project
stringclasses 2
values | commit_id
stringlengths 40
40
| target
int64 0
1
| func
stringlengths 26
142k
| idx
int64 0
27.3k
|
---|---|---|---|---|
qemu | eabcea18f835178c1f8f088f88bf00e379f09438 | 0 | static void sigp_stop_and_store_status(CPUState *cs, run_on_cpu_data arg)
{
S390CPU *cpu = S390_CPU(cs);
SigpInfo *si = arg.host_ptr;
struct kvm_s390_irq irq = {
.type = KVM_S390_SIGP_STOP,
};
/* disabled wait - sleeping in user space */
if (s390_cpu_get_state(cpu) == CPU_STATE_OPERATING && cs->halted) {
s390_cpu_set_state(CPU_STATE_STOPPED, cpu);
}
switch (s390_cpu_get_state(cpu)) {
case CPU_STATE_OPERATING:
cpu->env.sigp_order = SIGP_STOP_STORE_STATUS;
kvm_s390_vcpu_interrupt(cpu, &irq);
/* store will be performed when handling the stop intercept */
break;
case CPU_STATE_STOPPED:
/* already stopped, just store the status */
cpu_synchronize_state(cs);
kvm_s390_store_status(cpu, KVM_S390_STORE_STATUS_DEF_ADDR, true);
break;
}
si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
}
| 10,203 |
qemu | 643f59322432d77165329dfabe2d040d7e30dae8 | 0 | static int xen_remove_from_physmap(XenIOState *state,
hwaddr start_addr,
ram_addr_t size)
{
unsigned long i = 0;
int rc = 0;
XenPhysmap *physmap = NULL;
hwaddr phys_offset = 0;
physmap = get_physmapping(state, start_addr, size);
if (physmap == NULL) {
return -1;
}
phys_offset = physmap->phys_offset;
size = physmap->size;
DPRINTF("unmapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx", at "
"%"HWADDR_PRIx"\n", start_addr, start_addr + size, phys_offset);
size >>= TARGET_PAGE_BITS;
start_addr >>= TARGET_PAGE_BITS;
phys_offset >>= TARGET_PAGE_BITS;
for (i = 0; i < size; i++) {
unsigned long idx = start_addr + i;
xen_pfn_t gpfn = phys_offset + i;
rc = xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn);
if (rc) {
fprintf(stderr, "add_to_physmap MFN %"PRI_xen_pfn" to PFN %"
PRI_xen_pfn" failed: %d\n", idx, gpfn, rc);
return -rc;
}
}
QLIST_REMOVE(physmap, list);
if (state->log_for_dirtybit == physmap) {
state->log_for_dirtybit = NULL;
}
g_free(physmap);
return 0;
}
| 10,204 |
qemu | b011f61931f0113b29b7cd7e921dd022e0b04834 | 0 | int json_lexer_flush(JSONLexer *lexer)
{
return lexer->state == IN_START ? 0 : json_lexer_feed_char(lexer, 0);
}
| 10,205 |
qemu | 7385aed20db5d83979f683b9d0048674411e963c | 0 | float64 helper_fxtod(CPUSPARCState *env, int64_t src)
{
float64 ret;
clear_float_exceptions(env);
ret = int64_to_float64(src, &env->fp_status);
check_ieee_exceptions(env);
return ret;
}
| 10,206 |
qemu | 3f66f764ee25f10d3e1144ebc057a949421b7728 | 0 | static void test_visitor_out_list(TestOutputVisitorData *data,
const void *unused)
{
const char *value_str = "list value";
TestStructList *p, *head = NULL;
const int max_items = 10;
bool value_bool = true;
int value_int = 10;
Error *err = NULL;
QListEntry *entry;
QObject *obj;
QList *qlist;
int i;
/* Build the list in reverse order... */
for (i = 0; i < max_items; i++) {
p = g_malloc0(sizeof(*p));
p->value = g_malloc0(sizeof(*p->value));
p->value->integer = value_int + (max_items - i - 1);
p->value->boolean = value_bool;
p->value->string = g_strdup(value_str);
p->next = head;
head = p;
}
visit_type_TestStructList(data->ov, &head, NULL, &err);
g_assert(!err);
obj = qmp_output_get_qobject(data->qov);
g_assert(obj != NULL);
g_assert(qobject_type(obj) == QTYPE_QLIST);
qlist = qobject_to_qlist(obj);
g_assert(!qlist_empty(qlist));
/* ...and ensure that the visitor sees it in order */
i = 0;
QLIST_FOREACH_ENTRY(qlist, entry) {
QDict *qdict;
g_assert(qobject_type(entry->value) == QTYPE_QDICT);
qdict = qobject_to_qdict(entry->value);
g_assert_cmpint(qdict_size(qdict), ==, 3);
g_assert_cmpint(qdict_get_int(qdict, "integer"), ==, value_int + i);
g_assert_cmpint(qdict_get_bool(qdict, "boolean"), ==, value_bool);
g_assert_cmpstr(qdict_get_str(qdict, "string"), ==, value_str);
i++;
}
g_assert_cmpint(i, ==, max_items);
QDECREF(qlist);
qapi_free_TestStructList(head);
}
| 10,207 |
qemu | 435db4cf29b88b6612e30acda01cd18788dff458 | 0 | static uint64_t qemu_opt_get_size_helper(QemuOpts *opts, const char *name,
uint64_t defval, bool del)
{
QemuOpt *opt = qemu_opt_find(opts, name);
uint64_t ret = defval;
if (opt == NULL) {
const QemuOptDesc *desc = find_desc_by_name(opts->list->desc, name);
if (desc && desc->def_value_str) {
parse_option_size(name, desc->def_value_str, &ret, &error_abort);
}
return ret;
}
assert(opt->desc && opt->desc->type == QEMU_OPT_SIZE);
ret = opt->value.uint;
if (del) {
qemu_opt_del_all(opts, name);
}
return ret;
}
| 10,208 |
qemu | 72cf2d4f0e181d0d3a3122e04129c58a95da713e | 0 | static int foreach_device_config(int type, int (*func)(const char *cmdline))
{
struct device_config *conf;
int rc;
TAILQ_FOREACH(conf, &device_configs, next) {
if (conf->type != type)
continue;
rc = func(conf->cmdline);
if (0 != rc)
return rc;
}
return 0;
}
| 10,209 |
qemu | ff6ed7141d87d26eafa2b8e4df969623e40fac49 | 0 | static BlockDriverState *bdrv_append_temp_snapshot(BlockDriverState *bs,
int flags,
QDict *snapshot_options,
Error **errp)
{
/* TODO: extra byte is a hack to ensure MAX_PATH space on Windows. */
char *tmp_filename = g_malloc0(PATH_MAX + 1);
int64_t total_size;
QemuOpts *opts = NULL;
BlockDriverState *bs_snapshot;
Error *local_err = NULL;
int ret;
/* if snapshot, we create a temporary backing file and open it
instead of opening 'filename' directly */
/* Get the required size from the image */
total_size = bdrv_getlength(bs);
if (total_size < 0) {
error_setg_errno(errp, -total_size, "Could not get image size");
goto out;
}
/* Create the temporary image */
ret = get_tmp_filename(tmp_filename, PATH_MAX + 1);
if (ret < 0) {
error_setg_errno(errp, -ret, "Could not get temporary filename");
goto out;
}
opts = qemu_opts_create(bdrv_qcow2.create_opts, NULL, 0,
&error_abort);
qemu_opt_set_number(opts, BLOCK_OPT_SIZE, total_size, &error_abort);
ret = bdrv_create(&bdrv_qcow2, tmp_filename, opts, errp);
qemu_opts_del(opts);
if (ret < 0) {
error_prepend(errp, "Could not create temporary overlay '%s': ",
tmp_filename);
goto out;
}
/* Prepare options QDict for the temporary file */
qdict_put_str(snapshot_options, "file.driver", "file");
qdict_put_str(snapshot_options, "file.filename", tmp_filename);
qdict_put_str(snapshot_options, "driver", "qcow2");
bs_snapshot = bdrv_open(NULL, NULL, snapshot_options, flags, errp);
snapshot_options = NULL;
if (!bs_snapshot) {
ret = -EINVAL;
goto out;
}
/* bdrv_append() consumes a strong reference to bs_snapshot (i.e. it will
* call bdrv_unref() on it), so in order to be able to return one, we have
* to increase bs_snapshot's refcount here */
bdrv_ref(bs_snapshot);
bdrv_append(bs_snapshot, bs, &local_err);
if (local_err) {
error_propagate(errp, local_err);
ret = -EINVAL;
goto out;
}
g_free(tmp_filename);
return bs_snapshot;
out:
QDECREF(snapshot_options);
g_free(tmp_filename);
return NULL;
}
| 10,210 |
qemu | fa879d62eb51253d00b6920ce1d1d9d261370a49 | 0 | int qdev_prop_set_drive(DeviceState *dev, const char *name, BlockDriverState *value)
{
int res;
res = bdrv_attach(value, dev);
if (res < 0) {
error_report("Can't attach drive %s to %s.%s: %s",
bdrv_get_device_name(value),
dev->id ? dev->id : dev->info->name,
name, strerror(-res));
return -1;
}
qdev_prop_set(dev, name, &value, PROP_TYPE_DRIVE);
return 0;
}
| 10,211 |
qemu | 21ce148c7ec71ee32834061355a5ecfd1a11f90f | 1 | static inline int cris_lz(int x)
{
int r;
asm ("lz\t%1, %0\n" : "=r" (r) : "r" (x));
return r;
}
| 10,214 |
qemu | e4f4fb1eca795e36f363b4647724221e774523c1 | 1 | static void amdvi_class_init(ObjectClass *klass, void* data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
X86IOMMUClass *dc_class = X86_IOMMU_CLASS(klass);
dc->reset = amdvi_reset;
dc->vmsd = &vmstate_amdvi;
dc->hotpluggable = false;
dc_class->realize = amdvi_realize;
} | 10,216 |
qemu | b4ba67d9a702507793c2724e56f98e9b0f7be02b | 1 | static void pci_ehci_config(void)
{
/* hands over all ports from companion uhci to ehci */
qpci_io_writew(ehci1.dev, ehci1.base + 0x60, 1);
}
| 10,217 |
qemu | 364031f17932814484657e5551ba12957d993d7e | 0 | static int v9fs_synth_renameat(FsContext *ctx, V9fsPath *olddir,
const char *old_name, V9fsPath *newdir,
const char *new_name)
{
errno = EPERM;
return -1;
}
| 10,218 |
qemu | ae261c86aaed62e7acddafab8262a2bf286d40b7 | 0 | static int vmdk_write_cid(BlockDriverState *bs, uint32_t cid)
{
char desc[DESC_SIZE], tmp_desc[DESC_SIZE];
char *p_name, *tmp_str;
BDRVVmdkState *s = bs->opaque;
memset(desc, 0, sizeof(desc));
if (bdrv_pread(bs->file, s->desc_offset, desc, DESC_SIZE) != DESC_SIZE) {
return -EIO;
}
tmp_str = strstr(desc,"parentCID");
pstrcpy(tmp_desc, sizeof(tmp_desc), tmp_str);
if ((p_name = strstr(desc,"CID")) != NULL) {
p_name += sizeof("CID");
snprintf(p_name, sizeof(desc) - (p_name - desc), "%x\n", cid);
pstrcat(desc, sizeof(desc), tmp_desc);
}
if (bdrv_pwrite_sync(bs->file, s->desc_offset, desc, DESC_SIZE) < 0) {
return -EIO;
}
return 0;
}
| 10,219 |
qemu | cc84de9570ffe01a9c3c169bd62ab9586a9a080c | 0 | static void qemu_signal_lock(unsigned int msecs)
{
qemu_mutex_lock(&qemu_fair_mutex);
while (qemu_mutex_trylock(&qemu_global_mutex)) {
qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
break;
}
qemu_mutex_unlock(&qemu_fair_mutex);
}
| 10,220 |
qemu | 7f6613cedc59fa849105668ae971dc31004bca1c | 0 | static void gen_mttr(CPUMIPSState *env, DisasContext *ctx, int rd, int rt,
int u, int sel, int h)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
TCGv t0 = tcg_temp_local_new();
gen_load_gpr(t0, rt);
if ((env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) == 0 &&
((env->tcs[other_tc].CP0_TCBind & (0xf << CP0TCBd_CurVPE)) !=
(env->active_tc.CP0_TCBind & (0xf << CP0TCBd_CurVPE))))
/* NOP */ ;
else if ((env->CP0_VPEControl & (0xff << CP0VPECo_TargTC)) >
(env->mvp->CP0_MVPConf0 & (0xff << CP0MVPC0_PTC)))
/* NOP */ ;
else if (u == 0) {
switch (rd) {
case 1:
switch (sel) {
case 1:
gen_helper_mttc0_vpecontrol(cpu_env, t0);
break;
case 2:
gen_helper_mttc0_vpeconf0(cpu_env, t0);
break;
default:
goto die;
break;
}
break;
case 2:
switch (sel) {
case 1:
gen_helper_mttc0_tcstatus(cpu_env, t0);
break;
case 2:
gen_helper_mttc0_tcbind(cpu_env, t0);
break;
case 3:
gen_helper_mttc0_tcrestart(cpu_env, t0);
break;
case 4:
gen_helper_mttc0_tchalt(cpu_env, t0);
break;
case 5:
gen_helper_mttc0_tccontext(cpu_env, t0);
break;
case 6:
gen_helper_mttc0_tcschedule(cpu_env, t0);
break;
case 7:
gen_helper_mttc0_tcschefback(cpu_env, t0);
break;
default:
gen_mtc0(ctx, t0, rd, sel);
break;
}
break;
case 10:
switch (sel) {
case 0:
gen_helper_mttc0_entryhi(cpu_env, t0);
break;
default:
gen_mtc0(ctx, t0, rd, sel);
break;
}
case 12:
switch (sel) {
case 0:
gen_helper_mttc0_status(cpu_env, t0);
break;
default:
gen_mtc0(ctx, t0, rd, sel);
break;
}
case 13:
switch (sel) {
case 0:
gen_helper_mttc0_cause(cpu_env, t0);
break;
default:
goto die;
break;
}
break;
case 15:
switch (sel) {
case 1:
gen_helper_mttc0_ebase(cpu_env, t0);
break;
default:
goto die;
break;
}
break;
case 23:
switch (sel) {
case 0:
gen_helper_mttc0_debug(cpu_env, t0);
break;
default:
gen_mtc0(ctx, t0, rd, sel);
break;
}
break;
default:
gen_mtc0(ctx, t0, rd, sel);
}
} else switch (sel) {
/* GPR registers. */
case 0:
gen_helper_0e1i(mttgpr, t0, rd);
break;
/* Auxiliary CPU registers */
case 1:
switch (rd) {
case 0:
gen_helper_0e1i(mttlo, t0, 0);
break;
case 1:
gen_helper_0e1i(mtthi, t0, 0);
break;
case 2:
gen_helper_0e1i(mttacx, t0, 0);
break;
case 4:
gen_helper_0e1i(mttlo, t0, 1);
break;
case 5:
gen_helper_0e1i(mtthi, t0, 1);
break;
case 6:
gen_helper_0e1i(mttacx, t0, 1);
break;
case 8:
gen_helper_0e1i(mttlo, t0, 2);
break;
case 9:
gen_helper_0e1i(mtthi, t0, 2);
break;
case 10:
gen_helper_0e1i(mttacx, t0, 2);
break;
case 12:
gen_helper_0e1i(mttlo, t0, 3);
break;
case 13:
gen_helper_0e1i(mtthi, t0, 3);
break;
case 14:
gen_helper_0e1i(mttacx, t0, 3);
break;
case 16:
gen_helper_mttdsp(cpu_env, t0);
break;
default:
goto die;
}
break;
/* Floating point (COP1). */
case 2:
/* XXX: For now we support only a single FPU context. */
if (h == 0) {
TCGv_i32 fp0 = tcg_temp_new_i32();
tcg_gen_trunc_tl_i32(fp0, t0);
gen_store_fpr32(fp0, rd);
tcg_temp_free_i32(fp0);
} else {
TCGv_i32 fp0 = tcg_temp_new_i32();
tcg_gen_trunc_tl_i32(fp0, t0);
gen_store_fpr32h(fp0, rd);
tcg_temp_free_i32(fp0);
}
break;
case 3:
/* XXX: For now we support only a single FPU context. */
{
TCGv_i32 fs_tmp = tcg_const_i32(rd);
gen_helper_0e2i(ctc1, t0, fs_tmp, rt);
tcg_temp_free_i32(fs_tmp);
}
break;
/* COP2: Not implemented. */
case 4:
case 5:
/* fall through */
default:
goto die;
}
LOG_DISAS("mttr (reg %d u %d sel %d h %d)\n", rd, u, sel, h);
tcg_temp_free(t0);
return;
die:
tcg_temp_free(t0);
LOG_DISAS("mttr (reg %d u %d sel %d h %d)\n", rd, u, sel, h);
generate_exception(ctx, EXCP_RI);
}
| 10,223 |
qemu | 8d0bcba8370a4e8606dee602393a14d0c48e8bfc | 0 | int net_init_slirp(const NetClientOptions *opts, const char *name,
NetClientState *peer, Error **errp)
{
/* FIXME error_setg(errp, ...) on failure */
struct slirp_config_str *config;
char *vnet;
int ret;
const NetdevUserOptions *user;
const char **dnssearch;
assert(opts->kind == NET_CLIENT_OPTIONS_KIND_USER);
user = opts->user;
vnet = user->has_net ? g_strdup(user->net) :
user->has_ip ? g_strdup_printf("%s/24", user->ip) :
NULL;
dnssearch = slirp_dnssearch(user->dnssearch);
/* all optional fields are initialized to "all bits zero" */
net_init_slirp_configs(user->hostfwd, SLIRP_CFG_HOSTFWD);
net_init_slirp_configs(user->guestfwd, 0);
ret = net_slirp_init(peer, "user", name, user->q_restrict, vnet,
user->host, user->hostname, user->tftp,
user->bootfile, user->dhcpstart, user->dns, user->smb,
user->smbserver, dnssearch);
while (slirp_configs) {
config = slirp_configs;
slirp_configs = config->next;
g_free(config);
}
g_free(vnet);
g_free(dnssearch);
return ret;
}
| 10,224 |
qemu | fa879d62eb51253d00b6920ce1d1d9d261370a49 | 0 | void bdrv_detach(BlockDriverState *bs, DeviceState *qdev)
{
assert(bs->peer == qdev);
bs->peer = NULL;
bs->change_cb = NULL;
bs->change_opaque = NULL;
}
| 10,225 |
qemu | 8d5c773e323b22402abdd0beef4c7d2fc91dd0eb | 0 | static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
env->cp15.c2_base_mask = 0xffffc000u;
env->cp15.c2_control = 0;
env->cp15.c2_mask = 0;
}
| 10,226 |
qemu | 7e84c2498f0ff3999937d18d1e9abaa030400000 | 0 | static inline void helper_ret_protected(int shift, int is_iret, int addend)
{
uint32_t sp, new_cs, new_eip, new_eflags, new_esp, new_ss;
uint32_t new_es, new_ds, new_fs, new_gs;
uint32_t e1, e2, ss_e1, ss_e2;
int cpl, dpl, rpl, eflags_mask;
uint8_t *ssp;
sp = ESP;
if (!(env->segs[R_SS].flags & DESC_B_MASK))
sp &= 0xffff;
ssp = env->segs[R_SS].base + sp;
if (shift == 1) {
/* 32 bits */
if (is_iret)
new_eflags = ldl_kernel(ssp + 8);
new_cs = ldl_kernel(ssp + 4) & 0xffff;
new_eip = ldl_kernel(ssp);
if (is_iret && (new_eflags & VM_MASK))
goto return_to_vm86;
} else {
/* 16 bits */
if (is_iret)
new_eflags = lduw_kernel(ssp + 4);
new_cs = lduw_kernel(ssp + 2);
new_eip = lduw_kernel(ssp);
}
if ((new_cs & 0xfffc) == 0)
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
if (load_segment(&e1, &e2, new_cs) != 0)
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
if (!(e2 & DESC_S_MASK) ||
!(e2 & DESC_CS_MASK))
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
cpl = env->hflags & HF_CPL_MASK;
rpl = new_cs & 3;
if (rpl < cpl)
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
if (e2 & DESC_CS_MASK) {
if (dpl > rpl)
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
} else {
if (dpl != rpl)
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
}
if (!(e2 & DESC_P_MASK))
raise_exception_err(EXCP0B_NOSEG, new_cs & 0xfffc);
if (rpl == cpl) {
/* return to same priledge level */
cpu_x86_load_seg_cache(env, R_CS, new_cs,
get_seg_base(e1, e2),
get_seg_limit(e1, e2),
e2);
new_esp = sp + (4 << shift) + ((2 * is_iret) << shift) + addend;
} else {
/* return to different priviledge level */
ssp += (4 << shift) + ((2 * is_iret) << shift) + addend;
if (shift == 1) {
/* 32 bits */
new_esp = ldl_kernel(ssp);
new_ss = ldl_kernel(ssp + 4) & 0xffff;
} else {
/* 16 bits */
new_esp = lduw_kernel(ssp);
new_ss = lduw_kernel(ssp + 2);
}
if ((new_ss & 3) != rpl)
raise_exception_err(EXCP0D_GPF, new_ss & 0xfffc);
if (load_segment(&ss_e1, &ss_e2, new_ss) != 0)
raise_exception_err(EXCP0D_GPF, new_ss & 0xfffc);
if (!(ss_e2 & DESC_S_MASK) ||
(ss_e2 & DESC_CS_MASK) ||
!(ss_e2 & DESC_W_MASK))
raise_exception_err(EXCP0D_GPF, new_ss & 0xfffc);
dpl = (ss_e2 >> DESC_DPL_SHIFT) & 3;
if (dpl != rpl)
raise_exception_err(EXCP0D_GPF, new_ss & 0xfffc);
if (!(ss_e2 & DESC_P_MASK))
raise_exception_err(EXCP0B_NOSEG, new_ss & 0xfffc);
cpu_x86_load_seg_cache(env, R_CS, new_cs,
get_seg_base(e1, e2),
get_seg_limit(e1, e2),
e2);
cpu_x86_load_seg_cache(env, R_SS, new_ss,
get_seg_base(ss_e1, ss_e2),
get_seg_limit(ss_e1, ss_e2),
ss_e2);
cpu_x86_set_cpl(env, rpl);
}
if (env->segs[R_SS].flags & DESC_B_MASK)
ESP = new_esp;
else
ESP = (ESP & 0xffff0000) |
(new_esp & 0xffff);
env->eip = new_eip;
if (is_iret) {
/* NOTE: 'cpl' can be different from the current CPL */
if (cpl == 0)
eflags_mask = FL_UPDATE_CPL0_MASK;
else
eflags_mask = FL_UPDATE_MASK32;
if (shift == 0)
eflags_mask &= 0xffff;
load_eflags(new_eflags, eflags_mask);
}
return;
return_to_vm86:
new_esp = ldl_kernel(ssp + 12);
new_ss = ldl_kernel(ssp + 16);
new_es = ldl_kernel(ssp + 20);
new_ds = ldl_kernel(ssp + 24);
new_fs = ldl_kernel(ssp + 28);
new_gs = ldl_kernel(ssp + 32);
/* modify processor state */
load_eflags(new_eflags, FL_UPDATE_CPL0_MASK | VM_MASK | VIF_MASK | VIP_MASK);
load_seg_vm(R_CS, new_cs);
cpu_x86_set_cpl(env, 3);
load_seg_vm(R_SS, new_ss);
load_seg_vm(R_ES, new_es);
load_seg_vm(R_DS, new_ds);
load_seg_vm(R_FS, new_fs);
load_seg_vm(R_GS, new_gs);
env->eip = new_eip;
ESP = new_esp;
}
| 10,227 |
qemu | 207f328afc2137d422f59293ba37b8be5d3e1617 | 0 | static int vnc_refresh_lossy_rect(VncDisplay *vd, int x, int y)
{
VncState *vs;
int sty = y / VNC_STAT_RECT;
int stx = x / VNC_STAT_RECT;
int has_dirty = 0;
y = y / VNC_STAT_RECT * VNC_STAT_RECT;
x = x / VNC_STAT_RECT * VNC_STAT_RECT;
QTAILQ_FOREACH(vs, &vd->clients, next) {
int j;
/* kernel send buffers are full -> refresh later */
if (vs->output.offset) {
continue;
}
if (!vs->lossy_rect[sty][stx]) {
continue;
}
vs->lossy_rect[sty][stx] = 0;
for (j = 0; j < VNC_STAT_RECT; ++j) {
vnc_set_bits(vs->dirty[y + j], x / 16, VNC_STAT_RECT / 16);
}
has_dirty++;
}
return has_dirty;
}
| 10,228 |
qemu | ac03ee5331612e44beb393df2b578c951d27dc0d | 0 | void cpu_exec_step_atomic(CPUState *cpu)
{
start_exclusive();
/* Since we got here, we know that parallel_cpus must be true. */
parallel_cpus = false;
cpu_exec_step(cpu);
parallel_cpus = true;
end_exclusive();
}
| 10,229 |
qemu | 5fe79386ba3cdc86fd808dde301bfc5bb7e9bded | 0 | void acpi_build(AcpiBuildTables *tables)
{
PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
GArray *table_offsets;
unsigned facs, dsdt, rsdt, fadt;
AcpiCpuInfo cpu;
AcpiPmInfo pm;
AcpiMiscInfo misc;
AcpiMcfgInfo mcfg;
PcPciInfo pci;
uint8_t *u;
size_t aml_len = 0;
GArray *tables_blob = tables->table_data;
AcpiSlicOem slic_oem = { .id = NULL, .table_id = NULL };
acpi_get_cpu_info(&cpu);
acpi_get_pm_info(&pm);
acpi_get_misc_info(&misc);
acpi_get_pci_info(&pci);
acpi_get_slic_oem(&slic_oem);
table_offsets = g_array_new(false, true /* clear */,
sizeof(uint32_t));
ACPI_BUILD_DPRINTF("init ACPI tables\n");
bios_linker_loader_alloc(tables->linker, ACPI_BUILD_TABLE_FILE,
64 /* Ensure FACS is aligned */,
false /* high memory */);
/*
* FACS is pointed to by FADT.
* We place it first since it's the only table that has alignment
* requirements.
*/
facs = tables_blob->len;
build_facs(tables_blob, tables->linker);
/* DSDT is pointed to by FADT */
dsdt = tables_blob->len;
build_dsdt(tables_blob, tables->linker, &cpu, &pm, &misc, &pci);
/* Count the size of the DSDT and SSDT, we will need it for legacy
* sizing of ACPI tables.
*/
aml_len += tables_blob->len - dsdt;
/* ACPI tables pointed to by RSDT */
fadt = tables_blob->len;
acpi_add_table(table_offsets, tables_blob);
build_fadt(tables_blob, tables->linker, &pm, facs, dsdt,
slic_oem.id, slic_oem.table_id);
aml_len += tables_blob->len - fadt;
acpi_add_table(table_offsets, tables_blob);
build_madt(tables_blob, tables->linker, &cpu);
if (misc.has_hpet) {
acpi_add_table(table_offsets, tables_blob);
build_hpet(tables_blob, tables->linker);
}
if (misc.tpm_version != TPM_VERSION_UNSPEC) {
acpi_add_table(table_offsets, tables_blob);
build_tpm_tcpa(tables_blob, tables->linker, tables->tcpalog);
if (misc.tpm_version == TPM_VERSION_2_0) {
acpi_add_table(table_offsets, tables_blob);
build_tpm2(tables_blob, tables->linker);
}
}
if (pcms->numa_nodes) {
acpi_add_table(table_offsets, tables_blob);
build_srat(tables_blob, tables->linker);
}
if (acpi_get_mcfg(&mcfg)) {
acpi_add_table(table_offsets, tables_blob);
build_mcfg_q35(tables_blob, tables->linker, &mcfg);
}
if (acpi_has_iommu()) {
acpi_add_table(table_offsets, tables_blob);
build_dmar_q35(tables_blob, tables->linker);
}
if (acpi_has_nvdimm()) {
nvdimm_build_acpi(table_offsets, tables_blob, tables->linker);
}
/* Add tables supplied by user (if any) */
for (u = acpi_table_first(); u; u = acpi_table_next(u)) {
unsigned len = acpi_table_len(u);
acpi_add_table(table_offsets, tables_blob);
g_array_append_vals(tables_blob, u, len);
}
/* RSDT is pointed to by RSDP */
rsdt = tables_blob->len;
build_rsdt(tables_blob, tables->linker, table_offsets,
slic_oem.id, slic_oem.table_id);
/* RSDP is in FSEG memory, so allocate it separately */
build_rsdp(tables->rsdp, tables->linker, rsdt);
/* We'll expose it all to Guest so we want to reduce
* chance of size changes.
*
* We used to align the tables to 4k, but of course this would
* too simple to be enough. 4k turned out to be too small an
* alignment very soon, and in fact it is almost impossible to
* keep the table size stable for all (max_cpus, max_memory_slots)
* combinations. So the table size is always 64k for pc-i440fx-2.1
* and we give an error if the table grows beyond that limit.
*
* We still have the problem of migrating from "-M pc-i440fx-2.0". For
* that, we exploit the fact that QEMU 2.1 generates _smaller_ tables
* than 2.0 and we can always pad the smaller tables with zeros. We can
* then use the exact size of the 2.0 tables.
*
* All this is for PIIX4, since QEMU 2.0 didn't support Q35 migration.
*/
if (pcmc->legacy_acpi_table_size) {
/* Subtracting aml_len gives the size of fixed tables. Then add the
* size of the PIIX4 DSDT/SSDT in QEMU 2.0.
*/
int legacy_aml_len =
pcmc->legacy_acpi_table_size +
ACPI_BUILD_LEGACY_CPU_AML_SIZE * max_cpus;
int legacy_table_size =
ROUND_UP(tables_blob->len - aml_len + legacy_aml_len,
ACPI_BUILD_ALIGN_SIZE);
if (tables_blob->len > legacy_table_size) {
/* Should happen only with PCI bridges and -M pc-i440fx-2.0. */
error_report("Warning: migration may not work.");
}
g_array_set_size(tables_blob, legacy_table_size);
} else {
/* Make sure we have a buffer in case we need to resize the tables. */
if (tables_blob->len > ACPI_BUILD_TABLE_SIZE / 2) {
/* As of QEMU 2.1, this fires with 160 VCPUs and 255 memory slots. */
error_report("Warning: ACPI tables are larger than 64k.");
error_report("Warning: migration may not work.");
error_report("Warning: please remove CPUs, NUMA nodes, "
"memory slots or PCI bridges.");
}
acpi_align_size(tables_blob, ACPI_BUILD_TABLE_SIZE);
}
acpi_align_size(tables->linker, ACPI_BUILD_ALIGN_SIZE);
/* Cleanup memory that's no longer used. */
g_array_free(table_offsets, true);
}
| 10,230 |
qemu | 55e1819c509b3d9c10a54678b9c585bbda13889e | 0 | static void qnull_destroy_obj(QObject *obj)
{
assert(0);
}
| 10,231 |
qemu | 723ccda1a0eecece8e70dbcdd35a603f6c41a475 | 0 | void hmp_info_snapshots(Monitor *mon, const QDict *qdict)
{
BlockDriverState *bs, *bs1;
QEMUSnapshotInfo *sn_tab, *sn, s, *sn_info = &s;
int nb_sns, i, ret, available;
int total;
int *available_snapshots;
bs = find_vmstate_bs();
if (!bs) {
monitor_printf(mon, "No available block device supports snapshots\n");
return;
}
nb_sns = bdrv_snapshot_list(bs, &sn_tab);
if (nb_sns < 0) {
monitor_printf(mon, "bdrv_snapshot_list: error %d\n", nb_sns);
return;
}
if (nb_sns == 0) {
monitor_printf(mon, "There is no snapshot available.\n");
return;
}
available_snapshots = g_new0(int, nb_sns);
total = 0;
for (i = 0; i < nb_sns; i++) {
sn = &sn_tab[i];
available = 1;
bs1 = NULL;
while ((bs1 = bdrv_next(bs1))) {
if (bdrv_can_snapshot(bs1) && bs1 != bs) {
ret = bdrv_snapshot_find(bs1, sn_info, sn->id_str);
if (ret < 0) {
available = 0;
break;
}
}
}
if (available) {
available_snapshots[total] = i;
total++;
}
}
if (total > 0) {
bdrv_snapshot_dump((fprintf_function)monitor_printf, mon, NULL);
monitor_printf(mon, "\n");
for (i = 0; i < total; i++) {
sn = &sn_tab[available_snapshots[i]];
bdrv_snapshot_dump((fprintf_function)monitor_printf, mon, sn);
monitor_printf(mon, "\n");
}
} else {
monitor_printf(mon, "There is no suitable snapshot available\n");
}
g_free(sn_tab);
g_free(available_snapshots);
}
| 10,234 |
qemu | cda607d5e0178d0268066d94dd06b89614304a7d | 0 | static void set_fifodepth(MSSSpiState *s)
{
unsigned int size = s->regs[R_SPI_DFSIZE] & FRAMESZ_MASK;
if (size <= 8) {
s->fifo_depth = 32;
} else if (size <= 16) {
s->fifo_depth = 16;
} else if (size <= 32) {
s->fifo_depth = 8;
} else {
s->fifo_depth = 4;
}
}
| 10,235 |
qemu | 120dc38f6113b676ecef0a2c9e42fc08cace5bdb | 0 | void qdev_unplug(DeviceState *dev, Error **errp)
{
DeviceClass *dc = DEVICE_GET_CLASS(dev);
if (!dev->parent_bus->allow_hotplug) {
error_set(errp, QERR_BUS_NO_HOTPLUG, dev->parent_bus->name);
return;
}
assert(dc->unplug != NULL);
qdev_hot_removed = true;
if (dc->unplug(dev) < 0) {
error_set(errp, QERR_UNDEFINED_ERROR);
return;
}
}
| 10,236 |
qemu | bdb5ee3064d5ae786b0bcb6cf6ff4e3554a72990 | 0 | int rom_add_file(const char *file, const char *fw_dir, const char *fw_file,
target_phys_addr_t addr)
{
Rom *rom;
int rc, fd = -1;
rom = qemu_mallocz(sizeof(*rom));
rom->name = qemu_strdup(file);
rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name);
if (rom->path == NULL) {
rom->path = qemu_strdup(file);
}
fd = open(rom->path, O_RDONLY | O_BINARY);
if (fd == -1) {
fprintf(stderr, "Could not open option rom '%s': %s\n",
rom->path, strerror(errno));
goto err;
}
rom->fw_dir = fw_dir ? qemu_strdup(fw_dir) : NULL;
rom->fw_file = fw_file ? qemu_strdup(fw_file) : NULL;
rom->addr = addr;
rom->romsize = lseek(fd, 0, SEEK_END);
rom->data = qemu_mallocz(rom->romsize);
lseek(fd, 0, SEEK_SET);
rc = read(fd, rom->data, rom->romsize);
if (rc != rom->romsize) {
fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n",
rom->name, rc, rom->romsize);
goto err;
}
close(fd);
rom_insert(rom);
return 0;
err:
if (fd != -1)
close(fd);
qemu_free(rom->data);
qemu_free(rom->path);
qemu_free(rom->name);
qemu_free(rom);
return -1;
}
| 10,237 |
qemu | 33256a25b3b31915b9038eefe7923c68bb034118 | 0 | static void ide_ioport_write(void *opaque, uint32_t addr, uint32_t val)
{
IDEState *ide_if = opaque;
IDEState *s;
int unit, n;
int lba48 = 0;
#ifdef DEBUG_IDE
printf("IDE: write addr=0x%x val=0x%02x\n", addr, val);
#endif
addr &= 7;
/* ignore writes to command block while busy with previous command */
if (addr != 7 && (ide_if->cur_drive->status & (BUSY_STAT|DRQ_STAT)))
return;
switch(addr) {
case 0:
break;
case 1:
ide_clear_hob(ide_if);
/* NOTE: data is written to the two drives */
ide_if[0].hob_feature = ide_if[0].feature;
ide_if[1].hob_feature = ide_if[1].feature;
ide_if[0].feature = val;
ide_if[1].feature = val;
break;
case 2:
ide_clear_hob(ide_if);
ide_if[0].hob_nsector = ide_if[0].nsector;
ide_if[1].hob_nsector = ide_if[1].nsector;
ide_if[0].nsector = val;
ide_if[1].nsector = val;
break;
case 3:
ide_clear_hob(ide_if);
ide_if[0].hob_sector = ide_if[0].sector;
ide_if[1].hob_sector = ide_if[1].sector;
ide_if[0].sector = val;
ide_if[1].sector = val;
break;
case 4:
ide_clear_hob(ide_if);
ide_if[0].hob_lcyl = ide_if[0].lcyl;
ide_if[1].hob_lcyl = ide_if[1].lcyl;
ide_if[0].lcyl = val;
ide_if[1].lcyl = val;
break;
case 5:
ide_clear_hob(ide_if);
ide_if[0].hob_hcyl = ide_if[0].hcyl;
ide_if[1].hob_hcyl = ide_if[1].hcyl;
ide_if[0].hcyl = val;
ide_if[1].hcyl = val;
break;
case 6:
/* FIXME: HOB readback uses bit 7 */
ide_if[0].select = (val & ~0x10) | 0xa0;
ide_if[1].select = (val | 0x10) | 0xa0;
/* select drive */
unit = (val >> 4) & 1;
s = ide_if + unit;
ide_if->cur_drive = s;
break;
default:
case 7:
/* command */
#if defined(DEBUG_IDE)
printf("ide: CMD=%02x\n", val);
#endif
s = ide_if->cur_drive;
/* ignore commands to non existant slave */
if (s != ide_if && !s->bs)
break;
/* Only DEVICE RESET is allowed while BSY or/and DRQ are set */
if ((s->status & (BUSY_STAT|DRQ_STAT)) && val != WIN_DEVICE_RESET)
break;
switch(val) {
case WIN_IDENTIFY:
if (s->bs && !s->is_cdrom) {
if (!s->is_cf)
ide_identify(s);
else
ide_cfata_identify(s);
s->status = READY_STAT | SEEK_STAT;
ide_transfer_start(s, s->io_buffer, 512, ide_transfer_stop);
} else {
if (s->is_cdrom) {
ide_set_signature(s);
}
ide_abort_command(s);
}
ide_set_irq(s);
break;
case WIN_SPECIFY:
case WIN_RECAL:
s->error = 0;
s->status = READY_STAT | SEEK_STAT;
ide_set_irq(s);
break;
case WIN_SETMULT:
if (s->is_cf && s->nsector == 0) {
/* Disable Read and Write Multiple */
s->mult_sectors = 0;
s->status = READY_STAT | SEEK_STAT;
} else if ((s->nsector & 0xff) != 0 &&
((s->nsector & 0xff) > MAX_MULT_SECTORS ||
(s->nsector & (s->nsector - 1)) != 0)) {
ide_abort_command(s);
} else {
s->mult_sectors = s->nsector & 0xff;
s->status = READY_STAT | SEEK_STAT;
}
ide_set_irq(s);
break;
case WIN_VERIFY_EXT:
lba48 = 1;
case WIN_VERIFY:
case WIN_VERIFY_ONCE:
/* do sector number check ? */
ide_cmd_lba48_transform(s, lba48);
s->status = READY_STAT | SEEK_STAT;
ide_set_irq(s);
break;
case WIN_READ_EXT:
lba48 = 1;
case WIN_READ:
case WIN_READ_ONCE:
if (!s->bs)
goto abort_cmd;
ide_cmd_lba48_transform(s, lba48);
s->req_nb_sectors = 1;
ide_sector_read(s);
break;
case WIN_WRITE_EXT:
lba48 = 1;
case WIN_WRITE:
case WIN_WRITE_ONCE:
case CFA_WRITE_SECT_WO_ERASE:
case WIN_WRITE_VERIFY:
ide_cmd_lba48_transform(s, lba48);
s->error = 0;
s->status = SEEK_STAT | READY_STAT;
s->req_nb_sectors = 1;
ide_transfer_start(s, s->io_buffer, 512, ide_sector_write);
s->media_changed = 1;
break;
case WIN_MULTREAD_EXT:
lba48 = 1;
case WIN_MULTREAD:
if (!s->mult_sectors)
goto abort_cmd;
ide_cmd_lba48_transform(s, lba48);
s->req_nb_sectors = s->mult_sectors;
ide_sector_read(s);
break;
case WIN_MULTWRITE_EXT:
lba48 = 1;
case WIN_MULTWRITE:
case CFA_WRITE_MULTI_WO_ERASE:
if (!s->mult_sectors)
goto abort_cmd;
ide_cmd_lba48_transform(s, lba48);
s->error = 0;
s->status = SEEK_STAT | READY_STAT;
s->req_nb_sectors = s->mult_sectors;
n = s->nsector;
if (n > s->req_nb_sectors)
n = s->req_nb_sectors;
ide_transfer_start(s, s->io_buffer, 512 * n, ide_sector_write);
s->media_changed = 1;
break;
case WIN_READDMA_EXT:
lba48 = 1;
case WIN_READDMA:
case WIN_READDMA_ONCE:
if (!s->bs)
goto abort_cmd;
ide_cmd_lba48_transform(s, lba48);
ide_sector_read_dma(s);
break;
case WIN_WRITEDMA_EXT:
lba48 = 1;
case WIN_WRITEDMA:
case WIN_WRITEDMA_ONCE:
if (!s->bs)
goto abort_cmd;
ide_cmd_lba48_transform(s, lba48);
ide_sector_write_dma(s);
s->media_changed = 1;
break;
case WIN_READ_NATIVE_MAX_EXT:
lba48 = 1;
case WIN_READ_NATIVE_MAX:
ide_cmd_lba48_transform(s, lba48);
ide_set_sector(s, s->nb_sectors - 1);
s->status = READY_STAT | SEEK_STAT;
ide_set_irq(s);
break;
case WIN_CHECKPOWERMODE1:
case WIN_CHECKPOWERMODE2:
s->nsector = 0xff; /* device active or idle */
s->status = READY_STAT | SEEK_STAT;
ide_set_irq(s);
break;
case WIN_SETFEATURES:
if (!s->bs)
goto abort_cmd;
/* XXX: valid for CDROM ? */
switch(s->feature) {
case 0xcc: /* reverting to power-on defaults enable */
case 0x66: /* reverting to power-on defaults disable */
case 0x02: /* write cache enable */
case 0x82: /* write cache disable */
case 0xaa: /* read look-ahead enable */
case 0x55: /* read look-ahead disable */
case 0x05: /* set advanced power management mode */
case 0x85: /* disable advanced power management mode */
case 0x69: /* NOP */
case 0x67: /* NOP */
case 0x96: /* NOP */
case 0x9a: /* NOP */
case 0x42: /* enable Automatic Acoustic Mode */
case 0xc2: /* disable Automatic Acoustic Mode */
s->status = READY_STAT | SEEK_STAT;
ide_set_irq(s);
break;
case 0x03: { /* set transfer mode */
uint8_t val = s->nsector & 0x07;
switch (s->nsector >> 3) {
case 0x00: /* pio default */
case 0x01: /* pio mode */
put_le16(s->identify_data + 62,0x07);
put_le16(s->identify_data + 63,0x07);
put_le16(s->identify_data + 88,0x3f);
break;
case 0x02: /* sigle word dma mode*/
put_le16(s->identify_data + 62,0x07 | (1 << (val + 8)));
put_le16(s->identify_data + 63,0x07);
put_le16(s->identify_data + 88,0x3f);
break;
case 0x04: /* mdma mode */
put_le16(s->identify_data + 62,0x07);
put_le16(s->identify_data + 63,0x07 | (1 << (val + 8)));
put_le16(s->identify_data + 88,0x3f);
break;
case 0x08: /* udma mode */
put_le16(s->identify_data + 62,0x07);
put_le16(s->identify_data + 63,0x07);
put_le16(s->identify_data + 88,0x3f | (1 << (val + 8)));
break;
default:
goto abort_cmd;
}
s->status = READY_STAT | SEEK_STAT;
ide_set_irq(s);
break;
}
default:
goto abort_cmd;
}
break;
case WIN_FLUSH_CACHE:
case WIN_FLUSH_CACHE_EXT:
if (s->bs)
bdrv_flush(s->bs);
s->status = READY_STAT | SEEK_STAT;
ide_set_irq(s);
break;
case WIN_STANDBY:
case WIN_STANDBY2:
case WIN_STANDBYNOW1:
case WIN_STANDBYNOW2:
case WIN_IDLEIMMEDIATE:
case CFA_IDLEIMMEDIATE:
case WIN_SETIDLE1:
case WIN_SETIDLE2:
case WIN_SLEEPNOW1:
case WIN_SLEEPNOW2:
s->status = READY_STAT;
ide_set_irq(s);
break;
/* ATAPI commands */
case WIN_PIDENTIFY:
if (s->is_cdrom) {
ide_atapi_identify(s);
s->status = READY_STAT | SEEK_STAT;
ide_transfer_start(s, s->io_buffer, 512, ide_transfer_stop);
} else {
ide_abort_command(s);
}
ide_set_irq(s);
break;
case WIN_DIAGNOSE:
ide_set_signature(s);
s->status = READY_STAT | SEEK_STAT;
s->error = 0x01;
ide_set_irq(s);
break;
case WIN_SRST:
if (!s->is_cdrom)
goto abort_cmd;
ide_set_signature(s);
s->status = 0x00; /* NOTE: READY is _not_ set */
s->error = 0x01;
break;
case WIN_PACKETCMD:
if (!s->is_cdrom)
goto abort_cmd;
/* overlapping commands not supported */
if (s->feature & 0x02)
goto abort_cmd;
s->status = READY_STAT | SEEK_STAT;
s->atapi_dma = s->feature & 1;
s->nsector = 1;
ide_transfer_start(s, s->io_buffer, ATAPI_PACKET_SIZE,
ide_atapi_cmd);
break;
/* CF-ATA commands */
case CFA_REQ_EXT_ERROR_CODE:
if (!s->is_cf)
goto abort_cmd;
s->error = 0x09; /* miscellaneous error */
s->status = READY_STAT | SEEK_STAT;
ide_set_irq(s);
break;
case CFA_ERASE_SECTORS:
case CFA_WEAR_LEVEL:
if (!s->is_cf)
goto abort_cmd;
if (val == CFA_WEAR_LEVEL)
s->nsector = 0;
if (val == CFA_ERASE_SECTORS)
s->media_changed = 1;
s->error = 0x00;
s->status = READY_STAT | SEEK_STAT;
ide_set_irq(s);
break;
case CFA_TRANSLATE_SECTOR:
if (!s->is_cf)
goto abort_cmd;
s->error = 0x00;
s->status = READY_STAT | SEEK_STAT;
memset(s->io_buffer, 0, 0x200);
s->io_buffer[0x00] = s->hcyl; /* Cyl MSB */
s->io_buffer[0x01] = s->lcyl; /* Cyl LSB */
s->io_buffer[0x02] = s->select; /* Head */
s->io_buffer[0x03] = s->sector; /* Sector */
s->io_buffer[0x04] = ide_get_sector(s) >> 16; /* LBA MSB */
s->io_buffer[0x05] = ide_get_sector(s) >> 8; /* LBA */
s->io_buffer[0x06] = ide_get_sector(s) >> 0; /* LBA LSB */
s->io_buffer[0x13] = 0x00; /* Erase flag */
s->io_buffer[0x18] = 0x00; /* Hot count */
s->io_buffer[0x19] = 0x00; /* Hot count */
s->io_buffer[0x1a] = 0x01; /* Hot count */
ide_transfer_start(s, s->io_buffer, 0x200, ide_transfer_stop);
ide_set_irq(s);
break;
case CFA_ACCESS_METADATA_STORAGE:
if (!s->is_cf)
goto abort_cmd;
switch (s->feature) {
case 0x02: /* Inquiry Metadata Storage */
ide_cfata_metadata_inquiry(s);
break;
case 0x03: /* Read Metadata Storage */
ide_cfata_metadata_read(s);
break;
case 0x04: /* Write Metadata Storage */
ide_cfata_metadata_write(s);
break;
default:
goto abort_cmd;
}
ide_transfer_start(s, s->io_buffer, 0x200, ide_transfer_stop);
s->status = 0x00; /* NOTE: READY is _not_ set */
ide_set_irq(s);
break;
case IBM_SENSE_CONDITION:
if (!s->is_cf)
goto abort_cmd;
switch (s->feature) {
case 0x01: /* sense temperature in device */
s->nsector = 0x50; /* +20 C */
break;
default:
goto abort_cmd;
}
s->status = READY_STAT | SEEK_STAT;
ide_set_irq(s);
break;
default:
abort_cmd:
ide_abort_command(s);
ide_set_irq(s);
break;
}
}
}
| 10,238 |
qemu | ebc996f3b13004e7272c462254522ba0102f09fe | 0 | _syscall3(int,sys_faccessat,int,dirfd,const char *,pathname,int,mode)
#endif
#if defined(TARGET_NR_fchmodat) && defined(__NR_fchmodat)
_syscall3(int,sys_fchmodat,int,dirfd,const char *,pathname, mode_t,mode)
#endif
#if defined(TARGET_NR_fchownat) && defined(__NR_fchownat) && defined(USE_UID16)
_syscall5(int,sys_fchownat,int,dirfd,const char *,pathname,
uid_t,owner,gid_t,group,int,flags)
#endif
#if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat)) && \
defined(__NR_fstatat64)
_syscall4(int,sys_fstatat64,int,dirfd,const char *,pathname,
struct stat *,buf,int,flags)
#endif
#if defined(TARGET_NR_futimesat) && defined(__NR_futimesat)
_syscall3(int,sys_futimesat,int,dirfd,const char *,pathname,
const struct timeval *,times)
#endif
#if (defined(TARGET_NR_newfstatat) || defined(TARGET_NR_fstatat64) ) && \
defined(__NR_newfstatat)
_syscall4(int,sys_newfstatat,int,dirfd,const char *,pathname,
struct stat *,buf,int,flags)
#endif
#if defined(TARGET_NR_linkat) && defined(__NR_linkat)
_syscall5(int,sys_linkat,int,olddirfd,const char *,oldpath,
int,newdirfd,const char *,newpath,int,flags)
#endif
#if defined(TARGET_NR_mkdirat) && defined(__NR_mkdirat)
_syscall3(int,sys_mkdirat,int,dirfd,const char *,pathname,mode_t,mode)
#endif
#if defined(TARGET_NR_mknodat) && defined(__NR_mknodat)
_syscall4(int,sys_mknodat,int,dirfd,const char *,pathname,
mode_t,mode,dev_t,dev)
#endif
#if defined(TARGET_NR_openat) && defined(__NR_openat)
_syscall4(int,sys_openat,int,dirfd,const char *,pathname,int,flags,mode_t,mode)
#endif
#if defined(TARGET_NR_readlinkat) && defined(__NR_readlinkat)
_syscall4(int,sys_readlinkat,int,dirfd,const char *,pathname,
char *,buf,size_t,bufsize)
#endif
#if defined(TARGET_NR_renameat) && defined(__NR_renameat)
_syscall4(int,sys_renameat,int,olddirfd,const char *,oldpath,
int,newdirfd,const char *,newpath)
#endif
#if defined(TARGET_NR_symlinkat) && defined(__NR_symlinkat)
_syscall3(int,sys_symlinkat,const char *,oldpath,
int,newdirfd,const char *,newpath)
#endif
#if defined(TARGET_NR_unlinkat) && defined(__NR_unlinkat)
_syscall3(int,sys_unlinkat,int,dirfd,const char *,pathname,int,flags)
#endif
#if defined(TARGET_NR_utimensat) && defined(__NR_utimensat)
_syscall4(int,sys_utimensat,int,dirfd,const char *,pathname,
const struct timespec *,tsp,int,flags)
#endif
#endif /* CONFIG_ATFILE */
#ifdef CONFIG_INOTIFY
#include <sys/inotify.h>
#if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
static int sys_inotify_init(void)
{
return (inotify_init());
}
| 10,241 |
qemu | dfd100f242370886bb6732f70f1f7cbd8eb9fedc | 0 | static SocketAddress *sd_socket_address(const char *path,
const char *host, const char *port)
{
SocketAddress *addr = g_new0(SocketAddress, 1);
if (path) {
addr->type = SOCKET_ADDRESS_KIND_UNIX;
addr->u.q_unix.data = g_new0(UnixSocketAddress, 1);
addr->u.q_unix.data->path = g_strdup(path);
} else {
addr->type = SOCKET_ADDRESS_KIND_INET;
addr->u.inet.data = g_new0(InetSocketAddress, 1);
addr->u.inet.data->host = g_strdup(host ?: SD_DEFAULT_ADDR);
addr->u.inet.data->port = g_strdup(port ?: stringify(SD_DEFAULT_PORT));
}
return addr;
}
| 10,242 |
qemu | e2b577e5e548b58740ed5b1d9d12015cb7b233ff | 0 | static void configure_alarms(char const *opt)
{
int i;
int cur = 0;
int count = (sizeof(alarm_timers) / sizeof(*alarm_timers)) - 1;
char *arg;
char *name;
if (!strcmp(opt, "help")) {
show_available_alarms();
exit(0);
}
arg = strdup(opt);
/* Reorder the array */
name = strtok(arg, ",");
while (name) {
struct qemu_alarm_timer tmp;
for (i = 0; i < count; i++) {
if (!strcmp(alarm_timers[i].name, name))
break;
}
if (i == count) {
fprintf(stderr, "Unknown clock %s\n", name);
goto next;
}
if (i < cur)
/* Ignore */
goto next;
/* Swap */
tmp = alarm_timers[i];
alarm_timers[i] = alarm_timers[cur];
alarm_timers[cur] = tmp;
cur++;
next:
name = strtok(NULL, ",");
}
free(arg);
if (cur) {
/* Disable remaining timers */
for (i = cur; i < count; i++)
alarm_timers[i].name = NULL;
}
/* debug */
show_available_alarms();
}
| 10,243 |
qemu | 9c5ce8db2e5c2769ed2fd3d91928dd1853b5ce7c | 0 | static void rtas_ibm_get_system_parameter(PowerPCCPU *cpu,
sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args,
uint32_t nret, target_ulong rets)
{
target_ulong parameter = rtas_ld(args, 0);
target_ulong buffer = rtas_ld(args, 1);
target_ulong length = rtas_ld(args, 2);
target_ulong ret;
switch (parameter) {
case RTAS_SYSPARM_SPLPAR_CHARACTERISTICS: {
char *param_val = g_strdup_printf("MaxEntCap=%d,"
"DesMem=%llu,"
"DesProcs=%d,"
"MaxPlatProcs=%d",
max_cpus,
current_machine->ram_size / M_BYTE,
smp_cpus,
max_cpus);
ret = sysparm_st(buffer, length, param_val, strlen(param_val) + 1);
g_free(param_val);
break;
}
case RTAS_SYSPARM_DIAGNOSTICS_RUN_MODE: {
uint8_t param_val = DIAGNOSTICS_RUN_MODE_DISABLED;
ret = sysparm_st(buffer, length, ¶m_val, sizeof(param_val));
break;
}
case RTAS_SYSPARM_UUID:
ret = sysparm_st(buffer, length, qemu_uuid, (qemu_uuid_set ? 16 : 0));
break;
default:
ret = RTAS_OUT_NOT_SUPPORTED;
}
rtas_st(rets, 0, ret);
}
| 10,245 |
qemu | bc7c08a2c375acb7ae4d433054415588b176d34c | 0 | static void test_qemu_strtoull_trailing(void)
{
const char *str = "123xxx";
char f = 'X';
const char *endptr = &f;
uint64_t res = 999;
int err;
err = qemu_strtoull(str, &endptr, 0, &res);
g_assert_cmpint(err, ==, 0);
g_assert_cmpint(res, ==, 123);
g_assert(endptr == str + 3);
}
| 10,246 |
qemu | b64bd51efa9bbf30df1b2f91477d2805678d0b93 | 0 | void bdrv_set_dirty_bitmap(BdrvDirtyBitmap *bitmap,
int64_t cur_sector, int64_t nr_sectors)
{
assert(bdrv_dirty_bitmap_enabled(bitmap));
hbitmap_set(bitmap->bitmap, cur_sector, nr_sectors);
}
| 10,247 |
qemu | 28143b409f698210d85165ca518235ac7e7c5ac5 | 0 | int kvm_has_xsave(void)
{
return kvm_state->xsave;
}
| 10,248 |
qemu | 63f0f45f2e89b60ff8245fec81328ddfde42a303 | 0 | static BlockDriverAIOCB *curl_aio_readv(BlockDriverState *bs,
int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
BlockDriverCompletionFunc *cb, void *opaque)
{
CURLAIOCB *acb;
acb = qemu_aio_get(&curl_aiocb_info, bs, cb, opaque);
acb->qiov = qiov;
acb->sector_num = sector_num;
acb->nb_sectors = nb_sectors;
acb->bh = qemu_bh_new(curl_readv_bh_cb, acb);
qemu_bh_schedule(acb->bh);
return &acb->common;
}
| 10,249 |
qemu | 2bcf018340cbf233f7145e643fc1bb367f23fd90 | 0 | static int translate_pages(S390CPU *cpu, vaddr addr, int nr_pages,
target_ulong *pages, bool is_write)
{
bool lowprot = is_write && lowprot_enabled(&cpu->env);
uint64_t asc = cpu->env.psw.mask & PSW_MASK_ASC;
CPUS390XState *env = &cpu->env;
int ret, i, pflags;
for (i = 0; i < nr_pages; i++) {
/* Low-address protection? */
if (lowprot && (addr < 512 || (addr >= 4096 && addr < 4096 + 512))) {
trigger_access_exception(env, PGM_PROTECTION, ILEN_AUTO, 0);
return -EACCES;
}
ret = mmu_translate(env, addr, is_write, asc, &pages[i], &pflags, true);
if (ret) {
return ret;
}
if (!address_space_access_valid(&address_space_memory, pages[i],
TARGET_PAGE_SIZE, is_write)) {
program_interrupt(env, PGM_ADDRESSING, ILEN_AUTO);
return -EFAULT;
}
addr += TARGET_PAGE_SIZE;
}
return 0;
}
| 10,250 |
qemu | a7812ae412311d7d47f8aa85656faadac9d64b56 | 0 | static unsigned int dec_move_sr(DisasContext *dc)
{
DIS(fprintf (logfile, "move $s%u, $r%u\n", dc->op2, dc->op1));
cris_cc_mask(dc, 0);
tcg_gen_helper_0_2(helper_movl_reg_sreg,
tcg_const_tl(dc->op1), tcg_const_tl(dc->op2));
return 2;
}
| 10,251 |
qemu | 54fd08136e4ac8b88b88b15c397010e3b0de379f | 0 | static int xen_pt_msixctrl_reg_init(XenPCIPassthroughState *s,
XenPTRegInfo *reg, uint32_t real_offset,
uint32_t *data)
{
PCIDevice *d = &s->dev;
uint16_t reg_field = 0;
/* use I/O device register's value as initial value */
reg_field = pci_get_word(d->config + real_offset);
if (reg_field & PCI_MSIX_FLAGS_ENABLE) {
XEN_PT_LOG(d, "MSIX already enabled, disabling it first\n");
xen_host_pci_set_word(&s->real_device, real_offset,
reg_field & ~PCI_MSIX_FLAGS_ENABLE);
}
s->msix->ctrl_offset = real_offset;
*data = reg->init_val;
return 0;
}
| 10,252 |
qemu | 364031f17932814484657e5551ba12957d993d7e | 0 | static ssize_t v9fs_synth_readlink(FsContext *fs_ctx, V9fsPath *path,
char *buf, size_t bufsz)
{
errno = ENOSYS;
return -1;
}
| 10,254 |
qemu | 4be746345f13e99e468c60acbd3a355e8183e3ce | 0 | static bool cmd_read_dma(IDEState *s, uint8_t cmd)
{
bool lba48 = (cmd == WIN_READDMA_EXT);
if (!s->bs) {
ide_abort_command(s);
return true;
}
ide_cmd_lba48_transform(s, lba48);
ide_sector_start_dma(s, IDE_DMA_READ);
return false;
}
| 10,255 |
qemu | 7bd427d801e1e3293a634d3c83beadaa90ffb911 | 0 | static void timer_start(SpiceTimer *timer, uint32_t ms)
{
qemu_mod_timer(timer->timer, qemu_get_clock(rt_clock) + ms);
}
| 10,256 |
qemu | 4f5e19e6c570459cd524b29b24374f03860f5149 | 0 | static int pci_pbm_init_device(SysBusDevice *dev)
{
APBState *s;
int pci_mem_config, pci_mem_data, apb_config, pci_ioport;
s = FROM_SYSBUS(APBState, dev);
/* apb_config */
apb_config = cpu_register_io_memory(apb_config_read,
apb_config_write, s);
sysbus_init_mmio(dev, 0x40ULL, apb_config);
/* pci_ioport */
pci_ioport = cpu_register_io_memory(pci_apb_ioread,
pci_apb_iowrite, s);
sysbus_init_mmio(dev, 0x10000ULL, pci_ioport);
/* mem_config */
pci_mem_config = cpu_register_io_memory(pci_apb_config_read,
pci_apb_config_write, s);
sysbus_init_mmio(dev, 0x10ULL, pci_mem_config);
/* mem_data */
pci_mem_data = cpu_register_io_memory(pci_apb_read,
pci_apb_write, &s->host_state);
sysbus_init_mmio(dev, 0x10000000ULL, pci_mem_data);
return 0;
}
| 10,257 |
qemu | b29a0341d7ed7e7df4bf77a41db8e614f1ddb645 | 0 | void cpu_reset (CPUMIPSState *env)
{
memset(env, 0, offsetof(CPUMIPSState, breakpoints));
tlb_flush(env, 1);
/* Minimal init */
#if !defined(CONFIG_USER_ONLY)
if (env->hflags & MIPS_HFLAG_BMASK) {
/* If the exception was raised from a delay slot,
* come back to the jump. */
env->CP0_ErrorEPC = env->PC - 4;
env->hflags &= ~MIPS_HFLAG_BMASK;
} else {
env->CP0_ErrorEPC = env->PC;
}
env->PC = (int32_t)0xBFC00000;
#if defined (MIPS_USES_R4K_TLB)
env->CP0_Random = MIPS_TLB_NB - 1;
env->tlb_in_use = MIPS_TLB_NB;
#endif
env->CP0_Wired = 0;
/* SMP not implemented */
env->CP0_EBase = (int32_t)0x80000000;
env->CP0_Config0 = MIPS_CONFIG0;
env->CP0_Config1 = MIPS_CONFIG1;
env->CP0_Config2 = MIPS_CONFIG2;
env->CP0_Config3 = MIPS_CONFIG3;
env->CP0_Status = (1 << CP0St_BEV) | (1 << CP0St_ERL);
env->CP0_WatchLo = 0;
env->hflags = MIPS_HFLAG_ERL;
/* Count register increments in debug mode, EJTAG version 1 */
env->CP0_Debug = (1 << CP0DB_CNT) | (0x1 << CP0DB_VER);
env->CP0_PRid = MIPS_CPU;
#endif
env->exception_index = EXCP_NONE;
#if defined(CONFIG_USER_ONLY)
env->hflags |= MIPS_HFLAG_UM;
env->user_mode_only = 1;
#endif
#ifdef MIPS_USES_FPU
env->fcr0 = MIPS_FCR0;
#endif
/* XXX some guesswork here, values are CPU specific */
env->SYNCI_Step = 16;
env->CCRes = 2;
}
| 10,258 |
qemu | 02acedf93da420713a0c4bbeaf32ce9d734a4332 | 0 | static void gen_neon_unzip_u8(TCGv t0, TCGv t1)
{
TCGv rd, rm, tmp;
rd = new_tmp();
rm = new_tmp();
tmp = new_tmp();
tcg_gen_andi_i32(rd, t0, 0xff);
tcg_gen_shri_i32(tmp, t0, 8);
tcg_gen_andi_i32(tmp, tmp, 0xff00);
tcg_gen_or_i32(rd, rd, tmp);
tcg_gen_shli_i32(tmp, t1, 16);
tcg_gen_andi_i32(tmp, tmp, 0xff0000);
tcg_gen_or_i32(rd, rd, tmp);
tcg_gen_shli_i32(tmp, t1, 8);
tcg_gen_andi_i32(tmp, tmp, 0xff000000);
tcg_gen_or_i32(rd, rd, tmp);
tcg_gen_shri_i32(rm, t0, 8);
tcg_gen_andi_i32(rm, rm, 0xff);
tcg_gen_shri_i32(tmp, t0, 16);
tcg_gen_andi_i32(tmp, tmp, 0xff00);
tcg_gen_or_i32(rm, rm, tmp);
tcg_gen_shli_i32(tmp, t1, 8);
tcg_gen_andi_i32(tmp, tmp, 0xff0000);
tcg_gen_or_i32(rm, rm, tmp);
tcg_gen_andi_i32(tmp, t1, 0xff000000);
tcg_gen_or_i32(t1, rm, tmp);
tcg_gen_mov_i32(t0, rd);
dead_tmp(tmp);
dead_tmp(rm);
dead_tmp(rd);
}
| 10,259 |
qemu | 363db4b249244f31d3c47fbd5a8b128c95ba8fe7 | 0 | static int nic_can_receive(NetClientState *nc)
{
EEPRO100State *s = qemu_get_nic_opaque(nc);
TRACE(RXTX, logout("%p\n", s));
return get_ru_state(s) == ru_ready;
#if 0
return !eepro100_buffer_full(s);
#endif
}
| 10,260 |
qemu | b854bc196f5c4b4e3299c0b0ee63cf828ece9e77 | 0 | int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
target_phys_addr_t addr)
{
return addr >= OMAP_EMIFF_BASE && addr < OMAP_EMIFF_BASE + s->sdram_size;
}
| 10,261 |
qemu | 1bb650420021ced718d550559034a5147c053068 | 0 | PCIDevice *pci_nic_init(NICInfo *nd, const char *default_model,
const char *default_devaddr)
{
const char *devaddr = nd->devaddr ? nd->devaddr : default_devaddr;
PCIBus *bus;
int devfn;
PCIDevice *pci_dev;
DeviceState *dev;
int i;
i = qemu_find_nic_model(nd, pci_nic_models, default_model);
if (i < 0)
return NULL;
bus = pci_get_bus_devfn(&devfn, devaddr);
if (!bus) {
error_report("Invalid PCI device address %s for device %s",
devaddr, pci_nic_names[i]);
return NULL;
}
pci_dev = pci_create(bus, devfn, pci_nic_names[i]);
dev = &pci_dev->qdev;
if (nd->name)
dev->id = qemu_strdup(nd->name);
qdev_set_nic_properties(dev, nd);
if (qdev_init(dev) < 0)
return NULL;
return pci_dev;
}
| 10,262 |
qemu | 4fa4ce7107c6ec432f185307158c5df91ce54308 | 0 | static const char *local_mapped_attr_path(FsContext *ctx,
const char *path, char *buffer)
{
char *dir_name;
char *tmp_path = g_strdup(path);
char *base_name = basename(tmp_path);
/* NULL terminate the directory */
dir_name = tmp_path;
*(base_name - 1) = '\0';
snprintf(buffer, PATH_MAX, "%s/%s/%s/%s",
ctx->fs_root, dir_name, VIRTFS_META_DIR, base_name);
g_free(tmp_path);
return buffer;
}
| 10,263 |
qemu | 9083da1d4c9dfff30d411f8c73ea494e9d78de1b | 0 | RxFilterInfoList *qmp_query_rx_filter(bool has_name, const char *name,
Error **errp)
{
NetClientState *nc;
RxFilterInfoList *filter_list = NULL, *last_entry = NULL;
QTAILQ_FOREACH(nc, &net_clients, next) {
RxFilterInfoList *entry;
RxFilterInfo *info;
if (has_name && strcmp(nc->name, name) != 0) {
continue;
}
/* only query rx-filter information of NIC */
if (nc->info->type != NET_CLIENT_OPTIONS_KIND_NIC) {
if (has_name) {
error_setg(errp, "net client(%s) isn't a NIC", name);
break;
}
continue;
}
if (nc->info->query_rx_filter) {
info = nc->info->query_rx_filter(nc);
entry = g_malloc0(sizeof(*entry));
entry->value = info;
if (!filter_list) {
filter_list = entry;
} else {
last_entry->next = entry;
}
last_entry = entry;
} else if (has_name) {
error_setg(errp, "net client(%s) doesn't support"
" rx-filter querying", name);
break;
}
if (has_name) {
break;
}
}
if (filter_list == NULL && !error_is_set(errp) && has_name) {
error_setg(errp, "invalid net client name: %s", name);
}
return filter_list;
}
| 10,265 |
qemu | cf070d7ec0b8fb21faa9a630ed5cc66f90844a08 | 0 | write_f(int argc, char **argv)
{
struct timeval t1, t2;
int Cflag = 0, pflag = 0, qflag = 0, bflag = 0;
int c, cnt;
char *buf;
int64_t offset;
int count;
/* Some compilers get confused and warn if this is not initialized. */
int total = 0;
int pattern = 0xcd;
while ((c = getopt(argc, argv, "bCpP:q")) != EOF) {
switch (c) {
case 'b':
bflag = 1;
break;
case 'C':
Cflag = 1;
break;
case 'p':
pflag = 1;
break;
case 'P':
pattern = atoi(optarg);
break;
case 'q':
qflag = 1;
break;
default:
return command_usage(&write_cmd);
}
}
if (optind != argc - 2)
return command_usage(&write_cmd);
if (bflag && pflag) {
printf("-b and -p cannot be specified at the same time\n");
return 0;
}
offset = cvtnum(argv[optind]);
if (offset < 0) {
printf("non-numeric length argument -- %s\n", argv[optind]);
return 0;
}
optind++;
count = cvtnum(argv[optind]);
if (count < 0) {
printf("non-numeric length argument -- %s\n", argv[optind]);
return 0;
}
if (!pflag) {
if (offset & 0x1ff) {
printf("offset %lld is not sector aligned\n",
(long long)offset);
return 0;
}
if (count & 0x1ff) {
printf("count %d is not sector aligned\n",
count);
return 0;
}
}
buf = qemu_io_alloc(count, pattern);
gettimeofday(&t1, NULL);
if (pflag)
cnt = do_pwrite(buf, offset, count, &total);
else if (bflag)
cnt = do_save_vmstate(buf, offset, count, &total);
else
cnt = do_write(buf, offset, count, &total);
gettimeofday(&t2, NULL);
if (cnt < 0) {
printf("write failed: %s\n", strerror(-cnt));
goto out;
}
if (qflag)
goto out;
/* Finally, report back -- -C gives a parsable format */
t2 = tsub(t2, t1);
print_report("wrote", &t2, offset, count, total, cnt, Cflag);
out:
qemu_io_free(buf);
return 0;
}
| 10,267 |
qemu | dfde4e6e1a868f60033ece0590b1f75e6c57fa16 | 0 | void framebuffer_update_display(
DisplaySurface *ds,
MemoryRegion *address_space,
hwaddr base,
int cols, /* Width in pixels. */
int rows, /* Height in pixels. */
int src_width, /* Length of source line, in bytes. */
int dest_row_pitch, /* Bytes between adjacent horizontal output pixels. */
int dest_col_pitch, /* Bytes between adjacent vertical output pixels. */
int invalidate, /* nonzero to redraw the whole image. */
drawfn fn,
void *opaque,
int *first_row, /* Input and output. */
int *last_row /* Output only */)
{
hwaddr src_len;
uint8_t *dest;
uint8_t *src;
uint8_t *src_base;
int first, last = 0;
int dirty;
int i;
ram_addr_t addr;
MemoryRegionSection mem_section;
MemoryRegion *mem;
i = *first_row;
*first_row = -1;
src_len = src_width * rows;
mem_section = memory_region_find(address_space, base, src_len);
if (int128_get64(mem_section.size) != src_len ||
!memory_region_is_ram(mem_section.mr)) {
return;
}
mem = mem_section.mr;
assert(mem);
assert(mem_section.offset_within_address_space == base);
memory_region_sync_dirty_bitmap(mem);
src_base = cpu_physical_memory_map(base, &src_len, 0);
/* If we can't map the framebuffer then bail. We could try harder,
but it's not really worth it as dirty flag tracking will probably
already have failed above. */
if (!src_base)
return;
if (src_len != src_width * rows) {
cpu_physical_memory_unmap(src_base, src_len, 0, 0);
return;
}
src = src_base;
dest = surface_data(ds);
if (dest_col_pitch < 0)
dest -= dest_col_pitch * (cols - 1);
if (dest_row_pitch < 0) {
dest -= dest_row_pitch * (rows - 1);
}
first = -1;
addr = mem_section.offset_within_region;
addr += i * src_width;
src += i * src_width;
dest += i * dest_row_pitch;
for (; i < rows; i++) {
dirty = memory_region_get_dirty(mem, addr, src_width,
DIRTY_MEMORY_VGA);
if (dirty || invalidate) {
fn(opaque, dest, src, cols, dest_col_pitch);
if (first == -1)
first = i;
last = i;
}
addr += src_width;
src += src_width;
dest += dest_row_pitch;
}
cpu_physical_memory_unmap(src_base, src_len, 0, 0);
if (first < 0) {
return;
}
memory_region_reset_dirty(mem, mem_section.offset_within_region, src_len,
DIRTY_MEMORY_VGA);
*first_row = first;
*last_row = last;
}
| 10,270 |
qemu | 3468b59e18b179bc63c7ce934de912dfa9596122 | 0 | void tcg_region_reset_all(void)
{
unsigned int i;
qemu_mutex_lock(®ion.lock);
region.current = 0;
region.agg_size_full = 0;
for (i = 0; i < n_tcg_ctxs; i++) {
bool err = tcg_region_initial_alloc__locked(tcg_ctxs[i]);
g_assert(!err);
}
qemu_mutex_unlock(®ion.lock);
}
| 10,271 |
qemu | 1386d4c0f5ce4c4391f2024a36c77eb8fb152e90 | 0 | static int parse_args(int argc, char **argv)
{
const char *r;
int optind;
struct qemu_argument *arginfo;
for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
if (arginfo->env == NULL) {
continue;
}
r = getenv(arginfo->env);
if (r != NULL) {
arginfo->handle_opt(r);
}
}
optind = 1;
for (;;) {
if (optind >= argc) {
break;
}
r = argv[optind];
if (r[0] != '-') {
break;
}
optind++;
r++;
if (!strcmp(r, "-")) {
break;
}
for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
if (!strcmp(r, arginfo->argv)) {
if (optind >= argc) {
usage();
}
arginfo->handle_opt(argv[optind]);
if (arginfo->has_arg) {
optind++;
}
break;
}
}
/* no option matched the current argv */
if (arginfo->handle_opt == NULL) {
usage();
}
}
if (optind >= argc) {
usage();
}
filename = argv[optind];
exec_path = argv[optind];
return optind;
}
| 10,272 |
qemu | 120a9848c2f667bf8f1a06772dc9cde064d92a7d | 0 | void cpu_loop(CPUOpenRISCState *env)
{
CPUState *cs = CPU(openrisc_env_get_cpu(env));
int trapnr, gdbsig;
for (;;) {
cpu_exec_start(cs);
trapnr = cpu_openrisc_exec(cs);
cpu_exec_end(cs);
gdbsig = 0;
switch (trapnr) {
case EXCP_RESET:
qemu_log("\nReset request, exit, pc is %#x\n", env->pc);
exit(EXIT_FAILURE);
break;
case EXCP_BUSERR:
qemu_log("\nBus error, exit, pc is %#x\n", env->pc);
gdbsig = TARGET_SIGBUS;
break;
case EXCP_DPF:
case EXCP_IPF:
cpu_dump_state(cs, stderr, fprintf, 0);
gdbsig = TARGET_SIGSEGV;
break;
case EXCP_TICK:
qemu_log("\nTick time interrupt pc is %#x\n", env->pc);
break;
case EXCP_ALIGN:
qemu_log("\nAlignment pc is %#x\n", env->pc);
gdbsig = TARGET_SIGBUS;
break;
case EXCP_ILLEGAL:
qemu_log("\nIllegal instructionpc is %#x\n", env->pc);
gdbsig = TARGET_SIGILL;
break;
case EXCP_INT:
qemu_log("\nExternal interruptpc is %#x\n", env->pc);
break;
case EXCP_DTLBMISS:
case EXCP_ITLBMISS:
qemu_log("\nTLB miss\n");
break;
case EXCP_RANGE:
qemu_log("\nRange\n");
gdbsig = TARGET_SIGSEGV;
break;
case EXCP_SYSCALL:
env->pc += 4; /* 0xc00; */
env->gpr[11] = do_syscall(env,
env->gpr[11], /* return value */
env->gpr[3], /* r3 - r7 are params */
env->gpr[4],
env->gpr[5],
env->gpr[6],
env->gpr[7],
env->gpr[8], 0, 0);
break;
case EXCP_FPE:
qemu_log("\nFloating point error\n");
break;
case EXCP_TRAP:
qemu_log("\nTrap\n");
gdbsig = TARGET_SIGTRAP;
break;
case EXCP_NR:
qemu_log("\nNR\n");
break;
default:
qemu_log("\nqemu: unhandled CPU exception %#x - aborting\n",
trapnr);
cpu_dump_state(cs, stderr, fprintf, 0);
gdbsig = TARGET_SIGILL;
break;
}
if (gdbsig) {
gdb_handlesig(cs, gdbsig);
if (gdbsig != TARGET_SIGTRAP) {
exit(EXIT_FAILURE);
}
}
process_pending_signals(env);
}
}
| 10,273 |
qemu | 44701ab71ad854e6be567a6294f4665f36651076 | 0 | void msix_save(PCIDevice *dev, QEMUFile *f)
{
unsigned n = dev->msix_entries_nr;
if (!(dev->cap_present & QEMU_PCI_CAP_MSIX)) {
return;
}
qemu_put_buffer(f, dev->msix_table_page, n * PCI_MSIX_ENTRY_SIZE);
qemu_put_buffer(f, dev->msix_table_page + MSIX_PAGE_PENDING, (n + 7) / 8);
}
| 10,275 |
FFmpeg | 03cef34aa66662e2ab3681d290e7c5a6634f4058 | 0 | int qsv_init(AVCodecContext *s)
{
InputStream *ist = s->opaque;
QSVContext *qsv = ist->hwaccel_ctx;
AVQSVContext *hwctx_dec;
int ret;
if (!qsv) {
av_log(NULL, AV_LOG_ERROR, "QSV transcoding is not initialized. "
"-hwaccel qsv should only be used for one-to-one QSV transcoding "
"with no filters.\n");
return AVERROR_BUG;
}
ret = init_opaque_surf(qsv);
if (ret < 0)
return ret;
hwctx_dec = av_qsv_alloc_context();
if (!hwctx_dec)
return AVERROR(ENOMEM);
hwctx_dec->session = qsv->session;
hwctx_dec->iopattern = MFX_IOPATTERN_OUT_OPAQUE_MEMORY;
hwctx_dec->ext_buffers = qsv->ext_buffers;
hwctx_dec->nb_ext_buffers = FF_ARRAY_ELEMS(qsv->ext_buffers);
av_freep(&s->hwaccel_context);
s->hwaccel_context = hwctx_dec;
ist->hwaccel_get_buffer = qsv_get_buffer;
ist->hwaccel_uninit = qsv_uninit;
return 0;
}
| 10,276 |
qemu | 2d0d2837dcf786da415cf4165d37f4ddd684ff57 | 0 | static void default_drive(int enable, int snapshot, int use_scsi,
BlockInterfaceType type, int index,
const char *optstr)
{
QemuOpts *opts;
if (type == IF_DEFAULT) {
type = use_scsi ? IF_SCSI : IF_IDE;
}
if (!enable || drive_get_by_index(type, index)) {
return;
}
opts = drive_add(type, index, NULL, optstr);
if (snapshot) {
drive_enable_snapshot(opts, NULL);
}
if (!drive_init(opts, use_scsi)) {
exit(1);
}
}
| 10,277 |
qemu | 5c8d6f008c0555b54cf10550fa86199a2cfabbca | 0 | void css_generate_css_crws(uint8_t cssid)
{
if (!channel_subsys.sei_pending) {
css_queue_crw(CRW_RSC_CSS, CRW_ERC_EVENT, 0, cssid);
}
channel_subsys.sei_pending = true;
}
| 10,279 |
qemu | d3b12f5dec4b27ebab58fb5797cb67bacced773b | 0 | int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
{
WaitObjects *w = &wait_objects;
if (w->num >= MAXIMUM_WAIT_OBJECTS)
return -1;
w->events[w->num] = handle;
w->func[w->num] = func;
w->opaque[w->num] = opaque;
w->num++;
return 0;
}
| 10,280 |
qemu | fb7b5c0df6e3c501973ce4d57eb2b1d4344a519d | 0 | static void scsi_device_unrealize(SCSIDevice *s, Error **errp)
{
SCSIDeviceClass *sc = SCSI_DEVICE_GET_CLASS(s);
if (sc->unrealize) {
sc->unrealize(s, errp);
}
}
| 10,281 |
qemu | 0f136d9e060ad879d0b840274ddfd1955e24fc10 | 0 | void disas(FILE *out, void *code, unsigned long size)
{
unsigned long pc;
int count;
struct disassemble_info disasm_info;
int (*print_insn)(bfd_vma pc, disassemble_info *info);
INIT_DISASSEMBLE_INFO(disasm_info, out, fprintf);
disasm_info.buffer = code;
disasm_info.buffer_vma = (unsigned long)code;
disasm_info.buffer_length = size;
#ifdef HOST_WORDS_BIGENDIAN
disasm_info.endian = BFD_ENDIAN_BIG;
#else
disasm_info.endian = BFD_ENDIAN_LITTLE;
#endif
#if defined(__i386__)
disasm_info.mach = bfd_mach_i386_i386;
print_insn = print_insn_i386;
#elif defined(__x86_64__)
disasm_info.mach = bfd_mach_x86_64;
print_insn = print_insn_i386;
#elif defined(_ARCH_PPC)
print_insn = print_insn_ppc;
#elif defined(__alpha__)
print_insn = print_insn_alpha;
#elif defined(__sparc__)
print_insn = print_insn_sparc;
#if defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
disasm_info.mach = bfd_mach_sparc_v9b;
#endif
#elif defined(__arm__)
print_insn = print_insn_arm;
#elif defined(__MIPSEB__)
print_insn = print_insn_big_mips;
#elif defined(__MIPSEL__)
print_insn = print_insn_little_mips;
#elif defined(__m68k__)
print_insn = print_insn_m68k;
#elif defined(__s390__)
print_insn = print_insn_s390;
#elif defined(__hppa__)
print_insn = print_insn_hppa;
#elif defined(__ia64__)
print_insn = print_insn_ia64;
#else
fprintf(out, "0x%lx: Asm output not supported on this arch\n",
(long) code);
return;
#endif
for (pc = (unsigned long)code; size > 0; pc += count, size -= count) {
fprintf(out, "0x%08lx: ", pc);
#ifdef __arm__
/* since data is included in the code, it is better to
display code data too */
fprintf(out, "%08x ", (int)bfd_getl32((const bfd_byte *)pc));
#endif
count = print_insn(pc, &disasm_info);
fprintf(out, "\n");
if (count < 0)
break;
}
}
| 10,284 |
qemu | 61007b316cd71ee7333ff7a0a749a8949527575f | 0 | void bdrv_add_key(BlockDriverState *bs, const char *key, Error **errp)
{
if (key) {
if (!bdrv_is_encrypted(bs)) {
error_setg(errp, "Node '%s' is not encrypted",
bdrv_get_device_or_node_name(bs));
} else if (bdrv_set_key(bs, key) < 0) {
error_set(errp, QERR_INVALID_PASSWORD);
}
} else {
if (bdrv_key_required(bs)) {
error_set(errp, ERROR_CLASS_DEVICE_ENCRYPTED,
"'%s' (%s) is encrypted",
bdrv_get_device_or_node_name(bs),
bdrv_get_encrypted_filename(bs));
}
}
}
| 10,285 |
qemu | 679aa175e84f5f80b32b307fce5a6b92729e0e61 | 0 | static void armv7m_nvic_reset(DeviceState *dev)
{
nvic_state *s = NVIC(dev);
NVICClass *nc = NVIC_GET_CLASS(s);
nc->parent_reset(dev);
/* Common GIC reset resets to disabled; the NVIC doesn't have
* per-CPU interfaces so mark our non-existent CPU interface
* as enabled by default, and with a priority mask which allows
* all interrupts through.
*/
s->gic.cpu_enabled[0] = true;
s->gic.priority_mask[0] = 0x100;
/* The NVIC as a whole is always enabled. */
s->gic.enabled = true;
systick_reset(s);
}
| 10,286 |
FFmpeg | 35ee72b1d72a4c8fc0ae4e76ad00a71e831b8dbe | 0 | static void float_to_int16_sse(int16_t *dst, const float *src, long len){
int i;
for(i=0; i<len; i+=4) {
asm volatile(
"cvtps2pi %1, %%mm0 \n\t"
"cvtps2pi %2, %%mm1 \n\t"
"packssdw %%mm1, %%mm0 \n\t"
"movq %%mm0, %0 \n\t"
:"=m"(dst[i])
:"m"(src[i]), "m"(src[i+2])
);
}
asm volatile("emms");
}
| 10,287 |
qemu | 1964a397063967acc5ce71a2a24ed26e74824ee1 | 0 | static int migration_rate_limit(void *opaque)
{
MigrationState *s = opaque;
int ret;
ret = qemu_file_get_error(s->file);
if (ret) {
return ret;
}
if (s->bytes_xfer >= s->xfer_limit) {
return 1;
}
return 0;
}
| 10,289 |
qemu | b7680cb6078bd7294a3dd86473d3f2fdee991dd0 | 0 | void cpu_interrupt(CPUState *env, int mask)
{
int old_mask;
old_mask = env->interrupt_request;
env->interrupt_request |= mask;
#ifndef CONFIG_USER_ONLY
/*
* If called from iothread context, wake the target cpu in
* case its halted.
*/
if (!qemu_cpu_self(env)) {
qemu_cpu_kick(env);
return;
}
#endif
if (use_icount) {
env->icount_decr.u16.high = 0xffff;
#ifndef CONFIG_USER_ONLY
if (!can_do_io(env)
&& (mask & ~old_mask) != 0) {
cpu_abort(env, "Raised interrupt while not in I/O function");
}
#endif
} else {
cpu_unlink_tb(env);
}
}
| 10,290 |
qemu | 8cc580f6a0d8c0e2f590c1472cf5cd8e51761760 | 0 | static inline void tcg_out_tlb_load(TCGContext *s, TCGReg addrlo, TCGReg addrhi,
int mem_index, TCGMemOp s_bits,
tcg_insn_unit **label_ptr, int which)
{
const TCGReg r0 = TCG_REG_L0;
const TCGReg r1 = TCG_REG_L1;
TCGType ttype = TCG_TYPE_I32;
TCGType htype = TCG_TYPE_I32;
int trexw = 0, hrexw = 0;
if (TCG_TARGET_REG_BITS == 64) {
if (TARGET_LONG_BITS == 64) {
ttype = TCG_TYPE_I64;
trexw = P_REXW;
}
if (TCG_TYPE_PTR == TCG_TYPE_I64) {
htype = TCG_TYPE_I64;
hrexw = P_REXW;
}
}
tcg_out_mov(s, htype, r0, addrlo);
tcg_out_mov(s, ttype, r1, addrlo);
tcg_out_shifti(s, SHIFT_SHR + hrexw, r0,
TARGET_PAGE_BITS - CPU_TLB_ENTRY_BITS);
tgen_arithi(s, ARITH_AND + trexw, r1,
TARGET_PAGE_MASK | ((1 << s_bits) - 1), 0);
tgen_arithi(s, ARITH_AND + hrexw, r0,
(CPU_TLB_SIZE - 1) << CPU_TLB_ENTRY_BITS, 0);
tcg_out_modrm_sib_offset(s, OPC_LEA + hrexw, r0, TCG_AREG0, r0, 0,
offsetof(CPUArchState, tlb_table[mem_index][0])
+ which);
/* cmp 0(r0), r1 */
tcg_out_modrm_offset(s, OPC_CMP_GvEv + trexw, r1, r0, 0);
/* Prepare for both the fast path add of the tlb addend, and the slow
path function argument setup. There are two cases worth note:
For 32-bit guest and x86_64 host, MOVL zero-extends the guest address
before the fastpath ADDQ below. For 64-bit guest and x32 host, MOVQ
copies the entire guest address for the slow path, while truncation
for the 32-bit host happens with the fastpath ADDL below. */
tcg_out_mov(s, ttype, r1, addrlo);
/* jne slow_path */
tcg_out_opc(s, OPC_JCC_long + JCC_JNE, 0, 0, 0);
label_ptr[0] = s->code_ptr;
s->code_ptr += 4;
if (TARGET_LONG_BITS > TCG_TARGET_REG_BITS) {
/* cmp 4(r0), addrhi */
tcg_out_modrm_offset(s, OPC_CMP_GvEv, addrhi, r0, 4);
/* jne slow_path */
tcg_out_opc(s, OPC_JCC_long + JCC_JNE, 0, 0, 0);
label_ptr[1] = s->code_ptr;
s->code_ptr += 4;
}
/* TLB Hit. */
/* add addend(r0), r1 */
tcg_out_modrm_offset(s, OPC_ADD_GvEv + hrexw, r1, r0,
offsetof(CPUTLBEntry, addend) - which);
}
| 10,292 |
qemu | a7812ae412311d7d47f8aa85656faadac9d64b56 | 0 | static inline void t_gen_sext(TCGv d, TCGv s, int size)
{
if (size == 1)
tcg_gen_ext8s_i32(d, s);
else if (size == 2)
tcg_gen_ext16s_i32(d, s);
else if(GET_TCGV(d) != GET_TCGV(s))
tcg_gen_mov_tl(d, s);
}
| 10,294 |
qemu | 3954d33ab7f82f5a5fa0ced231849920265a5fec | 0 | static int vio_make_devnode(VIOsPAPRDevice *dev,
void *fdt)
{
VIOsPAPRDeviceInfo *info = (VIOsPAPRDeviceInfo *)qdev_get_info(&dev->qdev);
int vdevice_off, node_off, ret;
char *dt_name;
vdevice_off = fdt_path_offset(fdt, "/vdevice");
if (vdevice_off < 0) {
return vdevice_off;
}
dt_name = vio_format_dev_name(dev);
if (!dt_name) {
return -ENOMEM;
}
node_off = fdt_add_subnode(fdt, vdevice_off, dt_name);
free(dt_name);
if (node_off < 0) {
return node_off;
}
ret = fdt_setprop_cell(fdt, node_off, "reg", dev->reg);
if (ret < 0) {
return ret;
}
if (info->dt_type) {
ret = fdt_setprop_string(fdt, node_off, "device_type",
info->dt_type);
if (ret < 0) {
return ret;
}
}
if (info->dt_compatible) {
ret = fdt_setprop_string(fdt, node_off, "compatible",
info->dt_compatible);
if (ret < 0) {
return ret;
}
}
if (dev->qirq) {
uint32_t ints_prop[] = {cpu_to_be32(dev->vio_irq_num), 0};
ret = fdt_setprop(fdt, node_off, "interrupts", ints_prop,
sizeof(ints_prop));
if (ret < 0) {
return ret;
}
}
if (dev->rtce_window_size) {
uint32_t dma_prop[] = {cpu_to_be32(dev->reg),
0, 0,
0, cpu_to_be32(dev->rtce_window_size)};
ret = fdt_setprop_cell(fdt, node_off, "ibm,#dma-address-cells", 2);
if (ret < 0) {
return ret;
}
ret = fdt_setprop_cell(fdt, node_off, "ibm,#dma-size-cells", 2);
if (ret < 0) {
return ret;
}
ret = fdt_setprop(fdt, node_off, "ibm,my-dma-window", dma_prop,
sizeof(dma_prop));
if (ret < 0) {
return ret;
}
}
if (info->devnode) {
ret = (info->devnode)(dev, fdt, node_off);
if (ret < 0) {
return ret;
}
}
return node_off;
}
| 10,296 |
qemu | cb11e7b2f3878575f23d49454c02d8dce35c8d35 | 0 | void mkimg(const char *file, const char *fmt, unsigned size_mb)
{
gchar *cli;
bool ret;
int rc;
GError *err = NULL;
char *qemu_img_path;
gchar *out, *out2;
char *abs_path;
qemu_img_path = getenv("QTEST_QEMU_IMG");
abs_path = realpath(qemu_img_path, NULL);
assert(qemu_img_path);
cli = g_strdup_printf("%s create -f %s %s %uM", abs_path,
fmt, file, size_mb);
ret = g_spawn_command_line_sync(cli, &out, &out2, &rc, &err);
if (err) {
fprintf(stderr, "%s\n", err->message);
g_error_free(err);
}
g_assert(ret && !err);
/* In glib 2.34, we have g_spawn_check_exit_status. in 2.12, we don't.
* glib 2.43.91 implementation assumes that any non-zero is an error for
* windows, but uses extra precautions for Linux. However,
* 0 is only possible if the program exited normally, so that should be
* sufficient for our purposes on all platforms, here. */
if (rc) {
fprintf(stderr, "qemu-img returned status code %d\n", rc);
}
g_assert(!rc);
g_free(out);
g_free(out2);
g_free(cli);
free(abs_path);
}
| 10,297 |
FFmpeg | d1adad3cca407f493c3637e20ecd4f7124e69212 | 0 | static inline void RENAME(rgb32tobgr15)(const uint8_t *src, uint8_t *dst, long src_size)
{
const uint8_t *s = src;
const uint8_t *end;
#if COMPILE_TEMPLATE_MMX
const uint8_t *mm_end;
#endif
uint16_t *d = (uint16_t *)dst;
end = s + src_size;
#if COMPILE_TEMPLATE_MMX
__asm__ volatile(PREFETCH" %0"::"m"(*src):"memory");
__asm__ volatile(
"movq %0, %%mm7 \n\t"
"movq %1, %%mm6 \n\t"
::"m"(red_15mask),"m"(green_15mask));
mm_end = end - 15;
while (s < mm_end) {
__asm__ volatile(
PREFETCH" 32%1 \n\t"
"movd %1, %%mm0 \n\t"
"movd 4%1, %%mm3 \n\t"
"punpckldq 8%1, %%mm0 \n\t"
"punpckldq 12%1, %%mm3 \n\t"
"movq %%mm0, %%mm1 \n\t"
"movq %%mm0, %%mm2 \n\t"
"movq %%mm3, %%mm4 \n\t"
"movq %%mm3, %%mm5 \n\t"
"psllq $7, %%mm0 \n\t"
"psllq $7, %%mm3 \n\t"
"pand %%mm7, %%mm0 \n\t"
"pand %%mm7, %%mm3 \n\t"
"psrlq $6, %%mm1 \n\t"
"psrlq $6, %%mm4 \n\t"
"pand %%mm6, %%mm1 \n\t"
"pand %%mm6, %%mm4 \n\t"
"psrlq $19, %%mm2 \n\t"
"psrlq $19, %%mm5 \n\t"
"pand %2, %%mm2 \n\t"
"pand %2, %%mm5 \n\t"
"por %%mm1, %%mm0 \n\t"
"por %%mm4, %%mm3 \n\t"
"por %%mm2, %%mm0 \n\t"
"por %%mm5, %%mm3 \n\t"
"psllq $16, %%mm3 \n\t"
"por %%mm3, %%mm0 \n\t"
MOVNTQ" %%mm0, %0 \n\t"
:"=m"(*d):"m"(*s),"m"(blue_15mask):"memory");
d += 4;
s += 16;
}
__asm__ volatile(SFENCE:::"memory");
__asm__ volatile(EMMS:::"memory");
#endif
while (s < end) {
register int rgb = *(const uint32_t*)s; s += 4;
*d++ = ((rgb&0xF8)<<7) + ((rgb&0xF800)>>6) + ((rgb&0xF80000)>>19);
}
}
| 10,298 |
qemu | 42a268c241183877192c376d03bd9b6d527407c7 | 0 | static void cris_alu_op_exec(DisasContext *dc, int op,
TCGv dst, TCGv a, TCGv b, int size)
{
/* Emit the ALU insns. */
switch (op) {
case CC_OP_ADD:
tcg_gen_add_tl(dst, a, b);
/* Extended arithmetics. */
t_gen_addx_carry(dc, dst);
break;
case CC_OP_ADDC:
tcg_gen_add_tl(dst, a, b);
t_gen_add_flag(dst, 0); /* C_FLAG. */
break;
case CC_OP_MCP:
tcg_gen_add_tl(dst, a, b);
t_gen_add_flag(dst, 8); /* R_FLAG. */
break;
case CC_OP_SUB:
tcg_gen_sub_tl(dst, a, b);
/* Extended arithmetics. */
t_gen_subx_carry(dc, dst);
break;
case CC_OP_MOVE:
tcg_gen_mov_tl(dst, b);
break;
case CC_OP_OR:
tcg_gen_or_tl(dst, a, b);
break;
case CC_OP_AND:
tcg_gen_and_tl(dst, a, b);
break;
case CC_OP_XOR:
tcg_gen_xor_tl(dst, a, b);
break;
case CC_OP_LSL:
t_gen_lsl(dst, a, b);
break;
case CC_OP_LSR:
t_gen_lsr(dst, a, b);
break;
case CC_OP_ASR:
t_gen_asr(dst, a, b);
break;
case CC_OP_NEG:
tcg_gen_neg_tl(dst, b);
/* Extended arithmetics. */
t_gen_subx_carry(dc, dst);
break;
case CC_OP_LZ:
gen_helper_lz(dst, b);
break;
case CC_OP_MULS:
tcg_gen_muls2_tl(dst, cpu_PR[PR_MOF], a, b);
break;
case CC_OP_MULU:
tcg_gen_mulu2_tl(dst, cpu_PR[PR_MOF], a, b);
break;
case CC_OP_DSTEP:
t_gen_cris_dstep(dst, a, b);
break;
case CC_OP_MSTEP:
t_gen_cris_mstep(dst, a, b, cpu_PR[PR_CCS]);
break;
case CC_OP_BOUND:
{
int l1;
l1 = gen_new_label();
tcg_gen_mov_tl(dst, a);
tcg_gen_brcond_tl(TCG_COND_LEU, a, b, l1);
tcg_gen_mov_tl(dst, b);
gen_set_label(l1);
}
break;
case CC_OP_CMP:
tcg_gen_sub_tl(dst, a, b);
/* Extended arithmetics. */
t_gen_subx_carry(dc, dst);
break;
default:
qemu_log("illegal ALU op.\n");
BUG();
break;
}
if (size == 1) {
tcg_gen_andi_tl(dst, dst, 0xff);
} else if (size == 2) {
tcg_gen_andi_tl(dst, dst, 0xffff);
}
}
| 10,299 |
qemu | 6a8f9661dc3c088ed0d2f5b41d940190407cbdc5 | 0 | static void blockdev_backup_prepare(BlkTransactionState *common, Error **errp)
{
BlockdevBackupState *state = DO_UPCAST(BlockdevBackupState, common, common);
BlockdevBackup *backup;
BlockBackend *blk, *target;
Error *local_err = NULL;
assert(common->action->kind == TRANSACTION_ACTION_KIND_BLOCKDEV_BACKUP);
backup = common->action->blockdev_backup;
blk = blk_by_name(backup->device);
if (!blk) {
error_setg(errp, "Device '%s' not found", backup->device);
return;
}
if (!blk_is_available(blk)) {
error_setg(errp, QERR_DEVICE_HAS_NO_MEDIUM, backup->device);
return;
}
target = blk_by_name(backup->target);
if (!target) {
error_setg(errp, "Device '%s' not found", backup->target);
return;
}
/* AioContext is released in .clean() */
state->aio_context = blk_get_aio_context(blk);
if (state->aio_context != blk_get_aio_context(target)) {
state->aio_context = NULL;
error_setg(errp, "Backup between two IO threads is not implemented");
return;
}
aio_context_acquire(state->aio_context);
state->bs = blk_bs(blk);
bdrv_drained_begin(state->bs);
qmp_blockdev_backup(backup->device, backup->target,
backup->sync,
backup->has_speed, backup->speed,
backup->has_on_source_error, backup->on_source_error,
backup->has_on_target_error, backup->on_target_error,
&local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
state->job = state->bs->job;
}
| 10,300 |
qemu | abd696e4f74a9d30801c6ae2693efe4e5979c2f2 | 0 | static int zipl_magic(uint8_t *ptr)
{
uint32_t *p = (void*)ptr;
uint32_t *z = (void*)ZIPL_MAGIC;
if (*p != *z) {
debug_print_int("invalid magic", *p);
virtio_panic("invalid magic");
}
return 1;
}
| 10,301 |
qemu | bf937a7965c1d1a6dce4f615d0ead2e2ab505004 | 0 | static void bt_hid_interrupt_sdu(void *opaque, const uint8_t *data, int len)
{
struct bt_hid_device_s *hid = opaque;
if (len > BT_HID_MTU || len < 1)
goto bad;
if ((data[0] & 3) != BT_DATA_OUTPUT)
goto bad;
if ((data[0] >> 4) == BT_DATA) {
if (hid->intr_state)
goto bad;
hid->data_type = BT_DATA_OUTPUT;
hid->intrdataout.len = 0;
} else if ((data[0] >> 4) == BT_DATC) {
if (!hid->intr_state)
goto bad;
} else
goto bad;
memcpy(hid->intrdataout.buffer + hid->intrdataout.len, data + 1, len - 1);
hid->intrdataout.len += len - 1;
hid->intr_state = (len == BT_HID_MTU);
if (!hid->intr_state) {
memcpy(hid->dataout.buffer, hid->intrdataout.buffer,
hid->dataout.len = hid->intrdataout.len);
bt_hid_out(hid);
}
return;
bad:
fprintf(stderr, "%s: bad transaction on Interrupt channel.\n",
__func__);
}
| 10,302 |
qemu | 7385ac0ba2456159a52b9b2cbb5f6c71921d0c23 | 0 | static void decode_opc (CPUState *env, DisasContext *ctx)
{
int32_t offset;
int rs, rt, rd, sa;
uint32_t op, op1, op2;
int16_t imm;
/* make sure instructions are on a word boundary */
if (ctx->pc & 0x3) {
env->CP0_BadVAddr = ctx->pc;
generate_exception(ctx, EXCP_AdEL);
return;
}
if ((ctx->hflags & MIPS_HFLAG_BMASK) == MIPS_HFLAG_BL) {
int l1;
/* Handle blikely not taken case */
MIPS_DEBUG("blikely condition (" TARGET_FMT_lx ")", ctx->pc + 4);
l1 = gen_new_label();
gen_op_jnz_T2(l1);
gen_op_save_state(ctx->hflags & ~MIPS_HFLAG_BMASK);
gen_goto_tb(ctx, 1, ctx->pc + 4);
gen_set_label(l1);
}
op = MASK_OP_MAJOR(ctx->opcode);
rs = (ctx->opcode >> 21) & 0x1f;
rt = (ctx->opcode >> 16) & 0x1f;
rd = (ctx->opcode >> 11) & 0x1f;
sa = (ctx->opcode >> 6) & 0x1f;
imm = (int16_t)ctx->opcode;
switch (op) {
case OPC_SPECIAL:
op1 = MASK_SPECIAL(ctx->opcode);
switch (op1) {
case OPC_SLL: /* Arithmetic with immediate */
case OPC_SRL ... OPC_SRA:
gen_arith_imm(env, ctx, op1, rd, rt, sa);
break;
case OPC_MOVZ ... OPC_MOVN:
check_insn(env, ctx, ISA_MIPS4 | ISA_MIPS32);
case OPC_SLLV: /* Arithmetic */
case OPC_SRLV ... OPC_SRAV:
case OPC_ADD ... OPC_NOR:
case OPC_SLT ... OPC_SLTU:
gen_arith(env, ctx, op1, rd, rs, rt);
break;
case OPC_MULT ... OPC_DIVU:
gen_muldiv(ctx, op1, rs, rt);
break;
case OPC_JR ... OPC_JALR:
gen_compute_branch(ctx, op1, rs, rd, sa);
return;
case OPC_TGE ... OPC_TEQ: /* Traps */
case OPC_TNE:
gen_trap(ctx, op1, rs, rt, -1);
break;
case OPC_MFHI: /* Move from HI/LO */
case OPC_MFLO:
gen_HILO(ctx, op1, rd);
break;
case OPC_MTHI:
case OPC_MTLO: /* Move to HI/LO */
gen_HILO(ctx, op1, rs);
break;
case OPC_PMON: /* Pmon entry point, also R4010 selsl */
#ifdef MIPS_STRICT_STANDARD
MIPS_INVAL("PMON / selsl");
generate_exception(ctx, EXCP_RI);
#else
gen_op_pmon(sa);
#endif
break;
case OPC_SYSCALL:
generate_exception(ctx, EXCP_SYSCALL);
break;
case OPC_BREAK:
generate_exception(ctx, EXCP_BREAK);
break;
case OPC_SPIM:
#ifdef MIPS_STRICT_STANDARD
MIPS_INVAL("SPIM");
generate_exception(ctx, EXCP_RI);
#else
/* Implemented as RI exception for now. */
MIPS_INVAL("spim (unofficial)");
generate_exception(ctx, EXCP_RI);
#endif
break;
case OPC_SYNC:
/* Treat as NOP. */
break;
case OPC_MOVCI:
check_insn(env, ctx, ISA_MIPS4 | ISA_MIPS32);
if (env->CP0_Config1 & (1 << CP0C1_FP)) {
save_cpu_state(ctx, 1);
check_cp1_enabled(ctx);
gen_movci(ctx, rd, rs, (ctx->opcode >> 18) & 0x7,
(ctx->opcode >> 16) & 1);
} else {
generate_exception_err(ctx, EXCP_CpU, 1);
}
break;
#if defined(TARGET_MIPSN32) || defined(TARGET_MIPS64)
/* MIPS64 specific opcodes */
case OPC_DSLL:
case OPC_DSRL ... OPC_DSRA:
case OPC_DSLL32:
case OPC_DSRL32 ... OPC_DSRA32:
check_insn(env, ctx, ISA_MIPS3);
check_mips_64(ctx);
gen_arith_imm(env, ctx, op1, rd, rt, sa);
break;
case OPC_DSLLV:
case OPC_DSRLV ... OPC_DSRAV:
case OPC_DADD ... OPC_DSUBU:
check_insn(env, ctx, ISA_MIPS3);
check_mips_64(ctx);
gen_arith(env, ctx, op1, rd, rs, rt);
break;
case OPC_DMULT ... OPC_DDIVU:
check_insn(env, ctx, ISA_MIPS3);
check_mips_64(ctx);
gen_muldiv(ctx, op1, rs, rt);
break;
#endif
default: /* Invalid */
MIPS_INVAL("special");
generate_exception(ctx, EXCP_RI);
break;
}
break;
case OPC_SPECIAL2:
op1 = MASK_SPECIAL2(ctx->opcode);
switch (op1) {
case OPC_MADD ... OPC_MADDU: /* Multiply and add/sub */
case OPC_MSUB ... OPC_MSUBU:
check_insn(env, ctx, ISA_MIPS32);
gen_muldiv(ctx, op1, rs, rt);
break;
case OPC_MUL:
gen_arith(env, ctx, op1, rd, rs, rt);
break;
case OPC_CLZ ... OPC_CLO:
check_insn(env, ctx, ISA_MIPS32);
gen_cl(ctx, op1, rd, rs);
break;
case OPC_SDBBP:
/* XXX: not clear which exception should be raised
* when in debug mode...
*/
check_insn(env, ctx, ISA_MIPS32);
if (!(ctx->hflags & MIPS_HFLAG_DM)) {
generate_exception(ctx, EXCP_DBp);
} else {
generate_exception(ctx, EXCP_DBp);
}
/* Treat as NOP. */
break;
#if defined(TARGET_MIPSN32) || defined(TARGET_MIPS64)
case OPC_DCLZ ... OPC_DCLO:
check_insn(env, ctx, ISA_MIPS64);
check_mips_64(ctx);
gen_cl(ctx, op1, rd, rs);
break;
#endif
default: /* Invalid */
MIPS_INVAL("special2");
generate_exception(ctx, EXCP_RI);
break;
}
break;
case OPC_SPECIAL3:
op1 = MASK_SPECIAL3(ctx->opcode);
switch (op1) {
case OPC_EXT:
case OPC_INS:
check_insn(env, ctx, ISA_MIPS32R2);
gen_bitops(ctx, op1, rt, rs, sa, rd);
break;
case OPC_BSHFL:
check_insn(env, ctx, ISA_MIPS32R2);
op2 = MASK_BSHFL(ctx->opcode);
switch (op2) {
case OPC_WSBH:
GEN_LOAD_REG_TN(T1, rt);
gen_op_wsbh();
break;
case OPC_SEB:
GEN_LOAD_REG_TN(T1, rt);
gen_op_seb();
break;
case OPC_SEH:
GEN_LOAD_REG_TN(T1, rt);
gen_op_seh();
break;
default: /* Invalid */
MIPS_INVAL("bshfl");
generate_exception(ctx, EXCP_RI);
break;
}
GEN_STORE_TN_REG(rd, T0);
break;
case OPC_RDHWR:
check_insn(env, ctx, ISA_MIPS32R2);
switch (rd) {
case 0:
save_cpu_state(ctx, 1);
gen_op_rdhwr_cpunum();
break;
case 1:
save_cpu_state(ctx, 1);
gen_op_rdhwr_synci_step();
break;
case 2:
save_cpu_state(ctx, 1);
gen_op_rdhwr_cc();
break;
case 3:
save_cpu_state(ctx, 1);
gen_op_rdhwr_ccres();
break;
case 29:
#if defined (CONFIG_USER_ONLY)
gen_op_tls_value();
break;
#endif
default: /* Invalid */
MIPS_INVAL("rdhwr");
generate_exception(ctx, EXCP_RI);
break;
}
GEN_STORE_TN_REG(rt, T0);
break;
case OPC_FORK:
check_mips_mt(env, ctx);
GEN_LOAD_REG_TN(T0, rt);
GEN_LOAD_REG_TN(T1, rs);
gen_op_fork();
break;
case OPC_YIELD:
check_mips_mt(env, ctx);
GEN_LOAD_REG_TN(T0, rs);
gen_op_yield();
GEN_STORE_TN_REG(rd, T0);
break;
#if defined(TARGET_MIPSN32) || defined(TARGET_MIPS64)
case OPC_DEXTM ... OPC_DEXT:
case OPC_DINSM ... OPC_DINS:
check_insn(env, ctx, ISA_MIPS64R2);
check_mips_64(ctx);
gen_bitops(ctx, op1, rt, rs, sa, rd);
break;
case OPC_DBSHFL:
check_insn(env, ctx, ISA_MIPS64R2);
check_mips_64(ctx);
op2 = MASK_DBSHFL(ctx->opcode);
switch (op2) {
case OPC_DSBH:
GEN_LOAD_REG_TN(T1, rt);
gen_op_dsbh();
break;
case OPC_DSHD:
GEN_LOAD_REG_TN(T1, rt);
gen_op_dshd();
break;
default: /* Invalid */
MIPS_INVAL("dbshfl");
generate_exception(ctx, EXCP_RI);
break;
}
GEN_STORE_TN_REG(rd, T0);
#endif
default: /* Invalid */
MIPS_INVAL("special3");
generate_exception(ctx, EXCP_RI);
break;
}
break;
case OPC_REGIMM:
op1 = MASK_REGIMM(ctx->opcode);
switch (op1) {
case OPC_BLTZ ... OPC_BGEZL: /* REGIMM branches */
case OPC_BLTZAL ... OPC_BGEZALL:
gen_compute_branch(ctx, op1, rs, -1, imm << 2);
return;
case OPC_TGEI ... OPC_TEQI: /* REGIMM traps */
case OPC_TNEI:
gen_trap(ctx, op1, rs, -1, imm);
break;
case OPC_SYNCI:
check_insn(env, ctx, ISA_MIPS32R2);
/* Treat as NOP. */
break;
default: /* Invalid */
MIPS_INVAL("regimm");
generate_exception(ctx, EXCP_RI);
break;
}
break;
case OPC_CP0:
check_cp0_enabled(ctx);
op1 = MASK_CP0(ctx->opcode);
switch (op1) {
case OPC_MFC0:
case OPC_MTC0:
case OPC_MFTR:
case OPC_MTTR:
#if defined(TARGET_MIPSN32) || defined(TARGET_MIPS64)
case OPC_DMFC0:
case OPC_DMTC0:
#endif
gen_cp0(env, ctx, op1, rt, rd);
break;
case OPC_C0_FIRST ... OPC_C0_LAST:
gen_cp0(env, ctx, MASK_C0(ctx->opcode), rt, rd);
break;
case OPC_MFMC0:
op2 = MASK_MFMC0(ctx->opcode);
switch (op2) {
case OPC_DMT:
check_mips_mt(env, ctx);
gen_op_dmt();
break;
case OPC_EMT:
check_mips_mt(env, ctx);
gen_op_emt();
break;
case OPC_DVPE:
check_mips_mt(env, ctx);
gen_op_dvpe();
break;
case OPC_EVPE:
check_mips_mt(env, ctx);
gen_op_evpe();
break;
case OPC_DI:
check_insn(env, ctx, ISA_MIPS32R2);
save_cpu_state(ctx, 1);
gen_op_di();
/* Stop translation as we may have switched the execution mode */
ctx->bstate = BS_STOP;
break;
case OPC_EI:
check_insn(env, ctx, ISA_MIPS32R2);
save_cpu_state(ctx, 1);
gen_op_ei();
/* Stop translation as we may have switched the execution mode */
ctx->bstate = BS_STOP;
break;
default: /* Invalid */
MIPS_INVAL("mfmc0");
generate_exception(ctx, EXCP_RI);
break;
}
GEN_STORE_TN_REG(rt, T0);
break;
case OPC_RDPGPR:
check_insn(env, ctx, ISA_MIPS32R2);
GEN_LOAD_SRSREG_TN(T0, rt);
GEN_STORE_TN_REG(rd, T0);
break;
case OPC_WRPGPR:
check_insn(env, ctx, ISA_MIPS32R2);
GEN_LOAD_REG_TN(T0, rt);
GEN_STORE_TN_SRSREG(rd, T0);
break;
default:
MIPS_INVAL("cp0");
generate_exception(ctx, EXCP_RI);
break;
}
break;
case OPC_ADDI ... OPC_LUI: /* Arithmetic with immediate opcode */
gen_arith_imm(env, ctx, op, rt, rs, imm);
break;
case OPC_J ... OPC_JAL: /* Jump */
offset = (int32_t)(ctx->opcode & 0x3FFFFFF) << 2;
gen_compute_branch(ctx, op, rs, rt, offset);
return;
case OPC_BEQ ... OPC_BGTZ: /* Branch */
case OPC_BEQL ... OPC_BGTZL:
gen_compute_branch(ctx, op, rs, rt, imm << 2);
return;
case OPC_LB ... OPC_LWR: /* Load and stores */
case OPC_SB ... OPC_SW:
case OPC_SWR:
case OPC_LL:
case OPC_SC:
gen_ldst(ctx, op, rt, rs, imm);
break;
case OPC_CACHE:
check_insn(env, ctx, ISA_MIPS3 | ISA_MIPS32);
/* Treat as NOP. */
break;
case OPC_PREF:
check_insn(env, ctx, ISA_MIPS4 | ISA_MIPS32);
/* Treat as NOP. */
break;
/* Floating point (COP1). */
case OPC_LWC1:
case OPC_LDC1:
case OPC_SWC1:
case OPC_SDC1:
if (env->CP0_Config1 & (1 << CP0C1_FP)) {
save_cpu_state(ctx, 1);
check_cp1_enabled(ctx);
gen_flt_ldst(ctx, op, rt, rs, imm);
} else {
generate_exception_err(ctx, EXCP_CpU, 1);
}
break;
case OPC_CP1:
if (env->CP0_Config1 & (1 << CP0C1_FP)) {
save_cpu_state(ctx, 1);
check_cp1_enabled(ctx);
op1 = MASK_CP1(ctx->opcode);
switch (op1) {
case OPC_MFHC1:
case OPC_MTHC1:
check_insn(env, ctx, ISA_MIPS32R2);
case OPC_MFC1:
case OPC_CFC1:
case OPC_MTC1:
case OPC_CTC1:
gen_cp1(ctx, op1, rt, rd);
break;
#if defined(TARGET_MIPSN32) || defined(TARGET_MIPS64)
case OPC_DMFC1:
case OPC_DMTC1:
check_insn(env, ctx, ISA_MIPS3);
gen_cp1(ctx, op1, rt, rd);
break;
#endif
case OPC_BC1ANY2:
case OPC_BC1ANY4:
check_cp1_3d(env, ctx);
/* fall through */
case OPC_BC1:
gen_compute_branch1(env, ctx, MASK_BC1(ctx->opcode),
(rt >> 2) & 0x7, imm << 2);
return;
case OPC_S_FMT:
case OPC_D_FMT:
case OPC_W_FMT:
case OPC_L_FMT:
case OPC_PS_FMT:
gen_farith(ctx, MASK_CP1_FUNC(ctx->opcode), rt, rd, sa,
(imm >> 8) & 0x7);
break;
default:
MIPS_INVAL("cp1");
generate_exception (ctx, EXCP_RI);
break;
}
} else {
generate_exception_err(ctx, EXCP_CpU, 1);
}
break;
/* COP2. */
case OPC_LWC2:
case OPC_LDC2:
case OPC_SWC2:
case OPC_SDC2:
case OPC_CP2:
/* COP2: Not implemented. */
generate_exception_err(ctx, EXCP_CpU, 2);
break;
case OPC_CP3:
if (env->CP0_Config1 & (1 << CP0C1_FP)) {
save_cpu_state(ctx, 1);
check_cp1_enabled(ctx);
op1 = MASK_CP3(ctx->opcode);
switch (op1) {
case OPC_LWXC1:
case OPC_LDXC1:
case OPC_LUXC1:
case OPC_SWXC1:
case OPC_SDXC1:
case OPC_SUXC1:
gen_flt3_ldst(ctx, op1, sa, rd, rs, rt);
break;
case OPC_PREFX:
/* Treat as NOP. */
break;
case OPC_ALNV_PS:
case OPC_MADD_S:
case OPC_MADD_D:
case OPC_MADD_PS:
case OPC_MSUB_S:
case OPC_MSUB_D:
case OPC_MSUB_PS:
case OPC_NMADD_S:
case OPC_NMADD_D:
case OPC_NMADD_PS:
case OPC_NMSUB_S:
case OPC_NMSUB_D:
case OPC_NMSUB_PS:
gen_flt3_arith(ctx, op1, sa, rs, rd, rt);
break;
default:
MIPS_INVAL("cp3");
generate_exception (ctx, EXCP_RI);
break;
}
} else {
generate_exception_err(ctx, EXCP_CpU, 1);
}
break;
#if defined(TARGET_MIPSN32) || defined(TARGET_MIPS64)
/* MIPS64 opcodes */
case OPC_LWU:
case OPC_LDL ... OPC_LDR:
case OPC_SDL ... OPC_SDR:
case OPC_LLD:
case OPC_LD:
case OPC_SCD:
case OPC_SD:
check_insn(env, ctx, ISA_MIPS3);
check_mips_64(ctx);
gen_ldst(ctx, op, rt, rs, imm);
break;
case OPC_DADDI ... OPC_DADDIU:
check_insn(env, ctx, ISA_MIPS3);
check_mips_64(ctx);
gen_arith_imm(env, ctx, op, rt, rs, imm);
break;
#endif
case OPC_JALX:
check_insn(env, ctx, ASE_MIPS16);
/* MIPS16: Not implemented. */
case OPC_MDMX:
check_insn(env, ctx, ASE_MDMX);
/* MDMX: Not implemented. */
default: /* Invalid */
MIPS_INVAL("major opcode");
generate_exception(ctx, EXCP_RI);
break;
}
if (ctx->hflags & MIPS_HFLAG_BMASK) {
int hflags = ctx->hflags & MIPS_HFLAG_BMASK;
/* Branches completion */
ctx->hflags &= ~MIPS_HFLAG_BMASK;
ctx->bstate = BS_BRANCH;
save_cpu_state(ctx, 0);
switch (hflags) {
case MIPS_HFLAG_B:
/* unconditional branch */
MIPS_DEBUG("unconditional branch");
gen_goto_tb(ctx, 0, ctx->btarget);
break;
case MIPS_HFLAG_BL:
/* blikely taken case */
MIPS_DEBUG("blikely branch taken");
gen_goto_tb(ctx, 0, ctx->btarget);
break;
case MIPS_HFLAG_BC:
/* Conditional branch */
MIPS_DEBUG("conditional branch");
{
int l1;
l1 = gen_new_label();
gen_op_jnz_T2(l1);
gen_goto_tb(ctx, 1, ctx->pc + 4);
gen_set_label(l1);
gen_goto_tb(ctx, 0, ctx->btarget);
}
break;
case MIPS_HFLAG_BR:
/* unconditional branch to register */
MIPS_DEBUG("branch to register");
gen_op_breg();
gen_op_reset_T0();
gen_op_exit_tb();
break;
default:
MIPS_DEBUG("unknown branch");
break;
}
}
}
| 10,303 |
qemu | d812b3d68ddf0efe91a088ecc8b177865b0bab8d | 0 | static void port92_write(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
Port92State *s = opaque;
int oldval = s->outport;
DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
s->outport = val;
qemu_set_irq(*s->a20_out, (val >> 1) & 1);
if ((val & 1) && !(oldval & 1)) {
qemu_system_reset_request();
}
}
| 10,304 |
qemu | 0965a41e998ab820b5d660c8abfc8c819c97bc1b | 0 | static uint64_t coroutine_fn mirror_iteration(MirrorBlockJob *s)
{
BlockDriverState *source = blk_bs(s->common.blk);
int64_t sector_num, first_chunk;
uint64_t delay_ns = 0;
/* At least the first dirty chunk is mirrored in one iteration. */
int nb_chunks = 1;
int64_t end = s->bdev_length / BDRV_SECTOR_SIZE;
int sectors_per_chunk = s->granularity >> BDRV_SECTOR_BITS;
bool write_zeroes_ok = bdrv_can_write_zeroes_with_unmap(blk_bs(s->target));
sector_num = hbitmap_iter_next(&s->hbi);
if (sector_num < 0) {
bdrv_dirty_iter_init(s->dirty_bitmap, &s->hbi);
sector_num = hbitmap_iter_next(&s->hbi);
trace_mirror_restart_iter(s, bdrv_get_dirty_count(s->dirty_bitmap));
assert(sector_num >= 0);
}
first_chunk = sector_num / sectors_per_chunk;
while (test_bit(first_chunk, s->in_flight_bitmap)) {
trace_mirror_yield_in_flight(s, sector_num, s->in_flight);
mirror_wait_for_io(s);
}
block_job_pause_point(&s->common);
/* Find the number of consective dirty chunks following the first dirty
* one, and wait for in flight requests in them. */
while (nb_chunks * sectors_per_chunk < (s->buf_size >> BDRV_SECTOR_BITS)) {
int64_t hbitmap_next;
int64_t next_sector = sector_num + nb_chunks * sectors_per_chunk;
int64_t next_chunk = next_sector / sectors_per_chunk;
if (next_sector >= end ||
!bdrv_get_dirty(source, s->dirty_bitmap, next_sector)) {
break;
}
if (test_bit(next_chunk, s->in_flight_bitmap)) {
break;
}
hbitmap_next = hbitmap_iter_next(&s->hbi);
if (hbitmap_next > next_sector || hbitmap_next < 0) {
/* The bitmap iterator's cache is stale, refresh it */
bdrv_set_dirty_iter(&s->hbi, next_sector);
hbitmap_next = hbitmap_iter_next(&s->hbi);
}
assert(hbitmap_next == next_sector);
nb_chunks++;
}
/* Clear dirty bits before querying the block status, because
* calling bdrv_get_block_status_above could yield - if some blocks are
* marked dirty in this window, we need to know.
*/
bdrv_reset_dirty_bitmap(s->dirty_bitmap, sector_num,
nb_chunks * sectors_per_chunk);
bitmap_set(s->in_flight_bitmap, sector_num / sectors_per_chunk, nb_chunks);
while (nb_chunks > 0 && sector_num < end) {
int ret;
int io_sectors, io_sectors_acct;
BlockDriverState *file;
enum MirrorMethod {
MIRROR_METHOD_COPY,
MIRROR_METHOD_ZERO,
MIRROR_METHOD_DISCARD
} mirror_method = MIRROR_METHOD_COPY;
assert(!(sector_num % sectors_per_chunk));
ret = bdrv_get_block_status_above(source, NULL, sector_num,
nb_chunks * sectors_per_chunk,
&io_sectors, &file);
if (ret < 0) {
io_sectors = nb_chunks * sectors_per_chunk;
}
io_sectors -= io_sectors % sectors_per_chunk;
if (io_sectors < sectors_per_chunk) {
io_sectors = sectors_per_chunk;
} else if (ret >= 0 && !(ret & BDRV_BLOCK_DATA)) {
int64_t target_sector_num;
int target_nb_sectors;
bdrv_round_sectors_to_clusters(blk_bs(s->target), sector_num,
io_sectors, &target_sector_num,
&target_nb_sectors);
if (target_sector_num == sector_num &&
target_nb_sectors == io_sectors) {
mirror_method = ret & BDRV_BLOCK_ZERO ?
MIRROR_METHOD_ZERO :
MIRROR_METHOD_DISCARD;
}
}
while (s->in_flight >= MAX_IN_FLIGHT) {
trace_mirror_yield_in_flight(s, sector_num, s->in_flight);
mirror_wait_for_io(s);
}
mirror_clip_sectors(s, sector_num, &io_sectors);
switch (mirror_method) {
case MIRROR_METHOD_COPY:
io_sectors = mirror_do_read(s, sector_num, io_sectors);
io_sectors_acct = io_sectors;
break;
case MIRROR_METHOD_ZERO:
case MIRROR_METHOD_DISCARD:
mirror_do_zero_or_discard(s, sector_num, io_sectors,
mirror_method == MIRROR_METHOD_DISCARD);
if (write_zeroes_ok) {
io_sectors_acct = 0;
} else {
io_sectors_acct = io_sectors;
}
break;
default:
abort();
}
assert(io_sectors);
sector_num += io_sectors;
nb_chunks -= DIV_ROUND_UP(io_sectors, sectors_per_chunk);
if (s->common.speed) {
delay_ns = ratelimit_calculate_delay(&s->limit, io_sectors_acct);
}
}
return delay_ns;
}
| 10,305 |
FFmpeg | 398f015f077c6a2406deffd9e37ff34b9c7bb3bc | 0 | static void flush_encoders(void)
{
int i, ret;
for (i = 0; i < nb_output_streams; i++) {
OutputStream *ost = output_streams[i];
AVCodecContext *enc = ost->enc_ctx;
AVFormatContext *os = output_files[ost->file_index]->ctx;
int stop_encoding = 0;
if (!ost->encoding_needed)
continue;
if (enc->codec_type == AVMEDIA_TYPE_AUDIO && enc->frame_size <= 1)
continue;
if (enc->codec_type != AVMEDIA_TYPE_VIDEO && enc->codec_type != AVMEDIA_TYPE_AUDIO)
continue;
avcodec_send_frame(enc, NULL);
for (;;) {
const char *desc = NULL;
switch (enc->codec_type) {
case AVMEDIA_TYPE_AUDIO:
desc = "Audio";
break;
case AVMEDIA_TYPE_VIDEO:
desc = "Video";
break;
default:
av_assert0(0);
}
if (1) {
AVPacket pkt;
av_init_packet(&pkt);
pkt.data = NULL;
pkt.size = 0;
ret = avcodec_receive_packet(enc, &pkt);
if (ret < 0 && ret != AVERROR_EOF) {
av_log(NULL, AV_LOG_FATAL, "%s encoding failed\n", desc);
exit_program(1);
}
if (ost->logfile && enc->stats_out) {
fprintf(ost->logfile, "%s", enc->stats_out);
}
if (ret == AVERROR_EOF) {
stop_encoding = 1;
break;
}
av_packet_rescale_ts(&pkt, enc->time_base, ost->st->time_base);
output_packet(os, &pkt, ost);
}
if (stop_encoding)
break;
}
}
}
| 10,306 |
FFmpeg | 403ee835e7913eb9536b22c2b22edfdd700166a9 | 0 | AVFormatContext *ff_rtp_chain_mux_open(AVFormatContext *s, AVStream *st,
URLContext *handle, int packet_size)
{
AVFormatContext *rtpctx;
int ret;
AVOutputFormat *rtp_format = av_guess_format("rtp", NULL, NULL);
if (!rtp_format)
return NULL;
/* Allocate an AVFormatContext for each output stream */
rtpctx = avformat_alloc_context();
if (!rtpctx)
return NULL;
rtpctx->oformat = rtp_format;
if (!av_new_stream(rtpctx, 0)) {
av_free(rtpctx);
return NULL;
}
/* Copy the max delay setting; the rtp muxer reads this. */
rtpctx->max_delay = s->max_delay;
/* Copy other stream parameters. */
rtpctx->streams[0]->sample_aspect_ratio = st->sample_aspect_ratio;
/* Set the synchronized start time. */
rtpctx->start_time_realtime = s->start_time_realtime;
avcodec_copy_context(rtpctx->streams[0]->codec, st->codec);
if (handle) {
url_fdopen(&rtpctx->pb, handle);
} else
url_open_dyn_packet_buf(&rtpctx->pb, packet_size);
ret = av_write_header(rtpctx);
if (ret) {
if (handle) {
avio_close(rtpctx->pb);
} else {
uint8_t *ptr;
avio_close_dyn_buf(rtpctx->pb, &ptr);
av_free(ptr);
}
avformat_free_context(rtpctx);
return NULL;
}
return rtpctx;
}
| 10,307 |
FFmpeg | c7384664ba0cbb12d882effafbc6d321ae706cff | 0 | static av_cold int avs_decode_init(AVCodecContext * avctx)
{
AvsContext *s = avctx->priv_data;
s->frame = av_frame_alloc();
if (!s->frame)
return AVERROR(ENOMEM);
avctx->pix_fmt = AV_PIX_FMT_PAL8;
ff_set_dimensions(avctx, 318, 198);
return 0;
}
| 10,309 |
FFmpeg | d6604b29ef544793479d7fb4e05ef6622bb3e534 | 0 | static av_cold int raw_encode_close(AVCodecContext *avctx)
{
av_frame_free(&avctx->coded_frame);
return 0;
}
| 10,310 |
FFmpeg | b12e4d3bb8df994f042ff1216fb8de2b967aab9e | 0 | int avio_close_dyn_buf(AVIOContext *s, uint8_t **pbuffer)
{
DynBuffer *d;
int size;
static const char padbuf[AV_INPUT_BUFFER_PADDING_SIZE] = {0};
int padding = 0;
if (!s) {
*pbuffer = NULL;
return 0;
}
/* don't attempt to pad fixed-size packet buffers */
if (!s->max_packet_size) {
avio_write(s, padbuf, sizeof(padbuf));
padding = AV_INPUT_BUFFER_PADDING_SIZE;
}
avio_flush(s);
d = s->opaque;
*pbuffer = d->buffer;
size = d->size;
av_free(d);
av_free(s);
return size - padding;
}
| 10,311 |
qemu | 45eb768c706d3a5fbe55224c589e8b4e252781d9 | 0 | void pcie_port_init_reg(PCIDevice *d)
{
/* Unlike pci bridge,
66MHz and fast back to back don't apply to pci express port. */
pci_set_word(d->config + PCI_STATUS, 0);
pci_set_word(d->config + PCI_SEC_STATUS, 0);
/* Unlike conventional pci bridge, some bits are hardwired to 0. */
#define PCI_BRIDGE_CTL_VGA_16BIT 0x10 /* VGA 16-bit decode */
pci_set_word(d->wmask + PCI_BRIDGE_CONTROL,
PCI_BRIDGE_CTL_PARITY |
PCI_BRIDGE_CTL_ISA |
PCI_BRIDGE_CTL_VGA |
PCI_BRIDGE_CTL_VGA_16BIT | /* Req, but no alias support yet */
PCI_BRIDGE_CTL_SERR |
PCI_BRIDGE_CTL_BUS_RESET);
}
| 10,312 |
FFmpeg | cee03436e6f1e3d4893841698e73caa92f2a53c9 | 0 | static void get_slice_data(ProresContext *ctx, const uint16_t *src,
int linesize, int x, int y, int w, int h,
DCTELEM *blocks, uint16_t *emu_buf,
int mbs_per_slice, int blocks_per_mb, int is_chroma)
{
const uint16_t *esrc;
const int mb_width = 4 * blocks_per_mb;
int elinesize;
int i, j, k;
for (i = 0; i < mbs_per_slice; i++, src += mb_width) {
if (x >= w) {
memset(blocks, 0, 64 * (mbs_per_slice - i) * blocks_per_mb
* sizeof(*blocks));
return;
}
if (x + mb_width <= w && y + 16 <= h) {
esrc = src;
elinesize = linesize;
} else {
int bw, bh, pix;
esrc = emu_buf;
elinesize = 16 * sizeof(*emu_buf);
bw = FFMIN(w - x, mb_width);
bh = FFMIN(h - y, 16);
for (j = 0; j < bh; j++) {
memcpy(emu_buf + j * 16,
(const uint8_t*)src + j * linesize,
bw * sizeof(*src));
pix = emu_buf[j * 16 + bw - 1];
for (k = bw; k < mb_width; k++)
emu_buf[j * 16 + k] = pix;
}
for (; j < 16; j++)
memcpy(emu_buf + j * 16,
emu_buf + (bh - 1) * 16,
mb_width * sizeof(*emu_buf));
}
if (!is_chroma) {
ctx->dsp.fdct(esrc, elinesize, blocks);
blocks += 64;
if (blocks_per_mb > 2) {
ctx->dsp.fdct(src + 8, linesize, blocks);
blocks += 64;
}
ctx->dsp.fdct(src + linesize * 4, linesize, blocks);
blocks += 64;
if (blocks_per_mb > 2) {
ctx->dsp.fdct(src + linesize * 4 + 8, linesize, blocks);
blocks += 64;
}
} else {
ctx->dsp.fdct(esrc, elinesize, blocks);
blocks += 64;
ctx->dsp.fdct(src + linesize * 4, linesize, blocks);
blocks += 64;
if (blocks_per_mb > 2) {
ctx->dsp.fdct(src + 8, linesize, blocks);
blocks += 64;
ctx->dsp.fdct(src + linesize * 4 + 8, linesize, blocks);
blocks += 64;
}
}
x += mb_width;
}
}
| 10,313 |
qemu | a7812ae412311d7d47f8aa85656faadac9d64b56 | 0 | static always_inline void gen_farith3 (void *helper,
int ra, int rb, int rc)
{
if (unlikely(rc == 31))
return;
if (ra != 31) {
if (rb != 31)
tcg_gen_helper_1_2(helper, cpu_fir[rc], cpu_fir[ra], cpu_fir[rb]);
else {
TCGv tmp = tcg_const_i64(0);
tcg_gen_helper_1_2(helper, cpu_fir[rc], cpu_fir[ra], tmp);
tcg_temp_free(tmp);
}
} else {
TCGv tmp = tcg_const_i64(0);
if (rb != 31)
tcg_gen_helper_1_2(helper, cpu_fir[rc], tmp, cpu_fir[rb]);
else
tcg_gen_helper_1_2(helper, cpu_fir[rc], tmp, tmp);
tcg_temp_free(tmp);
}
}
| 10,314 |
qemu | 21e00fa55f3fdfcbb20da7c6876c91ef3609b387 | 0 | static bool vfio_prereg_listener_skipped_section(MemoryRegionSection *section)
{
if (memory_region_is_iommu(section->mr)) {
hw_error("Cannot possibly preregister IOMMU memory");
}
return !memory_region_is_ram(section->mr) ||
memory_region_is_skip_dump(section->mr);
}
| 10,315 |
qemu | 3a95e3a7d9a6fd7610fe483778ff7016d23be5ec | 0 | static void gen_mtc0 (DisasContext *ctx, int reg, int sel)
{
const char *rn = "invalid";
switch (reg) {
case 0:
switch (sel) {
case 0:
gen_op_mtc0_index();
rn = "Index";
break;
case 1:
// gen_op_mtc0_mvpcontrol(); /* MT ASE */
rn = "MVPControl";
// break;
case 2:
// gen_op_mtc0_mvpconf0(); /* MT ASE */
rn = "MVPConf0";
// break;
case 3:
// gen_op_mtc0_mvpconf1(); /* MT ASE */
rn = "MVPConf1";
// break;
default:
goto die;
}
break;
case 1:
switch (sel) {
case 0:
/* ignored */
rn = "Random";
break;
case 1:
// gen_op_mtc0_vpecontrol(); /* MT ASE */
rn = "VPEControl";
// break;
case 2:
// gen_op_mtc0_vpeconf0(); /* MT ASE */
rn = "VPEConf0";
// break;
case 3:
// gen_op_mtc0_vpeconf1(); /* MT ASE */
rn = "VPEConf1";
// break;
case 4:
// gen_op_mtc0_YQMask(); /* MT ASE */
rn = "YQMask";
// break;
case 5:
// gen_op_mtc0_vpeschedule(); /* MT ASE */
rn = "VPESchedule";
// break;
case 6:
// gen_op_mtc0_vpeschefback(); /* MT ASE */
rn = "VPEScheFBack";
// break;
case 7:
// gen_op_mtc0_vpeopt(); /* MT ASE */
rn = "VPEOpt";
// break;
default:
goto die;
}
break;
case 2:
switch (sel) {
case 0:
gen_op_mtc0_entrylo0();
rn = "EntryLo0";
break;
case 1:
// gen_op_mtc0_tcstatus(); /* MT ASE */
rn = "TCStatus";
// break;
case 2:
// gen_op_mtc0_tcbind(); /* MT ASE */
rn = "TCBind";
// break;
case 3:
// gen_op_mtc0_tcrestart(); /* MT ASE */
rn = "TCRestart";
// break;
case 4:
// gen_op_mtc0_tchalt(); /* MT ASE */
rn = "TCHalt";
// break;
case 5:
// gen_op_mtc0_tccontext(); /* MT ASE */
rn = "TCContext";
// break;
case 6:
// gen_op_mtc0_tcschedule(); /* MT ASE */
rn = "TCSchedule";
// break;
case 7:
// gen_op_mtc0_tcschefback(); /* MT ASE */
rn = "TCScheFBack";
// break;
default:
goto die;
}
break;
case 3:
switch (sel) {
case 0:
gen_op_mtc0_entrylo1();
rn = "EntryLo1";
break;
default:
goto die;
}
break;
case 4:
switch (sel) {
case 0:
gen_op_mtc0_context();
rn = "Context";
break;
case 1:
// gen_op_mtc0_contextconfig(); /* SmartMIPS ASE */
rn = "ContextConfig";
// break;
default:
goto die;
}
break;
case 5:
switch (sel) {
case 0:
gen_op_mtc0_pagemask();
rn = "PageMask";
break;
case 1:
gen_op_mtc0_pagegrain();
rn = "PageGrain";
break;
default:
goto die;
}
break;
case 6:
switch (sel) {
case 0:
gen_op_mtc0_wired();
rn = "Wired";
break;
case 1:
// gen_op_mtc0_srsconf0(); /* shadow registers */
rn = "SRSConf0";
// break;
case 2:
// gen_op_mtc0_srsconf1(); /* shadow registers */
rn = "SRSConf1";
// break;
case 3:
// gen_op_mtc0_srsconf2(); /* shadow registers */
rn = "SRSConf2";
// break;
case 4:
// gen_op_mtc0_srsconf3(); /* shadow registers */
rn = "SRSConf3";
// break;
case 5:
// gen_op_mtc0_srsconf4(); /* shadow registers */
rn = "SRSConf4";
// break;
default:
goto die;
}
break;
case 7:
switch (sel) {
case 0:
gen_op_mtc0_hwrena();
rn = "HWREna";
break;
default:
goto die;
}
break;
case 8:
/* ignored */
rn = "BadVaddr";
break;
case 9:
switch (sel) {
case 0:
gen_op_mtc0_count();
rn = "Count";
break;
/* 6,7 are implementation dependent */
default:
goto die;
}
/* Stop translation as we may have switched the execution mode */
ctx->bstate = BS_STOP;
break;
case 10:
switch (sel) {
case 0:
gen_op_mtc0_entryhi();
rn = "EntryHi";
break;
default:
goto die;
}
break;
case 11:
switch (sel) {
case 0:
gen_op_mtc0_compare();
rn = "Compare";
break;
/* 6,7 are implementation dependent */
default:
goto die;
}
/* Stop translation as we may have switched the execution mode */
ctx->bstate = BS_STOP;
break;
case 12:
switch (sel) {
case 0:
gen_op_mtc0_status();
/* BS_STOP isn't good enough here, hflags may have changed. */
gen_save_pc(ctx->pc + 4);
ctx->bstate = BS_EXCP;
rn = "Status";
break;
case 1:
gen_op_mtc0_intctl();
/* Stop translation as we may have switched the execution mode */
ctx->bstate = BS_STOP;
rn = "IntCtl";
break;
case 2:
gen_op_mtc0_srsctl();
/* Stop translation as we may have switched the execution mode */
ctx->bstate = BS_STOP;
rn = "SRSCtl";
break;
case 3:
gen_op_mtc0_srsmap();
/* Stop translation as we may have switched the execution mode */
ctx->bstate = BS_STOP;
rn = "SRSMap";
break;
default:
goto die;
}
break;
case 13:
switch (sel) {
case 0:
gen_op_mtc0_cause();
rn = "Cause";
break;
default:
goto die;
}
/* Stop translation as we may have switched the execution mode */
ctx->bstate = BS_STOP;
break;
case 14:
switch (sel) {
case 0:
gen_op_mtc0_epc();
rn = "EPC";
break;
default:
goto die;
}
break;
case 15:
switch (sel) {
case 0:
/* ignored */
rn = "PRid";
break;
case 1:
gen_op_mtc0_ebase();
rn = "EBase";
break;
default:
goto die;
}
break;
case 16:
switch (sel) {
case 0:
gen_op_mtc0_config0();
rn = "Config";
/* Stop translation as we may have switched the execution mode */
ctx->bstate = BS_STOP;
break;
case 1:
/* ignored, read only */
rn = "Config1";
break;
case 2:
gen_op_mtc0_config2();
rn = "Config2";
/* Stop translation as we may have switched the execution mode */
ctx->bstate = BS_STOP;
break;
case 3:
/* ignored, read only */
rn = "Config3";
break;
/* 4,5 are reserved */
/* 6,7 are implementation dependent */
case 6:
/* ignored */
rn = "Config6";
break;
case 7:
/* ignored */
rn = "Config7";
break;
default:
rn = "Invalid config selector";
goto die;
}
break;
case 17:
switch (sel) {
case 0:
/* ignored */
rn = "LLAddr";
break;
default:
goto die;
}
break;
case 18:
switch (sel) {
case 0 ... 7:
gen_op_mtc0_watchlo(sel);
rn = "WatchLo";
break;
default:
goto die;
}
break;
case 19:
switch (sel) {
case 0 ... 7:
gen_op_mtc0_watchhi(sel);
rn = "WatchHi";
break;
default:
goto die;
}
break;
case 20:
switch (sel) {
case 0:
#ifdef TARGET_MIPS64
gen_op_mtc0_xcontext();
rn = "XContext";
break;
#endif
default:
goto die;
}
break;
case 21:
/* Officially reserved, but sel 0 is used for R1x000 framemask */
switch (sel) {
case 0:
gen_op_mtc0_framemask();
rn = "Framemask";
break;
default:
goto die;
}
break;
case 22:
/* ignored */
rn = "Diagnostic"; /* implementation dependent */
break;
case 23:
switch (sel) {
case 0:
gen_op_mtc0_debug(); /* EJTAG support */
/* BS_STOP isn't good enough here, hflags may have changed. */
gen_save_pc(ctx->pc + 4);
ctx->bstate = BS_EXCP;
rn = "Debug";
break;
case 1:
// gen_op_mtc0_tracecontrol(); /* PDtrace support */
rn = "TraceControl";
/* Stop translation as we may have switched the execution mode */
ctx->bstate = BS_STOP;
// break;
case 2:
// gen_op_mtc0_tracecontrol2(); /* PDtrace support */
rn = "TraceControl2";
/* Stop translation as we may have switched the execution mode */
ctx->bstate = BS_STOP;
// break;
case 3:
/* Stop translation as we may have switched the execution mode */
ctx->bstate = BS_STOP;
// gen_op_mtc0_usertracedata(); /* PDtrace support */
rn = "UserTraceData";
/* Stop translation as we may have switched the execution mode */
ctx->bstate = BS_STOP;
// break;
case 4:
// gen_op_mtc0_debug(); /* PDtrace support */
/* Stop translation as we may have switched the execution mode */
ctx->bstate = BS_STOP;
rn = "TraceBPC";
// break;
default:
goto die;
}
break;
case 24:
switch (sel) {
case 0:
gen_op_mtc0_depc(); /* EJTAG support */
rn = "DEPC";
break;
default:
goto die;
}
break;
case 25:
switch (sel) {
case 0:
gen_op_mtc0_performance0();
rn = "Performance0";
break;
case 1:
// gen_op_mtc0_performance1();
rn = "Performance1";
// break;
case 2:
// gen_op_mtc0_performance2();
rn = "Performance2";
// break;
case 3:
// gen_op_mtc0_performance3();
rn = "Performance3";
// break;
case 4:
// gen_op_mtc0_performance4();
rn = "Performance4";
// break;
case 5:
// gen_op_mtc0_performance5();
rn = "Performance5";
// break;
case 6:
// gen_op_mtc0_performance6();
rn = "Performance6";
// break;
case 7:
// gen_op_mtc0_performance7();
rn = "Performance7";
// break;
default:
goto die;
}
break;
case 26:
/* ignored */
rn = "ECC";
break;
case 27:
switch (sel) {
case 0 ... 3:
/* ignored */
rn = "CacheErr";
break;
default:
goto die;
}
break;
case 28:
switch (sel) {
case 0:
case 2:
case 4:
case 6:
gen_op_mtc0_taglo();
rn = "TagLo";
break;
case 1:
case 3:
case 5:
case 7:
gen_op_mtc0_datalo();
rn = "DataLo";
break;
default:
goto die;
}
break;
case 29:
switch (sel) {
case 0:
case 2:
case 4:
case 6:
gen_op_mtc0_taghi();
rn = "TagHi";
break;
case 1:
case 3:
case 5:
case 7:
gen_op_mtc0_datahi();
rn = "DataHi";
break;
default:
rn = "invalid sel";
goto die;
}
break;
case 30:
switch (sel) {
case 0:
gen_op_mtc0_errorepc();
rn = "ErrorEPC";
break;
default:
goto die;
}
break;
case 31:
switch (sel) {
case 0:
gen_op_mtc0_desave(); /* EJTAG support */
rn = "DESAVE";
break;
default:
goto die;
}
/* Stop translation as we may have switched the execution mode */
ctx->bstate = BS_STOP;
break;
default:
goto die;
}
#if defined MIPS_DEBUG_DISAS
if (loglevel & CPU_LOG_TB_IN_ASM) {
fprintf(logfile, "mtc0 %s (reg %d sel %d)\n",
rn, reg, sel);
}
#endif
return;
die:
#if defined MIPS_DEBUG_DISAS
if (loglevel & CPU_LOG_TB_IN_ASM) {
fprintf(logfile, "mtc0 %s (reg %d sel %d)\n",
rn, reg, sel);
}
#endif
generate_exception(ctx, EXCP_RI);
}
| 10,318 |
qemu | b3db211f3c80bb996a704d665fe275619f728bd4 | 0 | static void test_native_list_integer_helper(TestInputVisitorData *data,
const void *unused,
UserDefNativeListUnionKind kind)
{
UserDefNativeListUnion *cvalue = NULL;
Visitor *v;
GString *gstr_list = g_string_new("");
GString *gstr_union = g_string_new("");
int i;
for (i = 0; i < 32; i++) {
g_string_append_printf(gstr_list, "%d", i);
if (i != 31) {
g_string_append(gstr_list, ", ");
}
}
g_string_append_printf(gstr_union, "{ 'type': '%s', 'data': [ %s ] }",
UserDefNativeListUnionKind_lookup[kind],
gstr_list->str);
v = visitor_input_test_init_raw(data, gstr_union->str);
visit_type_UserDefNativeListUnion(v, NULL, &cvalue, &error_abort);
g_assert(cvalue != NULL);
g_assert_cmpint(cvalue->type, ==, kind);
switch (kind) {
case USER_DEF_NATIVE_LIST_UNION_KIND_INTEGER: {
intList *elem = NULL;
for (i = 0, elem = cvalue->u.integer.data;
elem; elem = elem->next, i++) {
g_assert_cmpint(elem->value, ==, i);
}
break;
}
case USER_DEF_NATIVE_LIST_UNION_KIND_S8: {
int8List *elem = NULL;
for (i = 0, elem = cvalue->u.s8.data; elem; elem = elem->next, i++) {
g_assert_cmpint(elem->value, ==, i);
}
break;
}
case USER_DEF_NATIVE_LIST_UNION_KIND_S16: {
int16List *elem = NULL;
for (i = 0, elem = cvalue->u.s16.data; elem; elem = elem->next, i++) {
g_assert_cmpint(elem->value, ==, i);
}
break;
}
case USER_DEF_NATIVE_LIST_UNION_KIND_S32: {
int32List *elem = NULL;
for (i = 0, elem = cvalue->u.s32.data; elem; elem = elem->next, i++) {
g_assert_cmpint(elem->value, ==, i);
}
break;
}
case USER_DEF_NATIVE_LIST_UNION_KIND_S64: {
int64List *elem = NULL;
for (i = 0, elem = cvalue->u.s64.data; elem; elem = elem->next, i++) {
g_assert_cmpint(elem->value, ==, i);
}
break;
}
case USER_DEF_NATIVE_LIST_UNION_KIND_U8: {
uint8List *elem = NULL;
for (i = 0, elem = cvalue->u.u8.data; elem; elem = elem->next, i++) {
g_assert_cmpint(elem->value, ==, i);
}
break;
}
case USER_DEF_NATIVE_LIST_UNION_KIND_U16: {
uint16List *elem = NULL;
for (i = 0, elem = cvalue->u.u16.data; elem; elem = elem->next, i++) {
g_assert_cmpint(elem->value, ==, i);
}
break;
}
case USER_DEF_NATIVE_LIST_UNION_KIND_U32: {
uint32List *elem = NULL;
for (i = 0, elem = cvalue->u.u32.data; elem; elem = elem->next, i++) {
g_assert_cmpint(elem->value, ==, i);
}
break;
}
case USER_DEF_NATIVE_LIST_UNION_KIND_U64: {
uint64List *elem = NULL;
for (i = 0, elem = cvalue->u.u64.data; elem; elem = elem->next, i++) {
g_assert_cmpint(elem->value, ==, i);
}
break;
}
default:
g_assert_not_reached();
}
g_string_free(gstr_union, true);
g_string_free(gstr_list, true);
qapi_free_UserDefNativeListUnion(cvalue);
}
| 10,319 |
qemu | 7f61f4690dd153be98900a2a508b88989e692753 | 0 | pvscsi_ring_init_data(PVSCSIRingInfo *m, PVSCSICmdDescSetupRings *ri)
{
int i;
uint32_t txr_len_log2, rxr_len_log2;
uint32_t req_ring_size, cmp_ring_size;
m->rs_pa = ri->ringsStatePPN << VMW_PAGE_SHIFT;
if ((ri->reqRingNumPages > PVSCSI_SETUP_RINGS_MAX_NUM_PAGES)
|| (ri->cmpRingNumPages > PVSCSI_SETUP_RINGS_MAX_NUM_PAGES)) {
return -1;
}
req_ring_size = ri->reqRingNumPages * PVSCSI_MAX_NUM_REQ_ENTRIES_PER_PAGE;
cmp_ring_size = ri->cmpRingNumPages * PVSCSI_MAX_NUM_CMP_ENTRIES_PER_PAGE;
txr_len_log2 = pvscsi_log2(req_ring_size - 1);
rxr_len_log2 = pvscsi_log2(cmp_ring_size - 1);
m->txr_len_mask = MASK(txr_len_log2);
m->rxr_len_mask = MASK(rxr_len_log2);
m->consumed_ptr = 0;
m->filled_cmp_ptr = 0;
for (i = 0; i < ri->reqRingNumPages; i++) {
m->req_ring_pages_pa[i] = ri->reqRingPPNs[i] << VMW_PAGE_SHIFT;
}
for (i = 0; i < ri->cmpRingNumPages; i++) {
m->cmp_ring_pages_pa[i] = ri->cmpRingPPNs[i] << VMW_PAGE_SHIFT;
}
RS_SET_FIELD(m, reqProdIdx, 0);
RS_SET_FIELD(m, reqConsIdx, 0);
RS_SET_FIELD(m, reqNumEntriesLog2, txr_len_log2);
RS_SET_FIELD(m, cmpProdIdx, 0);
RS_SET_FIELD(m, cmpConsIdx, 0);
RS_SET_FIELD(m, cmpNumEntriesLog2, rxr_len_log2);
trace_pvscsi_ring_init_data(txr_len_log2, rxr_len_log2);
/* Flush ring state page changes */
smp_wmb();
return 0;
}
| 10,320 |
qemu | acf6e5f0962c4be670d4a93ede77423512521876 | 0 | static bool check_overlapping_aiocb(BDRVSheepdogState *s, SheepdogAIOCB *aiocb)
{
SheepdogAIOCB *cb;
QLIST_FOREACH(cb, &s->inflight_aiocb_head, aiocb_siblings) {
if (AIOCBOverlapping(aiocb, cb)) {
return true;
}
}
QLIST_INSERT_HEAD(&s->inflight_aiocb_head, aiocb, aiocb_siblings);
return false;
}
| 10,321 |
qemu | 8dfd5f96515ca20c4eb109cb0ee28e2bb32fc505 | 0 | static void qio_channel_websock_finalize(Object *obj)
{
QIOChannelWebsock *ioc = QIO_CHANNEL_WEBSOCK(obj);
buffer_free(&ioc->encinput);
buffer_free(&ioc->encoutput);
buffer_free(&ioc->rawinput);
buffer_free(&ioc->rawoutput);
object_unref(OBJECT(ioc->master));
if (ioc->io_tag) {
g_source_remove(ioc->io_tag);
}
if (ioc->io_err) {
error_free(ioc->io_err);
}
}
| 10,323 |
FFmpeg | c8241e730f116f1c9cfc0b34110aa7f052e05332 | 0 | static av_cold int vaapi_encode_h265_init_internal(AVCodecContext *avctx)
{
static const VAConfigAttrib default_config_attributes[] = {
{ .type = VAConfigAttribRTFormat,
.value = VA_RT_FORMAT_YUV420 },
{ .type = VAConfigAttribEncPackedHeaders,
.value = (VA_ENC_PACKED_HEADER_SEQUENCE |
VA_ENC_PACKED_HEADER_SLICE) },
};
VAAPIEncodeContext *ctx = avctx->priv_data;
VAAPIEncodeH265Context *priv = ctx->priv_data;
int i, err;
switch (avctx->profile) {
case FF_PROFILE_HEVC_MAIN:
case FF_PROFILE_UNKNOWN:
ctx->va_profile = VAProfileHEVCMain;
break;
case FF_PROFILE_HEVC_MAIN_10:
av_log(avctx, AV_LOG_ERROR, "H.265 main 10-bit profile "
"is not supported.\n");
return AVERROR_PATCHWELCOME;
default:
av_log(avctx, AV_LOG_ERROR, "Unknown H.265 profile %d.\n",
avctx->profile);
return AVERROR(EINVAL);
}
ctx->va_entrypoint = VAEntrypointEncSlice;
ctx->input_width = avctx->width;
ctx->input_height = avctx->height;
ctx->aligned_width = FFALIGN(ctx->input_width, 16);
ctx->aligned_height = FFALIGN(ctx->input_height, 16);
priv->ctu_width = FFALIGN(ctx->aligned_width, 32) / 32;
priv->ctu_height = FFALIGN(ctx->aligned_height, 32) / 32;
av_log(avctx, AV_LOG_VERBOSE, "Input %ux%u -> Aligned %ux%u -> CTU %ux%u.\n",
ctx->input_width, ctx->input_height, ctx->aligned_width,
ctx->aligned_height, priv->ctu_width, priv->ctu_height);
for (i = 0; i < FF_ARRAY_ELEMS(default_config_attributes); i++) {
ctx->config_attributes[ctx->nb_config_attributes++] =
default_config_attributes[i];
}
if (avctx->bit_rate > 0) {
ctx->va_rc_mode = VA_RC_CBR;
err = vaapi_encode_h265_init_constant_bitrate(avctx);
} else {
ctx->va_rc_mode = VA_RC_CQP;
err = vaapi_encode_h265_init_fixed_qp(avctx);
}
if (err < 0)
return err;
ctx->config_attributes[ctx->nb_config_attributes++] = (VAConfigAttrib) {
.type = VAConfigAttribRateControl,
.value = ctx->va_rc_mode,
};
ctx->nb_recon_frames = 20;
return 0;
}
| 10,324 |
qemu | 2ff30257974e19ebe2a97baad32ac29c06da5fb9 | 0 | void qmp_migrate_set_downtime(double value, Error **errp)
{
value *= 1e9;
value = MAX(0, MIN(UINT64_MAX, value));
max_downtime = (uint64_t)value;
}
| 10,325 |
qemu | 1ecf47bf0a091700e45f1b7d1f5ad85abc0acd22 | 0 | static void qemu_cpu_kick_thread(CPUState *env)
{
#ifndef _WIN32
int err;
err = pthread_kill(env->thread->thread, SIG_IPI);
if (err) {
fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
exit(1);
}
#else /* _WIN32 */
if (!qemu_cpu_is_self(env)) {
SuspendThread(env->thread->thread);
cpu_signal(0);
ResumeThread(env->thread->thread);
}
#endif
}
| 10,326 |
qemu | a8cf66bb393ff420d40ae172a4c817bf2752918a | 0 | void helper_evaluate_flags_alu_4(void)
{
uint32_t src;
uint32_t dst;
uint32_t res;
uint32_t flags = 0;
src = env->cc_src;
dst = env->cc_dest;
/* Reconstruct the result. */
switch (env->cc_op)
{
case CC_OP_SUB:
res = dst - src;
break;
case CC_OP_ADD:
res = dst + src;
break;
default:
res = env->cc_result;
break;
}
if (env->cc_op == CC_OP_SUB || env->cc_op == CC_OP_CMP)
src = ~src;
if ((res & 0x80000000L) != 0L)
{
flags |= N_FLAG;
if (((src & 0x80000000L) == 0L)
&& ((dst & 0x80000000L) == 0L))
{
flags |= V_FLAG;
}
else if (((src & 0x80000000L) != 0L) &&
((dst & 0x80000000L) != 0L))
{
flags |= C_FLAG;
}
}
else
{
if (res == 0L)
flags |= Z_FLAG;
if (((src & 0x80000000L) != 0L)
&& ((dst & 0x80000000L) != 0L))
flags |= V_FLAG;
if ((dst & 0x80000000L) != 0L
|| (src & 0x80000000L) != 0L)
flags |= C_FLAG;
}
if (env->cc_op == CC_OP_SUB
|| env->cc_op == CC_OP_CMP) {
flags ^= C_FLAG;
}
evaluate_flags_writeback(flags);
}
| 10,328 |
qemu | 4be746345f13e99e468c60acbd3a355e8183e3ce | 0 | static void pmac_ide_atapi_transfer_cb(void *opaque, int ret)
{
DBDMA_io *io = opaque;
MACIOIDEState *m = io->opaque;
IDEState *s = idebus_active_if(&m->bus);
int unaligned;
if (ret < 0) {
m->aiocb = NULL;
qemu_sglist_destroy(&s->sg);
ide_atapi_io_error(s, ret);
io->remainder_len = 0;
goto done;
}
if (!m->dma_active) {
MACIO_DPRINTF("waiting for data (%#x - %#x - %x)\n",
s->nsector, io->len, s->status);
/* data not ready yet, wait for the channel to get restarted */
io->processing = false;
return;
}
MACIO_DPRINTF("io_buffer_size = %#x\n", s->io_buffer_size);
if (s->io_buffer_size > 0) {
m->aiocb = NULL;
qemu_sglist_destroy(&s->sg);
s->packet_transfer_size -= s->io_buffer_size;
s->io_buffer_index += s->io_buffer_size;
s->lba += s->io_buffer_index >> 11;
s->io_buffer_index &= 0x7ff;
}
s->io_buffer_size = MIN(io->len, s->packet_transfer_size);
MACIO_DPRINTF("remainder: %d io->len: %d size: %d\n", io->remainder_len,
io->len, s->packet_transfer_size);
if (io->remainder_len && io->len) {
/* guest wants the rest of its previous transfer */
int remainder_len = MIN(io->remainder_len, io->len);
MACIO_DPRINTF("copying remainder %d bytes\n", remainder_len);
cpu_physical_memory_write(io->addr, io->remainder + 0x200 -
remainder_len, remainder_len);
io->addr += remainder_len;
io->len -= remainder_len;
s->io_buffer_size = remainder_len;
io->remainder_len -= remainder_len;
/* treat remainder as individual transfer, start again */
qemu_sglist_init(&s->sg, DEVICE(m), io->len / MACIO_PAGE_SIZE + 1,
&address_space_memory);
pmac_ide_atapi_transfer_cb(opaque, 0);
return;
}
if (!s->packet_transfer_size) {
MACIO_DPRINTF("end of transfer\n");
ide_atapi_cmd_ok(s);
m->dma_active = false;
}
if (io->len == 0) {
MACIO_DPRINTF("end of DMA\n");
goto done;
}
/* launch next transfer */
/* handle unaligned accesses first, get them over with and only do the
remaining bulk transfer using our async DMA helpers */
unaligned = io->len & 0x1ff;
if (unaligned) {
int sector_num = (s->lba << 2) + (s->io_buffer_index >> 9);
int nsector = io->len >> 9;
MACIO_DPRINTF("precopying unaligned %d bytes to %#" HWADDR_PRIx "\n",
unaligned, io->addr + io->len - unaligned);
bdrv_read(s->bs, sector_num + nsector, io->remainder, 1);
cpu_physical_memory_write(io->addr + io->len - unaligned,
io->remainder, unaligned);
io->len -= unaligned;
}
MACIO_DPRINTF("io->len = %#x\n", io->len);
qemu_sglist_init(&s->sg, DEVICE(m), io->len / MACIO_PAGE_SIZE + 1,
&address_space_memory);
qemu_sglist_add(&s->sg, io->addr, io->len);
io->addr += s->io_buffer_size;
io->remainder_len = MIN(s->packet_transfer_size - s->io_buffer_size,
(0x200 - unaligned) & 0x1ff);
MACIO_DPRINTF("set remainder to: %d\n", io->remainder_len);
/* We would read no data from the block layer, thus not get a callback.
Just fake completion manually. */
if (!io->len) {
pmac_ide_atapi_transfer_cb(opaque, 0);
return;
}
io->len = 0;
MACIO_DPRINTF("sector_num=%d size=%d, cmd_cmd=%d\n",
(s->lba << 2) + (s->io_buffer_index >> 9),
s->packet_transfer_size, s->dma_cmd);
m->aiocb = dma_bdrv_read(s->bs, &s->sg,
(int64_t)(s->lba << 2) + (s->io_buffer_index >> 9),
pmac_ide_atapi_transfer_cb, io);
return;
done:
MACIO_DPRINTF("done DMA\n");
block_acct_done(bdrv_get_stats(s->bs), &s->acct);
io->dma_end(opaque);
}
| 10,329 |
qemu | 64d7e9a421fea0ac50b44541f5521de455e7cd5d | 0 | static void pit_reset(void *opaque)
{
PITState *pit = opaque;
PITChannelState *s;
int i;
for(i = 0;i < 3; i++) {
s = &pit->channels[i];
s->mode = 3;
s->gate = (i != 2);
pit_load_count(s, 0);
}
}
| 10,330 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.