project
stringclasses
2 values
commit_id
stringlengths
40
40
target
int64
0
1
func
stringlengths
26
142k
idx
int64
0
27.3k
FFmpeg
b88be742fac7a77a8095e8155ba8790db4b77568
1
static void encode_quant_matrix(VC2EncContext *s) { int level, custom_quant_matrix = 0; if (s->wavelet_depth > 4 || s->quant_matrix != VC2_QM_DEF) custom_quant_matrix = 1; put_bits(&s->pb, 1, custom_quant_matrix); if (custom_quant_matrix) { init_custom_qm(s); put_vc2_ue_uint(&s->pb, s->quant[0][0]); for (level = 0; level < s->wavelet_depth; level++) { put_vc2_ue_uint(&s->pb, s->quant[level][1]); put_vc2_ue_uint(&s->pb, s->quant[level][2]); put_vc2_ue_uint(&s->pb, s->quant[level][3]); } } else { for (level = 0; level < s->wavelet_depth; level++) { s->quant[level][0] = ff_dirac_default_qmat[s->wavelet_idx][level][0]; s->quant[level][1] = ff_dirac_default_qmat[s->wavelet_idx][level][1]; s->quant[level][2] = ff_dirac_default_qmat[s->wavelet_idx][level][2]; s->quant[level][3] = ff_dirac_default_qmat[s->wavelet_idx][level][3]; } } }
3,424
FFmpeg
f42b3195d3f2692a4dfc0a8668bb4ac35301f2ed
1
static void fix_bitshift(ShortenContext *s, int32_t *buffer) { int i; if (s->bitshift != 0) for (i = 0; i < s->blocksize; i++) buffer[s->nwrap + i] <<= s->bitshift; }
3,425
qemu
7bdfd907e7072e380f325e735d99677df53f00ec
1
static void wav_capture_destroy (void *opaque) { WAVState *wav = opaque; AUD_del_capture (wav->cap, wav); }
3,426
qemu
a32354e206895400d17c3de9a8df1de96d3df289
1
static uint32_t m5206_mbar_readw(void *opaque, target_phys_addr_t offset) { m5206_mbar_state *s = (m5206_mbar_state *)opaque; int width; offset &= 0x3ff; if (offset > 0x200) { hw_error("Bad MBAR read offset 0x%x", (int)offset); } width = m5206_mbar_width[offset >> 2]; if (width > 2) { uint32_t val; val = m5206_mbar_readl(opaque, offset & ~3); if ((offset & 3) == 0) val >>= 16; return val & 0xffff; } else if (width < 2) { uint16_t val; val = m5206_mbar_readb(opaque, offset) << 8; val |= m5206_mbar_readb(opaque, offset + 1); return val; } return m5206_mbar_read(s, offset, 2); }
3,427
qemu
42e4126b793d15ec40f3a84017e1d8afecda1b6d
1
uint32_t pci_data_read(PCIBus *s, uint32_t addr, int len) { PCIDevice *pci_dev = pci_dev_find_by_addr(s, addr); uint32_t config_addr = addr & (PCI_CONFIG_SPACE_SIZE - 1); uint32_t val; assert(len == 1 || len == 2 || len == 4); if (!pci_dev) { return ~0x0; } val = pci_dev->config_read(pci_dev, config_addr, len); PCI_DPRINTF("%s: %s: addr=%02"PRIx32" val=%08"PRIx32" len=%d\n", __func__, pci_dev->name, config_addr, val, len); return val; }
3,428
FFmpeg
0424e052f83adc422d8a746e3cdc5ab6bc28679e
1
static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size){ MpegEncContext * const s = &h->s; AVCodecContext * const avctx= s->avctx; int buf_index=0; H264Context *hx; ///< thread context int context_count = 0; int next_avc= h->is_avc ? 0 : buf_size; h->max_contexts = (HAVE_THREADS && (s->avctx->active_thread_type&FF_THREAD_SLICE)) ? avctx->thread_count : 1; #if 0 int i; for(i=0; i<50; i++){ av_log(NULL, AV_LOG_ERROR,"%02X ", buf[i]); } #endif if(!(s->flags2 & CODEC_FLAG2_CHUNKS)){ h->current_slice = 0; if (!s->first_field) s->current_picture_ptr= NULL; ff_h264_reset_sei(h); } for(;;){ int consumed; int dst_length; int bit_length; const uint8_t *ptr; int i, nalsize = 0; int err; if(buf_index >= next_avc) { if(buf_index >= buf_size) break; nalsize = 0; for(i = 0; i < h->nal_length_size; i++) nalsize = (nalsize << 8) | buf[buf_index++]; if(nalsize <= 0 || nalsize > buf_size - buf_index){ av_log(h->s.avctx, AV_LOG_ERROR, "AVC: nal size %d\n", nalsize); break; } next_avc= buf_index + nalsize; } else { // start code prefix search for(; buf_index + 3 < next_avc; buf_index++){ // This should always succeed in the first iteration. if(buf[buf_index] == 0 && buf[buf_index+1] == 0 && buf[buf_index+2] == 1) break; } if(buf_index+3 >= buf_size) break; buf_index+=3; if(buf_index >= next_avc) continue; } hx = h->thread_context[context_count]; ptr= ff_h264_decode_nal(hx, buf + buf_index, &dst_length, &consumed, next_avc - buf_index); if (ptr==NULL || dst_length < 0){ return -1; } i= buf_index + consumed; if((s->workaround_bugs & FF_BUG_AUTODETECT) && i+3<next_avc && buf[i]==0x00 && buf[i+1]==0x00 && buf[i+2]==0x01 && buf[i+3]==0xE0) s->workaround_bugs |= FF_BUG_TRUNCATED; if(!(s->workaround_bugs & FF_BUG_TRUNCATED)){ while(ptr[dst_length - 1] == 0 && dst_length > 0) dst_length--; } bit_length= !dst_length ? 0 : (8*dst_length - ff_h264_decode_rbsp_trailing(h, ptr + dst_length - 1)); if(s->avctx->debug&FF_DEBUG_STARTCODE){ av_log(h->s.avctx, AV_LOG_DEBUG, "NAL %d/%d at %d/%d length %d\n", hx->nal_unit_type, hx->nal_ref_idc, buf_index, buf_size, dst_length); } if (h->is_avc && (nalsize != consumed) && nalsize){ av_log(h->s.avctx, AV_LOG_DEBUG, "AVC: Consumed only %d bytes instead of %d\n", consumed, nalsize); } buf_index += consumed; //FIXME do not discard SEI id if(avctx->skip_frame >= AVDISCARD_NONREF && h->nal_ref_idc == 0) continue; again: err = 0; switch(hx->nal_unit_type){ case NAL_IDR_SLICE: if (h->nal_unit_type != NAL_IDR_SLICE) { av_log(h->s.avctx, AV_LOG_ERROR, "Invalid mix of idr and non-idr slices"); return -1; } idr(h); //FIXME ensure we don't loose some frames if there is reordering case NAL_SLICE: init_get_bits(&hx->s.gb, ptr, bit_length); hx->intra_gb_ptr= hx->inter_gb_ptr= &hx->s.gb; hx->s.data_partitioning = 0; if((err = decode_slice_header(hx, h))) break; s->current_picture_ptr->key_frame |= (hx->nal_unit_type == NAL_IDR_SLICE) || (h->sei_recovery_frame_cnt >= 0); if (h->current_slice == 1) { if(!(s->flags2 & CODEC_FLAG2_CHUNKS)) { decode_postinit(h); } if (s->avctx->hwaccel && s->avctx->hwaccel->start_frame(s->avctx, NULL, 0) < 0) return -1; if(CONFIG_H264_VDPAU_DECODER && s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU) ff_vdpau_h264_picture_start(s); } if(hx->redundant_pic_count==0 && (avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc) && (avctx->skip_frame < AVDISCARD_BIDIR || hx->slice_type_nos!=AV_PICTURE_TYPE_B) && (avctx->skip_frame < AVDISCARD_NONKEY || hx->slice_type_nos==AV_PICTURE_TYPE_I) && avctx->skip_frame < AVDISCARD_ALL){ if(avctx->hwaccel) { if (avctx->hwaccel->decode_slice(avctx, &buf[buf_index - consumed], consumed) < 0) return -1; }else if(CONFIG_H264_VDPAU_DECODER && s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU){ static const uint8_t start_code[] = {0x00, 0x00, 0x01}; ff_vdpau_add_data_chunk(s, start_code, sizeof(start_code)); ff_vdpau_add_data_chunk(s, &buf[buf_index - consumed], consumed ); }else context_count++; } break; case NAL_DPA: init_get_bits(&hx->s.gb, ptr, bit_length); hx->intra_gb_ptr= hx->inter_gb_ptr= NULL; if ((err = decode_slice_header(hx, h)) < 0) break; hx->s.data_partitioning = 1; break; case NAL_DPB: init_get_bits(&hx->intra_gb, ptr, bit_length); hx->intra_gb_ptr= &hx->intra_gb; break; case NAL_DPC: init_get_bits(&hx->inter_gb, ptr, bit_length); hx->inter_gb_ptr= &hx->inter_gb; if(hx->redundant_pic_count==0 && hx->intra_gb_ptr && hx->s.data_partitioning && s->context_initialized && (avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc) && (avctx->skip_frame < AVDISCARD_BIDIR || hx->slice_type_nos!=AV_PICTURE_TYPE_B) && (avctx->skip_frame < AVDISCARD_NONKEY || hx->slice_type_nos==AV_PICTURE_TYPE_I) && avctx->skip_frame < AVDISCARD_ALL) context_count++; break; case NAL_SEI: init_get_bits(&s->gb, ptr, bit_length); ff_h264_decode_sei(h); break; case NAL_SPS: init_get_bits(&s->gb, ptr, bit_length); ff_h264_decode_seq_parameter_set(h); if(s->flags& CODEC_FLAG_LOW_DELAY || (h->sps.bitstream_restriction_flag && !h->sps.num_reorder_frames)) s->low_delay=1; if(avctx->has_b_frames < 2) avctx->has_b_frames= !s->low_delay; if (avctx->bits_per_raw_sample != h->sps.bit_depth_luma) { if (h->sps.bit_depth_luma >= 8 && h->sps.bit_depth_luma <= 10) { avctx->bits_per_raw_sample = h->sps.bit_depth_luma; h->pixel_shift = h->sps.bit_depth_luma > 8; ff_h264dsp_init(&h->h264dsp, h->sps.bit_depth_luma); ff_h264_pred_init(&h->hpc, s->codec_id, h->sps.bit_depth_luma); dsputil_init(&s->dsp, s->avctx); } else { av_log(avctx, AV_LOG_DEBUG, "Unsupported bit depth: %d\n", h->sps.bit_depth_luma); return -1; } } break; case NAL_PPS: init_get_bits(&s->gb, ptr, bit_length); ff_h264_decode_picture_parameter_set(h, bit_length); break; case NAL_AUD: case NAL_END_SEQUENCE: case NAL_END_STREAM: case NAL_FILLER_DATA: case NAL_SPS_EXT: case NAL_AUXILIARY_SLICE: break; default: av_log(avctx, AV_LOG_DEBUG, "Unknown NAL code: %d (%d bits)\n", hx->nal_unit_type, bit_length); } if(context_count == h->max_contexts) { execute_decode_slices(h, context_count); context_count = 0; } if (err < 0) av_log(h->s.avctx, AV_LOG_ERROR, "decode_slice_header error\n"); else if(err == 1) { /* Slice could not be decoded in parallel mode, copy down * NAL unit stuff to context 0 and restart. Note that * rbsp_buffer is not transferred, but since we no longer * run in parallel mode this should not be an issue. */ h->nal_unit_type = hx->nal_unit_type; h->nal_ref_idc = hx->nal_ref_idc; hx = h; goto again; } } if(context_count) execute_decode_slices(h, context_count); return buf_index; }
3,429
FFmpeg
4c7b023d56e09a78a587d036db1b64bf7c493b3d
0
static int nvdec_vc1_decode_slice(AVCodecContext *avctx, const uint8_t *buffer, uint32_t size) { NVDECContext *ctx = avctx->internal->hwaccel_priv_data; void *tmp; tmp = av_fast_realloc(ctx->slice_offsets, &ctx->slice_offsets_allocated, (ctx->nb_slices + 1) * sizeof(*ctx->slice_offsets)); if (!tmp) return AVERROR(ENOMEM); ctx->slice_offsets = tmp; if (!ctx->bitstream) ctx->bitstream = (uint8_t*)buffer; ctx->slice_offsets[ctx->nb_slices] = buffer - ctx->bitstream; ctx->bitstream_len += size; ctx->nb_slices++; return 0; }
3,430
qemu
0919ac787641db11024912651f3bc5764d4f1286
0
static void omap2_inth_write(void *opaque, target_phys_addr_t addr, uint64_t value, unsigned size) { struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque; int offset = addr; int bank_no, line_no; struct omap_intr_handler_bank_s *bank = NULL; if ((offset & 0xf80) == 0x80) { bank_no = (offset & 0x60) >> 5; if (bank_no < s->nbanks) { offset &= ~0x60; bank = &s->bank[bank_no]; } } switch (offset) { case 0x10: /* INTC_SYSCONFIG */ s->autoidle &= 4; s->autoidle |= (value & 1) << 2; if (value & 2) /* SOFTRESET */ omap_inth_reset(s); return; case 0x48: /* INTC_CONTROL */ s->mask = (value & 4) ? 0 : ~0; /* GLOBALMASK */ if (value & 2) { /* NEWFIQAGR */ qemu_set_irq(s->parent_intr[1], 0); s->new_agr[1] = ~0; omap_inth_update(s, 1); } if (value & 1) { /* NEWIRQAGR */ qemu_set_irq(s->parent_intr[0], 0); s->new_agr[0] = ~0; omap_inth_update(s, 0); } return; case 0x4c: /* INTC_PROTECTION */ /* TODO: Make a bitmap (or sizeof(char)map) of access privileges * for every register, see Chapter 3 and 4 for privileged mode. */ if (value & 1) fprintf(stderr, "%s: protection mode enable attempt\n", __FUNCTION__); return; case 0x50: /* INTC_IDLE */ s->autoidle &= ~3; s->autoidle |= value & 3; return; /* Per-bank registers */ case 0x84: /* INTC_MIR */ bank->mask = value; omap_inth_update(s, 0); omap_inth_update(s, 1); return; case 0x88: /* INTC_MIR_CLEAR */ bank->mask &= ~value; omap_inth_update(s, 0); omap_inth_update(s, 1); return; case 0x8c: /* INTC_MIR_SET */ bank->mask |= value; return; case 0x90: /* INTC_ISR_SET */ bank->irqs |= bank->swi |= value; omap_inth_update(s, 0); omap_inth_update(s, 1); return; case 0x94: /* INTC_ISR_CLEAR */ bank->swi &= ~value; bank->irqs = bank->swi & bank->inputs; return; /* Per-line registers */ case 0x100 ... 0x300: /* INTC_ILR */ bank_no = (offset - 0x100) >> 7; if (bank_no > s->nbanks) break; bank = &s->bank[bank_no]; line_no = (offset & 0x7f) >> 2; bank->priority[line_no] = (value >> 2) & 0x3f; bank->fiq &= ~(1 << line_no); bank->fiq |= (value & 1) << line_no; return; case 0x00: /* INTC_REVISION */ case 0x14: /* INTC_SYSSTATUS */ case 0x40: /* INTC_SIR_IRQ */ case 0x44: /* INTC_SIR_FIQ */ case 0x80: /* INTC_ITR */ case 0x98: /* INTC_PENDING_IRQ */ case 0x9c: /* INTC_PENDING_FIQ */ OMAP_RO_REG(addr); return; } OMAP_BAD_REG(addr); }
3,431
qemu
aea390e4be652d5b5457771d25eded0dba14fe37
0
static bool pte32_match(target_ulong pte0, target_ulong pte1, bool secondary, target_ulong ptem) { return (pte0 & HPTE32_V_VALID) && (secondary == !!(pte0 & HPTE32_V_SECONDARY)) && HPTE32_V_COMPARE(pte0, ptem); }
3,432
qemu
ee951a37d8873bff7aa58e23222dfd984111b6cb
0
static int hpet_init(SysBusDevice *dev) { HPETState *s = FROM_SYSBUS(HPETState, dev); int i, iomemtype; HPETTimer *timer; if (hpet_cfg.count == UINT8_MAX) { /* first instance */ hpet_cfg.count = 0; } if (hpet_cfg.count == 8) { fprintf(stderr, "Only 8 instances of HPET is allowed\n"); return -1; } s->hpet_id = hpet_cfg.count++; for (i = 0; i < HPET_NUM_IRQ_ROUTES; i++) { sysbus_init_irq(dev, &s->irqs[i]); } if (s->num_timers < HPET_MIN_TIMERS) { s->num_timers = HPET_MIN_TIMERS; } else if (s->num_timers > HPET_MAX_TIMERS) { s->num_timers = HPET_MAX_TIMERS; } for (i = 0; i < HPET_MAX_TIMERS; i++) { timer = &s->timer[i]; timer->qemu_timer = qemu_new_timer(vm_clock, hpet_timer, timer); timer->tn = i; timer->state = s; } /* 64-bit main counter; LegacyReplacementRoute. */ s->capability = 0x8086a001ULL; s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT; s->capability |= ((HPET_CLK_PERIOD) << 32); isa_reserve_irq(RTC_ISA_IRQ); qdev_init_gpio_in(&dev->qdev, hpet_handle_rtc_irq, 1); /* HPET Area */ iomemtype = cpu_register_io_memory(hpet_ram_read, hpet_ram_write, s, DEVICE_NATIVE_ENDIAN); sysbus_init_mmio(dev, 0x400, iomemtype); return 0; }
3,433
qemu
3941bf6fb1c98a39bf8a0cfb4feacaef2a23d0db
0
static int send_png_rect(VncState *vs, int x, int y, int w, int h, QDict *palette) { png_byte color_type; png_structp png_ptr; png_infop info_ptr; png_colorp png_palette = NULL; size_t offset; int level = tight_conf[vs->tight_compression].raw_zlib_level; uint8_t *buf; int dy; png_ptr = png_create_write_struct_2(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL, NULL, vnc_png_malloc, vnc_png_free); if (png_ptr == NULL) return -1; info_ptr = png_create_info_struct(png_ptr); if (info_ptr == NULL) { png_destroy_write_struct(&png_ptr, NULL); return -1; } png_set_write_fn(png_ptr, (void *) vs, png_write_data, png_flush_data); png_set_compression_level(png_ptr, level); if (palette) { color_type = PNG_COLOR_TYPE_PALETTE; } else { color_type = PNG_COLOR_TYPE_RGB; } png_set_IHDR(png_ptr, info_ptr, w, h, 8, color_type, PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT, PNG_FILTER_TYPE_DEFAULT); if (color_type == PNG_COLOR_TYPE_PALETTE) { struct palette_cb_priv priv; png_palette = png_malloc(png_ptr, sizeof(*png_palette) * qdict_size(palette)); priv.vs = vs; priv.png_palette = png_palette; qdict_iter(palette, write_png_palette, &priv); png_set_PLTE(png_ptr, info_ptr, png_palette, qdict_size(palette)); offset = vs->tight.offset; if (vs->clientds.pf.bytes_per_pixel == 4) { tight_encode_indexed_rect32(vs->tight.buffer, w * h, palette); } else { tight_encode_indexed_rect16(vs->tight.buffer, w * h, palette); } } png_write_info(png_ptr, info_ptr); buffer_reserve(&vs->tight_png, 2048); buf = qemu_malloc(w * 3); for (dy = 0; dy < h; dy++) { if (color_type == PNG_COLOR_TYPE_PALETTE) { memcpy(buf, vs->tight.buffer + (dy * w), w); } else { rgb_prepare_row(vs, buf, x, y + dy, w); } png_write_row(png_ptr, buf); } qemu_free(buf); png_write_end(png_ptr, NULL); if (color_type == PNG_COLOR_TYPE_PALETTE) { png_free(png_ptr, png_palette); } png_destroy_write_struct(&png_ptr, &info_ptr); vnc_write_u8(vs, VNC_TIGHT_PNG << 4); tight_send_compact_size(vs, vs->tight_png.offset); vnc_write(vs, vs->tight_png.buffer, vs->tight_png.offset); buffer_reset(&vs->tight_png); return 1; }
3,434
qemu
ac531cb6e542b1e61d668604adf9dc5306a948c0
0
START_TEST(qdict_put_exists_test) { int value; const char *key = "exists"; qdict_put(tests_dict, key, qint_from_int(1)); qdict_put(tests_dict, key, qint_from_int(2)); value = qdict_get_int(tests_dict, key); fail_unless(value == 2); fail_unless(qdict_size(tests_dict) == 1); }
3,435
qemu
a8170e5e97ad17ca169c64ba87ae2f53850dab4c
0
static void gt64120_writel (void *opaque, target_phys_addr_t addr, uint64_t val, unsigned size) { GT64120State *s = opaque; PCIHostState *phb = PCI_HOST_BRIDGE(s); uint32_t saddr; if (!(s->regs[GT_CPU] & 0x00001000)) val = bswap32(val); saddr = (addr & 0xfff) >> 2; switch (saddr) { /* CPU Configuration */ case GT_CPU: s->regs[GT_CPU] = val; break; case GT_MULTI: /* Read-only register as only one GT64xxx is present on the CPU bus */ break; /* CPU Address Decode */ case GT_PCI0IOLD: s->regs[GT_PCI0IOLD] = val & 0x00007fff; s->regs[GT_PCI0IOREMAP] = val & 0x000007ff; gt64120_pci_mapping(s); break; case GT_PCI0M0LD: s->regs[GT_PCI0M0LD] = val & 0x00007fff; s->regs[GT_PCI0M0REMAP] = val & 0x000007ff; break; case GT_PCI0M1LD: s->regs[GT_PCI0M1LD] = val & 0x00007fff; s->regs[GT_PCI0M1REMAP] = val & 0x000007ff; break; case GT_PCI1IOLD: s->regs[GT_PCI1IOLD] = val & 0x00007fff; s->regs[GT_PCI1IOREMAP] = val & 0x000007ff; break; case GT_PCI1M0LD: s->regs[GT_PCI1M0LD] = val & 0x00007fff; s->regs[GT_PCI1M0REMAP] = val & 0x000007ff; break; case GT_PCI1M1LD: s->regs[GT_PCI1M1LD] = val & 0x00007fff; s->regs[GT_PCI1M1REMAP] = val & 0x000007ff; break; case GT_PCI0IOHD: s->regs[saddr] = val & 0x0000007f; gt64120_pci_mapping(s); break; case GT_PCI0M0HD: case GT_PCI0M1HD: case GT_PCI1IOHD: case GT_PCI1M0HD: case GT_PCI1M1HD: s->regs[saddr] = val & 0x0000007f; break; case GT_ISD: s->regs[saddr] = val & 0x00007fff; gt64120_isd_mapping(s); break; case GT_PCI0IOREMAP: case GT_PCI0M0REMAP: case GT_PCI0M1REMAP: case GT_PCI1IOREMAP: case GT_PCI1M0REMAP: case GT_PCI1M1REMAP: s->regs[saddr] = val & 0x000007ff; break; /* CPU Error Report */ case GT_CPUERR_ADDRLO: case GT_CPUERR_ADDRHI: case GT_CPUERR_DATALO: case GT_CPUERR_DATAHI: case GT_CPUERR_PARITY: /* Read-only registers, do nothing */ break; /* CPU Sync Barrier */ case GT_PCI0SYNC: case GT_PCI1SYNC: /* Read-only registers, do nothing */ break; /* SDRAM and Device Address Decode */ case GT_SCS0LD: case GT_SCS0HD: case GT_SCS1LD: case GT_SCS1HD: case GT_SCS2LD: case GT_SCS2HD: case GT_SCS3LD: case GT_SCS3HD: case GT_CS0LD: case GT_CS0HD: case GT_CS1LD: case GT_CS1HD: case GT_CS2LD: case GT_CS2HD: case GT_CS3LD: case GT_CS3HD: case GT_BOOTLD: case GT_BOOTHD: case GT_ADERR: /* SDRAM Configuration */ case GT_SDRAM_CFG: case GT_SDRAM_OPMODE: case GT_SDRAM_BM: case GT_SDRAM_ADDRDECODE: /* Accept and ignore SDRAM interleave configuration */ s->regs[saddr] = val; break; /* Device Parameters */ case GT_DEV_B0: case GT_DEV_B1: case GT_DEV_B2: case GT_DEV_B3: case GT_DEV_BOOT: /* Not implemented */ DPRINTF ("Unimplemented device register offset 0x%x\n", saddr << 2); break; /* ECC */ case GT_ECC_ERRDATALO: case GT_ECC_ERRDATAHI: case GT_ECC_MEM: case GT_ECC_CALC: case GT_ECC_ERRADDR: /* Read-only registers, do nothing */ break; /* DMA Record */ case GT_DMA0_CNT: case GT_DMA1_CNT: case GT_DMA2_CNT: case GT_DMA3_CNT: case GT_DMA0_SA: case GT_DMA1_SA: case GT_DMA2_SA: case GT_DMA3_SA: case GT_DMA0_DA: case GT_DMA1_DA: case GT_DMA2_DA: case GT_DMA3_DA: case GT_DMA0_NEXT: case GT_DMA1_NEXT: case GT_DMA2_NEXT: case GT_DMA3_NEXT: case GT_DMA0_CUR: case GT_DMA1_CUR: case GT_DMA2_CUR: case GT_DMA3_CUR: /* Not implemented */ DPRINTF ("Unimplemented DMA register offset 0x%x\n", saddr << 2); break; /* DMA Channel Control */ case GT_DMA0_CTRL: case GT_DMA1_CTRL: case GT_DMA2_CTRL: case GT_DMA3_CTRL: /* Not implemented */ DPRINTF ("Unimplemented DMA register offset 0x%x\n", saddr << 2); break; /* DMA Arbiter */ case GT_DMA_ARB: /* Not implemented */ DPRINTF ("Unimplemented DMA register offset 0x%x\n", saddr << 2); break; /* Timer/Counter */ case GT_TC0: case GT_TC1: case GT_TC2: case GT_TC3: case GT_TC_CONTROL: /* Not implemented */ DPRINTF ("Unimplemented timer register offset 0x%x\n", saddr << 2); break; /* PCI Internal */ case GT_PCI0_CMD: case GT_PCI1_CMD: s->regs[saddr] = val & 0x0401fc0f; break; case GT_PCI0_TOR: case GT_PCI0_BS_SCS10: case GT_PCI0_BS_SCS32: case GT_PCI0_BS_CS20: case GT_PCI0_BS_CS3BT: case GT_PCI1_IACK: case GT_PCI0_IACK: case GT_PCI0_BARE: case GT_PCI0_PREFMBR: case GT_PCI0_SCS10_BAR: case GT_PCI0_SCS32_BAR: case GT_PCI0_CS20_BAR: case GT_PCI0_CS3BT_BAR: case GT_PCI0_SSCS10_BAR: case GT_PCI0_SSCS32_BAR: case GT_PCI0_SCS3BT_BAR: case GT_PCI1_TOR: case GT_PCI1_BS_SCS10: case GT_PCI1_BS_SCS32: case GT_PCI1_BS_CS20: case GT_PCI1_BS_CS3BT: case GT_PCI1_BARE: case GT_PCI1_PREFMBR: case GT_PCI1_SCS10_BAR: case GT_PCI1_SCS32_BAR: case GT_PCI1_CS20_BAR: case GT_PCI1_CS3BT_BAR: case GT_PCI1_SSCS10_BAR: case GT_PCI1_SSCS32_BAR: case GT_PCI1_SCS3BT_BAR: case GT_PCI1_CFGADDR: case GT_PCI1_CFGDATA: /* not implemented */ break; case GT_PCI0_CFGADDR: phb->config_reg = val & 0x80fffffc; break; case GT_PCI0_CFGDATA: if (!(s->regs[GT_PCI0_CMD] & 1) && (phb->config_reg & 0x00fff800)) { val = bswap32(val); } if (phb->config_reg & (1u << 31)) { pci_data_write(phb->bus, phb->config_reg, val, 4); } break; /* Interrupts */ case GT_INTRCAUSE: /* not really implemented */ s->regs[saddr] = ~(~(s->regs[saddr]) | ~(val & 0xfffffffe)); s->regs[saddr] |= !!(s->regs[saddr] & 0xfffffffe); DPRINTF("INTRCAUSE %" PRIx64 "\n", val); break; case GT_INTRMASK: s->regs[saddr] = val & 0x3c3ffffe; DPRINTF("INTRMASK %" PRIx64 "\n", val); break; case GT_PCI0_ICMASK: s->regs[saddr] = val & 0x03fffffe; DPRINTF("ICMASK %" PRIx64 "\n", val); break; case GT_PCI0_SERR0MASK: s->regs[saddr] = val & 0x0000003f; DPRINTF("SERR0MASK %" PRIx64 "\n", val); break; /* Reserved when only PCI_0 is configured. */ case GT_HINTRCAUSE: case GT_CPU_INTSEL: case GT_PCI0_INTSEL: case GT_HINTRMASK: case GT_PCI0_HICMASK: case GT_PCI1_SERR1MASK: /* not implemented */ break; /* SDRAM Parameters */ case GT_SDRAM_B0: case GT_SDRAM_B1: case GT_SDRAM_B2: case GT_SDRAM_B3: /* We don't simulate electrical parameters of the SDRAM. Accept, but ignore the values. */ s->regs[saddr] = val; break; default: DPRINTF ("Bad register offset 0x%x\n", (int)addr); break; } }
3,438
qemu
36e60ef6ac5d8a262d0fbeedfdb2b588514cb1ea
0
static void tcg_constant_folding(TCGContext *s) { int oi, oi_next, nb_temps, nb_globals; /* Array VALS has an element for each temp. If this temp holds a constant then its value is kept in VALS' element. If this temp is a copy of other ones then the other copies are available through the doubly linked circular list. */ nb_temps = s->nb_temps; nb_globals = s->nb_globals; reset_all_temps(nb_temps); for (oi = s->gen_first_op_idx; oi >= 0; oi = oi_next) { tcg_target_ulong mask, partmask, affected; int nb_oargs, nb_iargs, i; TCGArg tmp; TCGOp * const op = &s->gen_op_buf[oi]; TCGArg * const args = &s->gen_opparam_buf[op->args]; TCGOpcode opc = op->opc; const TCGOpDef *def = &tcg_op_defs[opc]; oi_next = op->next; if (opc == INDEX_op_call) { nb_oargs = op->callo; nb_iargs = op->calli; } else { nb_oargs = def->nb_oargs; nb_iargs = def->nb_iargs; } /* Do copy propagation */ for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) { if (temps[args[i]].state == TCG_TEMP_COPY) { args[i] = find_better_copy(s, args[i]); } } /* For commutative operations make constant second argument */ switch (opc) { CASE_OP_32_64(add): CASE_OP_32_64(mul): CASE_OP_32_64(and): CASE_OP_32_64(or): CASE_OP_32_64(xor): CASE_OP_32_64(eqv): CASE_OP_32_64(nand): CASE_OP_32_64(nor): CASE_OP_32_64(muluh): CASE_OP_32_64(mulsh): swap_commutative(args[0], &args[1], &args[2]); break; CASE_OP_32_64(brcond): if (swap_commutative(-1, &args[0], &args[1])) { args[2] = tcg_swap_cond(args[2]); } break; CASE_OP_32_64(setcond): if (swap_commutative(args[0], &args[1], &args[2])) { args[3] = tcg_swap_cond(args[3]); } break; CASE_OP_32_64(movcond): if (swap_commutative(-1, &args[1], &args[2])) { args[5] = tcg_swap_cond(args[5]); } /* For movcond, we canonicalize the "false" input reg to match the destination reg so that the tcg backend can implement a "move if true" operation. */ if (swap_commutative(args[0], &args[4], &args[3])) { args[5] = tcg_invert_cond(args[5]); } break; CASE_OP_32_64(add2): swap_commutative(args[0], &args[2], &args[4]); swap_commutative(args[1], &args[3], &args[5]); break; CASE_OP_32_64(mulu2): CASE_OP_32_64(muls2): swap_commutative(args[0], &args[2], &args[3]); break; case INDEX_op_brcond2_i32: if (swap_commutative2(&args[0], &args[2])) { args[4] = tcg_swap_cond(args[4]); } break; case INDEX_op_setcond2_i32: if (swap_commutative2(&args[1], &args[3])) { args[5] = tcg_swap_cond(args[5]); } break; default: break; } /* Simplify expressions for "shift/rot r, 0, a => movi r, 0", and "sub r, 0, a => neg r, a" case. */ switch (opc) { CASE_OP_32_64(shl): CASE_OP_32_64(shr): CASE_OP_32_64(sar): CASE_OP_32_64(rotl): CASE_OP_32_64(rotr): if (temps[args[1]].state == TCG_TEMP_CONST && temps[args[1]].val == 0) { tcg_opt_gen_movi(s, op, args, args[0], 0); continue; } break; CASE_OP_32_64(sub): { TCGOpcode neg_op; bool have_neg; if (temps[args[2]].state == TCG_TEMP_CONST) { /* Proceed with possible constant folding. */ break; } if (opc == INDEX_op_sub_i32) { neg_op = INDEX_op_neg_i32; have_neg = TCG_TARGET_HAS_neg_i32; } else { neg_op = INDEX_op_neg_i64; have_neg = TCG_TARGET_HAS_neg_i64; } if (!have_neg) { break; } if (temps[args[1]].state == TCG_TEMP_CONST && temps[args[1]].val == 0) { op->opc = neg_op; reset_temp(args[0]); args[1] = args[2]; continue; } } break; CASE_OP_32_64(xor): CASE_OP_32_64(nand): if (temps[args[1]].state != TCG_TEMP_CONST && temps[args[2]].state == TCG_TEMP_CONST && temps[args[2]].val == -1) { i = 1; goto try_not; } break; CASE_OP_32_64(nor): if (temps[args[1]].state != TCG_TEMP_CONST && temps[args[2]].state == TCG_TEMP_CONST && temps[args[2]].val == 0) { i = 1; goto try_not; } break; CASE_OP_32_64(andc): if (temps[args[2]].state != TCG_TEMP_CONST && temps[args[1]].state == TCG_TEMP_CONST && temps[args[1]].val == -1) { i = 2; goto try_not; } break; CASE_OP_32_64(orc): CASE_OP_32_64(eqv): if (temps[args[2]].state != TCG_TEMP_CONST && temps[args[1]].state == TCG_TEMP_CONST && temps[args[1]].val == 0) { i = 2; goto try_not; } break; try_not: { TCGOpcode not_op; bool have_not; if (def->flags & TCG_OPF_64BIT) { not_op = INDEX_op_not_i64; have_not = TCG_TARGET_HAS_not_i64; } else { not_op = INDEX_op_not_i32; have_not = TCG_TARGET_HAS_not_i32; } if (!have_not) { break; } op->opc = not_op; reset_temp(args[0]); args[1] = args[i]; continue; } default: break; } /* Simplify expression for "op r, a, const => mov r, a" cases */ switch (opc) { CASE_OP_32_64(add): CASE_OP_32_64(sub): CASE_OP_32_64(shl): CASE_OP_32_64(shr): CASE_OP_32_64(sar): CASE_OP_32_64(rotl): CASE_OP_32_64(rotr): CASE_OP_32_64(or): CASE_OP_32_64(xor): CASE_OP_32_64(andc): if (temps[args[1]].state != TCG_TEMP_CONST && temps[args[2]].state == TCG_TEMP_CONST && temps[args[2]].val == 0) { tcg_opt_gen_mov(s, op, args, args[0], args[1]); continue; } break; CASE_OP_32_64(and): CASE_OP_32_64(orc): CASE_OP_32_64(eqv): if (temps[args[1]].state != TCG_TEMP_CONST && temps[args[2]].state == TCG_TEMP_CONST && temps[args[2]].val == -1) { tcg_opt_gen_mov(s, op, args, args[0], args[1]); continue; } break; default: break; } /* Simplify using known-zero bits. Currently only ops with a single output argument is supported. */ mask = -1; affected = -1; switch (opc) { CASE_OP_32_64(ext8s): if ((temps[args[1]].mask & 0x80) != 0) { break; } CASE_OP_32_64(ext8u): mask = 0xff; goto and_const; CASE_OP_32_64(ext16s): if ((temps[args[1]].mask & 0x8000) != 0) { break; } CASE_OP_32_64(ext16u): mask = 0xffff; goto and_const; case INDEX_op_ext32s_i64: if ((temps[args[1]].mask & 0x80000000) != 0) { break; } case INDEX_op_ext32u_i64: mask = 0xffffffffU; goto and_const; CASE_OP_32_64(and): mask = temps[args[2]].mask; if (temps[args[2]].state == TCG_TEMP_CONST) { and_const: affected = temps[args[1]].mask & ~mask; } mask = temps[args[1]].mask & mask; break; CASE_OP_32_64(andc): /* Known-zeros does not imply known-ones. Therefore unless args[2] is constant, we can't infer anything from it. */ if (temps[args[2]].state == TCG_TEMP_CONST) { mask = ~temps[args[2]].mask; goto and_const; } /* But we certainly know nothing outside args[1] may be set. */ mask = temps[args[1]].mask; break; case INDEX_op_sar_i32: if (temps[args[2]].state == TCG_TEMP_CONST) { tmp = temps[args[2]].val & 31; mask = (int32_t)temps[args[1]].mask >> tmp; } break; case INDEX_op_sar_i64: if (temps[args[2]].state == TCG_TEMP_CONST) { tmp = temps[args[2]].val & 63; mask = (int64_t)temps[args[1]].mask >> tmp; } break; case INDEX_op_shr_i32: if (temps[args[2]].state == TCG_TEMP_CONST) { tmp = temps[args[2]].val & 31; mask = (uint32_t)temps[args[1]].mask >> tmp; } break; case INDEX_op_shr_i64: if (temps[args[2]].state == TCG_TEMP_CONST) { tmp = temps[args[2]].val & 63; mask = (uint64_t)temps[args[1]].mask >> tmp; } break; case INDEX_op_trunc_shr_i32: mask = (uint64_t)temps[args[1]].mask >> args[2]; break; CASE_OP_32_64(shl): if (temps[args[2]].state == TCG_TEMP_CONST) { tmp = temps[args[2]].val & (TCG_TARGET_REG_BITS - 1); mask = temps[args[1]].mask << tmp; } break; CASE_OP_32_64(neg): /* Set to 1 all bits to the left of the rightmost. */ mask = -(temps[args[1]].mask & -temps[args[1]].mask); break; CASE_OP_32_64(deposit): mask = deposit64(temps[args[1]].mask, args[3], args[4], temps[args[2]].mask); break; CASE_OP_32_64(or): CASE_OP_32_64(xor): mask = temps[args[1]].mask | temps[args[2]].mask; break; CASE_OP_32_64(setcond): case INDEX_op_setcond2_i32: mask = 1; break; CASE_OP_32_64(movcond): mask = temps[args[3]].mask | temps[args[4]].mask; break; CASE_OP_32_64(ld8u): mask = 0xff; break; CASE_OP_32_64(ld16u): mask = 0xffff; break; case INDEX_op_ld32u_i64: mask = 0xffffffffu; break; CASE_OP_32_64(qemu_ld): { TCGMemOpIdx oi = args[nb_oargs + nb_iargs]; TCGMemOp mop = get_memop(oi); if (!(mop & MO_SIGN)) { mask = (2ULL << ((8 << (mop & MO_SIZE)) - 1)) - 1; } } break; default: break; } /* 32-bit ops generate 32-bit results. For the result is zero test below, we can ignore high bits, but for further optimizations we need to record that the high bits contain garbage. */ partmask = mask; if (!(def->flags & TCG_OPF_64BIT)) { mask |= ~(tcg_target_ulong)0xffffffffu; partmask &= 0xffffffffu; affected &= 0xffffffffu; } if (partmask == 0) { assert(nb_oargs == 1); tcg_opt_gen_movi(s, op, args, args[0], 0); continue; } if (affected == 0) { assert(nb_oargs == 1); tcg_opt_gen_mov(s, op, args, args[0], args[1]); continue; } /* Simplify expression for "op r, a, 0 => movi r, 0" cases */ switch (opc) { CASE_OP_32_64(and): CASE_OP_32_64(mul): CASE_OP_32_64(muluh): CASE_OP_32_64(mulsh): if ((temps[args[2]].state == TCG_TEMP_CONST && temps[args[2]].val == 0)) { tcg_opt_gen_movi(s, op, args, args[0], 0); continue; } break; default: break; } /* Simplify expression for "op r, a, a => mov r, a" cases */ switch (opc) { CASE_OP_32_64(or): CASE_OP_32_64(and): if (temps_are_copies(args[1], args[2])) { tcg_opt_gen_mov(s, op, args, args[0], args[1]); continue; } break; default: break; } /* Simplify expression for "op r, a, a => movi r, 0" cases */ switch (opc) { CASE_OP_32_64(andc): CASE_OP_32_64(sub): CASE_OP_32_64(xor): if (temps_are_copies(args[1], args[2])) { tcg_opt_gen_movi(s, op, args, args[0], 0); continue; } break; default: break; } /* Propagate constants through copy operations and do constant folding. Constants will be substituted to arguments by register allocator where needed and possible. Also detect copies. */ switch (opc) { CASE_OP_32_64(mov): tcg_opt_gen_mov(s, op, args, args[0], args[1]); break; CASE_OP_32_64(movi): tcg_opt_gen_movi(s, op, args, args[0], args[1]); break; CASE_OP_32_64(not): CASE_OP_32_64(neg): CASE_OP_32_64(ext8s): CASE_OP_32_64(ext8u): CASE_OP_32_64(ext16s): CASE_OP_32_64(ext16u): case INDEX_op_ext32s_i64: case INDEX_op_ext32u_i64: if (temps[args[1]].state == TCG_TEMP_CONST) { tmp = do_constant_folding(opc, temps[args[1]].val, 0); tcg_opt_gen_movi(s, op, args, args[0], tmp); break; } goto do_default; case INDEX_op_trunc_shr_i32: if (temps[args[1]].state == TCG_TEMP_CONST) { tmp = do_constant_folding(opc, temps[args[1]].val, args[2]); tcg_opt_gen_movi(s, op, args, args[0], tmp); break; } goto do_default; CASE_OP_32_64(add): CASE_OP_32_64(sub): CASE_OP_32_64(mul): CASE_OP_32_64(or): CASE_OP_32_64(and): CASE_OP_32_64(xor): CASE_OP_32_64(shl): CASE_OP_32_64(shr): CASE_OP_32_64(sar): CASE_OP_32_64(rotl): CASE_OP_32_64(rotr): CASE_OP_32_64(andc): CASE_OP_32_64(orc): CASE_OP_32_64(eqv): CASE_OP_32_64(nand): CASE_OP_32_64(nor): CASE_OP_32_64(muluh): CASE_OP_32_64(mulsh): CASE_OP_32_64(div): CASE_OP_32_64(divu): CASE_OP_32_64(rem): CASE_OP_32_64(remu): if (temps[args[1]].state == TCG_TEMP_CONST && temps[args[2]].state == TCG_TEMP_CONST) { tmp = do_constant_folding(opc, temps[args[1]].val, temps[args[2]].val); tcg_opt_gen_movi(s, op, args, args[0], tmp); break; } goto do_default; CASE_OP_32_64(deposit): if (temps[args[1]].state == TCG_TEMP_CONST && temps[args[2]].state == TCG_TEMP_CONST) { tmp = deposit64(temps[args[1]].val, args[3], args[4], temps[args[2]].val); tcg_opt_gen_movi(s, op, args, args[0], tmp); break; } goto do_default; CASE_OP_32_64(setcond): tmp = do_constant_folding_cond(opc, args[1], args[2], args[3]); if (tmp != 2) { tcg_opt_gen_movi(s, op, args, args[0], tmp); break; } goto do_default; CASE_OP_32_64(brcond): tmp = do_constant_folding_cond(opc, args[0], args[1], args[2]); if (tmp != 2) { if (tmp) { reset_all_temps(nb_temps); op->opc = INDEX_op_br; args[0] = args[3]; } else { tcg_op_remove(s, op); } break; } goto do_default; CASE_OP_32_64(movcond): tmp = do_constant_folding_cond(opc, args[1], args[2], args[5]); if (tmp != 2) { tcg_opt_gen_mov(s, op, args, args[0], args[4-tmp]); break; } goto do_default; case INDEX_op_add2_i32: case INDEX_op_sub2_i32: if (temps[args[2]].state == TCG_TEMP_CONST && temps[args[3]].state == TCG_TEMP_CONST && temps[args[4]].state == TCG_TEMP_CONST && temps[args[5]].state == TCG_TEMP_CONST) { uint32_t al = temps[args[2]].val; uint32_t ah = temps[args[3]].val; uint32_t bl = temps[args[4]].val; uint32_t bh = temps[args[5]].val; uint64_t a = ((uint64_t)ah << 32) | al; uint64_t b = ((uint64_t)bh << 32) | bl; TCGArg rl, rh; TCGOp *op2 = insert_op_before(s, op, INDEX_op_movi_i32, 2); TCGArg *args2 = &s->gen_opparam_buf[op2->args]; if (opc == INDEX_op_add2_i32) { a += b; } else { a -= b; } rl = args[0]; rh = args[1]; tcg_opt_gen_movi(s, op, args, rl, (uint32_t)a); tcg_opt_gen_movi(s, op2, args2, rh, (uint32_t)(a >> 32)); /* We've done all we need to do with the movi. Skip it. */ oi_next = op2->next; break; } goto do_default; case INDEX_op_mulu2_i32: if (temps[args[2]].state == TCG_TEMP_CONST && temps[args[3]].state == TCG_TEMP_CONST) { uint32_t a = temps[args[2]].val; uint32_t b = temps[args[3]].val; uint64_t r = (uint64_t)a * b; TCGArg rl, rh; TCGOp *op2 = insert_op_before(s, op, INDEX_op_movi_i32, 2); TCGArg *args2 = &s->gen_opparam_buf[op2->args]; rl = args[0]; rh = args[1]; tcg_opt_gen_movi(s, op, args, rl, (uint32_t)r); tcg_opt_gen_movi(s, op2, args2, rh, (uint32_t)(r >> 32)); /* We've done all we need to do with the movi. Skip it. */ oi_next = op2->next; break; } goto do_default; case INDEX_op_brcond2_i32: tmp = do_constant_folding_cond2(&args[0], &args[2], args[4]); if (tmp != 2) { if (tmp) { do_brcond_true: reset_all_temps(nb_temps); op->opc = INDEX_op_br; args[0] = args[5]; } else { do_brcond_false: tcg_op_remove(s, op); } } else if ((args[4] == TCG_COND_LT || args[4] == TCG_COND_GE) && temps[args[2]].state == TCG_TEMP_CONST && temps[args[3]].state == TCG_TEMP_CONST && temps[args[2]].val == 0 && temps[args[3]].val == 0) { /* Simplify LT/GE comparisons vs zero to a single compare vs the high word of the input. */ do_brcond_high: reset_all_temps(nb_temps); op->opc = INDEX_op_brcond_i32; args[0] = args[1]; args[1] = args[3]; args[2] = args[4]; args[3] = args[5]; } else if (args[4] == TCG_COND_EQ) { /* Simplify EQ comparisons where one of the pairs can be simplified. */ tmp = do_constant_folding_cond(INDEX_op_brcond_i32, args[0], args[2], TCG_COND_EQ); if (tmp == 0) { goto do_brcond_false; } else if (tmp == 1) { goto do_brcond_high; } tmp = do_constant_folding_cond(INDEX_op_brcond_i32, args[1], args[3], TCG_COND_EQ); if (tmp == 0) { goto do_brcond_false; } else if (tmp != 1) { goto do_default; } do_brcond_low: reset_all_temps(nb_temps); op->opc = INDEX_op_brcond_i32; args[1] = args[2]; args[2] = args[4]; args[3] = args[5]; } else if (args[4] == TCG_COND_NE) { /* Simplify NE comparisons where one of the pairs can be simplified. */ tmp = do_constant_folding_cond(INDEX_op_brcond_i32, args[0], args[2], TCG_COND_NE); if (tmp == 0) { goto do_brcond_high; } else if (tmp == 1) { goto do_brcond_true; } tmp = do_constant_folding_cond(INDEX_op_brcond_i32, args[1], args[3], TCG_COND_NE); if (tmp == 0) { goto do_brcond_low; } else if (tmp == 1) { goto do_brcond_true; } goto do_default; } else { goto do_default; } break; case INDEX_op_setcond2_i32: tmp = do_constant_folding_cond2(&args[1], &args[3], args[5]); if (tmp != 2) { do_setcond_const: tcg_opt_gen_movi(s, op, args, args[0], tmp); } else if ((args[5] == TCG_COND_LT || args[5] == TCG_COND_GE) && temps[args[3]].state == TCG_TEMP_CONST && temps[args[4]].state == TCG_TEMP_CONST && temps[args[3]].val == 0 && temps[args[4]].val == 0) { /* Simplify LT/GE comparisons vs zero to a single compare vs the high word of the input. */ do_setcond_high: reset_temp(args[0]); temps[args[0]].mask = 1; op->opc = INDEX_op_setcond_i32; args[1] = args[2]; args[2] = args[4]; args[3] = args[5]; } else if (args[5] == TCG_COND_EQ) { /* Simplify EQ comparisons where one of the pairs can be simplified. */ tmp = do_constant_folding_cond(INDEX_op_setcond_i32, args[1], args[3], TCG_COND_EQ); if (tmp == 0) { goto do_setcond_const; } else if (tmp == 1) { goto do_setcond_high; } tmp = do_constant_folding_cond(INDEX_op_setcond_i32, args[2], args[4], TCG_COND_EQ); if (tmp == 0) { goto do_setcond_high; } else if (tmp != 1) { goto do_default; } do_setcond_low: reset_temp(args[0]); temps[args[0]].mask = 1; op->opc = INDEX_op_setcond_i32; args[2] = args[3]; args[3] = args[5]; } else if (args[5] == TCG_COND_NE) { /* Simplify NE comparisons where one of the pairs can be simplified. */ tmp = do_constant_folding_cond(INDEX_op_setcond_i32, args[1], args[3], TCG_COND_NE); if (tmp == 0) { goto do_setcond_high; } else if (tmp == 1) { goto do_setcond_const; } tmp = do_constant_folding_cond(INDEX_op_setcond_i32, args[2], args[4], TCG_COND_NE); if (tmp == 0) { goto do_setcond_low; } else if (tmp == 1) { goto do_setcond_const; } goto do_default; } else { goto do_default; } break; case INDEX_op_call: if (!(args[nb_oargs + nb_iargs + 1] & (TCG_CALL_NO_READ_GLOBALS | TCG_CALL_NO_WRITE_GLOBALS))) { for (i = 0; i < nb_globals; i++) { reset_temp(i); } } goto do_reset_output; default: do_default: /* Default case: we know nothing about operation (or were unable to compute the operation result) so no propagation is done. We trash everything if the operation is the end of a basic block, otherwise we only trash the output args. "mask" is the non-zero bits mask for the first output arg. */ if (def->flags & TCG_OPF_BB_END) { reset_all_temps(nb_temps); } else { do_reset_output: for (i = 0; i < nb_oargs; i++) { reset_temp(args[i]); /* Save the corresponding known-zero bits mask for the first output argument (only one supported so far). */ if (i == 0) { temps[args[i]].mask = mask; } } } break; } } }
3,439
FFmpeg
0242351390643d176b10600c2eb854414f9559e6
0
static inline void qpel_motion(MpegEncContext *s, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, int field_based, int bottom_field, int field_select, uint8_t **ref_picture, op_pixels_func (*pix_op)[4], qpel_mc_func (*qpix_op)[16], int motion_x, int motion_y, int h) { uint8_t *ptr_y, *ptr_cb, *ptr_cr; int dxy, uvdxy, mx, my, src_x, src_y, uvsrc_x, uvsrc_y, v_edge_pos; ptrdiff_t linesize, uvlinesize; dxy = ((motion_y & 3) << 2) | (motion_x & 3); src_x = s->mb_x * 16 + (motion_x >> 2); src_y = s->mb_y * (16 >> field_based) + (motion_y >> 2); v_edge_pos = s->v_edge_pos >> field_based; linesize = s->linesize << field_based; uvlinesize = s->uvlinesize << field_based; if (field_based) { mx = motion_x / 2; my = motion_y >> 1; } else if (s->workaround_bugs & FF_BUG_QPEL_CHROMA2) { static const int rtab[8] = { 0, 0, 1, 1, 0, 0, 0, 1 }; mx = (motion_x >> 1) + rtab[motion_x & 7]; my = (motion_y >> 1) + rtab[motion_y & 7]; } else if (s->workaround_bugs & FF_BUG_QPEL_CHROMA) { mx = (motion_x >> 1) | (motion_x & 1); my = (motion_y >> 1) | (motion_y & 1); } else { mx = motion_x / 2; my = motion_y / 2; } mx = (mx >> 1) | (mx & 1); my = (my >> 1) | (my & 1); uvdxy = (mx & 1) | ((my & 1) << 1); mx >>= 1; my >>= 1; uvsrc_x = s->mb_x * 8 + mx; uvsrc_y = s->mb_y * (8 >> field_based) + my; ptr_y = ref_picture[0] + src_y * linesize + src_x; ptr_cb = ref_picture[1] + uvsrc_y * uvlinesize + uvsrc_x; ptr_cr = ref_picture[2] + uvsrc_y * uvlinesize + uvsrc_x; if ((unsigned)src_x > FFMAX(s->h_edge_pos - (motion_x & 3) - 16, 0) || (unsigned)src_y > FFMAX(v_edge_pos - (motion_y & 3) - h, 0)) { s->vdsp.emulated_edge_mc(s->sc.edge_emu_buffer, ptr_y, s->linesize, s->linesize, 17, 17 + field_based, src_x, src_y << field_based, s->h_edge_pos, s->v_edge_pos); ptr_y = s->sc.edge_emu_buffer; if (!CONFIG_GRAY || !(s->avctx->flags & AV_CODEC_FLAG_GRAY)) { uint8_t *uvbuf = s->sc.edge_emu_buffer + 18 * s->linesize; s->vdsp.emulated_edge_mc(uvbuf, ptr_cb, s->uvlinesize, s->uvlinesize, 9, 9 + field_based, uvsrc_x, uvsrc_y << field_based, s->h_edge_pos >> 1, s->v_edge_pos >> 1); s->vdsp.emulated_edge_mc(uvbuf + 16, ptr_cr, s->uvlinesize, s->uvlinesize, 9, 9 + field_based, uvsrc_x, uvsrc_y << field_based, s->h_edge_pos >> 1, s->v_edge_pos >> 1); ptr_cb = uvbuf; ptr_cr = uvbuf + 16; } } if (!field_based) qpix_op[0][dxy](dest_y, ptr_y, linesize); else { if (bottom_field) { dest_y += s->linesize; dest_cb += s->uvlinesize; dest_cr += s->uvlinesize; } if (field_select) { ptr_y += s->linesize; ptr_cb += s->uvlinesize; ptr_cr += s->uvlinesize; } // damn interlaced mode // FIXME boundary mirroring is not exactly correct here qpix_op[1][dxy](dest_y, ptr_y, linesize); qpix_op[1][dxy](dest_y + 8, ptr_y + 8, linesize); } if (!CONFIG_GRAY || !(s->avctx->flags & AV_CODEC_FLAG_GRAY)) { pix_op[1][uvdxy](dest_cr, ptr_cr, uvlinesize, h >> 1); pix_op[1][uvdxy](dest_cb, ptr_cb, uvlinesize, h >> 1); } }
3,441
qemu
ac2567b59d9e4afbcc31c71840d7fe8ef4eee857
0
void do_m68k_simcall(CPUM68KState *env, int nr) { uint32_t *args; args = (uint32_t *)(env->aregs[7] + 4); switch (nr) { case SYS_EXIT: exit(ARG(0)); case SYS_READ: check_err(env, read(ARG(0), (void *)ARG(1), ARG(2))); break; case SYS_WRITE: check_err(env, write(ARG(0), (void *)ARG(1), ARG(2))); break; case SYS_OPEN: check_err(env, open((char *)ARG(0), translate_openflags(ARG(1)), ARG(2))); break; case SYS_CLOSE: { /* Ignore attempts to close stdin/out/err. */ int fd = ARG(0); if (fd > 2) check_err(env, close(fd)); else check_err(env, 0); break; } case SYS_BRK: { int32_t ret; ret = do_brk((void *)ARG(0)); if (ret == -ENOMEM) ret = -1; check_err(env, ret); } break; case SYS_FSTAT: { struct stat s; int rc; struct m86k_sim_stat *p; rc = check_err(env, fstat(ARG(0), &s)); if (rc == 0) { p = (struct m86k_sim_stat *)ARG(1); p->sim_st_dev = tswap16(s.st_dev); p->sim_st_ino = tswap16(s.st_ino); p->sim_st_mode = tswap32(s.st_mode); p->sim_st_nlink = tswap16(s.st_nlink); p->sim_st_uid = tswap16(s.st_uid); p->sim_st_gid = tswap16(s.st_gid); p->sim_st_rdev = tswap16(s.st_rdev); p->sim_st_size = tswap32(s.st_size); p->sim_st_atime = tswap32(s.st_atime); p->sim_st_mtime = tswap32(s.st_mtime); p->sim_st_ctime = tswap32(s.st_ctime); p->sim_st_blksize = tswap32(s.st_blksize); p->sim_st_blocks = tswap32(s.st_blocks); } } break; case SYS_ISATTY: check_err(env, isatty(ARG(0))); break; case SYS_LSEEK: check_err(env, lseek(ARG(0), (int32_t)ARG(1), ARG(2))); break; default: cpu_abort(env, "Unsupported m68k sim syscall %d\n", nr); } }
3,442
qemu
2569da0cb64506ea05323544c26f3aaffbf3f9fe
0
static void do_change(const char *device, const char *target, const char *fmt) { if (strcmp(device, "vnc") == 0) { do_change_vnc(target); } else { do_change_block(device, target, fmt); } }
3,443
qemu
c2b38b277a7882a592f4f2ec955084b2b756daaa
0
aio_ctx_dispatch(GSource *source, GSourceFunc callback, gpointer user_data) { AioContext *ctx = (AioContext *) source; assert(callback == NULL); aio_dispatch(ctx, true); return true; }
3,444
qemu
e70377dfa4bbc2e101066ca35675bed4129c5a8c
0
S390PCIBusDevice *s390_pci_find_dev_by_fid(uint32_t fid) { S390PCIBusDevice *pbdev; int i; S390pciState *s = s390_get_phb(); for (i = 0; i < PCI_SLOT_MAX; i++) { pbdev = s->pbdev[i]; if (pbdev && pbdev->fid == fid) { return pbdev; } } return NULL; }
3,445
qemu
59b060be184aff59cfa101c937c8139e66f452f2
0
int qcrypto_pbkdf2_count_iters(QCryptoHashAlgorithm hash, const uint8_t *key, size_t nkey, const uint8_t *salt, size_t nsalt, Error **errp) { uint8_t out[32]; long long int iterations = (1 << 15); unsigned long long delta_ms, start_ms, end_ms; while (1) { if (qcrypto_pbkdf2_get_thread_cpu(&start_ms, errp) < 0) { return -1; } if (qcrypto_pbkdf2(hash, key, nkey, salt, nsalt, iterations, out, sizeof(out), errp) < 0) { return -1; } if (qcrypto_pbkdf2_get_thread_cpu(&end_ms, errp) < 0) { return -1; } delta_ms = end_ms - start_ms; if (delta_ms > 500) { break; } else if (delta_ms < 100) { iterations = iterations * 10; } else { iterations = (iterations * 1000 / delta_ms); } } iterations = iterations * 1000 / delta_ms; if (iterations > INT32_MAX) { error_setg(errp, "Iterations %lld too large for a 32-bit int", iterations); return -1; } return iterations; }
3,446
qemu
7a0e58fa648736a75f2a6943afd2ab08ea15b8e0
0
bool write_cpustate_to_list(ARMCPU *cpu) { /* Write the coprocessor state from cpu->env to the (index,value) list. */ int i; bool ok = true; for (i = 0; i < cpu->cpreg_array_len; i++) { uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); const ARMCPRegInfo *ri; ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); if (!ri) { ok = false; continue; } if (ri->type & ARM_CP_NO_MIGRATE) { continue; } cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri); } return ok; }
3,447
qemu
17e2377abf16c3951d7d34521ceade4d7dc31d01
0
void *qemu_malloc(size_t size) { return malloc(size); }
3,448
FFmpeg
d6737539e77e78fca9a04914d51996cfd1ccc55c
0
static void intra_predict_plane_16x16_msa(uint8_t *src, int32_t stride) { uint8_t lpcnt; int32_t res0, res1, res2, res3; uint64_t load0, load1; v16i8 shf_mask = { 7, 8, 6, 9, 5, 10, 4, 11, 3, 12, 2, 13, 1, 14, 0, 15 }; v8i16 short_multiplier = { 1, 2, 3, 4, 5, 6, 7, 8 }; v4i32 int_multiplier = { 0, 1, 2, 3 }; v16u8 src_top = { 0 }; v8i16 vec9, vec10; v4i32 vec0, vec1, vec2, vec3, vec4, vec5, vec6, vec7, vec8, res_add; load0 = LD(src - (stride + 1)); load1 = LD(src - (stride + 1) + 9); INSERT_D2_UB(load0, load1, src_top); src_top = (v16u8) __msa_vshf_b(shf_mask, (v16i8) src_top, (v16i8) src_top); vec9 = __msa_hsub_u_h(src_top, src_top); vec9 *= short_multiplier; vec8 = __msa_hadd_s_w(vec9, vec9); res_add = (v4i32) __msa_hadd_s_d(vec8, vec8); res0 = __msa_copy_s_w(res_add, 0) + __msa_copy_s_w(res_add, 2); res1 = (src[8 * stride - 1] - src[6 * stride - 1]) + 2 * (src[9 * stride - 1] - src[5 * stride - 1]) + 3 * (src[10 * stride - 1] - src[4 * stride - 1]) + 4 * (src[11 * stride - 1] - src[3 * stride - 1]) + 5 * (src[12 * stride - 1] - src[2 * stride - 1]) + 6 * (src[13 * stride - 1] - src[stride - 1]) + 7 * (src[14 * stride - 1] - src[-1]) + 8 * (src[15 * stride - 1] - src[-1 * stride - 1]); res0 *= 5; res1 *= 5; res0 = (res0 + 32) >> 6; res1 = (res1 + 32) >> 6; res3 = 7 * (res0 + res1); res2 = 16 * (src[15 * stride - 1] + src[-stride + 15] + 1); res2 -= res3; vec8 = __msa_fill_w(res0); vec4 = __msa_fill_w(res2); vec5 = __msa_fill_w(res1); vec6 = vec8 * 4; vec7 = vec8 * int_multiplier; for (lpcnt = 16; lpcnt--;) { vec0 = vec7; vec0 += vec4; vec1 = vec0 + vec6; vec2 = vec1 + vec6; vec3 = vec2 + vec6; SRA_4V(vec0, vec1, vec2, vec3, 5); PCKEV_H2_SH(vec1, vec0, vec3, vec2, vec9, vec10); CLIP_SH2_0_255(vec9, vec10); PCKEV_ST_SB(vec9, vec10, src); src += stride; vec4 += vec5; } }
3,450
FFmpeg
2a351f6c5521c199b4285e4e42f2321e312170bd
0
static int ff_filter_frame_framed(AVFilterLink *link, AVFrame *frame) { int (*filter_frame)(AVFilterLink *, AVFrame *); AVFilterContext *dstctx = link->dst; AVFilterPad *dst = link->dstpad; AVFrame *out = NULL; int ret; AVFilterCommand *cmd= link->dst->command_queue; int64_t pts; if (link->closed) { av_frame_free(&frame); return AVERROR_EOF; } if (!(filter_frame = dst->filter_frame)) filter_frame = default_filter_frame; /* copy the frame if needed */ if (dst->needs_writable && !av_frame_is_writable(frame)) { av_log(link->dst, AV_LOG_DEBUG, "Copying data in avfilter.\n"); switch (link->type) { case AVMEDIA_TYPE_VIDEO: out = ff_get_video_buffer(link, link->w, link->h); break; case AVMEDIA_TYPE_AUDIO: out = ff_get_audio_buffer(link, frame->nb_samples); break; default: ret = AVERROR(EINVAL); goto fail; } if (!out) { ret = AVERROR(ENOMEM); goto fail; } ret = av_frame_copy_props(out, frame); if (ret < 0) goto fail; switch (link->type) { case AVMEDIA_TYPE_VIDEO: av_image_copy(out->data, out->linesize, (const uint8_t **)frame->data, frame->linesize, frame->format, frame->width, frame->height); break; case AVMEDIA_TYPE_AUDIO: av_samples_copy(out->extended_data, frame->extended_data, 0, 0, frame->nb_samples, av_get_channel_layout_nb_channels(frame->channel_layout), frame->format); break; default: ret = AVERROR(EINVAL); goto fail; } av_frame_free(&frame); } else out = frame; while(cmd && cmd->time <= out->pts * av_q2d(link->time_base)){ av_log(link->dst, AV_LOG_DEBUG, "Processing command time:%f command:%s arg:%s\n", cmd->time, cmd->command, cmd->arg); avfilter_process_command(link->dst, cmd->command, cmd->arg, 0, 0, cmd->flags); ff_command_queue_pop(link->dst); cmd= link->dst->command_queue; } pts = out->pts; if (dstctx->enable_str) { int64_t pos = av_frame_get_pkt_pos(out); dstctx->var_values[VAR_N] = link->frame_count; dstctx->var_values[VAR_T] = pts == AV_NOPTS_VALUE ? NAN : pts * av_q2d(link->time_base); dstctx->var_values[VAR_W] = link->w; dstctx->var_values[VAR_H] = link->h; dstctx->var_values[VAR_POS] = pos == -1 ? NAN : pos; dstctx->is_disabled = fabs(av_expr_eval(dstctx->enable, dstctx->var_values, NULL)) < 0.5; if (dstctx->is_disabled && (dstctx->filter->flags & AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC)) filter_frame = default_filter_frame; } ret = filter_frame(link, out); link->frame_count++; link->frame_requested = 0; ff_update_link_current_pts(link, pts); return ret; fail: av_frame_free(&out); av_frame_free(&frame); return ret; }
3,451
FFmpeg
155ec6edf82692bcf3a5f87d2bc697404f4e5aaf
0
static void predict_plane(SnowContext *s, DWTELEM *buf, int plane_index, int add){ Plane *p= &s->plane[plane_index]; const int mb_w= s->mb_band.width; const int mb_h= s->mb_band.height; const int mb_stride= s->mb_band.stride; int x, y, mb_x, mb_y; int scale = plane_index ? s->mv_scale : 2*s->mv_scale; int block_w = plane_index ? 8 : 16; uint8_t *obmc = plane_index ? obmc16 : obmc32; int obmc_stride= plane_index ? 16 : 32; int ref_stride= s->last_picture.linesize[plane_index]; uint8_t *ref = s->last_picture.data[plane_index]; int w= p->width; int h= p->height; if(s->avctx->debug&512){ for(y=0; y<h; y++){ for(x=0; x<w; x++){ if(add) buf[x + y*w]+= 128*256; else buf[x + y*w]-= 128*256; } } return; } for(mb_y=-1; mb_y<=mb_h; mb_y++){ for(mb_x=-1; mb_x<=mb_w; mb_x++){ int index= clip(mb_x, 0, mb_w-1) + clip(mb_y, 0, mb_h-1)*mb_stride; add_xblock(buf, ref, obmc, block_w*mb_x - block_w/2, block_w*mb_y - block_w/2, 2*block_w, 2*block_w, s->mv_band[0].buf[index]*scale, s->mv_band[1].buf[index]*scale, w, h, w, ref_stride, obmc_stride, s->mb_band.buf[index], add); } } }
3,453
qemu
107e4b352cc309f9bd7588ef1a44549200620078
1
static void rocker_test_dma_ctrl(Rocker *r, uint32_t val) { PCIDevice *dev = PCI_DEVICE(r); char *buf; int i; buf = g_malloc(r->test_dma_size); if (!buf) { DPRINTF("test dma buffer alloc failed"); return; } switch (val) { case ROCKER_TEST_DMA_CTRL_CLEAR: memset(buf, 0, r->test_dma_size); break; case ROCKER_TEST_DMA_CTRL_FILL: memset(buf, 0x96, r->test_dma_size); break; case ROCKER_TEST_DMA_CTRL_INVERT: pci_dma_read(dev, r->test_dma_addr, buf, r->test_dma_size); for (i = 0; i < r->test_dma_size; i++) { buf[i] = ~buf[i]; } break; default: DPRINTF("not test dma control val=0x%08x\n", val); goto err_out; } pci_dma_write(dev, r->test_dma_addr, buf, r->test_dma_size); rocker_msix_irq(r, ROCKER_MSIX_VEC_TEST); err_out: g_free(buf); }
3,454
qemu
2d896b454a0e19ec4c1ddbb0e0b65b7e54fcedf3
1
xilinx_pcie_init(MemoryRegion *sys_mem, uint32_t bus_nr, hwaddr cfg_base, uint64_t cfg_size, hwaddr mmio_base, uint64_t mmio_size, qemu_irq irq, bool link_up) { DeviceState *dev; MemoryRegion *cfg, *mmio; dev = qdev_create(NULL, TYPE_XILINX_PCIE_HOST); qdev_prop_set_uint32(dev, "bus_nr", bus_nr); qdev_prop_set_uint64(dev, "cfg_base", cfg_base); qdev_prop_set_uint64(dev, "cfg_size", cfg_size); qdev_prop_set_uint64(dev, "mmio_base", mmio_base); qdev_prop_set_uint64(dev, "mmio_size", mmio_size); qdev_prop_set_bit(dev, "link_up", link_up); qdev_init_nofail(dev); cfg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); memory_region_add_subregion_overlap(sys_mem, cfg_base, cfg, 0); mmio = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); memory_region_add_subregion_overlap(sys_mem, 0, mmio, 0); qdev_connect_gpio_out_named(dev, "interrupt_out", 0, irq); return XILINX_PCIE_HOST(dev); }
3,455
qemu
f5f601afcec6c1081128fe5a0f831788ca9f56ed
1
long do_sigreturn(CPUMIPSState *regs) { struct sigframe *frame; abi_ulong frame_addr; sigset_t blocked; target_sigset_t target_set; int i; #if defined(DEBUG_SIGNAL) fprintf(stderr, "do_sigreturn\n"); #endif frame_addr = regs->active_tc.gpr[29]; if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) goto badframe; for(i = 0; i < TARGET_NSIG_WORDS; i++) { if(__get_user(target_set.sig[i], &frame->sf_mask.sig[i])) goto badframe; } target_to_host_sigset_internal(&blocked, &target_set); do_sigprocmask(SIG_SETMASK, &blocked, NULL); restore_sigcontext(regs, &frame->sf_sc); #if 0 /* * Don't let your children do this ... */ __asm__ __volatile__( "move\t$29, %0\n\t" "j\tsyscall_exit" :/* no outputs */ :"r" (&regs)); /* Unreached */ #endif regs->active_tc.PC = regs->CP0_EPC; mips_set_hflags_isa_mode_from_pc(regs); /* I am not sure this is right, but it seems to work * maybe a problem with nested signals ? */ regs->CP0_EPC = 0; return -TARGET_QEMU_ESIGRETURN; badframe: force_sig(TARGET_SIGSEGV/*, current*/); return 0; }
3,457
qemu
ac58fe7b2c67a9be142beacd4c6ee51f3264d90f
1
static void pmac_dma_read(BlockBackend *blk, int64_t offset, unsigned int bytes, void (*cb)(void *opaque, int ret), void *opaque) { DBDMA_io *io = opaque; MACIOIDEState *m = io->opaque; IDEState *s = idebus_active_if(&m->bus); dma_addr_t dma_addr, dma_len; void *mem; int64_t sector_num; int nsector; uint64_t align = BDRV_SECTOR_SIZE; size_t head_bytes, tail_bytes; qemu_iovec_destroy(&io->iov); qemu_iovec_init(&io->iov, io->len / MACIO_PAGE_SIZE + 1); sector_num = (offset >> 9); nsector = (io->len >> 9); MACIO_DPRINTF("--- DMA read transfer (0x%" HWADDR_PRIx ",0x%x): " "sector_num: %" PRId64 ", nsector: %d\n", io->addr, io->len, sector_num, nsector); dma_addr = io->addr; dma_len = io->len; mem = dma_memory_map(&address_space_memory, dma_addr, &dma_len, DMA_DIRECTION_FROM_DEVICE); if (offset & (align - 1)) { head_bytes = offset & (align - 1); MACIO_DPRINTF("--- DMA unaligned head: sector %" PRId64 ", " "discarding %zu bytes\n", sector_num, head_bytes); qemu_iovec_add(&io->iov, &io->remainder, head_bytes); bytes += offset & (align - 1); offset = offset & ~(align - 1); } qemu_iovec_add(&io->iov, mem, io->len); if ((offset + bytes) & (align - 1)) { tail_bytes = (offset + bytes) & (align - 1); MACIO_DPRINTF("--- DMA unaligned tail: sector %" PRId64 ", " "discarding bytes %zu\n", sector_num, tail_bytes); qemu_iovec_add(&io->iov, &io->remainder, align - tail_bytes); bytes = ROUND_UP(bytes, align); } s->io_buffer_size -= io->len; s->io_buffer_index += io->len; io->len = 0; MACIO_DPRINTF("--- Block read transfer - sector_num: %" PRIx64 " " "nsector: %x\n", (offset >> 9), (bytes >> 9)); m->aiocb = blk_aio_readv(blk, (offset >> 9), &io->iov, (bytes >> 9), cb, io); }
3,458
FFmpeg
fdc94db37e89165964fdf34f1cd7632e44108bd0
1
static void sbr_qmf_analysis(AVFixedDSPContext *dsp, FFTContext *mdct, #else static void sbr_qmf_analysis(AVFloatDSPContext *dsp, FFTContext *mdct, #endif /* USE_FIXED */ SBRDSPContext *sbrdsp, const INTFLOAT *in, INTFLOAT *x, INTFLOAT z[320], INTFLOAT W[2][32][32][2], int buf_idx) { int i; int j; memcpy(x , x+1024, (320-32)*sizeof(x[0])); memcpy(x+288, in, 1024*sizeof(x[0])); for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames // are not supported dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320); sbrdsp->sum64x5(z); sbrdsp->qmf_pre_shuffle(z); mdct->imdct_half(mdct, z, z+64); sbrdsp->qmf_post_shuffle(W[buf_idx][i], z); x += 32;
3,459
qemu
aa48dd9319dcee78ec17f4d516fb7bfc62b1a4d2
1
static CPUArchState *find_cpu(uint32_t thread_id) { CPUState *cpu; cpu = qemu_get_cpu(thread_id); if (cpu == NULL) { return NULL; } return cpu->env_ptr; }
3,462
FFmpeg
7cbb32e461cdbe8b745d560c1700c711ba5933cc
1
static void find_block_motion(DeshakeContext *deshake, uint8_t *src1, uint8_t *src2, int cx, int cy, int stride, MotionVector *mv) { int x, y; int diff; int smallest = INT_MAX; int tmp, tmp2; #define CMP(i, j) deshake->c.sad[0](deshake, src1 + cy * stride + cx, \ src2 + (j) * stride + (i), stride, \ deshake->blocksize) if (deshake->search == EXHAUSTIVE) { // Compare every possible position - this is sloooow! for (y = -deshake->ry; y <= deshake->ry; y++) { for (x = -deshake->rx; x <= deshake->rx; x++) { diff = CMP(cx - x, cy - y); if (diff < smallest) { smallest = diff; mv->x = x; mv->y = y; } } } } else if (deshake->search == SMART_EXHAUSTIVE) { // Compare every other possible position and find the best match for (y = -deshake->ry + 1; y < deshake->ry - 2; y += 2) { for (x = -deshake->rx + 1; x < deshake->rx - 2; x += 2) { diff = CMP(cx - x, cy - y); if (diff < smallest) { smallest = diff; mv->x = x; mv->y = y; } } } // Hone in on the specific best match around the match we found above tmp = mv->x; tmp2 = mv->y; for (y = tmp2 - 1; y <= tmp2 + 1; y++) { for (x = tmp - 1; x <= tmp + 1; x++) { if (x == tmp && y == tmp2) continue; diff = CMP(cx - x, cy - y); if (diff < smallest) { smallest = diff; mv->x = x; mv->y = y; } } } } if (smallest > 512) { mv->x = -1; mv->y = -1; } emms_c(); //av_log(NULL, AV_LOG_ERROR, "%d\n", smallest); //av_log(NULL, AV_LOG_ERROR, "Final: (%d, %d) = %d x %d\n", cx, cy, mv->x, mv->y); }
3,463
qemu
50ab0e0908d592b8bda56c2d7495e1190d734b0b
1
static void replication_close(BlockDriverState *bs) { BDRVReplicationState *s = bs->opaque; if (s->replication_state == BLOCK_REPLICATION_RUNNING) { replication_stop(s->rs, false, NULL); if (s->mode == REPLICATION_MODE_SECONDARY) { g_free(s->top_id); replication_remove(s->rs);
3,465
qemu
36ad0e948e15d8d86c8dec1c17a8588d87b0107d
1
static int kvm_irqchip_create(KVMState *s) { QemuOptsList *list = qemu_find_opts("machine"); int ret; if (QTAILQ_EMPTY(&list->head) || !qemu_opt_get_bool(QTAILQ_FIRST(&list->head), "kernel_irqchip", true) || !kvm_check_extension(s, KVM_CAP_IRQCHIP)) { return 0; } ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); if (ret < 0) { fprintf(stderr, "Create kernel irqchip failed\n"); return ret; } kvm_kernel_irqchip = true; /* If we have an in-kernel IRQ chip then we must have asynchronous * interrupt delivery (though the reverse is not necessarily true) */ kvm_async_interrupts_allowed = true; kvm_halt_in_kernel_allowed = true; kvm_init_irq_routing(s); return 0; }
3,466
qemu
b4ba67d9a702507793c2724e56f98e9b0f7be02b
1
uint32_t qpci_io_readl(QPCIDevice *dev, void *data) { uintptr_t addr = (uintptr_t)data; if (addr < QPCI_PIO_LIMIT) { return dev->bus->pio_readl(dev->bus, addr); } else { uint32_t val; dev->bus->memread(dev->bus, addr, &val, sizeof(val)); return le32_to_cpu(val); } }
3,467
qemu
2222e0a633070f7f3eafcc9d0e95e7f1a4e6fe36
1
static void hid_keyboard_process_keycode(HIDState *hs) { uint8_t hid_code, index, key; int i, keycode, slot; if (hs->n == 0) { return; slot = hs->head & QUEUE_MASK; QUEUE_INCR(hs->head); hs->n--; keycode = hs->kbd.keycodes[slot]; key = keycode & 0x7f; index = key | ((hs->kbd.modifiers & (1 << 8)) >> 1); hid_code = hid_usage_keys[index]; hs->kbd.modifiers &= ~(1 << 8); switch (hid_code) { case 0x00: return; case 0xe0: assert(key == 0x1d); if (hs->kbd.modifiers & (1 << 9)) { /* The hid_codes for the 0xe1/0x1d scancode sequence are 0xe9/0xe0. * Here we're processing the second hid_code. By dropping bit 9 * and setting bit 8, the scancode after 0x1d will access the * second half of the table. */ hs->kbd.modifiers ^= (1 << 8) | (1 << 9); return; /* fall through to process Ctrl_L */ case 0xe1 ... 0xe7: /* Ctrl_L/Ctrl_R, Shift_L/Shift_R, Alt_L/Alt_R, Win_L/Win_R. * Handle releases here, or fall through to process presses. */ if (keycode & (1 << 7)) { hs->kbd.modifiers &= ~(1 << (hid_code & 0x0f)); return; /* fall through */ case 0xe8 ... 0xe9: /* USB modifiers are just 1 byte long. Bits 8 and 9 of * hs->kbd.modifiers implement a state machine that detects the * 0xe0 and 0xe1/0x1d sequences. These bits do not follow the * usual rules where bit 7 marks released keys; they are cleared * elsewhere in the function as the state machine dictates. */ hs->kbd.modifiers |= 1 << (hid_code & 0x0f); return; case 0xea ... 0xef: abort(); default: break; if (keycode & (1 << 7)) { for (i = hs->kbd.keys - 1; i >= 0; i--) { if (hs->kbd.key[i] == hid_code) { hs->kbd.key[i] = hs->kbd.key[-- hs->kbd.keys]; hs->kbd.key[hs->kbd.keys] = 0x00; break; if (i < 0) { return; } else { for (i = hs->kbd.keys - 1; i >= 0; i--) { if (hs->kbd.key[i] == hid_code) { break; if (i < 0) { if (hs->kbd.keys < sizeof(hs->kbd.key)) { hs->kbd.key[hs->kbd.keys++] = hid_code; } else { return;
3,468
FFmpeg
4c7b023d56e09a78a587d036db1b64bf7c493b3d
0
static int nvdec_vc1_start_frame(AVCodecContext *avctx, const uint8_t *buffer, uint32_t size) { VC1Context *v = avctx->priv_data; MpegEncContext *s = &v->s; NVDECContext *ctx = avctx->internal->hwaccel_priv_data; CUVIDPICPARAMS *pp = &ctx->pic_params; FrameDecodeData *fdd; NVDECFrame *cf; AVFrame *cur_frame = s->current_picture.f; int ret; ret = ff_nvdec_start_frame(avctx, cur_frame); if (ret < 0) return ret; fdd = (FrameDecodeData*)cur_frame->private_ref->data; cf = (NVDECFrame*)fdd->hwaccel_priv; *pp = (CUVIDPICPARAMS) { .PicWidthInMbs = (cur_frame->width + 15) / 16, .FrameHeightInMbs = (cur_frame->height + 15) / 16, .CurrPicIdx = cf->idx, .field_pic_flag = v->field_mode, .bottom_field_flag = v->cur_field_type, .second_field = v->second_field, .intra_pic_flag = s->pict_type == AV_PICTURE_TYPE_I || s->pict_type == AV_PICTURE_TYPE_BI, .ref_pic_flag = s->pict_type == AV_PICTURE_TYPE_I || s->pict_type == AV_PICTURE_TYPE_P, .CodecSpecific.vc1 = { .ForwardRefIdx = get_ref_idx(s->last_picture.f), .BackwardRefIdx = get_ref_idx(s->next_picture.f), .FrameWidth = cur_frame->width, .FrameHeight = cur_frame->height, .intra_pic_flag = s->pict_type == AV_PICTURE_TYPE_I || s->pict_type == AV_PICTURE_TYPE_BI, .ref_pic_flag = s->pict_type == AV_PICTURE_TYPE_I || s->pict_type == AV_PICTURE_TYPE_P, .progressive_fcm = v->fcm == 0, .profile = v->profile, .postprocflag = v->postprocflag, .pulldown = v->broadcast, .interlace = v->interlace, .tfcntrflag = v->tfcntrflag, .finterpflag = v->finterpflag, .psf = v->psf, .multires = v->multires, .syncmarker = v->resync_marker, .rangered = v->rangered, .maxbframes = s->max_b_frames, .panscan_flag = v->panscanflag, .refdist_flag = v->refdist_flag, .extended_mv = v->extended_mv, .dquant = v->dquant, .vstransform = v->vstransform, .loopfilter = v->s.loop_filter, .fastuvmc = v->fastuvmc, .overlap = v->overlap, .quantizer = v->quantizer_mode, .extended_dmv = v->extended_dmv, .range_mapy_flag = v->range_mapy_flag, .range_mapy = v->range_mapy, .range_mapuv_flag = v->range_mapuv_flag, .range_mapuv = v->range_mapuv, .rangeredfrm = v->rangeredfrm, } }; return 0; }
3,469
FFmpeg
b12d21733975f9001eecb480fc28e5e4473b1327
0
static int frame_thread_init(AVCodecContext *avctx) { int thread_count = avctx->thread_count; AVCodec *codec = avctx->codec; AVCodecContext *src = avctx; FrameThreadContext *fctx; int i, err = 0; if (!thread_count) { int nb_cpus = get_logical_cpus(avctx); // use number of cores + 1 as thread count if there is motre than one if (nb_cpus > 1) thread_count = avctx->thread_count = nb_cpus + 1; } if (thread_count <= 1) { avctx->active_thread_type = 0; return 0; } avctx->thread_opaque = fctx = av_mallocz(sizeof(FrameThreadContext)); fctx->threads = av_mallocz(sizeof(PerThreadContext) * thread_count); pthread_mutex_init(&fctx->buffer_mutex, NULL); fctx->delaying = 1; for (i = 0; i < thread_count; i++) { AVCodecContext *copy = av_malloc(sizeof(AVCodecContext)); PerThreadContext *p = &fctx->threads[i]; pthread_mutex_init(&p->mutex, NULL); pthread_mutex_init(&p->progress_mutex, NULL); pthread_cond_init(&p->input_cond, NULL); pthread_cond_init(&p->progress_cond, NULL); pthread_cond_init(&p->output_cond, NULL); p->parent = fctx; p->avctx = copy; if (!copy) { err = AVERROR(ENOMEM); goto error; } *copy = *src; copy->thread_opaque = p; copy->pkt = &p->avpkt; if (!i) { src = copy; if (codec->init) err = codec->init(copy); update_context_from_thread(avctx, copy, 1); } else { copy->priv_data = av_malloc(codec->priv_data_size); if (!copy->priv_data) { err = AVERROR(ENOMEM); goto error; } memcpy(copy->priv_data, src->priv_data, codec->priv_data_size); copy->internal = av_malloc(sizeof(AVCodecInternal)); if (!copy->internal) { err = AVERROR(ENOMEM); goto error; } *(copy->internal) = *(src->internal); copy->internal->is_copy = 1; if (codec->init_thread_copy) err = codec->init_thread_copy(copy); } if (err) goto error; if (!pthread_create(&p->thread, NULL, frame_worker_thread, p)) p->thread_init = 1; } return 0; error: frame_thread_free(avctx, i+1); return err; }
3,470
qemu
c5a49c63fa26e8825ad101dfe86339ae4c216539
1
static inline void gen_ins(DisasContext *s, TCGMemOp ot) { if (s->base.tb->cflags & CF_USE_ICOUNT) { gen_io_start(); } gen_string_movl_A0_EDI(s); /* Note: we must do this dummy write first to be restartable in case of page fault. */ tcg_gen_movi_tl(cpu_T0, 0); gen_op_st_v(s, ot, cpu_T0, cpu_A0); tcg_gen_trunc_tl_i32(cpu_tmp2_i32, cpu_regs[R_EDX]); tcg_gen_andi_i32(cpu_tmp2_i32, cpu_tmp2_i32, 0xffff); gen_helper_in_func(ot, cpu_T0, cpu_tmp2_i32); gen_op_st_v(s, ot, cpu_T0, cpu_A0); gen_op_movl_T0_Dshift(ot); gen_op_add_reg_T0(s->aflag, R_EDI); gen_bpt_io(s, cpu_tmp2_i32, ot); if (s->base.tb->cflags & CF_USE_ICOUNT) { gen_io_end(); } }
3,473
qemu
a890643958f03aaa344290700093b280cb606c28
1
static void qht_bucket_reset__locked(struct qht_bucket *head) { struct qht_bucket *b = head; int i; seqlock_write_begin(&head->sequence); do { for (i = 0; i < QHT_BUCKET_ENTRIES; i++) { if (b->pointers[i] == NULL) { goto done; } b->hashes[i] = 0; atomic_set(&b->pointers[i], NULL); } b = b->next; } while (b); done: seqlock_write_end(&head->sequence); }
3,474
FFmpeg
7bcd81299a83b28ee8266079646470dd3e02f2ef
1
static int read_seek(AVFormatContext *s, int stream_index, int64_t ts, int flags) { WtvContext *wtv = s->priv_data; AVIOContext *pb = wtv->pb; AVStream *st = s->streams[0]; int64_t ts_relative; int i; if ((flags & AVSEEK_FLAG_FRAME) || (flags & AVSEEK_FLAG_BYTE)) return AVERROR(ENOSYS); /* timestamp adjustment is required because wtv->pts values are absolute, * whereas AVIndexEntry->timestamp values are relative to epoch. */ ts_relative = ts; if (wtv->epoch != AV_NOPTS_VALUE) ts_relative -= wtv->epoch; i = ff_index_search_timestamp(wtv->index_entries, wtv->nb_index_entries, ts_relative, flags); if (i < 0) { if (wtv->last_valid_pts == AV_NOPTS_VALUE || ts < wtv->last_valid_pts) avio_seek(pb, 0, SEEK_SET); else if (st->duration != AV_NOPTS_VALUE && ts_relative > st->duration && wtv->nb_index_entries) avio_seek(pb, wtv->index_entries[wtv->nb_index_entries - 1].pos, SEEK_SET); if (parse_chunks(s, SEEK_TO_PTS, ts, 0) < 0) return AVERROR(ERANGE); return 0; } wtv->pts = wtv->index_entries[i].timestamp; if (wtv->epoch != AV_NOPTS_VALUE) wtv->pts += wtv->epoch; wtv->last_valid_pts = wtv->pts; avio_seek(pb, wtv->index_entries[i].pos, SEEK_SET); return 0; }
3,475
FFmpeg
b58cfa616c169c90166938608e7135cdab5820e0
0
static void mov_parse_stsd_audio(MOVContext *c, AVIOContext *pb, AVStream *st, MOVStreamContext *sc) { int bits_per_sample, flags; uint16_t version = avio_rb16(pb); AVDictionaryEntry *compatible_brands = av_dict_get(c->fc->metadata, "compatible_brands", NULL, AV_DICT_MATCH_CASE); avio_rb16(pb); /* revision level */ avio_rb32(pb); /* vendor */ st->codec->channels = avio_rb16(pb); /* channel count */ st->codec->bits_per_coded_sample = avio_rb16(pb); /* sample size */ av_log(c->fc, AV_LOG_TRACE, "audio channels %d\n", st->codec->channels); sc->audio_cid = avio_rb16(pb); avio_rb16(pb); /* packet size = 0 */ st->codec->sample_rate = ((avio_rb32(pb) >> 16)); // Read QT version 1 fields. In version 0 these do not exist. av_log(c->fc, AV_LOG_TRACE, "version =%d, isom =%d\n", version, c->isom); if (!c->isom || (compatible_brands && strstr(compatible_brands->value, "qt "))) { if (version == 1) { sc->samples_per_frame = avio_rb32(pb); avio_rb32(pb); /* bytes per packet */ sc->bytes_per_frame = avio_rb32(pb); avio_rb32(pb); /* bytes per sample */ } else if (version == 2) { avio_rb32(pb); /* sizeof struct only */ st->codec->sample_rate = av_int2double(avio_rb64(pb)); st->codec->channels = avio_rb32(pb); avio_rb32(pb); /* always 0x7F000000 */ st->codec->bits_per_coded_sample = avio_rb32(pb); flags = avio_rb32(pb); /* lpcm format specific flag */ sc->bytes_per_frame = avio_rb32(pb); sc->samples_per_frame = avio_rb32(pb); if (st->codec->codec_tag == MKTAG('l','p','c','m')) st->codec->codec_id = ff_mov_get_lpcm_codec_id(st->codec->bits_per_coded_sample, flags); } if (version == 0 || (version == 1 && sc->audio_cid != -2)) { /* can't correctly handle variable sized packet as audio unit */ switch (st->codec->codec_id) { case AV_CODEC_ID_MP2: case AV_CODEC_ID_MP3: st->need_parsing = AVSTREAM_PARSE_FULL; break; } } } if (sc->format == 0) { if (st->codec->bits_per_coded_sample == 8) st->codec->codec_id = mov_codec_id(st, MKTAG('r','a','w',' ')); else if (st->codec->bits_per_coded_sample == 16) st->codec->codec_id = mov_codec_id(st, MKTAG('t','w','o','s')); } switch (st->codec->codec_id) { case AV_CODEC_ID_PCM_S8: case AV_CODEC_ID_PCM_U8: if (st->codec->bits_per_coded_sample == 16) st->codec->codec_id = AV_CODEC_ID_PCM_S16BE; break; case AV_CODEC_ID_PCM_S16LE: case AV_CODEC_ID_PCM_S16BE: if (st->codec->bits_per_coded_sample == 8) st->codec->codec_id = AV_CODEC_ID_PCM_S8; else if (st->codec->bits_per_coded_sample == 24) st->codec->codec_id = st->codec->codec_id == AV_CODEC_ID_PCM_S16BE ? AV_CODEC_ID_PCM_S24BE : AV_CODEC_ID_PCM_S24LE; else if (st->codec->bits_per_coded_sample == 32) st->codec->codec_id = st->codec->codec_id == AV_CODEC_ID_PCM_S16BE ? AV_CODEC_ID_PCM_S32BE : AV_CODEC_ID_PCM_S32LE; break; /* set values for old format before stsd version 1 appeared */ case AV_CODEC_ID_MACE3: sc->samples_per_frame = 6; sc->bytes_per_frame = 2 * st->codec->channels; break; case AV_CODEC_ID_MACE6: sc->samples_per_frame = 6; sc->bytes_per_frame = 1 * st->codec->channels; break; case AV_CODEC_ID_ADPCM_IMA_QT: sc->samples_per_frame = 64; sc->bytes_per_frame = 34 * st->codec->channels; break; case AV_CODEC_ID_GSM: sc->samples_per_frame = 160; sc->bytes_per_frame = 33; break; default: break; } bits_per_sample = av_get_bits_per_sample(st->codec->codec_id); if (bits_per_sample) { st->codec->bits_per_coded_sample = bits_per_sample; sc->sample_size = (bits_per_sample >> 3) * st->codec->channels; } }
3,478
qemu
b20909195745c34a819aed14ae996b60ab0f591f
1
iscsi_aio_ioctl_cb(struct iscsi_context *iscsi, int status, void *command_data, void *opaque) { IscsiAIOCB *acb = opaque; if (acb->canceled) { qemu_aio_release(acb); return; } acb->status = 0; if (status < 0) { error_report("Failed to ioctl(SG_IO) to iSCSI lun. %s", iscsi_get_error(iscsi)); acb->status = -EIO; } acb->ioh->driver_status = 0; acb->ioh->host_status = 0; acb->ioh->resid = 0; #define SG_ERR_DRIVER_SENSE 0x08 if (status == SCSI_STATUS_CHECK_CONDITION && acb->task->datain.size >= 2) { int ss; acb->ioh->driver_status |= SG_ERR_DRIVER_SENSE; acb->ioh->sb_len_wr = acb->task->datain.size - 2; ss = (acb->ioh->mx_sb_len >= acb->ioh->sb_len_wr) ? acb->ioh->mx_sb_len : acb->ioh->sb_len_wr; memcpy(acb->ioh->sbp, &acb->task->datain.data[2], ss); } iscsi_schedule_bh(iscsi_readv_writev_bh_cb, acb); }
3,479
FFmpeg
973c3dba27d0b1a88c70f6661b6a90d2f2e50665
1
static int mpeg_decode_slice(MpegEncContext *s, int mb_y, const uint8_t **buf, int buf_size) { AVCodecContext *avctx = s->avctx; const int lowres = s->avctx->lowres; const int field_pic = s->picture_structure != PICT_FRAME; int ret; s->resync_mb_x = s->resync_mb_y = -1; av_assert0(mb_y < s->mb_height); init_get_bits(&s->gb, *buf, buf_size * 8); if (s->codec_id != AV_CODEC_ID_MPEG1VIDEO && s->mb_height > 2800/16) skip_bits(&s->gb, 3); ff_mpeg1_clean_buffers(s); s->interlaced_dct = 0; s->qscale = get_qscale(s); if (s->qscale == 0) { av_log(s->avctx, AV_LOG_ERROR, "qscale == 0\n"); return AVERROR_INVALIDDATA; } /* extra slice info */ if (skip_1stop_8data_bits(&s->gb) < 0) return AVERROR_INVALIDDATA; s->mb_x = 0; if (mb_y == 0 && s->codec_tag == AV_RL32("SLIF")) { skip_bits1(&s->gb); } else { while (get_bits_left(&s->gb) > 0) { int code = get_vlc2(&s->gb, ff_mbincr_vlc.table, MBINCR_VLC_BITS, 2); if (code < 0) { av_log(s->avctx, AV_LOG_ERROR, "first mb_incr damaged\n"); return AVERROR_INVALIDDATA; } if (code >= 33) { if (code == 33) s->mb_x += 33; /* otherwise, stuffing, nothing to do */ } else { s->mb_x += code; break; } } } if (s->mb_x >= (unsigned) s->mb_width) { av_log(s->avctx, AV_LOG_ERROR, "initial skip overflow\n"); return AVERROR_INVALIDDATA; } if (avctx->hwaccel && avctx->hwaccel->decode_slice) { const uint8_t *buf_end, *buf_start = *buf - 4; /* include start_code */ int start_code = -1; buf_end = avpriv_find_start_code(buf_start + 2, *buf + buf_size, &start_code); if (buf_end < *buf + buf_size) buf_end -= 4; s->mb_y = mb_y; if (avctx->hwaccel->decode_slice(avctx, buf_start, buf_end - buf_start) < 0) return DECODE_SLICE_ERROR; *buf = buf_end; return DECODE_SLICE_OK; } s->resync_mb_x = s->mb_x; s->resync_mb_y = s->mb_y = mb_y; s->mb_skip_run = 0; ff_init_block_index(s); if (s->mb_y == 0 && s->mb_x == 0 && (s->first_field || s->picture_structure == PICT_FRAME)) { if (s->avctx->debug & FF_DEBUG_PICT_INFO) { av_log(s->avctx, AV_LOG_DEBUG, "qp:%d fc:%2d%2d%2d%2d %s %s %s %s %s dc:%d pstruct:%d fdct:%d cmv:%d qtype:%d ivlc:%d rff:%d %s\n", s->qscale, s->mpeg_f_code[0][0], s->mpeg_f_code[0][1], s->mpeg_f_code[1][0], s->mpeg_f_code[1][1], s->pict_type == AV_PICTURE_TYPE_I ? "I" : (s->pict_type == AV_PICTURE_TYPE_P ? "P" : (s->pict_type == AV_PICTURE_TYPE_B ? "B" : "S")), s->progressive_sequence ? "ps" : "", s->progressive_frame ? "pf" : "", s->alternate_scan ? "alt" : "", s->top_field_first ? "top" : "", s->intra_dc_precision, s->picture_structure, s->frame_pred_frame_dct, s->concealment_motion_vectors, s->q_scale_type, s->intra_vlc_format, s->repeat_first_field, s->chroma_420_type ? "420" : ""); } } for (;;) { // If 1, we memcpy blocks in xvmcvideo. if ((CONFIG_MPEG1_XVMC_HWACCEL || CONFIG_MPEG2_XVMC_HWACCEL) && s->pack_pblocks) ff_xvmc_init_block(s); // set s->block if ((ret = mpeg_decode_mb(s, s->block)) < 0) return ret; // Note motion_val is normally NULL unless we want to extract the MVs. if (s->current_picture.motion_val[0] && !s->encoding) { const int wrap = s->b8_stride; int xy = s->mb_x * 2 + s->mb_y * 2 * wrap; int b8_xy = 4 * (s->mb_x + s->mb_y * s->mb_stride); int motion_x, motion_y, dir, i; for (i = 0; i < 2; i++) { for (dir = 0; dir < 2; dir++) { if (s->mb_intra || (dir == 1 && s->pict_type != AV_PICTURE_TYPE_B)) { motion_x = motion_y = 0; } else if (s->mv_type == MV_TYPE_16X16 || (s->mv_type == MV_TYPE_FIELD && field_pic)) { motion_x = s->mv[dir][0][0]; motion_y = s->mv[dir][0][1]; } else { /* if ((s->mv_type == MV_TYPE_FIELD) || (s->mv_type == MV_TYPE_16X8)) */ motion_x = s->mv[dir][i][0]; motion_y = s->mv[dir][i][1]; } s->current_picture.motion_val[dir][xy][0] = motion_x; s->current_picture.motion_val[dir][xy][1] = motion_y; s->current_picture.motion_val[dir][xy + 1][0] = motion_x; s->current_picture.motion_val[dir][xy + 1][1] = motion_y; s->current_picture.ref_index [dir][b8_xy] = s->current_picture.ref_index [dir][b8_xy + 1] = s->field_select[dir][i]; av_assert2(s->field_select[dir][i] == 0 || s->field_select[dir][i] == 1); } xy += wrap; b8_xy += 2; } } s->dest[0] += 16 >> lowres; s->dest[1] +=(16 >> lowres) >> s->chroma_x_shift; s->dest[2] +=(16 >> lowres) >> s->chroma_x_shift; ff_mpv_decode_mb(s, s->block); if (++s->mb_x >= s->mb_width) { const int mb_size = 16 >> s->avctx->lowres; ff_mpeg_draw_horiz_band(s, mb_size * (s->mb_y >> field_pic), mb_size); ff_mpv_report_decode_progress(s); s->mb_x = 0; s->mb_y += 1 << field_pic; if (s->mb_y >= s->mb_height) { int left = get_bits_left(&s->gb); int is_d10 = s->chroma_format == 2 && s->pict_type == AV_PICTURE_TYPE_I && avctx->profile == 0 && avctx->level == 5 && s->intra_dc_precision == 2 && s->q_scale_type == 1 && s->alternate_scan == 0 && s->progressive_frame == 0 /* vbv_delay == 0xBBB || 0xE10 */; if (left >= 32 && !is_d10) { GetBitContext gb = s->gb; align_get_bits(&gb); if (show_bits(&gb, 24) == 0x060E2B) { av_log(avctx, AV_LOG_DEBUG, "Invalid MXF data found in video stream\n"); is_d10 = 1; } } if (left < 0 || (left && show_bits(&s->gb, FFMIN(left, 23)) && !is_d10) || ((avctx->err_recognition & (AV_EF_BITSTREAM | AV_EF_AGGRESSIVE)) && left > 8)) { av_log(avctx, AV_LOG_ERROR, "end mismatch left=%d %0X\n", left, show_bits(&s->gb, FFMIN(left, 23))); return AVERROR_INVALIDDATA; } else goto eos; } // There are some files out there which are missing the last slice // in cases where the slice is completely outside the visible // area, we detect this here instead of running into the end expecting // more data if (s->mb_y >= ((s->height + 15) >> 4) && !s->progressive_sequence && get_bits_left(&s->gb) <= 8 && get_bits_left(&s->gb) >= 0 && s->mb_skip_run == -1 && show_bits(&s->gb, 8) == 0) goto eos; ff_init_block_index(s); } /* skip mb handling */ if (s->mb_skip_run == -1) { /* read increment again */ s->mb_skip_run = 0; for (;;) { int code = get_vlc2(&s->gb, ff_mbincr_vlc.table, MBINCR_VLC_BITS, 2); if (code < 0) { av_log(s->avctx, AV_LOG_ERROR, "mb incr damaged\n"); return AVERROR_INVALIDDATA; } if (code >= 33) { if (code == 33) { s->mb_skip_run += 33; } else if (code == 35) { if (s->mb_skip_run != 0 || show_bits(&s->gb, 15) != 0) { av_log(s->avctx, AV_LOG_ERROR, "slice mismatch\n"); return AVERROR_INVALIDDATA; } goto eos; /* end of slice */ } /* otherwise, stuffing, nothing to do */ } else { s->mb_skip_run += code; break; } } if (s->mb_skip_run) { int i; if (s->pict_type == AV_PICTURE_TYPE_I) { av_log(s->avctx, AV_LOG_ERROR, "skipped MB in I frame at %d %d\n", s->mb_x, s->mb_y); return AVERROR_INVALIDDATA; } /* skip mb */ s->mb_intra = 0; for (i = 0; i < 12; i++) s->block_last_index[i] = -1; if (s->picture_structure == PICT_FRAME) s->mv_type = MV_TYPE_16X16; else s->mv_type = MV_TYPE_FIELD; if (s->pict_type == AV_PICTURE_TYPE_P) { /* if P type, zero motion vector is implied */ s->mv_dir = MV_DIR_FORWARD; s->mv[0][0][0] = s->mv[0][0][1] = 0; s->last_mv[0][0][0] = s->last_mv[0][0][1] = 0; s->last_mv[0][1][0] = s->last_mv[0][1][1] = 0; s->field_select[0][0] = (s->picture_structure - 1) & 1; } else { /* if B type, reuse previous vectors and directions */ s->mv[0][0][0] = s->last_mv[0][0][0]; s->mv[0][0][1] = s->last_mv[0][0][1]; s->mv[1][0][0] = s->last_mv[1][0][0]; s->mv[1][0][1] = s->last_mv[1][0][1]; } } } } eos: // end of slice if (get_bits_left(&s->gb) < 0) { av_log(s, AV_LOG_ERROR, "overread %d\n", -get_bits_left(&s->gb)); return AVERROR_INVALIDDATA; } *buf += (get_bits_count(&s->gb) - 1) / 8; ff_dlog(s, "Slice start:%d %d end:%d %d\n", s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y); return 0; }
3,480
FFmpeg
8364cb97193829dc3e14484c0aaadf59c0cafc8c
1
static int poll_filters(void) { AVFilterBufferRef *picref; AVFrame *filtered_frame = NULL; int i, ret, ret_all; unsigned nb_success, nb_eof; int64_t frame_pts; while (1) { /* Reap all buffers present in the buffer sinks */ for (i = 0; i < nb_output_streams; i++) { OutputStream *ost = output_streams[i]; OutputFile *of = output_files[ost->file_index]; int ret = 0; if (!ost->filter || ost->is_past_recording_time) continue; if (!ost->filtered_frame && !(ost->filtered_frame = avcodec_alloc_frame())) { return AVERROR(ENOMEM); } else avcodec_get_frame_defaults(ost->filtered_frame); filtered_frame = ost->filtered_frame; while (1) { AVRational ist_pts_tb = ost->filter->filter->inputs[0]->time_base; if (ost->enc->type == AVMEDIA_TYPE_AUDIO && !(ost->enc->capabilities & CODEC_CAP_VARIABLE_FRAME_SIZE)) ret = av_buffersink_read_samples(ost->filter->filter, &picref, ost->st->codec->frame_size); else #ifdef SINKA ret = av_buffersink_read(ost->filter->filter, &picref); #else ret = av_buffersink_get_buffer_ref(ost->filter->filter, &picref, AV_BUFFERSINK_FLAG_NO_REQUEST); #endif if (ret < 0) { if (ret != AVERROR(EAGAIN) && ret != AVERROR_EOF) { char buf[256]; av_strerror(ret, buf, sizeof(buf)); av_log(NULL, AV_LOG_WARNING, "Error in av_buffersink_get_buffer_ref(): %s\n", buf); } break; } if (ost->enc->type == AVMEDIA_TYPE_VIDEO) filtered_frame->pts = frame_pts = av_rescale_q(picref->pts, ist_pts_tb, AV_TIME_BASE_Q); else if (picref->pts != AV_NOPTS_VALUE) filtered_frame->pts = frame_pts = av_rescale_q(picref->pts, ost->filter->filter->inputs[0]->time_base, ost->st->codec->time_base) - av_rescale_q(of->start_time, AV_TIME_BASE_Q, ost->st->codec->time_base); //if (ost->source_index >= 0) // *filtered_frame= *input_streams[ost->source_index]->decoded_frame; //for me_threshold if (of->start_time && filtered_frame->pts < of->start_time) { avfilter_unref_buffer(picref); continue; } switch (ost->filter->filter->inputs[0]->type) { case AVMEDIA_TYPE_VIDEO: avfilter_fill_frame_from_video_buffer_ref(filtered_frame, picref); filtered_frame->pts = frame_pts; if (!ost->frame_aspect_ratio) ost->st->codec->sample_aspect_ratio = picref->video->sample_aspect_ratio; do_video_out(of->ctx, ost, filtered_frame, same_quant ? ost->last_quality : ost->st->codec->global_quality); break; case AVMEDIA_TYPE_AUDIO: avfilter_copy_buf_props(filtered_frame, picref); filtered_frame->pts = frame_pts; do_audio_out(of->ctx, ost, filtered_frame); break; default: // TODO support subtitle filters av_assert0(0); } avfilter_unref_buffer(picref); } } /* Request frames through all the graphs */ ret_all = nb_success = nb_eof = 0; for (i = 0; i < nb_filtergraphs; i++) { ret = avfilter_graph_request_oldest(filtergraphs[i]->graph); if (!ret) { nb_success++; } else if (ret == AVERROR_EOF) { nb_eof++; } else if (ret != AVERROR(EAGAIN)) { char buf[256]; av_strerror(ret, buf, sizeof(buf)); av_log(NULL, AV_LOG_WARNING, "Error in request_frame(): %s\n", buf); ret_all = ret; } } if (!nb_success) break; /* Try again if anything succeeded */ } return nb_eof == nb_filtergraphs ? AVERROR_EOF : ret_all; }
3,481
qemu
449041d4db1f82f281fe097e832f07cd9ee1e864
1
static int parse_hex32(DeviceState *dev, Property *prop, const char *str) { uint32_t *ptr = qdev_get_prop_ptr(dev, prop); if (sscanf(str, "%" PRIx32, ptr) != 1) return -EINVAL; return 0; }
3,482
qemu
5ee5993001cf32addb86a92e2ae8cb090fbc1462
1
void helper_retry(CPUSPARCState *env) { trap_state *tsptr = cpu_tsptr(env); env->pc = tsptr->tpc; env->npc = tsptr->tnpc; cpu_put_ccr(env, tsptr->tstate >> 32); env->asi = (tsptr->tstate >> 24) & 0xff; cpu_change_pstate(env, (tsptr->tstate >> 8) & 0xf3f); cpu_put_cwp64(env, tsptr->tstate & 0xff); if (cpu_has_hypervisor(env)) { uint32_t new_gl = (tsptr->tstate >> 40) & 7; env->hpstate = env->htstate[env->tl]; cpu_gl_switch_gregs(env, new_gl); env->gl = new_gl; } env->tl--; trace_win_helper_retry(env->tl); #if !defined(CONFIG_USER_ONLY) if (cpu_interrupts_enabled(env)) { cpu_check_irqs(env); } #endif }
3,483
FFmpeg
6086731299e4d249ddc459e406b2ebb0cb71f6f4
1
static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb) { int superblock_starts[3] = { 0, s->u_superblock_start, s->v_superblock_start }; int bit = 0; int current_superblock = 0; int current_run = 0; int num_partial_superblocks = 0; int i, j; int current_fragment; int plane; if (s->keyframe) { memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count); } else { /* unpack the list of partially-coded superblocks */ bit = get_bits1(gb); while (current_superblock < s->superblock_count) { current_run = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1; if (current_run == 34) current_run += get_bits(gb, 12); if (current_superblock + current_run > s->superblock_count) { av_log(s->avctx, AV_LOG_ERROR, "Invalid partially coded superblock run length\n"); return -1; } memset(s->superblock_coding + current_superblock, bit, current_run); current_superblock += current_run; if (bit) num_partial_superblocks += current_run; if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN) bit = get_bits1(gb); else bit ^= 1; } /* unpack the list of fully coded superblocks if any of the blocks were * not marked as partially coded in the previous step */ if (num_partial_superblocks < s->superblock_count) { int superblocks_decoded = 0; current_superblock = 0; bit = get_bits1(gb); while (superblocks_decoded < s->superblock_count - num_partial_superblocks) { current_run = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1; if (current_run == 34) current_run += get_bits(gb, 12); for (j = 0; j < current_run; current_superblock++) { if (current_superblock >= s->superblock_count) { av_log(s->avctx, AV_LOG_ERROR, "Invalid fully coded superblock run length\n"); return -1; } /* skip any superblocks already marked as partially coded */ if (s->superblock_coding[current_superblock] == SB_NOT_CODED) { s->superblock_coding[current_superblock] = 2*bit; j++; } } superblocks_decoded += current_run; if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN) bit = get_bits1(gb); else bit ^= 1; } } /* if there were partial blocks, initialize bitstream for * unpacking fragment codings */ if (num_partial_superblocks) { current_run = 0; bit = get_bits1(gb); /* toggle the bit because as soon as the first run length is * fetched the bit will be toggled again */ bit ^= 1; } } /* figure out which fragments are coded; iterate through each * superblock (all planes) */ s->total_num_coded_frags = 0; memset(s->macroblock_coding, MODE_COPY, s->macroblock_count); for (plane = 0; plane < 3; plane++) { int sb_start = superblock_starts[plane]; int sb_end = sb_start + (plane ? s->c_superblock_count : s->y_superblock_count); int num_coded_frags = 0; for (i = sb_start; i < sb_end; i++) { /* iterate through all 16 fragments in a superblock */ for (j = 0; j < 16; j++) { /* if the fragment is in bounds, check its coding status */ current_fragment = s->superblock_fragments[i * 16 + j]; if (current_fragment != -1) { int coded = s->superblock_coding[i]; if (s->superblock_coding[i] == SB_PARTIALLY_CODED) { /* fragment may or may not be coded; this is the case * that cares about the fragment coding runs */ if (current_run-- == 0) { bit ^= 1; current_run = get_vlc2(gb, s->fragment_run_length_vlc.table, 5, 2); } coded = bit; } if (coded) { /* default mode; actual mode will be decoded in * the next phase */ s->all_fragments[current_fragment].coding_method = MODE_INTER_NO_MV; s->coded_fragment_list[plane][num_coded_frags++] = current_fragment; } else { /* not coded; copy this fragment from the prior frame */ s->all_fragments[current_fragment].coding_method = MODE_COPY; } } } } s->total_num_coded_frags += num_coded_frags; for (i = 0; i < 64; i++) s->num_coded_frags[plane][i] = num_coded_frags; if (plane < 2) s->coded_fragment_list[plane+1] = s->coded_fragment_list[plane] + num_coded_frags; } return 0; }
3,485
FFmpeg
f95c81ce104554b6860d94724a681a1bac0c4fbd
1
static av_cold int mov_text_encode_init(AVCodecContext *avctx) { /* * For now, we'll use a fixed default style. When we add styling * support, this will be generated from the ASS style. */ static const uint8_t text_sample_entry[] = { 0x00, 0x00, 0x00, 0x00, // uint32_t displayFlags 0x01, // int8_t horizontal-justification 0xFF, // int8_t vertical-justification 0x00, 0x00, 0x00, 0x00, // uint8_t background-color-rgba[4] // BoxRecord { 0x00, 0x00, // int16_t top 0x00, 0x00, // int16_t left 0x00, 0x00, // int16_t bottom 0x00, 0x00, // int16_t right // }; // StyleRecord { 0x00, 0x00, // uint16_t startChar 0x00, 0x00, // uint16_t endChar 0x00, 0x01, // uint16_t font-ID 0x00, // uint8_t face-style-flags 0x12, // uint8_t font-size 0xFF, 0xFF, 0xFF, 0xFF, // uint8_t text-color-rgba[4] // }; // FontTableBox { 0x00, 0x00, 0x00, 0x12, // uint32_t size 'f', 't', 'a', 'b', // uint8_t name[4] 0x00, 0x01, // uint16_t entry-count // FontRecord { 0x00, 0x01, // uint16_t font-ID 0x05, // uint8_t font-name-length 'S', 'e', 'r', 'i', 'f',// uint8_t font[font-name-length] // }; // }; }; MovTextContext *s = avctx->priv_data; avctx->extradata_size = sizeof text_sample_entry; avctx->extradata = av_mallocz(avctx->extradata_size + AV_INPUT_BUFFER_PADDING_SIZE); if (!avctx->extradata) return AVERROR(ENOMEM); av_bprint_init(&s->buffer, 0, AV_BPRINT_SIZE_UNLIMITED); memcpy(avctx->extradata, text_sample_entry, avctx->extradata_size); s->ass_ctx = ff_ass_split(avctx->subtitle_header); return s->ass_ctx ? 0 : AVERROR_INVALIDDATA; }
3,486
qemu
a0d1cbdacff5df4ded16b753b38fdd9da6092968
1
static ssize_t eth_rx(NetClientState *nc, const uint8_t *buf, size_t size) { struct xlx_ethlite *s = qemu_get_nic_opaque(nc); unsigned int rxbase = s->rxbuf * (0x800 / 4); /* DA filter. */ if (!(buf[0] & 0x80) && memcmp(&s->conf.macaddr.a[0], buf, 6)) return size; if (s->regs[rxbase + R_RX_CTRL0] & CTRL_S) { D(qemu_log("ethlite lost packet %x\n", s->regs[R_RX_CTRL0])); D(qemu_log("%s %zd rxbase=%x\n", __func__, size, rxbase)); memcpy(&s->regs[rxbase + R_RX_BUF0], buf, size); s->regs[rxbase + R_RX_CTRL0] |= CTRL_S; if (s->regs[R_RX_CTRL0] & CTRL_I) { eth_pulse_irq(s); /* If c_rx_pingpong was set flip buffers. */ s->rxbuf ^= s->c_rx_pingpong; return size;
3,487
qemu
faadf50e2962dd54175647a80bd6fc4319c91973
1
static void init_proc_970MP (CPUPPCState *env) { gen_spr_ne_601(env); gen_spr_7xx(env); /* Time base */ gen_tbl(env); /* Hardware implementation registers */ /* XXX : not implemented */ spr_register(env, SPR_HID0, "HID0", SPR_NOACCESS, SPR_NOACCESS, &spr_read_generic, &spr_write_clear, 0x60000000); /* XXX : not implemented */ spr_register(env, SPR_HID1, "HID1", SPR_NOACCESS, SPR_NOACCESS, &spr_read_generic, &spr_write_generic, 0x00000000); /* XXX : not implemented */ spr_register(env, SPR_750_HID2, "HID2", SPR_NOACCESS, SPR_NOACCESS, &spr_read_generic, &spr_write_generic, 0x00000000); /* XXX : not implemented */ spr_register(env, SPR_970_HID5, "HID5", SPR_NOACCESS, SPR_NOACCESS, &spr_read_generic, &spr_write_generic, POWERPC970_HID5_INIT); /* Memory management */ /* XXX: not correct */ gen_low_BATs(env); /* XXX : not implemented */ spr_register(env, SPR_MMUCFG, "MMUCFG", SPR_NOACCESS, SPR_NOACCESS, &spr_read_generic, SPR_NOACCESS, 0x00000000); /* TOFIX */ /* XXX : not implemented */ spr_register(env, SPR_MMUCSR0, "MMUCSR0", SPR_NOACCESS, SPR_NOACCESS, &spr_read_generic, &spr_write_generic, 0x00000000); /* TOFIX */ spr_register(env, SPR_HIOR, "SPR_HIOR", SPR_NOACCESS, SPR_NOACCESS, &spr_read_generic, &spr_write_generic, 0xFFF00000); /* XXX: This is a hack */ #if !defined(CONFIG_USER_ONLY) env->excp_prefix = 0xFFF00000; #endif #if !defined(CONFIG_USER_ONLY) env->slb_nr = 32; #endif init_excp_970(env); env->dcache_line_size = 128; env->icache_line_size = 128; /* Allocate hardware IRQ controller */ ppc970_irq_init(env); }
3,488
FFmpeg
77a644e6fa4aaeb2c26cfaa0e8ec3b19829b8d88
1
void ff_h264_direct_ref_list_init(const H264Context *const h, H264SliceContext *sl) { H264Ref *const ref1 = &sl->ref_list[1][0]; H264Picture *const cur = h->cur_pic_ptr; int list, j, field; int sidx = (h->picture_structure & 1) ^ 1; int ref1sidx = (ref1->reference & 1) ^ 1; for (list = 0; list < sl->list_count; list++) { cur->ref_count[sidx][list] = sl->ref_count[list]; for (j = 0; j < sl->ref_count[list]; j++) cur->ref_poc[sidx][list][j] = 4 * sl->ref_list[list][j].parent->frame_num + (sl->ref_list[list][j].reference & 3); } if (h->picture_structure == PICT_FRAME) { memcpy(cur->ref_count[1], cur->ref_count[0], sizeof(cur->ref_count[0])); memcpy(cur->ref_poc[1], cur->ref_poc[0], sizeof(cur->ref_poc[0])); } cur->mbaff = FRAME_MBAFF(h); sl->col_fieldoff = 0; if (sl->list_count != 2 || !sl->ref_count[1]) return; if (h->picture_structure == PICT_FRAME) { int cur_poc = h->cur_pic_ptr->poc; int *col_poc = sl->ref_list[1][0].parent->field_poc; sl->col_parity = (FFABS(col_poc[0] - cur_poc) >= FFABS(col_poc[1] - cur_poc)); ref1sidx = sidx = sl->col_parity; // FL -> FL & differ parity } else if (!(h->picture_structure & sl->ref_list[1][0].reference) && !sl->ref_list[1][0].parent->mbaff) { sl->col_fieldoff = 2 * sl->ref_list[1][0].reference - 3; } if (sl->slice_type_nos != AV_PICTURE_TYPE_B || sl->direct_spatial_mv_pred) return; for (list = 0; list < 2; list++) { fill_colmap(h, sl, sl->map_col_to_list0, list, sidx, ref1sidx, 0); if (FRAME_MBAFF(h)) for (field = 0; field < 2; field++) fill_colmap(h, sl, sl->map_col_to_list0_field[field], list, field, field, 1); } }
3,489
qemu
ebb718a5c7240f6ffb308e0d0b67a92c3b63b91c
1
static coroutine_fn int qcow2_co_write_zeroes(BlockDriverState *bs, int64_t sector_num, int nb_sectors, BdrvRequestFlags flags) { int ret; BDRVQcow2State *s = bs->opaque; int head = sector_num % s->cluster_sectors; int tail = (sector_num + nb_sectors) % s->cluster_sectors; trace_qcow2_write_zeroes_start_req(qemu_coroutine_self(), sector_num, nb_sectors); if (head != 0 || tail != 0) { int64_t cl_start = sector_num - head; assert(cl_start + s->cluster_sectors >= sector_num + nb_sectors); sector_num = cl_start; nb_sectors = s->cluster_sectors; if (!is_zero_cluster(bs, sector_num)) { return -ENOTSUP; } qemu_co_mutex_lock(&s->lock); /* We can have new write after previous check */ if (!is_zero_cluster_top_locked(bs, sector_num)) { qemu_co_mutex_unlock(&s->lock); return -ENOTSUP; } } else { qemu_co_mutex_lock(&s->lock); } trace_qcow2_write_zeroes(qemu_coroutine_self(), sector_num, nb_sectors); /* Whatever is left can use real zero clusters */ ret = qcow2_zero_clusters(bs, sector_num << BDRV_SECTOR_BITS, nb_sectors); qemu_co_mutex_unlock(&s->lock); return ret; }
3,490
FFmpeg
5e3572893d7f17679c5e051c511bf42f3da77b00
1
static int read_packet(AVFormatContext *s1, AVPacket *pkt) { VideoDemuxData *s = s1->priv_data; char filename[1024]; int i; int size[3]={0}, ret[3]={0}; AVIOContext *f[3]; AVCodecContext *codec= s1->streams[0]->codec; if (!s->is_pipe) { /* loop over input */ if (s->loop && s->img_number > s->img_last) { s->img_number = s->img_first; } if (s->img_number > s->img_last) return AVERROR_EOF; if (av_get_frame_filename(filename, sizeof(filename), s->path, s->img_number)<0 && s->img_number > 1) return AVERROR(EIO); for(i=0; i<3; i++){ if (avio_open2(&f[i], filename, AVIO_FLAG_READ, &s1->interrupt_callback, NULL) < 0) { if(i==1) break; av_log(s1, AV_LOG_ERROR, "Could not open file : %s\n",filename); return AVERROR(EIO); } size[i]= avio_size(f[i]); if(codec->codec_id != AV_CODEC_ID_RAWVIDEO) break; filename[ strlen(filename) - 1 ]= 'U' + i; } if(codec->codec_id == AV_CODEC_ID_RAWVIDEO && !codec->width) infer_size(&codec->width, &codec->height, size[0]); } else { f[0] = s1->pb; if (f[0]->eof_reached) return AVERROR(EIO); size[0]= 4096; } av_new_packet(pkt, size[0] + size[1] + size[2]); pkt->stream_index = 0; pkt->flags |= AV_PKT_FLAG_KEY; pkt->size= 0; for(i=0; i<3; i++){ if(size[i]){ ret[i]= avio_read(f[i], pkt->data + pkt->size, size[i]); if (!s->is_pipe) avio_close(f[i]); if(ret[i]>0) pkt->size += ret[i]; } } if (ret[0] <= 0 || ret[1]<0 || ret[2]<0) { av_free_packet(pkt); return AVERROR(EIO); /* signal EOF */ } else { s->img_count++; s->img_number++; return 0; } }
3,491
FFmpeg
e53c9065ca08a9153ecc73a6a8940bcc6d667e58
0
static void fill_float_array(AVLFG *lfg, float *a, int len) { int i; double bmg[2], stddev = 10.0, mean = 0.0; for (i = 0; i < len; i += 2) { av_bmg_get(lfg, bmg); a[i] = bmg[0] * stddev + mean; a[i + 1] = bmg[1] * stddev + mean; } }
3,492
FFmpeg
1d16a1cf99488f16492b1bb48e023f4da8377e07
0
static void ff_h264_idct8_add_mmx(uint8_t *dst, int16_t *block, int stride) { int i; DECLARE_ALIGNED(8, int16_t, b2)[64]; block[0] += 32; for(i=0; i<2; i++){ DECLARE_ALIGNED(8, uint64_t, tmp); h264_idct8_1d(block+4*i); __asm__ volatile( "movq %%mm7, %0 \n\t" TRANSPOSE4( %%mm0, %%mm2, %%mm4, %%mm6, %%mm7 ) "movq %%mm0, 8(%1) \n\t" "movq %%mm6, 24(%1) \n\t" "movq %%mm7, 40(%1) \n\t" "movq %%mm4, 56(%1) \n\t" "movq %0, %%mm7 \n\t" TRANSPOSE4( %%mm7, %%mm5, %%mm3, %%mm1, %%mm0 ) "movq %%mm7, (%1) \n\t" "movq %%mm1, 16(%1) \n\t" "movq %%mm0, 32(%1) \n\t" "movq %%mm3, 48(%1) \n\t" : "=m"(tmp) : "r"(b2+32*i) : "memory" ); } for(i=0; i<2; i++){ h264_idct8_1d(b2+4*i); __asm__ volatile( "psraw $6, %%mm7 \n\t" "psraw $6, %%mm6 \n\t" "psraw $6, %%mm5 \n\t" "psraw $6, %%mm4 \n\t" "psraw $6, %%mm3 \n\t" "psraw $6, %%mm2 \n\t" "psraw $6, %%mm1 \n\t" "psraw $6, %%mm0 \n\t" "movq %%mm7, (%0) \n\t" "movq %%mm5, 16(%0) \n\t" "movq %%mm3, 32(%0) \n\t" "movq %%mm1, 48(%0) \n\t" "movq %%mm0, 64(%0) \n\t" "movq %%mm2, 80(%0) \n\t" "movq %%mm4, 96(%0) \n\t" "movq %%mm6, 112(%0) \n\t" :: "r"(b2+4*i) : "memory" ); } ff_add_pixels_clamped_mmx(b2, dst, stride); }
3,493
qemu
297a3646c2947ee64a6d42ca264039732c6218e0
1
void visit_type_uint32(Visitor *v, uint32_t *obj, const char *name, Error **errp) { int64_t value; if (!error_is_set(errp)) { if (v->type_uint32) { v->type_uint32(v, obj, name, errp); } else { value = *obj; v->type_int(v, &value, name, errp); if (value < 0 || value > UINT32_MAX) { error_set(errp, QERR_INVALID_PARAMETER_VALUE, name ? name : "null", "uint32_t"); return; } *obj = value; } } }
3,495
FFmpeg
d7e9533aa06f4073a27812349b35ba5fede11ca1
1
static int RENAME(dct_quantize)(MpegEncContext *s, DCTELEM *block, int n, int qscale) { int i, level, last_non_zero_p1, q; const UINT16 *qmat; static __align8 INT16 temp_block[64]; int minLevel, maxLevel; if(s->avctx!=NULL && s->avctx->codec->id==CODEC_ID_MPEG4){ /* mpeg4 */ minLevel= -2048; maxLevel= 2047; }else if(s->out_format==FMT_MPEG1){ /* mpeg1 */ minLevel= -255; maxLevel= 255; }else if(s->out_format==FMT_MJPEG){ /* (m)jpeg */ minLevel= -1023; maxLevel= 1023; }else{ /* h263 / msmpeg4 */ minLevel= -128; maxLevel= 127; } av_fdct (block); if (s->mb_intra) { int dummy; if (n < 4) q = s->y_dc_scale; else q = s->c_dc_scale; /* note: block[0] is assumed to be positive */ #if 1 asm volatile ( "xorl %%edx, %%edx \n\t" "mul %%ecx \n\t" : "=d" (temp_block[0]), "=a"(dummy) : "a" (block[0] + (q >> 1)), "c" (inverse[q]) ); #else asm volatile ( "xorl %%edx, %%edx \n\t" "divw %%cx \n\t" "movzwl %%ax, %%eax \n\t" : "=a" (temp_block[0]) : "a" (block[0] + (q >> 1)), "c" (q) : "%edx" ); #endif // temp_block[0] = (block[0] + (q >> 1)) / q; i = 1; last_non_zero_p1 = 1; if (s->out_format == FMT_H263) { qmat = s->q_non_intra_matrix16; } else { qmat = s->q_intra_matrix16; } for(i=1;i<4;i++) { level = block[i] * qmat[i]; level = level / (1 << (QMAT_SHIFT_MMX - 3)); /* XXX: currently, this code is not optimal. the range should be: mpeg1: -255..255 mpeg2: -2048..2047 h263: -128..127 mpeg4: -2048..2047 */ if (level > maxLevel) level = maxLevel; else if (level < minLevel) level = minLevel; temp_block[i] = level; if(level) if(last_non_zero_p1 < inv_zigzag_direct16[i]) last_non_zero_p1= inv_zigzag_direct16[i]; block[i]=0; } } else { i = 0; last_non_zero_p1 = 0; qmat = s->q_non_intra_matrix16; } asm volatile( /* XXX: small rounding bug, but it shouldnt matter */ "movd %3, %%mm3 \n\t" SPREADW(%%mm3) "movd %4, %%mm4 \n\t" SPREADW(%%mm4) #ifndef HAVE_MMX2 "movd %5, %%mm5 \n\t" SPREADW(%%mm5) #endif "pxor %%mm7, %%mm7 \n\t" "movd %%eax, %%mm2 \n\t" SPREADW(%%mm2) "movl %6, %%eax \n\t" ".balign 16 \n\t" "1: \n\t" "movq (%1, %%eax), %%mm0 \n\t" "movq (%2, %%eax), %%mm1 \n\t" "movq %%mm0, %%mm6 \n\t" "psraw $15, %%mm6 \n\t" "pmulhw %%mm0, %%mm1 \n\t" "psubsw %%mm6, %%mm1 \n\t" #ifdef HAVE_MMX2 "pminsw %%mm3, %%mm1 \n\t" "pmaxsw %%mm4, %%mm1 \n\t" #else "paddsw %%mm3, %%mm1 \n\t" "psubusw %%mm4, %%mm1 \n\t" "paddsw %%mm5, %%mm1 \n\t" #endif "movq %%mm1, (%8, %%eax) \n\t" "pcmpeqw %%mm7, %%mm1 \n\t" "movq (%7, %%eax), %%mm0 \n\t" "movq %%mm7, (%1, %%eax) \n\t" "pandn %%mm0, %%mm1 \n\t" PMAXW(%%mm1, %%mm2) "addl $8, %%eax \n\t" " js 1b \n\t" "movq %%mm2, %%mm0 \n\t" "psrlq $32, %%mm2 \n\t" PMAXW(%%mm0, %%mm2) "movq %%mm2, %%mm0 \n\t" "psrlq $16, %%mm2 \n\t" PMAXW(%%mm0, %%mm2) "movd %%mm2, %%eax \n\t" "movzbl %%al, %%eax \n\t" : "+a" (last_non_zero_p1) : "r" (block+64), "r" (qmat+64), #ifdef HAVE_MMX2 "m" (maxLevel), "m" (minLevel), "m" (minLevel /* dummy */), "g" (2*i - 128), #else "m" (0x7FFF - maxLevel), "m" (0x7FFF -maxLevel + minLevel), "m" (minLevel), "g" (2*i - 128), #endif "r" (inv_zigzag_direct16+64), "r" (temp_block+64) ); // last_non_zero_p1=64; /* permute for IDCT */ asm volatile( "movl %0, %%eax \n\t" "pushl %%ebp \n\t" "movl %%esp, " MANGLE(esp_temp) "\n\t" "1: \n\t" "movzbl (%1, %%eax), %%ebx \n\t" "movzbl 1(%1, %%eax), %%ebp \n\t" "movw (%2, %%ebx, 2), %%cx \n\t" "movw (%2, %%ebp, 2), %%sp \n\t" "movzbl " MANGLE(permutation) "(%%ebx), %%ebx\n\t" "movzbl " MANGLE(permutation) "(%%ebp), %%ebp\n\t" "movw %%cx, (%3, %%ebx, 2) \n\t" "movw %%sp, (%3, %%ebp, 2) \n\t" "addl $2, %%eax \n\t" " js 1b \n\t" "movl " MANGLE(esp_temp) ", %%esp\n\t" "popl %%ebp \n\t" : : "g" (-last_non_zero_p1), "d" (zigzag_direct_noperm+last_non_zero_p1), "S" (temp_block), "D" (block) : "%eax", "%ebx", "%ecx" ); /* for(i=0; i<last_non_zero_p1; i++) { int j= zigzag_direct_noperm[i]; block[block_permute_op(j)]= temp_block[j]; } */ //block_permute(block); return last_non_zero_p1 - 1; }
3,496
FFmpeg
b51e7554e74cbf007a1cab83c7bed3ad9fa2793a
1
static int mxf_write_packet(AVFormatContext *s, AVPacket *pkt) { MXFContext *mxf = s->priv_data; AVIOContext *pb = s->pb; AVStream *st = s->streams[pkt->stream_index]; MXFStreamContext *sc = st->priv_data; MXFIndexEntry ie = {0}; int err; if (!mxf->edit_unit_byte_count && !(mxf->edit_units_count % EDIT_UNITS_PER_BODY)) { if ((err = av_reallocp_array(&mxf->index_entries, mxf->edit_units_count + EDIT_UNITS_PER_BODY, sizeof(*mxf->index_entries))) < 0) { mxf->edit_units_count = 0; av_log(s, AV_LOG_ERROR, "could not allocate index entries\n"); return err; if (st->codec->codec_id == AV_CODEC_ID_MPEG2VIDEO) { if (!mxf_parse_mpeg2_frame(s, st, pkt, &ie)) { av_log(s, AV_LOG_ERROR, "could not get mpeg2 profile and level\n"); return -1; } else if (st->codec->codec_id == AV_CODEC_ID_DNXHD) { if (!mxf_parse_dnxhd_frame(s, st, pkt)) { av_log(s, AV_LOG_ERROR, "could not get dnxhd profile\n"); return -1; } else if (st->codec->codec_id == AV_CODEC_ID_DVVIDEO) { if (!mxf_parse_dv_frame(s, st, pkt)) { av_log(s, AV_LOG_ERROR, "could not get dv profile\n"); return -1; } else if (st->codec->codec_id == AV_CODEC_ID_H264) { if (!mxf_parse_h264_frame(s, st, pkt, &ie)) { av_log(s, AV_LOG_ERROR, "could not get h264 profile\n"); return -1; if (s->oformat == &ff_mxf_opatom_muxer) return mxf_write_opatom_packet(s, pkt, &ie); if (!mxf->header_written) { if (mxf->edit_unit_byte_count) { if ((err = mxf_write_partition(s, 1, 2, header_open_partition_key, 1)) < 0) return err; mxf_write_klv_fill(s); mxf_write_index_table_segment(s); } else { if ((err = mxf_write_partition(s, 0, 0, header_open_partition_key, 1)) < 0) return err; mxf->header_written = 1; if (st->index == 0) { if (!mxf->edit_unit_byte_count && (!mxf->edit_units_count || mxf->edit_units_count > EDIT_UNITS_PER_BODY) && !(ie.flags & 0x33)) { // I frame, Gop start mxf_write_klv_fill(s); if ((err = mxf_write_partition(s, 1, 2, body_partition_key, 0)) < 0) return err; mxf_write_klv_fill(s); mxf_write_index_table_segment(s); mxf_write_klv_fill(s); mxf_write_system_item(s); if (!mxf->edit_unit_byte_count) { mxf->index_entries[mxf->edit_units_count].offset = mxf->body_offset; mxf->index_entries[mxf->edit_units_count].flags = ie.flags; mxf->index_entries[mxf->edit_units_count].temporal_ref = ie.temporal_ref; mxf->body_offset += KAG_SIZE; // size of system element mxf->edit_units_count++; } else if (!mxf->edit_unit_byte_count && st->index == 1) { mxf->index_entries[mxf->edit_units_count-1].slice_offset = mxf->body_offset - mxf->index_entries[mxf->edit_units_count-1].offset; mxf_write_klv_fill(s); avio_write(pb, sc->track_essence_element_key, 16); // write key if (s->oformat == &ff_mxf_d10_muxer) { if (st->codec->codec_type == AVMEDIA_TYPE_VIDEO) mxf_write_d10_video_packet(s, st, pkt); else mxf_write_d10_audio_packet(s, st, pkt); } else { klv_encode_ber4_length(pb, pkt->size); // write length avio_write(pb, pkt->data, pkt->size); mxf->body_offset += 16+4+pkt->size + klv_fill_size(16+4+pkt->size); avio_flush(pb); return 0;
3,497
qemu
868d585aced5457218b3443398d08594d9c3ba6d
1
static void set_up_watchdog (m48t59_t *NVRAM, uint8_t value) { uint64_t interval; /* in 1/16 seconds */ if (NVRAM->wd_timer != NULL) { qemu_del_timer(NVRAM->wd_timer); NVRAM->wd_timer = NULL; } NVRAM->buffer[0x1FF0] &= ~0x80; if (value != 0) { interval = (1 << (2 * (value & 0x03))) * ((value >> 2) & 0x1F); qemu_mod_timer(NVRAM->wd_timer, ((uint64_t)time(NULL) * 1000) + ((interval * 1000) >> 4)); } }
3,498
FFmpeg
01ecb7172b684f1c4b3e748f95c5a9a494ca36ec
1
static float get_band_cost_SQUAD_mips(struct AACEncContext *s, PutBitContext *pb, const float *in, const float *scaled, int size, int scale_idx, int cb, const float lambda, const float uplim, int *bits) { const float Q34 = ff_aac_pow34sf_tab[POW_SF2_ZERO - scale_idx + SCALE_ONE_POS - SCALE_DIV_512]; const float IQ = ff_aac_pow2sf_tab [POW_SF2_ZERO + scale_idx - SCALE_ONE_POS + SCALE_DIV_512]; int i; float cost = 0; int qc1, qc2, qc3, qc4; int curbits = 0; uint8_t *p_bits = (uint8_t *)ff_aac_spectral_bits[cb-1]; float *p_codes = (float *)ff_aac_codebook_vectors[cb-1]; for (i = 0; i < size; i += 4) { const float *vec; int curidx; int *in_int = (int *)&in[i]; float *in_pos = (float *)&in[i]; float di0, di1, di2, di3; int t0, t1, t2, t3, t4, t5, t6, t7; qc1 = scaled[i ] * Q34 + ROUND_STANDARD; qc2 = scaled[i+1] * Q34 + ROUND_STANDARD; qc3 = scaled[i+2] * Q34 + ROUND_STANDARD; qc4 = scaled[i+3] * Q34 + ROUND_STANDARD; __asm__ volatile ( ".set push \n\t" ".set noreorder \n\t" "slt %[qc1], $zero, %[qc1] \n\t" "slt %[qc2], $zero, %[qc2] \n\t" "slt %[qc3], $zero, %[qc3] \n\t" "slt %[qc4], $zero, %[qc4] \n\t" "lw %[t0], 0(%[in_int]) \n\t" "lw %[t1], 4(%[in_int]) \n\t" "lw %[t2], 8(%[in_int]) \n\t" "lw %[t3], 12(%[in_int]) \n\t" "srl %[t0], %[t0], 31 \n\t" "srl %[t1], %[t1], 31 \n\t" "srl %[t2], %[t2], 31 \n\t" "srl %[t3], %[t3], 31 \n\t" "subu %[t4], $zero, %[qc1] \n\t" "subu %[t5], $zero, %[qc2] \n\t" "subu %[t6], $zero, %[qc3] \n\t" "subu %[t7], $zero, %[qc4] \n\t" "movn %[qc1], %[t4], %[t0] \n\t" "movn %[qc2], %[t5], %[t1] \n\t" "movn %[qc3], %[t6], %[t2] \n\t" "movn %[qc4], %[t7], %[t3] \n\t" ".set pop \n\t" : [qc1]"+r"(qc1), [qc2]"+r"(qc2), [qc3]"+r"(qc3), [qc4]"+r"(qc4), [t0]"=&r"(t0), [t1]"=&r"(t1), [t2]"=&r"(t2), [t3]"=&r"(t3), [t4]"=&r"(t4), [t5]"=&r"(t5), [t6]"=&r"(t6), [t7]"=&r"(t7) : [in_int]"r"(in_int) : "memory" ); curidx = qc1; curidx *= 3; curidx += qc2; curidx *= 3; curidx += qc3; curidx *= 3; curidx += qc4; curidx += 40; curbits += p_bits[curidx]; vec = &p_codes[curidx*4]; __asm__ volatile ( ".set push \n\t" ".set noreorder \n\t" "lwc1 $f0, 0(%[in_pos]) \n\t" "lwc1 $f1, 0(%[vec]) \n\t" "lwc1 $f2, 4(%[in_pos]) \n\t" "lwc1 $f3, 4(%[vec]) \n\t" "lwc1 $f4, 8(%[in_pos]) \n\t" "lwc1 $f5, 8(%[vec]) \n\t" "lwc1 $f6, 12(%[in_pos]) \n\t" "lwc1 $f7, 12(%[vec]) \n\t" "nmsub.s %[di0], $f0, $f1, %[IQ] \n\t" "nmsub.s %[di1], $f2, $f3, %[IQ] \n\t" "nmsub.s %[di2], $f4, $f5, %[IQ] \n\t" "nmsub.s %[di3], $f6, $f7, %[IQ] \n\t" ".set pop \n\t" : [di0]"=&f"(di0), [di1]"=&f"(di1), [di2]"=&f"(di2), [di3]"=&f"(di3) : [in_pos]"r"(in_pos), [vec]"r"(vec), [IQ]"f"(IQ) : "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "memory" ); cost += di0 * di0 + di1 * di1 + di2 * di2 + di3 * di3; } if (bits) *bits = curbits; return cost * lambda + curbits; }
3,500
qemu
ad0ebb91cd8b5fdc4a583b03645677771f420a46
1
static target_ulong h_register_logical_lan(CPUPPCState *env, sPAPREnvironment *spapr, target_ulong opcode, target_ulong *args) { target_ulong reg = args[0]; target_ulong buf_list = args[1]; target_ulong rec_queue = args[2]; target_ulong filter_list = args[3]; VIOsPAPRDevice *sdev = spapr_vio_find_by_reg(spapr->vio_bus, reg); VIOsPAPRVLANDevice *dev = (VIOsPAPRVLANDevice *)sdev; vlan_bd_t filter_list_bd; if (!dev) { return H_PARAMETER; } if (dev->isopen) { hcall_dprintf("H_REGISTER_LOGICAL_LAN called twice without " "H_FREE_LOGICAL_LAN\n"); return H_RESOURCE; } if (check_bd(dev, VLAN_VALID_BD(buf_list, SPAPR_VIO_TCE_PAGE_SIZE), SPAPR_VIO_TCE_PAGE_SIZE) < 0) { hcall_dprintf("Bad buf_list 0x" TARGET_FMT_lx "\n", buf_list); return H_PARAMETER; } filter_list_bd = VLAN_VALID_BD(filter_list, SPAPR_VIO_TCE_PAGE_SIZE); if (check_bd(dev, filter_list_bd, SPAPR_VIO_TCE_PAGE_SIZE) < 0) { hcall_dprintf("Bad filter_list 0x" TARGET_FMT_lx "\n", filter_list); return H_PARAMETER; } if (!(rec_queue & VLAN_BD_VALID) || (check_bd(dev, rec_queue, VLAN_RQ_ALIGNMENT) < 0)) { hcall_dprintf("Bad receive queue\n"); return H_PARAMETER; } dev->buf_list = buf_list; sdev->signal_state = 0; rec_queue &= ~VLAN_BD_TOGGLE; /* Initialize the buffer list */ stq_tce(sdev, buf_list, rec_queue); stq_tce(sdev, buf_list + 8, filter_list_bd); spapr_tce_dma_zero(sdev, buf_list + VLAN_RX_BDS_OFF, SPAPR_VIO_TCE_PAGE_SIZE - VLAN_RX_BDS_OFF); dev->add_buf_ptr = VLAN_RX_BDS_OFF - 8; dev->use_buf_ptr = VLAN_RX_BDS_OFF - 8; dev->rx_bufs = 0; dev->rxq_ptr = 0; /* Initialize the receive queue */ spapr_tce_dma_zero(sdev, VLAN_BD_ADDR(rec_queue), VLAN_BD_LEN(rec_queue)); dev->isopen = 1; return H_SUCCESS; }
3,501
FFmpeg
771c86c13d7133035e53f7aeb14407ae5dca6453
1
av_cold void ff_psy_preprocess_end(struct FFPsyPreprocessContext *ctx) { int i; ff_iir_filter_free_coeffs(ctx->fcoeffs); if (ctx->fstate) for (i = 0; i < ctx->avctx->channels; i++) ff_iir_filter_free_state(ctx->fstate[i]); av_freep(&ctx->fstate); }
3,503
qemu
15c7733bb231090e5ebd6d10060dccdb98bb4941
1
static int bdrv_open_common(BlockDriverState *bs, const char *filename, int flags, BlockDriver *drv) { int ret, open_flags; assert(drv != NULL); bs->file = NULL; bs->total_sectors = 0; bs->is_temporary = 0; bs->encrypted = 0; bs->valid_key = 0; bs->open_flags = flags; /* buffer_alignment defaulted to 512, drivers can change this value */ bs->buffer_alignment = 512; pstrcpy(bs->filename, sizeof(bs->filename), filename); if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv)) { return -ENOTSUP; } bs->drv = drv; bs->opaque = qemu_mallocz(drv->instance_size); /* * Yes, BDRV_O_NOCACHE aka O_DIRECT means we have to present a * write cache to the guest. We do need the fdatasync to flush * out transactions for block allocations, and we maybe have a * volatile write cache in our backing device to deal with. */ if (flags & (BDRV_O_CACHE_WB|BDRV_O_NOCACHE)) bs->enable_write_cache = 1; /* * Clear flags that are internal to the block layer before opening the * image. */ open_flags = flags & ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING); /* * Snapshots should be writeable. */ if (bs->is_temporary) { open_flags |= BDRV_O_RDWR; } /* Open the image, either directly or using a protocol */ if (drv->bdrv_file_open) { ret = drv->bdrv_file_open(bs, filename, open_flags); } else { ret = bdrv_file_open(&bs->file, filename, open_flags); if (ret >= 0) { ret = drv->bdrv_open(bs, open_flags); } } if (ret < 0) { goto free_and_fail; } bs->keep_read_only = bs->read_only = !(open_flags & BDRV_O_RDWR); ret = refresh_total_sectors(bs, bs->total_sectors); if (ret < 0) { goto free_and_fail; } #ifndef _WIN32 if (bs->is_temporary) { unlink(filename); } #endif return 0; free_and_fail: if (bs->file) { bdrv_delete(bs->file); bs->file = NULL; } qemu_free(bs->opaque); bs->opaque = NULL; bs->drv = NULL; return ret; }
3,504
FFmpeg
28f9ab7029bd1a02f659995919f899f84ee7361b
0
void ff_vp3_idct_put_altivec(uint8_t *dst, int stride, DCTELEM block[64]) { vec_u8 t; IDCT_START // pixels are signed; so add 128*16 in addition to the normal 8 vec_s16 v2048 = vec_sl(vec_splat_s16(1), vec_splat_u16(11)); eight = vec_add(eight, v2048); IDCT_1D(NOP, NOP) TRANSPOSE8(b0, b1, b2, b3, b4, b5, b6, b7); IDCT_1D(ADD8, SHIFT4) #define PUT(a)\ t = vec_packsu(a, a);\ vec_ste((vec_u32)t, 0, (unsigned int *)dst);\ vec_ste((vec_u32)t, 4, (unsigned int *)dst); PUT(b0) dst += stride; PUT(b1) dst += stride; PUT(b2) dst += stride; PUT(b3) dst += stride; PUT(b4) dst += stride; PUT(b5) dst += stride; PUT(b6) dst += stride; PUT(b7) }
3,505
FFmpeg
db592f3b03a21d5bd5237021c00af3ce0431fc60
0
static void lowpass16(WaveformContext *s, AVFrame *in, AVFrame *out, int component, int intensity, int offset, int column) { const int plane = s->desc->comp[component].plane; const int mirror = s->mirror; const int is_chroma = (component == 1 || component == 2); const int shift_w = (is_chroma ? s->desc->log2_chroma_w : 0); const int shift_h = (is_chroma ? s->desc->log2_chroma_h : 0); const int src_linesize = in->linesize[plane] / 2; const int dst_linesize = out->linesize[plane] / 2; const int dst_signed_linesize = dst_linesize * (mirror == 1 ? -1 : 1); const int limit = s->size - 1; const int max = limit - intensity; const int src_h = FF_CEIL_RSHIFT(in->height, shift_h); const int src_w = FF_CEIL_RSHIFT(in->width, shift_w); const uint16_t *src_data = (const uint16_t *)in->data[plane]; uint16_t *dst_data = (uint16_t *)out->data[plane] + (column ? (offset >> shift_h) * dst_linesize : offset >> shift_w); uint16_t * const dst_bottom_line = dst_data + dst_linesize * ((s->size >> shift_h) - 1); uint16_t * const dst_line = (mirror ? dst_bottom_line : dst_data); const uint16_t *p; int y; if (!column && mirror) dst_data += s->size >> shift_w; for (y = 0; y < src_h; y++) { const uint16_t *src_data_end = src_data + src_w; uint16_t *dst = dst_line; for (p = src_data; p < src_data_end; p++) { uint16_t *target; int v = FFMIN(*p, limit); if (column) { target = dst++ + dst_signed_linesize * (v >> shift_h); } else { if (mirror) target = dst_data - (v >> shift_w) - 1; else target = dst_data + (v >> shift_w); } update16(target, max, intensity, limit); } src_data += src_linesize; dst_data += dst_linesize; } envelope16(s, out, plane, plane); }
3,506
qemu
3b6eda2f57a5b7ed047077b6272c2b5a9e3531ca
0
static int qemu_dup_flags(int fd, int flags) { int ret; int serrno; int dup_flags; int setfl_flags; #ifdef F_DUPFD_CLOEXEC ret = fcntl(fd, F_DUPFD_CLOEXEC, 0); #else ret = dup(fd); if (ret != -1) { qemu_set_cloexec(ret); } #endif if (ret == -1) { goto fail; } dup_flags = fcntl(ret, F_GETFL); if (dup_flags == -1) { goto fail; } if ((flags & O_SYNC) != (dup_flags & O_SYNC)) { errno = EINVAL; goto fail; } /* Set/unset flags that we can with fcntl */ setfl_flags = O_APPEND | O_ASYNC | O_NONBLOCK; #ifdef O_NOATIME setfl_flags |= O_NOATIME; #endif #ifdef O_DIRECT setfl_flags |= O_DIRECT; #endif dup_flags &= ~setfl_flags; dup_flags |= (flags & setfl_flags); if (fcntl(ret, F_SETFL, dup_flags) == -1) { goto fail; } /* Truncate the file in the cases that open() would truncate it */ if (flags & O_TRUNC || ((flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))) { if (ftruncate(ret, 0) == -1) { goto fail; } } return ret; fail: serrno = errno; if (ret != -1) { close(ret); } errno = serrno; return -1; }
3,507
qemu
9a29e18f7dfd5a0e80d1c60fc856ebba18ddb738
0
void bdrv_query_image_info(BlockDriverState *bs, ImageInfo **p_info, Error **errp) { int64_t size; const char *backing_filename; BlockDriverInfo bdi; int ret; Error *err = NULL; ImageInfo *info; size = bdrv_getlength(bs); if (size < 0) { error_setg_errno(errp, -size, "Can't get size of device '%s'", bdrv_get_device_name(bs)); return; } info = g_new0(ImageInfo, 1); info->filename = g_strdup(bs->filename); info->format = g_strdup(bdrv_get_format_name(bs)); info->virtual_size = size; info->actual_size = bdrv_get_allocated_file_size(bs); info->has_actual_size = info->actual_size >= 0; if (bdrv_is_encrypted(bs)) { info->encrypted = true; info->has_encrypted = true; } if (bdrv_get_info(bs, &bdi) >= 0) { if (bdi.cluster_size != 0) { info->cluster_size = bdi.cluster_size; info->has_cluster_size = true; } info->dirty_flag = bdi.is_dirty; info->has_dirty_flag = true; } info->format_specific = bdrv_get_specific_info(bs); info->has_format_specific = info->format_specific != NULL; backing_filename = bs->backing_file; if (backing_filename[0] != '\0') { char *backing_filename2 = g_malloc0(1024); info->backing_filename = g_strdup(backing_filename); info->has_backing_filename = true; bdrv_get_full_backing_filename(bs, backing_filename2, 1024, &err); if (err) { error_propagate(errp, err); qapi_free_ImageInfo(info); g_free(backing_filename2); return; } if (strcmp(backing_filename, backing_filename2) != 0) { info->full_backing_filename = g_strdup(backing_filename2); info->has_full_backing_filename = true; } if (bs->backing_format[0]) { info->backing_filename_format = g_strdup(bs->backing_format); info->has_backing_filename_format = true; } g_free(backing_filename2); } ret = bdrv_query_snapshot_info_list(bs, &info->snapshots, &err); switch (ret) { case 0: if (info->snapshots) { info->has_snapshots = true; } break; /* recoverable error */ case -ENOMEDIUM: case -ENOTSUP: error_free(err); break; default: error_propagate(errp, err); qapi_free_ImageInfo(info); return; } *p_info = info; }
3,508
qemu
5fb6c7a8b26eab1a22207d24b4784bd2b39ab54b
0
static int vnc_set_x509_credential(VncDisplay *vs, const char *certdir, const char *filename, char **cred, int ignoreMissing) { struct stat sb; if (*cred) { qemu_free(*cred); *cred = NULL; } *cred = qemu_malloc(strlen(certdir) + strlen(filename) + 2); strcpy(*cred, certdir); strcat(*cred, "/"); strcat(*cred, filename); VNC_DEBUG("Check %s\n", *cred); if (stat(*cred, &sb) < 0) { qemu_free(*cred); *cred = NULL; if (ignoreMissing && errno == ENOENT) return 0; return -1; } return 0; }
3,509
qemu
a8170e5e97ad17ca169c64ba87ae2f53850dab4c
0
void stw_le_phys(target_phys_addr_t addr, uint32_t val) { stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN); }
3,510
qemu
6acbe4c6f18e7de00481ff30574262b58526de45
0
const char *qdev_fw_name(DeviceState *dev) { DeviceClass *dc = DEVICE_GET_CLASS(dev); if (dc->fw_name) { return dc->fw_name; } else if (dc->alias) { return dc->alias; } return object_get_typename(OBJECT(dev)); }
3,511
qemu
de9e9d9f17a36ff76c1a02a5348835e5e0a081b0
0
static inline void gen_op_eval_fblg(TCGv dst, TCGv src, unsigned int fcc_offset) { gen_mov_reg_FCC0(dst, src, fcc_offset); gen_mov_reg_FCC1(cpu_tmp0, src, fcc_offset); tcg_gen_xor_tl(dst, dst, cpu_tmp0); }
3,512
qemu
b854bc196f5c4b4e3299c0b0ee63cf828ece9e77
0
uint32_t omap_badwidth_read32(void *opaque, target_phys_addr_t addr) { OMAP_32B_REG(addr); return 0; }
3,514
qemu
bd269ebc82fbaa5fe7ce5bc7c1770ac8acecd884
0
SocketAddressLegacy *socket_parse(const char *str, Error **errp) { SocketAddressLegacy *addr; addr = g_new0(SocketAddressLegacy, 1); if (strstart(str, "unix:", NULL)) { if (str[5] == '\0') { error_setg(errp, "invalid Unix socket address"); goto fail; } else { addr->type = SOCKET_ADDRESS_LEGACY_KIND_UNIX; addr->u.q_unix.data = g_new(UnixSocketAddress, 1); addr->u.q_unix.data->path = g_strdup(str + 5); } } else if (strstart(str, "fd:", NULL)) { if (str[3] == '\0') { error_setg(errp, "invalid file descriptor address"); goto fail; } else { addr->type = SOCKET_ADDRESS_LEGACY_KIND_FD; addr->u.fd.data = g_new(String, 1); addr->u.fd.data->str = g_strdup(str + 3); } } else if (strstart(str, "vsock:", NULL)) { addr->type = SOCKET_ADDRESS_LEGACY_KIND_VSOCK; addr->u.vsock.data = g_new(VsockSocketAddress, 1); if (vsock_parse(addr->u.vsock.data, str + strlen("vsock:"), errp)) { goto fail; } } else { addr->type = SOCKET_ADDRESS_LEGACY_KIND_INET; addr->u.inet.data = g_new(InetSocketAddress, 1); if (inet_parse(addr->u.inet.data, str, errp)) { goto fail; } } return addr; fail: qapi_free_SocketAddressLegacy(addr); return NULL; }
3,515
qemu
ba14414174b72fa231997243a9650feaa520d054
0
static void do_info_cpus(Monitor *mon, QObject **ret_data) { CPUState *env; QList *cpu_list; cpu_list = qlist_new(); /* just to set the default cpu if not already done */ mon_get_cpu(); for(env = first_cpu; env != NULL; env = env->next_cpu) { QDict *cpu; QObject *obj; cpu_synchronize_state(env); obj = qobject_from_jsonf("{ 'CPU': %d, 'current': %i, 'halted': %i }", env->cpu_index, env == mon->mon_cpu, env->halted); assert(obj != NULL); cpu = qobject_to_qdict(obj); #if defined(TARGET_I386) qdict_put(cpu, "pc", qint_from_int(env->eip + env->segs[R_CS].base)); #elif defined(TARGET_PPC) qdict_put(cpu, "nip", qint_from_int(env->nip)); #elif defined(TARGET_SPARC) qdict_put(cpu, "pc", qint_from_int(env->pc)); qdict_put(cpu, "npc", qint_from_int(env->npc)); #elif defined(TARGET_MIPS) qdict_put(cpu, "PC", qint_from_int(env->active_tc.PC)); #endif qlist_append(cpu_list, cpu); } *ret_data = QOBJECT(cpu_list); }
3,516
qemu
ad196a9d0c14f681f010bb4b979030ec125ba976
0
void slirp_init(int restricted, const char *special_ip) { // debug_init("/tmp/slirp.log", DEBUG_DEFAULT); #ifdef _WIN32 { WSADATA Data; WSAStartup(MAKEWORD(2,0), &Data); atexit(slirp_cleanup); } #endif link_up = 1; slirp_restrict = restricted; if_init(); ip_init(); /* Initialise mbufs *after* setting the MTU */ m_init(); /* set default addresses */ inet_aton("127.0.0.1", &loopback_addr); if (get_dns_addr(&dns_addr) < 0) { dns_addr = loopback_addr; fprintf (stderr, "Warning: No DNS servers found\n"); } if (special_ip) slirp_special_ip = special_ip; inet_aton(slirp_special_ip, &special_addr); alias_addr.s_addr = special_addr.s_addr | htonl(CTL_ALIAS); getouraddr(); register_savevm("slirp", 0, 1, slirp_state_save, slirp_state_load, NULL); }
3,518
qemu
bd269ebc82fbaa5fe7ce5bc7c1770ac8acecd884
0
static void test_io_channel(bool async, SocketAddressLegacy *listen_addr, SocketAddressLegacy *connect_addr, bool passFD) { QIOChannel *src, *dst; QIOChannelTest *test; if (async) { test_io_channel_setup_async(listen_addr, connect_addr, &src, &dst); g_assert(!passFD || qio_channel_has_feature(src, QIO_CHANNEL_FEATURE_FD_PASS)); g_assert(!passFD || qio_channel_has_feature(dst, QIO_CHANNEL_FEATURE_FD_PASS)); g_assert(qio_channel_has_feature(src, QIO_CHANNEL_FEATURE_SHUTDOWN)); g_assert(qio_channel_has_feature(dst, QIO_CHANNEL_FEATURE_SHUTDOWN)); test = qio_channel_test_new(); qio_channel_test_run_threads(test, true, src, dst); qio_channel_test_validate(test); object_unref(OBJECT(src)); object_unref(OBJECT(dst)); test_io_channel_setup_async(listen_addr, connect_addr, &src, &dst); g_assert(!passFD || qio_channel_has_feature(src, QIO_CHANNEL_FEATURE_FD_PASS)); g_assert(!passFD || qio_channel_has_feature(dst, QIO_CHANNEL_FEATURE_FD_PASS)); g_assert(qio_channel_has_feature(src, QIO_CHANNEL_FEATURE_SHUTDOWN)); g_assert(qio_channel_has_feature(dst, QIO_CHANNEL_FEATURE_SHUTDOWN)); test = qio_channel_test_new(); qio_channel_test_run_threads(test, false, src, dst); qio_channel_test_validate(test); object_unref(OBJECT(src)); object_unref(OBJECT(dst)); } else { test_io_channel_setup_sync(listen_addr, connect_addr, &src, &dst); g_assert(!passFD || qio_channel_has_feature(src, QIO_CHANNEL_FEATURE_FD_PASS)); g_assert(!passFD || qio_channel_has_feature(dst, QIO_CHANNEL_FEATURE_FD_PASS)); g_assert(qio_channel_has_feature(src, QIO_CHANNEL_FEATURE_SHUTDOWN)); g_assert(qio_channel_has_feature(dst, QIO_CHANNEL_FEATURE_SHUTDOWN)); test = qio_channel_test_new(); qio_channel_test_run_threads(test, true, src, dst); qio_channel_test_validate(test); object_unref(OBJECT(src)); object_unref(OBJECT(dst)); test_io_channel_setup_sync(listen_addr, connect_addr, &src, &dst); g_assert(!passFD || qio_channel_has_feature(src, QIO_CHANNEL_FEATURE_FD_PASS)); g_assert(!passFD || qio_channel_has_feature(dst, QIO_CHANNEL_FEATURE_FD_PASS)); g_assert(qio_channel_has_feature(src, QIO_CHANNEL_FEATURE_SHUTDOWN)); g_assert(qio_channel_has_feature(dst, QIO_CHANNEL_FEATURE_SHUTDOWN)); test = qio_channel_test_new(); qio_channel_test_run_threads(test, false, src, dst); qio_channel_test_validate(test); object_unref(OBJECT(src)); object_unref(OBJECT(dst)); } }
3,519
qemu
364031f17932814484657e5551ba12957d993d7e
0
static int v9fs_synth_name_to_path(FsContext *ctx, V9fsPath *dir_path, const char *name, V9fsPath *target) { V9fsSynthNode *node; V9fsSynthNode *dir_node; /* "." and ".." are not allowed */ if (!strcmp(name, ".") || !strcmp(name, "..")) { errno = EINVAL; return -1; } if (!dir_path) { dir_node = &v9fs_synth_root; } else { dir_node = *(V9fsSynthNode **)dir_path->data; } if (!strcmp(name, "/")) { node = dir_node; goto out; } /* search for the name in the childern */ rcu_read_lock(); QLIST_FOREACH(node, &dir_node->child, sibling) { if (!strcmp(node->name, name)) { break; } } rcu_read_unlock(); if (!node) { errno = ENOENT; return -1; } out: /* Copy the node pointer to fid */ target->data = g_malloc(sizeof(void *)); memcpy(target->data, &node, sizeof(void *)); target->size = sizeof(void *); return 0; }
3,520
qemu
621ff94d5074d88253a5818c6b9c4db718fbfc65
0
static void virtio_ccw_9p_realize(VirtioCcwDevice *ccw_dev, Error **errp) { V9fsCCWState *dev = VIRTIO_9P_CCW(ccw_dev); DeviceState *vdev = DEVICE(&dev->vdev); Error *err = NULL; qdev_set_parent_bus(vdev, BUS(&ccw_dev->bus)); object_property_set_bool(OBJECT(vdev), true, "realized", &err); if (err) { error_propagate(errp, err); } }
3,522
qemu
758e8e38eb582e3dc87fd55a1d234c25108a7b7f
0
static V9fsFidState *lookup_fid(V9fsState *s, int32_t fid) { V9fsFidState *f; for (f = s->fid_list; f; f = f->next) { if (f->fid == fid) { v9fs_do_setuid(s, f->uid); return f; } } return NULL; }
3,523
qemu
a89f364ae8740dfc31b321eed9ee454e996dc3c1
0
static int hda_audio_post_load(void *opaque, int version) { HDAAudioState *a = opaque; HDAAudioStream *st; int i; dprint(a, 1, "%s\n", __FUNCTION__); if (version == 1) { /* assume running_compat[] is for output streams */ for (i = 0; i < ARRAY_SIZE(a->running_compat); i++) a->running_real[16 + i] = a->running_compat[i]; } for (i = 0; i < ARRAY_SIZE(a->st); i++) { st = a->st + i; if (st->node == NULL) continue; hda_codec_parse_fmt(st->format, &st->as); hda_audio_setup(st); hda_audio_set_amp(st); hda_audio_set_running(st, a->running_real[st->output * 16 + st->stream]); } return 0; }
3,524
FFmpeg
6fcd4f3c7255014eeb883385d32abc7442426314
0
static av_cold int dfa_decode_init(AVCodecContext *avctx) { DfaContext *s = avctx->priv_data; int ret; avctx->pix_fmt = PIX_FMT_PAL8; if ((ret = av_image_check_size(avctx->width, avctx->height, 0, avctx)) < 0) return ret; s->frame_buf = av_mallocz(avctx->width * avctx->height + AV_LZO_OUTPUT_PADDING); if (!s->frame_buf) return AVERROR(ENOMEM); return 0; }
3,525
FFmpeg
9e494ab77cdf519eb5de8056c00469c78bf8a7e8
0
static int mpeg_field_start(MpegEncContext *s){ AVCodecContext *avctx= s->avctx; Mpeg1Context *s1 = (Mpeg1Context*)s; /* start frame decoding */ if(s->first_field || s->picture_structure==PICT_FRAME){ if(MPV_frame_start(s, avctx) < 0) return -1; ff_er_frame_start(s); /* first check if we must repeat the frame */ s->current_picture_ptr->repeat_pict = 0; if (s->repeat_first_field) { if (s->progressive_sequence) { if (s->top_field_first) s->current_picture_ptr->repeat_pict = 4; else s->current_picture_ptr->repeat_pict = 2; } else if (s->progressive_frame) { s->current_picture_ptr->repeat_pict = 1; } } *s->current_picture_ptr->pan_scan= s1->pan_scan; }else{ //second field int i; if(!s->current_picture_ptr){ av_log(s->avctx, AV_LOG_ERROR, "first field missing\n"); return -1; } for(i=0; i<4; i++){ s->current_picture.data[i] = s->current_picture_ptr->data[i]; if(s->picture_structure == PICT_BOTTOM_FIELD){ s->current_picture.data[i] += s->current_picture_ptr->linesize[i]; } } } #if CONFIG_MPEG_XVMC_DECODER // MPV_frame_start will call this function too, // but we need to call it on every field if(s->avctx->xvmc_acceleration) ff_xvmc_field_start(s,avctx); #endif return 0; }
3,527
qemu
a8f2e5c8fffbaf7fbd4f0efc8efbeebade78008f
1
static void virtio_scsi_handle_cmd(VirtIODevice *vdev, VirtQueue *vq) { /* use non-QOM casts in the data path */ VirtIOSCSI *s = (VirtIOSCSI *)vdev; VirtIOSCSIReq *req, *next; QTAILQ_HEAD(, VirtIOSCSIReq) reqs = QTAILQ_HEAD_INITIALIZER(reqs); if (s->ctx && !s->dataplane_started) { virtio_scsi_dataplane_start(s); return; } while ((req = virtio_scsi_pop_req(s, vq))) { if (virtio_scsi_handle_cmd_req_prepare(s, req)) { QTAILQ_INSERT_TAIL(&reqs, req, next); } } QTAILQ_FOREACH_SAFE(req, &reqs, next, next) { virtio_scsi_handle_cmd_req_submit(s, req); } }
3,528
FFmpeg
c3ab0004ae4dffc32494ae84dd15cfaa909a7884
1
static inline void RENAME(bgr24ToUV)(uint8_t *dstU, uint8_t *dstV, const uint8_t *src1, const uint8_t *src2, int width, uint32_t *unused) { #if COMPILE_TEMPLATE_MMX RENAME(bgr24ToUV_mmx)(dstU, dstV, src1, width, PIX_FMT_BGR24); #else int i; for (i=0; i<width; i++) { int b= src1[3*i + 0]; int g= src1[3*i + 1]; int r= src1[3*i + 2]; dstU[i]= (RU*r + GU*g + BU*b + (257<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT; dstV[i]= (RV*r + GV*g + BV*b + (257<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT; } #endif /* COMPILE_TEMPLATE_MMX */ assert(src1 == src2); }
3,529
qemu
4ae3c0e27fff7e41fd75fc63a35703bc64785863
1
static QEMUFile *open_test_file(bool write) { int fd = dup(temp_fd); QIOChannel *ioc; lseek(fd, 0, SEEK_SET); if (write) { g_assert_cmpint(ftruncate(fd, 0), ==, 0); } ioc = QIO_CHANNEL(qio_channel_file_new_fd(fd)); if (write) { return qemu_fopen_channel_output(ioc); } else { return qemu_fopen_channel_input(ioc); } }
3,531
FFmpeg
f44d50a94c120135faeba6b4a1e5551b4397810f
1
static void hScale16_c(SwsContext *c, int16_t *_dst, int dstW, const uint8_t *_src, const int16_t *filter, const int16_t *filterPos, int filterSize) { int i; int32_t *dst = (int32_t *) _dst; const uint16_t *src = (const uint16_t *) _src; int bits = av_pix_fmt_descriptors[c->srcFormat].comp[0].depth_minus1; int sh = (bits <= 7) ? 11 : (bits - 4); for (i = 0; i < dstW; i++) { int j; int srcPos = filterPos[i]; unsigned int val = 0; for (j = 0; j < filterSize; j++) { val += src[srcPos + j] * filter[filterSize * i + j]; } // filter=14 bit, input=16 bit, output=30 bit, >> 11 makes 19 bit dst[i] = FFMIN(val >> sh, (1 << 19) - 1); } }
3,532
qemu
cc64b1a1940dc2e041c5b06b003d9acf64c22372
1
static uint64_t kvmppc_read_int_cpu_dt(const char *propname) { char buf[PATH_MAX]; union { uint32_t v32; uint64_t v64; } u; FILE *f; int len; if (kvmppc_find_cpu_dt(buf, sizeof(buf))) { return -1; } strncat(buf, "/", sizeof(buf) - strlen(buf)); strncat(buf, propname, sizeof(buf) - strlen(buf)); f = fopen(buf, "rb"); if (!f) { return -1; } len = fread(&u, 1, sizeof(u), f); fclose(f); switch (len) { case 4: /* property is a 32-bit quantity */ return be32_to_cpu(u.v32); case 8: return be64_to_cpu(u.v64); } return 0; }
3,533
qemu
187337f8b0ec0813dd3876d1efe37d415fb81c2e
1
void icp_pit_init(uint32_t base, qemu_irq *pic, int irq) { int iomemtype; icp_pit_state *s; s = (icp_pit_state *)qemu_mallocz(sizeof(icp_pit_state)); s->base = base; /* Timer 0 runs at the system clock speed (40MHz). */ s->timer[0] = arm_timer_init(40000000, pic[irq]); /* The other two timers run at 1MHz. */ s->timer[1] = arm_timer_init(1000000, pic[irq + 1]); s->timer[2] = arm_timer_init(1000000, pic[irq + 2]); iomemtype = cpu_register_io_memory(0, icp_pit_readfn, icp_pit_writefn, s); cpu_register_physical_memory(base, 0x00000fff, iomemtype); /* ??? Save/restore. */ }
3,534
FFmpeg
dd44d9e316c17f473eff9f4a5a94ad0d7adb157e
1
static int adts_write_header(AVFormatContext *s) { ADTSContext *adts = s->priv_data; AVCodecContext *avc = s->streams[0]->codec; if(avc->extradata_size > 0) decode_extradata(adts, avc->extradata, avc->extradata_size); return 0; }
3,535
qemu
dd793a74882477ca38d49e191110c17dfee51dcc
1
start_xmit(E1000State *s) { PCIDevice *d = PCI_DEVICE(s); dma_addr_t base; struct e1000_tx_desc desc; uint32_t tdh_start = s->mac_reg[TDH], cause = E1000_ICS_TXQE; if (!(s->mac_reg[TCTL] & E1000_TCTL_EN)) { DBGOUT(TX, "tx disabled\n"); return; } while (s->mac_reg[TDH] != s->mac_reg[TDT]) { base = tx_desc_base(s) + sizeof(struct e1000_tx_desc) * s->mac_reg[TDH]; pci_dma_read(d, base, &desc, sizeof(desc)); DBGOUT(TX, "index %d: %p : %x %x\n", s->mac_reg[TDH], (void *)(intptr_t)desc.buffer_addr, desc.lower.data, desc.upper.data); process_tx_desc(s, &desc); cause |= txdesc_writeback(s, base, &desc); if (++s->mac_reg[TDH] * sizeof(desc) >= s->mac_reg[TDLEN]) s->mac_reg[TDH] = 0; /* * the following could happen only if guest sw assigns * bogus values to TDT/TDLEN. * there's nothing too intelligent we could do about this. */ if (s->mac_reg[TDH] == tdh_start) { DBGOUT(TXERR, "TDH wraparound @%x, TDT %x, TDLEN %x\n", tdh_start, s->mac_reg[TDT], s->mac_reg[TDLEN]); break; } } set_ics(s, 0, cause); }
3,536
FFmpeg
f8323744a0783d5937232a95cd1cc98f6b70a810
1
static void vector_fmul_window_mips(float *dst, const float *src0, const float *src1, const float *win, int len) { float * dst_j, *win_j, *src0_i, *src1_j, *dst_i, *win_i; float temp, temp1, temp2, temp3; float s0, s01, s1, s11; float wi, wi1, wi2, wi3; float wj, wj1, wj2, wj3; const float * lp_end = win + len; win_i = (float *)win; win_j = (float *)(win + 2 * len -1); src1_j = (float *)(src1 + len - 1); src0_i = (float *)src0; dst_i = (float *)dst; dst_j = (float *)(dst + 2 * len -1); /* loop unrolled 4 times */ __asm__ volatile ( "1:" "lwc1 %[s1], 0(%[src1_j]) \n\t" "lwc1 %[wi], 0(%[win_i]) \n\t" "lwc1 %[wj], 0(%[win_j]) \n\t" "lwc1 %[s11], -4(%[src1_j]) \n\t" "lwc1 %[wi1], 4(%[win_i]) \n\t" "lwc1 %[wj1], -4(%[win_j]) \n\t" "lwc1 %[s0], 0(%[src0_i]) \n\t" "lwc1 %[s01], 4(%[src0_i]) \n\t" "mul.s %[temp], %[s1], %[wi] \n\t" "mul.s %[temp1], %[s1], %[wj] \n\t" "mul.s %[temp2], %[s11], %[wi1] \n\t" "mul.s %[temp3], %[s11], %[wj1] \n\t" "lwc1 %[s1], -8(%[src1_j]) \n\t" "lwc1 %[wi2], 8(%[win_i]) \n\t" "lwc1 %[wj2], -8(%[win_j]) \n\t" "lwc1 %[s11], -12(%[src1_j]) \n\t" "msub.s %[temp], %[temp], %[s0], %[wj] \n\t" "madd.s %[temp1], %[temp1], %[s0], %[wi] \n\t" "msub.s %[temp2], %[temp2], %[s01], %[wj1] \n\t" "madd.s %[temp3], %[temp3], %[s01], %[wi1] \n\t" "lwc1 %[wi3], 12(%[win_i]) \n\t" "lwc1 %[wj3], -12(%[win_j]) \n\t" "lwc1 %[s0], 8(%[src0_i]) \n\t" "lwc1 %[s01], 12(%[src0_i]) \n\t" "addiu %[src1_j],-16 \n\t" "addiu %[win_i], 16 \n\t" "addiu %[win_j], -16 \n\t" "addiu %[src0_i], 16 \n\t" "swc1 %[temp], 0(%[dst_i]) \n\t" /* dst[i] = s0*wj - s1*wi; */ "swc1 %[temp1], 0(%[dst_j]) \n\t" /* dst[j] = s0*wi + s1*wj; */ "swc1 %[temp2], 4(%[dst_i]) \n\t" /* dst[i+1] = s01*wj1 - s11*wi1; */ "swc1 %[temp3], -4(%[dst_j]) \n\t" /* dst[j-1] = s01*wi1 + s11*wj1; */ "mul.s %[temp], %[s1], %[wi2] \n\t" "mul.s %[temp1], %[s1], %[wj2] \n\t" "mul.s %[temp2], %[s11], %[wi3] \n\t" "mul.s %[temp3], %[s11], %[wj3] \n\t" "msub.s %[temp], %[temp], %[s0], %[wj2] \n\t" "madd.s %[temp1], %[temp1], %[s0], %[wi2] \n\t" "msub.s %[temp2], %[temp2], %[s01], %[wj3] \n\t" "madd.s %[temp3], %[temp3], %[s01], %[wi3] \n\t" "swc1 %[temp], 8(%[dst_i]) \n\t" /* dst[i+2] = s0*wj2 - s1*wi2; */ "swc1 %[temp1], -8(%[dst_j]) \n\t" /* dst[j-2] = s0*wi2 + s1*wj2; */ "swc1 %[temp2], 12(%[dst_i]) \n\t" /* dst[i+2] = s01*wj3 - s11*wi3; */ "swc1 %[temp3], -12(%[dst_j]) \n\t" /* dst[j-3] = s01*wi3 + s11*wj3; */ "addiu %[dst_i], 16 \n\t" "addiu %[dst_j], -16 \n\t" "bne %[win_i], %[lp_end], 1b \n\t" : [temp]"=&f"(temp), [temp1]"=&f"(temp1), [temp2]"=&f"(temp2), [temp3]"=&f"(temp3), [src0_i]"+r"(src0_i), [win_i]"+r"(win_i), [src1_j]"+r"(src1_j), [win_j]"+r"(win_j), [dst_i]"+r"(dst_i), [dst_j]"+r"(dst_j), [s0] "=&f"(s0), [s01]"=&f"(s01), [s1] "=&f"(s1), [s11]"=&f"(s11), [wi] "=&f"(wi), [wj] "=&f"(wj), [wi2]"=&f"(wi2), [wj2]"=&f"(wj2), [wi3]"=&f"(wi3), [wj3]"=&f"(wj3), [wi1]"=&f"(wi1), [wj1]"=&f"(wj1) : [lp_end]"r"(lp_end) : "memory" ); }
3,537
qemu
c92458538f501eda585b4b774c50644aed391a8a
1
PCIBus *typhoon_init(ram_addr_t ram_size, ISABus **isa_bus, qemu_irq *p_rtc_irq, AlphaCPU *cpus[4], pci_map_irq_fn sys_map_irq) { const uint64_t MB = 1024 * 1024; const uint64_t GB = 1024 * MB; MemoryRegion *addr_space = get_system_memory(); MemoryRegion *addr_space_io = get_system_io(); DeviceState *dev; TyphoonState *s; PCIHostState *phb; PCIBus *b; int i; dev = qdev_create(NULL, TYPE_TYPHOON_PCI_HOST_BRIDGE); qdev_init_nofail(dev); s = TYPHOON_PCI_HOST_BRIDGE(dev); phb = PCI_HOST_BRIDGE(dev); /* Remember the CPUs so that we can deliver interrupts to them. */ for (i = 0; i < 4; i++) { AlphaCPU *cpu = cpus[i]; s->cchip.cpu[i] = cpu; if (cpu != NULL) { CPUAlphaState *env = &cpu->env; env->alarm_timer = qemu_new_timer_ns(rtc_clock, typhoon_alarm_timer, (void *)((uintptr_t)s + i)); } } *p_rtc_irq = *qemu_allocate_irqs(typhoon_set_timer_irq, s, 1); /* Main memory region, 0x00.0000.0000. Real hardware supports 32GB, but the address space hole reserved at this point is 8TB. */ memory_region_init_ram(&s->ram_region, "ram", ram_size); vmstate_register_ram_global(&s->ram_region); memory_region_add_subregion(addr_space, 0, &s->ram_region); /* TIGbus, 0x801.0000.0000, 1GB. */ /* ??? The TIGbus is used for delivering interrupts, and access to the flash ROM. I'm not sure that we need to implement it at all. */ /* Pchip0 CSRs, 0x801.8000.0000, 256MB. */ memory_region_init_io(&s->pchip.region, &pchip_ops, s, "pchip0", 256*MB); memory_region_add_subregion(addr_space, 0x80180000000ULL, &s->pchip.region); /* Cchip CSRs, 0x801.A000.0000, 256MB. */ memory_region_init_io(&s->cchip.region, &cchip_ops, s, "cchip0", 256*MB); memory_region_add_subregion(addr_space, 0x801a0000000ULL, &s->cchip.region); /* Dchip CSRs, 0x801.B000.0000, 256MB. */ memory_region_init_io(&s->dchip_region, &dchip_ops, s, "dchip0", 256*MB); memory_region_add_subregion(addr_space, 0x801b0000000ULL, &s->dchip_region); /* Pchip0 PCI memory, 0x800.0000.0000, 4GB. */ memory_region_init(&s->pchip.reg_mem, "pci0-mem", 4*GB); memory_region_add_subregion(addr_space, 0x80000000000ULL, &s->pchip.reg_mem); /* Pchip0 PCI I/O, 0x801.FC00.0000, 32MB. */ /* ??? Ideally we drop the "system" i/o space on the floor and give the PCI subsystem the full address space reserved by the chipset. We can't do that until the MEM and IO paths in memory.c are unified. */ memory_region_init_io(&s->pchip.reg_io, &alpha_pci_bw_io_ops, NULL, "pci0-io", 32*MB); memory_region_add_subregion(addr_space, 0x801fc000000ULL, &s->pchip.reg_io); b = pci_register_bus(dev, "pci", typhoon_set_irq, sys_map_irq, s, &s->pchip.reg_mem, addr_space_io, 0, 64); phb->bus = b; /* Pchip0 PCI special/interrupt acknowledge, 0x801.F800.0000, 64MB. */ memory_region_init_io(&s->pchip.reg_iack, &alpha_pci_iack_ops, b, "pci0-iack", 64*MB); memory_region_add_subregion(addr_space, 0x801f8000000ULL, &s->pchip.reg_iack); /* Pchip0 PCI configuration, 0x801.FE00.0000, 16MB. */ memory_region_init_io(&s->pchip.reg_conf, &alpha_pci_conf1_ops, b, "pci0-conf", 16*MB); memory_region_add_subregion(addr_space, 0x801fe000000ULL, &s->pchip.reg_conf); /* For the record, these are the mappings for the second PCI bus. We can get away with not implementing them because we indicate via the Cchip.CSC<PIP> bit that Pchip1 is not present. */ /* Pchip1 PCI memory, 0x802.0000.0000, 4GB. */ /* Pchip1 CSRs, 0x802.8000.0000, 256MB. */ /* Pchip1 PCI special/interrupt acknowledge, 0x802.F800.0000, 64MB. */ /* Pchip1 PCI I/O, 0x802.FC00.0000, 32MB. */ /* Pchip1 PCI configuration, 0x802.FE00.0000, 16MB. */ /* Init the ISA bus. */ /* ??? Technically there should be a cy82c693ub pci-isa bridge. */ { qemu_irq isa_pci_irq, *isa_irqs; *isa_bus = isa_bus_new(NULL, addr_space_io); isa_pci_irq = *qemu_allocate_irqs(typhoon_set_isa_irq, s, 1); isa_irqs = i8259_init(*isa_bus, isa_pci_irq); isa_bus_irqs(*isa_bus, isa_irqs); } return b; }
3,538
FFmpeg
7e2eb4bacd70541702bd086ab2a39cb7653d314e
1
static int decode_update_thread_context(AVCodecContext *dst, const AVCodecContext *src){ H264Context *h= dst->priv_data, *h1= src->priv_data; MpegEncContext * const s = &h->s, * const s1 = &h1->s; int inited = s->context_initialized, err; int i; if(dst == src || !s1->context_initialized) return 0; err = ff_mpeg_update_thread_context(dst, src); if(err) return err; //FIXME handle width/height changing if(!inited){ for(i = 0; i < MAX_SPS_COUNT; i++) av_freep(h->sps_buffers + i); for(i = 0; i < MAX_PPS_COUNT; i++) av_freep(h->pps_buffers + i); memcpy(&h->s + 1, &h1->s + 1, sizeof(H264Context) - sizeof(MpegEncContext)); //copy all fields after MpegEnc memset(h->sps_buffers, 0, sizeof(h->sps_buffers)); memset(h->pps_buffers, 0, sizeof(h->pps_buffers)); ff_h264_alloc_tables(h); context_init(h); for(i=0; i<2; i++){ h->rbsp_buffer[i] = NULL; h->rbsp_buffer_size[i] = 0; } h->thread_context[0] = h; // frame_start may not be called for the next thread (if it's decoding a bottom field) // so this has to be allocated here h->s.obmc_scratchpad = av_malloc(16*2*s->linesize + 8*2*s->uvlinesize); s->dsp.clear_blocks(h->mb); } //extradata/NAL handling h->is_avc = h1->is_avc; //SPS/PPS copy_parameter_set((void**)h->sps_buffers, (void**)h1->sps_buffers, MAX_SPS_COUNT, sizeof(SPS)); h->sps = h1->sps; copy_parameter_set((void**)h->pps_buffers, (void**)h1->pps_buffers, MAX_PPS_COUNT, sizeof(PPS)); h->pps = h1->pps; //Dequantization matrices //FIXME these are big - can they be only copied when PPS changes? copy_fields(h, h1, dequant4_buffer, dequant4_coeff); for(i=0; i<6; i++) h->dequant4_coeff[i] = h->dequant4_buffer[0] + (h1->dequant4_coeff[i] - h1->dequant4_buffer[0]); for(i=0; i<2; i++) h->dequant8_coeff[i] = h->dequant8_buffer[0] + (h1->dequant8_coeff[i] - h1->dequant8_buffer[0]); h->dequant_coeff_pps = h1->dequant_coeff_pps; //POC timing copy_fields(h, h1, poc_lsb, redundant_pic_count); //reference lists copy_fields(h, h1, ref_count, intra_gb); copy_fields(h, h1, short_ref, cabac_init_idc); copy_picture_range(h->short_ref, h1->short_ref, 32, s, s1); copy_picture_range(h->long_ref, h1->long_ref, 32, s, s1); copy_picture_range(h->delayed_pic, h1->delayed_pic, MAX_DELAYED_PIC_COUNT+2, s, s1); h->last_slice_type = h1->last_slice_type; if(!s->current_picture_ptr) return 0; if(!s->dropable) { ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index); h->prev_poc_msb = h->poc_msb; h->prev_poc_lsb = h->poc_lsb; } h->prev_frame_num_offset= h->frame_num_offset; h->prev_frame_num = h->frame_num; h->outputed_poc = h->next_outputed_poc; return 0; }
3,539
FFmpeg
fd58678b86023ea98665f06756bf03f91e56be54
1
static int device_open(AVFormatContext *ctx) { struct v4l2_capability cap; int fd; #if CONFIG_LIBV4L2 int fd_libv4l; #endif int res, err; int flags = O_RDWR; if (ctx->flags & AVFMT_FLAG_NONBLOCK) { flags |= O_NONBLOCK; } fd = v4l2_open(ctx->filename, flags, 0); if (fd < 0) { err = errno; av_log(ctx, AV_LOG_ERROR, "Cannot open video device %s : %s\n", ctx->filename, strerror(err)); return AVERROR(err); } #if CONFIG_LIBV4L2 fd_libv4l = v4l2_fd_open(fd, 0); if (fd < 0) { err = AVERROR(errno); av_log(ctx, AV_LOG_ERROR, "Cannot open video device with libv4l neither %s : %s\n", ctx->filename, strerror(errno)); return err; } fd = fd_libv4l; #endif res = v4l2_ioctl(fd, VIDIOC_QUERYCAP, &cap); if (res < 0) { err = errno; av_log(ctx, AV_LOG_ERROR, "ioctl(VIDIOC_QUERYCAP): %s\n", strerror(err)); goto fail; } av_log(ctx, AV_LOG_VERBOSE, "[%d]Capabilities: %x\n", fd, cap.capabilities); if (!(cap.capabilities & V4L2_CAP_VIDEO_CAPTURE)) { av_log(ctx, AV_LOG_ERROR, "Not a video capture device.\n"); err = ENODEV; goto fail; } if (!(cap.capabilities & V4L2_CAP_STREAMING)) { av_log(ctx, AV_LOG_ERROR, "The device does not support the streaming I/O method.\n"); err = ENOSYS; goto fail; } return fd; fail: v4l2_close(fd); return AVERROR(err); }
3,541
qemu
6b4495401bdf442457b713b7e3994b465c55af35
1
int pcie_cap_init(PCIDevice *dev, uint8_t offset, uint8_t type, uint8_t port) { /* PCIe cap v2 init */ int pos; uint8_t *exp_cap; assert(pci_is_express(dev)); pos = pci_add_capability(dev, PCI_CAP_ID_EXP, offset, PCI_EXP_VER2_SIZEOF); if (pos < 0) { return pos; } dev->exp.exp_cap = pos; exp_cap = dev->config + pos; /* Filling values common with v1 */ pcie_cap_v1_fill(exp_cap, port, type, PCI_EXP_FLAGS_VER2); /* Filling v2 specific values */ pci_set_long(exp_cap + PCI_EXP_DEVCAP2, PCI_EXP_DEVCAP2_EFF | PCI_EXP_DEVCAP2_EETLPP); pci_set_word(dev->wmask + pos + PCI_EXP_DEVCTL2, PCI_EXP_DEVCTL2_EETLPPB); return pos; }
3,542
FFmpeg
436f866f92a9483717e376866783346bf8a00e58
1
void ff_svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc) { const int qmul = svq3_dequant_coeff[qp]; int i; uint8_t *cm = ff_cropTbl + MAX_NEG_CROP; if (dc) { dc = 13*13*((dc == 1) ? 1538*block[0] : ((qmul*(block[0] >> 3)) / 2)); block[0] = 0; } for (i = 0; i < 4; i++) { const int z0 = 13*(block[0 + 4*i] + block[2 + 4*i]); const int z1 = 13*(block[0 + 4*i] - block[2 + 4*i]); const int z2 = 7* block[1 + 4*i] - 17*block[3 + 4*i]; const int z3 = 17* block[1 + 4*i] + 7*block[3 + 4*i]; block[0 + 4*i] = z0 + z3; block[1 + 4*i] = z1 + z2; block[2 + 4*i] = z1 - z2; block[3 + 4*i] = z0 - z3; } for (i = 0; i < 4; i++) { const int z0 = 13*(block[i + 4*0] + block[i + 4*2]); const int z1 = 13*(block[i + 4*0] - block[i + 4*2]); const int z2 = 7* block[i + 4*1] - 17*block[i + 4*3]; const int z3 = 17* block[i + 4*1] + 7*block[i + 4*3]; const int rr = (dc + 0x80000); dst[i + stride*0] = cm[ dst[i + stride*0] + (((z0 + z3)*qmul + rr) >> 20) ]; dst[i + stride*1] = cm[ dst[i + stride*1] + (((z1 + z2)*qmul + rr) >> 20) ]; dst[i + stride*2] = cm[ dst[i + stride*2] + (((z1 - z2)*qmul + rr) >> 20) ]; dst[i + stride*3] = cm[ dst[i + stride*3] + (((z0 - z3)*qmul + rr) >> 20) ]; } }
3,543
qemu
8e84865e54cb66fd7b57bb18c312ad3d56b6e276
1
void process_incoming_migration(QEMUFile *f) { if (qemu_loadvm_state(f) < 0) { fprintf(stderr, "load of migration failed\n"); exit(0); } qemu_announce_self(); DPRINTF("successfully loaded vm state\n"); if (autostart) vm_start(); }
3,544
FFmpeg
0ecca7a49f8e254c12a3a1de048d738bfbb614c6
1
void *av_realloc(void *ptr, unsigned int size) { #ifdef MEMALIGN_HACK //FIXME this isnt aligned correctly though it probably isnt needed int diff; if(!ptr) return av_malloc(size); diff= ((char*)ptr)[-1]; return realloc(ptr - diff, size + diff) + diff; #else return realloc(ptr, size); #endif }
3,545
qemu
faadf50e2962dd54175647a80bd6fc4319c91973
1
static void init_excp_620 (CPUPPCState *env) { #if !defined(CONFIG_USER_ONLY) env->excp_vectors[POWERPC_EXCP_RESET] = 0x00000100; env->excp_vectors[POWERPC_EXCP_MCHECK] = 0x00000200; env->excp_vectors[POWERPC_EXCP_DSI] = 0x00000300; env->excp_vectors[POWERPC_EXCP_ISI] = 0x00000400; env->excp_vectors[POWERPC_EXCP_EXTERNAL] = 0x00000500; env->excp_vectors[POWERPC_EXCP_ALIGN] = 0x00000600; env->excp_vectors[POWERPC_EXCP_PROGRAM] = 0x00000700; env->excp_vectors[POWERPC_EXCP_FPU] = 0x00000800; env->excp_vectors[POWERPC_EXCP_DECR] = 0x00000900; env->excp_vectors[POWERPC_EXCP_SYSCALL] = 0x00000C00; env->excp_vectors[POWERPC_EXCP_TRACE] = 0x00000D00; env->excp_vectors[POWERPC_EXCP_FPA] = 0x00000E00; env->excp_vectors[POWERPC_EXCP_PERFM] = 0x00000F00; env->excp_vectors[POWERPC_EXCP_IABR] = 0x00001300; env->excp_vectors[POWERPC_EXCP_SMI] = 0x00001400; /* Hardware reset vector */ env->hreset_vector = 0x0000000000000100ULL; /* ? */ #endif }
3,547