plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
garrickbrazil/SDS-RCNN-master
kernelTracker.m
.m
SDS-RCNN-master/external/pdollar_toolbox/videos/kernelTracker.m
9,315
utf_8
4a7d0235f1e518ab5f1c9f1b5450b3f0
function [allRct, allSim, allIc] = kernelTracker( I, prm ) % Kernel Tracker from Comaniciu, Ramesh and Meer PAMI 2003. % % Implements the algorithm described in "Kernel-Based Object Tracking" by % Dorin Comaniciu, Visvanathan Ramesh and Peter Meer, PAMI 25, 564-577, % 2003. This is a fast tracking algorithm that utilizes a histogram % representation of an object (in this implementation we use color % histograms, as in the original work). The idea is given a histogram q in % frame t, find histogram p in frame t+1 that is most similar to q. It % turns out that this can be formulated as a mean shift problem. Here, the % kernel is fixed to the Epanechnikov kernel. % % This implementation uses mex files to optimize speed, it is significantly % faster than real time for a single object on a 2GHz standard laptop (as % of 2007). % % If I==[], toy data is created. If rctS==0, the user is queried to % specify the first rectangle. rctE, denoting the object location in the % last frame, can optionally be specified. If rctE is given, the model % histogram at fraction r of the video is (1-r)*histS+r*histE where histS % and histE are the model histograms from the first and last frame. If % rctE==0 rectangle in final frame is queried, if rectE==-1 it is not used. % % Let T denote the length of the video. Returned values are of length t, % where t==T if the object was tracked through the whole sequence (ie sim % does not fall below simThr), otherwise t<=T is equal to the last frame in % which obj was found. You can test if the object was tracked using: % success = (size(allRct,1)==size(I,4)); % % USAGE % [allRct, allIc, allSim] = kernelTracker( [I], [prm] ) % % INPUTS % I - MxNx3xT input video % [prm] % .rctS - [0] rectangle denoting initial object location % .rctE - [-1] rectangle denoting final object location % .dispFlag - [1] show interactive display % .scaleSrch - [1] if true search over scale % .nBit - [4] n=2^nBit, color histograms are [n x n x n] % .simThr - [.7] sim thr for when obj is considered lost % .scaleDel - [.9] multiplicative diff between consecutive scales % % OUTPUTS % allRct - [t x 4] array of t locations [x,y,wd,ht] % allSim - [1 x t] array of similarity measures during tracking % allIc - [1 x t] cell array of cropped windows containing obj % % EXAMPLE % disp('Select a rectangular region for tracking'); % [allRct,allSim,allIc] = kernelTracker(); % figure(2); clf; plot(allRct); % figure(3); clf; montage2(allIc,struct('hasChn',true)); % % See also % % Piotr's Computer Vision Matlab Toolbox Version 3.22 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] %%% get parameters (set defaults) if( nargin<1 ); I=[]; end; if( nargin<2 ); prm=struct(); end; dfs = {'scaleSrch',1, 'nBit',4, 'simThr',.7, ... 'dispFlag',1, 'scaleDel',.9, 'rctS',0, 'rctE',-1 }; prm = getPrmDflt( prm, dfs ); scaleSrch=prm.scaleSrch; nBit=prm.nBit; simThr=prm.simThr; dispFlag=prm.dispFlag; scaleDel=prm.scaleDel; rctS=prm.rctS; rctE=prm.rctE; if(isempty(I)); I=toyData(100,1); end; %%% get rctS and rectE if necessary rctProp = {'EdgeColor','g','Curvature',[1 1],'LineWidth',2}; if(rctS==0); figure(1); clf; imshow(I(:,:,:,1)); rctS=getrect; end if(rctE==0); figure(1); clf; imshow(I(:,:,:,end)); rctE=getrect; end %%% precompute kernels for all relevant scales rctS=round(rctS); rctS(3:4)=rctS(3:4)-mod(rctS(3:4),2); pos1 = rctS(1:2)+rctS(3:4)/2; wd=rctS(3); ht=rctS(4); [mRows,nCols,~,nFrame] = size(I); nScaleSm = max(1,floor(log(max(10/wd,10/ht))/log(scaleDel))); nScaleLr = max(1,floor(-log(min(nCols/wd,mRows/ht)/2)/log(scaleDel))); nScale = nScaleSm+nScaleLr+1; scale = nScaleSm+1; kernel = repmat( buildKernel(wd,ht), [1 nScale] ); for s=1:nScale r = power(scaleDel,s-1-nScaleSm); kernel(s) = buildKernel( wd/r, ht/r ); end %%% build model histogram for rctS [Ic,Qc] = cropWindow( I(:,:,:,1), nBit, pos1, wd, ht ); qS = buildHist( Qc, kernel(scale), nBit ); %%% optionally build model histogram for rctE if(length(rctE)==4); rctE=round(rctE); rctE(3:4)=rctE(3:4)-mod(rctE(3:4),2); posE = rctE(1:2)+rctE(3:4)/2; wdE=rctE(3); htE=rctE(4); kernelE = buildKernel(wdE,htE); [Ic,Qc] = cropWindow( I(:,:,:,end), nBit, posE, wdE, htE ); %end qE = buildHist( Qc, kernelE, nBit ); else qE = qS; end %%% setup display if( dispFlag ) figure(1); clf; hImg=imshow(I(:,:,:,1)); hR = rectangle('Position', rctS, rctProp{:} ); pause(.1); end %%% main loop pos = pos1; allRct = zeros(nFrame,4); allRct(1,:)=rctS; allIc = cell(1,nFrame); allIc{1}=Ic; allSim = zeros(1,nFrame); for frm = 1:nFrame Icur = I(:,:,:,frm); % current model (linearly interpolate) r=(frm-1)/nFrame; q = qS*(1-r) + qE*r; if( scaleSrch ) % search over scale best={}; bestSim=-1; pos1=pos; for s=max(1,scale-1):min(nScale,scale+1) [p,pos,Ic,sim]=kernelTracker1(Icur,q,pos1,kernel(s),nBit); if( sim>bestSim ); best={p,pos,Ic,s}; bestSim=sim; end; end [~,pos,Ic,scale]=deal(best{:}); wd=kernel(scale).wd; ht=kernel(scale).ht; else % otherwise just do meanshift once [~,pos,Ic,bestSim]=kernelTracker1(Icur,q,pos,kernel(scale),nBit); end % record results if( bestSim<simThr ); break; end; rctC=[pos(1)-wd/2 pos(2)-ht/2 wd, ht ]; allIc{frm}=Ic; allRct(frm,:)=rctC; allSim(frm)=bestSim; % display if( dispFlag ) set(hImg,'CData',Icur); title(['bestSim=' num2str(bestSim)]); delete(hR); hR=rectangle('Position', rctC, rctProp{:} ); if(0); waitforbuttonpress; else drawnow; end end end %%% finalize & display if( bestSim<simThr ); frm=frm-1; end; allIc=allIc(1:frm); allRct=allRct(1:frm,:); allSim=allSim(1:frm); if( dispFlag ) if( bestSim<simThr ); disp('lost target'); end disp( ['final sim = ' num2str(bestSim) ] ); end end function [p,pos,Ic,sim] = kernelTracker1( I, q, pos, kernel, nBit ) mRows=size(I,1); nCols=size(I,2); wd=kernel.wd; wd2=wd/2; ht=kernel.ht; ht2=ht/2; xs=kernel.xs; ys=kernel.ys; for iter=1:1000 posPrev = pos; % check if pos in bounds rct = [pos(1)-wd/2 pos(2)-ht/2 wd, ht ]; if( rct(1)<1 || rct(2)<1 || (rct(1)+wd)>nCols || (rct(2)+ht)>mRows ) pos=posPrev; p=[]; Ic=[]; sim=eps; return; end % crop window / compute histogram [Ic,Qc] = cropWindow( I, nBit, pos, wd, ht ); p = buildHist( Qc, kernel, nBit ); if( iter==20 ); break; end; % compute meanshift step w = ktComputeW_c( Qc, q, p, nBit ); posDel = [sum(xs.*w)*wd2, sum(ys.*w)*ht2] / (sum(w)+eps); posDel = round(posDel+.1); if(all(posDel==0)); break; end; pos = pos + posDel; end locs=p>0; sim=sum( sqrt(q(locs).*p(locs)) ); end function kernel = buildKernel( wd, ht ) wd = round(wd/2)*2; xs = linspace(-1,1,wd); ht = round(ht/2)*2; ys = linspace(-1,1,ht); [ys,xs] = ndgrid(ys,xs); xs=xs(:); ys=ys(:); xMag = ys.*ys + xs.*xs; xMag(xMag>1) = 1; K = 2/pi * (1-xMag); sumK=sum(K); kernel = struct( 'K',K, 'sumK',sumK, 'xs',xs, 'ys',ys, 'wd',wd, 'ht',ht ); end function p = buildHist( Qc, kernel, nBit ) p = ktHistcRgb_c( Qc, kernel.K, nBit ) / kernel.sumK; if(0); p=gaussSmooth(p,.5,'same',2); p=p*(1/sum(p(:))); end; end function [Ic,Qc] = cropWindow( I, nBit, pos, wd, ht ) row = pos(2)-ht/2; col = pos(1)-wd/2; Ic = I(row:row+ht-1,col:col+wd-1,:); if(nargout==2); Qc=bitshift(reshape(Ic,[],3),nBit-8); end; end function I = toyData( n, sigma ) I1 = imresize(imread('peppers.png'),[256 256],'bilinear'); I=ones(512,512,3,n,'uint8')*100; pos = round(gaussSmooth(randn(2,n)*80,[0 4]))+128; for i=1:n I((1:256)+pos(1,i),(1:256)+pos(2,i),:,i)=I1; I1 = uint8(double(I1) + randn(size(I1))*sigma); end; I=I((1:256)+128,(1:256)+128,:,:); end % % debugging code % if( debug ) % figure(1); % subplot(2,3,2); image( Ic ); subplot(2,3,1); image(Icur); % rectangle('Position', posToRct(pos0,wd,ht), rctProp{:} ); % subplot(2,3,3); imagesc( reshape(w,wd,ht), [0 5] ); colormap gray; % subplot(2,3,4); montage2( q ); subplot(2,3,5); montage2( p1 ); % waitforbuttonpress; % end % % search over 9 locations (with fixed scale) % if( locSrch ) % best={}; bestSim=0.0; pos1=pos; % for lr=-1:1 % for ud=-1:1 % posSt = pos1 + [wd*lr ht*ud]; % [p,pos,Ic,sim] = kernelTracker1(Icur,q,posSt,kernel(scale),nBit); % if( sim>bestSim ); best={p,pos,Ic}; bestSim=sim; end; % end % end % [p,pos,Ic]=deal(best{:}); % end %%% background histogram -- seems kind of useless, removed % if( 0 ) % bgSiz = 3; bgImp = 2; % rctBgStr = max([1 1],rctS(1:2)-rctS(3:4)*(bgSiz/2-.5)); % rctBgEnd = min([nCols mRows],rctS(1:2)+rctS(3:4)*(bgSiz/2+.5)); % rctBg = [rctBgStr rctBgEnd-rctBgStr+1]; % posBg = rctBg(1:2)+rctBg(3:4)/2; wdBg=rctBg(3); htBg=rctBg(4); % [IcBg,QcBg] = cropWindow( I(:,:,:,1), nBit, posBg, wdBg, htBg ); % wtBg = double( reshape(kernel.K,ht,wd)==0 ); % pre=rctS(1:2)-rctBg(1:2); pst=rctBg(3:4)-rctS(3:4)-pre; % wtBg = padarray( wtBg, fliplr(pre), 1, 'pre' ); % wtBg = padarray( wtBg, fliplr(pst), 1, 'post' ); % pBg = buildHist( QcBg, wtBg, [], nBit ); % pWts = min( 1, max(pBg(:))/bgImp./pBg ); % if(0); montage2(pWts); impixelinfo; return; end % else % pWts=[]; % end; % if(~isempty(pWts)); p = p .* pWts; end; % in buildHistogram
github
garrickbrazil/SDS-RCNN-master
seqIo.m
.m
SDS-RCNN-master/external/pdollar_toolbox/videos/seqIo.m
17,019
utf_8
9c631b324bb527372ec3eed3416c5dcc
function out = seqIo( fName, action, varargin ) % Utilities for reading and writing seq files. % % A seq file is a series of concatentated image frames with a fixed size % header. It is essentially the same as merging a directory of images into % a single file. seq files are convenient for storing videos because: (1) % no video codec is required, (2) seek is instant and exact, (3) seq files % can be read on any operating system. The main drawback is that each frame % is encoded independently, resulting in increased file size. The advantage % over storing as a directory of images is that a single large file is % created. Currently, either uncompressed, jpg or png compressed frames % are supported. The seq file format is modeled after the Norpix seq format % (in fact this reader can be used to read some Norpix seq files). The % actual work of reading/writing seq files is done by seqReaderPlugin and % seqWriterPlugin (there is no need to call those functions directly). % % seqIo contains a number of utility functions for working with seq files. % The format for accessing the various utility functions is: % out = seqIo( fName, 'action', inputs ); % The list of functions and help for each is given below. Also, help on % individual subfunctions can be accessed by: "help seqIo>action". % % Create interface sr for reading seq files. % sr = seqIo( fName, 'reader', [cache] ) % Create interface sw for writing seq files. % sw = seqIo( fName, 'writer', info ) % Get info about seq file. % info = seqIo( fName, 'getInfo' ) % Crop sub-sequence from seq file. % seqIo( fName, 'crop', tName, frames ) % Extract images from seq file to target directory or array. % Is = seqIo( fName, 'toImgs', [tDir], [skip], [f0], [f1], [ext] ) % Create seq file from an array or directory of images or from an AVI file. % seqIo( fName, 'frImgs', info, varargin ) % Convert seq file by applying imgFun(I) to each frame I. % seqIo( fName, 'convert', tName, imgFun, varargin ) % Replace header of seq file with provided info. % seqIo( fName, 'newHeader', info ) % Create interface sr for reading dual seq files. % sr = seqIo( fNames, 'readerDual', [cache] ) % % USAGE % out = seqIo( fName, action, varargin ) % % INPUTS % fName - seq file to open % action - controls action (see above) % varargin - additional inputs (see above) % % OUTPUTS % out - depends on action (see above) % % EXAMPLE % % See also seqIo>reader, seqIo>writer, seqIo>getInfo, seqIo>crop, % seqIo>toImgs, seqIo>frImgs, seqIo>convert, seqIo>newHeader, % seqIo>readerDual, seqPlayer, seqReaderPlugin, seqWriterPlugin % % Piotr's Computer Vision Matlab Toolbox Version 2.61 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] switch lower(action) case {'reader','r'}, out = reader( fName, varargin{:} ); case {'writer','w'}, out = writer( fName, varargin{:} ); case 'getinfo', out = getInfo( fName ); case 'crop', crop( fName, varargin{:} ); out=1; case 'toimgs', out = toImgs( fName, varargin{:} ); case 'frimgs', frImgs( fName, varargin{:} ); out=1; case 'convert', convert( fName, varargin{:} ); out=1; case 'newheader', newHeader( fName, varargin{:} ); out=1; case {'readerdual','rdual'}, out=readerDual(fName,varargin{:}); otherwise, error('seqIo unknown action: ''%s''',action); end end function sr = reader( fName, cache ) % Create interface sr for reading seq files. % % Create interface sr to seq file with the following commands: % sr.close(); % Close seq file (sr is useless after). % [I,ts]=sr.getframe(); % Get current frame (returns [] if invalid). % [I,ts]=sr.getframeb(); % Get current frame with no decoding. % ts = sr.getts(); % Return timestamps for all frames. % info = sr.getinfo(); % Return struct with info about video. % [I,ts]=sr.getnext(); % Shortcut for next() followed by getframe(). % out = sr.next(); % Go to next frame (out=0 on fail). % out = sr.seek(frame); % Go to specified frame (out=0 on fail). % out = sr.step(delta); % Go to current frame+delta (out=0 on fail). % % If cache>0, reader() will cache frames in memory, so that calls to % getframe() can avoid disk IO for cached frames (note that only frames % returned by getframe() are cached). This is useful if the same frames are % accessed repeatedly. When the cache is full, the frame in the cache % accessed least recently is discarded. Memory requirements are % proportional to cache size. % % USAGE % sr = seqIo( fName, 'reader', [cache] ) % % INPUTS % fName - seq file name % cache - [0] size of cache % % OUTPUTS % sr - interface for reading seq file % % EXAMPLE % % See also seqIo, seqReaderPlugin if(nargin<2 || isempty(cache)), cache=0; end if( cache>0 ), [as, fs, Is, ts, inds]=deal([]); end r=@seqReaderPlugin; s=r('open',int32(-1),fName); sr = struct( 'close',@() r('close',s), 'getframe',@getframe, ... 'getframeb',@() r('getframeb',s), 'getts',@() r('getts',s), ... 'getinfo',@() r('getinfo',s), 'getnext',@() r('getnext',s), ... 'next',@() r('next',s), 'seek',@(f) r('seek',s,f), ... 'step',@(d) r('step',s,d)); function [I,t] = getframe() % if not using cache simply call 'getframe' and done if(cache<=0), [I,t]=r('getframe',s); return; end % if cache initialized and frame in cache perform lookup f=r('getinfo',s); f=f.curFrame; i=find(f==fs,1); if(i), as=as+1; as(i)=0; t=ts(i); I=Is(inds{:},i); return; end % if image not in cache add (and possibly initialize) [I,t]=r('getframe',s); if(0), fprintf('reading frame %i\n',f); end if(isempty(Is)), Is=zeros([size(I) cache],class(I)); as=ones(1,cache); fs=-as; ts=as; inds=repmat({':'},1,ndims(I)); end [~,i]=max(as); as(i)=0; fs(i)=f; ts(i)=t; Is(inds{:},i)=I; end end function sw = writer( fName, info ) % Create interface sw for writing seq files. % % Create interface sw to seq file with the following commands: % sw.close(); % Close seq file (sw is useless after). % sw.addframe(I,[ts]); % Writes video frame (and timestamp) % sw.addframeb(bytes); % Writes video frame with no encoding. % info = sw.getinfo(); % Return struct with info about video. % % The following params must be specified in struct 'info' upon opening: % width - frame width % height - frame height % fps - frames per second % quality - [80] compression quality (0 to 100) % codec - string representing codec, options include: % 'monoraw'/'imageFormat100' - black/white uncompressed % 'raw'/'imageFormat200' - color (BGR) uncompressed % 'monojpg'/'imageFormat102' - black/white jpg compressed % 'jpg'/'imageFormat201' - color jpg compressed % 'monopng'/'imageFormat001' - black/white png compressed % 'png'/'imageFormat002' - color png compressed % % USAGE % sw = seqIo( fName, 'writer', info ) % % INPUTS % fName - seq file name % info - see above % % OUTPUTS % sw - interface for writing seq file % % EXAMPLE % % See also seqIo, seqWriterPlugin w=@seqWriterPlugin; s=w('open',int32(-1),fName,info); sw = struct( 'close',@() w('close',s), 'getinfo',@() w('getinfo',s), ... 'addframe',@(varargin) w('addframe',s,varargin{:}), ... 'addframeb',@(varargin) w('addframeb',s,varargin{:}) ); end function info = getInfo( fName ) % Get info about seq file. % % USAGE % info = seqIo( fName, 'getInfo' ) % % INPUTS % fName - seq file name % % OUTPUTS % info - information struct % % EXAMPLE % % See also seqIo sr=reader(fName); info=sr.getinfo(); sr.close(); end function crop( fName, tName, frames ) % Crop sub-sequence from seq file. % % Frame indices are 0 indexed. frames need not be consecutive and can % contain duplicates. An index of -1 indicates a blank (all 0) frame. If % contiguous subset of frames is cropped timestamps are preserved. % % USAGE % seqIo( fName, 'crop', tName, frames ) % % INPUTS % fName - seq file name % tName - cropped seq file name % frames - frame indices (0 indexed) % % OUTPUTS % % EXAMPLE % % See also seqIo sr=reader(fName); info=sr.getinfo(); sw=writer(tName,info); frames=frames(:)'; pad=sr.getnext(); pad(:)=0; kp=frames>=0 & frames<info.numFrames; if(~all(kp)), frames=frames(kp); warning('piotr:seqIo:crop','%i out of bounds frames',sum(~kp)); end ordered=all(frames(2:end)==frames(1:end-1)+1); n=length(frames); k=0; tid=ticStatus; for f=frames if(f<0), sw.addframe(pad); continue; end sr.seek(f); [I,ts]=sr.getframeb(); k=k+1; tocStatus(tid,k/n); if(ordered), sw.addframeb(I,ts); else sw.addframeb(I); end end; sw.close(); sr.close(); end function Is = toImgs( fName, tDir, skip, f0, f1, ext ) % Extract images from seq file to target directory or array. % % USAGE % Is = seqIo( fName, 'toImgs', [tDir], [skip], [f0], [f1], [ext] ) % % INPUTS % fName - seq file name % tDir - [] target directory (if empty extract images to array) % skip - [1] skip between written frames % f0 - [0] first frame to write % f1 - [numFrames-1] last frame to write % ext - [] optionally save as given type (slow, reconverts) % % OUTPUTS % Is - if isempty(tDir) outputs image array (else Is=[]) % % EXAMPLE % % See also seqIo if(nargin<2 || isempty(tDir)), tDir=[]; end if(nargin<3 || isempty(skip)), skip=1; end if(nargin<4 || isempty(f0)), f0=0; end if(nargin<5 || isempty(f1)), f1=inf; end if(nargin<6 || isempty(ext)), ext=''; end sr=reader(fName); info=sr.getinfo(); f1=min(f1,info.numFrames-1); frames=f0:skip:f1; n=length(frames); tid=ticStatus; k=0; % output images to array if(isempty(tDir)) I=sr.getnext(); d=ndims(I); assert(d==2 || d==3); try Is=zeros([size(I) n],class(I)); catch e; sr.close(); throw(e); end for k=1:n, sr.seek(frames(k)); I=sr.getframe(); tocStatus(tid,k/n); if(d==2), Is(:,:,k)=I; else Is(:,:,:,k)=I; end; end sr.close(); return; end % output images to directory if(~exist(tDir,'dir')), mkdir(tDir); end; Is=[]; for frame=frames f=[tDir '/I' int2str2(frame,5) '.']; sr.seek(frame); if(~isempty(ext)), I=sr.getframe(); imwrite(I,[f ext]); else I=sr.getframeb(); f=fopen([f info.ext],'w'); if(f<=0), sr.close(); assert(false); end fwrite(f,I); fclose(f); end; k=k+1; tocStatus(tid,k/n); end; sr.close(); end function frImgs( fName, info, varargin ) % Create seq file from an array or directory of images or from an AVI file. % % For info, if converting from array, only codec (e.g., 'jpg') and fps must % be specified while width and height and determined automatically. If % converting from AVI, fps is also determined automatically. % % USAGE % seqIo( fName, 'frImgs', info, varargin ) % % INPUTS % fName - seq file name % info - defines codec, etc, see seqIo>writer % varargin - additional params (struct or name/value pairs) % .aviName - [] if specified create seq from avi file % .Is - [] if specified create seq from image array % .sDir - [] source directory % .skip - [1] skip between frames % .name - ['I'] base name of images % .nDigits - [5] number of digits for filename index % .f0 - [0] first frame to read % .f1 - [10^6] last frame to read % % OUTPUTS % % EXAMPLE % % See also seqIo, seqIo>writer dfs={'aviName','','Is',[],'sDir',[],'skip',1,'name','I',... 'nDigits',5,'f0',0,'f1',10^6}; [aviName,Is,sDir,skip,name,nDigits,f0,f1] ... = getPrmDflt(varargin,dfs,1); if(~isempty(aviName)) if(exist('mmread.m','file')==2) % use external mmread function % mmread requires full pathname, which is obtained via 'which'. But, % 'which' can fail (maltab bug), so best to just pass in full pathname t=which(aviName); if(~isempty(t)), aviName=t; end V=mmread(aviName); n=V.nrFramesTotal; info.height=V.height; info.width=V.width; info.fps=V.rate; sw=writer(fName,info); tid=ticStatus('creating seq from avi'); for f=1:n, sw.addframe(V.frames(f).cdata); tocStatus(tid,f/n); end sw.close(); else % use matlab mmreader function emsg=['mmreader.m failed to load video. In general mmreader.m is ' ... 'known to have many issues, especially on Linux. I suggest ' ... 'installing the similarly named mmread toolbox from Micah ' ... 'Richert, available at Matlab Central. If mmread is installed, ' ... 'seqIo will automatically use mmread instead of mmreader.']; try V=mmreader(aviName); catch %#ok<DMMR,CTCH> error('piotr:seqIo:frImgs',emsg); end; n=V.NumberOfFrames; info.height=V.Height; info.width=V.Width; info.fps=V.FrameRate; sw=writer(fName,info); tid=ticStatus('creating seq from avi'); for f=1:n, sw.addframe(read(V,f)); tocStatus(tid,f/n); end sw.close(); end elseif( isempty(Is) ) assert(exist(sDir,'dir')==7); sw=writer(fName,info); info=sw.getinfo(); frmStr=sprintf('%s/%s%%0%ii.%s',sDir,name,nDigits,info.ext); for frame = f0:skip:f1 f=sprintf(frmStr,frame); if(~exist(f,'file')), break; end f=fopen(f,'r'); if(f<=0), sw.close(); assert(false); end I=fread(f); fclose(f); sw.addframeb(I); end; sw.close(); if(frame==f0), warning('No images found.'); end %#ok<WNTAG> else nd=ndims(Is); if(nd==2), nd=3; end; assert(nd<=4); nFrm=size(Is,nd); info.height=size(Is,1); info.width=size(Is,2); sw=writer(fName,info); if(nd==3), for f=1:nFrm, sw.addframe(Is(:,:,f)); end; end if(nd==4), for f=1:nFrm, sw.addframe(Is(:,:,:,f)); end; end sw.close(); end end function convert( fName, tName, imgFun, varargin ) % Convert seq file by applying imgFun(I) to each frame I. % % USAGE % seqIo( fName, 'convert', tName, imgFun, varargin ) % % INPUTS % fName - seq file name % tName - converted seq file name % imgFun - function to apply to each image % varargin - additional params (struct or name/value pairs) % .info - [] info for target seq file % .skip - [1] skip between frames % .f0 - [0] first frame to read % .f1 - [inf] last frame to read % % OUTPUTS % % EXAMPLE % % See also seqIo dfs={'info',[],'skip',1,'f0',0,'f1',inf}; [info,skip,f0,f1]=getPrmDflt(varargin,dfs,1); assert(~strcmp(tName,fName)); sr=reader(fName); infor=sr.getinfo(); if(isempty(info)), info=infor; end; n=infor.numFrames; f1=min(f1,n-1); I=sr.getnext(); I=imgFun(I); info.width=size(I,2); info.height=size(I,1); sw=writer(tName,info); tid=ticStatus('converting seq'); frames=f0:skip:f1; n=length(frames); k=0; for f=frames, sr.seek(f); [I,ts]=sr.getframe(); I=imgFun(I); if(skip==1), sw.addframe(I,ts); else sw.addframe(I); end k=k+1; tocStatus(tid,k/n); end; sw.close(); sr.close(); end function newHeader( fName, info ) % Replace header of seq file with provided info. % % Can be used if the file fName has a corrupt header. Automatically tries % to compute number of frames in fName. No guarantees that it will work. % % USAGE % seqIo( fName, 'newHeader', info ) % % INPUTS % fName - seq file name % info - info for target seq file % % OUTPUTS % % EXAMPLE % % See also seqIo [d,n]=fileparts(fName); if(isempty(d)), d='.'; end fName=[d '/' n]; tName=[fName '-new' datestr(now,30)]; if(exist([fName '-seek.mat'],'file')); delete([fName '-seek.mat']); end srp=@seqReaderPlugin; hr=srp('open',int32(-1),fName,info); tid=ticStatus; info=srp('getinfo',hr); sw=writer(tName,info); n=info.numFrames; for f=1:n, srp('next',hr); [I,ts]=srp('getframeb',hr); sw.addframeb(I,ts); tocStatus(tid,f/n); end srp('close',hr); sw.close(); end function sr = readerDual( fNames, cache ) % Create interface sr for reading dual seq files. % % Wrapper for two seq files of the same image dims and roughly the same % frame counts that are treated as a single reader object. getframe() % returns the concatentation of the two frames. For videos of different % frame counts, the first video serves as the "dominant" video and the % frame count of the second video is adjusted accordingly. Same general % usage as in reader, but the only supported operations are: close(), % getframe(), getinfo(), and seek(). % % USAGE % sr = seqIo( fNames, 'readerDual', [cache] ) % % INPUTS % fNames - two seq file names % cache - [0] size of cache (see seqIo>reader) % % OUTPUTS % sr - interface for reading seq file % % EXAMPLE % % See also seqIo, seqIo>reader if(nargin<2 || isempty(cache)), cache=0; end s1=reader(fNames{1}, cache); i1=s1.getinfo(); s2=reader(fNames{2}, cache); i2=s2.getinfo(); info=i1; info.width=i1.width+i2.width; if( i1.width~=i2.width || i1.height~=i2.height ) s1.close(); s2.close(); error('Mismatched videos'); end if( i1.numFrames~=i2.numFrames ) warning('seq files of different lengths'); end %#ok<WNTAG> frame2=@(f) round(f/(i1.numFrames-1)*(i2.numFrames-1)); sr=struct('close',@() min(s1.close(),s2.close()), ... 'getframe',@getframe, 'getinfo',@() info, ... 'seek',@(f) s1.seek(f) & s2.seek(frame2(f)) ); function [I,t] = getframe() [I1,t]=s1.getframe(); I2=s2.getframe(); I=[I1 I2]; end end
github
garrickbrazil/SDS-RCNN-master
seqReaderPlugin.m
.m
SDS-RCNN-master/external/pdollar_toolbox/videos/seqReaderPlugin.m
9,617
utf_8
ad8f912634cafe13df6fc7d67aeff05a
function varargout = seqReaderPlugin( cmd, h, varargin ) % Plugin for seqIo and videoIO to allow reading of seq files. % % Do not call directly, use as plugin for seqIo or videoIO instead. % The following is a list of commands available (srp=seqReaderPlugin): % h = srp('open',h,fName) % Open a seq file for reading (h ignored). % h = srp('close',h); % Close seq file (output h is -1). % [I,ts] =srp('getframe',h) % Get current frame (returns [] if invalid). % [I,ts] =srp('getframeb',h) % Get current frame with no decoding. % ts = srp('getts',h) % Return timestamps for all frames. % info = srp('getinfo',h) % Return struct with info about video. % [I,ts] =srp('getnext',h) % Shortcut for 'next' followed by 'getframe'. % out = srp('next',h) % Go to next frame (out=0 on fail). % out = srp('seek',h,frame) % Go to specified frame (out=0 on fail). % out = srp('step',h,delta) % Go to current frame+delta (out=0 on fail). % % USAGE % varargout = seqReaderPlugin( cmd, h, varargin ) % % INPUTS % cmd - string indicating operation to perform % h - unique identifier for open seq file % varargin - additional options (vary according to cmd) % % OUTPUTS % varargout - output (varies according to cmd) % % EXAMPLE % % See also SEQIO, SEQWRITERPLUGIN % % Piotr's Computer Vision Matlab Toolbox Version 3.10 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] % persistent variables to keep track of all loaded .seq files persistent h1 hs cs fids infos tNms; if(isempty(h1)), h1=int32(now); hs=int32([]); infos={}; tNms={}; end nIn=nargin-2; in=varargin; o2=[]; cmd=lower(cmd); % open seq file if(strcmp(cmd,'open')) chk(nIn,1,2); h=length(hs)+1; hs(h)=h1; varargout={h1}; h1=h1+1; [pth,name]=fileparts(in{1}); if(isempty(pth)), pth='.'; end if(nIn==1), info=[]; else info=in{2}; end fName=[pth filesep name]; cs(h)=-1; [infos{h},fids(h),tNms{h}]=open(fName,info); return; end % Get the handle for this instance [v,h]=ismember(h,hs); if(~v), error('Invalid load plugin handle'); end c=cs(h); fid=fids(h); info=infos{h}; tNm=tNms{h}; % close seq file if(strcmp(cmd,'close')) chk(nIn,0); varargout={-1}; fclose(fid); kp=[1:h-1 h+1:length(hs)]; hs=hs(kp); cs=cs(kp); fids=fids(kp); infos=infos(kp); tNms=tNms(kp); if(exist(tNm,'file')), delete(tNm); end; return; end % perform appropriate operation switch( cmd ) case 'getframe', chk(nIn,0); [o1,o2]=getFrame(c,fid,info,tNm,1); case 'getframeb', chk(nIn,0); [o1,o2]=getFrame(c,fid,info,tNm,0); case 'getts', chk(nIn,0); o1=getTs(0:info.numFrames-1,fid,info); case 'getinfo', chk(nIn,0); o1=info; o1.curFrame=c; case 'getnext', chk(nIn,0); c=c+1; [o1,o2]=getFrame(c,fid,info,tNm,1); case 'next', chk(nIn,0); [c,o1]=valid(c+1,info); case 'seek', chk(nIn,1); [c,o1]=valid(in{1},info); case 'step', chk(nIn,1); [c,o1]=valid(c+in{1},info); otherwise, error(['Unrecognized command: "' cmd '"']); end cs(h)=c; varargout={o1,o2}; end function chk(nIn,nMin,nMax) if(nargin<3), nMax=nMin; end if(nIn>0 && nMin==0 && nMax==0), error(['"' cmd '" takes no args.']); end if(nIn<nMin||nIn>nMax), error(['Incorrect num args for "' cmd '".']); end end function success = getImgFile( fName ) % create local copy of fName which is in a imagesci/private fName = [fName '.' mexext]; s = filesep; success = 1; sName = [fileparts(which('imread.m')) s 'private' s fName]; tName = [fileparts(mfilename('fullpath')) s 'private' s fName]; if(~exist(tName,'file')), success=copyfile(sName,tName); end end function [info, fid, tNm] = open( fName, info ) % open video for reading, get header if(exist([fName '.seq'],'file')==0) error('seq file not found: %s.seq',fName); end fid=fopen([fName '.seq'],'r','l'); if(isempty(info)), info=readHeader(fid); else info.numFrames=0; fseek(fid,1024,'bof'); end switch(info.imageFormat) case {100,200}, ext='raw'; case {101 }, ext='brgb8'; case {102,201}, ext='jpg'; case {103 }, ext ='jbrgb'; case {001,002}, ext='png'; otherwise, error('unknown format'); end; info.ext=ext; s=1; if(any(strcmp(ext,{'jpg','jbrgb'}))), s=getImgFile('rjpg8c'); end if(strcmp(ext,'png')), s=getImgFile('png'); if(s), info.readImg=@(nm) png('read',nm,[]); end; end if(strcmp(ext,'png') && ~s), s=getImgFile('pngreadc'); if(s), info.readImg=@(nm) pngreadc(nm,[],false); end; end if(~s), error('Cannot find Matlab''s source image reader'); end % generate unique temporary name [~,tNm]=fileparts(fName); t=clock; t=mod(t(end),1); tNm=sprintf('tmp_%s_%15i.%s',tNm,round((t+rand)/2*1e15),ext); % compute seek info for compressed images if(any(strcmp(ext,{'raw','brgb8'}))), assert(info.numFrames>0); else oName=[fName '-seek.mat']; n=info.numFrames; if(n==0), n=10^7; end if(exist(oName,'file')==2), load(oName); info.seek=seek; else %#ok<NODEF> tid=ticStatus('loading seek info',.1,5); seek=zeros(n,1); seek(1)=1024; extra=8; % extra bytes after image data (8 for ts, then 0 or 8 empty) for i=2:n s=seek(i-1)+fread(fid,1,'uint32')+extra; valid=fseek(fid,s,'bof')==0; if(i==2 && valid), if(fread(fid,1,'uint32')~=0), fseek(fid,-4,'cof'); else extra=extra+8; s=s+8; valid=fseek(fid,s,'bof')==0; end; end if(valid), seek(i)=s; tocStatus(tid,i/n); else n=i-1; seek=seek(1:n); tocStatus(tid,1); break; end end; if(info.numFrames==0), info.numFrames=n; end try save(oName,'seek'); catch; end; info.seek=seek; %#ok<CTCH> end end % compute frame rate from timestamps as stored fps may be incorrect n=min(100,info.numFrames); if(n==1), return; end ts = getTs( 0:(n-1), fid, info ); ds=ts(2:end)-ts(1:end-1); ds=ds(abs(ds-median(ds))<.005); if(~isempty(ds)), info.fps=1/mean(ds); end end function [frame,v] = valid( frame, info ) v=(frame>=0 && frame<info.numFrames); end function [I,ts] = getFrame( frame, fid, info, tNm, decode ) % get frame image (I) and timestamp (ts) at which frame was recorded nCh=info.imageBitDepth/8; ext=info.ext; if(frame<0 || frame>=info.numFrames), I=[]; ts=[]; return; end switch ext case {'raw','brgb8'} % read in an uncompressed image (assume imageBitDepthReal==8) fseek(fid,1024+frame*info.trueImageSize,'bof'); I = fread(fid,info.imageSizeBytes,'*uint8'); if( decode ) % reshape appropriately for mxn or mxnx3 RGB image siz = [info.height info.width nCh]; if(nCh==1), I=reshape(I,siz(2),siz(1))'; else I = permute(reshape(I,siz(3),siz(2),siz(1)),[3,2,1]); end if(nCh==3), t=I(:,:,3); I(:,:,3)=I(:,:,1); I(:,:,1)=t; end if(strcmp(ext,'brgb8')), I=demosaic(I,'bggr'); end end case {'jpg','jbrgb'} fseek(fid,info.seek(frame+1),'bof'); nBytes=fread(fid,1,'uint32'); I = fread(fid,nBytes-4,'*uint8'); if( decode ) % write/read to/from temporary .jpg (not that much overhead) assert(I(1)==255 && I(2)==216 && I(end-1)==255 && I(end)==217); % JPG for t=0:99, fw=fopen(tNm,'w'); if(fw>=0), break; end; pause(.01); end if(fw==-1), error(['unable to write: ' tNm]); end fwrite(fw,I); fclose(fw); I=rjpg8c(tNm); if(strcmp(ext,'jbrgb')), I=demosaic(I,'bggr'); end end case 'png' fseek(fid,info.seek(frame+1),'bof'); nBytes=fread(fid,1,'uint32'); I = fread(fid,nBytes-4,'*uint8'); if( decode ) % write/read to/from temporary .png (not that much overhead) for t=0:99, fw=fopen(tNm,'w'); if(fw>=0), break; end; pause(.01); end if(fw==-1), error(['unable to write: ' tNm]); end fwrite(fw,I); fclose(fw); I=info.readImg(tNm); I=permute(I,ndims(I):-1:1); end otherwise, assert(false); end if(nargout==2), ts=fread(fid,1,'uint32')+fread(fid,1,'uint16')/1000; end end function ts = getTs( frames, fid, info ) % get timestamps (ts) at which frames were recorded n=length(frames); ts=nan(1,n); for i=1:n, frame=frames(i); if(frame<0 || frame>=info.numFrames), continue; end switch info.ext case {'raw','brgb8'} % uncompressed fseek(fid,1024+frame*info.trueImageSize+info.imageSizeBytes,'bof'); case {'jpg','png','jbrgb'} % compressed fseek(fid,info.seek(frame+1),'bof'); fseek(fid,fread(fid,1,'uint32')-4,'cof'); otherwise, assert(false); end ts(i)=fread(fid,1,'uint32')+fread(fid,1,'uint16')/1000; end end function info = readHeader( fid ) % see streampix manual for info on header fseek(fid,0,'bof'); % check that header is not all 0's (a common error) [tmp,n]=fread(fid,1024); if(n<1024), error('no header'); end if(all(tmp==0)), error('fully empty header'); end; fseek(fid,0,'bof'); % first 4 bytes store OxFEED, next 24 store 'Norpix seq ' if( ~strcmp(sprintf('%X',fread(fid,1,'uint32')),'FEED') || ... ~strcmp(char(fread(fid,10,'uint16'))','Norpix seq') ) %#ok<FREAD> error('invalid header'); end; fseek(fid,4,'cof'); % next 8 bytes for version and header size (1024), then 512 for descr version=fread(fid,1,'int32'); assert(fread(fid,1,'uint32')==1024); descr=char(fread(fid,256,'uint16'))'; %#ok<FREAD> % read in more info tmp=fread(fid,9,'uint32'); assert(tmp(8)==0); fps = fread(fid,1,'float64'); codec=['imageFormat' int2str2(tmp(6),3)]; % store information in info struct info=struct( 'width',tmp(1), 'height',tmp(2), 'imageBitDepth',tmp(3), ... 'imageBitDepthReal',tmp(4), 'imageSizeBytes',tmp(5), ... 'imageFormat',tmp(6), 'numFrames',tmp(7), 'trueImageSize', tmp(9),... 'fps',fps, 'seqVersion',version, 'codec',codec, 'descr',descr, ... 'nHiddenFinalFrames',0 ); assert(info.imageBitDepthReal==8); % seek to end of header fseek(fid,432,'cof'); end
github
garrickbrazil/SDS-RCNN-master
pcaApply.m
.m
SDS-RCNN-master/external/pdollar_toolbox/classify/pcaApply.m
3,320
utf_8
a06fc0e54d85930cbc0536c874ac63b7
function varargout = pcaApply( X, U, mu, k ) % Companion function to pca. % % Use pca.m to retrieve the principal components U and the mean mu from a % set of vectors x, then use pcaApply to get the first k coefficients of % x in the space spanned by the columns of U. See pca for general usage. % % If x is large, pcaApply first splits and processes x in parts. This % allows pcaApply to work even for very large arrays. % % This may prove useful: % siz=size(X); k=100; Uim=reshape(U(:,1:k),[siz(1:end-1) k ]); % % USAGE % [ Yk, Xhat, avsq ] = pcaApply( X, U, mu, k ) % % INPUTS % X - data for which to get PCA coefficients % U - returned by pca.m % mu - returned by pca.m % k - number of principal coordinates to approximate X with % % OUTPUTS % Yk - first k coordinates of X in column space of U % Xhat - approximation of X corresponding to Yk % avsq - measure of squared error normalized to fall between [0,1] % % EXAMPLE % % See also PCA, PCAVISUALIZE % % Piotr's Computer Vision Matlab Toolbox Version 2.0 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] % sizes / dimensions siz = size(X); nd = ndims(X); [D,r] = size(U); if(D==prod(siz) && ~(nd==2 && siz(2)==1)); siz=[siz, 1]; nd=nd+1; end n = siz(end); % some error checking if(prod(siz(1:end-1))~=D); error('incorrect size for X or U'); end if(isa(X,'uint8')); X = double(X); end if(k>r); warning(['k set to ' int2str(r)]); k=r; end; %#ok<WNTAG> % If X is small simply call pcaApply1 once. % OW break up X and call pcaApply1 multiple times and recombine. maxWidth = ceil( (10^7) / D ); if( maxWidth > n ) varargout = cell(1,nargout); [varargout{:}] = pcaApply1( X, U, mu, k ); else inds = {':'}; inds = inds(:,ones(1,nd-1)); Yk = zeros( k, n ); Xhat = zeros( siz ); avsq = 0; avsqOrig = 0; last = 0; if( nargout==3 ); out=cell(1,4); else out=cell(1,nargout); end; while(last < n) first=last+1; last=min(first+maxWidth-1,n); Xi = X(inds{:}, first:last); [out{:}] = pcaApply1( Xi, U, mu, k ); Yk(:,first:last) = out{1}; if( nargout>=2 ); Xhat(inds{:},first:last)=out{2}; end; if( nargout>=3 ); avsq=avsq+out{3}; avsqOrig=avsqOrig+out{4}; end; end; varargout = {Yk, Xhat, avsq/avsqOrig}; end function [ Yk, Xhat, avsq, avsqOrig ] = pcaApply1( X, U, mu, k ) % sizes / dimensions siz = size(X); nd = ndims(X); [D,r] = size(U); if(D==prod(siz) && ~(nd==2 && siz(2)==1)); siz=[siz, 1]; nd=nd+1; end n = siz(end); % subtract mean, then flatten X Xorig = X; muRep = repmat(mu, [ones(1,nd-1), n ] ); X = X - muRep; X = reshape( X, D, n ); % Find Yk, the first k coefficients of X in the new basis if( r<=k ); Uk=U; else Uk=U(:,1:k); end; Yk = Uk' * X; % calculate Xhat - the approx of X using the first k princ components if( nargout>1 ) Xhat = Uk * Yk; Xhat = reshape( Xhat, siz ); Xhat = Xhat + muRep; end % caclulate average value of (Xhat-Xorig).^2 compared to average value % of X.^2, where X is Xorig without the mean. This is equivalent to % what fraction of the variance is captured by Xhat. if( nargout>2 ) avsq = Xhat - Xorig; avsq = dot(avsq(:),avsq(:)); avsqOrig = dot(X(:),X(:)); if( nargout==3 ); avsq=avsq/avsqOrig; end end
github
garrickbrazil/SDS-RCNN-master
forestTrain.m
.m
SDS-RCNN-master/external/pdollar_toolbox/classify/forestTrain.m
6,138
utf_8
de534e2a010f452a7b13167dbf9df239
function forest = forestTrain( data, hs, varargin ) % Train random forest classifier. % % Dimensions: % M - number trees % F - number features % N - number input vectors % H - number classes % % USAGE % forest = forestTrain( data, hs, [varargin] ) % % INPUTS % data - [NxF] N length F feature vectors % hs - [Nx1] or {Nx1} target output labels in [1,H] % varargin - additional params (struct or name/value pairs) % .M - [1] number of trees to train % .H - [max(hs)] number of classes % .N1 - [5*N/M] number of data points for training each tree % .F1 - [sqrt(F)] number features to sample for each node split % .split - ['gini'] options include 'gini', 'entropy' and 'twoing' % .minCount - [1] minimum number of data points to allow split % .minChild - [1] minimum number of data points allowed at child nodes % .maxDepth - [64] maximum depth of tree % .dWts - [] weights used for sampling and weighing each data point % .fWts - [] weights used for sampling features % .discretize - [] optional function mapping structured to class labels % format: [hsClass,hBest] = discretize(hsStructured,H); % % OUTPUTS % forest - learned forest model struct array w the following fields % .fids - [Kx1] feature ids for each node % .thrs - [Kx1] threshold corresponding to each fid % .child - [Kx1] index of child for each node % .distr - [KxH] prob distribution at each node % .hs - [Kx1] or {Kx1} most likely label at each node % .count - [Kx1] number of data points at each node % .depth - [Kx1] depth of each node % % EXAMPLE % N=10000; H=5; d=2; [xs0,hs0,xs1,hs1]=demoGenData(N,N,H,d,1,1); % xs0=single(xs0); xs1=single(xs1); % pTrain={'maxDepth',50,'F1',2,'M',150,'minChild',5}; % tic, forest=forestTrain(xs0,hs0,pTrain{:}); toc % hsPr0 = forestApply(xs0,forest); % hsPr1 = forestApply(xs1,forest); % e0=mean(hsPr0~=hs0); e1=mean(hsPr1~=hs1); % fprintf('errors trn=%f tst=%f\n',e0,e1); figure(1); % subplot(2,2,1); visualizeData(xs0,2,hs0); % subplot(2,2,2); visualizeData(xs0,2,hsPr0); % subplot(2,2,3); visualizeData(xs1,2,hs1); % subplot(2,2,4); visualizeData(xs1,2,hsPr1); % % See also forestApply, fernsClfTrain % % Piotr's Computer Vision Matlab Toolbox Version 3.24 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] % get additional parameters and fill in remaining parameters dfs={ 'M',1, 'H',[], 'N1',[], 'F1',[], 'split','gini', 'minCount',1, ... 'minChild',1, 'maxDepth',64, 'dWts',[], 'fWts',[], 'discretize','' }; [M,H,N1,F1,splitStr,minCount,minChild,maxDepth,dWts,fWts,discretize] = ... getPrmDflt(varargin,dfs,1); [N,F]=size(data); assert(length(hs)==N); discr=~isempty(discretize); minChild=max(1,minChild); minCount=max([1 minCount minChild]); if(isempty(H)), H=max(hs); end; assert(discr || all(hs>0 & hs<=H)); if(isempty(N1)), N1=round(5*N/M); end; N1=min(N,N1); if(isempty(F1)), F1=round(sqrt(F)); end; F1=min(F,F1); if(isempty(dWts)), dWts=ones(1,N,'single'); end; dWts=dWts/sum(dWts); if(isempty(fWts)), fWts=ones(1,F,'single'); end; fWts=fWts/sum(fWts); split=find(strcmpi(splitStr,{'gini','entropy','twoing'}))-1; if(isempty(split)), error('unknown splitting criteria: %s',splitStr); end % make sure data has correct types if(~isa(data,'single')), data=single(data); end if(~isa(hs,'uint32') && ~discr), hs=uint32(hs); end if(~isa(fWts,'single')), fWts=single(fWts); end if(~isa(dWts,'single')), dWts=single(dWts); end % train M random trees on different subsets of data prmTree = {H,F1,minCount,minChild,maxDepth,fWts,split,discretize}; for i=1:M if(N==N1), data1=data; hs1=hs; dWts1=dWts; else d=wswor(dWts,N1,4); data1=data(d,:); hs1=hs(d); dWts1=dWts(d); dWts1=dWts1/sum(dWts1); end tree = treeTrain(data1,hs1,dWts1,prmTree); if(i==1), forest=tree(ones(M,1)); else forest(i)=tree; end end end function tree = treeTrain( data, hs, dWts, prmTree ) % Train single random tree. [H,F1,minCount,minChild,maxDepth,fWts,split,discretize]=deal(prmTree{:}); N=size(data,1); K=2*N-1; discr=~isempty(discretize); thrs=zeros(K,1,'single'); distr=zeros(K,H,'single'); fids=zeros(K,1,'uint32'); child=fids; count=fids; depth=fids; hsn=cell(K,1); dids=cell(K,1); dids{1}=uint32(1:N); k=1; K=2; while( k < K ) % get node data and store distribution dids1=dids{k}; dids{k}=[]; hs1=hs(dids1); n1=length(hs1); count(k)=n1; if(discr), [hs1,hsn{k}]=feval(discretize,hs1,H); hs1=uint32(hs1); end if(discr), assert(all(hs1>0 & hs1<=H)); end; pure=all(hs1(1)==hs1); if(~discr), if(pure), distr(k,hs1(1))=1; hsn{k}=hs1(1); else distr(k,:)=histc(hs1,1:H)/n1; [~,hsn{k}]=max(distr(k,:)); end; end % if pure node or insufficient data don't train split if( pure || n1<=minCount || depth(k)>maxDepth ), k=k+1; continue; end % train split and continue fids1=wswor(fWts,F1,4); data1=data(dids1,fids1); [~,order1]=sort(data1); order1=uint32(order1-1); [fid,thr,gain]=forestFindThr(data1,hs1,dWts(dids1),order1,H,split); fid=fids1(fid); left=data(dids1,fid)<thr; count0=nnz(left); if( gain>1e-10 && count0>=minChild && (n1-count0)>=minChild ) child(k)=K; fids(k)=fid-1; thrs(k)=thr; dids{K}=dids1(left); dids{K+1}=dids1(~left); depth(K:K+1)=depth(k)+1; K=K+2; end; k=k+1; end % create output model struct K=1:K-1; if(discr), hsn={hsn(K)}; else hsn=[hsn{K}]'; end tree=struct('fids',fids(K),'thrs',thrs(K),'child',child(K),... 'distr',distr(K,:),'hs',hsn,'count',count(K),'depth',depth(K)); end function ids = wswor( prob, N, trials ) % Fast weighted sample without replacement. Alternative to: % ids=datasample(1:length(prob),N,'weights',prob,'replace',false); M=length(prob); assert(N<=M); if(N==M), ids=1:N; return; end if(all(prob(1)==prob)), ids=randperm(M,N); return; end cumprob=min([0 cumsum(prob)],1); assert(abs(cumprob(end)-1)<.01); cumprob(end)=1; [~,ids]=histc(rand(N*trials,1),cumprob); [s,ord]=sort(ids); K(ord)=[1; diff(s)]~=0; ids=ids(K); if(length(ids)<N), ids=wswor(cumprob,N,trials*2); end ids=ids(1:N)'; end
github
garrickbrazil/SDS-RCNN-master
fernsRegTrain.m
.m
SDS-RCNN-master/external/pdollar_toolbox/classify/fernsRegTrain.m
5,914
utf_8
b9ed2d87a22cb9cbb1e2632495ddaf1d
function [ferns,ysPr] = fernsRegTrain( data, ys, varargin ) % Train boosted fern regressor. % % Boosted regression using random ferns as the weak regressor. See "Greedy % function approximation: A gradient boosting machine", Friedman, Annals of % Statistics 2001, for more details on boosted regression. % % A few notes on the parameters: 'type' should in general be set to 'res' % (the 'ave' version is an undocumented variant that only performs well % under limited conditions). 'loss' determines the loss function being % optimized, in general the 'L2' version is the most robust and effective. % 'reg' is a regularization term for the ferns, a low value such as .01 can % improve results. Setting the learning rate 'eta' is crucial in order to % achieve good performance, especially on noisy data. In general, eta % should decreased as M is increased. % % Dimensions: % M - number ferns % R - number repeats % S - fern depth % N - number samples % F - number features % % USAGE % [ferns,ysPr] = fernsRegTrain( data, hs, [varargin] ) % % INPUTS % data - [NxF] N length F feature vectors % ys - [Nx1] target output values % varargin - additional params (struct or name/value pairs) % .type - ['res'] options include {'res','ave'} % .loss - ['L2'] options include {'L1','L2','exp'} % .S - [2] fern depth (ferns are exponential in S) % .M - [50] number ferns (same as number phases) % .R - [10] number repetitions per fern % .thrr - [0 1] range for randomly generated thresholds % .reg - [0.01] fern regularization term in [0,1] % .eta - [1] learning rate in [0,1] (not used if type='ave') % .verbose - [0] if true output info to display % % OUTPUTS % ferns - learned fern model w the following fields % .fids - [MxS] feature ids for each fern for each depth % .thrs - [MxS] threshold corresponding to each fid % .ysFern - [2^SxM] stored values at fern leaves % .loss - loss(ys,ysGt) computes loss of ys relateive to ysGt % ysPr - [Nx1] predicted output values % % EXAMPLE % %% generate toy data % N=1000; sig=.5; f=@(x) cos(x*pi*4)+(x+1).^2; % xs0=rand(N,1); ys0=f(xs0)+randn(N,1)*sig; % xs1=rand(N,1); ys1=f(xs1)+randn(N,1)*sig; % %% train and apply fern regressor % prm=struct('type','res','loss','L2','eta',.05,... % 'thrr',[-1 1],'reg',.01,'S',2,'M',1000,'R',3,'verbose',0); % tic, [ferns,ysPr0] = fernsRegTrain(xs0,ys0,prm); toc % tic, ysPr1 = fernsRegApply( xs1, ferns ); toc % fprintf('errors train=%f test=%f\n',... % ferns.loss(ysPr0,ys0),ferns.loss(ysPr1,ys1)); % %% visualize results % figure(1); clf; hold on; plot(xs0,ys0,'.b'); plot(xs0,ysPr0,'.r'); % figure(2); clf; hold on; plot(xs1,ys1,'.b'); plot(xs1,ysPr1,'.r'); % % See also fernsRegApply, fernsInds % % Piotr's Computer Vision Matlab Toolbox Version 2.50 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] % get/check parameters dfs={'type','res','loss','L2','S',2,'M',50,'R',10,'thrr',[0 1],... 'reg',0.01,'eta',1,'verbose',0}; [type,loss,S,M,R,thrr,reg,eta,verbose]=getPrmDflt(varargin,dfs,1); type=type(1:3); assert(any(strcmp(type,{'res','ave'}))); assert(any(strcmp(loss,{'L1','L2','exp'}))); N=length(ys); if(strcmp(type,'ave')), eta=1; end % train stagewise regressor (residual or average) fids=zeros(M,S,'uint32'); thrs=zeros(M,S); ysSum=zeros(N,1); ysFern=zeros(2^S,M); for m=1:M % train R random ferns using different losses, keep best if(strcmp(type,'ave')), d=m; else d=1; end ysTar=d*ys-ysSum; best={}; if(strcmp(loss,'L1')), e=sum(abs(ysTar)); for r=1:R [fids1,thrs1,ysFern1,ys1]=trainFern(data,sign(ysTar),S,thrr,reg); a=medianw(ysTar./ys1,abs(ys1)); ysFern1=ysFern1*a; ys1=ys1*a; e1=sum(abs(ysTar-ys1)); if(e1<=e), e=e1; best={fids1,thrs1,ysFern1,ys1}; end end elseif(strcmp(loss,'L2')), e=sum(ysTar.^2); for r=1:R [fids1,thrs1,ysFern1,ys1]=trainFern(data,ysTar,S,thrr,reg); e1=sum((ysTar-ys1).^2); if(e1<=e), e=e1; best={fids1,thrs1,ysFern1,ys1}; end end elseif(strcmp(loss,'exp')), e=sum(exp(ysTar/d)+exp(-ysTar/d)); ysDeriv=exp(ysTar/d)-exp(-ysTar/d); for r=1:R [fids1,thrs1,ysFern1,ys1]=trainFern(data,ysDeriv,S,thrr,reg); e1=inf; if(m==1), aBst=1; end; aMin=aBst/5; aMax=aBst*5; for phase=1:3, aDel=(aMax-aMin)/10; for a=aMin:aDel:aMax eTmp=sum(exp((ysTar-a*ys1)/d)+exp((a*ys1-ysTar)/d)); if(eTmp<e1), a1=a; e1=eTmp; end end; aMin=a1-aDel; aMax=a1+aDel; end; ysFern1=ysFern1*a1; ys1=ys1*a1; if(e1<=e), e=e1; aBst=a1; best={fids1,thrs1,ysFern1,ys1}; end end end % store results and update sums assert(~isempty(best)); [fids1,thrs1,ysFern1,ys1]=deal(best{:}); fids(m,:)=fids1; thrs(m,:)=thrs1; ysFern(:,m)=ysFern1*eta; ysSum=ysSum+ys1*eta; if(verbose), fprintf('phase=%i error=%f\n',m,e); end end % create output struct if(strcmp(type,'ave')), d=M; else d=1; end; clear data; ferns=struct('fids',fids,'thrs',thrs,'ysFern',ysFern/d); ysPr=ysSum/d; switch loss case 'L1', ferns.loss=@(ys,ysGt) mean(abs(ys-ysGt)); case 'L2', ferns.loss=@(ys,ysGt) mean((ys-ysGt).^2); case 'exp', ferns.loss=@(ys,ysGt) mean(exp(ys-ysGt)+exp(ysGt-ys))-2; end end function [fids,thrs,ysFern,ysPr] = trainFern( data, ys, S, thrr, reg ) % Train single random fern regressor. [N,F]=size(data); mu=sum(ys)/N; ys=ys-mu; fids = uint32(floor(rand(1,S)*F+1)); thrs = rand(1,S)*(thrr(2)-thrr(1))+thrr(1); inds = fernsInds(data,fids,thrs); ysFern=zeros(2^S,1); cnts=zeros(2^S,1); for n=1:N, ind=inds(n); ysFern(ind)=ysFern(ind)+ys(n); cnts(ind)=cnts(ind)+1; end ysFern = ysFern ./ max(cnts+reg*N,eps) + mu; ysPr = ysFern(inds); end function m = medianw(x,w) % Compute weighted median of x. [x,ord]=sort(x(:)); w=w(ord); [~,ind]=max(cumsum(w)>=sum(w)/2); m = x(ind); end
github
garrickbrazil/SDS-RCNN-master
rbfDemo.m
.m
SDS-RCNN-master/external/pdollar_toolbox/classify/rbfDemo.m
2,929
utf_8
14cc64fb77bcac3edec51cf6b84ab681
function rbfDemo( dataType, noiseSig, scale, k, cluster, show ) % Demonstration of rbf networks for regression. % % See rbfComputeBasis for discussion of rbfs. % % USAGE % rbfDemo( dataType, noiseSig, scale, k, cluster, show ) % % INPUTS % dataType - 0: 1D sinusoid % 1: 2D sinusoid % 2: 2D stretched sinusoid % noiseSig - std of idd gaussian noise % scale - see rbfComputeBasis % k - see rbfComputeBasis % cluster - see rbfComputeBasis % show - figure to use for display (no display if == 0) % % OUTPUTS % % EXAMPLE % rbfDemo( 0, .2, 2, 5, 0, 1 ); % rbfDemo( 1, .2, 2, 50, 0, 3 ); % rbfDemo( 2, .2, 5, 50, 0, 5 ); % % See also RBFCOMPUTEBASIS, RBFCOMPUTEFTRS % % Piotr's Computer Vision Matlab Toolbox Version 2.0 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] %%% generate trn/tst data if( 1 ) [Xtrn,ytrn] = rbfToyData( 500, noiseSig, dataType ); [Xtst,ytst] = rbfToyData( 100, noiseSig, dataType ); end; %%% trn/apply rbfs rbfBasis = rbfComputeBasis( Xtrn, k, cluster, scale, show ); rbfWeight = rbfComputeFtrs(Xtrn,rbfBasis) \ ytrn; yTrnRes = rbfComputeFtrs(Xtrn,rbfBasis) * rbfWeight; yTstRes = rbfComputeFtrs(Xtst,rbfBasis) * rbfWeight; %%% get relative errors fracErrorTrn = sum((ytrn-yTrnRes).^2) / sum(ytrn.^2); fracErrorTst = sum((ytst-yTstRes).^2) / sum(ytst.^2); %%% display output display(fracErrorTst); display(fracErrorTrn); display(rbfBasis); %%% visualize surface minX = min([Xtrn; Xtst],[],1); maxX = max([Xtrn; Xtst],[],1); if( size(Xtrn,2)==1 ) xs = linspace( minX, maxX, 1000 )'; ys = rbfComputeFtrs(xs,rbfBasis) * rbfWeight; figure(show+1); clf; hold on; plot( xs, ys ); plot( Xtrn, ytrn, '.b' ); plot( Xtst, ytst, '.r' ); elseif( size(Xtrn,2)==2 ) xs1 = linspace(minX(1),maxX(1),25); xs2 = linspace(minX(2),maxX(2),25); [xs1,xs2] = ndgrid( xs1, xs2 ); ys = rbfComputeFtrs([xs1(:) xs2(:)],rbfBasis) * rbfWeight; figure(show+1); clf; surf( xs1, xs2, reshape(ys,size(xs1)) ); hold on; plot3( Xtrn(:,1), Xtrn(:,2), ytrn, '.b' ); plot3( Xtst(:,1), Xtst(:,2), ytst, '.r' ); end function [X,y] = rbfToyData( N, noiseSig, dataType ) % Toy data for rbfDemo. % % USAGE % [X,y] = rbfToyData( N, noiseSig, dataType ) % % INPUTS % N - number of points % dataType - 0: 1D sinusoid % 1: 2D sinusoid % 2: 2D stretched sinusoid % noiseSig - std of idd gaussian noise % % OUTPUTS % X - [N x d] N points of d dimensions each % y - [1 x N] value at example i %%% generate data if( dataType==0 ) X = rand( N, 1 ) * 10; y = sin( X ); elseif( dataType==1 ) X = rand( N, 2 ) * 10; y = sin( X(:,1)+X(:,2) ); elseif( dataType==2 ) X = rand( N, 2 ) * 10; y = sin( X(:,1)+X(:,2) ); X(:,2) = X(:,2) * 5; else error('unknown dataType'); end y = y + randn(size(y))*noiseSig;
github
garrickbrazil/SDS-RCNN-master
pdist2.m
.m
SDS-RCNN-master/external/pdollar_toolbox/classify/pdist2.m
5,162
utf_8
768ff9e8818251f756c8325368ee7d90
function D = pdist2( X, Y, metric ) % Calculates the distance between sets of vectors. % % Let X be an m-by-p matrix representing m points in p-dimensional space % and Y be an n-by-p matrix representing another set of points in the same % space. This function computes the m-by-n distance matrix D where D(i,j) % is the distance between X(i,:) and Y(j,:). This function has been % optimized where possible, with most of the distance computations % requiring few or no loops. % % The metric can be one of the following: % % 'euclidean' / 'sqeuclidean': % Euclidean / SQUARED Euclidean distance. Note that 'sqeuclidean' % is significantly faster. % % 'chisq' % The chi-squared distance between two vectors is defined as: % d(x,y) = sum( (xi-yi)^2 / (xi+yi) ) / 2; % The chi-squared distance is useful when comparing histograms. % % 'cosine' % Distance is defined as the cosine of the angle between two vectors. % % 'emd' % Earth Mover's Distance (EMD) between positive vectors (histograms). % Note for 1D, with all histograms having equal weight, there is a simple % closed form for the calculation of the EMD. The EMD between histograms % x and y is given by the sum(abs(cdf(x)-cdf(y))), where cdf is the % cumulative distribution function (computed simply by cumsum). % % 'L1' % The L1 distance between two vectors is defined as: sum(abs(x-y)); % % % USAGE % D = pdist2( X, Y, [metric] ) % % INPUTS % X - [m x p] matrix of m p-dimensional vectors % Y - [n x p] matrix of n p-dimensional vectors % metric - ['sqeuclidean'], 'chisq', 'cosine', 'emd', 'euclidean', 'L1' % % OUTPUTS % D - [m x n] distance matrix % % EXAMPLE % % simple example where points cluster well % [X,IDX] = demoGenData(100,0,5,4,10,2,0); % D = pdist2( X, X, 'sqeuclidean' ); % distMatrixShow( D, IDX ); % % comparison to pdist % n=500; d=200; r=100; X=rand(n,d); % tic, for i=1:r, D1 = pdist( X, 'euclidean' ); end, toc % tic, for i=1:r, D2 = pdist2( X, X, 'euclidean' ); end, toc % D1=squareform(D1); del=D1-D2; sum(abs(del(:))) % % See also pdist, distMatrixShow % % Piotr's Computer Vision Matlab Toolbox Version 2.52 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] if( nargin<3 || isempty(metric) ); metric=0; end; switch metric case {0,'sqeuclidean'} D = distEucSq( X, Y ); case 'euclidean' D = sqrt(distEucSq( X, Y )); case 'L1' D = distL1( X, Y ); case 'cosine' D = distCosine( X, Y ); case 'emd' D = distEmd( X, Y ); case 'chisq' D = distChiSq( X, Y ); otherwise error(['pdist2 - unknown metric: ' metric]); end D = max(0,D); end function D = distL1( X, Y ) m = size(X,1); n = size(Y,1); mOnes = ones(1,m); D = zeros(m,n); for i=1:n yi = Y(i,:); yi = yi( mOnes, : ); D(:,i) = sum( abs( X-yi),2 ); end end function D = distCosine( X, Y ) p=size(X,2); XX = sqrt(sum(X.*X,2)); X = X ./ XX(:,ones(1,p)); YY = sqrt(sum(Y.*Y,2)); Y = Y ./ YY(:,ones(1,p)); D = 1 - X*Y'; end function D = distEmd( X, Y ) Xcdf = cumsum(X,2); Ycdf = cumsum(Y,2); m = size(X,1); n = size(Y,1); mOnes = ones(1,m); D = zeros(m,n); for i=1:n ycdf = Ycdf(i,:); ycdfRep = ycdf( mOnes, : ); D(:,i) = sum(abs(Xcdf - ycdfRep),2); end end function D = distChiSq( X, Y ) % note: supposedly it's possible to implement this without a loop! m = size(X,1); n = size(Y,1); mOnes = ones(1,m); D = zeros(m,n); for i=1:n yi = Y(i,:); yiRep = yi( mOnes, : ); s = yiRep + X; d = yiRep - X; D(:,i) = sum( d.^2 ./ (s+eps), 2 ); end D = D/2; end function D = distEucSq( X, Y ) Yt = Y'; XX = sum(X.*X,2); YY = sum(Yt.*Yt,1); D = bsxfun(@plus,XX,YY)-2*X*Yt; end %%%% code from Charles Elkan with variables renamed % function D = distEucSq( X, Y ) % m = size(X,1); n = size(Y,1); % D = sum(X.^2, 2) * ones(1,n) + ones(m,1) * sum(Y.^2, 2)' - 2.*X*Y'; % end %%% LOOP METHOD - SLOW % [m p] = size(X); % [n p] = size(Y); % D = zeros(m,n); % onesM = ones(m,1); % for i=1:n % y = Y(i,:); % d = X - y(onesM,:); % D(:,i) = sum( d.*d, 2 ); % end %%% PARALLEL METHOD THAT IS SUPER SLOW (slower than loop)! % % From "MATLAB array manipulation tips and tricks" by Peter J. Acklam % Xb = permute(X, [1 3 2]); % Yb = permute(Y, [3 1 2]); % D = sum( (Xb(:,ones(1,n),:) - Yb(ones(1,m),:,:)).^2, 3); %%% USELESS FOR EVEN VERY LARGE ARRAYS X=16000x1000!! and Y=100x1000 % call recursively to save memory % if( (m+n)*p > 10^5 && (m>1 || n>1)) % if( m>n ) % X1 = X(1:floor(end/2),:); % X2 = X((floor(end/2)+1):end,:); % D1 = distEucSq( X1, Y ); % D2 = distEucSq( X2, Y ); % D = cat( 1, D1, D2 ); % else % Y1 = Y(1:floor(end/2),:); % Y2 = Y((floor(end/2)+1):end,:); % D1 = distEucSq( X, Y1 ); % D2 = distEucSq( X, Y2 ); % D = cat( 2, D1, D2 ); % end % return; % end %%% L1 COMPUTATION WITH LOOP OVER p, FAST FOR SMALL p. % function D = distL1( X, Y ) % % m = size(X,1); n = size(Y,1); p = size(X,2); % mOnes = ones(1,m); nOnes = ones(1,n); D = zeros(m,n); % for i=1:p % yi = Y(:,i); yi = yi( :, mOnes ); % xi = X(:,i); xi = xi( :, nOnes ); % D = D + abs( xi-yi' ); % end
github
garrickbrazil/SDS-RCNN-master
pca.m
.m
SDS-RCNN-master/external/pdollar_toolbox/classify/pca.m
3,244
utf_8
848f2eb05c18a6e448e9d22af27b9422
function [U,mu,vars] = pca( X ) % Principal components analysis (alternative to princomp). % % A simple linear dimensionality reduction technique. Use to create an % orthonormal basis for the points in R^d such that the coordinates of a % vector x in this basis are of decreasing importance. Instead of using all % d basis vectors to specify the location of x, using only the first k<d % still gives a vector xhat that is close to x. % % This function operates on arrays of arbitrary dimension, by first % converting the arrays to vectors. If X is m+1 dimensional, say of size % [d1 x d2 x...x dm x n], then the first m dimensions of X are combined. X % is flattened to be 2 dimensional: [dxn], with d=prod(di). Once X is % converted to 2 dimensions of size dxn, each column represents a single % observation, and each row is a different variable. Note that this is the % opposite of many matlab functions such as princomp. If X is MxNxn, then % X(:,:,i) represents the ith observation (useful for stack of n images), % likewise for n videos X is MxNxKxn. If X is very large, it is sampled % before running PCA. Use this function to retrieve the basis U. Use % pcaApply to retrieve that basis coefficients for a novel vector x. Use % pcaVisualize(X,...) for visualization of approximated X. % % To calculate residuals: % residuals = cumsum(vars/sum(vars)); plot(residuals,'-.') % % USAGE % [U,mu,vars] = pca( X ) % % INPUTS % X - [d1 x ... x dm x n], treated as n [d1 x ... x dm] elements % % OUTPUTS % U - [d x r], d=prod(di), each column is a principal component % mu - [d1 x ... x dm] mean of X % vars - sorted eigenvalues corresponding to eigenvectors in U % % EXAMPLE % load pcaData; % [U,mu,vars] = pca( I3D1(:,:,1:12) ); % [Y,Xhat,avsq] = pcaApply( I3D1(:,:,1), U, mu, 5 ); % pcaVisualize( U, mu, vars, I3D1, 13, [0:12], [], 1 ); % Xr = pcaRandVec( U, mu, vars, 1, 25, 0, 3 ); % % See also princomp, pcaApply, pcaVisualize, pcaRandVec, visualizeData % % Piotr's Computer Vision Matlab Toolbox Version 3.24 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] % set X to be zero mean, then flatten d=size(X); n=d(end); d=prod(d(1:end-1)); if(~isa(X,'double')), X=double(X); end if(n==1); mu=X; U=zeros(d,1); vars=0; return; end mu = mean( X, ndims(X) ); X = bsxfun(@minus,X,mu)/sqrt(n-1); X = reshape( X, d, n ); % make sure X not too large or SVD slow O(min(d,n)^2.5) m=2500; if( min(d,n)>m ), X=X(:,randperm(n,m)); n=m; end % get principal components using the SVD of X: X=U*S*V' if( 0 ) [U,S]=svd(X,'econ'); vars=diag(S).^2; elseif( d>n ) [~,SS,V]=robustSvd(X'*X); vars=diag(SS); U = X * V * diag(1./sqrt(vars)); else [~,SS,U]=robustSvd(X*X'); vars=diag(SS); end % discard low variance prinicipal components K=vars>1e-30; vars=vars(K); U=U(:,K); end function [U,S,V] = robustSvd( X, trials ) % Robust version of SVD more likely to always converge. % [Converge issues only seem to appear on Matlab 2013a in Windows.] if(nargin<2), trials=100; end try [U,S,V] = svd(X); catch if(trials<=0), error('svd did not converge'); end n=numel(X); j=randi(n); X(j)=X(j)+eps; [U,S,V]=robustSvd(X,trials-1); end end
github
garrickbrazil/SDS-RCNN-master
kmeans2.m
.m
SDS-RCNN-master/external/pdollar_toolbox/classify/kmeans2.m
5,251
utf_8
f941053f03c3e9eda40389a4cc64ee00
function [ IDX, C, d ] = kmeans2( X, k, varargin ) % Fast version of kmeans clustering. % % Cluster the N x p matrix X into k clusters using the kmeans algorithm. It % returns the cluster memberships for each data point in the N x 1 vector % IDX and the K x p matrix of cluster means in C. % % This function is in some ways less general than Matlab's kmeans.m (for % example it only uses euclidian distance), but it has some options that % the Matlab version does not (for example, it has a notion of outliers and % min-cluster size). It is also many times faster than matlab's kmeans. % General kmeans help can be found in help for the matlab implementation of % kmeans. Note that the although the names and conventions for this % algorithm are taken from Matlab's implementation, there are slight % alterations (for example, IDX==-1 is used to indicate outliers). % % IDX is a n-by-1 vector used to indicated cluster membership. Let X be a % set of n points. Then the ID of X - or IDX is a column vector of length % n, where each element is an integer indicating the cluster membership of % the corresponding element in X. IDX(i)=c indicates that the ith point in % X belongs to cluster c. Cluster labels range from 1 to k, and thus % k=max(IDX) is typically the number of clusters IDX divides X into. The % cluster label "-1" is reserved for outliers. IDX(i)==-1 indicates that % the given point does not belong to any of the discovered clusters. Note % that matlab's version of kmeans does not have outliers. % % USAGE % [ IDX, C, d ] = kmeans2( X, k, [varargin] ) % % INPUTS % X - [n x p] matrix of n p-dim vectors. % k - maximum nuber of clusters (actual number may be smaller) % prm - additional params (struct or name/value pairs) % .k - [] alternate way of specifying k (if not given above) % .nTrial - [1] number random restarts % .maxIter - [100] max number of iterations % .display - [0] Whether or not to display algorithm status % .rndSeed - [] random seed for kmeans; useful for replicability % .outFrac - [0] max frac points that can be treated as outliers % .minCl - [1] min cluster size (smaller clusters get eliminated) % .metric - [] metric for pdist2 % .C0 - [] initial cluster centers for first trial % % OUTPUTS % IDX - [n x 1] cluster membership (see above) % C - [k x p] matrix of centroid locations C(j,:) = mean(X(IDX==j,:)) % d - [1 x k] d(j) is sum of distances from X(IDX==j,:) to C(j,:) % sum(d) is a typical measure of the quality of a clustering % % EXAMPLE % % See also DEMOCLUSTER % % Piotr's Computer Vision Matlab Toolbox Version 3.24 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] % get input args dfs = {'nTrial',1, 'maxIter',100, 'display',0, 'rndSeed',[],... 'outFrac',0, 'minCl',1, 'metric',[], 'C0',[],'k',k }; [nTrial,maxt,dsp,rndSeed,outFrac,minCl,metric,C0,k] = ... getPrmDflt(varargin,dfs); assert(~isempty(k) && k>0); % error checking if(k<1); error('k must be greater than 1'); end if(~ismatrix(X) || any(size(X)==0)); error('Illegal X'); end if(outFrac<0 || outFrac>=1), error('outFrac must be in [0,1)'); end nOut = floor( size(X,1)*outFrac ); % initialize random seed if specified if(~isempty(rndSeed)); rand('state',rndSeed); end; %#ok<RAND> % run kmeans2main nTrial times bd=inf; t0=clock; for i=1:nTrial, t1=clock; if(i>1), C0=[]; end if(dsp), fprintf('kmeans2 iter %i/%i step: ',i,nTrial); end [IDX,C,d]=kmeans2main(X,k,nOut,minCl,maxt,dsp,metric,C0); if(sum(d)<sum(bd)), bIDX=IDX; bC=C; bd=d; end if(dsp), fprintf(' d=%f t=%fs\n',sum(d),etime(clock,t1)); end end IDX=bIDX; C=bC; d=bd; k=max(IDX); if(dsp), fprintf('k=%i d=%f t=%fs\n',k,sum(d),etime(clock,t0)); end % sort IDX to have biggest clusters have lower indicies cnts = zeros(1,k); for i=1:k; cnts(i) = sum( IDX==i ); end [~,order] = sort( -cnts ); C = C(order,:); d = d(order); IDX2=IDX; for i=1:k; IDX2(IDX==order(i))=i; end; IDX = IDX2; end function [IDX,C,d] = kmeans2main( X, k, nOut, minCl, maxt, dsp, metric, C ) % initialize cluster centers to be k random X points [N,p] = size(X); k = min(k,N); t=0; IDX = ones(N,1); oldIDX = zeros(N,1); if(isempty(C)), C = X(randperm(N,k),:)+randn(k,p)/1e5; end % MAIN LOOP: loop until the cluster assigments do not change if(dsp), nDg=ceil(log10(maxt-1)); fprintf(int2str2(0,nDg)); end while( any(oldIDX~=IDX) && t<maxt ) % assign each point to closest cluster center oldIDX=IDX; D=pdist2(X,C,metric); [mind,IDX]=min(D,[],2); % do not use most distant nOut elements in computation of centers mind1=sort(mind); thr=mind1(end-nOut); IDX(mind>thr)=-1; % Recalculate means based on new assignment, discard small clusters k0=0; C=zeros(k,p); for IDx=1:k ids=find(IDX==IDx); nCl=size(ids,1); if( nCl<minCl ), IDX(ids)=-1; continue; end k0=k0+1; IDX(ids)=k0; C(k0,:)=sum(X(ids,:),1)/nCl; end if(k0>0), k=k0; C=C(1:k,:); else k=1; C=X(randint2(1,1,[1 N]),:); end t=t+1; if(dsp), fprintf([repmat('\b',[1 nDg]) int2str2(t,nDg)]); end end % record within-cluster sums of point-to-centroid distances d=zeros(1,k); for i=1:k, d(i)=sum(mind(IDX==i)); end end
github
garrickbrazil/SDS-RCNN-master
acfModify.m
.m
SDS-RCNN-master/external/pdollar_toolbox/detector/acfModify.m
4,202
utf_8
7a49406d51e7a9431b8fd472be0476e8
function detector = acfModify( detector, varargin ) % Modify aggregate channel features object detector. % % Takes an object detector trained by acfTrain() and modifies it. Only % certain modifications are allowed to the detector and the detector should % never be modified directly (this may cause the detector to be invalid and % cause segmentation faults). Any valid modification to a detector after it % is trained should be performed using acfModify(). % % The parameters 'nPerOct', 'nOctUp', 'nApprox', 'lambdas', 'pad', 'minDs' % modify the channel feature pyramid created (see help of chnsPyramid.m for % more details) and primarily control the scales used. The parameters % 'pNms', 'stride', 'cascThr' and 'cascCal' modify the detector behavior % (see help of acfTrain.m for more details). Finally, 'rescale' can be % used to rescale the trained detector (this change is irreversible). % % USAGE % detector = acfModify( detector, pModify ) % % INPUTS % detector - detector trained via acfTrain % pModify - parameters (struct or name/value pairs) % .nPerOct - [] number of scales per octave % .nOctUp - [] number of upsampled octaves to compute % .nApprox - [] number of approx. scales to use % .lambdas - [] coefficients for power law scaling (see BMVC10) % .pad - [] amount to pad channels (along T/B and L/R) % .minDs - [] minimum image size for channel computation % .pNms - [] params for non-maximal suppression (see bbNms.m) % .stride - [] spatial stride between detection windows % .cascThr - [] constant cascade threshold (affects speed/accuracy) % .cascCal - [] cascade calibration (affects speed/accuracy) % .rescale - [] rescale entire detector by given ratio % % OUTPUTS % detector - modified object detector % % EXAMPLE % % See also chnsPyramid, bbNms, acfTrain, acfDetect % % Piotr's Computer Vision Matlab Toolbox Version 3.20 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] % get parameters (and copy to detector and pPyramid structs) opts=detector.opts; p=opts.pPyramid; dfs={ 'nPerOct',p.nPerOct, 'nOctUp',p.nOctUp, 'nApprox',p.nApprox, ... 'lambdas',p.lambdas, 'pad',p.pad, 'minDs',p.minDs, 'pNms',opts.pNms, ... 'stride',opts.stride,'cascThr',opts.cascThr,'cascCal',0,'rescale',1 }; [p.nPerOct,p.nOctUp,p.nApprox,p.lambdas,p.pad,p.minDs,opts.pNms,... opts.stride,opts.cascThr,cascCal,rescale] = getPrmDflt(varargin,dfs,1); % finalize pPyramid and opts p.complete=0; p.pChns.complete=0; p=chnsPyramid([],p); p=p.pPyramid; p.complete=1; p.pChns.complete=1; shrink=p.pChns.shrink; opts.stride=max(1,round(opts.stride/shrink))*shrink; opts.pPyramid=p; detector.opts=opts; % calibrate and rescale detector detector.clf.hs = detector.clf.hs+cascCal; if(rescale~=1), detector=detectorRescale(detector,rescale); end end function detector = detectorRescale( detector, rescale ) % Rescale detector by ratio rescale. opts=detector.opts; shrink=opts.pPyramid.pChns.shrink; bh=opts.modelDsPad(1)/shrink; bw=opts.modelDsPad(2)/shrink; opts.stride=max(1,round(opts.stride*rescale/shrink))*shrink; modelDsPad=round(opts.modelDsPad*rescale/shrink)*shrink; rescale=modelDsPad./opts.modelDsPad; opts.modelDsPad=modelDsPad; opts.modelDs=round(opts.modelDs.*rescale); detector.opts=opts; bh1=opts.modelDsPad(1)/shrink; bw1=opts.modelDsPad(2)/shrink; % move 0-indexed (x,y) location of each lookup feature clf=detector.clf; fids=clf.fids; is=find(clf.child>0); fids=double(fids(is)); n=length(fids); loc=zeros(n,3); loc(:,3)=floor(fids/bh/bw); fids=fids-loc(:,3)*bh*bw; loc(:,2)=floor(fids/bh); fids=fids-loc(:,2)*bh; loc(:,1)=fids; loc(:,1)=min(bh1-1,round(loc(:,1)*rescale(1))); loc(:,2)=min(bw1-1,round(loc(:,2)*rescale(2))); fids = loc(:,3)*bh1*bw1 + loc(:,2)*bh1 + loc(:,1); clf.fids(is)=int32(fids); % rescale thrs for all features (fpdw trick) nChns=[detector.info.nChns]; assert(max(loc(:,3))<sum(nChns)); k=[]; for i=1:length(nChns), k=[k ones(1,nChns(i))*i]; end %#ok<AGROW> lambdas=opts.pPyramid.lambdas; lambdas=sqrt(prod(rescale)).^-lambdas(k); clf.thrs(is)=clf.thrs(is).*lambdas(loc(:,3)+1)'; detector.clf=clf; end
github
garrickbrazil/SDS-RCNN-master
acfDetect.m
.m
SDS-RCNN-master/external/pdollar_toolbox/detector/acfDetect.m
3,659
utf_8
cf1384311b16371be6fa4715140e5c81
function bbs = acfDetect( I, detector, fileName ) % Run aggregate channel features object detector on given image(s). % % The input 'I' can either be a single image (or filename) or a cell array % of images (or filenames). In the first case, the return is a set of bbs % where each row has the format [x y w h score] and score is the confidence % of detection. If the input is a cell array, the output is a cell array % where each element is a set of bbs in the form above (in this case a % parfor loop is used to speed execution). If 'fileName' is specified, the % bbs are saved to a comma separated text file and the output is set to % bbs=1. If saving detections for multiple images the output is stored in % the format [imgId x y w h score] and imgId is a one-indexed image id. % % A cell of detectors trained with the same channels can be specified, % detected bbs from each detector are concatenated. If using multiple % detectors and opts.pNms.separate=1 then each bb has a sixth element % bbType=j, where j is the j-th detector, see bbNms.m for details. % % USAGE % bbs = acfDetect( I, detector, [fileName] ) % % INPUTS % I - input image(s) of filename(s) of input image(s) % detector - detector(s) trained via acfTrain % fileName - [] target filename (if specified return is 1) % % OUTPUTS % bbs - [nx5] array of bounding boxes or cell array of bbs % % EXAMPLE % % See also acfTrain, acfModify, bbGt>loadAll, bbNms % % Piotr's Computer Vision Matlab Toolbox Version 3.40 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] % run detector on every image if(nargin<3), fileName=''; end; multiple=iscell(I); if(~isempty(fileName) && exist(fileName,'file')), bbs=1; return; end if(~multiple), bbs=acfDetectImg(I,detector); else n=length(I); bbs=cell(n,1); parfor i=1:n, bbs{i}=acfDetectImg(I{i},detector); end end % write results to disk if fileName specified if(isempty(fileName)), return; end d=fileparts(fileName); if(~isempty(d)&&~exist(d,'dir')), mkdir(d); end if( multiple ) % add image index to each bb and flatten result for i=1:n, bbs{i}=[ones(size(bbs{i},1),1)*i bbs{i}]; end bbs=cell2mat(bbs); end dlmwrite(fileName,bbs); bbs=1; end function bbs = acfDetectImg( I, detector ) % Run trained sliding-window object detector on given image. Ds=detector; if(~iscell(Ds)), Ds={Ds}; end; nDs=length(Ds); opts=Ds{1}.opts; pPyramid=opts.pPyramid; pNms=opts.pNms; imreadf=opts.imreadf; imreadp=opts.imreadp; shrink=pPyramid.pChns.shrink; pad=pPyramid.pad; separate=nDs>1 && isfield(pNms,'separate') && pNms.separate; % read image and compute features (including optionally applying filters) if(all(ischar(I))), I=feval(imreadf,I,imreadp{:}); end P=chnsPyramid(I,pPyramid); bbs=cell(P.nScales,nDs); if(isfield(opts,'filters') && ~isempty(opts.filters)), shrink=shrink*2; for i=1:P.nScales, fs=opts.filters; C=repmat(P.data{i},[1 1 size(fs,4)]); for j=1:size(C,3), C(:,:,j)=conv2(C(:,:,j),fs(:,:,j),'same'); end P.data{i}=imResample(C,.5); end end % apply sliding window classifiers for i=1:P.nScales for j=1:nDs, opts=Ds{j}.opts; modelDsPad=opts.modelDsPad; modelDs=opts.modelDs; bb = acfDetect1(P.data{i},Ds{j}.clf,shrink,... modelDsPad(1),modelDsPad(2),opts.stride,opts.cascThr); shift=(modelDsPad-modelDs)/2-pad; bb(:,1)=(bb(:,1)+shift(2))/P.scaleshw(i,2); bb(:,2)=(bb(:,2)+shift(1))/P.scaleshw(i,1); bb(:,3)=modelDs(2)/P.scales(i); bb(:,4)=modelDs(1)/P.scales(i); if(separate), bb(:,6)=j; end; bbs{i,j}=bb; end end; bbs=cat(1,bbs{:}); if(~isempty(pNms)), bbs=bbNms(bbs,pNms); end end
github
garrickbrazil/SDS-RCNN-master
acfSweeps.m
.m
SDS-RCNN-master/external/pdollar_toolbox/detector/acfSweeps.m
10,731
utf_8
db60505e8ee70092d7967ff95c483db8
function acfSweeps % Parameter sweeps for ACF pedestrian detector. % % Running the parameter sweeps requires altering internal flags. % The sweeps are not well documented, use at your own discretion. % % Piotr's Computer Vision Matlab Toolbox Version 3.50 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] % specify type and location of cluster (see fevalDistr.m) rtDir=[fileparts(fileparts(fileparts(mfilename('fullpath')))) '/data/']; pDistr={'type','parfor'}; if(0), matlabpool('open',11); end % define all parameter sweeps expNms = {'FtrsColorSpace','FtrsChnTypes','FtrsGradColorChn',... 'FtrsGradNormRad','FtrsGradNormConst','FtrsGradOrients',... 'FtrsGradSoftBins','FtrsSmoothIm','FtrsSmoothChns','FtrsShrink',... 'DetModelDs','DetModelDsPad','DetStride','DetNumOctaves',... 'DetNumApprox','DetLambda','DetCascThr','DetCascCal','DetNmsThr',... 'TrnNumWeak','TrnNumBoot','TrnDepth','TrnNumBins','TrnFracFtrs',... 'DataNumPos','DataNumNeg','DataNumNegAcc','DataNumNegPer',... 'DataNumPosStump','DataJitterTran','DataJitterRot'}; expNms=expNms(:); T = 10; [opts,lgd,lbl]=createExp(rtDir,expNms); % run training and testing jobs [jobsTrn,jobsTst] = createJobs( rtDir, opts, T ); N=length(expNms); fprintf('nTrain = %i; nTest = %i\n',length(jobsTrn),length(jobsTst)); tic, s=fevalDistr('acfTrain',jobsTrn,pDistr); assert(s==1); toc tic, s=fevalDistr('acfTest',jobsTst,pDistr); assert(s==1); toc % create plots for all experiments for e=1:N, plotExps(rtDir,expNms{e},opts{e},lgd{e},lbl{e},T); end end function plotExps( rtDir, expNm, opts, lgd, lbl, T ) % data location and parameters for plotting plDir=[rtDir 'sweeps/plots/']; if(~exist(plDir,'dir')), mkdir(plDir); end diary([plDir 'sweeps.txt']); disp([expNm ' [' lbl ']']); N=length(lgd); pLoad=struct('squarify',{{3,.41}},'hRng',[0 inf]); pTest=struct('name','', 'imgDir',[rtDir 'Inria/test/pos'],... 'gtDir',[rtDir 'Inria/test/posGt'], 'pLoad',pLoad); pTest=repmat(pTest,N,T); for e=1:N, for t=1:T, pTest(e,t).name=[opts(e).name 'T' int2str2(t,2)]; end; end % get all miss rates and display error miss=zeros(N,T); parfor e=1:N*T, miss(e)=acfTest(pTest(e)); end stds=std(miss,0,2); R=mean(miss,2); msg=' %.2f +/- %.2f [%s]\n'; for e=1:N, fprintf(msg,R(e)*100,stds(e)*100,lgd{e}); end % plot sweeps figPrp = {'Units','Pixels','Position',[800 600 800 400]}; figure(1); clf; set(1,figPrp{:}); set(gca,'FontSize',24); clr=[0 .69 .94]; pPl1={'LineWidth',3,'MarkerSize',15,'Color',clr,'MarkerFaceColor',clr}; pPl2=pPl1; clr=[1 .75 0]; pPl2{6}=clr; pPl2{8}=clr; for e=1:N, if(lgd{e}(end)=='*'), def=e; end; end; lgd{def}(end)=[]; plot(R,'-d',pPl1{:}); hold on; plot(def,R(def),'d',pPl2{:}); e=.001; ylabel('MR'); axis([.5 N+.5 min([R; .15]) max([R; .3])+e]); if(isempty(lbl)), imLabel(lgd,'bottom',30,{'FontSize',24}); lgd=[]; end xlabel(lbl); set(gca,'XTick',1:N,'XTickLabel',lgd); % save plot fFig=[plDir expNm]; diary('off'); for t=1:25, try savefig(fFig,1,'png'); break; catch, pause(1), end; end end function [jobsTrn,jobsTst] = createJobs( rtDir, opts, T ) % Prepare all jobs (one train and one test job per set of opts). opts=[opts{:}]; N=length(opts); NT=N*T; opts=repmat(opts,1,T); nms=cell(1,NT); jobsTrn=cell(1,NT); doneTrn=zeros(1,NT); jobsTst=cell(1,NT); doneTst=zeros(1,NT); pLoad=struct('squarify',{{3,.41}},'hRng',[0 inf]); pTest=struct('name','', 'imgDir',[rtDir 'Inria/test/pos'],... 'gtDir',[rtDir 'Inria/test/posGt'], 'pLoad',pLoad); for e=1:NT t=ceil(e/N); opts(e).seed=(t-1)*100000+1; nm=[opts(e).name 'T' int2str2(t,2)]; opts(e).name=nm; pTest.name=nm; nms{e}=nm; doneTrn(e)=exist([nm 'Detector.mat'],'file')==2; jobsTrn{e}={opts(e)}; doneTst(e)=exist([nm 'Dets.txt'],'file')==2; jobsTst{e}={pTest}; end [~,kp]=unique(nms,'stable'); doneTrn=doneTrn(kp); jobsTrn=jobsTrn(kp); jobsTrn=jobsTrn(~doneTrn); doneTst=doneTst(kp); jobsTst=jobsTst(kp); jobsTst=jobsTst(~doneTst); end function [opts,lgd,lbl] = createExp( rtDir, expNm ) % if expNm is a cell, call recursively and return if( iscell(expNm) ) N=length(expNm); opts=cell(1,N); lgd=cell(1,N); lbl=lgd; for e=1:N, [opts{e},lgd{e},lbl{e}]=createExp(rtDir,expNm{e}); end; return end % default params for detectorTrain.m dataDir=[rtDir 'Inria/']; opts=acfTrain(); opts.modelDs=[100 41]; opts.modelDsPad=[128 64]; opts.posGtDir=[dataDir 'train/posGt']; opts.nWeak=[32 128 512 2048]; opts.posImgDir=[dataDir 'train/pos']; opts.pJitter=struct('flip',1); opts.negImgDir=[dataDir 'train/neg']; opts.pBoost.pTree.fracFtrs=1/16; if(~exist([rtDir 'sweeps/res/'],'dir')), mkdir([rtDir 'sweeps/res/']); end opts.pBoost.pTree.nThreads=1; % setup experiments (N sets of params) optsDefault=opts; N=100; lgd=cell(1,N); ss=lgd; lbl=''; O=ones(1,N); pChns=opts.pPyramid.pChns(O); pPyramid=opts.pPyramid(O); opts=opts(O); switch expNm case 'FtrsColorSpace' N=8; clrs={'Gray','rgb','hsv','luv'}; for e=1:N, pChns(e).pColor.colorSpace=clrs{mod(e-1,4)+1}; end for e=5:N, pChns(e).pGradMag.enabled=0; end for e=5:N, pChns(e).pGradHist.enabled=0; end ss=[clrs clrs]; for e=1:4, ss{e}=[ss{e} '+G+H']; end ss=upper(ss); lgd=ss; case 'FtrsChnTypes' nms={'LUV+','G+','H+'}; N=7; for e=1:N en=false(1,3); for i=1:3, en(i)=bitget(uint8(e),i); end pChns(e).pColor.enabled=en(1); pChns(e).pGradMag.enabled=en(2); pChns(e).pGradHist.enabled=en(3); nm=[nms{en}]; nm=nm(1:end-1); lgd{e}=nm; ss{e}=nm; end case 'FtrsGradColorChn' lbl='gradient color channel'; N=4; ss={'Max','L','U','V'}; lgd=ss; for e=1:N, pChns(e).pGradMag.colorChn=e-1; end case 'FtrsGradNormRad' lbl='norm radius'; vs=[0 1 2 5 10]; N=length(vs); for e=1:N, pChns(e).pGradMag.normRad=vs(e); end case 'FtrsGradNormConst' lbl='norm constant x 10^3'; vs=[1 2 5 10 20 50 100]; N=length(vs); for e=1:N, pChns(e).pGradMag.normConst=vs(e)/1000; end case 'FtrsGradOrients' lbl='# orientations'; vs=[2 4 6 8 10 12]; N=length(vs); for e=1:N, pChns(e).pGradHist.nOrients=vs(e); end case 'FtrsGradSoftBins' lbl='use soft bins'; vs=[0 1]; N=length(vs); for e=1:N, pChns(e).pGradHist.softBin=vs(e); end case 'FtrsSmoothIm' lbl='image smooth radius'; vs=[0 50 100 200]; N=length(vs); for e=1:N, pChns(e).pColor.smooth=vs(e)/100; end for e=1:N, lgd{e}=num2str(vs(e)/100); end case 'FtrsSmoothChns' lbl='channel smooth radius'; vs=[0 50 100 200]; N=length(vs); for e=1:N, pPyramid(e).smooth=vs(e)/100; end for e=1:N, lgd{e}=num2str(vs(e)/100); end case 'FtrsShrink' lbl='channel shrink'; vs=2.^(1:4); N=length(vs); for e=1:N, pChns(e).shrink=vs(e); end case 'DetModelDs' lbl='model height'; rs=1.1.^(-2:2); vs=round(100*rs); ws=round(41*rs); N=length(vs); for e=1:N, opts(e).modelDs=[vs(e) ws(e)]; end for e=1:N, opts(e).modelDsPad=opts(e).modelDs+[28 23]; end case 'DetModelDsPad' lbl='padded model height'; rs=1.1.^(-2:2); vs=round(128*rs); ws=round(64*rs); N=length(vs); for e=1:N, opts(e).modelDsPad=[vs(e) ws(e)]; end case 'DetStride' lbl='detector stride'; vs=4:4:16; N=length(vs); for e=1:N, opts(e).stride=vs(e); end case 'DetNumOctaves' lbl='# scales per octave'; vs=2.^(0:5); N=length(vs); for e=1:N, pPyramid(e).nPerOct=vs(e); pPyramid(e).nApprox=vs(e)-1; end case 'DetNumApprox' lbl='# approx scales'; vs=2.^(0:5)-1; N=length(vs); for e=1:N, pPyramid(e).nApprox=vs(e); end case 'DetLambda' lbl='lambda x 100'; vs=-45:15:70; N=length(vs); for e=[1:4 6:N], pPyramid(e).lambdas=[0 vs(e) vs(e)]/100; end for e=1:N, lgd{e}=int2str(vs(e)); end; vs=vs+100; case 'DetCascThr' lbl='cascade threshold'; vs=[-.5 -1 -2 -5 -10]; N=length(vs); for e=1:N, opts(e).cascThr=vs(e); end for e=1:N, lgd{e}=num2str(vs(e)); end; vs=vs*-10; case 'DetCascCal' lbl='cascade offset x 10^4'; vs=[5 10 20 50 100 200 500]; N=length(vs); for e=1:N, opts(e).cascCal=vs(e)/1e4; end case 'DetNmsThr' lbl='nms overlap'; vs=25:10:95; N=length(vs); for e=1:N, opts(e).pNms.overlap=vs(e)/1e2; end for e=1:N, lgd{e}=['.' num2str(vs(e))]; end case 'TrnNumWeak' lbl='# decision trees / x'; vs=2.^(0:3); N=length(vs); for e=1:N, opts(e).nWeak=opts(e).nWeak/vs(e); end case 'TrnNumBoot' lbl='bootstrap schedule'; vs={5:1:11,5:2:11,3:1:11,3:2:11}; N=length(vs); ss={'5-1-11','5-2-11','3-1-11','3-2-11'}; lgd=ss; for e=1:N, opts(e).nWeak=2.^vs{e}; end case 'TrnDepth' lbl='tree depth'; vs=1:5; N=length(vs); for e=1:N, opts(e).pBoost.pTree.maxDepth=vs(e); end case 'TrnNumBins' lbl='# bins'; vs=2.^(4:8); N=length(vs); for e=1:N, opts(e).pBoost.pTree.nBins=vs(e); end case 'TrnFracFtrs' lbl='fraction features'; vs=2.^(1:8); N=length(vs); for e=1:N, opts(e).pBoost.pTree.fracFtrs=1/vs(e); end case 'DataNumPos' lbl='# pos examples'; vs=[2.^(6:9) inf]; N=length(vs); for e=1:N-1, opts(e).nPos=vs(e); end case 'DataNumNeg' lbl='# neg examples'; vs=[5 10 25 50 100 250]*100; N=length(vs); for e=1:N, opts(e).nNeg=vs(e); end case 'DataNumNegAcc' lbl='# neg examples total'; vs=[25 50 100 250 500]*100; N=length(vs); for e=1:N, opts(e).nAccNeg=vs(e); end case 'DataNumNegPer' lbl='# neg example / image'; vs=[5 10 25 50 100]; N=length(vs); for e=1:N, opts(e).nPerNeg=vs(e); end case 'DataNumPosStump' lbl='# pos examples (stumps)'; vs=[2.^(6:9) 1237 1237]; N=length(vs); lgd{N}='1237*'; for e=1:N-1, opts(e).nPos=vs(e); opts(e).pBoost.pTree.maxDepth=1; end case 'DataJitterTran' lbl='translational jitter'; vs=[0 1 2 4]; N=length(vs); opts(1).pJitter=struct('flip',1); for e=2:N, opts(e).pJitter=struct('flip',1,'nTrn',3,'mTrn',vs(e)); end for e=1:N, lgd{e}=['+/-' int2str(vs(e))]; end case 'DataJitterRot' lbl='rotational jitter'; vs=[0 2 4 8]; N=length(vs); for e=2:N, opts(e).pJitter=struct('flip',1,'nPhi',3,'mPhi',vs(e)); end for e=1:N, lgd{e}=['+/-' int2str(vs(e))]; end otherwise, error('invalid exp: %s',expNm); end % produce final set of opts and find default opts for e=1:N, if(isempty(lgd{e})), lgd{e}=int2str(vs(e)); end; end for e=1:N, if(isempty(ss{e})), ss{e}=int2str2(vs(e),5); end; end O=1:N; opts=opts(O); lgd=lgd(O); ss=ss(O); d=0; for e=1:N, pPyramid(e).pChns=pChns(e); opts(e).pPyramid=pPyramid(e); end for e=1:N, if(isequal(optsDefault,opts(e))), d=e; break; end; end if(d==0), disp(expNm); assert(false); end for e=1:N, opts(e).name=[rtDir 'sweeps/res/' expNm ss{e}]; end lgd{d}=[lgd{d} '*']; opts(d).name=[rtDir 'sweeps/res/Default']; if(0), disp([ss' lgd']'); end end
github
garrickbrazil/SDS-RCNN-master
bbGt.m
.m
SDS-RCNN-master/external/pdollar_toolbox/detector/bbGt.m
34,046
utf_8
69e66c9a0cc143fb9a794fbc9233246e
function varargout = bbGt( action, varargin ) % Bounding box (bb) annotations struct, evaluation and sampling routines. % % bbGt gives access to two types of routines: % (1) Data structure for storing bb image annotations. % (2) Routines for evaluating the Pascal criteria for object detection. % % The bb annotation stores bb for objects of interest with additional % information per object, such as occlusion information. The underlying % data structure is simply a Matlab stuct array, one struct per object. % This annotation format is an alternative to the annotation format used % for the PASCAL object challenges (in addition routines for loading PASCAL % format data are provided, see bbLoad()). % % Each object struct has the following fields: % lbl - a string label describing object type (eg: 'pedestrian') % bb - [l t w h]: bb indicating predicted object extent % occ - 0/1 value indicating if bb is occluded % bbv - [l t w h]: bb indicating visible region (may be [0 0 0 0]) % ign - 0/1 value indicating bb was marked as ignore % ang - [0-360] orientation of bb in degrees % % Note: although orientation (angle) is stored for each bb, for now it is % not being used during evaluation or sampling. % % bbGt contains a number of utility functions, accessed using: % outputs = bbGt( 'action', inputs ); % The list of functions and help for each is given below. Also, help on % individual subfunctions can be accessed by: "help bbGt>action". % %%% (1) Data structure for storing bb image annotations. % Create annotation of n empty objects. % objs = bbGt( 'create', [n] ); % Save bb annotation to text file. % objs = bbGt( 'bbSave', objs, fName ) % Load bb annotation from text file and filter. % [objs,bbs] = bbGt( 'bbLoad', fName, [pLoad] ) % Get object property 'name' (in a standard array). % vals = bbGt( 'get', objs, name ) % Set object property 'name' (with a standard array). % objs = bbGt( 'set', objs, name, vals ) % Draw an ellipse for each labeled object. % hs = draw( objs, pDraw ) % %%% (2) Routines for evaluating the Pascal criteria for object detection. % Get all corresponding files in given directories. % [fs,fs0] = bbGt('getFiles', dirs, [f0], [f1] ) % Copy corresponding files into given directories. % fs = bbGt( 'copyFiles', fs, dirs ) % Load all ground truth and detection bbs in given directories. % [gt0,dt0] = bbGt( 'loadAll', gtDir, [dtDir], [pLoad] ) % Evaluates detections against ground truth data. % [gt,dt] = bbGt( 'evalRes', gt0, dt0, [thr], [mul] ) % Display evaluation results for given image. % [hs,hImg] = bbGt( 'showRes' I, gt, dt, varargin ) % Compute ROC or PR based on outputs of evalRes on multiple images. % [xs,ys,ref] = bbGt( 'compRoc', gt, dt, roc, ref ) % Extract true or false positives or negatives for visualization. % [Is,scores,imgIds] = bbGt( 'cropRes', gt, dt, imFs, varargin ) % Computes (modified) overlap area between pairs of bbs. % oa = bbGt( 'compOas', dt, gt, [ig] ) % Optimized version of compOas for a single pair of bbs. % oa = bbGt( 'compOa', dt, gt, ig ) % % USAGE % varargout = bbGt( action, varargin ); % % INPUTS % action - string specifying action % varargin - depends on action, see above % % OUTPUTS % varargout - depends on action, see above % % EXAMPLE % % See also bbApply, bbLabeler, bbGt>create, bbGt>bbSave, bbGt>bbLoad, % bbGt>get, bbGt>set, bbGt>draw, bbGt>getFiles, bbGt>copyFiles, % bbGt>loadAll, bbGt>evalRes, bbGt>showRes, bbGt>compRoc, bbGt>cropRes, % bbGt>compOas, bbGt>compOa % % Piotr's Computer Vision Matlab Toolbox Version 3.26 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] %#ok<*DEFNU> varargout = cell(1,max(1,nargout)); [varargout{:}] = feval(action,varargin{:}); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function objs = create( n ) % Create annotation of n empty objects. % % USAGE % objs = bbGt( 'create', [n] ) % % INPUTS % n - [1] number of objects to create % % OUTPUTS % objs - annotation of n 'empty' objects % % EXAMPLE % objs = bbGt('create') % % See also bbGt o=struct('lbl','','bb',[0 0 0 0],'occ',0,'bbv',[0 0 0 0],'ign',0,'ang',0); if(nargin<1 || n==1), objs=o; return; end; objs=o(ones(n,1)); end function objs = bbSave( objs, fName ) % Save bb annotation to text file. % % USAGE % objs = bbGt( 'bbSave', objs, fName ) % % INPUTS % objs - objects to save % fName - name of text file % % OUTPUTS % objs - objects to save % % EXAMPLE % % See also bbGt, bbGt>bbLoad vers=3; fid=fopen(fName,'w'); assert(fid>0); fprintf(fid,'%% bbGt version=%i\n',vers); objs=set(objs,'bb',round(get(objs,'bb'))); objs=set(objs,'bbv',round(get(objs,'bbv'))); objs=set(objs,'ang',round(get(objs,'ang'))); for i=1:length(objs) o=objs(i); bb=o.bb; bbv=o.bbv; fprintf(fid,['%s' repmat(' %i',1,11) '\n'],o.lbl,... bb,o.occ,bbv,o.ign,o.ang); end fclose(fid); end function [objs,bbs] = bbLoad( fName, varargin ) % Load bb annotation from text file and filter. % % FORMAT: Specify 'format' to indicate the format of the ground truth. % format=0 is the default format (created by bbSave/bbLabeler). format=1 is % the PASCAL VOC format. Loading ground truth in this format requires % 'VOCcode/' to be in directory path. It's part of VOCdevkit available from % the PASCAL VOC: http://pascallin.ecs.soton.ac.uk/challenges/VOC/. Objects % labeled as either 'truncated' or 'occluded' using the PASCAL definitions % have the 'occ' flag set to true. Objects labeled as 'difficult' have the % 'ign' flag set to true. 'class' is used for 'lbl'. format=2 is the % ImageNet detection format and requires the ImageNet Dev Kit. % % FILTERING: After loading, the objects can be filtered. First, only % objects with lbl in lbls or ilbls or returned. For each object, obj.ign % is set to 1 if it was already at 1, if its label was in ilbls, or if any % object property is outside of the specified range. The ignore flag is % used during training and testing so that objects with certain properties % (such as very small or heavily occluded objects) are excluded. The range % for each property is a two element vector, [0 inf] by default; a property % value v is inside the range if v>=rng(1) && v<=rng(2). Tested properties % include height (h), width (w), area (a), aspect ratio (ar), orientation % (o), extent x-coordinate (x), extent y-coordinate (y), and fraction % visible (v). The last property is computed as the visible object area % divided by the total area, except if o.occ==0, in which case v=1, or % all(o.bbv==o.bb), which indicates the object may be barely visible, in % which case v=0 (note that v~=1 in this case). % % RETURN: In addition to outputting the objs, bbLoad() can return the % corresponding bounding boxes (bbs) in an [nx5] array where each row is of % the form [x y w h ignore], [x y w h] is the bb and ignore=obj.ign. For % oriented bbs, the extent of the bb is returned, where the extent is the % smallest axis aligned bb containing the oriented bb. If the oriented bb % was labeled as a rectangle as opposed to an ellipse, the tightest bb will % usually increase slightly in size due to the corners of the rectangle % sticking out beyond the ellipse bounds. The 'ellipse' flag controls how % an oriented bb is converted to a regular bb. Specifically, set ellipse=1 % if an ellipse tightly delineates the object and 0 if a rectangle does. % Finally, if 'squarify' is not empty the (non-ignore) bbs are converted to % a fixed aspect ratio using bbs=bbApply('squarify',bbs,squarify{:}). % % USAGE % [objs,bbs] = bbGt( 'bbLoad', fName, [pLoad] ) % % INPUTS % fName - name of text file % pLoad - parameters (struct or name/value pairs) % .format - [0] gt format 0:default, 1:PASCAL, 2:ImageNet % .ellipse - [1] controls how oriented bb is converted to regular bb % .squarify - [] controls optional reshaping of bbs to fixed aspect ratio % .lbls - [] return objs with these labels (or [] to return all) % .ilbls - [] return objs with these labels but set to ignore % .hRng - [] range of acceptable obj heights % .wRng - [] range of acceptable obj widths % .aRng - [] range of acceptable obj areas % .arRng - [] range of acceptable obj aspect ratios % .oRng - [] range of acceptable obj orientations (angles) % .xRng - [] range of x coordinates of bb extent % .yRng - [] range of y coordinates of bb extent % .vRng - [] range of acceptable obj occlusion levels % % OUTPUTS % objs - loaded objects % bbs - [nx5] array containg ground truth bbs [x y w h ignore] % % EXAMPLE % % See also bbGt, bbGt>bbSave % get parameters df={'format',0,'ellipse',1,'squarify',[],'lbls',[],'ilbls',[],'hRng',[],... 'wRng',[],'aRng',[],'arRng',[],'oRng',[],'xRng',[],'yRng',[],'vRng',[]}; [format,ellipse,sqr,lbls,ilbls,hRng,wRng,aRng,arRng,oRng,xRng,yRng,vRng]... = getPrmDflt(varargin,df,1); % load objs if( format==0 ) % load objs stored in default format fId=fopen(fName); if(fId==-1), error(['unable to open file: ' fName]); end; v=0; try v=textscan(fId,'%% bbGt version=%d'); v=v{1}; catch, end %#ok<CTCH> if(isempty(v)), v=0; end % read in annotation (m is number of fields for given version v) if(all(v~=[0 1 2 3])), error('Unknown version %i.',v); end frmt='%s %d %d %d %d %d %d %d %d %d %d %d'; ms=[10 10 11 12]; m=ms(v+1); frmt=frmt(1:2+(m-1)*3); in=textscan(fId,frmt); for i=2:m, in{i}=double(in{i}); end; fclose(fId); % create objs struct from read in fields n=length(in{1}); objs=create(n); for i=1:n, objs(i).lbl=in{1}{i}; objs(i).occ=in{6}(i); end bb=[in{2} in{3} in{4} in{5}]; bbv=[in{7} in{8} in{9} in{10}]; for i=1:n, objs(i).bb=bb(i,:); objs(i).bbv=bbv(i,:); end if(m>=11), for i=1:n, objs(i).ign=in{11}(i); end; end if(m>=12), for i=1:n, objs(i).ang=in{12}(i); end; end elseif( format==1 ) % load objs stored in PASCAL VOC format if(exist('PASreadrecord.m','file')~=2) error('bbLoad() requires the PASCAL VOC code.'); end os=PASreadrecord(fName); os=os.objects; n=length(os); objs=create(n); if(~isfield(os,'occluded')), for i=1:n, os(i).occluded=0; end; end for i=1:n bb=os(i).bbox; bb(3)=bb(3)-bb(1); bb(4)=bb(4)-bb(2); objs(i).bb=bb; objs(i).lbl=os(i).class; objs(i).ign=os(i).difficult; objs(i).occ=os(i).occluded || os(i).truncated; if(objs(i).occ), objs(i).bbv=bb; end end elseif( format==2 ) if(exist('VOCreadxml.m','file')~=2) error('bbLoad() requires the ImageNet dev code.'); end os=VOCreadxml(fName); os=os.annotation; if(isfield(os,'object')), os=os.object; else os=[]; end n=length(os); objs=create(n); for i=1:n bb=os(i).bndbox; bb=str2double({bb.xmin bb.ymin bb.xmax bb.ymax}); bb(3)=bb(3)-bb(1); bb(4)=bb(4)-bb(2); objs(i).bb=bb; objs(i).lbl=os(i).name; end else error('bbLoad() unknown format: %i',format); end % only keep objects whose lbl is in lbls or ilbls if(~isempty(lbls) || ~isempty(ilbls)), K=true(n,1); for i=1:n, K(i)=any(strcmp(objs(i).lbl,[lbls ilbls])); end objs=objs(K); n=length(objs); end % filter objs (set ignore flags) for i=1:n, objs(i).ang=mod(objs(i).ang,360); end if(~isempty(ilbls)), for i=1:n, v=objs(i).lbl; objs(i).ign = objs(i).ign || any(strcmp(v,ilbls)); end; end if(~isempty(xRng)), for i=1:n, v=objs(i).bb(1); objs(i).ign = objs(i).ign || v<xRng(1) || v>xRng(2); end; end if(~isempty(xRng)), for i=1:n, v=objs(i).bb(1)+objs(i).bb(3); objs(i).ign = objs(i).ign || v<xRng(1) || v>xRng(2); end; end if(~isempty(yRng)), for i=1:n, v=objs(i).bb(2); objs(i).ign = objs(i).ign || v<yRng(1) || v>yRng(2); end; end if(~isempty(yRng)), for i=1:n, v=objs(i).bb(2)+objs(i).bb(4); objs(i).ign = objs(i).ign || v<yRng(1) || v>yRng(2); end; end if(~isempty(wRng)), for i=1:n, v=objs(i).bb(3); objs(i).ign = objs(i).ign || v<wRng(1) || v>wRng(2); end; end if(~isempty(hRng)), for i=1:n, v=objs(i).bb(4); objs(i).ign = objs(i).ign || v<hRng(1) || v>hRng(2); end; end if(~isempty(oRng)), for i=1:n, v=objs(i).ang; if(v>180), v=v-360; end objs(i).ign = objs(i).ign || v<oRng(1) || v>oRng(2); end; end if(~isempty(aRng)), for i=1:n, v=objs(i).bb(3)*objs(i).bb(4); objs(i).ign = objs(i).ign || v<aRng(1) || v>aRng(2); end; end if(~isempty(arRng)), for i=1:n, v=objs(i).bb(3)/objs(i).bb(4); objs(i).ign = objs(i).ign || v<arRng(1) || v>arRng(2); end; end if(~isempty(vRng)), for i=1:n, o=objs(i); bb=o.bb; bbv=o.bbv; %#ok<ALIGN> if(~o.occ || all(bbv==0)), v=1; elseif(all(bbv==bb)), v=0; else v=(bbv(3)*bbv(4))/(bb(3)*bb(4)); end objs(i).ign = objs(i).ign || v<vRng(1) || v>vRng(2); end end % finally get extent of each bounding box (not trivial if ang~=0) if(nargout<=1), return; end; if(n==0), bbs=zeros(0,5); return; end bbs=double([reshape([objs.bb],4,[]); [objs.ign]]'); ign=bbs(:,5)==1; for i=1:n, bbs(i,1:4)=bbExtent(bbs(i,1:4),objs(i).ang,ellipse); end if(~isempty(sqr)), bbs(~ign,:)=bbApply('squarify',bbs(~ign,:),sqr{:}); end function bb = bbExtent( bb, ang, ellipse ) % get bb that fully contains given oriented bb if(~ang), return; end if( ellipse ) % get bb that encompases ellipse (tighter) x=bbApply('getCenter',bb); a=bb(4)/2; b=bb(3)/2; ang=ang-90; rx=(a*cosd(ang))^2+(b*sind(ang))^2; rx=abs(rx/sqrt(rx)); ry=(a*sind(ang))^2+(b*cosd(ang))^2; ry=abs(ry/sqrt(ry)); bb=[x(1)-rx x(2)-ry 2*rx 2*ry]; else % get bb that encompases rectangle (looser) c=cosd(ang); s=sind(ang); R=[c -s; s c]; rs=bb(3:4)/2; x0=-rs(1); x1=rs(1); y0=-rs(2); y1=rs(2); pc=bb(1:2)+rs; p=[x0 y0; x1 y0; x1 y1; x0 y1]*R'+pc(ones(4,1),:); x0=min(p(:,1)); x1=max(p(:,1)); y0=min(p(:,2)); y1=max(p(:,2)); bb=[x0 y0 x1-x0 y1-y0]; end end end function vals = get( objs, name ) % Get object property 'name' (in a standard array). % % USAGE % vals = bbGt( 'get', objs, name ) % % INPUTS % objs - [nx1] struct array of objects % name - property name ('lbl','bb','occ',etc.) % % OUTPUTS % vals - [nxk] array of n values (k=1 or 4) % % EXAMPLE % % See also bbGt, bbGt>set nObj=length(objs); if(nObj==0), vals=[]; return; end switch name case 'lbl', vals={objs.lbl}'; case 'bb', vals=reshape([objs.bb]',4,[])'; case 'occ', vals=[objs.occ]'; case 'bbv', vals=reshape([objs.bbv]',4,[])'; case 'ign', vals=[objs.ign]'; case 'ang', vals=[objs.ang]'; otherwise, error('unkown type %s',name); end end function objs = set( objs, name, vals ) % Set object property 'name' (with a standard array). % % USAGE % objs = bbGt( 'set', objs, name, vals ) % % INPUTS % objs - [nx1] struct array of objects % name - property name ('lbl','bb','occ',etc.) % vals - [nxk] array of n values (k=1 or 4) % % OUTPUTS % objs - [nx1] struct array of updated objects % % EXAMPLE % % See also bbGt, bbGt>get nObj=length(objs); switch name case 'lbl', for i=1:nObj, objs(i).lbl=vals{i}; end case 'bb', for i=1:nObj, objs(i).bb=vals(i,:); end case 'occ', for i=1:nObj, objs(i).occ=vals(i); end case 'bbv', for i=1:nObj, objs(i).bbv=vals(i,:); end case 'ign', for i=1:nObj, objs(i).ign=vals(i); end case 'ang', for i=1:nObj, objs(i).ang=vals(i); end otherwise, error('unkown type %s',name); end end function hs = draw( objs, varargin ) % Draw an ellipse for each labeled object. % % USAGE % hs = bbGt( 'draw', objs, pDraw ) % % INPUTS % objs - [nx1] struct array of objects % pDraw - parameters (struct or name/value pairs) % .col - ['g'] color or [nx1] array of colors % .lw - [2] line width % .ls - ['-'] line style % % OUTPUTS % hs - [nx1] handles to drawn graphic objects % % EXAMPLE % % See also bbGt dfs={'col',[],'lw',2,'ls','-'}; [col,lw,ls]=getPrmDflt(varargin,dfs,1); n=length(objs); hold on; hs=zeros(n,4); if(isempty(col)), if(n==1), col='g'; else col=hsv(n); end; end tProp={'FontSize',10,'color','w','FontWeight','bold',... 'VerticalAlignment','bottom'}; for i=1:n bb=objs(i).bb; ci=col(i,:); hs(i,1)=text(bb(1),bb(2),objs(i).lbl,tProp{:}); x=bbApply('getCenter',bb); r=bb(3:4)/2; a=objs(i).ang/180*pi-pi/2; [hs(i,2),hs(i,3),hs(i,4)]=plotEllipse(x(2),x(1),r(2),r(1),a,ci,[],lw,ls); end; hold off; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [fs,fs0] = getFiles( dirs, f0, f1 ) % Get all corresponding files in given directories. % % The first dir in 'dirs' serves as the baseline dir. getFiles() returns % all files in the baseline dir and all corresponding files in the % remaining dirs to the files in the baseline dir, in the same order. Two % files are in correspondence if they have the same base name (regardless % of extension). For example, given a file named "name.jpg", a % corresponding file may be named "name.txt" or "name.jpg.txt". Every file % in the baseline dir must have a matching file in the remaining dirs. % % USAGE % [fs,fs0] = bbGt('getFiles', dirs, [f0], [f1] ) % % INPUTS % dirs - {1xm} list of m directories % f0 - [1] index of first file in baseline dir to use % f1 - [inf] index of last file in baseline dir to use % % OUTPUTS % fs - {mxn} list of full file names in each dir % fs0 - {1xn} list of file names without path or extensions % % EXAMPLE % % See also bbGt if(nargin<2 || isempty(f0)), f0=1; end if(nargin<3 || isempty(f1)), f1=inf; end m=length(dirs); assert(m>0); sep=filesep; for d=1:m, dir1=dirs{d}; dir1(dir1=='\')=sep; dir1(dir1=='/')=sep; if(dir1(end)==sep), dir1(end)=[]; end; dirs{d}=dir1; end [fs0,fs1] = getFiles0(dirs{1},f0,f1,sep); n1=length(fs0); fs=cell(m,n1); fs(1,:)=fs1; for d=2:m, fs(d,:)=getFiles1(dirs{d},fs0,sep); end function [fs0,fs1] = getFiles0( dir1, f0, f1, sep ) % get fs1 in dir1 (and fs0 without path or extension) fs1=dir([dir1 sep '*']); fs1={fs1.name}; fs1=fs1(3:end); fs1=fs1(f0:min(f1,end)); fs0=fs1; n=length(fs0); if(n==0), error('No files found in baseline dir %s.',dir1); end for i=1:n, fs1{i}=[dir1 sep fs0{i}]; end n=length(fs0); for i=1:n, f=fs0{i}; f(find(f=='.',1,'first'):end)=[]; fs0{i}=f; end end function fs1 = getFiles1( dir1, fs0, sep ) % get fs1 in dir1 corresponding to fs0 n=length(fs0); fs1=cell(1,n); i2=0; i1=0; fs2=dir(dir1); fs2={fs2.name}; n2=length(fs2); eMsg='''%s'' has no corresponding file in %s.'; for i0=1:n, r=length(fs0{i0}); match=0; while(i2<n2), i2=i2+1; if(strcmpi(fs0{i0},fs2{i2}(1:min(end,r)))) i1=i1+1; fs1{i1}=fs2{i2}; match=1; break; end; end if(~match), error(eMsg,fs0{i0},dir1); end end for i1=1:n, fs1{i1}=[dir1 sep fs1{i1}]; end end end function fs = copyFiles( fs, dirs ) % Copy corresponding files into given directories. % % Useful for splitting data into training, validation and testing sets. % See also bbGt>getFiles for obtaining a set of corresponding files. % % USAGE % fs = bbGt( 'copyFiles', fs, dirs ) % % INPUTS % fs - {mxn} list of full file names in each dir % dirs - {1xm} list of m target directories % % OUTPUTS % fs - {mxn} list of full file names of copied files % % EXAMPLE % % See also bbGt, bbGt>getFiles [m,n]=size(fs); assert(numel(dirs)==m); if(n==0), return; end for d=1:m if(~exist(dirs{d},'dir')), mkdir(dirs{d}); end for i=1:n, f=fs{d,i}; j=[0 find(f=='/' | f=='\')]; j=j(end); fs{d,i}=[dirs{d} '/' f(j+1:end)]; copyfile(f,fs{d,i}); end end end function [gt0,dt0] = loadAll( gtDir, dtDir, pLoad ) % Load all ground truth and detection bbs in given directories. % % Loads each ground truth (gt) annotation in gtDir and the corresponding % detection (dt) in dtDir. gt and dt files must correspond according to % getFiles(). Alternatively, dtDir may be a filename of a single text file % that contains the detection results across all images. % % Each dt should be a text file where each row contains 5 numbers % representing a bb (left/top/width/height/score). If dtDir is a text file, % it should contain the detection results across the full set of images. In % this case each row in the text file should have an extra leading column % specifying the image id: (imgId/left/top/width/height/score). % % The output of this function can be used in bbGt>evalRes(). % % USAGE % [gt0,dt0] = bbGt( 'loadAll', gtDir, [dtDir], [pLoad] ) % % INPUTS % gtDir - location of ground truth % dtDir - [] optional location of detections % pLoad - {} params for bbGt>bbLoad() (determine format/filtering) % % OUTPUTS % gt0 - {1xn} loaded ground truth bbs (each is a mx5 array of bbs) % dt0 - {1xn} loaded detections (each is a mx5 array of bbs) % % EXAMPLE % % See also bbGt, bbGt>getFiles, bbGt>evalRes % get list of files if(nargin<2), dtDir=[]; end if(nargin<3), pLoad={}; end if(isempty(dtDir)), fs=getFiles({gtDir}); gtFs=fs(1,:); else dtFile=length(dtDir)>4 && strcmp(dtDir(end-3:end),'.txt'); if(dtFile), dirs={gtDir}; else dirs={gtDir,dtDir}; end fs=getFiles(dirs); gtFs=fs(1,:); if(dtFile), dtFs=dtDir; else dtFs=fs(2,:); end end % load ground truth persistent keyPrv gtPrv; key={gtDir,pLoad}; n=length(gtFs); if(isequal(key,keyPrv)), gt0=gtPrv; else gt0=cell(1,n); for i=1:n, [~,gt0{i}]=bbLoad(gtFs{i},pLoad); end gtPrv=gt0; keyPrv=key; end % load detections if(isempty(dtDir) || nargout<=1), dt0=cell(0); return; end if(iscell(dtFs)), dt0=cell(1,n); for i=1:n, dt1=load(dtFs{i},'-ascii'); if(numel(dt1)==0), dt1=zeros(0,5); end; dt0{i}=dt1(:,1:5); end else dt1=load(dtFs,'-ascii'); if(numel(dt1)==0), dt1=zeros(0,6); end ids=dt1(:,1); assert(max(ids)<=n); dt0=cell(1,n); for i=1:n, dt0{i}=dt1(ids==i,2:6); end end end function [gt,dt] = evalRes( gt0, dt0, thr, mul ) % Evaluates detections against ground truth data. % % Uses modified Pascal criteria that allows for "ignore" regions. The % Pascal criteria states that a ground truth bounding box (gtBb) and a % detected bounding box (dtBb) match if their overlap area (oa): % oa(gtBb,dtBb) = area(intersect(gtBb,dtBb)) / area(union(gtBb,dtBb)) % is over a sufficient threshold (typically .5). In the modified criteria, % the dtBb can match any subregion of a gtBb set to "ignore". Choosing % gtBb' in gtBb that most closely matches dtBb can be done by using % gtBb'=intersect(dtBb,gtBb). Computing oa(gtBb',dtBb) is equivalent to % oa'(gtBb,dtBb) = area(intersect(gtBb,dtBb)) / area(dtBb) % For gtBb set to ignore the above formula for oa is used. % % Highest scoring detections are matched first. Matches to standard, % (non-ignore) gtBb are preferred. Each dtBb and gtBb may be matched at % most once, except for ignore-gtBb which can be matched multiple times. % Unmatched dtBb are false-positives, unmatched gtBb are false-negatives. % Each match between a dtBb and gtBb is a true-positive, except matches % between dtBb and ignore-gtBb which do not affect the evaluation criteria. % % In addition to taking gt/dt results on a single image, evalRes() can take % cell arrays of gt/dt bbs, in which case evaluation proceeds on each % element. Use bbGt>loadAll() to load gt/dt for multiple images. % % Each gt/dt output row has a flag match that is either -1/0/1: % for gt: -1=ignore, 0=fn [unmatched], 1=tp [matched] % for dt: -1=ignore, 0=fp [unmatched], 1=tp [matched] % % USAGE % [gt, dt] = bbGt( 'evalRes', gt0, dt0, [thr], [mul] ) % % INPUTS % gt0 - [mx5] ground truth array with rows [x y w h ignore] % dt0 - [nx5] detection results array with rows [x y w h score] % thr - [.5] the threshold on oa for comparing two bbs % mul - [0] if true allow multiple matches to each gt % % OUTPUTS % gt - [mx5] ground truth results [x y w h match] % dt - [nx6] detection results [x y w h score match] % % EXAMPLE % % See also bbGt, bbGt>compOas, bbGt>loadAll % get parameters if(nargin<3 || isempty(thr)), thr=.5; end if(nargin<4 || isempty(mul)), mul=0; end % if gt0 and dt0 are cell arrays run on each element in turn if( iscell(gt0) && iscell(dt0) ), n=length(gt0); assert(length(dt0)==n); gt=cell(1,n); dt=gt; for i=1:n, [gt{i},dt{i}] = evalRes(gt0{i},dt0{i},thr,mul); end; return; end % check inputs if(isempty(gt0)), gt0=zeros(0,5); end if(isempty(dt0)), dt0=zeros(0,5); end assert( size(dt0,2)==5 ); nd=size(dt0,1); assert( size(gt0,2)==5 ); ng=size(gt0,1); % sort dt highest score first, sort gt ignore last [~,ord]=sort(dt0(:,5),'descend'); dt0=dt0(ord,:); [~,ord]=sort(gt0(:,5),'ascend'); gt0=gt0(ord,:); gt=gt0; gt(:,5)=-gt(:,5); dt=dt0; dt=[dt zeros(nd,1)]; % Attempt to match each (sorted) dt to each (sorted) gt oa = compOas( dt(:,1:4), gt(:,1:4), gt(:,5)==-1 ); for d=1:nd bstOa=thr; bstg=0; bstm=0; % info about best match so far for g=1:ng % if this gt already matched, continue to next gt m=gt(g,5); if( m==1 && ~mul ), continue; end % if dt already matched, and on ignore gt, nothing more to do if( bstm~=0 && m==-1 ), break; end % compute overlap area, continue to next gt unless better match made if(oa(d,g)<bstOa), continue; end % match successful and best so far, store appropriately bstOa=oa(d,g); bstg=g; if(m==0), bstm=1; else bstm=-1; end end; g=bstg; m=bstm; % store type of match for both dt and gt if(m==-1), dt(d,6)=m; elseif(m==1), gt(g,5)=m; dt(d,6)=m; end end end function [hs,hImg] = showRes( I, gt, dt, varargin ) % Display evaluation results for given image. % % USAGE % [hs,hImg] = bbGt( 'showRes', I, gt, dt, varargin ) % % INPUTS % I - image to display, image filename, or [] % gt - first output of evalRes() % dt - second output of evalRes() % varargin - additional parameters (struct or name/value pairs) % .evShow - [1] if true show results of evaluation % .gtShow - [1] if true show ground truth % .dtShow - [1] if true show detections % .cols - ['krg'] colors for ignore/mistake/correct % .gtLs - ['-'] line style for gt bbs % .dtLs - ['--'] line style for dt bbs % .lw - [3] line width % % OUTPUTS % hs - handles to bbs and text labels % hImg - handle for image graphics object % % EXAMPLE % % See also bbGt, bbGt>evalRes dfs={'evShow',1,'gtShow',1,'dtShow',1,'cols','krg',... 'gtLs','-','dtLs','--','lw',3}; [evShow,gtShow,dtShow,cols,gtLs,dtLs,lw]=getPrmDflt(varargin,dfs,1); % optionally display image if(ischar(I)), I=imread(I); end if(~isempty(I)), hImg=im(I,[],0); title(''); end % display bbs with or w/o color coding based on output of evalRes hold on; hs=cell(1,1000); k=0; if( evShow ) if(gtShow), for i=1:size(gt,1), k=k+1; hs{k}=bbApply('draw',gt(i,1:4),cols(gt(i,5)+2),lw,gtLs); end; end if(dtShow), for i=1:size(dt,1), k=k+1; hs{k}=bbApply('draw',dt(i,1:5),cols(dt(i,6)+2),lw,dtLs); end; end else if(gtShow), k=k+1; hs{k}=bbApply('draw',gt(:,1:4),cols(3),lw,gtLs); end if(dtShow), k=k+1; hs{k}=bbApply('draw',dt(:,1:5),cols(3),lw,dtLs); end end hs=[hs{:}]; hold off; end function [xs,ys,score,ref] = compRoc( gt, dt, roc, ref ) % Compute ROC or PR based on outputs of evalRes on multiple images. % % ROC="Receiver operating characteristic"; PR="Precision Recall" % Also computes result at reference points (ref): % which for ROC curves is the *detection* rate at reference *FPPI* % which for PR curves is the *precision* at reference *recall* % Note, FPPI="false positive per image" % % USAGE % [xs,ys,score,ref] = bbGt( 'compRoc', gt, dt, roc, ref ) % % INPUTS % gt - {1xn} first output of evalRes() for each image % dt - {1xn} second output of evalRes() for each image % roc - [1] if 1 compue ROC else compute PR % ref - [] reference points for ROC or PR curve % % OUTPUTS % xs - x coords for curve: ROC->FPPI; PR->recall % ys - y coords for curve: ROC->TP; PR->precision % score - detection scores corresponding to each (x,y) % ref - recall or precision at each reference point % % EXAMPLE % % See also bbGt, bbGt>evalRes % get additional parameters if(nargin<3 || isempty(roc)), roc=1; end if(nargin<4 || isempty(ref)), ref=[]; end % convert to single matrix, discard ignore bbs nImg=length(gt); assert(length(dt)==nImg); gt=cat(1,gt{:}); gt=gt(gt(:,5)~=-1,:); dt=cat(1,dt{:}); dt=dt(dt(:,6)~=-1,:); % compute results if(size(dt,1)==0), xs=0; ys=0; score=0; ref=ref*0; return; end m=length(ref); np=size(gt,1); score=dt(:,5); tp=dt(:,6); [score,order]=sort(score,'descend'); tp=tp(order); fp=double(tp~=1); fp=cumsum(fp); tp=cumsum(tp); if( roc ) xs=fp/nImg; ys=tp/np; xs1=[-inf; xs]; ys1=[0; ys]; for i=1:m, j=find(xs1<=ref(i)); ref(i)=ys1(j(end)); end else xs=tp/np; ys=tp./(fp+tp); xs1=[xs; inf]; ys1=[ys; 0]; for i=1:m, j=find(xs1>=ref(i)); ref(i)=ys1(j(1)); end end end function [Is,scores,imgIds] = cropRes( gt, dt, imFs, varargin ) % Extract true or false positives or negatives for visualization. % % USAGE % [Is,scores,imgIds] = bbGt( 'cropRes', gt, dt, imFs, varargin ) % % INPUTS % gt - {1xN} first output of evalRes() for each image % dt - {1xN} second output of evalRes() for each image % imFs - {1xN} name of each image % varargin - additional parameters (struct or name/value pairs) % .dims - ['REQ'] target dimensions for extracted windows % .pad - [0] padding amount for cropping % .type - ['fp'] one of: 'fp', 'fn', 'tp', 'dt' % .n - [100] max number of windows to extract % .show - [1] figure for displaying results (or 0) % .fStr - ['%0.1f'] label{i}=num2str(score(i),fStr) % .embed - [0] if true embed dt/gt bbs into cropped windows % % OUTPUTS % Is - [dimsxn] extracted image windows % scores - [1xn] detection score for each bb unless 'fn' % imgIds - [1xn] image id for each cropped window % % EXAMPLE % % See also bbGt, bbGt>evalRes dfs={'dims','REQ','pad',0,'type','fp','n',100,... 'show',1,'fStr','%0.1f','embed',0}; [dims,pad,type,n,show,fStr,embed]=getPrmDflt(varargin,dfs,1); N=length(imFs); assert(length(gt)==N && length(dt)==N); % crop patches either in gt or dt according to type switch type case 'fn', bbs=gt; keep=@(bbs) bbs(:,5)==0; case 'fp', bbs=dt; keep=@(bbs) bbs(:,6)==0; case 'tp', bbs=dt; keep=@(bbs) bbs(:,6)==1; case 'dt', bbs=dt; keep=@(bbs) bbs(:,6)>=0; otherwise, error('unknown type: %s',type); end % create ids that will map each bb to correct name ms=zeros(1,N); for i=1:N, ms(i)=size(bbs{i},1); end; cms=[0 cumsum(ms)]; ids=zeros(1,sum(ms)); for i=1:N, ids(cms(i)+1:cms(i+1))=i; end % flatten bbs and keep relevent subset bbs=cat(1,bbs{:}); K=keep(bbs); bbs=bbs(K,:); ids=ids(K); n=min(n,sum(K)); % reorder bbs appropriately if(~strcmp(type,'fn')), [~,ord]=sort(bbs(:,5),'descend'); else if(size(bbs,1)<n), ord=randperm(size(bbs,1)); else ord=1:n; end; end bbs=bbs(ord(1:n),:); ids=ids(ord(1:n)); % extract patches from each image if(n==0), Is=[]; scores=[]; imgIds=[]; return; end; Is=cell(1,n); scores=zeros(1,n); imgIds=zeros(1,n); if(any(pad>0)), dims1=dims.*(1+pad); rs=dims1./dims; dims=dims1; end if(any(pad>0)), bbs=bbApply('resize',bbs,rs(1),rs(2)); end for i=1:N locs=find(ids==i); if(isempty(locs)), continue; end; I=imread(imFs{i}); if( embed ) if(any(strcmp(type,{'fp','dt'}))), bbs1=gt{i}; else bbs1=dt{i}(:,[1:4 6]); end I=bbApply('embed',I,bbs1(bbs1(:,5)==0,1:4),'col',[255 0 0]); I=bbApply('embed',I,bbs1(bbs1(:,5)==1,1:4),'col',[0 255 0]); end Is1=bbApply('crop',I,bbs(locs,1:4),'replicate',dims); for j=1:length(locs), Is{locs(j)}=Is1{j}; end; scores(locs)=bbs(locs,5); imgIds(locs)=i; end; Is=cell2array(Is); % optionally display if(~show), return; end; figure(show); pMnt={'hasChn',size(Is1{1},3)>1}; if(isempty(fStr)), montage2(Is,pMnt); title(type); return; end ls=cell(1,n); for i=1:n, ls{i}=int2str2(imgIds(i)); end if(~strcmp(type,'fn')) for i=1:n, ls{i}=[ls{i} '/' num2str(scores(i),fStr)]; end; end montage2(Is,[pMnt 'labels' {ls}]); title(type); end function oa = compOas( dt, gt, ig ) % Computes (modified) overlap area between pairs of bbs. % % Uses modified Pascal criteria with "ignore" regions. The overlap area % (oa) of a ground truth (gt) and detected (dt) bb is defined as: % oa(gt,dt) = area(intersect(dt,dt)) / area(union(gt,dt)) % In the modified criteria, a gt bb may be marked as "ignore", in which % case the dt bb can can match any subregion of the gt bb. Choosing gt' in % gt that most closely matches dt can be done using gt'=intersect(dt,gt). % Computing oa(gt',dt) is equivalent to: % oa'(gt,dt) = area(intersect(gt,dt)) / area(dt) % % USAGE % oa = bbGt( 'compOas', dt, gt, [ig] ) % % INPUTS % dt - [mx4] detected bbs % gt - [nx4] gt bbs % ig - [nx1] 0/1 ignore flags (0 by default) % % OUTPUTS % oas - [m x n] overlap area between each gt and each dt bb % % EXAMPLE % dt=[0 0 10 10]; gt=[0 0 20 20]; % oa0 = bbGt('compOas',dt,gt,0) % oa1 = bbGt('compOas',dt,gt,1) % % See also bbGt, bbGt>evalRes m=size(dt,1); n=size(gt,1); oa=zeros(m,n); if(nargin<3), ig=zeros(n,1); end de=dt(:,[1 2])+dt(:,[3 4]); da=dt(:,3).*dt(:,4); ge=gt(:,[1 2])+gt(:,[3 4]); ga=gt(:,3).*gt(:,4); for i=1:m for j=1:n w=min(de(i,1),ge(j,1))-max(dt(i,1),gt(j,1)); if(w<=0), continue; end h=min(de(i,2),ge(j,2))-max(dt(i,2),gt(j,2)); if(h<=0), continue; end t=w*h; if(ig(j)), u=da(i); else u=da(i)+ga(j)-t; end; oa(i,j)=t/u; end end end function oa = compOa( dt, gt, ig ) % Optimized version of compOas for a single pair of bbs. % % USAGE % oa = bbGt( 'compOa', dt, gt, ig ) % % INPUTS % dt - [1x4] detected bb % gt - [1x4] gt bb % ig - 0/1 ignore flag % % OUTPUTS % oa - overlap area between gt and dt bb % % EXAMPLE % dt=[0 0 10 10]; gt=[0 0 20 20]; % oa0 = bbGt('compOa',dt,gt,0) % oa1 = bbGt('compOa',dt,gt,1) % % See also bbGt, bbGt>compOas w=min(dt(3)+dt(1),gt(3)+gt(1))-max(dt(1),gt(1)); if(w<=0),oa=0; return; end h=min(dt(4)+dt(2),gt(4)+gt(2))-max(dt(2),gt(2)); if(h<=0),oa=0; return; end i=w*h; if(ig),u=dt(3)*dt(4); else u=dt(3)*dt(4)+gt(3)*gt(4)-i; end; oa=i/u; end
github
garrickbrazil/SDS-RCNN-master
bbApply.m
.m
SDS-RCNN-master/external/pdollar_toolbox/detector/bbApply.m
21,195
utf_8
8c02a6999a84bfb5fcbf2274b8b91a97
function varargout = bbApply( action, varargin ) % Functions for manipulating bounding boxes (bb). % % A bounding box (bb) is also known as a position vector or a rectangle % object. It is a four element vector with the fields: [x y w h]. A set of % n bbs can be stores as an [nx4] array, most funcitons below can handle % either a single or multiple bbs. In addtion, typically [nxm] inputs with % m>4 are ok (with the additional columns ignored/copied to the output). % % bbApply contains a number of utility functions for working with bbs. The % format for accessing the various utility functions is: % outputs = bbApply( 'action', inputs ); % The list of functions and help for each is given below. Also, help on % individual subfunctions can be accessed by: "help bbApply>action". % % Compute area of bbs. % bb = bbApply( 'area', bb ) % Shift center of bbs. % bb = bbApply( 'shift', bb, xdel, ydel ) % Get center of bbs. % cen = bbApply( 'getCenter', bb ) % Get bb at intersection of bb1 and bb2 (may be empty). % bb = bbApply( 'intersect', bb1, bb2 ) % Get bb that is union of bb1 and bb2 (smallest bb containing both). % bb = bbApply( 'union', bb1, bb2 ) % Resize the bbs (without moving their centers). % bb = bbApply( 'resize', bb, hr, wr, [ar] ) % Fix bb aspect ratios (without moving the bb centers). % bbr = bbApply( 'squarify', bb, flag, [ar] ) % Draw single or multiple bbs to image (calls rectangle()). % hs = bbApply( 'draw', bb, [col], [lw], [ls], [prop], [ids] ) % Embed single or multiple bbs directly into image. % I = bbApply( 'embed', I, bb, [varargin] ) % Crop image regions from I encompassed by bbs. % [patches, bbs] = bbApply('crop',I,bb,[padEl],[dims]) % Convert bb relative to absolute coordinates and vice-versa. % bb = bbApply( 'convert', bb, bbRef, isAbs ) % Randomly generate bbs that fall in a specified region. % bbs = bbApply( 'random', pRandom ) % Convert weighted mask to bbs. % bbs = bbApply('frMask',M,bbw,bbh,[thr]) % Create weighted mask encoding bb centers (or extent). % M = bbApply('toMask',bbs,w,h,[fill],[bgrd]) % % USAGE % varargout = bbApply( action, varargin ); % % INPUTS % action - string specifying action % varargin - depends on action, see above % % OUTPUTS % varargout - depends on action, see above % % EXAMPLE % % See also bbApply>area bbApply>shift bbApply>getCenter bbApply>intersect % bbApply>union bbApply>resize bbApply>squarify bbApply>draw bbApply>crop % bbApply>convert bbApply>random bbApply>frMask bbApply>toMask % % Piotr's Computer Vision Matlab Toolbox Version 3.30 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] %#ok<*DEFNU> varargout = cell(1,max(1,nargout)); [varargout{:}] = feval(action,varargin{:}); end function a = area( bb ) % Compute area of bbs. % % USAGE % bb = bbApply( 'area', bb ) % % INPUTS % bb - [nx4] original bbs % % OUTPUTS % a - [nx1] area of each bb % % EXAMPLE % a = bbApply('area', [0 0 10 10]) % % See also bbApply a=prod(bb(:,3:4),2); end function bb = shift( bb, xdel, ydel ) % Shift center of bbs. % % USAGE % bb = bbApply( 'shift', bb, xdel, ydel ) % % INPUTS % bb - [nx4] original bbs % xdel - amount to shift x coord of each bb left % ydel - amount to shift y coord of each bb up % % OUTPUTS % bb - [nx4] shifted bbs % % EXAMPLE % bb = bbApply('shift', [0 0 10 10], 1, 2) % % See also bbApply bb(:,1)=bb(:,1)-xdel; bb(:,2)=bb(:,2)-ydel; end function cen = getCenter( bb ) % Get center of bbs. % % USAGE % cen = bbApply( 'getCenter', bb ) % % INPUTS % bb - [nx4] original bbs % % OUTPUTS % cen - [nx1] centers of bbs % % EXAMPLE % cen = bbApply('getCenter', [0 0 10 10]) % % See also bbApply cen=bb(:,1:2)+bb(:,3:4)/2; end function bb = intersect( bb1, bb2 ) % Get bb at intersection of bb1 and bb2 (may be empty). % % USAGE % bb = bbApply( 'intersect', bb1, bb2 ) % % INPUTS % bb1 - [nx4] first set of bbs % bb2 - [nx4] second set of bbs % % OUTPUTS % bb - [nx4] intersection of bbs % % EXAMPLE % bb = bbApply('intersect', [0 0 10 10], [5 5 10 10]) % % See also bbApply bbApply>union n1=size(bb1,1); n2=size(bb2,1); if(n1==0 || n2==0), bb=zeros(0,4); return, end if(n1==1 && n2>1), bb1=repmat(bb1,n2,1); n1=n2; end if(n2==1 && n1>1), bb2=repmat(bb2,n1,1); n2=n1; end assert(n1==n2); lcsE=min(bb1(:,1:2)+bb1(:,3:4),bb2(:,1:2)+bb2(:,3:4)); lcsS=max(bb1(:,1:2),bb2(:,1:2)); empty=any(lcsE<lcsS,2); bb=[lcsS lcsE-lcsS]; bb(empty,:)=0; end function bb = union( bb1, bb2 ) % Get bb that is union of bb1 and bb2 (smallest bb containing both). % % USAGE % bb = bbApply( 'union', bb1, bb2 ) % % INPUTS % bb1 - [nx4] first set of bbs % bb2 - [nx4] second set of bbs % % OUTPUTS % bb - [nx4] intersection of bbs % % EXAMPLE % bb = bbApply('union', [0 0 10 10], [5 5 10 10]) % % See also bbApply bbApply>intersect n1=size(bb1,1); n2=size(bb2,1); if(n1==0 || n2==0), bb=zeros(0,4); return, end if(n1==1 && n2>1), bb1=repmat(bb1,n2,1); n1=n2; end if(n2==1 && n1>1), bb2=repmat(bb2,n1,1); n2=n1; end assert(n1==n2); lcsE=max(bb1(:,1:2)+bb1(:,3:4),bb2(:,1:2)+bb2(:,3:4)); lcsS=min(bb1(:,1:2),bb2(:,1:2)); bb=[lcsS lcsE-lcsS]; end function bb = resize( bb, hr, wr, ar ) % Resize the bbs (without moving their centers). % % If wr>0 or hr>0, the w/h of each bb is adjusted in the following order: % if(hr~=0), h=h*hr; end % if(wr~=0), w=w*wr; end % if(hr==0), h=w/ar; end % if(wr==0), w=h*ar; end % Only one of hr/wr may be set to 0, and then only if ar>0. If, however, % hr=wr=0 and ar>0 then resizes bbs such that areas and centers are % preserved but aspect ratio becomes ar. % % USAGE % bb = bbApply( 'resize', bb, hr, wr, [ar] ) % % INPUTS % bb - [nx4] original bbs % hr - ratio by which to multiply height (or 0) % wr - ratio by which to multiply width (or 0) % ar - [0] target aspect ratio (used only if hr=0 or wr=0) % % OUTPUT % bb - [nx4] the output resized bbs % % EXAMPLE % bb = bbApply('resize',[0 0 1 1],1.2,0,.5) % h'=1.2*h; w'=h'/2; % % See also bbApply, bbApply>squarify if(nargin<4), ar=0; end; assert(size(bb,2)>=4); assert((hr>0&&wr>0)||ar>0); % preserve area and center, set aspect ratio if(hr==0 && wr==0), a=sqrt(bb(:,3).*bb(:,4)); ar=sqrt(ar); d=a*ar-bb(:,3); bb(:,1)=bb(:,1)-d/2; bb(:,3)=bb(:,3)+d; d=a/ar-bb(:,4); bb(:,2)=bb(:,2)-d/2; bb(:,4)=bb(:,4)+d; return; end % possibly adjust h/w based on hr/wr if(hr~=0), d=(hr-1)*bb(:,4); bb(:,2)=bb(:,2)-d/2; bb(:,4)=bb(:,4)+d; end if(wr~=0), d=(wr-1)*bb(:,3); bb(:,1)=bb(:,1)-d/2; bb(:,3)=bb(:,3)+d; end % possibly adjust h/w based on ar and NEW h/w if(~hr), d=bb(:,3)/ar-bb(:,4); bb(:,2)=bb(:,2)-d/2; bb(:,4)=bb(:,4)+d; end if(~wr), d=bb(:,4)*ar-bb(:,3); bb(:,1)=bb(:,1)-d/2; bb(:,3)=bb(:,3)+d; end end function bbr = squarify( bb, flag, ar ) % Fix bb aspect ratios (without moving the bb centers). % % The w or h of each bb is adjusted so that w/h=ar. % The parameter flag controls whether w or h should change: % flag==0: expand bb to given ar % flag==1: shrink bb to given ar % flag==2: use original w, alter h % flag==3: use original h, alter w % flag==4: preserve area, alter w and h % If ar==1 (the default), always converts bb to a square, hence the name. % % USAGE % bbr = bbApply( 'squarify', bb, flag, [ar] ) % % INPUTS % bb - [nx4] original bbs % flag - controls whether w or h should change % ar - [1] desired aspect ratio % % OUTPUT % bbr - the output 'squarified' bbs % % EXAMPLE % bbr = bbApply('squarify',[0 0 1 2],0) % % See also bbApply, bbApply>resize if(nargin<3 || isempty(ar)), ar=1; end; bbr=bb; if(flag==4), bbr=resize(bb,0,0,ar); return; end for i=1:size(bb,1), p=bb(i,1:4); usew = (flag==0 && p(3)>p(4)*ar) || (flag==1 && p(3)<p(4)*ar) || flag==2; if(usew), p=resize(p,0,1,ar); else p=resize(p,1,0,ar); end; bbr(i,1:4)=p; end end function hs = draw( bb, col, lw, ls, prop, ids ) % Draw single or multiple bbs to image (calls rectangle()). % % To draw bbs aligned with pixel boundaries, subtract .5 from the x and y % coordinates (since pixel centers are located at integer locations). % % USAGE % hs = bbApply( 'draw', bb, [col], [lw], [ls], [prop], [ids] ) % % INPUTS % bb - [nx4] standard bbs or [nx5] weighted bbs % col - ['g'] color or [kx1] array of colors % lw - [2] LineWidth for rectangle % ls - ['-'] LineStyle for rectangle % prop - [] other properties for rectangle % ids - [ones(1,n)] id in [1,k] for each bb into colors array % % OUTPUT % hs - [nx1] handles to drawn rectangles (and labels) % % EXAMPLE % im(rand(3)); bbApply('draw',[1.5 1.5 1 1 .5],'g'); % % See also bbApply, bbApply>embed, rectangle [n,m]=size(bb); if(n==0), hs=[]; return; end if(nargin<2 || isempty(col)), col=[]; end if(nargin<3 || isempty(lw)), lw=2; end if(nargin<4 || isempty(ls)), ls='-'; end if(nargin<5 || isempty(prop)), prop={}; end if(nargin<6 || isempty(ids)), ids=ones(1,n); end % prepare display properties prop=['LineWidth' lw 'LineStyle' ls prop 'EdgeColor']; tProp={'FontSize',10,'color','w','FontWeight','bold',... 'VerticalAlignment','bottom'}; k=max(ids); if(isempty(col)), if(k==1), col='g'; else col=hsv(k); end; end if(size(col,1)<k), ids=ones(1,n); end; hs=zeros(1,n); % draw rectangles and optionally labels for b=1:n, hs(b)=rectangle('Position',bb(b,1:4),prop{:},col(ids(b),:)); end if(m==4), return; end; hs=[hs zeros(1,n)]; bb=double(bb); for b=1:n, hs(b+n)=text(bb(b,1),bb(b,2),num2str(bb(b,5),4),tProp{:}); end end function I = embed( I, bb, varargin ) % Embed single or multiple bbs directly into image. % % USAGE % I = bbApply( 'embed', I, bb, varargin ) % % INPUTS % I - input image % bb - [nx4] or [nx5] input bbs % varargin - additional params (struct or name/value pairs) % .col - [0 255 0] color for rectangle or nx3 array of colors % .lw - [3] width for rectangle in pixels % .fh - [35] font height (if displaying weight), may be 0 % .fcol - [255 0 0] font color or nx3 array of colors % % OUTPUT % I - output image % % EXAMPLE % I=imResample(imread('cameraman.tif'),2); bb=[200 70 70 90 0.25]; % J=bbApply('embed',I,bb,'col',[0 0 255],'lw',8,'fh',30); figure(1); im(J) % K=bbApply('embed',J,bb,'col',[0 255 0],'lw',2,'fh',30); figure(2); im(K) % % See also bbApply, bbApply>draw, char2img % get additional parameters dfs={'col',[0 255 0],'lw',3,'fh',35,'fcol',[255 0 0]}; [col,lw,fh,fcol]=getPrmDflt(varargin,dfs,1); n=size(bb,1); bb(:,1:4)=round(bb(:,1:4)); if(size(col,1)==1), col=col(ones(1,n),:); end if(size(fcol,1)==1), fcol=fcol(ones(1,n),:); end if( ismatrix(I) ), I=I(:,:,[1 1 1]); end % embed each bb x0=bb(:,1); x1=x0+bb(:,3)-1; y0=bb(:,2); y1=y0+bb(:,4)-1; j0=floor((lw-1)/2); j1=ceil((lw-1)/2); h=size(I,1); w=size(I,2); x00=max(1,x0-j0); x01=min(x0+j1,w); x10=max(1,x1-j0); x11=min(x1+j1,w); y00=max(1,y0-j0); y01=min(y0+j1,h); y10=max(1,y1-j0); y11=min(y1+j1,h); for b=1:n for c=1:3, I([y00(b):y01(b) y10(b):y11(b)],x00(b):x11(b),c)=col(b,c); end for c=1:3, I(y00(b):y11(b),[x00(b):x01(b) x10(b):x11(b)],c)=col(b,c); end end % embed text displaying bb score (inside upper-left bb corner) if(size(bb,2)<5 || fh==0), return; end bb(:,1:4)=intersect(bb(:,1:4),[1 1 w h]); for b=1:n M=char2img(sprintf('%.4g',bb(b,5)),fh); M=M{1}==0; [h,w]=size(M); y0=bb(b,2); y1=y0+h-1; x0=bb(b,1); x1=x0+w-1; if( x0>=1 && y0>=1 && x1<=size(I,2) && y1<=size(I,1)) Ir=I(y0:y1,x0:x1,1); Ig=I(y0:y1,x0:x1,2); Ib=I(y0:y1,x0:x1,3); Ir(M)=fcol(b,1); Ig(M)=fcol(b,2); Ib(M)=fcol(b,3); I(y0:y1,x0:x1,:)=cat(3,Ir,Ig,Ib); end end end function [patches, bbs] = crop( I, bbs, padEl, dims ) % Crop image regions from I encompassed by bbs. % % The only subtlety is that a pixel centered at location (i,j) would have a % bb of [j-1/2,i-1/2,1,1]. The -1/2 is because pixels are located at % integer locations. This is a Matlab convention, to confirm use: % im(rand(3)); bbApply('draw',[1.5 1.5 1 1],'g') % If bb contains all integer entries cropping is straightforward. If % entries are not integers, x=round(x+.499) is used, eg 1.2 actually goes % to 2 (since it is closer to 1.5 then .5), and likewise for y. % % If ~isempty(padEl), image is padded so can extract full bb region (no % actual padding is done, this is fast). Otherwise bb is intersected with % the image bb prior to cropping. If padEl is a string ('circular', % 'replicate', or 'symmetric'), uses padarray to do actual padding (slow). % % USAGE % [patches, bbs] = bbApply('crop',I,bb,[padEl],[dims]) % % INPUTS % I - image from which to crop patches % bbs - bbs that indicate regions to crop % padEl - [0] value to pad I or [] to indicate no padding (see above) % dims - [] if specified resize each cropped patch to [w h] % % OUTPUTS % patches - [1xn] cell of cropped image regions % bbs - actual integer-valued bbs used to crop % % EXAMPLE % I=imread('cameraman.tif'); bb=[-10 -10 100 100]; % p1=bbApply('crop',I,bb); p2=bbApply('crop',I,bb,'replicate'); % figure(1); im(I); figure(2); im(p1{1}); figure(3); im(p2{1}); % % See also bbApply, ARRAYCROP, PADARRAY, IMRESAMPLE % get padEl, bound bb to visible region if empty if( nargin<3 ), padEl=0; end; h=size(I,1); w=size(I,2); if( nargin<4 ), dims=[]; end; if(isempty(padEl)), bbs=intersect([.5 .5 w h],bbs); end % crop each patch in turn n=size(bbs,1); patches=cell(1,n); for i=1:n, [patches{i},bbs(i,1:4)]=crop1(bbs(i,1:4)); end function [patch, bb] = crop1( bb ) % crop single patch (use arrayCrop only if necessary) lcsS=round(bb([2 1])+.5-.001); lcsE=lcsS+round(bb([4 3]))-1; if( any(lcsS<1) || lcsE(1)>h || lcsE(2)>w ) if( ischar(padEl) ) pt=max(0,1-lcsS(1)); pb=max(0,lcsE(1)-h); pl=max(0,1-lcsS(2)); pr=max(0,lcsE(2)-w); lcsS1=max(1,lcsS); lcsE1=min(lcsE,[h w]); patch = I(lcsS1(1):lcsE1(1),lcsS1(2):lcsE1(2),:); patch = padarray(patch,[pt pl],padEl,'pre'); patch = padarray(patch,[pb pr],padEl,'post'); else if(ndims(I)==3); lcsS=[lcsS 1]; lcsE=[lcsE 3]; end patch = arrayCrop(I,lcsS,lcsE,padEl); end else patch = I(lcsS(1):lcsE(1),lcsS(2):lcsE(2),:); end bb = [lcsS([2 1]) lcsE([2 1])-lcsS([2 1])+1]; if(~isempty(dims)), patch=imResample(patch,[dims(2),dims(1)]); end end end function bb = convert( bb, bbRef, isAbs ) % Convert bb relative to absolute coordinates and vice-versa. % % If isAbs==1, bb is assumed to be given in absolute coords, and the output % is given in coords relative to bbRef. Otherwise, if isAbs==0, bb is % assumed to be given in coords relative to bbRef and the output is given % in absolute coords. % % USAGE % bb = bbApply( 'convert', bb, bbRef, isAbs ) % % INPUTS % bb - original bb, either in abs or rel coords % bbRef - reference bb % isAbs - 1: bb is in abs coords, 0: bb is in rel coords % % OUTPUTS % bb - converted bb % % EXAMPLE % bbRef=[5 5 15 15]; bba=[10 10 5 5]; % bbr = bbApply( 'convert', bba, bbRef, 1 ) % bba2 = bbApply( 'convert', bbr, bbRef, 0 ) % % See also bbApply if( isAbs ) bb(1:2)=bb(1:2)-bbRef(1:2); bb=bb./bbRef([3 4 3 4]); else bb=bb.*bbRef([3 4 3 4]); bb(1:2)=bb(1:2)+bbRef(1:2); end end function bbs = random( varargin ) % Randomly generate bbs that fall in a specified region. % % The vector dims defines the region in which bbs are generated. Specify % dims=[height width] to generate bbs=[x y w h] such that: 1<=x<=width, % 1<=y<=height, x+w-1<=width, y+h-1<=height. The biggest bb generated can % be bb=[1 1 width height]. If dims is a three element vector the third % coordinate is the depth, in this case bbs=[x y w h d] where 1<=d<=depth. % % A number of constraints can be specified that control the size and other % characteristics of the generated bbs. Note that if incompatible % constraints are specified (e.g. if the maximum width and height are both % 5 while the minimum area is 100) no bbs will be generated. More % generally, if fewer than n bbs are generated a warning is displayed. % % USAGE % bbs = bbApply( 'random', pRandom ) % % INPUTS % pRandom - parameters (struct or name/value pairs) % .n - ['REQ'] number of bbs to generate % .dims - ['REQ'] region in which to generate bbs [height,width] % .wRng - [1 inf] range for width of bbs (or scalar value) % .hRng - [1 inf] range for height of bbs (or scalar value) % .aRng - [1 inf] range for area of bbs % .arRng - [0 inf] range for aspect ratio (width/height) of bbs % .unique - [1] if true generate unique bbs % .maxOverlap - [1] max overlap (intersection/union) between bbs % .maxIter - [100] max iterations to go w/o changes before giving up % .show - [0] if true show sample generated bbs % % OUTPUTS % bbs - [nx4] array of randomly generated integer bbs % % EXAMPLE % bbs=bbApply('random','n',50,'dims',[20 20],'arRng',[.5 .5],'show',1); % % See also bbApply % get parameters rng=[1 inf]; dfs={ 'n','REQ', 'dims','REQ', 'wRng',rng, 'hRng',rng, ... 'aRng',rng, 'arRng',[0 inf], 'unique',1, 'maxOverlap',1, ... 'maxIter',100, 'show',0 }; [n,dims,wRng,hRng,aRng,arRng,uniqueOnly,maxOverlap,maxIter,show] ... = getPrmDflt(varargin,dfs,1); if(length(hRng)==1), hRng=[hRng hRng]; end if(length(wRng)==1), wRng=[wRng wRng]; end if(length(dims)==3), d=5; else d=4; end % generate random bbs satisfying constraints bbs=zeros(0,d); ids=zeros(0,1); n1=min(n*10,1000); M=max(dims)+1; M=M.^(0:d-1); iter=0; k=0; tid=ticStatus('generating random bbs',1,2); while( k<n && iter<maxIter ) ys=1+floor(rand(2,n1)*dims(1)); ys0=min(ys); ys1=max(ys); hs=ys1-ys0+1; xs=1+floor(rand(2,n1)*dims(2)); xs0=min(xs); xs1=max(xs); ws=xs1-xs0+1; if(d==5), ds=1+floor(rand(1,n1)*dims(3)); else ds=zeros(0,n1); end if(arRng(1)==arRng(2)), ws=hs.*arRng(1); end ars=ws./hs; ws=round(ws); xs1=xs0+ws-1; as=ws.*hs; kp = ys0>0 & xs0>0 & ys1<=dims(1) & xs1<=dims(2) & ... hs>=hRng(1) & hs<=hRng(2) & ws>=wRng(1) & ws<=wRng(2) & ... as>=aRng(1) & as<=aRng(2) & ars>=arRng(1) & ars<=arRng(2); bbs1=[xs0' ys0' ws' hs' ds']; bbs1=bbs1(kp,:); k0=k; bbs=[bbs; bbs1]; k=size(bbs,1); %#ok<AGROW> if( maxOverlap<1 && k ), bbs=bbs(1:k0,:); for j=1:size(bbs1,1), bbs0=bbs; bb=bbs1(j,:); if(d==5), bbs=bbs(bbs(:,5)==bb(5),:); end if(isempty(bbs)), bbs=[bbs0; bb]; continue; end ws1=min(bbs(:,1)+bbs(:,3),bb(1)+bb(3))-max(bbs(:,1),bb(1)); hs1=min(bbs(:,2)+bbs(:,4),bb(2)+bb(4))-max(bbs(:,2),bb(2)); o=max(0,ws1).*max(0,hs1); o=o./(bbs(:,3).*bbs(:,4)+bb(3).*bb(4)-o); if(max(o)<=maxOverlap), bbs=[bbs0; bb]; else bbs=bbs0; end end elseif( uniqueOnly && k ) ids=[ids; sum(bbs1.*M(ones(1,size(bbs1,1)),:),2)]; %#ok<AGROW> [ids,o]=sort(ids); bbs=bbs(o,:); kp=[ids(1:end-1)~=ids(2:end); true]; bbs=bbs(kp,:); ids=ids(kp,:); end k=size(bbs,1); if(k0==k), iter=iter+1; else iter=0; end if(k>n), bbs=bbs(randSample(k,n),:); k=n; end; tocStatus(tid,max(k/n,iter/maxIter)); end if( k<n ), warning('only generated %i of %i bbs',k,n); n=k; end %#ok<WNTAG> % optionally display a few bbs if( show ) k=8; figure(show); im(zeros(dims)); cs=uniqueColors(1,k,0,0); if(n>k), bbs1=bbs(randsample(n,k),:); else bbs1=bbs; end bbs1(:,1:2)=bbs1(:,1:2)-.5; for i=1:min(k,n), rectangle('Position',bbs1(i,:),... 'EdgeColor',cs(i,:),'LineStyle','--'); end end end function bbs = frMask( M, bbw, bbh, thr ) % Convert weighted mask to bbs. % % Pixels in mask above given threshold (thr) indicate bb centers. % % USAGE % bbs = bbApply('frMask',M,bbw,bbh,[thr]) % % INPUTS % M - mask % bbw - bb target width % bbh - bb target height % thr - [0] mask threshold % % OUTPUTS % bbs - bounding boxes % % EXAMPLE % w=20; h=10; bbw=5; bbh=8; M=double(rand(h,w)); M(M<.95)=0; % bbs=bbApply('frMask',M,bbw,bbh); M2=bbApply('toMask',bbs,w,h); % sum(abs(M(:)-M2(:))) % % See also bbApply, bbApply>toMask if(nargin<4), thr=0; end ids=find(M>thr); ids=ids(:); h=size(M,1); if(isempty(ids)), bbs=zeros(0,5); return; end xs=floor((ids-1)/h); ys=ids-xs*h; xs=xs+1; bbs=[xs-floor(bbw/2) ys-floor(bbh/2)]; bbs(:,3)=bbw; bbs(:,4)=bbh; bbs(:,5)=M(ids); end function M = toMask( bbs, w, h, fill, bgrd ) % Create weighted mask encoding bb centers (or extent). % % USAGE % M = bbApply('toMask',bbs,w,h,[fill],[bgrd]) % % INPUTS % bbs - bounding boxes % w - mask target width % h - mask target height % fill - [0] if 1 encodes extent of bbs % bgrd - [0] default value for background pixels % % OUTPUTS % M - hxw mask % % EXAMPLE % % See also bbApply, bbApply>frMask if(nargin<4||isempty(fill)), fill=0; end if(nargin<5||isempty(bgrd)), bgrd=0; end if(size(bbs,2)==4), bbs(:,5)=1; end M=zeros(h,w); B=true(h,w); n=size(bbs,1); if( fill==0 ) p=floor(getCenter(bbs)); p=sub2ind([h w],p(:,2),p(:,1)); for i=1:n, M(p(i))=M(p(i))+bbs(i,5); end if(bgrd~=0), B(p)=0; end else bbs=[intersect(round(bbs),[1 1 w h]) bbs(:,5)]; n=size(bbs,1); x0=bbs(:,1); x1=x0+bbs(:,3)-1; y0=bbs(:,2); y1=y0+bbs(:,4)-1; for i=1:n, y=y0(i):y1(i); x=x0(i):x1(i); M(y,x)=M(y,x)+bbs(i,5); B(y,x)=0; end end if(bgrd~=0), M(B)=bgrd; end end
github
garrickbrazil/SDS-RCNN-master
imwrite2.m
.m
SDS-RCNN-master/external/pdollar_toolbox/images/imwrite2.m
5,086
utf_8
c98d66c2cddd9ec90beb9b1bbde31fe0
function I = imwrite2( I, mulFlag, imagei, path, ... name, ext, nDigits, nSplits, spliti, varargin ) % Similar to imwrite, except follows a strict naming convention. % % Wrapper for imwrite that writes file to the filename: % fName = [path name int2str2(i,nDigits) '.' ext]; % Using imwrite: % imwrite( I, fName, writePrms ) % If I represents a stack of images, the ith image is written to: % fNamei = [path name int2str2(i+imagei-1,nDigits) '.' ext]; % If I=[], then imwrite2 will attempt to read images from disk instead. % If dir spec. by 'path' does not exist, imwrite2 attempts to create it. % % mulFlag controls how I is interpreted. If mulFlag==0, then I is % intrepreted as a single image, otherwise I is interpreted as a stack of % images, where I(:,:,...,j) represents the jth image (see fevalArrays for % more info). % % If nSplits>1, writes/reads images into/from multiple directories. This is % useful since certain OS handle very large directories (of say >20K % images) rather poorly (I'm talking to you Bill). Thus, can take 100K % images, and write into 5 separate dirs, then read them back in. % % USAGE % I = imwrite2( I, mulFlag, imagei, path, ... % [name], [ext], [nDigits], [nSplits], [spliti], [varargin] ) % % INPUTS % I - image or array or cell of images (if [] reads else writes) % mulFlag - set to 1 if I represents a stack of images % imagei - first image number % path - directory where images are % name - ['I'] base name of images % ext - ['png'] extension of image % nDigits - [5] number of digits for filename index % nSplits - [1] number of dirs to break data into % spliti - [0] first split (dir) number % writePrms - [varargin] parameters to imwrite % % OUTPUTS % I - image or images (read from disk if input I=[]) % % EXAMPLE % load images; I=images(:,:,1:10); clear IDXi IDXv t video videos images; % imwrite2( I(:,:,1), 0, 0, 'rats/', 'rats', 'png', 5 ); % write 1 % imwrite2( I, 1, 0, 'rats/', 'rats', 'png', 5 ); % write 5 % I2 = imwrite2( [], 1, 0, 'rats/', 'rats', 'png', 5 ); % read 5 % I3 = fevalImages(@(x) x,{},'rats/','rats','png',0,4,5); % read 5 % % EXAMPLE - multiple splits % load images; I=images(:,:,1:10); clear IDXi IDXv t video videos images; % imwrite2( I, 1, 0, 'rats', 'rats', 'png', 5, 2, 0 ); % write 10 % I2=imwrite2( [], 1, 0, 'rats', 'rats', 'png', 5, 2, 0 ); % read 10 % % See also FEVALIMAGES, FEVALARRAYS % % Piotr's Computer Vision Matlab Toolbox Version 2.30 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] if( nargin<5 || isempty(name) ); name='I'; end; if( nargin<6 || isempty(ext) ); ext='png'; end; if( nargin<7 || isempty(nDigits) ); nDigits=5; end; if( nargin<8 || isempty(nSplits) ); nSplits=1; end; if( nargin<9 || isempty(spliti) ); spliti=0; end; n = size(I,3); if(isempty(I)); n=0; end % multiple splits -- call imwrite2 recursively if( nSplits>1 ) write2inp = [ {name, ext, nDigits, 1, 0} varargin ]; if(n>0); nSplits=min(n,nSplits); end; for s=1:nSplits pathS = [path int2str2(s-1+spliti,2)]; if( n>0 ) % write nPerDir = ceil( n / nSplits ); ISplit = I(:,:,1:min(end,nPerDir)); imwrite2( ISplit, nPerDir>1, 0, pathS, write2inp{:} ); if( s~=nSplits ); I = I(:,:,(nPerDir+1):end); end else % read ISplit = imwrite2( [], 1, 0, pathS, write2inp{:} ); I = cat(3,I,ISplit); end end return; end % if I is empty read from disk if( n==0 ) I = fevalImages( @(x) x, {}, path, name, ext, imagei, [], nDigits ); return; end % Check if path exists (create if not) and add '/' at end if needed if( ~isempty(path) ) if(~exist(path,'dir')) warning( ['creating directory: ' path] ); %#ok<WNTAG> mkdir( path ); end; if( path(end)~='\' && path(end)~='/' ); path(end+1) = '/'; end end % Write images using one of the two subfunctions params = varargin; if( mulFlag ) imwrite2m( [], 'init', imagei, path, name, ext, nDigits, params ); if( ~iscell(I) ) fevalArrays( I, @imwrite2m, 'write' ); else fevalArrays( I, @(x) imwrite2m(x{1},'write') ); end else if( ~iscell(I) ) imwrite2s( I, imagei, path, name, ext, nDigits, params ); else imwrite2s( I{1}, imagei, path, name, ext, nDigits, params ); end; end function varargout = imwrite2m( I, type, varargin ) % helper for writing multiple images (passed to fevalArrays) persistent imagei path name ext nDigits params switch type case 'init' narginchk(8,8); [nstart, path, name, ext, nDigits, params] = deal(varargin{:}); if(isempty(nstart)); imagei=0; else imagei=nstart; end varargout = {[]}; case 'write' narginchk(2,2); imwrite2s( I, imagei, path, name, ext, nDigits, params ); imagei = imagei+1; varargout = {[]}; end function imwrite2s( I, imagei, path, name, ext, nDigits, params ) % helper for writing a single image fullname = [path name int2str2(imagei,nDigits) '.' ext]; imwrite( I, fullname, params{:} );
github
garrickbrazil/SDS-RCNN-master
convnFast.m
.m
SDS-RCNN-master/external/pdollar_toolbox/images/convnFast.m
9,102
utf_8
03d05e74bb7ae2ecb0afd0ac115fda39
function C = convnFast( A, B, shape ) % Fast convolution, replacement for both conv2 and convn. % % See conv2 or convn for more information on convolution in general. % % This works as a replacement for both conv2 and convn. Basically, % performs convolution in either the frequency or spatial domain, depending % on which it thinks will be faster (see below). In general, if A is much % bigger then B then spatial convolution will be faster, but if B is of % similar size to A and both are fairly big (such as in the case of % correlation), convolution as multiplication in the frequency domain will % tend to be faster. % % The shape flag can take on 1 additional value which is 'smooth'. This % flag is intended for use with smoothing kernels. The returned matrix C % is the same size as A with boundary effects handled in a special manner. % That is instead of A being zero padded before being convolved with B; % near the boundaries a cropped version of the matrix B is used, and the % results is scaled by the fraction of the weight found in the cropped % version of B. In this case each dimension of B must be odd, and all % elements of B must be positive. There are other restrictions on when % this flag can be used, and in general it is only useful for smoothing % kernels. For 2D filtering it does not have much overhead, for 3D it has % more and for higher dimensions much much more. % % For optimal performance some timing constants must be set to choose % between doing convolution in the spatial and frequency domains, for more % info see timeConv below. % % USAGE % C = convnFast( A, B, [shape] ) % % INPUTS % A - d dimensional input matrix % B - d dimensional matrix to convolve with A % shape - ['full'] 'valid', 'full', 'same', or 'smooth' % % OUTPUTS % C - result of convolution % % EXAMPLE % % See also CONV2, CONVN % % Piotr's Computer Vision Matlab Toolbox Version 2.61 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] if( nargin<3 || isempty(shape)); shape='full'; end if( ~any(strcmp(shape,{'same', 'valid', 'full', 'smooth'})) ) error( 'convnFast: unknown shape flag' ); end shapeorig = shape; smoothFlag = (strcmp(shape,'smooth')); if( smoothFlag ); shape = 'same'; end; % get dimensions of A and B ndA = ndims(A); ndB = ndims(B); nd = max(ndA,ndB); sizA = size(A); sizB = size(B); if (ndA>ndB); sizB = [sizB ones(1,ndA-ndB)]; end if (ndA<ndB); sizA = [sizA ones(1,ndB-ndA)]; end % ERROR CHECK if smoothflag if( smoothFlag ) if( ~all( mod(sizB,2)==1 ) ) error('If flag==''smooth'' then must have odd sized mask'); end; if( ~all( B>0 ) ) error('If flag==''smooth'' then mask must have >0 values.'); end; if( any( (sizB-1)/2>sizA ) ) error('B is more then twice as big as A, cannot use flag==''smooth'''); end; end % OPTIMIZATION for 3D conv when B is actually 2D - calls (spatial) conv2 % repeatedly on 2D slices of A. Note that may need to rearange A and B % first and use recursion. The benefits carry over to convnBound % (which is faster for 2D arrays). if( ndA==3 && ndB==3 && (sizB(1)==1 || sizB(2)==1) ) if (sizB(1)==1) A = permute( A, [2 3 1]); B = permute( B, [2 3 1]); C = convnFast( A, B, shapeorig ); C = permute( C, [3 1 2] ); elseif (sizB(2)==1) A = permute( A, [3 1 2]); B = permute( B, [3 1 2]); C = convnFast( A, B, shapeorig ); C = permute( C, [2 3 1] ); end return; elseif( ndA==3 && ndB==2 ) C1 = conv2( A(:,:,1), B, shape ); C = zeros( [size(C1), sizA(3)] ); C(:,:,1) = C1; for i=2:sizA(3); C(:,:,i) = conv2( A(:,:,i), B, shape ); end if (smoothFlag) for i=1:sizA(3) C(:,:,i) = convnBound(A(:,:,i),B,C(:,:,i),sizA(1:2),sizB(1:2)); end end return; end % get predicted time of convolution in frequency and spatial domain % constants taken from timeConv sizfft = 2.^ceil(real(log2(sizA+sizB-1))); psizfft=prod(sizfft); frequenPt = 3 * 1e-7 * psizfft * log(psizfft); if (nd==2) spatialPt = 5e-9 * sizA(1) * sizA(2) * sizB(1) * sizB(2); else spatialPt = 5e-8 * prod(sizA) * prod(sizB); end % perform convolution if ( spatialPt < frequenPt ) if (nd==2) C = conv2( A, B, shape ); else C = convn( A, B, shape ); end else C = convnFreq( A, B, sizA, sizB, shape ); end; % now correct boundary effects (if shape=='smooth') if( ~smoothFlag ); return; end; C = convnBound( A, B, C, sizA, sizB ); function C = convnBound( A, B, C, sizA, sizB ) % calculate boundary values for C in spatial domain nd = length(sizA); radii = (sizB-1)/2; % flip B appropriately (conv flips B) for d=1:nd; B = flipdim(B,d); end % accelerated case for 1D mask B if( nd==2 && sizB(1)==1 ) sumB=sum(B(:)); r=radii(2); O=ones(1,sizA(1)); for i=1:r Ai=A(:,1:r+i); Bi=B(r+2-i:end); C(:,i)=sum(Ai.*Bi(O,:),2)/sum(Bi)*sumB; Ai=A(:,end+1-r-i:end); Bi=B(1:(end-r+i-1)); C(:,end-i+1)=sum(Ai.*Bi(O,:),2)/sum(Bi)*sumB; end; return; elseif( nd==2 && sizB(2)==1 ) sumB=sum(B(:)); r=radii(1); O=ones(1,sizA(2)); for i=1:r Ai=A(1:r+i,:); Bi=B(r+2-i:end); C(i,:)=sum(Ai.*Bi(:,O),1)/sum(Bi)*sumB; Ai=A(end+1-r-i:end,:); Bi=B(1:(end-r+i-1)); C(end-i+1,:)=sum(Ai.*Bi(:,O),1)/sum(Bi)*sumB; end; return; end % get location that need to be updated inds = {':'}; inds = inds(:,ones(1,nd)); Dind = zeros( sizA ); for d=1:nd inds1 = inds; inds1{ d } = 1:radii(d); inds2 = inds; inds2{ d } = sizA(d)-radii(d)+1:sizA(d); Dind(inds1{:}) = 1; Dind(inds2{:}) = 1; end Dind = find( Dind ); Dndx = ind2sub2( sizA, Dind ); nlocs = length(Dind); % get cuboid dimensions for all the boundary regions sizeArep = repmat( sizA, [nlocs,1] ); radiiRep = repmat( radii, [nlocs,1] ); Astarts = max(1,Dndx-radiiRep); Aends = min( sizeArep, Dndx+radiiRep); Bstarts = Astarts + (1-Dndx+radiiRep); Bends = Bstarts + (Aends-Astarts); % now update these locations vs = zeros( 1, nlocs ); if( nd==2 ) for i=1:nlocs % accelerated for 2D arrays Apart = A( Astarts(i,1):Aends(i,1), Astarts(i,2):Aends(i,2) ); Bpart = B( Bstarts(i,1):Bends(i,1), Bstarts(i,2):Bends(i,2) ); v = (Apart.*Bpart); vs(i) = sum(v(:)) ./ sum(Bpart(:)); end elseif( nd==3 ) % accelerated for 3D arrays for i=1:nlocs Apart = A( Astarts(i,1):Aends(i,1), Astarts(i,2):Aends(i,2), ... Astarts(i,3):Aends(i,3) ); Bpart = B( Bstarts(i,1):Bends(i,1), Bstarts(i,2):Bends(i,2), ... Bstarts(i,3):Bends(i,3) ); za = sum(sum(sum(Apart.*Bpart))); zb=sum(sum(sum(Bpart))); vs(1,i) = za./zb; end else % general case [slow] extract=cell(1,nd); for i=1:nlocs for d=1:nd; extract{d} = Astarts(i,d):Aends(i,d); end Apart = A( extract{:} ); for d=1:nd; extract{d} = Bstarts(i,d):Bends(i,d); end Bpart = B( extract{:} ); v = (Apart.*Bpart); vs(i) = sum(v(:)) ./ sum(Bpart(:)); end end C( Dind ) = vs * sum(B(:)); function C = convnFreq( A, B, sizA, sizB, shape ) % Convolution as multiplication in the frequency domain siz = sizA + sizB - 1; % calculate correlation in frequency domain Fa = fftn(A,siz); Fb = fftn(B,siz); C = ifftn(Fa .* Fb); % make sure output is real if inputs were both real if(isreal(A) && isreal(B)); C = real(C); end % crop to size if(strcmp(shape,'valid')) C = arrayToDims( C, max(0,sizA-sizB+1 ) ); elseif(strcmp(shape,'same')) C = arrayToDims( C, sizA ); elseif(~strcmp(shape,'full')) error('unknown shape'); end function K = timeConv() %#ok<DEFNU> % Function used to calculate constants for prediction of convolution in the % frequency and spatial domains. Method taken from normxcorr2.m % May need to reset K's if placing this on a new machine, however, their % ratio should be about the same.. mintime = 4; switch 3 case 1 % conv2 [[empirically K = 5e-9]] % convolution time = K*prod(size(a))*prod(size(b)) siza = 30; sizb = 200; a = ones(siza); b = ones(sizb); t1 = cputime; t2 = t1; k = 0; while (t2-t1)<mintime; disc = conv2(a,b); k = k + 1; t2 = cputime; %#ok<NASGU> end K = (t2-t1)/k/siza^2/sizb^2; case 2 % convn [[empirically K = 5e-8]] % convolution time = K*prod(size(a))*prod(size(b)) siza = [10 10 10]; sizb = [30 30 10]; a = ones(siza); b = ones(sizb); t1 = cputime; t2 = t1; k = 0; while (t2-t1)<mintime; disc = convn(a,b); k = k + 1; t2 = cputime; %#ok<NASGU> end K = (t2-t1)/k/prod(siza)/prod(sizb); case 3 % fft (one dimensional) [[empirically K = 1e-7]] % fft time = K * n log(n) [if n is power of 2] % Works fastest for powers of 2. (so always zero pad until have % size of power of 2?). 2 dimensional fft has to apply single % dimensional fft to each column, and then signle dimensional fft % to each resulting row. time = K * (mn)log(mn). Likewise for % highter dimensions. convnFreq requires 3 such ffts. n = 2^nextpow2(2^15); vec = complex(rand(n,1),rand(n,1)); t1 = cputime; t2 = t1; k = 0; while (t2-t1) < mintime; disc = fft(vec); k = k + 1; t2 = cputime; %#ok<NASGU> end K = (t2-t1) / k / n / log(n); end
github
garrickbrazil/SDS-RCNN-master
imMlGauss.m
.m
SDS-RCNN-master/external/pdollar_toolbox/images/imMlGauss.m
5,674
utf_8
56ead1b25fbe356f7912993d46468d02
function varargout = imMlGauss( G, symmFlag, show ) % Calculates max likelihood params of Gaussian that gave rise to image G. % % Suppose G contains an image of a gaussian distribution. One way to % recover the parameters of the gaussian is to threshold the image, and % then estimate the mean/covariance based on the coordinates of the % thresholded points. A better method is to do no thresholding and instead % use all the coordinates, weighted by their value. This function does the % latter, except in a very efficient manner since all computations are done % in parallel over the entire image. % % This function works over 2D or 3D images. It makes most sense when G in % fact contains an image of a single gaussian, but a result will be % returned regardless. All operations are performed on abs(G) in case it % contains negative or complex values. % % symmFlag is an optional flag that if set to 1 then imMlGauss recovers % the maximum likelihood symmetric gaussian. That is the variance in each % direction is equal, and all covariance terms are 0. If symmFlag is set % to 2 and G is 3D, imMlGauss recovers the ML guassian with equal % variance in the 1st 2 dimensions (row and col) and all covariance terms % equal to 0, but a possibly different variance in the 3rd (z or t) % dimension. % % USAGE % varargout = imMlGauss( G, [symmFlag], [show] ) % % INPUTS % G - image of a gaussian (weighted pixels) % symmFlag - [0] see above % show - [0] figure to use for optional display % % OUTPUTS % mu - 2 or 3 element vector specifying the mean [row,col,z] % C - 2x2 or 3x3 covariance matrix [row,col,z] % GR - image of the recovered gaussian (faster if omitted) % logl - log likelihood of G given recov. gaussian (faster if omitted) % % EXAMPLE - 2D % R = rotationMatrix( pi/6 ); C=R'*[10^2 0; 0 20^2]*R; % G = filterGauss( [200, 300], [150,100], C, 0 ); % [mu,C,GR,logl] = imMlGauss( G, 0, 1 ); % mask = maskEllipse( size(G,1), size(G,2), mu, C ); % figure(2); im(mask) % % EXAMPLE - 3D % R = rotationMatrix( [1,1,0], pi/4 ); % C = R'*[5^2 0 0; 0 2^2 0; 0 0 4^2]*R; % G = filterGauss( [50,50,50], [25,25,25], C, 0 ); % [mu,C,GR,logl] = imMlGauss( G, 0, 1 ); % % See also GAUSS2ELLIPSE, PLOTGAUSSELLIPSES, MASKELLIPSE % % Piotr's Computer Vision Matlab Toolbox Version 2.0 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] if( nargin<2 || isempty(symmFlag) ); symmFlag=0; end; if( nargin<3 || isempty(show) ); show=0; end; varargout = cell(1,max(nargout,2)); nd = ndims(G); G = abs(G); if( nd==2 ) [varargout{:}] = imMlGauss2D( G, symmFlag, show ); elseif( nd==3 ) [varargout{:}] = imMlGauss3D( G, symmFlag, show ); else error( 'Unsupported dimension for G. G must be 2D or 3D.' ); end function [mu,C,GR,logl] = imMlGauss2D( G, symmFlag, show ) % to be used throughout calculations [ gridCols, gridRows ] = meshgrid( 1:size(G,2), 1:size(G,1) ); sumG = sum(G(:)); if(sumG==0); sumG=1; end; % recover mean muCol = (gridCols .* G); muCol = sum( muCol(:) ) / sumG; muRow = (gridRows .* G); muRow = sum( muRow(:) ) / sumG; mu = [muRow, muCol]; % recover sigma distCols = (gridCols - muCol); distRows = (gridRows - muRow); if( symmFlag==0 ) Ccc = (distCols .^ 2) .* G; Ccc = sum(Ccc(:)) / sumG; Crr = (distRows .^ 2) .* G; Crr = sum(Crr(:)) / sumG; Crc = (distCols .* distRows) .* G; Crc = sum(Crc(:)) / sumG; C = [Crr Crc; Crc Ccc]; elseif( symmFlag==1 ) sigSq = (distCols.^2 + distRows.^2) .* G; sigSq = 1/2 * sum(sigSq(:)) / sumG; C = sigSq*eye(2); else error(['Illegal value for symmFlag: ' num2str(symmFlag)]); end % get the log likelihood of the data if (nargout>2) GR = filterGauss( size(G), mu, C ); probs = GR; probs( probs<realmin ) = realmin; logl = G .* log( probs ); logl = sum( logl(:) ); end % plot ellipses if (show) figure(show); im(G); hold('on'); plotGaussEllipses( mu, C, 2 ); hold('off'); end function [mu,C,GR,logl] = imMlGauss3D( G, symmFlag, show ) % to be used throughout calculations [gridCols,gridRows,gridZs]=meshgrid(1:size(G,2),1:size(G,1),1:size(G,3)); sumG = sum(G(:)); % recover mean muCol = (gridCols .* G); muCol = sum( muCol(:) ) / sumG; muRow = (gridRows .* G); muRow = sum( muRow(:) ) / sumG; muZ = (gridZs .* G); muZ = sum( muZ(:) ) / sumG; mu = [muRow, muCol, muZ]; % recover C distCols = (gridCols - muCol); distRows = (gridRows - muRow); distZs = (gridZs - muZ); if( symmFlag==0 ) distColsG = distCols .* G; distRowsG = distRows .* G; Ccc = distCols .* distColsG; Ccc = sum(Ccc(:)); Crc = distRows .* distColsG; Crc = sum(Crc(:)); Czc = distZs .* distColsG; Czc = sum(Czc(:)); Crr = distRows .* distRowsG; Crr = sum(Crr(:)); Czr = distZs .* distRowsG; Czr = sum(Czr(:)); Czz = distZs .* distZs .* G; Czz = sum(Czz(:)); C = [Crr Crc Czr; Crc Ccc Czc; Czr Czc Czz] / sumG; elseif( symmFlag==1 ) sigSq = (distCols.^2 + distRows.^2 + distZs .^ 2) .* G; sigSq = 1/3 * sum(sigSq(:)); C = [sigSq 0 0; 0 sigSq 0; 0 0 sigSq] / sumG; elseif( symmFlag==2 ) sigSq = (distCols.^2 + distRows.^2) .* G; sigSq = 1/2 * sum(sigSq(:)); tauSq = (distZs .^ 2) .* G; tauSq = sum(tauSq(:)); C = [sigSq 0 0; 0 sigSq 0; 0 0 tauSq] / sumG; else error(['Illegal value for symmFlag: ' num2str(symmFlag)]) end % get the log likelihood of the data if( nargout>2 || (show) ) GR = filterGauss( size(G), mu, C ); probs = GR; probs( probs<realmin ) = realmin; logl = G .* log( probs ); logl = sum( logl(:) ); end % plot G and GR if( show ) figure(show); montage2(G); figure(show+1); montage2(GR); end
github
garrickbrazil/SDS-RCNN-master
montage2.m
.m
SDS-RCNN-master/external/pdollar_toolbox/images/montage2.m
7,484
utf_8
828f57d7b1f67d36eeb6056f06568ebf
function varargout = montage2( IS, prm ) % Used to display collections of images and videos. % % Improved version of montage, with more control over display. % NOTE: Can convert between MxNxT and MxNx3xT image stack via: % I = repmat( I, [1,1,1,3] ); I = permute(I, [1,2,4,3] ); % % USAGE % varargout = montage2( IS, [prm] ) % % INPUTS % IS - MxNxTxR or MxNxCxTxR, where C==1 or C==3, and R may be 1 % or cell vector of MxNxT or MxNxCxT matrices % prm % .showLines - [1] whether to show lines separating the various frames % .extraInfo - [0] if 1 then a colorbar is shown as well as impixelinfo % .cLim - [] cLim = [clow chigh] optional scaling of data % .mm - [] #images/col per montage % .nn - [] #images/row per montage % .labels - [] cell array of labels (strings) (T if R==1 else R) % .perRow - [0] only if R>1 and not cell, alternative displays method % .hasChn - [0] if true assumes IS is MxNxCxTxR else MxNxTxR % .padAmt - [0] only if perRow, amount to pad when in row mode % .padEl - [] pad element, defaults to min value in IS % % OUTPUTS % h - image handle % m - #images/col % nn - #images/row % % EXAMPLE - [3D] show a montage of images % load( 'images.mat' ); clf; montage2( images ); % % EXAMPLE - [3D] show a montage of images with labels % load( 'images.mat' ); % for i=1:50; labels{i}=['I-' int2str2(i,2)]; end % prm = struct('extraInfo',1,'perRow',0,'labels',{labels}); % clf; montage2( images(:,:,1:50), prm ); % % EXAMPLE - [3D] show a montage of images with color boundaries % load( 'images.mat' ); % I3 = repmat(permute(images,[1 2 4 3]),[1,1,3,1]); % add color chnls % prm = struct('padAmt',4,'padEl',[50 180 50],'hasChn',1,'showLines',0); % clf; montage2( I3(:,:,:,1:48), prm ) % % EXAMPLE - [4D] show a montage of several groups of images % for i=1:25; labels{i}=['V-' int2str2(i,2)]; end % prm = struct('labels',{labels}); % load( 'images.mat' ); clf; montage2( videos(:,:,:,1:25), prm ); % % EXAMPLE - [4D] show using 'row' format % load( 'images.mat' ); % prm = struct('perRow',1, 'padAmt',6, 'padEl',255 ); % figure(1); clf; montage2( videos(:,:,:,1:10), prm ); % % See also MONTAGE, PLAYMOVIE, FILMSTRIP % % Piotr's Computer Vision Matlab Toolbox Version 2.0 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] if( nargin<2 ); prm=struct(); end varargout = cell(1,nargout); %%% get parameters (set defaults) dfs = {'showLines',1, 'extraInfo',0, 'cLim',[], 'mm',[], 'nn',[],... 'labels',[], 'perRow',false, 'padAmt',0, 'padEl',[], 'hasChn',false }; prm = getPrmDflt( prm, dfs ); extraInfo=prm.extraInfo; labels=prm.labels; perRow=prm.perRow; hasChn=prm.hasChn; %%% If IS is not a cell convert to MxNxCxTxR array if( iscell(IS) && numel(IS)==1 ); IS=IS{1}; end; if( ~iscell(IS) && ~ismatrix(IS) ) siz=size(IS); if( ~hasChn ); IS=reshape(IS,[siz(1:2),1,siz(3:end)]); prm.hasChn = true; end; if(ndims(IS)>5); error('montage2: input too large'); end; end if( ~iscell(IS) && size(IS,5)==1 ) %%% special case call subMontage once [varargout{:}] = subMontage(IS,prm); title(inputname(1)); elseif( perRow ) %%% display each montage in row format if(iscell(IS)); error('montage2: IS cannot be a cell if perRow'); end; siz = size(IS); IS=reshape(permute(IS,[1 2 4 3 5]),siz(1),[],siz(3),siz(5)); if( nargout ); varargout{1}=IS; end prm.perRow = false; prm.hasChn=true; [varargout{2:end}] = subMontage( IS, prm ); title(inputname(1)); else %%% display each montage using subMontage % convert to cell array if( iscell(IS) ) nMontages = numel(IS); else nMontages = size(IS,5); IS = squeeze(mat2cell2( IS, [1 1 1 1 nMontages] )); end % draw each montage clf; nn = ceil( sqrt(nMontages) ); mm = ceil(nMontages/nn); for i=1:nMontages subplot(mm,nn,i); prmSub=prm; prmSub.extraInfo=0; prmSub.labels=[]; if( ~isempty(IS{i}) ) subMontage( IS{i}, prmSub ); else set(gca,'XTick',[]); set(gca,'YTick',[]); end if(~isempty(labels)); title(labels{i}); end end if( extraInfo ); impixelinfo; end; end function varargout = subMontage( IS, prm ) % this function is a generalized version of Matlab's montage.m % get parameters (set defaults) dfs = {'showLines',1, 'extraInfo',0, 'cLim',[], 'mm',[], 'nn',[], ... 'labels',[], 'perRow',false, 'hasChn',false, 'padAmt',0, 'padEl',[] }; prm = getPrmDflt( prm, dfs ); showLines=prm.showLines; extraInfo=prm.extraInfo; cLim=prm.cLim; mm=prm.mm; nn=prm.nn; labels=prm.labels; hasChn=prm.hasChn; padAmt=prm.padAmt; padEl=prm.padEl; if( prm.perRow ); mm=1; end; % get/test image format info and parameters if( hasChn ) if( ndims(IS)>4 || ~any(size(IS,3)==[1 3]) ) error('montage2: unsupported dimension of IS'); end else if( ndims(IS)>3 ); error('montage2: unsupported dimension of IS'); end IS = permute(IS, [1 2 4 3] ); end siz = size(IS); nCh=size(IS,3); nIm = size(IS,4); sizPad=siz+padAmt; if( ~isempty(labels) && nIm~=length(labels) ) error('montage2: incorrect number of labels'); end % set up the padEl correctly (must have same type / nCh as IS) if(isempty(padEl)) if(isempty(cLim)); padEl=min(IS(:)); else padEl=cLim(1); end; end if(length(padEl)==1); padEl=repmat(padEl,[1 nCh]); end; if(length(padEl)~=nCh); error( 'invalid padEl' ); end; padEl = feval( class(IS), padEl ); padEl = reshape( padEl, 1, 1, [] ); padAmt = floor(padAmt/2 + .5)*2; % get layout of images (mm=#images/row, nn=#images/col) if( isempty(mm) || isempty(nn)) if( isempty(mm) && isempty(nn)) nn = min( ceil(sqrt(sizPad(1)*nIm/sizPad(2))), nIm ); mm = ceil( nIm/nn ); elseif( isempty(mm) ) nn = min( nn, nIm ); mm = ceil(nIm/nn); else mm = min( mm, nIm ); nn = ceil(nIm/mm); end % often can shrink dimension further while((mm-1)*nn>=nIm); mm=mm-1; end; while((nn-1)*mm>=nIm); nn=nn-1; end; end % Calculate I (M*mm x N*nn size image) I = repmat(padEl, [mm*sizPad(1), nn*sizPad(2), 1]); rows = 1:siz(1); cols = 1:siz(2); for k=1:nIm rowsK = rows + floor((k-1)/nn)*sizPad(1)+padAmt/2; colsK = cols + mod(k-1,nn)*sizPad(2)+padAmt/2; I(rowsK,colsK,:) = IS(:,:,:,k); end % display I if( ~isempty(cLim)); h=imagesc(I,cLim); else h=imagesc(I); end colormap(gray); axis('image'); if( extraInfo ) colorbar; impixelinfo; else set(gca,'Visible','off') end % draw lines separating frames if( showLines ) montageWd = nn * sizPad(2) + .5; montageHt = mm * sizPad(1) + .5; for i=1:mm-1 ht = i*sizPad(1) +.5; line([.5,montageWd],[ht,ht]); end for i=1:nn-1 wd = i*sizPad(2) +.5; line([wd,wd],[.5,montageHt]); end end % plot text labels textalign = { 'VerticalAlignment','bottom','HorizontalAlignment','left'}; if( ~isempty(labels) ) count=1; for i=1:mm; for j=1:nn if( count<=nIm ) rStr = i*sizPad(1)-padAmt/2; cStr =(j-1+.1)*sizPad(2)+padAmt/2; text(cStr,rStr,labels{count},'color','r',textalign{:}); count = count+1; end end end end % cross out unused frames [nns,mms] = ind2sub( [nn,mm], nIm+1 ); for i=mms-1:mm-1 for j=nns-1:nn-1, rStr = i*sizPad(1)+.5+padAmt/2; rs = [rStr,rStr+siz(1)]; cStr = j*sizPad(2)+.5+padAmt/2; cs = [cStr,cStr+siz(2)]; line( cs, rs ); line( fliplr(cs), rs ); end end % optional output if( nargout>0 ); varargout={h,mm,nn}; end
github
garrickbrazil/SDS-RCNN-master
jitterImage.m
.m
SDS-RCNN-master/external/pdollar_toolbox/images/jitterImage.m
5,252
utf_8
3310f8412af00fd504c6f94b8c48992c
function IJ = jitterImage( I, varargin ) % Creates multiple, slightly jittered versions of an image. % % Takes an image I, and generates a number of images that are copies of the % original image with slight translation, rotation and scaling applied. If % the input image is actually an MxNxK stack of images then applies op to % each image. Rotations and translations are specified by giving a range % and a max value for each. For example, if mPhi=10 and nPhi=5, then the % actual rotations applied are linspace(-mPhi,mPhi,nPhi)=[-10 -5 0 5 10]. % Likewise if mTrn=3 and nTrn=3 then the translations are [-3 0 3]. Each % tran is applied in the x direction as well as the y direction. Each % combination of rotation, tran in x, tran in y and scale is used (for % example phi=5, transx=-3, transy=0), so the total number of images % generated is R=nTrn*nTrn*nPhi*nScl. Finally, jsiz controls the size of % the cropped images. If jsiz gives a size that's sufficiently smaller than % I then all data in the the final set will come from I. Otherwise, I must % be padded first (by calling padarray with the 'replicate' option). % % USAGE % function IJ = jitterImage( I, varargin ) % % INPUTS % I - image (MxN) or set of K images (MxNxK) % varargin - additional params (struct or name/value pairs) % .maxn - [inf] maximum jitters to generate (prior to flip) % .nPhi - [0] number of rotations % .mPhi - [0] max value for rotation % .nTrn - [0] number of translations % .mTrn - [0] max value for translation % .flip - [0] if true then also adds reflection of each image % .jsiz - [] Final size of each image in IJ % .scls - [1 1] nScl x 2 array of vert/horiz scalings % .method - ['linear'] interpolation method for imtransform2 % .hasChn - [0] if true I is MxNxC or MxNxCxK % % OUTPUTS % IJ - MxNxKxR or MxNxCxKxR set of images, R=(nTrn^2*nPhi*nScl) % % EXAMPLE % load trees; I=imresize(ind2gray(X,map),[41 41]); clear X caption map % % creates 10 (of 7^2*2) images of slight trans % IJ = jitterImage(I,'nTrn',7,'mTrn',3,'maxn',10); montage2(IJ) % % creates 5 images of slight rotations w reflection % IJ = jitterImage(I,'nPhi',5,'mPhi',25,'flip',1); montage2(IJ) % % creates 45 images of both rot and slight trans % IJ = jitterImage(I,'nPhi',5,'mPhi',10,'nTrn',3,'mTrn',2); montage2(IJ) % % additionally create multiple scaled versions % IJ = jitterImage(I,'scls',[1 1; 2 1; 1 2; 2 2]); montage2(IJ) % % example on color image (5 images of slight rotations) % I=imResample(imread('peppers.png'),[100,100]); % IJ=jitterImage(I,'nPhi',5,'mPhi',25,'hasChn',1); % montage2(uint8(IJ),{'hasChn',1}) % % See also imtransform2 % % Piotr's Computer Vision Matlab Toolbox Version 2.65 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] % get additional parameters siz=size(I); dfs={'maxn',inf, 'nPhi',0, 'mPhi',0, 'nTrn',0, 'mTrn',0, 'flip',0, ... 'jsiz',siz(1:2), 'scls',[1 1], 'method','linear', 'hasChn',0}; [maxn,nPhi,mPhi,nTrn,mTrn,flip,jsiz,scls,method,hasChn] = ... getPrmDflt(varargin,dfs,1); if(nPhi<1), mPhi=0; nPhi=1; end; if(nTrn<1), mTrn=0; nTrn=1; end % I must be big enough to support given ops so grow I if necessary trn=linspace(-mTrn,mTrn,nTrn); [dX,dY]=meshgrid(trn,trn); dY=dY(:)'; dX=dX(:)'; phis=linspace(-mPhi,mPhi,nPhi)/180*pi; siz1=jsiz+2*max(dX); if(nPhi>1), siz1=sqrt(2)*siz1+1; end siz1=[siz1(1)*max(scls(:,1)) siz1(2)*max(scls(:,2))]; pad=(siz1-siz(1:2))/2; pad=max([ceil(pad) 0],0); if(any(pad>0)), I=padarray(I,pad,'replicate','both'); end % jitter each image nScl=size(scls,1); nTrn=length(dX); nPhi=length(phis); nOps=min(maxn,nTrn*nPhi*nScl); if(flip), nOps=nOps*2; end if(hasChn), nd=3; jsiz=[jsiz siz(3)]; else nd=2; end n=size(I,nd+1); IJ=zeros([jsiz nOps n],class(I)); is=repmat({':'},1,nd); prm={method,maxn,jsiz,phis,dX,dY,scls,flip}; for i=1:n, IJ(is{:},:,i)=jitterImage1(I(is{:},i),prm{:}); end end function IJ = jitterImage1( I,method,maxn,jsiz,phis,dX,dY,scls,flip ) % generate list of transformations (HS) nScl=size(scls,1); nTrn=length(dX); nPhi=length(phis); nOps=nTrn*nPhi*nScl; HS=zeros(3,3,nOps); k=0; for s=1:nScl, S=[scls(s,1) 0; 0 scls(s,2)]; for p=1:nPhi, R=rotationMatrix(phis(p)); for t=1:nTrn, k=k+1; HS(:,:,k)=[S*R [dX(t); dY(t)]; 0 0 1]; end end end % apply each transformation HS(:,:,i) to image I if(nOps>maxn), HS=HS(:,:,randSample(nOps,maxn)); nOps=maxn; end siz=size(I); nd=ndims(I); nCh=size(I,3); I1=I; p=(siz-jsiz)/2; IJ=zeros([jsiz nOps],class(I)); for i=1:nOps, H=HS(:,:,i); d=H(1:2,3)'; if( all(all(H(1:2,1:2)==eye(2))) && all(mod(d,1)==0) ) % handle transformation that's just an integer translation s=max(1-d,1); e=min(siz(1:2)-d,siz(1:2)); s1=2-min(1-d,1); e1=e-s+s1; I1(s1(1):e1(1),s1(2):e1(2),:) = I(s(1):e(1),s(2):e(2),:); else % handle general transformations for j=1:nCh, I1(:,:,j)=imtransform2(I(:,:,j),H,'method',method); end end % crop and store result I2 = I1(p(1)+1:end-p(1),p(2)+1:end-p(2),:); if(nd==2), IJ(:,:,i)=I2; else IJ(:,:,:,i)=I2; end end % finally flip each resulting image if(flip), IJ=cat(nd+1,IJ,IJ(:,end:-1:1,:,:)); end end
github
garrickbrazil/SDS-RCNN-master
movieToImages.m
.m
SDS-RCNN-master/external/pdollar_toolbox/images/movieToImages.m
889
utf_8
28c71798642af276951ee27e2d332540
function I = movieToImages( M ) % Creates a stack of images from a matlab movie M. % % Repeatedly calls frame2im. Useful for playback with playMovie. % % USAGE % I = movieToImages( M ) % % INPUTS % M - a matlab movie % % OUTPUTS % I - MxNxT array (of images) % % EXAMPLE % load( 'images.mat' ); [X,map]=gray2ind(video(:,:,1)); % M = fevalArrays( video, @(x) im2frame(gray2ind(x),map) ); % I = movieToImages(M); playMovie(I); % % See also PLAYMOVIE % % Piotr's Computer Vision Matlab Toolbox Version 2.0 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] I = fevalArrays( M, @frame2Ii ); function I = frame2Ii( F ) [I,map] = frame2im( F ); if( isempty(map) ) if( size(I,3)==3 ) classname = class( I ); I = sum(I,3)/3; I = feval( classname, I ); end else I = ind2gray( I, map ); end
github
garrickbrazil/SDS-RCNN-master
toolboxUpdateHeader.m
.m
SDS-RCNN-master/external/pdollar_toolbox/external/toolboxUpdateHeader.m
2,255
utf_8
ade06ae438e20ad8faa66e41267915f3
function toolboxUpdateHeader % Update the headers of all the files. % % USAGE % toolboxUpdateHeader % % INPUTS % % OUTPUTS % % EXAMPLE % % See also % % Piotr's Computer Vision Matlab Toolbox Version 3.50 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] header={ 'Piotr''s Computer Vision Matlab Toolbox Version 3.50'; ... 'Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com]'; ... 'Licensed under the Simplified BSD License [see external/bsd.txt]'}; root=fileparts(fileparts(mfilename('fullpath'))); ds=dir(root); ds=ds([ds.isdir]); ds={ds.name}; ds=ds(3:end); ds=setdiff(ds,{'.git','doc'}); subds = { '/', '/private/' }; exts = {'m','c','cpp','h','hpp'}; omit = {'Contents.m','fibheap.h','fibheap.cpp'}; for i=1:length(ds) for j=1:length(subds) for k=1:length(exts) d=[root '/' ds{i} subds{j}]; if(k==1), comment='%'; else comment='*'; end fs=dir([d '*.' exts{k}]); fs={fs.name}; fs=setdiff(fs,omit); n=length(fs); for f=1:n, fs{f}=[d fs{f}]; end for f=1:n, toolboxUpdateHeader1(fs{f},header,comment); end end end end end function toolboxUpdateHeader1( fName, header, comment ) % set appropriate comment symbol in header m=length(header); for i=1:m, header{i}=[comment ' ' header{i}]; end % read in file and find header disp(fName); lines=readFile(fName); loc = find(not(cellfun('isempty',strfind(lines,header{1}(1:40))))); if(isempty(loc)), error('NO HEADER: %s\n',fName); end; loc=loc(1); % check that header is properly formed, return if up to date for i=1:m; assert(isequal(lines{loc+i-1}(1:10),header{i}(1:10))); end if(~any(strfind(lines{loc},'NEW'))); return; end % update copyright year and overwrite rest of header lines{loc+1}(13:16)=header{2}(13:16); for i=[1 3:m]; lines{loc+i-1}=header{i}; end writeFile( fName, lines ); end function lines = readFile( fName ) fid = fopen( fName, 'rt' ); assert(fid~=-1); lines=cell(10000,1); n=0; while( 1 ) n=n+1; lines{n}=fgetl(fid); if( ~ischar(lines{n}) ), break; end end fclose(fid); n=n-1; lines=lines(1:n); end function writeFile( fName, lines ) fid = fopen( fName, 'w' ); for i=1:length(lines); fprintf( fid, '%s\n', lines{i} ); end fclose(fid); end
github
garrickbrazil/SDS-RCNN-master
toolboxGenDoc.m
.m
SDS-RCNN-master/external/pdollar_toolbox/external/toolboxGenDoc.m
3,639
utf_8
4c21fb34fa9b6002a1a98a28ab40c270
function toolboxGenDoc % Generate documentation, must run from dir toolbox. % % 1) Make sure to update and run toolboxUpdateHeader.m % 2) Update history.txt appropriately, including w current version % 3) Update overview.html file with the version/date/link to zip: % edit external/m2html/templates/frame-piotr/overview.html % % USAGE % toolboxGenDoc % % INPUTS % % OUTPUTS % % EXAMPLE % % See also % % Piotr's Computer Vision Matlab Toolbox Version 3.40 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] % Requires external/m2html to be in path. cd(fileparts(mfilename('fullpath'))); cd('../'); addpath([pwd '/external/m2html']); % delete temporary files that should not be part of release fs={'pngreadc','pngwritec','rjpg8c','wjpg8c','png'}; for i=1:length(fs), delete(['videos/private/' fs{i} '.*']); end delete('detector/models/*Dets.txt'); % delete old doc and run m2html if(exist('doc/','dir')), rmdir('doc/','s'); end dirs={'channels','classify','detector',... 'images','filters','matlab','videos'}; m2html('mfiles',dirs,'htmldir','doc','recursive','on','source','off',... 'template','frame-piotr','index','menu','global','on'); % copy custom menu.html and history file sDir='external/m2html/templates/'; copyfile([sDir 'menu-for-frame-piotr.html'],'doc/menu.html'); copyfile('external/history.txt','doc/history.txt'); % remove links to private/ in the menu.html files and remove private/ dirs for i=1:length(dirs) name = ['doc/' dirs{i} '/menu.html']; fid=fopen(name,'r'); c=fread(fid,'*char')'; fclose(fid); c=regexprep(c,'<li>([^<]*[<]?[^<]*)private([^<]*[<]?[^<]*)</li>',''); fid=fopen(name,'w'); fwrite(fid,c); fclose(fid); name = ['doc/' dirs{i} '/private/']; if(exist(name,'dir')), rmdir(name,'s'); end end % postprocess each html file for d=1:length(dirs) fs=dir(['doc/' dirs{d} '/*.html']); fs={fs.name}; for j=1:length(fs), postProcess(['doc/' dirs{d} '/' fs{j}]); end end end function postProcess( fName ) lines=readFile(fName); assert(strcmp(lines{end-1},'</body>') && strcmp(lines{end},'</html>')); % remove m2html datestamp (if present) assert(strcmp(lines{end-2}(1:22),'<hr><address>Generated')); if( strcmp(lines{end-2}(1:25),'<hr><address>Generated on')) lines{end-2}=regexprep(lines{end-2}, ... '<hr><address>Generated on .* by','<hr><address>Generated by'); end % remove crossreference information is=find(strcmp('<!-- crossreference -->',lines)); if(~isempty(is)), assert(length(is)==2); lines(is(1):is(2))=[]; end % insert Google Analytics snippet to end of file ga={ ''; '<!-- Start of Google Analytics Code -->'; '<script type="text/javascript">'; 'var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www.");'; 'document.write(unescape("%3Cscript src=''" + gaJsHost + "google-analytics.com/ga.js'' type=''text/javascript''%3E%3C/script%3E"));'; '</script>'; '<script type="text/javascript">'; 'var pageTracker = _gat._getTracker("UA-4884268-1");'; 'pageTracker._initData();'; 'pageTracker._trackPageview();'; '</script>'; '<!-- end of Google Analytics Code -->'; '' }; lines = [lines(1:end-3); ga; lines(end-2:end)]; % write file writeFile( fName, lines ); end function lines = readFile( fName ) fid = fopen( fName, 'rt' ); assert(fid~=-1); lines=cell(10000,1); n=0; while( 1 ) n=n+1; lines{n}=fgetl(fid); if( ~ischar(lines{n}) ), break; end end fclose(fid); n=n-1; lines=lines(1:n); end function writeFile( fName, lines ) fid = fopen( fName, 'w' ); for i=1:length(lines); fprintf( fid, '%s\r\n', lines{i} ); end fclose(fid); end
github
garrickbrazil/SDS-RCNN-master
toolboxHeader.m
.m
SDS-RCNN-master/external/pdollar_toolbox/external/toolboxHeader.m
2,391
utf_8
30c24a94fb54ca82622719adcab17903
function [y1,y2] = toolboxHeader( x1, x2, x3, prm ) % One line description of function (will appear in file summary). % % General commments explaining purpose of function [width is 75 % characters]. There may be multiple paragraphs. In special cases some or % all of these guidelines may need to be broken. % % Next come a series of sections, including USAGE, INPUTS, OUTPUTS, % EXAMPLE, and "See also". Each of these fields should always appear, even % if nothing follows (for example no inputs). USAGE should usually be a % copy of the first line of code (which begins with "function"), minus the % word "function". Optional parameters are surrounded by brackets. % Occasionally, there may be more than 1 distinct usage, in this case list % additional usages. In general try to avoid this. INPUTS/OUTPUTS are % self explanatory, however if there are multiple usages can be subdivided % as below. EXAMPLE should list 1 or more useful examples. Main comment % should all appear as one contiguous block. Next a blank comment line, % and then a short comment that includes the toolbox version. % % USAGE % xsum = toolboxHeader( x1, x2, [x3], [prm] ) % [xprod, xdiff] = toolboxHeader( x1, x2, [x3], [prm] ) % % INPUTS % x1 - descr. of variable 1, % x2 - descr. of variable 2, keep spacing like this % if descr. spans multiple lines do this % x3 - [0] indicates an optional variable, put def val in [] % prm - [] param struct % .p1 parameter 1 descr % .p2 parameter 2 descr % % OUTPUTS - and whatever after the dash % xsum - sum of xs % % OUTPUTS - usage 2 % xprod - prod of xs % xdiff - negative sum of xs % % EXAMPLE - and whatever after the dash % y = toolboxHeader( 1, 2 ); % % EXAMPLE - example 2 % y = toolboxHeader( 2, 3 ); % % See also GETPRMDFLT % % Piotr's Computer Vision Matlab Toolbox Version 2.10 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] % optional arguments x3 and prm if( nargin<3 || isempty(x3) ), x3=0; end if( nargin<4 || isempty(prm) ), prm=[]; end %#ok<NASGU> % indents should be set with Matlab's "smart indent" (with 2 spaces) if( nargout==1 ) y1 = add(x1,x2) + x3; else y1 = x1 * x2 * x3; y2 = - x1 - x2 - x3; end function s=add(x,y) % optional sub function comment s=x+y;
github
garrickbrazil/SDS-RCNN-master
mdot.m
.m
SDS-RCNN-master/external/pdollar_toolbox/external/m2html/mdot.m
2,516
utf_8
34a14428c433e118d1810e23f5a6caf5
function mdot(mmat, dotfile,f) %MDOT - Export a dependency graph into DOT language % MDOT(MMAT, DOTFILE) loads a .mat file generated by M2HTML using option % ('save','on') and writes an ascii file using the DOT language that can % be drawn using <dot> or <neato> . % MDOT(MMAT, DOTFILE,F) builds the graph containing M-file F and its % neighbors only. % See the following page for more details: % <http://www.graphviz.org/> % % Example: % mdot('m2html.mat','m2html.dot'); % !dot -Tps m2html.dot -o m2html.ps % !neato -Tps m2html.dot -o m2html.ps % % See also M2HTML % Copyright (C) 2004 Guillaume Flandin <[email protected]> % $Revision: 1.1 $Date: 2004/05/05 17:14:09 $ error(nargchk(2,3,nargin)); if ischar(mmat) load(mmat); elseif iscell(mmat) hrefs = mmat{1}; names = mmat{2}; options = mmat{3}; if nargin == 3, mfiles = mmat{4}; end mdirs = cell(size(names)); [mdirs{:}] = deal(''); if nargin == 2 & length(mmat) > 3, mdirs = mmat{4}; end; else error('[mdot] Invalid argument: mmat.'); end fid = fopen(dotfile,'wt'); if fid == -1, error(sprintf('[mdot] Cannot open %s.',dotfile)); end fprintf(fid,'/* Created by mdot for Matlab */\n'); fprintf(fid,'digraph m2html {\n'); % if 'names' contains '.' then they should be surrounded by '"' if nargin == 2 for i=1:size(hrefs,1) n = find(hrefs(i,:) == 1); m{i} = n; for j=1:length(n) fprintf(fid,[' ' names{i} ' -> ' names{n(j)} ';\n']); end end %m = unique([m{:}]); fprintf(fid,'\n'); for i=1:size(hrefs,1) fprintf(fid,[' ' names{i} ' [URL="' ... fullurl(mdirs{i},[names{i} options.extension]) '"];\n']); end else i = find(strcmp(f,mfiles)); if length(i) ~= 1 error(sprintf('[mdot] Cannot find %s.',f)); end n = find(hrefs(i,:) == 1); for j=1:length(n) fprintf(fid,[' ' names{i} ' -> ' names{n(j)} ';\n']); end m = find(hrefs(:,i) == 1); for j=1:length(m) if n(j) ~= i fprintf(fid,[' ' names{m(j)} ' -> ' names{i} ';\n']); end end n = unique([n(:)' m(:)']); fprintf(fid,'\n'); for i=1:length(n) fprintf(fid,[' ' names{n(i)} ' [URL="' fullurl(mdirs{i}, ... [names{n(i)} options.extension]) '"];\n']); end end fprintf(fid,'}'); fid = fclose(fid); if fid == -1, error(sprintf('[mdot] Cannot close %s.',dotfile)); end %=========================================================================== function f = fullurl(varargin) %- Build full url from parts (using '/' and not filesep) f = strrep(fullfile(varargin{:}),'\','/');
github
garrickbrazil/SDS-RCNN-master
m2html.m
.m
SDS-RCNN-master/external/pdollar_toolbox/external/m2html/m2html.m
49,063
utf_8
472047b4c36a4f8b162012840e31b59b
function m2html(varargin) %M2HTML - Documentation Generator for Matlab M-files and Toolboxes in HTML % M2HTML by itself generates an HTML documentation of the Matlab M-files found % in the direct subdirectories of the current directory. HTML files are % written in a 'doc' directory (created if necessary). All the others options % are set to default (in brackets in the following). % M2HTML('PropertyName1',PropertyValue1,'PropertyName2',PropertyValue2,...) % sets multiple option values. The list of option names and default values is: % o mFiles - Cell array of strings or character array containing the % list of M-files and/or directories of M-files for which an HTML % documentation will be built (use relative paths without backtracking). % Launch M2HTML one directory above the directory your wanting to % generate documentation for [ <all direct subdirectories> ] % o htmlDir - Top level directory for generated HTML files [ 'doc' ] % o recursive - Process subdirectories recursively [ on | {off} ] % o source - Include Matlab source code in the generated documentation % [ {on} | off ] % o download - Add a link to download each M-file separately [ on | {off} ] % o syntaxHighlighting - Source Code Syntax Highlighting [ {on} | off ] % o tabs - Replace '\t' (horizontal tab) in source code by n white space % characters [ 0 ... {4} ... n ] % o globalHypertextLinks - Hypertext links among separate Matlab % directories [ on | {off} ] % o todo - Create a TODO list in each directory summarizing all the % '% TODO %' lines found in Matlab code [ on | {off}] % o graph - Compute a dependency graph using GraphViz [ on | {off}] % 'dot' required, see <http://www.graphviz.org/> % o indexFile - Basename of the HTML index file [ 'index' ] % o extension - Extension of generated HTML files [ '.html' ] % o template - HTML template name to use [ {'blue'} | 'frame' | ... ] % o search - Add a PHP search engine [ on | {off}] - beta version! % o save - Save current state after M-files parsing in 'm2html.mat' % in directory htmlDir [ on | {off}] % o load - Load a previously saved '.mat' M2HTML state to generate HTML % files once again with possibly other options [ <none> ] % o verbose - Verbose mode [ {on} | off ] % % For more information, please read the M2HTML tutorial and FAQ at: % <http://www.artefact.tk/software/matlab/m2html/> % % Examples: % >> m2html('mfiles','matlab', 'htmldir','doc'); % >> m2html('mfiles',{'matlab/signal' 'matlab/image'}, 'htmldir','doc'); % >> m2html('mfiles','matlab', 'htmldir','doc', 'recursive','on'); % >> m2html('mfiles','mytoolbox', 'htmldir','doc', 'source','off'); % >> m2html('mfiles','matlab', 'htmldir','doc', 'global','on'); % >> m2html( ... , 'template','frame', 'index','menu'); % % See also MWIZARD, MDOT, TEMPLATE. % Copyright (C) 2005 Guillaume Flandin <[email protected]> % $Revision: 1.5 $Date: 2005/04/29 16:04:17 $ % This program is free software; you can redistribute it and/or % modify it under the terms of the GNU General Public License % as published by the Free Software Foundation; either version 2 % of the License, or any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation Inc, 59 Temple Pl. - Suite 330, Boston, MA 02111-1307, USA. % Suggestions for improvement and fixes are always welcome, although no % guarantee is made whether and when they will be implemented. % Send requests to [email protected] % For tips on how to write Matlab code, see: % * MATLAB Programming Style Guidelines, by R. Johnson: % <http://www.datatool.com/prod02.htm> % * For tips on creating help for your m-files 'type help.m'. % * Matlab documentation on M-file Programming: % <http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_prog/ch_funh8.html> % This function uses the Template class so that you can fully customize % the output. You can modify .tpl files in templates/blue/ or create new % templates in a new directory. % See the template class documentation for more details. % <http://www.artefact.tk/software/matlab/template/> % Latest information on M2HTML is available on the web through: % <http://www.artefact.tk/software/matlab/m2html/> % Other Matlab to HTML converters available on the web: % 1/ mat2html.pl, J.C. Kantor, in Perl, 1995: % <http://fresh.t-systems-sfr.com/unix/src/www/mat2html> % 2/ htmltools, B. Alsberg, in Matlab, 1997: % <http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=175> % 3/ mtree2html2001, H. Pohlheim, in Perl, 1996, 2001: % <http://www.pohlheim.com/perl_main.html#matlabdocu> % 4/ MatlabToHTML, T. Kristjansson, binary, 2001: % <http://www.psi.utoronto.ca/~trausti/MatlabToHTML/MatlabToHTML.html> % 5/ Highlight, G. Flandin, in Matlab, 2003: % <http://www.artefact.tk/software/matlab/highlight/> % 6/ mdoc, P. Brinkmann, in Matlab, 2003: % <http://www.math.uiuc.edu/~brinkman/software/mdoc/> % 7/ Ocamaweb, Miriad Technologies, in Ocaml, 2002: % <http://ocamaweb.sourceforge.net/> % 8/ Matdoc, M. Kaminsky, in Perl, 2003: % <http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=3498> % 9/ Matlab itself, The Mathworks Inc, with HELPWIN, DOC and PUBLISH (R14) %------------------------------------------------------------------------------- %- Set up options and default parameters %------------------------------------------------------------------------------- t0 = clock; % for statistics msgInvalidPair = 'Bad value for argument: ''%s'''; options = struct('verbose', 1,... 'mFiles', {{'.'}},... 'htmlDir', 'doc',... 'recursive', 0,... 'source', 1,... 'download',0,... 'syntaxHighlighting', 1,... 'tabs', 4,... 'globalHypertextLinks', 0,... 'graph', 0,... 'todo', 0,... 'load', 0,... 'save', 0,... 'search', 0,... 'helptocxml', 0,... 'indexFile', 'index',... 'extension', '.html',... 'template', 'blue',... 'rootdir', pwd,... 'language', 'english'); if nargin == 1 & isstruct(varargin{1}) paramlist = [ fieldnames(varargin{1}) ... struct2cell(varargin{1}) ]'; paramlist = { paramlist{:} }; else if mod(nargin,2) error('Invalid parameter/value pair arguments.'); end paramlist = varargin; end optionsnames = lower(fieldnames(options)); for i=1:2:length(paramlist) pname = paramlist{i}; pvalue = paramlist{i+1}; ind = strmatch(lower(pname),optionsnames); if isempty(ind) error(['Invalid parameter: ''' pname '''.']); elseif length(ind) > 1 error(['Ambiguous parameter: ''' pname '''.']); end switch(optionsnames{ind}) case 'verbose' if strcmpi(pvalue,'on') options.verbose = 1; elseif strcmpi(pvalue,'off') options.verbose = 0; else error(sprintf(msgInvalidPair,pname)); end case 'mfiles' if iscellstr(pvalue) options.mFiles = pvalue; elseif ischar(pvalue) options.mFiles = cellstr(pvalue); else error(sprintf(msgInvalidPair,pname)); end options.load = 0; case 'htmldir' if ischar(pvalue) if isempty(pvalue), options.htmlDir = '.'; else options.htmlDir = pvalue; end else error(sprintf(msgInvalidPair,pname)); end case 'recursive' if strcmpi(pvalue,'on') options.recursive = 1; elseif strcmpi(pvalue,'off') options.recursive = 0; else error(sprintf(msgInvalidPair,pname)); end options.load = 0; case 'source' if strcmpi(pvalue,'on') options.source = 1; elseif strcmpi(pvalue,'off') options.source = 0; else error(sprintf(msgInvalidPair,pname)); end case 'download' if strcmpi(pvalue,'on') options.download = 1; elseif strcmpi(pvalue,'off') options.download = 0; else error(sprintf(msgInvalidPair,pname)); end case 'syntaxhighlighting' if strcmpi(pvalue,'on') options.syntaxHighlighting = 1; elseif strcmpi(pvalue,'off') options.syntaxHighlighting = 0; else error(sprintf(msgInvalidPair,pname)); end case 'tabs' if pvalue >= 0 options.tabs = pvalue; else error(sprintf(msgInvalidPair,pname)); end case 'globalhypertextlinks' if strcmpi(pvalue,'on') options.globalHypertextLinks = 1; elseif strcmpi(pvalue,'off') options.globalHypertextLinks = 0; else error(sprintf(msgInvalidPair,pname)); end options.load = 0; case 'graph' if strcmpi(pvalue,'on') options.graph = 1; elseif strcmpi(pvalue,'off') options.graph = 0; else error(sprintf(msgInvalidPair,pname)); end case 'todo' if strcmpi(pvalue,'on') options.todo = 1; elseif strcmpi(pvalue,'off') options.todo = 0; else error(sprintf(msgInvalidPair,pname)); end case 'load' if ischar(pvalue) if exist(pvalue) == 7 % directory provided pvalue = fullfile(pvalue,'m2html.mat'); end try load(pvalue); catch error(sprintf('Unable to load %s.', pvalue)); end options.load = 1; [dummy options.template] = fileparts(options.template); else error(sprintf(msgInvalidPair,pname)); end case 'save' if strcmpi(pvalue,'on') options.save = 1; elseif strcmpi(pvalue,'off') options.save = 0; else error(sprintf(msgInvalidPair,pname)); end case 'search' if strcmpi(pvalue,'on') options.search = 1; elseif strcmpi(pvalue,'off') options.search = 0; else error(sprintf(msgInvalidPair,pname)); end case 'helptocxml' if strcmpi(pvalue,'on') options.helptocxml = 1; elseif strcmpi(pvalue,'off') options.helptocxml = 0; else error(sprintf(msgInvalidPair,pname)); end case 'indexfile' if ischar(pvalue) options.indexFile = pvalue; else error(sprintf(msgInvalidPair,pname)); end case 'extension' if ischar(pvalue) & pvalue(1) == '.' options.extension = pvalue; else error(sprintf(msgInvalidPair,pname)); end case 'template' if ischar(pvalue) options.template = pvalue; else error(sprintf(msgInvalidPair,pname)); end case 'language' if ischar(pvalue) options.language = pvalue; else error(sprintf(msgInvalidPair,pname)); end otherwise error(['Invalid parameter: ''' pname '''.']); end end %------------------------------------------------------------------------------- %- Get template files location %------------------------------------------------------------------------------- s = fileparts(which(mfilename)); options.template = fullfile(s,'templates',options.template); if exist(options.template) ~= 7 error('[Template] Unknown template.'); end %------------------------------------------------------------------------------- %- Get list of M-files %------------------------------------------------------------------------------- if ~options.load if strcmp(options.mFiles,'.') d = dir(pwd); d = {d([d.isdir]).name}; options.mFiles = {d{~ismember(d,{'.' '..'})}}; end mfiles = getmfiles(options.mFiles,{},options.recursive); if ~length(mfiles), fprintf('Nothing to be done.\n'); return; end if options.verbose, fprintf('Found %d M-files.\n',length(mfiles)); end mfiles = sort(mfiles); % sort list of M-files in dictionary order end %------------------------------------------------------------------------------- %- Get list of (unique) directories and (unique) names %------------------------------------------------------------------------------- if ~options.load mdirs = {}; names = {}; for i=1:length(mfiles) [mdirs{i}, names{i}] = fileparts(mfiles{i}); if isempty(mdirs{i}), mdirs{i} = '.'; end end mdir = unique(mdirs); if options.verbose, fprintf('Found %d unique Matlab directories.\n',length(mdir)); end name = names; %name = unique(names); % output is sorted %if options.verbose, % fprintf('Found %d unique Matlab files.\n',length(name)); %end end %------------------------------------------------------------------------------- %- Create output directory, if necessary %------------------------------------------------------------------------------- if isempty(dir(options.htmlDir)) %- Create the top level output directory if options.verbose fprintf('Creating directory %s...\n',options.htmlDir); end if options.htmlDir(end) == filesep, options.htmlDir(end) = []; end [pathdir, namedir] = fileparts(options.htmlDir); if isempty(pathdir) [status, msg] = mkdir(escapeblank(namedir)); else [status, msg] = mkdir(escapeblank(pathdir), escapeblank(namedir)); end if ~status, error(msg); end end %------------------------------------------------------------------------------- %- Get synopsis, H1 line, script/function, subroutines, cross-references, todo %------------------------------------------------------------------------------- if ~options.load synopsis = cell(size(mfiles)); h1line = cell(size(mfiles)); subroutine = cell(size(mfiles)); hrefs = sparse(length(mfiles), length(mfiles)); todo = struct('mfile',[], 'line',[], 'comment',{{}}); ismex = zeros(length(mfiles), length(mexexts)); statlist = {}; statinfo = sparse(1,length(mfiles)); kw = cell(size(mfiles)); freq = cell(size(mfiles)); for i=1:length(mfiles) if options.verbose fprintf('Processing file %s...',mfiles{i}); end s = mfileparse(mfiles{i}, mdirs, names, options); synopsis{i} = s.synopsis; h1line{i} = s.h1line; subroutine{i} = s.subroutine; hrefs(i,:) = s.hrefs; todo.mfile = [todo.mfile repmat(i,1,length(s.todo.line))]; todo.line = [todo.line s.todo.line]; todo.comment = {todo.comment{:} s.todo.comment{:}}; ismex(i,:) = s.ismex; if options.search if options.verbose, fprintf('search...'); end [kw{i}, freq{i}] = searchindex(mfiles{i}); statlist = union(statlist, kw{i}); end if options.verbose, fprintf('\n'); end end hrefs = hrefs > 0; if options.search if options.verbose fprintf('Creating the search index...'); end statinfo = sparse(length(statlist),length(mfiles)); for i=1:length(mfiles) i1 = find(ismember(statlist, kw{i})); i2 = repmat(i,1,length(i1)); if ~isempty(i1) statinfo(sub2ind(size(statinfo),i1,i2)) = freq{i}; end if options.verbose, fprintf('.'); end end clear kw freq; if options.verbose, fprintf('\n'); end end end %------------------------------------------------------------------------------- %- Save M-filenames and cross-references for further analysis %------------------------------------------------------------------------------- matfilesave = 'm2html.mat'; if options.save if options.verbose fprintf('Saving MAT file %s...\n',matfilesave); end save(fullfile(options.htmlDir,matfilesave), ... 'mfiles', 'names', 'mdirs', 'name', 'mdir', 'options', ... 'hrefs', 'synopsis', 'h1line', 'subroutine', 'todo', 'ismex', ... 'statlist', 'statinfo'); end %------------------------------------------------------------------------------- %- Setup the output directories %------------------------------------------------------------------------------- for i=1:length(mdir) if exist(fullfile(options.htmlDir,mdir{i})) ~= 7 ldir = splitpath(mdir{i}); for j=1:length(ldir) if exist(fullfile(options.htmlDir,ldir{1:j})) ~= 7 %- Create the output directory if options.verbose fprintf('Creating directory %s...\n',... fullfile(options.htmlDir,ldir{1:j})); end if j == 1 [status, msg] = mkdir(escapeblank(options.htmlDir), ... escapeblank(ldir{1})); else [status, msg] = mkdir(escapeblank(options.htmlDir), ... escapeblank(fullfile(ldir{1:j}))); end error(msg); end end end end %------------------------------------------------------------------------------- %- Write the master index file %------------------------------------------------------------------------------- tpl_master = 'master.tpl'; tpl_master_identifier_nbyline = 4; php_search = 'search.php'; dotbase = 'graph'; %- Create the HTML template tpl = template(options.template,'remove'); tpl = set(tpl,'file','TPL_MASTER',tpl_master); tpl = set(tpl,'block','TPL_MASTER','rowdir','rowdirs'); tpl = set(tpl,'block','TPL_MASTER','idrow','idrows'); tpl = set(tpl,'block','idrow','idcolumn','idcolumns'); tpl = set(tpl,'block','TPL_MASTER','search','searchs'); tpl = set(tpl,'block','TPL_MASTER','graph','graphs'); %- Open for writing the HTML master index file curfile = fullfile(options.htmlDir,[options.indexFile options.extension]); if options.verbose fprintf('Creating HTML file %s...\n',curfile); end fid = openfile(curfile,'w'); %- Set some template variables tpl = set(tpl,'var','DATE',[datestr(now,8) ' ' datestr(now,1) ' ' ... datestr(now,13)]); tpl = set(tpl,'var','MASTERPATH', './'); tpl = set(tpl,'var','DIRS', sprintf('%s ',mdir{:})); %- Print list of unique directories for i=1:length(mdir) tpl = set(tpl,'var','L_DIR',... fullurl(mdir{i},[options.indexFile options.extension])); tpl = set(tpl,'var','DIR',mdir{i}); tpl = parse(tpl,'rowdirs','rowdir',1); end %- Print full list of M-files (sorted by column) [sortnames, ind] = sort(names); m_mod = mod(length(sortnames), tpl_master_identifier_nbyline); ind = [ind zeros(1,tpl_master_identifier_nbyline-m_mod)]; m_floor = floor(length(ind) / tpl_master_identifier_nbyline); ind = reshape(ind,m_floor,tpl_master_identifier_nbyline)'; for i=1:prod(size(ind)) if ind(i) tpl = set(tpl,'var','L_IDNAME',... fullurl(mdirs{ind(i)},[names{ind(i)} options.extension])); tpl = set(tpl,'var','T_IDNAME',mdirs{ind(i)}); tpl = set(tpl,'var','IDNAME',names{ind(i)}); tpl = parse(tpl,'idcolumns','idcolumn',1); else tpl = set(tpl,'var','L_IDNAME',''); tpl = set(tpl,'var','T_IDNAME',''); tpl = set(tpl,'var','IDNAME',''); tpl = parse(tpl,'idcolumns','idcolumn',1); end if mod(i,tpl_master_identifier_nbyline) == 0 tpl = parse(tpl,'idrows','idrow',1); tpl = set(tpl,'var','idcolumns',''); end end %- Add a search form if necessary tpl = set(tpl,'var','searchs',''); if options.search tpl = set(tpl,'var','PHPFILE',php_search); tpl = parse(tpl,'searchs','search',1); end %- Link to a full dependency graph, if necessary tpl = set(tpl,'var','graphs',''); if options.graph & options.globalHypertextLinks & length(mdir) > 1 tpl = set(tpl,'var','LGRAPH',[dotbase options.extension]); tpl = parse(tpl,'graphs','graph',1); end %- Print the template in the HTML file tpl = parse(tpl,'OUT','TPL_MASTER'); fprintf(fid,'%s',get(tpl,'OUT')); fclose(fid); %------------------------------------------------------------------------------- %- Copy template files (CSS, images, ...) %------------------------------------------------------------------------------- % Get list of files d = dir(options.template); d = {d(~[d.isdir]).name}; % Copy files for i=1:length(d) [p, n, ext] = fileparts(d{i}); if ~strcmp(ext,'.tpl') ... % do not copy .tpl files & ~strcmp([n ext],'Thumbs.db') % do not copy this Windows generated file if isempty(dir(fullfile(options.htmlDir,d{i}))) if options.verbose fprintf('Copying template file %s...\n',d{i}); end %- there is a bug with <copyfile> in Matlab 6.5 : % http://www.mathworks.com/support/solutions/data/1-1B5JY.html %- and <copyfile> does not overwrite files even if newer... [status, errmsg] = copyfile(fullfile(options.template,d{i}),... options.htmlDir); %- If you encounter this bug, please uncomment one of the following lines % eval(['!cp -rf ' fullfile(options.template,d{i}) ' ' options.htmlDir]); % eval(['!copy ' fullfile(options.template,d{i}) ' ' options.htmlDir]); % status = 1; if ~status if ~isempty(errmsg) error(errmsg) else warning(sprintf(['<copyfile> failed to do its job...\n' ... 'This is a known bug in Matlab 6.5 (R13).\n' ... 'See http://www.mathworks.com/support/solutions/data/1-1B5JY.html'])); end end end end end %------------------------------------------------------------------------------- %- Search engine (index file and PHP script) %------------------------------------------------------------------------------- tpl_search = 'search.tpl'; idx_search = 'search.idx'; % TODO % improving the fill in of 'statlist' and 'statinfo' % TODO % improving the search template file and update the CSS file if options.search %- Write the search index file in output directory if options.verbose fprintf('Creating Search Index file %s...\n', idx_search); end docinfo = cell(length(mfiles),2); for i=1:length(mfiles) docinfo{i,1} = h1line{i}; docinfo{i,2} = fullurl(mdirs{i}, [names{i} options.extension]); end doxywrite(fullfile(options.htmlDir,idx_search),statlist,statinfo,docinfo); %- Create the PHP template tpl = template(options.template,'remove'); tpl = set(tpl,'file','TPL_SEARCH',tpl_search); %- Open for writing the PHP search script curfile = fullfile(options.htmlDir, php_search); if options.verbose fprintf('Creating PHP script %s...\n',curfile); end fid = openfile(curfile,'w'); %- Set template fields tpl = set(tpl,'var','INDEX',[options.indexFile options.extension]); tpl = set(tpl,'var','MASTERPATH','./'); tpl = set(tpl,'var','DATE',[datestr(now,8) ' ' datestr(now,1) ' ' ... datestr(now,13)]); tpl = set(tpl,'var','IDXFILE',idx_search); tpl = set(tpl,'var','PHPFILE',php_search); %- Print the template in the HTML file tpl = parse(tpl,'OUT','TPL_SEARCH'); fprintf(fid,'%s',get(tpl,'OUT')); fclose(fid); end %------------------------------------------------------------------------------- %- Create <helptoc.xml> needed to display hierarchical entries in Contents panel %------------------------------------------------------------------------------- % See http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_env/guiref16.html % and http://www.mathworks.com/support/solutions/data/1-18U6Q.html?solution=1-18U6Q % TODO % display directories in TOC hierarchically instead of linearly if options.helptocxml curfile = fullfile(options.htmlDir, 'helptoc.xml'); if options.verbose fprintf('Creating XML Table-Of-Content %s...\n',curfile); end fid = openfile(curfile,'w'); fprintf(fid,'<?xml version=''1.0'' encoding=''ISO-8859-1'' ?>\n'); fprintf(fid,'<!-- $Date: %s $ -->\n\n', datestr(now,31)); fprintf(fid,'<toc version="1.0">\n\n'); fprintf(fid,['<tocitem target="%s" ',... 'image="$toolbox/matlab/icons/book_mat.gif">%s\n'], ... [options.indexFile options.extension],'Toolbox'); for i=1:length(mdir) fprintf(fid,['<tocitem target="%s" ',... 'image="$toolbox/matlab/icons/reficon.gif">%s\n'], ... fullfile(mdir{i}, ... [options.indexFile options.extension]),mdir{i}); if options.graph fprintf(fid,['\t<tocitem target="%s" ',... 'image="$toolbox/matlab/icons/simulinkicon.gif">%s</tocitem>\n'], ... fullfile(mdir{i},... [dotbase options.extension]),'Dependency Graph'); end if options.todo if ~isempty(intersect(find(strcmp(mdir{i},mdirs)),todo.mfile)) fprintf(fid,['\t<tocitem target="%s" ',... 'image="$toolbox/matlab/icons/demoicon.gif">%s</tocitem>\n'], ... fullfile(mdir{i},... ['todo' options.extension]),'Todo list'); end end for j=1:length(mdirs) if strcmp(mdirs{j},mdir{i}) curfile = fullfile(mdir{i},... [names{j} options.extension]); fprintf(fid,'\t<tocitem target="%s">%s</tocitem>\n', ... curfile,names{j}); end end fprintf(fid,'</tocitem>\n'); end fprintf(fid,'</tocitem>\n'); fprintf(fid,'\n</toc>\n'); fclose(fid); end %------------------------------------------------------------------------------- %- Write an index for each output directory %------------------------------------------------------------------------------- tpl_mdir = 'mdir.tpl'; tpl_mdir_link = '<a href="%s">%s</a>'; %dotbase defined earlier %- Create the HTML template tpl = template(options.template,'remove'); tpl = set(tpl,'file','TPL_MDIR',tpl_mdir); tpl = set(tpl,'block','TPL_MDIR','row-m','rows-m'); tpl = set(tpl,'block','row-m','mexfile','mex'); tpl = set(tpl,'block','TPL_MDIR','othermatlab','other'); tpl = set(tpl,'block','othermatlab','row-other','rows-other'); tpl = set(tpl,'block','TPL_MDIR','subfolder','subfold'); tpl = set(tpl,'block','subfolder','subdir','subdirs'); tpl = set(tpl,'block','TPL_MDIR','todolist','todolists'); tpl = set(tpl,'block','TPL_MDIR','graph','graphs'); tpl = set(tpl,'var','DATE',[datestr(now,8) ' ' datestr(now,1) ' ' ... datestr(now,13)]); for i=1:length(mdir) %- Open for writing each output directory index file curfile = fullfile(options.htmlDir,mdir{i},... [options.indexFile options.extension]); if options.verbose fprintf('Creating HTML file %s...\n',curfile); end fid = openfile(curfile,'w'); %- Set template fields tpl = set(tpl,'var','INDEX', [options.indexFile options.extension]); tpl = set(tpl,'var','MASTERPATH',backtomaster(mdir{i})); tpl = set(tpl,'var','MDIR', mdir{i}); %- Display Matlab m-files, their H1 line and their Mex status tpl = set(tpl,'var','rows-m',''); for j=1:length(mdirs) if strcmp(mdirs{j},mdir{i}) tpl = set(tpl,'var','L_NAME', [names{j} options.extension]); tpl = set(tpl,'var','NAME', names{j}); tpl = set(tpl,'var','H1LINE', h1line{j}); if any(ismex(j,:)) tpl = parse(tpl,'mex','mexfile'); else tpl = set(tpl,'var','mex',''); end tpl = parse(tpl,'rows-m','row-m',1); end end %- Display other Matlab-specific files (.mat,.mdl,.p) tpl = set(tpl,'var','other',''); tpl = set(tpl,'var','rows-other',''); w = what(mdir{i}); w = w(1); w = {w.mat{:} w.mdl{:} w.p{:}}; for j=1:length(w) tpl = set(tpl,'var','OTHERFILE',w{j}); tpl = parse(tpl,'rows-other','row-other',1); end if ~isempty(w) tpl = parse(tpl,'other','othermatlab'); end %- Display subsequent directories and classes tpl = set(tpl,'var','subdirs',''); tpl = set(tpl,'var','subfold',''); d = dir(mdir{i}); d = {d([d.isdir]).name}; d = {d{~ismember(d,{'.' '..'})}}; for j=1:length(d) if ismember(fullfile(mdir{i},d{j}),mdir) tpl = set(tpl,'var','SUBDIRECTORY',... sprintf(tpl_mdir_link,... fullurl(d{j},[options.indexFile options.extension]),d{j})); else tpl = set(tpl,'var','SUBDIRECTORY',d{j}); end tpl = parse(tpl,'subdirs','subdir',1); end if ~isempty(d) tpl = parse(tpl,'subfold','subfolder'); end %- Link to the TODO list if necessary tpl = set(tpl,'var','todolists',''); if options.todo if ~isempty(intersect(find(strcmp(mdir{i},mdirs)),todo.mfile)) tpl = set(tpl,'var','LTODOLIST',['todo' options.extension]); tpl = parse(tpl,'todolists','todolist',1); end end %- Link to the dependency graph if necessary tpl = set(tpl,'var','graphs',''); if options.graph tpl = set(tpl,'var','LGRAPH',[dotbase options.extension]); tpl = parse(tpl,'graphs','graph',1); end %- Print the template in the HTML file tpl = parse(tpl,'OUT','TPL_MDIR'); fprintf(fid,'%s',get(tpl,'OUT')); fclose(fid); end %------------------------------------------------------------------------------- %- Write a TODO list file for each output directory, if necessary %------------------------------------------------------------------------------- tpl_todo = 'todo.tpl'; if options.todo %- Create the HTML template tpl = template(options.template,'remove'); tpl = set(tpl,'file','TPL_TODO',tpl_todo); tpl = set(tpl,'block','TPL_TODO','filelist','filelists'); tpl = set(tpl,'block','filelist','row','rows'); tpl = set(tpl,'var','DATE',[datestr(now,8) ' ' datestr(now,1) ' ' ... datestr(now,13)]); for i=1:length(mdir) mfilestodo = intersect(find(strcmp(mdir{i},mdirs)),todo.mfile); if ~isempty(mfilestodo) %- Open for writing each TODO list file curfile = fullfile(options.htmlDir,mdir{i},... ['todo' options.extension]); if options.verbose fprintf('Creating HTML file %s...\n',curfile); end fid = openfile(curfile,'w'); %- Set template fields tpl = set(tpl,'var','INDEX',[options.indexFile options.extension]); tpl = set(tpl,'var','MASTERPATH', backtomaster(mdir{i})); tpl = set(tpl,'var','MDIR', mdir{i}); tpl = set(tpl,'var','filelists', ''); for k=1:length(mfilestodo) tpl = set(tpl,'var','MFILE',names{mfilestodo(k)}); tpl = set(tpl,'var','rows',''); nbtodo = find(todo.mfile == mfilestodo(k)); for l=1:length(nbtodo) tpl = set(tpl,'var','L_NBLINE',... [names{mfilestodo(k)} ... options.extension ... '#l' num2str(todo.line(nbtodo(l)))]); tpl = set(tpl,'var','NBLINE',num2str(todo.line(nbtodo(l)))); tpl = set(tpl,'var','COMMENT',todo.comment{nbtodo(l)}); tpl = parse(tpl,'rows','row',1); end tpl = parse(tpl,'filelists','filelist',1); end %- Print the template in the HTML file tpl = parse(tpl,'OUT','TPL_TODO'); fprintf(fid,'%s',get(tpl,'OUT')); fclose(fid); end end end %------------------------------------------------------------------------------- %- Create dependency graphs using GraphViz, if requested %------------------------------------------------------------------------------- tpl_graph = 'graph.tpl'; % You may have to modify the following line with Matlab7 (R14) to specify % the full path to where GraphViz is installed dot_exec = 'dot'; %dotbase defined earlier if options.graph %- Create the HTML template tpl = template(options.template,'remove'); tpl = set(tpl,'file','TPL_GRAPH',tpl_graph); tpl = set(tpl,'var','DATE',[datestr(now,8) ' ' datestr(now,1) ' ' ... datestr(now,13)]); %- Create a full dependency graph for all directories if possible if options.globalHypertextLinks & length(mdir) > 1 mdotfile = fullfile(options.htmlDir,[dotbase '.dot']); if options.verbose fprintf('Creating full dependency graph %s...',mdotfile); end mdot({hrefs, names, options, mdirs}, mdotfile); %mfiles calldot(dot_exec, mdotfile, ... fullfile(options.htmlDir,[dotbase '.map']), ... fullfile(options.htmlDir,[dotbase '.png'])); if options.verbose, fprintf('\n'); end fid = openfile(fullfile(options.htmlDir, [dotbase options.extension]),'w'); tpl = set(tpl,'var','INDEX',[options.indexFile options.extension]); tpl = set(tpl,'var','MASTERPATH', './'); tpl = set(tpl,'var','MDIR', 'the whole toolbox'); tpl = set(tpl,'var','GRAPH_IMG', [dotbase '.png']); try % if <dot> failed... fmap = openfile(fullfile(options.htmlDir,[dotbase '.map']),'r'); tpl = set(tpl,'var','GRAPH_MAP', fscanf(fmap,'%c')); fclose(fmap); end tpl = parse(tpl,'OUT','TPL_GRAPH'); fprintf(fid,'%s', get(tpl,'OUT')); fclose(fid); end %- Create a dependency graph for each output directory for i=1:length(mdir) mdotfile = fullfile(options.htmlDir,mdir{i},[dotbase '.dot']); if options.verbose fprintf('Creating dependency graph %s...',mdotfile); end ind = find(strcmp(mdirs,mdir{i})); href1 = zeros(length(ind),length(hrefs)); for j=1:length(hrefs), href1(:,j) = hrefs(ind,j); end href2 = zeros(length(ind)); for j=1:length(ind), href2(j,:) = href1(j,ind); end mdot({href2, {names{ind}}, options}, mdotfile); %{mfiles{ind}} calldot(dot_exec, mdotfile, ... fullfile(options.htmlDir,mdir{i},[dotbase '.map']), ... fullfile(options.htmlDir,mdir{i},[dotbase '.png'])); if options.verbose, fprintf('\n'); end fid = openfile(fullfile(options.htmlDir,mdir{i},... [dotbase options.extension]),'w'); tpl = set(tpl,'var','INDEX',[options.indexFile options.extension]); tpl = set(tpl,'var','MASTERPATH', backtomaster(mdir{i})); tpl = set(tpl,'var','MDIR', mdir{i}); tpl = set(tpl,'var','GRAPH_IMG', [dotbase '.png']); try % if <dot> failed, no '.map' file has been created fmap = openfile(fullfile(options.htmlDir,mdir{i},[dotbase '.map']),'r'); tpl = set(tpl,'var','GRAPH_MAP', fscanf(fmap,'%c')); fclose(fmap); end tpl = parse(tpl,'OUT','TPL_GRAPH'); fprintf(fid,'%s', get(tpl,'OUT')); fclose(fid); end end %------------------------------------------------------------------------------- %- Write an HTML file for each M-file %------------------------------------------------------------------------------- %- List of Matlab keywords (output from iskeyword) matlabKeywords = {'break', 'case', 'catch', 'continue', 'elseif', 'else', ... 'end', 'for', 'function', 'global', 'if', 'otherwise', ... 'persistent', 'return', 'switch', 'try', 'while'}; %'keyboard', 'pause', 'eps', 'NaN', 'Inf' tpl_mfile = 'mfile.tpl'; tpl_mfile_code = '<a href="%s" class="code" title="%s">%s</a>'; tpl_mfile_keyword = '<span class="keyword">%s</span>'; tpl_mfile_comment = '<span class="comment">%s</span>'; tpl_mfile_string = '<span class="string">%s</span>'; tpl_mfile_aname = '<a name="%s" href="#_subfunctions" class="code">%s</a>'; tpl_mfile_line = '%04d %s\n'; %- Delimiters used in strtok: some of them may be useless (% " .), removed '.' strtok_delim = sprintf(' \t\n\r(){}[]<>+-*~!|\\@&/,:;="''%%'); %- Create the HTML template tpl = template(options.template,'remove'); tpl = set(tpl,'file','TPL_MFILE',tpl_mfile); tpl = set(tpl,'block','TPL_MFILE','pathline','pl'); tpl = set(tpl,'block','TPL_MFILE','mexfile','mex'); tpl = set(tpl,'block','TPL_MFILE','script','scriptfile'); tpl = set(tpl,'block','TPL_MFILE','crossrefcall','crossrefcalls'); tpl = set(tpl,'block','TPL_MFILE','crossrefcalled','crossrefcalleds'); tpl = set(tpl,'block','TPL_MFILE','subfunction','subf'); tpl = set(tpl,'block','subfunction','onesubfunction','onesubf'); tpl = set(tpl,'block','TPL_MFILE','source','thesource'); tpl = set(tpl,'block','TPL_MFILE','download','downloads'); tpl = set(tpl,'var','DATE',[datestr(now,8) ' ' datestr(now,1) ' ' ... datestr(now,13)]); nblinetot = 0; for i=1:length(mdir) for j=1:length(mdirs) if strcmp(mdirs{j},mdir{i}) curfile = fullfile(options.htmlDir,mdir{i},... [names{j} options.extension]); %- Copy M-file for download, if necessary if options.download if options.verbose fprintf('Copying M-file %s.m to %s...\n',names{j},... fullfile(options.htmlDir,mdir{i})); end [status, errmsg] = copyfile(mfiles{j},... fullfile(options.htmlDir,mdir{i})); error(errmsg); end %- Open for writing the HTML file if options.verbose fprintf('Creating HTML file %s...\n',curfile); end fid = openfile(curfile,'w'); if strcmp(names{j},options.indexFile) fprintf(['Warning: HTML index file %s will be ' ... 'overwritten by Matlab function %s.\n'], ... [options.indexFile options.extension], mfiles{j}); end %- Open for reading the M-file fid2 = openfile(mfiles{j},'r'); %- Set some template fields tpl = set(tpl,'var','INDEX', [options.indexFile options.extension]); tpl = set(tpl,'var','MASTERPATH', backtomaster(mdir{i})); tpl = set(tpl,'var','MDIR', mdirs{j}); tpl = set(tpl,'var','NAME', names{j}); tpl = set(tpl,'var','H1LINE', entity(h1line{j})); tpl = set(tpl,'var','scriptfile', ''); if isempty(synopsis{j}) tpl = set(tpl,'var','SYNOPSIS',get(tpl,'var','script')); else tpl = set(tpl,'var','SYNOPSIS', synopsis{j}); end s = splitpath(mdir{i}); tpl = set(tpl,'var','pl',''); for k=1:length(s) c = cell(1,k); for l=1:k, c{l} = filesep; end cpath = {s{1:k};c{:}}; cpath = [cpath{:}]; if ~isempty(cpath), cpath = cpath(1:end-1); end if ismember(cpath,mdir) tpl = set(tpl,'var','LPATHDIR',[repmat('../',... 1,length(s)-k) options.indexFile options.extension]); else tpl = set(tpl,'var','LPATHDIR','#'); end tpl = set(tpl,'var','PATHDIR',s{k}); tpl = parse(tpl,'pl','pathline',1); end %- Handle mex files tpl = set(tpl,'var','mex', ''); samename = dir(fullfile(mdir{i},[names{j} '.*'])); samename = {samename.name}; tpl = set(tpl,'var','MEXTYPE', 'mex'); for k=1:length(samename) [dummy, dummy, ext] = fileparts(samename{k}); switch ext case '.c' tpl = set(tpl,'var','MEXTYPE', 'c'); case {'.cpp' '.c++' '.cxx' '.C'} tpl = set(tpl,'var','MEXTYPE', 'c++'); case {'.for' '.f' '.FOR' '.F'} tpl = set(tpl,'var','MEXTYPE', 'fortran'); otherwise %- Unknown mex file source end end [exts, platform] = mexexts; mexplatforms = sprintf('%s, ',platform{find(ismex(j,:))}); if ~isempty(mexplatforms) tpl = set(tpl,'var','PLATFORMS', mexplatforms(1:end-2)); tpl = parse(tpl,'mex','mexfile'); end %- Set description template field descr = ''; flagsynopcont = 0; flag_seealso = 0; while 1 tline = fgets(fid2); if ~ischar(tline), break, end tline = entity(fliplr(deblank(fliplr(tline)))); %- Synopsis line if ~isempty(strmatch('function',tline)) if ~isempty(strmatch('...',fliplr(deblank(tline)))) flagsynopcont = 1; end %- H1 line and description elseif ~isempty(strmatch('%',tline)) %- Hypertext links on the "See also" line ind = findstr(lower(tline),'see also'); if ~isempty(ind) | flag_seealso %- "See also" only in files in the same directory indsamedir = find(strcmp(mdirs{j},mdirs)); hrefnames = {names{indsamedir}}; r = deblank(tline); flag_seealso = 1; %(r(end) == ','); tline = ''; while 1 [t,r,q] = strtok(r,sprintf(' \t\n\r.,;%%')); tline = [tline q]; if isempty(t), break, end; ii = strcmpi(hrefnames,t); if any(ii) jj = find(ii); tline = [tline sprintf(tpl_mfile_code,... [hrefnames{jj(1)} options.extension],... synopsis{indsamedir(jj(1))},t)]; else tline = [tline t]; end end tline = sprintf('%s\n',tline); end descr = [descr tline(2:end)]; elseif isempty(tline) if ~isempty(descr), break, end; else if flagsynopcont if isempty(strmatch('...',fliplr(deblank(tline)))) flagsynopcont = 0; end else break; end end end tpl = set(tpl,'var','DESCRIPTION',... horztab(descr,options.tabs)); %- Set cross-references template fields: % Function called ind = find(hrefs(j,:) == 1); tpl = set(tpl,'var','crossrefcalls',''); for k=1:length(ind) if strcmp(mdirs{j},mdirs{ind(k)}) tpl = set(tpl,'var','L_NAME_CALL', ... [names{ind(k)} options.extension]); else tpl = set(tpl,'var','L_NAME_CALL', ... fullurl(backtomaster(mdirs{j}), ... mdirs{ind(k)}, ... [names{ind(k)} options.extension])); end tpl = set(tpl,'var','SYNOP_CALL', synopsis{ind(k)}); tpl = set(tpl,'var','NAME_CALL', names{ind(k)}); tpl = set(tpl,'var','H1LINE_CALL', h1line{ind(k)}); tpl = parse(tpl,'crossrefcalls','crossrefcall',1); end % Callers ind = find(hrefs(:,j) == 1); tpl = set(tpl,'var','crossrefcalleds',''); for k=1:length(ind) if strcmp(mdirs{j},mdirs{ind(k)}) tpl = set(tpl,'var','L_NAME_CALLED', ... [names{ind(k)} options.extension]); else tpl = set(tpl,'var','L_NAME_CALLED', ... fullurl(backtomaster(mdirs{j}),... mdirs{ind(k)}, ... [names{ind(k)} options.extension])); end tpl = set(tpl,'var','SYNOP_CALLED', synopsis{ind(k)}); tpl = set(tpl,'var','NAME_CALLED', names{ind(k)}); tpl = set(tpl,'var','H1LINE_CALLED', h1line{ind(k)}); tpl = parse(tpl,'crossrefcalleds','crossrefcalled',1); end %- Set subfunction template field tpl = set(tpl,'var',{'subf' 'onesubf'},{'' ''}); if ~isempty(subroutine{j}) & options.source for k=1:length(subroutine{j}) tpl = set(tpl, 'var', 'L_SUB', ['#_sub' num2str(k)]); tpl = set(tpl, 'var', 'SUB', subroutine{j}{k}); tpl = parse(tpl, 'onesubf', 'onesubfunction',1); end tpl = parse(tpl,'subf','subfunction'); end subname = extractname(subroutine{j}); %- Link to M-file (for download) tpl = set(tpl,'var','downloads',''); if options.download tpl = parse(tpl,'downloads','download',1); end %- Display source code with cross-references if options.source & ~strcmpi(names{j},'contents') fseek(fid2,0,-1); it = 1; matlabsource = ''; nbsubroutine = 1; %- Get href function names of this file indhrefnames = find(hrefs(j,:) == 1); hrefnames = {names{indhrefnames}}; %- Loop over lines while 1 tline = fgetl(fid2); if ~ischar(tline), break, end myline = ''; splitc = splitcode(entity(tline)); for k=1:length(splitc) if isempty(splitc{k}) elseif ~isempty(strmatch('function',splitc{k})) %- Subfunctions definition myline = [myline ... sprintf(tpl_mfile_aname,... ['_sub' num2str(nbsubroutine-1)],splitc{k})]; nbsubroutine = nbsubroutine + 1; elseif splitc{k}(1) == '''' myline = [myline ... sprintf(tpl_mfile_string,splitc{k})]; elseif splitc{k}(1) == '%' myline = [myline ... sprintf(tpl_mfile_comment,deblank(splitc{k}))]; elseif ~isempty(strmatch('...',splitc{k})) myline = [myline sprintf(tpl_mfile_keyword,'...')]; if ~isempty(splitc{k}(4:end)) myline = [myline ... sprintf(tpl_mfile_comment,splitc{k}(4:end))]; end else %- Look for keywords r = splitc{k}; while 1 [t,r,q] = strtok(r,strtok_delim); myline = [myline q]; if isempty(t), break, end; %- Highlight Matlab keywords & % cross-references on known functions if options.syntaxHighlighting & ... any(strcmp(matlabKeywords,t)) if strcmp('end',t) rr = fliplr(deblank(fliplr(r))); icomma = strmatch(',',rr); isemicolon = strmatch(';',rr); if ~(isempty(rr) | ~isempty([icomma isemicolon])) myline = [myline t]; else myline = [myline sprintf(tpl_mfile_keyword,t)]; end else myline = [myline sprintf(tpl_mfile_keyword,t)]; end elseif any(strcmp(hrefnames,t)) indt = indhrefnames(logical(strcmp(hrefnames,t))); flink = [t options.extension]; ii = ismember({mdirs{indt}},mdirs{j}); if ~any(ii) % take the first one... flink = fullurl(backtomaster(mdirs{j}),... mdirs{indt(1)}, flink); else indt = indt(logical(ii)); end myline = [myline sprintf(tpl_mfile_code,... flink, synopsis{indt(1)}, t)]; elseif any(strcmp(subname,t)) ii = find(strcmp(subname,t)); myline = [myline sprintf(tpl_mfile_code,... ['#_sub' num2str(ii)],... ['sub' subroutine{j}{ii}],t)]; else myline = [myline t]; end end end end matlabsource = [matlabsource sprintf(tpl_mfile_line,it,myline)]; it = it + 1; end nblinetot = nblinetot + it - 1; tpl = set(tpl,'var','SOURCECODE',... horztab(matlabsource,options.tabs)); tpl = parse(tpl,'thesource','source'); else tpl = set(tpl,'var','thesource',''); end tpl = parse(tpl,'OUT','TPL_MFILE'); fprintf(fid,'%s',get(tpl,'OUT')); fclose(fid2); fclose(fid); end end end %------------------------------------------------------------------------------- %- Display Statistics %------------------------------------------------------------------------------- if options.verbose prnbline = ''; if options.source prnbline = sprintf('(%d lines) ', nblinetot); end fprintf('Stats: %d M-files %sin %d directories documented in %d s.\n', ... length(mfiles), prnbline, length(mdir), round(etime(clock,t0))); end %=============================================================================== function mfiles = getmfiles(mdirs, mfiles, recursive) %- Extract M-files from a list of directories and/or M-files for i=1:length(mdirs) currentdir = fullfile(pwd, mdirs{i}); if exist(currentdir) == 2 % M-file mfiles{end+1} = mdirs{i}; elseif exist(currentdir) == 7 % Directory d = dir(fullfile(currentdir, '*.m')); d = {d(~[d.isdir]).name}; for j=1:length(d) %- don't take care of files containing ',' % probably a sccs file... if isempty(findstr(',',d{j})) mfiles{end+1} = fullfile(mdirs{i}, d{j}); end end if recursive d = dir(currentdir); d = {d([d.isdir]).name}; d = {d{~ismember(d,{'.' '..'})}}; for j=1:length(d) mfiles = getmfiles(cellstr(fullfile(mdirs{i},d{j})), ... mfiles, recursive); end end else fprintf('Warning: Unprocessed file %s.\n',mdirs{i}); if ~isempty(strmatch('/',mdirs{i})) | findstr(':',mdirs{i}) fprintf(' Use relative paths in ''mfiles'' option\n'); end end end %=============================================================================== function calldot(dotexec, mdotfile, mapfile, pngfile, opt) %- Draw a dependency graph in a PNG image using <dot> from GraphViz if nargin == 4, opt = ''; end try %- See <http://www.graphviz.org/> % <dot> must be in your system path, see M2HTML FAQ: % <http://www.artefact.tk/software/matlab/m2html/faq.php> eval(['!"' dotexec '" ' opt ' -Tcmap -Tpng "' mdotfile ... '" -o "' mapfile ... '" -o "' pngfile '"']); % use '!' rather than 'system' for backward compability with Matlab 5.3 catch % use of '!' prevents errors to be catched... fprintf('<dot> failed.'); end %=============================================================================== function s = backtomaster(mdir) %- Provide filesystem path to go back to the root folder ldir = splitpath(mdir); s = repmat('../',1,length(ldir)); %=============================================================================== function ldir = splitpath(p) %- Split a filesystem path into parts using filesep as separator ldir = {}; p = deblank(p); while 1 [t,p] = strtok(p,filesep); if isempty(t), break; end if ~strcmp(t,'.') ldir{end+1} = t; end end if isempty(ldir) ldir{1} = '.'; % should be removed end %=============================================================================== function name = extractname(synopsis) %- Extract function name in a synopsis if ischar(synopsis), synopsis = {synopsis}; end name = cell(size(synopsis)); for i=1:length(synopsis) ind = findstr(synopsis{i},'='); if isempty(ind) ind = findstr(synopsis{i},'function'); s = synopsis{i}(ind(1)+8:end); else s = synopsis{i}(ind(1)+1:end); end name{i} = strtok(s,[9:13 32 40]); % white space characters and '(' end if length(name) == 1, name = name{1}; end %=============================================================================== function f = fullurl(varargin) %- Build full url from parts (using '/' and not filesep) f = strrep(fullfile(varargin{:}),'\','/'); %=============================================================================== function str = escapeblank(str) %- Escape white spaces using '\' str = deblank(fliplr(deblank(fliplr(str)))); str = strrep(str,' ','\ '); %=============================================================================== function str = entity(str) %- Escape HTML special characters %- See http://www.w3.org/TR/html4/charset.html#h-5.3.2 str = strrep(str,'&','&amp;'); str = strrep(str,'<','&lt;'); str = strrep(str,'>','&gt;'); str = strrep(str,'"','&quot;'); %=============================================================================== function str = horztab(str,n) %- For browsers, the horizontal tab character is the smallest non-zero %- number of spaces necessary to line characters up along tab stops that are %- every 8 characters: behaviour obtained when n = 0. if n > 0 str = strrep(str,sprintf('\t'),blanks(n)); end
github
garrickbrazil/SDS-RCNN-master
doxysearch.m
.m
SDS-RCNN-master/external/pdollar_toolbox/external/m2html/private/doxysearch.m
7,724
utf_8
8331cde8495f34b86aef8c18656b37f2
function result = doxysearch(query,filename) %DOXYSEARCH Search a query in a 'search.idx' file % RESULT = DOXYSEARCH(QUERY,FILENAME) looks for request QUERY % in FILENAME (Doxygen search.idx format) and returns a list of % files responding to the request in RESULT. % % See also DOXYREAD, DOXYWRITE % Copyright (C) 2004 Guillaume Flandin <[email protected]> % $Revision: 1.1 $Date: 2004/05/05 14:33:55 $ % This program is free software; you can redistribute it and/or % modify it under the terms of the GNU General Public License % as published by the Free Software Foundation; either version 2 % of the License, or any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation Inc, 59 Temple Pl. - Suite 330, Boston, MA 02111-1307, USA. % Suggestions for improvement and fixes are always welcome, although no % guarantee is made whether and when they will be implemented. % Send requests to <[email protected]> % See <http://www.doxygen.org/> for more details. error(nargchk(1,2,nargin)); if nargin == 1, filename = 'search.idx'; end %- Open the search index file [fid, errmsg] = fopen(filename,'r','ieee-be'); if fid == -1, error(errmsg); end %- 4 byte header (DOXS) header = char(fread(fid,4,'uchar'))'; if ~all(header == 'DOXS') error('[doxysearch] Header of index file is invalid!'); end %- many thanks to <doxyread.m> and <doxysearch.php> r = query; requiredWords = {}; forbiddenWords = {}; foundWords = {}; res = {}; while 1 % extract each word of the query [t,r] = strtok(r); if isempty(t), break, end; if t(1) == '+' t = t(2:end); requiredWords{end+1} = t; elseif t(1) == '-' t = t(2:end); forbiddenWords{end+1} = t; end if ~ismember(t,foundWords) foundWords{end+1} = t; res = searchAgain(fid,t,res); end end %- Filter and sort results docs = combineResults(res); filtdocs = filterResults(docs,requiredWords,forbiddenWords); filtdocs = normalizeResults(filtdocs); res = sortResults(filtdocs); %- if nargout result = res; else for i=1:size(res,1) fprintf(' %d. %s - %s\n ',i,res{i,1},res{i,2}); for j=1:size(res{i,4},1) fprintf('%s ',res{i,4}{j,1}); end fprintf('\n'); end end %- Close the search index file fclose(fid); %=========================================================================== function res = searchAgain(fid, word,res) i = computeIndex(word); if i > 0 fseek(fid,i*4+4,'bof'); % 4 bytes per entry, skip header start = size(res,1); idx = readInt(fid); if idx > 0 fseek(fid,idx,'bof'); statw = readString(fid); while ~isempty(statw) statidx = readInt(fid); if length(statw) >= length(word) & ... strcmp(statw(1:length(word)),word) res{end+1,1} = statw; % word res{end,2} = word; % match res{end,3} = statidx; % index res{end,4} = (length(statw) == length(word)); % full res{end,5} = {}; % doc end statw = readString(fid); end totalfreq = 0; for j=start+1:size(res,1) fseek(fid,res{j,3},'bof'); numdoc = readInt(fid); docinfo = {}; for m=1:numdoc docinfo{m,1} = readInt(fid); % idx docinfo{m,2} = readInt(fid); % freq docinfo{m,3} = 0; % rank totalfreq = totalfreq + docinfo{m,2}; if res{j,2}, totalfreq = totalfreq + docinfo{m,2}; end; end for m=1:numdoc fseek(fid, docinfo{m,1}, 'bof'); docinfo{m,4} = readString(fid); % name docinfo{m,5} = readString(fid); % url end res{j,5} = docinfo; end for j=start+1:size(res,1) for m=1:size(res{j,5},1) res{j,5}{m,3} = res{j,5}{m,2} / totalfreq; end end end % if idx > 0 end % if i > 0 %=========================================================================== function docs = combineResults(result) docs = {}; for i=1:size(result,1) for j=1:size(result{i,5},1) key = result{i,5}{j,5}; rank = result{i,5}{j,3}; if ~isempty(docs) & ismember(key,{docs{:,1}}) l = find(ismember({docs{:,1}},key)); docs{l,3} = docs{l,3} + rank; docs{l,3} = 2 * docs{l,3}; else l = size(docs,1)+1; docs{l,1} = key; % key docs{l,2} = result{i,5}{j,4}; % name docs{l,3} = rank; % rank docs{l,4} = {}; %words end n = size(docs{l,4},1); docs{l,4}{n+1,1} = result{i,1}; % word docs{l,4}{n+1,2} = result{i,2}; % match docs{l,4}{n+1,3} = result{i,5}{j,2}; % freq end end %=========================================================================== function filtdocs = filterResults(docs,requiredWords,forbiddenWords) filtdocs = {}; for i=1:size(docs,1) words = docs{i,4}; c = 1; j = size(words,1); % check required if ~isempty(requiredWords) found = 0; for k=1:j if ismember(words{k,1},requiredWords) found = 1; break; end end if ~found, c = 0; end end % check forbidden if ~isempty(forbiddenWords) for k=1:j if ismember(words{k,1},forbiddenWords) c = 0; break; end end end % keep it or not if c, l = size(filtdocs,1)+1; filtdocs{l,1} = docs{i,1}; filtdocs{l,2} = docs{i,2}; filtdocs{l,3} = docs{i,3}; filtdocs{l,4} = docs{i,4}; end; end %=========================================================================== function docs = normalizeResults(docs); m = max([docs{:,3}]); for i=1:size(docs,1) docs{i,3} = 100 * docs{i,3} / m; end %=========================================================================== function result = sortResults(docs); [y, ind] = sort([docs{:,3}]); result = {}; ind = fliplr(ind); for i=1:size(docs,1) result{i,1} = docs{ind(i),1}; result{i,2} = docs{ind(i),2}; result{i,3} = docs{ind(i),3}; result{i,4} = docs{ind(i),4}; end %=========================================================================== function i = computeIndex(word) if length(word) < 2, i = -1; else i = double(word(1)) * 256 + double(word(2)); end %=========================================================================== function s = readString(fid) s = ''; while 1 w = fread(fid,1,'uchar'); if w == 0, break; end s(end+1) = char(w); end %=========================================================================== function i = readInt(fid) i = fread(fid,1,'uint32');
github
garrickbrazil/SDS-RCNN-master
doxywrite.m
.m
SDS-RCNN-master/external/pdollar_toolbox/external/m2html/private/doxywrite.m
3,584
utf_8
3255d8f824957ebc173dde374d0f78af
function doxywrite(filename, kw, statinfo, docinfo) %DOXYWRITE Write a 'search.idx' file compatible with DOXYGEN % DOXYWRITE(FILENAME, KW, STATINFO, DOCINFO) writes file FILENAME % (Doxygen search.idx. format) using the cell array KW containing the % word list, the sparse matrix (nbword x nbfile) with non-null values % in (i,j) indicating the frequency of occurence of word i in file j % and the cell array (nbfile x 2) containing the list of urls and names % of each file. % % See also DOXYREAD % Copyright (C) 2003 Guillaume Flandin <[email protected]> % $Revision: 1.0 $Date: 2003/23/10 15:52:56 $ % This program is free software; you can redistribute it and/or % modify it under the terms of the GNU General Public License % as published by the Free Software Foundation; either version 2 % of the License, or any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation Inc, 59 Temple Pl. - Suite 330, Boston, MA 02111-1307, USA. % Suggestions for improvement and fixes are always welcome, although no % guarantee is made whether and when they will be implemented. % Send requests to <[email protected]> % See <http://www.doxygen.org/> for more details. error(nargchk(4,4,nargin)); %- Open the search index file [fid, errmsg] = fopen(filename,'w','ieee-be'); if fid == -1, error(errmsg); end %- Write 4 byte header (DOXS) fwrite(fid,'DOXS','uchar'); pos = ftell(fid); %- Write 256 * 256 header idx = zeros(256); writeInt(fid, idx); %- Write word lists i = 1; idx2 = zeros(1,length(kw)); while 1 s = kw{i}(1:2); idx(double(s(2)+1), double(s(1)+1)) = ftell(fid); while i <= length(kw) & strmatch(s, kw{i}) writeString(fid,kw{i}); idx2(i) = ftell(fid); writeInt(fid,0); i = i + 1; end fwrite(fid, 0, 'int8'); if i > length(kw), break; end end %- Write extra padding bytes pad = mod(4 - mod(ftell(fid),4), 4); for i=1:pad, fwrite(fid,0,'int8'); end pos2 = ftell(fid); %- Write 256*256 header again fseek(fid, pos, 'bof'); writeInt(fid, idx); % Write word statistics fseek(fid,pos2,'bof'); idx3 = zeros(1,length(kw)); for i=1:length(kw) idx3(i) = ftell(fid); [ia, ib, v] = find(statinfo(i,:)); counter = length(ia); % counter writeInt(fid,counter); for j=1:counter writeInt(fid,ib(j)); % index writeInt(fid,v(j)); % freq end end pos3 = ftell(fid); %- Set correct handles to keywords for i=1:length(kw) fseek(fid,idx2(i),'bof'); writeInt(fid,idx3(i)); end % Write urls fseek(fid,pos3,'bof'); idx4 = zeros(1,length(docinfo)); for i=1:length(docinfo) idx4(i) = ftell(fid); writeString(fid, docinfo{i,1}); % name writeString(fid, docinfo{i,2}); % url end %- Set corrext handles to word statistics fseek(fid,pos2,'bof'); for i=1:length(kw) [ia, ib, v] = find(statinfo(i,:)); counter = length(ia); fseek(fid,4,'cof'); % counter for m=1:counter writeInt(fid,idx4(ib(m)));% index fseek(fid,4,'cof'); % freq end end %- Close the search index file fclose(fid); %=========================================================================== function writeString(fid, s) fwrite(fid,s,'uchar'); fwrite(fid,0,'int8'); %=========================================================================== function writeInt(fid, i) fwrite(fid,i,'uint32');
github
garrickbrazil/SDS-RCNN-master
doxyread.m
.m
SDS-RCNN-master/external/pdollar_toolbox/external/m2html/private/doxyread.m
3,093
utf_8
3152e7d26bf7ac64118be56f72832a20
function [statlist, docinfo] = doxyread(filename) %DOXYREAD Read a 'search.idx' file generated by DOXYGEN % STATLIST = DOXYREAD(FILENAME) reads FILENAME (Doxygen search.idx % format) and returns the list of keywords STATLIST as a cell array. % [STATLIST, DOCINFO] = DOXYREAD(FILENAME) also returns a cell array % containing details for each keyword (frequency in each file where it % appears and the URL). % % See also DOXYSEARCH, DOXYWRITE % Copyright (C) 2003 Guillaume Flandin <[email protected]> % $Revision: 1.0 $Date: 2003/05/10 17:41:21 $ % This program is free software; you can redistribute it and/or % modify it under the terms of the GNU General Public License % as published by the Free Software Foundation; either version 2 % of the License, or any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation Inc, 59 Temple Pl. - Suite 330, Boston, MA 02111-1307, USA. % Suggestions for improvement and fixes are always welcome, although no % guarantee is made whether and when they will be implemented. % Send requests to <[email protected]> % See <http://www.doxygen.org/> for more details. error(nargchk(0,1,nargin)); if nargin == 0, filename = 'search.idx'; end %- Open the search index file [fid, errmsg] = fopen(filename,'r','ieee-be'); if fid == -1, error(errmsg); end %- 4 byte header (DOXS) header = char(fread(fid,4,'uchar'))'; %- 256*256*4 byte index idx = fread(fid,256*256,'uint32'); idx = reshape(idx,256,256); %- Extract list of words i = find(idx); statlist = cell(0,2); for j=1:length(i) fseek(fid, idx(i(j)), 'bof'); statw = readString(fid); while ~isempty(statw) statidx = readInt(fid); statlist{end+1,1} = statw; % word statlist{end,2} = statidx; % index statw = readString(fid); end end %- Extract occurence frequency of each word and docs info (name and url) docinfo = cell(size(statlist,1),1); for k=1:size(statlist,1) fseek(fid, statlist{k,2}, 'bof'); numdoc = readInt(fid); docinfo{k} = cell(numdoc,4); for m=1:numdoc docinfo{k}{m,1} = readInt(fid); % idx docinfo{k}{m,2} = readInt(fid); % freq end for m=1:numdoc fseek(fid, docinfo{k}{m,1}, 'bof'); docinfo{k}{m,3} = readString(fid); % name docinfo{k}{m,4} = readString(fid); % url end docinfo{k} = reshape({docinfo{k}{:,2:4}},numdoc,[]); end %- Close the search index file fclose(fid); %- Remove indexes statlist = {statlist{:,1}}'; %=========================================================================== function s = readString(fid) s = ''; while 1 w = fread(fid,1,'uchar'); if w == 0, break; end s(end+1) = char(w); end %=========================================================================== function i = readInt(fid) i = fread(fid,1,'uint32');
github
garrickbrazil/SDS-RCNN-master
imwrite2split.m
.m
SDS-RCNN-master/external/pdollar_toolbox/external/deprecated/imwrite2split.m
1,617
utf_8
4222fd45df123e6dec9ef40ae793004f
% Writes/reads a large set of images into/from multiple directories. % % This is useful since certain OS handle very large directories (of say % >20K images) rather poorly (I'm talking to you Bill). Thus, can take % 100K images, and write into 5 separate directories, then read them back % in. % % USAGE % I = imwrite2split( I, nSplits, spliti, path, [varargin] ) % % INPUTS % I - image or images (if [] reads else writes) % nSplits - number of directories to split data into % spliti - first split number % path - directory where images are % writePrms - [varargin] parameters to imwrite2 % % OUTPUTS % I - image or images (read from disk if input I=[]) % % EXAMPLE % load images; clear IDXi IDXv t video videos; % imwrite2split( images(:,:,1:10), 2, 0, 'rats', 'rats', 'png', 5 ); % images2=imwrite2split( [], 2, 0, 'rats', 'rats', 'png', 5 ); % % See also IMWRITE2 % Piotr's Image&Video Toolbox Version NEW % Written and maintained by Piotr Dollar pdollar-at-cs.ucsd.edu % Please email me if you find bugs, or have suggestions or questions! function I = imwrite2split( I, nSplits, spliti, path, varargin ) n = size(I,3); if( isempty(I) ); n=0; end nSplits = min(n,nSplits); for s=1:nSplits pathSplit = [path int2str2(s-1+spliti,2)]; if( n>0 ) % write nPerDir = ceil( n / nSplits ); ISplit = I(:,:,1:min(end,nPerDir)); imwrite2( ISplit, nPerDir>1, 0, pathSplit, varargin{:} ); if( s~=nSplits ); I = I(:,:,(nPerDir+1):end); end else % read ISplit = imwrite2( [], 1, 0, pathSplit, varargin{:} ); I = cat(3,I,ISplit); end end
github
garrickbrazil/SDS-RCNN-master
playmovies.m
.m
SDS-RCNN-master/external/pdollar_toolbox/external/deprecated/playmovies.m
1,935
utf_8
ef2eaad8a130936a1a281f1277ca0ea1
% [4D] shows R videos simultaneously as a movie. % % Plays a movie. % % USAGE % playmovies( I, [fps], [loop] ) % % INPUTS % I - MxNxTxR or MxNx1xTxR or MxNx3xTxR array (if MxNxT calls % playmovie) % fps - [100] maximum number of frames to display per second use % fps==0 to introduce no pause and have the movie play as % fast as possible % loop - [0] number of time to loop video (may be inf), % if neg plays video forward then backward then forward etc. % % OUTPUTS % % EXAMPLE % load( 'images.mat' ); % playmovies( videos ); % % See also MONTAGES, PLAYMOVIE, MAKEMOVIES % Piotr's Image&Video Toolbox Version 1.5 % Written and maintained by Piotr Dollar pdollar-at-cs.ucsd.edu % Please email me if you find bugs, or have suggestions or questions! function playmovies( I, fps, loop ) wid = sprintf('Images:%s:obsoleteFunction',mfilename); warning(wid,[ '%s is obsolete in Piotr''s toolbox.\n PLAYMOVIE is its '... 'recommended replacement.'],upper(mfilename)); if( nargin<2 || isempty(fps)); fps = 100; end if( nargin<3 || isempty(loop)); loop = 1; end playmovie( I, fps, loop ) % % nd=ndims(I); siz=size(I); nframes=siz(end-1); % if( nd==3 ); playmovie( I, fps, loop ); return; end % if( iscell(I) ); error('cell arrays not supported.'); end % if( ~(nd==4 || (nd==5 && any(size(I,3)==[1 3]))) ) % error('unsupported dimension of I'); end % inds={':'}; inds=inds(:,ones(1,nd-2)); % clim = [min(I(:)),max(I(:))]; % % h=gcf; colormap gray; figure(h); % bring to focus % for nplayed = 1 : abs(loop) % if( loop<0 && mod(nplayed,2)==1 ) % order = nframes:-1:1; % else % order = 1:nframes; % end % for i=order % tic; try disc=get(h); catch return; end %#ok<NASGU> % montage2(squeeze(I(inds{:},i,:)),1,[],clim); % title(sprintf('frame %d of %d',i,nframes)); % if(fps>0); pause(1/fps - toc); else pause(eps); end % end % end
github
garrickbrazil/SDS-RCNN-master
pca_apply_large.m
.m
SDS-RCNN-master/external/pdollar_toolbox/external/deprecated/pca_apply_large.m
2,062
utf_8
af84a2179b9d8042519bc6b378736a88
% Wrapper for pca_apply that allows for application to large X. % % Wrapper for pca_apply that splits and processes X in parts, this may be % useful if processing cannot be done fully in parallel because of memory % constraints. See pca_apply for usage. % % USAGE % same as pca_apply % % INPUTS % same as pca_apply % % OUTPUTS % same as pca_apply % % EXAMPLE % % See also PCA, PCA_APPLY, PCA_VISUALIZE % Piotr's Image&Video Toolbox Version 1.5 % Written and maintained by Piotr Dollar pdollar-at-cs.ucsd.edu % Please email me if you find bugs, or have suggestions or questions! function [ Yk, Xhat, avsq ] = pca_apply_large( X, U, mu, vars, k ) siz = size(X); nd = ndims(X); [N,r] = size(U); if(N==prod(siz) && ~(nd==2 && siz(2)==1)); siz=[siz, 1]; nd=nd+1; end inds = {':'}; inds = inds(:,ones(1,nd-1)); d= prod(siz(1:end-1)); % some error checking if(d~=N); error('incorrect size for X or U'); end if(isa(X,'uint8')); X = double(X); end if( k>r ) warning(['Only ' int2str(r) '<k comp. available.']); %#ok<WNTAG> k=r; end % Will run out of memory if X has too many elements. Hence, run % pca_apply on parts of X and recombine. maxwidth = ceil( (10^7) / d ); if(maxwidth > siz(end)) if (nargout==1) Yk = pca_apply( X, U, mu, vars, k ); elseif (nargout==2) [Yk, Xhat] = pca_apply( X, U, mu, vars, k ); else [ Yk, Xhat, avsq ] = pca_apply( X, U, mu, vars, k ); end else Yk = zeros( k, siz(end) ); Xhat = zeros( siz ); avsq = 0; avsqOrig = 0; last = 0; while(last < siz(end)) first=last+1; last=min(first+maxwidth-1,siz(end)); Xi = X(inds{:}, first:last); if( nargout==1 ) Yki = pca_apply( Xi, U, mu, vars, k ); else if( nargout==2 ) [Yki,Xhati] = pca_apply( Xi, U, mu, vars, k ); else [Yki,Xhati,avsqi,avsqOrigi] = pca_apply( Xi, U, mu, vars, k ); avsq = avsq + avsqi; avsqOrig = avsqOrig + avsqOrigi; end; Xhat(inds{:}, first:last ) = Xhati; end Yk( :, first:last ) = Yki; end; if( nargout==3); avsq = avsq / avsqOrig; end end
github
garrickbrazil/SDS-RCNN-master
montages2.m
.m
SDS-RCNN-master/external/pdollar_toolbox/external/deprecated/montages2.m
2,269
utf_8
505e2be915d65fff8bfef8473875cc98
% MONTAGES2 [4D] Used to display R sets of T images each. % % Displays one montage (see montage2) per row. Each of the R image sets is % flattened to a single long image by concatenating the T images in the % set. Alternative to montages. % % USAGE % varargout = montages2( IS, [montage2prms], [padSiz] ) % % INPUTS % IS - MxNxTxR or MxNx1xTxR or MxNx3xTxR array % montage2prms - [] params for montage2; ex: {showLns,extraInf} % padSiz - [4] total amount of vertical or horizontal padding % % OUTPUTS % I - 3D or 4D array of flattened images, disp with montage2 % mm - #montages/row % nn - #montages/col % % EXAMPLE % load( 'images.mat' ); % imageclusters = clustermontage( images, IDXi, 16, 1 ); % montages2( imageclusters ); % % See also MONTAGES, MAKEMOVIES, MONTAGE2, CLUSTERMONTAGE % Piotr's Image&Video Toolbox Version 1.5 % Written and maintained by Piotr Dollar pdollar-at-cs.ucsd.edu % Please email me if you find bugs, or have suggestions or questions! function varargout = montages2( IS, montage2prms, padSiz ) if( nargin<2 || isempty(montage2prms) ); montage2prms = {}; end if( nargin<3 || isempty(padSiz) ); padSiz = 4; end [padSiz,er] = checknumericargs( padSiz,[1 1], 0, 1 ); error(er); % get/test image format info nd = ndims(IS); siz = size(IS); if( nd==5 ) %MxNx1xTxR or MxNx3xTxR nch = size(IS,3); if( nch~=1 && nch~=3 ); error('illegal image stack format'); end if( nch==1 ); IS = squeeze(IS); nd=4; siz=size(IS); end end if ~any(nd==3:5) error('unsupported dimension of IS'); end % reshape IS so that each 3D element is concatenated to a 2D image, adding % padding padEl = max(IS(:)); IS=arraycrop2dims(IS, [siz(1)+padSiz siz(2:end)], padEl ); %UD pad siz=size(IS); if(nd==3) % reshape bw single IS=squeeze( reshape( IS, siz(1), [] ) ); elseif(nd==4) % reshape bw IS=squeeze( reshape( IS, siz(1), [], siz(4) ) ); else % reshape color IS=squeeze( reshape(permute(IS,[1 2 4 3 5]),siz(1),[],siz(3),siz(5))); end; siz = size(IS); IS=arraycrop2dims(IS, [siz(1) siz(2)+padSiz siz(3:end)], padEl); % show using montage2 varargout = cell(1,nargout); if( nargout); varargout{1}=IS; end; [varargout{2:end}] = montage2( IS, montage2prms{:} ); title(inputname(1));
github
garrickbrazil/SDS-RCNN-master
filter_gauss_1D.m
.m
SDS-RCNN-master/external/pdollar_toolbox/external/deprecated/filter_gauss_1D.m
1,137
utf_8
94a453b82dcdeba67bd886e042d552d9
% 1D Gaussian filter. % % Equivalent to (but faster then): % f = fspecial('Gaussian',[2*r+1,1],sigma); % f = filter_gauss_nD( 2*r+1, r+1, sigma^2 ); % % USAGE % f = filter_gauss_1D( r, sigma, [show] ) % % INPUTS % r - filter size=2r+1, if r=[] -> r=ceil(2.25*sigma) % sigma - standard deviation of filter % show - [0] figure to use for optional display % % OUTPUTS % f - 1D Gaussian filter % % EXAMPLE % f1 = filter_gauss_1D( 10, 2, 1 ); % f2 = filter_gauss_nD( 21, [], 2^2, 2); % % See also FILTER_BINOMIAL_1D, FILTER_GAUSS_ND, FSPECIAL % Piotr's Image&Video Toolbox Version 1.5 % Written and maintained by Piotr Dollar pdollar-at-cs.ucsd.edu % Please email me if you find bugs, or have suggestions or questions! function f = filter_gauss_1D( r, sigma, show ) if( nargin<3 || isempty(show) ); show=0; end if( isempty(r) ); r = ceil(sigma*2.25); end if( mod(r,1)~=0 ); error( 'r must be an integer'); end % compute filter x = -r:r; f = exp(-(x.*x)/(2*sigma*sigma))'; f(f<eps*max(f(:))*10) = 0; sumf = sum(f(:)); if(sumf~=0); f = f/sumf; end % display if(show); filter_visualize_1D( f, show ); end
github
garrickbrazil/SDS-RCNN-master
clfEcoc.m
.m
SDS-RCNN-master/external/pdollar_toolbox/external/deprecated/clfEcoc.m
1,493
utf_8
e77e1b4fd5469ed39f47dd6ed15f130f
function clf = clfEcoc(p,clfInit,clfparams,nclasses,use01targets) % Wrapper for ecoc that makes ecoc compatible with nfoldxval. % % Requires the SVM toolbox by Anton Schwaighofer. % % USAGE % clf = clfEcoc(p,clfInit,clfparams,nclasses,use01targets) % % INPUTS % p - data dimension % clfInit - binary classifier init (see nfoldxval) % clfparams - binary classifier parameters (see nfoldxval) % nclasses - num of classes (currently 3<=nclasses<=7 suppored) % use01targets - see ecoc % % OUTPUTS % clf - see ecoc % % EXAMPLE % % See also ECOC, NFOLDXVAL, CLFECOCCODE % % Piotr's Image&Video Toolbox Version 2.0 % Copyright 2008 Piotr Dollar. [pdollar-at-caltech.edu] % Please email me if you find bugs, or have suggestions or questions! % Licensed under the Lesser GPL [see external/lgpl.txt] if( nclasses<3 || nclasses>7 ) error( 'currently only works if 3<=nclasses<=7'); end; if( nargin<5 || isempty(use01targets)); use01targets=0; end; % create code (limited for now) [C,nbits] = clfEcocCode( nclasses ); clf = ecoc(nclasses, nbits, C, use01targets ); % didn't use to pass use01? clf.verbosity = 0; % don't diplay output % initialize and temporarily store binary learner clf.templearner = feval( clfInit, p, clfparams{:} ); % ecoctrain2 is custom version of ecoctrain clf.funTrain = @clfEcocTrain; clf.funFwd = @ecocfwd; function clf = clfEcocTrain( clf, varargin ) clf = ecoctrain( clf, clf.templearner, varargin{:} );
github
garrickbrazil/SDS-RCNN-master
getargs.m
.m
SDS-RCNN-master/external/pdollar_toolbox/external/deprecated/getargs.m
3,455
utf_8
de2bab917fa6b9ba3099f1c6b6d68cf0
% Utility to process parameter name/value pairs. % % DEPRECATED -- ONLY USED BY KMEANS2? SHOULD BE REMOVED. % USE GETPARAMDEFAULTS INSTEAD. % % Based on code fromt Matlab Statistics Toolobox's "private/statgetargs.m" % % [EMSG,A,B,...]=GETARGS(PNAMES,DFLTS,'NAME1',VAL1,'NAME2',VAL2,...) % accepts a cell array PNAMES of valid parameter names, a cell array DFLTS % of default values for the parameters named in PNAMES, and additional % parameter name/value pairs. Returns parameter values A,B,... in the same % order as the names in PNAMES. Outputs corresponding to entries in PNAMES % that are not specified in the name/value pairs are set to the % corresponding value from DFLTS. If nargout is equal to length(PNAMES)+1, % then unrecognized name/value pairs are an error. If nargout is equal to % length(PNAMES)+2, then all unrecognized name/value pairs are returned in % a single cell array following any other outputs. % % EMSG is empty if the arguments are valid, or the text of an error message % if an error occurs. GETARGS does not actually throw any errors, but % rather returns an error message so that the caller may throw the error. % Outputs will be partially processed after an error occurs. % % USAGE % [emsg,varargout]=getargs(pnames,dflts,varargin) % % INPUTS % pnames - cell of valid parameter names % dflts - cell of default parameter values % varargin - list of proposed name / value pairs % % OUTPUTS % emsg - error msg - '' if no error % varargout - list of assigned name / value pairs % % EXAMPLE % pnames = {'color' 'linestyle', 'linewidth'}; dflts = { 'r','_','1'}; % v = {'linew' 2 'nonesuch' [1 2 3] 'linestyle' ':'}; % [emsg,color,linestyle,linewidth,unrec] = getargs(pnames,dflts,v{:}) % ok % [emsg,color,linestyle,linewidth] = getargs(pnames,dflts,v{:}) % err % % See also GETPARAMDEFAULTS % Piotr's Image&Video Toolbox Version 1.5 % Written and maintained by Piotr Dollar pdollar-at-cs.ucsd.edu % Please email me if you find bugs, or have suggestions or questions! function [emsg,varargout]=getargs(pnames,dflts,varargin) wid = sprintf('Images:%s:obsoleteFunction',mfilename); warning(wid,[ '%s is obsolete in Piotr''s toolbox.\n It will be ' ... 'removed in the next version of the toolbox.'],upper(mfilename)); % We always create (nparams+1) outputs: % one for emsg % nparams varargs for values corresponding to names in pnames % If they ask for one more (nargout == nparams+2), it's for unrecognized % names/values emsg = ''; nparams = length(pnames); varargout = dflts; unrecog = {}; nargs = length(varargin); % Must have name/value pairs if mod(nargs,2)~=0 emsg = sprintf('Wrong number of arguments.'); else % Process name/value pairs for j=1:2:nargs pname = varargin{j}; if ~ischar(pname) emsg = sprintf('Parameter name must be text.'); break; end i = strmatch(lower(pname),lower(pnames)); if isempty(i) % if they've asked to get back unrecognized names/values, add this % one to the list if nargout > nparams+1 unrecog((end+1):(end+2)) = {varargin{j} varargin{j+1}}; % otherwise, it's an error else emsg = sprintf('Invalid parameter name: %s.',pname); break; end elseif length(i)>1 emsg = sprintf('Ambiguous parameter name: %s.',pname); break; else varargout{i} = varargin{j+1}; end end end varargout{nparams+1} = unrecog;
github
garrickbrazil/SDS-RCNN-master
normxcorrn_fg.m
.m
SDS-RCNN-master/external/pdollar_toolbox/external/deprecated/normxcorrn_fg.m
2,699
utf_8
e65c38d97efb3a624e0fa94a97f75eb6
% Normalized n-dimensional cross-correlation with a mask. % % Similar to normxcorrn, except takes an additional argument that specifies % a figure ground mask for the T. That is T_fg must be of the same % dimensions as T, with each entry being 0 or 1, where zero specifies % regions to ignore (the ground) and 1 specifies interesting regions (the % figure). Essentially T_fg specifies regions in T that are interesting % and should be taken into account when doing normalized cross correlation. % This allows for templates of arbitrary shape, and not just squares. % % Note: this function is approximately 3 times slower then normxcorr2 % because it cannot use the trick of precomputing sums. % % USAGE % C = normxcorrn_fg( T, T_fg, A, [shape] ) % % INPUTS % T - template to correlate to each window in A % T_fg - figure/ground mask for the template % A - matrix to correlate T to % shape - ['full'] 'valid', 'full', or 'same', see convn_fast help % % OUTPUTS % C - correlation matrix % % EXAMPLE % A=rand(50); B=rand(11); Bfg=ones(11); % C1=normxcorrn_fg(B,Bfg,A); C2=normxcorr2(B,A); % figure(1); im(C1); figure(2); im(C2); % figure(3); im(abs(C1-C2)); % % See also NORMXCORRN % Piotr's Image&Video Toolbox Version 1.5 % Written and maintained by Piotr Dollar pdollar-at-cs.ucsd.edu % Please email me if you find bugs, or have suggestions or questions! function C = normxcorrn_fg( T, T_fg, A, shape ) if( nargin <4 || isempty(shape)); shape='full'; end; if( ndims(T)~=ndims(A) || ndims(T)~=ndims(T_fg) ) error('TEMPALTE, T_fg, and A must have same number of dimensions'); end; if( any(size(T)~=size(T_fg))) error('TEMPALTE and T_fg must have same dimensions'); end; if( ~all(T_fg==0 | T_fg==1)) error('T_fg may have only entries either 0 or 1'); end; nkeep = sum(T_fg(:)); if( nkeep==0); error('T_fg must have some nonzero values'); end; % center T on 0 and normalize magnitued to 1, excluding ground % T= (T-T_av) / ||(T-T_av)|| T(T_fg==0)=0; T = T - sum(T(:)) / nkeep; T(T_fg==0)=0; T = T / norm( T(:) ); % flip for convn_fast purposes for d=1:ndims(T); T = flipdim(T,d); end; for d=1:ndims(T_fg); T_fg = flipdim(T_fg,d); end; % get average over each window over A A_av = convn_fast( A, T_fg/nkeep, shape ); % get magnitude over each window over A "mag(WA-WAav)" % We can rewrite the above as "sqrt(SUM(WAi^2)-n*WAav^2)". so: A_mag = convn_fast( A.*A, T_fg, shape ) - nkeep * A_av .* A_av; A_mag = sqrt(A_mag); A_mag(A_mag<.000001)=1; %removes divide by 0 error % finally get C. in each image window, we will now do: % "dot(T,(WA-WAav)) / mag(WA-WAav)" C = convn_fast(A,T,shape) - A_av*sum(T(:)); C = C ./ A_mag;
github
garrickbrazil/SDS-RCNN-master
makemovie.m
.m
SDS-RCNN-master/external/pdollar_toolbox/external/deprecated/makemovie.m
1,266
utf_8
9a03d9a5227c4eaa86520f206ce283e7
% [3D] Used to convert a stack of T images into a movie. % % To display same data statically use montage. % % USAGE % M = makemovies( IS ) % % INPUTS % IS - MxNxT or MxNx1xT or MxNx3xT array of movies. % % OUTPUTS % M - resulting movie % % EXAMPLE % load( 'images.mat' ); % M = makemovie( videos(:,:,:,1) ); % movie( M ); % % See also MONTAGE2, MAKEMOVIES, PLAYMOVIE, CELL2ARRAY, FEVALARRAYS, % IMMOVIE, MOVIE2AVI % Piotr's Image&Video Toolbox Version NEW % Written and maintained by Piotr Dollar pdollar-at-cs.ucsd.edu % Please email me if you find bugs, or have suggestions or questions! function M = makemovie( IS ) % get images format (if image stack is MxNxT convert to MxNx1xT) if (ndims(IS)==3); IS = permute(IS, [1,2,4,3] ); end siz = size(IS); nch = siz(3); nd = ndims(IS); if ( nd~=4 ); error('unsupported dimension of IS'); end if( nch~=1 && nch~=3 ); error('illegal image stack format'); end; % normalize for maximum contrast if( isa(IS,'double') ); IS = IS - min(IS(:)); IS = IS / max(IS(:)); end % make movie for i=1:siz(4) Ii=IS(:,:,:,i); if( nch==1 ); [Ii,Mi] = gray2ind( Ii ); else Mi=[]; end if i==1 M=repmat(im2frame( Ii, Mi ),[1,siz(4)]); else M(i) = im2frame( Ii, Mi ); end end
github
garrickbrazil/SDS-RCNN-master
localsum_block.m
.m
SDS-RCNN-master/external/pdollar_toolbox/external/deprecated/localsum_block.m
815
utf_8
1216b03a3bd44ff1fc3256de16a2f1c6
% Calculates the sum in non-overlapping blocks of I of size dims. % % Similar to localsum except gets sum in non-overlapping windows. % Equivalent to doing localsum, and then subsampling (except more % efficient). % % USAGE % I = localsum_block( I, dims ) % % INPUTS % I - matrix to compute sum over % dims - size of volume to compute sum over % % OUTPUTS % I - resulting array % % EXAMPLE % load trees; I=ind2gray(X,map); % I2 = localsum_block( I, 11 ); % figure(1); im(I); figure(2); im(I2); % % See also LOCALSUM % Piotr's Image&Video Toolbox Version 1.5 % Written and maintained by Piotr Dollar pdollar-at-cs.ucsd.edu % Please email me if you find bugs, or have suggestions or questions! function I = localsum_block( I, dims ) I = nlfiltblock_sep( I, dims, @rnlfiltblock_sum );
github
garrickbrazil/SDS-RCNN-master
imrotate2.m
.m
SDS-RCNN-master/external/pdollar_toolbox/external/deprecated/imrotate2.m
1,326
utf_8
bb2ff6c3138ce5f53154d58d7ebc4f31
% Custom version of imrotate that demonstrates use of apply_homography. % % Works exactly the same as imrotate. For usage see imrotate. % % USAGE % IR = imrotate2( I, angle, [method], [bbox] ) % % INPUTS % I - 2D image [converted to double] % angle - angle to rotate in degrees % method - ['linear'] 'nearest', 'linear', 'spline', 'cubic' % bbox - ['loose'] 'loose' or 'crop' % % OUTPUTS % IR - rotated image % % EXAMPLE % load trees; % tic; X1 = imrotate( X, 55, 'bicubic' ); toc, % tic; X2 = imrotate2( X, 55, 'bicubic' ); toc % clf; subplot(2,2,1); im(X); subplot(2,2,2); im(X1-X2); % subplot(2,2,3); im(X1); subplot(2,2,4); im(X2); % % See also IMROTATE % Piotr's Image&Video Toolbox Version 1.5 % Written and maintained by Piotr Dollar pdollar-at-cs.ucsd.edu % Please email me if you find bugs, or have suggestions or questions! function IR = imrotate2( I, angle, method, bbox ) if( ~isa( I, 'double' ) ); I = double(I); end if( nargin<3 || isempty(method)); method='linear'; end if( nargin<4 || isempty(bbox) ); bbox='loose'; end if( strcmp(method,'bilinear') || strcmp(method,'lin')); method='linear';end % convert arguments for apply_homography angle_rads = angle /180 * pi; R = rotationMatrix( angle_rads ); H = [R [0;0]; 0 0 1]; IR = apply_homography( I, H, method, bbox );
github
garrickbrazil/SDS-RCNN-master
imSubsResize.m
.m
SDS-RCNN-master/external/pdollar_toolbox/external/deprecated/imSubsResize.m
1,338
utf_8
cd7dedf790c015adfb1f2d620e9ed82f
% Resizes subs by resizVals. % % Resizes subs in subs/vals image representation by resizVals. % % This essentially replaces each sub by sub.*resizVals. The only subtlety % is that in images the leftmost sub value is .5, so for example when % resizing by a factor of 2, the first pixel is replaced by 2 pixels and so % location 1 in the original image goes to location 1.5 in the second % image, NOT 2. It may be necessary to round the values afterward. % % USAGE % subs = imSubsResize( subs, resizVals, [zeroPnt] ) % % INPUTS % subs - subscripts of point locations (n x d) % resizVals - k element vector of shrinking factors % zeroPnt - [.5] See comment above. % % OUTPUTS % subs - transformed subscripts of point locations (n x d) % % EXAMPLE % subs = imSubsResize( [1 1; 2 2], [2 2] ) % % % See also IMSUBSTOARRAY % Piotr's Image&Video Toolbox Version NEW % Written and maintained by Piotr Dollar pdollar-at-cs.ucsd.edu % Please email me if you find bugs, or have suggestions or questions! function subs = imSubsResize( subs, resizVals, zeroPnt ) if( nargin<3 || isempty(zeroPnt) ); zeroPnt=.5; end [n d] = size(subs); [resizVals,er] = checkNumArgs( resizVals, [1 d], -1, 2 ); error(er); % transform subs resizVals = repmat( resizVals, [n, 1] ); subs = (subs - zeroPnt) .* resizVals + zeroPnt;
github
garrickbrazil/SDS-RCNN-master
imtranslate.m
.m
SDS-RCNN-master/external/pdollar_toolbox/external/deprecated/imtranslate.m
1,183
utf_8
054727fb31c105414b655c0f938b6ced
% Translate an image to subpixel accuracy. % % Note that for subplixel accuracy cannot use nearest neighbor interp. % % USAGE % IR = imtranslate( I, dx, dy, [method], [bbox] ) % % INPUTS % I - 2D image [converted to double] % dx - x translation (right) % dy - y translation (up) % method - ['linear'] 'nearest', 'linear', 'spline', 'cubic' % bbox - ['loose'] 'loose' or 'crop' % % OUTPUTS % IR - translated image % % EXAMPLE % load trees; % XT = imtranslate(X,0,1.5,'bicubic','crop'); % figure(1); im(X,[0 255]); figure(2); im(XT,[0 255]); % % See also IMROTATE2 % Piotr's Image&Video Toolbox Version 1.5 % Written and maintained by Piotr Dollar pdollar-at-cs.ucsd.edu % Please email me if you find bugs, or have suggestions or questions! function IR = imtranslate( I, dx, dy, method, bbox ) if( ~isa( I, 'double' ) ); I = double(I); end if( nargin<4 || isempty(method)); method='linear'; end if( nargin<5 || isempty(bbox) ); bbox='loose'; end if( strcmp(method,'bilinear') || strcmp(method,'lin')); method='linear';end % convert arguments for apply_homography H = [eye(2) [dy; dx]; 0 0 1]; IR = apply_homography( I, H, method, bbox );
github
garrickbrazil/SDS-RCNN-master
randperm2.m
.m
SDS-RCNN-master/external/pdollar_toolbox/external/deprecated/randperm2.m
1,398
utf_8
5007722f3d5f5ba7c0f83f32ef8a3a2c
% Returns a random permutation of integers. % % randperm2(n) is a random permutation of the integers from 1 to n. For % example, randperm2(6) might be [2 4 5 6 1 3]. randperm2(n,k) is only % returns the first k elements of the permuation, so for example % randperm2(6) might be [2 4]. This is a faster version of randperm.m if % only need first k<<n elements of the random permutation. Also uses less % random bits (only k). Note that this is an implementation O(k), versus % the matlab implementation which is O(nlogn), however, in practice it is % often slower for k=n because it uses a loop. % % USAGE % p = randperm2( n, k ) % % INPUTS % n - permute 1:n % k - keep only first k outputs % % OUTPUTS % p - k length vector of permutations % % EXAMPLE % randperm2(10,5) % % See also RANDPERM % Piotr's Image&Video Toolbox Version 1.5 % Written and maintained by Piotr Dollar pdollar-at-cs.ucsd.edu % Please email me if you find bugs, or have suggestions or questions! function p = randperm2( n, k ) wid = sprintf('Images:%s:obsoleteFunction',mfilename); warning(wid,[ '%s is obsolete in Piotr''s toolbox.\n RANDSAMPLE is its '... 'recommended replacement.'],upper(mfilename)); p = randsample( n, k ); %if (nargin<2); k=n; else k = min(k,n); end % p = 1:n; % for i=1:k % r = i + floor( (n-i+1)*rand ); % t = p(r); p(r) = p(i); p(i) = t; % end % p = p(1:k);
github
garrickbrazil/SDS-RCNN-master
apply_homography.m
.m
SDS-RCNN-master/external/pdollar_toolbox/external/deprecated/apply_homography.m
3,582
utf_8
9c3ed72d35b1145f41114e6e6135b44f
% Applies the homography defined by H on the image I. % % Takes the center of the image as the origin, not the top left corner. % Also, the coordinate system is row/ column format, so H must be also. % % The bounding box of the image is set by the BBOX argument, a string that % can be 'loose' (default) or 'crop'. When BBOX is 'loose', IR includes the % whole transformed image, which generally is larger than I. When BBOX is % 'crop' IR is cropped to include only the central portion of the % transformed image and is the same size as I. Preserves I's type. % % USAGE % IR = apply_homography( I, H, [method], [bbox], [show] ) % % INPUTS % I - input black and white image (2D double or unint8 array) % H - 3x3 nonsingular homography matrix % method - ['linear'] for interp2 'nearest','linear','spline','cubic' % bbox - ['loose'] see above for meaning of bbox 'loose','crop') % show - [0] figure to use for optional display % % OUTPUTS % IR - result of applying H to I. % % EXAMPLE % load trees; I=X; % R = rotationMatrix( pi/4 ); T = [1; 3]; H = [R T; 0 0 1]; % IR = apply_homography( I, H, [], 'crop', 1 ); % % See also TEXTURE_MAP, IMROTATE2 % Piotr's Image&Video Toolbox Version 1.5 % Written and maintained by Piotr Dollar pdollar-at-cs.ucsd.edu % Please email me if you find bugs, or have suggestions or questions! function IR = apply_homography( I, H, method, bbox, show ) if( ndims(I)~=2 ); error('I must a MxN array'); end; if(any(size(H)~=[3 3])); error('H must be 3 by 3'); end; if(rank(H)~=3); error('H must be full rank.'); end; if( nargin<3 || isempty(method)); method='linear'; end; if( nargin<4 || isempty(bbox)); bbox='loose'; end; if( nargin<5 || isempty(show)); show=0; end; classname = class( I ); if(~strcmp(classname,'double')); I = double(I); end I = padarray(I,[3,3],eps,'both'); siz = size(I); % set origin to be center of image rstart = (-siz(1)+1)/2; rend = (siz(1)-1)/2; cstart = (-siz(2)+1)/2; cend = (siz(2)-1)/2; % If 'bbox' then get bounds of resulting image. To do this project the % original points accoring to the homography and see the bounds. Note % that since a homography maps a quadrilateral to a quadrilateral only % need to look at where the bounds of the quadrilateral are mapped to. % If 'same' then simply use the original image bounds. if (strcmp(bbox,'loose')) pr = H * [rstart rend rstart rend; cstart cstart cend cend; 1 1 1 1]; row_dest = pr(1,:) ./ pr(3,:); col_dest = pr(2,:) ./ pr(3,:); minr = floor(min(row_dest(:))); maxr = ceil(max(row_dest(:))); minc = floor(min(col_dest(:))); maxc = ceil(max(col_dest(:))); elseif (strcmp(bbox,'crop')) minr = rstart; maxr = rend; minc = cstart; maxc = cend; else error('illegal value for bbox'); end; mrows = maxr-minr+1; ncols = maxc-minc+1; % apply inverse homography on meshgrid in destination image [col_dest_grid,row_dest_grid] = meshgrid( minc:maxc, minr:maxr ); pr = inv(H) * [row_dest_grid(:)'; col_dest_grid(:)'; ones(1,mrows*ncols)]; row_sample_locs = pr(1,:) ./ pr(3,:) + (siz(1)+1)/2; row_sample_locs = reshape(row_sample_locs,mrows,ncols); col_sample_locs = pr(2,:) ./ pr(3,:) + (siz(2)+1)/2; col_sample_locs = reshape(col_sample_locs,mrows,ncols); % now texture map results IR = interp2( I, col_sample_locs, row_sample_locs, method ); IR(isnan(IR)) = 0; IR = arraycrop2dims( IR, size(IR)-6 ); %undo extra padding if(~strcmp(classname,'double')); IR=feval(classname,IR ); end % optionally show if ( show) I = arraycrop2dims( I, size(IR)-2 ); figure(show); clf; im(I); figure(show+1); clf; im(IR); end
github
garrickbrazil/SDS-RCNN-master
pca_apply.m
.m
SDS-RCNN-master/external/pdollar_toolbox/external/deprecated/pca_apply.m
2,427
utf_8
0831befb6057f8502bc492227455019a
% Companion function to pca. % % Use pca to retrieve the principal components U and the mean mu from a % set fo vectors X1 via [U,mu,vars] = pca(X1). Then given a new % vector x, use y = pca_apply( x, U, mu, vars, k ) to get the first k % coefficients of x in the space spanned by the columns of U. See pca for % general information. % % This may prove useful: % siz = size(X); k = 100; % Uim = reshape( U(:,1:k), [ siz(1:end-1) k ] ); % % USAGE % [ Yk, Xhat, avsq, avsqOrig ] = pca_apply( X, U, mu, vars, k ) % % INPUTS % X - array for which to get PCA coefficients % U - [returned by pca] -- see pca % mu - [returned by pca] -- see pca % vars - [returned by pca] -- see pca % k - number of principal coordinates to approximate X with % % OUTPUTS % Yk - first k coordinates of X in column space of U % Xhat - approximation of X corresponding to Yk % avsq - measure of squared error normalized to fall between [0,1] % % EXAMPLE % % See also PCA, PCA_VISUALIZE % Piotr's Image&Video Toolbox Version 1.5 % Written and maintained by Piotr Dollar pdollar-at-cs.ucsd.edu % Please email me if you find bugs, or have suggestions or questions! function [Yk,Xhat,avsq,avsqOrig] = pca_apply(X,U,mu,vars,k) %#ok<INUSL> siz = size(X); nd = ndims(X); [N,r] = size(U); if(N==prod(siz) && ~(nd==2 && siz(2)==1)); siz=[siz, 1]; nd=nd+1; end inds = {':'}; inds = inds(:,ones(1,nd-1)); d= prod(siz(1:end-1)); % some error checking if(d~=N); error('incorrect size for X or U'); end if(isa(X,'uint8')); X = double(X); end if( k>r ) warning(['Only ' int2str(r) '<k comp. available.']); %#ok<WNTAG> k=r; end % subtract mean, then flatten X Xorig = X; murep = mu( inds{:}, ones(1,siz(end))); X = X - murep; X = reshape(X, d, [] ); % Find Yk, the first k coefficients of X in the new basis k = min( r, k ); Uk = U(:,1:k); Yk = Uk' * X; % calculate Xhat - the approx of X using the first k princ components if( nargout>1 ) Xhat = Uk * Yk; Xhat = reshape( Xhat, siz ); Xhat = Xhat + murep; end % caclulate average value of (Xhat-Xorig).^2 compared to average value % of X.^2, where X is Xorig without the mean. This is equivalent to % what fraction of the variance is captured by Xhat. if( nargout>2 ) avsq = Xhat - Xorig; avsq = dot(avsq(:),avsq(:)); avsqOrig = dot(X(:),X(:)); if (nargout==3) avsq = avsq / avsqOrig; end end
github
garrickbrazil/SDS-RCNN-master
mode2.m
.m
SDS-RCNN-master/external/pdollar_toolbox/external/deprecated/mode2.m
731
utf_8
5c9321ef4b610b4f4a2d43902a68838e
% Returns the mode of a vector. % % Was mode not part of Matlab before? % % USAGE % y = mode2( x ) % % INPUTS % x - vector of integers % % OUTPUTS % y - mode % % EXAMPLE % x = randint2( 1, 10, [1 3] ) % mode(x), mode2( x ) % % See also MODE % Piotr's Image&Video Toolbox Version 1.5 % Written and maintained by Piotr Dollar pdollar-at-cs.ucsd.edu % Please email me if you find bugs, or have suggestions or questions! function y = mode2( x ) wid = sprintf('Images:%s:obsoleteFunction',mfilename); warning(wid,[ '%s is obsolete in Piotr''s toolbox.\n MODE is its '... 'recommended replacement.'],upper(mfilename)); y = mode( x ); % [b,i,j] = unique(x); % [ mval, ind ] = max(hist(j,length(b))); % y = b(ind);
github
garrickbrazil/SDS-RCNN-master
savefig.m
.m
SDS-RCNN-master/external/pdollar_toolbox/external/other/savefig.m
13,459
utf_8
2b8463f9b01ceb743e440d8fb5755829
function savefig(fname, varargin) % Usage: savefig(filename, fighdl, options) % % Saves a pdf, eps, png, jpeg, and/or tiff of the contents of the fighandle's (or current) figure. % It saves an eps of the figure and the uses Ghostscript to convert to the other formats. % The result is a cropped, clean picture. There are options for using rgb or cmyk colours, % or grayscale. You can also choose the resolution. % % The advantage of savefig is that there is very little empty space around the figure in the % resulting files, you can export to more than one format at once, and Ghostscript generates % trouble-free files. % % If you find any errors, please let me know! (peder at axensten dot se) % % filename: File name without suffix. % % fighdl: (default: gcf) Integer handle to figure. % % options: (default: '-r300', '-lossless', '-rgb') You can define your own % defaults in a global variable savefig_defaults, if you want to, i.e. % savefig_defaults= {'-r200','-gray'};. % 'eps': Output in Encapsulated Post Script (no preview yet). % 'pdf': Output in (Adobe) Portable Document Format. % 'png': Output in Portable Network Graphics. % 'jpeg': Output in Joint Photographic Experts Group format. % 'tiff': Output in Tagged Image File Format (no compression: huge files!). % '-rgb': Output in rgb colours. % '-cmyk': Output in cmyk colours (not yet 'png' or 'jpeg' -- '-rgb' is used). % '-gray': Output in grayscale (not yet 'eps' -- '-rgb' is used). % '-fonts': Include fonts in eps or pdf. Includes only the subset needed. % '-lossless': Use lossless compression, works on most formats. same as '-c0', below. % '-c<float>': Set compression for non-indexed bitmaps in PDFs - % 0: lossless; 0.1: high quality; 0.5: medium; 1: high compression. % '-r<integer>': Set resolution. % '-crop': Removes points and line segments outside the viewing area -- permanently. % Only use this on figures where many points and/or line segments are outside % the area zoomed in to. This option will result in smaller vector files (has no % effect on pixel files). % '-dbg': Displays gs command line(s). % % EXAMPLE: % savefig('nicefig', 'pdf', 'jpeg', '-cmyk', '-c0.1', '-r250'); % Saves the current figure to nicefig.pdf and nicefig.png, both in cmyk and at 250 dpi, % with high quality lossy compression. % % REQUIREMENT: Ghostscript. Version 8.57 works, probably older versions too, but '-dEPSCrop' % must be supported. I think version 7.32 or newer is ok. % % HISTORY: % Version 1.0, 2006-04-20. % Version 1.1, 2006-04-27: % - No 'epstopdf' stuff anymore! Using '-dEPSCrop' option in gs instead! % Version 1.2, 2006-05-02: % - Added a '-dbg' option (see options, above). % - Now looks for a global variable 'savefig_defaults' (see options, above). % - More detailed Ghostscript options (user will not really notice). % - Warns when there is no device for a file-type/color-model combination. % Version 1.3, 2006-06-06: % - Added a check to see if there actually is a figure handle. % - Now works in Matlab 6.5.1 (R13SP1) (maybe in 6.5 too). % - Now compatible with Ghostscript 8.54, released 2006-06-01. % Version 1.4, 2006-07-20: % - Added an option '-soft' that enables anti-aliasing on pixel graphics (on by default). % - Added an option '-hard' that don't do anti-aliasing on pixel graphics. % Version 1.5, 2006-07-27: % - Fixed a bug when calling with a figure handle argument. % Version 1.6, 2006-07-28: % - Added a crop option, see above. % Version 1.7, 2007-03-31: % - Fixed bug: calling print with invalid renderer value '-none'. % - Removed GhostScript argument '-dUseCIEColor' as it sometimes discoloured things. % Version 1.8, 2008-01-03: % - Added MacIntel: 'MACI'. % - Added 64bit PC (I think, can't test it myself). % - Added option '-nointerpolate' (use it to prevent blurring of pixelated). % - Removed '-hard' and '-soft'. Use '-nointerpolate' for '-hard', default for '-soft'. % - Fixed the gs 8.57 warning on UseCIEColor (it's now set). % - Added '-gray' for pdf, but gs 8.56 or newer is needed. % - Added '-gray' and '-cmyk' for eps, but you a fairly recent gs might be needed. % Version 1.9, 2008-07-27: % - Added lossless compression, see option '-lossless', above. Works on most formats. % - Added lossy compression, see options '-c<float>...', above. Works on 'pdf'. % Thanks to Olly Woodford for idea and implementation! % - Removed option '-nointerpolate' -- now savefig never interpolates. % - Fixed a few small bugs and removed some mlint comments. % Version 2.0, 2008-11-07: % - Added the possibility to include fonts into eps or pdf. % % TO DO: (Need Ghostscript support for these, so don't expect anything soon...) % - svg output. % - '-cmyk' for 'jpeg' and 'png'. % - Preview in 'eps'. % - Embedded vector fonts, not bitmap, in 'eps'. % % Copyright (C) Peder Axensten (peder at axensten dot se), 2006. % KEYWORDS: eps, pdf, jpg, jpeg, png, tiff, eps2pdf, epstopdf, ghostscript % % INSPIRATION: eps2pdf (5782), eps2xxx (6858) % % REQUIREMENTS: Works in Matlab 6.5.1 (R13SP1) (maybe in 6.5 too). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% op_dbg= false; % Default value. % Compression compr= [' -dUseFlateCompression=true -dLZWEncodePages=true -dCompatibilityLevel=1.6' ... ' -dAutoFilterColorImages=false -dAutoFilterGrayImages=false ' ... ' -dColorImageFilter=%s -dGrayImageFilter=%s']; % Compression. lossless= sprintf (compr, '/FlateEncode', '/FlateEncode'); lossy= sprintf (compr, '/DCTEncode', '/DCTEncode' ); lossy= [lossy ' -c ".setpdfwrite << /ColorImageDict << /QFactor %g ' ... '/Blend 1 /HSample [%s] /VSample [%s] >> >> setdistillerparams"']; % Create gs command. cmdEnd= ' -sDEVICE=%s -sOutputFile="%s"'; % Essential. epsCmd= ''; epsCmd= [epsCmd ' -dSubsetFonts=true -dNOPLATFONTS']; % Future support? epsCmd= [epsCmd ' -dUseCIEColor=true -dColorConversionStrategy=/UseDeviceIndependentColor']; epsCmd= [epsCmd ' -dProcessColorModel=/%s']; % Color conversion. pdfCmd= [epsCmd ' -dAntiAliasColorImages=false' cmdEnd]; epsCmd= [epsCmd cmdEnd]; % Get file name. if((nargin < 1) || isempty(fname) || ~ischar(fname)) % Check file name. error('No file name specified.'); end [pathstr, namestr] = fileparts(fname); if(isempty(pathstr)), fname= fullfile(cd, namestr); end % Get handle. fighdl= get(0, 'CurrentFigure'); % See gcf. % Get figure handle. if((nargin >= 2) && (numel(varargin{1}) == 1) && isnumeric(varargin{1})) fighdl= varargin{1}; varargin= {varargin{2:end}}; end if(isempty(fighdl)), error('There is no figure to save!?'); end set(fighdl, 'Units', 'centimeters') % Set paper stuff. sz= get(fighdl, 'Position'); sz(1:2)= 0; set(fighdl, 'PaperUnits', 'centimeters', 'PaperSize', sz(3:4), 'PaperPosition', sz); % Set up the various devices. % Those commented out are not yet supported by gs (nor by savefig). % pdf-cmyk works due to the Matlab '-cmyk' export being carried over from eps to pdf. device.eps.rgb= sprintf(epsCmd, 'DeviceRGB', 'epswrite', [fname '.eps']); device.jpeg.rgb= sprintf(cmdEnd, 'jpeg', [fname '.jpeg']); % device.jpeg.cmyk= sprintf(cmdEnd, 'jpegcmyk', [fname '.jpeg']); device.jpeg.gray= sprintf(cmdEnd, 'jpeggray', [fname '.jpeg']); device.pdf.rgb= sprintf(pdfCmd, 'DeviceRGB', 'pdfwrite', [fname '.pdf']); device.pdf.cmyk= sprintf(pdfCmd, 'DeviceCMYK', 'pdfwrite', [fname '.pdf']); device.pdf.gray= sprintf(pdfCmd, 'DeviceGray', 'pdfwrite', [fname '.pdf']); device.png.rgb= sprintf(cmdEnd, 'png16m', [fname '.png']); % device.png.cmyk= sprintf(cmdEnd, 'png???', [fname '.png']); device.png.gray= sprintf(cmdEnd, 'pnggray', [fname '.png']); device.tiff.rgb= sprintf(cmdEnd, 'tiff24nc', [fname '.tiff']); device.tiff.cmyk= sprintf(cmdEnd, 'tiff32nc', [fname '.tiff']); device.tiff.gray= sprintf(cmdEnd, 'tiffgray', [fname '.tiff']); % Get options. global savefig_defaults; % Add global defaults. if( iscellstr(savefig_defaults)), varargin= {savefig_defaults{:}, varargin{:}}; elseif(ischar(savefig_defaults)), varargin= {savefig_defaults, varargin{:}}; end varargin= {'-r300', '-lossless', '-rgb', varargin{:}}; % Add defaults. res= ''; types= {}; fonts= 'false'; crop= false; for n= 1:length(varargin) % Read options. if(ischar(varargin{n})) switch(lower(varargin{n})) case {'eps','jpeg','pdf','png','tiff'}, types{end+1}= lower(varargin{n}); case '-rgb', color= 'rgb'; deps= {'-depsc2'}; case '-cmyk', color= 'cmyk'; deps= {'-depsc2', '-cmyk'}; case '-gray', color= 'gray'; deps= {'-deps2'}; case '-fonts', fonts= 'true'; case '-lossless', comp= 0; case '-crop', crop= true; case '-dbg', op_dbg= true; otherwise if(regexp(varargin{n}, '^\-r[0-9]+$')), res= varargin{n}; elseif(regexp(varargin{n}, '^\-c[0-9.]+$')), comp= str2double(varargin{n}(3:end)); else warning('pax:savefig:inputError', 'Unknown option in argument: ''%s''.', varargin{n}); end end else warning('pax:savefig:inputError', 'Wrong type of argument: ''%s''.', class(varargin{n})); end end types= unique(types); if(isempty(types)), error('No output format given.'); end if (comp == 0) % Lossless compression gsCompr= lossless; elseif (comp <= 0.1) % High quality lossy gsCompr= sprintf(lossy, comp, '1 1 1 1', '1 1 1 1'); else % Normal lossy gsCompr= sprintf(lossy, comp, '2 1 1 2', '2 1 1 2'); end % Generate the gs command. switch(computer) % Get gs command. case {'MAC','MACI'}, gs= '/usr/local/bin/gs'; case {'PCWIN'}, gs= 'gswin32c.exe'; case {'PCWIN64'}, gs= 'gswin64c.exe'; otherwise, gs= 'gs'; end gs= [gs ' -q -dNOPAUSE -dBATCH -dEPSCrop']; % Essential. gs= [gs ' -dPDFSETTINGS=/prepress -dEmbedAllFonts=' fonts]; % Must be first? gs= [gs ' -dUseFlateCompression=true']; % Useful stuff. gs= [gs ' -dAutoRotatePages=/None']; % Probably good. gs= [gs ' -dHaveTrueTypes']; % Probably good. gs= [gs ' ' res]; % Add resolution to cmd. if(crop && ismember(types, {'eps', 'pdf'})) % Crop the figure. fighdl= do_crop(fighdl); end % Output eps from Matlab. renderer= ['-' lower(get(fighdl, 'Renderer'))]; % Use same as in figure. if(strcmpi(renderer, '-none')), renderer= '-painters'; end % We need a valid renderer. deps = [deps '-loose']; % added by PPD seems to help w cropping in matlab 2014b :( print(fighdl, deps{:}, '-noui', renderer, res, [fname '-temp']); % Output the eps. % Convert to other formats. for n= 1:length(types) % Output them. if(isfield(device.(types{n}), color)) cmd= device.(types{n}).(color); % Colour model exists. else cmd= device.(types{n}).rgb; % Use alternative. if(~strcmp(types{n}, 'eps')) % It works anyways for eps (VERY SHAKY!). warning('pax:savefig:deviceError', ... 'No device for %s using %s. Using rgb instead.', types{n}, color); end end cmp= lossless; if (strcmp(types{n}, 'pdf')), cmp= gsCompr; end % Lossy compr only for pdf. if (strcmp(types{n}, 'eps')), cmp= ''; end % eps can't use lossless. cmd= sprintf('%s %s %s -f "%s-temp.eps"', gs, cmd, cmp, fname);% Add up. status= system(cmd); % Run Ghostscript. if (op_dbg || status), display (cmd), end end delete([fname '-temp.eps']); % Clean up. end function fig= do_crop(fig) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Remove line segments that are outside the view. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% haxes= findobj(fig, 'Type', 'axes', '-and', 'Tag', ''); for n=1:length(haxes) xl= get(haxes(n), 'XLim'); yl= get(haxes(n), 'YLim'); lines= findobj(haxes(n), 'Type', 'line'); for m=1:length(lines) x= get(lines(m), 'XData'); y= get(lines(m), 'YData'); inx= (xl(1) <= x) & (x <= xl(2)); % Within the x borders. iny= (yl(1) <= y) & (y <= yl(2)); % Within the y borders. keep= inx & iny; % Within the box. if(~strcmp(get(lines(m), 'LineStyle'), 'none')) crossx= ((x(1:end-1) < xl(1)) & (xl(1) < x(2:end))) ... % Crossing border x1. | ((x(1:end-1) < xl(2)) & (xl(2) < x(2:end))) ... % Crossing border x2. | ((x(1:end-1) > xl(1)) & (xl(1) > x(2:end))) ... % Crossing border x1. | ((x(1:end-1) > xl(2)) & (xl(2) > x(2:end))); % Crossing border x2. crossy= ((y(1:end-1) < yl(1)) & (yl(1) < y(2:end))) ... % Crossing border y1. | ((y(1:end-1) < yl(2)) & (yl(2) < y(2:end))) ... % Crossing border y2. | ((y(1:end-1) > yl(1)) & (yl(1) > y(2:end))) ... % Crossing border y1. | ((y(1:end-1) > yl(2)) & (yl(2) > y(2:end))); % Crossing border y2. crossp= [( (crossx & iny(1:end-1) & iny(2:end)) ... % Crossing a x border within y limits. | (crossy & inx(1:end-1) & inx(2:end)) ... % Crossing a y border within x limits. | crossx & crossy ... % Crossing a x and a y border (corner). ), false ... ]; crossp(2:end)= crossp(2:end) | crossp(1:end-1); % Add line segment's secont end point. keep= keep | crossp; end set(lines(m), 'XData', x(keep)) set(lines(m), 'YData', y(keep)) end end end
github
garrickbrazil/SDS-RCNN-master
dirSynch.m
.m
SDS-RCNN-master/external/pdollar_toolbox/matlab/dirSynch.m
4,570
utf_8
d288299d31d15f1804183206d0aa0227
function dirSynch( root1, root2, showOnly, flag, ignDate ) % Synchronize two directory trees (or show differences between them). % % If a file or directory 'name' is found in both tree1 and tree2: % 1) if 'name' is a file in both the pair is considered the same if they % have identical size and identical datestamp (or if ignDate=1). % 2) if 'name' is a directory in both the dirs are searched recursively. % 3) if 'name' is a dir in root1 and a file in root2 (or vice-versa) % synchronization cannot proceed (an error is thrown). % If 'name' is found only in root1 or root2 it's a difference between them. % % The parameter flag controls how synchronization occurs: % flag==0: neither tree1 nor tree2 has preference (newer file is kept) % flag==1: tree2 is altered to reflect tree1 (tree1 is unchanged) % flag==2: tree1 is altered to reflect tree2 (tree2 is unchanged) % Run with showOnly=1 and different values of flag to see its effect. % % By default showOnly==1. If showOnly, displays a list of actions that need % to be performed in order to synchronize the two directory trees, but does % not actually perform the actions. It is highly recommended to run % dirSynch first with showOnly=1 before running it with showOnly=0. % % USAGE % dirSynch( root1, root2, [showOnly], [flag], [ignDate] ) % % INPUTS % root1 - root directory of tree1 % root2 - root directory of tree2 % showOnly - [1] show but do NOT perform actions % flag - [0] 0: synchronize; 1: set root2=root1; 2: set root1==root2 % ignDate - [0] if true considers two files same even if have diff dates % % OUTPUTS % dirSynch( 'c:\toolbox', 'c:\toolbox-old', 1 ) % % EXAMPLE % % See also % % Piotr's Computer Vision Matlab Toolbox Version 2.10 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] if(nargin<3 || isempty(showOnly)), showOnly=1; end; if(nargin<4 || isempty(flag)), flag=0; end; if(nargin<5 || isempty(ignDate)), ignDate=0; end; % get differences between root1/root2 and loop over them D = dirDiff( root1, root2, ignDate ); roots={root1,root2}; ticId = ticStatus; for i=1:length(D) % get action if( flag==1 ) if( D(i).in1 ), act=1; src1=1; else act=0; src1=2; end elseif( flag==2 ) if( D(i).in2 ), act=1; src1=2; else act=0; src1=1; end else act=1; if(D(i).in1 && D(i).in2) if( D(i).new1 ), src1=1; else src1=2; end else if( D(i).in1 ), src1=1; else src1=2; end end end src2=mod(src1,2)+1; % perform action if( act==1 ) if( showOnly ) disp(['COPY ' int2str(src1) '->' int2str(src2) ': ' D(i).name]); else copyfile( [roots{src1} D(i).name], [roots{src2} D(i).name], 'f' ); end; else if( showOnly ) disp(['DEL in ' int2str(src1) ': ' D(i).name]); else fName = [roots{src1} D(i).name]; if(D(i).isdir), rmdir(fName,'s'); else delete(fName); end end end if(~showOnly), tocStatus( ticId, i/length(D) ); end; end end function D = dirDiff( root1, root2, ignDate ) % get differences from root1 to root2 D1 = dirDiff1( root1, root2, ignDate, '/' ); % get differences from root2 to root1 D2 = dirDiff1( root2, root1, ignDate, '/' ); % remove duplicates (arbitrarily from D2) D2=D2(~([D2.in1] & [D2.in2])); % swap 1 and 2 in D2 for i=1:length(D2), D2(i).in1=0; D2(i).in2=1; D2(i).new1=~D2(i).new1; end % merge D = [D1 D2]; end function D = dirDiff1( root1, root2, ignDate, subdir ) if(root1(end)~='/'), root1(end+1)='/'; end if(root2(end)~='/'), root2(end+1)='/'; end if(subdir(end)~='/'), subdir(end+1)='/'; end fs1=dir([root1 subdir]); fs2=dir([root2 subdir]); D=struct('name',0,'isdir',0,'in1',0,'in2',0,'new1',0); D=repmat(D,[1 length(fs1)]); n=0; names2={fs2.name}; Dsub=[]; for i1=1:length( fs1 ) name=fs1(i1).name; isdir=fs1(i1).isdir; if( any(strcmp(name,{'.','..'})) ), continue; end; i2 = find(strcmp(name,names2)); if(~isempty(i2) && isdir) % cannot handle this condition if(~fs2(i2).isdir), disp([root1 subdir name]); assert(false); end; % recurse and record possible differences Dsub=[Dsub dirDiff1(root1,root2,ignDate,[subdir name])]; %#ok<AGROW> elseif( ~isempty(i2) && fs1(i1).bytes==fs2(i2).bytes && ... (ignDate || fs1(i1).datenum==fs2(i2).datenum)) % nothing to do - files are same continue; else % record differences n=n+1; D(n).name=[subdir name]; D(n).isdir=isdir; D(n).in1=1; D(n).in2=~isempty(i2); D(n).new1 = ~D(n).in2 || (fs1(i1).datenum>fs2(i2).datenum); end end D = [D(1:n) Dsub]; end
github
garrickbrazil/SDS-RCNN-master
plotRoc.m
.m
SDS-RCNN-master/external/pdollar_toolbox/matlab/plotRoc.m
5,212
utf_8
008f9c63073c6400c4960e9e213c47e5
function [h,miss,stds] = plotRoc( D, varargin ) % Function for display of rocs (receiver operator characteristic curves). % % Display roc curves. Consistent usage ensures uniform look for rocs. The % input D should have n rows, each of which is of the form: % D = [falsePosRate truePosRate] % D is generated, for example, by scanning a detection threshold over n % values from 0 (so first entry is [1 1]) to 1 (so last entry is [0 0]). % Alternatively D can be a cell vector of rocs, in which case an average % ROC will be shown with error bars. Plots missRate (which is just 1 minus % the truePosRate) on the y-axis versus the falsePosRate on the x-axis. % % USAGE % [h,miss,stds] = plotRoc( D, prm ) % % INPUTS % D - [nx2] n data points along roc [falsePosRate truePosRate] % typically ranges from [1 1] to [0 0] (or may be reversed) % prm - [] param struct % .color - ['g'] color for curve % .lineSt - ['-'] linestyle (see LineSpec) % .lineWd - [4] curve width % .logx - [0] use logarithmic scale for x-axis % .logy - [0] use logarithmic scale for y-axis % .marker - [''] marker type (see LineSpec) % .mrkrSiz - [12] marker size % .nMarker - [5] number of markers (regularly spaced) to display % .lims - [0 1 0 1] axes limits % .smooth - [0] if T compute lower envelop of roc to smooth staircase % .fpTarget - [] return miss rates at given fp values (and draw lines) % .xLbl - ['false positive rate'] label for x-axis % .yLbl - ['miss rate'] label for y-axis % % OUTPUTS % h - plot handle for use in legend only % miss - average miss rates at fpTarget reference values % stds - standard deviation of miss rates at fpTarget reference values % % EXAMPLE % k=2; x=0:.0001:1; data1 = [1-x; (1-x.^k).^(1/k)]'; % k=3; x=0:.0001:1; data2 = [1-x; (1-x.^k).^(1/k)]'; % hs(1)=plotRoc(data1,struct('color','g','marker','s')); % hs(2)=plotRoc(data2,struct('color','b','lineSt','--')); % legend( hs, {'roc1','roc2'} ); xlabel('fp'); ylabel('fn'); % % See also % % Piotr's Computer Vision Matlab Toolbox Version 3.02 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] % get params [color,lineSt,lineWd,logx,logy,marker,mrkrSiz,nMarker,lims,smooth, ... fpTarget,xLbl,yLbl] = getPrmDflt( varargin, {'color' 'g' 'lineSt' '-' ... 'lineWd' 4 'logx' 0 'logy' 0 'marker' '' 'mrkrSiz' 12 'nMarker' 5 ... 'lims' [] 'smooth' 0 'fpTarget' [] 'xLbl' 'false positive rate' ... 'yLbl' 'miss rate' } ); if( isempty(lims) ); lims=[logx*1e-5 1 logy*1e-5 1]; end % ensure descending fp rate, change to miss rate, optionally 'nicefy' roc if(~iscell(D)), D={D}; end; nD=length(D); for j=1:nD, assert(size(D{j},2)==2); end for j=1:nD, if(D{j}(1,2)<D{j}(end,2)), D{j}=flipud(D{j}); end; end for j=1:nD, D{j}(:,2)=1-D{j}(:,2); assert(all(D{j}(:,2)>=0)); end if(smooth), for j=1:nD, D{j}=smoothRoc(D{j}); end; end % plot: (1) h for legend only, (2) markers, (3) error bars, (4) roc curves hold on; axis(lims); xlabel(xLbl); ylabel(yLbl); prmMrkr = {'MarkerSize',mrkrSiz,'MarkerFaceColor',color}; prmClr={'Color',color}; prmPlot = [prmClr,{'LineWidth',lineWd}]; h = plot( 2, 0, [lineSt marker], prmMrkr{:}, prmPlot{:} ); %(1) DQ = quantizeRocs( D, nMarker, logx, lims ); DQm=mean(DQ,3); if(~isempty(marker)) plot(DQm(:,1),DQm(:,2),marker,prmClr{:},prmMrkr{:} ); end %(2) if(nD>1), DQs=std(DQ,0,3); errorbar(DQm(:,1),DQm(:,2),DQs(:,2),'.',prmClr{:}); end %(3) if(nD==1), DQ=D{1}; else DQ=quantizeRocs(D,100,logx,lims); end DQm = mean(DQ,3); plot( DQm(:,1), DQm(:,2), lineSt, prmPlot{:} ); %(4) % plot line at given fp rate m=length(fpTarget); miss=zeros(1,m); stds=miss; if( m>0 ) assert( min(DQm(:,1))<=min(fpTarget) ); DQs=std(DQ,0,3); for i=1:m, j=find(DQm(:,1)<=fpTarget(i)); j=j(1); miss(i)=DQm(j,2); stds(i)=DQs(j,2); end fp=min(fpTarget); plot([fp fp],lims(3:4),'Color',.7*[1 1 1]); fp=max(fpTarget); plot([fp fp],lims(3:4),'Color',.7*[1 1 1]); end % set log axes if( logx==1 ) ticks=10.^(-8:8); set(gca,'XScale','log','XTick',ticks); end if( logy==1 ) ticks=[.001 .002 .005 .01 .02 .05 .1 .2 .5 1]; set(gca,'YScale','log','YTick',ticks); end if( logx==1 || logy==1 ), grid on; set(gca,'XMinorGrid','off','XMinorTic','off'); set(gca,'YMinorGrid','off','YMinorTic','off'); end end function DQ = quantizeRocs( Ds, nPnts, logx, lims ) % estimate miss rate at each target fp rate nD=length(Ds); DQ=zeros(nPnts,2,nD); if(logx==1), fps=logspace(log10(lims(1)),log10(lims(2)),nPnts); else fps=linspace(lims(1),lims(2),nPnts); end; fps=flipud(fps'); for j=1:nD, D=[Ds{j}; 0 1]; k=1; fp=D(k,1); for i=1:nPnts while( k<size(D,1) && fp>=fps(i) ), k=k+1; fp=D(k,1); end k0=max(k-1,1); fp0=D(k0,1); assert(fp0>=fp); if(fp0==fp), r=.5; else r=(fps(i)-fp)/(fp0-fp); end DQ(i,1,j)=fps(i); DQ(i,2,j)=r*D(k0,2)+(1-r)*D(k,2); end end end function D1 = smoothRoc( D ) D1 = zeros(size(D)); n = size(D,1); cnt=0; for i=1:n isAnkle = (i==1) || (i==n); if( ~isAnkle ) dP=D1(cnt,:); dC=D(i,:); dN=D(i+1,:); isAnkle = (dC(1)~=dP(1)) && (dC(2)~=dN(2)); end if(isAnkle); cnt=cnt+1; D1(cnt,:)=D(i,:); end end D1=D1(1:cnt,:); end
github
garrickbrazil/SDS-RCNN-master
simpleCache.m
.m
SDS-RCNN-master/external/pdollar_toolbox/matlab/simpleCache.m
4,098
utf_8
92df86b0b7e919c9a26388e598e4d370
function varargout = simpleCache( op, cache, varargin ) % A simple cache that can be used to store results of computations. % % Can save and retrieve arbitrary values using a vector (includnig char % vectors) as a key. Especially useful if a function must perform heavy % computation but is often called with the same inputs (for which it will % give the same outputs). Note that the current implementation does a % linear search for the key (a more refined implementation would use a hash % table), so it is not meant for large scale usage. % % To use inside a function, make the cache persistent: % persistent cache; if( isempty(cache) ) cache=simpleCache('init'); end; % The following line, when placed inside a function, means the cache will % stay in memory until the matlab environment changes. For an example % usage see maskGaussians. % % USAGE - 'init': initialize a cache object % cache = simpleCache('init'); % % USAGE - 'put': put something in cache. key must be a numeric vector % cache = simpleCache( 'put', cache, key, val ); % % USAGE - 'get': retrieve from cache. found==1 if obj was found % [found,val] = simpleCache( 'get', cache, key ); % % USAGE - 'remove': free key % [cache,found] = simpleCache( 'remove', cache, key ); % % INPUTS % op - 'init', 'put', 'get', 'remove' % cache - the cache object being operated on % varargin - see USAGE above % % OUTPUTS % varargout - see USAGE above % % EXAMPLE % cache = simpleCache('init'); % hellokey=rand(1,3); worldkey=rand(1,11); % cache = simpleCache( 'put', cache, hellokey, 'hello' ); % cache = simpleCache( 'put', cache, worldkey, 'world' ); % [f,v]=simpleCache( 'get', cache, hellokey ); disp(v); % [f,v]=simpleCache( 'get', cache, worldkey ); disp(v); % % See also PERSISTENT, MASKGAUSSIANS % % Piotr's Computer Vision Matlab Toolbox Version 2.61 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] switch op case 'init' % init a cache cacheSiz = 8; cache.freeinds = 1:cacheSiz; cache.keyns = -ones(1,cacheSiz); cache.keys = cell(1,cacheSiz); cache.vals = cell(1,cacheSiz); varargout = {cache}; case 'put' % a put operation key=varargin{1}; val=varargin{2}; cache = cacheput( cache, key, val ); varargout = {cache}; case 'get' % a get operation key=varargin{1}; [ind,val] = cacheget( cache, key ); found = ind>0; varargout = {found,val}; case 'remove' % a remove operation key=varargin{1}; [cache,found] = cacheremove( cache, key ); varargout = {cache,found}; otherwise error('Unknown cache operation: %s',op); end end function cache = cachegrow( cache ) % double cache size cacheSiz = length( cache.keyns ); if( cacheSiz>64 ) % warn if getting big warning(['doubling cache size to: ' int2str2(cacheSiz*2)]);%#ok<WNTAG> end cache.freeinds = [cache.freeinds (cacheSiz+1):(2*cacheSiz)]; cache.keyns = [cache.keyns -ones(1,cacheSiz)]; cache.keys = [cache.keys cell(1,cacheSiz)]; cache.vals = [cache.vals cell(1,cacheSiz)]; end function cache = cacheput( cache, key, val ) % put something into the cache % get location to place ind = cacheget( cache, key ); % see if already in cache if( ind==-1 ) if( isempty( cache.freeinds ) ) cache = cachegrow( cache ); %grow cache end ind = cache.freeinds(1); % get new cache loc cache.freeinds = cache.freeinds(2:end); end % now simply place in ind cache.keyns(ind) = length(key); cache.keys{ind} = key; cache.vals{ind} = val; end function [ind,val] = cacheget( cache, key ) % get cache element, or fail cacheSiz = length( cache.keyns ); keyn = length( key ); for i=1:cacheSiz if(keyn==cache.keyns(i) && all(key==cache.keys{i})) val = cache.vals{i}; ind = i; return; end end ind=-1; val=-1; end function [cache,found] = cacheremove( cache, key ) % get cache element, or fail ind = cacheget( cache, key ); found = ind>0; if( found ) cache.freeinds = [ind cache.freeinds]; cache.keyns(ind) = -1; cache.keys{ind} = []; cache.vals{ind} = []; end end
github
garrickbrazil/SDS-RCNN-master
tpsInterpolate.m
.m
SDS-RCNN-master/external/pdollar_toolbox/matlab/tpsInterpolate.m
1,646
utf_8
d3bd3a26d048f32cfdc17884ccae6d8c
function [xsR,ysR] = tpsInterpolate( warp, xs, ys, show ) % Apply warp (obtained by tpsGetWarp) to a set of new points. % % USAGE % [xsR,ysR] = tpsInterpolate( warp, xs, ys, [show] ) % % INPUTS % warp - [see tpsGetWarp] bookstein warping parameters % xs, ys - points to apply warp to % show - [1] will display results in figure(show) % % OUTPUTS % xsR, ysR - result of warp applied to xs, ys % % EXAMPLE % % See also TPSGETWARP % % Piotr's Computer Vision Matlab Toolbox Version 2.0 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] if( nargin<4 || isempty(show)); show = 1; end wx = warp.wx; affinex = warp.affinex; wy = warp.wy; affiney = warp.affiney; xsS = warp.xsS; ysS = warp.ysS; xsD = warp.xsD; ysD = warp.ysD; % interpolate points (xs,ys) xsR = f( wx, affinex, xsS, ysS, xs(:)', ys(:)' ); ysR = f( wy, affiney, xsS, ysS, xs(:)', ys(:)' ); % optionally show points (xsR, ysR) if( show ) figure(show); subplot(2,1,1); plot( xs, ys, '.', 'color', [0 0 1] ); hold('on'); plot( xsS, ysS, '+' ); hold('off'); subplot(2,1,2); plot( xsR, ysR, '.' ); hold('on'); plot( xsD, ysD, '+' ); hold('off'); end function zs = f( w, aff, xsS, ysS, xs, ys ) % find f(x,y) for xs and ys given W and original points n = size(w,1); ns = size(xs,2); delXs = xs'*ones(1,n) - ones(ns,1)*xsS; delYs = ys'*ones(1,n) - ones(ns,1)*ysS; distSq = (delXs .* delXs + delYs .* delYs); distSq = distSq + eye(size(distSq)) + eps; U = distSq .* log( distSq ); U( isnan(U) )=0; zs = aff(1)*ones(ns,1)+aff(2)*xs'+aff(3)*ys'; zs = zs + sum((U.*(ones(ns,1)*w')),2);
github
garrickbrazil/SDS-RCNN-master
checkNumArgs.m
.m
SDS-RCNN-master/external/pdollar_toolbox/matlab/checkNumArgs.m
3,796
utf_8
726c125c7dc994c4989c0e53ad4be747
function [ x, er ] = checkNumArgs( x, siz, intFlag, signFlag ) % Helper utility for checking numeric vector arguments. % % Runs a number of tests on the numeric array x. Tests to see if x has all % integer values, all positive values, and so on, depending on the values % for intFlag and signFlag. Also tests to see if the size of x matches siz % (unless siz==[]). If x is a scalar, x is converted to a array simply by % creating a matrix of size siz with x in each entry. This is why the % function returns x. siz=M is equivalent to siz=[M M]. If x does not % satisfy some criteria, an error message is returned in er. If x satisfied % all the criteria er=''. Note that error('') has no effect, so can use: % [ x, er ] = checkNumArgs( x, ... ); error(er); % which will throw an error only if something was wrong with x. % % USAGE % [ x, er ] = checkNumArgs( x, siz, intFlag, signFlag ) % % INPUTS % x - numeric array % siz - []: does not test size of x % - [if not []]: intended size for x % intFlag - -1: no need for integer x % 0: error if non integer x % 1: error if non odd integers % 2: error if non even integers % signFlag - -2: entires of x must be strictly negative % -1: entires of x must be negative % 0: no contstraints on sign of entries in x % 1: entires of x must be positive % 2: entires of x must be strictly positive % % OUTPUTS % x - if x was a scalar it may have been replicated into a matrix % er - contains error msg if anything was wrong with x % % EXAMPLE % a=1; [a, er]=checkNumArgs( a, [1 3], 2, 0 ); a, error(er) % % See also NARGCHK % % Piotr's Computer Vision Matlab Toolbox Version 2.0 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] xname = inputname(1); er=''; if( isempty(siz) ); siz = size(x); end; if( length(siz)==1 ); siz=[siz siz]; end; % first check that x is numeric if( ~isnumeric(x) ); er = [xname ' not numeric']; return; end; % if x is a scalar, simply replicate it. xorig = x; if( length(x)==1); x = x(ones(siz)); end; % regardless, must have same number of x as n if( length(siz)~=ndims(x) || ~all(size(x)==siz) ) er = ['has size = [' num2str(size(x)) '], ']; er = [er 'which is not the required size of [' num2str(siz) ']']; er = createErrMsg( xname, xorig, er ); return; end % check that x are the right type of integers (unless intFlag==-1) switch intFlag case 0 if( ~all(mod(x,1)==0)) er = 'must have integer entries'; er = createErrMsg( xname, xorig, er); return; end; case 1 if( ~all(mod(x,2)==1)) er = 'must have odd integer entries'; er = createErrMsg( xname, xorig, er); return; end; case 2 if( ~all(mod(x,2)==0)) er = 'must have even integer entries'; er = createErrMsg( xname, xorig, er ); return; end; end; % check sign of entries in x (unless signFlag==0) switch signFlag case -2 if( ~all(x<0)) er = 'must have strictly negative entries'; er = createErrMsg( xname, xorig, er ); return; end; case -1 if( ~all(x<=0)) er = 'must have negative entries'; er = createErrMsg( xname, xorig, er ); return; end; case 1 if( ~all(x>=0)) er = 'must have positive entries'; er = createErrMsg( xname, xorig, er ); return; end; case 2 if( ~all(x>0)) er = 'must have strictly positive entries'; er = createErrMsg( xname, xorig, er ); return; end end function er = createErrMsg( xname, x, er ) if(numel(x)<10) er = ['Numeric input argument ' xname '=[' num2str(x) '] ' er '.']; else er = ['Numeric input argument ' xname ' ' er '.']; end
github
garrickbrazil/SDS-RCNN-master
fevalDistr.m
.m
SDS-RCNN-master/external/pdollar_toolbox/matlab/fevalDistr.m
11,227
utf_8
7e4d5077ef3d7a891b2847cb858a2c6c
function [out,res] = fevalDistr( funNm, jobs, varargin ) % Wrapper for embarrassingly parallel function evaluation. % % Runs "r=feval(funNm,jobs{i}{:})" for each job in a parallel manner. jobs % should be a cell array of length nJob and each job should be a cell array % of parameters to pass to funNm. funNm must be a function in the path and % must return a single value (which may be a dummy value if funNm writes % results to disk). Different forms of parallelization are supported % depending on the hardware and Matlab toolboxes available. The type of % parallelization is determined by the parameter 'type' described below. % % type='LOCAL': jobs are executed using a simple "for" loop. This implies % no parallelization and is the default fallback option. % % type='PARFOR': jobs are executed using a "parfor" loop. This option is % only available if the Matlab *Parallel Computing Toolbox* is installed. % Make sure to setup Matlab workers first using "matlabpool open". % % type='DISTR': jobs are executed on the Caltech cluster. Distributed % queuing system must be installed separately. Currently this option is % only supported on the Caltech cluster but could easily be installed on % any Linux cluster as it requires only SSH and a shared filesystem. % Parameter pLaunch is used for controller('launchQueue',pLaunch{:}) and % determines cluster machines used (e.g. pLaunch={48,401:408}). % % type='COMPILED': jobs are executed locally in parallel by first compiling % an executable and then running it in background. This option requires the % *Matlab Compiler* to be installed (but does NOT require the Parallel % Computing Toolbox). Compiling can take 1-10 minutes, so use this option % only for large jobs. (On Linux alter startup.m by calling addpath() only % if ~isdeployed, otherwise will get error about "CTF" after compiling). % Note that relative paths will not work after compiling so all paths used % by funNm must be absolute paths. % % type='WINHPC': jobs are executed on a Windows HPC Server 2008 cluster. % Similar to type='COMPILED', except after compiling, the executable is % queued to the HPC cluster where all computation occurs. This option % likewise requires the *Matlab Compiler*. Paths to data, etc., must be % absolute paths and available from HPC cluster. Parameter pLaunch must % have two fields 'scheduler' and 'shareDir' that define the HPC Server. % Extra parameters in pLaunch add finer control, see fedWinhpc for details. % For example, at MSR one possible cluster is defined by scheduler = % 'MSR-L25-DEV21' and shareDir = '\\msr-arrays\scratch\msr-pool\L25-dev21'. % Note call to 'job submit' from Matlab will hang unless pwd is saved % (simply call 'job submit' from cmd prompt and enter pwd). % % USAGE % [out,res] = fevalDistr( funNm, jobs, [varargin] ) % % INPUTS % funNm - name of function that will process jobs % jobs - [1xnJob] cell array of parameters for each job % varargin - additional params (struct or name/value pairs) % .type - ['local'], 'parfor', 'distr', 'compiled', 'winhpc' % .pLaunch - [] extra params for type='distr' or type='winhpc' % .group - [1] send jobs in batches (only relevant if type='distr') % % OUTPUTS % out - 1 if jobs completed successfully % res - [1xnJob] cell array containing results of each job % % EXAMPLE % % Note: in this case parallel versions are slower since conv2 is so fast % n=16; jobs=cell(1,n); for i=1:n, jobs{i}={rand(500),ones(25)}; end % tic, [out,J1] = fevalDistr('conv2',jobs,'type','local'); toc, % tic, [out,J2] = fevalDistr('conv2',jobs,'type','parfor'); toc, % tic, [out,J3] = fevalDistr('conv2',jobs,'type','compiled'); toc % [isequal(J1,J2), isequal(J1,J3)], figure(1); montage2(cell2array(J1)) % % See also matlabpool mcc % % Piotr's Computer Vision Matlab Toolbox Version 3.26 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] dfs={'type','local','pLaunch',[],'group',1}; [type,pLaunch,group]=getPrmDflt(varargin,dfs,1); store=(nargout==2); if(isempty(jobs)), res=cell(1,0); out=1; return; end switch lower(type) case 'local', [out,res]=fedLocal(funNm,jobs,store); case 'parfor', [out,res]=fedParfor(funNm,jobs,store); case 'distr', [out,res]=fedDistr(funNm,jobs,pLaunch,group,store); case 'compiled', [out,res]=fedCompiled(funNm,jobs,store); case 'winhpc', [out,res]=fedWinhpc(funNm,jobs,pLaunch,store); otherwise, error('unkown type: ''%s''',type); end end function [out,res] = fedLocal( funNm, jobs, store ) % Run jobs locally using for loop. nJob=length(jobs); res=cell(1,nJob); out=1; tid=ticStatus('collecting jobs'); for i=1:nJob, r=feval(funNm,jobs{i}{:}); if(store), res{i}=r; end; tocStatus(tid,i/nJob); end end function [out,res] = fedParfor( funNm, jobs, store ) % Run jobs locally using parfor loop. nJob=length(jobs); res=cell(1,nJob); out=1; parfor i=1:nJob, r=feval(funNm,jobs{i}{:}); if(store), res{i}=r; end; end end function [out,res] = fedDistr( funNm, jobs, pLaunch, group, store ) % Run jobs using Linux queuing system. if(~exist('controller.m','file')) msg='distributed queuing not installed, switching to type=''local''.'; warning(msg); [out,res]=fedLocal(funNm,jobs,store); return; %#ok<WNTAG> end nJob=length(jobs); res=cell(1,nJob); controller('launchQueue',pLaunch{:}); if( group>1 ) nJobGrp=ceil(nJob/group); jobsGrp=cell(1,nJobGrp); k=0; for i=1:nJobGrp, k1=min(nJob,k+group); jobsGrp{i}={funNm,jobs(k+1:k1),'type','local'}; k=k1; end nJob=nJobGrp; jobs=jobsGrp; funNm='fevalDistr'; end jids=controller('jobsAdd',nJob,funNm,jobs); k=0; fprintf('Sent %i jobs...\n',nJob); tid=ticStatus('collecting jobs'); while( 1 ) jids1=controller('jobProbe',jids); if(isempty(jids1)), pause(.1); continue; end jid=jids1(1); [r,err]=controller('jobRecv',jid); if(~isempty(err)), disp('ABORTING'); out=0; break; end k=k+1; if(store), res{jid==jids}=r; end tocStatus(tid,k/nJob); if(k==nJob), out=1; break; end end; controller('closeQueue'); end function [out,res] = fedCompiled( funNm, jobs, store ) % Run jobs locally in background in parallel using compiled code. nJob=length(jobs); res=cell(1,nJob); tDir=jobSetup('.',funNm,'',{}); cmd=[tDir 'fevalDistrDisk ' funNm ' ' tDir ' ']; i=0; k=0; Q=feature('numCores'); q=0; tid=ticStatus('collecting jobs'); while( 1 ) % launch jobs until queue is full (q==Q) or all jobs launched (i==nJob) while(q<Q && i<nJob), q=q+1; i=i+1; jobSave(tDir,jobs{i},i); if(ispc), system2(['start /B /min ' cmd int2str2(i,10)],0); else system2([cmd int2str2(i,10) ' &'],0); end end % collect completed jobs (k1 of them), release queue slots done=jobFileIds(tDir,'done'); k1=length(done); k=k+k1; q=q-k1; for i1=done, res{i1}=jobLoad(tDir,i1,store); end pause(1); tocStatus(tid,k/nJob); if(k==nJob), out=1; break; end end for i=1:10, try rmdir(tDir,'s'); break; catch,pause(1),end; end %#ok<CTCH> end function [out,res] = fedWinhpc( funNm, jobs, pLaunch, store ) % Run jobs using Windows HPC Server. nJob=length(jobs); res=cell(1,nJob); dfs={'shareDir','REQ','scheduler','REQ','executable','fevalDistrDisk',... 'mccOptions',{},'coresPerTask',1,'minCores',1024,'priority',2000}; p = getPrmDflt(pLaunch,dfs,1); tDir = jobSetup(p.shareDir,funNm,p.executable,p.mccOptions); for i=1:nJob, jobSave(tDir,jobs{i},i); end hpcSubmit(funNm,1:nJob,tDir,p); k=0; ticId=ticStatus('collecting jobs'); while( 1 ) done=jobFileIds(tDir,'done'); k=k+length(done); for i1=done, res{i1}=jobLoad(tDir,i1,store); end pause(5); tocStatus(ticId,k/nJob); if(k==nJob), out=1; break; end end for i=1:10, try rmdir(tDir,'s'); break; catch,pause(5),end; end %#ok<CTCH> end function tids = hpcSubmit( funNm, ids, tDir, pLaunch ) % Helper: send jobs w given ids to HPC cluster. n=length(ids); tids=cell(1,n); if(n==0), return; end; scheduler=[' /scheduler:' pLaunch.scheduler ' ']; m=system2(['cluscfg view' scheduler],0); minCores=(hpcParse(m,'total number of nodes',1) - ... hpcParse(m,'Unreachable nodes',1) - 1)*8; minCores=min([minCores pLaunch.minCores n*pLaunch.coresPerTask]); m=system2(['job new /numcores:' int2str(minCores) '-*' scheduler ... '/priority:' int2str(pLaunch.priority)],1); jid=hpcParse(m,'created job, id',0); s=min(ids); e=max(ids); p=n>1 && isequal(ids,s:e); if(p), jid1=[jid '.1']; else jid1=jid; end for i=1:n, tids{i}=[jid1 '.' int2str(i)]; end cmd0=''; if(p), cmd0=['/parametric:' int2str(s) '-' int2str(e)]; end cmd=@(id) ['job add ' jid scheduler '/workdir:' tDir ' /numcores:' ... int2str(pLaunch.coresPerTask) ' ' cmd0 ' /stdout:stdout' id ... '.txt ' pLaunch.executable ' ' funNm ' ' tDir ' ' id]; if(p), ids1='*'; n=1; else ids1=int2str2(ids); end if(n==1), ids1={ids1}; end; for i=1:n, system2(cmd(ids1{i}),1); end system2(['job submit /id:' jid scheduler],1); disp(repmat(' ',1,80)); end function v = hpcParse( msg, key, tonum ) % Helper: extract val corresponding to key in hpc msg. t=regexp(msg,': |\n','split'); t=strtrim(t(1:floor(length(t)/2)*2)); keys=t(1:2:end); vals=t(2:2:end); j=find(strcmpi(key,keys)); if(isempty(j)), error('key ''%s'' not found in:\n %s',key,msg); end v=vals{j}; if(tonum==0), return; elseif(isempty(v)), v=0; return; end if(tonum==1), v=str2double(v); return; end v=regexp(v,' ','split'); v=str2double(regexp(v{1},':','split')); if(numel(v)==4), v(5)=0; end; v=((v(1)*24+v(2))*60+v(3))*60+v(4)+v(5)/1000; end function tDir = jobSetup( rtDir, funNm, executable, mccOptions ) % Helper: prepare by setting up temporary dir and compiling funNm t=clock; t=mod(t(end),1); t=round((t+rand)/2*1e15); tDir=[rtDir filesep sprintf('fevalDistr-%015i',t) filesep]; mkdir(tDir); if(~isempty(executable) && exist(executable,'file')) fprintf('Reusing compiled executable...\n'); copyfile(executable,tDir); else t=clock; fprintf('Compiling (this may take a while)...\n'); [~,f,e]=fileparts(executable); if(isempty(f)), f='fevalDistrDisk'; end mcc('-m','fevalDistrDisk','-d',tDir,'-o',f,'-a',funNm,mccOptions{:}); t=etime(clock,t); fprintf('Compile complete (%.1f seconds).\n',t); if(~isempty(executable)), copyfile([tDir filesep f e],executable); end end end function ids = jobFileIds( tDir, type ) % Helper: get list of job files ids on disk of given type fs=dir([tDir '*-' type '*']); fs={fs.name}; n=length(fs); ids=zeros(1,n); for i=1:n, ids(i)=str2double(fs{i}(1:10)); end end function jobSave( tDir, job, ind ) %#ok<INUSL> % Helper: save job to temporary file for use with fevalDistrDisk() save([tDir int2str2(ind,10) '-in'],'job'); end function r = jobLoad( tDir, ind, store ) % Helper: load job and delete temporary files from fevalDistrDisk() f=[tDir int2str2(ind,10)]; if(store), r=load([f '-out']); r=r.r; else r=[]; end fs={[f '-done'],[f '-in.mat'],[f '-out.mat']}; delete(fs{:}); pause(.1); for i=1:3, k=0; while(exist(fs{i},'file')==2) %#ok<ALIGN> warning('Waiting to delete %s.',fs{i}); %#ok<WNTAG> delete(fs{i}); pause(5); k=k+1; if(k>12), break; end; end; end end function msg = system2( cmd, show ) % Helper: wraps system() call if(show), disp(cmd); end [status,msg]=system(cmd); msg=msg(1:end-1); if(status), error(msg); end if(show), disp(msg); end end
github
garrickbrazil/SDS-RCNN-master
medfilt1m.m
.m
SDS-RCNN-master/external/pdollar_toolbox/filters/medfilt1m.m
2,998
utf_8
a3733d27c60efefd57ada9d83ccbaa3d
function y = medfilt1m( x, r, z ) % One-dimensional adaptive median filtering with missing values. % % Applies a width s=2*r+1 one-dimensional median filter to vector x, which % may contain missing values (elements equal to z). If x contains no % missing values, y(j) is set to the median of x(j-r:j+r). If x contains % missing values, y(j) is set to the median of x(j-R:j+R), where R is the % smallest radius such that sum(valid(x(j-R:j+R)))>=s, i.e. the number of % valid values in the window is at least s (a value x is valid x~=z). Note % that the radius R is adaptive and can vary as a function of j. % % This function uses a modified version of medfilt1.m from Matlab's 'Signal % Processing Toolbox'. Note that if x contains no missing values, % medfilt1m(x) and medfilt1(x) are identical execpt at boundary regions. % % USAGE % y = medfilt1m( x, r, [z] ) % % INPUTS % x - [nx1] length n vector with possible missing entries % r - filter radius % z - [NaN] element that represents missing entries % % OUTPUTS % y - [nx1] filtered vector x % % EXAMPLE % x=repmat((1:4)',1,5)'; x=x(:)'; x0=x; % n=length(x); x(rand(n,1)>.8)=NaN; % y = medfilt1m(x,2); [x0; x; y; x0-y] % % See also MODEFILT1, MEDFILT1 % % Piotr's Computer Vision Matlab Toolbox Version 2.35 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] % apply medfilt1 (standard median filter) to valid locations in x if(nargin<3 || isempty(z)), z=NaN; end; x=x(:)'; n=length(x); if(isnan(z)), valid=~isnan(x); else valid=x~=z; end; v=sum(valid); if(v==0), y=repmat(z,1,n); return; end if(v<2*r+1), y=repmat(median(x(valid)),1,n); return; end y=medfilt1(x(valid),2*r+1); % get radius R needed at each location j to span s=2r+1 valid values % get start (a) and end (b) locations and map back to location in y C=[0 cumsum(valid)]; s=2*r+1; R=find(C==s); R=R(1)-2; pos=zeros(1,n); for j=1:n, R0=R; R=R0-1; a=max(1,j-R); b=min(n,j+R); if(C(b+1)-C(a)<s), R=R0; a=max(1,j-R); b=min(n,j+R); if(C(b+1)-C(a)<s), R=R0+1; a=max(1,j-R); b=min(n,j+R); end end pos(j)=(C(b+1)+C(a+1))/2; end y=y(floor(pos)); end function y = medfilt1( x, s ) % standard median filter (copied from medfilt1.m) n=length(x); r=floor(s/2); indr=(0:s-1)'; indc=1:n; ind=indc(ones(1,s),1:n)+indr(:,ones(1,n)); x0=x(ones(r,1))*0; X=[x0'; x'; x0']; X=reshape(X(ind),s,n); y=median(X,1); end % function y = medfilt1( x, s ) % % standard median filter (slow) % % get unique values in x % [vals,disc,inds]=unique(x); m=length(vals); n=length(x); % if(m>256), warning('x takes on large number of diff vals'); end %#ok<WNTAG> % % create quantized representation [H(i,j)==1 iff x(j)==vals(i)] % H=zeros(m,n); H(sub2ind2([m,n],[inds; 1:n]'))=1; % % create histogram [H(i,j) is count of x(j-r:j+r)==vals(i)] % H=localSum(H,[0 s],'same'); % % compute median for each j and map inds back to original vals % [disc,inds]=max(cumsum(H,1)>s/2,[],1); y=vals(inds); % end
github
garrickbrazil/SDS-RCNN-master
FbMake.m
.m
SDS-RCNN-master/external/pdollar_toolbox/filters/FbMake.m
6,692
utf_8
b625c1461a61485af27e490333350b4b
function FB = FbMake( dim, flag, show ) % Various 1D/2D/3D filterbanks (hardcoded). % % USAGE % FB = FbMake( dim, flag, [show] ) % % INPUTS % dim - dimension % flag - controls type of filterbank to create % - if d==1 % 1: gabor filter bank for spatiotemporal stuff % - if d==2 % 1: filter bank from Serge Belongie % 2: 1st/2nd order DooG filters. Similar to Gabor filterbank. % 3: similar to Laptev&Lindberg ICPR04 % 4: decent seperable steerable? filterbank % 5: berkeley filterbank for textons papers % 6: symmetric DOOG filters % - if d==3 % 1: decent seperable steerable filterbank % show - [0] figure to use for optional display % % OUTPUTS % % EXAMPLE % FB = FbMake( 2, 1, 1 ); % % See also FBAPPLY2D % % Piotr's Computer Vision Matlab Toolbox Version 2.0 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] if( nargin<3 || isempty(show) ); show=0; end % create FB switch dim case 1 FB = FbMake1D( flag ); case 2 FB = FbMake2D( flag ); case 3 FB = FbMake3d( flag ); otherwise error( 'dim must be 1 2 or 3'); end % display FbVisualize( FB, show ); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function FB = FbMake1D( flag ) switch flag case 1 %%% gabor filter bank for spatiotemporal stuff omegas = 1 ./ [3 4 5 7.5 11]; sigmas = [3 4 5 7.5 11]; FB = FbMakegabor1D( 15, sigmas, omegas ); otherwise error('none created.'); end function FB = FbMakegabor1D( r, sigmas, omegas ) for i=1:length(omegas) [feven,fodd]=filterGabor1d(r,sigmas(i),omegas(i)); if( i==1 ); FB=repmat(feven,[2*length(omegas) 1]); end FB(i*2-1,:)=feven; FB(i*2,:)=fodd; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function FB = FbMake2D( flag ) switch flag case 1 %%% filter bank from Berkeley / Serge Belongie r=15; FB = FbMakegabor( r, 6, 3, 3, sqrt(2) ); FB2 = FbMakeDOG( r, .6, 2.8, 4); FB = cat(3, FB, FB2); %FB = FB(:,:,1:2:36); %include only even symmetric filters %FB = FB(:,:,2:2:36); %include only odd symmetric filters case 2 %%% 1st/2nd order DooG filters. Similar to Gabor filterbank. FB = FbMakeDooG( 15, 6, 3, 5, .5) ; case 3 %%% similar to Laptev&Lindberg ICPR04 % Wierd filterbank of Gaussian derivatives at various scales % Higher order filters probably not useful. r = 9; dims=[2*r+1 2*r+1]; sigs = [.5 1 1.5 3]; % sigs = [1,1.5,2]; derivs = []; %derivs = [ derivs; 0 0 ]; % 0th order %derivs = [ derivs; 1 0; 0 1 ]; % first order %derivs = [ derivs; 2 0; 0 2; 1 1 ]; % 2nd order %derivs = [ derivs; 3 0; 0 3; 1 2; 2 1 ]; % 3rd order %derivs = [ derivs; 4 0; 0 4; 1 3; 3 1; 2 2 ]; % 4th order derivs = [ derivs; 0 1; 0 2; 0 3; 0 4; 0 5]; % 0n order derivs = [ derivs; 1 0; 2 0; 3 0; 4 0; 5 0]; % n0 order cnt=1; nderivs = size(derivs,1); for s=1:length(sigs) for i=1:nderivs dG = filterDoog( dims, [sigs(s) sigs(s)], derivs(i,:), 0 ); if(s==1 && i==1); FB=repmat(dG,[1 1 length(sigs)*nderivs]); end FB(:,:,cnt) = dG; cnt=cnt+1; %dG = filterDoog( dims, [sigs(s)*3 sigs(s)], derivs(i,:), 0 ); %FB(:,:,cnt) = dG; cnt=cnt+1; %dG = filterDoog( dims, [sigs(s) sigs(s)*3], derivs(i,:), 0 ); %FB(:,:,cnt) = dG; cnt=cnt+1; end end case 4 % decent seperable steerable? filterbank r = 9; dims=[2*r+1 2*r+1]; sigs = [.5 1.5 3]; derivs = [1 0; 0 1; 2 0; 0 2]; cnt=1; nderivs = size(derivs,1); for s=1:length(sigs) for i=1:nderivs dG = filterDoog( dims, [sigs(s) sigs(s)], derivs(i,:), 0 ); if(s==1 && i==1); FB=repmat(dG,[1 1 length(sigs)*nderivs]); end FB(:,:,cnt) = dG; cnt=cnt+1; end end FB2 = FbMakeDOG( r, .6, 2.8, 4); FB = cat(3, FB, FB2); case 5 %%% berkeley filterbank for textons papers FB = FbMakegabor( 7, 6, 1, 2, 2 ); case 6 %%% symmetric DOOG filters FB = FbMakeDooGSym( 4, 2, [.5 1] ); otherwise error('none created.'); end function FB = FbMakegabor( r, nOrient, nScales, lambda, sigma ) % multi-scale even/odd gabor filters. Adapted from code by Serge Belongie. cnt=1; for m=1:nScales for n=1:nOrient [F1,F2]=filterGabor2d(r,sigma^m,lambda,180*(n-1)/nOrient); if(m==1 && n==1); FB=repmat(F1,[1 1 nScales*nOrient*2]); end FB(:,:,cnt)=F1; cnt=cnt+1; FB(:,:,cnt)=F2; cnt=cnt+1; end end function FB = FbMakeDooGSym( r, nOrient, sigs ) % Adds symmetric DooG filters. These are similar to gabor filters. cnt=1; dims=[2*r+1 2*r+1]; for s=1:length(sigs) Fodd = -filterDoog( dims, [sigs(s) sigs(s)], [1 0], 0 ); Feven = filterDoog( dims, [sigs(s) sigs(s)], [2 0], 0 ); if(s==1); FB=repmat(Fodd,[1 1 length(sigs)*nOrient*2]); end for n=1:nOrient theta = 180*(n-1)/nOrient; FB(:,:,cnt) = imrotate( Feven, theta, 'bil', 'crop' ); cnt=cnt+1; FB(:,:,cnt) = imrotate( Fodd, theta, 'bil', 'crop' ); cnt=cnt+1; end end function FB = FbMakeDooG( r, nOrient, nScales, lambda, sigma ) % 1st/2nd order DooG filters. Similar to Gabor filterbank. % Defaults: nOrient=6, nScales=3, lambda=5, sigma=.5, cnt=1; dims=[2*r+1 2*r+1]; for m=1:nScales sigma = sigma * m^.7; Fodd = -filterDoog( dims, [sigma lambda*sigma^.6], [1,0], 0 ); Feven = filterDoog( dims, [sigma lambda*sigma^.6], [2,0], 0 ); if(m==1); FB=repmat(Fodd,[1 1 nScales*nOrient*2]); end for n=1:nOrient theta = 180*(n-1)/nOrient; FB(:,:,cnt) = imrotate( Feven, theta, 'bil', 'crop' ); cnt=cnt+1; FB(:,:,cnt) = imrotate( Fodd, theta, 'bil', 'crop' ); cnt=cnt+1; end end function FB = FbMakeDOG( r, sigmaStr, sigmaEnd, n ) % adds a serires of difference of Gaussian filters. sigs = sigmaStr:(sigmaEnd-sigmaStr)/(n-1):sigmaEnd; for s=1:length(sigs) FB(:,:,s) = filterDog2d(r,sigs(s),2); %#ok<AGROW> if( s==1 ); FB=repmat(FB,[1 1 length(sigs)]); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function FB = FbMake3d( flag ) switch flag case 1 % decent seperable steerable filterbank r = 25; dims=[2*r+1 2*r+1 2*r+1]; sigs = [.5 1.5 3]; derivs = [0 0 1; 0 1 0; 1 0 0; 0 0 2; 0 2 0; 2 0 0]; cnt=1; nderivs = size(derivs,1); for s=1:length(sigs) for i=1:nderivs dG = filterDoog( dims, repmat(sigs(s),[1 3]), derivs(i,:), 0 ); if(s==1 && i==1); FB=repmat(dG,[1 1 1 nderivs*length(sigs)]); end FB(:,:,:,cnt) = dG; cnt=cnt+1; end end otherwise error('none created.'); end
github
nscholtes/Default-Cascades-master
lnbin.m
.m
Default-Cascades-master/lnbin.m
1,412
utf_8
b27c6f1c9406b20ad7536b447c724a16
% This function take the input of a data vector x, which is to be binned; % it also takes in the amount bins one would like the data binned into. The % output is two vectors, one containing the normalised frequency of each bin % (Freq), the other, the midpoint of each bin (midpts). % Added and error to the binned frequency: eFreq (As of June 30 2010). If this % option is not required, just call the function without including the third out % put; i.e.: [midpts Freq]=lnbin(x,BinNum). function [midpts Freq eFreq]=lnbin(x,BinNum) x=sort(x); i=1; while x(i)<=0; i=i+1; end str = num2str((length(x)-i)/length(x)*100); %stuff='Percentage of input vec binned '; %disp([stuff str]) FPT=x(i:length(x)); LFPT=log(FPT); max1=log( ceil(max(FPT)) ); min1=log(floor(min(FPT))); % min1=1; LFreq=zeros(BinNum,1); LTime=zeros(BinNum,1); Lends=zeros(BinNum,2); step=(max1-min1)/BinNum; % ------------ LOG Binning Data ------------------------ for i=1:length(FPT) for k=1:BinNum if( (k-1)*step+min1 <= LFPT(i) && LFPT(i) < k*step+min1) LFreq(k)=LFreq(k)+1; end LTime(k)=k*step-(0.5*step)+min1; Lends(k,1)=(k-1)*step+min1; Lends(k,2)=(k)*step+min1; end end ends=exp(Lends); widths=ends(1:length(ends),2)-ends(1:length(ends),1); Freq=LFreq./widths./length(x); eFreq=1./sqrt(LFreq).*Freq; midpts = exp(LTime);
github
egg5562/Electronic-Nose-master
normalize_data.m
.m
Electronic-Nose-master/source_code/normalize_data.m
470
utf_8
5649f07241d28cea2852755d76f6e1ea
function normalized_data = normalize_data(set,m,s) si= size(set); ForRepmat = si(1); new_mean = repmat(m,ForRepmat,1); new_std = repmat(s,ForRepmat,1); normalized_data = (set- new_mean)./new_std; end % si= size(tr_set(:,1:end-1)); % ForRepmat = si(2); % new_mean = repmat(mean_f,ForRepmat,1); % new_std = repmat(std_f,ForRepmat,1); % % normalized_data = (tr_set(:,1:end-1)- new_mean)./new_std;
github
egg5562/Electronic-Nose-master
cal_std.m
.m
Electronic-Nose-master/source_code/cal_std.m
547
utf_8
34787ea76a9210756ea14220a6d7de6f
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Mean and Std calculation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [mean_vec, std_vec] = cal_std(data); [N_P, N_F] = size(data); for j=1:N_F, sum(j) = 0; for i=1:N_P, sum(j) = sum(j) + data(i,j); end mean_vec(j) = sum(j) / N_P; end for j=1:N_F, sum(j) = 0; for i=1:N_P, sum(j) = sum(j) + (data(i,j)-mean_vec(j))^2; end std_vec(j) = sqrt(sum(j)/(N_P-1)); end
github
egg5562/Electronic-Nose-master
L1PCA.m
.m
Electronic-Nose-master/source_code/L1PCA.m
2,724
utf_8
ec8b30e80cd9ad3aac81864b7e7f4382
% 1DPCA % by Spinoz Kim ([email protected]) % Dec. 8 2004 % n_it = iteration number function [w, n_it, elap_time, tr_prj] = L1PCA(tr_data, Ns); %Read input file % [N, temp] = size(tr_data); [N, N_f] = size(tr_data); % N_f = temp-1; %N_Tr = 100*2, %N_F = 100*120 data_tr = tr_data(:,1:N_f); %class_tr = tr_data(:,N_f+1); %clear tr_data; % [mean_f, std_f] = cal_std(data_tr); if N < N_f % number of samples is smaller than dimension comp_consider = 1; r = rank(data_tr); [w_pca, temp_time] = L2PCA_new(tr_data, comp_consider, r); x = tr_data * w_pca; else comp_consider = 0; x = data_tr; r = N_f; end %Start the watch for lasting time of the feature extraction t0 = clock; %% from here: searching direction %x = data_tr; w = []; for i=1:Ns if i~=1 x = x - (x*w(:,i-1))*w(:,i-1)'; % x is a row vector, v is a column vector end n = 0; % find maximum x_i for j=1:N norm_x(j) = norm(x(j,:)); end [sorted_norm_x, ind] = sort(norm_x); v = x(ind(end),:)' / sorted_norm_x(end); %penalize med_norm = median(norm_x); for j=1:N if norm_x(j) > med_norm penal(j) = (med_norm/norm_x(j)); else penal(j) = 1; end end %% random direction %index = ceil(rand(1)*N); %v = x(index,:)' / norm(x(index,:)); %%initialize by PCA %v = L2PCA(x, 1, 1); v_old = zeros(r,1); % initial direction while ((v ~= v_old)) v_old = v; % check polarity of inner product sum_x = zeros(1,r); for j=1:N if x(j,:) * v >= 0 p(j) = 1; else p(j) = -1; end sum_x = sum_x + penal(j)*p(j)*x(j,:); end %abs_sum_x = sqrt(sum(sum_x.^2)); v = sum_x'/norm(sum_x);%abs_sum_x; n = n+1; end w = [w, v]; n_it(i) = n; end if comp_consider == 1, w = w_pca*w; end %Finish the stop watch elap_time = etime(clock, t0); display('L1PCA end'); display(elap_time); %% projection % fid = fopen([out_file,'_pcaeig.dat'], 'w'); % for i=1:n_sel, % fprintf(fid,'%.4f ', eig_val(i)); % end % fprintf(fid,'\n\n'); % eig_tot = sum(eig_val); % for i=1:n_sel, % eig_extracted = sum(eig_val(1:i)); % eig_rate_vec(i) = (eig_extracted/eig_tot) * 100; % fprintf(fid,'eig_rate(%d features) : %.2f\n', i, eig_rate_vec(i)); % end % fprintf(fid,'\n\n'); % fprintf(fid,'elap_time : %.2f (sec)\n', elap_time); % fclose(fid); %% Tr. data projection tr_prj = data_tr * w_pca; clear data_tr; %res = 1;
github
haitaozhao/Dynamic-Graph-Embedding-for-Fault-Detection-master
kde.m
.m
Dynamic-Graph-Embedding-for-Fault-Detection-master/Matlab_code/kde.m
5,361
utf_8
984530c222928bc6fba29542faa4d5cd
function [bandwidth,density,xmesh,cdf]=kde(data,n,MIN,MAX) % Reliable and extremely fast kernel density estimator for one-dimensional data; % Gaussian kernel is assumed and the bandwidth is chosen automatically; % Unlike many other implementations, this one is immune to problems % caused by multimodal densities with widely separated modes (see example). The % estimation does not deteriorate for multimodal densities, because we never assume % a parametric model for the data. % INPUTS: % data - a vector of data from which the density estimate is constructed; % n - the number of mesh points used in the uniform discretization of the % interval [MIN, MAX]; n has to be a power of two; if n is not a power of two, then % n is rounded up to the next power of two, i.e., n is set to n=2^ceil(log2(n)); % the default value of n is n=2^12; % MIN, MAX - defines the interval [MIN,MAX] on which the density estimate is constructed; % the default values of MIN and MAX are: % MIN=min(data)-Range/10 and MAX=max(data)+Range/10, where Range=max(data)-min(data); % OUTPUTS: % bandwidth - the optimal bandwidth (Gaussian kernel assumed); % density - column vector of length 'n' with the values of the density % estimate at the grid points; % xmesh - the grid over which the density estimate is computed; % - If no output is requested, then the code automatically plots a graph of % the density estimate. % cdf - column vector of length 'n' with the values of the cdf % Reference: % Kernel density estimation via diffusion % Z. I. Botev, J. F. Grotowski, and D. P. Kroese (2010) % Annals of Statistics, Volume 38, Number 5, pages 2916-2957. % % Example: % data=[randn(100,1);randn(100,1)*2+35 ;randn(100,1)+55]; % kde(data,2^14,min(data)-5,max(data)+5); % Notes: If you have a more reliable and accurate one-dimensional kernel density % estimation software, please email me at [email protected] data=data(:); %make data a column vector if nargin<2 % if n is not supplied switch to the default n=2^14; end n=2^ceil(log2(n)); % round up n to the next power of 2; if nargin<4 %define the default interval [MIN,MAX] minimum=min(data); maximum=max(data); Range=maximum-minimum; MIN=minimum-Range/10; MAX=maximum+Range/10; end % set up the grid over which the density estimate is computed; R=MAX-MIN; dx=R/(n-1); xmesh=MIN+[0:dx:R]; N=length(unique(data)); %bin the data uniformly using the grid defined above; initial_data=histc(data,xmesh)/N; initial_data=initial_data/sum(initial_data); a=dct1d(initial_data); % discrete cosine transform of initial data % now compute the optimal bandwidth^2 using the referenced method I=[1:n-1]'.^2; a2=(a(2:end)/2).^2; % use fzero to solve the equation t=zeta*gamma^[5](t) try t_star=fzero(@(t)fixed_point(t,N,I,a2),[0,.1]); catch t_star=.28*N^(-2/5); end % smooth the discrete cosine transform of initial data using t_star a_t=a.*exp(-[0:n-1]'.^2*pi^2*t_star/2); % now apply the inverse discrete cosine transform if (nargout>1)|(nargout==0) density=idct1d(a_t)/R; end % take the rescaling of the data into account bandwidth=sqrt(t_star)*R; if nargout==0 figure(1), plot(xmesh,density) end % for cdf estimation if nargout>3 f=2*pi^2*sum(I.*a2.*exp(-I*pi^2*t_star)); t_cdf=(sqrt(pi)*f*N)^(-2/3); % now get values of cdf on grid points using IDCT and cumsum function a_cdf=a.*exp(-[0:n-1]'.^2*pi^2*t_cdf/2); cdf=cumsum(idct1d(a_cdf))*(dx/R); % take the rescaling into account if the bandwidth value is required bandwidth_cdf=sqrt(t_cdf)*R; end end %################################################################ function out=fixed_point(t,N,I,a2) % this implements the function t-zeta*gamma^[l](t) l=7; f=2*pi^(2*l)*sum(I.^l.*a2.*exp(-I*pi^2*t)); for s=l-1:-1:2 K0=prod([1:2:2*s-1])/sqrt(2*pi); const=(1+(1/2)^(s+1/2))/3; time=(2*const*K0/N/f)^(2/(3+2*s)); f=2*pi^(2*s)*sum(I.^s.*a2.*exp(-I*pi^2*time)); end out=t-(2*N*sqrt(pi)*f)^(-2/5); end %############################################################## function out = idct1d(data) % computes the inverse discrete cosine transform [nrows,ncols]=size(data); % Compute weights weights = nrows*exp(i*(0:nrows-1)*pi/(2*nrows)).'; % Compute x tilde using equation (5.93) in Jain data = real(ifft(weights.*data)); % Re-order elements of each column according to equations (5.93) and % (5.94) in Jain out = zeros(nrows,1); out(1:2:nrows) = data(1:nrows/2); out(2:2:nrows) = data(nrows:-1:nrows/2+1); % Reference: % A. K. Jain, "Fundamentals of Digital Image % Processing", pp. 150-153. end %############################################################## function data=dct1d(data) % computes the discrete cosine transform of the column vector data [nrows,ncols]= size(data); % Compute weights to multiply DFT coefficients weight = [1;2*(exp(-i*(1:nrows-1)*pi/(2*nrows))).']; % Re-order the elements of the columns of x data = [ data(1:2:end,:); data(end:-2:2,:) ]; % Multiply FFT by weights: data= real(weight.* fft(data)); end
github
ROCmSoftwarePlatform/CNTK-1-master
ComputeConfusion.m
.m
CNTK-1-master/Examples/Speech/Miscellaneous/TIMIT/AdditionalFiles/ComputeConfusion.m
6,047
utf_8
9c31b020d02c3e11bbdb1db0a04bcc32
function confusionData = ComputeConfusion(mlfFile) % function confusionData = ComputeConfusion(mlfFile) % Compute all the confusions for one experiment. Read in the TIMIT MLF file % so we know which utterances we have. For each utterance, read in the % CNTK output and compute the confusion matrix. Sum them all together. if nargin < 1 mlfFile = 'TimitLabels.mlf'; end %% % Parse the Timit MLF file because it tells us the true phonetic labels % for each segment of each utterance. fp = fopen(mlfFile,'r'); segmentLabels = []; scale=1e-7; numberOfUtterances = 0; confusionData = 0; while 1 theLine = fgets(fp); if isempty(theLine) || theLine(1) == -1 break; end if strncmp(theLine, '#!MLF!#', 7) continue; % Ignore the header end if theLine(1) == '"' % Look for file name indication numberOfUtterances = numberOfUtterances + 1; fileName = strtok(theLine); fileName = fileName(2:end-1); segmentLabels = []; end if theLine(1) >= '0' && theLine(1) <= '9' % Got a speech segment with times and phoneme label. Parse it. c = textscan(theLine, '%d %d %s '); b = double(c{1}(1)); e = double(c{2}); l = c{3}{1}; if isempty(segmentLabels) clear segmentLabels; segmentLabels(1000) = struct('begin', b, 'end', e, 'label', l); segmentCount = 0; end segmentCount = segmentCount + 1; % Add a new entry in the list of segments. segmentLabels(segmentCount) = struct('begin', b*scale, 'end', e*scale, 'label', l); end if theLine(1) == '.' % Found the end of the speech transcription. Process the new data. c = ComputeConfusionOnce(fileName, segmentLabels(1:segmentCount)); confusionData = confusionData + c; segmentLabels = []; end end fclose(fp); function Confusions = ComputeConfusionOnce(utteranceName, segmentLabels) % function Confusions = ComputeConfusionOnce(utteranceName, labelData) % Compute the confusion matrix for one TIMIT utterance. This routine takes % the segment data (from the TIMIT label file) and a feature-file name. It % transforms the feature file into a CNTK output file. It reads in the % CNTK output file, and tabulates a confusion matrix. We do this one % segment at a time, since TIMIT segments are variable length, and the CNTK % output is sampled at regular intervals (10ms). likelihoodName = strrep(strrep(utteranceName, 'Features/', 'Output/'), ... 'fbank_zda', 'log'); try [likelihood,~] = htkread(likelihoodName); catch me fprintf('Can''t read %s using htkread. Ignoring.\n', likelihoodName); Confusions = 0; return end nStates = 183; % Preordained. frameRate = 100; % Preordained Confusions = zeros(nStates, nStates); for i=1:size(segmentLabels, 2) % Go through each entry in the MLF file for one utterance. Each entry % lists the beginning and each of each speech state. % Compare the true label with the winner of the maximum likelihood from % CNTK. beginIndex = max(1, round(segmentLabels(i).begin*frameRate)); endIndex = min(size(likelihood,1), round(segmentLabels(i).end*frameRate)); curIndices = beginIndex:endIndex; [~,winners] = max(likelihood(curIndices,:),[], 2); correctLabel = FindLabelNumber(segmentLabels(i).label); for w=winners(:)' % increment one at a time Confusions(correctLabel, w) = Confusions(correctLabel, w) + 1; end end function labelNumber = FindLabelNumber(labelName) % For each label name, turn the name into an index. The labels are listed, % in order, in the TimitStateList file. persistent stateList if isempty(stateList) stateList = ReadStateList('TimitStateList.txt'); end for labelNumber=1:size(stateList,1) if strcmp(labelName, stateList{labelNumber}) return; end end labelNumber = []; function stateList = ReadStateList(stateListFile) % Read in the state list file. This file contains an ordered list of % states, each corresponding to one label (and one output in the CNTK % network.) fp = fopen(stateListFile); nStates = 183; % Preordained stateList = cell(nStates, 1); stateIndex = 1; while true theLine = fgets(fp); if isempty(theLine) || theLine(1) == -1 break; end stateList{stateIndex} = theLine(1:end-1); stateIndex = stateIndex + 1; end fclose(fp); function [ DATA, HTKCode ] = htkread( Filename ) % [ DATA, HTKCode ] = htkread( Filename ) % % Read DATA from possibly compressed HTK format file. % % Filename (string) - Name of the file to read from % DATA (nSamp x NUMCOFS) - Output data array % HTKCode - HTKCode describing file contents % % Compression is handled using the algorithm in 5.10 of the HTKBook. % CRC is not implemented. % % Mark Hasegawa-Johnson % July 3, 2002 % Based on function mfcc_read written by Alexis Bernard % Found at: https://raw.githubusercontent.com/ronw/matlab_htk/master/htkread.m % fid=fopen(Filename,'r','b'); if fid<0, error(sprintf('Unable to read from file %s',Filename)); end % Read number of frames nSamp = fread(fid,1,'int32'); % Read sampPeriod sampPeriod = fread(fid,1,'int32'); % Read sampSize sampSize = fread(fid,1,'int16'); % Read HTK Code HTKCode = fread(fid,1,'int16'); %%%%%%%%%%%%%%%%% % Read the data if bitget(HTKCode, 11), DIM=sampSize/2; nSamp = nSamp-4; %disp(sprintf('htkread: Reading %d frames, dim %d, compressed, from %s',nSamp,DIM,Filename)); % Read the compression parameters A = fread(fid,[1 DIM],'float'); B = fread(fid,[1 DIM],'float'); % Read and uncompress the data DATA = fread(fid, [DIM nSamp], 'int16')'; DATA = (repmat(B, [nSamp 1]) + DATA) ./ repmat(A, [nSamp 1]); else DIM=sampSize/4; %disp(sprintf('htkread: Reading %d frames, dim %d, uncompressed, from %s',nSamp,DIM,Filename)); % If not compressed: Read floating point data DATA = fread(fid, [DIM nSamp], 'float')'; end fclose(fid);
github
ROCmSoftwarePlatform/CNTK-1-master
ShowConfusions.m
.m
CNTK-1-master/Examples/Speech/Miscellaneous/TIMIT/AdditionalFiles/ShowConfusions.m
2,174
utf_8
0e7784a2f2e8b497f6ad9e7cd07e9377
function ShowConfusions(confusionData, squeeze) % function ShowConfusions(confusionData) % Average the three-state confusion data into monophone confusions. Then % display the data. A graphical interface lets you interrogate the data, % by moving the mouse, and clicking at various points. The phonetic labels % are shown on the graph. confusionSmall = ( ... confusionData(1:3:end,1:3:end) + confusionData(2:3:end, 1:3:end) + confusionData(3:3:end, 1:3:end) + ... confusionData(1:3:end,2:3:end) + confusionData(2:3:end, 2:3:end) + confusionData(3:3:end, 2:3:end) + ... confusionData(1:3:end,3:3:end) + confusionData(2:3:end, 3:3:end) + confusionData(3:3:end, 3:3:end))/9; if nargin < 2 squeeze = 1; end imagesc(confusionSmall .^ squeeze) axis ij axis square ylabel('True Label'); xlabel('CNTK Prediction'); %% stateList = ReadStateList(); h = []; fprintf('Select a point with the mouse, type return to end...\n'); while true [x,y] = ginput(1); if isempty(x) || isempty(y) break; end if ~isempty(h) delete(h); h = []; end try trueLabel = stateList{(round(x)-1)*3+1}; catch trueLabel = 'Unknown'; end try likelihoodLabel = stateList{(round(y)-1)*3+1}; catch likelihoodLabel = 'Unknown'; end h = text(40, -2, sprintf('%s -> %s', trueLabel, likelihoodLabel)); % h = text(40, -2, sprintf('%g -> %g', x, y)); end function stateList = ReadStateList(stateListFile) % Read in the state list file. This file contains an ordered list of % states, each corresponding to one label (and one output in the CNTK % network.) if nargin < 1 stateListFile = 'TimitStateList.txt'; end % Read in the state list file. fp = fopen(stateListFile); nStates = 183; % Preordained stateList = cell(nStates, 1); stateIndex = 1; while true theLine = fgets(fp); if isempty(theLine) || theLine(1) == -1 break; end f = find(theLine == '_'); if ~isempty(f) label = theLine(1:f(1)-1); else label = theLine(1:end-1); end stateList{stateIndex} = label; stateIndex = stateIndex + 1; end fclose(fp);
github
SNURobotics/AdaptiveControl_-master
skew.m
.m
AdaptiveControl_-master/IROS2018/adaptive control/matlab_code_MTtest/skew.m
436
utf_8
d16b20d6af4d5e9151fb41c84b47f8fd
%% return skew-symmetric matrix : r -> [r] or [r] - > r function mat=skew(r) % mat=[0 -r(3) r(2); % r(3) 0 -r(1); % -r(2) r(1) 0]; if (size(r) == [3,1]) mat=zeros(3); mat(1,2)=-r(3); mat(1,3)=r(2); mat(2,1)=r(3); mat(2,3)=-r(1); mat(3,1)=-r(2); mat(3,2)=r(1); elseif (size(r) == [3,3]) mat=zeros(3,1); mat(1,1)=r(3,2); mat(2,1)=r(1,3); mat(3,1)=r(2,1); end end
github
SNURobotics/AdaptiveControl_-master
robot_dyn_eq.m
.m
AdaptiveControl_-master/IROS2018/adaptive control/matlab_code_MTtest/robot_dyn_eq.m
1,057
utf_8
573fd2eca9a67040a6e9a0615df6ec80
% function [MM,CC,gg, Jt] = robot_dyn_eq(S, M, J,f_iti, q,q_dot) function [MM,CC,gg] = robot_dyn_eq(robot,q,q_dot) n_joints=robot.nDOF; SS=zeros(n_joints*6,n_joints); GG=eye(6*n_joints, 6*n_joints); JJ=zeros(6*n_joints, 6*n_joints); adV=zeros(6*n_joints, 6*n_joints); f_=cell(n_joints,1); % Ad_ft=zeros(6*n_joints, 6*n_joints); for i=1:n_joints SS(6*(i-1)+1:6*i,i)= robot.link(i).screw; JJ(6*(i-1)+1:6*i,6*(i-1)+1:6*i)=robot.link(i).J; f_{i}=robot.link(i).M*SE3_exp(robot.link(i).screw*q(i)); % Ad_ft(6*(i-1)+1:6*i,6*(i-1)+1:6*i)=Ad_T(invSE3(f_iti{i})); if i>1 f_ji=f_{i}; for j=(i-1):-1:1 GG(6*(i-1)+1:6*i,6*(j-1)+1:6*j)=Ad_T(invSE3(f_ji)); f_ji=f_{j}*f_ji; end end end V=GG*SS*q_dot; for i=1:n_joints adV(6*(i-1)+1:6*i,6*(i-1)+1:6*i)=ad_V(V(6*(i-1)+1:6*i,1)); end P0=zeros(6*n_joints,6); P0(1:6,1:6)=Ad_T(invSE3(f_{1})); MM=SS'*GG'*JJ*GG*SS; CC=SS'*GG'*(JJ*GG*adV-adV'*JJ*GG)*SS; gg=SS'*GG'*JJ*GG*P0*[0;0;0;0;0;9.8]; % Jt=-Ad_ft*GG*SS; end
github
SukritGupta17/Chess-Board-Recognition-master
DeepLearningImageClassificationExample.m
.m
Chess-Board-Recognition-master/Code/DeepLearningImageClassificationExample.m
15,434
utf_8
07974ce7f3f0aa58be243f2f530bd2d5
%% Image Category Classification Using Deep Learning % This example shows how to use a pre-trained Convolutional Neural Network % (CNN) as a feature extractor for training an image category classifier. % % Copyright 2016 The MathWorks, Inc. %% Overview % A Convolutional Neural Network (CNN) is a powerful machine learning % technique from the field of deep learning. CNNs are trained using large % collections of diverse images. From these large collections, CNNs can % learn rich feature representations for a wide range of images. These % feature representations often outperform hand-crafted features such as % HOG, LBP, or SURF. An easy way to leverage the power of CNNs, without % investing time and effort into training, is to use a pre-trained CNN as a % feature extractor. % % In this example, images from Caltech 101 are classified into categories % using a multiclass linear SVM trained with CNN features extracted from % the images. This approach to image category classification follows the % standard practice of training an off-the-shelf classifier using features % extracted from images. For example, the % <matlab:showdemo('ImageCategoryClassificationExample') Image Category % Classification Using Bag Of Features> example uses SURF features within a % bag of features framework to train a multiclass SVM. The difference here % is that instead of using image features such as HOG or SURF, features are % extracted using a CNN. And, as this example will show, the classifier % trained using CNN features provides close to 100% accuracy, which % is higher than the accuracy achieved using bag of features and SURF. % % Note: This example requires Computer Vision System Toolbox(TM), Image % Processing Toolbox(TM), Neural Network Toolbox(TM), Parallel Computing % Toolbox(TM), Statistics and Machine Learning Toolbox(TM), and a % CUDA-capable NVIDIA(TM) GPU with compute capability 3.0 or higher. function DeepLearningImageClassificationExample %% Check System Requirements % A CUDA-capable NVIDIA(TM) GPU with compute capability 3.0 or higher is % highly recommended to run this example. Query the GPU device to check if % it can run this example: % Get GPU device information % deviceInfo = gpuDevice; % % % Check the GPU compute capability % computeCapability = str2double(deviceInfo.ComputeCapability); % assert(computeCapability > 3.0, ... % 'This example requires a GPU device with compute capability 3.0 or higher.') %% Download Image Data % The category classifier will be trained on images from % <http://www.vision.caltech.edu/Image_Datasets/Caltech101 Caltech 101>. % Caltech 101 is one of the most widely cited and used image data sets, % collected by Fei-Fei Li, Marco Andreetto, and Marc 'Aurelio Ranzato. % Download the compressed data set from the following location url = 'http://www.vision.caltech.edu/Image_Datasets/Caltech101/101_ObjectCategories.tar.gz'; % Store the output in a temporary folder outputFolder = fullfile(tempdir, 'caltech101'); % define output folder %% % Note: Download time of the data depends on your internet connection. The % next set of commands use MATLAB to download the data and will block % MATLAB. Alternatively, you can use your web browser to first download the % dataset to your local disk. To use the file you downloaded from the web, % change the 'outputFolder' variable above to the location of the % downloaded file. if ~exist(outputFolder, 'dir') % download only once disp('Downloading 126MB Caltech101 data set...'); untar(url, outputFolder); end %% Load Images % Instead of operating on all of Caltech 101, which is time consuming, use % three of the categories: airplanes, ferry, and laptop. The image category % classifier will be trained to distinguish amongst these six categories. rootFolder = fullfile(outputFolder, '101_ObjectCategories'); categories = {'airplanes', 'ferry', 'laptop'}; %% % Create an |ImageDatastore| to help you manage the data. Because % |ImageDatastore| operates on image file locations, images are not loaded % into memory until read, making it efficient for use with large image % collections. imds = imageDatastore(fullfile(rootFolder, categories), 'LabelSource', 'foldernames'); %% % The |imds| variable now contains the images and the category labels % associated with each image. The labels are automatically assigned from % the folder names of the image files. Use |countEachLabel| to summarize % the number of images per category. tbl = countEachLabel(imds) %% % Because |imds| above contains an unequal number of images per category, % let's first adjust it, so that the number of images in the training set % is balanced. minSetCount = min(tbl{:,2}); % determine the smallest amount of images in a category % Use splitEachLabel method to trim the set. imds = splitEachLabel(imds, minSetCount, 'randomize'); % Notice that each set now has exactly the same number of images. countEachLabel(imds) %% % Below, you can see example images from three of the categories included % in the dataset. % Find the first instance of an image for each category airplanes = find(imds.Labels == 'airplanes', 1); ferry = find(imds.Labels == 'ferry', 1); laptop = find(imds.Labels == 'laptop', 1); figure subplot(1,3,1); imshow(readimage(imds,airplanes)) subplot(1,3,2); imshow(readimage(imds,ferry)) subplot(1,3,3); imshow(readimage(imds,laptop)) %% Download Pre-trained Convolutional Neural Network (CNN) % Now that the images are prepared, you will need to download a pre-trained % CNN model for this example. There are several pre-trained networks that % have gained popularity. Most of these have been trained on the ImageNet % dataset, which has 1000 object categories and 1.2 million training % images[1]. "AlexNet" is one such model and can be downloaded from % MatConvNet[2,3]: % Location of pre-trained "AlexNet" cnnURL = 'http://www.vlfeat.org/matconvnet/models/beta16/imagenet-caffe-alex.mat'; % Store CNN model in a temporary folder cnnMatFile = fullfile(tempdir, 'imagenet-caffe-alex.mat'); %% % Note: Download time of the data depends on your internet connection. The % next set of commands use MATLAB to download the data and will block % MATLAB. Alternatively, you can use your web browser to first download the % dataset to your local disk. To use the file you downloaded from the web, % change the 'cnnMatFile' variable above to the location of the downloaded % file. if ~exist(cnnMatFile, 'file') % download only once disp('Downloading pre-trained CNN model...'); websave(cnnMatFile, cnnURL); end %% Load Pre-trained CNN % The CNN model is saved in MatConvNet's format [3]. Load the MatConvNet % network data into |convnet|, a |SeriesNetwork| object from Neural Network % Toolbox(TM), using the helper function |helperImportMatConvNet|. A % SeriesNetwork object can be used to inspect the network architecture, % classify new data, and extract network activations from specific layers. % Load MatConvNet network into a SeriesNetwork convnet = helperImportMatConvNet(cnnMatFile) %% % |convnet.Layers| defines the architecture of the CNN. % View the CNN architecture convnet.Layers %% % The first layer defines the input dimensions. Each CNN has a different % input size requirements. The one used in this example requires image % input that is 227-by-227-by-3. % Inspect the first layer convnet.Layers(1) %% % The intermediate layers make up the bulk of the CNN. These are a series % of convolutional layers, interspersed with rectified linear units (ReLU) % and max-pooling layers [2]. Following the these layers are 3 % fully-connected layers. % % The final layer is the classification layer and its properties depend on % the classification task. In this example, the CNN model that was loaded % was trained to solve a 1000-way classification problem. Thus the % classification layer has 1000 classes from the ImageNet dataset. % Inspect the last layer convnet.Layers(end) % Number of class names for ImageNet classification task numel(convnet.Layers(end).ClassNames) %% % Note that the CNN model is not going to be used for the original % classification task. It is going to be re-purposed to solve a different % classification task on the Caltech 101 dataset. %% Pre-process Images For CNN % As mentioned above, |convnet| can only process RGB images that are % 227-by-227. To avoid re-saving all the images in Caltech 101 to this % format, setup the |imds| read function, |imds.ReadFcn|, to pre-process % images on-the-fly. The |imds.ReadFcn| is called every time an image is % read from the |ImageDatastore|. % Set the ImageDatastore ReadFcn imds.ReadFcn = @(filename)readAndPreprocessImage(filename); %% % Note that other CNN models will have different input size constraints, % and may require other pre-processing steps. function Iout = readAndPreprocessImage(filename) I = imread(filename); % Some images may be grayscale. Replicate the image 3 times to % create an RGB image. if ismatrix(I) I = cat(3,I,I,I); end % Resize the image as required for the CNN. Iout = imresize(I, [227 227]); % Note that the aspect ratio is not preserved. In Caltech 101, the % object of interest is centered in the image and occupies a % majority of the image scene. Therefore, preserving the aspect % ratio is not critical. However, for other data sets, it may prove % beneficial to preserve the aspect ratio of the original image % when resizing. end %% Prepare Training and Test Image Sets % Split the sets into training and validation data. Pick 30% of images % from each set for the training data and the remainder, 70%, for the % validation data. Randomize the split to avoid biasing the results. The % training and test sets will be processed by the CNN model. [trainingSet, testSet] = splitEachLabel(imds, 0.3, 'randomize'); %% Extract Training Features Using CNN % Each layer of a CNN produces a response, or activation, to an input % image. However, there are only a few layers within a CNN that are % suitable for image feature extraction. The layers at the beginning of the % network capture basic image features, such as edges and blobs. To see % this, visualize the network filter weights from the first convolutional % layer. This can help build up an intuition as to why the features % extracted from CNNs work so well for image recognition tasks. Note that % visualizing deeper layer weights is beyond the scope of this example. You % can read more about that in the work of Zeiler and Fergus [4]. % Get the network weights for the second convolutional layer w1 = convnet.Layers(2).Weights; % Scale and resize the weights for visualization w1 = mat2gray(w1); w1 = imresize(w1,5); % Display a montage of network weights. There are 96 individual sets of % weights in the first layer. figure montage(w1) title('First convolutional layer weights') %% % Notice how the first layer of the network has learned filters for % capturing blob and edge features. These "primitive" features are then % processed by deeper network layers, which combine the early features to % form higher level image features. These higher level features are better % suited for recognition tasks because they combine all the primitive % features into a richer image representation [5]. % % You can easily extract features from one of the deeper layers using the % |activations| method. Selecting which of the deep layers to choose is a % design choice, but typically starting with the layer right before the % classification layer is a good place to start. In |convnet|, the this % layer is named 'fc7'. Let's extract training features using that layer. featureLayer = 'fc7'; trainingFeatures = activations(convnet, trainingSet, featureLayer, ... 'MiniBatchSize', 32, 'OutputAs', 'columns'); %% % Note that the activations function automatically uses a GPU for % processing if one is available, otherwise, a CPU is used. Because of the % number of layers in AlexNet, using a GPU is highly recommended. Using a % the CPU to run the network will greatly increase the time it takes to % extract features. % % In the code above, the 'MiniBatchSize' is set 32 to ensure that the CNN % and image data fit into GPU memory. You may need to lower the % 'MiniBatchSize' if your GPU runs out of memory. Also, the activations % output is arranged as columns. This helps speed-up the multiclass linear % SVM training that follows. %% Train A Multiclass SVM Classifier Using CNN Features % Next, use the CNN image features to train a multiclass SVM classifier. A % fast Stochastic Gradient Descent solver is used for training by setting % the |fitcecoc| function's 'Learners' parameter to 'Linear'. This helps % speed-up the training when working with high-dimensional CNN feature % vectors, which each have a length of 4096. % Get training labels from the trainingSet trainingLabels = trainingSet.Labels; % Train multiclass SVM classifier using a fast linear solver, and set % 'ObservationsIn' to 'columns' to match the arrangement used for training % features. classifier = fitcecoc(trainingFeatures, trainingLabels, ... 'Learners', 'Linear', 'Coding', 'onevsall', 'ObservationsIn', 'columns'); %% Evaluate Classifier % Repeat the procedure used earlier to extract image features from % |testSet|. The test features can then be passed to the classifier to % measure the accuracy of the trained classifier. % Extract test features using the CNN testFeatures = activations(convnet, testSet, featureLayer, 'MiniBatchSize',32); % Pass CNN image features to trained classifier predictedLabels = predict(classifier, testFeatures); % Get the known labels testLabels = testSet.Labels; % Tabulate the results using a confusion matrix. confMat = confusionmat(testLabels, predictedLabels); % Convert confusion matrix into percentage form confMat = bsxfun(@rdivide,confMat,sum(confMat,2)) %% % Display the mean accuracy mean(diag(confMat)) %% Try the Newly Trained Classifier on Test Images % You can now apply the newly trained classifier to categorize new images. newImage = fullfile(rootFolder, 'airplanes', 'image_0690.jpg'); % Pre-process the images as required for the CNN img = readAndPreprocessImage(newImage); % Extract image features using the CNN imageFeatures = activations(convnet, img, featureLayer); %% % Make a prediction using the classifier label = predict(classifier, imageFeatures) %% References % [1] Deng, Jia, et al. "Imagenet: A large-scale hierarchical image % database." Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE % Conference on. IEEE, 2009. % % [2] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet % classification with deep convolutional neural networks." Advances in % neural information processing systems. 2012. % % [3] Vedaldi, Andrea, and Karel Lenc. "MatConvNet-convolutional neural % networks for MATLAB." arXiv preprint arXiv:1412.4564 (2014). % % [4] Zeiler, Matthew D., and Rob Fergus. "Visualizing and understanding % convolutional networks." Computer Vision-ECCV 2014. Springer % International Publishing, 2014. 818-833. % % [5] Donahue, Jeff, et al. "Decaf: A deep convolutional activation feature % for generic visual recognition." arXiv preprint arXiv:1310.1531 (2013). displayEndOfDemoMessage(mfilename) end
github
zhoujinglin/matlab-master
mkR.m
.m
matlab-master/video_fusion/mkR.m
807
utf_8
1d284110ac41a7451780fa347b65ff9f
% IM = mkR(SIZE, EXPT, ORIGIN) % % Compute a matrix of dimension SIZE (a [Y X] 2-vector, or a scalar) % containing samples of a radial ramp function, raised to power EXPT % (default = 1), with given ORIGIN (default = (size+1)/2, [1 1] = % upper left). All but the first argument are optional. % Eero Simoncelli, 6/96. function [res] = mkR(sz, expt, origin) sz = sz(:); if (size(sz,1) == 1) sz = [sz,sz]; end % ----------------------------------------------------------------- % OPTIONAL args: if (exist('expt') ~= 1) expt = 1; end if (exist('origin') ~= 1) origin = (sz+1)/2; end % ----------------------------------------------------------------- [xramp,yramp] = meshgrid( [1:sz(2)]-origin(2), [1:sz(1)]-origin(1) ); res = (xramp.^2 + yramp.^2).^(expt/2);
github
zhoujinglin/matlab-master
mkZonePlate.m
.m
matlab-master/video_fusion/mkZonePlate.m
666
utf_8
c8865ffd7d38f1f3cb5c4593ee1f7ff9
% IM = mkZonePlate(SIZE, AMPL, PHASE) % % Make a "zone plate" image: % AMPL * cos( r^2 + PHASE) % SIZE specifies the matrix size, as for zeros(). % AMPL (default = 1) and PHASE (default = 0) are optional. % Eero Simoncelli, 6/96. function [res] = mkZonePlate(sz, ampl, ph) sz = sz(:); if (size(sz,1) == 1) sz = [sz,sz]; end mxsz = max(sz(1),sz(2)); %------------------------------------------------------------ %% OPTIONAL ARGS: if (exist('ampl') ~= 1) ampl = 1; end if (exist('ph') ~= 1) ph = 0; end %------------------------------------------------------------ res = ampl * cos( (pi/mxsz) * mkR(sz,2) + ph );
github
zhoujinglin/matlab-master
ucurvrec3d.m
.m
matlab-master/video_fusion/ucurvrec3d.m
3,171
utf_8
0f315695d3e044d0a538bef4d38e96db
function im = ucurvrec3d(ydec, Cf, F) % UCURVREC3D 3-d ucurvelet reconstruction using normal 3-D window % % im = ucurvrec3d_s(ydec, Cf, F) % % Input: % Sz : size of the generated window % Cf : number of directional curvelet. In uniform curvelet, n is 3*2^n % r : parameter of the meyer window used in diameter direction % alpha : paramter for meyer window used in angle function % % Output: % FL: 2-D window of low pass function for lower resolution curvelet % F : cell of size n containing 2-D matrices of size s*s % % Example % % S = 512; % Cf = [6 6]; % alpha = 0.15; % r = pi*[0.3 0.5 0.85 1.15]; % Sz = 64;Lt = 2; % F = ucurv_win(S, N, r, alpha); % % See also FUN_MEYER % % tic % the multiresolution length if size(Cf,1) == 1 Cf = kron(ones(3,1), Cf); end % the multiresolution length Lt = size(Cf,2); % Size of image at lowest resolution SzL = size(ydec{1}); Sz = 2^Lt*SzL; % locate im imhf = zeros(SzL.*2^(Lt)); decim = 2^Lt*[1 1 1]; dir = 1; Dec = sqrt(prod(decim)); % low resolution image imhf = (1./sqrt(2))*upsamp_filtfft(ydec{1}, F{1}{1}, decim); % for each resolution estimation for inres = 2:(Lt+1) % parameter for the resolution --------------------------------------- % current size of image at resoltuion cs = SzL.*2^(inres-1); ncf = Cf(:,inres - 1); % tmp_cs_com = zeros(cs+1)+sqrt(-1)*zeros(cs+1); for dir = 1:3 switch dir case {1} n1 = ncf(2); n2 = ncf(3); decim2 = 2^(Lt+1-inres)*[2, 2*n1/3, 2*n2/3]; case {2} n1 = ncf(1); n2 = ncf(3); decim2 = 2^(Lt+1-inres)*[2*n1/3, 2, 2*n2/3]; case {3} n1 = ncf(1); n2 = ncf(2); decim2 = 2^(Lt+1-inres)*[2*n1/3, 2*n2/3, 2]; otherwise disp('Error'); end % switch n % case {12} % decim = 2^(Lt+1-inres)*[2 8 8; 8 2 8; 8 8 2]; % Dec = 16; % case {6} % decim = 2^(Lt+1-inres)*[2 4 4; 4 2 4; 4 4 2]; % Dec = 8; % case {3} % decim = 2^(Lt+1-inres)*[2 2 2; 2 2 2; 2 2 2]; % Dec = 4; % end % the main loop ------------------------------------------------------ for in1 = 1:n1 for in2 = 1:n2 Fc = F{inres}{dir}{in1,in2} ; imhf = imhf + ... upsamp_filtfft(ydec{inres}{dir}{in1,in2}, Fc, decim2); end end end % im = real(im3a+im3b); end im = real(ifftn(imhf)); end % ========================================================================= function interp_fft = upsamp_filtfft(subband, filtfft, decim) % toc % size of subband % disp('processing subband ...'); sz1 = size(subband); % upsampled in freq domain tmp = fftn(subband); interp_fft = repmat(tmp, decim); clear tmp; Dec = sqrt(2*prod(decim)); % filtering interp_fft = Dec*interp_fft.*filtfft; % tic end % =========================================================================
github
zhoujinglin/matlab-master
ucurvdec3d_s.m
.m
matlab-master/video_fusion/ucurvdec3d_s.m
4,297
utf_8
8bac35e6f8a639b0f5f585c2b8feb2bc
function [ydec, cf_ydec] = ucurvdec3d_s(im, Cf, F2, ind2, cfind ) % UCURVDEC3D_S 3-d ucurvelet decomposition using sparse 3-D window % % ydec = ucurvdec3d_s(im, Cf, F2, ind2, cfind ) % % Input: % Sz : size of the generated window % Cf : number of directional curvelet. In uniform curvelet, n is 3*2^n % r : parameter of the meyer window used in diameter direction % alpha : paramter for meyer window used in angle function % % Output: % FL: 2-D window of low pass function for lower resolution curvelet % % Example % % See also FUN_MEYER % % History % tic % % if size(Cf,1) == 1 Cf = kron(ones(3,1), Cf); end % the multiresolution length Lt = size(Cf,2); % Size of window im = single(im); % Sz = size(im); % image for processing % cim = im; fim3 = fftn(im); clear im; % low pass band ---------------------------------------------------------- sbind = 1; % Fc = ucurwin_extract(F2, ind2, cfind, sbind, Sz); max_ind2 = cfind(end,1); Fc2 = fim3(ind2(1:max_ind2)).*F2(1:max_ind2); clear fim3 F2; % tmp_cs_com = ucurwin_extract(Fc2, ind2, cfind, sbind, Sz); decim = 2^(Lt)*[1 1 1]; ydec{1} = (1./sqrt(2))*filter_decim(tmp_cs_com, decim); Lcol = size(cfind, 1); for incol = 2: Lcol % incol; % Fc = ucurwin_extract(F2, ind2, cfind, incol, Sz); % resolution index inres = cfind(incol, 2); % parameter for the resolution --------------------------------------- % current size of image at resoltuion cs = Sz./2^(inres-1); ncf = Cf(:,inres - 1); in1 = cfind(incol, 3); in2 = cfind(incol, 4); dir = cfind(incol, 5); % decimation ratio switch dir case {1} n1 = ncf(2); n2 = ncf(3); decim2 = 2^(Lt+1-inres)*[2, 2*n1/3, 2*n2/3]; case {2} n1 = ncf(1); n2 = ncf(3); decim2 = 2^(Lt+1-inres)*[2*n1/3, 2, 2*n2/3]; case {3} n1 = ncf(1); n2 = ncf(2); decim2 = 2^(Lt+1-inres)*[2*n1/3, 2*n2/3, 2]; otherwise disp('Error'); end % tmp_cs_com = ucurwin_extract(Fc2, ind2, cfind, incol, Sz); ydec{inres}{dir}{in1,in2} = filter_decim(tmp_cs_com, decim2); % tmp = filter_decim(tmp_cs_com, decim, dir); % ltmp = prod(size(tmp)); % cf_ydec(incol,1) = cf_ydec(incol-1,1)+ltmp; % % % resolution - dir - dir - pyramid % cf_ydec(incol,2:5) = cfind(incol+1,2:5); % ydec(cf_ydec(incol-1,1)+1:cf_ydec(incol,1)) = tmp(:); end % ========================================================================= function ucurwin_extract(F2, ind2, cfind, sbind, Sz) tmp_cs_com = single(zeros(Sz)); if (sbind==1) st = 1; else st = cfind(sbind-1, 1)+1; end ind_tmp = ind2(st:cfind(sbind, 1)); val_tmp = F2(st:cfind(sbind,1)); tmp_cs_com(ind_tmp) = val_tmp; end % ========================================================================= % % ========================================================================= % function ucurwin_extract(F2, ind2, cfind, sbind, Sz) % tmp_cs_com = single(zeros(Sz)); % ind_tmp = ind2(cfind(sbind, 1)+1:cfind(sbind+1, 1)); % val_tmp = F2(cfind(sbind)+1:cfind(sbind+1)); % tmp_cs_com(ind_tmp) = val_tmp; % end % % ========================================================================= end % ========================================================================= function subband = filter_decim(tmp, decim) % toc % dir % disp('processing subband ...'); % tmp = datfft.*filtfft; % size of image sz1 = size(tmp); % decimation ratio % decim2 = decim(dir,:); % size of subband and shifting step sz2 = sz1./decim; % decim in freq domain tmp2 = zeros(sz2); for in1 = 0:decim(1)-1 for in2 = 0:decim(2)-1 for in3 = 0:decim(3)-1 p1 = [in1, in2, in3].*sz2+1 ; p2 = ([in1, in2, in3]+1).*sz2; tmp2 = tmp2 + ... tmp(p1(1):p2(1), p1(2):p2(2), p1(3):p2(3)); end end end subband = single(sqrt(2/prod(decim)).*ifftn(tmp2)); % tic end % % % ========================================================================= % function Fc = ucurwin_extract(F2, ind2, cfind, sbind, Sz) % Fc = single(zeros(Sz)); % ind_tmp = ind2(cfind(sbind, 1)+1:cfind(sbind+1, 1)); % val_tmp = F2(cfind(sbind)+1:cfind(sbind+1)); % Fc(ind_tmp) = val_tmp; % end
github
zhoujinglin/matlab-master
ucurvrec3d_s.m
.m
matlab-master/video_fusion/ucurvrec3d_s.m
3,421
utf_8
6ef728e9d4077d1fe26222dd8d6bb03a
function im = ucurvrec3d_s(ydec, Cf, F2, ind2, cfind ) % UCURVREC3D_S 3-d ucurvelet reconstruction using sparse 3-D window % % im = ucurvrec3d_s(ydec, Cf, F2, ind2, cfind ) % % Input: % Sz : size of the generated window % Cf : number of directional curvelet. In uniform curvelet, n is 3*2^n % r : parameter of the meyer window used in diameter direction % alpha : paramter for meyer window used in angle function % % Output: % im : Reconstructed image % % Example % % Sz = [32 64 128]; % Cf = [3 6]; % r = pi*[0.3 0.5 0.85 1.15]; % alpha = 0.15; % F2 = ucurvwin3d(Sz, Cf, r, alpha); % im = rand(Sz); % [F2, ind, cf] = ucurvwin3d_s(Sz, 6, r, alpha); % ydec = ucurvdec3d_s(im, 6, F2, ind, cf ); % imr = ucurvrec3d_s(ydec, 6, F2, ind, cf ); % % See also UCURVDEC3D_S, UCURVWIN3D_S % % tic if size(Cf,1) == 1 Cf = kron(ones(3,1), Cf); end % the multiresolution length Lt = size(Cf,2); % Size of image at lowest resolution SzL = size(ydec{1}); Sz = 2^Lt*SzL; % locate im imhf = zeros(SzL.*2^(Lt)); decim = 2^Lt*[1 1 1]; dir = 1; Dec = sqrt(prod(decim)); % low resolution image sbind = 1; Fc = ucurwin_extract(F2, ind2, cfind, sbind, Sz); imhf = (1./sqrt(2))*upsamp_filtfft(ydec{1}, Fc, decim); % for each resolution estimation Lcol = size(cfind, 1); for incol = 2: Lcol Fc = ucurwin_extract(F2, ind2, cfind, incol, Sz); % resolution index inres = cfind(incol, 2); % parameter for the resolution --------------------------------------- % current size of image at resoltuion cs = SzL.*2^(inres-1); ncf = Cf(:,inres - 1); in1 = cfind(incol, 3); in2 = cfind(incol, 4); dir = cfind(incol, 5); % decimation ratio switch dir case {1} n1 = ncf(2); n2 = ncf(3); decim2 = 2^(Lt+1-inres)*[2, 2*n1/3, 2*n2/3]; case {2} n1 = ncf(1); n2 = ncf(3); decim2 = 2^(Lt+1-inres)*[2*n1/3, 2, 2*n2/3]; case {3} n1 = ncf(1); n2 = ncf(2); decim2 = 2^(Lt+1-inres)*[2*n1/3, 2*n2/3, 2]; otherwise disp('Error'); end imhf = imhf + ... upsamp_filtfft(ydec{inres}{dir}{in1,in2}, Fc, decim2); end im = real(ifftn(imhf)); end % ========================================================================= function interp_fft = upsamp_filtfft(subband, filtfft, decim) % toc % size of subband % disp('processing subband ...'); sz1 = size(subband); % decimation ratio % decim2 = decim(dir,:); % upsampled in freq domain tmp = fftn(subband); interp_fft = repmat(tmp, decim); clear tmp; Dec = sqrt(2*prod(decim)); % filtering interp_fft = Dec*interp_fft.*filtfft; % tic end % % ========================================================================= % function ucurwin_extract(F2, ind2, cfind, sbind, Sz) % tmp_cs_com = single(zeros(Sz)); % if (sbind>0) % st = 1; % else % st = cfind(sbind-1, 1)+1; % end % % ind_tmp = ind2(st:cfind(sbind, 1)); % val_tmp = F2(st:cfind(sbind)); % tmp_cs_com(ind_tmp) = val_tmp; % end % % ========================================================================= % ========================================================================= function Fc = ucurwin_extract(F2, ind2, cfind, sbind, Sz) Fc = zeros(Sz); if (sbind==1) st = 1; else st = cfind(sbind-1, 1)+1; end ind_tmp = ind2(st:cfind(sbind, 1)); val_tmp = F2(st:cfind(sbind)); Fc(ind_tmp) = val_tmp; end
github
zhoujinglin/matlab-master
ucurvdec3d.m
.m
matlab-master/video_fusion/ucurvdec3d.m
3,537
utf_8
3c1056a7c969012669fc15cdb74d7a32
function ydec = ucurvdec3d(im, Cf, F) % UCURVDEC3D 3-d ucurvelet decomposition using normal 3-D window % % ydec = ucurvdec3d_s(im, Cf, F) % % Input: % Sz : size of the generated window % Cf : number of directional curvelet. In uniform curvelet, n is 3*2^n % r : parameter of the meyer window used in diameter direction % alpha : paramter for meyer window used in angle function % % Output: % FL: 2-D window of low pass function for lower resolution curvelet % F : cell of size n containing 2-D matrices of size s*s % % Example % % See also FUN_MEYER % % History % % tic if size(Cf,1) == 1 Cf = kron(ones(3,1), Cf); end % the multiresolution length Lt = size(Cf,2); % Size of window Sz = size(im); % image for processing % cim = im; fim3 = fftn(im); % low pass band ----------------------------------------------------------- FL = F{1}{1}; tmp_cs_com = fim3.*FL; decim = 2^(Lt)*[1 1 1]; ydec{1} = (1./sqrt(2))*filter_decim(tmp_cs_com, decim); clear FL n; clear tmp_cs_real tmp_cs_com; % for each resolution estimation for inres = 2:Lt+1 % parameter for the resolution ---------------------------------------- % current size of image at resoltuion cs = Sz./2^(inres-1); ncf = Cf(:,inres - 1); for dir = 1:3 switch dir case {1} n1 = ncf(2); n2 = ncf(3); decim2 = 2^(Lt+1-inres)*[2, 2*n1/3, 2*n2/3]; case {2} n1 = ncf(1); n2 = ncf(3); decim2 = 2^(Lt+1-inres)*[2*n1/3, 2, 2*n2/3]; case {3} n1 = ncf(1); n2 = ncf(2); decim2 = 2^(Lt+1-inres)*[2*n1/3, 2*n2/3, 2]; otherwise disp('Error'); end % % decimation ratio % switch n % case {12} % decim = 2^(Lt+1-inres)*[2 8 8; 8 2 8; 8 8 2]; % Dec = 16; % case {6} % decim = 2^(Lt+1-inres)*[2 4 4; 4 2 4; 4 4 2]; % Dec = 8; % case {3} % decim = 2^(Lt+1-inres)*[2 2 2; 2 2 2; 2 2 2]; % Dec = 4; % end % % FFT image at current resolution % fim3 = fftn(cim); % clear cim; % the main loop --------------------------------------------------- % in = 0; for in1 = 1:n1 for in2 = 1:n2 Fc = F{inres}{dir}{in1,in2} ; tmp_cs_com = fim3.*Fc; ydec{inres}{dir}{in1,in2} = filter_decim(tmp_cs_com,decim2); end end end end % ydec{1} = cim; end % ========================================================================= function subband = filter_decim(tmp, decim) % toc % dir % disp('processing subband ...'); % tmp = datfft.*filtfft; % size of image sz1 = size(tmp); % decimation ratio % decim2 = decim(dir,:); % size of subband and shifting ste sz2 = sz1./decim; % decim in freq domain tmp2 = zeros(sz2); for in1 = 0:decim(1)-1 for in2 = 0:decim(2)-1 for in3 = 0:decim(3)-1 p1 = [in1, in2, in3].*sz2+1 ; p2 = ([in1, in2, in3]+1).*sz2; tmp2 = tmp2 + ... tmp(p1(1):p2(1), p1(2):p2(2), p1(3):p2(3)); end end end subband = single(sqrt(2/prod(decim)).*ifftn(tmp2)); % tic end % =========================================================================
github
zhoujinglin/matlab-master
ucurvwin3d_s.m
.m
matlab-master/video_fusion/ucurvwin3d_s.m
13,516
utf_8
a62c1b03857e727311b10e423f6b00f4
function [F2, ind2, cf] = ucurvwin3d_s(Sz, Cf, r, alpha) % UCURVWIN3D_S Generate the sparse curvelet windows that used in 3-D % uniform curvelet inverse and foward transform % % [F2, ind2, cf] = ucurvwin3d_s(Sz, Cf, r, alpha) % % Input: % Sz : size of the generated window % Cf : number of directional curvelet. In uniform curvelet, n is 3*2^n % r : parameter of the meyer window used in diameter direction % alpha : paramter for meyer window used in angle function % % Output: % F2 : a column of curvelet window value that are diff. from zero % ind : index of position correspond to value stored in F % cf : configuration paramter, specify ending point of window value in F % and ind. % % Example % % Sz = [32 64 128]; % Cf = [3 6]; % r = pi*[0.3 0.5 0.85 1.15]; % alpha = 0.15; % F2 = ucurvwin3d(Sz, Cf, r, alpha); % im = rand(Sz); % [F2, ind, cf] = ucurvwin3d_s(Sz, 6, r, alpha); % ydec = ucurvdec3d_s(im, 6, F2, ind, cf ); % imr = ucurvrec3d_s(ydec, 6, F2, ind, cf ); % % running time 6*64 - 6 sec, 6*128 - 53 sec % % See also UCURVDEC3D_S UCURVREC3D_S % if size(Cf,1) == 1 Cf = kron(ones(3,1), Cf); end % preallocate memory for F2 and ind2 Lcf = 1.5*prod(Sz); F2 = single(zeros(Lcf, 1)); ind2 = uint32(zeros(Lcf, 1)); % tic % the multiresolution length Lt = size(Cf,2); r = [r(1:2); r(3:4)]; for in = 1: Lt-1 r = [0.5*r(1,:); r ]; end % Size of window if max(size(Sz)) == 1 Sz = [Sz Sz Sz]; end cs = Sz; % create the grid S1 = -1.5*pi:pi/(cs(1)/2):(0.5*pi-pi/(cs(1)/2)); S2 = -1.5*pi:pi/(cs(2)/2):(0.5*pi-pi/(cs(2)/2)); S3 = -1.5*pi:pi/(cs(3)/2):(0.5*pi-pi/(cs(3)/2)); % create the mesh for estimate the angle function v(T(theta)) --------- [M31, M32] = adapt_grid(S1, S2); [M12, M13] = adapt_grid(S2, S3); [M21, M23] = adapt_grid(S1, S3); % pack; % for each resolution estimation for inres = 2:Lt+1 % parameter for the resolution --------------------------------------- % current size of image at resoltuion cs = Sz; % inres2 = Lt +2 - inres; ncf = Cf(:,inres-1); mncf = max(ncf); clear tmp_cs_real tmp_cs_com; % Low - high pass window --------------------------------------------- f1 = single(fun_meyer(abs(S1),[-2 -1 r(inres-1,:)])); f2 = single(fun_meyer(abs(S2),[-2 -1 r(inres-1,:)])); f3 = single(fun_meyer(abs(S3),[-2 -1 r(inres-1,:)])); % 3-d window FL3 = repmat(f1(:), [1, cs(2), cs(3)]).* ... permute(repmat(f2(:), [1, cs(1), cs(3)]),[2, 1, 3] ).* ... permute(repmat(f3(:), [1, cs(1), cs(2)]),[2, 3, 1]); f1 = single(fun_meyer(abs(S1),[-2 -1 r(inres,:)])); f2 = single(fun_meyer(abs(S2),[-2 -1 r(inres,:)])); f3 = single(fun_meyer(abs(S3),[-2 -1 r(inres,:)])); % 3-d window FR3 = repmat(f1(:), [1, cs(2), cs(3)]).* ... permute(repmat(f2(:), [1, cs(1), cs(3)]),[2, 1, 3] ).* ... permute(repmat(f3(:), [1, cs(1), cs(2)]),[2, 3, 1]); % high pass window FR3 = single(sqrt(FR3-FL3)); % low pass band ------------------------------------------------------ % if inres == 2 % FL = sqrt(circshift(FL3(1:cs(1),1:cs(2),1:cs(3)), 0.25*cs )); % F2{1}{inres-1} = FL; % clear FL FL3; % end % low pass band ------------------------------------------------------ if inres == 2 sbind = 1; FL = sqrt(circshift(FL3, 0.25*cs )); ind3 = find(FL); lind3 = length(ind3); % append index to ind2 ind2(1: lind3) = uint32(ind3(:)); % append value F2 F2(1: lind3) = FL(ind3); % append configuration information % cf = [cf; cf(end,1)+lind3, inres, in1, in2, dir]; % ind2 = find(FL); % F2 = FL(ind2); cf(sbind, 1) = lind3; cf(sbind, 2:5) = [1 1 1 1]; % cf = cf(:); clear FL FL3; end % angle meyer window ------------------------------------------------- % angd = 4/(2*mncf); % ang = angd*[-alpha alpha 1-alpha 1+alpha]; % angex = angd*[-2*alpha 2*alpha 1-2*alpha 1+2*alpha]; alpha2 = alpha*4/(2*mncf); for in = 1:3 n = ncf(in); angd = 4/(2*n); ang = [-alpha2,alpha2,(angd-alpha2),(angd+alpha2)]; if (n == 3) n2 = 2; else n2 = n/2; end for in2 = 1:n2 ang2 = -1+(in2-1)*angd+ang; switch in case {1} fang{3}{1}{in2} = sqrt(single(fun_meyer(M21,ang2))); fang{2}{1}{in2} = sqrt(single(fun_meyer(M31,ang2))); case {2} fang{1}{1}{in2} = sqrt(single(fun_meyer(M32,ang2))); fang{3}{2}{in2} = sqrt(single(fun_meyer(M12,ang2))); case {3} fang{2}{2}{in2} = sqrt(single(fun_meyer(M13,ang2))); fang{1}{2}{in2} = sqrt(single(fun_meyer(M23,ang2))); end end end % the very first filter require special handling % estimate the index of the point that need to be scale --------------- % first 3-D angle FA = repmat(fang{1}{1}{1},[1, 1, cs(3)]); FB = repmat(fang{1}{2}{1},[1, 1, cs(2)]); ang1 = FA.*permute(FB,[1, 3, 2]); % second 3-D angle FA = repmat(fang{2}{1}{1},[1, 1, cs(3)]); FB = repmat(fang{2}{2}{1},[1, 1, cs(1)]); ang2 = FA.*permute(FB,[3, 1, 2]); % third 3-D angle FA = repmat(fang{3}{1}{1},[1, 1, cs(2)]); FB = repmat(fang{3}{2}{1},[1, 1, cs(1)]); ang3 = permute(FA,[1, 3, 2]).*... permute(FB,[3, 1, 2]); ind = find(and( and ((ang1>0), (ang2>0)), (ang3>0) )); G1ex = ang1.^2 + ang2.^2 + ang3.^2; G1ex = sqrt(G1ex(ind)); clear ang1 ang2 ang3; % finish estimate ind and summation. clear n for in = 1:3 if (ncf(in) == 3) ncf2(in) = 2; else ncf2(in) = ncf(in)/2; end end % the main loop ------------------------------------------------------ % in = 0; for dir = 1:3 switch dir case {1} for in1 = 1:ncf2(2) for in2 = 1:ncf2(3) FA = repmat(fang{1}{1}{in1},[1, 1, cs(3)]); FB = permute(repmat(fang{1}{2}{in2},[1, 1, cs(2)]),[1, 3, 2]); tmp_cs_real = FA.*FB.*FR3; % now normalize those points in the angle wedge tmp_cs_real(ind) = tmp_cs_real(ind)./G1ex; clear FA FB; F = circshift((tmp_cs_real(1:cs(1), 1:cs(2), 1:cs(3))), ... [0.25*cs(1), 0.25*cs(2) , 0.25*cs(3)]); % F2{inres}{dir}{in1,in2} = F; addwindow2(F, inres, in1, in2, dir); if (in2~=ncf(3)+1-in2) Fc = rotate_ucurv3d_nest(F, 3); % F2{inres}{dir}{in1, ncf(3)+1-in2} = Fc; addwindow2(Fc, inres, in1, ncf(3)+1-in2, dir); end if (in1~=ncf(2)+1-in1) Fc = rotate_ucurv3d_nest(F, 2); % F2{inres}{dir}{ncf(2)+1-in1,in2} = Fc; addwindow2(Fc, inres, ncf(2)+1-in1, in2, dir); end if and(in1~=ncf(2)+1-in1, in2~=ncf(3)+1-in2) Fc = rotate_ucurv3d_nest(F, [3 ,2]); % F2{inres}{dir}{ncf(2)+1-in1,ncf(3)+1-in2} = Fc; addwindow2(Fc, inres, ncf(2)+1-in1, ncf(3)+1-in2, dir); end end end case {2} for in1 = 1:ncf2(1) for in2 = 1:ncf2(3) FA = repmat(fang{2}{1}{in1},[1, 1, cs(3)]); FB = permute(repmat(fang{2}{2}{in2},[1, 1, cs(1)]),[3, 1, 2]); tmp_cs_real = FA.*FB.*FR3; % now normalize those points in the angle wedge tmp_cs_real(ind) = tmp_cs_real(ind)./G1ex; clear FA FB; F = circshift((tmp_cs_real(1:cs(1), 1:cs(2), 1:cs(3))), ... [0.25*cs(1), 0.25*cs(2) , 0.25*cs(3)]); % F2{inres}{dir}{in1,in2} = F; addwindow2(F, inres, in1, in2, dir); if (in2~=ncf(3)+1-in2) Fc = rotate_ucurv3d_nest(F, 3); % F2{inres}{dir}{in1, ncf(3)+1-in2} = Fc; addwindow2(Fc, inres, in1, ncf(3)+1-in2, dir); end if (in1~=ncf(1)+1-in1) Fc = rotate_ucurv3d_nest(F, 1); % F2{inres}{dir}{ncf(1)+1-in1,in2} = Fc; addwindow2(Fc, inres, ncf(1)+1-in1, in2, dir); end if and(in1~=ncf(1)+1-in1, in2~=ncf(3)+1-in2) Fc = rotate_ucurv3d_nest(F, [3, 1]); % F2{inres}{dir}{ncf(1)+1-in1,ncf(3)+1-in2} = Fc; addwindow2(Fc, inres, ncf(1)+1-in1, ncf(3)+1-in2, dir); end end end case {3} for in1 = 1:ncf2(1) for in2 = 1:ncf2(2) FA = permute(repmat(fang{3}{1}{in1},[1, 1, cs(2)]),[ 1 3 2]); FB = permute(repmat(fang{3}{2}{in2},[1, 1, cs(1)]),[3, 1, 2]); tmp_cs_real = FA.*... FB.*FR3; % now normalize those points in the angle wedge tmp_cs_real(ind) = tmp_cs_real(ind)./G1ex; clear FA FB; F = circshift((tmp_cs_real(1:cs(1), 1:cs(2), 1:cs(3))), ... [0.25*cs(1), 0.25*cs(2) , 0.25*cs(3)]); % F2{inres}{dir}{in1,in2} = F; addwindow2(F, inres, in1, in2, dir); if (in2~=ncf(2)+1-in2) Fc = rotate_ucurv3d_nest(F, 2); % F2{inres}{dir}{in1, ncf(2)+1-in2} = Fc; addwindow2(Fc, inres, in1, ncf(2)+1-in2, dir); end if (in1~=ncf(1)+1-in1) Fc = rotate_ucurv3d_nest(F, 1); % F2{inres}{dir}{ncf(1)+1-in1, in2} = Fc; addwindow2(Fc, inres, ncf(1)+1-in1, in2, dir); end if and(in1~=ncf(1)+1-in1, in2~=ncf(2)+1-in2) Fc = rotate_ucurv3d_nest(F, [1, 2]); % F2{inres}{dir}{ncf(1)+1-in1,ncf(2)+1-in2} = Fc; addwindow2(Fc, inres, ncf(1)+1-in1, ncf(2)+1-in2, dir); end end end otherwise disp('Error switch'); end end end % addwindow2 -------------------------------------------------------------- % nested function to handle sbind, F2, ind2, cf function addwindow2(tmp, inres, in1, in2, dir) sbind = sbind+1; % index and length ind3 = find(tmp); % lind3 = length(ind3); % append index to ind2 ind2(cf(end,1)+1: cf(end,1)+lind3) = uint32(ind3(:)); % append value F2 F2(cf(end,1)+1: cf(end,1)+lind3) = tmp(ind3); % append configuration information cf = [cf; cf(end,1)+lind3, inres, in1, in2, dir]; end % ------------------------------------------------------------------------ end %-------------------------------------------------------------------------- % utility functions %-------------------------------------------------------------------------- % flip 3-D matrix function ------------------------------------------------ function Fc = rotate_ucurv3d_nest(F, para) Fc = F; for in = 1: length(para) switch para(in) case {1} Fc = circshift(flipdim(Fc, 1), [1 0 0]); case {2} Fc = circshift(flipdim(Fc, 2), [0 1 0]); case {3} Fc = circshift(flipdim(Fc, 3), [0 0 1]); otherwise disp('Error'); end end end % create 2-D grid function------------------------------------------------- function [M1, M2] = adapt_grid(S1, S2) [x1, x2] = meshgrid(S2,S1); % scale the grid approximate the tan theta function ------------------ % creat two scale grid for mostly horizontal and vertical direction % first grid t1 = zeros(size(x1)); ind = and(x1~=0, abs(x2) <= abs(x1)); t1(ind) = -x2(ind)./x1(ind); t2 = zeros(size(x1)); ind = and(x2~=0, abs(x1) < abs(x2)); t2(ind) = x1(ind)./x2(ind); t3 = t2; t3(t2<0) = t2(t2<0)+2; t3(t2>0) = t2(t2>0)-2; M1 = t1+t3; M1(x1>=0) = -2; % second grid t1 = zeros(size(x1)); ind = and(x2~=0, abs(x1) <= abs(x2)); t1(ind) = -x1(ind)./x2(ind); t2 = zeros(size(x1)); ind = and(x1~=0, abs(x2) < abs(x1)); t2(ind) = x2(ind)./x1(ind); t3 = t2; t3(t2<0) = t2(t2<0)+2; t3(t2>0) = t2(t2>0)-2; M2 = t1+t3; M2(x2>=0) = -2; clear t1 t2 t3; end % addwindow -------------------------------------------------------------- function [sbind, F2, ind, cf] = addwindow(sbind, F2, ind, cf, tmp, inres, in1, in2, dir) sbind = sbind+1; ind2 = find(abs(tmp)>10^(-9)); ind = [ind;ind2]; F2 = [F2;tmp(ind2)]; cf = [cf;length(F2), inres, in1, in2, dir]; end
github
zhoujinglin/matlab-master
ucurvwin3d.m
.m
matlab-master/video_fusion/ucurvwin3d.m
9,774
utf_8
b2d4a9150b181494e86ae0331f19eb0d
function F2 = ucurvwin3d(Sz, Cf, r, alpha) % UCURV_WIN3D Generate the curvelet windows that used in 3-D uniform curvelet % inverse and foward transform % % F = ucurv_win(Sz, Cf, r, alpha) % % Input: % Sz : size of the generated window % Cf : number of directional curvelet. In uniform curvelet, n is 3*2^n % r : parameter of the meyer window used in diameter direction % alpha : paramter for meyer window used in angle function % % Output: % FL: 2-D window of low pass function for lower resolution curvelet % F : cell of size n containing 2-D matrices of size s*s % % Example % % S = 512; % Cf = [6 6]; % alpha = 0.15; % r = pi*[0.3 0.5 0.85 1.15]; % Sz = 64;Lt = 2; % F = ucurv_win(S, N, r, alpha); % % See also UCURVDEC3D_S UCURVREC3D_S % % tic % the multiresolution length % if size(Cf,1) == 1 Cf = kron(ones(3,1), Cf); end Lt = size(Cf,2); r = [r(1:2); r(3:4)]; for in = 1: Lt-1 r = [0.5*r(1,:); r ]; end % Size of window if max(size(Sz)) == 1 Sz = [Sz Sz Sz]; end cs = Sz; % create the grid S1 = -1.5*pi:pi/(cs(1)/2):(0.5*pi-pi/(cs(1)/2)); S2 = -1.5*pi:pi/(cs(2)/2):(0.5*pi-pi/(cs(2)/2)); S3 = -1.5*pi:pi/(cs(3)/2):(0.5*pi-pi/(cs(3)/2)); % create the mesh for estimate the angle function v(T(theta)) --------- [M31, M32] = adapt_grid(S1, S2); [M12, M13] = adapt_grid(S2, S3); [M21, M23] = adapt_grid(S1, S3); % for each resolution estimation for inres = 2:Lt+1 % parameter for the resolution --------------------------------------- % current size of image at resoltuion cs = Sz; % inres2 = Lt +2 - inres; ncf = Cf(:,inres-1); mncf = max(ncf); clear tmp_cs_real tmp_cs_com; % Low - high pass window --------------------------------------------- f1 = single(fun_meyer(abs(S1),[-2 -1 r(inres-1,:)])); f2 = single(fun_meyer(abs(S2),[-2 -1 r(inres-1,:)])); f3 = single(fun_meyer(abs(S3),[-2 -1 r(inres-1,:)])); % 3-d window FL3 = repmat(f1(:), [1, cs(2), cs(3)]).* ... permute(repmat(f2(:), [1, cs(1), cs(3)]),[2, 1, 3] ).* ... permute(repmat(f3(:), [1, cs(1), cs(2)]),[2, 3, 1]); f1 = single(fun_meyer(abs(S1),[-2 -1 r(inres,:)])); f2 = single(fun_meyer(abs(S2),[-2 -1 r(inres,:)])); f3 = single(fun_meyer(abs(S3),[-2 -1 r(inres,:)])); % 3-d window FR3 = repmat(f1(:), [1, cs(2), cs(3)]).* ... permute(repmat(f2(:), [1, cs(1), cs(3)]),[2, 1, 3] ).* ... permute(repmat(f3(:), [1, cs(1), cs(2)]),[2, 3, 1]); % high pass window FR3 = FR3-FL3; % low pass band ------------------------------------------------------ if inres == 2 FL = sqrt(circshift(FL3(1:cs(1),1:cs(2),1:cs(3)), 0.25*cs )); F2{1}{inres-1} = FL; clear FL FL3; end % angle meyer window ------------------------------------------------- % angd = 4/(2*mncf); % ang = angd*[-alpha alpha 1-alpha 1+alpha]; % angex = angd*[-2*alpha 2*alpha 1-2*alpha 1+2*alpha]; alpha2 = alpha*4/(2*mncf); for in = 1:3 n = ncf(in); angd = 4/(2*n); ang = [-alpha2,alpha2,(angd-alpha2),(angd+alpha2)]; if (n == 3) n2 = 2; else n2 = n/2; end for in2 = 1:n2 ang2 = -1+(in2-1)*angd+ang; switch in case {1} fang{3}{1}{in2} = single(fun_meyer(M21,ang2)); fang{2}{1}{in2} = single(fun_meyer(M31,ang2)); case {2} fang{1}{1}{in2} = single(fun_meyer(M32,ang2)); fang{3}{2}{in2} = single(fun_meyer(M12,ang2)); case {3} fang{2}{2}{in2} = single(fun_meyer(M13,ang2)); fang{1}{2}{in2} = single(fun_meyer(M23,ang2)); end end end % the very first filter require special handling % estimate the index of the point that need to be scale --------------- % first 3-D angle FA = repmat(fang{1}{1}{1},[1, 1, cs(3)]); FB = repmat(fang{1}{2}{1},[1, 1, cs(2)]); ang1 = FA.*permute(FB,[1, 3, 2]); % second 3-D angle FA = repmat(fang{2}{1}{1},[1, 1, cs(3)]); FB = repmat(fang{2}{2}{1},[1, 1, cs(1)]); ang2 = FA.*permute(FB,[3, 1, 2]); % third 3-D angle FA = repmat(fang{3}{1}{1},[1, 1, cs(2)]); FB = repmat(fang{3}{2}{1},[1, 1, cs(1)]); ang3 = permute(FA,[1, 3, 2]).*... permute(FB,[3, 1, 2]); ind = and( and ((ang1>0), (ang2>0)), (ang3>0) ); G1ex = ang1 + ang2 + ang3; clear ang1 ang2 ang3; % finish estimate ind and summation. clear n for in = 1:3 if (ncf(in) == 3) ncf2(in) = 2; else ncf2(in) = ncf(in)/2; end end % the main loop ------------------------------------------------------ % in = 0; for dir = 1:3 switch dir case {1} for in1 = 1:ncf2(2) for in2 = 1:ncf2(3) FA = repmat(fang{1}{1}{in1},[1, 1, cs(3)]); FB = repmat(fang{1}{2}{in2},[1, 1, cs(2)]); tmp_cs_real = FA.*permute(FB,[1, 3, 2]).*FR3; % now normalize those points in the angle wedge tmp_cs_real(ind) = tmp_cs_real(ind)./G1ex(ind); clear FA FB; F = circshift(sqrt(tmp_cs_real(1:cs(1), 1:cs(2), 1:cs(3))), ... [0.25*cs(1), 0.25*cs(2) , 0.25*cs(3)]); F2{inres}{dir}{in1,in2} = F; Fc = rotate_ucurv3d_nest(F, 3); F2{inres}{dir}{in1, ncf(3)+1-in2} = Fc; Fc = rotate_ucurv3d_nest(F, 2); F2{inres}{dir}{ncf(2)+1-in1,in2} = Fc; Fc = rotate_ucurv3d_nest(F, [3 ,2]); F2{inres}{dir}{ncf(2)+1-in1,ncf(3)+1-in2} = Fc; end end case {2} for in1 = 1:ncf2(1) for in2 = 1:ncf2(3) FA = repmat(fang{2}{1}{in1},[1, 1, cs(3)]); FB = repmat(fang{2}{2}{in2},[1, 1, cs(1)]); tmp_cs_real = FA.*permute(FB,[3, 1, 2]).*FR3; % now normalize those points in the angle wedge tmp_cs_real(ind) = tmp_cs_real(ind)./G1ex(ind); clear FA FB; F = circshift(sqrt(tmp_cs_real(1:cs(1), 1:cs(2), 1:cs(3))), ... [0.25*cs(1), 0.25*cs(2) , 0.25*cs(3)]); F2{inres}{dir}{in1,in2} = F; Fc = rotate_ucurv3d_nest(F, 3); F2{inres}{dir}{in1, ncf(3)+1-in2} = Fc; Fc = rotate_ucurv3d_nest(F, 1); F2{inres}{dir}{ncf(1)+1-in1,in2} = Fc; Fc = rotate_ucurv3d_nest(F, [3, 1]); F2{inres}{dir}{ncf(1)+1-in1,ncf(3)+1-in2} = Fc; end end case {3} for in1 = 1:ncf2(1) for in2 = 1:ncf2(2) FA = repmat(fang{3}{1}{in1},[1, 1, cs(2)]); FB = repmat(fang{3}{2}{in2},[1, 1, cs(1)]); tmp_cs_real = permute(FA,[ 1 3 2]).*... permute(FB,[3, 1, 2]).*FR3; % now normalize those points in the angle wedge tmp_cs_real(ind) = tmp_cs_real(ind)./G1ex(ind); clear FA FB; F = circshift(sqrt(tmp_cs_real(1:cs(1), 1:cs(2), 1:cs(3))), ... [0.25*cs(1), 0.25*cs(2) , 0.25*cs(3)]); F2{inres}{dir}{in1,in2} = F; Fc = rotate_ucurv3d_nest(F, 2); F2{inres}{dir}{in1, ncf(2)+1-in2} = Fc; Fc = rotate_ucurv3d_nest(F, 1); F2{inres}{dir}{ncf(1)+1-in1, in2} = Fc; Fc = rotate_ucurv3d_nest(F, [1, 2]); F2{inres}{dir}{ncf(1)+1-in1,ncf(2)+1-in2} = Fc; end end otherwise disp('Error switch'); end end end end %-------------------------------------------------------- % utility function %-------------------------------------------------------- % flip 3-D matrix function ------------------------------------------------ function Fc = rotate_ucurv3d_nest(F, para) Fc = F; for in = 1: length(para) switch para(in) case {1} Fc = circshift(flipdim(Fc, 1), [1 0 0]); case {2} Fc = circshift(flipdim(Fc, 2), [0 1 0]); case {3} Fc = circshift(flipdim(Fc, 3), [0 0 1]); otherwise disp('Error'); end end end % create 2-D grid function------------------------------------------------- function [M1, M2] = adapt_grid(S1, S2) [x1, x2] = meshgrid(S2,S1); % scale the grid approximate the tan theta function ------------------ % creat two scale grid for mostly horizontal and vertical direction % firt grid t1 = zeros(size(x1)); ind = and(x1~=0, abs(x2) <= abs(x1)); t1(ind) = -x2(ind)./x1(ind); t2 = zeros(size(x1)); ind = and(x2~=0, abs(x1) < abs(x2)); t2(ind) = x1(ind)./x2(ind); t3 = t2; t3(t2<0) = t2(t2<0)+2; t3(t2>0) = t2(t2>0)-2; M1 = t1+t3; M1(x1>=0) = -2; % second grid t1 = zeros(size(x1)); ind = and(x2~=0, abs(x1) <= abs(x2)); t1(ind) = -x1(ind)./x2(ind); t2 = zeros(size(x1)); ind = and(x1~=0, abs(x2) < abs(x1)); t2(ind) = x2(ind)./x1(ind); t3 = t2; t3(t2<0) = t2(t2<0)+2; t3(t2>0) = t2(t2>0)-2; M2 = t1+t3; M2(x2>=0) = -2; clear t1 t2 t3; end
github
zhoujinglin/matlab-master
iisum.m
.m
matlab-master/video_fusion/MST_SR_fusion_toolbox/iisum.m
390
utf_8
065f814dffc187bce6e3caf48b6b642a
%--------------------------------------------------------- %--------------------------------------------------------- function sum = iisum(iimg,x1,y1,x2,y2) if(x1>1 && y1>1) sum = iimg(y2,x2)+iimg(y1-1,x1-1)-iimg(y1-1,x2)-iimg(y2,x1-1); elseif(x1<=1 && y1>1) sum = iimg(y2,x2)-iimg(y1-1,x2); elseif(y1<=1 && x1>1) sum = iimg(y2,x2)-iimg(y2,x1-1); else sum = iimg(y2,x2); end
github
zhoujinglin/matlab-master
fdct_wrapping_dispcoef.m
.m
matlab-master/video_fusion/MST_SR_fusion_toolbox/fdct_wrapping_matlab/fdct_wrapping_dispcoef.m
1,919
utf_8
2af5a55f76ce583e6879244514db1b37
function img = fdct_wrapping_dispcoef(C) % fdct_wrapping_dispcoef - returns an image containing all the curvelet coefficients % % Inputs % C Curvelet coefficients % % Outputs % img Image containing all the curvelet coefficients. The coefficents are rescaled so that % the largest coefficent in each subband has unit norm. % [m,n] = size(C{end}{1}); nbscales = floor(log2(min(m,n)))-3; img = C{1}{1}; img = img/max(max(abs(img))); %normalize for sc=2:nbscales-1 nd = length(C{sc})/4; wcnt = 0; ONE = []; [u,v] = size(C{sc}{wcnt+1}); for w=1:nd ONE = [ONE, fdct_wrapping_dispcoef_expand(u,v,C{sc}{wcnt+w})]; end wcnt = wcnt+nd; TWO = []; [u,v] = size(C{sc}{wcnt+1}); for w=1:nd TWO = [TWO; fdct_wrapping_dispcoef_expand(u,v,C{sc}{wcnt+w})]; end wcnt = wcnt+nd; THREE = []; [u,v] = size(C{sc}{wcnt+1}); for w=1:nd THREE = [fdct_wrapping_dispcoef_expand(u,v,C{sc}{wcnt+w}), THREE]; end wcnt = wcnt+nd; FOUR = []; [u,v] = size(C{sc}{wcnt+1}); for w=1:nd FOUR = [fdct_wrapping_dispcoef_expand(u,v,C{sc}{wcnt+w}); FOUR]; end wcnt = wcnt+nd; [p,q] = size(img); [a,b] = size(ONE); [g,h] = size(TWO); m = 2*a+g; n = 2*h+b; %size of new image scale = max(max( max(max(abs(ONE))),max(max(abs(TWO))) ), max(max(max(abs(THREE))), max(max(abs(FOUR))) )); %scaling factor new = 0.5 * ones(m,n);%background value new(a+1:a+g,1:h) = FOUR/scale; new(a+g+1:2*a+g,h+1:h+b) = THREE/scale; new(a+1:a+g,h+b+1:2*h+b) = TWO/scale; new(1:a,h+1:h+b) = ONE/scale;%normalize dx = floor((g-p)/2); dy = floor((b-q)/2); new(a+1+dx:a+p+dx,h+1+dy:h+q+dy) = img; img = new; end function A = fdct_wrapping_dispcoef_expand(u,v,B) A = zeros(u,v); [p,q] = size(B); A(1:p,1:q) = B;
github
zhoujinglin/matlab-master
extend2.m
.m
matlab-master/video_fusion/MST_SR_fusion_toolbox/nsct_toolbox/extend2.m
1,792
utf_8
607c7de17e89483c3983b26b6987cb80
function y = extend2(x, ru, rd, cl, cr, extmod) % EXTEND2 2D extension % % y = extend2(x, ru, rd, cl, cr, extmod) % % Input: % x: input image % ru, rd: amount of extension, up and down, for rows % cl, cr: amount of extension, left and rigth, for column % extmod: extension mode. The valid modes are: % 'per': periodized extension (both direction) % 'qper_row': quincunx periodized extension in row % 'qper_col': quincunx periodized extension in column % % Output: % y: extended image % % Note: % Extension modes 'qper_row' and 'qper_col' are used multilevel % quincunx filter banks, assuming the original image is periodic in % both directions. For example: % [y0, y1] = fbdec(x, h0, h1, 'q', '1r', 'per'); % [y00, y01] = fbdec(y0, h0, h1, 'q', '2c', 'qper_col'); % [y10, y11] = fbdec(y1, h0, h1, 'q', '2c', 'qper_col'); % % See also: FBDEC [rx, cx] = size(x); switch extmod case 'per' I = getPerIndices(rx, ru, rd); y = x(I, :); I = getPerIndices(cx, cl, cr); y = y(:, I); case 'qper_row' rx2 = round(rx / 2); y = [[x(rx2+1:rx, cx-cl+1:cx); x(1:rx2, cx-cl+1:cx)], x, ... [x(rx2+1:rx, 1:cr); x(1:rx2, 1:cr)]]; I = getPerIndices(rx, ru, rd); y = y(I, :); case 'qper_col' cx2 = round(cx / 2); y = [x(rx-ru+1:rx, cx2+1:cx), x(rx-ru+1:rx, 1:cx2); x; ... x(1:rd, cx2+1:cx), x(1:rd, 1:cx2)]; I = getPerIndices(cx, cl, cr); y = y(:, I); otherwise error('Invalid input for EXTMOD') end %----------------------------------------------------------------------------% % Internal Function(s) %----------------------------------------------------------------------------% function I = getPerIndices(lx, lb, le) I = [lx-lb+1:lx , 1:lx , 1:le]; if (lx < lb) | (lx < le) I = mod(I, lx); I(I==0) = lx; end
github
zhoujinglin/matlab-master
gen_x_y_cordinates.m
.m
matlab-master/video_fusion/MST_SR_fusion_toolbox/shearlet_toolbox/gen_x_y_cordinates.m
2,307
utf_8
48e8b6cf36ec28307441e81a22da1b11
function [x1n,y1n,x2n,y2n,D]=gen_x_y_cordinates(n) % % This function generates the x and y vectors that contain % the i,j coordinates to extract radial slices % % Input: n is the order of the block to be used % % Outputs: x1,y1 are the i,j values that correspond to % the radial slices from the endpoints 1,1 to n,1 % through the origin % % x2,y2 are the i,j values that correspond to % the radial slices from the endpoints 1,1 to 1,n % through the origin % % D is the matrix that contains the number of times % the polar grid points go through the rectangular grid % % Written by Glenn Easley on December 11, 2001. % Copyright 2011 by Glenn R. Easley. All Rights Reserved. % n=n+1; % initialize vectors x1=zeros(n,n); y1=zeros(n,n); x2=zeros(n,n); y2=zeros(n,n); xt=zeros(1,n); m=zeros(1,n); for i=1:n, y0=1; x0=i; x_n=n-i+1; y_n=n; if (x_n==x0), flag=1; else m1(i)= (y_n-y0)/(x_n-x0); flag=0; end xt(i,:)=linspace(x0,x_n,n); for j=1:n, if flag==0, y1(i,j)=m1(i)*(xt(i,j)-x0)+y0; y1(i,j)=round(y1(i,j)); x1(i,j)=round(xt(i,j)); x2(i,j)=y1(i,j); y2(i,j)=x1(i,j); else x1(i,j)=(n-1)/2+1; y1(i,j)=j; x2(i,j)=j; y2(i,j)=(n-1)/2+1; end end end n=n-1; x1n=zeros(n,n); y1n=zeros(n,n); x2n=zeros(n,n); y2n=zeros(n,n); for i=1:n, for j=1:n, x1n(i,j)=x1(i,j); y1n(i,j)=y1(i,j); x2n(i,j)=x2(i+1,j); y2n(i,j)=y2(i+1,j); end end % correct for portion outside boundry x1n=flipud(x1n); y2n(n,1)=n; %y2n=flipud(y2n); D=avg_pol(n,x1n,y1n,x2n,y2n); % end of gen_x_y_cord function function D=avg_pol(L,x1,y1,x2,y2) % % This function generates the matrix that contains the number % of times the polar grid points go through the rectangular grid % point i,j % % Input: L is the order of the block matrix % % Output: D is the common grid point values % % Written by Glenn Easley on December 11, 2001. % D=zeros(L); for i=1:L, for j=1:L, D(y1(i,j),x1(i,j))=D(y1(i,j),x1(i,j))+1; end end for i=1:L, for j=1:L, D(y2(i,j),x2(i,j))=D(y2(i,j),x2(i,j))+1; end end % end of avg_pol function
github
zhoujinglin/matlab-master
colorspace.m
.m
matlab-master/video_fusion/MST_SR_fusion_toolbox/dtcwt_toolbox/colorspace.m
13,590
utf_8
b1a9eb973fa39950345a1df707b5d2c8
function varargout = colorspace(Conversion,varargin) %COLORSPACE Convert a color image between color representations. % B = COLORSPACE(S,A) converts the color representation of image A % where S is a string specifying the conversion. S tells the % source and destination color spaces, S = 'dest<-src', or % alternatively, S = 'src->dest'. Supported color spaces are % % 'RGB' R'G'B' Red Green Blue (ITU-R BT.709 gamma-corrected) % 'YPbPr' Luma (ITU-R BT.601) + Chroma % 'YCbCr'/'YCC' Luma + Chroma ("digitized" version of Y'PbPr) % 'YUV' NTSC PAL Y'UV Luma + Chroma % 'YIQ' NTSC Y'IQ Luma + Chroma % 'YDbDr' SECAM Y'DbDr Luma + Chroma % 'JPEGYCbCr' JPEG-Y'CbCr Luma + Chroma % 'HSV'/'HSB' Hue Saturation Value/Brightness % 'HSL'/'HLS'/'HSI' Hue Saturation Luminance/Intensity % 'XYZ' CIE XYZ % 'Lab' CIE L*a*b* (CIELAB) % 'Luv' CIE L*u*v* (CIELUV) % 'Lch' CIE L*ch (CIELCH) % % All conversions assume 2 degree observer and D65 illuminant. Color % space names are case insensitive. When R'G'B' is the source or % destination, it can be omitted. For example 'yuv<-' is short for % 'yuv<-rgb'. % % MATLAB uses two standard data formats for R'G'B': double data with % intensities in the range 0 to 1, and uint8 data with integer-valued % intensities from 0 to 255. As MATLAB's native datatype, double data is % the natural choice, and the R'G'B' format used by colorspace. However, % for memory and computational performance, some functions also operate % with uint8 R'G'B'. Given uint8 R'G'B' color data, colorspace will % first cast it to double R'G'B' before processing. % % If A is an Mx3 array, like a colormap, B will also have size Mx3. % % [B1,B2,B3] = COLORSPACE(S,A) specifies separate output channels. % COLORSPACE(S,A1,A2,A3) specifies separate input channels. % Pascal Getreuer 2005-2006 %%% Input parsing %%% if nargin < 2, error('Not enough input arguments.'); end [SrcSpace,DestSpace] = parse(Conversion); if nargin == 2 Image = varargin{1}; elseif nargin >= 3 Image = cat(3,varargin{:}); else error('Invalid number of input arguments.'); end FlipDims = (size(Image,3) == 1); if FlipDims, Image = permute(Image,[1,3,2]); end if ~isa(Image,'double'), Image = double(Image)/255; end if size(Image,3) ~= 3, error('Invalid input size.'); end SrcT = gettransform(SrcSpace); DestT = gettransform(DestSpace); if ~ischar(SrcT) & ~ischar(DestT) % Both source and destination transforms are affine, so they % can be composed into one affine operation T = [DestT(:,1:3)*SrcT(:,1:3),DestT(:,1:3)*SrcT(:,4)+DestT(:,4)]; Temp = zeros(size(Image)); Temp(:,:,1) = T(1)*Image(:,:,1) + T(4)*Image(:,:,2) + T(7)*Image(:,:,3) + T(10); Temp(:,:,2) = T(2)*Image(:,:,1) + T(5)*Image(:,:,2) + T(8)*Image(:,:,3) + T(11); Temp(:,:,3) = T(3)*Image(:,:,1) + T(6)*Image(:,:,2) + T(9)*Image(:,:,3) + T(12); Image = Temp; elseif ~ischar(DestT) Image = rgb(Image,SrcSpace); Temp = zeros(size(Image)); Temp(:,:,1) = DestT(1)*Image(:,:,1) + DestT(4)*Image(:,:,2) + DestT(7)*Image(:,:,3) + DestT(10); Temp(:,:,2) = DestT(2)*Image(:,:,1) + DestT(5)*Image(:,:,2) + DestT(8)*Image(:,:,3) + DestT(11); Temp(:,:,3) = DestT(3)*Image(:,:,1) + DestT(6)*Image(:,:,2) + DestT(9)*Image(:,:,3) + DestT(12); Image = Temp; else Image = feval(DestT,Image,SrcSpace); end %%% Output format %%% if nargout > 1 varargout = {Image(:,:,1),Image(:,:,2),Image(:,:,3)}; else if FlipDims, Image = permute(Image,[1,3,2]); end varargout = {Image}; end return; function [SrcSpace,DestSpace] = parse(Str) % Parse conversion argument if isstr(Str) Str = lower(strrep(strrep(Str,'-',''),' ','')); k = find(Str == '>'); if length(k) == 1 % Interpret the form 'src->dest' SrcSpace = Str(1:k-1); DestSpace = Str(k+1:end); else k = find(Str == '<'); if length(k) == 1 % Interpret the form 'dest<-src' DestSpace = Str(1:k-1); SrcSpace = Str(k+1:end); else error(['Invalid conversion, ''',Str,'''.']); end end SrcSpace = alias(SrcSpace); DestSpace = alias(DestSpace); else SrcSpace = 1; % No source pre-transform DestSpace = Conversion; if any(size(Conversion) ~= 3), error('Transformation matrix must be 3x3.'); end end return; function Space = alias(Space) Space = strrep(Space,'cie',''); if isempty(Space) Space = 'rgb'; end switch Space case {'ycbcr','ycc'} Space = 'ycbcr'; case {'hsv','hsb'} Space = 'hsv'; case {'hsl','hsi','hls'} Space = 'hsl'; case {'rgb','yuv','yiq','ydbdr','ycbcr','jpegycbcr','xyz','lab','luv','lch'} return; end return; function T = gettransform(Space) % Get a colorspace transform: either a matrix describing an affine transform, % or a string referring to a conversion subroutine switch Space case 'ypbpr' T = [0.299,0.587,0.114,0;-0.1687367,-0.331264,0.5,0;0.5,-0.418688,-0.081312,0]; case 'yuv' % R'G'B' to NTSC/PAL YUV % Wikipedia: http://en.wikipedia.org/wiki/YUV T = [0.299,0.587,0.114,0;-0.147,-0.289,0.436,0;0.615,-0.515,-0.100,0]; case 'ydbdr' % R'G'B' to SECAM YDbDr % Wikipedia: http://en.wikipedia.org/wiki/YDbDr T = [0.299,0.587,0.114,0;-0.450,-0.883,1.333,0;-1.333,1.116,0.217,0]; case 'yiq' % R'G'B' in [0,1] to NTSC YIQ in [0,1];[-0.595716,0.595716];[-0.522591,0.522591]; % Wikipedia: http://en.wikipedia.org/wiki/YIQ T = [0.299,0.587,0.114,0;0.595716,-0.274453,-0.321263,0;0.211456,-0.522591,0.311135,0]; case 'ycbcr' % R'G'B' (range [0,1]) to ITU-R BRT.601 (CCIR 601) Y'CbCr % Wikipedia: http://en.wikipedia.org/wiki/YCbCr % Poynton, Equation 3, scaling of R'G'B to Y'PbPr conversion T = [65.481,128.553,24.966,16;-37.797,-74.203,112.0,128;112.0,-93.786,-18.214,128]; case 'jpegycbcr' % Wikipedia: http://en.wikipedia.org/wiki/YCbCr T = [0.299,0.587,0.114,0;-0.168736,-0.331264,0.5,0.5;0.5,-0.418688,-0.081312,0.5]*255; case {'rgb','xyz','hsv','hsl','lab','luv','lch'} T = Space; otherwise error(['Unknown color space, ''',Space,'''.']); end return; function Image = rgb(Image,SrcSpace) % Convert to Rec. 709 R'G'B' from 'SrcSpace' switch SrcSpace case 'rgb' return; case 'hsv' % Convert HSV to R'G'B' Image = huetorgb((1 - Image(:,:,2)).*Image(:,:,3),Image(:,:,3),Image(:,:,1)); case 'hsl' % Convert HSL to R'G'B' L = Image(:,:,3); Delta = Image(:,:,2).*min(L,1-L); Image = huetorgb(L-Delta,L+Delta,Image(:,:,1)); case {'xyz','lab','luv','lch'} % Convert to CIE XYZ Image = xyz(Image,SrcSpace); % Convert XYZ to RGB T = [3.240479,-1.53715,-0.498535;-0.969256,1.875992,0.041556;0.055648,-0.204043,1.057311]; R = T(1)*Image(:,:,1) + T(4)*Image(:,:,2) + T(7)*Image(:,:,3); % R G = T(2)*Image(:,:,1) + T(5)*Image(:,:,2) + T(8)*Image(:,:,3); % G B = T(3)*Image(:,:,1) + T(6)*Image(:,:,2) + T(9)*Image(:,:,3); % B % Desaturate and rescale to constrain resulting RGB values to [0,1] AddWhite = -min(min(min(R,G),B),0); Scale = max(max(max(R,G),B)+AddWhite,1); R = (R + AddWhite)./Scale; G = (G + AddWhite)./Scale; B = (B + AddWhite)./Scale; % Apply gamma correction to convert RGB to Rec. 709 R'G'B' Image(:,:,1) = gammacorrection(R); % R' Image(:,:,2) = gammacorrection(G); % G' Image(:,:,3) = gammacorrection(B); % B' otherwise % Conversion is through an affine transform T = gettransform(SrcSpace); temp = inv(T(:,1:3)); T = [temp,-temp*T(:,4)]; R = T(1)*Image(:,:,1) + T(4)*Image(:,:,2) + T(7)*Image(:,:,3) + T(10); G = T(2)*Image(:,:,1) + T(5)*Image(:,:,2) + T(8)*Image(:,:,3) + T(11); B = T(3)*Image(:,:,1) + T(6)*Image(:,:,2) + T(9)*Image(:,:,3) + T(12); AddWhite = -min(min(min(R,G),B),0); Scale = max(max(max(R,G),B)+AddWhite,1); R = (R + AddWhite)./Scale; G = (G + AddWhite)./Scale; B = (B + AddWhite)./Scale; Image(:,:,1) = R; Image(:,:,2) = G; Image(:,:,3) = B; end % Clip to [0,1] Image = min(max(Image,0),1); return; function Image = xyz(Image,SrcSpace) % Convert to CIE XYZ from 'SrcSpace' WhitePoint = [0.950456,1,1.088754]; switch SrcSpace case 'xyz' return; case 'luv' % Convert CIE L*uv to XYZ WhitePointU = (4*WhitePoint(1))./(WhitePoint(1) + 15*WhitePoint(2) + 3*WhitePoint(3)); WhitePointV = (9*WhitePoint(2))./(WhitePoint(1) + 15*WhitePoint(2) + 3*WhitePoint(3)); L = Image(:,:,1); Y = (L + 16)/116; Y = invf(Y)*WhitePoint(2); U = Image(:,:,2)./(13*L + 1e-6*(L==0)) + WhitePointU; V = Image(:,:,3)./(13*L + 1e-6*(L==0)) + WhitePointV; Image(:,:,1) = -(9*Y.*U)./((U-4).*V - U.*V); % X Image(:,:,2) = Y; % Y Image(:,:,3) = (9*Y - (15*V.*Y) - (V.*Image(:,:,1)))./(3*V); % Z case {'lab','lch'} Image = lab(Image,SrcSpace); % Convert CIE L*ab to XYZ fY = (Image(:,:,1) + 16)/116; fX = fY + Image(:,:,2)/500; fZ = fY - Image(:,:,3)/200; Image(:,:,1) = WhitePoint(1)*invf(fX); % X Image(:,:,2) = WhitePoint(2)*invf(fY); % Y Image(:,:,3) = WhitePoint(3)*invf(fZ); % Z otherwise % Convert from some gamma-corrected space % Convert to Rec. 701 R'G'B' Image = rgb(Image,SrcSpace); % Undo gamma correction R = invgammacorrection(Image(:,:,1)); G = invgammacorrection(Image(:,:,2)); B = invgammacorrection(Image(:,:,3)); % Convert RGB to XYZ T = inv([3.240479,-1.53715,-0.498535;-0.969256,1.875992,0.041556;0.055648,-0.204043,1.057311]); Image(:,:,1) = T(1)*R + T(4)*G + T(7)*B; % X Image(:,:,2) = T(2)*R + T(5)*G + T(8)*B; % Y Image(:,:,3) = T(3)*R + T(6)*G + T(9)*B; % Z end return; function Image = hsv(Image,SrcSpace) % Convert to HSV Image = rgb(Image,SrcSpace); V = max(Image,[],3); S = (V - min(Image,[],3))./(V + (V == 0)); Image(:,:,1) = rgbtohue(Image); Image(:,:,2) = S; Image(:,:,3) = V; return; function Image = hsl(Image,SrcSpace) % Convert to HSL switch SrcSpace case 'hsv' % Convert HSV to HSL MaxVal = Image(:,:,3); MinVal = (1 - Image(:,:,2)).*MaxVal; L = 0.5*(MaxVal + MinVal); temp = min(L,1-L); Image(:,:,2) = 0.5*(MaxVal - MinVal)./(temp + (temp == 0)); Image(:,:,3) = L; otherwise Image = rgb(Image,SrcSpace); % Convert to Rec. 701 R'G'B' % Convert R'G'B' to HSL MinVal = min(Image,[],3); MaxVal = max(Image,[],3); L = 0.5*(MaxVal + MinVal); temp = min(L,1-L); S = 0.5*(MaxVal - MinVal)./(temp + (temp == 0)); Image(:,:,1) = rgbtohue(Image); Image(:,:,2) = S; Image(:,:,3) = L; end return; function Image = lab(Image,SrcSpace) % Convert to CIE L*a*b* (CIELAB) WhitePoint = [0.950456,1,1.088754]; switch SrcSpace case 'lab' return; case 'lch' % Convert CIE L*CH to CIE L*ab C = Image(:,:,2); Image(:,:,2) = cos(Image(:,:,3)*pi/180).*C; % a* Image(:,:,3) = sin(Image(:,:,3)*pi/180).*C; % b* otherwise Image = xyz(Image,SrcSpace); % Convert to XYZ % Convert XYZ to CIE L*a*b* X = Image(:,:,1)/WhitePoint(1); Y = Image(:,:,2)/WhitePoint(2); Z = Image(:,:,3)/WhitePoint(3); fX = f(X); fY = f(Y); fZ = f(Z); Image(:,:,1) = 116*fY - 16; % L* Image(:,:,2) = 500*(fX - fY); % a* Image(:,:,3) = 200*(fY - fZ); % b* end return; function Image = luv(Image,SrcSpace) % Convert to CIE L*u*v* (CIELUV) WhitePoint = [0.950456,1,1.088754]; WhitePointU = (4*WhitePoint(1))./(WhitePoint(1) + 15*WhitePoint(2) + 3*WhitePoint(3)); WhitePointV = (9*WhitePoint(2))./(WhitePoint(1) + 15*WhitePoint(2) + 3*WhitePoint(3)); Image = xyz(Image,SrcSpace); % Convert to XYZ U = (4*Image(:,:,1))./(Image(:,:,1) + 15*Image(:,:,2) + 3*Image(:,:,3)); V = (9*Image(:,:,2))./(Image(:,:,1) + 15*Image(:,:,2) + 3*Image(:,:,3)); Y = Image(:,:,2)/WhitePoint(2); L = 116*f(Y) - 16; Image(:,:,1) = L; % L* Image(:,:,2) = 13*L.*(U - WhitePointU); % u* Image(:,:,3) = 13*L.*(V - WhitePointV); % v* return; function Image = lch(Image,SrcSpace) % Convert to CIE L*ch Image = lab(Image,SrcSpace); % Convert to CIE L*ab H = atan2(Image(:,:,3),Image(:,:,2)); H = H*180/pi + 360*(H < 0); Image(:,:,2) = sqrt(Image(:,:,2).^2 + Image(:,:,3).^2); % C Image(:,:,3) = H; % H return; function Image = huetorgb(m0,m2,H) % Convert HSV or HSL hue to RGB N = size(H); H = min(max(H(:),0),360)/60; m0 = m0(:); m2 = m2(:); F = H - round(H/2)*2; M = [m0, m0 + (m2-m0).*abs(F), m2]; Num = length(m0); j = [2 1 0;1 2 0;0 2 1;0 1 2;1 0 2;2 0 1;2 1 0]*Num; k = floor(H) + 1; Image = reshape([M(j(k,1)+(1:Num).'),M(j(k,2)+(1:Num).'),M(j(k,3)+(1:Num).')],[N,3]); return; function H = rgbtohue(Image) % Convert RGB to HSV or HSL hue [M,i] = sort(Image,3); i = i(:,:,3); Delta = M(:,:,3) - M(:,:,1); Delta = Delta + (Delta == 0); R = Image(:,:,1); G = Image(:,:,2); B = Image(:,:,3); H = zeros(size(R)); k = (i == 1); H(k) = (G(k) - B(k))./Delta(k); k = (i == 2); H(k) = 2 + (B(k) - R(k))./Delta(k); k = (i == 3); H(k) = 4 + (R(k) - G(k))./Delta(k); H = 60*H + 360*(H < 0); H(Delta == 0) = nan; return; function Rp = gammacorrection(R) Rp = real(1.099*R.^0.45 - 0.099); i = (R < 0.018); Rp(i) = 4.5138*R(i); return; function R = invgammacorrection(Rp) R = real(((Rp + 0.099)/1.099).^(1/0.45)); i = (R < 0.018); R(i) = Rp(i)/4.5138; return; function fY = f(Y) fY = real(Y.^(1/3)); i = (Y < 0.008856); fY(i) = Y(i)*(841/108) + (4/29); return; function Y = invf(fY) Y = fY.^3; i = (Y < 0.008856); Y(i) = (fY(i) - 4/29)*(108/841); return;
github
zhoujinglin/matlab-master
dtwaveifm.m
.m
matlab-master/video_fusion/MST_SR_fusion_toolbox/dtcwt_toolbox/dtwaveifm.m
3,486
utf_8
07a0631bc29c7e92d8255a7f52ecec0b
function Z = dtwaveifm(Yl,Yh,biort,qshift,gain_mask); % Function to perform an n-level dual-tree complex wavelet (DTCWT) % 1-D reconstruction. % % Z = dtwaveifm(Yl,Yh,biort,qshift,gain_mask); % % Yl -> The real lowpass subband from the final level % Yh -> A cell array containing the complex highpass subband for each level. % % biort -> 'antonini' => Antonini 9,7 tap filters. % 'legall' => LeGall 5,3 tap filters. % 'near_sym_a' => Near-Symmetric 5,7 tap filters. % 'near_sym_b' => Near-Symmetric 13,19 tap filters. % % qshift -> 'qshift_06' => Quarter Sample Shift Orthogonal (Q-Shift) 10,10 tap filters, % (only 6,6 non-zero taps). % 'qshift_a' => Q-shift 10,10 tap filters, % (with 10,10 non-zero taps, unlike qshift_06). % 'qshift_b' => Q-Shift 14,14 tap filters. % 'qshift_c' => Q-Shift 16,16 tap filters. % 'qshift_d' => Q-Shift 18,18 tap filters. % % gain_mask -> Gain to be applied to each subband. % gain_mask(l) is gain for wavelet subband at level l. % If gain_mask(l) == 0, no computation is performed for band (l). % Default gain_mask = ones(1,length(Yh)). % % Z -> Reconstructed real signal vector (or matrix). % % % For example: Z = dtwaveifm(Yl,Yh,'near_sym_b','qshift_b'); % performs a reconstruction from Yl,Yh using the 13,19-tap filters % for level 1 and the Q-shift 14-tap filters for levels >= 2. % % Nick Kingsbury and Cian Shaffrey % Cambridge University, May 2002 a = length(Yh); % No of levels. if nargin < 5, gain_mask = ones(1,a); end % Default gain_mask. if isstr(biort) & isstr(qshift) %Check if the inputs are strings biort_exist = exist([biort '.mat']); qshift_exist = exist([qshift '.mat']); if biort_exist == 2 & qshift_exist == 2; %Check to see if the inputs exist as .mat files load (biort); load (qshift); else error('Please enter the correct names of the Biorthogonal or Q-Shift Filters, see help DTWAVEIFM for details.'); end else error('Please enter the names of the Biorthogonal or Q-Shift Filters as shown in help DTWAVEIFM.'); end level = a; % No of levels = no of rows in L. Lo = Yl; while level >= 2; % Reconstruct levels 2 and above in reverse order. Hi = c2q1d(Yh{level}*gain_mask(level)); Lo = colifilt(Lo, g0b, g0a) + colifilt(Hi, g1b, g1a); if size(Lo,1) ~= 2*size(Yh{level-1},1) % If Lo is not the same length as the next Yh => t1 was extended. Lo = Lo(2:size(Lo,1)-1,:); % Therefore we have to clip Lo so it is the same height as the next Yh. end if any(size(Lo) ~= size(Yh{level-1}).*[2 1]), error('Yh sizes are not valid for DTWAVEIFM'); end level = level - 1; end if level == 1; % Reconstruct level 1. Hi = c2q1d(Yh{level}*gain_mask(level)); Z = colfilter(Lo,g0o) + colfilter(Hi,g1o); end return %========================================================================================== % ********** INTERNAL FUNCTION ********** %========================================================================================== function z = c2q1d(x) % An internal function to convert a 1D Complex vector back to a real array, % which is twice the height of x. [a b] = size(x); z = zeros(a*2,b); skip = 1:2:(a*2); z(skip,:) = real(x); z(skip+1,:) = imag(x); return
github
zhoujinglin/matlab-master
dDTCWT.m
.m
matlab-master/video_fusion/MST_SR_fusion_toolbox/dtcwt_toolbox/dDTCWT.m
1,565
utf_8
8c9992a796e21805fbcd88f6acc567bd
function [Y1 h11]=derotated_dtcwt(I1,n,biot,Qshift) % X -> 2D real matrix/Image % % nlevels -> No. of levels of wavelet decomposition % % biort -> 'antonini' => Antonini 9,7 tap filters. % 'legall' => LeGall 5,3 tap filters. % 'near_sym_a' => Near-Symmetric 5,7 tap filters. % 'near_sym_b' => Near-Symmetric 13,19 tap filters. % % qshift -> 'qshift_06' => Quarter Sample Shift Orthogonal (Q-Shift) 10,10 tap filters, % (only 6,6 non-zero taps). % 'qshift_a' => Q-shift 10,10 tap filters, % (with 10,10 non-zero taps, unlike qshift_06). % 'qshift_b' => Q-Shift 14,14 tap filters. % 'qshift_c' => Q-Shift 16,16 tap filters. % 'qshift_d' => Q-Shift 18,18 tap filters. % % % Y1 -> The real lowpass image from the final level % h11 -> A cell array containing the 6 complex highpass subimages % for each level. %clear all; %clc; [Y1,h1] = dtwavexfm2(I1,n,biot,Qshift); %[Y2,h2] = dtwavexfm2(I2,n,biot,Qshift); h11{n}=h1{n}; for k=n:-1:2 for m=1:6 xp=imresize(h1{k}(:,:,m),2);% argxp=angle(xp); argx=angle(h1{k-1}(:,:,m)); argx=argx-2.*argxp; absx=abs(h1{k-1}(:,:,m)); xa=absx.*cos(argx); xb=absx.*sin(argx); h11{k-1}(:,:,m)=complex(xa,xb); end end %figure; %cimage5(h11{1}(:,:,4)); %figure; %cimage5(h1{1}(:,:,4)); %figure; %cimage5(h11{2}(:,:,4)); %figure; %cimage5(h1{2}(:,:,4));
github
zhoujinglin/matlab-master
dtwavexfm2.m
.m
matlab-master/video_fusion/MST_SR_fusion_toolbox/dtcwt_toolbox/dtwavexfm2.m
6,425
utf_8
dc2ac3ba8198284e20b2982574de6174
function [Yl,Yh,Yscale] = dtwavexfm2(X,nlevels,biort,qshift); % Function to perform a n-level DTCWT-2D decompostion on a 2D matrix X % % [Yl,Yh,Yscale] = dtwavexfm2(X,nlevels,biort,qshift); % % X -> 2D real matrix/Image % % nlevels -> No. of levels of wavelet decomposition % % biort -> 'antonini' => Antonini 9,7 tap filters. % 'legall' => LeGall 5,3 tap filters. % 'near_sym_a' => Near-Symmetric 5,7 tap filters. % 'near_sym_b' => Near-Symmetric 13,19 tap filters. % % qshift -> 'qshift_06' => Quarter Sample Shift Orthogonal (Q-Shift) 10,10 tap filters, % (only 6,6 non-zero taps). % 'qshift_a' => Q-shift 10,10 tap filters, % (with 10,10 non-zero taps, unlike qshift_06). % 'qshift_b' => Q-Shift 14,14 tap filters. % 'qshift_c' => Q-Shift 16,16 tap filters. % 'qshift_d' => Q-Shift 18,18 tap filters. % % % Yl -> The real lowpass image from the final level % Yh -> A cell array containing the 6 complex highpass subimages for each level. % Yscale -> This is an OPTIONAL output argument, that is a cell array containing % real lowpass coefficients for every scale. % % % Example: [Yl,Yh] = dtwavexfm2(X,3,'near_sym_b','qshift_b'); % performs a 3-level transform on the real image X using the 13,19-tap filters % for level 1 and the Q-shift 14-tap filters for levels >= 2. % % Nick Kingsbury and Cian Shaffrey % Cambridge University, Sept 2001 if isstr(biort) & isstr(qshift) %Check if the inputs are strings biort_exist = exist([biort '.mat']); qshift_exist = exist([qshift '.mat']); if biort_exist == 2 & qshift_exist == 2; %Check to see if the inputs exist as .mat files load (biort); load (qshift); else error('Please enter the correct names of the Biorthogonal or Q-Shift Filters, see help DTWAVEXFM2 for details.'); end else error('Please enter the names of the Biorthogonal or Q-Shift Filters as shown in help DTWAVEXFM2.'); end orginal_size = size(X); if ndims(X) >= 3; error(sprintf('The entered image is %dx%dx%d, please enter each image slice separately.',orginal_size(1),orginal_size(2),orginal_size(3))); end % The next few lines of code check to see if the image is odd in size, if so an extra ... % row/column will be added to the bottom/right of the image initial_row_extend = 0; %initialise initial_col_extend = 0; if any(rem(orginal_size(1),2)), %if sx(1) is not divisable by 2 then we need to extend X by adding a row at the bottom X = [X; X(end,:)]; %Any further extension will be done in due course. initial_row_extend = 1; end if any(rem(orginal_size(2),2)), %if sx(2) is not divisable by 2 then we need to extend X by adding a col to the left X = [X X(:,end)]; %Any further extension will be done in due course. initial_col_extend = 1; end extended_size = size(X); if nlevels == 0, return; end %initialise Yh=cell(nlevels,1); if nargout == 3 Yscale=cell(nlevels,1); %this is only required if the user specifies a third output component. end S = []; sx = size(X); if nlevels >= 1, % Do odd top-level filters on cols. Lo = colfilter(X,h0o).'; Hi = colfilter(X,h1o).'; % Do odd top-level filters on rows. LoLo = colfilter(Lo,h0o).'; % LoLo Yh{1} = zeros([size(LoLo)/2 6]); Yh{1}(:,:,[1 6]) = q2c(colfilter(Hi,h0o).'); % Horizontal pair Yh{1}(:,:,[3 4]) = q2c(colfilter(Lo,h1o).'); % Vertical pair Yh{1}(:,:,[2 5]) = q2c(colfilter(Hi,h1o).'); % Diagonal pair S = [ size(LoLo) ;S]; if nargout == 3 Yscale{1} = LoLo; end end if nlevels >= 2; for level = 2:nlevels; [row_size col_size] = size(LoLo); if any(rem(row_size,4)), % Extend by 2 rows if no. of rows of LoLo are divisable by 4; LoLo = [LoLo(1,:); LoLo; LoLo(end,:)]; end if any(rem(col_size,4)), % Extend by 2 cols if no. of cols of LoLo are divisable by 4; LoLo = [LoLo(:,1) LoLo LoLo(:,end)]; end % Do even Qshift filters on rows. Lo = coldfilt(LoLo,h0b,h0a).'; Hi = coldfilt(LoLo,h1b,h1a).'; % Do even Qshift filters on columns. LoLo = coldfilt(Lo,h0b,h0a).'; %LoLo Yh{level} = zeros([size(LoLo)/2 6]); Yh{level}(:,:,[1 6]) = q2c(coldfilt(Hi,h0b,h0a).'); % Horizontal Yh{level}(:,:,[3 4]) = q2c(coldfilt(Lo,h1b,h1a).'); % Vertical Yh{level}(:,:,[2 5]) = q2c(coldfilt(Hi,h1b,h1a).'); % Diagonal S = [ size(LoLo) ;S]; if nargout == 3 Yscale{level} = LoLo; end end end Yl = LoLo; if initial_row_extend == 1 & initial_col_extend == 1; warning(sprintf(' \r\r The image entered is now a %dx%d NOT a %dx%d \r The bottom row and rightmost column have been duplicated, prior to decomposition. \r\r ',... extended_size(1),extended_size(2),orginal_size(1),orginal_size(2))); end if initial_row_extend == 1 ; warning(sprintf(' \r\r The image entered is now a %dx%d NOT a %dx%d \r Row number %d has been duplicated, and added to the bottom of the image, prior to decomposition. \r\r',... extended_size(1),extended_size(2),orginal_size(1),orginal_size(2),orginal_size(1))); end if initial_col_extend == 1; warning(sprintf(' \r\r The image entered is now a %dx%d NOT a %dx%d \r Col number %d has been duplicated, and added to the right of the image, prior to decomposition. \r\r',... extended_size(1),extended_size(2),orginal_size(1),orginal_size(2),orginal_size(2))); end return %========================================================================================== % ********** INTERNAL FUNCTION ********** %========================================================================================== function z = q2c(y) % function z = q2c(y) % Convert from quads in y to complex numbers in z. sy = size(y); t1 = 1:2:sy(1); t2 = 1:2:sy(2); j2 = sqrt([0.5 -0.5]); % Arrange pixels from the corners of the quads into % 2 subimages of alternate real and imag pixels. % a----b % | | % | | % c----d % Combine (a,b) and (d,c) to form two complex subimages. p = y(t1,t2)*j2(1) + y(t1,t2+1)*j2(2); % p = (a + jb) / sqrt(2) q = y(t1+1,t2+1)*j2(1) - y(t1+1,t2)*j2(2); % q = (d - jc) / sqrt(2) % Form the 2 subbands in z. z = cat(3,p-q,p+q); return
github
zhoujinglin/matlab-master
dtwaveifm2.m
.m
matlab-master/video_fusion/MST_SR_fusion_toolbox/dtcwt_toolbox/dtwaveifm2.m
4,884
utf_8
b7b8d7bbbe5209e8550b34297949f93c
function Z = dtwaveifm2(Yl,Yh,biort,qshift,gain_mask); % Function to perform an n-level dual-tree complex wavelet (DTCWT) % 2-D reconstruction. % % Z = dtwaveifm2(Yl,Yh,biort,qshift,gain_mask); % % Yl -> The real lowpass image from the final level % Yh -> A cell array containing the 6 complex highpass subimages for each level. % % biort -> 'antonini' => Antonini 9,7 tap filters. % 'legall' => LeGall 5,3 tap filters. % 'near_sym_a' => Near-Symmetric 5,7 tap filters. % 'near_sym_b' => Near-Symmetric 13,19 tap filters. % % qshift -> 'qshift_06' => Quarter Sample Shift Orthogonal (Q-Shift) 10,10 tap filters, % (only 6,6 non-zero taps). % 'qshift_a' => Q-shift 10,10 tap filters, % (with 10,10 non-zero taps, unlike qshift_06). % 'qshift_b' => Q-Shift 14,14 tap filters. % 'qshift_c' => Q-Shift 16,16 tap filters. % 'qshift_d' => Q-Shift 18,18 tap filters. % % gain_mask -> Gain to be applied to each subband. % gain_mask(d,l) is gain for subband with direction d at level l. % If gain_mask(d,l) == 0, no computation is performed for band (d,l). % Default gain_mask = ones(6,length(Yh)). % % Z -> Reconstructed real image matrix % % % For example: Z = dtwaveifm2(Yl,Yh,'near_sym_b','qshift_b'); % performs a 3-level reconstruction from Yl,Yh using the 13,19-tap filters % for level 1 and the Q-shift 14-tap filters for levels >= 2. % % Nick Kingsbury and Cian Shaffrey % Cambridge University, May 2002 a = length(Yh); % No of levels. if nargin < 5, gain_mask = ones(6,a); end % Default gain_mask. if isstr(biort) & isstr(qshift) %Check if the inputs are strings biort_exist = exist([biort '.mat']); qshift_exist = exist([qshift '.mat']); if biort_exist == 2 & qshift_exist == 2; %Check to see if the inputs exist as .mat files load (biort); load (qshift); else error('Please enter the correct names of the Biorthogonal or Q-Shift Filters, see help DTWAVEIFM2 for details.'); end else error('Please enter the names of the Biorthogonal or Q-Shift Filters as shown in help DTWAVEIFM2.'); end current_level = a; Z = Yl; while current_level >= 2; ; %this ensures that for level -1 we never do the following lh = c2q(Yh{current_level}(:,:,[1 6]),gain_mask([1 6],current_level)); hl = c2q(Yh{current_level}(:,:,[3 4]),gain_mask([3 4],current_level)); hh = c2q(Yh{current_level}(:,:,[2 5]),gain_mask([2 5],current_level)); % Do even Qshift filters on columns. y1 = colifilt(Z,g0b,g0a) + colifilt(lh,g1b,g1a); y2 = colifilt(hl,g0b,g0a) + colifilt(hh,g1b,g1a); % Do even Qshift filters on rows. Z = (colifilt(y1.',g0b,g0a) + colifilt(y2.',g1b,g1a)).'; % Check size of Z and crop as required [row_size col_size] = size(Z); S = 2*size(Yh{current_level-1}); if row_size ~= S(1) %check to see if this result needs to be cropped for the rows Z = Z(2:row_size-1,:); end if col_size ~= S(2) %check to see if this result needs to be cropped for the cols Z = Z(:,2:col_size-1); end if any(size(Z) ~= S(1:2)), error('Sizes of subbands are not valid for DTWAVEIFM2'); end current_level = current_level - 1; end if current_level == 1; lh = c2q(Yh{current_level}(:,:,[1 6]),gain_mask([1 6],current_level)); hl = c2q(Yh{current_level}(:,:,[3 4]),gain_mask([3 4],current_level)); hh = c2q(Yh{current_level}(:,:,[2 5]),gain_mask([2 5],current_level)); % Do odd top-level filters on columns. y1 = colfilter(Z,g0o) + colfilter(lh,g1o); y2 = colfilter(hl,g0o) + colfilter(hh,g1o); % Do odd top-level filters on rows. Z = (colfilter(y1.',g0o) + colfilter(y2.',g1o)).'; end return %========================================================================================== % ********** INTERNAL FUNCTION ********** %========================================================================================== function x = c2q(w,gain) % function z = c2q(w,gain) % Scale by gain and convert from complex w(:,:,1:2) to real quad-numbers in z. % % Arrange pixels from the real and imag parts of the 2 subbands % into 4 separate subimages . % A----B Re Im of w(:,:,1) % | | % | | % C----D Re Im of w(:,:,2) sw = size(w); x = zeros(2*sw(1:2)); if any(w(:)) & any(gain) sc = sqrt(0.5) * gain; P = w(:,:,1)*sc(1) + w(:,:,2)*sc(2); Q = w(:,:,1)*sc(1) - w(:,:,2)*sc(2); t1 = 1:2:size(x,1); t2 = 1:2:size(x,2); % Recover each of the 4 corners of the quads. x(t1,t2) = real(P); % a = (A+C)*sc; x(t1,t2+1) = imag(P); % b = (B+D)*sc; x(t1+1,t2) = imag(Q); % c = (B-D)*sc; x(t1+1,t2+1) = -real(Q); % d = (C-A)*sc; end return
github
zhoujinglin/matlab-master
ompdemo.m
.m
matlab-master/video_fusion/MST_SR_fusion_toolbox/sparsefusion/ksvdbox/ompbox/ompdemo.m
2,294
utf_8
330e3e897edffa6b88c516d30fc4e96b
function ompdemo %OMPDEMO Demonstration of the OMP toolbox. % OMPDEMO generates a random sparse mixture of cosines and spikes, adds % noise, and applies OMP to recover the original signal. % % To run the demo, type OMPDEMO from the Matlab prompt. % % See also OMPSPEEDTEST. % Ron Rubinstein % Computer Science Department % Technion, Haifa 32000 Israel % ronrubin@cs % % April 2009 disp(' '); disp(' ********** OMP Demo **********'); disp(' '); disp(' This demo generates a random mixture of cosines and spikes, adds noise,'); disp(' and uses OMP to recover the mixture and the original signal. The graphs'); disp(' show the original, noisy and recovered signal with the corresponding SNR'); disp(' values. The true and recovered coefficients are shown in the bar graphs.'); disp(' '); % generate DCT-spike dictionary % n = 256; D = zeros(n); D(:,1) = 1/sqrt(n); for i = 2:n v = cos((0:n-1)*pi*(i-1)/n)'; v = v-mean(v); D(:,i) = v/norm(v); end D = [D eye(n)]; % generate random sparse mixture of cosines and spikes % g = sparse(2*n,1); % sinusoid coefs are random within +/-[0.5,1.5] lowfreq = 20; p = randperm(lowfreq); g(p(1:2)) = (rand(2,1)+0.5).*randsig(2,1); % two random low frequencies p = randperm(n-lowfreq); g(lowfreq+p(1:2)) = (rand(2,1)+0.5).*randsig(2,1); % two random high frequencies % spike coefs are random within +/-[0.25,0.75] p = randperm(n); g(p(1:3)+n) = (rand(3,1)/2+0.25).*randsig(3,1); % three random spikes x = D*g; % add gaussian noise % r = randn(size(x)); r = r/norm(r)*norm(x)/4; y = x + r; % perform omp % gamma = omp(D'*y, D'*D, nnz(g)); err = x-D*gamma; % show results % v=[1 n -max(abs([x;y]))*1.1 max(abs([x;y]))*1.1]; figure; plot(x); axis(v); title('Original signal'); figure; plot(y); axis(v); title(sprintf('Noisy signal, SNR=%.1fdB', 10*log10((x'*x)/(r'*r)))); figure; plot(D*gamma); axis(v); title(sprintf('Reconstructed signal, SNR=%.1fdB', 10*log10((x'*x)/(err'*err)))); v = [1 2*n -max(abs([g;gamma]))*1.1 max(abs([g;gamma]))*1.1]; figure; bar(full(g)); axis(v); title('True signal decomposition'); figure; bar(full(gamma)); axis(v); title('Decomposition recovered by OMP'); return; % random matrix with +/-1 function y = randsig(varargin) y = round(rand(varargin{:}))*2 - 1; return;