Datasets:
Languages:
English
Size:
1M<n<10M
ArXiv:
Tags:
task-oriented-dialog
task-oriented-dialogues
dialog-flow
dialog-modeling
dialogue-flow
dialogue-modeling
License:
File size: 10,782 Bytes
2521b01 340ddd1 2521b01 be7ad6c 2521b01 340ddd1 03cf021 2521b01 da11928 2521b01 bf725ca be7ad6c 2521b01 be7ad6c 2521b01 be7ad6c 2521b01 be7ad6c 2521b01 be7ad6c 8e4ca8e be7ad6c 8e4ca8e be7ad6c 8e4ca8e be7ad6c 665ffa5 be7ad6c 8e4ca8e be7ad6c 8e4ca8e be7ad6c 8e4ca8e be7ad6c 8e4ca8e be7ad6c c9395c2 be7ad6c 8e4ca8e 971c57c 8e4ca8e 971c57c 8e4ca8e 971c57c 8e4ca8e 971c57c 8e4ca8e 971c57c 8e4ca8e be7ad6c 8e4ca8e be7ad6c 03cf021 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
---
license: other
multilinguality:
- monolingual
language:
- en
pretty_name: Dialog2Flow Training Corpus
size_categories:
- 1M<n<10M
source_datasets:
- Salesforce/dialogstudio
task_categories:
- sentence-similarity
- feature-extraction
- text2text-generation
- text-generation
tags:
- task-oriented-dialog
- task-oriented-dialogues
- dialog-flow
- dialog-modeling
- dialogue-flow
- dialogue-modeling
- conversational-ia
- dialog-acts
- slots
---
![image/png](voronoi_umap.png)
# **Dialog2Flow Training Corpus**
This page hosts the dataset introduced in the paper ["Dialog2Flow: Pre-training Soft-Contrastive Action-Driven Sentence Embeddings for Automatic Dialog Flow Extraction"](https://arxiv.org/abs/2410.18481) published in the EMNLP 2024 main conference.
Here we are not only making available the dataset but also each one of the 20 (standardized) task-oriented dialogue datasets used to build it.
The corpus consists of **3.4 million utterances/sentences annotated with dialog act and slot labels across 52 different domains**. Domain names and dialog act labels were manually standardized across the 20 datasets.
## Load Training Datasets
From this corpus, in the paper, 3 datasets were created for training the sentence encoders, one for the single target (D2F_single) training containing the subset with both dialog act and slots annotation; and other two for the joint target (DFD_joint), one containing the subset with dialog acts and another with slots only. To use them, you can use one of the following names, respectively:
1. `"dialog-acts+slots"`: (utterance, action label) pairs.
1. `"dialog-acts"`: (utterance, dialog act label) pairs.
1. `"slots"`: (utterance, slots label) pairs.
For instance, below is one example to load the "dialog-acts+slots" dataset:
```python
from datasets import load_dataset
dataset = load_dataset('sergioburdisso/dialog2flow-dataset', 'dialog-acts+slots', trust_remote_code=True)
print(dataset)
```
Output:
```python
DatasetDict({
train: Dataset({
features: ['utterance', 'label'],
num_rows: 1577184
})
validation: Dataset({
features: ['utterance', 'label'],
num_rows: 4695
})
})
```
## Load (Individual) Task-Oriented Dialog Datasets
We also provide access to each one of the 20 task-oriented dialogue datasets standardizing annotation and format used to build the corpus. To load each dataset we can simply use its name as given in the following table with information about License and number of dialogues in each dataset:
| Dataset Name | Train | Validation | Test | Total | License |
|--------------------|--------|------------|-------|--------|-------------------------------------------------------------|
| ABCD | 8034 | 1004 | 1004 | 10042 | MIT License |
| BiTOD | 2952 | 295 | 442 | 3689 | Apache License 2.0 |
| Disambiguation | 8433 | 999 | 1000 | 10432 | MiT License |
| DSTC2-Clean | 1612 | 506 | 1117 | 3235 | GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007 |
| FRAMES | 1329 | - | 40 | 1369 | GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007 |
| GECOR | 676 | - | - | 676 | CC BY 4.0 |
| HDSA-Dialog | 8438 | 1000 | 1000 | 10438 | MIT License |
| KETOD | 4247 | 545 | 532 | 5324 | MiT License |
| MS-DC | 10000 | - | - | 10000 | MICROSOFT RESEARCH LICENSE TERMS |
| MulDoGO | 59939 | 1150 | 2319 | 63408 | Community Data License Agreement – Permissive – Version 1.0 |
| MultiWOZ_2.1 | 8434 | 999 | 1000 | 10433 | MiT License |
| MULTIWOZ2_2 | 8437 | 1000 | 1000 | 10437 | Mit License |
| SGD | 16142 | 2482 | 4201 | 22825 | CC BY-SA 4.0 |
| SimJointGEN | 100000 | 10000 | 10000 | 120000 | No license |
| SimJointMovie | 384 | 120 | 264 | 768 | No license |
| SimJointRestaurant | 1116 | 349 | 775 | 2240 | No license |
| Taskmaster1 | 6170 | 769 | 769 | 7708 | Attribution 4.0 International (CC BY 4.0) |
| Taskmaster2 | 17304 | - | - | 17304 | Creative Commons Attribution 4.0 License (CC BY 4.0) |
| Taskmaster3 | 22724 | 17019 | 17903 | 57646 | Creative Commons Attribution 4.0 License (CC BY 4.0) |
| WOZ2_0 | 600 | 200 | 400 | 1200 | Apache License 2.0 |
For instance, below is one example to load the "WOZ2_0" dataset:
```python
from datasets import load_dataset
dataset = load_dataset('sergioburdisso/dialog2flow-dataset', 'WOZ2_0', trust_remote_code=True)
print(dataset)
```
Output:
```python
DatasetDict({
test: Dataset({
features: ['dialog'],
num_rows: 400
})
train: Dataset({
features: ['dialog'],
num_rows: 600
})
validation: Dataset({
features: ['dialog'],
num_rows: 200
})
})
```
Note that, unlike previous datasets that contained utterance-label pairs, these individual datasets consist of only one feature "dialog" since their a collection of dialogs (not utterances). Each dialog in turn has the JSON structure described in Appendix A of the paper. For instance, let's get the first dialog of the train split:
```python
print(dataset["train"][0]["dialog"])
```
Output:
```json
[
{
"speaker":"user",
"text":"Are there any eritrean restaurants in town?",
"domains":[
"restaurant"
],
"labels":{
"dialog_acts":{
"acts":[
"inform"
],
"main_acts":[
"inform"
],
"original_acts":[
"inform"
]
},
"slots":[
"food"
],
"intents":"None"
}
},
...
{
"speaker":"system",
"text":"There is a wide variety of Chinese restaurants, do you have an area preference or a price preference to narrow it down?",
"domains":[
"restaurant"
],
"labels":{
"dialog_acts":{
"acts":[
"request"
],
"main_acts":[
"request"
],
"original_acts":[
"request"
]
},
"slots":[
"area"
],
"intents":"None"
}
},
...
]
```
## Corpus Details
### Stats
- **Utterances:** 3.4M
- **Domains:** 52
- **Dialogs:** 369,174
- **Labels:**
- **Dialog acts:** 18
- **Slots:** 524
- **Actions (dialog act + slots):** 3,982
### Full List of Dialog Acts
List of the final 18 dialog act labels along with their proportion in the corpus:
`inform` (64.66%) ·
`request` (12.62%) ·
`offer` (6.62%) ·
`inform_success` (3.07%) ·
`good_bye` (2.67%) ·
`agreement` (2.45%) ·
`thank_you` (2.25%) ·
`confirm` (2.10%) ·
`disagreement` (1.60%) ·
`request_more` (1.06%) ·
`request_alternative` (0.90%) ·
`recommendation` (0.70%) ·
`inform_failure` (0.64%) ·
`greeting` (0.31%) ·
`confirm_answer` (0.18%) ·
`confirm_question` (0.17%) ·
`request_update` (0.02%) ·
`request_compare` (0.01%)
### Full List of Domains
List of the final 52 domain names along with their proportion in the corpus:
`movie` (32.98%) ·
`restaurant` (13.48%) ·
`hotel` (10.15%) ·
`train` (4.52%) ·
`flight` (4.30%) ·
`event` (3.56%) ·
`attraction` (3.50%) ·
`service` (2.44%) ·
`bus` (2.28%) ·
`taxi` (2.21%) ·
`rentalcars` (2.20%) ·
`travel` (2.16%) ·
`music` (1.81%) ·
`medium` (1.66%) ·
`ridesharing` (1.30%) ·
`booking` (1.21%) ·
`home` (1.01%) ·
`finance` (0.79%) ·
`airline` (0.69%) ·
`calendar` (0.69%) ·
`fastfood` (0.68%) ·
`insurance` (0.61%) ·
`weather` (0.58%) ·
`bank` (0.47%) ·
`hkmtr` (0.36%) ·
`mlb` (0.35%) ·
`ml` (0.31%) ·
`food` (0.30%) ·
`epl` (0.30%) ·
`pizza` (0.25%) ·
`coffee` (0.24%) ·
`uber` (0.24%) ·
`software` (0.23%) ·
`auto` (0.21%) ·
`nba` (0.20%) ·
`product_defect` (0.17%) ·
`shipping_issue` (0.16%) ·
`alarm` (0.13%) ·
`order_issue` (0.13%) ·
`messaging` (0.13%) ·
`hospital` (0.11%) ·
`subscription_inquiry` (0.11%) ·
`account_access` (0.11%) ·
`payment` (0.10%) ·
`purchase_dispute` (0.10%) ·
`nfl` (0.09%) ·
`chat` (0.08%) ·
`police` (0.07%) ·
`single_item_query` (0.06%) ·
`storewide_query` (0.06%) ·
`troubleshoot_site` (0.06%) ·
`manage_account` (0.06%)
More details about the corpus can be found in Section 4 and Appendix A of the original paper.
## Citation
If you found the paper and/or this repository useful, please consider citing our work :)
EMNLP paper: [here](https://aclanthology.org/2024.emnlp-main.310/).
```bibtex
@inproceedings{burdisso-etal-2024-dialog2flow,
title = "{D}ialog2{F}low: Pre-training Soft-Contrastive Action-Driven Sentence Embeddings for Automatic Dialog Flow Extraction",
author = "Burdisso, Sergio and
Madikeri, Srikanth and
Motlicek, Petr",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-main.310",
pages = "5421--5440",
}
```
## License
Individual datasets were originally loaded from [DialogStudio](https://huggingface.co/datasets/Salesforce/dialogstudio) and therefore, this project follows [their licensing structure](https://huggingface.co/datasets/Salesforce/dialogstudio/blob/main/README.md#license).
For detailed licensing information, please refer to the specific licenses accompanying the datasets provided in the table above.
All extra content purely authored by us is released under the MIT license:
Copyright (c) 2024 [Idiap Research Institute](https://www.idiap.ch/).
MIT License. |