project
stringclasses
2 values
commit_id
stringlengths
40
40
target
int64
0
1
func
stringlengths
26
142k
idx
int64
0
27.3k
qemu
eabcea18f835178c1f8f088f88bf00e379f09438
0
static void sigp_stop_and_store_status(CPUState *cs, run_on_cpu_data arg) { S390CPU *cpu = S390_CPU(cs); SigpInfo *si = arg.host_ptr; struct kvm_s390_irq irq = { .type = KVM_S390_SIGP_STOP, }; /* disabled wait - sleeping in user space */ if (s390_cpu_get_state(cpu) == CPU_STATE_OPERATING && cs->halted) { s390_cpu_set_state(CPU_STATE_STOPPED, cpu); } switch (s390_cpu_get_state(cpu)) { case CPU_STATE_OPERATING: cpu->env.sigp_order = SIGP_STOP_STORE_STATUS; kvm_s390_vcpu_interrupt(cpu, &irq); /* store will be performed when handling the stop intercept */ break; case CPU_STATE_STOPPED: /* already stopped, just store the status */ cpu_synchronize_state(cs); kvm_s390_store_status(cpu, KVM_S390_STORE_STATUS_DEF_ADDR, true); break; } si->cc = SIGP_CC_ORDER_CODE_ACCEPTED; }
10,203
qemu
643f59322432d77165329dfabe2d040d7e30dae8
0
static int xen_remove_from_physmap(XenIOState *state, hwaddr start_addr, ram_addr_t size) { unsigned long i = 0; int rc = 0; XenPhysmap *physmap = NULL; hwaddr phys_offset = 0; physmap = get_physmapping(state, start_addr, size); if (physmap == NULL) { return -1; } phys_offset = physmap->phys_offset; size = physmap->size; DPRINTF("unmapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx", at " "%"HWADDR_PRIx"\n", start_addr, start_addr + size, phys_offset); size >>= TARGET_PAGE_BITS; start_addr >>= TARGET_PAGE_BITS; phys_offset >>= TARGET_PAGE_BITS; for (i = 0; i < size; i++) { unsigned long idx = start_addr + i; xen_pfn_t gpfn = phys_offset + i; rc = xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn); if (rc) { fprintf(stderr, "add_to_physmap MFN %"PRI_xen_pfn" to PFN %" PRI_xen_pfn" failed: %d\n", idx, gpfn, rc); return -rc; } } QLIST_REMOVE(physmap, list); if (state->log_for_dirtybit == physmap) { state->log_for_dirtybit = NULL; } g_free(physmap); return 0; }
10,204
qemu
b011f61931f0113b29b7cd7e921dd022e0b04834
0
int json_lexer_flush(JSONLexer *lexer) { return lexer->state == IN_START ? 0 : json_lexer_feed_char(lexer, 0); }
10,205
qemu
7385aed20db5d83979f683b9d0048674411e963c
0
float64 helper_fxtod(CPUSPARCState *env, int64_t src) { float64 ret; clear_float_exceptions(env); ret = int64_to_float64(src, &env->fp_status); check_ieee_exceptions(env); return ret; }
10,206
qemu
3f66f764ee25f10d3e1144ebc057a949421b7728
0
static void test_visitor_out_list(TestOutputVisitorData *data, const void *unused) { const char *value_str = "list value"; TestStructList *p, *head = NULL; const int max_items = 10; bool value_bool = true; int value_int = 10; Error *err = NULL; QListEntry *entry; QObject *obj; QList *qlist; int i; /* Build the list in reverse order... */ for (i = 0; i < max_items; i++) { p = g_malloc0(sizeof(*p)); p->value = g_malloc0(sizeof(*p->value)); p->value->integer = value_int + (max_items - i - 1); p->value->boolean = value_bool; p->value->string = g_strdup(value_str); p->next = head; head = p; } visit_type_TestStructList(data->ov, &head, NULL, &err); g_assert(!err); obj = qmp_output_get_qobject(data->qov); g_assert(obj != NULL); g_assert(qobject_type(obj) == QTYPE_QLIST); qlist = qobject_to_qlist(obj); g_assert(!qlist_empty(qlist)); /* ...and ensure that the visitor sees it in order */ i = 0; QLIST_FOREACH_ENTRY(qlist, entry) { QDict *qdict; g_assert(qobject_type(entry->value) == QTYPE_QDICT); qdict = qobject_to_qdict(entry->value); g_assert_cmpint(qdict_size(qdict), ==, 3); g_assert_cmpint(qdict_get_int(qdict, "integer"), ==, value_int + i); g_assert_cmpint(qdict_get_bool(qdict, "boolean"), ==, value_bool); g_assert_cmpstr(qdict_get_str(qdict, "string"), ==, value_str); i++; } g_assert_cmpint(i, ==, max_items); QDECREF(qlist); qapi_free_TestStructList(head); }
10,207
qemu
435db4cf29b88b6612e30acda01cd18788dff458
0
static uint64_t qemu_opt_get_size_helper(QemuOpts *opts, const char *name, uint64_t defval, bool del) { QemuOpt *opt = qemu_opt_find(opts, name); uint64_t ret = defval; if (opt == NULL) { const QemuOptDesc *desc = find_desc_by_name(opts->list->desc, name); if (desc && desc->def_value_str) { parse_option_size(name, desc->def_value_str, &ret, &error_abort); } return ret; } assert(opt->desc && opt->desc->type == QEMU_OPT_SIZE); ret = opt->value.uint; if (del) { qemu_opt_del_all(opts, name); } return ret; }
10,208
qemu
72cf2d4f0e181d0d3a3122e04129c58a95da713e
0
static int foreach_device_config(int type, int (*func)(const char *cmdline)) { struct device_config *conf; int rc; TAILQ_FOREACH(conf, &device_configs, next) { if (conf->type != type) continue; rc = func(conf->cmdline); if (0 != rc) return rc; } return 0; }
10,209
qemu
ff6ed7141d87d26eafa2b8e4df969623e40fac49
0
static BlockDriverState *bdrv_append_temp_snapshot(BlockDriverState *bs, int flags, QDict *snapshot_options, Error **errp) { /* TODO: extra byte is a hack to ensure MAX_PATH space on Windows. */ char *tmp_filename = g_malloc0(PATH_MAX + 1); int64_t total_size; QemuOpts *opts = NULL; BlockDriverState *bs_snapshot; Error *local_err = NULL; int ret; /* if snapshot, we create a temporary backing file and open it instead of opening 'filename' directly */ /* Get the required size from the image */ total_size = bdrv_getlength(bs); if (total_size < 0) { error_setg_errno(errp, -total_size, "Could not get image size"); goto out; } /* Create the temporary image */ ret = get_tmp_filename(tmp_filename, PATH_MAX + 1); if (ret < 0) { error_setg_errno(errp, -ret, "Could not get temporary filename"); goto out; } opts = qemu_opts_create(bdrv_qcow2.create_opts, NULL, 0, &error_abort); qemu_opt_set_number(opts, BLOCK_OPT_SIZE, total_size, &error_abort); ret = bdrv_create(&bdrv_qcow2, tmp_filename, opts, errp); qemu_opts_del(opts); if (ret < 0) { error_prepend(errp, "Could not create temporary overlay '%s': ", tmp_filename); goto out; } /* Prepare options QDict for the temporary file */ qdict_put_str(snapshot_options, "file.driver", "file"); qdict_put_str(snapshot_options, "file.filename", tmp_filename); qdict_put_str(snapshot_options, "driver", "qcow2"); bs_snapshot = bdrv_open(NULL, NULL, snapshot_options, flags, errp); snapshot_options = NULL; if (!bs_snapshot) { ret = -EINVAL; goto out; } /* bdrv_append() consumes a strong reference to bs_snapshot (i.e. it will * call bdrv_unref() on it), so in order to be able to return one, we have * to increase bs_snapshot's refcount here */ bdrv_ref(bs_snapshot); bdrv_append(bs_snapshot, bs, &local_err); if (local_err) { error_propagate(errp, local_err); ret = -EINVAL; goto out; } g_free(tmp_filename); return bs_snapshot; out: QDECREF(snapshot_options); g_free(tmp_filename); return NULL; }
10,210
qemu
fa879d62eb51253d00b6920ce1d1d9d261370a49
0
int qdev_prop_set_drive(DeviceState *dev, const char *name, BlockDriverState *value) { int res; res = bdrv_attach(value, dev); if (res < 0) { error_report("Can't attach drive %s to %s.%s: %s", bdrv_get_device_name(value), dev->id ? dev->id : dev->info->name, name, strerror(-res)); return -1; } qdev_prop_set(dev, name, &value, PROP_TYPE_DRIVE); return 0; }
10,211
qemu
21ce148c7ec71ee32834061355a5ecfd1a11f90f
1
static inline int cris_lz(int x) { int r; asm ("lz\t%1, %0\n" : "=r" (r) : "r" (x)); return r; }
10,214
qemu
e4f4fb1eca795e36f363b4647724221e774523c1
1
static void amdvi_class_init(ObjectClass *klass, void* data) { DeviceClass *dc = DEVICE_CLASS(klass); X86IOMMUClass *dc_class = X86_IOMMU_CLASS(klass); dc->reset = amdvi_reset; dc->vmsd = &vmstate_amdvi; dc->hotpluggable = false; dc_class->realize = amdvi_realize; }
10,216
qemu
b4ba67d9a702507793c2724e56f98e9b0f7be02b
1
static void pci_ehci_config(void) { /* hands over all ports from companion uhci to ehci */ qpci_io_writew(ehci1.dev, ehci1.base + 0x60, 1); }
10,217
qemu
364031f17932814484657e5551ba12957d993d7e
0
static int v9fs_synth_renameat(FsContext *ctx, V9fsPath *olddir, const char *old_name, V9fsPath *newdir, const char *new_name) { errno = EPERM; return -1; }
10,218
qemu
ae261c86aaed62e7acddafab8262a2bf286d40b7
0
static int vmdk_write_cid(BlockDriverState *bs, uint32_t cid) { char desc[DESC_SIZE], tmp_desc[DESC_SIZE]; char *p_name, *tmp_str; BDRVVmdkState *s = bs->opaque; memset(desc, 0, sizeof(desc)); if (bdrv_pread(bs->file, s->desc_offset, desc, DESC_SIZE) != DESC_SIZE) { return -EIO; } tmp_str = strstr(desc,"parentCID"); pstrcpy(tmp_desc, sizeof(tmp_desc), tmp_str); if ((p_name = strstr(desc,"CID")) != NULL) { p_name += sizeof("CID"); snprintf(p_name, sizeof(desc) - (p_name - desc), "%x\n", cid); pstrcat(desc, sizeof(desc), tmp_desc); } if (bdrv_pwrite_sync(bs->file, s->desc_offset, desc, DESC_SIZE) < 0) { return -EIO; } return 0; }
10,219
qemu
cc84de9570ffe01a9c3c169bd62ab9586a9a080c
0
static void qemu_signal_lock(unsigned int msecs) { qemu_mutex_lock(&qemu_fair_mutex); while (qemu_mutex_trylock(&qemu_global_mutex)) { qemu_thread_signal(tcg_cpu_thread, SIGUSR1); if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs)) break; } qemu_mutex_unlock(&qemu_fair_mutex); }
10,220
qemu
7f6613cedc59fa849105668ae971dc31004bca1c
0
static void gen_mttr(CPUMIPSState *env, DisasContext *ctx, int rd, int rt, int u, int sel, int h) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); TCGv t0 = tcg_temp_local_new(); gen_load_gpr(t0, rt); if ((env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) == 0 && ((env->tcs[other_tc].CP0_TCBind & (0xf << CP0TCBd_CurVPE)) != (env->active_tc.CP0_TCBind & (0xf << CP0TCBd_CurVPE)))) /* NOP */ ; else if ((env->CP0_VPEControl & (0xff << CP0VPECo_TargTC)) > (env->mvp->CP0_MVPConf0 & (0xff << CP0MVPC0_PTC))) /* NOP */ ; else if (u == 0) { switch (rd) { case 1: switch (sel) { case 1: gen_helper_mttc0_vpecontrol(cpu_env, t0); break; case 2: gen_helper_mttc0_vpeconf0(cpu_env, t0); break; default: goto die; break; } break; case 2: switch (sel) { case 1: gen_helper_mttc0_tcstatus(cpu_env, t0); break; case 2: gen_helper_mttc0_tcbind(cpu_env, t0); break; case 3: gen_helper_mttc0_tcrestart(cpu_env, t0); break; case 4: gen_helper_mttc0_tchalt(cpu_env, t0); break; case 5: gen_helper_mttc0_tccontext(cpu_env, t0); break; case 6: gen_helper_mttc0_tcschedule(cpu_env, t0); break; case 7: gen_helper_mttc0_tcschefback(cpu_env, t0); break; default: gen_mtc0(ctx, t0, rd, sel); break; } break; case 10: switch (sel) { case 0: gen_helper_mttc0_entryhi(cpu_env, t0); break; default: gen_mtc0(ctx, t0, rd, sel); break; } case 12: switch (sel) { case 0: gen_helper_mttc0_status(cpu_env, t0); break; default: gen_mtc0(ctx, t0, rd, sel); break; } case 13: switch (sel) { case 0: gen_helper_mttc0_cause(cpu_env, t0); break; default: goto die; break; } break; case 15: switch (sel) { case 1: gen_helper_mttc0_ebase(cpu_env, t0); break; default: goto die; break; } break; case 23: switch (sel) { case 0: gen_helper_mttc0_debug(cpu_env, t0); break; default: gen_mtc0(ctx, t0, rd, sel); break; } break; default: gen_mtc0(ctx, t0, rd, sel); } } else switch (sel) { /* GPR registers. */ case 0: gen_helper_0e1i(mttgpr, t0, rd); break; /* Auxiliary CPU registers */ case 1: switch (rd) { case 0: gen_helper_0e1i(mttlo, t0, 0); break; case 1: gen_helper_0e1i(mtthi, t0, 0); break; case 2: gen_helper_0e1i(mttacx, t0, 0); break; case 4: gen_helper_0e1i(mttlo, t0, 1); break; case 5: gen_helper_0e1i(mtthi, t0, 1); break; case 6: gen_helper_0e1i(mttacx, t0, 1); break; case 8: gen_helper_0e1i(mttlo, t0, 2); break; case 9: gen_helper_0e1i(mtthi, t0, 2); break; case 10: gen_helper_0e1i(mttacx, t0, 2); break; case 12: gen_helper_0e1i(mttlo, t0, 3); break; case 13: gen_helper_0e1i(mtthi, t0, 3); break; case 14: gen_helper_0e1i(mttacx, t0, 3); break; case 16: gen_helper_mttdsp(cpu_env, t0); break; default: goto die; } break; /* Floating point (COP1). */ case 2: /* XXX: For now we support only a single FPU context. */ if (h == 0) { TCGv_i32 fp0 = tcg_temp_new_i32(); tcg_gen_trunc_tl_i32(fp0, t0); gen_store_fpr32(fp0, rd); tcg_temp_free_i32(fp0); } else { TCGv_i32 fp0 = tcg_temp_new_i32(); tcg_gen_trunc_tl_i32(fp0, t0); gen_store_fpr32h(fp0, rd); tcg_temp_free_i32(fp0); } break; case 3: /* XXX: For now we support only a single FPU context. */ { TCGv_i32 fs_tmp = tcg_const_i32(rd); gen_helper_0e2i(ctc1, t0, fs_tmp, rt); tcg_temp_free_i32(fs_tmp); } break; /* COP2: Not implemented. */ case 4: case 5: /* fall through */ default: goto die; } LOG_DISAS("mttr (reg %d u %d sel %d h %d)\n", rd, u, sel, h); tcg_temp_free(t0); return; die: tcg_temp_free(t0); LOG_DISAS("mttr (reg %d u %d sel %d h %d)\n", rd, u, sel, h); generate_exception(ctx, EXCP_RI); }
10,223
qemu
8d0bcba8370a4e8606dee602393a14d0c48e8bfc
0
int net_init_slirp(const NetClientOptions *opts, const char *name, NetClientState *peer, Error **errp) { /* FIXME error_setg(errp, ...) on failure */ struct slirp_config_str *config; char *vnet; int ret; const NetdevUserOptions *user; const char **dnssearch; assert(opts->kind == NET_CLIENT_OPTIONS_KIND_USER); user = opts->user; vnet = user->has_net ? g_strdup(user->net) : user->has_ip ? g_strdup_printf("%s/24", user->ip) : NULL; dnssearch = slirp_dnssearch(user->dnssearch); /* all optional fields are initialized to "all bits zero" */ net_init_slirp_configs(user->hostfwd, SLIRP_CFG_HOSTFWD); net_init_slirp_configs(user->guestfwd, 0); ret = net_slirp_init(peer, "user", name, user->q_restrict, vnet, user->host, user->hostname, user->tftp, user->bootfile, user->dhcpstart, user->dns, user->smb, user->smbserver, dnssearch); while (slirp_configs) { config = slirp_configs; slirp_configs = config->next; g_free(config); } g_free(vnet); g_free(dnssearch); return ret; }
10,224
qemu
fa879d62eb51253d00b6920ce1d1d9d261370a49
0
void bdrv_detach(BlockDriverState *bs, DeviceState *qdev) { assert(bs->peer == qdev); bs->peer = NULL; bs->change_cb = NULL; bs->change_opaque = NULL; }
10,225
qemu
8d5c773e323b22402abdd0beef4c7d2fc91dd0eb
0
static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) { env->cp15.c2_base_mask = 0xffffc000u; env->cp15.c2_control = 0; env->cp15.c2_mask = 0; }
10,226
qemu
7e84c2498f0ff3999937d18d1e9abaa030400000
0
static inline void helper_ret_protected(int shift, int is_iret, int addend) { uint32_t sp, new_cs, new_eip, new_eflags, new_esp, new_ss; uint32_t new_es, new_ds, new_fs, new_gs; uint32_t e1, e2, ss_e1, ss_e2; int cpl, dpl, rpl, eflags_mask; uint8_t *ssp; sp = ESP; if (!(env->segs[R_SS].flags & DESC_B_MASK)) sp &= 0xffff; ssp = env->segs[R_SS].base + sp; if (shift == 1) { /* 32 bits */ if (is_iret) new_eflags = ldl_kernel(ssp + 8); new_cs = ldl_kernel(ssp + 4) & 0xffff; new_eip = ldl_kernel(ssp); if (is_iret && (new_eflags & VM_MASK)) goto return_to_vm86; } else { /* 16 bits */ if (is_iret) new_eflags = lduw_kernel(ssp + 4); new_cs = lduw_kernel(ssp + 2); new_eip = lduw_kernel(ssp); } if ((new_cs & 0xfffc) == 0) raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc); if (load_segment(&e1, &e2, new_cs) != 0) raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc); if (!(e2 & DESC_S_MASK) || !(e2 & DESC_CS_MASK)) raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc); cpl = env->hflags & HF_CPL_MASK; rpl = new_cs & 3; if (rpl < cpl) raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc); dpl = (e2 >> DESC_DPL_SHIFT) & 3; if (e2 & DESC_CS_MASK) { if (dpl > rpl) raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc); } else { if (dpl != rpl) raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc); } if (!(e2 & DESC_P_MASK)) raise_exception_err(EXCP0B_NOSEG, new_cs & 0xfffc); if (rpl == cpl) { /* return to same priledge level */ cpu_x86_load_seg_cache(env, R_CS, new_cs, get_seg_base(e1, e2), get_seg_limit(e1, e2), e2); new_esp = sp + (4 << shift) + ((2 * is_iret) << shift) + addend; } else { /* return to different priviledge level */ ssp += (4 << shift) + ((2 * is_iret) << shift) + addend; if (shift == 1) { /* 32 bits */ new_esp = ldl_kernel(ssp); new_ss = ldl_kernel(ssp + 4) & 0xffff; } else { /* 16 bits */ new_esp = lduw_kernel(ssp); new_ss = lduw_kernel(ssp + 2); } if ((new_ss & 3) != rpl) raise_exception_err(EXCP0D_GPF, new_ss & 0xfffc); if (load_segment(&ss_e1, &ss_e2, new_ss) != 0) raise_exception_err(EXCP0D_GPF, new_ss & 0xfffc); if (!(ss_e2 & DESC_S_MASK) || (ss_e2 & DESC_CS_MASK) || !(ss_e2 & DESC_W_MASK)) raise_exception_err(EXCP0D_GPF, new_ss & 0xfffc); dpl = (ss_e2 >> DESC_DPL_SHIFT) & 3; if (dpl != rpl) raise_exception_err(EXCP0D_GPF, new_ss & 0xfffc); if (!(ss_e2 & DESC_P_MASK)) raise_exception_err(EXCP0B_NOSEG, new_ss & 0xfffc); cpu_x86_load_seg_cache(env, R_CS, new_cs, get_seg_base(e1, e2), get_seg_limit(e1, e2), e2); cpu_x86_load_seg_cache(env, R_SS, new_ss, get_seg_base(ss_e1, ss_e2), get_seg_limit(ss_e1, ss_e2), ss_e2); cpu_x86_set_cpl(env, rpl); } if (env->segs[R_SS].flags & DESC_B_MASK) ESP = new_esp; else ESP = (ESP & 0xffff0000) | (new_esp & 0xffff); env->eip = new_eip; if (is_iret) { /* NOTE: 'cpl' can be different from the current CPL */ if (cpl == 0) eflags_mask = FL_UPDATE_CPL0_MASK; else eflags_mask = FL_UPDATE_MASK32; if (shift == 0) eflags_mask &= 0xffff; load_eflags(new_eflags, eflags_mask); } return; return_to_vm86: new_esp = ldl_kernel(ssp + 12); new_ss = ldl_kernel(ssp + 16); new_es = ldl_kernel(ssp + 20); new_ds = ldl_kernel(ssp + 24); new_fs = ldl_kernel(ssp + 28); new_gs = ldl_kernel(ssp + 32); /* modify processor state */ load_eflags(new_eflags, FL_UPDATE_CPL0_MASK | VM_MASK | VIF_MASK | VIP_MASK); load_seg_vm(R_CS, new_cs); cpu_x86_set_cpl(env, 3); load_seg_vm(R_SS, new_ss); load_seg_vm(R_ES, new_es); load_seg_vm(R_DS, new_ds); load_seg_vm(R_FS, new_fs); load_seg_vm(R_GS, new_gs); env->eip = new_eip; ESP = new_esp; }
10,227
qemu
207f328afc2137d422f59293ba37b8be5d3e1617
0
static int vnc_refresh_lossy_rect(VncDisplay *vd, int x, int y) { VncState *vs; int sty = y / VNC_STAT_RECT; int stx = x / VNC_STAT_RECT; int has_dirty = 0; y = y / VNC_STAT_RECT * VNC_STAT_RECT; x = x / VNC_STAT_RECT * VNC_STAT_RECT; QTAILQ_FOREACH(vs, &vd->clients, next) { int j; /* kernel send buffers are full -> refresh later */ if (vs->output.offset) { continue; } if (!vs->lossy_rect[sty][stx]) { continue; } vs->lossy_rect[sty][stx] = 0; for (j = 0; j < VNC_STAT_RECT; ++j) { vnc_set_bits(vs->dirty[y + j], x / 16, VNC_STAT_RECT / 16); } has_dirty++; } return has_dirty; }
10,228
qemu
ac03ee5331612e44beb393df2b578c951d27dc0d
0
void cpu_exec_step_atomic(CPUState *cpu) { start_exclusive(); /* Since we got here, we know that parallel_cpus must be true. */ parallel_cpus = false; cpu_exec_step(cpu); parallel_cpus = true; end_exclusive(); }
10,229
qemu
5fe79386ba3cdc86fd808dde301bfc5bb7e9bded
0
void acpi_build(AcpiBuildTables *tables) { PCMachineState *pcms = PC_MACHINE(qdev_get_machine()); PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); GArray *table_offsets; unsigned facs, dsdt, rsdt, fadt; AcpiCpuInfo cpu; AcpiPmInfo pm; AcpiMiscInfo misc; AcpiMcfgInfo mcfg; PcPciInfo pci; uint8_t *u; size_t aml_len = 0; GArray *tables_blob = tables->table_data; AcpiSlicOem slic_oem = { .id = NULL, .table_id = NULL }; acpi_get_cpu_info(&cpu); acpi_get_pm_info(&pm); acpi_get_misc_info(&misc); acpi_get_pci_info(&pci); acpi_get_slic_oem(&slic_oem); table_offsets = g_array_new(false, true /* clear */, sizeof(uint32_t)); ACPI_BUILD_DPRINTF("init ACPI tables\n"); bios_linker_loader_alloc(tables->linker, ACPI_BUILD_TABLE_FILE, 64 /* Ensure FACS is aligned */, false /* high memory */); /* * FACS is pointed to by FADT. * We place it first since it's the only table that has alignment * requirements. */ facs = tables_blob->len; build_facs(tables_blob, tables->linker); /* DSDT is pointed to by FADT */ dsdt = tables_blob->len; build_dsdt(tables_blob, tables->linker, &cpu, &pm, &misc, &pci); /* Count the size of the DSDT and SSDT, we will need it for legacy * sizing of ACPI tables. */ aml_len += tables_blob->len - dsdt; /* ACPI tables pointed to by RSDT */ fadt = tables_blob->len; acpi_add_table(table_offsets, tables_blob); build_fadt(tables_blob, tables->linker, &pm, facs, dsdt, slic_oem.id, slic_oem.table_id); aml_len += tables_blob->len - fadt; acpi_add_table(table_offsets, tables_blob); build_madt(tables_blob, tables->linker, &cpu); if (misc.has_hpet) { acpi_add_table(table_offsets, tables_blob); build_hpet(tables_blob, tables->linker); } if (misc.tpm_version != TPM_VERSION_UNSPEC) { acpi_add_table(table_offsets, tables_blob); build_tpm_tcpa(tables_blob, tables->linker, tables->tcpalog); if (misc.tpm_version == TPM_VERSION_2_0) { acpi_add_table(table_offsets, tables_blob); build_tpm2(tables_blob, tables->linker); } } if (pcms->numa_nodes) { acpi_add_table(table_offsets, tables_blob); build_srat(tables_blob, tables->linker); } if (acpi_get_mcfg(&mcfg)) { acpi_add_table(table_offsets, tables_blob); build_mcfg_q35(tables_blob, tables->linker, &mcfg); } if (acpi_has_iommu()) { acpi_add_table(table_offsets, tables_blob); build_dmar_q35(tables_blob, tables->linker); } if (acpi_has_nvdimm()) { nvdimm_build_acpi(table_offsets, tables_blob, tables->linker); } /* Add tables supplied by user (if any) */ for (u = acpi_table_first(); u; u = acpi_table_next(u)) { unsigned len = acpi_table_len(u); acpi_add_table(table_offsets, tables_blob); g_array_append_vals(tables_blob, u, len); } /* RSDT is pointed to by RSDP */ rsdt = tables_blob->len; build_rsdt(tables_blob, tables->linker, table_offsets, slic_oem.id, slic_oem.table_id); /* RSDP is in FSEG memory, so allocate it separately */ build_rsdp(tables->rsdp, tables->linker, rsdt); /* We'll expose it all to Guest so we want to reduce * chance of size changes. * * We used to align the tables to 4k, but of course this would * too simple to be enough. 4k turned out to be too small an * alignment very soon, and in fact it is almost impossible to * keep the table size stable for all (max_cpus, max_memory_slots) * combinations. So the table size is always 64k for pc-i440fx-2.1 * and we give an error if the table grows beyond that limit. * * We still have the problem of migrating from "-M pc-i440fx-2.0". For * that, we exploit the fact that QEMU 2.1 generates _smaller_ tables * than 2.0 and we can always pad the smaller tables with zeros. We can * then use the exact size of the 2.0 tables. * * All this is for PIIX4, since QEMU 2.0 didn't support Q35 migration. */ if (pcmc->legacy_acpi_table_size) { /* Subtracting aml_len gives the size of fixed tables. Then add the * size of the PIIX4 DSDT/SSDT in QEMU 2.0. */ int legacy_aml_len = pcmc->legacy_acpi_table_size + ACPI_BUILD_LEGACY_CPU_AML_SIZE * max_cpus; int legacy_table_size = ROUND_UP(tables_blob->len - aml_len + legacy_aml_len, ACPI_BUILD_ALIGN_SIZE); if (tables_blob->len > legacy_table_size) { /* Should happen only with PCI bridges and -M pc-i440fx-2.0. */ error_report("Warning: migration may not work."); } g_array_set_size(tables_blob, legacy_table_size); } else { /* Make sure we have a buffer in case we need to resize the tables. */ if (tables_blob->len > ACPI_BUILD_TABLE_SIZE / 2) { /* As of QEMU 2.1, this fires with 160 VCPUs and 255 memory slots. */ error_report("Warning: ACPI tables are larger than 64k."); error_report("Warning: migration may not work."); error_report("Warning: please remove CPUs, NUMA nodes, " "memory slots or PCI bridges."); } acpi_align_size(tables_blob, ACPI_BUILD_TABLE_SIZE); } acpi_align_size(tables->linker, ACPI_BUILD_ALIGN_SIZE); /* Cleanup memory that's no longer used. */ g_array_free(table_offsets, true); }
10,230
qemu
55e1819c509b3d9c10a54678b9c585bbda13889e
0
static void qnull_destroy_obj(QObject *obj) { assert(0); }
10,231
qemu
723ccda1a0eecece8e70dbcdd35a603f6c41a475
0
void hmp_info_snapshots(Monitor *mon, const QDict *qdict) { BlockDriverState *bs, *bs1; QEMUSnapshotInfo *sn_tab, *sn, s, *sn_info = &s; int nb_sns, i, ret, available; int total; int *available_snapshots; bs = find_vmstate_bs(); if (!bs) { monitor_printf(mon, "No available block device supports snapshots\n"); return; } nb_sns = bdrv_snapshot_list(bs, &sn_tab); if (nb_sns < 0) { monitor_printf(mon, "bdrv_snapshot_list: error %d\n", nb_sns); return; } if (nb_sns == 0) { monitor_printf(mon, "There is no snapshot available.\n"); return; } available_snapshots = g_new0(int, nb_sns); total = 0; for (i = 0; i < nb_sns; i++) { sn = &sn_tab[i]; available = 1; bs1 = NULL; while ((bs1 = bdrv_next(bs1))) { if (bdrv_can_snapshot(bs1) && bs1 != bs) { ret = bdrv_snapshot_find(bs1, sn_info, sn->id_str); if (ret < 0) { available = 0; break; } } } if (available) { available_snapshots[total] = i; total++; } } if (total > 0) { bdrv_snapshot_dump((fprintf_function)monitor_printf, mon, NULL); monitor_printf(mon, "\n"); for (i = 0; i < total; i++) { sn = &sn_tab[available_snapshots[i]]; bdrv_snapshot_dump((fprintf_function)monitor_printf, mon, sn); monitor_printf(mon, "\n"); } } else { monitor_printf(mon, "There is no suitable snapshot available\n"); } g_free(sn_tab); g_free(available_snapshots); }
10,234
qemu
cda607d5e0178d0268066d94dd06b89614304a7d
0
static void set_fifodepth(MSSSpiState *s) { unsigned int size = s->regs[R_SPI_DFSIZE] & FRAMESZ_MASK; if (size <= 8) { s->fifo_depth = 32; } else if (size <= 16) { s->fifo_depth = 16; } else if (size <= 32) { s->fifo_depth = 8; } else { s->fifo_depth = 4; } }
10,235
qemu
120dc38f6113b676ecef0a2c9e42fc08cace5bdb
0
void qdev_unplug(DeviceState *dev, Error **errp) { DeviceClass *dc = DEVICE_GET_CLASS(dev); if (!dev->parent_bus->allow_hotplug) { error_set(errp, QERR_BUS_NO_HOTPLUG, dev->parent_bus->name); return; } assert(dc->unplug != NULL); qdev_hot_removed = true; if (dc->unplug(dev) < 0) { error_set(errp, QERR_UNDEFINED_ERROR); return; } }
10,236
qemu
bdb5ee3064d5ae786b0bcb6cf6ff4e3554a72990
0
int rom_add_file(const char *file, const char *fw_dir, const char *fw_file, target_phys_addr_t addr) { Rom *rom; int rc, fd = -1; rom = qemu_mallocz(sizeof(*rom)); rom->name = qemu_strdup(file); rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name); if (rom->path == NULL) { rom->path = qemu_strdup(file); } fd = open(rom->path, O_RDONLY | O_BINARY); if (fd == -1) { fprintf(stderr, "Could not open option rom '%s': %s\n", rom->path, strerror(errno)); goto err; } rom->fw_dir = fw_dir ? qemu_strdup(fw_dir) : NULL; rom->fw_file = fw_file ? qemu_strdup(fw_file) : NULL; rom->addr = addr; rom->romsize = lseek(fd, 0, SEEK_END); rom->data = qemu_mallocz(rom->romsize); lseek(fd, 0, SEEK_SET); rc = read(fd, rom->data, rom->romsize); if (rc != rom->romsize) { fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n", rom->name, rc, rom->romsize); goto err; } close(fd); rom_insert(rom); return 0; err: if (fd != -1) close(fd); qemu_free(rom->data); qemu_free(rom->path); qemu_free(rom->name); qemu_free(rom); return -1; }
10,237
qemu
33256a25b3b31915b9038eefe7923c68bb034118
0
static void ide_ioport_write(void *opaque, uint32_t addr, uint32_t val) { IDEState *ide_if = opaque; IDEState *s; int unit, n; int lba48 = 0; #ifdef DEBUG_IDE printf("IDE: write addr=0x%x val=0x%02x\n", addr, val); #endif addr &= 7; /* ignore writes to command block while busy with previous command */ if (addr != 7 && (ide_if->cur_drive->status & (BUSY_STAT|DRQ_STAT))) return; switch(addr) { case 0: break; case 1: ide_clear_hob(ide_if); /* NOTE: data is written to the two drives */ ide_if[0].hob_feature = ide_if[0].feature; ide_if[1].hob_feature = ide_if[1].feature; ide_if[0].feature = val; ide_if[1].feature = val; break; case 2: ide_clear_hob(ide_if); ide_if[0].hob_nsector = ide_if[0].nsector; ide_if[1].hob_nsector = ide_if[1].nsector; ide_if[0].nsector = val; ide_if[1].nsector = val; break; case 3: ide_clear_hob(ide_if); ide_if[0].hob_sector = ide_if[0].sector; ide_if[1].hob_sector = ide_if[1].sector; ide_if[0].sector = val; ide_if[1].sector = val; break; case 4: ide_clear_hob(ide_if); ide_if[0].hob_lcyl = ide_if[0].lcyl; ide_if[1].hob_lcyl = ide_if[1].lcyl; ide_if[0].lcyl = val; ide_if[1].lcyl = val; break; case 5: ide_clear_hob(ide_if); ide_if[0].hob_hcyl = ide_if[0].hcyl; ide_if[1].hob_hcyl = ide_if[1].hcyl; ide_if[0].hcyl = val; ide_if[1].hcyl = val; break; case 6: /* FIXME: HOB readback uses bit 7 */ ide_if[0].select = (val & ~0x10) | 0xa0; ide_if[1].select = (val | 0x10) | 0xa0; /* select drive */ unit = (val >> 4) & 1; s = ide_if + unit; ide_if->cur_drive = s; break; default: case 7: /* command */ #if defined(DEBUG_IDE) printf("ide: CMD=%02x\n", val); #endif s = ide_if->cur_drive; /* ignore commands to non existant slave */ if (s != ide_if && !s->bs) break; /* Only DEVICE RESET is allowed while BSY or/and DRQ are set */ if ((s->status & (BUSY_STAT|DRQ_STAT)) && val != WIN_DEVICE_RESET) break; switch(val) { case WIN_IDENTIFY: if (s->bs && !s->is_cdrom) { if (!s->is_cf) ide_identify(s); else ide_cfata_identify(s); s->status = READY_STAT | SEEK_STAT; ide_transfer_start(s, s->io_buffer, 512, ide_transfer_stop); } else { if (s->is_cdrom) { ide_set_signature(s); } ide_abort_command(s); } ide_set_irq(s); break; case WIN_SPECIFY: case WIN_RECAL: s->error = 0; s->status = READY_STAT | SEEK_STAT; ide_set_irq(s); break; case WIN_SETMULT: if (s->is_cf && s->nsector == 0) { /* Disable Read and Write Multiple */ s->mult_sectors = 0; s->status = READY_STAT | SEEK_STAT; } else if ((s->nsector & 0xff) != 0 && ((s->nsector & 0xff) > MAX_MULT_SECTORS || (s->nsector & (s->nsector - 1)) != 0)) { ide_abort_command(s); } else { s->mult_sectors = s->nsector & 0xff; s->status = READY_STAT | SEEK_STAT; } ide_set_irq(s); break; case WIN_VERIFY_EXT: lba48 = 1; case WIN_VERIFY: case WIN_VERIFY_ONCE: /* do sector number check ? */ ide_cmd_lba48_transform(s, lba48); s->status = READY_STAT | SEEK_STAT; ide_set_irq(s); break; case WIN_READ_EXT: lba48 = 1; case WIN_READ: case WIN_READ_ONCE: if (!s->bs) goto abort_cmd; ide_cmd_lba48_transform(s, lba48); s->req_nb_sectors = 1; ide_sector_read(s); break; case WIN_WRITE_EXT: lba48 = 1; case WIN_WRITE: case WIN_WRITE_ONCE: case CFA_WRITE_SECT_WO_ERASE: case WIN_WRITE_VERIFY: ide_cmd_lba48_transform(s, lba48); s->error = 0; s->status = SEEK_STAT | READY_STAT; s->req_nb_sectors = 1; ide_transfer_start(s, s->io_buffer, 512, ide_sector_write); s->media_changed = 1; break; case WIN_MULTREAD_EXT: lba48 = 1; case WIN_MULTREAD: if (!s->mult_sectors) goto abort_cmd; ide_cmd_lba48_transform(s, lba48); s->req_nb_sectors = s->mult_sectors; ide_sector_read(s); break; case WIN_MULTWRITE_EXT: lba48 = 1; case WIN_MULTWRITE: case CFA_WRITE_MULTI_WO_ERASE: if (!s->mult_sectors) goto abort_cmd; ide_cmd_lba48_transform(s, lba48); s->error = 0; s->status = SEEK_STAT | READY_STAT; s->req_nb_sectors = s->mult_sectors; n = s->nsector; if (n > s->req_nb_sectors) n = s->req_nb_sectors; ide_transfer_start(s, s->io_buffer, 512 * n, ide_sector_write); s->media_changed = 1; break; case WIN_READDMA_EXT: lba48 = 1; case WIN_READDMA: case WIN_READDMA_ONCE: if (!s->bs) goto abort_cmd; ide_cmd_lba48_transform(s, lba48); ide_sector_read_dma(s); break; case WIN_WRITEDMA_EXT: lba48 = 1; case WIN_WRITEDMA: case WIN_WRITEDMA_ONCE: if (!s->bs) goto abort_cmd; ide_cmd_lba48_transform(s, lba48); ide_sector_write_dma(s); s->media_changed = 1; break; case WIN_READ_NATIVE_MAX_EXT: lba48 = 1; case WIN_READ_NATIVE_MAX: ide_cmd_lba48_transform(s, lba48); ide_set_sector(s, s->nb_sectors - 1); s->status = READY_STAT | SEEK_STAT; ide_set_irq(s); break; case WIN_CHECKPOWERMODE1: case WIN_CHECKPOWERMODE2: s->nsector = 0xff; /* device active or idle */ s->status = READY_STAT | SEEK_STAT; ide_set_irq(s); break; case WIN_SETFEATURES: if (!s->bs) goto abort_cmd; /* XXX: valid for CDROM ? */ switch(s->feature) { case 0xcc: /* reverting to power-on defaults enable */ case 0x66: /* reverting to power-on defaults disable */ case 0x02: /* write cache enable */ case 0x82: /* write cache disable */ case 0xaa: /* read look-ahead enable */ case 0x55: /* read look-ahead disable */ case 0x05: /* set advanced power management mode */ case 0x85: /* disable advanced power management mode */ case 0x69: /* NOP */ case 0x67: /* NOP */ case 0x96: /* NOP */ case 0x9a: /* NOP */ case 0x42: /* enable Automatic Acoustic Mode */ case 0xc2: /* disable Automatic Acoustic Mode */ s->status = READY_STAT | SEEK_STAT; ide_set_irq(s); break; case 0x03: { /* set transfer mode */ uint8_t val = s->nsector & 0x07; switch (s->nsector >> 3) { case 0x00: /* pio default */ case 0x01: /* pio mode */ put_le16(s->identify_data + 62,0x07); put_le16(s->identify_data + 63,0x07); put_le16(s->identify_data + 88,0x3f); break; case 0x02: /* sigle word dma mode*/ put_le16(s->identify_data + 62,0x07 | (1 << (val + 8))); put_le16(s->identify_data + 63,0x07); put_le16(s->identify_data + 88,0x3f); break; case 0x04: /* mdma mode */ put_le16(s->identify_data + 62,0x07); put_le16(s->identify_data + 63,0x07 | (1 << (val + 8))); put_le16(s->identify_data + 88,0x3f); break; case 0x08: /* udma mode */ put_le16(s->identify_data + 62,0x07); put_le16(s->identify_data + 63,0x07); put_le16(s->identify_data + 88,0x3f | (1 << (val + 8))); break; default: goto abort_cmd; } s->status = READY_STAT | SEEK_STAT; ide_set_irq(s); break; } default: goto abort_cmd; } break; case WIN_FLUSH_CACHE: case WIN_FLUSH_CACHE_EXT: if (s->bs) bdrv_flush(s->bs); s->status = READY_STAT | SEEK_STAT; ide_set_irq(s); break; case WIN_STANDBY: case WIN_STANDBY2: case WIN_STANDBYNOW1: case WIN_STANDBYNOW2: case WIN_IDLEIMMEDIATE: case CFA_IDLEIMMEDIATE: case WIN_SETIDLE1: case WIN_SETIDLE2: case WIN_SLEEPNOW1: case WIN_SLEEPNOW2: s->status = READY_STAT; ide_set_irq(s); break; /* ATAPI commands */ case WIN_PIDENTIFY: if (s->is_cdrom) { ide_atapi_identify(s); s->status = READY_STAT | SEEK_STAT; ide_transfer_start(s, s->io_buffer, 512, ide_transfer_stop); } else { ide_abort_command(s); } ide_set_irq(s); break; case WIN_DIAGNOSE: ide_set_signature(s); s->status = READY_STAT | SEEK_STAT; s->error = 0x01; ide_set_irq(s); break; case WIN_SRST: if (!s->is_cdrom) goto abort_cmd; ide_set_signature(s); s->status = 0x00; /* NOTE: READY is _not_ set */ s->error = 0x01; break; case WIN_PACKETCMD: if (!s->is_cdrom) goto abort_cmd; /* overlapping commands not supported */ if (s->feature & 0x02) goto abort_cmd; s->status = READY_STAT | SEEK_STAT; s->atapi_dma = s->feature & 1; s->nsector = 1; ide_transfer_start(s, s->io_buffer, ATAPI_PACKET_SIZE, ide_atapi_cmd); break; /* CF-ATA commands */ case CFA_REQ_EXT_ERROR_CODE: if (!s->is_cf) goto abort_cmd; s->error = 0x09; /* miscellaneous error */ s->status = READY_STAT | SEEK_STAT; ide_set_irq(s); break; case CFA_ERASE_SECTORS: case CFA_WEAR_LEVEL: if (!s->is_cf) goto abort_cmd; if (val == CFA_WEAR_LEVEL) s->nsector = 0; if (val == CFA_ERASE_SECTORS) s->media_changed = 1; s->error = 0x00; s->status = READY_STAT | SEEK_STAT; ide_set_irq(s); break; case CFA_TRANSLATE_SECTOR: if (!s->is_cf) goto abort_cmd; s->error = 0x00; s->status = READY_STAT | SEEK_STAT; memset(s->io_buffer, 0, 0x200); s->io_buffer[0x00] = s->hcyl; /* Cyl MSB */ s->io_buffer[0x01] = s->lcyl; /* Cyl LSB */ s->io_buffer[0x02] = s->select; /* Head */ s->io_buffer[0x03] = s->sector; /* Sector */ s->io_buffer[0x04] = ide_get_sector(s) >> 16; /* LBA MSB */ s->io_buffer[0x05] = ide_get_sector(s) >> 8; /* LBA */ s->io_buffer[0x06] = ide_get_sector(s) >> 0; /* LBA LSB */ s->io_buffer[0x13] = 0x00; /* Erase flag */ s->io_buffer[0x18] = 0x00; /* Hot count */ s->io_buffer[0x19] = 0x00; /* Hot count */ s->io_buffer[0x1a] = 0x01; /* Hot count */ ide_transfer_start(s, s->io_buffer, 0x200, ide_transfer_stop); ide_set_irq(s); break; case CFA_ACCESS_METADATA_STORAGE: if (!s->is_cf) goto abort_cmd; switch (s->feature) { case 0x02: /* Inquiry Metadata Storage */ ide_cfata_metadata_inquiry(s); break; case 0x03: /* Read Metadata Storage */ ide_cfata_metadata_read(s); break; case 0x04: /* Write Metadata Storage */ ide_cfata_metadata_write(s); break; default: goto abort_cmd; } ide_transfer_start(s, s->io_buffer, 0x200, ide_transfer_stop); s->status = 0x00; /* NOTE: READY is _not_ set */ ide_set_irq(s); break; case IBM_SENSE_CONDITION: if (!s->is_cf) goto abort_cmd; switch (s->feature) { case 0x01: /* sense temperature in device */ s->nsector = 0x50; /* +20 C */ break; default: goto abort_cmd; } s->status = READY_STAT | SEEK_STAT; ide_set_irq(s); break; default: abort_cmd: ide_abort_command(s); ide_set_irq(s); break; } } }
10,238
qemu
ebc996f3b13004e7272c462254522ba0102f09fe
0
_syscall3(int,sys_faccessat,int,dirfd,const char *,pathname,int,mode) #endif #if defined(TARGET_NR_fchmodat) && defined(__NR_fchmodat) _syscall3(int,sys_fchmodat,int,dirfd,const char *,pathname, mode_t,mode) #endif #if defined(TARGET_NR_fchownat) && defined(__NR_fchownat) && defined(USE_UID16) _syscall5(int,sys_fchownat,int,dirfd,const char *,pathname, uid_t,owner,gid_t,group,int,flags) #endif #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat)) && \ defined(__NR_fstatat64) _syscall4(int,sys_fstatat64,int,dirfd,const char *,pathname, struct stat *,buf,int,flags) #endif #if defined(TARGET_NR_futimesat) && defined(__NR_futimesat) _syscall3(int,sys_futimesat,int,dirfd,const char *,pathname, const struct timeval *,times) #endif #if (defined(TARGET_NR_newfstatat) || defined(TARGET_NR_fstatat64) ) && \ defined(__NR_newfstatat) _syscall4(int,sys_newfstatat,int,dirfd,const char *,pathname, struct stat *,buf,int,flags) #endif #if defined(TARGET_NR_linkat) && defined(__NR_linkat) _syscall5(int,sys_linkat,int,olddirfd,const char *,oldpath, int,newdirfd,const char *,newpath,int,flags) #endif #if defined(TARGET_NR_mkdirat) && defined(__NR_mkdirat) _syscall3(int,sys_mkdirat,int,dirfd,const char *,pathname,mode_t,mode) #endif #if defined(TARGET_NR_mknodat) && defined(__NR_mknodat) _syscall4(int,sys_mknodat,int,dirfd,const char *,pathname, mode_t,mode,dev_t,dev) #endif #if defined(TARGET_NR_openat) && defined(__NR_openat) _syscall4(int,sys_openat,int,dirfd,const char *,pathname,int,flags,mode_t,mode) #endif #if defined(TARGET_NR_readlinkat) && defined(__NR_readlinkat) _syscall4(int,sys_readlinkat,int,dirfd,const char *,pathname, char *,buf,size_t,bufsize) #endif #if defined(TARGET_NR_renameat) && defined(__NR_renameat) _syscall4(int,sys_renameat,int,olddirfd,const char *,oldpath, int,newdirfd,const char *,newpath) #endif #if defined(TARGET_NR_symlinkat) && defined(__NR_symlinkat) _syscall3(int,sys_symlinkat,const char *,oldpath, int,newdirfd,const char *,newpath) #endif #if defined(TARGET_NR_unlinkat) && defined(__NR_unlinkat) _syscall3(int,sys_unlinkat,int,dirfd,const char *,pathname,int,flags) #endif #if defined(TARGET_NR_utimensat) && defined(__NR_utimensat) _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname, const struct timespec *,tsp,int,flags) #endif #endif /* CONFIG_ATFILE */ #ifdef CONFIG_INOTIFY #include <sys/inotify.h> #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init) static int sys_inotify_init(void) { return (inotify_init()); }
10,241
qemu
dfd100f242370886bb6732f70f1f7cbd8eb9fedc
0
static SocketAddress *sd_socket_address(const char *path, const char *host, const char *port) { SocketAddress *addr = g_new0(SocketAddress, 1); if (path) { addr->type = SOCKET_ADDRESS_KIND_UNIX; addr->u.q_unix.data = g_new0(UnixSocketAddress, 1); addr->u.q_unix.data->path = g_strdup(path); } else { addr->type = SOCKET_ADDRESS_KIND_INET; addr->u.inet.data = g_new0(InetSocketAddress, 1); addr->u.inet.data->host = g_strdup(host ?: SD_DEFAULT_ADDR); addr->u.inet.data->port = g_strdup(port ?: stringify(SD_DEFAULT_PORT)); } return addr; }
10,242
qemu
e2b577e5e548b58740ed5b1d9d12015cb7b233ff
0
static void configure_alarms(char const *opt) { int i; int cur = 0; int count = (sizeof(alarm_timers) / sizeof(*alarm_timers)) - 1; char *arg; char *name; if (!strcmp(opt, "help")) { show_available_alarms(); exit(0); } arg = strdup(opt); /* Reorder the array */ name = strtok(arg, ","); while (name) { struct qemu_alarm_timer tmp; for (i = 0; i < count; i++) { if (!strcmp(alarm_timers[i].name, name)) break; } if (i == count) { fprintf(stderr, "Unknown clock %s\n", name); goto next; } if (i < cur) /* Ignore */ goto next; /* Swap */ tmp = alarm_timers[i]; alarm_timers[i] = alarm_timers[cur]; alarm_timers[cur] = tmp; cur++; next: name = strtok(NULL, ","); } free(arg); if (cur) { /* Disable remaining timers */ for (i = cur; i < count; i++) alarm_timers[i].name = NULL; } /* debug */ show_available_alarms(); }
10,243
qemu
9c5ce8db2e5c2769ed2fd3d91928dd1853b5ce7c
0
static void rtas_ibm_get_system_parameter(PowerPCCPU *cpu, sPAPRMachineState *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { target_ulong parameter = rtas_ld(args, 0); target_ulong buffer = rtas_ld(args, 1); target_ulong length = rtas_ld(args, 2); target_ulong ret; switch (parameter) { case RTAS_SYSPARM_SPLPAR_CHARACTERISTICS: { char *param_val = g_strdup_printf("MaxEntCap=%d," "DesMem=%llu," "DesProcs=%d," "MaxPlatProcs=%d", max_cpus, current_machine->ram_size / M_BYTE, smp_cpus, max_cpus); ret = sysparm_st(buffer, length, param_val, strlen(param_val) + 1); g_free(param_val); break; } case RTAS_SYSPARM_DIAGNOSTICS_RUN_MODE: { uint8_t param_val = DIAGNOSTICS_RUN_MODE_DISABLED; ret = sysparm_st(buffer, length, &param_val, sizeof(param_val)); break; } case RTAS_SYSPARM_UUID: ret = sysparm_st(buffer, length, qemu_uuid, (qemu_uuid_set ? 16 : 0)); break; default: ret = RTAS_OUT_NOT_SUPPORTED; } rtas_st(rets, 0, ret); }
10,245
qemu
bc7c08a2c375acb7ae4d433054415588b176d34c
0
static void test_qemu_strtoull_trailing(void) { const char *str = "123xxx"; char f = 'X'; const char *endptr = &f; uint64_t res = 999; int err; err = qemu_strtoull(str, &endptr, 0, &res); g_assert_cmpint(err, ==, 0); g_assert_cmpint(res, ==, 123); g_assert(endptr == str + 3); }
10,246
qemu
b64bd51efa9bbf30df1b2f91477d2805678d0b93
0
void bdrv_set_dirty_bitmap(BdrvDirtyBitmap *bitmap, int64_t cur_sector, int64_t nr_sectors) { assert(bdrv_dirty_bitmap_enabled(bitmap)); hbitmap_set(bitmap->bitmap, cur_sector, nr_sectors); }
10,247
qemu
28143b409f698210d85165ca518235ac7e7c5ac5
0
int kvm_has_xsave(void) { return kvm_state->xsave; }
10,248
qemu
63f0f45f2e89b60ff8245fec81328ddfde42a303
0
static BlockDriverAIOCB *curl_aio_readv(BlockDriverState *bs, int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, BlockDriverCompletionFunc *cb, void *opaque) { CURLAIOCB *acb; acb = qemu_aio_get(&curl_aiocb_info, bs, cb, opaque); acb->qiov = qiov; acb->sector_num = sector_num; acb->nb_sectors = nb_sectors; acb->bh = qemu_bh_new(curl_readv_bh_cb, acb); qemu_bh_schedule(acb->bh); return &acb->common; }
10,249
qemu
2bcf018340cbf233f7145e643fc1bb367f23fd90
0
static int translate_pages(S390CPU *cpu, vaddr addr, int nr_pages, target_ulong *pages, bool is_write) { bool lowprot = is_write && lowprot_enabled(&cpu->env); uint64_t asc = cpu->env.psw.mask & PSW_MASK_ASC; CPUS390XState *env = &cpu->env; int ret, i, pflags; for (i = 0; i < nr_pages; i++) { /* Low-address protection? */ if (lowprot && (addr < 512 || (addr >= 4096 && addr < 4096 + 512))) { trigger_access_exception(env, PGM_PROTECTION, ILEN_AUTO, 0); return -EACCES; } ret = mmu_translate(env, addr, is_write, asc, &pages[i], &pflags, true); if (ret) { return ret; } if (!address_space_access_valid(&address_space_memory, pages[i], TARGET_PAGE_SIZE, is_write)) { program_interrupt(env, PGM_ADDRESSING, ILEN_AUTO); return -EFAULT; } addr += TARGET_PAGE_SIZE; } return 0; }
10,250
qemu
a7812ae412311d7d47f8aa85656faadac9d64b56
0
static unsigned int dec_move_sr(DisasContext *dc) { DIS(fprintf (logfile, "move $s%u, $r%u\n", dc->op2, dc->op1)); cris_cc_mask(dc, 0); tcg_gen_helper_0_2(helper_movl_reg_sreg, tcg_const_tl(dc->op1), tcg_const_tl(dc->op2)); return 2; }
10,251
qemu
54fd08136e4ac8b88b88b15c397010e3b0de379f
0
static int xen_pt_msixctrl_reg_init(XenPCIPassthroughState *s, XenPTRegInfo *reg, uint32_t real_offset, uint32_t *data) { PCIDevice *d = &s->dev; uint16_t reg_field = 0; /* use I/O device register's value as initial value */ reg_field = pci_get_word(d->config + real_offset); if (reg_field & PCI_MSIX_FLAGS_ENABLE) { XEN_PT_LOG(d, "MSIX already enabled, disabling it first\n"); xen_host_pci_set_word(&s->real_device, real_offset, reg_field & ~PCI_MSIX_FLAGS_ENABLE); } s->msix->ctrl_offset = real_offset; *data = reg->init_val; return 0; }
10,252
qemu
364031f17932814484657e5551ba12957d993d7e
0
static ssize_t v9fs_synth_readlink(FsContext *fs_ctx, V9fsPath *path, char *buf, size_t bufsz) { errno = ENOSYS; return -1; }
10,254
qemu
4be746345f13e99e468c60acbd3a355e8183e3ce
0
static bool cmd_read_dma(IDEState *s, uint8_t cmd) { bool lba48 = (cmd == WIN_READDMA_EXT); if (!s->bs) { ide_abort_command(s); return true; } ide_cmd_lba48_transform(s, lba48); ide_sector_start_dma(s, IDE_DMA_READ); return false; }
10,255
qemu
7bd427d801e1e3293a634d3c83beadaa90ffb911
0
static void timer_start(SpiceTimer *timer, uint32_t ms) { qemu_mod_timer(timer->timer, qemu_get_clock(rt_clock) + ms); }
10,256
qemu
4f5e19e6c570459cd524b29b24374f03860f5149
0
static int pci_pbm_init_device(SysBusDevice *dev) { APBState *s; int pci_mem_config, pci_mem_data, apb_config, pci_ioport; s = FROM_SYSBUS(APBState, dev); /* apb_config */ apb_config = cpu_register_io_memory(apb_config_read, apb_config_write, s); sysbus_init_mmio(dev, 0x40ULL, apb_config); /* pci_ioport */ pci_ioport = cpu_register_io_memory(pci_apb_ioread, pci_apb_iowrite, s); sysbus_init_mmio(dev, 0x10000ULL, pci_ioport); /* mem_config */ pci_mem_config = cpu_register_io_memory(pci_apb_config_read, pci_apb_config_write, s); sysbus_init_mmio(dev, 0x10ULL, pci_mem_config); /* mem_data */ pci_mem_data = cpu_register_io_memory(pci_apb_read, pci_apb_write, &s->host_state); sysbus_init_mmio(dev, 0x10000000ULL, pci_mem_data); return 0; }
10,257
qemu
b29a0341d7ed7e7df4bf77a41db8e614f1ddb645
0
void cpu_reset (CPUMIPSState *env) { memset(env, 0, offsetof(CPUMIPSState, breakpoints)); tlb_flush(env, 1); /* Minimal init */ #if !defined(CONFIG_USER_ONLY) if (env->hflags & MIPS_HFLAG_BMASK) { /* If the exception was raised from a delay slot, * come back to the jump. */ env->CP0_ErrorEPC = env->PC - 4; env->hflags &= ~MIPS_HFLAG_BMASK; } else { env->CP0_ErrorEPC = env->PC; } env->PC = (int32_t)0xBFC00000; #if defined (MIPS_USES_R4K_TLB) env->CP0_Random = MIPS_TLB_NB - 1; env->tlb_in_use = MIPS_TLB_NB; #endif env->CP0_Wired = 0; /* SMP not implemented */ env->CP0_EBase = (int32_t)0x80000000; env->CP0_Config0 = MIPS_CONFIG0; env->CP0_Config1 = MIPS_CONFIG1; env->CP0_Config2 = MIPS_CONFIG2; env->CP0_Config3 = MIPS_CONFIG3; env->CP0_Status = (1 << CP0St_BEV) | (1 << CP0St_ERL); env->CP0_WatchLo = 0; env->hflags = MIPS_HFLAG_ERL; /* Count register increments in debug mode, EJTAG version 1 */ env->CP0_Debug = (1 << CP0DB_CNT) | (0x1 << CP0DB_VER); env->CP0_PRid = MIPS_CPU; #endif env->exception_index = EXCP_NONE; #if defined(CONFIG_USER_ONLY) env->hflags |= MIPS_HFLAG_UM; env->user_mode_only = 1; #endif #ifdef MIPS_USES_FPU env->fcr0 = MIPS_FCR0; #endif /* XXX some guesswork here, values are CPU specific */ env->SYNCI_Step = 16; env->CCRes = 2; }
10,258
qemu
02acedf93da420713a0c4bbeaf32ce9d734a4332
0
static void gen_neon_unzip_u8(TCGv t0, TCGv t1) { TCGv rd, rm, tmp; rd = new_tmp(); rm = new_tmp(); tmp = new_tmp(); tcg_gen_andi_i32(rd, t0, 0xff); tcg_gen_shri_i32(tmp, t0, 8); tcg_gen_andi_i32(tmp, tmp, 0xff00); tcg_gen_or_i32(rd, rd, tmp); tcg_gen_shli_i32(tmp, t1, 16); tcg_gen_andi_i32(tmp, tmp, 0xff0000); tcg_gen_or_i32(rd, rd, tmp); tcg_gen_shli_i32(tmp, t1, 8); tcg_gen_andi_i32(tmp, tmp, 0xff000000); tcg_gen_or_i32(rd, rd, tmp); tcg_gen_shri_i32(rm, t0, 8); tcg_gen_andi_i32(rm, rm, 0xff); tcg_gen_shri_i32(tmp, t0, 16); tcg_gen_andi_i32(tmp, tmp, 0xff00); tcg_gen_or_i32(rm, rm, tmp); tcg_gen_shli_i32(tmp, t1, 8); tcg_gen_andi_i32(tmp, tmp, 0xff0000); tcg_gen_or_i32(rm, rm, tmp); tcg_gen_andi_i32(tmp, t1, 0xff000000); tcg_gen_or_i32(t1, rm, tmp); tcg_gen_mov_i32(t0, rd); dead_tmp(tmp); dead_tmp(rm); dead_tmp(rd); }
10,259
qemu
363db4b249244f31d3c47fbd5a8b128c95ba8fe7
0
static int nic_can_receive(NetClientState *nc) { EEPRO100State *s = qemu_get_nic_opaque(nc); TRACE(RXTX, logout("%p\n", s)); return get_ru_state(s) == ru_ready; #if 0 return !eepro100_buffer_full(s); #endif }
10,260
qemu
b854bc196f5c4b4e3299c0b0ee63cf828ece9e77
0
int omap_validate_emiff_addr(struct omap_mpu_state_s *s, target_phys_addr_t addr) { return addr >= OMAP_EMIFF_BASE && addr < OMAP_EMIFF_BASE + s->sdram_size; }
10,261
qemu
1bb650420021ced718d550559034a5147c053068
0
PCIDevice *pci_nic_init(NICInfo *nd, const char *default_model, const char *default_devaddr) { const char *devaddr = nd->devaddr ? nd->devaddr : default_devaddr; PCIBus *bus; int devfn; PCIDevice *pci_dev; DeviceState *dev; int i; i = qemu_find_nic_model(nd, pci_nic_models, default_model); if (i < 0) return NULL; bus = pci_get_bus_devfn(&devfn, devaddr); if (!bus) { error_report("Invalid PCI device address %s for device %s", devaddr, pci_nic_names[i]); return NULL; } pci_dev = pci_create(bus, devfn, pci_nic_names[i]); dev = &pci_dev->qdev; if (nd->name) dev->id = qemu_strdup(nd->name); qdev_set_nic_properties(dev, nd); if (qdev_init(dev) < 0) return NULL; return pci_dev; }
10,262
qemu
4fa4ce7107c6ec432f185307158c5df91ce54308
0
static const char *local_mapped_attr_path(FsContext *ctx, const char *path, char *buffer) { char *dir_name; char *tmp_path = g_strdup(path); char *base_name = basename(tmp_path); /* NULL terminate the directory */ dir_name = tmp_path; *(base_name - 1) = '\0'; snprintf(buffer, PATH_MAX, "%s/%s/%s/%s", ctx->fs_root, dir_name, VIRTFS_META_DIR, base_name); g_free(tmp_path); return buffer; }
10,263
qemu
9083da1d4c9dfff30d411f8c73ea494e9d78de1b
0
RxFilterInfoList *qmp_query_rx_filter(bool has_name, const char *name, Error **errp) { NetClientState *nc; RxFilterInfoList *filter_list = NULL, *last_entry = NULL; QTAILQ_FOREACH(nc, &net_clients, next) { RxFilterInfoList *entry; RxFilterInfo *info; if (has_name && strcmp(nc->name, name) != 0) { continue; } /* only query rx-filter information of NIC */ if (nc->info->type != NET_CLIENT_OPTIONS_KIND_NIC) { if (has_name) { error_setg(errp, "net client(%s) isn't a NIC", name); break; } continue; } if (nc->info->query_rx_filter) { info = nc->info->query_rx_filter(nc); entry = g_malloc0(sizeof(*entry)); entry->value = info; if (!filter_list) { filter_list = entry; } else { last_entry->next = entry; } last_entry = entry; } else if (has_name) { error_setg(errp, "net client(%s) doesn't support" " rx-filter querying", name); break; } if (has_name) { break; } } if (filter_list == NULL && !error_is_set(errp) && has_name) { error_setg(errp, "invalid net client name: %s", name); } return filter_list; }
10,265
qemu
cf070d7ec0b8fb21faa9a630ed5cc66f90844a08
0
write_f(int argc, char **argv) { struct timeval t1, t2; int Cflag = 0, pflag = 0, qflag = 0, bflag = 0; int c, cnt; char *buf; int64_t offset; int count; /* Some compilers get confused and warn if this is not initialized. */ int total = 0; int pattern = 0xcd; while ((c = getopt(argc, argv, "bCpP:q")) != EOF) { switch (c) { case 'b': bflag = 1; break; case 'C': Cflag = 1; break; case 'p': pflag = 1; break; case 'P': pattern = atoi(optarg); break; case 'q': qflag = 1; break; default: return command_usage(&write_cmd); } } if (optind != argc - 2) return command_usage(&write_cmd); if (bflag && pflag) { printf("-b and -p cannot be specified at the same time\n"); return 0; } offset = cvtnum(argv[optind]); if (offset < 0) { printf("non-numeric length argument -- %s\n", argv[optind]); return 0; } optind++; count = cvtnum(argv[optind]); if (count < 0) { printf("non-numeric length argument -- %s\n", argv[optind]); return 0; } if (!pflag) { if (offset & 0x1ff) { printf("offset %lld is not sector aligned\n", (long long)offset); return 0; } if (count & 0x1ff) { printf("count %d is not sector aligned\n", count); return 0; } } buf = qemu_io_alloc(count, pattern); gettimeofday(&t1, NULL); if (pflag) cnt = do_pwrite(buf, offset, count, &total); else if (bflag) cnt = do_save_vmstate(buf, offset, count, &total); else cnt = do_write(buf, offset, count, &total); gettimeofday(&t2, NULL); if (cnt < 0) { printf("write failed: %s\n", strerror(-cnt)); goto out; } if (qflag) goto out; /* Finally, report back -- -C gives a parsable format */ t2 = tsub(t2, t1); print_report("wrote", &t2, offset, count, total, cnt, Cflag); out: qemu_io_free(buf); return 0; }
10,267
qemu
dfde4e6e1a868f60033ece0590b1f75e6c57fa16
0
void framebuffer_update_display( DisplaySurface *ds, MemoryRegion *address_space, hwaddr base, int cols, /* Width in pixels. */ int rows, /* Height in pixels. */ int src_width, /* Length of source line, in bytes. */ int dest_row_pitch, /* Bytes between adjacent horizontal output pixels. */ int dest_col_pitch, /* Bytes between adjacent vertical output pixels. */ int invalidate, /* nonzero to redraw the whole image. */ drawfn fn, void *opaque, int *first_row, /* Input and output. */ int *last_row /* Output only */) { hwaddr src_len; uint8_t *dest; uint8_t *src; uint8_t *src_base; int first, last = 0; int dirty; int i; ram_addr_t addr; MemoryRegionSection mem_section; MemoryRegion *mem; i = *first_row; *first_row = -1; src_len = src_width * rows; mem_section = memory_region_find(address_space, base, src_len); if (int128_get64(mem_section.size) != src_len || !memory_region_is_ram(mem_section.mr)) { return; } mem = mem_section.mr; assert(mem); assert(mem_section.offset_within_address_space == base); memory_region_sync_dirty_bitmap(mem); src_base = cpu_physical_memory_map(base, &src_len, 0); /* If we can't map the framebuffer then bail. We could try harder, but it's not really worth it as dirty flag tracking will probably already have failed above. */ if (!src_base) return; if (src_len != src_width * rows) { cpu_physical_memory_unmap(src_base, src_len, 0, 0); return; } src = src_base; dest = surface_data(ds); if (dest_col_pitch < 0) dest -= dest_col_pitch * (cols - 1); if (dest_row_pitch < 0) { dest -= dest_row_pitch * (rows - 1); } first = -1; addr = mem_section.offset_within_region; addr += i * src_width; src += i * src_width; dest += i * dest_row_pitch; for (; i < rows; i++) { dirty = memory_region_get_dirty(mem, addr, src_width, DIRTY_MEMORY_VGA); if (dirty || invalidate) { fn(opaque, dest, src, cols, dest_col_pitch); if (first == -1) first = i; last = i; } addr += src_width; src += src_width; dest += dest_row_pitch; } cpu_physical_memory_unmap(src_base, src_len, 0, 0); if (first < 0) { return; } memory_region_reset_dirty(mem, mem_section.offset_within_region, src_len, DIRTY_MEMORY_VGA); *first_row = first; *last_row = last; }
10,270
qemu
3468b59e18b179bc63c7ce934de912dfa9596122
0
void tcg_region_reset_all(void) { unsigned int i; qemu_mutex_lock(&region.lock); region.current = 0; region.agg_size_full = 0; for (i = 0; i < n_tcg_ctxs; i++) { bool err = tcg_region_initial_alloc__locked(tcg_ctxs[i]); g_assert(!err); } qemu_mutex_unlock(&region.lock); }
10,271
qemu
1386d4c0f5ce4c4391f2024a36c77eb8fb152e90
0
static int parse_args(int argc, char **argv) { const char *r; int optind; struct qemu_argument *arginfo; for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { if (arginfo->env == NULL) { continue; } r = getenv(arginfo->env); if (r != NULL) { arginfo->handle_opt(r); } } optind = 1; for (;;) { if (optind >= argc) { break; } r = argv[optind]; if (r[0] != '-') { break; } optind++; r++; if (!strcmp(r, "-")) { break; } for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { if (!strcmp(r, arginfo->argv)) { if (optind >= argc) { usage(); } arginfo->handle_opt(argv[optind]); if (arginfo->has_arg) { optind++; } break; } } /* no option matched the current argv */ if (arginfo->handle_opt == NULL) { usage(); } } if (optind >= argc) { usage(); } filename = argv[optind]; exec_path = argv[optind]; return optind; }
10,272
qemu
120a9848c2f667bf8f1a06772dc9cde064d92a7d
0
void cpu_loop(CPUOpenRISCState *env) { CPUState *cs = CPU(openrisc_env_get_cpu(env)); int trapnr, gdbsig; for (;;) { cpu_exec_start(cs); trapnr = cpu_openrisc_exec(cs); cpu_exec_end(cs); gdbsig = 0; switch (trapnr) { case EXCP_RESET: qemu_log("\nReset request, exit, pc is %#x\n", env->pc); exit(EXIT_FAILURE); break; case EXCP_BUSERR: qemu_log("\nBus error, exit, pc is %#x\n", env->pc); gdbsig = TARGET_SIGBUS; break; case EXCP_DPF: case EXCP_IPF: cpu_dump_state(cs, stderr, fprintf, 0); gdbsig = TARGET_SIGSEGV; break; case EXCP_TICK: qemu_log("\nTick time interrupt pc is %#x\n", env->pc); break; case EXCP_ALIGN: qemu_log("\nAlignment pc is %#x\n", env->pc); gdbsig = TARGET_SIGBUS; break; case EXCP_ILLEGAL: qemu_log("\nIllegal instructionpc is %#x\n", env->pc); gdbsig = TARGET_SIGILL; break; case EXCP_INT: qemu_log("\nExternal interruptpc is %#x\n", env->pc); break; case EXCP_DTLBMISS: case EXCP_ITLBMISS: qemu_log("\nTLB miss\n"); break; case EXCP_RANGE: qemu_log("\nRange\n"); gdbsig = TARGET_SIGSEGV; break; case EXCP_SYSCALL: env->pc += 4; /* 0xc00; */ env->gpr[11] = do_syscall(env, env->gpr[11], /* return value */ env->gpr[3], /* r3 - r7 are params */ env->gpr[4], env->gpr[5], env->gpr[6], env->gpr[7], env->gpr[8], 0, 0); break; case EXCP_FPE: qemu_log("\nFloating point error\n"); break; case EXCP_TRAP: qemu_log("\nTrap\n"); gdbsig = TARGET_SIGTRAP; break; case EXCP_NR: qemu_log("\nNR\n"); break; default: qemu_log("\nqemu: unhandled CPU exception %#x - aborting\n", trapnr); cpu_dump_state(cs, stderr, fprintf, 0); gdbsig = TARGET_SIGILL; break; } if (gdbsig) { gdb_handlesig(cs, gdbsig); if (gdbsig != TARGET_SIGTRAP) { exit(EXIT_FAILURE); } } process_pending_signals(env); } }
10,273
qemu
44701ab71ad854e6be567a6294f4665f36651076
0
void msix_save(PCIDevice *dev, QEMUFile *f) { unsigned n = dev->msix_entries_nr; if (!(dev->cap_present & QEMU_PCI_CAP_MSIX)) { return; } qemu_put_buffer(f, dev->msix_table_page, n * PCI_MSIX_ENTRY_SIZE); qemu_put_buffer(f, dev->msix_table_page + MSIX_PAGE_PENDING, (n + 7) / 8); }
10,275
FFmpeg
03cef34aa66662e2ab3681d290e7c5a6634f4058
0
int qsv_init(AVCodecContext *s) { InputStream *ist = s->opaque; QSVContext *qsv = ist->hwaccel_ctx; AVQSVContext *hwctx_dec; int ret; if (!qsv) { av_log(NULL, AV_LOG_ERROR, "QSV transcoding is not initialized. " "-hwaccel qsv should only be used for one-to-one QSV transcoding " "with no filters.\n"); return AVERROR_BUG; } ret = init_opaque_surf(qsv); if (ret < 0) return ret; hwctx_dec = av_qsv_alloc_context(); if (!hwctx_dec) return AVERROR(ENOMEM); hwctx_dec->session = qsv->session; hwctx_dec->iopattern = MFX_IOPATTERN_OUT_OPAQUE_MEMORY; hwctx_dec->ext_buffers = qsv->ext_buffers; hwctx_dec->nb_ext_buffers = FF_ARRAY_ELEMS(qsv->ext_buffers); av_freep(&s->hwaccel_context); s->hwaccel_context = hwctx_dec; ist->hwaccel_get_buffer = qsv_get_buffer; ist->hwaccel_uninit = qsv_uninit; return 0; }
10,276
qemu
2d0d2837dcf786da415cf4165d37f4ddd684ff57
0
static void default_drive(int enable, int snapshot, int use_scsi, BlockInterfaceType type, int index, const char *optstr) { QemuOpts *opts; if (type == IF_DEFAULT) { type = use_scsi ? IF_SCSI : IF_IDE; } if (!enable || drive_get_by_index(type, index)) { return; } opts = drive_add(type, index, NULL, optstr); if (snapshot) { drive_enable_snapshot(opts, NULL); } if (!drive_init(opts, use_scsi)) { exit(1); } }
10,277
qemu
5c8d6f008c0555b54cf10550fa86199a2cfabbca
0
void css_generate_css_crws(uint8_t cssid) { if (!channel_subsys.sei_pending) { css_queue_crw(CRW_RSC_CSS, CRW_ERC_EVENT, 0, cssid); } channel_subsys.sei_pending = true; }
10,279
qemu
d3b12f5dec4b27ebab58fb5797cb67bacced773b
0
int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque) { WaitObjects *w = &wait_objects; if (w->num >= MAXIMUM_WAIT_OBJECTS) return -1; w->events[w->num] = handle; w->func[w->num] = func; w->opaque[w->num] = opaque; w->num++; return 0; }
10,280
qemu
fb7b5c0df6e3c501973ce4d57eb2b1d4344a519d
0
static void scsi_device_unrealize(SCSIDevice *s, Error **errp) { SCSIDeviceClass *sc = SCSI_DEVICE_GET_CLASS(s); if (sc->unrealize) { sc->unrealize(s, errp); } }
10,281
qemu
0f136d9e060ad879d0b840274ddfd1955e24fc10
0
void disas(FILE *out, void *code, unsigned long size) { unsigned long pc; int count; struct disassemble_info disasm_info; int (*print_insn)(bfd_vma pc, disassemble_info *info); INIT_DISASSEMBLE_INFO(disasm_info, out, fprintf); disasm_info.buffer = code; disasm_info.buffer_vma = (unsigned long)code; disasm_info.buffer_length = size; #ifdef HOST_WORDS_BIGENDIAN disasm_info.endian = BFD_ENDIAN_BIG; #else disasm_info.endian = BFD_ENDIAN_LITTLE; #endif #if defined(__i386__) disasm_info.mach = bfd_mach_i386_i386; print_insn = print_insn_i386; #elif defined(__x86_64__) disasm_info.mach = bfd_mach_x86_64; print_insn = print_insn_i386; #elif defined(_ARCH_PPC) print_insn = print_insn_ppc; #elif defined(__alpha__) print_insn = print_insn_alpha; #elif defined(__sparc__) print_insn = print_insn_sparc; #if defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__) disasm_info.mach = bfd_mach_sparc_v9b; #endif #elif defined(__arm__) print_insn = print_insn_arm; #elif defined(__MIPSEB__) print_insn = print_insn_big_mips; #elif defined(__MIPSEL__) print_insn = print_insn_little_mips; #elif defined(__m68k__) print_insn = print_insn_m68k; #elif defined(__s390__) print_insn = print_insn_s390; #elif defined(__hppa__) print_insn = print_insn_hppa; #elif defined(__ia64__) print_insn = print_insn_ia64; #else fprintf(out, "0x%lx: Asm output not supported on this arch\n", (long) code); return; #endif for (pc = (unsigned long)code; size > 0; pc += count, size -= count) { fprintf(out, "0x%08lx: ", pc); #ifdef __arm__ /* since data is included in the code, it is better to display code data too */ fprintf(out, "%08x ", (int)bfd_getl32((const bfd_byte *)pc)); #endif count = print_insn(pc, &disasm_info); fprintf(out, "\n"); if (count < 0) break; } }
10,284
qemu
61007b316cd71ee7333ff7a0a749a8949527575f
0
void bdrv_add_key(BlockDriverState *bs, const char *key, Error **errp) { if (key) { if (!bdrv_is_encrypted(bs)) { error_setg(errp, "Node '%s' is not encrypted", bdrv_get_device_or_node_name(bs)); } else if (bdrv_set_key(bs, key) < 0) { error_set(errp, QERR_INVALID_PASSWORD); } } else { if (bdrv_key_required(bs)) { error_set(errp, ERROR_CLASS_DEVICE_ENCRYPTED, "'%s' (%s) is encrypted", bdrv_get_device_or_node_name(bs), bdrv_get_encrypted_filename(bs)); } } }
10,285
qemu
679aa175e84f5f80b32b307fce5a6b92729e0e61
0
static void armv7m_nvic_reset(DeviceState *dev) { nvic_state *s = NVIC(dev); NVICClass *nc = NVIC_GET_CLASS(s); nc->parent_reset(dev); /* Common GIC reset resets to disabled; the NVIC doesn't have * per-CPU interfaces so mark our non-existent CPU interface * as enabled by default, and with a priority mask which allows * all interrupts through. */ s->gic.cpu_enabled[0] = true; s->gic.priority_mask[0] = 0x100; /* The NVIC as a whole is always enabled. */ s->gic.enabled = true; systick_reset(s); }
10,286
FFmpeg
35ee72b1d72a4c8fc0ae4e76ad00a71e831b8dbe
0
static void float_to_int16_sse(int16_t *dst, const float *src, long len){ int i; for(i=0; i<len; i+=4) { asm volatile( "cvtps2pi %1, %%mm0 \n\t" "cvtps2pi %2, %%mm1 \n\t" "packssdw %%mm1, %%mm0 \n\t" "movq %%mm0, %0 \n\t" :"=m"(dst[i]) :"m"(src[i]), "m"(src[i+2]) ); } asm volatile("emms"); }
10,287
qemu
1964a397063967acc5ce71a2a24ed26e74824ee1
0
static int migration_rate_limit(void *opaque) { MigrationState *s = opaque; int ret; ret = qemu_file_get_error(s->file); if (ret) { return ret; } if (s->bytes_xfer >= s->xfer_limit) { return 1; } return 0; }
10,289
qemu
b7680cb6078bd7294a3dd86473d3f2fdee991dd0
0
void cpu_interrupt(CPUState *env, int mask) { int old_mask; old_mask = env->interrupt_request; env->interrupt_request |= mask; #ifndef CONFIG_USER_ONLY /* * If called from iothread context, wake the target cpu in * case its halted. */ if (!qemu_cpu_self(env)) { qemu_cpu_kick(env); return; } #endif if (use_icount) { env->icount_decr.u16.high = 0xffff; #ifndef CONFIG_USER_ONLY if (!can_do_io(env) && (mask & ~old_mask) != 0) { cpu_abort(env, "Raised interrupt while not in I/O function"); } #endif } else { cpu_unlink_tb(env); } }
10,290
qemu
8cc580f6a0d8c0e2f590c1472cf5cd8e51761760
0
static inline void tcg_out_tlb_load(TCGContext *s, TCGReg addrlo, TCGReg addrhi, int mem_index, TCGMemOp s_bits, tcg_insn_unit **label_ptr, int which) { const TCGReg r0 = TCG_REG_L0; const TCGReg r1 = TCG_REG_L1; TCGType ttype = TCG_TYPE_I32; TCGType htype = TCG_TYPE_I32; int trexw = 0, hrexw = 0; if (TCG_TARGET_REG_BITS == 64) { if (TARGET_LONG_BITS == 64) { ttype = TCG_TYPE_I64; trexw = P_REXW; } if (TCG_TYPE_PTR == TCG_TYPE_I64) { htype = TCG_TYPE_I64; hrexw = P_REXW; } } tcg_out_mov(s, htype, r0, addrlo); tcg_out_mov(s, ttype, r1, addrlo); tcg_out_shifti(s, SHIFT_SHR + hrexw, r0, TARGET_PAGE_BITS - CPU_TLB_ENTRY_BITS); tgen_arithi(s, ARITH_AND + trexw, r1, TARGET_PAGE_MASK | ((1 << s_bits) - 1), 0); tgen_arithi(s, ARITH_AND + hrexw, r0, (CPU_TLB_SIZE - 1) << CPU_TLB_ENTRY_BITS, 0); tcg_out_modrm_sib_offset(s, OPC_LEA + hrexw, r0, TCG_AREG0, r0, 0, offsetof(CPUArchState, tlb_table[mem_index][0]) + which); /* cmp 0(r0), r1 */ tcg_out_modrm_offset(s, OPC_CMP_GvEv + trexw, r1, r0, 0); /* Prepare for both the fast path add of the tlb addend, and the slow path function argument setup. There are two cases worth note: For 32-bit guest and x86_64 host, MOVL zero-extends the guest address before the fastpath ADDQ below. For 64-bit guest and x32 host, MOVQ copies the entire guest address for the slow path, while truncation for the 32-bit host happens with the fastpath ADDL below. */ tcg_out_mov(s, ttype, r1, addrlo); /* jne slow_path */ tcg_out_opc(s, OPC_JCC_long + JCC_JNE, 0, 0, 0); label_ptr[0] = s->code_ptr; s->code_ptr += 4; if (TARGET_LONG_BITS > TCG_TARGET_REG_BITS) { /* cmp 4(r0), addrhi */ tcg_out_modrm_offset(s, OPC_CMP_GvEv, addrhi, r0, 4); /* jne slow_path */ tcg_out_opc(s, OPC_JCC_long + JCC_JNE, 0, 0, 0); label_ptr[1] = s->code_ptr; s->code_ptr += 4; } /* TLB Hit. */ /* add addend(r0), r1 */ tcg_out_modrm_offset(s, OPC_ADD_GvEv + hrexw, r1, r0, offsetof(CPUTLBEntry, addend) - which); }
10,292
qemu
a7812ae412311d7d47f8aa85656faadac9d64b56
0
static inline void t_gen_sext(TCGv d, TCGv s, int size) { if (size == 1) tcg_gen_ext8s_i32(d, s); else if (size == 2) tcg_gen_ext16s_i32(d, s); else if(GET_TCGV(d) != GET_TCGV(s)) tcg_gen_mov_tl(d, s); }
10,294
qemu
3954d33ab7f82f5a5fa0ced231849920265a5fec
0
static int vio_make_devnode(VIOsPAPRDevice *dev, void *fdt) { VIOsPAPRDeviceInfo *info = (VIOsPAPRDeviceInfo *)qdev_get_info(&dev->qdev); int vdevice_off, node_off, ret; char *dt_name; vdevice_off = fdt_path_offset(fdt, "/vdevice"); if (vdevice_off < 0) { return vdevice_off; } dt_name = vio_format_dev_name(dev); if (!dt_name) { return -ENOMEM; } node_off = fdt_add_subnode(fdt, vdevice_off, dt_name); free(dt_name); if (node_off < 0) { return node_off; } ret = fdt_setprop_cell(fdt, node_off, "reg", dev->reg); if (ret < 0) { return ret; } if (info->dt_type) { ret = fdt_setprop_string(fdt, node_off, "device_type", info->dt_type); if (ret < 0) { return ret; } } if (info->dt_compatible) { ret = fdt_setprop_string(fdt, node_off, "compatible", info->dt_compatible); if (ret < 0) { return ret; } } if (dev->qirq) { uint32_t ints_prop[] = {cpu_to_be32(dev->vio_irq_num), 0}; ret = fdt_setprop(fdt, node_off, "interrupts", ints_prop, sizeof(ints_prop)); if (ret < 0) { return ret; } } if (dev->rtce_window_size) { uint32_t dma_prop[] = {cpu_to_be32(dev->reg), 0, 0, 0, cpu_to_be32(dev->rtce_window_size)}; ret = fdt_setprop_cell(fdt, node_off, "ibm,#dma-address-cells", 2); if (ret < 0) { return ret; } ret = fdt_setprop_cell(fdt, node_off, "ibm,#dma-size-cells", 2); if (ret < 0) { return ret; } ret = fdt_setprop(fdt, node_off, "ibm,my-dma-window", dma_prop, sizeof(dma_prop)); if (ret < 0) { return ret; } } if (info->devnode) { ret = (info->devnode)(dev, fdt, node_off); if (ret < 0) { return ret; } } return node_off; }
10,296
qemu
cb11e7b2f3878575f23d49454c02d8dce35c8d35
0
void mkimg(const char *file, const char *fmt, unsigned size_mb) { gchar *cli; bool ret; int rc; GError *err = NULL; char *qemu_img_path; gchar *out, *out2; char *abs_path; qemu_img_path = getenv("QTEST_QEMU_IMG"); abs_path = realpath(qemu_img_path, NULL); assert(qemu_img_path); cli = g_strdup_printf("%s create -f %s %s %uM", abs_path, fmt, file, size_mb); ret = g_spawn_command_line_sync(cli, &out, &out2, &rc, &err); if (err) { fprintf(stderr, "%s\n", err->message); g_error_free(err); } g_assert(ret && !err); /* In glib 2.34, we have g_spawn_check_exit_status. in 2.12, we don't. * glib 2.43.91 implementation assumes that any non-zero is an error for * windows, but uses extra precautions for Linux. However, * 0 is only possible if the program exited normally, so that should be * sufficient for our purposes on all platforms, here. */ if (rc) { fprintf(stderr, "qemu-img returned status code %d\n", rc); } g_assert(!rc); g_free(out); g_free(out2); g_free(cli); free(abs_path); }
10,297
FFmpeg
d1adad3cca407f493c3637e20ecd4f7124e69212
0
static inline void RENAME(rgb32tobgr15)(const uint8_t *src, uint8_t *dst, long src_size) { const uint8_t *s = src; const uint8_t *end; #if COMPILE_TEMPLATE_MMX const uint8_t *mm_end; #endif uint16_t *d = (uint16_t *)dst; end = s + src_size; #if COMPILE_TEMPLATE_MMX __asm__ volatile(PREFETCH" %0"::"m"(*src):"memory"); __asm__ volatile( "movq %0, %%mm7 \n\t" "movq %1, %%mm6 \n\t" ::"m"(red_15mask),"m"(green_15mask)); mm_end = end - 15; while (s < mm_end) { __asm__ volatile( PREFETCH" 32%1 \n\t" "movd %1, %%mm0 \n\t" "movd 4%1, %%mm3 \n\t" "punpckldq 8%1, %%mm0 \n\t" "punpckldq 12%1, %%mm3 \n\t" "movq %%mm0, %%mm1 \n\t" "movq %%mm0, %%mm2 \n\t" "movq %%mm3, %%mm4 \n\t" "movq %%mm3, %%mm5 \n\t" "psllq $7, %%mm0 \n\t" "psllq $7, %%mm3 \n\t" "pand %%mm7, %%mm0 \n\t" "pand %%mm7, %%mm3 \n\t" "psrlq $6, %%mm1 \n\t" "psrlq $6, %%mm4 \n\t" "pand %%mm6, %%mm1 \n\t" "pand %%mm6, %%mm4 \n\t" "psrlq $19, %%mm2 \n\t" "psrlq $19, %%mm5 \n\t" "pand %2, %%mm2 \n\t" "pand %2, %%mm5 \n\t" "por %%mm1, %%mm0 \n\t" "por %%mm4, %%mm3 \n\t" "por %%mm2, %%mm0 \n\t" "por %%mm5, %%mm3 \n\t" "psllq $16, %%mm3 \n\t" "por %%mm3, %%mm0 \n\t" MOVNTQ" %%mm0, %0 \n\t" :"=m"(*d):"m"(*s),"m"(blue_15mask):"memory"); d += 4; s += 16; } __asm__ volatile(SFENCE:::"memory"); __asm__ volatile(EMMS:::"memory"); #endif while (s < end) { register int rgb = *(const uint32_t*)s; s += 4; *d++ = ((rgb&0xF8)<<7) + ((rgb&0xF800)>>6) + ((rgb&0xF80000)>>19); } }
10,298
qemu
42a268c241183877192c376d03bd9b6d527407c7
0
static void cris_alu_op_exec(DisasContext *dc, int op, TCGv dst, TCGv a, TCGv b, int size) { /* Emit the ALU insns. */ switch (op) { case CC_OP_ADD: tcg_gen_add_tl(dst, a, b); /* Extended arithmetics. */ t_gen_addx_carry(dc, dst); break; case CC_OP_ADDC: tcg_gen_add_tl(dst, a, b); t_gen_add_flag(dst, 0); /* C_FLAG. */ break; case CC_OP_MCP: tcg_gen_add_tl(dst, a, b); t_gen_add_flag(dst, 8); /* R_FLAG. */ break; case CC_OP_SUB: tcg_gen_sub_tl(dst, a, b); /* Extended arithmetics. */ t_gen_subx_carry(dc, dst); break; case CC_OP_MOVE: tcg_gen_mov_tl(dst, b); break; case CC_OP_OR: tcg_gen_or_tl(dst, a, b); break; case CC_OP_AND: tcg_gen_and_tl(dst, a, b); break; case CC_OP_XOR: tcg_gen_xor_tl(dst, a, b); break; case CC_OP_LSL: t_gen_lsl(dst, a, b); break; case CC_OP_LSR: t_gen_lsr(dst, a, b); break; case CC_OP_ASR: t_gen_asr(dst, a, b); break; case CC_OP_NEG: tcg_gen_neg_tl(dst, b); /* Extended arithmetics. */ t_gen_subx_carry(dc, dst); break; case CC_OP_LZ: gen_helper_lz(dst, b); break; case CC_OP_MULS: tcg_gen_muls2_tl(dst, cpu_PR[PR_MOF], a, b); break; case CC_OP_MULU: tcg_gen_mulu2_tl(dst, cpu_PR[PR_MOF], a, b); break; case CC_OP_DSTEP: t_gen_cris_dstep(dst, a, b); break; case CC_OP_MSTEP: t_gen_cris_mstep(dst, a, b, cpu_PR[PR_CCS]); break; case CC_OP_BOUND: { int l1; l1 = gen_new_label(); tcg_gen_mov_tl(dst, a); tcg_gen_brcond_tl(TCG_COND_LEU, a, b, l1); tcg_gen_mov_tl(dst, b); gen_set_label(l1); } break; case CC_OP_CMP: tcg_gen_sub_tl(dst, a, b); /* Extended arithmetics. */ t_gen_subx_carry(dc, dst); break; default: qemu_log("illegal ALU op.\n"); BUG(); break; } if (size == 1) { tcg_gen_andi_tl(dst, dst, 0xff); } else if (size == 2) { tcg_gen_andi_tl(dst, dst, 0xffff); } }
10,299
qemu
6a8f9661dc3c088ed0d2f5b41d940190407cbdc5
0
static void blockdev_backup_prepare(BlkTransactionState *common, Error **errp) { BlockdevBackupState *state = DO_UPCAST(BlockdevBackupState, common, common); BlockdevBackup *backup; BlockBackend *blk, *target; Error *local_err = NULL; assert(common->action->kind == TRANSACTION_ACTION_KIND_BLOCKDEV_BACKUP); backup = common->action->blockdev_backup; blk = blk_by_name(backup->device); if (!blk) { error_setg(errp, "Device '%s' not found", backup->device); return; } if (!blk_is_available(blk)) { error_setg(errp, QERR_DEVICE_HAS_NO_MEDIUM, backup->device); return; } target = blk_by_name(backup->target); if (!target) { error_setg(errp, "Device '%s' not found", backup->target); return; } /* AioContext is released in .clean() */ state->aio_context = blk_get_aio_context(blk); if (state->aio_context != blk_get_aio_context(target)) { state->aio_context = NULL; error_setg(errp, "Backup between two IO threads is not implemented"); return; } aio_context_acquire(state->aio_context); state->bs = blk_bs(blk); bdrv_drained_begin(state->bs); qmp_blockdev_backup(backup->device, backup->target, backup->sync, backup->has_speed, backup->speed, backup->has_on_source_error, backup->on_source_error, backup->has_on_target_error, backup->on_target_error, &local_err); if (local_err) { error_propagate(errp, local_err); return; } state->job = state->bs->job; }
10,300
qemu
abd696e4f74a9d30801c6ae2693efe4e5979c2f2
0
static int zipl_magic(uint8_t *ptr) { uint32_t *p = (void*)ptr; uint32_t *z = (void*)ZIPL_MAGIC; if (*p != *z) { debug_print_int("invalid magic", *p); virtio_panic("invalid magic"); } return 1; }
10,301
qemu
bf937a7965c1d1a6dce4f615d0ead2e2ab505004
0
static void bt_hid_interrupt_sdu(void *opaque, const uint8_t *data, int len) { struct bt_hid_device_s *hid = opaque; if (len > BT_HID_MTU || len < 1) goto bad; if ((data[0] & 3) != BT_DATA_OUTPUT) goto bad; if ((data[0] >> 4) == BT_DATA) { if (hid->intr_state) goto bad; hid->data_type = BT_DATA_OUTPUT; hid->intrdataout.len = 0; } else if ((data[0] >> 4) == BT_DATC) { if (!hid->intr_state) goto bad; } else goto bad; memcpy(hid->intrdataout.buffer + hid->intrdataout.len, data + 1, len - 1); hid->intrdataout.len += len - 1; hid->intr_state = (len == BT_HID_MTU); if (!hid->intr_state) { memcpy(hid->dataout.buffer, hid->intrdataout.buffer, hid->dataout.len = hid->intrdataout.len); bt_hid_out(hid); } return; bad: fprintf(stderr, "%s: bad transaction on Interrupt channel.\n", __func__); }
10,302
qemu
7385ac0ba2456159a52b9b2cbb5f6c71921d0c23
0
static void decode_opc (CPUState *env, DisasContext *ctx) { int32_t offset; int rs, rt, rd, sa; uint32_t op, op1, op2; int16_t imm; /* make sure instructions are on a word boundary */ if (ctx->pc & 0x3) { env->CP0_BadVAddr = ctx->pc; generate_exception(ctx, EXCP_AdEL); return; } if ((ctx->hflags & MIPS_HFLAG_BMASK) == MIPS_HFLAG_BL) { int l1; /* Handle blikely not taken case */ MIPS_DEBUG("blikely condition (" TARGET_FMT_lx ")", ctx->pc + 4); l1 = gen_new_label(); gen_op_jnz_T2(l1); gen_op_save_state(ctx->hflags & ~MIPS_HFLAG_BMASK); gen_goto_tb(ctx, 1, ctx->pc + 4); gen_set_label(l1); } op = MASK_OP_MAJOR(ctx->opcode); rs = (ctx->opcode >> 21) & 0x1f; rt = (ctx->opcode >> 16) & 0x1f; rd = (ctx->opcode >> 11) & 0x1f; sa = (ctx->opcode >> 6) & 0x1f; imm = (int16_t)ctx->opcode; switch (op) { case OPC_SPECIAL: op1 = MASK_SPECIAL(ctx->opcode); switch (op1) { case OPC_SLL: /* Arithmetic with immediate */ case OPC_SRL ... OPC_SRA: gen_arith_imm(env, ctx, op1, rd, rt, sa); break; case OPC_MOVZ ... OPC_MOVN: check_insn(env, ctx, ISA_MIPS4 | ISA_MIPS32); case OPC_SLLV: /* Arithmetic */ case OPC_SRLV ... OPC_SRAV: case OPC_ADD ... OPC_NOR: case OPC_SLT ... OPC_SLTU: gen_arith(env, ctx, op1, rd, rs, rt); break; case OPC_MULT ... OPC_DIVU: gen_muldiv(ctx, op1, rs, rt); break; case OPC_JR ... OPC_JALR: gen_compute_branch(ctx, op1, rs, rd, sa); return; case OPC_TGE ... OPC_TEQ: /* Traps */ case OPC_TNE: gen_trap(ctx, op1, rs, rt, -1); break; case OPC_MFHI: /* Move from HI/LO */ case OPC_MFLO: gen_HILO(ctx, op1, rd); break; case OPC_MTHI: case OPC_MTLO: /* Move to HI/LO */ gen_HILO(ctx, op1, rs); break; case OPC_PMON: /* Pmon entry point, also R4010 selsl */ #ifdef MIPS_STRICT_STANDARD MIPS_INVAL("PMON / selsl"); generate_exception(ctx, EXCP_RI); #else gen_op_pmon(sa); #endif break; case OPC_SYSCALL: generate_exception(ctx, EXCP_SYSCALL); break; case OPC_BREAK: generate_exception(ctx, EXCP_BREAK); break; case OPC_SPIM: #ifdef MIPS_STRICT_STANDARD MIPS_INVAL("SPIM"); generate_exception(ctx, EXCP_RI); #else /* Implemented as RI exception for now. */ MIPS_INVAL("spim (unofficial)"); generate_exception(ctx, EXCP_RI); #endif break; case OPC_SYNC: /* Treat as NOP. */ break; case OPC_MOVCI: check_insn(env, ctx, ISA_MIPS4 | ISA_MIPS32); if (env->CP0_Config1 & (1 << CP0C1_FP)) { save_cpu_state(ctx, 1); check_cp1_enabled(ctx); gen_movci(ctx, rd, rs, (ctx->opcode >> 18) & 0x7, (ctx->opcode >> 16) & 1); } else { generate_exception_err(ctx, EXCP_CpU, 1); } break; #if defined(TARGET_MIPSN32) || defined(TARGET_MIPS64) /* MIPS64 specific opcodes */ case OPC_DSLL: case OPC_DSRL ... OPC_DSRA: case OPC_DSLL32: case OPC_DSRL32 ... OPC_DSRA32: check_insn(env, ctx, ISA_MIPS3); check_mips_64(ctx); gen_arith_imm(env, ctx, op1, rd, rt, sa); break; case OPC_DSLLV: case OPC_DSRLV ... OPC_DSRAV: case OPC_DADD ... OPC_DSUBU: check_insn(env, ctx, ISA_MIPS3); check_mips_64(ctx); gen_arith(env, ctx, op1, rd, rs, rt); break; case OPC_DMULT ... OPC_DDIVU: check_insn(env, ctx, ISA_MIPS3); check_mips_64(ctx); gen_muldiv(ctx, op1, rs, rt); break; #endif default: /* Invalid */ MIPS_INVAL("special"); generate_exception(ctx, EXCP_RI); break; } break; case OPC_SPECIAL2: op1 = MASK_SPECIAL2(ctx->opcode); switch (op1) { case OPC_MADD ... OPC_MADDU: /* Multiply and add/sub */ case OPC_MSUB ... OPC_MSUBU: check_insn(env, ctx, ISA_MIPS32); gen_muldiv(ctx, op1, rs, rt); break; case OPC_MUL: gen_arith(env, ctx, op1, rd, rs, rt); break; case OPC_CLZ ... OPC_CLO: check_insn(env, ctx, ISA_MIPS32); gen_cl(ctx, op1, rd, rs); break; case OPC_SDBBP: /* XXX: not clear which exception should be raised * when in debug mode... */ check_insn(env, ctx, ISA_MIPS32); if (!(ctx->hflags & MIPS_HFLAG_DM)) { generate_exception(ctx, EXCP_DBp); } else { generate_exception(ctx, EXCP_DBp); } /* Treat as NOP. */ break; #if defined(TARGET_MIPSN32) || defined(TARGET_MIPS64) case OPC_DCLZ ... OPC_DCLO: check_insn(env, ctx, ISA_MIPS64); check_mips_64(ctx); gen_cl(ctx, op1, rd, rs); break; #endif default: /* Invalid */ MIPS_INVAL("special2"); generate_exception(ctx, EXCP_RI); break; } break; case OPC_SPECIAL3: op1 = MASK_SPECIAL3(ctx->opcode); switch (op1) { case OPC_EXT: case OPC_INS: check_insn(env, ctx, ISA_MIPS32R2); gen_bitops(ctx, op1, rt, rs, sa, rd); break; case OPC_BSHFL: check_insn(env, ctx, ISA_MIPS32R2); op2 = MASK_BSHFL(ctx->opcode); switch (op2) { case OPC_WSBH: GEN_LOAD_REG_TN(T1, rt); gen_op_wsbh(); break; case OPC_SEB: GEN_LOAD_REG_TN(T1, rt); gen_op_seb(); break; case OPC_SEH: GEN_LOAD_REG_TN(T1, rt); gen_op_seh(); break; default: /* Invalid */ MIPS_INVAL("bshfl"); generate_exception(ctx, EXCP_RI); break; } GEN_STORE_TN_REG(rd, T0); break; case OPC_RDHWR: check_insn(env, ctx, ISA_MIPS32R2); switch (rd) { case 0: save_cpu_state(ctx, 1); gen_op_rdhwr_cpunum(); break; case 1: save_cpu_state(ctx, 1); gen_op_rdhwr_synci_step(); break; case 2: save_cpu_state(ctx, 1); gen_op_rdhwr_cc(); break; case 3: save_cpu_state(ctx, 1); gen_op_rdhwr_ccres(); break; case 29: #if defined (CONFIG_USER_ONLY) gen_op_tls_value(); break; #endif default: /* Invalid */ MIPS_INVAL("rdhwr"); generate_exception(ctx, EXCP_RI); break; } GEN_STORE_TN_REG(rt, T0); break; case OPC_FORK: check_mips_mt(env, ctx); GEN_LOAD_REG_TN(T0, rt); GEN_LOAD_REG_TN(T1, rs); gen_op_fork(); break; case OPC_YIELD: check_mips_mt(env, ctx); GEN_LOAD_REG_TN(T0, rs); gen_op_yield(); GEN_STORE_TN_REG(rd, T0); break; #if defined(TARGET_MIPSN32) || defined(TARGET_MIPS64) case OPC_DEXTM ... OPC_DEXT: case OPC_DINSM ... OPC_DINS: check_insn(env, ctx, ISA_MIPS64R2); check_mips_64(ctx); gen_bitops(ctx, op1, rt, rs, sa, rd); break; case OPC_DBSHFL: check_insn(env, ctx, ISA_MIPS64R2); check_mips_64(ctx); op2 = MASK_DBSHFL(ctx->opcode); switch (op2) { case OPC_DSBH: GEN_LOAD_REG_TN(T1, rt); gen_op_dsbh(); break; case OPC_DSHD: GEN_LOAD_REG_TN(T1, rt); gen_op_dshd(); break; default: /* Invalid */ MIPS_INVAL("dbshfl"); generate_exception(ctx, EXCP_RI); break; } GEN_STORE_TN_REG(rd, T0); #endif default: /* Invalid */ MIPS_INVAL("special3"); generate_exception(ctx, EXCP_RI); break; } break; case OPC_REGIMM: op1 = MASK_REGIMM(ctx->opcode); switch (op1) { case OPC_BLTZ ... OPC_BGEZL: /* REGIMM branches */ case OPC_BLTZAL ... OPC_BGEZALL: gen_compute_branch(ctx, op1, rs, -1, imm << 2); return; case OPC_TGEI ... OPC_TEQI: /* REGIMM traps */ case OPC_TNEI: gen_trap(ctx, op1, rs, -1, imm); break; case OPC_SYNCI: check_insn(env, ctx, ISA_MIPS32R2); /* Treat as NOP. */ break; default: /* Invalid */ MIPS_INVAL("regimm"); generate_exception(ctx, EXCP_RI); break; } break; case OPC_CP0: check_cp0_enabled(ctx); op1 = MASK_CP0(ctx->opcode); switch (op1) { case OPC_MFC0: case OPC_MTC0: case OPC_MFTR: case OPC_MTTR: #if defined(TARGET_MIPSN32) || defined(TARGET_MIPS64) case OPC_DMFC0: case OPC_DMTC0: #endif gen_cp0(env, ctx, op1, rt, rd); break; case OPC_C0_FIRST ... OPC_C0_LAST: gen_cp0(env, ctx, MASK_C0(ctx->opcode), rt, rd); break; case OPC_MFMC0: op2 = MASK_MFMC0(ctx->opcode); switch (op2) { case OPC_DMT: check_mips_mt(env, ctx); gen_op_dmt(); break; case OPC_EMT: check_mips_mt(env, ctx); gen_op_emt(); break; case OPC_DVPE: check_mips_mt(env, ctx); gen_op_dvpe(); break; case OPC_EVPE: check_mips_mt(env, ctx); gen_op_evpe(); break; case OPC_DI: check_insn(env, ctx, ISA_MIPS32R2); save_cpu_state(ctx, 1); gen_op_di(); /* Stop translation as we may have switched the execution mode */ ctx->bstate = BS_STOP; break; case OPC_EI: check_insn(env, ctx, ISA_MIPS32R2); save_cpu_state(ctx, 1); gen_op_ei(); /* Stop translation as we may have switched the execution mode */ ctx->bstate = BS_STOP; break; default: /* Invalid */ MIPS_INVAL("mfmc0"); generate_exception(ctx, EXCP_RI); break; } GEN_STORE_TN_REG(rt, T0); break; case OPC_RDPGPR: check_insn(env, ctx, ISA_MIPS32R2); GEN_LOAD_SRSREG_TN(T0, rt); GEN_STORE_TN_REG(rd, T0); break; case OPC_WRPGPR: check_insn(env, ctx, ISA_MIPS32R2); GEN_LOAD_REG_TN(T0, rt); GEN_STORE_TN_SRSREG(rd, T0); break; default: MIPS_INVAL("cp0"); generate_exception(ctx, EXCP_RI); break; } break; case OPC_ADDI ... OPC_LUI: /* Arithmetic with immediate opcode */ gen_arith_imm(env, ctx, op, rt, rs, imm); break; case OPC_J ... OPC_JAL: /* Jump */ offset = (int32_t)(ctx->opcode & 0x3FFFFFF) << 2; gen_compute_branch(ctx, op, rs, rt, offset); return; case OPC_BEQ ... OPC_BGTZ: /* Branch */ case OPC_BEQL ... OPC_BGTZL: gen_compute_branch(ctx, op, rs, rt, imm << 2); return; case OPC_LB ... OPC_LWR: /* Load and stores */ case OPC_SB ... OPC_SW: case OPC_SWR: case OPC_LL: case OPC_SC: gen_ldst(ctx, op, rt, rs, imm); break; case OPC_CACHE: check_insn(env, ctx, ISA_MIPS3 | ISA_MIPS32); /* Treat as NOP. */ break; case OPC_PREF: check_insn(env, ctx, ISA_MIPS4 | ISA_MIPS32); /* Treat as NOP. */ break; /* Floating point (COP1). */ case OPC_LWC1: case OPC_LDC1: case OPC_SWC1: case OPC_SDC1: if (env->CP0_Config1 & (1 << CP0C1_FP)) { save_cpu_state(ctx, 1); check_cp1_enabled(ctx); gen_flt_ldst(ctx, op, rt, rs, imm); } else { generate_exception_err(ctx, EXCP_CpU, 1); } break; case OPC_CP1: if (env->CP0_Config1 & (1 << CP0C1_FP)) { save_cpu_state(ctx, 1); check_cp1_enabled(ctx); op1 = MASK_CP1(ctx->opcode); switch (op1) { case OPC_MFHC1: case OPC_MTHC1: check_insn(env, ctx, ISA_MIPS32R2); case OPC_MFC1: case OPC_CFC1: case OPC_MTC1: case OPC_CTC1: gen_cp1(ctx, op1, rt, rd); break; #if defined(TARGET_MIPSN32) || defined(TARGET_MIPS64) case OPC_DMFC1: case OPC_DMTC1: check_insn(env, ctx, ISA_MIPS3); gen_cp1(ctx, op1, rt, rd); break; #endif case OPC_BC1ANY2: case OPC_BC1ANY4: check_cp1_3d(env, ctx); /* fall through */ case OPC_BC1: gen_compute_branch1(env, ctx, MASK_BC1(ctx->opcode), (rt >> 2) & 0x7, imm << 2); return; case OPC_S_FMT: case OPC_D_FMT: case OPC_W_FMT: case OPC_L_FMT: case OPC_PS_FMT: gen_farith(ctx, MASK_CP1_FUNC(ctx->opcode), rt, rd, sa, (imm >> 8) & 0x7); break; default: MIPS_INVAL("cp1"); generate_exception (ctx, EXCP_RI); break; } } else { generate_exception_err(ctx, EXCP_CpU, 1); } break; /* COP2. */ case OPC_LWC2: case OPC_LDC2: case OPC_SWC2: case OPC_SDC2: case OPC_CP2: /* COP2: Not implemented. */ generate_exception_err(ctx, EXCP_CpU, 2); break; case OPC_CP3: if (env->CP0_Config1 & (1 << CP0C1_FP)) { save_cpu_state(ctx, 1); check_cp1_enabled(ctx); op1 = MASK_CP3(ctx->opcode); switch (op1) { case OPC_LWXC1: case OPC_LDXC1: case OPC_LUXC1: case OPC_SWXC1: case OPC_SDXC1: case OPC_SUXC1: gen_flt3_ldst(ctx, op1, sa, rd, rs, rt); break; case OPC_PREFX: /* Treat as NOP. */ break; case OPC_ALNV_PS: case OPC_MADD_S: case OPC_MADD_D: case OPC_MADD_PS: case OPC_MSUB_S: case OPC_MSUB_D: case OPC_MSUB_PS: case OPC_NMADD_S: case OPC_NMADD_D: case OPC_NMADD_PS: case OPC_NMSUB_S: case OPC_NMSUB_D: case OPC_NMSUB_PS: gen_flt3_arith(ctx, op1, sa, rs, rd, rt); break; default: MIPS_INVAL("cp3"); generate_exception (ctx, EXCP_RI); break; } } else { generate_exception_err(ctx, EXCP_CpU, 1); } break; #if defined(TARGET_MIPSN32) || defined(TARGET_MIPS64) /* MIPS64 opcodes */ case OPC_LWU: case OPC_LDL ... OPC_LDR: case OPC_SDL ... OPC_SDR: case OPC_LLD: case OPC_LD: case OPC_SCD: case OPC_SD: check_insn(env, ctx, ISA_MIPS3); check_mips_64(ctx); gen_ldst(ctx, op, rt, rs, imm); break; case OPC_DADDI ... OPC_DADDIU: check_insn(env, ctx, ISA_MIPS3); check_mips_64(ctx); gen_arith_imm(env, ctx, op, rt, rs, imm); break; #endif case OPC_JALX: check_insn(env, ctx, ASE_MIPS16); /* MIPS16: Not implemented. */ case OPC_MDMX: check_insn(env, ctx, ASE_MDMX); /* MDMX: Not implemented. */ default: /* Invalid */ MIPS_INVAL("major opcode"); generate_exception(ctx, EXCP_RI); break; } if (ctx->hflags & MIPS_HFLAG_BMASK) { int hflags = ctx->hflags & MIPS_HFLAG_BMASK; /* Branches completion */ ctx->hflags &= ~MIPS_HFLAG_BMASK; ctx->bstate = BS_BRANCH; save_cpu_state(ctx, 0); switch (hflags) { case MIPS_HFLAG_B: /* unconditional branch */ MIPS_DEBUG("unconditional branch"); gen_goto_tb(ctx, 0, ctx->btarget); break; case MIPS_HFLAG_BL: /* blikely taken case */ MIPS_DEBUG("blikely branch taken"); gen_goto_tb(ctx, 0, ctx->btarget); break; case MIPS_HFLAG_BC: /* Conditional branch */ MIPS_DEBUG("conditional branch"); { int l1; l1 = gen_new_label(); gen_op_jnz_T2(l1); gen_goto_tb(ctx, 1, ctx->pc + 4); gen_set_label(l1); gen_goto_tb(ctx, 0, ctx->btarget); } break; case MIPS_HFLAG_BR: /* unconditional branch to register */ MIPS_DEBUG("branch to register"); gen_op_breg(); gen_op_reset_T0(); gen_op_exit_tb(); break; default: MIPS_DEBUG("unknown branch"); break; } } }
10,303
qemu
d812b3d68ddf0efe91a088ecc8b177865b0bab8d
0
static void port92_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { Port92State *s = opaque; int oldval = s->outport; DPRINTF("port92: write 0x%02" PRIx64 "\n", val); s->outport = val; qemu_set_irq(*s->a20_out, (val >> 1) & 1); if ((val & 1) && !(oldval & 1)) { qemu_system_reset_request(); } }
10,304
qemu
0965a41e998ab820b5d660c8abfc8c819c97bc1b
0
static uint64_t coroutine_fn mirror_iteration(MirrorBlockJob *s) { BlockDriverState *source = blk_bs(s->common.blk); int64_t sector_num, first_chunk; uint64_t delay_ns = 0; /* At least the first dirty chunk is mirrored in one iteration. */ int nb_chunks = 1; int64_t end = s->bdev_length / BDRV_SECTOR_SIZE; int sectors_per_chunk = s->granularity >> BDRV_SECTOR_BITS; bool write_zeroes_ok = bdrv_can_write_zeroes_with_unmap(blk_bs(s->target)); sector_num = hbitmap_iter_next(&s->hbi); if (sector_num < 0) { bdrv_dirty_iter_init(s->dirty_bitmap, &s->hbi); sector_num = hbitmap_iter_next(&s->hbi); trace_mirror_restart_iter(s, bdrv_get_dirty_count(s->dirty_bitmap)); assert(sector_num >= 0); } first_chunk = sector_num / sectors_per_chunk; while (test_bit(first_chunk, s->in_flight_bitmap)) { trace_mirror_yield_in_flight(s, sector_num, s->in_flight); mirror_wait_for_io(s); } block_job_pause_point(&s->common); /* Find the number of consective dirty chunks following the first dirty * one, and wait for in flight requests in them. */ while (nb_chunks * sectors_per_chunk < (s->buf_size >> BDRV_SECTOR_BITS)) { int64_t hbitmap_next; int64_t next_sector = sector_num + nb_chunks * sectors_per_chunk; int64_t next_chunk = next_sector / sectors_per_chunk; if (next_sector >= end || !bdrv_get_dirty(source, s->dirty_bitmap, next_sector)) { break; } if (test_bit(next_chunk, s->in_flight_bitmap)) { break; } hbitmap_next = hbitmap_iter_next(&s->hbi); if (hbitmap_next > next_sector || hbitmap_next < 0) { /* The bitmap iterator's cache is stale, refresh it */ bdrv_set_dirty_iter(&s->hbi, next_sector); hbitmap_next = hbitmap_iter_next(&s->hbi); } assert(hbitmap_next == next_sector); nb_chunks++; } /* Clear dirty bits before querying the block status, because * calling bdrv_get_block_status_above could yield - if some blocks are * marked dirty in this window, we need to know. */ bdrv_reset_dirty_bitmap(s->dirty_bitmap, sector_num, nb_chunks * sectors_per_chunk); bitmap_set(s->in_flight_bitmap, sector_num / sectors_per_chunk, nb_chunks); while (nb_chunks > 0 && sector_num < end) { int ret; int io_sectors, io_sectors_acct; BlockDriverState *file; enum MirrorMethod { MIRROR_METHOD_COPY, MIRROR_METHOD_ZERO, MIRROR_METHOD_DISCARD } mirror_method = MIRROR_METHOD_COPY; assert(!(sector_num % sectors_per_chunk)); ret = bdrv_get_block_status_above(source, NULL, sector_num, nb_chunks * sectors_per_chunk, &io_sectors, &file); if (ret < 0) { io_sectors = nb_chunks * sectors_per_chunk; } io_sectors -= io_sectors % sectors_per_chunk; if (io_sectors < sectors_per_chunk) { io_sectors = sectors_per_chunk; } else if (ret >= 0 && !(ret & BDRV_BLOCK_DATA)) { int64_t target_sector_num; int target_nb_sectors; bdrv_round_sectors_to_clusters(blk_bs(s->target), sector_num, io_sectors, &target_sector_num, &target_nb_sectors); if (target_sector_num == sector_num && target_nb_sectors == io_sectors) { mirror_method = ret & BDRV_BLOCK_ZERO ? MIRROR_METHOD_ZERO : MIRROR_METHOD_DISCARD; } } while (s->in_flight >= MAX_IN_FLIGHT) { trace_mirror_yield_in_flight(s, sector_num, s->in_flight); mirror_wait_for_io(s); } mirror_clip_sectors(s, sector_num, &io_sectors); switch (mirror_method) { case MIRROR_METHOD_COPY: io_sectors = mirror_do_read(s, sector_num, io_sectors); io_sectors_acct = io_sectors; break; case MIRROR_METHOD_ZERO: case MIRROR_METHOD_DISCARD: mirror_do_zero_or_discard(s, sector_num, io_sectors, mirror_method == MIRROR_METHOD_DISCARD); if (write_zeroes_ok) { io_sectors_acct = 0; } else { io_sectors_acct = io_sectors; } break; default: abort(); } assert(io_sectors); sector_num += io_sectors; nb_chunks -= DIV_ROUND_UP(io_sectors, sectors_per_chunk); if (s->common.speed) { delay_ns = ratelimit_calculate_delay(&s->limit, io_sectors_acct); } } return delay_ns; }
10,305
FFmpeg
398f015f077c6a2406deffd9e37ff34b9c7bb3bc
0
static void flush_encoders(void) { int i, ret; for (i = 0; i < nb_output_streams; i++) { OutputStream *ost = output_streams[i]; AVCodecContext *enc = ost->enc_ctx; AVFormatContext *os = output_files[ost->file_index]->ctx; int stop_encoding = 0; if (!ost->encoding_needed) continue; if (enc->codec_type == AVMEDIA_TYPE_AUDIO && enc->frame_size <= 1) continue; if (enc->codec_type != AVMEDIA_TYPE_VIDEO && enc->codec_type != AVMEDIA_TYPE_AUDIO) continue; avcodec_send_frame(enc, NULL); for (;;) { const char *desc = NULL; switch (enc->codec_type) { case AVMEDIA_TYPE_AUDIO: desc = "Audio"; break; case AVMEDIA_TYPE_VIDEO: desc = "Video"; break; default: av_assert0(0); } if (1) { AVPacket pkt; av_init_packet(&pkt); pkt.data = NULL; pkt.size = 0; ret = avcodec_receive_packet(enc, &pkt); if (ret < 0 && ret != AVERROR_EOF) { av_log(NULL, AV_LOG_FATAL, "%s encoding failed\n", desc); exit_program(1); } if (ost->logfile && enc->stats_out) { fprintf(ost->logfile, "%s", enc->stats_out); } if (ret == AVERROR_EOF) { stop_encoding = 1; break; } av_packet_rescale_ts(&pkt, enc->time_base, ost->st->time_base); output_packet(os, &pkt, ost); } if (stop_encoding) break; } } }
10,306
FFmpeg
403ee835e7913eb9536b22c2b22edfdd700166a9
0
AVFormatContext *ff_rtp_chain_mux_open(AVFormatContext *s, AVStream *st, URLContext *handle, int packet_size) { AVFormatContext *rtpctx; int ret; AVOutputFormat *rtp_format = av_guess_format("rtp", NULL, NULL); if (!rtp_format) return NULL; /* Allocate an AVFormatContext for each output stream */ rtpctx = avformat_alloc_context(); if (!rtpctx) return NULL; rtpctx->oformat = rtp_format; if (!av_new_stream(rtpctx, 0)) { av_free(rtpctx); return NULL; } /* Copy the max delay setting; the rtp muxer reads this. */ rtpctx->max_delay = s->max_delay; /* Copy other stream parameters. */ rtpctx->streams[0]->sample_aspect_ratio = st->sample_aspect_ratio; /* Set the synchronized start time. */ rtpctx->start_time_realtime = s->start_time_realtime; avcodec_copy_context(rtpctx->streams[0]->codec, st->codec); if (handle) { url_fdopen(&rtpctx->pb, handle); } else url_open_dyn_packet_buf(&rtpctx->pb, packet_size); ret = av_write_header(rtpctx); if (ret) { if (handle) { avio_close(rtpctx->pb); } else { uint8_t *ptr; avio_close_dyn_buf(rtpctx->pb, &ptr); av_free(ptr); } avformat_free_context(rtpctx); return NULL; } return rtpctx; }
10,307
FFmpeg
c7384664ba0cbb12d882effafbc6d321ae706cff
0
static av_cold int avs_decode_init(AVCodecContext * avctx) { AvsContext *s = avctx->priv_data; s->frame = av_frame_alloc(); if (!s->frame) return AVERROR(ENOMEM); avctx->pix_fmt = AV_PIX_FMT_PAL8; ff_set_dimensions(avctx, 318, 198); return 0; }
10,309
FFmpeg
d6604b29ef544793479d7fb4e05ef6622bb3e534
0
static av_cold int raw_encode_close(AVCodecContext *avctx) { av_frame_free(&avctx->coded_frame); return 0; }
10,310
FFmpeg
b12e4d3bb8df994f042ff1216fb8de2b967aab9e
0
int avio_close_dyn_buf(AVIOContext *s, uint8_t **pbuffer) { DynBuffer *d; int size; static const char padbuf[AV_INPUT_BUFFER_PADDING_SIZE] = {0}; int padding = 0; if (!s) { *pbuffer = NULL; return 0; } /* don't attempt to pad fixed-size packet buffers */ if (!s->max_packet_size) { avio_write(s, padbuf, sizeof(padbuf)); padding = AV_INPUT_BUFFER_PADDING_SIZE; } avio_flush(s); d = s->opaque; *pbuffer = d->buffer; size = d->size; av_free(d); av_free(s); return size - padding; }
10,311
qemu
45eb768c706d3a5fbe55224c589e8b4e252781d9
0
void pcie_port_init_reg(PCIDevice *d) { /* Unlike pci bridge, 66MHz and fast back to back don't apply to pci express port. */ pci_set_word(d->config + PCI_STATUS, 0); pci_set_word(d->config + PCI_SEC_STATUS, 0); /* Unlike conventional pci bridge, some bits are hardwired to 0. */ #define PCI_BRIDGE_CTL_VGA_16BIT 0x10 /* VGA 16-bit decode */ pci_set_word(d->wmask + PCI_BRIDGE_CONTROL, PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_ISA | PCI_BRIDGE_CTL_VGA | PCI_BRIDGE_CTL_VGA_16BIT | /* Req, but no alias support yet */ PCI_BRIDGE_CTL_SERR | PCI_BRIDGE_CTL_BUS_RESET); }
10,312
FFmpeg
cee03436e6f1e3d4893841698e73caa92f2a53c9
0
static void get_slice_data(ProresContext *ctx, const uint16_t *src, int linesize, int x, int y, int w, int h, DCTELEM *blocks, uint16_t *emu_buf, int mbs_per_slice, int blocks_per_mb, int is_chroma) { const uint16_t *esrc; const int mb_width = 4 * blocks_per_mb; int elinesize; int i, j, k; for (i = 0; i < mbs_per_slice; i++, src += mb_width) { if (x >= w) { memset(blocks, 0, 64 * (mbs_per_slice - i) * blocks_per_mb * sizeof(*blocks)); return; } if (x + mb_width <= w && y + 16 <= h) { esrc = src; elinesize = linesize; } else { int bw, bh, pix; esrc = emu_buf; elinesize = 16 * sizeof(*emu_buf); bw = FFMIN(w - x, mb_width); bh = FFMIN(h - y, 16); for (j = 0; j < bh; j++) { memcpy(emu_buf + j * 16, (const uint8_t*)src + j * linesize, bw * sizeof(*src)); pix = emu_buf[j * 16 + bw - 1]; for (k = bw; k < mb_width; k++) emu_buf[j * 16 + k] = pix; } for (; j < 16; j++) memcpy(emu_buf + j * 16, emu_buf + (bh - 1) * 16, mb_width * sizeof(*emu_buf)); } if (!is_chroma) { ctx->dsp.fdct(esrc, elinesize, blocks); blocks += 64; if (blocks_per_mb > 2) { ctx->dsp.fdct(src + 8, linesize, blocks); blocks += 64; } ctx->dsp.fdct(src + linesize * 4, linesize, blocks); blocks += 64; if (blocks_per_mb > 2) { ctx->dsp.fdct(src + linesize * 4 + 8, linesize, blocks); blocks += 64; } } else { ctx->dsp.fdct(esrc, elinesize, blocks); blocks += 64; ctx->dsp.fdct(src + linesize * 4, linesize, blocks); blocks += 64; if (blocks_per_mb > 2) { ctx->dsp.fdct(src + 8, linesize, blocks); blocks += 64; ctx->dsp.fdct(src + linesize * 4 + 8, linesize, blocks); blocks += 64; } } x += mb_width; } }
10,313
qemu
a7812ae412311d7d47f8aa85656faadac9d64b56
0
static always_inline void gen_farith3 (void *helper, int ra, int rb, int rc) { if (unlikely(rc == 31)) return; if (ra != 31) { if (rb != 31) tcg_gen_helper_1_2(helper, cpu_fir[rc], cpu_fir[ra], cpu_fir[rb]); else { TCGv tmp = tcg_const_i64(0); tcg_gen_helper_1_2(helper, cpu_fir[rc], cpu_fir[ra], tmp); tcg_temp_free(tmp); } } else { TCGv tmp = tcg_const_i64(0); if (rb != 31) tcg_gen_helper_1_2(helper, cpu_fir[rc], tmp, cpu_fir[rb]); else tcg_gen_helper_1_2(helper, cpu_fir[rc], tmp, tmp); tcg_temp_free(tmp); } }
10,314
qemu
21e00fa55f3fdfcbb20da7c6876c91ef3609b387
0
static bool vfio_prereg_listener_skipped_section(MemoryRegionSection *section) { if (memory_region_is_iommu(section->mr)) { hw_error("Cannot possibly preregister IOMMU memory"); } return !memory_region_is_ram(section->mr) || memory_region_is_skip_dump(section->mr); }
10,315
qemu
3a95e3a7d9a6fd7610fe483778ff7016d23be5ec
0
static void gen_mtc0 (DisasContext *ctx, int reg, int sel) { const char *rn = "invalid"; switch (reg) { case 0: switch (sel) { case 0: gen_op_mtc0_index(); rn = "Index"; break; case 1: // gen_op_mtc0_mvpcontrol(); /* MT ASE */ rn = "MVPControl"; // break; case 2: // gen_op_mtc0_mvpconf0(); /* MT ASE */ rn = "MVPConf0"; // break; case 3: // gen_op_mtc0_mvpconf1(); /* MT ASE */ rn = "MVPConf1"; // break; default: goto die; } break; case 1: switch (sel) { case 0: /* ignored */ rn = "Random"; break; case 1: // gen_op_mtc0_vpecontrol(); /* MT ASE */ rn = "VPEControl"; // break; case 2: // gen_op_mtc0_vpeconf0(); /* MT ASE */ rn = "VPEConf0"; // break; case 3: // gen_op_mtc0_vpeconf1(); /* MT ASE */ rn = "VPEConf1"; // break; case 4: // gen_op_mtc0_YQMask(); /* MT ASE */ rn = "YQMask"; // break; case 5: // gen_op_mtc0_vpeschedule(); /* MT ASE */ rn = "VPESchedule"; // break; case 6: // gen_op_mtc0_vpeschefback(); /* MT ASE */ rn = "VPEScheFBack"; // break; case 7: // gen_op_mtc0_vpeopt(); /* MT ASE */ rn = "VPEOpt"; // break; default: goto die; } break; case 2: switch (sel) { case 0: gen_op_mtc0_entrylo0(); rn = "EntryLo0"; break; case 1: // gen_op_mtc0_tcstatus(); /* MT ASE */ rn = "TCStatus"; // break; case 2: // gen_op_mtc0_tcbind(); /* MT ASE */ rn = "TCBind"; // break; case 3: // gen_op_mtc0_tcrestart(); /* MT ASE */ rn = "TCRestart"; // break; case 4: // gen_op_mtc0_tchalt(); /* MT ASE */ rn = "TCHalt"; // break; case 5: // gen_op_mtc0_tccontext(); /* MT ASE */ rn = "TCContext"; // break; case 6: // gen_op_mtc0_tcschedule(); /* MT ASE */ rn = "TCSchedule"; // break; case 7: // gen_op_mtc0_tcschefback(); /* MT ASE */ rn = "TCScheFBack"; // break; default: goto die; } break; case 3: switch (sel) { case 0: gen_op_mtc0_entrylo1(); rn = "EntryLo1"; break; default: goto die; } break; case 4: switch (sel) { case 0: gen_op_mtc0_context(); rn = "Context"; break; case 1: // gen_op_mtc0_contextconfig(); /* SmartMIPS ASE */ rn = "ContextConfig"; // break; default: goto die; } break; case 5: switch (sel) { case 0: gen_op_mtc0_pagemask(); rn = "PageMask"; break; case 1: gen_op_mtc0_pagegrain(); rn = "PageGrain"; break; default: goto die; } break; case 6: switch (sel) { case 0: gen_op_mtc0_wired(); rn = "Wired"; break; case 1: // gen_op_mtc0_srsconf0(); /* shadow registers */ rn = "SRSConf0"; // break; case 2: // gen_op_mtc0_srsconf1(); /* shadow registers */ rn = "SRSConf1"; // break; case 3: // gen_op_mtc0_srsconf2(); /* shadow registers */ rn = "SRSConf2"; // break; case 4: // gen_op_mtc0_srsconf3(); /* shadow registers */ rn = "SRSConf3"; // break; case 5: // gen_op_mtc0_srsconf4(); /* shadow registers */ rn = "SRSConf4"; // break; default: goto die; } break; case 7: switch (sel) { case 0: gen_op_mtc0_hwrena(); rn = "HWREna"; break; default: goto die; } break; case 8: /* ignored */ rn = "BadVaddr"; break; case 9: switch (sel) { case 0: gen_op_mtc0_count(); rn = "Count"; break; /* 6,7 are implementation dependent */ default: goto die; } /* Stop translation as we may have switched the execution mode */ ctx->bstate = BS_STOP; break; case 10: switch (sel) { case 0: gen_op_mtc0_entryhi(); rn = "EntryHi"; break; default: goto die; } break; case 11: switch (sel) { case 0: gen_op_mtc0_compare(); rn = "Compare"; break; /* 6,7 are implementation dependent */ default: goto die; } /* Stop translation as we may have switched the execution mode */ ctx->bstate = BS_STOP; break; case 12: switch (sel) { case 0: gen_op_mtc0_status(); /* BS_STOP isn't good enough here, hflags may have changed. */ gen_save_pc(ctx->pc + 4); ctx->bstate = BS_EXCP; rn = "Status"; break; case 1: gen_op_mtc0_intctl(); /* Stop translation as we may have switched the execution mode */ ctx->bstate = BS_STOP; rn = "IntCtl"; break; case 2: gen_op_mtc0_srsctl(); /* Stop translation as we may have switched the execution mode */ ctx->bstate = BS_STOP; rn = "SRSCtl"; break; case 3: gen_op_mtc0_srsmap(); /* Stop translation as we may have switched the execution mode */ ctx->bstate = BS_STOP; rn = "SRSMap"; break; default: goto die; } break; case 13: switch (sel) { case 0: gen_op_mtc0_cause(); rn = "Cause"; break; default: goto die; } /* Stop translation as we may have switched the execution mode */ ctx->bstate = BS_STOP; break; case 14: switch (sel) { case 0: gen_op_mtc0_epc(); rn = "EPC"; break; default: goto die; } break; case 15: switch (sel) { case 0: /* ignored */ rn = "PRid"; break; case 1: gen_op_mtc0_ebase(); rn = "EBase"; break; default: goto die; } break; case 16: switch (sel) { case 0: gen_op_mtc0_config0(); rn = "Config"; /* Stop translation as we may have switched the execution mode */ ctx->bstate = BS_STOP; break; case 1: /* ignored, read only */ rn = "Config1"; break; case 2: gen_op_mtc0_config2(); rn = "Config2"; /* Stop translation as we may have switched the execution mode */ ctx->bstate = BS_STOP; break; case 3: /* ignored, read only */ rn = "Config3"; break; /* 4,5 are reserved */ /* 6,7 are implementation dependent */ case 6: /* ignored */ rn = "Config6"; break; case 7: /* ignored */ rn = "Config7"; break; default: rn = "Invalid config selector"; goto die; } break; case 17: switch (sel) { case 0: /* ignored */ rn = "LLAddr"; break; default: goto die; } break; case 18: switch (sel) { case 0 ... 7: gen_op_mtc0_watchlo(sel); rn = "WatchLo"; break; default: goto die; } break; case 19: switch (sel) { case 0 ... 7: gen_op_mtc0_watchhi(sel); rn = "WatchHi"; break; default: goto die; } break; case 20: switch (sel) { case 0: #ifdef TARGET_MIPS64 gen_op_mtc0_xcontext(); rn = "XContext"; break; #endif default: goto die; } break; case 21: /* Officially reserved, but sel 0 is used for R1x000 framemask */ switch (sel) { case 0: gen_op_mtc0_framemask(); rn = "Framemask"; break; default: goto die; } break; case 22: /* ignored */ rn = "Diagnostic"; /* implementation dependent */ break; case 23: switch (sel) { case 0: gen_op_mtc0_debug(); /* EJTAG support */ /* BS_STOP isn't good enough here, hflags may have changed. */ gen_save_pc(ctx->pc + 4); ctx->bstate = BS_EXCP; rn = "Debug"; break; case 1: // gen_op_mtc0_tracecontrol(); /* PDtrace support */ rn = "TraceControl"; /* Stop translation as we may have switched the execution mode */ ctx->bstate = BS_STOP; // break; case 2: // gen_op_mtc0_tracecontrol2(); /* PDtrace support */ rn = "TraceControl2"; /* Stop translation as we may have switched the execution mode */ ctx->bstate = BS_STOP; // break; case 3: /* Stop translation as we may have switched the execution mode */ ctx->bstate = BS_STOP; // gen_op_mtc0_usertracedata(); /* PDtrace support */ rn = "UserTraceData"; /* Stop translation as we may have switched the execution mode */ ctx->bstate = BS_STOP; // break; case 4: // gen_op_mtc0_debug(); /* PDtrace support */ /* Stop translation as we may have switched the execution mode */ ctx->bstate = BS_STOP; rn = "TraceBPC"; // break; default: goto die; } break; case 24: switch (sel) { case 0: gen_op_mtc0_depc(); /* EJTAG support */ rn = "DEPC"; break; default: goto die; } break; case 25: switch (sel) { case 0: gen_op_mtc0_performance0(); rn = "Performance0"; break; case 1: // gen_op_mtc0_performance1(); rn = "Performance1"; // break; case 2: // gen_op_mtc0_performance2(); rn = "Performance2"; // break; case 3: // gen_op_mtc0_performance3(); rn = "Performance3"; // break; case 4: // gen_op_mtc0_performance4(); rn = "Performance4"; // break; case 5: // gen_op_mtc0_performance5(); rn = "Performance5"; // break; case 6: // gen_op_mtc0_performance6(); rn = "Performance6"; // break; case 7: // gen_op_mtc0_performance7(); rn = "Performance7"; // break; default: goto die; } break; case 26: /* ignored */ rn = "ECC"; break; case 27: switch (sel) { case 0 ... 3: /* ignored */ rn = "CacheErr"; break; default: goto die; } break; case 28: switch (sel) { case 0: case 2: case 4: case 6: gen_op_mtc0_taglo(); rn = "TagLo"; break; case 1: case 3: case 5: case 7: gen_op_mtc0_datalo(); rn = "DataLo"; break; default: goto die; } break; case 29: switch (sel) { case 0: case 2: case 4: case 6: gen_op_mtc0_taghi(); rn = "TagHi"; break; case 1: case 3: case 5: case 7: gen_op_mtc0_datahi(); rn = "DataHi"; break; default: rn = "invalid sel"; goto die; } break; case 30: switch (sel) { case 0: gen_op_mtc0_errorepc(); rn = "ErrorEPC"; break; default: goto die; } break; case 31: switch (sel) { case 0: gen_op_mtc0_desave(); /* EJTAG support */ rn = "DESAVE"; break; default: goto die; } /* Stop translation as we may have switched the execution mode */ ctx->bstate = BS_STOP; break; default: goto die; } #if defined MIPS_DEBUG_DISAS if (loglevel & CPU_LOG_TB_IN_ASM) { fprintf(logfile, "mtc0 %s (reg %d sel %d)\n", rn, reg, sel); } #endif return; die: #if defined MIPS_DEBUG_DISAS if (loglevel & CPU_LOG_TB_IN_ASM) { fprintf(logfile, "mtc0 %s (reg %d sel %d)\n", rn, reg, sel); } #endif generate_exception(ctx, EXCP_RI); }
10,318
qemu
b3db211f3c80bb996a704d665fe275619f728bd4
0
static void test_native_list_integer_helper(TestInputVisitorData *data, const void *unused, UserDefNativeListUnionKind kind) { UserDefNativeListUnion *cvalue = NULL; Visitor *v; GString *gstr_list = g_string_new(""); GString *gstr_union = g_string_new(""); int i; for (i = 0; i < 32; i++) { g_string_append_printf(gstr_list, "%d", i); if (i != 31) { g_string_append(gstr_list, ", "); } } g_string_append_printf(gstr_union, "{ 'type': '%s', 'data': [ %s ] }", UserDefNativeListUnionKind_lookup[kind], gstr_list->str); v = visitor_input_test_init_raw(data, gstr_union->str); visit_type_UserDefNativeListUnion(v, NULL, &cvalue, &error_abort); g_assert(cvalue != NULL); g_assert_cmpint(cvalue->type, ==, kind); switch (kind) { case USER_DEF_NATIVE_LIST_UNION_KIND_INTEGER: { intList *elem = NULL; for (i = 0, elem = cvalue->u.integer.data; elem; elem = elem->next, i++) { g_assert_cmpint(elem->value, ==, i); } break; } case USER_DEF_NATIVE_LIST_UNION_KIND_S8: { int8List *elem = NULL; for (i = 0, elem = cvalue->u.s8.data; elem; elem = elem->next, i++) { g_assert_cmpint(elem->value, ==, i); } break; } case USER_DEF_NATIVE_LIST_UNION_KIND_S16: { int16List *elem = NULL; for (i = 0, elem = cvalue->u.s16.data; elem; elem = elem->next, i++) { g_assert_cmpint(elem->value, ==, i); } break; } case USER_DEF_NATIVE_LIST_UNION_KIND_S32: { int32List *elem = NULL; for (i = 0, elem = cvalue->u.s32.data; elem; elem = elem->next, i++) { g_assert_cmpint(elem->value, ==, i); } break; } case USER_DEF_NATIVE_LIST_UNION_KIND_S64: { int64List *elem = NULL; for (i = 0, elem = cvalue->u.s64.data; elem; elem = elem->next, i++) { g_assert_cmpint(elem->value, ==, i); } break; } case USER_DEF_NATIVE_LIST_UNION_KIND_U8: { uint8List *elem = NULL; for (i = 0, elem = cvalue->u.u8.data; elem; elem = elem->next, i++) { g_assert_cmpint(elem->value, ==, i); } break; } case USER_DEF_NATIVE_LIST_UNION_KIND_U16: { uint16List *elem = NULL; for (i = 0, elem = cvalue->u.u16.data; elem; elem = elem->next, i++) { g_assert_cmpint(elem->value, ==, i); } break; } case USER_DEF_NATIVE_LIST_UNION_KIND_U32: { uint32List *elem = NULL; for (i = 0, elem = cvalue->u.u32.data; elem; elem = elem->next, i++) { g_assert_cmpint(elem->value, ==, i); } break; } case USER_DEF_NATIVE_LIST_UNION_KIND_U64: { uint64List *elem = NULL; for (i = 0, elem = cvalue->u.u64.data; elem; elem = elem->next, i++) { g_assert_cmpint(elem->value, ==, i); } break; } default: g_assert_not_reached(); } g_string_free(gstr_union, true); g_string_free(gstr_list, true); qapi_free_UserDefNativeListUnion(cvalue); }
10,319
qemu
7f61f4690dd153be98900a2a508b88989e692753
0
pvscsi_ring_init_data(PVSCSIRingInfo *m, PVSCSICmdDescSetupRings *ri) { int i; uint32_t txr_len_log2, rxr_len_log2; uint32_t req_ring_size, cmp_ring_size; m->rs_pa = ri->ringsStatePPN << VMW_PAGE_SHIFT; if ((ri->reqRingNumPages > PVSCSI_SETUP_RINGS_MAX_NUM_PAGES) || (ri->cmpRingNumPages > PVSCSI_SETUP_RINGS_MAX_NUM_PAGES)) { return -1; } req_ring_size = ri->reqRingNumPages * PVSCSI_MAX_NUM_REQ_ENTRIES_PER_PAGE; cmp_ring_size = ri->cmpRingNumPages * PVSCSI_MAX_NUM_CMP_ENTRIES_PER_PAGE; txr_len_log2 = pvscsi_log2(req_ring_size - 1); rxr_len_log2 = pvscsi_log2(cmp_ring_size - 1); m->txr_len_mask = MASK(txr_len_log2); m->rxr_len_mask = MASK(rxr_len_log2); m->consumed_ptr = 0; m->filled_cmp_ptr = 0; for (i = 0; i < ri->reqRingNumPages; i++) { m->req_ring_pages_pa[i] = ri->reqRingPPNs[i] << VMW_PAGE_SHIFT; } for (i = 0; i < ri->cmpRingNumPages; i++) { m->cmp_ring_pages_pa[i] = ri->cmpRingPPNs[i] << VMW_PAGE_SHIFT; } RS_SET_FIELD(m, reqProdIdx, 0); RS_SET_FIELD(m, reqConsIdx, 0); RS_SET_FIELD(m, reqNumEntriesLog2, txr_len_log2); RS_SET_FIELD(m, cmpProdIdx, 0); RS_SET_FIELD(m, cmpConsIdx, 0); RS_SET_FIELD(m, cmpNumEntriesLog2, rxr_len_log2); trace_pvscsi_ring_init_data(txr_len_log2, rxr_len_log2); /* Flush ring state page changes */ smp_wmb(); return 0; }
10,320
qemu
acf6e5f0962c4be670d4a93ede77423512521876
0
static bool check_overlapping_aiocb(BDRVSheepdogState *s, SheepdogAIOCB *aiocb) { SheepdogAIOCB *cb; QLIST_FOREACH(cb, &s->inflight_aiocb_head, aiocb_siblings) { if (AIOCBOverlapping(aiocb, cb)) { return true; } } QLIST_INSERT_HEAD(&s->inflight_aiocb_head, aiocb, aiocb_siblings); return false; }
10,321
qemu
8dfd5f96515ca20c4eb109cb0ee28e2bb32fc505
0
static void qio_channel_websock_finalize(Object *obj) { QIOChannelWebsock *ioc = QIO_CHANNEL_WEBSOCK(obj); buffer_free(&ioc->encinput); buffer_free(&ioc->encoutput); buffer_free(&ioc->rawinput); buffer_free(&ioc->rawoutput); object_unref(OBJECT(ioc->master)); if (ioc->io_tag) { g_source_remove(ioc->io_tag); } if (ioc->io_err) { error_free(ioc->io_err); } }
10,323
FFmpeg
c8241e730f116f1c9cfc0b34110aa7f052e05332
0
static av_cold int vaapi_encode_h265_init_internal(AVCodecContext *avctx) { static const VAConfigAttrib default_config_attributes[] = { { .type = VAConfigAttribRTFormat, .value = VA_RT_FORMAT_YUV420 }, { .type = VAConfigAttribEncPackedHeaders, .value = (VA_ENC_PACKED_HEADER_SEQUENCE | VA_ENC_PACKED_HEADER_SLICE) }, }; VAAPIEncodeContext *ctx = avctx->priv_data; VAAPIEncodeH265Context *priv = ctx->priv_data; int i, err; switch (avctx->profile) { case FF_PROFILE_HEVC_MAIN: case FF_PROFILE_UNKNOWN: ctx->va_profile = VAProfileHEVCMain; break; case FF_PROFILE_HEVC_MAIN_10: av_log(avctx, AV_LOG_ERROR, "H.265 main 10-bit profile " "is not supported.\n"); return AVERROR_PATCHWELCOME; default: av_log(avctx, AV_LOG_ERROR, "Unknown H.265 profile %d.\n", avctx->profile); return AVERROR(EINVAL); } ctx->va_entrypoint = VAEntrypointEncSlice; ctx->input_width = avctx->width; ctx->input_height = avctx->height; ctx->aligned_width = FFALIGN(ctx->input_width, 16); ctx->aligned_height = FFALIGN(ctx->input_height, 16); priv->ctu_width = FFALIGN(ctx->aligned_width, 32) / 32; priv->ctu_height = FFALIGN(ctx->aligned_height, 32) / 32; av_log(avctx, AV_LOG_VERBOSE, "Input %ux%u -> Aligned %ux%u -> CTU %ux%u.\n", ctx->input_width, ctx->input_height, ctx->aligned_width, ctx->aligned_height, priv->ctu_width, priv->ctu_height); for (i = 0; i < FF_ARRAY_ELEMS(default_config_attributes); i++) { ctx->config_attributes[ctx->nb_config_attributes++] = default_config_attributes[i]; } if (avctx->bit_rate > 0) { ctx->va_rc_mode = VA_RC_CBR; err = vaapi_encode_h265_init_constant_bitrate(avctx); } else { ctx->va_rc_mode = VA_RC_CQP; err = vaapi_encode_h265_init_fixed_qp(avctx); } if (err < 0) return err; ctx->config_attributes[ctx->nb_config_attributes++] = (VAConfigAttrib) { .type = VAConfigAttribRateControl, .value = ctx->va_rc_mode, }; ctx->nb_recon_frames = 20; return 0; }
10,324
qemu
2ff30257974e19ebe2a97baad32ac29c06da5fb9
0
void qmp_migrate_set_downtime(double value, Error **errp) { value *= 1e9; value = MAX(0, MIN(UINT64_MAX, value)); max_downtime = (uint64_t)value; }
10,325
qemu
1ecf47bf0a091700e45f1b7d1f5ad85abc0acd22
0
static void qemu_cpu_kick_thread(CPUState *env) { #ifndef _WIN32 int err; err = pthread_kill(env->thread->thread, SIG_IPI); if (err) { fprintf(stderr, "qemu:%s: %s", __func__, strerror(err)); exit(1); } #else /* _WIN32 */ if (!qemu_cpu_is_self(env)) { SuspendThread(env->thread->thread); cpu_signal(0); ResumeThread(env->thread->thread); } #endif }
10,326
qemu
a8cf66bb393ff420d40ae172a4c817bf2752918a
0
void helper_evaluate_flags_alu_4(void) { uint32_t src; uint32_t dst; uint32_t res; uint32_t flags = 0; src = env->cc_src; dst = env->cc_dest; /* Reconstruct the result. */ switch (env->cc_op) { case CC_OP_SUB: res = dst - src; break; case CC_OP_ADD: res = dst + src; break; default: res = env->cc_result; break; } if (env->cc_op == CC_OP_SUB || env->cc_op == CC_OP_CMP) src = ~src; if ((res & 0x80000000L) != 0L) { flags |= N_FLAG; if (((src & 0x80000000L) == 0L) && ((dst & 0x80000000L) == 0L)) { flags |= V_FLAG; } else if (((src & 0x80000000L) != 0L) && ((dst & 0x80000000L) != 0L)) { flags |= C_FLAG; } } else { if (res == 0L) flags |= Z_FLAG; if (((src & 0x80000000L) != 0L) && ((dst & 0x80000000L) != 0L)) flags |= V_FLAG; if ((dst & 0x80000000L) != 0L || (src & 0x80000000L) != 0L) flags |= C_FLAG; } if (env->cc_op == CC_OP_SUB || env->cc_op == CC_OP_CMP) { flags ^= C_FLAG; } evaluate_flags_writeback(flags); }
10,328
qemu
4be746345f13e99e468c60acbd3a355e8183e3ce
0
static void pmac_ide_atapi_transfer_cb(void *opaque, int ret) { DBDMA_io *io = opaque; MACIOIDEState *m = io->opaque; IDEState *s = idebus_active_if(&m->bus); int unaligned; if (ret < 0) { m->aiocb = NULL; qemu_sglist_destroy(&s->sg); ide_atapi_io_error(s, ret); io->remainder_len = 0; goto done; } if (!m->dma_active) { MACIO_DPRINTF("waiting for data (%#x - %#x - %x)\n", s->nsector, io->len, s->status); /* data not ready yet, wait for the channel to get restarted */ io->processing = false; return; } MACIO_DPRINTF("io_buffer_size = %#x\n", s->io_buffer_size); if (s->io_buffer_size > 0) { m->aiocb = NULL; qemu_sglist_destroy(&s->sg); s->packet_transfer_size -= s->io_buffer_size; s->io_buffer_index += s->io_buffer_size; s->lba += s->io_buffer_index >> 11; s->io_buffer_index &= 0x7ff; } s->io_buffer_size = MIN(io->len, s->packet_transfer_size); MACIO_DPRINTF("remainder: %d io->len: %d size: %d\n", io->remainder_len, io->len, s->packet_transfer_size); if (io->remainder_len && io->len) { /* guest wants the rest of its previous transfer */ int remainder_len = MIN(io->remainder_len, io->len); MACIO_DPRINTF("copying remainder %d bytes\n", remainder_len); cpu_physical_memory_write(io->addr, io->remainder + 0x200 - remainder_len, remainder_len); io->addr += remainder_len; io->len -= remainder_len; s->io_buffer_size = remainder_len; io->remainder_len -= remainder_len; /* treat remainder as individual transfer, start again */ qemu_sglist_init(&s->sg, DEVICE(m), io->len / MACIO_PAGE_SIZE + 1, &address_space_memory); pmac_ide_atapi_transfer_cb(opaque, 0); return; } if (!s->packet_transfer_size) { MACIO_DPRINTF("end of transfer\n"); ide_atapi_cmd_ok(s); m->dma_active = false; } if (io->len == 0) { MACIO_DPRINTF("end of DMA\n"); goto done; } /* launch next transfer */ /* handle unaligned accesses first, get them over with and only do the remaining bulk transfer using our async DMA helpers */ unaligned = io->len & 0x1ff; if (unaligned) { int sector_num = (s->lba << 2) + (s->io_buffer_index >> 9); int nsector = io->len >> 9; MACIO_DPRINTF("precopying unaligned %d bytes to %#" HWADDR_PRIx "\n", unaligned, io->addr + io->len - unaligned); bdrv_read(s->bs, sector_num + nsector, io->remainder, 1); cpu_physical_memory_write(io->addr + io->len - unaligned, io->remainder, unaligned); io->len -= unaligned; } MACIO_DPRINTF("io->len = %#x\n", io->len); qemu_sglist_init(&s->sg, DEVICE(m), io->len / MACIO_PAGE_SIZE + 1, &address_space_memory); qemu_sglist_add(&s->sg, io->addr, io->len); io->addr += s->io_buffer_size; io->remainder_len = MIN(s->packet_transfer_size - s->io_buffer_size, (0x200 - unaligned) & 0x1ff); MACIO_DPRINTF("set remainder to: %d\n", io->remainder_len); /* We would read no data from the block layer, thus not get a callback. Just fake completion manually. */ if (!io->len) { pmac_ide_atapi_transfer_cb(opaque, 0); return; } io->len = 0; MACIO_DPRINTF("sector_num=%d size=%d, cmd_cmd=%d\n", (s->lba << 2) + (s->io_buffer_index >> 9), s->packet_transfer_size, s->dma_cmd); m->aiocb = dma_bdrv_read(s->bs, &s->sg, (int64_t)(s->lba << 2) + (s->io_buffer_index >> 9), pmac_ide_atapi_transfer_cb, io); return; done: MACIO_DPRINTF("done DMA\n"); block_acct_done(bdrv_get_stats(s->bs), &s->acct); io->dma_end(opaque); }
10,329
qemu
64d7e9a421fea0ac50b44541f5521de455e7cd5d
0
static void pit_reset(void *opaque) { PITState *pit = opaque; PITChannelState *s; int i; for(i = 0;i < 3; i++) { s = &pit->channels[i]; s->mode = 3; s->gate = (i != 2); pit_load_count(s, 0); } }
10,330