repo
stringlengths 7
55
| path
stringlengths 4
127
| func_name
stringlengths 1
88
| original_string
stringlengths 75
19.8k
| language
stringclasses 1
value | code
stringlengths 75
19.8k
| code_tokens
sequence | docstring
stringlengths 3
17.3k
| docstring_tokens
sequence | sha
stringlengths 40
40
| url
stringlengths 87
242
| partition
stringclasses 1
value |
---|---|---|---|---|---|---|---|---|---|---|---|
wmayner/pyphi | pyphi/tpm.py | marginalize_out | def marginalize_out(node_indices, tpm):
"""Marginalize out nodes from a TPM.
Args:
node_indices (list[int]): The indices of nodes to be marginalized out.
tpm (np.ndarray): The TPM to marginalize the node out of.
Returns:
np.ndarray: A TPM with the same number of dimensions, with the nodes
marginalized out.
"""
return tpm.sum(tuple(node_indices), keepdims=True) / (
np.array(tpm.shape)[list(node_indices)].prod()) | python | def marginalize_out(node_indices, tpm):
"""Marginalize out nodes from a TPM.
Args:
node_indices (list[int]): The indices of nodes to be marginalized out.
tpm (np.ndarray): The TPM to marginalize the node out of.
Returns:
np.ndarray: A TPM with the same number of dimensions, with the nodes
marginalized out.
"""
return tpm.sum(tuple(node_indices), keepdims=True) / (
np.array(tpm.shape)[list(node_indices)].prod()) | [
"def",
"marginalize_out",
"(",
"node_indices",
",",
"tpm",
")",
":",
"return",
"tpm",
".",
"sum",
"(",
"tuple",
"(",
"node_indices",
")",
",",
"keepdims",
"=",
"True",
")",
"/",
"(",
"np",
".",
"array",
"(",
"tpm",
".",
"shape",
")",
"[",
"list",
"(",
"node_indices",
")",
"]",
".",
"prod",
"(",
")",
")"
] | Marginalize out nodes from a TPM.
Args:
node_indices (list[int]): The indices of nodes to be marginalized out.
tpm (np.ndarray): The TPM to marginalize the node out of.
Returns:
np.ndarray: A TPM with the same number of dimensions, with the nodes
marginalized out. | [
"Marginalize",
"out",
"nodes",
"from",
"a",
"TPM",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/tpm.py#L57-L69 | train |
wmayner/pyphi | pyphi/tpm.py | infer_edge | def infer_edge(tpm, a, b, contexts):
"""Infer the presence or absence of an edge from node A to node B.
Let |S| be the set of all nodes in a network. Let |A' = S - {A}|. We call
the state of |A'| the context |C| of |A|. There is an edge from |A| to |B|
if there exists any context |C(A)| such that |Pr(B | C(A), A=0) != Pr(B |
C(A), A=1)|.
Args:
tpm (np.ndarray): The TPM in state-by-node, multidimensional form.
a (int): The index of the putative source node.
b (int): The index of the putative sink node.
Returns:
bool: ``True`` if the edge |A -> B| exists, ``False`` otherwise.
"""
def a_in_context(context):
"""Given a context C(A), return the states of the full system with A
OFF and ON, respectively.
"""
a_off = context[:a] + OFF + context[a:]
a_on = context[:a] + ON + context[a:]
return (a_off, a_on)
def a_affects_b_in_context(context):
"""Return ``True`` if A has an effect on B, given a context."""
a_off, a_on = a_in_context(context)
return tpm[a_off][b] != tpm[a_on][b]
return any(a_affects_b_in_context(context) for context in contexts) | python | def infer_edge(tpm, a, b, contexts):
"""Infer the presence or absence of an edge from node A to node B.
Let |S| be the set of all nodes in a network. Let |A' = S - {A}|. We call
the state of |A'| the context |C| of |A|. There is an edge from |A| to |B|
if there exists any context |C(A)| such that |Pr(B | C(A), A=0) != Pr(B |
C(A), A=1)|.
Args:
tpm (np.ndarray): The TPM in state-by-node, multidimensional form.
a (int): The index of the putative source node.
b (int): The index of the putative sink node.
Returns:
bool: ``True`` if the edge |A -> B| exists, ``False`` otherwise.
"""
def a_in_context(context):
"""Given a context C(A), return the states of the full system with A
OFF and ON, respectively.
"""
a_off = context[:a] + OFF + context[a:]
a_on = context[:a] + ON + context[a:]
return (a_off, a_on)
def a_affects_b_in_context(context):
"""Return ``True`` if A has an effect on B, given a context."""
a_off, a_on = a_in_context(context)
return tpm[a_off][b] != tpm[a_on][b]
return any(a_affects_b_in_context(context) for context in contexts) | [
"def",
"infer_edge",
"(",
"tpm",
",",
"a",
",",
"b",
",",
"contexts",
")",
":",
"def",
"a_in_context",
"(",
"context",
")",
":",
"\"\"\"Given a context C(A), return the states of the full system with A\n OFF and ON, respectively.\n \"\"\"",
"a_off",
"=",
"context",
"[",
":",
"a",
"]",
"+",
"OFF",
"+",
"context",
"[",
"a",
":",
"]",
"a_on",
"=",
"context",
"[",
":",
"a",
"]",
"+",
"ON",
"+",
"context",
"[",
"a",
":",
"]",
"return",
"(",
"a_off",
",",
"a_on",
")",
"def",
"a_affects_b_in_context",
"(",
"context",
")",
":",
"\"\"\"Return ``True`` if A has an effect on B, given a context.\"\"\"",
"a_off",
",",
"a_on",
"=",
"a_in_context",
"(",
"context",
")",
"return",
"tpm",
"[",
"a_off",
"]",
"[",
"b",
"]",
"!=",
"tpm",
"[",
"a_on",
"]",
"[",
"b",
"]",
"return",
"any",
"(",
"a_affects_b_in_context",
"(",
"context",
")",
"for",
"context",
"in",
"contexts",
")"
] | Infer the presence or absence of an edge from node A to node B.
Let |S| be the set of all nodes in a network. Let |A' = S - {A}|. We call
the state of |A'| the context |C| of |A|. There is an edge from |A| to |B|
if there exists any context |C(A)| such that |Pr(B | C(A), A=0) != Pr(B |
C(A), A=1)|.
Args:
tpm (np.ndarray): The TPM in state-by-node, multidimensional form.
a (int): The index of the putative source node.
b (int): The index of the putative sink node.
Returns:
bool: ``True`` if the edge |A -> B| exists, ``False`` otherwise. | [
"Infer",
"the",
"presence",
"or",
"absence",
"of",
"an",
"edge",
"from",
"node",
"A",
"to",
"node",
"B",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/tpm.py#L72-L101 | train |
wmayner/pyphi | pyphi/tpm.py | infer_cm | def infer_cm(tpm):
"""Infer the connectivity matrix associated with a state-by-node TPM in
multidimensional form.
"""
network_size = tpm.shape[-1]
all_contexts = tuple(all_states(network_size - 1))
cm = np.empty((network_size, network_size), dtype=int)
for a, b in np.ndindex(cm.shape):
cm[a][b] = infer_edge(tpm, a, b, all_contexts)
return cm | python | def infer_cm(tpm):
"""Infer the connectivity matrix associated with a state-by-node TPM in
multidimensional form.
"""
network_size = tpm.shape[-1]
all_contexts = tuple(all_states(network_size - 1))
cm = np.empty((network_size, network_size), dtype=int)
for a, b in np.ndindex(cm.shape):
cm[a][b] = infer_edge(tpm, a, b, all_contexts)
return cm | [
"def",
"infer_cm",
"(",
"tpm",
")",
":",
"network_size",
"=",
"tpm",
".",
"shape",
"[",
"-",
"1",
"]",
"all_contexts",
"=",
"tuple",
"(",
"all_states",
"(",
"network_size",
"-",
"1",
")",
")",
"cm",
"=",
"np",
".",
"empty",
"(",
"(",
"network_size",
",",
"network_size",
")",
",",
"dtype",
"=",
"int",
")",
"for",
"a",
",",
"b",
"in",
"np",
".",
"ndindex",
"(",
"cm",
".",
"shape",
")",
":",
"cm",
"[",
"a",
"]",
"[",
"b",
"]",
"=",
"infer_edge",
"(",
"tpm",
",",
"a",
",",
"b",
",",
"all_contexts",
")",
"return",
"cm"
] | Infer the connectivity matrix associated with a state-by-node TPM in
multidimensional form. | [
"Infer",
"the",
"connectivity",
"matrix",
"associated",
"with",
"a",
"state",
"-",
"by",
"-",
"node",
"TPM",
"in",
"multidimensional",
"form",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/tpm.py#L104-L113 | train |
wmayner/pyphi | pyphi/compute/parallel.py | get_num_processes | def get_num_processes():
"""Return the number of processes to use in parallel."""
cpu_count = multiprocessing.cpu_count()
if config.NUMBER_OF_CORES == 0:
raise ValueError(
'Invalid NUMBER_OF_CORES; value may not be 0.')
if config.NUMBER_OF_CORES > cpu_count:
log.info('Requesting %s cores; only %s available',
config.NUMBER_OF_CORES, cpu_count)
return cpu_count
if config.NUMBER_OF_CORES < 0:
num = cpu_count + config.NUMBER_OF_CORES + 1
if num <= 0:
raise ValueError(
'Invalid NUMBER_OF_CORES; negative value is too negative: '
'requesting {} cores, {} available.'.format(num, cpu_count))
return num
return config.NUMBER_OF_CORES | python | def get_num_processes():
"""Return the number of processes to use in parallel."""
cpu_count = multiprocessing.cpu_count()
if config.NUMBER_OF_CORES == 0:
raise ValueError(
'Invalid NUMBER_OF_CORES; value may not be 0.')
if config.NUMBER_OF_CORES > cpu_count:
log.info('Requesting %s cores; only %s available',
config.NUMBER_OF_CORES, cpu_count)
return cpu_count
if config.NUMBER_OF_CORES < 0:
num = cpu_count + config.NUMBER_OF_CORES + 1
if num <= 0:
raise ValueError(
'Invalid NUMBER_OF_CORES; negative value is too negative: '
'requesting {} cores, {} available.'.format(num, cpu_count))
return num
return config.NUMBER_OF_CORES | [
"def",
"get_num_processes",
"(",
")",
":",
"cpu_count",
"=",
"multiprocessing",
".",
"cpu_count",
"(",
")",
"if",
"config",
".",
"NUMBER_OF_CORES",
"==",
"0",
":",
"raise",
"ValueError",
"(",
"'Invalid NUMBER_OF_CORES; value may not be 0.'",
")",
"if",
"config",
".",
"NUMBER_OF_CORES",
">",
"cpu_count",
":",
"log",
".",
"info",
"(",
"'Requesting %s cores; only %s available'",
",",
"config",
".",
"NUMBER_OF_CORES",
",",
"cpu_count",
")",
"return",
"cpu_count",
"if",
"config",
".",
"NUMBER_OF_CORES",
"<",
"0",
":",
"num",
"=",
"cpu_count",
"+",
"config",
".",
"NUMBER_OF_CORES",
"+",
"1",
"if",
"num",
"<=",
"0",
":",
"raise",
"ValueError",
"(",
"'Invalid NUMBER_OF_CORES; negative value is too negative: '",
"'requesting {} cores, {} available.'",
".",
"format",
"(",
"num",
",",
"cpu_count",
")",
")",
"return",
"num",
"return",
"config",
".",
"NUMBER_OF_CORES"
] | Return the number of processes to use in parallel. | [
"Return",
"the",
"number",
"of",
"processes",
"to",
"use",
"in",
"parallel",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/compute/parallel.py#L24-L46 | train |
wmayner/pyphi | pyphi/compute/parallel.py | MapReduce.init_progress_bar | def init_progress_bar(self):
"""Initialize and return a progress bar."""
# Forked worker processes can't show progress bars.
disable = MapReduce._forked or not config.PROGRESS_BARS
# Don't materialize iterable unless we have to: huge iterables
# (e.g. of `KCuts`) eat memory.
if disable:
total = None
else:
self.iterable = list(self.iterable)
total = len(self.iterable)
return tqdm(total=total, disable=disable, leave=False,
desc=self.description) | python | def init_progress_bar(self):
"""Initialize and return a progress bar."""
# Forked worker processes can't show progress bars.
disable = MapReduce._forked or not config.PROGRESS_BARS
# Don't materialize iterable unless we have to: huge iterables
# (e.g. of `KCuts`) eat memory.
if disable:
total = None
else:
self.iterable = list(self.iterable)
total = len(self.iterable)
return tqdm(total=total, disable=disable, leave=False,
desc=self.description) | [
"def",
"init_progress_bar",
"(",
"self",
")",
":",
"# Forked worker processes can't show progress bars.",
"disable",
"=",
"MapReduce",
".",
"_forked",
"or",
"not",
"config",
".",
"PROGRESS_BARS",
"# Don't materialize iterable unless we have to: huge iterables",
"# (e.g. of `KCuts`) eat memory.",
"if",
"disable",
":",
"total",
"=",
"None",
"else",
":",
"self",
".",
"iterable",
"=",
"list",
"(",
"self",
".",
"iterable",
")",
"total",
"=",
"len",
"(",
"self",
".",
"iterable",
")",
"return",
"tqdm",
"(",
"total",
"=",
"total",
",",
"disable",
"=",
"disable",
",",
"leave",
"=",
"False",
",",
"desc",
"=",
"self",
".",
"description",
")"
] | Initialize and return a progress bar. | [
"Initialize",
"and",
"return",
"a",
"progress",
"bar",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/compute/parallel.py#L144-L158 | train |
wmayner/pyphi | pyphi/compute/parallel.py | MapReduce.worker | def worker(compute, task_queue, result_queue, log_queue, complete,
*context):
"""A worker process, run by ``multiprocessing.Process``."""
try:
MapReduce._forked = True
log.debug('Worker process starting...')
configure_worker_logging(log_queue)
for obj in iter(task_queue.get, POISON_PILL):
if complete.is_set():
log.debug('Worker received signal - exiting early')
break
log.debug('Worker got %s', obj)
result_queue.put(compute(obj, *context))
log.debug('Worker finished %s', obj)
result_queue.put(POISON_PILL)
log.debug('Worker process exiting')
except Exception as e: # pylint: disable=broad-except
result_queue.put(ExceptionWrapper(e)) | python | def worker(compute, task_queue, result_queue, log_queue, complete,
*context):
"""A worker process, run by ``multiprocessing.Process``."""
try:
MapReduce._forked = True
log.debug('Worker process starting...')
configure_worker_logging(log_queue)
for obj in iter(task_queue.get, POISON_PILL):
if complete.is_set():
log.debug('Worker received signal - exiting early')
break
log.debug('Worker got %s', obj)
result_queue.put(compute(obj, *context))
log.debug('Worker finished %s', obj)
result_queue.put(POISON_PILL)
log.debug('Worker process exiting')
except Exception as e: # pylint: disable=broad-except
result_queue.put(ExceptionWrapper(e)) | [
"def",
"worker",
"(",
"compute",
",",
"task_queue",
",",
"result_queue",
",",
"log_queue",
",",
"complete",
",",
"*",
"context",
")",
":",
"try",
":",
"MapReduce",
".",
"_forked",
"=",
"True",
"log",
".",
"debug",
"(",
"'Worker process starting...'",
")",
"configure_worker_logging",
"(",
"log_queue",
")",
"for",
"obj",
"in",
"iter",
"(",
"task_queue",
".",
"get",
",",
"POISON_PILL",
")",
":",
"if",
"complete",
".",
"is_set",
"(",
")",
":",
"log",
".",
"debug",
"(",
"'Worker received signal - exiting early'",
")",
"break",
"log",
".",
"debug",
"(",
"'Worker got %s'",
",",
"obj",
")",
"result_queue",
".",
"put",
"(",
"compute",
"(",
"obj",
",",
"*",
"context",
")",
")",
"log",
".",
"debug",
"(",
"'Worker finished %s'",
",",
"obj",
")",
"result_queue",
".",
"put",
"(",
"POISON_PILL",
")",
"log",
".",
"debug",
"(",
"'Worker process exiting'",
")",
"except",
"Exception",
"as",
"e",
":",
"# pylint: disable=broad-except",
"result_queue",
".",
"put",
"(",
"ExceptionWrapper",
"(",
"e",
")",
")"
] | A worker process, run by ``multiprocessing.Process``. | [
"A",
"worker",
"process",
"run",
"by",
"multiprocessing",
".",
"Process",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/compute/parallel.py#L161-L183 | train |
wmayner/pyphi | pyphi/compute/parallel.py | MapReduce.start_parallel | def start_parallel(self):
"""Initialize all queues and start the worker processes and the log
thread.
"""
self.num_processes = get_num_processes()
self.task_queue = multiprocessing.Queue(maxsize=Q_MAX_SIZE)
self.result_queue = multiprocessing.Queue()
self.log_queue = multiprocessing.Queue()
# Used to signal worker processes when a result is found that allows
# the computation to terminate early.
self.complete = multiprocessing.Event()
args = (self.compute, self.task_queue, self.result_queue,
self.log_queue, self.complete) + self.context
self.processes = [
multiprocessing.Process(target=self.worker, args=args, daemon=True)
for i in range(self.num_processes)]
for process in self.processes:
process.start()
self.log_thread = LogThread(self.log_queue)
self.log_thread.start()
self.initialize_tasks() | python | def start_parallel(self):
"""Initialize all queues and start the worker processes and the log
thread.
"""
self.num_processes = get_num_processes()
self.task_queue = multiprocessing.Queue(maxsize=Q_MAX_SIZE)
self.result_queue = multiprocessing.Queue()
self.log_queue = multiprocessing.Queue()
# Used to signal worker processes when a result is found that allows
# the computation to terminate early.
self.complete = multiprocessing.Event()
args = (self.compute, self.task_queue, self.result_queue,
self.log_queue, self.complete) + self.context
self.processes = [
multiprocessing.Process(target=self.worker, args=args, daemon=True)
for i in range(self.num_processes)]
for process in self.processes:
process.start()
self.log_thread = LogThread(self.log_queue)
self.log_thread.start()
self.initialize_tasks() | [
"def",
"start_parallel",
"(",
"self",
")",
":",
"self",
".",
"num_processes",
"=",
"get_num_processes",
"(",
")",
"self",
".",
"task_queue",
"=",
"multiprocessing",
".",
"Queue",
"(",
"maxsize",
"=",
"Q_MAX_SIZE",
")",
"self",
".",
"result_queue",
"=",
"multiprocessing",
".",
"Queue",
"(",
")",
"self",
".",
"log_queue",
"=",
"multiprocessing",
".",
"Queue",
"(",
")",
"# Used to signal worker processes when a result is found that allows",
"# the computation to terminate early.",
"self",
".",
"complete",
"=",
"multiprocessing",
".",
"Event",
"(",
")",
"args",
"=",
"(",
"self",
".",
"compute",
",",
"self",
".",
"task_queue",
",",
"self",
".",
"result_queue",
",",
"self",
".",
"log_queue",
",",
"self",
".",
"complete",
")",
"+",
"self",
".",
"context",
"self",
".",
"processes",
"=",
"[",
"multiprocessing",
".",
"Process",
"(",
"target",
"=",
"self",
".",
"worker",
",",
"args",
"=",
"args",
",",
"daemon",
"=",
"True",
")",
"for",
"i",
"in",
"range",
"(",
"self",
".",
"num_processes",
")",
"]",
"for",
"process",
"in",
"self",
".",
"processes",
":",
"process",
".",
"start",
"(",
")",
"self",
".",
"log_thread",
"=",
"LogThread",
"(",
"self",
".",
"log_queue",
")",
"self",
".",
"log_thread",
".",
"start",
"(",
")",
"self",
".",
"initialize_tasks",
"(",
")"
] | Initialize all queues and start the worker processes and the log
thread. | [
"Initialize",
"all",
"queues",
"and",
"start",
"the",
"worker",
"processes",
"and",
"the",
"log",
"thread",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/compute/parallel.py#L185-L211 | train |
wmayner/pyphi | pyphi/compute/parallel.py | MapReduce.initialize_tasks | def initialize_tasks(self):
"""Load the input queue to capacity.
Overfilling causes a deadlock when `queue.put` blocks when
full, so further tasks are enqueued as results are returned.
"""
# Add a poison pill to shutdown each process.
self.tasks = chain(self.iterable, [POISON_PILL] * self.num_processes)
for task in islice(self.tasks, Q_MAX_SIZE):
log.debug('Putting %s on queue', task)
self.task_queue.put(task) | python | def initialize_tasks(self):
"""Load the input queue to capacity.
Overfilling causes a deadlock when `queue.put` blocks when
full, so further tasks are enqueued as results are returned.
"""
# Add a poison pill to shutdown each process.
self.tasks = chain(self.iterable, [POISON_PILL] * self.num_processes)
for task in islice(self.tasks, Q_MAX_SIZE):
log.debug('Putting %s on queue', task)
self.task_queue.put(task) | [
"def",
"initialize_tasks",
"(",
"self",
")",
":",
"# Add a poison pill to shutdown each process.",
"self",
".",
"tasks",
"=",
"chain",
"(",
"self",
".",
"iterable",
",",
"[",
"POISON_PILL",
"]",
"*",
"self",
".",
"num_processes",
")",
"for",
"task",
"in",
"islice",
"(",
"self",
".",
"tasks",
",",
"Q_MAX_SIZE",
")",
":",
"log",
".",
"debug",
"(",
"'Putting %s on queue'",
",",
"task",
")",
"self",
".",
"task_queue",
".",
"put",
"(",
"task",
")"
] | Load the input queue to capacity.
Overfilling causes a deadlock when `queue.put` blocks when
full, so further tasks are enqueued as results are returned. | [
"Load",
"the",
"input",
"queue",
"to",
"capacity",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/compute/parallel.py#L213-L223 | train |
wmayner/pyphi | pyphi/compute/parallel.py | MapReduce.maybe_put_task | def maybe_put_task(self):
"""Enqueue the next task, if there are any waiting."""
try:
task = next(self.tasks)
except StopIteration:
pass
else:
log.debug('Putting %s on queue', task)
self.task_queue.put(task) | python | def maybe_put_task(self):
"""Enqueue the next task, if there are any waiting."""
try:
task = next(self.tasks)
except StopIteration:
pass
else:
log.debug('Putting %s on queue', task)
self.task_queue.put(task) | [
"def",
"maybe_put_task",
"(",
"self",
")",
":",
"try",
":",
"task",
"=",
"next",
"(",
"self",
".",
"tasks",
")",
"except",
"StopIteration",
":",
"pass",
"else",
":",
"log",
".",
"debug",
"(",
"'Putting %s on queue'",
",",
"task",
")",
"self",
".",
"task_queue",
".",
"put",
"(",
"task",
")"
] | Enqueue the next task, if there are any waiting. | [
"Enqueue",
"the",
"next",
"task",
"if",
"there",
"are",
"any",
"waiting",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/compute/parallel.py#L225-L233 | train |
wmayner/pyphi | pyphi/compute/parallel.py | MapReduce.run_parallel | def run_parallel(self):
"""Perform the computation in parallel, reading results from the output
queue and passing them to ``process_result``.
"""
try:
self.start_parallel()
result = self.empty_result(*self.context)
while self.num_processes > 0:
r = self.result_queue.get()
self.maybe_put_task()
if r is POISON_PILL:
self.num_processes -= 1
elif isinstance(r, ExceptionWrapper):
r.reraise()
else:
result = self.process_result(r, result)
self.progress.update(1)
# Did `process_result` decide to terminate early?
if self.done:
self.complete.set()
self.finish_parallel()
except Exception:
raise
finally:
log.debug('Removing progress bar')
self.progress.close()
return result | python | def run_parallel(self):
"""Perform the computation in parallel, reading results from the output
queue and passing them to ``process_result``.
"""
try:
self.start_parallel()
result = self.empty_result(*self.context)
while self.num_processes > 0:
r = self.result_queue.get()
self.maybe_put_task()
if r is POISON_PILL:
self.num_processes -= 1
elif isinstance(r, ExceptionWrapper):
r.reraise()
else:
result = self.process_result(r, result)
self.progress.update(1)
# Did `process_result` decide to terminate early?
if self.done:
self.complete.set()
self.finish_parallel()
except Exception:
raise
finally:
log.debug('Removing progress bar')
self.progress.close()
return result | [
"def",
"run_parallel",
"(",
"self",
")",
":",
"try",
":",
"self",
".",
"start_parallel",
"(",
")",
"result",
"=",
"self",
".",
"empty_result",
"(",
"*",
"self",
".",
"context",
")",
"while",
"self",
".",
"num_processes",
">",
"0",
":",
"r",
"=",
"self",
".",
"result_queue",
".",
"get",
"(",
")",
"self",
".",
"maybe_put_task",
"(",
")",
"if",
"r",
"is",
"POISON_PILL",
":",
"self",
".",
"num_processes",
"-=",
"1",
"elif",
"isinstance",
"(",
"r",
",",
"ExceptionWrapper",
")",
":",
"r",
".",
"reraise",
"(",
")",
"else",
":",
"result",
"=",
"self",
".",
"process_result",
"(",
"r",
",",
"result",
")",
"self",
".",
"progress",
".",
"update",
"(",
"1",
")",
"# Did `process_result` decide to terminate early?",
"if",
"self",
".",
"done",
":",
"self",
".",
"complete",
".",
"set",
"(",
")",
"self",
".",
"finish_parallel",
"(",
")",
"except",
"Exception",
":",
"raise",
"finally",
":",
"log",
".",
"debug",
"(",
"'Removing progress bar'",
")",
"self",
".",
"progress",
".",
"close",
"(",
")",
"return",
"result"
] | Perform the computation in parallel, reading results from the output
queue and passing them to ``process_result``. | [
"Perform",
"the",
"computation",
"in",
"parallel",
"reading",
"results",
"from",
"the",
"output",
"queue",
"and",
"passing",
"them",
"to",
"process_result",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/compute/parallel.py#L235-L269 | train |
wmayner/pyphi | pyphi/compute/parallel.py | MapReduce.finish_parallel | def finish_parallel(self):
"""Orderly shutdown of workers."""
for process in self.processes:
process.join()
# Shutdown the log thread
log.debug('Joining log thread')
self.log_queue.put(POISON_PILL)
self.log_thread.join()
self.log_queue.close()
# Close all queues
log.debug('Closing queues')
self.task_queue.close()
self.result_queue.close() | python | def finish_parallel(self):
"""Orderly shutdown of workers."""
for process in self.processes:
process.join()
# Shutdown the log thread
log.debug('Joining log thread')
self.log_queue.put(POISON_PILL)
self.log_thread.join()
self.log_queue.close()
# Close all queues
log.debug('Closing queues')
self.task_queue.close()
self.result_queue.close() | [
"def",
"finish_parallel",
"(",
"self",
")",
":",
"for",
"process",
"in",
"self",
".",
"processes",
":",
"process",
".",
"join",
"(",
")",
"# Shutdown the log thread",
"log",
".",
"debug",
"(",
"'Joining log thread'",
")",
"self",
".",
"log_queue",
".",
"put",
"(",
"POISON_PILL",
")",
"self",
".",
"log_thread",
".",
"join",
"(",
")",
"self",
".",
"log_queue",
".",
"close",
"(",
")",
"# Close all queues",
"log",
".",
"debug",
"(",
"'Closing queues'",
")",
"self",
".",
"task_queue",
".",
"close",
"(",
")",
"self",
".",
"result_queue",
".",
"close",
"(",
")"
] | Orderly shutdown of workers. | [
"Orderly",
"shutdown",
"of",
"workers",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/compute/parallel.py#L271-L285 | train |
wmayner/pyphi | pyphi/compute/parallel.py | MapReduce.run_sequential | def run_sequential(self):
"""Perform the computation sequentially, only holding two computed
objects in memory at a time.
"""
try:
result = self.empty_result(*self.context)
for obj in self.iterable:
r = self.compute(obj, *self.context)
result = self.process_result(r, result)
self.progress.update(1)
# Short-circuited?
if self.done:
break
except Exception as e:
raise e
finally:
self.progress.close()
return result | python | def run_sequential(self):
"""Perform the computation sequentially, only holding two computed
objects in memory at a time.
"""
try:
result = self.empty_result(*self.context)
for obj in self.iterable:
r = self.compute(obj, *self.context)
result = self.process_result(r, result)
self.progress.update(1)
# Short-circuited?
if self.done:
break
except Exception as e:
raise e
finally:
self.progress.close()
return result | [
"def",
"run_sequential",
"(",
"self",
")",
":",
"try",
":",
"result",
"=",
"self",
".",
"empty_result",
"(",
"*",
"self",
".",
"context",
")",
"for",
"obj",
"in",
"self",
".",
"iterable",
":",
"r",
"=",
"self",
".",
"compute",
"(",
"obj",
",",
"*",
"self",
".",
"context",
")",
"result",
"=",
"self",
".",
"process_result",
"(",
"r",
",",
"result",
")",
"self",
".",
"progress",
".",
"update",
"(",
"1",
")",
"# Short-circuited?",
"if",
"self",
".",
"done",
":",
"break",
"except",
"Exception",
"as",
"e",
":",
"raise",
"e",
"finally",
":",
"self",
".",
"progress",
".",
"close",
"(",
")",
"return",
"result"
] | Perform the computation sequentially, only holding two computed
objects in memory at a time. | [
"Perform",
"the",
"computation",
"sequentially",
"only",
"holding",
"two",
"computed",
"objects",
"in",
"memory",
"at",
"a",
"time",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/compute/parallel.py#L287-L307 | train |
wmayner/pyphi | pyphi/conf.py | configure_logging | def configure_logging(conf):
"""Reconfigure PyPhi logging based on the current configuration."""
logging.config.dictConfig({
'version': 1,
'disable_existing_loggers': False,
'formatters': {
'standard': {
'format': '%(asctime)s [%(name)s] %(levelname)s '
'%(processName)s: %(message)s'
}
},
'handlers': {
'file': {
'level': conf.LOG_FILE_LEVEL,
'filename': conf.LOG_FILE,
'class': 'logging.FileHandler',
'formatter': 'standard',
},
'stdout': {
'level': conf.LOG_STDOUT_LEVEL,
'class': 'pyphi.log.TqdmHandler',
'formatter': 'standard',
}
},
'root': {
'level': 'DEBUG',
'handlers': (['file'] if conf.LOG_FILE_LEVEL else []) +
(['stdout'] if conf.LOG_STDOUT_LEVEL else [])
}
}) | python | def configure_logging(conf):
"""Reconfigure PyPhi logging based on the current configuration."""
logging.config.dictConfig({
'version': 1,
'disable_existing_loggers': False,
'formatters': {
'standard': {
'format': '%(asctime)s [%(name)s] %(levelname)s '
'%(processName)s: %(message)s'
}
},
'handlers': {
'file': {
'level': conf.LOG_FILE_LEVEL,
'filename': conf.LOG_FILE,
'class': 'logging.FileHandler',
'formatter': 'standard',
},
'stdout': {
'level': conf.LOG_STDOUT_LEVEL,
'class': 'pyphi.log.TqdmHandler',
'formatter': 'standard',
}
},
'root': {
'level': 'DEBUG',
'handlers': (['file'] if conf.LOG_FILE_LEVEL else []) +
(['stdout'] if conf.LOG_STDOUT_LEVEL else [])
}
}) | [
"def",
"configure_logging",
"(",
"conf",
")",
":",
"logging",
".",
"config",
".",
"dictConfig",
"(",
"{",
"'version'",
":",
"1",
",",
"'disable_existing_loggers'",
":",
"False",
",",
"'formatters'",
":",
"{",
"'standard'",
":",
"{",
"'format'",
":",
"'%(asctime)s [%(name)s] %(levelname)s '",
"'%(processName)s: %(message)s'",
"}",
"}",
",",
"'handlers'",
":",
"{",
"'file'",
":",
"{",
"'level'",
":",
"conf",
".",
"LOG_FILE_LEVEL",
",",
"'filename'",
":",
"conf",
".",
"LOG_FILE",
",",
"'class'",
":",
"'logging.FileHandler'",
",",
"'formatter'",
":",
"'standard'",
",",
"}",
",",
"'stdout'",
":",
"{",
"'level'",
":",
"conf",
".",
"LOG_STDOUT_LEVEL",
",",
"'class'",
":",
"'pyphi.log.TqdmHandler'",
",",
"'formatter'",
":",
"'standard'",
",",
"}",
"}",
",",
"'root'",
":",
"{",
"'level'",
":",
"'DEBUG'",
",",
"'handlers'",
":",
"(",
"[",
"'file'",
"]",
"if",
"conf",
".",
"LOG_FILE_LEVEL",
"else",
"[",
"]",
")",
"+",
"(",
"[",
"'stdout'",
"]",
"if",
"conf",
".",
"LOG_STDOUT_LEVEL",
"else",
"[",
"]",
")",
"}",
"}",
")"
] | Reconfigure PyPhi logging based on the current configuration. | [
"Reconfigure",
"PyPhi",
"logging",
"based",
"on",
"the",
"current",
"configuration",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/conf.py#L328-L357 | train |
wmayner/pyphi | pyphi/conf.py | Option._validate | def _validate(self, value):
"""Validate the new value."""
if self.values and value not in self.values:
raise ValueError(
'{} is not a valid value for {}'.format(value, self.name)) | python | def _validate(self, value):
"""Validate the new value."""
if self.values and value not in self.values:
raise ValueError(
'{} is not a valid value for {}'.format(value, self.name)) | [
"def",
"_validate",
"(",
"self",
",",
"value",
")",
":",
"if",
"self",
".",
"values",
"and",
"value",
"not",
"in",
"self",
".",
"values",
":",
"raise",
"ValueError",
"(",
"'{} is not a valid value for {}'",
".",
"format",
"(",
"value",
",",
"self",
".",
"name",
")",
")"
] | Validate the new value. | [
"Validate",
"the",
"new",
"value",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/conf.py#L201-L205 | train |
wmayner/pyphi | pyphi/conf.py | Config.options | def options(cls):
"""Return a dictionary of the ``Option`` objects for this config."""
return {k: v for k, v in cls.__dict__.items() if isinstance(v, Option)} | python | def options(cls):
"""Return a dictionary of the ``Option`` objects for this config."""
return {k: v for k, v in cls.__dict__.items() if isinstance(v, Option)} | [
"def",
"options",
"(",
"cls",
")",
":",
"return",
"{",
"k",
":",
"v",
"for",
"k",
",",
"v",
"in",
"cls",
".",
"__dict__",
".",
"items",
"(",
")",
"if",
"isinstance",
"(",
"v",
",",
"Option",
")",
"}"
] | Return a dictionary of the ``Option`` objects for this config. | [
"Return",
"a",
"dictionary",
"of",
"the",
"Option",
"objects",
"for",
"this",
"config",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/conf.py#L262-L264 | train |
wmayner/pyphi | pyphi/conf.py | Config.defaults | def defaults(self):
"""Return the default values of this configuration."""
return {k: v.default for k, v in self.options().items()} | python | def defaults(self):
"""Return the default values of this configuration."""
return {k: v.default for k, v in self.options().items()} | [
"def",
"defaults",
"(",
"self",
")",
":",
"return",
"{",
"k",
":",
"v",
".",
"default",
"for",
"k",
",",
"v",
"in",
"self",
".",
"options",
"(",
")",
".",
"items",
"(",
")",
"}"
] | Return the default values of this configuration. | [
"Return",
"the",
"default",
"values",
"of",
"this",
"configuration",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/conf.py#L266-L268 | train |
wmayner/pyphi | pyphi/conf.py | Config.load_dict | def load_dict(self, dct):
"""Load a dictionary of configuration values."""
for k, v in dct.items():
setattr(self, k, v) | python | def load_dict(self, dct):
"""Load a dictionary of configuration values."""
for k, v in dct.items():
setattr(self, k, v) | [
"def",
"load_dict",
"(",
"self",
",",
"dct",
")",
":",
"for",
"k",
",",
"v",
"in",
"dct",
".",
"items",
"(",
")",
":",
"setattr",
"(",
"self",
",",
"k",
",",
"v",
")"
] | Load a dictionary of configuration values. | [
"Load",
"a",
"dictionary",
"of",
"configuration",
"values",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/conf.py#L270-L273 | train |
wmayner/pyphi | pyphi/conf.py | Config.load_file | def load_file(self, filename):
"""Load config from a YAML file."""
filename = os.path.abspath(filename)
with open(filename) as f:
self.load_dict(yaml.load(f))
self._loaded_files.append(filename) | python | def load_file(self, filename):
"""Load config from a YAML file."""
filename = os.path.abspath(filename)
with open(filename) as f:
self.load_dict(yaml.load(f))
self._loaded_files.append(filename) | [
"def",
"load_file",
"(",
"self",
",",
"filename",
")",
":",
"filename",
"=",
"os",
".",
"path",
".",
"abspath",
"(",
"filename",
")",
"with",
"open",
"(",
"filename",
")",
"as",
"f",
":",
"self",
".",
"load_dict",
"(",
"yaml",
".",
"load",
"(",
"f",
")",
")",
"self",
".",
"_loaded_files",
".",
"append",
"(",
"filename",
")"
] | Load config from a YAML file. | [
"Load",
"config",
"from",
"a",
"YAML",
"file",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/conf.py#L275-L282 | train |
wmayner/pyphi | pyphi/conf.py | PyphiConfig.log | def log(self):
"""Log current settings."""
log.info('PyPhi v%s', __about__.__version__)
if self._loaded_files:
log.info('Loaded configuration from %s', self._loaded_files)
else:
log.info('Using default configuration (no configuration file '
'provided)')
log.info('Current PyPhi configuration:\n %s', str(self)) | python | def log(self):
"""Log current settings."""
log.info('PyPhi v%s', __about__.__version__)
if self._loaded_files:
log.info('Loaded configuration from %s', self._loaded_files)
else:
log.info('Using default configuration (no configuration file '
'provided)')
log.info('Current PyPhi configuration:\n %s', str(self)) | [
"def",
"log",
"(",
"self",
")",
":",
"log",
".",
"info",
"(",
"'PyPhi v%s'",
",",
"__about__",
".",
"__version__",
")",
"if",
"self",
".",
"_loaded_files",
":",
"log",
".",
"info",
"(",
"'Loaded configuration from %s'",
",",
"self",
".",
"_loaded_files",
")",
"else",
":",
"log",
".",
"info",
"(",
"'Using default configuration (no configuration file '",
"'provided)'",
")",
"log",
".",
"info",
"(",
"'Current PyPhi configuration:\\n %s'",
",",
"str",
"(",
"self",
")",
")"
] | Log current settings. | [
"Log",
"current",
"settings",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/conf.py#L636-L644 | train |
wmayner/pyphi | pyphi/convert.py | be2le_state_by_state | def be2le_state_by_state(tpm):
"""Convert a state-by-state TPM from big-endian to little-endian or vice
versa.
Args:
tpm (np.ndarray): A state-by-state TPM.
Returns:
np.ndarray: The state-by-state TPM in the other indexing format.
Example:
>>> tpm = np.arange(16).reshape([4, 4])
>>> be2le_state_by_state(tpm)
array([[ 0., 1., 2., 3.],
[ 8., 9., 10., 11.],
[ 4., 5., 6., 7.],
[12., 13., 14., 15.]])
"""
le = np.empty(tpm.shape)
N = tpm.shape[0]
n = int(log2(N))
for i in range(N):
le[i, :] = tpm[be2le(i, n), :]
return le | python | def be2le_state_by_state(tpm):
"""Convert a state-by-state TPM from big-endian to little-endian or vice
versa.
Args:
tpm (np.ndarray): A state-by-state TPM.
Returns:
np.ndarray: The state-by-state TPM in the other indexing format.
Example:
>>> tpm = np.arange(16).reshape([4, 4])
>>> be2le_state_by_state(tpm)
array([[ 0., 1., 2., 3.],
[ 8., 9., 10., 11.],
[ 4., 5., 6., 7.],
[12., 13., 14., 15.]])
"""
le = np.empty(tpm.shape)
N = tpm.shape[0]
n = int(log2(N))
for i in range(N):
le[i, :] = tpm[be2le(i, n), :]
return le | [
"def",
"be2le_state_by_state",
"(",
"tpm",
")",
":",
"le",
"=",
"np",
".",
"empty",
"(",
"tpm",
".",
"shape",
")",
"N",
"=",
"tpm",
".",
"shape",
"[",
"0",
"]",
"n",
"=",
"int",
"(",
"log2",
"(",
"N",
")",
")",
"for",
"i",
"in",
"range",
"(",
"N",
")",
":",
"le",
"[",
"i",
",",
":",
"]",
"=",
"tpm",
"[",
"be2le",
"(",
"i",
",",
"n",
")",
",",
":",
"]",
"return",
"le"
] | Convert a state-by-state TPM from big-endian to little-endian or vice
versa.
Args:
tpm (np.ndarray): A state-by-state TPM.
Returns:
np.ndarray: The state-by-state TPM in the other indexing format.
Example:
>>> tpm = np.arange(16).reshape([4, 4])
>>> be2le_state_by_state(tpm)
array([[ 0., 1., 2., 3.],
[ 8., 9., 10., 11.],
[ 4., 5., 6., 7.],
[12., 13., 14., 15.]]) | [
"Convert",
"a",
"state",
"-",
"by",
"-",
"state",
"TPM",
"from",
"big",
"-",
"endian",
"to",
"little",
"-",
"endian",
"or",
"vice",
"versa",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/convert.py#L147-L170 | train |
wmayner/pyphi | pyphi/convert.py | to_multidimensional | def to_multidimensional(tpm):
"""Reshape a state-by-node TPM to the multidimensional form.
See documentation for the |Network| object for more information on TPM
formats.
"""
# Cast to np.array.
tpm = np.array(tpm)
# Get the number of nodes.
N = tpm.shape[-1]
# Reshape. We use Fortran ordering here so that the rows use the
# little-endian convention (least-significant bits correspond to low-index
# nodes). Note that this does not change the actual memory layout (C- or
# Fortran-contiguous), so there is no performance loss.
return tpm.reshape([2] * N + [N], order="F").astype(float) | python | def to_multidimensional(tpm):
"""Reshape a state-by-node TPM to the multidimensional form.
See documentation for the |Network| object for more information on TPM
formats.
"""
# Cast to np.array.
tpm = np.array(tpm)
# Get the number of nodes.
N = tpm.shape[-1]
# Reshape. We use Fortran ordering here so that the rows use the
# little-endian convention (least-significant bits correspond to low-index
# nodes). Note that this does not change the actual memory layout (C- or
# Fortran-contiguous), so there is no performance loss.
return tpm.reshape([2] * N + [N], order="F").astype(float) | [
"def",
"to_multidimensional",
"(",
"tpm",
")",
":",
"# Cast to np.array.",
"tpm",
"=",
"np",
".",
"array",
"(",
"tpm",
")",
"# Get the number of nodes.",
"N",
"=",
"tpm",
".",
"shape",
"[",
"-",
"1",
"]",
"# Reshape. We use Fortran ordering here so that the rows use the",
"# little-endian convention (least-significant bits correspond to low-index",
"# nodes). Note that this does not change the actual memory layout (C- or",
"# Fortran-contiguous), so there is no performance loss.",
"return",
"tpm",
".",
"reshape",
"(",
"[",
"2",
"]",
"*",
"N",
"+",
"[",
"N",
"]",
",",
"order",
"=",
"\"F\"",
")",
".",
"astype",
"(",
"float",
")"
] | Reshape a state-by-node TPM to the multidimensional form.
See documentation for the |Network| object for more information on TPM
formats. | [
"Reshape",
"a",
"state",
"-",
"by",
"-",
"node",
"TPM",
"to",
"the",
"multidimensional",
"form",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/convert.py#L176-L190 | train |
wmayner/pyphi | pyphi/convert.py | state_by_state2state_by_node | def state_by_state2state_by_node(tpm):
"""Convert a state-by-state TPM to a state-by-node TPM.
.. danger::
Many nondeterministic state-by-state TPMs can be represented by a
single a state-by-state TPM. However, the mapping can be made to be
one-to-one if we assume the state-by-state TPM is conditionally
independent, as this function does. **If the given TPM is not
conditionally independent, the conditional dependencies will be
silently lost.**
.. note::
The indices of the rows and columns of the state-by-state TPM are
assumed to follow the little-endian convention. The indices of the rows
of the resulting state-by-node TPM also follow the little-endian
convention. See the documentation on PyPhi the :ref:`tpm-conventions`
more information.
Args:
tpm (list[list] or np.ndarray): A square state-by-state TPM with row
and column indices following the little-endian convention.
Returns:
np.ndarray: A state-by-node TPM, with row indices following the
little-endian convention.
Example:
>>> tpm = np.array([[0.5, 0.5, 0.0, 0.0],
... [0.0, 1.0, 0.0, 0.0],
... [0.0, 0.2, 0.0, 0.8],
... [0.0, 0.3, 0.7, 0.0]])
>>> state_by_state2state_by_node(tpm)
array([[[0.5, 0. ],
[1. , 0.8]],
<BLANKLINE>
[[1. , 0. ],
[0.3, 0.7]]])
"""
# Cast to np.array.
tpm = np.array(tpm)
# Get the number of states from the length of one side of the TPM.
S = tpm.shape[-1]
# Get the number of nodes from the number of states.
N = int(log2(S))
# Initialize the new state-by node TPM.
sbn_tpm = np.zeros(([2] * N + [N]))
# Map indices to state-tuples with the little-endian convention.
states = {i: le_index2state(i, N) for i in range(S)}
# Get an array for each node with 1 in positions that correspond to that
# node being on in the next state, and a 0 otherwise.
node_on = np.array([[states[i][n] for i in range(S)] for n in range(N)])
on_probabilities = [tpm * node_on[n] for n in range(N)]
for i, state in states.items():
# Get the probability of each node being on given the previous state i,
# i.e., a row of the state-by-node TPM.
# Assign that row to the ith state in the state-by-node TPM.
sbn_tpm[state] = [np.sum(on_probabilities[n][i]) for n in range(N)]
return sbn_tpm | python | def state_by_state2state_by_node(tpm):
"""Convert a state-by-state TPM to a state-by-node TPM.
.. danger::
Many nondeterministic state-by-state TPMs can be represented by a
single a state-by-state TPM. However, the mapping can be made to be
one-to-one if we assume the state-by-state TPM is conditionally
independent, as this function does. **If the given TPM is not
conditionally independent, the conditional dependencies will be
silently lost.**
.. note::
The indices of the rows and columns of the state-by-state TPM are
assumed to follow the little-endian convention. The indices of the rows
of the resulting state-by-node TPM also follow the little-endian
convention. See the documentation on PyPhi the :ref:`tpm-conventions`
more information.
Args:
tpm (list[list] or np.ndarray): A square state-by-state TPM with row
and column indices following the little-endian convention.
Returns:
np.ndarray: A state-by-node TPM, with row indices following the
little-endian convention.
Example:
>>> tpm = np.array([[0.5, 0.5, 0.0, 0.0],
... [0.0, 1.0, 0.0, 0.0],
... [0.0, 0.2, 0.0, 0.8],
... [0.0, 0.3, 0.7, 0.0]])
>>> state_by_state2state_by_node(tpm)
array([[[0.5, 0. ],
[1. , 0.8]],
<BLANKLINE>
[[1. , 0. ],
[0.3, 0.7]]])
"""
# Cast to np.array.
tpm = np.array(tpm)
# Get the number of states from the length of one side of the TPM.
S = tpm.shape[-1]
# Get the number of nodes from the number of states.
N = int(log2(S))
# Initialize the new state-by node TPM.
sbn_tpm = np.zeros(([2] * N + [N]))
# Map indices to state-tuples with the little-endian convention.
states = {i: le_index2state(i, N) for i in range(S)}
# Get an array for each node with 1 in positions that correspond to that
# node being on in the next state, and a 0 otherwise.
node_on = np.array([[states[i][n] for i in range(S)] for n in range(N)])
on_probabilities = [tpm * node_on[n] for n in range(N)]
for i, state in states.items():
# Get the probability of each node being on given the previous state i,
# i.e., a row of the state-by-node TPM.
# Assign that row to the ith state in the state-by-node TPM.
sbn_tpm[state] = [np.sum(on_probabilities[n][i]) for n in range(N)]
return sbn_tpm | [
"def",
"state_by_state2state_by_node",
"(",
"tpm",
")",
":",
"# Cast to np.array.",
"tpm",
"=",
"np",
".",
"array",
"(",
"tpm",
")",
"# Get the number of states from the length of one side of the TPM.",
"S",
"=",
"tpm",
".",
"shape",
"[",
"-",
"1",
"]",
"# Get the number of nodes from the number of states.",
"N",
"=",
"int",
"(",
"log2",
"(",
"S",
")",
")",
"# Initialize the new state-by node TPM.",
"sbn_tpm",
"=",
"np",
".",
"zeros",
"(",
"(",
"[",
"2",
"]",
"*",
"N",
"+",
"[",
"N",
"]",
")",
")",
"# Map indices to state-tuples with the little-endian convention.",
"states",
"=",
"{",
"i",
":",
"le_index2state",
"(",
"i",
",",
"N",
")",
"for",
"i",
"in",
"range",
"(",
"S",
")",
"}",
"# Get an array for each node with 1 in positions that correspond to that",
"# node being on in the next state, and a 0 otherwise.",
"node_on",
"=",
"np",
".",
"array",
"(",
"[",
"[",
"states",
"[",
"i",
"]",
"[",
"n",
"]",
"for",
"i",
"in",
"range",
"(",
"S",
")",
"]",
"for",
"n",
"in",
"range",
"(",
"N",
")",
"]",
")",
"on_probabilities",
"=",
"[",
"tpm",
"*",
"node_on",
"[",
"n",
"]",
"for",
"n",
"in",
"range",
"(",
"N",
")",
"]",
"for",
"i",
",",
"state",
"in",
"states",
".",
"items",
"(",
")",
":",
"# Get the probability of each node being on given the previous state i,",
"# i.e., a row of the state-by-node TPM.",
"# Assign that row to the ith state in the state-by-node TPM.",
"sbn_tpm",
"[",
"state",
"]",
"=",
"[",
"np",
".",
"sum",
"(",
"on_probabilities",
"[",
"n",
"]",
"[",
"i",
"]",
")",
"for",
"n",
"in",
"range",
"(",
"N",
")",
"]",
"return",
"sbn_tpm"
] | Convert a state-by-state TPM to a state-by-node TPM.
.. danger::
Many nondeterministic state-by-state TPMs can be represented by a
single a state-by-state TPM. However, the mapping can be made to be
one-to-one if we assume the state-by-state TPM is conditionally
independent, as this function does. **If the given TPM is not
conditionally independent, the conditional dependencies will be
silently lost.**
.. note::
The indices of the rows and columns of the state-by-state TPM are
assumed to follow the little-endian convention. The indices of the rows
of the resulting state-by-node TPM also follow the little-endian
convention. See the documentation on PyPhi the :ref:`tpm-conventions`
more information.
Args:
tpm (list[list] or np.ndarray): A square state-by-state TPM with row
and column indices following the little-endian convention.
Returns:
np.ndarray: A state-by-node TPM, with row indices following the
little-endian convention.
Example:
>>> tpm = np.array([[0.5, 0.5, 0.0, 0.0],
... [0.0, 1.0, 0.0, 0.0],
... [0.0, 0.2, 0.0, 0.8],
... [0.0, 0.3, 0.7, 0.0]])
>>> state_by_state2state_by_node(tpm)
array([[[0.5, 0. ],
[1. , 0.8]],
<BLANKLINE>
[[1. , 0. ],
[0.3, 0.7]]]) | [
"Convert",
"a",
"state",
"-",
"by",
"-",
"state",
"TPM",
"to",
"a",
"state",
"-",
"by",
"-",
"node",
"TPM",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/convert.py#L207-L264 | train |
wmayner/pyphi | pyphi/convert.py | state_by_node2state_by_state | def state_by_node2state_by_state(tpm):
"""Convert a state-by-node TPM to a state-by-state TPM.
.. important::
A nondeterministic state-by-node TPM can have more than one
representation as a state-by-state TPM. However, the mapping can be
made to be one-to-one if we assume the TPMs to be conditionally
independent. Therefore, **this function returns the corresponding
conditionally independent state-by-state TPM.**
.. note::
The indices of the rows of the state-by-node TPM are assumed to follow
the little-endian convention, while the indices of the columns follow
the big-endian convention. The indices of the rows and columns of the
resulting state-by-state TPM both follow the big-endian convention. See
the documentation on PyPhi :ref:`tpm-conventions` for more info.
Args:
tpm (list[list] or np.ndarray): A state-by-node TPM with row indices
following the little-endian convention and column indices following
the big-endian convention.
Returns:
np.ndarray: A state-by-state TPM, with both row and column indices
following the big-endian convention.
>>> tpm = np.array([[1, 1, 0],
... [0, 0, 1],
... [0, 1, 1],
... [1, 0, 0],
... [0, 0, 1],
... [1, 0, 0],
... [1, 1, 1],
... [1, 0, 1]])
>>> state_by_node2state_by_state(tpm)
array([[0., 0., 0., 1., 0., 0., 0., 0.],
[0., 0., 0., 0., 1., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 1., 0.],
[0., 1., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 1., 0., 0., 0.],
[0., 1., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 1.],
[0., 0., 0., 0., 0., 1., 0., 0.]])
"""
# Cast to np.array.
tpm = np.array(tpm)
# Convert to multidimensional form.
tpm = to_multidimensional(tpm)
# Get the number of nodes from the last dimension of the TPM.
N = tpm.shape[-1]
# Get the number of states.
S = 2**N
# Initialize the state-by-state TPM.
sbs_tpm = np.zeros((S, S))
if not np.any(np.logical_and(tpm < 1, tpm > 0)):
# TPM is deterministic.
for previous_state_index in range(S):
# Use the little-endian convention to get the row and column
# indices.
previous_state = le_index2state(previous_state_index, N)
current_state_index = state2le_index(tpm[previous_state])
sbs_tpm[previous_state_index, current_state_index] = 1
else:
# TPM is nondeterministic.
for previous_state_index in range(S):
# Use the little-endian convention to get the row and column
# indices.
previous_state = le_index2state(previous_state_index, N)
marginal_tpm = tpm[previous_state]
for current_state_index in range(S):
current_state = np.array(
[i for i in le_index2state(current_state_index, N)])
sbs_tpm[previous_state_index, current_state_index] = (
np.prod(marginal_tpm[current_state == 1]) *
np.prod(1 - marginal_tpm[current_state == 0]))
return sbs_tpm | python | def state_by_node2state_by_state(tpm):
"""Convert a state-by-node TPM to a state-by-state TPM.
.. important::
A nondeterministic state-by-node TPM can have more than one
representation as a state-by-state TPM. However, the mapping can be
made to be one-to-one if we assume the TPMs to be conditionally
independent. Therefore, **this function returns the corresponding
conditionally independent state-by-state TPM.**
.. note::
The indices of the rows of the state-by-node TPM are assumed to follow
the little-endian convention, while the indices of the columns follow
the big-endian convention. The indices of the rows and columns of the
resulting state-by-state TPM both follow the big-endian convention. See
the documentation on PyPhi :ref:`tpm-conventions` for more info.
Args:
tpm (list[list] or np.ndarray): A state-by-node TPM with row indices
following the little-endian convention and column indices following
the big-endian convention.
Returns:
np.ndarray: A state-by-state TPM, with both row and column indices
following the big-endian convention.
>>> tpm = np.array([[1, 1, 0],
... [0, 0, 1],
... [0, 1, 1],
... [1, 0, 0],
... [0, 0, 1],
... [1, 0, 0],
... [1, 1, 1],
... [1, 0, 1]])
>>> state_by_node2state_by_state(tpm)
array([[0., 0., 0., 1., 0., 0., 0., 0.],
[0., 0., 0., 0., 1., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 1., 0.],
[0., 1., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 1., 0., 0., 0.],
[0., 1., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 1.],
[0., 0., 0., 0., 0., 1., 0., 0.]])
"""
# Cast to np.array.
tpm = np.array(tpm)
# Convert to multidimensional form.
tpm = to_multidimensional(tpm)
# Get the number of nodes from the last dimension of the TPM.
N = tpm.shape[-1]
# Get the number of states.
S = 2**N
# Initialize the state-by-state TPM.
sbs_tpm = np.zeros((S, S))
if not np.any(np.logical_and(tpm < 1, tpm > 0)):
# TPM is deterministic.
for previous_state_index in range(S):
# Use the little-endian convention to get the row and column
# indices.
previous_state = le_index2state(previous_state_index, N)
current_state_index = state2le_index(tpm[previous_state])
sbs_tpm[previous_state_index, current_state_index] = 1
else:
# TPM is nondeterministic.
for previous_state_index in range(S):
# Use the little-endian convention to get the row and column
# indices.
previous_state = le_index2state(previous_state_index, N)
marginal_tpm = tpm[previous_state]
for current_state_index in range(S):
current_state = np.array(
[i for i in le_index2state(current_state_index, N)])
sbs_tpm[previous_state_index, current_state_index] = (
np.prod(marginal_tpm[current_state == 1]) *
np.prod(1 - marginal_tpm[current_state == 0]))
return sbs_tpm | [
"def",
"state_by_node2state_by_state",
"(",
"tpm",
")",
":",
"# Cast to np.array.",
"tpm",
"=",
"np",
".",
"array",
"(",
"tpm",
")",
"# Convert to multidimensional form.",
"tpm",
"=",
"to_multidimensional",
"(",
"tpm",
")",
"# Get the number of nodes from the last dimension of the TPM.",
"N",
"=",
"tpm",
".",
"shape",
"[",
"-",
"1",
"]",
"# Get the number of states.",
"S",
"=",
"2",
"**",
"N",
"# Initialize the state-by-state TPM.",
"sbs_tpm",
"=",
"np",
".",
"zeros",
"(",
"(",
"S",
",",
"S",
")",
")",
"if",
"not",
"np",
".",
"any",
"(",
"np",
".",
"logical_and",
"(",
"tpm",
"<",
"1",
",",
"tpm",
">",
"0",
")",
")",
":",
"# TPM is deterministic.",
"for",
"previous_state_index",
"in",
"range",
"(",
"S",
")",
":",
"# Use the little-endian convention to get the row and column",
"# indices.",
"previous_state",
"=",
"le_index2state",
"(",
"previous_state_index",
",",
"N",
")",
"current_state_index",
"=",
"state2le_index",
"(",
"tpm",
"[",
"previous_state",
"]",
")",
"sbs_tpm",
"[",
"previous_state_index",
",",
"current_state_index",
"]",
"=",
"1",
"else",
":",
"# TPM is nondeterministic.",
"for",
"previous_state_index",
"in",
"range",
"(",
"S",
")",
":",
"# Use the little-endian convention to get the row and column",
"# indices.",
"previous_state",
"=",
"le_index2state",
"(",
"previous_state_index",
",",
"N",
")",
"marginal_tpm",
"=",
"tpm",
"[",
"previous_state",
"]",
"for",
"current_state_index",
"in",
"range",
"(",
"S",
")",
":",
"current_state",
"=",
"np",
".",
"array",
"(",
"[",
"i",
"for",
"i",
"in",
"le_index2state",
"(",
"current_state_index",
",",
"N",
")",
"]",
")",
"sbs_tpm",
"[",
"previous_state_index",
",",
"current_state_index",
"]",
"=",
"(",
"np",
".",
"prod",
"(",
"marginal_tpm",
"[",
"current_state",
"==",
"1",
"]",
")",
"*",
"np",
".",
"prod",
"(",
"1",
"-",
"marginal_tpm",
"[",
"current_state",
"==",
"0",
"]",
")",
")",
"return",
"sbs_tpm"
] | Convert a state-by-node TPM to a state-by-state TPM.
.. important::
A nondeterministic state-by-node TPM can have more than one
representation as a state-by-state TPM. However, the mapping can be
made to be one-to-one if we assume the TPMs to be conditionally
independent. Therefore, **this function returns the corresponding
conditionally independent state-by-state TPM.**
.. note::
The indices of the rows of the state-by-node TPM are assumed to follow
the little-endian convention, while the indices of the columns follow
the big-endian convention. The indices of the rows and columns of the
resulting state-by-state TPM both follow the big-endian convention. See
the documentation on PyPhi :ref:`tpm-conventions` for more info.
Args:
tpm (list[list] or np.ndarray): A state-by-node TPM with row indices
following the little-endian convention and column indices following
the big-endian convention.
Returns:
np.ndarray: A state-by-state TPM, with both row and column indices
following the big-endian convention.
>>> tpm = np.array([[1, 1, 0],
... [0, 0, 1],
... [0, 1, 1],
... [1, 0, 0],
... [0, 0, 1],
... [1, 0, 0],
... [1, 1, 1],
... [1, 0, 1]])
>>> state_by_node2state_by_state(tpm)
array([[0., 0., 0., 1., 0., 0., 0., 0.],
[0., 0., 0., 0., 1., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 1., 0.],
[0., 1., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 1., 0., 0., 0.],
[0., 1., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 1.],
[0., 0., 0., 0., 0., 1., 0., 0.]]) | [
"Convert",
"a",
"state",
"-",
"by",
"-",
"node",
"TPM",
"to",
"a",
"state",
"-",
"by",
"-",
"state",
"TPM",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/convert.py#L270-L345 | train |
wmayner/pyphi | profiling/code_to_profile.py | load_json_network | def load_json_network(json_dict):
"""Load a network from a json file"""
network = pyphi.Network.from_json(json_dict['network'])
state = json_dict['state']
return (network, state) | python | def load_json_network(json_dict):
"""Load a network from a json file"""
network = pyphi.Network.from_json(json_dict['network'])
state = json_dict['state']
return (network, state) | [
"def",
"load_json_network",
"(",
"json_dict",
")",
":",
"network",
"=",
"pyphi",
".",
"Network",
".",
"from_json",
"(",
"json_dict",
"[",
"'network'",
"]",
")",
"state",
"=",
"json_dict",
"[",
"'state'",
"]",
"return",
"(",
"network",
",",
"state",
")"
] | Load a network from a json file | [
"Load",
"a",
"network",
"from",
"a",
"json",
"file"
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/profiling/code_to_profile.py#L35-L39 | train |
wmayner/pyphi | profiling/code_to_profile.py | all_network_files | def all_network_files():
"""All network files"""
# TODO: list explicitly since some are missing?
network_types = [
'AND-circle',
'MAJ-specialized',
'MAJ-complete',
'iit-3.0-modular'
]
network_sizes = range(5, 8)
network_files = []
for n in network_sizes:
for t in network_types:
network_files.append('{}-{}'.format(n, t))
return network_files | python | def all_network_files():
"""All network files"""
# TODO: list explicitly since some are missing?
network_types = [
'AND-circle',
'MAJ-specialized',
'MAJ-complete',
'iit-3.0-modular'
]
network_sizes = range(5, 8)
network_files = []
for n in network_sizes:
for t in network_types:
network_files.append('{}-{}'.format(n, t))
return network_files | [
"def",
"all_network_files",
"(",
")",
":",
"# TODO: list explicitly since some are missing?",
"network_types",
"=",
"[",
"'AND-circle'",
",",
"'MAJ-specialized'",
",",
"'MAJ-complete'",
",",
"'iit-3.0-modular'",
"]",
"network_sizes",
"=",
"range",
"(",
"5",
",",
"8",
")",
"network_files",
"=",
"[",
"]",
"for",
"n",
"in",
"network_sizes",
":",
"for",
"t",
"in",
"network_types",
":",
"network_files",
".",
"append",
"(",
"'{}-{}'",
".",
"format",
"(",
"n",
",",
"t",
")",
")",
"return",
"network_files"
] | All network files | [
"All",
"network",
"files"
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/profiling/code_to_profile.py#L42-L56 | train |
wmayner/pyphi | profiling/code_to_profile.py | profile_network | def profile_network(filename):
"""Profile a network.
Saves PyPhi results, pstats, and logs to respective directories.
"""
log = logging.getLogger(filename)
logfile = os.path.join(LOGS, filename + '.log')
os.makedirs(os.path.dirname(logfile), exist_ok=True)
handler = logging.FileHandler(logfile)
handler.setFormatter(formatter)
log.addHandler(handler)
log.setLevel(logging.INFO)
try:
with open(os.path.join(NETWORKS, filename + '.json')) as f:
network, state = load_json_network(json.load(f))
log.info('Profiling %s...', filename)
log.info('PyPhi configuration:\n%s',
pyphi.config.get_config_string())
start = time()
pr = cProfile.Profile()
pr.enable()
results = tuple(pyphi.compute.complexes(network, state))
pr.disable()
end = time()
pstatsfile = os.path.join(PSTATS, filename + '.pstats')
os.makedirs(os.path.dirname(pstatsfile), exist_ok=True)
pr.dump_stats(pstatsfile)
log.info('Finished in %i seconds.', end - start)
resultfile = os.path.join(RESULTS, filename + '-results.pkl')
os.makedirs(os.path.dirname(resultfile), exist_ok=True)
with open(resultfile, 'wb') as f:
pickle.dump(results, f)
except Exception as e:
log.error(e)
raise e | python | def profile_network(filename):
"""Profile a network.
Saves PyPhi results, pstats, and logs to respective directories.
"""
log = logging.getLogger(filename)
logfile = os.path.join(LOGS, filename + '.log')
os.makedirs(os.path.dirname(logfile), exist_ok=True)
handler = logging.FileHandler(logfile)
handler.setFormatter(formatter)
log.addHandler(handler)
log.setLevel(logging.INFO)
try:
with open(os.path.join(NETWORKS, filename + '.json')) as f:
network, state = load_json_network(json.load(f))
log.info('Profiling %s...', filename)
log.info('PyPhi configuration:\n%s',
pyphi.config.get_config_string())
start = time()
pr = cProfile.Profile()
pr.enable()
results = tuple(pyphi.compute.complexes(network, state))
pr.disable()
end = time()
pstatsfile = os.path.join(PSTATS, filename + '.pstats')
os.makedirs(os.path.dirname(pstatsfile), exist_ok=True)
pr.dump_stats(pstatsfile)
log.info('Finished in %i seconds.', end - start)
resultfile = os.path.join(RESULTS, filename + '-results.pkl')
os.makedirs(os.path.dirname(resultfile), exist_ok=True)
with open(resultfile, 'wb') as f:
pickle.dump(results, f)
except Exception as e:
log.error(e)
raise e | [
"def",
"profile_network",
"(",
"filename",
")",
":",
"log",
"=",
"logging",
".",
"getLogger",
"(",
"filename",
")",
"logfile",
"=",
"os",
".",
"path",
".",
"join",
"(",
"LOGS",
",",
"filename",
"+",
"'.log'",
")",
"os",
".",
"makedirs",
"(",
"os",
".",
"path",
".",
"dirname",
"(",
"logfile",
")",
",",
"exist_ok",
"=",
"True",
")",
"handler",
"=",
"logging",
".",
"FileHandler",
"(",
"logfile",
")",
"handler",
".",
"setFormatter",
"(",
"formatter",
")",
"log",
".",
"addHandler",
"(",
"handler",
")",
"log",
".",
"setLevel",
"(",
"logging",
".",
"INFO",
")",
"try",
":",
"with",
"open",
"(",
"os",
".",
"path",
".",
"join",
"(",
"NETWORKS",
",",
"filename",
"+",
"'.json'",
")",
")",
"as",
"f",
":",
"network",
",",
"state",
"=",
"load_json_network",
"(",
"json",
".",
"load",
"(",
"f",
")",
")",
"log",
".",
"info",
"(",
"'Profiling %s...'",
",",
"filename",
")",
"log",
".",
"info",
"(",
"'PyPhi configuration:\\n%s'",
",",
"pyphi",
".",
"config",
".",
"get_config_string",
"(",
")",
")",
"start",
"=",
"time",
"(",
")",
"pr",
"=",
"cProfile",
".",
"Profile",
"(",
")",
"pr",
".",
"enable",
"(",
")",
"results",
"=",
"tuple",
"(",
"pyphi",
".",
"compute",
".",
"complexes",
"(",
"network",
",",
"state",
")",
")",
"pr",
".",
"disable",
"(",
")",
"end",
"=",
"time",
"(",
")",
"pstatsfile",
"=",
"os",
".",
"path",
".",
"join",
"(",
"PSTATS",
",",
"filename",
"+",
"'.pstats'",
")",
"os",
".",
"makedirs",
"(",
"os",
".",
"path",
".",
"dirname",
"(",
"pstatsfile",
")",
",",
"exist_ok",
"=",
"True",
")",
"pr",
".",
"dump_stats",
"(",
"pstatsfile",
")",
"log",
".",
"info",
"(",
"'Finished in %i seconds.'",
",",
"end",
"-",
"start",
")",
"resultfile",
"=",
"os",
".",
"path",
".",
"join",
"(",
"RESULTS",
",",
"filename",
"+",
"'-results.pkl'",
")",
"os",
".",
"makedirs",
"(",
"os",
".",
"path",
".",
"dirname",
"(",
"resultfile",
")",
",",
"exist_ok",
"=",
"True",
")",
"with",
"open",
"(",
"resultfile",
",",
"'wb'",
")",
"as",
"f",
":",
"pickle",
".",
"dump",
"(",
"results",
",",
"f",
")",
"except",
"Exception",
"as",
"e",
":",
"log",
".",
"error",
"(",
"e",
")",
"raise",
"e"
] | Profile a network.
Saves PyPhi results, pstats, and logs to respective directories. | [
"Profile",
"a",
"network",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/profiling/code_to_profile.py#L59-L102 | train |
wmayner/pyphi | pyphi/timescale.py | run_tpm | def run_tpm(tpm, time_scale):
"""Iterate a TPM by the specified number of time steps.
Args:
tpm (np.ndarray): A state-by-node tpm.
time_scale (int): The number of steps to run the tpm.
Returns:
np.ndarray
"""
sbs_tpm = convert.state_by_node2state_by_state(tpm)
if sparse(tpm):
tpm = sparse_time(sbs_tpm, time_scale)
else:
tpm = dense_time(sbs_tpm, time_scale)
return convert.state_by_state2state_by_node(tpm) | python | def run_tpm(tpm, time_scale):
"""Iterate a TPM by the specified number of time steps.
Args:
tpm (np.ndarray): A state-by-node tpm.
time_scale (int): The number of steps to run the tpm.
Returns:
np.ndarray
"""
sbs_tpm = convert.state_by_node2state_by_state(tpm)
if sparse(tpm):
tpm = sparse_time(sbs_tpm, time_scale)
else:
tpm = dense_time(sbs_tpm, time_scale)
return convert.state_by_state2state_by_node(tpm) | [
"def",
"run_tpm",
"(",
"tpm",
",",
"time_scale",
")",
":",
"sbs_tpm",
"=",
"convert",
".",
"state_by_node2state_by_state",
"(",
"tpm",
")",
"if",
"sparse",
"(",
"tpm",
")",
":",
"tpm",
"=",
"sparse_time",
"(",
"sbs_tpm",
",",
"time_scale",
")",
"else",
":",
"tpm",
"=",
"dense_time",
"(",
"sbs_tpm",
",",
"time_scale",
")",
"return",
"convert",
".",
"state_by_state2state_by_node",
"(",
"tpm",
")"
] | Iterate a TPM by the specified number of time steps.
Args:
tpm (np.ndarray): A state-by-node tpm.
time_scale (int): The number of steps to run the tpm.
Returns:
np.ndarray | [
"Iterate",
"a",
"TPM",
"by",
"the",
"specified",
"number",
"of",
"time",
"steps",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/timescale.py#L28-L43 | train |
wmayner/pyphi | pyphi/timescale.py | run_cm | def run_cm(cm, time_scale):
"""Iterate a connectivity matrix the specified number of steps.
Args:
cm (np.ndarray): A connectivity matrix.
time_scale (int): The number of steps to run.
Returns:
np.ndarray: The connectivity matrix at the new timescale.
"""
cm = np.linalg.matrix_power(cm, time_scale)
# Round non-unitary values back to 1
cm[cm > 1] = 1
return cm | python | def run_cm(cm, time_scale):
"""Iterate a connectivity matrix the specified number of steps.
Args:
cm (np.ndarray): A connectivity matrix.
time_scale (int): The number of steps to run.
Returns:
np.ndarray: The connectivity matrix at the new timescale.
"""
cm = np.linalg.matrix_power(cm, time_scale)
# Round non-unitary values back to 1
cm[cm > 1] = 1
return cm | [
"def",
"run_cm",
"(",
"cm",
",",
"time_scale",
")",
":",
"cm",
"=",
"np",
".",
"linalg",
".",
"matrix_power",
"(",
"cm",
",",
"time_scale",
")",
"# Round non-unitary values back to 1",
"cm",
"[",
"cm",
">",
"1",
"]",
"=",
"1",
"return",
"cm"
] | Iterate a connectivity matrix the specified number of steps.
Args:
cm (np.ndarray): A connectivity matrix.
time_scale (int): The number of steps to run.
Returns:
np.ndarray: The connectivity matrix at the new timescale. | [
"Iterate",
"a",
"connectivity",
"matrix",
"the",
"specified",
"number",
"of",
"steps",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/timescale.py#L46-L59 | train |
wmayner/pyphi | pyphi/compute/network.py | _reachable_subsystems | def _reachable_subsystems(network, indices, state):
"""A generator over all subsystems in a valid state."""
validate.is_network(network)
# Return subsystems largest to smallest to optimize parallel
# resource usage.
for subset in utils.powerset(indices, nonempty=True, reverse=True):
try:
yield Subsystem(network, state, subset)
except exceptions.StateUnreachableError:
pass | python | def _reachable_subsystems(network, indices, state):
"""A generator over all subsystems in a valid state."""
validate.is_network(network)
# Return subsystems largest to smallest to optimize parallel
# resource usage.
for subset in utils.powerset(indices, nonempty=True, reverse=True):
try:
yield Subsystem(network, state, subset)
except exceptions.StateUnreachableError:
pass | [
"def",
"_reachable_subsystems",
"(",
"network",
",",
"indices",
",",
"state",
")",
":",
"validate",
".",
"is_network",
"(",
"network",
")",
"# Return subsystems largest to smallest to optimize parallel",
"# resource usage.",
"for",
"subset",
"in",
"utils",
".",
"powerset",
"(",
"indices",
",",
"nonempty",
"=",
"True",
",",
"reverse",
"=",
"True",
")",
":",
"try",
":",
"yield",
"Subsystem",
"(",
"network",
",",
"state",
",",
"subset",
")",
"except",
"exceptions",
".",
"StateUnreachableError",
":",
"pass"
] | A generator over all subsystems in a valid state. | [
"A",
"generator",
"over",
"all",
"subsystems",
"in",
"a",
"valid",
"state",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/compute/network.py#L21-L31 | train |
wmayner/pyphi | pyphi/compute/network.py | all_complexes | def all_complexes(network, state):
"""Return a generator for all complexes of the network.
.. note::
Includes reducible, zero-|big_phi| complexes (which are not, strictly
speaking, complexes at all).
Args:
network (Network): The |Network| of interest.
state (tuple[int]): The state of the network (a binary tuple).
Yields:
SystemIrreducibilityAnalysis: A |SIA| for each |Subsystem| of the
|Network|.
"""
engine = FindAllComplexes(subsystems(network, state))
return engine.run(config.PARALLEL_COMPLEX_EVALUATION) | python | def all_complexes(network, state):
"""Return a generator for all complexes of the network.
.. note::
Includes reducible, zero-|big_phi| complexes (which are not, strictly
speaking, complexes at all).
Args:
network (Network): The |Network| of interest.
state (tuple[int]): The state of the network (a binary tuple).
Yields:
SystemIrreducibilityAnalysis: A |SIA| for each |Subsystem| of the
|Network|.
"""
engine = FindAllComplexes(subsystems(network, state))
return engine.run(config.PARALLEL_COMPLEX_EVALUATION) | [
"def",
"all_complexes",
"(",
"network",
",",
"state",
")",
":",
"engine",
"=",
"FindAllComplexes",
"(",
"subsystems",
"(",
"network",
",",
"state",
")",
")",
"return",
"engine",
".",
"run",
"(",
"config",
".",
"PARALLEL_COMPLEX_EVALUATION",
")"
] | Return a generator for all complexes of the network.
.. note::
Includes reducible, zero-|big_phi| complexes (which are not, strictly
speaking, complexes at all).
Args:
network (Network): The |Network| of interest.
state (tuple[int]): The state of the network (a binary tuple).
Yields:
SystemIrreducibilityAnalysis: A |SIA| for each |Subsystem| of the
|Network|. | [
"Return",
"a",
"generator",
"for",
"all",
"complexes",
"of",
"the",
"network",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/compute/network.py#L93-L109 | train |
wmayner/pyphi | pyphi/compute/network.py | complexes | def complexes(network, state):
"""Return all irreducible complexes of the network.
Args:
network (Network): The |Network| of interest.
state (tuple[int]): The state of the network (a binary tuple).
Yields:
SystemIrreducibilityAnalysis: A |SIA| for each |Subsystem| of the
|Network|, excluding those with |big_phi = 0|.
"""
engine = FindIrreducibleComplexes(possible_complexes(network, state))
return engine.run(config.PARALLEL_COMPLEX_EVALUATION) | python | def complexes(network, state):
"""Return all irreducible complexes of the network.
Args:
network (Network): The |Network| of interest.
state (tuple[int]): The state of the network (a binary tuple).
Yields:
SystemIrreducibilityAnalysis: A |SIA| for each |Subsystem| of the
|Network|, excluding those with |big_phi = 0|.
"""
engine = FindIrreducibleComplexes(possible_complexes(network, state))
return engine.run(config.PARALLEL_COMPLEX_EVALUATION) | [
"def",
"complexes",
"(",
"network",
",",
"state",
")",
":",
"engine",
"=",
"FindIrreducibleComplexes",
"(",
"possible_complexes",
"(",
"network",
",",
"state",
")",
")",
"return",
"engine",
".",
"run",
"(",
"config",
".",
"PARALLEL_COMPLEX_EVALUATION",
")"
] | Return all irreducible complexes of the network.
Args:
network (Network): The |Network| of interest.
state (tuple[int]): The state of the network (a binary tuple).
Yields:
SystemIrreducibilityAnalysis: A |SIA| for each |Subsystem| of the
|Network|, excluding those with |big_phi = 0|. | [
"Return",
"all",
"irreducible",
"complexes",
"of",
"the",
"network",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/compute/network.py#L121-L133 | train |
wmayner/pyphi | pyphi/compute/network.py | major_complex | def major_complex(network, state):
"""Return the major complex of the network.
Args:
network (Network): The |Network| of interest.
state (tuple[int]): The state of the network (a binary tuple).
Returns:
SystemIrreducibilityAnalysis: The |SIA| for the |Subsystem| with
maximal |big_phi|.
"""
log.info('Calculating major complex...')
result = complexes(network, state)
if result:
result = max(result)
else:
empty_subsystem = Subsystem(network, state, ())
result = _null_sia(empty_subsystem)
log.info("Finished calculating major complex.")
return result | python | def major_complex(network, state):
"""Return the major complex of the network.
Args:
network (Network): The |Network| of interest.
state (tuple[int]): The state of the network (a binary tuple).
Returns:
SystemIrreducibilityAnalysis: The |SIA| for the |Subsystem| with
maximal |big_phi|.
"""
log.info('Calculating major complex...')
result = complexes(network, state)
if result:
result = max(result)
else:
empty_subsystem = Subsystem(network, state, ())
result = _null_sia(empty_subsystem)
log.info("Finished calculating major complex.")
return result | [
"def",
"major_complex",
"(",
"network",
",",
"state",
")",
":",
"log",
".",
"info",
"(",
"'Calculating major complex...'",
")",
"result",
"=",
"complexes",
"(",
"network",
",",
"state",
")",
"if",
"result",
":",
"result",
"=",
"max",
"(",
"result",
")",
"else",
":",
"empty_subsystem",
"=",
"Subsystem",
"(",
"network",
",",
"state",
",",
"(",
")",
")",
"result",
"=",
"_null_sia",
"(",
"empty_subsystem",
")",
"log",
".",
"info",
"(",
"\"Finished calculating major complex.\"",
")",
"return",
"result"
] | Return the major complex of the network.
Args:
network (Network): The |Network| of interest.
state (tuple[int]): The state of the network (a binary tuple).
Returns:
SystemIrreducibilityAnalysis: The |SIA| for the |Subsystem| with
maximal |big_phi|. | [
"Return",
"the",
"major",
"complex",
"of",
"the",
"network",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/compute/network.py#L136-L158 | train |
wmayner/pyphi | pyphi/compute/network.py | condensed | def condensed(network, state):
"""Return a list of maximal non-overlapping complexes.
Args:
network (Network): The |Network| of interest.
state (tuple[int]): The state of the network (a binary tuple).
Returns:
list[SystemIrreducibilityAnalysis]: A list of |SIA| for non-overlapping
complexes with maximal |big_phi| values.
"""
result = []
covered_nodes = set()
for c in reversed(sorted(complexes(network, state))):
if not any(n in covered_nodes for n in c.subsystem.node_indices):
result.append(c)
covered_nodes = covered_nodes | set(c.subsystem.node_indices)
return result | python | def condensed(network, state):
"""Return a list of maximal non-overlapping complexes.
Args:
network (Network): The |Network| of interest.
state (tuple[int]): The state of the network (a binary tuple).
Returns:
list[SystemIrreducibilityAnalysis]: A list of |SIA| for non-overlapping
complexes with maximal |big_phi| values.
"""
result = []
covered_nodes = set()
for c in reversed(sorted(complexes(network, state))):
if not any(n in covered_nodes for n in c.subsystem.node_indices):
result.append(c)
covered_nodes = covered_nodes | set(c.subsystem.node_indices)
return result | [
"def",
"condensed",
"(",
"network",
",",
"state",
")",
":",
"result",
"=",
"[",
"]",
"covered_nodes",
"=",
"set",
"(",
")",
"for",
"c",
"in",
"reversed",
"(",
"sorted",
"(",
"complexes",
"(",
"network",
",",
"state",
")",
")",
")",
":",
"if",
"not",
"any",
"(",
"n",
"in",
"covered_nodes",
"for",
"n",
"in",
"c",
".",
"subsystem",
".",
"node_indices",
")",
":",
"result",
".",
"append",
"(",
"c",
")",
"covered_nodes",
"=",
"covered_nodes",
"|",
"set",
"(",
"c",
".",
"subsystem",
".",
"node_indices",
")",
"return",
"result"
] | Return a list of maximal non-overlapping complexes.
Args:
network (Network): The |Network| of interest.
state (tuple[int]): The state of the network (a binary tuple).
Returns:
list[SystemIrreducibilityAnalysis]: A list of |SIA| for non-overlapping
complexes with maximal |big_phi| values. | [
"Return",
"a",
"list",
"of",
"maximal",
"non",
"-",
"overlapping",
"complexes",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/compute/network.py#L161-L180 | train |
wmayner/pyphi | pyphi/examples.py | basic_network | def basic_network(cm=False):
"""A 3-node network of logic gates.
Diagram::
+~~~~~~~~+
+~~~~>| A |<~~~~+
| | (OR) +~~~+ |
| +~~~~~~~~+ | |
| | |
| v |
+~+~~~~~~+ +~~~~~+~+
| B |<~~~~~~+ C |
| (COPY) +~~~~~~>| (XOR) |
+~~~~~~~~+ +~~~~~~~+
TPM:
+----------------+---------------+
| Previous state | Current state |
+----------------+---------------+
| A, B, C | A, B, C |
+================+===============+
| 0, 0, 0 | 0, 0, 0 |
+----------------+---------------+
| 1, 0, 0 | 0, 0, 1 |
+----------------+---------------+
| 0, 1, 0 | 1, 0, 1 |
+----------------+---------------+
| 1, 1, 0 | 1, 0, 0 |
+----------------+---------------+
| 0, 0, 1 | 1, 1, 0 |
+----------------+---------------+
| 1, 0, 1 | 1, 1, 1 |
+----------------+---------------+
| 0, 1, 1 | 1, 1, 1 |
+----------------+---------------+
| 1, 1, 1 | 1, 1, 0 |
+----------------+---------------+
Connectivity matrix:
+---+---+---+---+
| . | A | B | C |
+---+---+---+---+
| A | 0 | 0 | 1 |
+---+---+---+---+
| B | 1 | 0 | 1 |
+---+---+---+---+
| C | 1 | 1 | 0 |
+---+---+---+---+
.. note::
|CM[i][j] = 1| means that there is a directed edge |(i,j)| from node
|i| to node |j| and |CM[i][j] = 0| means there is no edge from |i| to
|j|.
"""
tpm = np.array([
[0, 0, 0],
[0, 0, 1],
[1, 0, 1],
[1, 0, 0],
[1, 1, 0],
[1, 1, 1],
[1, 1, 1],
[1, 1, 0]
])
if cm is False:
cm = np.array([
[0, 0, 1],
[1, 0, 1],
[1, 1, 0]
])
else:
cm = None
return Network(tpm, cm=cm, node_labels=LABELS[:tpm.shape[1]]) | python | def basic_network(cm=False):
"""A 3-node network of logic gates.
Diagram::
+~~~~~~~~+
+~~~~>| A |<~~~~+
| | (OR) +~~~+ |
| +~~~~~~~~+ | |
| | |
| v |
+~+~~~~~~+ +~~~~~+~+
| B |<~~~~~~+ C |
| (COPY) +~~~~~~>| (XOR) |
+~~~~~~~~+ +~~~~~~~+
TPM:
+----------------+---------------+
| Previous state | Current state |
+----------------+---------------+
| A, B, C | A, B, C |
+================+===============+
| 0, 0, 0 | 0, 0, 0 |
+----------------+---------------+
| 1, 0, 0 | 0, 0, 1 |
+----------------+---------------+
| 0, 1, 0 | 1, 0, 1 |
+----------------+---------------+
| 1, 1, 0 | 1, 0, 0 |
+----------------+---------------+
| 0, 0, 1 | 1, 1, 0 |
+----------------+---------------+
| 1, 0, 1 | 1, 1, 1 |
+----------------+---------------+
| 0, 1, 1 | 1, 1, 1 |
+----------------+---------------+
| 1, 1, 1 | 1, 1, 0 |
+----------------+---------------+
Connectivity matrix:
+---+---+---+---+
| . | A | B | C |
+---+---+---+---+
| A | 0 | 0 | 1 |
+---+---+---+---+
| B | 1 | 0 | 1 |
+---+---+---+---+
| C | 1 | 1 | 0 |
+---+---+---+---+
.. note::
|CM[i][j] = 1| means that there is a directed edge |(i,j)| from node
|i| to node |j| and |CM[i][j] = 0| means there is no edge from |i| to
|j|.
"""
tpm = np.array([
[0, 0, 0],
[0, 0, 1],
[1, 0, 1],
[1, 0, 0],
[1, 1, 0],
[1, 1, 1],
[1, 1, 1],
[1, 1, 0]
])
if cm is False:
cm = np.array([
[0, 0, 1],
[1, 0, 1],
[1, 1, 0]
])
else:
cm = None
return Network(tpm, cm=cm, node_labels=LABELS[:tpm.shape[1]]) | [
"def",
"basic_network",
"(",
"cm",
"=",
"False",
")",
":",
"tpm",
"=",
"np",
".",
"array",
"(",
"[",
"[",
"0",
",",
"0",
",",
"0",
"]",
",",
"[",
"0",
",",
"0",
",",
"1",
"]",
",",
"[",
"1",
",",
"0",
",",
"1",
"]",
",",
"[",
"1",
",",
"0",
",",
"0",
"]",
",",
"[",
"1",
",",
"1",
",",
"0",
"]",
",",
"[",
"1",
",",
"1",
",",
"1",
"]",
",",
"[",
"1",
",",
"1",
",",
"1",
"]",
",",
"[",
"1",
",",
"1",
",",
"0",
"]",
"]",
")",
"if",
"cm",
"is",
"False",
":",
"cm",
"=",
"np",
".",
"array",
"(",
"[",
"[",
"0",
",",
"0",
",",
"1",
"]",
",",
"[",
"1",
",",
"0",
",",
"1",
"]",
",",
"[",
"1",
",",
"1",
",",
"0",
"]",
"]",
")",
"else",
":",
"cm",
"=",
"None",
"return",
"Network",
"(",
"tpm",
",",
"cm",
"=",
"cm",
",",
"node_labels",
"=",
"LABELS",
"[",
":",
"tpm",
".",
"shape",
"[",
"1",
"]",
"]",
")"
] | A 3-node network of logic gates.
Diagram::
+~~~~~~~~+
+~~~~>| A |<~~~~+
| | (OR) +~~~+ |
| +~~~~~~~~+ | |
| | |
| v |
+~+~~~~~~+ +~~~~~+~+
| B |<~~~~~~+ C |
| (COPY) +~~~~~~>| (XOR) |
+~~~~~~~~+ +~~~~~~~+
TPM:
+----------------+---------------+
| Previous state | Current state |
+----------------+---------------+
| A, B, C | A, B, C |
+================+===============+
| 0, 0, 0 | 0, 0, 0 |
+----------------+---------------+
| 1, 0, 0 | 0, 0, 1 |
+----------------+---------------+
| 0, 1, 0 | 1, 0, 1 |
+----------------+---------------+
| 1, 1, 0 | 1, 0, 0 |
+----------------+---------------+
| 0, 0, 1 | 1, 1, 0 |
+----------------+---------------+
| 1, 0, 1 | 1, 1, 1 |
+----------------+---------------+
| 0, 1, 1 | 1, 1, 1 |
+----------------+---------------+
| 1, 1, 1 | 1, 1, 0 |
+----------------+---------------+
Connectivity matrix:
+---+---+---+---+
| . | A | B | C |
+---+---+---+---+
| A | 0 | 0 | 1 |
+---+---+---+---+
| B | 1 | 0 | 1 |
+---+---+---+---+
| C | 1 | 1 | 0 |
+---+---+---+---+
.. note::
|CM[i][j] = 1| means that there is a directed edge |(i,j)| from node
|i| to node |j| and |CM[i][j] = 0| means there is no edge from |i| to
|j|. | [
"A",
"3",
"-",
"node",
"network",
"of",
"logic",
"gates",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/examples.py#L24-L99 | train |
wmayner/pyphi | pyphi/examples.py | basic_noisy_selfloop_network | def basic_noisy_selfloop_network():
"""Based on the basic_network, but with added selfloops and noisy edges.
Nodes perform deterministic functions of their inputs, but those inputs
may be flipped (i.e. what should be a 0 becomes a 1, and vice versa) with
probability epsilon (eps = 0.1 here).
Diagram::
+~~+
| v
+~~~~~~~~+
+~~~~>| A |<~~~~+
| | (OR) +~~~+ |
| +~~~~~~~~+ | |
| | |
| v |
+~+~~~~~~+ +~~~~~+~+
| B |<~~~~~~+ C |
+>| (COPY) +~~~~~~>| (XOR) |<+
| +~~~~~~~~+ +~~~~~~~+ |
| | | |
+~~~+ +~~~+
"""
tpm = np.array([
[0.271, 0.19, 0.244],
[0.919, 0.19, 0.756],
[0.919, 0.91, 0.756],
[0.991, 0.91, 0.244],
[0.919, 0.91, 0.756],
[0.991, 0.91, 0.244],
[0.991, 0.99, 0.244],
[0.999, 0.99, 0.756]
])
cm = np.array([
[1, 0, 1],
[1, 1, 1],
[1, 1, 1]
])
return Network(tpm, cm=cm) | python | def basic_noisy_selfloop_network():
"""Based on the basic_network, but with added selfloops and noisy edges.
Nodes perform deterministic functions of their inputs, but those inputs
may be flipped (i.e. what should be a 0 becomes a 1, and vice versa) with
probability epsilon (eps = 0.1 here).
Diagram::
+~~+
| v
+~~~~~~~~+
+~~~~>| A |<~~~~+
| | (OR) +~~~+ |
| +~~~~~~~~+ | |
| | |
| v |
+~+~~~~~~+ +~~~~~+~+
| B |<~~~~~~+ C |
+>| (COPY) +~~~~~~>| (XOR) |<+
| +~~~~~~~~+ +~~~~~~~+ |
| | | |
+~~~+ +~~~+
"""
tpm = np.array([
[0.271, 0.19, 0.244],
[0.919, 0.19, 0.756],
[0.919, 0.91, 0.756],
[0.991, 0.91, 0.244],
[0.919, 0.91, 0.756],
[0.991, 0.91, 0.244],
[0.991, 0.99, 0.244],
[0.999, 0.99, 0.756]
])
cm = np.array([
[1, 0, 1],
[1, 1, 1],
[1, 1, 1]
])
return Network(tpm, cm=cm) | [
"def",
"basic_noisy_selfloop_network",
"(",
")",
":",
"tpm",
"=",
"np",
".",
"array",
"(",
"[",
"[",
"0.271",
",",
"0.19",
",",
"0.244",
"]",
",",
"[",
"0.919",
",",
"0.19",
",",
"0.756",
"]",
",",
"[",
"0.919",
",",
"0.91",
",",
"0.756",
"]",
",",
"[",
"0.991",
",",
"0.91",
",",
"0.244",
"]",
",",
"[",
"0.919",
",",
"0.91",
",",
"0.756",
"]",
",",
"[",
"0.991",
",",
"0.91",
",",
"0.244",
"]",
",",
"[",
"0.991",
",",
"0.99",
",",
"0.244",
"]",
",",
"[",
"0.999",
",",
"0.99",
",",
"0.756",
"]",
"]",
")",
"cm",
"=",
"np",
".",
"array",
"(",
"[",
"[",
"1",
",",
"0",
",",
"1",
"]",
",",
"[",
"1",
",",
"1",
",",
"1",
"]",
",",
"[",
"1",
",",
"1",
",",
"1",
"]",
"]",
")",
"return",
"Network",
"(",
"tpm",
",",
"cm",
"=",
"cm",
")"
] | Based on the basic_network, but with added selfloops and noisy edges.
Nodes perform deterministic functions of their inputs, but those inputs
may be flipped (i.e. what should be a 0 becomes a 1, and vice versa) with
probability epsilon (eps = 0.1 here).
Diagram::
+~~+
| v
+~~~~~~~~+
+~~~~>| A |<~~~~+
| | (OR) +~~~+ |
| +~~~~~~~~+ | |
| | |
| v |
+~+~~~~~~+ +~~~~~+~+
| B |<~~~~~~+ C |
+>| (COPY) +~~~~~~>| (XOR) |<+
| +~~~~~~~~+ +~~~~~~~+ |
| | | |
+~~~+ +~~~+ | [
"Based",
"on",
"the",
"basic_network",
"but",
"with",
"added",
"selfloops",
"and",
"noisy",
"edges",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/examples.py#L116-L158 | train |
wmayner/pyphi | pyphi/examples.py | residue_network | def residue_network():
"""The network for the residue example.
Current and previous state are all nodes OFF.
Diagram::
+~~~~~~~+ +~~~~~~~+
| A | | B |
+~~>| (AND) | | (AND) |<~~+
| +~~~~~~~+ +~~~~~~~+ |
| ^ ^ |
| | | |
| +~~~~~+ +~~~~~+ |
| | | |
+~~~+~~~+ +~+~~~+~+ +~~~+~~~+
| C | | D | | E |
| | | | | |
+~~~~~~~+ +~~~~~~~+ +~~~~~~~+
Connectivity matrix:
+---+---+---+---+---+---+
| . | A | B | C | D | E |
+---+---+---+---+---+---+
| A | 0 | 0 | 0 | 0 | 0 |
+---+---+---+---+---+---+
| B | 0 | 0 | 0 | 0 | 0 |
+---+---+---+---+---+---+
| C | 1 | 0 | 0 | 0 | 0 |
+---+---+---+---+---+---+
| D | 1 | 1 | 0 | 0 | 0 |
+---+---+---+---+---+---+
| E | 0 | 1 | 0 | 0 | 0 |
+---+---+---+---+---+---+
"""
tpm = np.array([
[int(s) for s in bin(x)[2:].zfill(5)[::-1]] for x in range(32)
])
tpm[np.where(np.sum(tpm[0:, 2:4], 1) == 2), 0] = 1
tpm[np.where(np.sum(tpm[0:, 3:5], 1) == 2), 1] = 1
tpm[np.where(np.sum(tpm[0:, 2:4], 1) < 2), 0] = 0
tpm[np.where(np.sum(tpm[0:, 3:5], 1) < 2), 1] = 0
cm = np.zeros((5, 5))
cm[2:4, 0] = 1
cm[3:, 1] = 1
return Network(tpm, cm=cm, node_labels=LABELS[:tpm.shape[1]]) | python | def residue_network():
"""The network for the residue example.
Current and previous state are all nodes OFF.
Diagram::
+~~~~~~~+ +~~~~~~~+
| A | | B |
+~~>| (AND) | | (AND) |<~~+
| +~~~~~~~+ +~~~~~~~+ |
| ^ ^ |
| | | |
| +~~~~~+ +~~~~~+ |
| | | |
+~~~+~~~+ +~+~~~+~+ +~~~+~~~+
| C | | D | | E |
| | | | | |
+~~~~~~~+ +~~~~~~~+ +~~~~~~~+
Connectivity matrix:
+---+---+---+---+---+---+
| . | A | B | C | D | E |
+---+---+---+---+---+---+
| A | 0 | 0 | 0 | 0 | 0 |
+---+---+---+---+---+---+
| B | 0 | 0 | 0 | 0 | 0 |
+---+---+---+---+---+---+
| C | 1 | 0 | 0 | 0 | 0 |
+---+---+---+---+---+---+
| D | 1 | 1 | 0 | 0 | 0 |
+---+---+---+---+---+---+
| E | 0 | 1 | 0 | 0 | 0 |
+---+---+---+---+---+---+
"""
tpm = np.array([
[int(s) for s in bin(x)[2:].zfill(5)[::-1]] for x in range(32)
])
tpm[np.where(np.sum(tpm[0:, 2:4], 1) == 2), 0] = 1
tpm[np.where(np.sum(tpm[0:, 3:5], 1) == 2), 1] = 1
tpm[np.where(np.sum(tpm[0:, 2:4], 1) < 2), 0] = 0
tpm[np.where(np.sum(tpm[0:, 3:5], 1) < 2), 1] = 0
cm = np.zeros((5, 5))
cm[2:4, 0] = 1
cm[3:, 1] = 1
return Network(tpm, cm=cm, node_labels=LABELS[:tpm.shape[1]]) | [
"def",
"residue_network",
"(",
")",
":",
"tpm",
"=",
"np",
".",
"array",
"(",
"[",
"[",
"int",
"(",
"s",
")",
"for",
"s",
"in",
"bin",
"(",
"x",
")",
"[",
"2",
":",
"]",
".",
"zfill",
"(",
"5",
")",
"[",
":",
":",
"-",
"1",
"]",
"]",
"for",
"x",
"in",
"range",
"(",
"32",
")",
"]",
")",
"tpm",
"[",
"np",
".",
"where",
"(",
"np",
".",
"sum",
"(",
"tpm",
"[",
"0",
":",
",",
"2",
":",
"4",
"]",
",",
"1",
")",
"==",
"2",
")",
",",
"0",
"]",
"=",
"1",
"tpm",
"[",
"np",
".",
"where",
"(",
"np",
".",
"sum",
"(",
"tpm",
"[",
"0",
":",
",",
"3",
":",
"5",
"]",
",",
"1",
")",
"==",
"2",
")",
",",
"1",
"]",
"=",
"1",
"tpm",
"[",
"np",
".",
"where",
"(",
"np",
".",
"sum",
"(",
"tpm",
"[",
"0",
":",
",",
"2",
":",
"4",
"]",
",",
"1",
")",
"<",
"2",
")",
",",
"0",
"]",
"=",
"0",
"tpm",
"[",
"np",
".",
"where",
"(",
"np",
".",
"sum",
"(",
"tpm",
"[",
"0",
":",
",",
"3",
":",
"5",
"]",
",",
"1",
")",
"<",
"2",
")",
",",
"1",
"]",
"=",
"0",
"cm",
"=",
"np",
".",
"zeros",
"(",
"(",
"5",
",",
"5",
")",
")",
"cm",
"[",
"2",
":",
"4",
",",
"0",
"]",
"=",
"1",
"cm",
"[",
"3",
":",
",",
"1",
"]",
"=",
"1",
"return",
"Network",
"(",
"tpm",
",",
"cm",
"=",
"cm",
",",
"node_labels",
"=",
"LABELS",
"[",
":",
"tpm",
".",
"shape",
"[",
"1",
"]",
"]",
")"
] | The network for the residue example.
Current and previous state are all nodes OFF.
Diagram::
+~~~~~~~+ +~~~~~~~+
| A | | B |
+~~>| (AND) | | (AND) |<~~+
| +~~~~~~~+ +~~~~~~~+ |
| ^ ^ |
| | | |
| +~~~~~+ +~~~~~+ |
| | | |
+~~~+~~~+ +~+~~~+~+ +~~~+~~~+
| C | | D | | E |
| | | | | |
+~~~~~~~+ +~~~~~~~+ +~~~~~~~+
Connectivity matrix:
+---+---+---+---+---+---+
| . | A | B | C | D | E |
+---+---+---+---+---+---+
| A | 0 | 0 | 0 | 0 | 0 |
+---+---+---+---+---+---+
| B | 0 | 0 | 0 | 0 | 0 |
+---+---+---+---+---+---+
| C | 1 | 0 | 0 | 0 | 0 |
+---+---+---+---+---+---+
| D | 1 | 1 | 0 | 0 | 0 |
+---+---+---+---+---+---+
| E | 0 | 1 | 0 | 0 | 0 |
+---+---+---+---+---+---+ | [
"The",
"network",
"for",
"the",
"residue",
"example",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/examples.py#L170-L218 | train |
wmayner/pyphi | pyphi/examples.py | propagation_delay_network | def propagation_delay_network():
"""A version of the primary example from the IIT 3.0 paper with
deterministic COPY gates on each connection. These copy gates essentially
function as propagation delays on the signal between OR, AND and XOR gates
from the original system.
The current and previous states of the network are also selected to mimic
the corresponding states from the IIT 3.0 paper.
Diagram::
+----------+
+------------------+ C (COPY) +<----------------+
v +----------+ |
+-------+-+ +-+-------+
| | +----------+ | |
| A (OR) +--------------->+ B (COPY) +-------------->+ D (XOR) |
| | +----------+ | |
+-+-----+-+ +-+-----+-+
| ^ ^ |
| | | |
| | +----------+ +----------+ | |
| +---+ H (COPY) +<----+ +---->+ F (COPY) +---+ |
| +----------+ | | +----------+ |
| | | |
| +-+-----+-+ |
| +----------+ | | +----------+ |
+-------->+ I (COPY) +-->| G (AND) |<--+ E (COPY) +<--------+
+----------+ | | +----------+
+---------+
Connectivity matrix:
+---+---+---+---+---+---+---+---+---+---+
| . | A | B | C | D | E | F | G | H | I |
+---+---+---+---+---+---+---+---+---+---+
| A | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
+---+---+---+---+---+---+---+---+---+---+
| B | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
+---+---+---+---+---+---+---+---+---+---+
| C | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
+---+---+---+---+---+---+---+---+---+---+
| D | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
+---+---+---+---+---+---+---+---+---+---+
| E | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
+---+---+---+---+---+---+---+---+---+---+
| F | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
+---+---+---+---+---+---+---+---+---+---+
| G | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
+---+---+---+---+---+---+---+---+---+---+
| H | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
+---+---+---+---+---+---+---+---+---+---+
| I | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
+---+---+---+---+---+---+---+---+---+---+
States:
In the IIT 3.0 paper example, the previous state of the system has only the
XOR gate ON. For the propagation delay network, this corresponds to a state
of
``(0, 0, 0, 1, 0, 0, 0, 0, 0)``.
The current state of the IIT 3.0 example has only the OR gate ON. By
advancing the propagation delay system two time steps, the current state
``(1, 0, 0, 0, 0, 0, 0, 0, 0)`` is achieved, with corresponding previous
state ``(0, 0, 1, 0, 1, 0, 0, 0, 0)``.
"""
num_nodes = 9
num_states = 2 ** num_nodes
tpm = np.zeros((num_states, num_nodes))
for previous_state_index, previous in enumerate(all_states(num_nodes)):
current_state = [0 for i in range(num_nodes)]
if previous[2] == 1 or previous[7] == 1:
current_state[0] = 1
if previous[0] == 1:
current_state[1] = 1
current_state[8] = 1
if previous[3] == 1:
current_state[2] = 1
current_state[4] = 1
if previous[1] == 1 ^ previous[5] == 1:
current_state[3] = 1
if previous[4] == 1 and previous[8] == 1:
current_state[6] = 1
if previous[6] == 1:
current_state[5] = 1
current_state[7] = 1
tpm[previous_state_index, :] = current_state
cm = np.array([[0, 1, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 1, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 1, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0, 0]])
return Network(tpm, cm=cm, node_labels=LABELS[:tpm.shape[1]]) | python | def propagation_delay_network():
"""A version of the primary example from the IIT 3.0 paper with
deterministic COPY gates on each connection. These copy gates essentially
function as propagation delays on the signal between OR, AND and XOR gates
from the original system.
The current and previous states of the network are also selected to mimic
the corresponding states from the IIT 3.0 paper.
Diagram::
+----------+
+------------------+ C (COPY) +<----------------+
v +----------+ |
+-------+-+ +-+-------+
| | +----------+ | |
| A (OR) +--------------->+ B (COPY) +-------------->+ D (XOR) |
| | +----------+ | |
+-+-----+-+ +-+-----+-+
| ^ ^ |
| | | |
| | +----------+ +----------+ | |
| +---+ H (COPY) +<----+ +---->+ F (COPY) +---+ |
| +----------+ | | +----------+ |
| | | |
| +-+-----+-+ |
| +----------+ | | +----------+ |
+-------->+ I (COPY) +-->| G (AND) |<--+ E (COPY) +<--------+
+----------+ | | +----------+
+---------+
Connectivity matrix:
+---+---+---+---+---+---+---+---+---+---+
| . | A | B | C | D | E | F | G | H | I |
+---+---+---+---+---+---+---+---+---+---+
| A | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
+---+---+---+---+---+---+---+---+---+---+
| B | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
+---+---+---+---+---+---+---+---+---+---+
| C | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
+---+---+---+---+---+---+---+---+---+---+
| D | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
+---+---+---+---+---+---+---+---+---+---+
| E | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
+---+---+---+---+---+---+---+---+---+---+
| F | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
+---+---+---+---+---+---+---+---+---+---+
| G | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
+---+---+---+---+---+---+---+---+---+---+
| H | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
+---+---+---+---+---+---+---+---+---+---+
| I | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
+---+---+---+---+---+---+---+---+---+---+
States:
In the IIT 3.0 paper example, the previous state of the system has only the
XOR gate ON. For the propagation delay network, this corresponds to a state
of
``(0, 0, 0, 1, 0, 0, 0, 0, 0)``.
The current state of the IIT 3.0 example has only the OR gate ON. By
advancing the propagation delay system two time steps, the current state
``(1, 0, 0, 0, 0, 0, 0, 0, 0)`` is achieved, with corresponding previous
state ``(0, 0, 1, 0, 1, 0, 0, 0, 0)``.
"""
num_nodes = 9
num_states = 2 ** num_nodes
tpm = np.zeros((num_states, num_nodes))
for previous_state_index, previous in enumerate(all_states(num_nodes)):
current_state = [0 for i in range(num_nodes)]
if previous[2] == 1 or previous[7] == 1:
current_state[0] = 1
if previous[0] == 1:
current_state[1] = 1
current_state[8] = 1
if previous[3] == 1:
current_state[2] = 1
current_state[4] = 1
if previous[1] == 1 ^ previous[5] == 1:
current_state[3] = 1
if previous[4] == 1 and previous[8] == 1:
current_state[6] = 1
if previous[6] == 1:
current_state[5] = 1
current_state[7] = 1
tpm[previous_state_index, :] = current_state
cm = np.array([[0, 1, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 1, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 1, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0, 0]])
return Network(tpm, cm=cm, node_labels=LABELS[:tpm.shape[1]]) | [
"def",
"propagation_delay_network",
"(",
")",
":",
"num_nodes",
"=",
"9",
"num_states",
"=",
"2",
"**",
"num_nodes",
"tpm",
"=",
"np",
".",
"zeros",
"(",
"(",
"num_states",
",",
"num_nodes",
")",
")",
"for",
"previous_state_index",
",",
"previous",
"in",
"enumerate",
"(",
"all_states",
"(",
"num_nodes",
")",
")",
":",
"current_state",
"=",
"[",
"0",
"for",
"i",
"in",
"range",
"(",
"num_nodes",
")",
"]",
"if",
"previous",
"[",
"2",
"]",
"==",
"1",
"or",
"previous",
"[",
"7",
"]",
"==",
"1",
":",
"current_state",
"[",
"0",
"]",
"=",
"1",
"if",
"previous",
"[",
"0",
"]",
"==",
"1",
":",
"current_state",
"[",
"1",
"]",
"=",
"1",
"current_state",
"[",
"8",
"]",
"=",
"1",
"if",
"previous",
"[",
"3",
"]",
"==",
"1",
":",
"current_state",
"[",
"2",
"]",
"=",
"1",
"current_state",
"[",
"4",
"]",
"=",
"1",
"if",
"previous",
"[",
"1",
"]",
"==",
"1",
"^",
"previous",
"[",
"5",
"]",
"==",
"1",
":",
"current_state",
"[",
"3",
"]",
"=",
"1",
"if",
"previous",
"[",
"4",
"]",
"==",
"1",
"and",
"previous",
"[",
"8",
"]",
"==",
"1",
":",
"current_state",
"[",
"6",
"]",
"=",
"1",
"if",
"previous",
"[",
"6",
"]",
"==",
"1",
":",
"current_state",
"[",
"5",
"]",
"=",
"1",
"current_state",
"[",
"7",
"]",
"=",
"1",
"tpm",
"[",
"previous_state_index",
",",
":",
"]",
"=",
"current_state",
"cm",
"=",
"np",
".",
"array",
"(",
"[",
"[",
"0",
",",
"1",
",",
"0",
",",
"0",
",",
"0",
",",
"0",
",",
"0",
",",
"0",
",",
"1",
"]",
",",
"[",
"0",
",",
"0",
",",
"0",
",",
"1",
",",
"0",
",",
"0",
",",
"0",
",",
"0",
",",
"0",
"]",
",",
"[",
"1",
",",
"0",
",",
"0",
",",
"0",
",",
"0",
",",
"0",
",",
"0",
",",
"0",
",",
"0",
"]",
",",
"[",
"0",
",",
"0",
",",
"1",
",",
"0",
",",
"1",
",",
"0",
",",
"0",
",",
"0",
",",
"0",
"]",
",",
"[",
"0",
",",
"0",
",",
"0",
",",
"0",
",",
"0",
",",
"0",
",",
"1",
",",
"0",
",",
"0",
"]",
",",
"[",
"0",
",",
"0",
",",
"0",
",",
"1",
",",
"0",
",",
"0",
",",
"0",
",",
"0",
",",
"0",
"]",
",",
"[",
"0",
",",
"0",
",",
"0",
",",
"0",
",",
"0",
",",
"1",
",",
"0",
",",
"1",
",",
"0",
"]",
",",
"[",
"1",
",",
"0",
",",
"0",
",",
"0",
",",
"0",
",",
"0",
",",
"0",
",",
"0",
",",
"0",
"]",
",",
"[",
"0",
",",
"0",
",",
"0",
",",
"0",
",",
"0",
",",
"0",
",",
"1",
",",
"0",
",",
"0",
"]",
"]",
")",
"return",
"Network",
"(",
"tpm",
",",
"cm",
"=",
"cm",
",",
"node_labels",
"=",
"LABELS",
"[",
":",
"tpm",
".",
"shape",
"[",
"1",
"]",
"]",
")"
] | A version of the primary example from the IIT 3.0 paper with
deterministic COPY gates on each connection. These copy gates essentially
function as propagation delays on the signal between OR, AND and XOR gates
from the original system.
The current and previous states of the network are also selected to mimic
the corresponding states from the IIT 3.0 paper.
Diagram::
+----------+
+------------------+ C (COPY) +<----------------+
v +----------+ |
+-------+-+ +-+-------+
| | +----------+ | |
| A (OR) +--------------->+ B (COPY) +-------------->+ D (XOR) |
| | +----------+ | |
+-+-----+-+ +-+-----+-+
| ^ ^ |
| | | |
| | +----------+ +----------+ | |
| +---+ H (COPY) +<----+ +---->+ F (COPY) +---+ |
| +----------+ | | +----------+ |
| | | |
| +-+-----+-+ |
| +----------+ | | +----------+ |
+-------->+ I (COPY) +-->| G (AND) |<--+ E (COPY) +<--------+
+----------+ | | +----------+
+---------+
Connectivity matrix:
+---+---+---+---+---+---+---+---+---+---+
| . | A | B | C | D | E | F | G | H | I |
+---+---+---+---+---+---+---+---+---+---+
| A | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
+---+---+---+---+---+---+---+---+---+---+
| B | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
+---+---+---+---+---+---+---+---+---+---+
| C | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
+---+---+---+---+---+---+---+---+---+---+
| D | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
+---+---+---+---+---+---+---+---+---+---+
| E | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
+---+---+---+---+---+---+---+---+---+---+
| F | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
+---+---+---+---+---+---+---+---+---+---+
| G | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
+---+---+---+---+---+---+---+---+---+---+
| H | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
+---+---+---+---+---+---+---+---+---+---+
| I | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
+---+---+---+---+---+---+---+---+---+---+
States:
In the IIT 3.0 paper example, the previous state of the system has only the
XOR gate ON. For the propagation delay network, this corresponds to a state
of
``(0, 0, 0, 1, 0, 0, 0, 0, 0)``.
The current state of the IIT 3.0 example has only the OR gate ON. By
advancing the propagation delay system two time steps, the current state
``(1, 0, 0, 0, 0, 0, 0, 0, 0)`` is achieved, with corresponding previous
state ``(0, 0, 1, 0, 1, 0, 0, 0, 0)``. | [
"A",
"version",
"of",
"the",
"primary",
"example",
"from",
"the",
"IIT",
"3",
".",
"0",
"paper",
"with",
"deterministic",
"COPY",
"gates",
"on",
"each",
"connection",
".",
"These",
"copy",
"gates",
"essentially",
"function",
"as",
"propagation",
"delays",
"on",
"the",
"signal",
"between",
"OR",
"AND",
"and",
"XOR",
"gates",
"from",
"the",
"original",
"system",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/examples.py#L395-L496 | train |
wmayner/pyphi | pyphi/examples.py | macro_network | def macro_network():
"""A network of micro elements which has greater integrated information
after coarse graining to a macro scale.
"""
tpm = np.array([[0.3, 0.3, 0.3, 0.3],
[0.3, 0.3, 0.3, 0.3],
[0.3, 0.3, 0.3, 0.3],
[0.3, 0.3, 1.0, 1.0],
[0.3, 0.3, 0.3, 0.3],
[0.3, 0.3, 0.3, 0.3],
[0.3, 0.3, 0.3, 0.3],
[0.3, 0.3, 1.0, 1.0],
[0.3, 0.3, 0.3, 0.3],
[0.3, 0.3, 0.3, 0.3],
[0.3, 0.3, 0.3, 0.3],
[0.3, 0.3, 1.0, 1.0],
[1.0, 1.0, 0.3, 0.3],
[1.0, 1.0, 0.3, 0.3],
[1.0, 1.0, 0.3, 0.3],
[1.0, 1.0, 1.0, 1.0]])
return Network(tpm, node_labels=LABELS[:tpm.shape[1]]) | python | def macro_network():
"""A network of micro elements which has greater integrated information
after coarse graining to a macro scale.
"""
tpm = np.array([[0.3, 0.3, 0.3, 0.3],
[0.3, 0.3, 0.3, 0.3],
[0.3, 0.3, 0.3, 0.3],
[0.3, 0.3, 1.0, 1.0],
[0.3, 0.3, 0.3, 0.3],
[0.3, 0.3, 0.3, 0.3],
[0.3, 0.3, 0.3, 0.3],
[0.3, 0.3, 1.0, 1.0],
[0.3, 0.3, 0.3, 0.3],
[0.3, 0.3, 0.3, 0.3],
[0.3, 0.3, 0.3, 0.3],
[0.3, 0.3, 1.0, 1.0],
[1.0, 1.0, 0.3, 0.3],
[1.0, 1.0, 0.3, 0.3],
[1.0, 1.0, 0.3, 0.3],
[1.0, 1.0, 1.0, 1.0]])
return Network(tpm, node_labels=LABELS[:tpm.shape[1]]) | [
"def",
"macro_network",
"(",
")",
":",
"tpm",
"=",
"np",
".",
"array",
"(",
"[",
"[",
"0.3",
",",
"0.3",
",",
"0.3",
",",
"0.3",
"]",
",",
"[",
"0.3",
",",
"0.3",
",",
"0.3",
",",
"0.3",
"]",
",",
"[",
"0.3",
",",
"0.3",
",",
"0.3",
",",
"0.3",
"]",
",",
"[",
"0.3",
",",
"0.3",
",",
"1.0",
",",
"1.0",
"]",
",",
"[",
"0.3",
",",
"0.3",
",",
"0.3",
",",
"0.3",
"]",
",",
"[",
"0.3",
",",
"0.3",
",",
"0.3",
",",
"0.3",
"]",
",",
"[",
"0.3",
",",
"0.3",
",",
"0.3",
",",
"0.3",
"]",
",",
"[",
"0.3",
",",
"0.3",
",",
"1.0",
",",
"1.0",
"]",
",",
"[",
"0.3",
",",
"0.3",
",",
"0.3",
",",
"0.3",
"]",
",",
"[",
"0.3",
",",
"0.3",
",",
"0.3",
",",
"0.3",
"]",
",",
"[",
"0.3",
",",
"0.3",
",",
"0.3",
",",
"0.3",
"]",
",",
"[",
"0.3",
",",
"0.3",
",",
"1.0",
",",
"1.0",
"]",
",",
"[",
"1.0",
",",
"1.0",
",",
"0.3",
",",
"0.3",
"]",
",",
"[",
"1.0",
",",
"1.0",
",",
"0.3",
",",
"0.3",
"]",
",",
"[",
"1.0",
",",
"1.0",
",",
"0.3",
",",
"0.3",
"]",
",",
"[",
"1.0",
",",
"1.0",
",",
"1.0",
",",
"1.0",
"]",
"]",
")",
"return",
"Network",
"(",
"tpm",
",",
"node_labels",
"=",
"LABELS",
"[",
":",
"tpm",
".",
"shape",
"[",
"1",
"]",
"]",
")"
] | A network of micro elements which has greater integrated information
after coarse graining to a macro scale. | [
"A",
"network",
"of",
"micro",
"elements",
"which",
"has",
"greater",
"integrated",
"information",
"after",
"coarse",
"graining",
"to",
"a",
"macro",
"scale",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/examples.py#L499-L519 | train |
wmayner/pyphi | pyphi/examples.py | blackbox_network | def blackbox_network():
"""A micro-network to demonstrate blackboxing.
Diagram::
+----------+
+-------------------->+ A (COPY) + <---------------+
| +----------+ |
| +----------+ |
| +-----------+ B (COPY) + <-------------+ |
v v +----------+ | |
+-+-----+-+ +-+-----+-+
| | | |
| C (AND) | | F (AND) |
| | | |
+-+-----+-+ +-+-----+-+
| | ^ ^
| | +----------+ | |
| +---------> + D (COPY) +---------------+ |
| +----------+ |
| +----------+ |
+-------------------> + E (COPY) +-----------------+
+----------+
Connectivity Matrix:
+---+---+---+---+---+---+---+
| . | A | B | C | D | E | F |
+---+---+---+---+---+---+---+
| A | 0 | 0 | 1 | 0 | 0 | 0 |
+---+---+---+---+---+---+---+
| B | 0 | 0 | 1 | 0 | 0 | 0 |
+---+---+---+---+---+---+---+
| C | 0 | 0 | 0 | 1 | 1 | 0 |
+---+---+---+---+---+---+---+
| D | 0 | 0 | 0 | 0 | 0 | 1 |
+---+---+---+---+---+---+---+
| E | 0 | 0 | 0 | 0 | 0 | 1 |
+---+---+---+---+---+---+---+
| F | 1 | 1 | 0 | 0 | 0 | 0 |
+---+---+---+---+---+---+---+
In the documentation example, the state is (0, 0, 0, 0, 0, 0).
"""
num_nodes = 6
num_states = 2 ** num_nodes
tpm = np.zeros((num_states, num_nodes))
for index, previous_state in enumerate(all_states(num_nodes)):
current_state = [0 for i in range(num_nodes)]
if previous_state[5] == 1:
current_state[0] = 1
current_state[1] = 1
if previous_state[0] == 1 and previous_state[1]:
current_state[2] = 1
if previous_state[2] == 1:
current_state[3] = 1
current_state[4] = 1
if previous_state[3] == 1 and previous_state[4] == 1:
current_state[5] = 1
tpm[index, :] = current_state
cm = np.array([
[0, 0, 1, 0, 0, 0],
[0, 0, 1, 0, 0, 0],
[0, 0, 0, 1, 1, 0],
[0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 1],
[1, 1, 0, 0, 0, 0]
])
return Network(tpm, cm, node_labels=LABELS[:tpm.shape[1]]) | python | def blackbox_network():
"""A micro-network to demonstrate blackboxing.
Diagram::
+----------+
+-------------------->+ A (COPY) + <---------------+
| +----------+ |
| +----------+ |
| +-----------+ B (COPY) + <-------------+ |
v v +----------+ | |
+-+-----+-+ +-+-----+-+
| | | |
| C (AND) | | F (AND) |
| | | |
+-+-----+-+ +-+-----+-+
| | ^ ^
| | +----------+ | |
| +---------> + D (COPY) +---------------+ |
| +----------+ |
| +----------+ |
+-------------------> + E (COPY) +-----------------+
+----------+
Connectivity Matrix:
+---+---+---+---+---+---+---+
| . | A | B | C | D | E | F |
+---+---+---+---+---+---+---+
| A | 0 | 0 | 1 | 0 | 0 | 0 |
+---+---+---+---+---+---+---+
| B | 0 | 0 | 1 | 0 | 0 | 0 |
+---+---+---+---+---+---+---+
| C | 0 | 0 | 0 | 1 | 1 | 0 |
+---+---+---+---+---+---+---+
| D | 0 | 0 | 0 | 0 | 0 | 1 |
+---+---+---+---+---+---+---+
| E | 0 | 0 | 0 | 0 | 0 | 1 |
+---+---+---+---+---+---+---+
| F | 1 | 1 | 0 | 0 | 0 | 0 |
+---+---+---+---+---+---+---+
In the documentation example, the state is (0, 0, 0, 0, 0, 0).
"""
num_nodes = 6
num_states = 2 ** num_nodes
tpm = np.zeros((num_states, num_nodes))
for index, previous_state in enumerate(all_states(num_nodes)):
current_state = [0 for i in range(num_nodes)]
if previous_state[5] == 1:
current_state[0] = 1
current_state[1] = 1
if previous_state[0] == 1 and previous_state[1]:
current_state[2] = 1
if previous_state[2] == 1:
current_state[3] = 1
current_state[4] = 1
if previous_state[3] == 1 and previous_state[4] == 1:
current_state[5] = 1
tpm[index, :] = current_state
cm = np.array([
[0, 0, 1, 0, 0, 0],
[0, 0, 1, 0, 0, 0],
[0, 0, 0, 1, 1, 0],
[0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 1],
[1, 1, 0, 0, 0, 0]
])
return Network(tpm, cm, node_labels=LABELS[:tpm.shape[1]]) | [
"def",
"blackbox_network",
"(",
")",
":",
"num_nodes",
"=",
"6",
"num_states",
"=",
"2",
"**",
"num_nodes",
"tpm",
"=",
"np",
".",
"zeros",
"(",
"(",
"num_states",
",",
"num_nodes",
")",
")",
"for",
"index",
",",
"previous_state",
"in",
"enumerate",
"(",
"all_states",
"(",
"num_nodes",
")",
")",
":",
"current_state",
"=",
"[",
"0",
"for",
"i",
"in",
"range",
"(",
"num_nodes",
")",
"]",
"if",
"previous_state",
"[",
"5",
"]",
"==",
"1",
":",
"current_state",
"[",
"0",
"]",
"=",
"1",
"current_state",
"[",
"1",
"]",
"=",
"1",
"if",
"previous_state",
"[",
"0",
"]",
"==",
"1",
"and",
"previous_state",
"[",
"1",
"]",
":",
"current_state",
"[",
"2",
"]",
"=",
"1",
"if",
"previous_state",
"[",
"2",
"]",
"==",
"1",
":",
"current_state",
"[",
"3",
"]",
"=",
"1",
"current_state",
"[",
"4",
"]",
"=",
"1",
"if",
"previous_state",
"[",
"3",
"]",
"==",
"1",
"and",
"previous_state",
"[",
"4",
"]",
"==",
"1",
":",
"current_state",
"[",
"5",
"]",
"=",
"1",
"tpm",
"[",
"index",
",",
":",
"]",
"=",
"current_state",
"cm",
"=",
"np",
".",
"array",
"(",
"[",
"[",
"0",
",",
"0",
",",
"1",
",",
"0",
",",
"0",
",",
"0",
"]",
",",
"[",
"0",
",",
"0",
",",
"1",
",",
"0",
",",
"0",
",",
"0",
"]",
",",
"[",
"0",
",",
"0",
",",
"0",
",",
"1",
",",
"1",
",",
"0",
"]",
",",
"[",
"0",
",",
"0",
",",
"0",
",",
"0",
",",
"0",
",",
"1",
"]",
",",
"[",
"0",
",",
"0",
",",
"0",
",",
"0",
",",
"0",
",",
"1",
"]",
",",
"[",
"1",
",",
"1",
",",
"0",
",",
"0",
",",
"0",
",",
"0",
"]",
"]",
")",
"return",
"Network",
"(",
"tpm",
",",
"cm",
",",
"node_labels",
"=",
"LABELS",
"[",
":",
"tpm",
".",
"shape",
"[",
"1",
"]",
"]",
")"
] | A micro-network to demonstrate blackboxing.
Diagram::
+----------+
+-------------------->+ A (COPY) + <---------------+
| +----------+ |
| +----------+ |
| +-----------+ B (COPY) + <-------------+ |
v v +----------+ | |
+-+-----+-+ +-+-----+-+
| | | |
| C (AND) | | F (AND) |
| | | |
+-+-----+-+ +-+-----+-+
| | ^ ^
| | +----------+ | |
| +---------> + D (COPY) +---------------+ |
| +----------+ |
| +----------+ |
+-------------------> + E (COPY) +-----------------+
+----------+
Connectivity Matrix:
+---+---+---+---+---+---+---+
| . | A | B | C | D | E | F |
+---+---+---+---+---+---+---+
| A | 0 | 0 | 1 | 0 | 0 | 0 |
+---+---+---+---+---+---+---+
| B | 0 | 0 | 1 | 0 | 0 | 0 |
+---+---+---+---+---+---+---+
| C | 0 | 0 | 0 | 1 | 1 | 0 |
+---+---+---+---+---+---+---+
| D | 0 | 0 | 0 | 0 | 0 | 1 |
+---+---+---+---+---+---+---+
| E | 0 | 0 | 0 | 0 | 0 | 1 |
+---+---+---+---+---+---+---+
| F | 1 | 1 | 0 | 0 | 0 | 0 |
+---+---+---+---+---+---+---+
In the documentation example, the state is (0, 0, 0, 0, 0, 0). | [
"A",
"micro",
"-",
"network",
"to",
"demonstrate",
"blackboxing",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/examples.py#L531-L603 | train |
wmayner/pyphi | pyphi/examples.py | actual_causation | def actual_causation():
"""The actual causation example network, consisting of an ``OR`` and
``AND`` gate with self-loops.
"""
tpm = np.array([
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 1, 0, 0],
[0, 0, 0, 1]
])
cm = np.array([
[1, 1],
[1, 1]
])
return Network(tpm, cm, node_labels=('OR', 'AND')) | python | def actual_causation():
"""The actual causation example network, consisting of an ``OR`` and
``AND`` gate with self-loops.
"""
tpm = np.array([
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 1, 0, 0],
[0, 0, 0, 1]
])
cm = np.array([
[1, 1],
[1, 1]
])
return Network(tpm, cm, node_labels=('OR', 'AND')) | [
"def",
"actual_causation",
"(",
")",
":",
"tpm",
"=",
"np",
".",
"array",
"(",
"[",
"[",
"1",
",",
"0",
",",
"0",
",",
"0",
"]",
",",
"[",
"0",
",",
"1",
",",
"0",
",",
"0",
"]",
",",
"[",
"0",
",",
"1",
",",
"0",
",",
"0",
"]",
",",
"[",
"0",
",",
"0",
",",
"0",
",",
"1",
"]",
"]",
")",
"cm",
"=",
"np",
".",
"array",
"(",
"[",
"[",
"1",
",",
"1",
"]",
",",
"[",
"1",
",",
"1",
"]",
"]",
")",
"return",
"Network",
"(",
"tpm",
",",
"cm",
",",
"node_labels",
"=",
"(",
"'OR'",
",",
"'AND'",
")",
")"
] | The actual causation example network, consisting of an ``OR`` and
``AND`` gate with self-loops. | [
"The",
"actual",
"causation",
"example",
"network",
"consisting",
"of",
"an",
"OR",
"and",
"AND",
"gate",
"with",
"self",
"-",
"loops",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/examples.py#L1063-L1077 | train |
wmayner/pyphi | pyphi/examples.py | prevention | def prevention():
"""The |Transition| for the prevention example from Actual Causation
Figure 5D.
"""
tpm = np.array([
[0.5, 0.5, 1],
[0.5, 0.5, 0],
[0.5, 0.5, 1],
[0.5, 0.5, 1],
[0.5, 0.5, 1],
[0.5, 0.5, 0],
[0.5, 0.5, 1],
[0.5, 0.5, 1]
])
cm = np.array([
[0, 0, 1],
[0, 0, 1],
[0, 0, 0]
])
network = Network(tpm, cm, node_labels=['A', 'B', 'F'])
x_state = (1, 1, 1)
y_state = (1, 1, 1)
return Transition(network, x_state, y_state, (0, 1), (2,)) | python | def prevention():
"""The |Transition| for the prevention example from Actual Causation
Figure 5D.
"""
tpm = np.array([
[0.5, 0.5, 1],
[0.5, 0.5, 0],
[0.5, 0.5, 1],
[0.5, 0.5, 1],
[0.5, 0.5, 1],
[0.5, 0.5, 0],
[0.5, 0.5, 1],
[0.5, 0.5, 1]
])
cm = np.array([
[0, 0, 1],
[0, 0, 1],
[0, 0, 0]
])
network = Network(tpm, cm, node_labels=['A', 'B', 'F'])
x_state = (1, 1, 1)
y_state = (1, 1, 1)
return Transition(network, x_state, y_state, (0, 1), (2,)) | [
"def",
"prevention",
"(",
")",
":",
"tpm",
"=",
"np",
".",
"array",
"(",
"[",
"[",
"0.5",
",",
"0.5",
",",
"1",
"]",
",",
"[",
"0.5",
",",
"0.5",
",",
"0",
"]",
",",
"[",
"0.5",
",",
"0.5",
",",
"1",
"]",
",",
"[",
"0.5",
",",
"0.5",
",",
"1",
"]",
",",
"[",
"0.5",
",",
"0.5",
",",
"1",
"]",
",",
"[",
"0.5",
",",
"0.5",
",",
"0",
"]",
",",
"[",
"0.5",
",",
"0.5",
",",
"1",
"]",
",",
"[",
"0.5",
",",
"0.5",
",",
"1",
"]",
"]",
")",
"cm",
"=",
"np",
".",
"array",
"(",
"[",
"[",
"0",
",",
"0",
",",
"1",
"]",
",",
"[",
"0",
",",
"0",
",",
"1",
"]",
",",
"[",
"0",
",",
"0",
",",
"0",
"]",
"]",
")",
"network",
"=",
"Network",
"(",
"tpm",
",",
"cm",
",",
"node_labels",
"=",
"[",
"'A'",
",",
"'B'",
",",
"'F'",
"]",
")",
"x_state",
"=",
"(",
"1",
",",
"1",
",",
"1",
")",
"y_state",
"=",
"(",
"1",
",",
"1",
",",
"1",
")",
"return",
"Transition",
"(",
"network",
",",
"x_state",
",",
"y_state",
",",
"(",
"0",
",",
"1",
")",
",",
"(",
"2",
",",
")",
")"
] | The |Transition| for the prevention example from Actual Causation
Figure 5D. | [
"The",
"|Transition|",
"for",
"the",
"prevention",
"example",
"from",
"Actual",
"Causation",
"Figure",
"5D",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/examples.py#L1113-L1136 | train |
wmayner/pyphi | benchmarks/benchmarks/subsystem.py | clear_subsystem_caches | def clear_subsystem_caches(subsys):
"""Clear subsystem caches"""
try:
# New-style caches
subsys._repertoire_cache.clear()
subsys._mice_cache.clear()
except TypeError:
try:
# Pre cache.clear() implementation
subsys._repertoire_cache.cache = {}
subsys._mice_cache.cache = {}
except AttributeError:
# Old school, pre cache refactor
subsys._repertoire_cache = {}
subsys._repertoire_cache_info = [0, 0]
subsys._mice_cache = {} | python | def clear_subsystem_caches(subsys):
"""Clear subsystem caches"""
try:
# New-style caches
subsys._repertoire_cache.clear()
subsys._mice_cache.clear()
except TypeError:
try:
# Pre cache.clear() implementation
subsys._repertoire_cache.cache = {}
subsys._mice_cache.cache = {}
except AttributeError:
# Old school, pre cache refactor
subsys._repertoire_cache = {}
subsys._repertoire_cache_info = [0, 0]
subsys._mice_cache = {} | [
"def",
"clear_subsystem_caches",
"(",
"subsys",
")",
":",
"try",
":",
"# New-style caches",
"subsys",
".",
"_repertoire_cache",
".",
"clear",
"(",
")",
"subsys",
".",
"_mice_cache",
".",
"clear",
"(",
")",
"except",
"TypeError",
":",
"try",
":",
"# Pre cache.clear() implementation",
"subsys",
".",
"_repertoire_cache",
".",
"cache",
"=",
"{",
"}",
"subsys",
".",
"_mice_cache",
".",
"cache",
"=",
"{",
"}",
"except",
"AttributeError",
":",
"# Old school, pre cache refactor",
"subsys",
".",
"_repertoire_cache",
"=",
"{",
"}",
"subsys",
".",
"_repertoire_cache_info",
"=",
"[",
"0",
",",
"0",
"]",
"subsys",
".",
"_mice_cache",
"=",
"{",
"}"
] | Clear subsystem caches | [
"Clear",
"subsystem",
"caches"
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/benchmarks/benchmarks/subsystem.py#L24-L39 | train |
wmayner/pyphi | pyphi/utils.py | all_states | def all_states(n, big_endian=False):
"""Return all binary states for a system.
Args:
n (int): The number of elements in the system.
big_endian (bool): Whether to return the states in big-endian order
instead of little-endian order.
Yields:
tuple[int]: The next state of an ``n``-element system, in little-endian
order unless ``big_endian`` is ``True``.
"""
if n == 0:
return
for state in product((0, 1), repeat=n):
if big_endian:
yield state
else:
yield state[::-1] | python | def all_states(n, big_endian=False):
"""Return all binary states for a system.
Args:
n (int): The number of elements in the system.
big_endian (bool): Whether to return the states in big-endian order
instead of little-endian order.
Yields:
tuple[int]: The next state of an ``n``-element system, in little-endian
order unless ``big_endian`` is ``True``.
"""
if n == 0:
return
for state in product((0, 1), repeat=n):
if big_endian:
yield state
else:
yield state[::-1] | [
"def",
"all_states",
"(",
"n",
",",
"big_endian",
"=",
"False",
")",
":",
"if",
"n",
"==",
"0",
":",
"return",
"for",
"state",
"in",
"product",
"(",
"(",
"0",
",",
"1",
")",
",",
"repeat",
"=",
"n",
")",
":",
"if",
"big_endian",
":",
"yield",
"state",
"else",
":",
"yield",
"state",
"[",
":",
":",
"-",
"1",
"]"
] | Return all binary states for a system.
Args:
n (int): The number of elements in the system.
big_endian (bool): Whether to return the states in big-endian order
instead of little-endian order.
Yields:
tuple[int]: The next state of an ``n``-element system, in little-endian
order unless ``big_endian`` is ``True``. | [
"Return",
"all",
"binary",
"states",
"for",
"a",
"system",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/utils.py#L27-L46 | train |
wmayner/pyphi | pyphi/utils.py | np_hash | def np_hash(a):
"""Return a hash of a NumPy array."""
if a is None:
return hash(None)
# Ensure that hashes are equal whatever the ordering in memory (C or
# Fortran)
a = np.ascontiguousarray(a)
# Compute the digest and return a decimal int
return int(hashlib.sha1(a.view(a.dtype)).hexdigest(), 16) | python | def np_hash(a):
"""Return a hash of a NumPy array."""
if a is None:
return hash(None)
# Ensure that hashes are equal whatever the ordering in memory (C or
# Fortran)
a = np.ascontiguousarray(a)
# Compute the digest and return a decimal int
return int(hashlib.sha1(a.view(a.dtype)).hexdigest(), 16) | [
"def",
"np_hash",
"(",
"a",
")",
":",
"if",
"a",
"is",
"None",
":",
"return",
"hash",
"(",
"None",
")",
"# Ensure that hashes are equal whatever the ordering in memory (C or",
"# Fortran)",
"a",
"=",
"np",
".",
"ascontiguousarray",
"(",
"a",
")",
"# Compute the digest and return a decimal int",
"return",
"int",
"(",
"hashlib",
".",
"sha1",
"(",
"a",
".",
"view",
"(",
"a",
".",
"dtype",
")",
")",
".",
"hexdigest",
"(",
")",
",",
"16",
")"
] | Return a hash of a NumPy array. | [
"Return",
"a",
"hash",
"of",
"a",
"NumPy",
"array",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/utils.py#L55-L63 | train |
wmayner/pyphi | pyphi/utils.py | powerset | def powerset(iterable, nonempty=False, reverse=False):
"""Generate the power set of an iterable.
Args:
iterable (Iterable): The iterable from which to generate the power set.
Keyword Args:
nonempty (boolean): If True, don't include the empty set.
reverse (boolean): If True, reverse the order of the powerset.
Returns:
Iterable: An iterator over the power set.
Example:
>>> ps = powerset(np.arange(2))
>>> list(ps)
[(), (0,), (1,), (0, 1)]
>>> ps = powerset(np.arange(2), nonempty=True)
>>> list(ps)
[(0,), (1,), (0, 1)]
>>> ps = powerset(np.arange(2), nonempty=True, reverse=True)
>>> list(ps)
[(1, 0), (1,), (0,)]
"""
iterable = list(iterable)
if nonempty: # Don't include 0-length subsets
start = 1
else:
start = 0
seq_sizes = range(start, len(iterable) + 1)
if reverse:
seq_sizes = reversed(seq_sizes)
iterable.reverse()
return chain.from_iterable(combinations(iterable, r) for r in seq_sizes) | python | def powerset(iterable, nonempty=False, reverse=False):
"""Generate the power set of an iterable.
Args:
iterable (Iterable): The iterable from which to generate the power set.
Keyword Args:
nonempty (boolean): If True, don't include the empty set.
reverse (boolean): If True, reverse the order of the powerset.
Returns:
Iterable: An iterator over the power set.
Example:
>>> ps = powerset(np.arange(2))
>>> list(ps)
[(), (0,), (1,), (0, 1)]
>>> ps = powerset(np.arange(2), nonempty=True)
>>> list(ps)
[(0,), (1,), (0, 1)]
>>> ps = powerset(np.arange(2), nonempty=True, reverse=True)
>>> list(ps)
[(1, 0), (1,), (0,)]
"""
iterable = list(iterable)
if nonempty: # Don't include 0-length subsets
start = 1
else:
start = 0
seq_sizes = range(start, len(iterable) + 1)
if reverse:
seq_sizes = reversed(seq_sizes)
iterable.reverse()
return chain.from_iterable(combinations(iterable, r) for r in seq_sizes) | [
"def",
"powerset",
"(",
"iterable",
",",
"nonempty",
"=",
"False",
",",
"reverse",
"=",
"False",
")",
":",
"iterable",
"=",
"list",
"(",
"iterable",
")",
"if",
"nonempty",
":",
"# Don't include 0-length subsets",
"start",
"=",
"1",
"else",
":",
"start",
"=",
"0",
"seq_sizes",
"=",
"range",
"(",
"start",
",",
"len",
"(",
"iterable",
")",
"+",
"1",
")",
"if",
"reverse",
":",
"seq_sizes",
"=",
"reversed",
"(",
"seq_sizes",
")",
"iterable",
".",
"reverse",
"(",
")",
"return",
"chain",
".",
"from_iterable",
"(",
"combinations",
"(",
"iterable",
",",
"r",
")",
"for",
"r",
"in",
"seq_sizes",
")"
] | Generate the power set of an iterable.
Args:
iterable (Iterable): The iterable from which to generate the power set.
Keyword Args:
nonempty (boolean): If True, don't include the empty set.
reverse (boolean): If True, reverse the order of the powerset.
Returns:
Iterable: An iterator over the power set.
Example:
>>> ps = powerset(np.arange(2))
>>> list(ps)
[(), (0,), (1,), (0, 1)]
>>> ps = powerset(np.arange(2), nonempty=True)
>>> list(ps)
[(0,), (1,), (0, 1)]
>>> ps = powerset(np.arange(2), nonempty=True, reverse=True)
>>> list(ps)
[(1, 0), (1,), (0,)] | [
"Generate",
"the",
"power",
"set",
"of",
"an",
"iterable",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/utils.py#L146-L183 | train |
wmayner/pyphi | pyphi/utils.py | load_data | def load_data(directory, num):
"""Load numpy data from the data directory.
The files should stored in ``../data/<dir>`` and named
``0.npy, 1.npy, ... <num - 1>.npy``.
Returns:
list: A list of loaded data, such that ``list[i]`` contains the the
contents of ``i.npy``.
"""
root = os.path.abspath(os.path.dirname(__file__))
def get_path(i): # pylint: disable=missing-docstring
return os.path.join(root, 'data', directory, str(i) + '.npy')
return [np.load(get_path(i)) for i in range(num)] | python | def load_data(directory, num):
"""Load numpy data from the data directory.
The files should stored in ``../data/<dir>`` and named
``0.npy, 1.npy, ... <num - 1>.npy``.
Returns:
list: A list of loaded data, such that ``list[i]`` contains the the
contents of ``i.npy``.
"""
root = os.path.abspath(os.path.dirname(__file__))
def get_path(i): # pylint: disable=missing-docstring
return os.path.join(root, 'data', directory, str(i) + '.npy')
return [np.load(get_path(i)) for i in range(num)] | [
"def",
"load_data",
"(",
"directory",
",",
"num",
")",
":",
"root",
"=",
"os",
".",
"path",
".",
"abspath",
"(",
"os",
".",
"path",
".",
"dirname",
"(",
"__file__",
")",
")",
"def",
"get_path",
"(",
"i",
")",
":",
"# pylint: disable=missing-docstring",
"return",
"os",
".",
"path",
".",
"join",
"(",
"root",
",",
"'data'",
",",
"directory",
",",
"str",
"(",
"i",
")",
"+",
"'.npy'",
")",
"return",
"[",
"np",
".",
"load",
"(",
"get_path",
"(",
"i",
")",
")",
"for",
"i",
"in",
"range",
"(",
"num",
")",
"]"
] | Load numpy data from the data directory.
The files should stored in ``../data/<dir>`` and named
``0.npy, 1.npy, ... <num - 1>.npy``.
Returns:
list: A list of loaded data, such that ``list[i]`` contains the the
contents of ``i.npy``. | [
"Load",
"numpy",
"data",
"from",
"the",
"data",
"directory",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/utils.py#L186-L201 | train |
wmayner/pyphi | pyphi/utils.py | time_annotated | def time_annotated(func, *args, **kwargs):
"""Annotate the decorated function or method with the total execution
time.
The result is annotated with a `time` attribute.
"""
start = time()
result = func(*args, **kwargs)
end = time()
result.time = round(end - start, config.PRECISION)
return result | python | def time_annotated(func, *args, **kwargs):
"""Annotate the decorated function or method with the total execution
time.
The result is annotated with a `time` attribute.
"""
start = time()
result = func(*args, **kwargs)
end = time()
result.time = round(end - start, config.PRECISION)
return result | [
"def",
"time_annotated",
"(",
"func",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"start",
"=",
"time",
"(",
")",
"result",
"=",
"func",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"end",
"=",
"time",
"(",
")",
"result",
".",
"time",
"=",
"round",
"(",
"end",
"-",
"start",
",",
"config",
".",
"PRECISION",
")",
"return",
"result"
] | Annotate the decorated function or method with the total execution
time.
The result is annotated with a `time` attribute. | [
"Annotate",
"the",
"decorated",
"function",
"or",
"method",
"with",
"the",
"total",
"execution",
"time",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/utils.py#L207-L217 | train |
wmayner/pyphi | pyphi/models/mechanism.py | _null_ria | def _null_ria(direction, mechanism, purview, repertoire=None, phi=0.0):
"""The irreducibility analysis for a reducible mechanism."""
# TODO Use properties here to infer mechanism and purview from
# partition yet access them with .mechanism and .partition
return RepertoireIrreducibilityAnalysis(
direction=direction,
mechanism=mechanism,
purview=purview,
partition=None,
repertoire=repertoire,
partitioned_repertoire=None,
phi=phi
) | python | def _null_ria(direction, mechanism, purview, repertoire=None, phi=0.0):
"""The irreducibility analysis for a reducible mechanism."""
# TODO Use properties here to infer mechanism and purview from
# partition yet access them with .mechanism and .partition
return RepertoireIrreducibilityAnalysis(
direction=direction,
mechanism=mechanism,
purview=purview,
partition=None,
repertoire=repertoire,
partitioned_repertoire=None,
phi=phi
) | [
"def",
"_null_ria",
"(",
"direction",
",",
"mechanism",
",",
"purview",
",",
"repertoire",
"=",
"None",
",",
"phi",
"=",
"0.0",
")",
":",
"# TODO Use properties here to infer mechanism and purview from",
"# partition yet access them with .mechanism and .partition",
"return",
"RepertoireIrreducibilityAnalysis",
"(",
"direction",
"=",
"direction",
",",
"mechanism",
"=",
"mechanism",
",",
"purview",
"=",
"purview",
",",
"partition",
"=",
"None",
",",
"repertoire",
"=",
"repertoire",
",",
"partitioned_repertoire",
"=",
"None",
",",
"phi",
"=",
"phi",
")"
] | The irreducibility analysis for a reducible mechanism. | [
"The",
"irreducibility",
"analysis",
"for",
"a",
"reducible",
"mechanism",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/models/mechanism.py#L135-L147 | train |
wmayner/pyphi | pyphi/models/mechanism.py | MaximallyIrreducibleCauseOrEffect.damaged_by_cut | def damaged_by_cut(self, subsystem):
"""Return ``True`` if this MICE is affected by the subsystem's cut.
The cut affects the MICE if it either splits the MICE's mechanism
or splits the connections between the purview and mechanism.
"""
return (subsystem.cut.splits_mechanism(self.mechanism) or
np.any(self._relevant_connections(subsystem) *
subsystem.cut.cut_matrix(subsystem.network.size) == 1)) | python | def damaged_by_cut(self, subsystem):
"""Return ``True`` if this MICE is affected by the subsystem's cut.
The cut affects the MICE if it either splits the MICE's mechanism
or splits the connections between the purview and mechanism.
"""
return (subsystem.cut.splits_mechanism(self.mechanism) or
np.any(self._relevant_connections(subsystem) *
subsystem.cut.cut_matrix(subsystem.network.size) == 1)) | [
"def",
"damaged_by_cut",
"(",
"self",
",",
"subsystem",
")",
":",
"return",
"(",
"subsystem",
".",
"cut",
".",
"splits_mechanism",
"(",
"self",
".",
"mechanism",
")",
"or",
"np",
".",
"any",
"(",
"self",
".",
"_relevant_connections",
"(",
"subsystem",
")",
"*",
"subsystem",
".",
"cut",
".",
"cut_matrix",
"(",
"subsystem",
".",
"network",
".",
"size",
")",
"==",
"1",
")",
")"
] | Return ``True`` if this MICE is affected by the subsystem's cut.
The cut affects the MICE if it either splits the MICE's mechanism
or splits the connections between the purview and mechanism. | [
"Return",
"True",
"if",
"this",
"MICE",
"is",
"affected",
"by",
"the",
"subsystem",
"s",
"cut",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/models/mechanism.py#L277-L285 | train |
wmayner/pyphi | pyphi/models/mechanism.py | Concept.eq_repertoires | def eq_repertoires(self, other):
"""Return whether this concept has the same repertoires as another.
.. warning::
This only checks if the cause and effect repertoires are equal as
arrays; mechanisms, purviews, or even the nodes that the mechanism
and purview indices refer to, might be different.
"""
return (
np.array_equal(self.cause_repertoire, other.cause_repertoire) and
np.array_equal(self.effect_repertoire, other.effect_repertoire)) | python | def eq_repertoires(self, other):
"""Return whether this concept has the same repertoires as another.
.. warning::
This only checks if the cause and effect repertoires are equal as
arrays; mechanisms, purviews, or even the nodes that the mechanism
and purview indices refer to, might be different.
"""
return (
np.array_equal(self.cause_repertoire, other.cause_repertoire) and
np.array_equal(self.effect_repertoire, other.effect_repertoire)) | [
"def",
"eq_repertoires",
"(",
"self",
",",
"other",
")",
":",
"return",
"(",
"np",
".",
"array_equal",
"(",
"self",
".",
"cause_repertoire",
",",
"other",
".",
"cause_repertoire",
")",
"and",
"np",
".",
"array_equal",
"(",
"self",
".",
"effect_repertoire",
",",
"other",
".",
"effect_repertoire",
")",
")"
] | Return whether this concept has the same repertoires as another.
.. warning::
This only checks if the cause and effect repertoires are equal as
arrays; mechanisms, purviews, or even the nodes that the mechanism
and purview indices refer to, might be different. | [
"Return",
"whether",
"this",
"concept",
"has",
"the",
"same",
"repertoires",
"as",
"another",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/models/mechanism.py#L431-L441 | train |
wmayner/pyphi | pyphi/models/mechanism.py | Concept.emd_eq | def emd_eq(self, other):
"""Return whether this concept is equal to another in the context of
an EMD calculation.
"""
return (self.phi == other.phi and
self.mechanism == other.mechanism and
self.eq_repertoires(other)) | python | def emd_eq(self, other):
"""Return whether this concept is equal to another in the context of
an EMD calculation.
"""
return (self.phi == other.phi and
self.mechanism == other.mechanism and
self.eq_repertoires(other)) | [
"def",
"emd_eq",
"(",
"self",
",",
"other",
")",
":",
"return",
"(",
"self",
".",
"phi",
"==",
"other",
".",
"phi",
"and",
"self",
".",
"mechanism",
"==",
"other",
".",
"mechanism",
"and",
"self",
".",
"eq_repertoires",
"(",
"other",
")",
")"
] | Return whether this concept is equal to another in the context of
an EMD calculation. | [
"Return",
"whether",
"this",
"concept",
"is",
"equal",
"to",
"another",
"in",
"the",
"context",
"of",
"an",
"EMD",
"calculation",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/models/mechanism.py#L443-L449 | train |
wmayner/pyphi | pyphi/actual.py | directed_account | def directed_account(transition, direction, mechanisms=False, purviews=False,
allow_neg=False):
"""Return the set of all |CausalLinks| of the specified direction."""
if mechanisms is False:
mechanisms = utils.powerset(transition.mechanism_indices(direction),
nonempty=True)
links = [
transition.find_causal_link(direction, mechanism, purviews=purviews,
allow_neg=allow_neg)
for mechanism in mechanisms]
# Filter out causal links with zero alpha
return DirectedAccount(filter(None, links)) | python | def directed_account(transition, direction, mechanisms=False, purviews=False,
allow_neg=False):
"""Return the set of all |CausalLinks| of the specified direction."""
if mechanisms is False:
mechanisms = utils.powerset(transition.mechanism_indices(direction),
nonempty=True)
links = [
transition.find_causal_link(direction, mechanism, purviews=purviews,
allow_neg=allow_neg)
for mechanism in mechanisms]
# Filter out causal links with zero alpha
return DirectedAccount(filter(None, links)) | [
"def",
"directed_account",
"(",
"transition",
",",
"direction",
",",
"mechanisms",
"=",
"False",
",",
"purviews",
"=",
"False",
",",
"allow_neg",
"=",
"False",
")",
":",
"if",
"mechanisms",
"is",
"False",
":",
"mechanisms",
"=",
"utils",
".",
"powerset",
"(",
"transition",
".",
"mechanism_indices",
"(",
"direction",
")",
",",
"nonempty",
"=",
"True",
")",
"links",
"=",
"[",
"transition",
".",
"find_causal_link",
"(",
"direction",
",",
"mechanism",
",",
"purviews",
"=",
"purviews",
",",
"allow_neg",
"=",
"allow_neg",
")",
"for",
"mechanism",
"in",
"mechanisms",
"]",
"# Filter out causal links with zero alpha",
"return",
"DirectedAccount",
"(",
"filter",
"(",
"None",
",",
"links",
")",
")"
] | Return the set of all |CausalLinks| of the specified direction. | [
"Return",
"the",
"set",
"of",
"all",
"|CausalLinks|",
"of",
"the",
"specified",
"direction",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/actual.py#L440-L452 | train |
wmayner/pyphi | pyphi/actual.py | account | def account(transition, direction=Direction.BIDIRECTIONAL):
"""Return the set of all causal links for a |Transition|.
Args:
transition (Transition): The transition of interest.
Keyword Args:
direction (Direction): By default the account contains actual causes
and actual effects.
"""
if direction != Direction.BIDIRECTIONAL:
return directed_account(transition, direction)
return Account(directed_account(transition, Direction.CAUSE) +
directed_account(transition, Direction.EFFECT)) | python | def account(transition, direction=Direction.BIDIRECTIONAL):
"""Return the set of all causal links for a |Transition|.
Args:
transition (Transition): The transition of interest.
Keyword Args:
direction (Direction): By default the account contains actual causes
and actual effects.
"""
if direction != Direction.BIDIRECTIONAL:
return directed_account(transition, direction)
return Account(directed_account(transition, Direction.CAUSE) +
directed_account(transition, Direction.EFFECT)) | [
"def",
"account",
"(",
"transition",
",",
"direction",
"=",
"Direction",
".",
"BIDIRECTIONAL",
")",
":",
"if",
"direction",
"!=",
"Direction",
".",
"BIDIRECTIONAL",
":",
"return",
"directed_account",
"(",
"transition",
",",
"direction",
")",
"return",
"Account",
"(",
"directed_account",
"(",
"transition",
",",
"Direction",
".",
"CAUSE",
")",
"+",
"directed_account",
"(",
"transition",
",",
"Direction",
".",
"EFFECT",
")",
")"
] | Return the set of all causal links for a |Transition|.
Args:
transition (Transition): The transition of interest.
Keyword Args:
direction (Direction): By default the account contains actual causes
and actual effects. | [
"Return",
"the",
"set",
"of",
"all",
"causal",
"links",
"for",
"a",
"|Transition|",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/actual.py#L455-L469 | train |
wmayner/pyphi | pyphi/actual.py | _evaluate_cut | def _evaluate_cut(transition, cut, unpartitioned_account,
direction=Direction.BIDIRECTIONAL):
"""Find the |AcSystemIrreducibilityAnalysis| for a given cut."""
cut_transition = transition.apply_cut(cut)
partitioned_account = account(cut_transition, direction)
log.debug("Finished evaluating %s.", cut)
alpha = account_distance(unpartitioned_account, partitioned_account)
return AcSystemIrreducibilityAnalysis(
alpha=round(alpha, config.PRECISION),
direction=direction,
account=unpartitioned_account,
partitioned_account=partitioned_account,
transition=transition,
cut=cut) | python | def _evaluate_cut(transition, cut, unpartitioned_account,
direction=Direction.BIDIRECTIONAL):
"""Find the |AcSystemIrreducibilityAnalysis| for a given cut."""
cut_transition = transition.apply_cut(cut)
partitioned_account = account(cut_transition, direction)
log.debug("Finished evaluating %s.", cut)
alpha = account_distance(unpartitioned_account, partitioned_account)
return AcSystemIrreducibilityAnalysis(
alpha=round(alpha, config.PRECISION),
direction=direction,
account=unpartitioned_account,
partitioned_account=partitioned_account,
transition=transition,
cut=cut) | [
"def",
"_evaluate_cut",
"(",
"transition",
",",
"cut",
",",
"unpartitioned_account",
",",
"direction",
"=",
"Direction",
".",
"BIDIRECTIONAL",
")",
":",
"cut_transition",
"=",
"transition",
".",
"apply_cut",
"(",
"cut",
")",
"partitioned_account",
"=",
"account",
"(",
"cut_transition",
",",
"direction",
")",
"log",
".",
"debug",
"(",
"\"Finished evaluating %s.\"",
",",
"cut",
")",
"alpha",
"=",
"account_distance",
"(",
"unpartitioned_account",
",",
"partitioned_account",
")",
"return",
"AcSystemIrreducibilityAnalysis",
"(",
"alpha",
"=",
"round",
"(",
"alpha",
",",
"config",
".",
"PRECISION",
")",
",",
"direction",
"=",
"direction",
",",
"account",
"=",
"unpartitioned_account",
",",
"partitioned_account",
"=",
"partitioned_account",
",",
"transition",
"=",
"transition",
",",
"cut",
"=",
"cut",
")"
] | Find the |AcSystemIrreducibilityAnalysis| for a given cut. | [
"Find",
"the",
"|AcSystemIrreducibilityAnalysis|",
"for",
"a",
"given",
"cut",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/actual.py#L492-L507 | train |
wmayner/pyphi | pyphi/actual.py | _get_cuts | def _get_cuts(transition, direction):
"""A list of possible cuts to a transition."""
n = transition.network.size
if direction is Direction.BIDIRECTIONAL:
yielded = set()
for cut in chain(_get_cuts(transition, Direction.CAUSE),
_get_cuts(transition, Direction.EFFECT)):
cm = utils.np_hashable(cut.cut_matrix(n))
if cm not in yielded:
yielded.add(cm)
yield cut
else:
mechanism = transition.mechanism_indices(direction)
purview = transition.purview_indices(direction)
for partition in mip_partitions(mechanism, purview,
transition.node_labels):
yield ActualCut(direction, partition, transition.node_labels) | python | def _get_cuts(transition, direction):
"""A list of possible cuts to a transition."""
n = transition.network.size
if direction is Direction.BIDIRECTIONAL:
yielded = set()
for cut in chain(_get_cuts(transition, Direction.CAUSE),
_get_cuts(transition, Direction.EFFECT)):
cm = utils.np_hashable(cut.cut_matrix(n))
if cm not in yielded:
yielded.add(cm)
yield cut
else:
mechanism = transition.mechanism_indices(direction)
purview = transition.purview_indices(direction)
for partition in mip_partitions(mechanism, purview,
transition.node_labels):
yield ActualCut(direction, partition, transition.node_labels) | [
"def",
"_get_cuts",
"(",
"transition",
",",
"direction",
")",
":",
"n",
"=",
"transition",
".",
"network",
".",
"size",
"if",
"direction",
"is",
"Direction",
".",
"BIDIRECTIONAL",
":",
"yielded",
"=",
"set",
"(",
")",
"for",
"cut",
"in",
"chain",
"(",
"_get_cuts",
"(",
"transition",
",",
"Direction",
".",
"CAUSE",
")",
",",
"_get_cuts",
"(",
"transition",
",",
"Direction",
".",
"EFFECT",
")",
")",
":",
"cm",
"=",
"utils",
".",
"np_hashable",
"(",
"cut",
".",
"cut_matrix",
"(",
"n",
")",
")",
"if",
"cm",
"not",
"in",
"yielded",
":",
"yielded",
".",
"add",
"(",
"cm",
")",
"yield",
"cut",
"else",
":",
"mechanism",
"=",
"transition",
".",
"mechanism_indices",
"(",
"direction",
")",
"purview",
"=",
"transition",
".",
"purview_indices",
"(",
"direction",
")",
"for",
"partition",
"in",
"mip_partitions",
"(",
"mechanism",
",",
"purview",
",",
"transition",
".",
"node_labels",
")",
":",
"yield",
"ActualCut",
"(",
"direction",
",",
"partition",
",",
"transition",
".",
"node_labels",
")"
] | A list of possible cuts to a transition. | [
"A",
"list",
"of",
"possible",
"cuts",
"to",
"a",
"transition",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/actual.py#L511-L529 | train |
wmayner/pyphi | pyphi/actual.py | sia | def sia(transition, direction=Direction.BIDIRECTIONAL):
"""Return the minimal information partition of a transition in a specific
direction.
Args:
transition (Transition): The candidate system.
Returns:
AcSystemIrreducibilityAnalysis: A nested structure containing all the
data from the intermediate calculations. The top level contains the
basic irreducibility information for the given subsystem.
"""
validate.direction(direction, allow_bi=True)
log.info("Calculating big-alpha for %s...", transition)
if not transition:
log.info('Transition %s is empty; returning null SIA '
'immediately.', transition)
return _null_ac_sia(transition, direction)
if not connectivity.is_weak(transition.network.cm,
transition.node_indices):
log.info('%s is not strongly/weakly connected; returning null SIA '
'immediately.', transition)
return _null_ac_sia(transition, direction)
log.debug("Finding unpartitioned account...")
unpartitioned_account = account(transition, direction)
log.debug("Found unpartitioned account.")
if not unpartitioned_account:
log.info('Empty unpartitioned account; returning null AC SIA '
'immediately.')
return _null_ac_sia(transition, direction)
cuts = _get_cuts(transition, direction)
engine = ComputeACSystemIrreducibility(
cuts, transition, direction, unpartitioned_account)
result = engine.run_sequential()
log.info("Finished calculating big-ac-phi data for %s.", transition)
log.debug("RESULT: \n%s", result)
return result | python | def sia(transition, direction=Direction.BIDIRECTIONAL):
"""Return the minimal information partition of a transition in a specific
direction.
Args:
transition (Transition): The candidate system.
Returns:
AcSystemIrreducibilityAnalysis: A nested structure containing all the
data from the intermediate calculations. The top level contains the
basic irreducibility information for the given subsystem.
"""
validate.direction(direction, allow_bi=True)
log.info("Calculating big-alpha for %s...", transition)
if not transition:
log.info('Transition %s is empty; returning null SIA '
'immediately.', transition)
return _null_ac_sia(transition, direction)
if not connectivity.is_weak(transition.network.cm,
transition.node_indices):
log.info('%s is not strongly/weakly connected; returning null SIA '
'immediately.', transition)
return _null_ac_sia(transition, direction)
log.debug("Finding unpartitioned account...")
unpartitioned_account = account(transition, direction)
log.debug("Found unpartitioned account.")
if not unpartitioned_account:
log.info('Empty unpartitioned account; returning null AC SIA '
'immediately.')
return _null_ac_sia(transition, direction)
cuts = _get_cuts(transition, direction)
engine = ComputeACSystemIrreducibility(
cuts, transition, direction, unpartitioned_account)
result = engine.run_sequential()
log.info("Finished calculating big-ac-phi data for %s.", transition)
log.debug("RESULT: \n%s", result)
return result | [
"def",
"sia",
"(",
"transition",
",",
"direction",
"=",
"Direction",
".",
"BIDIRECTIONAL",
")",
":",
"validate",
".",
"direction",
"(",
"direction",
",",
"allow_bi",
"=",
"True",
")",
"log",
".",
"info",
"(",
"\"Calculating big-alpha for %s...\"",
",",
"transition",
")",
"if",
"not",
"transition",
":",
"log",
".",
"info",
"(",
"'Transition %s is empty; returning null SIA '",
"'immediately.'",
",",
"transition",
")",
"return",
"_null_ac_sia",
"(",
"transition",
",",
"direction",
")",
"if",
"not",
"connectivity",
".",
"is_weak",
"(",
"transition",
".",
"network",
".",
"cm",
",",
"transition",
".",
"node_indices",
")",
":",
"log",
".",
"info",
"(",
"'%s is not strongly/weakly connected; returning null SIA '",
"'immediately.'",
",",
"transition",
")",
"return",
"_null_ac_sia",
"(",
"transition",
",",
"direction",
")",
"log",
".",
"debug",
"(",
"\"Finding unpartitioned account...\"",
")",
"unpartitioned_account",
"=",
"account",
"(",
"transition",
",",
"direction",
")",
"log",
".",
"debug",
"(",
"\"Found unpartitioned account.\"",
")",
"if",
"not",
"unpartitioned_account",
":",
"log",
".",
"info",
"(",
"'Empty unpartitioned account; returning null AC SIA '",
"'immediately.'",
")",
"return",
"_null_ac_sia",
"(",
"transition",
",",
"direction",
")",
"cuts",
"=",
"_get_cuts",
"(",
"transition",
",",
"direction",
")",
"engine",
"=",
"ComputeACSystemIrreducibility",
"(",
"cuts",
",",
"transition",
",",
"direction",
",",
"unpartitioned_account",
")",
"result",
"=",
"engine",
".",
"run_sequential",
"(",
")",
"log",
".",
"info",
"(",
"\"Finished calculating big-ac-phi data for %s.\"",
",",
"transition",
")",
"log",
".",
"debug",
"(",
"\"RESULT: \\n%s\"",
",",
"result",
")",
"return",
"result"
] | Return the minimal information partition of a transition in a specific
direction.
Args:
transition (Transition): The candidate system.
Returns:
AcSystemIrreducibilityAnalysis: A nested structure containing all the
data from the intermediate calculations. The top level contains the
basic irreducibility information for the given subsystem. | [
"Return",
"the",
"minimal",
"information",
"partition",
"of",
"a",
"transition",
"in",
"a",
"specific",
"direction",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/actual.py#L532-L573 | train |
wmayner/pyphi | pyphi/actual.py | nexus | def nexus(network, before_state, after_state,
direction=Direction.BIDIRECTIONAL):
"""Return a tuple of all irreducible nexus of the network."""
validate.is_network(network)
sias = (sia(transition, direction) for transition in
transitions(network, before_state, after_state))
return tuple(sorted(filter(None, sias), reverse=True)) | python | def nexus(network, before_state, after_state,
direction=Direction.BIDIRECTIONAL):
"""Return a tuple of all irreducible nexus of the network."""
validate.is_network(network)
sias = (sia(transition, direction) for transition in
transitions(network, before_state, after_state))
return tuple(sorted(filter(None, sias), reverse=True)) | [
"def",
"nexus",
"(",
"network",
",",
"before_state",
",",
"after_state",
",",
"direction",
"=",
"Direction",
".",
"BIDIRECTIONAL",
")",
":",
"validate",
".",
"is_network",
"(",
"network",
")",
"sias",
"=",
"(",
"sia",
"(",
"transition",
",",
"direction",
")",
"for",
"transition",
"in",
"transitions",
"(",
"network",
",",
"before_state",
",",
"after_state",
")",
")",
"return",
"tuple",
"(",
"sorted",
"(",
"filter",
"(",
"None",
",",
"sias",
")",
",",
"reverse",
"=",
"True",
")",
")"
] | Return a tuple of all irreducible nexus of the network. | [
"Return",
"a",
"tuple",
"of",
"all",
"irreducible",
"nexus",
"of",
"the",
"network",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/actual.py#L626-L633 | train |
wmayner/pyphi | pyphi/actual.py | causal_nexus | def causal_nexus(network, before_state, after_state,
direction=Direction.BIDIRECTIONAL):
"""Return the causal nexus of the network."""
validate.is_network(network)
log.info("Calculating causal nexus...")
result = nexus(network, before_state, after_state, direction)
if result:
result = max(result)
else:
null_transition = Transition(
network, before_state, after_state, (), ())
result = _null_ac_sia(null_transition, direction)
log.info("Finished calculating causal nexus.")
log.debug("RESULT: \n%s", result)
return result | python | def causal_nexus(network, before_state, after_state,
direction=Direction.BIDIRECTIONAL):
"""Return the causal nexus of the network."""
validate.is_network(network)
log.info("Calculating causal nexus...")
result = nexus(network, before_state, after_state, direction)
if result:
result = max(result)
else:
null_transition = Transition(
network, before_state, after_state, (), ())
result = _null_ac_sia(null_transition, direction)
log.info("Finished calculating causal nexus.")
log.debug("RESULT: \n%s", result)
return result | [
"def",
"causal_nexus",
"(",
"network",
",",
"before_state",
",",
"after_state",
",",
"direction",
"=",
"Direction",
".",
"BIDIRECTIONAL",
")",
":",
"validate",
".",
"is_network",
"(",
"network",
")",
"log",
".",
"info",
"(",
"\"Calculating causal nexus...\"",
")",
"result",
"=",
"nexus",
"(",
"network",
",",
"before_state",
",",
"after_state",
",",
"direction",
")",
"if",
"result",
":",
"result",
"=",
"max",
"(",
"result",
")",
"else",
":",
"null_transition",
"=",
"Transition",
"(",
"network",
",",
"before_state",
",",
"after_state",
",",
"(",
")",
",",
"(",
")",
")",
"result",
"=",
"_null_ac_sia",
"(",
"null_transition",
",",
"direction",
")",
"log",
".",
"info",
"(",
"\"Finished calculating causal nexus.\"",
")",
"log",
".",
"debug",
"(",
"\"RESULT: \\n%s\"",
",",
"result",
")",
"return",
"result"
] | Return the causal nexus of the network. | [
"Return",
"the",
"causal",
"nexus",
"of",
"the",
"network",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/actual.py#L636-L652 | train |
wmayner/pyphi | pyphi/actual.py | nice_true_ces | def nice_true_ces(tc):
"""Format a true |CauseEffectStructure|."""
cause_list = []
next_list = []
cause = '<--'
effect = '-->'
for event in tc:
if event.direction == Direction.CAUSE:
cause_list.append(["{0:.4f}".format(round(event.alpha, 4)),
event.mechanism, cause, event.purview])
elif event.direction == Direction.EFFECT:
next_list.append(["{0:.4f}".format(round(event.alpha, 4)),
event.mechanism, effect, event.purview])
else:
validate.direction(event.direction)
true_list = [(cause_list[event], next_list[event])
for event in range(len(cause_list))]
return true_list | python | def nice_true_ces(tc):
"""Format a true |CauseEffectStructure|."""
cause_list = []
next_list = []
cause = '<--'
effect = '-->'
for event in tc:
if event.direction == Direction.CAUSE:
cause_list.append(["{0:.4f}".format(round(event.alpha, 4)),
event.mechanism, cause, event.purview])
elif event.direction == Direction.EFFECT:
next_list.append(["{0:.4f}".format(round(event.alpha, 4)),
event.mechanism, effect, event.purview])
else:
validate.direction(event.direction)
true_list = [(cause_list[event], next_list[event])
for event in range(len(cause_list))]
return true_list | [
"def",
"nice_true_ces",
"(",
"tc",
")",
":",
"cause_list",
"=",
"[",
"]",
"next_list",
"=",
"[",
"]",
"cause",
"=",
"'<--'",
"effect",
"=",
"'-->'",
"for",
"event",
"in",
"tc",
":",
"if",
"event",
".",
"direction",
"==",
"Direction",
".",
"CAUSE",
":",
"cause_list",
".",
"append",
"(",
"[",
"\"{0:.4f}\"",
".",
"format",
"(",
"round",
"(",
"event",
".",
"alpha",
",",
"4",
")",
")",
",",
"event",
".",
"mechanism",
",",
"cause",
",",
"event",
".",
"purview",
"]",
")",
"elif",
"event",
".",
"direction",
"==",
"Direction",
".",
"EFFECT",
":",
"next_list",
".",
"append",
"(",
"[",
"\"{0:.4f}\"",
".",
"format",
"(",
"round",
"(",
"event",
".",
"alpha",
",",
"4",
")",
")",
",",
"event",
".",
"mechanism",
",",
"effect",
",",
"event",
".",
"purview",
"]",
")",
"else",
":",
"validate",
".",
"direction",
"(",
"event",
".",
"direction",
")",
"true_list",
"=",
"[",
"(",
"cause_list",
"[",
"event",
"]",
",",
"next_list",
"[",
"event",
"]",
")",
"for",
"event",
"in",
"range",
"(",
"len",
"(",
"cause_list",
")",
")",
"]",
"return",
"true_list"
] | Format a true |CauseEffectStructure|. | [
"Format",
"a",
"true",
"|CauseEffectStructure|",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/actual.py#L660-L678 | train |
wmayner/pyphi | pyphi/actual.py | true_ces | def true_ces(subsystem, previous_state, next_state):
"""Set of all sets of elements that have true causes and true effects.
.. note::
Since the true |CauseEffectStructure| is always about the full system,
the background conditions don't matter and the subsystem should be
conditioned on the current state.
"""
network = subsystem.network
nodes = subsystem.node_indices
state = subsystem.state
_events = events(network, previous_state, state, next_state, nodes)
if not _events:
log.info("Finished calculating, no echo events.")
return None
result = tuple([event.actual_cause for event in _events] +
[event.actual_effect for event in _events])
log.info("Finished calculating true events.")
log.debug("RESULT: \n%s", result)
return result | python | def true_ces(subsystem, previous_state, next_state):
"""Set of all sets of elements that have true causes and true effects.
.. note::
Since the true |CauseEffectStructure| is always about the full system,
the background conditions don't matter and the subsystem should be
conditioned on the current state.
"""
network = subsystem.network
nodes = subsystem.node_indices
state = subsystem.state
_events = events(network, previous_state, state, next_state, nodes)
if not _events:
log.info("Finished calculating, no echo events.")
return None
result = tuple([event.actual_cause for event in _events] +
[event.actual_effect for event in _events])
log.info("Finished calculating true events.")
log.debug("RESULT: \n%s", result)
return result | [
"def",
"true_ces",
"(",
"subsystem",
",",
"previous_state",
",",
"next_state",
")",
":",
"network",
"=",
"subsystem",
".",
"network",
"nodes",
"=",
"subsystem",
".",
"node_indices",
"state",
"=",
"subsystem",
".",
"state",
"_events",
"=",
"events",
"(",
"network",
",",
"previous_state",
",",
"state",
",",
"next_state",
",",
"nodes",
")",
"if",
"not",
"_events",
":",
"log",
".",
"info",
"(",
"\"Finished calculating, no echo events.\"",
")",
"return",
"None",
"result",
"=",
"tuple",
"(",
"[",
"event",
".",
"actual_cause",
"for",
"event",
"in",
"_events",
"]",
"+",
"[",
"event",
".",
"actual_effect",
"for",
"event",
"in",
"_events",
"]",
")",
"log",
".",
"info",
"(",
"\"Finished calculating true events.\"",
")",
"log",
".",
"debug",
"(",
"\"RESULT: \\n%s\"",
",",
"result",
")",
"return",
"result"
] | Set of all sets of elements that have true causes and true effects.
.. note::
Since the true |CauseEffectStructure| is always about the full system,
the background conditions don't matter and the subsystem should be
conditioned on the current state. | [
"Set",
"of",
"all",
"sets",
"of",
"elements",
"that",
"have",
"true",
"causes",
"and",
"true",
"effects",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/actual.py#L728-L751 | train |
wmayner/pyphi | pyphi/actual.py | true_events | def true_events(network, previous_state, current_state, next_state,
indices=None, major_complex=None):
"""Return all mechanisms that have true causes and true effects within the
complex.
Args:
network (Network): The network to analyze.
previous_state (tuple[int]): The state of the network at ``t - 1``.
current_state (tuple[int]): The state of the network at ``t``.
next_state (tuple[int]): The state of the network at ``t + 1``.
Keyword Args:
indices (tuple[int]): The indices of the major complex.
major_complex (AcSystemIrreducibilityAnalysis): The major complex. If
``major_complex`` is given then ``indices`` is ignored.
Returns:
tuple[Event]: List of true events in the major complex.
"""
# TODO: validate triplet of states
if major_complex:
nodes = major_complex.subsystem.node_indices
elif indices:
nodes = indices
else:
major_complex = compute.major_complex(network, current_state)
nodes = major_complex.subsystem.node_indices
return events(network, previous_state, current_state, next_state, nodes) | python | def true_events(network, previous_state, current_state, next_state,
indices=None, major_complex=None):
"""Return all mechanisms that have true causes and true effects within the
complex.
Args:
network (Network): The network to analyze.
previous_state (tuple[int]): The state of the network at ``t - 1``.
current_state (tuple[int]): The state of the network at ``t``.
next_state (tuple[int]): The state of the network at ``t + 1``.
Keyword Args:
indices (tuple[int]): The indices of the major complex.
major_complex (AcSystemIrreducibilityAnalysis): The major complex. If
``major_complex`` is given then ``indices`` is ignored.
Returns:
tuple[Event]: List of true events in the major complex.
"""
# TODO: validate triplet of states
if major_complex:
nodes = major_complex.subsystem.node_indices
elif indices:
nodes = indices
else:
major_complex = compute.major_complex(network, current_state)
nodes = major_complex.subsystem.node_indices
return events(network, previous_state, current_state, next_state, nodes) | [
"def",
"true_events",
"(",
"network",
",",
"previous_state",
",",
"current_state",
",",
"next_state",
",",
"indices",
"=",
"None",
",",
"major_complex",
"=",
"None",
")",
":",
"# TODO: validate triplet of states",
"if",
"major_complex",
":",
"nodes",
"=",
"major_complex",
".",
"subsystem",
".",
"node_indices",
"elif",
"indices",
":",
"nodes",
"=",
"indices",
"else",
":",
"major_complex",
"=",
"compute",
".",
"major_complex",
"(",
"network",
",",
"current_state",
")",
"nodes",
"=",
"major_complex",
".",
"subsystem",
".",
"node_indices",
"return",
"events",
"(",
"network",
",",
"previous_state",
",",
"current_state",
",",
"next_state",
",",
"nodes",
")"
] | Return all mechanisms that have true causes and true effects within the
complex.
Args:
network (Network): The network to analyze.
previous_state (tuple[int]): The state of the network at ``t - 1``.
current_state (tuple[int]): The state of the network at ``t``.
next_state (tuple[int]): The state of the network at ``t + 1``.
Keyword Args:
indices (tuple[int]): The indices of the major complex.
major_complex (AcSystemIrreducibilityAnalysis): The major complex. If
``major_complex`` is given then ``indices`` is ignored.
Returns:
tuple[Event]: List of true events in the major complex. | [
"Return",
"all",
"mechanisms",
"that",
"have",
"true",
"causes",
"and",
"true",
"effects",
"within",
"the",
"complex",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/actual.py#L754-L783 | train |
wmayner/pyphi | pyphi/actual.py | extrinsic_events | def extrinsic_events(network, previous_state, current_state, next_state,
indices=None, major_complex=None):
"""Set of all mechanisms that are in the major complex but which have true
causes and effects within the entire network.
Args:
network (Network): The network to analyze.
previous_state (tuple[int]): The state of the network at ``t - 1``.
current_state (tuple[int]): The state of the network at ``t``.
next_state (tuple[int]): The state of the network at ``t + 1``.
Keyword Args:
indices (tuple[int]): The indices of the major complex.
major_complex (AcSystemIrreducibilityAnalysis): The major complex. If
``major_complex`` is given then ``indices`` is ignored.
Returns:
tuple(actions): List of extrinsic events in the major complex.
"""
if major_complex:
mc_nodes = major_complex.subsystem.node_indices
elif indices:
mc_nodes = indices
else:
major_complex = compute.major_complex(network, current_state)
mc_nodes = major_complex.subsystem.node_indices
mechanisms = list(utils.powerset(mc_nodes, nonempty=True))
all_nodes = network.node_indices
return events(network, previous_state, current_state, next_state,
all_nodes, mechanisms=mechanisms) | python | def extrinsic_events(network, previous_state, current_state, next_state,
indices=None, major_complex=None):
"""Set of all mechanisms that are in the major complex but which have true
causes and effects within the entire network.
Args:
network (Network): The network to analyze.
previous_state (tuple[int]): The state of the network at ``t - 1``.
current_state (tuple[int]): The state of the network at ``t``.
next_state (tuple[int]): The state of the network at ``t + 1``.
Keyword Args:
indices (tuple[int]): The indices of the major complex.
major_complex (AcSystemIrreducibilityAnalysis): The major complex. If
``major_complex`` is given then ``indices`` is ignored.
Returns:
tuple(actions): List of extrinsic events in the major complex.
"""
if major_complex:
mc_nodes = major_complex.subsystem.node_indices
elif indices:
mc_nodes = indices
else:
major_complex = compute.major_complex(network, current_state)
mc_nodes = major_complex.subsystem.node_indices
mechanisms = list(utils.powerset(mc_nodes, nonempty=True))
all_nodes = network.node_indices
return events(network, previous_state, current_state, next_state,
all_nodes, mechanisms=mechanisms) | [
"def",
"extrinsic_events",
"(",
"network",
",",
"previous_state",
",",
"current_state",
",",
"next_state",
",",
"indices",
"=",
"None",
",",
"major_complex",
"=",
"None",
")",
":",
"if",
"major_complex",
":",
"mc_nodes",
"=",
"major_complex",
".",
"subsystem",
".",
"node_indices",
"elif",
"indices",
":",
"mc_nodes",
"=",
"indices",
"else",
":",
"major_complex",
"=",
"compute",
".",
"major_complex",
"(",
"network",
",",
"current_state",
")",
"mc_nodes",
"=",
"major_complex",
".",
"subsystem",
".",
"node_indices",
"mechanisms",
"=",
"list",
"(",
"utils",
".",
"powerset",
"(",
"mc_nodes",
",",
"nonempty",
"=",
"True",
")",
")",
"all_nodes",
"=",
"network",
".",
"node_indices",
"return",
"events",
"(",
"network",
",",
"previous_state",
",",
"current_state",
",",
"next_state",
",",
"all_nodes",
",",
"mechanisms",
"=",
"mechanisms",
")"
] | Set of all mechanisms that are in the major complex but which have true
causes and effects within the entire network.
Args:
network (Network): The network to analyze.
previous_state (tuple[int]): The state of the network at ``t - 1``.
current_state (tuple[int]): The state of the network at ``t``.
next_state (tuple[int]): The state of the network at ``t + 1``.
Keyword Args:
indices (tuple[int]): The indices of the major complex.
major_complex (AcSystemIrreducibilityAnalysis): The major complex. If
``major_complex`` is given then ``indices`` is ignored.
Returns:
tuple(actions): List of extrinsic events in the major complex. | [
"Set",
"of",
"all",
"mechanisms",
"that",
"are",
"in",
"the",
"major",
"complex",
"but",
"which",
"have",
"true",
"causes",
"and",
"effects",
"within",
"the",
"entire",
"network",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/actual.py#L786-L817 | train |
wmayner/pyphi | pyphi/actual.py | Transition.apply_cut | def apply_cut(self, cut):
"""Return a cut version of this transition."""
return Transition(self.network, self.before_state, self.after_state,
self.cause_indices, self.effect_indices, cut) | python | def apply_cut(self, cut):
"""Return a cut version of this transition."""
return Transition(self.network, self.before_state, self.after_state,
self.cause_indices, self.effect_indices, cut) | [
"def",
"apply_cut",
"(",
"self",
",",
"cut",
")",
":",
"return",
"Transition",
"(",
"self",
".",
"network",
",",
"self",
".",
"before_state",
",",
"self",
".",
"after_state",
",",
"self",
".",
"cause_indices",
",",
"self",
".",
"effect_indices",
",",
"cut",
")"
] | Return a cut version of this transition. | [
"Return",
"a",
"cut",
"version",
"of",
"this",
"transition",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/actual.py#L176-L179 | train |
wmayner/pyphi | pyphi/actual.py | Transition.cause_repertoire | def cause_repertoire(self, mechanism, purview):
"""Return the cause repertoire."""
return self.repertoire(Direction.CAUSE, mechanism, purview) | python | def cause_repertoire(self, mechanism, purview):
"""Return the cause repertoire."""
return self.repertoire(Direction.CAUSE, mechanism, purview) | [
"def",
"cause_repertoire",
"(",
"self",
",",
"mechanism",
",",
"purview",
")",
":",
"return",
"self",
".",
"repertoire",
"(",
"Direction",
".",
"CAUSE",
",",
"mechanism",
",",
"purview",
")"
] | Return the cause repertoire. | [
"Return",
"the",
"cause",
"repertoire",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/actual.py#L181-L183 | train |
wmayner/pyphi | pyphi/actual.py | Transition.effect_repertoire | def effect_repertoire(self, mechanism, purview):
"""Return the effect repertoire."""
return self.repertoire(Direction.EFFECT, mechanism, purview) | python | def effect_repertoire(self, mechanism, purview):
"""Return the effect repertoire."""
return self.repertoire(Direction.EFFECT, mechanism, purview) | [
"def",
"effect_repertoire",
"(",
"self",
",",
"mechanism",
",",
"purview",
")",
":",
"return",
"self",
".",
"repertoire",
"(",
"Direction",
".",
"EFFECT",
",",
"mechanism",
",",
"purview",
")"
] | Return the effect repertoire. | [
"Return",
"the",
"effect",
"repertoire",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/actual.py#L185-L187 | train |
wmayner/pyphi | pyphi/actual.py | Transition.repertoire | def repertoire(self, direction, mechanism, purview):
"""Return the cause or effect repertoire function based on a direction.
Args:
direction (str): The temporal direction, specifiying the cause or
effect repertoire.
"""
system = self.system[direction]
node_labels = system.node_labels
if not set(purview).issubset(self.purview_indices(direction)):
raise ValueError('{} is not a {} purview in {}'.format(
fmt.fmt_mechanism(purview, node_labels), direction, self))
if not set(mechanism).issubset(self.mechanism_indices(direction)):
raise ValueError('{} is no a {} mechanism in {}'.format(
fmt.fmt_mechanism(mechanism, node_labels), direction, self))
return system.repertoire(direction, mechanism, purview) | python | def repertoire(self, direction, mechanism, purview):
"""Return the cause or effect repertoire function based on a direction.
Args:
direction (str): The temporal direction, specifiying the cause or
effect repertoire.
"""
system = self.system[direction]
node_labels = system.node_labels
if not set(purview).issubset(self.purview_indices(direction)):
raise ValueError('{} is not a {} purview in {}'.format(
fmt.fmt_mechanism(purview, node_labels), direction, self))
if not set(mechanism).issubset(self.mechanism_indices(direction)):
raise ValueError('{} is no a {} mechanism in {}'.format(
fmt.fmt_mechanism(mechanism, node_labels), direction, self))
return system.repertoire(direction, mechanism, purview) | [
"def",
"repertoire",
"(",
"self",
",",
"direction",
",",
"mechanism",
",",
"purview",
")",
":",
"system",
"=",
"self",
".",
"system",
"[",
"direction",
"]",
"node_labels",
"=",
"system",
".",
"node_labels",
"if",
"not",
"set",
"(",
"purview",
")",
".",
"issubset",
"(",
"self",
".",
"purview_indices",
"(",
"direction",
")",
")",
":",
"raise",
"ValueError",
"(",
"'{} is not a {} purview in {}'",
".",
"format",
"(",
"fmt",
".",
"fmt_mechanism",
"(",
"purview",
",",
"node_labels",
")",
",",
"direction",
",",
"self",
")",
")",
"if",
"not",
"set",
"(",
"mechanism",
")",
".",
"issubset",
"(",
"self",
".",
"mechanism_indices",
"(",
"direction",
")",
")",
":",
"raise",
"ValueError",
"(",
"'{} is no a {} mechanism in {}'",
".",
"format",
"(",
"fmt",
".",
"fmt_mechanism",
"(",
"mechanism",
",",
"node_labels",
")",
",",
"direction",
",",
"self",
")",
")",
"return",
"system",
".",
"repertoire",
"(",
"direction",
",",
"mechanism",
",",
"purview",
")"
] | Return the cause or effect repertoire function based on a direction.
Args:
direction (str): The temporal direction, specifiying the cause or
effect repertoire. | [
"Return",
"the",
"cause",
"or",
"effect",
"repertoire",
"function",
"based",
"on",
"a",
"direction",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/actual.py#L197-L215 | train |
wmayner/pyphi | pyphi/actual.py | Transition.state_probability | def state_probability(self, direction, repertoire, purview,):
"""Compute the probability of the purview in its current state given
the repertoire.
Collapses the dimensions of the repertoire that correspond to the
purview nodes onto their state. All other dimension are already
singular and thus receive 0 as the conditioning index.
Returns:
float: A single probabilty.
"""
purview_state = self.purview_state(direction)
index = tuple(node_state if node in purview else 0
for node, node_state in enumerate(purview_state))
return repertoire[index] | python | def state_probability(self, direction, repertoire, purview,):
"""Compute the probability of the purview in its current state given
the repertoire.
Collapses the dimensions of the repertoire that correspond to the
purview nodes onto their state. All other dimension are already
singular and thus receive 0 as the conditioning index.
Returns:
float: A single probabilty.
"""
purview_state = self.purview_state(direction)
index = tuple(node_state if node in purview else 0
for node, node_state in enumerate(purview_state))
return repertoire[index] | [
"def",
"state_probability",
"(",
"self",
",",
"direction",
",",
"repertoire",
",",
"purview",
",",
")",
":",
"purview_state",
"=",
"self",
".",
"purview_state",
"(",
"direction",
")",
"index",
"=",
"tuple",
"(",
"node_state",
"if",
"node",
"in",
"purview",
"else",
"0",
"for",
"node",
",",
"node_state",
"in",
"enumerate",
"(",
"purview_state",
")",
")",
"return",
"repertoire",
"[",
"index",
"]"
] | Compute the probability of the purview in its current state given
the repertoire.
Collapses the dimensions of the repertoire that correspond to the
purview nodes onto their state. All other dimension are already
singular and thus receive 0 as the conditioning index.
Returns:
float: A single probabilty. | [
"Compute",
"the",
"probability",
"of",
"the",
"purview",
"in",
"its",
"current",
"state",
"given",
"the",
"repertoire",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/actual.py#L217-L232 | train |
wmayner/pyphi | pyphi/actual.py | Transition.probability | def probability(self, direction, mechanism, purview):
"""Probability that the purview is in it's current state given the
state of the mechanism.
"""
repertoire = self.repertoire(direction, mechanism, purview)
return self.state_probability(direction, repertoire, purview) | python | def probability(self, direction, mechanism, purview):
"""Probability that the purview is in it's current state given the
state of the mechanism.
"""
repertoire = self.repertoire(direction, mechanism, purview)
return self.state_probability(direction, repertoire, purview) | [
"def",
"probability",
"(",
"self",
",",
"direction",
",",
"mechanism",
",",
"purview",
")",
":",
"repertoire",
"=",
"self",
".",
"repertoire",
"(",
"direction",
",",
"mechanism",
",",
"purview",
")",
"return",
"self",
".",
"state_probability",
"(",
"direction",
",",
"repertoire",
",",
"purview",
")"
] | Probability that the purview is in it's current state given the
state of the mechanism. | [
"Probability",
"that",
"the",
"purview",
"is",
"in",
"it",
"s",
"current",
"state",
"given",
"the",
"state",
"of",
"the",
"mechanism",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/actual.py#L234-L240 | train |
wmayner/pyphi | pyphi/actual.py | Transition.purview_state | def purview_state(self, direction):
"""The state of the purview when we are computing coefficients in
``direction``.
For example, if we are computing the cause coefficient of a mechanism
in ``after_state``, the direction is``CAUSE`` and the ``purview_state``
is ``before_state``.
"""
return {
Direction.CAUSE: self.before_state,
Direction.EFFECT: self.after_state
}[direction] | python | def purview_state(self, direction):
"""The state of the purview when we are computing coefficients in
``direction``.
For example, if we are computing the cause coefficient of a mechanism
in ``after_state``, the direction is``CAUSE`` and the ``purview_state``
is ``before_state``.
"""
return {
Direction.CAUSE: self.before_state,
Direction.EFFECT: self.after_state
}[direction] | [
"def",
"purview_state",
"(",
"self",
",",
"direction",
")",
":",
"return",
"{",
"Direction",
".",
"CAUSE",
":",
"self",
".",
"before_state",
",",
"Direction",
".",
"EFFECT",
":",
"self",
".",
"after_state",
"}",
"[",
"direction",
"]"
] | The state of the purview when we are computing coefficients in
``direction``.
For example, if we are computing the cause coefficient of a mechanism
in ``after_state``, the direction is``CAUSE`` and the ``purview_state``
is ``before_state``. | [
"The",
"state",
"of",
"the",
"purview",
"when",
"we",
"are",
"computing",
"coefficients",
"in",
"direction",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/actual.py#L246-L257 | train |
wmayner/pyphi | pyphi/actual.py | Transition.mechanism_indices | def mechanism_indices(self, direction):
"""The indices of nodes in the mechanism system."""
return {
Direction.CAUSE: self.effect_indices,
Direction.EFFECT: self.cause_indices
}[direction] | python | def mechanism_indices(self, direction):
"""The indices of nodes in the mechanism system."""
return {
Direction.CAUSE: self.effect_indices,
Direction.EFFECT: self.cause_indices
}[direction] | [
"def",
"mechanism_indices",
"(",
"self",
",",
"direction",
")",
":",
"return",
"{",
"Direction",
".",
"CAUSE",
":",
"self",
".",
"effect_indices",
",",
"Direction",
".",
"EFFECT",
":",
"self",
".",
"cause_indices",
"}",
"[",
"direction",
"]"
] | The indices of nodes in the mechanism system. | [
"The",
"indices",
"of",
"nodes",
"in",
"the",
"mechanism",
"system",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/actual.py#L265-L270 | train |
wmayner/pyphi | pyphi/actual.py | Transition.purview_indices | def purview_indices(self, direction):
"""The indices of nodes in the purview system."""
return {
Direction.CAUSE: self.cause_indices,
Direction.EFFECT: self.effect_indices
}[direction] | python | def purview_indices(self, direction):
"""The indices of nodes in the purview system."""
return {
Direction.CAUSE: self.cause_indices,
Direction.EFFECT: self.effect_indices
}[direction] | [
"def",
"purview_indices",
"(",
"self",
",",
"direction",
")",
":",
"return",
"{",
"Direction",
".",
"CAUSE",
":",
"self",
".",
"cause_indices",
",",
"Direction",
".",
"EFFECT",
":",
"self",
".",
"effect_indices",
"}",
"[",
"direction",
"]"
] | The indices of nodes in the purview system. | [
"The",
"indices",
"of",
"nodes",
"in",
"the",
"purview",
"system",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/actual.py#L272-L277 | train |
wmayner/pyphi | pyphi/actual.py | Transition.cause_ratio | def cause_ratio(self, mechanism, purview):
"""The cause ratio of the ``purview`` given ``mechanism``."""
return self._ratio(Direction.CAUSE, mechanism, purview) | python | def cause_ratio(self, mechanism, purview):
"""The cause ratio of the ``purview`` given ``mechanism``."""
return self._ratio(Direction.CAUSE, mechanism, purview) | [
"def",
"cause_ratio",
"(",
"self",
",",
"mechanism",
",",
"purview",
")",
":",
"return",
"self",
".",
"_ratio",
"(",
"Direction",
".",
"CAUSE",
",",
"mechanism",
",",
"purview",
")"
] | The cause ratio of the ``purview`` given ``mechanism``. | [
"The",
"cause",
"ratio",
"of",
"the",
"purview",
"given",
"mechanism",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/actual.py#L283-L285 | train |
wmayner/pyphi | pyphi/actual.py | Transition.effect_ratio | def effect_ratio(self, mechanism, purview):
"""The effect ratio of the ``purview`` given ``mechanism``."""
return self._ratio(Direction.EFFECT, mechanism, purview) | python | def effect_ratio(self, mechanism, purview):
"""The effect ratio of the ``purview`` given ``mechanism``."""
return self._ratio(Direction.EFFECT, mechanism, purview) | [
"def",
"effect_ratio",
"(",
"self",
",",
"mechanism",
",",
"purview",
")",
":",
"return",
"self",
".",
"_ratio",
"(",
"Direction",
".",
"EFFECT",
",",
"mechanism",
",",
"purview",
")"
] | The effect ratio of the ``purview`` given ``mechanism``. | [
"The",
"effect",
"ratio",
"of",
"the",
"purview",
"given",
"mechanism",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/actual.py#L287-L289 | train |
wmayner/pyphi | pyphi/actual.py | Transition.partitioned_repertoire | def partitioned_repertoire(self, direction, partition):
"""Compute the repertoire over the partition in the given direction."""
system = self.system[direction]
return system.partitioned_repertoire(direction, partition) | python | def partitioned_repertoire(self, direction, partition):
"""Compute the repertoire over the partition in the given direction."""
system = self.system[direction]
return system.partitioned_repertoire(direction, partition) | [
"def",
"partitioned_repertoire",
"(",
"self",
",",
"direction",
",",
"partition",
")",
":",
"system",
"=",
"self",
".",
"system",
"[",
"direction",
"]",
"return",
"system",
".",
"partitioned_repertoire",
"(",
"direction",
",",
"partition",
")"
] | Compute the repertoire over the partition in the given direction. | [
"Compute",
"the",
"repertoire",
"over",
"the",
"partition",
"in",
"the",
"given",
"direction",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/actual.py#L291-L294 | train |
wmayner/pyphi | pyphi/actual.py | Transition.partitioned_probability | def partitioned_probability(self, direction, partition):
"""Compute the probability of the mechanism over the purview in
the partition.
"""
repertoire = self.partitioned_repertoire(direction, partition)
return self.state_probability(direction, repertoire, partition.purview) | python | def partitioned_probability(self, direction, partition):
"""Compute the probability of the mechanism over the purview in
the partition.
"""
repertoire = self.partitioned_repertoire(direction, partition)
return self.state_probability(direction, repertoire, partition.purview) | [
"def",
"partitioned_probability",
"(",
"self",
",",
"direction",
",",
"partition",
")",
":",
"repertoire",
"=",
"self",
".",
"partitioned_repertoire",
"(",
"direction",
",",
"partition",
")",
"return",
"self",
".",
"state_probability",
"(",
"direction",
",",
"repertoire",
",",
"partition",
".",
"purview",
")"
] | Compute the probability of the mechanism over the purview in
the partition. | [
"Compute",
"the",
"probability",
"of",
"the",
"mechanism",
"over",
"the",
"purview",
"in",
"the",
"partition",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/actual.py#L296-L301 | train |
wmayner/pyphi | pyphi/actual.py | Transition.find_mip | def find_mip(self, direction, mechanism, purview, allow_neg=False):
"""Find the ratio minimum information partition for a mechanism
over a purview.
Args:
direction (str): |CAUSE| or |EFFECT|
mechanism (tuple[int]): A mechanism.
purview (tuple[int]): A purview.
Keyword Args:
allow_neg (boolean): If true, ``alpha`` is allowed to be negative.
Otherwise, negative values of ``alpha`` will be treated as if
they were 0.
Returns:
AcRepertoireIrreducibilityAnalysis: The irreducibility analysis for
the mechanism.
"""
alpha_min = float('inf')
probability = self.probability(direction, mechanism, purview)
for partition in mip_partitions(mechanism, purview, self.node_labels):
partitioned_probability = self.partitioned_probability(
direction, partition)
alpha = log2(probability / partitioned_probability)
# First check for 0
# Default: don't count contrary causes and effects
if utils.eq(alpha, 0) or (alpha < 0 and not allow_neg):
return AcRepertoireIrreducibilityAnalysis(
state=self.mechanism_state(direction),
direction=direction,
mechanism=mechanism,
purview=purview,
partition=partition,
probability=probability,
partitioned_probability=partitioned_probability,
node_labels=self.node_labels,
alpha=0.0
)
# Then take closest to 0
if (abs(alpha_min) - abs(alpha)) > constants.EPSILON:
alpha_min = alpha
acria = AcRepertoireIrreducibilityAnalysis(
state=self.mechanism_state(direction),
direction=direction,
mechanism=mechanism,
purview=purview,
partition=partition,
probability=probability,
partitioned_probability=partitioned_probability,
node_labels=self.node_labels,
alpha=alpha_min
)
return acria | python | def find_mip(self, direction, mechanism, purview, allow_neg=False):
"""Find the ratio minimum information partition for a mechanism
over a purview.
Args:
direction (str): |CAUSE| or |EFFECT|
mechanism (tuple[int]): A mechanism.
purview (tuple[int]): A purview.
Keyword Args:
allow_neg (boolean): If true, ``alpha`` is allowed to be negative.
Otherwise, negative values of ``alpha`` will be treated as if
they were 0.
Returns:
AcRepertoireIrreducibilityAnalysis: The irreducibility analysis for
the mechanism.
"""
alpha_min = float('inf')
probability = self.probability(direction, mechanism, purview)
for partition in mip_partitions(mechanism, purview, self.node_labels):
partitioned_probability = self.partitioned_probability(
direction, partition)
alpha = log2(probability / partitioned_probability)
# First check for 0
# Default: don't count contrary causes and effects
if utils.eq(alpha, 0) or (alpha < 0 and not allow_neg):
return AcRepertoireIrreducibilityAnalysis(
state=self.mechanism_state(direction),
direction=direction,
mechanism=mechanism,
purview=purview,
partition=partition,
probability=probability,
partitioned_probability=partitioned_probability,
node_labels=self.node_labels,
alpha=0.0
)
# Then take closest to 0
if (abs(alpha_min) - abs(alpha)) > constants.EPSILON:
alpha_min = alpha
acria = AcRepertoireIrreducibilityAnalysis(
state=self.mechanism_state(direction),
direction=direction,
mechanism=mechanism,
purview=purview,
partition=partition,
probability=probability,
partitioned_probability=partitioned_probability,
node_labels=self.node_labels,
alpha=alpha_min
)
return acria | [
"def",
"find_mip",
"(",
"self",
",",
"direction",
",",
"mechanism",
",",
"purview",
",",
"allow_neg",
"=",
"False",
")",
":",
"alpha_min",
"=",
"float",
"(",
"'inf'",
")",
"probability",
"=",
"self",
".",
"probability",
"(",
"direction",
",",
"mechanism",
",",
"purview",
")",
"for",
"partition",
"in",
"mip_partitions",
"(",
"mechanism",
",",
"purview",
",",
"self",
".",
"node_labels",
")",
":",
"partitioned_probability",
"=",
"self",
".",
"partitioned_probability",
"(",
"direction",
",",
"partition",
")",
"alpha",
"=",
"log2",
"(",
"probability",
"/",
"partitioned_probability",
")",
"# First check for 0",
"# Default: don't count contrary causes and effects",
"if",
"utils",
".",
"eq",
"(",
"alpha",
",",
"0",
")",
"or",
"(",
"alpha",
"<",
"0",
"and",
"not",
"allow_neg",
")",
":",
"return",
"AcRepertoireIrreducibilityAnalysis",
"(",
"state",
"=",
"self",
".",
"mechanism_state",
"(",
"direction",
")",
",",
"direction",
"=",
"direction",
",",
"mechanism",
"=",
"mechanism",
",",
"purview",
"=",
"purview",
",",
"partition",
"=",
"partition",
",",
"probability",
"=",
"probability",
",",
"partitioned_probability",
"=",
"partitioned_probability",
",",
"node_labels",
"=",
"self",
".",
"node_labels",
",",
"alpha",
"=",
"0.0",
")",
"# Then take closest to 0",
"if",
"(",
"abs",
"(",
"alpha_min",
")",
"-",
"abs",
"(",
"alpha",
")",
")",
">",
"constants",
".",
"EPSILON",
":",
"alpha_min",
"=",
"alpha",
"acria",
"=",
"AcRepertoireIrreducibilityAnalysis",
"(",
"state",
"=",
"self",
".",
"mechanism_state",
"(",
"direction",
")",
",",
"direction",
"=",
"direction",
",",
"mechanism",
"=",
"mechanism",
",",
"purview",
"=",
"purview",
",",
"partition",
"=",
"partition",
",",
"probability",
"=",
"probability",
",",
"partitioned_probability",
"=",
"partitioned_probability",
",",
"node_labels",
"=",
"self",
".",
"node_labels",
",",
"alpha",
"=",
"alpha_min",
")",
"return",
"acria"
] | Find the ratio minimum information partition for a mechanism
over a purview.
Args:
direction (str): |CAUSE| or |EFFECT|
mechanism (tuple[int]): A mechanism.
purview (tuple[int]): A purview.
Keyword Args:
allow_neg (boolean): If true, ``alpha`` is allowed to be negative.
Otherwise, negative values of ``alpha`` will be treated as if
they were 0.
Returns:
AcRepertoireIrreducibilityAnalysis: The irreducibility analysis for
the mechanism. | [
"Find",
"the",
"ratio",
"minimum",
"information",
"partition",
"for",
"a",
"mechanism",
"over",
"a",
"purview",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/actual.py#L307-L361 | train |
wmayner/pyphi | pyphi/actual.py | Transition.find_causal_link | def find_causal_link(self, direction, mechanism, purviews=False,
allow_neg=False):
"""Return the maximally irreducible cause or effect ratio for a
mechanism.
Args:
direction (str): The temporal direction, specifying cause or
effect.
mechanism (tuple[int]): The mechanism to be tested for
irreducibility.
Keyword Args:
purviews (tuple[int]): Optionally restrict the possible purviews
to a subset of the subsystem. This may be useful for _e.g._
finding only concepts that are "about" a certain subset of
nodes.
Returns:
CausalLink: The maximally-irreducible actual cause or effect.
"""
purviews = self.potential_purviews(direction, mechanism, purviews)
# Find the maximal RIA over the remaining purviews.
if not purviews:
max_ria = _null_ac_ria(self.mechanism_state(direction),
direction, mechanism, None)
else:
# This max should be most positive
max_ria = max(self.find_mip(direction, mechanism, purview,
allow_neg)
for purview in purviews)
# Construct the corresponding CausalLink
return CausalLink(max_ria) | python | def find_causal_link(self, direction, mechanism, purviews=False,
allow_neg=False):
"""Return the maximally irreducible cause or effect ratio for a
mechanism.
Args:
direction (str): The temporal direction, specifying cause or
effect.
mechanism (tuple[int]): The mechanism to be tested for
irreducibility.
Keyword Args:
purviews (tuple[int]): Optionally restrict the possible purviews
to a subset of the subsystem. This may be useful for _e.g._
finding only concepts that are "about" a certain subset of
nodes.
Returns:
CausalLink: The maximally-irreducible actual cause or effect.
"""
purviews = self.potential_purviews(direction, mechanism, purviews)
# Find the maximal RIA over the remaining purviews.
if not purviews:
max_ria = _null_ac_ria(self.mechanism_state(direction),
direction, mechanism, None)
else:
# This max should be most positive
max_ria = max(self.find_mip(direction, mechanism, purview,
allow_neg)
for purview in purviews)
# Construct the corresponding CausalLink
return CausalLink(max_ria) | [
"def",
"find_causal_link",
"(",
"self",
",",
"direction",
",",
"mechanism",
",",
"purviews",
"=",
"False",
",",
"allow_neg",
"=",
"False",
")",
":",
"purviews",
"=",
"self",
".",
"potential_purviews",
"(",
"direction",
",",
"mechanism",
",",
"purviews",
")",
"# Find the maximal RIA over the remaining purviews.",
"if",
"not",
"purviews",
":",
"max_ria",
"=",
"_null_ac_ria",
"(",
"self",
".",
"mechanism_state",
"(",
"direction",
")",
",",
"direction",
",",
"mechanism",
",",
"None",
")",
"else",
":",
"# This max should be most positive",
"max_ria",
"=",
"max",
"(",
"self",
".",
"find_mip",
"(",
"direction",
",",
"mechanism",
",",
"purview",
",",
"allow_neg",
")",
"for",
"purview",
"in",
"purviews",
")",
"# Construct the corresponding CausalLink",
"return",
"CausalLink",
"(",
"max_ria",
")"
] | Return the maximally irreducible cause or effect ratio for a
mechanism.
Args:
direction (str): The temporal direction, specifying cause or
effect.
mechanism (tuple[int]): The mechanism to be tested for
irreducibility.
Keyword Args:
purviews (tuple[int]): Optionally restrict the possible purviews
to a subset of the subsystem. This may be useful for _e.g._
finding only concepts that are "about" a certain subset of
nodes.
Returns:
CausalLink: The maximally-irreducible actual cause or effect. | [
"Return",
"the",
"maximally",
"irreducible",
"cause",
"or",
"effect",
"ratio",
"for",
"a",
"mechanism",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/actual.py#L387-L420 | train |
wmayner/pyphi | pyphi/actual.py | Transition.find_actual_cause | def find_actual_cause(self, mechanism, purviews=False):
"""Return the actual cause of a mechanism."""
return self.find_causal_link(Direction.CAUSE, mechanism, purviews) | python | def find_actual_cause(self, mechanism, purviews=False):
"""Return the actual cause of a mechanism."""
return self.find_causal_link(Direction.CAUSE, mechanism, purviews) | [
"def",
"find_actual_cause",
"(",
"self",
",",
"mechanism",
",",
"purviews",
"=",
"False",
")",
":",
"return",
"self",
".",
"find_causal_link",
"(",
"Direction",
".",
"CAUSE",
",",
"mechanism",
",",
"purviews",
")"
] | Return the actual cause of a mechanism. | [
"Return",
"the",
"actual",
"cause",
"of",
"a",
"mechanism",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/actual.py#L422-L424 | train |
wmayner/pyphi | pyphi/actual.py | Transition.find_actual_effect | def find_actual_effect(self, mechanism, purviews=False):
"""Return the actual effect of a mechanism."""
return self.find_causal_link(Direction.EFFECT, mechanism, purviews) | python | def find_actual_effect(self, mechanism, purviews=False):
"""Return the actual effect of a mechanism."""
return self.find_causal_link(Direction.EFFECT, mechanism, purviews) | [
"def",
"find_actual_effect",
"(",
"self",
",",
"mechanism",
",",
"purviews",
"=",
"False",
")",
":",
"return",
"self",
".",
"find_causal_link",
"(",
"Direction",
".",
"EFFECT",
",",
"mechanism",
",",
"purviews",
")"
] | Return the actual effect of a mechanism. | [
"Return",
"the",
"actual",
"effect",
"of",
"a",
"mechanism",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/actual.py#L426-L428 | train |
wmayner/pyphi | pyphi/db.py | find | def find(key):
"""Return the value associated with a key.
If there is no value with the given key, returns ``None``.
"""
docs = list(collection.find({KEY_FIELD: key}))
# Return None if we didn't find anything.
if not docs:
return None
pickled_value = docs[0][VALUE_FIELD]
# Unpickle and return the value.
return pickle.loads(pickled_value) | python | def find(key):
"""Return the value associated with a key.
If there is no value with the given key, returns ``None``.
"""
docs = list(collection.find({KEY_FIELD: key}))
# Return None if we didn't find anything.
if not docs:
return None
pickled_value = docs[0][VALUE_FIELD]
# Unpickle and return the value.
return pickle.loads(pickled_value) | [
"def",
"find",
"(",
"key",
")",
":",
"docs",
"=",
"list",
"(",
"collection",
".",
"find",
"(",
"{",
"KEY_FIELD",
":",
"key",
"}",
")",
")",
"# Return None if we didn't find anything.",
"if",
"not",
"docs",
":",
"return",
"None",
"pickled_value",
"=",
"docs",
"[",
"0",
"]",
"[",
"VALUE_FIELD",
"]",
"# Unpickle and return the value.",
"return",
"pickle",
".",
"loads",
"(",
"pickled_value",
")"
] | Return the value associated with a key.
If there is no value with the given key, returns ``None``. | [
"Return",
"the",
"value",
"associated",
"with",
"a",
"key",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/db.py#L34-L45 | train |
wmayner/pyphi | pyphi/db.py | insert | def insert(key, value):
"""Store a value with a key.
If the key is already present in the database, this does nothing.
"""
# Pickle the value.
value = pickle.dumps(value, protocol=constants.PICKLE_PROTOCOL)
# Store the value as binary data in a document.
doc = {
KEY_FIELD: key,
VALUE_FIELD: Binary(value)
}
# Pickle and store the value with its key. If the key already exists, we
# don't insert (since the key is a unique index), and we don't care.
try:
return collection.insert(doc)
except pymongo.errors.DuplicateKeyError:
return None | python | def insert(key, value):
"""Store a value with a key.
If the key is already present in the database, this does nothing.
"""
# Pickle the value.
value = pickle.dumps(value, protocol=constants.PICKLE_PROTOCOL)
# Store the value as binary data in a document.
doc = {
KEY_FIELD: key,
VALUE_FIELD: Binary(value)
}
# Pickle and store the value with its key. If the key already exists, we
# don't insert (since the key is a unique index), and we don't care.
try:
return collection.insert(doc)
except pymongo.errors.DuplicateKeyError:
return None | [
"def",
"insert",
"(",
"key",
",",
"value",
")",
":",
"# Pickle the value.",
"value",
"=",
"pickle",
".",
"dumps",
"(",
"value",
",",
"protocol",
"=",
"constants",
".",
"PICKLE_PROTOCOL",
")",
"# Store the value as binary data in a document.",
"doc",
"=",
"{",
"KEY_FIELD",
":",
"key",
",",
"VALUE_FIELD",
":",
"Binary",
"(",
"value",
")",
"}",
"# Pickle and store the value with its key. If the key already exists, we",
"# don't insert (since the key is a unique index), and we don't care.",
"try",
":",
"return",
"collection",
".",
"insert",
"(",
"doc",
")",
"except",
"pymongo",
".",
"errors",
".",
"DuplicateKeyError",
":",
"return",
"None"
] | Store a value with a key.
If the key is already present in the database, this does nothing. | [
"Store",
"a",
"value",
"with",
"a",
"key",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/db.py#L48-L65 | train |
wmayner/pyphi | pyphi/db.py | generate_key | def generate_key(filtered_args):
"""Get a key from some input.
This function should be used whenever a key is needed, to keep keys
consistent.
"""
# Convert the value to a (potentially singleton) tuple to be consistent
# with joblib.filtered_args.
if isinstance(filtered_args, Iterable):
return hash(tuple(filtered_args))
return hash((filtered_args,)) | python | def generate_key(filtered_args):
"""Get a key from some input.
This function should be used whenever a key is needed, to keep keys
consistent.
"""
# Convert the value to a (potentially singleton) tuple to be consistent
# with joblib.filtered_args.
if isinstance(filtered_args, Iterable):
return hash(tuple(filtered_args))
return hash((filtered_args,)) | [
"def",
"generate_key",
"(",
"filtered_args",
")",
":",
"# Convert the value to a (potentially singleton) tuple to be consistent",
"# with joblib.filtered_args.",
"if",
"isinstance",
"(",
"filtered_args",
",",
"Iterable",
")",
":",
"return",
"hash",
"(",
"tuple",
"(",
"filtered_args",
")",
")",
"return",
"hash",
"(",
"(",
"filtered_args",
",",
")",
")"
] | Get a key from some input.
This function should be used whenever a key is needed, to keep keys
consistent. | [
"Get",
"a",
"key",
"from",
"some",
"input",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/db.py#L69-L79 | train |
wmayner/pyphi | pyphi/memory.py | cache | def cache(ignore=None):
"""Decorator for memoizing a function using either the filesystem or a
database.
"""
def decorator(func):
# Initialize both cached versions
joblib_cached = constants.joblib_memory.cache(func, ignore=ignore)
db_cached = DbMemoizedFunc(func, ignore)
@functools.wraps(func)
def wrapper(*args, **kwargs):
"""Dynamically choose the cache at call-time, not at import."""
if func.__name__ == '_sia' and not config.CACHE_SIAS:
f = func
elif config.CACHING_BACKEND == 'fs':
f = joblib_cached
elif config.CACHING_BACKEND == 'db':
f = db_cached
return f(*args, **kwargs)
return wrapper
return decorator | python | def cache(ignore=None):
"""Decorator for memoizing a function using either the filesystem or a
database.
"""
def decorator(func):
# Initialize both cached versions
joblib_cached = constants.joblib_memory.cache(func, ignore=ignore)
db_cached = DbMemoizedFunc(func, ignore)
@functools.wraps(func)
def wrapper(*args, **kwargs):
"""Dynamically choose the cache at call-time, not at import."""
if func.__name__ == '_sia' and not config.CACHE_SIAS:
f = func
elif config.CACHING_BACKEND == 'fs':
f = joblib_cached
elif config.CACHING_BACKEND == 'db':
f = db_cached
return f(*args, **kwargs)
return wrapper
return decorator | [
"def",
"cache",
"(",
"ignore",
"=",
"None",
")",
":",
"def",
"decorator",
"(",
"func",
")",
":",
"# Initialize both cached versions",
"joblib_cached",
"=",
"constants",
".",
"joblib_memory",
".",
"cache",
"(",
"func",
",",
"ignore",
"=",
"ignore",
")",
"db_cached",
"=",
"DbMemoizedFunc",
"(",
"func",
",",
"ignore",
")",
"@",
"functools",
".",
"wraps",
"(",
"func",
")",
"def",
"wrapper",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"\"\"\"Dynamically choose the cache at call-time, not at import.\"\"\"",
"if",
"func",
".",
"__name__",
"==",
"'_sia'",
"and",
"not",
"config",
".",
"CACHE_SIAS",
":",
"f",
"=",
"func",
"elif",
"config",
".",
"CACHING_BACKEND",
"==",
"'fs'",
":",
"f",
"=",
"joblib_cached",
"elif",
"config",
".",
"CACHING_BACKEND",
"==",
"'db'",
":",
"f",
"=",
"db_cached",
"return",
"f",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"return",
"wrapper",
"return",
"decorator"
] | Decorator for memoizing a function using either the filesystem or a
database. | [
"Decorator",
"for",
"memoizing",
"a",
"function",
"using",
"either",
"the",
"filesystem",
"or",
"a",
"database",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/memory.py#L18-L39 | train |
wmayner/pyphi | pyphi/memory.py | DbMemoizedFunc.get_output_key | def get_output_key(self, args, kwargs):
"""Return the key that the output should be cached with, given
arguments, keyword arguments, and a list of arguments to ignore.
"""
# Get a dictionary mapping argument names to argument values where
# ignored arguments are omitted.
filtered_args = joblib.func_inspect.filter_args(
self.func, self.ignore, args, kwargs)
# Get a sorted tuple of the filtered argument.
filtered_args = tuple(sorted(filtered_args.values()))
# Use native hash when hashing arguments.
return db.generate_key(filtered_args) | python | def get_output_key(self, args, kwargs):
"""Return the key that the output should be cached with, given
arguments, keyword arguments, and a list of arguments to ignore.
"""
# Get a dictionary mapping argument names to argument values where
# ignored arguments are omitted.
filtered_args = joblib.func_inspect.filter_args(
self.func, self.ignore, args, kwargs)
# Get a sorted tuple of the filtered argument.
filtered_args = tuple(sorted(filtered_args.values()))
# Use native hash when hashing arguments.
return db.generate_key(filtered_args) | [
"def",
"get_output_key",
"(",
"self",
",",
"args",
",",
"kwargs",
")",
":",
"# Get a dictionary mapping argument names to argument values where",
"# ignored arguments are omitted.",
"filtered_args",
"=",
"joblib",
".",
"func_inspect",
".",
"filter_args",
"(",
"self",
".",
"func",
",",
"self",
".",
"ignore",
",",
"args",
",",
"kwargs",
")",
"# Get a sorted tuple of the filtered argument.",
"filtered_args",
"=",
"tuple",
"(",
"sorted",
"(",
"filtered_args",
".",
"values",
"(",
")",
")",
")",
"# Use native hash when hashing arguments.",
"return",
"db",
".",
"generate_key",
"(",
"filtered_args",
")"
] | Return the key that the output should be cached with, given
arguments, keyword arguments, and a list of arguments to ignore. | [
"Return",
"the",
"key",
"that",
"the",
"output",
"should",
"be",
"cached",
"with",
"given",
"arguments",
"keyword",
"arguments",
"and",
"a",
"list",
"of",
"arguments",
"to",
"ignore",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/memory.py#L73-L84 | train |
wmayner/pyphi | pyphi/memory.py | DbMemoizedFunc.load_output | def load_output(self, args, kwargs):
"""Return cached output."""
return db.find(self.get_output_key(args, kwargs)) | python | def load_output(self, args, kwargs):
"""Return cached output."""
return db.find(self.get_output_key(args, kwargs)) | [
"def",
"load_output",
"(",
"self",
",",
"args",
",",
"kwargs",
")",
":",
"return",
"db",
".",
"find",
"(",
"self",
".",
"get_output_key",
"(",
"args",
",",
"kwargs",
")",
")"
] | Return cached output. | [
"Return",
"cached",
"output",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/memory.py#L86-L88 | train |
wmayner/pyphi | pyphi/subsystem.py | Subsystem.cache_info | def cache_info(self):
"""Report repertoire cache statistics."""
return {
'single_node_repertoire':
self._single_node_repertoire_cache.info(),
'repertoire': self._repertoire_cache.info(),
'mice': self._mice_cache.info()
} | python | def cache_info(self):
"""Report repertoire cache statistics."""
return {
'single_node_repertoire':
self._single_node_repertoire_cache.info(),
'repertoire': self._repertoire_cache.info(),
'mice': self._mice_cache.info()
} | [
"def",
"cache_info",
"(",
"self",
")",
":",
"return",
"{",
"'single_node_repertoire'",
":",
"self",
".",
"_single_node_repertoire_cache",
".",
"info",
"(",
")",
",",
"'repertoire'",
":",
"self",
".",
"_repertoire_cache",
".",
"info",
"(",
")",
",",
"'mice'",
":",
"self",
".",
"_mice_cache",
".",
"info",
"(",
")",
"}"
] | Report repertoire cache statistics. | [
"Report",
"repertoire",
"cache",
"statistics",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/subsystem.py#L171-L178 | train |
wmayner/pyphi | pyphi/subsystem.py | Subsystem.clear_caches | def clear_caches(self):
"""Clear the mice and repertoire caches."""
self._single_node_repertoire_cache.clear()
self._repertoire_cache.clear()
self._mice_cache.clear() | python | def clear_caches(self):
"""Clear the mice and repertoire caches."""
self._single_node_repertoire_cache.clear()
self._repertoire_cache.clear()
self._mice_cache.clear() | [
"def",
"clear_caches",
"(",
"self",
")",
":",
"self",
".",
"_single_node_repertoire_cache",
".",
"clear",
"(",
")",
"self",
".",
"_repertoire_cache",
".",
"clear",
"(",
")",
"self",
".",
"_mice_cache",
".",
"clear",
"(",
")"
] | Clear the mice and repertoire caches. | [
"Clear",
"the",
"mice",
"and",
"repertoire",
"caches",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/subsystem.py#L180-L184 | train |
wmayner/pyphi | pyphi/subsystem.py | Subsystem.apply_cut | def apply_cut(self, cut):
"""Return a cut version of this |Subsystem|.
Args:
cut (Cut): The cut to apply to this |Subsystem|.
Returns:
Subsystem: The cut subsystem.
"""
return Subsystem(self.network, self.state, self.node_indices,
cut=cut, mice_cache=self._mice_cache) | python | def apply_cut(self, cut):
"""Return a cut version of this |Subsystem|.
Args:
cut (Cut): The cut to apply to this |Subsystem|.
Returns:
Subsystem: The cut subsystem.
"""
return Subsystem(self.network, self.state, self.node_indices,
cut=cut, mice_cache=self._mice_cache) | [
"def",
"apply_cut",
"(",
"self",
",",
"cut",
")",
":",
"return",
"Subsystem",
"(",
"self",
".",
"network",
",",
"self",
".",
"state",
",",
"self",
".",
"node_indices",
",",
"cut",
"=",
"cut",
",",
"mice_cache",
"=",
"self",
".",
"_mice_cache",
")"
] | Return a cut version of this |Subsystem|.
Args:
cut (Cut): The cut to apply to this |Subsystem|.
Returns:
Subsystem: The cut subsystem. | [
"Return",
"a",
"cut",
"version",
"of",
"this",
"|Subsystem|",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/subsystem.py#L247-L257 | train |
wmayner/pyphi | pyphi/subsystem.py | Subsystem.indices2nodes | def indices2nodes(self, indices):
"""Return |Nodes| for these indices.
Args:
indices (tuple[int]): The indices in question.
Returns:
tuple[Node]: The |Node| objects corresponding to these indices.
Raises:
ValueError: If requested indices are not in the subsystem.
"""
if set(indices) - set(self.node_indices):
raise ValueError(
"`indices` must be a subset of the Subsystem's indices.")
return tuple(self._index2node[n] for n in indices) | python | def indices2nodes(self, indices):
"""Return |Nodes| for these indices.
Args:
indices (tuple[int]): The indices in question.
Returns:
tuple[Node]: The |Node| objects corresponding to these indices.
Raises:
ValueError: If requested indices are not in the subsystem.
"""
if set(indices) - set(self.node_indices):
raise ValueError(
"`indices` must be a subset of the Subsystem's indices.")
return tuple(self._index2node[n] for n in indices) | [
"def",
"indices2nodes",
"(",
"self",
",",
"indices",
")",
":",
"if",
"set",
"(",
"indices",
")",
"-",
"set",
"(",
"self",
".",
"node_indices",
")",
":",
"raise",
"ValueError",
"(",
"\"`indices` must be a subset of the Subsystem's indices.\"",
")",
"return",
"tuple",
"(",
"self",
".",
"_index2node",
"[",
"n",
"]",
"for",
"n",
"in",
"indices",
")"
] | Return |Nodes| for these indices.
Args:
indices (tuple[int]): The indices in question.
Returns:
tuple[Node]: The |Node| objects corresponding to these indices.
Raises:
ValueError: If requested indices are not in the subsystem. | [
"Return",
"|Nodes|",
"for",
"these",
"indices",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/subsystem.py#L259-L274 | train |
wmayner/pyphi | pyphi/subsystem.py | Subsystem.cause_repertoire | def cause_repertoire(self, mechanism, purview):
"""Return the cause repertoire of a mechanism over a purview.
Args:
mechanism (tuple[int]): The mechanism for which to calculate the
cause repertoire.
purview (tuple[int]): The purview over which to calculate the
cause repertoire.
Returns:
np.ndarray: The cause repertoire of the mechanism over the purview.
.. note::
The returned repertoire is a distribution over purview node states,
not the states of the whole network.
"""
# If the purview is empty, the distribution is empty; return the
# multiplicative identity.
if not purview:
return np.array([1.0])
# If the mechanism is empty, nothing is specified about the previous
# state of the purview; return the purview's maximum entropy
# distribution.
if not mechanism:
return max_entropy_distribution(purview, self.tpm_size)
# Use a frozenset so the arguments to `_single_node_cause_repertoire`
# can be hashed and cached.
purview = frozenset(purview)
# Preallocate the repertoire with the proper shape, so that
# probabilities are broadcasted appropriately.
joint = np.ones(repertoire_shape(purview, self.tpm_size))
# The cause repertoire is the product of the cause repertoires of the
# individual nodes.
joint *= functools.reduce(
np.multiply, [self._single_node_cause_repertoire(m, purview)
for m in mechanism]
)
# The resulting joint distribution is over previous states, which are
# rows in the TPM, so the distribution is a column. The columns of a
# TPM don't necessarily sum to 1, so we normalize.
return distribution.normalize(joint) | python | def cause_repertoire(self, mechanism, purview):
"""Return the cause repertoire of a mechanism over a purview.
Args:
mechanism (tuple[int]): The mechanism for which to calculate the
cause repertoire.
purview (tuple[int]): The purview over which to calculate the
cause repertoire.
Returns:
np.ndarray: The cause repertoire of the mechanism over the purview.
.. note::
The returned repertoire is a distribution over purview node states,
not the states of the whole network.
"""
# If the purview is empty, the distribution is empty; return the
# multiplicative identity.
if not purview:
return np.array([1.0])
# If the mechanism is empty, nothing is specified about the previous
# state of the purview; return the purview's maximum entropy
# distribution.
if not mechanism:
return max_entropy_distribution(purview, self.tpm_size)
# Use a frozenset so the arguments to `_single_node_cause_repertoire`
# can be hashed and cached.
purview = frozenset(purview)
# Preallocate the repertoire with the proper shape, so that
# probabilities are broadcasted appropriately.
joint = np.ones(repertoire_shape(purview, self.tpm_size))
# The cause repertoire is the product of the cause repertoires of the
# individual nodes.
joint *= functools.reduce(
np.multiply, [self._single_node_cause_repertoire(m, purview)
for m in mechanism]
)
# The resulting joint distribution is over previous states, which are
# rows in the TPM, so the distribution is a column. The columns of a
# TPM don't necessarily sum to 1, so we normalize.
return distribution.normalize(joint) | [
"def",
"cause_repertoire",
"(",
"self",
",",
"mechanism",
",",
"purview",
")",
":",
"# If the purview is empty, the distribution is empty; return the",
"# multiplicative identity.",
"if",
"not",
"purview",
":",
"return",
"np",
".",
"array",
"(",
"[",
"1.0",
"]",
")",
"# If the mechanism is empty, nothing is specified about the previous",
"# state of the purview; return the purview's maximum entropy",
"# distribution.",
"if",
"not",
"mechanism",
":",
"return",
"max_entropy_distribution",
"(",
"purview",
",",
"self",
".",
"tpm_size",
")",
"# Use a frozenset so the arguments to `_single_node_cause_repertoire`",
"# can be hashed and cached.",
"purview",
"=",
"frozenset",
"(",
"purview",
")",
"# Preallocate the repertoire with the proper shape, so that",
"# probabilities are broadcasted appropriately.",
"joint",
"=",
"np",
".",
"ones",
"(",
"repertoire_shape",
"(",
"purview",
",",
"self",
".",
"tpm_size",
")",
")",
"# The cause repertoire is the product of the cause repertoires of the",
"# individual nodes.",
"joint",
"*=",
"functools",
".",
"reduce",
"(",
"np",
".",
"multiply",
",",
"[",
"self",
".",
"_single_node_cause_repertoire",
"(",
"m",
",",
"purview",
")",
"for",
"m",
"in",
"mechanism",
"]",
")",
"# The resulting joint distribution is over previous states, which are",
"# rows in the TPM, so the distribution is a column. The columns of a",
"# TPM don't necessarily sum to 1, so we normalize.",
"return",
"distribution",
".",
"normalize",
"(",
"joint",
")"
] | Return the cause repertoire of a mechanism over a purview.
Args:
mechanism (tuple[int]): The mechanism for which to calculate the
cause repertoire.
purview (tuple[int]): The purview over which to calculate the
cause repertoire.
Returns:
np.ndarray: The cause repertoire of the mechanism over the purview.
.. note::
The returned repertoire is a distribution over purview node states,
not the states of the whole network. | [
"Return",
"the",
"cause",
"repertoire",
"of",
"a",
"mechanism",
"over",
"a",
"purview",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/subsystem.py#L290-L330 | train |
wmayner/pyphi | pyphi/subsystem.py | Subsystem.effect_repertoire | def effect_repertoire(self, mechanism, purview):
"""Return the effect repertoire of a mechanism over a purview.
Args:
mechanism (tuple[int]): The mechanism for which to calculate the
effect repertoire.
purview (tuple[int]): The purview over which to calculate the
effect repertoire.
Returns:
np.ndarray: The effect repertoire of the mechanism over the
purview.
.. note::
The returned repertoire is a distribution over purview node states,
not the states of the whole network.
"""
# If the purview is empty, the distribution is empty, so return the
# multiplicative identity.
if not purview:
return np.array([1.0])
# Use a frozenset so the arguments to `_single_node_effect_repertoire`
# can be hashed and cached.
mechanism = frozenset(mechanism)
# Preallocate the repertoire with the proper shape, so that
# probabilities are broadcasted appropriately.
joint = np.ones(repertoire_shape(purview, self.tpm_size))
# The effect repertoire is the product of the effect repertoires of the
# individual nodes.
return joint * functools.reduce(
np.multiply, [self._single_node_effect_repertoire(mechanism, p)
for p in purview]
) | python | def effect_repertoire(self, mechanism, purview):
"""Return the effect repertoire of a mechanism over a purview.
Args:
mechanism (tuple[int]): The mechanism for which to calculate the
effect repertoire.
purview (tuple[int]): The purview over which to calculate the
effect repertoire.
Returns:
np.ndarray: The effect repertoire of the mechanism over the
purview.
.. note::
The returned repertoire is a distribution over purview node states,
not the states of the whole network.
"""
# If the purview is empty, the distribution is empty, so return the
# multiplicative identity.
if not purview:
return np.array([1.0])
# Use a frozenset so the arguments to `_single_node_effect_repertoire`
# can be hashed and cached.
mechanism = frozenset(mechanism)
# Preallocate the repertoire with the proper shape, so that
# probabilities are broadcasted appropriately.
joint = np.ones(repertoire_shape(purview, self.tpm_size))
# The effect repertoire is the product of the effect repertoires of the
# individual nodes.
return joint * functools.reduce(
np.multiply, [self._single_node_effect_repertoire(mechanism, p)
for p in purview]
) | [
"def",
"effect_repertoire",
"(",
"self",
",",
"mechanism",
",",
"purview",
")",
":",
"# If the purview is empty, the distribution is empty, so return the",
"# multiplicative identity.",
"if",
"not",
"purview",
":",
"return",
"np",
".",
"array",
"(",
"[",
"1.0",
"]",
")",
"# Use a frozenset so the arguments to `_single_node_effect_repertoire`",
"# can be hashed and cached.",
"mechanism",
"=",
"frozenset",
"(",
"mechanism",
")",
"# Preallocate the repertoire with the proper shape, so that",
"# probabilities are broadcasted appropriately.",
"joint",
"=",
"np",
".",
"ones",
"(",
"repertoire_shape",
"(",
"purview",
",",
"self",
".",
"tpm_size",
")",
")",
"# The effect repertoire is the product of the effect repertoires of the",
"# individual nodes.",
"return",
"joint",
"*",
"functools",
".",
"reduce",
"(",
"np",
".",
"multiply",
",",
"[",
"self",
".",
"_single_node_effect_repertoire",
"(",
"mechanism",
",",
"p",
")",
"for",
"p",
"in",
"purview",
"]",
")"
] | Return the effect repertoire of a mechanism over a purview.
Args:
mechanism (tuple[int]): The mechanism for which to calculate the
effect repertoire.
purview (tuple[int]): The purview over which to calculate the
effect repertoire.
Returns:
np.ndarray: The effect repertoire of the mechanism over the
purview.
.. note::
The returned repertoire is a distribution over purview node states,
not the states of the whole network. | [
"Return",
"the",
"effect",
"repertoire",
"of",
"a",
"mechanism",
"over",
"a",
"purview",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/subsystem.py#L348-L380 | train |
wmayner/pyphi | pyphi/subsystem.py | Subsystem.repertoire | def repertoire(self, direction, mechanism, purview):
"""Return the cause or effect repertoire based on a direction.
Args:
direction (Direction): |CAUSE| or |EFFECT|.
mechanism (tuple[int]): The mechanism for which to calculate the
repertoire.
purview (tuple[int]): The purview over which to calculate the
repertoire.
Returns:
np.ndarray: The cause or effect repertoire of the mechanism over
the purview.
Raises:
ValueError: If ``direction`` is invalid.
"""
if direction == Direction.CAUSE:
return self.cause_repertoire(mechanism, purview)
elif direction == Direction.EFFECT:
return self.effect_repertoire(mechanism, purview)
return validate.direction(direction) | python | def repertoire(self, direction, mechanism, purview):
"""Return the cause or effect repertoire based on a direction.
Args:
direction (Direction): |CAUSE| or |EFFECT|.
mechanism (tuple[int]): The mechanism for which to calculate the
repertoire.
purview (tuple[int]): The purview over which to calculate the
repertoire.
Returns:
np.ndarray: The cause or effect repertoire of the mechanism over
the purview.
Raises:
ValueError: If ``direction`` is invalid.
"""
if direction == Direction.CAUSE:
return self.cause_repertoire(mechanism, purview)
elif direction == Direction.EFFECT:
return self.effect_repertoire(mechanism, purview)
return validate.direction(direction) | [
"def",
"repertoire",
"(",
"self",
",",
"direction",
",",
"mechanism",
",",
"purview",
")",
":",
"if",
"direction",
"==",
"Direction",
".",
"CAUSE",
":",
"return",
"self",
".",
"cause_repertoire",
"(",
"mechanism",
",",
"purview",
")",
"elif",
"direction",
"==",
"Direction",
".",
"EFFECT",
":",
"return",
"self",
".",
"effect_repertoire",
"(",
"mechanism",
",",
"purview",
")",
"return",
"validate",
".",
"direction",
"(",
"direction",
")"
] | Return the cause or effect repertoire based on a direction.
Args:
direction (Direction): |CAUSE| or |EFFECT|.
mechanism (tuple[int]): The mechanism for which to calculate the
repertoire.
purview (tuple[int]): The purview over which to calculate the
repertoire.
Returns:
np.ndarray: The cause or effect repertoire of the mechanism over
the purview.
Raises:
ValueError: If ``direction`` is invalid. | [
"Return",
"the",
"cause",
"or",
"effect",
"repertoire",
"based",
"on",
"a",
"direction",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/subsystem.py#L382-L404 | train |
wmayner/pyphi | pyphi/subsystem.py | Subsystem.partitioned_repertoire | def partitioned_repertoire(self, direction, partition):
"""Compute the repertoire of a partitioned mechanism and purview."""
repertoires = [
self.repertoire(direction, part.mechanism, part.purview)
for part in partition
]
return functools.reduce(np.multiply, repertoires) | python | def partitioned_repertoire(self, direction, partition):
"""Compute the repertoire of a partitioned mechanism and purview."""
repertoires = [
self.repertoire(direction, part.mechanism, part.purview)
for part in partition
]
return functools.reduce(np.multiply, repertoires) | [
"def",
"partitioned_repertoire",
"(",
"self",
",",
"direction",
",",
"partition",
")",
":",
"repertoires",
"=",
"[",
"self",
".",
"repertoire",
"(",
"direction",
",",
"part",
".",
"mechanism",
",",
"part",
".",
"purview",
")",
"for",
"part",
"in",
"partition",
"]",
"return",
"functools",
".",
"reduce",
"(",
"np",
".",
"multiply",
",",
"repertoires",
")"
] | Compute the repertoire of a partitioned mechanism and purview. | [
"Compute",
"the",
"repertoire",
"of",
"a",
"partitioned",
"mechanism",
"and",
"purview",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/subsystem.py#L424-L430 | train |
wmayner/pyphi | pyphi/subsystem.py | Subsystem.expand_repertoire | def expand_repertoire(self, direction, repertoire, new_purview=None):
"""Distribute an effect repertoire over a larger purview.
Args:
direction (Direction): |CAUSE| or |EFFECT|.
repertoire (np.ndarray): The repertoire to expand.
Keyword Args:
new_purview (tuple[int]): The new purview to expand the repertoire
over. If ``None`` (the default), the new purview is the entire
network.
Returns:
np.ndarray: A distribution over the new purview, where probability
is spread out over the new nodes.
Raises:
ValueError: If the expanded purview doesn't contain the original
purview.
"""
if repertoire is None:
return None
purview = distribution.purview(repertoire)
if new_purview is None:
new_purview = self.node_indices # full subsystem
if not set(purview).issubset(new_purview):
raise ValueError("Expanded purview must contain original purview.")
# Get the unconstrained repertoire over the other nodes in the network.
non_purview_indices = tuple(set(new_purview) - set(purview))
uc = self.unconstrained_repertoire(direction, non_purview_indices)
# Multiply the given repertoire by the unconstrained one to get a
# distribution over all the nodes in the network.
expanded_repertoire = repertoire * uc
return distribution.normalize(expanded_repertoire) | python | def expand_repertoire(self, direction, repertoire, new_purview=None):
"""Distribute an effect repertoire over a larger purview.
Args:
direction (Direction): |CAUSE| or |EFFECT|.
repertoire (np.ndarray): The repertoire to expand.
Keyword Args:
new_purview (tuple[int]): The new purview to expand the repertoire
over. If ``None`` (the default), the new purview is the entire
network.
Returns:
np.ndarray: A distribution over the new purview, where probability
is spread out over the new nodes.
Raises:
ValueError: If the expanded purview doesn't contain the original
purview.
"""
if repertoire is None:
return None
purview = distribution.purview(repertoire)
if new_purview is None:
new_purview = self.node_indices # full subsystem
if not set(purview).issubset(new_purview):
raise ValueError("Expanded purview must contain original purview.")
# Get the unconstrained repertoire over the other nodes in the network.
non_purview_indices = tuple(set(new_purview) - set(purview))
uc = self.unconstrained_repertoire(direction, non_purview_indices)
# Multiply the given repertoire by the unconstrained one to get a
# distribution over all the nodes in the network.
expanded_repertoire = repertoire * uc
return distribution.normalize(expanded_repertoire) | [
"def",
"expand_repertoire",
"(",
"self",
",",
"direction",
",",
"repertoire",
",",
"new_purview",
"=",
"None",
")",
":",
"if",
"repertoire",
"is",
"None",
":",
"return",
"None",
"purview",
"=",
"distribution",
".",
"purview",
"(",
"repertoire",
")",
"if",
"new_purview",
"is",
"None",
":",
"new_purview",
"=",
"self",
".",
"node_indices",
"# full subsystem",
"if",
"not",
"set",
"(",
"purview",
")",
".",
"issubset",
"(",
"new_purview",
")",
":",
"raise",
"ValueError",
"(",
"\"Expanded purview must contain original purview.\"",
")",
"# Get the unconstrained repertoire over the other nodes in the network.",
"non_purview_indices",
"=",
"tuple",
"(",
"set",
"(",
"new_purview",
")",
"-",
"set",
"(",
"purview",
")",
")",
"uc",
"=",
"self",
".",
"unconstrained_repertoire",
"(",
"direction",
",",
"non_purview_indices",
")",
"# Multiply the given repertoire by the unconstrained one to get a",
"# distribution over all the nodes in the network.",
"expanded_repertoire",
"=",
"repertoire",
"*",
"uc",
"return",
"distribution",
".",
"normalize",
"(",
"expanded_repertoire",
")"
] | Distribute an effect repertoire over a larger purview.
Args:
direction (Direction): |CAUSE| or |EFFECT|.
repertoire (np.ndarray): The repertoire to expand.
Keyword Args:
new_purview (tuple[int]): The new purview to expand the repertoire
over. If ``None`` (the default), the new purview is the entire
network.
Returns:
np.ndarray: A distribution over the new purview, where probability
is spread out over the new nodes.
Raises:
ValueError: If the expanded purview doesn't contain the original
purview. | [
"Distribute",
"an",
"effect",
"repertoire",
"over",
"a",
"larger",
"purview",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/subsystem.py#L432-L470 | train |
wmayner/pyphi | pyphi/subsystem.py | Subsystem.cause_info | def cause_info(self, mechanism, purview):
"""Return the cause information for a mechanism over a purview."""
return repertoire_distance(
Direction.CAUSE,
self.cause_repertoire(mechanism, purview),
self.unconstrained_cause_repertoire(purview)
) | python | def cause_info(self, mechanism, purview):
"""Return the cause information for a mechanism over a purview."""
return repertoire_distance(
Direction.CAUSE,
self.cause_repertoire(mechanism, purview),
self.unconstrained_cause_repertoire(purview)
) | [
"def",
"cause_info",
"(",
"self",
",",
"mechanism",
",",
"purview",
")",
":",
"return",
"repertoire_distance",
"(",
"Direction",
".",
"CAUSE",
",",
"self",
".",
"cause_repertoire",
"(",
"mechanism",
",",
"purview",
")",
",",
"self",
".",
"unconstrained_cause_repertoire",
"(",
"purview",
")",
")"
] | Return the cause information for a mechanism over a purview. | [
"Return",
"the",
"cause",
"information",
"for",
"a",
"mechanism",
"over",
"a",
"purview",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/subsystem.py#L484-L490 | train |
wmayner/pyphi | pyphi/subsystem.py | Subsystem.effect_info | def effect_info(self, mechanism, purview):
"""Return the effect information for a mechanism over a purview."""
return repertoire_distance(
Direction.EFFECT,
self.effect_repertoire(mechanism, purview),
self.unconstrained_effect_repertoire(purview)
) | python | def effect_info(self, mechanism, purview):
"""Return the effect information for a mechanism over a purview."""
return repertoire_distance(
Direction.EFFECT,
self.effect_repertoire(mechanism, purview),
self.unconstrained_effect_repertoire(purview)
) | [
"def",
"effect_info",
"(",
"self",
",",
"mechanism",
",",
"purview",
")",
":",
"return",
"repertoire_distance",
"(",
"Direction",
".",
"EFFECT",
",",
"self",
".",
"effect_repertoire",
"(",
"mechanism",
",",
"purview",
")",
",",
"self",
".",
"unconstrained_effect_repertoire",
"(",
"purview",
")",
")"
] | Return the effect information for a mechanism over a purview. | [
"Return",
"the",
"effect",
"information",
"for",
"a",
"mechanism",
"over",
"a",
"purview",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/subsystem.py#L492-L498 | train |
wmayner/pyphi | pyphi/subsystem.py | Subsystem.cause_effect_info | def cause_effect_info(self, mechanism, purview):
"""Return the cause-effect information for a mechanism over a purview.
This is the minimum of the cause and effect information.
"""
return min(self.cause_info(mechanism, purview),
self.effect_info(mechanism, purview)) | python | def cause_effect_info(self, mechanism, purview):
"""Return the cause-effect information for a mechanism over a purview.
This is the minimum of the cause and effect information.
"""
return min(self.cause_info(mechanism, purview),
self.effect_info(mechanism, purview)) | [
"def",
"cause_effect_info",
"(",
"self",
",",
"mechanism",
",",
"purview",
")",
":",
"return",
"min",
"(",
"self",
".",
"cause_info",
"(",
"mechanism",
",",
"purview",
")",
",",
"self",
".",
"effect_info",
"(",
"mechanism",
",",
"purview",
")",
")"
] | Return the cause-effect information for a mechanism over a purview.
This is the minimum of the cause and effect information. | [
"Return",
"the",
"cause",
"-",
"effect",
"information",
"for",
"a",
"mechanism",
"over",
"a",
"purview",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/subsystem.py#L500-L506 | train |
wmayner/pyphi | pyphi/subsystem.py | Subsystem.evaluate_partition | def evaluate_partition(self, direction, mechanism, purview, partition,
repertoire=None):
"""Return the |small_phi| of a mechanism over a purview for the given
partition.
Args:
direction (Direction): |CAUSE| or |EFFECT|.
mechanism (tuple[int]): The nodes in the mechanism.
purview (tuple[int]): The nodes in the purview.
partition (Bipartition): The partition to evaluate.
Keyword Args:
repertoire (np.array): The unpartitioned repertoire.
If not supplied, it will be computed.
Returns:
tuple[int, np.ndarray]: The distance between the unpartitioned and
partitioned repertoires, and the partitioned repertoire.
"""
if repertoire is None:
repertoire = self.repertoire(direction, mechanism, purview)
partitioned_repertoire = self.partitioned_repertoire(direction,
partition)
phi = repertoire_distance(
direction, repertoire, partitioned_repertoire)
return (phi, partitioned_repertoire) | python | def evaluate_partition(self, direction, mechanism, purview, partition,
repertoire=None):
"""Return the |small_phi| of a mechanism over a purview for the given
partition.
Args:
direction (Direction): |CAUSE| or |EFFECT|.
mechanism (tuple[int]): The nodes in the mechanism.
purview (tuple[int]): The nodes in the purview.
partition (Bipartition): The partition to evaluate.
Keyword Args:
repertoire (np.array): The unpartitioned repertoire.
If not supplied, it will be computed.
Returns:
tuple[int, np.ndarray]: The distance between the unpartitioned and
partitioned repertoires, and the partitioned repertoire.
"""
if repertoire is None:
repertoire = self.repertoire(direction, mechanism, purview)
partitioned_repertoire = self.partitioned_repertoire(direction,
partition)
phi = repertoire_distance(
direction, repertoire, partitioned_repertoire)
return (phi, partitioned_repertoire) | [
"def",
"evaluate_partition",
"(",
"self",
",",
"direction",
",",
"mechanism",
",",
"purview",
",",
"partition",
",",
"repertoire",
"=",
"None",
")",
":",
"if",
"repertoire",
"is",
"None",
":",
"repertoire",
"=",
"self",
".",
"repertoire",
"(",
"direction",
",",
"mechanism",
",",
"purview",
")",
"partitioned_repertoire",
"=",
"self",
".",
"partitioned_repertoire",
"(",
"direction",
",",
"partition",
")",
"phi",
"=",
"repertoire_distance",
"(",
"direction",
",",
"repertoire",
",",
"partitioned_repertoire",
")",
"return",
"(",
"phi",
",",
"partitioned_repertoire",
")"
] | Return the |small_phi| of a mechanism over a purview for the given
partition.
Args:
direction (Direction): |CAUSE| or |EFFECT|.
mechanism (tuple[int]): The nodes in the mechanism.
purview (tuple[int]): The nodes in the purview.
partition (Bipartition): The partition to evaluate.
Keyword Args:
repertoire (np.array): The unpartitioned repertoire.
If not supplied, it will be computed.
Returns:
tuple[int, np.ndarray]: The distance between the unpartitioned and
partitioned repertoires, and the partitioned repertoire. | [
"Return",
"the",
"|small_phi|",
"of",
"a",
"mechanism",
"over",
"a",
"purview",
"for",
"the",
"given",
"partition",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/subsystem.py#L511-L539 | train |
wmayner/pyphi | pyphi/subsystem.py | Subsystem.find_mip | def find_mip(self, direction, mechanism, purview):
"""Return the minimum information partition for a mechanism over a
purview.
Args:
direction (Direction): |CAUSE| or |EFFECT|.
mechanism (tuple[int]): The nodes in the mechanism.
purview (tuple[int]): The nodes in the purview.
Returns:
RepertoireIrreducibilityAnalysis: The irreducibility analysis for
the mininum-information partition in one temporal direction.
"""
if not purview:
return _null_ria(direction, mechanism, purview)
# Calculate the unpartitioned repertoire to compare against the
# partitioned ones.
repertoire = self.repertoire(direction, mechanism, purview)
def _mip(phi, partition, partitioned_repertoire):
# Prototype of MIP with already known data
# TODO: Use properties here to infer mechanism and purview from
# partition yet access them with `.mechanism` and `.purview`.
return RepertoireIrreducibilityAnalysis(
phi=phi,
direction=direction,
mechanism=mechanism,
purview=purview,
partition=partition,
repertoire=repertoire,
partitioned_repertoire=partitioned_repertoire,
node_labels=self.node_labels
)
# State is unreachable - return 0 instead of giving nonsense results
if (direction == Direction.CAUSE and
np.all(repertoire == 0)):
return _mip(0, None, None)
mip = _null_ria(direction, mechanism, purview, phi=float('inf'))
for partition in mip_partitions(mechanism, purview, self.node_labels):
# Find the distance between the unpartitioned and partitioned
# repertoire.
phi, partitioned_repertoire = self.evaluate_partition(
direction, mechanism, purview, partition,
repertoire=repertoire)
# Return immediately if mechanism is reducible.
if phi == 0:
return _mip(0.0, partition, partitioned_repertoire)
# Update MIP if it's more minimal.
if phi < mip.phi:
mip = _mip(phi, partition, partitioned_repertoire)
return mip | python | def find_mip(self, direction, mechanism, purview):
"""Return the minimum information partition for a mechanism over a
purview.
Args:
direction (Direction): |CAUSE| or |EFFECT|.
mechanism (tuple[int]): The nodes in the mechanism.
purview (tuple[int]): The nodes in the purview.
Returns:
RepertoireIrreducibilityAnalysis: The irreducibility analysis for
the mininum-information partition in one temporal direction.
"""
if not purview:
return _null_ria(direction, mechanism, purview)
# Calculate the unpartitioned repertoire to compare against the
# partitioned ones.
repertoire = self.repertoire(direction, mechanism, purview)
def _mip(phi, partition, partitioned_repertoire):
# Prototype of MIP with already known data
# TODO: Use properties here to infer mechanism and purview from
# partition yet access them with `.mechanism` and `.purview`.
return RepertoireIrreducibilityAnalysis(
phi=phi,
direction=direction,
mechanism=mechanism,
purview=purview,
partition=partition,
repertoire=repertoire,
partitioned_repertoire=partitioned_repertoire,
node_labels=self.node_labels
)
# State is unreachable - return 0 instead of giving nonsense results
if (direction == Direction.CAUSE and
np.all(repertoire == 0)):
return _mip(0, None, None)
mip = _null_ria(direction, mechanism, purview, phi=float('inf'))
for partition in mip_partitions(mechanism, purview, self.node_labels):
# Find the distance between the unpartitioned and partitioned
# repertoire.
phi, partitioned_repertoire = self.evaluate_partition(
direction, mechanism, purview, partition,
repertoire=repertoire)
# Return immediately if mechanism is reducible.
if phi == 0:
return _mip(0.0, partition, partitioned_repertoire)
# Update MIP if it's more minimal.
if phi < mip.phi:
mip = _mip(phi, partition, partitioned_repertoire)
return mip | [
"def",
"find_mip",
"(",
"self",
",",
"direction",
",",
"mechanism",
",",
"purview",
")",
":",
"if",
"not",
"purview",
":",
"return",
"_null_ria",
"(",
"direction",
",",
"mechanism",
",",
"purview",
")",
"# Calculate the unpartitioned repertoire to compare against the",
"# partitioned ones.",
"repertoire",
"=",
"self",
".",
"repertoire",
"(",
"direction",
",",
"mechanism",
",",
"purview",
")",
"def",
"_mip",
"(",
"phi",
",",
"partition",
",",
"partitioned_repertoire",
")",
":",
"# Prototype of MIP with already known data",
"# TODO: Use properties here to infer mechanism and purview from",
"# partition yet access them with `.mechanism` and `.purview`.",
"return",
"RepertoireIrreducibilityAnalysis",
"(",
"phi",
"=",
"phi",
",",
"direction",
"=",
"direction",
",",
"mechanism",
"=",
"mechanism",
",",
"purview",
"=",
"purview",
",",
"partition",
"=",
"partition",
",",
"repertoire",
"=",
"repertoire",
",",
"partitioned_repertoire",
"=",
"partitioned_repertoire",
",",
"node_labels",
"=",
"self",
".",
"node_labels",
")",
"# State is unreachable - return 0 instead of giving nonsense results",
"if",
"(",
"direction",
"==",
"Direction",
".",
"CAUSE",
"and",
"np",
".",
"all",
"(",
"repertoire",
"==",
"0",
")",
")",
":",
"return",
"_mip",
"(",
"0",
",",
"None",
",",
"None",
")",
"mip",
"=",
"_null_ria",
"(",
"direction",
",",
"mechanism",
",",
"purview",
",",
"phi",
"=",
"float",
"(",
"'inf'",
")",
")",
"for",
"partition",
"in",
"mip_partitions",
"(",
"mechanism",
",",
"purview",
",",
"self",
".",
"node_labels",
")",
":",
"# Find the distance between the unpartitioned and partitioned",
"# repertoire.",
"phi",
",",
"partitioned_repertoire",
"=",
"self",
".",
"evaluate_partition",
"(",
"direction",
",",
"mechanism",
",",
"purview",
",",
"partition",
",",
"repertoire",
"=",
"repertoire",
")",
"# Return immediately if mechanism is reducible.",
"if",
"phi",
"==",
"0",
":",
"return",
"_mip",
"(",
"0.0",
",",
"partition",
",",
"partitioned_repertoire",
")",
"# Update MIP if it's more minimal.",
"if",
"phi",
"<",
"mip",
".",
"phi",
":",
"mip",
"=",
"_mip",
"(",
"phi",
",",
"partition",
",",
"partitioned_repertoire",
")",
"return",
"mip"
] | Return the minimum information partition for a mechanism over a
purview.
Args:
direction (Direction): |CAUSE| or |EFFECT|.
mechanism (tuple[int]): The nodes in the mechanism.
purview (tuple[int]): The nodes in the purview.
Returns:
RepertoireIrreducibilityAnalysis: The irreducibility analysis for
the mininum-information partition in one temporal direction. | [
"Return",
"the",
"minimum",
"information",
"partition",
"for",
"a",
"mechanism",
"over",
"a",
"purview",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/subsystem.py#L541-L598 | train |
wmayner/pyphi | pyphi/subsystem.py | Subsystem.cause_mip | def cause_mip(self, mechanism, purview):
"""Return the irreducibility analysis for the cause MIP.
Alias for |find_mip()| with ``direction`` set to |CAUSE|.
"""
return self.find_mip(Direction.CAUSE, mechanism, purview) | python | def cause_mip(self, mechanism, purview):
"""Return the irreducibility analysis for the cause MIP.
Alias for |find_mip()| with ``direction`` set to |CAUSE|.
"""
return self.find_mip(Direction.CAUSE, mechanism, purview) | [
"def",
"cause_mip",
"(",
"self",
",",
"mechanism",
",",
"purview",
")",
":",
"return",
"self",
".",
"find_mip",
"(",
"Direction",
".",
"CAUSE",
",",
"mechanism",
",",
"purview",
")"
] | Return the irreducibility analysis for the cause MIP.
Alias for |find_mip()| with ``direction`` set to |CAUSE|. | [
"Return",
"the",
"irreducibility",
"analysis",
"for",
"the",
"cause",
"MIP",
"."
] | deeca69a084d782a6fde7bf26f59e93b593c5d77 | https://github.com/wmayner/pyphi/blob/deeca69a084d782a6fde7bf26f59e93b593c5d77/pyphi/subsystem.py#L600-L605 | train |
Subsets and Splits