repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
sequence
docstring
stringlengths
3
17.3k
docstring_tokens
sequence
sha
stringlengths
40
40
url
stringlengths
87
242
partition
stringclasses
1 value
chemlab/chemlab
chemlab/libs/cirpy.py
download
def download(input, filename, format='sdf', overwrite=False, resolvers=None, **kwargs): """ Resolve and download structure as a file """ kwargs['format'] = format if resolvers: kwargs['resolver'] = ",".join(resolvers) url = API_BASE+'/%s/file?%s' % (urlquote(input), urlencode(kwargs)) try: servefile = urlopen(url) if not overwrite and os.path.isfile(filename): raise IOError("%s already exists. Use 'overwrite=True' to overwrite it." % filename) file = open(filename, "w") file.write(servefile.read()) file.close() except urllib.error.HTTPError: # TODO: Proper handling of 404, for now just does nothing pass
python
def download(input, filename, format='sdf', overwrite=False, resolvers=None, **kwargs): """ Resolve and download structure as a file """ kwargs['format'] = format if resolvers: kwargs['resolver'] = ",".join(resolvers) url = API_BASE+'/%s/file?%s' % (urlquote(input), urlencode(kwargs)) try: servefile = urlopen(url) if not overwrite and os.path.isfile(filename): raise IOError("%s already exists. Use 'overwrite=True' to overwrite it." % filename) file = open(filename, "w") file.write(servefile.read()) file.close() except urllib.error.HTTPError: # TODO: Proper handling of 404, for now just does nothing pass
[ "def", "download", "(", "input", ",", "filename", ",", "format", "=", "'sdf'", ",", "overwrite", "=", "False", ",", "resolvers", "=", "None", ",", "*", "*", "kwargs", ")", ":", "kwargs", "[", "'format'", "]", "=", "format", "if", "resolvers", ":", "kwargs", "[", "'resolver'", "]", "=", "\",\"", ".", "join", "(", "resolvers", ")", "url", "=", "API_BASE", "+", "'/%s/file?%s'", "%", "(", "urlquote", "(", "input", ")", ",", "urlencode", "(", "kwargs", ")", ")", "try", ":", "servefile", "=", "urlopen", "(", "url", ")", "if", "not", "overwrite", "and", "os", ".", "path", ".", "isfile", "(", "filename", ")", ":", "raise", "IOError", "(", "\"%s already exists. Use 'overwrite=True' to overwrite it.\"", "%", "filename", ")", "file", "=", "open", "(", "filename", ",", "\"w\"", ")", "file", ".", "write", "(", "servefile", ".", "read", "(", ")", ")", "file", ".", "close", "(", ")", "except", "urllib", ".", "error", ".", "HTTPError", ":", "# TODO: Proper handling of 404, for now just does nothing", "pass" ]
Resolve and download structure as a file
[ "Resolve", "and", "download", "structure", "as", "a", "file" ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/libs/cirpy.py#L66-L81
train
chemlab/chemlab
chemlab/libs/cirpy.py
Molecule.download
def download(self, filename, format='sdf', overwrite=False, resolvers=None, **kwargs): """ Download the resolved structure as a file """ download(self.input, filename, format, overwrite, resolvers, **kwargs)
python
def download(self, filename, format='sdf', overwrite=False, resolvers=None, **kwargs): """ Download the resolved structure as a file """ download(self.input, filename, format, overwrite, resolvers, **kwargs)
[ "def", "download", "(", "self", ",", "filename", ",", "format", "=", "'sdf'", ",", "overwrite", "=", "False", ",", "resolvers", "=", "None", ",", "*", "*", "kwargs", ")", ":", "download", "(", "self", ".", "input", ",", "filename", ",", "format", ",", "overwrite", ",", "resolvers", ",", "*", "*", "kwargs", ")" ]
Download the resolved structure as a file
[ "Download", "the", "resolved", "structure", "as", "a", "file" ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/libs/cirpy.py#L196-L198
train
chemlab/chemlab
chemlab/utils/__init__.py
dipole_moment
def dipole_moment(r_array, charge_array): '''Return the dipole moment of a neutral system. ''' return np.sum(r_array * charge_array[:, np.newaxis], axis=0)
python
def dipole_moment(r_array, charge_array): '''Return the dipole moment of a neutral system. ''' return np.sum(r_array * charge_array[:, np.newaxis], axis=0)
[ "def", "dipole_moment", "(", "r_array", ",", "charge_array", ")", ":", "return", "np", ".", "sum", "(", "r_array", "*", "charge_array", "[", ":", ",", "np", ".", "newaxis", "]", ",", "axis", "=", "0", ")" ]
Return the dipole moment of a neutral system.
[ "Return", "the", "dipole", "moment", "of", "a", "neutral", "system", "." ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/utils/__init__.py#L90-L93
train
chemlab/chemlab
chemlab/graphics/qt/qtviewer.py
QtViewer.schedule
def schedule(self, callback, timeout=100): '''Schedule a function to be called repeated time. This method can be used to perform animations. **Example** This is a typical way to perform an animation, just:: from chemlab.graphics.qt import QtViewer from chemlab.graphics.renderers import SphereRenderer v = QtViewer() sr = v.add_renderer(SphereRenderer, centers, radii, colors) def update(): # calculate new_positions sr.update_positions(new_positions) v.widget.repaint() v.schedule(update) v.run() .. note:: remember to call QtViewer.widget.repaint() each once you want to update the display. **Parameters** callback: function() A function that takes no arguments that will be called at intervals. timeout: int Time in milliseconds between calls of the *callback* function. **Returns** a `QTimer`, to stop the animation you can use `Qtimer.stop` ''' timer = QTimer(self) timer.timeout.connect(callback) timer.start(timeout) return timer
python
def schedule(self, callback, timeout=100): '''Schedule a function to be called repeated time. This method can be used to perform animations. **Example** This is a typical way to perform an animation, just:: from chemlab.graphics.qt import QtViewer from chemlab.graphics.renderers import SphereRenderer v = QtViewer() sr = v.add_renderer(SphereRenderer, centers, radii, colors) def update(): # calculate new_positions sr.update_positions(new_positions) v.widget.repaint() v.schedule(update) v.run() .. note:: remember to call QtViewer.widget.repaint() each once you want to update the display. **Parameters** callback: function() A function that takes no arguments that will be called at intervals. timeout: int Time in milliseconds between calls of the *callback* function. **Returns** a `QTimer`, to stop the animation you can use `Qtimer.stop` ''' timer = QTimer(self) timer.timeout.connect(callback) timer.start(timeout) return timer
[ "def", "schedule", "(", "self", ",", "callback", ",", "timeout", "=", "100", ")", ":", "timer", "=", "QTimer", "(", "self", ")", "timer", ".", "timeout", ".", "connect", "(", "callback", ")", "timer", ".", "start", "(", "timeout", ")", "return", "timer" ]
Schedule a function to be called repeated time. This method can be used to perform animations. **Example** This is a typical way to perform an animation, just:: from chemlab.graphics.qt import QtViewer from chemlab.graphics.renderers import SphereRenderer v = QtViewer() sr = v.add_renderer(SphereRenderer, centers, radii, colors) def update(): # calculate new_positions sr.update_positions(new_positions) v.widget.repaint() v.schedule(update) v.run() .. note:: remember to call QtViewer.widget.repaint() each once you want to update the display. **Parameters** callback: function() A function that takes no arguments that will be called at intervals. timeout: int Time in milliseconds between calls of the *callback* function. **Returns** a `QTimer`, to stop the animation you can use `Qtimer.stop`
[ "Schedule", "a", "function", "to", "be", "called", "repeated", "time", "." ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/graphics/qt/qtviewer.py#L87-L129
train
chemlab/chemlab
chemlab/graphics/qt/qtviewer.py
QtViewer.add_ui
def add_ui(self, klass, *args, **kwargs): '''Add an UI element for the current scene. The approach is the same as renderers. .. warning:: The UI api is not yet finalized ''' ui = klass(self.widget, *args, **kwargs) self.widget.uis.append(ui) return ui
python
def add_ui(self, klass, *args, **kwargs): '''Add an UI element for the current scene. The approach is the same as renderers. .. warning:: The UI api is not yet finalized ''' ui = klass(self.widget, *args, **kwargs) self.widget.uis.append(ui) return ui
[ "def", "add_ui", "(", "self", ",", "klass", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "ui", "=", "klass", "(", "self", ".", "widget", ",", "*", "args", ",", "*", "*", "kwargs", ")", "self", ".", "widget", ".", "uis", ".", "append", "(", "ui", ")", "return", "ui" ]
Add an UI element for the current scene. The approach is the same as renderers. .. warning:: The UI api is not yet finalized
[ "Add", "an", "UI", "element", "for", "the", "current", "scene", ".", "The", "approach", "is", "the", "same", "as", "renderers", "." ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/graphics/qt/qtviewer.py#L182-L191
train
chemlab/chemlab
chemlab/io/handlers/gamess.py
parse_card
def parse_card(card, text, default=None): """Parse a card from an input string """ match = re.search(card.lower() + r"\s*=\s*(\w+)", text.lower()) return match.group(1) if match else default
python
def parse_card(card, text, default=None): """Parse a card from an input string """ match = re.search(card.lower() + r"\s*=\s*(\w+)", text.lower()) return match.group(1) if match else default
[ "def", "parse_card", "(", "card", ",", "text", ",", "default", "=", "None", ")", ":", "match", "=", "re", ".", "search", "(", "card", ".", "lower", "(", ")", "+", "r\"\\s*=\\s*(\\w+)\"", ",", "text", ".", "lower", "(", ")", ")", "return", "match", ".", "group", "(", "1", ")", "if", "match", "else", "default" ]
Parse a card from an input string
[ "Parse", "a", "card", "from", "an", "input", "string" ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/io/handlers/gamess.py#L143-L148
train
chemlab/chemlab
chemlab/io/handlers/gamess.py
GamessDataParser._parse_geometry
def _parse_geometry(self, geom): """Parse a geometry string and return Molecule object from it. """ atoms = [] for i, line in enumerate(geom.splitlines()): sym, atno, x, y, z = line.split() atoms.append(Atom(sym, [float(x), float(y), float(z)], id=i)) return Molecule(atoms)
python
def _parse_geometry(self, geom): """Parse a geometry string and return Molecule object from it. """ atoms = [] for i, line in enumerate(geom.splitlines()): sym, atno, x, y, z = line.split() atoms.append(Atom(sym, [float(x), float(y), float(z)], id=i)) return Molecule(atoms)
[ "def", "_parse_geometry", "(", "self", ",", "geom", ")", ":", "atoms", "=", "[", "]", "for", "i", ",", "line", "in", "enumerate", "(", "geom", ".", "splitlines", "(", ")", ")", ":", "sym", ",", "atno", ",", "x", ",", "y", ",", "z", "=", "line", ".", "split", "(", ")", "atoms", ".", "append", "(", "Atom", "(", "sym", ",", "[", "float", "(", "x", ")", ",", "float", "(", "y", ")", ",", "float", "(", "z", ")", "]", ",", "id", "=", "i", ")", ")", "return", "Molecule", "(", "atoms", ")" ]
Parse a geometry string and return Molecule object from it.
[ "Parse", "a", "geometry", "string", "and", "return", "Molecule", "object", "from", "it", "." ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/io/handlers/gamess.py#L67-L77
train
chemlab/chemlab
chemlab/io/handlers/gamess.py
GamessDataParser.parse_optimize
def parse_optimize(self): """Parse the ouput resulted of a geometry optimization. Or a saddle point. """ match = re.search("EQUILIBRIUM GEOMETRY LOCATED", self.text) spmatch = "SADDLE POINT LOCATED" in self.text located = True if match or spmatch else False points = grep_split(" BEGINNING GEOMETRY SEARCH POINT NSERCH=", self.text) if self.tddft == "excite": points = [self.parse_energy(point) for point in points[1:]] else: regex = re.compile(r'NSERCH:\s+\d+\s+E=\s+([+-]?\d+\.\d+)') points = [Energy(states=[State(0,None,float(m.group(1)), 0.0, 0.0)]) for m in regex.finditer(self.text)] # Error handling if "FAILURE TO LOCATE STATIONARY POINT, TOO MANY STEPS TAKEN" in self.text: self.errcode = GEOM_NOT_LOCATED self.errmsg = "too many steps taken: %i"%len(points) if located: self.errcode = OK return Optimize(points=points)
python
def parse_optimize(self): """Parse the ouput resulted of a geometry optimization. Or a saddle point. """ match = re.search("EQUILIBRIUM GEOMETRY LOCATED", self.text) spmatch = "SADDLE POINT LOCATED" in self.text located = True if match or spmatch else False points = grep_split(" BEGINNING GEOMETRY SEARCH POINT NSERCH=", self.text) if self.tddft == "excite": points = [self.parse_energy(point) for point in points[1:]] else: regex = re.compile(r'NSERCH:\s+\d+\s+E=\s+([+-]?\d+\.\d+)') points = [Energy(states=[State(0,None,float(m.group(1)), 0.0, 0.0)]) for m in regex.finditer(self.text)] # Error handling if "FAILURE TO LOCATE STATIONARY POINT, TOO MANY STEPS TAKEN" in self.text: self.errcode = GEOM_NOT_LOCATED self.errmsg = "too many steps taken: %i"%len(points) if located: self.errcode = OK return Optimize(points=points)
[ "def", "parse_optimize", "(", "self", ")", ":", "match", "=", "re", ".", "search", "(", "\"EQUILIBRIUM GEOMETRY LOCATED\"", ",", "self", ".", "text", ")", "spmatch", "=", "\"SADDLE POINT LOCATED\"", "in", "self", ".", "text", "located", "=", "True", "if", "match", "or", "spmatch", "else", "False", "points", "=", "grep_split", "(", "\" BEGINNING GEOMETRY SEARCH POINT NSERCH=\"", ",", "self", ".", "text", ")", "if", "self", ".", "tddft", "==", "\"excite\"", ":", "points", "=", "[", "self", ".", "parse_energy", "(", "point", ")", "for", "point", "in", "points", "[", "1", ":", "]", "]", "else", ":", "regex", "=", "re", ".", "compile", "(", "r'NSERCH:\\s+\\d+\\s+E=\\s+([+-]?\\d+\\.\\d+)'", ")", "points", "=", "[", "Energy", "(", "states", "=", "[", "State", "(", "0", ",", "None", ",", "float", "(", "m", ".", "group", "(", "1", ")", ")", ",", "0.0", ",", "0.0", ")", "]", ")", "for", "m", "in", "regex", ".", "finditer", "(", "self", ".", "text", ")", "]", "# Error handling", "if", "\"FAILURE TO LOCATE STATIONARY POINT, TOO MANY STEPS TAKEN\"", "in", "self", ".", "text", ":", "self", ".", "errcode", "=", "GEOM_NOT_LOCATED", "self", ".", "errmsg", "=", "\"too many steps taken: %i\"", "%", "len", "(", "points", ")", "if", "located", ":", "self", ".", "errcode", "=", "OK", "return", "Optimize", "(", "points", "=", "points", ")" ]
Parse the ouput resulted of a geometry optimization. Or a saddle point.
[ "Parse", "the", "ouput", "resulted", "of", "a", "geometry", "optimization", ".", "Or", "a", "saddle", "point", "." ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/io/handlers/gamess.py#L79-L104
train
chemlab/chemlab
chemlab/graphics/renderers/cylinder_imp.py
CylinderImpostorRenderer.change_attributes
def change_attributes(self, bounds, radii, colors): """Reinitialize the buffers, to accomodate the new attributes. This is used to change the number of cylinders to be displayed. """ self.n_cylinders = len(bounds) self.is_empty = True if self.n_cylinders == 0 else False if self.is_empty: self.bounds = bounds self.radii = radii self.colors = colors return # Do nothing # We pass the starting position 8 times, and each of these has # a mapping to the bounding box corner. self.bounds = np.array(bounds, dtype='float32') vertices, directions = self._gen_bounds(self.bounds) self.radii = np.array(radii, dtype='float32') prim_radii = self._gen_radii(self.radii) self.colors = np.array(colors, dtype='uint8') prim_colors = self._gen_colors(self.colors) local = np.array([ # First face -- front 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, # Second face -- back 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, # Third face -- left 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, # Fourth face -- right 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, # Fifth face -- up 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, # Sixth face -- down 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, ]).astype('float32') local = np.tile(local, self.n_cylinders) self._verts_vbo = VertexBuffer(vertices,GL_DYNAMIC_DRAW) self._directions_vbo = VertexBuffer(directions, GL_DYNAMIC_DRAW) self._local_vbo = VertexBuffer(local,GL_DYNAMIC_DRAW) self._color_vbo = VertexBuffer(prim_colors, GL_DYNAMIC_DRAW) self._radii_vbo = VertexBuffer(prim_radii, GL_DYNAMIC_DRAW)
python
def change_attributes(self, bounds, radii, colors): """Reinitialize the buffers, to accomodate the new attributes. This is used to change the number of cylinders to be displayed. """ self.n_cylinders = len(bounds) self.is_empty = True if self.n_cylinders == 0 else False if self.is_empty: self.bounds = bounds self.radii = radii self.colors = colors return # Do nothing # We pass the starting position 8 times, and each of these has # a mapping to the bounding box corner. self.bounds = np.array(bounds, dtype='float32') vertices, directions = self._gen_bounds(self.bounds) self.radii = np.array(radii, dtype='float32') prim_radii = self._gen_radii(self.radii) self.colors = np.array(colors, dtype='uint8') prim_colors = self._gen_colors(self.colors) local = np.array([ # First face -- front 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, # Second face -- back 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, # Third face -- left 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, # Fourth face -- right 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, # Fifth face -- up 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, # Sixth face -- down 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, ]).astype('float32') local = np.tile(local, self.n_cylinders) self._verts_vbo = VertexBuffer(vertices,GL_DYNAMIC_DRAW) self._directions_vbo = VertexBuffer(directions, GL_DYNAMIC_DRAW) self._local_vbo = VertexBuffer(local,GL_DYNAMIC_DRAW) self._color_vbo = VertexBuffer(prim_colors, GL_DYNAMIC_DRAW) self._radii_vbo = VertexBuffer(prim_radii, GL_DYNAMIC_DRAW)
[ "def", "change_attributes", "(", "self", ",", "bounds", ",", "radii", ",", "colors", ")", ":", "self", ".", "n_cylinders", "=", "len", "(", "bounds", ")", "self", ".", "is_empty", "=", "True", "if", "self", ".", "n_cylinders", "==", "0", "else", "False", "if", "self", ".", "is_empty", ":", "self", ".", "bounds", "=", "bounds", "self", ".", "radii", "=", "radii", "self", ".", "colors", "=", "colors", "return", "# Do nothing", "# We pass the starting position 8 times, and each of these has", "# a mapping to the bounding box corner.", "self", ".", "bounds", "=", "np", ".", "array", "(", "bounds", ",", "dtype", "=", "'float32'", ")", "vertices", ",", "directions", "=", "self", ".", "_gen_bounds", "(", "self", ".", "bounds", ")", "self", ".", "radii", "=", "np", ".", "array", "(", "radii", ",", "dtype", "=", "'float32'", ")", "prim_radii", "=", "self", ".", "_gen_radii", "(", "self", ".", "radii", ")", "self", ".", "colors", "=", "np", ".", "array", "(", "colors", ",", "dtype", "=", "'uint8'", ")", "prim_colors", "=", "self", ".", "_gen_colors", "(", "self", ".", "colors", ")", "local", "=", "np", ".", "array", "(", "[", "# First face -- front", "0.0", ",", "0.0", ",", "0.0", ",", "0.0", ",", "1.0", ",", "0.0", ",", "1.0", ",", "1.0", ",", "0.0", ",", "0.0", ",", "0.0", ",", "0.0", ",", "1.0", ",", "1.0", ",", "0.0", ",", "1.0", ",", "0.0", ",", "0.0", ",", "# Second face -- back", "0.0", ",", "0.0", ",", "1.0", ",", "0.0", ",", "1.0", ",", "1.0", ",", "1.0", ",", "1.0", ",", "1.0", ",", "0.0", ",", "0.0", ",", "1.0", ",", "1.0", ",", "1.0", ",", "1.0", ",", "1.0", ",", "0.0", ",", "1.0", ",", "# Third face -- left", "0.0", ",", "0.0", ",", "0.0", ",", "0.0", ",", "0.0", ",", "1.0", ",", "0.0", ",", "1.0", ",", "1.0", ",", "0.0", ",", "0.0", ",", "0.0", ",", "0.0", ",", "1.0", ",", "1.0", ",", "0.0", ",", "1.0", ",", "0.0", ",", "# Fourth face -- right", "1.0", ",", "0.0", ",", "0.0", ",", "1.0", ",", "0.0", ",", "1.0", ",", "1.0", ",", "1.0", ",", "1.0", ",", "1.0", ",", "0.0", ",", "0.0", ",", "1.0", ",", "1.0", ",", "1.0", ",", "1.0", ",", "1.0", ",", "0.0", ",", "# Fifth face -- up", "0.0", ",", "1.0", ",", "0.0", ",", "0.0", ",", "1.0", ",", "1.0", ",", "1.0", ",", "1.0", ",", "1.0", ",", "0.0", ",", "1.0", ",", "0.0", ",", "1.0", ",", "1.0", ",", "1.0", ",", "1.0", ",", "1.0", ",", "0.0", ",", "# Sixth face -- down", "0.0", ",", "0.0", ",", "0.0", ",", "0.0", ",", "0.0", ",", "1.0", ",", "1.0", ",", "0.0", ",", "1.0", ",", "0.0", ",", "0.0", ",", "0.0", ",", "1.0", ",", "0.0", ",", "1.0", ",", "1.0", ",", "0.0", ",", "0.0", ",", "]", ")", ".", "astype", "(", "'float32'", ")", "local", "=", "np", ".", "tile", "(", "local", ",", "self", ".", "n_cylinders", ")", "self", ".", "_verts_vbo", "=", "VertexBuffer", "(", "vertices", ",", "GL_DYNAMIC_DRAW", ")", "self", ".", "_directions_vbo", "=", "VertexBuffer", "(", "directions", ",", "GL_DYNAMIC_DRAW", ")", "self", ".", "_local_vbo", "=", "VertexBuffer", "(", "local", ",", "GL_DYNAMIC_DRAW", ")", "self", ".", "_color_vbo", "=", "VertexBuffer", "(", "prim_colors", ",", "GL_DYNAMIC_DRAW", ")", "self", ".", "_radii_vbo", "=", "VertexBuffer", "(", "prim_radii", ",", "GL_DYNAMIC_DRAW", ")" ]
Reinitialize the buffers, to accomodate the new attributes. This is used to change the number of cylinders to be displayed.
[ "Reinitialize", "the", "buffers", "to", "accomodate", "the", "new", "attributes", ".", "This", "is", "used", "to", "change", "the", "number", "of", "cylinders", "to", "be", "displayed", "." ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/graphics/renderers/cylinder_imp.py#L32-L123
train
chemlab/chemlab
chemlab/graphics/renderers/cylinder_imp.py
CylinderImpostorRenderer.update_bounds
def update_bounds(self, bounds): '''Update the bounds inplace''' self.bounds = np.array(bounds, dtype='float32') vertices, directions = self._gen_bounds(self.bounds) self._verts_vbo.set_data(vertices) self._directions_vbo.set_data(directions) self.widget.update()
python
def update_bounds(self, bounds): '''Update the bounds inplace''' self.bounds = np.array(bounds, dtype='float32') vertices, directions = self._gen_bounds(self.bounds) self._verts_vbo.set_data(vertices) self._directions_vbo.set_data(directions) self.widget.update()
[ "def", "update_bounds", "(", "self", ",", "bounds", ")", ":", "self", ".", "bounds", "=", "np", ".", "array", "(", "bounds", ",", "dtype", "=", "'float32'", ")", "vertices", ",", "directions", "=", "self", ".", "_gen_bounds", "(", "self", ".", "bounds", ")", "self", ".", "_verts_vbo", ".", "set_data", "(", "vertices", ")", "self", ".", "_directions_vbo", ".", "set_data", "(", "directions", ")", "self", ".", "widget", ".", "update", "(", ")" ]
Update the bounds inplace
[ "Update", "the", "bounds", "inplace" ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/graphics/renderers/cylinder_imp.py#L209-L216
train
chemlab/chemlab
chemlab/graphics/renderers/cylinder_imp.py
CylinderImpostorRenderer.update_radii
def update_radii(self, radii): '''Update the radii inplace''' self.radii = np.array(radii, dtype='float32') prim_radii = self._gen_radii(self.radii) self._radii_vbo.set_data(prim_radii) self.widget.update()
python
def update_radii(self, radii): '''Update the radii inplace''' self.radii = np.array(radii, dtype='float32') prim_radii = self._gen_radii(self.radii) self._radii_vbo.set_data(prim_radii) self.widget.update()
[ "def", "update_radii", "(", "self", ",", "radii", ")", ":", "self", ".", "radii", "=", "np", ".", "array", "(", "radii", ",", "dtype", "=", "'float32'", ")", "prim_radii", "=", "self", ".", "_gen_radii", "(", "self", ".", "radii", ")", "self", ".", "_radii_vbo", ".", "set_data", "(", "prim_radii", ")", "self", ".", "widget", ".", "update", "(", ")" ]
Update the radii inplace
[ "Update", "the", "radii", "inplace" ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/graphics/renderers/cylinder_imp.py#L218-L224
train
chemlab/chemlab
chemlab/graphics/renderers/cylinder_imp.py
CylinderImpostorRenderer.update_colors
def update_colors(self, colors): '''Update the colors inplace''' self.colors = np.array(colors, dtype='uint8') prim_colors = self._gen_colors(self.colors) self._color_vbo.set_data(prim_colors) self.widget.update()
python
def update_colors(self, colors): '''Update the colors inplace''' self.colors = np.array(colors, dtype='uint8') prim_colors = self._gen_colors(self.colors) self._color_vbo.set_data(prim_colors) self.widget.update()
[ "def", "update_colors", "(", "self", ",", "colors", ")", ":", "self", ".", "colors", "=", "np", ".", "array", "(", "colors", ",", "dtype", "=", "'uint8'", ")", "prim_colors", "=", "self", ".", "_gen_colors", "(", "self", ".", "colors", ")", "self", ".", "_color_vbo", ".", "set_data", "(", "prim_colors", ")", "self", ".", "widget", ".", "update", "(", ")" ]
Update the colors inplace
[ "Update", "the", "colors", "inplace" ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/graphics/renderers/cylinder_imp.py#L226-L232
train
chemlab/chemlab
chemlab/notebook/display.py
Display.system
def system(self, object, highlight=None, alpha=1.0, color=None, transparent=None): '''Display System object''' if self.backend == 'povray': kwargs = {} if color is not None: kwargs['color'] = color else: kwargs['color'] = default_colormap[object.type_array] self.plotter.camera.autozoom(object.r_array) self.plotter.points(object.r_array, alpha=alpha, **kwargs) return self
python
def system(self, object, highlight=None, alpha=1.0, color=None, transparent=None): '''Display System object''' if self.backend == 'povray': kwargs = {} if color is not None: kwargs['color'] = color else: kwargs['color'] = default_colormap[object.type_array] self.plotter.camera.autozoom(object.r_array) self.plotter.points(object.r_array, alpha=alpha, **kwargs) return self
[ "def", "system", "(", "self", ",", "object", ",", "highlight", "=", "None", ",", "alpha", "=", "1.0", ",", "color", "=", "None", ",", "transparent", "=", "None", ")", ":", "if", "self", ".", "backend", "==", "'povray'", ":", "kwargs", "=", "{", "}", "if", "color", "is", "not", "None", ":", "kwargs", "[", "'color'", "]", "=", "color", "else", ":", "kwargs", "[", "'color'", "]", "=", "default_colormap", "[", "object", ".", "type_array", "]", "self", ".", "plotter", ".", "camera", ".", "autozoom", "(", "object", ".", "r_array", ")", "self", ".", "plotter", ".", "points", "(", "object", ".", "r_array", ",", "alpha", "=", "alpha", ",", "*", "*", "kwargs", ")", "return", "self" ]
Display System object
[ "Display", "System", "object" ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/notebook/display.py#L17-L29
train
chemlab/chemlab
chemlab/contrib/gromacs.py
make_gromacs
def make_gromacs(simulation, directory, clean=False): """Create gromacs directory structure""" if clean is False and os.path.exists(directory): raise ValueError( 'Cannot override {}, use option clean=True'.format(directory)) else: shutil.rmtree(directory, ignore_errors=True) os.mkdir(directory) # Check custom simulation potential if simulation.potential.intermolecular.type == 'custom': for pair in simulation.potential.intermolecular.special_pairs: table = to_table(simulation.potential.intermolecular.pair_interaction(*pair), simulation.cutoff) fname1 = os.path.join(directory, 'table_{}_{}.xvg'.format(pair[0], pair[1])) fname2 = os.path.join(directory, 'table_{}_{}.xvg'.format(pair[1], pair[0])) with open(fname1, 'w') as fd: fd.write(table) with open(fname2, 'w') as fd: fd.write(table) ndx = {'System' : np.arange(simulation.system.n_atoms, dtype='int')} for particle in simulation.potential.intermolecular.particles: idx = simulation.system.where(atom_name=particle)['atom'].nonzero()[0] ndx[particle] = idx with open(os.path.join(directory, 'index.ndx'), 'w') as fd: fd.write(to_ndx(ndx)) # Parameter file mdpfile = to_mdp(simulation) with open(os.path.join(directory, 'grompp.mdp'), 'w') as fd: fd.write(mdpfile) # Topology file topfile = to_top(simulation.system, simulation.potential) with open(os.path.join(directory, 'topol.top'), 'w') as fd: fd.write(topfile) # Simulation file datafile(os.path.join(directory, 'conf.gro'), 'w').write('system', simulation.system) return directory
python
def make_gromacs(simulation, directory, clean=False): """Create gromacs directory structure""" if clean is False and os.path.exists(directory): raise ValueError( 'Cannot override {}, use option clean=True'.format(directory)) else: shutil.rmtree(directory, ignore_errors=True) os.mkdir(directory) # Check custom simulation potential if simulation.potential.intermolecular.type == 'custom': for pair in simulation.potential.intermolecular.special_pairs: table = to_table(simulation.potential.intermolecular.pair_interaction(*pair), simulation.cutoff) fname1 = os.path.join(directory, 'table_{}_{}.xvg'.format(pair[0], pair[1])) fname2 = os.path.join(directory, 'table_{}_{}.xvg'.format(pair[1], pair[0])) with open(fname1, 'w') as fd: fd.write(table) with open(fname2, 'w') as fd: fd.write(table) ndx = {'System' : np.arange(simulation.system.n_atoms, dtype='int')} for particle in simulation.potential.intermolecular.particles: idx = simulation.system.where(atom_name=particle)['atom'].nonzero()[0] ndx[particle] = idx with open(os.path.join(directory, 'index.ndx'), 'w') as fd: fd.write(to_ndx(ndx)) # Parameter file mdpfile = to_mdp(simulation) with open(os.path.join(directory, 'grompp.mdp'), 'w') as fd: fd.write(mdpfile) # Topology file topfile = to_top(simulation.system, simulation.potential) with open(os.path.join(directory, 'topol.top'), 'w') as fd: fd.write(topfile) # Simulation file datafile(os.path.join(directory, 'conf.gro'), 'w').write('system', simulation.system) return directory
[ "def", "make_gromacs", "(", "simulation", ",", "directory", ",", "clean", "=", "False", ")", ":", "if", "clean", "is", "False", "and", "os", ".", "path", ".", "exists", "(", "directory", ")", ":", "raise", "ValueError", "(", "'Cannot override {}, use option clean=True'", ".", "format", "(", "directory", ")", ")", "else", ":", "shutil", ".", "rmtree", "(", "directory", ",", "ignore_errors", "=", "True", ")", "os", ".", "mkdir", "(", "directory", ")", "# Check custom simulation potential", "if", "simulation", ".", "potential", ".", "intermolecular", ".", "type", "==", "'custom'", ":", "for", "pair", "in", "simulation", ".", "potential", ".", "intermolecular", ".", "special_pairs", ":", "table", "=", "to_table", "(", "simulation", ".", "potential", ".", "intermolecular", ".", "pair_interaction", "(", "*", "pair", ")", ",", "simulation", ".", "cutoff", ")", "fname1", "=", "os", ".", "path", ".", "join", "(", "directory", ",", "'table_{}_{}.xvg'", ".", "format", "(", "pair", "[", "0", "]", ",", "pair", "[", "1", "]", ")", ")", "fname2", "=", "os", ".", "path", ".", "join", "(", "directory", ",", "'table_{}_{}.xvg'", ".", "format", "(", "pair", "[", "1", "]", ",", "pair", "[", "0", "]", ")", ")", "with", "open", "(", "fname1", ",", "'w'", ")", "as", "fd", ":", "fd", ".", "write", "(", "table", ")", "with", "open", "(", "fname2", ",", "'w'", ")", "as", "fd", ":", "fd", ".", "write", "(", "table", ")", "ndx", "=", "{", "'System'", ":", "np", ".", "arange", "(", "simulation", ".", "system", ".", "n_atoms", ",", "dtype", "=", "'int'", ")", "}", "for", "particle", "in", "simulation", ".", "potential", ".", "intermolecular", ".", "particles", ":", "idx", "=", "simulation", ".", "system", ".", "where", "(", "atom_name", "=", "particle", ")", "[", "'atom'", "]", ".", "nonzero", "(", ")", "[", "0", "]", "ndx", "[", "particle", "]", "=", "idx", "with", "open", "(", "os", ".", "path", ".", "join", "(", "directory", ",", "'index.ndx'", ")", ",", "'w'", ")", "as", "fd", ":", "fd", ".", "write", "(", "to_ndx", "(", "ndx", ")", ")", "# Parameter file", "mdpfile", "=", "to_mdp", "(", "simulation", ")", "with", "open", "(", "os", ".", "path", ".", "join", "(", "directory", ",", "'grompp.mdp'", ")", ",", "'w'", ")", "as", "fd", ":", "fd", ".", "write", "(", "mdpfile", ")", "# Topology file", "topfile", "=", "to_top", "(", "simulation", ".", "system", ",", "simulation", ".", "potential", ")", "with", "open", "(", "os", ".", "path", ".", "join", "(", "directory", ",", "'topol.top'", ")", ",", "'w'", ")", "as", "fd", ":", "fd", ".", "write", "(", "topfile", ")", "# Simulation file", "datafile", "(", "os", ".", "path", ".", "join", "(", "directory", ",", "'conf.gro'", ")", ",", "'w'", ")", ".", "write", "(", "'system'", ",", "simulation", ".", "system", ")", "return", "directory" ]
Create gromacs directory structure
[ "Create", "gromacs", "directory", "structure" ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/contrib/gromacs.py#L125-L175
train
chemlab/chemlab
chemlab/graphics/renderers/triangles.py
TriangleRenderer.update_vertices
def update_vertices(self, vertices): """ Update the triangle vertices. """ vertices = np.array(vertices, dtype=np.float32) self._vbo_v.set_data(vertices)
python
def update_vertices(self, vertices): """ Update the triangle vertices. """ vertices = np.array(vertices, dtype=np.float32) self._vbo_v.set_data(vertices)
[ "def", "update_vertices", "(", "self", ",", "vertices", ")", ":", "vertices", "=", "np", ".", "array", "(", "vertices", ",", "dtype", "=", "np", ".", "float32", ")", "self", ".", "_vbo_v", ".", "set_data", "(", "vertices", ")" ]
Update the triangle vertices.
[ "Update", "the", "triangle", "vertices", "." ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/graphics/renderers/triangles.py#L86-L92
train
chemlab/chemlab
chemlab/graphics/renderers/triangles.py
TriangleRenderer.update_normals
def update_normals(self, normals): """ Update the triangle normals. """ normals = np.array(normals, dtype=np.float32) self._vbo_n.set_data(normals)
python
def update_normals(self, normals): """ Update the triangle normals. """ normals = np.array(normals, dtype=np.float32) self._vbo_n.set_data(normals)
[ "def", "update_normals", "(", "self", ",", "normals", ")", ":", "normals", "=", "np", ".", "array", "(", "normals", ",", "dtype", "=", "np", ".", "float32", ")", "self", ".", "_vbo_n", ".", "set_data", "(", "normals", ")" ]
Update the triangle normals.
[ "Update", "the", "triangle", "normals", "." ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/graphics/renderers/triangles.py#L94-L100
train
chemlab/chemlab
chemlab/graphics/qt/qttrajectory.py
TrajectoryControls.set_ticks
def set_ticks(self, number): '''Set the number of frames to animate. ''' self.max_index = number self.current_index = 0 self.slider.setMaximum(self.max_index-1) self.slider.setMinimum(0) self.slider.setPageStep(1)
python
def set_ticks(self, number): '''Set the number of frames to animate. ''' self.max_index = number self.current_index = 0 self.slider.setMaximum(self.max_index-1) self.slider.setMinimum(0) self.slider.setPageStep(1)
[ "def", "set_ticks", "(", "self", ",", "number", ")", ":", "self", ".", "max_index", "=", "number", "self", ".", "current_index", "=", "0", "self", ".", "slider", ".", "setMaximum", "(", "self", ".", "max_index", "-", "1", ")", "self", ".", "slider", ".", "setMinimum", "(", "0", ")", "self", ".", "slider", ".", "setPageStep", "(", "1", ")" ]
Set the number of frames to animate.
[ "Set", "the", "number", "of", "frames", "to", "animate", "." ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/graphics/qt/qttrajectory.py#L229-L237
train
chemlab/chemlab
chemlab/graphics/qt/qttrajectory.py
QtTrajectoryViewer.set_text
def set_text(self, text): '''Update the time indicator in the interface. ''' self.traj_controls.timelabel.setText(self.traj_controls._label_tmp.format(text))
python
def set_text(self, text): '''Update the time indicator in the interface. ''' self.traj_controls.timelabel.setText(self.traj_controls._label_tmp.format(text))
[ "def", "set_text", "(", "self", ",", "text", ")", ":", "self", ".", "traj_controls", ".", "timelabel", ".", "setText", "(", "self", ".", "traj_controls", ".", "_label_tmp", ".", "format", "(", "text", ")", ")" ]
Update the time indicator in the interface.
[ "Update", "the", "time", "indicator", "in", "the", "interface", "." ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/graphics/qt/qttrajectory.py#L316-L320
train
chemlab/chemlab
chemlab/graphics/qt/qttrajectory.py
QtTrajectoryViewer.update_function
def update_function(self, func, frames=None): '''Set the function to be called when it's time to display a frame. *func* should be a function that takes one integer argument that represents the frame that has to be played:: def func(index): # Update the renderers to match the # current animation index ''' # Back-compatibility if frames is not None: self.traj_controls.set_ticks(frames) self._update_function = func
python
def update_function(self, func, frames=None): '''Set the function to be called when it's time to display a frame. *func* should be a function that takes one integer argument that represents the frame that has to be played:: def func(index): # Update the renderers to match the # current animation index ''' # Back-compatibility if frames is not None: self.traj_controls.set_ticks(frames) self._update_function = func
[ "def", "update_function", "(", "self", ",", "func", ",", "frames", "=", "None", ")", ":", "# Back-compatibility", "if", "frames", "is", "not", "None", ":", "self", ".", "traj_controls", ".", "set_ticks", "(", "frames", ")", "self", ".", "_update_function", "=", "func" ]
Set the function to be called when it's time to display a frame. *func* should be a function that takes one integer argument that represents the frame that has to be played:: def func(index): # Update the renderers to match the # current animation index
[ "Set", "the", "function", "to", "be", "called", "when", "it", "s", "time", "to", "display", "a", "frame", "." ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/graphics/qt/qttrajectory.py#L371-L386
train
chemlab/chemlab
chemlab/graphics/transformations.py
rotation_matrix
def rotation_matrix(angle, direction): """ Create a rotation matrix corresponding to the rotation around a general axis by a specified angle. R = dd^T + cos(a) (I - dd^T) + sin(a) skew(d) Parameters: angle : float a direction : array d """ d = numpy.array(direction, dtype=numpy.float64) d /= numpy.linalg.norm(d) eye = numpy.eye(3, dtype=numpy.float64) ddt = numpy.outer(d, d) skew = numpy.array([[ 0, d[2], -d[1]], [-d[2], 0, d[0]], [d[1], -d[0], 0]], dtype=numpy.float64) mtx = ddt + numpy.cos(angle) * (eye - ddt) + numpy.sin(angle) * skew M = numpy.eye(4) M[:3,:3] = mtx return M
python
def rotation_matrix(angle, direction): """ Create a rotation matrix corresponding to the rotation around a general axis by a specified angle. R = dd^T + cos(a) (I - dd^T) + sin(a) skew(d) Parameters: angle : float a direction : array d """ d = numpy.array(direction, dtype=numpy.float64) d /= numpy.linalg.norm(d) eye = numpy.eye(3, dtype=numpy.float64) ddt = numpy.outer(d, d) skew = numpy.array([[ 0, d[2], -d[1]], [-d[2], 0, d[0]], [d[1], -d[0], 0]], dtype=numpy.float64) mtx = ddt + numpy.cos(angle) * (eye - ddt) + numpy.sin(angle) * skew M = numpy.eye(4) M[:3,:3] = mtx return M
[ "def", "rotation_matrix", "(", "angle", ",", "direction", ")", ":", "d", "=", "numpy", ".", "array", "(", "direction", ",", "dtype", "=", "numpy", ".", "float64", ")", "d", "/=", "numpy", ".", "linalg", ".", "norm", "(", "d", ")", "eye", "=", "numpy", ".", "eye", "(", "3", ",", "dtype", "=", "numpy", ".", "float64", ")", "ddt", "=", "numpy", ".", "outer", "(", "d", ",", "d", ")", "skew", "=", "numpy", ".", "array", "(", "[", "[", "0", ",", "d", "[", "2", "]", ",", "-", "d", "[", "1", "]", "]", ",", "[", "-", "d", "[", "2", "]", ",", "0", ",", "d", "[", "0", "]", "]", ",", "[", "d", "[", "1", "]", ",", "-", "d", "[", "0", "]", ",", "0", "]", "]", ",", "dtype", "=", "numpy", ".", "float64", ")", "mtx", "=", "ddt", "+", "numpy", ".", "cos", "(", "angle", ")", "*", "(", "eye", "-", "ddt", ")", "+", "numpy", ".", "sin", "(", "angle", ")", "*", "skew", "M", "=", "numpy", ".", "eye", "(", "4", ")", "M", "[", ":", "3", ",", ":", "3", "]", "=", "mtx", "return", "M" ]
Create a rotation matrix corresponding to the rotation around a general axis by a specified angle. R = dd^T + cos(a) (I - dd^T) + sin(a) skew(d) Parameters: angle : float a direction : array d
[ "Create", "a", "rotation", "matrix", "corresponding", "to", "the", "rotation", "around", "a", "general", "axis", "by", "a", "specified", "angle", "." ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/graphics/transformations.py#L341-L366
train
chemlab/chemlab
chemlab/graphics/transformations.py
rotation_from_matrix
def rotation_from_matrix(matrix): """Return rotation angle and axis from rotation matrix. >>> angle = (random.random() - 0.5) * (2*math.pi) >>> direc = numpy.random.random(3) - 0.5 >>> point = numpy.random.random(3) - 0.5 >>> R0 = rotation_matrix(angle, direc, point) >>> angle, direc, point = rotation_from_matrix(R0) >>> R1 = rotation_matrix(angle, direc, point) >>> is_same_transform(R0, R1) True """ R = numpy.array(matrix, dtype=numpy.float64, copy=False) R33 = R[:3, :3] # direction: unit eigenvector of R33 corresponding to eigenvalue of 1 w, W = numpy.linalg.eig(R33.T) i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0] if not len(i): raise ValueError("no unit eigenvector corresponding to eigenvalue 1") direction = numpy.real(W[:, i[-1]]).squeeze() # point: unit eigenvector of R33 corresponding to eigenvalue of 1 w, Q = numpy.linalg.eig(R) i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0] if not len(i): raise ValueError("no unit eigenvector corresponding to eigenvalue 1") point = numpy.real(Q[:, i[-1]]).squeeze() point /= point[3] # rotation angle depending on direction cosa = (numpy.trace(R33) - 1.0) / 2.0 if abs(direction[2]) > 1e-8: sina = (R[1, 0] + (cosa-1.0)*direction[0]*direction[1]) / direction[2] elif abs(direction[1]) > 1e-8: sina = (R[0, 2] + (cosa-1.0)*direction[0]*direction[2]) / direction[1] else: sina = (R[2, 1] + (cosa-1.0)*direction[1]*direction[2]) / direction[0] angle = math.atan2(sina, cosa) return angle, direction, point
python
def rotation_from_matrix(matrix): """Return rotation angle and axis from rotation matrix. >>> angle = (random.random() - 0.5) * (2*math.pi) >>> direc = numpy.random.random(3) - 0.5 >>> point = numpy.random.random(3) - 0.5 >>> R0 = rotation_matrix(angle, direc, point) >>> angle, direc, point = rotation_from_matrix(R0) >>> R1 = rotation_matrix(angle, direc, point) >>> is_same_transform(R0, R1) True """ R = numpy.array(matrix, dtype=numpy.float64, copy=False) R33 = R[:3, :3] # direction: unit eigenvector of R33 corresponding to eigenvalue of 1 w, W = numpy.linalg.eig(R33.T) i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0] if not len(i): raise ValueError("no unit eigenvector corresponding to eigenvalue 1") direction = numpy.real(W[:, i[-1]]).squeeze() # point: unit eigenvector of R33 corresponding to eigenvalue of 1 w, Q = numpy.linalg.eig(R) i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0] if not len(i): raise ValueError("no unit eigenvector corresponding to eigenvalue 1") point = numpy.real(Q[:, i[-1]]).squeeze() point /= point[3] # rotation angle depending on direction cosa = (numpy.trace(R33) - 1.0) / 2.0 if abs(direction[2]) > 1e-8: sina = (R[1, 0] + (cosa-1.0)*direction[0]*direction[1]) / direction[2] elif abs(direction[1]) > 1e-8: sina = (R[0, 2] + (cosa-1.0)*direction[0]*direction[2]) / direction[1] else: sina = (R[2, 1] + (cosa-1.0)*direction[1]*direction[2]) / direction[0] angle = math.atan2(sina, cosa) return angle, direction, point
[ "def", "rotation_from_matrix", "(", "matrix", ")", ":", "R", "=", "numpy", ".", "array", "(", "matrix", ",", "dtype", "=", "numpy", ".", "float64", ",", "copy", "=", "False", ")", "R33", "=", "R", "[", ":", "3", ",", ":", "3", "]", "# direction: unit eigenvector of R33 corresponding to eigenvalue of 1", "w", ",", "W", "=", "numpy", ".", "linalg", ".", "eig", "(", "R33", ".", "T", ")", "i", "=", "numpy", ".", "where", "(", "abs", "(", "numpy", ".", "real", "(", "w", ")", "-", "1.0", ")", "<", "1e-8", ")", "[", "0", "]", "if", "not", "len", "(", "i", ")", ":", "raise", "ValueError", "(", "\"no unit eigenvector corresponding to eigenvalue 1\"", ")", "direction", "=", "numpy", ".", "real", "(", "W", "[", ":", ",", "i", "[", "-", "1", "]", "]", ")", ".", "squeeze", "(", ")", "# point: unit eigenvector of R33 corresponding to eigenvalue of 1", "w", ",", "Q", "=", "numpy", ".", "linalg", ".", "eig", "(", "R", ")", "i", "=", "numpy", ".", "where", "(", "abs", "(", "numpy", ".", "real", "(", "w", ")", "-", "1.0", ")", "<", "1e-8", ")", "[", "0", "]", "if", "not", "len", "(", "i", ")", ":", "raise", "ValueError", "(", "\"no unit eigenvector corresponding to eigenvalue 1\"", ")", "point", "=", "numpy", ".", "real", "(", "Q", "[", ":", ",", "i", "[", "-", "1", "]", "]", ")", ".", "squeeze", "(", ")", "point", "/=", "point", "[", "3", "]", "# rotation angle depending on direction", "cosa", "=", "(", "numpy", ".", "trace", "(", "R33", ")", "-", "1.0", ")", "/", "2.0", "if", "abs", "(", "direction", "[", "2", "]", ")", ">", "1e-8", ":", "sina", "=", "(", "R", "[", "1", ",", "0", "]", "+", "(", "cosa", "-", "1.0", ")", "*", "direction", "[", "0", "]", "*", "direction", "[", "1", "]", ")", "/", "direction", "[", "2", "]", "elif", "abs", "(", "direction", "[", "1", "]", ")", ">", "1e-8", ":", "sina", "=", "(", "R", "[", "0", ",", "2", "]", "+", "(", "cosa", "-", "1.0", ")", "*", "direction", "[", "0", "]", "*", "direction", "[", "2", "]", ")", "/", "direction", "[", "1", "]", "else", ":", "sina", "=", "(", "R", "[", "2", ",", "1", "]", "+", "(", "cosa", "-", "1.0", ")", "*", "direction", "[", "1", "]", "*", "direction", "[", "2", "]", ")", "/", "direction", "[", "0", "]", "angle", "=", "math", ".", "atan2", "(", "sina", ",", "cosa", ")", "return", "angle", ",", "direction", ",", "point" ]
Return rotation angle and axis from rotation matrix. >>> angle = (random.random() - 0.5) * (2*math.pi) >>> direc = numpy.random.random(3) - 0.5 >>> point = numpy.random.random(3) - 0.5 >>> R0 = rotation_matrix(angle, direc, point) >>> angle, direc, point = rotation_from_matrix(R0) >>> R1 = rotation_matrix(angle, direc, point) >>> is_same_transform(R0, R1) True
[ "Return", "rotation", "angle", "and", "axis", "from", "rotation", "matrix", "." ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/graphics/transformations.py#L369-L406
train
chemlab/chemlab
chemlab/graphics/transformations.py
scale_from_matrix
def scale_from_matrix(matrix): """Return scaling factor, origin and direction from scaling matrix. >>> factor = random.random() * 10 - 5 >>> origin = numpy.random.random(3) - 0.5 >>> direct = numpy.random.random(3) - 0.5 >>> S0 = scale_matrix(factor, origin) >>> factor, origin, direction = scale_from_matrix(S0) >>> S1 = scale_matrix(factor, origin, direction) >>> is_same_transform(S0, S1) True >>> S0 = scale_matrix(factor, origin, direct) >>> factor, origin, direction = scale_from_matrix(S0) >>> S1 = scale_matrix(factor, origin, direction) >>> is_same_transform(S0, S1) True """ M = numpy.array(matrix, dtype=numpy.float64, copy=False) M33 = M[:3, :3] factor = numpy.trace(M33) - 2.0 try: # direction: unit eigenvector corresponding to eigenvalue factor w, V = numpy.linalg.eig(M33) i = numpy.where(abs(numpy.real(w) - factor) < 1e-8)[0][0] direction = numpy.real(V[:, i]).squeeze() direction /= vector_norm(direction) except IndexError: # uniform scaling factor = (factor + 2.0) / 3.0 direction = None # origin: any eigenvector corresponding to eigenvalue 1 w, V = numpy.linalg.eig(M) i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0] if not len(i): raise ValueError("no eigenvector corresponding to eigenvalue 1") origin = numpy.real(V[:, i[-1]]).squeeze() origin /= origin[3] return factor, origin, direction
python
def scale_from_matrix(matrix): """Return scaling factor, origin and direction from scaling matrix. >>> factor = random.random() * 10 - 5 >>> origin = numpy.random.random(3) - 0.5 >>> direct = numpy.random.random(3) - 0.5 >>> S0 = scale_matrix(factor, origin) >>> factor, origin, direction = scale_from_matrix(S0) >>> S1 = scale_matrix(factor, origin, direction) >>> is_same_transform(S0, S1) True >>> S0 = scale_matrix(factor, origin, direct) >>> factor, origin, direction = scale_from_matrix(S0) >>> S1 = scale_matrix(factor, origin, direction) >>> is_same_transform(S0, S1) True """ M = numpy.array(matrix, dtype=numpy.float64, copy=False) M33 = M[:3, :3] factor = numpy.trace(M33) - 2.0 try: # direction: unit eigenvector corresponding to eigenvalue factor w, V = numpy.linalg.eig(M33) i = numpy.where(abs(numpy.real(w) - factor) < 1e-8)[0][0] direction = numpy.real(V[:, i]).squeeze() direction /= vector_norm(direction) except IndexError: # uniform scaling factor = (factor + 2.0) / 3.0 direction = None # origin: any eigenvector corresponding to eigenvalue 1 w, V = numpy.linalg.eig(M) i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0] if not len(i): raise ValueError("no eigenvector corresponding to eigenvalue 1") origin = numpy.real(V[:, i[-1]]).squeeze() origin /= origin[3] return factor, origin, direction
[ "def", "scale_from_matrix", "(", "matrix", ")", ":", "M", "=", "numpy", ".", "array", "(", "matrix", ",", "dtype", "=", "numpy", ".", "float64", ",", "copy", "=", "False", ")", "M33", "=", "M", "[", ":", "3", ",", ":", "3", "]", "factor", "=", "numpy", ".", "trace", "(", "M33", ")", "-", "2.0", "try", ":", "# direction: unit eigenvector corresponding to eigenvalue factor", "w", ",", "V", "=", "numpy", ".", "linalg", ".", "eig", "(", "M33", ")", "i", "=", "numpy", ".", "where", "(", "abs", "(", "numpy", ".", "real", "(", "w", ")", "-", "factor", ")", "<", "1e-8", ")", "[", "0", "]", "[", "0", "]", "direction", "=", "numpy", ".", "real", "(", "V", "[", ":", ",", "i", "]", ")", ".", "squeeze", "(", ")", "direction", "/=", "vector_norm", "(", "direction", ")", "except", "IndexError", ":", "# uniform scaling", "factor", "=", "(", "factor", "+", "2.0", ")", "/", "3.0", "direction", "=", "None", "# origin: any eigenvector corresponding to eigenvalue 1", "w", ",", "V", "=", "numpy", ".", "linalg", ".", "eig", "(", "M", ")", "i", "=", "numpy", ".", "where", "(", "abs", "(", "numpy", ".", "real", "(", "w", ")", "-", "1.0", ")", "<", "1e-8", ")", "[", "0", "]", "if", "not", "len", "(", "i", ")", ":", "raise", "ValueError", "(", "\"no eigenvector corresponding to eigenvalue 1\"", ")", "origin", "=", "numpy", ".", "real", "(", "V", "[", ":", ",", "i", "[", "-", "1", "]", "]", ")", ".", "squeeze", "(", ")", "origin", "/=", "origin", "[", "3", "]", "return", "factor", ",", "origin", ",", "direction" ]
Return scaling factor, origin and direction from scaling matrix. >>> factor = random.random() * 10 - 5 >>> origin = numpy.random.random(3) - 0.5 >>> direct = numpy.random.random(3) - 0.5 >>> S0 = scale_matrix(factor, origin) >>> factor, origin, direction = scale_from_matrix(S0) >>> S1 = scale_matrix(factor, origin, direction) >>> is_same_transform(S0, S1) True >>> S0 = scale_matrix(factor, origin, direct) >>> factor, origin, direction = scale_from_matrix(S0) >>> S1 = scale_matrix(factor, origin, direction) >>> is_same_transform(S0, S1) True
[ "Return", "scaling", "factor", "origin", "and", "direction", "from", "scaling", "matrix", "." ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/graphics/transformations.py#L443-L481
train
chemlab/chemlab
chemlab/graphics/transformations.py
orthogonalization_matrix
def orthogonalization_matrix(lengths, angles): """Return orthogonalization matrix for crystallographic cell coordinates. Angles are expected in degrees. The de-orthogonalization matrix is the inverse. >>> O = orthogonalization_matrix([10, 10, 10], [90, 90, 90]) >>> numpy.allclose(O[:3, :3], numpy.identity(3, float) * 10) True >>> O = orthogonalization_matrix([9.8, 12.0, 15.5], [87.2, 80.7, 69.7]) >>> numpy.allclose(numpy.sum(O), 43.063229) True """ a, b, c = lengths angles = numpy.radians(angles) sina, sinb, _ = numpy.sin(angles) cosa, cosb, cosg = numpy.cos(angles) co = (cosa * cosb - cosg) / (sina * sinb) return numpy.array([ [ a*sinb*math.sqrt(1.0-co*co), 0.0, 0.0, 0.0], [-a*sinb*co, b*sina, 0.0, 0.0], [ a*cosb, b*cosa, c, 0.0], [ 0.0, 0.0, 0.0, 1.0]])
python
def orthogonalization_matrix(lengths, angles): """Return orthogonalization matrix for crystallographic cell coordinates. Angles are expected in degrees. The de-orthogonalization matrix is the inverse. >>> O = orthogonalization_matrix([10, 10, 10], [90, 90, 90]) >>> numpy.allclose(O[:3, :3], numpy.identity(3, float) * 10) True >>> O = orthogonalization_matrix([9.8, 12.0, 15.5], [87.2, 80.7, 69.7]) >>> numpy.allclose(numpy.sum(O), 43.063229) True """ a, b, c = lengths angles = numpy.radians(angles) sina, sinb, _ = numpy.sin(angles) cosa, cosb, cosg = numpy.cos(angles) co = (cosa * cosb - cosg) / (sina * sinb) return numpy.array([ [ a*sinb*math.sqrt(1.0-co*co), 0.0, 0.0, 0.0], [-a*sinb*co, b*sina, 0.0, 0.0], [ a*cosb, b*cosa, c, 0.0], [ 0.0, 0.0, 0.0, 1.0]])
[ "def", "orthogonalization_matrix", "(", "lengths", ",", "angles", ")", ":", "a", ",", "b", ",", "c", "=", "lengths", "angles", "=", "numpy", ".", "radians", "(", "angles", ")", "sina", ",", "sinb", ",", "_", "=", "numpy", ".", "sin", "(", "angles", ")", "cosa", ",", "cosb", ",", "cosg", "=", "numpy", ".", "cos", "(", "angles", ")", "co", "=", "(", "cosa", "*", "cosb", "-", "cosg", ")", "/", "(", "sina", "*", "sinb", ")", "return", "numpy", ".", "array", "(", "[", "[", "a", "*", "sinb", "*", "math", ".", "sqrt", "(", "1.0", "-", "co", "*", "co", ")", ",", "0.0", ",", "0.0", ",", "0.0", "]", ",", "[", "-", "a", "*", "sinb", "*", "co", ",", "b", "*", "sina", ",", "0.0", ",", "0.0", "]", ",", "[", "a", "*", "cosb", ",", "b", "*", "cosa", ",", "c", ",", "0.0", "]", ",", "[", "0.0", ",", "0.0", ",", "0.0", ",", "1.0", "]", "]", ")" ]
Return orthogonalization matrix for crystallographic cell coordinates. Angles are expected in degrees. The de-orthogonalization matrix is the inverse. >>> O = orthogonalization_matrix([10, 10, 10], [90, 90, 90]) >>> numpy.allclose(O[:3, :3], numpy.identity(3, float) * 10) True >>> O = orthogonalization_matrix([9.8, 12.0, 15.5], [87.2, 80.7, 69.7]) >>> numpy.allclose(numpy.sum(O), 43.063229) True
[ "Return", "orthogonalization", "matrix", "for", "crystallographic", "cell", "coordinates", "." ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/graphics/transformations.py#L903-L927
train
chemlab/chemlab
chemlab/graphics/transformations.py
superimposition_matrix
def superimposition_matrix(v0, v1, scale=False, usesvd=True): """Return matrix to transform given 3D point set into second point set. v0 and v1 are shape (3, \*) or (4, \*) arrays of at least 3 points. The parameters scale and usesvd are explained in the more general affine_matrix_from_points function. The returned matrix is a similarity or Eucledian transformation matrix. This function has a fast C implementation in transformations.c. >>> v0 = numpy.random.rand(3, 10) >>> M = superimposition_matrix(v0, v0) >>> numpy.allclose(M, numpy.identity(4)) True >>> R = random_rotation_matrix(numpy.random.random(3)) >>> v0 = [[1,0,0], [0,1,0], [0,0,1], [1,1,1]] >>> v1 = numpy.dot(R, v0) >>> M = superimposition_matrix(v0, v1) >>> numpy.allclose(v1, numpy.dot(M, v0)) True >>> v0 = (numpy.random.rand(4, 100) - 0.5) * 20 >>> v0[3] = 1 >>> v1 = numpy.dot(R, v0) >>> M = superimposition_matrix(v0, v1) >>> numpy.allclose(v1, numpy.dot(M, v0)) True >>> S = scale_matrix(random.random()) >>> T = translation_matrix(numpy.random.random(3)-0.5) >>> M = concatenate_matrices(T, R, S) >>> v1 = numpy.dot(M, v0) >>> v0[:3] += numpy.random.normal(0, 1e-9, 300).reshape(3, -1) >>> M = superimposition_matrix(v0, v1, scale=True) >>> numpy.allclose(v1, numpy.dot(M, v0)) True >>> M = superimposition_matrix(v0, v1, scale=True, usesvd=False) >>> numpy.allclose(v1, numpy.dot(M, v0)) True >>> v = numpy.empty((4, 100, 3)) >>> v[:, :, 0] = v0 >>> M = superimposition_matrix(v0, v1, scale=True, usesvd=False) >>> numpy.allclose(v1, numpy.dot(M, v[:, :, 0])) True """ v0 = numpy.array(v0, dtype=numpy.float64, copy=False)[:3] v1 = numpy.array(v1, dtype=numpy.float64, copy=False)[:3] return affine_matrix_from_points(v0, v1, shear=False, scale=scale, usesvd=usesvd)
python
def superimposition_matrix(v0, v1, scale=False, usesvd=True): """Return matrix to transform given 3D point set into second point set. v0 and v1 are shape (3, \*) or (4, \*) arrays of at least 3 points. The parameters scale and usesvd are explained in the more general affine_matrix_from_points function. The returned matrix is a similarity or Eucledian transformation matrix. This function has a fast C implementation in transformations.c. >>> v0 = numpy.random.rand(3, 10) >>> M = superimposition_matrix(v0, v0) >>> numpy.allclose(M, numpy.identity(4)) True >>> R = random_rotation_matrix(numpy.random.random(3)) >>> v0 = [[1,0,0], [0,1,0], [0,0,1], [1,1,1]] >>> v1 = numpy.dot(R, v0) >>> M = superimposition_matrix(v0, v1) >>> numpy.allclose(v1, numpy.dot(M, v0)) True >>> v0 = (numpy.random.rand(4, 100) - 0.5) * 20 >>> v0[3] = 1 >>> v1 = numpy.dot(R, v0) >>> M = superimposition_matrix(v0, v1) >>> numpy.allclose(v1, numpy.dot(M, v0)) True >>> S = scale_matrix(random.random()) >>> T = translation_matrix(numpy.random.random(3)-0.5) >>> M = concatenate_matrices(T, R, S) >>> v1 = numpy.dot(M, v0) >>> v0[:3] += numpy.random.normal(0, 1e-9, 300).reshape(3, -1) >>> M = superimposition_matrix(v0, v1, scale=True) >>> numpy.allclose(v1, numpy.dot(M, v0)) True >>> M = superimposition_matrix(v0, v1, scale=True, usesvd=False) >>> numpy.allclose(v1, numpy.dot(M, v0)) True >>> v = numpy.empty((4, 100, 3)) >>> v[:, :, 0] = v0 >>> M = superimposition_matrix(v0, v1, scale=True, usesvd=False) >>> numpy.allclose(v1, numpy.dot(M, v[:, :, 0])) True """ v0 = numpy.array(v0, dtype=numpy.float64, copy=False)[:3] v1 = numpy.array(v1, dtype=numpy.float64, copy=False)[:3] return affine_matrix_from_points(v0, v1, shear=False, scale=scale, usesvd=usesvd)
[ "def", "superimposition_matrix", "(", "v0", ",", "v1", ",", "scale", "=", "False", ",", "usesvd", "=", "True", ")", ":", "v0", "=", "numpy", ".", "array", "(", "v0", ",", "dtype", "=", "numpy", ".", "float64", ",", "copy", "=", "False", ")", "[", ":", "3", "]", "v1", "=", "numpy", ".", "array", "(", "v1", ",", "dtype", "=", "numpy", ".", "float64", ",", "copy", "=", "False", ")", "[", ":", "3", "]", "return", "affine_matrix_from_points", "(", "v0", ",", "v1", ",", "shear", "=", "False", ",", "scale", "=", "scale", ",", "usesvd", "=", "usesvd", ")" ]
Return matrix to transform given 3D point set into second point set. v0 and v1 are shape (3, \*) or (4, \*) arrays of at least 3 points. The parameters scale and usesvd are explained in the more general affine_matrix_from_points function. The returned matrix is a similarity or Eucledian transformation matrix. This function has a fast C implementation in transformations.c. >>> v0 = numpy.random.rand(3, 10) >>> M = superimposition_matrix(v0, v0) >>> numpy.allclose(M, numpy.identity(4)) True >>> R = random_rotation_matrix(numpy.random.random(3)) >>> v0 = [[1,0,0], [0,1,0], [0,0,1], [1,1,1]] >>> v1 = numpy.dot(R, v0) >>> M = superimposition_matrix(v0, v1) >>> numpy.allclose(v1, numpy.dot(M, v0)) True >>> v0 = (numpy.random.rand(4, 100) - 0.5) * 20 >>> v0[3] = 1 >>> v1 = numpy.dot(R, v0) >>> M = superimposition_matrix(v0, v1) >>> numpy.allclose(v1, numpy.dot(M, v0)) True >>> S = scale_matrix(random.random()) >>> T = translation_matrix(numpy.random.random(3)-0.5) >>> M = concatenate_matrices(T, R, S) >>> v1 = numpy.dot(M, v0) >>> v0[:3] += numpy.random.normal(0, 1e-9, 300).reshape(3, -1) >>> M = superimposition_matrix(v0, v1, scale=True) >>> numpy.allclose(v1, numpy.dot(M, v0)) True >>> M = superimposition_matrix(v0, v1, scale=True, usesvd=False) >>> numpy.allclose(v1, numpy.dot(M, v0)) True >>> v = numpy.empty((4, 100, 3)) >>> v[:, :, 0] = v0 >>> M = superimposition_matrix(v0, v1, scale=True, usesvd=False) >>> numpy.allclose(v1, numpy.dot(M, v[:, :, 0])) True
[ "Return", "matrix", "to", "transform", "given", "3D", "point", "set", "into", "second", "point", "set", "." ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/graphics/transformations.py#L1039-L1087
train
chemlab/chemlab
chemlab/graphics/transformations.py
quaternion_matrix
def quaternion_matrix(quaternion): """Return homogeneous rotation matrix from quaternion. >>> M = quaternion_matrix([0.99810947, 0.06146124, 0, 0]) >>> numpy.allclose(M, rotation_matrix(0.123, [1, 0, 0])) True >>> M = quaternion_matrix([1, 0, 0, 0]) >>> numpy.allclose(M, numpy.identity(4)) True >>> M = quaternion_matrix([0, 1, 0, 0]) >>> numpy.allclose(M, numpy.diag([1, -1, -1, 1])) True """ q = numpy.array(quaternion, dtype=numpy.float64, copy=True) n = numpy.dot(q, q) if n < _EPS: return numpy.identity(4) q *= math.sqrt(2.0 / n) q = numpy.outer(q, q) return numpy.array([ [1.0-q[2, 2]-q[3, 3], q[1, 2]-q[3, 0], q[1, 3]+q[2, 0], 0.0], [ q[1, 2]+q[3, 0], 1.0-q[1, 1]-q[3, 3], q[2, 3]-q[1, 0], 0.0], [ q[1, 3]-q[2, 0], q[2, 3]+q[1, 0], 1.0-q[1, 1]-q[2, 2], 0.0], [ 0.0, 0.0, 0.0, 1.0]])
python
def quaternion_matrix(quaternion): """Return homogeneous rotation matrix from quaternion. >>> M = quaternion_matrix([0.99810947, 0.06146124, 0, 0]) >>> numpy.allclose(M, rotation_matrix(0.123, [1, 0, 0])) True >>> M = quaternion_matrix([1, 0, 0, 0]) >>> numpy.allclose(M, numpy.identity(4)) True >>> M = quaternion_matrix([0, 1, 0, 0]) >>> numpy.allclose(M, numpy.diag([1, -1, -1, 1])) True """ q = numpy.array(quaternion, dtype=numpy.float64, copy=True) n = numpy.dot(q, q) if n < _EPS: return numpy.identity(4) q *= math.sqrt(2.0 / n) q = numpy.outer(q, q) return numpy.array([ [1.0-q[2, 2]-q[3, 3], q[1, 2]-q[3, 0], q[1, 3]+q[2, 0], 0.0], [ q[1, 2]+q[3, 0], 1.0-q[1, 1]-q[3, 3], q[2, 3]-q[1, 0], 0.0], [ q[1, 3]-q[2, 0], q[2, 3]+q[1, 0], 1.0-q[1, 1]-q[2, 2], 0.0], [ 0.0, 0.0, 0.0, 1.0]])
[ "def", "quaternion_matrix", "(", "quaternion", ")", ":", "q", "=", "numpy", ".", "array", "(", "quaternion", ",", "dtype", "=", "numpy", ".", "float64", ",", "copy", "=", "True", ")", "n", "=", "numpy", ".", "dot", "(", "q", ",", "q", ")", "if", "n", "<", "_EPS", ":", "return", "numpy", ".", "identity", "(", "4", ")", "q", "*=", "math", ".", "sqrt", "(", "2.0", "/", "n", ")", "q", "=", "numpy", ".", "outer", "(", "q", ",", "q", ")", "return", "numpy", ".", "array", "(", "[", "[", "1.0", "-", "q", "[", "2", ",", "2", "]", "-", "q", "[", "3", ",", "3", "]", ",", "q", "[", "1", ",", "2", "]", "-", "q", "[", "3", ",", "0", "]", ",", "q", "[", "1", ",", "3", "]", "+", "q", "[", "2", ",", "0", "]", ",", "0.0", "]", ",", "[", "q", "[", "1", ",", "2", "]", "+", "q", "[", "3", ",", "0", "]", ",", "1.0", "-", "q", "[", "1", ",", "1", "]", "-", "q", "[", "3", ",", "3", "]", ",", "q", "[", "2", ",", "3", "]", "-", "q", "[", "1", ",", "0", "]", ",", "0.0", "]", ",", "[", "q", "[", "1", ",", "3", "]", "-", "q", "[", "2", ",", "0", "]", ",", "q", "[", "2", ",", "3", "]", "+", "q", "[", "1", ",", "0", "]", ",", "1.0", "-", "q", "[", "1", ",", "1", "]", "-", "q", "[", "2", ",", "2", "]", ",", "0.0", "]", ",", "[", "0.0", ",", "0.0", ",", "0.0", ",", "1.0", "]", "]", ")" ]
Return homogeneous rotation matrix from quaternion. >>> M = quaternion_matrix([0.99810947, 0.06146124, 0, 0]) >>> numpy.allclose(M, rotation_matrix(0.123, [1, 0, 0])) True >>> M = quaternion_matrix([1, 0, 0, 0]) >>> numpy.allclose(M, numpy.identity(4)) True >>> M = quaternion_matrix([0, 1, 0, 0]) >>> numpy.allclose(M, numpy.diag([1, -1, -1, 1])) True
[ "Return", "homogeneous", "rotation", "matrix", "from", "quaternion", "." ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/graphics/transformations.py#L1295-L1319
train
chemlab/chemlab
chemlab/graphics/transformations.py
quaternion_multiply
def quaternion_multiply(quaternion1, quaternion0): """Return multiplication of two quaternions. >>> q = quaternion_multiply([4, 1, -2, 3], [8, -5, 6, 7]) >>> numpy.allclose(q, [28, -44, -14, 48]) True """ w0, x0, y0, z0 = quaternion0 w1, x1, y1, z1 = quaternion1 return numpy.array([-x1*x0 - y1*y0 - z1*z0 + w1*w0, x1*w0 + y1*z0 - z1*y0 + w1*x0, -x1*z0 + y1*w0 + z1*x0 + w1*y0, x1*y0 - y1*x0 + z1*w0 + w1*z0], dtype=numpy.float64)
python
def quaternion_multiply(quaternion1, quaternion0): """Return multiplication of two quaternions. >>> q = quaternion_multiply([4, 1, -2, 3], [8, -5, 6, 7]) >>> numpy.allclose(q, [28, -44, -14, 48]) True """ w0, x0, y0, z0 = quaternion0 w1, x1, y1, z1 = quaternion1 return numpy.array([-x1*x0 - y1*y0 - z1*z0 + w1*w0, x1*w0 + y1*z0 - z1*y0 + w1*x0, -x1*z0 + y1*w0 + z1*x0 + w1*y0, x1*y0 - y1*x0 + z1*w0 + w1*z0], dtype=numpy.float64)
[ "def", "quaternion_multiply", "(", "quaternion1", ",", "quaternion0", ")", ":", "w0", ",", "x0", ",", "y0", ",", "z0", "=", "quaternion0", "w1", ",", "x1", ",", "y1", ",", "z1", "=", "quaternion1", "return", "numpy", ".", "array", "(", "[", "-", "x1", "*", "x0", "-", "y1", "*", "y0", "-", "z1", "*", "z0", "+", "w1", "*", "w0", ",", "x1", "*", "w0", "+", "y1", "*", "z0", "-", "z1", "*", "y0", "+", "w1", "*", "x0", ",", "-", "x1", "*", "z0", "+", "y1", "*", "w0", "+", "z1", "*", "x0", "+", "w1", "*", "y0", ",", "x1", "*", "y0", "-", "y1", "*", "x0", "+", "z1", "*", "w0", "+", "w1", "*", "z0", "]", ",", "dtype", "=", "numpy", ".", "float64", ")" ]
Return multiplication of two quaternions. >>> q = quaternion_multiply([4, 1, -2, 3], [8, -5, 6, 7]) >>> numpy.allclose(q, [28, -44, -14, 48]) True
[ "Return", "multiplication", "of", "two", "quaternions", "." ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/graphics/transformations.py#L1399-L1412
train
chemlab/chemlab
chemlab/graphics/transformations.py
angle_between_vectors
def angle_between_vectors(v0, v1, directed=True, axis=0): """Return angle between vectors. If directed is False, the input vectors are interpreted as undirected axes, i.e. the maximum angle is pi/2. >>> a = angle_between_vectors([1, -2, 3], [-1, 2, -3]) >>> numpy.allclose(a, math.pi) True >>> a = angle_between_vectors([1, -2, 3], [-1, 2, -3], directed=False) >>> numpy.allclose(a, 0) True >>> v0 = [[2, 0, 0, 2], [0, 2, 0, 2], [0, 0, 2, 2]] >>> v1 = [[3], [0], [0]] >>> a = angle_between_vectors(v0, v1) >>> numpy.allclose(a, [0, 1.5708, 1.5708, 0.95532]) True >>> v0 = [[2, 0, 0], [2, 0, 0], [0, 2, 0], [2, 0, 0]] >>> v1 = [[0, 3, 0], [0, 0, 3], [0, 0, 3], [3, 3, 3]] >>> a = angle_between_vectors(v0, v1, axis=1) >>> numpy.allclose(a, [1.5708, 1.5708, 1.5708, 0.95532]) True """ v0 = numpy.array(v0, dtype=numpy.float64, copy=False) v1 = numpy.array(v1, dtype=numpy.float64, copy=False) dot = numpy.sum(v0 * v1, axis=axis) dot /= vector_norm(v0, axis=axis) * vector_norm(v1, axis=axis) return numpy.arccos(dot if directed else numpy.fabs(dot))
python
def angle_between_vectors(v0, v1, directed=True, axis=0): """Return angle between vectors. If directed is False, the input vectors are interpreted as undirected axes, i.e. the maximum angle is pi/2. >>> a = angle_between_vectors([1, -2, 3], [-1, 2, -3]) >>> numpy.allclose(a, math.pi) True >>> a = angle_between_vectors([1, -2, 3], [-1, 2, -3], directed=False) >>> numpy.allclose(a, 0) True >>> v0 = [[2, 0, 0, 2], [0, 2, 0, 2], [0, 0, 2, 2]] >>> v1 = [[3], [0], [0]] >>> a = angle_between_vectors(v0, v1) >>> numpy.allclose(a, [0, 1.5708, 1.5708, 0.95532]) True >>> v0 = [[2, 0, 0], [2, 0, 0], [0, 2, 0], [2, 0, 0]] >>> v1 = [[0, 3, 0], [0, 0, 3], [0, 0, 3], [3, 3, 3]] >>> a = angle_between_vectors(v0, v1, axis=1) >>> numpy.allclose(a, [1.5708, 1.5708, 1.5708, 0.95532]) True """ v0 = numpy.array(v0, dtype=numpy.float64, copy=False) v1 = numpy.array(v1, dtype=numpy.float64, copy=False) dot = numpy.sum(v0 * v1, axis=axis) dot /= vector_norm(v0, axis=axis) * vector_norm(v1, axis=axis) return numpy.arccos(dot if directed else numpy.fabs(dot))
[ "def", "angle_between_vectors", "(", "v0", ",", "v1", ",", "directed", "=", "True", ",", "axis", "=", "0", ")", ":", "v0", "=", "numpy", ".", "array", "(", "v0", ",", "dtype", "=", "numpy", ".", "float64", ",", "copy", "=", "False", ")", "v1", "=", "numpy", ".", "array", "(", "v1", ",", "dtype", "=", "numpy", ".", "float64", ",", "copy", "=", "False", ")", "dot", "=", "numpy", ".", "sum", "(", "v0", "*", "v1", ",", "axis", "=", "axis", ")", "dot", "/=", "vector_norm", "(", "v0", ",", "axis", "=", "axis", ")", "*", "vector_norm", "(", "v1", ",", "axis", "=", "axis", ")", "return", "numpy", ".", "arccos", "(", "dot", "if", "directed", "else", "numpy", ".", "fabs", "(", "dot", ")", ")" ]
Return angle between vectors. If directed is False, the input vectors are interpreted as undirected axes, i.e. the maximum angle is pi/2. >>> a = angle_between_vectors([1, -2, 3], [-1, 2, -3]) >>> numpy.allclose(a, math.pi) True >>> a = angle_between_vectors([1, -2, 3], [-1, 2, -3], directed=False) >>> numpy.allclose(a, 0) True >>> v0 = [[2, 0, 0, 2], [0, 2, 0, 2], [0, 0, 2, 2]] >>> v1 = [[3], [0], [0]] >>> a = angle_between_vectors(v0, v1) >>> numpy.allclose(a, [0, 1.5708, 1.5708, 0.95532]) True >>> v0 = [[2, 0, 0], [2, 0, 0], [0, 2, 0], [2, 0, 0]] >>> v1 = [[0, 3, 0], [0, 0, 3], [0, 0, 3], [3, 3, 3]] >>> a = angle_between_vectors(v0, v1, axis=1) >>> numpy.allclose(a, [1.5708, 1.5708, 1.5708, 0.95532]) True
[ "Return", "angle", "between", "vectors", "." ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/graphics/transformations.py#L1846-L1874
train
chemlab/chemlab
chemlab/graphics/transformations.py
Arcball.drag
def drag(self, point): """Update current cursor window coordinates.""" vnow = arcball_map_to_sphere(point, self._center, self._radius) if self._axis is not None: vnow = arcball_constrain_to_axis(vnow, self._axis) self._qpre = self._qnow t = numpy.cross(self._vdown, vnow) if numpy.dot(t, t) < _EPS: self._qnow = self._qdown else: q = [numpy.dot(self._vdown, vnow), t[0], t[1], t[2]] self._qnow = quaternion_multiply(q, self._qdown)
python
def drag(self, point): """Update current cursor window coordinates.""" vnow = arcball_map_to_sphere(point, self._center, self._radius) if self._axis is not None: vnow = arcball_constrain_to_axis(vnow, self._axis) self._qpre = self._qnow t = numpy.cross(self._vdown, vnow) if numpy.dot(t, t) < _EPS: self._qnow = self._qdown else: q = [numpy.dot(self._vdown, vnow), t[0], t[1], t[2]] self._qnow = quaternion_multiply(q, self._qdown)
[ "def", "drag", "(", "self", ",", "point", ")", ":", "vnow", "=", "arcball_map_to_sphere", "(", "point", ",", "self", ".", "_center", ",", "self", ".", "_radius", ")", "if", "self", ".", "_axis", "is", "not", "None", ":", "vnow", "=", "arcball_constrain_to_axis", "(", "vnow", ",", "self", ".", "_axis", ")", "self", ".", "_qpre", "=", "self", ".", "_qnow", "t", "=", "numpy", ".", "cross", "(", "self", ".", "_vdown", ",", "vnow", ")", "if", "numpy", ".", "dot", "(", "t", ",", "t", ")", "<", "_EPS", ":", "self", ".", "_qnow", "=", "self", ".", "_qdown", "else", ":", "q", "=", "[", "numpy", ".", "dot", "(", "self", ".", "_vdown", ",", "vnow", ")", ",", "t", "[", "0", "]", ",", "t", "[", "1", "]", ",", "t", "[", "2", "]", "]", "self", ".", "_qnow", "=", "quaternion_multiply", "(", "q", ",", "self", ".", "_qdown", ")" ]
Update current cursor window coordinates.
[ "Update", "current", "cursor", "window", "coordinates", "." ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/graphics/transformations.py#L1633-L1644
train
chemlab/chemlab
chemlab/notebook/__init__.py
load_trajectory
def load_trajectory(name, format=None, skip=1): '''Read a trajectory from a file. .. seealso:: `chemlab.io.datafile` ''' df = datafile(name, format=format) ret = {} t, coords = df.read('trajectory', skip=skip) boxes = df.read('boxes') ret['t'] = t ret['coords'] = coords ret['boxes'] = boxes return ret
python
def load_trajectory(name, format=None, skip=1): '''Read a trajectory from a file. .. seealso:: `chemlab.io.datafile` ''' df = datafile(name, format=format) ret = {} t, coords = df.read('trajectory', skip=skip) boxes = df.read('boxes') ret['t'] = t ret['coords'] = coords ret['boxes'] = boxes return ret
[ "def", "load_trajectory", "(", "name", ",", "format", "=", "None", ",", "skip", "=", "1", ")", ":", "df", "=", "datafile", "(", "name", ",", "format", "=", "format", ")", "ret", "=", "{", "}", "t", ",", "coords", "=", "df", ".", "read", "(", "'trajectory'", ",", "skip", "=", "skip", ")", "boxes", "=", "df", ".", "read", "(", "'boxes'", ")", "ret", "[", "'t'", "]", "=", "t", "ret", "[", "'coords'", "]", "=", "coords", "ret", "[", "'boxes'", "]", "=", "boxes", "return", "ret" ]
Read a trajectory from a file. .. seealso:: `chemlab.io.datafile`
[ "Read", "a", "trajectory", "from", "a", "file", "." ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/notebook/__init__.py#L78-L93
train
chemlab/chemlab
chemlab/mviewer/api/selections.py
select_atoms
def select_atoms(indices): '''Select atoms by their indices. You can select the first 3 atoms as follows:: select_atoms([0, 1, 2]) Return the current selection dictionary. ''' rep = current_representation() rep.select({'atoms': Selection(indices, current_system().n_atoms)}) return rep.selection_state
python
def select_atoms(indices): '''Select atoms by their indices. You can select the first 3 atoms as follows:: select_atoms([0, 1, 2]) Return the current selection dictionary. ''' rep = current_representation() rep.select({'atoms': Selection(indices, current_system().n_atoms)}) return rep.selection_state
[ "def", "select_atoms", "(", "indices", ")", ":", "rep", "=", "current_representation", "(", ")", "rep", ".", "select", "(", "{", "'atoms'", ":", "Selection", "(", "indices", ",", "current_system", "(", ")", ".", "n_atoms", ")", "}", ")", "return", "rep", ".", "selection_state" ]
Select atoms by their indices. You can select the first 3 atoms as follows:: select_atoms([0, 1, 2]) Return the current selection dictionary.
[ "Select", "atoms", "by", "their", "indices", "." ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/mviewer/api/selections.py#L20-L32
train
chemlab/chemlab
chemlab/mviewer/api/selections.py
select_connected_bonds
def select_connected_bonds(): '''Select the bonds connected to the currently selected atoms.''' s = current_system() start, end = s.bonds.transpose() selected = np.zeros(s.n_bonds, 'bool') for i in selected_atoms(): selected |= (i == start) | (i == end) csel = current_selection() bsel = csel['bonds'].add( Selection(selected.nonzero()[0], s.n_bonds)) ret = csel.copy() ret['bonds'] = bsel return select_selection(ret)
python
def select_connected_bonds(): '''Select the bonds connected to the currently selected atoms.''' s = current_system() start, end = s.bonds.transpose() selected = np.zeros(s.n_bonds, 'bool') for i in selected_atoms(): selected |= (i == start) | (i == end) csel = current_selection() bsel = csel['bonds'].add( Selection(selected.nonzero()[0], s.n_bonds)) ret = csel.copy() ret['bonds'] = bsel return select_selection(ret)
[ "def", "select_connected_bonds", "(", ")", ":", "s", "=", "current_system", "(", ")", "start", ",", "end", "=", "s", ".", "bonds", ".", "transpose", "(", ")", "selected", "=", "np", ".", "zeros", "(", "s", ".", "n_bonds", ",", "'bool'", ")", "for", "i", "in", "selected_atoms", "(", ")", ":", "selected", "|=", "(", "i", "==", "start", ")", "|", "(", "i", "==", "end", ")", "csel", "=", "current_selection", "(", ")", "bsel", "=", "csel", "[", "'bonds'", "]", ".", "add", "(", "Selection", "(", "selected", ".", "nonzero", "(", ")", "[", "0", "]", ",", "s", ".", "n_bonds", ")", ")", "ret", "=", "csel", ".", "copy", "(", ")", "ret", "[", "'bonds'", "]", "=", "bsel", "return", "select_selection", "(", "ret", ")" ]
Select the bonds connected to the currently selected atoms.
[ "Select", "the", "bonds", "connected", "to", "the", "currently", "selected", "atoms", "." ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/mviewer/api/selections.py#L54-L69
train
chemlab/chemlab
chemlab/mviewer/api/selections.py
select_molecules
def select_molecules(name): '''Select all the molecules corresponding to the formulas.''' mol_formula = current_system().get_derived_molecule_array('formula') mask = mol_formula == name ind = current_system().mol_to_atom_indices(mask.nonzero()[0]) selection = {'atoms': Selection(ind, current_system().n_atoms)} # Need to find the bonds between the atoms b = current_system().bonds if len(b) == 0: selection['bonds'] = Selection([], 0) else: molbonds = np.zeros(len(b), 'bool') for i in ind: matching = (i == b).sum(axis=1).astype('bool') molbonds[matching] = True selection['bonds'] = Selection(molbonds.nonzero()[0], len(b)) return select_selection(selection)
python
def select_molecules(name): '''Select all the molecules corresponding to the formulas.''' mol_formula = current_system().get_derived_molecule_array('formula') mask = mol_formula == name ind = current_system().mol_to_atom_indices(mask.nonzero()[0]) selection = {'atoms': Selection(ind, current_system().n_atoms)} # Need to find the bonds between the atoms b = current_system().bonds if len(b) == 0: selection['bonds'] = Selection([], 0) else: molbonds = np.zeros(len(b), 'bool') for i in ind: matching = (i == b).sum(axis=1).astype('bool') molbonds[matching] = True selection['bonds'] = Selection(molbonds.nonzero()[0], len(b)) return select_selection(selection)
[ "def", "select_molecules", "(", "name", ")", ":", "mol_formula", "=", "current_system", "(", ")", ".", "get_derived_molecule_array", "(", "'formula'", ")", "mask", "=", "mol_formula", "==", "name", "ind", "=", "current_system", "(", ")", ".", "mol_to_atom_indices", "(", "mask", ".", "nonzero", "(", ")", "[", "0", "]", ")", "selection", "=", "{", "'atoms'", ":", "Selection", "(", "ind", ",", "current_system", "(", ")", ".", "n_atoms", ")", "}", "# Need to find the bonds between the atoms", "b", "=", "current_system", "(", ")", ".", "bonds", "if", "len", "(", "b", ")", "==", "0", ":", "selection", "[", "'bonds'", "]", "=", "Selection", "(", "[", "]", ",", "0", ")", "else", ":", "molbonds", "=", "np", ".", "zeros", "(", "len", "(", "b", ")", ",", "'bool'", ")", "for", "i", "in", "ind", ":", "matching", "=", "(", "i", "==", "b", ")", ".", "sum", "(", "axis", "=", "1", ")", ".", "astype", "(", "'bool'", ")", "molbonds", "[", "matching", "]", "=", "True", "selection", "[", "'bonds'", "]", "=", "Selection", "(", "molbonds", ".", "nonzero", "(", ")", "[", "0", "]", ",", "len", "(", "b", ")", ")", "return", "select_selection", "(", "selection", ")" ]
Select all the molecules corresponding to the formulas.
[ "Select", "all", "the", "molecules", "corresponding", "to", "the", "formulas", "." ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/mviewer/api/selections.py#L85-L105
train
chemlab/chemlab
chemlab/mviewer/api/selections.py
hide_selected
def hide_selected(): '''Hide the selected objects.''' ss = current_representation().selection_state hs = current_representation().hidden_state res = {} for k in ss: res[k] = hs[k].add(ss[k]) current_representation().hide(res)
python
def hide_selected(): '''Hide the selected objects.''' ss = current_representation().selection_state hs = current_representation().hidden_state res = {} for k in ss: res[k] = hs[k].add(ss[k]) current_representation().hide(res)
[ "def", "hide_selected", "(", ")", ":", "ss", "=", "current_representation", "(", ")", ".", "selection_state", "hs", "=", "current_representation", "(", ")", ".", "hidden_state", "res", "=", "{", "}", "for", "k", "in", "ss", ":", "res", "[", "k", "]", "=", "hs", "[", "k", "]", ".", "add", "(", "ss", "[", "k", "]", ")", "current_representation", "(", ")", ".", "hide", "(", "res", ")" ]
Hide the selected objects.
[ "Hide", "the", "selected", "objects", "." ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/mviewer/api/selections.py#L113-L122
train
chemlab/chemlab
chemlab/mviewer/api/selections.py
unhide_selected
def unhide_selected(): '''Unhide the selected objects''' hidden_state = current_representation().hidden_state selection_state = current_representation().selection_state res = {} # Take the hidden state and flip the selected atoms bits. for k in selection_state: visible = hidden_state[k].invert() visible_and_selected = visible.add(selection_state[k]) # Add some atoms to be visible res[k] = visible_and_selected.invert() current_representation().hide(res)
python
def unhide_selected(): '''Unhide the selected objects''' hidden_state = current_representation().hidden_state selection_state = current_representation().selection_state res = {} # Take the hidden state and flip the selected atoms bits. for k in selection_state: visible = hidden_state[k].invert() visible_and_selected = visible.add(selection_state[k]) # Add some atoms to be visible res[k] = visible_and_selected.invert() current_representation().hide(res)
[ "def", "unhide_selected", "(", ")", ":", "hidden_state", "=", "current_representation", "(", ")", ".", "hidden_state", "selection_state", "=", "current_representation", "(", ")", ".", "selection_state", "res", "=", "{", "}", "# Take the hidden state and flip the selected atoms bits.", "for", "k", "in", "selection_state", ":", "visible", "=", "hidden_state", "[", "k", "]", ".", "invert", "(", ")", "visible_and_selected", "=", "visible", ".", "add", "(", "selection_state", "[", "k", "]", ")", "# Add some atoms to be visible", "res", "[", "k", "]", "=", "visible_and_selected", ".", "invert", "(", ")", "current_representation", "(", ")", ".", "hide", "(", "res", ")" ]
Unhide the selected objects
[ "Unhide", "the", "selected", "objects" ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/mviewer/api/selections.py#L137-L150
train
chemlab/chemlab
chemlab/graphics/camera.py
Camera.mouse_rotate
def mouse_rotate(self, dx, dy): '''Convenience function to implement the mouse rotation by giving two displacements in the x and y directions. ''' fact = 1.5 self.orbit_y(-dx*fact) self.orbit_x(dy*fact)
python
def mouse_rotate(self, dx, dy): '''Convenience function to implement the mouse rotation by giving two displacements in the x and y directions. ''' fact = 1.5 self.orbit_y(-dx*fact) self.orbit_x(dy*fact)
[ "def", "mouse_rotate", "(", "self", ",", "dx", ",", "dy", ")", ":", "fact", "=", "1.5", "self", ".", "orbit_y", "(", "-", "dx", "*", "fact", ")", "self", ".", "orbit_x", "(", "dy", "*", "fact", ")" ]
Convenience function to implement the mouse rotation by giving two displacements in the x and y directions.
[ "Convenience", "function", "to", "implement", "the", "mouse", "rotation", "by", "giving", "two", "displacements", "in", "the", "x", "and", "y", "directions", "." ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/graphics/camera.py#L148-L155
train
chemlab/chemlab
chemlab/graphics/camera.py
Camera.mouse_zoom
def mouse_zoom(self, inc): '''Convenience function to implement a zoom function. This is achieved by moving ``Camera.position`` in the direction of the ``Camera.c`` vector. ''' # Square Distance from pivot dsq = np.linalg.norm(self.position - self.pivot) minsq = 1.0**2 # How near can we be to the pivot maxsq = 7.0**2 # How far can we go scalefac = 0.25 if dsq > maxsq and inc < 0: # We're going too far pass elif dsq < minsq and inc > 0: # We're going too close pass else: # We're golden self.position += self.c*inc*scalefac
python
def mouse_zoom(self, inc): '''Convenience function to implement a zoom function. This is achieved by moving ``Camera.position`` in the direction of the ``Camera.c`` vector. ''' # Square Distance from pivot dsq = np.linalg.norm(self.position - self.pivot) minsq = 1.0**2 # How near can we be to the pivot maxsq = 7.0**2 # How far can we go scalefac = 0.25 if dsq > maxsq and inc < 0: # We're going too far pass elif dsq < minsq and inc > 0: # We're going too close pass else: # We're golden self.position += self.c*inc*scalefac
[ "def", "mouse_zoom", "(", "self", ",", "inc", ")", ":", "# Square Distance from pivot", "dsq", "=", "np", ".", "linalg", ".", "norm", "(", "self", ".", "position", "-", "self", ".", "pivot", ")", "minsq", "=", "1.0", "**", "2", "# How near can we be to the pivot", "maxsq", "=", "7.0", "**", "2", "# How far can we go ", "scalefac", "=", "0.25", "if", "dsq", ">", "maxsq", "and", "inc", "<", "0", ":", "# We're going too far", "pass", "elif", "dsq", "<", "minsq", "and", "inc", ">", "0", ":", "# We're going too close", "pass", "else", ":", "# We're golden", "self", ".", "position", "+=", "self", ".", "c", "*", "inc", "*", "scalefac" ]
Convenience function to implement a zoom function. This is achieved by moving ``Camera.position`` in the direction of the ``Camera.c`` vector.
[ "Convenience", "function", "to", "implement", "a", "zoom", "function", "." ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/graphics/camera.py#L157-L179
train
chemlab/chemlab
chemlab/graphics/camera.py
Camera.unproject
def unproject(self, x, y, z=-1.0): """Receive x and y as screen coordinates and returns a point in world coordinates. This function comes in handy each time we have to convert a 2d mouse click to a 3d point in our space. **Parameters** x: float in the interval [-1.0, 1.0] Horizontal coordinate, -1.0 is leftmost, 1.0 is rightmost. y: float in the interval [1.0, -1.0] Vertical coordinate, -1.0 is down, 1.0 is up. z: float in the interval [1.0, -1.0] Depth, -1.0 is the near plane, that is exactly behind our screen, 1.0 is the far clipping plane. :rtype: np.ndarray(3,dtype=float) :return: The point in 3d coordinates (world coordinates). """ source = np.array([x,y,z,1.0]) # Invert the combined matrix matrix = self.projection.dot(self.matrix) IM = LA.inv(matrix) res = np.dot(IM, source) return res[0:3]/res[3]
python
def unproject(self, x, y, z=-1.0): """Receive x and y as screen coordinates and returns a point in world coordinates. This function comes in handy each time we have to convert a 2d mouse click to a 3d point in our space. **Parameters** x: float in the interval [-1.0, 1.0] Horizontal coordinate, -1.0 is leftmost, 1.0 is rightmost. y: float in the interval [1.0, -1.0] Vertical coordinate, -1.0 is down, 1.0 is up. z: float in the interval [1.0, -1.0] Depth, -1.0 is the near plane, that is exactly behind our screen, 1.0 is the far clipping plane. :rtype: np.ndarray(3,dtype=float) :return: The point in 3d coordinates (world coordinates). """ source = np.array([x,y,z,1.0]) # Invert the combined matrix matrix = self.projection.dot(self.matrix) IM = LA.inv(matrix) res = np.dot(IM, source) return res[0:3]/res[3]
[ "def", "unproject", "(", "self", ",", "x", ",", "y", ",", "z", "=", "-", "1.0", ")", ":", "source", "=", "np", ".", "array", "(", "[", "x", ",", "y", ",", "z", ",", "1.0", "]", ")", "# Invert the combined matrix", "matrix", "=", "self", ".", "projection", ".", "dot", "(", "self", ".", "matrix", ")", "IM", "=", "LA", ".", "inv", "(", "matrix", ")", "res", "=", "np", ".", "dot", "(", "IM", ",", "source", ")", "return", "res", "[", "0", ":", "3", "]", "/", "res", "[", "3", "]" ]
Receive x and y as screen coordinates and returns a point in world coordinates. This function comes in handy each time we have to convert a 2d mouse click to a 3d point in our space. **Parameters** x: float in the interval [-1.0, 1.0] Horizontal coordinate, -1.0 is leftmost, 1.0 is rightmost. y: float in the interval [1.0, -1.0] Vertical coordinate, -1.0 is down, 1.0 is up. z: float in the interval [1.0, -1.0] Depth, -1.0 is the near plane, that is exactly behind our screen, 1.0 is the far clipping plane. :rtype: np.ndarray(3,dtype=float) :return: The point in 3d coordinates (world coordinates).
[ "Receive", "x", "and", "y", "as", "screen", "coordinates", "and", "returns", "a", "point", "in", "world", "coordinates", "." ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/graphics/camera.py#L230-L261
train
chemlab/chemlab
chemlab/graphics/camera.py
Camera.state
def state(self): '''Return the current camera state as a dictionary, it can be restored with `Camera.restore`. ''' return dict(a=self.a.tolist(), b=self.b.tolist(), c=self.c.tolist(), pivot=self.pivot.tolist(), position=self.position.tolist())
python
def state(self): '''Return the current camera state as a dictionary, it can be restored with `Camera.restore`. ''' return dict(a=self.a.tolist(), b=self.b.tolist(), c=self.c.tolist(), pivot=self.pivot.tolist(), position=self.position.tolist())
[ "def", "state", "(", "self", ")", ":", "return", "dict", "(", "a", "=", "self", ".", "a", ".", "tolist", "(", ")", ",", "b", "=", "self", ".", "b", ".", "tolist", "(", ")", ",", "c", "=", "self", ".", "c", ".", "tolist", "(", ")", ",", "pivot", "=", "self", ".", "pivot", ".", "tolist", "(", ")", ",", "position", "=", "self", ".", "position", ".", "tolist", "(", ")", ")" ]
Return the current camera state as a dictionary, it can be restored with `Camera.restore`.
[ "Return", "the", "current", "camera", "state", "as", "a", "dictionary", "it", "can", "be", "restored", "with", "Camera", ".", "restore", "." ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/graphics/camera.py#L316-L322
train
chemlab/chemlab
chemlab/graphics/pickers.py
ray_spheres_intersection
def ray_spheres_intersection(origin, direction, centers, radii): """Calculate the intersection points between a ray and multiple spheres. **Returns** intersections distances Ordered by closest to farther """ b_v = 2.0 * ((origin - centers) * direction).sum(axis=1) c_v = ((origin - centers)**2).sum(axis=1) - radii ** 2 det_v = b_v * b_v - 4.0 * c_v inters_mask = det_v >= 0 intersections = (inters_mask).nonzero()[0] distances = (-b_v[inters_mask] - np.sqrt(det_v[inters_mask])) / 2.0 # We need only the thing in front of us, that corresponts to # positive distances. dist_mask = distances > 0.0 # We correct this aspect to get an absolute distance distances = distances[dist_mask] intersections = intersections[dist_mask].tolist() if intersections: distances, intersections = zip(*sorted(zip(distances, intersections))) return list(intersections), list(distances) else: return [], []
python
def ray_spheres_intersection(origin, direction, centers, radii): """Calculate the intersection points between a ray and multiple spheres. **Returns** intersections distances Ordered by closest to farther """ b_v = 2.0 * ((origin - centers) * direction).sum(axis=1) c_v = ((origin - centers)**2).sum(axis=1) - radii ** 2 det_v = b_v * b_v - 4.0 * c_v inters_mask = det_v >= 0 intersections = (inters_mask).nonzero()[0] distances = (-b_v[inters_mask] - np.sqrt(det_v[inters_mask])) / 2.0 # We need only the thing in front of us, that corresponts to # positive distances. dist_mask = distances > 0.0 # We correct this aspect to get an absolute distance distances = distances[dist_mask] intersections = intersections[dist_mask].tolist() if intersections: distances, intersections = zip(*sorted(zip(distances, intersections))) return list(intersections), list(distances) else: return [], []
[ "def", "ray_spheres_intersection", "(", "origin", ",", "direction", ",", "centers", ",", "radii", ")", ":", "b_v", "=", "2.0", "*", "(", "(", "origin", "-", "centers", ")", "*", "direction", ")", ".", "sum", "(", "axis", "=", "1", ")", "c_v", "=", "(", "(", "origin", "-", "centers", ")", "**", "2", ")", ".", "sum", "(", "axis", "=", "1", ")", "-", "radii", "**", "2", "det_v", "=", "b_v", "*", "b_v", "-", "4.0", "*", "c_v", "inters_mask", "=", "det_v", ">=", "0", "intersections", "=", "(", "inters_mask", ")", ".", "nonzero", "(", ")", "[", "0", "]", "distances", "=", "(", "-", "b_v", "[", "inters_mask", "]", "-", "np", ".", "sqrt", "(", "det_v", "[", "inters_mask", "]", ")", ")", "/", "2.0", "# We need only the thing in front of us, that corresponts to", "# positive distances.", "dist_mask", "=", "distances", ">", "0.0", "# We correct this aspect to get an absolute distance", "distances", "=", "distances", "[", "dist_mask", "]", "intersections", "=", "intersections", "[", "dist_mask", "]", ".", "tolist", "(", ")", "if", "intersections", ":", "distances", ",", "intersections", "=", "zip", "(", "*", "sorted", "(", "zip", "(", "distances", ",", "intersections", ")", ")", ")", "return", "list", "(", "intersections", ")", ",", "list", "(", "distances", ")", "else", ":", "return", "[", "]", ",", "[", "]" ]
Calculate the intersection points between a ray and multiple spheres. **Returns** intersections distances Ordered by closest to farther
[ "Calculate", "the", "intersection", "points", "between", "a", "ray", "and", "multiple", "spheres", "." ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/graphics/pickers.py#L8-L40
train
chemlab/chemlab
chemlab/graphics/colors.py
any_to_rgb
def any_to_rgb(color): '''If color is an rgb tuple return it, if it is a string, parse it and return the respective rgb tuple. ''' if isinstance(color, tuple): if len(color) == 3: color = color + (255,) return color if isinstance(color, str): return parse_color(color) raise ValueError("Color not recognized: {}".format(color))
python
def any_to_rgb(color): '''If color is an rgb tuple return it, if it is a string, parse it and return the respective rgb tuple. ''' if isinstance(color, tuple): if len(color) == 3: color = color + (255,) return color if isinstance(color, str): return parse_color(color) raise ValueError("Color not recognized: {}".format(color))
[ "def", "any_to_rgb", "(", "color", ")", ":", "if", "isinstance", "(", "color", ",", "tuple", ")", ":", "if", "len", "(", "color", ")", "==", "3", ":", "color", "=", "color", "+", "(", "255", ",", ")", "return", "color", "if", "isinstance", "(", "color", ",", "str", ")", ":", "return", "parse_color", "(", "color", ")", "raise", "ValueError", "(", "\"Color not recognized: {}\"", ".", "format", "(", "color", ")", ")" ]
If color is an rgb tuple return it, if it is a string, parse it and return the respective rgb tuple.
[ "If", "color", "is", "an", "rgb", "tuple", "return", "it", "if", "it", "is", "a", "string", "parse", "it", "and", "return", "the", "respective", "rgb", "tuple", "." ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/graphics/colors.py#L167-L180
train
chemlab/chemlab
chemlab/graphics/colors.py
parse_color
def parse_color(color): '''Return the RGB 0-255 representation of the current string passed. It first tries to match the string with DVI color names. ''' # Let's parse the color string if isinstance(color, str): # Try dvi names try: col = get(color) except ValueError: # String is not present pass # Try html names try: col = html_to_rgb(color) except ValueError: raise ValueError("Can't parse color string: {}'".format(color)) return col
python
def parse_color(color): '''Return the RGB 0-255 representation of the current string passed. It first tries to match the string with DVI color names. ''' # Let's parse the color string if isinstance(color, str): # Try dvi names try: col = get(color) except ValueError: # String is not present pass # Try html names try: col = html_to_rgb(color) except ValueError: raise ValueError("Can't parse color string: {}'".format(color)) return col
[ "def", "parse_color", "(", "color", ")", ":", "# Let's parse the color string", "if", "isinstance", "(", "color", ",", "str", ")", ":", "# Try dvi names", "try", ":", "col", "=", "get", "(", "color", ")", "except", "ValueError", ":", "# String is not present", "pass", "# Try html names", "try", ":", "col", "=", "html_to_rgb", "(", "color", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "\"Can't parse color string: {}'\"", ".", "format", "(", "color", ")", ")", "return", "col" ]
Return the RGB 0-255 representation of the current string passed. It first tries to match the string with DVI color names.
[ "Return", "the", "RGB", "0", "-", "255", "representation", "of", "the", "current", "string", "passed", "." ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/graphics/colors.py#L197-L220
train
chemlab/chemlab
chemlab/graphics/colors.py
hsl_to_rgb
def hsl_to_rgb(arr): """ Converts HSL color array to RGB array H = [0..360] S = [0..1] l = [0..1] http://en.wikipedia.org/wiki/HSL_and_HSV#From_HSL Returns R,G,B in [0..255] """ H, S, L = arr.T H = (H.copy()/255.0) * 360 S = S.copy()/255.0 L = L.copy()/255.0 C = (1 - np.absolute(2 * L - 1)) * S Hp = H / 60.0 X = C * (1 - np.absolute(np.mod(Hp, 2) - 1)) # initilize with zero R = np.zeros(H.shape, float) G = np.zeros(H.shape, float) B = np.zeros(H.shape, float) # handle each case: mask = (Hp >= 0) == ( Hp < 1) R[mask] = C[mask] G[mask] = X[mask] mask = (Hp >= 1) == ( Hp < 2) R[mask] = X[mask] G[mask] = C[mask] mask = (Hp >= 2) == ( Hp < 3) G[mask] = C[mask] B[mask] = X[mask] mask = (Hp >= 3) == ( Hp < 4) G[mask] = X[mask] B[mask] = C[mask] mask = (Hp >= 4) == ( Hp < 5) R[mask] = X[mask] B[mask] = C[mask] mask = (Hp >= 5) == ( Hp < 6) R[mask] = C[mask] B[mask] = X[mask] m = L - 0.5*C R += m G += m B += m R *= 255.0 G *= 255.0 B *= 255.0 return np.array((R.astype(int),G.astype(int),B.astype(int))).T
python
def hsl_to_rgb(arr): """ Converts HSL color array to RGB array H = [0..360] S = [0..1] l = [0..1] http://en.wikipedia.org/wiki/HSL_and_HSV#From_HSL Returns R,G,B in [0..255] """ H, S, L = arr.T H = (H.copy()/255.0) * 360 S = S.copy()/255.0 L = L.copy()/255.0 C = (1 - np.absolute(2 * L - 1)) * S Hp = H / 60.0 X = C * (1 - np.absolute(np.mod(Hp, 2) - 1)) # initilize with zero R = np.zeros(H.shape, float) G = np.zeros(H.shape, float) B = np.zeros(H.shape, float) # handle each case: mask = (Hp >= 0) == ( Hp < 1) R[mask] = C[mask] G[mask] = X[mask] mask = (Hp >= 1) == ( Hp < 2) R[mask] = X[mask] G[mask] = C[mask] mask = (Hp >= 2) == ( Hp < 3) G[mask] = C[mask] B[mask] = X[mask] mask = (Hp >= 3) == ( Hp < 4) G[mask] = X[mask] B[mask] = C[mask] mask = (Hp >= 4) == ( Hp < 5) R[mask] = X[mask] B[mask] = C[mask] mask = (Hp >= 5) == ( Hp < 6) R[mask] = C[mask] B[mask] = X[mask] m = L - 0.5*C R += m G += m B += m R *= 255.0 G *= 255.0 B *= 255.0 return np.array((R.astype(int),G.astype(int),B.astype(int))).T
[ "def", "hsl_to_rgb", "(", "arr", ")", ":", "H", ",", "S", ",", "L", "=", "arr", ".", "T", "H", "=", "(", "H", ".", "copy", "(", ")", "/", "255.0", ")", "*", "360", "S", "=", "S", ".", "copy", "(", ")", "/", "255.0", "L", "=", "L", ".", "copy", "(", ")", "/", "255.0", "C", "=", "(", "1", "-", "np", ".", "absolute", "(", "2", "*", "L", "-", "1", ")", ")", "*", "S", "Hp", "=", "H", "/", "60.0", "X", "=", "C", "*", "(", "1", "-", "np", ".", "absolute", "(", "np", ".", "mod", "(", "Hp", ",", "2", ")", "-", "1", ")", ")", "# initilize with zero", "R", "=", "np", ".", "zeros", "(", "H", ".", "shape", ",", "float", ")", "G", "=", "np", ".", "zeros", "(", "H", ".", "shape", ",", "float", ")", "B", "=", "np", ".", "zeros", "(", "H", ".", "shape", ",", "float", ")", "# handle each case:", "mask", "=", "(", "Hp", ">=", "0", ")", "==", "(", "Hp", "<", "1", ")", "R", "[", "mask", "]", "=", "C", "[", "mask", "]", "G", "[", "mask", "]", "=", "X", "[", "mask", "]", "mask", "=", "(", "Hp", ">=", "1", ")", "==", "(", "Hp", "<", "2", ")", "R", "[", "mask", "]", "=", "X", "[", "mask", "]", "G", "[", "mask", "]", "=", "C", "[", "mask", "]", "mask", "=", "(", "Hp", ">=", "2", ")", "==", "(", "Hp", "<", "3", ")", "G", "[", "mask", "]", "=", "C", "[", "mask", "]", "B", "[", "mask", "]", "=", "X", "[", "mask", "]", "mask", "=", "(", "Hp", ">=", "3", ")", "==", "(", "Hp", "<", "4", ")", "G", "[", "mask", "]", "=", "X", "[", "mask", "]", "B", "[", "mask", "]", "=", "C", "[", "mask", "]", "mask", "=", "(", "Hp", ">=", "4", ")", "==", "(", "Hp", "<", "5", ")", "R", "[", "mask", "]", "=", "X", "[", "mask", "]", "B", "[", "mask", "]", "=", "C", "[", "mask", "]", "mask", "=", "(", "Hp", ">=", "5", ")", "==", "(", "Hp", "<", "6", ")", "R", "[", "mask", "]", "=", "C", "[", "mask", "]", "B", "[", "mask", "]", "=", "X", "[", "mask", "]", "m", "=", "L", "-", "0.5", "*", "C", "R", "+=", "m", "G", "+=", "m", "B", "+=", "m", "R", "*=", "255.0", "G", "*=", "255.0", "B", "*=", "255.0", "return", "np", ".", "array", "(", "(", "R", ".", "astype", "(", "int", ")", ",", "G", ".", "astype", "(", "int", ")", ",", "B", ".", "astype", "(", "int", ")", ")", ")", ".", "T" ]
Converts HSL color array to RGB array H = [0..360] S = [0..1] l = [0..1] http://en.wikipedia.org/wiki/HSL_and_HSV#From_HSL Returns R,G,B in [0..255]
[ "Converts", "HSL", "color", "array", "to", "RGB", "array" ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/graphics/colors.py#L309-L372
train
chemlab/chemlab
chemlab/core/spacegroup/spacegroup.py
format_symbol
def format_symbol(symbol): """Returns well formatted Hermann-Mauguin symbol as extected by the database, by correcting the case and adding missing or removing dublicated spaces.""" fixed = [] s = symbol.strip() s = s[0].upper() + s[1:].lower() for c in s: if c.isalpha(): fixed.append(' ' + c + ' ') elif c.isspace(): fixed.append(' ') elif c.isdigit(): fixed.append(c) elif c == '-': fixed.append(' ' + c) elif c == '/': fixed.append(' ' + c) s = ''.join(fixed).strip() return ' '.join(s.split())
python
def format_symbol(symbol): """Returns well formatted Hermann-Mauguin symbol as extected by the database, by correcting the case and adding missing or removing dublicated spaces.""" fixed = [] s = symbol.strip() s = s[0].upper() + s[1:].lower() for c in s: if c.isalpha(): fixed.append(' ' + c + ' ') elif c.isspace(): fixed.append(' ') elif c.isdigit(): fixed.append(c) elif c == '-': fixed.append(' ' + c) elif c == '/': fixed.append(' ' + c) s = ''.join(fixed).strip() return ' '.join(s.split())
[ "def", "format_symbol", "(", "symbol", ")", ":", "fixed", "=", "[", "]", "s", "=", "symbol", ".", "strip", "(", ")", "s", "=", "s", "[", "0", "]", ".", "upper", "(", ")", "+", "s", "[", "1", ":", "]", ".", "lower", "(", ")", "for", "c", "in", "s", ":", "if", "c", ".", "isalpha", "(", ")", ":", "fixed", ".", "append", "(", "' '", "+", "c", "+", "' '", ")", "elif", "c", ".", "isspace", "(", ")", ":", "fixed", ".", "append", "(", "' '", ")", "elif", "c", ".", "isdigit", "(", ")", ":", "fixed", ".", "append", "(", "c", ")", "elif", "c", "==", "'-'", ":", "fixed", ".", "append", "(", "' '", "+", "c", ")", "elif", "c", "==", "'/'", ":", "fixed", ".", "append", "(", "' '", "+", "c", ")", "s", "=", "''", ".", "join", "(", "fixed", ")", ".", "strip", "(", ")", "return", "' '", ".", "join", "(", "s", ".", "split", "(", ")", ")" ]
Returns well formatted Hermann-Mauguin symbol as extected by the database, by correcting the case and adding missing or removing dublicated spaces.
[ "Returns", "well", "formatted", "Hermann", "-", "Mauguin", "symbol", "as", "extected", "by", "the", "database", "by", "correcting", "the", "case", "and", "adding", "missing", "or", "removing", "dublicated", "spaces", "." ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/core/spacegroup/spacegroup.py#L484-L503
train
chemlab/chemlab
chemlab/core/spacegroup/spacegroup.py
_skip_to_blank
def _skip_to_blank(f, spacegroup, setting): """Read lines from f until a blank line is encountered.""" while True: line = f.readline() if not line: raise SpacegroupNotFoundError( 'invalid spacegroup %s, setting %i not found in data base' % ( spacegroup, setting ) ) if not line.strip(): break
python
def _skip_to_blank(f, spacegroup, setting): """Read lines from f until a blank line is encountered.""" while True: line = f.readline() if not line: raise SpacegroupNotFoundError( 'invalid spacegroup %s, setting %i not found in data base' % ( spacegroup, setting ) ) if not line.strip(): break
[ "def", "_skip_to_blank", "(", "f", ",", "spacegroup", ",", "setting", ")", ":", "while", "True", ":", "line", "=", "f", ".", "readline", "(", ")", "if", "not", "line", ":", "raise", "SpacegroupNotFoundError", "(", "'invalid spacegroup %s, setting %i not found in data base'", "%", "(", "spacegroup", ",", "setting", ")", ")", "if", "not", "line", ".", "strip", "(", ")", ":", "break" ]
Read lines from f until a blank line is encountered.
[ "Read", "lines", "from", "f", "until", "a", "blank", "line", "is", "encountered", "." ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/core/spacegroup/spacegroup.py#L513-L522
train
chemlab/chemlab
chemlab/core/spacegroup/spacegroup.py
_read_datafile_entry
def _read_datafile_entry(spg, no, symbol, setting, f): """Read space group data from f to spg.""" spg._no = no spg._symbol = symbol.strip() spg._setting = setting spg._centrosymmetric = bool(int(f.readline().split()[1])) # primitive vectors f.readline() spg._scaled_primitive_cell = np.array([ list(map(float, f.readline().split())) for i in range(3)], dtype='float') # primitive reciprocal vectors f.readline() spg._reciprocal_cell = np.array([list(map(int, f.readline().split())) for i in range(3)], dtype=np.int) # subtranslations spg._nsubtrans = int(f.readline().split()[0]) spg._subtrans = np.array([list(map(float, f.readline().split())) for i in range(spg._nsubtrans)], dtype=np.float) # symmetry operations nsym = int(f.readline().split()[0]) symop = np.array([list(map(float, f.readline().split())) for i in range(nsym)], dtype=np.float) spg._nsymop = nsym spg._rotations = np.array(symop[:,:9].reshape((nsym,3,3)), dtype=np.int) spg._translations = symop[:,9:]
python
def _read_datafile_entry(spg, no, symbol, setting, f): """Read space group data from f to spg.""" spg._no = no spg._symbol = symbol.strip() spg._setting = setting spg._centrosymmetric = bool(int(f.readline().split()[1])) # primitive vectors f.readline() spg._scaled_primitive_cell = np.array([ list(map(float, f.readline().split())) for i in range(3)], dtype='float') # primitive reciprocal vectors f.readline() spg._reciprocal_cell = np.array([list(map(int, f.readline().split())) for i in range(3)], dtype=np.int) # subtranslations spg._nsubtrans = int(f.readline().split()[0]) spg._subtrans = np.array([list(map(float, f.readline().split())) for i in range(spg._nsubtrans)], dtype=np.float) # symmetry operations nsym = int(f.readline().split()[0]) symop = np.array([list(map(float, f.readline().split())) for i in range(nsym)], dtype=np.float) spg._nsymop = nsym spg._rotations = np.array(symop[:,:9].reshape((nsym,3,3)), dtype=np.int) spg._translations = symop[:,9:]
[ "def", "_read_datafile_entry", "(", "spg", ",", "no", ",", "symbol", ",", "setting", ",", "f", ")", ":", "spg", ".", "_no", "=", "no", "spg", ".", "_symbol", "=", "symbol", ".", "strip", "(", ")", "spg", ".", "_setting", "=", "setting", "spg", ".", "_centrosymmetric", "=", "bool", "(", "int", "(", "f", ".", "readline", "(", ")", ".", "split", "(", ")", "[", "1", "]", ")", ")", "# primitive vectors", "f", ".", "readline", "(", ")", "spg", ".", "_scaled_primitive_cell", "=", "np", ".", "array", "(", "[", "list", "(", "map", "(", "float", ",", "f", ".", "readline", "(", ")", ".", "split", "(", ")", ")", ")", "for", "i", "in", "range", "(", "3", ")", "]", ",", "dtype", "=", "'float'", ")", "# primitive reciprocal vectors", "f", ".", "readline", "(", ")", "spg", ".", "_reciprocal_cell", "=", "np", ".", "array", "(", "[", "list", "(", "map", "(", "int", ",", "f", ".", "readline", "(", ")", ".", "split", "(", ")", ")", ")", "for", "i", "in", "range", "(", "3", ")", "]", ",", "dtype", "=", "np", ".", "int", ")", "# subtranslations", "spg", ".", "_nsubtrans", "=", "int", "(", "f", ".", "readline", "(", ")", ".", "split", "(", ")", "[", "0", "]", ")", "spg", ".", "_subtrans", "=", "np", ".", "array", "(", "[", "list", "(", "map", "(", "float", ",", "f", ".", "readline", "(", ")", ".", "split", "(", ")", ")", ")", "for", "i", "in", "range", "(", "spg", ".", "_nsubtrans", ")", "]", ",", "dtype", "=", "np", ".", "float", ")", "# symmetry operations", "nsym", "=", "int", "(", "f", ".", "readline", "(", ")", ".", "split", "(", ")", "[", "0", "]", ")", "symop", "=", "np", ".", "array", "(", "[", "list", "(", "map", "(", "float", ",", "f", ".", "readline", "(", ")", ".", "split", "(", ")", ")", ")", "for", "i", "in", "range", "(", "nsym", ")", "]", ",", "dtype", "=", "np", ".", "float", ")", "spg", ".", "_nsymop", "=", "nsym", "spg", ".", "_rotations", "=", "np", ".", "array", "(", "symop", "[", ":", ",", ":", "9", "]", ".", "reshape", "(", "(", "nsym", ",", "3", ",", "3", ")", ")", ",", "dtype", "=", "np", ".", "int", ")", "spg", ".", "_translations", "=", "symop", "[", ":", ",", "9", ":", "]" ]
Read space group data from f to spg.
[ "Read", "space", "group", "data", "from", "f", "to", "spg", "." ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/core/spacegroup/spacegroup.py#L541-L570
train
chemlab/chemlab
chemlab/core/spacegroup/spacegroup.py
parse_sitesym
def parse_sitesym(symlist, sep=','): """Parses a sequence of site symmetries in the form used by International Tables and returns corresponding rotation and translation arrays. Example: >>> symlist = [ ... 'x,y,z', ... '-y+1/2,x+1/2,z', ... '-y,-x,-z', ... ] >>> rot, trans = parse_sitesym(symlist) >>> rot array([[[ 1, 0, 0], [ 0, 1, 0], [ 0, 0, 1]], <BLANKLINE> [[ 0, -1, 0], [ 1, 0, 0], [ 0, 0, 1]], <BLANKLINE> [[ 0, -1, 0], [-1, 0, 0], [ 0, 0, -1]]]) >>> trans array([[ 0. , 0. , 0. ], [ 0.5, 0.5, 0. ], [ 0. , 0. , 0. ]]) """ nsym = len(symlist) rot = np.zeros((nsym, 3, 3), dtype='int') trans = np.zeros((nsym, 3)) for i, sym in enumerate(symlist): for j, s in enumerate (sym.split(sep)): s = s.lower().strip() while s: sign = 1 if s[0] in '+-': if s[0] == '-': sign = -1 s = s[1:] if s[0] in 'xyz': k = ord(s[0]) - ord('x') rot[i, j, k] = sign s = s[1:] elif s[0].isdigit() or s[0] == '.': n = 0 while n < len(s) and (s[n].isdigit() or s[n] in '/.'): n += 1 t = s[:n] s = s[n:] if '/' in t: q, r = t.split('/') trans[i,j] = float(q)/float(r) else: trans[i,j] = float(t) else: raise SpacegroupValueError( 'Error parsing %r. Invalid site symmetry: %s' % (s, sym)) return rot, trans
python
def parse_sitesym(symlist, sep=','): """Parses a sequence of site symmetries in the form used by International Tables and returns corresponding rotation and translation arrays. Example: >>> symlist = [ ... 'x,y,z', ... '-y+1/2,x+1/2,z', ... '-y,-x,-z', ... ] >>> rot, trans = parse_sitesym(symlist) >>> rot array([[[ 1, 0, 0], [ 0, 1, 0], [ 0, 0, 1]], <BLANKLINE> [[ 0, -1, 0], [ 1, 0, 0], [ 0, 0, 1]], <BLANKLINE> [[ 0, -1, 0], [-1, 0, 0], [ 0, 0, -1]]]) >>> trans array([[ 0. , 0. , 0. ], [ 0.5, 0.5, 0. ], [ 0. , 0. , 0. ]]) """ nsym = len(symlist) rot = np.zeros((nsym, 3, 3), dtype='int') trans = np.zeros((nsym, 3)) for i, sym in enumerate(symlist): for j, s in enumerate (sym.split(sep)): s = s.lower().strip() while s: sign = 1 if s[0] in '+-': if s[0] == '-': sign = -1 s = s[1:] if s[0] in 'xyz': k = ord(s[0]) - ord('x') rot[i, j, k] = sign s = s[1:] elif s[0].isdigit() or s[0] == '.': n = 0 while n < len(s) and (s[n].isdigit() or s[n] in '/.'): n += 1 t = s[:n] s = s[n:] if '/' in t: q, r = t.split('/') trans[i,j] = float(q)/float(r) else: trans[i,j] = float(t) else: raise SpacegroupValueError( 'Error parsing %r. Invalid site symmetry: %s' % (s, sym)) return rot, trans
[ "def", "parse_sitesym", "(", "symlist", ",", "sep", "=", "','", ")", ":", "nsym", "=", "len", "(", "symlist", ")", "rot", "=", "np", ".", "zeros", "(", "(", "nsym", ",", "3", ",", "3", ")", ",", "dtype", "=", "'int'", ")", "trans", "=", "np", ".", "zeros", "(", "(", "nsym", ",", "3", ")", ")", "for", "i", ",", "sym", "in", "enumerate", "(", "symlist", ")", ":", "for", "j", ",", "s", "in", "enumerate", "(", "sym", ".", "split", "(", "sep", ")", ")", ":", "s", "=", "s", ".", "lower", "(", ")", ".", "strip", "(", ")", "while", "s", ":", "sign", "=", "1", "if", "s", "[", "0", "]", "in", "'+-'", ":", "if", "s", "[", "0", "]", "==", "'-'", ":", "sign", "=", "-", "1", "s", "=", "s", "[", "1", ":", "]", "if", "s", "[", "0", "]", "in", "'xyz'", ":", "k", "=", "ord", "(", "s", "[", "0", "]", ")", "-", "ord", "(", "'x'", ")", "rot", "[", "i", ",", "j", ",", "k", "]", "=", "sign", "s", "=", "s", "[", "1", ":", "]", "elif", "s", "[", "0", "]", ".", "isdigit", "(", ")", "or", "s", "[", "0", "]", "==", "'.'", ":", "n", "=", "0", "while", "n", "<", "len", "(", "s", ")", "and", "(", "s", "[", "n", "]", ".", "isdigit", "(", ")", "or", "s", "[", "n", "]", "in", "'/.'", ")", ":", "n", "+=", "1", "t", "=", "s", "[", ":", "n", "]", "s", "=", "s", "[", "n", ":", "]", "if", "'/'", "in", "t", ":", "q", ",", "r", "=", "t", ".", "split", "(", "'/'", ")", "trans", "[", "i", ",", "j", "]", "=", "float", "(", "q", ")", "/", "float", "(", "r", ")", "else", ":", "trans", "[", "i", ",", "j", "]", "=", "float", "(", "t", ")", "else", ":", "raise", "SpacegroupValueError", "(", "'Error parsing %r. Invalid site symmetry: %s'", "%", "(", "s", ",", "sym", ")", ")", "return", "rot", ",", "trans" ]
Parses a sequence of site symmetries in the form used by International Tables and returns corresponding rotation and translation arrays. Example: >>> symlist = [ ... 'x,y,z', ... '-y+1/2,x+1/2,z', ... '-y,-x,-z', ... ] >>> rot, trans = parse_sitesym(symlist) >>> rot array([[[ 1, 0, 0], [ 0, 1, 0], [ 0, 0, 1]], <BLANKLINE> [[ 0, -1, 0], [ 1, 0, 0], [ 0, 0, 1]], <BLANKLINE> [[ 0, -1, 0], [-1, 0, 0], [ 0, 0, -1]]]) >>> trans array([[ 0. , 0. , 0. ], [ 0.5, 0.5, 0. ], [ 0. , 0. , 0. ]])
[ "Parses", "a", "sequence", "of", "site", "symmetries", "in", "the", "form", "used", "by", "International", "Tables", "and", "returns", "corresponding", "rotation", "and", "translation", "arrays", "." ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/core/spacegroup/spacegroup.py#L596-L657
train
chemlab/chemlab
chemlab/core/spacegroup/spacegroup.py
spacegroup_from_data
def spacegroup_from_data(no=None, symbol=None, setting=1, centrosymmetric=None, scaled_primitive_cell=None, reciprocal_cell=None, subtrans=None, sitesym=None, rotations=None, translations=None, datafile=None): """Manually create a new space group instance. This might be usefull when reading crystal data with its own spacegroup definitions.""" if no is not None: spg = Spacegroup(no, setting, datafile) elif symbol is not None: spg = Spacegroup(symbol, setting, datafile) else: raise SpacegroupValueError('either *no* or *symbol* must be given') have_sym = False if centrosymmetric is not None: spg._centrosymmetric = bool(centrosymmetric) if scaled_primitive_cell is not None: spg._scaled_primitive_cell = np.array(scaled_primitive_cell) if reciprocal_cell is not None: spg._reciprocal_cell = np.array(reciprocal_cell) if subtrans is not None: spg._subtrans = np.atleast_2d(subtrans) spg._nsubtrans = spg._subtrans.shape[0] if sitesym is not None: spg._rotations, spg._translations = parse_sitesym(sitesym) have_sym = True if rotations is not None: spg._rotations = np.atleast_3d(rotations) have_sym = True if translations is not None: spg._translations = np.atleast_2d(translations) have_sym = True if have_sym: if spg._rotations.shape[0] != spg._translations.shape[0]: raise SpacegroupValueError('inconsistent number of rotations and ' 'translations') spg._nsymop = spg._rotations.shape[0] return spg
python
def spacegroup_from_data(no=None, symbol=None, setting=1, centrosymmetric=None, scaled_primitive_cell=None, reciprocal_cell=None, subtrans=None, sitesym=None, rotations=None, translations=None, datafile=None): """Manually create a new space group instance. This might be usefull when reading crystal data with its own spacegroup definitions.""" if no is not None: spg = Spacegroup(no, setting, datafile) elif symbol is not None: spg = Spacegroup(symbol, setting, datafile) else: raise SpacegroupValueError('either *no* or *symbol* must be given') have_sym = False if centrosymmetric is not None: spg._centrosymmetric = bool(centrosymmetric) if scaled_primitive_cell is not None: spg._scaled_primitive_cell = np.array(scaled_primitive_cell) if reciprocal_cell is not None: spg._reciprocal_cell = np.array(reciprocal_cell) if subtrans is not None: spg._subtrans = np.atleast_2d(subtrans) spg._nsubtrans = spg._subtrans.shape[0] if sitesym is not None: spg._rotations, spg._translations = parse_sitesym(sitesym) have_sym = True if rotations is not None: spg._rotations = np.atleast_3d(rotations) have_sym = True if translations is not None: spg._translations = np.atleast_2d(translations) have_sym = True if have_sym: if spg._rotations.shape[0] != spg._translations.shape[0]: raise SpacegroupValueError('inconsistent number of rotations and ' 'translations') spg._nsymop = spg._rotations.shape[0] return spg
[ "def", "spacegroup_from_data", "(", "no", "=", "None", ",", "symbol", "=", "None", ",", "setting", "=", "1", ",", "centrosymmetric", "=", "None", ",", "scaled_primitive_cell", "=", "None", ",", "reciprocal_cell", "=", "None", ",", "subtrans", "=", "None", ",", "sitesym", "=", "None", ",", "rotations", "=", "None", ",", "translations", "=", "None", ",", "datafile", "=", "None", ")", ":", "if", "no", "is", "not", "None", ":", "spg", "=", "Spacegroup", "(", "no", ",", "setting", ",", "datafile", ")", "elif", "symbol", "is", "not", "None", ":", "spg", "=", "Spacegroup", "(", "symbol", ",", "setting", ",", "datafile", ")", "else", ":", "raise", "SpacegroupValueError", "(", "'either *no* or *symbol* must be given'", ")", "have_sym", "=", "False", "if", "centrosymmetric", "is", "not", "None", ":", "spg", ".", "_centrosymmetric", "=", "bool", "(", "centrosymmetric", ")", "if", "scaled_primitive_cell", "is", "not", "None", ":", "spg", ".", "_scaled_primitive_cell", "=", "np", ".", "array", "(", "scaled_primitive_cell", ")", "if", "reciprocal_cell", "is", "not", "None", ":", "spg", ".", "_reciprocal_cell", "=", "np", ".", "array", "(", "reciprocal_cell", ")", "if", "subtrans", "is", "not", "None", ":", "spg", ".", "_subtrans", "=", "np", ".", "atleast_2d", "(", "subtrans", ")", "spg", ".", "_nsubtrans", "=", "spg", ".", "_subtrans", ".", "shape", "[", "0", "]", "if", "sitesym", "is", "not", "None", ":", "spg", ".", "_rotations", ",", "spg", ".", "_translations", "=", "parse_sitesym", "(", "sitesym", ")", "have_sym", "=", "True", "if", "rotations", "is", "not", "None", ":", "spg", ".", "_rotations", "=", "np", ".", "atleast_3d", "(", "rotations", ")", "have_sym", "=", "True", "if", "translations", "is", "not", "None", ":", "spg", ".", "_translations", "=", "np", ".", "atleast_2d", "(", "translations", ")", "have_sym", "=", "True", "if", "have_sym", ":", "if", "spg", ".", "_rotations", ".", "shape", "[", "0", "]", "!=", "spg", ".", "_translations", ".", "shape", "[", "0", "]", ":", "raise", "SpacegroupValueError", "(", "'inconsistent number of rotations and '", "'translations'", ")", "spg", ".", "_nsymop", "=", "spg", ".", "_rotations", ".", "shape", "[", "0", "]", "return", "spg" ]
Manually create a new space group instance. This might be usefull when reading crystal data with its own spacegroup definitions.
[ "Manually", "create", "a", "new", "space", "group", "instance", ".", "This", "might", "be", "usefull", "when", "reading", "crystal", "data", "with", "its", "own", "spacegroup", "definitions", "." ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/core/spacegroup/spacegroup.py#L660-L698
train
chemlab/chemlab
chemlab/core/spacegroup/spacegroup.py
Spacegroup._get_nsymop
def _get_nsymop(self): """Returns total number of symmetry operations.""" if self.centrosymmetric: return 2 * len(self._rotations) * len(self._subtrans) else: return len(self._rotations) * len(self._subtrans)
python
def _get_nsymop(self): """Returns total number of symmetry operations.""" if self.centrosymmetric: return 2 * len(self._rotations) * len(self._subtrans) else: return len(self._rotations) * len(self._subtrans)
[ "def", "_get_nsymop", "(", "self", ")", ":", "if", "self", ".", "centrosymmetric", ":", "return", "2", "*", "len", "(", "self", ".", "_rotations", ")", "*", "len", "(", "self", ".", "_subtrans", ")", "else", ":", "return", "len", "(", "self", ".", "_rotations", ")", "*", "len", "(", "self", ".", "_subtrans", ")" ]
Returns total number of symmetry operations.
[ "Returns", "total", "number", "of", "symmetry", "operations", "." ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/core/spacegroup/spacegroup.py#L86-L91
train
chemlab/chemlab
chemlab/core/spacegroup/spacegroup.py
Spacegroup.get_rotations
def get_rotations(self): """Return all rotations, including inversions for centrosymmetric crystals.""" if self.centrosymmetric: return np.vstack((self.rotations, -self.rotations)) else: return self.rotations
python
def get_rotations(self): """Return all rotations, including inversions for centrosymmetric crystals.""" if self.centrosymmetric: return np.vstack((self.rotations, -self.rotations)) else: return self.rotations
[ "def", "get_rotations", "(", "self", ")", ":", "if", "self", ".", "centrosymmetric", ":", "return", "np", ".", "vstack", "(", "(", "self", ".", "rotations", ",", "-", "self", ".", "rotations", ")", ")", "else", ":", "return", "self", ".", "rotations" ]
Return all rotations, including inversions for centrosymmetric crystals.
[ "Return", "all", "rotations", "including", "inversions", "for", "centrosymmetric", "crystals", "." ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/core/spacegroup/spacegroup.py#L221-L227
train
chemlab/chemlab
chemlab/core/spacegroup/spacegroup.py
Spacegroup.equivalent_reflections
def equivalent_reflections(self, hkl): """Return all equivalent reflections to the list of Miller indices in hkl. Example: >>> from ase.lattice.spacegroup import Spacegroup >>> sg = Spacegroup(225) # fcc >>> sg.equivalent_reflections([[0, 0, 2]]) array([[ 0, 0, -2], [ 0, -2, 0], [-2, 0, 0], [ 2, 0, 0], [ 0, 2, 0], [ 0, 0, 2]]) """ hkl = np.array(hkl, dtype='int', ndmin=2) rot = self.get_rotations() n, nrot = len(hkl), len(rot) R = rot.transpose(0, 2, 1).reshape((3*nrot, 3)).T refl = np.dot(hkl, R).reshape((n*nrot, 3)) ind = np.lexsort(refl.T) refl = refl[ind] diff = np.diff(refl, axis=0) mask = np.any(diff, axis=1) return np.vstack((refl[mask], refl[-1,:]))
python
def equivalent_reflections(self, hkl): """Return all equivalent reflections to the list of Miller indices in hkl. Example: >>> from ase.lattice.spacegroup import Spacegroup >>> sg = Spacegroup(225) # fcc >>> sg.equivalent_reflections([[0, 0, 2]]) array([[ 0, 0, -2], [ 0, -2, 0], [-2, 0, 0], [ 2, 0, 0], [ 0, 2, 0], [ 0, 0, 2]]) """ hkl = np.array(hkl, dtype='int', ndmin=2) rot = self.get_rotations() n, nrot = len(hkl), len(rot) R = rot.transpose(0, 2, 1).reshape((3*nrot, 3)).T refl = np.dot(hkl, R).reshape((n*nrot, 3)) ind = np.lexsort(refl.T) refl = refl[ind] diff = np.diff(refl, axis=0) mask = np.any(diff, axis=1) return np.vstack((refl[mask], refl[-1,:]))
[ "def", "equivalent_reflections", "(", "self", ",", "hkl", ")", ":", "hkl", "=", "np", ".", "array", "(", "hkl", ",", "dtype", "=", "'int'", ",", "ndmin", "=", "2", ")", "rot", "=", "self", ".", "get_rotations", "(", ")", "n", ",", "nrot", "=", "len", "(", "hkl", ")", ",", "len", "(", "rot", ")", "R", "=", "rot", ".", "transpose", "(", "0", ",", "2", ",", "1", ")", ".", "reshape", "(", "(", "3", "*", "nrot", ",", "3", ")", ")", ".", "T", "refl", "=", "np", ".", "dot", "(", "hkl", ",", "R", ")", ".", "reshape", "(", "(", "n", "*", "nrot", ",", "3", ")", ")", "ind", "=", "np", ".", "lexsort", "(", "refl", ".", "T", ")", "refl", "=", "refl", "[", "ind", "]", "diff", "=", "np", ".", "diff", "(", "refl", ",", "axis", "=", "0", ")", "mask", "=", "np", ".", "any", "(", "diff", ",", "axis", "=", "1", ")", "return", "np", ".", "vstack", "(", "(", "refl", "[", "mask", "]", ",", "refl", "[", "-", "1", ",", ":", "]", ")", ")" ]
Return all equivalent reflections to the list of Miller indices in hkl. Example: >>> from ase.lattice.spacegroup import Spacegroup >>> sg = Spacegroup(225) # fcc >>> sg.equivalent_reflections([[0, 0, 2]]) array([[ 0, 0, -2], [ 0, -2, 0], [-2, 0, 0], [ 2, 0, 0], [ 0, 2, 0], [ 0, 0, 2]])
[ "Return", "all", "equivalent", "reflections", "to", "the", "list", "of", "Miller", "indices", "in", "hkl", "." ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/core/spacegroup/spacegroup.py#L229-L254
train
chemlab/chemlab
chemlab/core/spacegroup/spacegroup.py
Spacegroup.equivalent_sites
def equivalent_sites(self, scaled_positions, ondublicates='error', symprec=1e-3): """Returns the scaled positions and all their equivalent sites. Parameters: scaled_positions: list | array List of non-equivalent sites given in unit cell coordinates. ondublicates : 'keep' | 'replace' | 'warn' | 'error' Action if `scaled_positions` contain symmetry-equivalent positions: 'keep' ignore additional symmetry-equivalent positions 'replace' replace 'warn' like 'keep', but issue an UserWarning 'error' raises a SpacegroupValueError symprec: float Minimum "distance" betweed two sites in scaled coordinates before they are counted as the same site. Returns: sites: array A NumPy array of equivalent sites. kinds: list A list of integer indices specifying which input site is equivalent to the corresponding returned site. Example: >>> from ase.lattice.spacegroup import Spacegroup >>> sg = Spacegroup(225) # fcc >>> sites, kinds = sg.equivalent_sites([[0, 0, 0], [0.5, 0.0, 0.0]]) >>> sites array([[ 0. , 0. , 0. ], [ 0. , 0.5, 0.5], [ 0.5, 0. , 0.5], [ 0.5, 0.5, 0. ], [ 0.5, 0. , 0. ], [ 0. , 0.5, 0. ], [ 0. , 0. , 0.5], [ 0.5, 0.5, 0.5]]) >>> kinds [0, 0, 0, 0, 1, 1, 1, 1] """ kinds = [] sites = [] symprec2 = symprec**2 scaled = np.array(scaled_positions, ndmin=2) for kind, pos in enumerate(scaled): for rot, trans in self.get_symop(): site = np.mod(np.dot(rot, pos) + trans, 1.) if not sites: sites.append(site) kinds.append(kind) continue t = site - sites mask = np.sum(t*t, 1) < symprec2 if np.any(mask): ind = np.argwhere(mask)[0][0] if kinds[ind] == kind: pass elif ondublicates == 'keep': pass elif ondublicates == 'replace': kinds[ind] = kind elif ondublicates == 'warn': warnings.warn('scaled_positions %d and %d ' 'are equivalent'%(kinds[ind], kind)) elif ondublicates == 'error': raise SpacegroupValueError( 'scaled_positions %d and %d are equivalent'%( kinds[ind], kind)) else: raise SpacegroupValueError( 'Argument "ondublicates" must be one of: ' '"keep", "replace", "warn" or "error".') else: sites.append(site) kinds.append(kind) return np.array(sites), kinds
python
def equivalent_sites(self, scaled_positions, ondublicates='error', symprec=1e-3): """Returns the scaled positions and all their equivalent sites. Parameters: scaled_positions: list | array List of non-equivalent sites given in unit cell coordinates. ondublicates : 'keep' | 'replace' | 'warn' | 'error' Action if `scaled_positions` contain symmetry-equivalent positions: 'keep' ignore additional symmetry-equivalent positions 'replace' replace 'warn' like 'keep', but issue an UserWarning 'error' raises a SpacegroupValueError symprec: float Minimum "distance" betweed two sites in scaled coordinates before they are counted as the same site. Returns: sites: array A NumPy array of equivalent sites. kinds: list A list of integer indices specifying which input site is equivalent to the corresponding returned site. Example: >>> from ase.lattice.spacegroup import Spacegroup >>> sg = Spacegroup(225) # fcc >>> sites, kinds = sg.equivalent_sites([[0, 0, 0], [0.5, 0.0, 0.0]]) >>> sites array([[ 0. , 0. , 0. ], [ 0. , 0.5, 0.5], [ 0.5, 0. , 0.5], [ 0.5, 0.5, 0. ], [ 0.5, 0. , 0. ], [ 0. , 0.5, 0. ], [ 0. , 0. , 0.5], [ 0.5, 0.5, 0.5]]) >>> kinds [0, 0, 0, 0, 1, 1, 1, 1] """ kinds = [] sites = [] symprec2 = symprec**2 scaled = np.array(scaled_positions, ndmin=2) for kind, pos in enumerate(scaled): for rot, trans in self.get_symop(): site = np.mod(np.dot(rot, pos) + trans, 1.) if not sites: sites.append(site) kinds.append(kind) continue t = site - sites mask = np.sum(t*t, 1) < symprec2 if np.any(mask): ind = np.argwhere(mask)[0][0] if kinds[ind] == kind: pass elif ondublicates == 'keep': pass elif ondublicates == 'replace': kinds[ind] = kind elif ondublicates == 'warn': warnings.warn('scaled_positions %d and %d ' 'are equivalent'%(kinds[ind], kind)) elif ondublicates == 'error': raise SpacegroupValueError( 'scaled_positions %d and %d are equivalent'%( kinds[ind], kind)) else: raise SpacegroupValueError( 'Argument "ondublicates" must be one of: ' '"keep", "replace", "warn" or "error".') else: sites.append(site) kinds.append(kind) return np.array(sites), kinds
[ "def", "equivalent_sites", "(", "self", ",", "scaled_positions", ",", "ondublicates", "=", "'error'", ",", "symprec", "=", "1e-3", ")", ":", "kinds", "=", "[", "]", "sites", "=", "[", "]", "symprec2", "=", "symprec", "**", "2", "scaled", "=", "np", ".", "array", "(", "scaled_positions", ",", "ndmin", "=", "2", ")", "for", "kind", ",", "pos", "in", "enumerate", "(", "scaled", ")", ":", "for", "rot", ",", "trans", "in", "self", ".", "get_symop", "(", ")", ":", "site", "=", "np", ".", "mod", "(", "np", ".", "dot", "(", "rot", ",", "pos", ")", "+", "trans", ",", "1.", ")", "if", "not", "sites", ":", "sites", ".", "append", "(", "site", ")", "kinds", ".", "append", "(", "kind", ")", "continue", "t", "=", "site", "-", "sites", "mask", "=", "np", ".", "sum", "(", "t", "*", "t", ",", "1", ")", "<", "symprec2", "if", "np", ".", "any", "(", "mask", ")", ":", "ind", "=", "np", ".", "argwhere", "(", "mask", ")", "[", "0", "]", "[", "0", "]", "if", "kinds", "[", "ind", "]", "==", "kind", ":", "pass", "elif", "ondublicates", "==", "'keep'", ":", "pass", "elif", "ondublicates", "==", "'replace'", ":", "kinds", "[", "ind", "]", "=", "kind", "elif", "ondublicates", "==", "'warn'", ":", "warnings", ".", "warn", "(", "'scaled_positions %d and %d '", "'are equivalent'", "%", "(", "kinds", "[", "ind", "]", ",", "kind", ")", ")", "elif", "ondublicates", "==", "'error'", ":", "raise", "SpacegroupValueError", "(", "'scaled_positions %d and %d are equivalent'", "%", "(", "kinds", "[", "ind", "]", ",", "kind", ")", ")", "else", ":", "raise", "SpacegroupValueError", "(", "'Argument \"ondublicates\" must be one of: '", "'\"keep\", \"replace\", \"warn\" or \"error\".'", ")", "else", ":", "sites", ".", "append", "(", "site", ")", "kinds", ".", "append", "(", "kind", ")", "return", "np", ".", "array", "(", "sites", ")", ",", "kinds" ]
Returns the scaled positions and all their equivalent sites. Parameters: scaled_positions: list | array List of non-equivalent sites given in unit cell coordinates. ondublicates : 'keep' | 'replace' | 'warn' | 'error' Action if `scaled_positions` contain symmetry-equivalent positions: 'keep' ignore additional symmetry-equivalent positions 'replace' replace 'warn' like 'keep', but issue an UserWarning 'error' raises a SpacegroupValueError symprec: float Minimum "distance" betweed two sites in scaled coordinates before they are counted as the same site. Returns: sites: array A NumPy array of equivalent sites. kinds: list A list of integer indices specifying which input site is equivalent to the corresponding returned site. Example: >>> from ase.lattice.spacegroup import Spacegroup >>> sg = Spacegroup(225) # fcc >>> sites, kinds = sg.equivalent_sites([[0, 0, 0], [0.5, 0.0, 0.0]]) >>> sites array([[ 0. , 0. , 0. ], [ 0. , 0.5, 0.5], [ 0.5, 0. , 0.5], [ 0.5, 0.5, 0. ], [ 0.5, 0. , 0. ], [ 0. , 0.5, 0. ], [ 0. , 0. , 0.5], [ 0.5, 0.5, 0.5]]) >>> kinds [0, 0, 0, 0, 1, 1, 1, 1]
[ "Returns", "the", "scaled", "positions", "and", "all", "their", "equivalent", "sites", "." ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/core/spacegroup/spacegroup.py#L302-L387
train
chemlab/chemlab
chemlab/io/handlers/utils.py
guess_type
def guess_type(typ): '''Guess the atom type from purely heuristic considerations.''' # Strip useless numbers match = re.match("([a-zA-Z]+)\d*", typ) if match: typ = match.groups()[0] return typ
python
def guess_type(typ): '''Guess the atom type from purely heuristic considerations.''' # Strip useless numbers match = re.match("([a-zA-Z]+)\d*", typ) if match: typ = match.groups()[0] return typ
[ "def", "guess_type", "(", "typ", ")", ":", "# Strip useless numbers", "match", "=", "re", ".", "match", "(", "\"([a-zA-Z]+)\\d*\"", ",", "typ", ")", "if", "match", ":", "typ", "=", "match", ".", "groups", "(", ")", "[", "0", "]", "return", "typ" ]
Guess the atom type from purely heuristic considerations.
[ "Guess", "the", "atom", "type", "from", "purely", "heuristic", "considerations", "." ]
c8730966316d101e24f39ac3b96b51282aba0abe
https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/io/handlers/utils.py#L3-L9
train
janpipek/physt
physt/plotting/matplotlib.py
register
def register(*dim: List[int], use_3d: bool = False, use_polar: bool = False, collection: bool = False): """Decorator to wrap common plotting functionality. Parameters ---------- dim : Dimensionality of histogram for which it is applicable use_3d : If True, the figure will be 3D. use_polar : If True, the figure will be in polar coordinates. collection : Whether to allow histogram collections to be used """ if use_3d and use_polar: raise RuntimeError("Cannot have polar and 3d coordinates simultaneously.") # TODO: Add some kind of class parameter def decorate(function): types.append(function.__name__) dims[function.__name__] = dim @wraps(function) def f(hist, write_to: Optional[str] = None, dpi:Optional[float] = None, **kwargs): fig, ax = _get_axes(kwargs, use_3d=use_3d, use_polar=use_polar) from physt.histogram_collection import HistogramCollection if collection and isinstance(hist, HistogramCollection): title = kwargs.pop("title", hist.title) if not hist: raise ValueError("Cannot plot empty histogram collection") for i, h in enumerate(hist): # TODO: Add some mechanism for argument maps (like sklearn?) function(h, ax=ax, **kwargs) ax.legend() ax.set_title(title) else: function(hist, ax=ax, **kwargs) if write_to: fig = ax.figure fig.tight_layout() fig.savefig(write_to, dpi=dpi or default_dpi) return ax return f return decorate
python
def register(*dim: List[int], use_3d: bool = False, use_polar: bool = False, collection: bool = False): """Decorator to wrap common plotting functionality. Parameters ---------- dim : Dimensionality of histogram for which it is applicable use_3d : If True, the figure will be 3D. use_polar : If True, the figure will be in polar coordinates. collection : Whether to allow histogram collections to be used """ if use_3d and use_polar: raise RuntimeError("Cannot have polar and 3d coordinates simultaneously.") # TODO: Add some kind of class parameter def decorate(function): types.append(function.__name__) dims[function.__name__] = dim @wraps(function) def f(hist, write_to: Optional[str] = None, dpi:Optional[float] = None, **kwargs): fig, ax = _get_axes(kwargs, use_3d=use_3d, use_polar=use_polar) from physt.histogram_collection import HistogramCollection if collection and isinstance(hist, HistogramCollection): title = kwargs.pop("title", hist.title) if not hist: raise ValueError("Cannot plot empty histogram collection") for i, h in enumerate(hist): # TODO: Add some mechanism for argument maps (like sklearn?) function(h, ax=ax, **kwargs) ax.legend() ax.set_title(title) else: function(hist, ax=ax, **kwargs) if write_to: fig = ax.figure fig.tight_layout() fig.savefig(write_to, dpi=dpi or default_dpi) return ax return f return decorate
[ "def", "register", "(", "*", "dim", ":", "List", "[", "int", "]", ",", "use_3d", ":", "bool", "=", "False", ",", "use_polar", ":", "bool", "=", "False", ",", "collection", ":", "bool", "=", "False", ")", ":", "if", "use_3d", "and", "use_polar", ":", "raise", "RuntimeError", "(", "\"Cannot have polar and 3d coordinates simultaneously.\"", ")", "# TODO: Add some kind of class parameter", "def", "decorate", "(", "function", ")", ":", "types", ".", "append", "(", "function", ".", "__name__", ")", "dims", "[", "function", ".", "__name__", "]", "=", "dim", "@", "wraps", "(", "function", ")", "def", "f", "(", "hist", ",", "write_to", ":", "Optional", "[", "str", "]", "=", "None", ",", "dpi", ":", "Optional", "[", "float", "]", "=", "None", ",", "*", "*", "kwargs", ")", ":", "fig", ",", "ax", "=", "_get_axes", "(", "kwargs", ",", "use_3d", "=", "use_3d", ",", "use_polar", "=", "use_polar", ")", "from", "physt", ".", "histogram_collection", "import", "HistogramCollection", "if", "collection", "and", "isinstance", "(", "hist", ",", "HistogramCollection", ")", ":", "title", "=", "kwargs", ".", "pop", "(", "\"title\"", ",", "hist", ".", "title", ")", "if", "not", "hist", ":", "raise", "ValueError", "(", "\"Cannot plot empty histogram collection\"", ")", "for", "i", ",", "h", "in", "enumerate", "(", "hist", ")", ":", "# TODO: Add some mechanism for argument maps (like sklearn?)", "function", "(", "h", ",", "ax", "=", "ax", ",", "*", "*", "kwargs", ")", "ax", ".", "legend", "(", ")", "ax", ".", "set_title", "(", "title", ")", "else", ":", "function", "(", "hist", ",", "ax", "=", "ax", ",", "*", "*", "kwargs", ")", "if", "write_to", ":", "fig", "=", "ax", ".", "figure", "fig", ".", "tight_layout", "(", ")", "fig", ".", "savefig", "(", "write_to", ",", "dpi", "=", "dpi", "or", "default_dpi", ")", "return", "ax", "return", "f", "return", "decorate" ]
Decorator to wrap common plotting functionality. Parameters ---------- dim : Dimensionality of histogram for which it is applicable use_3d : If True, the figure will be 3D. use_polar : If True, the figure will be in polar coordinates. collection : Whether to allow histogram collections to be used
[ "Decorator", "to", "wrap", "common", "plotting", "functionality", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/plotting/matplotlib.py#L63-L105
train
janpipek/physt
physt/plotting/matplotlib.py
bar
def bar(h1: Histogram1D, ax: Axes, *, errors: bool = False, **kwargs): """Bar plot of 1D histograms.""" show_stats = kwargs.pop("show_stats", False) show_values = kwargs.pop("show_values", False) value_format = kwargs.pop("value_format", None) density = kwargs.pop("density", False) cumulative = kwargs.pop("cumulative", False) label = kwargs.pop("label", h1.name) lw = kwargs.pop("linewidth", kwargs.pop("lw", 0.5)) text_kwargs = pop_kwargs_with_prefix("text_", kwargs) data = get_data(h1, cumulative=cumulative, density=density) if "cmap" in kwargs: cmap = _get_cmap(kwargs) _, cmap_data = _get_cmap_data(data, kwargs) colors = cmap(cmap_data) else: colors = kwargs.pop("color", None) _apply_xy_lims(ax, h1, data, kwargs) _add_ticks(ax, h1, kwargs) if errors: err_data = get_err_data(h1, cumulative=cumulative, density=density) kwargs["yerr"] = err_data if "ecolor" not in kwargs: kwargs["ecolor"] = "black" _add_labels(ax, h1, kwargs) ax.bar(h1.bin_left_edges, data, h1.bin_widths, align="edge", label=label, color=colors, linewidth=lw, **kwargs) if show_values: _add_values(ax, h1, data, value_format=value_format, **text_kwargs) if show_stats: _add_stats_box(h1, ax, stats=show_stats)
python
def bar(h1: Histogram1D, ax: Axes, *, errors: bool = False, **kwargs): """Bar plot of 1D histograms.""" show_stats = kwargs.pop("show_stats", False) show_values = kwargs.pop("show_values", False) value_format = kwargs.pop("value_format", None) density = kwargs.pop("density", False) cumulative = kwargs.pop("cumulative", False) label = kwargs.pop("label", h1.name) lw = kwargs.pop("linewidth", kwargs.pop("lw", 0.5)) text_kwargs = pop_kwargs_with_prefix("text_", kwargs) data = get_data(h1, cumulative=cumulative, density=density) if "cmap" in kwargs: cmap = _get_cmap(kwargs) _, cmap_data = _get_cmap_data(data, kwargs) colors = cmap(cmap_data) else: colors = kwargs.pop("color", None) _apply_xy_lims(ax, h1, data, kwargs) _add_ticks(ax, h1, kwargs) if errors: err_data = get_err_data(h1, cumulative=cumulative, density=density) kwargs["yerr"] = err_data if "ecolor" not in kwargs: kwargs["ecolor"] = "black" _add_labels(ax, h1, kwargs) ax.bar(h1.bin_left_edges, data, h1.bin_widths, align="edge", label=label, color=colors, linewidth=lw, **kwargs) if show_values: _add_values(ax, h1, data, value_format=value_format, **text_kwargs) if show_stats: _add_stats_box(h1, ax, stats=show_stats)
[ "def", "bar", "(", "h1", ":", "Histogram1D", ",", "ax", ":", "Axes", ",", "*", ",", "errors", ":", "bool", "=", "False", ",", "*", "*", "kwargs", ")", ":", "show_stats", "=", "kwargs", ".", "pop", "(", "\"show_stats\"", ",", "False", ")", "show_values", "=", "kwargs", ".", "pop", "(", "\"show_values\"", ",", "False", ")", "value_format", "=", "kwargs", ".", "pop", "(", "\"value_format\"", ",", "None", ")", "density", "=", "kwargs", ".", "pop", "(", "\"density\"", ",", "False", ")", "cumulative", "=", "kwargs", ".", "pop", "(", "\"cumulative\"", ",", "False", ")", "label", "=", "kwargs", ".", "pop", "(", "\"label\"", ",", "h1", ".", "name", ")", "lw", "=", "kwargs", ".", "pop", "(", "\"linewidth\"", ",", "kwargs", ".", "pop", "(", "\"lw\"", ",", "0.5", ")", ")", "text_kwargs", "=", "pop_kwargs_with_prefix", "(", "\"text_\"", ",", "kwargs", ")", "data", "=", "get_data", "(", "h1", ",", "cumulative", "=", "cumulative", ",", "density", "=", "density", ")", "if", "\"cmap\"", "in", "kwargs", ":", "cmap", "=", "_get_cmap", "(", "kwargs", ")", "_", ",", "cmap_data", "=", "_get_cmap_data", "(", "data", ",", "kwargs", ")", "colors", "=", "cmap", "(", "cmap_data", ")", "else", ":", "colors", "=", "kwargs", ".", "pop", "(", "\"color\"", ",", "None", ")", "_apply_xy_lims", "(", "ax", ",", "h1", ",", "data", ",", "kwargs", ")", "_add_ticks", "(", "ax", ",", "h1", ",", "kwargs", ")", "if", "errors", ":", "err_data", "=", "get_err_data", "(", "h1", ",", "cumulative", "=", "cumulative", ",", "density", "=", "density", ")", "kwargs", "[", "\"yerr\"", "]", "=", "err_data", "if", "\"ecolor\"", "not", "in", "kwargs", ":", "kwargs", "[", "\"ecolor\"", "]", "=", "\"black\"", "_add_labels", "(", "ax", ",", "h1", ",", "kwargs", ")", "ax", ".", "bar", "(", "h1", ".", "bin_left_edges", ",", "data", ",", "h1", ".", "bin_widths", ",", "align", "=", "\"edge\"", ",", "label", "=", "label", ",", "color", "=", "colors", ",", "linewidth", "=", "lw", ",", "*", "*", "kwargs", ")", "if", "show_values", ":", "_add_values", "(", "ax", ",", "h1", ",", "data", ",", "value_format", "=", "value_format", ",", "*", "*", "text_kwargs", ")", "if", "show_stats", ":", "_add_stats_box", "(", "h1", ",", "ax", ",", "stats", "=", "show_stats", ")" ]
Bar plot of 1D histograms.
[ "Bar", "plot", "of", "1D", "histograms", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/plotting/matplotlib.py#L109-L145
train
janpipek/physt
physt/plotting/matplotlib.py
scatter
def scatter(h1: Histogram1D, ax: Axes, *, errors: bool = False, **kwargs): """Scatter plot of 1D histogram.""" show_stats = kwargs.pop("show_stats", False) show_values = kwargs.pop("show_values", False) density = kwargs.pop("density", False) cumulative = kwargs.pop("cumulative", False) value_format = kwargs.pop("value_format", None) text_kwargs = pop_kwargs_with_prefix("text_", kwargs) data = get_data(h1, cumulative=cumulative, density=density) if "cmap" in kwargs: cmap = _get_cmap(kwargs) _, cmap_data = _get_cmap_data(data, kwargs) kwargs["color"] = cmap(cmap_data) else: kwargs["color"] = kwargs.pop("color", "blue") _apply_xy_lims(ax, h1, data, kwargs) _add_ticks(ax, h1, kwargs) _add_labels(ax, h1, kwargs) if errors: err_data = get_err_data(h1, cumulative=cumulative, density=density) ax.errorbar(h1.bin_centers, data, yerr=err_data, fmt=kwargs.pop("fmt", "o"), ecolor=kwargs.pop("ecolor", "black"), ms=0) ax.scatter(h1.bin_centers, data, **kwargs) if show_values: _add_values(ax, h1, data, value_format=value_format, **text_kwargs) if show_stats: _add_stats_box(h1, ax, stats=show_stats)
python
def scatter(h1: Histogram1D, ax: Axes, *, errors: bool = False, **kwargs): """Scatter plot of 1D histogram.""" show_stats = kwargs.pop("show_stats", False) show_values = kwargs.pop("show_values", False) density = kwargs.pop("density", False) cumulative = kwargs.pop("cumulative", False) value_format = kwargs.pop("value_format", None) text_kwargs = pop_kwargs_with_prefix("text_", kwargs) data = get_data(h1, cumulative=cumulative, density=density) if "cmap" in kwargs: cmap = _get_cmap(kwargs) _, cmap_data = _get_cmap_data(data, kwargs) kwargs["color"] = cmap(cmap_data) else: kwargs["color"] = kwargs.pop("color", "blue") _apply_xy_lims(ax, h1, data, kwargs) _add_ticks(ax, h1, kwargs) _add_labels(ax, h1, kwargs) if errors: err_data = get_err_data(h1, cumulative=cumulative, density=density) ax.errorbar(h1.bin_centers, data, yerr=err_data, fmt=kwargs.pop("fmt", "o"), ecolor=kwargs.pop("ecolor", "black"), ms=0) ax.scatter(h1.bin_centers, data, **kwargs) if show_values: _add_values(ax, h1, data, value_format=value_format, **text_kwargs) if show_stats: _add_stats_box(h1, ax, stats=show_stats)
[ "def", "scatter", "(", "h1", ":", "Histogram1D", ",", "ax", ":", "Axes", ",", "*", ",", "errors", ":", "bool", "=", "False", ",", "*", "*", "kwargs", ")", ":", "show_stats", "=", "kwargs", ".", "pop", "(", "\"show_stats\"", ",", "False", ")", "show_values", "=", "kwargs", ".", "pop", "(", "\"show_values\"", ",", "False", ")", "density", "=", "kwargs", ".", "pop", "(", "\"density\"", ",", "False", ")", "cumulative", "=", "kwargs", ".", "pop", "(", "\"cumulative\"", ",", "False", ")", "value_format", "=", "kwargs", ".", "pop", "(", "\"value_format\"", ",", "None", ")", "text_kwargs", "=", "pop_kwargs_with_prefix", "(", "\"text_\"", ",", "kwargs", ")", "data", "=", "get_data", "(", "h1", ",", "cumulative", "=", "cumulative", ",", "density", "=", "density", ")", "if", "\"cmap\"", "in", "kwargs", ":", "cmap", "=", "_get_cmap", "(", "kwargs", ")", "_", ",", "cmap_data", "=", "_get_cmap_data", "(", "data", ",", "kwargs", ")", "kwargs", "[", "\"color\"", "]", "=", "cmap", "(", "cmap_data", ")", "else", ":", "kwargs", "[", "\"color\"", "]", "=", "kwargs", ".", "pop", "(", "\"color\"", ",", "\"blue\"", ")", "_apply_xy_lims", "(", "ax", ",", "h1", ",", "data", ",", "kwargs", ")", "_add_ticks", "(", "ax", ",", "h1", ",", "kwargs", ")", "_add_labels", "(", "ax", ",", "h1", ",", "kwargs", ")", "if", "errors", ":", "err_data", "=", "get_err_data", "(", "h1", ",", "cumulative", "=", "cumulative", ",", "density", "=", "density", ")", "ax", ".", "errorbar", "(", "h1", ".", "bin_centers", ",", "data", ",", "yerr", "=", "err_data", ",", "fmt", "=", "kwargs", ".", "pop", "(", "\"fmt\"", ",", "\"o\"", ")", ",", "ecolor", "=", "kwargs", ".", "pop", "(", "\"ecolor\"", ",", "\"black\"", ")", ",", "ms", "=", "0", ")", "ax", ".", "scatter", "(", "h1", ".", "bin_centers", ",", "data", ",", "*", "*", "kwargs", ")", "if", "show_values", ":", "_add_values", "(", "ax", ",", "h1", ",", "data", ",", "value_format", "=", "value_format", ",", "*", "*", "text_kwargs", ")", "if", "show_stats", ":", "_add_stats_box", "(", "h1", ",", "ax", ",", "stats", "=", "show_stats", ")" ]
Scatter plot of 1D histogram.
[ "Scatter", "plot", "of", "1D", "histogram", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/plotting/matplotlib.py#L149-L180
train
janpipek/physt
physt/plotting/matplotlib.py
line
def line(h1: Union[Histogram1D, "HistogramCollection"], ax: Axes, *, errors: bool = False, **kwargs): """Line plot of 1D histogram.""" show_stats = kwargs.pop("show_stats", False) show_values = kwargs.pop("show_values", False) density = kwargs.pop("density", False) cumulative = kwargs.pop("cumulative", False) value_format = kwargs.pop("value_format", None) text_kwargs = pop_kwargs_with_prefix("text_", kwargs) kwargs["label"] = kwargs.get("label", h1.name) data = get_data(h1, cumulative=cumulative, density=density) _apply_xy_lims(ax, h1, data, kwargs) _add_ticks(ax, h1, kwargs) _add_labels(ax, h1, kwargs) if errors: err_data = get_err_data(h1, cumulative=cumulative, density=density) ax.errorbar(h1.bin_centers, data, yerr=err_data, fmt=kwargs.pop( "fmt", "-"), ecolor=kwargs.pop("ecolor", "black"), **kwargs) else: ax.plot(h1.bin_centers, data, **kwargs) if show_stats: _add_stats_box(h1, ax, stats=show_stats) if show_values: _add_values(ax, h1, data, value_format=value_format, **text_kwargs)
python
def line(h1: Union[Histogram1D, "HistogramCollection"], ax: Axes, *, errors: bool = False, **kwargs): """Line plot of 1D histogram.""" show_stats = kwargs.pop("show_stats", False) show_values = kwargs.pop("show_values", False) density = kwargs.pop("density", False) cumulative = kwargs.pop("cumulative", False) value_format = kwargs.pop("value_format", None) text_kwargs = pop_kwargs_with_prefix("text_", kwargs) kwargs["label"] = kwargs.get("label", h1.name) data = get_data(h1, cumulative=cumulative, density=density) _apply_xy_lims(ax, h1, data, kwargs) _add_ticks(ax, h1, kwargs) _add_labels(ax, h1, kwargs) if errors: err_data = get_err_data(h1, cumulative=cumulative, density=density) ax.errorbar(h1.bin_centers, data, yerr=err_data, fmt=kwargs.pop( "fmt", "-"), ecolor=kwargs.pop("ecolor", "black"), **kwargs) else: ax.plot(h1.bin_centers, data, **kwargs) if show_stats: _add_stats_box(h1, ax, stats=show_stats) if show_values: _add_values(ax, h1, data, value_format=value_format, **text_kwargs)
[ "def", "line", "(", "h1", ":", "Union", "[", "Histogram1D", ",", "\"HistogramCollection\"", "]", ",", "ax", ":", "Axes", ",", "*", ",", "errors", ":", "bool", "=", "False", ",", "*", "*", "kwargs", ")", ":", "show_stats", "=", "kwargs", ".", "pop", "(", "\"show_stats\"", ",", "False", ")", "show_values", "=", "kwargs", ".", "pop", "(", "\"show_values\"", ",", "False", ")", "density", "=", "kwargs", ".", "pop", "(", "\"density\"", ",", "False", ")", "cumulative", "=", "kwargs", ".", "pop", "(", "\"cumulative\"", ",", "False", ")", "value_format", "=", "kwargs", ".", "pop", "(", "\"value_format\"", ",", "None", ")", "text_kwargs", "=", "pop_kwargs_with_prefix", "(", "\"text_\"", ",", "kwargs", ")", "kwargs", "[", "\"label\"", "]", "=", "kwargs", ".", "get", "(", "\"label\"", ",", "h1", ".", "name", ")", "data", "=", "get_data", "(", "h1", ",", "cumulative", "=", "cumulative", ",", "density", "=", "density", ")", "_apply_xy_lims", "(", "ax", ",", "h1", ",", "data", ",", "kwargs", ")", "_add_ticks", "(", "ax", ",", "h1", ",", "kwargs", ")", "_add_labels", "(", "ax", ",", "h1", ",", "kwargs", ")", "if", "errors", ":", "err_data", "=", "get_err_data", "(", "h1", ",", "cumulative", "=", "cumulative", ",", "density", "=", "density", ")", "ax", ".", "errorbar", "(", "h1", ".", "bin_centers", ",", "data", ",", "yerr", "=", "err_data", ",", "fmt", "=", "kwargs", ".", "pop", "(", "\"fmt\"", ",", "\"-\"", ")", ",", "ecolor", "=", "kwargs", ".", "pop", "(", "\"ecolor\"", ",", "\"black\"", ")", ",", "*", "*", "kwargs", ")", "else", ":", "ax", ".", "plot", "(", "h1", ".", "bin_centers", ",", "data", ",", "*", "*", "kwargs", ")", "if", "show_stats", ":", "_add_stats_box", "(", "h1", ",", "ax", ",", "stats", "=", "show_stats", ")", "if", "show_values", ":", "_add_values", "(", "ax", ",", "h1", ",", "data", ",", "value_format", "=", "value_format", ",", "*", "*", "text_kwargs", ")" ]
Line plot of 1D histogram.
[ "Line", "plot", "of", "1D", "histogram", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/plotting/matplotlib.py#L184-L211
train
janpipek/physt
physt/plotting/matplotlib.py
fill
def fill(h1: Histogram1D, ax: Axes, **kwargs): """Fill plot of 1D histogram.""" show_stats = kwargs.pop("show_stats", False) # show_values = kwargs.pop("show_values", False) density = kwargs.pop("density", False) cumulative = kwargs.pop("cumulative", False) kwargs["label"] = kwargs.get("label", h1.name) data = get_data(h1, cumulative=cumulative, density=density) _apply_xy_lims(ax, h1, data, kwargs) _add_ticks(ax, h1, kwargs) _add_labels(ax, h1, kwargs) ax.fill_between(h1.bin_centers, 0, data, **kwargs) if show_stats: _add_stats_box(h1, ax, stats=show_stats) # if show_values: # _add_values(ax, h1, data) return ax
python
def fill(h1: Histogram1D, ax: Axes, **kwargs): """Fill plot of 1D histogram.""" show_stats = kwargs.pop("show_stats", False) # show_values = kwargs.pop("show_values", False) density = kwargs.pop("density", False) cumulative = kwargs.pop("cumulative", False) kwargs["label"] = kwargs.get("label", h1.name) data = get_data(h1, cumulative=cumulative, density=density) _apply_xy_lims(ax, h1, data, kwargs) _add_ticks(ax, h1, kwargs) _add_labels(ax, h1, kwargs) ax.fill_between(h1.bin_centers, 0, data, **kwargs) if show_stats: _add_stats_box(h1, ax, stats=show_stats) # if show_values: # _add_values(ax, h1, data) return ax
[ "def", "fill", "(", "h1", ":", "Histogram1D", ",", "ax", ":", "Axes", ",", "*", "*", "kwargs", ")", ":", "show_stats", "=", "kwargs", ".", "pop", "(", "\"show_stats\"", ",", "False", ")", "# show_values = kwargs.pop(\"show_values\", False)", "density", "=", "kwargs", ".", "pop", "(", "\"density\"", ",", "False", ")", "cumulative", "=", "kwargs", ".", "pop", "(", "\"cumulative\"", ",", "False", ")", "kwargs", "[", "\"label\"", "]", "=", "kwargs", ".", "get", "(", "\"label\"", ",", "h1", ".", "name", ")", "data", "=", "get_data", "(", "h1", ",", "cumulative", "=", "cumulative", ",", "density", "=", "density", ")", "_apply_xy_lims", "(", "ax", ",", "h1", ",", "data", ",", "kwargs", ")", "_add_ticks", "(", "ax", ",", "h1", ",", "kwargs", ")", "_add_labels", "(", "ax", ",", "h1", ",", "kwargs", ")", "ax", ".", "fill_between", "(", "h1", ".", "bin_centers", ",", "0", ",", "data", ",", "*", "*", "kwargs", ")", "if", "show_stats", ":", "_add_stats_box", "(", "h1", ",", "ax", ",", "stats", "=", "show_stats", ")", "# if show_values:", "# _add_values(ax, h1, data)", "return", "ax" ]
Fill plot of 1D histogram.
[ "Fill", "plot", "of", "1D", "histogram", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/plotting/matplotlib.py#L215-L234
train
janpipek/physt
physt/plotting/matplotlib.py
step
def step(h1: Histogram1D, ax: Axes, **kwargs): """Step line-plot of 1D histogram.""" show_stats = kwargs.pop("show_stats", False) show_values = kwargs.pop("show_values", False) density = kwargs.pop("density", False) cumulative = kwargs.pop("cumulative", False) value_format = kwargs.pop("value_format", None) text_kwargs = pop_kwargs_with_prefix("text_", kwargs) kwargs["label"] = kwargs.get("label", h1.name) data = get_data(h1, cumulative=cumulative, density=density) _apply_xy_lims(ax, h1, data, kwargs) _add_ticks(ax, h1, kwargs) _add_labels(ax, h1, kwargs) ax.step(h1.numpy_bins, np.concatenate([data[:1], data]), **kwargs) if show_stats: _add_stats_box(h1, ax, stats=show_stats) if show_values: _add_values(ax, h1, data, value_format=value_format, **text_kwargs)
python
def step(h1: Histogram1D, ax: Axes, **kwargs): """Step line-plot of 1D histogram.""" show_stats = kwargs.pop("show_stats", False) show_values = kwargs.pop("show_values", False) density = kwargs.pop("density", False) cumulative = kwargs.pop("cumulative", False) value_format = kwargs.pop("value_format", None) text_kwargs = pop_kwargs_with_prefix("text_", kwargs) kwargs["label"] = kwargs.get("label", h1.name) data = get_data(h1, cumulative=cumulative, density=density) _apply_xy_lims(ax, h1, data, kwargs) _add_ticks(ax, h1, kwargs) _add_labels(ax, h1, kwargs) ax.step(h1.numpy_bins, np.concatenate([data[:1], data]), **kwargs) if show_stats: _add_stats_box(h1, ax, stats=show_stats) if show_values: _add_values(ax, h1, data, value_format=value_format, **text_kwargs)
[ "def", "step", "(", "h1", ":", "Histogram1D", ",", "ax", ":", "Axes", ",", "*", "*", "kwargs", ")", ":", "show_stats", "=", "kwargs", ".", "pop", "(", "\"show_stats\"", ",", "False", ")", "show_values", "=", "kwargs", ".", "pop", "(", "\"show_values\"", ",", "False", ")", "density", "=", "kwargs", ".", "pop", "(", "\"density\"", ",", "False", ")", "cumulative", "=", "kwargs", ".", "pop", "(", "\"cumulative\"", ",", "False", ")", "value_format", "=", "kwargs", ".", "pop", "(", "\"value_format\"", ",", "None", ")", "text_kwargs", "=", "pop_kwargs_with_prefix", "(", "\"text_\"", ",", "kwargs", ")", "kwargs", "[", "\"label\"", "]", "=", "kwargs", ".", "get", "(", "\"label\"", ",", "h1", ".", "name", ")", "data", "=", "get_data", "(", "h1", ",", "cumulative", "=", "cumulative", ",", "density", "=", "density", ")", "_apply_xy_lims", "(", "ax", ",", "h1", ",", "data", ",", "kwargs", ")", "_add_ticks", "(", "ax", ",", "h1", ",", "kwargs", ")", "_add_labels", "(", "ax", ",", "h1", ",", "kwargs", ")", "ax", ".", "step", "(", "h1", ".", "numpy_bins", ",", "np", ".", "concatenate", "(", "[", "data", "[", ":", "1", "]", ",", "data", "]", ")", ",", "*", "*", "kwargs", ")", "if", "show_stats", ":", "_add_stats_box", "(", "h1", ",", "ax", ",", "stats", "=", "show_stats", ")", "if", "show_values", ":", "_add_values", "(", "ax", ",", "h1", ",", "data", ",", "value_format", "=", "value_format", ",", "*", "*", "text_kwargs", ")" ]
Step line-plot of 1D histogram.
[ "Step", "line", "-", "plot", "of", "1D", "histogram", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/plotting/matplotlib.py#L238-L258
train
janpipek/physt
physt/plotting/matplotlib.py
bar3d
def bar3d(h2: Histogram2D, ax: Axes3D, **kwargs): """Plot of 2D histograms as 3D boxes.""" density = kwargs.pop("density", False) data = get_data(h2, cumulative=False, flatten=True, density=density) if "cmap" in kwargs: cmap = _get_cmap(kwargs) _, cmap_data = _get_cmap_data(data, kwargs) colors = cmap(cmap_data) else: colors = kwargs.pop("color", "blue") xpos, ypos = (arr.flatten() for arr in h2.get_bin_centers()) zpos = np.zeros_like(ypos) dx, dy = (arr.flatten() for arr in h2.get_bin_widths()) _add_labels(ax, h2, kwargs) ax.bar3d(xpos, ypos, zpos, dx, dy, data, color=colors, **kwargs) ax.set_zlabel("density" if density else "frequency")
python
def bar3d(h2: Histogram2D, ax: Axes3D, **kwargs): """Plot of 2D histograms as 3D boxes.""" density = kwargs.pop("density", False) data = get_data(h2, cumulative=False, flatten=True, density=density) if "cmap" in kwargs: cmap = _get_cmap(kwargs) _, cmap_data = _get_cmap_data(data, kwargs) colors = cmap(cmap_data) else: colors = kwargs.pop("color", "blue") xpos, ypos = (arr.flatten() for arr in h2.get_bin_centers()) zpos = np.zeros_like(ypos) dx, dy = (arr.flatten() for arr in h2.get_bin_widths()) _add_labels(ax, h2, kwargs) ax.bar3d(xpos, ypos, zpos, dx, dy, data, color=colors, **kwargs) ax.set_zlabel("density" if density else "frequency")
[ "def", "bar3d", "(", "h2", ":", "Histogram2D", ",", "ax", ":", "Axes3D", ",", "*", "*", "kwargs", ")", ":", "density", "=", "kwargs", ".", "pop", "(", "\"density\"", ",", "False", ")", "data", "=", "get_data", "(", "h2", ",", "cumulative", "=", "False", ",", "flatten", "=", "True", ",", "density", "=", "density", ")", "if", "\"cmap\"", "in", "kwargs", ":", "cmap", "=", "_get_cmap", "(", "kwargs", ")", "_", ",", "cmap_data", "=", "_get_cmap_data", "(", "data", ",", "kwargs", ")", "colors", "=", "cmap", "(", "cmap_data", ")", "else", ":", "colors", "=", "kwargs", ".", "pop", "(", "\"color\"", ",", "\"blue\"", ")", "xpos", ",", "ypos", "=", "(", "arr", ".", "flatten", "(", ")", "for", "arr", "in", "h2", ".", "get_bin_centers", "(", ")", ")", "zpos", "=", "np", ".", "zeros_like", "(", "ypos", ")", "dx", ",", "dy", "=", "(", "arr", ".", "flatten", "(", ")", "for", "arr", "in", "h2", ".", "get_bin_widths", "(", ")", ")", "_add_labels", "(", "ax", ",", "h2", ",", "kwargs", ")", "ax", ".", "bar3d", "(", "xpos", ",", "ypos", ",", "zpos", ",", "dx", ",", "dy", ",", "data", ",", "color", "=", "colors", ",", "*", "*", "kwargs", ")", "ax", ".", "set_zlabel", "(", "\"density\"", "if", "density", "else", "\"frequency\"", ")" ]
Plot of 2D histograms as 3D boxes.
[ "Plot", "of", "2D", "histograms", "as", "3D", "boxes", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/plotting/matplotlib.py#L393-L411
train
janpipek/physt
physt/plotting/matplotlib.py
image
def image(h2: Histogram2D, ax: Axes, *, show_colorbar: bool = True, interpolation: str = "nearest", **kwargs): """Plot of 2D histograms based on pixmaps. Similar to map, but it: - has fewer options - is much more effective (enables thousands) - does not support irregular bins Parameters ---------- interpolation: interpolation parameter passed to imshow, default: "nearest" (creates rectangles) """ cmap = _get_cmap(kwargs) # h2 as well? data = get_data(h2, cumulative=False, density=kwargs.pop("density", False)) norm, cmap_data = _get_cmap_data(data, kwargs) # zorder = kwargs.pop("zorder", None) for binning in h2._binnings: if not binning.is_regular(): raise RuntimeError( "Histograms with irregular bins cannot be plotted using image method.") kwargs["interpolation"] = interpolation if kwargs.get("xscale") == "log" or kwargs.get("yscale") == "log": raise RuntimeError("Cannot use logarithmic axes with image plots.") _apply_xy_lims(ax, h2, data=data, kwargs=kwargs) _add_labels(ax, h2, kwargs) ax.imshow(data.T[::-1, :], cmap=cmap, norm=norm, extent=(h2.bins[0][0, 0], h2.bins[0][-1, 1], h2.bins[1][0, 0], h2.bins[1][-1, 1]), aspect="auto", **kwargs) if show_colorbar: _add_colorbar(ax, cmap, cmap_data, norm)
python
def image(h2: Histogram2D, ax: Axes, *, show_colorbar: bool = True, interpolation: str = "nearest", **kwargs): """Plot of 2D histograms based on pixmaps. Similar to map, but it: - has fewer options - is much more effective (enables thousands) - does not support irregular bins Parameters ---------- interpolation: interpolation parameter passed to imshow, default: "nearest" (creates rectangles) """ cmap = _get_cmap(kwargs) # h2 as well? data = get_data(h2, cumulative=False, density=kwargs.pop("density", False)) norm, cmap_data = _get_cmap_data(data, kwargs) # zorder = kwargs.pop("zorder", None) for binning in h2._binnings: if not binning.is_regular(): raise RuntimeError( "Histograms with irregular bins cannot be plotted using image method.") kwargs["interpolation"] = interpolation if kwargs.get("xscale") == "log" or kwargs.get("yscale") == "log": raise RuntimeError("Cannot use logarithmic axes with image plots.") _apply_xy_lims(ax, h2, data=data, kwargs=kwargs) _add_labels(ax, h2, kwargs) ax.imshow(data.T[::-1, :], cmap=cmap, norm=norm, extent=(h2.bins[0][0, 0], h2.bins[0][-1, 1], h2.bins[1][0, 0], h2.bins[1][-1, 1]), aspect="auto", **kwargs) if show_colorbar: _add_colorbar(ax, cmap, cmap_data, norm)
[ "def", "image", "(", "h2", ":", "Histogram2D", ",", "ax", ":", "Axes", ",", "*", ",", "show_colorbar", ":", "bool", "=", "True", ",", "interpolation", ":", "str", "=", "\"nearest\"", ",", "*", "*", "kwargs", ")", ":", "cmap", "=", "_get_cmap", "(", "kwargs", ")", "# h2 as well?", "data", "=", "get_data", "(", "h2", ",", "cumulative", "=", "False", ",", "density", "=", "kwargs", ".", "pop", "(", "\"density\"", ",", "False", ")", ")", "norm", ",", "cmap_data", "=", "_get_cmap_data", "(", "data", ",", "kwargs", ")", "# zorder = kwargs.pop(\"zorder\", None)", "for", "binning", "in", "h2", ".", "_binnings", ":", "if", "not", "binning", ".", "is_regular", "(", ")", ":", "raise", "RuntimeError", "(", "\"Histograms with irregular bins cannot be plotted using image method.\"", ")", "kwargs", "[", "\"interpolation\"", "]", "=", "interpolation", "if", "kwargs", ".", "get", "(", "\"xscale\"", ")", "==", "\"log\"", "or", "kwargs", ".", "get", "(", "\"yscale\"", ")", "==", "\"log\"", ":", "raise", "RuntimeError", "(", "\"Cannot use logarithmic axes with image plots.\"", ")", "_apply_xy_lims", "(", "ax", ",", "h2", ",", "data", "=", "data", ",", "kwargs", "=", "kwargs", ")", "_add_labels", "(", "ax", ",", "h2", ",", "kwargs", ")", "ax", ".", "imshow", "(", "data", ".", "T", "[", ":", ":", "-", "1", ",", ":", "]", ",", "cmap", "=", "cmap", ",", "norm", "=", "norm", ",", "extent", "=", "(", "h2", ".", "bins", "[", "0", "]", "[", "0", ",", "0", "]", ",", "h2", ".", "bins", "[", "0", "]", "[", "-", "1", ",", "1", "]", ",", "h2", ".", "bins", "[", "1", "]", "[", "0", ",", "0", "]", ",", "h2", ".", "bins", "[", "1", "]", "[", "-", "1", ",", "1", "]", ")", ",", "aspect", "=", "\"auto\"", ",", "*", "*", "kwargs", ")", "if", "show_colorbar", ":", "_add_colorbar", "(", "ax", ",", "cmap", ",", "cmap_data", ",", "norm", ")" ]
Plot of 2D histograms based on pixmaps. Similar to map, but it: - has fewer options - is much more effective (enables thousands) - does not support irregular bins Parameters ---------- interpolation: interpolation parameter passed to imshow, default: "nearest" (creates rectangles)
[ "Plot", "of", "2D", "histograms", "based", "on", "pixmaps", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/plotting/matplotlib.py#L415-L450
train
janpipek/physt
physt/plotting/matplotlib.py
polar_map
def polar_map(hist: Histogram2D, ax: Axes, *, show_zero: bool = True, show_colorbar: bool = True, **kwargs): """Polar map of polar histograms. Similar to map, but supports less parameters.""" data = get_data(hist, cumulative=False, flatten=True, density=kwargs.pop("density", False)) cmap = _get_cmap(kwargs) norm, cmap_data = _get_cmap_data(data, kwargs) colors = cmap(cmap_data) rpos, phipos = (arr.flatten() for arr in hist.get_bin_left_edges()) dr, dphi = (arr.flatten() for arr in hist.get_bin_widths()) rmax, _ = (arr.flatten() for arr in hist.get_bin_right_edges()) bar_args = {} if "zorder" in kwargs: bar_args["zorder"] = kwargs.pop("zorder") alphas = _get_alpha_data(cmap_data, kwargs) if np.isscalar(alphas): alphas = np.ones_like(data) * alphas for i in range(len(rpos)): if data[i] > 0 or show_zero: bin_color = colors[i] # TODO: align = "edge" bars = ax.bar(phipos[i], dr[i], width=dphi[i], bottom=rpos[i], align='edge', color=bin_color, edgecolor=kwargs.get("grid_color", cmap(0.5)), lw=kwargs.get("lw", 0.5), alpha=alphas[i], **bar_args) ax.set_rmax(rmax.max()) if show_colorbar: _add_colorbar(ax, cmap, cmap_data, norm)
python
def polar_map(hist: Histogram2D, ax: Axes, *, show_zero: bool = True, show_colorbar: bool = True, **kwargs): """Polar map of polar histograms. Similar to map, but supports less parameters.""" data = get_data(hist, cumulative=False, flatten=True, density=kwargs.pop("density", False)) cmap = _get_cmap(kwargs) norm, cmap_data = _get_cmap_data(data, kwargs) colors = cmap(cmap_data) rpos, phipos = (arr.flatten() for arr in hist.get_bin_left_edges()) dr, dphi = (arr.flatten() for arr in hist.get_bin_widths()) rmax, _ = (arr.flatten() for arr in hist.get_bin_right_edges()) bar_args = {} if "zorder" in kwargs: bar_args["zorder"] = kwargs.pop("zorder") alphas = _get_alpha_data(cmap_data, kwargs) if np.isscalar(alphas): alphas = np.ones_like(data) * alphas for i in range(len(rpos)): if data[i] > 0 or show_zero: bin_color = colors[i] # TODO: align = "edge" bars = ax.bar(phipos[i], dr[i], width=dphi[i], bottom=rpos[i], align='edge', color=bin_color, edgecolor=kwargs.get("grid_color", cmap(0.5)), lw=kwargs.get("lw", 0.5), alpha=alphas[i], **bar_args) ax.set_rmax(rmax.max()) if show_colorbar: _add_colorbar(ax, cmap, cmap_data, norm)
[ "def", "polar_map", "(", "hist", ":", "Histogram2D", ",", "ax", ":", "Axes", ",", "*", ",", "show_zero", ":", "bool", "=", "True", ",", "show_colorbar", ":", "bool", "=", "True", ",", "*", "*", "kwargs", ")", ":", "data", "=", "get_data", "(", "hist", ",", "cumulative", "=", "False", ",", "flatten", "=", "True", ",", "density", "=", "kwargs", ".", "pop", "(", "\"density\"", ",", "False", ")", ")", "cmap", "=", "_get_cmap", "(", "kwargs", ")", "norm", ",", "cmap_data", "=", "_get_cmap_data", "(", "data", ",", "kwargs", ")", "colors", "=", "cmap", "(", "cmap_data", ")", "rpos", ",", "phipos", "=", "(", "arr", ".", "flatten", "(", ")", "for", "arr", "in", "hist", ".", "get_bin_left_edges", "(", ")", ")", "dr", ",", "dphi", "=", "(", "arr", ".", "flatten", "(", ")", "for", "arr", "in", "hist", ".", "get_bin_widths", "(", ")", ")", "rmax", ",", "_", "=", "(", "arr", ".", "flatten", "(", ")", "for", "arr", "in", "hist", ".", "get_bin_right_edges", "(", ")", ")", "bar_args", "=", "{", "}", "if", "\"zorder\"", "in", "kwargs", ":", "bar_args", "[", "\"zorder\"", "]", "=", "kwargs", ".", "pop", "(", "\"zorder\"", ")", "alphas", "=", "_get_alpha_data", "(", "cmap_data", ",", "kwargs", ")", "if", "np", ".", "isscalar", "(", "alphas", ")", ":", "alphas", "=", "np", ".", "ones_like", "(", "data", ")", "*", "alphas", "for", "i", "in", "range", "(", "len", "(", "rpos", ")", ")", ":", "if", "data", "[", "i", "]", ">", "0", "or", "show_zero", ":", "bin_color", "=", "colors", "[", "i", "]", "# TODO: align = \"edge\"", "bars", "=", "ax", ".", "bar", "(", "phipos", "[", "i", "]", ",", "dr", "[", "i", "]", ",", "width", "=", "dphi", "[", "i", "]", ",", "bottom", "=", "rpos", "[", "i", "]", ",", "align", "=", "'edge'", ",", "color", "=", "bin_color", ",", "edgecolor", "=", "kwargs", ".", "get", "(", "\"grid_color\"", ",", "cmap", "(", "0.5", ")", ")", ",", "lw", "=", "kwargs", ".", "get", "(", "\"lw\"", ",", "0.5", ")", ",", "alpha", "=", "alphas", "[", "i", "]", ",", "*", "*", "bar_args", ")", "ax", ".", "set_rmax", "(", "rmax", ".", "max", "(", ")", ")", "if", "show_colorbar", ":", "_add_colorbar", "(", "ax", ",", "cmap", ",", "cmap_data", ",", "norm", ")" ]
Polar map of polar histograms. Similar to map, but supports less parameters.
[ "Polar", "map", "of", "polar", "histograms", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/plotting/matplotlib.py#L454-L487
train
janpipek/physt
physt/plotting/matplotlib.py
globe_map
def globe_map(hist: Union[Histogram2D, DirectionalHistogram], ax: Axes3D, *, show_zero: bool = True, **kwargs): """Heat map plotted on the surface of a sphere.""" data = get_data(hist, cumulative=False, flatten=False, density=kwargs.pop("density", False)) cmap = _get_cmap(kwargs) norm, cmap_data = _get_cmap_data(data, kwargs) colors = cmap(cmap_data) lw = kwargs.pop("lw", 1) r = 1 xs = r * np.outer(np.sin(hist.numpy_bins[0]), np.cos(hist.numpy_bins[1])) ys = r * np.outer(np.sin(hist.numpy_bins[0]), np.sin(hist.numpy_bins[1])) zs = r * np.outer(np.cos(hist.numpy_bins[0]), np.ones(hist.shape[1] + 1)) for i in range(hist.shape[0]): for j in range(hist.shape[1]): if not show_zero and not data[i, j]: continue x = xs[i, j], xs[i, j + 1], xs[i + 1, j + 1], xs[i + 1, j] y = ys[i, j], ys[i, j + 1], ys[i + 1, j + 1], ys[i + 1, j] z = zs[i, j], zs[i, j + 1], zs[i + 1, j + 1], zs[i + 1, j] verts = [list(zip(x, y, z))] col = Poly3DCollection(verts) col.set_facecolor(colors[i, j]) col.set_edgecolor("black") col.set_linewidth(lw) ax.add_collection3d(col) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("z") if matplotlib.__version__ < "2": ax.plot_surface([], [], [], color="b") ax.set_xlim(-1.1, 1.1) ax.set_ylim(-1.1, 1.1) ax.set_zlim(-1.1, 1.1) return ax
python
def globe_map(hist: Union[Histogram2D, DirectionalHistogram], ax: Axes3D, *, show_zero: bool = True, **kwargs): """Heat map plotted on the surface of a sphere.""" data = get_data(hist, cumulative=False, flatten=False, density=kwargs.pop("density", False)) cmap = _get_cmap(kwargs) norm, cmap_data = _get_cmap_data(data, kwargs) colors = cmap(cmap_data) lw = kwargs.pop("lw", 1) r = 1 xs = r * np.outer(np.sin(hist.numpy_bins[0]), np.cos(hist.numpy_bins[1])) ys = r * np.outer(np.sin(hist.numpy_bins[0]), np.sin(hist.numpy_bins[1])) zs = r * np.outer(np.cos(hist.numpy_bins[0]), np.ones(hist.shape[1] + 1)) for i in range(hist.shape[0]): for j in range(hist.shape[1]): if not show_zero and not data[i, j]: continue x = xs[i, j], xs[i, j + 1], xs[i + 1, j + 1], xs[i + 1, j] y = ys[i, j], ys[i, j + 1], ys[i + 1, j + 1], ys[i + 1, j] z = zs[i, j], zs[i, j + 1], zs[i + 1, j + 1], zs[i + 1, j] verts = [list(zip(x, y, z))] col = Poly3DCollection(verts) col.set_facecolor(colors[i, j]) col.set_edgecolor("black") col.set_linewidth(lw) ax.add_collection3d(col) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("z") if matplotlib.__version__ < "2": ax.plot_surface([], [], [], color="b") ax.set_xlim(-1.1, 1.1) ax.set_ylim(-1.1, 1.1) ax.set_zlim(-1.1, 1.1) return ax
[ "def", "globe_map", "(", "hist", ":", "Union", "[", "Histogram2D", ",", "DirectionalHistogram", "]", ",", "ax", ":", "Axes3D", ",", "*", ",", "show_zero", ":", "bool", "=", "True", ",", "*", "*", "kwargs", ")", ":", "data", "=", "get_data", "(", "hist", ",", "cumulative", "=", "False", ",", "flatten", "=", "False", ",", "density", "=", "kwargs", ".", "pop", "(", "\"density\"", ",", "False", ")", ")", "cmap", "=", "_get_cmap", "(", "kwargs", ")", "norm", ",", "cmap_data", "=", "_get_cmap_data", "(", "data", ",", "kwargs", ")", "colors", "=", "cmap", "(", "cmap_data", ")", "lw", "=", "kwargs", ".", "pop", "(", "\"lw\"", ",", "1", ")", "r", "=", "1", "xs", "=", "r", "*", "np", ".", "outer", "(", "np", ".", "sin", "(", "hist", ".", "numpy_bins", "[", "0", "]", ")", ",", "np", ".", "cos", "(", "hist", ".", "numpy_bins", "[", "1", "]", ")", ")", "ys", "=", "r", "*", "np", ".", "outer", "(", "np", ".", "sin", "(", "hist", ".", "numpy_bins", "[", "0", "]", ")", ",", "np", ".", "sin", "(", "hist", ".", "numpy_bins", "[", "1", "]", ")", ")", "zs", "=", "r", "*", "np", ".", "outer", "(", "np", ".", "cos", "(", "hist", ".", "numpy_bins", "[", "0", "]", ")", ",", "np", ".", "ones", "(", "hist", ".", "shape", "[", "1", "]", "+", "1", ")", ")", "for", "i", "in", "range", "(", "hist", ".", "shape", "[", "0", "]", ")", ":", "for", "j", "in", "range", "(", "hist", ".", "shape", "[", "1", "]", ")", ":", "if", "not", "show_zero", "and", "not", "data", "[", "i", ",", "j", "]", ":", "continue", "x", "=", "xs", "[", "i", ",", "j", "]", ",", "xs", "[", "i", ",", "j", "+", "1", "]", ",", "xs", "[", "i", "+", "1", ",", "j", "+", "1", "]", ",", "xs", "[", "i", "+", "1", ",", "j", "]", "y", "=", "ys", "[", "i", ",", "j", "]", ",", "ys", "[", "i", ",", "j", "+", "1", "]", ",", "ys", "[", "i", "+", "1", ",", "j", "+", "1", "]", ",", "ys", "[", "i", "+", "1", ",", "j", "]", "z", "=", "zs", "[", "i", ",", "j", "]", ",", "zs", "[", "i", ",", "j", "+", "1", "]", ",", "zs", "[", "i", "+", "1", ",", "j", "+", "1", "]", ",", "zs", "[", "i", "+", "1", ",", "j", "]", "verts", "=", "[", "list", "(", "zip", "(", "x", ",", "y", ",", "z", ")", ")", "]", "col", "=", "Poly3DCollection", "(", "verts", ")", "col", ".", "set_facecolor", "(", "colors", "[", "i", ",", "j", "]", ")", "col", ".", "set_edgecolor", "(", "\"black\"", ")", "col", ".", "set_linewidth", "(", "lw", ")", "ax", ".", "add_collection3d", "(", "col", ")", "ax", ".", "set_xlabel", "(", "\"x\"", ")", "ax", ".", "set_ylabel", "(", "\"y\"", ")", "ax", ".", "set_zlabel", "(", "\"z\"", ")", "if", "matplotlib", ".", "__version__", "<", "\"2\"", ":", "ax", ".", "plot_surface", "(", "[", "]", ",", "[", "]", ",", "[", "]", ",", "color", "=", "\"b\"", ")", "ax", ".", "set_xlim", "(", "-", "1.1", ",", "1.1", ")", "ax", ".", "set_ylim", "(", "-", "1.1", ",", "1.1", ")", "ax", ".", "set_zlim", "(", "-", "1.1", ",", "1.1", ")", "return", "ax" ]
Heat map plotted on the surface of a sphere.
[ "Heat", "map", "plotted", "on", "the", "surface", "of", "a", "sphere", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/plotting/matplotlib.py#L491-L529
train
janpipek/physt
physt/plotting/matplotlib.py
pair_bars
def pair_bars(first: Histogram1D, second: Histogram2D, *, orientation: str = "vertical", kind: str = "bar", **kwargs): """Draw two different histograms mirrored in one figure. Parameters ---------- first: Histogram1D second: Histogram1D color1: color2: orientation: str Returns ------- plt.Axes """ # TODO: enable vertical as well as horizontal _, ax = _get_axes(kwargs) color1 = kwargs.pop("color1", "red") color2 = kwargs.pop("color2", "blue") title = kwargs.pop("title", "{0} - {1}".format(first.name, second.name)) xlim = kwargs.pop("xlim", (min(first.bin_left_edges[0], first.bin_left_edges[ 0]), max(first.bin_right_edges[-1], second.bin_right_edges[-1]))) bar(first * (-1), color=color1, ax=ax, ylim="keep", **kwargs) bar(second, color=color2, ax=ax, ylim="keep", **kwargs) ax.set_title(title) ticks = np.abs(ax.get_yticks()) if np.allclose(np.rint(ticks), ticks): ax.set_yticklabels(ticks.astype(int)) else: ax.set_yticklabels(ticks) ax.set_xlim(xlim) ax.legend() return ax
python
def pair_bars(first: Histogram1D, second: Histogram2D, *, orientation: str = "vertical", kind: str = "bar", **kwargs): """Draw two different histograms mirrored in one figure. Parameters ---------- first: Histogram1D second: Histogram1D color1: color2: orientation: str Returns ------- plt.Axes """ # TODO: enable vertical as well as horizontal _, ax = _get_axes(kwargs) color1 = kwargs.pop("color1", "red") color2 = kwargs.pop("color2", "blue") title = kwargs.pop("title", "{0} - {1}".format(first.name, second.name)) xlim = kwargs.pop("xlim", (min(first.bin_left_edges[0], first.bin_left_edges[ 0]), max(first.bin_right_edges[-1], second.bin_right_edges[-1]))) bar(first * (-1), color=color1, ax=ax, ylim="keep", **kwargs) bar(second, color=color2, ax=ax, ylim="keep", **kwargs) ax.set_title(title) ticks = np.abs(ax.get_yticks()) if np.allclose(np.rint(ticks), ticks): ax.set_yticklabels(ticks.astype(int)) else: ax.set_yticklabels(ticks) ax.set_xlim(xlim) ax.legend() return ax
[ "def", "pair_bars", "(", "first", ":", "Histogram1D", ",", "second", ":", "Histogram2D", ",", "*", ",", "orientation", ":", "str", "=", "\"vertical\"", ",", "kind", ":", "str", "=", "\"bar\"", ",", "*", "*", "kwargs", ")", ":", "# TODO: enable vertical as well as horizontal", "_", ",", "ax", "=", "_get_axes", "(", "kwargs", ")", "color1", "=", "kwargs", ".", "pop", "(", "\"color1\"", ",", "\"red\"", ")", "color2", "=", "kwargs", ".", "pop", "(", "\"color2\"", ",", "\"blue\"", ")", "title", "=", "kwargs", ".", "pop", "(", "\"title\"", ",", "\"{0} - {1}\"", ".", "format", "(", "first", ".", "name", ",", "second", ".", "name", ")", ")", "xlim", "=", "kwargs", ".", "pop", "(", "\"xlim\"", ",", "(", "min", "(", "first", ".", "bin_left_edges", "[", "0", "]", ",", "first", ".", "bin_left_edges", "[", "0", "]", ")", ",", "max", "(", "first", ".", "bin_right_edges", "[", "-", "1", "]", ",", "second", ".", "bin_right_edges", "[", "-", "1", "]", ")", ")", ")", "bar", "(", "first", "*", "(", "-", "1", ")", ",", "color", "=", "color1", ",", "ax", "=", "ax", ",", "ylim", "=", "\"keep\"", ",", "*", "*", "kwargs", ")", "bar", "(", "second", ",", "color", "=", "color2", ",", "ax", "=", "ax", ",", "ylim", "=", "\"keep\"", ",", "*", "*", "kwargs", ")", "ax", ".", "set_title", "(", "title", ")", "ticks", "=", "np", ".", "abs", "(", "ax", ".", "get_yticks", "(", ")", ")", "if", "np", ".", "allclose", "(", "np", ".", "rint", "(", "ticks", ")", ",", "ticks", ")", ":", "ax", ".", "set_yticklabels", "(", "ticks", ".", "astype", "(", "int", ")", ")", "else", ":", "ax", ".", "set_yticklabels", "(", "ticks", ")", "ax", ".", "set_xlim", "(", "xlim", ")", "ax", ".", "legend", "(", ")", "return", "ax" ]
Draw two different histograms mirrored in one figure. Parameters ---------- first: Histogram1D second: Histogram1D color1: color2: orientation: str Returns ------- plt.Axes
[ "Draw", "two", "different", "histograms", "mirrored", "in", "one", "figure", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/plotting/matplotlib.py#L648-L681
train
janpipek/physt
physt/plotting/matplotlib.py
_get_axes
def _get_axes(kwargs: Dict[str, Any], *, use_3d: bool = False, use_polar: bool = False) -> Tuple[Figure, Union[Axes, Axes3D]]: """Prepare the axis to draw into. Parameters ---------- use_3d: If True, an axis with 3D projection is created. use_polar: If True, the plot will have polar coordinates. Kwargs ------ ax: Optional[plt.Axes] An already existing axis to be used. figsize: Optional[tuple] Size of the new figure (if no axis is given). Returns ------ fig : plt.Figure ax : plt.Axes | Axes3D """ figsize = kwargs.pop("figsize", default_figsize) if "ax" in kwargs: ax = kwargs.pop("ax") fig = ax.get_figure() elif use_3d: fig = plt.figure(figsize=figsize) ax = fig.add_subplot(111, projection='3d') elif use_polar: fig = plt.figure(figsize=figsize) ax = fig.add_subplot(111, projection='polar') else: fig, ax = plt.subplots(figsize=figsize) return fig, ax
python
def _get_axes(kwargs: Dict[str, Any], *, use_3d: bool = False, use_polar: bool = False) -> Tuple[Figure, Union[Axes, Axes3D]]: """Prepare the axis to draw into. Parameters ---------- use_3d: If True, an axis with 3D projection is created. use_polar: If True, the plot will have polar coordinates. Kwargs ------ ax: Optional[plt.Axes] An already existing axis to be used. figsize: Optional[tuple] Size of the new figure (if no axis is given). Returns ------ fig : plt.Figure ax : plt.Axes | Axes3D """ figsize = kwargs.pop("figsize", default_figsize) if "ax" in kwargs: ax = kwargs.pop("ax") fig = ax.get_figure() elif use_3d: fig = plt.figure(figsize=figsize) ax = fig.add_subplot(111, projection='3d') elif use_polar: fig = plt.figure(figsize=figsize) ax = fig.add_subplot(111, projection='polar') else: fig, ax = plt.subplots(figsize=figsize) return fig, ax
[ "def", "_get_axes", "(", "kwargs", ":", "Dict", "[", "str", ",", "Any", "]", ",", "*", ",", "use_3d", ":", "bool", "=", "False", ",", "use_polar", ":", "bool", "=", "False", ")", "->", "Tuple", "[", "Figure", ",", "Union", "[", "Axes", ",", "Axes3D", "]", "]", ":", "figsize", "=", "kwargs", ".", "pop", "(", "\"figsize\"", ",", "default_figsize", ")", "if", "\"ax\"", "in", "kwargs", ":", "ax", "=", "kwargs", ".", "pop", "(", "\"ax\"", ")", "fig", "=", "ax", ".", "get_figure", "(", ")", "elif", "use_3d", ":", "fig", "=", "plt", ".", "figure", "(", "figsize", "=", "figsize", ")", "ax", "=", "fig", ".", "add_subplot", "(", "111", ",", "projection", "=", "'3d'", ")", "elif", "use_polar", ":", "fig", "=", "plt", ".", "figure", "(", "figsize", "=", "figsize", ")", "ax", "=", "fig", ".", "add_subplot", "(", "111", ",", "projection", "=", "'polar'", ")", "else", ":", "fig", ",", "ax", "=", "plt", ".", "subplots", "(", "figsize", "=", "figsize", ")", "return", "fig", ",", "ax" ]
Prepare the axis to draw into. Parameters ---------- use_3d: If True, an axis with 3D projection is created. use_polar: If True, the plot will have polar coordinates. Kwargs ------ ax: Optional[plt.Axes] An already existing axis to be used. figsize: Optional[tuple] Size of the new figure (if no axis is given). Returns ------ fig : plt.Figure ax : plt.Axes | Axes3D
[ "Prepare", "the", "axis", "to", "draw", "into", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/plotting/matplotlib.py#L684-L716
train
janpipek/physt
physt/plotting/matplotlib.py
_get_cmap
def _get_cmap(kwargs: dict) -> colors.Colormap: """Get the colour map for plots that support it. Parameters ---------- cmap : str or colors.Colormap or list of colors A map or an instance of cmap. This can also be a seaborn palette (if seaborn is installed). """ from matplotlib.colors import ListedColormap cmap = kwargs.pop("cmap", default_cmap) if isinstance(cmap, list): return ListedColormap(cmap) if isinstance(cmap, str): try: cmap = plt.get_cmap(cmap) except BaseException as exc: try: # Try to use seaborn palette import seaborn as sns sns_palette = sns.color_palette(cmap, n_colors=256) cmap = ListedColormap(sns_palette, name=cmap) except ImportError: raise exc return cmap
python
def _get_cmap(kwargs: dict) -> colors.Colormap: """Get the colour map for plots that support it. Parameters ---------- cmap : str or colors.Colormap or list of colors A map or an instance of cmap. This can also be a seaborn palette (if seaborn is installed). """ from matplotlib.colors import ListedColormap cmap = kwargs.pop("cmap", default_cmap) if isinstance(cmap, list): return ListedColormap(cmap) if isinstance(cmap, str): try: cmap = plt.get_cmap(cmap) except BaseException as exc: try: # Try to use seaborn palette import seaborn as sns sns_palette = sns.color_palette(cmap, n_colors=256) cmap = ListedColormap(sns_palette, name=cmap) except ImportError: raise exc return cmap
[ "def", "_get_cmap", "(", "kwargs", ":", "dict", ")", "->", "colors", ".", "Colormap", ":", "from", "matplotlib", ".", "colors", "import", "ListedColormap", "cmap", "=", "kwargs", ".", "pop", "(", "\"cmap\"", ",", "default_cmap", ")", "if", "isinstance", "(", "cmap", ",", "list", ")", ":", "return", "ListedColormap", "(", "cmap", ")", "if", "isinstance", "(", "cmap", ",", "str", ")", ":", "try", ":", "cmap", "=", "plt", ".", "get_cmap", "(", "cmap", ")", "except", "BaseException", "as", "exc", ":", "try", ":", "# Try to use seaborn palette", "import", "seaborn", "as", "sns", "sns_palette", "=", "sns", ".", "color_palette", "(", "cmap", ",", "n_colors", "=", "256", ")", "cmap", "=", "ListedColormap", "(", "sns_palette", ",", "name", "=", "cmap", ")", "except", "ImportError", ":", "raise", "exc", "return", "cmap" ]
Get the colour map for plots that support it. Parameters ---------- cmap : str or colors.Colormap or list of colors A map or an instance of cmap. This can also be a seaborn palette (if seaborn is installed).
[ "Get", "the", "colour", "map", "for", "plots", "that", "support", "it", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/plotting/matplotlib.py#L719-L744
train
janpipek/physt
physt/plotting/matplotlib.py
_get_cmap_data
def _get_cmap_data(data, kwargs) -> Tuple[colors.Normalize, np.ndarray]: """Get normalized values to be used with a colormap. Parameters ---------- data : array_like cmap_min : Optional[float] or "min" By default 0. If "min", minimum value of the data. cmap_max : Optional[float] By default, maximum value of the data cmap_normalize : str or colors.Normalize Returns ------- normalizer : colors.Normalize normalized_data : array_like """ norm = kwargs.pop("cmap_normalize", None) if norm == "log": cmap_max = kwargs.pop("cmap_max", data.max()) cmap_min = kwargs.pop("cmap_min", data[data > 0].min()) norm = colors.LogNorm(cmap_min, cmap_max) elif not norm: cmap_max = kwargs.pop("cmap_max", data.max()) cmap_min = kwargs.pop("cmap_min", 0) if cmap_min == "min": cmap_min = data.min() norm = colors.Normalize(cmap_min, cmap_max, clip=True) return norm, norm(data)
python
def _get_cmap_data(data, kwargs) -> Tuple[colors.Normalize, np.ndarray]: """Get normalized values to be used with a colormap. Parameters ---------- data : array_like cmap_min : Optional[float] or "min" By default 0. If "min", minimum value of the data. cmap_max : Optional[float] By default, maximum value of the data cmap_normalize : str or colors.Normalize Returns ------- normalizer : colors.Normalize normalized_data : array_like """ norm = kwargs.pop("cmap_normalize", None) if norm == "log": cmap_max = kwargs.pop("cmap_max", data.max()) cmap_min = kwargs.pop("cmap_min", data[data > 0].min()) norm = colors.LogNorm(cmap_min, cmap_max) elif not norm: cmap_max = kwargs.pop("cmap_max", data.max()) cmap_min = kwargs.pop("cmap_min", 0) if cmap_min == "min": cmap_min = data.min() norm = colors.Normalize(cmap_min, cmap_max, clip=True) return norm, norm(data)
[ "def", "_get_cmap_data", "(", "data", ",", "kwargs", ")", "->", "Tuple", "[", "colors", ".", "Normalize", ",", "np", ".", "ndarray", "]", ":", "norm", "=", "kwargs", ".", "pop", "(", "\"cmap_normalize\"", ",", "None", ")", "if", "norm", "==", "\"log\"", ":", "cmap_max", "=", "kwargs", ".", "pop", "(", "\"cmap_max\"", ",", "data", ".", "max", "(", ")", ")", "cmap_min", "=", "kwargs", ".", "pop", "(", "\"cmap_min\"", ",", "data", "[", "data", ">", "0", "]", ".", "min", "(", ")", ")", "norm", "=", "colors", ".", "LogNorm", "(", "cmap_min", ",", "cmap_max", ")", "elif", "not", "norm", ":", "cmap_max", "=", "kwargs", ".", "pop", "(", "\"cmap_max\"", ",", "data", ".", "max", "(", ")", ")", "cmap_min", "=", "kwargs", ".", "pop", "(", "\"cmap_min\"", ",", "0", ")", "if", "cmap_min", "==", "\"min\"", ":", "cmap_min", "=", "data", ".", "min", "(", ")", "norm", "=", "colors", ".", "Normalize", "(", "cmap_min", ",", "cmap_max", ",", "clip", "=", "True", ")", "return", "norm", ",", "norm", "(", "data", ")" ]
Get normalized values to be used with a colormap. Parameters ---------- data : array_like cmap_min : Optional[float] or "min" By default 0. If "min", minimum value of the data. cmap_max : Optional[float] By default, maximum value of the data cmap_normalize : str or colors.Normalize Returns ------- normalizer : colors.Normalize normalized_data : array_like
[ "Get", "normalized", "values", "to", "be", "used", "with", "a", "colormap", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/plotting/matplotlib.py#L747-L775
train
janpipek/physt
physt/plotting/matplotlib.py
_get_alpha_data
def _get_alpha_data(data: np.ndarray, kwargs) -> Union[float, np.ndarray]: """Get alpha values for all data points. Parameters ---------- alpha: Callable or float This can be a fixed value or a function of the data. """ alpha = kwargs.pop("alpha", 1) if hasattr(alpha, "__call__"): return np.vectorize(alpha)(data) return alpha
python
def _get_alpha_data(data: np.ndarray, kwargs) -> Union[float, np.ndarray]: """Get alpha values for all data points. Parameters ---------- alpha: Callable or float This can be a fixed value or a function of the data. """ alpha = kwargs.pop("alpha", 1) if hasattr(alpha, "__call__"): return np.vectorize(alpha)(data) return alpha
[ "def", "_get_alpha_data", "(", "data", ":", "np", ".", "ndarray", ",", "kwargs", ")", "->", "Union", "[", "float", ",", "np", ".", "ndarray", "]", ":", "alpha", "=", "kwargs", ".", "pop", "(", "\"alpha\"", ",", "1", ")", "if", "hasattr", "(", "alpha", ",", "\"__call__\"", ")", ":", "return", "np", ".", "vectorize", "(", "alpha", ")", "(", "data", ")", "return", "alpha" ]
Get alpha values for all data points. Parameters ---------- alpha: Callable or float This can be a fixed value or a function of the data.
[ "Get", "alpha", "values", "for", "all", "data", "points", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/plotting/matplotlib.py#L778-L789
train
janpipek/physt
physt/plotting/matplotlib.py
_add_values
def _add_values(ax: Axes, h1: Histogram1D, data, *, value_format=lambda x: x, **kwargs): """Show values next to each bin in a 1D plot. Parameters ---------- ax : plt.Axes h1 : physt.histogram1d.Histogram1D data : array_like The values to be displayed kwargs : dict Parameters to be passed to matplotlib to override standard text params. """ from .common import get_value_format value_format = get_value_format(value_format) text_kwargs = {"ha": "center", "va": "bottom", "clip_on" : True} text_kwargs.update(kwargs) for x, y in zip(h1.bin_centers, data): ax.text(x, y, str(value_format(y)), **text_kwargs)
python
def _add_values(ax: Axes, h1: Histogram1D, data, *, value_format=lambda x: x, **kwargs): """Show values next to each bin in a 1D plot. Parameters ---------- ax : plt.Axes h1 : physt.histogram1d.Histogram1D data : array_like The values to be displayed kwargs : dict Parameters to be passed to matplotlib to override standard text params. """ from .common import get_value_format value_format = get_value_format(value_format) text_kwargs = {"ha": "center", "va": "bottom", "clip_on" : True} text_kwargs.update(kwargs) for x, y in zip(h1.bin_centers, data): ax.text(x, y, str(value_format(y)), **text_kwargs)
[ "def", "_add_values", "(", "ax", ":", "Axes", ",", "h1", ":", "Histogram1D", ",", "data", ",", "*", ",", "value_format", "=", "lambda", "x", ":", "x", ",", "*", "*", "kwargs", ")", ":", "from", ".", "common", "import", "get_value_format", "value_format", "=", "get_value_format", "(", "value_format", ")", "text_kwargs", "=", "{", "\"ha\"", ":", "\"center\"", ",", "\"va\"", ":", "\"bottom\"", ",", "\"clip_on\"", ":", "True", "}", "text_kwargs", ".", "update", "(", "kwargs", ")", "for", "x", ",", "y", "in", "zip", "(", "h1", ".", "bin_centers", ",", "data", ")", ":", "ax", ".", "text", "(", "x", ",", "y", ",", "str", "(", "value_format", "(", "y", ")", ")", ",", "*", "*", "text_kwargs", ")" ]
Show values next to each bin in a 1D plot. Parameters ---------- ax : plt.Axes h1 : physt.histogram1d.Histogram1D data : array_like The values to be displayed kwargs : dict Parameters to be passed to matplotlib to override standard text params.
[ "Show", "values", "next", "to", "each", "bin", "in", "a", "1D", "plot", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/plotting/matplotlib.py#L810-L828
train
janpipek/physt
physt/plotting/matplotlib.py
_add_colorbar
def _add_colorbar(ax: Axes, cmap: colors.Colormap, cmap_data: np.ndarray, norm: colors.Normalize): """Show a colorbar right of the plot.""" fig = ax.get_figure() mappable = cm.ScalarMappable(cmap=cmap, norm=norm) mappable.set_array(cmap_data) # TODO: Or what??? fig.colorbar(mappable, ax=ax)
python
def _add_colorbar(ax: Axes, cmap: colors.Colormap, cmap_data: np.ndarray, norm: colors.Normalize): """Show a colorbar right of the plot.""" fig = ax.get_figure() mappable = cm.ScalarMappable(cmap=cmap, norm=norm) mappable.set_array(cmap_data) # TODO: Or what??? fig.colorbar(mappable, ax=ax)
[ "def", "_add_colorbar", "(", "ax", ":", "Axes", ",", "cmap", ":", "colors", ".", "Colormap", ",", "cmap_data", ":", "np", ".", "ndarray", ",", "norm", ":", "colors", ".", "Normalize", ")", ":", "fig", "=", "ax", ".", "get_figure", "(", ")", "mappable", "=", "cm", ".", "ScalarMappable", "(", "cmap", "=", "cmap", ",", "norm", "=", "norm", ")", "mappable", ".", "set_array", "(", "cmap_data", ")", "# TODO: Or what???", "fig", ".", "colorbar", "(", "mappable", ",", "ax", "=", "ax", ")" ]
Show a colorbar right of the plot.
[ "Show", "a", "colorbar", "right", "of", "the", "plot", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/plotting/matplotlib.py#L831-L836
train
janpipek/physt
physt/plotting/matplotlib.py
_add_stats_box
def _add_stats_box(h1: Histogram1D, ax: Axes, stats: Union[str, bool] = "all"): """Insert a small legend-like box with statistical information. Parameters ---------- stats : "all" | "total" | True What info to display Note ---- Very basic implementation. """ # place a text box in upper left in axes coords if stats in ["all", True]: text = "Total: {0}\nMean: {1:.2f}\nStd.dev: {2:.2f}".format( h1.total, h1.mean(), h1.std()) elif stats == "total": text = "Total: {0}".format(h1.total) else: raise ValueError("Invalid stats specification") ax.text(0.05, 0.95, text, transform=ax.transAxes, verticalalignment='top', horizontalalignment='left')
python
def _add_stats_box(h1: Histogram1D, ax: Axes, stats: Union[str, bool] = "all"): """Insert a small legend-like box with statistical information. Parameters ---------- stats : "all" | "total" | True What info to display Note ---- Very basic implementation. """ # place a text box in upper left in axes coords if stats in ["all", True]: text = "Total: {0}\nMean: {1:.2f}\nStd.dev: {2:.2f}".format( h1.total, h1.mean(), h1.std()) elif stats == "total": text = "Total: {0}".format(h1.total) else: raise ValueError("Invalid stats specification") ax.text(0.05, 0.95, text, transform=ax.transAxes, verticalalignment='top', horizontalalignment='left')
[ "def", "_add_stats_box", "(", "h1", ":", "Histogram1D", ",", "ax", ":", "Axes", ",", "stats", ":", "Union", "[", "str", ",", "bool", "]", "=", "\"all\"", ")", ":", "# place a text box in upper left in axes coords", "if", "stats", "in", "[", "\"all\"", ",", "True", "]", ":", "text", "=", "\"Total: {0}\\nMean: {1:.2f}\\nStd.dev: {2:.2f}\"", ".", "format", "(", "h1", ".", "total", ",", "h1", ".", "mean", "(", ")", ",", "h1", ".", "std", "(", ")", ")", "elif", "stats", "==", "\"total\"", ":", "text", "=", "\"Total: {0}\"", ".", "format", "(", "h1", ".", "total", ")", "else", ":", "raise", "ValueError", "(", "\"Invalid stats specification\"", ")", "ax", ".", "text", "(", "0.05", ",", "0.95", ",", "text", ",", "transform", "=", "ax", ".", "transAxes", ",", "verticalalignment", "=", "'top'", ",", "horizontalalignment", "=", "'left'", ")" ]
Insert a small legend-like box with statistical information. Parameters ---------- stats : "all" | "total" | True What info to display Note ---- Very basic implementation.
[ "Insert", "a", "small", "legend", "-", "like", "box", "with", "statistical", "information", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/plotting/matplotlib.py#L839-L862
train
janpipek/physt
physt/examples/__init__.py
normal_h1
def normal_h1(size: int = 10000, mean: float = 0, sigma: float = 1) -> Histogram1D: """A simple 1D histogram with normal distribution. Parameters ---------- size : Number of points mean : Mean of the distribution sigma : Sigma of the distribution """ data = np.random.normal(mean, sigma, (size,)) return h1(data, name="normal", axis_name="x", title="1D normal distribution")
python
def normal_h1(size: int = 10000, mean: float = 0, sigma: float = 1) -> Histogram1D: """A simple 1D histogram with normal distribution. Parameters ---------- size : Number of points mean : Mean of the distribution sigma : Sigma of the distribution """ data = np.random.normal(mean, sigma, (size,)) return h1(data, name="normal", axis_name="x", title="1D normal distribution")
[ "def", "normal_h1", "(", "size", ":", "int", "=", "10000", ",", "mean", ":", "float", "=", "0", ",", "sigma", ":", "float", "=", "1", ")", "->", "Histogram1D", ":", "data", "=", "np", ".", "random", ".", "normal", "(", "mean", ",", "sigma", ",", "(", "size", ",", ")", ")", "return", "h1", "(", "data", ",", "name", "=", "\"normal\"", ",", "axis_name", "=", "\"x\"", ",", "title", "=", "\"1D normal distribution\"", ")" ]
A simple 1D histogram with normal distribution. Parameters ---------- size : Number of points mean : Mean of the distribution sigma : Sigma of the distribution
[ "A", "simple", "1D", "histogram", "with", "normal", "distribution", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/examples/__init__.py#L12-L22
train
janpipek/physt
physt/examples/__init__.py
normal_h2
def normal_h2(size: int = 10000) -> Histogram2D: """A simple 2D histogram with normal distribution. Parameters ---------- size : Number of points """ data1 = np.random.normal(0, 1, (size,)) data2 = np.random.normal(0, 1, (size,)) return h2(data1, data2, name="normal", axis_names=tuple("xy"), title="2D normal distribution")
python
def normal_h2(size: int = 10000) -> Histogram2D: """A simple 2D histogram with normal distribution. Parameters ---------- size : Number of points """ data1 = np.random.normal(0, 1, (size,)) data2 = np.random.normal(0, 1, (size,)) return h2(data1, data2, name="normal", axis_names=tuple("xy"), title="2D normal distribution")
[ "def", "normal_h2", "(", "size", ":", "int", "=", "10000", ")", "->", "Histogram2D", ":", "data1", "=", "np", ".", "random", ".", "normal", "(", "0", ",", "1", ",", "(", "size", ",", ")", ")", "data2", "=", "np", ".", "random", ".", "normal", "(", "0", ",", "1", ",", "(", "size", ",", ")", ")", "return", "h2", "(", "data1", ",", "data2", ",", "name", "=", "\"normal\"", ",", "axis_names", "=", "tuple", "(", "\"xy\"", ")", ",", "title", "=", "\"2D normal distribution\"", ")" ]
A simple 2D histogram with normal distribution. Parameters ---------- size : Number of points
[ "A", "simple", "2D", "histogram", "with", "normal", "distribution", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/examples/__init__.py#L25-L34
train
janpipek/physt
physt/examples/__init__.py
normal_h3
def normal_h3(size: int = 10000) -> HistogramND: """A simple 3D histogram with normal distribution. Parameters ---------- size : Number of points """ data1 = np.random.normal(0, 1, (size,)) data2 = np.random.normal(0, 1, (size,)) data3 = np.random.normal(0, 1, (size,)) return h3([data1, data2, data3], name="normal", axis_names=tuple("xyz"), title="3D normal distribution")
python
def normal_h3(size: int = 10000) -> HistogramND: """A simple 3D histogram with normal distribution. Parameters ---------- size : Number of points """ data1 = np.random.normal(0, 1, (size,)) data2 = np.random.normal(0, 1, (size,)) data3 = np.random.normal(0, 1, (size,)) return h3([data1, data2, data3], name="normal", axis_names=tuple("xyz"), title="3D normal distribution")
[ "def", "normal_h3", "(", "size", ":", "int", "=", "10000", ")", "->", "HistogramND", ":", "data1", "=", "np", ".", "random", ".", "normal", "(", "0", ",", "1", ",", "(", "size", ",", ")", ")", "data2", "=", "np", ".", "random", ".", "normal", "(", "0", ",", "1", ",", "(", "size", ",", ")", ")", "data3", "=", "np", ".", "random", ".", "normal", "(", "0", ",", "1", ",", "(", "size", ",", ")", ")", "return", "h3", "(", "[", "data1", ",", "data2", ",", "data3", "]", ",", "name", "=", "\"normal\"", ",", "axis_names", "=", "tuple", "(", "\"xyz\"", ")", ",", "title", "=", "\"3D normal distribution\"", ")" ]
A simple 3D histogram with normal distribution. Parameters ---------- size : Number of points
[ "A", "simple", "3D", "histogram", "with", "normal", "distribution", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/examples/__init__.py#L37-L47
train
janpipek/physt
physt/examples/__init__.py
fist
def fist() -> Histogram1D: """A simple histogram in the shape of a fist.""" import numpy as np from ..histogram1d import Histogram1D widths = [0, 1.2, 0.2, 1, 0.1, 1, 0.1, 0.9, 0.1, 0.8] edges = np.cumsum(widths) heights = np.asarray([4, 1, 7.5, 6, 7.6, 6, 7.5, 6, 7.2]) + 5 return Histogram1D(edges, heights, axis_name="Is this a fist?", title="Physt \"logo\"")
python
def fist() -> Histogram1D: """A simple histogram in the shape of a fist.""" import numpy as np from ..histogram1d import Histogram1D widths = [0, 1.2, 0.2, 1, 0.1, 1, 0.1, 0.9, 0.1, 0.8] edges = np.cumsum(widths) heights = np.asarray([4, 1, 7.5, 6, 7.6, 6, 7.5, 6, 7.2]) + 5 return Histogram1D(edges, heights, axis_name="Is this a fist?", title="Physt \"logo\"")
[ "def", "fist", "(", ")", "->", "Histogram1D", ":", "import", "numpy", "as", "np", "from", ".", ".", "histogram1d", "import", "Histogram1D", "widths", "=", "[", "0", ",", "1.2", ",", "0.2", ",", "1", ",", "0.1", ",", "1", ",", "0.1", ",", "0.9", ",", "0.1", ",", "0.8", "]", "edges", "=", "np", ".", "cumsum", "(", "widths", ")", "heights", "=", "np", ".", "asarray", "(", "[", "4", ",", "1", ",", "7.5", ",", "6", ",", "7.6", ",", "6", ",", "7.5", ",", "6", ",", "7.2", "]", ")", "+", "5", "return", "Histogram1D", "(", "edges", ",", "heights", ",", "axis_name", "=", "\"Is this a fist?\"", ",", "title", "=", "\"Physt \\\"logo\\\"\"", ")" ]
A simple histogram in the shape of a fist.
[ "A", "simple", "histogram", "in", "the", "shape", "of", "a", "fist", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/examples/__init__.py#L50-L57
train
janpipek/physt
physt/io/__init__.py
require_compatible_version
def require_compatible_version(compatible_version, word="File"): """Check that compatible version of input data is not too new.""" if isinstance(compatible_version, str): compatible_version = parse_version(compatible_version) elif not isinstance(compatible_version, Version): raise ValueError("Type of `compatible_version` not understood.") current_version = parse_version(CURRENT_VERSION) if current_version < compatible_version: raise VersionError("{0} written for version >= {1}, this is {2}.".format( word, str(compatible_version), CURRENT_VERSION ))
python
def require_compatible_version(compatible_version, word="File"): """Check that compatible version of input data is not too new.""" if isinstance(compatible_version, str): compatible_version = parse_version(compatible_version) elif not isinstance(compatible_version, Version): raise ValueError("Type of `compatible_version` not understood.") current_version = parse_version(CURRENT_VERSION) if current_version < compatible_version: raise VersionError("{0} written for version >= {1}, this is {2}.".format( word, str(compatible_version), CURRENT_VERSION ))
[ "def", "require_compatible_version", "(", "compatible_version", ",", "word", "=", "\"File\"", ")", ":", "if", "isinstance", "(", "compatible_version", ",", "str", ")", ":", "compatible_version", "=", "parse_version", "(", "compatible_version", ")", "elif", "not", "isinstance", "(", "compatible_version", ",", "Version", ")", ":", "raise", "ValueError", "(", "\"Type of `compatible_version` not understood.\"", ")", "current_version", "=", "parse_version", "(", "CURRENT_VERSION", ")", "if", "current_version", "<", "compatible_version", ":", "raise", "VersionError", "(", "\"{0} written for version >= {1}, this is {2}.\"", ".", "format", "(", "word", ",", "str", "(", "compatible_version", ")", ",", "CURRENT_VERSION", ")", ")" ]
Check that compatible version of input data is not too new.
[ "Check", "that", "compatible", "version", "of", "input", "data", "is", "not", "too", "new", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/io/__init__.py#L52-L63
train
janpipek/physt
physt/io/json.py
save_json
def save_json(histogram: Union[HistogramBase, HistogramCollection], path: Optional[str] = None, **kwargs) -> str: """Save histogram to JSON format. Parameters ---------- histogram : Any histogram path : If set, also writes to the path. Returns ------- json : The JSON representation of the histogram """ # TODO: Implement multiple histograms in one file? data = histogram.to_dict() data["physt_version"] = CURRENT_VERSION if isinstance(histogram, HistogramBase): data["physt_compatible"] = COMPATIBLE_VERSION elif isinstance(histogram, HistogramCollection): data["physt_compatible"] = COLLECTION_COMPATIBLE_VERSION else: raise TypeError("Cannot save unknown type: {0}".format(type(histogram))) text = json.dumps(data, **kwargs) if path: with open(path, "w", encoding="utf-8") as f: f.write(text) return text
python
def save_json(histogram: Union[HistogramBase, HistogramCollection], path: Optional[str] = None, **kwargs) -> str: """Save histogram to JSON format. Parameters ---------- histogram : Any histogram path : If set, also writes to the path. Returns ------- json : The JSON representation of the histogram """ # TODO: Implement multiple histograms in one file? data = histogram.to_dict() data["physt_version"] = CURRENT_VERSION if isinstance(histogram, HistogramBase): data["physt_compatible"] = COMPATIBLE_VERSION elif isinstance(histogram, HistogramCollection): data["physt_compatible"] = COLLECTION_COMPATIBLE_VERSION else: raise TypeError("Cannot save unknown type: {0}".format(type(histogram))) text = json.dumps(data, **kwargs) if path: with open(path, "w", encoding="utf-8") as f: f.write(text) return text
[ "def", "save_json", "(", "histogram", ":", "Union", "[", "HistogramBase", ",", "HistogramCollection", "]", ",", "path", ":", "Optional", "[", "str", "]", "=", "None", ",", "*", "*", "kwargs", ")", "->", "str", ":", "# TODO: Implement multiple histograms in one file?", "data", "=", "histogram", ".", "to_dict", "(", ")", "data", "[", "\"physt_version\"", "]", "=", "CURRENT_VERSION", "if", "isinstance", "(", "histogram", ",", "HistogramBase", ")", ":", "data", "[", "\"physt_compatible\"", "]", "=", "COMPATIBLE_VERSION", "elif", "isinstance", "(", "histogram", ",", "HistogramCollection", ")", ":", "data", "[", "\"physt_compatible\"", "]", "=", "COLLECTION_COMPATIBLE_VERSION", "else", ":", "raise", "TypeError", "(", "\"Cannot save unknown type: {0}\"", ".", "format", "(", "type", "(", "histogram", ")", ")", ")", "text", "=", "json", ".", "dumps", "(", "data", ",", "*", "*", "kwargs", ")", "if", "path", ":", "with", "open", "(", "path", ",", "\"w\"", ",", "encoding", "=", "\"utf-8\"", ")", "as", "f", ":", "f", ".", "write", "(", "text", ")", "return", "text" ]
Save histogram to JSON format. Parameters ---------- histogram : Any histogram path : If set, also writes to the path. Returns ------- json : The JSON representation of the histogram
[ "Save", "histogram", "to", "JSON", "format", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/io/json.py#L13-L40
train
janpipek/physt
physt/io/json.py
load_json
def load_json(path: str, encoding: str = "utf-8") -> HistogramBase: """Load histogram from a JSON file.""" with open(path, "r", encoding=encoding) as f: text = f.read() return parse_json(text)
python
def load_json(path: str, encoding: str = "utf-8") -> HistogramBase: """Load histogram from a JSON file.""" with open(path, "r", encoding=encoding) as f: text = f.read() return parse_json(text)
[ "def", "load_json", "(", "path", ":", "str", ",", "encoding", ":", "str", "=", "\"utf-8\"", ")", "->", "HistogramBase", ":", "with", "open", "(", "path", ",", "\"r\"", ",", "encoding", "=", "encoding", ")", "as", "f", ":", "text", "=", "f", ".", "read", "(", ")", "return", "parse_json", "(", "text", ")" ]
Load histogram from a JSON file.
[ "Load", "histogram", "from", "a", "JSON", "file", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/io/json.py#L43-L47
train
janpipek/physt
physt/io/json.py
parse_json
def parse_json(text: str, encoding: str = "utf-8") -> HistogramBase: """Create histogram from a JSON string.""" data = json.loads(text, encoding=encoding) return create_from_dict(data, format_name="JSON")
python
def parse_json(text: str, encoding: str = "utf-8") -> HistogramBase: """Create histogram from a JSON string.""" data = json.loads(text, encoding=encoding) return create_from_dict(data, format_name="JSON")
[ "def", "parse_json", "(", "text", ":", "str", ",", "encoding", ":", "str", "=", "\"utf-8\"", ")", "->", "HistogramBase", ":", "data", "=", "json", ".", "loads", "(", "text", ",", "encoding", "=", "encoding", ")", "return", "create_from_dict", "(", "data", ",", "format_name", "=", "\"JSON\"", ")" ]
Create histogram from a JSON string.
[ "Create", "histogram", "from", "a", "JSON", "string", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/io/json.py#L50-L53
train
janpipek/physt
physt/__init__.py
histogram
def histogram(data, bins=None, *args, **kwargs): """Facade function to create 1D histograms. This proceeds in three steps: 1) Based on magical parameter bins, construct bins for the histogram 2) Calculate frequencies for the bins 3) Construct the histogram object itself *Guiding principle:* parameters understood by numpy.histogram should be understood also by physt.histogram as well and should result in a Histogram1D object with (h.numpy_bins, h.frequencies) same as the numpy.histogram output. Additional functionality is a bonus. This function is also aliased as "h1". Parameters ---------- data : array_like, optional Container of all the values (tuple, list, np.ndarray, pd.Series) bins: int or sequence of scalars or callable or str, optional If iterable => the bins themselves If int => number of bins for default binning If callable => use binning method (+ args, kwargs) If string => use named binning method (+ args, kwargs) weights: array_like, optional (as numpy.histogram) keep_missed: Optional[bool] store statistics about how many values were lower than limits and how many higher than limits (default: True) dropna: bool whether to clear data from nan's before histogramming name: str name of the histogram axis_name: str name of the variable on x axis adaptive: bool whether we want the bins to be modifiable (useful for continuous filling of a priori unknown data) dtype: type customize underlying data type: default int64 (without weight) or float (with weights) Other numpy.histogram parameters are excluded, see the methods of the Histogram1D class itself. Returns ------- physt.histogram1d.Histogram1D See Also -------- numpy.histogram """ import numpy as np from .histogram1d import Histogram1D, calculate_frequencies from .binnings import calculate_bins adaptive = kwargs.pop("adaptive", False) dtype = kwargs.pop("dtype", None) if isinstance(data, tuple) and isinstance(data[0], str): # Works for groupby DataSeries return histogram(data[1], bins, *args, name=data[0], **kwargs) elif type(data).__name__ == "DataFrame": raise RuntimeError("Cannot create histogram from a pandas DataFrame. Use Series.") # Collect arguments (not to send them to binning algorithms) dropna = kwargs.pop("dropna", True) weights = kwargs.pop("weights", None) keep_missed = kwargs.pop("keep_missed", True) name = kwargs.pop("name", None) axis_name = kwargs.pop("axis_name", None) title = kwargs.pop("title", None) # Convert to array if data is not None: array = np.asarray(data) #.flatten() if dropna: array = array[~np.isnan(array)] else: array = None # Get binning binning = calculate_bins(array, bins, *args, check_nan=not dropna and array is not None, adaptive=adaptive, **kwargs) # bins = binning.bins # Get frequencies if array is not None: (frequencies, errors2, underflow, overflow, stats) =\ calculate_frequencies(array, binning=binning, weights=weights, dtype=dtype) else: frequencies = None errors2 = None underflow = 0 overflow = 0 stats = {"sum": 0.0, "sum2": 0.0} # Construct the object if not keep_missed: underflow = 0 overflow = 0 if not axis_name: if hasattr(data, "name"): axis_name = data.name elif hasattr(data, "fields") and len(data.fields) == 1 and isinstance(data.fields[0], str): # Case of dask fields (examples) axis_name = data.fields[0] return Histogram1D(binning=binning, frequencies=frequencies, errors2=errors2, overflow=overflow, underflow=underflow, stats=stats, dtype=dtype, keep_missed=keep_missed, name=name, axis_name=axis_name, title=title)
python
def histogram(data, bins=None, *args, **kwargs): """Facade function to create 1D histograms. This proceeds in three steps: 1) Based on magical parameter bins, construct bins for the histogram 2) Calculate frequencies for the bins 3) Construct the histogram object itself *Guiding principle:* parameters understood by numpy.histogram should be understood also by physt.histogram as well and should result in a Histogram1D object with (h.numpy_bins, h.frequencies) same as the numpy.histogram output. Additional functionality is a bonus. This function is also aliased as "h1". Parameters ---------- data : array_like, optional Container of all the values (tuple, list, np.ndarray, pd.Series) bins: int or sequence of scalars or callable or str, optional If iterable => the bins themselves If int => number of bins for default binning If callable => use binning method (+ args, kwargs) If string => use named binning method (+ args, kwargs) weights: array_like, optional (as numpy.histogram) keep_missed: Optional[bool] store statistics about how many values were lower than limits and how many higher than limits (default: True) dropna: bool whether to clear data from nan's before histogramming name: str name of the histogram axis_name: str name of the variable on x axis adaptive: bool whether we want the bins to be modifiable (useful for continuous filling of a priori unknown data) dtype: type customize underlying data type: default int64 (without weight) or float (with weights) Other numpy.histogram parameters are excluded, see the methods of the Histogram1D class itself. Returns ------- physt.histogram1d.Histogram1D See Also -------- numpy.histogram """ import numpy as np from .histogram1d import Histogram1D, calculate_frequencies from .binnings import calculate_bins adaptive = kwargs.pop("adaptive", False) dtype = kwargs.pop("dtype", None) if isinstance(data, tuple) and isinstance(data[0], str): # Works for groupby DataSeries return histogram(data[1], bins, *args, name=data[0], **kwargs) elif type(data).__name__ == "DataFrame": raise RuntimeError("Cannot create histogram from a pandas DataFrame. Use Series.") # Collect arguments (not to send them to binning algorithms) dropna = kwargs.pop("dropna", True) weights = kwargs.pop("weights", None) keep_missed = kwargs.pop("keep_missed", True) name = kwargs.pop("name", None) axis_name = kwargs.pop("axis_name", None) title = kwargs.pop("title", None) # Convert to array if data is not None: array = np.asarray(data) #.flatten() if dropna: array = array[~np.isnan(array)] else: array = None # Get binning binning = calculate_bins(array, bins, *args, check_nan=not dropna and array is not None, adaptive=adaptive, **kwargs) # bins = binning.bins # Get frequencies if array is not None: (frequencies, errors2, underflow, overflow, stats) =\ calculate_frequencies(array, binning=binning, weights=weights, dtype=dtype) else: frequencies = None errors2 = None underflow = 0 overflow = 0 stats = {"sum": 0.0, "sum2": 0.0} # Construct the object if not keep_missed: underflow = 0 overflow = 0 if not axis_name: if hasattr(data, "name"): axis_name = data.name elif hasattr(data, "fields") and len(data.fields) == 1 and isinstance(data.fields[0], str): # Case of dask fields (examples) axis_name = data.fields[0] return Histogram1D(binning=binning, frequencies=frequencies, errors2=errors2, overflow=overflow, underflow=underflow, stats=stats, dtype=dtype, keep_missed=keep_missed, name=name, axis_name=axis_name, title=title)
[ "def", "histogram", "(", "data", ",", "bins", "=", "None", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "import", "numpy", "as", "np", "from", ".", "histogram1d", "import", "Histogram1D", ",", "calculate_frequencies", "from", ".", "binnings", "import", "calculate_bins", "adaptive", "=", "kwargs", ".", "pop", "(", "\"adaptive\"", ",", "False", ")", "dtype", "=", "kwargs", ".", "pop", "(", "\"dtype\"", ",", "None", ")", "if", "isinstance", "(", "data", ",", "tuple", ")", "and", "isinstance", "(", "data", "[", "0", "]", ",", "str", ")", ":", "# Works for groupby DataSeries", "return", "histogram", "(", "data", "[", "1", "]", ",", "bins", ",", "*", "args", ",", "name", "=", "data", "[", "0", "]", ",", "*", "*", "kwargs", ")", "elif", "type", "(", "data", ")", ".", "__name__", "==", "\"DataFrame\"", ":", "raise", "RuntimeError", "(", "\"Cannot create histogram from a pandas DataFrame. Use Series.\"", ")", "# Collect arguments (not to send them to binning algorithms)", "dropna", "=", "kwargs", ".", "pop", "(", "\"dropna\"", ",", "True", ")", "weights", "=", "kwargs", ".", "pop", "(", "\"weights\"", ",", "None", ")", "keep_missed", "=", "kwargs", ".", "pop", "(", "\"keep_missed\"", ",", "True", ")", "name", "=", "kwargs", ".", "pop", "(", "\"name\"", ",", "None", ")", "axis_name", "=", "kwargs", ".", "pop", "(", "\"axis_name\"", ",", "None", ")", "title", "=", "kwargs", ".", "pop", "(", "\"title\"", ",", "None", ")", "# Convert to array", "if", "data", "is", "not", "None", ":", "array", "=", "np", ".", "asarray", "(", "data", ")", "#.flatten()", "if", "dropna", ":", "array", "=", "array", "[", "~", "np", ".", "isnan", "(", "array", ")", "]", "else", ":", "array", "=", "None", "# Get binning", "binning", "=", "calculate_bins", "(", "array", ",", "bins", ",", "*", "args", ",", "check_nan", "=", "not", "dropna", "and", "array", "is", "not", "None", ",", "adaptive", "=", "adaptive", ",", "*", "*", "kwargs", ")", "# bins = binning.bins", "# Get frequencies", "if", "array", "is", "not", "None", ":", "(", "frequencies", ",", "errors2", ",", "underflow", ",", "overflow", ",", "stats", ")", "=", "calculate_frequencies", "(", "array", ",", "binning", "=", "binning", ",", "weights", "=", "weights", ",", "dtype", "=", "dtype", ")", "else", ":", "frequencies", "=", "None", "errors2", "=", "None", "underflow", "=", "0", "overflow", "=", "0", "stats", "=", "{", "\"sum\"", ":", "0.0", ",", "\"sum2\"", ":", "0.0", "}", "# Construct the object", "if", "not", "keep_missed", ":", "underflow", "=", "0", "overflow", "=", "0", "if", "not", "axis_name", ":", "if", "hasattr", "(", "data", ",", "\"name\"", ")", ":", "axis_name", "=", "data", ".", "name", "elif", "hasattr", "(", "data", ",", "\"fields\"", ")", "and", "len", "(", "data", ".", "fields", ")", "==", "1", "and", "isinstance", "(", "data", ".", "fields", "[", "0", "]", ",", "str", ")", ":", "# Case of dask fields (examples)", "axis_name", "=", "data", ".", "fields", "[", "0", "]", "return", "Histogram1D", "(", "binning", "=", "binning", ",", "frequencies", "=", "frequencies", ",", "errors2", "=", "errors2", ",", "overflow", "=", "overflow", ",", "underflow", "=", "underflow", ",", "stats", "=", "stats", ",", "dtype", "=", "dtype", ",", "keep_missed", "=", "keep_missed", ",", "name", "=", "name", ",", "axis_name", "=", "axis_name", ",", "title", "=", "title", ")" ]
Facade function to create 1D histograms. This proceeds in three steps: 1) Based on magical parameter bins, construct bins for the histogram 2) Calculate frequencies for the bins 3) Construct the histogram object itself *Guiding principle:* parameters understood by numpy.histogram should be understood also by physt.histogram as well and should result in a Histogram1D object with (h.numpy_bins, h.frequencies) same as the numpy.histogram output. Additional functionality is a bonus. This function is also aliased as "h1". Parameters ---------- data : array_like, optional Container of all the values (tuple, list, np.ndarray, pd.Series) bins: int or sequence of scalars or callable or str, optional If iterable => the bins themselves If int => number of bins for default binning If callable => use binning method (+ args, kwargs) If string => use named binning method (+ args, kwargs) weights: array_like, optional (as numpy.histogram) keep_missed: Optional[bool] store statistics about how many values were lower than limits and how many higher than limits (default: True) dropna: bool whether to clear data from nan's before histogramming name: str name of the histogram axis_name: str name of the variable on x axis adaptive: bool whether we want the bins to be modifiable (useful for continuous filling of a priori unknown data) dtype: type customize underlying data type: default int64 (without weight) or float (with weights) Other numpy.histogram parameters are excluded, see the methods of the Histogram1D class itself. Returns ------- physt.histogram1d.Histogram1D See Also -------- numpy.histogram
[ "Facade", "function", "to", "create", "1D", "histograms", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/__init__.py#L16-L127
train
janpipek/physt
physt/__init__.py
histogram2d
def histogram2d(data1, data2, bins=10, *args, **kwargs): """Facade function to create 2D histograms. For implementation and parameters, see histogramdd. This function is also aliased as "h2". Returns ------- physt.histogram_nd.Histogram2D See Also -------- numpy.histogram2d histogramdd """ import numpy as np # guess axis names if "axis_names" not in kwargs: if hasattr(data1, "name") and hasattr(data2, "name"): kwargs["axis_names"] = [data1.name, data2.name] if data1 is not None and data2 is not None: data1 = np.asarray(data1) data2 = np.asarray(data2) data = np.concatenate([data1[:, np.newaxis], data2[:, np.newaxis]], axis=1) else: data = None return histogramdd(data, bins, *args, dim=2, **kwargs)
python
def histogram2d(data1, data2, bins=10, *args, **kwargs): """Facade function to create 2D histograms. For implementation and parameters, see histogramdd. This function is also aliased as "h2". Returns ------- physt.histogram_nd.Histogram2D See Also -------- numpy.histogram2d histogramdd """ import numpy as np # guess axis names if "axis_names" not in kwargs: if hasattr(data1, "name") and hasattr(data2, "name"): kwargs["axis_names"] = [data1.name, data2.name] if data1 is not None and data2 is not None: data1 = np.asarray(data1) data2 = np.asarray(data2) data = np.concatenate([data1[:, np.newaxis], data2[:, np.newaxis]], axis=1) else: data = None return histogramdd(data, bins, *args, dim=2, **kwargs)
[ "def", "histogram2d", "(", "data1", ",", "data2", ",", "bins", "=", "10", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "import", "numpy", "as", "np", "# guess axis names", "if", "\"axis_names\"", "not", "in", "kwargs", ":", "if", "hasattr", "(", "data1", ",", "\"name\"", ")", "and", "hasattr", "(", "data2", ",", "\"name\"", ")", ":", "kwargs", "[", "\"axis_names\"", "]", "=", "[", "data1", ".", "name", ",", "data2", ".", "name", "]", "if", "data1", "is", "not", "None", "and", "data2", "is", "not", "None", ":", "data1", "=", "np", ".", "asarray", "(", "data1", ")", "data2", "=", "np", ".", "asarray", "(", "data2", ")", "data", "=", "np", ".", "concatenate", "(", "[", "data1", "[", ":", ",", "np", ".", "newaxis", "]", ",", "data2", "[", ":", ",", "np", ".", "newaxis", "]", "]", ",", "axis", "=", "1", ")", "else", ":", "data", "=", "None", "return", "histogramdd", "(", "data", ",", "bins", ",", "*", "args", ",", "dim", "=", "2", ",", "*", "*", "kwargs", ")" ]
Facade function to create 2D histograms. For implementation and parameters, see histogramdd. This function is also aliased as "h2". Returns ------- physt.histogram_nd.Histogram2D See Also -------- numpy.histogram2d histogramdd
[ "Facade", "function", "to", "create", "2D", "histograms", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/__init__.py#L130-L159
train
janpipek/physt
physt/__init__.py
histogramdd
def histogramdd(data, bins=10, *args, **kwargs): """Facade function to create n-dimensional histograms. 3D variant of this function is also aliased as "h3". Parameters ---------- data : array_like Container of all the values bins: Any weights: array_like, optional (as numpy.histogram) dropna: bool whether to clear data from nan's before histogramming name: str name of the histogram axis_names: Iterable[str] names of the variable on x axis adaptive: whether the bins should be updated when new non-fitting value are filled dtype: Optional[type] Underlying type for the histogram. If weights are specified, default is float. Otherwise int64 dim: int Dimension - necessary if you are creating an empty adaptive histogram Returns ------- physt.histogram_nd.HistogramND See Also -------- numpy.histogramdd """ import numpy as np from . import histogram_nd from .binnings import calculate_bins_nd adaptive = kwargs.pop("adaptive", False) dropna = kwargs.pop("dropna", True) name = kwargs.pop("name", None) title = kwargs.pop("title", None) dim = kwargs.pop("dim", None) axis_names = kwargs.pop("axis_names", None) # pandas - guess axis names if not "axis_names" in kwargs: if hasattr(data, "columns"): try: kwargs["axis_names"] = tuple(data.columns) except: pass # Perhaps columns has different meaning here. # Prepare and check data # Convert to array if data is not None: data = np.asarray(data) if data.ndim != 2: raise RuntimeError("Array must have shape (n, d)") if dim is not None and dim != data.shape[1]: raise RuntimeError("Dimension mismatch: {0}!={1}".format(dim, data.shape[1])) _, dim = data.shape if dropna: data = data[~np.isnan(data).any(axis=1)] check_nan = not dropna else: if dim is None: raise RuntimeError("You have to specify either data or its dimension.") data = np.zeros((0, dim)) check_nan = False # Prepare bins bin_schemas = calculate_bins_nd(data, bins, *args, check_nan=check_nan, adaptive=adaptive, **kwargs) #bins = [binning.bins for binning in bin_schemas] # Prepare remaining data weights = kwargs.pop("weights", None) frequencies, errors2, missed = histogram_nd.calculate_frequencies(data, ndim=dim, binnings=bin_schemas, weights=weights) kwargs["name"] = name if title: kwargs["title"] = title if axis_names: kwargs["axis_names"] = axis_names if dim == 2: return histogram_nd.Histogram2D(binnings=bin_schemas, frequencies=frequencies, errors2=errors2, **kwargs) else: return histogram_nd.HistogramND(dimension=dim, binnings=bin_schemas, frequencies=frequencies, errors2=errors2, **kwargs)
python
def histogramdd(data, bins=10, *args, **kwargs): """Facade function to create n-dimensional histograms. 3D variant of this function is also aliased as "h3". Parameters ---------- data : array_like Container of all the values bins: Any weights: array_like, optional (as numpy.histogram) dropna: bool whether to clear data from nan's before histogramming name: str name of the histogram axis_names: Iterable[str] names of the variable on x axis adaptive: whether the bins should be updated when new non-fitting value are filled dtype: Optional[type] Underlying type for the histogram. If weights are specified, default is float. Otherwise int64 dim: int Dimension - necessary if you are creating an empty adaptive histogram Returns ------- physt.histogram_nd.HistogramND See Also -------- numpy.histogramdd """ import numpy as np from . import histogram_nd from .binnings import calculate_bins_nd adaptive = kwargs.pop("adaptive", False) dropna = kwargs.pop("dropna", True) name = kwargs.pop("name", None) title = kwargs.pop("title", None) dim = kwargs.pop("dim", None) axis_names = kwargs.pop("axis_names", None) # pandas - guess axis names if not "axis_names" in kwargs: if hasattr(data, "columns"): try: kwargs["axis_names"] = tuple(data.columns) except: pass # Perhaps columns has different meaning here. # Prepare and check data # Convert to array if data is not None: data = np.asarray(data) if data.ndim != 2: raise RuntimeError("Array must have shape (n, d)") if dim is not None and dim != data.shape[1]: raise RuntimeError("Dimension mismatch: {0}!={1}".format(dim, data.shape[1])) _, dim = data.shape if dropna: data = data[~np.isnan(data).any(axis=1)] check_nan = not dropna else: if dim is None: raise RuntimeError("You have to specify either data or its dimension.") data = np.zeros((0, dim)) check_nan = False # Prepare bins bin_schemas = calculate_bins_nd(data, bins, *args, check_nan=check_nan, adaptive=adaptive, **kwargs) #bins = [binning.bins for binning in bin_schemas] # Prepare remaining data weights = kwargs.pop("weights", None) frequencies, errors2, missed = histogram_nd.calculate_frequencies(data, ndim=dim, binnings=bin_schemas, weights=weights) kwargs["name"] = name if title: kwargs["title"] = title if axis_names: kwargs["axis_names"] = axis_names if dim == 2: return histogram_nd.Histogram2D(binnings=bin_schemas, frequencies=frequencies, errors2=errors2, **kwargs) else: return histogram_nd.HistogramND(dimension=dim, binnings=bin_schemas, frequencies=frequencies, errors2=errors2, **kwargs)
[ "def", "histogramdd", "(", "data", ",", "bins", "=", "10", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "import", "numpy", "as", "np", "from", ".", "import", "histogram_nd", "from", ".", "binnings", "import", "calculate_bins_nd", "adaptive", "=", "kwargs", ".", "pop", "(", "\"adaptive\"", ",", "False", ")", "dropna", "=", "kwargs", ".", "pop", "(", "\"dropna\"", ",", "True", ")", "name", "=", "kwargs", ".", "pop", "(", "\"name\"", ",", "None", ")", "title", "=", "kwargs", ".", "pop", "(", "\"title\"", ",", "None", ")", "dim", "=", "kwargs", ".", "pop", "(", "\"dim\"", ",", "None", ")", "axis_names", "=", "kwargs", ".", "pop", "(", "\"axis_names\"", ",", "None", ")", "# pandas - guess axis names", "if", "not", "\"axis_names\"", "in", "kwargs", ":", "if", "hasattr", "(", "data", ",", "\"columns\"", ")", ":", "try", ":", "kwargs", "[", "\"axis_names\"", "]", "=", "tuple", "(", "data", ".", "columns", ")", "except", ":", "pass", "# Perhaps columns has different meaning here.", "# Prepare and check data", "# Convert to array", "if", "data", "is", "not", "None", ":", "data", "=", "np", ".", "asarray", "(", "data", ")", "if", "data", ".", "ndim", "!=", "2", ":", "raise", "RuntimeError", "(", "\"Array must have shape (n, d)\"", ")", "if", "dim", "is", "not", "None", "and", "dim", "!=", "data", ".", "shape", "[", "1", "]", ":", "raise", "RuntimeError", "(", "\"Dimension mismatch: {0}!={1}\"", ".", "format", "(", "dim", ",", "data", ".", "shape", "[", "1", "]", ")", ")", "_", ",", "dim", "=", "data", ".", "shape", "if", "dropna", ":", "data", "=", "data", "[", "~", "np", ".", "isnan", "(", "data", ")", ".", "any", "(", "axis", "=", "1", ")", "]", "check_nan", "=", "not", "dropna", "else", ":", "if", "dim", "is", "None", ":", "raise", "RuntimeError", "(", "\"You have to specify either data or its dimension.\"", ")", "data", "=", "np", ".", "zeros", "(", "(", "0", ",", "dim", ")", ")", "check_nan", "=", "False", "# Prepare bins", "bin_schemas", "=", "calculate_bins_nd", "(", "data", ",", "bins", ",", "*", "args", ",", "check_nan", "=", "check_nan", ",", "adaptive", "=", "adaptive", ",", "*", "*", "kwargs", ")", "#bins = [binning.bins for binning in bin_schemas]", "# Prepare remaining data", "weights", "=", "kwargs", ".", "pop", "(", "\"weights\"", ",", "None", ")", "frequencies", ",", "errors2", ",", "missed", "=", "histogram_nd", ".", "calculate_frequencies", "(", "data", ",", "ndim", "=", "dim", ",", "binnings", "=", "bin_schemas", ",", "weights", "=", "weights", ")", "kwargs", "[", "\"name\"", "]", "=", "name", "if", "title", ":", "kwargs", "[", "\"title\"", "]", "=", "title", "if", "axis_names", ":", "kwargs", "[", "\"axis_names\"", "]", "=", "axis_names", "if", "dim", "==", "2", ":", "return", "histogram_nd", ".", "Histogram2D", "(", "binnings", "=", "bin_schemas", ",", "frequencies", "=", "frequencies", ",", "errors2", "=", "errors2", ",", "*", "*", "kwargs", ")", "else", ":", "return", "histogram_nd", ".", "HistogramND", "(", "dimension", "=", "dim", ",", "binnings", "=", "bin_schemas", ",", "frequencies", "=", "frequencies", ",", "errors2", "=", "errors2", ",", "*", "*", "kwargs", ")" ]
Facade function to create n-dimensional histograms. 3D variant of this function is also aliased as "h3". Parameters ---------- data : array_like Container of all the values bins: Any weights: array_like, optional (as numpy.histogram) dropna: bool whether to clear data from nan's before histogramming name: str name of the histogram axis_names: Iterable[str] names of the variable on x axis adaptive: whether the bins should be updated when new non-fitting value are filled dtype: Optional[type] Underlying type for the histogram. If weights are specified, default is float. Otherwise int64 dim: int Dimension - necessary if you are creating an empty adaptive histogram Returns ------- physt.histogram_nd.HistogramND See Also -------- numpy.histogramdd
[ "Facade", "function", "to", "create", "n", "-", "dimensional", "histograms", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/__init__.py#L162-L254
train
janpipek/physt
physt/__init__.py
h3
def h3(data, *args, **kwargs): """Facade function to create 3D histograms. Parameters ---------- data : array_like or list[array_like] or tuple[array_like] Can be a single array (with three columns) or three different arrays (for each component) Returns ------- physt.histogram_nd.HistogramND """ import numpy as np if data is not None and isinstance(data, (list, tuple)) and not np.isscalar(data[0]): if "axis_names" not in kwargs: kwargs["axis_names"] = [(column.name if hasattr(column, "name") else None) for column in data] data = np.concatenate([item[:, np.newaxis] for item in data], axis=1) else: kwargs["dim"] = 3 return histogramdd(data, *args, **kwargs)
python
def h3(data, *args, **kwargs): """Facade function to create 3D histograms. Parameters ---------- data : array_like or list[array_like] or tuple[array_like] Can be a single array (with three columns) or three different arrays (for each component) Returns ------- physt.histogram_nd.HistogramND """ import numpy as np if data is not None and isinstance(data, (list, tuple)) and not np.isscalar(data[0]): if "axis_names" not in kwargs: kwargs["axis_names"] = [(column.name if hasattr(column, "name") else None) for column in data] data = np.concatenate([item[:, np.newaxis] for item in data], axis=1) else: kwargs["dim"] = 3 return histogramdd(data, *args, **kwargs)
[ "def", "h3", "(", "data", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "import", "numpy", "as", "np", "if", "data", "is", "not", "None", "and", "isinstance", "(", "data", ",", "(", "list", ",", "tuple", ")", ")", "and", "not", "np", ".", "isscalar", "(", "data", "[", "0", "]", ")", ":", "if", "\"axis_names\"", "not", "in", "kwargs", ":", "kwargs", "[", "\"axis_names\"", "]", "=", "[", "(", "column", ".", "name", "if", "hasattr", "(", "column", ",", "\"name\"", ")", "else", "None", ")", "for", "column", "in", "data", "]", "data", "=", "np", ".", "concatenate", "(", "[", "item", "[", ":", ",", "np", ".", "newaxis", "]", "for", "item", "in", "data", "]", ",", "axis", "=", "1", ")", "else", ":", "kwargs", "[", "\"dim\"", "]", "=", "3", "return", "histogramdd", "(", "data", ",", "*", "args", ",", "*", "*", "kwargs", ")" ]
Facade function to create 3D histograms. Parameters ---------- data : array_like or list[array_like] or tuple[array_like] Can be a single array (with three columns) or three different arrays (for each component) Returns ------- physt.histogram_nd.HistogramND
[ "Facade", "function", "to", "create", "3D", "histograms", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/__init__.py#L263-L284
train
janpipek/physt
physt/__init__.py
collection
def collection(data, bins=10, *args, **kwargs): """Create histogram collection with shared binnning.""" from physt.histogram_collection import HistogramCollection if hasattr(data, "columns"): data = {column: data[column] for column in data.columns} return HistogramCollection.multi_h1(data, bins, **kwargs)
python
def collection(data, bins=10, *args, **kwargs): """Create histogram collection with shared binnning.""" from physt.histogram_collection import HistogramCollection if hasattr(data, "columns"): data = {column: data[column] for column in data.columns} return HistogramCollection.multi_h1(data, bins, **kwargs)
[ "def", "collection", "(", "data", ",", "bins", "=", "10", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "from", "physt", ".", "histogram_collection", "import", "HistogramCollection", "if", "hasattr", "(", "data", ",", "\"columns\"", ")", ":", "data", "=", "{", "column", ":", "data", "[", "column", "]", "for", "column", "in", "data", ".", "columns", "}", "return", "HistogramCollection", ".", "multi_h1", "(", "data", ",", "bins", ",", "*", "*", "kwargs", ")" ]
Create histogram collection with shared binnning.
[ "Create", "histogram", "collection", "with", "shared", "binnning", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/__init__.py#L287-L292
train
janpipek/physt
physt/io/root.py
write_root
def write_root(histogram: HistogramBase, hfile: uproot.write.TFile.TFileUpdate, name: str): """Write histogram to an open ROOT file. Parameters ---------- histogram : Any histogram hfile : Updateable uproot file object name : The name of the histogram inside the file """ hfile[name] = histogram
python
def write_root(histogram: HistogramBase, hfile: uproot.write.TFile.TFileUpdate, name: str): """Write histogram to an open ROOT file. Parameters ---------- histogram : Any histogram hfile : Updateable uproot file object name : The name of the histogram inside the file """ hfile[name] = histogram
[ "def", "write_root", "(", "histogram", ":", "HistogramBase", ",", "hfile", ":", "uproot", ".", "write", ".", "TFile", ".", "TFileUpdate", ",", "name", ":", "str", ")", ":", "hfile", "[", "name", "]", "=", "histogram" ]
Write histogram to an open ROOT file. Parameters ---------- histogram : Any histogram hfile : Updateable uproot file object name : The name of the histogram inside the file
[ "Write", "histogram", "to", "an", "open", "ROOT", "file", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/io/root.py#L16-L25
train
janpipek/physt
physt/io/protobuf/__init__.py
write
def write(histogram): """Convert a histogram to a protobuf message. Note: Currently, all binnings are converted to static form. When you load the histogram again, you will lose any related behaviour. Note: A histogram collection is also planned. Parameters ---------- histogram : HistogramBase | list | dict Any histogram Returns ------- message : google.protobuf.message.Message A protocol buffer message """ histogram_dict = histogram.to_dict() message = Histogram() for field in SIMPLE_CONVERSION_FIELDS: setattr(message, field, histogram_dict[field]) # Main numerical data - TODO: Optimize! message.frequencies.extend(histogram.frequencies.flatten()) message.errors2.extend(histogram.errors2.flatten()) # Binnings for binning in histogram._binnings: binning_message = message.binnings.add() for edges in binning.bins: limits = binning_message.bins.add() limits.lower = edges[0] limits.upper = edges[1] # All meta data meta_message = message.meta # user_defined = {} # for key, value in histogram.meta_data.items(): # if key not in PREDEFINED: # user_defined[str(key)] = str(value) for key in SIMPLE_META_KEYS: if key in histogram.meta_data: setattr(meta_message, key, str(histogram.meta_data[key])) if "axis_names" in histogram.meta_data: meta_message.axis_names.extend(histogram.meta_data["axis_names"]) message.physt_version = CURRENT_VERSION message.physt_compatible = COMPATIBLE_VERSION return message
python
def write(histogram): """Convert a histogram to a protobuf message. Note: Currently, all binnings are converted to static form. When you load the histogram again, you will lose any related behaviour. Note: A histogram collection is also planned. Parameters ---------- histogram : HistogramBase | list | dict Any histogram Returns ------- message : google.protobuf.message.Message A protocol buffer message """ histogram_dict = histogram.to_dict() message = Histogram() for field in SIMPLE_CONVERSION_FIELDS: setattr(message, field, histogram_dict[field]) # Main numerical data - TODO: Optimize! message.frequencies.extend(histogram.frequencies.flatten()) message.errors2.extend(histogram.errors2.flatten()) # Binnings for binning in histogram._binnings: binning_message = message.binnings.add() for edges in binning.bins: limits = binning_message.bins.add() limits.lower = edges[0] limits.upper = edges[1] # All meta data meta_message = message.meta # user_defined = {} # for key, value in histogram.meta_data.items(): # if key not in PREDEFINED: # user_defined[str(key)] = str(value) for key in SIMPLE_META_KEYS: if key in histogram.meta_data: setattr(meta_message, key, str(histogram.meta_data[key])) if "axis_names" in histogram.meta_data: meta_message.axis_names.extend(histogram.meta_data["axis_names"]) message.physt_version = CURRENT_VERSION message.physt_compatible = COMPATIBLE_VERSION return message
[ "def", "write", "(", "histogram", ")", ":", "histogram_dict", "=", "histogram", ".", "to_dict", "(", ")", "message", "=", "Histogram", "(", ")", "for", "field", "in", "SIMPLE_CONVERSION_FIELDS", ":", "setattr", "(", "message", ",", "field", ",", "histogram_dict", "[", "field", "]", ")", "# Main numerical data - TODO: Optimize!", "message", ".", "frequencies", ".", "extend", "(", "histogram", ".", "frequencies", ".", "flatten", "(", ")", ")", "message", ".", "errors2", ".", "extend", "(", "histogram", ".", "errors2", ".", "flatten", "(", ")", ")", "# Binnings", "for", "binning", "in", "histogram", ".", "_binnings", ":", "binning_message", "=", "message", ".", "binnings", ".", "add", "(", ")", "for", "edges", "in", "binning", ".", "bins", ":", "limits", "=", "binning_message", ".", "bins", ".", "add", "(", ")", "limits", ".", "lower", "=", "edges", "[", "0", "]", "limits", ".", "upper", "=", "edges", "[", "1", "]", "# All meta data", "meta_message", "=", "message", ".", "meta", "# user_defined = {}", "# for key, value in histogram.meta_data.items():", "# if key not in PREDEFINED:", "# user_defined[str(key)] = str(value)", "for", "key", "in", "SIMPLE_META_KEYS", ":", "if", "key", "in", "histogram", ".", "meta_data", ":", "setattr", "(", "meta_message", ",", "key", ",", "str", "(", "histogram", ".", "meta_data", "[", "key", "]", ")", ")", "if", "\"axis_names\"", "in", "histogram", ".", "meta_data", ":", "meta_message", ".", "axis_names", ".", "extend", "(", "histogram", ".", "meta_data", "[", "\"axis_names\"", "]", ")", "message", ".", "physt_version", "=", "CURRENT_VERSION", "message", ".", "physt_compatible", "=", "COMPATIBLE_VERSION", "return", "message" ]
Convert a histogram to a protobuf message. Note: Currently, all binnings are converted to static form. When you load the histogram again, you will lose any related behaviour. Note: A histogram collection is also planned. Parameters ---------- histogram : HistogramBase | list | dict Any histogram Returns ------- message : google.protobuf.message.Message A protocol buffer message
[ "Convert", "a", "histogram", "to", "a", "protobuf", "message", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/io/protobuf/__init__.py#L24-L76
train
janpipek/physt
physt/io/protobuf/__init__.py
read
def read(message): """Convert a parsed protobuf message into a histogram.""" require_compatible_version(message.physt_compatible) # Currently the only implementation a_dict = _dict_from_v0342(message) return create_from_dict(a_dict, "Message")
python
def read(message): """Convert a parsed protobuf message into a histogram.""" require_compatible_version(message.physt_compatible) # Currently the only implementation a_dict = _dict_from_v0342(message) return create_from_dict(a_dict, "Message")
[ "def", "read", "(", "message", ")", ":", "require_compatible_version", "(", "message", ".", "physt_compatible", ")", "# Currently the only implementation", "a_dict", "=", "_dict_from_v0342", "(", "message", ")", "return", "create_from_dict", "(", "a_dict", ",", "\"Message\"", ")" ]
Convert a parsed protobuf message into a histogram.
[ "Convert", "a", "parsed", "protobuf", "message", "into", "a", "histogram", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/io/protobuf/__init__.py#L79-L85
train
janpipek/physt
physt/bin_utils.py
make_bin_array
def make_bin_array(bins) -> np.ndarray: """Turn bin data into array understood by HistogramXX classes. Parameters ---------- bins: array_like Array of edges or array of edge tuples Examples -------- >>> make_bin_array([0, 1, 2]) array([[0, 1], [1, 2]]) >>> make_bin_array([[0, 1], [2, 3]]) array([[0, 1], [2, 3]]) """ bins = np.asarray(bins) if bins.ndim == 1: # if bins.shape[0] == 0: # raise RuntimeError("Needs at least one bin") return np.hstack((bins[:-1, np.newaxis], bins[1:, np.newaxis])) elif bins.ndim == 2: if bins.shape[1] != 2: raise RuntimeError("Binning schema with ndim==2 must have 2 columns") # if bins.shape[0] == 0: # raise RuntimeError("Needs at least one bin") return bins # Already correct, just pass else: raise RuntimeError("Binning schema must have ndim==1 or ndim==2")
python
def make_bin_array(bins) -> np.ndarray: """Turn bin data into array understood by HistogramXX classes. Parameters ---------- bins: array_like Array of edges or array of edge tuples Examples -------- >>> make_bin_array([0, 1, 2]) array([[0, 1], [1, 2]]) >>> make_bin_array([[0, 1], [2, 3]]) array([[0, 1], [2, 3]]) """ bins = np.asarray(bins) if bins.ndim == 1: # if bins.shape[0] == 0: # raise RuntimeError("Needs at least one bin") return np.hstack((bins[:-1, np.newaxis], bins[1:, np.newaxis])) elif bins.ndim == 2: if bins.shape[1] != 2: raise RuntimeError("Binning schema with ndim==2 must have 2 columns") # if bins.shape[0] == 0: # raise RuntimeError("Needs at least one bin") return bins # Already correct, just pass else: raise RuntimeError("Binning schema must have ndim==1 or ndim==2")
[ "def", "make_bin_array", "(", "bins", ")", "->", "np", ".", "ndarray", ":", "bins", "=", "np", ".", "asarray", "(", "bins", ")", "if", "bins", ".", "ndim", "==", "1", ":", "# if bins.shape[0] == 0:", "# raise RuntimeError(\"Needs at least one bin\")", "return", "np", ".", "hstack", "(", "(", "bins", "[", ":", "-", "1", ",", "np", ".", "newaxis", "]", ",", "bins", "[", "1", ":", ",", "np", ".", "newaxis", "]", ")", ")", "elif", "bins", ".", "ndim", "==", "2", ":", "if", "bins", ".", "shape", "[", "1", "]", "!=", "2", ":", "raise", "RuntimeError", "(", "\"Binning schema with ndim==2 must have 2 columns\"", ")", "# if bins.shape[0] == 0:", "# raise RuntimeError(\"Needs at least one bin\")", "return", "bins", "# Already correct, just pass", "else", ":", "raise", "RuntimeError", "(", "\"Binning schema must have ndim==1 or ndim==2\"", ")" ]
Turn bin data into array understood by HistogramXX classes. Parameters ---------- bins: array_like Array of edges or array of edge tuples Examples -------- >>> make_bin_array([0, 1, 2]) array([[0, 1], [1, 2]]) >>> make_bin_array([[0, 1], [2, 3]]) array([[0, 1], [2, 3]])
[ "Turn", "bin", "data", "into", "array", "understood", "by", "HistogramXX", "classes", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/bin_utils.py#L7-L36
train
janpipek/physt
physt/bin_utils.py
to_numpy_bins
def to_numpy_bins(bins) -> np.ndarray: """Convert physt bin format to numpy edges. Parameters ---------- bins: array_like 1-D (n) or 2-D (n, 2) array of edges Returns ------- edges: all edges """ bins = np.asarray(bins) if bins.ndim == 1: # Already in the proper format return bins if not is_consecutive(bins): raise RuntimeError("Cannot create numpy bins from inconsecutive edges") return np.concatenate([bins[:1, 0], bins[:, 1]])
python
def to_numpy_bins(bins) -> np.ndarray: """Convert physt bin format to numpy edges. Parameters ---------- bins: array_like 1-D (n) or 2-D (n, 2) array of edges Returns ------- edges: all edges """ bins = np.asarray(bins) if bins.ndim == 1: # Already in the proper format return bins if not is_consecutive(bins): raise RuntimeError("Cannot create numpy bins from inconsecutive edges") return np.concatenate([bins[:1, 0], bins[:, 1]])
[ "def", "to_numpy_bins", "(", "bins", ")", "->", "np", ".", "ndarray", ":", "bins", "=", "np", ".", "asarray", "(", "bins", ")", "if", "bins", ".", "ndim", "==", "1", ":", "# Already in the proper format", "return", "bins", "if", "not", "is_consecutive", "(", "bins", ")", ":", "raise", "RuntimeError", "(", "\"Cannot create numpy bins from inconsecutive edges\"", ")", "return", "np", ".", "concatenate", "(", "[", "bins", "[", ":", "1", ",", "0", "]", ",", "bins", "[", ":", ",", "1", "]", "]", ")" ]
Convert physt bin format to numpy edges. Parameters ---------- bins: array_like 1-D (n) or 2-D (n, 2) array of edges Returns ------- edges: all edges
[ "Convert", "physt", "bin", "format", "to", "numpy", "edges", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/bin_utils.py#L39-L56
train
janpipek/physt
physt/bin_utils.py
to_numpy_bins_with_mask
def to_numpy_bins_with_mask(bins) -> Tuple[np.ndarray, np.ndarray]: """Numpy binning edges including gaps. Parameters ---------- bins: array_like 1-D (n) or 2-D (n, 2) array of edges Returns ------- edges: np.ndarray all edges mask: np.ndarray List of indices that correspond to bins that have to be included Examples -------- >>> to_numpy_bins_with_mask([0, 1, 2]) (array([0., 1., 2.]), array([0, 1])) >>> to_numpy_bins_with_mask([[0, 1], [2, 3]]) (array([0, 1, 2, 3]), array([0, 2]) """ bins = np.asarray(bins) if bins.ndim == 1: edges = bins if bins.shape[0] > 1: mask = np.arange(bins.shape[0] - 1) else: mask = [] elif bins.ndim == 2: edges = [] mask = [] j = 0 if bins.shape[0] > 0: edges.append(bins[0, 0]) for i in range(bins.shape[0] - 1): mask.append(j) edges.append(bins[i, 1]) if bins[i, 1] != bins[i+1, 0]: edges.append(bins[i+1, 0]) j += 1 j += 1 mask.append(j) edges.append(bins[-1, 1]) else: raise RuntimeError("to_numpy_bins_with_mask: array with dim=1 or 2 expected") if not np.all(np.diff(edges) > 0): raise RuntimeError("to_numpy_bins_with_mask: edges array not monotone.") return edges, mask
python
def to_numpy_bins_with_mask(bins) -> Tuple[np.ndarray, np.ndarray]: """Numpy binning edges including gaps. Parameters ---------- bins: array_like 1-D (n) or 2-D (n, 2) array of edges Returns ------- edges: np.ndarray all edges mask: np.ndarray List of indices that correspond to bins that have to be included Examples -------- >>> to_numpy_bins_with_mask([0, 1, 2]) (array([0., 1., 2.]), array([0, 1])) >>> to_numpy_bins_with_mask([[0, 1], [2, 3]]) (array([0, 1, 2, 3]), array([0, 2]) """ bins = np.asarray(bins) if bins.ndim == 1: edges = bins if bins.shape[0] > 1: mask = np.arange(bins.shape[0] - 1) else: mask = [] elif bins.ndim == 2: edges = [] mask = [] j = 0 if bins.shape[0] > 0: edges.append(bins[0, 0]) for i in range(bins.shape[0] - 1): mask.append(j) edges.append(bins[i, 1]) if bins[i, 1] != bins[i+1, 0]: edges.append(bins[i+1, 0]) j += 1 j += 1 mask.append(j) edges.append(bins[-1, 1]) else: raise RuntimeError("to_numpy_bins_with_mask: array with dim=1 or 2 expected") if not np.all(np.diff(edges) > 0): raise RuntimeError("to_numpy_bins_with_mask: edges array not monotone.") return edges, mask
[ "def", "to_numpy_bins_with_mask", "(", "bins", ")", "->", "Tuple", "[", "np", ".", "ndarray", ",", "np", ".", "ndarray", "]", ":", "bins", "=", "np", ".", "asarray", "(", "bins", ")", "if", "bins", ".", "ndim", "==", "1", ":", "edges", "=", "bins", "if", "bins", ".", "shape", "[", "0", "]", ">", "1", ":", "mask", "=", "np", ".", "arange", "(", "bins", ".", "shape", "[", "0", "]", "-", "1", ")", "else", ":", "mask", "=", "[", "]", "elif", "bins", ".", "ndim", "==", "2", ":", "edges", "=", "[", "]", "mask", "=", "[", "]", "j", "=", "0", "if", "bins", ".", "shape", "[", "0", "]", ">", "0", ":", "edges", ".", "append", "(", "bins", "[", "0", ",", "0", "]", ")", "for", "i", "in", "range", "(", "bins", ".", "shape", "[", "0", "]", "-", "1", ")", ":", "mask", ".", "append", "(", "j", ")", "edges", ".", "append", "(", "bins", "[", "i", ",", "1", "]", ")", "if", "bins", "[", "i", ",", "1", "]", "!=", "bins", "[", "i", "+", "1", ",", "0", "]", ":", "edges", ".", "append", "(", "bins", "[", "i", "+", "1", ",", "0", "]", ")", "j", "+=", "1", "j", "+=", "1", "mask", ".", "append", "(", "j", ")", "edges", ".", "append", "(", "bins", "[", "-", "1", ",", "1", "]", ")", "else", ":", "raise", "RuntimeError", "(", "\"to_numpy_bins_with_mask: array with dim=1 or 2 expected\"", ")", "if", "not", "np", ".", "all", "(", "np", ".", "diff", "(", "edges", ")", ">", "0", ")", ":", "raise", "RuntimeError", "(", "\"to_numpy_bins_with_mask: edges array not monotone.\"", ")", "return", "edges", ",", "mask" ]
Numpy binning edges including gaps. Parameters ---------- bins: array_like 1-D (n) or 2-D (n, 2) array of edges Returns ------- edges: np.ndarray all edges mask: np.ndarray List of indices that correspond to bins that have to be included Examples -------- >>> to_numpy_bins_with_mask([0, 1, 2]) (array([0., 1., 2.]), array([0, 1])) >>> to_numpy_bins_with_mask([[0, 1], [2, 3]]) (array([0, 1, 2, 3]), array([0, 2])
[ "Numpy", "binning", "edges", "including", "gaps", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/bin_utils.py#L59-L108
train
janpipek/physt
physt/bin_utils.py
is_rising
def is_rising(bins) -> bool: """Check whether the bins are in raising order. Does not check if the bins are consecutive. Parameters ---------- bins: array_like """ # TODO: Optimize for numpy bins bins = make_bin_array(bins) if np.any(bins[:, 0] >= bins[:, 1]): return False if np.any(bins[1:, 0] < bins[:-1, 1]): return False return True
python
def is_rising(bins) -> bool: """Check whether the bins are in raising order. Does not check if the bins are consecutive. Parameters ---------- bins: array_like """ # TODO: Optimize for numpy bins bins = make_bin_array(bins) if np.any(bins[:, 0] >= bins[:, 1]): return False if np.any(bins[1:, 0] < bins[:-1, 1]): return False return True
[ "def", "is_rising", "(", "bins", ")", "->", "bool", ":", "# TODO: Optimize for numpy bins", "bins", "=", "make_bin_array", "(", "bins", ")", "if", "np", ".", "any", "(", "bins", "[", ":", ",", "0", "]", ">=", "bins", "[", ":", ",", "1", "]", ")", ":", "return", "False", "if", "np", ".", "any", "(", "bins", "[", "1", ":", ",", "0", "]", "<", "bins", "[", ":", "-", "1", ",", "1", "]", ")", ":", "return", "False", "return", "True" ]
Check whether the bins are in raising order. Does not check if the bins are consecutive. Parameters ---------- bins: array_like
[ "Check", "whether", "the", "bins", "are", "in", "raising", "order", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/bin_utils.py#L111-L126
train
janpipek/physt
physt/plotting/common.py
get_data
def get_data(histogram: HistogramBase, density: bool = False, cumulative: bool = False, flatten: bool = False) -> np.ndarray: """Get histogram data based on plotting parameters. Parameters ---------- density : Whether to divide bin contents by bin size cumulative : Whether to return cumulative sums instead of individual flatten : Whether to flatten multidimensional bins """ if density: if cumulative: data = (histogram / histogram.total).cumulative_frequencies else: data = histogram.densities else: if cumulative: data = histogram.cumulative_frequencies else: data = histogram.frequencies if flatten: data = data.flatten() return data
python
def get_data(histogram: HistogramBase, density: bool = False, cumulative: bool = False, flatten: bool = False) -> np.ndarray: """Get histogram data based on plotting parameters. Parameters ---------- density : Whether to divide bin contents by bin size cumulative : Whether to return cumulative sums instead of individual flatten : Whether to flatten multidimensional bins """ if density: if cumulative: data = (histogram / histogram.total).cumulative_frequencies else: data = histogram.densities else: if cumulative: data = histogram.cumulative_frequencies else: data = histogram.frequencies if flatten: data = data.flatten() return data
[ "def", "get_data", "(", "histogram", ":", "HistogramBase", ",", "density", ":", "bool", "=", "False", ",", "cumulative", ":", "bool", "=", "False", ",", "flatten", ":", "bool", "=", "False", ")", "->", "np", ".", "ndarray", ":", "if", "density", ":", "if", "cumulative", ":", "data", "=", "(", "histogram", "/", "histogram", ".", "total", ")", ".", "cumulative_frequencies", "else", ":", "data", "=", "histogram", ".", "densities", "else", ":", "if", "cumulative", ":", "data", "=", "histogram", ".", "cumulative_frequencies", "else", ":", "data", "=", "histogram", ".", "frequencies", "if", "flatten", ":", "data", "=", "data", ".", "flatten", "(", ")", "return", "data" ]
Get histogram data based on plotting parameters. Parameters ---------- density : Whether to divide bin contents by bin size cumulative : Whether to return cumulative sums instead of individual flatten : Whether to flatten multidimensional bins
[ "Get", "histogram", "data", "based", "on", "plotting", "parameters", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/plotting/common.py#L15-L37
train
janpipek/physt
physt/plotting/common.py
get_err_data
def get_err_data(histogram: HistogramBase, density: bool = False, cumulative: bool = False, flatten: bool = False) -> np.ndarray: """Get histogram error data based on plotting parameters. Parameters ---------- density : Whether to divide bin contents by bin size cumulative : Whether to return cumulative sums instead of individual flatten : Whether to flatten multidimensional bins """ if cumulative: raise RuntimeError("Error bars not supported for cumulative plots.") if density: data = histogram.errors / histogram.bin_sizes else: data = histogram.errors if flatten: data = data.flatten() return data
python
def get_err_data(histogram: HistogramBase, density: bool = False, cumulative: bool = False, flatten: bool = False) -> np.ndarray: """Get histogram error data based on plotting parameters. Parameters ---------- density : Whether to divide bin contents by bin size cumulative : Whether to return cumulative sums instead of individual flatten : Whether to flatten multidimensional bins """ if cumulative: raise RuntimeError("Error bars not supported for cumulative plots.") if density: data = histogram.errors / histogram.bin_sizes else: data = histogram.errors if flatten: data = data.flatten() return data
[ "def", "get_err_data", "(", "histogram", ":", "HistogramBase", ",", "density", ":", "bool", "=", "False", ",", "cumulative", ":", "bool", "=", "False", ",", "flatten", ":", "bool", "=", "False", ")", "->", "np", ".", "ndarray", ":", "if", "cumulative", ":", "raise", "RuntimeError", "(", "\"Error bars not supported for cumulative plots.\"", ")", "if", "density", ":", "data", "=", "histogram", ".", "errors", "/", "histogram", ".", "bin_sizes", "else", ":", "data", "=", "histogram", ".", "errors", "if", "flatten", ":", "data", "=", "data", ".", "flatten", "(", ")", "return", "data" ]
Get histogram error data based on plotting parameters. Parameters ---------- density : Whether to divide bin contents by bin size cumulative : Whether to return cumulative sums instead of individual flatten : Whether to flatten multidimensional bins
[ "Get", "histogram", "error", "data", "based", "on", "plotting", "parameters", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/plotting/common.py#L40-L57
train
janpipek/physt
physt/plotting/common.py
get_value_format
def get_value_format(value_format: Union[Callable, str] = str) -> Callable[[float], str]: """Create a formatting function from a generic value_format argument. """ if value_format is None: value_format = "" if isinstance(value_format, str): format_str = "{0:" + value_format + "}" def value_format(x): return format_str.format(x) return value_format
python
def get_value_format(value_format: Union[Callable, str] = str) -> Callable[[float], str]: """Create a formatting function from a generic value_format argument. """ if value_format is None: value_format = "" if isinstance(value_format, str): format_str = "{0:" + value_format + "}" def value_format(x): return format_str.format(x) return value_format
[ "def", "get_value_format", "(", "value_format", ":", "Union", "[", "Callable", ",", "str", "]", "=", "str", ")", "->", "Callable", "[", "[", "float", "]", ",", "str", "]", ":", "if", "value_format", "is", "None", ":", "value_format", "=", "\"\"", "if", "isinstance", "(", "value_format", ",", "str", ")", ":", "format_str", "=", "\"{0:\"", "+", "value_format", "+", "\"}\"", "def", "value_format", "(", "x", ")", ":", "return", "format_str", ".", "format", "(", "x", ")", "return", "value_format" ]
Create a formatting function from a generic value_format argument.
[ "Create", "a", "formatting", "function", "from", "a", "generic", "value_format", "argument", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/plotting/common.py#L60-L70
train
janpipek/physt
physt/plotting/common.py
pop_kwargs_with_prefix
def pop_kwargs_with_prefix(prefix: str, kwargs: dict) -> dict: """Pop all items from a dictionary that have keys beginning with a prefix. Parameters ---------- prefix : str kwargs : dict Returns ------- kwargs : dict Items popped from the original directory, with prefix removed. """ keys = [key for key in kwargs if key.startswith(prefix)] return {key[len(prefix):]: kwargs.pop(key) for key in keys}
python
def pop_kwargs_with_prefix(prefix: str, kwargs: dict) -> dict: """Pop all items from a dictionary that have keys beginning with a prefix. Parameters ---------- prefix : str kwargs : dict Returns ------- kwargs : dict Items popped from the original directory, with prefix removed. """ keys = [key for key in kwargs if key.startswith(prefix)] return {key[len(prefix):]: kwargs.pop(key) for key in keys}
[ "def", "pop_kwargs_with_prefix", "(", "prefix", ":", "str", ",", "kwargs", ":", "dict", ")", "->", "dict", ":", "keys", "=", "[", "key", "for", "key", "in", "kwargs", "if", "key", ".", "startswith", "(", "prefix", ")", "]", "return", "{", "key", "[", "len", "(", "prefix", ")", ":", "]", ":", "kwargs", ".", "pop", "(", "key", ")", "for", "key", "in", "keys", "}" ]
Pop all items from a dictionary that have keys beginning with a prefix. Parameters ---------- prefix : str kwargs : dict Returns ------- kwargs : dict Items popped from the original directory, with prefix removed.
[ "Pop", "all", "items", "from", "a", "dictionary", "that", "have", "keys", "beginning", "with", "a", "prefix", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/plotting/common.py#L73-L87
train
janpipek/physt
physt/histogram_nd.py
HistogramND.bins
def bins(self) -> List[np.ndarray]: """List of bin matrices.""" return [binning.bins for binning in self._binnings]
python
def bins(self) -> List[np.ndarray]: """List of bin matrices.""" return [binning.bins for binning in self._binnings]
[ "def", "bins", "(", "self", ")", "->", "List", "[", "np", ".", "ndarray", "]", ":", "return", "[", "binning", ".", "bins", "for", "binning", "in", "self", ".", "_binnings", "]" ]
List of bin matrices.
[ "List", "of", "bin", "matrices", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/histogram_nd.py#L54-L56
train
janpipek/physt
physt/histogram_nd.py
HistogramND.select
def select(self, axis: AxisIdentifier, index, force_copy: bool = False) -> HistogramBase: """Select in an axis. Parameters ---------- axis: int or str Axis, in which we select. index: int or slice Index of bin (as in numpy). force_copy: bool If True, identity slice force a copy to be made. """ if index == slice(None) and not force_copy: return self axis_id = self._get_axis(axis) array_index = [slice(None, None, None) for i in range(self.ndim)] array_index[axis_id] = index frequencies = self._frequencies[tuple(array_index)].copy() errors2 = self._errors2[tuple(array_index)].copy() if isinstance(index, int): return self._reduce_dimension([ax for ax in range(self.ndim) if ax != axis_id], frequencies, errors2) elif isinstance(index, slice): if index.step is not None and index.step < 0: raise IndexError("Cannot change the order of bins") copy = self.copy() copy._frequencies = frequencies copy._errors2 = errors2 copy._binnings[axis_id] = self._binnings[axis_id][index] return copy else: raise ValueError("Invalid index.")
python
def select(self, axis: AxisIdentifier, index, force_copy: bool = False) -> HistogramBase: """Select in an axis. Parameters ---------- axis: int or str Axis, in which we select. index: int or slice Index of bin (as in numpy). force_copy: bool If True, identity slice force a copy to be made. """ if index == slice(None) and not force_copy: return self axis_id = self._get_axis(axis) array_index = [slice(None, None, None) for i in range(self.ndim)] array_index[axis_id] = index frequencies = self._frequencies[tuple(array_index)].copy() errors2 = self._errors2[tuple(array_index)].copy() if isinstance(index, int): return self._reduce_dimension([ax for ax in range(self.ndim) if ax != axis_id], frequencies, errors2) elif isinstance(index, slice): if index.step is not None and index.step < 0: raise IndexError("Cannot change the order of bins") copy = self.copy() copy._frequencies = frequencies copy._errors2 = errors2 copy._binnings[axis_id] = self._binnings[axis_id][index] return copy else: raise ValueError("Invalid index.")
[ "def", "select", "(", "self", ",", "axis", ":", "AxisIdentifier", ",", "index", ",", "force_copy", ":", "bool", "=", "False", ")", "->", "HistogramBase", ":", "if", "index", "==", "slice", "(", "None", ")", "and", "not", "force_copy", ":", "return", "self", "axis_id", "=", "self", ".", "_get_axis", "(", "axis", ")", "array_index", "=", "[", "slice", "(", "None", ",", "None", ",", "None", ")", "for", "i", "in", "range", "(", "self", ".", "ndim", ")", "]", "array_index", "[", "axis_id", "]", "=", "index", "frequencies", "=", "self", ".", "_frequencies", "[", "tuple", "(", "array_index", ")", "]", ".", "copy", "(", ")", "errors2", "=", "self", ".", "_errors2", "[", "tuple", "(", "array_index", ")", "]", ".", "copy", "(", ")", "if", "isinstance", "(", "index", ",", "int", ")", ":", "return", "self", ".", "_reduce_dimension", "(", "[", "ax", "for", "ax", "in", "range", "(", "self", ".", "ndim", ")", "if", "ax", "!=", "axis_id", "]", ",", "frequencies", ",", "errors2", ")", "elif", "isinstance", "(", "index", ",", "slice", ")", ":", "if", "index", ".", "step", "is", "not", "None", "and", "index", ".", "step", "<", "0", ":", "raise", "IndexError", "(", "\"Cannot change the order of bins\"", ")", "copy", "=", "self", ".", "copy", "(", ")", "copy", ".", "_frequencies", "=", "frequencies", "copy", ".", "_errors2", "=", "errors2", "copy", ".", "_binnings", "[", "axis_id", "]", "=", "self", ".", "_binnings", "[", "axis_id", "]", "[", "index", "]", "return", "copy", "else", ":", "raise", "ValueError", "(", "\"Invalid index.\"", ")" ]
Select in an axis. Parameters ---------- axis: int or str Axis, in which we select. index: int or slice Index of bin (as in numpy). force_copy: bool If True, identity slice force a copy to be made.
[ "Select", "in", "an", "axis", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/histogram_nd.py#L71-L104
train
janpipek/physt
physt/histogram_nd.py
HistogramND.accumulate
def accumulate(self, axis: AxisIdentifier) -> HistogramBase: """Calculate cumulative frequencies along a certain axis. Returns ------- new_hist: Histogram of the same type & size """ # TODO: Merge with Histogram1D.cumulative_frequencies # TODO: Deal with errors and totals etc. # TODO: inplace new_one = self.copy() axis_id = self._get_axis(axis) new_one._frequencies = np.cumsum(new_one.frequencies, axis_id[0]) return new_one
python
def accumulate(self, axis: AxisIdentifier) -> HistogramBase: """Calculate cumulative frequencies along a certain axis. Returns ------- new_hist: Histogram of the same type & size """ # TODO: Merge with Histogram1D.cumulative_frequencies # TODO: Deal with errors and totals etc. # TODO: inplace new_one = self.copy() axis_id = self._get_axis(axis) new_one._frequencies = np.cumsum(new_one.frequencies, axis_id[0]) return new_one
[ "def", "accumulate", "(", "self", ",", "axis", ":", "AxisIdentifier", ")", "->", "HistogramBase", ":", "# TODO: Merge with Histogram1D.cumulative_frequencies", "# TODO: Deal with errors and totals etc.", "# TODO: inplace", "new_one", "=", "self", ".", "copy", "(", ")", "axis_id", "=", "self", ".", "_get_axis", "(", "axis", ")", "new_one", ".", "_frequencies", "=", "np", ".", "cumsum", "(", "new_one", ".", "frequencies", ",", "axis_id", "[", "0", "]", ")", "return", "new_one" ]
Calculate cumulative frequencies along a certain axis. Returns ------- new_hist: Histogram of the same type & size
[ "Calculate", "cumulative", "frequencies", "along", "a", "certain", "axis", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/histogram_nd.py#L338-L351
train
janpipek/physt
physt/histogram_nd.py
Histogram2D.T
def T(self) -> "Histogram2D": """Histogram with swapped axes. Returns ------- Histogram2D - a copy with swapped axes """ a_copy = self.copy() a_copy._binnings = list(reversed(a_copy._binnings)) a_copy.axis_names = list(reversed(a_copy.axis_names)) a_copy._frequencies = a_copy._frequencies.T a_copy._errors2 = a_copy._errors2.T return a_copy
python
def T(self) -> "Histogram2D": """Histogram with swapped axes. Returns ------- Histogram2D - a copy with swapped axes """ a_copy = self.copy() a_copy._binnings = list(reversed(a_copy._binnings)) a_copy.axis_names = list(reversed(a_copy.axis_names)) a_copy._frequencies = a_copy._frequencies.T a_copy._errors2 = a_copy._errors2.T return a_copy
[ "def", "T", "(", "self", ")", "->", "\"Histogram2D\"", ":", "a_copy", "=", "self", ".", "copy", "(", ")", "a_copy", ".", "_binnings", "=", "list", "(", "reversed", "(", "a_copy", ".", "_binnings", ")", ")", "a_copy", ".", "axis_names", "=", "list", "(", "reversed", "(", "a_copy", ".", "axis_names", ")", ")", "a_copy", ".", "_frequencies", "=", "a_copy", ".", "_frequencies", ".", "T", "a_copy", ".", "_errors2", "=", "a_copy", ".", "_errors2", ".", "T", "return", "a_copy" ]
Histogram with swapped axes. Returns ------- Histogram2D - a copy with swapped axes
[ "Histogram", "with", "swapped", "axes", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/histogram_nd.py#L414-L426
train
janpipek/physt
physt/histogram_nd.py
Histogram2D.partial_normalize
def partial_normalize(self, axis: AxisIdentifier = 0, inplace: bool = False): """Normalize in rows or columns. Parameters ---------- axis: int or str Along which axis to sum (numpy-sense) inplace: bool Update the object itself Returns ------- hist : Histogram2D """ # TODO: Is this applicable for HistogramND? axis = self._get_axis(axis) if not inplace: copy = self.copy() copy.partial_normalize(axis, inplace=True) return copy else: self._coerce_dtype(float) if axis == 0: divisor = self._frequencies.sum(axis=0) else: divisor = self._frequencies.sum(axis=1)[:, np.newaxis] divisor[divisor == 0] = 1 # Prevent division errors self._frequencies /= divisor self._errors2 /= (divisor * divisor) # Has its limitations return self
python
def partial_normalize(self, axis: AxisIdentifier = 0, inplace: bool = False): """Normalize in rows or columns. Parameters ---------- axis: int or str Along which axis to sum (numpy-sense) inplace: bool Update the object itself Returns ------- hist : Histogram2D """ # TODO: Is this applicable for HistogramND? axis = self._get_axis(axis) if not inplace: copy = self.copy() copy.partial_normalize(axis, inplace=True) return copy else: self._coerce_dtype(float) if axis == 0: divisor = self._frequencies.sum(axis=0) else: divisor = self._frequencies.sum(axis=1)[:, np.newaxis] divisor[divisor == 0] = 1 # Prevent division errors self._frequencies /= divisor self._errors2 /= (divisor * divisor) # Has its limitations return self
[ "def", "partial_normalize", "(", "self", ",", "axis", ":", "AxisIdentifier", "=", "0", ",", "inplace", ":", "bool", "=", "False", ")", ":", "# TODO: Is this applicable for HistogramND?", "axis", "=", "self", ".", "_get_axis", "(", "axis", ")", "if", "not", "inplace", ":", "copy", "=", "self", ".", "copy", "(", ")", "copy", ".", "partial_normalize", "(", "axis", ",", "inplace", "=", "True", ")", "return", "copy", "else", ":", "self", ".", "_coerce_dtype", "(", "float", ")", "if", "axis", "==", "0", ":", "divisor", "=", "self", ".", "_frequencies", ".", "sum", "(", "axis", "=", "0", ")", "else", ":", "divisor", "=", "self", ".", "_frequencies", ".", "sum", "(", "axis", "=", "1", ")", "[", ":", ",", "np", ".", "newaxis", "]", "divisor", "[", "divisor", "==", "0", "]", "=", "1", "# Prevent division errors", "self", ".", "_frequencies", "/=", "divisor", "self", ".", "_errors2", "/=", "(", "divisor", "*", "divisor", ")", "# Has its limitations", "return", "self" ]
Normalize in rows or columns. Parameters ---------- axis: int or str Along which axis to sum (numpy-sense) inplace: bool Update the object itself Returns ------- hist : Histogram2D
[ "Normalize", "in", "rows", "or", "columns", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/histogram_nd.py#L428-L457
train
janpipek/physt
physt/binnings.py
numpy_binning
def numpy_binning(data, bins=10, range=None, *args, **kwargs) -> NumpyBinning: """Construct binning schema compatible with numpy.histogram Parameters ---------- data: array_like, optional This is optional if both bins and range are set bins: int or array_like range: Optional[tuple] (min, max) includes_right_edge: Optional[bool] default: True See Also -------- numpy.histogram """ if isinstance(bins, int): if range: bins = np.linspace(range[0], range[1], bins + 1) else: start = data.min() stop = data.max() bins = np.linspace(start, stop, bins + 1) elif np.iterable(bins): bins = np.asarray(bins) else: # Some numpy edge case _, bins = np.histogram(data, bins, **kwargs) return NumpyBinning(bins)
python
def numpy_binning(data, bins=10, range=None, *args, **kwargs) -> NumpyBinning: """Construct binning schema compatible with numpy.histogram Parameters ---------- data: array_like, optional This is optional if both bins and range are set bins: int or array_like range: Optional[tuple] (min, max) includes_right_edge: Optional[bool] default: True See Also -------- numpy.histogram """ if isinstance(bins, int): if range: bins = np.linspace(range[0], range[1], bins + 1) else: start = data.min() stop = data.max() bins = np.linspace(start, stop, bins + 1) elif np.iterable(bins): bins = np.asarray(bins) else: # Some numpy edge case _, bins = np.histogram(data, bins, **kwargs) return NumpyBinning(bins)
[ "def", "numpy_binning", "(", "data", ",", "bins", "=", "10", ",", "range", "=", "None", ",", "*", "args", ",", "*", "*", "kwargs", ")", "->", "NumpyBinning", ":", "if", "isinstance", "(", "bins", ",", "int", ")", ":", "if", "range", ":", "bins", "=", "np", ".", "linspace", "(", "range", "[", "0", "]", ",", "range", "[", "1", "]", ",", "bins", "+", "1", ")", "else", ":", "start", "=", "data", ".", "min", "(", ")", "stop", "=", "data", ".", "max", "(", ")", "bins", "=", "np", ".", "linspace", "(", "start", ",", "stop", ",", "bins", "+", "1", ")", "elif", "np", ".", "iterable", "(", "bins", ")", ":", "bins", "=", "np", ".", "asarray", "(", "bins", ")", "else", ":", "# Some numpy edge case", "_", ",", "bins", "=", "np", ".", "histogram", "(", "data", ",", "bins", ",", "*", "*", "kwargs", ")", "return", "NumpyBinning", "(", "bins", ")" ]
Construct binning schema compatible with numpy.histogram Parameters ---------- data: array_like, optional This is optional if both bins and range are set bins: int or array_like range: Optional[tuple] (min, max) includes_right_edge: Optional[bool] default: True See Also -------- numpy.histogram
[ "Construct", "binning", "schema", "compatible", "with", "numpy", ".", "histogram" ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/binnings.py#L596-L625
train