
do_fault:
return code | (domain << 4);
}
| 3,032 |
qemu | 86f6ae67e157362f3b141649874213ce01dcc622 | 0 | void bdrv_dirty_bitmap_deserialize_part(BdrvDirtyBitmap *bitmap,
uint8_t *buf, uint64_t start,
uint64_t count, bool finish)
{
hbitmap_deserialize_part(bitmap->bitmap, buf, start, count, finish);
}
| 3,033 |
FFmpeg | 79eff9132581af69fbbd2674337b75fad29aa306 | 0 | void avcodec_get_context_defaults2(AVCodecContext *s, enum AVMediaType codec_type){
int flags=0;
memset(s, 0, sizeof(AVCodecContext));
s->av_class= &av_codec_context_class;
s->codec_type = codec_type;
if(codec_type == AVMEDIA_TYPE_AUDIO)
flags= AV_OPT_FLAG_AUDIO_PARAM;
else if(codec_type == AVMEDIA_TYPE_VIDEO)
flags= AV_OPT_FLAG_VIDEO_PARAM;
else if(codec_type == AVMEDIA_TYPE_SUBTITLE)
flags= AV_OPT_FLAG_SUBTITLE_PARAM;
av_opt_set_defaults2(s, flags, flags);
s->time_base= (AVRational){0,1};
s->get_buffer= avcodec_default_get_buffer;
s->release_buffer= avcodec_default_release_buffer;
s->get_format= avcodec_default_get_format;
s->execute= avcodec_default_execute;
s->execute2= avcodec_default_execute2;
s->sample_aspect_ratio= (AVRational){0,1};
s->pix_fmt= PIX_FMT_NONE;
s->sample_fmt= AV_SAMPLE_FMT_NONE;
s->palctrl = NULL;
s->reget_buffer= avcodec_default_reget_buffer;
s->reordered_opaque= AV_NOPTS_VALUE;
}
| 3,034 |
qemu | d9b789745b88df367674e45c55df29e9c7de8d8a | 0 | static bool qemu_gluster_test_seek(struct glfs_fd *fd)
{
off_t ret, eof;
eof = glfs_lseek(fd, 0, SEEK_END);
if (eof < 0) {
/* this should never occur */
return false;
}
/* this should always fail with ENXIO if SEEK_DATA is supported */
ret = glfs_lseek(fd, eof, SEEK_DATA);
return (ret < 0) && (errno == ENXIO);
}
| 3,035 |
qemu | 3ab20e206ce74299e836bfec5ec27b7f261826be | 0 | static unsigned int dec10_quick_imm(DisasContext *dc)
{
int32_t imm, simm;
int op;
/* sign extend. */
imm = dc->ir & ((1 << 6) - 1);
simm = (int8_t) (imm << 2);
simm >>= 2;
switch (dc->opcode) {
case CRISV10_QIMM_BDAP_R0:
case CRISV10_QIMM_BDAP_R1:
case CRISV10_QIMM_BDAP_R2:
case CRISV10_QIMM_BDAP_R3:
simm = (int8_t)dc->ir;
LOG_DIS("bdap %d $r%d\n", simm, dc->dst);
LOG_DIS("pc=%x mode=%x quickimm %d r%d r%d\n",
dc->pc, dc->mode, dc->opcode, dc->src, dc->dst);
cris_set_prefix(dc);
if (dc->dst == 15) {
tcg_gen_movi_tl(cpu_PR[PR_PREFIX], dc->pc + 2 + simm);
} else {
tcg_gen_addi_tl(cpu_PR[PR_PREFIX], cpu_R[dc->dst], simm);
}
break;
case CRISV10_QIMM_MOVEQ:
LOG_DIS("moveq %d, $r%d\n", simm, dc->dst);
cris_cc_mask(dc, CC_MASK_NZVC);
cris_alu(dc, CC_OP_MOVE, cpu_R[dc->dst],
cpu_R[dc->dst], tcg_const_tl(simm), 4);
break;
case CRISV10_QIMM_CMPQ:
LOG_DIS("cmpq %d, $r%d\n", simm, dc->dst);
cris_cc_mask(dc, CC_MASK_NZVC);
cris_alu(dc, CC_OP_CMP, cpu_R[dc->dst],
cpu_R[dc->dst], tcg_const_tl(simm), 4);
break;
case CRISV10_QIMM_ADDQ:
LOG_DIS("addq %d, $r%d\n", imm, dc->dst);
cris_cc_mask(dc, CC_MASK_NZVC);
cris_alu(dc, CC_OP_ADD, cpu_R[dc->dst],
cpu_R[dc->dst], tcg_const_tl(imm), 4);
break;
case CRISV10_QIMM_ANDQ:
LOG_DIS("andq %d, $r%d\n", simm, dc->dst);
cris_cc_mask(dc, CC_MASK_NZVC);
cris_alu(dc, CC_OP_AND, cpu_R[dc->dst],
cpu_R[dc->dst], tcg_const_tl(simm), 4);
break;
case CRISV10_QIMM_ASHQ:
LOG_DIS("ashq %d, $r%d\n", simm, dc->dst);
cris_cc_mask(dc, CC_MASK_NZVC);
op = imm & (1 << 5);
imm &= 0x1f;
if (op) {
cris_alu(dc, CC_OP_ASR, cpu_R[dc->dst],
cpu_R[dc->dst], tcg_const_tl(imm), 4);
} else {
/* BTST */
cris_update_cc_op(dc, CC_OP_FLAGS, 4);
gen_helper_btst(cpu_PR[PR_CCS], cpu_R[dc->dst],
tcg_const_tl(imm), cpu_PR[PR_CCS]);
}
break;
case CRISV10_QIMM_LSHQ:
LOG_DIS("lshq %d, $r%d\n", simm, dc->dst);
op = CC_OP_LSL;
if (imm & (1 << 5)) {
op = CC_OP_LSR;
}
imm &= 0x1f;
cris_cc_mask(dc, CC_MASK_NZVC);
cris_alu(dc, op, cpu_R[dc->dst],
cpu_R[dc->dst], tcg_const_tl(imm), 4);
break;
case CRISV10_QIMM_SUBQ:
LOG_DIS("subq %d, $r%d\n", imm, dc->dst);
cris_cc_mask(dc, CC_MASK_NZVC);
cris_alu(dc, CC_OP_SUB, cpu_R[dc->dst],
cpu_R[dc->dst], tcg_const_tl(imm), 4);
break;
case CRISV10_QIMM_ORQ:
LOG_DIS("andq %d, $r%d\n", simm, dc->dst);
cris_cc_mask(dc, CC_MASK_NZVC);
cris_alu(dc, CC_OP_OR, cpu_R[dc->dst],
cpu_R[dc->dst], tcg_const_tl(simm), 4);
break;
case CRISV10_QIMM_BCC_R0:
if (!dc->ir) {
cpu_abort(dc->env, "opcode zero\n");
}
case CRISV10_QIMM_BCC_R1:
case CRISV10_QIMM_BCC_R2:
case CRISV10_QIMM_BCC_R3:
imm = dc->ir & 0xff;
/* bit 0 is a sign bit. */
if (imm & 1) {
imm |= 0xffffff00; /* sign extend. */
imm &= ~1; /* get rid of the sign bit. */
}
imm += 2;
LOG_DIS("b%s %d\n", cc_name(dc->cond), imm);
cris_cc_mask(dc, 0);
cris_prepare_cc_branch(dc, imm, dc->cond);
break;
default:
LOG_DIS("pc=%x mode=%x quickimm %d r%d r%d\n",
dc->pc, dc->mode, dc->opcode, dc->src, dc->dst);
cpu_abort(dc->env, "Unhandled quickimm\n");
break;
}
return 2;
}
| 3,036 |
qemu | e1f8c729fa890c67bb4532f22c22ace6fb0e1aaf | 0 | PXA2xxState *pxa270_init(unsigned int sdram_size, const char *revision)
{
PXA2xxState *s;
int iomemtype, i;
DriveInfo *dinfo;
s = (PXA2xxState *) qemu_mallocz(sizeof(PXA2xxState));
if (revision && strncmp(revision, "pxa27", 5)) {
fprintf(stderr, "Machine requires a PXA27x processor.\n");
exit(1);
}
if (!revision)
revision = "pxa270";
s->env = cpu_init(revision);
if (!s->env) {
fprintf(stderr, "Unable to find CPU definition\n");
exit(1);
}
s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0];
/* SDRAM & Internal Memory Storage */
cpu_register_physical_memory(PXA2XX_SDRAM_BASE,
sdram_size, qemu_ram_alloc(NULL, "pxa270.sdram",
sdram_size) | IO_MEM_RAM);
cpu_register_physical_memory(PXA2XX_INTERNAL_BASE,
0x40000, qemu_ram_alloc(NULL, "pxa270.internal",
0x40000) | IO_MEM_RAM);
s->pic = pxa2xx_pic_init(0x40d00000, s->env);
s->dma = pxa27x_dma_init(0x40000000, s->pic[PXA2XX_PIC_DMA]);
pxa27x_timer_init(0x40a00000, &s->pic[PXA2XX_PIC_OST_0],
s->pic[PXA27X_PIC_OST_4_11]);
s->gpio = pxa2xx_gpio_init(0x40e00000, s->env, s->pic, 121);
dinfo = drive_get(IF_SD, 0, 0);
if (!dinfo) {
fprintf(stderr, "qemu: missing SecureDigital device\n");
exit(1);
}
s->mmc = pxa2xx_mmci_init(0x41100000, dinfo->bdrv,
s->pic[PXA2XX_PIC_MMC], s->dma);
for (i = 0; pxa270_serial[i].io_base; i ++)
if (serial_hds[i])
#ifdef TARGET_WORDS_BIGENDIAN
serial_mm_init(pxa270_serial[i].io_base, 2,
s->pic[pxa270_serial[i].irqn], 14857000/16,
serial_hds[i], 1, 1);
#else
serial_mm_init(pxa270_serial[i].io_base, 2,
s->pic[pxa270_serial[i].irqn], 14857000/16,
serial_hds[i], 1, 0);
#endif
else
break;
if (serial_hds[i])
s->fir = pxa2xx_fir_init(0x40800000, s->pic[PXA2XX_PIC_ICP],
s->dma, serial_hds[i]);
s->lcd = pxa2xx_lcdc_init(0x44000000, s->pic[PXA2XX_PIC_LCD]);
s->cm_base = 0x41300000;
s->cm_regs[CCCR >> 2] = 0x02000210; /* 416.0 MHz */
s->clkcfg = 0x00000009; /* Turbo mode active */
iomemtype = cpu_register_io_memory(pxa2xx_cm_readfn,
pxa2xx_cm_writefn, s, DEVICE_NATIVE_ENDIAN);
cpu_register_physical_memory(s->cm_base, 0x1000, iomemtype);
register_savevm(NULL, "pxa2xx_cm", 0, 0, pxa2xx_cm_save, pxa2xx_cm_load, s);
cpu_arm_set_cp_io(s->env, 14, pxa2xx_cp14_read, pxa2xx_cp14_write, s);
s->mm_base = 0x48000000;
s->mm_regs[MDMRS >> 2] = 0x00020002;
s->mm_regs[MDREFR >> 2] = 0x03ca4000;
s->mm_regs[MECR >> 2] = 0x00000001; /* Two PC Card sockets */
iomemtype = cpu_register_io_memory(pxa2xx_mm_readfn,
pxa2xx_mm_writefn, s, DEVICE_NATIVE_ENDIAN);
cpu_register_physical_memory(s->mm_base, 0x1000, iomemtype);
register_savevm(NULL, "pxa2xx_mm", 0, 0, pxa2xx_mm_save, pxa2xx_mm_load, s);
s->pm_base = 0x40f00000;
iomemtype = cpu_register_io_memory(pxa2xx_pm_readfn,
pxa2xx_pm_writefn, s, DEVICE_NATIVE_ENDIAN);
cpu_register_physical_memory(s->pm_base, 0x100, iomemtype);
register_savevm(NULL, "pxa2xx_pm", 0, 0, pxa2xx_pm_save, pxa2xx_pm_load, s);
for (i = 0; pxa27x_ssp[i].io_base; i ++);
s->ssp = (SSIBus **)qemu_mallocz(sizeof(SSIBus *) * i);
for (i = 0; pxa27x_ssp[i].io_base; i ++) {
DeviceState *dev;
dev = sysbus_create_simple("pxa2xx-ssp", pxa27x_ssp[i].io_base,
s->pic[pxa27x_ssp[i].irqn]);
s->ssp[i] = (SSIBus *)qdev_get_child_bus(dev, "ssi");
}
if (usb_enabled) {
sysbus_create_simple("sysbus-ohci", 0x4c000000,
s->pic[PXA2XX_PIC_USBH1]);
}
s->pcmcia[0] = pxa2xx_pcmcia_init(0x20000000);
s->pcmcia[1] = pxa2xx_pcmcia_init(0x30000000);
s->rtc_base = 0x40900000;
iomemtype = cpu_register_io_memory(pxa2xx_rtc_readfn,
pxa2xx_rtc_writefn, s, DEVICE_NATIVE_ENDIAN);
cpu_register_physical_memory(s->rtc_base, 0x1000, iomemtype);
pxa2xx_rtc_init(s);
register_savevm(NULL, "pxa2xx_rtc", 0, 0, pxa2xx_rtc_save,
pxa2xx_rtc_load, s);
s->i2c[0] = pxa2xx_i2c_init(0x40301600, s->pic[PXA2XX_PIC_I2C], 0xffff);
s->i2c[1] = pxa2xx_i2c_init(0x40f00100, s->pic[PXA2XX_PIC_PWRI2C], 0xff);
s->i2s = pxa2xx_i2s_init(0x40400000, s->pic[PXA2XX_PIC_I2S], s->dma);
s->kp = pxa27x_keypad_init(0x41500000, s->pic[PXA2XX_PIC_KEYPAD]);
/* GPIO1 resets the processor */
/* The handler can be overridden by board-specific code */
qdev_connect_gpio_out(s->gpio, 1, s->reset);
return s;
}
| 3,037 |
qemu | de08c606f9ddafe647b6843e2b10a6d6030b0fc0 | 0 | static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
const char *name)
{
QEMUSnapshotInfo *sn_tab, *sn;
int nb_sns, i, ret;
ret = -ENOENT;
nb_sns = bdrv_snapshot_list(bs, &sn_tab);
if (nb_sns < 0)
return ret;
for(i = 0; i < nb_sns; i++) {
sn = &sn_tab[i];
if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
*sn_info = *sn;
ret = 0;
break;
}
}
g_free(sn_tab);
return ret;
}
| 3,038 |
qemu | a22313deca720e038ebc5805cf451b3a685d29ce | 0 | static int vfio_set_trigger_eventfd(VFIOINTp *intp,
eventfd_user_side_handler_t handler)
{
VFIODevice *vbasedev = &intp->vdev->vbasedev;
struct vfio_irq_set *irq_set;
int argsz, ret;
int32_t *pfd;
argsz = sizeof(*irq_set) + sizeof(*pfd);
irq_set = g_malloc0(argsz);
irq_set->argsz = argsz;
irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER;
irq_set->index = intp->pin;
irq_set->start = 0;
irq_set->count = 1;
pfd = (int32_t *)&irq_set->data;
*pfd = event_notifier_get_fd(&intp->interrupt);
qemu_set_fd_handler(*pfd, (IOHandler *)handler, NULL, intp);
ret = ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, irq_set);
g_free(irq_set);
if (ret < 0) {
error_report("vfio: Failed to set trigger eventfd: %m");
qemu_set_fd_handler(*pfd, NULL, NULL, NULL);
}
return ret;
}
| 3,041 |
qemu | 72cf2d4f0e181d0d3a3122e04129c58a95da713e | 0 | static int audio_attach_capture (HWVoiceOut *hw)
{
AudioState *s = &glob_audio_state;
CaptureVoiceOut *cap;
audio_detach_capture (hw);
for (cap = s->cap_head.lh_first; cap; cap = cap->entries.le_next) {
SWVoiceCap *sc;
SWVoiceOut *sw;
HWVoiceOut *hw_cap = &cap->hw;
sc = audio_calloc (AUDIO_FUNC, 1, sizeof (*sc));
if (!sc) {
dolog ("Could not allocate soft capture voice (%zu bytes)\n",
sizeof (*sc));
return -1;
}
sc->cap = cap;
sw = &sc->sw;
sw->hw = hw_cap;
sw->info = hw->info;
sw->empty = 1;
sw->active = hw->enabled;
sw->conv = noop_conv;
sw->ratio = ((int64_t) hw_cap->info.freq << 32) / sw->info.freq;
sw->rate = st_rate_start (sw->info.freq, hw_cap->info.freq);
if (!sw->rate) {
dolog ("Could not start rate conversion for `%s'\n", SW_NAME (sw));
qemu_free (sw);
return -1;
}
LIST_INSERT_HEAD (&hw_cap->sw_head, sw, entries);
LIST_INSERT_HEAD (&hw->cap_head, sc, entries);
#ifdef DEBUG_CAPTURE
asprintf (&sw->name, "for %p %d,%d,%d",
hw, sw->info.freq, sw->info.bits, sw->info.nchannels);
dolog ("Added %s active = %d\n", sw->name, sw->active);
#endif
if (sw->active) {
audio_capture_maybe_changed (cap, 1);
}
}
return 0;
}
| 3,042 |
FFmpeg | ed1f8915daf6b84a940463dfe83c7b970f82383d | 0 | static int ffserver_opt_preset(const char *arg,
AVCodecContext *avctx, int type,
enum AVCodecID *audio_id, enum AVCodecID *video_id)
{
FILE *f=NULL;
char filename[1000], tmp[1000], tmp2[1000], line[1000];
int ret = 0;
AVCodec *codec = avcodec_find_encoder(avctx->codec_id);
if (!(f = get_preset_file(filename, sizeof(filename), arg, 0,
codec ? codec->name : NULL))) {
fprintf(stderr, "File for preset '%s' not found\n", arg);
return 1;
}
while(!feof(f)){
int e= fscanf(f, "%999[^\n]\n", line) - 1;
if(line[0] == '#' && !e)
continue;
e|= sscanf(line, "%999[^=]=%999[^\n]\n", tmp, tmp2) - 2;
if(e){
fprintf(stderr, "%s: Invalid syntax: '%s'\n", filename, line);
ret = 1;
break;
}
if(!strcmp(tmp, "acodec")){
*audio_id = opt_codec(tmp2, AVMEDIA_TYPE_AUDIO);
}else if(!strcmp(tmp, "vcodec")){
*video_id = opt_codec(tmp2, AVMEDIA_TYPE_VIDEO);
}else if(!strcmp(tmp, "scodec")){
/* opt_subtitle_codec(tmp2); */
}else if(ffserver_opt_default(tmp, tmp2, avctx, type) < 0){
fprintf(stderr, "%s: Invalid option or argument: '%s', parsed as '%s' = '%s'\n", filename, line, tmp, tmp2);
ret = 1;
break;
}
}
fclose(f);
return ret;
}
| 3,043 |
qemu | ddcd55316fb2851e144e719171621ad2816487dc | 0 | void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
const char *boot_device, MachineState *machine,
ISADevice *floppy, BusState *idebus0, BusState *idebus1,
ISADevice *s)
{
int val, nb, i;
FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
static pc_cmos_init_late_arg arg;
PCMachineState *pc_machine = PC_MACHINE(machine);
/* various important CMOS locations needed by PC/Bochs bios */
/* memory size */
/* base memory (first MiB) */
val = MIN(ram_size / 1024, 640);
rtc_set_memory(s, 0x15, val);
rtc_set_memory(s, 0x16, val >> 8);
/* extended memory (next 64MiB) */
if (ram_size > 1024 * 1024) {
val = (ram_size - 1024 * 1024) / 1024;
} else {
val = 0;
}
if (val > 65535)
val = 65535;
rtc_set_memory(s, 0x17, val);
rtc_set_memory(s, 0x18, val >> 8);
rtc_set_memory(s, 0x30, val);
rtc_set_memory(s, 0x31, val >> 8);
/* memory between 16MiB and 4GiB */
if (ram_size > 16 * 1024 * 1024) {
val = (ram_size - 16 * 1024 * 1024) / 65536;
} else {
val = 0;
}
if (val > 65535)
val = 65535;
rtc_set_memory(s, 0x34, val);
rtc_set_memory(s, 0x35, val >> 8);
/* memory above 4GiB */
val = above_4g_mem_size / 65536;
rtc_set_memory(s, 0x5b, val);
rtc_set_memory(s, 0x5c, val >> 8);
rtc_set_memory(s, 0x5d, val >> 16);
/* set the number of CPU */
rtc_set_memory(s, 0x5f, smp_cpus - 1);
object_property_add_link(OBJECT(machine), "rtc_state",
TYPE_ISA_DEVICE,
(Object **)&pc_machine->rtc,
object_property_allow_set_link,
OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
object_property_set_link(OBJECT(machine), OBJECT(s),
"rtc_state", &error_abort);
if (set_boot_dev(s, boot_device)) {
exit(1);
}
/* floppy type */
if (floppy) {
for (i = 0; i < 2; i++) {
fd_type[i] = isa_fdc_get_drive_type(floppy, i);
}
}
val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
cmos_get_fd_drive_type(fd_type[1]);
rtc_set_memory(s, 0x10, val);
val = 0;
nb = 0;
if (fd_type[0] < FDRIVE_DRV_NONE) {
nb++;
}
if (fd_type[1] < FDRIVE_DRV_NONE) {
nb++;
}
switch (nb) {
case 0:
break;
case 1:
val |= 0x01; /* 1 drive, ready for boot */
break;
case 2:
val |= 0x41; /* 2 drives, ready for boot */
break;
}
val |= 0x02; /* FPU is there */
val |= 0x04; /* PS/2 mouse installed */
rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
/* hard drives */
arg.rtc_state = s;
arg.idebus[0] = idebus0;
arg.idebus[1] = idebus1;
qemu_register_reset(pc_cmos_init_late, &arg);
}
| 3,044 |
Subsets and Splits