text
stringlengths 938
1.05M
|
---|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2008 by Wilson Snyder.
`timescale 1ns/10ps
`verilog
`suppress_faults
`nosuppress_faults
`enable_portfaults
`disable_portfaults
`delay_mode_distributed
`delay_mode_path
`delay_mode_unit
`delay_mode_zero
`default_decay_time 1
`default_decay_time 1.0
`default_decay_time infinite
// unsupported (recommended not to): `default_trireg_strength 10
`default_nettype wire
// unsupported: `default_nettype tri
// unsupported: `default_nettype tri0
// unsupported: `default_nettype wand
// unsupported: `default_nettype triand
// unsupported: `default_nettype wor
// unsupported: `default_nettype trior
// unsupported: `default_nettype trireg
`default_nettype none
`autoexpand_vectornets
`accelerate
`noaccelerate
`expand_vectornets
`noexpand_vectornets
`remove_gatenames
`noremove_gatenames
`remove_netnames
`noremove_netnames
`resetall
// unsupported: `unconnected_drive pull1
// unsupported: `unconnected_drive pull0
`nounconnected_drive
`line 100 "hallo.v" 0
// unsupported: `uselib file=../moto_lib.v
// unsupported: `uselib dir=../lib.dir libext=.v
module t;
initial begin
$write("*-* All Finished *-*\n");
$finish;
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2012 by Wilson Snyder.
//bug591
module t (/*AUTOARG*/);
function real ABS (real num);
ABS = (num < 0) ? -num : num;
endfunction
function logic range_chk;
input real last;
input real period;
input real cmp;
range_chk = 0;
if ( last >= 0 ) begin
if ( ABS(last - period) > cmp ) begin
range_chk = 1;
end
end
endfunction
function integer ceil;
input num;
real num;
if (num > $rtoi(num))
ceil = $rtoi(num) + 1;
else
// verilator lint_off REALCVT
ceil = num;
// verilator lint_on REALCVT
endfunction
initial begin
if (range_chk(-1.1, 2.2, 3.3) != 1'b0) $stop;
if (range_chk(1.1, 2.2, 0.3) != 1'b1) $stop;
if (range_chk(1.1, 2.2, 2.3) != 1'b0) $stop;
if (range_chk(2.2, 1.1, 0.3) != 1'b1) $stop;
if (range_chk(2.2, 1.1, 2.3) != 1'b0) $stop;
if (ceil(-2.1) != -2) $stop;
if (ceil(2.1) != 3) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
endmodule
|
// (C) 1992-2014 Altera Corporation. All rights reserved.
// Your use of Altera Corporation's design tools, logic functions and other
// software and tools, and its AMPP partner logic functions, and any output
// files any of the foregoing (including device programming or simulation
// files), and any associated documentation or information are expressly subject
// to the terms and conditions of the Altera Program License Subscription
// Agreement, Altera MegaCore Function License Agreement, or other applicable
// license agreement, including, without limitation, that your use is for the
// sole purpose of programming logic devices manufactured by Altera and sold by
// Altera or its authorized distributors. Please refer to the applicable
// agreement for further details.
//===----------------------------------------------------------------------===//
//
// C backend 'pipeline' primitive
//
//===----------------------------------------------------------------------===//
module acl_pipeline (
clock,
resetn,
data_in,
valid_out,
stall_in,
stall_out,
valid_in,
data_out,
initeration_in,
initeration_stall_out,
initeration_valid_in,
not_exitcond_in,
not_exitcond_stall_out,
not_exitcond_valid_in,
pipeline_valid_out,
pipeline_stall_in,
exiting_valid_out
);
parameter FIFO_DEPTH = 1;
parameter string STYLE = "SPECULATIVE"; // "NON_SPECULATIVE"/"SPECULATIVE"
input clock, resetn, stall_in, valid_in, initeration_valid_in, not_exitcond_valid_in, pipeline_stall_in;
output stall_out, valid_out, initeration_stall_out, not_exitcond_stall_out, pipeline_valid_out;
input data_in, initeration_in, not_exitcond_in;
output data_out;
output exiting_valid_out;
generate
// Instantiate 2 pops and 1 push
if (STYLE == "SPECULATIVE")
begin
wire valid_pop1, valid_pop2;
wire stall_push, stall_pop2;
wire data_pop2, data_push;
acl_pop pop1(
.clock(clock),
.resetn(resetn),
.dir(data_in),
.predicate(1'b0),
.data_in(1'b1),
.valid_out(valid_pop1),
.stall_in(stall_pop2),
.stall_out(stall_out),
.valid_in(valid_in),
.data_out(data_pop2),
.feedback_in(initeration_in),
.feedback_valid_in(initeration_valid_in),
.feedback_stall_out(initeration_stall_out)
);
defparam pop1.DATA_WIDTH = 1;
acl_pop pop2(
.clock(clock),
.resetn(resetn),
.dir(data_pop2),
.predicate(1'b0),
.data_in(1'b0),
.valid_out(valid_pop2),
.stall_in(stall_push),
.stall_out(stall_pop2),
.valid_in(valid_pop1),
.data_out(data_push),
.feedback_in(~not_exitcond_in),
.feedback_valid_in(not_exitcond_valid_in),
.feedback_stall_out(not_exitcond_stall_out)
);
defparam pop2.DATA_WIDTH = 1;
wire p_out, p_valid_out, p_stall_in;
acl_push push(
.clock(clock),
.resetn(resetn),
.dir(1'b1),
.predicate(1'b0),
.data_in(~data_push),
.valid_out(valid_out),
.stall_in(stall_in),
.stall_out(stall_push),
.valid_in(valid_pop2),
.data_out(data_out),
.feedback_out(p_out),
.feedback_valid_out(p_valid_out),
.feedback_stall_in(p_stall_in)
);
// signal when to spawn a new iteration
assign pipeline_valid_out = p_out & p_valid_out;
assign p_stall_in = pipeline_stall_in;
// signal when the last iteration is exiting
assign exiting_valid_out = ~p_out & p_valid_out & ~pipeline_stall_in;
defparam push.DATA_WIDTH = 1;
defparam push.FIFO_DEPTH = FIFO_DEPTH;
end
// Instantiate 1 pop and 1 push
else
begin
//////////////////////////////////////////////////////
// If there is no speculation, directly connect
// exit condition to valid
wire valid_pop2;
wire stall_push;
wire data_push;
wire p_out, p_valid_out, p_stall_in;
assign p_out = not_exitcond_in;
assign p_valid_out = not_exitcond_valid_in ;
assign not_exitcond_stall_out = p_stall_in;
acl_staging_reg asr(
.clk(clock), .reset(~resetn),
.i_valid( valid_in ), .o_stall(stall_out),
.o_valid( valid_out), .i_stall(stall_in)
);
// signal when to spawn a new iteration
assign pipeline_valid_out = p_out & p_valid_out;
assign p_stall_in = pipeline_stall_in;
// signal when the last iteration is exiting
assign exiting_valid_out = ~p_out & p_valid_out & ~pipeline_stall_in;
assign initeration_stall_out = 1'b0; // never stall
end
endgenerate
endmodule
|
// (C) 1992-2014 Altera Corporation. All rights reserved.
// Your use of Altera Corporation's design tools, logic functions and other
// software and tools, and its AMPP partner logic functions, and any output
// files any of the foregoing (including device programming or simulation
// files), and any associated documentation or information are expressly subject
// to the terms and conditions of the Altera Program License Subscription
// Agreement, Altera MegaCore Function License Agreement, or other applicable
// license agreement, including, without limitation, that your use is for the
// sole purpose of programming logic devices manufactured by Altera and sold by
// Altera or its authorized distributors. Please refer to the applicable
// agreement for further details.
//===----------------------------------------------------------------------===//
//
// C backend 'push' primitive
//
// Upstream are signals that go to the feedback (snk node is a acl_pop),
// downstream are signals that continue into our "normal" pipeline.
//
// dir indicates if you want to push it to the feedback
// 1 - push to feedback
// 0 - bypass, just push out to downstream
//===----------------------------------------------------------------------===//
module acl_push (
clock,
resetn,
// interface from kernel pipeline, input stream
dir,
data_in,
valid_in,
stall_out,
predicate,
// interface to kernel pipeline, downstream
valid_out,
stall_in,
data_out,
// interface to pipeline feedback, upstream
feedback_out,
feedback_valid_out,
feedback_stall_in
);
parameter DATA_WIDTH = 32;
parameter FIFO_DEPTH = 1;
parameter MIN_FIFO_LATENCY = 0;
// style can be "REGULAR", for a regular push
// or "TOKEN" for a special fifo that hands out tokens
parameter string STYLE = "REGULAR"; // "REGULAR"/"TOKEN"
parameter STALLFREE = 0;
input clock, resetn, stall_in, valid_in, feedback_stall_in;
output stall_out, valid_out, feedback_valid_out;
input [DATA_WIDTH-1:0] data_in;
input dir;
input predicate;
output [DATA_WIDTH-1:0] data_out, feedback_out;
wire [DATA_WIDTH-1:0] feedback;
wire data_downstream, data_upstream;
wire push_upstream;
assign push_upstream = dir & ~predicate;
assign data_upstream = valid_in & push_upstream;
assign data_downstream = valid_in;
wire feedback_stall, feedback_valid;
reg consumed_downstream, consumed_upstream;
assign valid_out = data_downstream & !consumed_downstream;
assign feedback_valid = data_upstream & !consumed_upstream;
assign data_out = data_in;
assign feedback = data_in;
//assign stall_out = valid_in & ( ~(data_downstream & ~stall_in) & ~(data_upstream & ~feedback_stall));
// assign stall_out = valid_in & ( ~(data_downstream & ~stall_in) | ~(data_upstream & ~feedback_stall));
assign stall_out = stall_in | (feedback_stall & push_upstream );
always @(posedge clock or negedge resetn) begin
if (!resetn) begin
consumed_downstream <= 1'b0;
consumed_upstream <= 1'b0;
end else begin
if (consumed_downstream)
consumed_downstream <= stall_out;
else
consumed_downstream <= stall_out & (data_downstream & ~stall_in);
if (consumed_upstream)
consumed_upstream <= stall_out;
else
consumed_upstream <= stall_out & (data_upstream & ~feedback_stall);
end
end
localparam TYPE = MIN_FIFO_LATENCY < 1 ? (FIFO_DEPTH < 8 ? "zl_reg" : "zl_ram") : (MIN_FIFO_LATENCY < 3 ? (FIFO_DEPTH < 8 ? "ll_reg" : "ll_ram") : (FIFO_DEPTH < 8 ? "ll_reg" : "ram"));
generate
if ( STYLE == "TOKEN" )
begin
acl_token_fifo_counter
#(
.DEPTH(FIFO_DEPTH)
)
fifo (
.clock(clock),
.resetn(resetn),
.data_out(feedback_out),
.valid_in(feedback_valid),
.valid_out(feedback_valid_out),
.stall_in(feedback_stall_in),
.stall_out(feedback_stall)
);
end
else if (FIFO_DEPTH == 0) begin
// if no FIFO depth is requested, just connect
// feedback directly to output
assign feedback_out = feedback;
assign feedback_valid_out = feedback_valid;
assign feedback_stall = feedback_stall_in;
end
else if (FIFO_DEPTH == 1 && MIN_FIFO_LATENCY == 0) begin
// simply add a staging register if the requested depth is 1
// and the latency must be 0
acl_staging_reg #(
.WIDTH(DATA_WIDTH)
) staging_reg (
.clk(clock),
.reset(~resetn),
.i_data(feedback),
.i_valid(feedback_valid),
.o_stall(feedback_stall),
.o_data(feedback_out),
.o_valid(feedback_valid_out),
.i_stall(feedback_stall_in)
);
end
else
begin
// only allow full write in stall free clusters if you're an ll_reg
// otherwise, comb cycles can form, since stall_out depends on
// stall_in the acl_data_fifo. To make up for the last space, we
// add a capacity of 1 to the FIFO
localparam OFFSET = ( (TYPE == "ll_reg") && !STALLFREE ) ? 1 : 0;
localparam ALLOW_FULL_WRITE = ( (TYPE == "ll_reg") && !STALLFREE ) ? 0 : 1;
acl_data_fifo #(
.DATA_WIDTH(DATA_WIDTH),
.DEPTH(((TYPE == "ram") || (TYPE == "ll_ram") || (TYPE == "zl_ram")) ? FIFO_DEPTH + 1 : FIFO_DEPTH + OFFSET),
.IMPL(TYPE),
.ALLOW_FULL_WRITE(ALLOW_FULL_WRITE)
)
fifo (
.clock(clock),
.resetn(resetn),
.data_in(feedback),
.data_out(feedback_out),
.valid_in(feedback_valid),
.valid_out(feedback_valid_out),
.stall_in(feedback_stall_in),
.stall_out(feedback_stall)
);
end
endgenerate
endmodule
|
//===----------------------------------------------------------------------===//
//
// Parameterized FIFO with input and output registers and ACL pipeline
// protocol ports. This "FIFO" stores no data and only hands out a sequence of
// numbers from 0..DEPTH-1 (tokens) in round robin fashion.
//
//===----------------------------------------------------------------------===//
module acl_token_fifo_counter
#(
parameter integer DEPTH = 32, // >0
parameter integer STRICT_DEPTH = 1, // 0|1
parameter integer ALLOW_FULL_WRITE = 0 // 0|1
)
(
clock,
resetn,
data_out, // the width of this signal is set by this module, it is the
// responsibility of the top module to make sure the signal
// widths match across this interface.
valid_in,
valid_out,
stall_in,
stall_out,
empty,
full
);
// This fifo is based on acl_valid_fifo
// However, there are 2 differences:
// 1. The fifo is intialized as full
// 2. We keep another counter to serve as the actual token
// STRICT_DEPTH increases FIFO depth to a power of 2 + 1 depth.
// No data, so just build a counter to count the number of valids stored in this "FIFO".
//
// The counter is constructed to count up to a MINIMUM value of DEPTH entries.
// * Logical range of the counter C0 is [0, DEPTH].
// * empty = (C0 <= 0)
// * full = (C0 >= DEPTH)
//
// To have efficient detection of the empty condition (C0 == 0), the range is offset
// by -1 so that a negative number indicates empty.
// * Logical range of the counter C1 is [-1, DEPTH-1].
// * empty = (C1 < 0)
// * full = (C1 >= DEPTH-1)
// The size of counter C1 is $clog2((DEPTH-1) + 1) + 1 => $clog2(DEPTH) + 1.
//
// To have efficient detection of the full condition (C1 >= DEPTH-1), change the
// full condition to C1 == 2^$clog2(DEPTH-1), which is DEPTH-1 rounded up
// to the next power of 2. This is only done if STRICT_DEPTH == 0, otherwise
// the full condition is comparison vs. DEPTH-1.
// * Logical range of the counter C2 is [-1, 2^$clog2(DEPTH-1)]
// * empty = (C2 < 0)
// * full = (C2 == 2^$clog2(DEPTH - 1))
// The size of counter C2 is $clog2(DEPTH-1) + 2.
// * empty = MSB
// * full = ~[MSB] & [MSB-1]
localparam COUNTER_WIDTH = (STRICT_DEPTH == 0) ?
((DEPTH > 1 ? $clog2(DEPTH-1) : 0) + 2) :
($clog2(DEPTH) + 1);
input clock;
input resetn;
output [COUNTER_WIDTH-1:0] data_out;
input valid_in;
output valid_out;
input stall_in;
output stall_out;
output empty;
output full;
logic [COUNTER_WIDTH - 1:0] valid_counter /* synthesis maxfan=1 dont_merge */;
logic incr, decr;
// The logical range for the token is [0,REAL_DEPTH-1], where REAL_DEPTH
// is the actual depth of the fifo taking STRICT_DEPTH into account
// This counter is 1-bit less wide than valid_counter because it is
// unsigned
logic [COUNTER_WIDTH - 2:0] token;
logic token_max;
assign data_out = token;
assign token_max = (STRICT_DEPTH == 0) ?
(~token[$bits(token) - 1] & token[$bits(token) - 2]) :
(token == DEPTH - 1);
assign empty = valid_counter[$bits(valid_counter) - 1];
assign full = (STRICT_DEPTH == 0) ?
(~valid_counter[$bits(valid_counter) - 1] & valid_counter[$bits(valid_counter) - 2]) :
(valid_counter == DEPTH - 1);
assign incr = valid_in & ~stall_out; // push
assign decr = valid_out & ~stall_in; // pop
assign valid_out = ~empty;
assign stall_out = ALLOW_FULL_WRITE ? (full & stall_in) : full;
always @( posedge clock or negedge resetn )
if( !resetn )
begin
valid_counter <= (STRICT_DEPTH == 0) ? (2^$clog2(DEPTH-1)) : DEPTH - 1; // full
token <= 0;
end
else
begin
valid_counter <= valid_counter + incr - decr;
if (decr) // increment token, if popping
token <= token_max ? 0 : token+1;
end
endmodule
|
// (C) 1992-2014 Altera Corporation. All rights reserved.
// Your use of Altera Corporation's design tools, logic functions and other
// software and tools, and its AMPP partner logic functions, and any output
// files any of the foregoing (including device programming or simulation
// files), and any associated documentation or information are expressly subject
// to the terms and conditions of the Altera Program License Subscription
// Agreement, Altera MegaCore Function License Agreement, or other applicable
// license agreement, including, without limitation, that your use is for the
// sole purpose of programming logic devices manufactured by Altera and sold by
// Altera or its authorized distributors. Please refer to the applicable
// agreement for further details.
//
// Top level module for pipelined memory access.
//
// Properties - Coalesced: No, Ordered: N/A, Hazard-Safe: Yes, Pipelined: Yes
// (see lsu_top.v for details)
//
// Description: Requests are submitted as soon as they are received.
// Pipelined access to memory so multiple requests can be
// in flight at a time.
// Pipelined atomic unit:
// Accept read requests on the upstream interface. When a request is
// received, store the requested byte address in the request fifo and
// pass the request through to the avalon interface. Response data
// is buffered in the response fifo and the appropriate word is muxed
// out of the response fifo based on the address in the request fifo.
// The response fifo has limited capacity, so a counter is used to track
// the number of pending responses to generate an upstream stall if
// we run out of room.
module lsu_atomic_pipelined
(
clk, reset, o_stall, i_valid, i_address, i_burstcount, i_stall, o_valid, o_readdata,
o_active, //Debugging signal
avm_address, avm_read, avm_readdata, avm_waitrequest, avm_byteenable,
avm_readdatavalid,
o_input_fifo_depth,
avm_burstcount,
// specific for write data path
i_atomic_op, i_writedata, i_cmpdata, avm_writeack, avm_writedata
);
/*************
* Parameters *
*************/
parameter AWIDTH=32; // Address width (32-bits for Avalon)
parameter WIDTH_BYTES=4; // Width of the memory access (bytes)
parameter MWIDTH_BYTES=32; // Width of the global memory bus (bytes)
parameter WRITEDATAWIDTH_BYTES=32; // Width of the readdata/writedata signals,
// may be larger than MWIDTH_BYTES
parameter ALIGNMENT_ABITS=2; // Request address alignment (address bits)
parameter KERNEL_SIDE_MEM_LATENCY=32; // The max number of live threads
parameter USEBURST=0;
parameter BURSTCOUNT_WIDTH=6; // Size of Avalon burst count port
parameter USEINPUTFIFO=1;
parameter USEOUTPUTFIFO=1;
parameter INPUTFIFOSIZE=32;
parameter PIPELINE_INPUT=0;
parameter SUPERPIPELINE=0; // Enable extremely aggressive pipelining of the LSU
parameter ATOMIC_WIDTH=6; // atomic operation range
localparam INPUTFIFO_USEDW_MAXBITS=$clog2(INPUTFIFOSIZE);
// Derived parameters
localparam MAX_BURST=2**(BURSTCOUNT_WIDTH-1);
localparam WIDTH=8*WIDTH_BYTES;
localparam MWIDTH=8*MWIDTH_BYTES;
localparam WRITEDATAWIDTH=8*WRITEDATAWIDTH_BYTES;
localparam BYTE_SELECT_BITS=$clog2(MWIDTH_BYTES);
localparam SEGMENT_SELECT_BITS=BYTE_SELECT_BITS-ALIGNMENT_ABITS;
localparam SEGMENT_WIDTH_BYTES=(2**ALIGNMENT_ABITS);
localparam UNUSED_WRITEDATA_WIDTH = WRITEDATAWIDTH - (2 * WIDTH + ATOMIC_WIDTH + BYTE_SELECT_BITS + 1);
//
// We only o_stall if we have more than KERNEL_SIDE_MEM_LATENCY inflight requests
//
localparam RETURN_FIFO_SIZE=KERNEL_SIDE_MEM_LATENCY+(USEBURST ? 0 : 1);
localparam COUNTER_WIDTH=USEBURST ? $clog2(RETURN_FIFO_SIZE+1+MAX_BURST) : $clog2(RETURN_FIFO_SIZE+1);
/********
* Ports *
********/
// Standard global signals
input clk;
input reset;
// Upstream interface
output o_stall;
input i_valid;
input [AWIDTH-1:0] i_address;
input [BURSTCOUNT_WIDTH-1:0] i_burstcount;
// Downstream interface
input i_stall;
output o_valid;
output [WIDTH-1:0] o_readdata;
output reg o_active;
// Atomic signals
input [ATOMIC_WIDTH-1:0] i_atomic_op;
// Avalon read interface
output [AWIDTH-1:0] avm_address;
output avm_read;
input [WRITEDATAWIDTH-1:0] avm_readdata;
input avm_waitrequest;
output logic [WRITEDATAWIDTH_BYTES-1:0] avm_byteenable;
input avm_readdatavalid;
// Avalon write interface
input [WIDTH-1:0] i_writedata;
input [WIDTH-1:0] i_cmpdata;
input avm_writeack;
output [WRITEDATAWIDTH-1:0] avm_writedata;
output [BURSTCOUNT_WIDTH-1:0] avm_burstcount;
// For profiler/performance monitor
output [INPUTFIFO_USEDW_MAXBITS-1:0] o_input_fifo_depth;
/***************
* Architecture *
***************/
wire i_valid_from_fifo;
wire [AWIDTH-1:0] i_address_from_fifo;
wire o_stall_to_fifo;
wire [BURSTCOUNT_WIDTH-1:0] i_burstcount_from_fifo;
wire [WIDTH-1:0] i_writedata_from_fifo;
wire [WIDTH-1:0] i_cmpdata_from_fifo;
wire [ATOMIC_WIDTH-1:0] i_atomic_op_from_fifo;
wire [BYTE_SELECT_BITS-1:0] segment_address;
wire read_accepted;
wire read_used;
wire [BYTE_SELECT_BITS-1:0] byte_select;
wire ready;
wire out_fifo_wait;
localparam FIFO_DEPTH_BITS=USEINPUTFIFO ? $clog2(INPUTFIFOSIZE) : 0;
wire [FIFO_DEPTH_BITS-1:0] usedw_true_width;
generate
if (USEINPUTFIFO)
assign o_input_fifo_depth[FIFO_DEPTH_BITS-1:0] = usedw_true_width;
// Set unused bits to 0
genvar bit_index;
for(bit_index = FIFO_DEPTH_BITS; bit_index < INPUTFIFO_USEDW_MAXBITS; bit_index = bit_index + 1)
begin: read_fifo_depth_zero_assign
assign o_input_fifo_depth[bit_index] = 1'b0;
end
endgenerate
generate
if(USEINPUTFIFO && SUPERPIPELINE)
begin
wire int_stall;
wire int_valid;
wire [WIDTH+AWIDTH+BURSTCOUNT_WIDTH-1:0] int_data;
acl_fifo #(
.DATA_WIDTH(ATOMIC_WIDTH+2*WIDTH+AWIDTH+BURSTCOUNT_WIDTH),
.DEPTH(INPUTFIFOSIZE)
) input_fifo (
.clock(clk),
.resetn(!reset),
.data_in( {i_atomic_op,i_cmpdata,i_writedata,i_address,i_burstcount} ),
.data_out( int_data ),
.valid_in( i_valid ),
.valid_out( int_valid ),
.stall_in( int_stall ),
.stall_out( o_stall ),
.usedw( usedw_true_width )
);
// Add a pipeline and stall-breaking FIFO
// TODO: Consider making this parameterizeable
acl_data_fifo #(
.DATA_WIDTH(ATOMIC_WIDTH+2*WIDTH+AWIDTH+BURSTCOUNT_WIDTH),
.DEPTH(2),
.IMPL("ll_reg")
) input_fifo_buffer (
.clock(clk),
.resetn(!reset),
.data_in( int_data ),
.valid_in( int_valid ),
.data_out( {i_atomic_op_from_fifo,i_cmpdata_from_fifo,i_writedata_from_fifo,i_address_from_fifo,i_burstcount_from_fifo} ),
.valid_out( i_valid_from_fifo ),
.stall_in( o_stall_to_fifo ),
.stall_out( int_stall )
);
end
else if(USEINPUTFIFO && !SUPERPIPELINE)
begin
acl_fifo #(
.DATA_WIDTH(ATOMIC_WIDTH+2*AWIDTH+BURSTCOUNT_WIDTH),
.DEPTH(INPUTFIFOSIZE)
) input_fifo (
.clock(clk),
.resetn(!reset),
.data_in( {i_atomic_op,i_cmpdata,i_writedata,i_address,i_burstcount} ),
.data_out( {i_atomic_op_from_fifo,i_cmpdata_from_fifo,i_writedata_from_fifo,i_address_from_fifo,i_burstcount_from_fifo} ),
.valid_in( i_valid ),
.valid_out( i_valid_from_fifo ),
.stall_in( o_stall_to_fifo ),
.stall_out( o_stall ),
.usedw( usedw_true_width )
);
end
else if(PIPELINE_INPUT)
begin
reg r_valid;
reg [AWIDTH-1:0] r_address;
reg [WIDTH-1:0] r_writedata;
reg [WIDTH-1:0] r_cmpdata;
reg [ATOMIC_WIDTH-1:0] r_atomic_op;
reg [BURSTCOUNT_WIDTH-1:0] r_burstcount;
assign o_stall = r_valid && o_stall_to_fifo;
always@(posedge clk or posedge reset)
begin
if(reset == 1'b1)
r_valid <= 1'b0;
else
begin
if (!o_stall)
begin
r_valid <= i_valid;
r_address <= i_address;
r_atomic_op <= i_atomic_op;
r_writedata <= i_writedata;
r_cmpdata <= i_cmpdata;
r_burstcount <= i_burstcount;
end
end
end
assign i_valid_from_fifo = r_valid;
assign i_address_from_fifo = r_address;
assign i_atomic_op_from_fifo = r_atomic_op;
assign i_writedata_from_fifo = r_writedata;
assign i_cmpdata_from_fifo = r_cmpdata;
assign i_burstcount_from_fifo = r_burstcount;
end
else
begin
assign i_valid_from_fifo = i_valid;
assign i_address_from_fifo = i_address;
assign i_atomic_op_from_fifo = i_atomic_op;
assign i_writedata_from_fifo = i_writedata;
assign i_cmpdata_from_fifo = i_cmpdata;
assign o_stall = o_stall_to_fifo;
assign i_burstcount_from_fifo = i_burstcount;
end
endgenerate
// Track the number of transactions waiting in the pipeline here
reg [COUNTER_WIDTH-1:0] counter;
wire incr, decr;
assign incr = read_accepted;
assign decr = read_used;
always@(posedge clk or posedge reset)
begin
if(reset == 1'b1)
begin
counter <= {COUNTER_WIDTH{1'b0}};
o_active <= 1'b0;
end
else
begin
o_active <= (counter != {COUNTER_WIDTH{1'b0}});
// incr - add one or i_burstcount_from_fifo; decr - subtr one;
if (USEBURST==1)
counter <= counter + (incr ? i_burstcount_from_fifo : 0) - decr;
else
counter <= counter + incr - decr;
end
end
generate
if(USEBURST)
// Use the burstcount to figure out if there is enough space
assign ready = ((counter+i_burstcount_from_fifo) <= RETURN_FIFO_SIZE);
//
// Can also use decr in this calaculation to make ready respond faster
// but this seems to hurt Fmax ( ie. not worth it )
//assign ready = ((counter+i_burstcount_from_fifo-decr) <= RETURN_FIFO_SIZE);
else
// Can we hold one more item
assign ready = (counter <= (RETURN_FIFO_SIZE-1)); //utku: what if we dont use return fifo?
endgenerate
assign o_stall_to_fifo = !ready || out_fifo_wait;
// Optional Pipeline register before return
//
reg r_avm_readdatavalid;
reg [WRITEDATAWIDTH-1:0] r_avm_readdata;
generate
if(SUPERPIPELINE)
begin
always@(posedge clk or posedge reset)
begin
if(reset == 1'b1)
begin
r_avm_readdata <= 'x;
r_avm_readdatavalid <= 1'b0;
end
else
begin
r_avm_readdata <= avm_readdata;
r_avm_readdatavalid <= avm_readdatavalid;
end
end
end
else
begin
// Don't register the return
always@(*)
begin
r_avm_readdata = avm_readdata;
r_avm_readdatavalid = avm_readdatavalid;
end
end
endgenerate
wire [WIDTH-1:0] rdata;
// Byte-addresses enter a FIFO so we can demux the appropriate data back out.
generate
if(SEGMENT_SELECT_BITS > 0)
begin
wire [SEGMENT_SELECT_BITS-1:0] segment_address_out;
wire [SEGMENT_SELECT_BITS-1:0] segment_address_in;
assign segment_address_in = i_address_from_fifo[ALIGNMENT_ABITS +: BYTE_SELECT_BITS-ALIGNMENT_ABITS];
acl_ll_fifo #(
.WIDTH(SEGMENT_SELECT_BITS),
.DEPTH(KERNEL_SIDE_MEM_LATENCY+1)
) req_fifo (
.clk(clk),
.reset(reset),
.data_in( segment_address_in ),
.data_out( segment_address_out ),
.write( read_accepted ),
.read( r_avm_readdatavalid ),
.empty(),
.full()
);
assign byte_select = (segment_address_out << ALIGNMENT_ABITS);
assign rdata = r_avm_readdata[8*byte_select +: WIDTH];
end
else
begin
assign byte_select = {BYTE_SELECT_BITS{1'b0}};
assign rdata = r_avm_readdata;
end
endgenerate
// set byteenable properly for read path
generate
if(SEGMENT_SELECT_BITS > 0)
begin
wire [SEGMENT_SELECT_BITS-1:0] segment_select;
assign segment_select = i_address_from_fifo[ALIGNMENT_ABITS +: BYTE_SELECT_BITS-ALIGNMENT_ABITS];
assign segment_address = segment_select*SEGMENT_WIDTH_BYTES;
//always@(*)
//begin
// avm_byteenable = {WRITEDATAWIDTH_BYTES{1'b0}};
// avm_byteenable[segment_select*SEGMENT_WIDTH_BYTES +: WIDTH_BYTES] = {WIDTH_BYTES{1'b1}};
//end
end
else
begin
assign segment_address = {BYTE_SELECT_BITS{1'b0}};
//always@(*)
//begin
//avm_byteenable = {WRITEDATAWIDTH_BYTES{1'b1}};
//end
end
endgenerate
always@(*)
begin
avm_byteenable = {WRITEDATAWIDTH_BYTES{1'b0}};
avm_byteenable[segment_address +: WIDTH_BYTES] = {WIDTH_BYTES{1'b1}};
end
// Status bits
assign read_accepted = i_valid_from_fifo && ready && !out_fifo_wait;
assign read_used = o_valid && !i_stall;
// Optional: Pipelining FIFO on the AVM interface
//
generate
if(SUPERPIPELINE)
begin
acl_data_fifo #(
.DATA_WIDTH(WRITEDATAWIDTH+AWIDTH+BURSTCOUNT_WIDTH),
.DEPTH(2),
.IMPL("ll_reg")
) avm_buffer (
.clock(clk),
.resetn(!reset),
.data_in({ {UNUSED_WRITEDATA_WIDTH{1'b0}},segment_address,i_atomic_op_from_fifo,i_cmpdata_from_fifo,i_writedata_from_fifo,1'b1,((i_address_from_fifo >> BYTE_SELECT_BITS) << BYTE_SELECT_BITS),i_burstcount_from_fifo}),
.valid_in( i_valid_from_fifo && ready ),
.data_out( {avm_writedata,avm_address,avm_burstcount} ),
.valid_out( avm_read ),
.stall_in( avm_waitrequest ),
.stall_out( out_fifo_wait )
);
end
else
begin
// No interface pipelining
assign out_fifo_wait = avm_waitrequest;
assign avm_address = ((i_address_from_fifo >> BYTE_SELECT_BITS) << BYTE_SELECT_BITS);
assign avm_read = i_valid_from_fifo && ready;
assign avm_burstcount = i_burstcount_from_fifo;
// avm_writedata contains {valid atomic bit, writedata, cmpdata, atomic_op}
assign avm_writedata[0:0] = 1'b1;
assign avm_writedata[WIDTH:1] = i_writedata_from_fifo;
assign avm_writedata[2*WIDTH:WIDTH+1] = i_cmpdata_from_fifo;
assign avm_writedata[2*WIDTH+ATOMIC_WIDTH:2*WIDTH+1] = i_atomic_op_from_fifo;
assign avm_writedata[2*WIDTH+ATOMIC_WIDTH+BYTE_SELECT_BITS:2*WIDTH+ATOMIC_WIDTH+1] = segment_address;
assign avm_writedata[WRITEDATAWIDTH-1:2*WIDTH+ATOMIC_WIDTH+BYTE_SELECT_BITS+1] = { UNUSED_WRITEDATA_WIDTH{1'b0} };
end
endgenerate
// ---------------------------------------------------------------------------------
// Output fifo - must be at least as deep as the maximum number of pending requests
// so that we can guarantee a place for the response data if the downstream blocks
// are stalling.
//
generate
if(USEOUTPUTFIFO)
begin
acl_fifo #(
.DATA_WIDTH(WIDTH),
.DEPTH(RETURN_FIFO_SIZE)
) data_fifo (
.clock(clk),
.resetn(!reset),
.data_in( rdata ),
.data_out( o_readdata ),
.valid_in( r_avm_readdatavalid ),
.valid_out( o_valid ),
.stall_in( i_stall ),
.stall_out()
);
end
else
begin
assign o_valid = r_avm_readdatavalid;
assign o_readdata = rdata;
end
endgenerate
endmodule
|
// (C) 1992-2014 Altera Corporation. All rights reserved.
// Your use of Altera Corporation's design tools, logic functions and other
// software and tools, and its AMPP partner logic functions, and any output
// files any of the foregoing (including device programming or simulation
// files), and any associated documentation or information are expressly subject
// to the terms and conditions of the Altera Program License Subscription
// Agreement, Altera MegaCore Function License Agreement, or other applicable
// license agreement, including, without limitation, that your use is for the
// sole purpose of programming logic devices manufactured by Altera and sold by
// Altera or its authorized distributors. Please refer to the applicable
// agreement for further details.
//
// Top level module for pipelined memory access.
//
// Properties - Coalesced: No, Ordered: N/A, Hazard-Safe: Yes, Pipelined: Yes
// (see lsu_top.v for details)
//
// Description: Requests are submitted as soon as they are received.
// Pipelined access to memory so multiple requests can be
// in flight at a time.
// Pipelined atomic unit:
// Accept read requests on the upstream interface. When a request is
// received, store the requested byte address in the request fifo and
// pass the request through to the avalon interface. Response data
// is buffered in the response fifo and the appropriate word is muxed
// out of the response fifo based on the address in the request fifo.
// The response fifo has limited capacity, so a counter is used to track
// the number of pending responses to generate an upstream stall if
// we run out of room.
module lsu_atomic_pipelined
(
clk, reset, o_stall, i_valid, i_address, i_burstcount, i_stall, o_valid, o_readdata,
o_active, //Debugging signal
avm_address, avm_read, avm_readdata, avm_waitrequest, avm_byteenable,
avm_readdatavalid,
o_input_fifo_depth,
avm_burstcount,
// specific for write data path
i_atomic_op, i_writedata, i_cmpdata, avm_writeack, avm_writedata
);
/*************
* Parameters *
*************/
parameter AWIDTH=32; // Address width (32-bits for Avalon)
parameter WIDTH_BYTES=4; // Width of the memory access (bytes)
parameter MWIDTH_BYTES=32; // Width of the global memory bus (bytes)
parameter WRITEDATAWIDTH_BYTES=32; // Width of the readdata/writedata signals,
// may be larger than MWIDTH_BYTES
parameter ALIGNMENT_ABITS=2; // Request address alignment (address bits)
parameter KERNEL_SIDE_MEM_LATENCY=32; // The max number of live threads
parameter USEBURST=0;
parameter BURSTCOUNT_WIDTH=6; // Size of Avalon burst count port
parameter USEINPUTFIFO=1;
parameter USEOUTPUTFIFO=1;
parameter INPUTFIFOSIZE=32;
parameter PIPELINE_INPUT=0;
parameter SUPERPIPELINE=0; // Enable extremely aggressive pipelining of the LSU
parameter ATOMIC_WIDTH=6; // atomic operation range
localparam INPUTFIFO_USEDW_MAXBITS=$clog2(INPUTFIFOSIZE);
// Derived parameters
localparam MAX_BURST=2**(BURSTCOUNT_WIDTH-1);
localparam WIDTH=8*WIDTH_BYTES;
localparam MWIDTH=8*MWIDTH_BYTES;
localparam WRITEDATAWIDTH=8*WRITEDATAWIDTH_BYTES;
localparam BYTE_SELECT_BITS=$clog2(MWIDTH_BYTES);
localparam SEGMENT_SELECT_BITS=BYTE_SELECT_BITS-ALIGNMENT_ABITS;
localparam SEGMENT_WIDTH_BYTES=(2**ALIGNMENT_ABITS);
localparam UNUSED_WRITEDATA_WIDTH = WRITEDATAWIDTH - (2 * WIDTH + ATOMIC_WIDTH + BYTE_SELECT_BITS + 1);
//
// We only o_stall if we have more than KERNEL_SIDE_MEM_LATENCY inflight requests
//
localparam RETURN_FIFO_SIZE=KERNEL_SIDE_MEM_LATENCY+(USEBURST ? 0 : 1);
localparam COUNTER_WIDTH=USEBURST ? $clog2(RETURN_FIFO_SIZE+1+MAX_BURST) : $clog2(RETURN_FIFO_SIZE+1);
/********
* Ports *
********/
// Standard global signals
input clk;
input reset;
// Upstream interface
output o_stall;
input i_valid;
input [AWIDTH-1:0] i_address;
input [BURSTCOUNT_WIDTH-1:0] i_burstcount;
// Downstream interface
input i_stall;
output o_valid;
output [WIDTH-1:0] o_readdata;
output reg o_active;
// Atomic signals
input [ATOMIC_WIDTH-1:0] i_atomic_op;
// Avalon read interface
output [AWIDTH-1:0] avm_address;
output avm_read;
input [WRITEDATAWIDTH-1:0] avm_readdata;
input avm_waitrequest;
output logic [WRITEDATAWIDTH_BYTES-1:0] avm_byteenable;
input avm_readdatavalid;
// Avalon write interface
input [WIDTH-1:0] i_writedata;
input [WIDTH-1:0] i_cmpdata;
input avm_writeack;
output [WRITEDATAWIDTH-1:0] avm_writedata;
output [BURSTCOUNT_WIDTH-1:0] avm_burstcount;
// For profiler/performance monitor
output [INPUTFIFO_USEDW_MAXBITS-1:0] o_input_fifo_depth;
/***************
* Architecture *
***************/
wire i_valid_from_fifo;
wire [AWIDTH-1:0] i_address_from_fifo;
wire o_stall_to_fifo;
wire [BURSTCOUNT_WIDTH-1:0] i_burstcount_from_fifo;
wire [WIDTH-1:0] i_writedata_from_fifo;
wire [WIDTH-1:0] i_cmpdata_from_fifo;
wire [ATOMIC_WIDTH-1:0] i_atomic_op_from_fifo;
wire [BYTE_SELECT_BITS-1:0] segment_address;
wire read_accepted;
wire read_used;
wire [BYTE_SELECT_BITS-1:0] byte_select;
wire ready;
wire out_fifo_wait;
localparam FIFO_DEPTH_BITS=USEINPUTFIFO ? $clog2(INPUTFIFOSIZE) : 0;
wire [FIFO_DEPTH_BITS-1:0] usedw_true_width;
generate
if (USEINPUTFIFO)
assign o_input_fifo_depth[FIFO_DEPTH_BITS-1:0] = usedw_true_width;
// Set unused bits to 0
genvar bit_index;
for(bit_index = FIFO_DEPTH_BITS; bit_index < INPUTFIFO_USEDW_MAXBITS; bit_index = bit_index + 1)
begin: read_fifo_depth_zero_assign
assign o_input_fifo_depth[bit_index] = 1'b0;
end
endgenerate
generate
if(USEINPUTFIFO && SUPERPIPELINE)
begin
wire int_stall;
wire int_valid;
wire [WIDTH+AWIDTH+BURSTCOUNT_WIDTH-1:0] int_data;
acl_fifo #(
.DATA_WIDTH(ATOMIC_WIDTH+2*WIDTH+AWIDTH+BURSTCOUNT_WIDTH),
.DEPTH(INPUTFIFOSIZE)
) input_fifo (
.clock(clk),
.resetn(!reset),
.data_in( {i_atomic_op,i_cmpdata,i_writedata,i_address,i_burstcount} ),
.data_out( int_data ),
.valid_in( i_valid ),
.valid_out( int_valid ),
.stall_in( int_stall ),
.stall_out( o_stall ),
.usedw( usedw_true_width )
);
// Add a pipeline and stall-breaking FIFO
// TODO: Consider making this parameterizeable
acl_data_fifo #(
.DATA_WIDTH(ATOMIC_WIDTH+2*WIDTH+AWIDTH+BURSTCOUNT_WIDTH),
.DEPTH(2),
.IMPL("ll_reg")
) input_fifo_buffer (
.clock(clk),
.resetn(!reset),
.data_in( int_data ),
.valid_in( int_valid ),
.data_out( {i_atomic_op_from_fifo,i_cmpdata_from_fifo,i_writedata_from_fifo,i_address_from_fifo,i_burstcount_from_fifo} ),
.valid_out( i_valid_from_fifo ),
.stall_in( o_stall_to_fifo ),
.stall_out( int_stall )
);
end
else if(USEINPUTFIFO && !SUPERPIPELINE)
begin
acl_fifo #(
.DATA_WIDTH(ATOMIC_WIDTH+2*AWIDTH+BURSTCOUNT_WIDTH),
.DEPTH(INPUTFIFOSIZE)
) input_fifo (
.clock(clk),
.resetn(!reset),
.data_in( {i_atomic_op,i_cmpdata,i_writedata,i_address,i_burstcount} ),
.data_out( {i_atomic_op_from_fifo,i_cmpdata_from_fifo,i_writedata_from_fifo,i_address_from_fifo,i_burstcount_from_fifo} ),
.valid_in( i_valid ),
.valid_out( i_valid_from_fifo ),
.stall_in( o_stall_to_fifo ),
.stall_out( o_stall ),
.usedw( usedw_true_width )
);
end
else if(PIPELINE_INPUT)
begin
reg r_valid;
reg [AWIDTH-1:0] r_address;
reg [WIDTH-1:0] r_writedata;
reg [WIDTH-1:0] r_cmpdata;
reg [ATOMIC_WIDTH-1:0] r_atomic_op;
reg [BURSTCOUNT_WIDTH-1:0] r_burstcount;
assign o_stall = r_valid && o_stall_to_fifo;
always@(posedge clk or posedge reset)
begin
if(reset == 1'b1)
r_valid <= 1'b0;
else
begin
if (!o_stall)
begin
r_valid <= i_valid;
r_address <= i_address;
r_atomic_op <= i_atomic_op;
r_writedata <= i_writedata;
r_cmpdata <= i_cmpdata;
r_burstcount <= i_burstcount;
end
end
end
assign i_valid_from_fifo = r_valid;
assign i_address_from_fifo = r_address;
assign i_atomic_op_from_fifo = r_atomic_op;
assign i_writedata_from_fifo = r_writedata;
assign i_cmpdata_from_fifo = r_cmpdata;
assign i_burstcount_from_fifo = r_burstcount;
end
else
begin
assign i_valid_from_fifo = i_valid;
assign i_address_from_fifo = i_address;
assign i_atomic_op_from_fifo = i_atomic_op;
assign i_writedata_from_fifo = i_writedata;
assign i_cmpdata_from_fifo = i_cmpdata;
assign o_stall = o_stall_to_fifo;
assign i_burstcount_from_fifo = i_burstcount;
end
endgenerate
// Track the number of transactions waiting in the pipeline here
reg [COUNTER_WIDTH-1:0] counter;
wire incr, decr;
assign incr = read_accepted;
assign decr = read_used;
always@(posedge clk or posedge reset)
begin
if(reset == 1'b1)
begin
counter <= {COUNTER_WIDTH{1'b0}};
o_active <= 1'b0;
end
else
begin
o_active <= (counter != {COUNTER_WIDTH{1'b0}});
// incr - add one or i_burstcount_from_fifo; decr - subtr one;
if (USEBURST==1)
counter <= counter + (incr ? i_burstcount_from_fifo : 0) - decr;
else
counter <= counter + incr - decr;
end
end
generate
if(USEBURST)
// Use the burstcount to figure out if there is enough space
assign ready = ((counter+i_burstcount_from_fifo) <= RETURN_FIFO_SIZE);
//
// Can also use decr in this calaculation to make ready respond faster
// but this seems to hurt Fmax ( ie. not worth it )
//assign ready = ((counter+i_burstcount_from_fifo-decr) <= RETURN_FIFO_SIZE);
else
// Can we hold one more item
assign ready = (counter <= (RETURN_FIFO_SIZE-1)); //utku: what if we dont use return fifo?
endgenerate
assign o_stall_to_fifo = !ready || out_fifo_wait;
// Optional Pipeline register before return
//
reg r_avm_readdatavalid;
reg [WRITEDATAWIDTH-1:0] r_avm_readdata;
generate
if(SUPERPIPELINE)
begin
always@(posedge clk or posedge reset)
begin
if(reset == 1'b1)
begin
r_avm_readdata <= 'x;
r_avm_readdatavalid <= 1'b0;
end
else
begin
r_avm_readdata <= avm_readdata;
r_avm_readdatavalid <= avm_readdatavalid;
end
end
end
else
begin
// Don't register the return
always@(*)
begin
r_avm_readdata = avm_readdata;
r_avm_readdatavalid = avm_readdatavalid;
end
end
endgenerate
wire [WIDTH-1:0] rdata;
// Byte-addresses enter a FIFO so we can demux the appropriate data back out.
generate
if(SEGMENT_SELECT_BITS > 0)
begin
wire [SEGMENT_SELECT_BITS-1:0] segment_address_out;
wire [SEGMENT_SELECT_BITS-1:0] segment_address_in;
assign segment_address_in = i_address_from_fifo[ALIGNMENT_ABITS +: BYTE_SELECT_BITS-ALIGNMENT_ABITS];
acl_ll_fifo #(
.WIDTH(SEGMENT_SELECT_BITS),
.DEPTH(KERNEL_SIDE_MEM_LATENCY+1)
) req_fifo (
.clk(clk),
.reset(reset),
.data_in( segment_address_in ),
.data_out( segment_address_out ),
.write( read_accepted ),
.read( r_avm_readdatavalid ),
.empty(),
.full()
);
assign byte_select = (segment_address_out << ALIGNMENT_ABITS);
assign rdata = r_avm_readdata[8*byte_select +: WIDTH];
end
else
begin
assign byte_select = {BYTE_SELECT_BITS{1'b0}};
assign rdata = r_avm_readdata;
end
endgenerate
// set byteenable properly for read path
generate
if(SEGMENT_SELECT_BITS > 0)
begin
wire [SEGMENT_SELECT_BITS-1:0] segment_select;
assign segment_select = i_address_from_fifo[ALIGNMENT_ABITS +: BYTE_SELECT_BITS-ALIGNMENT_ABITS];
assign segment_address = segment_select*SEGMENT_WIDTH_BYTES;
//always@(*)
//begin
// avm_byteenable = {WRITEDATAWIDTH_BYTES{1'b0}};
// avm_byteenable[segment_select*SEGMENT_WIDTH_BYTES +: WIDTH_BYTES] = {WIDTH_BYTES{1'b1}};
//end
end
else
begin
assign segment_address = {BYTE_SELECT_BITS{1'b0}};
//always@(*)
//begin
//avm_byteenable = {WRITEDATAWIDTH_BYTES{1'b1}};
//end
end
endgenerate
always@(*)
begin
avm_byteenable = {WRITEDATAWIDTH_BYTES{1'b0}};
avm_byteenable[segment_address +: WIDTH_BYTES] = {WIDTH_BYTES{1'b1}};
end
// Status bits
assign read_accepted = i_valid_from_fifo && ready && !out_fifo_wait;
assign read_used = o_valid && !i_stall;
// Optional: Pipelining FIFO on the AVM interface
//
generate
if(SUPERPIPELINE)
begin
acl_data_fifo #(
.DATA_WIDTH(WRITEDATAWIDTH+AWIDTH+BURSTCOUNT_WIDTH),
.DEPTH(2),
.IMPL("ll_reg")
) avm_buffer (
.clock(clk),
.resetn(!reset),
.data_in({ {UNUSED_WRITEDATA_WIDTH{1'b0}},segment_address,i_atomic_op_from_fifo,i_cmpdata_from_fifo,i_writedata_from_fifo,1'b1,((i_address_from_fifo >> BYTE_SELECT_BITS) << BYTE_SELECT_BITS),i_burstcount_from_fifo}),
.valid_in( i_valid_from_fifo && ready ),
.data_out( {avm_writedata,avm_address,avm_burstcount} ),
.valid_out( avm_read ),
.stall_in( avm_waitrequest ),
.stall_out( out_fifo_wait )
);
end
else
begin
// No interface pipelining
assign out_fifo_wait = avm_waitrequest;
assign avm_address = ((i_address_from_fifo >> BYTE_SELECT_BITS) << BYTE_SELECT_BITS);
assign avm_read = i_valid_from_fifo && ready;
assign avm_burstcount = i_burstcount_from_fifo;
// avm_writedata contains {valid atomic bit, writedata, cmpdata, atomic_op}
assign avm_writedata[0:0] = 1'b1;
assign avm_writedata[WIDTH:1] = i_writedata_from_fifo;
assign avm_writedata[2*WIDTH:WIDTH+1] = i_cmpdata_from_fifo;
assign avm_writedata[2*WIDTH+ATOMIC_WIDTH:2*WIDTH+1] = i_atomic_op_from_fifo;
assign avm_writedata[2*WIDTH+ATOMIC_WIDTH+BYTE_SELECT_BITS:2*WIDTH+ATOMIC_WIDTH+1] = segment_address;
assign avm_writedata[WRITEDATAWIDTH-1:2*WIDTH+ATOMIC_WIDTH+BYTE_SELECT_BITS+1] = { UNUSED_WRITEDATA_WIDTH{1'b0} };
end
endgenerate
// ---------------------------------------------------------------------------------
// Output fifo - must be at least as deep as the maximum number of pending requests
// so that we can guarantee a place for the response data if the downstream blocks
// are stalling.
//
generate
if(USEOUTPUTFIFO)
begin
acl_fifo #(
.DATA_WIDTH(WIDTH),
.DEPTH(RETURN_FIFO_SIZE)
) data_fifo (
.clock(clk),
.resetn(!reset),
.data_in( rdata ),
.data_out( o_readdata ),
.valid_in( r_avm_readdatavalid ),
.valid_out( o_valid ),
.stall_in( i_stall ),
.stall_out()
);
end
else
begin
assign o_valid = r_avm_readdatavalid;
assign o_readdata = rdata;
end
endgenerate
endmodule
|
// (C) 2001-2012 Altera Corporation. All rights reserved.
// Your use of Altera Corporation's design tools, logic functions and other
// software and tools, and its AMPP partner logic functions, and any output
// files any of the foregoing (including device programming or simulation
// files), and any associated documentation or information are expressly subject
// to the terms and conditions of the Altera Program License Subscription
// Agreement, Altera MegaCore Function License Agreement, or other applicable
// license agreement, including, without limitation, that your use is for the
// sole purpose of programming logic devices manufactured by Altera and sold by
// Altera or its authorized distributors. Please refer to the applicable
// agreement for further details.
`timescale 1ps/1ps
module altera_pll_reconfig_top
#(
parameter reconf_width = 64,
parameter device_family = "Stratix V",
parameter RECONFIG_ADDR_WIDTH = 6,
parameter RECONFIG_DATA_WIDTH = 32,
parameter ROM_ADDR_WIDTH = 9,
parameter ROM_DATA_WIDTH = 32,
parameter ROM_NUM_WORDS = 512,
parameter ENABLE_MIF = 0,
parameter MIF_FILE_NAME = ""
) (
//input
input wire mgmt_clk,
input wire mgmt_reset,
//conduits
output wire [reconf_width-1:0] reconfig_to_pll,
input wire [reconf_width-1:0] reconfig_from_pll,
// user data (avalon-MM slave interface)
output wire [31:0] mgmt_readdata,
output wire mgmt_waitrequest,
input wire [5:0] mgmt_address,
input wire mgmt_read,
input wire mgmt_write,
input wire [31:0] mgmt_writedata
);
localparam MIF_ADDR_REG = 6'b011111;
localparam START_REG = 6'b000010;
generate
if (ENABLE_MIF == 1)
begin:mif_reconfig // Generate Reconfig with MIF
// MIF-related regs/wires
reg [RECONFIG_ADDR_WIDTH-1:0] reconfig_mgmt_addr;
reg reconfig_mgmt_read;
reg reconfig_mgmt_write;
reg [RECONFIG_DATA_WIDTH-1:0] reconfig_mgmt_writedata;
wire reconfig_mgmt_waitrequest;
wire [RECONFIG_DATA_WIDTH-1:0] reconfig_mgmt_readdata;
wire [RECONFIG_ADDR_WIDTH-1:0] mif2reconfig_addr;
wire mif2reconfig_busy;
wire mif2reconfig_read;
wire mif2reconfig_write;
wire [RECONFIG_DATA_WIDTH-1:0] mif2reconfig_writedata;
wire [ROM_ADDR_WIDTH-1:0] mif_base_addr;
reg mif_select;
reg user_start;
wire reconfig2mif_start_out;
assign mgmt_waitrequest = reconfig_mgmt_waitrequest | mif2reconfig_busy | user_start;
// Don't output readdata if MIF streaming is taking place
assign mgmt_readdata = (mif_select) ? 32'b0 : reconfig_mgmt_readdata;
always @(posedge mgmt_clk)
begin
if (mgmt_reset)
begin
reconfig_mgmt_addr <= 0;
reconfig_mgmt_read <= 0;
reconfig_mgmt_write <= 0;
reconfig_mgmt_writedata <= 0;
user_start <= 0;
end
else
begin
reconfig_mgmt_addr <= (mif_select) ? mif2reconfig_addr : mgmt_address;
reconfig_mgmt_read <= (mif_select) ? mif2reconfig_read : mgmt_read;
reconfig_mgmt_write <= (mif_select) ? mif2reconfig_write : mgmt_write;
reconfig_mgmt_writedata <= (mif_select) ? mif2reconfig_writedata : mgmt_writedata;
user_start <= (mgmt_address == START_REG && mgmt_write == 1'b1) ? 1'b1 : 1'b0;
end
end
always @(*)
begin
if (mgmt_reset)
begin
mif_select <= 0;
end
else
begin
mif_select <= (reconfig2mif_start_out || mif2reconfig_busy) ? 1'b1 : 1'b0;
end
end
altera_pll_reconfig_mif_reader
#(
.RECONFIG_ADDR_WIDTH(RECONFIG_ADDR_WIDTH),
.RECONFIG_DATA_WIDTH(RECONFIG_DATA_WIDTH),
.ROM_ADDR_WIDTH(ROM_ADDR_WIDTH),
.ROM_DATA_WIDTH(ROM_DATA_WIDTH),
.ROM_NUM_WORDS(ROM_NUM_WORDS),
.DEVICE_FAMILY(device_family),
.ENABLE_MIF(ENABLE_MIF),
.MIF_FILE_NAME(MIF_FILE_NAME)
) altera_pll_reconfig_mif_reader_inst0 (
.mif_clk(mgmt_clk),
.mif_rst(mgmt_reset),
//Altera_PLL Reconfig interface
//inputs
.reconfig_busy(reconfig_mgmt_waitrequest),
.reconfig_read_data(reconfig_mgmt_readdata),
//outputs
.reconfig_write_data(mif2reconfig_writedata),
.reconfig_addr(mif2reconfig_addr),
.reconfig_write(mif2reconfig_write),
.reconfig_read(mif2reconfig_read),
//MIF Ctrl Interface
//inputs
.mif_base_addr(mif_base_addr),
.mif_start(reconfig2mif_start_out),
//outputs
.mif_busy(mif2reconfig_busy)
);
// ------ END MIF-RELATED MANAGEMENT ------
altera_pll_reconfig_core
#(
.reconf_width(reconf_width),
.device_family(device_family),
.RECONFIG_ADDR_WIDTH(RECONFIG_ADDR_WIDTH),
.RECONFIG_DATA_WIDTH(RECONFIG_DATA_WIDTH),
.ROM_ADDR_WIDTH(ROM_ADDR_WIDTH),
.ROM_DATA_WIDTH(ROM_DATA_WIDTH),
.ROM_NUM_WORDS(ROM_NUM_WORDS)
) altera_pll_reconfig_core_inst0 (
//inputs
.mgmt_clk(mgmt_clk),
.mgmt_reset(mgmt_reset),
//PLL interface conduits
.reconfig_to_pll(reconfig_to_pll),
.reconfig_from_pll(reconfig_from_pll),
//User data outputs
.mgmt_readdata(reconfig_mgmt_readdata),
.mgmt_waitrequest(reconfig_mgmt_waitrequest),
//User data inputs
.mgmt_address(reconfig_mgmt_addr),
.mgmt_read(reconfig_mgmt_read),
.mgmt_write(reconfig_mgmt_write),
.mgmt_writedata(reconfig_mgmt_writedata),
// other
.mif_start_out(reconfig2mif_start_out),
.mif_base_addr(mif_base_addr)
);
end // End generate reconfig with MIF
else
begin:reconfig_core // Generate Reconfig core only
wire reconfig2mif_start_out;
wire [ROM_ADDR_WIDTH-1:0] mif_base_addr;
altera_pll_reconfig_core
#(
.reconf_width(reconf_width),
.device_family(device_family),
.RECONFIG_ADDR_WIDTH(RECONFIG_ADDR_WIDTH),
.RECONFIG_DATA_WIDTH(RECONFIG_DATA_WIDTH),
.ROM_ADDR_WIDTH(ROM_ADDR_WIDTH),
.ROM_DATA_WIDTH(ROM_DATA_WIDTH),
.ROM_NUM_WORDS(ROM_NUM_WORDS)
) altera_pll_reconfig_core_inst0 (
//inputs
.mgmt_clk(mgmt_clk),
.mgmt_reset(mgmt_reset),
//PLL interface conduits
.reconfig_to_pll(reconfig_to_pll),
.reconfig_from_pll(reconfig_from_pll),
//User data outputs
.mgmt_readdata(mgmt_readdata),
.mgmt_waitrequest(mgmt_waitrequest),
//User data inputs
.mgmt_address(mgmt_address),
.mgmt_read(mgmt_read),
.mgmt_write(mgmt_write),
.mgmt_writedata(mgmt_writedata),
// other
.mif_start_out(reconfig2mif_start_out),
.mif_base_addr(mif_base_addr)
);
end // End generate reconfig core only
endgenerate
endmodule
|
// (C) 2001-2012 Altera Corporation. All rights reserved.
// Your use of Altera Corporation's design tools, logic functions and other
// software and tools, and its AMPP partner logic functions, and any output
// files any of the foregoing (including device programming or simulation
// files), and any associated documentation or information are expressly subject
// to the terms and conditions of the Altera Program License Subscription
// Agreement, Altera MegaCore Function License Agreement, or other applicable
// license agreement, including, without limitation, that your use is for the
// sole purpose of programming logic devices manufactured by Altera and sold by
// Altera or its authorized distributors. Please refer to the applicable
// agreement for further details.
`timescale 1ps/1ps
module altera_pll_reconfig_top
#(
parameter reconf_width = 64,
parameter device_family = "Stratix V",
parameter RECONFIG_ADDR_WIDTH = 6,
parameter RECONFIG_DATA_WIDTH = 32,
parameter ROM_ADDR_WIDTH = 9,
parameter ROM_DATA_WIDTH = 32,
parameter ROM_NUM_WORDS = 512,
parameter ENABLE_MIF = 0,
parameter MIF_FILE_NAME = ""
) (
//input
input wire mgmt_clk,
input wire mgmt_reset,
//conduits
output wire [reconf_width-1:0] reconfig_to_pll,
input wire [reconf_width-1:0] reconfig_from_pll,
// user data (avalon-MM slave interface)
output wire [31:0] mgmt_readdata,
output wire mgmt_waitrequest,
input wire [5:0] mgmt_address,
input wire mgmt_read,
input wire mgmt_write,
input wire [31:0] mgmt_writedata
);
localparam MIF_ADDR_REG = 6'b011111;
localparam START_REG = 6'b000010;
generate
if (ENABLE_MIF == 1)
begin:mif_reconfig // Generate Reconfig with MIF
// MIF-related regs/wires
reg [RECONFIG_ADDR_WIDTH-1:0] reconfig_mgmt_addr;
reg reconfig_mgmt_read;
reg reconfig_mgmt_write;
reg [RECONFIG_DATA_WIDTH-1:0] reconfig_mgmt_writedata;
wire reconfig_mgmt_waitrequest;
wire [RECONFIG_DATA_WIDTH-1:0] reconfig_mgmt_readdata;
wire [RECONFIG_ADDR_WIDTH-1:0] mif2reconfig_addr;
wire mif2reconfig_busy;
wire mif2reconfig_read;
wire mif2reconfig_write;
wire [RECONFIG_DATA_WIDTH-1:0] mif2reconfig_writedata;
wire [ROM_ADDR_WIDTH-1:0] mif_base_addr;
reg mif_select;
reg user_start;
wire reconfig2mif_start_out;
assign mgmt_waitrequest = reconfig_mgmt_waitrequest | mif2reconfig_busy | user_start;
// Don't output readdata if MIF streaming is taking place
assign mgmt_readdata = (mif_select) ? 32'b0 : reconfig_mgmt_readdata;
always @(posedge mgmt_clk)
begin
if (mgmt_reset)
begin
reconfig_mgmt_addr <= 0;
reconfig_mgmt_read <= 0;
reconfig_mgmt_write <= 0;
reconfig_mgmt_writedata <= 0;
user_start <= 0;
end
else
begin
reconfig_mgmt_addr <= (mif_select) ? mif2reconfig_addr : mgmt_address;
reconfig_mgmt_read <= (mif_select) ? mif2reconfig_read : mgmt_read;
reconfig_mgmt_write <= (mif_select) ? mif2reconfig_write : mgmt_write;
reconfig_mgmt_writedata <= (mif_select) ? mif2reconfig_writedata : mgmt_writedata;
user_start <= (mgmt_address == START_REG && mgmt_write == 1'b1) ? 1'b1 : 1'b0;
end
end
always @(*)
begin
if (mgmt_reset)
begin
mif_select <= 0;
end
else
begin
mif_select <= (reconfig2mif_start_out || mif2reconfig_busy) ? 1'b1 : 1'b0;
end
end
altera_pll_reconfig_mif_reader
#(
.RECONFIG_ADDR_WIDTH(RECONFIG_ADDR_WIDTH),
.RECONFIG_DATA_WIDTH(RECONFIG_DATA_WIDTH),
.ROM_ADDR_WIDTH(ROM_ADDR_WIDTH),
.ROM_DATA_WIDTH(ROM_DATA_WIDTH),
.ROM_NUM_WORDS(ROM_NUM_WORDS),
.DEVICE_FAMILY(device_family),
.ENABLE_MIF(ENABLE_MIF),
.MIF_FILE_NAME(MIF_FILE_NAME)
) altera_pll_reconfig_mif_reader_inst0 (
.mif_clk(mgmt_clk),
.mif_rst(mgmt_reset),
//Altera_PLL Reconfig interface
//inputs
.reconfig_busy(reconfig_mgmt_waitrequest),
.reconfig_read_data(reconfig_mgmt_readdata),
//outputs
.reconfig_write_data(mif2reconfig_writedata),
.reconfig_addr(mif2reconfig_addr),
.reconfig_write(mif2reconfig_write),
.reconfig_read(mif2reconfig_read),
//MIF Ctrl Interface
//inputs
.mif_base_addr(mif_base_addr),
.mif_start(reconfig2mif_start_out),
//outputs
.mif_busy(mif2reconfig_busy)
);
// ------ END MIF-RELATED MANAGEMENT ------
altera_pll_reconfig_core
#(
.reconf_width(reconf_width),
.device_family(device_family),
.RECONFIG_ADDR_WIDTH(RECONFIG_ADDR_WIDTH),
.RECONFIG_DATA_WIDTH(RECONFIG_DATA_WIDTH),
.ROM_ADDR_WIDTH(ROM_ADDR_WIDTH),
.ROM_DATA_WIDTH(ROM_DATA_WIDTH),
.ROM_NUM_WORDS(ROM_NUM_WORDS)
) altera_pll_reconfig_core_inst0 (
//inputs
.mgmt_clk(mgmt_clk),
.mgmt_reset(mgmt_reset),
//PLL interface conduits
.reconfig_to_pll(reconfig_to_pll),
.reconfig_from_pll(reconfig_from_pll),
//User data outputs
.mgmt_readdata(reconfig_mgmt_readdata),
.mgmt_waitrequest(reconfig_mgmt_waitrequest),
//User data inputs
.mgmt_address(reconfig_mgmt_addr),
.mgmt_read(reconfig_mgmt_read),
.mgmt_write(reconfig_mgmt_write),
.mgmt_writedata(reconfig_mgmt_writedata),
// other
.mif_start_out(reconfig2mif_start_out),
.mif_base_addr(mif_base_addr)
);
end // End generate reconfig with MIF
else
begin:reconfig_core // Generate Reconfig core only
wire reconfig2mif_start_out;
wire [ROM_ADDR_WIDTH-1:0] mif_base_addr;
altera_pll_reconfig_core
#(
.reconf_width(reconf_width),
.device_family(device_family),
.RECONFIG_ADDR_WIDTH(RECONFIG_ADDR_WIDTH),
.RECONFIG_DATA_WIDTH(RECONFIG_DATA_WIDTH),
.ROM_ADDR_WIDTH(ROM_ADDR_WIDTH),
.ROM_DATA_WIDTH(ROM_DATA_WIDTH),
.ROM_NUM_WORDS(ROM_NUM_WORDS)
) altera_pll_reconfig_core_inst0 (
//inputs
.mgmt_clk(mgmt_clk),
.mgmt_reset(mgmt_reset),
//PLL interface conduits
.reconfig_to_pll(reconfig_to_pll),
.reconfig_from_pll(reconfig_from_pll),
//User data outputs
.mgmt_readdata(mgmt_readdata),
.mgmt_waitrequest(mgmt_waitrequest),
//User data inputs
.mgmt_address(mgmt_address),
.mgmt_read(mgmt_read),
.mgmt_write(mgmt_write),
.mgmt_writedata(mgmt_writedata),
// other
.mif_start_out(reconfig2mif_start_out),
.mif_base_addr(mif_base_addr)
);
end // End generate reconfig core only
endgenerate
endmodule
|
// (C) 2001-2012 Altera Corporation. All rights reserved.
// Your use of Altera Corporation's design tools, logic functions and other
// software and tools, and its AMPP partner logic functions, and any output
// files any of the foregoing (including device programming or simulation
// files), and any associated documentation or information are expressly subject
// to the terms and conditions of the Altera Program License Subscription
// Agreement, Altera MegaCore Function License Agreement, or other applicable
// license agreement, including, without limitation, that your use is for the
// sole purpose of programming logic devices manufactured by Altera and sold by
// Altera or its authorized distributors. Please refer to the applicable
// agreement for further details.
`timescale 1ps/1ps
module altera_pll_reconfig_top
#(
parameter reconf_width = 64,
parameter device_family = "Stratix V",
parameter RECONFIG_ADDR_WIDTH = 6,
parameter RECONFIG_DATA_WIDTH = 32,
parameter ROM_ADDR_WIDTH = 9,
parameter ROM_DATA_WIDTH = 32,
parameter ROM_NUM_WORDS = 512,
parameter ENABLE_MIF = 0,
parameter MIF_FILE_NAME = ""
) (
//input
input wire mgmt_clk,
input wire mgmt_reset,
//conduits
output wire [reconf_width-1:0] reconfig_to_pll,
input wire [reconf_width-1:0] reconfig_from_pll,
// user data (avalon-MM slave interface)
output wire [31:0] mgmt_readdata,
output wire mgmt_waitrequest,
input wire [5:0] mgmt_address,
input wire mgmt_read,
input wire mgmt_write,
input wire [31:0] mgmt_writedata
);
localparam MIF_ADDR_REG = 6'b011111;
localparam START_REG = 6'b000010;
generate
if (ENABLE_MIF == 1)
begin:mif_reconfig // Generate Reconfig with MIF
// MIF-related regs/wires
reg [RECONFIG_ADDR_WIDTH-1:0] reconfig_mgmt_addr;
reg reconfig_mgmt_read;
reg reconfig_mgmt_write;
reg [RECONFIG_DATA_WIDTH-1:0] reconfig_mgmt_writedata;
wire reconfig_mgmt_waitrequest;
wire [RECONFIG_DATA_WIDTH-1:0] reconfig_mgmt_readdata;
wire [RECONFIG_ADDR_WIDTH-1:0] mif2reconfig_addr;
wire mif2reconfig_busy;
wire mif2reconfig_read;
wire mif2reconfig_write;
wire [RECONFIG_DATA_WIDTH-1:0] mif2reconfig_writedata;
wire [ROM_ADDR_WIDTH-1:0] mif_base_addr;
reg mif_select;
reg user_start;
wire reconfig2mif_start_out;
assign mgmt_waitrequest = reconfig_mgmt_waitrequest | mif2reconfig_busy | user_start;
// Don't output readdata if MIF streaming is taking place
assign mgmt_readdata = (mif_select) ? 32'b0 : reconfig_mgmt_readdata;
always @(posedge mgmt_clk)
begin
if (mgmt_reset)
begin
reconfig_mgmt_addr <= 0;
reconfig_mgmt_read <= 0;
reconfig_mgmt_write <= 0;
reconfig_mgmt_writedata <= 0;
user_start <= 0;
end
else
begin
reconfig_mgmt_addr <= (mif_select) ? mif2reconfig_addr : mgmt_address;
reconfig_mgmt_read <= (mif_select) ? mif2reconfig_read : mgmt_read;
reconfig_mgmt_write <= (mif_select) ? mif2reconfig_write : mgmt_write;
reconfig_mgmt_writedata <= (mif_select) ? mif2reconfig_writedata : mgmt_writedata;
user_start <= (mgmt_address == START_REG && mgmt_write == 1'b1) ? 1'b1 : 1'b0;
end
end
always @(*)
begin
if (mgmt_reset)
begin
mif_select <= 0;
end
else
begin
mif_select <= (reconfig2mif_start_out || mif2reconfig_busy) ? 1'b1 : 1'b0;
end
end
altera_pll_reconfig_mif_reader
#(
.RECONFIG_ADDR_WIDTH(RECONFIG_ADDR_WIDTH),
.RECONFIG_DATA_WIDTH(RECONFIG_DATA_WIDTH),
.ROM_ADDR_WIDTH(ROM_ADDR_WIDTH),
.ROM_DATA_WIDTH(ROM_DATA_WIDTH),
.ROM_NUM_WORDS(ROM_NUM_WORDS),
.DEVICE_FAMILY(device_family),
.ENABLE_MIF(ENABLE_MIF),
.MIF_FILE_NAME(MIF_FILE_NAME)
) altera_pll_reconfig_mif_reader_inst0 (
.mif_clk(mgmt_clk),
.mif_rst(mgmt_reset),
//Altera_PLL Reconfig interface
//inputs
.reconfig_busy(reconfig_mgmt_waitrequest),
.reconfig_read_data(reconfig_mgmt_readdata),
//outputs
.reconfig_write_data(mif2reconfig_writedata),
.reconfig_addr(mif2reconfig_addr),
.reconfig_write(mif2reconfig_write),
.reconfig_read(mif2reconfig_read),
//MIF Ctrl Interface
//inputs
.mif_base_addr(mif_base_addr),
.mif_start(reconfig2mif_start_out),
//outputs
.mif_busy(mif2reconfig_busy)
);
// ------ END MIF-RELATED MANAGEMENT ------
altera_pll_reconfig_core
#(
.reconf_width(reconf_width),
.device_family(device_family),
.RECONFIG_ADDR_WIDTH(RECONFIG_ADDR_WIDTH),
.RECONFIG_DATA_WIDTH(RECONFIG_DATA_WIDTH),
.ROM_ADDR_WIDTH(ROM_ADDR_WIDTH),
.ROM_DATA_WIDTH(ROM_DATA_WIDTH),
.ROM_NUM_WORDS(ROM_NUM_WORDS)
) altera_pll_reconfig_core_inst0 (
//inputs
.mgmt_clk(mgmt_clk),
.mgmt_reset(mgmt_reset),
//PLL interface conduits
.reconfig_to_pll(reconfig_to_pll),
.reconfig_from_pll(reconfig_from_pll),
//User data outputs
.mgmt_readdata(reconfig_mgmt_readdata),
.mgmt_waitrequest(reconfig_mgmt_waitrequest),
//User data inputs
.mgmt_address(reconfig_mgmt_addr),
.mgmt_read(reconfig_mgmt_read),
.mgmt_write(reconfig_mgmt_write),
.mgmt_writedata(reconfig_mgmt_writedata),
// other
.mif_start_out(reconfig2mif_start_out),
.mif_base_addr(mif_base_addr)
);
end // End generate reconfig with MIF
else
begin:reconfig_core // Generate Reconfig core only
wire reconfig2mif_start_out;
wire [ROM_ADDR_WIDTH-1:0] mif_base_addr;
altera_pll_reconfig_core
#(
.reconf_width(reconf_width),
.device_family(device_family),
.RECONFIG_ADDR_WIDTH(RECONFIG_ADDR_WIDTH),
.RECONFIG_DATA_WIDTH(RECONFIG_DATA_WIDTH),
.ROM_ADDR_WIDTH(ROM_ADDR_WIDTH),
.ROM_DATA_WIDTH(ROM_DATA_WIDTH),
.ROM_NUM_WORDS(ROM_NUM_WORDS)
) altera_pll_reconfig_core_inst0 (
//inputs
.mgmt_clk(mgmt_clk),
.mgmt_reset(mgmt_reset),
//PLL interface conduits
.reconfig_to_pll(reconfig_to_pll),
.reconfig_from_pll(reconfig_from_pll),
//User data outputs
.mgmt_readdata(mgmt_readdata),
.mgmt_waitrequest(mgmt_waitrequest),
//User data inputs
.mgmt_address(mgmt_address),
.mgmt_read(mgmt_read),
.mgmt_write(mgmt_write),
.mgmt_writedata(mgmt_writedata),
// other
.mif_start_out(reconfig2mif_start_out),
.mif_base_addr(mif_base_addr)
);
end // End generate reconfig core only
endgenerate
endmodule
|
// (C) 1992-2014 Altera Corporation. All rights reserved.
// Your use of Altera Corporation's design tools, logic functions and other
// software and tools, and its AMPP partner logic functions, and any output
// files any of the foregoing (including device programming or simulation
// files), and any associated documentation or information are expressly subject
// to the terms and conditions of the Altera Program License Subscription
// Agreement, Altera MegaCore Function License Agreement, or other applicable
// license agreement, including, without limitation, that your use is for the
// sole purpose of programming logic devices manufactured by Altera and sold by
// Altera or its authorized distributors. Please refer to the applicable
// agreement for further details.
module acl_ic_mem_router #(
parameter integer DATA_W = 256,
parameter integer BURSTCOUNT_W = 6,
parameter integer ADDRESS_W = 32,
parameter integer BYTEENA_W = DATA_W / 8,
parameter integer NUM_BANKS = 2
)
(
input logic clock,
input logic resetn,
// Bank select (one-hot)
input logic [NUM_BANKS-1:0] bank_select,
// Master
input logic m_arb_request,
input logic m_arb_read,
input logic m_arb_write,
input logic [DATA_W-1:0] m_arb_writedata,
input logic [BURSTCOUNT_W-1:0] m_arb_burstcount,
input logic [ADDRESS_W-1:0] m_arb_address,
input logic [BYTEENA_W-1:0] m_arb_byteenable,
output logic m_arb_stall,
output logic m_wrp_ack,
output logic m_rrp_datavalid,
output logic [DATA_W-1:0] m_rrp_data,
// To each bank
output logic b_arb_request [NUM_BANKS],
output logic b_arb_read [NUM_BANKS],
output logic b_arb_write [NUM_BANKS],
output logic [DATA_W-1:0] b_arb_writedata [NUM_BANKS],
output logic [BURSTCOUNT_W-1:0] b_arb_burstcount [NUM_BANKS],
output logic [ADDRESS_W-$clog2(NUM_BANKS)-1:0] b_arb_address [NUM_BANKS],
output logic [BYTEENA_W-1:0] b_arb_byteenable [NUM_BANKS],
input logic b_arb_stall [NUM_BANKS],
input logic b_wrp_ack [NUM_BANKS],
input logic b_rrp_datavalid [NUM_BANKS],
input logic [DATA_W-1:0] b_rrp_data [NUM_BANKS]
);
integer i;
localparam PENDING_COUNT_WIDTH=11;
reg [PENDING_COUNT_WIDTH-1:0] b_pending_count[NUM_BANKS];
logic [NUM_BANKS-1:0] pending;
//Given a bank number, makes sure no other bank has pending requests
function [0:0] none_pending ( input integer i );
none_pending = ~|(pending & ~({{PENDING_COUNT_WIDTH-1{1'b0}},1'b1}<<i));
endfunction
always_comb
begin
m_arb_stall = 1'b0;
m_wrp_ack = 1'b0;
m_rrp_datavalid = 1'b0;
m_rrp_data = '0;
for( i = 0; i < NUM_BANKS; i = i + 1 )
begin:bank
b_arb_request[i] = m_arb_request & bank_select[i] & none_pending(i);
b_arb_read[i] = m_arb_read & bank_select[i] & none_pending(i);
b_arb_write[i] = m_arb_write & bank_select[i] & none_pending(i);
b_arb_writedata[i] = m_arb_writedata;
b_arb_burstcount[i] = m_arb_burstcount;
b_arb_address[i] = m_arb_address[ADDRESS_W-$clog2(NUM_BANKS)-1:0];
b_arb_byteenable[i] = m_arb_byteenable;
m_arb_stall |= (b_arb_stall[i] | !none_pending(i)) & bank_select[i];
m_wrp_ack |= b_wrp_ack[i];
m_rrp_datavalid |= b_rrp_datavalid[i];
m_rrp_data |= (b_rrp_datavalid[i] ? b_rrp_data[i] : '0);
end
end
wire add_burst[NUM_BANKS];
wire incr[NUM_BANKS];
wire decr_rd[NUM_BANKS];
wire decr_wr[NUM_BANKS];
reg [BURSTCOUNT_W-1:0] next_incr[NUM_BANKS];
reg [1:0] next_decr[NUM_BANKS];
reg [NUM_BANKS-1:0] last_banksel;
always@(posedge clock or negedge resetn)
if (!resetn)
last_banksel <= {NUM_BANKS{1'b0}};
else
last_banksel <= {NUM_BANKS{m_arb_request}} & bank_select;
// A counter tracks how many outstanding word transfers are needed. When a
// request is accepted its burstcount is added to the counter. When data
// is returned or writeack'ed, the counter is decremented.
// This used to be simple - but manual retiming makes it less so
generate
genvar b;
for ( b = 0; b < NUM_BANKS; b = b + 1 )
begin:bankgen
assign add_burst[b] = b_arb_request[b] & !b_arb_stall[b] & b_arb_read[b];
assign incr[b] = b_arb_request[b] & !b_arb_stall[b] & b_arb_write[b];
assign decr_rd[b] = b_rrp_datavalid[b];
assign decr_wr[b] = b_wrp_ack[b];
always@(posedge clock or negedge resetn)
if (!resetn)
begin
next_incr[b] = {BURSTCOUNT_W{1'b0}};
next_decr[b] = 2'b0;
end
else
begin
if (add_burst[b])
next_incr[b] = m_arb_burstcount;
else if (incr[b])
next_incr[b] = 2'b01;
else
next_incr[b] = {BURSTCOUNT_W{1'b0}};
next_decr[b] = decr_rd[b] + decr_wr[b];
end
always@(posedge clock or negedge resetn)
if (!resetn)
begin
b_pending_count[b] <= {PENDING_COUNT_WIDTH{1'b0}};
end
else
begin
b_pending_count[b] <= b_pending_count[b] + next_incr[b] - next_decr[b];
end
always_comb
begin
pending[b] = |b_pending_count[b] || last_banksel[b];
end
end
endgenerate
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2012 by Iztok Jeras.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
parameter SIZE = 8;
integer cnt = 0;
logic [SIZE-1:0] vld_for;
logic vld_if = 1'b0;
logic vld_else = 1'b0;
genvar i;
// event counter
always @ (posedge clk) begin
cnt <= cnt + 1;
end
// finish report
always @ (posedge clk)
if (cnt==SIZE) begin : if_cnt_finish
$write("*-* All Finished *-*\n");
$finish;
end : if_cnt_finish_bad
generate
for (i=0; i<SIZE; i=i+1) begin : generate_for
always @ (posedge clk)
if (cnt == i) vld_for[i] <= 1'b1;
end : generate_for_bad
endgenerate
generate
if (SIZE>0) begin : generate_if_if
always @ (posedge clk)
vld_if <= 1'b1;
end : generate_if_if_bad
else begin : generate_if_else
always @ (posedge clk)
vld_else <= 1'b1;
end : generate_if_else_bad
endgenerate
endmodule : t_bad
|
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2008 by Lane Brooks
module top (input SEL, input[1:0] A, output W, output X, output Y, output Z);
mux mux2 (.A(A), .SEL(SEL), .Z(W));
pass mux1 (.A(A), .SEL(SEL), .Z(X));
tbuf mux0[1:0] (.A(A), .OE({SEL,!SEL}), .Z(Y));
assign Z = ( SEL) ? A[1] : 1'bz;
tbuf tbuf (.A(A[0]), .OE(!SEL), .Z(Z));
endmodule
module pass (input[1:0] A, input SEL, output Z);
tbuf tbuf1 (.A(A[1]), .OE(SEL), .Z(Z));
tbuf tbuf0 (.A(A[0]), .OE(!SEL),.Z(Z));
endmodule
module tbuf (input A, input OE, output Z);
`ifdef T_BUFIF0
bufif0 (Z, A, !OE);
`elsif T_BUFIF1
bufif1 (Z, A, OE);
`elsif T_NOTIF0
notif0 (Z, !A, !OE);
`elsif T_NOTIF1
notif1 (Z, !A, OE);
`elsif T_PMOS
pmos (Z, A, !OE);
`elsif T_NMOS
nmos (Z, A, OE);
`elsif T_COND
assign Z = (OE) ? A : 1'bz;
`else
`error "Unknown test name"
`endif
endmodule
module mux (input[1:0] A, input SEL, output Z);
assign Z = (SEL) ? A[1] : 1'bz;
assign Z = (!SEL)? A[0] : 1'bz;
assign Z = 1'bz;
endmodule
|
`timescale 1ns / 1ps
//////////////////////////////////////////////////////////////////////////////////
// Company:
// Engineer:
//
// Create Date: 04/27/2016 08:26:13 AM
// Design Name:
// Module Name: Mux_8x1
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//////////////////////////////////////////////////////////////////////////////////
module Mux_8x1
(
//Input Signals
input wire [2:0] select,
input wire [7:0] ch_0,
input wire [7:0] ch_1,
input wire [7:0] ch_2,
input wire [7:0] ch_3,
input wire [7:0] ch_4,
input wire [7:0] ch_5,
input wire [7:0] ch_6,
input wire [7:0] ch_7,
//Output Signals
output reg [7:0] data_out
);
always @*
begin
case(select)
3'b111: data_out = ch_0;
3'b110: data_out = ch_1;
3'b101: data_out = ch_2;
3'b100: data_out = ch_3;
3'b011: data_out = ch_4;
3'b010: data_out = ch_5;
3'b001: data_out = ch_6;
3'b000: data_out = ch_7;
default : data_out = ch_0;
endcase
end
endmodule
|
`timescale 1ns / 1ps
//////////////////////////////////////////////////////////////////////////////////
// Company:
// Engineer:
//
// Create Date: 04/27/2016 08:26:13 AM
// Design Name:
// Module Name: Mux_8x1
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//////////////////////////////////////////////////////////////////////////////////
module Mux_8x1
(
//Input Signals
input wire [2:0] select,
input wire [7:0] ch_0,
input wire [7:0] ch_1,
input wire [7:0] ch_2,
input wire [7:0] ch_3,
input wire [7:0] ch_4,
input wire [7:0] ch_5,
input wire [7:0] ch_6,
input wire [7:0] ch_7,
//Output Signals
output reg [7:0] data_out
);
always @*
begin
case(select)
3'b111: data_out = ch_0;
3'b110: data_out = ch_1;
3'b101: data_out = ch_2;
3'b100: data_out = ch_3;
3'b011: data_out = ch_4;
3'b010: data_out = ch_5;
3'b001: data_out = ch_6;
3'b000: data_out = ch_7;
default : data_out = ch_0;
endcase
end
endmodule
|
// Wide load/store unit
// Instantiates a top-level LSU
module lsu_wide_wrapper
(
clock, clock2x, resetn, stream_base_addr, stream_size, stream_reset, i_atomic_op, o_stall,
i_valid, i_address, i_writedata, i_cmpdata, i_predicate, i_bitwiseor, i_stall, o_valid, o_readdata, avm_address,
avm_read, avm_readdata, avm_write, avm_writeack, avm_writedata, avm_byteenable,
avm_waitrequest, avm_readdatavalid, avm_burstcount,
o_active,
o_input_fifo_depth,
o_writeack,
i_byteenable,
flush,
// profile signals
profile_req_cache_hit_count,
profile_extra_unaligned_reqs
);
/*************
* Parameters *
*************/
parameter STYLE="PIPELINED"; // The LSU style to use (see style list above)
parameter AWIDTH=32; // Address width (32-bits for Avalon)
parameter ATOMIC_WIDTH=6; // Width of operation operation indices
parameter WIDTH_BYTES=4; // Width of the request (bytes)
parameter MWIDTH_BYTES=32; // Width of the global memory bus (bytes)
parameter WRITEDATAWIDTH_BYTES=32; // Width of the readdata/writedata signals,
// may be larger than MWIDTH_BYTES for atomics
parameter ALIGNMENT_BYTES=2; // Request address alignment (bytes)
parameter READ=1; // Read or write?
parameter ATOMIC=0; // Atomic?
parameter BURSTCOUNT_WIDTH=6;// Determines max burst size
parameter KERNEL_SIDE_MEM_LATENCY=1; // Latency in cycles
parameter MEMORY_SIDE_MEM_LATENCY=1; // Latency in cycles
parameter USE_WRITE_ACK=0; // Enable the write-acknowledge signal
parameter USECACHING=0;
parameter USE_BYTE_EN=0;
parameter CACHESIZE=1024;
parameter PROFILE_ADDR_TOGGLE=0;
parameter USEINPUTFIFO=1; // FIXME specific to lsu_pipelined
parameter USEOUTPUTFIFO=1; // FIXME specific to lsu_pipelined
parameter FORCE_NOP_SUPPORT=0; // Stall free pipeline doesn't want the NOP fifo
parameter HIGH_FMAX=1; // Enable optimizations for high Fmax
parameter ADDRSPACE=0;
// Profiling
parameter ACL_PROFILE=0; // Set to 1 to enable stall/valid profiling
parameter ACL_PROFILE_ID=1; // Each LSU needs a unique ID
parameter ACL_PROFILE_INCREMENT_WIDTH=64;
// Local memory parameters
parameter ENABLE_BANKED_MEMORY=0;// Flag enables address permutation for banked local memory config
parameter ABITS_PER_LMEM_BANK=0; // Used when permuting lmem address bits to stride across banks
parameter NUMBER_BANKS=1; // Number of memory banks - used in address permutation (1-disable)
parameter LMEM_ADDR_PERMUTATION_STYLE=0; // Type of address permutation (currently unused)
// The following localparams have if conditions, and the second is named
// "HACKED..." because address bit permutations are controlled by the
// ENABLE_BANKED_MEMORY parameter. The issue is that this forms the select
// input of a MUX (if statement), and synthesis evaluates both inputs.
// When not using banked memory, the bit select ranges don't make sense on
// the input that isn't used, so we need to hack them in the non-banked case
// to get through ModelSim and Quartus.
localparam BANK_SELECT_BITS = (ENABLE_BANKED_MEMORY==1) ? $clog2(NUMBER_BANKS) : 1; // Bank select bits in address permutation
localparam HACKED_ABITS_PER_LMEM_BANK = (ENABLE_BANKED_MEMORY==1) ? ABITS_PER_LMEM_BANK : $clog2(MWIDTH_BYTES)+1;
// Parameter limitations:
// AWIDTH: Only tested with 32-bit addresses
// WIDTH_BYTES: Must be a power of two
// MWIDTH_BYTES: Must be a power of 2 >= WIDTH_BYTES
// ALIGNMENT_BYTES: Must be a power of 2 satisfying,
// WIDTH_BYTES <= ALIGNMENT_BYTES <= MWIDTH_BYTES
//
// The width and alignment restrictions ensure we never try to read a word
// that strides across two "pages" (MWIDTH sized words)
// TODO: Convert these back into localparams when the back-end supports it
parameter WIDTH=8*WIDTH_BYTES; // Width in bits
parameter MWIDTH=8*MWIDTH_BYTES; // Width in bits
parameter WRITEDATAWIDTH=8*WRITEDATAWIDTH_BYTES; // Width in bits
parameter ALIGNMENT_ABITS=$clog2(ALIGNMENT_BYTES); // Address bits to ignore
localparam LSU_CAPACITY=256; // Maximum number of 'in-flight' load/store operations
localparam WIDE_LSU = (WIDTH > MWIDTH);
localparam LSU_WIDTH = (WIDTH > MWIDTH) ? MWIDTH: WIDTH; // Width of the actual LSU when wider than MWIDTH or nonaligned
localparam LSU_WIDTH_BYTES = LSU_WIDTH/8;
localparam WIDTH_RATIO = (WIDTH_BYTES/LSU_WIDTH_BYTES);
localparam WIDE_INDEX_WIDTH = $clog2(WIDTH_RATIO);
// Performance monitor signals
parameter INPUTFIFO_USEDW_MAXBITS=8;
// LSU unit properties
localparam ATOMIC_PIPELINED_LSU=(STYLE=="ATOMIC-PIPELINED");
localparam PIPELINED_LSU=( (STYLE=="PIPELINED") || (STYLE=="BASIC-COALESCED") || (STYLE=="BURST-COALESCED") || (STYLE=="BURST-NON-ALIGNED") );
localparam SUPPORTS_NOP=( (STYLE=="STREAMING") || (STYLE=="SEMI-STREAMING") || (STYLE=="BURST-NON-ALIGNED") || FORCE_NOP_SUPPORT==1);
localparam SUPPORTS_BURSTS=( (STYLE=="STREAMING") || (STYLE=="BURST-COALESCED") || (STYLE=="SEMI-STREAMING") || (STYLE=="BURST-NON-ALIGNED") );
/********
* Ports *
********/
// Standard global signals
input clock;
input clock2x;
input resetn;
input flush;
// Streaming interface signals
input [AWIDTH-1:0] stream_base_addr;
input [31:0] stream_size;
input stream_reset;
// Atomic interface
input [WIDTH-1:0] i_cmpdata; // only used by atomic_cmpxchg
input [ATOMIC_WIDTH-1:0] i_atomic_op;
// Upstream interface
output o_stall;
input i_valid;
input [AWIDTH-1:0] i_address;
input [WIDTH-1:0] i_writedata;
input i_predicate;
input [AWIDTH-1:0] i_bitwiseor;
input [WIDTH_BYTES-1:0] i_byteenable;
// Downstream interface
input i_stall;
output o_valid;
output [WIDTH-1:0] o_readdata;
// Avalon interface
output [AWIDTH-1:0] avm_address;
output avm_read;
input [WRITEDATAWIDTH-1:0] avm_readdata;
output avm_write;
input avm_writeack;
output o_writeack;
output [WRITEDATAWIDTH-1:0] avm_writedata;
output [WRITEDATAWIDTH_BYTES-1:0] avm_byteenable;
input avm_waitrequest;
input avm_readdatavalid;
output [BURSTCOUNT_WIDTH-1:0] avm_burstcount;
output reg o_active;
// For profiling/performance monitor
output [INPUTFIFO_USEDW_MAXBITS-1:0] o_input_fifo_depth;
// Profiler Signals
output logic profile_req_cache_hit_count;
output logic profile_extra_unaligned_reqs;
// If we are a non-streaming read, do width adaption at avalon interface so we dont stall during data re-use
localparam ADAPT_AT_AVM = 1;
generate
if(ADAPT_AT_AVM)
begin
wire [ AWIDTH-1:0] avm_address_wrapped;
wire avm_read_wrapped;
wire [WIDTH-1:0] avm_readdata_wrapped;
wire avm_write_wrapped;
wire avm_writeack_wrapped;
wire [BURSTCOUNT_WIDTH-WIDE_INDEX_WIDTH-1:0] avm_burstcount_wrapped;
wire [WIDTH-1:0] avm_writedata_wrapped;
wire [WIDTH_BYTES-1:0]avm_byteenable_wrapped;
wire avm_waitrequest_wrapped;
reg avm_readdatavalid_wrapped;
lsu_top lsu_wide (
.clock(clock),
.clock2x(clock2x),
.resetn(resetn),
.flush(flush),
.stream_base_addr(stream_base_addr),
.stream_size(stream_size),
.stream_reset(stream_reset),
.o_stall(o_stall),
.i_valid(i_valid),
.i_address(i_address),
.i_writedata(i_writedata),
.i_cmpdata(i_cmpdata),
.i_predicate(i_predicate),
.i_bitwiseor(i_bitwiseor),
.i_byteenable(i_byteenable),
.i_stall(i_stall),
.o_valid(o_valid),
.o_readdata(o_readdata),
.o_input_fifo_depth(o_input_fifo_depth),
.o_writeack(o_writeack),
.i_atomic_op(i_atomic_op),
.o_active(o_active),
.avm_address(avm_address_wrapped),
.avm_read(avm_read_wrapped),
.avm_readdata(avm_readdata_wrapped),
.avm_write(avm_write_wrapped),
.avm_writeack(avm_writeack_wrapped),
.avm_burstcount(avm_burstcount_wrapped),
.avm_writedata(avm_writedata_wrapped),
.avm_byteenable(avm_byteenable_wrapped),
.avm_waitrequest(avm_waitrequest_wrapped),
.avm_readdatavalid(avm_readdatavalid_wrapped),
.profile_req_cache_hit_count(profile_req_cache_hit_count),
.profile_extra_unaligned_reqs(profile_extra_unaligned_reqs)
);
defparam lsu_wide.STYLE = STYLE;
defparam lsu_wide.AWIDTH = AWIDTH;
defparam lsu_wide.ATOMIC_WIDTH = ATOMIC_WIDTH;
defparam lsu_wide.WIDTH_BYTES = WIDTH_BYTES;
defparam lsu_wide.MWIDTH_BYTES = WIDTH_BYTES;
defparam lsu_wide.WRITEDATAWIDTH_BYTES = WIDTH_BYTES;
defparam lsu_wide.ALIGNMENT_BYTES = ALIGNMENT_BYTES;
defparam lsu_wide.READ = READ;
defparam lsu_wide.ATOMIC = ATOMIC;
defparam lsu_wide.BURSTCOUNT_WIDTH = BURSTCOUNT_WIDTH-WIDE_INDEX_WIDTH;
defparam lsu_wide.USE_WRITE_ACK = USE_WRITE_ACK;
defparam lsu_wide.USECACHING = USECACHING;
defparam lsu_wide.USE_BYTE_EN = USE_BYTE_EN;
defparam lsu_wide.CACHESIZE = CACHESIZE;
defparam lsu_wide.PROFILE_ADDR_TOGGLE = PROFILE_ADDR_TOGGLE;
defparam lsu_wide.USEINPUTFIFO = USEINPUTFIFO;
defparam lsu_wide.USEOUTPUTFIFO = USEOUTPUTFIFO;
defparam lsu_wide.FORCE_NOP_SUPPORT = FORCE_NOP_SUPPORT; ///we handle NOPs in the wrapper
defparam lsu_wide.HIGH_FMAX = HIGH_FMAX;
defparam lsu_wide.ACL_PROFILE = ACL_PROFILE;
defparam lsu_wide.ACL_PROFILE_INCREMENT_WIDTH = ACL_PROFILE_INCREMENT_WIDTH;
defparam lsu_wide.ENABLE_BANKED_MEMORY = ENABLE_BANKED_MEMORY;
defparam lsu_wide.ABITS_PER_LMEM_BANK = ABITS_PER_LMEM_BANK;
defparam lsu_wide.NUMBER_BANKS = NUMBER_BANKS;
defparam lsu_wide.WIDTH = WIDTH;
defparam lsu_wide.MWIDTH = WIDTH;
defparam lsu_wide.MEMORY_SIDE_MEM_LATENCY = MEMORY_SIDE_MEM_LATENCY;
defparam lsu_wide.KERNEL_SIDE_MEM_LATENCY = KERNEL_SIDE_MEM_LATENCY;
defparam lsu_wide.WRITEDATAWIDTH = WIDTH;
defparam lsu_wide.INPUTFIFO_USEDW_MAXBITS = INPUTFIFO_USEDW_MAXBITS;
defparam lsu_wide.LMEM_ADDR_PERMUTATION_STYLE = LMEM_ADDR_PERMUTATION_STYLE;
defparam lsu_wide.ADDRSPACE = ADDRSPACE;
//upstream control signals
wire done;
wire ready;
reg in_progress;
reg [WIDE_INDEX_WIDTH-1:0] index;
//downstream control signals
wire new_data;
wire done_output;
reg output_ready;
reg [WIDE_INDEX_WIDTH-1:0] output_index;
reg [WIDTH-1:0] readdata_shiftreg;
reg [ AWIDTH-1:0] avm_address_reg;
reg avm_read_reg;
reg [WIDTH-1:0] avm_readdata_reg;
reg avm_write_reg;
reg [BURSTCOUNT_WIDTH-WIDE_INDEX_WIDTH-1:0] avm_burstcount_reg;
reg [WIDTH-1:0] avm_writedata_reg;
reg [WIDTH_BYTES-1:0]avm_byteenable_reg;
if(READ)
begin
assign avm_writedata = 0;
assign avm_byteenable = 0;
assign avm_address = avm_address_wrapped;
assign avm_burstcount = avm_burstcount_wrapped*WIDTH_RATIO;
assign avm_write = 0;
assign avm_read = avm_read_wrapped;
assign avm_waitrequest_wrapped = avm_waitrequest;
//downstream interface
assign new_data = avm_readdatavalid; //we are accepting another MWIDTH item from the interconnect
assign done_output = new_data && (output_index >= (WIDTH_RATIO-1)); //the output data will be ready next cycle
always@(posedge clock or negedge resetn)
begin
if(!resetn)
output_index <= 1'b0;
else
//increase index when we take new data
output_index <= new_data ? (output_index+1)%(WIDTH_RATIO): output_index;
end
always@(posedge clock or negedge resetn)
begin
if(!resetn)
begin
readdata_shiftreg <= 0;
output_ready <= 0;
end
else
begin
//shift data in if we are taking new data
readdata_shiftreg <= new_data ? {avm_readdata,readdata_shiftreg[WIDTH-1:MWIDTH]} : readdata_shiftreg;
output_ready <= done_output ;
end
end
assign avm_readdata_wrapped = readdata_shiftreg;
assign avm_readdatavalid_wrapped = output_ready;
end else begin
//write
//break write into multiple cycles
assign done = in_progress && (index >= (WIDTH_RATIO-1)) && !avm_waitrequest; //we are finishing a transaction
assign ready = (!in_progress || done); // logic can take a new transaction
//if we accept a new item from the lsu
assign start = (avm_write_wrapped) && (!in_progress || done); //we are starting a new transaction, do not start if predicated
always@(posedge clock or negedge resetn)
begin
if(!resetn)
begin
in_progress <= 0;
index <= 0;
end
else
begin
// bursting = bursting ? !done : start && (avm_burstcount_wrapped > 0);
in_progress <= start || (in_progress && !done);
//if starting or done set to 0, else increment if LSU is accepting data
index <= (start || !in_progress) ? 1'b0 : ( avm_waitrequest ? index :index+1);
end
end
reg [ WIDE_INDEX_WIDTH-1:0] write_ack_count;
//count write_acks
always@(posedge clock or negedge resetn)
begin
if(!resetn)
begin
write_ack_count <= 0;
end
else if (avm_writeack)
begin
write_ack_count <= write_ack_count+1;
end
else
begin
write_ack_count <= write_ack_count;
end
end
assign avm_writeack_wrapped = (write_ack_count == {WIDE_INDEX_WIDTH{1'b1}} - 1 ) && avm_writeack;
//store transaction inputs to registers
always@(posedge clock or negedge resetn)
begin
if(!resetn)
begin
avm_address_reg <= 0;
avm_writedata_reg <= 0;
avm_byteenable_reg <= 0;
avm_burstcount_reg <= 0;
end
else if (start)
begin
avm_address_reg <= avm_address_wrapped;
avm_writedata_reg <= avm_writedata_wrapped;
avm_byteenable_reg <= avm_byteenable_wrapped;
avm_burstcount_reg <= avm_burstcount_wrapped;
end
else
begin
avm_address_reg <= avm_address_reg;
avm_writedata_reg <= avm_writedata_reg;
avm_byteenable_reg <= avm_byteenable_reg;
avm_burstcount_reg <= avm_burstcount_reg;
end
end
//let an item through when we finish it
assign avm_waitrequest_wrapped = !ready;
assign avm_writedata = avm_writedata_reg[((index+1)*MWIDTH-1)-:MWIDTH];
assign avm_byteenable = avm_byteenable_reg[((index+1)*MWIDTH_BYTES-1)-:MWIDTH_BYTES];
assign avm_address = avm_address_reg;
assign avm_burstcount = avm_burstcount_reg*WIDTH_RATIO;
assign avm_write = in_progress;
assign avm_read = 0;
end
end else begin
end
endgenerate
endmodule
|
// (C) 1992-2014 Altera Corporation. All rights reserved.
// Your use of Altera Corporation's design tools, logic functions and other
// software and tools, and its AMPP partner logic functions, and any output
// files any of the foregoing (including device programming or simulation
// files), and any associated documentation or information are expressly subject
// to the terms and conditions of the Altera Program License Subscription
// Agreement, Altera MegaCore Function License Agreement, or other applicable
// license agreement, including, without limitation, that your use is for the
// sole purpose of programming logic devices manufactured by Altera and sold by
// Altera or its authorized distributors. Please refer to the applicable
// agreement for further details.
// one-way bidirectional connection:
// altera message_off 10665
module acl_ic_slave_endpoint
#(
parameter integer DATA_W = 32, // > 0
parameter integer BURSTCOUNT_W = 4, // > 0
parameter integer ADDRESS_W = 32, // > 0
parameter integer BYTEENA_W = DATA_W / 8, // > 0
parameter integer ID_W = 1, // > 0
parameter integer NUM_MASTERS = 1, // > 0
parameter integer PIPELINE_RETURN_PATHS = 1, // 0|1
parameter integer WRP_FIFO_DEPTH = 0, // >= 0 (0 disables)
parameter integer RRP_FIFO_DEPTH = 1, // > 0 (don't care if SLAVE_FIXED_LATENCY > 0)
parameter integer RRP_USE_LL_FIFO = 1, // 0|1
parameter integer SLAVE_FIXED_LATENCY = 0, // 0=not fixed latency, >0=# fixed latency cycles
// if >0 effectively RRP_FIFO_DEPTH=SLAVE_FIXED_LATENCY+1
parameter integer SEPARATE_READ_WRITE_STALLS = 0 // 0|1
)
(
input logic clock,
input logic resetn,
// Arbitrated master.
acl_arb_intf m_intf,
// Slave.
acl_arb_intf s_intf,
input logic s_readdatavalid,
input logic [DATA_W-1:0] s_readdata,
input logic s_writeack,
// Write return path.
acl_ic_wrp_intf wrp_intf,
// Read return path.
acl_ic_rrp_intf rrp_intf
);
logic wrp_stall, rrp_stall;
generate
if( SEPARATE_READ_WRITE_STALLS == 0 )
begin
// Need specific sensitivity list instead of always_comb
// otherwise Modelsim will encounter an infinite loop.
always @(s_intf.stall, m_intf.req, rrp_stall, wrp_stall)
begin
// Arbitration request.
s_intf.req = m_intf.req;
if( rrp_stall | wrp_stall )
begin
s_intf.req.read = 1'b0;
s_intf.req.write = 1'b0;
end
// Stall signals.
m_intf.stall = s_intf.stall | rrp_stall | wrp_stall;
end
end
else
begin
// Need specific sensitivity list instead of always_comb
// otherwise Modelsim will encounter an infinite loop.
always @(s_intf.stall, m_intf.req, rrp_stall, wrp_stall)
begin
// Arbitration request.
s_intf.req = m_intf.req;
if( rrp_stall )
s_intf.req.read = 1'b0;
if( wrp_stall )
s_intf.req.write = 1'b0;
// Stall signals.
m_intf.stall = s_intf.stall;
if( m_intf.req.request & m_intf.req.read & rrp_stall )
m_intf.stall = 1'b1;
if( m_intf.req.request & m_intf.req.write & wrp_stall )
m_intf.stall = 1'b1;
end
end
endgenerate
// Write return path.
acl_ic_slave_wrp #(
.DATA_W(DATA_W),
.BURSTCOUNT_W(BURSTCOUNT_W),
.ADDRESS_W(ADDRESS_W),
.BYTEENA_W(BYTEENA_W),
.ID_W(ID_W),
.FIFO_DEPTH(WRP_FIFO_DEPTH),
.NUM_MASTERS(NUM_MASTERS),
.PIPELINE(PIPELINE_RETURN_PATHS)
)
wrp (
.clock( clock ),
.resetn( resetn ),
.m_intf( m_intf ),
.wrp_intf( wrp_intf ),
.s_writeack( s_writeack ),
.stall( wrp_stall )
);
// Read return path.
acl_ic_slave_rrp #(
.DATA_W(DATA_W),
.BURSTCOUNT_W(BURSTCOUNT_W),
.ADDRESS_W(ADDRESS_W),
.BYTEENA_W(BYTEENA_W),
.ID_W(ID_W),
.FIFO_DEPTH(RRP_FIFO_DEPTH),
.USE_LL_FIFO(RRP_USE_LL_FIFO),
.SLAVE_FIXED_LATENCY(SLAVE_FIXED_LATENCY),
.NUM_MASTERS(NUM_MASTERS),
.PIPELINE(PIPELINE_RETURN_PATHS)
)
rrp (
.clock( clock ),
.resetn( resetn ),
.m_intf( m_intf ),
.s_readdatavalid( s_readdatavalid ),
.s_readdata( s_readdata ),
.rrp_intf( rrp_intf ),
.stall( rrp_stall )
);
endmodule
|
// (C) 1992-2014 Altera Corporation. All rights reserved.
// Your use of Altera Corporation's design tools, logic functions and other
// software and tools, and its AMPP partner logic functions, and any output
// files any of the foregoing (including device programming or simulation
// files), and any associated documentation or information are expressly subject
// to the terms and conditions of the Altera Program License Subscription
// Agreement, Altera MegaCore Function License Agreement, or other applicable
// license agreement, including, without limitation, that your use is for the
// sole purpose of programming logic devices manufactured by Altera and sold by
// Altera or its authorized distributors. Please refer to the applicable
// agreement for further details.
// one-way bidirectional connection:
// altera message_off 10665
module acl_ic_slave_endpoint
#(
parameter integer DATA_W = 32, // > 0
parameter integer BURSTCOUNT_W = 4, // > 0
parameter integer ADDRESS_W = 32, // > 0
parameter integer BYTEENA_W = DATA_W / 8, // > 0
parameter integer ID_W = 1, // > 0
parameter integer NUM_MASTERS = 1, // > 0
parameter integer PIPELINE_RETURN_PATHS = 1, // 0|1
parameter integer WRP_FIFO_DEPTH = 0, // >= 0 (0 disables)
parameter integer RRP_FIFO_DEPTH = 1, // > 0 (don't care if SLAVE_FIXED_LATENCY > 0)
parameter integer RRP_USE_LL_FIFO = 1, // 0|1
parameter integer SLAVE_FIXED_LATENCY = 0, // 0=not fixed latency, >0=# fixed latency cycles
// if >0 effectively RRP_FIFO_DEPTH=SLAVE_FIXED_LATENCY+1
parameter integer SEPARATE_READ_WRITE_STALLS = 0 // 0|1
)
(
input logic clock,
input logic resetn,
// Arbitrated master.
acl_arb_intf m_intf,
// Slave.
acl_arb_intf s_intf,
input logic s_readdatavalid,
input logic [DATA_W-1:0] s_readdata,
input logic s_writeack,
// Write return path.
acl_ic_wrp_intf wrp_intf,
// Read return path.
acl_ic_rrp_intf rrp_intf
);
logic wrp_stall, rrp_stall;
generate
if( SEPARATE_READ_WRITE_STALLS == 0 )
begin
// Need specific sensitivity list instead of always_comb
// otherwise Modelsim will encounter an infinite loop.
always @(s_intf.stall, m_intf.req, rrp_stall, wrp_stall)
begin
// Arbitration request.
s_intf.req = m_intf.req;
if( rrp_stall | wrp_stall )
begin
s_intf.req.read = 1'b0;
s_intf.req.write = 1'b0;
end
// Stall signals.
m_intf.stall = s_intf.stall | rrp_stall | wrp_stall;
end
end
else
begin
// Need specific sensitivity list instead of always_comb
// otherwise Modelsim will encounter an infinite loop.
always @(s_intf.stall, m_intf.req, rrp_stall, wrp_stall)
begin
// Arbitration request.
s_intf.req = m_intf.req;
if( rrp_stall )
s_intf.req.read = 1'b0;
if( wrp_stall )
s_intf.req.write = 1'b0;
// Stall signals.
m_intf.stall = s_intf.stall;
if( m_intf.req.request & m_intf.req.read & rrp_stall )
m_intf.stall = 1'b1;
if( m_intf.req.request & m_intf.req.write & wrp_stall )
m_intf.stall = 1'b1;
end
end
endgenerate
// Write return path.
acl_ic_slave_wrp #(
.DATA_W(DATA_W),
.BURSTCOUNT_W(BURSTCOUNT_W),
.ADDRESS_W(ADDRESS_W),
.BYTEENA_W(BYTEENA_W),
.ID_W(ID_W),
.FIFO_DEPTH(WRP_FIFO_DEPTH),
.NUM_MASTERS(NUM_MASTERS),
.PIPELINE(PIPELINE_RETURN_PATHS)
)
wrp (
.clock( clock ),
.resetn( resetn ),
.m_intf( m_intf ),
.wrp_intf( wrp_intf ),
.s_writeack( s_writeack ),
.stall( wrp_stall )
);
// Read return path.
acl_ic_slave_rrp #(
.DATA_W(DATA_W),
.BURSTCOUNT_W(BURSTCOUNT_W),
.ADDRESS_W(ADDRESS_W),
.BYTEENA_W(BYTEENA_W),
.ID_W(ID_W),
.FIFO_DEPTH(RRP_FIFO_DEPTH),
.USE_LL_FIFO(RRP_USE_LL_FIFO),
.SLAVE_FIXED_LATENCY(SLAVE_FIXED_LATENCY),
.NUM_MASTERS(NUM_MASTERS),
.PIPELINE(PIPELINE_RETURN_PATHS)
)
rrp (
.clock( clock ),
.resetn( resetn ),
.m_intf( m_intf ),
.s_readdatavalid( s_readdatavalid ),
.s_readdata( s_readdata ),
.rrp_intf( rrp_intf ),
.stall( rrp_stall )
);
endmodule
|
// (C) 1992-2014 Altera Corporation. All rights reserved.
// Your use of Altera Corporation's design tools, logic functions and other
// software and tools, and its AMPP partner logic functions, and any output
// files any of the foregoing (including device programming or simulation
// files), and any associated documentation or information are expressly subject
// to the terms and conditions of the Altera Program License Subscription
// Agreement, Altera MegaCore Function License Agreement, or other applicable
// license agreement, including, without limitation, that your use is for the
// sole purpose of programming logic devices manufactured by Altera and sold by
// Altera or its authorized distributors. Please refer to the applicable
// agreement for further details.
//===----------------------------------------------------------------------===//
//
// C backend 'pop' primitive
//
//===----------------------------------------------------------------------===//
module acl_pop (
clock,
resetn,
// input stream from kernel pipeline
dir,
valid_in,
data_in,
stall_out,
predicate,
// downstream, to kernel pipeline
valid_out,
stall_in,
data_out,
// feedback downstream, from feedback acl_push
feedback_in,
feedback_valid_in,
feedback_stall_out
);
parameter DATA_WIDTH = 32;
parameter string STYLE = "REGULAR"; // REGULAR vs COALESCE
// this will pop garbage off of the feedback
localparam POP_GARBAGE = STYLE == "COALESCE" ? 1 : 0;
input clock, resetn, stall_in, valid_in, feedback_valid_in;
output stall_out, valid_out, feedback_stall_out;
input [DATA_WIDTH-1:0] data_in;
input dir;
input predicate;
output [DATA_WIDTH-1:0] data_out;
input [DATA_WIDTH-1:0] feedback_in;
wire feedback_downstream, data_downstream;
reg pop_garbage;
reg last_dir;
always @(posedge clock or negedge resetn)
begin
if ( !resetn ) begin
pop_garbage = 0;
end
else if ( valid_in && ~dir && last_dir ) begin
pop_garbage = POP_GARBAGE;
end
end
always @(posedge clock or negedge resetn)
begin
if ( !resetn ) begin
last_dir = 0;
end
else if ( valid_in ) begin
last_dir = dir;
end
end
assign feedback_downstream = valid_in & ~dir & feedback_valid_in;
assign data_downstream = valid_in & dir;
assign valid_out = feedback_downstream | ( data_downstream & (~pop_garbage | feedback_valid_in ) ) ;
assign data_out = ~dir ? feedback_in : data_in;
//assign stall_out = stall_in;
//assign stall_out = valid_in & ~((feedback_downstream | data_downstream) & ~stall_in);
// assign stall_out = ~((feedback_downstream | data_downstream) & ~stall_in);
// stall upstream if
// downstream is stalling (stall_in)
// I'm waiting for data from feedback (valid_in&~dir&~feedback_valiid_in)
assign stall_out = ( valid_in & ( ( ~dir & ~feedback_valid_in ) | ( dir & ~feedback_valid_in & pop_garbage ) ) ) | stall_in;
// don't accept data if:
// downstream cannot accept data (stall_in)
// data from upstream is selected (data_downstream)
// no thread exists to read data (~valid_in)
// predicate is high
assign feedback_stall_out = stall_in | (data_downstream & ~pop_garbage) | ~valid_in | predicate;
endmodule
|
// (C) 1992-2014 Altera Corporation. All rights reserved.
// Your use of Altera Corporation's design tools, logic functions and other
// software and tools, and its AMPP partner logic functions, and any output
// files any of the foregoing (including device programming or simulation
// files), and any associated documentation or information are expressly subject
// to the terms and conditions of the Altera Program License Subscription
// Agreement, Altera MegaCore Function License Agreement, or other applicable
// license agreement, including, without limitation, that your use is for the
// sole purpose of programming logic devices manufactured by Altera and sold by
// Altera or its authorized distributors. Please refer to the applicable
// agreement for further details.
//===----------------------------------------------------------------------===//
//
// C backend 'pop' primitive
//
//===----------------------------------------------------------------------===//
module acl_pop (
clock,
resetn,
// input stream from kernel pipeline
dir,
valid_in,
data_in,
stall_out,
predicate,
// downstream, to kernel pipeline
valid_out,
stall_in,
data_out,
// feedback downstream, from feedback acl_push
feedback_in,
feedback_valid_in,
feedback_stall_out
);
parameter DATA_WIDTH = 32;
parameter string STYLE = "REGULAR"; // REGULAR vs COALESCE
// this will pop garbage off of the feedback
localparam POP_GARBAGE = STYLE == "COALESCE" ? 1 : 0;
input clock, resetn, stall_in, valid_in, feedback_valid_in;
output stall_out, valid_out, feedback_stall_out;
input [DATA_WIDTH-1:0] data_in;
input dir;
input predicate;
output [DATA_WIDTH-1:0] data_out;
input [DATA_WIDTH-1:0] feedback_in;
wire feedback_downstream, data_downstream;
reg pop_garbage;
reg last_dir;
always @(posedge clock or negedge resetn)
begin
if ( !resetn ) begin
pop_garbage = 0;
end
else if ( valid_in && ~dir && last_dir ) begin
pop_garbage = POP_GARBAGE;
end
end
always @(posedge clock or negedge resetn)
begin
if ( !resetn ) begin
last_dir = 0;
end
else if ( valid_in ) begin
last_dir = dir;
end
end
assign feedback_downstream = valid_in & ~dir & feedback_valid_in;
assign data_downstream = valid_in & dir;
assign valid_out = feedback_downstream | ( data_downstream & (~pop_garbage | feedback_valid_in ) ) ;
assign data_out = ~dir ? feedback_in : data_in;
//assign stall_out = stall_in;
//assign stall_out = valid_in & ~((feedback_downstream | data_downstream) & ~stall_in);
// assign stall_out = ~((feedback_downstream | data_downstream) & ~stall_in);
// stall upstream if
// downstream is stalling (stall_in)
// I'm waiting for data from feedback (valid_in&~dir&~feedback_valiid_in)
assign stall_out = ( valid_in & ( ( ~dir & ~feedback_valid_in ) | ( dir & ~feedback_valid_in & pop_garbage ) ) ) | stall_in;
// don't accept data if:
// downstream cannot accept data (stall_in)
// data from upstream is selected (data_downstream)
// no thread exists to read data (~valid_in)
// predicate is high
assign feedback_stall_out = stall_in | (data_downstream & ~pop_garbage) | ~valid_in | predicate;
endmodule
|
// (C) 1992-2014 Altera Corporation. All rights reserved.
// Your use of Altera Corporation's design tools, logic functions and other
// software and tools, and its AMPP partner logic functions, and any output
// files any of the foregoing (including device programming or simulation
// files), and any associated documentation or information are expressly subject
// to the terms and conditions of the Altera Program License Subscription
// Agreement, Altera MegaCore Function License Agreement, or other applicable
// license agreement, including, without limitation, that your use is for the
// sole purpose of programming logic devices manufactured by Altera and sold by
// Altera or its authorized distributors. Please refer to the applicable
// agreement for further details.
//===----------------------------------------------------------------------===//
//
// C backend 'pop' primitive
//
//===----------------------------------------------------------------------===//
module acl_pop (
clock,
resetn,
// input stream from kernel pipeline
dir,
valid_in,
data_in,
stall_out,
predicate,
// downstream, to kernel pipeline
valid_out,
stall_in,
data_out,
// feedback downstream, from feedback acl_push
feedback_in,
feedback_valid_in,
feedback_stall_out
);
parameter DATA_WIDTH = 32;
parameter string STYLE = "REGULAR"; // REGULAR vs COALESCE
// this will pop garbage off of the feedback
localparam POP_GARBAGE = STYLE == "COALESCE" ? 1 : 0;
input clock, resetn, stall_in, valid_in, feedback_valid_in;
output stall_out, valid_out, feedback_stall_out;
input [DATA_WIDTH-1:0] data_in;
input dir;
input predicate;
output [DATA_WIDTH-1:0] data_out;
input [DATA_WIDTH-1:0] feedback_in;
wire feedback_downstream, data_downstream;
reg pop_garbage;
reg last_dir;
always @(posedge clock or negedge resetn)
begin
if ( !resetn ) begin
pop_garbage = 0;
end
else if ( valid_in && ~dir && last_dir ) begin
pop_garbage = POP_GARBAGE;
end
end
always @(posedge clock or negedge resetn)
begin
if ( !resetn ) begin
last_dir = 0;
end
else if ( valid_in ) begin
last_dir = dir;
end
end
assign feedback_downstream = valid_in & ~dir & feedback_valid_in;
assign data_downstream = valid_in & dir;
assign valid_out = feedback_downstream | ( data_downstream & (~pop_garbage | feedback_valid_in ) ) ;
assign data_out = ~dir ? feedback_in : data_in;
//assign stall_out = stall_in;
//assign stall_out = valid_in & ~((feedback_downstream | data_downstream) & ~stall_in);
// assign stall_out = ~((feedback_downstream | data_downstream) & ~stall_in);
// stall upstream if
// downstream is stalling (stall_in)
// I'm waiting for data from feedback (valid_in&~dir&~feedback_valiid_in)
assign stall_out = ( valid_in & ( ( ~dir & ~feedback_valid_in ) | ( dir & ~feedback_valid_in & pop_garbage ) ) ) | stall_in;
// don't accept data if:
// downstream cannot accept data (stall_in)
// data from upstream is selected (data_downstream)
// no thread exists to read data (~valid_in)
// predicate is high
assign feedback_stall_out = stall_in | (data_downstream & ~pop_garbage) | ~valid_in | predicate;
endmodule
|
// (C) 1992-2014 Altera Corporation. All rights reserved.
// Your use of Altera Corporation's design tools, logic functions and other
// software and tools, and its AMPP partner logic functions, and any output
// files any of the foregoing (including device programming or simulation
// files), and any associated documentation or information are expressly subject
// to the terms and conditions of the Altera Program License Subscription
// Agreement, Altera MegaCore Function License Agreement, or other applicable
// license agreement, including, without limitation, that your use is for the
// sole purpose of programming logic devices manufactured by Altera and sold by
// Altera or its authorized distributors. Please refer to the applicable
// agreement for further details.
//===----------------------------------------------------------------------===//
//
// C backend 'pop' primitive
//
//===----------------------------------------------------------------------===//
module acl_pop (
clock,
resetn,
// input stream from kernel pipeline
dir,
valid_in,
data_in,
stall_out,
predicate,
// downstream, to kernel pipeline
valid_out,
stall_in,
data_out,
// feedback downstream, from feedback acl_push
feedback_in,
feedback_valid_in,
feedback_stall_out
);
parameter DATA_WIDTH = 32;
parameter string STYLE = "REGULAR"; // REGULAR vs COALESCE
// this will pop garbage off of the feedback
localparam POP_GARBAGE = STYLE == "COALESCE" ? 1 : 0;
input clock, resetn, stall_in, valid_in, feedback_valid_in;
output stall_out, valid_out, feedback_stall_out;
input [DATA_WIDTH-1:0] data_in;
input dir;
input predicate;
output [DATA_WIDTH-1:0] data_out;
input [DATA_WIDTH-1:0] feedback_in;
wire feedback_downstream, data_downstream;
reg pop_garbage;
reg last_dir;
always @(posedge clock or negedge resetn)
begin
if ( !resetn ) begin
pop_garbage = 0;
end
else if ( valid_in && ~dir && last_dir ) begin
pop_garbage = POP_GARBAGE;
end
end
always @(posedge clock or negedge resetn)
begin
if ( !resetn ) begin
last_dir = 0;
end
else if ( valid_in ) begin
last_dir = dir;
end
end
assign feedback_downstream = valid_in & ~dir & feedback_valid_in;
assign data_downstream = valid_in & dir;
assign valid_out = feedback_downstream | ( data_downstream & (~pop_garbage | feedback_valid_in ) ) ;
assign data_out = ~dir ? feedback_in : data_in;
//assign stall_out = stall_in;
//assign stall_out = valid_in & ~((feedback_downstream | data_downstream) & ~stall_in);
// assign stall_out = ~((feedback_downstream | data_downstream) & ~stall_in);
// stall upstream if
// downstream is stalling (stall_in)
// I'm waiting for data from feedback (valid_in&~dir&~feedback_valiid_in)
assign stall_out = ( valid_in & ( ( ~dir & ~feedback_valid_in ) | ( dir & ~feedback_valid_in & pop_garbage ) ) ) | stall_in;
// don't accept data if:
// downstream cannot accept data (stall_in)
// data from upstream is selected (data_downstream)
// no thread exists to read data (~valid_in)
// predicate is high
assign feedback_stall_out = stall_in | (data_downstream & ~pop_garbage) | ~valid_in | predicate;
endmodule
|
// (C) 1992-2014 Altera Corporation. All rights reserved.
// Your use of Altera Corporation's design tools, logic functions and other
// software and tools, and its AMPP partner logic functions, and any output
// files any of the foregoing (including device programming or simulation
// files), and any associated documentation or information are expressly subject
// to the terms and conditions of the Altera Program License Subscription
// Agreement, Altera MegaCore Function License Agreement, or other applicable
// license agreement, including, without limitation, that your use is for the
// sole purpose of programming logic devices manufactured by Altera and sold by
// Altera or its authorized distributors. Please refer to the applicable
// agreement for further details.
/*****************
* Writes a 2-D signal into an In-System Modifiable Memory that can be read out
* over JTAG
*
* After running the design use the accompanying tcl script to generate a .csv
* of the data:
* quartus_stp -t acl_debug_mem.tcl
*****************/
module acl_debug_mem
#(
parameter WIDTH=16,
parameter SIZE=10
)
(
input logic clk,
input logic resetn,
input logic write,
input logic [WIDTH-1:0] data[SIZE]
);
/******************
* LOCAL PARAMETERS
*******************/
localparam ADDRWIDTH=$clog2(SIZE);
/******************
* SIGNALS
*******************/
logic [ADDRWIDTH-1:0] addr;
logic do_write;
/******************
* ARCHITECTURE
*******************/
always@(posedge clk or negedge resetn)
if (!resetn)
addr <= {ADDRWIDTH{1'b0}};
else if (addr != {ADDRWIDTH{1'b0}})
addr <= addr + 2'b01;
else if (write)
addr <= addr + 2'b01;
assign do_write = write | (addr != {ADDRWIDTH{1'b0}});
// Instantiate In-System Modifiable Memory
altsyncram altsyncram_component (
.address_a (addr),
.clock0 (clk),
.data_a (data[addr]),
.wren_a (do_write),
.q_a (),
.aclr0 (1'b0),
.aclr1 (1'b0),
.address_b (1'b1),
.addressstall_a (1'b0),
.addressstall_b (1'b0),
.byteena_a (1'b1),
.byteena_b (1'b1),
.clock1 (1'b1),
.clocken0 (1'b1),
.clocken1 (1'b1),
.clocken2 (1'b1),
.clocken3 (1'b1),
.data_b (1'b1),
.eccstatus (),
.q_b (),
.rden_a (1'b1),
.rden_b (1'b1),
.wren_b (1'b0));
defparam
altsyncram_component.clock_enable_input_a = "BYPASS",
altsyncram_component.clock_enable_output_a = "BYPASS",
altsyncram_component.intended_device_family = "Stratix IV",
altsyncram_component.lpm_hint = "ENABLE_RUNTIME_MOD=YES,INSTANCE_NAME=ACLDEBUGMEM",
altsyncram_component.lpm_type = "altsyncram",
altsyncram_component.numwords_a = SIZE,
altsyncram_component.widthad_a = ADDRWIDTH,
altsyncram_component.width_a = WIDTH,
altsyncram_component.operation_mode = "SINGLE_PORT",
altsyncram_component.outdata_aclr_a = "NONE",
altsyncram_component.read_during_write_mode_port_a = "DONT_CARE",
altsyncram_component.width_byteena_a = 1;
endmodule
|
// (C) 1992-2014 Altera Corporation. All rights reserved.
// Your use of Altera Corporation's design tools, logic functions and other
// software and tools, and its AMPP partner logic functions, and any output
// files any of the foregoing (including device programming or simulation
// files), and any associated documentation or information are expressly subject
// to the terms and conditions of the Altera Program License Subscription
// Agreement, Altera MegaCore Function License Agreement, or other applicable
// license agreement, including, without limitation, that your use is for the
// sole purpose of programming logic devices manufactured by Altera and sold by
// Altera or its authorized distributors. Please refer to the applicable
// agreement for further details.
/*****************
* Writes a 2-D signal into an In-System Modifiable Memory that can be read out
* over JTAG
*
* After running the design use the accompanying tcl script to generate a .csv
* of the data:
* quartus_stp -t acl_debug_mem.tcl
*****************/
module acl_debug_mem
#(
parameter WIDTH=16,
parameter SIZE=10
)
(
input logic clk,
input logic resetn,
input logic write,
input logic [WIDTH-1:0] data[SIZE]
);
/******************
* LOCAL PARAMETERS
*******************/
localparam ADDRWIDTH=$clog2(SIZE);
/******************
* SIGNALS
*******************/
logic [ADDRWIDTH-1:0] addr;
logic do_write;
/******************
* ARCHITECTURE
*******************/
always@(posedge clk or negedge resetn)
if (!resetn)
addr <= {ADDRWIDTH{1'b0}};
else if (addr != {ADDRWIDTH{1'b0}})
addr <= addr + 2'b01;
else if (write)
addr <= addr + 2'b01;
assign do_write = write | (addr != {ADDRWIDTH{1'b0}});
// Instantiate In-System Modifiable Memory
altsyncram altsyncram_component (
.address_a (addr),
.clock0 (clk),
.data_a (data[addr]),
.wren_a (do_write),
.q_a (),
.aclr0 (1'b0),
.aclr1 (1'b0),
.address_b (1'b1),
.addressstall_a (1'b0),
.addressstall_b (1'b0),
.byteena_a (1'b1),
.byteena_b (1'b1),
.clock1 (1'b1),
.clocken0 (1'b1),
.clocken1 (1'b1),
.clocken2 (1'b1),
.clocken3 (1'b1),
.data_b (1'b1),
.eccstatus (),
.q_b (),
.rden_a (1'b1),
.rden_b (1'b1),
.wren_b (1'b0));
defparam
altsyncram_component.clock_enable_input_a = "BYPASS",
altsyncram_component.clock_enable_output_a = "BYPASS",
altsyncram_component.intended_device_family = "Stratix IV",
altsyncram_component.lpm_hint = "ENABLE_RUNTIME_MOD=YES,INSTANCE_NAME=ACLDEBUGMEM",
altsyncram_component.lpm_type = "altsyncram",
altsyncram_component.numwords_a = SIZE,
altsyncram_component.widthad_a = ADDRWIDTH,
altsyncram_component.width_a = WIDTH,
altsyncram_component.operation_mode = "SINGLE_PORT",
altsyncram_component.outdata_aclr_a = "NONE",
altsyncram_component.read_during_write_mode_port_a = "DONT_CARE",
altsyncram_component.width_byteena_a = 1;
endmodule
|
`timescale 1ns / 1ps
//////////////////////////////////////////////////////////////////////////////////
// Company:
// Engineer:
//
// Create Date: 19:19:08 12/01/2010
// Design Name:
// Module Name: sd_dma
// Project Name:
// Target Devices:
// Tool versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//////////////////////////////////////////////////////////////////////////////////
module sd_dma(
input [3:0] SD_DAT,
inout SD_CLK,
input CLK,
input SD_DMA_EN,
output SD_DMA_STATUS,
output SD_DMA_SRAM_WE,
output SD_DMA_NEXTADDR,
output [7:0] SD_DMA_SRAM_DATA,
input SD_DMA_PARTIAL,
input [10:0] SD_DMA_PARTIAL_START,
input [10:0] SD_DMA_PARTIAL_END,
input SD_DMA_START_MID_BLOCK,
input SD_DMA_END_MID_BLOCK,
output [10:0] DBG_cyclecnt,
output [2:0] DBG_clkcnt
);
reg [10:0] SD_DMA_STARTr;
reg [10:0] SD_DMA_ENDr;
reg SD_DMA_PARTIALr;
always @(posedge CLK) SD_DMA_PARTIALr <= SD_DMA_PARTIAL;
reg SD_DMA_DONEr;
reg[1:0] SD_DMA_DONEr2;
initial begin
SD_DMA_DONEr2 = 2'b00;
SD_DMA_DONEr = 1'b0;
end
always @(posedge CLK) SD_DMA_DONEr2 <= {SD_DMA_DONEr2[0], SD_DMA_DONEr};
wire SD_DMA_DONE_rising = (SD_DMA_DONEr2[1:0] == 2'b01);
reg [1:0] SD_DMA_ENr;
initial SD_DMA_ENr = 2'b00;
always @(posedge CLK) SD_DMA_ENr <= {SD_DMA_ENr[0], SD_DMA_EN};
wire SD_DMA_EN_rising = (SD_DMA_ENr [1:0] == 2'b01);
reg SD_DMA_STATUSr;
assign SD_DMA_STATUS = SD_DMA_STATUSr;
reg SD_DMA_CLKMASKr = 1'b1;
// we need 1042 cycles (startbit + 1024 nibbles + 16 crc + stopbit)
reg [10:0] cyclecnt;
initial cyclecnt = 11'd0;
reg SD_DMA_SRAM_WEr;
initial SD_DMA_SRAM_WEr = 1'b1;
assign SD_DMA_SRAM_WE = (cyclecnt < 1025 && SD_DMA_STATUSr) ? SD_DMA_SRAM_WEr : 1'b1;
reg SD_DMA_NEXTADDRr;
assign SD_DMA_NEXTADDR = (cyclecnt < 1025 && SD_DMA_STATUSr) ? SD_DMA_NEXTADDRr : 1'b0;
reg[7:0] SD_DMA_SRAM_DATAr;
assign SD_DMA_SRAM_DATA = SD_DMA_SRAM_DATAr;
// we have 4 internal cycles per SD clock, 8 per RAM byte write
reg [2:0] clkcnt;
initial clkcnt = 3'b000;
reg [1:0] SD_CLKr;
initial SD_CLKr = 3'b111;
always @(posedge CLK)
if(SD_DMA_EN_rising) SD_CLKr <= 3'b111;
else SD_CLKr <= {SD_CLKr[0], clkcnt[1]};
assign SD_CLK = SD_DMA_CLKMASKr ? 1'bZ : SD_CLKr[1];
always @(posedge CLK) begin
if(SD_DMA_EN_rising) begin
SD_DMA_STATUSr <= 1'b1;
SD_DMA_STARTr <= (SD_DMA_PARTIALr ? SD_DMA_PARTIAL_START : 11'h0);
SD_DMA_ENDr <= (SD_DMA_PARTIALr ? SD_DMA_PARTIAL_END : 11'd1024);
end
else if (SD_DMA_DONE_rising) SD_DMA_STATUSr <= 1'b0;
end
always @(posedge CLK) begin
if(SD_DMA_EN_rising) begin
SD_DMA_CLKMASKr <= 1'b0;
end
else if (SD_DMA_DONEr) begin
SD_DMA_CLKMASKr <= 1'b1;
end
end
always @(posedge CLK) begin
if(cyclecnt == 1042
|| ((SD_DMA_END_MID_BLOCK & SD_DMA_PARTIALr) && cyclecnt == SD_DMA_PARTIAL_END))
SD_DMA_DONEr <= 1;
else SD_DMA_DONEr <= 0;
end
always @(posedge CLK) begin
if(SD_DMA_EN_rising || !SD_DMA_STATUSr) begin
clkcnt <= 0;
end else begin
if(SD_DMA_STATUSr) begin
clkcnt <= clkcnt + 1;
end
end
end
always @(posedge CLK) begin
if(SD_DMA_EN_rising)
cyclecnt <= (SD_DMA_PARTIALr && SD_DMA_START_MID_BLOCK) ? SD_DMA_PARTIAL_START : 0;
else if(!SD_DMA_STATUSr) cyclecnt <= 0;
else if(clkcnt[1:0] == 2'b10) cyclecnt <= cyclecnt + 1;
end
// we have 8 clk cycles to complete one RAM write
// (4 clk cycles per SD_CLK; 2 SD_CLK cycles per byte)
always @(posedge CLK) begin
if(SD_DMA_STATUSr) begin
case(clkcnt[2:0])
3'h0: begin
SD_DMA_SRAM_DATAr[7:4] <= SD_DAT;
if(cyclecnt>SD_DMA_STARTr && cyclecnt <= SD_DMA_ENDr) SD_DMA_NEXTADDRr <= 1'b1;
end
3'h1: begin
SD_DMA_NEXTADDRr <= 1'b0;
end
3'h2: if(cyclecnt>=SD_DMA_STARTr && cyclecnt < SD_DMA_ENDr) SD_DMA_SRAM_WEr <= 1'b0;
// 3'h3:
3'h4:
SD_DMA_SRAM_DATAr[3:0] <= SD_DAT;
// 3'h5:
// 3'h6:
3'h7:
SD_DMA_SRAM_WEr <= 1'b1;
endcase
end
end
endmodule
|
`timescale 1ns / 1ps
//////////////////////////////////////////////////////////////////////////////////
// Company:
// Engineer:
//
// Create Date: 19:19:08 12/01/2010
// Design Name:
// Module Name: sd_dma
// Project Name:
// Target Devices:
// Tool versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//////////////////////////////////////////////////////////////////////////////////
module sd_dma(
input [3:0] SD_DAT,
inout SD_CLK,
input CLK,
input SD_DMA_EN,
output SD_DMA_STATUS,
output SD_DMA_SRAM_WE,
output SD_DMA_NEXTADDR,
output [7:0] SD_DMA_SRAM_DATA,
input SD_DMA_PARTIAL,
input [10:0] SD_DMA_PARTIAL_START,
input [10:0] SD_DMA_PARTIAL_END,
input SD_DMA_START_MID_BLOCK,
input SD_DMA_END_MID_BLOCK,
output [10:0] DBG_cyclecnt,
output [2:0] DBG_clkcnt
);
reg [10:0] SD_DMA_STARTr;
reg [10:0] SD_DMA_ENDr;
reg SD_DMA_PARTIALr;
always @(posedge CLK) SD_DMA_PARTIALr <= SD_DMA_PARTIAL;
reg SD_DMA_DONEr;
reg[1:0] SD_DMA_DONEr2;
initial begin
SD_DMA_DONEr2 = 2'b00;
SD_DMA_DONEr = 1'b0;
end
always @(posedge CLK) SD_DMA_DONEr2 <= {SD_DMA_DONEr2[0], SD_DMA_DONEr};
wire SD_DMA_DONE_rising = (SD_DMA_DONEr2[1:0] == 2'b01);
reg [1:0] SD_DMA_ENr;
initial SD_DMA_ENr = 2'b00;
always @(posedge CLK) SD_DMA_ENr <= {SD_DMA_ENr[0], SD_DMA_EN};
wire SD_DMA_EN_rising = (SD_DMA_ENr [1:0] == 2'b01);
reg SD_DMA_STATUSr;
assign SD_DMA_STATUS = SD_DMA_STATUSr;
reg SD_DMA_CLKMASKr = 1'b1;
// we need 1042 cycles (startbit + 1024 nibbles + 16 crc + stopbit)
reg [10:0] cyclecnt;
initial cyclecnt = 11'd0;
reg SD_DMA_SRAM_WEr;
initial SD_DMA_SRAM_WEr = 1'b1;
assign SD_DMA_SRAM_WE = (cyclecnt < 1025 && SD_DMA_STATUSr) ? SD_DMA_SRAM_WEr : 1'b1;
reg SD_DMA_NEXTADDRr;
assign SD_DMA_NEXTADDR = (cyclecnt < 1025 && SD_DMA_STATUSr) ? SD_DMA_NEXTADDRr : 1'b0;
reg[7:0] SD_DMA_SRAM_DATAr;
assign SD_DMA_SRAM_DATA = SD_DMA_SRAM_DATAr;
// we have 4 internal cycles per SD clock, 8 per RAM byte write
reg [2:0] clkcnt;
initial clkcnt = 3'b000;
reg [1:0] SD_CLKr;
initial SD_CLKr = 3'b111;
always @(posedge CLK)
if(SD_DMA_EN_rising) SD_CLKr <= 3'b111;
else SD_CLKr <= {SD_CLKr[0], clkcnt[1]};
assign SD_CLK = SD_DMA_CLKMASKr ? 1'bZ : SD_CLKr[1];
always @(posedge CLK) begin
if(SD_DMA_EN_rising) begin
SD_DMA_STATUSr <= 1'b1;
SD_DMA_STARTr <= (SD_DMA_PARTIALr ? SD_DMA_PARTIAL_START : 11'h0);
SD_DMA_ENDr <= (SD_DMA_PARTIALr ? SD_DMA_PARTIAL_END : 11'd1024);
end
else if (SD_DMA_DONE_rising) SD_DMA_STATUSr <= 1'b0;
end
always @(posedge CLK) begin
if(SD_DMA_EN_rising) begin
SD_DMA_CLKMASKr <= 1'b0;
end
else if (SD_DMA_DONEr) begin
SD_DMA_CLKMASKr <= 1'b1;
end
end
always @(posedge CLK) begin
if(cyclecnt == 1042
|| ((SD_DMA_END_MID_BLOCK & SD_DMA_PARTIALr) && cyclecnt == SD_DMA_PARTIAL_END))
SD_DMA_DONEr <= 1;
else SD_DMA_DONEr <= 0;
end
always @(posedge CLK) begin
if(SD_DMA_EN_rising || !SD_DMA_STATUSr) begin
clkcnt <= 0;
end else begin
if(SD_DMA_STATUSr) begin
clkcnt <= clkcnt + 1;
end
end
end
always @(posedge CLK) begin
if(SD_DMA_EN_rising)
cyclecnt <= (SD_DMA_PARTIALr && SD_DMA_START_MID_BLOCK) ? SD_DMA_PARTIAL_START : 0;
else if(!SD_DMA_STATUSr) cyclecnt <= 0;
else if(clkcnt[1:0] == 2'b10) cyclecnt <= cyclecnt + 1;
end
// we have 8 clk cycles to complete one RAM write
// (4 clk cycles per SD_CLK; 2 SD_CLK cycles per byte)
always @(posedge CLK) begin
if(SD_DMA_STATUSr) begin
case(clkcnt[2:0])
3'h0: begin
SD_DMA_SRAM_DATAr[7:4] <= SD_DAT;
if(cyclecnt>SD_DMA_STARTr && cyclecnt <= SD_DMA_ENDr) SD_DMA_NEXTADDRr <= 1'b1;
end
3'h1: begin
SD_DMA_NEXTADDRr <= 1'b0;
end
3'h2: if(cyclecnt>=SD_DMA_STARTr && cyclecnt < SD_DMA_ENDr) SD_DMA_SRAM_WEr <= 1'b0;
// 3'h3:
3'h4:
SD_DMA_SRAM_DATAr[3:0] <= SD_DAT;
// 3'h5:
// 3'h6:
3'h7:
SD_DMA_SRAM_WEr <= 1'b1;
endcase
end
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2012 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc=0;
reg [63:0] crc;
reg [63:0] sum;
// Test:
tri t;
bufif1 (t, crc[1], cyc[1:0]==2'b00);
bufif1 (t, crc[2], cyc[1:0]==2'b10);
tri0 t0;
bufif1 (t0, crc[1], cyc[1:0]==2'b00);
bufif1 (t0, crc[2], cyc[1:0]==2'b10);
tri1 t1;
bufif1 (t1, crc[1], cyc[1:0]==2'b00);
bufif1 (t1, crc[2], cyc[1:0]==2'b10);
tri t2;
t_tri2 t_tri2 (.t2, .d(crc[1]), .oe(cyc[1:0]==2'b00));
bufif1 (t2, crc[2], cyc[1:0]==2'b10);
tri t3;
t_tri3 t_tri3 (.t3, .d(crc[1]), .oe(cyc[1:0]==2'b00));
bufif1 (t3, crc[2], cyc[1:0]==2'b10);
wire [63:0] result = {51'h0, t3, 3'h0,t2, 3'h0,t1, 3'h0,t0};
// Test loop
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result);
`endif
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]};
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
sum <= 64'h0;
end
else if (cyc<10) begin
sum <= 64'h0;
end
else if (cyc<90) begin
end
else if (cyc==99) begin
$write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum);
if (crc !== 64'hc77bb9b3784ea091) $stop;
// What checksum will we end up with (above print should match)
`define EXPECTED_SUM 64'h04f91df71371e950
if (sum !== `EXPECTED_SUM) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
module t_tri2 (/*AUTOARG*/
// Outputs
t2,
// Inputs
d, oe
);
output t2;
input d;
input oe;
tri1 t2;
bufif1 (t2, d, oe);
endmodule
module t_tri3 (/*AUTOARG*/
// Outputs
t3,
// Inputs
d, oe
);
output tri1 t3;
input d;
input oe;
bufif1 (t3, d, oe);
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2012 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc=0;
reg [63:0] crc;
reg [63:0] sum;
// Test:
tri t;
bufif1 (t, crc[1], cyc[1:0]==2'b00);
bufif1 (t, crc[2], cyc[1:0]==2'b10);
tri0 t0;
bufif1 (t0, crc[1], cyc[1:0]==2'b00);
bufif1 (t0, crc[2], cyc[1:0]==2'b10);
tri1 t1;
bufif1 (t1, crc[1], cyc[1:0]==2'b00);
bufif1 (t1, crc[2], cyc[1:0]==2'b10);
tri t2;
t_tri2 t_tri2 (.t2, .d(crc[1]), .oe(cyc[1:0]==2'b00));
bufif1 (t2, crc[2], cyc[1:0]==2'b10);
tri t3;
t_tri3 t_tri3 (.t3, .d(crc[1]), .oe(cyc[1:0]==2'b00));
bufif1 (t3, crc[2], cyc[1:0]==2'b10);
wire [63:0] result = {51'h0, t3, 3'h0,t2, 3'h0,t1, 3'h0,t0};
// Test loop
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result);
`endif
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]};
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
sum <= 64'h0;
end
else if (cyc<10) begin
sum <= 64'h0;
end
else if (cyc<90) begin
end
else if (cyc==99) begin
$write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum);
if (crc !== 64'hc77bb9b3784ea091) $stop;
// What checksum will we end up with (above print should match)
`define EXPECTED_SUM 64'h04f91df71371e950
if (sum !== `EXPECTED_SUM) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
module t_tri2 (/*AUTOARG*/
// Outputs
t2,
// Inputs
d, oe
);
output t2;
input d;
input oe;
tri1 t2;
bufif1 (t2, d, oe);
endmodule
module t_tri3 (/*AUTOARG*/
// Outputs
t3,
// Inputs
d, oe
);
output tri1 t3;
input d;
input oe;
bufif1 (t3, d, oe);
endmodule
|
// (C) 1992-2014 Altera Corporation. All rights reserved.
// Your use of Altera Corporation's design tools, logic functions and other
// software and tools, and its AMPP partner logic functions, and any output
// files any of the foregoing (including device programming or simulation
// files), and any associated documentation or information are expressly subject
// to the terms and conditions of the Altera Program License Subscription
// Agreement, Altera MegaCore Function License Agreement, or other applicable
// license agreement, including, without limitation, that your use is for the
// sole purpose of programming logic devices manufactured by Altera and sold by
// Altera or its authorized distributors. Please refer to the applicable
// agreement for further details.
module acl_avm_to_ic #(
parameter integer DATA_W = 256,
parameter integer WRITEDATA_W = 256,
parameter integer BURSTCOUNT_W = 6,
parameter integer ADDRESS_W = 32,
parameter integer BYTEENA_W = DATA_W / 8,
parameter integer ID_W = 1,
parameter ADDR_SHIFT=1 // shift the address?
)
(
// AVM interface
input logic avm_read,
input logic avm_write,
input logic [WRITEDATA_W-1:0] avm_writedata,
input logic [BURSTCOUNT_W-1:0] avm_burstcount,
input logic [ADDRESS_W-1:0] avm_address,
input logic [BYTEENA_W-1:0] avm_byteenable,
output logic avm_waitrequest,
output logic avm_readdatavalid,
output logic [WRITEDATA_W-1:0] avm_readdata,
output logic avm_writeack, // not a true Avalon signal
// IC interface
output logic ic_arb_request,
output logic ic_arb_read,
output logic ic_arb_write,
output logic [WRITEDATA_W-1:0] ic_arb_writedata,
output logic [BURSTCOUNT_W-1:0] ic_arb_burstcount,
output logic [ADDRESS_W-$clog2(DATA_W / 8)-1:0] ic_arb_address,
output logic [BYTEENA_W-1:0] ic_arb_byteenable,
output logic [ID_W-1:0] ic_arb_id,
input logic ic_arb_stall,
input logic ic_wrp_ack,
input logic ic_rrp_datavalid,
input logic [WRITEDATA_W-1:0] ic_rrp_data
);
// The logic for ic_arb_request (below) makes a MAJOR ASSUMPTION:
// avm_write will never be deasserted in the MIDDLE of a write burst
// (read bursts are fine since they are single cycle requests)
//
// For proper burst functionality, ic_arb_request must remain asserted
// for the ENTIRE duration of a burst request, otherwise the burst may be
// interrupted and lead to all sorts of chaos. At this time, LSUs do not
// deassert avm_write in the middle of a write burst, so this assumption
// is valid.
//
// If there comes a time when this assumption is no longer valid,
// logic needs to be added to detect when a burst begins/ends.
assign ic_arb_request = avm_read | avm_write;
assign ic_arb_read = avm_read;
assign ic_arb_write = avm_write;
assign ic_arb_writedata = avm_writedata;
assign ic_arb_burstcount = avm_burstcount;
generate
if(ADDR_SHIFT==1)
begin
assign ic_arb_address = avm_address[ADDRESS_W-1:$clog2(DATA_W / 8)];
end
else
begin
assign ic_arb_address = avm_address[ADDRESS_W-$clog2(DATA_W / 8)-1:0];
end
endgenerate
assign ic_arb_byteenable = avm_byteenable;
assign avm_waitrequest = ic_arb_stall;
assign avm_readdatavalid = ic_rrp_datavalid;
assign avm_readdata = ic_rrp_data;
assign avm_writeack = ic_wrp_ack;
endmodule
|
// (C) 1992-2014 Altera Corporation. All rights reserved.
// Your use of Altera Corporation's design tools, logic functions and other
// software and tools, and its AMPP partner logic functions, and any output
// files any of the foregoing (including device programming or simulation
// files), and any associated documentation or information are expressly subject
// to the terms and conditions of the Altera Program License Subscription
// Agreement, Altera MegaCore Function License Agreement, or other applicable
// license agreement, including, without limitation, that your use is for the
// sole purpose of programming logic devices manufactured by Altera and sold by
// Altera or its authorized distributors. Please refer to the applicable
// agreement for further details.
// Low latency FIFO
// One cycle latency from all inputs to all outputs
// Storage implemented in registers, not memory.
module acl_ll_fifo(clk, reset, data_in, write, data_out, read, empty, full, almost_full);
/* Parameters */
parameter WIDTH = 32;
parameter DEPTH = 32;
parameter ALMOST_FULL_VALUE = 0;
/* Ports */
input clk;
input reset;
input [WIDTH-1:0] data_in;
input write;
output [WIDTH-1:0] data_out;
input read;
output empty;
output full;
output almost_full;
/* Architecture */
// One-hot write-pointer bit (indicates next position to write at),
// last bit indicates the FIFO is full
reg [DEPTH:0] wptr;
// Replicated copy of the stall / valid logic
reg [DEPTH:0] wptr_copy /* synthesis dont_merge */;
// FIFO data registers
reg [DEPTH-1:0][WIDTH-1:0] data;
// Write pointer updates:
wire wptr_hold; // Hold the value
wire wptr_dir; // Direction to shift
// Data register updates:
wire [DEPTH-1:0] data_hold; // Hold the value
wire [DEPTH-1:0] data_new; // Write the new data value in
// Write location is constant unless the occupancy changes
assign wptr_hold = !(read ^ write);
assign wptr_dir = read;
// Hold the value unless we are reading, or writing to this
// location
genvar i;
generate
for(i = 0; i < DEPTH; i++)
begin : data_mux
assign data_hold[i] = !(read | (write & wptr[i]));
assign data_new[i] = !read | wptr[i+1];
end
endgenerate
// The data registers
generate
for(i = 0; i < DEPTH-1; i++)
begin : data_reg
always@(posedge clk or posedge reset)
begin
if(reset == 1'b1)
data[i] <= {WIDTH{1'b0}};
else
data[i] <= data_hold[i] ? data[i] :
data_new[i] ? data_in : data[i+1];
end
end
endgenerate
always@(posedge clk or posedge reset)
begin
if(reset == 1'b1)
data[DEPTH-1] <= {WIDTH{1'b0}};
else
data[DEPTH-1] <= data_hold[DEPTH-1] ? data[DEPTH-1] : data_in;
end
// The write pointer
always@(posedge clk or posedge reset)
begin
if(reset == 1'b1)
begin
wptr <= {{DEPTH{1'b0}}, 1'b1};
wptr_copy <= {{DEPTH{1'b0}}, 1'b1};
end
else
begin
wptr <= wptr_hold ? wptr :
wptr_dir ? {1'b0, wptr[DEPTH:1]} : {wptr[DEPTH-1:0], 1'b0};
wptr_copy <= wptr_hold ? wptr_copy :
wptr_dir ? {1'b0, wptr_copy[DEPTH:1]} : {wptr_copy[DEPTH-1:0], 1'b0};
end
end
// Outputs
assign empty = wptr_copy[0];
assign full = wptr_copy[DEPTH];
assign almost_full = wptr_copy[DEPTH - ALMOST_FULL_VALUE];
assign data_out = data[0];
endmodule
|
// (C) 1992-2014 Altera Corporation. All rights reserved.
// Your use of Altera Corporation's design tools, logic functions and other
// software and tools, and its AMPP partner logic functions, and any output
// files any of the foregoing (including device programming or simulation
// files), and any associated documentation or information are expressly subject
// to the terms and conditions of the Altera Program License Subscription
// Agreement, Altera MegaCore Function License Agreement, or other applicable
// license agreement, including, without limitation, that your use is for the
// sole purpose of programming logic devices manufactured by Altera and sold by
// Altera or its authorized distributors. Please refer to the applicable
// agreement for further details.
// Low latency FIFO
// One cycle latency from all inputs to all outputs
// Storage implemented in registers, not memory.
module acl_ll_fifo(clk, reset, data_in, write, data_out, read, empty, full, almost_full);
/* Parameters */
parameter WIDTH = 32;
parameter DEPTH = 32;
parameter ALMOST_FULL_VALUE = 0;
/* Ports */
input clk;
input reset;
input [WIDTH-1:0] data_in;
input write;
output [WIDTH-1:0] data_out;
input read;
output empty;
output full;
output almost_full;
/* Architecture */
// One-hot write-pointer bit (indicates next position to write at),
// last bit indicates the FIFO is full
reg [DEPTH:0] wptr;
// Replicated copy of the stall / valid logic
reg [DEPTH:0] wptr_copy /* synthesis dont_merge */;
// FIFO data registers
reg [DEPTH-1:0][WIDTH-1:0] data;
// Write pointer updates:
wire wptr_hold; // Hold the value
wire wptr_dir; // Direction to shift
// Data register updates:
wire [DEPTH-1:0] data_hold; // Hold the value
wire [DEPTH-1:0] data_new; // Write the new data value in
// Write location is constant unless the occupancy changes
assign wptr_hold = !(read ^ write);
assign wptr_dir = read;
// Hold the value unless we are reading, or writing to this
// location
genvar i;
generate
for(i = 0; i < DEPTH; i++)
begin : data_mux
assign data_hold[i] = !(read | (write & wptr[i]));
assign data_new[i] = !read | wptr[i+1];
end
endgenerate
// The data registers
generate
for(i = 0; i < DEPTH-1; i++)
begin : data_reg
always@(posedge clk or posedge reset)
begin
if(reset == 1'b1)
data[i] <= {WIDTH{1'b0}};
else
data[i] <= data_hold[i] ? data[i] :
data_new[i] ? data_in : data[i+1];
end
end
endgenerate
always@(posedge clk or posedge reset)
begin
if(reset == 1'b1)
data[DEPTH-1] <= {WIDTH{1'b0}};
else
data[DEPTH-1] <= data_hold[DEPTH-1] ? data[DEPTH-1] : data_in;
end
// The write pointer
always@(posedge clk or posedge reset)
begin
if(reset == 1'b1)
begin
wptr <= {{DEPTH{1'b0}}, 1'b1};
wptr_copy <= {{DEPTH{1'b0}}, 1'b1};
end
else
begin
wptr <= wptr_hold ? wptr :
wptr_dir ? {1'b0, wptr[DEPTH:1]} : {wptr[DEPTH-1:0], 1'b0};
wptr_copy <= wptr_hold ? wptr_copy :
wptr_dir ? {1'b0, wptr_copy[DEPTH:1]} : {wptr_copy[DEPTH-1:0], 1'b0};
end
end
// Outputs
assign empty = wptr_copy[0];
assign full = wptr_copy[DEPTH];
assign almost_full = wptr_copy[DEPTH - ALMOST_FULL_VALUE];
assign data_out = data[0];
endmodule
|
// (C) 1992-2014 Altera Corporation. All rights reserved.
// Your use of Altera Corporation's design tools, logic functions and other
// software and tools, and its AMPP partner logic functions, and any output
// files any of the foregoing (including device programming or simulation
// files), and any associated documentation or information are expressly subject
// to the terms and conditions of the Altera Program License Subscription
// Agreement, Altera MegaCore Function License Agreement, or other applicable
// license agreement, including, without limitation, that your use is for the
// sole purpose of programming logic devices manufactured by Altera and sold by
// Altera or its authorized distributors. Please refer to the applicable
// agreement for further details.
// This is a n-entry n-exit loop limiter module, n=1, 2, ...
module acl_loop_limiter #(
parameter ENTRY_WIDTH = 8,// 1 - n
EXIT_WIDTH = 8, // 0 - n
THRESHOLD = 100,
THRESHOLD_NO_DELAY = 0, // Delay from i_valid/stall to o_valid/stall;
// default is 0, because setting it to 1 will hurt FMAX
// e.g. Assuming at clock cycle n, the internal counter is full (valid_allow=0); i_stall and i_stall_exit both remain 0
// | THRESHOLD_NO_DELAY = 0 | THRESHOLD_NO_DELAY = 1
//time i_valid i_valid_exit | valid_allow o_valid | valid_allow o_valid
//n 2'b11 2'b01 | 0 2'b00 | 0 2'b01
//n+1 2'b11 2'b00 | 1 2'b01 | 0 2'b00
PEXIT_WIDTH = (EXIT_WIDTH == 0)? 1 : EXIT_WIDTH // to avoid negative index(modelsim compile error)
)(
input clock,
input resetn,
input [ENTRY_WIDTH-1:0] i_valid,
input [ENTRY_WIDTH-1:0] i_stall,
input [PEXIT_WIDTH-1:0] i_valid_exit,
input [PEXIT_WIDTH-1:0] i_stall_exit,
output [ENTRY_WIDTH-1:0] o_valid,
output [ENTRY_WIDTH-1:0] o_stall
);
localparam ADD_WIDTH = $clog2(ENTRY_WIDTH + 1);
localparam SUB_WIDTH = $clog2(PEXIT_WIDTH + 1);
localparam THRESHOLD_W = $clog2(THRESHOLD + 1);
integer i;
wire [ENTRY_WIDTH-1:0] inc_bin;
wire [ADD_WIDTH-1:0] inc_wire [ENTRY_WIDTH];
wire [PEXIT_WIDTH-1:0] dec_bin;
wire [SUB_WIDTH-1:0] dec_wire [PEXIT_WIDTH];
wire [ADD_WIDTH-1:0] inc_value [ENTRY_WIDTH];
wire decrease_allow;
wire [THRESHOLD_W:0] valid_allow_wire;
reg [THRESHOLD_W-1:0] counter_next, valid_allow;
wire [ENTRY_WIDTH-1:0] limit_mask;
wire [ENTRY_WIDTH-1:0] accept_inc_bin;
assign decrease_allow = inc_value[ENTRY_WIDTH-1] > dec_wire[PEXIT_WIDTH-1];
assign valid_allow_wire = valid_allow + dec_wire[PEXIT_WIDTH-1] - inc_value[ENTRY_WIDTH-1];
always @(*) begin
if(decrease_allow) counter_next = valid_allow_wire[THRESHOLD_W]? 0 : valid_allow_wire[THRESHOLD_W-1:0];
else counter_next = (valid_allow_wire > THRESHOLD)? THRESHOLD : valid_allow_wire[THRESHOLD_W-1:0];
end
//valid_allow_temp is used only when THRESHOLD_NO_DELAY = 1
wire [THRESHOLD_W:0] valid_allow_temp;
assign valid_allow_temp = valid_allow + dec_wire[PEXIT_WIDTH-1];
genvar z;
generate
for(z=0; z<ENTRY_WIDTH; z=z+1) begin : GEN_COMB_ENTRY
assign inc_bin[z] = ~i_stall[z] & i_valid[z];
assign inc_wire[z] = (z==0)? i_valid[0] : inc_wire[z-1] + i_valid[z];
// set mask bit n to 1 if the sum of (~i_stall[z] & i_valid[z], z=0, 1, ..., n) is smaller or equal to the number of output valid bits allowed.
assign limit_mask[z] = inc_wire[z] <= (THRESHOLD_NO_DELAY? valid_allow_temp : valid_allow);
assign accept_inc_bin[z] = inc_bin[z] & limit_mask[z];
assign inc_value[z] = (z==0)? accept_inc_bin[0] : inc_value[z-1] + accept_inc_bin[z];
assign o_valid[z] = limit_mask[z] & i_valid[z];
assign o_stall[z] = (ENTRY_WIDTH == 1)? (valid_allow == 0 | i_stall[z]) : (!o_valid[z] | i_stall[z]);
end
for(z=0; z<PEXIT_WIDTH; z=z+1) begin : GEN_COMB_EXIT
assign dec_bin[z] = !i_stall_exit[z] & i_valid_exit[z];
assign dec_wire[z] = (z==0)? dec_bin[0] : dec_wire[z-1] + dec_bin[z];
end
endgenerate
// Synchrounous
always @(posedge clock or negedge resetn) begin
if(!resetn) begin
valid_allow <= THRESHOLD;
end
else begin
// update the internal counter
valid_allow <= counter_next;
end
end
endmodule
|
// (C) 1992-2014 Altera Corporation. All rights reserved.
// Your use of Altera Corporation's design tools, logic functions and other
// software and tools, and its AMPP partner logic functions, and any output
// files any of the foregoing (including device programming or simulation
// files), and any associated documentation or information are expressly subject
// to the terms and conditions of the Altera Program License Subscription
// Agreement, Altera MegaCore Function License Agreement, or other applicable
// license agreement, including, without limitation, that your use is for the
// sole purpose of programming logic devices manufactured by Altera and sold by
// Altera or its authorized distributors. Please refer to the applicable
// agreement for further details.
// This is a n-entry n-exit loop limiter module, n=1, 2, ...
module acl_loop_limiter #(
parameter ENTRY_WIDTH = 8,// 1 - n
EXIT_WIDTH = 8, // 0 - n
THRESHOLD = 100,
THRESHOLD_NO_DELAY = 0, // Delay from i_valid/stall to o_valid/stall;
// default is 0, because setting it to 1 will hurt FMAX
// e.g. Assuming at clock cycle n, the internal counter is full (valid_allow=0); i_stall and i_stall_exit both remain 0
// | THRESHOLD_NO_DELAY = 0 | THRESHOLD_NO_DELAY = 1
//time i_valid i_valid_exit | valid_allow o_valid | valid_allow o_valid
//n 2'b11 2'b01 | 0 2'b00 | 0 2'b01
//n+1 2'b11 2'b00 | 1 2'b01 | 0 2'b00
PEXIT_WIDTH = (EXIT_WIDTH == 0)? 1 : EXIT_WIDTH // to avoid negative index(modelsim compile error)
)(
input clock,
input resetn,
input [ENTRY_WIDTH-1:0] i_valid,
input [ENTRY_WIDTH-1:0] i_stall,
input [PEXIT_WIDTH-1:0] i_valid_exit,
input [PEXIT_WIDTH-1:0] i_stall_exit,
output [ENTRY_WIDTH-1:0] o_valid,
output [ENTRY_WIDTH-1:0] o_stall
);
localparam ADD_WIDTH = $clog2(ENTRY_WIDTH + 1);
localparam SUB_WIDTH = $clog2(PEXIT_WIDTH + 1);
localparam THRESHOLD_W = $clog2(THRESHOLD + 1);
integer i;
wire [ENTRY_WIDTH-1:0] inc_bin;
wire [ADD_WIDTH-1:0] inc_wire [ENTRY_WIDTH];
wire [PEXIT_WIDTH-1:0] dec_bin;
wire [SUB_WIDTH-1:0] dec_wire [PEXIT_WIDTH];
wire [ADD_WIDTH-1:0] inc_value [ENTRY_WIDTH];
wire decrease_allow;
wire [THRESHOLD_W:0] valid_allow_wire;
reg [THRESHOLD_W-1:0] counter_next, valid_allow;
wire [ENTRY_WIDTH-1:0] limit_mask;
wire [ENTRY_WIDTH-1:0] accept_inc_bin;
assign decrease_allow = inc_value[ENTRY_WIDTH-1] > dec_wire[PEXIT_WIDTH-1];
assign valid_allow_wire = valid_allow + dec_wire[PEXIT_WIDTH-1] - inc_value[ENTRY_WIDTH-1];
always @(*) begin
if(decrease_allow) counter_next = valid_allow_wire[THRESHOLD_W]? 0 : valid_allow_wire[THRESHOLD_W-1:0];
else counter_next = (valid_allow_wire > THRESHOLD)? THRESHOLD : valid_allow_wire[THRESHOLD_W-1:0];
end
//valid_allow_temp is used only when THRESHOLD_NO_DELAY = 1
wire [THRESHOLD_W:0] valid_allow_temp;
assign valid_allow_temp = valid_allow + dec_wire[PEXIT_WIDTH-1];
genvar z;
generate
for(z=0; z<ENTRY_WIDTH; z=z+1) begin : GEN_COMB_ENTRY
assign inc_bin[z] = ~i_stall[z] & i_valid[z];
assign inc_wire[z] = (z==0)? i_valid[0] : inc_wire[z-1] + i_valid[z];
// set mask bit n to 1 if the sum of (~i_stall[z] & i_valid[z], z=0, 1, ..., n) is smaller or equal to the number of output valid bits allowed.
assign limit_mask[z] = inc_wire[z] <= (THRESHOLD_NO_DELAY? valid_allow_temp : valid_allow);
assign accept_inc_bin[z] = inc_bin[z] & limit_mask[z];
assign inc_value[z] = (z==0)? accept_inc_bin[0] : inc_value[z-1] + accept_inc_bin[z];
assign o_valid[z] = limit_mask[z] & i_valid[z];
assign o_stall[z] = (ENTRY_WIDTH == 1)? (valid_allow == 0 | i_stall[z]) : (!o_valid[z] | i_stall[z]);
end
for(z=0; z<PEXIT_WIDTH; z=z+1) begin : GEN_COMB_EXIT
assign dec_bin[z] = !i_stall_exit[z] & i_valid_exit[z];
assign dec_wire[z] = (z==0)? dec_bin[0] : dec_wire[z-1] + dec_bin[z];
end
endgenerate
// Synchrounous
always @(posedge clock or negedge resetn) begin
if(!resetn) begin
valid_allow <= THRESHOLD;
end
else begin
// update the internal counter
valid_allow <= counter_next;
end
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test for generate IF constants
//
// The given generate loop should have a constant expression as argument. This
// test checks it really does evaluate as constant.
// This file ONLY is placed into the Public Domain, for any use, without
// warranty, 2012 by Jeremy Bennett.
`define MAX_SIZE 4
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
// Set the parameters, so that we use a size less than MAX_SIZE
test_gen
#(.SIZE (2),
.MASK (4'b1111))
i_test_gen (.clk (clk));
// This is only a compilation test, but for good measure we do one clock
// cycle.
integer count;
initial begin
count = 0;
end
always @(posedge clk) begin
if (count == 1) begin
$write("*-* All Finished *-*\n");
$finish;
end
else begin
count = count + 1;
end
end
endmodule // t
module test_gen
#( parameter
SIZE = `MAX_SIZE,
MASK = `MAX_SIZE'b0)
(/*AUTOARG*/
// Inputs
clk
);
input clk;
// Generate blocks that rely on short-circuiting of the logic to avoid
// errors.
generate
if ((SIZE < 8'h04) && MASK[0]) begin
always @(posedge clk) begin
`ifdef TEST_VERBOSE
$write ("Generate IF MASK[0] = %d\n", MASK[0]);
`endif
end
end
endgenerate
endmodule
|
// DESCRIPTION: Verilator: Verilog Test for generate IF constants
//
// The given generate loop should have a constant expression as argument. This
// test checks it really does evaluate as constant.
// This file ONLY is placed into the Public Domain, for any use, without
// warranty, 2012 by Jeremy Bennett.
`define MAX_SIZE 4
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
// Set the parameters, so that we use a size less than MAX_SIZE
test_gen
#(.SIZE (2),
.MASK (4'b1111))
i_test_gen (.clk (clk));
// This is only a compilation test, but for good measure we do one clock
// cycle.
integer count;
initial begin
count = 0;
end
always @(posedge clk) begin
if (count == 1) begin
$write("*-* All Finished *-*\n");
$finish;
end
else begin
count = count + 1;
end
end
endmodule // t
module test_gen
#( parameter
SIZE = `MAX_SIZE,
MASK = `MAX_SIZE'b0)
(/*AUTOARG*/
// Inputs
clk
);
input clk;
// Generate blocks that rely on short-circuiting of the logic to avoid
// errors.
generate
if ((SIZE < 8'h04) && MASK[0]) begin
always @(posedge clk) begin
`ifdef TEST_VERBOSE
$write ("Generate IF MASK[0] = %d\n", MASK[0]);
`endif
end
end
endgenerate
endmodule
|
// DESCRIPTION: Verilator: Verilog Test for generate IF constants
//
// The given generate loop should have a constant expression as argument. This
// test checks it really does evaluate as constant.
// This file ONLY is placed into the Public Domain, for any use, without
// warranty, 2012 by Jeremy Bennett.
`define MAX_SIZE 4
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
// Set the parameters, so that we use a size less than MAX_SIZE
test_gen
#(.SIZE (2),
.MASK (4'b1111))
i_test_gen (.clk (clk));
// This is only a compilation test, but for good measure we do one clock
// cycle.
integer count;
initial begin
count = 0;
end
always @(posedge clk) begin
if (count == 1) begin
$write("*-* All Finished *-*\n");
$finish;
end
else begin
count = count + 1;
end
end
endmodule // t
module test_gen
#( parameter
SIZE = `MAX_SIZE,
MASK = `MAX_SIZE'b0)
(/*AUTOARG*/
// Inputs
clk
);
input clk;
// Generate blocks that rely on short-circuiting of the logic to avoid
// errors.
generate
if ((SIZE < 8'h04) && MASK[0]) begin
always @(posedge clk) begin
`ifdef TEST_VERBOSE
$write ("Generate IF MASK[0] = %d\n", MASK[0]);
`endif
end
end
endgenerate
endmodule
|
// DESCRIPTION: Verilator: Verilog Test for generate IF constants
//
// The given generate loop should have a constant expression as argument. This
// test checks it really does evaluate as constant.
// This file ONLY is placed into the Public Domain, for any use, without
// warranty, 2012 by Jeremy Bennett.
`define MAX_SIZE 4
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
// Set the parameters, so that we use a size less than MAX_SIZE
test_gen
#(.SIZE (2),
.MASK (4'b1111))
i_test_gen (.clk (clk));
// This is only a compilation test, but for good measure we do one clock
// cycle.
integer count;
initial begin
count = 0;
end
always @(posedge clk) begin
if (count == 1) begin
$write("*-* All Finished *-*\n");
$finish;
end
else begin
count = count + 1;
end
end
endmodule // t
module test_gen
#( parameter
SIZE = `MAX_SIZE,
MASK = `MAX_SIZE'b0)
(/*AUTOARG*/
// Inputs
clk
);
input clk;
// Generate blocks that rely on short-circuiting of the logic to avoid
// errors.
generate
if ((SIZE < 8'h04) && MASK[0]) begin
always @(posedge clk) begin
`ifdef TEST_VERBOSE
$write ("Generate IF MASK[0] = %d\n", MASK[0]);
`endif
end
end
endgenerate
endmodule
|
// // (C) 1992-2014 Altera Corporation. All rights reserved.
// Your use of Altera Corporation's design tools, logic functions and other
// software and tools, and its AMPP partner logic functions, and any output
// files any of the foregoing (including device programming or simulation
// files), and any associated documentation or information are expressly subject
// to the terms and conditions of the Altera Program License Subscription
// Agreement, Altera MegaCore Function License Agreement, or other applicable
// license agreement, including, without limitation, that your use is for the
// sole purpose of programming logic devices manufactured by Altera and sold by
// Altera or its authorized distributors. Please refer to the applicable
// agreement for further details.
// Work-group limiter. This module has two interface points: the entry point
// and the exit point. The purpose of the module is to ensure that there are
// no more than WG_LIMIT work-groups in the pipeline between the entry and
// exit points. The limiter also remaps the kernel-level work-group id into
// a local work-group id; this is needed because in general the kernel-level
// work-group id space is larger than the local work-group id space. It is
// assumed that any work-item that passes through the entry point will pass
// through the exit point at some point.
//
// The ordering of the work-groups affects the implementation. In particular,
// if the work-group order is the same through the entry point and the exit
// point, the implementation is simple. This is referred to as work-group FIFO
// (first-in-first-out) order. It remains a TODO to support work-group
// non-FIFO order (through the exit point).
//
// The work-group order does NOT matter if WG_LIMIT >= KERNEL_WG_LIMIT.
// In this configuration, the real limiter is at the kernel-level and this
// work-group limiter does not do anything useful. It does match the latency
// specifiction though so that the latency and capacity of the core is the
// same regardless of the configuration.
//
// Latency/capacity:
// Through entry: 1 cycle
// Through exit: 1 cycle
module acl_work_group_limiter #(
parameter unsigned WG_LIMIT = 1, // >0
parameter unsigned KERNEL_WG_LIMIT = 1, // >0
parameter unsigned MAX_WG_SIZE = 1, // >0
parameter unsigned WG_FIFO_ORDER = 1, // 0|1
parameter string IMPL = "local" // kernel|local
)
(
clock,
resetn,
wg_size,
// Limiter entry
entry_valid_in,
entry_k_wgid,
entry_stall_out,
entry_valid_out,
entry_l_wgid,
entry_stall_in,
// Limiter exit
exit_valid_in,
exit_l_wgid,
exit_stall_out,
exit_valid_out,
exit_stall_in
);
input logic clock;
input logic resetn;
// check for overflow
localparam MAX_WG_SIZE_WIDTH = $clog2({1'b0, MAX_WG_SIZE} + 1);
input logic [MAX_WG_SIZE_WIDTH-1:0] wg_size;
// Limiter entry
input logic entry_valid_in;
input logic [$clog2(KERNEL_WG_LIMIT)-1:0] entry_k_wgid; // not used if WG_FIFO_ORDER==1
output logic entry_stall_out;
output logic entry_valid_out;
output logic [$clog2(WG_LIMIT)-1:0] entry_l_wgid;
input logic entry_stall_in;
// Limiter exit
input logic exit_valid_in;
input logic [$clog2(WG_LIMIT)-1:0] exit_l_wgid; // never used
output logic exit_stall_out;
output logic exit_valid_out;
input logic exit_stall_in;
generate
// WG_FIFO_ORDER needs to be handled first because the limiter always needs
// to generate the work-group
if( WG_FIFO_ORDER == 1 ) begin
// IMPLEMENTATION ASSUMPTION: complete work-groups are assumed to
// pass-through work-group and therefore it is sufficient to declare
// a work-group as done when wg_size work-items have appeared at one point
logic [MAX_WG_SIZE_WIDTH-1:0] wg_size_limit /* synthesis preserve */;
always @(posedge clock)
wg_size_limit <= wg_size - 'd1; // this is a constant throughout the execution of an kernel, but register to limit fanout of source
// Number of active work-groups that have (partially) entered the limiter and have not
// (completely) exited the limiter. Counts from 0 to WG_LIMIT.
logic [$clog2(WG_LIMIT+1)-1:0] active_wg_count;
logic incr_active_wg, decr_active_wg;
logic active_wg_limit_reached;
// Number of work-items seen in the currently-entering work-group.
// Counts from 0 to MAX_WG_SIZE-1.
logic [$clog2(MAX_WG_SIZE)-1:0] cur_entry_wg_wi_count;
logic cur_entry_wg_wi_count_eq_zero;
logic [$clog2(WG_LIMIT)-1:0] cur_entry_l_wgid;
// Number of work-items seen in the currently-exiting work-group.
// Counts from 0 to MAX_WG_SIZE-1.
logic [$clog2(MAX_WG_SIZE)-1:0] cur_exit_wg_wi_count;
always @( posedge clock or negedge resetn ) begin
if( ~resetn ) begin
active_wg_count <= '0;
active_wg_limit_reached <= 1'b0;
end
else begin
active_wg_count <= active_wg_count + incr_active_wg - decr_active_wg;
if( (active_wg_count == WG_LIMIT - 1) & incr_active_wg & ~decr_active_wg )
active_wg_limit_reached <= 1'b1;
else if( (active_wg_count == WG_LIMIT) & decr_active_wg )
active_wg_limit_reached <= 1'b0;
end
end
//
// Entry logic: latency = 1
//
logic accept_entry;
logic entry_output_stall_out;
always @( posedge clock or negedge resetn ) begin
if( ~resetn ) begin
cur_entry_wg_wi_count <= '0;
cur_entry_wg_wi_count_eq_zero <= 1'b1;
cur_entry_l_wgid <= '0;
end
else if( accept_entry ) begin
if( cur_entry_wg_wi_count == wg_size_limit ) begin
// The entering work-item is the last work-item of the current
// work-group. Prepare for the next work-group.
cur_entry_wg_wi_count <= '0;
cur_entry_wg_wi_count_eq_zero <= 1'b1;
if( cur_entry_l_wgid == WG_LIMIT - 1 )
cur_entry_l_wgid <= '0;
else
cur_entry_l_wgid <= cur_entry_l_wgid + 'd1;
end
else begin
// Increment work-item counter.
cur_entry_wg_wi_count <= cur_entry_wg_wi_count + 'd1;
cur_entry_wg_wi_count_eq_zero <= 1'b0;
end
end
end
assign incr_active_wg = cur_entry_wg_wi_count_eq_zero & accept_entry;
assign accept_entry = entry_valid_in & ~entry_output_stall_out & ~(active_wg_limit_reached & cur_entry_wg_wi_count_eq_zero);
// Register entry output.
always @( posedge clock or negedge resetn ) begin
if( ~resetn ) begin
entry_valid_out <= 1'b0;
entry_l_wgid <= 'x;
end
else if( ~entry_output_stall_out ) begin
entry_valid_out <= accept_entry;
entry_l_wgid <= cur_entry_l_wgid;
end
end
assign entry_output_stall_out = entry_valid_out & entry_stall_in;
assign entry_stall_out = entry_valid_in & ~accept_entry;
//
// Exit logic: latency = 1
//
always @( posedge clock or negedge resetn ) begin
if( ~resetn ) begin
cur_exit_wg_wi_count <= '0;
end
else if( exit_valid_in & ~exit_stall_out ) begin
if( cur_exit_wg_wi_count == wg_size_limit )
begin
// The exiting work-item is the last work-item of the current
// work-group. Entire work-group has cleared.
cur_exit_wg_wi_count <= '0;
end
else begin
// Increment work-item counter.
cur_exit_wg_wi_count <= cur_exit_wg_wi_count + 'd1;
end
end
end
assign decr_active_wg = exit_valid_in & ~exit_stall_out & (cur_exit_wg_wi_count == wg_size_limit);
// Register output.
always @( posedge clock or negedge resetn ) begin
if( ~resetn )
exit_valid_out <= 1'b0;
else if( ~exit_stall_out )
exit_valid_out <= exit_valid_in;
end
assign exit_stall_out = exit_valid_out & exit_stall_in;
end
else if( IMPL == "local" && WG_LIMIT >= KERNEL_WG_LIMIT ) begin
// In this scenario, this work-group limiter doesn't have to do anything
// because the kernel-level limit is already sufficient.
//
// Simply use the kernel hwid as the local hwid.
//
// This particular implementation is suitable for any kind of
// work-item ordering at entry and exit. Register to meet the latency
// requirements.
always @( posedge clock or negedge resetn ) begin
if( ~resetn ) begin
entry_valid_out <= 1'b0;
entry_l_wgid <= 'x;
end
else if( ~entry_stall_out ) begin
entry_valid_out <= entry_valid_in;
entry_l_wgid <= entry_k_wgid;
end
end
assign entry_stall_out = entry_valid_out & entry_stall_in;
always @( posedge clock or negedge resetn ) begin
if( ~resetn )
exit_valid_out <= 1'b0;
else if( ~exit_stall_out )
exit_valid_out <= exit_valid_in;
end
assign exit_stall_out = exit_valid_out & exit_stall_in;
end
else begin
// synthesis translate off
initial
$fatal("%m: unsupported configuration (WG_LIMIT < KERNEL_WG_LIMIT and WG_FIFO_ORDER != 1)");
// synthesis translate on
end
endgenerate
endmodule
|
// // (C) 1992-2014 Altera Corporation. All rights reserved.
// Your use of Altera Corporation's design tools, logic functions and other
// software and tools, and its AMPP partner logic functions, and any output
// files any of the foregoing (including device programming or simulation
// files), and any associated documentation or information are expressly subject
// to the terms and conditions of the Altera Program License Subscription
// Agreement, Altera MegaCore Function License Agreement, or other applicable
// license agreement, including, without limitation, that your use is for the
// sole purpose of programming logic devices manufactured by Altera and sold by
// Altera or its authorized distributors. Please refer to the applicable
// agreement for further details.
// Work-group limiter. This module has two interface points: the entry point
// and the exit point. The purpose of the module is to ensure that there are
// no more than WG_LIMIT work-groups in the pipeline between the entry and
// exit points. The limiter also remaps the kernel-level work-group id into
// a local work-group id; this is needed because in general the kernel-level
// work-group id space is larger than the local work-group id space. It is
// assumed that any work-item that passes through the entry point will pass
// through the exit point at some point.
//
// The ordering of the work-groups affects the implementation. In particular,
// if the work-group order is the same through the entry point and the exit
// point, the implementation is simple. This is referred to as work-group FIFO
// (first-in-first-out) order. It remains a TODO to support work-group
// non-FIFO order (through the exit point).
//
// The work-group order does NOT matter if WG_LIMIT >= KERNEL_WG_LIMIT.
// In this configuration, the real limiter is at the kernel-level and this
// work-group limiter does not do anything useful. It does match the latency
// specifiction though so that the latency and capacity of the core is the
// same regardless of the configuration.
//
// Latency/capacity:
// Through entry: 1 cycle
// Through exit: 1 cycle
module acl_work_group_limiter #(
parameter unsigned WG_LIMIT = 1, // >0
parameter unsigned KERNEL_WG_LIMIT = 1, // >0
parameter unsigned MAX_WG_SIZE = 1, // >0
parameter unsigned WG_FIFO_ORDER = 1, // 0|1
parameter string IMPL = "local" // kernel|local
)
(
clock,
resetn,
wg_size,
// Limiter entry
entry_valid_in,
entry_k_wgid,
entry_stall_out,
entry_valid_out,
entry_l_wgid,
entry_stall_in,
// Limiter exit
exit_valid_in,
exit_l_wgid,
exit_stall_out,
exit_valid_out,
exit_stall_in
);
input logic clock;
input logic resetn;
// check for overflow
localparam MAX_WG_SIZE_WIDTH = $clog2({1'b0, MAX_WG_SIZE} + 1);
input logic [MAX_WG_SIZE_WIDTH-1:0] wg_size;
// Limiter entry
input logic entry_valid_in;
input logic [$clog2(KERNEL_WG_LIMIT)-1:0] entry_k_wgid; // not used if WG_FIFO_ORDER==1
output logic entry_stall_out;
output logic entry_valid_out;
output logic [$clog2(WG_LIMIT)-1:0] entry_l_wgid;
input logic entry_stall_in;
// Limiter exit
input logic exit_valid_in;
input logic [$clog2(WG_LIMIT)-1:0] exit_l_wgid; // never used
output logic exit_stall_out;
output logic exit_valid_out;
input logic exit_stall_in;
generate
// WG_FIFO_ORDER needs to be handled first because the limiter always needs
// to generate the work-group
if( WG_FIFO_ORDER == 1 ) begin
// IMPLEMENTATION ASSUMPTION: complete work-groups are assumed to
// pass-through work-group and therefore it is sufficient to declare
// a work-group as done when wg_size work-items have appeared at one point
logic [MAX_WG_SIZE_WIDTH-1:0] wg_size_limit /* synthesis preserve */;
always @(posedge clock)
wg_size_limit <= wg_size - 'd1; // this is a constant throughout the execution of an kernel, but register to limit fanout of source
// Number of active work-groups that have (partially) entered the limiter and have not
// (completely) exited the limiter. Counts from 0 to WG_LIMIT.
logic [$clog2(WG_LIMIT+1)-1:0] active_wg_count;
logic incr_active_wg, decr_active_wg;
logic active_wg_limit_reached;
// Number of work-items seen in the currently-entering work-group.
// Counts from 0 to MAX_WG_SIZE-1.
logic [$clog2(MAX_WG_SIZE)-1:0] cur_entry_wg_wi_count;
logic cur_entry_wg_wi_count_eq_zero;
logic [$clog2(WG_LIMIT)-1:0] cur_entry_l_wgid;
// Number of work-items seen in the currently-exiting work-group.
// Counts from 0 to MAX_WG_SIZE-1.
logic [$clog2(MAX_WG_SIZE)-1:0] cur_exit_wg_wi_count;
always @( posedge clock or negedge resetn ) begin
if( ~resetn ) begin
active_wg_count <= '0;
active_wg_limit_reached <= 1'b0;
end
else begin
active_wg_count <= active_wg_count + incr_active_wg - decr_active_wg;
if( (active_wg_count == WG_LIMIT - 1) & incr_active_wg & ~decr_active_wg )
active_wg_limit_reached <= 1'b1;
else if( (active_wg_count == WG_LIMIT) & decr_active_wg )
active_wg_limit_reached <= 1'b0;
end
end
//
// Entry logic: latency = 1
//
logic accept_entry;
logic entry_output_stall_out;
always @( posedge clock or negedge resetn ) begin
if( ~resetn ) begin
cur_entry_wg_wi_count <= '0;
cur_entry_wg_wi_count_eq_zero <= 1'b1;
cur_entry_l_wgid <= '0;
end
else if( accept_entry ) begin
if( cur_entry_wg_wi_count == wg_size_limit ) begin
// The entering work-item is the last work-item of the current
// work-group. Prepare for the next work-group.
cur_entry_wg_wi_count <= '0;
cur_entry_wg_wi_count_eq_zero <= 1'b1;
if( cur_entry_l_wgid == WG_LIMIT - 1 )
cur_entry_l_wgid <= '0;
else
cur_entry_l_wgid <= cur_entry_l_wgid + 'd1;
end
else begin
// Increment work-item counter.
cur_entry_wg_wi_count <= cur_entry_wg_wi_count + 'd1;
cur_entry_wg_wi_count_eq_zero <= 1'b0;
end
end
end
assign incr_active_wg = cur_entry_wg_wi_count_eq_zero & accept_entry;
assign accept_entry = entry_valid_in & ~entry_output_stall_out & ~(active_wg_limit_reached & cur_entry_wg_wi_count_eq_zero);
// Register entry output.
always @( posedge clock or negedge resetn ) begin
if( ~resetn ) begin
entry_valid_out <= 1'b0;
entry_l_wgid <= 'x;
end
else if( ~entry_output_stall_out ) begin
entry_valid_out <= accept_entry;
entry_l_wgid <= cur_entry_l_wgid;
end
end
assign entry_output_stall_out = entry_valid_out & entry_stall_in;
assign entry_stall_out = entry_valid_in & ~accept_entry;
//
// Exit logic: latency = 1
//
always @( posedge clock or negedge resetn ) begin
if( ~resetn ) begin
cur_exit_wg_wi_count <= '0;
end
else if( exit_valid_in & ~exit_stall_out ) begin
if( cur_exit_wg_wi_count == wg_size_limit )
begin
// The exiting work-item is the last work-item of the current
// work-group. Entire work-group has cleared.
cur_exit_wg_wi_count <= '0;
end
else begin
// Increment work-item counter.
cur_exit_wg_wi_count <= cur_exit_wg_wi_count + 'd1;
end
end
end
assign decr_active_wg = exit_valid_in & ~exit_stall_out & (cur_exit_wg_wi_count == wg_size_limit);
// Register output.
always @( posedge clock or negedge resetn ) begin
if( ~resetn )
exit_valid_out <= 1'b0;
else if( ~exit_stall_out )
exit_valid_out <= exit_valid_in;
end
assign exit_stall_out = exit_valid_out & exit_stall_in;
end
else if( IMPL == "local" && WG_LIMIT >= KERNEL_WG_LIMIT ) begin
// In this scenario, this work-group limiter doesn't have to do anything
// because the kernel-level limit is already sufficient.
//
// Simply use the kernel hwid as the local hwid.
//
// This particular implementation is suitable for any kind of
// work-item ordering at entry and exit. Register to meet the latency
// requirements.
always @( posedge clock or negedge resetn ) begin
if( ~resetn ) begin
entry_valid_out <= 1'b0;
entry_l_wgid <= 'x;
end
else if( ~entry_stall_out ) begin
entry_valid_out <= entry_valid_in;
entry_l_wgid <= entry_k_wgid;
end
end
assign entry_stall_out = entry_valid_out & entry_stall_in;
always @( posedge clock or negedge resetn ) begin
if( ~resetn )
exit_valid_out <= 1'b0;
else if( ~exit_stall_out )
exit_valid_out <= exit_valid_in;
end
assign exit_stall_out = exit_valid_out & exit_stall_in;
end
else begin
// synthesis translate off
initial
$fatal("%m: unsupported configuration (WG_LIMIT < KERNEL_WG_LIMIT and WG_FIFO_ORDER != 1)");
// synthesis translate on
end
endgenerate
endmodule
|
module lsu_non_aligned_write
(
clk, clk2x, reset, o_stall, i_valid, i_address, i_writedata, i_stall, i_byteenable, o_valid,
o_active, //Debugging signal
avm_address, avm_write, avm_writeack, avm_writedata, avm_byteenable, avm_waitrequest,
avm_burstcount, i_nop
);
parameter AWIDTH=32; // Address width (32-bits for Avalon)
parameter WIDTH_BYTES=4; // Width of the memory access (bytes)
parameter MWIDTH_BYTES=32; // Width of the global memory bus (bytes)
parameter ALIGNMENT_ABITS=2; // Request address alignment (address bits)
parameter KERNEL_SIDE_MEM_LATENCY=32; // Memory latency in threads
parameter MEMORY_SIDE_MEM_LATENCY=32;
parameter BURSTCOUNT_WIDTH=6; // Size of Avalon burst count port
parameter USE_WRITE_ACK=0; // Wait till the write has actually made it to global memory
parameter HIGH_FMAX=1;
parameter USE_BYTE_EN=0;
localparam WIDTH=8*WIDTH_BYTES;
localparam MWIDTH=8*MWIDTH_BYTES;
localparam BYTE_SELECT_BITS=$clog2(MWIDTH_BYTES);
localparam NUM_OUTPUT_WORD = MWIDTH_BYTES/WIDTH_BYTES;
localparam NUM_OUTPUT_WORD_W = $clog2(NUM_OUTPUT_WORD);
localparam UNALIGNED_BITS=$clog2(WIDTH_BYTES)-ALIGNMENT_ABITS;
/********
* Ports *
********/
// Standard global signals
input clk;
input clk2x;
input reset;
// Upstream interface
output o_stall;
input i_valid;
input [AWIDTH-1:0] i_address;
input [WIDTH-1:0] i_writedata;
// Downstream interface
input i_stall;
output o_valid;
output reg o_active;
// Byte enable control
input [WIDTH_BYTES-1:0] i_byteenable;
// Avalon interface
output [AWIDTH-1:0] avm_address;
output avm_write;
input avm_writeack;
output [MWIDTH-1:0] avm_writedata;
output [MWIDTH_BYTES-1:0] avm_byteenable;
input avm_waitrequest;
output [BURSTCOUNT_WIDTH-1:0] avm_burstcount;
input i_nop;
reg reg_lsu_i_valid;
reg [AWIDTH-BYTE_SELECT_BITS-1:0] page_addr_next;
reg [AWIDTH-1:0] reg_lsu_i_address;
reg [WIDTH-1:0] reg_lsu_i_writedata;
reg reg_nop;
reg reg_consecutive;
reg [WIDTH_BYTES-1:0] reg_word_byte_enable;
reg [UNALIGNED_BITS-1:0] shift = 0;
wire stall_int;
assign o_stall = reg_lsu_i_valid & stall_int;
// --------------- Pipeline stage : Consecutive Address Checking --------------------
always@(posedge clk or posedge reset)
begin
if (reset) reg_lsu_i_valid <= 1'b0;
else if (~o_stall) reg_lsu_i_valid <= i_valid;
end
always@(posedge clk) begin
if (~o_stall & i_valid & ~i_nop) begin
reg_lsu_i_address <= i_address;
page_addr_next <= i_address[AWIDTH-1:BYTE_SELECT_BITS] + 1'b1;
shift <= i_address[ALIGNMENT_ABITS+UNALIGNED_BITS-1:ALIGNMENT_ABITS];
reg_lsu_i_writedata <= i_writedata;
reg_word_byte_enable <= USE_BYTE_EN? (i_nop? '0 : i_byteenable) : '1;
end
if (~o_stall) begin
reg_nop <= i_nop;
reg_consecutive <= !i_nop & page_addr_next === i_address[AWIDTH-1:BYTE_SELECT_BITS]
// to simplify logic in lsu_bursting_write
// the new writedata does not overlap with the previous one
& i_address[ALIGNMENT_ABITS+UNALIGNED_BITS-1:ALIGNMENT_ABITS] > shift;
end
end
// -------------------------------------------------------------------
lsu_non_aligned_write_internal #(
.KERNEL_SIDE_MEM_LATENCY(KERNEL_SIDE_MEM_LATENCY),
.MEMORY_SIDE_MEM_LATENCY(MEMORY_SIDE_MEM_LATENCY),
.AWIDTH(AWIDTH),
.WIDTH_BYTES(WIDTH_BYTES),
.MWIDTH_BYTES(MWIDTH_BYTES),
.BURSTCOUNT_WIDTH(BURSTCOUNT_WIDTH),
.ALIGNMENT_ABITS(ALIGNMENT_ABITS),
.USE_WRITE_ACK(USE_WRITE_ACK),
.USE_BYTE_EN(1),
.HIGH_FMAX(HIGH_FMAX)
) non_aligned_write (
.clk(clk),
.clk2x(clk2x),
.reset(reset),
.o_stall(stall_int),
.i_valid(reg_lsu_i_valid),
.i_address(reg_lsu_i_address),
.i_writedata(reg_lsu_i_writedata),
.i_stall(i_stall),
.i_byteenable(reg_word_byte_enable),
.o_valid(o_valid),
.o_active(o_active),
.avm_address(avm_address),
.avm_write(avm_write),
.avm_writeack(avm_writeack),
.avm_writedata(avm_writedata),
.avm_byteenable(avm_byteenable),
.avm_burstcount(avm_burstcount),
.avm_waitrequest(avm_waitrequest),
.i_nop(reg_nop),
.consecutive(reg_consecutive)
);
endmodule
//
// Non-aligned write wrapper for LSUs
//
module lsu_non_aligned_write_internal
(
clk, clk2x, reset, o_stall, i_valid, i_address, i_writedata, i_stall, i_byteenable, o_valid,
o_active, //Debugging signal
avm_address, avm_write, avm_writeack, avm_writedata, avm_byteenable, avm_waitrequest,
avm_burstcount,
i_nop,
consecutive
);
// Paramaters to pass down to lsu_top
//
parameter AWIDTH=32; // Address width (32-bits for Avalon)
parameter WIDTH_BYTES=4; // Width of the memory access (bytes)
parameter MWIDTH_BYTES=32; // Width of the global memory bus (bytes)
parameter ALIGNMENT_ABITS=2; // Request address alignment (address bits)
parameter KERNEL_SIDE_MEM_LATENCY=160; // Determines the max number of live requests.
parameter MEMORY_SIDE_MEM_LATENCY=0; // Determines the max number of live requests.
parameter BURSTCOUNT_WIDTH=6; // Size of Avalon burst count port
parameter USECACHING=0;
parameter USE_WRITE_ACK=0;
parameter TIMEOUT=8;
parameter HIGH_FMAX=1;
parameter USE_BYTE_EN=0;
localparam WIDTH=WIDTH_BYTES*8;
localparam MWIDTH=MWIDTH_BYTES*8;
localparam TRACKING_FIFO_DEPTH=KERNEL_SIDE_MEM_LATENCY+1;
localparam WIDTH_ABITS=$clog2(WIDTH_BYTES);
localparam TIMEOUTBITS=$clog2(TIMEOUT);
localparam BYTE_SELECT_BITS=$clog2(MWIDTH_BYTES);
//
// Suppose that we vectorize 4 ways and are accessing a float4 but are only guaranteed float alignment
//
// WIDTH_BYTES=16 --> $clog2(WIDTH_BYTES) = 4
// ALIGNMENT_ABITS --> 2
// UNALIGNED_BITS --> 2
//
// +----+----+----+----+----+----+
// | X | Y | Z | W | A | B |
// +----+----+----+----+----+----+
// 0000 0100 1000 1100 ...
//
// float4 access at 1000
// requires two aligned access
// 0000 -> mux out Z , W
// 10000 -> mux out A , B
//
localparam UNALIGNED_BITS=$clog2(WIDTH_BYTES)-ALIGNMENT_ABITS;
// How much alignment are we guaranteed in terms of bits
// float -> ALIGNMENT_ABITS=2 -> 4 bytes -> 32 bits
localparam ALIGNMENT_DBYTES=2**ALIGNMENT_ABITS;
localparam ALIGNMENT_DBITS=8*ALIGNMENT_DBYTES;
localparam NUM_WORD = MWIDTH_BYTES/ALIGNMENT_DBYTES;
// -------- Interface Declarations ------------
// Standard global signals
input clk;
input clk2x;
input reset;
input i_nop;
// Upstream interface
output o_stall;
input i_valid;
input [AWIDTH-1:0] i_address;
input [WIDTH-1:0] i_writedata;
// Downstream interface
input i_stall;
output o_valid;
output o_active;
// Byte enable control
input [WIDTH_BYTES-1:0] i_byteenable;
// Avalon interface
output [AWIDTH-1:0] avm_address;
output avm_write;
input avm_writeack;
output [MWIDTH-1:0] avm_writedata;
output [MWIDTH_BYTES-1:0] avm_byteenable;
input avm_waitrequest;
output [BURSTCOUNT_WIDTH-1:0] avm_burstcount;
// help from outside to track addresses
input consecutive;
// ------- Bursting LSU instantiation ---------
wire lsu_o_stall;
wire lsu_i_valid;
wire [AWIDTH-1:0] lsu_i_address;
wire [2*WIDTH-1:0] lsu_i_writedata;
wire [2*WIDTH_BYTES-1:0] lsu_i_byte_enable;
wire [AWIDTH-BYTE_SELECT_BITS-1:0] i_page_addr = i_address[AWIDTH-1:BYTE_SELECT_BITS];
wire [BYTE_SELECT_BITS-1:0] i_byte_offset=i_address[BYTE_SELECT_BITS-1:0];
reg reg_lsu_i_valid, reg_lsu_i_nop, thread_valid;
reg [AWIDTH-1:0] reg_lsu_i_address;
reg [WIDTH-1:0] reg_lsu_i_writedata, data_2nd;
reg [WIDTH_BYTES-1:0] reg_lsu_i_byte_enable, byte_en_2nd;
wire [UNALIGNED_BITS-1:0] shift;
wire is_access_aligned;
logic issue_2nd_word;
wire stall_int;
assign lsu_o_stall = reg_lsu_i_valid & stall_int;
// Stall out if we
// 1. can't accept the request right now because of fifo fullness or lsu stalls
// 2. we need to issue the 2nd word from previous requests before proceeding to this one
assign o_stall = lsu_o_stall | issue_2nd_word & !i_nop & !consecutive;
// --------- Module Internal State -------------
reg [AWIDTH-BYTE_SELECT_BITS-1:0] next_page_addr;
// The actual requested address going into the LSU
assign lsu_i_address[AWIDTH-1:BYTE_SELECT_BITS] = issue_2nd_word? next_page_addr : i_page_addr;
assign lsu_i_address[BYTE_SELECT_BITS-1:0] = issue_2nd_word? '0 : is_access_aligned? i_address[BYTE_SELECT_BITS-1:0] : {i_address[BYTE_SELECT_BITS-1:ALIGNMENT_ABITS] - shift, {ALIGNMENT_ABITS{1'b0}}};
// The actual data to be written and corresponding byte/bit enables
assign shift = i_address[ALIGNMENT_ABITS+UNALIGNED_BITS-1:ALIGNMENT_ABITS];
assign lsu_i_byte_enable = {{WIDTH_BYTES{1'b0}},i_byteenable} << {shift, {ALIGNMENT_ABITS{1'b0}}};
assign lsu_i_writedata = {{WIDTH{1'b0}},i_writedata} << {shift, {ALIGNMENT_ABITS{1'b0}}, 3'd0};
// Is this request access already aligned .. then no need to do anything special
assign is_access_aligned = (i_address[BYTE_SELECT_BITS-1:0]+ WIDTH_BYTES) <= MWIDTH_BYTES;
assign request = issue_2nd_word | i_valid;
assign lsu_i_valid = i_valid | issue_2nd_word;
// When do we need to issue the 2nd word?
// The previous address needed a 2nd word and the current requested address isn't
// consecutive with the previous
// --- Pipeline before going into the LSU ---
always@(posedge clk or posedge reset)
begin
if (reset) begin
reg_lsu_i_valid <= 1'b0;
thread_valid <= 1'b0;
issue_2nd_word <= 1'b0;
end
else begin
if (~lsu_o_stall) begin
reg_lsu_i_valid <= lsu_i_valid;
thread_valid <= i_valid & (!issue_2nd_word | i_nop | consecutive); // issue_2nd_word should not generate o_valid
issue_2nd_word <= i_valid & !o_stall & !i_nop & !is_access_aligned;
end
else if(!stall_int) issue_2nd_word <= 1'b0;
end
end
// --- -------------------------------------
reg [BYTE_SELECT_BITS-1-ALIGNMENT_ABITS:0]i_2nd_offset;
reg [WIDTH-1:0] i_2nd_data;
reg [WIDTH_BYTES-1:0] i_2nd_byte_en;
reg i_2nd_en;
always @(posedge clk) begin
if(i_valid & ~i_nop & ~o_stall) next_page_addr <= i_page_addr + 1'b1;
if(~lsu_o_stall) begin
reg_lsu_i_address <= lsu_i_address;
reg_lsu_i_nop <= issue_2nd_word? 1'b0 : i_nop;
data_2nd <= lsu_i_writedata[2*WIDTH-1:WIDTH];
byte_en_2nd <= lsu_i_byte_enable[2*WIDTH_BYTES-1:WIDTH_BYTES];
reg_lsu_i_writedata <= issue_2nd_word ? data_2nd: is_access_aligned? i_writedata : lsu_i_writedata[WIDTH-1:0];
reg_lsu_i_byte_enable <= issue_2nd_word ? byte_en_2nd: is_access_aligned? i_byteenable : lsu_i_byte_enable[WIDTH_BYTES-1:0];
i_2nd_en <= issue_2nd_word & consecutive;
i_2nd_offset <= i_address[BYTE_SELECT_BITS-1:ALIGNMENT_ABITS];
i_2nd_data <= i_writedata;
i_2nd_byte_en <= i_byteenable;
end
end
lsu_bursting_write #(
.KERNEL_SIDE_MEM_LATENCY(KERNEL_SIDE_MEM_LATENCY),
.MEMORY_SIDE_MEM_LATENCY(MEMORY_SIDE_MEM_LATENCY),
.AWIDTH(AWIDTH),
.WIDTH_BYTES(WIDTH_BYTES),
.MWIDTH_BYTES(MWIDTH_BYTES),
.BURSTCOUNT_WIDTH(BURSTCOUNT_WIDTH),
.ALIGNMENT_ABITS(ALIGNMENT_ABITS),
.USE_WRITE_ACK(USE_WRITE_ACK),
.USE_BYTE_EN(1'b1),
.UNALIGN(1),
.HIGH_FMAX(HIGH_FMAX)
) bursting_write (
.clk(clk),
.clk2x(clk2x),
.reset(reset),
.i_nop(reg_lsu_i_nop),
.o_stall(stall_int),
.i_valid(reg_lsu_i_valid),
.i_thread_valid(thread_valid),
.i_address(reg_lsu_i_address),
.i_writedata(reg_lsu_i_writedata),
.i_2nd_offset(i_2nd_offset),
.i_2nd_data(i_2nd_data),
.i_2nd_byte_en(i_2nd_byte_en),
.i_2nd_en(i_2nd_en),
.i_stall(i_stall),
.o_valid(o_valid),
.o_active(o_active),
.i_byteenable(reg_lsu_i_byte_enable),
.avm_address(avm_address),
.avm_write(avm_write),
.avm_writeack(avm_writeack),
.avm_writedata(avm_writedata),
.avm_byteenable(avm_byteenable),
.avm_burstcount(avm_burstcount),
.avm_waitrequest(avm_waitrequest)
);
endmodule
|
// (C) 1992-2014 Altera Corporation. All rights reserved.
// Your use of Altera Corporation's design tools, logic functions and other
// software and tools, and its AMPP partner logic functions, and any output
// files any of the foregoing (including device programming or simulation
// files), and any associated documentation or information are expressly subject
// to the terms and conditions of the Altera Program License Subscription
// Agreement, Altera MegaCore Function License Agreement, or other applicable
// license agreement, including, without limitation, that your use is for the
// sole purpose of programming logic devices manufactured by Altera and sold by
// Altera or its authorized distributors. Please refer to the applicable
// agreement for further details.
// Generates global and local ids for given set of group ids.
// Need one of these for each kernel instance.
module acl_id_iterator
#(
parameter WIDTH = 32 // width of all the counters
)
(
input clock,
input resetn,
input start,
// handshaking with work group dispatcher
input valid_in,
output stall_out,
// handshaking with kernel instance
input stall_in,
output valid_out,
// comes from group dispatcher
input [WIDTH-1:0] group_id_in[2:0],
input [WIDTH-1:0] global_id_base_in[2:0],
// kernel parameters from the higher level
input [WIDTH-1:0] local_size[2:0],
input [WIDTH-1:0] global_size[2:0],
// actual outputs
output [WIDTH-1:0] local_id[2:0],
output [WIDTH-1:0] global_id[2:0],
output [WIDTH-1:0] group_id[2:0]
);
// Storing group id vector and global id offsets vector.
// Global id offsets help work item iterators calculate global
// ids without using multipliers.
localparam FIFO_WIDTH = 2 * 3 * WIDTH;
localparam FIFO_DEPTH = 4;
wire last_in_group;
wire issue = valid_out & !stall_in;
reg just_seen_last_in_group;
wire [WIDTH-1:0] global_id_from_iter[2:0];
reg [WIDTH-1:0] global_id_base[2:0];
// takes one cycle for the work iterm iterator to register
// global_id_base. During that cycle, just use global_id_base
// directly.
wire use_base = just_seen_last_in_group;
assign global_id[0] = use_base ? global_id_base[0] : global_id_from_iter[0];
assign global_id[1] = use_base ? global_id_base[1] : global_id_from_iter[1];
assign global_id[2] = use_base ? global_id_base[2] : global_id_from_iter[2];
// Group ids (and global id offsets) are stored in a fifo.
acl_fifo #(
.DATA_WIDTH(FIFO_WIDTH),
.DEPTH(FIFO_DEPTH)
) group_id_fifo (
.clock(clock),
.resetn(resetn),
.data_in ( {group_id_in[2], group_id_in[1], group_id_in[0],
global_id_base_in[2], global_id_base_in[1], global_id_base_in[0]} ),
.data_out( {group_id[2], group_id[1], group_id[0],
global_id_base[2], global_id_base[1], global_id_base[0]} ),
.valid_in(valid_in),
.stall_out(stall_out),
.valid_out(valid_out),
.stall_in(!last_in_group | !issue)
);
acl_work_item_iterator #(
.WIDTH(WIDTH)
) work_item_iterator (
.clock(clock),
.resetn(resetn),
.start(start),
.issue(issue),
.local_size(local_size),
.global_size(global_size),
.global_id_base(global_id_base),
.local_id(local_id),
.global_id(global_id_from_iter),
.last_in_group(last_in_group)
);
// goes high one cycle after last_in_group. stays high until
// next cycle where 'issue' is high.
always @(posedge clock or negedge resetn) begin
if ( ~resetn )
just_seen_last_in_group <= 1'b1;
else if ( start )
just_seen_last_in_group <= 1'b1;
else if (last_in_group & issue)
just_seen_last_in_group <= 1'b1;
else if (issue)
just_seen_last_in_group <= 1'b0;
else
just_seen_last_in_group <= just_seen_last_in_group;
end
endmodule
|
// (C) 1992-2014 Altera Corporation. All rights reserved.
// Your use of Altera Corporation's design tools, logic functions and other
// software and tools, and its AMPP partner logic functions, and any output
// files any of the foregoing (including device programming or simulation
// files), and any associated documentation or information are expressly subject
// to the terms and conditions of the Altera Program License Subscription
// Agreement, Altera MegaCore Function License Agreement, or other applicable
// license agreement, including, without limitation, that your use is for the
// sole purpose of programming logic devices manufactured by Altera and sold by
// Altera or its authorized distributors. Please refer to the applicable
// agreement for further details.
// Generates global and local ids for given set of group ids.
// Need one of these for each kernel instance.
module acl_id_iterator
#(
parameter WIDTH = 32 // width of all the counters
)
(
input clock,
input resetn,
input start,
// handshaking with work group dispatcher
input valid_in,
output stall_out,
// handshaking with kernel instance
input stall_in,
output valid_out,
// comes from group dispatcher
input [WIDTH-1:0] group_id_in[2:0],
input [WIDTH-1:0] global_id_base_in[2:0],
// kernel parameters from the higher level
input [WIDTH-1:0] local_size[2:0],
input [WIDTH-1:0] global_size[2:0],
// actual outputs
output [WIDTH-1:0] local_id[2:0],
output [WIDTH-1:0] global_id[2:0],
output [WIDTH-1:0] group_id[2:0]
);
// Storing group id vector and global id offsets vector.
// Global id offsets help work item iterators calculate global
// ids without using multipliers.
localparam FIFO_WIDTH = 2 * 3 * WIDTH;
localparam FIFO_DEPTH = 4;
wire last_in_group;
wire issue = valid_out & !stall_in;
reg just_seen_last_in_group;
wire [WIDTH-1:0] global_id_from_iter[2:0];
reg [WIDTH-1:0] global_id_base[2:0];
// takes one cycle for the work iterm iterator to register
// global_id_base. During that cycle, just use global_id_base
// directly.
wire use_base = just_seen_last_in_group;
assign global_id[0] = use_base ? global_id_base[0] : global_id_from_iter[0];
assign global_id[1] = use_base ? global_id_base[1] : global_id_from_iter[1];
assign global_id[2] = use_base ? global_id_base[2] : global_id_from_iter[2];
// Group ids (and global id offsets) are stored in a fifo.
acl_fifo #(
.DATA_WIDTH(FIFO_WIDTH),
.DEPTH(FIFO_DEPTH)
) group_id_fifo (
.clock(clock),
.resetn(resetn),
.data_in ( {group_id_in[2], group_id_in[1], group_id_in[0],
global_id_base_in[2], global_id_base_in[1], global_id_base_in[0]} ),
.data_out( {group_id[2], group_id[1], group_id[0],
global_id_base[2], global_id_base[1], global_id_base[0]} ),
.valid_in(valid_in),
.stall_out(stall_out),
.valid_out(valid_out),
.stall_in(!last_in_group | !issue)
);
acl_work_item_iterator #(
.WIDTH(WIDTH)
) work_item_iterator (
.clock(clock),
.resetn(resetn),
.start(start),
.issue(issue),
.local_size(local_size),
.global_size(global_size),
.global_id_base(global_id_base),
.local_id(local_id),
.global_id(global_id_from_iter),
.last_in_group(last_in_group)
);
// goes high one cycle after last_in_group. stays high until
// next cycle where 'issue' is high.
always @(posedge clock or negedge resetn) begin
if ( ~resetn )
just_seen_last_in_group <= 1'b1;
else if ( start )
just_seen_last_in_group <= 1'b1;
else if (last_in_group & issue)
just_seen_last_in_group <= 1'b1;
else if (issue)
just_seen_last_in_group <= 1'b0;
else
just_seen_last_in_group <= just_seen_last_in_group;
end
endmodule
|
// (C) 1992-2014 Altera Corporation. All rights reserved.
// Your use of Altera Corporation's design tools, logic functions and other
// software and tools, and its AMPP partner logic functions, and any output
// files any of the foregoing (including device programming or simulation
// files), and any associated documentation or information are expressly subject
// to the terms and conditions of the Altera Program License Subscription
// Agreement, Altera MegaCore Function License Agreement, or other applicable
// license agreement, including, without limitation, that your use is for the
// sole purpose of programming logic devices manufactured by Altera and sold by
// Altera or its authorized distributors. Please refer to the applicable
// agreement for further details.
// Generates global and local ids for given set of group ids.
// Need one of these for each kernel instance.
module acl_id_iterator
#(
parameter WIDTH = 32 // width of all the counters
)
(
input clock,
input resetn,
input start,
// handshaking with work group dispatcher
input valid_in,
output stall_out,
// handshaking with kernel instance
input stall_in,
output valid_out,
// comes from group dispatcher
input [WIDTH-1:0] group_id_in[2:0],
input [WIDTH-1:0] global_id_base_in[2:0],
// kernel parameters from the higher level
input [WIDTH-1:0] local_size[2:0],
input [WIDTH-1:0] global_size[2:0],
// actual outputs
output [WIDTH-1:0] local_id[2:0],
output [WIDTH-1:0] global_id[2:0],
output [WIDTH-1:0] group_id[2:0]
);
// Storing group id vector and global id offsets vector.
// Global id offsets help work item iterators calculate global
// ids without using multipliers.
localparam FIFO_WIDTH = 2 * 3 * WIDTH;
localparam FIFO_DEPTH = 4;
wire last_in_group;
wire issue = valid_out & !stall_in;
reg just_seen_last_in_group;
wire [WIDTH-1:0] global_id_from_iter[2:0];
reg [WIDTH-1:0] global_id_base[2:0];
// takes one cycle for the work iterm iterator to register
// global_id_base. During that cycle, just use global_id_base
// directly.
wire use_base = just_seen_last_in_group;
assign global_id[0] = use_base ? global_id_base[0] : global_id_from_iter[0];
assign global_id[1] = use_base ? global_id_base[1] : global_id_from_iter[1];
assign global_id[2] = use_base ? global_id_base[2] : global_id_from_iter[2];
// Group ids (and global id offsets) are stored in a fifo.
acl_fifo #(
.DATA_WIDTH(FIFO_WIDTH),
.DEPTH(FIFO_DEPTH)
) group_id_fifo (
.clock(clock),
.resetn(resetn),
.data_in ( {group_id_in[2], group_id_in[1], group_id_in[0],
global_id_base_in[2], global_id_base_in[1], global_id_base_in[0]} ),
.data_out( {group_id[2], group_id[1], group_id[0],
global_id_base[2], global_id_base[1], global_id_base[0]} ),
.valid_in(valid_in),
.stall_out(stall_out),
.valid_out(valid_out),
.stall_in(!last_in_group | !issue)
);
acl_work_item_iterator #(
.WIDTH(WIDTH)
) work_item_iterator (
.clock(clock),
.resetn(resetn),
.start(start),
.issue(issue),
.local_size(local_size),
.global_size(global_size),
.global_id_base(global_id_base),
.local_id(local_id),
.global_id(global_id_from_iter),
.last_in_group(last_in_group)
);
// goes high one cycle after last_in_group. stays high until
// next cycle where 'issue' is high.
always @(posedge clock or negedge resetn) begin
if ( ~resetn )
just_seen_last_in_group <= 1'b1;
else if ( start )
just_seen_last_in_group <= 1'b1;
else if (last_in_group & issue)
just_seen_last_in_group <= 1'b1;
else if (issue)
just_seen_last_in_group <= 1'b0;
else
just_seen_last_in_group <= just_seen_last_in_group;
end
endmodule
|
// (C) 1992-2014 Altera Corporation. All rights reserved.
// Your use of Altera Corporation's design tools, logic functions and other
// software and tools, and its AMPP partner logic functions, and any output
// files any of the foregoing (including device programming or simulation
// files), and any associated documentation or information are expressly subject
// to the terms and conditions of the Altera Program License Subscription
// Agreement, Altera MegaCore Function License Agreement, or other applicable
// license agreement, including, without limitation, that your use is for the
// sole purpose of programming logic devices manufactured by Altera and sold by
// Altera or its authorized distributors. Please refer to the applicable
// agreement for further details.
//
// Top level module for buffered streaming accesses.
//
// Properties - Coalesced: Yes, Ordered: Yes, Hazard-Safe: No, Pipelined: ?
// (see lsu_top.v for details)
//
// Description: Streaming units may be used when all requests are guaranteed
// to be in order with no NOP instructions in between (NOP
// requests at the end are permitted and garbage data is
// returned). Requests are buffered or pre-fetched so the
// back-end must verify that the requests are hazard-safe.
/*****************************************************************************/
// Streaming read unit:
// Pre-fetch a stream of size data words beginning at base_address. The
// inputs are assumed to be valid once the first i_valid signal is asserted.
// Once all data is consumed, further requests are verified to be NOP
// requests in which case garbage data is returned and the thread passes
// through the unit.
/*****************************************************************************/
module lsu_streaming_read
(
clk, reset, o_stall, i_valid, i_stall, i_nop, o_valid, o_readdata,
o_active, //Debugging signal
base_address, size, avm_address, avm_burstcount, avm_read,
avm_readdata, avm_waitrequest, avm_byteenable, avm_readdatavalid
);
/*************
* Parameters *
*************/
parameter AWIDTH=32;
parameter WIDTH_BYTES=32;
parameter MWIDTH_BYTES=32;
parameter ALIGNMENT_ABITS=6;
parameter BURSTCOUNT_WIDTH=6;
parameter KERNEL_SIDE_MEM_LATENCY=1;
parameter MEMORY_SIDE_MEM_LATENCY=1;
// Derived parameters
localparam WIDTH=8*WIDTH_BYTES;
localparam MWIDTH=8*MWIDTH_BYTES;
localparam MBYTE_SELECT_BITS=$clog2(MWIDTH_BYTES);
localparam BYTE_SELECT_BITS=$clog2(WIDTH_BYTES);
localparam MAXBURSTCOUNT=2**(BURSTCOUNT_WIDTH-1);
// Parameterize the FIFO depth based on the "drain" rate of the return FIFO
// In the worst case you need memory latency + burstcount, but if the kernel
// is slow to pull data out we can overlap the next burst with that. Also
// since you can't backpressure responses, you need at least a full burst
// of space.
// Note the burst_read_master requires a fifo depth >= MAXBURSTCOUNT + 5. This
// hardcoded 5 latency could result in half the bandwidth when burst and
// latency is small, hence double it so we can double buffer.
localparam _FIFO_DEPTH = MAXBURSTCOUNT + 10 + ((MEMORY_SIDE_MEM_LATENCY * WIDTH_BYTES + MWIDTH_BYTES - 1) / MWIDTH_BYTES);
// This fifo doesn't affect the pipeline, round to power of 2
localparam FIFO_DEPTH = 2**$clog2(_FIFO_DEPTH);
localparam FIFO_DEPTH_LOG2=$clog2(FIFO_DEPTH);
/********
* Ports *
********/
// Standard globals
input clk;
input reset;
// Upstream pipeline interface
output o_stall;
input i_valid;
input i_nop;
input [AWIDTH-1:0] base_address;
input [31:0] size;
// Downstream pipeline interface
input i_stall;
output o_valid;
output [WIDTH-1:0] o_readdata;
output o_active;
// Avalon interface
output [AWIDTH-1:0] avm_address;
output [BURSTCOUNT_WIDTH-1:0] avm_burstcount;
output avm_read;
input [MWIDTH-1:0] avm_readdata;
input avm_waitrequest;
output [MWIDTH_BYTES-1:0] avm_byteenable;
input avm_readdatavalid;
// FIFO Isolation to outside world
wire f_avm_read;
wire f_avm_waitrequest;
wire [AWIDTH-1:0] f_avm_address;
wire [BURSTCOUNT_WIDTH-1:0] f_avm_burstcount;
acl_data_fifo #(
.DATA_WIDTH(AWIDTH+BURSTCOUNT_WIDTH),
.DEPTH(2),
.IMPL("ll_reg")
) avm_buffer (
.clock(clk),
.resetn(!reset),
.data_in( {f_avm_address,f_avm_burstcount} ),
.valid_in( f_avm_read ),
.data_out( {avm_address,avm_burstcount} ),
.valid_out( avm_read ),
.stall_in( avm_waitrequest ),
.stall_out( f_avm_waitrequest )
);
/***************
* Architecture *
***************/
// Address alignment signals
wire [AWIDTH-1:0] aligned_base_address;
wire [AWIDTH-1:0] base_offset;
// Read master signals
wire rm_done;
wire rm_valid;
wire rm_go;
wire [MWIDTH-1:0] rm_data;
wire [AWIDTH-1:0] rm_base_address;
wire [AWIDTH-1:0] rm_last_address;
wire [31:0] rm_size;
wire rm_ack;
// Number of threads remaining
reg [31:0] threads_rem;
// Need an input register to break up some of the compex computation
reg i_reg_valid;
reg i_reg_nop;
reg [AWIDTH-1:0] reg_base_address;
reg [31:0] reg_size;
reg [31:0] reg_rm_size_partial;
wire [AWIDTH-1:0] aligned_base_address_partial;
wire [AWIDTH-1:0] base_offset_partial;
assign aligned_base_address_partial = ((base_address >> ALIGNMENT_ABITS) << ALIGNMENT_ABITS);
assign base_offset_partial = aligned_base_address_partial[MBYTE_SELECT_BITS-1:0];
always@(posedge clk or posedge reset)
begin
if (reset == 1'b1)
begin
i_reg_valid <= 1'b0;
reg_base_address <= 'x;
reg_size <= 'x;
reg_rm_size_partial <= 'x;
i_reg_nop <= 'x;
end
else
begin
if (!o_stall)
begin
i_reg_nop <= i_nop;
i_reg_valid <= i_valid;
reg_base_address <= base_address;
reg_size <= size;
reg_rm_size_partial = (size << BYTE_SELECT_BITS) + base_offset_partial;
end
end
end
// Track the number of threads we have yet to process
always@(posedge clk or posedge reset)
begin
if(reset == 1'b1)
begin
threads_rem <= 0;
end
else
begin
threads_rem <= (rm_go ? reg_size : threads_rem) - (o_valid && !i_stall && !i_reg_nop);
end
end
// Force address alignment bits to 0. They should already be 0, but forcing
// them to 0 here lets Quartus see the alignment and optimize the design
assign aligned_base_address = ((reg_base_address >> ALIGNMENT_ABITS) << ALIGNMENT_ABITS);
// Compute the last address to burst from. In this case, alignment is not
// for Quartus optimization but to properly compute the MWIDTH sized burst.
assign rm_base_address = ((aligned_base_address >> MBYTE_SELECT_BITS) << MBYTE_SELECT_BITS);
// Requests come in based on WIDTH sized words. The memory bus is MWIDTH
// sized, so we need to fix up the read-length and base-address alignment
// before using the lsu_burst_read_master.
assign base_offset = aligned_base_address[MBYTE_SELECT_BITS-1:0];
assign rm_size = ((reg_rm_size_partial + MWIDTH_BYTES - 1) >> MBYTE_SELECT_BITS) << MBYTE_SELECT_BITS;
// Load in a new set of parameters if a new ND-Range is beginning (determined
// by checking if the current ND-Range completed or the read_master is
// currently inactive).
assign rm_go = i_reg_valid && (threads_rem == 0) && !rm_valid && !i_reg_nop;
lsu_burst_read_master #(
.DATAWIDTH( MWIDTH ),
.MAXBURSTCOUNT( MAXBURSTCOUNT ),
.BURSTCOUNTWIDTH( BURSTCOUNT_WIDTH ),
.BYTEENABLEWIDTH( MWIDTH_BYTES ),
.ADDRESSWIDTH( AWIDTH ),
.FIFODEPTH( FIFO_DEPTH ),
.FIFODEPTH_LOG2( FIFO_DEPTH_LOG2 ),
.FIFOUSEMEMORY( 1 )
) read_master (
.clk(clk),
.reset(reset),
.o_active(o_active),
.control_fixed_location( 1'b0 ),
.control_read_base( rm_base_address ),
.control_read_length( rm_size ),
.control_go( rm_go ),
.control_done( rm_done ),
.control_early_done(),
.user_read_buffer( rm_ack ),
.user_buffer_data( rm_data ),
.user_data_available( rm_valid ),
.master_address( f_avm_address ),
.master_read( f_avm_read ),
.master_byteenable( avm_byteenable ),
.master_readdata( avm_readdata ),
.master_readdatavalid( avm_readdatavalid ),
.master_burstcount( f_avm_burstcount ),
.master_waitrequest( f_avm_waitrequest )
);
generate
if(MBYTE_SELECT_BITS != BYTE_SELECT_BITS)
begin
// Width adapting signals
reg [MBYTE_SELECT_BITS-BYTE_SELECT_BITS-1:0] wa_word_counter;
// Width adapting logic - a counter is used to track which word is active from
// each MWIDTH sized line from main memory. The counter is initialized from
// the lower address bits of the initial request.
always@(posedge clk or posedge reset)
begin
if(reset == 1'b1)
wa_word_counter <= 0;
else
wa_word_counter <= rm_go ? aligned_base_address[MBYTE_SELECT_BITS-1:BYTE_SELECT_BITS] : wa_word_counter + (o_valid && !i_reg_nop && !i_stall);
end
// Must eject last word if all threads are done
assign rm_ack = (threads_rem==1 || &wa_word_counter) && (o_valid && !i_stall);
assign o_readdata = rm_data[wa_word_counter * WIDTH +: WIDTH];
end
else
begin
// Widths are matched, every request is a new memory word
assign rm_ack = o_valid && !i_stall;
assign o_readdata = rm_data;
end
endgenerate
// Stall requests if we don't have valid data
assign o_valid = (i_reg_valid && (rm_valid || i_reg_nop));
assign o_stall = ((!rm_valid && !i_reg_nop) || i_stall) && i_reg_valid;
endmodule
/*****************************************************************************/
// Streaming write unit:
// The number of write requests is known ahead of time and it is assumed
// that the back-end has verified that there are no hazards. Write requests
// are buffered until sufficient data is availble to generate a large burst
// write request.
//
// Since the burst-master doesn't support width adaptation, the first and last
// words are written by the wrapper unit.
//
// Based off code for the "write_burst_master" template available on the Altera
// website.
/*****************************************************************************/
module lsu_streaming_write
(
clk, reset, o_stall, i_valid, i_stall, i_writedata, i_nop, i_byteenable, o_valid,
o_active, //Debugging signal
base_address, size, avm_address, avm_burstcount, avm_write, avm_writeack, avm_writedata,
avm_byteenable, avm_waitrequest
);
/*************
* Parameters *
*************/
parameter AWIDTH=32;
parameter WIDTH_BYTES=32;
parameter MWIDTH_BYTES=32;
parameter ALIGNMENT_ABITS=6;
parameter BURSTCOUNT_WIDTH=6;
parameter KERNEL_SIDE_MEM_LATENCY=1;
parameter MEMORY_SIDE_MEM_LATENCY=1; // For stores this will only account for arbitration delay
parameter USE_BYTE_EN=0;
// Derived parameters
localparam WIDTH=8*WIDTH_BYTES;
localparam MWIDTH=8*MWIDTH_BYTES;
localparam MBYTE_SELECT_BITS=$clog2(MWIDTH_BYTES);
localparam BYTE_SELECT_BITS=$clog2(WIDTH_BYTES);
localparam MAXBURSTCOUNT=2**(BURSTCOUNT_WIDTH-1);
localparam __FIFO_DEPTH=2*MAXBURSTCOUNT + (MEMORY_SIDE_MEM_LATENCY * WIDTH + MWIDTH - 1) / MWIDTH;
localparam _FIFO_DEPTH= ( __FIFO_DEPTH > MAXBURSTCOUNT+4 ) ? __FIFO_DEPTH : MAXBURSTCOUNT+5;
// This fifo doesn't affect the pipeline, round to power of 2
localparam FIFO_DEPTH= 2**($clog2(_FIFO_DEPTH));
localparam FIFO_DEPTH_LOG2=$clog2(FIFO_DEPTH);
localparam NUM_FIFOS = MWIDTH / WIDTH;
localparam FIFO_ID_WIDTH = (NUM_FIFOS == 1) ? 1 : $clog2(NUM_FIFOS); // Things just get messy if we let the FIFO ID be 0 bits wide
/********
* Ports *
********/
// Standard globals
input clk;
input reset;
// Upstream pipeline interface
output o_stall;
input i_valid;
input [WIDTH-1:0] i_writedata;
input i_nop;
input [AWIDTH-1:0] base_address;
input [31:0] size;
input [WIDTH_BYTES-1:0] i_byteenable;
// Downstream pipeline interface
output reg o_valid;
input i_stall;
output o_active;
// internal wires for registering o_valid
wire o_valid_int;
wire i_stall_int;
// Avalon interface
output [AWIDTH-1:0] avm_address;
output [BURSTCOUNT_WIDTH-1:0] avm_burstcount;
output avm_write;
input avm_writeack;
output [MWIDTH-1:0] avm_writedata;
output [MWIDTH_BYTES-1:0] avm_byteenable;
input avm_waitrequest;
// FIFO Isolation to outside world
wire f_avm_write;
wire [MWIDTH-1:0] f_avm_writedata;
wire [MWIDTH_BYTES-1:0] f_avm_byteenable;
wire f_avm_waitrequest;
wire [AWIDTH-1:0] f_avm_address;
wire [BURSTCOUNT_WIDTH-1:0] f_avm_burstcount;
acl_data_fifo #(
.DATA_WIDTH(AWIDTH+BURSTCOUNT_WIDTH+MWIDTH+MWIDTH_BYTES),
.DEPTH(2),
.IMPL("ll_reg")
) avm_buffer (
.clock(clk),
.resetn(!reset),
.data_in( {f_avm_address,f_avm_burstcount,f_avm_byteenable,f_avm_writedata} ),
.valid_in( f_avm_write ),
.data_out( {avm_address,avm_burstcount,avm_byteenable,avm_writedata} ),
.valid_out( avm_write ),
.stall_in( avm_waitrequest ),
.stall_out( f_avm_waitrequest )
);
/***************
* Architecture *
***************/
wire [AWIDTH-1:0] aligned_base_address;
wire [AWIDTH-1:0] last_word_address;
wire [AWIDTH-1:0] base_offset;
wire go;
// Address calculations
wire [AWIDTH-1:0] a_base_address;
wire [31:0] a_size;
// Configuration registers
wire c_done;
reg [31:0] c_length;
// This is a re-encoded version of c_lenght that is always equal to c_length-1
// This lets us just test the MSB for c_length_reenc == -1 ( c_lenght = 0 )
// TODO: This means that we can't support the full 32 bit range
reg [31:0] c_length_reenc;
reg [31:0] ack_counter;
// Write master signals
reg wm_first_xfer;
reg [AWIDTH-1:0] wm_address;
// burstcount counts the total number of words in the current burst
reg [BURSTCOUNT_WIDTH-1:0] wm_burstcount;
// burst_counter counts the number of words remaining in the current burst
reg [BURSTCOUNT_WIDTH-1:0] wm_burst_counter;
// Special byte masks for the first word and last word transmitted
reg fw_in_enable;
reg fw_out_enable;
reg [MWIDTH_BYTES-1:0] fw_byteenable;
wire lw_out_enable;
reg [MWIDTH_BYTES-1:0] lw_byteenable;
// Burst calculations - first short burst
wire [AWIDTH-1:0] fsb_boundary_offset;
wire fsb_enable;
wire [BURSTCOUNT_WIDTH-1:0] fsb_count;
wire fsb_ready;
// Burst calculations - last short burst
wire lsb_enable;
wire [BURSTCOUNT_WIDTH-1:0] lsb_count;
wire lsb_ready;
// Burst calculations - standard 'middle' burst
wire b_ready;
// Signals tracking the burst request
wire burst_begin;
wire [BURSTCOUNT_WIDTH-1:0] burst_count;
wire write_accepted;
// FIFO signals
wire [FIFO_ID_WIDTH-1:0] fifo_next_word;
reg [FIFO_ID_WIDTH-1:0] fifo_next_word_reg;
wire fifo_full;
wire [FIFO_DEPTH_LOG2-1:0] fifo_used;
wire [MWIDTH-1:0] fifo_data_out;
wire [MWIDTH_BYTES-1:0] fifo_byteenable_out;
wire [NUM_FIFOS-1:0][FIFO_DEPTH_LOG2-1:0] fifo_used_n;
wire [NUM_FIFOS-1:0] fifo_full_n;
wire [MWIDTH_BYTES-1:0] fifo_byteenable;
wire [NUM_FIFOS-1:0] fifo_wrreq_n;
// Number of threads remaining
reg [2:0] valid_in_d;
reg [31:0] threads_remaining_to_be_serviced;
// Number of threads that are being "serviced"
// We need this counter to ensure that we stall subsequent groups
// of threads until we're completely finished writing the inital group
reg [31:0] threads_rem;
// Track the number of threads we have yet to see - there is a 3 cycle
// latency on the data storage FIFOs, so delay the valid in signal to compensate
always@(posedge clk or posedge reset)
begin
if(reset == 1'b1)
begin
valid_in_d <= 3'b000;
threads_rem <= 0;
end
else
begin
valid_in_d <= { (i_valid && !o_stall && !i_nop), valid_in_d[2:1] };
threads_rem <= (go ? size : threads_rem) - valid_in_d[0];
end
end
// Force address alignment bits to 0. They should already be 0, but forcing
// them to 0 here lets Quartus see the alignment and optimize the design
assign aligned_base_address = ((base_address >> ALIGNMENT_ABITS) << ALIGNMENT_ABITS);
// The address of the last word we will write to
assign last_word_address = aligned_base_address + ((size - 1) << BYTE_SELECT_BITS);
// Zero off any offset bits to find the first MWIDTH aligned burst address
assign a_base_address = ((aligned_base_address >> MBYTE_SELECT_BITS) << MBYTE_SELECT_BITS);
// The offset (in words) from an aligned MWIDTH address
assign base_offset = (aligned_base_address[MBYTE_SELECT_BITS-1:0] >> BYTE_SELECT_BITS);
// The total size (in bytes) of the transaction is (size + base_offset) * bytes rounded up to
// the next MWIDTH aligned size
assign a_size = (((((size + base_offset) << BYTE_SELECT_BITS) + {MBYTE_SELECT_BITS{1'b1}}) >> MBYTE_SELECT_BITS) << MBYTE_SELECT_BITS);
// Begin bursting when the first valid thread arrives - assumed to be when a
// valid thread arrives and the unit is idle.
assign go = i_valid && !o_stall && !i_nop && c_done;
// Control registers and registered avalon outputs
always@(posedge clk or posedge reset)
begin
if(reset == 1'b1)
begin
wm_first_xfer <= 1'b0;
wm_address <= {AWIDTH{1'b0}};
c_length <= {32{1'b0}};
c_length_reenc <= {32{1'b1}};
wm_burstcount <= {BURSTCOUNT_WIDTH{1'b0}};
wm_burst_counter <= {BURSTCOUNT_WIDTH{1'b0}};
fw_byteenable <= {MWIDTH_BYTES{1'b0}};
lw_byteenable <= {MWIDTH_BYTES{1'b0}};
fw_in_enable <= 1'b0;
fw_out_enable <= 1'b0;
threads_remaining_to_be_serviced <= {32{1'b0}};
end
else
begin
wm_burstcount <= burst_begin ? burst_count : wm_burstcount;
lw_byteenable <= (fifo_byteenable[0] ? {MWIDTH_BYTES{1'b0}} : lw_byteenable) | fifo_byteenable;
// Registers that depend on the 'go' signal
if(go == 1'b1)
begin
wm_first_xfer <= 1'b1;
wm_address <= a_base_address;
c_length <= a_size;
c_length_reenc <= a_size-1;
wm_burst_counter <= {BURSTCOUNT_WIDTH{1'b0}};
fw_byteenable <= fifo_byteenable;
if(NUM_FIFOS > 1)
begin
// If WIDTH == MWIDTH then there's no alignment issues to worry about
fw_in_enable <= (!(i_valid && !o_stall && !i_nop) || (fifo_next_word != {FIFO_ID_WIDTH{1'b1}}));
fw_out_enable <= 1'b1;
end
// When go is high, we've serviced our first thread (size-1) remaining
// but i'll subract and extra 1 so i can check for (-1) instead of 0
threads_remaining_to_be_serviced <= size-2;
end
else
begin
wm_first_xfer <= !burst_begin && wm_first_xfer;
wm_address <= (!wm_first_xfer && burst_begin) ? (wm_address + (wm_burstcount << MBYTE_SELECT_BITS)) : (wm_address);
c_length <= write_accepted ? c_length - MWIDTH_BYTES : c_length;
c_length_reenc <= write_accepted ? c_length_reenc - MWIDTH_BYTES : c_length_reenc;
wm_burst_counter <= burst_begin ? burst_count : (wm_burst_counter - write_accepted);
fw_byteenable <= fw_byteenable | ({MWIDTH_BYTES{fw_in_enable}} & fifo_byteenable);
fw_in_enable <= fw_in_enable && (!(i_valid && !o_stall && !i_nop) || (fifo_next_word != {FIFO_ID_WIDTH{1'b1}}));
fw_out_enable <= fw_out_enable && !write_accepted;
// Keep track of the number of threads serviced
threads_remaining_to_be_serviced <= (i_valid && !o_stall && !i_nop) ? (threads_remaining_to_be_serviced - 1) : threads_remaining_to_be_serviced;
end
end
end
// Last word is being transmitted when there is only one burst left, and the burstcount is 1
assign lw_out_enable = (c_length <= MWIDTH_BYTES);
// Bursting is done when length is zero
assign c_done = c_length_reenc[31];
// First short burst - Only active on the first transfer (if applicable)
// Handles the first portion of the transfer which may not be aligned to a
// burst boundary.
assign fsb_boundary_offset = (wm_address >> MBYTE_SELECT_BITS) & (MAXBURSTCOUNT-1);
assign fsb_enable = (fsb_boundary_offset != 0) && wm_first_xfer;
assign fsb_count = (fsb_boundary_offset[0]) ? 1 : // Need to post a burst of 1 to get to a multiple of 2
(((MAXBURSTCOUNT - fsb_boundary_offset) < (c_length >> MBYTE_SELECT_BITS)) ?
(MAXBURSTCOUNT - fsb_boundary_offset) : lsb_count);
assign fsb_ready = (fifo_used > fsb_count) || (fifo_used == fsb_count) && (wm_burst_counter == 0);
// Last short burst - Only active on the last transfer (if applicable).
// Handles the last burst which may be less than MAXBURSTCOUNT.
assign lsb_enable = (c_length <= (MAXBURSTCOUNT << MBYTE_SELECT_BITS));
assign lsb_count = (c_length >> MBYTE_SELECT_BITS);
assign lsb_ready = (threads_rem == 0);
// Standard bursts - always bursting MAXBURSTLENGTH
assign b_ready = (fifo_used > MAXBURSTCOUNT) || ((fifo_used == MAXBURSTCOUNT) && (wm_burst_counter == 0));
// Begin a new burst whenever one of the burst stages is ready with burst data
// and the previous burst is complete or about to complete
assign burst_begin = ((fsb_enable && fsb_ready) || (lsb_enable && lsb_ready) || (b_ready)) &&
!c_done && ((wm_burst_counter == 0) || ((wm_burst_counter == 1) &&
!f_avm_waitrequest && (c_length > (MAXBURSTCOUNT << MBYTE_SELECT_BITS))));
assign burst_count = fsb_enable ? fsb_count :
lsb_enable ? lsb_count : MAXBURSTCOUNT;
// Increment the address when a transfer is successful
assign write_accepted = f_avm_write && !f_avm_waitrequest;
// The next fifo that will accept data
assign fifo_next_word = go ? base_offset : fifo_next_word_reg;
always@(posedge clk or posedge reset)
begin
if(reset == 1'b1)
begin
fifo_next_word_reg <= {FIFO_ID_WIDTH{1'b0}};
end
else
begin
if(NUM_FIFOS > 1)
fifo_next_word_reg <= (i_valid && !o_stall) ? fifo_next_word + 1 : fifo_next_word;
end
end
wire [NUM_FIFOS-1:0] fifo_empty;
//disables read on FIFOs not used for the first or last cycle
wire [NUM_FIFOS-1:0] fifo_read_enable;
// The fifos!
genvar n;
generate
for(n=0; n<NUM_FIFOS; n++)
begin : fifo_n
if (USE_BYTE_EN)
begin
scfifo #(
.lpm_width( WIDTH+WIDTH_BYTES ),
.lpm_widthu( FIFO_DEPTH_LOG2 ),
.lpm_numwords( FIFO_DEPTH ),
.lpm_showahead( "ON" ),
.almost_full_value( FIFO_DEPTH - 2 ),
.use_eab( "ON" ),
.add_ram_output_register( "OFF" ),
.underflow_checking( "OFF" ),
.overflow_checking( "OFF" )
) data_fifo (
.clock( clk ),
.aclr( reset ),
.usedw( fifo_used_n[n] ),
.data( {i_writedata,i_byteenable }),
.almost_full( fifo_full_n[n] ),
.q( { fifo_data_out[n*WIDTH +: WIDTH],fifo_byteenable_out[n*WIDTH_BYTES +: WIDTH_BYTES]} ),
.rdreq( write_accepted && fifo_read_enable[n] ),
.wrreq( fifo_wrreq_n[n] ),
.almost_empty(),
.empty(fifo_empty[n]),
.full(),
.sclr()
);
end else begin
scfifo #(
.lpm_width( WIDTH ),
.lpm_widthu( FIFO_DEPTH_LOG2 ),
.lpm_numwords( FIFO_DEPTH ),
.lpm_showahead( "ON" ),
.almost_full_value( FIFO_DEPTH - 2 ),
.use_eab( "ON" ),
.add_ram_output_register( "OFF" ),
.underflow_checking( "OFF" ),
.overflow_checking( "OFF" )
) data_fifo (
.clock( clk ),
.aclr( reset ),
.usedw( fifo_used_n[n] ),
.data( i_writedata ),
.almost_full( fifo_full_n[n] ),
.q( fifo_data_out[n*WIDTH +: WIDTH] ),
.rdreq( write_accepted && fifo_read_enable[n] ),
.wrreq( fifo_wrreq_n[n] ),
.almost_empty(),
.empty(fifo_empty[n]),
.full(),
.sclr()
);
assign fifo_byteenable_out[n*WIDTH_BYTES +: WIDTH_BYTES] = {WIDTH_BYTES{ 1'b1}};
end
assign fifo_wrreq_n[n] = i_valid && !o_stall && !i_nop && (fifo_next_word == n);
assign fifo_byteenable[n*WIDTH_BYTES +: WIDTH_BYTES] = {WIDTH_BYTES{ fifo_wrreq_n[n] }};
assign fifo_read_enable[n] = fw_out_enable ? fw_byteenable[n*WIDTH_BYTES] : (lw_out_enable ? lw_byteenable[n*WIDTH_BYTES] :1'b1);
end
endgenerate
// Only the last fifo's full/used signals matter to the rest of the design
assign fifo_full = fifo_full_n[NUM_FIFOS-1];
assign fifo_used = fifo_used_n[NUM_FIFOS-1];
// Push some signals out to the avalon bus
assign f_avm_write = !c_done && (wm_burst_counter != 0);
assign f_avm_address = wm_address;
assign f_avm_burstcount = wm_burstcount;
assign f_avm_writedata = fifo_data_out;
assign f_avm_byteenable = fw_out_enable ? fw_byteenable & fifo_byteenable_out:
(lw_out_enable ? lw_byteenable : {MWIDTH_BYTES{1'b1}}) & fifo_byteenable_out ;
// Pipeline signals
// Added, when we are NOT done tranferring all data, but we've seen all the threads in this stream request
// then we need to stall the next group
assign o_stall = fifo_full || i_stall_int || (!c_done && threads_remaining_to_be_serviced[31]);
assign o_valid_int = i_valid && !fifo_full && !o_stall;
assign i_stall_int = o_valid && i_stall;
// Making o_valid a register to avoid direct dependence
// between i_stall and o_valid.
always@(posedge clk or posedge reset)
begin
if(reset == 1'b1)
o_valid <= {1'b0};
else if (!i_stall_int)
o_valid = o_valid_int;
else
o_valid = o_valid;
end
assign o_active = |(~fifo_empty);
endmodule
|
/*
----------------------------------------------------------------------------------
Copyright (c) 2013-2014
Embedded and Network Computing Lab.
Open SSD Project
Hanyang University
All rights reserved.
----------------------------------------------------------------------------------
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this source code
must display the following acknowledgement:
This product includes source code developed
by the Embedded and Network Computing Lab. and the Open SSD Project.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------------------
http://enclab.hanyang.ac.kr/
http://www.openssd-project.org/
http://www.hanyang.ac.kr/
----------------------------------------------------------------------------------
*/
`timescale 1ns / 1ps
module dma_cmd_fifo # (
parameter P_FIFO_DATA_WIDTH = 50,
parameter P_FIFO_DEPTH_WIDTH = 9
)
(
input wr_clk,
input wr_rst_n,
input dma_cmd_wr_en,
input [P_FIFO_DATA_WIDTH-1:0] dma_cmd_wr_data0,
input [P_FIFO_DATA_WIDTH-1:0] dma_cmd_wr_data1,
output dma_cmd_wr_rdy_n,
input rd_clk,
input rd_rst_n,
input rd_en,
output [P_FIFO_DATA_WIDTH-1:0] rd_data,
output empty_n
);
localparam P_FIFO_ALLOC_WIDTH = 1; //128 bits
localparam S_IDLE = 3'b001;
localparam S_WRITE_0 = 3'b010;
localparam S_WRITE_1 = 3'b100;
reg [2:0] cur_state;
reg [2:0] next_state;
localparam S_SYNC_STAGE0 = 3'b001;
localparam S_SYNC_STAGE1 = 3'b010;
localparam S_SYNC_STAGE2 = 3'b100;
reg [2:0] cur_wr_state;
reg [2:0] next_wr_state;
reg [2:0] cur_rd_state;
reg [2:0] next_rd_state;
reg [P_FIFO_DEPTH_WIDTH:0] r_rear_addr;
(* KEEP = "TRUE", EQUIVALENT_REGISTER_REMOVAL = "NO" *) reg r_rear_sync;
(* KEEP = "TRUE", EQUIVALENT_REGISTER_REMOVAL = "NO" *) reg r_rear_sync_en;
reg [P_FIFO_DEPTH_WIDTH
:P_FIFO_ALLOC_WIDTH] r_rear_sync_data;
(* KEEP = "TRUE", SHIFT_EXTRACT = "NO" *) reg r_front_sync_en_d1;
(* KEEP = "TRUE", SHIFT_EXTRACT = "NO" *) reg r_front_sync_en_d2;
(* KEEP = "TRUE", SHIFT_EXTRACT = "NO" *) reg [P_FIFO_DEPTH_WIDTH
:P_FIFO_ALLOC_WIDTH] r_front_sync_addr;
reg [P_FIFO_DEPTH_WIDTH:0] r_front_addr;
reg [P_FIFO_DEPTH_WIDTH:0] r_front_addr_p1;
(* KEEP = "TRUE", EQUIVALENT_REGISTER_REMOVAL = "NO" *) reg r_front_sync;
(* KEEP = "TRUE", EQUIVALENT_REGISTER_REMOVAL = "NO" *) reg r_front_sync_en;
reg [P_FIFO_DEPTH_WIDTH
:P_FIFO_ALLOC_WIDTH] r_front_sync_data;
(* KEEP = "TRUE", SHIFT_EXTRACT = "NO" *) reg r_rear_sync_en_d1;
(* KEEP = "TRUE", SHIFT_EXTRACT = "NO" *) reg r_rear_sync_en_d2;
(* KEEP = "TRUE", SHIFT_EXTRACT = "NO" *) reg [P_FIFO_DEPTH_WIDTH
:P_FIFO_ALLOC_WIDTH] r_rear_sync_addr;
wire [P_FIFO_DEPTH_WIDTH-1:0] w_front_addr;
reg r_wr_en;
reg r_wr_data_sel;
reg [P_FIFO_DATA_WIDTH-1:0] r_wr_data;
wire w_full_n;
reg [P_FIFO_DATA_WIDTH-1:0] r_dma_cmd_wr_data0;
reg [P_FIFO_DATA_WIDTH-1:0] r_dma_cmd_wr_data1;
reg r_dma_cmd_wr_rdy_n;
assign dma_cmd_wr_rdy_n = r_dma_cmd_wr_rdy_n | ~w_full_n;
always @ (posedge wr_clk or negedge wr_rst_n)
begin
if(wr_rst_n == 0)
cur_state <= S_IDLE;
else
cur_state <= next_state;
end
always @ (*)
begin
case(cur_state)
S_IDLE: begin
if(dma_cmd_wr_en == 1)
next_state <= S_WRITE_0;
else
next_state <= S_IDLE;
end
S_WRITE_0: begin
next_state <= S_WRITE_1;
end
S_WRITE_1: begin
next_state <= S_IDLE;
end
default: begin
next_state <= S_IDLE;
end
endcase
end
always @ (posedge wr_clk)
begin
case(cur_state)
S_IDLE: begin
r_dma_cmd_wr_data0 <= dma_cmd_wr_data0;
r_dma_cmd_wr_data1 <= dma_cmd_wr_data1;
end
S_WRITE_0: begin
end
S_WRITE_1: begin
end
default: begin
end
endcase
end
always @ (*)
begin
case(cur_state)
S_IDLE: begin
r_wr_en <= 0;
r_wr_data_sel <= 0;
r_dma_cmd_wr_rdy_n <= 0;
end
S_WRITE_0: begin
r_wr_en <= 1;
r_wr_data_sel <= 0;
r_dma_cmd_wr_rdy_n <= 1;
end
S_WRITE_1: begin
r_wr_en <= 1;
r_wr_data_sel <= 1;
r_dma_cmd_wr_rdy_n <= 1;
end
default: begin
r_wr_en <= 0;
r_wr_data_sel <= 0;
r_dma_cmd_wr_rdy_n <= 0;
end
endcase
end
always @ (*)
begin
if(r_wr_data_sel == 0)
r_wr_data <= r_dma_cmd_wr_data0;
else
r_wr_data <= r_dma_cmd_wr_data1;
end
assign w_full_n = ~((r_rear_addr[P_FIFO_DEPTH_WIDTH] ^ r_front_sync_addr[P_FIFO_DEPTH_WIDTH])
& (r_rear_addr[P_FIFO_DEPTH_WIDTH-1:P_FIFO_ALLOC_WIDTH]
== r_front_sync_addr[P_FIFO_DEPTH_WIDTH-1:P_FIFO_ALLOC_WIDTH]));
always @(posedge wr_clk or negedge wr_rst_n)
begin
if (wr_rst_n == 0) begin
r_rear_addr <= 0;
end
else begin
if (r_wr_en == 1)
r_rear_addr <= r_rear_addr + 1;
end
end
assign empty_n = ~(r_front_addr[P_FIFO_DEPTH_WIDTH:P_FIFO_ALLOC_WIDTH]
== r_rear_sync_addr);
always @(posedge rd_clk or negedge rd_rst_n)
begin
if (rd_rst_n == 0) begin
r_front_addr <= 0;
r_front_addr_p1 <= 1;
end
else begin
if (rd_en == 1) begin
r_front_addr <= r_front_addr_p1;
r_front_addr_p1 <= r_front_addr_p1 + 1;
end
end
end
assign w_front_addr = (rd_en == 1) ? r_front_addr_p1[P_FIFO_DEPTH_WIDTH-1:0]
: r_front_addr[P_FIFO_DEPTH_WIDTH-1:0];
/////////////////////////////////////////////////////////////////////////////////////////////
always @ (posedge wr_clk or negedge wr_rst_n)
begin
if(wr_rst_n == 0)
cur_wr_state <= S_SYNC_STAGE0;
else
cur_wr_state <= next_wr_state;
end
always @(posedge wr_clk or negedge wr_rst_n)
begin
if(wr_rst_n == 0)
r_rear_sync_en <= 0;
else
r_rear_sync_en <= r_rear_sync;
end
always @(posedge wr_clk)
begin
r_front_sync_en_d1 <= r_front_sync_en;
r_front_sync_en_d2 <= r_front_sync_en_d1;
end
always @ (*)
begin
case(cur_wr_state)
S_SYNC_STAGE0: begin
if(r_front_sync_en_d2 == 1)
next_wr_state <= S_SYNC_STAGE1;
else
next_wr_state <= S_SYNC_STAGE0;
end
S_SYNC_STAGE1: begin
next_wr_state <= S_SYNC_STAGE2;
end
S_SYNC_STAGE2: begin
if(r_front_sync_en_d2 == 0)
next_wr_state <= S_SYNC_STAGE0;
else
next_wr_state <= S_SYNC_STAGE2;
end
default: begin
next_wr_state <= S_SYNC_STAGE0;
end
endcase
end
always @ (posedge wr_clk or negedge wr_rst_n)
begin
if(wr_rst_n == 0) begin
r_rear_sync_data <= 0;
r_front_sync_addr <= 0;
end
else begin
case(cur_wr_state)
S_SYNC_STAGE0: begin
end
S_SYNC_STAGE1: begin
r_rear_sync_data <= r_rear_addr[P_FIFO_DEPTH_WIDTH:P_FIFO_ALLOC_WIDTH];
r_front_sync_addr <= r_front_sync_data;
end
S_SYNC_STAGE2: begin
end
default: begin
end
endcase
end
end
always @ (*)
begin
case(cur_wr_state)
S_SYNC_STAGE0: begin
r_rear_sync <= 0;
end
S_SYNC_STAGE1: begin
r_rear_sync <= 0;
end
S_SYNC_STAGE2: begin
r_rear_sync <= 1;
end
default: begin
r_rear_sync <= 0;
end
endcase
end
always @ (posedge rd_clk or negedge rd_rst_n)
begin
if(rd_rst_n == 0)
cur_rd_state <= S_SYNC_STAGE0;
else
cur_rd_state <= next_rd_state;
end
always @(posedge rd_clk or negedge rd_rst_n)
begin
if(rd_rst_n == 0)
r_front_sync_en <= 0;
else
r_front_sync_en <= r_front_sync;
end
always @(posedge rd_clk)
begin
r_rear_sync_en_d1 <= r_rear_sync_en;
r_rear_sync_en_d2 <= r_rear_sync_en_d1;
end
always @ (*)
begin
case(cur_rd_state)
S_SYNC_STAGE0: begin
if(r_rear_sync_en_d2 == 1)
next_rd_state <= S_SYNC_STAGE1;
else
next_rd_state <= S_SYNC_STAGE0;
end
S_SYNC_STAGE1: begin
next_rd_state <= S_SYNC_STAGE2;
end
S_SYNC_STAGE2: begin
if(r_rear_sync_en_d2 == 0)
next_rd_state <= S_SYNC_STAGE0;
else
next_rd_state <= S_SYNC_STAGE2;
end
default: begin
next_rd_state <= S_SYNC_STAGE0;
end
endcase
end
always @ (posedge rd_clk or negedge rd_rst_n)
begin
if(rd_rst_n == 0) begin
r_front_sync_data <= 0;
r_rear_sync_addr <= 0;
end
else begin
case(cur_rd_state)
S_SYNC_STAGE0: begin
end
S_SYNC_STAGE1: begin
r_front_sync_data <= r_front_addr[P_FIFO_DEPTH_WIDTH:P_FIFO_ALLOC_WIDTH];
r_rear_sync_addr <= r_rear_sync_data;
end
S_SYNC_STAGE2: begin
end
default: begin
end
endcase
end
end
always @ (*)
begin
case(cur_rd_state)
S_SYNC_STAGE0: begin
r_front_sync <= 1;
end
S_SYNC_STAGE1: begin
r_front_sync <= 1;
end
S_SYNC_STAGE2: begin
r_front_sync <= 0;
end
default: begin
r_front_sync <= 0;
end
endcase
end
/////////////////////////////////////////////////////////////////////////////////////////////
localparam LP_DEVICE = "7SERIES";
localparam LP_BRAM_SIZE = "36Kb";
localparam LP_DOB_REG = 0;
localparam LP_READ_WIDTH = P_FIFO_DATA_WIDTH;
localparam LP_WRITE_WIDTH = P_FIFO_DATA_WIDTH;
localparam LP_WRITE_MODE = "WRITE_FIRST";
localparam LP_WE_WIDTH = 8;
localparam LP_ADDR_TOTAL_WITDH = 9;
localparam LP_ADDR_ZERO_PAD_WITDH = LP_ADDR_TOTAL_WITDH - P_FIFO_DEPTH_WIDTH;
generate
wire [LP_ADDR_TOTAL_WITDH-1:0] rdaddr;
wire [LP_ADDR_TOTAL_WITDH-1:0] wraddr;
wire [LP_ADDR_ZERO_PAD_WITDH-1:0] zero_padding = 0;
if(LP_ADDR_ZERO_PAD_WITDH == 0) begin : CALC_ADDR
assign rdaddr = w_front_addr[P_FIFO_DEPTH_WIDTH-1:0];
assign wraddr = r_rear_addr[P_FIFO_DEPTH_WIDTH-1:0];
end
else begin
wire [LP_ADDR_ZERO_PAD_WITDH-1:0] zero_padding = 0;
assign rdaddr = {zero_padding, w_front_addr[P_FIFO_DEPTH_WIDTH-1:0]};
assign wraddr = {zero_padding, r_rear_addr[P_FIFO_DEPTH_WIDTH-1:0]};
end
endgenerate
BRAM_SDP_MACRO #(
.DEVICE (LP_DEVICE),
.BRAM_SIZE (LP_BRAM_SIZE),
.DO_REG (LP_DOB_REG),
.READ_WIDTH (LP_READ_WIDTH),
.WRITE_WIDTH (LP_WRITE_WIDTH),
.WRITE_MODE (LP_WRITE_MODE)
)
ramb36sdp_0(
.DO (rd_data),
.DI (r_wr_data),
.RDADDR (rdaddr),
.RDCLK (rd_clk),
.RDEN (1'b1),
.REGCE (1'b1),
.RST (1'b0),
.WE ({LP_WE_WIDTH{1'b1}}),
.WRADDR (wraddr),
.WRCLK (wr_clk),
.WREN (r_wr_en)
);
endmodule
|
/*
----------------------------------------------------------------------------------
Copyright (c) 2013-2014
Embedded and Network Computing Lab.
Open SSD Project
Hanyang University
All rights reserved.
----------------------------------------------------------------------------------
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this source code
must display the following acknowledgement:
This product includes source code developed
by the Embedded and Network Computing Lab. and the Open SSD Project.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------------------
http://enclab.hanyang.ac.kr/
http://www.openssd-project.org/
http://www.hanyang.ac.kr/
----------------------------------------------------------------------------------
*/
`timescale 1ns / 1ps
module dma_cmd_fifo # (
parameter P_FIFO_DATA_WIDTH = 50,
parameter P_FIFO_DEPTH_WIDTH = 9
)
(
input wr_clk,
input wr_rst_n,
input dma_cmd_wr_en,
input [P_FIFO_DATA_WIDTH-1:0] dma_cmd_wr_data0,
input [P_FIFO_DATA_WIDTH-1:0] dma_cmd_wr_data1,
output dma_cmd_wr_rdy_n,
input rd_clk,
input rd_rst_n,
input rd_en,
output [P_FIFO_DATA_WIDTH-1:0] rd_data,
output empty_n
);
localparam P_FIFO_ALLOC_WIDTH = 1; //128 bits
localparam S_IDLE = 3'b001;
localparam S_WRITE_0 = 3'b010;
localparam S_WRITE_1 = 3'b100;
reg [2:0] cur_state;
reg [2:0] next_state;
localparam S_SYNC_STAGE0 = 3'b001;
localparam S_SYNC_STAGE1 = 3'b010;
localparam S_SYNC_STAGE2 = 3'b100;
reg [2:0] cur_wr_state;
reg [2:0] next_wr_state;
reg [2:0] cur_rd_state;
reg [2:0] next_rd_state;
reg [P_FIFO_DEPTH_WIDTH:0] r_rear_addr;
(* KEEP = "TRUE", EQUIVALENT_REGISTER_REMOVAL = "NO" *) reg r_rear_sync;
(* KEEP = "TRUE", EQUIVALENT_REGISTER_REMOVAL = "NO" *) reg r_rear_sync_en;
reg [P_FIFO_DEPTH_WIDTH
:P_FIFO_ALLOC_WIDTH] r_rear_sync_data;
(* KEEP = "TRUE", SHIFT_EXTRACT = "NO" *) reg r_front_sync_en_d1;
(* KEEP = "TRUE", SHIFT_EXTRACT = "NO" *) reg r_front_sync_en_d2;
(* KEEP = "TRUE", SHIFT_EXTRACT = "NO" *) reg [P_FIFO_DEPTH_WIDTH
:P_FIFO_ALLOC_WIDTH] r_front_sync_addr;
reg [P_FIFO_DEPTH_WIDTH:0] r_front_addr;
reg [P_FIFO_DEPTH_WIDTH:0] r_front_addr_p1;
(* KEEP = "TRUE", EQUIVALENT_REGISTER_REMOVAL = "NO" *) reg r_front_sync;
(* KEEP = "TRUE", EQUIVALENT_REGISTER_REMOVAL = "NO" *) reg r_front_sync_en;
reg [P_FIFO_DEPTH_WIDTH
:P_FIFO_ALLOC_WIDTH] r_front_sync_data;
(* KEEP = "TRUE", SHIFT_EXTRACT = "NO" *) reg r_rear_sync_en_d1;
(* KEEP = "TRUE", SHIFT_EXTRACT = "NO" *) reg r_rear_sync_en_d2;
(* KEEP = "TRUE", SHIFT_EXTRACT = "NO" *) reg [P_FIFO_DEPTH_WIDTH
:P_FIFO_ALLOC_WIDTH] r_rear_sync_addr;
wire [P_FIFO_DEPTH_WIDTH-1:0] w_front_addr;
reg r_wr_en;
reg r_wr_data_sel;
reg [P_FIFO_DATA_WIDTH-1:0] r_wr_data;
wire w_full_n;
reg [P_FIFO_DATA_WIDTH-1:0] r_dma_cmd_wr_data0;
reg [P_FIFO_DATA_WIDTH-1:0] r_dma_cmd_wr_data1;
reg r_dma_cmd_wr_rdy_n;
assign dma_cmd_wr_rdy_n = r_dma_cmd_wr_rdy_n | ~w_full_n;
always @ (posedge wr_clk or negedge wr_rst_n)
begin
if(wr_rst_n == 0)
cur_state <= S_IDLE;
else
cur_state <= next_state;
end
always @ (*)
begin
case(cur_state)
S_IDLE: begin
if(dma_cmd_wr_en == 1)
next_state <= S_WRITE_0;
else
next_state <= S_IDLE;
end
S_WRITE_0: begin
next_state <= S_WRITE_1;
end
S_WRITE_1: begin
next_state <= S_IDLE;
end
default: begin
next_state <= S_IDLE;
end
endcase
end
always @ (posedge wr_clk)
begin
case(cur_state)
S_IDLE: begin
r_dma_cmd_wr_data0 <= dma_cmd_wr_data0;
r_dma_cmd_wr_data1 <= dma_cmd_wr_data1;
end
S_WRITE_0: begin
end
S_WRITE_1: begin
end
default: begin
end
endcase
end
always @ (*)
begin
case(cur_state)
S_IDLE: begin
r_wr_en <= 0;
r_wr_data_sel <= 0;
r_dma_cmd_wr_rdy_n <= 0;
end
S_WRITE_0: begin
r_wr_en <= 1;
r_wr_data_sel <= 0;
r_dma_cmd_wr_rdy_n <= 1;
end
S_WRITE_1: begin
r_wr_en <= 1;
r_wr_data_sel <= 1;
r_dma_cmd_wr_rdy_n <= 1;
end
default: begin
r_wr_en <= 0;
r_wr_data_sel <= 0;
r_dma_cmd_wr_rdy_n <= 0;
end
endcase
end
always @ (*)
begin
if(r_wr_data_sel == 0)
r_wr_data <= r_dma_cmd_wr_data0;
else
r_wr_data <= r_dma_cmd_wr_data1;
end
assign w_full_n = ~((r_rear_addr[P_FIFO_DEPTH_WIDTH] ^ r_front_sync_addr[P_FIFO_DEPTH_WIDTH])
& (r_rear_addr[P_FIFO_DEPTH_WIDTH-1:P_FIFO_ALLOC_WIDTH]
== r_front_sync_addr[P_FIFO_DEPTH_WIDTH-1:P_FIFO_ALLOC_WIDTH]));
always @(posedge wr_clk or negedge wr_rst_n)
begin
if (wr_rst_n == 0) begin
r_rear_addr <= 0;
end
else begin
if (r_wr_en == 1)
r_rear_addr <= r_rear_addr + 1;
end
end
assign empty_n = ~(r_front_addr[P_FIFO_DEPTH_WIDTH:P_FIFO_ALLOC_WIDTH]
== r_rear_sync_addr);
always @(posedge rd_clk or negedge rd_rst_n)
begin
if (rd_rst_n == 0) begin
r_front_addr <= 0;
r_front_addr_p1 <= 1;
end
else begin
if (rd_en == 1) begin
r_front_addr <= r_front_addr_p1;
r_front_addr_p1 <= r_front_addr_p1 + 1;
end
end
end
assign w_front_addr = (rd_en == 1) ? r_front_addr_p1[P_FIFO_DEPTH_WIDTH-1:0]
: r_front_addr[P_FIFO_DEPTH_WIDTH-1:0];
/////////////////////////////////////////////////////////////////////////////////////////////
always @ (posedge wr_clk or negedge wr_rst_n)
begin
if(wr_rst_n == 0)
cur_wr_state <= S_SYNC_STAGE0;
else
cur_wr_state <= next_wr_state;
end
always @(posedge wr_clk or negedge wr_rst_n)
begin
if(wr_rst_n == 0)
r_rear_sync_en <= 0;
else
r_rear_sync_en <= r_rear_sync;
end
always @(posedge wr_clk)
begin
r_front_sync_en_d1 <= r_front_sync_en;
r_front_sync_en_d2 <= r_front_sync_en_d1;
end
always @ (*)
begin
case(cur_wr_state)
S_SYNC_STAGE0: begin
if(r_front_sync_en_d2 == 1)
next_wr_state <= S_SYNC_STAGE1;
else
next_wr_state <= S_SYNC_STAGE0;
end
S_SYNC_STAGE1: begin
next_wr_state <= S_SYNC_STAGE2;
end
S_SYNC_STAGE2: begin
if(r_front_sync_en_d2 == 0)
next_wr_state <= S_SYNC_STAGE0;
else
next_wr_state <= S_SYNC_STAGE2;
end
default: begin
next_wr_state <= S_SYNC_STAGE0;
end
endcase
end
always @ (posedge wr_clk or negedge wr_rst_n)
begin
if(wr_rst_n == 0) begin
r_rear_sync_data <= 0;
r_front_sync_addr <= 0;
end
else begin
case(cur_wr_state)
S_SYNC_STAGE0: begin
end
S_SYNC_STAGE1: begin
r_rear_sync_data <= r_rear_addr[P_FIFO_DEPTH_WIDTH:P_FIFO_ALLOC_WIDTH];
r_front_sync_addr <= r_front_sync_data;
end
S_SYNC_STAGE2: begin
end
default: begin
end
endcase
end
end
always @ (*)
begin
case(cur_wr_state)
S_SYNC_STAGE0: begin
r_rear_sync <= 0;
end
S_SYNC_STAGE1: begin
r_rear_sync <= 0;
end
S_SYNC_STAGE2: begin
r_rear_sync <= 1;
end
default: begin
r_rear_sync <= 0;
end
endcase
end
always @ (posedge rd_clk or negedge rd_rst_n)
begin
if(rd_rst_n == 0)
cur_rd_state <= S_SYNC_STAGE0;
else
cur_rd_state <= next_rd_state;
end
always @(posedge rd_clk or negedge rd_rst_n)
begin
if(rd_rst_n == 0)
r_front_sync_en <= 0;
else
r_front_sync_en <= r_front_sync;
end
always @(posedge rd_clk)
begin
r_rear_sync_en_d1 <= r_rear_sync_en;
r_rear_sync_en_d2 <= r_rear_sync_en_d1;
end
always @ (*)
begin
case(cur_rd_state)
S_SYNC_STAGE0: begin
if(r_rear_sync_en_d2 == 1)
next_rd_state <= S_SYNC_STAGE1;
else
next_rd_state <= S_SYNC_STAGE0;
end
S_SYNC_STAGE1: begin
next_rd_state <= S_SYNC_STAGE2;
end
S_SYNC_STAGE2: begin
if(r_rear_sync_en_d2 == 0)
next_rd_state <= S_SYNC_STAGE0;
else
next_rd_state <= S_SYNC_STAGE2;
end
default: begin
next_rd_state <= S_SYNC_STAGE0;
end
endcase
end
always @ (posedge rd_clk or negedge rd_rst_n)
begin
if(rd_rst_n == 0) begin
r_front_sync_data <= 0;
r_rear_sync_addr <= 0;
end
else begin
case(cur_rd_state)
S_SYNC_STAGE0: begin
end
S_SYNC_STAGE1: begin
r_front_sync_data <= r_front_addr[P_FIFO_DEPTH_WIDTH:P_FIFO_ALLOC_WIDTH];
r_rear_sync_addr <= r_rear_sync_data;
end
S_SYNC_STAGE2: begin
end
default: begin
end
endcase
end
end
always @ (*)
begin
case(cur_rd_state)
S_SYNC_STAGE0: begin
r_front_sync <= 1;
end
S_SYNC_STAGE1: begin
r_front_sync <= 1;
end
S_SYNC_STAGE2: begin
r_front_sync <= 0;
end
default: begin
r_front_sync <= 0;
end
endcase
end
/////////////////////////////////////////////////////////////////////////////////////////////
localparam LP_DEVICE = "7SERIES";
localparam LP_BRAM_SIZE = "36Kb";
localparam LP_DOB_REG = 0;
localparam LP_READ_WIDTH = P_FIFO_DATA_WIDTH;
localparam LP_WRITE_WIDTH = P_FIFO_DATA_WIDTH;
localparam LP_WRITE_MODE = "WRITE_FIRST";
localparam LP_WE_WIDTH = 8;
localparam LP_ADDR_TOTAL_WITDH = 9;
localparam LP_ADDR_ZERO_PAD_WITDH = LP_ADDR_TOTAL_WITDH - P_FIFO_DEPTH_WIDTH;
generate
wire [LP_ADDR_TOTAL_WITDH-1:0] rdaddr;
wire [LP_ADDR_TOTAL_WITDH-1:0] wraddr;
wire [LP_ADDR_ZERO_PAD_WITDH-1:0] zero_padding = 0;
if(LP_ADDR_ZERO_PAD_WITDH == 0) begin : CALC_ADDR
assign rdaddr = w_front_addr[P_FIFO_DEPTH_WIDTH-1:0];
assign wraddr = r_rear_addr[P_FIFO_DEPTH_WIDTH-1:0];
end
else begin
wire [LP_ADDR_ZERO_PAD_WITDH-1:0] zero_padding = 0;
assign rdaddr = {zero_padding, w_front_addr[P_FIFO_DEPTH_WIDTH-1:0]};
assign wraddr = {zero_padding, r_rear_addr[P_FIFO_DEPTH_WIDTH-1:0]};
end
endgenerate
BRAM_SDP_MACRO #(
.DEVICE (LP_DEVICE),
.BRAM_SIZE (LP_BRAM_SIZE),
.DO_REG (LP_DOB_REG),
.READ_WIDTH (LP_READ_WIDTH),
.WRITE_WIDTH (LP_WRITE_WIDTH),
.WRITE_MODE (LP_WRITE_MODE)
)
ramb36sdp_0(
.DO (rd_data),
.DI (r_wr_data),
.RDADDR (rdaddr),
.RDCLK (rd_clk),
.RDEN (1'b1),
.REGCE (1'b1),
.RST (1'b0),
.WE ({LP_WE_WIDTH{1'b1}}),
.WRADDR (wraddr),
.WRCLK (wr_clk),
.WREN (r_wr_en)
);
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2009 by Wilson Snyder.
module t;
// Speced ignored: system calls. I think this is nasty, so we error instead.
// Speced Illegal: inout/output/ref not allowed
localparam B1 = f_bad_output(1,2);
function integer f_bad_output(input [31:0] a, output [31:0] o);
f_bad_output = 0;
endfunction
// Speced Illegal: void
// Speced Illegal: dotted
localparam EIGHT = 8;
localparam B2 = f_bad_dotted(2);
function integer f_bad_dotted(input [31:0] a);
f_bad_dotted = t.EIGHT;
endfunction
// Speced Illegal: ref to non-local var
integer modvar;
localparam B3 = f_bad_nonparam(3);
function integer f_bad_nonparam(input [31:0] a);
f_bad_nonparam = modvar;
endfunction
// Speced Illegal: needs constant function itself
// Our own - infinite loop
localparam B4 = f_bad_infinite(3);
function integer f_bad_infinite(input [31:0] a);
while (1) begin
f_bad_infinite = 0;
end
endfunction
// Our own - stop
localparam BSTOP = f_bad_stop(3);
function integer f_bad_stop(input [31:0] a);
$stop;
endfunction
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2009 by Wilson Snyder.
module t;
// Speced ignored: system calls. I think this is nasty, so we error instead.
// Speced Illegal: inout/output/ref not allowed
localparam B1 = f_bad_output(1,2);
function integer f_bad_output(input [31:0] a, output [31:0] o);
f_bad_output = 0;
endfunction
// Speced Illegal: void
// Speced Illegal: dotted
localparam EIGHT = 8;
localparam B2 = f_bad_dotted(2);
function integer f_bad_dotted(input [31:0] a);
f_bad_dotted = t.EIGHT;
endfunction
// Speced Illegal: ref to non-local var
integer modvar;
localparam B3 = f_bad_nonparam(3);
function integer f_bad_nonparam(input [31:0] a);
f_bad_nonparam = modvar;
endfunction
// Speced Illegal: needs constant function itself
// Our own - infinite loop
localparam B4 = f_bad_infinite(3);
function integer f_bad_infinite(input [31:0] a);
while (1) begin
f_bad_infinite = 0;
end
endfunction
// Our own - stop
localparam BSTOP = f_bad_stop(3);
function integer f_bad_stop(input [31:0] a);
$stop;
endfunction
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2009 by Wilson Snyder.
module t;
// Speced ignored: system calls. I think this is nasty, so we error instead.
// Speced Illegal: inout/output/ref not allowed
localparam B1 = f_bad_output(1,2);
function integer f_bad_output(input [31:0] a, output [31:0] o);
f_bad_output = 0;
endfunction
// Speced Illegal: void
// Speced Illegal: dotted
localparam EIGHT = 8;
localparam B2 = f_bad_dotted(2);
function integer f_bad_dotted(input [31:0] a);
f_bad_dotted = t.EIGHT;
endfunction
// Speced Illegal: ref to non-local var
integer modvar;
localparam B3 = f_bad_nonparam(3);
function integer f_bad_nonparam(input [31:0] a);
f_bad_nonparam = modvar;
endfunction
// Speced Illegal: needs constant function itself
// Our own - infinite loop
localparam B4 = f_bad_infinite(3);
function integer f_bad_infinite(input [31:0] a);
while (1) begin
f_bad_infinite = 0;
end
endfunction
// Our own - stop
localparam BSTOP = f_bad_stop(3);
function integer f_bad_stop(input [31:0] a);
$stop;
endfunction
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2009 by Wilson Snyder.
module t;
// Speced ignored: system calls. I think this is nasty, so we error instead.
// Speced Illegal: inout/output/ref not allowed
localparam B1 = f_bad_output(1,2);
function integer f_bad_output(input [31:0] a, output [31:0] o);
f_bad_output = 0;
endfunction
// Speced Illegal: void
// Speced Illegal: dotted
localparam EIGHT = 8;
localparam B2 = f_bad_dotted(2);
function integer f_bad_dotted(input [31:0] a);
f_bad_dotted = t.EIGHT;
endfunction
// Speced Illegal: ref to non-local var
integer modvar;
localparam B3 = f_bad_nonparam(3);
function integer f_bad_nonparam(input [31:0] a);
f_bad_nonparam = modvar;
endfunction
// Speced Illegal: needs constant function itself
// Our own - infinite loop
localparam B4 = f_bad_infinite(3);
function integer f_bad_infinite(input [31:0] a);
while (1) begin
f_bad_infinite = 0;
end
endfunction
// Our own - stop
localparam BSTOP = f_bad_stop(3);
function integer f_bad_stop(input [31:0] a);
$stop;
endfunction
endmodule
|
/*
*******************************************************************************
*
* FIFO Generator - Verilog Behavioral Model
*
*******************************************************************************
*
* (c) Copyright 1995 - 2009 Xilinx, Inc. All rights reserved.
*
* This file contains confidential and proprietary information
* of Xilinx, Inc. and is protected under U.S. and
* international copyright and other intellectual property
* laws.
*
* DISCLAIMER
* This disclaimer is not a license and does not grant any
* rights to the materials distributed herewith. Except as
* otherwise provided in a valid license issued to you by
* Xilinx, and to the maximum extent permitted by applicable
* law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
* WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
* AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
* BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
* INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
* (2) Xilinx shall not be liable (whether in contract or tort,
* including negligence, or under any other theory of
* liability) for any loss or damage of any kind or nature
* related to, arising under or in connection with these
* materials, including for any direct, or any indirect,
* special, incidental, or consequential loss or damage
* (including loss of data, profits, goodwill, or any type of
* loss or damage suffered as a result of any action brought
* by a third party) even if such damage or loss was
* reasonably foreseeable or Xilinx had been advised of the
* possibility of the same.
*
* CRITICAL APPLICATIONS
* Xilinx products are not designed or intended to be fail-
* safe, or for use in any application requiring fail-safe
* performance, such as life-support or safety devices or
* systems, Class III medical devices, nuclear facilities,
* applications related to the deployment of airbags, or any
* other applications that could lead to death, personal
* injury, or severe property or environmental damage
* (individually and collectively, "Critical
* Applications"). Customer assumes the sole risk and
* liability of any use of Xilinx products in Critical
* Applications, subject only to applicable laws and
* regulations governing limitations on product liability.
*
* THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
* PART OF THIS FILE AT ALL TIMES.
*
*******************************************************************************
*******************************************************************************
*
* Filename: fifo_generator_vlog_beh.v
*
* Author : Xilinx
*
*******************************************************************************
* Structure:
*
* fifo_generator_vlog_beh.v
* |
* +-fifo_generator_v13_1_1_bhv_ver_as
* |
* +-fifo_generator_v13_1_1_bhv_ver_ss
* |
* +-fifo_generator_v13_1_1_bhv_ver_preload0
*
*******************************************************************************
* Description:
*
* The Verilog behavioral model for the FIFO Generator.
*
* The behavioral model has three parts:
* - The behavioral model for independent clocks FIFOs (_as)
* - The behavioral model for common clock FIFOs (_ss)
* - The "preload logic" block which implements First-word Fall-through
*
*******************************************************************************
* Description:
* The verilog behavioral model for the FIFO generator core.
*
*******************************************************************************
*/
`timescale 1ps/1ps
`ifndef TCQ
`define TCQ 100
`endif
/*******************************************************************************
* Declaration of top-level module
******************************************************************************/
module fifo_generator_vlog_beh
#(
//-----------------------------------------------------------------------
// Generic Declarations
//-----------------------------------------------------------------------
parameter C_COMMON_CLOCK = 0,
parameter C_COUNT_TYPE = 0,
parameter C_DATA_COUNT_WIDTH = 2,
parameter C_DEFAULT_VALUE = "",
parameter C_DIN_WIDTH = 8,
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_ENABLE_RLOCS = 0,
parameter C_FAMILY = "",
parameter C_FULL_FLAGS_RST_VAL = 1,
parameter C_HAS_ALMOST_EMPTY = 0,
parameter C_HAS_ALMOST_FULL = 0,
parameter C_HAS_BACKUP = 0,
parameter C_HAS_DATA_COUNT = 0,
parameter C_HAS_INT_CLK = 0,
parameter C_HAS_MEMINIT_FILE = 0,
parameter C_HAS_OVERFLOW = 0,
parameter C_HAS_RD_DATA_COUNT = 0,
parameter C_HAS_RD_RST = 0,
parameter C_HAS_RST = 1,
parameter C_HAS_SRST = 0,
parameter C_HAS_UNDERFLOW = 0,
parameter C_HAS_VALID = 0,
parameter C_HAS_WR_ACK = 0,
parameter C_HAS_WR_DATA_COUNT = 0,
parameter C_HAS_WR_RST = 0,
parameter C_IMPLEMENTATION_TYPE = 0,
parameter C_INIT_WR_PNTR_VAL = 0,
parameter C_MEMORY_TYPE = 1,
parameter C_MIF_FILE_NAME = "",
parameter C_OPTIMIZATION_MODE = 0,
parameter C_OVERFLOW_LOW = 0,
parameter C_EN_SAFETY_CKT = 0,
parameter C_PRELOAD_LATENCY = 1,
parameter C_PRELOAD_REGS = 0,
parameter C_PRIM_FIFO_TYPE = "4kx4",
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0,
parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0,
parameter C_PROG_EMPTY_TYPE = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0,
parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0,
parameter C_PROG_FULL_TYPE = 0,
parameter C_RD_DATA_COUNT_WIDTH = 2,
parameter C_RD_DEPTH = 256,
parameter C_RD_FREQ = 1,
parameter C_RD_PNTR_WIDTH = 8,
parameter C_UNDERFLOW_LOW = 0,
parameter C_USE_DOUT_RST = 0,
parameter C_USE_ECC = 0,
parameter C_USE_EMBEDDED_REG = 0,
parameter C_USE_PIPELINE_REG = 0,
parameter C_POWER_SAVING_MODE = 0,
parameter C_USE_FIFO16_FLAGS = 0,
parameter C_USE_FWFT_DATA_COUNT = 0,
parameter C_VALID_LOW = 0,
parameter C_WR_ACK_LOW = 0,
parameter C_WR_DATA_COUNT_WIDTH = 2,
parameter C_WR_DEPTH = 256,
parameter C_WR_FREQ = 1,
parameter C_WR_PNTR_WIDTH = 8,
parameter C_WR_RESPONSE_LATENCY = 1,
parameter C_MSGON_VAL = 1,
parameter C_ENABLE_RST_SYNC = 1,
parameter C_ERROR_INJECTION_TYPE = 0,
parameter C_SYNCHRONIZER_STAGE = 2,
// AXI Interface related parameters start here
parameter C_INTERFACE_TYPE = 0, // 0: Native Interface, 1: AXI4 Stream, 2: AXI4/AXI3
parameter C_AXI_TYPE = 0, // 1: AXI4, 2: AXI4 Lite, 3: AXI3
parameter C_HAS_AXI_WR_CHANNEL = 0,
parameter C_HAS_AXI_RD_CHANNEL = 0,
parameter C_HAS_SLAVE_CE = 0,
parameter C_HAS_MASTER_CE = 0,
parameter C_ADD_NGC_CONSTRAINT = 0,
parameter C_USE_COMMON_UNDERFLOW = 0,
parameter C_USE_COMMON_OVERFLOW = 0,
parameter C_USE_DEFAULT_SETTINGS = 0,
// AXI Full/Lite
parameter C_AXI_ID_WIDTH = 0,
parameter C_AXI_ADDR_WIDTH = 0,
parameter C_AXI_DATA_WIDTH = 0,
parameter C_AXI_LEN_WIDTH = 8,
parameter C_AXI_LOCK_WIDTH = 2,
parameter C_HAS_AXI_ID = 0,
parameter C_HAS_AXI_AWUSER = 0,
parameter C_HAS_AXI_WUSER = 0,
parameter C_HAS_AXI_BUSER = 0,
parameter C_HAS_AXI_ARUSER = 0,
parameter C_HAS_AXI_RUSER = 0,
parameter C_AXI_ARUSER_WIDTH = 0,
parameter C_AXI_AWUSER_WIDTH = 0,
parameter C_AXI_WUSER_WIDTH = 0,
parameter C_AXI_BUSER_WIDTH = 0,
parameter C_AXI_RUSER_WIDTH = 0,
// AXI Streaming
parameter C_HAS_AXIS_TDATA = 0,
parameter C_HAS_AXIS_TID = 0,
parameter C_HAS_AXIS_TDEST = 0,
parameter C_HAS_AXIS_TUSER = 0,
parameter C_HAS_AXIS_TREADY = 0,
parameter C_HAS_AXIS_TLAST = 0,
parameter C_HAS_AXIS_TSTRB = 0,
parameter C_HAS_AXIS_TKEEP = 0,
parameter C_AXIS_TDATA_WIDTH = 1,
parameter C_AXIS_TID_WIDTH = 1,
parameter C_AXIS_TDEST_WIDTH = 1,
parameter C_AXIS_TUSER_WIDTH = 1,
parameter C_AXIS_TSTRB_WIDTH = 1,
parameter C_AXIS_TKEEP_WIDTH = 1,
// AXI Channel Type
// WACH --> Write Address Channel
// WDCH --> Write Data Channel
// WRCH --> Write Response Channel
// RACH --> Read Address Channel
// RDCH --> Read Data Channel
// AXIS --> AXI Streaming
parameter C_WACH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logic
parameter C_WDCH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie
parameter C_WRCH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie
parameter C_RACH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie
parameter C_RDCH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie
parameter C_AXIS_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie
// AXI Implementation Type
// 1 = Common Clock Block RAM FIFO
// 2 = Common Clock Distributed RAM FIFO
// 11 = Independent Clock Block RAM FIFO
// 12 = Independent Clock Distributed RAM FIFO
parameter C_IMPLEMENTATION_TYPE_WACH = 0,
parameter C_IMPLEMENTATION_TYPE_WDCH = 0,
parameter C_IMPLEMENTATION_TYPE_WRCH = 0,
parameter C_IMPLEMENTATION_TYPE_RACH = 0,
parameter C_IMPLEMENTATION_TYPE_RDCH = 0,
parameter C_IMPLEMENTATION_TYPE_AXIS = 0,
// AXI FIFO Type
// 0 = Data FIFO
// 1 = Packet FIFO
// 2 = Low Latency Sync FIFO
// 3 = Low Latency Async FIFO
parameter C_APPLICATION_TYPE_WACH = 0,
parameter C_APPLICATION_TYPE_WDCH = 0,
parameter C_APPLICATION_TYPE_WRCH = 0,
parameter C_APPLICATION_TYPE_RACH = 0,
parameter C_APPLICATION_TYPE_RDCH = 0,
parameter C_APPLICATION_TYPE_AXIS = 0,
// AXI Built-in FIFO Primitive Type
// 512x36, 1kx18, 2kx9, 4kx4, etc
parameter C_PRIM_FIFO_TYPE_WACH = "512x36",
parameter C_PRIM_FIFO_TYPE_WDCH = "512x36",
parameter C_PRIM_FIFO_TYPE_WRCH = "512x36",
parameter C_PRIM_FIFO_TYPE_RACH = "512x36",
parameter C_PRIM_FIFO_TYPE_RDCH = "512x36",
parameter C_PRIM_FIFO_TYPE_AXIS = "512x36",
// Enable ECC
// 0 = ECC disabled
// 1 = ECC enabled
parameter C_USE_ECC_WACH = 0,
parameter C_USE_ECC_WDCH = 0,
parameter C_USE_ECC_WRCH = 0,
parameter C_USE_ECC_RACH = 0,
parameter C_USE_ECC_RDCH = 0,
parameter C_USE_ECC_AXIS = 0,
// ECC Error Injection Type
// 0 = No Error Injection
// 1 = Single Bit Error Injection
// 2 = Double Bit Error Injection
// 3 = Single Bit and Double Bit Error Injection
parameter C_ERROR_INJECTION_TYPE_WACH = 0,
parameter C_ERROR_INJECTION_TYPE_WDCH = 0,
parameter C_ERROR_INJECTION_TYPE_WRCH = 0,
parameter C_ERROR_INJECTION_TYPE_RACH = 0,
parameter C_ERROR_INJECTION_TYPE_RDCH = 0,
parameter C_ERROR_INJECTION_TYPE_AXIS = 0,
// Input Data Width
// Accumulation of all AXI input signal's width
parameter C_DIN_WIDTH_WACH = 1,
parameter C_DIN_WIDTH_WDCH = 1,
parameter C_DIN_WIDTH_WRCH = 1,
parameter C_DIN_WIDTH_RACH = 1,
parameter C_DIN_WIDTH_RDCH = 1,
parameter C_DIN_WIDTH_AXIS = 1,
parameter C_WR_DEPTH_WACH = 16,
parameter C_WR_DEPTH_WDCH = 16,
parameter C_WR_DEPTH_WRCH = 16,
parameter C_WR_DEPTH_RACH = 16,
parameter C_WR_DEPTH_RDCH = 16,
parameter C_WR_DEPTH_AXIS = 16,
parameter C_WR_PNTR_WIDTH_WACH = 4,
parameter C_WR_PNTR_WIDTH_WDCH = 4,
parameter C_WR_PNTR_WIDTH_WRCH = 4,
parameter C_WR_PNTR_WIDTH_RACH = 4,
parameter C_WR_PNTR_WIDTH_RDCH = 4,
parameter C_WR_PNTR_WIDTH_AXIS = 4,
parameter C_HAS_DATA_COUNTS_WACH = 0,
parameter C_HAS_DATA_COUNTS_WDCH = 0,
parameter C_HAS_DATA_COUNTS_WRCH = 0,
parameter C_HAS_DATA_COUNTS_RACH = 0,
parameter C_HAS_DATA_COUNTS_RDCH = 0,
parameter C_HAS_DATA_COUNTS_AXIS = 0,
parameter C_HAS_PROG_FLAGS_WACH = 0,
parameter C_HAS_PROG_FLAGS_WDCH = 0,
parameter C_HAS_PROG_FLAGS_WRCH = 0,
parameter C_HAS_PROG_FLAGS_RACH = 0,
parameter C_HAS_PROG_FLAGS_RDCH = 0,
parameter C_HAS_PROG_FLAGS_AXIS = 0,
parameter C_PROG_FULL_TYPE_WACH = 0,
parameter C_PROG_FULL_TYPE_WDCH = 0,
parameter C_PROG_FULL_TYPE_WRCH = 0,
parameter C_PROG_FULL_TYPE_RACH = 0,
parameter C_PROG_FULL_TYPE_RDCH = 0,
parameter C_PROG_FULL_TYPE_AXIS = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_WACH = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_WDCH = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_WRCH = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_RACH = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_RDCH = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_AXIS = 0,
parameter C_PROG_EMPTY_TYPE_WACH = 0,
parameter C_PROG_EMPTY_TYPE_WDCH = 0,
parameter C_PROG_EMPTY_TYPE_WRCH = 0,
parameter C_PROG_EMPTY_TYPE_RACH = 0,
parameter C_PROG_EMPTY_TYPE_RDCH = 0,
parameter C_PROG_EMPTY_TYPE_AXIS = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS = 0,
parameter C_REG_SLICE_MODE_WACH = 0,
parameter C_REG_SLICE_MODE_WDCH = 0,
parameter C_REG_SLICE_MODE_WRCH = 0,
parameter C_REG_SLICE_MODE_RACH = 0,
parameter C_REG_SLICE_MODE_RDCH = 0,
parameter C_REG_SLICE_MODE_AXIS = 0
)
(
//------------------------------------------------------------------------------
// Input and Output Declarations
//------------------------------------------------------------------------------
// Conventional FIFO Interface Signals
input backup,
input backup_marker,
input clk,
input rst,
input srst,
input wr_clk,
input wr_rst,
input rd_clk,
input rd_rst,
input [C_DIN_WIDTH-1:0] din,
input wr_en,
input rd_en,
// Optional inputs
input [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh,
input [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_assert,
input [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_negate,
input [C_WR_PNTR_WIDTH-1:0] prog_full_thresh,
input [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_assert,
input [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_negate,
input int_clk,
input injectdbiterr,
input injectsbiterr,
input sleep,
output [C_DOUT_WIDTH-1:0] dout,
output full,
output almost_full,
output wr_ack,
output overflow,
output empty,
output almost_empty,
output valid,
output underflow,
output [C_DATA_COUNT_WIDTH-1:0] data_count,
output [C_RD_DATA_COUNT_WIDTH-1:0] rd_data_count,
output [C_WR_DATA_COUNT_WIDTH-1:0] wr_data_count,
output prog_full,
output prog_empty,
output sbiterr,
output dbiterr,
output wr_rst_busy,
output rd_rst_busy,
// AXI Global Signal
input m_aclk,
input s_aclk,
input s_aresetn,
input s_aclk_en,
input m_aclk_en,
// AXI Full/Lite Slave Write Channel (write side)
input [C_AXI_ID_WIDTH-1:0] s_axi_awid,
input [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr,
input [C_AXI_LEN_WIDTH-1:0] s_axi_awlen,
input [3-1:0] s_axi_awsize,
input [2-1:0] s_axi_awburst,
input [C_AXI_LOCK_WIDTH-1:0] s_axi_awlock,
input [4-1:0] s_axi_awcache,
input [3-1:0] s_axi_awprot,
input [4-1:0] s_axi_awqos,
input [4-1:0] s_axi_awregion,
input [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser,
input s_axi_awvalid,
output s_axi_awready,
input [C_AXI_ID_WIDTH-1:0] s_axi_wid,
input [C_AXI_DATA_WIDTH-1:0] s_axi_wdata,
input [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb,
input s_axi_wlast,
input [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser,
input s_axi_wvalid,
output s_axi_wready,
output [C_AXI_ID_WIDTH-1:0] s_axi_bid,
output [2-1:0] s_axi_bresp,
output [C_AXI_BUSER_WIDTH-1:0] s_axi_buser,
output s_axi_bvalid,
input s_axi_bready,
// AXI Full/Lite Master Write Channel (read side)
output [C_AXI_ID_WIDTH-1:0] m_axi_awid,
output [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr,
output [C_AXI_LEN_WIDTH-1:0] m_axi_awlen,
output [3-1:0] m_axi_awsize,
output [2-1:0] m_axi_awburst,
output [C_AXI_LOCK_WIDTH-1:0] m_axi_awlock,
output [4-1:0] m_axi_awcache,
output [3-1:0] m_axi_awprot,
output [4-1:0] m_axi_awqos,
output [4-1:0] m_axi_awregion,
output [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser,
output m_axi_awvalid,
input m_axi_awready,
output [C_AXI_ID_WIDTH-1:0] m_axi_wid,
output [C_AXI_DATA_WIDTH-1:0] m_axi_wdata,
output [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb,
output m_axi_wlast,
output [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser,
output m_axi_wvalid,
input m_axi_wready,
input [C_AXI_ID_WIDTH-1:0] m_axi_bid,
input [2-1:0] m_axi_bresp,
input [C_AXI_BUSER_WIDTH-1:0] m_axi_buser,
input m_axi_bvalid,
output m_axi_bready,
// AXI Full/Lite Slave Read Channel (write side)
input [C_AXI_ID_WIDTH-1:0] s_axi_arid,
input [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr,
input [C_AXI_LEN_WIDTH-1:0] s_axi_arlen,
input [3-1:0] s_axi_arsize,
input [2-1:0] s_axi_arburst,
input [C_AXI_LOCK_WIDTH-1:0] s_axi_arlock,
input [4-1:0] s_axi_arcache,
input [3-1:0] s_axi_arprot,
input [4-1:0] s_axi_arqos,
input [4-1:0] s_axi_arregion,
input [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser,
input s_axi_arvalid,
output s_axi_arready,
output [C_AXI_ID_WIDTH-1:0] s_axi_rid,
output [C_AXI_DATA_WIDTH-1:0] s_axi_rdata,
output [2-1:0] s_axi_rresp,
output s_axi_rlast,
output [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser,
output s_axi_rvalid,
input s_axi_rready,
// AXI Full/Lite Master Read Channel (read side)
output [C_AXI_ID_WIDTH-1:0] m_axi_arid,
output [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr,
output [C_AXI_LEN_WIDTH-1:0] m_axi_arlen,
output [3-1:0] m_axi_arsize,
output [2-1:0] m_axi_arburst,
output [C_AXI_LOCK_WIDTH-1:0] m_axi_arlock,
output [4-1:0] m_axi_arcache,
output [3-1:0] m_axi_arprot,
output [4-1:0] m_axi_arqos,
output [4-1:0] m_axi_arregion,
output [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser,
output m_axi_arvalid,
input m_axi_arready,
input [C_AXI_ID_WIDTH-1:0] m_axi_rid,
input [C_AXI_DATA_WIDTH-1:0] m_axi_rdata,
input [2-1:0] m_axi_rresp,
input m_axi_rlast,
input [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser,
input m_axi_rvalid,
output m_axi_rready,
// AXI Streaming Slave Signals (Write side)
input s_axis_tvalid,
output s_axis_tready,
input [C_AXIS_TDATA_WIDTH-1:0] s_axis_tdata,
input [C_AXIS_TSTRB_WIDTH-1:0] s_axis_tstrb,
input [C_AXIS_TKEEP_WIDTH-1:0] s_axis_tkeep,
input s_axis_tlast,
input [C_AXIS_TID_WIDTH-1:0] s_axis_tid,
input [C_AXIS_TDEST_WIDTH-1:0] s_axis_tdest,
input [C_AXIS_TUSER_WIDTH-1:0] s_axis_tuser,
// AXI Streaming Master Signals (Read side)
output m_axis_tvalid,
input m_axis_tready,
output [C_AXIS_TDATA_WIDTH-1:0] m_axis_tdata,
output [C_AXIS_TSTRB_WIDTH-1:0] m_axis_tstrb,
output [C_AXIS_TKEEP_WIDTH-1:0] m_axis_tkeep,
output m_axis_tlast,
output [C_AXIS_TID_WIDTH-1:0] m_axis_tid,
output [C_AXIS_TDEST_WIDTH-1:0] m_axis_tdest,
output [C_AXIS_TUSER_WIDTH-1:0] m_axis_tuser,
// AXI Full/Lite Write Address Channel signals
input axi_aw_injectsbiterr,
input axi_aw_injectdbiterr,
input [C_WR_PNTR_WIDTH_WACH-1:0] axi_aw_prog_full_thresh,
input [C_WR_PNTR_WIDTH_WACH-1:0] axi_aw_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_WACH:0] axi_aw_data_count,
output [C_WR_PNTR_WIDTH_WACH:0] axi_aw_wr_data_count,
output [C_WR_PNTR_WIDTH_WACH:0] axi_aw_rd_data_count,
output axi_aw_sbiterr,
output axi_aw_dbiterr,
output axi_aw_overflow,
output axi_aw_underflow,
output axi_aw_prog_full,
output axi_aw_prog_empty,
// AXI Full/Lite Write Data Channel signals
input axi_w_injectsbiterr,
input axi_w_injectdbiterr,
input [C_WR_PNTR_WIDTH_WDCH-1:0] axi_w_prog_full_thresh,
input [C_WR_PNTR_WIDTH_WDCH-1:0] axi_w_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_WDCH:0] axi_w_data_count,
output [C_WR_PNTR_WIDTH_WDCH:0] axi_w_wr_data_count,
output [C_WR_PNTR_WIDTH_WDCH:0] axi_w_rd_data_count,
output axi_w_sbiterr,
output axi_w_dbiterr,
output axi_w_overflow,
output axi_w_underflow,
output axi_w_prog_full,
output axi_w_prog_empty,
// AXI Full/Lite Write Response Channel signals
input axi_b_injectsbiterr,
input axi_b_injectdbiterr,
input [C_WR_PNTR_WIDTH_WRCH-1:0] axi_b_prog_full_thresh,
input [C_WR_PNTR_WIDTH_WRCH-1:0] axi_b_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_WRCH:0] axi_b_data_count,
output [C_WR_PNTR_WIDTH_WRCH:0] axi_b_wr_data_count,
output [C_WR_PNTR_WIDTH_WRCH:0] axi_b_rd_data_count,
output axi_b_sbiterr,
output axi_b_dbiterr,
output axi_b_overflow,
output axi_b_underflow,
output axi_b_prog_full,
output axi_b_prog_empty,
// AXI Full/Lite Read Address Channel signals
input axi_ar_injectsbiterr,
input axi_ar_injectdbiterr,
input [C_WR_PNTR_WIDTH_RACH-1:0] axi_ar_prog_full_thresh,
input [C_WR_PNTR_WIDTH_RACH-1:0] axi_ar_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_RACH:0] axi_ar_data_count,
output [C_WR_PNTR_WIDTH_RACH:0] axi_ar_wr_data_count,
output [C_WR_PNTR_WIDTH_RACH:0] axi_ar_rd_data_count,
output axi_ar_sbiterr,
output axi_ar_dbiterr,
output axi_ar_overflow,
output axi_ar_underflow,
output axi_ar_prog_full,
output axi_ar_prog_empty,
// AXI Full/Lite Read Data Channel Signals
input axi_r_injectsbiterr,
input axi_r_injectdbiterr,
input [C_WR_PNTR_WIDTH_RDCH-1:0] axi_r_prog_full_thresh,
input [C_WR_PNTR_WIDTH_RDCH-1:0] axi_r_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_RDCH:0] axi_r_data_count,
output [C_WR_PNTR_WIDTH_RDCH:0] axi_r_wr_data_count,
output [C_WR_PNTR_WIDTH_RDCH:0] axi_r_rd_data_count,
output axi_r_sbiterr,
output axi_r_dbiterr,
output axi_r_overflow,
output axi_r_underflow,
output axi_r_prog_full,
output axi_r_prog_empty,
// AXI Streaming FIFO Related Signals
input axis_injectsbiterr,
input axis_injectdbiterr,
input [C_WR_PNTR_WIDTH_AXIS-1:0] axis_prog_full_thresh,
input [C_WR_PNTR_WIDTH_AXIS-1:0] axis_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_AXIS:0] axis_data_count,
output [C_WR_PNTR_WIDTH_AXIS:0] axis_wr_data_count,
output [C_WR_PNTR_WIDTH_AXIS:0] axis_rd_data_count,
output axis_sbiterr,
output axis_dbiterr,
output axis_overflow,
output axis_underflow,
output axis_prog_full,
output axis_prog_empty
);
wire BACKUP;
wire BACKUP_MARKER;
wire CLK;
wire RST;
wire SRST;
wire WR_CLK;
wire WR_RST;
wire RD_CLK;
wire RD_RST;
wire [C_DIN_WIDTH-1:0] DIN;
wire WR_EN;
wire RD_EN;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE;
wire INT_CLK;
wire INJECTDBITERR;
wire INJECTSBITERR;
wire SLEEP;
wire [C_DOUT_WIDTH-1:0] DOUT;
wire FULL;
wire ALMOST_FULL;
wire WR_ACK;
wire OVERFLOW;
wire EMPTY;
wire ALMOST_EMPTY;
wire VALID;
wire UNDERFLOW;
wire [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT;
wire [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT;
wire [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT;
wire PROG_FULL;
wire PROG_EMPTY;
wire SBITERR;
wire DBITERR;
wire WR_RST_BUSY;
wire RD_RST_BUSY;
wire M_ACLK;
wire S_ACLK;
wire S_ARESETN;
wire S_ACLK_EN;
wire M_ACLK_EN;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID;
wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR;
wire [C_AXI_LEN_WIDTH-1:0] S_AXI_AWLEN;
wire [3-1:0] S_AXI_AWSIZE;
wire [2-1:0] S_AXI_AWBURST;
wire [C_AXI_LOCK_WIDTH-1:0] S_AXI_AWLOCK;
wire [4-1:0] S_AXI_AWCACHE;
wire [3-1:0] S_AXI_AWPROT;
wire [4-1:0] S_AXI_AWQOS;
wire [4-1:0] S_AXI_AWREGION;
wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER;
wire S_AXI_AWVALID;
wire S_AXI_AWREADY;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_WID;
wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA;
wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB;
wire S_AXI_WLAST;
wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER;
wire S_AXI_WVALID;
wire S_AXI_WREADY;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID;
wire [2-1:0] S_AXI_BRESP;
wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER;
wire S_AXI_BVALID;
wire S_AXI_BREADY;
wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID;
wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR;
wire [C_AXI_LEN_WIDTH-1:0] M_AXI_AWLEN;
wire [3-1:0] M_AXI_AWSIZE;
wire [2-1:0] M_AXI_AWBURST;
wire [C_AXI_LOCK_WIDTH-1:0] M_AXI_AWLOCK;
wire [4-1:0] M_AXI_AWCACHE;
wire [3-1:0] M_AXI_AWPROT;
wire [4-1:0] M_AXI_AWQOS;
wire [4-1:0] M_AXI_AWREGION;
wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER;
wire M_AXI_AWVALID;
wire M_AXI_AWREADY;
wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID;
wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA;
wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB;
wire M_AXI_WLAST;
wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER;
wire M_AXI_WVALID;
wire M_AXI_WREADY;
wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID;
wire [2-1:0] M_AXI_BRESP;
wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER;
wire M_AXI_BVALID;
wire M_AXI_BREADY;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID;
wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR;
wire [C_AXI_LEN_WIDTH-1:0] S_AXI_ARLEN;
wire [3-1:0] S_AXI_ARSIZE;
wire [2-1:0] S_AXI_ARBURST;
wire [C_AXI_LOCK_WIDTH-1:0] S_AXI_ARLOCK;
wire [4-1:0] S_AXI_ARCACHE;
wire [3-1:0] S_AXI_ARPROT;
wire [4-1:0] S_AXI_ARQOS;
wire [4-1:0] S_AXI_ARREGION;
wire [C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER;
wire S_AXI_ARVALID;
wire S_AXI_ARREADY;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID;
wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA;
wire [2-1:0] S_AXI_RRESP;
wire S_AXI_RLAST;
wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER;
wire S_AXI_RVALID;
wire S_AXI_RREADY;
wire [C_AXI_ID_WIDTH-1:0] M_AXI_ARID;
wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR;
wire [C_AXI_LEN_WIDTH-1:0] M_AXI_ARLEN;
wire [3-1:0] M_AXI_ARSIZE;
wire [2-1:0] M_AXI_ARBURST;
wire [C_AXI_LOCK_WIDTH-1:0] M_AXI_ARLOCK;
wire [4-1:0] M_AXI_ARCACHE;
wire [3-1:0] M_AXI_ARPROT;
wire [4-1:0] M_AXI_ARQOS;
wire [4-1:0] M_AXI_ARREGION;
wire [C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER;
wire M_AXI_ARVALID;
wire M_AXI_ARREADY;
wire [C_AXI_ID_WIDTH-1:0] M_AXI_RID;
wire [C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA;
wire [2-1:0] M_AXI_RRESP;
wire M_AXI_RLAST;
wire [C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER;
wire M_AXI_RVALID;
wire M_AXI_RREADY;
wire S_AXIS_TVALID;
wire S_AXIS_TREADY;
wire [C_AXIS_TDATA_WIDTH-1:0] S_AXIS_TDATA;
wire [C_AXIS_TSTRB_WIDTH-1:0] S_AXIS_TSTRB;
wire [C_AXIS_TKEEP_WIDTH-1:0] S_AXIS_TKEEP;
wire S_AXIS_TLAST;
wire [C_AXIS_TID_WIDTH-1:0] S_AXIS_TID;
wire [C_AXIS_TDEST_WIDTH-1:0] S_AXIS_TDEST;
wire [C_AXIS_TUSER_WIDTH-1:0] S_AXIS_TUSER;
wire M_AXIS_TVALID;
wire M_AXIS_TREADY;
wire [C_AXIS_TDATA_WIDTH-1:0] M_AXIS_TDATA;
wire [C_AXIS_TSTRB_WIDTH-1:0] M_AXIS_TSTRB;
wire [C_AXIS_TKEEP_WIDTH-1:0] M_AXIS_TKEEP;
wire M_AXIS_TLAST;
wire [C_AXIS_TID_WIDTH-1:0] M_AXIS_TID;
wire [C_AXIS_TDEST_WIDTH-1:0] M_AXIS_TDEST;
wire [C_AXIS_TUSER_WIDTH-1:0] M_AXIS_TUSER;
wire AXI_AW_INJECTSBITERR;
wire AXI_AW_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_WACH-1:0] AXI_AW_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_WACH-1:0] AXI_AW_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_WACH:0] AXI_AW_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WACH:0] AXI_AW_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WACH:0] AXI_AW_RD_DATA_COUNT;
wire AXI_AW_SBITERR;
wire AXI_AW_DBITERR;
wire AXI_AW_OVERFLOW;
wire AXI_AW_UNDERFLOW;
wire AXI_AW_PROG_FULL;
wire AXI_AW_PROG_EMPTY;
wire AXI_W_INJECTSBITERR;
wire AXI_W_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_WDCH-1:0] AXI_W_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_WDCH-1:0] AXI_W_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_WDCH:0] AXI_W_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WDCH:0] AXI_W_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WDCH:0] AXI_W_RD_DATA_COUNT;
wire AXI_W_SBITERR;
wire AXI_W_DBITERR;
wire AXI_W_OVERFLOW;
wire AXI_W_UNDERFLOW;
wire AXI_W_PROG_FULL;
wire AXI_W_PROG_EMPTY;
wire AXI_B_INJECTSBITERR;
wire AXI_B_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_WRCH-1:0] AXI_B_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_WRCH-1:0] AXI_B_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_WRCH:0] AXI_B_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WRCH:0] AXI_B_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WRCH:0] AXI_B_RD_DATA_COUNT;
wire AXI_B_SBITERR;
wire AXI_B_DBITERR;
wire AXI_B_OVERFLOW;
wire AXI_B_UNDERFLOW;
wire AXI_B_PROG_FULL;
wire AXI_B_PROG_EMPTY;
wire AXI_AR_INJECTSBITERR;
wire AXI_AR_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_RACH-1:0] AXI_AR_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_RACH-1:0] AXI_AR_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_RACH:0] AXI_AR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_RACH:0] AXI_AR_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_RACH:0] AXI_AR_RD_DATA_COUNT;
wire AXI_AR_SBITERR;
wire AXI_AR_DBITERR;
wire AXI_AR_OVERFLOW;
wire AXI_AR_UNDERFLOW;
wire AXI_AR_PROG_FULL;
wire AXI_AR_PROG_EMPTY;
wire AXI_R_INJECTSBITERR;
wire AXI_R_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_RDCH-1:0] AXI_R_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_RDCH-1:0] AXI_R_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_RDCH:0] AXI_R_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_RDCH:0] AXI_R_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_RDCH:0] AXI_R_RD_DATA_COUNT;
wire AXI_R_SBITERR;
wire AXI_R_DBITERR;
wire AXI_R_OVERFLOW;
wire AXI_R_UNDERFLOW;
wire AXI_R_PROG_FULL;
wire AXI_R_PROG_EMPTY;
wire AXIS_INJECTSBITERR;
wire AXIS_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_AXIS-1:0] AXIS_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_AXIS-1:0] AXIS_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_AXIS:0] AXIS_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_AXIS:0] AXIS_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_AXIS:0] AXIS_RD_DATA_COUNT;
wire AXIS_SBITERR;
wire AXIS_DBITERR;
wire AXIS_OVERFLOW;
wire AXIS_UNDERFLOW;
wire AXIS_PROG_FULL;
wire AXIS_PROG_EMPTY;
wire [C_WR_DATA_COUNT_WIDTH-1:0] wr_data_count_in;
wire wr_rst_int;
wire rd_rst_int;
function integer find_log2;
input integer int_val;
integer i,j;
begin
i = 1;
j = 0;
for (i = 1; i < int_val; i = i*2) begin
j = j + 1;
end
find_log2 = j;
end
endfunction
// Conventional FIFO Interface Signals
assign BACKUP = backup;
assign BACKUP_MARKER = backup_marker;
assign CLK = clk;
assign RST = rst;
assign SRST = srst;
assign WR_CLK = wr_clk;
assign WR_RST = wr_rst;
assign RD_CLK = rd_clk;
assign RD_RST = rd_rst;
assign WR_EN = wr_en;
assign RD_EN = rd_en;
assign INT_CLK = int_clk;
assign INJECTDBITERR = injectdbiterr;
assign INJECTSBITERR = injectsbiterr;
assign SLEEP = sleep;
assign full = FULL;
assign almost_full = ALMOST_FULL;
assign wr_ack = WR_ACK;
assign overflow = OVERFLOW;
assign empty = EMPTY;
assign almost_empty = ALMOST_EMPTY;
assign valid = VALID;
assign underflow = UNDERFLOW;
assign prog_full = PROG_FULL;
assign prog_empty = PROG_EMPTY;
assign sbiterr = SBITERR;
assign dbiterr = DBITERR;
assign wr_rst_busy = WR_RST_BUSY;
assign rd_rst_busy = RD_RST_BUSY;
assign M_ACLK = m_aclk;
assign S_ACLK = s_aclk;
assign S_ARESETN = s_aresetn;
assign S_ACLK_EN = s_aclk_en;
assign M_ACLK_EN = m_aclk_en;
assign S_AXI_AWVALID = s_axi_awvalid;
assign s_axi_awready = S_AXI_AWREADY;
assign S_AXI_WLAST = s_axi_wlast;
assign S_AXI_WVALID = s_axi_wvalid;
assign s_axi_wready = S_AXI_WREADY;
assign s_axi_bvalid = S_AXI_BVALID;
assign S_AXI_BREADY = s_axi_bready;
assign m_axi_awvalid = M_AXI_AWVALID;
assign M_AXI_AWREADY = m_axi_awready;
assign m_axi_wlast = M_AXI_WLAST;
assign m_axi_wvalid = M_AXI_WVALID;
assign M_AXI_WREADY = m_axi_wready;
assign M_AXI_BVALID = m_axi_bvalid;
assign m_axi_bready = M_AXI_BREADY;
assign S_AXI_ARVALID = s_axi_arvalid;
assign s_axi_arready = S_AXI_ARREADY;
assign s_axi_rlast = S_AXI_RLAST;
assign s_axi_rvalid = S_AXI_RVALID;
assign S_AXI_RREADY = s_axi_rready;
assign m_axi_arvalid = M_AXI_ARVALID;
assign M_AXI_ARREADY = m_axi_arready;
assign M_AXI_RLAST = m_axi_rlast;
assign M_AXI_RVALID = m_axi_rvalid;
assign m_axi_rready = M_AXI_RREADY;
assign S_AXIS_TVALID = s_axis_tvalid;
assign s_axis_tready = S_AXIS_TREADY;
assign S_AXIS_TLAST = s_axis_tlast;
assign m_axis_tvalid = M_AXIS_TVALID;
assign M_AXIS_TREADY = m_axis_tready;
assign m_axis_tlast = M_AXIS_TLAST;
assign AXI_AW_INJECTSBITERR = axi_aw_injectsbiterr;
assign AXI_AW_INJECTDBITERR = axi_aw_injectdbiterr;
assign axi_aw_sbiterr = AXI_AW_SBITERR;
assign axi_aw_dbiterr = AXI_AW_DBITERR;
assign axi_aw_overflow = AXI_AW_OVERFLOW;
assign axi_aw_underflow = AXI_AW_UNDERFLOW;
assign axi_aw_prog_full = AXI_AW_PROG_FULL;
assign axi_aw_prog_empty = AXI_AW_PROG_EMPTY;
assign AXI_W_INJECTSBITERR = axi_w_injectsbiterr;
assign AXI_W_INJECTDBITERR = axi_w_injectdbiterr;
assign axi_w_sbiterr = AXI_W_SBITERR;
assign axi_w_dbiterr = AXI_W_DBITERR;
assign axi_w_overflow = AXI_W_OVERFLOW;
assign axi_w_underflow = AXI_W_UNDERFLOW;
assign axi_w_prog_full = AXI_W_PROG_FULL;
assign axi_w_prog_empty = AXI_W_PROG_EMPTY;
assign AXI_B_INJECTSBITERR = axi_b_injectsbiterr;
assign AXI_B_INJECTDBITERR = axi_b_injectdbiterr;
assign axi_b_sbiterr = AXI_B_SBITERR;
assign axi_b_dbiterr = AXI_B_DBITERR;
assign axi_b_overflow = AXI_B_OVERFLOW;
assign axi_b_underflow = AXI_B_UNDERFLOW;
assign axi_b_prog_full = AXI_B_PROG_FULL;
assign axi_b_prog_empty = AXI_B_PROG_EMPTY;
assign AXI_AR_INJECTSBITERR = axi_ar_injectsbiterr;
assign AXI_AR_INJECTDBITERR = axi_ar_injectdbiterr;
assign axi_ar_sbiterr = AXI_AR_SBITERR;
assign axi_ar_dbiterr = AXI_AR_DBITERR;
assign axi_ar_overflow = AXI_AR_OVERFLOW;
assign axi_ar_underflow = AXI_AR_UNDERFLOW;
assign axi_ar_prog_full = AXI_AR_PROG_FULL;
assign axi_ar_prog_empty = AXI_AR_PROG_EMPTY;
assign AXI_R_INJECTSBITERR = axi_r_injectsbiterr;
assign AXI_R_INJECTDBITERR = axi_r_injectdbiterr;
assign axi_r_sbiterr = AXI_R_SBITERR;
assign axi_r_dbiterr = AXI_R_DBITERR;
assign axi_r_overflow = AXI_R_OVERFLOW;
assign axi_r_underflow = AXI_R_UNDERFLOW;
assign axi_r_prog_full = AXI_R_PROG_FULL;
assign axi_r_prog_empty = AXI_R_PROG_EMPTY;
assign AXIS_INJECTSBITERR = axis_injectsbiterr;
assign AXIS_INJECTDBITERR = axis_injectdbiterr;
assign axis_sbiterr = AXIS_SBITERR;
assign axis_dbiterr = AXIS_DBITERR;
assign axis_overflow = AXIS_OVERFLOW;
assign axis_underflow = AXIS_UNDERFLOW;
assign axis_prog_full = AXIS_PROG_FULL;
assign axis_prog_empty = AXIS_PROG_EMPTY;
assign DIN = din;
assign PROG_EMPTY_THRESH = prog_empty_thresh;
assign PROG_EMPTY_THRESH_ASSERT = prog_empty_thresh_assert;
assign PROG_EMPTY_THRESH_NEGATE = prog_empty_thresh_negate;
assign PROG_FULL_THRESH = prog_full_thresh;
assign PROG_FULL_THRESH_ASSERT = prog_full_thresh_assert;
assign PROG_FULL_THRESH_NEGATE = prog_full_thresh_negate;
assign dout = DOUT;
assign data_count = DATA_COUNT;
assign rd_data_count = RD_DATA_COUNT;
assign wr_data_count = WR_DATA_COUNT;
assign S_AXI_AWID = s_axi_awid;
assign S_AXI_AWADDR = s_axi_awaddr;
assign S_AXI_AWLEN = s_axi_awlen;
assign S_AXI_AWSIZE = s_axi_awsize;
assign S_AXI_AWBURST = s_axi_awburst;
assign S_AXI_AWLOCK = s_axi_awlock;
assign S_AXI_AWCACHE = s_axi_awcache;
assign S_AXI_AWPROT = s_axi_awprot;
assign S_AXI_AWQOS = s_axi_awqos;
assign S_AXI_AWREGION = s_axi_awregion;
assign S_AXI_AWUSER = s_axi_awuser;
assign S_AXI_WID = s_axi_wid;
assign S_AXI_WDATA = s_axi_wdata;
assign S_AXI_WSTRB = s_axi_wstrb;
assign S_AXI_WUSER = s_axi_wuser;
assign s_axi_bid = S_AXI_BID;
assign s_axi_bresp = S_AXI_BRESP;
assign s_axi_buser = S_AXI_BUSER;
assign m_axi_awid = M_AXI_AWID;
assign m_axi_awaddr = M_AXI_AWADDR;
assign m_axi_awlen = M_AXI_AWLEN;
assign m_axi_awsize = M_AXI_AWSIZE;
assign m_axi_awburst = M_AXI_AWBURST;
assign m_axi_awlock = M_AXI_AWLOCK;
assign m_axi_awcache = M_AXI_AWCACHE;
assign m_axi_awprot = M_AXI_AWPROT;
assign m_axi_awqos = M_AXI_AWQOS;
assign m_axi_awregion = M_AXI_AWREGION;
assign m_axi_awuser = M_AXI_AWUSER;
assign m_axi_wid = M_AXI_WID;
assign m_axi_wdata = M_AXI_WDATA;
assign m_axi_wstrb = M_AXI_WSTRB;
assign m_axi_wuser = M_AXI_WUSER;
assign M_AXI_BID = m_axi_bid;
assign M_AXI_BRESP = m_axi_bresp;
assign M_AXI_BUSER = m_axi_buser;
assign S_AXI_ARID = s_axi_arid;
assign S_AXI_ARADDR = s_axi_araddr;
assign S_AXI_ARLEN = s_axi_arlen;
assign S_AXI_ARSIZE = s_axi_arsize;
assign S_AXI_ARBURST = s_axi_arburst;
assign S_AXI_ARLOCK = s_axi_arlock;
assign S_AXI_ARCACHE = s_axi_arcache;
assign S_AXI_ARPROT = s_axi_arprot;
assign S_AXI_ARQOS = s_axi_arqos;
assign S_AXI_ARREGION = s_axi_arregion;
assign S_AXI_ARUSER = s_axi_aruser;
assign s_axi_rid = S_AXI_RID;
assign s_axi_rdata = S_AXI_RDATA;
assign s_axi_rresp = S_AXI_RRESP;
assign s_axi_ruser = S_AXI_RUSER;
assign m_axi_arid = M_AXI_ARID;
assign m_axi_araddr = M_AXI_ARADDR;
assign m_axi_arlen = M_AXI_ARLEN;
assign m_axi_arsize = M_AXI_ARSIZE;
assign m_axi_arburst = M_AXI_ARBURST;
assign m_axi_arlock = M_AXI_ARLOCK;
assign m_axi_arcache = M_AXI_ARCACHE;
assign m_axi_arprot = M_AXI_ARPROT;
assign m_axi_arqos = M_AXI_ARQOS;
assign m_axi_arregion = M_AXI_ARREGION;
assign m_axi_aruser = M_AXI_ARUSER;
assign M_AXI_RID = m_axi_rid;
assign M_AXI_RDATA = m_axi_rdata;
assign M_AXI_RRESP = m_axi_rresp;
assign M_AXI_RUSER = m_axi_ruser;
assign S_AXIS_TDATA = s_axis_tdata;
assign S_AXIS_TSTRB = s_axis_tstrb;
assign S_AXIS_TKEEP = s_axis_tkeep;
assign S_AXIS_TID = s_axis_tid;
assign S_AXIS_TDEST = s_axis_tdest;
assign S_AXIS_TUSER = s_axis_tuser;
assign m_axis_tdata = M_AXIS_TDATA;
assign m_axis_tstrb = M_AXIS_TSTRB;
assign m_axis_tkeep = M_AXIS_TKEEP;
assign m_axis_tid = M_AXIS_TID;
assign m_axis_tdest = M_AXIS_TDEST;
assign m_axis_tuser = M_AXIS_TUSER;
assign AXI_AW_PROG_FULL_THRESH = axi_aw_prog_full_thresh;
assign AXI_AW_PROG_EMPTY_THRESH = axi_aw_prog_empty_thresh;
assign axi_aw_data_count = AXI_AW_DATA_COUNT;
assign axi_aw_wr_data_count = AXI_AW_WR_DATA_COUNT;
assign axi_aw_rd_data_count = AXI_AW_RD_DATA_COUNT;
assign AXI_W_PROG_FULL_THRESH = axi_w_prog_full_thresh;
assign AXI_W_PROG_EMPTY_THRESH = axi_w_prog_empty_thresh;
assign axi_w_data_count = AXI_W_DATA_COUNT;
assign axi_w_wr_data_count = AXI_W_WR_DATA_COUNT;
assign axi_w_rd_data_count = AXI_W_RD_DATA_COUNT;
assign AXI_B_PROG_FULL_THRESH = axi_b_prog_full_thresh;
assign AXI_B_PROG_EMPTY_THRESH = axi_b_prog_empty_thresh;
assign axi_b_data_count = AXI_B_DATA_COUNT;
assign axi_b_wr_data_count = AXI_B_WR_DATA_COUNT;
assign axi_b_rd_data_count = AXI_B_RD_DATA_COUNT;
assign AXI_AR_PROG_FULL_THRESH = axi_ar_prog_full_thresh;
assign AXI_AR_PROG_EMPTY_THRESH = axi_ar_prog_empty_thresh;
assign axi_ar_data_count = AXI_AR_DATA_COUNT;
assign axi_ar_wr_data_count = AXI_AR_WR_DATA_COUNT;
assign axi_ar_rd_data_count = AXI_AR_RD_DATA_COUNT;
assign AXI_R_PROG_FULL_THRESH = axi_r_prog_full_thresh;
assign AXI_R_PROG_EMPTY_THRESH = axi_r_prog_empty_thresh;
assign axi_r_data_count = AXI_R_DATA_COUNT;
assign axi_r_wr_data_count = AXI_R_WR_DATA_COUNT;
assign axi_r_rd_data_count = AXI_R_RD_DATA_COUNT;
assign AXIS_PROG_FULL_THRESH = axis_prog_full_thresh;
assign AXIS_PROG_EMPTY_THRESH = axis_prog_empty_thresh;
assign axis_data_count = AXIS_DATA_COUNT;
assign axis_wr_data_count = AXIS_WR_DATA_COUNT;
assign axis_rd_data_count = AXIS_RD_DATA_COUNT;
generate if (C_INTERFACE_TYPE == 0) begin : conv_fifo
fifo_generator_v13_1_1_CONV_VER
#(
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_INTERFACE_TYPE (C_INTERFACE_TYPE),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DATA_COUNT_WIDTH (C_DATA_COUNT_WIDTH),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_DIN_WIDTH (C_DIN_WIDTH),
.C_DOUT_RST_VAL (C_USE_DOUT_RST == 1 ? C_DOUT_RST_VAL : 0),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_FAMILY (C_FAMILY),
.C_FULL_FLAGS_RST_VAL (C_FULL_FLAGS_RST_VAL),
.C_HAS_ALMOST_EMPTY (C_HAS_ALMOST_EMPTY),
.C_HAS_ALMOST_FULL (C_HAS_ALMOST_FULL),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_DATA_COUNT (C_HAS_DATA_COUNT),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT),
.C_HAS_RD_RST (C_HAS_RD_RST),
.C_HAS_RST (C_HAS_RST),
.C_HAS_SRST (C_HAS_SRST),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_HAS_VALID (C_HAS_VALID),
.C_HAS_WR_ACK (C_HAS_WR_ACK),
.C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT),
.C_HAS_WR_RST (C_HAS_WR_RST),
.C_IMPLEMENTATION_TYPE (C_IMPLEMENTATION_TYPE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_MEMORY_TYPE (C_MEMORY_TYPE),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_PRELOAD_LATENCY (C_PRELOAD_LATENCY),
.C_PRELOAD_REGS (C_PRELOAD_REGS),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL),
.C_PROG_EMPTY_THRESH_NEGATE_VAL (C_PROG_EMPTY_THRESH_NEGATE_VAL),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL),
.C_PROG_FULL_THRESH_NEGATE_VAL (C_PROG_FULL_THRESH_NEGATE_VAL),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE),
.C_RD_DATA_COUNT_WIDTH (C_RD_DATA_COUNT_WIDTH),
.C_RD_DEPTH (C_RD_DEPTH),
.C_RD_FREQ (C_RD_FREQ),
.C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_USE_ECC (C_USE_ECC),
.C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG),
.C_EN_SAFETY_CKT (C_EN_SAFETY_CKT),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_USE_FWFT_DATA_COUNT (C_USE_FWFT_DATA_COUNT),
.C_VALID_LOW (C_VALID_LOW),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH),
.C_WR_DEPTH (C_WR_DEPTH),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE),
.C_AXI_TYPE (C_AXI_TYPE),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE)
)
fifo_generator_v13_1_1_conv_dut
(
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.CLK (CLK),
.RST (RST),
.SRST (SRST),
.WR_CLK (WR_CLK),
.WR_RST (WR_RST),
.RD_CLK (RD_CLK),
.RD_RST (RD_RST),
.DIN (DIN),
.WR_EN (WR_EN),
.RD_EN (RD_EN),
.PROG_EMPTY_THRESH (PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT (PROG_EMPTY_THRESH_ASSERT),
.PROG_EMPTY_THRESH_NEGATE (PROG_EMPTY_THRESH_NEGATE),
.PROG_FULL_THRESH (PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT (PROG_FULL_THRESH_ASSERT),
.PROG_FULL_THRESH_NEGATE (PROG_FULL_THRESH_NEGATE),
.INT_CLK (INT_CLK),
.INJECTDBITERR (INJECTDBITERR),
.INJECTSBITERR (INJECTSBITERR),
.DOUT (DOUT),
.FULL (FULL),
.ALMOST_FULL (ALMOST_FULL),
.WR_ACK (WR_ACK),
.OVERFLOW (OVERFLOW),
.EMPTY (EMPTY),
.ALMOST_EMPTY (ALMOST_EMPTY),
.VALID (VALID),
.UNDERFLOW (UNDERFLOW),
.DATA_COUNT (DATA_COUNT),
.RD_DATA_COUNT (RD_DATA_COUNT),
.WR_DATA_COUNT (wr_data_count_in),
.PROG_FULL (PROG_FULL),
.PROG_EMPTY (PROG_EMPTY),
.SBITERR (SBITERR),
.DBITERR (DBITERR),
.wr_rst_busy (wr_rst_busy),
.rd_rst_busy (rd_rst_busy),
.wr_rst_i_out (wr_rst_int),
.rd_rst_i_out (rd_rst_int)
);
end endgenerate
localparam IS_8SERIES = (C_FAMILY == "virtexu" || C_FAMILY == "kintexu" || C_FAMILY == "artixu" || C_FAMILY == "virtexuplus" || C_FAMILY == "zynquplus" || C_FAMILY == "kintexuplus") ? 1 : 0;
localparam C_AXI_SIZE_WIDTH = 3;
localparam C_AXI_BURST_WIDTH = 2;
localparam C_AXI_CACHE_WIDTH = 4;
localparam C_AXI_PROT_WIDTH = 3;
localparam C_AXI_QOS_WIDTH = 4;
localparam C_AXI_REGION_WIDTH = 4;
localparam C_AXI_BRESP_WIDTH = 2;
localparam C_AXI_RRESP_WIDTH = 2;
localparam IS_AXI_STREAMING = C_INTERFACE_TYPE == 1 ? 1 : 0;
localparam TDATA_OFFSET = C_HAS_AXIS_TDATA == 1 ? C_DIN_WIDTH_AXIS-C_AXIS_TDATA_WIDTH : C_DIN_WIDTH_AXIS;
localparam TSTRB_OFFSET = C_HAS_AXIS_TSTRB == 1 ? TDATA_OFFSET-C_AXIS_TSTRB_WIDTH : TDATA_OFFSET;
localparam TKEEP_OFFSET = C_HAS_AXIS_TKEEP == 1 ? TSTRB_OFFSET-C_AXIS_TKEEP_WIDTH : TSTRB_OFFSET;
localparam TID_OFFSET = C_HAS_AXIS_TID == 1 ? TKEEP_OFFSET-C_AXIS_TID_WIDTH : TKEEP_OFFSET;
localparam TDEST_OFFSET = C_HAS_AXIS_TDEST == 1 ? TID_OFFSET-C_AXIS_TDEST_WIDTH : TID_OFFSET;
localparam TUSER_OFFSET = C_HAS_AXIS_TUSER == 1 ? TDEST_OFFSET-C_AXIS_TUSER_WIDTH : TDEST_OFFSET;
localparam LOG_DEPTH_AXIS = find_log2(C_WR_DEPTH_AXIS);
localparam LOG_WR_DEPTH = find_log2(C_WR_DEPTH);
function [LOG_DEPTH_AXIS-1:0] bin2gray;
input [LOG_DEPTH_AXIS-1:0] x;
begin
bin2gray = x ^ (x>>1);
end
endfunction
function [LOG_DEPTH_AXIS-1:0] gray2bin;
input [LOG_DEPTH_AXIS-1:0] x;
integer i;
begin
gray2bin[LOG_DEPTH_AXIS-1] = x[LOG_DEPTH_AXIS-1];
for(i=LOG_DEPTH_AXIS-2; i>=0; i=i-1) begin
gray2bin[i] = gray2bin[i+1] ^ x[i];
end
end
endfunction
wire [(LOG_WR_DEPTH)-1 : 0] w_cnt_gc_asreg_last;
wire [LOG_WR_DEPTH-1 : 0] w_q [0:C_SYNCHRONIZER_STAGE] ;
wire [LOG_WR_DEPTH-1 : 0] w_q_temp [1:C_SYNCHRONIZER_STAGE] ;
reg [LOG_WR_DEPTH-1 : 0] w_cnt_rd = 0;
reg [LOG_WR_DEPTH-1 : 0] w_cnt = 0;
reg [LOG_WR_DEPTH-1 : 0] w_cnt_gc = 0;
reg [LOG_WR_DEPTH-1 : 0] r_cnt = 0;
wire [LOG_WR_DEPTH : 0] adj_w_cnt_rd_pad;
wire [LOG_WR_DEPTH : 0] r_inv_pad;
wire [LOG_WR_DEPTH-1 : 0] d_cnt;
reg [LOG_WR_DEPTH : 0] d_cnt_pad = 0;
reg adj_w_cnt_rd_pad_0 = 0;
reg r_inv_pad_0 = 0;
genvar l;
generate for (l = 1; ((l <= C_SYNCHRONIZER_STAGE) && (C_HAS_DATA_COUNTS_AXIS == 3 && C_INTERFACE_TYPE == 0) ); l = l + 1) begin : g_cnt_sync_stage
fifo_generator_v13_1_1_sync_stage
#(
.C_WIDTH (LOG_WR_DEPTH)
)
rd_stg_inst
(
.RST (rd_rst_int),
.CLK (RD_CLK),
.DIN (w_q[l-1]),
.DOUT (w_q[l])
);
end endgenerate // gpkt_cnt_sync_stage
generate if (C_INTERFACE_TYPE == 0 && C_HAS_DATA_COUNTS_AXIS == 3) begin : fifo_ic_adapter
assign wr_eop_ad = WR_EN & !(FULL);
assign rd_eop_ad = RD_EN & !(EMPTY);
always @ (posedge wr_rst_int or posedge WR_CLK)
begin
if (wr_rst_int)
w_cnt <= 1'b0;
else if (wr_eop_ad)
w_cnt <= w_cnt + 1;
end
always @ (posedge wr_rst_int or posedge WR_CLK)
begin
if (wr_rst_int)
w_cnt_gc <= 1'b0;
else
w_cnt_gc <= bin2gray(w_cnt);
end
assign w_q[0] = w_cnt_gc;
assign w_cnt_gc_asreg_last = w_q[C_SYNCHRONIZER_STAGE];
always @ (posedge rd_rst_int or posedge RD_CLK)
begin
if (rd_rst_int)
w_cnt_rd <= 1'b0;
else
w_cnt_rd <= gray2bin(w_cnt_gc_asreg_last);
end
always @ (posedge rd_rst_int or posedge RD_CLK)
begin
if (rd_rst_int)
r_cnt <= 1'b0;
else if (rd_eop_ad)
r_cnt <= r_cnt + 1;
end
// Take the difference of write and read packet count
// Logic is similar to rd_pe_as
assign adj_w_cnt_rd_pad[LOG_WR_DEPTH : 1] = w_cnt_rd;
assign r_inv_pad[LOG_WR_DEPTH : 1] = ~r_cnt;
assign adj_w_cnt_rd_pad[0] = adj_w_cnt_rd_pad_0;
assign r_inv_pad[0] = r_inv_pad_0;
always @ ( rd_eop_ad )
begin
if (!rd_eop_ad) begin
adj_w_cnt_rd_pad_0 <= 1'b1;
r_inv_pad_0 <= 1'b1;
end else begin
adj_w_cnt_rd_pad_0 <= 1'b0;
r_inv_pad_0 <= 1'b0;
end
end
always @ (posedge rd_rst_int or posedge RD_CLK)
begin
if (rd_rst_int)
d_cnt_pad <= 1'b0;
else
d_cnt_pad <= adj_w_cnt_rd_pad + r_inv_pad ;
end
assign d_cnt = d_cnt_pad [LOG_WR_DEPTH : 1] ;
assign WR_DATA_COUNT = d_cnt;
end endgenerate // fifo_ic_adapter
generate if (C_INTERFACE_TYPE == 0 && C_HAS_DATA_COUNTS_AXIS != 3) begin : fifo_icn_adapter
assign WR_DATA_COUNT = wr_data_count_in;
end endgenerate // fifo_icn_adapter
wire inverted_reset = ~S_ARESETN;
wire axi_rs_rst;
reg rst_d1 = 0 ;
reg rst_d2 = 0 ;
wire [C_DIN_WIDTH_AXIS-1:0] axis_din ;
wire [C_DIN_WIDTH_AXIS-1:0] axis_dout ;
wire axis_full ;
wire axis_almost_full ;
wire axis_empty ;
wire axis_s_axis_tready;
wire axis_m_axis_tvalid;
wire axis_wr_en ;
wire axis_rd_en ;
wire axis_we ;
wire axis_re ;
wire [C_WR_PNTR_WIDTH_AXIS:0] axis_dc;
reg axis_pkt_read = 1'b0;
wire axis_rd_rst;
wire axis_wr_rst;
generate if (C_INTERFACE_TYPE > 0 && (C_AXIS_TYPE == 1 || C_WACH_TYPE == 1 ||
C_WDCH_TYPE == 1 || C_WRCH_TYPE == 1 || C_RACH_TYPE == 1 || C_RDCH_TYPE == 1)) begin : gaxi_rs_rst
always @ (posedge inverted_reset or posedge S_ACLK) begin
if (inverted_reset) begin
rst_d1 <= 1'b1;
rst_d2 <= 1'b1;
end else begin
rst_d1 <= #`TCQ 1'b0;
rst_d2 <= #`TCQ rst_d1;
end
end
assign axi_rs_rst = rst_d2;
end endgenerate // gaxi_rs_rst
generate if (IS_AXI_STREAMING == 1 && C_AXIS_TYPE == 0) begin : axi_streaming
// Write protection when almost full or prog_full is high
assign axis_we = (C_PROG_FULL_TYPE_AXIS != 0) ? axis_s_axis_tready & S_AXIS_TVALID :
(C_APPLICATION_TYPE_AXIS == 1) ? axis_s_axis_tready & S_AXIS_TVALID : S_AXIS_TVALID;
// Read protection when almost empty or prog_empty is high
assign axis_re = (C_PROG_EMPTY_TYPE_AXIS != 0) ? axis_m_axis_tvalid & M_AXIS_TREADY :
(C_APPLICATION_TYPE_AXIS == 1) ? axis_m_axis_tvalid & M_AXIS_TREADY : M_AXIS_TREADY;
assign axis_wr_en = (C_HAS_SLAVE_CE == 1) ? axis_we & S_ACLK_EN : axis_we;
assign axis_rd_en = (C_HAS_MASTER_CE == 1) ? axis_re & M_ACLK_EN : axis_re;
fifo_generator_v13_1_1_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_INTERFACE_TYPE (C_INTERFACE_TYPE),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_AXIS == 1 || C_IMPLEMENTATION_TYPE_AXIS == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_AXIS == 2 || C_IMPLEMENTATION_TYPE_AXIS == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_AXIS == 1 || C_IMPLEMENTATION_TYPE_AXIS == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_AXIS == 11 || C_IMPLEMENTATION_TYPE_AXIS == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_AXIS),
.C_WR_DEPTH (C_WR_DEPTH_AXIS),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_AXIS),
.C_DOUT_WIDTH (C_DIN_WIDTH_AXIS),
.C_RD_DEPTH (C_WR_DEPTH_AXIS),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_AXIS),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_AXIS),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_AXIS),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_AXIS),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS),
.C_USE_ECC (C_USE_ECC_AXIS),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_AXIS),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (C_APPLICATION_TYPE_AXIS == 1 ? 1: 0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG),
//.C_EN_SAFETY_CKT (C_EN_SAFETY_CKT),
.C_FIFO_TYPE (C_APPLICATION_TYPE_AXIS == 1 ? 0: C_APPLICATION_TYPE_AXIS),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_AXIS == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_AXIS + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_AXIS == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_AXIS + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_AXIS == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_AXIS + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
.C_EN_SAFETY_CKT (1),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v13_1_1_axis_dut
(
.CLK (S_ACLK),
.WR_CLK (S_ACLK),
.RD_CLK (M_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (axis_wr_en),
.RD_EN (axis_rd_en),
.PROG_FULL_THRESH (AXIS_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_AXIS{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_AXIS{1'b0}}),
.PROG_EMPTY_THRESH (AXIS_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_AXIS{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_AXIS{1'b0}}),
.INJECTDBITERR (AXIS_INJECTDBITERR),
.INJECTSBITERR (AXIS_INJECTSBITERR),
.DIN (axis_din),
.DOUT (axis_dout),
.FULL (axis_full),
.EMPTY (axis_empty),
.ALMOST_FULL (axis_almost_full),
.PROG_FULL (AXIS_PROG_FULL),
.ALMOST_EMPTY (),
.PROG_EMPTY (AXIS_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (AXIS_OVERFLOW),
.VALID (),
.UNDERFLOW (AXIS_UNDERFLOW),
.DATA_COUNT (axis_dc),
.RD_DATA_COUNT (AXIS_RD_DATA_COUNT),
.WR_DATA_COUNT (AXIS_WR_DATA_COUNT),
.SBITERR (AXIS_SBITERR),
.DBITERR (AXIS_DBITERR),
.wr_rst_busy (wr_rst_busy_axis),
.rd_rst_busy (rd_rst_busy_axis),
.wr_rst_i_out (axis_wr_rst),
.rd_rst_i_out (axis_rd_rst),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign axis_s_axis_tready = (IS_8SERIES == 0) ? ~axis_full : (C_IMPLEMENTATION_TYPE_AXIS == 5 || C_IMPLEMENTATION_TYPE_AXIS == 13) ? ~(axis_full | wr_rst_busy_axis) : ~axis_full;
assign axis_m_axis_tvalid = (C_APPLICATION_TYPE_AXIS != 1) ? ~axis_empty : ~axis_empty & axis_pkt_read;
assign S_AXIS_TREADY = axis_s_axis_tready;
assign M_AXIS_TVALID = axis_m_axis_tvalid;
end endgenerate // axi_streaming
wire axis_wr_eop;
reg axis_wr_eop_d1 = 1'b0;
wire axis_rd_eop;
integer axis_pkt_cnt;
generate if (C_APPLICATION_TYPE_AXIS == 1 && C_COMMON_CLOCK == 1) begin : gaxis_pkt_fifo_cc
assign axis_wr_eop = axis_wr_en & S_AXIS_TLAST;
assign axis_rd_eop = axis_rd_en & axis_dout[0];
always @ (posedge inverted_reset or posedge S_ACLK)
begin
if (inverted_reset)
axis_pkt_read <= 1'b0;
else if (axis_rd_eop && (axis_pkt_cnt == 1) && ~axis_wr_eop_d1)
axis_pkt_read <= 1'b0;
else if ((axis_pkt_cnt > 0) || (axis_almost_full && ~axis_empty))
axis_pkt_read <= 1'b1;
end
always @ (posedge inverted_reset or posedge S_ACLK)
begin
if (inverted_reset)
axis_wr_eop_d1 <= 1'b0;
else
axis_wr_eop_d1 <= axis_wr_eop;
end
always @ (posedge inverted_reset or posedge S_ACLK)
begin
if (inverted_reset)
axis_pkt_cnt <= 0;
else if (axis_wr_eop_d1 && ~axis_rd_eop)
axis_pkt_cnt <= axis_pkt_cnt + 1;
else if (axis_rd_eop && ~axis_wr_eop_d1)
axis_pkt_cnt <= axis_pkt_cnt - 1;
end
end endgenerate // gaxis_pkt_fifo_cc
reg [LOG_DEPTH_AXIS-1 : 0] axis_wpkt_cnt_gc = 0;
wire [(LOG_DEPTH_AXIS)-1 : 0] axis_wpkt_cnt_gc_asreg_last;
wire axis_rd_has_rst;
wire [0:C_SYNCHRONIZER_STAGE] axis_af_q ;
wire [LOG_DEPTH_AXIS-1 : 0] wpkt_q [0:C_SYNCHRONIZER_STAGE] ;
wire [1:C_SYNCHRONIZER_STAGE] axis_af_q_temp = 0;
wire [LOG_DEPTH_AXIS-1 : 0] wpkt_q_temp [1:C_SYNCHRONIZER_STAGE] ;
reg [LOG_DEPTH_AXIS-1 : 0] axis_wpkt_cnt_rd = 0;
reg [LOG_DEPTH_AXIS-1 : 0] axis_wpkt_cnt = 0;
reg [LOG_DEPTH_AXIS-1 : 0] axis_rpkt_cnt = 0;
wire [LOG_DEPTH_AXIS : 0] adj_axis_wpkt_cnt_rd_pad;
wire [LOG_DEPTH_AXIS : 0] rpkt_inv_pad;
wire [LOG_DEPTH_AXIS-1 : 0] diff_pkt_cnt;
reg [LOG_DEPTH_AXIS : 0] diff_pkt_cnt_pad = 0;
reg adj_axis_wpkt_cnt_rd_pad_0 = 0;
reg rpkt_inv_pad_0 = 0;
wire axis_af_rd ;
generate if (C_HAS_RST == 1) begin : rst_blk_has
assign axis_rd_has_rst = axis_rd_rst;
end endgenerate //rst_blk_has
generate if (C_HAS_RST == 0) begin :rst_blk_no
assign axis_rd_has_rst = 1'b0;
end endgenerate //rst_blk_no
genvar i;
generate for (i = 1; ((i <= C_SYNCHRONIZER_STAGE) && (C_APPLICATION_TYPE_AXIS == 1 && C_COMMON_CLOCK == 0) ); i = i + 1) begin : gpkt_cnt_sync_stage
fifo_generator_v13_1_1_sync_stage
#(
.C_WIDTH (LOG_DEPTH_AXIS)
)
rd_stg_inst
(
.RST (axis_rd_has_rst),
.CLK (M_ACLK),
.DIN (wpkt_q[i-1]),
.DOUT (wpkt_q[i])
);
fifo_generator_v13_1_1_sync_stage
#(
.C_WIDTH (1)
)
wr_stg_inst
(
.RST (axis_rd_has_rst),
.CLK (M_ACLK),
.DIN (axis_af_q[i-1]),
.DOUT (axis_af_q[i])
);
end endgenerate // gpkt_cnt_sync_stage
generate if (C_APPLICATION_TYPE_AXIS == 1 && C_COMMON_CLOCK == 0) begin : gaxis_pkt_fifo_ic
assign axis_wr_eop = axis_wr_en & S_AXIS_TLAST;
assign axis_rd_eop = axis_rd_en & axis_dout[0];
always @ (posedge axis_rd_has_rst or posedge M_ACLK)
begin
if (axis_rd_has_rst)
axis_pkt_read <= 1'b0;
else if (axis_rd_eop && (diff_pkt_cnt == 1))
axis_pkt_read <= 1'b0;
else if ((diff_pkt_cnt > 0) || (axis_af_rd && ~axis_empty))
axis_pkt_read <= 1'b1;
end
always @ (posedge axis_wr_rst or posedge S_ACLK)
begin
if (axis_wr_rst)
axis_wpkt_cnt <= 1'b0;
else if (axis_wr_eop)
axis_wpkt_cnt <= axis_wpkt_cnt + 1;
end
always @ (posedge axis_wr_rst or posedge S_ACLK)
begin
if (axis_wr_rst)
axis_wpkt_cnt_gc <= 1'b0;
else
axis_wpkt_cnt_gc <= bin2gray(axis_wpkt_cnt);
end
assign wpkt_q[0] = axis_wpkt_cnt_gc;
assign axis_wpkt_cnt_gc_asreg_last = wpkt_q[C_SYNCHRONIZER_STAGE];
assign axis_af_q[0] = axis_almost_full;
//assign axis_af_q[1:C_SYNCHRONIZER_STAGE] = axis_af_q_temp[1:C_SYNCHRONIZER_STAGE];
assign axis_af_rd = axis_af_q[C_SYNCHRONIZER_STAGE];
always @ (posedge axis_rd_has_rst or posedge M_ACLK)
begin
if (axis_rd_has_rst)
axis_wpkt_cnt_rd <= 1'b0;
else
axis_wpkt_cnt_rd <= gray2bin(axis_wpkt_cnt_gc_asreg_last);
end
always @ (posedge axis_rd_rst or posedge M_ACLK)
begin
if (axis_rd_has_rst)
axis_rpkt_cnt <= 1'b0;
else if (axis_rd_eop)
axis_rpkt_cnt <= axis_rpkt_cnt + 1;
end
// Take the difference of write and read packet count
// Logic is similar to rd_pe_as
assign adj_axis_wpkt_cnt_rd_pad[LOG_DEPTH_AXIS : 1] = axis_wpkt_cnt_rd;
assign rpkt_inv_pad[LOG_DEPTH_AXIS : 1] = ~axis_rpkt_cnt;
assign adj_axis_wpkt_cnt_rd_pad[0] = adj_axis_wpkt_cnt_rd_pad_0;
assign rpkt_inv_pad[0] = rpkt_inv_pad_0;
always @ ( axis_rd_eop )
begin
if (!axis_rd_eop) begin
adj_axis_wpkt_cnt_rd_pad_0 <= 1'b1;
rpkt_inv_pad_0 <= 1'b1;
end else begin
adj_axis_wpkt_cnt_rd_pad_0 <= 1'b0;
rpkt_inv_pad_0 <= 1'b0;
end
end
always @ (posedge axis_rd_rst or posedge M_ACLK)
begin
if (axis_rd_has_rst)
diff_pkt_cnt_pad <= 1'b0;
else
diff_pkt_cnt_pad <= adj_axis_wpkt_cnt_rd_pad + rpkt_inv_pad ;
end
assign diff_pkt_cnt = diff_pkt_cnt_pad [LOG_DEPTH_AXIS : 1] ;
end endgenerate // gaxis_pkt_fifo_ic
// Generate the accurate data count for axi stream packet fifo configuration
reg [C_WR_PNTR_WIDTH_AXIS:0] axis_dc_pkt_fifo = 0;
generate if (IS_AXI_STREAMING == 1 && C_HAS_DATA_COUNTS_AXIS == 1 && C_APPLICATION_TYPE_AXIS == 1) begin : gdc_pkt
always @ (posedge inverted_reset or posedge S_ACLK)
begin
if (inverted_reset)
axis_dc_pkt_fifo <= 0;
else if (axis_wr_en && (~axis_rd_en))
axis_dc_pkt_fifo <= #`TCQ axis_dc_pkt_fifo + 1;
else if (~axis_wr_en && axis_rd_en)
axis_dc_pkt_fifo <= #`TCQ axis_dc_pkt_fifo - 1;
end
assign AXIS_DATA_COUNT = axis_dc_pkt_fifo;
end endgenerate // gdc_pkt
generate if (IS_AXI_STREAMING == 1 && C_HAS_DATA_COUNTS_AXIS == 0 && C_APPLICATION_TYPE_AXIS == 1) begin : gndc_pkt
assign AXIS_DATA_COUNT = 0;
end endgenerate // gndc_pkt
generate if (IS_AXI_STREAMING == 1 && C_APPLICATION_TYPE_AXIS != 1) begin : gdc
assign AXIS_DATA_COUNT = axis_dc;
end endgenerate // gdc
// Register Slice for Write Address Channel
generate if (C_AXIS_TYPE == 1) begin : gaxis_reg_slice
assign axis_wr_en = (C_HAS_SLAVE_CE == 1) ? S_AXIS_TVALID & S_ACLK_EN : S_AXIS_TVALID;
assign axis_rd_en = (C_HAS_MASTER_CE == 1) ? M_AXIS_TREADY & M_ACLK_EN : M_AXIS_TREADY;
fifo_generator_v13_1_1_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_AXIS),
.C_REG_CONFIG (C_REG_SLICE_MODE_AXIS)
)
axis_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (axis_din),
.S_VALID (axis_wr_en),
.S_READY (S_AXIS_TREADY),
// Master side
.M_PAYLOAD_DATA (axis_dout),
.M_VALID (M_AXIS_TVALID),
.M_READY (axis_rd_en)
);
end endgenerate // gaxis_reg_slice
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TDATA == 1) begin : tdata
assign axis_din[C_DIN_WIDTH_AXIS-1:TDATA_OFFSET] = S_AXIS_TDATA;
assign M_AXIS_TDATA = axis_dout[C_DIN_WIDTH_AXIS-1:TDATA_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TSTRB == 1) begin : tstrb
assign axis_din[TDATA_OFFSET-1:TSTRB_OFFSET] = S_AXIS_TSTRB;
assign M_AXIS_TSTRB = axis_dout[TDATA_OFFSET-1:TSTRB_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TKEEP == 1) begin : tkeep
assign axis_din[TSTRB_OFFSET-1:TKEEP_OFFSET] = S_AXIS_TKEEP;
assign M_AXIS_TKEEP = axis_dout[TSTRB_OFFSET-1:TKEEP_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TID == 1) begin : tid
assign axis_din[TKEEP_OFFSET-1:TID_OFFSET] = S_AXIS_TID;
assign M_AXIS_TID = axis_dout[TKEEP_OFFSET-1:TID_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TDEST == 1) begin : tdest
assign axis_din[TID_OFFSET-1:TDEST_OFFSET] = S_AXIS_TDEST;
assign M_AXIS_TDEST = axis_dout[TID_OFFSET-1:TDEST_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TUSER == 1) begin : tuser
assign axis_din[TDEST_OFFSET-1:TUSER_OFFSET] = S_AXIS_TUSER;
assign M_AXIS_TUSER = axis_dout[TDEST_OFFSET-1:TUSER_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TLAST == 1) begin : tlast
assign axis_din[0] = S_AXIS_TLAST;
assign M_AXIS_TLAST = axis_dout[0];
end endgenerate
//###########################################################################
// AXI FULL Write Channel (axi_write_channel)
//###########################################################################
localparam IS_AXI_FULL = ((C_INTERFACE_TYPE == 2) && (C_AXI_TYPE != 2)) ? 1 : 0;
localparam IS_AXI_LITE = ((C_INTERFACE_TYPE == 2) && (C_AXI_TYPE == 2)) ? 1 : 0;
localparam IS_AXI_FULL_WACH = ((IS_AXI_FULL == 1) && (C_WACH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_FULL_WDCH = ((IS_AXI_FULL == 1) && (C_WDCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_FULL_WRCH = ((IS_AXI_FULL == 1) && (C_WRCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_FULL_RACH = ((IS_AXI_FULL == 1) && (C_RACH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_FULL_RDCH = ((IS_AXI_FULL == 1) && (C_RDCH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_LITE_WACH = ((IS_AXI_LITE == 1) && (C_WACH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_LITE_WDCH = ((IS_AXI_LITE == 1) && (C_WDCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_LITE_WRCH = ((IS_AXI_LITE == 1) && (C_WRCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_LITE_RACH = ((IS_AXI_LITE == 1) && (C_RACH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_LITE_RDCH = ((IS_AXI_LITE == 1) && (C_RDCH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0;
localparam IS_WR_ADDR_CH = ((IS_AXI_FULL_WACH == 1) || (IS_AXI_LITE_WACH == 1)) ? 1 : 0;
localparam IS_WR_DATA_CH = ((IS_AXI_FULL_WDCH == 1) || (IS_AXI_LITE_WDCH == 1)) ? 1 : 0;
localparam IS_WR_RESP_CH = ((IS_AXI_FULL_WRCH == 1) || (IS_AXI_LITE_WRCH == 1)) ? 1 : 0;
localparam IS_RD_ADDR_CH = ((IS_AXI_FULL_RACH == 1) || (IS_AXI_LITE_RACH == 1)) ? 1 : 0;
localparam IS_RD_DATA_CH = ((IS_AXI_FULL_RDCH == 1) || (IS_AXI_LITE_RDCH == 1)) ? 1 : 0;
localparam AWID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_WACH - C_AXI_ID_WIDTH : C_DIN_WIDTH_WACH;
localparam AWADDR_OFFSET = AWID_OFFSET - C_AXI_ADDR_WIDTH;
localparam AWLEN_OFFSET = C_AXI_TYPE != 2 ? AWADDR_OFFSET - C_AXI_LEN_WIDTH : AWADDR_OFFSET;
localparam AWSIZE_OFFSET = C_AXI_TYPE != 2 ? AWLEN_OFFSET - C_AXI_SIZE_WIDTH : AWLEN_OFFSET;
localparam AWBURST_OFFSET = C_AXI_TYPE != 2 ? AWSIZE_OFFSET - C_AXI_BURST_WIDTH : AWSIZE_OFFSET;
localparam AWLOCK_OFFSET = C_AXI_TYPE != 2 ? AWBURST_OFFSET - C_AXI_LOCK_WIDTH : AWBURST_OFFSET;
localparam AWCACHE_OFFSET = C_AXI_TYPE != 2 ? AWLOCK_OFFSET - C_AXI_CACHE_WIDTH : AWLOCK_OFFSET;
localparam AWPROT_OFFSET = AWCACHE_OFFSET - C_AXI_PROT_WIDTH;
localparam AWQOS_OFFSET = AWPROT_OFFSET - C_AXI_QOS_WIDTH;
localparam AWREGION_OFFSET = C_AXI_TYPE == 1 ? AWQOS_OFFSET - C_AXI_REGION_WIDTH : AWQOS_OFFSET;
localparam AWUSER_OFFSET = C_HAS_AXI_AWUSER == 1 ? AWREGION_OFFSET-C_AXI_AWUSER_WIDTH : AWREGION_OFFSET;
localparam WID_OFFSET = (C_AXI_TYPE == 3 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_WDCH - C_AXI_ID_WIDTH : C_DIN_WIDTH_WDCH;
localparam WDATA_OFFSET = WID_OFFSET - C_AXI_DATA_WIDTH;
localparam WSTRB_OFFSET = WDATA_OFFSET - C_AXI_DATA_WIDTH/8;
localparam WUSER_OFFSET = C_HAS_AXI_WUSER == 1 ? WSTRB_OFFSET-C_AXI_WUSER_WIDTH : WSTRB_OFFSET;
localparam BID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_WRCH - C_AXI_ID_WIDTH : C_DIN_WIDTH_WRCH;
localparam BRESP_OFFSET = BID_OFFSET - C_AXI_BRESP_WIDTH;
localparam BUSER_OFFSET = C_HAS_AXI_BUSER == 1 ? BRESP_OFFSET-C_AXI_BUSER_WIDTH : BRESP_OFFSET;
wire [C_DIN_WIDTH_WACH-1:0] wach_din ;
wire [C_DIN_WIDTH_WACH-1:0] wach_dout ;
wire [C_DIN_WIDTH_WACH-1:0] wach_dout_pkt ;
wire wach_full ;
wire wach_almost_full ;
wire wach_prog_full ;
wire wach_empty ;
wire wach_almost_empty ;
wire wach_prog_empty ;
wire [C_DIN_WIDTH_WDCH-1:0] wdch_din ;
wire [C_DIN_WIDTH_WDCH-1:0] wdch_dout ;
wire wdch_full ;
wire wdch_almost_full ;
wire wdch_prog_full ;
wire wdch_empty ;
wire wdch_almost_empty ;
wire wdch_prog_empty ;
wire [C_DIN_WIDTH_WRCH-1:0] wrch_din ;
wire [C_DIN_WIDTH_WRCH-1:0] wrch_dout ;
wire wrch_full ;
wire wrch_almost_full ;
wire wrch_prog_full ;
wire wrch_empty ;
wire wrch_almost_empty ;
wire wrch_prog_empty ;
wire axi_aw_underflow_i;
wire axi_w_underflow_i ;
wire axi_b_underflow_i ;
wire axi_aw_overflow_i ;
wire axi_w_overflow_i ;
wire axi_b_overflow_i ;
wire axi_wr_underflow_i;
wire axi_wr_overflow_i ;
wire wach_s_axi_awready;
wire wach_m_axi_awvalid;
wire wach_wr_en ;
wire wach_rd_en ;
wire wdch_s_axi_wready ;
wire wdch_m_axi_wvalid ;
wire wdch_wr_en ;
wire wdch_rd_en ;
wire wrch_s_axi_bvalid ;
wire wrch_m_axi_bready ;
wire wrch_wr_en ;
wire wrch_rd_en ;
wire txn_count_up ;
wire txn_count_down ;
wire awvalid_en ;
wire awvalid_pkt ;
wire awready_pkt ;
integer wr_pkt_count ;
wire wach_we ;
wire wach_re ;
wire wdch_we ;
wire wdch_re ;
wire wrch_we ;
wire wrch_re ;
generate if (IS_WR_ADDR_CH == 1) begin : axi_write_address_channel
// Write protection when almost full or prog_full is high
assign wach_we = (C_PROG_FULL_TYPE_WACH != 0) ? wach_s_axi_awready & S_AXI_AWVALID : S_AXI_AWVALID;
// Read protection when almost empty or prog_empty is high
assign wach_re = (C_PROG_EMPTY_TYPE_WACH != 0 && C_APPLICATION_TYPE_WACH == 1) ?
wach_m_axi_awvalid & awready_pkt & awvalid_en :
(C_PROG_EMPTY_TYPE_WACH != 0 && C_APPLICATION_TYPE_WACH != 1) ?
M_AXI_AWREADY && wach_m_axi_awvalid :
(C_PROG_EMPTY_TYPE_WACH == 0 && C_APPLICATION_TYPE_WACH == 1) ?
awready_pkt & awvalid_en :
(C_PROG_EMPTY_TYPE_WACH == 0 && C_APPLICATION_TYPE_WACH != 1) ?
M_AXI_AWREADY : 1'b0;
assign wach_wr_en = (C_HAS_SLAVE_CE == 1) ? wach_we & S_ACLK_EN : wach_we;
assign wach_rd_en = (C_HAS_MASTER_CE == 1) ? wach_re & M_ACLK_EN : wach_re;
fifo_generator_v13_1_1_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_WACH == 1 || C_IMPLEMENTATION_TYPE_WACH == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_WACH == 2 || C_IMPLEMENTATION_TYPE_WACH == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_WACH == 1 || C_IMPLEMENTATION_TYPE_WACH == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_WACH == 11 || C_IMPLEMENTATION_TYPE_WACH == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_WACH),
.C_INTERFACE_TYPE (C_INTERFACE_TYPE),
.C_WR_DEPTH (C_WR_DEPTH_WACH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_WACH),
.C_DOUT_WIDTH (C_DIN_WIDTH_WACH),
.C_RD_DEPTH (C_WR_DEPTH_WACH),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_WACH),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_WACH),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_WACH),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_WACH),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH),
.C_USE_ECC (C_USE_ECC_WACH),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_WACH),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_FIFO_TYPE ((C_APPLICATION_TYPE_WACH == 1)?0:C_APPLICATION_TYPE_WACH),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_EN_SAFETY_CKT (1),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_WACH == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WACH + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WACH == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WACH + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WACH == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WACH + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_EMBEDDED_REG (0),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
//.C_EN_SAFETY_CKT (1),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v13_1_1_wach_dut
(
.CLK (S_ACLK),
.WR_CLK (S_ACLK),
.RD_CLK (M_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (wach_wr_en),
.RD_EN (wach_rd_en),
.PROG_FULL_THRESH (AXI_AW_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WACH{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WACH{1'b0}}),
.PROG_EMPTY_THRESH (AXI_AW_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WACH{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WACH{1'b0}}),
.INJECTDBITERR (AXI_AW_INJECTDBITERR),
.INJECTSBITERR (AXI_AW_INJECTSBITERR),
.DIN (wach_din),
.DOUT (wach_dout_pkt),
.FULL (wach_full),
.EMPTY (wach_empty),
.ALMOST_FULL (),
.PROG_FULL (AXI_AW_PROG_FULL),
.ALMOST_EMPTY (),
.PROG_EMPTY (AXI_AW_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (axi_aw_overflow_i),
.VALID (),
.UNDERFLOW (axi_aw_underflow_i),
.DATA_COUNT (AXI_AW_DATA_COUNT),
.RD_DATA_COUNT (AXI_AW_RD_DATA_COUNT),
.WR_DATA_COUNT (AXI_AW_WR_DATA_COUNT),
.SBITERR (AXI_AW_SBITERR),
.DBITERR (AXI_AW_DBITERR),
.wr_rst_busy (wr_rst_busy_wach),
.rd_rst_busy (rd_rst_busy_wach),
.wr_rst_i_out (),
.rd_rst_i_out (),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign wach_s_axi_awready = (IS_8SERIES == 0) ? ~wach_full : (C_IMPLEMENTATION_TYPE_WACH == 5 || C_IMPLEMENTATION_TYPE_WACH == 13) ? ~(wach_full | wr_rst_busy_wach) : ~wach_full;
assign wach_m_axi_awvalid = ~wach_empty;
assign S_AXI_AWREADY = wach_s_axi_awready;
assign AXI_AW_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_aw_underflow_i : 0;
assign AXI_AW_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_aw_overflow_i : 0;
end endgenerate // axi_write_address_channel
// Register Slice for Write Address Channel
generate if (C_WACH_TYPE == 1) begin : gwach_reg_slice
fifo_generator_v13_1_1_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_WACH),
.C_REG_CONFIG (C_REG_SLICE_MODE_WACH)
)
wach_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (wach_din),
.S_VALID (S_AXI_AWVALID),
.S_READY (S_AXI_AWREADY),
// Master side
.M_PAYLOAD_DATA (wach_dout),
.M_VALID (M_AXI_AWVALID),
.M_READY (M_AXI_AWREADY)
);
end endgenerate // gwach_reg_slice
generate if (C_APPLICATION_TYPE_WACH == 1 && C_HAS_AXI_WR_CHANNEL == 1) begin : axi_mm_pkt_fifo_wr
fifo_generator_v13_1_1_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_WACH),
.C_REG_CONFIG (1)
)
wach_pkt_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (inverted_reset),
// Slave side
.S_PAYLOAD_DATA (wach_dout_pkt),
.S_VALID (awvalid_pkt),
.S_READY (awready_pkt),
// Master side
.M_PAYLOAD_DATA (wach_dout),
.M_VALID (M_AXI_AWVALID),
.M_READY (M_AXI_AWREADY)
);
assign awvalid_pkt = wach_m_axi_awvalid && awvalid_en;
assign txn_count_up = wdch_s_axi_wready && wdch_wr_en && wdch_din[0];
assign txn_count_down = wach_m_axi_awvalid && awready_pkt && awvalid_en;
always@(posedge S_ACLK or posedge inverted_reset) begin
if(inverted_reset == 1) begin
wr_pkt_count <= 0;
end else begin
if(txn_count_up == 1 && txn_count_down == 0) begin
wr_pkt_count <= wr_pkt_count + 1;
end else if(txn_count_up == 0 && txn_count_down == 1) begin
wr_pkt_count <= wr_pkt_count - 1;
end
end
end //Always end
assign awvalid_en = (wr_pkt_count > 0)?1:0;
end endgenerate
generate if (C_APPLICATION_TYPE_WACH != 1) begin : axi_mm_fifo_wr
assign awvalid_en = 1;
assign wach_dout = wach_dout_pkt;
assign M_AXI_AWVALID = wach_m_axi_awvalid;
end
endgenerate
generate if (IS_WR_DATA_CH == 1) begin : axi_write_data_channel
// Write protection when almost full or prog_full is high
assign wdch_we = (C_PROG_FULL_TYPE_WDCH != 0) ? wdch_s_axi_wready & S_AXI_WVALID : S_AXI_WVALID;
// Read protection when almost empty or prog_empty is high
assign wdch_re = (C_PROG_EMPTY_TYPE_WDCH != 0) ? wdch_m_axi_wvalid & M_AXI_WREADY : M_AXI_WREADY;
assign wdch_wr_en = (C_HAS_SLAVE_CE == 1) ? wdch_we & S_ACLK_EN : wdch_we;
assign wdch_rd_en = (C_HAS_MASTER_CE == 1) ? wdch_re & M_ACLK_EN : wdch_re;
fifo_generator_v13_1_1_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_WDCH == 1 || C_IMPLEMENTATION_TYPE_WDCH == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_WDCH == 2 || C_IMPLEMENTATION_TYPE_WDCH == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_WDCH == 1 || C_IMPLEMENTATION_TYPE_WDCH == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_WDCH == 11 || C_IMPLEMENTATION_TYPE_WDCH == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_WDCH),
.C_WR_DEPTH (C_WR_DEPTH_WDCH),
.C_INTERFACE_TYPE (C_INTERFACE_TYPE),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_WDCH),
.C_DOUT_WIDTH (C_DIN_WIDTH_WDCH),
.C_RD_DEPTH (C_WR_DEPTH_WDCH),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_WDCH),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_WDCH),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_WDCH),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_WDCH),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH),
.C_USE_ECC (C_USE_ECC_WDCH),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_WDCH),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_FIFO_TYPE (C_APPLICATION_TYPE_WDCH),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_WDCH == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WDCH + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WDCH == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WDCH + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WDCH == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WDCH + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_EMBEDDED_REG (0),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
.C_EN_SAFETY_CKT (1),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v13_1_1_wdch_dut
(
.CLK (S_ACLK),
.WR_CLK (S_ACLK),
.RD_CLK (M_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (wdch_wr_en),
.RD_EN (wdch_rd_en),
.PROG_FULL_THRESH (AXI_W_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WDCH{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WDCH{1'b0}}),
.PROG_EMPTY_THRESH (AXI_W_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WDCH{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WDCH{1'b0}}),
.INJECTDBITERR (AXI_W_INJECTDBITERR),
.INJECTSBITERR (AXI_W_INJECTSBITERR),
.DIN (wdch_din),
.DOUT (wdch_dout),
.FULL (wdch_full),
.EMPTY (wdch_empty),
.ALMOST_FULL (),
.PROG_FULL (AXI_W_PROG_FULL),
.ALMOST_EMPTY (),
.PROG_EMPTY (AXI_W_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (axi_w_overflow_i),
.VALID (),
.UNDERFLOW (axi_w_underflow_i),
.DATA_COUNT (AXI_W_DATA_COUNT),
.RD_DATA_COUNT (AXI_W_RD_DATA_COUNT),
.WR_DATA_COUNT (AXI_W_WR_DATA_COUNT),
.SBITERR (AXI_W_SBITERR),
.DBITERR (AXI_W_DBITERR),
.wr_rst_busy (wr_rst_busy_wdch),
.rd_rst_busy (rd_rst_busy_wdch),
.wr_rst_i_out (),
.rd_rst_i_out (),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign wdch_s_axi_wready = (IS_8SERIES == 0) ? ~wdch_full : (C_IMPLEMENTATION_TYPE_WDCH == 5 || C_IMPLEMENTATION_TYPE_WDCH == 13) ? ~(wdch_full | wr_rst_busy_wdch) : ~wdch_full;
assign wdch_m_axi_wvalid = ~wdch_empty;
assign S_AXI_WREADY = wdch_s_axi_wready;
assign M_AXI_WVALID = wdch_m_axi_wvalid;
assign AXI_W_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_w_underflow_i : 0;
assign AXI_W_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_w_overflow_i : 0;
end endgenerate // axi_write_data_channel
// Register Slice for Write Data Channel
generate if (C_WDCH_TYPE == 1) begin : gwdch_reg_slice
fifo_generator_v13_1_1_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_WDCH),
.C_REG_CONFIG (C_REG_SLICE_MODE_WDCH)
)
wdch_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (wdch_din),
.S_VALID (S_AXI_WVALID),
.S_READY (S_AXI_WREADY),
// Master side
.M_PAYLOAD_DATA (wdch_dout),
.M_VALID (M_AXI_WVALID),
.M_READY (M_AXI_WREADY)
);
end endgenerate // gwdch_reg_slice
generate if (IS_WR_RESP_CH == 1) begin : axi_write_resp_channel
// Write protection when almost full or prog_full is high
assign wrch_we = (C_PROG_FULL_TYPE_WRCH != 0) ? wrch_m_axi_bready & M_AXI_BVALID : M_AXI_BVALID;
// Read protection when almost empty or prog_empty is high
assign wrch_re = (C_PROG_EMPTY_TYPE_WRCH != 0) ? wrch_s_axi_bvalid & S_AXI_BREADY : S_AXI_BREADY;
assign wrch_wr_en = (C_HAS_MASTER_CE == 1) ? wrch_we & M_ACLK_EN : wrch_we;
assign wrch_rd_en = (C_HAS_SLAVE_CE == 1) ? wrch_re & S_ACLK_EN : wrch_re;
fifo_generator_v13_1_1_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_WRCH == 1 || C_IMPLEMENTATION_TYPE_WRCH == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_WRCH == 2 || C_IMPLEMENTATION_TYPE_WRCH == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_WRCH == 1 || C_IMPLEMENTATION_TYPE_WRCH == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_WRCH == 11 || C_IMPLEMENTATION_TYPE_WRCH == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_WRCH),
.C_WR_DEPTH (C_WR_DEPTH_WRCH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_WRCH),
.C_DOUT_WIDTH (C_DIN_WIDTH_WRCH),
.C_INTERFACE_TYPE (C_INTERFACE_TYPE),
.C_RD_DEPTH (C_WR_DEPTH_WRCH),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_WRCH),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_WRCH),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_WRCH),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_WRCH),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH),
.C_USE_ECC (C_USE_ECC_WRCH),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_WRCH),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_FIFO_TYPE (C_APPLICATION_TYPE_WRCH),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_WRCH == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WRCH + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WRCH == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WRCH + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WRCH == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WRCH + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_EMBEDDED_REG (0),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
.C_EN_SAFETY_CKT (1),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v13_1_1_wrch_dut
(
.CLK (S_ACLK),
.WR_CLK (M_ACLK),
.RD_CLK (S_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (wrch_wr_en),
.RD_EN (wrch_rd_en),
.PROG_FULL_THRESH (AXI_B_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WRCH{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WRCH{1'b0}}),
.PROG_EMPTY_THRESH (AXI_B_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WRCH{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WRCH{1'b0}}),
.INJECTDBITERR (AXI_B_INJECTDBITERR),
.INJECTSBITERR (AXI_B_INJECTSBITERR),
.DIN (wrch_din),
.DOUT (wrch_dout),
.FULL (wrch_full),
.EMPTY (wrch_empty),
.ALMOST_FULL (),
.ALMOST_EMPTY (),
.PROG_FULL (AXI_B_PROG_FULL),
.PROG_EMPTY (AXI_B_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (axi_b_overflow_i),
.VALID (),
.UNDERFLOW (axi_b_underflow_i),
.DATA_COUNT (AXI_B_DATA_COUNT),
.RD_DATA_COUNT (AXI_B_RD_DATA_COUNT),
.WR_DATA_COUNT (AXI_B_WR_DATA_COUNT),
.SBITERR (AXI_B_SBITERR),
.DBITERR (AXI_B_DBITERR),
.wr_rst_busy (wr_rst_busy_wrch),
.rd_rst_busy (rd_rst_busy_wrch),
.wr_rst_i_out (),
.rd_rst_i_out (),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign wrch_s_axi_bvalid = ~wrch_empty;
assign wrch_m_axi_bready = (IS_8SERIES == 0) ? ~wrch_full : (C_IMPLEMENTATION_TYPE_WRCH == 5 || C_IMPLEMENTATION_TYPE_WRCH == 13) ? ~(wrch_full | wr_rst_busy_wrch) : ~wrch_full;
assign S_AXI_BVALID = wrch_s_axi_bvalid;
assign M_AXI_BREADY = wrch_m_axi_bready;
assign AXI_B_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_b_underflow_i : 0;
assign AXI_B_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_b_overflow_i : 0;
end endgenerate // axi_write_resp_channel
// Register Slice for Write Response Channel
generate if (C_WRCH_TYPE == 1) begin : gwrch_reg_slice
fifo_generator_v13_1_1_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_WRCH),
.C_REG_CONFIG (C_REG_SLICE_MODE_WRCH)
)
wrch_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (wrch_din),
.S_VALID (M_AXI_BVALID),
.S_READY (M_AXI_BREADY),
// Master side
.M_PAYLOAD_DATA (wrch_dout),
.M_VALID (S_AXI_BVALID),
.M_READY (S_AXI_BREADY)
);
end endgenerate // gwrch_reg_slice
assign axi_wr_underflow_i = C_USE_COMMON_UNDERFLOW == 1 ? (axi_aw_underflow_i || axi_w_underflow_i || axi_b_underflow_i) : 0;
assign axi_wr_overflow_i = C_USE_COMMON_OVERFLOW == 1 ? (axi_aw_overflow_i || axi_w_overflow_i || axi_b_overflow_i) : 0;
generate if (IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) begin : axi_wach_output
assign M_AXI_AWADDR = wach_dout[AWID_OFFSET-1:AWADDR_OFFSET];
assign M_AXI_AWLEN = wach_dout[AWADDR_OFFSET-1:AWLEN_OFFSET];
assign M_AXI_AWSIZE = wach_dout[AWLEN_OFFSET-1:AWSIZE_OFFSET];
assign M_AXI_AWBURST = wach_dout[AWSIZE_OFFSET-1:AWBURST_OFFSET];
assign M_AXI_AWLOCK = wach_dout[AWBURST_OFFSET-1:AWLOCK_OFFSET];
assign M_AXI_AWCACHE = wach_dout[AWLOCK_OFFSET-1:AWCACHE_OFFSET];
assign M_AXI_AWPROT = wach_dout[AWCACHE_OFFSET-1:AWPROT_OFFSET];
assign M_AXI_AWQOS = wach_dout[AWPROT_OFFSET-1:AWQOS_OFFSET];
assign wach_din[AWID_OFFSET-1:AWADDR_OFFSET] = S_AXI_AWADDR;
assign wach_din[AWADDR_OFFSET-1:AWLEN_OFFSET] = S_AXI_AWLEN;
assign wach_din[AWLEN_OFFSET-1:AWSIZE_OFFSET] = S_AXI_AWSIZE;
assign wach_din[AWSIZE_OFFSET-1:AWBURST_OFFSET] = S_AXI_AWBURST;
assign wach_din[AWBURST_OFFSET-1:AWLOCK_OFFSET] = S_AXI_AWLOCK;
assign wach_din[AWLOCK_OFFSET-1:AWCACHE_OFFSET] = S_AXI_AWCACHE;
assign wach_din[AWCACHE_OFFSET-1:AWPROT_OFFSET] = S_AXI_AWPROT;
assign wach_din[AWPROT_OFFSET-1:AWQOS_OFFSET] = S_AXI_AWQOS;
end endgenerate // axi_wach_output
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_AXI_TYPE == 1) begin : axi_awregion
assign M_AXI_AWREGION = wach_dout[AWQOS_OFFSET-1:AWREGION_OFFSET];
end endgenerate // axi_awregion
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_AXI_TYPE != 1) begin : naxi_awregion
assign M_AXI_AWREGION = 0;
end endgenerate // naxi_awregion
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_AWUSER == 1) begin : axi_awuser
assign M_AXI_AWUSER = wach_dout[AWREGION_OFFSET-1:AWUSER_OFFSET];
end endgenerate // axi_awuser
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_AWUSER == 0) begin : naxi_awuser
assign M_AXI_AWUSER = 0;
end endgenerate // naxi_awuser
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_awid
assign M_AXI_AWID = wach_dout[C_DIN_WIDTH_WACH-1:AWID_OFFSET];
end endgenerate //axi_awid
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_awid
assign M_AXI_AWID = 0;
end endgenerate //naxi_awid
generate if (IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) begin : axi_wdch_output
assign M_AXI_WDATA = wdch_dout[WID_OFFSET-1:WDATA_OFFSET];
assign M_AXI_WSTRB = wdch_dout[WDATA_OFFSET-1:WSTRB_OFFSET];
assign M_AXI_WLAST = wdch_dout[0];
assign wdch_din[WID_OFFSET-1:WDATA_OFFSET] = S_AXI_WDATA;
assign wdch_din[WDATA_OFFSET-1:WSTRB_OFFSET] = S_AXI_WSTRB;
assign wdch_din[0] = S_AXI_WLAST;
end endgenerate // axi_wdch_output
generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_ID == 1 && C_AXI_TYPE == 3) begin
assign M_AXI_WID = wdch_dout[C_DIN_WIDTH_WDCH-1:WID_OFFSET];
end endgenerate
generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && (C_HAS_AXI_ID == 0 || C_AXI_TYPE != 3)) begin
assign M_AXI_WID = 0;
end endgenerate
generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_WUSER == 1 ) begin
assign M_AXI_WUSER = wdch_dout[WSTRB_OFFSET-1:WUSER_OFFSET];
end endgenerate
generate if (C_HAS_AXI_WUSER == 0) begin
assign M_AXI_WUSER = 0;
end endgenerate
generate if (IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) begin : axi_wrch_output
assign S_AXI_BRESP = wrch_dout[BID_OFFSET-1:BRESP_OFFSET];
assign wrch_din[BID_OFFSET-1:BRESP_OFFSET] = M_AXI_BRESP;
end endgenerate // axi_wrch_output
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_BUSER == 1) begin : axi_buser
assign S_AXI_BUSER = wrch_dout[BRESP_OFFSET-1:BUSER_OFFSET];
end endgenerate // axi_buser
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_BUSER == 0) begin : naxi_buser
assign S_AXI_BUSER = 0;
end endgenerate // naxi_buser
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_bid
assign S_AXI_BID = wrch_dout[C_DIN_WIDTH_WRCH-1:BID_OFFSET];
end endgenerate // axi_bid
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_bid
assign S_AXI_BID = 0 ;
end endgenerate // naxi_bid
generate if (IS_AXI_LITE_WACH == 1 || (IS_AXI_LITE == 1 && C_WACH_TYPE == 1)) begin : axi_wach_output1
assign wach_din = {S_AXI_AWADDR, S_AXI_AWPROT};
assign M_AXI_AWADDR = wach_dout[C_DIN_WIDTH_WACH-1:AWADDR_OFFSET];
assign M_AXI_AWPROT = wach_dout[AWADDR_OFFSET-1:AWPROT_OFFSET];
end endgenerate // axi_wach_output1
generate if (IS_AXI_LITE_WDCH == 1 || (IS_AXI_LITE == 1 && C_WDCH_TYPE == 1)) begin : axi_wdch_output1
assign wdch_din = {S_AXI_WDATA, S_AXI_WSTRB};
assign M_AXI_WDATA = wdch_dout[C_DIN_WIDTH_WDCH-1:WDATA_OFFSET];
assign M_AXI_WSTRB = wdch_dout[WDATA_OFFSET-1:WSTRB_OFFSET];
end endgenerate // axi_wdch_output1
generate if (IS_AXI_LITE_WRCH == 1 || (IS_AXI_LITE == 1 && C_WRCH_TYPE == 1)) begin : axi_wrch_output1
assign wrch_din = M_AXI_BRESP;
assign S_AXI_BRESP = wrch_dout[C_DIN_WIDTH_WRCH-1:BRESP_OFFSET];
end endgenerate // axi_wrch_output1
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_AWUSER == 1) begin : gwach_din1
assign wach_din[AWREGION_OFFSET-1:AWUSER_OFFSET] = S_AXI_AWUSER;
end endgenerate // gwach_din1
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : gwach_din2
assign wach_din[C_DIN_WIDTH_WACH-1:AWID_OFFSET] = S_AXI_AWID;
end endgenerate // gwach_din2
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_AXI_TYPE == 1) begin : gwach_din3
assign wach_din[AWQOS_OFFSET-1:AWREGION_OFFSET] = S_AXI_AWREGION;
end endgenerate // gwach_din3
generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_WUSER == 1) begin : gwdch_din1
assign wdch_din[WSTRB_OFFSET-1:WUSER_OFFSET] = S_AXI_WUSER;
end endgenerate // gwdch_din1
generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_ID == 1 && C_AXI_TYPE == 3) begin : gwdch_din2
assign wdch_din[C_DIN_WIDTH_WDCH-1:WID_OFFSET] = S_AXI_WID;
end endgenerate // gwdch_din2
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_BUSER == 1) begin : gwrch_din1
assign wrch_din[BRESP_OFFSET-1:BUSER_OFFSET] = M_AXI_BUSER;
end endgenerate // gwrch_din1
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : gwrch_din2
assign wrch_din[C_DIN_WIDTH_WRCH-1:BID_OFFSET] = M_AXI_BID;
end endgenerate // gwrch_din2
//end of axi_write_channel
//###########################################################################
// AXI FULL Read Channel (axi_read_channel)
//###########################################################################
wire [C_DIN_WIDTH_RACH-1:0] rach_din ;
wire [C_DIN_WIDTH_RACH-1:0] rach_dout ;
wire [C_DIN_WIDTH_RACH-1:0] rach_dout_pkt ;
wire rach_full ;
wire rach_almost_full ;
wire rach_prog_full ;
wire rach_empty ;
wire rach_almost_empty ;
wire rach_prog_empty ;
wire [C_DIN_WIDTH_RDCH-1:0] rdch_din ;
wire [C_DIN_WIDTH_RDCH-1:0] rdch_dout ;
wire rdch_full ;
wire rdch_almost_full ;
wire rdch_prog_full ;
wire rdch_empty ;
wire rdch_almost_empty ;
wire rdch_prog_empty ;
wire axi_ar_underflow_i ;
wire axi_r_underflow_i ;
wire axi_ar_overflow_i ;
wire axi_r_overflow_i ;
wire axi_rd_underflow_i ;
wire axi_rd_overflow_i ;
wire rach_s_axi_arready ;
wire rach_m_axi_arvalid ;
wire rach_wr_en ;
wire rach_rd_en ;
wire rdch_m_axi_rready ;
wire rdch_s_axi_rvalid ;
wire rdch_wr_en ;
wire rdch_rd_en ;
wire arvalid_pkt ;
wire arready_pkt ;
wire arvalid_en ;
wire rdch_rd_ok ;
wire accept_next_pkt ;
integer rdch_free_space ;
integer rdch_commited_space ;
wire rach_we ;
wire rach_re ;
wire rdch_we ;
wire rdch_re ;
localparam ARID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_RACH - C_AXI_ID_WIDTH : C_DIN_WIDTH_RACH;
localparam ARADDR_OFFSET = ARID_OFFSET - C_AXI_ADDR_WIDTH;
localparam ARLEN_OFFSET = C_AXI_TYPE != 2 ? ARADDR_OFFSET - C_AXI_LEN_WIDTH : ARADDR_OFFSET;
localparam ARSIZE_OFFSET = C_AXI_TYPE != 2 ? ARLEN_OFFSET - C_AXI_SIZE_WIDTH : ARLEN_OFFSET;
localparam ARBURST_OFFSET = C_AXI_TYPE != 2 ? ARSIZE_OFFSET - C_AXI_BURST_WIDTH : ARSIZE_OFFSET;
localparam ARLOCK_OFFSET = C_AXI_TYPE != 2 ? ARBURST_OFFSET - C_AXI_LOCK_WIDTH : ARBURST_OFFSET;
localparam ARCACHE_OFFSET = C_AXI_TYPE != 2 ? ARLOCK_OFFSET - C_AXI_CACHE_WIDTH : ARLOCK_OFFSET;
localparam ARPROT_OFFSET = ARCACHE_OFFSET - C_AXI_PROT_WIDTH;
localparam ARQOS_OFFSET = ARPROT_OFFSET - C_AXI_QOS_WIDTH;
localparam ARREGION_OFFSET = C_AXI_TYPE == 1 ? ARQOS_OFFSET - C_AXI_REGION_WIDTH : ARQOS_OFFSET;
localparam ARUSER_OFFSET = C_HAS_AXI_ARUSER == 1 ? ARREGION_OFFSET-C_AXI_ARUSER_WIDTH : ARREGION_OFFSET;
localparam RID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_RDCH - C_AXI_ID_WIDTH : C_DIN_WIDTH_RDCH;
localparam RDATA_OFFSET = RID_OFFSET - C_AXI_DATA_WIDTH;
localparam RRESP_OFFSET = RDATA_OFFSET - C_AXI_RRESP_WIDTH;
localparam RUSER_OFFSET = C_HAS_AXI_RUSER == 1 ? RRESP_OFFSET-C_AXI_RUSER_WIDTH : RRESP_OFFSET;
generate if (IS_RD_ADDR_CH == 1) begin : axi_read_addr_channel
// Write protection when almost full or prog_full is high
assign rach_we = (C_PROG_FULL_TYPE_RACH != 0) ? rach_s_axi_arready & S_AXI_ARVALID : S_AXI_ARVALID;
// Read protection when almost empty or prog_empty is high
// assign rach_rd_en = (C_PROG_EMPTY_TYPE_RACH != 5) ? rach_m_axi_arvalid & M_AXI_ARREADY : M_AXI_ARREADY && arvalid_en;
assign rach_re = (C_PROG_EMPTY_TYPE_RACH != 0 && C_APPLICATION_TYPE_RACH == 1) ?
rach_m_axi_arvalid & arready_pkt & arvalid_en :
(C_PROG_EMPTY_TYPE_RACH != 0 && C_APPLICATION_TYPE_RACH != 1) ?
M_AXI_ARREADY && rach_m_axi_arvalid :
(C_PROG_EMPTY_TYPE_RACH == 0 && C_APPLICATION_TYPE_RACH == 1) ?
arready_pkt & arvalid_en :
(C_PROG_EMPTY_TYPE_RACH == 0 && C_APPLICATION_TYPE_RACH != 1) ?
M_AXI_ARREADY : 1'b0;
assign rach_wr_en = (C_HAS_SLAVE_CE == 1) ? rach_we & S_ACLK_EN : rach_we;
assign rach_rd_en = (C_HAS_MASTER_CE == 1) ? rach_re & M_ACLK_EN : rach_re;
fifo_generator_v13_1_1_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_RACH == 1 || C_IMPLEMENTATION_TYPE_RACH == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_RACH == 2 || C_IMPLEMENTATION_TYPE_RACH == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_RACH == 1 || C_IMPLEMENTATION_TYPE_RACH == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_RACH == 11 || C_IMPLEMENTATION_TYPE_RACH == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_RACH),
.C_WR_DEPTH (C_WR_DEPTH_RACH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_RACH),
.C_INTERFACE_TYPE (C_INTERFACE_TYPE),
.C_DOUT_WIDTH (C_DIN_WIDTH_RACH),
.C_RD_DEPTH (C_WR_DEPTH_RACH),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_RACH),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_RACH),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_RACH),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_RACH),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH),
.C_USE_ECC (C_USE_ECC_RACH),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_RACH),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_FIFO_TYPE ((C_APPLICATION_TYPE_RACH == 1)?0:C_APPLICATION_TYPE_RACH),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_RACH == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RACH + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RACH == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RACH + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RACH == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RACH + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_EMBEDDED_REG (0),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
.C_EN_SAFETY_CKT (1),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v13_1_1_rach_dut
(
.CLK (S_ACLK),
.WR_CLK (S_ACLK),
.RD_CLK (M_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (rach_wr_en),
.RD_EN (rach_rd_en),
.PROG_FULL_THRESH (AXI_AR_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RACH{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RACH{1'b0}}),
.PROG_EMPTY_THRESH (AXI_AR_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RACH{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RACH{1'b0}}),
.INJECTDBITERR (AXI_AR_INJECTDBITERR),
.INJECTSBITERR (AXI_AR_INJECTSBITERR),
.DIN (rach_din),
.DOUT (rach_dout_pkt),
.FULL (rach_full),
.EMPTY (rach_empty),
.ALMOST_FULL (),
.ALMOST_EMPTY (),
.PROG_FULL (AXI_AR_PROG_FULL),
.PROG_EMPTY (AXI_AR_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (axi_ar_overflow_i),
.VALID (),
.UNDERFLOW (axi_ar_underflow_i),
.DATA_COUNT (AXI_AR_DATA_COUNT),
.RD_DATA_COUNT (AXI_AR_RD_DATA_COUNT),
.WR_DATA_COUNT (AXI_AR_WR_DATA_COUNT),
.SBITERR (AXI_AR_SBITERR),
.DBITERR (AXI_AR_DBITERR),
.wr_rst_busy (wr_rst_busy_rach),
.rd_rst_busy (rd_rst_busy_rach),
.wr_rst_i_out (),
.rd_rst_i_out (),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign rach_s_axi_arready = (IS_8SERIES == 0) ? ~rach_full : (C_IMPLEMENTATION_TYPE_RACH == 5 || C_IMPLEMENTATION_TYPE_RACH == 13) ? ~(rach_full | wr_rst_busy_rach) : ~rach_full;
assign rach_m_axi_arvalid = ~rach_empty;
assign S_AXI_ARREADY = rach_s_axi_arready;
assign AXI_AR_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_ar_underflow_i : 0;
assign AXI_AR_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_ar_overflow_i : 0;
end endgenerate // axi_read_addr_channel
// Register Slice for Read Address Channel
generate if (C_RACH_TYPE == 1) begin : grach_reg_slice
fifo_generator_v13_1_1_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_RACH),
.C_REG_CONFIG (C_REG_SLICE_MODE_RACH)
)
rach_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (rach_din),
.S_VALID (S_AXI_ARVALID),
.S_READY (S_AXI_ARREADY),
// Master side
.M_PAYLOAD_DATA (rach_dout),
.M_VALID (M_AXI_ARVALID),
.M_READY (M_AXI_ARREADY)
);
end endgenerate // grach_reg_slice
// Register Slice for Read Address Channel for MM Packet FIFO
generate if (C_RACH_TYPE == 0 && C_APPLICATION_TYPE_RACH == 1) begin : grach_reg_slice_mm_pkt_fifo
fifo_generator_v13_1_1_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_RACH),
.C_REG_CONFIG (1)
)
reg_slice_mm_pkt_fifo_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (inverted_reset),
// Slave side
.S_PAYLOAD_DATA (rach_dout_pkt),
.S_VALID (arvalid_pkt),
.S_READY (arready_pkt),
// Master side
.M_PAYLOAD_DATA (rach_dout),
.M_VALID (M_AXI_ARVALID),
.M_READY (M_AXI_ARREADY)
);
end endgenerate // grach_reg_slice_mm_pkt_fifo
generate if (C_RACH_TYPE == 0 && C_APPLICATION_TYPE_RACH != 1) begin : grach_m_axi_arvalid
assign M_AXI_ARVALID = rach_m_axi_arvalid;
assign rach_dout = rach_dout_pkt;
end endgenerate // grach_m_axi_arvalid
generate if (C_APPLICATION_TYPE_RACH == 1 && C_HAS_AXI_RD_CHANNEL == 1) begin : axi_mm_pkt_fifo_rd
assign rdch_rd_ok = rdch_s_axi_rvalid && rdch_rd_en;
assign arvalid_pkt = rach_m_axi_arvalid && arvalid_en;
assign accept_next_pkt = rach_m_axi_arvalid && arready_pkt && arvalid_en;
always@(posedge S_ACLK or posedge inverted_reset) begin
if(inverted_reset) begin
rdch_commited_space <= 0;
end else begin
if(rdch_rd_ok && !accept_next_pkt) begin
rdch_commited_space <= rdch_commited_space-1;
end else if(!rdch_rd_ok && accept_next_pkt) begin
rdch_commited_space <= rdch_commited_space+(rach_dout_pkt[ARADDR_OFFSET-1:ARLEN_OFFSET]+1);
end else if(rdch_rd_ok && accept_next_pkt) begin
rdch_commited_space <= rdch_commited_space+(rach_dout_pkt[ARADDR_OFFSET-1:ARLEN_OFFSET]);
end
end
end //Always end
always@(*) begin
rdch_free_space <= (C_WR_DEPTH_RDCH-(rdch_commited_space+rach_dout_pkt[ARADDR_OFFSET-1:ARLEN_OFFSET]+1));
end
assign arvalid_en = (rdch_free_space >= 0)?1:0;
end
endgenerate
generate if (C_APPLICATION_TYPE_RACH != 1) begin : axi_mm_fifo_rd
assign arvalid_en = 1;
end
endgenerate
generate if (IS_RD_DATA_CH == 1) begin : axi_read_data_channel
// Write protection when almost full or prog_full is high
assign rdch_we = (C_PROG_FULL_TYPE_RDCH != 0) ? rdch_m_axi_rready & M_AXI_RVALID : M_AXI_RVALID;
// Read protection when almost empty or prog_empty is high
assign rdch_re = (C_PROG_EMPTY_TYPE_RDCH != 0) ? rdch_s_axi_rvalid & S_AXI_RREADY : S_AXI_RREADY;
assign rdch_wr_en = (C_HAS_MASTER_CE == 1) ? rdch_we & M_ACLK_EN : rdch_we;
assign rdch_rd_en = (C_HAS_SLAVE_CE == 1) ? rdch_re & S_ACLK_EN : rdch_re;
fifo_generator_v13_1_1_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_RDCH == 1 || C_IMPLEMENTATION_TYPE_RDCH == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_RDCH == 2 || C_IMPLEMENTATION_TYPE_RDCH == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_RDCH == 1 || C_IMPLEMENTATION_TYPE_RDCH == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_RDCH == 11 || C_IMPLEMENTATION_TYPE_RDCH == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_RDCH),
.C_WR_DEPTH (C_WR_DEPTH_RDCH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_RDCH),
.C_DOUT_WIDTH (C_DIN_WIDTH_RDCH),
.C_RD_DEPTH (C_WR_DEPTH_RDCH),
.C_INTERFACE_TYPE (C_INTERFACE_TYPE),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_RDCH),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_RDCH),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_RDCH),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_RDCH),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH),
.C_USE_ECC (C_USE_ECC_RDCH),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_RDCH),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_FIFO_TYPE (C_APPLICATION_TYPE_RDCH),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_RDCH == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RDCH + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RDCH == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RDCH + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RDCH == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RDCH + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_EMBEDDED_REG (0),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
.C_EN_SAFETY_CKT (1),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v13_1_1_rdch_dut
(
.CLK (S_ACLK),
.WR_CLK (M_ACLK),
.RD_CLK (S_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (rdch_wr_en),
.RD_EN (rdch_rd_en),
.PROG_FULL_THRESH (AXI_R_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RDCH{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RDCH{1'b0}}),
.PROG_EMPTY_THRESH (AXI_R_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RDCH{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RDCH{1'b0}}),
.INJECTDBITERR (AXI_R_INJECTDBITERR),
.INJECTSBITERR (AXI_R_INJECTSBITERR),
.DIN (rdch_din),
.DOUT (rdch_dout),
.FULL (rdch_full),
.EMPTY (rdch_empty),
.ALMOST_FULL (),
.ALMOST_EMPTY (),
.PROG_FULL (AXI_R_PROG_FULL),
.PROG_EMPTY (AXI_R_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (axi_r_overflow_i),
.VALID (),
.UNDERFLOW (axi_r_underflow_i),
.DATA_COUNT (AXI_R_DATA_COUNT),
.RD_DATA_COUNT (AXI_R_RD_DATA_COUNT),
.WR_DATA_COUNT (AXI_R_WR_DATA_COUNT),
.SBITERR (AXI_R_SBITERR),
.DBITERR (AXI_R_DBITERR),
.wr_rst_busy (wr_rst_busy_rdch),
.rd_rst_busy (rd_rst_busy_rdch),
.wr_rst_i_out (),
.rd_rst_i_out (),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign rdch_s_axi_rvalid = ~rdch_empty;
assign rdch_m_axi_rready = (IS_8SERIES == 0) ? ~rdch_full : (C_IMPLEMENTATION_TYPE_RDCH == 5 || C_IMPLEMENTATION_TYPE_RDCH == 13) ? ~(rdch_full | wr_rst_busy_rdch) : ~rdch_full;
assign S_AXI_RVALID = rdch_s_axi_rvalid;
assign M_AXI_RREADY = rdch_m_axi_rready;
assign AXI_R_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_r_underflow_i : 0;
assign AXI_R_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_r_overflow_i : 0;
end endgenerate //axi_read_data_channel
// Register Slice for read Data Channel
generate if (C_RDCH_TYPE == 1) begin : grdch_reg_slice
fifo_generator_v13_1_1_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_RDCH),
.C_REG_CONFIG (C_REG_SLICE_MODE_RDCH)
)
rdch_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (rdch_din),
.S_VALID (M_AXI_RVALID),
.S_READY (M_AXI_RREADY),
// Master side
.M_PAYLOAD_DATA (rdch_dout),
.M_VALID (S_AXI_RVALID),
.M_READY (S_AXI_RREADY)
);
end endgenerate // grdch_reg_slice
assign axi_rd_underflow_i = C_USE_COMMON_UNDERFLOW == 1 ? (axi_ar_underflow_i || axi_r_underflow_i) : 0;
assign axi_rd_overflow_i = C_USE_COMMON_OVERFLOW == 1 ? (axi_ar_overflow_i || axi_r_overflow_i) : 0;
generate if (IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) begin : axi_full_rach_output
assign M_AXI_ARADDR = rach_dout[ARID_OFFSET-1:ARADDR_OFFSET];
assign M_AXI_ARLEN = rach_dout[ARADDR_OFFSET-1:ARLEN_OFFSET];
assign M_AXI_ARSIZE = rach_dout[ARLEN_OFFSET-1:ARSIZE_OFFSET];
assign M_AXI_ARBURST = rach_dout[ARSIZE_OFFSET-1:ARBURST_OFFSET];
assign M_AXI_ARLOCK = rach_dout[ARBURST_OFFSET-1:ARLOCK_OFFSET];
assign M_AXI_ARCACHE = rach_dout[ARLOCK_OFFSET-1:ARCACHE_OFFSET];
assign M_AXI_ARPROT = rach_dout[ARCACHE_OFFSET-1:ARPROT_OFFSET];
assign M_AXI_ARQOS = rach_dout[ARPROT_OFFSET-1:ARQOS_OFFSET];
assign rach_din[ARID_OFFSET-1:ARADDR_OFFSET] = S_AXI_ARADDR;
assign rach_din[ARADDR_OFFSET-1:ARLEN_OFFSET] = S_AXI_ARLEN;
assign rach_din[ARLEN_OFFSET-1:ARSIZE_OFFSET] = S_AXI_ARSIZE;
assign rach_din[ARSIZE_OFFSET-1:ARBURST_OFFSET] = S_AXI_ARBURST;
assign rach_din[ARBURST_OFFSET-1:ARLOCK_OFFSET] = S_AXI_ARLOCK;
assign rach_din[ARLOCK_OFFSET-1:ARCACHE_OFFSET] = S_AXI_ARCACHE;
assign rach_din[ARCACHE_OFFSET-1:ARPROT_OFFSET] = S_AXI_ARPROT;
assign rach_din[ARPROT_OFFSET-1:ARQOS_OFFSET] = S_AXI_ARQOS;
end endgenerate // axi_full_rach_output
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_AXI_TYPE == 1) begin : axi_arregion
assign M_AXI_ARREGION = rach_dout[ARQOS_OFFSET-1:ARREGION_OFFSET];
end endgenerate // axi_arregion
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_AXI_TYPE != 1) begin : naxi_arregion
assign M_AXI_ARREGION = 0;
end endgenerate // naxi_arregion
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ARUSER == 1) begin : axi_aruser
assign M_AXI_ARUSER = rach_dout[ARREGION_OFFSET-1:ARUSER_OFFSET];
end endgenerate // axi_aruser
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ARUSER == 0) begin : naxi_aruser
assign M_AXI_ARUSER = 0;
end endgenerate // naxi_aruser
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_arid
assign M_AXI_ARID = rach_dout[C_DIN_WIDTH_RACH-1:ARID_OFFSET];
end endgenerate // axi_arid
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_arid
assign M_AXI_ARID = 0;
end endgenerate // naxi_arid
generate if (IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) begin : axi_full_rdch_output
assign S_AXI_RDATA = rdch_dout[RID_OFFSET-1:RDATA_OFFSET];
assign S_AXI_RRESP = rdch_dout[RDATA_OFFSET-1:RRESP_OFFSET];
assign S_AXI_RLAST = rdch_dout[0];
assign rdch_din[RID_OFFSET-1:RDATA_OFFSET] = M_AXI_RDATA;
assign rdch_din[RDATA_OFFSET-1:RRESP_OFFSET] = M_AXI_RRESP;
assign rdch_din[0] = M_AXI_RLAST;
end endgenerate // axi_full_rdch_output
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_RUSER == 1) begin : axi_full_ruser_output
assign S_AXI_RUSER = rdch_dout[RRESP_OFFSET-1:RUSER_OFFSET];
end endgenerate // axi_full_ruser_output
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_RUSER == 0) begin : axi_full_nruser_output
assign S_AXI_RUSER = 0;
end endgenerate // axi_full_nruser_output
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_rid
assign S_AXI_RID = rdch_dout[C_DIN_WIDTH_RDCH-1:RID_OFFSET];
end endgenerate // axi_rid
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_rid
assign S_AXI_RID = 0;
end endgenerate // naxi_rid
generate if (IS_AXI_LITE_RACH == 1 || (IS_AXI_LITE == 1 && C_RACH_TYPE == 1)) begin : axi_lite_rach_output1
assign rach_din = {S_AXI_ARADDR, S_AXI_ARPROT};
assign M_AXI_ARADDR = rach_dout[C_DIN_WIDTH_RACH-1:ARADDR_OFFSET];
assign M_AXI_ARPROT = rach_dout[ARADDR_OFFSET-1:ARPROT_OFFSET];
end endgenerate // axi_lite_rach_output
generate if (IS_AXI_LITE_RDCH == 1 || (IS_AXI_LITE == 1 && C_RDCH_TYPE == 1)) begin : axi_lite_rdch_output1
assign rdch_din = {M_AXI_RDATA, M_AXI_RRESP};
assign S_AXI_RDATA = rdch_dout[C_DIN_WIDTH_RDCH-1:RDATA_OFFSET];
assign S_AXI_RRESP = rdch_dout[RDATA_OFFSET-1:RRESP_OFFSET];
end endgenerate // axi_lite_rdch_output
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ARUSER == 1) begin : grach_din1
assign rach_din[ARREGION_OFFSET-1:ARUSER_OFFSET] = S_AXI_ARUSER;
end endgenerate // grach_din1
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : grach_din2
assign rach_din[C_DIN_WIDTH_RACH-1:ARID_OFFSET] = S_AXI_ARID;
end endgenerate // grach_din2
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_AXI_TYPE == 1) begin
assign rach_din[ARQOS_OFFSET-1:ARREGION_OFFSET] = S_AXI_ARREGION;
end endgenerate
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_RUSER == 1) begin : grdch_din1
assign rdch_din[RRESP_OFFSET-1:RUSER_OFFSET] = M_AXI_RUSER;
end endgenerate // grdch_din1
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : grdch_din2
assign rdch_din[C_DIN_WIDTH_RDCH-1:RID_OFFSET] = M_AXI_RID;
end endgenerate // grdch_din2
//end of axi_read_channel
generate if (C_INTERFACE_TYPE == 1 && C_USE_COMMON_UNDERFLOW == 1) begin : gaxi_comm_uf
assign UNDERFLOW = (C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 1) ? (axi_wr_underflow_i || axi_rd_underflow_i) :
(C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 0) ? axi_wr_underflow_i :
(C_HAS_AXI_WR_CHANNEL == 0 && C_HAS_AXI_RD_CHANNEL == 1) ? axi_rd_underflow_i : 0;
end endgenerate // gaxi_comm_uf
generate if (C_INTERFACE_TYPE == 1 && C_USE_COMMON_OVERFLOW == 1) begin : gaxi_comm_of
assign OVERFLOW = (C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 1) ? (axi_wr_overflow_i || axi_rd_overflow_i) :
(C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 0) ? axi_wr_overflow_i :
(C_HAS_AXI_WR_CHANNEL == 0 && C_HAS_AXI_RD_CHANNEL == 1) ? axi_rd_overflow_i : 0;
end endgenerate // gaxi_comm_of
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
// Pass Through Logic or Wiring Logic
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
// Pass Through Logic for Read Channel
//-------------------------------------------------------------------------
// Wiring logic for Write Address Channel
generate if (C_WACH_TYPE == 2) begin : gwach_pass_through
assign M_AXI_AWID = S_AXI_AWID;
assign M_AXI_AWADDR = S_AXI_AWADDR;
assign M_AXI_AWLEN = S_AXI_AWLEN;
assign M_AXI_AWSIZE = S_AXI_AWSIZE;
assign M_AXI_AWBURST = S_AXI_AWBURST;
assign M_AXI_AWLOCK = S_AXI_AWLOCK;
assign M_AXI_AWCACHE = S_AXI_AWCACHE;
assign M_AXI_AWPROT = S_AXI_AWPROT;
assign M_AXI_AWQOS = S_AXI_AWQOS;
assign M_AXI_AWREGION = S_AXI_AWREGION;
assign M_AXI_AWUSER = S_AXI_AWUSER;
assign S_AXI_AWREADY = M_AXI_AWREADY;
assign M_AXI_AWVALID = S_AXI_AWVALID;
end endgenerate // gwach_pass_through;
// Wiring logic for Write Data Channel
generate if (C_WDCH_TYPE == 2) begin : gwdch_pass_through
assign M_AXI_WID = S_AXI_WID;
assign M_AXI_WDATA = S_AXI_WDATA;
assign M_AXI_WSTRB = S_AXI_WSTRB;
assign M_AXI_WLAST = S_AXI_WLAST;
assign M_AXI_WUSER = S_AXI_WUSER;
assign S_AXI_WREADY = M_AXI_WREADY;
assign M_AXI_WVALID = S_AXI_WVALID;
end endgenerate // gwdch_pass_through;
// Wiring logic for Write Response Channel
generate if (C_WRCH_TYPE == 2) begin : gwrch_pass_through
assign S_AXI_BID = M_AXI_BID;
assign S_AXI_BRESP = M_AXI_BRESP;
assign S_AXI_BUSER = M_AXI_BUSER;
assign M_AXI_BREADY = S_AXI_BREADY;
assign S_AXI_BVALID = M_AXI_BVALID;
end endgenerate // gwrch_pass_through;
//-------------------------------------------------------------------------
// Pass Through Logic for Read Channel
//-------------------------------------------------------------------------
// Wiring logic for Read Address Channel
generate if (C_RACH_TYPE == 2) begin : grach_pass_through
assign M_AXI_ARID = S_AXI_ARID;
assign M_AXI_ARADDR = S_AXI_ARADDR;
assign M_AXI_ARLEN = S_AXI_ARLEN;
assign M_AXI_ARSIZE = S_AXI_ARSIZE;
assign M_AXI_ARBURST = S_AXI_ARBURST;
assign M_AXI_ARLOCK = S_AXI_ARLOCK;
assign M_AXI_ARCACHE = S_AXI_ARCACHE;
assign M_AXI_ARPROT = S_AXI_ARPROT;
assign M_AXI_ARQOS = S_AXI_ARQOS;
assign M_AXI_ARREGION = S_AXI_ARREGION;
assign M_AXI_ARUSER = S_AXI_ARUSER;
assign S_AXI_ARREADY = M_AXI_ARREADY;
assign M_AXI_ARVALID = S_AXI_ARVALID;
end endgenerate // grach_pass_through;
// Wiring logic for Read Data Channel
generate if (C_RDCH_TYPE == 2) begin : grdch_pass_through
assign S_AXI_RID = M_AXI_RID;
assign S_AXI_RLAST = M_AXI_RLAST;
assign S_AXI_RUSER = M_AXI_RUSER;
assign S_AXI_RDATA = M_AXI_RDATA;
assign S_AXI_RRESP = M_AXI_RRESP;
assign S_AXI_RVALID = M_AXI_RVALID;
assign M_AXI_RREADY = S_AXI_RREADY;
end endgenerate // grdch_pass_through;
// Wiring logic for AXI Streaming
generate if (C_AXIS_TYPE == 2) begin : gaxis_pass_through
assign M_AXIS_TDATA = S_AXIS_TDATA;
assign M_AXIS_TSTRB = S_AXIS_TSTRB;
assign M_AXIS_TKEEP = S_AXIS_TKEEP;
assign M_AXIS_TID = S_AXIS_TID;
assign M_AXIS_TDEST = S_AXIS_TDEST;
assign M_AXIS_TUSER = S_AXIS_TUSER;
assign M_AXIS_TLAST = S_AXIS_TLAST;
assign S_AXIS_TREADY = M_AXIS_TREADY;
assign M_AXIS_TVALID = S_AXIS_TVALID;
end endgenerate // gaxis_pass_through;
endmodule //fifo_generator_v13_1_1
/*******************************************************************************
* Declaration of top-level module for Conventional FIFO
******************************************************************************/
module fifo_generator_v13_1_1_CONV_VER
#(
parameter C_COMMON_CLOCK = 0,
parameter C_INTERFACE_TYPE = 0,
parameter C_EN_SAFETY_CKT = 0,
parameter C_COUNT_TYPE = 0,
parameter C_DATA_COUNT_WIDTH = 2,
parameter C_DEFAULT_VALUE = "",
parameter C_DIN_WIDTH = 8,
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_ENABLE_RLOCS = 0,
parameter C_FAMILY = "virtex7", //Not allowed in Verilog model
parameter C_FULL_FLAGS_RST_VAL = 1,
parameter C_HAS_ALMOST_EMPTY = 0,
parameter C_HAS_ALMOST_FULL = 0,
parameter C_HAS_BACKUP = 0,
parameter C_HAS_DATA_COUNT = 0,
parameter C_HAS_INT_CLK = 0,
parameter C_HAS_MEMINIT_FILE = 0,
parameter C_HAS_OVERFLOW = 0,
parameter C_HAS_RD_DATA_COUNT = 0,
parameter C_HAS_RD_RST = 0,
parameter C_HAS_RST = 0,
parameter C_HAS_SRST = 0,
parameter C_HAS_UNDERFLOW = 0,
parameter C_HAS_VALID = 0,
parameter C_HAS_WR_ACK = 0,
parameter C_HAS_WR_DATA_COUNT = 0,
parameter C_HAS_WR_RST = 0,
parameter C_IMPLEMENTATION_TYPE = 0,
parameter C_INIT_WR_PNTR_VAL = 0,
parameter C_MEMORY_TYPE = 1,
parameter C_MIF_FILE_NAME = "",
parameter C_OPTIMIZATION_MODE = 0,
parameter C_OVERFLOW_LOW = 0,
parameter C_PRELOAD_LATENCY = 1,
parameter C_PRELOAD_REGS = 0,
parameter C_PRIM_FIFO_TYPE = "",
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0,
parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0,
parameter C_PROG_EMPTY_TYPE = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0,
parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0,
parameter C_PROG_FULL_TYPE = 0,
parameter C_RD_DATA_COUNT_WIDTH = 2,
parameter C_RD_DEPTH = 256,
parameter C_RD_FREQ = 1,
parameter C_RD_PNTR_WIDTH = 8,
parameter C_UNDERFLOW_LOW = 0,
parameter C_USE_DOUT_RST = 0,
parameter C_USE_ECC = 0,
parameter C_USE_EMBEDDED_REG = 0,
parameter C_USE_FIFO16_FLAGS = 0,
parameter C_USE_FWFT_DATA_COUNT = 0,
parameter C_VALID_LOW = 0,
parameter C_WR_ACK_LOW = 0,
parameter C_WR_DATA_COUNT_WIDTH = 2,
parameter C_WR_DEPTH = 256,
parameter C_WR_FREQ = 1,
parameter C_WR_PNTR_WIDTH = 8,
parameter C_WR_RESPONSE_LATENCY = 1,
parameter C_MSGON_VAL = 1,
parameter C_ENABLE_RST_SYNC = 1,
parameter C_ERROR_INJECTION_TYPE = 0,
parameter C_FIFO_TYPE = 0,
parameter C_SYNCHRONIZER_STAGE = 2,
parameter C_AXI_TYPE = 0
)
(
input BACKUP,
input BACKUP_MARKER,
input CLK,
input RST,
input SRST,
input WR_CLK,
input WR_RST,
input RD_CLK,
input RD_RST,
input [C_DIN_WIDTH-1:0] DIN,
input WR_EN,
input RD_EN,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE,
input INT_CLK,
input INJECTDBITERR,
input INJECTSBITERR,
output [C_DOUT_WIDTH-1:0] DOUT,
output FULL,
output ALMOST_FULL,
output WR_ACK,
output OVERFLOW,
output EMPTY,
output ALMOST_EMPTY,
output VALID,
output UNDERFLOW,
output [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT,
output [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT,
output [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT,
output PROG_FULL,
output PROG_EMPTY,
output SBITERR,
output DBITERR,
output wr_rst_busy,
output rd_rst_busy,
output wr_rst_i_out,
output rd_rst_i_out
);
/*
******************************************************************************
* Definition of Parameters
******************************************************************************
* C_COMMON_CLOCK : Common Clock (1), Independent Clocks (0)
* C_COUNT_TYPE : *not used
* C_DATA_COUNT_WIDTH : Width of DATA_COUNT bus
* C_DEFAULT_VALUE : *not used
* C_DIN_WIDTH : Width of DIN bus
* C_DOUT_RST_VAL : Reset value of DOUT
* C_DOUT_WIDTH : Width of DOUT bus
* C_ENABLE_RLOCS : *not used
* C_FAMILY : not used in bhv model
* C_FULL_FLAGS_RST_VAL : Full flags rst val (0 or 1)
* C_HAS_ALMOST_EMPTY : 1=Core has ALMOST_EMPTY flag
* C_HAS_ALMOST_FULL : 1=Core has ALMOST_FULL flag
* C_HAS_BACKUP : *not used
* C_HAS_DATA_COUNT : 1=Core has DATA_COUNT bus
* C_HAS_INT_CLK : not used in bhv model
* C_HAS_MEMINIT_FILE : *not used
* C_HAS_OVERFLOW : 1=Core has OVERFLOW flag
* C_HAS_RD_DATA_COUNT : 1=Core has RD_DATA_COUNT bus
* C_HAS_RD_RST : *not used
* C_HAS_RST : 1=Core has Async Rst
* C_HAS_SRST : 1=Core has Sync Rst
* C_HAS_UNDERFLOW : 1=Core has UNDERFLOW flag
* C_HAS_VALID : 1=Core has VALID flag
* C_HAS_WR_ACK : 1=Core has WR_ACK flag
* C_HAS_WR_DATA_COUNT : 1=Core has WR_DATA_COUNT bus
* C_HAS_WR_RST : *not used
* C_IMPLEMENTATION_TYPE : 0=Common-Clock Bram/Dram
* 1=Common-Clock ShiftRam
* 2=Indep. Clocks Bram/Dram
* 3=Virtex-4 Built-in
* 4=Virtex-5 Built-in
* C_INIT_WR_PNTR_VAL : *not used
* C_MEMORY_TYPE : 1=Block RAM
* 2=Distributed RAM
* 3=Shift RAM
* 4=Built-in FIFO
* C_MIF_FILE_NAME : *not used
* C_OPTIMIZATION_MODE : *not used
* C_OVERFLOW_LOW : 1=OVERFLOW active low
* C_PRELOAD_LATENCY : Latency of read: 0, 1, 2
* C_PRELOAD_REGS : 1=Use output registers
* C_PRIM_FIFO_TYPE : not used in bhv model
* C_PROG_EMPTY_THRESH_ASSERT_VAL: PROG_EMPTY assert threshold
* C_PROG_EMPTY_THRESH_NEGATE_VAL: PROG_EMPTY negate threshold
* C_PROG_EMPTY_TYPE : 0=No programmable empty
* 1=Single prog empty thresh constant
* 2=Multiple prog empty thresh constants
* 3=Single prog empty thresh input
* 4=Multiple prog empty thresh inputs
* C_PROG_FULL_THRESH_ASSERT_VAL : PROG_FULL assert threshold
* C_PROG_FULL_THRESH_NEGATE_VAL : PROG_FULL negate threshold
* C_PROG_FULL_TYPE : 0=No prog full
* 1=Single prog full thresh constant
* 2=Multiple prog full thresh constants
* 3=Single prog full thresh input
* 4=Multiple prog full thresh inputs
* C_RD_DATA_COUNT_WIDTH : Width of RD_DATA_COUNT bus
* C_RD_DEPTH : Depth of read interface (2^N)
* C_RD_FREQ : not used in bhv model
* C_RD_PNTR_WIDTH : always log2(C_RD_DEPTH)
* C_UNDERFLOW_LOW : 1=UNDERFLOW active low
* C_USE_DOUT_RST : 1=Resets DOUT on RST
* C_USE_ECC : Used for error injection purpose
* C_USE_EMBEDDED_REG : 1=Use BRAM embedded output register
* C_USE_FIFO16_FLAGS : not used in bhv model
* C_USE_FWFT_DATA_COUNT : 1=Use extra logic for FWFT data count
* C_VALID_LOW : 1=VALID active low
* C_WR_ACK_LOW : 1=WR_ACK active low
* C_WR_DATA_COUNT_WIDTH : Width of WR_DATA_COUNT bus
* C_WR_DEPTH : Depth of write interface (2^N)
* C_WR_FREQ : not used in bhv model
* C_WR_PNTR_WIDTH : always log2(C_WR_DEPTH)
* C_WR_RESPONSE_LATENCY : *not used
* C_MSGON_VAL : *not used by bhv model
* C_ENABLE_RST_SYNC : 0 = Use WR_RST & RD_RST
* 1 = Use RST
* C_ERROR_INJECTION_TYPE : 0 = No error injection
* 1 = Single bit error injection only
* 2 = Double bit error injection only
* 3 = Single and double bit error injection
******************************************************************************
* Definition of Ports
******************************************************************************
* BACKUP : Not used
* BACKUP_MARKER: Not used
* CLK : Clock
* DIN : Input data bus
* PROG_EMPTY_THRESH : Threshold for Programmable Empty Flag
* PROG_EMPTY_THRESH_ASSERT: Threshold for Programmable Empty Flag
* PROG_EMPTY_THRESH_NEGATE: Threshold for Programmable Empty Flag
* PROG_FULL_THRESH : Threshold for Programmable Full Flag
* PROG_FULL_THRESH_ASSERT : Threshold for Programmable Full Flag
* PROG_FULL_THRESH_NEGATE : Threshold for Programmable Full Flag
* RD_CLK : Read Domain Clock
* RD_EN : Read enable
* RD_RST : Read Reset
* RST : Asynchronous Reset
* SRST : Synchronous Reset
* WR_CLK : Write Domain Clock
* WR_EN : Write enable
* WR_RST : Write Reset
* INT_CLK : Internal Clock
* INJECTSBITERR: Inject Signle bit error
* INJECTDBITERR: Inject Double bit error
* ALMOST_EMPTY : One word remaining in FIFO
* ALMOST_FULL : One empty space remaining in FIFO
* DATA_COUNT : Number of data words in fifo( synchronous to CLK)
* DOUT : Output data bus
* EMPTY : Empty flag
* FULL : Full flag
* OVERFLOW : Last write rejected
* PROG_EMPTY : Programmable Empty Flag
* PROG_FULL : Programmable Full Flag
* RD_DATA_COUNT: Number of data words in fifo (synchronous to RD_CLK)
* UNDERFLOW : Last read rejected
* VALID : Last read acknowledged, DOUT bus VALID
* WR_ACK : Last write acknowledged
* WR_DATA_COUNT: Number of data words in fifo (synchronous to WR_CLK)
* SBITERR : Single Bit ECC Error Detected
* DBITERR : Double Bit ECC Error Detected
******************************************************************************
*/
//----------------------------------------------------------------------------
//- Internal Signals for delayed input signals
//- All the input signals except Clock are delayed by 100 ps and then given to
//- the models.
//----------------------------------------------------------------------------
reg rst_delayed ;
reg empty_fb ;
reg srst_delayed ;
reg wr_rst_delayed ;
reg rd_rst_delayed ;
reg wr_en_delayed ;
reg rd_en_delayed ;
reg [C_DIN_WIDTH-1:0] din_delayed ;
reg [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_delayed ;
reg [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_assert_delayed ;
reg [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_negate_delayed ;
reg [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_delayed ;
reg [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_assert_delayed ;
reg [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_negate_delayed ;
reg injectdbiterr_delayed ;
reg injectsbiterr_delayed ;
wire empty_p0_out;
always @* rst_delayed <= #`TCQ RST ;
always @* empty_fb <= #`TCQ empty_p0_out ;
always @* srst_delayed <= #`TCQ SRST ;
always @* wr_rst_delayed <= #`TCQ WR_RST ;
always @* rd_rst_delayed <= #`TCQ RD_RST ;
always @* din_delayed <= #`TCQ DIN ;
always @* wr_en_delayed <= #`TCQ WR_EN ;
always @* rd_en_delayed <= #`TCQ RD_EN ;
always @* prog_empty_thresh_delayed <= #`TCQ PROG_EMPTY_THRESH ;
always @* prog_empty_thresh_assert_delayed <= #`TCQ PROG_EMPTY_THRESH_ASSERT ;
always @* prog_empty_thresh_negate_delayed <= #`TCQ PROG_EMPTY_THRESH_NEGATE ;
always @* prog_full_thresh_delayed <= #`TCQ PROG_FULL_THRESH ;
always @* prog_full_thresh_assert_delayed <= #`TCQ PROG_FULL_THRESH_ASSERT ;
always @* prog_full_thresh_negate_delayed <= #`TCQ PROG_FULL_THRESH_NEGATE ;
always @* injectdbiterr_delayed <= #`TCQ INJECTDBITERR ;
always @* injectsbiterr_delayed <= #`TCQ INJECTSBITERR ;
/*****************************************************************************
* Derived parameters
****************************************************************************/
//There are 2 Verilog behavioral models
// 0 = Common-Clock FIFO/ShiftRam FIFO
// 1 = Independent Clocks FIFO
// 2 = Low Latency Synchronous FIFO
// 3 = Low Latency Asynchronous FIFO
localparam C_VERILOG_IMPL = (C_FIFO_TYPE == 3) ? 2 :
(C_IMPLEMENTATION_TYPE == 2) ? 1 : 0;
localparam IS_8SERIES = (C_FAMILY == "virtexu" || C_FAMILY == "kintexu" || C_FAMILY == "artixu" || C_FAMILY == "virtexuplus" || C_FAMILY == "zynquplus" || C_FAMILY == "kintexuplus") ? 1 : 0;
//Internal reset signals
reg rd_rst_asreg = 0;
reg rd_rst_asreg_d1 = 0;
reg rd_rst_asreg_d2 = 0;
reg rd_rst_asreg_d3 = 0;
reg rd_rst_reg = 0;
wire rd_rst_comb;
reg wr_rst_d0 = 0;
reg wr_rst_d1 = 0;
reg wr_rst_d2 = 0;
reg rd_rst_d0 = 0;
reg rd_rst_d1 = 0;
reg rd_rst_d2 = 0;
reg rd_rst_d3 = 0;
reg wrrst_done = 0;
reg rdrst_done = 0;
reg wr_rst_asreg = 0;
reg wr_rst_asreg_d1 = 0;
reg wr_rst_asreg_d2 = 0;
reg wr_rst_asreg_d3 = 0;
reg rd_rst_wr_d0 = 0;
reg rd_rst_wr_d1 = 0;
reg rd_rst_wr_d2 = 0;
reg wr_rst_reg = 0;
reg rst_active_i = 1'b1;
reg rst_delayed_d1 = 1'b1;
reg rst_delayed_d2 = 1'b1;
wire wr_rst_comb;
wire wr_rst_i;
wire rd_rst_i;
wire rst_i;
//Internal reset signals
reg rst_asreg = 0;
reg srst_asreg = 0;
reg rst_asreg_d1 = 0;
reg rst_asreg_d2 = 0;
reg srst_asreg_d1 = 0;
reg srst_asreg_d2 = 0;
reg rst_reg = 0;
reg srst_reg = 0;
wire rst_comb;
wire srst_comb;
reg rst_full_gen_i = 0;
reg rst_full_ff_i = 0;
wire RD_CLK_P0_IN;
wire RST_P0_IN;
wire RD_EN_FIFO_IN;
wire RD_EN_P0_IN;
wire ALMOST_EMPTY_FIFO_OUT;
wire ALMOST_FULL_FIFO_OUT;
wire [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT_FIFO_OUT;
wire [C_DOUT_WIDTH-1:0] DOUT_FIFO_OUT;
wire EMPTY_FIFO_OUT;
wire FULL_FIFO_OUT;
wire OVERFLOW_FIFO_OUT;
wire PROG_EMPTY_FIFO_OUT;
wire PROG_FULL_FIFO_OUT;
wire VALID_FIFO_OUT;
wire [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT_FIFO_OUT;
wire UNDERFLOW_FIFO_OUT;
wire WR_ACK_FIFO_OUT;
wire [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT_FIFO_OUT;
//***************************************************************************
// Internal Signals
// The core uses either the internal_ wires or the preload0_ wires depending
// on whether the core uses Preload0 or not.
// When using preload0, the internal signals connect the internal core to
// the preload logic, and the external core's interfaces are tied to the
// preload0 signals from the preload logic.
//***************************************************************************
wire [C_DOUT_WIDTH-1:0] DATA_P0_OUT;
wire VALID_P0_OUT;
wire EMPTY_P0_OUT;
wire ALMOSTEMPTY_P0_OUT;
reg EMPTY_P0_OUT_Q;
reg ALMOSTEMPTY_P0_OUT_Q;
wire UNDERFLOW_P0_OUT;
wire RDEN_P0_OUT;
wire [C_DOUT_WIDTH-1:0] DATA_P0_IN;
wire EMPTY_P0_IN;
reg [31:0] DATA_COUNT_FWFT;
reg SS_FWFT_WR ;
reg SS_FWFT_RD ;
wire sbiterr_fifo_out;
wire dbiterr_fifo_out;
wire inject_sbit_err;
wire inject_dbit_err;
wire w_fab_read_data_valid_i;
wire w_read_data_valid_i;
wire w_ram_valid_i;
// Assign 0 if not selected to avoid 'X' propogation to S/DBITERR.
assign inject_sbit_err = ((C_ERROR_INJECTION_TYPE == 1) || (C_ERROR_INJECTION_TYPE == 3)) ?
injectsbiterr_delayed : 0;
assign inject_dbit_err = ((C_ERROR_INJECTION_TYPE == 2) || (C_ERROR_INJECTION_TYPE == 3)) ?
injectdbiterr_delayed : 0;
assign wr_rst_i_out = wr_rst_i;
assign rd_rst_i_out = rd_rst_i;
// Choose the behavioral model to instantiate based on the C_VERILOG_IMPL
// parameter (1=Independent Clocks, 0=Common Clock)
localparam FULL_FLAGS_RST_VAL = (C_HAS_SRST == 1) ? 0 : C_FULL_FLAGS_RST_VAL;
generate
case (C_VERILOG_IMPL)
0 : begin : block1
//Common Clock Behavioral Model
fifo_generator_v13_1_1_bhv_ver_ss
#(
.C_FAMILY (C_FAMILY),
.C_DATA_COUNT_WIDTH (C_DATA_COUNT_WIDTH),
.C_DIN_WIDTH (C_DIN_WIDTH),
.C_DOUT_RST_VAL (C_DOUT_RST_VAL),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_FULL_FLAGS_RST_VAL (FULL_FLAGS_RST_VAL),
.C_HAS_ALMOST_EMPTY (C_HAS_ALMOST_EMPTY),
.C_HAS_ALMOST_FULL ((C_AXI_TYPE == 0 && C_FIFO_TYPE == 1) ? 1 : C_HAS_ALMOST_FULL),
.C_HAS_DATA_COUNT (C_HAS_DATA_COUNT),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT),
.C_HAS_RST (C_HAS_RST),
.C_HAS_SRST (C_HAS_SRST),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_HAS_VALID (C_HAS_VALID),
.C_HAS_WR_ACK (C_HAS_WR_ACK),
.C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT),
.C_IMPLEMENTATION_TYPE (C_IMPLEMENTATION_TYPE),
.C_MEMORY_TYPE (C_MEMORY_TYPE),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_PRELOAD_LATENCY (C_PRELOAD_LATENCY),
.C_PRELOAD_REGS (C_PRELOAD_REGS),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL),
.C_PROG_EMPTY_THRESH_NEGATE_VAL (C_PROG_EMPTY_THRESH_NEGATE_VAL),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL),
.C_PROG_FULL_THRESH_NEGATE_VAL (C_PROG_FULL_THRESH_NEGATE_VAL),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE),
.C_RD_DATA_COUNT_WIDTH (C_RD_DATA_COUNT_WIDTH),
.C_RD_DEPTH (C_RD_DEPTH),
.C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG),
.C_EN_SAFETY_CKT (C_EN_SAFETY_CKT),
.C_USE_FWFT_DATA_COUNT (C_USE_FWFT_DATA_COUNT),
.C_VALID_LOW (C_VALID_LOW),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH),
.C_WR_DEPTH (C_WR_DEPTH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH),
.C_USE_ECC (C_USE_ECC),
.C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE),
.C_FIFO_TYPE (C_FIFO_TYPE)
)
gen_ss
(
.CLK (CLK),
.RST (rst_i),
.SRST (srst_delayed),
.RST_FULL_GEN (rst_full_gen_i),
.RST_FULL_FF (rst_full_ff_i),
.DIN (din_delayed),
.WR_EN (wr_en_delayed),
.RD_EN (RD_EN_FIFO_IN),
.RD_EN_USER (rd_en_delayed),
.USER_EMPTY_FB (empty_fb),
.PROG_EMPTY_THRESH (prog_empty_thresh_delayed),
.PROG_EMPTY_THRESH_ASSERT (prog_empty_thresh_assert_delayed),
.PROG_EMPTY_THRESH_NEGATE (prog_empty_thresh_negate_delayed),
.PROG_FULL_THRESH (prog_full_thresh_delayed),
.PROG_FULL_THRESH_ASSERT (prog_full_thresh_assert_delayed),
.PROG_FULL_THRESH_NEGATE (prog_full_thresh_negate_delayed),
.INJECTSBITERR (inject_sbit_err),
.INJECTDBITERR (inject_dbit_err),
.DOUT (DOUT_FIFO_OUT),
.FULL (FULL_FIFO_OUT),
.ALMOST_FULL (ALMOST_FULL_FIFO_OUT),
.WR_ACK (WR_ACK_FIFO_OUT),
.OVERFLOW (OVERFLOW_FIFO_OUT),
.EMPTY (EMPTY_FIFO_OUT),
.ALMOST_EMPTY (ALMOST_EMPTY_FIFO_OUT),
.VALID (VALID_FIFO_OUT),
.UNDERFLOW (UNDERFLOW_FIFO_OUT),
.DATA_COUNT (DATA_COUNT_FIFO_OUT),
.RD_DATA_COUNT (RD_DATA_COUNT_FIFO_OUT),
.WR_DATA_COUNT (WR_DATA_COUNT_FIFO_OUT),
.PROG_FULL (PROG_FULL_FIFO_OUT),
.PROG_EMPTY (PROG_EMPTY_FIFO_OUT),
.WR_RST_BUSY (wr_rst_busy),
.RD_RST_BUSY (rd_rst_busy),
.SBITERR (sbiterr_fifo_out),
.DBITERR (dbiterr_fifo_out)
);
end
1 : begin : block1
//Independent Clocks Behavioral Model
fifo_generator_v13_1_1_bhv_ver_as
#(
.C_FAMILY (C_FAMILY),
.C_DATA_COUNT_WIDTH (C_DATA_COUNT_WIDTH),
.C_DIN_WIDTH (C_DIN_WIDTH),
.C_DOUT_RST_VAL (C_DOUT_RST_VAL),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_FULL_FLAGS_RST_VAL (C_FULL_FLAGS_RST_VAL),
.C_HAS_ALMOST_EMPTY (C_HAS_ALMOST_EMPTY),
.C_HAS_ALMOST_FULL (C_HAS_ALMOST_FULL),
.C_HAS_DATA_COUNT (C_HAS_DATA_COUNT),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT),
.C_HAS_RST (C_HAS_RST),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_HAS_VALID (C_HAS_VALID),
.C_HAS_WR_ACK (C_HAS_WR_ACK),
.C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT),
.C_IMPLEMENTATION_TYPE (C_IMPLEMENTATION_TYPE),
.C_MEMORY_TYPE (C_MEMORY_TYPE),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_PRELOAD_LATENCY (C_PRELOAD_LATENCY),
.C_PRELOAD_REGS (C_PRELOAD_REGS),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL),
.C_PROG_EMPTY_THRESH_NEGATE_VAL (C_PROG_EMPTY_THRESH_NEGATE_VAL),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL),
.C_PROG_FULL_THRESH_NEGATE_VAL (C_PROG_FULL_THRESH_NEGATE_VAL),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE),
.C_RD_DATA_COUNT_WIDTH (C_RD_DATA_COUNT_WIDTH),
.C_RD_DEPTH (C_RD_DEPTH),
.C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG),
.C_EN_SAFETY_CKT (C_EN_SAFETY_CKT),
.C_USE_FWFT_DATA_COUNT (C_USE_FWFT_DATA_COUNT),
.C_VALID_LOW (C_VALID_LOW),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH),
.C_WR_DEPTH (C_WR_DEPTH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH),
.C_USE_ECC (C_USE_ECC),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE)
)
gen_as
(
.WR_CLK (WR_CLK),
.RD_CLK (RD_CLK),
.RST (rst_i),
.RST_FULL_GEN (rst_full_gen_i),
.RST_FULL_FF (rst_full_ff_i),
.WR_RST (wr_rst_i),
.RD_RST (rd_rst_i),
.DIN (din_delayed),
.WR_EN (wr_en_delayed),
.RD_EN (RD_EN_FIFO_IN),
.RD_EN_USER (rd_en_delayed),
.PROG_EMPTY_THRESH (prog_empty_thresh_delayed),
.PROG_EMPTY_THRESH_ASSERT (prog_empty_thresh_assert_delayed),
.PROG_EMPTY_THRESH_NEGATE (prog_empty_thresh_negate_delayed),
.PROG_FULL_THRESH (prog_full_thresh_delayed),
.PROG_FULL_THRESH_ASSERT (prog_full_thresh_assert_delayed),
.PROG_FULL_THRESH_NEGATE (prog_full_thresh_negate_delayed),
.INJECTSBITERR (inject_sbit_err),
.INJECTDBITERR (inject_dbit_err),
.USER_EMPTY_FB (EMPTY_P0_OUT),
.DOUT (DOUT_FIFO_OUT),
.FULL (FULL_FIFO_OUT),
.ALMOST_FULL (ALMOST_FULL_FIFO_OUT),
.WR_ACK (WR_ACK_FIFO_OUT),
.OVERFLOW (OVERFLOW_FIFO_OUT),
.EMPTY (EMPTY_FIFO_OUT),
.ALMOST_EMPTY (ALMOST_EMPTY_FIFO_OUT),
.VALID (VALID_FIFO_OUT),
.UNDERFLOW (UNDERFLOW_FIFO_OUT),
.RD_DATA_COUNT (RD_DATA_COUNT_FIFO_OUT),
.WR_DATA_COUNT (WR_DATA_COUNT_FIFO_OUT),
.PROG_FULL (PROG_FULL_FIFO_OUT),
.PROG_EMPTY (PROG_EMPTY_FIFO_OUT),
.SBITERR (sbiterr_fifo_out),
.fab_read_data_valid_i (w_fab_read_data_valid_i),
.read_data_valid_i (w_read_data_valid_i),
.ram_valid_i (w_ram_valid_i),
.DBITERR (dbiterr_fifo_out)
);
end
2 : begin : ll_afifo_inst
fifo_generator_v13_1_1_beh_ver_ll_afifo
#(
.C_DIN_WIDTH (C_DIN_WIDTH),
.C_DOUT_RST_VAL (C_DOUT_RST_VAL),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_FULL_FLAGS_RST_VAL (C_FULL_FLAGS_RST_VAL),
.C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT),
.C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT),
.C_RD_DEPTH (C_RD_DEPTH),
.C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH),
.C_WR_DEPTH (C_WR_DEPTH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH),
.C_FIFO_TYPE (C_FIFO_TYPE)
)
gen_ll_afifo
(
.DIN (din_delayed),
.RD_CLK (RD_CLK),
.RD_EN (rd_en_delayed),
.WR_RST (wr_rst_i),
.RD_RST (rd_rst_i),
.WR_CLK (WR_CLK),
.WR_EN (wr_en_delayed),
.DOUT (DOUT),
.EMPTY (EMPTY),
.FULL (FULL)
);
end
default : begin : block1
//Independent Clocks Behavioral Model
fifo_generator_v13_1_1_bhv_ver_as
#(
.C_FAMILY (C_FAMILY),
.C_DATA_COUNT_WIDTH (C_DATA_COUNT_WIDTH),
.C_DIN_WIDTH (C_DIN_WIDTH),
.C_DOUT_RST_VAL (C_DOUT_RST_VAL),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_FULL_FLAGS_RST_VAL (C_FULL_FLAGS_RST_VAL),
.C_HAS_ALMOST_EMPTY (C_HAS_ALMOST_EMPTY),
.C_HAS_ALMOST_FULL (C_HAS_ALMOST_FULL),
.C_HAS_DATA_COUNT (C_HAS_DATA_COUNT),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT),
.C_HAS_RST (C_HAS_RST),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_HAS_VALID (C_HAS_VALID),
.C_HAS_WR_ACK (C_HAS_WR_ACK),
.C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT),
.C_IMPLEMENTATION_TYPE (C_IMPLEMENTATION_TYPE),
.C_MEMORY_TYPE (C_MEMORY_TYPE),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_PRELOAD_LATENCY (C_PRELOAD_LATENCY),
.C_PRELOAD_REGS (C_PRELOAD_REGS),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL),
.C_PROG_EMPTY_THRESH_NEGATE_VAL (C_PROG_EMPTY_THRESH_NEGATE_VAL),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL),
.C_PROG_FULL_THRESH_NEGATE_VAL (C_PROG_FULL_THRESH_NEGATE_VAL),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE),
.C_RD_DATA_COUNT_WIDTH (C_RD_DATA_COUNT_WIDTH),
.C_RD_DEPTH (C_RD_DEPTH),
.C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG),
.C_EN_SAFETY_CKT (C_EN_SAFETY_CKT),
.C_USE_FWFT_DATA_COUNT (C_USE_FWFT_DATA_COUNT),
.C_VALID_LOW (C_VALID_LOW),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH),
.C_WR_DEPTH (C_WR_DEPTH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH),
.C_USE_ECC (C_USE_ECC),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE)
)
gen_as
(
.WR_CLK (WR_CLK),
.RD_CLK (RD_CLK),
.RST (rst_i),
.RST_FULL_GEN (rst_full_gen_i),
.RST_FULL_FF (rst_full_ff_i),
.WR_RST (wr_rst_i),
.RD_RST (rd_rst_i),
.DIN (din_delayed),
.WR_EN (wr_en_delayed),
.RD_EN (RD_EN_FIFO_IN),
.RD_EN_USER (rd_en_delayed),
.PROG_EMPTY_THRESH (prog_empty_thresh_delayed),
.PROG_EMPTY_THRESH_ASSERT (prog_empty_thresh_assert_delayed),
.PROG_EMPTY_THRESH_NEGATE (prog_empty_thresh_negate_delayed),
.PROG_FULL_THRESH (prog_full_thresh_delayed),
.PROG_FULL_THRESH_ASSERT (prog_full_thresh_assert_delayed),
.PROG_FULL_THRESH_NEGATE (prog_full_thresh_negate_delayed),
.INJECTSBITERR (inject_sbit_err),
.INJECTDBITERR (inject_dbit_err),
.USER_EMPTY_FB (EMPTY_P0_OUT),
.DOUT (DOUT_FIFO_OUT),
.FULL (FULL_FIFO_OUT),
.ALMOST_FULL (ALMOST_FULL_FIFO_OUT),
.WR_ACK (WR_ACK_FIFO_OUT),
.OVERFLOW (OVERFLOW_FIFO_OUT),
.EMPTY (EMPTY_FIFO_OUT),
.ALMOST_EMPTY (ALMOST_EMPTY_FIFO_OUT),
.VALID (VALID_FIFO_OUT),
.UNDERFLOW (UNDERFLOW_FIFO_OUT),
.RD_DATA_COUNT (RD_DATA_COUNT_FIFO_OUT),
.WR_DATA_COUNT (WR_DATA_COUNT_FIFO_OUT),
.PROG_FULL (PROG_FULL_FIFO_OUT),
.PROG_EMPTY (PROG_EMPTY_FIFO_OUT),
.SBITERR (sbiterr_fifo_out),
.DBITERR (dbiterr_fifo_out)
);
end
endcase
endgenerate
//**************************************************************************
// Connect Internal Signals
// (Signals labeled internal_*)
// In the normal case, these signals tie directly to the FIFO's inputs and
// outputs.
// In the case of Preload Latency 0 or 1, there are intermediate
// signals between the internal FIFO and the preload logic.
//**************************************************************************
//***********************************************
// If First-Word Fall-Through, instantiate
// the preload0 (FWFT) module
//***********************************************
wire rd_en_to_fwft_fifo;
wire sbiterr_fwft;
wire dbiterr_fwft;
wire [C_DOUT_WIDTH-1:0] dout_fwft;
wire empty_fwft;
wire rd_en_fifo_in;
wire stage2_reg_en_i;
wire [1:0] valid_stages_i;
wire rst_fwft;
//wire empty_p0_out;
reg [C_SYNCHRONIZER_STAGE-1:0] pkt_empty_sync = 'b1;
localparam IS_FWFT = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ? 1 : 0;
localparam IS_PKT_FIFO = (C_FIFO_TYPE == 1) ? 1 : 0;
localparam IS_AXIS_PKT_FIFO = (C_FIFO_TYPE == 1 && C_AXI_TYPE == 0) ? 1 : 0;
assign rst_fwft = (C_COMMON_CLOCK == 0) ? rd_rst_i : (C_HAS_RST == 1) ? rst_i : 1'b0;
generate if (IS_FWFT == 1 && C_FIFO_TYPE != 3) begin : block2
fifo_generator_v13_1_1_bhv_ver_preload0
#(
.C_DOUT_RST_VAL (C_DOUT_RST_VAL),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_HAS_RST (C_HAS_RST),
.C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC),
.C_HAS_SRST (C_HAS_SRST),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG),
.C_USE_ECC (C_USE_ECC),
.C_USERVALID_LOW (C_VALID_LOW),
.C_USERUNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_EN_SAFETY_CKT (C_EN_SAFETY_CKT),
.C_MEMORY_TYPE (C_MEMORY_TYPE),
.C_FIFO_TYPE (C_FIFO_TYPE)
)
fgpl0
(
.RD_CLK (RD_CLK_P0_IN),
.RD_RST (RST_P0_IN),
.SRST (srst_delayed),
.WR_RST_BUSY (wr_rst_busy),
.RD_RST_BUSY (rd_rst_busy),
.RD_EN (RD_EN_P0_IN),
.FIFOEMPTY (EMPTY_P0_IN),
.FIFODATA (DATA_P0_IN),
.FIFOSBITERR (sbiterr_fifo_out),
.FIFODBITERR (dbiterr_fifo_out),
// Output
.USERDATA (dout_fwft),
.USERVALID (VALID_P0_OUT),
.USEREMPTY (empty_fwft),
.USERALMOSTEMPTY (ALMOSTEMPTY_P0_OUT),
.USERUNDERFLOW (UNDERFLOW_P0_OUT),
.RAMVALID (),
.FIFORDEN (rd_en_fifo_in),
.USERSBITERR (sbiterr_fwft),
.USERDBITERR (dbiterr_fwft),
.STAGE2_REG_EN (stage2_reg_en_i),
.fab_read_data_valid_i_o (w_fab_read_data_valid_i),
.read_data_valid_i_o (w_read_data_valid_i),
.ram_valid_i_o (w_ram_valid_i),
.VALID_STAGES (valid_stages_i)
);
//***********************************************
// Connect inputs to preload (FWFT) module
//***********************************************
//Connect the RD_CLK of the Preload (FWFT) module to CLK if we
// have a common-clock FIFO, or RD_CLK if we have an
// independent clock FIFO
assign RD_CLK_P0_IN = ((C_VERILOG_IMPL == 0) ? CLK : RD_CLK);
assign RST_P0_IN = (C_COMMON_CLOCK == 0) ? rd_rst_i : (C_HAS_RST == 1) ? rst_i : 0;
assign RD_EN_P0_IN = (C_FIFO_TYPE != 1) ? rd_en_delayed : rd_en_to_fwft_fifo;
assign EMPTY_P0_IN = EMPTY_FIFO_OUT;
assign DATA_P0_IN = DOUT_FIFO_OUT;
//***********************************************
// Connect outputs from preload (FWFT) module
//***********************************************
assign VALID = VALID_P0_OUT ;
assign ALMOST_EMPTY = ALMOSTEMPTY_P0_OUT;
assign UNDERFLOW = UNDERFLOW_P0_OUT ;
assign RD_EN_FIFO_IN = rd_en_fifo_in;
//***********************************************
// Create DATA_COUNT from First-Word Fall-Through
// data count
//***********************************************
assign DATA_COUNT = (C_USE_FWFT_DATA_COUNT == 0)? DATA_COUNT_FIFO_OUT:
(C_DATA_COUNT_WIDTH>C_RD_PNTR_WIDTH) ? DATA_COUNT_FWFT[C_RD_PNTR_WIDTH:0] :
DATA_COUNT_FWFT[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH-C_DATA_COUNT_WIDTH+1];
//***********************************************
// Create DATA_COUNT from First-Word Fall-Through
// data count
//***********************************************
always @ (posedge RD_CLK_P0_IN or posedge RST_P0_IN) begin
if (RST_P0_IN) begin
EMPTY_P0_OUT_Q <= #`TCQ 1;
ALMOSTEMPTY_P0_OUT_Q <= #`TCQ 1;
end else begin
EMPTY_P0_OUT_Q <= #`TCQ empty_p0_out;
// EMPTY_P0_OUT_Q <= #`TCQ EMPTY_FIFO_OUT;
ALMOSTEMPTY_P0_OUT_Q <= #`TCQ ALMOSTEMPTY_P0_OUT;
end
end //always
//***********************************************
// logic for common-clock data count when FWFT is selected
//***********************************************
initial begin
SS_FWFT_RD = 1'b0;
DATA_COUNT_FWFT = 0 ;
SS_FWFT_WR = 1'b0 ;
end //initial
//***********************************************
// common-clock data count is implemented as an
// up-down counter. SS_FWFT_WR and SS_FWFT_RD
// are the up/down enables for the counter.
//***********************************************
always @ (RD_EN or VALID_P0_OUT or WR_EN or FULL_FIFO_OUT or empty_p0_out) begin
if (C_VALID_LOW == 1) begin
SS_FWFT_RD = (C_FIFO_TYPE != 1) ? (RD_EN && ~VALID_P0_OUT) : (~empty_p0_out && RD_EN && ~VALID_P0_OUT) ;
end else begin
SS_FWFT_RD = (C_FIFO_TYPE != 1) ? (RD_EN && VALID_P0_OUT) : (~empty_p0_out && RD_EN && VALID_P0_OUT) ;
end
SS_FWFT_WR = (WR_EN && (~FULL_FIFO_OUT)) ;
end
//***********************************************
// common-clock data count is implemented as an
// up-down counter for FWFT. This always block
// calculates the counter.
//***********************************************
always @ (posedge RD_CLK_P0_IN or posedge RST_P0_IN) begin
if (RST_P0_IN) begin
DATA_COUNT_FWFT <= #`TCQ 0;
end else begin
//if (srst_delayed && (C_HAS_SRST == 1) ) begin
if ((srst_delayed | wr_rst_busy | rd_rst_busy) && (C_HAS_SRST == 1) ) begin
DATA_COUNT_FWFT <= #`TCQ 0;
end else begin
case ( {SS_FWFT_WR, SS_FWFT_RD})
2'b00: DATA_COUNT_FWFT <= #`TCQ DATA_COUNT_FWFT ;
2'b01: DATA_COUNT_FWFT <= #`TCQ DATA_COUNT_FWFT - 1 ;
2'b10: DATA_COUNT_FWFT <= #`TCQ DATA_COUNT_FWFT + 1 ;
2'b11: DATA_COUNT_FWFT <= #`TCQ DATA_COUNT_FWFT ;
endcase
end //if SRST
end //IF RST
end //always
end endgenerate // : block2
// AXI Streaming Packet FIFO
reg [C_WR_PNTR_WIDTH-1:0] wr_pkt_count = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pkt_count = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pkt_count_plus1 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pkt_count_reg = 0;
reg partial_packet = 0;
reg stage1_eop_d1 = 0;
reg rd_en_fifo_in_d1 = 0;
reg eop_at_stage2 = 0;
reg ram_pkt_empty = 0;
reg ram_pkt_empty_d1 = 0;
wire [C_DOUT_WIDTH-1:0] dout_p0_out;
wire packet_empty_wr;
wire wr_rst_fwft_pkt_fifo;
wire dummy_wr_eop;
wire ram_wr_en_pkt_fifo;
wire wr_eop;
wire ram_rd_en_compare;
wire stage1_eop;
wire pkt_ready_to_read;
wire rd_en_2_stage2;
// Generate Dummy WR_EOP for partial packet (Only for AXI Streaming)
// When Packet EMPTY is high, and FIFO is full, then generate the dummy WR_EOP
// When dummy WR_EOP is high, mask the actual EOP to avoid double increment of
// write packet count
generate if (IS_FWFT == 1 && IS_AXIS_PKT_FIFO == 1) begin // gdummy_wr_eop
always @ (posedge wr_rst_fwft_pkt_fifo or posedge WR_CLK) begin
if (wr_rst_fwft_pkt_fifo)
partial_packet <= 1'b0;
else begin
if (srst_delayed | wr_rst_busy | rd_rst_busy)
partial_packet <= #`TCQ 1'b0;
else if (ALMOST_FULL_FIFO_OUT && ram_wr_en_pkt_fifo && packet_empty_wr && (~din_delayed[0]))
partial_packet <= #`TCQ 1'b1;
else if (partial_packet && din_delayed[0] && ram_wr_en_pkt_fifo)
partial_packet <= #`TCQ 1'b0;
end
end
end endgenerate // gdummy_wr_eop
generate if (IS_FWFT == 1 && IS_PKT_FIFO == 1) begin // gpkt_fifo_fwft
assign wr_rst_fwft_pkt_fifo = (C_COMMON_CLOCK == 0) ? wr_rst_i : (C_HAS_RST == 1) ? rst_i:1'b0;
assign dummy_wr_eop = ALMOST_FULL_FIFO_OUT && ram_wr_en_pkt_fifo && packet_empty_wr && (~din_delayed[0]) && (~partial_packet);
assign packet_empty_wr = (C_COMMON_CLOCK == 1) ? empty_p0_out : pkt_empty_sync[C_SYNCHRONIZER_STAGE-1];
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft) begin
stage1_eop_d1 <= 1'b0;
rd_en_fifo_in_d1 <= 1'b0;
end else begin
if (srst_delayed | wr_rst_busy | rd_rst_busy) begin
stage1_eop_d1 <= #`TCQ 1'b0;
rd_en_fifo_in_d1 <= #`TCQ 1'b0;
end else begin
stage1_eop_d1 <= #`TCQ stage1_eop;
rd_en_fifo_in_d1 <= #`TCQ rd_en_fifo_in;
end
end
end
assign stage1_eop = (rd_en_fifo_in_d1) ? DOUT_FIFO_OUT[0] : stage1_eop_d1;
assign ram_wr_en_pkt_fifo = wr_en_delayed && (~FULL_FIFO_OUT);
assign wr_eop = ram_wr_en_pkt_fifo && ((din_delayed[0] && (~partial_packet)) || dummy_wr_eop);
assign ram_rd_en_compare = stage2_reg_en_i && stage1_eop;
fifo_generator_v13_1_1_bhv_ver_preload0
#(
.C_DOUT_RST_VAL (C_DOUT_RST_VAL),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_HAS_RST (C_HAS_RST),
.C_HAS_SRST (C_HAS_SRST),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_USE_ECC (C_USE_ECC),
.C_USERVALID_LOW (C_VALID_LOW),
.C_EN_SAFETY_CKT (C_EN_SAFETY_CKT),
.C_USERUNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC),
.C_MEMORY_TYPE (C_MEMORY_TYPE),
.C_FIFO_TYPE (2) // Enable low latency fwft logic
)
pkt_fifo_fwft
(
.RD_CLK (RD_CLK_P0_IN),
.RD_RST (rst_fwft),
.SRST (srst_delayed),
.WR_RST_BUSY (wr_rst_busy),
.RD_RST_BUSY (rd_rst_busy),
.RD_EN (rd_en_delayed),
.FIFOEMPTY (pkt_ready_to_read),
.FIFODATA (dout_fwft),
.FIFOSBITERR (sbiterr_fwft),
.FIFODBITERR (dbiterr_fwft),
// Output
.USERDATA (dout_p0_out),
.USERVALID (),
.USEREMPTY (empty_p0_out),
.USERALMOSTEMPTY (),
.USERUNDERFLOW (),
.RAMVALID (),
.FIFORDEN (rd_en_2_stage2),
.USERSBITERR (SBITERR),
.USERDBITERR (DBITERR),
.STAGE2_REG_EN (),
.VALID_STAGES ()
);
assign pkt_ready_to_read = ~(!(ram_pkt_empty || empty_fwft) && ((valid_stages_i[0] && valid_stages_i[1]) || eop_at_stage2));
assign rd_en_to_fwft_fifo = ~empty_fwft && rd_en_2_stage2;
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft)
eop_at_stage2 <= 1'b0;
else if (stage2_reg_en_i)
eop_at_stage2 <= #`TCQ stage1_eop;
end
//---------------------------------------------------------------------------
// Write and Read Packet Count
//---------------------------------------------------------------------------
always @ (posedge wr_rst_fwft_pkt_fifo or posedge WR_CLK) begin
if (wr_rst_fwft_pkt_fifo)
wr_pkt_count <= 0;
else if (srst_delayed | wr_rst_busy | rd_rst_busy)
wr_pkt_count <= #`TCQ 0;
else if (wr_eop)
wr_pkt_count <= #`TCQ wr_pkt_count + 1;
end
end endgenerate // gpkt_fifo_fwft
assign DOUT = (C_FIFO_TYPE != 1) ? dout_fwft : dout_p0_out;
assign EMPTY = (C_FIFO_TYPE != 1) ? empty_fwft : empty_p0_out;
generate if (IS_FWFT == 1 && IS_PKT_FIFO == 1 && C_COMMON_CLOCK == 1) begin // grss_pkt_cnt
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft) begin
rd_pkt_count <= 0;
rd_pkt_count_plus1 <= 1;
end else if (srst_delayed | wr_rst_busy | rd_rst_busy) begin
rd_pkt_count <= #`TCQ 0;
rd_pkt_count_plus1 <= #`TCQ 1;
end else if (stage2_reg_en_i && stage1_eop) begin
rd_pkt_count <= #`TCQ rd_pkt_count + 1;
rd_pkt_count_plus1 <= #`TCQ rd_pkt_count_plus1 + 1;
end
end
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft) begin
ram_pkt_empty <= 1'b1;
ram_pkt_empty_d1 <= 1'b1;
end else if (SRST | wr_rst_busy | rd_rst_busy) begin
ram_pkt_empty <= #`TCQ 1'b1;
ram_pkt_empty_d1 <= #`TCQ 1'b1;
end else if ((rd_pkt_count == wr_pkt_count) && wr_eop) begin
ram_pkt_empty <= #`TCQ 1'b0;
ram_pkt_empty_d1 <= #`TCQ 1'b0;
end else if (ram_pkt_empty_d1 && rd_en_to_fwft_fifo) begin
ram_pkt_empty <= #`TCQ 1'b1;
end else if ((rd_pkt_count_plus1 == wr_pkt_count) && ~wr_eop && ~ALMOST_FULL_FIFO_OUT && ram_rd_en_compare) begin
ram_pkt_empty_d1 <= #`TCQ 1'b1;
end
end
end endgenerate //grss_pkt_cnt
localparam SYNC_STAGE_WIDTH = (C_SYNCHRONIZER_STAGE+1)*C_WR_PNTR_WIDTH;
reg [SYNC_STAGE_WIDTH-1:0] wr_pkt_count_q = 0;
reg [C_WR_PNTR_WIDTH-1:0] wr_pkt_count_b2g = 0;
wire [C_WR_PNTR_WIDTH-1:0] wr_pkt_count_rd;
generate if (IS_FWFT == 1 && IS_PKT_FIFO == 1 && C_COMMON_CLOCK == 0) begin // gras_pkt_cnt
// Delay the write packet count in write clock domain to accomodate the binary to gray conversion delay
always @ (posedge wr_rst_fwft_pkt_fifo or posedge WR_CLK) begin
if (wr_rst_fwft_pkt_fifo)
wr_pkt_count_b2g <= 0;
else
wr_pkt_count_b2g <= #`TCQ wr_pkt_count;
end
// Synchronize the delayed write packet count in read domain, and also compensate the gray to binay conversion delay
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft)
wr_pkt_count_q <= 0;
else
wr_pkt_count_q <= #`TCQ {wr_pkt_count_q[SYNC_STAGE_WIDTH-C_WR_PNTR_WIDTH-1:0],wr_pkt_count_b2g};
end
always @* begin
if (stage1_eop)
rd_pkt_count <= rd_pkt_count_reg + 1;
else
rd_pkt_count <= rd_pkt_count_reg;
end
assign wr_pkt_count_rd = wr_pkt_count_q[SYNC_STAGE_WIDTH-1:SYNC_STAGE_WIDTH-C_WR_PNTR_WIDTH];
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft)
rd_pkt_count_reg <= 0;
else if (rd_en_fifo_in)
rd_pkt_count_reg <= #`TCQ rd_pkt_count;
end
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft) begin
ram_pkt_empty <= 1'b1;
ram_pkt_empty_d1 <= 1'b1;
end else if (rd_pkt_count != wr_pkt_count_rd) begin
ram_pkt_empty <= #`TCQ 1'b0;
ram_pkt_empty_d1 <= #`TCQ 1'b0;
end else if (ram_pkt_empty_d1 && rd_en_to_fwft_fifo) begin
ram_pkt_empty <= #`TCQ 1'b1;
end else if ((rd_pkt_count == wr_pkt_count_rd) && stage2_reg_en_i) begin
ram_pkt_empty_d1 <= #`TCQ 1'b1;
end
end
// Synchronize the empty in write domain
always @ (posedge wr_rst_fwft_pkt_fifo or posedge WR_CLK) begin
if (wr_rst_fwft_pkt_fifo)
pkt_empty_sync <= 'b1;
else
pkt_empty_sync <= #`TCQ {pkt_empty_sync[C_SYNCHRONIZER_STAGE-2:0], empty_p0_out};
end
end endgenerate //gras_pkt_cnt
generate if (IS_FWFT == 0 || C_FIFO_TYPE == 3) begin : STD_FIFO
//***********************************************
// If NOT First-Word Fall-Through, wire the outputs
// of the internal _ss or _as FIFO directly to the
// output, and do not instantiate the preload0
// module.
//***********************************************
assign RD_CLK_P0_IN = 0;
assign RST_P0_IN = 0;
assign RD_EN_P0_IN = 0;
assign RD_EN_FIFO_IN = rd_en_delayed;
assign DOUT = DOUT_FIFO_OUT;
assign DATA_P0_IN = 0;
assign VALID = VALID_FIFO_OUT;
assign EMPTY = EMPTY_FIFO_OUT;
assign ALMOST_EMPTY = ALMOST_EMPTY_FIFO_OUT;
assign EMPTY_P0_IN = 0;
assign UNDERFLOW = UNDERFLOW_FIFO_OUT;
assign DATA_COUNT = DATA_COUNT_FIFO_OUT;
assign SBITERR = sbiterr_fifo_out;
assign DBITERR = dbiterr_fifo_out;
end endgenerate // STD_FIFO
generate if (IS_FWFT == 1 && C_FIFO_TYPE != 1) begin : NO_PKT_FIFO
assign empty_p0_out = empty_fwft;
assign SBITERR = sbiterr_fwft;
assign DBITERR = dbiterr_fwft;
assign DOUT = dout_fwft;
assign RD_EN_P0_IN = (C_FIFO_TYPE != 1) ? rd_en_delayed : rd_en_to_fwft_fifo;
end endgenerate // NO_PKT_FIFO
//***********************************************
// Connect user flags to internal signals
//***********************************************
//If we are using extra logic for the FWFT data count, then override the
//RD_DATA_COUNT output when we are EMPTY or ALMOST_EMPTY.
//RD_DATA_COUNT is 0 when EMPTY and 1 when ALMOST_EMPTY.
generate
if (C_USE_FWFT_DATA_COUNT==1 && (C_RD_DATA_COUNT_WIDTH>C_RD_PNTR_WIDTH) && (C_USE_EMBEDDED_REG < 3) ) begin : block3
if (C_COMMON_CLOCK == 0) begin : block_ic
assign RD_DATA_COUNT = (EMPTY_P0_OUT_Q | RST_P0_IN) ? 0 : (ALMOSTEMPTY_P0_OUT_Q ? 1 : RD_DATA_COUNT_FIFO_OUT);
end //block_ic
else begin
assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT;
end
end //block3
endgenerate
//If we are using extra logic for the FWFT data count, then override the
//RD_DATA_COUNT output when we are EMPTY or ALMOST_EMPTY.
//Due to asymmetric ports, RD_DATA_COUNT is 0 when EMPTY or ALMOST_EMPTY.
generate
if (C_USE_FWFT_DATA_COUNT==1 && (C_RD_DATA_COUNT_WIDTH <=C_RD_PNTR_WIDTH) && (C_USE_EMBEDDED_REG < 3) ) begin : block30
if (C_COMMON_CLOCK == 0) begin : block_ic
assign RD_DATA_COUNT = (EMPTY_P0_OUT_Q | RST_P0_IN) ? 0 : (ALMOSTEMPTY_P0_OUT_Q ? 0 : RD_DATA_COUNT_FIFO_OUT);
end
else begin
assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT;
end
end //block30
endgenerate
//If we are using extra logic for the FWFT data count, then override the
//RD_DATA_COUNT output when we are EMPTY or ALMOST_EMPTY.
//Due to asymmetric ports, RD_DATA_COUNT is 0 when EMPTY or ALMOST_EMPTY.
generate
if (C_USE_FWFT_DATA_COUNT==1 && (C_RD_DATA_COUNT_WIDTH <=C_RD_PNTR_WIDTH) && (C_USE_EMBEDDED_REG == 3) ) begin : block30_both
if (C_COMMON_CLOCK == 0) begin : block_ic_both
assign RD_DATA_COUNT = (EMPTY_P0_OUT_Q | RST_P0_IN) ? 0 : (ALMOSTEMPTY_P0_OUT_Q ? 0 : (RD_DATA_COUNT_FIFO_OUT));
end
else begin
assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT;
end
end //block30_both
endgenerate
generate
if (C_USE_FWFT_DATA_COUNT==1 && (C_RD_DATA_COUNT_WIDTH>C_RD_PNTR_WIDTH) && (C_USE_EMBEDDED_REG == 3) ) begin : block3_both
if (C_COMMON_CLOCK == 0) begin : block_ic_both
assign RD_DATA_COUNT = (EMPTY_P0_OUT_Q | RST_P0_IN) ? 0 : (ALMOSTEMPTY_P0_OUT_Q ? 1 : (RD_DATA_COUNT_FIFO_OUT));
end //block_ic_both
else begin
assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT;
end
end //block3_both
endgenerate
//If we are not using extra logic for the FWFT data count,
//then connect RD_DATA_COUNT to the RD_DATA_COUNT from the
//internal FIFO instance
generate
if (C_USE_FWFT_DATA_COUNT==0 ) begin : block31
assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT;
end
endgenerate
//Always connect WR_DATA_COUNT to the WR_DATA_COUNT from the internal
//FIFO instance
generate
if (C_USE_FWFT_DATA_COUNT==1) begin : block4
assign WR_DATA_COUNT = WR_DATA_COUNT_FIFO_OUT;
end
else begin : block4
assign WR_DATA_COUNT = WR_DATA_COUNT_FIFO_OUT;
end
endgenerate
//Connect other flags to the internal FIFO instance
assign FULL = FULL_FIFO_OUT;
assign ALMOST_FULL = ALMOST_FULL_FIFO_OUT;
assign WR_ACK = WR_ACK_FIFO_OUT;
assign OVERFLOW = OVERFLOW_FIFO_OUT;
assign PROG_FULL = PROG_FULL_FIFO_OUT;
assign PROG_EMPTY = PROG_EMPTY_FIFO_OUT;
/**************************************************************************
* find_log2
* Returns the 'log2' value for the input value for the supported ratios
***************************************************************************/
function integer find_log2;
input integer int_val;
integer i,j;
begin
i = 1;
j = 0;
for (i = 1; i < int_val; i = i*2) begin
j = j + 1;
end
find_log2 = j;
end
endfunction
// if an asynchronous FIFO has been selected, display a message that the FIFO
// will not be cycle-accurate in simulation
initial begin
if (C_IMPLEMENTATION_TYPE == 2) begin
$display("WARNING: Behavioral models for independent clock FIFO configurations do not model synchronization delays. The behavioral models are functionally correct, and will represent the behavior of the configured FIFO. See the FIFO Generator User Guide for more information.");
end else if (C_MEMORY_TYPE == 4) begin
$display("FAILURE : Behavioral models do not support built-in FIFO configurations. Please use post-synthesis or post-implement simulation in Vivado.");
$finish;
end
if (C_WR_PNTR_WIDTH != find_log2(C_WR_DEPTH)) begin
$display("FAILURE : C_WR_PNTR_WIDTH is not log2 of C_WR_DEPTH.");
$finish;
end
if (C_RD_PNTR_WIDTH != find_log2(C_RD_DEPTH)) begin
$display("FAILURE : C_RD_PNTR_WIDTH is not log2 of C_RD_DEPTH.");
$finish;
end
if (C_USE_ECC == 1) begin
if (C_DIN_WIDTH != C_DOUT_WIDTH) begin
$display("FAILURE : C_DIN_WIDTH and C_DOUT_WIDTH must be equal for ECC configuration.");
$finish;
end
if (C_DIN_WIDTH == 1 && C_ERROR_INJECTION_TYPE > 1) begin
$display("FAILURE : C_DIN_WIDTH and C_DOUT_WIDTH must be > 1 for double bit error injection.");
$finish;
end
end
end //initial
/**************************************************************************
* Internal reset logic
**************************************************************************/
assign wr_rst_i = (C_HAS_RST == 1 || C_ENABLE_RST_SYNC == 0) ? wr_rst_reg : 0;
assign rd_rst_i = (C_HAS_RST == 1 || C_ENABLE_RST_SYNC == 0) ? rd_rst_reg : 0;
assign rst_i = C_HAS_RST ? rst_reg : 0;
wire rst_2_sync;
wire rst_2_sync_safety = (C_ENABLE_RST_SYNC == 1) ? RST : RD_RST;
wire clk_2_sync = (C_COMMON_CLOCK == 1) ? CLK : WR_CLK;
wire clk_2_sync_safety = (C_COMMON_CLOCK == 1) ? CLK : RD_CLK;
generate
if (C_EN_SAFETY_CKT == 1 && C_INTERFACE_TYPE == 0) begin : grst_safety_ckt
reg[1:0] rst_d1_safety =1;
reg[1:0] rst_d2_safety =1;
reg[1:0] rst_d3_safety =1;
reg[1:0] rst_d4_safety =1;
reg[1:0] rst_d5_safety =1;
reg[1:0] rst_d6_safety =1;
reg[1:0] rst_d7_safety =1;
always@(posedge rst_2_sync_safety or posedge clk_2_sync_safety) begin : prst
if (rst_2_sync_safety == 1'b1) begin
rst_d1_safety <= 1'b1;
rst_d2_safety <= 1'b1;
rst_d3_safety <= 1'b1;
rst_d4_safety <= 1'b1;
rst_d5_safety <= 1'b1;
rst_d6_safety <= 1'b1;
rst_d7_safety <= 1'b1;
end
else begin
rst_d1_safety <= #`TCQ 1'b0;
rst_d2_safety <= #`TCQ rst_d1_safety;
rst_d3_safety <= #`TCQ rst_d2_safety;
rst_d4_safety <= #`TCQ rst_d3_safety;
rst_d5_safety <= #`TCQ rst_d4_safety;
rst_d6_safety <= #`TCQ rst_d5_safety;
rst_d7_safety <= #`TCQ rst_d6_safety;
end //if
end //prst
always@(posedge rst_d7_safety or posedge WR_EN) begin : assert_safety
if(rst_d7_safety == 1 && WR_EN == 1) begin
$display("WARNING:A write attempt has been made within the 7 clock cycles of reset de-assertion. This can lead to data discrepancy when safety circuit is enabled.");
end //if
end //always
end // grst_safety_ckt
endgenerate
// if (C_EN_SAFET_CKT == 1)
// assertion:the reset shud be atleast 3 cycles wide.
generate
if (C_ENABLE_RST_SYNC == 0) begin : gnrst_sync
always @* begin
wr_rst_reg <= wr_rst_delayed;
rd_rst_reg <= rd_rst_delayed;
rst_reg <= 1'b0;
srst_reg <= 1'b0;
end
assign rst_2_sync = wr_rst_delayed;
assign wr_rst_busy = 1'b0;
assign rd_rst_busy = 1'b0;
end else if (C_HAS_RST == 1 && C_COMMON_CLOCK == 0) begin : g7s_ic_rst
assign wr_rst_comb = !wr_rst_asreg_d2 && wr_rst_asreg;
assign rd_rst_comb = !rd_rst_asreg_d2 && rd_rst_asreg;
assign rst_2_sync = rst_delayed;
assign wr_rst_busy = 1'b0;
assign rd_rst_busy = 1'b0;
always @(posedge WR_CLK or posedge rst_delayed) begin
if (rst_delayed == 1'b1) begin
wr_rst_asreg <= #`TCQ 1'b1;
end else begin
if (wr_rst_asreg_d1 == 1'b1) begin
wr_rst_asreg <= #`TCQ 1'b0;
end else begin
wr_rst_asreg <= #`TCQ wr_rst_asreg;
end
end
end
always @(posedge WR_CLK) begin
wr_rst_asreg_d1 <= #`TCQ wr_rst_asreg;
wr_rst_asreg_d2 <= #`TCQ wr_rst_asreg_d1;
end
always @(posedge WR_CLK or posedge wr_rst_comb) begin
if (wr_rst_comb == 1'b1) begin
wr_rst_reg <= #`TCQ 1'b1;
end else begin
wr_rst_reg <= #`TCQ 1'b0;
end
end
always @(posedge RD_CLK or posedge rst_delayed) begin
if (rst_delayed == 1'b1) begin
rd_rst_asreg <= #`TCQ 1'b1;
end else begin
if (rd_rst_asreg_d1 == 1'b1) begin
rd_rst_asreg <= #`TCQ 1'b0;
end else begin
rd_rst_asreg <= #`TCQ rd_rst_asreg;
end
end
end
always @(posedge RD_CLK) begin
rd_rst_asreg_d1 <= #`TCQ rd_rst_asreg;
rd_rst_asreg_d2 <= #`TCQ rd_rst_asreg_d1;
end
always @(posedge RD_CLK or posedge rd_rst_comb) begin
if (rd_rst_comb == 1'b1) begin
rd_rst_reg <= #`TCQ 1'b1;
end else begin
rd_rst_reg <= #`TCQ 1'b0;
end
end
end else if (C_HAS_RST == 1 && C_COMMON_CLOCK == 1) begin : g7s_cc_rst
assign rst_comb = !rst_asreg_d2 && rst_asreg;
assign rst_2_sync = rst_delayed;
assign wr_rst_busy = 1'b0;
assign rd_rst_busy = 1'b0;
always @(posedge CLK or posedge rst_delayed) begin
if (rst_delayed == 1'b1) begin
rst_asreg <= #`TCQ 1'b1;
end else begin
if (rst_asreg_d1 == 1'b1) begin
rst_asreg <= #`TCQ 1'b0;
end else begin
rst_asreg <= #`TCQ rst_asreg;
end
end
end
always @(posedge CLK) begin
rst_asreg_d1 <= #`TCQ rst_asreg;
rst_asreg_d2 <= #`TCQ rst_asreg_d1;
end
always @(posedge CLK or posedge rst_comb) begin
if (rst_comb == 1'b1) begin
rst_reg <= #`TCQ 1'b1;
end else begin
rst_reg <= #`TCQ 1'b0;
end
end
end else if (IS_8SERIES == 1 && C_HAS_SRST == 1 && C_COMMON_CLOCK == 1) begin : g8s_cc_rst
assign wr_rst_busy = (C_MEMORY_TYPE != 4) ? rst_reg : rst_active_i;
assign rd_rst_busy = rst_reg;
assign rst_2_sync = srst_delayed;
always @* rst_full_ff_i <= rst_reg;
always @* rst_full_gen_i <= C_FULL_FLAGS_RST_VAL == 1 ? rst_active_i : 0;
always @(posedge CLK) begin
rst_delayed_d1 <= #`TCQ srst_delayed;
rst_delayed_d2 <= #`TCQ rst_delayed_d1;
if (rst_reg || rst_delayed_d2) begin
rst_active_i <= #`TCQ 1'b1;
end else begin
rst_active_i <= #`TCQ rst_reg;
end
end
always @(posedge CLK) begin
if (~rst_reg && srst_delayed) begin
rst_reg <= #`TCQ 1'b1;
end else if (rst_reg) begin
rst_reg <= #`TCQ 1'b0;
end else begin
rst_reg <= #`TCQ rst_reg;
end
end
end else begin
assign wr_rst_busy = 1'b0;
assign rd_rst_busy = 1'b0;
end
// end g8s_cc_rst
endgenerate
reg rst_d1 = 1'b0;
reg rst_d2 = 1'b0;
reg rst_d3 = 1'b0;
reg rst_d4 = 1'b0;
reg rst_d5 = 1'b0;
reg rst_d6 = 1'b0;
reg rst_d7 = 1'b0;
generate
if ((C_HAS_RST == 1 || C_HAS_SRST == 1 || C_ENABLE_RST_SYNC == 0) && C_FULL_FLAGS_RST_VAL == 1 && C_INTERFACE_TYPE == 0) begin : grstd1
// RST_FULL_GEN replaces the reset falling edge detection used to de-assert
// FULL, ALMOST_FULL & PROG_FULL flags if C_FULL_FLAGS_RST_VAL = 1.
// RST_FULL_FF goes to the reset pin of the final flop of FULL, ALMOST_FULL &
// PROG_FULL
always @ (posedge rst_2_sync or posedge clk_2_sync) begin
if (rst_2_sync) begin
rst_d1 <= 1'b1;
rst_d2 <= 1'b1;
rst_d3 <= 1'b1;
rst_d4 <= 1'b1;
rst_d5 <= 1'b1;
rst_d6 <= 1'b1;
rst_d7 <= 1'b1;
end else begin
if (srst_delayed) begin
rst_d1 <= #`TCQ 1'b1;
rst_d2 <= #`TCQ 1'b1;
rst_d3 <= #`TCQ 1'b1;
rst_d4 <= #`TCQ 1'b1;
rst_d5 <= #`TCQ 1'b1;
rst_d6 <= #`TCQ 1'b1;
rst_d7 <= #`TCQ 1'b1;
end else begin
rst_d1 <= #`TCQ 1'b0;
rst_d2 <= #`TCQ rst_d1;
rst_d3 <= #`TCQ rst_d2;
rst_d4 <= #`TCQ rst_d3;
rst_d5 <= #`TCQ rst_d4;
rst_d6 <= #`TCQ rst_d5;
rst_d7 <= #`TCQ rst_d6;
end
end
end
always @* rst_full_ff_i <= (C_HAS_SRST == 0 && C_EN_SAFETY_CKT == 0) ? rst_d2 : (C_HAS_SRST == 0 && C_EN_SAFETY_CKT == 1) ? rst_d6 : 1'b0 ;
//always @* rst_full_gen_i <= rst_d4;
always @* rst_full_gen_i <= (C_HAS_SRST == 1) ? rst_d4 : (C_EN_SAFETY_CKT == 0) ? rst_d3 : rst_d7;
end else if ((C_HAS_RST == 1 || C_HAS_SRST == 1 || C_ENABLE_RST_SYNC == 0) && C_FULL_FLAGS_RST_VAL == 0 && C_INTERFACE_TYPE == 0) begin : gnrst_full
always @* rst_full_ff_i <= (C_COMMON_CLOCK == 0) ? wr_rst_i : rst_i;
end
endgenerate // grstd1
generate
if ((C_HAS_RST == 1 || C_HAS_SRST == 1 || C_ENABLE_RST_SYNC == 0) && C_FULL_FLAGS_RST_VAL == 1 && C_INTERFACE_TYPE > 0) begin : grstd1_axis
// RST_FULL_GEN replaces the reset falling edge detection used to de-assert
// FULL, ALMOST_FULL & PROG_FULL flags if C_FULL_FLAGS_RST_VAL = 1.
// RST_FULL_FF goes to the reset pin of the final flop of FULL, ALMOST_FULL &
// PROG_FULL
always @ (posedge rst_2_sync or posedge clk_2_sync) begin
if (rst_2_sync) begin
rst_d1 <= 1'b1;
rst_d2 <= 1'b1;
rst_d3 <= 1'b1;
rst_d4 <= 1'b1;
rst_d5 <= 1'b1;
rst_d6 <= 1'b1;
rst_d7 <= 1'b1;
end else begin
if (srst_delayed) begin
rst_d1 <= #`TCQ 1'b1;
rst_d2 <= #`TCQ 1'b1;
rst_d3 <= #`TCQ 1'b1;
rst_d4 <= #`TCQ 1'b1;
rst_d5 <= #`TCQ 1'b1;
rst_d6 <= #`TCQ 1'b1;
rst_d7 <= #`TCQ 1'b1;
end else begin
rst_d1 <= #`TCQ 1'b0;
rst_d2 <= #`TCQ rst_d1;
rst_d3 <= #`TCQ rst_d2;
rst_d4 <= #`TCQ rst_d3;
rst_d5 <= #`TCQ rst_d4;
rst_d6 <= #`TCQ rst_d5;
rst_d7 <= #`TCQ rst_d6;
end
end
end
always @* rst_full_ff_i <= (C_HAS_SRST == 0) ? rst_d2 : 1'b0 ;
//always @* rst_full_gen_i <= rst_d4;
always @* rst_full_gen_i <= (C_HAS_SRST == 1) ? rst_d4 : (C_EN_SAFETY_CKT == 0) ? rst_d3 : rst_d5;
end else if ((C_HAS_RST == 1 || C_HAS_SRST == 1 || C_ENABLE_RST_SYNC == 0) && C_FULL_FLAGS_RST_VAL == 0 && C_INTERFACE_TYPE > 0) begin : gnrst_full_axis
always @* rst_full_ff_i <= (C_COMMON_CLOCK == 0) ? wr_rst_i : rst_i;
end
endgenerate // grstd1_axis
endmodule //fifo_generator_v13_1_1_CONV_VER
module fifo_generator_v13_1_1_sync_stage
#(
parameter C_WIDTH = 10
)
(
input RST,
input CLK,
input [C_WIDTH-1:0] DIN,
output reg [C_WIDTH-1:0] DOUT = 0
);
always @ (posedge RST or posedge CLK) begin
if (RST)
DOUT <= 0;
else
DOUT <= #`TCQ DIN;
end
endmodule // fifo_generator_v13_1_1_sync_stage
/*******************************************************************************
* Declaration of Independent-Clocks FIFO Module
******************************************************************************/
module fifo_generator_v13_1_1_bhv_ver_as
/***************************************************************************
* Declare user parameters and their defaults
***************************************************************************/
#(
parameter C_FAMILY = "virtex7",
parameter C_DATA_COUNT_WIDTH = 2,
parameter C_DIN_WIDTH = 8,
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_FULL_FLAGS_RST_VAL = 1,
parameter C_HAS_ALMOST_EMPTY = 0,
parameter C_HAS_ALMOST_FULL = 0,
parameter C_HAS_DATA_COUNT = 0,
parameter C_HAS_OVERFLOW = 0,
parameter C_HAS_RD_DATA_COUNT = 0,
parameter C_HAS_RST = 0,
parameter C_HAS_UNDERFLOW = 0,
parameter C_HAS_VALID = 0,
parameter C_HAS_WR_ACK = 0,
parameter C_HAS_WR_DATA_COUNT = 0,
parameter C_IMPLEMENTATION_TYPE = 0,
parameter C_MEMORY_TYPE = 1,
parameter C_OVERFLOW_LOW = 0,
parameter C_PRELOAD_LATENCY = 1,
parameter C_PRELOAD_REGS = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0,
parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0,
parameter C_PROG_EMPTY_TYPE = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0,
parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0,
parameter C_PROG_FULL_TYPE = 0,
parameter C_RD_DATA_COUNT_WIDTH = 2,
parameter C_RD_DEPTH = 256,
parameter C_RD_PNTR_WIDTH = 8,
parameter C_UNDERFLOW_LOW = 0,
parameter C_USE_DOUT_RST = 0,
parameter C_USE_EMBEDDED_REG = 0,
parameter C_EN_SAFETY_CKT = 0,
parameter C_USE_FWFT_DATA_COUNT = 0,
parameter C_VALID_LOW = 0,
parameter C_WR_ACK_LOW = 0,
parameter C_WR_DATA_COUNT_WIDTH = 2,
parameter C_WR_DEPTH = 256,
parameter C_WR_PNTR_WIDTH = 8,
parameter C_USE_ECC = 0,
parameter C_ENABLE_RST_SYNC = 1,
parameter C_ERROR_INJECTION_TYPE = 0,
parameter C_SYNCHRONIZER_STAGE = 2
)
/***************************************************************************
* Declare Input and Output Ports
***************************************************************************/
(
input [C_DIN_WIDTH-1:0] DIN,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE,
input RD_CLK,
input RD_EN,
input RD_EN_USER,
input RST,
input RST_FULL_GEN,
input RST_FULL_FF,
input WR_RST,
input RD_RST,
input WR_CLK,
input WR_EN,
input INJECTDBITERR,
input INJECTSBITERR,
input USER_EMPTY_FB,
input fab_read_data_valid_i,
input read_data_valid_i,
input ram_valid_i,
output reg ALMOST_EMPTY = 1'b1,
output reg ALMOST_FULL = C_FULL_FLAGS_RST_VAL,
output [C_DOUT_WIDTH-1:0] DOUT,
output reg EMPTY = 1'b1,
output reg FULL = C_FULL_FLAGS_RST_VAL,
output OVERFLOW,
output PROG_EMPTY,
output PROG_FULL,
output VALID,
output [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT,
output UNDERFLOW,
output WR_ACK,
output [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT,
output SBITERR,
output DBITERR
);
reg [C_RD_PNTR_WIDTH:0] rd_data_count_int = 0;
reg [C_WR_PNTR_WIDTH:0] wr_data_count_int = 0;
reg [C_WR_PNTR_WIDTH:0] wdc_fwft_ext_as = 0;
/***************************************************************************
* Parameters used as constants
**************************************************************************/
localparam IS_8SERIES = (C_FAMILY == "virtexu" || C_FAMILY == "kintexu" || C_FAMILY == "artixu" || C_FAMILY == "virtexuplus" || C_FAMILY == "zynquplus" || C_FAMILY == "kintexuplus") ? 1 : 0;
//When RST is present, set FULL reset value to '1'.
//If core has no RST, make sure FULL powers-on as '0'.
localparam C_DEPTH_RATIO_WR =
(C_WR_DEPTH>C_RD_DEPTH) ? (C_WR_DEPTH/C_RD_DEPTH) : 1;
localparam C_DEPTH_RATIO_RD =
(C_RD_DEPTH>C_WR_DEPTH) ? (C_RD_DEPTH/C_WR_DEPTH) : 1;
localparam C_FIFO_WR_DEPTH = C_WR_DEPTH - 1;
localparam C_FIFO_RD_DEPTH = C_RD_DEPTH - 1;
// C_DEPTH_RATIO_WR | C_DEPTH_RATIO_RD | C_PNTR_WIDTH | EXTRA_WORDS_DC
// -----------------|------------------|-----------------|---------------
// 1 | 8 | C_RD_PNTR_WIDTH | 2
// 1 | 4 | C_RD_PNTR_WIDTH | 2
// 1 | 2 | C_RD_PNTR_WIDTH | 2
// 1 | 1 | C_WR_PNTR_WIDTH | 2
// 2 | 1 | C_WR_PNTR_WIDTH | 4
// 4 | 1 | C_WR_PNTR_WIDTH | 8
// 8 | 1 | C_WR_PNTR_WIDTH | 16
localparam C_PNTR_WIDTH = (C_WR_PNTR_WIDTH>=C_RD_PNTR_WIDTH) ? C_WR_PNTR_WIDTH : C_RD_PNTR_WIDTH;
wire [C_PNTR_WIDTH:0] EXTRA_WORDS_DC = (C_DEPTH_RATIO_WR == 1) ? 2 : (2 * C_DEPTH_RATIO_WR/C_DEPTH_RATIO_RD);
localparam [31:0] reads_per_write = C_DIN_WIDTH/C_DOUT_WIDTH;
localparam [31:0] log2_reads_per_write = log2_val(reads_per_write);
localparam [31:0] writes_per_read = C_DOUT_WIDTH/C_DIN_WIDTH;
localparam [31:0] log2_writes_per_read = log2_val(writes_per_read);
/**************************************************************************
* FIFO Contents Tracking and Data Count Calculations
*************************************************************************/
// Memory which will be used to simulate a FIFO
reg [C_DIN_WIDTH-1:0] memory[C_WR_DEPTH-1:0];
// Local parameters used to determine whether to inject ECC error or not
localparam SYMMETRIC_PORT = (C_DIN_WIDTH == C_DOUT_WIDTH) ? 1 : 0;
localparam ERR_INJECTION = (C_ERROR_INJECTION_TYPE != 0) ? 1 : 0;
localparam C_USE_ECC_1 = (C_USE_ECC == 1 || C_USE_ECC ==2) ? 1:0;
localparam ENABLE_ERR_INJECTION = C_USE_ECC_1 && SYMMETRIC_PORT && ERR_INJECTION;
// Array that holds the error injection type (single/double bit error) on
// a specific write operation, which is returned on read to corrupt the
// output data.
reg [1:0] ecc_err[C_WR_DEPTH-1:0];
//The amount of data stored in the FIFO at any time is given
// by num_wr_bits (in the WR_CLK domain) and num_rd_bits (in the RD_CLK
// domain.
//num_wr_bits is calculated by considering the total words in the FIFO,
// and the state of the read pointer (which may not have yet crossed clock
// domains.)
//num_rd_bits is calculated by considering the total words in the FIFO,
// and the state of the write pointer (which may not have yet crossed clock
// domains.)
reg [31:0] num_wr_bits;
reg [31:0] num_rd_bits;
reg [31:0] next_num_wr_bits;
reg [31:0] next_num_rd_bits;
//The write pointer - tracks write operations
// (Works opposite to core: wr_ptr is a DOWN counter)
reg [31:0] wr_ptr;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr = 0; // UP counter: Rolls back to 0 when reaches to max value.
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd1 = 0;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd2 = 0;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd3 = 0;
wire [C_RD_PNTR_WIDTH-1:0] adj_wr_pntr_rd;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd = 0;
wire wr_rst_i = WR_RST;
reg wr_rst_d1 =0;
//The read pointer - tracks read operations
// (rd_ptr Works opposite to core: rd_ptr is a DOWN counter)
reg [31:0] rd_ptr;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr = 0; // UP counter: Rolls back to 0 when reaches to max value.
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr1 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr2 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr3 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr4 = 0;
wire [C_WR_PNTR_WIDTH-1:0] adj_rd_pntr_wr;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr = 0;
wire rd_rst_i = RD_RST;
wire ram_rd_en;
wire empty_int;
wire almost_empty_int;
wire ram_wr_en;
wire full_int;
wire almost_full_int;
reg ram_rd_en_d1 = 1'b0;
reg fab_rd_en_d1 = 1'b0;
// Delayed ram_rd_en is needed only for STD Embedded register option
generate
if (C_PRELOAD_LATENCY == 2) begin : grd_d
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i)
ram_rd_en_d1 <= #`TCQ 1'b0;
else
ram_rd_en_d1 <= #`TCQ ram_rd_en;
end
end
endgenerate
generate
if (C_PRELOAD_LATENCY == 2 && C_USE_EMBEDDED_REG == 3) begin : grd_d1
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i)
ram_rd_en_d1 <= #`TCQ 1'b0;
else
ram_rd_en_d1 <= #`TCQ ram_rd_en;
fab_rd_en_d1 <= #`TCQ ram_rd_en_d1;
end
end
endgenerate
// Write pointer adjustment based on pointers width for EMPTY/ALMOST_EMPTY generation
generate
if (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) begin : rdg // Read depth greater than write depth
assign adj_wr_pntr_rd[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr_rd;
assign adj_wr_pntr_rd[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1:0] = 0;
end else begin : rdl // Read depth lesser than or equal to write depth
assign adj_wr_pntr_rd = wr_pntr_rd[C_WR_PNTR_WIDTH-1:C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH];
end
endgenerate
// Generate Empty and Almost Empty
// ram_rd_en used to determine EMPTY should depend on the EMPTY.
assign ram_rd_en = RD_EN & !EMPTY;
assign empty_int = ((adj_wr_pntr_rd == rd_pntr) || (ram_rd_en && (adj_wr_pntr_rd == (rd_pntr+1'h1))));
assign almost_empty_int = ((adj_wr_pntr_rd == (rd_pntr+1'h1)) || (ram_rd_en && (adj_wr_pntr_rd == (rd_pntr+2'h2))));
// Register Empty and Almost Empty
always @ (posedge RD_CLK or posedge rd_rst_i)
begin
if (rd_rst_i) begin
EMPTY <= #`TCQ 1'b1;
ALMOST_EMPTY <= #`TCQ 1'b1;
rd_data_count_int <= #`TCQ {C_RD_PNTR_WIDTH{1'b0}};
end else begin
rd_data_count_int <= #`TCQ {(adj_wr_pntr_rd[C_RD_PNTR_WIDTH-1:0] - rd_pntr[C_RD_PNTR_WIDTH-1:0]), 1'b0};
if (empty_int)
EMPTY <= #`TCQ 1'b1;
else
EMPTY <= #`TCQ 1'b0;
if (!EMPTY) begin
if (almost_empty_int)
ALMOST_EMPTY <= #`TCQ 1'b1;
else
ALMOST_EMPTY <= #`TCQ 1'b0;
end
end // rd_rst_i
end // always
// Read pointer adjustment based on pointers width for EMPTY/ALMOST_EMPTY generation
generate
if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : wdg // Write depth greater than read depth
assign adj_rd_pntr_wr[C_WR_PNTR_WIDTH-1:C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH] = rd_pntr_wr;
assign adj_rd_pntr_wr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1:0] = 0;
end else begin : wdl // Write depth lesser than or equal to read depth
assign adj_rd_pntr_wr = rd_pntr_wr[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH];
end
endgenerate
// Generate FULL and ALMOST_FULL
// ram_wr_en used to determine FULL should depend on the FULL.
assign ram_wr_en = WR_EN & !FULL;
assign full_int = ((adj_rd_pntr_wr == (wr_pntr+1'h1)) || (ram_wr_en && (adj_rd_pntr_wr == (wr_pntr+2'h2))));
assign almost_full_int = ((adj_rd_pntr_wr == (wr_pntr+2'h2)) || (ram_wr_en && (adj_rd_pntr_wr == (wr_pntr+3'h3))));
// Register FULL and ALMOST_FULL Empty
always @ (posedge WR_CLK or posedge RST_FULL_FF)
begin
if (RST_FULL_FF) begin
FULL <= #`TCQ C_FULL_FLAGS_RST_VAL;
ALMOST_FULL <= #`TCQ C_FULL_FLAGS_RST_VAL;
end else begin
if (full_int) begin
FULL <= #`TCQ 1'b1;
end else begin
FULL <= #`TCQ 1'b0;
end
if (RST_FULL_GEN) begin
ALMOST_FULL <= #`TCQ 1'b0;
end else if (!FULL) begin
if (almost_full_int)
ALMOST_FULL <= #`TCQ 1'b1;
else
ALMOST_FULL <= #`TCQ 1'b0;
end
end // wr_rst_i
end // always
always @ (posedge WR_CLK or posedge wr_rst_i)
begin
if (wr_rst_i) begin
wr_data_count_int <= #`TCQ {C_WR_DATA_COUNT_WIDTH{1'b0}};
end else begin
wr_data_count_int <= #`TCQ {(wr_pntr[C_WR_PNTR_WIDTH-1:0] - adj_rd_pntr_wr[C_WR_PNTR_WIDTH-1:0]), 1'b0};
end // wr_rst_i
end // always
// Determine which stage in FWFT registers are valid
reg stage1_valid = 0;
reg stage2_valid = 0;
generate
if (C_PRELOAD_LATENCY == 0) begin : grd_fwft_proc
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
stage1_valid <= #`TCQ 0;
stage2_valid <= #`TCQ 0;
end else begin
if (!stage1_valid && !stage2_valid) begin
if (!EMPTY)
stage1_valid <= #`TCQ 1'b1;
else
stage1_valid <= #`TCQ 1'b0;
end else if (stage1_valid && !stage2_valid) begin
if (EMPTY) begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b1;
end else begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b1;
end
end else if (!stage1_valid && stage2_valid) begin
if (EMPTY && RD_EN_USER) begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b0;
end else if (!EMPTY && RD_EN_USER) begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b0;
end else if (!EMPTY && !RD_EN_USER) begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b1;
end else begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b1;
end
end else if (stage1_valid && stage2_valid) begin
if (EMPTY && RD_EN_USER) begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b1;
end else begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b1;
end
end else begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b0;
end
end // rd_rst_i
end // always
end
endgenerate
//Pointers passed into opposite clock domain
reg [31:0] wr_ptr_rdclk;
reg [31:0] wr_ptr_rdclk_next;
reg [31:0] rd_ptr_wrclk;
reg [31:0] rd_ptr_wrclk_next;
//Amount of data stored in the FIFO scaled to the narrowest (deepest) port
// (Do not include data in FWFT stages)
//Used to calculate PROG_EMPTY.
wire [31:0] num_read_words_pe =
num_rd_bits/(C_DOUT_WIDTH/C_DEPTH_RATIO_WR);
//Amount of data stored in the FIFO scaled to the narrowest (deepest) port
// (Do not include data in FWFT stages)
//Used to calculate PROG_FULL.
wire [31:0] num_write_words_pf =
num_wr_bits/(C_DIN_WIDTH/C_DEPTH_RATIO_RD);
/**************************
* Read Data Count
*************************/
reg [31:0] num_read_words_dc;
reg [C_RD_DATA_COUNT_WIDTH-1:0] num_read_words_sized_i;
always @(num_rd_bits) begin
if (C_USE_FWFT_DATA_COUNT) begin
//If using extra logic for FWFT Data Counts,
// then scale FIFO contents to read domain,
// and add two read words for FWFT stages
//This value is only a temporary value and not used in the code.
num_read_words_dc = (num_rd_bits/C_DOUT_WIDTH+2);
//Trim the read words for use with RD_DATA_COUNT
num_read_words_sized_i =
num_read_words_dc[C_RD_PNTR_WIDTH : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH+1];
end else begin
//If not using extra logic for FWFT Data Counts,
// then scale FIFO contents to read domain.
//This value is only a temporary value and not used in the code.
num_read_words_dc = num_rd_bits/C_DOUT_WIDTH;
//Trim the read words for use with RD_DATA_COUNT
num_read_words_sized_i =
num_read_words_dc[C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH];
end //if (C_USE_FWFT_DATA_COUNT)
end //always
/**************************
* Write Data Count
*************************/
reg [31:0] num_write_words_dc;
reg [C_WR_DATA_COUNT_WIDTH-1:0] num_write_words_sized_i;
always @(num_wr_bits) begin
if (C_USE_FWFT_DATA_COUNT) begin
//Calculate the Data Count value for the number of write words,
// when using First-Word Fall-Through with extra logic for Data
// Counts. This takes into consideration the number of words that
// are expected to be stored in the FWFT register stages (it always
// assumes they are filled).
//This value is scaled to the Write Domain.
//The expression (((A-1)/B))+1 divides A/B, but takes the
// ceiling of the result.
//When num_wr_bits==0, set the result manually to prevent
// division errors.
//EXTRA_WORDS_DC is the number of words added to write_words
// due to FWFT.
//This value is only a temporary value and not used in the code.
num_write_words_dc = (num_wr_bits==0) ? EXTRA_WORDS_DC : (((num_wr_bits-1)/C_DIN_WIDTH)+1) + EXTRA_WORDS_DC ;
//Trim the write words for use with WR_DATA_COUNT
num_write_words_sized_i =
num_write_words_dc[C_WR_PNTR_WIDTH : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH+1];
end else begin
//Calculate the Data Count value for the number of write words, when NOT
// using First-Word Fall-Through with extra logic for Data Counts. This
// calculates only the number of words in the internal FIFO.
//The expression (((A-1)/B))+1 divides A/B, but takes the
// ceiling of the result.
//This value is scaled to the Write Domain.
//When num_wr_bits==0, set the result manually to prevent
// division errors.
//This value is only a temporary value and not used in the code.
num_write_words_dc = (num_wr_bits==0) ? 0 : ((num_wr_bits-1)/C_DIN_WIDTH)+1;
//Trim the read words for use with RD_DATA_COUNT
num_write_words_sized_i =
num_write_words_dc[C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH];
end //if (C_USE_FWFT_DATA_COUNT)
end //always
/***************************************************************************
* Internal registers and wires
**************************************************************************/
//Temporary signals used for calculating the model's outputs. These
//are only used in the assign statements immediately following wire,
//parameter, and function declarations.
wire [C_DOUT_WIDTH-1:0] ideal_dout_out;
wire valid_i;
wire valid_out1;
wire valid_out2;
wire valid_out;
wire underflow_i;
//Ideal FIFO signals. These are the raw output of the behavioral model,
//which behaves like an ideal FIFO.
reg [1:0] err_type = 0;
reg [1:0] err_type_d1 = 0;
reg [1:0] err_type_both = 0;
reg [C_DOUT_WIDTH-1:0] ideal_dout = 0;
reg [C_DOUT_WIDTH-1:0] ideal_dout_d1 = 0;
reg [C_DOUT_WIDTH-1:0] ideal_dout_both = 0;
reg ideal_wr_ack = 0;
reg ideal_valid = 0;
reg ideal_overflow = C_OVERFLOW_LOW;
reg ideal_underflow = C_UNDERFLOW_LOW;
reg ideal_prog_full = 0;
reg ideal_prog_empty = 1;
reg [C_WR_DATA_COUNT_WIDTH-1 : 0] ideal_wr_count = 0;
reg [C_RD_DATA_COUNT_WIDTH-1 : 0] ideal_rd_count = 0;
//Assorted reg values for delayed versions of signals
reg valid_d1 = 0;
reg valid_d2 = 0;
//user specified value for reseting the size of the fifo
reg [C_DOUT_WIDTH-1:0] dout_reset_val = 0;
//temporary registers for WR_RESPONSE_LATENCY feature
integer tmp_wr_listsize;
integer tmp_rd_listsize;
//Signal for registered version of prog full and empty
//Threshold values for Programmable Flags
integer prog_empty_actual_thresh_assert;
integer prog_empty_actual_thresh_negate;
integer prog_full_actual_thresh_assert;
integer prog_full_actual_thresh_negate;
/****************************************************************************
* Function Declarations
***************************************************************************/
/**************************************************************************
* write_fifo
* This task writes a word to the FIFO memory and updates the
* write pointer.
* FIFO size is relative to write domain.
***************************************************************************/
task write_fifo;
begin
memory[wr_ptr] <= DIN;
wr_pntr <= #`TCQ wr_pntr + 1;
// Store the type of error injection (double/single) on write
case (C_ERROR_INJECTION_TYPE)
3: ecc_err[wr_ptr] <= {INJECTDBITERR,INJECTSBITERR};
2: ecc_err[wr_ptr] <= {INJECTDBITERR,1'b0};
1: ecc_err[wr_ptr] <= {1'b0,INJECTSBITERR};
default: ecc_err[wr_ptr] <= 0;
endcase
// (Works opposite to core: wr_ptr is a DOWN counter)
if (wr_ptr == 0) begin
wr_ptr <= C_WR_DEPTH - 1;
end else begin
wr_ptr <= wr_ptr - 1;
end
end
endtask // write_fifo
/**************************************************************************
* read_fifo
* This task reads a word from the FIFO memory and updates the read
* pointer. It's output is the ideal_dout bus.
* FIFO size is relative to write domain.
***************************************************************************/
task read_fifo;
integer i;
reg [C_DOUT_WIDTH-1:0] tmp_dout;
reg [C_DIN_WIDTH-1:0] memory_read;
reg [31:0] tmp_rd_ptr;
reg [31:0] rd_ptr_high;
reg [31:0] rd_ptr_low;
reg [1:0] tmp_ecc_err;
begin
rd_pntr <= #`TCQ rd_pntr + 1;
// output is wider than input
if (reads_per_write == 0) begin
tmp_dout = 0;
tmp_rd_ptr = (rd_ptr << log2_writes_per_read)+(writes_per_read-1);
for (i = writes_per_read - 1; i >= 0; i = i - 1) begin
tmp_dout = tmp_dout << C_DIN_WIDTH;
tmp_dout = tmp_dout | memory[tmp_rd_ptr];
// (Works opposite to core: rd_ptr is a DOWN counter)
if (tmp_rd_ptr == 0) begin
tmp_rd_ptr = C_WR_DEPTH - 1;
end else begin
tmp_rd_ptr = tmp_rd_ptr - 1;
end
end
// output is symmetric
end else if (reads_per_write == 1) begin
tmp_dout = memory[rd_ptr][C_DIN_WIDTH-1:0];
// Retreive the error injection type. Based on the error injection type
// corrupt the output data.
tmp_ecc_err = ecc_err[rd_ptr];
if (ENABLE_ERR_INJECTION && C_DIN_WIDTH == C_DOUT_WIDTH) begin
if (tmp_ecc_err[1]) begin // Corrupt the output data only for double bit error
if (C_DOUT_WIDTH == 1) begin
$display("FAILURE : Data width must be >= 2 for double bit error injection.");
$finish;
end else if (C_DOUT_WIDTH == 2)
tmp_dout = {~tmp_dout[C_DOUT_WIDTH-1],~tmp_dout[C_DOUT_WIDTH-2]};
else
tmp_dout = {~tmp_dout[C_DOUT_WIDTH-1],~tmp_dout[C_DOUT_WIDTH-2],(tmp_dout << 2)};
end else begin
tmp_dout = tmp_dout[C_DOUT_WIDTH-1:0];
end
err_type <= {tmp_ecc_err[1], tmp_ecc_err[0] & !tmp_ecc_err[1]};
end else begin
err_type <= 0;
end
// input is wider than output
end else begin
rd_ptr_high = rd_ptr >> log2_reads_per_write;
rd_ptr_low = rd_ptr & (reads_per_write - 1);
memory_read = memory[rd_ptr_high];
tmp_dout = memory_read >> (rd_ptr_low*C_DOUT_WIDTH);
end
ideal_dout <= tmp_dout;
// (Works opposite to core: rd_ptr is a DOWN counter)
if (rd_ptr == 0) begin
rd_ptr <= C_RD_DEPTH - 1;
end else begin
rd_ptr <= rd_ptr - 1;
end
end
endtask
/**************************************************************************
* log2_val
* Returns the 'log2' value for the input value for the supported ratios
***************************************************************************/
function [31:0] log2_val;
input [31:0] binary_val;
begin
if (binary_val == 8) begin
log2_val = 3;
end else if (binary_val == 4) begin
log2_val = 2;
end else begin
log2_val = 1;
end
end
endfunction
/***********************************************************************
* hexstr_conv
* Converts a string of type hex to a binary value (for C_DOUT_RST_VAL)
***********************************************************************/
function [C_DOUT_WIDTH-1:0] hexstr_conv;
input [(C_DOUT_WIDTH*8)-1:0] def_data;
integer index,i,j;
reg [3:0] bin;
begin
index = 0;
hexstr_conv = 'b0;
for( i=C_DOUT_WIDTH-1; i>=0; i=i-1 )
begin
case (def_data[7:0])
8'b00000000 :
begin
bin = 4'b0000;
i = -1;
end
8'b00110000 : bin = 4'b0000;
8'b00110001 : bin = 4'b0001;
8'b00110010 : bin = 4'b0010;
8'b00110011 : bin = 4'b0011;
8'b00110100 : bin = 4'b0100;
8'b00110101 : bin = 4'b0101;
8'b00110110 : bin = 4'b0110;
8'b00110111 : bin = 4'b0111;
8'b00111000 : bin = 4'b1000;
8'b00111001 : bin = 4'b1001;
8'b01000001 : bin = 4'b1010;
8'b01000010 : bin = 4'b1011;
8'b01000011 : bin = 4'b1100;
8'b01000100 : bin = 4'b1101;
8'b01000101 : bin = 4'b1110;
8'b01000110 : bin = 4'b1111;
8'b01100001 : bin = 4'b1010;
8'b01100010 : bin = 4'b1011;
8'b01100011 : bin = 4'b1100;
8'b01100100 : bin = 4'b1101;
8'b01100101 : bin = 4'b1110;
8'b01100110 : bin = 4'b1111;
default :
begin
bin = 4'bx;
end
endcase
for( j=0; j<4; j=j+1)
begin
if ((index*4)+j < C_DOUT_WIDTH)
begin
hexstr_conv[(index*4)+j] = bin[j];
end
end
index = index + 1;
def_data = def_data >> 8;
end
end
endfunction
/*************************************************************************
* Initialize Signals for clean power-on simulation
*************************************************************************/
initial begin
num_wr_bits = 0;
num_rd_bits = 0;
next_num_wr_bits = 0;
next_num_rd_bits = 0;
rd_ptr = C_RD_DEPTH - 1;
wr_ptr = C_WR_DEPTH - 1;
wr_pntr = 0;
rd_pntr = 0;
rd_ptr_wrclk = rd_ptr;
wr_ptr_rdclk = wr_ptr;
dout_reset_val = hexstr_conv(C_DOUT_RST_VAL);
ideal_dout = dout_reset_val;
err_type = 0;
ideal_dout_d1 = dout_reset_val;
ideal_wr_ack = 1'b0;
ideal_valid = 1'b0;
valid_d1 = 1'b0;
valid_d2 = 1'b0;
ideal_overflow = C_OVERFLOW_LOW;
ideal_underflow = C_UNDERFLOW_LOW;
ideal_wr_count = 0;
ideal_rd_count = 0;
ideal_prog_full = 1'b0;
ideal_prog_empty = 1'b1;
end
/*************************************************************************
* Connect the module inputs and outputs to the internal signals of the
* behavioral model.
*************************************************************************/
//Inputs
/*
wire [C_DIN_WIDTH-1:0] DIN;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE;
wire RD_CLK;
wire RD_EN;
wire RST;
wire WR_CLK;
wire WR_EN;
*/
//***************************************************************************
// Dout may change behavior based on latency
//***************************************************************************
assign ideal_dout_out[C_DOUT_WIDTH-1:0] = (C_PRELOAD_LATENCY==2 &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) )?
ideal_dout_d1: ideal_dout;
assign DOUT[C_DOUT_WIDTH-1:0] = ideal_dout_out;
//***************************************************************************
// Assign SBITERR and DBITERR based on latency
//***************************************************************************
assign SBITERR = (C_ERROR_INJECTION_TYPE == 1 || C_ERROR_INJECTION_TYPE == 3) &&
(C_PRELOAD_LATENCY == 2 &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) ) ?
err_type_d1[0]: err_type[0];
assign DBITERR = (C_ERROR_INJECTION_TYPE == 2 || C_ERROR_INJECTION_TYPE == 3) &&
(C_PRELOAD_LATENCY==2 && (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1)) ?
err_type_d1[1]: err_type[1];
//***************************************************************************
// Safety-ckt logic with embedded reg/fabric reg
//***************************************************************************
generate
if ((C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) && C_EN_SAFETY_CKT==1 && C_USE_EMBEDDED_REG < 3) begin
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d1;
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d2;
reg [1:0] rst_delayed_sft1 =1;
reg [1:0] rst_delayed_sft2 =1;
reg [1:0] rst_delayed_sft3 =1;
reg [1:0] rst_delayed_sft4 =1;
// if (C_HAS_VALID == 1) begin
// assign valid_out = valid_d1;
// end
always@(posedge RD_CLK)
begin
rst_delayed_sft1 <= #`TCQ rd_rst_i;
rst_delayed_sft2 <= #`TCQ rst_delayed_sft1;
rst_delayed_sft3 <= #`TCQ rst_delayed_sft2;
rst_delayed_sft4 <= #`TCQ rst_delayed_sft3;
end
always@(posedge rst_delayed_sft4 or posedge rd_rst_i or posedge RD_CLK)
begin
if( rst_delayed_sft4 == 1'b1 || rd_rst_i == 1'b1)
ram_rd_en_d1 <= #`TCQ 1'b0;
else
ram_rd_en_d1 <= #`TCQ ram_rd_en;
end
always@(posedge rst_delayed_sft2 or posedge RD_CLK)
begin
if (rst_delayed_sft2 == 1'b1) begin
if (C_USE_DOUT_RST == 1'b1) begin
@(posedge RD_CLK)
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
end
else begin
if (ram_rd_en_d1) begin
ideal_dout_d1 <= #`TCQ ideal_dout;
err_type_d1[0] <= #`TCQ err_type[0];
err_type_d1[1] <= #`TCQ err_type[1];
end
end
end
end
endgenerate
//***************************************************************************
// Safety-ckt logic with embedded reg + fabric reg
//***************************************************************************
generate
if ((C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) && C_EN_SAFETY_CKT==1 && C_USE_EMBEDDED_REG == 3) begin
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d1;
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d2;
reg [1:0] rst_delayed_sft1 =1;
reg [1:0] rst_delayed_sft2 =1;
reg [1:0] rst_delayed_sft3 =1;
reg [1:0] rst_delayed_sft4 =1;
// if (C_HAS_VALID == 1) begin
// assign valid_out = valid_d2;
// end
always@(posedge RD_CLK)
begin
rst_delayed_sft1 <= #`TCQ rd_rst_i;
rst_delayed_sft2 <= #`TCQ rst_delayed_sft1;
rst_delayed_sft3 <= #`TCQ rst_delayed_sft2;
rst_delayed_sft4 <= #`TCQ rst_delayed_sft3;
end
always@(posedge rst_delayed_sft4 or posedge rd_rst_i or posedge RD_CLK)
begin
if( rst_delayed_sft4 == 1'b1 || rd_rst_i == 1'b1)
ram_rd_en_d1 <= #`TCQ 1'b0;
else
ram_rd_en_d1 <= #`TCQ ram_rd_en;
fab_rd_en_d1 <= #`TCQ ram_rd_en_d1;
end
always@(posedge rst_delayed_sft2 or posedge RD_CLK)
begin
if (rst_delayed_sft2 == 1'b1) begin
if (C_USE_DOUT_RST == 1'b1) begin
@(posedge RD_CLK)
ideal_dout_d1 <= #`TCQ dout_reset_val;
ideal_dout_both <= #`TCQ dout_reset_val;
end
end
else begin
if (ram_rd_en_d1) begin
ideal_dout_both <= #`TCQ ideal_dout;
err_type_both[0] <= #`TCQ err_type[0];
err_type_both[1] <= #`TCQ err_type[1];
end
if (fab_rd_en_d1) begin
ideal_dout_d1 <= #`TCQ ideal_dout_both;
err_type_d1[0] <= #`TCQ err_type_both[0];
err_type_d1[1] <= #`TCQ err_type_both[1];
end
end
end
end
endgenerate
//***************************************************************************
// Overflow may be active-low
//***************************************************************************
generate
if (C_HAS_OVERFLOW==1) begin : blockOF1
assign OVERFLOW = ideal_overflow ? !C_OVERFLOW_LOW : C_OVERFLOW_LOW;
end
endgenerate
assign PROG_EMPTY = ideal_prog_empty;
assign PROG_FULL = ideal_prog_full;
//***************************************************************************
// Valid may change behavior based on latency or active-low
//***************************************************************************
generate
if (C_HAS_VALID==1) begin : blockVL1
assign valid_i = (C_PRELOAD_LATENCY==0) ? (RD_EN & ~EMPTY) : ideal_valid;
assign valid_out1 = (C_PRELOAD_LATENCY==2 &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) && C_USE_EMBEDDED_REG < 3)?
valid_d1: valid_i;
assign valid_out2 = (C_PRELOAD_LATENCY==2 &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) && C_USE_EMBEDDED_REG == 3)?
valid_d2: valid_i;
assign valid_out = (C_USE_EMBEDDED_REG == 3) ? valid_out2 : valid_out1;
assign VALID = valid_out ? !C_VALID_LOW : C_VALID_LOW;
end
endgenerate
//***************************************************************************
// Underflow may change behavior based on latency or active-low
//***************************************************************************
generate
if (C_HAS_UNDERFLOW==1) begin : blockUF1
assign underflow_i = (C_PRELOAD_LATENCY==0) ? (RD_EN & EMPTY) : ideal_underflow;
assign UNDERFLOW = underflow_i ? !C_UNDERFLOW_LOW : C_UNDERFLOW_LOW;
end
endgenerate
//***************************************************************************
// Write acknowledge may be active low
//***************************************************************************
generate
if (C_HAS_WR_ACK==1) begin : blockWK1
assign WR_ACK = ideal_wr_ack ? !C_WR_ACK_LOW : C_WR_ACK_LOW;
end
endgenerate
//***************************************************************************
// Generate RD_DATA_COUNT if Use Extra Logic option is selected
//***************************************************************************
generate
if (C_HAS_WR_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT == 1) begin : wdc_fwft_ext
reg [C_PNTR_WIDTH-1:0] adjusted_wr_pntr = 0;
reg [C_PNTR_WIDTH-1:0] adjusted_rd_pntr = 0;
wire [C_PNTR_WIDTH-1:0] diff_wr_rd_tmp;
wire [C_PNTR_WIDTH:0] diff_wr_rd;
reg [C_PNTR_WIDTH:0] wr_data_count_i = 0;
always @* begin
if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin
adjusted_wr_pntr = wr_pntr;
adjusted_rd_pntr = 0;
adjusted_rd_pntr[C_PNTR_WIDTH-1:C_PNTR_WIDTH-C_RD_PNTR_WIDTH] = rd_pntr_wr;
end else if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin
adjusted_rd_pntr = rd_pntr_wr;
adjusted_wr_pntr = 0;
adjusted_wr_pntr[C_PNTR_WIDTH-1:C_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr;
end else begin
adjusted_wr_pntr = wr_pntr;
adjusted_rd_pntr = rd_pntr_wr;
end
end // always @*
assign diff_wr_rd_tmp = adjusted_wr_pntr - adjusted_rd_pntr;
assign diff_wr_rd = {1'b0,diff_wr_rd_tmp};
always @ (posedge wr_rst_i or posedge WR_CLK)
begin
if (wr_rst_i)
wr_data_count_i <= #`TCQ 0;
else
wr_data_count_i <= #`TCQ diff_wr_rd + EXTRA_WORDS_DC;
end // always @ (posedge WR_CLK or posedge WR_CLK)
always @* begin
if (C_WR_PNTR_WIDTH >= C_RD_PNTR_WIDTH)
wdc_fwft_ext_as = wr_data_count_i[C_PNTR_WIDTH:0];
else
wdc_fwft_ext_as = wr_data_count_i[C_PNTR_WIDTH:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH];
end // always @*
end // wdc_fwft_ext
endgenerate
//***************************************************************************
// Generate RD_DATA_COUNT if Use Extra Logic option is selected
//***************************************************************************
reg [C_RD_PNTR_WIDTH:0] rdc_fwft_ext_as = 0;
generate if (C_USE_EMBEDDED_REG < 3) begin: rdc_fwft_ext_both
if (C_HAS_RD_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT == 1) begin : rdc_fwft_ext
reg [C_RD_PNTR_WIDTH-1:0] adjusted_wr_pntr_rd = 0;
wire [C_RD_PNTR_WIDTH-1:0] diff_rd_wr_tmp;
wire [C_RD_PNTR_WIDTH:0] diff_rd_wr;
always @* begin
if (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) begin
adjusted_wr_pntr_rd = 0;
adjusted_wr_pntr_rd[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr_rd;
end else begin
adjusted_wr_pntr_rd = wr_pntr_rd[C_WR_PNTR_WIDTH-1:C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH];
end
end // always @*
assign diff_rd_wr_tmp = adjusted_wr_pntr_rd - rd_pntr;
assign diff_rd_wr = {1'b0,diff_rd_wr_tmp};
always @ (posedge rd_rst_i or posedge RD_CLK)
begin
if (rd_rst_i) begin
rdc_fwft_ext_as <= #`TCQ 0;
end else begin
if (!stage2_valid)
rdc_fwft_ext_as <= #`TCQ 0;
else if (!stage1_valid && stage2_valid)
rdc_fwft_ext_as <= #`TCQ 1;
else
rdc_fwft_ext_as <= #`TCQ diff_rd_wr + 2'h2;
end
end // always @ (posedge WR_CLK or posedge WR_CLK)
end // rdc_fwft_ext
end
endgenerate
generate if (C_USE_EMBEDDED_REG == 3) begin
if (C_HAS_RD_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT == 1) begin : rdc_fwft_ext
reg [C_RD_PNTR_WIDTH-1:0] adjusted_wr_pntr_rd = 0;
wire [C_RD_PNTR_WIDTH-1:0] diff_rd_wr_tmp;
wire [C_RD_PNTR_WIDTH:0] diff_rd_wr;
always @* begin
if (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) begin
adjusted_wr_pntr_rd = 0;
adjusted_wr_pntr_rd[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr_rd;
end else begin
adjusted_wr_pntr_rd = wr_pntr_rd[C_WR_PNTR_WIDTH-1:C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH];
end
end // always @*
assign diff_rd_wr_tmp = adjusted_wr_pntr_rd - rd_pntr;
assign diff_rd_wr = {1'b0,diff_rd_wr_tmp};
wire [C_RD_PNTR_WIDTH:0] diff_rd_wr_1;
// assign diff_rd_wr_1 = diff_rd_wr +2'h2;
always @ (posedge rd_rst_i or posedge RD_CLK)
begin
if (rd_rst_i) begin
rdc_fwft_ext_as <= #`TCQ 0;
end else begin
//if (fab_read_data_valid_i == 1'b0 && ((ram_valid_i == 1'b0 && read_data_valid_i ==1'b0) || (ram_valid_i == 1'b0 && read_data_valid_i ==1'b1) || (ram_valid_i == 1'b1 && read_data_valid_i ==1'b0) || (ram_valid_i == 1'b1 && read_data_valid_i ==1'b1)))
// rdc_fwft_ext_as <= 1'b0;
//else if (fab_read_data_valid_i == 1'b1 && ((ram_valid_i == 1'b0 && read_data_valid_i ==1'b0) || (ram_valid_i == 1'b0 && read_data_valid_i ==1'b1)))
// rdc_fwft_ext_as <= 1'b1;
//else
rdc_fwft_ext_as <= diff_rd_wr + 2'h2 ;
end
end
end
end
endgenerate
//***************************************************************************
// Assign the read data count value only if it is selected,
// otherwise output zeros.
//***************************************************************************
generate
if (C_HAS_RD_DATA_COUNT == 1) begin : grdc
assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = C_USE_FWFT_DATA_COUNT ?
rdc_fwft_ext_as[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH+1-C_RD_DATA_COUNT_WIDTH] :
rd_data_count_int[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH+1-C_RD_DATA_COUNT_WIDTH];
end
endgenerate
generate
if (C_HAS_RD_DATA_COUNT == 0) begin : gnrdc
assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = {C_RD_DATA_COUNT_WIDTH{1'b0}};
end
endgenerate
//***************************************************************************
// Assign the write data count value only if it is selected,
// otherwise output zeros
//***************************************************************************
generate
if (C_HAS_WR_DATA_COUNT == 1) begin : gwdc
assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = (C_USE_FWFT_DATA_COUNT == 1) ?
wdc_fwft_ext_as[C_WR_PNTR_WIDTH:C_WR_PNTR_WIDTH+1-C_WR_DATA_COUNT_WIDTH] :
wr_data_count_int[C_WR_PNTR_WIDTH:C_WR_PNTR_WIDTH+1-C_WR_DATA_COUNT_WIDTH];
end
endgenerate
generate
if (C_HAS_WR_DATA_COUNT == 0) begin : gnwdc
assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = {C_WR_DATA_COUNT_WIDTH{1'b0}};
end
endgenerate
/**************************************************************************
* Assorted registers for delayed versions of signals
**************************************************************************/
//Capture delayed version of valid
generate
if (C_HAS_VALID==1) begin : blockVL2
always @(posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i == 1'b1) begin
valid_d1 <= #`TCQ 1'b0;
valid_d2 <= #`TCQ 1'b0;
end else begin
valid_d1 <= #`TCQ valid_i;
valid_d2 <= #`TCQ valid_d1;
end
// if (C_USE_EMBEDDED_REG == 3 && (C_EN_SAFETY_CKT == 0 || C_EN_SAFETY_CKT == 1 ) begin
// valid_d2 <= #`TCQ valid_d1;
// end
end
end
endgenerate
//Capture delayed version of dout
/**************************************************************************
*embedded/fabric reg with no safety ckt
**************************************************************************/
generate
if (C_EN_SAFETY_CKT==0 && C_USE_EMBEDDED_REG < 3) begin
always @(posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i == 1'b1) begin
if (C_USE_DOUT_RST == 1'b1) begin
@(posedge RD_CLK)
ideal_dout_d1 <= #`TCQ dout_reset_val;
ideal_dout <= #`TCQ dout_reset_val;
end
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type_d1 <= #`TCQ 0;
end else if (ram_rd_en_d1) begin
ideal_dout_d1 <= #`TCQ ideal_dout;
err_type_d1 <= #`TCQ err_type;
end
end
end
endgenerate
/**************************************************************************
*embedded + fabric reg with no safety ckt
**************************************************************************/
generate
if (C_EN_SAFETY_CKT==0 && C_USE_EMBEDDED_REG == 3) begin
always @(posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i == 1'b1) begin
if (C_USE_DOUT_RST == 1'b1) begin
@(posedge RD_CLK)
ideal_dout <= #`TCQ dout_reset_val;
ideal_dout_d1 <= #`TCQ dout_reset_val;
ideal_dout_both <= #`TCQ dout_reset_val;
end
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type_d1 <= #`TCQ 0;
end else if (ram_rd_en_d1) begin
ideal_dout_both <= #`TCQ ideal_dout;
err_type_both <= #`TCQ err_type;
end
if (fab_rd_en_d1) begin
ideal_dout_d1 <= #`TCQ ideal_dout_both;
err_type_d1 <= #`TCQ err_type_both;
end
end
end
endgenerate
/**************************************************************************
* Overflow and Underflow Flag calculation
* (handled separately because they don't support rst)
**************************************************************************/
generate
if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 0) begin : g7s_ovflw
always @(posedge WR_CLK) begin
ideal_overflow <= #`TCQ WR_EN & FULL;
end
end else if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 1) begin : g8s_ovflw
always @(posedge WR_CLK) begin
//ideal_overflow <= #`TCQ WR_EN & (FULL | wr_rst_i);
ideal_overflow <= #`TCQ WR_EN & (FULL );
end
end
endgenerate
generate
if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 0) begin : g7s_unflw
always @(posedge RD_CLK) begin
ideal_underflow <= #`TCQ EMPTY & RD_EN;
end
end else if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 1) begin : g8s_unflw
always @(posedge RD_CLK) begin
ideal_underflow <= #`TCQ (EMPTY) & RD_EN;
//ideal_underflow <= #`TCQ (rd_rst_i | EMPTY) & RD_EN;
end
end
endgenerate
/**************************************************************************
* Write/Read Pointer Synchronization
**************************************************************************/
localparam NO_OF_SYNC_STAGE_INC_G2B = C_SYNCHRONIZER_STAGE + 1;
wire [C_WR_PNTR_WIDTH-1:0] wr_pntr_sync_stgs [0:NO_OF_SYNC_STAGE_INC_G2B];
wire [C_RD_PNTR_WIDTH-1:0] rd_pntr_sync_stgs [0:NO_OF_SYNC_STAGE_INC_G2B];
genvar gss;
generate for (gss = 1; gss <= NO_OF_SYNC_STAGE_INC_G2B; gss = gss + 1) begin : Sync_stage_inst
fifo_generator_v13_1_1_sync_stage
#(
.C_WIDTH (C_WR_PNTR_WIDTH)
)
rd_stg_inst
(
.RST (rd_rst_i),
.CLK (RD_CLK),
.DIN (wr_pntr_sync_stgs[gss-1]),
.DOUT (wr_pntr_sync_stgs[gss])
);
fifo_generator_v13_1_1_sync_stage
#(
.C_WIDTH (C_RD_PNTR_WIDTH)
)
wr_stg_inst
(
.RST (wr_rst_i),
.CLK (WR_CLK),
.DIN (rd_pntr_sync_stgs[gss-1]),
.DOUT (rd_pntr_sync_stgs[gss])
);
end endgenerate // Sync_stage_inst
assign wr_pntr_sync_stgs[0] = wr_pntr_rd1;
assign rd_pntr_sync_stgs[0] = rd_pntr_wr1;
always@* begin
wr_pntr_rd <= wr_pntr_sync_stgs[NO_OF_SYNC_STAGE_INC_G2B];
rd_pntr_wr <= rd_pntr_sync_stgs[NO_OF_SYNC_STAGE_INC_G2B];
end
/**************************************************************************
* Write Domain Logic
**************************************************************************/
reg [C_WR_PNTR_WIDTH-1:0] diff_pntr = 0;
always @(posedge WR_CLK or posedge wr_rst_i ) begin : gen_fifo_w
/****** Reset fifo (case 1)***************************************/
if (wr_rst_i == 1'b1) begin
num_wr_bits <= #`TCQ 0;
next_num_wr_bits = #`TCQ 0;
wr_ptr <= #`TCQ C_WR_DEPTH - 1;
rd_ptr_wrclk <= #`TCQ C_RD_DEPTH - 1;
ideal_wr_ack <= #`TCQ 0;
ideal_wr_count <= #`TCQ 0;
tmp_wr_listsize = #`TCQ 0;
rd_ptr_wrclk_next <= #`TCQ 0;
wr_pntr <= #`TCQ 0;
wr_pntr_rd1 <= #`TCQ 0;
end else begin //wr_rst_i==0
wr_pntr_rd1 <= #`TCQ wr_pntr;
//Determine the current number of words in the FIFO
tmp_wr_listsize = (C_DEPTH_RATIO_RD > 1) ? num_wr_bits/C_DOUT_WIDTH :
num_wr_bits/C_DIN_WIDTH;
rd_ptr_wrclk_next = rd_ptr;
if (rd_ptr_wrclk < rd_ptr_wrclk_next) begin
next_num_wr_bits = num_wr_bits -
C_DOUT_WIDTH*(rd_ptr_wrclk + C_RD_DEPTH
- rd_ptr_wrclk_next);
end else begin
next_num_wr_bits = num_wr_bits -
C_DOUT_WIDTH*(rd_ptr_wrclk - rd_ptr_wrclk_next);
end
//If this is a write, handle the write by adding the value
// to the linked list, and updating all outputs appropriately
if (WR_EN == 1'b1) begin
if (FULL == 1'b1) begin
//If the FIFO is full, do NOT perform the write,
// update flags accordingly
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD
>= C_FIFO_WR_DEPTH) begin
//write unsuccessful - do not change contents
//Do not acknowledge the write
ideal_wr_ack <= #`TCQ 0;
//Reminder that FIFO is still full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
//If the FIFO is one from full, but reporting full
end else
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD ==
C_FIFO_WR_DEPTH-1) begin
//No change to FIFO
//Write not successful
ideal_wr_ack <= #`TCQ 0;
//With DEPTH-1 words in the FIFO, it is almost_full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
//If the FIFO is completely empty, but it is
// reporting FULL for some reason (like reset)
end else
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD <=
C_FIFO_WR_DEPTH-2) begin
//No change to FIFO
//Write not successful
ideal_wr_ack <= #`TCQ 0;
//FIFO is really not close to full, so change flag status.
ideal_wr_count <= #`TCQ num_write_words_sized_i;
end //(tmp_wr_listsize == 0)
end else begin
//If the FIFO is full, do NOT perform the write,
// update flags accordingly
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD >=
C_FIFO_WR_DEPTH) begin
//write unsuccessful - do not change contents
//Do not acknowledge the write
ideal_wr_ack <= #`TCQ 0;
//Reminder that FIFO is still full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
//If the FIFO is one from full
end else
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD ==
C_FIFO_WR_DEPTH-1) begin
//Add value on DIN port to FIFO
write_fifo;
next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH;
//Write successful, so issue acknowledge
// and no error
ideal_wr_ack <= #`TCQ 1;
//This write is CAUSING the FIFO to go full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
//If the FIFO is 2 from full
end else
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD ==
C_FIFO_WR_DEPTH-2) begin
//Add value on DIN port to FIFO
write_fifo;
next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH;
//Write successful, so issue acknowledge
// and no error
ideal_wr_ack <= #`TCQ 1;
//Still 2 from full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
//If the FIFO is not close to being full
end else
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD <
C_FIFO_WR_DEPTH-2) begin
//Add value on DIN port to FIFO
write_fifo;
next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH;
//Write successful, so issue acknowledge
// and no error
ideal_wr_ack <= #`TCQ 1;
//Not even close to full.
ideal_wr_count <= num_write_words_sized_i;
end
end
end else begin //(WR_EN == 1'b1)
//If user did not attempt a write, then do not
// give ack or err
ideal_wr_ack <= #`TCQ 0;
ideal_wr_count <= #`TCQ num_write_words_sized_i;
end
num_wr_bits <= #`TCQ next_num_wr_bits;
rd_ptr_wrclk <= #`TCQ rd_ptr;
end //wr_rst_i==0
end // gen_fifo_w
/***************************************************************************
* Programmable FULL flags
***************************************************************************/
wire [C_WR_PNTR_WIDTH-1:0] pf_thr_assert_val;
wire [C_WR_PNTR_WIDTH-1:0] pf_thr_negate_val;
generate if (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) begin : FWFT
assign pf_thr_assert_val = C_PROG_FULL_THRESH_ASSERT_VAL - EXTRA_WORDS_DC;
assign pf_thr_negate_val = C_PROG_FULL_THRESH_NEGATE_VAL - EXTRA_WORDS_DC;
end else begin // STD
assign pf_thr_assert_val = C_PROG_FULL_THRESH_ASSERT_VAL;
assign pf_thr_negate_val = C_PROG_FULL_THRESH_NEGATE_VAL;
end endgenerate
always @(posedge WR_CLK or posedge wr_rst_i) begin
if (wr_rst_i == 1'b1) begin
diff_pntr <= 0;
end else begin
if (ram_wr_en)
diff_pntr <= #`TCQ (wr_pntr - adj_rd_pntr_wr + 2'h1);
else if (!ram_wr_en)
diff_pntr <= #`TCQ (wr_pntr - adj_rd_pntr_wr);
end
end
always @(posedge WR_CLK or posedge RST_FULL_FF) begin : gen_pf
if (RST_FULL_FF == 1'b1) begin
ideal_prog_full <= #`TCQ C_FULL_FLAGS_RST_VAL;
end else begin
if (RST_FULL_GEN)
ideal_prog_full <= #`TCQ 0;
//Single Programmable Full Constant Threshold
else if (C_PROG_FULL_TYPE == 1) begin
if (FULL == 0) begin
if (diff_pntr >= pf_thr_assert_val)
ideal_prog_full <= #`TCQ 1;
else
ideal_prog_full <= #`TCQ 0;
end else
ideal_prog_full <= #`TCQ ideal_prog_full;
//Two Programmable Full Constant Thresholds
end else if (C_PROG_FULL_TYPE == 2) begin
if (FULL == 0) begin
if (diff_pntr >= pf_thr_assert_val)
ideal_prog_full <= #`TCQ 1;
else if (diff_pntr < pf_thr_negate_val)
ideal_prog_full <= #`TCQ 0;
else
ideal_prog_full <= #`TCQ ideal_prog_full;
end else
ideal_prog_full <= #`TCQ ideal_prog_full;
//Single Programmable Full Threshold Input
end else if (C_PROG_FULL_TYPE == 3) begin
if (FULL == 0) begin
if (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) begin // FWFT
if (diff_pntr >= (PROG_FULL_THRESH - EXTRA_WORDS_DC))
ideal_prog_full <= #`TCQ 1;
else
ideal_prog_full <= #`TCQ 0;
end else begin // STD
if (diff_pntr >= PROG_FULL_THRESH)
ideal_prog_full <= #`TCQ 1;
else
ideal_prog_full <= #`TCQ 0;
end
end else
ideal_prog_full <= #`TCQ ideal_prog_full;
//Two Programmable Full Threshold Inputs
end else if (C_PROG_FULL_TYPE == 4) begin
if (FULL == 0) begin
if (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) begin // FWFT
if (diff_pntr >= (PROG_FULL_THRESH_ASSERT - EXTRA_WORDS_DC))
ideal_prog_full <= #`TCQ 1;
else if (diff_pntr < (PROG_FULL_THRESH_NEGATE - EXTRA_WORDS_DC))
ideal_prog_full <= #`TCQ 0;
else
ideal_prog_full <= #`TCQ ideal_prog_full;
end else begin // STD
if (diff_pntr >= PROG_FULL_THRESH_ASSERT)
ideal_prog_full <= #`TCQ 1;
else if (diff_pntr < PROG_FULL_THRESH_NEGATE)
ideal_prog_full <= #`TCQ 0;
else
ideal_prog_full <= #`TCQ ideal_prog_full;
end
end else
ideal_prog_full <= #`TCQ ideal_prog_full;
end // C_PROG_FULL_TYPE
end //wr_rst_i==0
end //
/**************************************************************************
* Read Domain Logic
**************************************************************************/
/*********************************************************
* Programmable EMPTY flags
*********************************************************/
//Determine the Assert and Negate thresholds for Programmable Empty
wire [C_RD_PNTR_WIDTH-1:0] pe_thr_assert_val;
wire [C_RD_PNTR_WIDTH-1:0] pe_thr_negate_val;
reg [C_RD_PNTR_WIDTH-1:0] diff_pntr_rd = 0;
always @(posedge RD_CLK or posedge rd_rst_i) begin : gen_pe
if (rd_rst_i) begin
diff_pntr_rd <= #`TCQ 0;
ideal_prog_empty <= #`TCQ 1'b1;
end else begin
if (ram_rd_en)
diff_pntr_rd <= #`TCQ (adj_wr_pntr_rd - rd_pntr) - 1'h1;
else if (!ram_rd_en)
diff_pntr_rd <= #`TCQ (adj_wr_pntr_rd - rd_pntr);
else
diff_pntr_rd <= #`TCQ diff_pntr_rd;
if (C_PROG_EMPTY_TYPE == 1) begin
if (EMPTY == 0) begin
if (diff_pntr_rd <= pe_thr_assert_val)
ideal_prog_empty <= #`TCQ 1;
else
ideal_prog_empty <= #`TCQ 0;
end else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end else if (C_PROG_EMPTY_TYPE == 2) begin
if (EMPTY == 0) begin
if (diff_pntr_rd <= pe_thr_assert_val)
ideal_prog_empty <= #`TCQ 1;
else if (diff_pntr_rd > pe_thr_negate_val)
ideal_prog_empty <= #`TCQ 0;
else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end else if (C_PROG_EMPTY_TYPE == 3) begin
if (EMPTY == 0) begin
if (diff_pntr_rd <= pe_thr_assert_val)
ideal_prog_empty <= #`TCQ 1;
else
ideal_prog_empty <= #`TCQ 0;
end else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end else if (C_PROG_EMPTY_TYPE == 4) begin
if (EMPTY == 0) begin
if (diff_pntr_rd <= pe_thr_assert_val)
ideal_prog_empty <= #`TCQ 1;
else if (diff_pntr_rd > pe_thr_negate_val)
ideal_prog_empty <= #`TCQ 0;
else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end //C_PROG_EMPTY_TYPE
end
end // gen_pe
generate if (C_PROG_EMPTY_TYPE == 3) begin : single_pe_thr_input
assign pe_thr_assert_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ?
PROG_EMPTY_THRESH - 2'h2 : PROG_EMPTY_THRESH;
end endgenerate // single_pe_thr_input
generate if (C_PROG_EMPTY_TYPE == 4) begin : multiple_pe_thr_input
assign pe_thr_assert_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ?
PROG_EMPTY_THRESH_ASSERT - 2'h2 : PROG_EMPTY_THRESH_ASSERT;
assign pe_thr_negate_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ?
PROG_EMPTY_THRESH_NEGATE - 2'h2 : PROG_EMPTY_THRESH_NEGATE;
end endgenerate // multiple_pe_thr_input
generate if (C_PROG_EMPTY_TYPE < 3) begin : single_multiple_pe_thr_const
assign pe_thr_assert_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ?
C_PROG_EMPTY_THRESH_ASSERT_VAL - 2'h2 : C_PROG_EMPTY_THRESH_ASSERT_VAL;
assign pe_thr_negate_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ?
C_PROG_EMPTY_THRESH_NEGATE_VAL - 2'h2 : C_PROG_EMPTY_THRESH_NEGATE_VAL;
end endgenerate // single_multiple_pe_thr_const
// // block memory has a synchronous reset
// always @(posedge RD_CLK) begin : gen_fifo_blkmemdout
// // make it consistent with the core.
// if (rd_rst_i) begin
// // Reset err_type only if ECC is not selected
// if (C_USE_ECC == 0 && C_MEMORY_TYPE < 2)
// err_type <= #`TCQ 0;
//
// // BRAM resets synchronously
// if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE < 2) begin
// //ideal_dout <= #`TCQ dout_reset_val;
// //ideal_dout_d1 <= #`TCQ dout_reset_val;
// end
// end
// end //always
always @(posedge RD_CLK or posedge rd_rst_i ) begin : gen_fifo_r
/****** Reset fifo (case 1)***************************************/
if (rd_rst_i == 1'b1 ) begin
num_rd_bits <= #`TCQ 0;
next_num_rd_bits = #`TCQ 0;
rd_ptr <= #`TCQ C_RD_DEPTH -1;
rd_pntr <= #`TCQ 0;
rd_pntr_wr1 <= #`TCQ 0;
wr_ptr_rdclk <= #`TCQ C_WR_DEPTH -1;
// DRAM resets asynchronously
if (C_MEMORY_TYPE == 2 && C_USE_DOUT_RST == 1)
ideal_dout <= #`TCQ dout_reset_val;
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type <= #`TCQ 0;
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ 0;
end else begin //rd_rst_i==0
rd_pntr_wr1 <= #`TCQ rd_pntr;
//Determine the current number of words in the FIFO
tmp_rd_listsize = (C_DEPTH_RATIO_WR > 1) ? num_rd_bits/C_DIN_WIDTH :
num_rd_bits/C_DOUT_WIDTH;
wr_ptr_rdclk_next = wr_ptr;
if (wr_ptr_rdclk < wr_ptr_rdclk_next) begin
next_num_rd_bits = num_rd_bits +
C_DIN_WIDTH*(wr_ptr_rdclk +C_WR_DEPTH
- wr_ptr_rdclk_next);
end else begin
next_num_rd_bits = num_rd_bits +
C_DIN_WIDTH*(wr_ptr_rdclk - wr_ptr_rdclk_next);
end
/*****************************************************************/
// Read Operation - Read Latency 1
/*****************************************************************/
if (C_PRELOAD_LATENCY==1 || C_PRELOAD_LATENCY==2) begin
ideal_valid <= #`TCQ 1'b0;
if (ram_rd_en == 1'b1) begin
if (EMPTY == 1'b1) begin
//If the FIFO is completely empty, and is reporting empty
if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0)
begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Reminder that FIFO is still empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize <= 0)
//If the FIFO is one from empty, but it is reporting empty
else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 1)
begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Note that FIFO is no longer empty, but is almost empty (has one word left)
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == 1)
//If the FIFO is two from empty, and is reporting empty
else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2)
begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Fifo has two words, so is neither empty or almost empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == 2)
//If the FIFO is not close to empty, but is reporting that it is
// Treat the FIFO as empty this time, but unset EMPTY flags.
if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) && (tmp_rd_listsize/C_DEPTH_RATIO_WR<C_FIFO_RD_DEPTH))
begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Note that the FIFO is No Longer Empty or Almost Empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if ((tmp_rd_listsize > 2) && (tmp_rd_listsize<=C_FIFO_RD_DEPTH-1))
end // else: if(ideal_empty == 1'b1)
else //if (ideal_empty == 1'b0)
begin
//If the FIFO is completely full, and we are successfully reading from it
if (tmp_rd_listsize/C_DEPTH_RATIO_WR >= C_FIFO_RD_DEPTH)
begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Not close to empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == C_FIFO_RD_DEPTH)
//If the FIFO is not close to being empty
else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) && (tmp_rd_listsize/C_DEPTH_RATIO_WR<=C_FIFO_RD_DEPTH))
begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Not close to empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if ((tmp_rd_listsize > 2) && (tmp_rd_listsize<=C_FIFO_RD_DEPTH-1))
//If the FIFO is two from empty
else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2)
begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Fifo is not yet empty. It is going almost_empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == 2)
//If the FIFO is one from empty
else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR == 1))
begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Note that FIFO is GOING empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == 1)
//If the FIFO is completely empty
else if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0)
begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize <= 0)
end // if (ideal_empty == 1'b0)
end //(RD_EN == 1'b1)
else //if (RD_EN == 1'b0)
begin
//If user did not attempt a read, do not give an ack or err
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // else: !if(RD_EN == 1'b1)
/*****************************************************************/
// Read Operation - Read Latency 0
/*****************************************************************/
end else if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) begin
ideal_valid <= #`TCQ 1'b0;
if (ram_rd_en == 1'b1) begin
if (EMPTY == 1'b1) begin
//If the FIFO is completely empty, and is reporting empty
if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0) begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Reminder that FIFO is still empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is one from empty, but it is reporting empty
end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 1) begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Note that FIFO is no longer empty, but is almost empty (has one word left)
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is two from empty, and is reporting empty
end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2) begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Fifo has two words, so is neither empty or almost empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is not close to empty, but is reporting that it is
// Treat the FIFO as empty this time, but unset EMPTY flags.
end else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) &&
(tmp_rd_listsize/C_DEPTH_RATIO_WR<C_FIFO_RD_DEPTH)) begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Note that the FIFO is No Longer Empty or Almost Empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if ((tmp_rd_listsize > 2) && (tmp_rd_listsize<=C_FIFO_RD_DEPTH-1))
end else begin
//If the FIFO is completely full, and we are successfully reading from it
if (tmp_rd_listsize/C_DEPTH_RATIO_WR >= C_FIFO_RD_DEPTH) begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Not close to empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is not close to being empty
end else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) &&
(tmp_rd_listsize/C_DEPTH_RATIO_WR<=C_FIFO_RD_DEPTH)) begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Not close to empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is two from empty
end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2) begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Fifo is not yet empty. It is going almost_empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is one from empty
end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 1) begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Note that FIFO is GOING empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is completely empty
end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0) begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Reminder that FIFO is still empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize <= 0)
end // if (ideal_empty == 1'b0)
end else begin//(RD_EN == 1'b0)
//If user did not attempt a read, do not give an ack or err
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // else: !if(RD_EN == 1'b1)
end //if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0)
num_rd_bits <= #`TCQ next_num_rd_bits;
wr_ptr_rdclk <= #`TCQ wr_ptr;
end //rd_rst_i==0
end //always
endmodule // fifo_generator_v13_1_1_bhv_ver_as
/*******************************************************************************
* Declaration of Low Latency Asynchronous FIFO
******************************************************************************/
module fifo_generator_v13_1_1_beh_ver_ll_afifo
/***************************************************************************
* Declare user parameters and their defaults
***************************************************************************/
#(
parameter C_DIN_WIDTH = 8,
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_FULL_FLAGS_RST_VAL = 1,
parameter C_HAS_RD_DATA_COUNT = 0,
parameter C_HAS_WR_DATA_COUNT = 0,
parameter C_RD_DEPTH = 256,
parameter C_RD_PNTR_WIDTH = 8,
parameter C_USE_DOUT_RST = 0,
parameter C_WR_DATA_COUNT_WIDTH = 2,
parameter C_WR_DEPTH = 256,
parameter C_WR_PNTR_WIDTH = 8,
parameter C_FIFO_TYPE = 0
)
/***************************************************************************
* Declare Input and Output Ports
***************************************************************************/
(
input [C_DIN_WIDTH-1:0] DIN,
input RD_CLK,
input RD_EN,
input WR_RST,
input RD_RST,
input WR_CLK,
input WR_EN,
output reg [C_DOUT_WIDTH-1:0] DOUT = 0,
output reg EMPTY = 1'b1,
output reg FULL = C_FULL_FLAGS_RST_VAL
);
//-----------------------------------------------------------------------------
// Low Latency Asynchronous FIFO
//-----------------------------------------------------------------------------
// Memory which will be used to simulate a FIFO
reg [C_DIN_WIDTH-1:0] memory[C_WR_DEPTH-1:0];
integer i;
initial begin
for (i = 0; i < C_WR_DEPTH; i = i + 1)
memory[i] = 0;
end
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_ll_afifo = 0;
wire [C_RD_PNTR_WIDTH-1:0] rd_pntr_ll_afifo;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_ll_afifo_q = 0;
reg ll_afifo_full = 1'b0;
reg ll_afifo_empty = 1'b1;
wire write_allow;
wire read_allow;
assign write_allow = WR_EN & ~ll_afifo_full;
assign read_allow = RD_EN & ~ll_afifo_empty;
//-----------------------------------------------------------------------------
// Write Pointer Generation
//-----------------------------------------------------------------------------
always @(posedge WR_CLK or posedge WR_RST) begin
if (WR_RST)
wr_pntr_ll_afifo <= 0;
else if (write_allow)
wr_pntr_ll_afifo <= #`TCQ wr_pntr_ll_afifo + 1;
end
//-----------------------------------------------------------------------------
// Read Pointer Generation
//-----------------------------------------------------------------------------
always @(posedge RD_CLK or posedge RD_RST) begin
if (RD_RST)
rd_pntr_ll_afifo_q <= 0;
else
rd_pntr_ll_afifo_q <= #`TCQ rd_pntr_ll_afifo;
end
assign rd_pntr_ll_afifo = read_allow ? rd_pntr_ll_afifo_q + 1 : rd_pntr_ll_afifo_q;
//-----------------------------------------------------------------------------
// Fill the Memory
//-----------------------------------------------------------------------------
always @(posedge WR_CLK) begin
if (write_allow)
memory[wr_pntr_ll_afifo] <= #`TCQ DIN;
end
//-----------------------------------------------------------------------------
// Generate DOUT
//-----------------------------------------------------------------------------
always @(posedge RD_CLK) begin
DOUT <= #`TCQ memory[rd_pntr_ll_afifo];
end
//-----------------------------------------------------------------------------
// Generate EMPTY
//-----------------------------------------------------------------------------
always @(posedge RD_CLK or posedge RD_RST) begin
if (RD_RST)
ll_afifo_empty <= 1'b1;
else
ll_afifo_empty <= ((wr_pntr_ll_afifo == rd_pntr_ll_afifo_q) |
(read_allow & (wr_pntr_ll_afifo == (rd_pntr_ll_afifo_q + 2'h1))));
end
//-----------------------------------------------------------------------------
// Generate FULL
//-----------------------------------------------------------------------------
always @(posedge WR_CLK or posedge WR_RST) begin
if (WR_RST)
ll_afifo_full <= 1'b1;
else
ll_afifo_full <= ((rd_pntr_ll_afifo_q == (wr_pntr_ll_afifo + 2'h1)) |
(write_allow & (rd_pntr_ll_afifo_q == (wr_pntr_ll_afifo + 2'h2))));
end
always @* begin
FULL <= ll_afifo_full;
EMPTY <= ll_afifo_empty;
end
endmodule // fifo_generator_v13_1_1_beh_ver_ll_afifo
/*******************************************************************************
* Declaration of top-level module
******************************************************************************/
module fifo_generator_v13_1_1_bhv_ver_ss
/**************************************************************************
* Declare user parameters and their defaults
*************************************************************************/
#(
parameter C_FAMILY = "virtex7",
parameter C_DATA_COUNT_WIDTH = 2,
parameter C_DIN_WIDTH = 8,
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_FULL_FLAGS_RST_VAL = 1,
parameter C_HAS_ALMOST_EMPTY = 0,
parameter C_HAS_ALMOST_FULL = 0,
parameter C_HAS_DATA_COUNT = 0,
parameter C_HAS_OVERFLOW = 0,
parameter C_HAS_RD_DATA_COUNT = 0,
parameter C_HAS_RST = 0,
parameter C_HAS_SRST = 0,
parameter C_HAS_UNDERFLOW = 0,
parameter C_HAS_VALID = 0,
parameter C_HAS_WR_ACK = 0,
parameter C_HAS_WR_DATA_COUNT = 0,
parameter C_IMPLEMENTATION_TYPE = 0,
parameter C_MEMORY_TYPE = 1,
parameter C_OVERFLOW_LOW = 0,
parameter C_PRELOAD_LATENCY = 1,
parameter C_PRELOAD_REGS = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0,
parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0,
parameter C_PROG_EMPTY_TYPE = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0,
parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0,
parameter C_PROG_FULL_TYPE = 0,
parameter C_RD_DATA_COUNT_WIDTH = 2,
parameter C_RD_DEPTH = 256,
parameter C_RD_PNTR_WIDTH = 8,
parameter C_UNDERFLOW_LOW = 0,
parameter C_USE_DOUT_RST = 0,
parameter C_USE_EMBEDDED_REG = 0,
parameter C_EN_SAFETY_CKT = 0,
parameter C_USE_FWFT_DATA_COUNT = 0,
parameter C_VALID_LOW = 0,
parameter C_WR_ACK_LOW = 0,
parameter C_WR_DATA_COUNT_WIDTH = 2,
parameter C_WR_DEPTH = 256,
parameter C_WR_PNTR_WIDTH = 8,
parameter C_USE_ECC = 0,
parameter C_ENABLE_RST_SYNC = 1,
parameter C_ERROR_INJECTION_TYPE = 0,
parameter C_FIFO_TYPE = 0
)
/**************************************************************************
* Declare Input and Output Ports
*************************************************************************/
(
//Inputs
input CLK,
input [C_DIN_WIDTH-1:0] DIN,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE,
input RD_EN,
input RD_EN_USER,
input USER_EMPTY_FB,
input RST,
input RST_FULL_GEN,
input RST_FULL_FF,
input SRST,
input WR_EN,
input INJECTDBITERR,
input INJECTSBITERR,
input WR_RST_BUSY,
input RD_RST_BUSY,
//Outputs
output ALMOST_EMPTY,
output ALMOST_FULL,
output reg [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT = 0,
output [C_DOUT_WIDTH-1:0] DOUT,
output EMPTY,
output FULL,
output OVERFLOW,
output [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT,
output [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT,
output PROG_EMPTY,
output PROG_FULL,
output VALID,
output UNDERFLOW,
output WR_ACK,
output SBITERR,
output DBITERR
);
reg [C_RD_PNTR_WIDTH:0] rd_data_count_int = 0;
reg [C_WR_PNTR_WIDTH:0] wr_data_count_int = 0;
wire [C_RD_PNTR_WIDTH:0] rd_data_count_i_ss;
wire [C_WR_PNTR_WIDTH:0] wr_data_count_i_ss;
reg [C_WR_PNTR_WIDTH:0] wdc_fwft_ext_as = 0;
/***************************************************************************
* Parameters used as constants
**************************************************************************/
localparam IS_8SERIES = (C_FAMILY == "virtexu" || C_FAMILY == "kintexu" || C_FAMILY == "artixu" || C_FAMILY == "virtexuplus" || C_FAMILY == "zynquplus" || C_FAMILY == "kintexuplus") ? 1 : 0;
localparam C_DEPTH_RATIO_WR =
(C_WR_DEPTH>C_RD_DEPTH) ? (C_WR_DEPTH/C_RD_DEPTH) : 1;
localparam C_DEPTH_RATIO_RD =
(C_RD_DEPTH>C_WR_DEPTH) ? (C_RD_DEPTH/C_WR_DEPTH) : 1;
//localparam C_FIFO_WR_DEPTH = C_WR_DEPTH - 1;
//localparam C_FIFO_RD_DEPTH = C_RD_DEPTH - 1;
localparam C_GRTR_PNTR_WIDTH = (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) ? C_WR_PNTR_WIDTH : C_RD_PNTR_WIDTH ;
// C_DEPTH_RATIO_WR | C_DEPTH_RATIO_RD | C_PNTR_WIDTH | EXTRA_WORDS_DC
// -----------------|------------------|-----------------|---------------
// 1 | 8 | C_RD_PNTR_WIDTH | 2
// 1 | 4 | C_RD_PNTR_WIDTH | 2
// 1 | 2 | C_RD_PNTR_WIDTH | 2
// 1 | 1 | C_WR_PNTR_WIDTH | 2
// 2 | 1 | C_WR_PNTR_WIDTH | 4
// 4 | 1 | C_WR_PNTR_WIDTH | 8
// 8 | 1 | C_WR_PNTR_WIDTH | 16
localparam C_PNTR_WIDTH = (C_WR_PNTR_WIDTH>=C_RD_PNTR_WIDTH) ? C_WR_PNTR_WIDTH : C_RD_PNTR_WIDTH;
wire [C_PNTR_WIDTH:0] EXTRA_WORDS_DC = (C_DEPTH_RATIO_WR == 1) ? 2 : (2 * C_DEPTH_RATIO_WR/C_DEPTH_RATIO_RD);
wire [C_WR_PNTR_WIDTH:0] EXTRA_WORDS_PF = (C_DEPTH_RATIO_WR == 1) ? 2 : (2 * C_DEPTH_RATIO_WR/C_DEPTH_RATIO_RD);
//wire [C_RD_PNTR_WIDTH:0] EXTRA_WORDS_PE = (C_DEPTH_RATIO_RD == 1) ? 2 : (2 * C_DEPTH_RATIO_RD/C_DEPTH_RATIO_WR);
localparam EXTRA_WORDS_PF_PARAM = (C_DEPTH_RATIO_WR == 1) ? 2 : (2 * C_DEPTH_RATIO_WR/C_DEPTH_RATIO_RD);
//localparam EXTRA_WORDS_PE_PARAM = (C_DEPTH_RATIO_RD == 1) ? 2 : (2 * C_DEPTH_RATIO_RD/C_DEPTH_RATIO_WR);
localparam [31:0] reads_per_write = C_DIN_WIDTH/C_DOUT_WIDTH;
localparam [31:0] log2_reads_per_write = log2_val(reads_per_write);
localparam [31:0] writes_per_read = C_DOUT_WIDTH/C_DIN_WIDTH;
localparam [31:0] log2_writes_per_read = log2_val(writes_per_read);
//When RST is present, set FULL reset value to '1'.
//If core has no RST, make sure FULL powers-on as '0'.
//The reset value assignments for FULL, ALMOST_FULL, and PROG_FULL are not
//changed for v3.2(IP2_Im). When the core has Sync Reset, C_HAS_SRST=1 and C_HAS_RST=0.
// Therefore, during SRST, all the FULL flags reset to 0.
localparam C_HAS_FAST_FIFO = 0;
localparam C_FIFO_WR_DEPTH = C_WR_DEPTH;
localparam C_FIFO_RD_DEPTH = C_RD_DEPTH;
// Local parameters used to determine whether to inject ECC error or not
localparam SYMMETRIC_PORT = (C_DIN_WIDTH == C_DOUT_WIDTH) ? 1 : 0;
localparam ERR_INJECTION = (C_ERROR_INJECTION_TYPE != 0) ? 1 : 0;
localparam C_USE_ECC_1 = (C_USE_ECC == 1 || C_USE_ECC ==2) ? 1:0;
localparam ENABLE_ERR_INJECTION = C_USE_ECC && SYMMETRIC_PORT && ERR_INJECTION;
localparam C_DATA_WIDTH = (ENABLE_ERR_INJECTION == 1) ? (C_DIN_WIDTH+2) : C_DIN_WIDTH;
localparam IS_ASYMMETRY = (C_DIN_WIDTH == C_DOUT_WIDTH) ? 0 : 1;
localparam LESSER_WIDTH = (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) ? C_WR_PNTR_WIDTH : C_RD_PNTR_WIDTH;
localparam [C_RD_PNTR_WIDTH-1 : 0] DIFF_MAX_RD = {C_RD_PNTR_WIDTH{1'b1}};
localparam [C_WR_PNTR_WIDTH-1 : 0] DIFF_MAX_WR = {C_WR_PNTR_WIDTH{1'b1}};
/**************************************************************************
* FIFO Contents Tracking and Data Count Calculations
*************************************************************************/
// Memory which will be used to simulate a FIFO
reg [C_DIN_WIDTH-1:0] memory[C_WR_DEPTH-1:0];
reg [1:0] ecc_err[C_WR_DEPTH-1:0];
/**************************************************************************
* Internal Registers and wires
*************************************************************************/
//Temporary signals used for calculating the model's outputs. These
//are only used in the assign statements immediately following wire,
//parameter, and function declarations.
wire underflow_i;
wire valid_i;
wire valid_out;
reg [31:0] num_wr_bits;
reg [31:0] num_rd_bits;
reg [31:0] next_num_wr_bits;
reg [31:0] next_num_rd_bits;
//The write pointer - tracks write operations
// (Works opposite to core: wr_ptr is a DOWN counter)
reg [31:0] wr_ptr;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd1 = 0;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd2 = 0;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd3 = 0;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd = 0;
reg wr_rst_d1 =0;
//The read pointer - tracks read operations
// (rd_ptr Works opposite to core: rd_ptr is a DOWN counter)
reg [31:0] rd_ptr;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr1 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr2 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr3 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr4 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr = 0;
wire ram_rd_en;
wire empty_int;
wire almost_empty_int;
wire ram_wr_en;
wire full_int;
wire almost_full_int;
reg ram_rd_en_reg = 1'b0;
reg ram_rd_en_d1 = 1'b0;
reg fab_rd_en_d1 = 1'b0;
wire srst_rrst_busy;
//Ideal FIFO signals. These are the raw output of the behavioral model,
//which behaves like an ideal FIFO.
reg [1:0] err_type = 0;
reg [1:0] err_type_d1 = 0;
reg [1:0] err_type_both = 0;
reg [C_DOUT_WIDTH-1:0] ideal_dout = 0;
reg [C_DOUT_WIDTH-1:0] ideal_dout_d1 = 0;
reg [C_DOUT_WIDTH-1:0] ideal_dout_both = 0;
wire [C_DOUT_WIDTH-1:0] ideal_dout_out;
wire fwft_enabled;
reg ideal_wr_ack = 0;
reg ideal_valid = 0;
reg ideal_overflow = C_OVERFLOW_LOW;
reg ideal_underflow = C_UNDERFLOW_LOW;
reg full_i = C_FULL_FLAGS_RST_VAL;
reg full_i_temp = 0;
reg empty_i = 1;
reg almost_full_i = 0;
reg almost_empty_i = 1;
reg prog_full_i = 0;
reg prog_empty_i = 1;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr = 0;
wire [C_RD_PNTR_WIDTH-1:0] adj_wr_pntr_rd;
wire [C_WR_PNTR_WIDTH-1:0] adj_rd_pntr_wr;
reg [C_RD_PNTR_WIDTH-1:0] diff_count = 0;
reg write_allow_q = 0;
reg read_allow_q = 0;
reg valid_d1 = 0;
reg valid_both = 0;
reg valid_d2 = 0;
wire rst_i;
wire srst_i;
//user specified value for reseting the size of the fifo
reg [C_DOUT_WIDTH-1:0] dout_reset_val = 0;
reg [31:0] wr_ptr_rdclk;
reg [31:0] wr_ptr_rdclk_next;
reg [31:0] rd_ptr_wrclk;
reg [31:0] rd_ptr_wrclk_next;
/****************************************************************************
* Function Declarations
***************************************************************************/
/****************************************************************************
* hexstr_conv
* Converts a string of type hex to a binary value (for C_DOUT_RST_VAL)
***************************************************************************/
function [C_DOUT_WIDTH-1:0] hexstr_conv;
input [(C_DOUT_WIDTH*8)-1:0] def_data;
integer index,i,j;
reg [3:0] bin;
begin
index = 0;
hexstr_conv = 'b0;
for( i=C_DOUT_WIDTH-1; i>=0; i=i-1 ) begin
case (def_data[7:0])
8'b00000000 : begin
bin = 4'b0000;
i = -1;
end
8'b00110000 : bin = 4'b0000;
8'b00110001 : bin = 4'b0001;
8'b00110010 : bin = 4'b0010;
8'b00110011 : bin = 4'b0011;
8'b00110100 : bin = 4'b0100;
8'b00110101 : bin = 4'b0101;
8'b00110110 : bin = 4'b0110;
8'b00110111 : bin = 4'b0111;
8'b00111000 : bin = 4'b1000;
8'b00111001 : bin = 4'b1001;
8'b01000001 : bin = 4'b1010;
8'b01000010 : bin = 4'b1011;
8'b01000011 : bin = 4'b1100;
8'b01000100 : bin = 4'b1101;
8'b01000101 : bin = 4'b1110;
8'b01000110 : bin = 4'b1111;
8'b01100001 : bin = 4'b1010;
8'b01100010 : bin = 4'b1011;
8'b01100011 : bin = 4'b1100;
8'b01100100 : bin = 4'b1101;
8'b01100101 : bin = 4'b1110;
8'b01100110 : bin = 4'b1111;
default : begin
bin = 4'bx;
end
endcase
for( j=0; j<4; j=j+1) begin
if ((index*4)+j < C_DOUT_WIDTH) begin
hexstr_conv[(index*4)+j] = bin[j];
end
end
index = index + 1;
def_data = def_data >> 8;
end
end
endfunction
/**************************************************************************
* log2_val
* Returns the 'log2' value for the input value for the supported ratios
***************************************************************************/
function [31:0] log2_val;
input [31:0] binary_val;
begin
if (binary_val == 8) begin
log2_val = 3;
end else if (binary_val == 4) begin
log2_val = 2;
end else begin
log2_val = 1;
end
end
endfunction
reg ideal_prog_full = 0;
reg ideal_prog_empty = 1;
reg [C_WR_DATA_COUNT_WIDTH-1 : 0] ideal_wr_count = 0;
reg [C_RD_DATA_COUNT_WIDTH-1 : 0] ideal_rd_count = 0;
//Assorted reg values for delayed versions of signals
//reg valid_d1 = 0;
//user specified value for reseting the size of the fifo
//reg [C_DOUT_WIDTH-1:0] dout_reset_val = 0;
//temporary registers for WR_RESPONSE_LATENCY feature
integer tmp_wr_listsize;
integer tmp_rd_listsize;
//Signal for registered version of prog full and empty
//Threshold values for Programmable Flags
integer prog_empty_actual_thresh_assert;
integer prog_empty_actual_thresh_negate;
integer prog_full_actual_thresh_assert;
integer prog_full_actual_thresh_negate;
/**************************************************************************
* write_fifo
* This task writes a word to the FIFO memory and updates the
* write pointer.
* FIFO size is relative to write domain.
***************************************************************************/
task write_fifo;
begin
memory[wr_ptr] <= DIN;
wr_pntr <= #`TCQ wr_pntr + 1;
// Store the type of error injection (double/single) on write
case (C_ERROR_INJECTION_TYPE)
3: ecc_err[wr_ptr] <= {INJECTDBITERR,INJECTSBITERR};
2: ecc_err[wr_ptr] <= {INJECTDBITERR,1'b0};
1: ecc_err[wr_ptr] <= {1'b0,INJECTSBITERR};
default: ecc_err[wr_ptr] <= 0;
endcase
// (Works opposite to core: wr_ptr is a DOWN counter)
if (wr_ptr == 0) begin
wr_ptr <= C_WR_DEPTH - 1;
end else begin
wr_ptr <= wr_ptr - 1;
end
end
endtask // write_fifo
/**************************************************************************
* read_fifo
* This task reads a word from the FIFO memory and updates the read
* pointer. It's output is the ideal_dout bus.
* FIFO size is relative to write domain.
***************************************************************************/
task read_fifo;
integer i;
reg [C_DOUT_WIDTH-1:0] tmp_dout;
reg [C_DIN_WIDTH-1:0] memory_read;
reg [31:0] tmp_rd_ptr;
reg [31:0] rd_ptr_high;
reg [31:0] rd_ptr_low;
reg [1:0] tmp_ecc_err;
begin
rd_pntr <= #`TCQ rd_pntr + 1;
// output is wider than input
if (reads_per_write == 0) begin
tmp_dout = 0;
tmp_rd_ptr = (rd_ptr << log2_writes_per_read)+(writes_per_read-1);
for (i = writes_per_read - 1; i >= 0; i = i - 1) begin
tmp_dout = tmp_dout << C_DIN_WIDTH;
tmp_dout = tmp_dout | memory[tmp_rd_ptr];
// (Works opposite to core: rd_ptr is a DOWN counter)
if (tmp_rd_ptr == 0) begin
tmp_rd_ptr = C_WR_DEPTH - 1;
end else begin
tmp_rd_ptr = tmp_rd_ptr - 1;
end
end
// output is symmetric
end else if (reads_per_write == 1) begin
tmp_dout = memory[rd_ptr][C_DIN_WIDTH-1:0];
// Retreive the error injection type. Based on the error injection type
// corrupt the output data.
tmp_ecc_err = ecc_err[rd_ptr];
if (ENABLE_ERR_INJECTION && C_DIN_WIDTH == C_DOUT_WIDTH) begin
if (tmp_ecc_err[1]) begin // Corrupt the output data only for double bit error
if (C_DOUT_WIDTH == 1) begin
$display("FAILURE : Data width must be >= 2 for double bit error injection.");
$finish;
end else if (C_DOUT_WIDTH == 2)
tmp_dout = {~tmp_dout[C_DOUT_WIDTH-1],~tmp_dout[C_DOUT_WIDTH-2]};
else
tmp_dout = {~tmp_dout[C_DOUT_WIDTH-1],~tmp_dout[C_DOUT_WIDTH-2],(tmp_dout << 2)};
end else begin
tmp_dout = tmp_dout[C_DOUT_WIDTH-1:0];
end
err_type <= {tmp_ecc_err[1], tmp_ecc_err[0] & !tmp_ecc_err[1]};
end else begin
err_type <= 0;
end
// input is wider than output
end else begin
rd_ptr_high = rd_ptr >> log2_reads_per_write;
rd_ptr_low = rd_ptr & (reads_per_write - 1);
memory_read = memory[rd_ptr_high];
tmp_dout = memory_read >> (rd_ptr_low*C_DOUT_WIDTH);
end
ideal_dout <= tmp_dout;
// (Works opposite to core: rd_ptr is a DOWN counter)
if (rd_ptr == 0) begin
rd_ptr <= C_RD_DEPTH - 1;
end else begin
rd_ptr <= rd_ptr - 1;
end
end
endtask
/*************************************************************************
* Initialize Signals for clean power-on simulation
*************************************************************************/
initial begin
num_wr_bits = 0;
num_rd_bits = 0;
next_num_wr_bits = 0;
next_num_rd_bits = 0;
rd_ptr = C_RD_DEPTH - 1;
wr_ptr = C_WR_DEPTH - 1;
wr_pntr = 0;
rd_pntr = 0;
rd_ptr_wrclk = rd_ptr;
wr_ptr_rdclk = wr_ptr;
dout_reset_val = hexstr_conv(C_DOUT_RST_VAL);
ideal_dout = dout_reset_val;
err_type = 0;
ideal_dout_d1 = dout_reset_val;
ideal_dout_both = dout_reset_val;
ideal_wr_ack = 1'b0;
ideal_valid = 1'b0;
valid_d1 = 1'b0;
valid_both = 1'b0;
ideal_overflow = C_OVERFLOW_LOW;
ideal_underflow = C_UNDERFLOW_LOW;
ideal_wr_count = 0;
ideal_rd_count = 0;
ideal_prog_full = 1'b0;
ideal_prog_empty = 1'b1;
end
/*************************************************************************
* Connect the module inputs and outputs to the internal signals of the
* behavioral model.
*************************************************************************/
//Inputs
/*
wire CLK;
wire [C_DIN_WIDTH-1:0] DIN;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE;
wire RD_EN;
wire RST;
wire WR_EN;
*/
// Assign ALMOST_EPMTY
generate if (C_HAS_ALMOST_EMPTY == 1) begin : gae
assign ALMOST_EMPTY = almost_empty_i;
end else begin : gnae
assign ALMOST_EMPTY = 0;
end endgenerate // gae
// Assign ALMOST_FULL
generate if (C_HAS_ALMOST_FULL==1) begin : gaf
assign ALMOST_FULL = almost_full_i;
end else begin : gnaf
assign ALMOST_FULL = 0;
end endgenerate // gaf
// Dout may change behavior based on latency
localparam C_FWFT_ENABLED = (C_PRELOAD_LATENCY == 0 && C_PRELOAD_REGS == 1)?
1: 0;
assign fwft_enabled = (C_PRELOAD_LATENCY == 0 && C_PRELOAD_REGS == 1)?
1: 0;
assign ideal_dout_out= ((C_USE_EMBEDDED_REG>0 && (fwft_enabled == 0)) &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1))?
ideal_dout_d1: ideal_dout;
assign DOUT = ideal_dout_out;
// Assign SBITERR and DBITERR based on latency
assign SBITERR = (C_ERROR_INJECTION_TYPE == 1 || C_ERROR_INJECTION_TYPE == 3) &&
((C_USE_EMBEDDED_REG>0 && (fwft_enabled == 0)) &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1)) ?
err_type_d1[0]: err_type[0];
assign DBITERR = (C_ERROR_INJECTION_TYPE == 2 || C_ERROR_INJECTION_TYPE == 3) &&
((C_USE_EMBEDDED_REG>0 && (fwft_enabled == 0)) &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1)) ?
err_type_d1[1]: err_type[1];
assign EMPTY = empty_i;
assign FULL = full_i;
//saftey_ckt with one register
generate
if ((C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) && C_EN_SAFETY_CKT==1 && (C_USE_EMBEDDED_REG == 1 || C_USE_EMBEDDED_REG == 2 )) begin
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d1;
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d2;
reg [1:0] rst_delayed_sft1 =1;
reg [1:0] rst_delayed_sft2 =1;
reg [1:0] rst_delayed_sft3 =1;
reg [1:0] rst_delayed_sft4 =1;
always@(posedge CLK)
begin
rst_delayed_sft1 <= #`TCQ rst_i;
rst_delayed_sft2 <= #`TCQ rst_delayed_sft1;
rst_delayed_sft3 <= #`TCQ rst_delayed_sft2;
rst_delayed_sft4 <= #`TCQ rst_delayed_sft3;
end
always@(posedge rst_delayed_sft2 or posedge rst_i or posedge CLK)
begin
if( rst_delayed_sft2 == 1'b1 || rst_i == 1'b1) begin
ram_rd_en_d1 <= #`TCQ 1'b0;
valid_d1 <= #`TCQ 1'b0;
end
else begin
ram_rd_en_d1 <= #`TCQ (RD_EN && ~(empty_i));
valid_d1 <= #`TCQ valid_i;
end
end
always@(posedge rst_delayed_sft2 or posedge CLK)
begin
if (rst_delayed_sft2 == 1'b1) begin
if (C_USE_DOUT_RST == 1'b1) begin
@(posedge CLK)
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
end
else if (srst_rrst_busy == 1'b1) begin
if (C_USE_DOUT_RST == 1'b1) begin
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
end else if (ram_rd_en_d1) begin
ideal_dout_d1 <= #`TCQ ideal_dout;
err_type_d1[0] <= #`TCQ err_type[0];
err_type_d1[1] <= #`TCQ err_type[1];
end
end
end //if
endgenerate
//safety ckt with both registers
generate
if ((C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) && C_EN_SAFETY_CKT==1 && C_USE_EMBEDDED_REG == 3) begin
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d1;
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d2;
reg [1:0] rst_delayed_sft1 =1;
reg [1:0] rst_delayed_sft2 =1;
reg [1:0] rst_delayed_sft3 =1;
reg [1:0] rst_delayed_sft4 =1;
always@(posedge CLK)
begin
rst_delayed_sft1 <= #`TCQ rst_i;
rst_delayed_sft2 <= #`TCQ rst_delayed_sft1;
rst_delayed_sft3 <= #`TCQ rst_delayed_sft2;
rst_delayed_sft4 <= #`TCQ rst_delayed_sft3;
end
always@(posedge rst_delayed_sft2 or posedge rst_i or posedge CLK)
begin
if( rst_delayed_sft2 == 1'b1 || rst_i == 1'b1) begin
ram_rd_en_d1 <= #`TCQ 1'b0;
valid_d1 <= #`TCQ 1'b0;
end
else begin
ram_rd_en_d1 <= #`TCQ (RD_EN && ~(empty_i));
fab_rd_en_d1 <= #`TCQ ram_rd_en_d1;
valid_both <= #`TCQ valid_i;
valid_d1 <= #`TCQ valid_both;
end
end
always@(posedge rst_delayed_sft2 or posedge CLK)
begin
if (rst_delayed_sft2 == 1'b1) begin
if (C_USE_DOUT_RST == 1'b1) begin
@(posedge CLK)
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
end
else if (srst_rrst_busy == 1'b1) begin
if (C_USE_DOUT_RST == 1'b1) begin
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
end else if (ram_rd_en_d1) begin
ideal_dout_both <= #`TCQ ideal_dout;
err_type_both[0] <= #`TCQ err_type[0];
err_type_both[1] <= #`TCQ err_type[1];
end
if (fab_rd_en_d1) begin
ideal_dout_d1 <= #`TCQ ideal_dout_both;
err_type_d1[0] <= #`TCQ err_type_both[0];
err_type_d1[1] <= #`TCQ err_type_both[1];
end
end
//assign SBITERR = (C_USE_ECC == 0) ? err_type[0]:err_type_d1[0];
//assign DBITERR = (C_USE_ECC == 0) ? err_type[1]:err_type_d1[1];
//assign DOUT[C_DOUT_WIDTH-1:0] = ideal_dout_d1;
end //if
endgenerate
//Overflow may be active-low
generate if (C_HAS_OVERFLOW==1) begin : gof
assign OVERFLOW = ideal_overflow ? !C_OVERFLOW_LOW : C_OVERFLOW_LOW;
end else begin : gnof
assign OVERFLOW = 0;
end endgenerate // gof
assign PROG_EMPTY = prog_empty_i;
assign PROG_FULL = prog_full_i;
//Valid may change behavior based on latency or active-low
generate if (C_HAS_VALID==1) begin : gvalid
assign valid_i = (C_PRELOAD_LATENCY == 0) ? (RD_EN & ~EMPTY) : ideal_valid;
assign valid_out = (C_PRELOAD_LATENCY == 2 && C_MEMORY_TYPE < 2) ?
valid_d1 : valid_i;
assign VALID = valid_out ? !C_VALID_LOW : C_VALID_LOW;
end else begin : gnvalid
assign VALID = 0;
end endgenerate // gvalid
//Trim data count differently depending on set widths
generate if (C_HAS_DATA_COUNT == 1) begin : gdc
always @* begin
diff_count <= wr_pntr - rd_pntr;
if (C_DATA_COUNT_WIDTH > C_RD_PNTR_WIDTH) begin
DATA_COUNT[C_RD_PNTR_WIDTH-1:0] <= diff_count;
DATA_COUNT[C_DATA_COUNT_WIDTH-1] <= 1'b0 ;
end else begin
DATA_COUNT <= diff_count[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_DATA_COUNT_WIDTH];
end
end
// end else begin : gndc
// always @* DATA_COUNT <= 0;
end endgenerate // gdc
//Underflow may change behavior based on latency or active-low
generate if (C_HAS_UNDERFLOW==1) begin : guf
assign underflow_i = ideal_underflow;
assign UNDERFLOW = underflow_i ? !C_UNDERFLOW_LOW : C_UNDERFLOW_LOW;
end else begin : gnuf
assign UNDERFLOW = 0;
end endgenerate // guf
//Write acknowledge may be active low
generate if (C_HAS_WR_ACK==1) begin : gwr_ack
assign WR_ACK = ideal_wr_ack ? !C_WR_ACK_LOW : C_WR_ACK_LOW;
end else begin : gnwr_ack
assign WR_ACK = 0;
end endgenerate // gwr_ack
/*****************************************************************************
* Internal reset logic
****************************************************************************/
assign srst_i = C_HAS_SRST ? SRST : 0;
assign srst_wrst_busy = C_HAS_SRST ? (SRST || WR_RST_BUSY) : 0;
assign srst_rrst_busy = C_HAS_SRST ? (SRST || RD_RST_BUSY) : 0;
assign rst_i = C_HAS_RST ? RST : 0;
/**************************************************************************
* Assorted registers for delayed versions of signals
**************************************************************************/
//Capture delayed version of valid
generate if (C_HAS_VALID == 1 && (C_USE_EMBEDDED_REG <3)) begin : blockVL20
always @(posedge CLK or posedge rst_i) begin
if (rst_i == 1'b1) begin
valid_d1 <= #`TCQ 1'b0;
end else begin
if (srst_rrst_busy) begin
valid_d1 <= #`TCQ 1'b0;
end else begin
valid_d1 <= #`TCQ valid_i;
end
end
end // always @ (posedge CLK or posedge rst_i)
end
endgenerate // blockVL20
generate if (C_HAS_VALID == 1 && (C_USE_EMBEDDED_REG == 3)) begin
always @(posedge CLK or posedge rst_i) begin
if (rst_i == 1'b1) begin
valid_d1 <= #`TCQ 1'b0;
valid_both <= #`TCQ 1'b0;
end else begin
if (srst_rrst_busy) begin
valid_d1 <= #`TCQ 1'b0;
valid_both <= #`TCQ 1'b0;
end else begin
valid_both <= #`TCQ valid_i;
valid_d1 <= #`TCQ valid_both;
end
end
end // always @ (posedge CLK or posedge rst_i)
end
endgenerate // blockVL20
// Determine which stage in FWFT registers are valid
reg stage1_valid = 0;
reg stage2_valid = 0;
generate
if (C_PRELOAD_LATENCY == 0) begin : grd_fwft_proc
always @ (posedge CLK or posedge rst_i) begin
if (rst_i) begin
stage1_valid <= #`TCQ 0;
stage2_valid <= #`TCQ 0;
end else begin
if (!stage1_valid && !stage2_valid) begin
if (!EMPTY)
stage1_valid <= #`TCQ 1'b1;
else
stage1_valid <= #`TCQ 1'b0;
end else if (stage1_valid && !stage2_valid) begin
if (EMPTY) begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b1;
end else begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b1;
end
end else if (!stage1_valid && stage2_valid) begin
if (EMPTY && RD_EN) begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b0;
end else if (!EMPTY && RD_EN) begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b0;
end else if (!EMPTY && !RD_EN) begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b1;
end else begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b1;
end
end else if (stage1_valid && stage2_valid) begin
if (EMPTY && RD_EN) begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b1;
end else begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b1;
end
end else begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b0;
end
end // rd_rst_i
end // always
end
endgenerate
//***************************************************************************
// Assign the read data count value only if it is selected,
// otherwise output zeros.
//***************************************************************************
generate
if (C_HAS_RD_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT ==1) begin : grdc
assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = rd_data_count_i_ss[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH+1-C_RD_DATA_COUNT_WIDTH];
end
endgenerate
generate
if (C_HAS_RD_DATA_COUNT == 0) begin : gnrdc
assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = {C_RD_DATA_COUNT_WIDTH{1'b0}};
end
endgenerate
//***************************************************************************
// Assign the write data count value only if it is selected,
// otherwise output zeros
//***************************************************************************
generate
if (C_HAS_WR_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT == 1) begin : gwdc
assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = wr_data_count_i_ss[C_WR_PNTR_WIDTH:C_WR_PNTR_WIDTH+1-C_WR_DATA_COUNT_WIDTH] ;
end
endgenerate
generate
if (C_HAS_WR_DATA_COUNT == 0) begin : gnwdc
assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = {C_WR_DATA_COUNT_WIDTH{1'b0}};
end
endgenerate
// block memory has a synchronous reset
// no safety ckt with emb/fabric reg
//generate if (C_MEMORY_TYPE < 2 && C_EN_SAFETY_CKT == 0) begin : gen_fifo_blkmemdout_emb
// always @(posedge CLK) begin
// // BRAM resets synchronously
// // make it consistent with the core.
// if ((rst_i || srst_rrst_busy) && (C_USE_DOUT_RST == 1))
// ideal_dout_d1 <= #`TCQ dout_reset_val;
// ideal_dout_both <= #`TCQ dout_reset_val;
// end //always
//end endgenerate // gen_fifo_blkmemdout_emb
//reg ram_rd_en_d1 = 1'b0;
//Capture delayed version of dout
generate if (C_EN_SAFETY_CKT == 0 && (C_USE_EMBEDDED_REG<3)) begin
always @(posedge CLK or posedge rst_i) begin
if (rst_i == 1'b1) begin
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type_d1 <= #`TCQ 0;
// DRAM and SRAM reset asynchronously
if ((C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3) && C_USE_DOUT_RST == 1) begin
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
ram_rd_en_d1 <= #`TCQ 1'b0;
if (C_USE_DOUT_RST == 1) begin
@(posedge CLK)
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
end else begin
ram_rd_en_d1 <= #`TCQ RD_EN & ~EMPTY;
if (srst_rrst_busy) begin
ram_rd_en_d1 <= #`TCQ 1'b0;
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0) begin
err_type_d1 <= #`TCQ 0;
end
// Reset DRAM and SRAM based FIFO, BRAM based FIFO is reset above
if ((C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3) && C_USE_DOUT_RST == 1) begin
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
if (C_USE_DOUT_RST == 1) begin
// @(posedge CLK)
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
end else begin
if (ram_rd_en_d1 ) begin
ideal_dout_d1 <= #`TCQ ideal_dout;
err_type_d1 <= #`TCQ err_type;
end
end
end
end // always
end
endgenerate
//no safety ckt with both registers
generate if (C_EN_SAFETY_CKT == 0 && (C_USE_EMBEDDED_REG==3)) begin
always @(posedge CLK or posedge rst_i) begin
if (rst_i == 1'b1) begin
ram_rd_en_d1 <= #`TCQ 1'b0;
fab_rd_en_d1 <= #`TCQ 1'b0;
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type_d1 <= #`TCQ 0;
// DRAM and SRAM reset asynchronously
if ((C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3) && C_USE_DOUT_RST == 1) begin
ideal_dout_d1 <= #`TCQ dout_reset_val;
ideal_dout_both <= #`TCQ dout_reset_val;
end
if (C_USE_DOUT_RST == 1) begin
@(posedge CLK)
ideal_dout_d1 <= #`TCQ dout_reset_val;
ideal_dout_both <= #`TCQ dout_reset_val;
end
end else begin
ram_rd_en_d1 <= #`TCQ RD_EN & ~EMPTY;
fab_rd_en_d1 <= #`TCQ (ram_rd_en_d1);
if (srst_rrst_busy) begin
ram_rd_en_d1 <= #`TCQ 1'b0;
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0) begin
err_type_d1 <= #`TCQ 0;
end
// Reset DRAM and SRAM based FIFO, BRAM based FIFO is reset above
if ((C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3) && C_USE_DOUT_RST == 1) begin
ideal_dout_d1 <= #`TCQ dout_reset_val;
// ideal_dout_both <= #`TCQ dout_reset_val;
end
if (C_USE_DOUT_RST == 1) begin
// @(posedge CLK)
ideal_dout_d1 <= #`TCQ dout_reset_val;
// ideal_dout_both <= #`TCQ dout_reset_val;
end
end else begin
if (ram_rd_en_d1 ) begin
ideal_dout_both <= #`TCQ ideal_dout;
err_type_both <= #`TCQ err_type;
end
if (fab_rd_en_d1 ) begin
ideal_dout_d1 <= #`TCQ ideal_dout_both;
err_type_d1 <= #`TCQ err_type_both;
end
end
end
end // always
end
endgenerate
/**************************************************************************
* Overflow and Underflow Flag calculation
* (handled separately because they don't support rst)
**************************************************************************/
generate if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 0) begin : g7s_ovflw
always @(posedge CLK) begin
ideal_overflow <= #`TCQ WR_EN & full_i;
end
end else if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 1) begin : g8s_ovflw
always @(posedge CLK) begin
//ideal_overflow <= #`TCQ WR_EN & (rst_i | full_i);
ideal_overflow <= #`TCQ WR_EN & (WR_RST_BUSY | full_i);
end
end endgenerate // blockOF20
generate if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 0) begin : g7s_unflw
always @(posedge CLK) begin
ideal_underflow <= #`TCQ empty_i & RD_EN;
end
end else if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 1) begin : g8s_unflw
always @(posedge CLK) begin
//ideal_underflow <= #`TCQ (rst_i | empty_i) & RD_EN;
ideal_underflow <= #`TCQ (RD_RST_BUSY | empty_i) & RD_EN;
end
end endgenerate // blockUF20
/**************************
* Read Data Count
*************************/
reg [31:0] num_read_words_dc;
reg [C_RD_DATA_COUNT_WIDTH-1:0] num_read_words_sized_i;
always @(num_rd_bits) begin
if (C_USE_FWFT_DATA_COUNT) begin
//If using extra logic for FWFT Data Counts,
// then scale FIFO contents to read domain,
// and add two read words for FWFT stages
//This value is only a temporary value and not used in the code.
num_read_words_dc = (num_rd_bits/C_DOUT_WIDTH+2);
//Trim the read words for use with RD_DATA_COUNT
num_read_words_sized_i =
num_read_words_dc[C_RD_PNTR_WIDTH : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH+1];
end else begin
//If not using extra logic for FWFT Data Counts,
// then scale FIFO contents to read domain.
//This value is only a temporary value and not used in the code.
num_read_words_dc = num_rd_bits/C_DOUT_WIDTH;
//Trim the read words for use with RD_DATA_COUNT
num_read_words_sized_i =
num_read_words_dc[C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH];
end //if (C_USE_FWFT_DATA_COUNT)
end //always
/**************************
* Write Data Count
*************************/
reg [31:0] num_write_words_dc;
reg [C_WR_DATA_COUNT_WIDTH-1:0] num_write_words_sized_i;
always @(num_wr_bits) begin
if (C_USE_FWFT_DATA_COUNT) begin
//Calculate the Data Count value for the number of write words,
// when using First-Word Fall-Through with extra logic for Data
// Counts. This takes into consideration the number of words that
// are expected to be stored in the FWFT register stages (it always
// assumes they are filled).
//This value is scaled to the Write Domain.
//The expression (((A-1)/B))+1 divides A/B, but takes the
// ceiling of the result.
//When num_wr_bits==0, set the result manually to prevent
// division errors.
//EXTRA_WORDS_DC is the number of words added to write_words
// due to FWFT.
//This value is only a temporary value and not used in the code.
num_write_words_dc = (num_wr_bits==0) ? EXTRA_WORDS_DC : (((num_wr_bits-1)/C_DIN_WIDTH)+1) + EXTRA_WORDS_DC ;
//Trim the write words for use with WR_DATA_COUNT
num_write_words_sized_i =
num_write_words_dc[C_WR_PNTR_WIDTH : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH+1];
end else begin
//Calculate the Data Count value for the number of write words, when NOT
// using First-Word Fall-Through with extra logic for Data Counts. This
// calculates only the number of words in the internal FIFO.
//The expression (((A-1)/B))+1 divides A/B, but takes the
// ceiling of the result.
//This value is scaled to the Write Domain.
//When num_wr_bits==0, set the result manually to prevent
// division errors.
//This value is only a temporary value and not used in the code.
num_write_words_dc = (num_wr_bits==0) ? 0 : ((num_wr_bits-1)/C_DIN_WIDTH)+1;
//Trim the read words for use with RD_DATA_COUNT
num_write_words_sized_i =
num_write_words_dc[C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH];
end //if (C_USE_FWFT_DATA_COUNT)
end //always
/*************************************************************************
* Write and Read Logic
************************************************************************/
wire write_allow;
wire read_allow;
wire read_allow_dc;
wire write_only;
wire read_only;
//wire write_only_q;
reg write_only_q;
//wire read_only_q;
reg read_only_q;
reg full_reg;
reg rst_full_ff_reg1;
reg rst_full_ff_reg2;
wire ram_full_comb;
wire carry;
assign write_allow = WR_EN & ~full_i;
assign read_allow = RD_EN & ~empty_i;
assign read_allow_dc = RD_EN_USER & ~USER_EMPTY_FB;
//assign write_only = write_allow & ~read_allow;
//assign write_only_q = write_allow_q;
//assign read_only = read_allow & ~write_allow;
//assign read_only_q = read_allow_q ;
wire [C_WR_PNTR_WIDTH-1:0] diff_pntr;
wire [C_RD_PNTR_WIDTH-1:0] diff_pntr_pe;
reg [C_WR_PNTR_WIDTH-1:0] diff_pntr_reg1 = 0;
reg [C_RD_PNTR_WIDTH-1:0] diff_pntr_pe_reg1 = 0;
reg [C_RD_PNTR_WIDTH:0] diff_pntr_pe_asym = 0;
wire [C_RD_PNTR_WIDTH:0] adj_wr_pntr_rd_asym ;
wire [C_RD_PNTR_WIDTH:0] rd_pntr_asym;
reg [C_WR_PNTR_WIDTH-1:0] diff_pntr_reg2 = 0;
reg [C_WR_PNTR_WIDTH-1:0] diff_pntr_pe_reg2 = 0;
wire [C_RD_PNTR_WIDTH-1:0] diff_pntr_pe_max;
wire [C_RD_PNTR_WIDTH-1:0] diff_pntr_max;
assign diff_pntr_pe_max = DIFF_MAX_RD;
assign diff_pntr_max = DIFF_MAX_WR;
generate if (IS_ASYMMETRY == 0) begin : diff_pntr_sym
assign write_only = write_allow & ~read_allow;
assign read_only = read_allow & ~write_allow;
end endgenerate
generate if ( IS_ASYMMETRY == 1 && C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : wr_grt_rd
assign read_only = read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0]) & ~write_allow;
assign write_only = write_allow & ~(read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0]));
end endgenerate
generate if (IS_ASYMMETRY ==1 && C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : rd_grt_wr
assign read_only = read_allow & ~(write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]));
assign write_only = write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]) & ~read_allow;
end endgenerate
//-----------------------------------------------------------------------------
// Write and Read pointer generation
//-----------------------------------------------------------------------------
always @(posedge CLK or posedge rst_i) begin
if (rst_i) begin
wr_pntr <= 0;
rd_pntr <= 0;
end else begin
if (srst_i || srst_wrst_busy || srst_rrst_busy ) begin
if (srst_wrst_busy)
wr_pntr <= #`TCQ 0;
if (srst_rrst_busy)
rd_pntr <= #`TCQ 0;
end else begin
if (write_allow) wr_pntr <= #`TCQ wr_pntr + 1;
if (read_allow) rd_pntr <= #`TCQ rd_pntr + 1;
end
end
end
generate if (C_FIFO_TYPE == 2) begin : gll_dm_dout
always @(posedge CLK) begin
if (write_allow) begin
if (ENABLE_ERR_INJECTION == 1)
memory[wr_pntr] <= #`TCQ {INJECTDBITERR,INJECTSBITERR,DIN};
else
memory[wr_pntr] <= #`TCQ DIN;
end
end
reg [C_DATA_WIDTH-1:0] dout_tmp_q;
reg [C_DATA_WIDTH-1:0] dout_tmp = 0;
reg [C_DATA_WIDTH-1:0] dout_tmp1 = 0;
always @(posedge CLK) begin
dout_tmp_q <= #`TCQ ideal_dout;
end
always @* begin
if (read_allow)
ideal_dout <= memory[rd_pntr];
else
ideal_dout <= dout_tmp_q;
end
end endgenerate // gll_dm_dout
/**************************************************************************
* Write Domain Logic
**************************************************************************/
assign ram_rd_en = RD_EN & !EMPTY;
//reg [C_WR_PNTR_WIDTH-1:0] diff_pntr = 0;
generate if (C_FIFO_TYPE != 2) begin : gnll_din
always @(posedge CLK or posedge rst_i) begin : gen_fifo_w
/****** Reset fifo (case 1)***************************************/
if (rst_i == 1'b1) begin
num_wr_bits <= #`TCQ 0;
next_num_wr_bits = #`TCQ 0;
wr_ptr <= #`TCQ C_WR_DEPTH - 1;
rd_ptr_wrclk <= #`TCQ C_RD_DEPTH - 1;
ideal_wr_ack <= #`TCQ 0;
ideal_wr_count <= #`TCQ 0;
tmp_wr_listsize = #`TCQ 0;
rd_ptr_wrclk_next <= #`TCQ 0;
wr_pntr <= #`TCQ 0;
wr_pntr_rd1 <= #`TCQ 0;
end else begin //rst_i==0
if (srst_wrst_busy) begin
num_wr_bits <= #`TCQ 0;
next_num_wr_bits = #`TCQ 0;
wr_ptr <= #`TCQ C_WR_DEPTH - 1;
rd_ptr_wrclk <= #`TCQ C_RD_DEPTH - 1;
ideal_wr_ack <= #`TCQ 0;
ideal_wr_count <= #`TCQ 0;
tmp_wr_listsize = #`TCQ 0;
rd_ptr_wrclk_next <= #`TCQ 0;
wr_pntr <= #`TCQ 0;
wr_pntr_rd1 <= #`TCQ 0;
end else begin//srst_i=0
wr_pntr_rd1 <= #`TCQ wr_pntr;
//Determine the current number of words in the FIFO
tmp_wr_listsize = (C_DEPTH_RATIO_RD > 1) ? num_wr_bits/C_DOUT_WIDTH :
num_wr_bits/C_DIN_WIDTH;
rd_ptr_wrclk_next = rd_ptr;
if (rd_ptr_wrclk < rd_ptr_wrclk_next) begin
next_num_wr_bits = num_wr_bits -
C_DOUT_WIDTH*(rd_ptr_wrclk + C_RD_DEPTH
- rd_ptr_wrclk_next);
end else begin
next_num_wr_bits = num_wr_bits -
C_DOUT_WIDTH*(rd_ptr_wrclk - rd_ptr_wrclk_next);
end
if (WR_EN == 1'b1) begin
if (FULL == 1'b1) begin
ideal_wr_ack <= #`TCQ 0;
//Reminder that FIFO is still full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
end else begin
write_fifo;
next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH;
//Write successful, so issue acknowledge
// and no error
ideal_wr_ack <= #`TCQ 1;
//Not even close to full.
ideal_wr_count <= num_write_words_sized_i;
//end
end
end else begin //(WR_EN == 1'b1)
//If user did not attempt a write, then do not
// give ack or err
ideal_wr_ack <= #`TCQ 0;
ideal_wr_count <= #`TCQ num_write_words_sized_i;
end
num_wr_bits <= #`TCQ next_num_wr_bits;
rd_ptr_wrclk <= #`TCQ rd_ptr;
end //srst_i==0
end //wr_rst_i==0
end // gen_fifo_w
end endgenerate
generate if (C_FIFO_TYPE < 2 && C_MEMORY_TYPE < 2 && C_EN_SAFETY_CKT == 0) begin : gnll_dm_dout
always @(posedge CLK) begin
if (rst_i || srst_rrst_busy) begin
if (C_USE_DOUT_RST == 1)
ideal_dout <= #`TCQ dout_reset_val;
ideal_dout_both <= #`TCQ dout_reset_val;
end
end
end endgenerate
generate if (C_FIFO_TYPE != 2) begin : gnll_dout
always @(posedge CLK or posedge rst_i) begin : gen_fifo_r
/****** Reset fifo (case 1)***************************************/
if (rst_i) begin
num_rd_bits <= #`TCQ 0;
next_num_rd_bits = #`TCQ 0;
rd_ptr <= #`TCQ C_RD_DEPTH -1;
rd_pntr <= #`TCQ 0;
//rd_pntr_wr1 <= #`TCQ 0;
wr_ptr_rdclk <= #`TCQ C_WR_DEPTH -1;
// DRAM resets asynchronously
if (C_FIFO_TYPE < 2 && (C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3 )&& C_USE_DOUT_RST == 1)
ideal_dout <= #`TCQ dout_reset_val;
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type <= #`TCQ 0;
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ 0;
end else begin //rd_rst_i==0
if (srst_rrst_busy) begin
num_rd_bits <= #`TCQ 0;
next_num_rd_bits = #`TCQ 0;
rd_ptr <= #`TCQ C_RD_DEPTH -1;
rd_pntr <= #`TCQ 0;
//rd_pntr_wr1 <= #`TCQ 0;
wr_ptr_rdclk <= #`TCQ C_WR_DEPTH -1;
// DRAM resets synchronously
if (C_FIFO_TYPE < 2 && (C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3 )&& C_USE_DOUT_RST == 1)
ideal_dout <= #`TCQ dout_reset_val;
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type <= #`TCQ 0;
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ 0;
end //srst_i
else begin
//rd_pntr_wr1 <= #`TCQ rd_pntr;
//Determine the current number of words in the FIFO
tmp_rd_listsize = (C_DEPTH_RATIO_WR > 1) ? num_rd_bits/C_DIN_WIDTH :
num_rd_bits/C_DOUT_WIDTH;
wr_ptr_rdclk_next = wr_ptr;
if (wr_ptr_rdclk < wr_ptr_rdclk_next) begin
next_num_rd_bits = num_rd_bits +
C_DIN_WIDTH*(wr_ptr_rdclk +C_WR_DEPTH
- wr_ptr_rdclk_next);
end else begin
next_num_rd_bits = num_rd_bits +
C_DIN_WIDTH*(wr_ptr_rdclk - wr_ptr_rdclk_next);
end
if (RD_EN == 1'b1) begin
if (EMPTY == 1'b1) begin
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end
else
begin
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == 2)
end
num_rd_bits <= #`TCQ next_num_rd_bits;
wr_ptr_rdclk <= #`TCQ wr_ptr;
end //s_rst_i==0
end //rd_rst_i==0
end //always
end endgenerate
//-----------------------------------------------------------------------------
// Generate diff_pntr for PROG_FULL generation
// Generate diff_pntr_pe for PROG_EMPTY generation
//-----------------------------------------------------------------------------
generate if ((C_PROG_FULL_TYPE != 0 || C_PROG_EMPTY_TYPE != 0) && IS_ASYMMETRY == 0) begin : reg_write_allow
always @(posedge CLK ) begin
if (rst_i) begin
write_only_q <= 1'b0;
read_only_q <= 1'b0;
diff_pntr_reg1 <= 0;
diff_pntr_pe_reg1 <= 0;
diff_pntr_reg2 <= 0;
diff_pntr_pe_reg2 <= 0;
end else begin
if (srst_i || srst_wrst_busy || srst_rrst_busy) begin
if (srst_rrst_busy) begin
read_only_q <= #`TCQ 1'b0;
diff_pntr_pe_reg1 <= #`TCQ 0;
diff_pntr_pe_reg2 <= #`TCQ 0;
end
if (srst_wrst_busy) begin
write_only_q <= #`TCQ 1'b0;
diff_pntr_reg1 <= #`TCQ 0;
diff_pntr_reg2 <= #`TCQ 0;
end
end else begin
write_only_q <= #`TCQ write_only;
read_only_q <= #`TCQ read_only;
diff_pntr_reg2 <= #`TCQ diff_pntr_reg1;
diff_pntr_pe_reg2 <= #`TCQ diff_pntr_pe_reg1;
// Add 1 to the difference pointer value when only write happens.
if (write_only)
diff_pntr_reg1 <= #`TCQ wr_pntr - adj_rd_pntr_wr + 1;
else
diff_pntr_reg1 <= #`TCQ wr_pntr - adj_rd_pntr_wr;
// Add 1 to the difference pointer value when write or both write & read or no write & read happen.
if (read_only)
diff_pntr_pe_reg1 <= #`TCQ adj_wr_pntr_rd - rd_pntr - 1;
else
diff_pntr_pe_reg1 <= #`TCQ adj_wr_pntr_rd - rd_pntr;
end
end
end
assign diff_pntr_pe = diff_pntr_pe_reg1;
assign diff_pntr = diff_pntr_reg1;
end endgenerate // reg_write_allow
generate if ((C_PROG_FULL_TYPE != 0 || C_PROG_EMPTY_TYPE != 0) && IS_ASYMMETRY == 1) begin : reg_write_allow_asym
assign adj_wr_pntr_rd_asym[C_RD_PNTR_WIDTH:0] = {adj_wr_pntr_rd,1'b1};
assign rd_pntr_asym[C_RD_PNTR_WIDTH:0] = {~rd_pntr,1'b1};
always @(posedge CLK ) begin
if (rst_i) begin
diff_pntr_pe_asym <= 0;
diff_pntr_reg1 <= 0;
full_reg <= 0;
rst_full_ff_reg1 <= 1;
rst_full_ff_reg2 <= 1;
diff_pntr_pe_reg1 <= 0;
end else begin
if (srst_i || srst_wrst_busy || srst_rrst_busy) begin
if (srst_wrst_busy)
diff_pntr_reg1 <= #`TCQ 0;
if (srst_rrst_busy)
full_reg <= #`TCQ 0;
rst_full_ff_reg1 <= #`TCQ 1;
rst_full_ff_reg2 <= #`TCQ 1;
diff_pntr_pe_asym <= #`TCQ 0;
diff_pntr_pe_reg1 <= #`TCQ 0;
end else begin
diff_pntr_pe_asym <= #`TCQ adj_wr_pntr_rd_asym + rd_pntr_asym;
full_reg <= #`TCQ full_i;
rst_full_ff_reg1 <= #`TCQ RST_FULL_FF;
rst_full_ff_reg2 <= #`TCQ rst_full_ff_reg1;
if (~full_i) begin
diff_pntr_reg1 <= #`TCQ wr_pntr - adj_rd_pntr_wr;
end
end
end
end
assign carry = (~(|(diff_pntr_pe_asym [C_RD_PNTR_WIDTH : 1])));
assign diff_pntr_pe = (full_reg && ~rst_full_ff_reg2 && carry ) ? diff_pntr_pe_max : diff_pntr_pe_asym[C_RD_PNTR_WIDTH:1];
assign diff_pntr = diff_pntr_reg1;
end endgenerate // reg_write_allow_asym
//-----------------------------------------------------------------------------
// Generate FULL flag
//-----------------------------------------------------------------------------
wire comp0;
wire comp1;
wire going_full;
wire leaving_full;
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gpad
assign adj_rd_pntr_wr [C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH] = rd_pntr;
assign adj_rd_pntr_wr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0] = 0;
end endgenerate
generate if (C_WR_PNTR_WIDTH <= C_RD_PNTR_WIDTH) begin : gtrim
assign adj_rd_pntr_wr = rd_pntr[C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH];
end endgenerate
assign comp1 = (adj_rd_pntr_wr == (wr_pntr + 1'b1));
assign comp0 = (adj_rd_pntr_wr == wr_pntr);
generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : gf_wp_eq_rp
assign going_full = (comp1 & write_allow & ~read_allow);
assign leaving_full = (comp0 & read_allow) | RST_FULL_GEN;
end endgenerate
// Write data width is bigger than read data width
// Write depth is smaller than read depth
// One write could be equal to 2 or 4 or 8 reads
generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : gf_asym
assign going_full = (comp1 & write_allow & (~ (read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0]))));
assign leaving_full = (comp0 & read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0])) | RST_FULL_GEN;
end endgenerate
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gf_wp_gt_rp
assign going_full = (comp1 & write_allow & ~read_allow);
assign leaving_full =(comp0 & read_allow) | RST_FULL_GEN;
end endgenerate
assign ram_full_comb = going_full | (~leaving_full & full_i);
always @(posedge CLK or posedge RST_FULL_FF) begin
if (RST_FULL_FF)
full_i <= C_FULL_FLAGS_RST_VAL;
else if (srst_wrst_busy)
full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else
full_i <= #`TCQ ram_full_comb;
end
//-----------------------------------------------------------------------------
// Generate EMPTY flag
//-----------------------------------------------------------------------------
wire ecomp0;
wire ecomp1;
wire going_empty;
wire leaving_empty;
wire ram_empty_comb;
generate if (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) begin : pad
assign adj_wr_pntr_rd [C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr;
assign adj_wr_pntr_rd[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0] = 0;
end endgenerate
generate if (C_RD_PNTR_WIDTH <= C_WR_PNTR_WIDTH) begin : trim
assign adj_wr_pntr_rd = wr_pntr[C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH];
end endgenerate
assign ecomp1 = (adj_wr_pntr_rd == (rd_pntr + 1'b1));
assign ecomp0 = (adj_wr_pntr_rd == rd_pntr);
generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : ge_wp_eq_rp
assign going_empty = (ecomp1 & ~write_allow & read_allow);
assign leaving_empty = (ecomp0 & write_allow);
end endgenerate
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : ge_wp_gt_rp
assign going_empty = (ecomp1 & read_allow & (~(write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]))));
assign leaving_empty = (ecomp0 & write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]));
end endgenerate
generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : ge_wp_lt_rp
assign going_empty = (ecomp1 & ~write_allow & read_allow);
assign leaving_empty =(ecomp0 & write_allow);
end endgenerate
assign ram_empty_comb = going_empty | (~leaving_empty & empty_i);
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
empty_i <= 1'b1;
else if (srst_rrst_busy)
empty_i <= #`TCQ 1'b1;
else
empty_i <= #`TCQ ram_empty_comb;
end
//-----------------------------------------------------------------------------
// Generate Read and write data counts for asymmetic common clock
//-----------------------------------------------------------------------------
reg [C_GRTR_PNTR_WIDTH :0] count_dc = 0;
wire [C_GRTR_PNTR_WIDTH :0] ratio;
wire decr_by_one;
wire incr_by_ratio;
wire incr_by_one;
wire decr_by_ratio;
localparam IS_FWFT = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ? 1 : 0;
generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : rd_depth_gt_wr
assign ratio = C_DEPTH_RATIO_RD;
assign decr_by_one = (IS_FWFT == 1)? read_allow_dc : read_allow;
assign incr_by_ratio = write_allow;
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
count_dc <= #`TCQ 0;
else if (srst_wrst_busy)
count_dc <= #`TCQ 0;
else begin
if (decr_by_one) begin
if (!incr_by_ratio)
count_dc <= #`TCQ count_dc - 1;
else
count_dc <= #`TCQ count_dc - 1 + ratio ;
end
else begin
if (!incr_by_ratio)
count_dc <= #`TCQ count_dc ;
else
count_dc <= #`TCQ count_dc + ratio ;
end
end
end
assign rd_data_count_i_ss[C_RD_PNTR_WIDTH : 0] = count_dc;
assign wr_data_count_i_ss[C_WR_PNTR_WIDTH : 0] = count_dc[C_RD_PNTR_WIDTH : C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH];
end endgenerate
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : wr_depth_gt_rd
assign ratio = C_DEPTH_RATIO_WR;
assign incr_by_one = write_allow;
assign decr_by_ratio = (IS_FWFT == 1)? read_allow_dc : read_allow;
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
count_dc <= #`TCQ 0;
else if (srst_wrst_busy)
count_dc <= #`TCQ 0;
else begin
if (incr_by_one) begin
if (!decr_by_ratio)
count_dc <= #`TCQ count_dc + 1;
else
count_dc <= #`TCQ count_dc + 1 - ratio ;
end
else begin
if (!decr_by_ratio)
count_dc <= #`TCQ count_dc ;
else
count_dc <= #`TCQ count_dc - ratio ;
end
end
end
assign wr_data_count_i_ss[C_WR_PNTR_WIDTH : 0] = count_dc;
assign rd_data_count_i_ss[C_RD_PNTR_WIDTH : 0] = count_dc[C_WR_PNTR_WIDTH : C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH];
end endgenerate
//-----------------------------------------------------------------------------
// Generate WR_ACK flag
//-----------------------------------------------------------------------------
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
ideal_wr_ack <= 1'b0;
else if (srst_wrst_busy)
ideal_wr_ack <= #`TCQ 1'b0;
else if (WR_EN & ~full_i)
ideal_wr_ack <= #`TCQ 1'b1;
else
ideal_wr_ack <= #`TCQ 1'b0;
end
//-----------------------------------------------------------------------------
// Generate VALID flag
//-----------------------------------------------------------------------------
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
ideal_valid <= 1'b0;
else if (srst_rrst_busy)
ideal_valid <= #`TCQ 1'b0;
else if (RD_EN & ~empty_i)
ideal_valid <= #`TCQ 1'b1;
else
ideal_valid <= #`TCQ 1'b0;
end
//-----------------------------------------------------------------------------
// Generate ALMOST_FULL flag
//-----------------------------------------------------------------------------
//generate if (C_HAS_ALMOST_FULL == 1 || C_PROG_FULL_TYPE > 2 || C_PROG_EMPTY_TYPE > 2) begin : gaf_ss
wire fcomp2;
wire going_afull;
wire leaving_afull;
wire ram_afull_comb;
assign fcomp2 = (adj_rd_pntr_wr == (wr_pntr + 2'h2));
generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : gaf_wp_eq_rp
assign going_afull = (fcomp2 & write_allow & ~read_allow);
assign leaving_afull = (comp1 & read_allow & ~write_allow) | RST_FULL_GEN;
end endgenerate
// Write data width is bigger than read data width
// Write depth is smaller than read depth
// One write could be equal to 2 or 4 or 8 reads
generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : gaf_asym
assign going_afull = (fcomp2 & write_allow & (~ (read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0]))));
assign leaving_afull = (comp1 & (~write_allow) & read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0])) | RST_FULL_GEN;
end endgenerate
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gaf_wp_gt_rp
assign going_afull = (fcomp2 & write_allow & ~read_allow);
assign leaving_afull =((comp0 | comp1 | fcomp2) & read_allow) | RST_FULL_GEN;
end endgenerate
assign ram_afull_comb = going_afull | (~leaving_afull & almost_full_i);
always @(posedge CLK or posedge RST_FULL_FF) begin
if (RST_FULL_FF)
almost_full_i <= C_FULL_FLAGS_RST_VAL;
else if (srst_wrst_busy)
almost_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else
almost_full_i <= #`TCQ ram_afull_comb;
end
// end endgenerate // gaf_ss
//-----------------------------------------------------------------------------
// Generate ALMOST_EMPTY flag
//-----------------------------------------------------------------------------
//generate if (C_HAS_ALMOST_EMPTY == 1) begin : gae_ss
wire ecomp2;
wire going_aempty;
wire leaving_aempty;
wire ram_aempty_comb;
assign ecomp2 = (adj_wr_pntr_rd == (rd_pntr + 2'h2));
generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : gae_wp_eq_rp
assign going_aempty = (ecomp2 & ~write_allow & read_allow);
assign leaving_aempty = (ecomp1 & write_allow & ~read_allow);
end endgenerate
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gae_wp_gt_rp
assign going_aempty = (ecomp2 & read_allow & (~(write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]))));
assign leaving_aempty = (ecomp1 & ~read_allow & write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]));
end endgenerate
generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : gae_wp_lt_rp
assign going_aempty = (ecomp2 & ~write_allow & read_allow);
assign leaving_aempty =((ecomp2 | ecomp1 |ecomp0) & write_allow);
end endgenerate
assign ram_aempty_comb = going_aempty | (~leaving_aempty & almost_empty_i);
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
almost_empty_i <= 1'b1;
else if (srst_rrst_busy)
almost_empty_i <= #`TCQ 1'b1;
else
almost_empty_i <= #`TCQ ram_aempty_comb;
end
// end endgenerate // gae_ss
//-----------------------------------------------------------------------------
// Generate PROG_FULL
//-----------------------------------------------------------------------------
localparam C_PF_ASSERT_VAL = (C_PRELOAD_LATENCY == 0) ?
C_PROG_FULL_THRESH_ASSERT_VAL - EXTRA_WORDS_PF_PARAM : // FWFT
C_PROG_FULL_THRESH_ASSERT_VAL; // STD
localparam C_PF_NEGATE_VAL = (C_PRELOAD_LATENCY == 0) ?
C_PROG_FULL_THRESH_NEGATE_VAL - EXTRA_WORDS_PF_PARAM: // FWFT
C_PROG_FULL_THRESH_NEGATE_VAL; // STD
//-----------------------------------------------------------------------------
// Generate PROG_FULL for single programmable threshold constant
//-----------------------------------------------------------------------------
wire [C_WR_PNTR_WIDTH-1:0] temp = C_PF_ASSERT_VAL;
generate if (C_PROG_FULL_TYPE == 1) begin : single_pf_const
always @(posedge CLK or posedge RST_FULL_FF) begin
if (RST_FULL_FF && C_HAS_RST)
prog_full_i <= C_FULL_FLAGS_RST_VAL;
else begin
if (srst_wrst_busy)
prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else if (IS_ASYMMETRY == 0) begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (diff_pntr == C_PF_ASSERT_VAL && write_only_q)
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr == C_PF_ASSERT_VAL && read_only_q)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ prog_full_i;
end
else begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~RST_FULL_GEN ) begin
if (diff_pntr>= C_PF_ASSERT_VAL )
prog_full_i <= #`TCQ 1'b1;
else if ((diff_pntr) < C_PF_ASSERT_VAL )
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ 1'b0;
end
else
prog_full_i <= #`TCQ prog_full_i;
end
end
end
end endgenerate // single_pf_const
//-----------------------------------------------------------------------------
// Generate PROG_FULL for multiple programmable threshold constants
//-----------------------------------------------------------------------------
generate if (C_PROG_FULL_TYPE == 2) begin : multiple_pf_const
always @(posedge CLK or posedge RST_FULL_FF) begin
//if (RST_FULL_FF)
if (RST_FULL_FF && C_HAS_RST)
prog_full_i <= C_FULL_FLAGS_RST_VAL;
else begin
if (srst_wrst_busy)
prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else if (IS_ASYMMETRY == 0) begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (diff_pntr == C_PF_ASSERT_VAL && write_only_q)
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr == C_PF_NEGATE_VAL && read_only_q)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ prog_full_i;
end
else begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~RST_FULL_GEN ) begin
if (diff_pntr >= C_PF_ASSERT_VAL )
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr < C_PF_NEGATE_VAL)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ prog_full_i;
end
else
prog_full_i <= #`TCQ prog_full_i;
end
end
end
end endgenerate //multiple_pf_const
//-----------------------------------------------------------------------------
// Generate PROG_FULL for single programmable threshold input port
//-----------------------------------------------------------------------------
wire [C_WR_PNTR_WIDTH-1:0] pf3_assert_val = (C_PRELOAD_LATENCY == 0) ?
PROG_FULL_THRESH - EXTRA_WORDS_PF: // FWFT
PROG_FULL_THRESH; // STD
generate if (C_PROG_FULL_TYPE == 3) begin : single_pf_input
always @(posedge CLK or posedge RST_FULL_FF) begin//0
//if (RST_FULL_FF)
if (RST_FULL_FF && C_HAS_RST)
prog_full_i <= C_FULL_FLAGS_RST_VAL;
else begin //1
if (srst_wrst_busy)
prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else if (IS_ASYMMETRY == 0) begin//2
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~almost_full_i) begin//3
if (diff_pntr > pf3_assert_val)
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr == pf3_assert_val) begin//4
if (read_only_q)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ 1'b1;
end else//4
prog_full_i <= #`TCQ 1'b0;
end else//3
prog_full_i <= #`TCQ prog_full_i;
end //2
else begin//5
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~full_i ) begin//6
if (diff_pntr >= pf3_assert_val )
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr < pf3_assert_val) begin//7
prog_full_i <= #`TCQ 1'b0;
end//7
end//6
else
prog_full_i <= #`TCQ prog_full_i;
end//5
end//1
end//0
end endgenerate //single_pf_input
//-----------------------------------------------------------------------------
// Generate PROG_FULL for multiple programmable threshold input ports
//-----------------------------------------------------------------------------
wire [C_WR_PNTR_WIDTH-1:0] pf_assert_val = (C_PRELOAD_LATENCY == 0) ?
(PROG_FULL_THRESH_ASSERT -EXTRA_WORDS_PF) : // FWFT
PROG_FULL_THRESH_ASSERT; // STD
wire [C_WR_PNTR_WIDTH-1:0] pf_negate_val = (C_PRELOAD_LATENCY == 0) ?
(PROG_FULL_THRESH_NEGATE -EXTRA_WORDS_PF) : // FWFT
PROG_FULL_THRESH_NEGATE; // STD
generate if (C_PROG_FULL_TYPE == 4) begin : multiple_pf_inputs
always @(posedge CLK or posedge RST_FULL_FF) begin
if (RST_FULL_FF && C_HAS_RST)
prog_full_i <= C_FULL_FLAGS_RST_VAL;
else begin
if (srst_wrst_busy)
prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else if (IS_ASYMMETRY == 0) begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~almost_full_i) begin
if (diff_pntr >= pf_assert_val)
prog_full_i <= #`TCQ 1'b1;
else if ((diff_pntr == pf_negate_val && read_only_q) ||
diff_pntr < pf_negate_val)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ prog_full_i;
end else
prog_full_i <= #`TCQ prog_full_i;
end
else begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~full_i ) begin
if (diff_pntr >= pf_assert_val )
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr < pf_negate_val)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ prog_full_i;
end
else
prog_full_i <= #`TCQ prog_full_i;
end
end
end
end endgenerate //multiple_pf_inputs
//-----------------------------------------------------------------------------
// Generate PROG_EMPTY
//-----------------------------------------------------------------------------
localparam C_PE_ASSERT_VAL = (C_PRELOAD_LATENCY == 0) ?
C_PROG_EMPTY_THRESH_ASSERT_VAL - 2: // FWFT
C_PROG_EMPTY_THRESH_ASSERT_VAL; // STD
localparam C_PE_NEGATE_VAL = (C_PRELOAD_LATENCY == 0) ?
C_PROG_EMPTY_THRESH_NEGATE_VAL - 2: // FWFT
C_PROG_EMPTY_THRESH_NEGATE_VAL; // STD
//-----------------------------------------------------------------------------
// Generate PROG_EMPTY for single programmable threshold constant
//-----------------------------------------------------------------------------
generate if (C_PROG_EMPTY_TYPE == 1) begin : single_pe_const
always @(posedge CLK or posedge rst_i) begin
//if (rst_i)
if (rst_i && C_HAS_RST)
prog_empty_i <= 1'b1;
else begin
if (srst_rrst_busy)
prog_empty_i <= #`TCQ 1'b1;
else if (IS_ASYMMETRY == 0) begin
if (diff_pntr_pe == C_PE_ASSERT_VAL && read_only_q)
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe == C_PE_ASSERT_VAL && write_only_q)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ prog_empty_i;
end
else begin
if (~rst_i ) begin
if (diff_pntr_pe <= C_PE_ASSERT_VAL)
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe > C_PE_ASSERT_VAL)
prog_empty_i <= #`TCQ 1'b0;
end
else
prog_empty_i <= #`TCQ prog_empty_i;
end
end
end
end endgenerate // single_pe_const
//-----------------------------------------------------------------------------
// Generate PROG_EMPTY for multiple programmable threshold constants
//-----------------------------------------------------------------------------
generate if (C_PROG_EMPTY_TYPE == 2) begin : multiple_pe_const
always @(posedge CLK or posedge rst_i) begin
//if (rst_i)
if (rst_i && C_HAS_RST)
prog_empty_i <= 1'b1;
else begin
if (srst_rrst_busy)
prog_empty_i <= #`TCQ 1'b1;
else if (IS_ASYMMETRY == 0) begin
if (diff_pntr_pe == C_PE_ASSERT_VAL && read_only_q)
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe == C_PE_NEGATE_VAL && write_only_q)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ prog_empty_i;
end
else begin
if (~rst_i ) begin
if (diff_pntr_pe <= C_PE_ASSERT_VAL )
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe > C_PE_NEGATE_VAL)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ prog_empty_i;
end
else
prog_empty_i <= #`TCQ prog_empty_i;
end
end
end
end endgenerate //multiple_pe_const
//-----------------------------------------------------------------------------
// Generate PROG_EMPTY for single programmable threshold input port
//-----------------------------------------------------------------------------
wire [C_RD_PNTR_WIDTH-1:0] pe3_assert_val = (C_PRELOAD_LATENCY == 0) ?
(PROG_EMPTY_THRESH -2) : // FWFT
PROG_EMPTY_THRESH; // STD
generate if (C_PROG_EMPTY_TYPE == 3) begin : single_pe_input
always @(posedge CLK or posedge rst_i) begin
//if (rst_i)
if (rst_i && C_HAS_RST)
prog_empty_i <= 1'b1;
else begin
if (srst_rrst_busy)
prog_empty_i <= #`TCQ 1'b1;
else if (IS_ASYMMETRY == 0) begin
if (~almost_full_i) begin
if (diff_pntr_pe < pe3_assert_val)
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe == pe3_assert_val) begin
if (write_only_q)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ 1'b1;
end else
prog_empty_i <= #`TCQ 1'b0;
end else
prog_empty_i <= #`TCQ prog_empty_i;
end
else begin
if (diff_pntr_pe <= pe3_assert_val )
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe > pe3_assert_val)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ prog_empty_i;
end
end
end
end endgenerate // single_pe_input
//-----------------------------------------------------------------------------
// Generate PROG_EMPTY for multiple programmable threshold input ports
//-----------------------------------------------------------------------------
wire [C_RD_PNTR_WIDTH-1:0] pe4_assert_val = (C_PRELOAD_LATENCY == 0) ?
(PROG_EMPTY_THRESH_ASSERT - 2) : // FWFT
PROG_EMPTY_THRESH_ASSERT; // STD
wire [C_RD_PNTR_WIDTH-1:0] pe4_negate_val = (C_PRELOAD_LATENCY == 0) ?
(PROG_EMPTY_THRESH_NEGATE - 2) : // FWFT
PROG_EMPTY_THRESH_NEGATE; // STD
generate if (C_PROG_EMPTY_TYPE == 4) begin : multiple_pe_inputs
always @(posedge CLK or posedge rst_i) begin
//if (rst_i)
if (rst_i && C_HAS_RST)
prog_empty_i <= 1'b1;
else begin
if (srst_rrst_busy)
prog_empty_i <= #`TCQ 1'b1;
else if (IS_ASYMMETRY == 0) begin
if (~almost_full_i) begin
if (diff_pntr_pe <= pe4_assert_val)
prog_empty_i <= #`TCQ 1'b1;
else if (((diff_pntr_pe == pe4_negate_val) && write_only_q) ||
(diff_pntr_pe > pe4_negate_val)) begin
prog_empty_i <= #`TCQ 1'b0;
end else
prog_empty_i <= #`TCQ prog_empty_i;
end else
prog_empty_i <= #`TCQ prog_empty_i;
end
else begin
if (diff_pntr_pe <= pe4_assert_val )
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe > pe4_negate_val)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ prog_empty_i;
end
end
end
end endgenerate // multiple_pe_inputs
endmodule // fifo_generator_v13_1_1_bhv_ver_ss
/**************************************************************************
* First-Word Fall-Through module (preload 0)
**************************************************************************/
module fifo_generator_v13_1_1_bhv_ver_preload0
#(
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_HAS_RST = 0,
parameter C_ENABLE_RST_SYNC = 0,
parameter C_HAS_SRST = 0,
parameter C_USE_EMBEDDED_REG = 0,
parameter C_EN_SAFETY_CKT = 0,
parameter C_USE_DOUT_RST = 0,
parameter C_USE_ECC = 0,
parameter C_USERVALID_LOW = 0,
parameter C_USERUNDERFLOW_LOW = 0,
parameter C_MEMORY_TYPE = 0,
parameter C_FIFO_TYPE = 0
)
(
//Inputs
input RD_CLK,
input RD_RST,
input SRST,
input WR_RST_BUSY,
input RD_RST_BUSY,
input RD_EN,
input FIFOEMPTY,
input [C_DOUT_WIDTH-1:0] FIFODATA,
input FIFOSBITERR,
input FIFODBITERR,
//Outputs
output reg [C_DOUT_WIDTH-1:0] USERDATA,
output reg [C_DOUT_WIDTH-1:0] USERDATA_BOTH,
output USERVALID,
output USERVALID_BOTH,
output USERVALID_ONE,
output USERUNDERFLOW,
output USEREMPTY,
output USERALMOSTEMPTY,
output RAMVALID,
output FIFORDEN,
output reg USERSBITERR,
output reg USERDBITERR,
output reg USERSBITERR_BOTH,
output reg USERDBITERR_BOTH,
output reg STAGE2_REG_EN,
output fab_read_data_valid_i_o,
output read_data_valid_i_o,
output ram_valid_i_o,
output [1:0] VALID_STAGES
);
//Internal signals
wire preloadstage1;
wire preloadstage2;
reg ram_valid_i;
reg fab_valid;
reg read_data_valid_i;
reg fab_read_data_valid_i;
reg fab_read_data_valid_i_1;
reg ram_valid_i_d;
reg read_data_valid_i_d;
reg fab_read_data_valid_i_d;
wire ram_regout_en;
reg ram_regout_en_d1;
reg ram_regout_en_d2;
wire fab_regout_en;
wire ram_rd_en;
reg empty_i = 1'b1;
reg empty_q = 1'b1;
reg rd_en_q = 1'b0;
reg almost_empty_i = 1'b1;
reg almost_empty_q = 1'b1;
wire rd_rst_i;
wire srst_i;
assign ram_valid_i_o = ram_valid_i;
assign read_data_valid_i_o = read_data_valid_i;
assign fab_read_data_valid_i_o = fab_read_data_valid_i;
/*************************************************************************
* FUNCTIONS
*************************************************************************/
/*************************************************************************
* hexstr_conv
* Converts a string of type hex to a binary value (for C_DOUT_RST_VAL)
***********************************************************************/
function [C_DOUT_WIDTH-1:0] hexstr_conv;
input [(C_DOUT_WIDTH*8)-1:0] def_data;
integer index,i,j;
reg [3:0] bin;
begin
index = 0;
hexstr_conv = 'b0;
for( i=C_DOUT_WIDTH-1; i>=0; i=i-1 )
begin
case (def_data[7:0])
8'b00000000 :
begin
bin = 4'b0000;
i = -1;
end
8'b00110000 : bin = 4'b0000;
8'b00110001 : bin = 4'b0001;
8'b00110010 : bin = 4'b0010;
8'b00110011 : bin = 4'b0011;
8'b00110100 : bin = 4'b0100;
8'b00110101 : bin = 4'b0101;
8'b00110110 : bin = 4'b0110;
8'b00110111 : bin = 4'b0111;
8'b00111000 : bin = 4'b1000;
8'b00111001 : bin = 4'b1001;
8'b01000001 : bin = 4'b1010;
8'b01000010 : bin = 4'b1011;
8'b01000011 : bin = 4'b1100;
8'b01000100 : bin = 4'b1101;
8'b01000101 : bin = 4'b1110;
8'b01000110 : bin = 4'b1111;
8'b01100001 : bin = 4'b1010;
8'b01100010 : bin = 4'b1011;
8'b01100011 : bin = 4'b1100;
8'b01100100 : bin = 4'b1101;
8'b01100101 : bin = 4'b1110;
8'b01100110 : bin = 4'b1111;
default :
begin
bin = 4'bx;
end
endcase
for( j=0; j<4; j=j+1)
begin
if ((index*4)+j < C_DOUT_WIDTH)
begin
hexstr_conv[(index*4)+j] = bin[j];
end
end
index = index + 1;
def_data = def_data >> 8;
end
end
endfunction
//*************************************************************************
// Set power-on states for regs
//*************************************************************************
initial begin
ram_valid_i = 1'b0;
fab_valid = 1'b0;
read_data_valid_i = 1'b0;
fab_read_data_valid_i = 1'b0;
fab_read_data_valid_i_1 = 1'b0;
USERDATA = hexstr_conv(C_DOUT_RST_VAL);
USERDATA_BOTH = hexstr_conv(C_DOUT_RST_VAL);
USERSBITERR = 1'b0;
USERDBITERR = 1'b0;
end //initial
//***************************************************************************
// connect up optional reset
//***************************************************************************
assign rd_rst_i = (C_HAS_RST == 1 || C_ENABLE_RST_SYNC == 0) ? RD_RST : 0;
assign srst_i = C_HAS_SRST ? SRST || WR_RST_BUSY || RD_RST_BUSY : 0;
localparam INVALID = 0;
localparam STAGE1_VALID = 2;
localparam STAGE2_VALID = 1;
localparam BOTH_STAGES_VALID = 3;
reg [1:0] curr_fwft_state = INVALID;
reg [1:0] next_fwft_state = INVALID;
generate if (C_USE_EMBEDDED_REG < 3 && C_FIFO_TYPE != 2) begin
always @* begin
case (curr_fwft_state)
INVALID: begin
if (~FIFOEMPTY)
next_fwft_state <= STAGE1_VALID;
else
next_fwft_state <= INVALID;
end
STAGE1_VALID: begin
if (FIFOEMPTY)
next_fwft_state <= STAGE2_VALID;
else
next_fwft_state <= BOTH_STAGES_VALID;
end
STAGE2_VALID: begin
if (FIFOEMPTY && RD_EN)
next_fwft_state <= INVALID;
else if (~FIFOEMPTY && RD_EN)
next_fwft_state <= STAGE1_VALID;
else if (~FIFOEMPTY && ~RD_EN)
next_fwft_state <= BOTH_STAGES_VALID;
else
next_fwft_state <= STAGE2_VALID;
end
BOTH_STAGES_VALID: begin
if (FIFOEMPTY && RD_EN)
next_fwft_state <= STAGE2_VALID;
else if (~FIFOEMPTY && RD_EN)
next_fwft_state <= BOTH_STAGES_VALID;
else
next_fwft_state <= BOTH_STAGES_VALID;
end
default: next_fwft_state <= INVALID;
endcase
end
always @ (posedge rd_rst_i or posedge RD_CLK) begin
if (rd_rst_i)
curr_fwft_state <= INVALID;
else if (srst_i)
curr_fwft_state <= #`TCQ INVALID;
else
curr_fwft_state <= #`TCQ next_fwft_state;
end
always @* begin
case (curr_fwft_state)
INVALID: STAGE2_REG_EN <= 1'b0;
STAGE1_VALID: STAGE2_REG_EN <= 1'b1;
STAGE2_VALID: STAGE2_REG_EN <= 1'b0;
BOTH_STAGES_VALID: STAGE2_REG_EN <= RD_EN;
default: STAGE2_REG_EN <= 1'b0;
endcase
end
assign VALID_STAGES = curr_fwft_state;
//***************************************************************************
// preloadstage2 indicates that stage2 needs to be updated. This is true
// whenever read_data_valid is false, and RAM_valid is true.
//***************************************************************************
assign preloadstage2 = ram_valid_i & (~read_data_valid_i | RD_EN );
//***************************************************************************
// preloadstage1 indicates that stage1 needs to be updated. This is true
// whenever the RAM has data (RAM_EMPTY is false), and either RAM_Valid is
// false (indicating that Stage1 needs updating), or preloadstage2 is active
// (indicating that Stage2 is going to update, so Stage1, therefore, must
// also be updated to keep it valid.
//***************************************************************************
assign preloadstage1 = ((~ram_valid_i | preloadstage2) & ~FIFOEMPTY);
//***************************************************************************
// Calculate RAM_REGOUT_EN
// The output registers are controlled by the ram_regout_en signal.
// These registers should be updated either when the output in Stage2 is
// invalid (preloadstage2), OR when the user is reading, in which case the
// Stage2 value will go invalid unless it is replenished.
//***************************************************************************
assign ram_regout_en = preloadstage2;
//***************************************************************************
// Calculate RAM_RD_EN
// RAM_RD_EN will be asserted whenever the RAM needs to be read in order to
// update the value in Stage1.
// One case when this happens is when preloadstage1=true, which indicates
// that the data in Stage1 or Stage2 is invalid, and needs to automatically
// be updated.
// The other case is when the user is reading from the FIFO, which
// guarantees that Stage1 or Stage2 will be invalid on the next clock
// cycle, unless it is replinished by data from the memory. So, as long
// as the RAM has data in it, a read of the RAM should occur.
//***************************************************************************
assign ram_rd_en = (RD_EN & ~FIFOEMPTY) | preloadstage1;
end
endgenerate // gnll_fifo
reg curr_state = 0;
reg next_state = 0;
reg leaving_empty_fwft = 0;
reg going_empty_fwft = 0;
reg empty_i_q = 0;
reg ram_rd_en_fwft = 0;
generate if (C_FIFO_TYPE == 2) begin : gll_fifo
always @* begin // FSM fo FWFT
case (curr_state)
1'b0: begin
if (~FIFOEMPTY)
next_state <= 1'b1;
else
next_state <= 1'b0;
end
1'b1: begin
if (FIFOEMPTY && RD_EN)
next_state <= 1'b0;
else
next_state <= 1'b1;
end
default: next_state <= 1'b0;
endcase
end
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
empty_i <= 1'b1;
empty_i_q <= 1'b1;
curr_state <= 1'b0;
ram_valid_i <= 1'b0;
end else if (srst_i) begin
empty_i <= #`TCQ 1'b1;
empty_i_q <= #`TCQ 1'b1;
curr_state <= #`TCQ 1'b0;
ram_valid_i <= #`TCQ 1'b0;
end else begin
empty_i <= #`TCQ going_empty_fwft | (~leaving_empty_fwft & empty_i);
empty_i_q <= #`TCQ FIFOEMPTY;
curr_state <= #`TCQ next_state;
ram_valid_i <= #`TCQ next_state;
end
end //always
wire fe_of_empty;
assign fe_of_empty = empty_i_q & ~FIFOEMPTY;
always @* begin // Finding leaving empty
case (curr_state)
1'b0: leaving_empty_fwft <= fe_of_empty;
1'b1: leaving_empty_fwft <= 1'b1;
default: leaving_empty_fwft <= 1'b0;
endcase
end
always @* begin // Finding going empty
case (curr_state)
1'b1: going_empty_fwft <= FIFOEMPTY & RD_EN;
default: going_empty_fwft <= 1'b0;
endcase
end
always @* begin // Generating FWFT rd_en
case (curr_state)
1'b0: ram_rd_en_fwft <= ~FIFOEMPTY;
1'b1: ram_rd_en_fwft <= ~FIFOEMPTY & RD_EN;
default: ram_rd_en_fwft <= 1'b0;
endcase
end
assign ram_regout_en = ram_rd_en_fwft;
//assign ram_regout_en_d1 = ram_rd_en_fwft;
//assign ram_regout_en_d2 = ram_rd_en_fwft;
assign ram_rd_en = ram_rd_en_fwft;
end endgenerate // gll_fifo
//***************************************************************************
// Calculate RAMVALID_P0_OUT
// RAMVALID_P0_OUT indicates that the data in Stage1 is valid.
//
// If the RAM is being read from on this clock cycle (ram_rd_en=1), then
// RAMVALID_P0_OUT is certainly going to be true.
// If the RAM is not being read from, but the output registers are being
// updated to fill Stage2 (ram_regout_en=1), then Stage1 will be emptying,
// therefore causing RAMVALID_P0_OUT to be false.
// Otherwise, RAMVALID_P0_OUT will remain unchanged.
//***************************************************************************
// PROCESS regout_valid
generate if (C_FIFO_TYPE < 2) begin : gnll_fifo_ram_valid
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
// asynchronous reset (active high)
ram_valid_i <= #`TCQ 1'b0;
end else begin
if (srst_i) begin
// synchronous reset (active high)
ram_valid_i <= #`TCQ 1'b0;
end else begin
if (ram_rd_en == 1'b1) begin
ram_valid_i <= #`TCQ 1'b1;
end else begin
if (ram_regout_en == 1'b1)
ram_valid_i <= #`TCQ 1'b0;
else
ram_valid_i <= #`TCQ ram_valid_i;
end
end //srst_i
end //rd_rst_i
end //always
end endgenerate // gnll_fifo_ram_valid
//***************************************************************************
// Calculate READ_DATA_VALID
// READ_DATA_VALID indicates whether the value in Stage2 is valid or not.
// Stage2 has valid data whenever Stage1 had valid data and
// ram_regout_en_i=1, such that the data in Stage1 is propogated
// into Stage2.
//***************************************************************************
generate if(C_USE_EMBEDDED_REG < 3) begin
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i)
read_data_valid_i <= #`TCQ 1'b0;
else if (srst_i)
read_data_valid_i <= #`TCQ 1'b0;
else
read_data_valid_i <= #`TCQ ram_valid_i | (read_data_valid_i & ~RD_EN);
end //always
end
endgenerate
//**************************************************************************
// Calculate EMPTY
// Defined as the inverse of READ_DATA_VALID
//
// Description:
//
// If read_data_valid_i indicates that the output is not valid,
// and there is no valid data on the output of the ram to preload it
// with, then we will report empty.
//
// If there is no valid data on the output of the ram and we are
// reading, then the FIFO will go empty.
//
//**************************************************************************
generate if (C_FIFO_TYPE < 2 && C_USE_EMBEDDED_REG < 3) begin : gnll_fifo_empty
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
// asynchronous reset (active high)
empty_i <= #`TCQ 1'b1;
end else begin
if (srst_i) begin
// synchronous reset (active high)
empty_i <= #`TCQ 1'b1;
end else begin
// rising clock edge
empty_i <= #`TCQ (~ram_valid_i & ~read_data_valid_i) | (~ram_valid_i & RD_EN);
end
end
end //always
end endgenerate // gnll_fifo_empty
// Register RD_EN from user to calculate USERUNDERFLOW.
// Register empty_i to calculate USERUNDERFLOW.
always @ (posedge RD_CLK) begin
rd_en_q <= #`TCQ RD_EN;
empty_q <= #`TCQ empty_i;
end //always
//***************************************************************************
// Calculate user_almost_empty
// user_almost_empty is defined such that, unless more words are written
// to the FIFO, the next read will cause the FIFO to go EMPTY.
//
// In most cases, whenever the output registers are updated (due to a user
// read or a preload condition), then user_almost_empty will update to
// whatever RAM_EMPTY is.
//
// The exception is when the output is valid, the user is not reading, and
// Stage1 is not empty. In this condition, Stage1 will be preloaded from the
// memory, so we need to make sure user_almost_empty deasserts properly under
// this condition.
//***************************************************************************
generate if ( C_USE_EMBEDDED_REG < 3) begin
always @ (posedge RD_CLK or posedge rd_rst_i)
begin
if (rd_rst_i) begin // asynchronous reset (active high)
almost_empty_i <= #`TCQ 1'b1;
almost_empty_q <= #`TCQ 1'b1;
end else begin // rising clock edge
if (srst_i) begin // synchronous reset (active high)
almost_empty_i <= #`TCQ 1'b1;
almost_empty_q <= #`TCQ 1'b1;
end else begin
if ((ram_regout_en) | (~FIFOEMPTY & read_data_valid_i & ~RD_EN)) begin
almost_empty_i <= #`TCQ FIFOEMPTY;
end
almost_empty_q <= #`TCQ empty_i;
end
end
end //always
end
endgenerate
// BRAM resets synchronously
generate
if (C_EN_SAFETY_CKT==0 && C_USE_EMBEDDED_REG < 3) begin
always @ ( posedge rd_rst_i)
begin
if (rd_rst_i || srst_i) begin
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE < 2)
@(posedge RD_CLK)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end //always
always @ (posedge RD_CLK or posedge rd_rst_i)
begin
if (rd_rst_i) begin //asynchronous reset (active high)
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
// DRAM resets asynchronously
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2) begin //asynchronous reset (active high)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end else begin // rising clock edge
if (srst_i) begin
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
if (C_USE_DOUT_RST == 1) begin
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end else begin
if (ram_regout_en) begin
USERDATA <= #`TCQ FIFODATA;
USERSBITERR <= #`TCQ FIFOSBITERR;
USERDBITERR <= #`TCQ FIFODBITERR;
end
end
end
end //always
end //if
endgenerate
//safety ckt with one register
generate
if (C_EN_SAFETY_CKT==1 && C_USE_EMBEDDED_REG < 3) begin
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d1;
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d2;
reg [1:0] rst_delayed_sft1 =1;
reg [1:0] rst_delayed_sft2 =1;
reg [1:0] rst_delayed_sft3 =1;
reg [1:0] rst_delayed_sft4 =1;
always@(posedge RD_CLK)
begin
rst_delayed_sft1 <= #`TCQ rd_rst_i;
rst_delayed_sft2 <= #`TCQ rst_delayed_sft1;
rst_delayed_sft3 <= #`TCQ rst_delayed_sft2;
rst_delayed_sft4 <= #`TCQ rst_delayed_sft3;
end
always @ (posedge RD_CLK)
begin
if (rd_rst_i || srst_i) begin
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE < 2 && rst_delayed_sft1 == 1'b1) begin
@(posedge RD_CLK)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end
end //always
always @ (posedge RD_CLK or posedge rd_rst_i)
begin
if (rd_rst_i) begin //asynchronous reset (active high)
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
// DRAM resets asynchronously
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2)begin //asynchronous reset (active high)
//@(posedge RD_CLK)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end
else begin // rising clock edge
if (srst_i) begin
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
if (C_USE_DOUT_RST == 1) begin
// @(posedge RD_CLK)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end else begin
if (ram_regout_en == 1'b1 && rd_rst_i == 1'b0) begin
USERDATA <= #`TCQ FIFODATA;
USERSBITERR <= #`TCQ FIFOSBITERR;
USERDBITERR <= #`TCQ FIFODBITERR;
end
end
end
end //always
end //if
endgenerate
generate if (C_USE_EMBEDDED_REG == 3 && C_FIFO_TYPE != 2) begin
always @* begin
case (curr_fwft_state)
INVALID: begin
if (~FIFOEMPTY)
next_fwft_state <= STAGE1_VALID;
else
next_fwft_state <= INVALID;
end
STAGE1_VALID: begin
if (FIFOEMPTY)
next_fwft_state <= STAGE2_VALID;
else
next_fwft_state <= BOTH_STAGES_VALID;
end
STAGE2_VALID: begin
if (FIFOEMPTY && RD_EN)
next_fwft_state <= INVALID;
else if (~FIFOEMPTY && RD_EN)
next_fwft_state <= STAGE1_VALID;
else if (~FIFOEMPTY && ~RD_EN)
next_fwft_state <= BOTH_STAGES_VALID;
else
next_fwft_state <= STAGE2_VALID;
end
BOTH_STAGES_VALID: begin
if (FIFOEMPTY && RD_EN)
next_fwft_state <= STAGE2_VALID;
else if (~FIFOEMPTY && RD_EN)
next_fwft_state <= BOTH_STAGES_VALID;
else
next_fwft_state <= BOTH_STAGES_VALID;
end
default: next_fwft_state <= INVALID;
endcase
end
always @ (posedge rd_rst_i or posedge RD_CLK) begin
if (rd_rst_i)
curr_fwft_state <= INVALID;
else if (srst_i)
curr_fwft_state <= #`TCQ INVALID;
else
curr_fwft_state <= #`TCQ next_fwft_state;
end
always @ (posedge RD_CLK or posedge rd_rst_i) begin : proc_delay
if (rd_rst_i == 1) begin
ram_regout_en_d1 <= #`TCQ 1'b0;
end
else begin
if (srst_i == 1'b1)
ram_regout_en_d1 <= #`TCQ 1'b0;
else
ram_regout_en_d1 <= #`TCQ ram_regout_en;
end
end //always
// assign fab_regout_en = ((ram_regout_en_d1 & ~(ram_regout_en_d2) & empty_i) | (RD_EN & !empty_i));
assign fab_regout_en = ((ram_valid_i == 1'b0 || ram_valid_i == 1'b1) && read_data_valid_i == 1'b1 && fab_read_data_valid_i == 1'b0 )? 1'b1: ((ram_valid_i == 1'b0 || ram_valid_i == 1'b1) && read_data_valid_i == 1'b1 && fab_read_data_valid_i == 1'b1) ? RD_EN : 1'b0;
always @ (posedge RD_CLK or posedge rd_rst_i) begin : proc_delay1
if (rd_rst_i == 1) begin
ram_regout_en_d2 <= #`TCQ 1'b0;
end
else begin
if (srst_i == 1'b1)
ram_regout_en_d2 <= #`TCQ 1'b0;
else
ram_regout_en_d2 <= #`TCQ ram_regout_en_d1;
end
end //always
always @* begin
case (curr_fwft_state)
INVALID: STAGE2_REG_EN <= 1'b0;
STAGE1_VALID: STAGE2_REG_EN <= 1'b1;
STAGE2_VALID: STAGE2_REG_EN <= 1'b0;
BOTH_STAGES_VALID: STAGE2_REG_EN <= RD_EN;
default: STAGE2_REG_EN <= 1'b0;
endcase
end
always @ (posedge RD_CLK) begin
ram_valid_i_d <= #`TCQ ram_valid_i;
read_data_valid_i_d <= #`TCQ read_data_valid_i;
fab_read_data_valid_i_d <= #`TCQ fab_read_data_valid_i;
end
assign VALID_STAGES = curr_fwft_state;
//***************************************************************************
// preloadstage2 indicates that stage2 needs to be updated. This is true
// whenever read_data_valid is false, and RAM_valid is true.
//***************************************************************************
assign preloadstage2 = ram_valid_i & (~read_data_valid_i | RD_EN );
//***************************************************************************
// preloadstage1 indicates that stage1 needs to be updated. This is true
// whenever the RAM has data (RAM_EMPTY is false), and either RAM_Valid is
// false (indicating that Stage1 needs updating), or preloadstage2 is active
// (indicating that Stage2 is going to update, so Stage1, therefore, must
// also be updated to keep it valid.
//***************************************************************************
assign preloadstage1 = ((~ram_valid_i | preloadstage2) & ~FIFOEMPTY);
//***************************************************************************
// Calculate RAM_REGOUT_EN
// The output registers are controlled by the ram_regout_en signal.
// These registers should be updated either when the output in Stage2 is
// invalid (preloadstage2), OR when the user is reading, in which case the
// Stage2 value will go invalid unless it is replenished.
//***************************************************************************
assign ram_regout_en = (ram_valid_i == 1'b1 && (read_data_valid_i == 1'b0 || fab_read_data_valid_i == 1'b0)) ? 1'b1 : (read_data_valid_i == 1'b1 && fab_read_data_valid_i == 1'b1 && ram_valid_i == 1'b1) ? RD_EN : 1'b0;
//***************************************************************************
// Calculate RAM_RD_EN
// RAM_RD_EN will be asserted whenever the RAM needs to be read in order to
// update the value in Stage1.
// One case when this happens is when preloadstage1=true, which indicates
// that the data in Stage1 or Stage2 is invalid, and needs to automatically
// be updated.
// The other case is when the user is reading from the FIFO, which
// guarantees that Stage1 or Stage2 will be invalid on the next clock
// cycle, unless it is replinished by data from the memory. So, as long
// as the RAM has data in it, a read of the RAM should occur.
//***************************************************************************
assign ram_rd_en = ((RD_EN | ~ fab_read_data_valid_i) & ~FIFOEMPTY) | preloadstage1;
end
endgenerate // gnll_fifo
//***************************************************************************
// Calculate RAMVALID_P0_OUT
// RAMVALID_P0_OUT indicates that the data in Stage1 is valid.
//
// If the RAM is being read from on this clock cycle (ram_rd_en=1), then
// RAMVALID_P0_OUT is certainly going to be true.
// If the RAM is not being read from, but the output registers are being
// updated to fill Stage2 (ram_regout_en=1), then Stage1 will be emptying,
// therefore causing RAMVALID_P0_OUT to be false // Otherwise, RAMVALID_P0_OUT will remain unchanged.
//***************************************************************************
// PROCESS regout_valid
generate if (C_FIFO_TYPE < 2 && C_USE_EMBEDDED_REG == 3) begin : gnll_fifo_fab_valid
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
// asynchronous reset (active high)
fab_valid <= #`TCQ 1'b0;
end else begin
if (srst_i) begin
// synchronous reset (active high)
fab_valid <= #`TCQ 1'b0;
end else begin
if (ram_regout_en == 1'b1) begin
fab_valid <= #`TCQ 1'b1;
end else begin
if (fab_regout_en == 1'b1)
fab_valid <= #`TCQ 1'b0;
else
fab_valid <= #`TCQ fab_valid;
end
end //srst_i
end //rd_rst_i
end //always
end endgenerate // gnll_fifo_fab_valid
//***************************************************************************
// Calculate READ_DATA_VALID
// READ_DATA_VALID indicates whether the value in Stage2 is valid or not.
// Stage2 has valid data whenever Stage1 had valid data and
// ram_regout_en_i=1, such that the data in Stage1 is propogated
// into Stage2.
//***************************************************************************
generate if(C_USE_EMBEDDED_REG == 3) begin
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i)
read_data_valid_i <= #`TCQ 1'b0;
else if (srst_i)
read_data_valid_i <= #`TCQ 1'b0;
else begin
if (ram_regout_en == 1'b1) begin
read_data_valid_i <= #`TCQ 1'b1;
end else begin
if (fab_regout_en == 1'b1)
read_data_valid_i <= #`TCQ 1'b0;
else
read_data_valid_i <= #`TCQ read_data_valid_i;
end
end
end //always
end
endgenerate
//generate if(C_USE_EMBEDDED_REG == 3) begin
// always @ (posedge RD_CLK or posedge rd_rst_i) begin
// if (rd_rst_i)
// read_data_valid_i <= #`TCQ 1'b0;
// else if (srst_i)
// read_data_valid_i <= #`TCQ 1'b0;
//
// if (ram_regout_en == 1'b1) begin
// fab_read_data_valid_i <= #`TCQ 1'b0;
// end else begin
// if (fab_regout_en == 1'b1)
// fab_read_data_valid_i <= #`TCQ 1'b1;
// else
// fab_read_data_valid_i <= #`TCQ fab_read_data_valid_i;
// end
// end //always
//end
//endgenerate
generate if(C_USE_EMBEDDED_REG == 3 ) begin
always @ (posedge RD_CLK or posedge rd_rst_i) begin :fabout_dvalid
if (rd_rst_i)
fab_read_data_valid_i <= #`TCQ 1'b0;
else if (srst_i)
fab_read_data_valid_i <= #`TCQ 1'b0;
else
fab_read_data_valid_i <= #`TCQ fab_valid | (fab_read_data_valid_i & ~RD_EN);
end //always
end
endgenerate
always @ (posedge RD_CLK ) begin : proc_del1
begin
fab_read_data_valid_i_1 <= #`TCQ fab_read_data_valid_i;
end
end //always
//**************************************************************************
// Calculate EMPTY
// Defined as the inverse of READ_DATA_VALID
//
// Description:
//
// If read_data_valid_i indicates that the output is not valid,
// and there is no valid data on the output of the ram to preload it
// with, then we will report empty.
//
// If there is no valid data on the output of the ram and we are
// reading, then the FIFO will go empty.
//
//**************************************************************************
generate if (C_FIFO_TYPE < 2 && C_USE_EMBEDDED_REG == 3 ) begin : gnll_fifo_empty_both
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
// asynchronous reset (active high)
empty_i <= #`TCQ 1'b1;
end else begin
if (srst_i) begin
// synchronous reset (active high)
empty_i <= #`TCQ 1'b1;
end else begin
// rising clock edge
empty_i <= #`TCQ (~fab_valid & ~fab_read_data_valid_i) | (~fab_valid & RD_EN);
end
end
end //always
end endgenerate // gnll_fifo_empty_both
// Register RD_EN from user to calculate USERUNDERFLOW.
// Register empty_i to calculate USERUNDERFLOW.
always @ (posedge RD_CLK) begin
rd_en_q <= #`TCQ RD_EN;
empty_q <= #`TCQ empty_i;
end //always
//***************************************************************************
// Calculate user_almost_empty
// user_almost_empty is defined such that, unless more words are written
// to the FIFO, the next read will cause the FIFO to go EMPTY.
//
// In most cases, whenever the output registers are updated (due to a user
// read or a preload condition), then user_almost_empty will update to
// whatever RAM_EMPTY is.
//
// The exception is when the output is valid, the user is not reading, and
// Stage1 is not empty. In this condition, Stage1 will be preloaded from the
// memory, so we need to make sure user_almost_empty deasserts properly under
// this condition.
//***************************************************************************
reg FIFOEMPTY_1;
generate if (C_USE_EMBEDDED_REG == 3 ) begin
always @(posedge RD_CLK) begin
FIFOEMPTY_1 <= #`TCQ FIFOEMPTY;
end
end
endgenerate
generate if (C_USE_EMBEDDED_REG == 3 ) begin
always @ (posedge RD_CLK or posedge rd_rst_i)
// begin
// if (((ram_valid_i == 1'b1) && (read_data_valid_i == 1'b1) && (fab_read_data_valid_i == 1'b1)) || ((ram_valid_i == 1'b0) && (read_data_valid_i == 1'b1) && (fab_read_data_valid_i == 1'b1)))
// almost_empty_i <= #`TCQ 1'b0;
// else
// almost_empty_i <= #`TCQ 1'b1;
begin
if (rd_rst_i) begin // asynchronous reset (active high)
almost_empty_i <= #`TCQ 1'b1;
almost_empty_q <= #`TCQ 1'b1;
end else begin // rising clock edge
if (srst_i) begin // synchronous reset (active high)
almost_empty_i <= #`TCQ 1'b1;
almost_empty_q <= #`TCQ 1'b1;
end else begin
if ((fab_regout_en) | (ram_valid_i & fab_read_data_valid_i & ~RD_EN)) begin
almost_empty_i <= #`TCQ (~ram_valid_i);
end
almost_empty_q <= #`TCQ empty_i;
end
end
end //always
end
endgenerate
assign USEREMPTY = empty_i;
assign USERALMOSTEMPTY = almost_empty_i;
assign FIFORDEN = ram_rd_en;
assign RAMVALID = (C_USE_EMBEDDED_REG == 3)? fab_valid : ram_valid_i;
assign USERVALID_BOTH = (C_USERVALID_LOW && C_USE_EMBEDDED_REG == 3) ? ~fab_read_data_valid_i : ((C_USERVALID_LOW == 0 && C_USE_EMBEDDED_REG == 3) ? fab_read_data_valid_i : 1'b0);
assign USERVALID_ONE = (C_USERVALID_LOW && C_USE_EMBEDDED_REG < 3) ? ~read_data_valid_i :((C_USERVALID_LOW == 0 && C_USE_EMBEDDED_REG < 3) ? read_data_valid_i : 1'b0);
assign USERVALID = (C_USE_EMBEDDED_REG == 3) ? USERVALID_BOTH : USERVALID_ONE;
assign USERUNDERFLOW = C_USERUNDERFLOW_LOW ? ~(empty_q & rd_en_q) : empty_q & rd_en_q;
//no safety ckt with both reg
generate
if (C_EN_SAFETY_CKT==0 && C_USE_EMBEDDED_REG == 3 ) begin
always @ (posedge RD_CLK)
begin
if (rd_rst_i || srst_i) begin
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE < 2)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
USERDATA_BOTH <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end //always
always @ (posedge RD_CLK or posedge rd_rst_i)
begin
if (rd_rst_i) begin //asynchronous reset (active high)
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
// DRAM resets asynchronously
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2) begin //asynchronous reset (active high)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
USERDATA_BOTH <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end else begin // rising clock edge
if (srst_i) begin
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2) begin
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
USERDATA_BOTH <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end else begin
if (ram_regout_en) begin
USERDATA_BOTH <= #`TCQ FIFODATA;
USERDBITERR <= #`TCQ FIFODBITERR;
USERSBITERR <= #`TCQ FIFOSBITERR;
end
if (fab_regout_en) begin
USERDATA <= #`TCQ USERDATA_BOTH;
end
end
end
end //always
end //if
endgenerate
//safety_ckt with both registers
generate
if (C_EN_SAFETY_CKT==1 && C_USE_EMBEDDED_REG == 3) begin
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d1;
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d2;
reg [1:0] rst_delayed_sft1 =1;
reg [1:0] rst_delayed_sft2 =1;
reg [1:0] rst_delayed_sft3 =1;
reg [1:0] rst_delayed_sft4 =1;
always@(posedge RD_CLK)
begin
rst_delayed_sft1 <= #`TCQ rd_rst_i;
rst_delayed_sft2 <= #`TCQ rst_delayed_sft1;
rst_delayed_sft3 <= #`TCQ rst_delayed_sft2;
rst_delayed_sft4 <= #`TCQ rst_delayed_sft3;
end
always @ (posedge RD_CLK)
begin
if (rd_rst_i || srst_i) begin
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE < 2 && rst_delayed_sft1 == 1'b1) begin
@(posedge RD_CLK)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
USERDATA_BOTH <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end
end //always
always @ (posedge RD_CLK or posedge rd_rst_i)
begin
if (rd_rst_i) begin //asynchronous reset (active high)
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
// DRAM resets asynchronously
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2)begin //asynchronous reset (active high)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
USERDATA_BOTH <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end
else begin // rising clock edge
if (srst_i) begin
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2) begin
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end else begin
if (ram_regout_en == 1'b1 && rd_rst_i == 1'b0) begin
USERDATA_BOTH <= #`TCQ FIFODATA;
USERDBITERR <= #`TCQ FIFODBITERR;
USERSBITERR <= #`TCQ FIFOSBITERR;
end
if (fab_regout_en == 1'b1 && rd_rst_i == 1'b0) begin
USERDATA <= #`TCQ USERDATA_BOTH;
end
end
end
end //always
end //if
endgenerate
endmodule //fifo_generator_v13_1_1_bhv_ver_preload0
//-----------------------------------------------------------------------------
//
// Register Slice
// Register one AXI channel on forward and/or reverse signal path
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
// reg_slice
//
//--------------------------------------------------------------------------
module fifo_generator_v13_1_1_axic_reg_slice #
(
parameter C_FAMILY = "virtex7",
parameter C_DATA_WIDTH = 32,
parameter C_REG_CONFIG = 32'h00000000
)
(
// System Signals
input wire ACLK,
input wire ARESET,
// Slave side
input wire [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA,
input wire S_VALID,
output wire S_READY,
// Master side
output wire [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA,
output wire M_VALID,
input wire M_READY
);
generate
////////////////////////////////////////////////////////////////////
//
// Both FWD and REV mode
//
////////////////////////////////////////////////////////////////////
if (C_REG_CONFIG == 32'h00000000)
begin
reg [1:0] state;
localparam [1:0]
ZERO = 2'b10,
ONE = 2'b11,
TWO = 2'b01;
reg [C_DATA_WIDTH-1:0] storage_data1 = 0;
reg [C_DATA_WIDTH-1:0] storage_data2 = 0;
reg load_s1;
wire load_s2;
wire load_s1_from_s2;
reg s_ready_i; //local signal of output
wire m_valid_i; //local signal of output
// assign local signal to its output signal
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
reg areset_d1; // Reset delay register
always @(posedge ACLK) begin
areset_d1 <= ARESET;
end
// Load storage1 with either slave side data or from storage2
always @(posedge ACLK)
begin
if (load_s1)
if (load_s1_from_s2)
storage_data1 <= storage_data2;
else
storage_data1 <= S_PAYLOAD_DATA;
end
// Load storage2 with slave side data
always @(posedge ACLK)
begin
if (load_s2)
storage_data2 <= S_PAYLOAD_DATA;
end
assign M_PAYLOAD_DATA = storage_data1;
// Always load s2 on a valid transaction even if it's unnecessary
assign load_s2 = S_VALID & s_ready_i;
// Loading s1
always @ *
begin
if ( ((state == ZERO) && (S_VALID == 1)) || // Load when empty on slave transaction
// Load when ONE if we both have read and write at the same time
((state == ONE) && (S_VALID == 1) && (M_READY == 1)) ||
// Load when TWO and we have a transaction on Master side
((state == TWO) && (M_READY == 1)))
load_s1 = 1'b1;
else
load_s1 = 1'b0;
end // always @ *
assign load_s1_from_s2 = (state == TWO);
// State Machine for handling output signals
always @(posedge ACLK) begin
if (ARESET) begin
s_ready_i <= 1'b0;
state <= ZERO;
end else if (areset_d1) begin
s_ready_i <= 1'b1;
end else begin
case (state)
// No transaction stored locally
ZERO: if (S_VALID) state <= ONE; // Got one so move to ONE
// One transaction stored locally
ONE: begin
if (M_READY & ~S_VALID) state <= ZERO; // Read out one so move to ZERO
if (~M_READY & S_VALID) begin
state <= TWO; // Got another one so move to TWO
s_ready_i <= 1'b0;
end
end
// TWO transaction stored locally
TWO: if (M_READY) begin
state <= ONE; // Read out one so move to ONE
s_ready_i <= 1'b1;
end
endcase // case (state)
end
end // always @ (posedge ACLK)
assign m_valid_i = state[0];
end // if (C_REG_CONFIG == 1)
////////////////////////////////////////////////////////////////////
//
// 1-stage pipeline register with bubble cycle, both FWD and REV pipelining
// Operates same as 1-deep FIFO
//
////////////////////////////////////////////////////////////////////
else if (C_REG_CONFIG == 32'h00000001)
begin
reg [C_DATA_WIDTH-1:0] storage_data1 = 0;
reg s_ready_i; //local signal of output
reg m_valid_i; //local signal of output
// assign local signal to its output signal
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
reg areset_d1; // Reset delay register
always @(posedge ACLK) begin
areset_d1 <= ARESET;
end
// Load storage1 with slave side data
always @(posedge ACLK)
begin
if (ARESET) begin
s_ready_i <= 1'b0;
m_valid_i <= 1'b0;
end else if (areset_d1) begin
s_ready_i <= 1'b1;
end else if (m_valid_i & M_READY) begin
s_ready_i <= 1'b1;
m_valid_i <= 1'b0;
end else if (S_VALID & s_ready_i) begin
s_ready_i <= 1'b0;
m_valid_i <= 1'b1;
end
if (~m_valid_i) begin
storage_data1 <= S_PAYLOAD_DATA;
end
end
assign M_PAYLOAD_DATA = storage_data1;
end // if (C_REG_CONFIG == 7)
else begin : default_case
// Passthrough
assign M_PAYLOAD_DATA = S_PAYLOAD_DATA;
assign M_VALID = S_VALID;
assign S_READY = M_READY;
end
endgenerate
endmodule // reg_slice
|
/*
*******************************************************************************
*
* FIFO Generator - Verilog Behavioral Model
*
*******************************************************************************
*
* (c) Copyright 1995 - 2009 Xilinx, Inc. All rights reserved.
*
* This file contains confidential and proprietary information
* of Xilinx, Inc. and is protected under U.S. and
* international copyright and other intellectual property
* laws.
*
* DISCLAIMER
* This disclaimer is not a license and does not grant any
* rights to the materials distributed herewith. Except as
* otherwise provided in a valid license issued to you by
* Xilinx, and to the maximum extent permitted by applicable
* law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
* WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
* AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
* BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
* INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
* (2) Xilinx shall not be liable (whether in contract or tort,
* including negligence, or under any other theory of
* liability) for any loss or damage of any kind or nature
* related to, arising under or in connection with these
* materials, including for any direct, or any indirect,
* special, incidental, or consequential loss or damage
* (including loss of data, profits, goodwill, or any type of
* loss or damage suffered as a result of any action brought
* by a third party) even if such damage or loss was
* reasonably foreseeable or Xilinx had been advised of the
* possibility of the same.
*
* CRITICAL APPLICATIONS
* Xilinx products are not designed or intended to be fail-
* safe, or for use in any application requiring fail-safe
* performance, such as life-support or safety devices or
* systems, Class III medical devices, nuclear facilities,
* applications related to the deployment of airbags, or any
* other applications that could lead to death, personal
* injury, or severe property or environmental damage
* (individually and collectively, "Critical
* Applications"). Customer assumes the sole risk and
* liability of any use of Xilinx products in Critical
* Applications, subject only to applicable laws and
* regulations governing limitations on product liability.
*
* THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
* PART OF THIS FILE AT ALL TIMES.
*
*******************************************************************************
*******************************************************************************
*
* Filename: fifo_generator_vlog_beh.v
*
* Author : Xilinx
*
*******************************************************************************
* Structure:
*
* fifo_generator_vlog_beh.v
* |
* +-fifo_generator_v13_1_1_bhv_ver_as
* |
* +-fifo_generator_v13_1_1_bhv_ver_ss
* |
* +-fifo_generator_v13_1_1_bhv_ver_preload0
*
*******************************************************************************
* Description:
*
* The Verilog behavioral model for the FIFO Generator.
*
* The behavioral model has three parts:
* - The behavioral model for independent clocks FIFOs (_as)
* - The behavioral model for common clock FIFOs (_ss)
* - The "preload logic" block which implements First-word Fall-through
*
*******************************************************************************
* Description:
* The verilog behavioral model for the FIFO generator core.
*
*******************************************************************************
*/
`timescale 1ps/1ps
`ifndef TCQ
`define TCQ 100
`endif
/*******************************************************************************
* Declaration of top-level module
******************************************************************************/
module fifo_generator_vlog_beh
#(
//-----------------------------------------------------------------------
// Generic Declarations
//-----------------------------------------------------------------------
parameter C_COMMON_CLOCK = 0,
parameter C_COUNT_TYPE = 0,
parameter C_DATA_COUNT_WIDTH = 2,
parameter C_DEFAULT_VALUE = "",
parameter C_DIN_WIDTH = 8,
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_ENABLE_RLOCS = 0,
parameter C_FAMILY = "",
parameter C_FULL_FLAGS_RST_VAL = 1,
parameter C_HAS_ALMOST_EMPTY = 0,
parameter C_HAS_ALMOST_FULL = 0,
parameter C_HAS_BACKUP = 0,
parameter C_HAS_DATA_COUNT = 0,
parameter C_HAS_INT_CLK = 0,
parameter C_HAS_MEMINIT_FILE = 0,
parameter C_HAS_OVERFLOW = 0,
parameter C_HAS_RD_DATA_COUNT = 0,
parameter C_HAS_RD_RST = 0,
parameter C_HAS_RST = 1,
parameter C_HAS_SRST = 0,
parameter C_HAS_UNDERFLOW = 0,
parameter C_HAS_VALID = 0,
parameter C_HAS_WR_ACK = 0,
parameter C_HAS_WR_DATA_COUNT = 0,
parameter C_HAS_WR_RST = 0,
parameter C_IMPLEMENTATION_TYPE = 0,
parameter C_INIT_WR_PNTR_VAL = 0,
parameter C_MEMORY_TYPE = 1,
parameter C_MIF_FILE_NAME = "",
parameter C_OPTIMIZATION_MODE = 0,
parameter C_OVERFLOW_LOW = 0,
parameter C_EN_SAFETY_CKT = 0,
parameter C_PRELOAD_LATENCY = 1,
parameter C_PRELOAD_REGS = 0,
parameter C_PRIM_FIFO_TYPE = "4kx4",
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0,
parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0,
parameter C_PROG_EMPTY_TYPE = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0,
parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0,
parameter C_PROG_FULL_TYPE = 0,
parameter C_RD_DATA_COUNT_WIDTH = 2,
parameter C_RD_DEPTH = 256,
parameter C_RD_FREQ = 1,
parameter C_RD_PNTR_WIDTH = 8,
parameter C_UNDERFLOW_LOW = 0,
parameter C_USE_DOUT_RST = 0,
parameter C_USE_ECC = 0,
parameter C_USE_EMBEDDED_REG = 0,
parameter C_USE_PIPELINE_REG = 0,
parameter C_POWER_SAVING_MODE = 0,
parameter C_USE_FIFO16_FLAGS = 0,
parameter C_USE_FWFT_DATA_COUNT = 0,
parameter C_VALID_LOW = 0,
parameter C_WR_ACK_LOW = 0,
parameter C_WR_DATA_COUNT_WIDTH = 2,
parameter C_WR_DEPTH = 256,
parameter C_WR_FREQ = 1,
parameter C_WR_PNTR_WIDTH = 8,
parameter C_WR_RESPONSE_LATENCY = 1,
parameter C_MSGON_VAL = 1,
parameter C_ENABLE_RST_SYNC = 1,
parameter C_ERROR_INJECTION_TYPE = 0,
parameter C_SYNCHRONIZER_STAGE = 2,
// AXI Interface related parameters start here
parameter C_INTERFACE_TYPE = 0, // 0: Native Interface, 1: AXI4 Stream, 2: AXI4/AXI3
parameter C_AXI_TYPE = 0, // 1: AXI4, 2: AXI4 Lite, 3: AXI3
parameter C_HAS_AXI_WR_CHANNEL = 0,
parameter C_HAS_AXI_RD_CHANNEL = 0,
parameter C_HAS_SLAVE_CE = 0,
parameter C_HAS_MASTER_CE = 0,
parameter C_ADD_NGC_CONSTRAINT = 0,
parameter C_USE_COMMON_UNDERFLOW = 0,
parameter C_USE_COMMON_OVERFLOW = 0,
parameter C_USE_DEFAULT_SETTINGS = 0,
// AXI Full/Lite
parameter C_AXI_ID_WIDTH = 0,
parameter C_AXI_ADDR_WIDTH = 0,
parameter C_AXI_DATA_WIDTH = 0,
parameter C_AXI_LEN_WIDTH = 8,
parameter C_AXI_LOCK_WIDTH = 2,
parameter C_HAS_AXI_ID = 0,
parameter C_HAS_AXI_AWUSER = 0,
parameter C_HAS_AXI_WUSER = 0,
parameter C_HAS_AXI_BUSER = 0,
parameter C_HAS_AXI_ARUSER = 0,
parameter C_HAS_AXI_RUSER = 0,
parameter C_AXI_ARUSER_WIDTH = 0,
parameter C_AXI_AWUSER_WIDTH = 0,
parameter C_AXI_WUSER_WIDTH = 0,
parameter C_AXI_BUSER_WIDTH = 0,
parameter C_AXI_RUSER_WIDTH = 0,
// AXI Streaming
parameter C_HAS_AXIS_TDATA = 0,
parameter C_HAS_AXIS_TID = 0,
parameter C_HAS_AXIS_TDEST = 0,
parameter C_HAS_AXIS_TUSER = 0,
parameter C_HAS_AXIS_TREADY = 0,
parameter C_HAS_AXIS_TLAST = 0,
parameter C_HAS_AXIS_TSTRB = 0,
parameter C_HAS_AXIS_TKEEP = 0,
parameter C_AXIS_TDATA_WIDTH = 1,
parameter C_AXIS_TID_WIDTH = 1,
parameter C_AXIS_TDEST_WIDTH = 1,
parameter C_AXIS_TUSER_WIDTH = 1,
parameter C_AXIS_TSTRB_WIDTH = 1,
parameter C_AXIS_TKEEP_WIDTH = 1,
// AXI Channel Type
// WACH --> Write Address Channel
// WDCH --> Write Data Channel
// WRCH --> Write Response Channel
// RACH --> Read Address Channel
// RDCH --> Read Data Channel
// AXIS --> AXI Streaming
parameter C_WACH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logic
parameter C_WDCH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie
parameter C_WRCH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie
parameter C_RACH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie
parameter C_RDCH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie
parameter C_AXIS_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie
// AXI Implementation Type
// 1 = Common Clock Block RAM FIFO
// 2 = Common Clock Distributed RAM FIFO
// 11 = Independent Clock Block RAM FIFO
// 12 = Independent Clock Distributed RAM FIFO
parameter C_IMPLEMENTATION_TYPE_WACH = 0,
parameter C_IMPLEMENTATION_TYPE_WDCH = 0,
parameter C_IMPLEMENTATION_TYPE_WRCH = 0,
parameter C_IMPLEMENTATION_TYPE_RACH = 0,
parameter C_IMPLEMENTATION_TYPE_RDCH = 0,
parameter C_IMPLEMENTATION_TYPE_AXIS = 0,
// AXI FIFO Type
// 0 = Data FIFO
// 1 = Packet FIFO
// 2 = Low Latency Sync FIFO
// 3 = Low Latency Async FIFO
parameter C_APPLICATION_TYPE_WACH = 0,
parameter C_APPLICATION_TYPE_WDCH = 0,
parameter C_APPLICATION_TYPE_WRCH = 0,
parameter C_APPLICATION_TYPE_RACH = 0,
parameter C_APPLICATION_TYPE_RDCH = 0,
parameter C_APPLICATION_TYPE_AXIS = 0,
// AXI Built-in FIFO Primitive Type
// 512x36, 1kx18, 2kx9, 4kx4, etc
parameter C_PRIM_FIFO_TYPE_WACH = "512x36",
parameter C_PRIM_FIFO_TYPE_WDCH = "512x36",
parameter C_PRIM_FIFO_TYPE_WRCH = "512x36",
parameter C_PRIM_FIFO_TYPE_RACH = "512x36",
parameter C_PRIM_FIFO_TYPE_RDCH = "512x36",
parameter C_PRIM_FIFO_TYPE_AXIS = "512x36",
// Enable ECC
// 0 = ECC disabled
// 1 = ECC enabled
parameter C_USE_ECC_WACH = 0,
parameter C_USE_ECC_WDCH = 0,
parameter C_USE_ECC_WRCH = 0,
parameter C_USE_ECC_RACH = 0,
parameter C_USE_ECC_RDCH = 0,
parameter C_USE_ECC_AXIS = 0,
// ECC Error Injection Type
// 0 = No Error Injection
// 1 = Single Bit Error Injection
// 2 = Double Bit Error Injection
// 3 = Single Bit and Double Bit Error Injection
parameter C_ERROR_INJECTION_TYPE_WACH = 0,
parameter C_ERROR_INJECTION_TYPE_WDCH = 0,
parameter C_ERROR_INJECTION_TYPE_WRCH = 0,
parameter C_ERROR_INJECTION_TYPE_RACH = 0,
parameter C_ERROR_INJECTION_TYPE_RDCH = 0,
parameter C_ERROR_INJECTION_TYPE_AXIS = 0,
// Input Data Width
// Accumulation of all AXI input signal's width
parameter C_DIN_WIDTH_WACH = 1,
parameter C_DIN_WIDTH_WDCH = 1,
parameter C_DIN_WIDTH_WRCH = 1,
parameter C_DIN_WIDTH_RACH = 1,
parameter C_DIN_WIDTH_RDCH = 1,
parameter C_DIN_WIDTH_AXIS = 1,
parameter C_WR_DEPTH_WACH = 16,
parameter C_WR_DEPTH_WDCH = 16,
parameter C_WR_DEPTH_WRCH = 16,
parameter C_WR_DEPTH_RACH = 16,
parameter C_WR_DEPTH_RDCH = 16,
parameter C_WR_DEPTH_AXIS = 16,
parameter C_WR_PNTR_WIDTH_WACH = 4,
parameter C_WR_PNTR_WIDTH_WDCH = 4,
parameter C_WR_PNTR_WIDTH_WRCH = 4,
parameter C_WR_PNTR_WIDTH_RACH = 4,
parameter C_WR_PNTR_WIDTH_RDCH = 4,
parameter C_WR_PNTR_WIDTH_AXIS = 4,
parameter C_HAS_DATA_COUNTS_WACH = 0,
parameter C_HAS_DATA_COUNTS_WDCH = 0,
parameter C_HAS_DATA_COUNTS_WRCH = 0,
parameter C_HAS_DATA_COUNTS_RACH = 0,
parameter C_HAS_DATA_COUNTS_RDCH = 0,
parameter C_HAS_DATA_COUNTS_AXIS = 0,
parameter C_HAS_PROG_FLAGS_WACH = 0,
parameter C_HAS_PROG_FLAGS_WDCH = 0,
parameter C_HAS_PROG_FLAGS_WRCH = 0,
parameter C_HAS_PROG_FLAGS_RACH = 0,
parameter C_HAS_PROG_FLAGS_RDCH = 0,
parameter C_HAS_PROG_FLAGS_AXIS = 0,
parameter C_PROG_FULL_TYPE_WACH = 0,
parameter C_PROG_FULL_TYPE_WDCH = 0,
parameter C_PROG_FULL_TYPE_WRCH = 0,
parameter C_PROG_FULL_TYPE_RACH = 0,
parameter C_PROG_FULL_TYPE_RDCH = 0,
parameter C_PROG_FULL_TYPE_AXIS = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_WACH = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_WDCH = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_WRCH = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_RACH = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_RDCH = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_AXIS = 0,
parameter C_PROG_EMPTY_TYPE_WACH = 0,
parameter C_PROG_EMPTY_TYPE_WDCH = 0,
parameter C_PROG_EMPTY_TYPE_WRCH = 0,
parameter C_PROG_EMPTY_TYPE_RACH = 0,
parameter C_PROG_EMPTY_TYPE_RDCH = 0,
parameter C_PROG_EMPTY_TYPE_AXIS = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS = 0,
parameter C_REG_SLICE_MODE_WACH = 0,
parameter C_REG_SLICE_MODE_WDCH = 0,
parameter C_REG_SLICE_MODE_WRCH = 0,
parameter C_REG_SLICE_MODE_RACH = 0,
parameter C_REG_SLICE_MODE_RDCH = 0,
parameter C_REG_SLICE_MODE_AXIS = 0
)
(
//------------------------------------------------------------------------------
// Input and Output Declarations
//------------------------------------------------------------------------------
// Conventional FIFO Interface Signals
input backup,
input backup_marker,
input clk,
input rst,
input srst,
input wr_clk,
input wr_rst,
input rd_clk,
input rd_rst,
input [C_DIN_WIDTH-1:0] din,
input wr_en,
input rd_en,
// Optional inputs
input [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh,
input [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_assert,
input [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_negate,
input [C_WR_PNTR_WIDTH-1:0] prog_full_thresh,
input [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_assert,
input [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_negate,
input int_clk,
input injectdbiterr,
input injectsbiterr,
input sleep,
output [C_DOUT_WIDTH-1:0] dout,
output full,
output almost_full,
output wr_ack,
output overflow,
output empty,
output almost_empty,
output valid,
output underflow,
output [C_DATA_COUNT_WIDTH-1:0] data_count,
output [C_RD_DATA_COUNT_WIDTH-1:0] rd_data_count,
output [C_WR_DATA_COUNT_WIDTH-1:0] wr_data_count,
output prog_full,
output prog_empty,
output sbiterr,
output dbiterr,
output wr_rst_busy,
output rd_rst_busy,
// AXI Global Signal
input m_aclk,
input s_aclk,
input s_aresetn,
input s_aclk_en,
input m_aclk_en,
// AXI Full/Lite Slave Write Channel (write side)
input [C_AXI_ID_WIDTH-1:0] s_axi_awid,
input [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr,
input [C_AXI_LEN_WIDTH-1:0] s_axi_awlen,
input [3-1:0] s_axi_awsize,
input [2-1:0] s_axi_awburst,
input [C_AXI_LOCK_WIDTH-1:0] s_axi_awlock,
input [4-1:0] s_axi_awcache,
input [3-1:0] s_axi_awprot,
input [4-1:0] s_axi_awqos,
input [4-1:0] s_axi_awregion,
input [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser,
input s_axi_awvalid,
output s_axi_awready,
input [C_AXI_ID_WIDTH-1:0] s_axi_wid,
input [C_AXI_DATA_WIDTH-1:0] s_axi_wdata,
input [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb,
input s_axi_wlast,
input [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser,
input s_axi_wvalid,
output s_axi_wready,
output [C_AXI_ID_WIDTH-1:0] s_axi_bid,
output [2-1:0] s_axi_bresp,
output [C_AXI_BUSER_WIDTH-1:0] s_axi_buser,
output s_axi_bvalid,
input s_axi_bready,
// AXI Full/Lite Master Write Channel (read side)
output [C_AXI_ID_WIDTH-1:0] m_axi_awid,
output [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr,
output [C_AXI_LEN_WIDTH-1:0] m_axi_awlen,
output [3-1:0] m_axi_awsize,
output [2-1:0] m_axi_awburst,
output [C_AXI_LOCK_WIDTH-1:0] m_axi_awlock,
output [4-1:0] m_axi_awcache,
output [3-1:0] m_axi_awprot,
output [4-1:0] m_axi_awqos,
output [4-1:0] m_axi_awregion,
output [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser,
output m_axi_awvalid,
input m_axi_awready,
output [C_AXI_ID_WIDTH-1:0] m_axi_wid,
output [C_AXI_DATA_WIDTH-1:0] m_axi_wdata,
output [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb,
output m_axi_wlast,
output [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser,
output m_axi_wvalid,
input m_axi_wready,
input [C_AXI_ID_WIDTH-1:0] m_axi_bid,
input [2-1:0] m_axi_bresp,
input [C_AXI_BUSER_WIDTH-1:0] m_axi_buser,
input m_axi_bvalid,
output m_axi_bready,
// AXI Full/Lite Slave Read Channel (write side)
input [C_AXI_ID_WIDTH-1:0] s_axi_arid,
input [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr,
input [C_AXI_LEN_WIDTH-1:0] s_axi_arlen,
input [3-1:0] s_axi_arsize,
input [2-1:0] s_axi_arburst,
input [C_AXI_LOCK_WIDTH-1:0] s_axi_arlock,
input [4-1:0] s_axi_arcache,
input [3-1:0] s_axi_arprot,
input [4-1:0] s_axi_arqos,
input [4-1:0] s_axi_arregion,
input [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser,
input s_axi_arvalid,
output s_axi_arready,
output [C_AXI_ID_WIDTH-1:0] s_axi_rid,
output [C_AXI_DATA_WIDTH-1:0] s_axi_rdata,
output [2-1:0] s_axi_rresp,
output s_axi_rlast,
output [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser,
output s_axi_rvalid,
input s_axi_rready,
// AXI Full/Lite Master Read Channel (read side)
output [C_AXI_ID_WIDTH-1:0] m_axi_arid,
output [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr,
output [C_AXI_LEN_WIDTH-1:0] m_axi_arlen,
output [3-1:0] m_axi_arsize,
output [2-1:0] m_axi_arburst,
output [C_AXI_LOCK_WIDTH-1:0] m_axi_arlock,
output [4-1:0] m_axi_arcache,
output [3-1:0] m_axi_arprot,
output [4-1:0] m_axi_arqos,
output [4-1:0] m_axi_arregion,
output [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser,
output m_axi_arvalid,
input m_axi_arready,
input [C_AXI_ID_WIDTH-1:0] m_axi_rid,
input [C_AXI_DATA_WIDTH-1:0] m_axi_rdata,
input [2-1:0] m_axi_rresp,
input m_axi_rlast,
input [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser,
input m_axi_rvalid,
output m_axi_rready,
// AXI Streaming Slave Signals (Write side)
input s_axis_tvalid,
output s_axis_tready,
input [C_AXIS_TDATA_WIDTH-1:0] s_axis_tdata,
input [C_AXIS_TSTRB_WIDTH-1:0] s_axis_tstrb,
input [C_AXIS_TKEEP_WIDTH-1:0] s_axis_tkeep,
input s_axis_tlast,
input [C_AXIS_TID_WIDTH-1:0] s_axis_tid,
input [C_AXIS_TDEST_WIDTH-1:0] s_axis_tdest,
input [C_AXIS_TUSER_WIDTH-1:0] s_axis_tuser,
// AXI Streaming Master Signals (Read side)
output m_axis_tvalid,
input m_axis_tready,
output [C_AXIS_TDATA_WIDTH-1:0] m_axis_tdata,
output [C_AXIS_TSTRB_WIDTH-1:0] m_axis_tstrb,
output [C_AXIS_TKEEP_WIDTH-1:0] m_axis_tkeep,
output m_axis_tlast,
output [C_AXIS_TID_WIDTH-1:0] m_axis_tid,
output [C_AXIS_TDEST_WIDTH-1:0] m_axis_tdest,
output [C_AXIS_TUSER_WIDTH-1:0] m_axis_tuser,
// AXI Full/Lite Write Address Channel signals
input axi_aw_injectsbiterr,
input axi_aw_injectdbiterr,
input [C_WR_PNTR_WIDTH_WACH-1:0] axi_aw_prog_full_thresh,
input [C_WR_PNTR_WIDTH_WACH-1:0] axi_aw_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_WACH:0] axi_aw_data_count,
output [C_WR_PNTR_WIDTH_WACH:0] axi_aw_wr_data_count,
output [C_WR_PNTR_WIDTH_WACH:0] axi_aw_rd_data_count,
output axi_aw_sbiterr,
output axi_aw_dbiterr,
output axi_aw_overflow,
output axi_aw_underflow,
output axi_aw_prog_full,
output axi_aw_prog_empty,
// AXI Full/Lite Write Data Channel signals
input axi_w_injectsbiterr,
input axi_w_injectdbiterr,
input [C_WR_PNTR_WIDTH_WDCH-1:0] axi_w_prog_full_thresh,
input [C_WR_PNTR_WIDTH_WDCH-1:0] axi_w_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_WDCH:0] axi_w_data_count,
output [C_WR_PNTR_WIDTH_WDCH:0] axi_w_wr_data_count,
output [C_WR_PNTR_WIDTH_WDCH:0] axi_w_rd_data_count,
output axi_w_sbiterr,
output axi_w_dbiterr,
output axi_w_overflow,
output axi_w_underflow,
output axi_w_prog_full,
output axi_w_prog_empty,
// AXI Full/Lite Write Response Channel signals
input axi_b_injectsbiterr,
input axi_b_injectdbiterr,
input [C_WR_PNTR_WIDTH_WRCH-1:0] axi_b_prog_full_thresh,
input [C_WR_PNTR_WIDTH_WRCH-1:0] axi_b_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_WRCH:0] axi_b_data_count,
output [C_WR_PNTR_WIDTH_WRCH:0] axi_b_wr_data_count,
output [C_WR_PNTR_WIDTH_WRCH:0] axi_b_rd_data_count,
output axi_b_sbiterr,
output axi_b_dbiterr,
output axi_b_overflow,
output axi_b_underflow,
output axi_b_prog_full,
output axi_b_prog_empty,
// AXI Full/Lite Read Address Channel signals
input axi_ar_injectsbiterr,
input axi_ar_injectdbiterr,
input [C_WR_PNTR_WIDTH_RACH-1:0] axi_ar_prog_full_thresh,
input [C_WR_PNTR_WIDTH_RACH-1:0] axi_ar_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_RACH:0] axi_ar_data_count,
output [C_WR_PNTR_WIDTH_RACH:0] axi_ar_wr_data_count,
output [C_WR_PNTR_WIDTH_RACH:0] axi_ar_rd_data_count,
output axi_ar_sbiterr,
output axi_ar_dbiterr,
output axi_ar_overflow,
output axi_ar_underflow,
output axi_ar_prog_full,
output axi_ar_prog_empty,
// AXI Full/Lite Read Data Channel Signals
input axi_r_injectsbiterr,
input axi_r_injectdbiterr,
input [C_WR_PNTR_WIDTH_RDCH-1:0] axi_r_prog_full_thresh,
input [C_WR_PNTR_WIDTH_RDCH-1:0] axi_r_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_RDCH:0] axi_r_data_count,
output [C_WR_PNTR_WIDTH_RDCH:0] axi_r_wr_data_count,
output [C_WR_PNTR_WIDTH_RDCH:0] axi_r_rd_data_count,
output axi_r_sbiterr,
output axi_r_dbiterr,
output axi_r_overflow,
output axi_r_underflow,
output axi_r_prog_full,
output axi_r_prog_empty,
// AXI Streaming FIFO Related Signals
input axis_injectsbiterr,
input axis_injectdbiterr,
input [C_WR_PNTR_WIDTH_AXIS-1:0] axis_prog_full_thresh,
input [C_WR_PNTR_WIDTH_AXIS-1:0] axis_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_AXIS:0] axis_data_count,
output [C_WR_PNTR_WIDTH_AXIS:0] axis_wr_data_count,
output [C_WR_PNTR_WIDTH_AXIS:0] axis_rd_data_count,
output axis_sbiterr,
output axis_dbiterr,
output axis_overflow,
output axis_underflow,
output axis_prog_full,
output axis_prog_empty
);
wire BACKUP;
wire BACKUP_MARKER;
wire CLK;
wire RST;
wire SRST;
wire WR_CLK;
wire WR_RST;
wire RD_CLK;
wire RD_RST;
wire [C_DIN_WIDTH-1:0] DIN;
wire WR_EN;
wire RD_EN;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE;
wire INT_CLK;
wire INJECTDBITERR;
wire INJECTSBITERR;
wire SLEEP;
wire [C_DOUT_WIDTH-1:0] DOUT;
wire FULL;
wire ALMOST_FULL;
wire WR_ACK;
wire OVERFLOW;
wire EMPTY;
wire ALMOST_EMPTY;
wire VALID;
wire UNDERFLOW;
wire [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT;
wire [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT;
wire [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT;
wire PROG_FULL;
wire PROG_EMPTY;
wire SBITERR;
wire DBITERR;
wire WR_RST_BUSY;
wire RD_RST_BUSY;
wire M_ACLK;
wire S_ACLK;
wire S_ARESETN;
wire S_ACLK_EN;
wire M_ACLK_EN;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID;
wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR;
wire [C_AXI_LEN_WIDTH-1:0] S_AXI_AWLEN;
wire [3-1:0] S_AXI_AWSIZE;
wire [2-1:0] S_AXI_AWBURST;
wire [C_AXI_LOCK_WIDTH-1:0] S_AXI_AWLOCK;
wire [4-1:0] S_AXI_AWCACHE;
wire [3-1:0] S_AXI_AWPROT;
wire [4-1:0] S_AXI_AWQOS;
wire [4-1:0] S_AXI_AWREGION;
wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER;
wire S_AXI_AWVALID;
wire S_AXI_AWREADY;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_WID;
wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA;
wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB;
wire S_AXI_WLAST;
wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER;
wire S_AXI_WVALID;
wire S_AXI_WREADY;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID;
wire [2-1:0] S_AXI_BRESP;
wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER;
wire S_AXI_BVALID;
wire S_AXI_BREADY;
wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID;
wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR;
wire [C_AXI_LEN_WIDTH-1:0] M_AXI_AWLEN;
wire [3-1:0] M_AXI_AWSIZE;
wire [2-1:0] M_AXI_AWBURST;
wire [C_AXI_LOCK_WIDTH-1:0] M_AXI_AWLOCK;
wire [4-1:0] M_AXI_AWCACHE;
wire [3-1:0] M_AXI_AWPROT;
wire [4-1:0] M_AXI_AWQOS;
wire [4-1:0] M_AXI_AWREGION;
wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER;
wire M_AXI_AWVALID;
wire M_AXI_AWREADY;
wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID;
wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA;
wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB;
wire M_AXI_WLAST;
wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER;
wire M_AXI_WVALID;
wire M_AXI_WREADY;
wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID;
wire [2-1:0] M_AXI_BRESP;
wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER;
wire M_AXI_BVALID;
wire M_AXI_BREADY;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID;
wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR;
wire [C_AXI_LEN_WIDTH-1:0] S_AXI_ARLEN;
wire [3-1:0] S_AXI_ARSIZE;
wire [2-1:0] S_AXI_ARBURST;
wire [C_AXI_LOCK_WIDTH-1:0] S_AXI_ARLOCK;
wire [4-1:0] S_AXI_ARCACHE;
wire [3-1:0] S_AXI_ARPROT;
wire [4-1:0] S_AXI_ARQOS;
wire [4-1:0] S_AXI_ARREGION;
wire [C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER;
wire S_AXI_ARVALID;
wire S_AXI_ARREADY;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID;
wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA;
wire [2-1:0] S_AXI_RRESP;
wire S_AXI_RLAST;
wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER;
wire S_AXI_RVALID;
wire S_AXI_RREADY;
wire [C_AXI_ID_WIDTH-1:0] M_AXI_ARID;
wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR;
wire [C_AXI_LEN_WIDTH-1:0] M_AXI_ARLEN;
wire [3-1:0] M_AXI_ARSIZE;
wire [2-1:0] M_AXI_ARBURST;
wire [C_AXI_LOCK_WIDTH-1:0] M_AXI_ARLOCK;
wire [4-1:0] M_AXI_ARCACHE;
wire [3-1:0] M_AXI_ARPROT;
wire [4-1:0] M_AXI_ARQOS;
wire [4-1:0] M_AXI_ARREGION;
wire [C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER;
wire M_AXI_ARVALID;
wire M_AXI_ARREADY;
wire [C_AXI_ID_WIDTH-1:0] M_AXI_RID;
wire [C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA;
wire [2-1:0] M_AXI_RRESP;
wire M_AXI_RLAST;
wire [C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER;
wire M_AXI_RVALID;
wire M_AXI_RREADY;
wire S_AXIS_TVALID;
wire S_AXIS_TREADY;
wire [C_AXIS_TDATA_WIDTH-1:0] S_AXIS_TDATA;
wire [C_AXIS_TSTRB_WIDTH-1:0] S_AXIS_TSTRB;
wire [C_AXIS_TKEEP_WIDTH-1:0] S_AXIS_TKEEP;
wire S_AXIS_TLAST;
wire [C_AXIS_TID_WIDTH-1:0] S_AXIS_TID;
wire [C_AXIS_TDEST_WIDTH-1:0] S_AXIS_TDEST;
wire [C_AXIS_TUSER_WIDTH-1:0] S_AXIS_TUSER;
wire M_AXIS_TVALID;
wire M_AXIS_TREADY;
wire [C_AXIS_TDATA_WIDTH-1:0] M_AXIS_TDATA;
wire [C_AXIS_TSTRB_WIDTH-1:0] M_AXIS_TSTRB;
wire [C_AXIS_TKEEP_WIDTH-1:0] M_AXIS_TKEEP;
wire M_AXIS_TLAST;
wire [C_AXIS_TID_WIDTH-1:0] M_AXIS_TID;
wire [C_AXIS_TDEST_WIDTH-1:0] M_AXIS_TDEST;
wire [C_AXIS_TUSER_WIDTH-1:0] M_AXIS_TUSER;
wire AXI_AW_INJECTSBITERR;
wire AXI_AW_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_WACH-1:0] AXI_AW_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_WACH-1:0] AXI_AW_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_WACH:0] AXI_AW_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WACH:0] AXI_AW_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WACH:0] AXI_AW_RD_DATA_COUNT;
wire AXI_AW_SBITERR;
wire AXI_AW_DBITERR;
wire AXI_AW_OVERFLOW;
wire AXI_AW_UNDERFLOW;
wire AXI_AW_PROG_FULL;
wire AXI_AW_PROG_EMPTY;
wire AXI_W_INJECTSBITERR;
wire AXI_W_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_WDCH-1:0] AXI_W_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_WDCH-1:0] AXI_W_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_WDCH:0] AXI_W_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WDCH:0] AXI_W_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WDCH:0] AXI_W_RD_DATA_COUNT;
wire AXI_W_SBITERR;
wire AXI_W_DBITERR;
wire AXI_W_OVERFLOW;
wire AXI_W_UNDERFLOW;
wire AXI_W_PROG_FULL;
wire AXI_W_PROG_EMPTY;
wire AXI_B_INJECTSBITERR;
wire AXI_B_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_WRCH-1:0] AXI_B_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_WRCH-1:0] AXI_B_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_WRCH:0] AXI_B_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WRCH:0] AXI_B_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WRCH:0] AXI_B_RD_DATA_COUNT;
wire AXI_B_SBITERR;
wire AXI_B_DBITERR;
wire AXI_B_OVERFLOW;
wire AXI_B_UNDERFLOW;
wire AXI_B_PROG_FULL;
wire AXI_B_PROG_EMPTY;
wire AXI_AR_INJECTSBITERR;
wire AXI_AR_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_RACH-1:0] AXI_AR_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_RACH-1:0] AXI_AR_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_RACH:0] AXI_AR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_RACH:0] AXI_AR_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_RACH:0] AXI_AR_RD_DATA_COUNT;
wire AXI_AR_SBITERR;
wire AXI_AR_DBITERR;
wire AXI_AR_OVERFLOW;
wire AXI_AR_UNDERFLOW;
wire AXI_AR_PROG_FULL;
wire AXI_AR_PROG_EMPTY;
wire AXI_R_INJECTSBITERR;
wire AXI_R_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_RDCH-1:0] AXI_R_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_RDCH-1:0] AXI_R_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_RDCH:0] AXI_R_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_RDCH:0] AXI_R_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_RDCH:0] AXI_R_RD_DATA_COUNT;
wire AXI_R_SBITERR;
wire AXI_R_DBITERR;
wire AXI_R_OVERFLOW;
wire AXI_R_UNDERFLOW;
wire AXI_R_PROG_FULL;
wire AXI_R_PROG_EMPTY;
wire AXIS_INJECTSBITERR;
wire AXIS_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_AXIS-1:0] AXIS_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_AXIS-1:0] AXIS_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_AXIS:0] AXIS_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_AXIS:0] AXIS_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_AXIS:0] AXIS_RD_DATA_COUNT;
wire AXIS_SBITERR;
wire AXIS_DBITERR;
wire AXIS_OVERFLOW;
wire AXIS_UNDERFLOW;
wire AXIS_PROG_FULL;
wire AXIS_PROG_EMPTY;
wire [C_WR_DATA_COUNT_WIDTH-1:0] wr_data_count_in;
wire wr_rst_int;
wire rd_rst_int;
function integer find_log2;
input integer int_val;
integer i,j;
begin
i = 1;
j = 0;
for (i = 1; i < int_val; i = i*2) begin
j = j + 1;
end
find_log2 = j;
end
endfunction
// Conventional FIFO Interface Signals
assign BACKUP = backup;
assign BACKUP_MARKER = backup_marker;
assign CLK = clk;
assign RST = rst;
assign SRST = srst;
assign WR_CLK = wr_clk;
assign WR_RST = wr_rst;
assign RD_CLK = rd_clk;
assign RD_RST = rd_rst;
assign WR_EN = wr_en;
assign RD_EN = rd_en;
assign INT_CLK = int_clk;
assign INJECTDBITERR = injectdbiterr;
assign INJECTSBITERR = injectsbiterr;
assign SLEEP = sleep;
assign full = FULL;
assign almost_full = ALMOST_FULL;
assign wr_ack = WR_ACK;
assign overflow = OVERFLOW;
assign empty = EMPTY;
assign almost_empty = ALMOST_EMPTY;
assign valid = VALID;
assign underflow = UNDERFLOW;
assign prog_full = PROG_FULL;
assign prog_empty = PROG_EMPTY;
assign sbiterr = SBITERR;
assign dbiterr = DBITERR;
assign wr_rst_busy = WR_RST_BUSY;
assign rd_rst_busy = RD_RST_BUSY;
assign M_ACLK = m_aclk;
assign S_ACLK = s_aclk;
assign S_ARESETN = s_aresetn;
assign S_ACLK_EN = s_aclk_en;
assign M_ACLK_EN = m_aclk_en;
assign S_AXI_AWVALID = s_axi_awvalid;
assign s_axi_awready = S_AXI_AWREADY;
assign S_AXI_WLAST = s_axi_wlast;
assign S_AXI_WVALID = s_axi_wvalid;
assign s_axi_wready = S_AXI_WREADY;
assign s_axi_bvalid = S_AXI_BVALID;
assign S_AXI_BREADY = s_axi_bready;
assign m_axi_awvalid = M_AXI_AWVALID;
assign M_AXI_AWREADY = m_axi_awready;
assign m_axi_wlast = M_AXI_WLAST;
assign m_axi_wvalid = M_AXI_WVALID;
assign M_AXI_WREADY = m_axi_wready;
assign M_AXI_BVALID = m_axi_bvalid;
assign m_axi_bready = M_AXI_BREADY;
assign S_AXI_ARVALID = s_axi_arvalid;
assign s_axi_arready = S_AXI_ARREADY;
assign s_axi_rlast = S_AXI_RLAST;
assign s_axi_rvalid = S_AXI_RVALID;
assign S_AXI_RREADY = s_axi_rready;
assign m_axi_arvalid = M_AXI_ARVALID;
assign M_AXI_ARREADY = m_axi_arready;
assign M_AXI_RLAST = m_axi_rlast;
assign M_AXI_RVALID = m_axi_rvalid;
assign m_axi_rready = M_AXI_RREADY;
assign S_AXIS_TVALID = s_axis_tvalid;
assign s_axis_tready = S_AXIS_TREADY;
assign S_AXIS_TLAST = s_axis_tlast;
assign m_axis_tvalid = M_AXIS_TVALID;
assign M_AXIS_TREADY = m_axis_tready;
assign m_axis_tlast = M_AXIS_TLAST;
assign AXI_AW_INJECTSBITERR = axi_aw_injectsbiterr;
assign AXI_AW_INJECTDBITERR = axi_aw_injectdbiterr;
assign axi_aw_sbiterr = AXI_AW_SBITERR;
assign axi_aw_dbiterr = AXI_AW_DBITERR;
assign axi_aw_overflow = AXI_AW_OVERFLOW;
assign axi_aw_underflow = AXI_AW_UNDERFLOW;
assign axi_aw_prog_full = AXI_AW_PROG_FULL;
assign axi_aw_prog_empty = AXI_AW_PROG_EMPTY;
assign AXI_W_INJECTSBITERR = axi_w_injectsbiterr;
assign AXI_W_INJECTDBITERR = axi_w_injectdbiterr;
assign axi_w_sbiterr = AXI_W_SBITERR;
assign axi_w_dbiterr = AXI_W_DBITERR;
assign axi_w_overflow = AXI_W_OVERFLOW;
assign axi_w_underflow = AXI_W_UNDERFLOW;
assign axi_w_prog_full = AXI_W_PROG_FULL;
assign axi_w_prog_empty = AXI_W_PROG_EMPTY;
assign AXI_B_INJECTSBITERR = axi_b_injectsbiterr;
assign AXI_B_INJECTDBITERR = axi_b_injectdbiterr;
assign axi_b_sbiterr = AXI_B_SBITERR;
assign axi_b_dbiterr = AXI_B_DBITERR;
assign axi_b_overflow = AXI_B_OVERFLOW;
assign axi_b_underflow = AXI_B_UNDERFLOW;
assign axi_b_prog_full = AXI_B_PROG_FULL;
assign axi_b_prog_empty = AXI_B_PROG_EMPTY;
assign AXI_AR_INJECTSBITERR = axi_ar_injectsbiterr;
assign AXI_AR_INJECTDBITERR = axi_ar_injectdbiterr;
assign axi_ar_sbiterr = AXI_AR_SBITERR;
assign axi_ar_dbiterr = AXI_AR_DBITERR;
assign axi_ar_overflow = AXI_AR_OVERFLOW;
assign axi_ar_underflow = AXI_AR_UNDERFLOW;
assign axi_ar_prog_full = AXI_AR_PROG_FULL;
assign axi_ar_prog_empty = AXI_AR_PROG_EMPTY;
assign AXI_R_INJECTSBITERR = axi_r_injectsbiterr;
assign AXI_R_INJECTDBITERR = axi_r_injectdbiterr;
assign axi_r_sbiterr = AXI_R_SBITERR;
assign axi_r_dbiterr = AXI_R_DBITERR;
assign axi_r_overflow = AXI_R_OVERFLOW;
assign axi_r_underflow = AXI_R_UNDERFLOW;
assign axi_r_prog_full = AXI_R_PROG_FULL;
assign axi_r_prog_empty = AXI_R_PROG_EMPTY;
assign AXIS_INJECTSBITERR = axis_injectsbiterr;
assign AXIS_INJECTDBITERR = axis_injectdbiterr;
assign axis_sbiterr = AXIS_SBITERR;
assign axis_dbiterr = AXIS_DBITERR;
assign axis_overflow = AXIS_OVERFLOW;
assign axis_underflow = AXIS_UNDERFLOW;
assign axis_prog_full = AXIS_PROG_FULL;
assign axis_prog_empty = AXIS_PROG_EMPTY;
assign DIN = din;
assign PROG_EMPTY_THRESH = prog_empty_thresh;
assign PROG_EMPTY_THRESH_ASSERT = prog_empty_thresh_assert;
assign PROG_EMPTY_THRESH_NEGATE = prog_empty_thresh_negate;
assign PROG_FULL_THRESH = prog_full_thresh;
assign PROG_FULL_THRESH_ASSERT = prog_full_thresh_assert;
assign PROG_FULL_THRESH_NEGATE = prog_full_thresh_negate;
assign dout = DOUT;
assign data_count = DATA_COUNT;
assign rd_data_count = RD_DATA_COUNT;
assign wr_data_count = WR_DATA_COUNT;
assign S_AXI_AWID = s_axi_awid;
assign S_AXI_AWADDR = s_axi_awaddr;
assign S_AXI_AWLEN = s_axi_awlen;
assign S_AXI_AWSIZE = s_axi_awsize;
assign S_AXI_AWBURST = s_axi_awburst;
assign S_AXI_AWLOCK = s_axi_awlock;
assign S_AXI_AWCACHE = s_axi_awcache;
assign S_AXI_AWPROT = s_axi_awprot;
assign S_AXI_AWQOS = s_axi_awqos;
assign S_AXI_AWREGION = s_axi_awregion;
assign S_AXI_AWUSER = s_axi_awuser;
assign S_AXI_WID = s_axi_wid;
assign S_AXI_WDATA = s_axi_wdata;
assign S_AXI_WSTRB = s_axi_wstrb;
assign S_AXI_WUSER = s_axi_wuser;
assign s_axi_bid = S_AXI_BID;
assign s_axi_bresp = S_AXI_BRESP;
assign s_axi_buser = S_AXI_BUSER;
assign m_axi_awid = M_AXI_AWID;
assign m_axi_awaddr = M_AXI_AWADDR;
assign m_axi_awlen = M_AXI_AWLEN;
assign m_axi_awsize = M_AXI_AWSIZE;
assign m_axi_awburst = M_AXI_AWBURST;
assign m_axi_awlock = M_AXI_AWLOCK;
assign m_axi_awcache = M_AXI_AWCACHE;
assign m_axi_awprot = M_AXI_AWPROT;
assign m_axi_awqos = M_AXI_AWQOS;
assign m_axi_awregion = M_AXI_AWREGION;
assign m_axi_awuser = M_AXI_AWUSER;
assign m_axi_wid = M_AXI_WID;
assign m_axi_wdata = M_AXI_WDATA;
assign m_axi_wstrb = M_AXI_WSTRB;
assign m_axi_wuser = M_AXI_WUSER;
assign M_AXI_BID = m_axi_bid;
assign M_AXI_BRESP = m_axi_bresp;
assign M_AXI_BUSER = m_axi_buser;
assign S_AXI_ARID = s_axi_arid;
assign S_AXI_ARADDR = s_axi_araddr;
assign S_AXI_ARLEN = s_axi_arlen;
assign S_AXI_ARSIZE = s_axi_arsize;
assign S_AXI_ARBURST = s_axi_arburst;
assign S_AXI_ARLOCK = s_axi_arlock;
assign S_AXI_ARCACHE = s_axi_arcache;
assign S_AXI_ARPROT = s_axi_arprot;
assign S_AXI_ARQOS = s_axi_arqos;
assign S_AXI_ARREGION = s_axi_arregion;
assign S_AXI_ARUSER = s_axi_aruser;
assign s_axi_rid = S_AXI_RID;
assign s_axi_rdata = S_AXI_RDATA;
assign s_axi_rresp = S_AXI_RRESP;
assign s_axi_ruser = S_AXI_RUSER;
assign m_axi_arid = M_AXI_ARID;
assign m_axi_araddr = M_AXI_ARADDR;
assign m_axi_arlen = M_AXI_ARLEN;
assign m_axi_arsize = M_AXI_ARSIZE;
assign m_axi_arburst = M_AXI_ARBURST;
assign m_axi_arlock = M_AXI_ARLOCK;
assign m_axi_arcache = M_AXI_ARCACHE;
assign m_axi_arprot = M_AXI_ARPROT;
assign m_axi_arqos = M_AXI_ARQOS;
assign m_axi_arregion = M_AXI_ARREGION;
assign m_axi_aruser = M_AXI_ARUSER;
assign M_AXI_RID = m_axi_rid;
assign M_AXI_RDATA = m_axi_rdata;
assign M_AXI_RRESP = m_axi_rresp;
assign M_AXI_RUSER = m_axi_ruser;
assign S_AXIS_TDATA = s_axis_tdata;
assign S_AXIS_TSTRB = s_axis_tstrb;
assign S_AXIS_TKEEP = s_axis_tkeep;
assign S_AXIS_TID = s_axis_tid;
assign S_AXIS_TDEST = s_axis_tdest;
assign S_AXIS_TUSER = s_axis_tuser;
assign m_axis_tdata = M_AXIS_TDATA;
assign m_axis_tstrb = M_AXIS_TSTRB;
assign m_axis_tkeep = M_AXIS_TKEEP;
assign m_axis_tid = M_AXIS_TID;
assign m_axis_tdest = M_AXIS_TDEST;
assign m_axis_tuser = M_AXIS_TUSER;
assign AXI_AW_PROG_FULL_THRESH = axi_aw_prog_full_thresh;
assign AXI_AW_PROG_EMPTY_THRESH = axi_aw_prog_empty_thresh;
assign axi_aw_data_count = AXI_AW_DATA_COUNT;
assign axi_aw_wr_data_count = AXI_AW_WR_DATA_COUNT;
assign axi_aw_rd_data_count = AXI_AW_RD_DATA_COUNT;
assign AXI_W_PROG_FULL_THRESH = axi_w_prog_full_thresh;
assign AXI_W_PROG_EMPTY_THRESH = axi_w_prog_empty_thresh;
assign axi_w_data_count = AXI_W_DATA_COUNT;
assign axi_w_wr_data_count = AXI_W_WR_DATA_COUNT;
assign axi_w_rd_data_count = AXI_W_RD_DATA_COUNT;
assign AXI_B_PROG_FULL_THRESH = axi_b_prog_full_thresh;
assign AXI_B_PROG_EMPTY_THRESH = axi_b_prog_empty_thresh;
assign axi_b_data_count = AXI_B_DATA_COUNT;
assign axi_b_wr_data_count = AXI_B_WR_DATA_COUNT;
assign axi_b_rd_data_count = AXI_B_RD_DATA_COUNT;
assign AXI_AR_PROG_FULL_THRESH = axi_ar_prog_full_thresh;
assign AXI_AR_PROG_EMPTY_THRESH = axi_ar_prog_empty_thresh;
assign axi_ar_data_count = AXI_AR_DATA_COUNT;
assign axi_ar_wr_data_count = AXI_AR_WR_DATA_COUNT;
assign axi_ar_rd_data_count = AXI_AR_RD_DATA_COUNT;
assign AXI_R_PROG_FULL_THRESH = axi_r_prog_full_thresh;
assign AXI_R_PROG_EMPTY_THRESH = axi_r_prog_empty_thresh;
assign axi_r_data_count = AXI_R_DATA_COUNT;
assign axi_r_wr_data_count = AXI_R_WR_DATA_COUNT;
assign axi_r_rd_data_count = AXI_R_RD_DATA_COUNT;
assign AXIS_PROG_FULL_THRESH = axis_prog_full_thresh;
assign AXIS_PROG_EMPTY_THRESH = axis_prog_empty_thresh;
assign axis_data_count = AXIS_DATA_COUNT;
assign axis_wr_data_count = AXIS_WR_DATA_COUNT;
assign axis_rd_data_count = AXIS_RD_DATA_COUNT;
generate if (C_INTERFACE_TYPE == 0) begin : conv_fifo
fifo_generator_v13_1_1_CONV_VER
#(
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_INTERFACE_TYPE (C_INTERFACE_TYPE),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DATA_COUNT_WIDTH (C_DATA_COUNT_WIDTH),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_DIN_WIDTH (C_DIN_WIDTH),
.C_DOUT_RST_VAL (C_USE_DOUT_RST == 1 ? C_DOUT_RST_VAL : 0),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_FAMILY (C_FAMILY),
.C_FULL_FLAGS_RST_VAL (C_FULL_FLAGS_RST_VAL),
.C_HAS_ALMOST_EMPTY (C_HAS_ALMOST_EMPTY),
.C_HAS_ALMOST_FULL (C_HAS_ALMOST_FULL),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_DATA_COUNT (C_HAS_DATA_COUNT),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT),
.C_HAS_RD_RST (C_HAS_RD_RST),
.C_HAS_RST (C_HAS_RST),
.C_HAS_SRST (C_HAS_SRST),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_HAS_VALID (C_HAS_VALID),
.C_HAS_WR_ACK (C_HAS_WR_ACK),
.C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT),
.C_HAS_WR_RST (C_HAS_WR_RST),
.C_IMPLEMENTATION_TYPE (C_IMPLEMENTATION_TYPE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_MEMORY_TYPE (C_MEMORY_TYPE),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_PRELOAD_LATENCY (C_PRELOAD_LATENCY),
.C_PRELOAD_REGS (C_PRELOAD_REGS),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL),
.C_PROG_EMPTY_THRESH_NEGATE_VAL (C_PROG_EMPTY_THRESH_NEGATE_VAL),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL),
.C_PROG_FULL_THRESH_NEGATE_VAL (C_PROG_FULL_THRESH_NEGATE_VAL),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE),
.C_RD_DATA_COUNT_WIDTH (C_RD_DATA_COUNT_WIDTH),
.C_RD_DEPTH (C_RD_DEPTH),
.C_RD_FREQ (C_RD_FREQ),
.C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_USE_ECC (C_USE_ECC),
.C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG),
.C_EN_SAFETY_CKT (C_EN_SAFETY_CKT),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_USE_FWFT_DATA_COUNT (C_USE_FWFT_DATA_COUNT),
.C_VALID_LOW (C_VALID_LOW),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH),
.C_WR_DEPTH (C_WR_DEPTH),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE),
.C_AXI_TYPE (C_AXI_TYPE),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE)
)
fifo_generator_v13_1_1_conv_dut
(
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.CLK (CLK),
.RST (RST),
.SRST (SRST),
.WR_CLK (WR_CLK),
.WR_RST (WR_RST),
.RD_CLK (RD_CLK),
.RD_RST (RD_RST),
.DIN (DIN),
.WR_EN (WR_EN),
.RD_EN (RD_EN),
.PROG_EMPTY_THRESH (PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT (PROG_EMPTY_THRESH_ASSERT),
.PROG_EMPTY_THRESH_NEGATE (PROG_EMPTY_THRESH_NEGATE),
.PROG_FULL_THRESH (PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT (PROG_FULL_THRESH_ASSERT),
.PROG_FULL_THRESH_NEGATE (PROG_FULL_THRESH_NEGATE),
.INT_CLK (INT_CLK),
.INJECTDBITERR (INJECTDBITERR),
.INJECTSBITERR (INJECTSBITERR),
.DOUT (DOUT),
.FULL (FULL),
.ALMOST_FULL (ALMOST_FULL),
.WR_ACK (WR_ACK),
.OVERFLOW (OVERFLOW),
.EMPTY (EMPTY),
.ALMOST_EMPTY (ALMOST_EMPTY),
.VALID (VALID),
.UNDERFLOW (UNDERFLOW),
.DATA_COUNT (DATA_COUNT),
.RD_DATA_COUNT (RD_DATA_COUNT),
.WR_DATA_COUNT (wr_data_count_in),
.PROG_FULL (PROG_FULL),
.PROG_EMPTY (PROG_EMPTY),
.SBITERR (SBITERR),
.DBITERR (DBITERR),
.wr_rst_busy (wr_rst_busy),
.rd_rst_busy (rd_rst_busy),
.wr_rst_i_out (wr_rst_int),
.rd_rst_i_out (rd_rst_int)
);
end endgenerate
localparam IS_8SERIES = (C_FAMILY == "virtexu" || C_FAMILY == "kintexu" || C_FAMILY == "artixu" || C_FAMILY == "virtexuplus" || C_FAMILY == "zynquplus" || C_FAMILY == "kintexuplus") ? 1 : 0;
localparam C_AXI_SIZE_WIDTH = 3;
localparam C_AXI_BURST_WIDTH = 2;
localparam C_AXI_CACHE_WIDTH = 4;
localparam C_AXI_PROT_WIDTH = 3;
localparam C_AXI_QOS_WIDTH = 4;
localparam C_AXI_REGION_WIDTH = 4;
localparam C_AXI_BRESP_WIDTH = 2;
localparam C_AXI_RRESP_WIDTH = 2;
localparam IS_AXI_STREAMING = C_INTERFACE_TYPE == 1 ? 1 : 0;
localparam TDATA_OFFSET = C_HAS_AXIS_TDATA == 1 ? C_DIN_WIDTH_AXIS-C_AXIS_TDATA_WIDTH : C_DIN_WIDTH_AXIS;
localparam TSTRB_OFFSET = C_HAS_AXIS_TSTRB == 1 ? TDATA_OFFSET-C_AXIS_TSTRB_WIDTH : TDATA_OFFSET;
localparam TKEEP_OFFSET = C_HAS_AXIS_TKEEP == 1 ? TSTRB_OFFSET-C_AXIS_TKEEP_WIDTH : TSTRB_OFFSET;
localparam TID_OFFSET = C_HAS_AXIS_TID == 1 ? TKEEP_OFFSET-C_AXIS_TID_WIDTH : TKEEP_OFFSET;
localparam TDEST_OFFSET = C_HAS_AXIS_TDEST == 1 ? TID_OFFSET-C_AXIS_TDEST_WIDTH : TID_OFFSET;
localparam TUSER_OFFSET = C_HAS_AXIS_TUSER == 1 ? TDEST_OFFSET-C_AXIS_TUSER_WIDTH : TDEST_OFFSET;
localparam LOG_DEPTH_AXIS = find_log2(C_WR_DEPTH_AXIS);
localparam LOG_WR_DEPTH = find_log2(C_WR_DEPTH);
function [LOG_DEPTH_AXIS-1:0] bin2gray;
input [LOG_DEPTH_AXIS-1:0] x;
begin
bin2gray = x ^ (x>>1);
end
endfunction
function [LOG_DEPTH_AXIS-1:0] gray2bin;
input [LOG_DEPTH_AXIS-1:0] x;
integer i;
begin
gray2bin[LOG_DEPTH_AXIS-1] = x[LOG_DEPTH_AXIS-1];
for(i=LOG_DEPTH_AXIS-2; i>=0; i=i-1) begin
gray2bin[i] = gray2bin[i+1] ^ x[i];
end
end
endfunction
wire [(LOG_WR_DEPTH)-1 : 0] w_cnt_gc_asreg_last;
wire [LOG_WR_DEPTH-1 : 0] w_q [0:C_SYNCHRONIZER_STAGE] ;
wire [LOG_WR_DEPTH-1 : 0] w_q_temp [1:C_SYNCHRONIZER_STAGE] ;
reg [LOG_WR_DEPTH-1 : 0] w_cnt_rd = 0;
reg [LOG_WR_DEPTH-1 : 0] w_cnt = 0;
reg [LOG_WR_DEPTH-1 : 0] w_cnt_gc = 0;
reg [LOG_WR_DEPTH-1 : 0] r_cnt = 0;
wire [LOG_WR_DEPTH : 0] adj_w_cnt_rd_pad;
wire [LOG_WR_DEPTH : 0] r_inv_pad;
wire [LOG_WR_DEPTH-1 : 0] d_cnt;
reg [LOG_WR_DEPTH : 0] d_cnt_pad = 0;
reg adj_w_cnt_rd_pad_0 = 0;
reg r_inv_pad_0 = 0;
genvar l;
generate for (l = 1; ((l <= C_SYNCHRONIZER_STAGE) && (C_HAS_DATA_COUNTS_AXIS == 3 && C_INTERFACE_TYPE == 0) ); l = l + 1) begin : g_cnt_sync_stage
fifo_generator_v13_1_1_sync_stage
#(
.C_WIDTH (LOG_WR_DEPTH)
)
rd_stg_inst
(
.RST (rd_rst_int),
.CLK (RD_CLK),
.DIN (w_q[l-1]),
.DOUT (w_q[l])
);
end endgenerate // gpkt_cnt_sync_stage
generate if (C_INTERFACE_TYPE == 0 && C_HAS_DATA_COUNTS_AXIS == 3) begin : fifo_ic_adapter
assign wr_eop_ad = WR_EN & !(FULL);
assign rd_eop_ad = RD_EN & !(EMPTY);
always @ (posedge wr_rst_int or posedge WR_CLK)
begin
if (wr_rst_int)
w_cnt <= 1'b0;
else if (wr_eop_ad)
w_cnt <= w_cnt + 1;
end
always @ (posedge wr_rst_int or posedge WR_CLK)
begin
if (wr_rst_int)
w_cnt_gc <= 1'b0;
else
w_cnt_gc <= bin2gray(w_cnt);
end
assign w_q[0] = w_cnt_gc;
assign w_cnt_gc_asreg_last = w_q[C_SYNCHRONIZER_STAGE];
always @ (posedge rd_rst_int or posedge RD_CLK)
begin
if (rd_rst_int)
w_cnt_rd <= 1'b0;
else
w_cnt_rd <= gray2bin(w_cnt_gc_asreg_last);
end
always @ (posedge rd_rst_int or posedge RD_CLK)
begin
if (rd_rst_int)
r_cnt <= 1'b0;
else if (rd_eop_ad)
r_cnt <= r_cnt + 1;
end
// Take the difference of write and read packet count
// Logic is similar to rd_pe_as
assign adj_w_cnt_rd_pad[LOG_WR_DEPTH : 1] = w_cnt_rd;
assign r_inv_pad[LOG_WR_DEPTH : 1] = ~r_cnt;
assign adj_w_cnt_rd_pad[0] = adj_w_cnt_rd_pad_0;
assign r_inv_pad[0] = r_inv_pad_0;
always @ ( rd_eop_ad )
begin
if (!rd_eop_ad) begin
adj_w_cnt_rd_pad_0 <= 1'b1;
r_inv_pad_0 <= 1'b1;
end else begin
adj_w_cnt_rd_pad_0 <= 1'b0;
r_inv_pad_0 <= 1'b0;
end
end
always @ (posedge rd_rst_int or posedge RD_CLK)
begin
if (rd_rst_int)
d_cnt_pad <= 1'b0;
else
d_cnt_pad <= adj_w_cnt_rd_pad + r_inv_pad ;
end
assign d_cnt = d_cnt_pad [LOG_WR_DEPTH : 1] ;
assign WR_DATA_COUNT = d_cnt;
end endgenerate // fifo_ic_adapter
generate if (C_INTERFACE_TYPE == 0 && C_HAS_DATA_COUNTS_AXIS != 3) begin : fifo_icn_adapter
assign WR_DATA_COUNT = wr_data_count_in;
end endgenerate // fifo_icn_adapter
wire inverted_reset = ~S_ARESETN;
wire axi_rs_rst;
reg rst_d1 = 0 ;
reg rst_d2 = 0 ;
wire [C_DIN_WIDTH_AXIS-1:0] axis_din ;
wire [C_DIN_WIDTH_AXIS-1:0] axis_dout ;
wire axis_full ;
wire axis_almost_full ;
wire axis_empty ;
wire axis_s_axis_tready;
wire axis_m_axis_tvalid;
wire axis_wr_en ;
wire axis_rd_en ;
wire axis_we ;
wire axis_re ;
wire [C_WR_PNTR_WIDTH_AXIS:0] axis_dc;
reg axis_pkt_read = 1'b0;
wire axis_rd_rst;
wire axis_wr_rst;
generate if (C_INTERFACE_TYPE > 0 && (C_AXIS_TYPE == 1 || C_WACH_TYPE == 1 ||
C_WDCH_TYPE == 1 || C_WRCH_TYPE == 1 || C_RACH_TYPE == 1 || C_RDCH_TYPE == 1)) begin : gaxi_rs_rst
always @ (posedge inverted_reset or posedge S_ACLK) begin
if (inverted_reset) begin
rst_d1 <= 1'b1;
rst_d2 <= 1'b1;
end else begin
rst_d1 <= #`TCQ 1'b0;
rst_d2 <= #`TCQ rst_d1;
end
end
assign axi_rs_rst = rst_d2;
end endgenerate // gaxi_rs_rst
generate if (IS_AXI_STREAMING == 1 && C_AXIS_TYPE == 0) begin : axi_streaming
// Write protection when almost full or prog_full is high
assign axis_we = (C_PROG_FULL_TYPE_AXIS != 0) ? axis_s_axis_tready & S_AXIS_TVALID :
(C_APPLICATION_TYPE_AXIS == 1) ? axis_s_axis_tready & S_AXIS_TVALID : S_AXIS_TVALID;
// Read protection when almost empty or prog_empty is high
assign axis_re = (C_PROG_EMPTY_TYPE_AXIS != 0) ? axis_m_axis_tvalid & M_AXIS_TREADY :
(C_APPLICATION_TYPE_AXIS == 1) ? axis_m_axis_tvalid & M_AXIS_TREADY : M_AXIS_TREADY;
assign axis_wr_en = (C_HAS_SLAVE_CE == 1) ? axis_we & S_ACLK_EN : axis_we;
assign axis_rd_en = (C_HAS_MASTER_CE == 1) ? axis_re & M_ACLK_EN : axis_re;
fifo_generator_v13_1_1_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_INTERFACE_TYPE (C_INTERFACE_TYPE),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_AXIS == 1 || C_IMPLEMENTATION_TYPE_AXIS == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_AXIS == 2 || C_IMPLEMENTATION_TYPE_AXIS == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_AXIS == 1 || C_IMPLEMENTATION_TYPE_AXIS == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_AXIS == 11 || C_IMPLEMENTATION_TYPE_AXIS == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_AXIS),
.C_WR_DEPTH (C_WR_DEPTH_AXIS),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_AXIS),
.C_DOUT_WIDTH (C_DIN_WIDTH_AXIS),
.C_RD_DEPTH (C_WR_DEPTH_AXIS),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_AXIS),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_AXIS),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_AXIS),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_AXIS),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS),
.C_USE_ECC (C_USE_ECC_AXIS),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_AXIS),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (C_APPLICATION_TYPE_AXIS == 1 ? 1: 0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG),
//.C_EN_SAFETY_CKT (C_EN_SAFETY_CKT),
.C_FIFO_TYPE (C_APPLICATION_TYPE_AXIS == 1 ? 0: C_APPLICATION_TYPE_AXIS),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_AXIS == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_AXIS + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_AXIS == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_AXIS + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_AXIS == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_AXIS + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
.C_EN_SAFETY_CKT (1),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v13_1_1_axis_dut
(
.CLK (S_ACLK),
.WR_CLK (S_ACLK),
.RD_CLK (M_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (axis_wr_en),
.RD_EN (axis_rd_en),
.PROG_FULL_THRESH (AXIS_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_AXIS{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_AXIS{1'b0}}),
.PROG_EMPTY_THRESH (AXIS_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_AXIS{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_AXIS{1'b0}}),
.INJECTDBITERR (AXIS_INJECTDBITERR),
.INJECTSBITERR (AXIS_INJECTSBITERR),
.DIN (axis_din),
.DOUT (axis_dout),
.FULL (axis_full),
.EMPTY (axis_empty),
.ALMOST_FULL (axis_almost_full),
.PROG_FULL (AXIS_PROG_FULL),
.ALMOST_EMPTY (),
.PROG_EMPTY (AXIS_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (AXIS_OVERFLOW),
.VALID (),
.UNDERFLOW (AXIS_UNDERFLOW),
.DATA_COUNT (axis_dc),
.RD_DATA_COUNT (AXIS_RD_DATA_COUNT),
.WR_DATA_COUNT (AXIS_WR_DATA_COUNT),
.SBITERR (AXIS_SBITERR),
.DBITERR (AXIS_DBITERR),
.wr_rst_busy (wr_rst_busy_axis),
.rd_rst_busy (rd_rst_busy_axis),
.wr_rst_i_out (axis_wr_rst),
.rd_rst_i_out (axis_rd_rst),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign axis_s_axis_tready = (IS_8SERIES == 0) ? ~axis_full : (C_IMPLEMENTATION_TYPE_AXIS == 5 || C_IMPLEMENTATION_TYPE_AXIS == 13) ? ~(axis_full | wr_rst_busy_axis) : ~axis_full;
assign axis_m_axis_tvalid = (C_APPLICATION_TYPE_AXIS != 1) ? ~axis_empty : ~axis_empty & axis_pkt_read;
assign S_AXIS_TREADY = axis_s_axis_tready;
assign M_AXIS_TVALID = axis_m_axis_tvalid;
end endgenerate // axi_streaming
wire axis_wr_eop;
reg axis_wr_eop_d1 = 1'b0;
wire axis_rd_eop;
integer axis_pkt_cnt;
generate if (C_APPLICATION_TYPE_AXIS == 1 && C_COMMON_CLOCK == 1) begin : gaxis_pkt_fifo_cc
assign axis_wr_eop = axis_wr_en & S_AXIS_TLAST;
assign axis_rd_eop = axis_rd_en & axis_dout[0];
always @ (posedge inverted_reset or posedge S_ACLK)
begin
if (inverted_reset)
axis_pkt_read <= 1'b0;
else if (axis_rd_eop && (axis_pkt_cnt == 1) && ~axis_wr_eop_d1)
axis_pkt_read <= 1'b0;
else if ((axis_pkt_cnt > 0) || (axis_almost_full && ~axis_empty))
axis_pkt_read <= 1'b1;
end
always @ (posedge inverted_reset or posedge S_ACLK)
begin
if (inverted_reset)
axis_wr_eop_d1 <= 1'b0;
else
axis_wr_eop_d1 <= axis_wr_eop;
end
always @ (posedge inverted_reset or posedge S_ACLK)
begin
if (inverted_reset)
axis_pkt_cnt <= 0;
else if (axis_wr_eop_d1 && ~axis_rd_eop)
axis_pkt_cnt <= axis_pkt_cnt + 1;
else if (axis_rd_eop && ~axis_wr_eop_d1)
axis_pkt_cnt <= axis_pkt_cnt - 1;
end
end endgenerate // gaxis_pkt_fifo_cc
reg [LOG_DEPTH_AXIS-1 : 0] axis_wpkt_cnt_gc = 0;
wire [(LOG_DEPTH_AXIS)-1 : 0] axis_wpkt_cnt_gc_asreg_last;
wire axis_rd_has_rst;
wire [0:C_SYNCHRONIZER_STAGE] axis_af_q ;
wire [LOG_DEPTH_AXIS-1 : 0] wpkt_q [0:C_SYNCHRONIZER_STAGE] ;
wire [1:C_SYNCHRONIZER_STAGE] axis_af_q_temp = 0;
wire [LOG_DEPTH_AXIS-1 : 0] wpkt_q_temp [1:C_SYNCHRONIZER_STAGE] ;
reg [LOG_DEPTH_AXIS-1 : 0] axis_wpkt_cnt_rd = 0;
reg [LOG_DEPTH_AXIS-1 : 0] axis_wpkt_cnt = 0;
reg [LOG_DEPTH_AXIS-1 : 0] axis_rpkt_cnt = 0;
wire [LOG_DEPTH_AXIS : 0] adj_axis_wpkt_cnt_rd_pad;
wire [LOG_DEPTH_AXIS : 0] rpkt_inv_pad;
wire [LOG_DEPTH_AXIS-1 : 0] diff_pkt_cnt;
reg [LOG_DEPTH_AXIS : 0] diff_pkt_cnt_pad = 0;
reg adj_axis_wpkt_cnt_rd_pad_0 = 0;
reg rpkt_inv_pad_0 = 0;
wire axis_af_rd ;
generate if (C_HAS_RST == 1) begin : rst_blk_has
assign axis_rd_has_rst = axis_rd_rst;
end endgenerate //rst_blk_has
generate if (C_HAS_RST == 0) begin :rst_blk_no
assign axis_rd_has_rst = 1'b0;
end endgenerate //rst_blk_no
genvar i;
generate for (i = 1; ((i <= C_SYNCHRONIZER_STAGE) && (C_APPLICATION_TYPE_AXIS == 1 && C_COMMON_CLOCK == 0) ); i = i + 1) begin : gpkt_cnt_sync_stage
fifo_generator_v13_1_1_sync_stage
#(
.C_WIDTH (LOG_DEPTH_AXIS)
)
rd_stg_inst
(
.RST (axis_rd_has_rst),
.CLK (M_ACLK),
.DIN (wpkt_q[i-1]),
.DOUT (wpkt_q[i])
);
fifo_generator_v13_1_1_sync_stage
#(
.C_WIDTH (1)
)
wr_stg_inst
(
.RST (axis_rd_has_rst),
.CLK (M_ACLK),
.DIN (axis_af_q[i-1]),
.DOUT (axis_af_q[i])
);
end endgenerate // gpkt_cnt_sync_stage
generate if (C_APPLICATION_TYPE_AXIS == 1 && C_COMMON_CLOCK == 0) begin : gaxis_pkt_fifo_ic
assign axis_wr_eop = axis_wr_en & S_AXIS_TLAST;
assign axis_rd_eop = axis_rd_en & axis_dout[0];
always @ (posedge axis_rd_has_rst or posedge M_ACLK)
begin
if (axis_rd_has_rst)
axis_pkt_read <= 1'b0;
else if (axis_rd_eop && (diff_pkt_cnt == 1))
axis_pkt_read <= 1'b0;
else if ((diff_pkt_cnt > 0) || (axis_af_rd && ~axis_empty))
axis_pkt_read <= 1'b1;
end
always @ (posedge axis_wr_rst or posedge S_ACLK)
begin
if (axis_wr_rst)
axis_wpkt_cnt <= 1'b0;
else if (axis_wr_eop)
axis_wpkt_cnt <= axis_wpkt_cnt + 1;
end
always @ (posedge axis_wr_rst or posedge S_ACLK)
begin
if (axis_wr_rst)
axis_wpkt_cnt_gc <= 1'b0;
else
axis_wpkt_cnt_gc <= bin2gray(axis_wpkt_cnt);
end
assign wpkt_q[0] = axis_wpkt_cnt_gc;
assign axis_wpkt_cnt_gc_asreg_last = wpkt_q[C_SYNCHRONIZER_STAGE];
assign axis_af_q[0] = axis_almost_full;
//assign axis_af_q[1:C_SYNCHRONIZER_STAGE] = axis_af_q_temp[1:C_SYNCHRONIZER_STAGE];
assign axis_af_rd = axis_af_q[C_SYNCHRONIZER_STAGE];
always @ (posedge axis_rd_has_rst or posedge M_ACLK)
begin
if (axis_rd_has_rst)
axis_wpkt_cnt_rd <= 1'b0;
else
axis_wpkt_cnt_rd <= gray2bin(axis_wpkt_cnt_gc_asreg_last);
end
always @ (posedge axis_rd_rst or posedge M_ACLK)
begin
if (axis_rd_has_rst)
axis_rpkt_cnt <= 1'b0;
else if (axis_rd_eop)
axis_rpkt_cnt <= axis_rpkt_cnt + 1;
end
// Take the difference of write and read packet count
// Logic is similar to rd_pe_as
assign adj_axis_wpkt_cnt_rd_pad[LOG_DEPTH_AXIS : 1] = axis_wpkt_cnt_rd;
assign rpkt_inv_pad[LOG_DEPTH_AXIS : 1] = ~axis_rpkt_cnt;
assign adj_axis_wpkt_cnt_rd_pad[0] = adj_axis_wpkt_cnt_rd_pad_0;
assign rpkt_inv_pad[0] = rpkt_inv_pad_0;
always @ ( axis_rd_eop )
begin
if (!axis_rd_eop) begin
adj_axis_wpkt_cnt_rd_pad_0 <= 1'b1;
rpkt_inv_pad_0 <= 1'b1;
end else begin
adj_axis_wpkt_cnt_rd_pad_0 <= 1'b0;
rpkt_inv_pad_0 <= 1'b0;
end
end
always @ (posedge axis_rd_rst or posedge M_ACLK)
begin
if (axis_rd_has_rst)
diff_pkt_cnt_pad <= 1'b0;
else
diff_pkt_cnt_pad <= adj_axis_wpkt_cnt_rd_pad + rpkt_inv_pad ;
end
assign diff_pkt_cnt = diff_pkt_cnt_pad [LOG_DEPTH_AXIS : 1] ;
end endgenerate // gaxis_pkt_fifo_ic
// Generate the accurate data count for axi stream packet fifo configuration
reg [C_WR_PNTR_WIDTH_AXIS:0] axis_dc_pkt_fifo = 0;
generate if (IS_AXI_STREAMING == 1 && C_HAS_DATA_COUNTS_AXIS == 1 && C_APPLICATION_TYPE_AXIS == 1) begin : gdc_pkt
always @ (posedge inverted_reset or posedge S_ACLK)
begin
if (inverted_reset)
axis_dc_pkt_fifo <= 0;
else if (axis_wr_en && (~axis_rd_en))
axis_dc_pkt_fifo <= #`TCQ axis_dc_pkt_fifo + 1;
else if (~axis_wr_en && axis_rd_en)
axis_dc_pkt_fifo <= #`TCQ axis_dc_pkt_fifo - 1;
end
assign AXIS_DATA_COUNT = axis_dc_pkt_fifo;
end endgenerate // gdc_pkt
generate if (IS_AXI_STREAMING == 1 && C_HAS_DATA_COUNTS_AXIS == 0 && C_APPLICATION_TYPE_AXIS == 1) begin : gndc_pkt
assign AXIS_DATA_COUNT = 0;
end endgenerate // gndc_pkt
generate if (IS_AXI_STREAMING == 1 && C_APPLICATION_TYPE_AXIS != 1) begin : gdc
assign AXIS_DATA_COUNT = axis_dc;
end endgenerate // gdc
// Register Slice for Write Address Channel
generate if (C_AXIS_TYPE == 1) begin : gaxis_reg_slice
assign axis_wr_en = (C_HAS_SLAVE_CE == 1) ? S_AXIS_TVALID & S_ACLK_EN : S_AXIS_TVALID;
assign axis_rd_en = (C_HAS_MASTER_CE == 1) ? M_AXIS_TREADY & M_ACLK_EN : M_AXIS_TREADY;
fifo_generator_v13_1_1_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_AXIS),
.C_REG_CONFIG (C_REG_SLICE_MODE_AXIS)
)
axis_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (axis_din),
.S_VALID (axis_wr_en),
.S_READY (S_AXIS_TREADY),
// Master side
.M_PAYLOAD_DATA (axis_dout),
.M_VALID (M_AXIS_TVALID),
.M_READY (axis_rd_en)
);
end endgenerate // gaxis_reg_slice
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TDATA == 1) begin : tdata
assign axis_din[C_DIN_WIDTH_AXIS-1:TDATA_OFFSET] = S_AXIS_TDATA;
assign M_AXIS_TDATA = axis_dout[C_DIN_WIDTH_AXIS-1:TDATA_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TSTRB == 1) begin : tstrb
assign axis_din[TDATA_OFFSET-1:TSTRB_OFFSET] = S_AXIS_TSTRB;
assign M_AXIS_TSTRB = axis_dout[TDATA_OFFSET-1:TSTRB_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TKEEP == 1) begin : tkeep
assign axis_din[TSTRB_OFFSET-1:TKEEP_OFFSET] = S_AXIS_TKEEP;
assign M_AXIS_TKEEP = axis_dout[TSTRB_OFFSET-1:TKEEP_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TID == 1) begin : tid
assign axis_din[TKEEP_OFFSET-1:TID_OFFSET] = S_AXIS_TID;
assign M_AXIS_TID = axis_dout[TKEEP_OFFSET-1:TID_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TDEST == 1) begin : tdest
assign axis_din[TID_OFFSET-1:TDEST_OFFSET] = S_AXIS_TDEST;
assign M_AXIS_TDEST = axis_dout[TID_OFFSET-1:TDEST_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TUSER == 1) begin : tuser
assign axis_din[TDEST_OFFSET-1:TUSER_OFFSET] = S_AXIS_TUSER;
assign M_AXIS_TUSER = axis_dout[TDEST_OFFSET-1:TUSER_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TLAST == 1) begin : tlast
assign axis_din[0] = S_AXIS_TLAST;
assign M_AXIS_TLAST = axis_dout[0];
end endgenerate
//###########################################################################
// AXI FULL Write Channel (axi_write_channel)
//###########################################################################
localparam IS_AXI_FULL = ((C_INTERFACE_TYPE == 2) && (C_AXI_TYPE != 2)) ? 1 : 0;
localparam IS_AXI_LITE = ((C_INTERFACE_TYPE == 2) && (C_AXI_TYPE == 2)) ? 1 : 0;
localparam IS_AXI_FULL_WACH = ((IS_AXI_FULL == 1) && (C_WACH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_FULL_WDCH = ((IS_AXI_FULL == 1) && (C_WDCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_FULL_WRCH = ((IS_AXI_FULL == 1) && (C_WRCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_FULL_RACH = ((IS_AXI_FULL == 1) && (C_RACH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_FULL_RDCH = ((IS_AXI_FULL == 1) && (C_RDCH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_LITE_WACH = ((IS_AXI_LITE == 1) && (C_WACH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_LITE_WDCH = ((IS_AXI_LITE == 1) && (C_WDCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_LITE_WRCH = ((IS_AXI_LITE == 1) && (C_WRCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_LITE_RACH = ((IS_AXI_LITE == 1) && (C_RACH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_LITE_RDCH = ((IS_AXI_LITE == 1) && (C_RDCH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0;
localparam IS_WR_ADDR_CH = ((IS_AXI_FULL_WACH == 1) || (IS_AXI_LITE_WACH == 1)) ? 1 : 0;
localparam IS_WR_DATA_CH = ((IS_AXI_FULL_WDCH == 1) || (IS_AXI_LITE_WDCH == 1)) ? 1 : 0;
localparam IS_WR_RESP_CH = ((IS_AXI_FULL_WRCH == 1) || (IS_AXI_LITE_WRCH == 1)) ? 1 : 0;
localparam IS_RD_ADDR_CH = ((IS_AXI_FULL_RACH == 1) || (IS_AXI_LITE_RACH == 1)) ? 1 : 0;
localparam IS_RD_DATA_CH = ((IS_AXI_FULL_RDCH == 1) || (IS_AXI_LITE_RDCH == 1)) ? 1 : 0;
localparam AWID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_WACH - C_AXI_ID_WIDTH : C_DIN_WIDTH_WACH;
localparam AWADDR_OFFSET = AWID_OFFSET - C_AXI_ADDR_WIDTH;
localparam AWLEN_OFFSET = C_AXI_TYPE != 2 ? AWADDR_OFFSET - C_AXI_LEN_WIDTH : AWADDR_OFFSET;
localparam AWSIZE_OFFSET = C_AXI_TYPE != 2 ? AWLEN_OFFSET - C_AXI_SIZE_WIDTH : AWLEN_OFFSET;
localparam AWBURST_OFFSET = C_AXI_TYPE != 2 ? AWSIZE_OFFSET - C_AXI_BURST_WIDTH : AWSIZE_OFFSET;
localparam AWLOCK_OFFSET = C_AXI_TYPE != 2 ? AWBURST_OFFSET - C_AXI_LOCK_WIDTH : AWBURST_OFFSET;
localparam AWCACHE_OFFSET = C_AXI_TYPE != 2 ? AWLOCK_OFFSET - C_AXI_CACHE_WIDTH : AWLOCK_OFFSET;
localparam AWPROT_OFFSET = AWCACHE_OFFSET - C_AXI_PROT_WIDTH;
localparam AWQOS_OFFSET = AWPROT_OFFSET - C_AXI_QOS_WIDTH;
localparam AWREGION_OFFSET = C_AXI_TYPE == 1 ? AWQOS_OFFSET - C_AXI_REGION_WIDTH : AWQOS_OFFSET;
localparam AWUSER_OFFSET = C_HAS_AXI_AWUSER == 1 ? AWREGION_OFFSET-C_AXI_AWUSER_WIDTH : AWREGION_OFFSET;
localparam WID_OFFSET = (C_AXI_TYPE == 3 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_WDCH - C_AXI_ID_WIDTH : C_DIN_WIDTH_WDCH;
localparam WDATA_OFFSET = WID_OFFSET - C_AXI_DATA_WIDTH;
localparam WSTRB_OFFSET = WDATA_OFFSET - C_AXI_DATA_WIDTH/8;
localparam WUSER_OFFSET = C_HAS_AXI_WUSER == 1 ? WSTRB_OFFSET-C_AXI_WUSER_WIDTH : WSTRB_OFFSET;
localparam BID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_WRCH - C_AXI_ID_WIDTH : C_DIN_WIDTH_WRCH;
localparam BRESP_OFFSET = BID_OFFSET - C_AXI_BRESP_WIDTH;
localparam BUSER_OFFSET = C_HAS_AXI_BUSER == 1 ? BRESP_OFFSET-C_AXI_BUSER_WIDTH : BRESP_OFFSET;
wire [C_DIN_WIDTH_WACH-1:0] wach_din ;
wire [C_DIN_WIDTH_WACH-1:0] wach_dout ;
wire [C_DIN_WIDTH_WACH-1:0] wach_dout_pkt ;
wire wach_full ;
wire wach_almost_full ;
wire wach_prog_full ;
wire wach_empty ;
wire wach_almost_empty ;
wire wach_prog_empty ;
wire [C_DIN_WIDTH_WDCH-1:0] wdch_din ;
wire [C_DIN_WIDTH_WDCH-1:0] wdch_dout ;
wire wdch_full ;
wire wdch_almost_full ;
wire wdch_prog_full ;
wire wdch_empty ;
wire wdch_almost_empty ;
wire wdch_prog_empty ;
wire [C_DIN_WIDTH_WRCH-1:0] wrch_din ;
wire [C_DIN_WIDTH_WRCH-1:0] wrch_dout ;
wire wrch_full ;
wire wrch_almost_full ;
wire wrch_prog_full ;
wire wrch_empty ;
wire wrch_almost_empty ;
wire wrch_prog_empty ;
wire axi_aw_underflow_i;
wire axi_w_underflow_i ;
wire axi_b_underflow_i ;
wire axi_aw_overflow_i ;
wire axi_w_overflow_i ;
wire axi_b_overflow_i ;
wire axi_wr_underflow_i;
wire axi_wr_overflow_i ;
wire wach_s_axi_awready;
wire wach_m_axi_awvalid;
wire wach_wr_en ;
wire wach_rd_en ;
wire wdch_s_axi_wready ;
wire wdch_m_axi_wvalid ;
wire wdch_wr_en ;
wire wdch_rd_en ;
wire wrch_s_axi_bvalid ;
wire wrch_m_axi_bready ;
wire wrch_wr_en ;
wire wrch_rd_en ;
wire txn_count_up ;
wire txn_count_down ;
wire awvalid_en ;
wire awvalid_pkt ;
wire awready_pkt ;
integer wr_pkt_count ;
wire wach_we ;
wire wach_re ;
wire wdch_we ;
wire wdch_re ;
wire wrch_we ;
wire wrch_re ;
generate if (IS_WR_ADDR_CH == 1) begin : axi_write_address_channel
// Write protection when almost full or prog_full is high
assign wach_we = (C_PROG_FULL_TYPE_WACH != 0) ? wach_s_axi_awready & S_AXI_AWVALID : S_AXI_AWVALID;
// Read protection when almost empty or prog_empty is high
assign wach_re = (C_PROG_EMPTY_TYPE_WACH != 0 && C_APPLICATION_TYPE_WACH == 1) ?
wach_m_axi_awvalid & awready_pkt & awvalid_en :
(C_PROG_EMPTY_TYPE_WACH != 0 && C_APPLICATION_TYPE_WACH != 1) ?
M_AXI_AWREADY && wach_m_axi_awvalid :
(C_PROG_EMPTY_TYPE_WACH == 0 && C_APPLICATION_TYPE_WACH == 1) ?
awready_pkt & awvalid_en :
(C_PROG_EMPTY_TYPE_WACH == 0 && C_APPLICATION_TYPE_WACH != 1) ?
M_AXI_AWREADY : 1'b0;
assign wach_wr_en = (C_HAS_SLAVE_CE == 1) ? wach_we & S_ACLK_EN : wach_we;
assign wach_rd_en = (C_HAS_MASTER_CE == 1) ? wach_re & M_ACLK_EN : wach_re;
fifo_generator_v13_1_1_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_WACH == 1 || C_IMPLEMENTATION_TYPE_WACH == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_WACH == 2 || C_IMPLEMENTATION_TYPE_WACH == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_WACH == 1 || C_IMPLEMENTATION_TYPE_WACH == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_WACH == 11 || C_IMPLEMENTATION_TYPE_WACH == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_WACH),
.C_INTERFACE_TYPE (C_INTERFACE_TYPE),
.C_WR_DEPTH (C_WR_DEPTH_WACH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_WACH),
.C_DOUT_WIDTH (C_DIN_WIDTH_WACH),
.C_RD_DEPTH (C_WR_DEPTH_WACH),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_WACH),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_WACH),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_WACH),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_WACH),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH),
.C_USE_ECC (C_USE_ECC_WACH),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_WACH),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_FIFO_TYPE ((C_APPLICATION_TYPE_WACH == 1)?0:C_APPLICATION_TYPE_WACH),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_EN_SAFETY_CKT (1),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_WACH == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WACH + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WACH == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WACH + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WACH == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WACH + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_EMBEDDED_REG (0),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
//.C_EN_SAFETY_CKT (1),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v13_1_1_wach_dut
(
.CLK (S_ACLK),
.WR_CLK (S_ACLK),
.RD_CLK (M_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (wach_wr_en),
.RD_EN (wach_rd_en),
.PROG_FULL_THRESH (AXI_AW_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WACH{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WACH{1'b0}}),
.PROG_EMPTY_THRESH (AXI_AW_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WACH{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WACH{1'b0}}),
.INJECTDBITERR (AXI_AW_INJECTDBITERR),
.INJECTSBITERR (AXI_AW_INJECTSBITERR),
.DIN (wach_din),
.DOUT (wach_dout_pkt),
.FULL (wach_full),
.EMPTY (wach_empty),
.ALMOST_FULL (),
.PROG_FULL (AXI_AW_PROG_FULL),
.ALMOST_EMPTY (),
.PROG_EMPTY (AXI_AW_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (axi_aw_overflow_i),
.VALID (),
.UNDERFLOW (axi_aw_underflow_i),
.DATA_COUNT (AXI_AW_DATA_COUNT),
.RD_DATA_COUNT (AXI_AW_RD_DATA_COUNT),
.WR_DATA_COUNT (AXI_AW_WR_DATA_COUNT),
.SBITERR (AXI_AW_SBITERR),
.DBITERR (AXI_AW_DBITERR),
.wr_rst_busy (wr_rst_busy_wach),
.rd_rst_busy (rd_rst_busy_wach),
.wr_rst_i_out (),
.rd_rst_i_out (),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign wach_s_axi_awready = (IS_8SERIES == 0) ? ~wach_full : (C_IMPLEMENTATION_TYPE_WACH == 5 || C_IMPLEMENTATION_TYPE_WACH == 13) ? ~(wach_full | wr_rst_busy_wach) : ~wach_full;
assign wach_m_axi_awvalid = ~wach_empty;
assign S_AXI_AWREADY = wach_s_axi_awready;
assign AXI_AW_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_aw_underflow_i : 0;
assign AXI_AW_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_aw_overflow_i : 0;
end endgenerate // axi_write_address_channel
// Register Slice for Write Address Channel
generate if (C_WACH_TYPE == 1) begin : gwach_reg_slice
fifo_generator_v13_1_1_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_WACH),
.C_REG_CONFIG (C_REG_SLICE_MODE_WACH)
)
wach_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (wach_din),
.S_VALID (S_AXI_AWVALID),
.S_READY (S_AXI_AWREADY),
// Master side
.M_PAYLOAD_DATA (wach_dout),
.M_VALID (M_AXI_AWVALID),
.M_READY (M_AXI_AWREADY)
);
end endgenerate // gwach_reg_slice
generate if (C_APPLICATION_TYPE_WACH == 1 && C_HAS_AXI_WR_CHANNEL == 1) begin : axi_mm_pkt_fifo_wr
fifo_generator_v13_1_1_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_WACH),
.C_REG_CONFIG (1)
)
wach_pkt_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (inverted_reset),
// Slave side
.S_PAYLOAD_DATA (wach_dout_pkt),
.S_VALID (awvalid_pkt),
.S_READY (awready_pkt),
// Master side
.M_PAYLOAD_DATA (wach_dout),
.M_VALID (M_AXI_AWVALID),
.M_READY (M_AXI_AWREADY)
);
assign awvalid_pkt = wach_m_axi_awvalid && awvalid_en;
assign txn_count_up = wdch_s_axi_wready && wdch_wr_en && wdch_din[0];
assign txn_count_down = wach_m_axi_awvalid && awready_pkt && awvalid_en;
always@(posedge S_ACLK or posedge inverted_reset) begin
if(inverted_reset == 1) begin
wr_pkt_count <= 0;
end else begin
if(txn_count_up == 1 && txn_count_down == 0) begin
wr_pkt_count <= wr_pkt_count + 1;
end else if(txn_count_up == 0 && txn_count_down == 1) begin
wr_pkt_count <= wr_pkt_count - 1;
end
end
end //Always end
assign awvalid_en = (wr_pkt_count > 0)?1:0;
end endgenerate
generate if (C_APPLICATION_TYPE_WACH != 1) begin : axi_mm_fifo_wr
assign awvalid_en = 1;
assign wach_dout = wach_dout_pkt;
assign M_AXI_AWVALID = wach_m_axi_awvalid;
end
endgenerate
generate if (IS_WR_DATA_CH == 1) begin : axi_write_data_channel
// Write protection when almost full or prog_full is high
assign wdch_we = (C_PROG_FULL_TYPE_WDCH != 0) ? wdch_s_axi_wready & S_AXI_WVALID : S_AXI_WVALID;
// Read protection when almost empty or prog_empty is high
assign wdch_re = (C_PROG_EMPTY_TYPE_WDCH != 0) ? wdch_m_axi_wvalid & M_AXI_WREADY : M_AXI_WREADY;
assign wdch_wr_en = (C_HAS_SLAVE_CE == 1) ? wdch_we & S_ACLK_EN : wdch_we;
assign wdch_rd_en = (C_HAS_MASTER_CE == 1) ? wdch_re & M_ACLK_EN : wdch_re;
fifo_generator_v13_1_1_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_WDCH == 1 || C_IMPLEMENTATION_TYPE_WDCH == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_WDCH == 2 || C_IMPLEMENTATION_TYPE_WDCH == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_WDCH == 1 || C_IMPLEMENTATION_TYPE_WDCH == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_WDCH == 11 || C_IMPLEMENTATION_TYPE_WDCH == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_WDCH),
.C_WR_DEPTH (C_WR_DEPTH_WDCH),
.C_INTERFACE_TYPE (C_INTERFACE_TYPE),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_WDCH),
.C_DOUT_WIDTH (C_DIN_WIDTH_WDCH),
.C_RD_DEPTH (C_WR_DEPTH_WDCH),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_WDCH),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_WDCH),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_WDCH),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_WDCH),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH),
.C_USE_ECC (C_USE_ECC_WDCH),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_WDCH),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_FIFO_TYPE (C_APPLICATION_TYPE_WDCH),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_WDCH == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WDCH + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WDCH == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WDCH + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WDCH == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WDCH + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_EMBEDDED_REG (0),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
.C_EN_SAFETY_CKT (1),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v13_1_1_wdch_dut
(
.CLK (S_ACLK),
.WR_CLK (S_ACLK),
.RD_CLK (M_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (wdch_wr_en),
.RD_EN (wdch_rd_en),
.PROG_FULL_THRESH (AXI_W_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WDCH{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WDCH{1'b0}}),
.PROG_EMPTY_THRESH (AXI_W_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WDCH{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WDCH{1'b0}}),
.INJECTDBITERR (AXI_W_INJECTDBITERR),
.INJECTSBITERR (AXI_W_INJECTSBITERR),
.DIN (wdch_din),
.DOUT (wdch_dout),
.FULL (wdch_full),
.EMPTY (wdch_empty),
.ALMOST_FULL (),
.PROG_FULL (AXI_W_PROG_FULL),
.ALMOST_EMPTY (),
.PROG_EMPTY (AXI_W_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (axi_w_overflow_i),
.VALID (),
.UNDERFLOW (axi_w_underflow_i),
.DATA_COUNT (AXI_W_DATA_COUNT),
.RD_DATA_COUNT (AXI_W_RD_DATA_COUNT),
.WR_DATA_COUNT (AXI_W_WR_DATA_COUNT),
.SBITERR (AXI_W_SBITERR),
.DBITERR (AXI_W_DBITERR),
.wr_rst_busy (wr_rst_busy_wdch),
.rd_rst_busy (rd_rst_busy_wdch),
.wr_rst_i_out (),
.rd_rst_i_out (),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign wdch_s_axi_wready = (IS_8SERIES == 0) ? ~wdch_full : (C_IMPLEMENTATION_TYPE_WDCH == 5 || C_IMPLEMENTATION_TYPE_WDCH == 13) ? ~(wdch_full | wr_rst_busy_wdch) : ~wdch_full;
assign wdch_m_axi_wvalid = ~wdch_empty;
assign S_AXI_WREADY = wdch_s_axi_wready;
assign M_AXI_WVALID = wdch_m_axi_wvalid;
assign AXI_W_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_w_underflow_i : 0;
assign AXI_W_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_w_overflow_i : 0;
end endgenerate // axi_write_data_channel
// Register Slice for Write Data Channel
generate if (C_WDCH_TYPE == 1) begin : gwdch_reg_slice
fifo_generator_v13_1_1_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_WDCH),
.C_REG_CONFIG (C_REG_SLICE_MODE_WDCH)
)
wdch_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (wdch_din),
.S_VALID (S_AXI_WVALID),
.S_READY (S_AXI_WREADY),
// Master side
.M_PAYLOAD_DATA (wdch_dout),
.M_VALID (M_AXI_WVALID),
.M_READY (M_AXI_WREADY)
);
end endgenerate // gwdch_reg_slice
generate if (IS_WR_RESP_CH == 1) begin : axi_write_resp_channel
// Write protection when almost full or prog_full is high
assign wrch_we = (C_PROG_FULL_TYPE_WRCH != 0) ? wrch_m_axi_bready & M_AXI_BVALID : M_AXI_BVALID;
// Read protection when almost empty or prog_empty is high
assign wrch_re = (C_PROG_EMPTY_TYPE_WRCH != 0) ? wrch_s_axi_bvalid & S_AXI_BREADY : S_AXI_BREADY;
assign wrch_wr_en = (C_HAS_MASTER_CE == 1) ? wrch_we & M_ACLK_EN : wrch_we;
assign wrch_rd_en = (C_HAS_SLAVE_CE == 1) ? wrch_re & S_ACLK_EN : wrch_re;
fifo_generator_v13_1_1_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_WRCH == 1 || C_IMPLEMENTATION_TYPE_WRCH == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_WRCH == 2 || C_IMPLEMENTATION_TYPE_WRCH == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_WRCH == 1 || C_IMPLEMENTATION_TYPE_WRCH == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_WRCH == 11 || C_IMPLEMENTATION_TYPE_WRCH == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_WRCH),
.C_WR_DEPTH (C_WR_DEPTH_WRCH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_WRCH),
.C_DOUT_WIDTH (C_DIN_WIDTH_WRCH),
.C_INTERFACE_TYPE (C_INTERFACE_TYPE),
.C_RD_DEPTH (C_WR_DEPTH_WRCH),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_WRCH),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_WRCH),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_WRCH),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_WRCH),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH),
.C_USE_ECC (C_USE_ECC_WRCH),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_WRCH),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_FIFO_TYPE (C_APPLICATION_TYPE_WRCH),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_WRCH == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WRCH + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WRCH == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WRCH + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WRCH == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WRCH + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_EMBEDDED_REG (0),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
.C_EN_SAFETY_CKT (1),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v13_1_1_wrch_dut
(
.CLK (S_ACLK),
.WR_CLK (M_ACLK),
.RD_CLK (S_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (wrch_wr_en),
.RD_EN (wrch_rd_en),
.PROG_FULL_THRESH (AXI_B_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WRCH{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WRCH{1'b0}}),
.PROG_EMPTY_THRESH (AXI_B_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WRCH{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WRCH{1'b0}}),
.INJECTDBITERR (AXI_B_INJECTDBITERR),
.INJECTSBITERR (AXI_B_INJECTSBITERR),
.DIN (wrch_din),
.DOUT (wrch_dout),
.FULL (wrch_full),
.EMPTY (wrch_empty),
.ALMOST_FULL (),
.ALMOST_EMPTY (),
.PROG_FULL (AXI_B_PROG_FULL),
.PROG_EMPTY (AXI_B_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (axi_b_overflow_i),
.VALID (),
.UNDERFLOW (axi_b_underflow_i),
.DATA_COUNT (AXI_B_DATA_COUNT),
.RD_DATA_COUNT (AXI_B_RD_DATA_COUNT),
.WR_DATA_COUNT (AXI_B_WR_DATA_COUNT),
.SBITERR (AXI_B_SBITERR),
.DBITERR (AXI_B_DBITERR),
.wr_rst_busy (wr_rst_busy_wrch),
.rd_rst_busy (rd_rst_busy_wrch),
.wr_rst_i_out (),
.rd_rst_i_out (),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign wrch_s_axi_bvalid = ~wrch_empty;
assign wrch_m_axi_bready = (IS_8SERIES == 0) ? ~wrch_full : (C_IMPLEMENTATION_TYPE_WRCH == 5 || C_IMPLEMENTATION_TYPE_WRCH == 13) ? ~(wrch_full | wr_rst_busy_wrch) : ~wrch_full;
assign S_AXI_BVALID = wrch_s_axi_bvalid;
assign M_AXI_BREADY = wrch_m_axi_bready;
assign AXI_B_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_b_underflow_i : 0;
assign AXI_B_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_b_overflow_i : 0;
end endgenerate // axi_write_resp_channel
// Register Slice for Write Response Channel
generate if (C_WRCH_TYPE == 1) begin : gwrch_reg_slice
fifo_generator_v13_1_1_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_WRCH),
.C_REG_CONFIG (C_REG_SLICE_MODE_WRCH)
)
wrch_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (wrch_din),
.S_VALID (M_AXI_BVALID),
.S_READY (M_AXI_BREADY),
// Master side
.M_PAYLOAD_DATA (wrch_dout),
.M_VALID (S_AXI_BVALID),
.M_READY (S_AXI_BREADY)
);
end endgenerate // gwrch_reg_slice
assign axi_wr_underflow_i = C_USE_COMMON_UNDERFLOW == 1 ? (axi_aw_underflow_i || axi_w_underflow_i || axi_b_underflow_i) : 0;
assign axi_wr_overflow_i = C_USE_COMMON_OVERFLOW == 1 ? (axi_aw_overflow_i || axi_w_overflow_i || axi_b_overflow_i) : 0;
generate if (IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) begin : axi_wach_output
assign M_AXI_AWADDR = wach_dout[AWID_OFFSET-1:AWADDR_OFFSET];
assign M_AXI_AWLEN = wach_dout[AWADDR_OFFSET-1:AWLEN_OFFSET];
assign M_AXI_AWSIZE = wach_dout[AWLEN_OFFSET-1:AWSIZE_OFFSET];
assign M_AXI_AWBURST = wach_dout[AWSIZE_OFFSET-1:AWBURST_OFFSET];
assign M_AXI_AWLOCK = wach_dout[AWBURST_OFFSET-1:AWLOCK_OFFSET];
assign M_AXI_AWCACHE = wach_dout[AWLOCK_OFFSET-1:AWCACHE_OFFSET];
assign M_AXI_AWPROT = wach_dout[AWCACHE_OFFSET-1:AWPROT_OFFSET];
assign M_AXI_AWQOS = wach_dout[AWPROT_OFFSET-1:AWQOS_OFFSET];
assign wach_din[AWID_OFFSET-1:AWADDR_OFFSET] = S_AXI_AWADDR;
assign wach_din[AWADDR_OFFSET-1:AWLEN_OFFSET] = S_AXI_AWLEN;
assign wach_din[AWLEN_OFFSET-1:AWSIZE_OFFSET] = S_AXI_AWSIZE;
assign wach_din[AWSIZE_OFFSET-1:AWBURST_OFFSET] = S_AXI_AWBURST;
assign wach_din[AWBURST_OFFSET-1:AWLOCK_OFFSET] = S_AXI_AWLOCK;
assign wach_din[AWLOCK_OFFSET-1:AWCACHE_OFFSET] = S_AXI_AWCACHE;
assign wach_din[AWCACHE_OFFSET-1:AWPROT_OFFSET] = S_AXI_AWPROT;
assign wach_din[AWPROT_OFFSET-1:AWQOS_OFFSET] = S_AXI_AWQOS;
end endgenerate // axi_wach_output
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_AXI_TYPE == 1) begin : axi_awregion
assign M_AXI_AWREGION = wach_dout[AWQOS_OFFSET-1:AWREGION_OFFSET];
end endgenerate // axi_awregion
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_AXI_TYPE != 1) begin : naxi_awregion
assign M_AXI_AWREGION = 0;
end endgenerate // naxi_awregion
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_AWUSER == 1) begin : axi_awuser
assign M_AXI_AWUSER = wach_dout[AWREGION_OFFSET-1:AWUSER_OFFSET];
end endgenerate // axi_awuser
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_AWUSER == 0) begin : naxi_awuser
assign M_AXI_AWUSER = 0;
end endgenerate // naxi_awuser
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_awid
assign M_AXI_AWID = wach_dout[C_DIN_WIDTH_WACH-1:AWID_OFFSET];
end endgenerate //axi_awid
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_awid
assign M_AXI_AWID = 0;
end endgenerate //naxi_awid
generate if (IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) begin : axi_wdch_output
assign M_AXI_WDATA = wdch_dout[WID_OFFSET-1:WDATA_OFFSET];
assign M_AXI_WSTRB = wdch_dout[WDATA_OFFSET-1:WSTRB_OFFSET];
assign M_AXI_WLAST = wdch_dout[0];
assign wdch_din[WID_OFFSET-1:WDATA_OFFSET] = S_AXI_WDATA;
assign wdch_din[WDATA_OFFSET-1:WSTRB_OFFSET] = S_AXI_WSTRB;
assign wdch_din[0] = S_AXI_WLAST;
end endgenerate // axi_wdch_output
generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_ID == 1 && C_AXI_TYPE == 3) begin
assign M_AXI_WID = wdch_dout[C_DIN_WIDTH_WDCH-1:WID_OFFSET];
end endgenerate
generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && (C_HAS_AXI_ID == 0 || C_AXI_TYPE != 3)) begin
assign M_AXI_WID = 0;
end endgenerate
generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_WUSER == 1 ) begin
assign M_AXI_WUSER = wdch_dout[WSTRB_OFFSET-1:WUSER_OFFSET];
end endgenerate
generate if (C_HAS_AXI_WUSER == 0) begin
assign M_AXI_WUSER = 0;
end endgenerate
generate if (IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) begin : axi_wrch_output
assign S_AXI_BRESP = wrch_dout[BID_OFFSET-1:BRESP_OFFSET];
assign wrch_din[BID_OFFSET-1:BRESP_OFFSET] = M_AXI_BRESP;
end endgenerate // axi_wrch_output
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_BUSER == 1) begin : axi_buser
assign S_AXI_BUSER = wrch_dout[BRESP_OFFSET-1:BUSER_OFFSET];
end endgenerate // axi_buser
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_BUSER == 0) begin : naxi_buser
assign S_AXI_BUSER = 0;
end endgenerate // naxi_buser
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_bid
assign S_AXI_BID = wrch_dout[C_DIN_WIDTH_WRCH-1:BID_OFFSET];
end endgenerate // axi_bid
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_bid
assign S_AXI_BID = 0 ;
end endgenerate // naxi_bid
generate if (IS_AXI_LITE_WACH == 1 || (IS_AXI_LITE == 1 && C_WACH_TYPE == 1)) begin : axi_wach_output1
assign wach_din = {S_AXI_AWADDR, S_AXI_AWPROT};
assign M_AXI_AWADDR = wach_dout[C_DIN_WIDTH_WACH-1:AWADDR_OFFSET];
assign M_AXI_AWPROT = wach_dout[AWADDR_OFFSET-1:AWPROT_OFFSET];
end endgenerate // axi_wach_output1
generate if (IS_AXI_LITE_WDCH == 1 || (IS_AXI_LITE == 1 && C_WDCH_TYPE == 1)) begin : axi_wdch_output1
assign wdch_din = {S_AXI_WDATA, S_AXI_WSTRB};
assign M_AXI_WDATA = wdch_dout[C_DIN_WIDTH_WDCH-1:WDATA_OFFSET];
assign M_AXI_WSTRB = wdch_dout[WDATA_OFFSET-1:WSTRB_OFFSET];
end endgenerate // axi_wdch_output1
generate if (IS_AXI_LITE_WRCH == 1 || (IS_AXI_LITE == 1 && C_WRCH_TYPE == 1)) begin : axi_wrch_output1
assign wrch_din = M_AXI_BRESP;
assign S_AXI_BRESP = wrch_dout[C_DIN_WIDTH_WRCH-1:BRESP_OFFSET];
end endgenerate // axi_wrch_output1
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_AWUSER == 1) begin : gwach_din1
assign wach_din[AWREGION_OFFSET-1:AWUSER_OFFSET] = S_AXI_AWUSER;
end endgenerate // gwach_din1
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : gwach_din2
assign wach_din[C_DIN_WIDTH_WACH-1:AWID_OFFSET] = S_AXI_AWID;
end endgenerate // gwach_din2
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_AXI_TYPE == 1) begin : gwach_din3
assign wach_din[AWQOS_OFFSET-1:AWREGION_OFFSET] = S_AXI_AWREGION;
end endgenerate // gwach_din3
generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_WUSER == 1) begin : gwdch_din1
assign wdch_din[WSTRB_OFFSET-1:WUSER_OFFSET] = S_AXI_WUSER;
end endgenerate // gwdch_din1
generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_ID == 1 && C_AXI_TYPE == 3) begin : gwdch_din2
assign wdch_din[C_DIN_WIDTH_WDCH-1:WID_OFFSET] = S_AXI_WID;
end endgenerate // gwdch_din2
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_BUSER == 1) begin : gwrch_din1
assign wrch_din[BRESP_OFFSET-1:BUSER_OFFSET] = M_AXI_BUSER;
end endgenerate // gwrch_din1
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : gwrch_din2
assign wrch_din[C_DIN_WIDTH_WRCH-1:BID_OFFSET] = M_AXI_BID;
end endgenerate // gwrch_din2
//end of axi_write_channel
//###########################################################################
// AXI FULL Read Channel (axi_read_channel)
//###########################################################################
wire [C_DIN_WIDTH_RACH-1:0] rach_din ;
wire [C_DIN_WIDTH_RACH-1:0] rach_dout ;
wire [C_DIN_WIDTH_RACH-1:0] rach_dout_pkt ;
wire rach_full ;
wire rach_almost_full ;
wire rach_prog_full ;
wire rach_empty ;
wire rach_almost_empty ;
wire rach_prog_empty ;
wire [C_DIN_WIDTH_RDCH-1:0] rdch_din ;
wire [C_DIN_WIDTH_RDCH-1:0] rdch_dout ;
wire rdch_full ;
wire rdch_almost_full ;
wire rdch_prog_full ;
wire rdch_empty ;
wire rdch_almost_empty ;
wire rdch_prog_empty ;
wire axi_ar_underflow_i ;
wire axi_r_underflow_i ;
wire axi_ar_overflow_i ;
wire axi_r_overflow_i ;
wire axi_rd_underflow_i ;
wire axi_rd_overflow_i ;
wire rach_s_axi_arready ;
wire rach_m_axi_arvalid ;
wire rach_wr_en ;
wire rach_rd_en ;
wire rdch_m_axi_rready ;
wire rdch_s_axi_rvalid ;
wire rdch_wr_en ;
wire rdch_rd_en ;
wire arvalid_pkt ;
wire arready_pkt ;
wire arvalid_en ;
wire rdch_rd_ok ;
wire accept_next_pkt ;
integer rdch_free_space ;
integer rdch_commited_space ;
wire rach_we ;
wire rach_re ;
wire rdch_we ;
wire rdch_re ;
localparam ARID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_RACH - C_AXI_ID_WIDTH : C_DIN_WIDTH_RACH;
localparam ARADDR_OFFSET = ARID_OFFSET - C_AXI_ADDR_WIDTH;
localparam ARLEN_OFFSET = C_AXI_TYPE != 2 ? ARADDR_OFFSET - C_AXI_LEN_WIDTH : ARADDR_OFFSET;
localparam ARSIZE_OFFSET = C_AXI_TYPE != 2 ? ARLEN_OFFSET - C_AXI_SIZE_WIDTH : ARLEN_OFFSET;
localparam ARBURST_OFFSET = C_AXI_TYPE != 2 ? ARSIZE_OFFSET - C_AXI_BURST_WIDTH : ARSIZE_OFFSET;
localparam ARLOCK_OFFSET = C_AXI_TYPE != 2 ? ARBURST_OFFSET - C_AXI_LOCK_WIDTH : ARBURST_OFFSET;
localparam ARCACHE_OFFSET = C_AXI_TYPE != 2 ? ARLOCK_OFFSET - C_AXI_CACHE_WIDTH : ARLOCK_OFFSET;
localparam ARPROT_OFFSET = ARCACHE_OFFSET - C_AXI_PROT_WIDTH;
localparam ARQOS_OFFSET = ARPROT_OFFSET - C_AXI_QOS_WIDTH;
localparam ARREGION_OFFSET = C_AXI_TYPE == 1 ? ARQOS_OFFSET - C_AXI_REGION_WIDTH : ARQOS_OFFSET;
localparam ARUSER_OFFSET = C_HAS_AXI_ARUSER == 1 ? ARREGION_OFFSET-C_AXI_ARUSER_WIDTH : ARREGION_OFFSET;
localparam RID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_RDCH - C_AXI_ID_WIDTH : C_DIN_WIDTH_RDCH;
localparam RDATA_OFFSET = RID_OFFSET - C_AXI_DATA_WIDTH;
localparam RRESP_OFFSET = RDATA_OFFSET - C_AXI_RRESP_WIDTH;
localparam RUSER_OFFSET = C_HAS_AXI_RUSER == 1 ? RRESP_OFFSET-C_AXI_RUSER_WIDTH : RRESP_OFFSET;
generate if (IS_RD_ADDR_CH == 1) begin : axi_read_addr_channel
// Write protection when almost full or prog_full is high
assign rach_we = (C_PROG_FULL_TYPE_RACH != 0) ? rach_s_axi_arready & S_AXI_ARVALID : S_AXI_ARVALID;
// Read protection when almost empty or prog_empty is high
// assign rach_rd_en = (C_PROG_EMPTY_TYPE_RACH != 5) ? rach_m_axi_arvalid & M_AXI_ARREADY : M_AXI_ARREADY && arvalid_en;
assign rach_re = (C_PROG_EMPTY_TYPE_RACH != 0 && C_APPLICATION_TYPE_RACH == 1) ?
rach_m_axi_arvalid & arready_pkt & arvalid_en :
(C_PROG_EMPTY_TYPE_RACH != 0 && C_APPLICATION_TYPE_RACH != 1) ?
M_AXI_ARREADY && rach_m_axi_arvalid :
(C_PROG_EMPTY_TYPE_RACH == 0 && C_APPLICATION_TYPE_RACH == 1) ?
arready_pkt & arvalid_en :
(C_PROG_EMPTY_TYPE_RACH == 0 && C_APPLICATION_TYPE_RACH != 1) ?
M_AXI_ARREADY : 1'b0;
assign rach_wr_en = (C_HAS_SLAVE_CE == 1) ? rach_we & S_ACLK_EN : rach_we;
assign rach_rd_en = (C_HAS_MASTER_CE == 1) ? rach_re & M_ACLK_EN : rach_re;
fifo_generator_v13_1_1_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_RACH == 1 || C_IMPLEMENTATION_TYPE_RACH == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_RACH == 2 || C_IMPLEMENTATION_TYPE_RACH == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_RACH == 1 || C_IMPLEMENTATION_TYPE_RACH == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_RACH == 11 || C_IMPLEMENTATION_TYPE_RACH == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_RACH),
.C_WR_DEPTH (C_WR_DEPTH_RACH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_RACH),
.C_INTERFACE_TYPE (C_INTERFACE_TYPE),
.C_DOUT_WIDTH (C_DIN_WIDTH_RACH),
.C_RD_DEPTH (C_WR_DEPTH_RACH),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_RACH),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_RACH),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_RACH),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_RACH),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH),
.C_USE_ECC (C_USE_ECC_RACH),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_RACH),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_FIFO_TYPE ((C_APPLICATION_TYPE_RACH == 1)?0:C_APPLICATION_TYPE_RACH),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_RACH == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RACH + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RACH == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RACH + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RACH == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RACH + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_EMBEDDED_REG (0),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
.C_EN_SAFETY_CKT (1),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v13_1_1_rach_dut
(
.CLK (S_ACLK),
.WR_CLK (S_ACLK),
.RD_CLK (M_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (rach_wr_en),
.RD_EN (rach_rd_en),
.PROG_FULL_THRESH (AXI_AR_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RACH{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RACH{1'b0}}),
.PROG_EMPTY_THRESH (AXI_AR_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RACH{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RACH{1'b0}}),
.INJECTDBITERR (AXI_AR_INJECTDBITERR),
.INJECTSBITERR (AXI_AR_INJECTSBITERR),
.DIN (rach_din),
.DOUT (rach_dout_pkt),
.FULL (rach_full),
.EMPTY (rach_empty),
.ALMOST_FULL (),
.ALMOST_EMPTY (),
.PROG_FULL (AXI_AR_PROG_FULL),
.PROG_EMPTY (AXI_AR_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (axi_ar_overflow_i),
.VALID (),
.UNDERFLOW (axi_ar_underflow_i),
.DATA_COUNT (AXI_AR_DATA_COUNT),
.RD_DATA_COUNT (AXI_AR_RD_DATA_COUNT),
.WR_DATA_COUNT (AXI_AR_WR_DATA_COUNT),
.SBITERR (AXI_AR_SBITERR),
.DBITERR (AXI_AR_DBITERR),
.wr_rst_busy (wr_rst_busy_rach),
.rd_rst_busy (rd_rst_busy_rach),
.wr_rst_i_out (),
.rd_rst_i_out (),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign rach_s_axi_arready = (IS_8SERIES == 0) ? ~rach_full : (C_IMPLEMENTATION_TYPE_RACH == 5 || C_IMPLEMENTATION_TYPE_RACH == 13) ? ~(rach_full | wr_rst_busy_rach) : ~rach_full;
assign rach_m_axi_arvalid = ~rach_empty;
assign S_AXI_ARREADY = rach_s_axi_arready;
assign AXI_AR_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_ar_underflow_i : 0;
assign AXI_AR_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_ar_overflow_i : 0;
end endgenerate // axi_read_addr_channel
// Register Slice for Read Address Channel
generate if (C_RACH_TYPE == 1) begin : grach_reg_slice
fifo_generator_v13_1_1_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_RACH),
.C_REG_CONFIG (C_REG_SLICE_MODE_RACH)
)
rach_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (rach_din),
.S_VALID (S_AXI_ARVALID),
.S_READY (S_AXI_ARREADY),
// Master side
.M_PAYLOAD_DATA (rach_dout),
.M_VALID (M_AXI_ARVALID),
.M_READY (M_AXI_ARREADY)
);
end endgenerate // grach_reg_slice
// Register Slice for Read Address Channel for MM Packet FIFO
generate if (C_RACH_TYPE == 0 && C_APPLICATION_TYPE_RACH == 1) begin : grach_reg_slice_mm_pkt_fifo
fifo_generator_v13_1_1_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_RACH),
.C_REG_CONFIG (1)
)
reg_slice_mm_pkt_fifo_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (inverted_reset),
// Slave side
.S_PAYLOAD_DATA (rach_dout_pkt),
.S_VALID (arvalid_pkt),
.S_READY (arready_pkt),
// Master side
.M_PAYLOAD_DATA (rach_dout),
.M_VALID (M_AXI_ARVALID),
.M_READY (M_AXI_ARREADY)
);
end endgenerate // grach_reg_slice_mm_pkt_fifo
generate if (C_RACH_TYPE == 0 && C_APPLICATION_TYPE_RACH != 1) begin : grach_m_axi_arvalid
assign M_AXI_ARVALID = rach_m_axi_arvalid;
assign rach_dout = rach_dout_pkt;
end endgenerate // grach_m_axi_arvalid
generate if (C_APPLICATION_TYPE_RACH == 1 && C_HAS_AXI_RD_CHANNEL == 1) begin : axi_mm_pkt_fifo_rd
assign rdch_rd_ok = rdch_s_axi_rvalid && rdch_rd_en;
assign arvalid_pkt = rach_m_axi_arvalid && arvalid_en;
assign accept_next_pkt = rach_m_axi_arvalid && arready_pkt && arvalid_en;
always@(posedge S_ACLK or posedge inverted_reset) begin
if(inverted_reset) begin
rdch_commited_space <= 0;
end else begin
if(rdch_rd_ok && !accept_next_pkt) begin
rdch_commited_space <= rdch_commited_space-1;
end else if(!rdch_rd_ok && accept_next_pkt) begin
rdch_commited_space <= rdch_commited_space+(rach_dout_pkt[ARADDR_OFFSET-1:ARLEN_OFFSET]+1);
end else if(rdch_rd_ok && accept_next_pkt) begin
rdch_commited_space <= rdch_commited_space+(rach_dout_pkt[ARADDR_OFFSET-1:ARLEN_OFFSET]);
end
end
end //Always end
always@(*) begin
rdch_free_space <= (C_WR_DEPTH_RDCH-(rdch_commited_space+rach_dout_pkt[ARADDR_OFFSET-1:ARLEN_OFFSET]+1));
end
assign arvalid_en = (rdch_free_space >= 0)?1:0;
end
endgenerate
generate if (C_APPLICATION_TYPE_RACH != 1) begin : axi_mm_fifo_rd
assign arvalid_en = 1;
end
endgenerate
generate if (IS_RD_DATA_CH == 1) begin : axi_read_data_channel
// Write protection when almost full or prog_full is high
assign rdch_we = (C_PROG_FULL_TYPE_RDCH != 0) ? rdch_m_axi_rready & M_AXI_RVALID : M_AXI_RVALID;
// Read protection when almost empty or prog_empty is high
assign rdch_re = (C_PROG_EMPTY_TYPE_RDCH != 0) ? rdch_s_axi_rvalid & S_AXI_RREADY : S_AXI_RREADY;
assign rdch_wr_en = (C_HAS_MASTER_CE == 1) ? rdch_we & M_ACLK_EN : rdch_we;
assign rdch_rd_en = (C_HAS_SLAVE_CE == 1) ? rdch_re & S_ACLK_EN : rdch_re;
fifo_generator_v13_1_1_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_RDCH == 1 || C_IMPLEMENTATION_TYPE_RDCH == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_RDCH == 2 || C_IMPLEMENTATION_TYPE_RDCH == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_RDCH == 1 || C_IMPLEMENTATION_TYPE_RDCH == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_RDCH == 11 || C_IMPLEMENTATION_TYPE_RDCH == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_RDCH),
.C_WR_DEPTH (C_WR_DEPTH_RDCH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_RDCH),
.C_DOUT_WIDTH (C_DIN_WIDTH_RDCH),
.C_RD_DEPTH (C_WR_DEPTH_RDCH),
.C_INTERFACE_TYPE (C_INTERFACE_TYPE),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_RDCH),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_RDCH),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_RDCH),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_RDCH),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH),
.C_USE_ECC (C_USE_ECC_RDCH),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_RDCH),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_FIFO_TYPE (C_APPLICATION_TYPE_RDCH),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_RDCH == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RDCH + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RDCH == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RDCH + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RDCH == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RDCH + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_EMBEDDED_REG (0),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
.C_EN_SAFETY_CKT (1),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v13_1_1_rdch_dut
(
.CLK (S_ACLK),
.WR_CLK (M_ACLK),
.RD_CLK (S_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (rdch_wr_en),
.RD_EN (rdch_rd_en),
.PROG_FULL_THRESH (AXI_R_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RDCH{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RDCH{1'b0}}),
.PROG_EMPTY_THRESH (AXI_R_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RDCH{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RDCH{1'b0}}),
.INJECTDBITERR (AXI_R_INJECTDBITERR),
.INJECTSBITERR (AXI_R_INJECTSBITERR),
.DIN (rdch_din),
.DOUT (rdch_dout),
.FULL (rdch_full),
.EMPTY (rdch_empty),
.ALMOST_FULL (),
.ALMOST_EMPTY (),
.PROG_FULL (AXI_R_PROG_FULL),
.PROG_EMPTY (AXI_R_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (axi_r_overflow_i),
.VALID (),
.UNDERFLOW (axi_r_underflow_i),
.DATA_COUNT (AXI_R_DATA_COUNT),
.RD_DATA_COUNT (AXI_R_RD_DATA_COUNT),
.WR_DATA_COUNT (AXI_R_WR_DATA_COUNT),
.SBITERR (AXI_R_SBITERR),
.DBITERR (AXI_R_DBITERR),
.wr_rst_busy (wr_rst_busy_rdch),
.rd_rst_busy (rd_rst_busy_rdch),
.wr_rst_i_out (),
.rd_rst_i_out (),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign rdch_s_axi_rvalid = ~rdch_empty;
assign rdch_m_axi_rready = (IS_8SERIES == 0) ? ~rdch_full : (C_IMPLEMENTATION_TYPE_RDCH == 5 || C_IMPLEMENTATION_TYPE_RDCH == 13) ? ~(rdch_full | wr_rst_busy_rdch) : ~rdch_full;
assign S_AXI_RVALID = rdch_s_axi_rvalid;
assign M_AXI_RREADY = rdch_m_axi_rready;
assign AXI_R_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_r_underflow_i : 0;
assign AXI_R_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_r_overflow_i : 0;
end endgenerate //axi_read_data_channel
// Register Slice for read Data Channel
generate if (C_RDCH_TYPE == 1) begin : grdch_reg_slice
fifo_generator_v13_1_1_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_RDCH),
.C_REG_CONFIG (C_REG_SLICE_MODE_RDCH)
)
rdch_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (rdch_din),
.S_VALID (M_AXI_RVALID),
.S_READY (M_AXI_RREADY),
// Master side
.M_PAYLOAD_DATA (rdch_dout),
.M_VALID (S_AXI_RVALID),
.M_READY (S_AXI_RREADY)
);
end endgenerate // grdch_reg_slice
assign axi_rd_underflow_i = C_USE_COMMON_UNDERFLOW == 1 ? (axi_ar_underflow_i || axi_r_underflow_i) : 0;
assign axi_rd_overflow_i = C_USE_COMMON_OVERFLOW == 1 ? (axi_ar_overflow_i || axi_r_overflow_i) : 0;
generate if (IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) begin : axi_full_rach_output
assign M_AXI_ARADDR = rach_dout[ARID_OFFSET-1:ARADDR_OFFSET];
assign M_AXI_ARLEN = rach_dout[ARADDR_OFFSET-1:ARLEN_OFFSET];
assign M_AXI_ARSIZE = rach_dout[ARLEN_OFFSET-1:ARSIZE_OFFSET];
assign M_AXI_ARBURST = rach_dout[ARSIZE_OFFSET-1:ARBURST_OFFSET];
assign M_AXI_ARLOCK = rach_dout[ARBURST_OFFSET-1:ARLOCK_OFFSET];
assign M_AXI_ARCACHE = rach_dout[ARLOCK_OFFSET-1:ARCACHE_OFFSET];
assign M_AXI_ARPROT = rach_dout[ARCACHE_OFFSET-1:ARPROT_OFFSET];
assign M_AXI_ARQOS = rach_dout[ARPROT_OFFSET-1:ARQOS_OFFSET];
assign rach_din[ARID_OFFSET-1:ARADDR_OFFSET] = S_AXI_ARADDR;
assign rach_din[ARADDR_OFFSET-1:ARLEN_OFFSET] = S_AXI_ARLEN;
assign rach_din[ARLEN_OFFSET-1:ARSIZE_OFFSET] = S_AXI_ARSIZE;
assign rach_din[ARSIZE_OFFSET-1:ARBURST_OFFSET] = S_AXI_ARBURST;
assign rach_din[ARBURST_OFFSET-1:ARLOCK_OFFSET] = S_AXI_ARLOCK;
assign rach_din[ARLOCK_OFFSET-1:ARCACHE_OFFSET] = S_AXI_ARCACHE;
assign rach_din[ARCACHE_OFFSET-1:ARPROT_OFFSET] = S_AXI_ARPROT;
assign rach_din[ARPROT_OFFSET-1:ARQOS_OFFSET] = S_AXI_ARQOS;
end endgenerate // axi_full_rach_output
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_AXI_TYPE == 1) begin : axi_arregion
assign M_AXI_ARREGION = rach_dout[ARQOS_OFFSET-1:ARREGION_OFFSET];
end endgenerate // axi_arregion
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_AXI_TYPE != 1) begin : naxi_arregion
assign M_AXI_ARREGION = 0;
end endgenerate // naxi_arregion
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ARUSER == 1) begin : axi_aruser
assign M_AXI_ARUSER = rach_dout[ARREGION_OFFSET-1:ARUSER_OFFSET];
end endgenerate // axi_aruser
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ARUSER == 0) begin : naxi_aruser
assign M_AXI_ARUSER = 0;
end endgenerate // naxi_aruser
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_arid
assign M_AXI_ARID = rach_dout[C_DIN_WIDTH_RACH-1:ARID_OFFSET];
end endgenerate // axi_arid
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_arid
assign M_AXI_ARID = 0;
end endgenerate // naxi_arid
generate if (IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) begin : axi_full_rdch_output
assign S_AXI_RDATA = rdch_dout[RID_OFFSET-1:RDATA_OFFSET];
assign S_AXI_RRESP = rdch_dout[RDATA_OFFSET-1:RRESP_OFFSET];
assign S_AXI_RLAST = rdch_dout[0];
assign rdch_din[RID_OFFSET-1:RDATA_OFFSET] = M_AXI_RDATA;
assign rdch_din[RDATA_OFFSET-1:RRESP_OFFSET] = M_AXI_RRESP;
assign rdch_din[0] = M_AXI_RLAST;
end endgenerate // axi_full_rdch_output
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_RUSER == 1) begin : axi_full_ruser_output
assign S_AXI_RUSER = rdch_dout[RRESP_OFFSET-1:RUSER_OFFSET];
end endgenerate // axi_full_ruser_output
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_RUSER == 0) begin : axi_full_nruser_output
assign S_AXI_RUSER = 0;
end endgenerate // axi_full_nruser_output
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_rid
assign S_AXI_RID = rdch_dout[C_DIN_WIDTH_RDCH-1:RID_OFFSET];
end endgenerate // axi_rid
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_rid
assign S_AXI_RID = 0;
end endgenerate // naxi_rid
generate if (IS_AXI_LITE_RACH == 1 || (IS_AXI_LITE == 1 && C_RACH_TYPE == 1)) begin : axi_lite_rach_output1
assign rach_din = {S_AXI_ARADDR, S_AXI_ARPROT};
assign M_AXI_ARADDR = rach_dout[C_DIN_WIDTH_RACH-1:ARADDR_OFFSET];
assign M_AXI_ARPROT = rach_dout[ARADDR_OFFSET-1:ARPROT_OFFSET];
end endgenerate // axi_lite_rach_output
generate if (IS_AXI_LITE_RDCH == 1 || (IS_AXI_LITE == 1 && C_RDCH_TYPE == 1)) begin : axi_lite_rdch_output1
assign rdch_din = {M_AXI_RDATA, M_AXI_RRESP};
assign S_AXI_RDATA = rdch_dout[C_DIN_WIDTH_RDCH-1:RDATA_OFFSET];
assign S_AXI_RRESP = rdch_dout[RDATA_OFFSET-1:RRESP_OFFSET];
end endgenerate // axi_lite_rdch_output
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ARUSER == 1) begin : grach_din1
assign rach_din[ARREGION_OFFSET-1:ARUSER_OFFSET] = S_AXI_ARUSER;
end endgenerate // grach_din1
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : grach_din2
assign rach_din[C_DIN_WIDTH_RACH-1:ARID_OFFSET] = S_AXI_ARID;
end endgenerate // grach_din2
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_AXI_TYPE == 1) begin
assign rach_din[ARQOS_OFFSET-1:ARREGION_OFFSET] = S_AXI_ARREGION;
end endgenerate
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_RUSER == 1) begin : grdch_din1
assign rdch_din[RRESP_OFFSET-1:RUSER_OFFSET] = M_AXI_RUSER;
end endgenerate // grdch_din1
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : grdch_din2
assign rdch_din[C_DIN_WIDTH_RDCH-1:RID_OFFSET] = M_AXI_RID;
end endgenerate // grdch_din2
//end of axi_read_channel
generate if (C_INTERFACE_TYPE == 1 && C_USE_COMMON_UNDERFLOW == 1) begin : gaxi_comm_uf
assign UNDERFLOW = (C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 1) ? (axi_wr_underflow_i || axi_rd_underflow_i) :
(C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 0) ? axi_wr_underflow_i :
(C_HAS_AXI_WR_CHANNEL == 0 && C_HAS_AXI_RD_CHANNEL == 1) ? axi_rd_underflow_i : 0;
end endgenerate // gaxi_comm_uf
generate if (C_INTERFACE_TYPE == 1 && C_USE_COMMON_OVERFLOW == 1) begin : gaxi_comm_of
assign OVERFLOW = (C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 1) ? (axi_wr_overflow_i || axi_rd_overflow_i) :
(C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 0) ? axi_wr_overflow_i :
(C_HAS_AXI_WR_CHANNEL == 0 && C_HAS_AXI_RD_CHANNEL == 1) ? axi_rd_overflow_i : 0;
end endgenerate // gaxi_comm_of
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
// Pass Through Logic or Wiring Logic
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
// Pass Through Logic for Read Channel
//-------------------------------------------------------------------------
// Wiring logic for Write Address Channel
generate if (C_WACH_TYPE == 2) begin : gwach_pass_through
assign M_AXI_AWID = S_AXI_AWID;
assign M_AXI_AWADDR = S_AXI_AWADDR;
assign M_AXI_AWLEN = S_AXI_AWLEN;
assign M_AXI_AWSIZE = S_AXI_AWSIZE;
assign M_AXI_AWBURST = S_AXI_AWBURST;
assign M_AXI_AWLOCK = S_AXI_AWLOCK;
assign M_AXI_AWCACHE = S_AXI_AWCACHE;
assign M_AXI_AWPROT = S_AXI_AWPROT;
assign M_AXI_AWQOS = S_AXI_AWQOS;
assign M_AXI_AWREGION = S_AXI_AWREGION;
assign M_AXI_AWUSER = S_AXI_AWUSER;
assign S_AXI_AWREADY = M_AXI_AWREADY;
assign M_AXI_AWVALID = S_AXI_AWVALID;
end endgenerate // gwach_pass_through;
// Wiring logic for Write Data Channel
generate if (C_WDCH_TYPE == 2) begin : gwdch_pass_through
assign M_AXI_WID = S_AXI_WID;
assign M_AXI_WDATA = S_AXI_WDATA;
assign M_AXI_WSTRB = S_AXI_WSTRB;
assign M_AXI_WLAST = S_AXI_WLAST;
assign M_AXI_WUSER = S_AXI_WUSER;
assign S_AXI_WREADY = M_AXI_WREADY;
assign M_AXI_WVALID = S_AXI_WVALID;
end endgenerate // gwdch_pass_through;
// Wiring logic for Write Response Channel
generate if (C_WRCH_TYPE == 2) begin : gwrch_pass_through
assign S_AXI_BID = M_AXI_BID;
assign S_AXI_BRESP = M_AXI_BRESP;
assign S_AXI_BUSER = M_AXI_BUSER;
assign M_AXI_BREADY = S_AXI_BREADY;
assign S_AXI_BVALID = M_AXI_BVALID;
end endgenerate // gwrch_pass_through;
//-------------------------------------------------------------------------
// Pass Through Logic for Read Channel
//-------------------------------------------------------------------------
// Wiring logic for Read Address Channel
generate if (C_RACH_TYPE == 2) begin : grach_pass_through
assign M_AXI_ARID = S_AXI_ARID;
assign M_AXI_ARADDR = S_AXI_ARADDR;
assign M_AXI_ARLEN = S_AXI_ARLEN;
assign M_AXI_ARSIZE = S_AXI_ARSIZE;
assign M_AXI_ARBURST = S_AXI_ARBURST;
assign M_AXI_ARLOCK = S_AXI_ARLOCK;
assign M_AXI_ARCACHE = S_AXI_ARCACHE;
assign M_AXI_ARPROT = S_AXI_ARPROT;
assign M_AXI_ARQOS = S_AXI_ARQOS;
assign M_AXI_ARREGION = S_AXI_ARREGION;
assign M_AXI_ARUSER = S_AXI_ARUSER;
assign S_AXI_ARREADY = M_AXI_ARREADY;
assign M_AXI_ARVALID = S_AXI_ARVALID;
end endgenerate // grach_pass_through;
// Wiring logic for Read Data Channel
generate if (C_RDCH_TYPE == 2) begin : grdch_pass_through
assign S_AXI_RID = M_AXI_RID;
assign S_AXI_RLAST = M_AXI_RLAST;
assign S_AXI_RUSER = M_AXI_RUSER;
assign S_AXI_RDATA = M_AXI_RDATA;
assign S_AXI_RRESP = M_AXI_RRESP;
assign S_AXI_RVALID = M_AXI_RVALID;
assign M_AXI_RREADY = S_AXI_RREADY;
end endgenerate // grdch_pass_through;
// Wiring logic for AXI Streaming
generate if (C_AXIS_TYPE == 2) begin : gaxis_pass_through
assign M_AXIS_TDATA = S_AXIS_TDATA;
assign M_AXIS_TSTRB = S_AXIS_TSTRB;
assign M_AXIS_TKEEP = S_AXIS_TKEEP;
assign M_AXIS_TID = S_AXIS_TID;
assign M_AXIS_TDEST = S_AXIS_TDEST;
assign M_AXIS_TUSER = S_AXIS_TUSER;
assign M_AXIS_TLAST = S_AXIS_TLAST;
assign S_AXIS_TREADY = M_AXIS_TREADY;
assign M_AXIS_TVALID = S_AXIS_TVALID;
end endgenerate // gaxis_pass_through;
endmodule //fifo_generator_v13_1_1
/*******************************************************************************
* Declaration of top-level module for Conventional FIFO
******************************************************************************/
module fifo_generator_v13_1_1_CONV_VER
#(
parameter C_COMMON_CLOCK = 0,
parameter C_INTERFACE_TYPE = 0,
parameter C_EN_SAFETY_CKT = 0,
parameter C_COUNT_TYPE = 0,
parameter C_DATA_COUNT_WIDTH = 2,
parameter C_DEFAULT_VALUE = "",
parameter C_DIN_WIDTH = 8,
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_ENABLE_RLOCS = 0,
parameter C_FAMILY = "virtex7", //Not allowed in Verilog model
parameter C_FULL_FLAGS_RST_VAL = 1,
parameter C_HAS_ALMOST_EMPTY = 0,
parameter C_HAS_ALMOST_FULL = 0,
parameter C_HAS_BACKUP = 0,
parameter C_HAS_DATA_COUNT = 0,
parameter C_HAS_INT_CLK = 0,
parameter C_HAS_MEMINIT_FILE = 0,
parameter C_HAS_OVERFLOW = 0,
parameter C_HAS_RD_DATA_COUNT = 0,
parameter C_HAS_RD_RST = 0,
parameter C_HAS_RST = 0,
parameter C_HAS_SRST = 0,
parameter C_HAS_UNDERFLOW = 0,
parameter C_HAS_VALID = 0,
parameter C_HAS_WR_ACK = 0,
parameter C_HAS_WR_DATA_COUNT = 0,
parameter C_HAS_WR_RST = 0,
parameter C_IMPLEMENTATION_TYPE = 0,
parameter C_INIT_WR_PNTR_VAL = 0,
parameter C_MEMORY_TYPE = 1,
parameter C_MIF_FILE_NAME = "",
parameter C_OPTIMIZATION_MODE = 0,
parameter C_OVERFLOW_LOW = 0,
parameter C_PRELOAD_LATENCY = 1,
parameter C_PRELOAD_REGS = 0,
parameter C_PRIM_FIFO_TYPE = "",
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0,
parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0,
parameter C_PROG_EMPTY_TYPE = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0,
parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0,
parameter C_PROG_FULL_TYPE = 0,
parameter C_RD_DATA_COUNT_WIDTH = 2,
parameter C_RD_DEPTH = 256,
parameter C_RD_FREQ = 1,
parameter C_RD_PNTR_WIDTH = 8,
parameter C_UNDERFLOW_LOW = 0,
parameter C_USE_DOUT_RST = 0,
parameter C_USE_ECC = 0,
parameter C_USE_EMBEDDED_REG = 0,
parameter C_USE_FIFO16_FLAGS = 0,
parameter C_USE_FWFT_DATA_COUNT = 0,
parameter C_VALID_LOW = 0,
parameter C_WR_ACK_LOW = 0,
parameter C_WR_DATA_COUNT_WIDTH = 2,
parameter C_WR_DEPTH = 256,
parameter C_WR_FREQ = 1,
parameter C_WR_PNTR_WIDTH = 8,
parameter C_WR_RESPONSE_LATENCY = 1,
parameter C_MSGON_VAL = 1,
parameter C_ENABLE_RST_SYNC = 1,
parameter C_ERROR_INJECTION_TYPE = 0,
parameter C_FIFO_TYPE = 0,
parameter C_SYNCHRONIZER_STAGE = 2,
parameter C_AXI_TYPE = 0
)
(
input BACKUP,
input BACKUP_MARKER,
input CLK,
input RST,
input SRST,
input WR_CLK,
input WR_RST,
input RD_CLK,
input RD_RST,
input [C_DIN_WIDTH-1:0] DIN,
input WR_EN,
input RD_EN,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE,
input INT_CLK,
input INJECTDBITERR,
input INJECTSBITERR,
output [C_DOUT_WIDTH-1:0] DOUT,
output FULL,
output ALMOST_FULL,
output WR_ACK,
output OVERFLOW,
output EMPTY,
output ALMOST_EMPTY,
output VALID,
output UNDERFLOW,
output [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT,
output [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT,
output [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT,
output PROG_FULL,
output PROG_EMPTY,
output SBITERR,
output DBITERR,
output wr_rst_busy,
output rd_rst_busy,
output wr_rst_i_out,
output rd_rst_i_out
);
/*
******************************************************************************
* Definition of Parameters
******************************************************************************
* C_COMMON_CLOCK : Common Clock (1), Independent Clocks (0)
* C_COUNT_TYPE : *not used
* C_DATA_COUNT_WIDTH : Width of DATA_COUNT bus
* C_DEFAULT_VALUE : *not used
* C_DIN_WIDTH : Width of DIN bus
* C_DOUT_RST_VAL : Reset value of DOUT
* C_DOUT_WIDTH : Width of DOUT bus
* C_ENABLE_RLOCS : *not used
* C_FAMILY : not used in bhv model
* C_FULL_FLAGS_RST_VAL : Full flags rst val (0 or 1)
* C_HAS_ALMOST_EMPTY : 1=Core has ALMOST_EMPTY flag
* C_HAS_ALMOST_FULL : 1=Core has ALMOST_FULL flag
* C_HAS_BACKUP : *not used
* C_HAS_DATA_COUNT : 1=Core has DATA_COUNT bus
* C_HAS_INT_CLK : not used in bhv model
* C_HAS_MEMINIT_FILE : *not used
* C_HAS_OVERFLOW : 1=Core has OVERFLOW flag
* C_HAS_RD_DATA_COUNT : 1=Core has RD_DATA_COUNT bus
* C_HAS_RD_RST : *not used
* C_HAS_RST : 1=Core has Async Rst
* C_HAS_SRST : 1=Core has Sync Rst
* C_HAS_UNDERFLOW : 1=Core has UNDERFLOW flag
* C_HAS_VALID : 1=Core has VALID flag
* C_HAS_WR_ACK : 1=Core has WR_ACK flag
* C_HAS_WR_DATA_COUNT : 1=Core has WR_DATA_COUNT bus
* C_HAS_WR_RST : *not used
* C_IMPLEMENTATION_TYPE : 0=Common-Clock Bram/Dram
* 1=Common-Clock ShiftRam
* 2=Indep. Clocks Bram/Dram
* 3=Virtex-4 Built-in
* 4=Virtex-5 Built-in
* C_INIT_WR_PNTR_VAL : *not used
* C_MEMORY_TYPE : 1=Block RAM
* 2=Distributed RAM
* 3=Shift RAM
* 4=Built-in FIFO
* C_MIF_FILE_NAME : *not used
* C_OPTIMIZATION_MODE : *not used
* C_OVERFLOW_LOW : 1=OVERFLOW active low
* C_PRELOAD_LATENCY : Latency of read: 0, 1, 2
* C_PRELOAD_REGS : 1=Use output registers
* C_PRIM_FIFO_TYPE : not used in bhv model
* C_PROG_EMPTY_THRESH_ASSERT_VAL: PROG_EMPTY assert threshold
* C_PROG_EMPTY_THRESH_NEGATE_VAL: PROG_EMPTY negate threshold
* C_PROG_EMPTY_TYPE : 0=No programmable empty
* 1=Single prog empty thresh constant
* 2=Multiple prog empty thresh constants
* 3=Single prog empty thresh input
* 4=Multiple prog empty thresh inputs
* C_PROG_FULL_THRESH_ASSERT_VAL : PROG_FULL assert threshold
* C_PROG_FULL_THRESH_NEGATE_VAL : PROG_FULL negate threshold
* C_PROG_FULL_TYPE : 0=No prog full
* 1=Single prog full thresh constant
* 2=Multiple prog full thresh constants
* 3=Single prog full thresh input
* 4=Multiple prog full thresh inputs
* C_RD_DATA_COUNT_WIDTH : Width of RD_DATA_COUNT bus
* C_RD_DEPTH : Depth of read interface (2^N)
* C_RD_FREQ : not used in bhv model
* C_RD_PNTR_WIDTH : always log2(C_RD_DEPTH)
* C_UNDERFLOW_LOW : 1=UNDERFLOW active low
* C_USE_DOUT_RST : 1=Resets DOUT on RST
* C_USE_ECC : Used for error injection purpose
* C_USE_EMBEDDED_REG : 1=Use BRAM embedded output register
* C_USE_FIFO16_FLAGS : not used in bhv model
* C_USE_FWFT_DATA_COUNT : 1=Use extra logic for FWFT data count
* C_VALID_LOW : 1=VALID active low
* C_WR_ACK_LOW : 1=WR_ACK active low
* C_WR_DATA_COUNT_WIDTH : Width of WR_DATA_COUNT bus
* C_WR_DEPTH : Depth of write interface (2^N)
* C_WR_FREQ : not used in bhv model
* C_WR_PNTR_WIDTH : always log2(C_WR_DEPTH)
* C_WR_RESPONSE_LATENCY : *not used
* C_MSGON_VAL : *not used by bhv model
* C_ENABLE_RST_SYNC : 0 = Use WR_RST & RD_RST
* 1 = Use RST
* C_ERROR_INJECTION_TYPE : 0 = No error injection
* 1 = Single bit error injection only
* 2 = Double bit error injection only
* 3 = Single and double bit error injection
******************************************************************************
* Definition of Ports
******************************************************************************
* BACKUP : Not used
* BACKUP_MARKER: Not used
* CLK : Clock
* DIN : Input data bus
* PROG_EMPTY_THRESH : Threshold for Programmable Empty Flag
* PROG_EMPTY_THRESH_ASSERT: Threshold for Programmable Empty Flag
* PROG_EMPTY_THRESH_NEGATE: Threshold for Programmable Empty Flag
* PROG_FULL_THRESH : Threshold for Programmable Full Flag
* PROG_FULL_THRESH_ASSERT : Threshold for Programmable Full Flag
* PROG_FULL_THRESH_NEGATE : Threshold for Programmable Full Flag
* RD_CLK : Read Domain Clock
* RD_EN : Read enable
* RD_RST : Read Reset
* RST : Asynchronous Reset
* SRST : Synchronous Reset
* WR_CLK : Write Domain Clock
* WR_EN : Write enable
* WR_RST : Write Reset
* INT_CLK : Internal Clock
* INJECTSBITERR: Inject Signle bit error
* INJECTDBITERR: Inject Double bit error
* ALMOST_EMPTY : One word remaining in FIFO
* ALMOST_FULL : One empty space remaining in FIFO
* DATA_COUNT : Number of data words in fifo( synchronous to CLK)
* DOUT : Output data bus
* EMPTY : Empty flag
* FULL : Full flag
* OVERFLOW : Last write rejected
* PROG_EMPTY : Programmable Empty Flag
* PROG_FULL : Programmable Full Flag
* RD_DATA_COUNT: Number of data words in fifo (synchronous to RD_CLK)
* UNDERFLOW : Last read rejected
* VALID : Last read acknowledged, DOUT bus VALID
* WR_ACK : Last write acknowledged
* WR_DATA_COUNT: Number of data words in fifo (synchronous to WR_CLK)
* SBITERR : Single Bit ECC Error Detected
* DBITERR : Double Bit ECC Error Detected
******************************************************************************
*/
//----------------------------------------------------------------------------
//- Internal Signals for delayed input signals
//- All the input signals except Clock are delayed by 100 ps and then given to
//- the models.
//----------------------------------------------------------------------------
reg rst_delayed ;
reg empty_fb ;
reg srst_delayed ;
reg wr_rst_delayed ;
reg rd_rst_delayed ;
reg wr_en_delayed ;
reg rd_en_delayed ;
reg [C_DIN_WIDTH-1:0] din_delayed ;
reg [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_delayed ;
reg [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_assert_delayed ;
reg [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_negate_delayed ;
reg [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_delayed ;
reg [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_assert_delayed ;
reg [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_negate_delayed ;
reg injectdbiterr_delayed ;
reg injectsbiterr_delayed ;
wire empty_p0_out;
always @* rst_delayed <= #`TCQ RST ;
always @* empty_fb <= #`TCQ empty_p0_out ;
always @* srst_delayed <= #`TCQ SRST ;
always @* wr_rst_delayed <= #`TCQ WR_RST ;
always @* rd_rst_delayed <= #`TCQ RD_RST ;
always @* din_delayed <= #`TCQ DIN ;
always @* wr_en_delayed <= #`TCQ WR_EN ;
always @* rd_en_delayed <= #`TCQ RD_EN ;
always @* prog_empty_thresh_delayed <= #`TCQ PROG_EMPTY_THRESH ;
always @* prog_empty_thresh_assert_delayed <= #`TCQ PROG_EMPTY_THRESH_ASSERT ;
always @* prog_empty_thresh_negate_delayed <= #`TCQ PROG_EMPTY_THRESH_NEGATE ;
always @* prog_full_thresh_delayed <= #`TCQ PROG_FULL_THRESH ;
always @* prog_full_thresh_assert_delayed <= #`TCQ PROG_FULL_THRESH_ASSERT ;
always @* prog_full_thresh_negate_delayed <= #`TCQ PROG_FULL_THRESH_NEGATE ;
always @* injectdbiterr_delayed <= #`TCQ INJECTDBITERR ;
always @* injectsbiterr_delayed <= #`TCQ INJECTSBITERR ;
/*****************************************************************************
* Derived parameters
****************************************************************************/
//There are 2 Verilog behavioral models
// 0 = Common-Clock FIFO/ShiftRam FIFO
// 1 = Independent Clocks FIFO
// 2 = Low Latency Synchronous FIFO
// 3 = Low Latency Asynchronous FIFO
localparam C_VERILOG_IMPL = (C_FIFO_TYPE == 3) ? 2 :
(C_IMPLEMENTATION_TYPE == 2) ? 1 : 0;
localparam IS_8SERIES = (C_FAMILY == "virtexu" || C_FAMILY == "kintexu" || C_FAMILY == "artixu" || C_FAMILY == "virtexuplus" || C_FAMILY == "zynquplus" || C_FAMILY == "kintexuplus") ? 1 : 0;
//Internal reset signals
reg rd_rst_asreg = 0;
reg rd_rst_asreg_d1 = 0;
reg rd_rst_asreg_d2 = 0;
reg rd_rst_asreg_d3 = 0;
reg rd_rst_reg = 0;
wire rd_rst_comb;
reg wr_rst_d0 = 0;
reg wr_rst_d1 = 0;
reg wr_rst_d2 = 0;
reg rd_rst_d0 = 0;
reg rd_rst_d1 = 0;
reg rd_rst_d2 = 0;
reg rd_rst_d3 = 0;
reg wrrst_done = 0;
reg rdrst_done = 0;
reg wr_rst_asreg = 0;
reg wr_rst_asreg_d1 = 0;
reg wr_rst_asreg_d2 = 0;
reg wr_rst_asreg_d3 = 0;
reg rd_rst_wr_d0 = 0;
reg rd_rst_wr_d1 = 0;
reg rd_rst_wr_d2 = 0;
reg wr_rst_reg = 0;
reg rst_active_i = 1'b1;
reg rst_delayed_d1 = 1'b1;
reg rst_delayed_d2 = 1'b1;
wire wr_rst_comb;
wire wr_rst_i;
wire rd_rst_i;
wire rst_i;
//Internal reset signals
reg rst_asreg = 0;
reg srst_asreg = 0;
reg rst_asreg_d1 = 0;
reg rst_asreg_d2 = 0;
reg srst_asreg_d1 = 0;
reg srst_asreg_d2 = 0;
reg rst_reg = 0;
reg srst_reg = 0;
wire rst_comb;
wire srst_comb;
reg rst_full_gen_i = 0;
reg rst_full_ff_i = 0;
wire RD_CLK_P0_IN;
wire RST_P0_IN;
wire RD_EN_FIFO_IN;
wire RD_EN_P0_IN;
wire ALMOST_EMPTY_FIFO_OUT;
wire ALMOST_FULL_FIFO_OUT;
wire [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT_FIFO_OUT;
wire [C_DOUT_WIDTH-1:0] DOUT_FIFO_OUT;
wire EMPTY_FIFO_OUT;
wire FULL_FIFO_OUT;
wire OVERFLOW_FIFO_OUT;
wire PROG_EMPTY_FIFO_OUT;
wire PROG_FULL_FIFO_OUT;
wire VALID_FIFO_OUT;
wire [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT_FIFO_OUT;
wire UNDERFLOW_FIFO_OUT;
wire WR_ACK_FIFO_OUT;
wire [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT_FIFO_OUT;
//***************************************************************************
// Internal Signals
// The core uses either the internal_ wires or the preload0_ wires depending
// on whether the core uses Preload0 or not.
// When using preload0, the internal signals connect the internal core to
// the preload logic, and the external core's interfaces are tied to the
// preload0 signals from the preload logic.
//***************************************************************************
wire [C_DOUT_WIDTH-1:0] DATA_P0_OUT;
wire VALID_P0_OUT;
wire EMPTY_P0_OUT;
wire ALMOSTEMPTY_P0_OUT;
reg EMPTY_P0_OUT_Q;
reg ALMOSTEMPTY_P0_OUT_Q;
wire UNDERFLOW_P0_OUT;
wire RDEN_P0_OUT;
wire [C_DOUT_WIDTH-1:0] DATA_P0_IN;
wire EMPTY_P0_IN;
reg [31:0] DATA_COUNT_FWFT;
reg SS_FWFT_WR ;
reg SS_FWFT_RD ;
wire sbiterr_fifo_out;
wire dbiterr_fifo_out;
wire inject_sbit_err;
wire inject_dbit_err;
wire w_fab_read_data_valid_i;
wire w_read_data_valid_i;
wire w_ram_valid_i;
// Assign 0 if not selected to avoid 'X' propogation to S/DBITERR.
assign inject_sbit_err = ((C_ERROR_INJECTION_TYPE == 1) || (C_ERROR_INJECTION_TYPE == 3)) ?
injectsbiterr_delayed : 0;
assign inject_dbit_err = ((C_ERROR_INJECTION_TYPE == 2) || (C_ERROR_INJECTION_TYPE == 3)) ?
injectdbiterr_delayed : 0;
assign wr_rst_i_out = wr_rst_i;
assign rd_rst_i_out = rd_rst_i;
// Choose the behavioral model to instantiate based on the C_VERILOG_IMPL
// parameter (1=Independent Clocks, 0=Common Clock)
localparam FULL_FLAGS_RST_VAL = (C_HAS_SRST == 1) ? 0 : C_FULL_FLAGS_RST_VAL;
generate
case (C_VERILOG_IMPL)
0 : begin : block1
//Common Clock Behavioral Model
fifo_generator_v13_1_1_bhv_ver_ss
#(
.C_FAMILY (C_FAMILY),
.C_DATA_COUNT_WIDTH (C_DATA_COUNT_WIDTH),
.C_DIN_WIDTH (C_DIN_WIDTH),
.C_DOUT_RST_VAL (C_DOUT_RST_VAL),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_FULL_FLAGS_RST_VAL (FULL_FLAGS_RST_VAL),
.C_HAS_ALMOST_EMPTY (C_HAS_ALMOST_EMPTY),
.C_HAS_ALMOST_FULL ((C_AXI_TYPE == 0 && C_FIFO_TYPE == 1) ? 1 : C_HAS_ALMOST_FULL),
.C_HAS_DATA_COUNT (C_HAS_DATA_COUNT),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT),
.C_HAS_RST (C_HAS_RST),
.C_HAS_SRST (C_HAS_SRST),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_HAS_VALID (C_HAS_VALID),
.C_HAS_WR_ACK (C_HAS_WR_ACK),
.C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT),
.C_IMPLEMENTATION_TYPE (C_IMPLEMENTATION_TYPE),
.C_MEMORY_TYPE (C_MEMORY_TYPE),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_PRELOAD_LATENCY (C_PRELOAD_LATENCY),
.C_PRELOAD_REGS (C_PRELOAD_REGS),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL),
.C_PROG_EMPTY_THRESH_NEGATE_VAL (C_PROG_EMPTY_THRESH_NEGATE_VAL),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL),
.C_PROG_FULL_THRESH_NEGATE_VAL (C_PROG_FULL_THRESH_NEGATE_VAL),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE),
.C_RD_DATA_COUNT_WIDTH (C_RD_DATA_COUNT_WIDTH),
.C_RD_DEPTH (C_RD_DEPTH),
.C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG),
.C_EN_SAFETY_CKT (C_EN_SAFETY_CKT),
.C_USE_FWFT_DATA_COUNT (C_USE_FWFT_DATA_COUNT),
.C_VALID_LOW (C_VALID_LOW),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH),
.C_WR_DEPTH (C_WR_DEPTH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH),
.C_USE_ECC (C_USE_ECC),
.C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE),
.C_FIFO_TYPE (C_FIFO_TYPE)
)
gen_ss
(
.CLK (CLK),
.RST (rst_i),
.SRST (srst_delayed),
.RST_FULL_GEN (rst_full_gen_i),
.RST_FULL_FF (rst_full_ff_i),
.DIN (din_delayed),
.WR_EN (wr_en_delayed),
.RD_EN (RD_EN_FIFO_IN),
.RD_EN_USER (rd_en_delayed),
.USER_EMPTY_FB (empty_fb),
.PROG_EMPTY_THRESH (prog_empty_thresh_delayed),
.PROG_EMPTY_THRESH_ASSERT (prog_empty_thresh_assert_delayed),
.PROG_EMPTY_THRESH_NEGATE (prog_empty_thresh_negate_delayed),
.PROG_FULL_THRESH (prog_full_thresh_delayed),
.PROG_FULL_THRESH_ASSERT (prog_full_thresh_assert_delayed),
.PROG_FULL_THRESH_NEGATE (prog_full_thresh_negate_delayed),
.INJECTSBITERR (inject_sbit_err),
.INJECTDBITERR (inject_dbit_err),
.DOUT (DOUT_FIFO_OUT),
.FULL (FULL_FIFO_OUT),
.ALMOST_FULL (ALMOST_FULL_FIFO_OUT),
.WR_ACK (WR_ACK_FIFO_OUT),
.OVERFLOW (OVERFLOW_FIFO_OUT),
.EMPTY (EMPTY_FIFO_OUT),
.ALMOST_EMPTY (ALMOST_EMPTY_FIFO_OUT),
.VALID (VALID_FIFO_OUT),
.UNDERFLOW (UNDERFLOW_FIFO_OUT),
.DATA_COUNT (DATA_COUNT_FIFO_OUT),
.RD_DATA_COUNT (RD_DATA_COUNT_FIFO_OUT),
.WR_DATA_COUNT (WR_DATA_COUNT_FIFO_OUT),
.PROG_FULL (PROG_FULL_FIFO_OUT),
.PROG_EMPTY (PROG_EMPTY_FIFO_OUT),
.WR_RST_BUSY (wr_rst_busy),
.RD_RST_BUSY (rd_rst_busy),
.SBITERR (sbiterr_fifo_out),
.DBITERR (dbiterr_fifo_out)
);
end
1 : begin : block1
//Independent Clocks Behavioral Model
fifo_generator_v13_1_1_bhv_ver_as
#(
.C_FAMILY (C_FAMILY),
.C_DATA_COUNT_WIDTH (C_DATA_COUNT_WIDTH),
.C_DIN_WIDTH (C_DIN_WIDTH),
.C_DOUT_RST_VAL (C_DOUT_RST_VAL),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_FULL_FLAGS_RST_VAL (C_FULL_FLAGS_RST_VAL),
.C_HAS_ALMOST_EMPTY (C_HAS_ALMOST_EMPTY),
.C_HAS_ALMOST_FULL (C_HAS_ALMOST_FULL),
.C_HAS_DATA_COUNT (C_HAS_DATA_COUNT),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT),
.C_HAS_RST (C_HAS_RST),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_HAS_VALID (C_HAS_VALID),
.C_HAS_WR_ACK (C_HAS_WR_ACK),
.C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT),
.C_IMPLEMENTATION_TYPE (C_IMPLEMENTATION_TYPE),
.C_MEMORY_TYPE (C_MEMORY_TYPE),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_PRELOAD_LATENCY (C_PRELOAD_LATENCY),
.C_PRELOAD_REGS (C_PRELOAD_REGS),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL),
.C_PROG_EMPTY_THRESH_NEGATE_VAL (C_PROG_EMPTY_THRESH_NEGATE_VAL),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL),
.C_PROG_FULL_THRESH_NEGATE_VAL (C_PROG_FULL_THRESH_NEGATE_VAL),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE),
.C_RD_DATA_COUNT_WIDTH (C_RD_DATA_COUNT_WIDTH),
.C_RD_DEPTH (C_RD_DEPTH),
.C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG),
.C_EN_SAFETY_CKT (C_EN_SAFETY_CKT),
.C_USE_FWFT_DATA_COUNT (C_USE_FWFT_DATA_COUNT),
.C_VALID_LOW (C_VALID_LOW),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH),
.C_WR_DEPTH (C_WR_DEPTH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH),
.C_USE_ECC (C_USE_ECC),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE)
)
gen_as
(
.WR_CLK (WR_CLK),
.RD_CLK (RD_CLK),
.RST (rst_i),
.RST_FULL_GEN (rst_full_gen_i),
.RST_FULL_FF (rst_full_ff_i),
.WR_RST (wr_rst_i),
.RD_RST (rd_rst_i),
.DIN (din_delayed),
.WR_EN (wr_en_delayed),
.RD_EN (RD_EN_FIFO_IN),
.RD_EN_USER (rd_en_delayed),
.PROG_EMPTY_THRESH (prog_empty_thresh_delayed),
.PROG_EMPTY_THRESH_ASSERT (prog_empty_thresh_assert_delayed),
.PROG_EMPTY_THRESH_NEGATE (prog_empty_thresh_negate_delayed),
.PROG_FULL_THRESH (prog_full_thresh_delayed),
.PROG_FULL_THRESH_ASSERT (prog_full_thresh_assert_delayed),
.PROG_FULL_THRESH_NEGATE (prog_full_thresh_negate_delayed),
.INJECTSBITERR (inject_sbit_err),
.INJECTDBITERR (inject_dbit_err),
.USER_EMPTY_FB (EMPTY_P0_OUT),
.DOUT (DOUT_FIFO_OUT),
.FULL (FULL_FIFO_OUT),
.ALMOST_FULL (ALMOST_FULL_FIFO_OUT),
.WR_ACK (WR_ACK_FIFO_OUT),
.OVERFLOW (OVERFLOW_FIFO_OUT),
.EMPTY (EMPTY_FIFO_OUT),
.ALMOST_EMPTY (ALMOST_EMPTY_FIFO_OUT),
.VALID (VALID_FIFO_OUT),
.UNDERFLOW (UNDERFLOW_FIFO_OUT),
.RD_DATA_COUNT (RD_DATA_COUNT_FIFO_OUT),
.WR_DATA_COUNT (WR_DATA_COUNT_FIFO_OUT),
.PROG_FULL (PROG_FULL_FIFO_OUT),
.PROG_EMPTY (PROG_EMPTY_FIFO_OUT),
.SBITERR (sbiterr_fifo_out),
.fab_read_data_valid_i (w_fab_read_data_valid_i),
.read_data_valid_i (w_read_data_valid_i),
.ram_valid_i (w_ram_valid_i),
.DBITERR (dbiterr_fifo_out)
);
end
2 : begin : ll_afifo_inst
fifo_generator_v13_1_1_beh_ver_ll_afifo
#(
.C_DIN_WIDTH (C_DIN_WIDTH),
.C_DOUT_RST_VAL (C_DOUT_RST_VAL),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_FULL_FLAGS_RST_VAL (C_FULL_FLAGS_RST_VAL),
.C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT),
.C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT),
.C_RD_DEPTH (C_RD_DEPTH),
.C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH),
.C_WR_DEPTH (C_WR_DEPTH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH),
.C_FIFO_TYPE (C_FIFO_TYPE)
)
gen_ll_afifo
(
.DIN (din_delayed),
.RD_CLK (RD_CLK),
.RD_EN (rd_en_delayed),
.WR_RST (wr_rst_i),
.RD_RST (rd_rst_i),
.WR_CLK (WR_CLK),
.WR_EN (wr_en_delayed),
.DOUT (DOUT),
.EMPTY (EMPTY),
.FULL (FULL)
);
end
default : begin : block1
//Independent Clocks Behavioral Model
fifo_generator_v13_1_1_bhv_ver_as
#(
.C_FAMILY (C_FAMILY),
.C_DATA_COUNT_WIDTH (C_DATA_COUNT_WIDTH),
.C_DIN_WIDTH (C_DIN_WIDTH),
.C_DOUT_RST_VAL (C_DOUT_RST_VAL),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_FULL_FLAGS_RST_VAL (C_FULL_FLAGS_RST_VAL),
.C_HAS_ALMOST_EMPTY (C_HAS_ALMOST_EMPTY),
.C_HAS_ALMOST_FULL (C_HAS_ALMOST_FULL),
.C_HAS_DATA_COUNT (C_HAS_DATA_COUNT),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT),
.C_HAS_RST (C_HAS_RST),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_HAS_VALID (C_HAS_VALID),
.C_HAS_WR_ACK (C_HAS_WR_ACK),
.C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT),
.C_IMPLEMENTATION_TYPE (C_IMPLEMENTATION_TYPE),
.C_MEMORY_TYPE (C_MEMORY_TYPE),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_PRELOAD_LATENCY (C_PRELOAD_LATENCY),
.C_PRELOAD_REGS (C_PRELOAD_REGS),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL),
.C_PROG_EMPTY_THRESH_NEGATE_VAL (C_PROG_EMPTY_THRESH_NEGATE_VAL),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL),
.C_PROG_FULL_THRESH_NEGATE_VAL (C_PROG_FULL_THRESH_NEGATE_VAL),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE),
.C_RD_DATA_COUNT_WIDTH (C_RD_DATA_COUNT_WIDTH),
.C_RD_DEPTH (C_RD_DEPTH),
.C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG),
.C_EN_SAFETY_CKT (C_EN_SAFETY_CKT),
.C_USE_FWFT_DATA_COUNT (C_USE_FWFT_DATA_COUNT),
.C_VALID_LOW (C_VALID_LOW),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH),
.C_WR_DEPTH (C_WR_DEPTH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH),
.C_USE_ECC (C_USE_ECC),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE)
)
gen_as
(
.WR_CLK (WR_CLK),
.RD_CLK (RD_CLK),
.RST (rst_i),
.RST_FULL_GEN (rst_full_gen_i),
.RST_FULL_FF (rst_full_ff_i),
.WR_RST (wr_rst_i),
.RD_RST (rd_rst_i),
.DIN (din_delayed),
.WR_EN (wr_en_delayed),
.RD_EN (RD_EN_FIFO_IN),
.RD_EN_USER (rd_en_delayed),
.PROG_EMPTY_THRESH (prog_empty_thresh_delayed),
.PROG_EMPTY_THRESH_ASSERT (prog_empty_thresh_assert_delayed),
.PROG_EMPTY_THRESH_NEGATE (prog_empty_thresh_negate_delayed),
.PROG_FULL_THRESH (prog_full_thresh_delayed),
.PROG_FULL_THRESH_ASSERT (prog_full_thresh_assert_delayed),
.PROG_FULL_THRESH_NEGATE (prog_full_thresh_negate_delayed),
.INJECTSBITERR (inject_sbit_err),
.INJECTDBITERR (inject_dbit_err),
.USER_EMPTY_FB (EMPTY_P0_OUT),
.DOUT (DOUT_FIFO_OUT),
.FULL (FULL_FIFO_OUT),
.ALMOST_FULL (ALMOST_FULL_FIFO_OUT),
.WR_ACK (WR_ACK_FIFO_OUT),
.OVERFLOW (OVERFLOW_FIFO_OUT),
.EMPTY (EMPTY_FIFO_OUT),
.ALMOST_EMPTY (ALMOST_EMPTY_FIFO_OUT),
.VALID (VALID_FIFO_OUT),
.UNDERFLOW (UNDERFLOW_FIFO_OUT),
.RD_DATA_COUNT (RD_DATA_COUNT_FIFO_OUT),
.WR_DATA_COUNT (WR_DATA_COUNT_FIFO_OUT),
.PROG_FULL (PROG_FULL_FIFO_OUT),
.PROG_EMPTY (PROG_EMPTY_FIFO_OUT),
.SBITERR (sbiterr_fifo_out),
.DBITERR (dbiterr_fifo_out)
);
end
endcase
endgenerate
//**************************************************************************
// Connect Internal Signals
// (Signals labeled internal_*)
// In the normal case, these signals tie directly to the FIFO's inputs and
// outputs.
// In the case of Preload Latency 0 or 1, there are intermediate
// signals between the internal FIFO and the preload logic.
//**************************************************************************
//***********************************************
// If First-Word Fall-Through, instantiate
// the preload0 (FWFT) module
//***********************************************
wire rd_en_to_fwft_fifo;
wire sbiterr_fwft;
wire dbiterr_fwft;
wire [C_DOUT_WIDTH-1:0] dout_fwft;
wire empty_fwft;
wire rd_en_fifo_in;
wire stage2_reg_en_i;
wire [1:0] valid_stages_i;
wire rst_fwft;
//wire empty_p0_out;
reg [C_SYNCHRONIZER_STAGE-1:0] pkt_empty_sync = 'b1;
localparam IS_FWFT = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ? 1 : 0;
localparam IS_PKT_FIFO = (C_FIFO_TYPE == 1) ? 1 : 0;
localparam IS_AXIS_PKT_FIFO = (C_FIFO_TYPE == 1 && C_AXI_TYPE == 0) ? 1 : 0;
assign rst_fwft = (C_COMMON_CLOCK == 0) ? rd_rst_i : (C_HAS_RST == 1) ? rst_i : 1'b0;
generate if (IS_FWFT == 1 && C_FIFO_TYPE != 3) begin : block2
fifo_generator_v13_1_1_bhv_ver_preload0
#(
.C_DOUT_RST_VAL (C_DOUT_RST_VAL),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_HAS_RST (C_HAS_RST),
.C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC),
.C_HAS_SRST (C_HAS_SRST),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG),
.C_USE_ECC (C_USE_ECC),
.C_USERVALID_LOW (C_VALID_LOW),
.C_USERUNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_EN_SAFETY_CKT (C_EN_SAFETY_CKT),
.C_MEMORY_TYPE (C_MEMORY_TYPE),
.C_FIFO_TYPE (C_FIFO_TYPE)
)
fgpl0
(
.RD_CLK (RD_CLK_P0_IN),
.RD_RST (RST_P0_IN),
.SRST (srst_delayed),
.WR_RST_BUSY (wr_rst_busy),
.RD_RST_BUSY (rd_rst_busy),
.RD_EN (RD_EN_P0_IN),
.FIFOEMPTY (EMPTY_P0_IN),
.FIFODATA (DATA_P0_IN),
.FIFOSBITERR (sbiterr_fifo_out),
.FIFODBITERR (dbiterr_fifo_out),
// Output
.USERDATA (dout_fwft),
.USERVALID (VALID_P0_OUT),
.USEREMPTY (empty_fwft),
.USERALMOSTEMPTY (ALMOSTEMPTY_P0_OUT),
.USERUNDERFLOW (UNDERFLOW_P0_OUT),
.RAMVALID (),
.FIFORDEN (rd_en_fifo_in),
.USERSBITERR (sbiterr_fwft),
.USERDBITERR (dbiterr_fwft),
.STAGE2_REG_EN (stage2_reg_en_i),
.fab_read_data_valid_i_o (w_fab_read_data_valid_i),
.read_data_valid_i_o (w_read_data_valid_i),
.ram_valid_i_o (w_ram_valid_i),
.VALID_STAGES (valid_stages_i)
);
//***********************************************
// Connect inputs to preload (FWFT) module
//***********************************************
//Connect the RD_CLK of the Preload (FWFT) module to CLK if we
// have a common-clock FIFO, or RD_CLK if we have an
// independent clock FIFO
assign RD_CLK_P0_IN = ((C_VERILOG_IMPL == 0) ? CLK : RD_CLK);
assign RST_P0_IN = (C_COMMON_CLOCK == 0) ? rd_rst_i : (C_HAS_RST == 1) ? rst_i : 0;
assign RD_EN_P0_IN = (C_FIFO_TYPE != 1) ? rd_en_delayed : rd_en_to_fwft_fifo;
assign EMPTY_P0_IN = EMPTY_FIFO_OUT;
assign DATA_P0_IN = DOUT_FIFO_OUT;
//***********************************************
// Connect outputs from preload (FWFT) module
//***********************************************
assign VALID = VALID_P0_OUT ;
assign ALMOST_EMPTY = ALMOSTEMPTY_P0_OUT;
assign UNDERFLOW = UNDERFLOW_P0_OUT ;
assign RD_EN_FIFO_IN = rd_en_fifo_in;
//***********************************************
// Create DATA_COUNT from First-Word Fall-Through
// data count
//***********************************************
assign DATA_COUNT = (C_USE_FWFT_DATA_COUNT == 0)? DATA_COUNT_FIFO_OUT:
(C_DATA_COUNT_WIDTH>C_RD_PNTR_WIDTH) ? DATA_COUNT_FWFT[C_RD_PNTR_WIDTH:0] :
DATA_COUNT_FWFT[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH-C_DATA_COUNT_WIDTH+1];
//***********************************************
// Create DATA_COUNT from First-Word Fall-Through
// data count
//***********************************************
always @ (posedge RD_CLK_P0_IN or posedge RST_P0_IN) begin
if (RST_P0_IN) begin
EMPTY_P0_OUT_Q <= #`TCQ 1;
ALMOSTEMPTY_P0_OUT_Q <= #`TCQ 1;
end else begin
EMPTY_P0_OUT_Q <= #`TCQ empty_p0_out;
// EMPTY_P0_OUT_Q <= #`TCQ EMPTY_FIFO_OUT;
ALMOSTEMPTY_P0_OUT_Q <= #`TCQ ALMOSTEMPTY_P0_OUT;
end
end //always
//***********************************************
// logic for common-clock data count when FWFT is selected
//***********************************************
initial begin
SS_FWFT_RD = 1'b0;
DATA_COUNT_FWFT = 0 ;
SS_FWFT_WR = 1'b0 ;
end //initial
//***********************************************
// common-clock data count is implemented as an
// up-down counter. SS_FWFT_WR and SS_FWFT_RD
// are the up/down enables for the counter.
//***********************************************
always @ (RD_EN or VALID_P0_OUT or WR_EN or FULL_FIFO_OUT or empty_p0_out) begin
if (C_VALID_LOW == 1) begin
SS_FWFT_RD = (C_FIFO_TYPE != 1) ? (RD_EN && ~VALID_P0_OUT) : (~empty_p0_out && RD_EN && ~VALID_P0_OUT) ;
end else begin
SS_FWFT_RD = (C_FIFO_TYPE != 1) ? (RD_EN && VALID_P0_OUT) : (~empty_p0_out && RD_EN && VALID_P0_OUT) ;
end
SS_FWFT_WR = (WR_EN && (~FULL_FIFO_OUT)) ;
end
//***********************************************
// common-clock data count is implemented as an
// up-down counter for FWFT. This always block
// calculates the counter.
//***********************************************
always @ (posedge RD_CLK_P0_IN or posedge RST_P0_IN) begin
if (RST_P0_IN) begin
DATA_COUNT_FWFT <= #`TCQ 0;
end else begin
//if (srst_delayed && (C_HAS_SRST == 1) ) begin
if ((srst_delayed | wr_rst_busy | rd_rst_busy) && (C_HAS_SRST == 1) ) begin
DATA_COUNT_FWFT <= #`TCQ 0;
end else begin
case ( {SS_FWFT_WR, SS_FWFT_RD})
2'b00: DATA_COUNT_FWFT <= #`TCQ DATA_COUNT_FWFT ;
2'b01: DATA_COUNT_FWFT <= #`TCQ DATA_COUNT_FWFT - 1 ;
2'b10: DATA_COUNT_FWFT <= #`TCQ DATA_COUNT_FWFT + 1 ;
2'b11: DATA_COUNT_FWFT <= #`TCQ DATA_COUNT_FWFT ;
endcase
end //if SRST
end //IF RST
end //always
end endgenerate // : block2
// AXI Streaming Packet FIFO
reg [C_WR_PNTR_WIDTH-1:0] wr_pkt_count = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pkt_count = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pkt_count_plus1 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pkt_count_reg = 0;
reg partial_packet = 0;
reg stage1_eop_d1 = 0;
reg rd_en_fifo_in_d1 = 0;
reg eop_at_stage2 = 0;
reg ram_pkt_empty = 0;
reg ram_pkt_empty_d1 = 0;
wire [C_DOUT_WIDTH-1:0] dout_p0_out;
wire packet_empty_wr;
wire wr_rst_fwft_pkt_fifo;
wire dummy_wr_eop;
wire ram_wr_en_pkt_fifo;
wire wr_eop;
wire ram_rd_en_compare;
wire stage1_eop;
wire pkt_ready_to_read;
wire rd_en_2_stage2;
// Generate Dummy WR_EOP for partial packet (Only for AXI Streaming)
// When Packet EMPTY is high, and FIFO is full, then generate the dummy WR_EOP
// When dummy WR_EOP is high, mask the actual EOP to avoid double increment of
// write packet count
generate if (IS_FWFT == 1 && IS_AXIS_PKT_FIFO == 1) begin // gdummy_wr_eop
always @ (posedge wr_rst_fwft_pkt_fifo or posedge WR_CLK) begin
if (wr_rst_fwft_pkt_fifo)
partial_packet <= 1'b0;
else begin
if (srst_delayed | wr_rst_busy | rd_rst_busy)
partial_packet <= #`TCQ 1'b0;
else if (ALMOST_FULL_FIFO_OUT && ram_wr_en_pkt_fifo && packet_empty_wr && (~din_delayed[0]))
partial_packet <= #`TCQ 1'b1;
else if (partial_packet && din_delayed[0] && ram_wr_en_pkt_fifo)
partial_packet <= #`TCQ 1'b0;
end
end
end endgenerate // gdummy_wr_eop
generate if (IS_FWFT == 1 && IS_PKT_FIFO == 1) begin // gpkt_fifo_fwft
assign wr_rst_fwft_pkt_fifo = (C_COMMON_CLOCK == 0) ? wr_rst_i : (C_HAS_RST == 1) ? rst_i:1'b0;
assign dummy_wr_eop = ALMOST_FULL_FIFO_OUT && ram_wr_en_pkt_fifo && packet_empty_wr && (~din_delayed[0]) && (~partial_packet);
assign packet_empty_wr = (C_COMMON_CLOCK == 1) ? empty_p0_out : pkt_empty_sync[C_SYNCHRONIZER_STAGE-1];
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft) begin
stage1_eop_d1 <= 1'b0;
rd_en_fifo_in_d1 <= 1'b0;
end else begin
if (srst_delayed | wr_rst_busy | rd_rst_busy) begin
stage1_eop_d1 <= #`TCQ 1'b0;
rd_en_fifo_in_d1 <= #`TCQ 1'b0;
end else begin
stage1_eop_d1 <= #`TCQ stage1_eop;
rd_en_fifo_in_d1 <= #`TCQ rd_en_fifo_in;
end
end
end
assign stage1_eop = (rd_en_fifo_in_d1) ? DOUT_FIFO_OUT[0] : stage1_eop_d1;
assign ram_wr_en_pkt_fifo = wr_en_delayed && (~FULL_FIFO_OUT);
assign wr_eop = ram_wr_en_pkt_fifo && ((din_delayed[0] && (~partial_packet)) || dummy_wr_eop);
assign ram_rd_en_compare = stage2_reg_en_i && stage1_eop;
fifo_generator_v13_1_1_bhv_ver_preload0
#(
.C_DOUT_RST_VAL (C_DOUT_RST_VAL),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_HAS_RST (C_HAS_RST),
.C_HAS_SRST (C_HAS_SRST),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_USE_ECC (C_USE_ECC),
.C_USERVALID_LOW (C_VALID_LOW),
.C_EN_SAFETY_CKT (C_EN_SAFETY_CKT),
.C_USERUNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC),
.C_MEMORY_TYPE (C_MEMORY_TYPE),
.C_FIFO_TYPE (2) // Enable low latency fwft logic
)
pkt_fifo_fwft
(
.RD_CLK (RD_CLK_P0_IN),
.RD_RST (rst_fwft),
.SRST (srst_delayed),
.WR_RST_BUSY (wr_rst_busy),
.RD_RST_BUSY (rd_rst_busy),
.RD_EN (rd_en_delayed),
.FIFOEMPTY (pkt_ready_to_read),
.FIFODATA (dout_fwft),
.FIFOSBITERR (sbiterr_fwft),
.FIFODBITERR (dbiterr_fwft),
// Output
.USERDATA (dout_p0_out),
.USERVALID (),
.USEREMPTY (empty_p0_out),
.USERALMOSTEMPTY (),
.USERUNDERFLOW (),
.RAMVALID (),
.FIFORDEN (rd_en_2_stage2),
.USERSBITERR (SBITERR),
.USERDBITERR (DBITERR),
.STAGE2_REG_EN (),
.VALID_STAGES ()
);
assign pkt_ready_to_read = ~(!(ram_pkt_empty || empty_fwft) && ((valid_stages_i[0] && valid_stages_i[1]) || eop_at_stage2));
assign rd_en_to_fwft_fifo = ~empty_fwft && rd_en_2_stage2;
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft)
eop_at_stage2 <= 1'b0;
else if (stage2_reg_en_i)
eop_at_stage2 <= #`TCQ stage1_eop;
end
//---------------------------------------------------------------------------
// Write and Read Packet Count
//---------------------------------------------------------------------------
always @ (posedge wr_rst_fwft_pkt_fifo or posedge WR_CLK) begin
if (wr_rst_fwft_pkt_fifo)
wr_pkt_count <= 0;
else if (srst_delayed | wr_rst_busy | rd_rst_busy)
wr_pkt_count <= #`TCQ 0;
else if (wr_eop)
wr_pkt_count <= #`TCQ wr_pkt_count + 1;
end
end endgenerate // gpkt_fifo_fwft
assign DOUT = (C_FIFO_TYPE != 1) ? dout_fwft : dout_p0_out;
assign EMPTY = (C_FIFO_TYPE != 1) ? empty_fwft : empty_p0_out;
generate if (IS_FWFT == 1 && IS_PKT_FIFO == 1 && C_COMMON_CLOCK == 1) begin // grss_pkt_cnt
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft) begin
rd_pkt_count <= 0;
rd_pkt_count_plus1 <= 1;
end else if (srst_delayed | wr_rst_busy | rd_rst_busy) begin
rd_pkt_count <= #`TCQ 0;
rd_pkt_count_plus1 <= #`TCQ 1;
end else if (stage2_reg_en_i && stage1_eop) begin
rd_pkt_count <= #`TCQ rd_pkt_count + 1;
rd_pkt_count_plus1 <= #`TCQ rd_pkt_count_plus1 + 1;
end
end
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft) begin
ram_pkt_empty <= 1'b1;
ram_pkt_empty_d1 <= 1'b1;
end else if (SRST | wr_rst_busy | rd_rst_busy) begin
ram_pkt_empty <= #`TCQ 1'b1;
ram_pkt_empty_d1 <= #`TCQ 1'b1;
end else if ((rd_pkt_count == wr_pkt_count) && wr_eop) begin
ram_pkt_empty <= #`TCQ 1'b0;
ram_pkt_empty_d1 <= #`TCQ 1'b0;
end else if (ram_pkt_empty_d1 && rd_en_to_fwft_fifo) begin
ram_pkt_empty <= #`TCQ 1'b1;
end else if ((rd_pkt_count_plus1 == wr_pkt_count) && ~wr_eop && ~ALMOST_FULL_FIFO_OUT && ram_rd_en_compare) begin
ram_pkt_empty_d1 <= #`TCQ 1'b1;
end
end
end endgenerate //grss_pkt_cnt
localparam SYNC_STAGE_WIDTH = (C_SYNCHRONIZER_STAGE+1)*C_WR_PNTR_WIDTH;
reg [SYNC_STAGE_WIDTH-1:0] wr_pkt_count_q = 0;
reg [C_WR_PNTR_WIDTH-1:0] wr_pkt_count_b2g = 0;
wire [C_WR_PNTR_WIDTH-1:0] wr_pkt_count_rd;
generate if (IS_FWFT == 1 && IS_PKT_FIFO == 1 && C_COMMON_CLOCK == 0) begin // gras_pkt_cnt
// Delay the write packet count in write clock domain to accomodate the binary to gray conversion delay
always @ (posedge wr_rst_fwft_pkt_fifo or posedge WR_CLK) begin
if (wr_rst_fwft_pkt_fifo)
wr_pkt_count_b2g <= 0;
else
wr_pkt_count_b2g <= #`TCQ wr_pkt_count;
end
// Synchronize the delayed write packet count in read domain, and also compensate the gray to binay conversion delay
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft)
wr_pkt_count_q <= 0;
else
wr_pkt_count_q <= #`TCQ {wr_pkt_count_q[SYNC_STAGE_WIDTH-C_WR_PNTR_WIDTH-1:0],wr_pkt_count_b2g};
end
always @* begin
if (stage1_eop)
rd_pkt_count <= rd_pkt_count_reg + 1;
else
rd_pkt_count <= rd_pkt_count_reg;
end
assign wr_pkt_count_rd = wr_pkt_count_q[SYNC_STAGE_WIDTH-1:SYNC_STAGE_WIDTH-C_WR_PNTR_WIDTH];
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft)
rd_pkt_count_reg <= 0;
else if (rd_en_fifo_in)
rd_pkt_count_reg <= #`TCQ rd_pkt_count;
end
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft) begin
ram_pkt_empty <= 1'b1;
ram_pkt_empty_d1 <= 1'b1;
end else if (rd_pkt_count != wr_pkt_count_rd) begin
ram_pkt_empty <= #`TCQ 1'b0;
ram_pkt_empty_d1 <= #`TCQ 1'b0;
end else if (ram_pkt_empty_d1 && rd_en_to_fwft_fifo) begin
ram_pkt_empty <= #`TCQ 1'b1;
end else if ((rd_pkt_count == wr_pkt_count_rd) && stage2_reg_en_i) begin
ram_pkt_empty_d1 <= #`TCQ 1'b1;
end
end
// Synchronize the empty in write domain
always @ (posedge wr_rst_fwft_pkt_fifo or posedge WR_CLK) begin
if (wr_rst_fwft_pkt_fifo)
pkt_empty_sync <= 'b1;
else
pkt_empty_sync <= #`TCQ {pkt_empty_sync[C_SYNCHRONIZER_STAGE-2:0], empty_p0_out};
end
end endgenerate //gras_pkt_cnt
generate if (IS_FWFT == 0 || C_FIFO_TYPE == 3) begin : STD_FIFO
//***********************************************
// If NOT First-Word Fall-Through, wire the outputs
// of the internal _ss or _as FIFO directly to the
// output, and do not instantiate the preload0
// module.
//***********************************************
assign RD_CLK_P0_IN = 0;
assign RST_P0_IN = 0;
assign RD_EN_P0_IN = 0;
assign RD_EN_FIFO_IN = rd_en_delayed;
assign DOUT = DOUT_FIFO_OUT;
assign DATA_P0_IN = 0;
assign VALID = VALID_FIFO_OUT;
assign EMPTY = EMPTY_FIFO_OUT;
assign ALMOST_EMPTY = ALMOST_EMPTY_FIFO_OUT;
assign EMPTY_P0_IN = 0;
assign UNDERFLOW = UNDERFLOW_FIFO_OUT;
assign DATA_COUNT = DATA_COUNT_FIFO_OUT;
assign SBITERR = sbiterr_fifo_out;
assign DBITERR = dbiterr_fifo_out;
end endgenerate // STD_FIFO
generate if (IS_FWFT == 1 && C_FIFO_TYPE != 1) begin : NO_PKT_FIFO
assign empty_p0_out = empty_fwft;
assign SBITERR = sbiterr_fwft;
assign DBITERR = dbiterr_fwft;
assign DOUT = dout_fwft;
assign RD_EN_P0_IN = (C_FIFO_TYPE != 1) ? rd_en_delayed : rd_en_to_fwft_fifo;
end endgenerate // NO_PKT_FIFO
//***********************************************
// Connect user flags to internal signals
//***********************************************
//If we are using extra logic for the FWFT data count, then override the
//RD_DATA_COUNT output when we are EMPTY or ALMOST_EMPTY.
//RD_DATA_COUNT is 0 when EMPTY and 1 when ALMOST_EMPTY.
generate
if (C_USE_FWFT_DATA_COUNT==1 && (C_RD_DATA_COUNT_WIDTH>C_RD_PNTR_WIDTH) && (C_USE_EMBEDDED_REG < 3) ) begin : block3
if (C_COMMON_CLOCK == 0) begin : block_ic
assign RD_DATA_COUNT = (EMPTY_P0_OUT_Q | RST_P0_IN) ? 0 : (ALMOSTEMPTY_P0_OUT_Q ? 1 : RD_DATA_COUNT_FIFO_OUT);
end //block_ic
else begin
assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT;
end
end //block3
endgenerate
//If we are using extra logic for the FWFT data count, then override the
//RD_DATA_COUNT output when we are EMPTY or ALMOST_EMPTY.
//Due to asymmetric ports, RD_DATA_COUNT is 0 when EMPTY or ALMOST_EMPTY.
generate
if (C_USE_FWFT_DATA_COUNT==1 && (C_RD_DATA_COUNT_WIDTH <=C_RD_PNTR_WIDTH) && (C_USE_EMBEDDED_REG < 3) ) begin : block30
if (C_COMMON_CLOCK == 0) begin : block_ic
assign RD_DATA_COUNT = (EMPTY_P0_OUT_Q | RST_P0_IN) ? 0 : (ALMOSTEMPTY_P0_OUT_Q ? 0 : RD_DATA_COUNT_FIFO_OUT);
end
else begin
assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT;
end
end //block30
endgenerate
//If we are using extra logic for the FWFT data count, then override the
//RD_DATA_COUNT output when we are EMPTY or ALMOST_EMPTY.
//Due to asymmetric ports, RD_DATA_COUNT is 0 when EMPTY or ALMOST_EMPTY.
generate
if (C_USE_FWFT_DATA_COUNT==1 && (C_RD_DATA_COUNT_WIDTH <=C_RD_PNTR_WIDTH) && (C_USE_EMBEDDED_REG == 3) ) begin : block30_both
if (C_COMMON_CLOCK == 0) begin : block_ic_both
assign RD_DATA_COUNT = (EMPTY_P0_OUT_Q | RST_P0_IN) ? 0 : (ALMOSTEMPTY_P0_OUT_Q ? 0 : (RD_DATA_COUNT_FIFO_OUT));
end
else begin
assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT;
end
end //block30_both
endgenerate
generate
if (C_USE_FWFT_DATA_COUNT==1 && (C_RD_DATA_COUNT_WIDTH>C_RD_PNTR_WIDTH) && (C_USE_EMBEDDED_REG == 3) ) begin : block3_both
if (C_COMMON_CLOCK == 0) begin : block_ic_both
assign RD_DATA_COUNT = (EMPTY_P0_OUT_Q | RST_P0_IN) ? 0 : (ALMOSTEMPTY_P0_OUT_Q ? 1 : (RD_DATA_COUNT_FIFO_OUT));
end //block_ic_both
else begin
assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT;
end
end //block3_both
endgenerate
//If we are not using extra logic for the FWFT data count,
//then connect RD_DATA_COUNT to the RD_DATA_COUNT from the
//internal FIFO instance
generate
if (C_USE_FWFT_DATA_COUNT==0 ) begin : block31
assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT;
end
endgenerate
//Always connect WR_DATA_COUNT to the WR_DATA_COUNT from the internal
//FIFO instance
generate
if (C_USE_FWFT_DATA_COUNT==1) begin : block4
assign WR_DATA_COUNT = WR_DATA_COUNT_FIFO_OUT;
end
else begin : block4
assign WR_DATA_COUNT = WR_DATA_COUNT_FIFO_OUT;
end
endgenerate
//Connect other flags to the internal FIFO instance
assign FULL = FULL_FIFO_OUT;
assign ALMOST_FULL = ALMOST_FULL_FIFO_OUT;
assign WR_ACK = WR_ACK_FIFO_OUT;
assign OVERFLOW = OVERFLOW_FIFO_OUT;
assign PROG_FULL = PROG_FULL_FIFO_OUT;
assign PROG_EMPTY = PROG_EMPTY_FIFO_OUT;
/**************************************************************************
* find_log2
* Returns the 'log2' value for the input value for the supported ratios
***************************************************************************/
function integer find_log2;
input integer int_val;
integer i,j;
begin
i = 1;
j = 0;
for (i = 1; i < int_val; i = i*2) begin
j = j + 1;
end
find_log2 = j;
end
endfunction
// if an asynchronous FIFO has been selected, display a message that the FIFO
// will not be cycle-accurate in simulation
initial begin
if (C_IMPLEMENTATION_TYPE == 2) begin
$display("WARNING: Behavioral models for independent clock FIFO configurations do not model synchronization delays. The behavioral models are functionally correct, and will represent the behavior of the configured FIFO. See the FIFO Generator User Guide for more information.");
end else if (C_MEMORY_TYPE == 4) begin
$display("FAILURE : Behavioral models do not support built-in FIFO configurations. Please use post-synthesis or post-implement simulation in Vivado.");
$finish;
end
if (C_WR_PNTR_WIDTH != find_log2(C_WR_DEPTH)) begin
$display("FAILURE : C_WR_PNTR_WIDTH is not log2 of C_WR_DEPTH.");
$finish;
end
if (C_RD_PNTR_WIDTH != find_log2(C_RD_DEPTH)) begin
$display("FAILURE : C_RD_PNTR_WIDTH is not log2 of C_RD_DEPTH.");
$finish;
end
if (C_USE_ECC == 1) begin
if (C_DIN_WIDTH != C_DOUT_WIDTH) begin
$display("FAILURE : C_DIN_WIDTH and C_DOUT_WIDTH must be equal for ECC configuration.");
$finish;
end
if (C_DIN_WIDTH == 1 && C_ERROR_INJECTION_TYPE > 1) begin
$display("FAILURE : C_DIN_WIDTH and C_DOUT_WIDTH must be > 1 for double bit error injection.");
$finish;
end
end
end //initial
/**************************************************************************
* Internal reset logic
**************************************************************************/
assign wr_rst_i = (C_HAS_RST == 1 || C_ENABLE_RST_SYNC == 0) ? wr_rst_reg : 0;
assign rd_rst_i = (C_HAS_RST == 1 || C_ENABLE_RST_SYNC == 0) ? rd_rst_reg : 0;
assign rst_i = C_HAS_RST ? rst_reg : 0;
wire rst_2_sync;
wire rst_2_sync_safety = (C_ENABLE_RST_SYNC == 1) ? RST : RD_RST;
wire clk_2_sync = (C_COMMON_CLOCK == 1) ? CLK : WR_CLK;
wire clk_2_sync_safety = (C_COMMON_CLOCK == 1) ? CLK : RD_CLK;
generate
if (C_EN_SAFETY_CKT == 1 && C_INTERFACE_TYPE == 0) begin : grst_safety_ckt
reg[1:0] rst_d1_safety =1;
reg[1:0] rst_d2_safety =1;
reg[1:0] rst_d3_safety =1;
reg[1:0] rst_d4_safety =1;
reg[1:0] rst_d5_safety =1;
reg[1:0] rst_d6_safety =1;
reg[1:0] rst_d7_safety =1;
always@(posedge rst_2_sync_safety or posedge clk_2_sync_safety) begin : prst
if (rst_2_sync_safety == 1'b1) begin
rst_d1_safety <= 1'b1;
rst_d2_safety <= 1'b1;
rst_d3_safety <= 1'b1;
rst_d4_safety <= 1'b1;
rst_d5_safety <= 1'b1;
rst_d6_safety <= 1'b1;
rst_d7_safety <= 1'b1;
end
else begin
rst_d1_safety <= #`TCQ 1'b0;
rst_d2_safety <= #`TCQ rst_d1_safety;
rst_d3_safety <= #`TCQ rst_d2_safety;
rst_d4_safety <= #`TCQ rst_d3_safety;
rst_d5_safety <= #`TCQ rst_d4_safety;
rst_d6_safety <= #`TCQ rst_d5_safety;
rst_d7_safety <= #`TCQ rst_d6_safety;
end //if
end //prst
always@(posedge rst_d7_safety or posedge WR_EN) begin : assert_safety
if(rst_d7_safety == 1 && WR_EN == 1) begin
$display("WARNING:A write attempt has been made within the 7 clock cycles of reset de-assertion. This can lead to data discrepancy when safety circuit is enabled.");
end //if
end //always
end // grst_safety_ckt
endgenerate
// if (C_EN_SAFET_CKT == 1)
// assertion:the reset shud be atleast 3 cycles wide.
generate
if (C_ENABLE_RST_SYNC == 0) begin : gnrst_sync
always @* begin
wr_rst_reg <= wr_rst_delayed;
rd_rst_reg <= rd_rst_delayed;
rst_reg <= 1'b0;
srst_reg <= 1'b0;
end
assign rst_2_sync = wr_rst_delayed;
assign wr_rst_busy = 1'b0;
assign rd_rst_busy = 1'b0;
end else if (C_HAS_RST == 1 && C_COMMON_CLOCK == 0) begin : g7s_ic_rst
assign wr_rst_comb = !wr_rst_asreg_d2 && wr_rst_asreg;
assign rd_rst_comb = !rd_rst_asreg_d2 && rd_rst_asreg;
assign rst_2_sync = rst_delayed;
assign wr_rst_busy = 1'b0;
assign rd_rst_busy = 1'b0;
always @(posedge WR_CLK or posedge rst_delayed) begin
if (rst_delayed == 1'b1) begin
wr_rst_asreg <= #`TCQ 1'b1;
end else begin
if (wr_rst_asreg_d1 == 1'b1) begin
wr_rst_asreg <= #`TCQ 1'b0;
end else begin
wr_rst_asreg <= #`TCQ wr_rst_asreg;
end
end
end
always @(posedge WR_CLK) begin
wr_rst_asreg_d1 <= #`TCQ wr_rst_asreg;
wr_rst_asreg_d2 <= #`TCQ wr_rst_asreg_d1;
end
always @(posedge WR_CLK or posedge wr_rst_comb) begin
if (wr_rst_comb == 1'b1) begin
wr_rst_reg <= #`TCQ 1'b1;
end else begin
wr_rst_reg <= #`TCQ 1'b0;
end
end
always @(posedge RD_CLK or posedge rst_delayed) begin
if (rst_delayed == 1'b1) begin
rd_rst_asreg <= #`TCQ 1'b1;
end else begin
if (rd_rst_asreg_d1 == 1'b1) begin
rd_rst_asreg <= #`TCQ 1'b0;
end else begin
rd_rst_asreg <= #`TCQ rd_rst_asreg;
end
end
end
always @(posedge RD_CLK) begin
rd_rst_asreg_d1 <= #`TCQ rd_rst_asreg;
rd_rst_asreg_d2 <= #`TCQ rd_rst_asreg_d1;
end
always @(posedge RD_CLK or posedge rd_rst_comb) begin
if (rd_rst_comb == 1'b1) begin
rd_rst_reg <= #`TCQ 1'b1;
end else begin
rd_rst_reg <= #`TCQ 1'b0;
end
end
end else if (C_HAS_RST == 1 && C_COMMON_CLOCK == 1) begin : g7s_cc_rst
assign rst_comb = !rst_asreg_d2 && rst_asreg;
assign rst_2_sync = rst_delayed;
assign wr_rst_busy = 1'b0;
assign rd_rst_busy = 1'b0;
always @(posedge CLK or posedge rst_delayed) begin
if (rst_delayed == 1'b1) begin
rst_asreg <= #`TCQ 1'b1;
end else begin
if (rst_asreg_d1 == 1'b1) begin
rst_asreg <= #`TCQ 1'b0;
end else begin
rst_asreg <= #`TCQ rst_asreg;
end
end
end
always @(posedge CLK) begin
rst_asreg_d1 <= #`TCQ rst_asreg;
rst_asreg_d2 <= #`TCQ rst_asreg_d1;
end
always @(posedge CLK or posedge rst_comb) begin
if (rst_comb == 1'b1) begin
rst_reg <= #`TCQ 1'b1;
end else begin
rst_reg <= #`TCQ 1'b0;
end
end
end else if (IS_8SERIES == 1 && C_HAS_SRST == 1 && C_COMMON_CLOCK == 1) begin : g8s_cc_rst
assign wr_rst_busy = (C_MEMORY_TYPE != 4) ? rst_reg : rst_active_i;
assign rd_rst_busy = rst_reg;
assign rst_2_sync = srst_delayed;
always @* rst_full_ff_i <= rst_reg;
always @* rst_full_gen_i <= C_FULL_FLAGS_RST_VAL == 1 ? rst_active_i : 0;
always @(posedge CLK) begin
rst_delayed_d1 <= #`TCQ srst_delayed;
rst_delayed_d2 <= #`TCQ rst_delayed_d1;
if (rst_reg || rst_delayed_d2) begin
rst_active_i <= #`TCQ 1'b1;
end else begin
rst_active_i <= #`TCQ rst_reg;
end
end
always @(posedge CLK) begin
if (~rst_reg && srst_delayed) begin
rst_reg <= #`TCQ 1'b1;
end else if (rst_reg) begin
rst_reg <= #`TCQ 1'b0;
end else begin
rst_reg <= #`TCQ rst_reg;
end
end
end else begin
assign wr_rst_busy = 1'b0;
assign rd_rst_busy = 1'b0;
end
// end g8s_cc_rst
endgenerate
reg rst_d1 = 1'b0;
reg rst_d2 = 1'b0;
reg rst_d3 = 1'b0;
reg rst_d4 = 1'b0;
reg rst_d5 = 1'b0;
reg rst_d6 = 1'b0;
reg rst_d7 = 1'b0;
generate
if ((C_HAS_RST == 1 || C_HAS_SRST == 1 || C_ENABLE_RST_SYNC == 0) && C_FULL_FLAGS_RST_VAL == 1 && C_INTERFACE_TYPE == 0) begin : grstd1
// RST_FULL_GEN replaces the reset falling edge detection used to de-assert
// FULL, ALMOST_FULL & PROG_FULL flags if C_FULL_FLAGS_RST_VAL = 1.
// RST_FULL_FF goes to the reset pin of the final flop of FULL, ALMOST_FULL &
// PROG_FULL
always @ (posedge rst_2_sync or posedge clk_2_sync) begin
if (rst_2_sync) begin
rst_d1 <= 1'b1;
rst_d2 <= 1'b1;
rst_d3 <= 1'b1;
rst_d4 <= 1'b1;
rst_d5 <= 1'b1;
rst_d6 <= 1'b1;
rst_d7 <= 1'b1;
end else begin
if (srst_delayed) begin
rst_d1 <= #`TCQ 1'b1;
rst_d2 <= #`TCQ 1'b1;
rst_d3 <= #`TCQ 1'b1;
rst_d4 <= #`TCQ 1'b1;
rst_d5 <= #`TCQ 1'b1;
rst_d6 <= #`TCQ 1'b1;
rst_d7 <= #`TCQ 1'b1;
end else begin
rst_d1 <= #`TCQ 1'b0;
rst_d2 <= #`TCQ rst_d1;
rst_d3 <= #`TCQ rst_d2;
rst_d4 <= #`TCQ rst_d3;
rst_d5 <= #`TCQ rst_d4;
rst_d6 <= #`TCQ rst_d5;
rst_d7 <= #`TCQ rst_d6;
end
end
end
always @* rst_full_ff_i <= (C_HAS_SRST == 0 && C_EN_SAFETY_CKT == 0) ? rst_d2 : (C_HAS_SRST == 0 && C_EN_SAFETY_CKT == 1) ? rst_d6 : 1'b0 ;
//always @* rst_full_gen_i <= rst_d4;
always @* rst_full_gen_i <= (C_HAS_SRST == 1) ? rst_d4 : (C_EN_SAFETY_CKT == 0) ? rst_d3 : rst_d7;
end else if ((C_HAS_RST == 1 || C_HAS_SRST == 1 || C_ENABLE_RST_SYNC == 0) && C_FULL_FLAGS_RST_VAL == 0 && C_INTERFACE_TYPE == 0) begin : gnrst_full
always @* rst_full_ff_i <= (C_COMMON_CLOCK == 0) ? wr_rst_i : rst_i;
end
endgenerate // grstd1
generate
if ((C_HAS_RST == 1 || C_HAS_SRST == 1 || C_ENABLE_RST_SYNC == 0) && C_FULL_FLAGS_RST_VAL == 1 && C_INTERFACE_TYPE > 0) begin : grstd1_axis
// RST_FULL_GEN replaces the reset falling edge detection used to de-assert
// FULL, ALMOST_FULL & PROG_FULL flags if C_FULL_FLAGS_RST_VAL = 1.
// RST_FULL_FF goes to the reset pin of the final flop of FULL, ALMOST_FULL &
// PROG_FULL
always @ (posedge rst_2_sync or posedge clk_2_sync) begin
if (rst_2_sync) begin
rst_d1 <= 1'b1;
rst_d2 <= 1'b1;
rst_d3 <= 1'b1;
rst_d4 <= 1'b1;
rst_d5 <= 1'b1;
rst_d6 <= 1'b1;
rst_d7 <= 1'b1;
end else begin
if (srst_delayed) begin
rst_d1 <= #`TCQ 1'b1;
rst_d2 <= #`TCQ 1'b1;
rst_d3 <= #`TCQ 1'b1;
rst_d4 <= #`TCQ 1'b1;
rst_d5 <= #`TCQ 1'b1;
rst_d6 <= #`TCQ 1'b1;
rst_d7 <= #`TCQ 1'b1;
end else begin
rst_d1 <= #`TCQ 1'b0;
rst_d2 <= #`TCQ rst_d1;
rst_d3 <= #`TCQ rst_d2;
rst_d4 <= #`TCQ rst_d3;
rst_d5 <= #`TCQ rst_d4;
rst_d6 <= #`TCQ rst_d5;
rst_d7 <= #`TCQ rst_d6;
end
end
end
always @* rst_full_ff_i <= (C_HAS_SRST == 0) ? rst_d2 : 1'b0 ;
//always @* rst_full_gen_i <= rst_d4;
always @* rst_full_gen_i <= (C_HAS_SRST == 1) ? rst_d4 : (C_EN_SAFETY_CKT == 0) ? rst_d3 : rst_d5;
end else if ((C_HAS_RST == 1 || C_HAS_SRST == 1 || C_ENABLE_RST_SYNC == 0) && C_FULL_FLAGS_RST_VAL == 0 && C_INTERFACE_TYPE > 0) begin : gnrst_full_axis
always @* rst_full_ff_i <= (C_COMMON_CLOCK == 0) ? wr_rst_i : rst_i;
end
endgenerate // grstd1_axis
endmodule //fifo_generator_v13_1_1_CONV_VER
module fifo_generator_v13_1_1_sync_stage
#(
parameter C_WIDTH = 10
)
(
input RST,
input CLK,
input [C_WIDTH-1:0] DIN,
output reg [C_WIDTH-1:0] DOUT = 0
);
always @ (posedge RST or posedge CLK) begin
if (RST)
DOUT <= 0;
else
DOUT <= #`TCQ DIN;
end
endmodule // fifo_generator_v13_1_1_sync_stage
/*******************************************************************************
* Declaration of Independent-Clocks FIFO Module
******************************************************************************/
module fifo_generator_v13_1_1_bhv_ver_as
/***************************************************************************
* Declare user parameters and their defaults
***************************************************************************/
#(
parameter C_FAMILY = "virtex7",
parameter C_DATA_COUNT_WIDTH = 2,
parameter C_DIN_WIDTH = 8,
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_FULL_FLAGS_RST_VAL = 1,
parameter C_HAS_ALMOST_EMPTY = 0,
parameter C_HAS_ALMOST_FULL = 0,
parameter C_HAS_DATA_COUNT = 0,
parameter C_HAS_OVERFLOW = 0,
parameter C_HAS_RD_DATA_COUNT = 0,
parameter C_HAS_RST = 0,
parameter C_HAS_UNDERFLOW = 0,
parameter C_HAS_VALID = 0,
parameter C_HAS_WR_ACK = 0,
parameter C_HAS_WR_DATA_COUNT = 0,
parameter C_IMPLEMENTATION_TYPE = 0,
parameter C_MEMORY_TYPE = 1,
parameter C_OVERFLOW_LOW = 0,
parameter C_PRELOAD_LATENCY = 1,
parameter C_PRELOAD_REGS = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0,
parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0,
parameter C_PROG_EMPTY_TYPE = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0,
parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0,
parameter C_PROG_FULL_TYPE = 0,
parameter C_RD_DATA_COUNT_WIDTH = 2,
parameter C_RD_DEPTH = 256,
parameter C_RD_PNTR_WIDTH = 8,
parameter C_UNDERFLOW_LOW = 0,
parameter C_USE_DOUT_RST = 0,
parameter C_USE_EMBEDDED_REG = 0,
parameter C_EN_SAFETY_CKT = 0,
parameter C_USE_FWFT_DATA_COUNT = 0,
parameter C_VALID_LOW = 0,
parameter C_WR_ACK_LOW = 0,
parameter C_WR_DATA_COUNT_WIDTH = 2,
parameter C_WR_DEPTH = 256,
parameter C_WR_PNTR_WIDTH = 8,
parameter C_USE_ECC = 0,
parameter C_ENABLE_RST_SYNC = 1,
parameter C_ERROR_INJECTION_TYPE = 0,
parameter C_SYNCHRONIZER_STAGE = 2
)
/***************************************************************************
* Declare Input and Output Ports
***************************************************************************/
(
input [C_DIN_WIDTH-1:0] DIN,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE,
input RD_CLK,
input RD_EN,
input RD_EN_USER,
input RST,
input RST_FULL_GEN,
input RST_FULL_FF,
input WR_RST,
input RD_RST,
input WR_CLK,
input WR_EN,
input INJECTDBITERR,
input INJECTSBITERR,
input USER_EMPTY_FB,
input fab_read_data_valid_i,
input read_data_valid_i,
input ram_valid_i,
output reg ALMOST_EMPTY = 1'b1,
output reg ALMOST_FULL = C_FULL_FLAGS_RST_VAL,
output [C_DOUT_WIDTH-1:0] DOUT,
output reg EMPTY = 1'b1,
output reg FULL = C_FULL_FLAGS_RST_VAL,
output OVERFLOW,
output PROG_EMPTY,
output PROG_FULL,
output VALID,
output [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT,
output UNDERFLOW,
output WR_ACK,
output [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT,
output SBITERR,
output DBITERR
);
reg [C_RD_PNTR_WIDTH:0] rd_data_count_int = 0;
reg [C_WR_PNTR_WIDTH:0] wr_data_count_int = 0;
reg [C_WR_PNTR_WIDTH:0] wdc_fwft_ext_as = 0;
/***************************************************************************
* Parameters used as constants
**************************************************************************/
localparam IS_8SERIES = (C_FAMILY == "virtexu" || C_FAMILY == "kintexu" || C_FAMILY == "artixu" || C_FAMILY == "virtexuplus" || C_FAMILY == "zynquplus" || C_FAMILY == "kintexuplus") ? 1 : 0;
//When RST is present, set FULL reset value to '1'.
//If core has no RST, make sure FULL powers-on as '0'.
localparam C_DEPTH_RATIO_WR =
(C_WR_DEPTH>C_RD_DEPTH) ? (C_WR_DEPTH/C_RD_DEPTH) : 1;
localparam C_DEPTH_RATIO_RD =
(C_RD_DEPTH>C_WR_DEPTH) ? (C_RD_DEPTH/C_WR_DEPTH) : 1;
localparam C_FIFO_WR_DEPTH = C_WR_DEPTH - 1;
localparam C_FIFO_RD_DEPTH = C_RD_DEPTH - 1;
// C_DEPTH_RATIO_WR | C_DEPTH_RATIO_RD | C_PNTR_WIDTH | EXTRA_WORDS_DC
// -----------------|------------------|-----------------|---------------
// 1 | 8 | C_RD_PNTR_WIDTH | 2
// 1 | 4 | C_RD_PNTR_WIDTH | 2
// 1 | 2 | C_RD_PNTR_WIDTH | 2
// 1 | 1 | C_WR_PNTR_WIDTH | 2
// 2 | 1 | C_WR_PNTR_WIDTH | 4
// 4 | 1 | C_WR_PNTR_WIDTH | 8
// 8 | 1 | C_WR_PNTR_WIDTH | 16
localparam C_PNTR_WIDTH = (C_WR_PNTR_WIDTH>=C_RD_PNTR_WIDTH) ? C_WR_PNTR_WIDTH : C_RD_PNTR_WIDTH;
wire [C_PNTR_WIDTH:0] EXTRA_WORDS_DC = (C_DEPTH_RATIO_WR == 1) ? 2 : (2 * C_DEPTH_RATIO_WR/C_DEPTH_RATIO_RD);
localparam [31:0] reads_per_write = C_DIN_WIDTH/C_DOUT_WIDTH;
localparam [31:0] log2_reads_per_write = log2_val(reads_per_write);
localparam [31:0] writes_per_read = C_DOUT_WIDTH/C_DIN_WIDTH;
localparam [31:0] log2_writes_per_read = log2_val(writes_per_read);
/**************************************************************************
* FIFO Contents Tracking and Data Count Calculations
*************************************************************************/
// Memory which will be used to simulate a FIFO
reg [C_DIN_WIDTH-1:0] memory[C_WR_DEPTH-1:0];
// Local parameters used to determine whether to inject ECC error or not
localparam SYMMETRIC_PORT = (C_DIN_WIDTH == C_DOUT_WIDTH) ? 1 : 0;
localparam ERR_INJECTION = (C_ERROR_INJECTION_TYPE != 0) ? 1 : 0;
localparam C_USE_ECC_1 = (C_USE_ECC == 1 || C_USE_ECC ==2) ? 1:0;
localparam ENABLE_ERR_INJECTION = C_USE_ECC_1 && SYMMETRIC_PORT && ERR_INJECTION;
// Array that holds the error injection type (single/double bit error) on
// a specific write operation, which is returned on read to corrupt the
// output data.
reg [1:0] ecc_err[C_WR_DEPTH-1:0];
//The amount of data stored in the FIFO at any time is given
// by num_wr_bits (in the WR_CLK domain) and num_rd_bits (in the RD_CLK
// domain.
//num_wr_bits is calculated by considering the total words in the FIFO,
// and the state of the read pointer (which may not have yet crossed clock
// domains.)
//num_rd_bits is calculated by considering the total words in the FIFO,
// and the state of the write pointer (which may not have yet crossed clock
// domains.)
reg [31:0] num_wr_bits;
reg [31:0] num_rd_bits;
reg [31:0] next_num_wr_bits;
reg [31:0] next_num_rd_bits;
//The write pointer - tracks write operations
// (Works opposite to core: wr_ptr is a DOWN counter)
reg [31:0] wr_ptr;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr = 0; // UP counter: Rolls back to 0 when reaches to max value.
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd1 = 0;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd2 = 0;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd3 = 0;
wire [C_RD_PNTR_WIDTH-1:0] adj_wr_pntr_rd;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd = 0;
wire wr_rst_i = WR_RST;
reg wr_rst_d1 =0;
//The read pointer - tracks read operations
// (rd_ptr Works opposite to core: rd_ptr is a DOWN counter)
reg [31:0] rd_ptr;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr = 0; // UP counter: Rolls back to 0 when reaches to max value.
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr1 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr2 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr3 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr4 = 0;
wire [C_WR_PNTR_WIDTH-1:0] adj_rd_pntr_wr;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr = 0;
wire rd_rst_i = RD_RST;
wire ram_rd_en;
wire empty_int;
wire almost_empty_int;
wire ram_wr_en;
wire full_int;
wire almost_full_int;
reg ram_rd_en_d1 = 1'b0;
reg fab_rd_en_d1 = 1'b0;
// Delayed ram_rd_en is needed only for STD Embedded register option
generate
if (C_PRELOAD_LATENCY == 2) begin : grd_d
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i)
ram_rd_en_d1 <= #`TCQ 1'b0;
else
ram_rd_en_d1 <= #`TCQ ram_rd_en;
end
end
endgenerate
generate
if (C_PRELOAD_LATENCY == 2 && C_USE_EMBEDDED_REG == 3) begin : grd_d1
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i)
ram_rd_en_d1 <= #`TCQ 1'b0;
else
ram_rd_en_d1 <= #`TCQ ram_rd_en;
fab_rd_en_d1 <= #`TCQ ram_rd_en_d1;
end
end
endgenerate
// Write pointer adjustment based on pointers width for EMPTY/ALMOST_EMPTY generation
generate
if (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) begin : rdg // Read depth greater than write depth
assign adj_wr_pntr_rd[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr_rd;
assign adj_wr_pntr_rd[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1:0] = 0;
end else begin : rdl // Read depth lesser than or equal to write depth
assign adj_wr_pntr_rd = wr_pntr_rd[C_WR_PNTR_WIDTH-1:C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH];
end
endgenerate
// Generate Empty and Almost Empty
// ram_rd_en used to determine EMPTY should depend on the EMPTY.
assign ram_rd_en = RD_EN & !EMPTY;
assign empty_int = ((adj_wr_pntr_rd == rd_pntr) || (ram_rd_en && (adj_wr_pntr_rd == (rd_pntr+1'h1))));
assign almost_empty_int = ((adj_wr_pntr_rd == (rd_pntr+1'h1)) || (ram_rd_en && (adj_wr_pntr_rd == (rd_pntr+2'h2))));
// Register Empty and Almost Empty
always @ (posedge RD_CLK or posedge rd_rst_i)
begin
if (rd_rst_i) begin
EMPTY <= #`TCQ 1'b1;
ALMOST_EMPTY <= #`TCQ 1'b1;
rd_data_count_int <= #`TCQ {C_RD_PNTR_WIDTH{1'b0}};
end else begin
rd_data_count_int <= #`TCQ {(adj_wr_pntr_rd[C_RD_PNTR_WIDTH-1:0] - rd_pntr[C_RD_PNTR_WIDTH-1:0]), 1'b0};
if (empty_int)
EMPTY <= #`TCQ 1'b1;
else
EMPTY <= #`TCQ 1'b0;
if (!EMPTY) begin
if (almost_empty_int)
ALMOST_EMPTY <= #`TCQ 1'b1;
else
ALMOST_EMPTY <= #`TCQ 1'b0;
end
end // rd_rst_i
end // always
// Read pointer adjustment based on pointers width for EMPTY/ALMOST_EMPTY generation
generate
if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : wdg // Write depth greater than read depth
assign adj_rd_pntr_wr[C_WR_PNTR_WIDTH-1:C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH] = rd_pntr_wr;
assign adj_rd_pntr_wr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1:0] = 0;
end else begin : wdl // Write depth lesser than or equal to read depth
assign adj_rd_pntr_wr = rd_pntr_wr[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH];
end
endgenerate
// Generate FULL and ALMOST_FULL
// ram_wr_en used to determine FULL should depend on the FULL.
assign ram_wr_en = WR_EN & !FULL;
assign full_int = ((adj_rd_pntr_wr == (wr_pntr+1'h1)) || (ram_wr_en && (adj_rd_pntr_wr == (wr_pntr+2'h2))));
assign almost_full_int = ((adj_rd_pntr_wr == (wr_pntr+2'h2)) || (ram_wr_en && (adj_rd_pntr_wr == (wr_pntr+3'h3))));
// Register FULL and ALMOST_FULL Empty
always @ (posedge WR_CLK or posedge RST_FULL_FF)
begin
if (RST_FULL_FF) begin
FULL <= #`TCQ C_FULL_FLAGS_RST_VAL;
ALMOST_FULL <= #`TCQ C_FULL_FLAGS_RST_VAL;
end else begin
if (full_int) begin
FULL <= #`TCQ 1'b1;
end else begin
FULL <= #`TCQ 1'b0;
end
if (RST_FULL_GEN) begin
ALMOST_FULL <= #`TCQ 1'b0;
end else if (!FULL) begin
if (almost_full_int)
ALMOST_FULL <= #`TCQ 1'b1;
else
ALMOST_FULL <= #`TCQ 1'b0;
end
end // wr_rst_i
end // always
always @ (posedge WR_CLK or posedge wr_rst_i)
begin
if (wr_rst_i) begin
wr_data_count_int <= #`TCQ {C_WR_DATA_COUNT_WIDTH{1'b0}};
end else begin
wr_data_count_int <= #`TCQ {(wr_pntr[C_WR_PNTR_WIDTH-1:0] - adj_rd_pntr_wr[C_WR_PNTR_WIDTH-1:0]), 1'b0};
end // wr_rst_i
end // always
// Determine which stage in FWFT registers are valid
reg stage1_valid = 0;
reg stage2_valid = 0;
generate
if (C_PRELOAD_LATENCY == 0) begin : grd_fwft_proc
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
stage1_valid <= #`TCQ 0;
stage2_valid <= #`TCQ 0;
end else begin
if (!stage1_valid && !stage2_valid) begin
if (!EMPTY)
stage1_valid <= #`TCQ 1'b1;
else
stage1_valid <= #`TCQ 1'b0;
end else if (stage1_valid && !stage2_valid) begin
if (EMPTY) begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b1;
end else begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b1;
end
end else if (!stage1_valid && stage2_valid) begin
if (EMPTY && RD_EN_USER) begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b0;
end else if (!EMPTY && RD_EN_USER) begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b0;
end else if (!EMPTY && !RD_EN_USER) begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b1;
end else begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b1;
end
end else if (stage1_valid && stage2_valid) begin
if (EMPTY && RD_EN_USER) begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b1;
end else begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b1;
end
end else begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b0;
end
end // rd_rst_i
end // always
end
endgenerate
//Pointers passed into opposite clock domain
reg [31:0] wr_ptr_rdclk;
reg [31:0] wr_ptr_rdclk_next;
reg [31:0] rd_ptr_wrclk;
reg [31:0] rd_ptr_wrclk_next;
//Amount of data stored in the FIFO scaled to the narrowest (deepest) port
// (Do not include data in FWFT stages)
//Used to calculate PROG_EMPTY.
wire [31:0] num_read_words_pe =
num_rd_bits/(C_DOUT_WIDTH/C_DEPTH_RATIO_WR);
//Amount of data stored in the FIFO scaled to the narrowest (deepest) port
// (Do not include data in FWFT stages)
//Used to calculate PROG_FULL.
wire [31:0] num_write_words_pf =
num_wr_bits/(C_DIN_WIDTH/C_DEPTH_RATIO_RD);
/**************************
* Read Data Count
*************************/
reg [31:0] num_read_words_dc;
reg [C_RD_DATA_COUNT_WIDTH-1:0] num_read_words_sized_i;
always @(num_rd_bits) begin
if (C_USE_FWFT_DATA_COUNT) begin
//If using extra logic for FWFT Data Counts,
// then scale FIFO contents to read domain,
// and add two read words for FWFT stages
//This value is only a temporary value and not used in the code.
num_read_words_dc = (num_rd_bits/C_DOUT_WIDTH+2);
//Trim the read words for use with RD_DATA_COUNT
num_read_words_sized_i =
num_read_words_dc[C_RD_PNTR_WIDTH : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH+1];
end else begin
//If not using extra logic for FWFT Data Counts,
// then scale FIFO contents to read domain.
//This value is only a temporary value and not used in the code.
num_read_words_dc = num_rd_bits/C_DOUT_WIDTH;
//Trim the read words for use with RD_DATA_COUNT
num_read_words_sized_i =
num_read_words_dc[C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH];
end //if (C_USE_FWFT_DATA_COUNT)
end //always
/**************************
* Write Data Count
*************************/
reg [31:0] num_write_words_dc;
reg [C_WR_DATA_COUNT_WIDTH-1:0] num_write_words_sized_i;
always @(num_wr_bits) begin
if (C_USE_FWFT_DATA_COUNT) begin
//Calculate the Data Count value for the number of write words,
// when using First-Word Fall-Through with extra logic for Data
// Counts. This takes into consideration the number of words that
// are expected to be stored in the FWFT register stages (it always
// assumes they are filled).
//This value is scaled to the Write Domain.
//The expression (((A-1)/B))+1 divides A/B, but takes the
// ceiling of the result.
//When num_wr_bits==0, set the result manually to prevent
// division errors.
//EXTRA_WORDS_DC is the number of words added to write_words
// due to FWFT.
//This value is only a temporary value and not used in the code.
num_write_words_dc = (num_wr_bits==0) ? EXTRA_WORDS_DC : (((num_wr_bits-1)/C_DIN_WIDTH)+1) + EXTRA_WORDS_DC ;
//Trim the write words for use with WR_DATA_COUNT
num_write_words_sized_i =
num_write_words_dc[C_WR_PNTR_WIDTH : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH+1];
end else begin
//Calculate the Data Count value for the number of write words, when NOT
// using First-Word Fall-Through with extra logic for Data Counts. This
// calculates only the number of words in the internal FIFO.
//The expression (((A-1)/B))+1 divides A/B, but takes the
// ceiling of the result.
//This value is scaled to the Write Domain.
//When num_wr_bits==0, set the result manually to prevent
// division errors.
//This value is only a temporary value and not used in the code.
num_write_words_dc = (num_wr_bits==0) ? 0 : ((num_wr_bits-1)/C_DIN_WIDTH)+1;
//Trim the read words for use with RD_DATA_COUNT
num_write_words_sized_i =
num_write_words_dc[C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH];
end //if (C_USE_FWFT_DATA_COUNT)
end //always
/***************************************************************************
* Internal registers and wires
**************************************************************************/
//Temporary signals used for calculating the model's outputs. These
//are only used in the assign statements immediately following wire,
//parameter, and function declarations.
wire [C_DOUT_WIDTH-1:0] ideal_dout_out;
wire valid_i;
wire valid_out1;
wire valid_out2;
wire valid_out;
wire underflow_i;
//Ideal FIFO signals. These are the raw output of the behavioral model,
//which behaves like an ideal FIFO.
reg [1:0] err_type = 0;
reg [1:0] err_type_d1 = 0;
reg [1:0] err_type_both = 0;
reg [C_DOUT_WIDTH-1:0] ideal_dout = 0;
reg [C_DOUT_WIDTH-1:0] ideal_dout_d1 = 0;
reg [C_DOUT_WIDTH-1:0] ideal_dout_both = 0;
reg ideal_wr_ack = 0;
reg ideal_valid = 0;
reg ideal_overflow = C_OVERFLOW_LOW;
reg ideal_underflow = C_UNDERFLOW_LOW;
reg ideal_prog_full = 0;
reg ideal_prog_empty = 1;
reg [C_WR_DATA_COUNT_WIDTH-1 : 0] ideal_wr_count = 0;
reg [C_RD_DATA_COUNT_WIDTH-1 : 0] ideal_rd_count = 0;
//Assorted reg values for delayed versions of signals
reg valid_d1 = 0;
reg valid_d2 = 0;
//user specified value for reseting the size of the fifo
reg [C_DOUT_WIDTH-1:0] dout_reset_val = 0;
//temporary registers for WR_RESPONSE_LATENCY feature
integer tmp_wr_listsize;
integer tmp_rd_listsize;
//Signal for registered version of prog full and empty
//Threshold values for Programmable Flags
integer prog_empty_actual_thresh_assert;
integer prog_empty_actual_thresh_negate;
integer prog_full_actual_thresh_assert;
integer prog_full_actual_thresh_negate;
/****************************************************************************
* Function Declarations
***************************************************************************/
/**************************************************************************
* write_fifo
* This task writes a word to the FIFO memory and updates the
* write pointer.
* FIFO size is relative to write domain.
***************************************************************************/
task write_fifo;
begin
memory[wr_ptr] <= DIN;
wr_pntr <= #`TCQ wr_pntr + 1;
// Store the type of error injection (double/single) on write
case (C_ERROR_INJECTION_TYPE)
3: ecc_err[wr_ptr] <= {INJECTDBITERR,INJECTSBITERR};
2: ecc_err[wr_ptr] <= {INJECTDBITERR,1'b0};
1: ecc_err[wr_ptr] <= {1'b0,INJECTSBITERR};
default: ecc_err[wr_ptr] <= 0;
endcase
// (Works opposite to core: wr_ptr is a DOWN counter)
if (wr_ptr == 0) begin
wr_ptr <= C_WR_DEPTH - 1;
end else begin
wr_ptr <= wr_ptr - 1;
end
end
endtask // write_fifo
/**************************************************************************
* read_fifo
* This task reads a word from the FIFO memory and updates the read
* pointer. It's output is the ideal_dout bus.
* FIFO size is relative to write domain.
***************************************************************************/
task read_fifo;
integer i;
reg [C_DOUT_WIDTH-1:0] tmp_dout;
reg [C_DIN_WIDTH-1:0] memory_read;
reg [31:0] tmp_rd_ptr;
reg [31:0] rd_ptr_high;
reg [31:0] rd_ptr_low;
reg [1:0] tmp_ecc_err;
begin
rd_pntr <= #`TCQ rd_pntr + 1;
// output is wider than input
if (reads_per_write == 0) begin
tmp_dout = 0;
tmp_rd_ptr = (rd_ptr << log2_writes_per_read)+(writes_per_read-1);
for (i = writes_per_read - 1; i >= 0; i = i - 1) begin
tmp_dout = tmp_dout << C_DIN_WIDTH;
tmp_dout = tmp_dout | memory[tmp_rd_ptr];
// (Works opposite to core: rd_ptr is a DOWN counter)
if (tmp_rd_ptr == 0) begin
tmp_rd_ptr = C_WR_DEPTH - 1;
end else begin
tmp_rd_ptr = tmp_rd_ptr - 1;
end
end
// output is symmetric
end else if (reads_per_write == 1) begin
tmp_dout = memory[rd_ptr][C_DIN_WIDTH-1:0];
// Retreive the error injection type. Based on the error injection type
// corrupt the output data.
tmp_ecc_err = ecc_err[rd_ptr];
if (ENABLE_ERR_INJECTION && C_DIN_WIDTH == C_DOUT_WIDTH) begin
if (tmp_ecc_err[1]) begin // Corrupt the output data only for double bit error
if (C_DOUT_WIDTH == 1) begin
$display("FAILURE : Data width must be >= 2 for double bit error injection.");
$finish;
end else if (C_DOUT_WIDTH == 2)
tmp_dout = {~tmp_dout[C_DOUT_WIDTH-1],~tmp_dout[C_DOUT_WIDTH-2]};
else
tmp_dout = {~tmp_dout[C_DOUT_WIDTH-1],~tmp_dout[C_DOUT_WIDTH-2],(tmp_dout << 2)};
end else begin
tmp_dout = tmp_dout[C_DOUT_WIDTH-1:0];
end
err_type <= {tmp_ecc_err[1], tmp_ecc_err[0] & !tmp_ecc_err[1]};
end else begin
err_type <= 0;
end
// input is wider than output
end else begin
rd_ptr_high = rd_ptr >> log2_reads_per_write;
rd_ptr_low = rd_ptr & (reads_per_write - 1);
memory_read = memory[rd_ptr_high];
tmp_dout = memory_read >> (rd_ptr_low*C_DOUT_WIDTH);
end
ideal_dout <= tmp_dout;
// (Works opposite to core: rd_ptr is a DOWN counter)
if (rd_ptr == 0) begin
rd_ptr <= C_RD_DEPTH - 1;
end else begin
rd_ptr <= rd_ptr - 1;
end
end
endtask
/**************************************************************************
* log2_val
* Returns the 'log2' value for the input value for the supported ratios
***************************************************************************/
function [31:0] log2_val;
input [31:0] binary_val;
begin
if (binary_val == 8) begin
log2_val = 3;
end else if (binary_val == 4) begin
log2_val = 2;
end else begin
log2_val = 1;
end
end
endfunction
/***********************************************************************
* hexstr_conv
* Converts a string of type hex to a binary value (for C_DOUT_RST_VAL)
***********************************************************************/
function [C_DOUT_WIDTH-1:0] hexstr_conv;
input [(C_DOUT_WIDTH*8)-1:0] def_data;
integer index,i,j;
reg [3:0] bin;
begin
index = 0;
hexstr_conv = 'b0;
for( i=C_DOUT_WIDTH-1; i>=0; i=i-1 )
begin
case (def_data[7:0])
8'b00000000 :
begin
bin = 4'b0000;
i = -1;
end
8'b00110000 : bin = 4'b0000;
8'b00110001 : bin = 4'b0001;
8'b00110010 : bin = 4'b0010;
8'b00110011 : bin = 4'b0011;
8'b00110100 : bin = 4'b0100;
8'b00110101 : bin = 4'b0101;
8'b00110110 : bin = 4'b0110;
8'b00110111 : bin = 4'b0111;
8'b00111000 : bin = 4'b1000;
8'b00111001 : bin = 4'b1001;
8'b01000001 : bin = 4'b1010;
8'b01000010 : bin = 4'b1011;
8'b01000011 : bin = 4'b1100;
8'b01000100 : bin = 4'b1101;
8'b01000101 : bin = 4'b1110;
8'b01000110 : bin = 4'b1111;
8'b01100001 : bin = 4'b1010;
8'b01100010 : bin = 4'b1011;
8'b01100011 : bin = 4'b1100;
8'b01100100 : bin = 4'b1101;
8'b01100101 : bin = 4'b1110;
8'b01100110 : bin = 4'b1111;
default :
begin
bin = 4'bx;
end
endcase
for( j=0; j<4; j=j+1)
begin
if ((index*4)+j < C_DOUT_WIDTH)
begin
hexstr_conv[(index*4)+j] = bin[j];
end
end
index = index + 1;
def_data = def_data >> 8;
end
end
endfunction
/*************************************************************************
* Initialize Signals for clean power-on simulation
*************************************************************************/
initial begin
num_wr_bits = 0;
num_rd_bits = 0;
next_num_wr_bits = 0;
next_num_rd_bits = 0;
rd_ptr = C_RD_DEPTH - 1;
wr_ptr = C_WR_DEPTH - 1;
wr_pntr = 0;
rd_pntr = 0;
rd_ptr_wrclk = rd_ptr;
wr_ptr_rdclk = wr_ptr;
dout_reset_val = hexstr_conv(C_DOUT_RST_VAL);
ideal_dout = dout_reset_val;
err_type = 0;
ideal_dout_d1 = dout_reset_val;
ideal_wr_ack = 1'b0;
ideal_valid = 1'b0;
valid_d1 = 1'b0;
valid_d2 = 1'b0;
ideal_overflow = C_OVERFLOW_LOW;
ideal_underflow = C_UNDERFLOW_LOW;
ideal_wr_count = 0;
ideal_rd_count = 0;
ideal_prog_full = 1'b0;
ideal_prog_empty = 1'b1;
end
/*************************************************************************
* Connect the module inputs and outputs to the internal signals of the
* behavioral model.
*************************************************************************/
//Inputs
/*
wire [C_DIN_WIDTH-1:0] DIN;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE;
wire RD_CLK;
wire RD_EN;
wire RST;
wire WR_CLK;
wire WR_EN;
*/
//***************************************************************************
// Dout may change behavior based on latency
//***************************************************************************
assign ideal_dout_out[C_DOUT_WIDTH-1:0] = (C_PRELOAD_LATENCY==2 &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) )?
ideal_dout_d1: ideal_dout;
assign DOUT[C_DOUT_WIDTH-1:0] = ideal_dout_out;
//***************************************************************************
// Assign SBITERR and DBITERR based on latency
//***************************************************************************
assign SBITERR = (C_ERROR_INJECTION_TYPE == 1 || C_ERROR_INJECTION_TYPE == 3) &&
(C_PRELOAD_LATENCY == 2 &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) ) ?
err_type_d1[0]: err_type[0];
assign DBITERR = (C_ERROR_INJECTION_TYPE == 2 || C_ERROR_INJECTION_TYPE == 3) &&
(C_PRELOAD_LATENCY==2 && (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1)) ?
err_type_d1[1]: err_type[1];
//***************************************************************************
// Safety-ckt logic with embedded reg/fabric reg
//***************************************************************************
generate
if ((C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) && C_EN_SAFETY_CKT==1 && C_USE_EMBEDDED_REG < 3) begin
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d1;
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d2;
reg [1:0] rst_delayed_sft1 =1;
reg [1:0] rst_delayed_sft2 =1;
reg [1:0] rst_delayed_sft3 =1;
reg [1:0] rst_delayed_sft4 =1;
// if (C_HAS_VALID == 1) begin
// assign valid_out = valid_d1;
// end
always@(posedge RD_CLK)
begin
rst_delayed_sft1 <= #`TCQ rd_rst_i;
rst_delayed_sft2 <= #`TCQ rst_delayed_sft1;
rst_delayed_sft3 <= #`TCQ rst_delayed_sft2;
rst_delayed_sft4 <= #`TCQ rst_delayed_sft3;
end
always@(posedge rst_delayed_sft4 or posedge rd_rst_i or posedge RD_CLK)
begin
if( rst_delayed_sft4 == 1'b1 || rd_rst_i == 1'b1)
ram_rd_en_d1 <= #`TCQ 1'b0;
else
ram_rd_en_d1 <= #`TCQ ram_rd_en;
end
always@(posedge rst_delayed_sft2 or posedge RD_CLK)
begin
if (rst_delayed_sft2 == 1'b1) begin
if (C_USE_DOUT_RST == 1'b1) begin
@(posedge RD_CLK)
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
end
else begin
if (ram_rd_en_d1) begin
ideal_dout_d1 <= #`TCQ ideal_dout;
err_type_d1[0] <= #`TCQ err_type[0];
err_type_d1[1] <= #`TCQ err_type[1];
end
end
end
end
endgenerate
//***************************************************************************
// Safety-ckt logic with embedded reg + fabric reg
//***************************************************************************
generate
if ((C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) && C_EN_SAFETY_CKT==1 && C_USE_EMBEDDED_REG == 3) begin
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d1;
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d2;
reg [1:0] rst_delayed_sft1 =1;
reg [1:0] rst_delayed_sft2 =1;
reg [1:0] rst_delayed_sft3 =1;
reg [1:0] rst_delayed_sft4 =1;
// if (C_HAS_VALID == 1) begin
// assign valid_out = valid_d2;
// end
always@(posedge RD_CLK)
begin
rst_delayed_sft1 <= #`TCQ rd_rst_i;
rst_delayed_sft2 <= #`TCQ rst_delayed_sft1;
rst_delayed_sft3 <= #`TCQ rst_delayed_sft2;
rst_delayed_sft4 <= #`TCQ rst_delayed_sft3;
end
always@(posedge rst_delayed_sft4 or posedge rd_rst_i or posedge RD_CLK)
begin
if( rst_delayed_sft4 == 1'b1 || rd_rst_i == 1'b1)
ram_rd_en_d1 <= #`TCQ 1'b0;
else
ram_rd_en_d1 <= #`TCQ ram_rd_en;
fab_rd_en_d1 <= #`TCQ ram_rd_en_d1;
end
always@(posedge rst_delayed_sft2 or posedge RD_CLK)
begin
if (rst_delayed_sft2 == 1'b1) begin
if (C_USE_DOUT_RST == 1'b1) begin
@(posedge RD_CLK)
ideal_dout_d1 <= #`TCQ dout_reset_val;
ideal_dout_both <= #`TCQ dout_reset_val;
end
end
else begin
if (ram_rd_en_d1) begin
ideal_dout_both <= #`TCQ ideal_dout;
err_type_both[0] <= #`TCQ err_type[0];
err_type_both[1] <= #`TCQ err_type[1];
end
if (fab_rd_en_d1) begin
ideal_dout_d1 <= #`TCQ ideal_dout_both;
err_type_d1[0] <= #`TCQ err_type_both[0];
err_type_d1[1] <= #`TCQ err_type_both[1];
end
end
end
end
endgenerate
//***************************************************************************
// Overflow may be active-low
//***************************************************************************
generate
if (C_HAS_OVERFLOW==1) begin : blockOF1
assign OVERFLOW = ideal_overflow ? !C_OVERFLOW_LOW : C_OVERFLOW_LOW;
end
endgenerate
assign PROG_EMPTY = ideal_prog_empty;
assign PROG_FULL = ideal_prog_full;
//***************************************************************************
// Valid may change behavior based on latency or active-low
//***************************************************************************
generate
if (C_HAS_VALID==1) begin : blockVL1
assign valid_i = (C_PRELOAD_LATENCY==0) ? (RD_EN & ~EMPTY) : ideal_valid;
assign valid_out1 = (C_PRELOAD_LATENCY==2 &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) && C_USE_EMBEDDED_REG < 3)?
valid_d1: valid_i;
assign valid_out2 = (C_PRELOAD_LATENCY==2 &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) && C_USE_EMBEDDED_REG == 3)?
valid_d2: valid_i;
assign valid_out = (C_USE_EMBEDDED_REG == 3) ? valid_out2 : valid_out1;
assign VALID = valid_out ? !C_VALID_LOW : C_VALID_LOW;
end
endgenerate
//***************************************************************************
// Underflow may change behavior based on latency or active-low
//***************************************************************************
generate
if (C_HAS_UNDERFLOW==1) begin : blockUF1
assign underflow_i = (C_PRELOAD_LATENCY==0) ? (RD_EN & EMPTY) : ideal_underflow;
assign UNDERFLOW = underflow_i ? !C_UNDERFLOW_LOW : C_UNDERFLOW_LOW;
end
endgenerate
//***************************************************************************
// Write acknowledge may be active low
//***************************************************************************
generate
if (C_HAS_WR_ACK==1) begin : blockWK1
assign WR_ACK = ideal_wr_ack ? !C_WR_ACK_LOW : C_WR_ACK_LOW;
end
endgenerate
//***************************************************************************
// Generate RD_DATA_COUNT if Use Extra Logic option is selected
//***************************************************************************
generate
if (C_HAS_WR_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT == 1) begin : wdc_fwft_ext
reg [C_PNTR_WIDTH-1:0] adjusted_wr_pntr = 0;
reg [C_PNTR_WIDTH-1:0] adjusted_rd_pntr = 0;
wire [C_PNTR_WIDTH-1:0] diff_wr_rd_tmp;
wire [C_PNTR_WIDTH:0] diff_wr_rd;
reg [C_PNTR_WIDTH:0] wr_data_count_i = 0;
always @* begin
if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin
adjusted_wr_pntr = wr_pntr;
adjusted_rd_pntr = 0;
adjusted_rd_pntr[C_PNTR_WIDTH-1:C_PNTR_WIDTH-C_RD_PNTR_WIDTH] = rd_pntr_wr;
end else if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin
adjusted_rd_pntr = rd_pntr_wr;
adjusted_wr_pntr = 0;
adjusted_wr_pntr[C_PNTR_WIDTH-1:C_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr;
end else begin
adjusted_wr_pntr = wr_pntr;
adjusted_rd_pntr = rd_pntr_wr;
end
end // always @*
assign diff_wr_rd_tmp = adjusted_wr_pntr - adjusted_rd_pntr;
assign diff_wr_rd = {1'b0,diff_wr_rd_tmp};
always @ (posedge wr_rst_i or posedge WR_CLK)
begin
if (wr_rst_i)
wr_data_count_i <= #`TCQ 0;
else
wr_data_count_i <= #`TCQ diff_wr_rd + EXTRA_WORDS_DC;
end // always @ (posedge WR_CLK or posedge WR_CLK)
always @* begin
if (C_WR_PNTR_WIDTH >= C_RD_PNTR_WIDTH)
wdc_fwft_ext_as = wr_data_count_i[C_PNTR_WIDTH:0];
else
wdc_fwft_ext_as = wr_data_count_i[C_PNTR_WIDTH:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH];
end // always @*
end // wdc_fwft_ext
endgenerate
//***************************************************************************
// Generate RD_DATA_COUNT if Use Extra Logic option is selected
//***************************************************************************
reg [C_RD_PNTR_WIDTH:0] rdc_fwft_ext_as = 0;
generate if (C_USE_EMBEDDED_REG < 3) begin: rdc_fwft_ext_both
if (C_HAS_RD_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT == 1) begin : rdc_fwft_ext
reg [C_RD_PNTR_WIDTH-1:0] adjusted_wr_pntr_rd = 0;
wire [C_RD_PNTR_WIDTH-1:0] diff_rd_wr_tmp;
wire [C_RD_PNTR_WIDTH:0] diff_rd_wr;
always @* begin
if (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) begin
adjusted_wr_pntr_rd = 0;
adjusted_wr_pntr_rd[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr_rd;
end else begin
adjusted_wr_pntr_rd = wr_pntr_rd[C_WR_PNTR_WIDTH-1:C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH];
end
end // always @*
assign diff_rd_wr_tmp = adjusted_wr_pntr_rd - rd_pntr;
assign diff_rd_wr = {1'b0,diff_rd_wr_tmp};
always @ (posedge rd_rst_i or posedge RD_CLK)
begin
if (rd_rst_i) begin
rdc_fwft_ext_as <= #`TCQ 0;
end else begin
if (!stage2_valid)
rdc_fwft_ext_as <= #`TCQ 0;
else if (!stage1_valid && stage2_valid)
rdc_fwft_ext_as <= #`TCQ 1;
else
rdc_fwft_ext_as <= #`TCQ diff_rd_wr + 2'h2;
end
end // always @ (posedge WR_CLK or posedge WR_CLK)
end // rdc_fwft_ext
end
endgenerate
generate if (C_USE_EMBEDDED_REG == 3) begin
if (C_HAS_RD_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT == 1) begin : rdc_fwft_ext
reg [C_RD_PNTR_WIDTH-1:0] adjusted_wr_pntr_rd = 0;
wire [C_RD_PNTR_WIDTH-1:0] diff_rd_wr_tmp;
wire [C_RD_PNTR_WIDTH:0] diff_rd_wr;
always @* begin
if (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) begin
adjusted_wr_pntr_rd = 0;
adjusted_wr_pntr_rd[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr_rd;
end else begin
adjusted_wr_pntr_rd = wr_pntr_rd[C_WR_PNTR_WIDTH-1:C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH];
end
end // always @*
assign diff_rd_wr_tmp = adjusted_wr_pntr_rd - rd_pntr;
assign diff_rd_wr = {1'b0,diff_rd_wr_tmp};
wire [C_RD_PNTR_WIDTH:0] diff_rd_wr_1;
// assign diff_rd_wr_1 = diff_rd_wr +2'h2;
always @ (posedge rd_rst_i or posedge RD_CLK)
begin
if (rd_rst_i) begin
rdc_fwft_ext_as <= #`TCQ 0;
end else begin
//if (fab_read_data_valid_i == 1'b0 && ((ram_valid_i == 1'b0 && read_data_valid_i ==1'b0) || (ram_valid_i == 1'b0 && read_data_valid_i ==1'b1) || (ram_valid_i == 1'b1 && read_data_valid_i ==1'b0) || (ram_valid_i == 1'b1 && read_data_valid_i ==1'b1)))
// rdc_fwft_ext_as <= 1'b0;
//else if (fab_read_data_valid_i == 1'b1 && ((ram_valid_i == 1'b0 && read_data_valid_i ==1'b0) || (ram_valid_i == 1'b0 && read_data_valid_i ==1'b1)))
// rdc_fwft_ext_as <= 1'b1;
//else
rdc_fwft_ext_as <= diff_rd_wr + 2'h2 ;
end
end
end
end
endgenerate
//***************************************************************************
// Assign the read data count value only if it is selected,
// otherwise output zeros.
//***************************************************************************
generate
if (C_HAS_RD_DATA_COUNT == 1) begin : grdc
assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = C_USE_FWFT_DATA_COUNT ?
rdc_fwft_ext_as[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH+1-C_RD_DATA_COUNT_WIDTH] :
rd_data_count_int[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH+1-C_RD_DATA_COUNT_WIDTH];
end
endgenerate
generate
if (C_HAS_RD_DATA_COUNT == 0) begin : gnrdc
assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = {C_RD_DATA_COUNT_WIDTH{1'b0}};
end
endgenerate
//***************************************************************************
// Assign the write data count value only if it is selected,
// otherwise output zeros
//***************************************************************************
generate
if (C_HAS_WR_DATA_COUNT == 1) begin : gwdc
assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = (C_USE_FWFT_DATA_COUNT == 1) ?
wdc_fwft_ext_as[C_WR_PNTR_WIDTH:C_WR_PNTR_WIDTH+1-C_WR_DATA_COUNT_WIDTH] :
wr_data_count_int[C_WR_PNTR_WIDTH:C_WR_PNTR_WIDTH+1-C_WR_DATA_COUNT_WIDTH];
end
endgenerate
generate
if (C_HAS_WR_DATA_COUNT == 0) begin : gnwdc
assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = {C_WR_DATA_COUNT_WIDTH{1'b0}};
end
endgenerate
/**************************************************************************
* Assorted registers for delayed versions of signals
**************************************************************************/
//Capture delayed version of valid
generate
if (C_HAS_VALID==1) begin : blockVL2
always @(posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i == 1'b1) begin
valid_d1 <= #`TCQ 1'b0;
valid_d2 <= #`TCQ 1'b0;
end else begin
valid_d1 <= #`TCQ valid_i;
valid_d2 <= #`TCQ valid_d1;
end
// if (C_USE_EMBEDDED_REG == 3 && (C_EN_SAFETY_CKT == 0 || C_EN_SAFETY_CKT == 1 ) begin
// valid_d2 <= #`TCQ valid_d1;
// end
end
end
endgenerate
//Capture delayed version of dout
/**************************************************************************
*embedded/fabric reg with no safety ckt
**************************************************************************/
generate
if (C_EN_SAFETY_CKT==0 && C_USE_EMBEDDED_REG < 3) begin
always @(posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i == 1'b1) begin
if (C_USE_DOUT_RST == 1'b1) begin
@(posedge RD_CLK)
ideal_dout_d1 <= #`TCQ dout_reset_val;
ideal_dout <= #`TCQ dout_reset_val;
end
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type_d1 <= #`TCQ 0;
end else if (ram_rd_en_d1) begin
ideal_dout_d1 <= #`TCQ ideal_dout;
err_type_d1 <= #`TCQ err_type;
end
end
end
endgenerate
/**************************************************************************
*embedded + fabric reg with no safety ckt
**************************************************************************/
generate
if (C_EN_SAFETY_CKT==0 && C_USE_EMBEDDED_REG == 3) begin
always @(posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i == 1'b1) begin
if (C_USE_DOUT_RST == 1'b1) begin
@(posedge RD_CLK)
ideal_dout <= #`TCQ dout_reset_val;
ideal_dout_d1 <= #`TCQ dout_reset_val;
ideal_dout_both <= #`TCQ dout_reset_val;
end
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type_d1 <= #`TCQ 0;
end else if (ram_rd_en_d1) begin
ideal_dout_both <= #`TCQ ideal_dout;
err_type_both <= #`TCQ err_type;
end
if (fab_rd_en_d1) begin
ideal_dout_d1 <= #`TCQ ideal_dout_both;
err_type_d1 <= #`TCQ err_type_both;
end
end
end
endgenerate
/**************************************************************************
* Overflow and Underflow Flag calculation
* (handled separately because they don't support rst)
**************************************************************************/
generate
if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 0) begin : g7s_ovflw
always @(posedge WR_CLK) begin
ideal_overflow <= #`TCQ WR_EN & FULL;
end
end else if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 1) begin : g8s_ovflw
always @(posedge WR_CLK) begin
//ideal_overflow <= #`TCQ WR_EN & (FULL | wr_rst_i);
ideal_overflow <= #`TCQ WR_EN & (FULL );
end
end
endgenerate
generate
if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 0) begin : g7s_unflw
always @(posedge RD_CLK) begin
ideal_underflow <= #`TCQ EMPTY & RD_EN;
end
end else if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 1) begin : g8s_unflw
always @(posedge RD_CLK) begin
ideal_underflow <= #`TCQ (EMPTY) & RD_EN;
//ideal_underflow <= #`TCQ (rd_rst_i | EMPTY) & RD_EN;
end
end
endgenerate
/**************************************************************************
* Write/Read Pointer Synchronization
**************************************************************************/
localparam NO_OF_SYNC_STAGE_INC_G2B = C_SYNCHRONIZER_STAGE + 1;
wire [C_WR_PNTR_WIDTH-1:0] wr_pntr_sync_stgs [0:NO_OF_SYNC_STAGE_INC_G2B];
wire [C_RD_PNTR_WIDTH-1:0] rd_pntr_sync_stgs [0:NO_OF_SYNC_STAGE_INC_G2B];
genvar gss;
generate for (gss = 1; gss <= NO_OF_SYNC_STAGE_INC_G2B; gss = gss + 1) begin : Sync_stage_inst
fifo_generator_v13_1_1_sync_stage
#(
.C_WIDTH (C_WR_PNTR_WIDTH)
)
rd_stg_inst
(
.RST (rd_rst_i),
.CLK (RD_CLK),
.DIN (wr_pntr_sync_stgs[gss-1]),
.DOUT (wr_pntr_sync_stgs[gss])
);
fifo_generator_v13_1_1_sync_stage
#(
.C_WIDTH (C_RD_PNTR_WIDTH)
)
wr_stg_inst
(
.RST (wr_rst_i),
.CLK (WR_CLK),
.DIN (rd_pntr_sync_stgs[gss-1]),
.DOUT (rd_pntr_sync_stgs[gss])
);
end endgenerate // Sync_stage_inst
assign wr_pntr_sync_stgs[0] = wr_pntr_rd1;
assign rd_pntr_sync_stgs[0] = rd_pntr_wr1;
always@* begin
wr_pntr_rd <= wr_pntr_sync_stgs[NO_OF_SYNC_STAGE_INC_G2B];
rd_pntr_wr <= rd_pntr_sync_stgs[NO_OF_SYNC_STAGE_INC_G2B];
end
/**************************************************************************
* Write Domain Logic
**************************************************************************/
reg [C_WR_PNTR_WIDTH-1:0] diff_pntr = 0;
always @(posedge WR_CLK or posedge wr_rst_i ) begin : gen_fifo_w
/****** Reset fifo (case 1)***************************************/
if (wr_rst_i == 1'b1) begin
num_wr_bits <= #`TCQ 0;
next_num_wr_bits = #`TCQ 0;
wr_ptr <= #`TCQ C_WR_DEPTH - 1;
rd_ptr_wrclk <= #`TCQ C_RD_DEPTH - 1;
ideal_wr_ack <= #`TCQ 0;
ideal_wr_count <= #`TCQ 0;
tmp_wr_listsize = #`TCQ 0;
rd_ptr_wrclk_next <= #`TCQ 0;
wr_pntr <= #`TCQ 0;
wr_pntr_rd1 <= #`TCQ 0;
end else begin //wr_rst_i==0
wr_pntr_rd1 <= #`TCQ wr_pntr;
//Determine the current number of words in the FIFO
tmp_wr_listsize = (C_DEPTH_RATIO_RD > 1) ? num_wr_bits/C_DOUT_WIDTH :
num_wr_bits/C_DIN_WIDTH;
rd_ptr_wrclk_next = rd_ptr;
if (rd_ptr_wrclk < rd_ptr_wrclk_next) begin
next_num_wr_bits = num_wr_bits -
C_DOUT_WIDTH*(rd_ptr_wrclk + C_RD_DEPTH
- rd_ptr_wrclk_next);
end else begin
next_num_wr_bits = num_wr_bits -
C_DOUT_WIDTH*(rd_ptr_wrclk - rd_ptr_wrclk_next);
end
//If this is a write, handle the write by adding the value
// to the linked list, and updating all outputs appropriately
if (WR_EN == 1'b1) begin
if (FULL == 1'b1) begin
//If the FIFO is full, do NOT perform the write,
// update flags accordingly
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD
>= C_FIFO_WR_DEPTH) begin
//write unsuccessful - do not change contents
//Do not acknowledge the write
ideal_wr_ack <= #`TCQ 0;
//Reminder that FIFO is still full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
//If the FIFO is one from full, but reporting full
end else
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD ==
C_FIFO_WR_DEPTH-1) begin
//No change to FIFO
//Write not successful
ideal_wr_ack <= #`TCQ 0;
//With DEPTH-1 words in the FIFO, it is almost_full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
//If the FIFO is completely empty, but it is
// reporting FULL for some reason (like reset)
end else
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD <=
C_FIFO_WR_DEPTH-2) begin
//No change to FIFO
//Write not successful
ideal_wr_ack <= #`TCQ 0;
//FIFO is really not close to full, so change flag status.
ideal_wr_count <= #`TCQ num_write_words_sized_i;
end //(tmp_wr_listsize == 0)
end else begin
//If the FIFO is full, do NOT perform the write,
// update flags accordingly
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD >=
C_FIFO_WR_DEPTH) begin
//write unsuccessful - do not change contents
//Do not acknowledge the write
ideal_wr_ack <= #`TCQ 0;
//Reminder that FIFO is still full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
//If the FIFO is one from full
end else
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD ==
C_FIFO_WR_DEPTH-1) begin
//Add value on DIN port to FIFO
write_fifo;
next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH;
//Write successful, so issue acknowledge
// and no error
ideal_wr_ack <= #`TCQ 1;
//This write is CAUSING the FIFO to go full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
//If the FIFO is 2 from full
end else
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD ==
C_FIFO_WR_DEPTH-2) begin
//Add value on DIN port to FIFO
write_fifo;
next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH;
//Write successful, so issue acknowledge
// and no error
ideal_wr_ack <= #`TCQ 1;
//Still 2 from full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
//If the FIFO is not close to being full
end else
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD <
C_FIFO_WR_DEPTH-2) begin
//Add value on DIN port to FIFO
write_fifo;
next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH;
//Write successful, so issue acknowledge
// and no error
ideal_wr_ack <= #`TCQ 1;
//Not even close to full.
ideal_wr_count <= num_write_words_sized_i;
end
end
end else begin //(WR_EN == 1'b1)
//If user did not attempt a write, then do not
// give ack or err
ideal_wr_ack <= #`TCQ 0;
ideal_wr_count <= #`TCQ num_write_words_sized_i;
end
num_wr_bits <= #`TCQ next_num_wr_bits;
rd_ptr_wrclk <= #`TCQ rd_ptr;
end //wr_rst_i==0
end // gen_fifo_w
/***************************************************************************
* Programmable FULL flags
***************************************************************************/
wire [C_WR_PNTR_WIDTH-1:0] pf_thr_assert_val;
wire [C_WR_PNTR_WIDTH-1:0] pf_thr_negate_val;
generate if (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) begin : FWFT
assign pf_thr_assert_val = C_PROG_FULL_THRESH_ASSERT_VAL - EXTRA_WORDS_DC;
assign pf_thr_negate_val = C_PROG_FULL_THRESH_NEGATE_VAL - EXTRA_WORDS_DC;
end else begin // STD
assign pf_thr_assert_val = C_PROG_FULL_THRESH_ASSERT_VAL;
assign pf_thr_negate_val = C_PROG_FULL_THRESH_NEGATE_VAL;
end endgenerate
always @(posedge WR_CLK or posedge wr_rst_i) begin
if (wr_rst_i == 1'b1) begin
diff_pntr <= 0;
end else begin
if (ram_wr_en)
diff_pntr <= #`TCQ (wr_pntr - adj_rd_pntr_wr + 2'h1);
else if (!ram_wr_en)
diff_pntr <= #`TCQ (wr_pntr - adj_rd_pntr_wr);
end
end
always @(posedge WR_CLK or posedge RST_FULL_FF) begin : gen_pf
if (RST_FULL_FF == 1'b1) begin
ideal_prog_full <= #`TCQ C_FULL_FLAGS_RST_VAL;
end else begin
if (RST_FULL_GEN)
ideal_prog_full <= #`TCQ 0;
//Single Programmable Full Constant Threshold
else if (C_PROG_FULL_TYPE == 1) begin
if (FULL == 0) begin
if (diff_pntr >= pf_thr_assert_val)
ideal_prog_full <= #`TCQ 1;
else
ideal_prog_full <= #`TCQ 0;
end else
ideal_prog_full <= #`TCQ ideal_prog_full;
//Two Programmable Full Constant Thresholds
end else if (C_PROG_FULL_TYPE == 2) begin
if (FULL == 0) begin
if (diff_pntr >= pf_thr_assert_val)
ideal_prog_full <= #`TCQ 1;
else if (diff_pntr < pf_thr_negate_val)
ideal_prog_full <= #`TCQ 0;
else
ideal_prog_full <= #`TCQ ideal_prog_full;
end else
ideal_prog_full <= #`TCQ ideal_prog_full;
//Single Programmable Full Threshold Input
end else if (C_PROG_FULL_TYPE == 3) begin
if (FULL == 0) begin
if (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) begin // FWFT
if (diff_pntr >= (PROG_FULL_THRESH - EXTRA_WORDS_DC))
ideal_prog_full <= #`TCQ 1;
else
ideal_prog_full <= #`TCQ 0;
end else begin // STD
if (diff_pntr >= PROG_FULL_THRESH)
ideal_prog_full <= #`TCQ 1;
else
ideal_prog_full <= #`TCQ 0;
end
end else
ideal_prog_full <= #`TCQ ideal_prog_full;
//Two Programmable Full Threshold Inputs
end else if (C_PROG_FULL_TYPE == 4) begin
if (FULL == 0) begin
if (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) begin // FWFT
if (diff_pntr >= (PROG_FULL_THRESH_ASSERT - EXTRA_WORDS_DC))
ideal_prog_full <= #`TCQ 1;
else if (diff_pntr < (PROG_FULL_THRESH_NEGATE - EXTRA_WORDS_DC))
ideal_prog_full <= #`TCQ 0;
else
ideal_prog_full <= #`TCQ ideal_prog_full;
end else begin // STD
if (diff_pntr >= PROG_FULL_THRESH_ASSERT)
ideal_prog_full <= #`TCQ 1;
else if (diff_pntr < PROG_FULL_THRESH_NEGATE)
ideal_prog_full <= #`TCQ 0;
else
ideal_prog_full <= #`TCQ ideal_prog_full;
end
end else
ideal_prog_full <= #`TCQ ideal_prog_full;
end // C_PROG_FULL_TYPE
end //wr_rst_i==0
end //
/**************************************************************************
* Read Domain Logic
**************************************************************************/
/*********************************************************
* Programmable EMPTY flags
*********************************************************/
//Determine the Assert and Negate thresholds for Programmable Empty
wire [C_RD_PNTR_WIDTH-1:0] pe_thr_assert_val;
wire [C_RD_PNTR_WIDTH-1:0] pe_thr_negate_val;
reg [C_RD_PNTR_WIDTH-1:0] diff_pntr_rd = 0;
always @(posedge RD_CLK or posedge rd_rst_i) begin : gen_pe
if (rd_rst_i) begin
diff_pntr_rd <= #`TCQ 0;
ideal_prog_empty <= #`TCQ 1'b1;
end else begin
if (ram_rd_en)
diff_pntr_rd <= #`TCQ (adj_wr_pntr_rd - rd_pntr) - 1'h1;
else if (!ram_rd_en)
diff_pntr_rd <= #`TCQ (adj_wr_pntr_rd - rd_pntr);
else
diff_pntr_rd <= #`TCQ diff_pntr_rd;
if (C_PROG_EMPTY_TYPE == 1) begin
if (EMPTY == 0) begin
if (diff_pntr_rd <= pe_thr_assert_val)
ideal_prog_empty <= #`TCQ 1;
else
ideal_prog_empty <= #`TCQ 0;
end else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end else if (C_PROG_EMPTY_TYPE == 2) begin
if (EMPTY == 0) begin
if (diff_pntr_rd <= pe_thr_assert_val)
ideal_prog_empty <= #`TCQ 1;
else if (diff_pntr_rd > pe_thr_negate_val)
ideal_prog_empty <= #`TCQ 0;
else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end else if (C_PROG_EMPTY_TYPE == 3) begin
if (EMPTY == 0) begin
if (diff_pntr_rd <= pe_thr_assert_val)
ideal_prog_empty <= #`TCQ 1;
else
ideal_prog_empty <= #`TCQ 0;
end else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end else if (C_PROG_EMPTY_TYPE == 4) begin
if (EMPTY == 0) begin
if (diff_pntr_rd <= pe_thr_assert_val)
ideal_prog_empty <= #`TCQ 1;
else if (diff_pntr_rd > pe_thr_negate_val)
ideal_prog_empty <= #`TCQ 0;
else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end //C_PROG_EMPTY_TYPE
end
end // gen_pe
generate if (C_PROG_EMPTY_TYPE == 3) begin : single_pe_thr_input
assign pe_thr_assert_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ?
PROG_EMPTY_THRESH - 2'h2 : PROG_EMPTY_THRESH;
end endgenerate // single_pe_thr_input
generate if (C_PROG_EMPTY_TYPE == 4) begin : multiple_pe_thr_input
assign pe_thr_assert_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ?
PROG_EMPTY_THRESH_ASSERT - 2'h2 : PROG_EMPTY_THRESH_ASSERT;
assign pe_thr_negate_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ?
PROG_EMPTY_THRESH_NEGATE - 2'h2 : PROG_EMPTY_THRESH_NEGATE;
end endgenerate // multiple_pe_thr_input
generate if (C_PROG_EMPTY_TYPE < 3) begin : single_multiple_pe_thr_const
assign pe_thr_assert_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ?
C_PROG_EMPTY_THRESH_ASSERT_VAL - 2'h2 : C_PROG_EMPTY_THRESH_ASSERT_VAL;
assign pe_thr_negate_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ?
C_PROG_EMPTY_THRESH_NEGATE_VAL - 2'h2 : C_PROG_EMPTY_THRESH_NEGATE_VAL;
end endgenerate // single_multiple_pe_thr_const
// // block memory has a synchronous reset
// always @(posedge RD_CLK) begin : gen_fifo_blkmemdout
// // make it consistent with the core.
// if (rd_rst_i) begin
// // Reset err_type only if ECC is not selected
// if (C_USE_ECC == 0 && C_MEMORY_TYPE < 2)
// err_type <= #`TCQ 0;
//
// // BRAM resets synchronously
// if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE < 2) begin
// //ideal_dout <= #`TCQ dout_reset_val;
// //ideal_dout_d1 <= #`TCQ dout_reset_val;
// end
// end
// end //always
always @(posedge RD_CLK or posedge rd_rst_i ) begin : gen_fifo_r
/****** Reset fifo (case 1)***************************************/
if (rd_rst_i == 1'b1 ) begin
num_rd_bits <= #`TCQ 0;
next_num_rd_bits = #`TCQ 0;
rd_ptr <= #`TCQ C_RD_DEPTH -1;
rd_pntr <= #`TCQ 0;
rd_pntr_wr1 <= #`TCQ 0;
wr_ptr_rdclk <= #`TCQ C_WR_DEPTH -1;
// DRAM resets asynchronously
if (C_MEMORY_TYPE == 2 && C_USE_DOUT_RST == 1)
ideal_dout <= #`TCQ dout_reset_val;
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type <= #`TCQ 0;
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ 0;
end else begin //rd_rst_i==0
rd_pntr_wr1 <= #`TCQ rd_pntr;
//Determine the current number of words in the FIFO
tmp_rd_listsize = (C_DEPTH_RATIO_WR > 1) ? num_rd_bits/C_DIN_WIDTH :
num_rd_bits/C_DOUT_WIDTH;
wr_ptr_rdclk_next = wr_ptr;
if (wr_ptr_rdclk < wr_ptr_rdclk_next) begin
next_num_rd_bits = num_rd_bits +
C_DIN_WIDTH*(wr_ptr_rdclk +C_WR_DEPTH
- wr_ptr_rdclk_next);
end else begin
next_num_rd_bits = num_rd_bits +
C_DIN_WIDTH*(wr_ptr_rdclk - wr_ptr_rdclk_next);
end
/*****************************************************************/
// Read Operation - Read Latency 1
/*****************************************************************/
if (C_PRELOAD_LATENCY==1 || C_PRELOAD_LATENCY==2) begin
ideal_valid <= #`TCQ 1'b0;
if (ram_rd_en == 1'b1) begin
if (EMPTY == 1'b1) begin
//If the FIFO is completely empty, and is reporting empty
if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0)
begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Reminder that FIFO is still empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize <= 0)
//If the FIFO is one from empty, but it is reporting empty
else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 1)
begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Note that FIFO is no longer empty, but is almost empty (has one word left)
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == 1)
//If the FIFO is two from empty, and is reporting empty
else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2)
begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Fifo has two words, so is neither empty or almost empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == 2)
//If the FIFO is not close to empty, but is reporting that it is
// Treat the FIFO as empty this time, but unset EMPTY flags.
if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) && (tmp_rd_listsize/C_DEPTH_RATIO_WR<C_FIFO_RD_DEPTH))
begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Note that the FIFO is No Longer Empty or Almost Empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if ((tmp_rd_listsize > 2) && (tmp_rd_listsize<=C_FIFO_RD_DEPTH-1))
end // else: if(ideal_empty == 1'b1)
else //if (ideal_empty == 1'b0)
begin
//If the FIFO is completely full, and we are successfully reading from it
if (tmp_rd_listsize/C_DEPTH_RATIO_WR >= C_FIFO_RD_DEPTH)
begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Not close to empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == C_FIFO_RD_DEPTH)
//If the FIFO is not close to being empty
else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) && (tmp_rd_listsize/C_DEPTH_RATIO_WR<=C_FIFO_RD_DEPTH))
begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Not close to empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if ((tmp_rd_listsize > 2) && (tmp_rd_listsize<=C_FIFO_RD_DEPTH-1))
//If the FIFO is two from empty
else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2)
begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Fifo is not yet empty. It is going almost_empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == 2)
//If the FIFO is one from empty
else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR == 1))
begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Note that FIFO is GOING empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == 1)
//If the FIFO is completely empty
else if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0)
begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize <= 0)
end // if (ideal_empty == 1'b0)
end //(RD_EN == 1'b1)
else //if (RD_EN == 1'b0)
begin
//If user did not attempt a read, do not give an ack or err
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // else: !if(RD_EN == 1'b1)
/*****************************************************************/
// Read Operation - Read Latency 0
/*****************************************************************/
end else if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) begin
ideal_valid <= #`TCQ 1'b0;
if (ram_rd_en == 1'b1) begin
if (EMPTY == 1'b1) begin
//If the FIFO is completely empty, and is reporting empty
if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0) begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Reminder that FIFO is still empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is one from empty, but it is reporting empty
end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 1) begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Note that FIFO is no longer empty, but is almost empty (has one word left)
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is two from empty, and is reporting empty
end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2) begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Fifo has two words, so is neither empty or almost empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is not close to empty, but is reporting that it is
// Treat the FIFO as empty this time, but unset EMPTY flags.
end else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) &&
(tmp_rd_listsize/C_DEPTH_RATIO_WR<C_FIFO_RD_DEPTH)) begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Note that the FIFO is No Longer Empty or Almost Empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if ((tmp_rd_listsize > 2) && (tmp_rd_listsize<=C_FIFO_RD_DEPTH-1))
end else begin
//If the FIFO is completely full, and we are successfully reading from it
if (tmp_rd_listsize/C_DEPTH_RATIO_WR >= C_FIFO_RD_DEPTH) begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Not close to empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is not close to being empty
end else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) &&
(tmp_rd_listsize/C_DEPTH_RATIO_WR<=C_FIFO_RD_DEPTH)) begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Not close to empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is two from empty
end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2) begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Fifo is not yet empty. It is going almost_empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is one from empty
end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 1) begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Note that FIFO is GOING empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is completely empty
end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0) begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Reminder that FIFO is still empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize <= 0)
end // if (ideal_empty == 1'b0)
end else begin//(RD_EN == 1'b0)
//If user did not attempt a read, do not give an ack or err
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // else: !if(RD_EN == 1'b1)
end //if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0)
num_rd_bits <= #`TCQ next_num_rd_bits;
wr_ptr_rdclk <= #`TCQ wr_ptr;
end //rd_rst_i==0
end //always
endmodule // fifo_generator_v13_1_1_bhv_ver_as
/*******************************************************************************
* Declaration of Low Latency Asynchronous FIFO
******************************************************************************/
module fifo_generator_v13_1_1_beh_ver_ll_afifo
/***************************************************************************
* Declare user parameters and their defaults
***************************************************************************/
#(
parameter C_DIN_WIDTH = 8,
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_FULL_FLAGS_RST_VAL = 1,
parameter C_HAS_RD_DATA_COUNT = 0,
parameter C_HAS_WR_DATA_COUNT = 0,
parameter C_RD_DEPTH = 256,
parameter C_RD_PNTR_WIDTH = 8,
parameter C_USE_DOUT_RST = 0,
parameter C_WR_DATA_COUNT_WIDTH = 2,
parameter C_WR_DEPTH = 256,
parameter C_WR_PNTR_WIDTH = 8,
parameter C_FIFO_TYPE = 0
)
/***************************************************************************
* Declare Input and Output Ports
***************************************************************************/
(
input [C_DIN_WIDTH-1:0] DIN,
input RD_CLK,
input RD_EN,
input WR_RST,
input RD_RST,
input WR_CLK,
input WR_EN,
output reg [C_DOUT_WIDTH-1:0] DOUT = 0,
output reg EMPTY = 1'b1,
output reg FULL = C_FULL_FLAGS_RST_VAL
);
//-----------------------------------------------------------------------------
// Low Latency Asynchronous FIFO
//-----------------------------------------------------------------------------
// Memory which will be used to simulate a FIFO
reg [C_DIN_WIDTH-1:0] memory[C_WR_DEPTH-1:0];
integer i;
initial begin
for (i = 0; i < C_WR_DEPTH; i = i + 1)
memory[i] = 0;
end
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_ll_afifo = 0;
wire [C_RD_PNTR_WIDTH-1:0] rd_pntr_ll_afifo;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_ll_afifo_q = 0;
reg ll_afifo_full = 1'b0;
reg ll_afifo_empty = 1'b1;
wire write_allow;
wire read_allow;
assign write_allow = WR_EN & ~ll_afifo_full;
assign read_allow = RD_EN & ~ll_afifo_empty;
//-----------------------------------------------------------------------------
// Write Pointer Generation
//-----------------------------------------------------------------------------
always @(posedge WR_CLK or posedge WR_RST) begin
if (WR_RST)
wr_pntr_ll_afifo <= 0;
else if (write_allow)
wr_pntr_ll_afifo <= #`TCQ wr_pntr_ll_afifo + 1;
end
//-----------------------------------------------------------------------------
// Read Pointer Generation
//-----------------------------------------------------------------------------
always @(posedge RD_CLK or posedge RD_RST) begin
if (RD_RST)
rd_pntr_ll_afifo_q <= 0;
else
rd_pntr_ll_afifo_q <= #`TCQ rd_pntr_ll_afifo;
end
assign rd_pntr_ll_afifo = read_allow ? rd_pntr_ll_afifo_q + 1 : rd_pntr_ll_afifo_q;
//-----------------------------------------------------------------------------
// Fill the Memory
//-----------------------------------------------------------------------------
always @(posedge WR_CLK) begin
if (write_allow)
memory[wr_pntr_ll_afifo] <= #`TCQ DIN;
end
//-----------------------------------------------------------------------------
// Generate DOUT
//-----------------------------------------------------------------------------
always @(posedge RD_CLK) begin
DOUT <= #`TCQ memory[rd_pntr_ll_afifo];
end
//-----------------------------------------------------------------------------
// Generate EMPTY
//-----------------------------------------------------------------------------
always @(posedge RD_CLK or posedge RD_RST) begin
if (RD_RST)
ll_afifo_empty <= 1'b1;
else
ll_afifo_empty <= ((wr_pntr_ll_afifo == rd_pntr_ll_afifo_q) |
(read_allow & (wr_pntr_ll_afifo == (rd_pntr_ll_afifo_q + 2'h1))));
end
//-----------------------------------------------------------------------------
// Generate FULL
//-----------------------------------------------------------------------------
always @(posedge WR_CLK or posedge WR_RST) begin
if (WR_RST)
ll_afifo_full <= 1'b1;
else
ll_afifo_full <= ((rd_pntr_ll_afifo_q == (wr_pntr_ll_afifo + 2'h1)) |
(write_allow & (rd_pntr_ll_afifo_q == (wr_pntr_ll_afifo + 2'h2))));
end
always @* begin
FULL <= ll_afifo_full;
EMPTY <= ll_afifo_empty;
end
endmodule // fifo_generator_v13_1_1_beh_ver_ll_afifo
/*******************************************************************************
* Declaration of top-level module
******************************************************************************/
module fifo_generator_v13_1_1_bhv_ver_ss
/**************************************************************************
* Declare user parameters and their defaults
*************************************************************************/
#(
parameter C_FAMILY = "virtex7",
parameter C_DATA_COUNT_WIDTH = 2,
parameter C_DIN_WIDTH = 8,
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_FULL_FLAGS_RST_VAL = 1,
parameter C_HAS_ALMOST_EMPTY = 0,
parameter C_HAS_ALMOST_FULL = 0,
parameter C_HAS_DATA_COUNT = 0,
parameter C_HAS_OVERFLOW = 0,
parameter C_HAS_RD_DATA_COUNT = 0,
parameter C_HAS_RST = 0,
parameter C_HAS_SRST = 0,
parameter C_HAS_UNDERFLOW = 0,
parameter C_HAS_VALID = 0,
parameter C_HAS_WR_ACK = 0,
parameter C_HAS_WR_DATA_COUNT = 0,
parameter C_IMPLEMENTATION_TYPE = 0,
parameter C_MEMORY_TYPE = 1,
parameter C_OVERFLOW_LOW = 0,
parameter C_PRELOAD_LATENCY = 1,
parameter C_PRELOAD_REGS = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0,
parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0,
parameter C_PROG_EMPTY_TYPE = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0,
parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0,
parameter C_PROG_FULL_TYPE = 0,
parameter C_RD_DATA_COUNT_WIDTH = 2,
parameter C_RD_DEPTH = 256,
parameter C_RD_PNTR_WIDTH = 8,
parameter C_UNDERFLOW_LOW = 0,
parameter C_USE_DOUT_RST = 0,
parameter C_USE_EMBEDDED_REG = 0,
parameter C_EN_SAFETY_CKT = 0,
parameter C_USE_FWFT_DATA_COUNT = 0,
parameter C_VALID_LOW = 0,
parameter C_WR_ACK_LOW = 0,
parameter C_WR_DATA_COUNT_WIDTH = 2,
parameter C_WR_DEPTH = 256,
parameter C_WR_PNTR_WIDTH = 8,
parameter C_USE_ECC = 0,
parameter C_ENABLE_RST_SYNC = 1,
parameter C_ERROR_INJECTION_TYPE = 0,
parameter C_FIFO_TYPE = 0
)
/**************************************************************************
* Declare Input and Output Ports
*************************************************************************/
(
//Inputs
input CLK,
input [C_DIN_WIDTH-1:0] DIN,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE,
input RD_EN,
input RD_EN_USER,
input USER_EMPTY_FB,
input RST,
input RST_FULL_GEN,
input RST_FULL_FF,
input SRST,
input WR_EN,
input INJECTDBITERR,
input INJECTSBITERR,
input WR_RST_BUSY,
input RD_RST_BUSY,
//Outputs
output ALMOST_EMPTY,
output ALMOST_FULL,
output reg [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT = 0,
output [C_DOUT_WIDTH-1:0] DOUT,
output EMPTY,
output FULL,
output OVERFLOW,
output [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT,
output [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT,
output PROG_EMPTY,
output PROG_FULL,
output VALID,
output UNDERFLOW,
output WR_ACK,
output SBITERR,
output DBITERR
);
reg [C_RD_PNTR_WIDTH:0] rd_data_count_int = 0;
reg [C_WR_PNTR_WIDTH:0] wr_data_count_int = 0;
wire [C_RD_PNTR_WIDTH:0] rd_data_count_i_ss;
wire [C_WR_PNTR_WIDTH:0] wr_data_count_i_ss;
reg [C_WR_PNTR_WIDTH:0] wdc_fwft_ext_as = 0;
/***************************************************************************
* Parameters used as constants
**************************************************************************/
localparam IS_8SERIES = (C_FAMILY == "virtexu" || C_FAMILY == "kintexu" || C_FAMILY == "artixu" || C_FAMILY == "virtexuplus" || C_FAMILY == "zynquplus" || C_FAMILY == "kintexuplus") ? 1 : 0;
localparam C_DEPTH_RATIO_WR =
(C_WR_DEPTH>C_RD_DEPTH) ? (C_WR_DEPTH/C_RD_DEPTH) : 1;
localparam C_DEPTH_RATIO_RD =
(C_RD_DEPTH>C_WR_DEPTH) ? (C_RD_DEPTH/C_WR_DEPTH) : 1;
//localparam C_FIFO_WR_DEPTH = C_WR_DEPTH - 1;
//localparam C_FIFO_RD_DEPTH = C_RD_DEPTH - 1;
localparam C_GRTR_PNTR_WIDTH = (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) ? C_WR_PNTR_WIDTH : C_RD_PNTR_WIDTH ;
// C_DEPTH_RATIO_WR | C_DEPTH_RATIO_RD | C_PNTR_WIDTH | EXTRA_WORDS_DC
// -----------------|------------------|-----------------|---------------
// 1 | 8 | C_RD_PNTR_WIDTH | 2
// 1 | 4 | C_RD_PNTR_WIDTH | 2
// 1 | 2 | C_RD_PNTR_WIDTH | 2
// 1 | 1 | C_WR_PNTR_WIDTH | 2
// 2 | 1 | C_WR_PNTR_WIDTH | 4
// 4 | 1 | C_WR_PNTR_WIDTH | 8
// 8 | 1 | C_WR_PNTR_WIDTH | 16
localparam C_PNTR_WIDTH = (C_WR_PNTR_WIDTH>=C_RD_PNTR_WIDTH) ? C_WR_PNTR_WIDTH : C_RD_PNTR_WIDTH;
wire [C_PNTR_WIDTH:0] EXTRA_WORDS_DC = (C_DEPTH_RATIO_WR == 1) ? 2 : (2 * C_DEPTH_RATIO_WR/C_DEPTH_RATIO_RD);
wire [C_WR_PNTR_WIDTH:0] EXTRA_WORDS_PF = (C_DEPTH_RATIO_WR == 1) ? 2 : (2 * C_DEPTH_RATIO_WR/C_DEPTH_RATIO_RD);
//wire [C_RD_PNTR_WIDTH:0] EXTRA_WORDS_PE = (C_DEPTH_RATIO_RD == 1) ? 2 : (2 * C_DEPTH_RATIO_RD/C_DEPTH_RATIO_WR);
localparam EXTRA_WORDS_PF_PARAM = (C_DEPTH_RATIO_WR == 1) ? 2 : (2 * C_DEPTH_RATIO_WR/C_DEPTH_RATIO_RD);
//localparam EXTRA_WORDS_PE_PARAM = (C_DEPTH_RATIO_RD == 1) ? 2 : (2 * C_DEPTH_RATIO_RD/C_DEPTH_RATIO_WR);
localparam [31:0] reads_per_write = C_DIN_WIDTH/C_DOUT_WIDTH;
localparam [31:0] log2_reads_per_write = log2_val(reads_per_write);
localparam [31:0] writes_per_read = C_DOUT_WIDTH/C_DIN_WIDTH;
localparam [31:0] log2_writes_per_read = log2_val(writes_per_read);
//When RST is present, set FULL reset value to '1'.
//If core has no RST, make sure FULL powers-on as '0'.
//The reset value assignments for FULL, ALMOST_FULL, and PROG_FULL are not
//changed for v3.2(IP2_Im). When the core has Sync Reset, C_HAS_SRST=1 and C_HAS_RST=0.
// Therefore, during SRST, all the FULL flags reset to 0.
localparam C_HAS_FAST_FIFO = 0;
localparam C_FIFO_WR_DEPTH = C_WR_DEPTH;
localparam C_FIFO_RD_DEPTH = C_RD_DEPTH;
// Local parameters used to determine whether to inject ECC error or not
localparam SYMMETRIC_PORT = (C_DIN_WIDTH == C_DOUT_WIDTH) ? 1 : 0;
localparam ERR_INJECTION = (C_ERROR_INJECTION_TYPE != 0) ? 1 : 0;
localparam C_USE_ECC_1 = (C_USE_ECC == 1 || C_USE_ECC ==2) ? 1:0;
localparam ENABLE_ERR_INJECTION = C_USE_ECC && SYMMETRIC_PORT && ERR_INJECTION;
localparam C_DATA_WIDTH = (ENABLE_ERR_INJECTION == 1) ? (C_DIN_WIDTH+2) : C_DIN_WIDTH;
localparam IS_ASYMMETRY = (C_DIN_WIDTH == C_DOUT_WIDTH) ? 0 : 1;
localparam LESSER_WIDTH = (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) ? C_WR_PNTR_WIDTH : C_RD_PNTR_WIDTH;
localparam [C_RD_PNTR_WIDTH-1 : 0] DIFF_MAX_RD = {C_RD_PNTR_WIDTH{1'b1}};
localparam [C_WR_PNTR_WIDTH-1 : 0] DIFF_MAX_WR = {C_WR_PNTR_WIDTH{1'b1}};
/**************************************************************************
* FIFO Contents Tracking and Data Count Calculations
*************************************************************************/
// Memory which will be used to simulate a FIFO
reg [C_DIN_WIDTH-1:0] memory[C_WR_DEPTH-1:0];
reg [1:0] ecc_err[C_WR_DEPTH-1:0];
/**************************************************************************
* Internal Registers and wires
*************************************************************************/
//Temporary signals used for calculating the model's outputs. These
//are only used in the assign statements immediately following wire,
//parameter, and function declarations.
wire underflow_i;
wire valid_i;
wire valid_out;
reg [31:0] num_wr_bits;
reg [31:0] num_rd_bits;
reg [31:0] next_num_wr_bits;
reg [31:0] next_num_rd_bits;
//The write pointer - tracks write operations
// (Works opposite to core: wr_ptr is a DOWN counter)
reg [31:0] wr_ptr;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd1 = 0;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd2 = 0;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd3 = 0;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd = 0;
reg wr_rst_d1 =0;
//The read pointer - tracks read operations
// (rd_ptr Works opposite to core: rd_ptr is a DOWN counter)
reg [31:0] rd_ptr;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr1 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr2 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr3 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr4 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr = 0;
wire ram_rd_en;
wire empty_int;
wire almost_empty_int;
wire ram_wr_en;
wire full_int;
wire almost_full_int;
reg ram_rd_en_reg = 1'b0;
reg ram_rd_en_d1 = 1'b0;
reg fab_rd_en_d1 = 1'b0;
wire srst_rrst_busy;
//Ideal FIFO signals. These are the raw output of the behavioral model,
//which behaves like an ideal FIFO.
reg [1:0] err_type = 0;
reg [1:0] err_type_d1 = 0;
reg [1:0] err_type_both = 0;
reg [C_DOUT_WIDTH-1:0] ideal_dout = 0;
reg [C_DOUT_WIDTH-1:0] ideal_dout_d1 = 0;
reg [C_DOUT_WIDTH-1:0] ideal_dout_both = 0;
wire [C_DOUT_WIDTH-1:0] ideal_dout_out;
wire fwft_enabled;
reg ideal_wr_ack = 0;
reg ideal_valid = 0;
reg ideal_overflow = C_OVERFLOW_LOW;
reg ideal_underflow = C_UNDERFLOW_LOW;
reg full_i = C_FULL_FLAGS_RST_VAL;
reg full_i_temp = 0;
reg empty_i = 1;
reg almost_full_i = 0;
reg almost_empty_i = 1;
reg prog_full_i = 0;
reg prog_empty_i = 1;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr = 0;
wire [C_RD_PNTR_WIDTH-1:0] adj_wr_pntr_rd;
wire [C_WR_PNTR_WIDTH-1:0] adj_rd_pntr_wr;
reg [C_RD_PNTR_WIDTH-1:0] diff_count = 0;
reg write_allow_q = 0;
reg read_allow_q = 0;
reg valid_d1 = 0;
reg valid_both = 0;
reg valid_d2 = 0;
wire rst_i;
wire srst_i;
//user specified value for reseting the size of the fifo
reg [C_DOUT_WIDTH-1:0] dout_reset_val = 0;
reg [31:0] wr_ptr_rdclk;
reg [31:0] wr_ptr_rdclk_next;
reg [31:0] rd_ptr_wrclk;
reg [31:0] rd_ptr_wrclk_next;
/****************************************************************************
* Function Declarations
***************************************************************************/
/****************************************************************************
* hexstr_conv
* Converts a string of type hex to a binary value (for C_DOUT_RST_VAL)
***************************************************************************/
function [C_DOUT_WIDTH-1:0] hexstr_conv;
input [(C_DOUT_WIDTH*8)-1:0] def_data;
integer index,i,j;
reg [3:0] bin;
begin
index = 0;
hexstr_conv = 'b0;
for( i=C_DOUT_WIDTH-1; i>=0; i=i-1 ) begin
case (def_data[7:0])
8'b00000000 : begin
bin = 4'b0000;
i = -1;
end
8'b00110000 : bin = 4'b0000;
8'b00110001 : bin = 4'b0001;
8'b00110010 : bin = 4'b0010;
8'b00110011 : bin = 4'b0011;
8'b00110100 : bin = 4'b0100;
8'b00110101 : bin = 4'b0101;
8'b00110110 : bin = 4'b0110;
8'b00110111 : bin = 4'b0111;
8'b00111000 : bin = 4'b1000;
8'b00111001 : bin = 4'b1001;
8'b01000001 : bin = 4'b1010;
8'b01000010 : bin = 4'b1011;
8'b01000011 : bin = 4'b1100;
8'b01000100 : bin = 4'b1101;
8'b01000101 : bin = 4'b1110;
8'b01000110 : bin = 4'b1111;
8'b01100001 : bin = 4'b1010;
8'b01100010 : bin = 4'b1011;
8'b01100011 : bin = 4'b1100;
8'b01100100 : bin = 4'b1101;
8'b01100101 : bin = 4'b1110;
8'b01100110 : bin = 4'b1111;
default : begin
bin = 4'bx;
end
endcase
for( j=0; j<4; j=j+1) begin
if ((index*4)+j < C_DOUT_WIDTH) begin
hexstr_conv[(index*4)+j] = bin[j];
end
end
index = index + 1;
def_data = def_data >> 8;
end
end
endfunction
/**************************************************************************
* log2_val
* Returns the 'log2' value for the input value for the supported ratios
***************************************************************************/
function [31:0] log2_val;
input [31:0] binary_val;
begin
if (binary_val == 8) begin
log2_val = 3;
end else if (binary_val == 4) begin
log2_val = 2;
end else begin
log2_val = 1;
end
end
endfunction
reg ideal_prog_full = 0;
reg ideal_prog_empty = 1;
reg [C_WR_DATA_COUNT_WIDTH-1 : 0] ideal_wr_count = 0;
reg [C_RD_DATA_COUNT_WIDTH-1 : 0] ideal_rd_count = 0;
//Assorted reg values for delayed versions of signals
//reg valid_d1 = 0;
//user specified value for reseting the size of the fifo
//reg [C_DOUT_WIDTH-1:0] dout_reset_val = 0;
//temporary registers for WR_RESPONSE_LATENCY feature
integer tmp_wr_listsize;
integer tmp_rd_listsize;
//Signal for registered version of prog full and empty
//Threshold values for Programmable Flags
integer prog_empty_actual_thresh_assert;
integer prog_empty_actual_thresh_negate;
integer prog_full_actual_thresh_assert;
integer prog_full_actual_thresh_negate;
/**************************************************************************
* write_fifo
* This task writes a word to the FIFO memory and updates the
* write pointer.
* FIFO size is relative to write domain.
***************************************************************************/
task write_fifo;
begin
memory[wr_ptr] <= DIN;
wr_pntr <= #`TCQ wr_pntr + 1;
// Store the type of error injection (double/single) on write
case (C_ERROR_INJECTION_TYPE)
3: ecc_err[wr_ptr] <= {INJECTDBITERR,INJECTSBITERR};
2: ecc_err[wr_ptr] <= {INJECTDBITERR,1'b0};
1: ecc_err[wr_ptr] <= {1'b0,INJECTSBITERR};
default: ecc_err[wr_ptr] <= 0;
endcase
// (Works opposite to core: wr_ptr is a DOWN counter)
if (wr_ptr == 0) begin
wr_ptr <= C_WR_DEPTH - 1;
end else begin
wr_ptr <= wr_ptr - 1;
end
end
endtask // write_fifo
/**************************************************************************
* read_fifo
* This task reads a word from the FIFO memory and updates the read
* pointer. It's output is the ideal_dout bus.
* FIFO size is relative to write domain.
***************************************************************************/
task read_fifo;
integer i;
reg [C_DOUT_WIDTH-1:0] tmp_dout;
reg [C_DIN_WIDTH-1:0] memory_read;
reg [31:0] tmp_rd_ptr;
reg [31:0] rd_ptr_high;
reg [31:0] rd_ptr_low;
reg [1:0] tmp_ecc_err;
begin
rd_pntr <= #`TCQ rd_pntr + 1;
// output is wider than input
if (reads_per_write == 0) begin
tmp_dout = 0;
tmp_rd_ptr = (rd_ptr << log2_writes_per_read)+(writes_per_read-1);
for (i = writes_per_read - 1; i >= 0; i = i - 1) begin
tmp_dout = tmp_dout << C_DIN_WIDTH;
tmp_dout = tmp_dout | memory[tmp_rd_ptr];
// (Works opposite to core: rd_ptr is a DOWN counter)
if (tmp_rd_ptr == 0) begin
tmp_rd_ptr = C_WR_DEPTH - 1;
end else begin
tmp_rd_ptr = tmp_rd_ptr - 1;
end
end
// output is symmetric
end else if (reads_per_write == 1) begin
tmp_dout = memory[rd_ptr][C_DIN_WIDTH-1:0];
// Retreive the error injection type. Based on the error injection type
// corrupt the output data.
tmp_ecc_err = ecc_err[rd_ptr];
if (ENABLE_ERR_INJECTION && C_DIN_WIDTH == C_DOUT_WIDTH) begin
if (tmp_ecc_err[1]) begin // Corrupt the output data only for double bit error
if (C_DOUT_WIDTH == 1) begin
$display("FAILURE : Data width must be >= 2 for double bit error injection.");
$finish;
end else if (C_DOUT_WIDTH == 2)
tmp_dout = {~tmp_dout[C_DOUT_WIDTH-1],~tmp_dout[C_DOUT_WIDTH-2]};
else
tmp_dout = {~tmp_dout[C_DOUT_WIDTH-1],~tmp_dout[C_DOUT_WIDTH-2],(tmp_dout << 2)};
end else begin
tmp_dout = tmp_dout[C_DOUT_WIDTH-1:0];
end
err_type <= {tmp_ecc_err[1], tmp_ecc_err[0] & !tmp_ecc_err[1]};
end else begin
err_type <= 0;
end
// input is wider than output
end else begin
rd_ptr_high = rd_ptr >> log2_reads_per_write;
rd_ptr_low = rd_ptr & (reads_per_write - 1);
memory_read = memory[rd_ptr_high];
tmp_dout = memory_read >> (rd_ptr_low*C_DOUT_WIDTH);
end
ideal_dout <= tmp_dout;
// (Works opposite to core: rd_ptr is a DOWN counter)
if (rd_ptr == 0) begin
rd_ptr <= C_RD_DEPTH - 1;
end else begin
rd_ptr <= rd_ptr - 1;
end
end
endtask
/*************************************************************************
* Initialize Signals for clean power-on simulation
*************************************************************************/
initial begin
num_wr_bits = 0;
num_rd_bits = 0;
next_num_wr_bits = 0;
next_num_rd_bits = 0;
rd_ptr = C_RD_DEPTH - 1;
wr_ptr = C_WR_DEPTH - 1;
wr_pntr = 0;
rd_pntr = 0;
rd_ptr_wrclk = rd_ptr;
wr_ptr_rdclk = wr_ptr;
dout_reset_val = hexstr_conv(C_DOUT_RST_VAL);
ideal_dout = dout_reset_val;
err_type = 0;
ideal_dout_d1 = dout_reset_val;
ideal_dout_both = dout_reset_val;
ideal_wr_ack = 1'b0;
ideal_valid = 1'b0;
valid_d1 = 1'b0;
valid_both = 1'b0;
ideal_overflow = C_OVERFLOW_LOW;
ideal_underflow = C_UNDERFLOW_LOW;
ideal_wr_count = 0;
ideal_rd_count = 0;
ideal_prog_full = 1'b0;
ideal_prog_empty = 1'b1;
end
/*************************************************************************
* Connect the module inputs and outputs to the internal signals of the
* behavioral model.
*************************************************************************/
//Inputs
/*
wire CLK;
wire [C_DIN_WIDTH-1:0] DIN;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE;
wire RD_EN;
wire RST;
wire WR_EN;
*/
// Assign ALMOST_EPMTY
generate if (C_HAS_ALMOST_EMPTY == 1) begin : gae
assign ALMOST_EMPTY = almost_empty_i;
end else begin : gnae
assign ALMOST_EMPTY = 0;
end endgenerate // gae
// Assign ALMOST_FULL
generate if (C_HAS_ALMOST_FULL==1) begin : gaf
assign ALMOST_FULL = almost_full_i;
end else begin : gnaf
assign ALMOST_FULL = 0;
end endgenerate // gaf
// Dout may change behavior based on latency
localparam C_FWFT_ENABLED = (C_PRELOAD_LATENCY == 0 && C_PRELOAD_REGS == 1)?
1: 0;
assign fwft_enabled = (C_PRELOAD_LATENCY == 0 && C_PRELOAD_REGS == 1)?
1: 0;
assign ideal_dout_out= ((C_USE_EMBEDDED_REG>0 && (fwft_enabled == 0)) &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1))?
ideal_dout_d1: ideal_dout;
assign DOUT = ideal_dout_out;
// Assign SBITERR and DBITERR based on latency
assign SBITERR = (C_ERROR_INJECTION_TYPE == 1 || C_ERROR_INJECTION_TYPE == 3) &&
((C_USE_EMBEDDED_REG>0 && (fwft_enabled == 0)) &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1)) ?
err_type_d1[0]: err_type[0];
assign DBITERR = (C_ERROR_INJECTION_TYPE == 2 || C_ERROR_INJECTION_TYPE == 3) &&
((C_USE_EMBEDDED_REG>0 && (fwft_enabled == 0)) &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1)) ?
err_type_d1[1]: err_type[1];
assign EMPTY = empty_i;
assign FULL = full_i;
//saftey_ckt with one register
generate
if ((C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) && C_EN_SAFETY_CKT==1 && (C_USE_EMBEDDED_REG == 1 || C_USE_EMBEDDED_REG == 2 )) begin
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d1;
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d2;
reg [1:0] rst_delayed_sft1 =1;
reg [1:0] rst_delayed_sft2 =1;
reg [1:0] rst_delayed_sft3 =1;
reg [1:0] rst_delayed_sft4 =1;
always@(posedge CLK)
begin
rst_delayed_sft1 <= #`TCQ rst_i;
rst_delayed_sft2 <= #`TCQ rst_delayed_sft1;
rst_delayed_sft3 <= #`TCQ rst_delayed_sft2;
rst_delayed_sft4 <= #`TCQ rst_delayed_sft3;
end
always@(posedge rst_delayed_sft2 or posedge rst_i or posedge CLK)
begin
if( rst_delayed_sft2 == 1'b1 || rst_i == 1'b1) begin
ram_rd_en_d1 <= #`TCQ 1'b0;
valid_d1 <= #`TCQ 1'b0;
end
else begin
ram_rd_en_d1 <= #`TCQ (RD_EN && ~(empty_i));
valid_d1 <= #`TCQ valid_i;
end
end
always@(posedge rst_delayed_sft2 or posedge CLK)
begin
if (rst_delayed_sft2 == 1'b1) begin
if (C_USE_DOUT_RST == 1'b1) begin
@(posedge CLK)
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
end
else if (srst_rrst_busy == 1'b1) begin
if (C_USE_DOUT_RST == 1'b1) begin
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
end else if (ram_rd_en_d1) begin
ideal_dout_d1 <= #`TCQ ideal_dout;
err_type_d1[0] <= #`TCQ err_type[0];
err_type_d1[1] <= #`TCQ err_type[1];
end
end
end //if
endgenerate
//safety ckt with both registers
generate
if ((C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) && C_EN_SAFETY_CKT==1 && C_USE_EMBEDDED_REG == 3) begin
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d1;
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d2;
reg [1:0] rst_delayed_sft1 =1;
reg [1:0] rst_delayed_sft2 =1;
reg [1:0] rst_delayed_sft3 =1;
reg [1:0] rst_delayed_sft4 =1;
always@(posedge CLK)
begin
rst_delayed_sft1 <= #`TCQ rst_i;
rst_delayed_sft2 <= #`TCQ rst_delayed_sft1;
rst_delayed_sft3 <= #`TCQ rst_delayed_sft2;
rst_delayed_sft4 <= #`TCQ rst_delayed_sft3;
end
always@(posedge rst_delayed_sft2 or posedge rst_i or posedge CLK)
begin
if( rst_delayed_sft2 == 1'b1 || rst_i == 1'b1) begin
ram_rd_en_d1 <= #`TCQ 1'b0;
valid_d1 <= #`TCQ 1'b0;
end
else begin
ram_rd_en_d1 <= #`TCQ (RD_EN && ~(empty_i));
fab_rd_en_d1 <= #`TCQ ram_rd_en_d1;
valid_both <= #`TCQ valid_i;
valid_d1 <= #`TCQ valid_both;
end
end
always@(posedge rst_delayed_sft2 or posedge CLK)
begin
if (rst_delayed_sft2 == 1'b1) begin
if (C_USE_DOUT_RST == 1'b1) begin
@(posedge CLK)
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
end
else if (srst_rrst_busy == 1'b1) begin
if (C_USE_DOUT_RST == 1'b1) begin
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
end else if (ram_rd_en_d1) begin
ideal_dout_both <= #`TCQ ideal_dout;
err_type_both[0] <= #`TCQ err_type[0];
err_type_both[1] <= #`TCQ err_type[1];
end
if (fab_rd_en_d1) begin
ideal_dout_d1 <= #`TCQ ideal_dout_both;
err_type_d1[0] <= #`TCQ err_type_both[0];
err_type_d1[1] <= #`TCQ err_type_both[1];
end
end
//assign SBITERR = (C_USE_ECC == 0) ? err_type[0]:err_type_d1[0];
//assign DBITERR = (C_USE_ECC == 0) ? err_type[1]:err_type_d1[1];
//assign DOUT[C_DOUT_WIDTH-1:0] = ideal_dout_d1;
end //if
endgenerate
//Overflow may be active-low
generate if (C_HAS_OVERFLOW==1) begin : gof
assign OVERFLOW = ideal_overflow ? !C_OVERFLOW_LOW : C_OVERFLOW_LOW;
end else begin : gnof
assign OVERFLOW = 0;
end endgenerate // gof
assign PROG_EMPTY = prog_empty_i;
assign PROG_FULL = prog_full_i;
//Valid may change behavior based on latency or active-low
generate if (C_HAS_VALID==1) begin : gvalid
assign valid_i = (C_PRELOAD_LATENCY == 0) ? (RD_EN & ~EMPTY) : ideal_valid;
assign valid_out = (C_PRELOAD_LATENCY == 2 && C_MEMORY_TYPE < 2) ?
valid_d1 : valid_i;
assign VALID = valid_out ? !C_VALID_LOW : C_VALID_LOW;
end else begin : gnvalid
assign VALID = 0;
end endgenerate // gvalid
//Trim data count differently depending on set widths
generate if (C_HAS_DATA_COUNT == 1) begin : gdc
always @* begin
diff_count <= wr_pntr - rd_pntr;
if (C_DATA_COUNT_WIDTH > C_RD_PNTR_WIDTH) begin
DATA_COUNT[C_RD_PNTR_WIDTH-1:0] <= diff_count;
DATA_COUNT[C_DATA_COUNT_WIDTH-1] <= 1'b0 ;
end else begin
DATA_COUNT <= diff_count[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_DATA_COUNT_WIDTH];
end
end
// end else begin : gndc
// always @* DATA_COUNT <= 0;
end endgenerate // gdc
//Underflow may change behavior based on latency or active-low
generate if (C_HAS_UNDERFLOW==1) begin : guf
assign underflow_i = ideal_underflow;
assign UNDERFLOW = underflow_i ? !C_UNDERFLOW_LOW : C_UNDERFLOW_LOW;
end else begin : gnuf
assign UNDERFLOW = 0;
end endgenerate // guf
//Write acknowledge may be active low
generate if (C_HAS_WR_ACK==1) begin : gwr_ack
assign WR_ACK = ideal_wr_ack ? !C_WR_ACK_LOW : C_WR_ACK_LOW;
end else begin : gnwr_ack
assign WR_ACK = 0;
end endgenerate // gwr_ack
/*****************************************************************************
* Internal reset logic
****************************************************************************/
assign srst_i = C_HAS_SRST ? SRST : 0;
assign srst_wrst_busy = C_HAS_SRST ? (SRST || WR_RST_BUSY) : 0;
assign srst_rrst_busy = C_HAS_SRST ? (SRST || RD_RST_BUSY) : 0;
assign rst_i = C_HAS_RST ? RST : 0;
/**************************************************************************
* Assorted registers for delayed versions of signals
**************************************************************************/
//Capture delayed version of valid
generate if (C_HAS_VALID == 1 && (C_USE_EMBEDDED_REG <3)) begin : blockVL20
always @(posedge CLK or posedge rst_i) begin
if (rst_i == 1'b1) begin
valid_d1 <= #`TCQ 1'b0;
end else begin
if (srst_rrst_busy) begin
valid_d1 <= #`TCQ 1'b0;
end else begin
valid_d1 <= #`TCQ valid_i;
end
end
end // always @ (posedge CLK or posedge rst_i)
end
endgenerate // blockVL20
generate if (C_HAS_VALID == 1 && (C_USE_EMBEDDED_REG == 3)) begin
always @(posedge CLK or posedge rst_i) begin
if (rst_i == 1'b1) begin
valid_d1 <= #`TCQ 1'b0;
valid_both <= #`TCQ 1'b0;
end else begin
if (srst_rrst_busy) begin
valid_d1 <= #`TCQ 1'b0;
valid_both <= #`TCQ 1'b0;
end else begin
valid_both <= #`TCQ valid_i;
valid_d1 <= #`TCQ valid_both;
end
end
end // always @ (posedge CLK or posedge rst_i)
end
endgenerate // blockVL20
// Determine which stage in FWFT registers are valid
reg stage1_valid = 0;
reg stage2_valid = 0;
generate
if (C_PRELOAD_LATENCY == 0) begin : grd_fwft_proc
always @ (posedge CLK or posedge rst_i) begin
if (rst_i) begin
stage1_valid <= #`TCQ 0;
stage2_valid <= #`TCQ 0;
end else begin
if (!stage1_valid && !stage2_valid) begin
if (!EMPTY)
stage1_valid <= #`TCQ 1'b1;
else
stage1_valid <= #`TCQ 1'b0;
end else if (stage1_valid && !stage2_valid) begin
if (EMPTY) begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b1;
end else begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b1;
end
end else if (!stage1_valid && stage2_valid) begin
if (EMPTY && RD_EN) begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b0;
end else if (!EMPTY && RD_EN) begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b0;
end else if (!EMPTY && !RD_EN) begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b1;
end else begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b1;
end
end else if (stage1_valid && stage2_valid) begin
if (EMPTY && RD_EN) begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b1;
end else begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b1;
end
end else begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b0;
end
end // rd_rst_i
end // always
end
endgenerate
//***************************************************************************
// Assign the read data count value only if it is selected,
// otherwise output zeros.
//***************************************************************************
generate
if (C_HAS_RD_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT ==1) begin : grdc
assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = rd_data_count_i_ss[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH+1-C_RD_DATA_COUNT_WIDTH];
end
endgenerate
generate
if (C_HAS_RD_DATA_COUNT == 0) begin : gnrdc
assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = {C_RD_DATA_COUNT_WIDTH{1'b0}};
end
endgenerate
//***************************************************************************
// Assign the write data count value only if it is selected,
// otherwise output zeros
//***************************************************************************
generate
if (C_HAS_WR_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT == 1) begin : gwdc
assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = wr_data_count_i_ss[C_WR_PNTR_WIDTH:C_WR_PNTR_WIDTH+1-C_WR_DATA_COUNT_WIDTH] ;
end
endgenerate
generate
if (C_HAS_WR_DATA_COUNT == 0) begin : gnwdc
assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = {C_WR_DATA_COUNT_WIDTH{1'b0}};
end
endgenerate
// block memory has a synchronous reset
// no safety ckt with emb/fabric reg
//generate if (C_MEMORY_TYPE < 2 && C_EN_SAFETY_CKT == 0) begin : gen_fifo_blkmemdout_emb
// always @(posedge CLK) begin
// // BRAM resets synchronously
// // make it consistent with the core.
// if ((rst_i || srst_rrst_busy) && (C_USE_DOUT_RST == 1))
// ideal_dout_d1 <= #`TCQ dout_reset_val;
// ideal_dout_both <= #`TCQ dout_reset_val;
// end //always
//end endgenerate // gen_fifo_blkmemdout_emb
//reg ram_rd_en_d1 = 1'b0;
//Capture delayed version of dout
generate if (C_EN_SAFETY_CKT == 0 && (C_USE_EMBEDDED_REG<3)) begin
always @(posedge CLK or posedge rst_i) begin
if (rst_i == 1'b1) begin
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type_d1 <= #`TCQ 0;
// DRAM and SRAM reset asynchronously
if ((C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3) && C_USE_DOUT_RST == 1) begin
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
ram_rd_en_d1 <= #`TCQ 1'b0;
if (C_USE_DOUT_RST == 1) begin
@(posedge CLK)
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
end else begin
ram_rd_en_d1 <= #`TCQ RD_EN & ~EMPTY;
if (srst_rrst_busy) begin
ram_rd_en_d1 <= #`TCQ 1'b0;
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0) begin
err_type_d1 <= #`TCQ 0;
end
// Reset DRAM and SRAM based FIFO, BRAM based FIFO is reset above
if ((C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3) && C_USE_DOUT_RST == 1) begin
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
if (C_USE_DOUT_RST == 1) begin
// @(posedge CLK)
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
end else begin
if (ram_rd_en_d1 ) begin
ideal_dout_d1 <= #`TCQ ideal_dout;
err_type_d1 <= #`TCQ err_type;
end
end
end
end // always
end
endgenerate
//no safety ckt with both registers
generate if (C_EN_SAFETY_CKT == 0 && (C_USE_EMBEDDED_REG==3)) begin
always @(posedge CLK or posedge rst_i) begin
if (rst_i == 1'b1) begin
ram_rd_en_d1 <= #`TCQ 1'b0;
fab_rd_en_d1 <= #`TCQ 1'b0;
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type_d1 <= #`TCQ 0;
// DRAM and SRAM reset asynchronously
if ((C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3) && C_USE_DOUT_RST == 1) begin
ideal_dout_d1 <= #`TCQ dout_reset_val;
ideal_dout_both <= #`TCQ dout_reset_val;
end
if (C_USE_DOUT_RST == 1) begin
@(posedge CLK)
ideal_dout_d1 <= #`TCQ dout_reset_val;
ideal_dout_both <= #`TCQ dout_reset_val;
end
end else begin
ram_rd_en_d1 <= #`TCQ RD_EN & ~EMPTY;
fab_rd_en_d1 <= #`TCQ (ram_rd_en_d1);
if (srst_rrst_busy) begin
ram_rd_en_d1 <= #`TCQ 1'b0;
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0) begin
err_type_d1 <= #`TCQ 0;
end
// Reset DRAM and SRAM based FIFO, BRAM based FIFO is reset above
if ((C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3) && C_USE_DOUT_RST == 1) begin
ideal_dout_d1 <= #`TCQ dout_reset_val;
// ideal_dout_both <= #`TCQ dout_reset_val;
end
if (C_USE_DOUT_RST == 1) begin
// @(posedge CLK)
ideal_dout_d1 <= #`TCQ dout_reset_val;
// ideal_dout_both <= #`TCQ dout_reset_val;
end
end else begin
if (ram_rd_en_d1 ) begin
ideal_dout_both <= #`TCQ ideal_dout;
err_type_both <= #`TCQ err_type;
end
if (fab_rd_en_d1 ) begin
ideal_dout_d1 <= #`TCQ ideal_dout_both;
err_type_d1 <= #`TCQ err_type_both;
end
end
end
end // always
end
endgenerate
/**************************************************************************
* Overflow and Underflow Flag calculation
* (handled separately because they don't support rst)
**************************************************************************/
generate if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 0) begin : g7s_ovflw
always @(posedge CLK) begin
ideal_overflow <= #`TCQ WR_EN & full_i;
end
end else if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 1) begin : g8s_ovflw
always @(posedge CLK) begin
//ideal_overflow <= #`TCQ WR_EN & (rst_i | full_i);
ideal_overflow <= #`TCQ WR_EN & (WR_RST_BUSY | full_i);
end
end endgenerate // blockOF20
generate if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 0) begin : g7s_unflw
always @(posedge CLK) begin
ideal_underflow <= #`TCQ empty_i & RD_EN;
end
end else if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 1) begin : g8s_unflw
always @(posedge CLK) begin
//ideal_underflow <= #`TCQ (rst_i | empty_i) & RD_EN;
ideal_underflow <= #`TCQ (RD_RST_BUSY | empty_i) & RD_EN;
end
end endgenerate // blockUF20
/**************************
* Read Data Count
*************************/
reg [31:0] num_read_words_dc;
reg [C_RD_DATA_COUNT_WIDTH-1:0] num_read_words_sized_i;
always @(num_rd_bits) begin
if (C_USE_FWFT_DATA_COUNT) begin
//If using extra logic for FWFT Data Counts,
// then scale FIFO contents to read domain,
// and add two read words for FWFT stages
//This value is only a temporary value and not used in the code.
num_read_words_dc = (num_rd_bits/C_DOUT_WIDTH+2);
//Trim the read words for use with RD_DATA_COUNT
num_read_words_sized_i =
num_read_words_dc[C_RD_PNTR_WIDTH : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH+1];
end else begin
//If not using extra logic for FWFT Data Counts,
// then scale FIFO contents to read domain.
//This value is only a temporary value and not used in the code.
num_read_words_dc = num_rd_bits/C_DOUT_WIDTH;
//Trim the read words for use with RD_DATA_COUNT
num_read_words_sized_i =
num_read_words_dc[C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH];
end //if (C_USE_FWFT_DATA_COUNT)
end //always
/**************************
* Write Data Count
*************************/
reg [31:0] num_write_words_dc;
reg [C_WR_DATA_COUNT_WIDTH-1:0] num_write_words_sized_i;
always @(num_wr_bits) begin
if (C_USE_FWFT_DATA_COUNT) begin
//Calculate the Data Count value for the number of write words,
// when using First-Word Fall-Through with extra logic for Data
// Counts. This takes into consideration the number of words that
// are expected to be stored in the FWFT register stages (it always
// assumes they are filled).
//This value is scaled to the Write Domain.
//The expression (((A-1)/B))+1 divides A/B, but takes the
// ceiling of the result.
//When num_wr_bits==0, set the result manually to prevent
// division errors.
//EXTRA_WORDS_DC is the number of words added to write_words
// due to FWFT.
//This value is only a temporary value and not used in the code.
num_write_words_dc = (num_wr_bits==0) ? EXTRA_WORDS_DC : (((num_wr_bits-1)/C_DIN_WIDTH)+1) + EXTRA_WORDS_DC ;
//Trim the write words for use with WR_DATA_COUNT
num_write_words_sized_i =
num_write_words_dc[C_WR_PNTR_WIDTH : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH+1];
end else begin
//Calculate the Data Count value for the number of write words, when NOT
// using First-Word Fall-Through with extra logic for Data Counts. This
// calculates only the number of words in the internal FIFO.
//The expression (((A-1)/B))+1 divides A/B, but takes the
// ceiling of the result.
//This value is scaled to the Write Domain.
//When num_wr_bits==0, set the result manually to prevent
// division errors.
//This value is only a temporary value and not used in the code.
num_write_words_dc = (num_wr_bits==0) ? 0 : ((num_wr_bits-1)/C_DIN_WIDTH)+1;
//Trim the read words for use with RD_DATA_COUNT
num_write_words_sized_i =
num_write_words_dc[C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH];
end //if (C_USE_FWFT_DATA_COUNT)
end //always
/*************************************************************************
* Write and Read Logic
************************************************************************/
wire write_allow;
wire read_allow;
wire read_allow_dc;
wire write_only;
wire read_only;
//wire write_only_q;
reg write_only_q;
//wire read_only_q;
reg read_only_q;
reg full_reg;
reg rst_full_ff_reg1;
reg rst_full_ff_reg2;
wire ram_full_comb;
wire carry;
assign write_allow = WR_EN & ~full_i;
assign read_allow = RD_EN & ~empty_i;
assign read_allow_dc = RD_EN_USER & ~USER_EMPTY_FB;
//assign write_only = write_allow & ~read_allow;
//assign write_only_q = write_allow_q;
//assign read_only = read_allow & ~write_allow;
//assign read_only_q = read_allow_q ;
wire [C_WR_PNTR_WIDTH-1:0] diff_pntr;
wire [C_RD_PNTR_WIDTH-1:0] diff_pntr_pe;
reg [C_WR_PNTR_WIDTH-1:0] diff_pntr_reg1 = 0;
reg [C_RD_PNTR_WIDTH-1:0] diff_pntr_pe_reg1 = 0;
reg [C_RD_PNTR_WIDTH:0] diff_pntr_pe_asym = 0;
wire [C_RD_PNTR_WIDTH:0] adj_wr_pntr_rd_asym ;
wire [C_RD_PNTR_WIDTH:0] rd_pntr_asym;
reg [C_WR_PNTR_WIDTH-1:0] diff_pntr_reg2 = 0;
reg [C_WR_PNTR_WIDTH-1:0] diff_pntr_pe_reg2 = 0;
wire [C_RD_PNTR_WIDTH-1:0] diff_pntr_pe_max;
wire [C_RD_PNTR_WIDTH-1:0] diff_pntr_max;
assign diff_pntr_pe_max = DIFF_MAX_RD;
assign diff_pntr_max = DIFF_MAX_WR;
generate if (IS_ASYMMETRY == 0) begin : diff_pntr_sym
assign write_only = write_allow & ~read_allow;
assign read_only = read_allow & ~write_allow;
end endgenerate
generate if ( IS_ASYMMETRY == 1 && C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : wr_grt_rd
assign read_only = read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0]) & ~write_allow;
assign write_only = write_allow & ~(read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0]));
end endgenerate
generate if (IS_ASYMMETRY ==1 && C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : rd_grt_wr
assign read_only = read_allow & ~(write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]));
assign write_only = write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]) & ~read_allow;
end endgenerate
//-----------------------------------------------------------------------------
// Write and Read pointer generation
//-----------------------------------------------------------------------------
always @(posedge CLK or posedge rst_i) begin
if (rst_i) begin
wr_pntr <= 0;
rd_pntr <= 0;
end else begin
if (srst_i || srst_wrst_busy || srst_rrst_busy ) begin
if (srst_wrst_busy)
wr_pntr <= #`TCQ 0;
if (srst_rrst_busy)
rd_pntr <= #`TCQ 0;
end else begin
if (write_allow) wr_pntr <= #`TCQ wr_pntr + 1;
if (read_allow) rd_pntr <= #`TCQ rd_pntr + 1;
end
end
end
generate if (C_FIFO_TYPE == 2) begin : gll_dm_dout
always @(posedge CLK) begin
if (write_allow) begin
if (ENABLE_ERR_INJECTION == 1)
memory[wr_pntr] <= #`TCQ {INJECTDBITERR,INJECTSBITERR,DIN};
else
memory[wr_pntr] <= #`TCQ DIN;
end
end
reg [C_DATA_WIDTH-1:0] dout_tmp_q;
reg [C_DATA_WIDTH-1:0] dout_tmp = 0;
reg [C_DATA_WIDTH-1:0] dout_tmp1 = 0;
always @(posedge CLK) begin
dout_tmp_q <= #`TCQ ideal_dout;
end
always @* begin
if (read_allow)
ideal_dout <= memory[rd_pntr];
else
ideal_dout <= dout_tmp_q;
end
end endgenerate // gll_dm_dout
/**************************************************************************
* Write Domain Logic
**************************************************************************/
assign ram_rd_en = RD_EN & !EMPTY;
//reg [C_WR_PNTR_WIDTH-1:0] diff_pntr = 0;
generate if (C_FIFO_TYPE != 2) begin : gnll_din
always @(posedge CLK or posedge rst_i) begin : gen_fifo_w
/****** Reset fifo (case 1)***************************************/
if (rst_i == 1'b1) begin
num_wr_bits <= #`TCQ 0;
next_num_wr_bits = #`TCQ 0;
wr_ptr <= #`TCQ C_WR_DEPTH - 1;
rd_ptr_wrclk <= #`TCQ C_RD_DEPTH - 1;
ideal_wr_ack <= #`TCQ 0;
ideal_wr_count <= #`TCQ 0;
tmp_wr_listsize = #`TCQ 0;
rd_ptr_wrclk_next <= #`TCQ 0;
wr_pntr <= #`TCQ 0;
wr_pntr_rd1 <= #`TCQ 0;
end else begin //rst_i==0
if (srst_wrst_busy) begin
num_wr_bits <= #`TCQ 0;
next_num_wr_bits = #`TCQ 0;
wr_ptr <= #`TCQ C_WR_DEPTH - 1;
rd_ptr_wrclk <= #`TCQ C_RD_DEPTH - 1;
ideal_wr_ack <= #`TCQ 0;
ideal_wr_count <= #`TCQ 0;
tmp_wr_listsize = #`TCQ 0;
rd_ptr_wrclk_next <= #`TCQ 0;
wr_pntr <= #`TCQ 0;
wr_pntr_rd1 <= #`TCQ 0;
end else begin//srst_i=0
wr_pntr_rd1 <= #`TCQ wr_pntr;
//Determine the current number of words in the FIFO
tmp_wr_listsize = (C_DEPTH_RATIO_RD > 1) ? num_wr_bits/C_DOUT_WIDTH :
num_wr_bits/C_DIN_WIDTH;
rd_ptr_wrclk_next = rd_ptr;
if (rd_ptr_wrclk < rd_ptr_wrclk_next) begin
next_num_wr_bits = num_wr_bits -
C_DOUT_WIDTH*(rd_ptr_wrclk + C_RD_DEPTH
- rd_ptr_wrclk_next);
end else begin
next_num_wr_bits = num_wr_bits -
C_DOUT_WIDTH*(rd_ptr_wrclk - rd_ptr_wrclk_next);
end
if (WR_EN == 1'b1) begin
if (FULL == 1'b1) begin
ideal_wr_ack <= #`TCQ 0;
//Reminder that FIFO is still full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
end else begin
write_fifo;
next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH;
//Write successful, so issue acknowledge
// and no error
ideal_wr_ack <= #`TCQ 1;
//Not even close to full.
ideal_wr_count <= num_write_words_sized_i;
//end
end
end else begin //(WR_EN == 1'b1)
//If user did not attempt a write, then do not
// give ack or err
ideal_wr_ack <= #`TCQ 0;
ideal_wr_count <= #`TCQ num_write_words_sized_i;
end
num_wr_bits <= #`TCQ next_num_wr_bits;
rd_ptr_wrclk <= #`TCQ rd_ptr;
end //srst_i==0
end //wr_rst_i==0
end // gen_fifo_w
end endgenerate
generate if (C_FIFO_TYPE < 2 && C_MEMORY_TYPE < 2 && C_EN_SAFETY_CKT == 0) begin : gnll_dm_dout
always @(posedge CLK) begin
if (rst_i || srst_rrst_busy) begin
if (C_USE_DOUT_RST == 1)
ideal_dout <= #`TCQ dout_reset_val;
ideal_dout_both <= #`TCQ dout_reset_val;
end
end
end endgenerate
generate if (C_FIFO_TYPE != 2) begin : gnll_dout
always @(posedge CLK or posedge rst_i) begin : gen_fifo_r
/****** Reset fifo (case 1)***************************************/
if (rst_i) begin
num_rd_bits <= #`TCQ 0;
next_num_rd_bits = #`TCQ 0;
rd_ptr <= #`TCQ C_RD_DEPTH -1;
rd_pntr <= #`TCQ 0;
//rd_pntr_wr1 <= #`TCQ 0;
wr_ptr_rdclk <= #`TCQ C_WR_DEPTH -1;
// DRAM resets asynchronously
if (C_FIFO_TYPE < 2 && (C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3 )&& C_USE_DOUT_RST == 1)
ideal_dout <= #`TCQ dout_reset_val;
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type <= #`TCQ 0;
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ 0;
end else begin //rd_rst_i==0
if (srst_rrst_busy) begin
num_rd_bits <= #`TCQ 0;
next_num_rd_bits = #`TCQ 0;
rd_ptr <= #`TCQ C_RD_DEPTH -1;
rd_pntr <= #`TCQ 0;
//rd_pntr_wr1 <= #`TCQ 0;
wr_ptr_rdclk <= #`TCQ C_WR_DEPTH -1;
// DRAM resets synchronously
if (C_FIFO_TYPE < 2 && (C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3 )&& C_USE_DOUT_RST == 1)
ideal_dout <= #`TCQ dout_reset_val;
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type <= #`TCQ 0;
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ 0;
end //srst_i
else begin
//rd_pntr_wr1 <= #`TCQ rd_pntr;
//Determine the current number of words in the FIFO
tmp_rd_listsize = (C_DEPTH_RATIO_WR > 1) ? num_rd_bits/C_DIN_WIDTH :
num_rd_bits/C_DOUT_WIDTH;
wr_ptr_rdclk_next = wr_ptr;
if (wr_ptr_rdclk < wr_ptr_rdclk_next) begin
next_num_rd_bits = num_rd_bits +
C_DIN_WIDTH*(wr_ptr_rdclk +C_WR_DEPTH
- wr_ptr_rdclk_next);
end else begin
next_num_rd_bits = num_rd_bits +
C_DIN_WIDTH*(wr_ptr_rdclk - wr_ptr_rdclk_next);
end
if (RD_EN == 1'b1) begin
if (EMPTY == 1'b1) begin
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end
else
begin
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == 2)
end
num_rd_bits <= #`TCQ next_num_rd_bits;
wr_ptr_rdclk <= #`TCQ wr_ptr;
end //s_rst_i==0
end //rd_rst_i==0
end //always
end endgenerate
//-----------------------------------------------------------------------------
// Generate diff_pntr for PROG_FULL generation
// Generate diff_pntr_pe for PROG_EMPTY generation
//-----------------------------------------------------------------------------
generate if ((C_PROG_FULL_TYPE != 0 || C_PROG_EMPTY_TYPE != 0) && IS_ASYMMETRY == 0) begin : reg_write_allow
always @(posedge CLK ) begin
if (rst_i) begin
write_only_q <= 1'b0;
read_only_q <= 1'b0;
diff_pntr_reg1 <= 0;
diff_pntr_pe_reg1 <= 0;
diff_pntr_reg2 <= 0;
diff_pntr_pe_reg2 <= 0;
end else begin
if (srst_i || srst_wrst_busy || srst_rrst_busy) begin
if (srst_rrst_busy) begin
read_only_q <= #`TCQ 1'b0;
diff_pntr_pe_reg1 <= #`TCQ 0;
diff_pntr_pe_reg2 <= #`TCQ 0;
end
if (srst_wrst_busy) begin
write_only_q <= #`TCQ 1'b0;
diff_pntr_reg1 <= #`TCQ 0;
diff_pntr_reg2 <= #`TCQ 0;
end
end else begin
write_only_q <= #`TCQ write_only;
read_only_q <= #`TCQ read_only;
diff_pntr_reg2 <= #`TCQ diff_pntr_reg1;
diff_pntr_pe_reg2 <= #`TCQ diff_pntr_pe_reg1;
// Add 1 to the difference pointer value when only write happens.
if (write_only)
diff_pntr_reg1 <= #`TCQ wr_pntr - adj_rd_pntr_wr + 1;
else
diff_pntr_reg1 <= #`TCQ wr_pntr - adj_rd_pntr_wr;
// Add 1 to the difference pointer value when write or both write & read or no write & read happen.
if (read_only)
diff_pntr_pe_reg1 <= #`TCQ adj_wr_pntr_rd - rd_pntr - 1;
else
diff_pntr_pe_reg1 <= #`TCQ adj_wr_pntr_rd - rd_pntr;
end
end
end
assign diff_pntr_pe = diff_pntr_pe_reg1;
assign diff_pntr = diff_pntr_reg1;
end endgenerate // reg_write_allow
generate if ((C_PROG_FULL_TYPE != 0 || C_PROG_EMPTY_TYPE != 0) && IS_ASYMMETRY == 1) begin : reg_write_allow_asym
assign adj_wr_pntr_rd_asym[C_RD_PNTR_WIDTH:0] = {adj_wr_pntr_rd,1'b1};
assign rd_pntr_asym[C_RD_PNTR_WIDTH:0] = {~rd_pntr,1'b1};
always @(posedge CLK ) begin
if (rst_i) begin
diff_pntr_pe_asym <= 0;
diff_pntr_reg1 <= 0;
full_reg <= 0;
rst_full_ff_reg1 <= 1;
rst_full_ff_reg2 <= 1;
diff_pntr_pe_reg1 <= 0;
end else begin
if (srst_i || srst_wrst_busy || srst_rrst_busy) begin
if (srst_wrst_busy)
diff_pntr_reg1 <= #`TCQ 0;
if (srst_rrst_busy)
full_reg <= #`TCQ 0;
rst_full_ff_reg1 <= #`TCQ 1;
rst_full_ff_reg2 <= #`TCQ 1;
diff_pntr_pe_asym <= #`TCQ 0;
diff_pntr_pe_reg1 <= #`TCQ 0;
end else begin
diff_pntr_pe_asym <= #`TCQ adj_wr_pntr_rd_asym + rd_pntr_asym;
full_reg <= #`TCQ full_i;
rst_full_ff_reg1 <= #`TCQ RST_FULL_FF;
rst_full_ff_reg2 <= #`TCQ rst_full_ff_reg1;
if (~full_i) begin
diff_pntr_reg1 <= #`TCQ wr_pntr - adj_rd_pntr_wr;
end
end
end
end
assign carry = (~(|(diff_pntr_pe_asym [C_RD_PNTR_WIDTH : 1])));
assign diff_pntr_pe = (full_reg && ~rst_full_ff_reg2 && carry ) ? diff_pntr_pe_max : diff_pntr_pe_asym[C_RD_PNTR_WIDTH:1];
assign diff_pntr = diff_pntr_reg1;
end endgenerate // reg_write_allow_asym
//-----------------------------------------------------------------------------
// Generate FULL flag
//-----------------------------------------------------------------------------
wire comp0;
wire comp1;
wire going_full;
wire leaving_full;
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gpad
assign adj_rd_pntr_wr [C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH] = rd_pntr;
assign adj_rd_pntr_wr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0] = 0;
end endgenerate
generate if (C_WR_PNTR_WIDTH <= C_RD_PNTR_WIDTH) begin : gtrim
assign adj_rd_pntr_wr = rd_pntr[C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH];
end endgenerate
assign comp1 = (adj_rd_pntr_wr == (wr_pntr + 1'b1));
assign comp0 = (adj_rd_pntr_wr == wr_pntr);
generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : gf_wp_eq_rp
assign going_full = (comp1 & write_allow & ~read_allow);
assign leaving_full = (comp0 & read_allow) | RST_FULL_GEN;
end endgenerate
// Write data width is bigger than read data width
// Write depth is smaller than read depth
// One write could be equal to 2 or 4 or 8 reads
generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : gf_asym
assign going_full = (comp1 & write_allow & (~ (read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0]))));
assign leaving_full = (comp0 & read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0])) | RST_FULL_GEN;
end endgenerate
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gf_wp_gt_rp
assign going_full = (comp1 & write_allow & ~read_allow);
assign leaving_full =(comp0 & read_allow) | RST_FULL_GEN;
end endgenerate
assign ram_full_comb = going_full | (~leaving_full & full_i);
always @(posedge CLK or posedge RST_FULL_FF) begin
if (RST_FULL_FF)
full_i <= C_FULL_FLAGS_RST_VAL;
else if (srst_wrst_busy)
full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else
full_i <= #`TCQ ram_full_comb;
end
//-----------------------------------------------------------------------------
// Generate EMPTY flag
//-----------------------------------------------------------------------------
wire ecomp0;
wire ecomp1;
wire going_empty;
wire leaving_empty;
wire ram_empty_comb;
generate if (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) begin : pad
assign adj_wr_pntr_rd [C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr;
assign adj_wr_pntr_rd[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0] = 0;
end endgenerate
generate if (C_RD_PNTR_WIDTH <= C_WR_PNTR_WIDTH) begin : trim
assign adj_wr_pntr_rd = wr_pntr[C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH];
end endgenerate
assign ecomp1 = (adj_wr_pntr_rd == (rd_pntr + 1'b1));
assign ecomp0 = (adj_wr_pntr_rd == rd_pntr);
generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : ge_wp_eq_rp
assign going_empty = (ecomp1 & ~write_allow & read_allow);
assign leaving_empty = (ecomp0 & write_allow);
end endgenerate
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : ge_wp_gt_rp
assign going_empty = (ecomp1 & read_allow & (~(write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]))));
assign leaving_empty = (ecomp0 & write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]));
end endgenerate
generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : ge_wp_lt_rp
assign going_empty = (ecomp1 & ~write_allow & read_allow);
assign leaving_empty =(ecomp0 & write_allow);
end endgenerate
assign ram_empty_comb = going_empty | (~leaving_empty & empty_i);
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
empty_i <= 1'b1;
else if (srst_rrst_busy)
empty_i <= #`TCQ 1'b1;
else
empty_i <= #`TCQ ram_empty_comb;
end
//-----------------------------------------------------------------------------
// Generate Read and write data counts for asymmetic common clock
//-----------------------------------------------------------------------------
reg [C_GRTR_PNTR_WIDTH :0] count_dc = 0;
wire [C_GRTR_PNTR_WIDTH :0] ratio;
wire decr_by_one;
wire incr_by_ratio;
wire incr_by_one;
wire decr_by_ratio;
localparam IS_FWFT = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ? 1 : 0;
generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : rd_depth_gt_wr
assign ratio = C_DEPTH_RATIO_RD;
assign decr_by_one = (IS_FWFT == 1)? read_allow_dc : read_allow;
assign incr_by_ratio = write_allow;
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
count_dc <= #`TCQ 0;
else if (srst_wrst_busy)
count_dc <= #`TCQ 0;
else begin
if (decr_by_one) begin
if (!incr_by_ratio)
count_dc <= #`TCQ count_dc - 1;
else
count_dc <= #`TCQ count_dc - 1 + ratio ;
end
else begin
if (!incr_by_ratio)
count_dc <= #`TCQ count_dc ;
else
count_dc <= #`TCQ count_dc + ratio ;
end
end
end
assign rd_data_count_i_ss[C_RD_PNTR_WIDTH : 0] = count_dc;
assign wr_data_count_i_ss[C_WR_PNTR_WIDTH : 0] = count_dc[C_RD_PNTR_WIDTH : C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH];
end endgenerate
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : wr_depth_gt_rd
assign ratio = C_DEPTH_RATIO_WR;
assign incr_by_one = write_allow;
assign decr_by_ratio = (IS_FWFT == 1)? read_allow_dc : read_allow;
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
count_dc <= #`TCQ 0;
else if (srst_wrst_busy)
count_dc <= #`TCQ 0;
else begin
if (incr_by_one) begin
if (!decr_by_ratio)
count_dc <= #`TCQ count_dc + 1;
else
count_dc <= #`TCQ count_dc + 1 - ratio ;
end
else begin
if (!decr_by_ratio)
count_dc <= #`TCQ count_dc ;
else
count_dc <= #`TCQ count_dc - ratio ;
end
end
end
assign wr_data_count_i_ss[C_WR_PNTR_WIDTH : 0] = count_dc;
assign rd_data_count_i_ss[C_RD_PNTR_WIDTH : 0] = count_dc[C_WR_PNTR_WIDTH : C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH];
end endgenerate
//-----------------------------------------------------------------------------
// Generate WR_ACK flag
//-----------------------------------------------------------------------------
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
ideal_wr_ack <= 1'b0;
else if (srst_wrst_busy)
ideal_wr_ack <= #`TCQ 1'b0;
else if (WR_EN & ~full_i)
ideal_wr_ack <= #`TCQ 1'b1;
else
ideal_wr_ack <= #`TCQ 1'b0;
end
//-----------------------------------------------------------------------------
// Generate VALID flag
//-----------------------------------------------------------------------------
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
ideal_valid <= 1'b0;
else if (srst_rrst_busy)
ideal_valid <= #`TCQ 1'b0;
else if (RD_EN & ~empty_i)
ideal_valid <= #`TCQ 1'b1;
else
ideal_valid <= #`TCQ 1'b0;
end
//-----------------------------------------------------------------------------
// Generate ALMOST_FULL flag
//-----------------------------------------------------------------------------
//generate if (C_HAS_ALMOST_FULL == 1 || C_PROG_FULL_TYPE > 2 || C_PROG_EMPTY_TYPE > 2) begin : gaf_ss
wire fcomp2;
wire going_afull;
wire leaving_afull;
wire ram_afull_comb;
assign fcomp2 = (adj_rd_pntr_wr == (wr_pntr + 2'h2));
generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : gaf_wp_eq_rp
assign going_afull = (fcomp2 & write_allow & ~read_allow);
assign leaving_afull = (comp1 & read_allow & ~write_allow) | RST_FULL_GEN;
end endgenerate
// Write data width is bigger than read data width
// Write depth is smaller than read depth
// One write could be equal to 2 or 4 or 8 reads
generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : gaf_asym
assign going_afull = (fcomp2 & write_allow & (~ (read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0]))));
assign leaving_afull = (comp1 & (~write_allow) & read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0])) | RST_FULL_GEN;
end endgenerate
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gaf_wp_gt_rp
assign going_afull = (fcomp2 & write_allow & ~read_allow);
assign leaving_afull =((comp0 | comp1 | fcomp2) & read_allow) | RST_FULL_GEN;
end endgenerate
assign ram_afull_comb = going_afull | (~leaving_afull & almost_full_i);
always @(posedge CLK or posedge RST_FULL_FF) begin
if (RST_FULL_FF)
almost_full_i <= C_FULL_FLAGS_RST_VAL;
else if (srst_wrst_busy)
almost_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else
almost_full_i <= #`TCQ ram_afull_comb;
end
// end endgenerate // gaf_ss
//-----------------------------------------------------------------------------
// Generate ALMOST_EMPTY flag
//-----------------------------------------------------------------------------
//generate if (C_HAS_ALMOST_EMPTY == 1) begin : gae_ss
wire ecomp2;
wire going_aempty;
wire leaving_aempty;
wire ram_aempty_comb;
assign ecomp2 = (adj_wr_pntr_rd == (rd_pntr + 2'h2));
generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : gae_wp_eq_rp
assign going_aempty = (ecomp2 & ~write_allow & read_allow);
assign leaving_aempty = (ecomp1 & write_allow & ~read_allow);
end endgenerate
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gae_wp_gt_rp
assign going_aempty = (ecomp2 & read_allow & (~(write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]))));
assign leaving_aempty = (ecomp1 & ~read_allow & write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]));
end endgenerate
generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : gae_wp_lt_rp
assign going_aempty = (ecomp2 & ~write_allow & read_allow);
assign leaving_aempty =((ecomp2 | ecomp1 |ecomp0) & write_allow);
end endgenerate
assign ram_aempty_comb = going_aempty | (~leaving_aempty & almost_empty_i);
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
almost_empty_i <= 1'b1;
else if (srst_rrst_busy)
almost_empty_i <= #`TCQ 1'b1;
else
almost_empty_i <= #`TCQ ram_aempty_comb;
end
// end endgenerate // gae_ss
//-----------------------------------------------------------------------------
// Generate PROG_FULL
//-----------------------------------------------------------------------------
localparam C_PF_ASSERT_VAL = (C_PRELOAD_LATENCY == 0) ?
C_PROG_FULL_THRESH_ASSERT_VAL - EXTRA_WORDS_PF_PARAM : // FWFT
C_PROG_FULL_THRESH_ASSERT_VAL; // STD
localparam C_PF_NEGATE_VAL = (C_PRELOAD_LATENCY == 0) ?
C_PROG_FULL_THRESH_NEGATE_VAL - EXTRA_WORDS_PF_PARAM: // FWFT
C_PROG_FULL_THRESH_NEGATE_VAL; // STD
//-----------------------------------------------------------------------------
// Generate PROG_FULL for single programmable threshold constant
//-----------------------------------------------------------------------------
wire [C_WR_PNTR_WIDTH-1:0] temp = C_PF_ASSERT_VAL;
generate if (C_PROG_FULL_TYPE == 1) begin : single_pf_const
always @(posedge CLK or posedge RST_FULL_FF) begin
if (RST_FULL_FF && C_HAS_RST)
prog_full_i <= C_FULL_FLAGS_RST_VAL;
else begin
if (srst_wrst_busy)
prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else if (IS_ASYMMETRY == 0) begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (diff_pntr == C_PF_ASSERT_VAL && write_only_q)
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr == C_PF_ASSERT_VAL && read_only_q)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ prog_full_i;
end
else begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~RST_FULL_GEN ) begin
if (diff_pntr>= C_PF_ASSERT_VAL )
prog_full_i <= #`TCQ 1'b1;
else if ((diff_pntr) < C_PF_ASSERT_VAL )
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ 1'b0;
end
else
prog_full_i <= #`TCQ prog_full_i;
end
end
end
end endgenerate // single_pf_const
//-----------------------------------------------------------------------------
// Generate PROG_FULL for multiple programmable threshold constants
//-----------------------------------------------------------------------------
generate if (C_PROG_FULL_TYPE == 2) begin : multiple_pf_const
always @(posedge CLK or posedge RST_FULL_FF) begin
//if (RST_FULL_FF)
if (RST_FULL_FF && C_HAS_RST)
prog_full_i <= C_FULL_FLAGS_RST_VAL;
else begin
if (srst_wrst_busy)
prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else if (IS_ASYMMETRY == 0) begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (diff_pntr == C_PF_ASSERT_VAL && write_only_q)
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr == C_PF_NEGATE_VAL && read_only_q)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ prog_full_i;
end
else begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~RST_FULL_GEN ) begin
if (diff_pntr >= C_PF_ASSERT_VAL )
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr < C_PF_NEGATE_VAL)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ prog_full_i;
end
else
prog_full_i <= #`TCQ prog_full_i;
end
end
end
end endgenerate //multiple_pf_const
//-----------------------------------------------------------------------------
// Generate PROG_FULL for single programmable threshold input port
//-----------------------------------------------------------------------------
wire [C_WR_PNTR_WIDTH-1:0] pf3_assert_val = (C_PRELOAD_LATENCY == 0) ?
PROG_FULL_THRESH - EXTRA_WORDS_PF: // FWFT
PROG_FULL_THRESH; // STD
generate if (C_PROG_FULL_TYPE == 3) begin : single_pf_input
always @(posedge CLK or posedge RST_FULL_FF) begin//0
//if (RST_FULL_FF)
if (RST_FULL_FF && C_HAS_RST)
prog_full_i <= C_FULL_FLAGS_RST_VAL;
else begin //1
if (srst_wrst_busy)
prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else if (IS_ASYMMETRY == 0) begin//2
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~almost_full_i) begin//3
if (diff_pntr > pf3_assert_val)
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr == pf3_assert_val) begin//4
if (read_only_q)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ 1'b1;
end else//4
prog_full_i <= #`TCQ 1'b0;
end else//3
prog_full_i <= #`TCQ prog_full_i;
end //2
else begin//5
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~full_i ) begin//6
if (diff_pntr >= pf3_assert_val )
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr < pf3_assert_val) begin//7
prog_full_i <= #`TCQ 1'b0;
end//7
end//6
else
prog_full_i <= #`TCQ prog_full_i;
end//5
end//1
end//0
end endgenerate //single_pf_input
//-----------------------------------------------------------------------------
// Generate PROG_FULL for multiple programmable threshold input ports
//-----------------------------------------------------------------------------
wire [C_WR_PNTR_WIDTH-1:0] pf_assert_val = (C_PRELOAD_LATENCY == 0) ?
(PROG_FULL_THRESH_ASSERT -EXTRA_WORDS_PF) : // FWFT
PROG_FULL_THRESH_ASSERT; // STD
wire [C_WR_PNTR_WIDTH-1:0] pf_negate_val = (C_PRELOAD_LATENCY == 0) ?
(PROG_FULL_THRESH_NEGATE -EXTRA_WORDS_PF) : // FWFT
PROG_FULL_THRESH_NEGATE; // STD
generate if (C_PROG_FULL_TYPE == 4) begin : multiple_pf_inputs
always @(posedge CLK or posedge RST_FULL_FF) begin
if (RST_FULL_FF && C_HAS_RST)
prog_full_i <= C_FULL_FLAGS_RST_VAL;
else begin
if (srst_wrst_busy)
prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else if (IS_ASYMMETRY == 0) begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~almost_full_i) begin
if (diff_pntr >= pf_assert_val)
prog_full_i <= #`TCQ 1'b1;
else if ((diff_pntr == pf_negate_val && read_only_q) ||
diff_pntr < pf_negate_val)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ prog_full_i;
end else
prog_full_i <= #`TCQ prog_full_i;
end
else begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~full_i ) begin
if (diff_pntr >= pf_assert_val )
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr < pf_negate_val)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ prog_full_i;
end
else
prog_full_i <= #`TCQ prog_full_i;
end
end
end
end endgenerate //multiple_pf_inputs
//-----------------------------------------------------------------------------
// Generate PROG_EMPTY
//-----------------------------------------------------------------------------
localparam C_PE_ASSERT_VAL = (C_PRELOAD_LATENCY == 0) ?
C_PROG_EMPTY_THRESH_ASSERT_VAL - 2: // FWFT
C_PROG_EMPTY_THRESH_ASSERT_VAL; // STD
localparam C_PE_NEGATE_VAL = (C_PRELOAD_LATENCY == 0) ?
C_PROG_EMPTY_THRESH_NEGATE_VAL - 2: // FWFT
C_PROG_EMPTY_THRESH_NEGATE_VAL; // STD
//-----------------------------------------------------------------------------
// Generate PROG_EMPTY for single programmable threshold constant
//-----------------------------------------------------------------------------
generate if (C_PROG_EMPTY_TYPE == 1) begin : single_pe_const
always @(posedge CLK or posedge rst_i) begin
//if (rst_i)
if (rst_i && C_HAS_RST)
prog_empty_i <= 1'b1;
else begin
if (srst_rrst_busy)
prog_empty_i <= #`TCQ 1'b1;
else if (IS_ASYMMETRY == 0) begin
if (diff_pntr_pe == C_PE_ASSERT_VAL && read_only_q)
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe == C_PE_ASSERT_VAL && write_only_q)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ prog_empty_i;
end
else begin
if (~rst_i ) begin
if (diff_pntr_pe <= C_PE_ASSERT_VAL)
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe > C_PE_ASSERT_VAL)
prog_empty_i <= #`TCQ 1'b0;
end
else
prog_empty_i <= #`TCQ prog_empty_i;
end
end
end
end endgenerate // single_pe_const
//-----------------------------------------------------------------------------
// Generate PROG_EMPTY for multiple programmable threshold constants
//-----------------------------------------------------------------------------
generate if (C_PROG_EMPTY_TYPE == 2) begin : multiple_pe_const
always @(posedge CLK or posedge rst_i) begin
//if (rst_i)
if (rst_i && C_HAS_RST)
prog_empty_i <= 1'b1;
else begin
if (srst_rrst_busy)
prog_empty_i <= #`TCQ 1'b1;
else if (IS_ASYMMETRY == 0) begin
if (diff_pntr_pe == C_PE_ASSERT_VAL && read_only_q)
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe == C_PE_NEGATE_VAL && write_only_q)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ prog_empty_i;
end
else begin
if (~rst_i ) begin
if (diff_pntr_pe <= C_PE_ASSERT_VAL )
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe > C_PE_NEGATE_VAL)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ prog_empty_i;
end
else
prog_empty_i <= #`TCQ prog_empty_i;
end
end
end
end endgenerate //multiple_pe_const
//-----------------------------------------------------------------------------
// Generate PROG_EMPTY for single programmable threshold input port
//-----------------------------------------------------------------------------
wire [C_RD_PNTR_WIDTH-1:0] pe3_assert_val = (C_PRELOAD_LATENCY == 0) ?
(PROG_EMPTY_THRESH -2) : // FWFT
PROG_EMPTY_THRESH; // STD
generate if (C_PROG_EMPTY_TYPE == 3) begin : single_pe_input
always @(posedge CLK or posedge rst_i) begin
//if (rst_i)
if (rst_i && C_HAS_RST)
prog_empty_i <= 1'b1;
else begin
if (srst_rrst_busy)
prog_empty_i <= #`TCQ 1'b1;
else if (IS_ASYMMETRY == 0) begin
if (~almost_full_i) begin
if (diff_pntr_pe < pe3_assert_val)
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe == pe3_assert_val) begin
if (write_only_q)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ 1'b1;
end else
prog_empty_i <= #`TCQ 1'b0;
end else
prog_empty_i <= #`TCQ prog_empty_i;
end
else begin
if (diff_pntr_pe <= pe3_assert_val )
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe > pe3_assert_val)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ prog_empty_i;
end
end
end
end endgenerate // single_pe_input
//-----------------------------------------------------------------------------
// Generate PROG_EMPTY for multiple programmable threshold input ports
//-----------------------------------------------------------------------------
wire [C_RD_PNTR_WIDTH-1:0] pe4_assert_val = (C_PRELOAD_LATENCY == 0) ?
(PROG_EMPTY_THRESH_ASSERT - 2) : // FWFT
PROG_EMPTY_THRESH_ASSERT; // STD
wire [C_RD_PNTR_WIDTH-1:0] pe4_negate_val = (C_PRELOAD_LATENCY == 0) ?
(PROG_EMPTY_THRESH_NEGATE - 2) : // FWFT
PROG_EMPTY_THRESH_NEGATE; // STD
generate if (C_PROG_EMPTY_TYPE == 4) begin : multiple_pe_inputs
always @(posedge CLK or posedge rst_i) begin
//if (rst_i)
if (rst_i && C_HAS_RST)
prog_empty_i <= 1'b1;
else begin
if (srst_rrst_busy)
prog_empty_i <= #`TCQ 1'b1;
else if (IS_ASYMMETRY == 0) begin
if (~almost_full_i) begin
if (diff_pntr_pe <= pe4_assert_val)
prog_empty_i <= #`TCQ 1'b1;
else if (((diff_pntr_pe == pe4_negate_val) && write_only_q) ||
(diff_pntr_pe > pe4_negate_val)) begin
prog_empty_i <= #`TCQ 1'b0;
end else
prog_empty_i <= #`TCQ prog_empty_i;
end else
prog_empty_i <= #`TCQ prog_empty_i;
end
else begin
if (diff_pntr_pe <= pe4_assert_val )
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe > pe4_negate_val)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ prog_empty_i;
end
end
end
end endgenerate // multiple_pe_inputs
endmodule // fifo_generator_v13_1_1_bhv_ver_ss
/**************************************************************************
* First-Word Fall-Through module (preload 0)
**************************************************************************/
module fifo_generator_v13_1_1_bhv_ver_preload0
#(
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_HAS_RST = 0,
parameter C_ENABLE_RST_SYNC = 0,
parameter C_HAS_SRST = 0,
parameter C_USE_EMBEDDED_REG = 0,
parameter C_EN_SAFETY_CKT = 0,
parameter C_USE_DOUT_RST = 0,
parameter C_USE_ECC = 0,
parameter C_USERVALID_LOW = 0,
parameter C_USERUNDERFLOW_LOW = 0,
parameter C_MEMORY_TYPE = 0,
parameter C_FIFO_TYPE = 0
)
(
//Inputs
input RD_CLK,
input RD_RST,
input SRST,
input WR_RST_BUSY,
input RD_RST_BUSY,
input RD_EN,
input FIFOEMPTY,
input [C_DOUT_WIDTH-1:0] FIFODATA,
input FIFOSBITERR,
input FIFODBITERR,
//Outputs
output reg [C_DOUT_WIDTH-1:0] USERDATA,
output reg [C_DOUT_WIDTH-1:0] USERDATA_BOTH,
output USERVALID,
output USERVALID_BOTH,
output USERVALID_ONE,
output USERUNDERFLOW,
output USEREMPTY,
output USERALMOSTEMPTY,
output RAMVALID,
output FIFORDEN,
output reg USERSBITERR,
output reg USERDBITERR,
output reg USERSBITERR_BOTH,
output reg USERDBITERR_BOTH,
output reg STAGE2_REG_EN,
output fab_read_data_valid_i_o,
output read_data_valid_i_o,
output ram_valid_i_o,
output [1:0] VALID_STAGES
);
//Internal signals
wire preloadstage1;
wire preloadstage2;
reg ram_valid_i;
reg fab_valid;
reg read_data_valid_i;
reg fab_read_data_valid_i;
reg fab_read_data_valid_i_1;
reg ram_valid_i_d;
reg read_data_valid_i_d;
reg fab_read_data_valid_i_d;
wire ram_regout_en;
reg ram_regout_en_d1;
reg ram_regout_en_d2;
wire fab_regout_en;
wire ram_rd_en;
reg empty_i = 1'b1;
reg empty_q = 1'b1;
reg rd_en_q = 1'b0;
reg almost_empty_i = 1'b1;
reg almost_empty_q = 1'b1;
wire rd_rst_i;
wire srst_i;
assign ram_valid_i_o = ram_valid_i;
assign read_data_valid_i_o = read_data_valid_i;
assign fab_read_data_valid_i_o = fab_read_data_valid_i;
/*************************************************************************
* FUNCTIONS
*************************************************************************/
/*************************************************************************
* hexstr_conv
* Converts a string of type hex to a binary value (for C_DOUT_RST_VAL)
***********************************************************************/
function [C_DOUT_WIDTH-1:0] hexstr_conv;
input [(C_DOUT_WIDTH*8)-1:0] def_data;
integer index,i,j;
reg [3:0] bin;
begin
index = 0;
hexstr_conv = 'b0;
for( i=C_DOUT_WIDTH-1; i>=0; i=i-1 )
begin
case (def_data[7:0])
8'b00000000 :
begin
bin = 4'b0000;
i = -1;
end
8'b00110000 : bin = 4'b0000;
8'b00110001 : bin = 4'b0001;
8'b00110010 : bin = 4'b0010;
8'b00110011 : bin = 4'b0011;
8'b00110100 : bin = 4'b0100;
8'b00110101 : bin = 4'b0101;
8'b00110110 : bin = 4'b0110;
8'b00110111 : bin = 4'b0111;
8'b00111000 : bin = 4'b1000;
8'b00111001 : bin = 4'b1001;
8'b01000001 : bin = 4'b1010;
8'b01000010 : bin = 4'b1011;
8'b01000011 : bin = 4'b1100;
8'b01000100 : bin = 4'b1101;
8'b01000101 : bin = 4'b1110;
8'b01000110 : bin = 4'b1111;
8'b01100001 : bin = 4'b1010;
8'b01100010 : bin = 4'b1011;
8'b01100011 : bin = 4'b1100;
8'b01100100 : bin = 4'b1101;
8'b01100101 : bin = 4'b1110;
8'b01100110 : bin = 4'b1111;
default :
begin
bin = 4'bx;
end
endcase
for( j=0; j<4; j=j+1)
begin
if ((index*4)+j < C_DOUT_WIDTH)
begin
hexstr_conv[(index*4)+j] = bin[j];
end
end
index = index + 1;
def_data = def_data >> 8;
end
end
endfunction
//*************************************************************************
// Set power-on states for regs
//*************************************************************************
initial begin
ram_valid_i = 1'b0;
fab_valid = 1'b0;
read_data_valid_i = 1'b0;
fab_read_data_valid_i = 1'b0;
fab_read_data_valid_i_1 = 1'b0;
USERDATA = hexstr_conv(C_DOUT_RST_VAL);
USERDATA_BOTH = hexstr_conv(C_DOUT_RST_VAL);
USERSBITERR = 1'b0;
USERDBITERR = 1'b0;
end //initial
//***************************************************************************
// connect up optional reset
//***************************************************************************
assign rd_rst_i = (C_HAS_RST == 1 || C_ENABLE_RST_SYNC == 0) ? RD_RST : 0;
assign srst_i = C_HAS_SRST ? SRST || WR_RST_BUSY || RD_RST_BUSY : 0;
localparam INVALID = 0;
localparam STAGE1_VALID = 2;
localparam STAGE2_VALID = 1;
localparam BOTH_STAGES_VALID = 3;
reg [1:0] curr_fwft_state = INVALID;
reg [1:0] next_fwft_state = INVALID;
generate if (C_USE_EMBEDDED_REG < 3 && C_FIFO_TYPE != 2) begin
always @* begin
case (curr_fwft_state)
INVALID: begin
if (~FIFOEMPTY)
next_fwft_state <= STAGE1_VALID;
else
next_fwft_state <= INVALID;
end
STAGE1_VALID: begin
if (FIFOEMPTY)
next_fwft_state <= STAGE2_VALID;
else
next_fwft_state <= BOTH_STAGES_VALID;
end
STAGE2_VALID: begin
if (FIFOEMPTY && RD_EN)
next_fwft_state <= INVALID;
else if (~FIFOEMPTY && RD_EN)
next_fwft_state <= STAGE1_VALID;
else if (~FIFOEMPTY && ~RD_EN)
next_fwft_state <= BOTH_STAGES_VALID;
else
next_fwft_state <= STAGE2_VALID;
end
BOTH_STAGES_VALID: begin
if (FIFOEMPTY && RD_EN)
next_fwft_state <= STAGE2_VALID;
else if (~FIFOEMPTY && RD_EN)
next_fwft_state <= BOTH_STAGES_VALID;
else
next_fwft_state <= BOTH_STAGES_VALID;
end
default: next_fwft_state <= INVALID;
endcase
end
always @ (posedge rd_rst_i or posedge RD_CLK) begin
if (rd_rst_i)
curr_fwft_state <= INVALID;
else if (srst_i)
curr_fwft_state <= #`TCQ INVALID;
else
curr_fwft_state <= #`TCQ next_fwft_state;
end
always @* begin
case (curr_fwft_state)
INVALID: STAGE2_REG_EN <= 1'b0;
STAGE1_VALID: STAGE2_REG_EN <= 1'b1;
STAGE2_VALID: STAGE2_REG_EN <= 1'b0;
BOTH_STAGES_VALID: STAGE2_REG_EN <= RD_EN;
default: STAGE2_REG_EN <= 1'b0;
endcase
end
assign VALID_STAGES = curr_fwft_state;
//***************************************************************************
// preloadstage2 indicates that stage2 needs to be updated. This is true
// whenever read_data_valid is false, and RAM_valid is true.
//***************************************************************************
assign preloadstage2 = ram_valid_i & (~read_data_valid_i | RD_EN );
//***************************************************************************
// preloadstage1 indicates that stage1 needs to be updated. This is true
// whenever the RAM has data (RAM_EMPTY is false), and either RAM_Valid is
// false (indicating that Stage1 needs updating), or preloadstage2 is active
// (indicating that Stage2 is going to update, so Stage1, therefore, must
// also be updated to keep it valid.
//***************************************************************************
assign preloadstage1 = ((~ram_valid_i | preloadstage2) & ~FIFOEMPTY);
//***************************************************************************
// Calculate RAM_REGOUT_EN
// The output registers are controlled by the ram_regout_en signal.
// These registers should be updated either when the output in Stage2 is
// invalid (preloadstage2), OR when the user is reading, in which case the
// Stage2 value will go invalid unless it is replenished.
//***************************************************************************
assign ram_regout_en = preloadstage2;
//***************************************************************************
// Calculate RAM_RD_EN
// RAM_RD_EN will be asserted whenever the RAM needs to be read in order to
// update the value in Stage1.
// One case when this happens is when preloadstage1=true, which indicates
// that the data in Stage1 or Stage2 is invalid, and needs to automatically
// be updated.
// The other case is when the user is reading from the FIFO, which
// guarantees that Stage1 or Stage2 will be invalid on the next clock
// cycle, unless it is replinished by data from the memory. So, as long
// as the RAM has data in it, a read of the RAM should occur.
//***************************************************************************
assign ram_rd_en = (RD_EN & ~FIFOEMPTY) | preloadstage1;
end
endgenerate // gnll_fifo
reg curr_state = 0;
reg next_state = 0;
reg leaving_empty_fwft = 0;
reg going_empty_fwft = 0;
reg empty_i_q = 0;
reg ram_rd_en_fwft = 0;
generate if (C_FIFO_TYPE == 2) begin : gll_fifo
always @* begin // FSM fo FWFT
case (curr_state)
1'b0: begin
if (~FIFOEMPTY)
next_state <= 1'b1;
else
next_state <= 1'b0;
end
1'b1: begin
if (FIFOEMPTY && RD_EN)
next_state <= 1'b0;
else
next_state <= 1'b1;
end
default: next_state <= 1'b0;
endcase
end
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
empty_i <= 1'b1;
empty_i_q <= 1'b1;
curr_state <= 1'b0;
ram_valid_i <= 1'b0;
end else if (srst_i) begin
empty_i <= #`TCQ 1'b1;
empty_i_q <= #`TCQ 1'b1;
curr_state <= #`TCQ 1'b0;
ram_valid_i <= #`TCQ 1'b0;
end else begin
empty_i <= #`TCQ going_empty_fwft | (~leaving_empty_fwft & empty_i);
empty_i_q <= #`TCQ FIFOEMPTY;
curr_state <= #`TCQ next_state;
ram_valid_i <= #`TCQ next_state;
end
end //always
wire fe_of_empty;
assign fe_of_empty = empty_i_q & ~FIFOEMPTY;
always @* begin // Finding leaving empty
case (curr_state)
1'b0: leaving_empty_fwft <= fe_of_empty;
1'b1: leaving_empty_fwft <= 1'b1;
default: leaving_empty_fwft <= 1'b0;
endcase
end
always @* begin // Finding going empty
case (curr_state)
1'b1: going_empty_fwft <= FIFOEMPTY & RD_EN;
default: going_empty_fwft <= 1'b0;
endcase
end
always @* begin // Generating FWFT rd_en
case (curr_state)
1'b0: ram_rd_en_fwft <= ~FIFOEMPTY;
1'b1: ram_rd_en_fwft <= ~FIFOEMPTY & RD_EN;
default: ram_rd_en_fwft <= 1'b0;
endcase
end
assign ram_regout_en = ram_rd_en_fwft;
//assign ram_regout_en_d1 = ram_rd_en_fwft;
//assign ram_regout_en_d2 = ram_rd_en_fwft;
assign ram_rd_en = ram_rd_en_fwft;
end endgenerate // gll_fifo
//***************************************************************************
// Calculate RAMVALID_P0_OUT
// RAMVALID_P0_OUT indicates that the data in Stage1 is valid.
//
// If the RAM is being read from on this clock cycle (ram_rd_en=1), then
// RAMVALID_P0_OUT is certainly going to be true.
// If the RAM is not being read from, but the output registers are being
// updated to fill Stage2 (ram_regout_en=1), then Stage1 will be emptying,
// therefore causing RAMVALID_P0_OUT to be false.
// Otherwise, RAMVALID_P0_OUT will remain unchanged.
//***************************************************************************
// PROCESS regout_valid
generate if (C_FIFO_TYPE < 2) begin : gnll_fifo_ram_valid
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
// asynchronous reset (active high)
ram_valid_i <= #`TCQ 1'b0;
end else begin
if (srst_i) begin
// synchronous reset (active high)
ram_valid_i <= #`TCQ 1'b0;
end else begin
if (ram_rd_en == 1'b1) begin
ram_valid_i <= #`TCQ 1'b1;
end else begin
if (ram_regout_en == 1'b1)
ram_valid_i <= #`TCQ 1'b0;
else
ram_valid_i <= #`TCQ ram_valid_i;
end
end //srst_i
end //rd_rst_i
end //always
end endgenerate // gnll_fifo_ram_valid
//***************************************************************************
// Calculate READ_DATA_VALID
// READ_DATA_VALID indicates whether the value in Stage2 is valid or not.
// Stage2 has valid data whenever Stage1 had valid data and
// ram_regout_en_i=1, such that the data in Stage1 is propogated
// into Stage2.
//***************************************************************************
generate if(C_USE_EMBEDDED_REG < 3) begin
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i)
read_data_valid_i <= #`TCQ 1'b0;
else if (srst_i)
read_data_valid_i <= #`TCQ 1'b0;
else
read_data_valid_i <= #`TCQ ram_valid_i | (read_data_valid_i & ~RD_EN);
end //always
end
endgenerate
//**************************************************************************
// Calculate EMPTY
// Defined as the inverse of READ_DATA_VALID
//
// Description:
//
// If read_data_valid_i indicates that the output is not valid,
// and there is no valid data on the output of the ram to preload it
// with, then we will report empty.
//
// If there is no valid data on the output of the ram and we are
// reading, then the FIFO will go empty.
//
//**************************************************************************
generate if (C_FIFO_TYPE < 2 && C_USE_EMBEDDED_REG < 3) begin : gnll_fifo_empty
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
// asynchronous reset (active high)
empty_i <= #`TCQ 1'b1;
end else begin
if (srst_i) begin
// synchronous reset (active high)
empty_i <= #`TCQ 1'b1;
end else begin
// rising clock edge
empty_i <= #`TCQ (~ram_valid_i & ~read_data_valid_i) | (~ram_valid_i & RD_EN);
end
end
end //always
end endgenerate // gnll_fifo_empty
// Register RD_EN from user to calculate USERUNDERFLOW.
// Register empty_i to calculate USERUNDERFLOW.
always @ (posedge RD_CLK) begin
rd_en_q <= #`TCQ RD_EN;
empty_q <= #`TCQ empty_i;
end //always
//***************************************************************************
// Calculate user_almost_empty
// user_almost_empty is defined such that, unless more words are written
// to the FIFO, the next read will cause the FIFO to go EMPTY.
//
// In most cases, whenever the output registers are updated (due to a user
// read or a preload condition), then user_almost_empty will update to
// whatever RAM_EMPTY is.
//
// The exception is when the output is valid, the user is not reading, and
// Stage1 is not empty. In this condition, Stage1 will be preloaded from the
// memory, so we need to make sure user_almost_empty deasserts properly under
// this condition.
//***************************************************************************
generate if ( C_USE_EMBEDDED_REG < 3) begin
always @ (posedge RD_CLK or posedge rd_rst_i)
begin
if (rd_rst_i) begin // asynchronous reset (active high)
almost_empty_i <= #`TCQ 1'b1;
almost_empty_q <= #`TCQ 1'b1;
end else begin // rising clock edge
if (srst_i) begin // synchronous reset (active high)
almost_empty_i <= #`TCQ 1'b1;
almost_empty_q <= #`TCQ 1'b1;
end else begin
if ((ram_regout_en) | (~FIFOEMPTY & read_data_valid_i & ~RD_EN)) begin
almost_empty_i <= #`TCQ FIFOEMPTY;
end
almost_empty_q <= #`TCQ empty_i;
end
end
end //always
end
endgenerate
// BRAM resets synchronously
generate
if (C_EN_SAFETY_CKT==0 && C_USE_EMBEDDED_REG < 3) begin
always @ ( posedge rd_rst_i)
begin
if (rd_rst_i || srst_i) begin
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE < 2)
@(posedge RD_CLK)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end //always
always @ (posedge RD_CLK or posedge rd_rst_i)
begin
if (rd_rst_i) begin //asynchronous reset (active high)
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
// DRAM resets asynchronously
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2) begin //asynchronous reset (active high)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end else begin // rising clock edge
if (srst_i) begin
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
if (C_USE_DOUT_RST == 1) begin
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end else begin
if (ram_regout_en) begin
USERDATA <= #`TCQ FIFODATA;
USERSBITERR <= #`TCQ FIFOSBITERR;
USERDBITERR <= #`TCQ FIFODBITERR;
end
end
end
end //always
end //if
endgenerate
//safety ckt with one register
generate
if (C_EN_SAFETY_CKT==1 && C_USE_EMBEDDED_REG < 3) begin
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d1;
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d2;
reg [1:0] rst_delayed_sft1 =1;
reg [1:0] rst_delayed_sft2 =1;
reg [1:0] rst_delayed_sft3 =1;
reg [1:0] rst_delayed_sft4 =1;
always@(posedge RD_CLK)
begin
rst_delayed_sft1 <= #`TCQ rd_rst_i;
rst_delayed_sft2 <= #`TCQ rst_delayed_sft1;
rst_delayed_sft3 <= #`TCQ rst_delayed_sft2;
rst_delayed_sft4 <= #`TCQ rst_delayed_sft3;
end
always @ (posedge RD_CLK)
begin
if (rd_rst_i || srst_i) begin
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE < 2 && rst_delayed_sft1 == 1'b1) begin
@(posedge RD_CLK)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end
end //always
always @ (posedge RD_CLK or posedge rd_rst_i)
begin
if (rd_rst_i) begin //asynchronous reset (active high)
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
// DRAM resets asynchronously
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2)begin //asynchronous reset (active high)
//@(posedge RD_CLK)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end
else begin // rising clock edge
if (srst_i) begin
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
if (C_USE_DOUT_RST == 1) begin
// @(posedge RD_CLK)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end else begin
if (ram_regout_en == 1'b1 && rd_rst_i == 1'b0) begin
USERDATA <= #`TCQ FIFODATA;
USERSBITERR <= #`TCQ FIFOSBITERR;
USERDBITERR <= #`TCQ FIFODBITERR;
end
end
end
end //always
end //if
endgenerate
generate if (C_USE_EMBEDDED_REG == 3 && C_FIFO_TYPE != 2) begin
always @* begin
case (curr_fwft_state)
INVALID: begin
if (~FIFOEMPTY)
next_fwft_state <= STAGE1_VALID;
else
next_fwft_state <= INVALID;
end
STAGE1_VALID: begin
if (FIFOEMPTY)
next_fwft_state <= STAGE2_VALID;
else
next_fwft_state <= BOTH_STAGES_VALID;
end
STAGE2_VALID: begin
if (FIFOEMPTY && RD_EN)
next_fwft_state <= INVALID;
else if (~FIFOEMPTY && RD_EN)
next_fwft_state <= STAGE1_VALID;
else if (~FIFOEMPTY && ~RD_EN)
next_fwft_state <= BOTH_STAGES_VALID;
else
next_fwft_state <= STAGE2_VALID;
end
BOTH_STAGES_VALID: begin
if (FIFOEMPTY && RD_EN)
next_fwft_state <= STAGE2_VALID;
else if (~FIFOEMPTY && RD_EN)
next_fwft_state <= BOTH_STAGES_VALID;
else
next_fwft_state <= BOTH_STAGES_VALID;
end
default: next_fwft_state <= INVALID;
endcase
end
always @ (posedge rd_rst_i or posedge RD_CLK) begin
if (rd_rst_i)
curr_fwft_state <= INVALID;
else if (srst_i)
curr_fwft_state <= #`TCQ INVALID;
else
curr_fwft_state <= #`TCQ next_fwft_state;
end
always @ (posedge RD_CLK or posedge rd_rst_i) begin : proc_delay
if (rd_rst_i == 1) begin
ram_regout_en_d1 <= #`TCQ 1'b0;
end
else begin
if (srst_i == 1'b1)
ram_regout_en_d1 <= #`TCQ 1'b0;
else
ram_regout_en_d1 <= #`TCQ ram_regout_en;
end
end //always
// assign fab_regout_en = ((ram_regout_en_d1 & ~(ram_regout_en_d2) & empty_i) | (RD_EN & !empty_i));
assign fab_regout_en = ((ram_valid_i == 1'b0 || ram_valid_i == 1'b1) && read_data_valid_i == 1'b1 && fab_read_data_valid_i == 1'b0 )? 1'b1: ((ram_valid_i == 1'b0 || ram_valid_i == 1'b1) && read_data_valid_i == 1'b1 && fab_read_data_valid_i == 1'b1) ? RD_EN : 1'b0;
always @ (posedge RD_CLK or posedge rd_rst_i) begin : proc_delay1
if (rd_rst_i == 1) begin
ram_regout_en_d2 <= #`TCQ 1'b0;
end
else begin
if (srst_i == 1'b1)
ram_regout_en_d2 <= #`TCQ 1'b0;
else
ram_regout_en_d2 <= #`TCQ ram_regout_en_d1;
end
end //always
always @* begin
case (curr_fwft_state)
INVALID: STAGE2_REG_EN <= 1'b0;
STAGE1_VALID: STAGE2_REG_EN <= 1'b1;
STAGE2_VALID: STAGE2_REG_EN <= 1'b0;
BOTH_STAGES_VALID: STAGE2_REG_EN <= RD_EN;
default: STAGE2_REG_EN <= 1'b0;
endcase
end
always @ (posedge RD_CLK) begin
ram_valid_i_d <= #`TCQ ram_valid_i;
read_data_valid_i_d <= #`TCQ read_data_valid_i;
fab_read_data_valid_i_d <= #`TCQ fab_read_data_valid_i;
end
assign VALID_STAGES = curr_fwft_state;
//***************************************************************************
// preloadstage2 indicates that stage2 needs to be updated. This is true
// whenever read_data_valid is false, and RAM_valid is true.
//***************************************************************************
assign preloadstage2 = ram_valid_i & (~read_data_valid_i | RD_EN );
//***************************************************************************
// preloadstage1 indicates that stage1 needs to be updated. This is true
// whenever the RAM has data (RAM_EMPTY is false), and either RAM_Valid is
// false (indicating that Stage1 needs updating), or preloadstage2 is active
// (indicating that Stage2 is going to update, so Stage1, therefore, must
// also be updated to keep it valid.
//***************************************************************************
assign preloadstage1 = ((~ram_valid_i | preloadstage2) & ~FIFOEMPTY);
//***************************************************************************
// Calculate RAM_REGOUT_EN
// The output registers are controlled by the ram_regout_en signal.
// These registers should be updated either when the output in Stage2 is
// invalid (preloadstage2), OR when the user is reading, in which case the
// Stage2 value will go invalid unless it is replenished.
//***************************************************************************
assign ram_regout_en = (ram_valid_i == 1'b1 && (read_data_valid_i == 1'b0 || fab_read_data_valid_i == 1'b0)) ? 1'b1 : (read_data_valid_i == 1'b1 && fab_read_data_valid_i == 1'b1 && ram_valid_i == 1'b1) ? RD_EN : 1'b0;
//***************************************************************************
// Calculate RAM_RD_EN
// RAM_RD_EN will be asserted whenever the RAM needs to be read in order to
// update the value in Stage1.
// One case when this happens is when preloadstage1=true, which indicates
// that the data in Stage1 or Stage2 is invalid, and needs to automatically
// be updated.
// The other case is when the user is reading from the FIFO, which
// guarantees that Stage1 or Stage2 will be invalid on the next clock
// cycle, unless it is replinished by data from the memory. So, as long
// as the RAM has data in it, a read of the RAM should occur.
//***************************************************************************
assign ram_rd_en = ((RD_EN | ~ fab_read_data_valid_i) & ~FIFOEMPTY) | preloadstage1;
end
endgenerate // gnll_fifo
//***************************************************************************
// Calculate RAMVALID_P0_OUT
// RAMVALID_P0_OUT indicates that the data in Stage1 is valid.
//
// If the RAM is being read from on this clock cycle (ram_rd_en=1), then
// RAMVALID_P0_OUT is certainly going to be true.
// If the RAM is not being read from, but the output registers are being
// updated to fill Stage2 (ram_regout_en=1), then Stage1 will be emptying,
// therefore causing RAMVALID_P0_OUT to be false // Otherwise, RAMVALID_P0_OUT will remain unchanged.
//***************************************************************************
// PROCESS regout_valid
generate if (C_FIFO_TYPE < 2 && C_USE_EMBEDDED_REG == 3) begin : gnll_fifo_fab_valid
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
// asynchronous reset (active high)
fab_valid <= #`TCQ 1'b0;
end else begin
if (srst_i) begin
// synchronous reset (active high)
fab_valid <= #`TCQ 1'b0;
end else begin
if (ram_regout_en == 1'b1) begin
fab_valid <= #`TCQ 1'b1;
end else begin
if (fab_regout_en == 1'b1)
fab_valid <= #`TCQ 1'b0;
else
fab_valid <= #`TCQ fab_valid;
end
end //srst_i
end //rd_rst_i
end //always
end endgenerate // gnll_fifo_fab_valid
//***************************************************************************
// Calculate READ_DATA_VALID
// READ_DATA_VALID indicates whether the value in Stage2 is valid or not.
// Stage2 has valid data whenever Stage1 had valid data and
// ram_regout_en_i=1, such that the data in Stage1 is propogated
// into Stage2.
//***************************************************************************
generate if(C_USE_EMBEDDED_REG == 3) begin
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i)
read_data_valid_i <= #`TCQ 1'b0;
else if (srst_i)
read_data_valid_i <= #`TCQ 1'b0;
else begin
if (ram_regout_en == 1'b1) begin
read_data_valid_i <= #`TCQ 1'b1;
end else begin
if (fab_regout_en == 1'b1)
read_data_valid_i <= #`TCQ 1'b0;
else
read_data_valid_i <= #`TCQ read_data_valid_i;
end
end
end //always
end
endgenerate
//generate if(C_USE_EMBEDDED_REG == 3) begin
// always @ (posedge RD_CLK or posedge rd_rst_i) begin
// if (rd_rst_i)
// read_data_valid_i <= #`TCQ 1'b0;
// else if (srst_i)
// read_data_valid_i <= #`TCQ 1'b0;
//
// if (ram_regout_en == 1'b1) begin
// fab_read_data_valid_i <= #`TCQ 1'b0;
// end else begin
// if (fab_regout_en == 1'b1)
// fab_read_data_valid_i <= #`TCQ 1'b1;
// else
// fab_read_data_valid_i <= #`TCQ fab_read_data_valid_i;
// end
// end //always
//end
//endgenerate
generate if(C_USE_EMBEDDED_REG == 3 ) begin
always @ (posedge RD_CLK or posedge rd_rst_i) begin :fabout_dvalid
if (rd_rst_i)
fab_read_data_valid_i <= #`TCQ 1'b0;
else if (srst_i)
fab_read_data_valid_i <= #`TCQ 1'b0;
else
fab_read_data_valid_i <= #`TCQ fab_valid | (fab_read_data_valid_i & ~RD_EN);
end //always
end
endgenerate
always @ (posedge RD_CLK ) begin : proc_del1
begin
fab_read_data_valid_i_1 <= #`TCQ fab_read_data_valid_i;
end
end //always
//**************************************************************************
// Calculate EMPTY
// Defined as the inverse of READ_DATA_VALID
//
// Description:
//
// If read_data_valid_i indicates that the output is not valid,
// and there is no valid data on the output of the ram to preload it
// with, then we will report empty.
//
// If there is no valid data on the output of the ram and we are
// reading, then the FIFO will go empty.
//
//**************************************************************************
generate if (C_FIFO_TYPE < 2 && C_USE_EMBEDDED_REG == 3 ) begin : gnll_fifo_empty_both
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
// asynchronous reset (active high)
empty_i <= #`TCQ 1'b1;
end else begin
if (srst_i) begin
// synchronous reset (active high)
empty_i <= #`TCQ 1'b1;
end else begin
// rising clock edge
empty_i <= #`TCQ (~fab_valid & ~fab_read_data_valid_i) | (~fab_valid & RD_EN);
end
end
end //always
end endgenerate // gnll_fifo_empty_both
// Register RD_EN from user to calculate USERUNDERFLOW.
// Register empty_i to calculate USERUNDERFLOW.
always @ (posedge RD_CLK) begin
rd_en_q <= #`TCQ RD_EN;
empty_q <= #`TCQ empty_i;
end //always
//***************************************************************************
// Calculate user_almost_empty
// user_almost_empty is defined such that, unless more words are written
// to the FIFO, the next read will cause the FIFO to go EMPTY.
//
// In most cases, whenever the output registers are updated (due to a user
// read or a preload condition), then user_almost_empty will update to
// whatever RAM_EMPTY is.
//
// The exception is when the output is valid, the user is not reading, and
// Stage1 is not empty. In this condition, Stage1 will be preloaded from the
// memory, so we need to make sure user_almost_empty deasserts properly under
// this condition.
//***************************************************************************
reg FIFOEMPTY_1;
generate if (C_USE_EMBEDDED_REG == 3 ) begin
always @(posedge RD_CLK) begin
FIFOEMPTY_1 <= #`TCQ FIFOEMPTY;
end
end
endgenerate
generate if (C_USE_EMBEDDED_REG == 3 ) begin
always @ (posedge RD_CLK or posedge rd_rst_i)
// begin
// if (((ram_valid_i == 1'b1) && (read_data_valid_i == 1'b1) && (fab_read_data_valid_i == 1'b1)) || ((ram_valid_i == 1'b0) && (read_data_valid_i == 1'b1) && (fab_read_data_valid_i == 1'b1)))
// almost_empty_i <= #`TCQ 1'b0;
// else
// almost_empty_i <= #`TCQ 1'b1;
begin
if (rd_rst_i) begin // asynchronous reset (active high)
almost_empty_i <= #`TCQ 1'b1;
almost_empty_q <= #`TCQ 1'b1;
end else begin // rising clock edge
if (srst_i) begin // synchronous reset (active high)
almost_empty_i <= #`TCQ 1'b1;
almost_empty_q <= #`TCQ 1'b1;
end else begin
if ((fab_regout_en) | (ram_valid_i & fab_read_data_valid_i & ~RD_EN)) begin
almost_empty_i <= #`TCQ (~ram_valid_i);
end
almost_empty_q <= #`TCQ empty_i;
end
end
end //always
end
endgenerate
assign USEREMPTY = empty_i;
assign USERALMOSTEMPTY = almost_empty_i;
assign FIFORDEN = ram_rd_en;
assign RAMVALID = (C_USE_EMBEDDED_REG == 3)? fab_valid : ram_valid_i;
assign USERVALID_BOTH = (C_USERVALID_LOW && C_USE_EMBEDDED_REG == 3) ? ~fab_read_data_valid_i : ((C_USERVALID_LOW == 0 && C_USE_EMBEDDED_REG == 3) ? fab_read_data_valid_i : 1'b0);
assign USERVALID_ONE = (C_USERVALID_LOW && C_USE_EMBEDDED_REG < 3) ? ~read_data_valid_i :((C_USERVALID_LOW == 0 && C_USE_EMBEDDED_REG < 3) ? read_data_valid_i : 1'b0);
assign USERVALID = (C_USE_EMBEDDED_REG == 3) ? USERVALID_BOTH : USERVALID_ONE;
assign USERUNDERFLOW = C_USERUNDERFLOW_LOW ? ~(empty_q & rd_en_q) : empty_q & rd_en_q;
//no safety ckt with both reg
generate
if (C_EN_SAFETY_CKT==0 && C_USE_EMBEDDED_REG == 3 ) begin
always @ (posedge RD_CLK)
begin
if (rd_rst_i || srst_i) begin
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE < 2)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
USERDATA_BOTH <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end //always
always @ (posedge RD_CLK or posedge rd_rst_i)
begin
if (rd_rst_i) begin //asynchronous reset (active high)
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
// DRAM resets asynchronously
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2) begin //asynchronous reset (active high)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
USERDATA_BOTH <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end else begin // rising clock edge
if (srst_i) begin
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2) begin
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
USERDATA_BOTH <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end else begin
if (ram_regout_en) begin
USERDATA_BOTH <= #`TCQ FIFODATA;
USERDBITERR <= #`TCQ FIFODBITERR;
USERSBITERR <= #`TCQ FIFOSBITERR;
end
if (fab_regout_en) begin
USERDATA <= #`TCQ USERDATA_BOTH;
end
end
end
end //always
end //if
endgenerate
//safety_ckt with both registers
generate
if (C_EN_SAFETY_CKT==1 && C_USE_EMBEDDED_REG == 3) begin
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d1;
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d2;
reg [1:0] rst_delayed_sft1 =1;
reg [1:0] rst_delayed_sft2 =1;
reg [1:0] rst_delayed_sft3 =1;
reg [1:0] rst_delayed_sft4 =1;
always@(posedge RD_CLK)
begin
rst_delayed_sft1 <= #`TCQ rd_rst_i;
rst_delayed_sft2 <= #`TCQ rst_delayed_sft1;
rst_delayed_sft3 <= #`TCQ rst_delayed_sft2;
rst_delayed_sft4 <= #`TCQ rst_delayed_sft3;
end
always @ (posedge RD_CLK)
begin
if (rd_rst_i || srst_i) begin
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE < 2 && rst_delayed_sft1 == 1'b1) begin
@(posedge RD_CLK)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
USERDATA_BOTH <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end
end //always
always @ (posedge RD_CLK or posedge rd_rst_i)
begin
if (rd_rst_i) begin //asynchronous reset (active high)
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
// DRAM resets asynchronously
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2)begin //asynchronous reset (active high)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
USERDATA_BOTH <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end
else begin // rising clock edge
if (srst_i) begin
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2) begin
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end else begin
if (ram_regout_en == 1'b1 && rd_rst_i == 1'b0) begin
USERDATA_BOTH <= #`TCQ FIFODATA;
USERDBITERR <= #`TCQ FIFODBITERR;
USERSBITERR <= #`TCQ FIFOSBITERR;
end
if (fab_regout_en == 1'b1 && rd_rst_i == 1'b0) begin
USERDATA <= #`TCQ USERDATA_BOTH;
end
end
end
end //always
end //if
endgenerate
endmodule //fifo_generator_v13_1_1_bhv_ver_preload0
//-----------------------------------------------------------------------------
//
// Register Slice
// Register one AXI channel on forward and/or reverse signal path
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
// reg_slice
//
//--------------------------------------------------------------------------
module fifo_generator_v13_1_1_axic_reg_slice #
(
parameter C_FAMILY = "virtex7",
parameter C_DATA_WIDTH = 32,
parameter C_REG_CONFIG = 32'h00000000
)
(
// System Signals
input wire ACLK,
input wire ARESET,
// Slave side
input wire [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA,
input wire S_VALID,
output wire S_READY,
// Master side
output wire [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA,
output wire M_VALID,
input wire M_READY
);
generate
////////////////////////////////////////////////////////////////////
//
// Both FWD and REV mode
//
////////////////////////////////////////////////////////////////////
if (C_REG_CONFIG == 32'h00000000)
begin
reg [1:0] state;
localparam [1:0]
ZERO = 2'b10,
ONE = 2'b11,
TWO = 2'b01;
reg [C_DATA_WIDTH-1:0] storage_data1 = 0;
reg [C_DATA_WIDTH-1:0] storage_data2 = 0;
reg load_s1;
wire load_s2;
wire load_s1_from_s2;
reg s_ready_i; //local signal of output
wire m_valid_i; //local signal of output
// assign local signal to its output signal
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
reg areset_d1; // Reset delay register
always @(posedge ACLK) begin
areset_d1 <= ARESET;
end
// Load storage1 with either slave side data or from storage2
always @(posedge ACLK)
begin
if (load_s1)
if (load_s1_from_s2)
storage_data1 <= storage_data2;
else
storage_data1 <= S_PAYLOAD_DATA;
end
// Load storage2 with slave side data
always @(posedge ACLK)
begin
if (load_s2)
storage_data2 <= S_PAYLOAD_DATA;
end
assign M_PAYLOAD_DATA = storage_data1;
// Always load s2 on a valid transaction even if it's unnecessary
assign load_s2 = S_VALID & s_ready_i;
// Loading s1
always @ *
begin
if ( ((state == ZERO) && (S_VALID == 1)) || // Load when empty on slave transaction
// Load when ONE if we both have read and write at the same time
((state == ONE) && (S_VALID == 1) && (M_READY == 1)) ||
// Load when TWO and we have a transaction on Master side
((state == TWO) && (M_READY == 1)))
load_s1 = 1'b1;
else
load_s1 = 1'b0;
end // always @ *
assign load_s1_from_s2 = (state == TWO);
// State Machine for handling output signals
always @(posedge ACLK) begin
if (ARESET) begin
s_ready_i <= 1'b0;
state <= ZERO;
end else if (areset_d1) begin
s_ready_i <= 1'b1;
end else begin
case (state)
// No transaction stored locally
ZERO: if (S_VALID) state <= ONE; // Got one so move to ONE
// One transaction stored locally
ONE: begin
if (M_READY & ~S_VALID) state <= ZERO; // Read out one so move to ZERO
if (~M_READY & S_VALID) begin
state <= TWO; // Got another one so move to TWO
s_ready_i <= 1'b0;
end
end
// TWO transaction stored locally
TWO: if (M_READY) begin
state <= ONE; // Read out one so move to ONE
s_ready_i <= 1'b1;
end
endcase // case (state)
end
end // always @ (posedge ACLK)
assign m_valid_i = state[0];
end // if (C_REG_CONFIG == 1)
////////////////////////////////////////////////////////////////////
//
// 1-stage pipeline register with bubble cycle, both FWD and REV pipelining
// Operates same as 1-deep FIFO
//
////////////////////////////////////////////////////////////////////
else if (C_REG_CONFIG == 32'h00000001)
begin
reg [C_DATA_WIDTH-1:0] storage_data1 = 0;
reg s_ready_i; //local signal of output
reg m_valid_i; //local signal of output
// assign local signal to its output signal
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
reg areset_d1; // Reset delay register
always @(posedge ACLK) begin
areset_d1 <= ARESET;
end
// Load storage1 with slave side data
always @(posedge ACLK)
begin
if (ARESET) begin
s_ready_i <= 1'b0;
m_valid_i <= 1'b0;
end else if (areset_d1) begin
s_ready_i <= 1'b1;
end else if (m_valid_i & M_READY) begin
s_ready_i <= 1'b1;
m_valid_i <= 1'b0;
end else if (S_VALID & s_ready_i) begin
s_ready_i <= 1'b0;
m_valid_i <= 1'b1;
end
if (~m_valid_i) begin
storage_data1 <= S_PAYLOAD_DATA;
end
end
assign M_PAYLOAD_DATA = storage_data1;
end // if (C_REG_CONFIG == 7)
else begin : default_case
// Passthrough
assign M_PAYLOAD_DATA = S_PAYLOAD_DATA;
assign M_VALID = S_VALID;
assign S_READY = M_READY;
end
endgenerate
endmodule // reg_slice
|
/*
*******************************************************************************
*
* FIFO Generator - Verilog Behavioral Model
*
*******************************************************************************
*
* (c) Copyright 1995 - 2009 Xilinx, Inc. All rights reserved.
*
* This file contains confidential and proprietary information
* of Xilinx, Inc. and is protected under U.S. and
* international copyright and other intellectual property
* laws.
*
* DISCLAIMER
* This disclaimer is not a license and does not grant any
* rights to the materials distributed herewith. Except as
* otherwise provided in a valid license issued to you by
* Xilinx, and to the maximum extent permitted by applicable
* law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
* WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
* AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
* BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
* INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
* (2) Xilinx shall not be liable (whether in contract or tort,
* including negligence, or under any other theory of
* liability) for any loss or damage of any kind or nature
* related to, arising under or in connection with these
* materials, including for any direct, or any indirect,
* special, incidental, or consequential loss or damage
* (including loss of data, profits, goodwill, or any type of
* loss or damage suffered as a result of any action brought
* by a third party) even if such damage or loss was
* reasonably foreseeable or Xilinx had been advised of the
* possibility of the same.
*
* CRITICAL APPLICATIONS
* Xilinx products are not designed or intended to be fail-
* safe, or for use in any application requiring fail-safe
* performance, such as life-support or safety devices or
* systems, Class III medical devices, nuclear facilities,
* applications related to the deployment of airbags, or any
* other applications that could lead to death, personal
* injury, or severe property or environmental damage
* (individually and collectively, "Critical
* Applications"). Customer assumes the sole risk and
* liability of any use of Xilinx products in Critical
* Applications, subject only to applicable laws and
* regulations governing limitations on product liability.
*
* THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
* PART OF THIS FILE AT ALL TIMES.
*
*******************************************************************************
*******************************************************************************
*
* Filename: fifo_generator_vlog_beh.v
*
* Author : Xilinx
*
*******************************************************************************
* Structure:
*
* fifo_generator_vlog_beh.v
* |
* +-fifo_generator_v13_1_1_bhv_ver_as
* |
* +-fifo_generator_v13_1_1_bhv_ver_ss
* |
* +-fifo_generator_v13_1_1_bhv_ver_preload0
*
*******************************************************************************
* Description:
*
* The Verilog behavioral model for the FIFO Generator.
*
* The behavioral model has three parts:
* - The behavioral model for independent clocks FIFOs (_as)
* - The behavioral model for common clock FIFOs (_ss)
* - The "preload logic" block which implements First-word Fall-through
*
*******************************************************************************
* Description:
* The verilog behavioral model for the FIFO generator core.
*
*******************************************************************************
*/
`timescale 1ps/1ps
`ifndef TCQ
`define TCQ 100
`endif
/*******************************************************************************
* Declaration of top-level module
******************************************************************************/
module fifo_generator_vlog_beh
#(
//-----------------------------------------------------------------------
// Generic Declarations
//-----------------------------------------------------------------------
parameter C_COMMON_CLOCK = 0,
parameter C_COUNT_TYPE = 0,
parameter C_DATA_COUNT_WIDTH = 2,
parameter C_DEFAULT_VALUE = "",
parameter C_DIN_WIDTH = 8,
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_ENABLE_RLOCS = 0,
parameter C_FAMILY = "",
parameter C_FULL_FLAGS_RST_VAL = 1,
parameter C_HAS_ALMOST_EMPTY = 0,
parameter C_HAS_ALMOST_FULL = 0,
parameter C_HAS_BACKUP = 0,
parameter C_HAS_DATA_COUNT = 0,
parameter C_HAS_INT_CLK = 0,
parameter C_HAS_MEMINIT_FILE = 0,
parameter C_HAS_OVERFLOW = 0,
parameter C_HAS_RD_DATA_COUNT = 0,
parameter C_HAS_RD_RST = 0,
parameter C_HAS_RST = 1,
parameter C_HAS_SRST = 0,
parameter C_HAS_UNDERFLOW = 0,
parameter C_HAS_VALID = 0,
parameter C_HAS_WR_ACK = 0,
parameter C_HAS_WR_DATA_COUNT = 0,
parameter C_HAS_WR_RST = 0,
parameter C_IMPLEMENTATION_TYPE = 0,
parameter C_INIT_WR_PNTR_VAL = 0,
parameter C_MEMORY_TYPE = 1,
parameter C_MIF_FILE_NAME = "",
parameter C_OPTIMIZATION_MODE = 0,
parameter C_OVERFLOW_LOW = 0,
parameter C_EN_SAFETY_CKT = 0,
parameter C_PRELOAD_LATENCY = 1,
parameter C_PRELOAD_REGS = 0,
parameter C_PRIM_FIFO_TYPE = "4kx4",
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0,
parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0,
parameter C_PROG_EMPTY_TYPE = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0,
parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0,
parameter C_PROG_FULL_TYPE = 0,
parameter C_RD_DATA_COUNT_WIDTH = 2,
parameter C_RD_DEPTH = 256,
parameter C_RD_FREQ = 1,
parameter C_RD_PNTR_WIDTH = 8,
parameter C_UNDERFLOW_LOW = 0,
parameter C_USE_DOUT_RST = 0,
parameter C_USE_ECC = 0,
parameter C_USE_EMBEDDED_REG = 0,
parameter C_USE_PIPELINE_REG = 0,
parameter C_POWER_SAVING_MODE = 0,
parameter C_USE_FIFO16_FLAGS = 0,
parameter C_USE_FWFT_DATA_COUNT = 0,
parameter C_VALID_LOW = 0,
parameter C_WR_ACK_LOW = 0,
parameter C_WR_DATA_COUNT_WIDTH = 2,
parameter C_WR_DEPTH = 256,
parameter C_WR_FREQ = 1,
parameter C_WR_PNTR_WIDTH = 8,
parameter C_WR_RESPONSE_LATENCY = 1,
parameter C_MSGON_VAL = 1,
parameter C_ENABLE_RST_SYNC = 1,
parameter C_ERROR_INJECTION_TYPE = 0,
parameter C_SYNCHRONIZER_STAGE = 2,
// AXI Interface related parameters start here
parameter C_INTERFACE_TYPE = 0, // 0: Native Interface, 1: AXI4 Stream, 2: AXI4/AXI3
parameter C_AXI_TYPE = 0, // 1: AXI4, 2: AXI4 Lite, 3: AXI3
parameter C_HAS_AXI_WR_CHANNEL = 0,
parameter C_HAS_AXI_RD_CHANNEL = 0,
parameter C_HAS_SLAVE_CE = 0,
parameter C_HAS_MASTER_CE = 0,
parameter C_ADD_NGC_CONSTRAINT = 0,
parameter C_USE_COMMON_UNDERFLOW = 0,
parameter C_USE_COMMON_OVERFLOW = 0,
parameter C_USE_DEFAULT_SETTINGS = 0,
// AXI Full/Lite
parameter C_AXI_ID_WIDTH = 0,
parameter C_AXI_ADDR_WIDTH = 0,
parameter C_AXI_DATA_WIDTH = 0,
parameter C_AXI_LEN_WIDTH = 8,
parameter C_AXI_LOCK_WIDTH = 2,
parameter C_HAS_AXI_ID = 0,
parameter C_HAS_AXI_AWUSER = 0,
parameter C_HAS_AXI_WUSER = 0,
parameter C_HAS_AXI_BUSER = 0,
parameter C_HAS_AXI_ARUSER = 0,
parameter C_HAS_AXI_RUSER = 0,
parameter C_AXI_ARUSER_WIDTH = 0,
parameter C_AXI_AWUSER_WIDTH = 0,
parameter C_AXI_WUSER_WIDTH = 0,
parameter C_AXI_BUSER_WIDTH = 0,
parameter C_AXI_RUSER_WIDTH = 0,
// AXI Streaming
parameter C_HAS_AXIS_TDATA = 0,
parameter C_HAS_AXIS_TID = 0,
parameter C_HAS_AXIS_TDEST = 0,
parameter C_HAS_AXIS_TUSER = 0,
parameter C_HAS_AXIS_TREADY = 0,
parameter C_HAS_AXIS_TLAST = 0,
parameter C_HAS_AXIS_TSTRB = 0,
parameter C_HAS_AXIS_TKEEP = 0,
parameter C_AXIS_TDATA_WIDTH = 1,
parameter C_AXIS_TID_WIDTH = 1,
parameter C_AXIS_TDEST_WIDTH = 1,
parameter C_AXIS_TUSER_WIDTH = 1,
parameter C_AXIS_TSTRB_WIDTH = 1,
parameter C_AXIS_TKEEP_WIDTH = 1,
// AXI Channel Type
// WACH --> Write Address Channel
// WDCH --> Write Data Channel
// WRCH --> Write Response Channel
// RACH --> Read Address Channel
// RDCH --> Read Data Channel
// AXIS --> AXI Streaming
parameter C_WACH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logic
parameter C_WDCH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie
parameter C_WRCH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie
parameter C_RACH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie
parameter C_RDCH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie
parameter C_AXIS_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie
// AXI Implementation Type
// 1 = Common Clock Block RAM FIFO
// 2 = Common Clock Distributed RAM FIFO
// 11 = Independent Clock Block RAM FIFO
// 12 = Independent Clock Distributed RAM FIFO
parameter C_IMPLEMENTATION_TYPE_WACH = 0,
parameter C_IMPLEMENTATION_TYPE_WDCH = 0,
parameter C_IMPLEMENTATION_TYPE_WRCH = 0,
parameter C_IMPLEMENTATION_TYPE_RACH = 0,
parameter C_IMPLEMENTATION_TYPE_RDCH = 0,
parameter C_IMPLEMENTATION_TYPE_AXIS = 0,
// AXI FIFO Type
// 0 = Data FIFO
// 1 = Packet FIFO
// 2 = Low Latency Sync FIFO
// 3 = Low Latency Async FIFO
parameter C_APPLICATION_TYPE_WACH = 0,
parameter C_APPLICATION_TYPE_WDCH = 0,
parameter C_APPLICATION_TYPE_WRCH = 0,
parameter C_APPLICATION_TYPE_RACH = 0,
parameter C_APPLICATION_TYPE_RDCH = 0,
parameter C_APPLICATION_TYPE_AXIS = 0,
// AXI Built-in FIFO Primitive Type
// 512x36, 1kx18, 2kx9, 4kx4, etc
parameter C_PRIM_FIFO_TYPE_WACH = "512x36",
parameter C_PRIM_FIFO_TYPE_WDCH = "512x36",
parameter C_PRIM_FIFO_TYPE_WRCH = "512x36",
parameter C_PRIM_FIFO_TYPE_RACH = "512x36",
parameter C_PRIM_FIFO_TYPE_RDCH = "512x36",
parameter C_PRIM_FIFO_TYPE_AXIS = "512x36",
// Enable ECC
// 0 = ECC disabled
// 1 = ECC enabled
parameter C_USE_ECC_WACH = 0,
parameter C_USE_ECC_WDCH = 0,
parameter C_USE_ECC_WRCH = 0,
parameter C_USE_ECC_RACH = 0,
parameter C_USE_ECC_RDCH = 0,
parameter C_USE_ECC_AXIS = 0,
// ECC Error Injection Type
// 0 = No Error Injection
// 1 = Single Bit Error Injection
// 2 = Double Bit Error Injection
// 3 = Single Bit and Double Bit Error Injection
parameter C_ERROR_INJECTION_TYPE_WACH = 0,
parameter C_ERROR_INJECTION_TYPE_WDCH = 0,
parameter C_ERROR_INJECTION_TYPE_WRCH = 0,
parameter C_ERROR_INJECTION_TYPE_RACH = 0,
parameter C_ERROR_INJECTION_TYPE_RDCH = 0,
parameter C_ERROR_INJECTION_TYPE_AXIS = 0,
// Input Data Width
// Accumulation of all AXI input signal's width
parameter C_DIN_WIDTH_WACH = 1,
parameter C_DIN_WIDTH_WDCH = 1,
parameter C_DIN_WIDTH_WRCH = 1,
parameter C_DIN_WIDTH_RACH = 1,
parameter C_DIN_WIDTH_RDCH = 1,
parameter C_DIN_WIDTH_AXIS = 1,
parameter C_WR_DEPTH_WACH = 16,
parameter C_WR_DEPTH_WDCH = 16,
parameter C_WR_DEPTH_WRCH = 16,
parameter C_WR_DEPTH_RACH = 16,
parameter C_WR_DEPTH_RDCH = 16,
parameter C_WR_DEPTH_AXIS = 16,
parameter C_WR_PNTR_WIDTH_WACH = 4,
parameter C_WR_PNTR_WIDTH_WDCH = 4,
parameter C_WR_PNTR_WIDTH_WRCH = 4,
parameter C_WR_PNTR_WIDTH_RACH = 4,
parameter C_WR_PNTR_WIDTH_RDCH = 4,
parameter C_WR_PNTR_WIDTH_AXIS = 4,
parameter C_HAS_DATA_COUNTS_WACH = 0,
parameter C_HAS_DATA_COUNTS_WDCH = 0,
parameter C_HAS_DATA_COUNTS_WRCH = 0,
parameter C_HAS_DATA_COUNTS_RACH = 0,
parameter C_HAS_DATA_COUNTS_RDCH = 0,
parameter C_HAS_DATA_COUNTS_AXIS = 0,
parameter C_HAS_PROG_FLAGS_WACH = 0,
parameter C_HAS_PROG_FLAGS_WDCH = 0,
parameter C_HAS_PROG_FLAGS_WRCH = 0,
parameter C_HAS_PROG_FLAGS_RACH = 0,
parameter C_HAS_PROG_FLAGS_RDCH = 0,
parameter C_HAS_PROG_FLAGS_AXIS = 0,
parameter C_PROG_FULL_TYPE_WACH = 0,
parameter C_PROG_FULL_TYPE_WDCH = 0,
parameter C_PROG_FULL_TYPE_WRCH = 0,
parameter C_PROG_FULL_TYPE_RACH = 0,
parameter C_PROG_FULL_TYPE_RDCH = 0,
parameter C_PROG_FULL_TYPE_AXIS = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_WACH = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_WDCH = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_WRCH = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_RACH = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_RDCH = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_AXIS = 0,
parameter C_PROG_EMPTY_TYPE_WACH = 0,
parameter C_PROG_EMPTY_TYPE_WDCH = 0,
parameter C_PROG_EMPTY_TYPE_WRCH = 0,
parameter C_PROG_EMPTY_TYPE_RACH = 0,
parameter C_PROG_EMPTY_TYPE_RDCH = 0,
parameter C_PROG_EMPTY_TYPE_AXIS = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS = 0,
parameter C_REG_SLICE_MODE_WACH = 0,
parameter C_REG_SLICE_MODE_WDCH = 0,
parameter C_REG_SLICE_MODE_WRCH = 0,
parameter C_REG_SLICE_MODE_RACH = 0,
parameter C_REG_SLICE_MODE_RDCH = 0,
parameter C_REG_SLICE_MODE_AXIS = 0
)
(
//------------------------------------------------------------------------------
// Input and Output Declarations
//------------------------------------------------------------------------------
// Conventional FIFO Interface Signals
input backup,
input backup_marker,
input clk,
input rst,
input srst,
input wr_clk,
input wr_rst,
input rd_clk,
input rd_rst,
input [C_DIN_WIDTH-1:0] din,
input wr_en,
input rd_en,
// Optional inputs
input [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh,
input [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_assert,
input [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_negate,
input [C_WR_PNTR_WIDTH-1:0] prog_full_thresh,
input [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_assert,
input [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_negate,
input int_clk,
input injectdbiterr,
input injectsbiterr,
input sleep,
output [C_DOUT_WIDTH-1:0] dout,
output full,
output almost_full,
output wr_ack,
output overflow,
output empty,
output almost_empty,
output valid,
output underflow,
output [C_DATA_COUNT_WIDTH-1:0] data_count,
output [C_RD_DATA_COUNT_WIDTH-1:0] rd_data_count,
output [C_WR_DATA_COUNT_WIDTH-1:0] wr_data_count,
output prog_full,
output prog_empty,
output sbiterr,
output dbiterr,
output wr_rst_busy,
output rd_rst_busy,
// AXI Global Signal
input m_aclk,
input s_aclk,
input s_aresetn,
input s_aclk_en,
input m_aclk_en,
// AXI Full/Lite Slave Write Channel (write side)
input [C_AXI_ID_WIDTH-1:0] s_axi_awid,
input [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr,
input [C_AXI_LEN_WIDTH-1:0] s_axi_awlen,
input [3-1:0] s_axi_awsize,
input [2-1:0] s_axi_awburst,
input [C_AXI_LOCK_WIDTH-1:0] s_axi_awlock,
input [4-1:0] s_axi_awcache,
input [3-1:0] s_axi_awprot,
input [4-1:0] s_axi_awqos,
input [4-1:0] s_axi_awregion,
input [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser,
input s_axi_awvalid,
output s_axi_awready,
input [C_AXI_ID_WIDTH-1:0] s_axi_wid,
input [C_AXI_DATA_WIDTH-1:0] s_axi_wdata,
input [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb,
input s_axi_wlast,
input [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser,
input s_axi_wvalid,
output s_axi_wready,
output [C_AXI_ID_WIDTH-1:0] s_axi_bid,
output [2-1:0] s_axi_bresp,
output [C_AXI_BUSER_WIDTH-1:0] s_axi_buser,
output s_axi_bvalid,
input s_axi_bready,
// AXI Full/Lite Master Write Channel (read side)
output [C_AXI_ID_WIDTH-1:0] m_axi_awid,
output [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr,
output [C_AXI_LEN_WIDTH-1:0] m_axi_awlen,
output [3-1:0] m_axi_awsize,
output [2-1:0] m_axi_awburst,
output [C_AXI_LOCK_WIDTH-1:0] m_axi_awlock,
output [4-1:0] m_axi_awcache,
output [3-1:0] m_axi_awprot,
output [4-1:0] m_axi_awqos,
output [4-1:0] m_axi_awregion,
output [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser,
output m_axi_awvalid,
input m_axi_awready,
output [C_AXI_ID_WIDTH-1:0] m_axi_wid,
output [C_AXI_DATA_WIDTH-1:0] m_axi_wdata,
output [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb,
output m_axi_wlast,
output [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser,
output m_axi_wvalid,
input m_axi_wready,
input [C_AXI_ID_WIDTH-1:0] m_axi_bid,
input [2-1:0] m_axi_bresp,
input [C_AXI_BUSER_WIDTH-1:0] m_axi_buser,
input m_axi_bvalid,
output m_axi_bready,
// AXI Full/Lite Slave Read Channel (write side)
input [C_AXI_ID_WIDTH-1:0] s_axi_arid,
input [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr,
input [C_AXI_LEN_WIDTH-1:0] s_axi_arlen,
input [3-1:0] s_axi_arsize,
input [2-1:0] s_axi_arburst,
input [C_AXI_LOCK_WIDTH-1:0] s_axi_arlock,
input [4-1:0] s_axi_arcache,
input [3-1:0] s_axi_arprot,
input [4-1:0] s_axi_arqos,
input [4-1:0] s_axi_arregion,
input [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser,
input s_axi_arvalid,
output s_axi_arready,
output [C_AXI_ID_WIDTH-1:0] s_axi_rid,
output [C_AXI_DATA_WIDTH-1:0] s_axi_rdata,
output [2-1:0] s_axi_rresp,
output s_axi_rlast,
output [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser,
output s_axi_rvalid,
input s_axi_rready,
// AXI Full/Lite Master Read Channel (read side)
output [C_AXI_ID_WIDTH-1:0] m_axi_arid,
output [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr,
output [C_AXI_LEN_WIDTH-1:0] m_axi_arlen,
output [3-1:0] m_axi_arsize,
output [2-1:0] m_axi_arburst,
output [C_AXI_LOCK_WIDTH-1:0] m_axi_arlock,
output [4-1:0] m_axi_arcache,
output [3-1:0] m_axi_arprot,
output [4-1:0] m_axi_arqos,
output [4-1:0] m_axi_arregion,
output [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser,
output m_axi_arvalid,
input m_axi_arready,
input [C_AXI_ID_WIDTH-1:0] m_axi_rid,
input [C_AXI_DATA_WIDTH-1:0] m_axi_rdata,
input [2-1:0] m_axi_rresp,
input m_axi_rlast,
input [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser,
input m_axi_rvalid,
output m_axi_rready,
// AXI Streaming Slave Signals (Write side)
input s_axis_tvalid,
output s_axis_tready,
input [C_AXIS_TDATA_WIDTH-1:0] s_axis_tdata,
input [C_AXIS_TSTRB_WIDTH-1:0] s_axis_tstrb,
input [C_AXIS_TKEEP_WIDTH-1:0] s_axis_tkeep,
input s_axis_tlast,
input [C_AXIS_TID_WIDTH-1:0] s_axis_tid,
input [C_AXIS_TDEST_WIDTH-1:0] s_axis_tdest,
input [C_AXIS_TUSER_WIDTH-1:0] s_axis_tuser,
// AXI Streaming Master Signals (Read side)
output m_axis_tvalid,
input m_axis_tready,
output [C_AXIS_TDATA_WIDTH-1:0] m_axis_tdata,
output [C_AXIS_TSTRB_WIDTH-1:0] m_axis_tstrb,
output [C_AXIS_TKEEP_WIDTH-1:0] m_axis_tkeep,
output m_axis_tlast,
output [C_AXIS_TID_WIDTH-1:0] m_axis_tid,
output [C_AXIS_TDEST_WIDTH-1:0] m_axis_tdest,
output [C_AXIS_TUSER_WIDTH-1:0] m_axis_tuser,
// AXI Full/Lite Write Address Channel signals
input axi_aw_injectsbiterr,
input axi_aw_injectdbiterr,
input [C_WR_PNTR_WIDTH_WACH-1:0] axi_aw_prog_full_thresh,
input [C_WR_PNTR_WIDTH_WACH-1:0] axi_aw_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_WACH:0] axi_aw_data_count,
output [C_WR_PNTR_WIDTH_WACH:0] axi_aw_wr_data_count,
output [C_WR_PNTR_WIDTH_WACH:0] axi_aw_rd_data_count,
output axi_aw_sbiterr,
output axi_aw_dbiterr,
output axi_aw_overflow,
output axi_aw_underflow,
output axi_aw_prog_full,
output axi_aw_prog_empty,
// AXI Full/Lite Write Data Channel signals
input axi_w_injectsbiterr,
input axi_w_injectdbiterr,
input [C_WR_PNTR_WIDTH_WDCH-1:0] axi_w_prog_full_thresh,
input [C_WR_PNTR_WIDTH_WDCH-1:0] axi_w_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_WDCH:0] axi_w_data_count,
output [C_WR_PNTR_WIDTH_WDCH:0] axi_w_wr_data_count,
output [C_WR_PNTR_WIDTH_WDCH:0] axi_w_rd_data_count,
output axi_w_sbiterr,
output axi_w_dbiterr,
output axi_w_overflow,
output axi_w_underflow,
output axi_w_prog_full,
output axi_w_prog_empty,
// AXI Full/Lite Write Response Channel signals
input axi_b_injectsbiterr,
input axi_b_injectdbiterr,
input [C_WR_PNTR_WIDTH_WRCH-1:0] axi_b_prog_full_thresh,
input [C_WR_PNTR_WIDTH_WRCH-1:0] axi_b_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_WRCH:0] axi_b_data_count,
output [C_WR_PNTR_WIDTH_WRCH:0] axi_b_wr_data_count,
output [C_WR_PNTR_WIDTH_WRCH:0] axi_b_rd_data_count,
output axi_b_sbiterr,
output axi_b_dbiterr,
output axi_b_overflow,
output axi_b_underflow,
output axi_b_prog_full,
output axi_b_prog_empty,
// AXI Full/Lite Read Address Channel signals
input axi_ar_injectsbiterr,
input axi_ar_injectdbiterr,
input [C_WR_PNTR_WIDTH_RACH-1:0] axi_ar_prog_full_thresh,
input [C_WR_PNTR_WIDTH_RACH-1:0] axi_ar_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_RACH:0] axi_ar_data_count,
output [C_WR_PNTR_WIDTH_RACH:0] axi_ar_wr_data_count,
output [C_WR_PNTR_WIDTH_RACH:0] axi_ar_rd_data_count,
output axi_ar_sbiterr,
output axi_ar_dbiterr,
output axi_ar_overflow,
output axi_ar_underflow,
output axi_ar_prog_full,
output axi_ar_prog_empty,
// AXI Full/Lite Read Data Channel Signals
input axi_r_injectsbiterr,
input axi_r_injectdbiterr,
input [C_WR_PNTR_WIDTH_RDCH-1:0] axi_r_prog_full_thresh,
input [C_WR_PNTR_WIDTH_RDCH-1:0] axi_r_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_RDCH:0] axi_r_data_count,
output [C_WR_PNTR_WIDTH_RDCH:0] axi_r_wr_data_count,
output [C_WR_PNTR_WIDTH_RDCH:0] axi_r_rd_data_count,
output axi_r_sbiterr,
output axi_r_dbiterr,
output axi_r_overflow,
output axi_r_underflow,
output axi_r_prog_full,
output axi_r_prog_empty,
// AXI Streaming FIFO Related Signals
input axis_injectsbiterr,
input axis_injectdbiterr,
input [C_WR_PNTR_WIDTH_AXIS-1:0] axis_prog_full_thresh,
input [C_WR_PNTR_WIDTH_AXIS-1:0] axis_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_AXIS:0] axis_data_count,
output [C_WR_PNTR_WIDTH_AXIS:0] axis_wr_data_count,
output [C_WR_PNTR_WIDTH_AXIS:0] axis_rd_data_count,
output axis_sbiterr,
output axis_dbiterr,
output axis_overflow,
output axis_underflow,
output axis_prog_full,
output axis_prog_empty
);
wire BACKUP;
wire BACKUP_MARKER;
wire CLK;
wire RST;
wire SRST;
wire WR_CLK;
wire WR_RST;
wire RD_CLK;
wire RD_RST;
wire [C_DIN_WIDTH-1:0] DIN;
wire WR_EN;
wire RD_EN;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE;
wire INT_CLK;
wire INJECTDBITERR;
wire INJECTSBITERR;
wire SLEEP;
wire [C_DOUT_WIDTH-1:0] DOUT;
wire FULL;
wire ALMOST_FULL;
wire WR_ACK;
wire OVERFLOW;
wire EMPTY;
wire ALMOST_EMPTY;
wire VALID;
wire UNDERFLOW;
wire [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT;
wire [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT;
wire [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT;
wire PROG_FULL;
wire PROG_EMPTY;
wire SBITERR;
wire DBITERR;
wire WR_RST_BUSY;
wire RD_RST_BUSY;
wire M_ACLK;
wire S_ACLK;
wire S_ARESETN;
wire S_ACLK_EN;
wire M_ACLK_EN;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID;
wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR;
wire [C_AXI_LEN_WIDTH-1:0] S_AXI_AWLEN;
wire [3-1:0] S_AXI_AWSIZE;
wire [2-1:0] S_AXI_AWBURST;
wire [C_AXI_LOCK_WIDTH-1:0] S_AXI_AWLOCK;
wire [4-1:0] S_AXI_AWCACHE;
wire [3-1:0] S_AXI_AWPROT;
wire [4-1:0] S_AXI_AWQOS;
wire [4-1:0] S_AXI_AWREGION;
wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER;
wire S_AXI_AWVALID;
wire S_AXI_AWREADY;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_WID;
wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA;
wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB;
wire S_AXI_WLAST;
wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER;
wire S_AXI_WVALID;
wire S_AXI_WREADY;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID;
wire [2-1:0] S_AXI_BRESP;
wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER;
wire S_AXI_BVALID;
wire S_AXI_BREADY;
wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID;
wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR;
wire [C_AXI_LEN_WIDTH-1:0] M_AXI_AWLEN;
wire [3-1:0] M_AXI_AWSIZE;
wire [2-1:0] M_AXI_AWBURST;
wire [C_AXI_LOCK_WIDTH-1:0] M_AXI_AWLOCK;
wire [4-1:0] M_AXI_AWCACHE;
wire [3-1:0] M_AXI_AWPROT;
wire [4-1:0] M_AXI_AWQOS;
wire [4-1:0] M_AXI_AWREGION;
wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER;
wire M_AXI_AWVALID;
wire M_AXI_AWREADY;
wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID;
wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA;
wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB;
wire M_AXI_WLAST;
wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER;
wire M_AXI_WVALID;
wire M_AXI_WREADY;
wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID;
wire [2-1:0] M_AXI_BRESP;
wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER;
wire M_AXI_BVALID;
wire M_AXI_BREADY;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID;
wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR;
wire [C_AXI_LEN_WIDTH-1:0] S_AXI_ARLEN;
wire [3-1:0] S_AXI_ARSIZE;
wire [2-1:0] S_AXI_ARBURST;
wire [C_AXI_LOCK_WIDTH-1:0] S_AXI_ARLOCK;
wire [4-1:0] S_AXI_ARCACHE;
wire [3-1:0] S_AXI_ARPROT;
wire [4-1:0] S_AXI_ARQOS;
wire [4-1:0] S_AXI_ARREGION;
wire [C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER;
wire S_AXI_ARVALID;
wire S_AXI_ARREADY;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID;
wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA;
wire [2-1:0] S_AXI_RRESP;
wire S_AXI_RLAST;
wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER;
wire S_AXI_RVALID;
wire S_AXI_RREADY;
wire [C_AXI_ID_WIDTH-1:0] M_AXI_ARID;
wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR;
wire [C_AXI_LEN_WIDTH-1:0] M_AXI_ARLEN;
wire [3-1:0] M_AXI_ARSIZE;
wire [2-1:0] M_AXI_ARBURST;
wire [C_AXI_LOCK_WIDTH-1:0] M_AXI_ARLOCK;
wire [4-1:0] M_AXI_ARCACHE;
wire [3-1:0] M_AXI_ARPROT;
wire [4-1:0] M_AXI_ARQOS;
wire [4-1:0] M_AXI_ARREGION;
wire [C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER;
wire M_AXI_ARVALID;
wire M_AXI_ARREADY;
wire [C_AXI_ID_WIDTH-1:0] M_AXI_RID;
wire [C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA;
wire [2-1:0] M_AXI_RRESP;
wire M_AXI_RLAST;
wire [C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER;
wire M_AXI_RVALID;
wire M_AXI_RREADY;
wire S_AXIS_TVALID;
wire S_AXIS_TREADY;
wire [C_AXIS_TDATA_WIDTH-1:0] S_AXIS_TDATA;
wire [C_AXIS_TSTRB_WIDTH-1:0] S_AXIS_TSTRB;
wire [C_AXIS_TKEEP_WIDTH-1:0] S_AXIS_TKEEP;
wire S_AXIS_TLAST;
wire [C_AXIS_TID_WIDTH-1:0] S_AXIS_TID;
wire [C_AXIS_TDEST_WIDTH-1:0] S_AXIS_TDEST;
wire [C_AXIS_TUSER_WIDTH-1:0] S_AXIS_TUSER;
wire M_AXIS_TVALID;
wire M_AXIS_TREADY;
wire [C_AXIS_TDATA_WIDTH-1:0] M_AXIS_TDATA;
wire [C_AXIS_TSTRB_WIDTH-1:0] M_AXIS_TSTRB;
wire [C_AXIS_TKEEP_WIDTH-1:0] M_AXIS_TKEEP;
wire M_AXIS_TLAST;
wire [C_AXIS_TID_WIDTH-1:0] M_AXIS_TID;
wire [C_AXIS_TDEST_WIDTH-1:0] M_AXIS_TDEST;
wire [C_AXIS_TUSER_WIDTH-1:0] M_AXIS_TUSER;
wire AXI_AW_INJECTSBITERR;
wire AXI_AW_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_WACH-1:0] AXI_AW_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_WACH-1:0] AXI_AW_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_WACH:0] AXI_AW_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WACH:0] AXI_AW_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WACH:0] AXI_AW_RD_DATA_COUNT;
wire AXI_AW_SBITERR;
wire AXI_AW_DBITERR;
wire AXI_AW_OVERFLOW;
wire AXI_AW_UNDERFLOW;
wire AXI_AW_PROG_FULL;
wire AXI_AW_PROG_EMPTY;
wire AXI_W_INJECTSBITERR;
wire AXI_W_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_WDCH-1:0] AXI_W_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_WDCH-1:0] AXI_W_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_WDCH:0] AXI_W_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WDCH:0] AXI_W_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WDCH:0] AXI_W_RD_DATA_COUNT;
wire AXI_W_SBITERR;
wire AXI_W_DBITERR;
wire AXI_W_OVERFLOW;
wire AXI_W_UNDERFLOW;
wire AXI_W_PROG_FULL;
wire AXI_W_PROG_EMPTY;
wire AXI_B_INJECTSBITERR;
wire AXI_B_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_WRCH-1:0] AXI_B_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_WRCH-1:0] AXI_B_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_WRCH:0] AXI_B_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WRCH:0] AXI_B_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WRCH:0] AXI_B_RD_DATA_COUNT;
wire AXI_B_SBITERR;
wire AXI_B_DBITERR;
wire AXI_B_OVERFLOW;
wire AXI_B_UNDERFLOW;
wire AXI_B_PROG_FULL;
wire AXI_B_PROG_EMPTY;
wire AXI_AR_INJECTSBITERR;
wire AXI_AR_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_RACH-1:0] AXI_AR_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_RACH-1:0] AXI_AR_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_RACH:0] AXI_AR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_RACH:0] AXI_AR_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_RACH:0] AXI_AR_RD_DATA_COUNT;
wire AXI_AR_SBITERR;
wire AXI_AR_DBITERR;
wire AXI_AR_OVERFLOW;
wire AXI_AR_UNDERFLOW;
wire AXI_AR_PROG_FULL;
wire AXI_AR_PROG_EMPTY;
wire AXI_R_INJECTSBITERR;
wire AXI_R_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_RDCH-1:0] AXI_R_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_RDCH-1:0] AXI_R_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_RDCH:0] AXI_R_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_RDCH:0] AXI_R_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_RDCH:0] AXI_R_RD_DATA_COUNT;
wire AXI_R_SBITERR;
wire AXI_R_DBITERR;
wire AXI_R_OVERFLOW;
wire AXI_R_UNDERFLOW;
wire AXI_R_PROG_FULL;
wire AXI_R_PROG_EMPTY;
wire AXIS_INJECTSBITERR;
wire AXIS_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_AXIS-1:0] AXIS_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_AXIS-1:0] AXIS_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_AXIS:0] AXIS_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_AXIS:0] AXIS_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_AXIS:0] AXIS_RD_DATA_COUNT;
wire AXIS_SBITERR;
wire AXIS_DBITERR;
wire AXIS_OVERFLOW;
wire AXIS_UNDERFLOW;
wire AXIS_PROG_FULL;
wire AXIS_PROG_EMPTY;
wire [C_WR_DATA_COUNT_WIDTH-1:0] wr_data_count_in;
wire wr_rst_int;
wire rd_rst_int;
function integer find_log2;
input integer int_val;
integer i,j;
begin
i = 1;
j = 0;
for (i = 1; i < int_val; i = i*2) begin
j = j + 1;
end
find_log2 = j;
end
endfunction
// Conventional FIFO Interface Signals
assign BACKUP = backup;
assign BACKUP_MARKER = backup_marker;
assign CLK = clk;
assign RST = rst;
assign SRST = srst;
assign WR_CLK = wr_clk;
assign WR_RST = wr_rst;
assign RD_CLK = rd_clk;
assign RD_RST = rd_rst;
assign WR_EN = wr_en;
assign RD_EN = rd_en;
assign INT_CLK = int_clk;
assign INJECTDBITERR = injectdbiterr;
assign INJECTSBITERR = injectsbiterr;
assign SLEEP = sleep;
assign full = FULL;
assign almost_full = ALMOST_FULL;
assign wr_ack = WR_ACK;
assign overflow = OVERFLOW;
assign empty = EMPTY;
assign almost_empty = ALMOST_EMPTY;
assign valid = VALID;
assign underflow = UNDERFLOW;
assign prog_full = PROG_FULL;
assign prog_empty = PROG_EMPTY;
assign sbiterr = SBITERR;
assign dbiterr = DBITERR;
assign wr_rst_busy = WR_RST_BUSY;
assign rd_rst_busy = RD_RST_BUSY;
assign M_ACLK = m_aclk;
assign S_ACLK = s_aclk;
assign S_ARESETN = s_aresetn;
assign S_ACLK_EN = s_aclk_en;
assign M_ACLK_EN = m_aclk_en;
assign S_AXI_AWVALID = s_axi_awvalid;
assign s_axi_awready = S_AXI_AWREADY;
assign S_AXI_WLAST = s_axi_wlast;
assign S_AXI_WVALID = s_axi_wvalid;
assign s_axi_wready = S_AXI_WREADY;
assign s_axi_bvalid = S_AXI_BVALID;
assign S_AXI_BREADY = s_axi_bready;
assign m_axi_awvalid = M_AXI_AWVALID;
assign M_AXI_AWREADY = m_axi_awready;
assign m_axi_wlast = M_AXI_WLAST;
assign m_axi_wvalid = M_AXI_WVALID;
assign M_AXI_WREADY = m_axi_wready;
assign M_AXI_BVALID = m_axi_bvalid;
assign m_axi_bready = M_AXI_BREADY;
assign S_AXI_ARVALID = s_axi_arvalid;
assign s_axi_arready = S_AXI_ARREADY;
assign s_axi_rlast = S_AXI_RLAST;
assign s_axi_rvalid = S_AXI_RVALID;
assign S_AXI_RREADY = s_axi_rready;
assign m_axi_arvalid = M_AXI_ARVALID;
assign M_AXI_ARREADY = m_axi_arready;
assign M_AXI_RLAST = m_axi_rlast;
assign M_AXI_RVALID = m_axi_rvalid;
assign m_axi_rready = M_AXI_RREADY;
assign S_AXIS_TVALID = s_axis_tvalid;
assign s_axis_tready = S_AXIS_TREADY;
assign S_AXIS_TLAST = s_axis_tlast;
assign m_axis_tvalid = M_AXIS_TVALID;
assign M_AXIS_TREADY = m_axis_tready;
assign m_axis_tlast = M_AXIS_TLAST;
assign AXI_AW_INJECTSBITERR = axi_aw_injectsbiterr;
assign AXI_AW_INJECTDBITERR = axi_aw_injectdbiterr;
assign axi_aw_sbiterr = AXI_AW_SBITERR;
assign axi_aw_dbiterr = AXI_AW_DBITERR;
assign axi_aw_overflow = AXI_AW_OVERFLOW;
assign axi_aw_underflow = AXI_AW_UNDERFLOW;
assign axi_aw_prog_full = AXI_AW_PROG_FULL;
assign axi_aw_prog_empty = AXI_AW_PROG_EMPTY;
assign AXI_W_INJECTSBITERR = axi_w_injectsbiterr;
assign AXI_W_INJECTDBITERR = axi_w_injectdbiterr;
assign axi_w_sbiterr = AXI_W_SBITERR;
assign axi_w_dbiterr = AXI_W_DBITERR;
assign axi_w_overflow = AXI_W_OVERFLOW;
assign axi_w_underflow = AXI_W_UNDERFLOW;
assign axi_w_prog_full = AXI_W_PROG_FULL;
assign axi_w_prog_empty = AXI_W_PROG_EMPTY;
assign AXI_B_INJECTSBITERR = axi_b_injectsbiterr;
assign AXI_B_INJECTDBITERR = axi_b_injectdbiterr;
assign axi_b_sbiterr = AXI_B_SBITERR;
assign axi_b_dbiterr = AXI_B_DBITERR;
assign axi_b_overflow = AXI_B_OVERFLOW;
assign axi_b_underflow = AXI_B_UNDERFLOW;
assign axi_b_prog_full = AXI_B_PROG_FULL;
assign axi_b_prog_empty = AXI_B_PROG_EMPTY;
assign AXI_AR_INJECTSBITERR = axi_ar_injectsbiterr;
assign AXI_AR_INJECTDBITERR = axi_ar_injectdbiterr;
assign axi_ar_sbiterr = AXI_AR_SBITERR;
assign axi_ar_dbiterr = AXI_AR_DBITERR;
assign axi_ar_overflow = AXI_AR_OVERFLOW;
assign axi_ar_underflow = AXI_AR_UNDERFLOW;
assign axi_ar_prog_full = AXI_AR_PROG_FULL;
assign axi_ar_prog_empty = AXI_AR_PROG_EMPTY;
assign AXI_R_INJECTSBITERR = axi_r_injectsbiterr;
assign AXI_R_INJECTDBITERR = axi_r_injectdbiterr;
assign axi_r_sbiterr = AXI_R_SBITERR;
assign axi_r_dbiterr = AXI_R_DBITERR;
assign axi_r_overflow = AXI_R_OVERFLOW;
assign axi_r_underflow = AXI_R_UNDERFLOW;
assign axi_r_prog_full = AXI_R_PROG_FULL;
assign axi_r_prog_empty = AXI_R_PROG_EMPTY;
assign AXIS_INJECTSBITERR = axis_injectsbiterr;
assign AXIS_INJECTDBITERR = axis_injectdbiterr;
assign axis_sbiterr = AXIS_SBITERR;
assign axis_dbiterr = AXIS_DBITERR;
assign axis_overflow = AXIS_OVERFLOW;
assign axis_underflow = AXIS_UNDERFLOW;
assign axis_prog_full = AXIS_PROG_FULL;
assign axis_prog_empty = AXIS_PROG_EMPTY;
assign DIN = din;
assign PROG_EMPTY_THRESH = prog_empty_thresh;
assign PROG_EMPTY_THRESH_ASSERT = prog_empty_thresh_assert;
assign PROG_EMPTY_THRESH_NEGATE = prog_empty_thresh_negate;
assign PROG_FULL_THRESH = prog_full_thresh;
assign PROG_FULL_THRESH_ASSERT = prog_full_thresh_assert;
assign PROG_FULL_THRESH_NEGATE = prog_full_thresh_negate;
assign dout = DOUT;
assign data_count = DATA_COUNT;
assign rd_data_count = RD_DATA_COUNT;
assign wr_data_count = WR_DATA_COUNT;
assign S_AXI_AWID = s_axi_awid;
assign S_AXI_AWADDR = s_axi_awaddr;
assign S_AXI_AWLEN = s_axi_awlen;
assign S_AXI_AWSIZE = s_axi_awsize;
assign S_AXI_AWBURST = s_axi_awburst;
assign S_AXI_AWLOCK = s_axi_awlock;
assign S_AXI_AWCACHE = s_axi_awcache;
assign S_AXI_AWPROT = s_axi_awprot;
assign S_AXI_AWQOS = s_axi_awqos;
assign S_AXI_AWREGION = s_axi_awregion;
assign S_AXI_AWUSER = s_axi_awuser;
assign S_AXI_WID = s_axi_wid;
assign S_AXI_WDATA = s_axi_wdata;
assign S_AXI_WSTRB = s_axi_wstrb;
assign S_AXI_WUSER = s_axi_wuser;
assign s_axi_bid = S_AXI_BID;
assign s_axi_bresp = S_AXI_BRESP;
assign s_axi_buser = S_AXI_BUSER;
assign m_axi_awid = M_AXI_AWID;
assign m_axi_awaddr = M_AXI_AWADDR;
assign m_axi_awlen = M_AXI_AWLEN;
assign m_axi_awsize = M_AXI_AWSIZE;
assign m_axi_awburst = M_AXI_AWBURST;
assign m_axi_awlock = M_AXI_AWLOCK;
assign m_axi_awcache = M_AXI_AWCACHE;
assign m_axi_awprot = M_AXI_AWPROT;
assign m_axi_awqos = M_AXI_AWQOS;
assign m_axi_awregion = M_AXI_AWREGION;
assign m_axi_awuser = M_AXI_AWUSER;
assign m_axi_wid = M_AXI_WID;
assign m_axi_wdata = M_AXI_WDATA;
assign m_axi_wstrb = M_AXI_WSTRB;
assign m_axi_wuser = M_AXI_WUSER;
assign M_AXI_BID = m_axi_bid;
assign M_AXI_BRESP = m_axi_bresp;
assign M_AXI_BUSER = m_axi_buser;
assign S_AXI_ARID = s_axi_arid;
assign S_AXI_ARADDR = s_axi_araddr;
assign S_AXI_ARLEN = s_axi_arlen;
assign S_AXI_ARSIZE = s_axi_arsize;
assign S_AXI_ARBURST = s_axi_arburst;
assign S_AXI_ARLOCK = s_axi_arlock;
assign S_AXI_ARCACHE = s_axi_arcache;
assign S_AXI_ARPROT = s_axi_arprot;
assign S_AXI_ARQOS = s_axi_arqos;
assign S_AXI_ARREGION = s_axi_arregion;
assign S_AXI_ARUSER = s_axi_aruser;
assign s_axi_rid = S_AXI_RID;
assign s_axi_rdata = S_AXI_RDATA;
assign s_axi_rresp = S_AXI_RRESP;
assign s_axi_ruser = S_AXI_RUSER;
assign m_axi_arid = M_AXI_ARID;
assign m_axi_araddr = M_AXI_ARADDR;
assign m_axi_arlen = M_AXI_ARLEN;
assign m_axi_arsize = M_AXI_ARSIZE;
assign m_axi_arburst = M_AXI_ARBURST;
assign m_axi_arlock = M_AXI_ARLOCK;
assign m_axi_arcache = M_AXI_ARCACHE;
assign m_axi_arprot = M_AXI_ARPROT;
assign m_axi_arqos = M_AXI_ARQOS;
assign m_axi_arregion = M_AXI_ARREGION;
assign m_axi_aruser = M_AXI_ARUSER;
assign M_AXI_RID = m_axi_rid;
assign M_AXI_RDATA = m_axi_rdata;
assign M_AXI_RRESP = m_axi_rresp;
assign M_AXI_RUSER = m_axi_ruser;
assign S_AXIS_TDATA = s_axis_tdata;
assign S_AXIS_TSTRB = s_axis_tstrb;
assign S_AXIS_TKEEP = s_axis_tkeep;
assign S_AXIS_TID = s_axis_tid;
assign S_AXIS_TDEST = s_axis_tdest;
assign S_AXIS_TUSER = s_axis_tuser;
assign m_axis_tdata = M_AXIS_TDATA;
assign m_axis_tstrb = M_AXIS_TSTRB;
assign m_axis_tkeep = M_AXIS_TKEEP;
assign m_axis_tid = M_AXIS_TID;
assign m_axis_tdest = M_AXIS_TDEST;
assign m_axis_tuser = M_AXIS_TUSER;
assign AXI_AW_PROG_FULL_THRESH = axi_aw_prog_full_thresh;
assign AXI_AW_PROG_EMPTY_THRESH = axi_aw_prog_empty_thresh;
assign axi_aw_data_count = AXI_AW_DATA_COUNT;
assign axi_aw_wr_data_count = AXI_AW_WR_DATA_COUNT;
assign axi_aw_rd_data_count = AXI_AW_RD_DATA_COUNT;
assign AXI_W_PROG_FULL_THRESH = axi_w_prog_full_thresh;
assign AXI_W_PROG_EMPTY_THRESH = axi_w_prog_empty_thresh;
assign axi_w_data_count = AXI_W_DATA_COUNT;
assign axi_w_wr_data_count = AXI_W_WR_DATA_COUNT;
assign axi_w_rd_data_count = AXI_W_RD_DATA_COUNT;
assign AXI_B_PROG_FULL_THRESH = axi_b_prog_full_thresh;
assign AXI_B_PROG_EMPTY_THRESH = axi_b_prog_empty_thresh;
assign axi_b_data_count = AXI_B_DATA_COUNT;
assign axi_b_wr_data_count = AXI_B_WR_DATA_COUNT;
assign axi_b_rd_data_count = AXI_B_RD_DATA_COUNT;
assign AXI_AR_PROG_FULL_THRESH = axi_ar_prog_full_thresh;
assign AXI_AR_PROG_EMPTY_THRESH = axi_ar_prog_empty_thresh;
assign axi_ar_data_count = AXI_AR_DATA_COUNT;
assign axi_ar_wr_data_count = AXI_AR_WR_DATA_COUNT;
assign axi_ar_rd_data_count = AXI_AR_RD_DATA_COUNT;
assign AXI_R_PROG_FULL_THRESH = axi_r_prog_full_thresh;
assign AXI_R_PROG_EMPTY_THRESH = axi_r_prog_empty_thresh;
assign axi_r_data_count = AXI_R_DATA_COUNT;
assign axi_r_wr_data_count = AXI_R_WR_DATA_COUNT;
assign axi_r_rd_data_count = AXI_R_RD_DATA_COUNT;
assign AXIS_PROG_FULL_THRESH = axis_prog_full_thresh;
assign AXIS_PROG_EMPTY_THRESH = axis_prog_empty_thresh;
assign axis_data_count = AXIS_DATA_COUNT;
assign axis_wr_data_count = AXIS_WR_DATA_COUNT;
assign axis_rd_data_count = AXIS_RD_DATA_COUNT;
generate if (C_INTERFACE_TYPE == 0) begin : conv_fifo
fifo_generator_v13_1_1_CONV_VER
#(
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_INTERFACE_TYPE (C_INTERFACE_TYPE),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DATA_COUNT_WIDTH (C_DATA_COUNT_WIDTH),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_DIN_WIDTH (C_DIN_WIDTH),
.C_DOUT_RST_VAL (C_USE_DOUT_RST == 1 ? C_DOUT_RST_VAL : 0),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_FAMILY (C_FAMILY),
.C_FULL_FLAGS_RST_VAL (C_FULL_FLAGS_RST_VAL),
.C_HAS_ALMOST_EMPTY (C_HAS_ALMOST_EMPTY),
.C_HAS_ALMOST_FULL (C_HAS_ALMOST_FULL),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_DATA_COUNT (C_HAS_DATA_COUNT),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT),
.C_HAS_RD_RST (C_HAS_RD_RST),
.C_HAS_RST (C_HAS_RST),
.C_HAS_SRST (C_HAS_SRST),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_HAS_VALID (C_HAS_VALID),
.C_HAS_WR_ACK (C_HAS_WR_ACK),
.C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT),
.C_HAS_WR_RST (C_HAS_WR_RST),
.C_IMPLEMENTATION_TYPE (C_IMPLEMENTATION_TYPE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_MEMORY_TYPE (C_MEMORY_TYPE),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_PRELOAD_LATENCY (C_PRELOAD_LATENCY),
.C_PRELOAD_REGS (C_PRELOAD_REGS),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL),
.C_PROG_EMPTY_THRESH_NEGATE_VAL (C_PROG_EMPTY_THRESH_NEGATE_VAL),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL),
.C_PROG_FULL_THRESH_NEGATE_VAL (C_PROG_FULL_THRESH_NEGATE_VAL),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE),
.C_RD_DATA_COUNT_WIDTH (C_RD_DATA_COUNT_WIDTH),
.C_RD_DEPTH (C_RD_DEPTH),
.C_RD_FREQ (C_RD_FREQ),
.C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_USE_ECC (C_USE_ECC),
.C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG),
.C_EN_SAFETY_CKT (C_EN_SAFETY_CKT),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_USE_FWFT_DATA_COUNT (C_USE_FWFT_DATA_COUNT),
.C_VALID_LOW (C_VALID_LOW),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH),
.C_WR_DEPTH (C_WR_DEPTH),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE),
.C_AXI_TYPE (C_AXI_TYPE),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE)
)
fifo_generator_v13_1_1_conv_dut
(
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.CLK (CLK),
.RST (RST),
.SRST (SRST),
.WR_CLK (WR_CLK),
.WR_RST (WR_RST),
.RD_CLK (RD_CLK),
.RD_RST (RD_RST),
.DIN (DIN),
.WR_EN (WR_EN),
.RD_EN (RD_EN),
.PROG_EMPTY_THRESH (PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT (PROG_EMPTY_THRESH_ASSERT),
.PROG_EMPTY_THRESH_NEGATE (PROG_EMPTY_THRESH_NEGATE),
.PROG_FULL_THRESH (PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT (PROG_FULL_THRESH_ASSERT),
.PROG_FULL_THRESH_NEGATE (PROG_FULL_THRESH_NEGATE),
.INT_CLK (INT_CLK),
.INJECTDBITERR (INJECTDBITERR),
.INJECTSBITERR (INJECTSBITERR),
.DOUT (DOUT),
.FULL (FULL),
.ALMOST_FULL (ALMOST_FULL),
.WR_ACK (WR_ACK),
.OVERFLOW (OVERFLOW),
.EMPTY (EMPTY),
.ALMOST_EMPTY (ALMOST_EMPTY),
.VALID (VALID),
.UNDERFLOW (UNDERFLOW),
.DATA_COUNT (DATA_COUNT),
.RD_DATA_COUNT (RD_DATA_COUNT),
.WR_DATA_COUNT (wr_data_count_in),
.PROG_FULL (PROG_FULL),
.PROG_EMPTY (PROG_EMPTY),
.SBITERR (SBITERR),
.DBITERR (DBITERR),
.wr_rst_busy (wr_rst_busy),
.rd_rst_busy (rd_rst_busy),
.wr_rst_i_out (wr_rst_int),
.rd_rst_i_out (rd_rst_int)
);
end endgenerate
localparam IS_8SERIES = (C_FAMILY == "virtexu" || C_FAMILY == "kintexu" || C_FAMILY == "artixu" || C_FAMILY == "virtexuplus" || C_FAMILY == "zynquplus" || C_FAMILY == "kintexuplus") ? 1 : 0;
localparam C_AXI_SIZE_WIDTH = 3;
localparam C_AXI_BURST_WIDTH = 2;
localparam C_AXI_CACHE_WIDTH = 4;
localparam C_AXI_PROT_WIDTH = 3;
localparam C_AXI_QOS_WIDTH = 4;
localparam C_AXI_REGION_WIDTH = 4;
localparam C_AXI_BRESP_WIDTH = 2;
localparam C_AXI_RRESP_WIDTH = 2;
localparam IS_AXI_STREAMING = C_INTERFACE_TYPE == 1 ? 1 : 0;
localparam TDATA_OFFSET = C_HAS_AXIS_TDATA == 1 ? C_DIN_WIDTH_AXIS-C_AXIS_TDATA_WIDTH : C_DIN_WIDTH_AXIS;
localparam TSTRB_OFFSET = C_HAS_AXIS_TSTRB == 1 ? TDATA_OFFSET-C_AXIS_TSTRB_WIDTH : TDATA_OFFSET;
localparam TKEEP_OFFSET = C_HAS_AXIS_TKEEP == 1 ? TSTRB_OFFSET-C_AXIS_TKEEP_WIDTH : TSTRB_OFFSET;
localparam TID_OFFSET = C_HAS_AXIS_TID == 1 ? TKEEP_OFFSET-C_AXIS_TID_WIDTH : TKEEP_OFFSET;
localparam TDEST_OFFSET = C_HAS_AXIS_TDEST == 1 ? TID_OFFSET-C_AXIS_TDEST_WIDTH : TID_OFFSET;
localparam TUSER_OFFSET = C_HAS_AXIS_TUSER == 1 ? TDEST_OFFSET-C_AXIS_TUSER_WIDTH : TDEST_OFFSET;
localparam LOG_DEPTH_AXIS = find_log2(C_WR_DEPTH_AXIS);
localparam LOG_WR_DEPTH = find_log2(C_WR_DEPTH);
function [LOG_DEPTH_AXIS-1:0] bin2gray;
input [LOG_DEPTH_AXIS-1:0] x;
begin
bin2gray = x ^ (x>>1);
end
endfunction
function [LOG_DEPTH_AXIS-1:0] gray2bin;
input [LOG_DEPTH_AXIS-1:0] x;
integer i;
begin
gray2bin[LOG_DEPTH_AXIS-1] = x[LOG_DEPTH_AXIS-1];
for(i=LOG_DEPTH_AXIS-2; i>=0; i=i-1) begin
gray2bin[i] = gray2bin[i+1] ^ x[i];
end
end
endfunction
wire [(LOG_WR_DEPTH)-1 : 0] w_cnt_gc_asreg_last;
wire [LOG_WR_DEPTH-1 : 0] w_q [0:C_SYNCHRONIZER_STAGE] ;
wire [LOG_WR_DEPTH-1 : 0] w_q_temp [1:C_SYNCHRONIZER_STAGE] ;
reg [LOG_WR_DEPTH-1 : 0] w_cnt_rd = 0;
reg [LOG_WR_DEPTH-1 : 0] w_cnt = 0;
reg [LOG_WR_DEPTH-1 : 0] w_cnt_gc = 0;
reg [LOG_WR_DEPTH-1 : 0] r_cnt = 0;
wire [LOG_WR_DEPTH : 0] adj_w_cnt_rd_pad;
wire [LOG_WR_DEPTH : 0] r_inv_pad;
wire [LOG_WR_DEPTH-1 : 0] d_cnt;
reg [LOG_WR_DEPTH : 0] d_cnt_pad = 0;
reg adj_w_cnt_rd_pad_0 = 0;
reg r_inv_pad_0 = 0;
genvar l;
generate for (l = 1; ((l <= C_SYNCHRONIZER_STAGE) && (C_HAS_DATA_COUNTS_AXIS == 3 && C_INTERFACE_TYPE == 0) ); l = l + 1) begin : g_cnt_sync_stage
fifo_generator_v13_1_1_sync_stage
#(
.C_WIDTH (LOG_WR_DEPTH)
)
rd_stg_inst
(
.RST (rd_rst_int),
.CLK (RD_CLK),
.DIN (w_q[l-1]),
.DOUT (w_q[l])
);
end endgenerate // gpkt_cnt_sync_stage
generate if (C_INTERFACE_TYPE == 0 && C_HAS_DATA_COUNTS_AXIS == 3) begin : fifo_ic_adapter
assign wr_eop_ad = WR_EN & !(FULL);
assign rd_eop_ad = RD_EN & !(EMPTY);
always @ (posedge wr_rst_int or posedge WR_CLK)
begin
if (wr_rst_int)
w_cnt <= 1'b0;
else if (wr_eop_ad)
w_cnt <= w_cnt + 1;
end
always @ (posedge wr_rst_int or posedge WR_CLK)
begin
if (wr_rst_int)
w_cnt_gc <= 1'b0;
else
w_cnt_gc <= bin2gray(w_cnt);
end
assign w_q[0] = w_cnt_gc;
assign w_cnt_gc_asreg_last = w_q[C_SYNCHRONIZER_STAGE];
always @ (posedge rd_rst_int or posedge RD_CLK)
begin
if (rd_rst_int)
w_cnt_rd <= 1'b0;
else
w_cnt_rd <= gray2bin(w_cnt_gc_asreg_last);
end
always @ (posedge rd_rst_int or posedge RD_CLK)
begin
if (rd_rst_int)
r_cnt <= 1'b0;
else if (rd_eop_ad)
r_cnt <= r_cnt + 1;
end
// Take the difference of write and read packet count
// Logic is similar to rd_pe_as
assign adj_w_cnt_rd_pad[LOG_WR_DEPTH : 1] = w_cnt_rd;
assign r_inv_pad[LOG_WR_DEPTH : 1] = ~r_cnt;
assign adj_w_cnt_rd_pad[0] = adj_w_cnt_rd_pad_0;
assign r_inv_pad[0] = r_inv_pad_0;
always @ ( rd_eop_ad )
begin
if (!rd_eop_ad) begin
adj_w_cnt_rd_pad_0 <= 1'b1;
r_inv_pad_0 <= 1'b1;
end else begin
adj_w_cnt_rd_pad_0 <= 1'b0;
r_inv_pad_0 <= 1'b0;
end
end
always @ (posedge rd_rst_int or posedge RD_CLK)
begin
if (rd_rst_int)
d_cnt_pad <= 1'b0;
else
d_cnt_pad <= adj_w_cnt_rd_pad + r_inv_pad ;
end
assign d_cnt = d_cnt_pad [LOG_WR_DEPTH : 1] ;
assign WR_DATA_COUNT = d_cnt;
end endgenerate // fifo_ic_adapter
generate if (C_INTERFACE_TYPE == 0 && C_HAS_DATA_COUNTS_AXIS != 3) begin : fifo_icn_adapter
assign WR_DATA_COUNT = wr_data_count_in;
end endgenerate // fifo_icn_adapter
wire inverted_reset = ~S_ARESETN;
wire axi_rs_rst;
reg rst_d1 = 0 ;
reg rst_d2 = 0 ;
wire [C_DIN_WIDTH_AXIS-1:0] axis_din ;
wire [C_DIN_WIDTH_AXIS-1:0] axis_dout ;
wire axis_full ;
wire axis_almost_full ;
wire axis_empty ;
wire axis_s_axis_tready;
wire axis_m_axis_tvalid;
wire axis_wr_en ;
wire axis_rd_en ;
wire axis_we ;
wire axis_re ;
wire [C_WR_PNTR_WIDTH_AXIS:0] axis_dc;
reg axis_pkt_read = 1'b0;
wire axis_rd_rst;
wire axis_wr_rst;
generate if (C_INTERFACE_TYPE > 0 && (C_AXIS_TYPE == 1 || C_WACH_TYPE == 1 ||
C_WDCH_TYPE == 1 || C_WRCH_TYPE == 1 || C_RACH_TYPE == 1 || C_RDCH_TYPE == 1)) begin : gaxi_rs_rst
always @ (posedge inverted_reset or posedge S_ACLK) begin
if (inverted_reset) begin
rst_d1 <= 1'b1;
rst_d2 <= 1'b1;
end else begin
rst_d1 <= #`TCQ 1'b0;
rst_d2 <= #`TCQ rst_d1;
end
end
assign axi_rs_rst = rst_d2;
end endgenerate // gaxi_rs_rst
generate if (IS_AXI_STREAMING == 1 && C_AXIS_TYPE == 0) begin : axi_streaming
// Write protection when almost full or prog_full is high
assign axis_we = (C_PROG_FULL_TYPE_AXIS != 0) ? axis_s_axis_tready & S_AXIS_TVALID :
(C_APPLICATION_TYPE_AXIS == 1) ? axis_s_axis_tready & S_AXIS_TVALID : S_AXIS_TVALID;
// Read protection when almost empty or prog_empty is high
assign axis_re = (C_PROG_EMPTY_TYPE_AXIS != 0) ? axis_m_axis_tvalid & M_AXIS_TREADY :
(C_APPLICATION_TYPE_AXIS == 1) ? axis_m_axis_tvalid & M_AXIS_TREADY : M_AXIS_TREADY;
assign axis_wr_en = (C_HAS_SLAVE_CE == 1) ? axis_we & S_ACLK_EN : axis_we;
assign axis_rd_en = (C_HAS_MASTER_CE == 1) ? axis_re & M_ACLK_EN : axis_re;
fifo_generator_v13_1_1_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_INTERFACE_TYPE (C_INTERFACE_TYPE),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_AXIS == 1 || C_IMPLEMENTATION_TYPE_AXIS == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_AXIS == 2 || C_IMPLEMENTATION_TYPE_AXIS == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_AXIS == 1 || C_IMPLEMENTATION_TYPE_AXIS == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_AXIS == 11 || C_IMPLEMENTATION_TYPE_AXIS == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_AXIS),
.C_WR_DEPTH (C_WR_DEPTH_AXIS),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_AXIS),
.C_DOUT_WIDTH (C_DIN_WIDTH_AXIS),
.C_RD_DEPTH (C_WR_DEPTH_AXIS),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_AXIS),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_AXIS),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_AXIS),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_AXIS),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS),
.C_USE_ECC (C_USE_ECC_AXIS),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_AXIS),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (C_APPLICATION_TYPE_AXIS == 1 ? 1: 0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG),
//.C_EN_SAFETY_CKT (C_EN_SAFETY_CKT),
.C_FIFO_TYPE (C_APPLICATION_TYPE_AXIS == 1 ? 0: C_APPLICATION_TYPE_AXIS),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_AXIS == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_AXIS + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_AXIS == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_AXIS + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_AXIS == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_AXIS + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
.C_EN_SAFETY_CKT (1),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v13_1_1_axis_dut
(
.CLK (S_ACLK),
.WR_CLK (S_ACLK),
.RD_CLK (M_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (axis_wr_en),
.RD_EN (axis_rd_en),
.PROG_FULL_THRESH (AXIS_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_AXIS{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_AXIS{1'b0}}),
.PROG_EMPTY_THRESH (AXIS_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_AXIS{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_AXIS{1'b0}}),
.INJECTDBITERR (AXIS_INJECTDBITERR),
.INJECTSBITERR (AXIS_INJECTSBITERR),
.DIN (axis_din),
.DOUT (axis_dout),
.FULL (axis_full),
.EMPTY (axis_empty),
.ALMOST_FULL (axis_almost_full),
.PROG_FULL (AXIS_PROG_FULL),
.ALMOST_EMPTY (),
.PROG_EMPTY (AXIS_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (AXIS_OVERFLOW),
.VALID (),
.UNDERFLOW (AXIS_UNDERFLOW),
.DATA_COUNT (axis_dc),
.RD_DATA_COUNT (AXIS_RD_DATA_COUNT),
.WR_DATA_COUNT (AXIS_WR_DATA_COUNT),
.SBITERR (AXIS_SBITERR),
.DBITERR (AXIS_DBITERR),
.wr_rst_busy (wr_rst_busy_axis),
.rd_rst_busy (rd_rst_busy_axis),
.wr_rst_i_out (axis_wr_rst),
.rd_rst_i_out (axis_rd_rst),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign axis_s_axis_tready = (IS_8SERIES == 0) ? ~axis_full : (C_IMPLEMENTATION_TYPE_AXIS == 5 || C_IMPLEMENTATION_TYPE_AXIS == 13) ? ~(axis_full | wr_rst_busy_axis) : ~axis_full;
assign axis_m_axis_tvalid = (C_APPLICATION_TYPE_AXIS != 1) ? ~axis_empty : ~axis_empty & axis_pkt_read;
assign S_AXIS_TREADY = axis_s_axis_tready;
assign M_AXIS_TVALID = axis_m_axis_tvalid;
end endgenerate // axi_streaming
wire axis_wr_eop;
reg axis_wr_eop_d1 = 1'b0;
wire axis_rd_eop;
integer axis_pkt_cnt;
generate if (C_APPLICATION_TYPE_AXIS == 1 && C_COMMON_CLOCK == 1) begin : gaxis_pkt_fifo_cc
assign axis_wr_eop = axis_wr_en & S_AXIS_TLAST;
assign axis_rd_eop = axis_rd_en & axis_dout[0];
always @ (posedge inverted_reset or posedge S_ACLK)
begin
if (inverted_reset)
axis_pkt_read <= 1'b0;
else if (axis_rd_eop && (axis_pkt_cnt == 1) && ~axis_wr_eop_d1)
axis_pkt_read <= 1'b0;
else if ((axis_pkt_cnt > 0) || (axis_almost_full && ~axis_empty))
axis_pkt_read <= 1'b1;
end
always @ (posedge inverted_reset or posedge S_ACLK)
begin
if (inverted_reset)
axis_wr_eop_d1 <= 1'b0;
else
axis_wr_eop_d1 <= axis_wr_eop;
end
always @ (posedge inverted_reset or posedge S_ACLK)
begin
if (inverted_reset)
axis_pkt_cnt <= 0;
else if (axis_wr_eop_d1 && ~axis_rd_eop)
axis_pkt_cnt <= axis_pkt_cnt + 1;
else if (axis_rd_eop && ~axis_wr_eop_d1)
axis_pkt_cnt <= axis_pkt_cnt - 1;
end
end endgenerate // gaxis_pkt_fifo_cc
reg [LOG_DEPTH_AXIS-1 : 0] axis_wpkt_cnt_gc = 0;
wire [(LOG_DEPTH_AXIS)-1 : 0] axis_wpkt_cnt_gc_asreg_last;
wire axis_rd_has_rst;
wire [0:C_SYNCHRONIZER_STAGE] axis_af_q ;
wire [LOG_DEPTH_AXIS-1 : 0] wpkt_q [0:C_SYNCHRONIZER_STAGE] ;
wire [1:C_SYNCHRONIZER_STAGE] axis_af_q_temp = 0;
wire [LOG_DEPTH_AXIS-1 : 0] wpkt_q_temp [1:C_SYNCHRONIZER_STAGE] ;
reg [LOG_DEPTH_AXIS-1 : 0] axis_wpkt_cnt_rd = 0;
reg [LOG_DEPTH_AXIS-1 : 0] axis_wpkt_cnt = 0;
reg [LOG_DEPTH_AXIS-1 : 0] axis_rpkt_cnt = 0;
wire [LOG_DEPTH_AXIS : 0] adj_axis_wpkt_cnt_rd_pad;
wire [LOG_DEPTH_AXIS : 0] rpkt_inv_pad;
wire [LOG_DEPTH_AXIS-1 : 0] diff_pkt_cnt;
reg [LOG_DEPTH_AXIS : 0] diff_pkt_cnt_pad = 0;
reg adj_axis_wpkt_cnt_rd_pad_0 = 0;
reg rpkt_inv_pad_0 = 0;
wire axis_af_rd ;
generate if (C_HAS_RST == 1) begin : rst_blk_has
assign axis_rd_has_rst = axis_rd_rst;
end endgenerate //rst_blk_has
generate if (C_HAS_RST == 0) begin :rst_blk_no
assign axis_rd_has_rst = 1'b0;
end endgenerate //rst_blk_no
genvar i;
generate for (i = 1; ((i <= C_SYNCHRONIZER_STAGE) && (C_APPLICATION_TYPE_AXIS == 1 && C_COMMON_CLOCK == 0) ); i = i + 1) begin : gpkt_cnt_sync_stage
fifo_generator_v13_1_1_sync_stage
#(
.C_WIDTH (LOG_DEPTH_AXIS)
)
rd_stg_inst
(
.RST (axis_rd_has_rst),
.CLK (M_ACLK),
.DIN (wpkt_q[i-1]),
.DOUT (wpkt_q[i])
);
fifo_generator_v13_1_1_sync_stage
#(
.C_WIDTH (1)
)
wr_stg_inst
(
.RST (axis_rd_has_rst),
.CLK (M_ACLK),
.DIN (axis_af_q[i-1]),
.DOUT (axis_af_q[i])
);
end endgenerate // gpkt_cnt_sync_stage
generate if (C_APPLICATION_TYPE_AXIS == 1 && C_COMMON_CLOCK == 0) begin : gaxis_pkt_fifo_ic
assign axis_wr_eop = axis_wr_en & S_AXIS_TLAST;
assign axis_rd_eop = axis_rd_en & axis_dout[0];
always @ (posedge axis_rd_has_rst or posedge M_ACLK)
begin
if (axis_rd_has_rst)
axis_pkt_read <= 1'b0;
else if (axis_rd_eop && (diff_pkt_cnt == 1))
axis_pkt_read <= 1'b0;
else if ((diff_pkt_cnt > 0) || (axis_af_rd && ~axis_empty))
axis_pkt_read <= 1'b1;
end
always @ (posedge axis_wr_rst or posedge S_ACLK)
begin
if (axis_wr_rst)
axis_wpkt_cnt <= 1'b0;
else if (axis_wr_eop)
axis_wpkt_cnt <= axis_wpkt_cnt + 1;
end
always @ (posedge axis_wr_rst or posedge S_ACLK)
begin
if (axis_wr_rst)
axis_wpkt_cnt_gc <= 1'b0;
else
axis_wpkt_cnt_gc <= bin2gray(axis_wpkt_cnt);
end
assign wpkt_q[0] = axis_wpkt_cnt_gc;
assign axis_wpkt_cnt_gc_asreg_last = wpkt_q[C_SYNCHRONIZER_STAGE];
assign axis_af_q[0] = axis_almost_full;
//assign axis_af_q[1:C_SYNCHRONIZER_STAGE] = axis_af_q_temp[1:C_SYNCHRONIZER_STAGE];
assign axis_af_rd = axis_af_q[C_SYNCHRONIZER_STAGE];
always @ (posedge axis_rd_has_rst or posedge M_ACLK)
begin
if (axis_rd_has_rst)
axis_wpkt_cnt_rd <= 1'b0;
else
axis_wpkt_cnt_rd <= gray2bin(axis_wpkt_cnt_gc_asreg_last);
end
always @ (posedge axis_rd_rst or posedge M_ACLK)
begin
if (axis_rd_has_rst)
axis_rpkt_cnt <= 1'b0;
else if (axis_rd_eop)
axis_rpkt_cnt <= axis_rpkt_cnt + 1;
end
// Take the difference of write and read packet count
// Logic is similar to rd_pe_as
assign adj_axis_wpkt_cnt_rd_pad[LOG_DEPTH_AXIS : 1] = axis_wpkt_cnt_rd;
assign rpkt_inv_pad[LOG_DEPTH_AXIS : 1] = ~axis_rpkt_cnt;
assign adj_axis_wpkt_cnt_rd_pad[0] = adj_axis_wpkt_cnt_rd_pad_0;
assign rpkt_inv_pad[0] = rpkt_inv_pad_0;
always @ ( axis_rd_eop )
begin
if (!axis_rd_eop) begin
adj_axis_wpkt_cnt_rd_pad_0 <= 1'b1;
rpkt_inv_pad_0 <= 1'b1;
end else begin
adj_axis_wpkt_cnt_rd_pad_0 <= 1'b0;
rpkt_inv_pad_0 <= 1'b0;
end
end
always @ (posedge axis_rd_rst or posedge M_ACLK)
begin
if (axis_rd_has_rst)
diff_pkt_cnt_pad <= 1'b0;
else
diff_pkt_cnt_pad <= adj_axis_wpkt_cnt_rd_pad + rpkt_inv_pad ;
end
assign diff_pkt_cnt = diff_pkt_cnt_pad [LOG_DEPTH_AXIS : 1] ;
end endgenerate // gaxis_pkt_fifo_ic
// Generate the accurate data count for axi stream packet fifo configuration
reg [C_WR_PNTR_WIDTH_AXIS:0] axis_dc_pkt_fifo = 0;
generate if (IS_AXI_STREAMING == 1 && C_HAS_DATA_COUNTS_AXIS == 1 && C_APPLICATION_TYPE_AXIS == 1) begin : gdc_pkt
always @ (posedge inverted_reset or posedge S_ACLK)
begin
if (inverted_reset)
axis_dc_pkt_fifo <= 0;
else if (axis_wr_en && (~axis_rd_en))
axis_dc_pkt_fifo <= #`TCQ axis_dc_pkt_fifo + 1;
else if (~axis_wr_en && axis_rd_en)
axis_dc_pkt_fifo <= #`TCQ axis_dc_pkt_fifo - 1;
end
assign AXIS_DATA_COUNT = axis_dc_pkt_fifo;
end endgenerate // gdc_pkt
generate if (IS_AXI_STREAMING == 1 && C_HAS_DATA_COUNTS_AXIS == 0 && C_APPLICATION_TYPE_AXIS == 1) begin : gndc_pkt
assign AXIS_DATA_COUNT = 0;
end endgenerate // gndc_pkt
generate if (IS_AXI_STREAMING == 1 && C_APPLICATION_TYPE_AXIS != 1) begin : gdc
assign AXIS_DATA_COUNT = axis_dc;
end endgenerate // gdc
// Register Slice for Write Address Channel
generate if (C_AXIS_TYPE == 1) begin : gaxis_reg_slice
assign axis_wr_en = (C_HAS_SLAVE_CE == 1) ? S_AXIS_TVALID & S_ACLK_EN : S_AXIS_TVALID;
assign axis_rd_en = (C_HAS_MASTER_CE == 1) ? M_AXIS_TREADY & M_ACLK_EN : M_AXIS_TREADY;
fifo_generator_v13_1_1_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_AXIS),
.C_REG_CONFIG (C_REG_SLICE_MODE_AXIS)
)
axis_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (axis_din),
.S_VALID (axis_wr_en),
.S_READY (S_AXIS_TREADY),
// Master side
.M_PAYLOAD_DATA (axis_dout),
.M_VALID (M_AXIS_TVALID),
.M_READY (axis_rd_en)
);
end endgenerate // gaxis_reg_slice
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TDATA == 1) begin : tdata
assign axis_din[C_DIN_WIDTH_AXIS-1:TDATA_OFFSET] = S_AXIS_TDATA;
assign M_AXIS_TDATA = axis_dout[C_DIN_WIDTH_AXIS-1:TDATA_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TSTRB == 1) begin : tstrb
assign axis_din[TDATA_OFFSET-1:TSTRB_OFFSET] = S_AXIS_TSTRB;
assign M_AXIS_TSTRB = axis_dout[TDATA_OFFSET-1:TSTRB_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TKEEP == 1) begin : tkeep
assign axis_din[TSTRB_OFFSET-1:TKEEP_OFFSET] = S_AXIS_TKEEP;
assign M_AXIS_TKEEP = axis_dout[TSTRB_OFFSET-1:TKEEP_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TID == 1) begin : tid
assign axis_din[TKEEP_OFFSET-1:TID_OFFSET] = S_AXIS_TID;
assign M_AXIS_TID = axis_dout[TKEEP_OFFSET-1:TID_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TDEST == 1) begin : tdest
assign axis_din[TID_OFFSET-1:TDEST_OFFSET] = S_AXIS_TDEST;
assign M_AXIS_TDEST = axis_dout[TID_OFFSET-1:TDEST_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TUSER == 1) begin : tuser
assign axis_din[TDEST_OFFSET-1:TUSER_OFFSET] = S_AXIS_TUSER;
assign M_AXIS_TUSER = axis_dout[TDEST_OFFSET-1:TUSER_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TLAST == 1) begin : tlast
assign axis_din[0] = S_AXIS_TLAST;
assign M_AXIS_TLAST = axis_dout[0];
end endgenerate
//###########################################################################
// AXI FULL Write Channel (axi_write_channel)
//###########################################################################
localparam IS_AXI_FULL = ((C_INTERFACE_TYPE == 2) && (C_AXI_TYPE != 2)) ? 1 : 0;
localparam IS_AXI_LITE = ((C_INTERFACE_TYPE == 2) && (C_AXI_TYPE == 2)) ? 1 : 0;
localparam IS_AXI_FULL_WACH = ((IS_AXI_FULL == 1) && (C_WACH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_FULL_WDCH = ((IS_AXI_FULL == 1) && (C_WDCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_FULL_WRCH = ((IS_AXI_FULL == 1) && (C_WRCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_FULL_RACH = ((IS_AXI_FULL == 1) && (C_RACH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_FULL_RDCH = ((IS_AXI_FULL == 1) && (C_RDCH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_LITE_WACH = ((IS_AXI_LITE == 1) && (C_WACH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_LITE_WDCH = ((IS_AXI_LITE == 1) && (C_WDCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_LITE_WRCH = ((IS_AXI_LITE == 1) && (C_WRCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_LITE_RACH = ((IS_AXI_LITE == 1) && (C_RACH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_LITE_RDCH = ((IS_AXI_LITE == 1) && (C_RDCH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0;
localparam IS_WR_ADDR_CH = ((IS_AXI_FULL_WACH == 1) || (IS_AXI_LITE_WACH == 1)) ? 1 : 0;
localparam IS_WR_DATA_CH = ((IS_AXI_FULL_WDCH == 1) || (IS_AXI_LITE_WDCH == 1)) ? 1 : 0;
localparam IS_WR_RESP_CH = ((IS_AXI_FULL_WRCH == 1) || (IS_AXI_LITE_WRCH == 1)) ? 1 : 0;
localparam IS_RD_ADDR_CH = ((IS_AXI_FULL_RACH == 1) || (IS_AXI_LITE_RACH == 1)) ? 1 : 0;
localparam IS_RD_DATA_CH = ((IS_AXI_FULL_RDCH == 1) || (IS_AXI_LITE_RDCH == 1)) ? 1 : 0;
localparam AWID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_WACH - C_AXI_ID_WIDTH : C_DIN_WIDTH_WACH;
localparam AWADDR_OFFSET = AWID_OFFSET - C_AXI_ADDR_WIDTH;
localparam AWLEN_OFFSET = C_AXI_TYPE != 2 ? AWADDR_OFFSET - C_AXI_LEN_WIDTH : AWADDR_OFFSET;
localparam AWSIZE_OFFSET = C_AXI_TYPE != 2 ? AWLEN_OFFSET - C_AXI_SIZE_WIDTH : AWLEN_OFFSET;
localparam AWBURST_OFFSET = C_AXI_TYPE != 2 ? AWSIZE_OFFSET - C_AXI_BURST_WIDTH : AWSIZE_OFFSET;
localparam AWLOCK_OFFSET = C_AXI_TYPE != 2 ? AWBURST_OFFSET - C_AXI_LOCK_WIDTH : AWBURST_OFFSET;
localparam AWCACHE_OFFSET = C_AXI_TYPE != 2 ? AWLOCK_OFFSET - C_AXI_CACHE_WIDTH : AWLOCK_OFFSET;
localparam AWPROT_OFFSET = AWCACHE_OFFSET - C_AXI_PROT_WIDTH;
localparam AWQOS_OFFSET = AWPROT_OFFSET - C_AXI_QOS_WIDTH;
localparam AWREGION_OFFSET = C_AXI_TYPE == 1 ? AWQOS_OFFSET - C_AXI_REGION_WIDTH : AWQOS_OFFSET;
localparam AWUSER_OFFSET = C_HAS_AXI_AWUSER == 1 ? AWREGION_OFFSET-C_AXI_AWUSER_WIDTH : AWREGION_OFFSET;
localparam WID_OFFSET = (C_AXI_TYPE == 3 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_WDCH - C_AXI_ID_WIDTH : C_DIN_WIDTH_WDCH;
localparam WDATA_OFFSET = WID_OFFSET - C_AXI_DATA_WIDTH;
localparam WSTRB_OFFSET = WDATA_OFFSET - C_AXI_DATA_WIDTH/8;
localparam WUSER_OFFSET = C_HAS_AXI_WUSER == 1 ? WSTRB_OFFSET-C_AXI_WUSER_WIDTH : WSTRB_OFFSET;
localparam BID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_WRCH - C_AXI_ID_WIDTH : C_DIN_WIDTH_WRCH;
localparam BRESP_OFFSET = BID_OFFSET - C_AXI_BRESP_WIDTH;
localparam BUSER_OFFSET = C_HAS_AXI_BUSER == 1 ? BRESP_OFFSET-C_AXI_BUSER_WIDTH : BRESP_OFFSET;
wire [C_DIN_WIDTH_WACH-1:0] wach_din ;
wire [C_DIN_WIDTH_WACH-1:0] wach_dout ;
wire [C_DIN_WIDTH_WACH-1:0] wach_dout_pkt ;
wire wach_full ;
wire wach_almost_full ;
wire wach_prog_full ;
wire wach_empty ;
wire wach_almost_empty ;
wire wach_prog_empty ;
wire [C_DIN_WIDTH_WDCH-1:0] wdch_din ;
wire [C_DIN_WIDTH_WDCH-1:0] wdch_dout ;
wire wdch_full ;
wire wdch_almost_full ;
wire wdch_prog_full ;
wire wdch_empty ;
wire wdch_almost_empty ;
wire wdch_prog_empty ;
wire [C_DIN_WIDTH_WRCH-1:0] wrch_din ;
wire [C_DIN_WIDTH_WRCH-1:0] wrch_dout ;
wire wrch_full ;
wire wrch_almost_full ;
wire wrch_prog_full ;
wire wrch_empty ;
wire wrch_almost_empty ;
wire wrch_prog_empty ;
wire axi_aw_underflow_i;
wire axi_w_underflow_i ;
wire axi_b_underflow_i ;
wire axi_aw_overflow_i ;
wire axi_w_overflow_i ;
wire axi_b_overflow_i ;
wire axi_wr_underflow_i;
wire axi_wr_overflow_i ;
wire wach_s_axi_awready;
wire wach_m_axi_awvalid;
wire wach_wr_en ;
wire wach_rd_en ;
wire wdch_s_axi_wready ;
wire wdch_m_axi_wvalid ;
wire wdch_wr_en ;
wire wdch_rd_en ;
wire wrch_s_axi_bvalid ;
wire wrch_m_axi_bready ;
wire wrch_wr_en ;
wire wrch_rd_en ;
wire txn_count_up ;
wire txn_count_down ;
wire awvalid_en ;
wire awvalid_pkt ;
wire awready_pkt ;
integer wr_pkt_count ;
wire wach_we ;
wire wach_re ;
wire wdch_we ;
wire wdch_re ;
wire wrch_we ;
wire wrch_re ;
generate if (IS_WR_ADDR_CH == 1) begin : axi_write_address_channel
// Write protection when almost full or prog_full is high
assign wach_we = (C_PROG_FULL_TYPE_WACH != 0) ? wach_s_axi_awready & S_AXI_AWVALID : S_AXI_AWVALID;
// Read protection when almost empty or prog_empty is high
assign wach_re = (C_PROG_EMPTY_TYPE_WACH != 0 && C_APPLICATION_TYPE_WACH == 1) ?
wach_m_axi_awvalid & awready_pkt & awvalid_en :
(C_PROG_EMPTY_TYPE_WACH != 0 && C_APPLICATION_TYPE_WACH != 1) ?
M_AXI_AWREADY && wach_m_axi_awvalid :
(C_PROG_EMPTY_TYPE_WACH == 0 && C_APPLICATION_TYPE_WACH == 1) ?
awready_pkt & awvalid_en :
(C_PROG_EMPTY_TYPE_WACH == 0 && C_APPLICATION_TYPE_WACH != 1) ?
M_AXI_AWREADY : 1'b0;
assign wach_wr_en = (C_HAS_SLAVE_CE == 1) ? wach_we & S_ACLK_EN : wach_we;
assign wach_rd_en = (C_HAS_MASTER_CE == 1) ? wach_re & M_ACLK_EN : wach_re;
fifo_generator_v13_1_1_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_WACH == 1 || C_IMPLEMENTATION_TYPE_WACH == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_WACH == 2 || C_IMPLEMENTATION_TYPE_WACH == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_WACH == 1 || C_IMPLEMENTATION_TYPE_WACH == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_WACH == 11 || C_IMPLEMENTATION_TYPE_WACH == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_WACH),
.C_INTERFACE_TYPE (C_INTERFACE_TYPE),
.C_WR_DEPTH (C_WR_DEPTH_WACH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_WACH),
.C_DOUT_WIDTH (C_DIN_WIDTH_WACH),
.C_RD_DEPTH (C_WR_DEPTH_WACH),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_WACH),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_WACH),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_WACH),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_WACH),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH),
.C_USE_ECC (C_USE_ECC_WACH),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_WACH),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_FIFO_TYPE ((C_APPLICATION_TYPE_WACH == 1)?0:C_APPLICATION_TYPE_WACH),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_EN_SAFETY_CKT (1),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_WACH == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WACH + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WACH == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WACH + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WACH == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WACH + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_EMBEDDED_REG (0),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
//.C_EN_SAFETY_CKT (1),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v13_1_1_wach_dut
(
.CLK (S_ACLK),
.WR_CLK (S_ACLK),
.RD_CLK (M_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (wach_wr_en),
.RD_EN (wach_rd_en),
.PROG_FULL_THRESH (AXI_AW_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WACH{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WACH{1'b0}}),
.PROG_EMPTY_THRESH (AXI_AW_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WACH{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WACH{1'b0}}),
.INJECTDBITERR (AXI_AW_INJECTDBITERR),
.INJECTSBITERR (AXI_AW_INJECTSBITERR),
.DIN (wach_din),
.DOUT (wach_dout_pkt),
.FULL (wach_full),
.EMPTY (wach_empty),
.ALMOST_FULL (),
.PROG_FULL (AXI_AW_PROG_FULL),
.ALMOST_EMPTY (),
.PROG_EMPTY (AXI_AW_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (axi_aw_overflow_i),
.VALID (),
.UNDERFLOW (axi_aw_underflow_i),
.DATA_COUNT (AXI_AW_DATA_COUNT),
.RD_DATA_COUNT (AXI_AW_RD_DATA_COUNT),
.WR_DATA_COUNT (AXI_AW_WR_DATA_COUNT),
.SBITERR (AXI_AW_SBITERR),
.DBITERR (AXI_AW_DBITERR),
.wr_rst_busy (wr_rst_busy_wach),
.rd_rst_busy (rd_rst_busy_wach),
.wr_rst_i_out (),
.rd_rst_i_out (),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign wach_s_axi_awready = (IS_8SERIES == 0) ? ~wach_full : (C_IMPLEMENTATION_TYPE_WACH == 5 || C_IMPLEMENTATION_TYPE_WACH == 13) ? ~(wach_full | wr_rst_busy_wach) : ~wach_full;
assign wach_m_axi_awvalid = ~wach_empty;
assign S_AXI_AWREADY = wach_s_axi_awready;
assign AXI_AW_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_aw_underflow_i : 0;
assign AXI_AW_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_aw_overflow_i : 0;
end endgenerate // axi_write_address_channel
// Register Slice for Write Address Channel
generate if (C_WACH_TYPE == 1) begin : gwach_reg_slice
fifo_generator_v13_1_1_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_WACH),
.C_REG_CONFIG (C_REG_SLICE_MODE_WACH)
)
wach_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (wach_din),
.S_VALID (S_AXI_AWVALID),
.S_READY (S_AXI_AWREADY),
// Master side
.M_PAYLOAD_DATA (wach_dout),
.M_VALID (M_AXI_AWVALID),
.M_READY (M_AXI_AWREADY)
);
end endgenerate // gwach_reg_slice
generate if (C_APPLICATION_TYPE_WACH == 1 && C_HAS_AXI_WR_CHANNEL == 1) begin : axi_mm_pkt_fifo_wr
fifo_generator_v13_1_1_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_WACH),
.C_REG_CONFIG (1)
)
wach_pkt_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (inverted_reset),
// Slave side
.S_PAYLOAD_DATA (wach_dout_pkt),
.S_VALID (awvalid_pkt),
.S_READY (awready_pkt),
// Master side
.M_PAYLOAD_DATA (wach_dout),
.M_VALID (M_AXI_AWVALID),
.M_READY (M_AXI_AWREADY)
);
assign awvalid_pkt = wach_m_axi_awvalid && awvalid_en;
assign txn_count_up = wdch_s_axi_wready && wdch_wr_en && wdch_din[0];
assign txn_count_down = wach_m_axi_awvalid && awready_pkt && awvalid_en;
always@(posedge S_ACLK or posedge inverted_reset) begin
if(inverted_reset == 1) begin
wr_pkt_count <= 0;
end else begin
if(txn_count_up == 1 && txn_count_down == 0) begin
wr_pkt_count <= wr_pkt_count + 1;
end else if(txn_count_up == 0 && txn_count_down == 1) begin
wr_pkt_count <= wr_pkt_count - 1;
end
end
end //Always end
assign awvalid_en = (wr_pkt_count > 0)?1:0;
end endgenerate
generate if (C_APPLICATION_TYPE_WACH != 1) begin : axi_mm_fifo_wr
assign awvalid_en = 1;
assign wach_dout = wach_dout_pkt;
assign M_AXI_AWVALID = wach_m_axi_awvalid;
end
endgenerate
generate if (IS_WR_DATA_CH == 1) begin : axi_write_data_channel
// Write protection when almost full or prog_full is high
assign wdch_we = (C_PROG_FULL_TYPE_WDCH != 0) ? wdch_s_axi_wready & S_AXI_WVALID : S_AXI_WVALID;
// Read protection when almost empty or prog_empty is high
assign wdch_re = (C_PROG_EMPTY_TYPE_WDCH != 0) ? wdch_m_axi_wvalid & M_AXI_WREADY : M_AXI_WREADY;
assign wdch_wr_en = (C_HAS_SLAVE_CE == 1) ? wdch_we & S_ACLK_EN : wdch_we;
assign wdch_rd_en = (C_HAS_MASTER_CE == 1) ? wdch_re & M_ACLK_EN : wdch_re;
fifo_generator_v13_1_1_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_WDCH == 1 || C_IMPLEMENTATION_TYPE_WDCH == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_WDCH == 2 || C_IMPLEMENTATION_TYPE_WDCH == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_WDCH == 1 || C_IMPLEMENTATION_TYPE_WDCH == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_WDCH == 11 || C_IMPLEMENTATION_TYPE_WDCH == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_WDCH),
.C_WR_DEPTH (C_WR_DEPTH_WDCH),
.C_INTERFACE_TYPE (C_INTERFACE_TYPE),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_WDCH),
.C_DOUT_WIDTH (C_DIN_WIDTH_WDCH),
.C_RD_DEPTH (C_WR_DEPTH_WDCH),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_WDCH),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_WDCH),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_WDCH),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_WDCH),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH),
.C_USE_ECC (C_USE_ECC_WDCH),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_WDCH),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_FIFO_TYPE (C_APPLICATION_TYPE_WDCH),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_WDCH == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WDCH + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WDCH == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WDCH + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WDCH == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WDCH + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_EMBEDDED_REG (0),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
.C_EN_SAFETY_CKT (1),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v13_1_1_wdch_dut
(
.CLK (S_ACLK),
.WR_CLK (S_ACLK),
.RD_CLK (M_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (wdch_wr_en),
.RD_EN (wdch_rd_en),
.PROG_FULL_THRESH (AXI_W_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WDCH{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WDCH{1'b0}}),
.PROG_EMPTY_THRESH (AXI_W_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WDCH{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WDCH{1'b0}}),
.INJECTDBITERR (AXI_W_INJECTDBITERR),
.INJECTSBITERR (AXI_W_INJECTSBITERR),
.DIN (wdch_din),
.DOUT (wdch_dout),
.FULL (wdch_full),
.EMPTY (wdch_empty),
.ALMOST_FULL (),
.PROG_FULL (AXI_W_PROG_FULL),
.ALMOST_EMPTY (),
.PROG_EMPTY (AXI_W_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (axi_w_overflow_i),
.VALID (),
.UNDERFLOW (axi_w_underflow_i),
.DATA_COUNT (AXI_W_DATA_COUNT),
.RD_DATA_COUNT (AXI_W_RD_DATA_COUNT),
.WR_DATA_COUNT (AXI_W_WR_DATA_COUNT),
.SBITERR (AXI_W_SBITERR),
.DBITERR (AXI_W_DBITERR),
.wr_rst_busy (wr_rst_busy_wdch),
.rd_rst_busy (rd_rst_busy_wdch),
.wr_rst_i_out (),
.rd_rst_i_out (),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign wdch_s_axi_wready = (IS_8SERIES == 0) ? ~wdch_full : (C_IMPLEMENTATION_TYPE_WDCH == 5 || C_IMPLEMENTATION_TYPE_WDCH == 13) ? ~(wdch_full | wr_rst_busy_wdch) : ~wdch_full;
assign wdch_m_axi_wvalid = ~wdch_empty;
assign S_AXI_WREADY = wdch_s_axi_wready;
assign M_AXI_WVALID = wdch_m_axi_wvalid;
assign AXI_W_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_w_underflow_i : 0;
assign AXI_W_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_w_overflow_i : 0;
end endgenerate // axi_write_data_channel
// Register Slice for Write Data Channel
generate if (C_WDCH_TYPE == 1) begin : gwdch_reg_slice
fifo_generator_v13_1_1_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_WDCH),
.C_REG_CONFIG (C_REG_SLICE_MODE_WDCH)
)
wdch_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (wdch_din),
.S_VALID (S_AXI_WVALID),
.S_READY (S_AXI_WREADY),
// Master side
.M_PAYLOAD_DATA (wdch_dout),
.M_VALID (M_AXI_WVALID),
.M_READY (M_AXI_WREADY)
);
end endgenerate // gwdch_reg_slice
generate if (IS_WR_RESP_CH == 1) begin : axi_write_resp_channel
// Write protection when almost full or prog_full is high
assign wrch_we = (C_PROG_FULL_TYPE_WRCH != 0) ? wrch_m_axi_bready & M_AXI_BVALID : M_AXI_BVALID;
// Read protection when almost empty or prog_empty is high
assign wrch_re = (C_PROG_EMPTY_TYPE_WRCH != 0) ? wrch_s_axi_bvalid & S_AXI_BREADY : S_AXI_BREADY;
assign wrch_wr_en = (C_HAS_MASTER_CE == 1) ? wrch_we & M_ACLK_EN : wrch_we;
assign wrch_rd_en = (C_HAS_SLAVE_CE == 1) ? wrch_re & S_ACLK_EN : wrch_re;
fifo_generator_v13_1_1_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_WRCH == 1 || C_IMPLEMENTATION_TYPE_WRCH == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_WRCH == 2 || C_IMPLEMENTATION_TYPE_WRCH == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_WRCH == 1 || C_IMPLEMENTATION_TYPE_WRCH == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_WRCH == 11 || C_IMPLEMENTATION_TYPE_WRCH == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_WRCH),
.C_WR_DEPTH (C_WR_DEPTH_WRCH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_WRCH),
.C_DOUT_WIDTH (C_DIN_WIDTH_WRCH),
.C_INTERFACE_TYPE (C_INTERFACE_TYPE),
.C_RD_DEPTH (C_WR_DEPTH_WRCH),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_WRCH),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_WRCH),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_WRCH),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_WRCH),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH),
.C_USE_ECC (C_USE_ECC_WRCH),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_WRCH),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_FIFO_TYPE (C_APPLICATION_TYPE_WRCH),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_WRCH == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WRCH + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WRCH == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WRCH + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WRCH == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WRCH + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_EMBEDDED_REG (0),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
.C_EN_SAFETY_CKT (1),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v13_1_1_wrch_dut
(
.CLK (S_ACLK),
.WR_CLK (M_ACLK),
.RD_CLK (S_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (wrch_wr_en),
.RD_EN (wrch_rd_en),
.PROG_FULL_THRESH (AXI_B_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WRCH{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WRCH{1'b0}}),
.PROG_EMPTY_THRESH (AXI_B_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WRCH{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WRCH{1'b0}}),
.INJECTDBITERR (AXI_B_INJECTDBITERR),
.INJECTSBITERR (AXI_B_INJECTSBITERR),
.DIN (wrch_din),
.DOUT (wrch_dout),
.FULL (wrch_full),
.EMPTY (wrch_empty),
.ALMOST_FULL (),
.ALMOST_EMPTY (),
.PROG_FULL (AXI_B_PROG_FULL),
.PROG_EMPTY (AXI_B_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (axi_b_overflow_i),
.VALID (),
.UNDERFLOW (axi_b_underflow_i),
.DATA_COUNT (AXI_B_DATA_COUNT),
.RD_DATA_COUNT (AXI_B_RD_DATA_COUNT),
.WR_DATA_COUNT (AXI_B_WR_DATA_COUNT),
.SBITERR (AXI_B_SBITERR),
.DBITERR (AXI_B_DBITERR),
.wr_rst_busy (wr_rst_busy_wrch),
.rd_rst_busy (rd_rst_busy_wrch),
.wr_rst_i_out (),
.rd_rst_i_out (),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign wrch_s_axi_bvalid = ~wrch_empty;
assign wrch_m_axi_bready = (IS_8SERIES == 0) ? ~wrch_full : (C_IMPLEMENTATION_TYPE_WRCH == 5 || C_IMPLEMENTATION_TYPE_WRCH == 13) ? ~(wrch_full | wr_rst_busy_wrch) : ~wrch_full;
assign S_AXI_BVALID = wrch_s_axi_bvalid;
assign M_AXI_BREADY = wrch_m_axi_bready;
assign AXI_B_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_b_underflow_i : 0;
assign AXI_B_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_b_overflow_i : 0;
end endgenerate // axi_write_resp_channel
// Register Slice for Write Response Channel
generate if (C_WRCH_TYPE == 1) begin : gwrch_reg_slice
fifo_generator_v13_1_1_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_WRCH),
.C_REG_CONFIG (C_REG_SLICE_MODE_WRCH)
)
wrch_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (wrch_din),
.S_VALID (M_AXI_BVALID),
.S_READY (M_AXI_BREADY),
// Master side
.M_PAYLOAD_DATA (wrch_dout),
.M_VALID (S_AXI_BVALID),
.M_READY (S_AXI_BREADY)
);
end endgenerate // gwrch_reg_slice
assign axi_wr_underflow_i = C_USE_COMMON_UNDERFLOW == 1 ? (axi_aw_underflow_i || axi_w_underflow_i || axi_b_underflow_i) : 0;
assign axi_wr_overflow_i = C_USE_COMMON_OVERFLOW == 1 ? (axi_aw_overflow_i || axi_w_overflow_i || axi_b_overflow_i) : 0;
generate if (IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) begin : axi_wach_output
assign M_AXI_AWADDR = wach_dout[AWID_OFFSET-1:AWADDR_OFFSET];
assign M_AXI_AWLEN = wach_dout[AWADDR_OFFSET-1:AWLEN_OFFSET];
assign M_AXI_AWSIZE = wach_dout[AWLEN_OFFSET-1:AWSIZE_OFFSET];
assign M_AXI_AWBURST = wach_dout[AWSIZE_OFFSET-1:AWBURST_OFFSET];
assign M_AXI_AWLOCK = wach_dout[AWBURST_OFFSET-1:AWLOCK_OFFSET];
assign M_AXI_AWCACHE = wach_dout[AWLOCK_OFFSET-1:AWCACHE_OFFSET];
assign M_AXI_AWPROT = wach_dout[AWCACHE_OFFSET-1:AWPROT_OFFSET];
assign M_AXI_AWQOS = wach_dout[AWPROT_OFFSET-1:AWQOS_OFFSET];
assign wach_din[AWID_OFFSET-1:AWADDR_OFFSET] = S_AXI_AWADDR;
assign wach_din[AWADDR_OFFSET-1:AWLEN_OFFSET] = S_AXI_AWLEN;
assign wach_din[AWLEN_OFFSET-1:AWSIZE_OFFSET] = S_AXI_AWSIZE;
assign wach_din[AWSIZE_OFFSET-1:AWBURST_OFFSET] = S_AXI_AWBURST;
assign wach_din[AWBURST_OFFSET-1:AWLOCK_OFFSET] = S_AXI_AWLOCK;
assign wach_din[AWLOCK_OFFSET-1:AWCACHE_OFFSET] = S_AXI_AWCACHE;
assign wach_din[AWCACHE_OFFSET-1:AWPROT_OFFSET] = S_AXI_AWPROT;
assign wach_din[AWPROT_OFFSET-1:AWQOS_OFFSET] = S_AXI_AWQOS;
end endgenerate // axi_wach_output
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_AXI_TYPE == 1) begin : axi_awregion
assign M_AXI_AWREGION = wach_dout[AWQOS_OFFSET-1:AWREGION_OFFSET];
end endgenerate // axi_awregion
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_AXI_TYPE != 1) begin : naxi_awregion
assign M_AXI_AWREGION = 0;
end endgenerate // naxi_awregion
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_AWUSER == 1) begin : axi_awuser
assign M_AXI_AWUSER = wach_dout[AWREGION_OFFSET-1:AWUSER_OFFSET];
end endgenerate // axi_awuser
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_AWUSER == 0) begin : naxi_awuser
assign M_AXI_AWUSER = 0;
end endgenerate // naxi_awuser
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_awid
assign M_AXI_AWID = wach_dout[C_DIN_WIDTH_WACH-1:AWID_OFFSET];
end endgenerate //axi_awid
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_awid
assign M_AXI_AWID = 0;
end endgenerate //naxi_awid
generate if (IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) begin : axi_wdch_output
assign M_AXI_WDATA = wdch_dout[WID_OFFSET-1:WDATA_OFFSET];
assign M_AXI_WSTRB = wdch_dout[WDATA_OFFSET-1:WSTRB_OFFSET];
assign M_AXI_WLAST = wdch_dout[0];
assign wdch_din[WID_OFFSET-1:WDATA_OFFSET] = S_AXI_WDATA;
assign wdch_din[WDATA_OFFSET-1:WSTRB_OFFSET] = S_AXI_WSTRB;
assign wdch_din[0] = S_AXI_WLAST;
end endgenerate // axi_wdch_output
generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_ID == 1 && C_AXI_TYPE == 3) begin
assign M_AXI_WID = wdch_dout[C_DIN_WIDTH_WDCH-1:WID_OFFSET];
end endgenerate
generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && (C_HAS_AXI_ID == 0 || C_AXI_TYPE != 3)) begin
assign M_AXI_WID = 0;
end endgenerate
generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_WUSER == 1 ) begin
assign M_AXI_WUSER = wdch_dout[WSTRB_OFFSET-1:WUSER_OFFSET];
end endgenerate
generate if (C_HAS_AXI_WUSER == 0) begin
assign M_AXI_WUSER = 0;
end endgenerate
generate if (IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) begin : axi_wrch_output
assign S_AXI_BRESP = wrch_dout[BID_OFFSET-1:BRESP_OFFSET];
assign wrch_din[BID_OFFSET-1:BRESP_OFFSET] = M_AXI_BRESP;
end endgenerate // axi_wrch_output
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_BUSER == 1) begin : axi_buser
assign S_AXI_BUSER = wrch_dout[BRESP_OFFSET-1:BUSER_OFFSET];
end endgenerate // axi_buser
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_BUSER == 0) begin : naxi_buser
assign S_AXI_BUSER = 0;
end endgenerate // naxi_buser
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_bid
assign S_AXI_BID = wrch_dout[C_DIN_WIDTH_WRCH-1:BID_OFFSET];
end endgenerate // axi_bid
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_bid
assign S_AXI_BID = 0 ;
end endgenerate // naxi_bid
generate if (IS_AXI_LITE_WACH == 1 || (IS_AXI_LITE == 1 && C_WACH_TYPE == 1)) begin : axi_wach_output1
assign wach_din = {S_AXI_AWADDR, S_AXI_AWPROT};
assign M_AXI_AWADDR = wach_dout[C_DIN_WIDTH_WACH-1:AWADDR_OFFSET];
assign M_AXI_AWPROT = wach_dout[AWADDR_OFFSET-1:AWPROT_OFFSET];
end endgenerate // axi_wach_output1
generate if (IS_AXI_LITE_WDCH == 1 || (IS_AXI_LITE == 1 && C_WDCH_TYPE == 1)) begin : axi_wdch_output1
assign wdch_din = {S_AXI_WDATA, S_AXI_WSTRB};
assign M_AXI_WDATA = wdch_dout[C_DIN_WIDTH_WDCH-1:WDATA_OFFSET];
assign M_AXI_WSTRB = wdch_dout[WDATA_OFFSET-1:WSTRB_OFFSET];
end endgenerate // axi_wdch_output1
generate if (IS_AXI_LITE_WRCH == 1 || (IS_AXI_LITE == 1 && C_WRCH_TYPE == 1)) begin : axi_wrch_output1
assign wrch_din = M_AXI_BRESP;
assign S_AXI_BRESP = wrch_dout[C_DIN_WIDTH_WRCH-1:BRESP_OFFSET];
end endgenerate // axi_wrch_output1
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_AWUSER == 1) begin : gwach_din1
assign wach_din[AWREGION_OFFSET-1:AWUSER_OFFSET] = S_AXI_AWUSER;
end endgenerate // gwach_din1
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : gwach_din2
assign wach_din[C_DIN_WIDTH_WACH-1:AWID_OFFSET] = S_AXI_AWID;
end endgenerate // gwach_din2
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_AXI_TYPE == 1) begin : gwach_din3
assign wach_din[AWQOS_OFFSET-1:AWREGION_OFFSET] = S_AXI_AWREGION;
end endgenerate // gwach_din3
generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_WUSER == 1) begin : gwdch_din1
assign wdch_din[WSTRB_OFFSET-1:WUSER_OFFSET] = S_AXI_WUSER;
end endgenerate // gwdch_din1
generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_ID == 1 && C_AXI_TYPE == 3) begin : gwdch_din2
assign wdch_din[C_DIN_WIDTH_WDCH-1:WID_OFFSET] = S_AXI_WID;
end endgenerate // gwdch_din2
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_BUSER == 1) begin : gwrch_din1
assign wrch_din[BRESP_OFFSET-1:BUSER_OFFSET] = M_AXI_BUSER;
end endgenerate // gwrch_din1
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : gwrch_din2
assign wrch_din[C_DIN_WIDTH_WRCH-1:BID_OFFSET] = M_AXI_BID;
end endgenerate // gwrch_din2
//end of axi_write_channel
//###########################################################################
// AXI FULL Read Channel (axi_read_channel)
//###########################################################################
wire [C_DIN_WIDTH_RACH-1:0] rach_din ;
wire [C_DIN_WIDTH_RACH-1:0] rach_dout ;
wire [C_DIN_WIDTH_RACH-1:0] rach_dout_pkt ;
wire rach_full ;
wire rach_almost_full ;
wire rach_prog_full ;
wire rach_empty ;
wire rach_almost_empty ;
wire rach_prog_empty ;
wire [C_DIN_WIDTH_RDCH-1:0] rdch_din ;
wire [C_DIN_WIDTH_RDCH-1:0] rdch_dout ;
wire rdch_full ;
wire rdch_almost_full ;
wire rdch_prog_full ;
wire rdch_empty ;
wire rdch_almost_empty ;
wire rdch_prog_empty ;
wire axi_ar_underflow_i ;
wire axi_r_underflow_i ;
wire axi_ar_overflow_i ;
wire axi_r_overflow_i ;
wire axi_rd_underflow_i ;
wire axi_rd_overflow_i ;
wire rach_s_axi_arready ;
wire rach_m_axi_arvalid ;
wire rach_wr_en ;
wire rach_rd_en ;
wire rdch_m_axi_rready ;
wire rdch_s_axi_rvalid ;
wire rdch_wr_en ;
wire rdch_rd_en ;
wire arvalid_pkt ;
wire arready_pkt ;
wire arvalid_en ;
wire rdch_rd_ok ;
wire accept_next_pkt ;
integer rdch_free_space ;
integer rdch_commited_space ;
wire rach_we ;
wire rach_re ;
wire rdch_we ;
wire rdch_re ;
localparam ARID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_RACH - C_AXI_ID_WIDTH : C_DIN_WIDTH_RACH;
localparam ARADDR_OFFSET = ARID_OFFSET - C_AXI_ADDR_WIDTH;
localparam ARLEN_OFFSET = C_AXI_TYPE != 2 ? ARADDR_OFFSET - C_AXI_LEN_WIDTH : ARADDR_OFFSET;
localparam ARSIZE_OFFSET = C_AXI_TYPE != 2 ? ARLEN_OFFSET - C_AXI_SIZE_WIDTH : ARLEN_OFFSET;
localparam ARBURST_OFFSET = C_AXI_TYPE != 2 ? ARSIZE_OFFSET - C_AXI_BURST_WIDTH : ARSIZE_OFFSET;
localparam ARLOCK_OFFSET = C_AXI_TYPE != 2 ? ARBURST_OFFSET - C_AXI_LOCK_WIDTH : ARBURST_OFFSET;
localparam ARCACHE_OFFSET = C_AXI_TYPE != 2 ? ARLOCK_OFFSET - C_AXI_CACHE_WIDTH : ARLOCK_OFFSET;
localparam ARPROT_OFFSET = ARCACHE_OFFSET - C_AXI_PROT_WIDTH;
localparam ARQOS_OFFSET = ARPROT_OFFSET - C_AXI_QOS_WIDTH;
localparam ARREGION_OFFSET = C_AXI_TYPE == 1 ? ARQOS_OFFSET - C_AXI_REGION_WIDTH : ARQOS_OFFSET;
localparam ARUSER_OFFSET = C_HAS_AXI_ARUSER == 1 ? ARREGION_OFFSET-C_AXI_ARUSER_WIDTH : ARREGION_OFFSET;
localparam RID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_RDCH - C_AXI_ID_WIDTH : C_DIN_WIDTH_RDCH;
localparam RDATA_OFFSET = RID_OFFSET - C_AXI_DATA_WIDTH;
localparam RRESP_OFFSET = RDATA_OFFSET - C_AXI_RRESP_WIDTH;
localparam RUSER_OFFSET = C_HAS_AXI_RUSER == 1 ? RRESP_OFFSET-C_AXI_RUSER_WIDTH : RRESP_OFFSET;
generate if (IS_RD_ADDR_CH == 1) begin : axi_read_addr_channel
// Write protection when almost full or prog_full is high
assign rach_we = (C_PROG_FULL_TYPE_RACH != 0) ? rach_s_axi_arready & S_AXI_ARVALID : S_AXI_ARVALID;
// Read protection when almost empty or prog_empty is high
// assign rach_rd_en = (C_PROG_EMPTY_TYPE_RACH != 5) ? rach_m_axi_arvalid & M_AXI_ARREADY : M_AXI_ARREADY && arvalid_en;
assign rach_re = (C_PROG_EMPTY_TYPE_RACH != 0 && C_APPLICATION_TYPE_RACH == 1) ?
rach_m_axi_arvalid & arready_pkt & arvalid_en :
(C_PROG_EMPTY_TYPE_RACH != 0 && C_APPLICATION_TYPE_RACH != 1) ?
M_AXI_ARREADY && rach_m_axi_arvalid :
(C_PROG_EMPTY_TYPE_RACH == 0 && C_APPLICATION_TYPE_RACH == 1) ?
arready_pkt & arvalid_en :
(C_PROG_EMPTY_TYPE_RACH == 0 && C_APPLICATION_TYPE_RACH != 1) ?
M_AXI_ARREADY : 1'b0;
assign rach_wr_en = (C_HAS_SLAVE_CE == 1) ? rach_we & S_ACLK_EN : rach_we;
assign rach_rd_en = (C_HAS_MASTER_CE == 1) ? rach_re & M_ACLK_EN : rach_re;
fifo_generator_v13_1_1_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_RACH == 1 || C_IMPLEMENTATION_TYPE_RACH == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_RACH == 2 || C_IMPLEMENTATION_TYPE_RACH == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_RACH == 1 || C_IMPLEMENTATION_TYPE_RACH == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_RACH == 11 || C_IMPLEMENTATION_TYPE_RACH == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_RACH),
.C_WR_DEPTH (C_WR_DEPTH_RACH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_RACH),
.C_INTERFACE_TYPE (C_INTERFACE_TYPE),
.C_DOUT_WIDTH (C_DIN_WIDTH_RACH),
.C_RD_DEPTH (C_WR_DEPTH_RACH),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_RACH),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_RACH),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_RACH),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_RACH),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH),
.C_USE_ECC (C_USE_ECC_RACH),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_RACH),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_FIFO_TYPE ((C_APPLICATION_TYPE_RACH == 1)?0:C_APPLICATION_TYPE_RACH),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_RACH == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RACH + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RACH == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RACH + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RACH == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RACH + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_EMBEDDED_REG (0),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
.C_EN_SAFETY_CKT (1),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v13_1_1_rach_dut
(
.CLK (S_ACLK),
.WR_CLK (S_ACLK),
.RD_CLK (M_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (rach_wr_en),
.RD_EN (rach_rd_en),
.PROG_FULL_THRESH (AXI_AR_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RACH{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RACH{1'b0}}),
.PROG_EMPTY_THRESH (AXI_AR_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RACH{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RACH{1'b0}}),
.INJECTDBITERR (AXI_AR_INJECTDBITERR),
.INJECTSBITERR (AXI_AR_INJECTSBITERR),
.DIN (rach_din),
.DOUT (rach_dout_pkt),
.FULL (rach_full),
.EMPTY (rach_empty),
.ALMOST_FULL (),
.ALMOST_EMPTY (),
.PROG_FULL (AXI_AR_PROG_FULL),
.PROG_EMPTY (AXI_AR_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (axi_ar_overflow_i),
.VALID (),
.UNDERFLOW (axi_ar_underflow_i),
.DATA_COUNT (AXI_AR_DATA_COUNT),
.RD_DATA_COUNT (AXI_AR_RD_DATA_COUNT),
.WR_DATA_COUNT (AXI_AR_WR_DATA_COUNT),
.SBITERR (AXI_AR_SBITERR),
.DBITERR (AXI_AR_DBITERR),
.wr_rst_busy (wr_rst_busy_rach),
.rd_rst_busy (rd_rst_busy_rach),
.wr_rst_i_out (),
.rd_rst_i_out (),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign rach_s_axi_arready = (IS_8SERIES == 0) ? ~rach_full : (C_IMPLEMENTATION_TYPE_RACH == 5 || C_IMPLEMENTATION_TYPE_RACH == 13) ? ~(rach_full | wr_rst_busy_rach) : ~rach_full;
assign rach_m_axi_arvalid = ~rach_empty;
assign S_AXI_ARREADY = rach_s_axi_arready;
assign AXI_AR_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_ar_underflow_i : 0;
assign AXI_AR_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_ar_overflow_i : 0;
end endgenerate // axi_read_addr_channel
// Register Slice for Read Address Channel
generate if (C_RACH_TYPE == 1) begin : grach_reg_slice
fifo_generator_v13_1_1_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_RACH),
.C_REG_CONFIG (C_REG_SLICE_MODE_RACH)
)
rach_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (rach_din),
.S_VALID (S_AXI_ARVALID),
.S_READY (S_AXI_ARREADY),
// Master side
.M_PAYLOAD_DATA (rach_dout),
.M_VALID (M_AXI_ARVALID),
.M_READY (M_AXI_ARREADY)
);
end endgenerate // grach_reg_slice
// Register Slice for Read Address Channel for MM Packet FIFO
generate if (C_RACH_TYPE == 0 && C_APPLICATION_TYPE_RACH == 1) begin : grach_reg_slice_mm_pkt_fifo
fifo_generator_v13_1_1_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_RACH),
.C_REG_CONFIG (1)
)
reg_slice_mm_pkt_fifo_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (inverted_reset),
// Slave side
.S_PAYLOAD_DATA (rach_dout_pkt),
.S_VALID (arvalid_pkt),
.S_READY (arready_pkt),
// Master side
.M_PAYLOAD_DATA (rach_dout),
.M_VALID (M_AXI_ARVALID),
.M_READY (M_AXI_ARREADY)
);
end endgenerate // grach_reg_slice_mm_pkt_fifo
generate if (C_RACH_TYPE == 0 && C_APPLICATION_TYPE_RACH != 1) begin : grach_m_axi_arvalid
assign M_AXI_ARVALID = rach_m_axi_arvalid;
assign rach_dout = rach_dout_pkt;
end endgenerate // grach_m_axi_arvalid
generate if (C_APPLICATION_TYPE_RACH == 1 && C_HAS_AXI_RD_CHANNEL == 1) begin : axi_mm_pkt_fifo_rd
assign rdch_rd_ok = rdch_s_axi_rvalid && rdch_rd_en;
assign arvalid_pkt = rach_m_axi_arvalid && arvalid_en;
assign accept_next_pkt = rach_m_axi_arvalid && arready_pkt && arvalid_en;
always@(posedge S_ACLK or posedge inverted_reset) begin
if(inverted_reset) begin
rdch_commited_space <= 0;
end else begin
if(rdch_rd_ok && !accept_next_pkt) begin
rdch_commited_space <= rdch_commited_space-1;
end else if(!rdch_rd_ok && accept_next_pkt) begin
rdch_commited_space <= rdch_commited_space+(rach_dout_pkt[ARADDR_OFFSET-1:ARLEN_OFFSET]+1);
end else if(rdch_rd_ok && accept_next_pkt) begin
rdch_commited_space <= rdch_commited_space+(rach_dout_pkt[ARADDR_OFFSET-1:ARLEN_OFFSET]);
end
end
end //Always end
always@(*) begin
rdch_free_space <= (C_WR_DEPTH_RDCH-(rdch_commited_space+rach_dout_pkt[ARADDR_OFFSET-1:ARLEN_OFFSET]+1));
end
assign arvalid_en = (rdch_free_space >= 0)?1:0;
end
endgenerate
generate if (C_APPLICATION_TYPE_RACH != 1) begin : axi_mm_fifo_rd
assign arvalid_en = 1;
end
endgenerate
generate if (IS_RD_DATA_CH == 1) begin : axi_read_data_channel
// Write protection when almost full or prog_full is high
assign rdch_we = (C_PROG_FULL_TYPE_RDCH != 0) ? rdch_m_axi_rready & M_AXI_RVALID : M_AXI_RVALID;
// Read protection when almost empty or prog_empty is high
assign rdch_re = (C_PROG_EMPTY_TYPE_RDCH != 0) ? rdch_s_axi_rvalid & S_AXI_RREADY : S_AXI_RREADY;
assign rdch_wr_en = (C_HAS_MASTER_CE == 1) ? rdch_we & M_ACLK_EN : rdch_we;
assign rdch_rd_en = (C_HAS_SLAVE_CE == 1) ? rdch_re & S_ACLK_EN : rdch_re;
fifo_generator_v13_1_1_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_RDCH == 1 || C_IMPLEMENTATION_TYPE_RDCH == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_RDCH == 2 || C_IMPLEMENTATION_TYPE_RDCH == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_RDCH == 1 || C_IMPLEMENTATION_TYPE_RDCH == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_RDCH == 11 || C_IMPLEMENTATION_TYPE_RDCH == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_RDCH),
.C_WR_DEPTH (C_WR_DEPTH_RDCH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_RDCH),
.C_DOUT_WIDTH (C_DIN_WIDTH_RDCH),
.C_RD_DEPTH (C_WR_DEPTH_RDCH),
.C_INTERFACE_TYPE (C_INTERFACE_TYPE),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_RDCH),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_RDCH),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_RDCH),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_RDCH),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH),
.C_USE_ECC (C_USE_ECC_RDCH),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_RDCH),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_FIFO_TYPE (C_APPLICATION_TYPE_RDCH),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_RDCH == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RDCH + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RDCH == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RDCH + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RDCH == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RDCH + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_EMBEDDED_REG (0),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
.C_EN_SAFETY_CKT (1),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v13_1_1_rdch_dut
(
.CLK (S_ACLK),
.WR_CLK (M_ACLK),
.RD_CLK (S_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (rdch_wr_en),
.RD_EN (rdch_rd_en),
.PROG_FULL_THRESH (AXI_R_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RDCH{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RDCH{1'b0}}),
.PROG_EMPTY_THRESH (AXI_R_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RDCH{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RDCH{1'b0}}),
.INJECTDBITERR (AXI_R_INJECTDBITERR),
.INJECTSBITERR (AXI_R_INJECTSBITERR),
.DIN (rdch_din),
.DOUT (rdch_dout),
.FULL (rdch_full),
.EMPTY (rdch_empty),
.ALMOST_FULL (),
.ALMOST_EMPTY (),
.PROG_FULL (AXI_R_PROG_FULL),
.PROG_EMPTY (AXI_R_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (axi_r_overflow_i),
.VALID (),
.UNDERFLOW (axi_r_underflow_i),
.DATA_COUNT (AXI_R_DATA_COUNT),
.RD_DATA_COUNT (AXI_R_RD_DATA_COUNT),
.WR_DATA_COUNT (AXI_R_WR_DATA_COUNT),
.SBITERR (AXI_R_SBITERR),
.DBITERR (AXI_R_DBITERR),
.wr_rst_busy (wr_rst_busy_rdch),
.rd_rst_busy (rd_rst_busy_rdch),
.wr_rst_i_out (),
.rd_rst_i_out (),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign rdch_s_axi_rvalid = ~rdch_empty;
assign rdch_m_axi_rready = (IS_8SERIES == 0) ? ~rdch_full : (C_IMPLEMENTATION_TYPE_RDCH == 5 || C_IMPLEMENTATION_TYPE_RDCH == 13) ? ~(rdch_full | wr_rst_busy_rdch) : ~rdch_full;
assign S_AXI_RVALID = rdch_s_axi_rvalid;
assign M_AXI_RREADY = rdch_m_axi_rready;
assign AXI_R_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_r_underflow_i : 0;
assign AXI_R_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_r_overflow_i : 0;
end endgenerate //axi_read_data_channel
// Register Slice for read Data Channel
generate if (C_RDCH_TYPE == 1) begin : grdch_reg_slice
fifo_generator_v13_1_1_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_RDCH),
.C_REG_CONFIG (C_REG_SLICE_MODE_RDCH)
)
rdch_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (rdch_din),
.S_VALID (M_AXI_RVALID),
.S_READY (M_AXI_RREADY),
// Master side
.M_PAYLOAD_DATA (rdch_dout),
.M_VALID (S_AXI_RVALID),
.M_READY (S_AXI_RREADY)
);
end endgenerate // grdch_reg_slice
assign axi_rd_underflow_i = C_USE_COMMON_UNDERFLOW == 1 ? (axi_ar_underflow_i || axi_r_underflow_i) : 0;
assign axi_rd_overflow_i = C_USE_COMMON_OVERFLOW == 1 ? (axi_ar_overflow_i || axi_r_overflow_i) : 0;
generate if (IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) begin : axi_full_rach_output
assign M_AXI_ARADDR = rach_dout[ARID_OFFSET-1:ARADDR_OFFSET];
assign M_AXI_ARLEN = rach_dout[ARADDR_OFFSET-1:ARLEN_OFFSET];
assign M_AXI_ARSIZE = rach_dout[ARLEN_OFFSET-1:ARSIZE_OFFSET];
assign M_AXI_ARBURST = rach_dout[ARSIZE_OFFSET-1:ARBURST_OFFSET];
assign M_AXI_ARLOCK = rach_dout[ARBURST_OFFSET-1:ARLOCK_OFFSET];
assign M_AXI_ARCACHE = rach_dout[ARLOCK_OFFSET-1:ARCACHE_OFFSET];
assign M_AXI_ARPROT = rach_dout[ARCACHE_OFFSET-1:ARPROT_OFFSET];
assign M_AXI_ARQOS = rach_dout[ARPROT_OFFSET-1:ARQOS_OFFSET];
assign rach_din[ARID_OFFSET-1:ARADDR_OFFSET] = S_AXI_ARADDR;
assign rach_din[ARADDR_OFFSET-1:ARLEN_OFFSET] = S_AXI_ARLEN;
assign rach_din[ARLEN_OFFSET-1:ARSIZE_OFFSET] = S_AXI_ARSIZE;
assign rach_din[ARSIZE_OFFSET-1:ARBURST_OFFSET] = S_AXI_ARBURST;
assign rach_din[ARBURST_OFFSET-1:ARLOCK_OFFSET] = S_AXI_ARLOCK;
assign rach_din[ARLOCK_OFFSET-1:ARCACHE_OFFSET] = S_AXI_ARCACHE;
assign rach_din[ARCACHE_OFFSET-1:ARPROT_OFFSET] = S_AXI_ARPROT;
assign rach_din[ARPROT_OFFSET-1:ARQOS_OFFSET] = S_AXI_ARQOS;
end endgenerate // axi_full_rach_output
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_AXI_TYPE == 1) begin : axi_arregion
assign M_AXI_ARREGION = rach_dout[ARQOS_OFFSET-1:ARREGION_OFFSET];
end endgenerate // axi_arregion
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_AXI_TYPE != 1) begin : naxi_arregion
assign M_AXI_ARREGION = 0;
end endgenerate // naxi_arregion
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ARUSER == 1) begin : axi_aruser
assign M_AXI_ARUSER = rach_dout[ARREGION_OFFSET-1:ARUSER_OFFSET];
end endgenerate // axi_aruser
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ARUSER == 0) begin : naxi_aruser
assign M_AXI_ARUSER = 0;
end endgenerate // naxi_aruser
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_arid
assign M_AXI_ARID = rach_dout[C_DIN_WIDTH_RACH-1:ARID_OFFSET];
end endgenerate // axi_arid
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_arid
assign M_AXI_ARID = 0;
end endgenerate // naxi_arid
generate if (IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) begin : axi_full_rdch_output
assign S_AXI_RDATA = rdch_dout[RID_OFFSET-1:RDATA_OFFSET];
assign S_AXI_RRESP = rdch_dout[RDATA_OFFSET-1:RRESP_OFFSET];
assign S_AXI_RLAST = rdch_dout[0];
assign rdch_din[RID_OFFSET-1:RDATA_OFFSET] = M_AXI_RDATA;
assign rdch_din[RDATA_OFFSET-1:RRESP_OFFSET] = M_AXI_RRESP;
assign rdch_din[0] = M_AXI_RLAST;
end endgenerate // axi_full_rdch_output
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_RUSER == 1) begin : axi_full_ruser_output
assign S_AXI_RUSER = rdch_dout[RRESP_OFFSET-1:RUSER_OFFSET];
end endgenerate // axi_full_ruser_output
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_RUSER == 0) begin : axi_full_nruser_output
assign S_AXI_RUSER = 0;
end endgenerate // axi_full_nruser_output
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_rid
assign S_AXI_RID = rdch_dout[C_DIN_WIDTH_RDCH-1:RID_OFFSET];
end endgenerate // axi_rid
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_rid
assign S_AXI_RID = 0;
end endgenerate // naxi_rid
generate if (IS_AXI_LITE_RACH == 1 || (IS_AXI_LITE == 1 && C_RACH_TYPE == 1)) begin : axi_lite_rach_output1
assign rach_din = {S_AXI_ARADDR, S_AXI_ARPROT};
assign M_AXI_ARADDR = rach_dout[C_DIN_WIDTH_RACH-1:ARADDR_OFFSET];
assign M_AXI_ARPROT = rach_dout[ARADDR_OFFSET-1:ARPROT_OFFSET];
end endgenerate // axi_lite_rach_output
generate if (IS_AXI_LITE_RDCH == 1 || (IS_AXI_LITE == 1 && C_RDCH_TYPE == 1)) begin : axi_lite_rdch_output1
assign rdch_din = {M_AXI_RDATA, M_AXI_RRESP};
assign S_AXI_RDATA = rdch_dout[C_DIN_WIDTH_RDCH-1:RDATA_OFFSET];
assign S_AXI_RRESP = rdch_dout[RDATA_OFFSET-1:RRESP_OFFSET];
end endgenerate // axi_lite_rdch_output
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ARUSER == 1) begin : grach_din1
assign rach_din[ARREGION_OFFSET-1:ARUSER_OFFSET] = S_AXI_ARUSER;
end endgenerate // grach_din1
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : grach_din2
assign rach_din[C_DIN_WIDTH_RACH-1:ARID_OFFSET] = S_AXI_ARID;
end endgenerate // grach_din2
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_AXI_TYPE == 1) begin
assign rach_din[ARQOS_OFFSET-1:ARREGION_OFFSET] = S_AXI_ARREGION;
end endgenerate
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_RUSER == 1) begin : grdch_din1
assign rdch_din[RRESP_OFFSET-1:RUSER_OFFSET] = M_AXI_RUSER;
end endgenerate // grdch_din1
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : grdch_din2
assign rdch_din[C_DIN_WIDTH_RDCH-1:RID_OFFSET] = M_AXI_RID;
end endgenerate // grdch_din2
//end of axi_read_channel
generate if (C_INTERFACE_TYPE == 1 && C_USE_COMMON_UNDERFLOW == 1) begin : gaxi_comm_uf
assign UNDERFLOW = (C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 1) ? (axi_wr_underflow_i || axi_rd_underflow_i) :
(C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 0) ? axi_wr_underflow_i :
(C_HAS_AXI_WR_CHANNEL == 0 && C_HAS_AXI_RD_CHANNEL == 1) ? axi_rd_underflow_i : 0;
end endgenerate // gaxi_comm_uf
generate if (C_INTERFACE_TYPE == 1 && C_USE_COMMON_OVERFLOW == 1) begin : gaxi_comm_of
assign OVERFLOW = (C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 1) ? (axi_wr_overflow_i || axi_rd_overflow_i) :
(C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 0) ? axi_wr_overflow_i :
(C_HAS_AXI_WR_CHANNEL == 0 && C_HAS_AXI_RD_CHANNEL == 1) ? axi_rd_overflow_i : 0;
end endgenerate // gaxi_comm_of
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
// Pass Through Logic or Wiring Logic
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
// Pass Through Logic for Read Channel
//-------------------------------------------------------------------------
// Wiring logic for Write Address Channel
generate if (C_WACH_TYPE == 2) begin : gwach_pass_through
assign M_AXI_AWID = S_AXI_AWID;
assign M_AXI_AWADDR = S_AXI_AWADDR;
assign M_AXI_AWLEN = S_AXI_AWLEN;
assign M_AXI_AWSIZE = S_AXI_AWSIZE;
assign M_AXI_AWBURST = S_AXI_AWBURST;
assign M_AXI_AWLOCK = S_AXI_AWLOCK;
assign M_AXI_AWCACHE = S_AXI_AWCACHE;
assign M_AXI_AWPROT = S_AXI_AWPROT;
assign M_AXI_AWQOS = S_AXI_AWQOS;
assign M_AXI_AWREGION = S_AXI_AWREGION;
assign M_AXI_AWUSER = S_AXI_AWUSER;
assign S_AXI_AWREADY = M_AXI_AWREADY;
assign M_AXI_AWVALID = S_AXI_AWVALID;
end endgenerate // gwach_pass_through;
// Wiring logic for Write Data Channel
generate if (C_WDCH_TYPE == 2) begin : gwdch_pass_through
assign M_AXI_WID = S_AXI_WID;
assign M_AXI_WDATA = S_AXI_WDATA;
assign M_AXI_WSTRB = S_AXI_WSTRB;
assign M_AXI_WLAST = S_AXI_WLAST;
assign M_AXI_WUSER = S_AXI_WUSER;
assign S_AXI_WREADY = M_AXI_WREADY;
assign M_AXI_WVALID = S_AXI_WVALID;
end endgenerate // gwdch_pass_through;
// Wiring logic for Write Response Channel
generate if (C_WRCH_TYPE == 2) begin : gwrch_pass_through
assign S_AXI_BID = M_AXI_BID;
assign S_AXI_BRESP = M_AXI_BRESP;
assign S_AXI_BUSER = M_AXI_BUSER;
assign M_AXI_BREADY = S_AXI_BREADY;
assign S_AXI_BVALID = M_AXI_BVALID;
end endgenerate // gwrch_pass_through;
//-------------------------------------------------------------------------
// Pass Through Logic for Read Channel
//-------------------------------------------------------------------------
// Wiring logic for Read Address Channel
generate if (C_RACH_TYPE == 2) begin : grach_pass_through
assign M_AXI_ARID = S_AXI_ARID;
assign M_AXI_ARADDR = S_AXI_ARADDR;
assign M_AXI_ARLEN = S_AXI_ARLEN;
assign M_AXI_ARSIZE = S_AXI_ARSIZE;
assign M_AXI_ARBURST = S_AXI_ARBURST;
assign M_AXI_ARLOCK = S_AXI_ARLOCK;
assign M_AXI_ARCACHE = S_AXI_ARCACHE;
assign M_AXI_ARPROT = S_AXI_ARPROT;
assign M_AXI_ARQOS = S_AXI_ARQOS;
assign M_AXI_ARREGION = S_AXI_ARREGION;
assign M_AXI_ARUSER = S_AXI_ARUSER;
assign S_AXI_ARREADY = M_AXI_ARREADY;
assign M_AXI_ARVALID = S_AXI_ARVALID;
end endgenerate // grach_pass_through;
// Wiring logic for Read Data Channel
generate if (C_RDCH_TYPE == 2) begin : grdch_pass_through
assign S_AXI_RID = M_AXI_RID;
assign S_AXI_RLAST = M_AXI_RLAST;
assign S_AXI_RUSER = M_AXI_RUSER;
assign S_AXI_RDATA = M_AXI_RDATA;
assign S_AXI_RRESP = M_AXI_RRESP;
assign S_AXI_RVALID = M_AXI_RVALID;
assign M_AXI_RREADY = S_AXI_RREADY;
end endgenerate // grdch_pass_through;
// Wiring logic for AXI Streaming
generate if (C_AXIS_TYPE == 2) begin : gaxis_pass_through
assign M_AXIS_TDATA = S_AXIS_TDATA;
assign M_AXIS_TSTRB = S_AXIS_TSTRB;
assign M_AXIS_TKEEP = S_AXIS_TKEEP;
assign M_AXIS_TID = S_AXIS_TID;
assign M_AXIS_TDEST = S_AXIS_TDEST;
assign M_AXIS_TUSER = S_AXIS_TUSER;
assign M_AXIS_TLAST = S_AXIS_TLAST;
assign S_AXIS_TREADY = M_AXIS_TREADY;
assign M_AXIS_TVALID = S_AXIS_TVALID;
end endgenerate // gaxis_pass_through;
endmodule //fifo_generator_v13_1_1
/*******************************************************************************
* Declaration of top-level module for Conventional FIFO
******************************************************************************/
module fifo_generator_v13_1_1_CONV_VER
#(
parameter C_COMMON_CLOCK = 0,
parameter C_INTERFACE_TYPE = 0,
parameter C_EN_SAFETY_CKT = 0,
parameter C_COUNT_TYPE = 0,
parameter C_DATA_COUNT_WIDTH = 2,
parameter C_DEFAULT_VALUE = "",
parameter C_DIN_WIDTH = 8,
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_ENABLE_RLOCS = 0,
parameter C_FAMILY = "virtex7", //Not allowed in Verilog model
parameter C_FULL_FLAGS_RST_VAL = 1,
parameter C_HAS_ALMOST_EMPTY = 0,
parameter C_HAS_ALMOST_FULL = 0,
parameter C_HAS_BACKUP = 0,
parameter C_HAS_DATA_COUNT = 0,
parameter C_HAS_INT_CLK = 0,
parameter C_HAS_MEMINIT_FILE = 0,
parameter C_HAS_OVERFLOW = 0,
parameter C_HAS_RD_DATA_COUNT = 0,
parameter C_HAS_RD_RST = 0,
parameter C_HAS_RST = 0,
parameter C_HAS_SRST = 0,
parameter C_HAS_UNDERFLOW = 0,
parameter C_HAS_VALID = 0,
parameter C_HAS_WR_ACK = 0,
parameter C_HAS_WR_DATA_COUNT = 0,
parameter C_HAS_WR_RST = 0,
parameter C_IMPLEMENTATION_TYPE = 0,
parameter C_INIT_WR_PNTR_VAL = 0,
parameter C_MEMORY_TYPE = 1,
parameter C_MIF_FILE_NAME = "",
parameter C_OPTIMIZATION_MODE = 0,
parameter C_OVERFLOW_LOW = 0,
parameter C_PRELOAD_LATENCY = 1,
parameter C_PRELOAD_REGS = 0,
parameter C_PRIM_FIFO_TYPE = "",
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0,
parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0,
parameter C_PROG_EMPTY_TYPE = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0,
parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0,
parameter C_PROG_FULL_TYPE = 0,
parameter C_RD_DATA_COUNT_WIDTH = 2,
parameter C_RD_DEPTH = 256,
parameter C_RD_FREQ = 1,
parameter C_RD_PNTR_WIDTH = 8,
parameter C_UNDERFLOW_LOW = 0,
parameter C_USE_DOUT_RST = 0,
parameter C_USE_ECC = 0,
parameter C_USE_EMBEDDED_REG = 0,
parameter C_USE_FIFO16_FLAGS = 0,
parameter C_USE_FWFT_DATA_COUNT = 0,
parameter C_VALID_LOW = 0,
parameter C_WR_ACK_LOW = 0,
parameter C_WR_DATA_COUNT_WIDTH = 2,
parameter C_WR_DEPTH = 256,
parameter C_WR_FREQ = 1,
parameter C_WR_PNTR_WIDTH = 8,
parameter C_WR_RESPONSE_LATENCY = 1,
parameter C_MSGON_VAL = 1,
parameter C_ENABLE_RST_SYNC = 1,
parameter C_ERROR_INJECTION_TYPE = 0,
parameter C_FIFO_TYPE = 0,
parameter C_SYNCHRONIZER_STAGE = 2,
parameter C_AXI_TYPE = 0
)
(
input BACKUP,
input BACKUP_MARKER,
input CLK,
input RST,
input SRST,
input WR_CLK,
input WR_RST,
input RD_CLK,
input RD_RST,
input [C_DIN_WIDTH-1:0] DIN,
input WR_EN,
input RD_EN,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE,
input INT_CLK,
input INJECTDBITERR,
input INJECTSBITERR,
output [C_DOUT_WIDTH-1:0] DOUT,
output FULL,
output ALMOST_FULL,
output WR_ACK,
output OVERFLOW,
output EMPTY,
output ALMOST_EMPTY,
output VALID,
output UNDERFLOW,
output [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT,
output [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT,
output [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT,
output PROG_FULL,
output PROG_EMPTY,
output SBITERR,
output DBITERR,
output wr_rst_busy,
output rd_rst_busy,
output wr_rst_i_out,
output rd_rst_i_out
);
/*
******************************************************************************
* Definition of Parameters
******************************************************************************
* C_COMMON_CLOCK : Common Clock (1), Independent Clocks (0)
* C_COUNT_TYPE : *not used
* C_DATA_COUNT_WIDTH : Width of DATA_COUNT bus
* C_DEFAULT_VALUE : *not used
* C_DIN_WIDTH : Width of DIN bus
* C_DOUT_RST_VAL : Reset value of DOUT
* C_DOUT_WIDTH : Width of DOUT bus
* C_ENABLE_RLOCS : *not used
* C_FAMILY : not used in bhv model
* C_FULL_FLAGS_RST_VAL : Full flags rst val (0 or 1)
* C_HAS_ALMOST_EMPTY : 1=Core has ALMOST_EMPTY flag
* C_HAS_ALMOST_FULL : 1=Core has ALMOST_FULL flag
* C_HAS_BACKUP : *not used
* C_HAS_DATA_COUNT : 1=Core has DATA_COUNT bus
* C_HAS_INT_CLK : not used in bhv model
* C_HAS_MEMINIT_FILE : *not used
* C_HAS_OVERFLOW : 1=Core has OVERFLOW flag
* C_HAS_RD_DATA_COUNT : 1=Core has RD_DATA_COUNT bus
* C_HAS_RD_RST : *not used
* C_HAS_RST : 1=Core has Async Rst
* C_HAS_SRST : 1=Core has Sync Rst
* C_HAS_UNDERFLOW : 1=Core has UNDERFLOW flag
* C_HAS_VALID : 1=Core has VALID flag
* C_HAS_WR_ACK : 1=Core has WR_ACK flag
* C_HAS_WR_DATA_COUNT : 1=Core has WR_DATA_COUNT bus
* C_HAS_WR_RST : *not used
* C_IMPLEMENTATION_TYPE : 0=Common-Clock Bram/Dram
* 1=Common-Clock ShiftRam
* 2=Indep. Clocks Bram/Dram
* 3=Virtex-4 Built-in
* 4=Virtex-5 Built-in
* C_INIT_WR_PNTR_VAL : *not used
* C_MEMORY_TYPE : 1=Block RAM
* 2=Distributed RAM
* 3=Shift RAM
* 4=Built-in FIFO
* C_MIF_FILE_NAME : *not used
* C_OPTIMIZATION_MODE : *not used
* C_OVERFLOW_LOW : 1=OVERFLOW active low
* C_PRELOAD_LATENCY : Latency of read: 0, 1, 2
* C_PRELOAD_REGS : 1=Use output registers
* C_PRIM_FIFO_TYPE : not used in bhv model
* C_PROG_EMPTY_THRESH_ASSERT_VAL: PROG_EMPTY assert threshold
* C_PROG_EMPTY_THRESH_NEGATE_VAL: PROG_EMPTY negate threshold
* C_PROG_EMPTY_TYPE : 0=No programmable empty
* 1=Single prog empty thresh constant
* 2=Multiple prog empty thresh constants
* 3=Single prog empty thresh input
* 4=Multiple prog empty thresh inputs
* C_PROG_FULL_THRESH_ASSERT_VAL : PROG_FULL assert threshold
* C_PROG_FULL_THRESH_NEGATE_VAL : PROG_FULL negate threshold
* C_PROG_FULL_TYPE : 0=No prog full
* 1=Single prog full thresh constant
* 2=Multiple prog full thresh constants
* 3=Single prog full thresh input
* 4=Multiple prog full thresh inputs
* C_RD_DATA_COUNT_WIDTH : Width of RD_DATA_COUNT bus
* C_RD_DEPTH : Depth of read interface (2^N)
* C_RD_FREQ : not used in bhv model
* C_RD_PNTR_WIDTH : always log2(C_RD_DEPTH)
* C_UNDERFLOW_LOW : 1=UNDERFLOW active low
* C_USE_DOUT_RST : 1=Resets DOUT on RST
* C_USE_ECC : Used for error injection purpose
* C_USE_EMBEDDED_REG : 1=Use BRAM embedded output register
* C_USE_FIFO16_FLAGS : not used in bhv model
* C_USE_FWFT_DATA_COUNT : 1=Use extra logic for FWFT data count
* C_VALID_LOW : 1=VALID active low
* C_WR_ACK_LOW : 1=WR_ACK active low
* C_WR_DATA_COUNT_WIDTH : Width of WR_DATA_COUNT bus
* C_WR_DEPTH : Depth of write interface (2^N)
* C_WR_FREQ : not used in bhv model
* C_WR_PNTR_WIDTH : always log2(C_WR_DEPTH)
* C_WR_RESPONSE_LATENCY : *not used
* C_MSGON_VAL : *not used by bhv model
* C_ENABLE_RST_SYNC : 0 = Use WR_RST & RD_RST
* 1 = Use RST
* C_ERROR_INJECTION_TYPE : 0 = No error injection
* 1 = Single bit error injection only
* 2 = Double bit error injection only
* 3 = Single and double bit error injection
******************************************************************************
* Definition of Ports
******************************************************************************
* BACKUP : Not used
* BACKUP_MARKER: Not used
* CLK : Clock
* DIN : Input data bus
* PROG_EMPTY_THRESH : Threshold for Programmable Empty Flag
* PROG_EMPTY_THRESH_ASSERT: Threshold for Programmable Empty Flag
* PROG_EMPTY_THRESH_NEGATE: Threshold for Programmable Empty Flag
* PROG_FULL_THRESH : Threshold for Programmable Full Flag
* PROG_FULL_THRESH_ASSERT : Threshold for Programmable Full Flag
* PROG_FULL_THRESH_NEGATE : Threshold for Programmable Full Flag
* RD_CLK : Read Domain Clock
* RD_EN : Read enable
* RD_RST : Read Reset
* RST : Asynchronous Reset
* SRST : Synchronous Reset
* WR_CLK : Write Domain Clock
* WR_EN : Write enable
* WR_RST : Write Reset
* INT_CLK : Internal Clock
* INJECTSBITERR: Inject Signle bit error
* INJECTDBITERR: Inject Double bit error
* ALMOST_EMPTY : One word remaining in FIFO
* ALMOST_FULL : One empty space remaining in FIFO
* DATA_COUNT : Number of data words in fifo( synchronous to CLK)
* DOUT : Output data bus
* EMPTY : Empty flag
* FULL : Full flag
* OVERFLOW : Last write rejected
* PROG_EMPTY : Programmable Empty Flag
* PROG_FULL : Programmable Full Flag
* RD_DATA_COUNT: Number of data words in fifo (synchronous to RD_CLK)
* UNDERFLOW : Last read rejected
* VALID : Last read acknowledged, DOUT bus VALID
* WR_ACK : Last write acknowledged
* WR_DATA_COUNT: Number of data words in fifo (synchronous to WR_CLK)
* SBITERR : Single Bit ECC Error Detected
* DBITERR : Double Bit ECC Error Detected
******************************************************************************
*/
//----------------------------------------------------------------------------
//- Internal Signals for delayed input signals
//- All the input signals except Clock are delayed by 100 ps and then given to
//- the models.
//----------------------------------------------------------------------------
reg rst_delayed ;
reg empty_fb ;
reg srst_delayed ;
reg wr_rst_delayed ;
reg rd_rst_delayed ;
reg wr_en_delayed ;
reg rd_en_delayed ;
reg [C_DIN_WIDTH-1:0] din_delayed ;
reg [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_delayed ;
reg [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_assert_delayed ;
reg [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_negate_delayed ;
reg [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_delayed ;
reg [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_assert_delayed ;
reg [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_negate_delayed ;
reg injectdbiterr_delayed ;
reg injectsbiterr_delayed ;
wire empty_p0_out;
always @* rst_delayed <= #`TCQ RST ;
always @* empty_fb <= #`TCQ empty_p0_out ;
always @* srst_delayed <= #`TCQ SRST ;
always @* wr_rst_delayed <= #`TCQ WR_RST ;
always @* rd_rst_delayed <= #`TCQ RD_RST ;
always @* din_delayed <= #`TCQ DIN ;
always @* wr_en_delayed <= #`TCQ WR_EN ;
always @* rd_en_delayed <= #`TCQ RD_EN ;
always @* prog_empty_thresh_delayed <= #`TCQ PROG_EMPTY_THRESH ;
always @* prog_empty_thresh_assert_delayed <= #`TCQ PROG_EMPTY_THRESH_ASSERT ;
always @* prog_empty_thresh_negate_delayed <= #`TCQ PROG_EMPTY_THRESH_NEGATE ;
always @* prog_full_thresh_delayed <= #`TCQ PROG_FULL_THRESH ;
always @* prog_full_thresh_assert_delayed <= #`TCQ PROG_FULL_THRESH_ASSERT ;
always @* prog_full_thresh_negate_delayed <= #`TCQ PROG_FULL_THRESH_NEGATE ;
always @* injectdbiterr_delayed <= #`TCQ INJECTDBITERR ;
always @* injectsbiterr_delayed <= #`TCQ INJECTSBITERR ;
/*****************************************************************************
* Derived parameters
****************************************************************************/
//There are 2 Verilog behavioral models
// 0 = Common-Clock FIFO/ShiftRam FIFO
// 1 = Independent Clocks FIFO
// 2 = Low Latency Synchronous FIFO
// 3 = Low Latency Asynchronous FIFO
localparam C_VERILOG_IMPL = (C_FIFO_TYPE == 3) ? 2 :
(C_IMPLEMENTATION_TYPE == 2) ? 1 : 0;
localparam IS_8SERIES = (C_FAMILY == "virtexu" || C_FAMILY == "kintexu" || C_FAMILY == "artixu" || C_FAMILY == "virtexuplus" || C_FAMILY == "zynquplus" || C_FAMILY == "kintexuplus") ? 1 : 0;
//Internal reset signals
reg rd_rst_asreg = 0;
reg rd_rst_asreg_d1 = 0;
reg rd_rst_asreg_d2 = 0;
reg rd_rst_asreg_d3 = 0;
reg rd_rst_reg = 0;
wire rd_rst_comb;
reg wr_rst_d0 = 0;
reg wr_rst_d1 = 0;
reg wr_rst_d2 = 0;
reg rd_rst_d0 = 0;
reg rd_rst_d1 = 0;
reg rd_rst_d2 = 0;
reg rd_rst_d3 = 0;
reg wrrst_done = 0;
reg rdrst_done = 0;
reg wr_rst_asreg = 0;
reg wr_rst_asreg_d1 = 0;
reg wr_rst_asreg_d2 = 0;
reg wr_rst_asreg_d3 = 0;
reg rd_rst_wr_d0 = 0;
reg rd_rst_wr_d1 = 0;
reg rd_rst_wr_d2 = 0;
reg wr_rst_reg = 0;
reg rst_active_i = 1'b1;
reg rst_delayed_d1 = 1'b1;
reg rst_delayed_d2 = 1'b1;
wire wr_rst_comb;
wire wr_rst_i;
wire rd_rst_i;
wire rst_i;
//Internal reset signals
reg rst_asreg = 0;
reg srst_asreg = 0;
reg rst_asreg_d1 = 0;
reg rst_asreg_d2 = 0;
reg srst_asreg_d1 = 0;
reg srst_asreg_d2 = 0;
reg rst_reg = 0;
reg srst_reg = 0;
wire rst_comb;
wire srst_comb;
reg rst_full_gen_i = 0;
reg rst_full_ff_i = 0;
wire RD_CLK_P0_IN;
wire RST_P0_IN;
wire RD_EN_FIFO_IN;
wire RD_EN_P0_IN;
wire ALMOST_EMPTY_FIFO_OUT;
wire ALMOST_FULL_FIFO_OUT;
wire [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT_FIFO_OUT;
wire [C_DOUT_WIDTH-1:0] DOUT_FIFO_OUT;
wire EMPTY_FIFO_OUT;
wire FULL_FIFO_OUT;
wire OVERFLOW_FIFO_OUT;
wire PROG_EMPTY_FIFO_OUT;
wire PROG_FULL_FIFO_OUT;
wire VALID_FIFO_OUT;
wire [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT_FIFO_OUT;
wire UNDERFLOW_FIFO_OUT;
wire WR_ACK_FIFO_OUT;
wire [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT_FIFO_OUT;
//***************************************************************************
// Internal Signals
// The core uses either the internal_ wires or the preload0_ wires depending
// on whether the core uses Preload0 or not.
// When using preload0, the internal signals connect the internal core to
// the preload logic, and the external core's interfaces are tied to the
// preload0 signals from the preload logic.
//***************************************************************************
wire [C_DOUT_WIDTH-1:0] DATA_P0_OUT;
wire VALID_P0_OUT;
wire EMPTY_P0_OUT;
wire ALMOSTEMPTY_P0_OUT;
reg EMPTY_P0_OUT_Q;
reg ALMOSTEMPTY_P0_OUT_Q;
wire UNDERFLOW_P0_OUT;
wire RDEN_P0_OUT;
wire [C_DOUT_WIDTH-1:0] DATA_P0_IN;
wire EMPTY_P0_IN;
reg [31:0] DATA_COUNT_FWFT;
reg SS_FWFT_WR ;
reg SS_FWFT_RD ;
wire sbiterr_fifo_out;
wire dbiterr_fifo_out;
wire inject_sbit_err;
wire inject_dbit_err;
wire w_fab_read_data_valid_i;
wire w_read_data_valid_i;
wire w_ram_valid_i;
// Assign 0 if not selected to avoid 'X' propogation to S/DBITERR.
assign inject_sbit_err = ((C_ERROR_INJECTION_TYPE == 1) || (C_ERROR_INJECTION_TYPE == 3)) ?
injectsbiterr_delayed : 0;
assign inject_dbit_err = ((C_ERROR_INJECTION_TYPE == 2) || (C_ERROR_INJECTION_TYPE == 3)) ?
injectdbiterr_delayed : 0;
assign wr_rst_i_out = wr_rst_i;
assign rd_rst_i_out = rd_rst_i;
// Choose the behavioral model to instantiate based on the C_VERILOG_IMPL
// parameter (1=Independent Clocks, 0=Common Clock)
localparam FULL_FLAGS_RST_VAL = (C_HAS_SRST == 1) ? 0 : C_FULL_FLAGS_RST_VAL;
generate
case (C_VERILOG_IMPL)
0 : begin : block1
//Common Clock Behavioral Model
fifo_generator_v13_1_1_bhv_ver_ss
#(
.C_FAMILY (C_FAMILY),
.C_DATA_COUNT_WIDTH (C_DATA_COUNT_WIDTH),
.C_DIN_WIDTH (C_DIN_WIDTH),
.C_DOUT_RST_VAL (C_DOUT_RST_VAL),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_FULL_FLAGS_RST_VAL (FULL_FLAGS_RST_VAL),
.C_HAS_ALMOST_EMPTY (C_HAS_ALMOST_EMPTY),
.C_HAS_ALMOST_FULL ((C_AXI_TYPE == 0 && C_FIFO_TYPE == 1) ? 1 : C_HAS_ALMOST_FULL),
.C_HAS_DATA_COUNT (C_HAS_DATA_COUNT),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT),
.C_HAS_RST (C_HAS_RST),
.C_HAS_SRST (C_HAS_SRST),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_HAS_VALID (C_HAS_VALID),
.C_HAS_WR_ACK (C_HAS_WR_ACK),
.C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT),
.C_IMPLEMENTATION_TYPE (C_IMPLEMENTATION_TYPE),
.C_MEMORY_TYPE (C_MEMORY_TYPE),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_PRELOAD_LATENCY (C_PRELOAD_LATENCY),
.C_PRELOAD_REGS (C_PRELOAD_REGS),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL),
.C_PROG_EMPTY_THRESH_NEGATE_VAL (C_PROG_EMPTY_THRESH_NEGATE_VAL),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL),
.C_PROG_FULL_THRESH_NEGATE_VAL (C_PROG_FULL_THRESH_NEGATE_VAL),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE),
.C_RD_DATA_COUNT_WIDTH (C_RD_DATA_COUNT_WIDTH),
.C_RD_DEPTH (C_RD_DEPTH),
.C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG),
.C_EN_SAFETY_CKT (C_EN_SAFETY_CKT),
.C_USE_FWFT_DATA_COUNT (C_USE_FWFT_DATA_COUNT),
.C_VALID_LOW (C_VALID_LOW),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH),
.C_WR_DEPTH (C_WR_DEPTH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH),
.C_USE_ECC (C_USE_ECC),
.C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE),
.C_FIFO_TYPE (C_FIFO_TYPE)
)
gen_ss
(
.CLK (CLK),
.RST (rst_i),
.SRST (srst_delayed),
.RST_FULL_GEN (rst_full_gen_i),
.RST_FULL_FF (rst_full_ff_i),
.DIN (din_delayed),
.WR_EN (wr_en_delayed),
.RD_EN (RD_EN_FIFO_IN),
.RD_EN_USER (rd_en_delayed),
.USER_EMPTY_FB (empty_fb),
.PROG_EMPTY_THRESH (prog_empty_thresh_delayed),
.PROG_EMPTY_THRESH_ASSERT (prog_empty_thresh_assert_delayed),
.PROG_EMPTY_THRESH_NEGATE (prog_empty_thresh_negate_delayed),
.PROG_FULL_THRESH (prog_full_thresh_delayed),
.PROG_FULL_THRESH_ASSERT (prog_full_thresh_assert_delayed),
.PROG_FULL_THRESH_NEGATE (prog_full_thresh_negate_delayed),
.INJECTSBITERR (inject_sbit_err),
.INJECTDBITERR (inject_dbit_err),
.DOUT (DOUT_FIFO_OUT),
.FULL (FULL_FIFO_OUT),
.ALMOST_FULL (ALMOST_FULL_FIFO_OUT),
.WR_ACK (WR_ACK_FIFO_OUT),
.OVERFLOW (OVERFLOW_FIFO_OUT),
.EMPTY (EMPTY_FIFO_OUT),
.ALMOST_EMPTY (ALMOST_EMPTY_FIFO_OUT),
.VALID (VALID_FIFO_OUT),
.UNDERFLOW (UNDERFLOW_FIFO_OUT),
.DATA_COUNT (DATA_COUNT_FIFO_OUT),
.RD_DATA_COUNT (RD_DATA_COUNT_FIFO_OUT),
.WR_DATA_COUNT (WR_DATA_COUNT_FIFO_OUT),
.PROG_FULL (PROG_FULL_FIFO_OUT),
.PROG_EMPTY (PROG_EMPTY_FIFO_OUT),
.WR_RST_BUSY (wr_rst_busy),
.RD_RST_BUSY (rd_rst_busy),
.SBITERR (sbiterr_fifo_out),
.DBITERR (dbiterr_fifo_out)
);
end
1 : begin : block1
//Independent Clocks Behavioral Model
fifo_generator_v13_1_1_bhv_ver_as
#(
.C_FAMILY (C_FAMILY),
.C_DATA_COUNT_WIDTH (C_DATA_COUNT_WIDTH),
.C_DIN_WIDTH (C_DIN_WIDTH),
.C_DOUT_RST_VAL (C_DOUT_RST_VAL),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_FULL_FLAGS_RST_VAL (C_FULL_FLAGS_RST_VAL),
.C_HAS_ALMOST_EMPTY (C_HAS_ALMOST_EMPTY),
.C_HAS_ALMOST_FULL (C_HAS_ALMOST_FULL),
.C_HAS_DATA_COUNT (C_HAS_DATA_COUNT),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT),
.C_HAS_RST (C_HAS_RST),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_HAS_VALID (C_HAS_VALID),
.C_HAS_WR_ACK (C_HAS_WR_ACK),
.C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT),
.C_IMPLEMENTATION_TYPE (C_IMPLEMENTATION_TYPE),
.C_MEMORY_TYPE (C_MEMORY_TYPE),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_PRELOAD_LATENCY (C_PRELOAD_LATENCY),
.C_PRELOAD_REGS (C_PRELOAD_REGS),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL),
.C_PROG_EMPTY_THRESH_NEGATE_VAL (C_PROG_EMPTY_THRESH_NEGATE_VAL),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL),
.C_PROG_FULL_THRESH_NEGATE_VAL (C_PROG_FULL_THRESH_NEGATE_VAL),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE),
.C_RD_DATA_COUNT_WIDTH (C_RD_DATA_COUNT_WIDTH),
.C_RD_DEPTH (C_RD_DEPTH),
.C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG),
.C_EN_SAFETY_CKT (C_EN_SAFETY_CKT),
.C_USE_FWFT_DATA_COUNT (C_USE_FWFT_DATA_COUNT),
.C_VALID_LOW (C_VALID_LOW),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH),
.C_WR_DEPTH (C_WR_DEPTH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH),
.C_USE_ECC (C_USE_ECC),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE)
)
gen_as
(
.WR_CLK (WR_CLK),
.RD_CLK (RD_CLK),
.RST (rst_i),
.RST_FULL_GEN (rst_full_gen_i),
.RST_FULL_FF (rst_full_ff_i),
.WR_RST (wr_rst_i),
.RD_RST (rd_rst_i),
.DIN (din_delayed),
.WR_EN (wr_en_delayed),
.RD_EN (RD_EN_FIFO_IN),
.RD_EN_USER (rd_en_delayed),
.PROG_EMPTY_THRESH (prog_empty_thresh_delayed),
.PROG_EMPTY_THRESH_ASSERT (prog_empty_thresh_assert_delayed),
.PROG_EMPTY_THRESH_NEGATE (prog_empty_thresh_negate_delayed),
.PROG_FULL_THRESH (prog_full_thresh_delayed),
.PROG_FULL_THRESH_ASSERT (prog_full_thresh_assert_delayed),
.PROG_FULL_THRESH_NEGATE (prog_full_thresh_negate_delayed),
.INJECTSBITERR (inject_sbit_err),
.INJECTDBITERR (inject_dbit_err),
.USER_EMPTY_FB (EMPTY_P0_OUT),
.DOUT (DOUT_FIFO_OUT),
.FULL (FULL_FIFO_OUT),
.ALMOST_FULL (ALMOST_FULL_FIFO_OUT),
.WR_ACK (WR_ACK_FIFO_OUT),
.OVERFLOW (OVERFLOW_FIFO_OUT),
.EMPTY (EMPTY_FIFO_OUT),
.ALMOST_EMPTY (ALMOST_EMPTY_FIFO_OUT),
.VALID (VALID_FIFO_OUT),
.UNDERFLOW (UNDERFLOW_FIFO_OUT),
.RD_DATA_COUNT (RD_DATA_COUNT_FIFO_OUT),
.WR_DATA_COUNT (WR_DATA_COUNT_FIFO_OUT),
.PROG_FULL (PROG_FULL_FIFO_OUT),
.PROG_EMPTY (PROG_EMPTY_FIFO_OUT),
.SBITERR (sbiterr_fifo_out),
.fab_read_data_valid_i (w_fab_read_data_valid_i),
.read_data_valid_i (w_read_data_valid_i),
.ram_valid_i (w_ram_valid_i),
.DBITERR (dbiterr_fifo_out)
);
end
2 : begin : ll_afifo_inst
fifo_generator_v13_1_1_beh_ver_ll_afifo
#(
.C_DIN_WIDTH (C_DIN_WIDTH),
.C_DOUT_RST_VAL (C_DOUT_RST_VAL),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_FULL_FLAGS_RST_VAL (C_FULL_FLAGS_RST_VAL),
.C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT),
.C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT),
.C_RD_DEPTH (C_RD_DEPTH),
.C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH),
.C_WR_DEPTH (C_WR_DEPTH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH),
.C_FIFO_TYPE (C_FIFO_TYPE)
)
gen_ll_afifo
(
.DIN (din_delayed),
.RD_CLK (RD_CLK),
.RD_EN (rd_en_delayed),
.WR_RST (wr_rst_i),
.RD_RST (rd_rst_i),
.WR_CLK (WR_CLK),
.WR_EN (wr_en_delayed),
.DOUT (DOUT),
.EMPTY (EMPTY),
.FULL (FULL)
);
end
default : begin : block1
//Independent Clocks Behavioral Model
fifo_generator_v13_1_1_bhv_ver_as
#(
.C_FAMILY (C_FAMILY),
.C_DATA_COUNT_WIDTH (C_DATA_COUNT_WIDTH),
.C_DIN_WIDTH (C_DIN_WIDTH),
.C_DOUT_RST_VAL (C_DOUT_RST_VAL),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_FULL_FLAGS_RST_VAL (C_FULL_FLAGS_RST_VAL),
.C_HAS_ALMOST_EMPTY (C_HAS_ALMOST_EMPTY),
.C_HAS_ALMOST_FULL (C_HAS_ALMOST_FULL),
.C_HAS_DATA_COUNT (C_HAS_DATA_COUNT),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT),
.C_HAS_RST (C_HAS_RST),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_HAS_VALID (C_HAS_VALID),
.C_HAS_WR_ACK (C_HAS_WR_ACK),
.C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT),
.C_IMPLEMENTATION_TYPE (C_IMPLEMENTATION_TYPE),
.C_MEMORY_TYPE (C_MEMORY_TYPE),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_PRELOAD_LATENCY (C_PRELOAD_LATENCY),
.C_PRELOAD_REGS (C_PRELOAD_REGS),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL),
.C_PROG_EMPTY_THRESH_NEGATE_VAL (C_PROG_EMPTY_THRESH_NEGATE_VAL),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL),
.C_PROG_FULL_THRESH_NEGATE_VAL (C_PROG_FULL_THRESH_NEGATE_VAL),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE),
.C_RD_DATA_COUNT_WIDTH (C_RD_DATA_COUNT_WIDTH),
.C_RD_DEPTH (C_RD_DEPTH),
.C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG),
.C_EN_SAFETY_CKT (C_EN_SAFETY_CKT),
.C_USE_FWFT_DATA_COUNT (C_USE_FWFT_DATA_COUNT),
.C_VALID_LOW (C_VALID_LOW),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH),
.C_WR_DEPTH (C_WR_DEPTH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH),
.C_USE_ECC (C_USE_ECC),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE)
)
gen_as
(
.WR_CLK (WR_CLK),
.RD_CLK (RD_CLK),
.RST (rst_i),
.RST_FULL_GEN (rst_full_gen_i),
.RST_FULL_FF (rst_full_ff_i),
.WR_RST (wr_rst_i),
.RD_RST (rd_rst_i),
.DIN (din_delayed),
.WR_EN (wr_en_delayed),
.RD_EN (RD_EN_FIFO_IN),
.RD_EN_USER (rd_en_delayed),
.PROG_EMPTY_THRESH (prog_empty_thresh_delayed),
.PROG_EMPTY_THRESH_ASSERT (prog_empty_thresh_assert_delayed),
.PROG_EMPTY_THRESH_NEGATE (prog_empty_thresh_negate_delayed),
.PROG_FULL_THRESH (prog_full_thresh_delayed),
.PROG_FULL_THRESH_ASSERT (prog_full_thresh_assert_delayed),
.PROG_FULL_THRESH_NEGATE (prog_full_thresh_negate_delayed),
.INJECTSBITERR (inject_sbit_err),
.INJECTDBITERR (inject_dbit_err),
.USER_EMPTY_FB (EMPTY_P0_OUT),
.DOUT (DOUT_FIFO_OUT),
.FULL (FULL_FIFO_OUT),
.ALMOST_FULL (ALMOST_FULL_FIFO_OUT),
.WR_ACK (WR_ACK_FIFO_OUT),
.OVERFLOW (OVERFLOW_FIFO_OUT),
.EMPTY (EMPTY_FIFO_OUT),
.ALMOST_EMPTY (ALMOST_EMPTY_FIFO_OUT),
.VALID (VALID_FIFO_OUT),
.UNDERFLOW (UNDERFLOW_FIFO_OUT),
.RD_DATA_COUNT (RD_DATA_COUNT_FIFO_OUT),
.WR_DATA_COUNT (WR_DATA_COUNT_FIFO_OUT),
.PROG_FULL (PROG_FULL_FIFO_OUT),
.PROG_EMPTY (PROG_EMPTY_FIFO_OUT),
.SBITERR (sbiterr_fifo_out),
.DBITERR (dbiterr_fifo_out)
);
end
endcase
endgenerate
//**************************************************************************
// Connect Internal Signals
// (Signals labeled internal_*)
// In the normal case, these signals tie directly to the FIFO's inputs and
// outputs.
// In the case of Preload Latency 0 or 1, there are intermediate
// signals between the internal FIFO and the preload logic.
//**************************************************************************
//***********************************************
// If First-Word Fall-Through, instantiate
// the preload0 (FWFT) module
//***********************************************
wire rd_en_to_fwft_fifo;
wire sbiterr_fwft;
wire dbiterr_fwft;
wire [C_DOUT_WIDTH-1:0] dout_fwft;
wire empty_fwft;
wire rd_en_fifo_in;
wire stage2_reg_en_i;
wire [1:0] valid_stages_i;
wire rst_fwft;
//wire empty_p0_out;
reg [C_SYNCHRONIZER_STAGE-1:0] pkt_empty_sync = 'b1;
localparam IS_FWFT = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ? 1 : 0;
localparam IS_PKT_FIFO = (C_FIFO_TYPE == 1) ? 1 : 0;
localparam IS_AXIS_PKT_FIFO = (C_FIFO_TYPE == 1 && C_AXI_TYPE == 0) ? 1 : 0;
assign rst_fwft = (C_COMMON_CLOCK == 0) ? rd_rst_i : (C_HAS_RST == 1) ? rst_i : 1'b0;
generate if (IS_FWFT == 1 && C_FIFO_TYPE != 3) begin : block2
fifo_generator_v13_1_1_bhv_ver_preload0
#(
.C_DOUT_RST_VAL (C_DOUT_RST_VAL),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_HAS_RST (C_HAS_RST),
.C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC),
.C_HAS_SRST (C_HAS_SRST),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG),
.C_USE_ECC (C_USE_ECC),
.C_USERVALID_LOW (C_VALID_LOW),
.C_USERUNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_EN_SAFETY_CKT (C_EN_SAFETY_CKT),
.C_MEMORY_TYPE (C_MEMORY_TYPE),
.C_FIFO_TYPE (C_FIFO_TYPE)
)
fgpl0
(
.RD_CLK (RD_CLK_P0_IN),
.RD_RST (RST_P0_IN),
.SRST (srst_delayed),
.WR_RST_BUSY (wr_rst_busy),
.RD_RST_BUSY (rd_rst_busy),
.RD_EN (RD_EN_P0_IN),
.FIFOEMPTY (EMPTY_P0_IN),
.FIFODATA (DATA_P0_IN),
.FIFOSBITERR (sbiterr_fifo_out),
.FIFODBITERR (dbiterr_fifo_out),
// Output
.USERDATA (dout_fwft),
.USERVALID (VALID_P0_OUT),
.USEREMPTY (empty_fwft),
.USERALMOSTEMPTY (ALMOSTEMPTY_P0_OUT),
.USERUNDERFLOW (UNDERFLOW_P0_OUT),
.RAMVALID (),
.FIFORDEN (rd_en_fifo_in),
.USERSBITERR (sbiterr_fwft),
.USERDBITERR (dbiterr_fwft),
.STAGE2_REG_EN (stage2_reg_en_i),
.fab_read_data_valid_i_o (w_fab_read_data_valid_i),
.read_data_valid_i_o (w_read_data_valid_i),
.ram_valid_i_o (w_ram_valid_i),
.VALID_STAGES (valid_stages_i)
);
//***********************************************
// Connect inputs to preload (FWFT) module
//***********************************************
//Connect the RD_CLK of the Preload (FWFT) module to CLK if we
// have a common-clock FIFO, or RD_CLK if we have an
// independent clock FIFO
assign RD_CLK_P0_IN = ((C_VERILOG_IMPL == 0) ? CLK : RD_CLK);
assign RST_P0_IN = (C_COMMON_CLOCK == 0) ? rd_rst_i : (C_HAS_RST == 1) ? rst_i : 0;
assign RD_EN_P0_IN = (C_FIFO_TYPE != 1) ? rd_en_delayed : rd_en_to_fwft_fifo;
assign EMPTY_P0_IN = EMPTY_FIFO_OUT;
assign DATA_P0_IN = DOUT_FIFO_OUT;
//***********************************************
// Connect outputs from preload (FWFT) module
//***********************************************
assign VALID = VALID_P0_OUT ;
assign ALMOST_EMPTY = ALMOSTEMPTY_P0_OUT;
assign UNDERFLOW = UNDERFLOW_P0_OUT ;
assign RD_EN_FIFO_IN = rd_en_fifo_in;
//***********************************************
// Create DATA_COUNT from First-Word Fall-Through
// data count
//***********************************************
assign DATA_COUNT = (C_USE_FWFT_DATA_COUNT == 0)? DATA_COUNT_FIFO_OUT:
(C_DATA_COUNT_WIDTH>C_RD_PNTR_WIDTH) ? DATA_COUNT_FWFT[C_RD_PNTR_WIDTH:0] :
DATA_COUNT_FWFT[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH-C_DATA_COUNT_WIDTH+1];
//***********************************************
// Create DATA_COUNT from First-Word Fall-Through
// data count
//***********************************************
always @ (posedge RD_CLK_P0_IN or posedge RST_P0_IN) begin
if (RST_P0_IN) begin
EMPTY_P0_OUT_Q <= #`TCQ 1;
ALMOSTEMPTY_P0_OUT_Q <= #`TCQ 1;
end else begin
EMPTY_P0_OUT_Q <= #`TCQ empty_p0_out;
// EMPTY_P0_OUT_Q <= #`TCQ EMPTY_FIFO_OUT;
ALMOSTEMPTY_P0_OUT_Q <= #`TCQ ALMOSTEMPTY_P0_OUT;
end
end //always
//***********************************************
// logic for common-clock data count when FWFT is selected
//***********************************************
initial begin
SS_FWFT_RD = 1'b0;
DATA_COUNT_FWFT = 0 ;
SS_FWFT_WR = 1'b0 ;
end //initial
//***********************************************
// common-clock data count is implemented as an
// up-down counter. SS_FWFT_WR and SS_FWFT_RD
// are the up/down enables for the counter.
//***********************************************
always @ (RD_EN or VALID_P0_OUT or WR_EN or FULL_FIFO_OUT or empty_p0_out) begin
if (C_VALID_LOW == 1) begin
SS_FWFT_RD = (C_FIFO_TYPE != 1) ? (RD_EN && ~VALID_P0_OUT) : (~empty_p0_out && RD_EN && ~VALID_P0_OUT) ;
end else begin
SS_FWFT_RD = (C_FIFO_TYPE != 1) ? (RD_EN && VALID_P0_OUT) : (~empty_p0_out && RD_EN && VALID_P0_OUT) ;
end
SS_FWFT_WR = (WR_EN && (~FULL_FIFO_OUT)) ;
end
//***********************************************
// common-clock data count is implemented as an
// up-down counter for FWFT. This always block
// calculates the counter.
//***********************************************
always @ (posedge RD_CLK_P0_IN or posedge RST_P0_IN) begin
if (RST_P0_IN) begin
DATA_COUNT_FWFT <= #`TCQ 0;
end else begin
//if (srst_delayed && (C_HAS_SRST == 1) ) begin
if ((srst_delayed | wr_rst_busy | rd_rst_busy) && (C_HAS_SRST == 1) ) begin
DATA_COUNT_FWFT <= #`TCQ 0;
end else begin
case ( {SS_FWFT_WR, SS_FWFT_RD})
2'b00: DATA_COUNT_FWFT <= #`TCQ DATA_COUNT_FWFT ;
2'b01: DATA_COUNT_FWFT <= #`TCQ DATA_COUNT_FWFT - 1 ;
2'b10: DATA_COUNT_FWFT <= #`TCQ DATA_COUNT_FWFT + 1 ;
2'b11: DATA_COUNT_FWFT <= #`TCQ DATA_COUNT_FWFT ;
endcase
end //if SRST
end //IF RST
end //always
end endgenerate // : block2
// AXI Streaming Packet FIFO
reg [C_WR_PNTR_WIDTH-1:0] wr_pkt_count = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pkt_count = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pkt_count_plus1 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pkt_count_reg = 0;
reg partial_packet = 0;
reg stage1_eop_d1 = 0;
reg rd_en_fifo_in_d1 = 0;
reg eop_at_stage2 = 0;
reg ram_pkt_empty = 0;
reg ram_pkt_empty_d1 = 0;
wire [C_DOUT_WIDTH-1:0] dout_p0_out;
wire packet_empty_wr;
wire wr_rst_fwft_pkt_fifo;
wire dummy_wr_eop;
wire ram_wr_en_pkt_fifo;
wire wr_eop;
wire ram_rd_en_compare;
wire stage1_eop;
wire pkt_ready_to_read;
wire rd_en_2_stage2;
// Generate Dummy WR_EOP for partial packet (Only for AXI Streaming)
// When Packet EMPTY is high, and FIFO is full, then generate the dummy WR_EOP
// When dummy WR_EOP is high, mask the actual EOP to avoid double increment of
// write packet count
generate if (IS_FWFT == 1 && IS_AXIS_PKT_FIFO == 1) begin // gdummy_wr_eop
always @ (posedge wr_rst_fwft_pkt_fifo or posedge WR_CLK) begin
if (wr_rst_fwft_pkt_fifo)
partial_packet <= 1'b0;
else begin
if (srst_delayed | wr_rst_busy | rd_rst_busy)
partial_packet <= #`TCQ 1'b0;
else if (ALMOST_FULL_FIFO_OUT && ram_wr_en_pkt_fifo && packet_empty_wr && (~din_delayed[0]))
partial_packet <= #`TCQ 1'b1;
else if (partial_packet && din_delayed[0] && ram_wr_en_pkt_fifo)
partial_packet <= #`TCQ 1'b0;
end
end
end endgenerate // gdummy_wr_eop
generate if (IS_FWFT == 1 && IS_PKT_FIFO == 1) begin // gpkt_fifo_fwft
assign wr_rst_fwft_pkt_fifo = (C_COMMON_CLOCK == 0) ? wr_rst_i : (C_HAS_RST == 1) ? rst_i:1'b0;
assign dummy_wr_eop = ALMOST_FULL_FIFO_OUT && ram_wr_en_pkt_fifo && packet_empty_wr && (~din_delayed[0]) && (~partial_packet);
assign packet_empty_wr = (C_COMMON_CLOCK == 1) ? empty_p0_out : pkt_empty_sync[C_SYNCHRONIZER_STAGE-1];
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft) begin
stage1_eop_d1 <= 1'b0;
rd_en_fifo_in_d1 <= 1'b0;
end else begin
if (srst_delayed | wr_rst_busy | rd_rst_busy) begin
stage1_eop_d1 <= #`TCQ 1'b0;
rd_en_fifo_in_d1 <= #`TCQ 1'b0;
end else begin
stage1_eop_d1 <= #`TCQ stage1_eop;
rd_en_fifo_in_d1 <= #`TCQ rd_en_fifo_in;
end
end
end
assign stage1_eop = (rd_en_fifo_in_d1) ? DOUT_FIFO_OUT[0] : stage1_eop_d1;
assign ram_wr_en_pkt_fifo = wr_en_delayed && (~FULL_FIFO_OUT);
assign wr_eop = ram_wr_en_pkt_fifo && ((din_delayed[0] && (~partial_packet)) || dummy_wr_eop);
assign ram_rd_en_compare = stage2_reg_en_i && stage1_eop;
fifo_generator_v13_1_1_bhv_ver_preload0
#(
.C_DOUT_RST_VAL (C_DOUT_RST_VAL),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_HAS_RST (C_HAS_RST),
.C_HAS_SRST (C_HAS_SRST),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_USE_ECC (C_USE_ECC),
.C_USERVALID_LOW (C_VALID_LOW),
.C_EN_SAFETY_CKT (C_EN_SAFETY_CKT),
.C_USERUNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC),
.C_MEMORY_TYPE (C_MEMORY_TYPE),
.C_FIFO_TYPE (2) // Enable low latency fwft logic
)
pkt_fifo_fwft
(
.RD_CLK (RD_CLK_P0_IN),
.RD_RST (rst_fwft),
.SRST (srst_delayed),
.WR_RST_BUSY (wr_rst_busy),
.RD_RST_BUSY (rd_rst_busy),
.RD_EN (rd_en_delayed),
.FIFOEMPTY (pkt_ready_to_read),
.FIFODATA (dout_fwft),
.FIFOSBITERR (sbiterr_fwft),
.FIFODBITERR (dbiterr_fwft),
// Output
.USERDATA (dout_p0_out),
.USERVALID (),
.USEREMPTY (empty_p0_out),
.USERALMOSTEMPTY (),
.USERUNDERFLOW (),
.RAMVALID (),
.FIFORDEN (rd_en_2_stage2),
.USERSBITERR (SBITERR),
.USERDBITERR (DBITERR),
.STAGE2_REG_EN (),
.VALID_STAGES ()
);
assign pkt_ready_to_read = ~(!(ram_pkt_empty || empty_fwft) && ((valid_stages_i[0] && valid_stages_i[1]) || eop_at_stage2));
assign rd_en_to_fwft_fifo = ~empty_fwft && rd_en_2_stage2;
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft)
eop_at_stage2 <= 1'b0;
else if (stage2_reg_en_i)
eop_at_stage2 <= #`TCQ stage1_eop;
end
//---------------------------------------------------------------------------
// Write and Read Packet Count
//---------------------------------------------------------------------------
always @ (posedge wr_rst_fwft_pkt_fifo or posedge WR_CLK) begin
if (wr_rst_fwft_pkt_fifo)
wr_pkt_count <= 0;
else if (srst_delayed | wr_rst_busy | rd_rst_busy)
wr_pkt_count <= #`TCQ 0;
else if (wr_eop)
wr_pkt_count <= #`TCQ wr_pkt_count + 1;
end
end endgenerate // gpkt_fifo_fwft
assign DOUT = (C_FIFO_TYPE != 1) ? dout_fwft : dout_p0_out;
assign EMPTY = (C_FIFO_TYPE != 1) ? empty_fwft : empty_p0_out;
generate if (IS_FWFT == 1 && IS_PKT_FIFO == 1 && C_COMMON_CLOCK == 1) begin // grss_pkt_cnt
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft) begin
rd_pkt_count <= 0;
rd_pkt_count_plus1 <= 1;
end else if (srst_delayed | wr_rst_busy | rd_rst_busy) begin
rd_pkt_count <= #`TCQ 0;
rd_pkt_count_plus1 <= #`TCQ 1;
end else if (stage2_reg_en_i && stage1_eop) begin
rd_pkt_count <= #`TCQ rd_pkt_count + 1;
rd_pkt_count_plus1 <= #`TCQ rd_pkt_count_plus1 + 1;
end
end
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft) begin
ram_pkt_empty <= 1'b1;
ram_pkt_empty_d1 <= 1'b1;
end else if (SRST | wr_rst_busy | rd_rst_busy) begin
ram_pkt_empty <= #`TCQ 1'b1;
ram_pkt_empty_d1 <= #`TCQ 1'b1;
end else if ((rd_pkt_count == wr_pkt_count) && wr_eop) begin
ram_pkt_empty <= #`TCQ 1'b0;
ram_pkt_empty_d1 <= #`TCQ 1'b0;
end else if (ram_pkt_empty_d1 && rd_en_to_fwft_fifo) begin
ram_pkt_empty <= #`TCQ 1'b1;
end else if ((rd_pkt_count_plus1 == wr_pkt_count) && ~wr_eop && ~ALMOST_FULL_FIFO_OUT && ram_rd_en_compare) begin
ram_pkt_empty_d1 <= #`TCQ 1'b1;
end
end
end endgenerate //grss_pkt_cnt
localparam SYNC_STAGE_WIDTH = (C_SYNCHRONIZER_STAGE+1)*C_WR_PNTR_WIDTH;
reg [SYNC_STAGE_WIDTH-1:0] wr_pkt_count_q = 0;
reg [C_WR_PNTR_WIDTH-1:0] wr_pkt_count_b2g = 0;
wire [C_WR_PNTR_WIDTH-1:0] wr_pkt_count_rd;
generate if (IS_FWFT == 1 && IS_PKT_FIFO == 1 && C_COMMON_CLOCK == 0) begin // gras_pkt_cnt
// Delay the write packet count in write clock domain to accomodate the binary to gray conversion delay
always @ (posedge wr_rst_fwft_pkt_fifo or posedge WR_CLK) begin
if (wr_rst_fwft_pkt_fifo)
wr_pkt_count_b2g <= 0;
else
wr_pkt_count_b2g <= #`TCQ wr_pkt_count;
end
// Synchronize the delayed write packet count in read domain, and also compensate the gray to binay conversion delay
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft)
wr_pkt_count_q <= 0;
else
wr_pkt_count_q <= #`TCQ {wr_pkt_count_q[SYNC_STAGE_WIDTH-C_WR_PNTR_WIDTH-1:0],wr_pkt_count_b2g};
end
always @* begin
if (stage1_eop)
rd_pkt_count <= rd_pkt_count_reg + 1;
else
rd_pkt_count <= rd_pkt_count_reg;
end
assign wr_pkt_count_rd = wr_pkt_count_q[SYNC_STAGE_WIDTH-1:SYNC_STAGE_WIDTH-C_WR_PNTR_WIDTH];
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft)
rd_pkt_count_reg <= 0;
else if (rd_en_fifo_in)
rd_pkt_count_reg <= #`TCQ rd_pkt_count;
end
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft) begin
ram_pkt_empty <= 1'b1;
ram_pkt_empty_d1 <= 1'b1;
end else if (rd_pkt_count != wr_pkt_count_rd) begin
ram_pkt_empty <= #`TCQ 1'b0;
ram_pkt_empty_d1 <= #`TCQ 1'b0;
end else if (ram_pkt_empty_d1 && rd_en_to_fwft_fifo) begin
ram_pkt_empty <= #`TCQ 1'b1;
end else if ((rd_pkt_count == wr_pkt_count_rd) && stage2_reg_en_i) begin
ram_pkt_empty_d1 <= #`TCQ 1'b1;
end
end
// Synchronize the empty in write domain
always @ (posedge wr_rst_fwft_pkt_fifo or posedge WR_CLK) begin
if (wr_rst_fwft_pkt_fifo)
pkt_empty_sync <= 'b1;
else
pkt_empty_sync <= #`TCQ {pkt_empty_sync[C_SYNCHRONIZER_STAGE-2:0], empty_p0_out};
end
end endgenerate //gras_pkt_cnt
generate if (IS_FWFT == 0 || C_FIFO_TYPE == 3) begin : STD_FIFO
//***********************************************
// If NOT First-Word Fall-Through, wire the outputs
// of the internal _ss or _as FIFO directly to the
// output, and do not instantiate the preload0
// module.
//***********************************************
assign RD_CLK_P0_IN = 0;
assign RST_P0_IN = 0;
assign RD_EN_P0_IN = 0;
assign RD_EN_FIFO_IN = rd_en_delayed;
assign DOUT = DOUT_FIFO_OUT;
assign DATA_P0_IN = 0;
assign VALID = VALID_FIFO_OUT;
assign EMPTY = EMPTY_FIFO_OUT;
assign ALMOST_EMPTY = ALMOST_EMPTY_FIFO_OUT;
assign EMPTY_P0_IN = 0;
assign UNDERFLOW = UNDERFLOW_FIFO_OUT;
assign DATA_COUNT = DATA_COUNT_FIFO_OUT;
assign SBITERR = sbiterr_fifo_out;
assign DBITERR = dbiterr_fifo_out;
end endgenerate // STD_FIFO
generate if (IS_FWFT == 1 && C_FIFO_TYPE != 1) begin : NO_PKT_FIFO
assign empty_p0_out = empty_fwft;
assign SBITERR = sbiterr_fwft;
assign DBITERR = dbiterr_fwft;
assign DOUT = dout_fwft;
assign RD_EN_P0_IN = (C_FIFO_TYPE != 1) ? rd_en_delayed : rd_en_to_fwft_fifo;
end endgenerate // NO_PKT_FIFO
//***********************************************
// Connect user flags to internal signals
//***********************************************
//If we are using extra logic for the FWFT data count, then override the
//RD_DATA_COUNT output when we are EMPTY or ALMOST_EMPTY.
//RD_DATA_COUNT is 0 when EMPTY and 1 when ALMOST_EMPTY.
generate
if (C_USE_FWFT_DATA_COUNT==1 && (C_RD_DATA_COUNT_WIDTH>C_RD_PNTR_WIDTH) && (C_USE_EMBEDDED_REG < 3) ) begin : block3
if (C_COMMON_CLOCK == 0) begin : block_ic
assign RD_DATA_COUNT = (EMPTY_P0_OUT_Q | RST_P0_IN) ? 0 : (ALMOSTEMPTY_P0_OUT_Q ? 1 : RD_DATA_COUNT_FIFO_OUT);
end //block_ic
else begin
assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT;
end
end //block3
endgenerate
//If we are using extra logic for the FWFT data count, then override the
//RD_DATA_COUNT output when we are EMPTY or ALMOST_EMPTY.
//Due to asymmetric ports, RD_DATA_COUNT is 0 when EMPTY or ALMOST_EMPTY.
generate
if (C_USE_FWFT_DATA_COUNT==1 && (C_RD_DATA_COUNT_WIDTH <=C_RD_PNTR_WIDTH) && (C_USE_EMBEDDED_REG < 3) ) begin : block30
if (C_COMMON_CLOCK == 0) begin : block_ic
assign RD_DATA_COUNT = (EMPTY_P0_OUT_Q | RST_P0_IN) ? 0 : (ALMOSTEMPTY_P0_OUT_Q ? 0 : RD_DATA_COUNT_FIFO_OUT);
end
else begin
assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT;
end
end //block30
endgenerate
//If we are using extra logic for the FWFT data count, then override the
//RD_DATA_COUNT output when we are EMPTY or ALMOST_EMPTY.
//Due to asymmetric ports, RD_DATA_COUNT is 0 when EMPTY or ALMOST_EMPTY.
generate
if (C_USE_FWFT_DATA_COUNT==1 && (C_RD_DATA_COUNT_WIDTH <=C_RD_PNTR_WIDTH) && (C_USE_EMBEDDED_REG == 3) ) begin : block30_both
if (C_COMMON_CLOCK == 0) begin : block_ic_both
assign RD_DATA_COUNT = (EMPTY_P0_OUT_Q | RST_P0_IN) ? 0 : (ALMOSTEMPTY_P0_OUT_Q ? 0 : (RD_DATA_COUNT_FIFO_OUT));
end
else begin
assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT;
end
end //block30_both
endgenerate
generate
if (C_USE_FWFT_DATA_COUNT==1 && (C_RD_DATA_COUNT_WIDTH>C_RD_PNTR_WIDTH) && (C_USE_EMBEDDED_REG == 3) ) begin : block3_both
if (C_COMMON_CLOCK == 0) begin : block_ic_both
assign RD_DATA_COUNT = (EMPTY_P0_OUT_Q | RST_P0_IN) ? 0 : (ALMOSTEMPTY_P0_OUT_Q ? 1 : (RD_DATA_COUNT_FIFO_OUT));
end //block_ic_both
else begin
assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT;
end
end //block3_both
endgenerate
//If we are not using extra logic for the FWFT data count,
//then connect RD_DATA_COUNT to the RD_DATA_COUNT from the
//internal FIFO instance
generate
if (C_USE_FWFT_DATA_COUNT==0 ) begin : block31
assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT;
end
endgenerate
//Always connect WR_DATA_COUNT to the WR_DATA_COUNT from the internal
//FIFO instance
generate
if (C_USE_FWFT_DATA_COUNT==1) begin : block4
assign WR_DATA_COUNT = WR_DATA_COUNT_FIFO_OUT;
end
else begin : block4
assign WR_DATA_COUNT = WR_DATA_COUNT_FIFO_OUT;
end
endgenerate
//Connect other flags to the internal FIFO instance
assign FULL = FULL_FIFO_OUT;
assign ALMOST_FULL = ALMOST_FULL_FIFO_OUT;
assign WR_ACK = WR_ACK_FIFO_OUT;
assign OVERFLOW = OVERFLOW_FIFO_OUT;
assign PROG_FULL = PROG_FULL_FIFO_OUT;
assign PROG_EMPTY = PROG_EMPTY_FIFO_OUT;
/**************************************************************************
* find_log2
* Returns the 'log2' value for the input value for the supported ratios
***************************************************************************/
function integer find_log2;
input integer int_val;
integer i,j;
begin
i = 1;
j = 0;
for (i = 1; i < int_val; i = i*2) begin
j = j + 1;
end
find_log2 = j;
end
endfunction
// if an asynchronous FIFO has been selected, display a message that the FIFO
// will not be cycle-accurate in simulation
initial begin
if (C_IMPLEMENTATION_TYPE == 2) begin
$display("WARNING: Behavioral models for independent clock FIFO configurations do not model synchronization delays. The behavioral models are functionally correct, and will represent the behavior of the configured FIFO. See the FIFO Generator User Guide for more information.");
end else if (C_MEMORY_TYPE == 4) begin
$display("FAILURE : Behavioral models do not support built-in FIFO configurations. Please use post-synthesis or post-implement simulation in Vivado.");
$finish;
end
if (C_WR_PNTR_WIDTH != find_log2(C_WR_DEPTH)) begin
$display("FAILURE : C_WR_PNTR_WIDTH is not log2 of C_WR_DEPTH.");
$finish;
end
if (C_RD_PNTR_WIDTH != find_log2(C_RD_DEPTH)) begin
$display("FAILURE : C_RD_PNTR_WIDTH is not log2 of C_RD_DEPTH.");
$finish;
end
if (C_USE_ECC == 1) begin
if (C_DIN_WIDTH != C_DOUT_WIDTH) begin
$display("FAILURE : C_DIN_WIDTH and C_DOUT_WIDTH must be equal for ECC configuration.");
$finish;
end
if (C_DIN_WIDTH == 1 && C_ERROR_INJECTION_TYPE > 1) begin
$display("FAILURE : C_DIN_WIDTH and C_DOUT_WIDTH must be > 1 for double bit error injection.");
$finish;
end
end
end //initial
/**************************************************************************
* Internal reset logic
**************************************************************************/
assign wr_rst_i = (C_HAS_RST == 1 || C_ENABLE_RST_SYNC == 0) ? wr_rst_reg : 0;
assign rd_rst_i = (C_HAS_RST == 1 || C_ENABLE_RST_SYNC == 0) ? rd_rst_reg : 0;
assign rst_i = C_HAS_RST ? rst_reg : 0;
wire rst_2_sync;
wire rst_2_sync_safety = (C_ENABLE_RST_SYNC == 1) ? RST : RD_RST;
wire clk_2_sync = (C_COMMON_CLOCK == 1) ? CLK : WR_CLK;
wire clk_2_sync_safety = (C_COMMON_CLOCK == 1) ? CLK : RD_CLK;
generate
if (C_EN_SAFETY_CKT == 1 && C_INTERFACE_TYPE == 0) begin : grst_safety_ckt
reg[1:0] rst_d1_safety =1;
reg[1:0] rst_d2_safety =1;
reg[1:0] rst_d3_safety =1;
reg[1:0] rst_d4_safety =1;
reg[1:0] rst_d5_safety =1;
reg[1:0] rst_d6_safety =1;
reg[1:0] rst_d7_safety =1;
always@(posedge rst_2_sync_safety or posedge clk_2_sync_safety) begin : prst
if (rst_2_sync_safety == 1'b1) begin
rst_d1_safety <= 1'b1;
rst_d2_safety <= 1'b1;
rst_d3_safety <= 1'b1;
rst_d4_safety <= 1'b1;
rst_d5_safety <= 1'b1;
rst_d6_safety <= 1'b1;
rst_d7_safety <= 1'b1;
end
else begin
rst_d1_safety <= #`TCQ 1'b0;
rst_d2_safety <= #`TCQ rst_d1_safety;
rst_d3_safety <= #`TCQ rst_d2_safety;
rst_d4_safety <= #`TCQ rst_d3_safety;
rst_d5_safety <= #`TCQ rst_d4_safety;
rst_d6_safety <= #`TCQ rst_d5_safety;
rst_d7_safety <= #`TCQ rst_d6_safety;
end //if
end //prst
always@(posedge rst_d7_safety or posedge WR_EN) begin : assert_safety
if(rst_d7_safety == 1 && WR_EN == 1) begin
$display("WARNING:A write attempt has been made within the 7 clock cycles of reset de-assertion. This can lead to data discrepancy when safety circuit is enabled.");
end //if
end //always
end // grst_safety_ckt
endgenerate
// if (C_EN_SAFET_CKT == 1)
// assertion:the reset shud be atleast 3 cycles wide.
generate
if (C_ENABLE_RST_SYNC == 0) begin : gnrst_sync
always @* begin
wr_rst_reg <= wr_rst_delayed;
rd_rst_reg <= rd_rst_delayed;
rst_reg <= 1'b0;
srst_reg <= 1'b0;
end
assign rst_2_sync = wr_rst_delayed;
assign wr_rst_busy = 1'b0;
assign rd_rst_busy = 1'b0;
end else if (C_HAS_RST == 1 && C_COMMON_CLOCK == 0) begin : g7s_ic_rst
assign wr_rst_comb = !wr_rst_asreg_d2 && wr_rst_asreg;
assign rd_rst_comb = !rd_rst_asreg_d2 && rd_rst_asreg;
assign rst_2_sync = rst_delayed;
assign wr_rst_busy = 1'b0;
assign rd_rst_busy = 1'b0;
always @(posedge WR_CLK or posedge rst_delayed) begin
if (rst_delayed == 1'b1) begin
wr_rst_asreg <= #`TCQ 1'b1;
end else begin
if (wr_rst_asreg_d1 == 1'b1) begin
wr_rst_asreg <= #`TCQ 1'b0;
end else begin
wr_rst_asreg <= #`TCQ wr_rst_asreg;
end
end
end
always @(posedge WR_CLK) begin
wr_rst_asreg_d1 <= #`TCQ wr_rst_asreg;
wr_rst_asreg_d2 <= #`TCQ wr_rst_asreg_d1;
end
always @(posedge WR_CLK or posedge wr_rst_comb) begin
if (wr_rst_comb == 1'b1) begin
wr_rst_reg <= #`TCQ 1'b1;
end else begin
wr_rst_reg <= #`TCQ 1'b0;
end
end
always @(posedge RD_CLK or posedge rst_delayed) begin
if (rst_delayed == 1'b1) begin
rd_rst_asreg <= #`TCQ 1'b1;
end else begin
if (rd_rst_asreg_d1 == 1'b1) begin
rd_rst_asreg <= #`TCQ 1'b0;
end else begin
rd_rst_asreg <= #`TCQ rd_rst_asreg;
end
end
end
always @(posedge RD_CLK) begin
rd_rst_asreg_d1 <= #`TCQ rd_rst_asreg;
rd_rst_asreg_d2 <= #`TCQ rd_rst_asreg_d1;
end
always @(posedge RD_CLK or posedge rd_rst_comb) begin
if (rd_rst_comb == 1'b1) begin
rd_rst_reg <= #`TCQ 1'b1;
end else begin
rd_rst_reg <= #`TCQ 1'b0;
end
end
end else if (C_HAS_RST == 1 && C_COMMON_CLOCK == 1) begin : g7s_cc_rst
assign rst_comb = !rst_asreg_d2 && rst_asreg;
assign rst_2_sync = rst_delayed;
assign wr_rst_busy = 1'b0;
assign rd_rst_busy = 1'b0;
always @(posedge CLK or posedge rst_delayed) begin
if (rst_delayed == 1'b1) begin
rst_asreg <= #`TCQ 1'b1;
end else begin
if (rst_asreg_d1 == 1'b1) begin
rst_asreg <= #`TCQ 1'b0;
end else begin
rst_asreg <= #`TCQ rst_asreg;
end
end
end
always @(posedge CLK) begin
rst_asreg_d1 <= #`TCQ rst_asreg;
rst_asreg_d2 <= #`TCQ rst_asreg_d1;
end
always @(posedge CLK or posedge rst_comb) begin
if (rst_comb == 1'b1) begin
rst_reg <= #`TCQ 1'b1;
end else begin
rst_reg <= #`TCQ 1'b0;
end
end
end else if (IS_8SERIES == 1 && C_HAS_SRST == 1 && C_COMMON_CLOCK == 1) begin : g8s_cc_rst
assign wr_rst_busy = (C_MEMORY_TYPE != 4) ? rst_reg : rst_active_i;
assign rd_rst_busy = rst_reg;
assign rst_2_sync = srst_delayed;
always @* rst_full_ff_i <= rst_reg;
always @* rst_full_gen_i <= C_FULL_FLAGS_RST_VAL == 1 ? rst_active_i : 0;
always @(posedge CLK) begin
rst_delayed_d1 <= #`TCQ srst_delayed;
rst_delayed_d2 <= #`TCQ rst_delayed_d1;
if (rst_reg || rst_delayed_d2) begin
rst_active_i <= #`TCQ 1'b1;
end else begin
rst_active_i <= #`TCQ rst_reg;
end
end
always @(posedge CLK) begin
if (~rst_reg && srst_delayed) begin
rst_reg <= #`TCQ 1'b1;
end else if (rst_reg) begin
rst_reg <= #`TCQ 1'b0;
end else begin
rst_reg <= #`TCQ rst_reg;
end
end
end else begin
assign wr_rst_busy = 1'b0;
assign rd_rst_busy = 1'b0;
end
// end g8s_cc_rst
endgenerate
reg rst_d1 = 1'b0;
reg rst_d2 = 1'b0;
reg rst_d3 = 1'b0;
reg rst_d4 = 1'b0;
reg rst_d5 = 1'b0;
reg rst_d6 = 1'b0;
reg rst_d7 = 1'b0;
generate
if ((C_HAS_RST == 1 || C_HAS_SRST == 1 || C_ENABLE_RST_SYNC == 0) && C_FULL_FLAGS_RST_VAL == 1 && C_INTERFACE_TYPE == 0) begin : grstd1
// RST_FULL_GEN replaces the reset falling edge detection used to de-assert
// FULL, ALMOST_FULL & PROG_FULL flags if C_FULL_FLAGS_RST_VAL = 1.
// RST_FULL_FF goes to the reset pin of the final flop of FULL, ALMOST_FULL &
// PROG_FULL
always @ (posedge rst_2_sync or posedge clk_2_sync) begin
if (rst_2_sync) begin
rst_d1 <= 1'b1;
rst_d2 <= 1'b1;
rst_d3 <= 1'b1;
rst_d4 <= 1'b1;
rst_d5 <= 1'b1;
rst_d6 <= 1'b1;
rst_d7 <= 1'b1;
end else begin
if (srst_delayed) begin
rst_d1 <= #`TCQ 1'b1;
rst_d2 <= #`TCQ 1'b1;
rst_d3 <= #`TCQ 1'b1;
rst_d4 <= #`TCQ 1'b1;
rst_d5 <= #`TCQ 1'b1;
rst_d6 <= #`TCQ 1'b1;
rst_d7 <= #`TCQ 1'b1;
end else begin
rst_d1 <= #`TCQ 1'b0;
rst_d2 <= #`TCQ rst_d1;
rst_d3 <= #`TCQ rst_d2;
rst_d4 <= #`TCQ rst_d3;
rst_d5 <= #`TCQ rst_d4;
rst_d6 <= #`TCQ rst_d5;
rst_d7 <= #`TCQ rst_d6;
end
end
end
always @* rst_full_ff_i <= (C_HAS_SRST == 0 && C_EN_SAFETY_CKT == 0) ? rst_d2 : (C_HAS_SRST == 0 && C_EN_SAFETY_CKT == 1) ? rst_d6 : 1'b0 ;
//always @* rst_full_gen_i <= rst_d4;
always @* rst_full_gen_i <= (C_HAS_SRST == 1) ? rst_d4 : (C_EN_SAFETY_CKT == 0) ? rst_d3 : rst_d7;
end else if ((C_HAS_RST == 1 || C_HAS_SRST == 1 || C_ENABLE_RST_SYNC == 0) && C_FULL_FLAGS_RST_VAL == 0 && C_INTERFACE_TYPE == 0) begin : gnrst_full
always @* rst_full_ff_i <= (C_COMMON_CLOCK == 0) ? wr_rst_i : rst_i;
end
endgenerate // grstd1
generate
if ((C_HAS_RST == 1 || C_HAS_SRST == 1 || C_ENABLE_RST_SYNC == 0) && C_FULL_FLAGS_RST_VAL == 1 && C_INTERFACE_TYPE > 0) begin : grstd1_axis
// RST_FULL_GEN replaces the reset falling edge detection used to de-assert
// FULL, ALMOST_FULL & PROG_FULL flags if C_FULL_FLAGS_RST_VAL = 1.
// RST_FULL_FF goes to the reset pin of the final flop of FULL, ALMOST_FULL &
// PROG_FULL
always @ (posedge rst_2_sync or posedge clk_2_sync) begin
if (rst_2_sync) begin
rst_d1 <= 1'b1;
rst_d2 <= 1'b1;
rst_d3 <= 1'b1;
rst_d4 <= 1'b1;
rst_d5 <= 1'b1;
rst_d6 <= 1'b1;
rst_d7 <= 1'b1;
end else begin
if (srst_delayed) begin
rst_d1 <= #`TCQ 1'b1;
rst_d2 <= #`TCQ 1'b1;
rst_d3 <= #`TCQ 1'b1;
rst_d4 <= #`TCQ 1'b1;
rst_d5 <= #`TCQ 1'b1;
rst_d6 <= #`TCQ 1'b1;
rst_d7 <= #`TCQ 1'b1;
end else begin
rst_d1 <= #`TCQ 1'b0;
rst_d2 <= #`TCQ rst_d1;
rst_d3 <= #`TCQ rst_d2;
rst_d4 <= #`TCQ rst_d3;
rst_d5 <= #`TCQ rst_d4;
rst_d6 <= #`TCQ rst_d5;
rst_d7 <= #`TCQ rst_d6;
end
end
end
always @* rst_full_ff_i <= (C_HAS_SRST == 0) ? rst_d2 : 1'b0 ;
//always @* rst_full_gen_i <= rst_d4;
always @* rst_full_gen_i <= (C_HAS_SRST == 1) ? rst_d4 : (C_EN_SAFETY_CKT == 0) ? rst_d3 : rst_d5;
end else if ((C_HAS_RST == 1 || C_HAS_SRST == 1 || C_ENABLE_RST_SYNC == 0) && C_FULL_FLAGS_RST_VAL == 0 && C_INTERFACE_TYPE > 0) begin : gnrst_full_axis
always @* rst_full_ff_i <= (C_COMMON_CLOCK == 0) ? wr_rst_i : rst_i;
end
endgenerate // grstd1_axis
endmodule //fifo_generator_v13_1_1_CONV_VER
module fifo_generator_v13_1_1_sync_stage
#(
parameter C_WIDTH = 10
)
(
input RST,
input CLK,
input [C_WIDTH-1:0] DIN,
output reg [C_WIDTH-1:0] DOUT = 0
);
always @ (posedge RST or posedge CLK) begin
if (RST)
DOUT <= 0;
else
DOUT <= #`TCQ DIN;
end
endmodule // fifo_generator_v13_1_1_sync_stage
/*******************************************************************************
* Declaration of Independent-Clocks FIFO Module
******************************************************************************/
module fifo_generator_v13_1_1_bhv_ver_as
/***************************************************************************
* Declare user parameters and their defaults
***************************************************************************/
#(
parameter C_FAMILY = "virtex7",
parameter C_DATA_COUNT_WIDTH = 2,
parameter C_DIN_WIDTH = 8,
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_FULL_FLAGS_RST_VAL = 1,
parameter C_HAS_ALMOST_EMPTY = 0,
parameter C_HAS_ALMOST_FULL = 0,
parameter C_HAS_DATA_COUNT = 0,
parameter C_HAS_OVERFLOW = 0,
parameter C_HAS_RD_DATA_COUNT = 0,
parameter C_HAS_RST = 0,
parameter C_HAS_UNDERFLOW = 0,
parameter C_HAS_VALID = 0,
parameter C_HAS_WR_ACK = 0,
parameter C_HAS_WR_DATA_COUNT = 0,
parameter C_IMPLEMENTATION_TYPE = 0,
parameter C_MEMORY_TYPE = 1,
parameter C_OVERFLOW_LOW = 0,
parameter C_PRELOAD_LATENCY = 1,
parameter C_PRELOAD_REGS = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0,
parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0,
parameter C_PROG_EMPTY_TYPE = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0,
parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0,
parameter C_PROG_FULL_TYPE = 0,
parameter C_RD_DATA_COUNT_WIDTH = 2,
parameter C_RD_DEPTH = 256,
parameter C_RD_PNTR_WIDTH = 8,
parameter C_UNDERFLOW_LOW = 0,
parameter C_USE_DOUT_RST = 0,
parameter C_USE_EMBEDDED_REG = 0,
parameter C_EN_SAFETY_CKT = 0,
parameter C_USE_FWFT_DATA_COUNT = 0,
parameter C_VALID_LOW = 0,
parameter C_WR_ACK_LOW = 0,
parameter C_WR_DATA_COUNT_WIDTH = 2,
parameter C_WR_DEPTH = 256,
parameter C_WR_PNTR_WIDTH = 8,
parameter C_USE_ECC = 0,
parameter C_ENABLE_RST_SYNC = 1,
parameter C_ERROR_INJECTION_TYPE = 0,
parameter C_SYNCHRONIZER_STAGE = 2
)
/***************************************************************************
* Declare Input and Output Ports
***************************************************************************/
(
input [C_DIN_WIDTH-1:0] DIN,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE,
input RD_CLK,
input RD_EN,
input RD_EN_USER,
input RST,
input RST_FULL_GEN,
input RST_FULL_FF,
input WR_RST,
input RD_RST,
input WR_CLK,
input WR_EN,
input INJECTDBITERR,
input INJECTSBITERR,
input USER_EMPTY_FB,
input fab_read_data_valid_i,
input read_data_valid_i,
input ram_valid_i,
output reg ALMOST_EMPTY = 1'b1,
output reg ALMOST_FULL = C_FULL_FLAGS_RST_VAL,
output [C_DOUT_WIDTH-1:0] DOUT,
output reg EMPTY = 1'b1,
output reg FULL = C_FULL_FLAGS_RST_VAL,
output OVERFLOW,
output PROG_EMPTY,
output PROG_FULL,
output VALID,
output [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT,
output UNDERFLOW,
output WR_ACK,
output [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT,
output SBITERR,
output DBITERR
);
reg [C_RD_PNTR_WIDTH:0] rd_data_count_int = 0;
reg [C_WR_PNTR_WIDTH:0] wr_data_count_int = 0;
reg [C_WR_PNTR_WIDTH:0] wdc_fwft_ext_as = 0;
/***************************************************************************
* Parameters used as constants
**************************************************************************/
localparam IS_8SERIES = (C_FAMILY == "virtexu" || C_FAMILY == "kintexu" || C_FAMILY == "artixu" || C_FAMILY == "virtexuplus" || C_FAMILY == "zynquplus" || C_FAMILY == "kintexuplus") ? 1 : 0;
//When RST is present, set FULL reset value to '1'.
//If core has no RST, make sure FULL powers-on as '0'.
localparam C_DEPTH_RATIO_WR =
(C_WR_DEPTH>C_RD_DEPTH) ? (C_WR_DEPTH/C_RD_DEPTH) : 1;
localparam C_DEPTH_RATIO_RD =
(C_RD_DEPTH>C_WR_DEPTH) ? (C_RD_DEPTH/C_WR_DEPTH) : 1;
localparam C_FIFO_WR_DEPTH = C_WR_DEPTH - 1;
localparam C_FIFO_RD_DEPTH = C_RD_DEPTH - 1;
// C_DEPTH_RATIO_WR | C_DEPTH_RATIO_RD | C_PNTR_WIDTH | EXTRA_WORDS_DC
// -----------------|------------------|-----------------|---------------
// 1 | 8 | C_RD_PNTR_WIDTH | 2
// 1 | 4 | C_RD_PNTR_WIDTH | 2
// 1 | 2 | C_RD_PNTR_WIDTH | 2
// 1 | 1 | C_WR_PNTR_WIDTH | 2
// 2 | 1 | C_WR_PNTR_WIDTH | 4
// 4 | 1 | C_WR_PNTR_WIDTH | 8
// 8 | 1 | C_WR_PNTR_WIDTH | 16
localparam C_PNTR_WIDTH = (C_WR_PNTR_WIDTH>=C_RD_PNTR_WIDTH) ? C_WR_PNTR_WIDTH : C_RD_PNTR_WIDTH;
wire [C_PNTR_WIDTH:0] EXTRA_WORDS_DC = (C_DEPTH_RATIO_WR == 1) ? 2 : (2 * C_DEPTH_RATIO_WR/C_DEPTH_RATIO_RD);
localparam [31:0] reads_per_write = C_DIN_WIDTH/C_DOUT_WIDTH;
localparam [31:0] log2_reads_per_write = log2_val(reads_per_write);
localparam [31:0] writes_per_read = C_DOUT_WIDTH/C_DIN_WIDTH;
localparam [31:0] log2_writes_per_read = log2_val(writes_per_read);
/**************************************************************************
* FIFO Contents Tracking and Data Count Calculations
*************************************************************************/
// Memory which will be used to simulate a FIFO
reg [C_DIN_WIDTH-1:0] memory[C_WR_DEPTH-1:0];
// Local parameters used to determine whether to inject ECC error or not
localparam SYMMETRIC_PORT = (C_DIN_WIDTH == C_DOUT_WIDTH) ? 1 : 0;
localparam ERR_INJECTION = (C_ERROR_INJECTION_TYPE != 0) ? 1 : 0;
localparam C_USE_ECC_1 = (C_USE_ECC == 1 || C_USE_ECC ==2) ? 1:0;
localparam ENABLE_ERR_INJECTION = C_USE_ECC_1 && SYMMETRIC_PORT && ERR_INJECTION;
// Array that holds the error injection type (single/double bit error) on
// a specific write operation, which is returned on read to corrupt the
// output data.
reg [1:0] ecc_err[C_WR_DEPTH-1:0];
//The amount of data stored in the FIFO at any time is given
// by num_wr_bits (in the WR_CLK domain) and num_rd_bits (in the RD_CLK
// domain.
//num_wr_bits is calculated by considering the total words in the FIFO,
// and the state of the read pointer (which may not have yet crossed clock
// domains.)
//num_rd_bits is calculated by considering the total words in the FIFO,
// and the state of the write pointer (which may not have yet crossed clock
// domains.)
reg [31:0] num_wr_bits;
reg [31:0] num_rd_bits;
reg [31:0] next_num_wr_bits;
reg [31:0] next_num_rd_bits;
//The write pointer - tracks write operations
// (Works opposite to core: wr_ptr is a DOWN counter)
reg [31:0] wr_ptr;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr = 0; // UP counter: Rolls back to 0 when reaches to max value.
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd1 = 0;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd2 = 0;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd3 = 0;
wire [C_RD_PNTR_WIDTH-1:0] adj_wr_pntr_rd;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd = 0;
wire wr_rst_i = WR_RST;
reg wr_rst_d1 =0;
//The read pointer - tracks read operations
// (rd_ptr Works opposite to core: rd_ptr is a DOWN counter)
reg [31:0] rd_ptr;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr = 0; // UP counter: Rolls back to 0 when reaches to max value.
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr1 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr2 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr3 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr4 = 0;
wire [C_WR_PNTR_WIDTH-1:0] adj_rd_pntr_wr;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr = 0;
wire rd_rst_i = RD_RST;
wire ram_rd_en;
wire empty_int;
wire almost_empty_int;
wire ram_wr_en;
wire full_int;
wire almost_full_int;
reg ram_rd_en_d1 = 1'b0;
reg fab_rd_en_d1 = 1'b0;
// Delayed ram_rd_en is needed only for STD Embedded register option
generate
if (C_PRELOAD_LATENCY == 2) begin : grd_d
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i)
ram_rd_en_d1 <= #`TCQ 1'b0;
else
ram_rd_en_d1 <= #`TCQ ram_rd_en;
end
end
endgenerate
generate
if (C_PRELOAD_LATENCY == 2 && C_USE_EMBEDDED_REG == 3) begin : grd_d1
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i)
ram_rd_en_d1 <= #`TCQ 1'b0;
else
ram_rd_en_d1 <= #`TCQ ram_rd_en;
fab_rd_en_d1 <= #`TCQ ram_rd_en_d1;
end
end
endgenerate
// Write pointer adjustment based on pointers width for EMPTY/ALMOST_EMPTY generation
generate
if (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) begin : rdg // Read depth greater than write depth
assign adj_wr_pntr_rd[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr_rd;
assign adj_wr_pntr_rd[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1:0] = 0;
end else begin : rdl // Read depth lesser than or equal to write depth
assign adj_wr_pntr_rd = wr_pntr_rd[C_WR_PNTR_WIDTH-1:C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH];
end
endgenerate
// Generate Empty and Almost Empty
// ram_rd_en used to determine EMPTY should depend on the EMPTY.
assign ram_rd_en = RD_EN & !EMPTY;
assign empty_int = ((adj_wr_pntr_rd == rd_pntr) || (ram_rd_en && (adj_wr_pntr_rd == (rd_pntr+1'h1))));
assign almost_empty_int = ((adj_wr_pntr_rd == (rd_pntr+1'h1)) || (ram_rd_en && (adj_wr_pntr_rd == (rd_pntr+2'h2))));
// Register Empty and Almost Empty
always @ (posedge RD_CLK or posedge rd_rst_i)
begin
if (rd_rst_i) begin
EMPTY <= #`TCQ 1'b1;
ALMOST_EMPTY <= #`TCQ 1'b1;
rd_data_count_int <= #`TCQ {C_RD_PNTR_WIDTH{1'b0}};
end else begin
rd_data_count_int <= #`TCQ {(adj_wr_pntr_rd[C_RD_PNTR_WIDTH-1:0] - rd_pntr[C_RD_PNTR_WIDTH-1:0]), 1'b0};
if (empty_int)
EMPTY <= #`TCQ 1'b1;
else
EMPTY <= #`TCQ 1'b0;
if (!EMPTY) begin
if (almost_empty_int)
ALMOST_EMPTY <= #`TCQ 1'b1;
else
ALMOST_EMPTY <= #`TCQ 1'b0;
end
end // rd_rst_i
end // always
// Read pointer adjustment based on pointers width for EMPTY/ALMOST_EMPTY generation
generate
if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : wdg // Write depth greater than read depth
assign adj_rd_pntr_wr[C_WR_PNTR_WIDTH-1:C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH] = rd_pntr_wr;
assign adj_rd_pntr_wr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1:0] = 0;
end else begin : wdl // Write depth lesser than or equal to read depth
assign adj_rd_pntr_wr = rd_pntr_wr[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH];
end
endgenerate
// Generate FULL and ALMOST_FULL
// ram_wr_en used to determine FULL should depend on the FULL.
assign ram_wr_en = WR_EN & !FULL;
assign full_int = ((adj_rd_pntr_wr == (wr_pntr+1'h1)) || (ram_wr_en && (adj_rd_pntr_wr == (wr_pntr+2'h2))));
assign almost_full_int = ((adj_rd_pntr_wr == (wr_pntr+2'h2)) || (ram_wr_en && (adj_rd_pntr_wr == (wr_pntr+3'h3))));
// Register FULL and ALMOST_FULL Empty
always @ (posedge WR_CLK or posedge RST_FULL_FF)
begin
if (RST_FULL_FF) begin
FULL <= #`TCQ C_FULL_FLAGS_RST_VAL;
ALMOST_FULL <= #`TCQ C_FULL_FLAGS_RST_VAL;
end else begin
if (full_int) begin
FULL <= #`TCQ 1'b1;
end else begin
FULL <= #`TCQ 1'b0;
end
if (RST_FULL_GEN) begin
ALMOST_FULL <= #`TCQ 1'b0;
end else if (!FULL) begin
if (almost_full_int)
ALMOST_FULL <= #`TCQ 1'b1;
else
ALMOST_FULL <= #`TCQ 1'b0;
end
end // wr_rst_i
end // always
always @ (posedge WR_CLK or posedge wr_rst_i)
begin
if (wr_rst_i) begin
wr_data_count_int <= #`TCQ {C_WR_DATA_COUNT_WIDTH{1'b0}};
end else begin
wr_data_count_int <= #`TCQ {(wr_pntr[C_WR_PNTR_WIDTH-1:0] - adj_rd_pntr_wr[C_WR_PNTR_WIDTH-1:0]), 1'b0};
end // wr_rst_i
end // always
// Determine which stage in FWFT registers are valid
reg stage1_valid = 0;
reg stage2_valid = 0;
generate
if (C_PRELOAD_LATENCY == 0) begin : grd_fwft_proc
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
stage1_valid <= #`TCQ 0;
stage2_valid <= #`TCQ 0;
end else begin
if (!stage1_valid && !stage2_valid) begin
if (!EMPTY)
stage1_valid <= #`TCQ 1'b1;
else
stage1_valid <= #`TCQ 1'b0;
end else if (stage1_valid && !stage2_valid) begin
if (EMPTY) begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b1;
end else begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b1;
end
end else if (!stage1_valid && stage2_valid) begin
if (EMPTY && RD_EN_USER) begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b0;
end else if (!EMPTY && RD_EN_USER) begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b0;
end else if (!EMPTY && !RD_EN_USER) begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b1;
end else begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b1;
end
end else if (stage1_valid && stage2_valid) begin
if (EMPTY && RD_EN_USER) begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b1;
end else begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b1;
end
end else begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b0;
end
end // rd_rst_i
end // always
end
endgenerate
//Pointers passed into opposite clock domain
reg [31:0] wr_ptr_rdclk;
reg [31:0] wr_ptr_rdclk_next;
reg [31:0] rd_ptr_wrclk;
reg [31:0] rd_ptr_wrclk_next;
//Amount of data stored in the FIFO scaled to the narrowest (deepest) port
// (Do not include data in FWFT stages)
//Used to calculate PROG_EMPTY.
wire [31:0] num_read_words_pe =
num_rd_bits/(C_DOUT_WIDTH/C_DEPTH_RATIO_WR);
//Amount of data stored in the FIFO scaled to the narrowest (deepest) port
// (Do not include data in FWFT stages)
//Used to calculate PROG_FULL.
wire [31:0] num_write_words_pf =
num_wr_bits/(C_DIN_WIDTH/C_DEPTH_RATIO_RD);
/**************************
* Read Data Count
*************************/
reg [31:0] num_read_words_dc;
reg [C_RD_DATA_COUNT_WIDTH-1:0] num_read_words_sized_i;
always @(num_rd_bits) begin
if (C_USE_FWFT_DATA_COUNT) begin
//If using extra logic for FWFT Data Counts,
// then scale FIFO contents to read domain,
// and add two read words for FWFT stages
//This value is only a temporary value and not used in the code.
num_read_words_dc = (num_rd_bits/C_DOUT_WIDTH+2);
//Trim the read words for use with RD_DATA_COUNT
num_read_words_sized_i =
num_read_words_dc[C_RD_PNTR_WIDTH : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH+1];
end else begin
//If not using extra logic for FWFT Data Counts,
// then scale FIFO contents to read domain.
//This value is only a temporary value and not used in the code.
num_read_words_dc = num_rd_bits/C_DOUT_WIDTH;
//Trim the read words for use with RD_DATA_COUNT
num_read_words_sized_i =
num_read_words_dc[C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH];
end //if (C_USE_FWFT_DATA_COUNT)
end //always
/**************************
* Write Data Count
*************************/
reg [31:0] num_write_words_dc;
reg [C_WR_DATA_COUNT_WIDTH-1:0] num_write_words_sized_i;
always @(num_wr_bits) begin
if (C_USE_FWFT_DATA_COUNT) begin
//Calculate the Data Count value for the number of write words,
// when using First-Word Fall-Through with extra logic for Data
// Counts. This takes into consideration the number of words that
// are expected to be stored in the FWFT register stages (it always
// assumes they are filled).
//This value is scaled to the Write Domain.
//The expression (((A-1)/B))+1 divides A/B, but takes the
// ceiling of the result.
//When num_wr_bits==0, set the result manually to prevent
// division errors.
//EXTRA_WORDS_DC is the number of words added to write_words
// due to FWFT.
//This value is only a temporary value and not used in the code.
num_write_words_dc = (num_wr_bits==0) ? EXTRA_WORDS_DC : (((num_wr_bits-1)/C_DIN_WIDTH)+1) + EXTRA_WORDS_DC ;
//Trim the write words for use with WR_DATA_COUNT
num_write_words_sized_i =
num_write_words_dc[C_WR_PNTR_WIDTH : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH+1];
end else begin
//Calculate the Data Count value for the number of write words, when NOT
// using First-Word Fall-Through with extra logic for Data Counts. This
// calculates only the number of words in the internal FIFO.
//The expression (((A-1)/B))+1 divides A/B, but takes the
// ceiling of the result.
//This value is scaled to the Write Domain.
//When num_wr_bits==0, set the result manually to prevent
// division errors.
//This value is only a temporary value and not used in the code.
num_write_words_dc = (num_wr_bits==0) ? 0 : ((num_wr_bits-1)/C_DIN_WIDTH)+1;
//Trim the read words for use with RD_DATA_COUNT
num_write_words_sized_i =
num_write_words_dc[C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH];
end //if (C_USE_FWFT_DATA_COUNT)
end //always
/***************************************************************************
* Internal registers and wires
**************************************************************************/
//Temporary signals used for calculating the model's outputs. These
//are only used in the assign statements immediately following wire,
//parameter, and function declarations.
wire [C_DOUT_WIDTH-1:0] ideal_dout_out;
wire valid_i;
wire valid_out1;
wire valid_out2;
wire valid_out;
wire underflow_i;
//Ideal FIFO signals. These are the raw output of the behavioral model,
//which behaves like an ideal FIFO.
reg [1:0] err_type = 0;
reg [1:0] err_type_d1 = 0;
reg [1:0] err_type_both = 0;
reg [C_DOUT_WIDTH-1:0] ideal_dout = 0;
reg [C_DOUT_WIDTH-1:0] ideal_dout_d1 = 0;
reg [C_DOUT_WIDTH-1:0] ideal_dout_both = 0;
reg ideal_wr_ack = 0;
reg ideal_valid = 0;
reg ideal_overflow = C_OVERFLOW_LOW;
reg ideal_underflow = C_UNDERFLOW_LOW;
reg ideal_prog_full = 0;
reg ideal_prog_empty = 1;
reg [C_WR_DATA_COUNT_WIDTH-1 : 0] ideal_wr_count = 0;
reg [C_RD_DATA_COUNT_WIDTH-1 : 0] ideal_rd_count = 0;
//Assorted reg values for delayed versions of signals
reg valid_d1 = 0;
reg valid_d2 = 0;
//user specified value for reseting the size of the fifo
reg [C_DOUT_WIDTH-1:0] dout_reset_val = 0;
//temporary registers for WR_RESPONSE_LATENCY feature
integer tmp_wr_listsize;
integer tmp_rd_listsize;
//Signal for registered version of prog full and empty
//Threshold values for Programmable Flags
integer prog_empty_actual_thresh_assert;
integer prog_empty_actual_thresh_negate;
integer prog_full_actual_thresh_assert;
integer prog_full_actual_thresh_negate;
/****************************************************************************
* Function Declarations
***************************************************************************/
/**************************************************************************
* write_fifo
* This task writes a word to the FIFO memory and updates the
* write pointer.
* FIFO size is relative to write domain.
***************************************************************************/
task write_fifo;
begin
memory[wr_ptr] <= DIN;
wr_pntr <= #`TCQ wr_pntr + 1;
// Store the type of error injection (double/single) on write
case (C_ERROR_INJECTION_TYPE)
3: ecc_err[wr_ptr] <= {INJECTDBITERR,INJECTSBITERR};
2: ecc_err[wr_ptr] <= {INJECTDBITERR,1'b0};
1: ecc_err[wr_ptr] <= {1'b0,INJECTSBITERR};
default: ecc_err[wr_ptr] <= 0;
endcase
// (Works opposite to core: wr_ptr is a DOWN counter)
if (wr_ptr == 0) begin
wr_ptr <= C_WR_DEPTH - 1;
end else begin
wr_ptr <= wr_ptr - 1;
end
end
endtask // write_fifo
/**************************************************************************
* read_fifo
* This task reads a word from the FIFO memory and updates the read
* pointer. It's output is the ideal_dout bus.
* FIFO size is relative to write domain.
***************************************************************************/
task read_fifo;
integer i;
reg [C_DOUT_WIDTH-1:0] tmp_dout;
reg [C_DIN_WIDTH-1:0] memory_read;
reg [31:0] tmp_rd_ptr;
reg [31:0] rd_ptr_high;
reg [31:0] rd_ptr_low;
reg [1:0] tmp_ecc_err;
begin
rd_pntr <= #`TCQ rd_pntr + 1;
// output is wider than input
if (reads_per_write == 0) begin
tmp_dout = 0;
tmp_rd_ptr = (rd_ptr << log2_writes_per_read)+(writes_per_read-1);
for (i = writes_per_read - 1; i >= 0; i = i - 1) begin
tmp_dout = tmp_dout << C_DIN_WIDTH;
tmp_dout = tmp_dout | memory[tmp_rd_ptr];
// (Works opposite to core: rd_ptr is a DOWN counter)
if (tmp_rd_ptr == 0) begin
tmp_rd_ptr = C_WR_DEPTH - 1;
end else begin
tmp_rd_ptr = tmp_rd_ptr - 1;
end
end
// output is symmetric
end else if (reads_per_write == 1) begin
tmp_dout = memory[rd_ptr][C_DIN_WIDTH-1:0];
// Retreive the error injection type. Based on the error injection type
// corrupt the output data.
tmp_ecc_err = ecc_err[rd_ptr];
if (ENABLE_ERR_INJECTION && C_DIN_WIDTH == C_DOUT_WIDTH) begin
if (tmp_ecc_err[1]) begin // Corrupt the output data only for double bit error
if (C_DOUT_WIDTH == 1) begin
$display("FAILURE : Data width must be >= 2 for double bit error injection.");
$finish;
end else if (C_DOUT_WIDTH == 2)
tmp_dout = {~tmp_dout[C_DOUT_WIDTH-1],~tmp_dout[C_DOUT_WIDTH-2]};
else
tmp_dout = {~tmp_dout[C_DOUT_WIDTH-1],~tmp_dout[C_DOUT_WIDTH-2],(tmp_dout << 2)};
end else begin
tmp_dout = tmp_dout[C_DOUT_WIDTH-1:0];
end
err_type <= {tmp_ecc_err[1], tmp_ecc_err[0] & !tmp_ecc_err[1]};
end else begin
err_type <= 0;
end
// input is wider than output
end else begin
rd_ptr_high = rd_ptr >> log2_reads_per_write;
rd_ptr_low = rd_ptr & (reads_per_write - 1);
memory_read = memory[rd_ptr_high];
tmp_dout = memory_read >> (rd_ptr_low*C_DOUT_WIDTH);
end
ideal_dout <= tmp_dout;
// (Works opposite to core: rd_ptr is a DOWN counter)
if (rd_ptr == 0) begin
rd_ptr <= C_RD_DEPTH - 1;
end else begin
rd_ptr <= rd_ptr - 1;
end
end
endtask
/**************************************************************************
* log2_val
* Returns the 'log2' value for the input value for the supported ratios
***************************************************************************/
function [31:0] log2_val;
input [31:0] binary_val;
begin
if (binary_val == 8) begin
log2_val = 3;
end else if (binary_val == 4) begin
log2_val = 2;
end else begin
log2_val = 1;
end
end
endfunction
/***********************************************************************
* hexstr_conv
* Converts a string of type hex to a binary value (for C_DOUT_RST_VAL)
***********************************************************************/
function [C_DOUT_WIDTH-1:0] hexstr_conv;
input [(C_DOUT_WIDTH*8)-1:0] def_data;
integer index,i,j;
reg [3:0] bin;
begin
index = 0;
hexstr_conv = 'b0;
for( i=C_DOUT_WIDTH-1; i>=0; i=i-1 )
begin
case (def_data[7:0])
8'b00000000 :
begin
bin = 4'b0000;
i = -1;
end
8'b00110000 : bin = 4'b0000;
8'b00110001 : bin = 4'b0001;
8'b00110010 : bin = 4'b0010;
8'b00110011 : bin = 4'b0011;
8'b00110100 : bin = 4'b0100;
8'b00110101 : bin = 4'b0101;
8'b00110110 : bin = 4'b0110;
8'b00110111 : bin = 4'b0111;
8'b00111000 : bin = 4'b1000;
8'b00111001 : bin = 4'b1001;
8'b01000001 : bin = 4'b1010;
8'b01000010 : bin = 4'b1011;
8'b01000011 : bin = 4'b1100;
8'b01000100 : bin = 4'b1101;
8'b01000101 : bin = 4'b1110;
8'b01000110 : bin = 4'b1111;
8'b01100001 : bin = 4'b1010;
8'b01100010 : bin = 4'b1011;
8'b01100011 : bin = 4'b1100;
8'b01100100 : bin = 4'b1101;
8'b01100101 : bin = 4'b1110;
8'b01100110 : bin = 4'b1111;
default :
begin
bin = 4'bx;
end
endcase
for( j=0; j<4; j=j+1)
begin
if ((index*4)+j < C_DOUT_WIDTH)
begin
hexstr_conv[(index*4)+j] = bin[j];
end
end
index = index + 1;
def_data = def_data >> 8;
end
end
endfunction
/*************************************************************************
* Initialize Signals for clean power-on simulation
*************************************************************************/
initial begin
num_wr_bits = 0;
num_rd_bits = 0;
next_num_wr_bits = 0;
next_num_rd_bits = 0;
rd_ptr = C_RD_DEPTH - 1;
wr_ptr = C_WR_DEPTH - 1;
wr_pntr = 0;
rd_pntr = 0;
rd_ptr_wrclk = rd_ptr;
wr_ptr_rdclk = wr_ptr;
dout_reset_val = hexstr_conv(C_DOUT_RST_VAL);
ideal_dout = dout_reset_val;
err_type = 0;
ideal_dout_d1 = dout_reset_val;
ideal_wr_ack = 1'b0;
ideal_valid = 1'b0;
valid_d1 = 1'b0;
valid_d2 = 1'b0;
ideal_overflow = C_OVERFLOW_LOW;
ideal_underflow = C_UNDERFLOW_LOW;
ideal_wr_count = 0;
ideal_rd_count = 0;
ideal_prog_full = 1'b0;
ideal_prog_empty = 1'b1;
end
/*************************************************************************
* Connect the module inputs and outputs to the internal signals of the
* behavioral model.
*************************************************************************/
//Inputs
/*
wire [C_DIN_WIDTH-1:0] DIN;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE;
wire RD_CLK;
wire RD_EN;
wire RST;
wire WR_CLK;
wire WR_EN;
*/
//***************************************************************************
// Dout may change behavior based on latency
//***************************************************************************
assign ideal_dout_out[C_DOUT_WIDTH-1:0] = (C_PRELOAD_LATENCY==2 &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) )?
ideal_dout_d1: ideal_dout;
assign DOUT[C_DOUT_WIDTH-1:0] = ideal_dout_out;
//***************************************************************************
// Assign SBITERR and DBITERR based on latency
//***************************************************************************
assign SBITERR = (C_ERROR_INJECTION_TYPE == 1 || C_ERROR_INJECTION_TYPE == 3) &&
(C_PRELOAD_LATENCY == 2 &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) ) ?
err_type_d1[0]: err_type[0];
assign DBITERR = (C_ERROR_INJECTION_TYPE == 2 || C_ERROR_INJECTION_TYPE == 3) &&
(C_PRELOAD_LATENCY==2 && (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1)) ?
err_type_d1[1]: err_type[1];
//***************************************************************************
// Safety-ckt logic with embedded reg/fabric reg
//***************************************************************************
generate
if ((C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) && C_EN_SAFETY_CKT==1 && C_USE_EMBEDDED_REG < 3) begin
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d1;
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d2;
reg [1:0] rst_delayed_sft1 =1;
reg [1:0] rst_delayed_sft2 =1;
reg [1:0] rst_delayed_sft3 =1;
reg [1:0] rst_delayed_sft4 =1;
// if (C_HAS_VALID == 1) begin
// assign valid_out = valid_d1;
// end
always@(posedge RD_CLK)
begin
rst_delayed_sft1 <= #`TCQ rd_rst_i;
rst_delayed_sft2 <= #`TCQ rst_delayed_sft1;
rst_delayed_sft3 <= #`TCQ rst_delayed_sft2;
rst_delayed_sft4 <= #`TCQ rst_delayed_sft3;
end
always@(posedge rst_delayed_sft4 or posedge rd_rst_i or posedge RD_CLK)
begin
if( rst_delayed_sft4 == 1'b1 || rd_rst_i == 1'b1)
ram_rd_en_d1 <= #`TCQ 1'b0;
else
ram_rd_en_d1 <= #`TCQ ram_rd_en;
end
always@(posedge rst_delayed_sft2 or posedge RD_CLK)
begin
if (rst_delayed_sft2 == 1'b1) begin
if (C_USE_DOUT_RST == 1'b1) begin
@(posedge RD_CLK)
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
end
else begin
if (ram_rd_en_d1) begin
ideal_dout_d1 <= #`TCQ ideal_dout;
err_type_d1[0] <= #`TCQ err_type[0];
err_type_d1[1] <= #`TCQ err_type[1];
end
end
end
end
endgenerate
//***************************************************************************
// Safety-ckt logic with embedded reg + fabric reg
//***************************************************************************
generate
if ((C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) && C_EN_SAFETY_CKT==1 && C_USE_EMBEDDED_REG == 3) begin
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d1;
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d2;
reg [1:0] rst_delayed_sft1 =1;
reg [1:0] rst_delayed_sft2 =1;
reg [1:0] rst_delayed_sft3 =1;
reg [1:0] rst_delayed_sft4 =1;
// if (C_HAS_VALID == 1) begin
// assign valid_out = valid_d2;
// end
always@(posedge RD_CLK)
begin
rst_delayed_sft1 <= #`TCQ rd_rst_i;
rst_delayed_sft2 <= #`TCQ rst_delayed_sft1;
rst_delayed_sft3 <= #`TCQ rst_delayed_sft2;
rst_delayed_sft4 <= #`TCQ rst_delayed_sft3;
end
always@(posedge rst_delayed_sft4 or posedge rd_rst_i or posedge RD_CLK)
begin
if( rst_delayed_sft4 == 1'b1 || rd_rst_i == 1'b1)
ram_rd_en_d1 <= #`TCQ 1'b0;
else
ram_rd_en_d1 <= #`TCQ ram_rd_en;
fab_rd_en_d1 <= #`TCQ ram_rd_en_d1;
end
always@(posedge rst_delayed_sft2 or posedge RD_CLK)
begin
if (rst_delayed_sft2 == 1'b1) begin
if (C_USE_DOUT_RST == 1'b1) begin
@(posedge RD_CLK)
ideal_dout_d1 <= #`TCQ dout_reset_val;
ideal_dout_both <= #`TCQ dout_reset_val;
end
end
else begin
if (ram_rd_en_d1) begin
ideal_dout_both <= #`TCQ ideal_dout;
err_type_both[0] <= #`TCQ err_type[0];
err_type_both[1] <= #`TCQ err_type[1];
end
if (fab_rd_en_d1) begin
ideal_dout_d1 <= #`TCQ ideal_dout_both;
err_type_d1[0] <= #`TCQ err_type_both[0];
err_type_d1[1] <= #`TCQ err_type_both[1];
end
end
end
end
endgenerate
//***************************************************************************
// Overflow may be active-low
//***************************************************************************
generate
if (C_HAS_OVERFLOW==1) begin : blockOF1
assign OVERFLOW = ideal_overflow ? !C_OVERFLOW_LOW : C_OVERFLOW_LOW;
end
endgenerate
assign PROG_EMPTY = ideal_prog_empty;
assign PROG_FULL = ideal_prog_full;
//***************************************************************************
// Valid may change behavior based on latency or active-low
//***************************************************************************
generate
if (C_HAS_VALID==1) begin : blockVL1
assign valid_i = (C_PRELOAD_LATENCY==0) ? (RD_EN & ~EMPTY) : ideal_valid;
assign valid_out1 = (C_PRELOAD_LATENCY==2 &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) && C_USE_EMBEDDED_REG < 3)?
valid_d1: valid_i;
assign valid_out2 = (C_PRELOAD_LATENCY==2 &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) && C_USE_EMBEDDED_REG == 3)?
valid_d2: valid_i;
assign valid_out = (C_USE_EMBEDDED_REG == 3) ? valid_out2 : valid_out1;
assign VALID = valid_out ? !C_VALID_LOW : C_VALID_LOW;
end
endgenerate
//***************************************************************************
// Underflow may change behavior based on latency or active-low
//***************************************************************************
generate
if (C_HAS_UNDERFLOW==1) begin : blockUF1
assign underflow_i = (C_PRELOAD_LATENCY==0) ? (RD_EN & EMPTY) : ideal_underflow;
assign UNDERFLOW = underflow_i ? !C_UNDERFLOW_LOW : C_UNDERFLOW_LOW;
end
endgenerate
//***************************************************************************
// Write acknowledge may be active low
//***************************************************************************
generate
if (C_HAS_WR_ACK==1) begin : blockWK1
assign WR_ACK = ideal_wr_ack ? !C_WR_ACK_LOW : C_WR_ACK_LOW;
end
endgenerate
//***************************************************************************
// Generate RD_DATA_COUNT if Use Extra Logic option is selected
//***************************************************************************
generate
if (C_HAS_WR_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT == 1) begin : wdc_fwft_ext
reg [C_PNTR_WIDTH-1:0] adjusted_wr_pntr = 0;
reg [C_PNTR_WIDTH-1:0] adjusted_rd_pntr = 0;
wire [C_PNTR_WIDTH-1:0] diff_wr_rd_tmp;
wire [C_PNTR_WIDTH:0] diff_wr_rd;
reg [C_PNTR_WIDTH:0] wr_data_count_i = 0;
always @* begin
if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin
adjusted_wr_pntr = wr_pntr;
adjusted_rd_pntr = 0;
adjusted_rd_pntr[C_PNTR_WIDTH-1:C_PNTR_WIDTH-C_RD_PNTR_WIDTH] = rd_pntr_wr;
end else if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin
adjusted_rd_pntr = rd_pntr_wr;
adjusted_wr_pntr = 0;
adjusted_wr_pntr[C_PNTR_WIDTH-1:C_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr;
end else begin
adjusted_wr_pntr = wr_pntr;
adjusted_rd_pntr = rd_pntr_wr;
end
end // always @*
assign diff_wr_rd_tmp = adjusted_wr_pntr - adjusted_rd_pntr;
assign diff_wr_rd = {1'b0,diff_wr_rd_tmp};
always @ (posedge wr_rst_i or posedge WR_CLK)
begin
if (wr_rst_i)
wr_data_count_i <= #`TCQ 0;
else
wr_data_count_i <= #`TCQ diff_wr_rd + EXTRA_WORDS_DC;
end // always @ (posedge WR_CLK or posedge WR_CLK)
always @* begin
if (C_WR_PNTR_WIDTH >= C_RD_PNTR_WIDTH)
wdc_fwft_ext_as = wr_data_count_i[C_PNTR_WIDTH:0];
else
wdc_fwft_ext_as = wr_data_count_i[C_PNTR_WIDTH:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH];
end // always @*
end // wdc_fwft_ext
endgenerate
//***************************************************************************
// Generate RD_DATA_COUNT if Use Extra Logic option is selected
//***************************************************************************
reg [C_RD_PNTR_WIDTH:0] rdc_fwft_ext_as = 0;
generate if (C_USE_EMBEDDED_REG < 3) begin: rdc_fwft_ext_both
if (C_HAS_RD_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT == 1) begin : rdc_fwft_ext
reg [C_RD_PNTR_WIDTH-1:0] adjusted_wr_pntr_rd = 0;
wire [C_RD_PNTR_WIDTH-1:0] diff_rd_wr_tmp;
wire [C_RD_PNTR_WIDTH:0] diff_rd_wr;
always @* begin
if (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) begin
adjusted_wr_pntr_rd = 0;
adjusted_wr_pntr_rd[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr_rd;
end else begin
adjusted_wr_pntr_rd = wr_pntr_rd[C_WR_PNTR_WIDTH-1:C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH];
end
end // always @*
assign diff_rd_wr_tmp = adjusted_wr_pntr_rd - rd_pntr;
assign diff_rd_wr = {1'b0,diff_rd_wr_tmp};
always @ (posedge rd_rst_i or posedge RD_CLK)
begin
if (rd_rst_i) begin
rdc_fwft_ext_as <= #`TCQ 0;
end else begin
if (!stage2_valid)
rdc_fwft_ext_as <= #`TCQ 0;
else if (!stage1_valid && stage2_valid)
rdc_fwft_ext_as <= #`TCQ 1;
else
rdc_fwft_ext_as <= #`TCQ diff_rd_wr + 2'h2;
end
end // always @ (posedge WR_CLK or posedge WR_CLK)
end // rdc_fwft_ext
end
endgenerate
generate if (C_USE_EMBEDDED_REG == 3) begin
if (C_HAS_RD_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT == 1) begin : rdc_fwft_ext
reg [C_RD_PNTR_WIDTH-1:0] adjusted_wr_pntr_rd = 0;
wire [C_RD_PNTR_WIDTH-1:0] diff_rd_wr_tmp;
wire [C_RD_PNTR_WIDTH:0] diff_rd_wr;
always @* begin
if (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) begin
adjusted_wr_pntr_rd = 0;
adjusted_wr_pntr_rd[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr_rd;
end else begin
adjusted_wr_pntr_rd = wr_pntr_rd[C_WR_PNTR_WIDTH-1:C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH];
end
end // always @*
assign diff_rd_wr_tmp = adjusted_wr_pntr_rd - rd_pntr;
assign diff_rd_wr = {1'b0,diff_rd_wr_tmp};
wire [C_RD_PNTR_WIDTH:0] diff_rd_wr_1;
// assign diff_rd_wr_1 = diff_rd_wr +2'h2;
always @ (posedge rd_rst_i or posedge RD_CLK)
begin
if (rd_rst_i) begin
rdc_fwft_ext_as <= #`TCQ 0;
end else begin
//if (fab_read_data_valid_i == 1'b0 && ((ram_valid_i == 1'b0 && read_data_valid_i ==1'b0) || (ram_valid_i == 1'b0 && read_data_valid_i ==1'b1) || (ram_valid_i == 1'b1 && read_data_valid_i ==1'b0) || (ram_valid_i == 1'b1 && read_data_valid_i ==1'b1)))
// rdc_fwft_ext_as <= 1'b0;
//else if (fab_read_data_valid_i == 1'b1 && ((ram_valid_i == 1'b0 && read_data_valid_i ==1'b0) || (ram_valid_i == 1'b0 && read_data_valid_i ==1'b1)))
// rdc_fwft_ext_as <= 1'b1;
//else
rdc_fwft_ext_as <= diff_rd_wr + 2'h2 ;
end
end
end
end
endgenerate
//***************************************************************************
// Assign the read data count value only if it is selected,
// otherwise output zeros.
//***************************************************************************
generate
if (C_HAS_RD_DATA_COUNT == 1) begin : grdc
assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = C_USE_FWFT_DATA_COUNT ?
rdc_fwft_ext_as[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH+1-C_RD_DATA_COUNT_WIDTH] :
rd_data_count_int[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH+1-C_RD_DATA_COUNT_WIDTH];
end
endgenerate
generate
if (C_HAS_RD_DATA_COUNT == 0) begin : gnrdc
assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = {C_RD_DATA_COUNT_WIDTH{1'b0}};
end
endgenerate
//***************************************************************************
// Assign the write data count value only if it is selected,
// otherwise output zeros
//***************************************************************************
generate
if (C_HAS_WR_DATA_COUNT == 1) begin : gwdc
assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = (C_USE_FWFT_DATA_COUNT == 1) ?
wdc_fwft_ext_as[C_WR_PNTR_WIDTH:C_WR_PNTR_WIDTH+1-C_WR_DATA_COUNT_WIDTH] :
wr_data_count_int[C_WR_PNTR_WIDTH:C_WR_PNTR_WIDTH+1-C_WR_DATA_COUNT_WIDTH];
end
endgenerate
generate
if (C_HAS_WR_DATA_COUNT == 0) begin : gnwdc
assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = {C_WR_DATA_COUNT_WIDTH{1'b0}};
end
endgenerate
/**************************************************************************
* Assorted registers for delayed versions of signals
**************************************************************************/
//Capture delayed version of valid
generate
if (C_HAS_VALID==1) begin : blockVL2
always @(posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i == 1'b1) begin
valid_d1 <= #`TCQ 1'b0;
valid_d2 <= #`TCQ 1'b0;
end else begin
valid_d1 <= #`TCQ valid_i;
valid_d2 <= #`TCQ valid_d1;
end
// if (C_USE_EMBEDDED_REG == 3 && (C_EN_SAFETY_CKT == 0 || C_EN_SAFETY_CKT == 1 ) begin
// valid_d2 <= #`TCQ valid_d1;
// end
end
end
endgenerate
//Capture delayed version of dout
/**************************************************************************
*embedded/fabric reg with no safety ckt
**************************************************************************/
generate
if (C_EN_SAFETY_CKT==0 && C_USE_EMBEDDED_REG < 3) begin
always @(posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i == 1'b1) begin
if (C_USE_DOUT_RST == 1'b1) begin
@(posedge RD_CLK)
ideal_dout_d1 <= #`TCQ dout_reset_val;
ideal_dout <= #`TCQ dout_reset_val;
end
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type_d1 <= #`TCQ 0;
end else if (ram_rd_en_d1) begin
ideal_dout_d1 <= #`TCQ ideal_dout;
err_type_d1 <= #`TCQ err_type;
end
end
end
endgenerate
/**************************************************************************
*embedded + fabric reg with no safety ckt
**************************************************************************/
generate
if (C_EN_SAFETY_CKT==0 && C_USE_EMBEDDED_REG == 3) begin
always @(posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i == 1'b1) begin
if (C_USE_DOUT_RST == 1'b1) begin
@(posedge RD_CLK)
ideal_dout <= #`TCQ dout_reset_val;
ideal_dout_d1 <= #`TCQ dout_reset_val;
ideal_dout_both <= #`TCQ dout_reset_val;
end
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type_d1 <= #`TCQ 0;
end else if (ram_rd_en_d1) begin
ideal_dout_both <= #`TCQ ideal_dout;
err_type_both <= #`TCQ err_type;
end
if (fab_rd_en_d1) begin
ideal_dout_d1 <= #`TCQ ideal_dout_both;
err_type_d1 <= #`TCQ err_type_both;
end
end
end
endgenerate
/**************************************************************************
* Overflow and Underflow Flag calculation
* (handled separately because they don't support rst)
**************************************************************************/
generate
if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 0) begin : g7s_ovflw
always @(posedge WR_CLK) begin
ideal_overflow <= #`TCQ WR_EN & FULL;
end
end else if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 1) begin : g8s_ovflw
always @(posedge WR_CLK) begin
//ideal_overflow <= #`TCQ WR_EN & (FULL | wr_rst_i);
ideal_overflow <= #`TCQ WR_EN & (FULL );
end
end
endgenerate
generate
if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 0) begin : g7s_unflw
always @(posedge RD_CLK) begin
ideal_underflow <= #`TCQ EMPTY & RD_EN;
end
end else if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 1) begin : g8s_unflw
always @(posedge RD_CLK) begin
ideal_underflow <= #`TCQ (EMPTY) & RD_EN;
//ideal_underflow <= #`TCQ (rd_rst_i | EMPTY) & RD_EN;
end
end
endgenerate
/**************************************************************************
* Write/Read Pointer Synchronization
**************************************************************************/
localparam NO_OF_SYNC_STAGE_INC_G2B = C_SYNCHRONIZER_STAGE + 1;
wire [C_WR_PNTR_WIDTH-1:0] wr_pntr_sync_stgs [0:NO_OF_SYNC_STAGE_INC_G2B];
wire [C_RD_PNTR_WIDTH-1:0] rd_pntr_sync_stgs [0:NO_OF_SYNC_STAGE_INC_G2B];
genvar gss;
generate for (gss = 1; gss <= NO_OF_SYNC_STAGE_INC_G2B; gss = gss + 1) begin : Sync_stage_inst
fifo_generator_v13_1_1_sync_stage
#(
.C_WIDTH (C_WR_PNTR_WIDTH)
)
rd_stg_inst
(
.RST (rd_rst_i),
.CLK (RD_CLK),
.DIN (wr_pntr_sync_stgs[gss-1]),
.DOUT (wr_pntr_sync_stgs[gss])
);
fifo_generator_v13_1_1_sync_stage
#(
.C_WIDTH (C_RD_PNTR_WIDTH)
)
wr_stg_inst
(
.RST (wr_rst_i),
.CLK (WR_CLK),
.DIN (rd_pntr_sync_stgs[gss-1]),
.DOUT (rd_pntr_sync_stgs[gss])
);
end endgenerate // Sync_stage_inst
assign wr_pntr_sync_stgs[0] = wr_pntr_rd1;
assign rd_pntr_sync_stgs[0] = rd_pntr_wr1;
always@* begin
wr_pntr_rd <= wr_pntr_sync_stgs[NO_OF_SYNC_STAGE_INC_G2B];
rd_pntr_wr <= rd_pntr_sync_stgs[NO_OF_SYNC_STAGE_INC_G2B];
end
/**************************************************************************
* Write Domain Logic
**************************************************************************/
reg [C_WR_PNTR_WIDTH-1:0] diff_pntr = 0;
always @(posedge WR_CLK or posedge wr_rst_i ) begin : gen_fifo_w
/****** Reset fifo (case 1)***************************************/
if (wr_rst_i == 1'b1) begin
num_wr_bits <= #`TCQ 0;
next_num_wr_bits = #`TCQ 0;
wr_ptr <= #`TCQ C_WR_DEPTH - 1;
rd_ptr_wrclk <= #`TCQ C_RD_DEPTH - 1;
ideal_wr_ack <= #`TCQ 0;
ideal_wr_count <= #`TCQ 0;
tmp_wr_listsize = #`TCQ 0;
rd_ptr_wrclk_next <= #`TCQ 0;
wr_pntr <= #`TCQ 0;
wr_pntr_rd1 <= #`TCQ 0;
end else begin //wr_rst_i==0
wr_pntr_rd1 <= #`TCQ wr_pntr;
//Determine the current number of words in the FIFO
tmp_wr_listsize = (C_DEPTH_RATIO_RD > 1) ? num_wr_bits/C_DOUT_WIDTH :
num_wr_bits/C_DIN_WIDTH;
rd_ptr_wrclk_next = rd_ptr;
if (rd_ptr_wrclk < rd_ptr_wrclk_next) begin
next_num_wr_bits = num_wr_bits -
C_DOUT_WIDTH*(rd_ptr_wrclk + C_RD_DEPTH
- rd_ptr_wrclk_next);
end else begin
next_num_wr_bits = num_wr_bits -
C_DOUT_WIDTH*(rd_ptr_wrclk - rd_ptr_wrclk_next);
end
//If this is a write, handle the write by adding the value
// to the linked list, and updating all outputs appropriately
if (WR_EN == 1'b1) begin
if (FULL == 1'b1) begin
//If the FIFO is full, do NOT perform the write,
// update flags accordingly
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD
>= C_FIFO_WR_DEPTH) begin
//write unsuccessful - do not change contents
//Do not acknowledge the write
ideal_wr_ack <= #`TCQ 0;
//Reminder that FIFO is still full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
//If the FIFO is one from full, but reporting full
end else
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD ==
C_FIFO_WR_DEPTH-1) begin
//No change to FIFO
//Write not successful
ideal_wr_ack <= #`TCQ 0;
//With DEPTH-1 words in the FIFO, it is almost_full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
//If the FIFO is completely empty, but it is
// reporting FULL for some reason (like reset)
end else
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD <=
C_FIFO_WR_DEPTH-2) begin
//No change to FIFO
//Write not successful
ideal_wr_ack <= #`TCQ 0;
//FIFO is really not close to full, so change flag status.
ideal_wr_count <= #`TCQ num_write_words_sized_i;
end //(tmp_wr_listsize == 0)
end else begin
//If the FIFO is full, do NOT perform the write,
// update flags accordingly
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD >=
C_FIFO_WR_DEPTH) begin
//write unsuccessful - do not change contents
//Do not acknowledge the write
ideal_wr_ack <= #`TCQ 0;
//Reminder that FIFO is still full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
//If the FIFO is one from full
end else
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD ==
C_FIFO_WR_DEPTH-1) begin
//Add value on DIN port to FIFO
write_fifo;
next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH;
//Write successful, so issue acknowledge
// and no error
ideal_wr_ack <= #`TCQ 1;
//This write is CAUSING the FIFO to go full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
//If the FIFO is 2 from full
end else
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD ==
C_FIFO_WR_DEPTH-2) begin
//Add value on DIN port to FIFO
write_fifo;
next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH;
//Write successful, so issue acknowledge
// and no error
ideal_wr_ack <= #`TCQ 1;
//Still 2 from full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
//If the FIFO is not close to being full
end else
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD <
C_FIFO_WR_DEPTH-2) begin
//Add value on DIN port to FIFO
write_fifo;
next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH;
//Write successful, so issue acknowledge
// and no error
ideal_wr_ack <= #`TCQ 1;
//Not even close to full.
ideal_wr_count <= num_write_words_sized_i;
end
end
end else begin //(WR_EN == 1'b1)
//If user did not attempt a write, then do not
// give ack or err
ideal_wr_ack <= #`TCQ 0;
ideal_wr_count <= #`TCQ num_write_words_sized_i;
end
num_wr_bits <= #`TCQ next_num_wr_bits;
rd_ptr_wrclk <= #`TCQ rd_ptr;
end //wr_rst_i==0
end // gen_fifo_w
/***************************************************************************
* Programmable FULL flags
***************************************************************************/
wire [C_WR_PNTR_WIDTH-1:0] pf_thr_assert_val;
wire [C_WR_PNTR_WIDTH-1:0] pf_thr_negate_val;
generate if (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) begin : FWFT
assign pf_thr_assert_val = C_PROG_FULL_THRESH_ASSERT_VAL - EXTRA_WORDS_DC;
assign pf_thr_negate_val = C_PROG_FULL_THRESH_NEGATE_VAL - EXTRA_WORDS_DC;
end else begin // STD
assign pf_thr_assert_val = C_PROG_FULL_THRESH_ASSERT_VAL;
assign pf_thr_negate_val = C_PROG_FULL_THRESH_NEGATE_VAL;
end endgenerate
always @(posedge WR_CLK or posedge wr_rst_i) begin
if (wr_rst_i == 1'b1) begin
diff_pntr <= 0;
end else begin
if (ram_wr_en)
diff_pntr <= #`TCQ (wr_pntr - adj_rd_pntr_wr + 2'h1);
else if (!ram_wr_en)
diff_pntr <= #`TCQ (wr_pntr - adj_rd_pntr_wr);
end
end
always @(posedge WR_CLK or posedge RST_FULL_FF) begin : gen_pf
if (RST_FULL_FF == 1'b1) begin
ideal_prog_full <= #`TCQ C_FULL_FLAGS_RST_VAL;
end else begin
if (RST_FULL_GEN)
ideal_prog_full <= #`TCQ 0;
//Single Programmable Full Constant Threshold
else if (C_PROG_FULL_TYPE == 1) begin
if (FULL == 0) begin
if (diff_pntr >= pf_thr_assert_val)
ideal_prog_full <= #`TCQ 1;
else
ideal_prog_full <= #`TCQ 0;
end else
ideal_prog_full <= #`TCQ ideal_prog_full;
//Two Programmable Full Constant Thresholds
end else if (C_PROG_FULL_TYPE == 2) begin
if (FULL == 0) begin
if (diff_pntr >= pf_thr_assert_val)
ideal_prog_full <= #`TCQ 1;
else if (diff_pntr < pf_thr_negate_val)
ideal_prog_full <= #`TCQ 0;
else
ideal_prog_full <= #`TCQ ideal_prog_full;
end else
ideal_prog_full <= #`TCQ ideal_prog_full;
//Single Programmable Full Threshold Input
end else if (C_PROG_FULL_TYPE == 3) begin
if (FULL == 0) begin
if (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) begin // FWFT
if (diff_pntr >= (PROG_FULL_THRESH - EXTRA_WORDS_DC))
ideal_prog_full <= #`TCQ 1;
else
ideal_prog_full <= #`TCQ 0;
end else begin // STD
if (diff_pntr >= PROG_FULL_THRESH)
ideal_prog_full <= #`TCQ 1;
else
ideal_prog_full <= #`TCQ 0;
end
end else
ideal_prog_full <= #`TCQ ideal_prog_full;
//Two Programmable Full Threshold Inputs
end else if (C_PROG_FULL_TYPE == 4) begin
if (FULL == 0) begin
if (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) begin // FWFT
if (diff_pntr >= (PROG_FULL_THRESH_ASSERT - EXTRA_WORDS_DC))
ideal_prog_full <= #`TCQ 1;
else if (diff_pntr < (PROG_FULL_THRESH_NEGATE - EXTRA_WORDS_DC))
ideal_prog_full <= #`TCQ 0;
else
ideal_prog_full <= #`TCQ ideal_prog_full;
end else begin // STD
if (diff_pntr >= PROG_FULL_THRESH_ASSERT)
ideal_prog_full <= #`TCQ 1;
else if (diff_pntr < PROG_FULL_THRESH_NEGATE)
ideal_prog_full <= #`TCQ 0;
else
ideal_prog_full <= #`TCQ ideal_prog_full;
end
end else
ideal_prog_full <= #`TCQ ideal_prog_full;
end // C_PROG_FULL_TYPE
end //wr_rst_i==0
end //
/**************************************************************************
* Read Domain Logic
**************************************************************************/
/*********************************************************
* Programmable EMPTY flags
*********************************************************/
//Determine the Assert and Negate thresholds for Programmable Empty
wire [C_RD_PNTR_WIDTH-1:0] pe_thr_assert_val;
wire [C_RD_PNTR_WIDTH-1:0] pe_thr_negate_val;
reg [C_RD_PNTR_WIDTH-1:0] diff_pntr_rd = 0;
always @(posedge RD_CLK or posedge rd_rst_i) begin : gen_pe
if (rd_rst_i) begin
diff_pntr_rd <= #`TCQ 0;
ideal_prog_empty <= #`TCQ 1'b1;
end else begin
if (ram_rd_en)
diff_pntr_rd <= #`TCQ (adj_wr_pntr_rd - rd_pntr) - 1'h1;
else if (!ram_rd_en)
diff_pntr_rd <= #`TCQ (adj_wr_pntr_rd - rd_pntr);
else
diff_pntr_rd <= #`TCQ diff_pntr_rd;
if (C_PROG_EMPTY_TYPE == 1) begin
if (EMPTY == 0) begin
if (diff_pntr_rd <= pe_thr_assert_val)
ideal_prog_empty <= #`TCQ 1;
else
ideal_prog_empty <= #`TCQ 0;
end else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end else if (C_PROG_EMPTY_TYPE == 2) begin
if (EMPTY == 0) begin
if (diff_pntr_rd <= pe_thr_assert_val)
ideal_prog_empty <= #`TCQ 1;
else if (diff_pntr_rd > pe_thr_negate_val)
ideal_prog_empty <= #`TCQ 0;
else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end else if (C_PROG_EMPTY_TYPE == 3) begin
if (EMPTY == 0) begin
if (diff_pntr_rd <= pe_thr_assert_val)
ideal_prog_empty <= #`TCQ 1;
else
ideal_prog_empty <= #`TCQ 0;
end else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end else if (C_PROG_EMPTY_TYPE == 4) begin
if (EMPTY == 0) begin
if (diff_pntr_rd <= pe_thr_assert_val)
ideal_prog_empty <= #`TCQ 1;
else if (diff_pntr_rd > pe_thr_negate_val)
ideal_prog_empty <= #`TCQ 0;
else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end //C_PROG_EMPTY_TYPE
end
end // gen_pe
generate if (C_PROG_EMPTY_TYPE == 3) begin : single_pe_thr_input
assign pe_thr_assert_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ?
PROG_EMPTY_THRESH - 2'h2 : PROG_EMPTY_THRESH;
end endgenerate // single_pe_thr_input
generate if (C_PROG_EMPTY_TYPE == 4) begin : multiple_pe_thr_input
assign pe_thr_assert_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ?
PROG_EMPTY_THRESH_ASSERT - 2'h2 : PROG_EMPTY_THRESH_ASSERT;
assign pe_thr_negate_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ?
PROG_EMPTY_THRESH_NEGATE - 2'h2 : PROG_EMPTY_THRESH_NEGATE;
end endgenerate // multiple_pe_thr_input
generate if (C_PROG_EMPTY_TYPE < 3) begin : single_multiple_pe_thr_const
assign pe_thr_assert_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ?
C_PROG_EMPTY_THRESH_ASSERT_VAL - 2'h2 : C_PROG_EMPTY_THRESH_ASSERT_VAL;
assign pe_thr_negate_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ?
C_PROG_EMPTY_THRESH_NEGATE_VAL - 2'h2 : C_PROG_EMPTY_THRESH_NEGATE_VAL;
end endgenerate // single_multiple_pe_thr_const
// // block memory has a synchronous reset
// always @(posedge RD_CLK) begin : gen_fifo_blkmemdout
// // make it consistent with the core.
// if (rd_rst_i) begin
// // Reset err_type only if ECC is not selected
// if (C_USE_ECC == 0 && C_MEMORY_TYPE < 2)
// err_type <= #`TCQ 0;
//
// // BRAM resets synchronously
// if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE < 2) begin
// //ideal_dout <= #`TCQ dout_reset_val;
// //ideal_dout_d1 <= #`TCQ dout_reset_val;
// end
// end
// end //always
always @(posedge RD_CLK or posedge rd_rst_i ) begin : gen_fifo_r
/****** Reset fifo (case 1)***************************************/
if (rd_rst_i == 1'b1 ) begin
num_rd_bits <= #`TCQ 0;
next_num_rd_bits = #`TCQ 0;
rd_ptr <= #`TCQ C_RD_DEPTH -1;
rd_pntr <= #`TCQ 0;
rd_pntr_wr1 <= #`TCQ 0;
wr_ptr_rdclk <= #`TCQ C_WR_DEPTH -1;
// DRAM resets asynchronously
if (C_MEMORY_TYPE == 2 && C_USE_DOUT_RST == 1)
ideal_dout <= #`TCQ dout_reset_val;
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type <= #`TCQ 0;
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ 0;
end else begin //rd_rst_i==0
rd_pntr_wr1 <= #`TCQ rd_pntr;
//Determine the current number of words in the FIFO
tmp_rd_listsize = (C_DEPTH_RATIO_WR > 1) ? num_rd_bits/C_DIN_WIDTH :
num_rd_bits/C_DOUT_WIDTH;
wr_ptr_rdclk_next = wr_ptr;
if (wr_ptr_rdclk < wr_ptr_rdclk_next) begin
next_num_rd_bits = num_rd_bits +
C_DIN_WIDTH*(wr_ptr_rdclk +C_WR_DEPTH
- wr_ptr_rdclk_next);
end else begin
next_num_rd_bits = num_rd_bits +
C_DIN_WIDTH*(wr_ptr_rdclk - wr_ptr_rdclk_next);
end
/*****************************************************************/
// Read Operation - Read Latency 1
/*****************************************************************/
if (C_PRELOAD_LATENCY==1 || C_PRELOAD_LATENCY==2) begin
ideal_valid <= #`TCQ 1'b0;
if (ram_rd_en == 1'b1) begin
if (EMPTY == 1'b1) begin
//If the FIFO is completely empty, and is reporting empty
if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0)
begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Reminder that FIFO is still empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize <= 0)
//If the FIFO is one from empty, but it is reporting empty
else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 1)
begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Note that FIFO is no longer empty, but is almost empty (has one word left)
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == 1)
//If the FIFO is two from empty, and is reporting empty
else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2)
begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Fifo has two words, so is neither empty or almost empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == 2)
//If the FIFO is not close to empty, but is reporting that it is
// Treat the FIFO as empty this time, but unset EMPTY flags.
if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) && (tmp_rd_listsize/C_DEPTH_RATIO_WR<C_FIFO_RD_DEPTH))
begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Note that the FIFO is No Longer Empty or Almost Empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if ((tmp_rd_listsize > 2) && (tmp_rd_listsize<=C_FIFO_RD_DEPTH-1))
end // else: if(ideal_empty == 1'b1)
else //if (ideal_empty == 1'b0)
begin
//If the FIFO is completely full, and we are successfully reading from it
if (tmp_rd_listsize/C_DEPTH_RATIO_WR >= C_FIFO_RD_DEPTH)
begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Not close to empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == C_FIFO_RD_DEPTH)
//If the FIFO is not close to being empty
else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) && (tmp_rd_listsize/C_DEPTH_RATIO_WR<=C_FIFO_RD_DEPTH))
begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Not close to empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if ((tmp_rd_listsize > 2) && (tmp_rd_listsize<=C_FIFO_RD_DEPTH-1))
//If the FIFO is two from empty
else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2)
begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Fifo is not yet empty. It is going almost_empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == 2)
//If the FIFO is one from empty
else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR == 1))
begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Note that FIFO is GOING empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == 1)
//If the FIFO is completely empty
else if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0)
begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize <= 0)
end // if (ideal_empty == 1'b0)
end //(RD_EN == 1'b1)
else //if (RD_EN == 1'b0)
begin
//If user did not attempt a read, do not give an ack or err
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // else: !if(RD_EN == 1'b1)
/*****************************************************************/
// Read Operation - Read Latency 0
/*****************************************************************/
end else if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) begin
ideal_valid <= #`TCQ 1'b0;
if (ram_rd_en == 1'b1) begin
if (EMPTY == 1'b1) begin
//If the FIFO is completely empty, and is reporting empty
if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0) begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Reminder that FIFO is still empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is one from empty, but it is reporting empty
end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 1) begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Note that FIFO is no longer empty, but is almost empty (has one word left)
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is two from empty, and is reporting empty
end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2) begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Fifo has two words, so is neither empty or almost empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is not close to empty, but is reporting that it is
// Treat the FIFO as empty this time, but unset EMPTY flags.
end else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) &&
(tmp_rd_listsize/C_DEPTH_RATIO_WR<C_FIFO_RD_DEPTH)) begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Note that the FIFO is No Longer Empty or Almost Empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if ((tmp_rd_listsize > 2) && (tmp_rd_listsize<=C_FIFO_RD_DEPTH-1))
end else begin
//If the FIFO is completely full, and we are successfully reading from it
if (tmp_rd_listsize/C_DEPTH_RATIO_WR >= C_FIFO_RD_DEPTH) begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Not close to empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is not close to being empty
end else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) &&
(tmp_rd_listsize/C_DEPTH_RATIO_WR<=C_FIFO_RD_DEPTH)) begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Not close to empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is two from empty
end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2) begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Fifo is not yet empty. It is going almost_empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is one from empty
end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 1) begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Note that FIFO is GOING empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is completely empty
end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0) begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Reminder that FIFO is still empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize <= 0)
end // if (ideal_empty == 1'b0)
end else begin//(RD_EN == 1'b0)
//If user did not attempt a read, do not give an ack or err
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // else: !if(RD_EN == 1'b1)
end //if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0)
num_rd_bits <= #`TCQ next_num_rd_bits;
wr_ptr_rdclk <= #`TCQ wr_ptr;
end //rd_rst_i==0
end //always
endmodule // fifo_generator_v13_1_1_bhv_ver_as
/*******************************************************************************
* Declaration of Low Latency Asynchronous FIFO
******************************************************************************/
module fifo_generator_v13_1_1_beh_ver_ll_afifo
/***************************************************************************
* Declare user parameters and their defaults
***************************************************************************/
#(
parameter C_DIN_WIDTH = 8,
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_FULL_FLAGS_RST_VAL = 1,
parameter C_HAS_RD_DATA_COUNT = 0,
parameter C_HAS_WR_DATA_COUNT = 0,
parameter C_RD_DEPTH = 256,
parameter C_RD_PNTR_WIDTH = 8,
parameter C_USE_DOUT_RST = 0,
parameter C_WR_DATA_COUNT_WIDTH = 2,
parameter C_WR_DEPTH = 256,
parameter C_WR_PNTR_WIDTH = 8,
parameter C_FIFO_TYPE = 0
)
/***************************************************************************
* Declare Input and Output Ports
***************************************************************************/
(
input [C_DIN_WIDTH-1:0] DIN,
input RD_CLK,
input RD_EN,
input WR_RST,
input RD_RST,
input WR_CLK,
input WR_EN,
output reg [C_DOUT_WIDTH-1:0] DOUT = 0,
output reg EMPTY = 1'b1,
output reg FULL = C_FULL_FLAGS_RST_VAL
);
//-----------------------------------------------------------------------------
// Low Latency Asynchronous FIFO
//-----------------------------------------------------------------------------
// Memory which will be used to simulate a FIFO
reg [C_DIN_WIDTH-1:0] memory[C_WR_DEPTH-1:0];
integer i;
initial begin
for (i = 0; i < C_WR_DEPTH; i = i + 1)
memory[i] = 0;
end
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_ll_afifo = 0;
wire [C_RD_PNTR_WIDTH-1:0] rd_pntr_ll_afifo;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_ll_afifo_q = 0;
reg ll_afifo_full = 1'b0;
reg ll_afifo_empty = 1'b1;
wire write_allow;
wire read_allow;
assign write_allow = WR_EN & ~ll_afifo_full;
assign read_allow = RD_EN & ~ll_afifo_empty;
//-----------------------------------------------------------------------------
// Write Pointer Generation
//-----------------------------------------------------------------------------
always @(posedge WR_CLK or posedge WR_RST) begin
if (WR_RST)
wr_pntr_ll_afifo <= 0;
else if (write_allow)
wr_pntr_ll_afifo <= #`TCQ wr_pntr_ll_afifo + 1;
end
//-----------------------------------------------------------------------------
// Read Pointer Generation
//-----------------------------------------------------------------------------
always @(posedge RD_CLK or posedge RD_RST) begin
if (RD_RST)
rd_pntr_ll_afifo_q <= 0;
else
rd_pntr_ll_afifo_q <= #`TCQ rd_pntr_ll_afifo;
end
assign rd_pntr_ll_afifo = read_allow ? rd_pntr_ll_afifo_q + 1 : rd_pntr_ll_afifo_q;
//-----------------------------------------------------------------------------
// Fill the Memory
//-----------------------------------------------------------------------------
always @(posedge WR_CLK) begin
if (write_allow)
memory[wr_pntr_ll_afifo] <= #`TCQ DIN;
end
//-----------------------------------------------------------------------------
// Generate DOUT
//-----------------------------------------------------------------------------
always @(posedge RD_CLK) begin
DOUT <= #`TCQ memory[rd_pntr_ll_afifo];
end
//-----------------------------------------------------------------------------
// Generate EMPTY
//-----------------------------------------------------------------------------
always @(posedge RD_CLK or posedge RD_RST) begin
if (RD_RST)
ll_afifo_empty <= 1'b1;
else
ll_afifo_empty <= ((wr_pntr_ll_afifo == rd_pntr_ll_afifo_q) |
(read_allow & (wr_pntr_ll_afifo == (rd_pntr_ll_afifo_q + 2'h1))));
end
//-----------------------------------------------------------------------------
// Generate FULL
//-----------------------------------------------------------------------------
always @(posedge WR_CLK or posedge WR_RST) begin
if (WR_RST)
ll_afifo_full <= 1'b1;
else
ll_afifo_full <= ((rd_pntr_ll_afifo_q == (wr_pntr_ll_afifo + 2'h1)) |
(write_allow & (rd_pntr_ll_afifo_q == (wr_pntr_ll_afifo + 2'h2))));
end
always @* begin
FULL <= ll_afifo_full;
EMPTY <= ll_afifo_empty;
end
endmodule // fifo_generator_v13_1_1_beh_ver_ll_afifo
/*******************************************************************************
* Declaration of top-level module
******************************************************************************/
module fifo_generator_v13_1_1_bhv_ver_ss
/**************************************************************************
* Declare user parameters and their defaults
*************************************************************************/
#(
parameter C_FAMILY = "virtex7",
parameter C_DATA_COUNT_WIDTH = 2,
parameter C_DIN_WIDTH = 8,
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_FULL_FLAGS_RST_VAL = 1,
parameter C_HAS_ALMOST_EMPTY = 0,
parameter C_HAS_ALMOST_FULL = 0,
parameter C_HAS_DATA_COUNT = 0,
parameter C_HAS_OVERFLOW = 0,
parameter C_HAS_RD_DATA_COUNT = 0,
parameter C_HAS_RST = 0,
parameter C_HAS_SRST = 0,
parameter C_HAS_UNDERFLOW = 0,
parameter C_HAS_VALID = 0,
parameter C_HAS_WR_ACK = 0,
parameter C_HAS_WR_DATA_COUNT = 0,
parameter C_IMPLEMENTATION_TYPE = 0,
parameter C_MEMORY_TYPE = 1,
parameter C_OVERFLOW_LOW = 0,
parameter C_PRELOAD_LATENCY = 1,
parameter C_PRELOAD_REGS = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0,
parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0,
parameter C_PROG_EMPTY_TYPE = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0,
parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0,
parameter C_PROG_FULL_TYPE = 0,
parameter C_RD_DATA_COUNT_WIDTH = 2,
parameter C_RD_DEPTH = 256,
parameter C_RD_PNTR_WIDTH = 8,
parameter C_UNDERFLOW_LOW = 0,
parameter C_USE_DOUT_RST = 0,
parameter C_USE_EMBEDDED_REG = 0,
parameter C_EN_SAFETY_CKT = 0,
parameter C_USE_FWFT_DATA_COUNT = 0,
parameter C_VALID_LOW = 0,
parameter C_WR_ACK_LOW = 0,
parameter C_WR_DATA_COUNT_WIDTH = 2,
parameter C_WR_DEPTH = 256,
parameter C_WR_PNTR_WIDTH = 8,
parameter C_USE_ECC = 0,
parameter C_ENABLE_RST_SYNC = 1,
parameter C_ERROR_INJECTION_TYPE = 0,
parameter C_FIFO_TYPE = 0
)
/**************************************************************************
* Declare Input and Output Ports
*************************************************************************/
(
//Inputs
input CLK,
input [C_DIN_WIDTH-1:0] DIN,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE,
input RD_EN,
input RD_EN_USER,
input USER_EMPTY_FB,
input RST,
input RST_FULL_GEN,
input RST_FULL_FF,
input SRST,
input WR_EN,
input INJECTDBITERR,
input INJECTSBITERR,
input WR_RST_BUSY,
input RD_RST_BUSY,
//Outputs
output ALMOST_EMPTY,
output ALMOST_FULL,
output reg [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT = 0,
output [C_DOUT_WIDTH-1:0] DOUT,
output EMPTY,
output FULL,
output OVERFLOW,
output [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT,
output [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT,
output PROG_EMPTY,
output PROG_FULL,
output VALID,
output UNDERFLOW,
output WR_ACK,
output SBITERR,
output DBITERR
);
reg [C_RD_PNTR_WIDTH:0] rd_data_count_int = 0;
reg [C_WR_PNTR_WIDTH:0] wr_data_count_int = 0;
wire [C_RD_PNTR_WIDTH:0] rd_data_count_i_ss;
wire [C_WR_PNTR_WIDTH:0] wr_data_count_i_ss;
reg [C_WR_PNTR_WIDTH:0] wdc_fwft_ext_as = 0;
/***************************************************************************
* Parameters used as constants
**************************************************************************/
localparam IS_8SERIES = (C_FAMILY == "virtexu" || C_FAMILY == "kintexu" || C_FAMILY == "artixu" || C_FAMILY == "virtexuplus" || C_FAMILY == "zynquplus" || C_FAMILY == "kintexuplus") ? 1 : 0;
localparam C_DEPTH_RATIO_WR =
(C_WR_DEPTH>C_RD_DEPTH) ? (C_WR_DEPTH/C_RD_DEPTH) : 1;
localparam C_DEPTH_RATIO_RD =
(C_RD_DEPTH>C_WR_DEPTH) ? (C_RD_DEPTH/C_WR_DEPTH) : 1;
//localparam C_FIFO_WR_DEPTH = C_WR_DEPTH - 1;
//localparam C_FIFO_RD_DEPTH = C_RD_DEPTH - 1;
localparam C_GRTR_PNTR_WIDTH = (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) ? C_WR_PNTR_WIDTH : C_RD_PNTR_WIDTH ;
// C_DEPTH_RATIO_WR | C_DEPTH_RATIO_RD | C_PNTR_WIDTH | EXTRA_WORDS_DC
// -----------------|------------------|-----------------|---------------
// 1 | 8 | C_RD_PNTR_WIDTH | 2
// 1 | 4 | C_RD_PNTR_WIDTH | 2
// 1 | 2 | C_RD_PNTR_WIDTH | 2
// 1 | 1 | C_WR_PNTR_WIDTH | 2
// 2 | 1 | C_WR_PNTR_WIDTH | 4
// 4 | 1 | C_WR_PNTR_WIDTH | 8
// 8 | 1 | C_WR_PNTR_WIDTH | 16
localparam C_PNTR_WIDTH = (C_WR_PNTR_WIDTH>=C_RD_PNTR_WIDTH) ? C_WR_PNTR_WIDTH : C_RD_PNTR_WIDTH;
wire [C_PNTR_WIDTH:0] EXTRA_WORDS_DC = (C_DEPTH_RATIO_WR == 1) ? 2 : (2 * C_DEPTH_RATIO_WR/C_DEPTH_RATIO_RD);
wire [C_WR_PNTR_WIDTH:0] EXTRA_WORDS_PF = (C_DEPTH_RATIO_WR == 1) ? 2 : (2 * C_DEPTH_RATIO_WR/C_DEPTH_RATIO_RD);
//wire [C_RD_PNTR_WIDTH:0] EXTRA_WORDS_PE = (C_DEPTH_RATIO_RD == 1) ? 2 : (2 * C_DEPTH_RATIO_RD/C_DEPTH_RATIO_WR);
localparam EXTRA_WORDS_PF_PARAM = (C_DEPTH_RATIO_WR == 1) ? 2 : (2 * C_DEPTH_RATIO_WR/C_DEPTH_RATIO_RD);
//localparam EXTRA_WORDS_PE_PARAM = (C_DEPTH_RATIO_RD == 1) ? 2 : (2 * C_DEPTH_RATIO_RD/C_DEPTH_RATIO_WR);
localparam [31:0] reads_per_write = C_DIN_WIDTH/C_DOUT_WIDTH;
localparam [31:0] log2_reads_per_write = log2_val(reads_per_write);
localparam [31:0] writes_per_read = C_DOUT_WIDTH/C_DIN_WIDTH;
localparam [31:0] log2_writes_per_read = log2_val(writes_per_read);
//When RST is present, set FULL reset value to '1'.
//If core has no RST, make sure FULL powers-on as '0'.
//The reset value assignments for FULL, ALMOST_FULL, and PROG_FULL are not
//changed for v3.2(IP2_Im). When the core has Sync Reset, C_HAS_SRST=1 and C_HAS_RST=0.
// Therefore, during SRST, all the FULL flags reset to 0.
localparam C_HAS_FAST_FIFO = 0;
localparam C_FIFO_WR_DEPTH = C_WR_DEPTH;
localparam C_FIFO_RD_DEPTH = C_RD_DEPTH;
// Local parameters used to determine whether to inject ECC error or not
localparam SYMMETRIC_PORT = (C_DIN_WIDTH == C_DOUT_WIDTH) ? 1 : 0;
localparam ERR_INJECTION = (C_ERROR_INJECTION_TYPE != 0) ? 1 : 0;
localparam C_USE_ECC_1 = (C_USE_ECC == 1 || C_USE_ECC ==2) ? 1:0;
localparam ENABLE_ERR_INJECTION = C_USE_ECC && SYMMETRIC_PORT && ERR_INJECTION;
localparam C_DATA_WIDTH = (ENABLE_ERR_INJECTION == 1) ? (C_DIN_WIDTH+2) : C_DIN_WIDTH;
localparam IS_ASYMMETRY = (C_DIN_WIDTH == C_DOUT_WIDTH) ? 0 : 1;
localparam LESSER_WIDTH = (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) ? C_WR_PNTR_WIDTH : C_RD_PNTR_WIDTH;
localparam [C_RD_PNTR_WIDTH-1 : 0] DIFF_MAX_RD = {C_RD_PNTR_WIDTH{1'b1}};
localparam [C_WR_PNTR_WIDTH-1 : 0] DIFF_MAX_WR = {C_WR_PNTR_WIDTH{1'b1}};
/**************************************************************************
* FIFO Contents Tracking and Data Count Calculations
*************************************************************************/
// Memory which will be used to simulate a FIFO
reg [C_DIN_WIDTH-1:0] memory[C_WR_DEPTH-1:0];
reg [1:0] ecc_err[C_WR_DEPTH-1:0];
/**************************************************************************
* Internal Registers and wires
*************************************************************************/
//Temporary signals used for calculating the model's outputs. These
//are only used in the assign statements immediately following wire,
//parameter, and function declarations.
wire underflow_i;
wire valid_i;
wire valid_out;
reg [31:0] num_wr_bits;
reg [31:0] num_rd_bits;
reg [31:0] next_num_wr_bits;
reg [31:0] next_num_rd_bits;
//The write pointer - tracks write operations
// (Works opposite to core: wr_ptr is a DOWN counter)
reg [31:0] wr_ptr;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd1 = 0;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd2 = 0;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd3 = 0;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd = 0;
reg wr_rst_d1 =0;
//The read pointer - tracks read operations
// (rd_ptr Works opposite to core: rd_ptr is a DOWN counter)
reg [31:0] rd_ptr;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr1 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr2 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr3 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr4 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr = 0;
wire ram_rd_en;
wire empty_int;
wire almost_empty_int;
wire ram_wr_en;
wire full_int;
wire almost_full_int;
reg ram_rd_en_reg = 1'b0;
reg ram_rd_en_d1 = 1'b0;
reg fab_rd_en_d1 = 1'b0;
wire srst_rrst_busy;
//Ideal FIFO signals. These are the raw output of the behavioral model,
//which behaves like an ideal FIFO.
reg [1:0] err_type = 0;
reg [1:0] err_type_d1 = 0;
reg [1:0] err_type_both = 0;
reg [C_DOUT_WIDTH-1:0] ideal_dout = 0;
reg [C_DOUT_WIDTH-1:0] ideal_dout_d1 = 0;
reg [C_DOUT_WIDTH-1:0] ideal_dout_both = 0;
wire [C_DOUT_WIDTH-1:0] ideal_dout_out;
wire fwft_enabled;
reg ideal_wr_ack = 0;
reg ideal_valid = 0;
reg ideal_overflow = C_OVERFLOW_LOW;
reg ideal_underflow = C_UNDERFLOW_LOW;
reg full_i = C_FULL_FLAGS_RST_VAL;
reg full_i_temp = 0;
reg empty_i = 1;
reg almost_full_i = 0;
reg almost_empty_i = 1;
reg prog_full_i = 0;
reg prog_empty_i = 1;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr = 0;
wire [C_RD_PNTR_WIDTH-1:0] adj_wr_pntr_rd;
wire [C_WR_PNTR_WIDTH-1:0] adj_rd_pntr_wr;
reg [C_RD_PNTR_WIDTH-1:0] diff_count = 0;
reg write_allow_q = 0;
reg read_allow_q = 0;
reg valid_d1 = 0;
reg valid_both = 0;
reg valid_d2 = 0;
wire rst_i;
wire srst_i;
//user specified value for reseting the size of the fifo
reg [C_DOUT_WIDTH-1:0] dout_reset_val = 0;
reg [31:0] wr_ptr_rdclk;
reg [31:0] wr_ptr_rdclk_next;
reg [31:0] rd_ptr_wrclk;
reg [31:0] rd_ptr_wrclk_next;
/****************************************************************************
* Function Declarations
***************************************************************************/
/****************************************************************************
* hexstr_conv
* Converts a string of type hex to a binary value (for C_DOUT_RST_VAL)
***************************************************************************/
function [C_DOUT_WIDTH-1:0] hexstr_conv;
input [(C_DOUT_WIDTH*8)-1:0] def_data;
integer index,i,j;
reg [3:0] bin;
begin
index = 0;
hexstr_conv = 'b0;
for( i=C_DOUT_WIDTH-1; i>=0; i=i-1 ) begin
case (def_data[7:0])
8'b00000000 : begin
bin = 4'b0000;
i = -1;
end
8'b00110000 : bin = 4'b0000;
8'b00110001 : bin = 4'b0001;
8'b00110010 : bin = 4'b0010;
8'b00110011 : bin = 4'b0011;
8'b00110100 : bin = 4'b0100;
8'b00110101 : bin = 4'b0101;
8'b00110110 : bin = 4'b0110;
8'b00110111 : bin = 4'b0111;
8'b00111000 : bin = 4'b1000;
8'b00111001 : bin = 4'b1001;
8'b01000001 : bin = 4'b1010;
8'b01000010 : bin = 4'b1011;
8'b01000011 : bin = 4'b1100;
8'b01000100 : bin = 4'b1101;
8'b01000101 : bin = 4'b1110;
8'b01000110 : bin = 4'b1111;
8'b01100001 : bin = 4'b1010;
8'b01100010 : bin = 4'b1011;
8'b01100011 : bin = 4'b1100;
8'b01100100 : bin = 4'b1101;
8'b01100101 : bin = 4'b1110;
8'b01100110 : bin = 4'b1111;
default : begin
bin = 4'bx;
end
endcase
for( j=0; j<4; j=j+1) begin
if ((index*4)+j < C_DOUT_WIDTH) begin
hexstr_conv[(index*4)+j] = bin[j];
end
end
index = index + 1;
def_data = def_data >> 8;
end
end
endfunction
/**************************************************************************
* log2_val
* Returns the 'log2' value for the input value for the supported ratios
***************************************************************************/
function [31:0] log2_val;
input [31:0] binary_val;
begin
if (binary_val == 8) begin
log2_val = 3;
end else if (binary_val == 4) begin
log2_val = 2;
end else begin
log2_val = 1;
end
end
endfunction
reg ideal_prog_full = 0;
reg ideal_prog_empty = 1;
reg [C_WR_DATA_COUNT_WIDTH-1 : 0] ideal_wr_count = 0;
reg [C_RD_DATA_COUNT_WIDTH-1 : 0] ideal_rd_count = 0;
//Assorted reg values for delayed versions of signals
//reg valid_d1 = 0;
//user specified value for reseting the size of the fifo
//reg [C_DOUT_WIDTH-1:0] dout_reset_val = 0;
//temporary registers for WR_RESPONSE_LATENCY feature
integer tmp_wr_listsize;
integer tmp_rd_listsize;
//Signal for registered version of prog full and empty
//Threshold values for Programmable Flags
integer prog_empty_actual_thresh_assert;
integer prog_empty_actual_thresh_negate;
integer prog_full_actual_thresh_assert;
integer prog_full_actual_thresh_negate;
/**************************************************************************
* write_fifo
* This task writes a word to the FIFO memory and updates the
* write pointer.
* FIFO size is relative to write domain.
***************************************************************************/
task write_fifo;
begin
memory[wr_ptr] <= DIN;
wr_pntr <= #`TCQ wr_pntr + 1;
// Store the type of error injection (double/single) on write
case (C_ERROR_INJECTION_TYPE)
3: ecc_err[wr_ptr] <= {INJECTDBITERR,INJECTSBITERR};
2: ecc_err[wr_ptr] <= {INJECTDBITERR,1'b0};
1: ecc_err[wr_ptr] <= {1'b0,INJECTSBITERR};
default: ecc_err[wr_ptr] <= 0;
endcase
// (Works opposite to core: wr_ptr is a DOWN counter)
if (wr_ptr == 0) begin
wr_ptr <= C_WR_DEPTH - 1;
end else begin
wr_ptr <= wr_ptr - 1;
end
end
endtask // write_fifo
/**************************************************************************
* read_fifo
* This task reads a word from the FIFO memory and updates the read
* pointer. It's output is the ideal_dout bus.
* FIFO size is relative to write domain.
***************************************************************************/
task read_fifo;
integer i;
reg [C_DOUT_WIDTH-1:0] tmp_dout;
reg [C_DIN_WIDTH-1:0] memory_read;
reg [31:0] tmp_rd_ptr;
reg [31:0] rd_ptr_high;
reg [31:0] rd_ptr_low;
reg [1:0] tmp_ecc_err;
begin
rd_pntr <= #`TCQ rd_pntr + 1;
// output is wider than input
if (reads_per_write == 0) begin
tmp_dout = 0;
tmp_rd_ptr = (rd_ptr << log2_writes_per_read)+(writes_per_read-1);
for (i = writes_per_read - 1; i >= 0; i = i - 1) begin
tmp_dout = tmp_dout << C_DIN_WIDTH;
tmp_dout = tmp_dout | memory[tmp_rd_ptr];
// (Works opposite to core: rd_ptr is a DOWN counter)
if (tmp_rd_ptr == 0) begin
tmp_rd_ptr = C_WR_DEPTH - 1;
end else begin
tmp_rd_ptr = tmp_rd_ptr - 1;
end
end
// output is symmetric
end else if (reads_per_write == 1) begin
tmp_dout = memory[rd_ptr][C_DIN_WIDTH-1:0];
// Retreive the error injection type. Based on the error injection type
// corrupt the output data.
tmp_ecc_err = ecc_err[rd_ptr];
if (ENABLE_ERR_INJECTION && C_DIN_WIDTH == C_DOUT_WIDTH) begin
if (tmp_ecc_err[1]) begin // Corrupt the output data only for double bit error
if (C_DOUT_WIDTH == 1) begin
$display("FAILURE : Data width must be >= 2 for double bit error injection.");
$finish;
end else if (C_DOUT_WIDTH == 2)
tmp_dout = {~tmp_dout[C_DOUT_WIDTH-1],~tmp_dout[C_DOUT_WIDTH-2]};
else
tmp_dout = {~tmp_dout[C_DOUT_WIDTH-1],~tmp_dout[C_DOUT_WIDTH-2],(tmp_dout << 2)};
end else begin
tmp_dout = tmp_dout[C_DOUT_WIDTH-1:0];
end
err_type <= {tmp_ecc_err[1], tmp_ecc_err[0] & !tmp_ecc_err[1]};
end else begin
err_type <= 0;
end
// input is wider than output
end else begin
rd_ptr_high = rd_ptr >> log2_reads_per_write;
rd_ptr_low = rd_ptr & (reads_per_write - 1);
memory_read = memory[rd_ptr_high];
tmp_dout = memory_read >> (rd_ptr_low*C_DOUT_WIDTH);
end
ideal_dout <= tmp_dout;
// (Works opposite to core: rd_ptr is a DOWN counter)
if (rd_ptr == 0) begin
rd_ptr <= C_RD_DEPTH - 1;
end else begin
rd_ptr <= rd_ptr - 1;
end
end
endtask
/*************************************************************************
* Initialize Signals for clean power-on simulation
*************************************************************************/
initial begin
num_wr_bits = 0;
num_rd_bits = 0;
next_num_wr_bits = 0;
next_num_rd_bits = 0;
rd_ptr = C_RD_DEPTH - 1;
wr_ptr = C_WR_DEPTH - 1;
wr_pntr = 0;
rd_pntr = 0;
rd_ptr_wrclk = rd_ptr;
wr_ptr_rdclk = wr_ptr;
dout_reset_val = hexstr_conv(C_DOUT_RST_VAL);
ideal_dout = dout_reset_val;
err_type = 0;
ideal_dout_d1 = dout_reset_val;
ideal_dout_both = dout_reset_val;
ideal_wr_ack = 1'b0;
ideal_valid = 1'b0;
valid_d1 = 1'b0;
valid_both = 1'b0;
ideal_overflow = C_OVERFLOW_LOW;
ideal_underflow = C_UNDERFLOW_LOW;
ideal_wr_count = 0;
ideal_rd_count = 0;
ideal_prog_full = 1'b0;
ideal_prog_empty = 1'b1;
end
/*************************************************************************
* Connect the module inputs and outputs to the internal signals of the
* behavioral model.
*************************************************************************/
//Inputs
/*
wire CLK;
wire [C_DIN_WIDTH-1:0] DIN;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE;
wire RD_EN;
wire RST;
wire WR_EN;
*/
// Assign ALMOST_EPMTY
generate if (C_HAS_ALMOST_EMPTY == 1) begin : gae
assign ALMOST_EMPTY = almost_empty_i;
end else begin : gnae
assign ALMOST_EMPTY = 0;
end endgenerate // gae
// Assign ALMOST_FULL
generate if (C_HAS_ALMOST_FULL==1) begin : gaf
assign ALMOST_FULL = almost_full_i;
end else begin : gnaf
assign ALMOST_FULL = 0;
end endgenerate // gaf
// Dout may change behavior based on latency
localparam C_FWFT_ENABLED = (C_PRELOAD_LATENCY == 0 && C_PRELOAD_REGS == 1)?
1: 0;
assign fwft_enabled = (C_PRELOAD_LATENCY == 0 && C_PRELOAD_REGS == 1)?
1: 0;
assign ideal_dout_out= ((C_USE_EMBEDDED_REG>0 && (fwft_enabled == 0)) &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1))?
ideal_dout_d1: ideal_dout;
assign DOUT = ideal_dout_out;
// Assign SBITERR and DBITERR based on latency
assign SBITERR = (C_ERROR_INJECTION_TYPE == 1 || C_ERROR_INJECTION_TYPE == 3) &&
((C_USE_EMBEDDED_REG>0 && (fwft_enabled == 0)) &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1)) ?
err_type_d1[0]: err_type[0];
assign DBITERR = (C_ERROR_INJECTION_TYPE == 2 || C_ERROR_INJECTION_TYPE == 3) &&
((C_USE_EMBEDDED_REG>0 && (fwft_enabled == 0)) &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1)) ?
err_type_d1[1]: err_type[1];
assign EMPTY = empty_i;
assign FULL = full_i;
//saftey_ckt with one register
generate
if ((C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) && C_EN_SAFETY_CKT==1 && (C_USE_EMBEDDED_REG == 1 || C_USE_EMBEDDED_REG == 2 )) begin
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d1;
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d2;
reg [1:0] rst_delayed_sft1 =1;
reg [1:0] rst_delayed_sft2 =1;
reg [1:0] rst_delayed_sft3 =1;
reg [1:0] rst_delayed_sft4 =1;
always@(posedge CLK)
begin
rst_delayed_sft1 <= #`TCQ rst_i;
rst_delayed_sft2 <= #`TCQ rst_delayed_sft1;
rst_delayed_sft3 <= #`TCQ rst_delayed_sft2;
rst_delayed_sft4 <= #`TCQ rst_delayed_sft3;
end
always@(posedge rst_delayed_sft2 or posedge rst_i or posedge CLK)
begin
if( rst_delayed_sft2 == 1'b1 || rst_i == 1'b1) begin
ram_rd_en_d1 <= #`TCQ 1'b0;
valid_d1 <= #`TCQ 1'b0;
end
else begin
ram_rd_en_d1 <= #`TCQ (RD_EN && ~(empty_i));
valid_d1 <= #`TCQ valid_i;
end
end
always@(posedge rst_delayed_sft2 or posedge CLK)
begin
if (rst_delayed_sft2 == 1'b1) begin
if (C_USE_DOUT_RST == 1'b1) begin
@(posedge CLK)
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
end
else if (srst_rrst_busy == 1'b1) begin
if (C_USE_DOUT_RST == 1'b1) begin
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
end else if (ram_rd_en_d1) begin
ideal_dout_d1 <= #`TCQ ideal_dout;
err_type_d1[0] <= #`TCQ err_type[0];
err_type_d1[1] <= #`TCQ err_type[1];
end
end
end //if
endgenerate
//safety ckt with both registers
generate
if ((C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) && C_EN_SAFETY_CKT==1 && C_USE_EMBEDDED_REG == 3) begin
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d1;
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d2;
reg [1:0] rst_delayed_sft1 =1;
reg [1:0] rst_delayed_sft2 =1;
reg [1:0] rst_delayed_sft3 =1;
reg [1:0] rst_delayed_sft4 =1;
always@(posedge CLK)
begin
rst_delayed_sft1 <= #`TCQ rst_i;
rst_delayed_sft2 <= #`TCQ rst_delayed_sft1;
rst_delayed_sft3 <= #`TCQ rst_delayed_sft2;
rst_delayed_sft4 <= #`TCQ rst_delayed_sft3;
end
always@(posedge rst_delayed_sft2 or posedge rst_i or posedge CLK)
begin
if( rst_delayed_sft2 == 1'b1 || rst_i == 1'b1) begin
ram_rd_en_d1 <= #`TCQ 1'b0;
valid_d1 <= #`TCQ 1'b0;
end
else begin
ram_rd_en_d1 <= #`TCQ (RD_EN && ~(empty_i));
fab_rd_en_d1 <= #`TCQ ram_rd_en_d1;
valid_both <= #`TCQ valid_i;
valid_d1 <= #`TCQ valid_both;
end
end
always@(posedge rst_delayed_sft2 or posedge CLK)
begin
if (rst_delayed_sft2 == 1'b1) begin
if (C_USE_DOUT_RST == 1'b1) begin
@(posedge CLK)
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
end
else if (srst_rrst_busy == 1'b1) begin
if (C_USE_DOUT_RST == 1'b1) begin
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
end else if (ram_rd_en_d1) begin
ideal_dout_both <= #`TCQ ideal_dout;
err_type_both[0] <= #`TCQ err_type[0];
err_type_both[1] <= #`TCQ err_type[1];
end
if (fab_rd_en_d1) begin
ideal_dout_d1 <= #`TCQ ideal_dout_both;
err_type_d1[0] <= #`TCQ err_type_both[0];
err_type_d1[1] <= #`TCQ err_type_both[1];
end
end
//assign SBITERR = (C_USE_ECC == 0) ? err_type[0]:err_type_d1[0];
//assign DBITERR = (C_USE_ECC == 0) ? err_type[1]:err_type_d1[1];
//assign DOUT[C_DOUT_WIDTH-1:0] = ideal_dout_d1;
end //if
endgenerate
//Overflow may be active-low
generate if (C_HAS_OVERFLOW==1) begin : gof
assign OVERFLOW = ideal_overflow ? !C_OVERFLOW_LOW : C_OVERFLOW_LOW;
end else begin : gnof
assign OVERFLOW = 0;
end endgenerate // gof
assign PROG_EMPTY = prog_empty_i;
assign PROG_FULL = prog_full_i;
//Valid may change behavior based on latency or active-low
generate if (C_HAS_VALID==1) begin : gvalid
assign valid_i = (C_PRELOAD_LATENCY == 0) ? (RD_EN & ~EMPTY) : ideal_valid;
assign valid_out = (C_PRELOAD_LATENCY == 2 && C_MEMORY_TYPE < 2) ?
valid_d1 : valid_i;
assign VALID = valid_out ? !C_VALID_LOW : C_VALID_LOW;
end else begin : gnvalid
assign VALID = 0;
end endgenerate // gvalid
//Trim data count differently depending on set widths
generate if (C_HAS_DATA_COUNT == 1) begin : gdc
always @* begin
diff_count <= wr_pntr - rd_pntr;
if (C_DATA_COUNT_WIDTH > C_RD_PNTR_WIDTH) begin
DATA_COUNT[C_RD_PNTR_WIDTH-1:0] <= diff_count;
DATA_COUNT[C_DATA_COUNT_WIDTH-1] <= 1'b0 ;
end else begin
DATA_COUNT <= diff_count[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_DATA_COUNT_WIDTH];
end
end
// end else begin : gndc
// always @* DATA_COUNT <= 0;
end endgenerate // gdc
//Underflow may change behavior based on latency or active-low
generate if (C_HAS_UNDERFLOW==1) begin : guf
assign underflow_i = ideal_underflow;
assign UNDERFLOW = underflow_i ? !C_UNDERFLOW_LOW : C_UNDERFLOW_LOW;
end else begin : gnuf
assign UNDERFLOW = 0;
end endgenerate // guf
//Write acknowledge may be active low
generate if (C_HAS_WR_ACK==1) begin : gwr_ack
assign WR_ACK = ideal_wr_ack ? !C_WR_ACK_LOW : C_WR_ACK_LOW;
end else begin : gnwr_ack
assign WR_ACK = 0;
end endgenerate // gwr_ack
/*****************************************************************************
* Internal reset logic
****************************************************************************/
assign srst_i = C_HAS_SRST ? SRST : 0;
assign srst_wrst_busy = C_HAS_SRST ? (SRST || WR_RST_BUSY) : 0;
assign srst_rrst_busy = C_HAS_SRST ? (SRST || RD_RST_BUSY) : 0;
assign rst_i = C_HAS_RST ? RST : 0;
/**************************************************************************
* Assorted registers for delayed versions of signals
**************************************************************************/
//Capture delayed version of valid
generate if (C_HAS_VALID == 1 && (C_USE_EMBEDDED_REG <3)) begin : blockVL20
always @(posedge CLK or posedge rst_i) begin
if (rst_i == 1'b1) begin
valid_d1 <= #`TCQ 1'b0;
end else begin
if (srst_rrst_busy) begin
valid_d1 <= #`TCQ 1'b0;
end else begin
valid_d1 <= #`TCQ valid_i;
end
end
end // always @ (posedge CLK or posedge rst_i)
end
endgenerate // blockVL20
generate if (C_HAS_VALID == 1 && (C_USE_EMBEDDED_REG == 3)) begin
always @(posedge CLK or posedge rst_i) begin
if (rst_i == 1'b1) begin
valid_d1 <= #`TCQ 1'b0;
valid_both <= #`TCQ 1'b0;
end else begin
if (srst_rrst_busy) begin
valid_d1 <= #`TCQ 1'b0;
valid_both <= #`TCQ 1'b0;
end else begin
valid_both <= #`TCQ valid_i;
valid_d1 <= #`TCQ valid_both;
end
end
end // always @ (posedge CLK or posedge rst_i)
end
endgenerate // blockVL20
// Determine which stage in FWFT registers are valid
reg stage1_valid = 0;
reg stage2_valid = 0;
generate
if (C_PRELOAD_LATENCY == 0) begin : grd_fwft_proc
always @ (posedge CLK or posedge rst_i) begin
if (rst_i) begin
stage1_valid <= #`TCQ 0;
stage2_valid <= #`TCQ 0;
end else begin
if (!stage1_valid && !stage2_valid) begin
if (!EMPTY)
stage1_valid <= #`TCQ 1'b1;
else
stage1_valid <= #`TCQ 1'b0;
end else if (stage1_valid && !stage2_valid) begin
if (EMPTY) begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b1;
end else begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b1;
end
end else if (!stage1_valid && stage2_valid) begin
if (EMPTY && RD_EN) begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b0;
end else if (!EMPTY && RD_EN) begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b0;
end else if (!EMPTY && !RD_EN) begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b1;
end else begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b1;
end
end else if (stage1_valid && stage2_valid) begin
if (EMPTY && RD_EN) begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b1;
end else begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b1;
end
end else begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b0;
end
end // rd_rst_i
end // always
end
endgenerate
//***************************************************************************
// Assign the read data count value only if it is selected,
// otherwise output zeros.
//***************************************************************************
generate
if (C_HAS_RD_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT ==1) begin : grdc
assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = rd_data_count_i_ss[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH+1-C_RD_DATA_COUNT_WIDTH];
end
endgenerate
generate
if (C_HAS_RD_DATA_COUNT == 0) begin : gnrdc
assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = {C_RD_DATA_COUNT_WIDTH{1'b0}};
end
endgenerate
//***************************************************************************
// Assign the write data count value only if it is selected,
// otherwise output zeros
//***************************************************************************
generate
if (C_HAS_WR_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT == 1) begin : gwdc
assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = wr_data_count_i_ss[C_WR_PNTR_WIDTH:C_WR_PNTR_WIDTH+1-C_WR_DATA_COUNT_WIDTH] ;
end
endgenerate
generate
if (C_HAS_WR_DATA_COUNT == 0) begin : gnwdc
assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = {C_WR_DATA_COUNT_WIDTH{1'b0}};
end
endgenerate
// block memory has a synchronous reset
// no safety ckt with emb/fabric reg
//generate if (C_MEMORY_TYPE < 2 && C_EN_SAFETY_CKT == 0) begin : gen_fifo_blkmemdout_emb
// always @(posedge CLK) begin
// // BRAM resets synchronously
// // make it consistent with the core.
// if ((rst_i || srst_rrst_busy) && (C_USE_DOUT_RST == 1))
// ideal_dout_d1 <= #`TCQ dout_reset_val;
// ideal_dout_both <= #`TCQ dout_reset_val;
// end //always
//end endgenerate // gen_fifo_blkmemdout_emb
//reg ram_rd_en_d1 = 1'b0;
//Capture delayed version of dout
generate if (C_EN_SAFETY_CKT == 0 && (C_USE_EMBEDDED_REG<3)) begin
always @(posedge CLK or posedge rst_i) begin
if (rst_i == 1'b1) begin
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type_d1 <= #`TCQ 0;
// DRAM and SRAM reset asynchronously
if ((C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3) && C_USE_DOUT_RST == 1) begin
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
ram_rd_en_d1 <= #`TCQ 1'b0;
if (C_USE_DOUT_RST == 1) begin
@(posedge CLK)
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
end else begin
ram_rd_en_d1 <= #`TCQ RD_EN & ~EMPTY;
if (srst_rrst_busy) begin
ram_rd_en_d1 <= #`TCQ 1'b0;
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0) begin
err_type_d1 <= #`TCQ 0;
end
// Reset DRAM and SRAM based FIFO, BRAM based FIFO is reset above
if ((C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3) && C_USE_DOUT_RST == 1) begin
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
if (C_USE_DOUT_RST == 1) begin
// @(posedge CLK)
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
end else begin
if (ram_rd_en_d1 ) begin
ideal_dout_d1 <= #`TCQ ideal_dout;
err_type_d1 <= #`TCQ err_type;
end
end
end
end // always
end
endgenerate
//no safety ckt with both registers
generate if (C_EN_SAFETY_CKT == 0 && (C_USE_EMBEDDED_REG==3)) begin
always @(posedge CLK or posedge rst_i) begin
if (rst_i == 1'b1) begin
ram_rd_en_d1 <= #`TCQ 1'b0;
fab_rd_en_d1 <= #`TCQ 1'b0;
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type_d1 <= #`TCQ 0;
// DRAM and SRAM reset asynchronously
if ((C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3) && C_USE_DOUT_RST == 1) begin
ideal_dout_d1 <= #`TCQ dout_reset_val;
ideal_dout_both <= #`TCQ dout_reset_val;
end
if (C_USE_DOUT_RST == 1) begin
@(posedge CLK)
ideal_dout_d1 <= #`TCQ dout_reset_val;
ideal_dout_both <= #`TCQ dout_reset_val;
end
end else begin
ram_rd_en_d1 <= #`TCQ RD_EN & ~EMPTY;
fab_rd_en_d1 <= #`TCQ (ram_rd_en_d1);
if (srst_rrst_busy) begin
ram_rd_en_d1 <= #`TCQ 1'b0;
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0) begin
err_type_d1 <= #`TCQ 0;
end
// Reset DRAM and SRAM based FIFO, BRAM based FIFO is reset above
if ((C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3) && C_USE_DOUT_RST == 1) begin
ideal_dout_d1 <= #`TCQ dout_reset_val;
// ideal_dout_both <= #`TCQ dout_reset_val;
end
if (C_USE_DOUT_RST == 1) begin
// @(posedge CLK)
ideal_dout_d1 <= #`TCQ dout_reset_val;
// ideal_dout_both <= #`TCQ dout_reset_val;
end
end else begin
if (ram_rd_en_d1 ) begin
ideal_dout_both <= #`TCQ ideal_dout;
err_type_both <= #`TCQ err_type;
end
if (fab_rd_en_d1 ) begin
ideal_dout_d1 <= #`TCQ ideal_dout_both;
err_type_d1 <= #`TCQ err_type_both;
end
end
end
end // always
end
endgenerate
/**************************************************************************
* Overflow and Underflow Flag calculation
* (handled separately because they don't support rst)
**************************************************************************/
generate if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 0) begin : g7s_ovflw
always @(posedge CLK) begin
ideal_overflow <= #`TCQ WR_EN & full_i;
end
end else if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 1) begin : g8s_ovflw
always @(posedge CLK) begin
//ideal_overflow <= #`TCQ WR_EN & (rst_i | full_i);
ideal_overflow <= #`TCQ WR_EN & (WR_RST_BUSY | full_i);
end
end endgenerate // blockOF20
generate if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 0) begin : g7s_unflw
always @(posedge CLK) begin
ideal_underflow <= #`TCQ empty_i & RD_EN;
end
end else if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 1) begin : g8s_unflw
always @(posedge CLK) begin
//ideal_underflow <= #`TCQ (rst_i | empty_i) & RD_EN;
ideal_underflow <= #`TCQ (RD_RST_BUSY | empty_i) & RD_EN;
end
end endgenerate // blockUF20
/**************************
* Read Data Count
*************************/
reg [31:0] num_read_words_dc;
reg [C_RD_DATA_COUNT_WIDTH-1:0] num_read_words_sized_i;
always @(num_rd_bits) begin
if (C_USE_FWFT_DATA_COUNT) begin
//If using extra logic for FWFT Data Counts,
// then scale FIFO contents to read domain,
// and add two read words for FWFT stages
//This value is only a temporary value and not used in the code.
num_read_words_dc = (num_rd_bits/C_DOUT_WIDTH+2);
//Trim the read words for use with RD_DATA_COUNT
num_read_words_sized_i =
num_read_words_dc[C_RD_PNTR_WIDTH : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH+1];
end else begin
//If not using extra logic for FWFT Data Counts,
// then scale FIFO contents to read domain.
//This value is only a temporary value and not used in the code.
num_read_words_dc = num_rd_bits/C_DOUT_WIDTH;
//Trim the read words for use with RD_DATA_COUNT
num_read_words_sized_i =
num_read_words_dc[C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH];
end //if (C_USE_FWFT_DATA_COUNT)
end //always
/**************************
* Write Data Count
*************************/
reg [31:0] num_write_words_dc;
reg [C_WR_DATA_COUNT_WIDTH-1:0] num_write_words_sized_i;
always @(num_wr_bits) begin
if (C_USE_FWFT_DATA_COUNT) begin
//Calculate the Data Count value for the number of write words,
// when using First-Word Fall-Through with extra logic for Data
// Counts. This takes into consideration the number of words that
// are expected to be stored in the FWFT register stages (it always
// assumes they are filled).
//This value is scaled to the Write Domain.
//The expression (((A-1)/B))+1 divides A/B, but takes the
// ceiling of the result.
//When num_wr_bits==0, set the result manually to prevent
// division errors.
//EXTRA_WORDS_DC is the number of words added to write_words
// due to FWFT.
//This value is only a temporary value and not used in the code.
num_write_words_dc = (num_wr_bits==0) ? EXTRA_WORDS_DC : (((num_wr_bits-1)/C_DIN_WIDTH)+1) + EXTRA_WORDS_DC ;
//Trim the write words for use with WR_DATA_COUNT
num_write_words_sized_i =
num_write_words_dc[C_WR_PNTR_WIDTH : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH+1];
end else begin
//Calculate the Data Count value for the number of write words, when NOT
// using First-Word Fall-Through with extra logic for Data Counts. This
// calculates only the number of words in the internal FIFO.
//The expression (((A-1)/B))+1 divides A/B, but takes the
// ceiling of the result.
//This value is scaled to the Write Domain.
//When num_wr_bits==0, set the result manually to prevent
// division errors.
//This value is only a temporary value and not used in the code.
num_write_words_dc = (num_wr_bits==0) ? 0 : ((num_wr_bits-1)/C_DIN_WIDTH)+1;
//Trim the read words for use with RD_DATA_COUNT
num_write_words_sized_i =
num_write_words_dc[C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH];
end //if (C_USE_FWFT_DATA_COUNT)
end //always
/*************************************************************************
* Write and Read Logic
************************************************************************/
wire write_allow;
wire read_allow;
wire read_allow_dc;
wire write_only;
wire read_only;
//wire write_only_q;
reg write_only_q;
//wire read_only_q;
reg read_only_q;
reg full_reg;
reg rst_full_ff_reg1;
reg rst_full_ff_reg2;
wire ram_full_comb;
wire carry;
assign write_allow = WR_EN & ~full_i;
assign read_allow = RD_EN & ~empty_i;
assign read_allow_dc = RD_EN_USER & ~USER_EMPTY_FB;
//assign write_only = write_allow & ~read_allow;
//assign write_only_q = write_allow_q;
//assign read_only = read_allow & ~write_allow;
//assign read_only_q = read_allow_q ;
wire [C_WR_PNTR_WIDTH-1:0] diff_pntr;
wire [C_RD_PNTR_WIDTH-1:0] diff_pntr_pe;
reg [C_WR_PNTR_WIDTH-1:0] diff_pntr_reg1 = 0;
reg [C_RD_PNTR_WIDTH-1:0] diff_pntr_pe_reg1 = 0;
reg [C_RD_PNTR_WIDTH:0] diff_pntr_pe_asym = 0;
wire [C_RD_PNTR_WIDTH:0] adj_wr_pntr_rd_asym ;
wire [C_RD_PNTR_WIDTH:0] rd_pntr_asym;
reg [C_WR_PNTR_WIDTH-1:0] diff_pntr_reg2 = 0;
reg [C_WR_PNTR_WIDTH-1:0] diff_pntr_pe_reg2 = 0;
wire [C_RD_PNTR_WIDTH-1:0] diff_pntr_pe_max;
wire [C_RD_PNTR_WIDTH-1:0] diff_pntr_max;
assign diff_pntr_pe_max = DIFF_MAX_RD;
assign diff_pntr_max = DIFF_MAX_WR;
generate if (IS_ASYMMETRY == 0) begin : diff_pntr_sym
assign write_only = write_allow & ~read_allow;
assign read_only = read_allow & ~write_allow;
end endgenerate
generate if ( IS_ASYMMETRY == 1 && C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : wr_grt_rd
assign read_only = read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0]) & ~write_allow;
assign write_only = write_allow & ~(read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0]));
end endgenerate
generate if (IS_ASYMMETRY ==1 && C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : rd_grt_wr
assign read_only = read_allow & ~(write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]));
assign write_only = write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]) & ~read_allow;
end endgenerate
//-----------------------------------------------------------------------------
// Write and Read pointer generation
//-----------------------------------------------------------------------------
always @(posedge CLK or posedge rst_i) begin
if (rst_i) begin
wr_pntr <= 0;
rd_pntr <= 0;
end else begin
if (srst_i || srst_wrst_busy || srst_rrst_busy ) begin
if (srst_wrst_busy)
wr_pntr <= #`TCQ 0;
if (srst_rrst_busy)
rd_pntr <= #`TCQ 0;
end else begin
if (write_allow) wr_pntr <= #`TCQ wr_pntr + 1;
if (read_allow) rd_pntr <= #`TCQ rd_pntr + 1;
end
end
end
generate if (C_FIFO_TYPE == 2) begin : gll_dm_dout
always @(posedge CLK) begin
if (write_allow) begin
if (ENABLE_ERR_INJECTION == 1)
memory[wr_pntr] <= #`TCQ {INJECTDBITERR,INJECTSBITERR,DIN};
else
memory[wr_pntr] <= #`TCQ DIN;
end
end
reg [C_DATA_WIDTH-1:0] dout_tmp_q;
reg [C_DATA_WIDTH-1:0] dout_tmp = 0;
reg [C_DATA_WIDTH-1:0] dout_tmp1 = 0;
always @(posedge CLK) begin
dout_tmp_q <= #`TCQ ideal_dout;
end
always @* begin
if (read_allow)
ideal_dout <= memory[rd_pntr];
else
ideal_dout <= dout_tmp_q;
end
end endgenerate // gll_dm_dout
/**************************************************************************
* Write Domain Logic
**************************************************************************/
assign ram_rd_en = RD_EN & !EMPTY;
//reg [C_WR_PNTR_WIDTH-1:0] diff_pntr = 0;
generate if (C_FIFO_TYPE != 2) begin : gnll_din
always @(posedge CLK or posedge rst_i) begin : gen_fifo_w
/****** Reset fifo (case 1)***************************************/
if (rst_i == 1'b1) begin
num_wr_bits <= #`TCQ 0;
next_num_wr_bits = #`TCQ 0;
wr_ptr <= #`TCQ C_WR_DEPTH - 1;
rd_ptr_wrclk <= #`TCQ C_RD_DEPTH - 1;
ideal_wr_ack <= #`TCQ 0;
ideal_wr_count <= #`TCQ 0;
tmp_wr_listsize = #`TCQ 0;
rd_ptr_wrclk_next <= #`TCQ 0;
wr_pntr <= #`TCQ 0;
wr_pntr_rd1 <= #`TCQ 0;
end else begin //rst_i==0
if (srst_wrst_busy) begin
num_wr_bits <= #`TCQ 0;
next_num_wr_bits = #`TCQ 0;
wr_ptr <= #`TCQ C_WR_DEPTH - 1;
rd_ptr_wrclk <= #`TCQ C_RD_DEPTH - 1;
ideal_wr_ack <= #`TCQ 0;
ideal_wr_count <= #`TCQ 0;
tmp_wr_listsize = #`TCQ 0;
rd_ptr_wrclk_next <= #`TCQ 0;
wr_pntr <= #`TCQ 0;
wr_pntr_rd1 <= #`TCQ 0;
end else begin//srst_i=0
wr_pntr_rd1 <= #`TCQ wr_pntr;
//Determine the current number of words in the FIFO
tmp_wr_listsize = (C_DEPTH_RATIO_RD > 1) ? num_wr_bits/C_DOUT_WIDTH :
num_wr_bits/C_DIN_WIDTH;
rd_ptr_wrclk_next = rd_ptr;
if (rd_ptr_wrclk < rd_ptr_wrclk_next) begin
next_num_wr_bits = num_wr_bits -
C_DOUT_WIDTH*(rd_ptr_wrclk + C_RD_DEPTH
- rd_ptr_wrclk_next);
end else begin
next_num_wr_bits = num_wr_bits -
C_DOUT_WIDTH*(rd_ptr_wrclk - rd_ptr_wrclk_next);
end
if (WR_EN == 1'b1) begin
if (FULL == 1'b1) begin
ideal_wr_ack <= #`TCQ 0;
//Reminder that FIFO is still full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
end else begin
write_fifo;
next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH;
//Write successful, so issue acknowledge
// and no error
ideal_wr_ack <= #`TCQ 1;
//Not even close to full.
ideal_wr_count <= num_write_words_sized_i;
//end
end
end else begin //(WR_EN == 1'b1)
//If user did not attempt a write, then do not
// give ack or err
ideal_wr_ack <= #`TCQ 0;
ideal_wr_count <= #`TCQ num_write_words_sized_i;
end
num_wr_bits <= #`TCQ next_num_wr_bits;
rd_ptr_wrclk <= #`TCQ rd_ptr;
end //srst_i==0
end //wr_rst_i==0
end // gen_fifo_w
end endgenerate
generate if (C_FIFO_TYPE < 2 && C_MEMORY_TYPE < 2 && C_EN_SAFETY_CKT == 0) begin : gnll_dm_dout
always @(posedge CLK) begin
if (rst_i || srst_rrst_busy) begin
if (C_USE_DOUT_RST == 1)
ideal_dout <= #`TCQ dout_reset_val;
ideal_dout_both <= #`TCQ dout_reset_val;
end
end
end endgenerate
generate if (C_FIFO_TYPE != 2) begin : gnll_dout
always @(posedge CLK or posedge rst_i) begin : gen_fifo_r
/****** Reset fifo (case 1)***************************************/
if (rst_i) begin
num_rd_bits <= #`TCQ 0;
next_num_rd_bits = #`TCQ 0;
rd_ptr <= #`TCQ C_RD_DEPTH -1;
rd_pntr <= #`TCQ 0;
//rd_pntr_wr1 <= #`TCQ 0;
wr_ptr_rdclk <= #`TCQ C_WR_DEPTH -1;
// DRAM resets asynchronously
if (C_FIFO_TYPE < 2 && (C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3 )&& C_USE_DOUT_RST == 1)
ideal_dout <= #`TCQ dout_reset_val;
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type <= #`TCQ 0;
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ 0;
end else begin //rd_rst_i==0
if (srst_rrst_busy) begin
num_rd_bits <= #`TCQ 0;
next_num_rd_bits = #`TCQ 0;
rd_ptr <= #`TCQ C_RD_DEPTH -1;
rd_pntr <= #`TCQ 0;
//rd_pntr_wr1 <= #`TCQ 0;
wr_ptr_rdclk <= #`TCQ C_WR_DEPTH -1;
// DRAM resets synchronously
if (C_FIFO_TYPE < 2 && (C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3 )&& C_USE_DOUT_RST == 1)
ideal_dout <= #`TCQ dout_reset_val;
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type <= #`TCQ 0;
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ 0;
end //srst_i
else begin
//rd_pntr_wr1 <= #`TCQ rd_pntr;
//Determine the current number of words in the FIFO
tmp_rd_listsize = (C_DEPTH_RATIO_WR > 1) ? num_rd_bits/C_DIN_WIDTH :
num_rd_bits/C_DOUT_WIDTH;
wr_ptr_rdclk_next = wr_ptr;
if (wr_ptr_rdclk < wr_ptr_rdclk_next) begin
next_num_rd_bits = num_rd_bits +
C_DIN_WIDTH*(wr_ptr_rdclk +C_WR_DEPTH
- wr_ptr_rdclk_next);
end else begin
next_num_rd_bits = num_rd_bits +
C_DIN_WIDTH*(wr_ptr_rdclk - wr_ptr_rdclk_next);
end
if (RD_EN == 1'b1) begin
if (EMPTY == 1'b1) begin
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end
else
begin
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == 2)
end
num_rd_bits <= #`TCQ next_num_rd_bits;
wr_ptr_rdclk <= #`TCQ wr_ptr;
end //s_rst_i==0
end //rd_rst_i==0
end //always
end endgenerate
//-----------------------------------------------------------------------------
// Generate diff_pntr for PROG_FULL generation
// Generate diff_pntr_pe for PROG_EMPTY generation
//-----------------------------------------------------------------------------
generate if ((C_PROG_FULL_TYPE != 0 || C_PROG_EMPTY_TYPE != 0) && IS_ASYMMETRY == 0) begin : reg_write_allow
always @(posedge CLK ) begin
if (rst_i) begin
write_only_q <= 1'b0;
read_only_q <= 1'b0;
diff_pntr_reg1 <= 0;
diff_pntr_pe_reg1 <= 0;
diff_pntr_reg2 <= 0;
diff_pntr_pe_reg2 <= 0;
end else begin
if (srst_i || srst_wrst_busy || srst_rrst_busy) begin
if (srst_rrst_busy) begin
read_only_q <= #`TCQ 1'b0;
diff_pntr_pe_reg1 <= #`TCQ 0;
diff_pntr_pe_reg2 <= #`TCQ 0;
end
if (srst_wrst_busy) begin
write_only_q <= #`TCQ 1'b0;
diff_pntr_reg1 <= #`TCQ 0;
diff_pntr_reg2 <= #`TCQ 0;
end
end else begin
write_only_q <= #`TCQ write_only;
read_only_q <= #`TCQ read_only;
diff_pntr_reg2 <= #`TCQ diff_pntr_reg1;
diff_pntr_pe_reg2 <= #`TCQ diff_pntr_pe_reg1;
// Add 1 to the difference pointer value when only write happens.
if (write_only)
diff_pntr_reg1 <= #`TCQ wr_pntr - adj_rd_pntr_wr + 1;
else
diff_pntr_reg1 <= #`TCQ wr_pntr - adj_rd_pntr_wr;
// Add 1 to the difference pointer value when write or both write & read or no write & read happen.
if (read_only)
diff_pntr_pe_reg1 <= #`TCQ adj_wr_pntr_rd - rd_pntr - 1;
else
diff_pntr_pe_reg1 <= #`TCQ adj_wr_pntr_rd - rd_pntr;
end
end
end
assign diff_pntr_pe = diff_pntr_pe_reg1;
assign diff_pntr = diff_pntr_reg1;
end endgenerate // reg_write_allow
generate if ((C_PROG_FULL_TYPE != 0 || C_PROG_EMPTY_TYPE != 0) && IS_ASYMMETRY == 1) begin : reg_write_allow_asym
assign adj_wr_pntr_rd_asym[C_RD_PNTR_WIDTH:0] = {adj_wr_pntr_rd,1'b1};
assign rd_pntr_asym[C_RD_PNTR_WIDTH:0] = {~rd_pntr,1'b1};
always @(posedge CLK ) begin
if (rst_i) begin
diff_pntr_pe_asym <= 0;
diff_pntr_reg1 <= 0;
full_reg <= 0;
rst_full_ff_reg1 <= 1;
rst_full_ff_reg2 <= 1;
diff_pntr_pe_reg1 <= 0;
end else begin
if (srst_i || srst_wrst_busy || srst_rrst_busy) begin
if (srst_wrst_busy)
diff_pntr_reg1 <= #`TCQ 0;
if (srst_rrst_busy)
full_reg <= #`TCQ 0;
rst_full_ff_reg1 <= #`TCQ 1;
rst_full_ff_reg2 <= #`TCQ 1;
diff_pntr_pe_asym <= #`TCQ 0;
diff_pntr_pe_reg1 <= #`TCQ 0;
end else begin
diff_pntr_pe_asym <= #`TCQ adj_wr_pntr_rd_asym + rd_pntr_asym;
full_reg <= #`TCQ full_i;
rst_full_ff_reg1 <= #`TCQ RST_FULL_FF;
rst_full_ff_reg2 <= #`TCQ rst_full_ff_reg1;
if (~full_i) begin
diff_pntr_reg1 <= #`TCQ wr_pntr - adj_rd_pntr_wr;
end
end
end
end
assign carry = (~(|(diff_pntr_pe_asym [C_RD_PNTR_WIDTH : 1])));
assign diff_pntr_pe = (full_reg && ~rst_full_ff_reg2 && carry ) ? diff_pntr_pe_max : diff_pntr_pe_asym[C_RD_PNTR_WIDTH:1];
assign diff_pntr = diff_pntr_reg1;
end endgenerate // reg_write_allow_asym
//-----------------------------------------------------------------------------
// Generate FULL flag
//-----------------------------------------------------------------------------
wire comp0;
wire comp1;
wire going_full;
wire leaving_full;
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gpad
assign adj_rd_pntr_wr [C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH] = rd_pntr;
assign adj_rd_pntr_wr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0] = 0;
end endgenerate
generate if (C_WR_PNTR_WIDTH <= C_RD_PNTR_WIDTH) begin : gtrim
assign adj_rd_pntr_wr = rd_pntr[C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH];
end endgenerate
assign comp1 = (adj_rd_pntr_wr == (wr_pntr + 1'b1));
assign comp0 = (adj_rd_pntr_wr == wr_pntr);
generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : gf_wp_eq_rp
assign going_full = (comp1 & write_allow & ~read_allow);
assign leaving_full = (comp0 & read_allow) | RST_FULL_GEN;
end endgenerate
// Write data width is bigger than read data width
// Write depth is smaller than read depth
// One write could be equal to 2 or 4 or 8 reads
generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : gf_asym
assign going_full = (comp1 & write_allow & (~ (read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0]))));
assign leaving_full = (comp0 & read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0])) | RST_FULL_GEN;
end endgenerate
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gf_wp_gt_rp
assign going_full = (comp1 & write_allow & ~read_allow);
assign leaving_full =(comp0 & read_allow) | RST_FULL_GEN;
end endgenerate
assign ram_full_comb = going_full | (~leaving_full & full_i);
always @(posedge CLK or posedge RST_FULL_FF) begin
if (RST_FULL_FF)
full_i <= C_FULL_FLAGS_RST_VAL;
else if (srst_wrst_busy)
full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else
full_i <= #`TCQ ram_full_comb;
end
//-----------------------------------------------------------------------------
// Generate EMPTY flag
//-----------------------------------------------------------------------------
wire ecomp0;
wire ecomp1;
wire going_empty;
wire leaving_empty;
wire ram_empty_comb;
generate if (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) begin : pad
assign adj_wr_pntr_rd [C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr;
assign adj_wr_pntr_rd[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0] = 0;
end endgenerate
generate if (C_RD_PNTR_WIDTH <= C_WR_PNTR_WIDTH) begin : trim
assign adj_wr_pntr_rd = wr_pntr[C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH];
end endgenerate
assign ecomp1 = (adj_wr_pntr_rd == (rd_pntr + 1'b1));
assign ecomp0 = (adj_wr_pntr_rd == rd_pntr);
generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : ge_wp_eq_rp
assign going_empty = (ecomp1 & ~write_allow & read_allow);
assign leaving_empty = (ecomp0 & write_allow);
end endgenerate
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : ge_wp_gt_rp
assign going_empty = (ecomp1 & read_allow & (~(write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]))));
assign leaving_empty = (ecomp0 & write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]));
end endgenerate
generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : ge_wp_lt_rp
assign going_empty = (ecomp1 & ~write_allow & read_allow);
assign leaving_empty =(ecomp0 & write_allow);
end endgenerate
assign ram_empty_comb = going_empty | (~leaving_empty & empty_i);
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
empty_i <= 1'b1;
else if (srst_rrst_busy)
empty_i <= #`TCQ 1'b1;
else
empty_i <= #`TCQ ram_empty_comb;
end
//-----------------------------------------------------------------------------
// Generate Read and write data counts for asymmetic common clock
//-----------------------------------------------------------------------------
reg [C_GRTR_PNTR_WIDTH :0] count_dc = 0;
wire [C_GRTR_PNTR_WIDTH :0] ratio;
wire decr_by_one;
wire incr_by_ratio;
wire incr_by_one;
wire decr_by_ratio;
localparam IS_FWFT = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ? 1 : 0;
generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : rd_depth_gt_wr
assign ratio = C_DEPTH_RATIO_RD;
assign decr_by_one = (IS_FWFT == 1)? read_allow_dc : read_allow;
assign incr_by_ratio = write_allow;
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
count_dc <= #`TCQ 0;
else if (srst_wrst_busy)
count_dc <= #`TCQ 0;
else begin
if (decr_by_one) begin
if (!incr_by_ratio)
count_dc <= #`TCQ count_dc - 1;
else
count_dc <= #`TCQ count_dc - 1 + ratio ;
end
else begin
if (!incr_by_ratio)
count_dc <= #`TCQ count_dc ;
else
count_dc <= #`TCQ count_dc + ratio ;
end
end
end
assign rd_data_count_i_ss[C_RD_PNTR_WIDTH : 0] = count_dc;
assign wr_data_count_i_ss[C_WR_PNTR_WIDTH : 0] = count_dc[C_RD_PNTR_WIDTH : C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH];
end endgenerate
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : wr_depth_gt_rd
assign ratio = C_DEPTH_RATIO_WR;
assign incr_by_one = write_allow;
assign decr_by_ratio = (IS_FWFT == 1)? read_allow_dc : read_allow;
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
count_dc <= #`TCQ 0;
else if (srst_wrst_busy)
count_dc <= #`TCQ 0;
else begin
if (incr_by_one) begin
if (!decr_by_ratio)
count_dc <= #`TCQ count_dc + 1;
else
count_dc <= #`TCQ count_dc + 1 - ratio ;
end
else begin
if (!decr_by_ratio)
count_dc <= #`TCQ count_dc ;
else
count_dc <= #`TCQ count_dc - ratio ;
end
end
end
assign wr_data_count_i_ss[C_WR_PNTR_WIDTH : 0] = count_dc;
assign rd_data_count_i_ss[C_RD_PNTR_WIDTH : 0] = count_dc[C_WR_PNTR_WIDTH : C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH];
end endgenerate
//-----------------------------------------------------------------------------
// Generate WR_ACK flag
//-----------------------------------------------------------------------------
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
ideal_wr_ack <= 1'b0;
else if (srst_wrst_busy)
ideal_wr_ack <= #`TCQ 1'b0;
else if (WR_EN & ~full_i)
ideal_wr_ack <= #`TCQ 1'b1;
else
ideal_wr_ack <= #`TCQ 1'b0;
end
//-----------------------------------------------------------------------------
// Generate VALID flag
//-----------------------------------------------------------------------------
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
ideal_valid <= 1'b0;
else if (srst_rrst_busy)
ideal_valid <= #`TCQ 1'b0;
else if (RD_EN & ~empty_i)
ideal_valid <= #`TCQ 1'b1;
else
ideal_valid <= #`TCQ 1'b0;
end
//-----------------------------------------------------------------------------
// Generate ALMOST_FULL flag
//-----------------------------------------------------------------------------
//generate if (C_HAS_ALMOST_FULL == 1 || C_PROG_FULL_TYPE > 2 || C_PROG_EMPTY_TYPE > 2) begin : gaf_ss
wire fcomp2;
wire going_afull;
wire leaving_afull;
wire ram_afull_comb;
assign fcomp2 = (adj_rd_pntr_wr == (wr_pntr + 2'h2));
generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : gaf_wp_eq_rp
assign going_afull = (fcomp2 & write_allow & ~read_allow);
assign leaving_afull = (comp1 & read_allow & ~write_allow) | RST_FULL_GEN;
end endgenerate
// Write data width is bigger than read data width
// Write depth is smaller than read depth
// One write could be equal to 2 or 4 or 8 reads
generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : gaf_asym
assign going_afull = (fcomp2 & write_allow & (~ (read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0]))));
assign leaving_afull = (comp1 & (~write_allow) & read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0])) | RST_FULL_GEN;
end endgenerate
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gaf_wp_gt_rp
assign going_afull = (fcomp2 & write_allow & ~read_allow);
assign leaving_afull =((comp0 | comp1 | fcomp2) & read_allow) | RST_FULL_GEN;
end endgenerate
assign ram_afull_comb = going_afull | (~leaving_afull & almost_full_i);
always @(posedge CLK or posedge RST_FULL_FF) begin
if (RST_FULL_FF)
almost_full_i <= C_FULL_FLAGS_RST_VAL;
else if (srst_wrst_busy)
almost_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else
almost_full_i <= #`TCQ ram_afull_comb;
end
// end endgenerate // gaf_ss
//-----------------------------------------------------------------------------
// Generate ALMOST_EMPTY flag
//-----------------------------------------------------------------------------
//generate if (C_HAS_ALMOST_EMPTY == 1) begin : gae_ss
wire ecomp2;
wire going_aempty;
wire leaving_aempty;
wire ram_aempty_comb;
assign ecomp2 = (adj_wr_pntr_rd == (rd_pntr + 2'h2));
generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : gae_wp_eq_rp
assign going_aempty = (ecomp2 & ~write_allow & read_allow);
assign leaving_aempty = (ecomp1 & write_allow & ~read_allow);
end endgenerate
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gae_wp_gt_rp
assign going_aempty = (ecomp2 & read_allow & (~(write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]))));
assign leaving_aempty = (ecomp1 & ~read_allow & write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]));
end endgenerate
generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : gae_wp_lt_rp
assign going_aempty = (ecomp2 & ~write_allow & read_allow);
assign leaving_aempty =((ecomp2 | ecomp1 |ecomp0) & write_allow);
end endgenerate
assign ram_aempty_comb = going_aempty | (~leaving_aempty & almost_empty_i);
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
almost_empty_i <= 1'b1;
else if (srst_rrst_busy)
almost_empty_i <= #`TCQ 1'b1;
else
almost_empty_i <= #`TCQ ram_aempty_comb;
end
// end endgenerate // gae_ss
//-----------------------------------------------------------------------------
// Generate PROG_FULL
//-----------------------------------------------------------------------------
localparam C_PF_ASSERT_VAL = (C_PRELOAD_LATENCY == 0) ?
C_PROG_FULL_THRESH_ASSERT_VAL - EXTRA_WORDS_PF_PARAM : // FWFT
C_PROG_FULL_THRESH_ASSERT_VAL; // STD
localparam C_PF_NEGATE_VAL = (C_PRELOAD_LATENCY == 0) ?
C_PROG_FULL_THRESH_NEGATE_VAL - EXTRA_WORDS_PF_PARAM: // FWFT
C_PROG_FULL_THRESH_NEGATE_VAL; // STD
//-----------------------------------------------------------------------------
// Generate PROG_FULL for single programmable threshold constant
//-----------------------------------------------------------------------------
wire [C_WR_PNTR_WIDTH-1:0] temp = C_PF_ASSERT_VAL;
generate if (C_PROG_FULL_TYPE == 1) begin : single_pf_const
always @(posedge CLK or posedge RST_FULL_FF) begin
if (RST_FULL_FF && C_HAS_RST)
prog_full_i <= C_FULL_FLAGS_RST_VAL;
else begin
if (srst_wrst_busy)
prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else if (IS_ASYMMETRY == 0) begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (diff_pntr == C_PF_ASSERT_VAL && write_only_q)
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr == C_PF_ASSERT_VAL && read_only_q)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ prog_full_i;
end
else begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~RST_FULL_GEN ) begin
if (diff_pntr>= C_PF_ASSERT_VAL )
prog_full_i <= #`TCQ 1'b1;
else if ((diff_pntr) < C_PF_ASSERT_VAL )
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ 1'b0;
end
else
prog_full_i <= #`TCQ prog_full_i;
end
end
end
end endgenerate // single_pf_const
//-----------------------------------------------------------------------------
// Generate PROG_FULL for multiple programmable threshold constants
//-----------------------------------------------------------------------------
generate if (C_PROG_FULL_TYPE == 2) begin : multiple_pf_const
always @(posedge CLK or posedge RST_FULL_FF) begin
//if (RST_FULL_FF)
if (RST_FULL_FF && C_HAS_RST)
prog_full_i <= C_FULL_FLAGS_RST_VAL;
else begin
if (srst_wrst_busy)
prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else if (IS_ASYMMETRY == 0) begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (diff_pntr == C_PF_ASSERT_VAL && write_only_q)
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr == C_PF_NEGATE_VAL && read_only_q)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ prog_full_i;
end
else begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~RST_FULL_GEN ) begin
if (diff_pntr >= C_PF_ASSERT_VAL )
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr < C_PF_NEGATE_VAL)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ prog_full_i;
end
else
prog_full_i <= #`TCQ prog_full_i;
end
end
end
end endgenerate //multiple_pf_const
//-----------------------------------------------------------------------------
// Generate PROG_FULL for single programmable threshold input port
//-----------------------------------------------------------------------------
wire [C_WR_PNTR_WIDTH-1:0] pf3_assert_val = (C_PRELOAD_LATENCY == 0) ?
PROG_FULL_THRESH - EXTRA_WORDS_PF: // FWFT
PROG_FULL_THRESH; // STD
generate if (C_PROG_FULL_TYPE == 3) begin : single_pf_input
always @(posedge CLK or posedge RST_FULL_FF) begin//0
//if (RST_FULL_FF)
if (RST_FULL_FF && C_HAS_RST)
prog_full_i <= C_FULL_FLAGS_RST_VAL;
else begin //1
if (srst_wrst_busy)
prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else if (IS_ASYMMETRY == 0) begin//2
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~almost_full_i) begin//3
if (diff_pntr > pf3_assert_val)
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr == pf3_assert_val) begin//4
if (read_only_q)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ 1'b1;
end else//4
prog_full_i <= #`TCQ 1'b0;
end else//3
prog_full_i <= #`TCQ prog_full_i;
end //2
else begin//5
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~full_i ) begin//6
if (diff_pntr >= pf3_assert_val )
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr < pf3_assert_val) begin//7
prog_full_i <= #`TCQ 1'b0;
end//7
end//6
else
prog_full_i <= #`TCQ prog_full_i;
end//5
end//1
end//0
end endgenerate //single_pf_input
//-----------------------------------------------------------------------------
// Generate PROG_FULL for multiple programmable threshold input ports
//-----------------------------------------------------------------------------
wire [C_WR_PNTR_WIDTH-1:0] pf_assert_val = (C_PRELOAD_LATENCY == 0) ?
(PROG_FULL_THRESH_ASSERT -EXTRA_WORDS_PF) : // FWFT
PROG_FULL_THRESH_ASSERT; // STD
wire [C_WR_PNTR_WIDTH-1:0] pf_negate_val = (C_PRELOAD_LATENCY == 0) ?
(PROG_FULL_THRESH_NEGATE -EXTRA_WORDS_PF) : // FWFT
PROG_FULL_THRESH_NEGATE; // STD
generate if (C_PROG_FULL_TYPE == 4) begin : multiple_pf_inputs
always @(posedge CLK or posedge RST_FULL_FF) begin
if (RST_FULL_FF && C_HAS_RST)
prog_full_i <= C_FULL_FLAGS_RST_VAL;
else begin
if (srst_wrst_busy)
prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else if (IS_ASYMMETRY == 0) begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~almost_full_i) begin
if (diff_pntr >= pf_assert_val)
prog_full_i <= #`TCQ 1'b1;
else if ((diff_pntr == pf_negate_val && read_only_q) ||
diff_pntr < pf_negate_val)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ prog_full_i;
end else
prog_full_i <= #`TCQ prog_full_i;
end
else begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~full_i ) begin
if (diff_pntr >= pf_assert_val )
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr < pf_negate_val)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ prog_full_i;
end
else
prog_full_i <= #`TCQ prog_full_i;
end
end
end
end endgenerate //multiple_pf_inputs
//-----------------------------------------------------------------------------
// Generate PROG_EMPTY
//-----------------------------------------------------------------------------
localparam C_PE_ASSERT_VAL = (C_PRELOAD_LATENCY == 0) ?
C_PROG_EMPTY_THRESH_ASSERT_VAL - 2: // FWFT
C_PROG_EMPTY_THRESH_ASSERT_VAL; // STD
localparam C_PE_NEGATE_VAL = (C_PRELOAD_LATENCY == 0) ?
C_PROG_EMPTY_THRESH_NEGATE_VAL - 2: // FWFT
C_PROG_EMPTY_THRESH_NEGATE_VAL; // STD
//-----------------------------------------------------------------------------
// Generate PROG_EMPTY for single programmable threshold constant
//-----------------------------------------------------------------------------
generate if (C_PROG_EMPTY_TYPE == 1) begin : single_pe_const
always @(posedge CLK or posedge rst_i) begin
//if (rst_i)
if (rst_i && C_HAS_RST)
prog_empty_i <= 1'b1;
else begin
if (srst_rrst_busy)
prog_empty_i <= #`TCQ 1'b1;
else if (IS_ASYMMETRY == 0) begin
if (diff_pntr_pe == C_PE_ASSERT_VAL && read_only_q)
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe == C_PE_ASSERT_VAL && write_only_q)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ prog_empty_i;
end
else begin
if (~rst_i ) begin
if (diff_pntr_pe <= C_PE_ASSERT_VAL)
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe > C_PE_ASSERT_VAL)
prog_empty_i <= #`TCQ 1'b0;
end
else
prog_empty_i <= #`TCQ prog_empty_i;
end
end
end
end endgenerate // single_pe_const
//-----------------------------------------------------------------------------
// Generate PROG_EMPTY for multiple programmable threshold constants
//-----------------------------------------------------------------------------
generate if (C_PROG_EMPTY_TYPE == 2) begin : multiple_pe_const
always @(posedge CLK or posedge rst_i) begin
//if (rst_i)
if (rst_i && C_HAS_RST)
prog_empty_i <= 1'b1;
else begin
if (srst_rrst_busy)
prog_empty_i <= #`TCQ 1'b1;
else if (IS_ASYMMETRY == 0) begin
if (diff_pntr_pe == C_PE_ASSERT_VAL && read_only_q)
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe == C_PE_NEGATE_VAL && write_only_q)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ prog_empty_i;
end
else begin
if (~rst_i ) begin
if (diff_pntr_pe <= C_PE_ASSERT_VAL )
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe > C_PE_NEGATE_VAL)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ prog_empty_i;
end
else
prog_empty_i <= #`TCQ prog_empty_i;
end
end
end
end endgenerate //multiple_pe_const
//-----------------------------------------------------------------------------
// Generate PROG_EMPTY for single programmable threshold input port
//-----------------------------------------------------------------------------
wire [C_RD_PNTR_WIDTH-1:0] pe3_assert_val = (C_PRELOAD_LATENCY == 0) ?
(PROG_EMPTY_THRESH -2) : // FWFT
PROG_EMPTY_THRESH; // STD
generate if (C_PROG_EMPTY_TYPE == 3) begin : single_pe_input
always @(posedge CLK or posedge rst_i) begin
//if (rst_i)
if (rst_i && C_HAS_RST)
prog_empty_i <= 1'b1;
else begin
if (srst_rrst_busy)
prog_empty_i <= #`TCQ 1'b1;
else if (IS_ASYMMETRY == 0) begin
if (~almost_full_i) begin
if (diff_pntr_pe < pe3_assert_val)
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe == pe3_assert_val) begin
if (write_only_q)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ 1'b1;
end else
prog_empty_i <= #`TCQ 1'b0;
end else
prog_empty_i <= #`TCQ prog_empty_i;
end
else begin
if (diff_pntr_pe <= pe3_assert_val )
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe > pe3_assert_val)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ prog_empty_i;
end
end
end
end endgenerate // single_pe_input
//-----------------------------------------------------------------------------
// Generate PROG_EMPTY for multiple programmable threshold input ports
//-----------------------------------------------------------------------------
wire [C_RD_PNTR_WIDTH-1:0] pe4_assert_val = (C_PRELOAD_LATENCY == 0) ?
(PROG_EMPTY_THRESH_ASSERT - 2) : // FWFT
PROG_EMPTY_THRESH_ASSERT; // STD
wire [C_RD_PNTR_WIDTH-1:0] pe4_negate_val = (C_PRELOAD_LATENCY == 0) ?
(PROG_EMPTY_THRESH_NEGATE - 2) : // FWFT
PROG_EMPTY_THRESH_NEGATE; // STD
generate if (C_PROG_EMPTY_TYPE == 4) begin : multiple_pe_inputs
always @(posedge CLK or posedge rst_i) begin
//if (rst_i)
if (rst_i && C_HAS_RST)
prog_empty_i <= 1'b1;
else begin
if (srst_rrst_busy)
prog_empty_i <= #`TCQ 1'b1;
else if (IS_ASYMMETRY == 0) begin
if (~almost_full_i) begin
if (diff_pntr_pe <= pe4_assert_val)
prog_empty_i <= #`TCQ 1'b1;
else if (((diff_pntr_pe == pe4_negate_val) && write_only_q) ||
(diff_pntr_pe > pe4_negate_val)) begin
prog_empty_i <= #`TCQ 1'b0;
end else
prog_empty_i <= #`TCQ prog_empty_i;
end else
prog_empty_i <= #`TCQ prog_empty_i;
end
else begin
if (diff_pntr_pe <= pe4_assert_val )
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe > pe4_negate_val)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ prog_empty_i;
end
end
end
end endgenerate // multiple_pe_inputs
endmodule // fifo_generator_v13_1_1_bhv_ver_ss
/**************************************************************************
* First-Word Fall-Through module (preload 0)
**************************************************************************/
module fifo_generator_v13_1_1_bhv_ver_preload0
#(
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_HAS_RST = 0,
parameter C_ENABLE_RST_SYNC = 0,
parameter C_HAS_SRST = 0,
parameter C_USE_EMBEDDED_REG = 0,
parameter C_EN_SAFETY_CKT = 0,
parameter C_USE_DOUT_RST = 0,
parameter C_USE_ECC = 0,
parameter C_USERVALID_LOW = 0,
parameter C_USERUNDERFLOW_LOW = 0,
parameter C_MEMORY_TYPE = 0,
parameter C_FIFO_TYPE = 0
)
(
//Inputs
input RD_CLK,
input RD_RST,
input SRST,
input WR_RST_BUSY,
input RD_RST_BUSY,
input RD_EN,
input FIFOEMPTY,
input [C_DOUT_WIDTH-1:0] FIFODATA,
input FIFOSBITERR,
input FIFODBITERR,
//Outputs
output reg [C_DOUT_WIDTH-1:0] USERDATA,
output reg [C_DOUT_WIDTH-1:0] USERDATA_BOTH,
output USERVALID,
output USERVALID_BOTH,
output USERVALID_ONE,
output USERUNDERFLOW,
output USEREMPTY,
output USERALMOSTEMPTY,
output RAMVALID,
output FIFORDEN,
output reg USERSBITERR,
output reg USERDBITERR,
output reg USERSBITERR_BOTH,
output reg USERDBITERR_BOTH,
output reg STAGE2_REG_EN,
output fab_read_data_valid_i_o,
output read_data_valid_i_o,
output ram_valid_i_o,
output [1:0] VALID_STAGES
);
//Internal signals
wire preloadstage1;
wire preloadstage2;
reg ram_valid_i;
reg fab_valid;
reg read_data_valid_i;
reg fab_read_data_valid_i;
reg fab_read_data_valid_i_1;
reg ram_valid_i_d;
reg read_data_valid_i_d;
reg fab_read_data_valid_i_d;
wire ram_regout_en;
reg ram_regout_en_d1;
reg ram_regout_en_d2;
wire fab_regout_en;
wire ram_rd_en;
reg empty_i = 1'b1;
reg empty_q = 1'b1;
reg rd_en_q = 1'b0;
reg almost_empty_i = 1'b1;
reg almost_empty_q = 1'b1;
wire rd_rst_i;
wire srst_i;
assign ram_valid_i_o = ram_valid_i;
assign read_data_valid_i_o = read_data_valid_i;
assign fab_read_data_valid_i_o = fab_read_data_valid_i;
/*************************************************************************
* FUNCTIONS
*************************************************************************/
/*************************************************************************
* hexstr_conv
* Converts a string of type hex to a binary value (for C_DOUT_RST_VAL)
***********************************************************************/
function [C_DOUT_WIDTH-1:0] hexstr_conv;
input [(C_DOUT_WIDTH*8)-1:0] def_data;
integer index,i,j;
reg [3:0] bin;
begin
index = 0;
hexstr_conv = 'b0;
for( i=C_DOUT_WIDTH-1; i>=0; i=i-1 )
begin
case (def_data[7:0])
8'b00000000 :
begin
bin = 4'b0000;
i = -1;
end
8'b00110000 : bin = 4'b0000;
8'b00110001 : bin = 4'b0001;
8'b00110010 : bin = 4'b0010;
8'b00110011 : bin = 4'b0011;
8'b00110100 : bin = 4'b0100;
8'b00110101 : bin = 4'b0101;
8'b00110110 : bin = 4'b0110;
8'b00110111 : bin = 4'b0111;
8'b00111000 : bin = 4'b1000;
8'b00111001 : bin = 4'b1001;
8'b01000001 : bin = 4'b1010;
8'b01000010 : bin = 4'b1011;
8'b01000011 : bin = 4'b1100;
8'b01000100 : bin = 4'b1101;
8'b01000101 : bin = 4'b1110;
8'b01000110 : bin = 4'b1111;
8'b01100001 : bin = 4'b1010;
8'b01100010 : bin = 4'b1011;
8'b01100011 : bin = 4'b1100;
8'b01100100 : bin = 4'b1101;
8'b01100101 : bin = 4'b1110;
8'b01100110 : bin = 4'b1111;
default :
begin
bin = 4'bx;
end
endcase
for( j=0; j<4; j=j+1)
begin
if ((index*4)+j < C_DOUT_WIDTH)
begin
hexstr_conv[(index*4)+j] = bin[j];
end
end
index = index + 1;
def_data = def_data >> 8;
end
end
endfunction
//*************************************************************************
// Set power-on states for regs
//*************************************************************************
initial begin
ram_valid_i = 1'b0;
fab_valid = 1'b0;
read_data_valid_i = 1'b0;
fab_read_data_valid_i = 1'b0;
fab_read_data_valid_i_1 = 1'b0;
USERDATA = hexstr_conv(C_DOUT_RST_VAL);
USERDATA_BOTH = hexstr_conv(C_DOUT_RST_VAL);
USERSBITERR = 1'b0;
USERDBITERR = 1'b0;
end //initial
//***************************************************************************
// connect up optional reset
//***************************************************************************
assign rd_rst_i = (C_HAS_RST == 1 || C_ENABLE_RST_SYNC == 0) ? RD_RST : 0;
assign srst_i = C_HAS_SRST ? SRST || WR_RST_BUSY || RD_RST_BUSY : 0;
localparam INVALID = 0;
localparam STAGE1_VALID = 2;
localparam STAGE2_VALID = 1;
localparam BOTH_STAGES_VALID = 3;
reg [1:0] curr_fwft_state = INVALID;
reg [1:0] next_fwft_state = INVALID;
generate if (C_USE_EMBEDDED_REG < 3 && C_FIFO_TYPE != 2) begin
always @* begin
case (curr_fwft_state)
INVALID: begin
if (~FIFOEMPTY)
next_fwft_state <= STAGE1_VALID;
else
next_fwft_state <= INVALID;
end
STAGE1_VALID: begin
if (FIFOEMPTY)
next_fwft_state <= STAGE2_VALID;
else
next_fwft_state <= BOTH_STAGES_VALID;
end
STAGE2_VALID: begin
if (FIFOEMPTY && RD_EN)
next_fwft_state <= INVALID;
else if (~FIFOEMPTY && RD_EN)
next_fwft_state <= STAGE1_VALID;
else if (~FIFOEMPTY && ~RD_EN)
next_fwft_state <= BOTH_STAGES_VALID;
else
next_fwft_state <= STAGE2_VALID;
end
BOTH_STAGES_VALID: begin
if (FIFOEMPTY && RD_EN)
next_fwft_state <= STAGE2_VALID;
else if (~FIFOEMPTY && RD_EN)
next_fwft_state <= BOTH_STAGES_VALID;
else
next_fwft_state <= BOTH_STAGES_VALID;
end
default: next_fwft_state <= INVALID;
endcase
end
always @ (posedge rd_rst_i or posedge RD_CLK) begin
if (rd_rst_i)
curr_fwft_state <= INVALID;
else if (srst_i)
curr_fwft_state <= #`TCQ INVALID;
else
curr_fwft_state <= #`TCQ next_fwft_state;
end
always @* begin
case (curr_fwft_state)
INVALID: STAGE2_REG_EN <= 1'b0;
STAGE1_VALID: STAGE2_REG_EN <= 1'b1;
STAGE2_VALID: STAGE2_REG_EN <= 1'b0;
BOTH_STAGES_VALID: STAGE2_REG_EN <= RD_EN;
default: STAGE2_REG_EN <= 1'b0;
endcase
end
assign VALID_STAGES = curr_fwft_state;
//***************************************************************************
// preloadstage2 indicates that stage2 needs to be updated. This is true
// whenever read_data_valid is false, and RAM_valid is true.
//***************************************************************************
assign preloadstage2 = ram_valid_i & (~read_data_valid_i | RD_EN );
//***************************************************************************
// preloadstage1 indicates that stage1 needs to be updated. This is true
// whenever the RAM has data (RAM_EMPTY is false), and either RAM_Valid is
// false (indicating that Stage1 needs updating), or preloadstage2 is active
// (indicating that Stage2 is going to update, so Stage1, therefore, must
// also be updated to keep it valid.
//***************************************************************************
assign preloadstage1 = ((~ram_valid_i | preloadstage2) & ~FIFOEMPTY);
//***************************************************************************
// Calculate RAM_REGOUT_EN
// The output registers are controlled by the ram_regout_en signal.
// These registers should be updated either when the output in Stage2 is
// invalid (preloadstage2), OR when the user is reading, in which case the
// Stage2 value will go invalid unless it is replenished.
//***************************************************************************
assign ram_regout_en = preloadstage2;
//***************************************************************************
// Calculate RAM_RD_EN
// RAM_RD_EN will be asserted whenever the RAM needs to be read in order to
// update the value in Stage1.
// One case when this happens is when preloadstage1=true, which indicates
// that the data in Stage1 or Stage2 is invalid, and needs to automatically
// be updated.
// The other case is when the user is reading from the FIFO, which
// guarantees that Stage1 or Stage2 will be invalid on the next clock
// cycle, unless it is replinished by data from the memory. So, as long
// as the RAM has data in it, a read of the RAM should occur.
//***************************************************************************
assign ram_rd_en = (RD_EN & ~FIFOEMPTY) | preloadstage1;
end
endgenerate // gnll_fifo
reg curr_state = 0;
reg next_state = 0;
reg leaving_empty_fwft = 0;
reg going_empty_fwft = 0;
reg empty_i_q = 0;
reg ram_rd_en_fwft = 0;
generate if (C_FIFO_TYPE == 2) begin : gll_fifo
always @* begin // FSM fo FWFT
case (curr_state)
1'b0: begin
if (~FIFOEMPTY)
next_state <= 1'b1;
else
next_state <= 1'b0;
end
1'b1: begin
if (FIFOEMPTY && RD_EN)
next_state <= 1'b0;
else
next_state <= 1'b1;
end
default: next_state <= 1'b0;
endcase
end
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
empty_i <= 1'b1;
empty_i_q <= 1'b1;
curr_state <= 1'b0;
ram_valid_i <= 1'b0;
end else if (srst_i) begin
empty_i <= #`TCQ 1'b1;
empty_i_q <= #`TCQ 1'b1;
curr_state <= #`TCQ 1'b0;
ram_valid_i <= #`TCQ 1'b0;
end else begin
empty_i <= #`TCQ going_empty_fwft | (~leaving_empty_fwft & empty_i);
empty_i_q <= #`TCQ FIFOEMPTY;
curr_state <= #`TCQ next_state;
ram_valid_i <= #`TCQ next_state;
end
end //always
wire fe_of_empty;
assign fe_of_empty = empty_i_q & ~FIFOEMPTY;
always @* begin // Finding leaving empty
case (curr_state)
1'b0: leaving_empty_fwft <= fe_of_empty;
1'b1: leaving_empty_fwft <= 1'b1;
default: leaving_empty_fwft <= 1'b0;
endcase
end
always @* begin // Finding going empty
case (curr_state)
1'b1: going_empty_fwft <= FIFOEMPTY & RD_EN;
default: going_empty_fwft <= 1'b0;
endcase
end
always @* begin // Generating FWFT rd_en
case (curr_state)
1'b0: ram_rd_en_fwft <= ~FIFOEMPTY;
1'b1: ram_rd_en_fwft <= ~FIFOEMPTY & RD_EN;
default: ram_rd_en_fwft <= 1'b0;
endcase
end
assign ram_regout_en = ram_rd_en_fwft;
//assign ram_regout_en_d1 = ram_rd_en_fwft;
//assign ram_regout_en_d2 = ram_rd_en_fwft;
assign ram_rd_en = ram_rd_en_fwft;
end endgenerate // gll_fifo
//***************************************************************************
// Calculate RAMVALID_P0_OUT
// RAMVALID_P0_OUT indicates that the data in Stage1 is valid.
//
// If the RAM is being read from on this clock cycle (ram_rd_en=1), then
// RAMVALID_P0_OUT is certainly going to be true.
// If the RAM is not being read from, but the output registers are being
// updated to fill Stage2 (ram_regout_en=1), then Stage1 will be emptying,
// therefore causing RAMVALID_P0_OUT to be false.
// Otherwise, RAMVALID_P0_OUT will remain unchanged.
//***************************************************************************
// PROCESS regout_valid
generate if (C_FIFO_TYPE < 2) begin : gnll_fifo_ram_valid
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
// asynchronous reset (active high)
ram_valid_i <= #`TCQ 1'b0;
end else begin
if (srst_i) begin
// synchronous reset (active high)
ram_valid_i <= #`TCQ 1'b0;
end else begin
if (ram_rd_en == 1'b1) begin
ram_valid_i <= #`TCQ 1'b1;
end else begin
if (ram_regout_en == 1'b1)
ram_valid_i <= #`TCQ 1'b0;
else
ram_valid_i <= #`TCQ ram_valid_i;
end
end //srst_i
end //rd_rst_i
end //always
end endgenerate // gnll_fifo_ram_valid
//***************************************************************************
// Calculate READ_DATA_VALID
// READ_DATA_VALID indicates whether the value in Stage2 is valid or not.
// Stage2 has valid data whenever Stage1 had valid data and
// ram_regout_en_i=1, such that the data in Stage1 is propogated
// into Stage2.
//***************************************************************************
generate if(C_USE_EMBEDDED_REG < 3) begin
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i)
read_data_valid_i <= #`TCQ 1'b0;
else if (srst_i)
read_data_valid_i <= #`TCQ 1'b0;
else
read_data_valid_i <= #`TCQ ram_valid_i | (read_data_valid_i & ~RD_EN);
end //always
end
endgenerate
//**************************************************************************
// Calculate EMPTY
// Defined as the inverse of READ_DATA_VALID
//
// Description:
//
// If read_data_valid_i indicates that the output is not valid,
// and there is no valid data on the output of the ram to preload it
// with, then we will report empty.
//
// If there is no valid data on the output of the ram and we are
// reading, then the FIFO will go empty.
//
//**************************************************************************
generate if (C_FIFO_TYPE < 2 && C_USE_EMBEDDED_REG < 3) begin : gnll_fifo_empty
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
// asynchronous reset (active high)
empty_i <= #`TCQ 1'b1;
end else begin
if (srst_i) begin
// synchronous reset (active high)
empty_i <= #`TCQ 1'b1;
end else begin
// rising clock edge
empty_i <= #`TCQ (~ram_valid_i & ~read_data_valid_i) | (~ram_valid_i & RD_EN);
end
end
end //always
end endgenerate // gnll_fifo_empty
// Register RD_EN from user to calculate USERUNDERFLOW.
// Register empty_i to calculate USERUNDERFLOW.
always @ (posedge RD_CLK) begin
rd_en_q <= #`TCQ RD_EN;
empty_q <= #`TCQ empty_i;
end //always
//***************************************************************************
// Calculate user_almost_empty
// user_almost_empty is defined such that, unless more words are written
// to the FIFO, the next read will cause the FIFO to go EMPTY.
//
// In most cases, whenever the output registers are updated (due to a user
// read or a preload condition), then user_almost_empty will update to
// whatever RAM_EMPTY is.
//
// The exception is when the output is valid, the user is not reading, and
// Stage1 is not empty. In this condition, Stage1 will be preloaded from the
// memory, so we need to make sure user_almost_empty deasserts properly under
// this condition.
//***************************************************************************
generate if ( C_USE_EMBEDDED_REG < 3) begin
always @ (posedge RD_CLK or posedge rd_rst_i)
begin
if (rd_rst_i) begin // asynchronous reset (active high)
almost_empty_i <= #`TCQ 1'b1;
almost_empty_q <= #`TCQ 1'b1;
end else begin // rising clock edge
if (srst_i) begin // synchronous reset (active high)
almost_empty_i <= #`TCQ 1'b1;
almost_empty_q <= #`TCQ 1'b1;
end else begin
if ((ram_regout_en) | (~FIFOEMPTY & read_data_valid_i & ~RD_EN)) begin
almost_empty_i <= #`TCQ FIFOEMPTY;
end
almost_empty_q <= #`TCQ empty_i;
end
end
end //always
end
endgenerate
// BRAM resets synchronously
generate
if (C_EN_SAFETY_CKT==0 && C_USE_EMBEDDED_REG < 3) begin
always @ ( posedge rd_rst_i)
begin
if (rd_rst_i || srst_i) begin
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE < 2)
@(posedge RD_CLK)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end //always
always @ (posedge RD_CLK or posedge rd_rst_i)
begin
if (rd_rst_i) begin //asynchronous reset (active high)
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
// DRAM resets asynchronously
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2) begin //asynchronous reset (active high)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end else begin // rising clock edge
if (srst_i) begin
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
if (C_USE_DOUT_RST == 1) begin
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end else begin
if (ram_regout_en) begin
USERDATA <= #`TCQ FIFODATA;
USERSBITERR <= #`TCQ FIFOSBITERR;
USERDBITERR <= #`TCQ FIFODBITERR;
end
end
end
end //always
end //if
endgenerate
//safety ckt with one register
generate
if (C_EN_SAFETY_CKT==1 && C_USE_EMBEDDED_REG < 3) begin
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d1;
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d2;
reg [1:0] rst_delayed_sft1 =1;
reg [1:0] rst_delayed_sft2 =1;
reg [1:0] rst_delayed_sft3 =1;
reg [1:0] rst_delayed_sft4 =1;
always@(posedge RD_CLK)
begin
rst_delayed_sft1 <= #`TCQ rd_rst_i;
rst_delayed_sft2 <= #`TCQ rst_delayed_sft1;
rst_delayed_sft3 <= #`TCQ rst_delayed_sft2;
rst_delayed_sft4 <= #`TCQ rst_delayed_sft3;
end
always @ (posedge RD_CLK)
begin
if (rd_rst_i || srst_i) begin
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE < 2 && rst_delayed_sft1 == 1'b1) begin
@(posedge RD_CLK)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end
end //always
always @ (posedge RD_CLK or posedge rd_rst_i)
begin
if (rd_rst_i) begin //asynchronous reset (active high)
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
// DRAM resets asynchronously
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2)begin //asynchronous reset (active high)
//@(posedge RD_CLK)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end
else begin // rising clock edge
if (srst_i) begin
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
if (C_USE_DOUT_RST == 1) begin
// @(posedge RD_CLK)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end else begin
if (ram_regout_en == 1'b1 && rd_rst_i == 1'b0) begin
USERDATA <= #`TCQ FIFODATA;
USERSBITERR <= #`TCQ FIFOSBITERR;
USERDBITERR <= #`TCQ FIFODBITERR;
end
end
end
end //always
end //if
endgenerate
generate if (C_USE_EMBEDDED_REG == 3 && C_FIFO_TYPE != 2) begin
always @* begin
case (curr_fwft_state)
INVALID: begin
if (~FIFOEMPTY)
next_fwft_state <= STAGE1_VALID;
else
next_fwft_state <= INVALID;
end
STAGE1_VALID: begin
if (FIFOEMPTY)
next_fwft_state <= STAGE2_VALID;
else
next_fwft_state <= BOTH_STAGES_VALID;
end
STAGE2_VALID: begin
if (FIFOEMPTY && RD_EN)
next_fwft_state <= INVALID;
else if (~FIFOEMPTY && RD_EN)
next_fwft_state <= STAGE1_VALID;
else if (~FIFOEMPTY && ~RD_EN)
next_fwft_state <= BOTH_STAGES_VALID;
else
next_fwft_state <= STAGE2_VALID;
end
BOTH_STAGES_VALID: begin
if (FIFOEMPTY && RD_EN)
next_fwft_state <= STAGE2_VALID;
else if (~FIFOEMPTY && RD_EN)
next_fwft_state <= BOTH_STAGES_VALID;
else
next_fwft_state <= BOTH_STAGES_VALID;
end
default: next_fwft_state <= INVALID;
endcase
end
always @ (posedge rd_rst_i or posedge RD_CLK) begin
if (rd_rst_i)
curr_fwft_state <= INVALID;
else if (srst_i)
curr_fwft_state <= #`TCQ INVALID;
else
curr_fwft_state <= #`TCQ next_fwft_state;
end
always @ (posedge RD_CLK or posedge rd_rst_i) begin : proc_delay
if (rd_rst_i == 1) begin
ram_regout_en_d1 <= #`TCQ 1'b0;
end
else begin
if (srst_i == 1'b1)
ram_regout_en_d1 <= #`TCQ 1'b0;
else
ram_regout_en_d1 <= #`TCQ ram_regout_en;
end
end //always
// assign fab_regout_en = ((ram_regout_en_d1 & ~(ram_regout_en_d2) & empty_i) | (RD_EN & !empty_i));
assign fab_regout_en = ((ram_valid_i == 1'b0 || ram_valid_i == 1'b1) && read_data_valid_i == 1'b1 && fab_read_data_valid_i == 1'b0 )? 1'b1: ((ram_valid_i == 1'b0 || ram_valid_i == 1'b1) && read_data_valid_i == 1'b1 && fab_read_data_valid_i == 1'b1) ? RD_EN : 1'b0;
always @ (posedge RD_CLK or posedge rd_rst_i) begin : proc_delay1
if (rd_rst_i == 1) begin
ram_regout_en_d2 <= #`TCQ 1'b0;
end
else begin
if (srst_i == 1'b1)
ram_regout_en_d2 <= #`TCQ 1'b0;
else
ram_regout_en_d2 <= #`TCQ ram_regout_en_d1;
end
end //always
always @* begin
case (curr_fwft_state)
INVALID: STAGE2_REG_EN <= 1'b0;
STAGE1_VALID: STAGE2_REG_EN <= 1'b1;
STAGE2_VALID: STAGE2_REG_EN <= 1'b0;
BOTH_STAGES_VALID: STAGE2_REG_EN <= RD_EN;
default: STAGE2_REG_EN <= 1'b0;
endcase
end
always @ (posedge RD_CLK) begin
ram_valid_i_d <= #`TCQ ram_valid_i;
read_data_valid_i_d <= #`TCQ read_data_valid_i;
fab_read_data_valid_i_d <= #`TCQ fab_read_data_valid_i;
end
assign VALID_STAGES = curr_fwft_state;
//***************************************************************************
// preloadstage2 indicates that stage2 needs to be updated. This is true
// whenever read_data_valid is false, and RAM_valid is true.
//***************************************************************************
assign preloadstage2 = ram_valid_i & (~read_data_valid_i | RD_EN );
//***************************************************************************
// preloadstage1 indicates that stage1 needs to be updated. This is true
// whenever the RAM has data (RAM_EMPTY is false), and either RAM_Valid is
// false (indicating that Stage1 needs updating), or preloadstage2 is active
// (indicating that Stage2 is going to update, so Stage1, therefore, must
// also be updated to keep it valid.
//***************************************************************************
assign preloadstage1 = ((~ram_valid_i | preloadstage2) & ~FIFOEMPTY);
//***************************************************************************
// Calculate RAM_REGOUT_EN
// The output registers are controlled by the ram_regout_en signal.
// These registers should be updated either when the output in Stage2 is
// invalid (preloadstage2), OR when the user is reading, in which case the
// Stage2 value will go invalid unless it is replenished.
//***************************************************************************
assign ram_regout_en = (ram_valid_i == 1'b1 && (read_data_valid_i == 1'b0 || fab_read_data_valid_i == 1'b0)) ? 1'b1 : (read_data_valid_i == 1'b1 && fab_read_data_valid_i == 1'b1 && ram_valid_i == 1'b1) ? RD_EN : 1'b0;
//***************************************************************************
// Calculate RAM_RD_EN
// RAM_RD_EN will be asserted whenever the RAM needs to be read in order to
// update the value in Stage1.
// One case when this happens is when preloadstage1=true, which indicates
// that the data in Stage1 or Stage2 is invalid, and needs to automatically
// be updated.
// The other case is when the user is reading from the FIFO, which
// guarantees that Stage1 or Stage2 will be invalid on the next clock
// cycle, unless it is replinished by data from the memory. So, as long
// as the RAM has data in it, a read of the RAM should occur.
//***************************************************************************
assign ram_rd_en = ((RD_EN | ~ fab_read_data_valid_i) & ~FIFOEMPTY) | preloadstage1;
end
endgenerate // gnll_fifo
//***************************************************************************
// Calculate RAMVALID_P0_OUT
// RAMVALID_P0_OUT indicates that the data in Stage1 is valid.
//
// If the RAM is being read from on this clock cycle (ram_rd_en=1), then
// RAMVALID_P0_OUT is certainly going to be true.
// If the RAM is not being read from, but the output registers are being
// updated to fill Stage2 (ram_regout_en=1), then Stage1 will be emptying,
// therefore causing RAMVALID_P0_OUT to be false // Otherwise, RAMVALID_P0_OUT will remain unchanged.
//***************************************************************************
// PROCESS regout_valid
generate if (C_FIFO_TYPE < 2 && C_USE_EMBEDDED_REG == 3) begin : gnll_fifo_fab_valid
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
// asynchronous reset (active high)
fab_valid <= #`TCQ 1'b0;
end else begin
if (srst_i) begin
// synchronous reset (active high)
fab_valid <= #`TCQ 1'b0;
end else begin
if (ram_regout_en == 1'b1) begin
fab_valid <= #`TCQ 1'b1;
end else begin
if (fab_regout_en == 1'b1)
fab_valid <= #`TCQ 1'b0;
else
fab_valid <= #`TCQ fab_valid;
end
end //srst_i
end //rd_rst_i
end //always
end endgenerate // gnll_fifo_fab_valid
//***************************************************************************
// Calculate READ_DATA_VALID
// READ_DATA_VALID indicates whether the value in Stage2 is valid or not.
// Stage2 has valid data whenever Stage1 had valid data and
// ram_regout_en_i=1, such that the data in Stage1 is propogated
// into Stage2.
//***************************************************************************
generate if(C_USE_EMBEDDED_REG == 3) begin
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i)
read_data_valid_i <= #`TCQ 1'b0;
else if (srst_i)
read_data_valid_i <= #`TCQ 1'b0;
else begin
if (ram_regout_en == 1'b1) begin
read_data_valid_i <= #`TCQ 1'b1;
end else begin
if (fab_regout_en == 1'b1)
read_data_valid_i <= #`TCQ 1'b0;
else
read_data_valid_i <= #`TCQ read_data_valid_i;
end
end
end //always
end
endgenerate
//generate if(C_USE_EMBEDDED_REG == 3) begin
// always @ (posedge RD_CLK or posedge rd_rst_i) begin
// if (rd_rst_i)
// read_data_valid_i <= #`TCQ 1'b0;
// else if (srst_i)
// read_data_valid_i <= #`TCQ 1'b0;
//
// if (ram_regout_en == 1'b1) begin
// fab_read_data_valid_i <= #`TCQ 1'b0;
// end else begin
// if (fab_regout_en == 1'b1)
// fab_read_data_valid_i <= #`TCQ 1'b1;
// else
// fab_read_data_valid_i <= #`TCQ fab_read_data_valid_i;
// end
// end //always
//end
//endgenerate
generate if(C_USE_EMBEDDED_REG == 3 ) begin
always @ (posedge RD_CLK or posedge rd_rst_i) begin :fabout_dvalid
if (rd_rst_i)
fab_read_data_valid_i <= #`TCQ 1'b0;
else if (srst_i)
fab_read_data_valid_i <= #`TCQ 1'b0;
else
fab_read_data_valid_i <= #`TCQ fab_valid | (fab_read_data_valid_i & ~RD_EN);
end //always
end
endgenerate
always @ (posedge RD_CLK ) begin : proc_del1
begin
fab_read_data_valid_i_1 <= #`TCQ fab_read_data_valid_i;
end
end //always
//**************************************************************************
// Calculate EMPTY
// Defined as the inverse of READ_DATA_VALID
//
// Description:
//
// If read_data_valid_i indicates that the output is not valid,
// and there is no valid data on the output of the ram to preload it
// with, then we will report empty.
//
// If there is no valid data on the output of the ram and we are
// reading, then the FIFO will go empty.
//
//**************************************************************************
generate if (C_FIFO_TYPE < 2 && C_USE_EMBEDDED_REG == 3 ) begin : gnll_fifo_empty_both
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
// asynchronous reset (active high)
empty_i <= #`TCQ 1'b1;
end else begin
if (srst_i) begin
// synchronous reset (active high)
empty_i <= #`TCQ 1'b1;
end else begin
// rising clock edge
empty_i <= #`TCQ (~fab_valid & ~fab_read_data_valid_i) | (~fab_valid & RD_EN);
end
end
end //always
end endgenerate // gnll_fifo_empty_both
// Register RD_EN from user to calculate USERUNDERFLOW.
// Register empty_i to calculate USERUNDERFLOW.
always @ (posedge RD_CLK) begin
rd_en_q <= #`TCQ RD_EN;
empty_q <= #`TCQ empty_i;
end //always
//***************************************************************************
// Calculate user_almost_empty
// user_almost_empty is defined such that, unless more words are written
// to the FIFO, the next read will cause the FIFO to go EMPTY.
//
// In most cases, whenever the output registers are updated (due to a user
// read or a preload condition), then user_almost_empty will update to
// whatever RAM_EMPTY is.
//
// The exception is when the output is valid, the user is not reading, and
// Stage1 is not empty. In this condition, Stage1 will be preloaded from the
// memory, so we need to make sure user_almost_empty deasserts properly under
// this condition.
//***************************************************************************
reg FIFOEMPTY_1;
generate if (C_USE_EMBEDDED_REG == 3 ) begin
always @(posedge RD_CLK) begin
FIFOEMPTY_1 <= #`TCQ FIFOEMPTY;
end
end
endgenerate
generate if (C_USE_EMBEDDED_REG == 3 ) begin
always @ (posedge RD_CLK or posedge rd_rst_i)
// begin
// if (((ram_valid_i == 1'b1) && (read_data_valid_i == 1'b1) && (fab_read_data_valid_i == 1'b1)) || ((ram_valid_i == 1'b0) && (read_data_valid_i == 1'b1) && (fab_read_data_valid_i == 1'b1)))
// almost_empty_i <= #`TCQ 1'b0;
// else
// almost_empty_i <= #`TCQ 1'b1;
begin
if (rd_rst_i) begin // asynchronous reset (active high)
almost_empty_i <= #`TCQ 1'b1;
almost_empty_q <= #`TCQ 1'b1;
end else begin // rising clock edge
if (srst_i) begin // synchronous reset (active high)
almost_empty_i <= #`TCQ 1'b1;
almost_empty_q <= #`TCQ 1'b1;
end else begin
if ((fab_regout_en) | (ram_valid_i & fab_read_data_valid_i & ~RD_EN)) begin
almost_empty_i <= #`TCQ (~ram_valid_i);
end
almost_empty_q <= #`TCQ empty_i;
end
end
end //always
end
endgenerate
assign USEREMPTY = empty_i;
assign USERALMOSTEMPTY = almost_empty_i;
assign FIFORDEN = ram_rd_en;
assign RAMVALID = (C_USE_EMBEDDED_REG == 3)? fab_valid : ram_valid_i;
assign USERVALID_BOTH = (C_USERVALID_LOW && C_USE_EMBEDDED_REG == 3) ? ~fab_read_data_valid_i : ((C_USERVALID_LOW == 0 && C_USE_EMBEDDED_REG == 3) ? fab_read_data_valid_i : 1'b0);
assign USERVALID_ONE = (C_USERVALID_LOW && C_USE_EMBEDDED_REG < 3) ? ~read_data_valid_i :((C_USERVALID_LOW == 0 && C_USE_EMBEDDED_REG < 3) ? read_data_valid_i : 1'b0);
assign USERVALID = (C_USE_EMBEDDED_REG == 3) ? USERVALID_BOTH : USERVALID_ONE;
assign USERUNDERFLOW = C_USERUNDERFLOW_LOW ? ~(empty_q & rd_en_q) : empty_q & rd_en_q;
//no safety ckt with both reg
generate
if (C_EN_SAFETY_CKT==0 && C_USE_EMBEDDED_REG == 3 ) begin
always @ (posedge RD_CLK)
begin
if (rd_rst_i || srst_i) begin
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE < 2)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
USERDATA_BOTH <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end //always
always @ (posedge RD_CLK or posedge rd_rst_i)
begin
if (rd_rst_i) begin //asynchronous reset (active high)
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
// DRAM resets asynchronously
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2) begin //asynchronous reset (active high)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
USERDATA_BOTH <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end else begin // rising clock edge
if (srst_i) begin
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2) begin
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
USERDATA_BOTH <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end else begin
if (ram_regout_en) begin
USERDATA_BOTH <= #`TCQ FIFODATA;
USERDBITERR <= #`TCQ FIFODBITERR;
USERSBITERR <= #`TCQ FIFOSBITERR;
end
if (fab_regout_en) begin
USERDATA <= #`TCQ USERDATA_BOTH;
end
end
end
end //always
end //if
endgenerate
//safety_ckt with both registers
generate
if (C_EN_SAFETY_CKT==1 && C_USE_EMBEDDED_REG == 3) begin
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d1;
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d2;
reg [1:0] rst_delayed_sft1 =1;
reg [1:0] rst_delayed_sft2 =1;
reg [1:0] rst_delayed_sft3 =1;
reg [1:0] rst_delayed_sft4 =1;
always@(posedge RD_CLK)
begin
rst_delayed_sft1 <= #`TCQ rd_rst_i;
rst_delayed_sft2 <= #`TCQ rst_delayed_sft1;
rst_delayed_sft3 <= #`TCQ rst_delayed_sft2;
rst_delayed_sft4 <= #`TCQ rst_delayed_sft3;
end
always @ (posedge RD_CLK)
begin
if (rd_rst_i || srst_i) begin
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE < 2 && rst_delayed_sft1 == 1'b1) begin
@(posedge RD_CLK)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
USERDATA_BOTH <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end
end //always
always @ (posedge RD_CLK or posedge rd_rst_i)
begin
if (rd_rst_i) begin //asynchronous reset (active high)
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
// DRAM resets asynchronously
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2)begin //asynchronous reset (active high)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
USERDATA_BOTH <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end
else begin // rising clock edge
if (srst_i) begin
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2) begin
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end else begin
if (ram_regout_en == 1'b1 && rd_rst_i == 1'b0) begin
USERDATA_BOTH <= #`TCQ FIFODATA;
USERDBITERR <= #`TCQ FIFODBITERR;
USERSBITERR <= #`TCQ FIFOSBITERR;
end
if (fab_regout_en == 1'b1 && rd_rst_i == 1'b0) begin
USERDATA <= #`TCQ USERDATA_BOTH;
end
end
end
end //always
end //if
endgenerate
endmodule //fifo_generator_v13_1_1_bhv_ver_preload0
//-----------------------------------------------------------------------------
//
// Register Slice
// Register one AXI channel on forward and/or reverse signal path
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
// reg_slice
//
//--------------------------------------------------------------------------
module fifo_generator_v13_1_1_axic_reg_slice #
(
parameter C_FAMILY = "virtex7",
parameter C_DATA_WIDTH = 32,
parameter C_REG_CONFIG = 32'h00000000
)
(
// System Signals
input wire ACLK,
input wire ARESET,
// Slave side
input wire [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA,
input wire S_VALID,
output wire S_READY,
// Master side
output wire [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA,
output wire M_VALID,
input wire M_READY
);
generate
////////////////////////////////////////////////////////////////////
//
// Both FWD and REV mode
//
////////////////////////////////////////////////////////////////////
if (C_REG_CONFIG == 32'h00000000)
begin
reg [1:0] state;
localparam [1:0]
ZERO = 2'b10,
ONE = 2'b11,
TWO = 2'b01;
reg [C_DATA_WIDTH-1:0] storage_data1 = 0;
reg [C_DATA_WIDTH-1:0] storage_data2 = 0;
reg load_s1;
wire load_s2;
wire load_s1_from_s2;
reg s_ready_i; //local signal of output
wire m_valid_i; //local signal of output
// assign local signal to its output signal
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
reg areset_d1; // Reset delay register
always @(posedge ACLK) begin
areset_d1 <= ARESET;
end
// Load storage1 with either slave side data or from storage2
always @(posedge ACLK)
begin
if (load_s1)
if (load_s1_from_s2)
storage_data1 <= storage_data2;
else
storage_data1 <= S_PAYLOAD_DATA;
end
// Load storage2 with slave side data
always @(posedge ACLK)
begin
if (load_s2)
storage_data2 <= S_PAYLOAD_DATA;
end
assign M_PAYLOAD_DATA = storage_data1;
// Always load s2 on a valid transaction even if it's unnecessary
assign load_s2 = S_VALID & s_ready_i;
// Loading s1
always @ *
begin
if ( ((state == ZERO) && (S_VALID == 1)) || // Load when empty on slave transaction
// Load when ONE if we both have read and write at the same time
((state == ONE) && (S_VALID == 1) && (M_READY == 1)) ||
// Load when TWO and we have a transaction on Master side
((state == TWO) && (M_READY == 1)))
load_s1 = 1'b1;
else
load_s1 = 1'b0;
end // always @ *
assign load_s1_from_s2 = (state == TWO);
// State Machine for handling output signals
always @(posedge ACLK) begin
if (ARESET) begin
s_ready_i <= 1'b0;
state <= ZERO;
end else if (areset_d1) begin
s_ready_i <= 1'b1;
end else begin
case (state)
// No transaction stored locally
ZERO: if (S_VALID) state <= ONE; // Got one so move to ONE
// One transaction stored locally
ONE: begin
if (M_READY & ~S_VALID) state <= ZERO; // Read out one so move to ZERO
if (~M_READY & S_VALID) begin
state <= TWO; // Got another one so move to TWO
s_ready_i <= 1'b0;
end
end
// TWO transaction stored locally
TWO: if (M_READY) begin
state <= ONE; // Read out one so move to ONE
s_ready_i <= 1'b1;
end
endcase // case (state)
end
end // always @ (posedge ACLK)
assign m_valid_i = state[0];
end // if (C_REG_CONFIG == 1)
////////////////////////////////////////////////////////////////////
//
// 1-stage pipeline register with bubble cycle, both FWD and REV pipelining
// Operates same as 1-deep FIFO
//
////////////////////////////////////////////////////////////////////
else if (C_REG_CONFIG == 32'h00000001)
begin
reg [C_DATA_WIDTH-1:0] storage_data1 = 0;
reg s_ready_i; //local signal of output
reg m_valid_i; //local signal of output
// assign local signal to its output signal
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
reg areset_d1; // Reset delay register
always @(posedge ACLK) begin
areset_d1 <= ARESET;
end
// Load storage1 with slave side data
always @(posedge ACLK)
begin
if (ARESET) begin
s_ready_i <= 1'b0;
m_valid_i <= 1'b0;
end else if (areset_d1) begin
s_ready_i <= 1'b1;
end else if (m_valid_i & M_READY) begin
s_ready_i <= 1'b1;
m_valid_i <= 1'b0;
end else if (S_VALID & s_ready_i) begin
s_ready_i <= 1'b0;
m_valid_i <= 1'b1;
end
if (~m_valid_i) begin
storage_data1 <= S_PAYLOAD_DATA;
end
end
assign M_PAYLOAD_DATA = storage_data1;
end // if (C_REG_CONFIG == 7)
else begin : default_case
// Passthrough
assign M_PAYLOAD_DATA = S_PAYLOAD_DATA;
assign M_VALID = S_VALID;
assign S_READY = M_READY;
end
endgenerate
endmodule // reg_slice
|
/*
*******************************************************************************
*
* FIFO Generator - Verilog Behavioral Model
*
*******************************************************************************
*
* (c) Copyright 1995 - 2009 Xilinx, Inc. All rights reserved.
*
* This file contains confidential and proprietary information
* of Xilinx, Inc. and is protected under U.S. and
* international copyright and other intellectual property
* laws.
*
* DISCLAIMER
* This disclaimer is not a license and does not grant any
* rights to the materials distributed herewith. Except as
* otherwise provided in a valid license issued to you by
* Xilinx, and to the maximum extent permitted by applicable
* law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
* WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
* AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
* BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
* INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
* (2) Xilinx shall not be liable (whether in contract or tort,
* including negligence, or under any other theory of
* liability) for any loss or damage of any kind or nature
* related to, arising under or in connection with these
* materials, including for any direct, or any indirect,
* special, incidental, or consequential loss or damage
* (including loss of data, profits, goodwill, or any type of
* loss or damage suffered as a result of any action brought
* by a third party) even if such damage or loss was
* reasonably foreseeable or Xilinx had been advised of the
* possibility of the same.
*
* CRITICAL APPLICATIONS
* Xilinx products are not designed or intended to be fail-
* safe, or for use in any application requiring fail-safe
* performance, such as life-support or safety devices or
* systems, Class III medical devices, nuclear facilities,
* applications related to the deployment of airbags, or any
* other applications that could lead to death, personal
* injury, or severe property or environmental damage
* (individually and collectively, "Critical
* Applications"). Customer assumes the sole risk and
* liability of any use of Xilinx products in Critical
* Applications, subject only to applicable laws and
* regulations governing limitations on product liability.
*
* THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
* PART OF THIS FILE AT ALL TIMES.
*
*******************************************************************************
*******************************************************************************
*
* Filename: fifo_generator_vlog_beh.v
*
* Author : Xilinx
*
*******************************************************************************
* Structure:
*
* fifo_generator_vlog_beh.v
* |
* +-fifo_generator_v13_1_1_bhv_ver_as
* |
* +-fifo_generator_v13_1_1_bhv_ver_ss
* |
* +-fifo_generator_v13_1_1_bhv_ver_preload0
*
*******************************************************************************
* Description:
*
* The Verilog behavioral model for the FIFO Generator.
*
* The behavioral model has three parts:
* - The behavioral model for independent clocks FIFOs (_as)
* - The behavioral model for common clock FIFOs (_ss)
* - The "preload logic" block which implements First-word Fall-through
*
*******************************************************************************
* Description:
* The verilog behavioral model for the FIFO generator core.
*
*******************************************************************************
*/
`timescale 1ps/1ps
`ifndef TCQ
`define TCQ 100
`endif
/*******************************************************************************
* Declaration of top-level module
******************************************************************************/
module fifo_generator_vlog_beh
#(
//-----------------------------------------------------------------------
// Generic Declarations
//-----------------------------------------------------------------------
parameter C_COMMON_CLOCK = 0,
parameter C_COUNT_TYPE = 0,
parameter C_DATA_COUNT_WIDTH = 2,
parameter C_DEFAULT_VALUE = "",
parameter C_DIN_WIDTH = 8,
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_ENABLE_RLOCS = 0,
parameter C_FAMILY = "",
parameter C_FULL_FLAGS_RST_VAL = 1,
parameter C_HAS_ALMOST_EMPTY = 0,
parameter C_HAS_ALMOST_FULL = 0,
parameter C_HAS_BACKUP = 0,
parameter C_HAS_DATA_COUNT = 0,
parameter C_HAS_INT_CLK = 0,
parameter C_HAS_MEMINIT_FILE = 0,
parameter C_HAS_OVERFLOW = 0,
parameter C_HAS_RD_DATA_COUNT = 0,
parameter C_HAS_RD_RST = 0,
parameter C_HAS_RST = 1,
parameter C_HAS_SRST = 0,
parameter C_HAS_UNDERFLOW = 0,
parameter C_HAS_VALID = 0,
parameter C_HAS_WR_ACK = 0,
parameter C_HAS_WR_DATA_COUNT = 0,
parameter C_HAS_WR_RST = 0,
parameter C_IMPLEMENTATION_TYPE = 0,
parameter C_INIT_WR_PNTR_VAL = 0,
parameter C_MEMORY_TYPE = 1,
parameter C_MIF_FILE_NAME = "",
parameter C_OPTIMIZATION_MODE = 0,
parameter C_OVERFLOW_LOW = 0,
parameter C_EN_SAFETY_CKT = 0,
parameter C_PRELOAD_LATENCY = 1,
parameter C_PRELOAD_REGS = 0,
parameter C_PRIM_FIFO_TYPE = "4kx4",
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0,
parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0,
parameter C_PROG_EMPTY_TYPE = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0,
parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0,
parameter C_PROG_FULL_TYPE = 0,
parameter C_RD_DATA_COUNT_WIDTH = 2,
parameter C_RD_DEPTH = 256,
parameter C_RD_FREQ = 1,
parameter C_RD_PNTR_WIDTH = 8,
parameter C_UNDERFLOW_LOW = 0,
parameter C_USE_DOUT_RST = 0,
parameter C_USE_ECC = 0,
parameter C_USE_EMBEDDED_REG = 0,
parameter C_USE_PIPELINE_REG = 0,
parameter C_POWER_SAVING_MODE = 0,
parameter C_USE_FIFO16_FLAGS = 0,
parameter C_USE_FWFT_DATA_COUNT = 0,
parameter C_VALID_LOW = 0,
parameter C_WR_ACK_LOW = 0,
parameter C_WR_DATA_COUNT_WIDTH = 2,
parameter C_WR_DEPTH = 256,
parameter C_WR_FREQ = 1,
parameter C_WR_PNTR_WIDTH = 8,
parameter C_WR_RESPONSE_LATENCY = 1,
parameter C_MSGON_VAL = 1,
parameter C_ENABLE_RST_SYNC = 1,
parameter C_ERROR_INJECTION_TYPE = 0,
parameter C_SYNCHRONIZER_STAGE = 2,
// AXI Interface related parameters start here
parameter C_INTERFACE_TYPE = 0, // 0: Native Interface, 1: AXI4 Stream, 2: AXI4/AXI3
parameter C_AXI_TYPE = 0, // 1: AXI4, 2: AXI4 Lite, 3: AXI3
parameter C_HAS_AXI_WR_CHANNEL = 0,
parameter C_HAS_AXI_RD_CHANNEL = 0,
parameter C_HAS_SLAVE_CE = 0,
parameter C_HAS_MASTER_CE = 0,
parameter C_ADD_NGC_CONSTRAINT = 0,
parameter C_USE_COMMON_UNDERFLOW = 0,
parameter C_USE_COMMON_OVERFLOW = 0,
parameter C_USE_DEFAULT_SETTINGS = 0,
// AXI Full/Lite
parameter C_AXI_ID_WIDTH = 0,
parameter C_AXI_ADDR_WIDTH = 0,
parameter C_AXI_DATA_WIDTH = 0,
parameter C_AXI_LEN_WIDTH = 8,
parameter C_AXI_LOCK_WIDTH = 2,
parameter C_HAS_AXI_ID = 0,
parameter C_HAS_AXI_AWUSER = 0,
parameter C_HAS_AXI_WUSER = 0,
parameter C_HAS_AXI_BUSER = 0,
parameter C_HAS_AXI_ARUSER = 0,
parameter C_HAS_AXI_RUSER = 0,
parameter C_AXI_ARUSER_WIDTH = 0,
parameter C_AXI_AWUSER_WIDTH = 0,
parameter C_AXI_WUSER_WIDTH = 0,
parameter C_AXI_BUSER_WIDTH = 0,
parameter C_AXI_RUSER_WIDTH = 0,
// AXI Streaming
parameter C_HAS_AXIS_TDATA = 0,
parameter C_HAS_AXIS_TID = 0,
parameter C_HAS_AXIS_TDEST = 0,
parameter C_HAS_AXIS_TUSER = 0,
parameter C_HAS_AXIS_TREADY = 0,
parameter C_HAS_AXIS_TLAST = 0,
parameter C_HAS_AXIS_TSTRB = 0,
parameter C_HAS_AXIS_TKEEP = 0,
parameter C_AXIS_TDATA_WIDTH = 1,
parameter C_AXIS_TID_WIDTH = 1,
parameter C_AXIS_TDEST_WIDTH = 1,
parameter C_AXIS_TUSER_WIDTH = 1,
parameter C_AXIS_TSTRB_WIDTH = 1,
parameter C_AXIS_TKEEP_WIDTH = 1,
// AXI Channel Type
// WACH --> Write Address Channel
// WDCH --> Write Data Channel
// WRCH --> Write Response Channel
// RACH --> Read Address Channel
// RDCH --> Read Data Channel
// AXIS --> AXI Streaming
parameter C_WACH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logic
parameter C_WDCH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie
parameter C_WRCH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie
parameter C_RACH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie
parameter C_RDCH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie
parameter C_AXIS_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie
// AXI Implementation Type
// 1 = Common Clock Block RAM FIFO
// 2 = Common Clock Distributed RAM FIFO
// 11 = Independent Clock Block RAM FIFO
// 12 = Independent Clock Distributed RAM FIFO
parameter C_IMPLEMENTATION_TYPE_WACH = 0,
parameter C_IMPLEMENTATION_TYPE_WDCH = 0,
parameter C_IMPLEMENTATION_TYPE_WRCH = 0,
parameter C_IMPLEMENTATION_TYPE_RACH = 0,
parameter C_IMPLEMENTATION_TYPE_RDCH = 0,
parameter C_IMPLEMENTATION_TYPE_AXIS = 0,
// AXI FIFO Type
// 0 = Data FIFO
// 1 = Packet FIFO
// 2 = Low Latency Sync FIFO
// 3 = Low Latency Async FIFO
parameter C_APPLICATION_TYPE_WACH = 0,
parameter C_APPLICATION_TYPE_WDCH = 0,
parameter C_APPLICATION_TYPE_WRCH = 0,
parameter C_APPLICATION_TYPE_RACH = 0,
parameter C_APPLICATION_TYPE_RDCH = 0,
parameter C_APPLICATION_TYPE_AXIS = 0,
// AXI Built-in FIFO Primitive Type
// 512x36, 1kx18, 2kx9, 4kx4, etc
parameter C_PRIM_FIFO_TYPE_WACH = "512x36",
parameter C_PRIM_FIFO_TYPE_WDCH = "512x36",
parameter C_PRIM_FIFO_TYPE_WRCH = "512x36",
parameter C_PRIM_FIFO_TYPE_RACH = "512x36",
parameter C_PRIM_FIFO_TYPE_RDCH = "512x36",
parameter C_PRIM_FIFO_TYPE_AXIS = "512x36",
// Enable ECC
// 0 = ECC disabled
// 1 = ECC enabled
parameter C_USE_ECC_WACH = 0,
parameter C_USE_ECC_WDCH = 0,
parameter C_USE_ECC_WRCH = 0,
parameter C_USE_ECC_RACH = 0,
parameter C_USE_ECC_RDCH = 0,
parameter C_USE_ECC_AXIS = 0,
// ECC Error Injection Type
// 0 = No Error Injection
// 1 = Single Bit Error Injection
// 2 = Double Bit Error Injection
// 3 = Single Bit and Double Bit Error Injection
parameter C_ERROR_INJECTION_TYPE_WACH = 0,
parameter C_ERROR_INJECTION_TYPE_WDCH = 0,
parameter C_ERROR_INJECTION_TYPE_WRCH = 0,
parameter C_ERROR_INJECTION_TYPE_RACH = 0,
parameter C_ERROR_INJECTION_TYPE_RDCH = 0,
parameter C_ERROR_INJECTION_TYPE_AXIS = 0,
// Input Data Width
// Accumulation of all AXI input signal's width
parameter C_DIN_WIDTH_WACH = 1,
parameter C_DIN_WIDTH_WDCH = 1,
parameter C_DIN_WIDTH_WRCH = 1,
parameter C_DIN_WIDTH_RACH = 1,
parameter C_DIN_WIDTH_RDCH = 1,
parameter C_DIN_WIDTH_AXIS = 1,
parameter C_WR_DEPTH_WACH = 16,
parameter C_WR_DEPTH_WDCH = 16,
parameter C_WR_DEPTH_WRCH = 16,
parameter C_WR_DEPTH_RACH = 16,
parameter C_WR_DEPTH_RDCH = 16,
parameter C_WR_DEPTH_AXIS = 16,
parameter C_WR_PNTR_WIDTH_WACH = 4,
parameter C_WR_PNTR_WIDTH_WDCH = 4,
parameter C_WR_PNTR_WIDTH_WRCH = 4,
parameter C_WR_PNTR_WIDTH_RACH = 4,
parameter C_WR_PNTR_WIDTH_RDCH = 4,
parameter C_WR_PNTR_WIDTH_AXIS = 4,
parameter C_HAS_DATA_COUNTS_WACH = 0,
parameter C_HAS_DATA_COUNTS_WDCH = 0,
parameter C_HAS_DATA_COUNTS_WRCH = 0,
parameter C_HAS_DATA_COUNTS_RACH = 0,
parameter C_HAS_DATA_COUNTS_RDCH = 0,
parameter C_HAS_DATA_COUNTS_AXIS = 0,
parameter C_HAS_PROG_FLAGS_WACH = 0,
parameter C_HAS_PROG_FLAGS_WDCH = 0,
parameter C_HAS_PROG_FLAGS_WRCH = 0,
parameter C_HAS_PROG_FLAGS_RACH = 0,
parameter C_HAS_PROG_FLAGS_RDCH = 0,
parameter C_HAS_PROG_FLAGS_AXIS = 0,
parameter C_PROG_FULL_TYPE_WACH = 0,
parameter C_PROG_FULL_TYPE_WDCH = 0,
parameter C_PROG_FULL_TYPE_WRCH = 0,
parameter C_PROG_FULL_TYPE_RACH = 0,
parameter C_PROG_FULL_TYPE_RDCH = 0,
parameter C_PROG_FULL_TYPE_AXIS = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_WACH = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_WDCH = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_WRCH = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_RACH = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_RDCH = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_AXIS = 0,
parameter C_PROG_EMPTY_TYPE_WACH = 0,
parameter C_PROG_EMPTY_TYPE_WDCH = 0,
parameter C_PROG_EMPTY_TYPE_WRCH = 0,
parameter C_PROG_EMPTY_TYPE_RACH = 0,
parameter C_PROG_EMPTY_TYPE_RDCH = 0,
parameter C_PROG_EMPTY_TYPE_AXIS = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS = 0,
parameter C_REG_SLICE_MODE_WACH = 0,
parameter C_REG_SLICE_MODE_WDCH = 0,
parameter C_REG_SLICE_MODE_WRCH = 0,
parameter C_REG_SLICE_MODE_RACH = 0,
parameter C_REG_SLICE_MODE_RDCH = 0,
parameter C_REG_SLICE_MODE_AXIS = 0
)
(
//------------------------------------------------------------------------------
// Input and Output Declarations
//------------------------------------------------------------------------------
// Conventional FIFO Interface Signals
input backup,
input backup_marker,
input clk,
input rst,
input srst,
input wr_clk,
input wr_rst,
input rd_clk,
input rd_rst,
input [C_DIN_WIDTH-1:0] din,
input wr_en,
input rd_en,
// Optional inputs
input [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh,
input [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_assert,
input [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_negate,
input [C_WR_PNTR_WIDTH-1:0] prog_full_thresh,
input [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_assert,
input [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_negate,
input int_clk,
input injectdbiterr,
input injectsbiterr,
input sleep,
output [C_DOUT_WIDTH-1:0] dout,
output full,
output almost_full,
output wr_ack,
output overflow,
output empty,
output almost_empty,
output valid,
output underflow,
output [C_DATA_COUNT_WIDTH-1:0] data_count,
output [C_RD_DATA_COUNT_WIDTH-1:0] rd_data_count,
output [C_WR_DATA_COUNT_WIDTH-1:0] wr_data_count,
output prog_full,
output prog_empty,
output sbiterr,
output dbiterr,
output wr_rst_busy,
output rd_rst_busy,
// AXI Global Signal
input m_aclk,
input s_aclk,
input s_aresetn,
input s_aclk_en,
input m_aclk_en,
// AXI Full/Lite Slave Write Channel (write side)
input [C_AXI_ID_WIDTH-1:0] s_axi_awid,
input [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr,
input [C_AXI_LEN_WIDTH-1:0] s_axi_awlen,
input [3-1:0] s_axi_awsize,
input [2-1:0] s_axi_awburst,
input [C_AXI_LOCK_WIDTH-1:0] s_axi_awlock,
input [4-1:0] s_axi_awcache,
input [3-1:0] s_axi_awprot,
input [4-1:0] s_axi_awqos,
input [4-1:0] s_axi_awregion,
input [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser,
input s_axi_awvalid,
output s_axi_awready,
input [C_AXI_ID_WIDTH-1:0] s_axi_wid,
input [C_AXI_DATA_WIDTH-1:0] s_axi_wdata,
input [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb,
input s_axi_wlast,
input [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser,
input s_axi_wvalid,
output s_axi_wready,
output [C_AXI_ID_WIDTH-1:0] s_axi_bid,
output [2-1:0] s_axi_bresp,
output [C_AXI_BUSER_WIDTH-1:0] s_axi_buser,
output s_axi_bvalid,
input s_axi_bready,
// AXI Full/Lite Master Write Channel (read side)
output [C_AXI_ID_WIDTH-1:0] m_axi_awid,
output [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr,
output [C_AXI_LEN_WIDTH-1:0] m_axi_awlen,
output [3-1:0] m_axi_awsize,
output [2-1:0] m_axi_awburst,
output [C_AXI_LOCK_WIDTH-1:0] m_axi_awlock,
output [4-1:0] m_axi_awcache,
output [3-1:0] m_axi_awprot,
output [4-1:0] m_axi_awqos,
output [4-1:0] m_axi_awregion,
output [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser,
output m_axi_awvalid,
input m_axi_awready,
output [C_AXI_ID_WIDTH-1:0] m_axi_wid,
output [C_AXI_DATA_WIDTH-1:0] m_axi_wdata,
output [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb,
output m_axi_wlast,
output [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser,
output m_axi_wvalid,
input m_axi_wready,
input [C_AXI_ID_WIDTH-1:0] m_axi_bid,
input [2-1:0] m_axi_bresp,
input [C_AXI_BUSER_WIDTH-1:0] m_axi_buser,
input m_axi_bvalid,
output m_axi_bready,
// AXI Full/Lite Slave Read Channel (write side)
input [C_AXI_ID_WIDTH-1:0] s_axi_arid,
input [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr,
input [C_AXI_LEN_WIDTH-1:0] s_axi_arlen,
input [3-1:0] s_axi_arsize,
input [2-1:0] s_axi_arburst,
input [C_AXI_LOCK_WIDTH-1:0] s_axi_arlock,
input [4-1:0] s_axi_arcache,
input [3-1:0] s_axi_arprot,
input [4-1:0] s_axi_arqos,
input [4-1:0] s_axi_arregion,
input [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser,
input s_axi_arvalid,
output s_axi_arready,
output [C_AXI_ID_WIDTH-1:0] s_axi_rid,
output [C_AXI_DATA_WIDTH-1:0] s_axi_rdata,
output [2-1:0] s_axi_rresp,
output s_axi_rlast,
output [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser,
output s_axi_rvalid,
input s_axi_rready,
// AXI Full/Lite Master Read Channel (read side)
output [C_AXI_ID_WIDTH-1:0] m_axi_arid,
output [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr,
output [C_AXI_LEN_WIDTH-1:0] m_axi_arlen,
output [3-1:0] m_axi_arsize,
output [2-1:0] m_axi_arburst,
output [C_AXI_LOCK_WIDTH-1:0] m_axi_arlock,
output [4-1:0] m_axi_arcache,
output [3-1:0] m_axi_arprot,
output [4-1:0] m_axi_arqos,
output [4-1:0] m_axi_arregion,
output [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser,
output m_axi_arvalid,
input m_axi_arready,
input [C_AXI_ID_WIDTH-1:0] m_axi_rid,
input [C_AXI_DATA_WIDTH-1:0] m_axi_rdata,
input [2-1:0] m_axi_rresp,
input m_axi_rlast,
input [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser,
input m_axi_rvalid,
output m_axi_rready,
// AXI Streaming Slave Signals (Write side)
input s_axis_tvalid,
output s_axis_tready,
input [C_AXIS_TDATA_WIDTH-1:0] s_axis_tdata,
input [C_AXIS_TSTRB_WIDTH-1:0] s_axis_tstrb,
input [C_AXIS_TKEEP_WIDTH-1:0] s_axis_tkeep,
input s_axis_tlast,
input [C_AXIS_TID_WIDTH-1:0] s_axis_tid,
input [C_AXIS_TDEST_WIDTH-1:0] s_axis_tdest,
input [C_AXIS_TUSER_WIDTH-1:0] s_axis_tuser,
// AXI Streaming Master Signals (Read side)
output m_axis_tvalid,
input m_axis_tready,
output [C_AXIS_TDATA_WIDTH-1:0] m_axis_tdata,
output [C_AXIS_TSTRB_WIDTH-1:0] m_axis_tstrb,
output [C_AXIS_TKEEP_WIDTH-1:0] m_axis_tkeep,
output m_axis_tlast,
output [C_AXIS_TID_WIDTH-1:0] m_axis_tid,
output [C_AXIS_TDEST_WIDTH-1:0] m_axis_tdest,
output [C_AXIS_TUSER_WIDTH-1:0] m_axis_tuser,
// AXI Full/Lite Write Address Channel signals
input axi_aw_injectsbiterr,
input axi_aw_injectdbiterr,
input [C_WR_PNTR_WIDTH_WACH-1:0] axi_aw_prog_full_thresh,
input [C_WR_PNTR_WIDTH_WACH-1:0] axi_aw_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_WACH:0] axi_aw_data_count,
output [C_WR_PNTR_WIDTH_WACH:0] axi_aw_wr_data_count,
output [C_WR_PNTR_WIDTH_WACH:0] axi_aw_rd_data_count,
output axi_aw_sbiterr,
output axi_aw_dbiterr,
output axi_aw_overflow,
output axi_aw_underflow,
output axi_aw_prog_full,
output axi_aw_prog_empty,
// AXI Full/Lite Write Data Channel signals
input axi_w_injectsbiterr,
input axi_w_injectdbiterr,
input [C_WR_PNTR_WIDTH_WDCH-1:0] axi_w_prog_full_thresh,
input [C_WR_PNTR_WIDTH_WDCH-1:0] axi_w_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_WDCH:0] axi_w_data_count,
output [C_WR_PNTR_WIDTH_WDCH:0] axi_w_wr_data_count,
output [C_WR_PNTR_WIDTH_WDCH:0] axi_w_rd_data_count,
output axi_w_sbiterr,
output axi_w_dbiterr,
output axi_w_overflow,
output axi_w_underflow,
output axi_w_prog_full,
output axi_w_prog_empty,
// AXI Full/Lite Write Response Channel signals
input axi_b_injectsbiterr,
input axi_b_injectdbiterr,
input [C_WR_PNTR_WIDTH_WRCH-1:0] axi_b_prog_full_thresh,
input [C_WR_PNTR_WIDTH_WRCH-1:0] axi_b_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_WRCH:0] axi_b_data_count,
output [C_WR_PNTR_WIDTH_WRCH:0] axi_b_wr_data_count,
output [C_WR_PNTR_WIDTH_WRCH:0] axi_b_rd_data_count,
output axi_b_sbiterr,
output axi_b_dbiterr,
output axi_b_overflow,
output axi_b_underflow,
output axi_b_prog_full,
output axi_b_prog_empty,
// AXI Full/Lite Read Address Channel signals
input axi_ar_injectsbiterr,
input axi_ar_injectdbiterr,
input [C_WR_PNTR_WIDTH_RACH-1:0] axi_ar_prog_full_thresh,
input [C_WR_PNTR_WIDTH_RACH-1:0] axi_ar_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_RACH:0] axi_ar_data_count,
output [C_WR_PNTR_WIDTH_RACH:0] axi_ar_wr_data_count,
output [C_WR_PNTR_WIDTH_RACH:0] axi_ar_rd_data_count,
output axi_ar_sbiterr,
output axi_ar_dbiterr,
output axi_ar_overflow,
output axi_ar_underflow,
output axi_ar_prog_full,
output axi_ar_prog_empty,
// AXI Full/Lite Read Data Channel Signals
input axi_r_injectsbiterr,
input axi_r_injectdbiterr,
input [C_WR_PNTR_WIDTH_RDCH-1:0] axi_r_prog_full_thresh,
input [C_WR_PNTR_WIDTH_RDCH-1:0] axi_r_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_RDCH:0] axi_r_data_count,
output [C_WR_PNTR_WIDTH_RDCH:0] axi_r_wr_data_count,
output [C_WR_PNTR_WIDTH_RDCH:0] axi_r_rd_data_count,
output axi_r_sbiterr,
output axi_r_dbiterr,
output axi_r_overflow,
output axi_r_underflow,
output axi_r_prog_full,
output axi_r_prog_empty,
// AXI Streaming FIFO Related Signals
input axis_injectsbiterr,
input axis_injectdbiterr,
input [C_WR_PNTR_WIDTH_AXIS-1:0] axis_prog_full_thresh,
input [C_WR_PNTR_WIDTH_AXIS-1:0] axis_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_AXIS:0] axis_data_count,
output [C_WR_PNTR_WIDTH_AXIS:0] axis_wr_data_count,
output [C_WR_PNTR_WIDTH_AXIS:0] axis_rd_data_count,
output axis_sbiterr,
output axis_dbiterr,
output axis_overflow,
output axis_underflow,
output axis_prog_full,
output axis_prog_empty
);
wire BACKUP;
wire BACKUP_MARKER;
wire CLK;
wire RST;
wire SRST;
wire WR_CLK;
wire WR_RST;
wire RD_CLK;
wire RD_RST;
wire [C_DIN_WIDTH-1:0] DIN;
wire WR_EN;
wire RD_EN;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE;
wire INT_CLK;
wire INJECTDBITERR;
wire INJECTSBITERR;
wire SLEEP;
wire [C_DOUT_WIDTH-1:0] DOUT;
wire FULL;
wire ALMOST_FULL;
wire WR_ACK;
wire OVERFLOW;
wire EMPTY;
wire ALMOST_EMPTY;
wire VALID;
wire UNDERFLOW;
wire [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT;
wire [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT;
wire [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT;
wire PROG_FULL;
wire PROG_EMPTY;
wire SBITERR;
wire DBITERR;
wire WR_RST_BUSY;
wire RD_RST_BUSY;
wire M_ACLK;
wire S_ACLK;
wire S_ARESETN;
wire S_ACLK_EN;
wire M_ACLK_EN;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID;
wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR;
wire [C_AXI_LEN_WIDTH-1:0] S_AXI_AWLEN;
wire [3-1:0] S_AXI_AWSIZE;
wire [2-1:0] S_AXI_AWBURST;
wire [C_AXI_LOCK_WIDTH-1:0] S_AXI_AWLOCK;
wire [4-1:0] S_AXI_AWCACHE;
wire [3-1:0] S_AXI_AWPROT;
wire [4-1:0] S_AXI_AWQOS;
wire [4-1:0] S_AXI_AWREGION;
wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER;
wire S_AXI_AWVALID;
wire S_AXI_AWREADY;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_WID;
wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA;
wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB;
wire S_AXI_WLAST;
wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER;
wire S_AXI_WVALID;
wire S_AXI_WREADY;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID;
wire [2-1:0] S_AXI_BRESP;
wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER;
wire S_AXI_BVALID;
wire S_AXI_BREADY;
wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID;
wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR;
wire [C_AXI_LEN_WIDTH-1:0] M_AXI_AWLEN;
wire [3-1:0] M_AXI_AWSIZE;
wire [2-1:0] M_AXI_AWBURST;
wire [C_AXI_LOCK_WIDTH-1:0] M_AXI_AWLOCK;
wire [4-1:0] M_AXI_AWCACHE;
wire [3-1:0] M_AXI_AWPROT;
wire [4-1:0] M_AXI_AWQOS;
wire [4-1:0] M_AXI_AWREGION;
wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER;
wire M_AXI_AWVALID;
wire M_AXI_AWREADY;
wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID;
wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA;
wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB;
wire M_AXI_WLAST;
wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER;
wire M_AXI_WVALID;
wire M_AXI_WREADY;
wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID;
wire [2-1:0] M_AXI_BRESP;
wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER;
wire M_AXI_BVALID;
wire M_AXI_BREADY;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID;
wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR;
wire [C_AXI_LEN_WIDTH-1:0] S_AXI_ARLEN;
wire [3-1:0] S_AXI_ARSIZE;
wire [2-1:0] S_AXI_ARBURST;
wire [C_AXI_LOCK_WIDTH-1:0] S_AXI_ARLOCK;
wire [4-1:0] S_AXI_ARCACHE;
wire [3-1:0] S_AXI_ARPROT;
wire [4-1:0] S_AXI_ARQOS;
wire [4-1:0] S_AXI_ARREGION;
wire [C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER;
wire S_AXI_ARVALID;
wire S_AXI_ARREADY;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID;
wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA;
wire [2-1:0] S_AXI_RRESP;
wire S_AXI_RLAST;
wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER;
wire S_AXI_RVALID;
wire S_AXI_RREADY;
wire [C_AXI_ID_WIDTH-1:0] M_AXI_ARID;
wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR;
wire [C_AXI_LEN_WIDTH-1:0] M_AXI_ARLEN;
wire [3-1:0] M_AXI_ARSIZE;
wire [2-1:0] M_AXI_ARBURST;
wire [C_AXI_LOCK_WIDTH-1:0] M_AXI_ARLOCK;
wire [4-1:0] M_AXI_ARCACHE;
wire [3-1:0] M_AXI_ARPROT;
wire [4-1:0] M_AXI_ARQOS;
wire [4-1:0] M_AXI_ARREGION;
wire [C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER;
wire M_AXI_ARVALID;
wire M_AXI_ARREADY;
wire [C_AXI_ID_WIDTH-1:0] M_AXI_RID;
wire [C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA;
wire [2-1:0] M_AXI_RRESP;
wire M_AXI_RLAST;
wire [C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER;
wire M_AXI_RVALID;
wire M_AXI_RREADY;
wire S_AXIS_TVALID;
wire S_AXIS_TREADY;
wire [C_AXIS_TDATA_WIDTH-1:0] S_AXIS_TDATA;
wire [C_AXIS_TSTRB_WIDTH-1:0] S_AXIS_TSTRB;
wire [C_AXIS_TKEEP_WIDTH-1:0] S_AXIS_TKEEP;
wire S_AXIS_TLAST;
wire [C_AXIS_TID_WIDTH-1:0] S_AXIS_TID;
wire [C_AXIS_TDEST_WIDTH-1:0] S_AXIS_TDEST;
wire [C_AXIS_TUSER_WIDTH-1:0] S_AXIS_TUSER;
wire M_AXIS_TVALID;
wire M_AXIS_TREADY;
wire [C_AXIS_TDATA_WIDTH-1:0] M_AXIS_TDATA;
wire [C_AXIS_TSTRB_WIDTH-1:0] M_AXIS_TSTRB;
wire [C_AXIS_TKEEP_WIDTH-1:0] M_AXIS_TKEEP;
wire M_AXIS_TLAST;
wire [C_AXIS_TID_WIDTH-1:0] M_AXIS_TID;
wire [C_AXIS_TDEST_WIDTH-1:0] M_AXIS_TDEST;
wire [C_AXIS_TUSER_WIDTH-1:0] M_AXIS_TUSER;
wire AXI_AW_INJECTSBITERR;
wire AXI_AW_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_WACH-1:0] AXI_AW_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_WACH-1:0] AXI_AW_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_WACH:0] AXI_AW_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WACH:0] AXI_AW_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WACH:0] AXI_AW_RD_DATA_COUNT;
wire AXI_AW_SBITERR;
wire AXI_AW_DBITERR;
wire AXI_AW_OVERFLOW;
wire AXI_AW_UNDERFLOW;
wire AXI_AW_PROG_FULL;
wire AXI_AW_PROG_EMPTY;
wire AXI_W_INJECTSBITERR;
wire AXI_W_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_WDCH-1:0] AXI_W_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_WDCH-1:0] AXI_W_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_WDCH:0] AXI_W_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WDCH:0] AXI_W_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WDCH:0] AXI_W_RD_DATA_COUNT;
wire AXI_W_SBITERR;
wire AXI_W_DBITERR;
wire AXI_W_OVERFLOW;
wire AXI_W_UNDERFLOW;
wire AXI_W_PROG_FULL;
wire AXI_W_PROG_EMPTY;
wire AXI_B_INJECTSBITERR;
wire AXI_B_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_WRCH-1:0] AXI_B_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_WRCH-1:0] AXI_B_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_WRCH:0] AXI_B_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WRCH:0] AXI_B_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WRCH:0] AXI_B_RD_DATA_COUNT;
wire AXI_B_SBITERR;
wire AXI_B_DBITERR;
wire AXI_B_OVERFLOW;
wire AXI_B_UNDERFLOW;
wire AXI_B_PROG_FULL;
wire AXI_B_PROG_EMPTY;
wire AXI_AR_INJECTSBITERR;
wire AXI_AR_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_RACH-1:0] AXI_AR_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_RACH-1:0] AXI_AR_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_RACH:0] AXI_AR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_RACH:0] AXI_AR_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_RACH:0] AXI_AR_RD_DATA_COUNT;
wire AXI_AR_SBITERR;
wire AXI_AR_DBITERR;
wire AXI_AR_OVERFLOW;
wire AXI_AR_UNDERFLOW;
wire AXI_AR_PROG_FULL;
wire AXI_AR_PROG_EMPTY;
wire AXI_R_INJECTSBITERR;
wire AXI_R_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_RDCH-1:0] AXI_R_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_RDCH-1:0] AXI_R_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_RDCH:0] AXI_R_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_RDCH:0] AXI_R_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_RDCH:0] AXI_R_RD_DATA_COUNT;
wire AXI_R_SBITERR;
wire AXI_R_DBITERR;
wire AXI_R_OVERFLOW;
wire AXI_R_UNDERFLOW;
wire AXI_R_PROG_FULL;
wire AXI_R_PROG_EMPTY;
wire AXIS_INJECTSBITERR;
wire AXIS_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_AXIS-1:0] AXIS_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_AXIS-1:0] AXIS_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_AXIS:0] AXIS_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_AXIS:0] AXIS_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_AXIS:0] AXIS_RD_DATA_COUNT;
wire AXIS_SBITERR;
wire AXIS_DBITERR;
wire AXIS_OVERFLOW;
wire AXIS_UNDERFLOW;
wire AXIS_PROG_FULL;
wire AXIS_PROG_EMPTY;
wire [C_WR_DATA_COUNT_WIDTH-1:0] wr_data_count_in;
wire wr_rst_int;
wire rd_rst_int;
function integer find_log2;
input integer int_val;
integer i,j;
begin
i = 1;
j = 0;
for (i = 1; i < int_val; i = i*2) begin
j = j + 1;
end
find_log2 = j;
end
endfunction
// Conventional FIFO Interface Signals
assign BACKUP = backup;
assign BACKUP_MARKER = backup_marker;
assign CLK = clk;
assign RST = rst;
assign SRST = srst;
assign WR_CLK = wr_clk;
assign WR_RST = wr_rst;
assign RD_CLK = rd_clk;
assign RD_RST = rd_rst;
assign WR_EN = wr_en;
assign RD_EN = rd_en;
assign INT_CLK = int_clk;
assign INJECTDBITERR = injectdbiterr;
assign INJECTSBITERR = injectsbiterr;
assign SLEEP = sleep;
assign full = FULL;
assign almost_full = ALMOST_FULL;
assign wr_ack = WR_ACK;
assign overflow = OVERFLOW;
assign empty = EMPTY;
assign almost_empty = ALMOST_EMPTY;
assign valid = VALID;
assign underflow = UNDERFLOW;
assign prog_full = PROG_FULL;
assign prog_empty = PROG_EMPTY;
assign sbiterr = SBITERR;
assign dbiterr = DBITERR;
assign wr_rst_busy = WR_RST_BUSY;
assign rd_rst_busy = RD_RST_BUSY;
assign M_ACLK = m_aclk;
assign S_ACLK = s_aclk;
assign S_ARESETN = s_aresetn;
assign S_ACLK_EN = s_aclk_en;
assign M_ACLK_EN = m_aclk_en;
assign S_AXI_AWVALID = s_axi_awvalid;
assign s_axi_awready = S_AXI_AWREADY;
assign S_AXI_WLAST = s_axi_wlast;
assign S_AXI_WVALID = s_axi_wvalid;
assign s_axi_wready = S_AXI_WREADY;
assign s_axi_bvalid = S_AXI_BVALID;
assign S_AXI_BREADY = s_axi_bready;
assign m_axi_awvalid = M_AXI_AWVALID;
assign M_AXI_AWREADY = m_axi_awready;
assign m_axi_wlast = M_AXI_WLAST;
assign m_axi_wvalid = M_AXI_WVALID;
assign M_AXI_WREADY = m_axi_wready;
assign M_AXI_BVALID = m_axi_bvalid;
assign m_axi_bready = M_AXI_BREADY;
assign S_AXI_ARVALID = s_axi_arvalid;
assign s_axi_arready = S_AXI_ARREADY;
assign s_axi_rlast = S_AXI_RLAST;
assign s_axi_rvalid = S_AXI_RVALID;
assign S_AXI_RREADY = s_axi_rready;
assign m_axi_arvalid = M_AXI_ARVALID;
assign M_AXI_ARREADY = m_axi_arready;
assign M_AXI_RLAST = m_axi_rlast;
assign M_AXI_RVALID = m_axi_rvalid;
assign m_axi_rready = M_AXI_RREADY;
assign S_AXIS_TVALID = s_axis_tvalid;
assign s_axis_tready = S_AXIS_TREADY;
assign S_AXIS_TLAST = s_axis_tlast;
assign m_axis_tvalid = M_AXIS_TVALID;
assign M_AXIS_TREADY = m_axis_tready;
assign m_axis_tlast = M_AXIS_TLAST;
assign AXI_AW_INJECTSBITERR = axi_aw_injectsbiterr;
assign AXI_AW_INJECTDBITERR = axi_aw_injectdbiterr;
assign axi_aw_sbiterr = AXI_AW_SBITERR;
assign axi_aw_dbiterr = AXI_AW_DBITERR;
assign axi_aw_overflow = AXI_AW_OVERFLOW;
assign axi_aw_underflow = AXI_AW_UNDERFLOW;
assign axi_aw_prog_full = AXI_AW_PROG_FULL;
assign axi_aw_prog_empty = AXI_AW_PROG_EMPTY;
assign AXI_W_INJECTSBITERR = axi_w_injectsbiterr;
assign AXI_W_INJECTDBITERR = axi_w_injectdbiterr;
assign axi_w_sbiterr = AXI_W_SBITERR;
assign axi_w_dbiterr = AXI_W_DBITERR;
assign axi_w_overflow = AXI_W_OVERFLOW;
assign axi_w_underflow = AXI_W_UNDERFLOW;
assign axi_w_prog_full = AXI_W_PROG_FULL;
assign axi_w_prog_empty = AXI_W_PROG_EMPTY;
assign AXI_B_INJECTSBITERR = axi_b_injectsbiterr;
assign AXI_B_INJECTDBITERR = axi_b_injectdbiterr;
assign axi_b_sbiterr = AXI_B_SBITERR;
assign axi_b_dbiterr = AXI_B_DBITERR;
assign axi_b_overflow = AXI_B_OVERFLOW;
assign axi_b_underflow = AXI_B_UNDERFLOW;
assign axi_b_prog_full = AXI_B_PROG_FULL;
assign axi_b_prog_empty = AXI_B_PROG_EMPTY;
assign AXI_AR_INJECTSBITERR = axi_ar_injectsbiterr;
assign AXI_AR_INJECTDBITERR = axi_ar_injectdbiterr;
assign axi_ar_sbiterr = AXI_AR_SBITERR;
assign axi_ar_dbiterr = AXI_AR_DBITERR;
assign axi_ar_overflow = AXI_AR_OVERFLOW;
assign axi_ar_underflow = AXI_AR_UNDERFLOW;
assign axi_ar_prog_full = AXI_AR_PROG_FULL;
assign axi_ar_prog_empty = AXI_AR_PROG_EMPTY;
assign AXI_R_INJECTSBITERR = axi_r_injectsbiterr;
assign AXI_R_INJECTDBITERR = axi_r_injectdbiterr;
assign axi_r_sbiterr = AXI_R_SBITERR;
assign axi_r_dbiterr = AXI_R_DBITERR;
assign axi_r_overflow = AXI_R_OVERFLOW;
assign axi_r_underflow = AXI_R_UNDERFLOW;
assign axi_r_prog_full = AXI_R_PROG_FULL;
assign axi_r_prog_empty = AXI_R_PROG_EMPTY;
assign AXIS_INJECTSBITERR = axis_injectsbiterr;
assign AXIS_INJECTDBITERR = axis_injectdbiterr;
assign axis_sbiterr = AXIS_SBITERR;
assign axis_dbiterr = AXIS_DBITERR;
assign axis_overflow = AXIS_OVERFLOW;
assign axis_underflow = AXIS_UNDERFLOW;
assign axis_prog_full = AXIS_PROG_FULL;
assign axis_prog_empty = AXIS_PROG_EMPTY;
assign DIN = din;
assign PROG_EMPTY_THRESH = prog_empty_thresh;
assign PROG_EMPTY_THRESH_ASSERT = prog_empty_thresh_assert;
assign PROG_EMPTY_THRESH_NEGATE = prog_empty_thresh_negate;
assign PROG_FULL_THRESH = prog_full_thresh;
assign PROG_FULL_THRESH_ASSERT = prog_full_thresh_assert;
assign PROG_FULL_THRESH_NEGATE = prog_full_thresh_negate;
assign dout = DOUT;
assign data_count = DATA_COUNT;
assign rd_data_count = RD_DATA_COUNT;
assign wr_data_count = WR_DATA_COUNT;
assign S_AXI_AWID = s_axi_awid;
assign S_AXI_AWADDR = s_axi_awaddr;
assign S_AXI_AWLEN = s_axi_awlen;
assign S_AXI_AWSIZE = s_axi_awsize;
assign S_AXI_AWBURST = s_axi_awburst;
assign S_AXI_AWLOCK = s_axi_awlock;
assign S_AXI_AWCACHE = s_axi_awcache;
assign S_AXI_AWPROT = s_axi_awprot;
assign S_AXI_AWQOS = s_axi_awqos;
assign S_AXI_AWREGION = s_axi_awregion;
assign S_AXI_AWUSER = s_axi_awuser;
assign S_AXI_WID = s_axi_wid;
assign S_AXI_WDATA = s_axi_wdata;
assign S_AXI_WSTRB = s_axi_wstrb;
assign S_AXI_WUSER = s_axi_wuser;
assign s_axi_bid = S_AXI_BID;
assign s_axi_bresp = S_AXI_BRESP;
assign s_axi_buser = S_AXI_BUSER;
assign m_axi_awid = M_AXI_AWID;
assign m_axi_awaddr = M_AXI_AWADDR;
assign m_axi_awlen = M_AXI_AWLEN;
assign m_axi_awsize = M_AXI_AWSIZE;
assign m_axi_awburst = M_AXI_AWBURST;
assign m_axi_awlock = M_AXI_AWLOCK;
assign m_axi_awcache = M_AXI_AWCACHE;
assign m_axi_awprot = M_AXI_AWPROT;
assign m_axi_awqos = M_AXI_AWQOS;
assign m_axi_awregion = M_AXI_AWREGION;
assign m_axi_awuser = M_AXI_AWUSER;
assign m_axi_wid = M_AXI_WID;
assign m_axi_wdata = M_AXI_WDATA;
assign m_axi_wstrb = M_AXI_WSTRB;
assign m_axi_wuser = M_AXI_WUSER;
assign M_AXI_BID = m_axi_bid;
assign M_AXI_BRESP = m_axi_bresp;
assign M_AXI_BUSER = m_axi_buser;
assign S_AXI_ARID = s_axi_arid;
assign S_AXI_ARADDR = s_axi_araddr;
assign S_AXI_ARLEN = s_axi_arlen;
assign S_AXI_ARSIZE = s_axi_arsize;
assign S_AXI_ARBURST = s_axi_arburst;
assign S_AXI_ARLOCK = s_axi_arlock;
assign S_AXI_ARCACHE = s_axi_arcache;
assign S_AXI_ARPROT = s_axi_arprot;
assign S_AXI_ARQOS = s_axi_arqos;
assign S_AXI_ARREGION = s_axi_arregion;
assign S_AXI_ARUSER = s_axi_aruser;
assign s_axi_rid = S_AXI_RID;
assign s_axi_rdata = S_AXI_RDATA;
assign s_axi_rresp = S_AXI_RRESP;
assign s_axi_ruser = S_AXI_RUSER;
assign m_axi_arid = M_AXI_ARID;
assign m_axi_araddr = M_AXI_ARADDR;
assign m_axi_arlen = M_AXI_ARLEN;
assign m_axi_arsize = M_AXI_ARSIZE;
assign m_axi_arburst = M_AXI_ARBURST;
assign m_axi_arlock = M_AXI_ARLOCK;
assign m_axi_arcache = M_AXI_ARCACHE;
assign m_axi_arprot = M_AXI_ARPROT;
assign m_axi_arqos = M_AXI_ARQOS;
assign m_axi_arregion = M_AXI_ARREGION;
assign m_axi_aruser = M_AXI_ARUSER;
assign M_AXI_RID = m_axi_rid;
assign M_AXI_RDATA = m_axi_rdata;
assign M_AXI_RRESP = m_axi_rresp;
assign M_AXI_RUSER = m_axi_ruser;
assign S_AXIS_TDATA = s_axis_tdata;
assign S_AXIS_TSTRB = s_axis_tstrb;
assign S_AXIS_TKEEP = s_axis_tkeep;
assign S_AXIS_TID = s_axis_tid;
assign S_AXIS_TDEST = s_axis_tdest;
assign S_AXIS_TUSER = s_axis_tuser;
assign m_axis_tdata = M_AXIS_TDATA;
assign m_axis_tstrb = M_AXIS_TSTRB;
assign m_axis_tkeep = M_AXIS_TKEEP;
assign m_axis_tid = M_AXIS_TID;
assign m_axis_tdest = M_AXIS_TDEST;
assign m_axis_tuser = M_AXIS_TUSER;
assign AXI_AW_PROG_FULL_THRESH = axi_aw_prog_full_thresh;
assign AXI_AW_PROG_EMPTY_THRESH = axi_aw_prog_empty_thresh;
assign axi_aw_data_count = AXI_AW_DATA_COUNT;
assign axi_aw_wr_data_count = AXI_AW_WR_DATA_COUNT;
assign axi_aw_rd_data_count = AXI_AW_RD_DATA_COUNT;
assign AXI_W_PROG_FULL_THRESH = axi_w_prog_full_thresh;
assign AXI_W_PROG_EMPTY_THRESH = axi_w_prog_empty_thresh;
assign axi_w_data_count = AXI_W_DATA_COUNT;
assign axi_w_wr_data_count = AXI_W_WR_DATA_COUNT;
assign axi_w_rd_data_count = AXI_W_RD_DATA_COUNT;
assign AXI_B_PROG_FULL_THRESH = axi_b_prog_full_thresh;
assign AXI_B_PROG_EMPTY_THRESH = axi_b_prog_empty_thresh;
assign axi_b_data_count = AXI_B_DATA_COUNT;
assign axi_b_wr_data_count = AXI_B_WR_DATA_COUNT;
assign axi_b_rd_data_count = AXI_B_RD_DATA_COUNT;
assign AXI_AR_PROG_FULL_THRESH = axi_ar_prog_full_thresh;
assign AXI_AR_PROG_EMPTY_THRESH = axi_ar_prog_empty_thresh;
assign axi_ar_data_count = AXI_AR_DATA_COUNT;
assign axi_ar_wr_data_count = AXI_AR_WR_DATA_COUNT;
assign axi_ar_rd_data_count = AXI_AR_RD_DATA_COUNT;
assign AXI_R_PROG_FULL_THRESH = axi_r_prog_full_thresh;
assign AXI_R_PROG_EMPTY_THRESH = axi_r_prog_empty_thresh;
assign axi_r_data_count = AXI_R_DATA_COUNT;
assign axi_r_wr_data_count = AXI_R_WR_DATA_COUNT;
assign axi_r_rd_data_count = AXI_R_RD_DATA_COUNT;
assign AXIS_PROG_FULL_THRESH = axis_prog_full_thresh;
assign AXIS_PROG_EMPTY_THRESH = axis_prog_empty_thresh;
assign axis_data_count = AXIS_DATA_COUNT;
assign axis_wr_data_count = AXIS_WR_DATA_COUNT;
assign axis_rd_data_count = AXIS_RD_DATA_COUNT;
generate if (C_INTERFACE_TYPE == 0) begin : conv_fifo
fifo_generator_v13_1_1_CONV_VER
#(
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_INTERFACE_TYPE (C_INTERFACE_TYPE),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DATA_COUNT_WIDTH (C_DATA_COUNT_WIDTH),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_DIN_WIDTH (C_DIN_WIDTH),
.C_DOUT_RST_VAL (C_USE_DOUT_RST == 1 ? C_DOUT_RST_VAL : 0),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_FAMILY (C_FAMILY),
.C_FULL_FLAGS_RST_VAL (C_FULL_FLAGS_RST_VAL),
.C_HAS_ALMOST_EMPTY (C_HAS_ALMOST_EMPTY),
.C_HAS_ALMOST_FULL (C_HAS_ALMOST_FULL),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_DATA_COUNT (C_HAS_DATA_COUNT),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT),
.C_HAS_RD_RST (C_HAS_RD_RST),
.C_HAS_RST (C_HAS_RST),
.C_HAS_SRST (C_HAS_SRST),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_HAS_VALID (C_HAS_VALID),
.C_HAS_WR_ACK (C_HAS_WR_ACK),
.C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT),
.C_HAS_WR_RST (C_HAS_WR_RST),
.C_IMPLEMENTATION_TYPE (C_IMPLEMENTATION_TYPE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_MEMORY_TYPE (C_MEMORY_TYPE),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_PRELOAD_LATENCY (C_PRELOAD_LATENCY),
.C_PRELOAD_REGS (C_PRELOAD_REGS),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL),
.C_PROG_EMPTY_THRESH_NEGATE_VAL (C_PROG_EMPTY_THRESH_NEGATE_VAL),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL),
.C_PROG_FULL_THRESH_NEGATE_VAL (C_PROG_FULL_THRESH_NEGATE_VAL),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE),
.C_RD_DATA_COUNT_WIDTH (C_RD_DATA_COUNT_WIDTH),
.C_RD_DEPTH (C_RD_DEPTH),
.C_RD_FREQ (C_RD_FREQ),
.C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_USE_ECC (C_USE_ECC),
.C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG),
.C_EN_SAFETY_CKT (C_EN_SAFETY_CKT),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_USE_FWFT_DATA_COUNT (C_USE_FWFT_DATA_COUNT),
.C_VALID_LOW (C_VALID_LOW),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH),
.C_WR_DEPTH (C_WR_DEPTH),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE),
.C_AXI_TYPE (C_AXI_TYPE),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE)
)
fifo_generator_v13_1_1_conv_dut
(
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.CLK (CLK),
.RST (RST),
.SRST (SRST),
.WR_CLK (WR_CLK),
.WR_RST (WR_RST),
.RD_CLK (RD_CLK),
.RD_RST (RD_RST),
.DIN (DIN),
.WR_EN (WR_EN),
.RD_EN (RD_EN),
.PROG_EMPTY_THRESH (PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT (PROG_EMPTY_THRESH_ASSERT),
.PROG_EMPTY_THRESH_NEGATE (PROG_EMPTY_THRESH_NEGATE),
.PROG_FULL_THRESH (PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT (PROG_FULL_THRESH_ASSERT),
.PROG_FULL_THRESH_NEGATE (PROG_FULL_THRESH_NEGATE),
.INT_CLK (INT_CLK),
.INJECTDBITERR (INJECTDBITERR),
.INJECTSBITERR (INJECTSBITERR),
.DOUT (DOUT),
.FULL (FULL),
.ALMOST_FULL (ALMOST_FULL),
.WR_ACK (WR_ACK),
.OVERFLOW (OVERFLOW),
.EMPTY (EMPTY),
.ALMOST_EMPTY (ALMOST_EMPTY),
.VALID (VALID),
.UNDERFLOW (UNDERFLOW),
.DATA_COUNT (DATA_COUNT),
.RD_DATA_COUNT (RD_DATA_COUNT),
.WR_DATA_COUNT (wr_data_count_in),
.PROG_FULL (PROG_FULL),
.PROG_EMPTY (PROG_EMPTY),
.SBITERR (SBITERR),
.DBITERR (DBITERR),
.wr_rst_busy (wr_rst_busy),
.rd_rst_busy (rd_rst_busy),
.wr_rst_i_out (wr_rst_int),
.rd_rst_i_out (rd_rst_int)
);
end endgenerate
localparam IS_8SERIES = (C_FAMILY == "virtexu" || C_FAMILY == "kintexu" || C_FAMILY == "artixu" || C_FAMILY == "virtexuplus" || C_FAMILY == "zynquplus" || C_FAMILY == "kintexuplus") ? 1 : 0;
localparam C_AXI_SIZE_WIDTH = 3;
localparam C_AXI_BURST_WIDTH = 2;
localparam C_AXI_CACHE_WIDTH = 4;
localparam C_AXI_PROT_WIDTH = 3;
localparam C_AXI_QOS_WIDTH = 4;
localparam C_AXI_REGION_WIDTH = 4;
localparam C_AXI_BRESP_WIDTH = 2;
localparam C_AXI_RRESP_WIDTH = 2;
localparam IS_AXI_STREAMING = C_INTERFACE_TYPE == 1 ? 1 : 0;
localparam TDATA_OFFSET = C_HAS_AXIS_TDATA == 1 ? C_DIN_WIDTH_AXIS-C_AXIS_TDATA_WIDTH : C_DIN_WIDTH_AXIS;
localparam TSTRB_OFFSET = C_HAS_AXIS_TSTRB == 1 ? TDATA_OFFSET-C_AXIS_TSTRB_WIDTH : TDATA_OFFSET;
localparam TKEEP_OFFSET = C_HAS_AXIS_TKEEP == 1 ? TSTRB_OFFSET-C_AXIS_TKEEP_WIDTH : TSTRB_OFFSET;
localparam TID_OFFSET = C_HAS_AXIS_TID == 1 ? TKEEP_OFFSET-C_AXIS_TID_WIDTH : TKEEP_OFFSET;
localparam TDEST_OFFSET = C_HAS_AXIS_TDEST == 1 ? TID_OFFSET-C_AXIS_TDEST_WIDTH : TID_OFFSET;
localparam TUSER_OFFSET = C_HAS_AXIS_TUSER == 1 ? TDEST_OFFSET-C_AXIS_TUSER_WIDTH : TDEST_OFFSET;
localparam LOG_DEPTH_AXIS = find_log2(C_WR_DEPTH_AXIS);
localparam LOG_WR_DEPTH = find_log2(C_WR_DEPTH);
function [LOG_DEPTH_AXIS-1:0] bin2gray;
input [LOG_DEPTH_AXIS-1:0] x;
begin
bin2gray = x ^ (x>>1);
end
endfunction
function [LOG_DEPTH_AXIS-1:0] gray2bin;
input [LOG_DEPTH_AXIS-1:0] x;
integer i;
begin
gray2bin[LOG_DEPTH_AXIS-1] = x[LOG_DEPTH_AXIS-1];
for(i=LOG_DEPTH_AXIS-2; i>=0; i=i-1) begin
gray2bin[i] = gray2bin[i+1] ^ x[i];
end
end
endfunction
wire [(LOG_WR_DEPTH)-1 : 0] w_cnt_gc_asreg_last;
wire [LOG_WR_DEPTH-1 : 0] w_q [0:C_SYNCHRONIZER_STAGE] ;
wire [LOG_WR_DEPTH-1 : 0] w_q_temp [1:C_SYNCHRONIZER_STAGE] ;
reg [LOG_WR_DEPTH-1 : 0] w_cnt_rd = 0;
reg [LOG_WR_DEPTH-1 : 0] w_cnt = 0;
reg [LOG_WR_DEPTH-1 : 0] w_cnt_gc = 0;
reg [LOG_WR_DEPTH-1 : 0] r_cnt = 0;
wire [LOG_WR_DEPTH : 0] adj_w_cnt_rd_pad;
wire [LOG_WR_DEPTH : 0] r_inv_pad;
wire [LOG_WR_DEPTH-1 : 0] d_cnt;
reg [LOG_WR_DEPTH : 0] d_cnt_pad = 0;
reg adj_w_cnt_rd_pad_0 = 0;
reg r_inv_pad_0 = 0;
genvar l;
generate for (l = 1; ((l <= C_SYNCHRONIZER_STAGE) && (C_HAS_DATA_COUNTS_AXIS == 3 && C_INTERFACE_TYPE == 0) ); l = l + 1) begin : g_cnt_sync_stage
fifo_generator_v13_1_1_sync_stage
#(
.C_WIDTH (LOG_WR_DEPTH)
)
rd_stg_inst
(
.RST (rd_rst_int),
.CLK (RD_CLK),
.DIN (w_q[l-1]),
.DOUT (w_q[l])
);
end endgenerate // gpkt_cnt_sync_stage
generate if (C_INTERFACE_TYPE == 0 && C_HAS_DATA_COUNTS_AXIS == 3) begin : fifo_ic_adapter
assign wr_eop_ad = WR_EN & !(FULL);
assign rd_eop_ad = RD_EN & !(EMPTY);
always @ (posedge wr_rst_int or posedge WR_CLK)
begin
if (wr_rst_int)
w_cnt <= 1'b0;
else if (wr_eop_ad)
w_cnt <= w_cnt + 1;
end
always @ (posedge wr_rst_int or posedge WR_CLK)
begin
if (wr_rst_int)
w_cnt_gc <= 1'b0;
else
w_cnt_gc <= bin2gray(w_cnt);
end
assign w_q[0] = w_cnt_gc;
assign w_cnt_gc_asreg_last = w_q[C_SYNCHRONIZER_STAGE];
always @ (posedge rd_rst_int or posedge RD_CLK)
begin
if (rd_rst_int)
w_cnt_rd <= 1'b0;
else
w_cnt_rd <= gray2bin(w_cnt_gc_asreg_last);
end
always @ (posedge rd_rst_int or posedge RD_CLK)
begin
if (rd_rst_int)
r_cnt <= 1'b0;
else if (rd_eop_ad)
r_cnt <= r_cnt + 1;
end
// Take the difference of write and read packet count
// Logic is similar to rd_pe_as
assign adj_w_cnt_rd_pad[LOG_WR_DEPTH : 1] = w_cnt_rd;
assign r_inv_pad[LOG_WR_DEPTH : 1] = ~r_cnt;
assign adj_w_cnt_rd_pad[0] = adj_w_cnt_rd_pad_0;
assign r_inv_pad[0] = r_inv_pad_0;
always @ ( rd_eop_ad )
begin
if (!rd_eop_ad) begin
adj_w_cnt_rd_pad_0 <= 1'b1;
r_inv_pad_0 <= 1'b1;
end else begin
adj_w_cnt_rd_pad_0 <= 1'b0;
r_inv_pad_0 <= 1'b0;
end
end
always @ (posedge rd_rst_int or posedge RD_CLK)
begin
if (rd_rst_int)
d_cnt_pad <= 1'b0;
else
d_cnt_pad <= adj_w_cnt_rd_pad + r_inv_pad ;
end
assign d_cnt = d_cnt_pad [LOG_WR_DEPTH : 1] ;
assign WR_DATA_COUNT = d_cnt;
end endgenerate // fifo_ic_adapter
generate if (C_INTERFACE_TYPE == 0 && C_HAS_DATA_COUNTS_AXIS != 3) begin : fifo_icn_adapter
assign WR_DATA_COUNT = wr_data_count_in;
end endgenerate // fifo_icn_adapter
wire inverted_reset = ~S_ARESETN;
wire axi_rs_rst;
reg rst_d1 = 0 ;
reg rst_d2 = 0 ;
wire [C_DIN_WIDTH_AXIS-1:0] axis_din ;
wire [C_DIN_WIDTH_AXIS-1:0] axis_dout ;
wire axis_full ;
wire axis_almost_full ;
wire axis_empty ;
wire axis_s_axis_tready;
wire axis_m_axis_tvalid;
wire axis_wr_en ;
wire axis_rd_en ;
wire axis_we ;
wire axis_re ;
wire [C_WR_PNTR_WIDTH_AXIS:0] axis_dc;
reg axis_pkt_read = 1'b0;
wire axis_rd_rst;
wire axis_wr_rst;
generate if (C_INTERFACE_TYPE > 0 && (C_AXIS_TYPE == 1 || C_WACH_TYPE == 1 ||
C_WDCH_TYPE == 1 || C_WRCH_TYPE == 1 || C_RACH_TYPE == 1 || C_RDCH_TYPE == 1)) begin : gaxi_rs_rst
always @ (posedge inverted_reset or posedge S_ACLK) begin
if (inverted_reset) begin
rst_d1 <= 1'b1;
rst_d2 <= 1'b1;
end else begin
rst_d1 <= #`TCQ 1'b0;
rst_d2 <= #`TCQ rst_d1;
end
end
assign axi_rs_rst = rst_d2;
end endgenerate // gaxi_rs_rst
generate if (IS_AXI_STREAMING == 1 && C_AXIS_TYPE == 0) begin : axi_streaming
// Write protection when almost full or prog_full is high
assign axis_we = (C_PROG_FULL_TYPE_AXIS != 0) ? axis_s_axis_tready & S_AXIS_TVALID :
(C_APPLICATION_TYPE_AXIS == 1) ? axis_s_axis_tready & S_AXIS_TVALID : S_AXIS_TVALID;
// Read protection when almost empty or prog_empty is high
assign axis_re = (C_PROG_EMPTY_TYPE_AXIS != 0) ? axis_m_axis_tvalid & M_AXIS_TREADY :
(C_APPLICATION_TYPE_AXIS == 1) ? axis_m_axis_tvalid & M_AXIS_TREADY : M_AXIS_TREADY;
assign axis_wr_en = (C_HAS_SLAVE_CE == 1) ? axis_we & S_ACLK_EN : axis_we;
assign axis_rd_en = (C_HAS_MASTER_CE == 1) ? axis_re & M_ACLK_EN : axis_re;
fifo_generator_v13_1_1_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_INTERFACE_TYPE (C_INTERFACE_TYPE),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_AXIS == 1 || C_IMPLEMENTATION_TYPE_AXIS == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_AXIS == 2 || C_IMPLEMENTATION_TYPE_AXIS == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_AXIS == 1 || C_IMPLEMENTATION_TYPE_AXIS == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_AXIS == 11 || C_IMPLEMENTATION_TYPE_AXIS == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_AXIS),
.C_WR_DEPTH (C_WR_DEPTH_AXIS),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_AXIS),
.C_DOUT_WIDTH (C_DIN_WIDTH_AXIS),
.C_RD_DEPTH (C_WR_DEPTH_AXIS),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_AXIS),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_AXIS),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_AXIS),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_AXIS),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS),
.C_USE_ECC (C_USE_ECC_AXIS),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_AXIS),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (C_APPLICATION_TYPE_AXIS == 1 ? 1: 0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG),
//.C_EN_SAFETY_CKT (C_EN_SAFETY_CKT),
.C_FIFO_TYPE (C_APPLICATION_TYPE_AXIS == 1 ? 0: C_APPLICATION_TYPE_AXIS),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_AXIS == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_AXIS + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_AXIS == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_AXIS + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_AXIS == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_AXIS + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
.C_EN_SAFETY_CKT (1),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v13_1_1_axis_dut
(
.CLK (S_ACLK),
.WR_CLK (S_ACLK),
.RD_CLK (M_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (axis_wr_en),
.RD_EN (axis_rd_en),
.PROG_FULL_THRESH (AXIS_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_AXIS{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_AXIS{1'b0}}),
.PROG_EMPTY_THRESH (AXIS_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_AXIS{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_AXIS{1'b0}}),
.INJECTDBITERR (AXIS_INJECTDBITERR),
.INJECTSBITERR (AXIS_INJECTSBITERR),
.DIN (axis_din),
.DOUT (axis_dout),
.FULL (axis_full),
.EMPTY (axis_empty),
.ALMOST_FULL (axis_almost_full),
.PROG_FULL (AXIS_PROG_FULL),
.ALMOST_EMPTY (),
.PROG_EMPTY (AXIS_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (AXIS_OVERFLOW),
.VALID (),
.UNDERFLOW (AXIS_UNDERFLOW),
.DATA_COUNT (axis_dc),
.RD_DATA_COUNT (AXIS_RD_DATA_COUNT),
.WR_DATA_COUNT (AXIS_WR_DATA_COUNT),
.SBITERR (AXIS_SBITERR),
.DBITERR (AXIS_DBITERR),
.wr_rst_busy (wr_rst_busy_axis),
.rd_rst_busy (rd_rst_busy_axis),
.wr_rst_i_out (axis_wr_rst),
.rd_rst_i_out (axis_rd_rst),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign axis_s_axis_tready = (IS_8SERIES == 0) ? ~axis_full : (C_IMPLEMENTATION_TYPE_AXIS == 5 || C_IMPLEMENTATION_TYPE_AXIS == 13) ? ~(axis_full | wr_rst_busy_axis) : ~axis_full;
assign axis_m_axis_tvalid = (C_APPLICATION_TYPE_AXIS != 1) ? ~axis_empty : ~axis_empty & axis_pkt_read;
assign S_AXIS_TREADY = axis_s_axis_tready;
assign M_AXIS_TVALID = axis_m_axis_tvalid;
end endgenerate // axi_streaming
wire axis_wr_eop;
reg axis_wr_eop_d1 = 1'b0;
wire axis_rd_eop;
integer axis_pkt_cnt;
generate if (C_APPLICATION_TYPE_AXIS == 1 && C_COMMON_CLOCK == 1) begin : gaxis_pkt_fifo_cc
assign axis_wr_eop = axis_wr_en & S_AXIS_TLAST;
assign axis_rd_eop = axis_rd_en & axis_dout[0];
always @ (posedge inverted_reset or posedge S_ACLK)
begin
if (inverted_reset)
axis_pkt_read <= 1'b0;
else if (axis_rd_eop && (axis_pkt_cnt == 1) && ~axis_wr_eop_d1)
axis_pkt_read <= 1'b0;
else if ((axis_pkt_cnt > 0) || (axis_almost_full && ~axis_empty))
axis_pkt_read <= 1'b1;
end
always @ (posedge inverted_reset or posedge S_ACLK)
begin
if (inverted_reset)
axis_wr_eop_d1 <= 1'b0;
else
axis_wr_eop_d1 <= axis_wr_eop;
end
always @ (posedge inverted_reset or posedge S_ACLK)
begin
if (inverted_reset)
axis_pkt_cnt <= 0;
else if (axis_wr_eop_d1 && ~axis_rd_eop)
axis_pkt_cnt <= axis_pkt_cnt + 1;
else if (axis_rd_eop && ~axis_wr_eop_d1)
axis_pkt_cnt <= axis_pkt_cnt - 1;
end
end endgenerate // gaxis_pkt_fifo_cc
reg [LOG_DEPTH_AXIS-1 : 0] axis_wpkt_cnt_gc = 0;
wire [(LOG_DEPTH_AXIS)-1 : 0] axis_wpkt_cnt_gc_asreg_last;
wire axis_rd_has_rst;
wire [0:C_SYNCHRONIZER_STAGE] axis_af_q ;
wire [LOG_DEPTH_AXIS-1 : 0] wpkt_q [0:C_SYNCHRONIZER_STAGE] ;
wire [1:C_SYNCHRONIZER_STAGE] axis_af_q_temp = 0;
wire [LOG_DEPTH_AXIS-1 : 0] wpkt_q_temp [1:C_SYNCHRONIZER_STAGE] ;
reg [LOG_DEPTH_AXIS-1 : 0] axis_wpkt_cnt_rd = 0;
reg [LOG_DEPTH_AXIS-1 : 0] axis_wpkt_cnt = 0;
reg [LOG_DEPTH_AXIS-1 : 0] axis_rpkt_cnt = 0;
wire [LOG_DEPTH_AXIS : 0] adj_axis_wpkt_cnt_rd_pad;
wire [LOG_DEPTH_AXIS : 0] rpkt_inv_pad;
wire [LOG_DEPTH_AXIS-1 : 0] diff_pkt_cnt;
reg [LOG_DEPTH_AXIS : 0] diff_pkt_cnt_pad = 0;
reg adj_axis_wpkt_cnt_rd_pad_0 = 0;
reg rpkt_inv_pad_0 = 0;
wire axis_af_rd ;
generate if (C_HAS_RST == 1) begin : rst_blk_has
assign axis_rd_has_rst = axis_rd_rst;
end endgenerate //rst_blk_has
generate if (C_HAS_RST == 0) begin :rst_blk_no
assign axis_rd_has_rst = 1'b0;
end endgenerate //rst_blk_no
genvar i;
generate for (i = 1; ((i <= C_SYNCHRONIZER_STAGE) && (C_APPLICATION_TYPE_AXIS == 1 && C_COMMON_CLOCK == 0) ); i = i + 1) begin : gpkt_cnt_sync_stage
fifo_generator_v13_1_1_sync_stage
#(
.C_WIDTH (LOG_DEPTH_AXIS)
)
rd_stg_inst
(
.RST (axis_rd_has_rst),
.CLK (M_ACLK),
.DIN (wpkt_q[i-1]),
.DOUT (wpkt_q[i])
);
fifo_generator_v13_1_1_sync_stage
#(
.C_WIDTH (1)
)
wr_stg_inst
(
.RST (axis_rd_has_rst),
.CLK (M_ACLK),
.DIN (axis_af_q[i-1]),
.DOUT (axis_af_q[i])
);
end endgenerate // gpkt_cnt_sync_stage
generate if (C_APPLICATION_TYPE_AXIS == 1 && C_COMMON_CLOCK == 0) begin : gaxis_pkt_fifo_ic
assign axis_wr_eop = axis_wr_en & S_AXIS_TLAST;
assign axis_rd_eop = axis_rd_en & axis_dout[0];
always @ (posedge axis_rd_has_rst or posedge M_ACLK)
begin
if (axis_rd_has_rst)
axis_pkt_read <= 1'b0;
else if (axis_rd_eop && (diff_pkt_cnt == 1))
axis_pkt_read <= 1'b0;
else if ((diff_pkt_cnt > 0) || (axis_af_rd && ~axis_empty))
axis_pkt_read <= 1'b1;
end
always @ (posedge axis_wr_rst or posedge S_ACLK)
begin
if (axis_wr_rst)
axis_wpkt_cnt <= 1'b0;
else if (axis_wr_eop)
axis_wpkt_cnt <= axis_wpkt_cnt + 1;
end
always @ (posedge axis_wr_rst or posedge S_ACLK)
begin
if (axis_wr_rst)
axis_wpkt_cnt_gc <= 1'b0;
else
axis_wpkt_cnt_gc <= bin2gray(axis_wpkt_cnt);
end
assign wpkt_q[0] = axis_wpkt_cnt_gc;
assign axis_wpkt_cnt_gc_asreg_last = wpkt_q[C_SYNCHRONIZER_STAGE];
assign axis_af_q[0] = axis_almost_full;
//assign axis_af_q[1:C_SYNCHRONIZER_STAGE] = axis_af_q_temp[1:C_SYNCHRONIZER_STAGE];
assign axis_af_rd = axis_af_q[C_SYNCHRONIZER_STAGE];
always @ (posedge axis_rd_has_rst or posedge M_ACLK)
begin
if (axis_rd_has_rst)
axis_wpkt_cnt_rd <= 1'b0;
else
axis_wpkt_cnt_rd <= gray2bin(axis_wpkt_cnt_gc_asreg_last);
end
always @ (posedge axis_rd_rst or posedge M_ACLK)
begin
if (axis_rd_has_rst)
axis_rpkt_cnt <= 1'b0;
else if (axis_rd_eop)
axis_rpkt_cnt <= axis_rpkt_cnt + 1;
end
// Take the difference of write and read packet count
// Logic is similar to rd_pe_as
assign adj_axis_wpkt_cnt_rd_pad[LOG_DEPTH_AXIS : 1] = axis_wpkt_cnt_rd;
assign rpkt_inv_pad[LOG_DEPTH_AXIS : 1] = ~axis_rpkt_cnt;
assign adj_axis_wpkt_cnt_rd_pad[0] = adj_axis_wpkt_cnt_rd_pad_0;
assign rpkt_inv_pad[0] = rpkt_inv_pad_0;
always @ ( axis_rd_eop )
begin
if (!axis_rd_eop) begin
adj_axis_wpkt_cnt_rd_pad_0 <= 1'b1;
rpkt_inv_pad_0 <= 1'b1;
end else begin
adj_axis_wpkt_cnt_rd_pad_0 <= 1'b0;
rpkt_inv_pad_0 <= 1'b0;
end
end
always @ (posedge axis_rd_rst or posedge M_ACLK)
begin
if (axis_rd_has_rst)
diff_pkt_cnt_pad <= 1'b0;
else
diff_pkt_cnt_pad <= adj_axis_wpkt_cnt_rd_pad + rpkt_inv_pad ;
end
assign diff_pkt_cnt = diff_pkt_cnt_pad [LOG_DEPTH_AXIS : 1] ;
end endgenerate // gaxis_pkt_fifo_ic
// Generate the accurate data count for axi stream packet fifo configuration
reg [C_WR_PNTR_WIDTH_AXIS:0] axis_dc_pkt_fifo = 0;
generate if (IS_AXI_STREAMING == 1 && C_HAS_DATA_COUNTS_AXIS == 1 && C_APPLICATION_TYPE_AXIS == 1) begin : gdc_pkt
always @ (posedge inverted_reset or posedge S_ACLK)
begin
if (inverted_reset)
axis_dc_pkt_fifo <= 0;
else if (axis_wr_en && (~axis_rd_en))
axis_dc_pkt_fifo <= #`TCQ axis_dc_pkt_fifo + 1;
else if (~axis_wr_en && axis_rd_en)
axis_dc_pkt_fifo <= #`TCQ axis_dc_pkt_fifo - 1;
end
assign AXIS_DATA_COUNT = axis_dc_pkt_fifo;
end endgenerate // gdc_pkt
generate if (IS_AXI_STREAMING == 1 && C_HAS_DATA_COUNTS_AXIS == 0 && C_APPLICATION_TYPE_AXIS == 1) begin : gndc_pkt
assign AXIS_DATA_COUNT = 0;
end endgenerate // gndc_pkt
generate if (IS_AXI_STREAMING == 1 && C_APPLICATION_TYPE_AXIS != 1) begin : gdc
assign AXIS_DATA_COUNT = axis_dc;
end endgenerate // gdc
// Register Slice for Write Address Channel
generate if (C_AXIS_TYPE == 1) begin : gaxis_reg_slice
assign axis_wr_en = (C_HAS_SLAVE_CE == 1) ? S_AXIS_TVALID & S_ACLK_EN : S_AXIS_TVALID;
assign axis_rd_en = (C_HAS_MASTER_CE == 1) ? M_AXIS_TREADY & M_ACLK_EN : M_AXIS_TREADY;
fifo_generator_v13_1_1_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_AXIS),
.C_REG_CONFIG (C_REG_SLICE_MODE_AXIS)
)
axis_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (axis_din),
.S_VALID (axis_wr_en),
.S_READY (S_AXIS_TREADY),
// Master side
.M_PAYLOAD_DATA (axis_dout),
.M_VALID (M_AXIS_TVALID),
.M_READY (axis_rd_en)
);
end endgenerate // gaxis_reg_slice
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TDATA == 1) begin : tdata
assign axis_din[C_DIN_WIDTH_AXIS-1:TDATA_OFFSET] = S_AXIS_TDATA;
assign M_AXIS_TDATA = axis_dout[C_DIN_WIDTH_AXIS-1:TDATA_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TSTRB == 1) begin : tstrb
assign axis_din[TDATA_OFFSET-1:TSTRB_OFFSET] = S_AXIS_TSTRB;
assign M_AXIS_TSTRB = axis_dout[TDATA_OFFSET-1:TSTRB_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TKEEP == 1) begin : tkeep
assign axis_din[TSTRB_OFFSET-1:TKEEP_OFFSET] = S_AXIS_TKEEP;
assign M_AXIS_TKEEP = axis_dout[TSTRB_OFFSET-1:TKEEP_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TID == 1) begin : tid
assign axis_din[TKEEP_OFFSET-1:TID_OFFSET] = S_AXIS_TID;
assign M_AXIS_TID = axis_dout[TKEEP_OFFSET-1:TID_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TDEST == 1) begin : tdest
assign axis_din[TID_OFFSET-1:TDEST_OFFSET] = S_AXIS_TDEST;
assign M_AXIS_TDEST = axis_dout[TID_OFFSET-1:TDEST_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TUSER == 1) begin : tuser
assign axis_din[TDEST_OFFSET-1:TUSER_OFFSET] = S_AXIS_TUSER;
assign M_AXIS_TUSER = axis_dout[TDEST_OFFSET-1:TUSER_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TLAST == 1) begin : tlast
assign axis_din[0] = S_AXIS_TLAST;
assign M_AXIS_TLAST = axis_dout[0];
end endgenerate
//###########################################################################
// AXI FULL Write Channel (axi_write_channel)
//###########################################################################
localparam IS_AXI_FULL = ((C_INTERFACE_TYPE == 2) && (C_AXI_TYPE != 2)) ? 1 : 0;
localparam IS_AXI_LITE = ((C_INTERFACE_TYPE == 2) && (C_AXI_TYPE == 2)) ? 1 : 0;
localparam IS_AXI_FULL_WACH = ((IS_AXI_FULL == 1) && (C_WACH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_FULL_WDCH = ((IS_AXI_FULL == 1) && (C_WDCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_FULL_WRCH = ((IS_AXI_FULL == 1) && (C_WRCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_FULL_RACH = ((IS_AXI_FULL == 1) && (C_RACH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_FULL_RDCH = ((IS_AXI_FULL == 1) && (C_RDCH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_LITE_WACH = ((IS_AXI_LITE == 1) && (C_WACH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_LITE_WDCH = ((IS_AXI_LITE == 1) && (C_WDCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_LITE_WRCH = ((IS_AXI_LITE == 1) && (C_WRCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_LITE_RACH = ((IS_AXI_LITE == 1) && (C_RACH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_LITE_RDCH = ((IS_AXI_LITE == 1) && (C_RDCH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0;
localparam IS_WR_ADDR_CH = ((IS_AXI_FULL_WACH == 1) || (IS_AXI_LITE_WACH == 1)) ? 1 : 0;
localparam IS_WR_DATA_CH = ((IS_AXI_FULL_WDCH == 1) || (IS_AXI_LITE_WDCH == 1)) ? 1 : 0;
localparam IS_WR_RESP_CH = ((IS_AXI_FULL_WRCH == 1) || (IS_AXI_LITE_WRCH == 1)) ? 1 : 0;
localparam IS_RD_ADDR_CH = ((IS_AXI_FULL_RACH == 1) || (IS_AXI_LITE_RACH == 1)) ? 1 : 0;
localparam IS_RD_DATA_CH = ((IS_AXI_FULL_RDCH == 1) || (IS_AXI_LITE_RDCH == 1)) ? 1 : 0;
localparam AWID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_WACH - C_AXI_ID_WIDTH : C_DIN_WIDTH_WACH;
localparam AWADDR_OFFSET = AWID_OFFSET - C_AXI_ADDR_WIDTH;
localparam AWLEN_OFFSET = C_AXI_TYPE != 2 ? AWADDR_OFFSET - C_AXI_LEN_WIDTH : AWADDR_OFFSET;
localparam AWSIZE_OFFSET = C_AXI_TYPE != 2 ? AWLEN_OFFSET - C_AXI_SIZE_WIDTH : AWLEN_OFFSET;
localparam AWBURST_OFFSET = C_AXI_TYPE != 2 ? AWSIZE_OFFSET - C_AXI_BURST_WIDTH : AWSIZE_OFFSET;
localparam AWLOCK_OFFSET = C_AXI_TYPE != 2 ? AWBURST_OFFSET - C_AXI_LOCK_WIDTH : AWBURST_OFFSET;
localparam AWCACHE_OFFSET = C_AXI_TYPE != 2 ? AWLOCK_OFFSET - C_AXI_CACHE_WIDTH : AWLOCK_OFFSET;
localparam AWPROT_OFFSET = AWCACHE_OFFSET - C_AXI_PROT_WIDTH;
localparam AWQOS_OFFSET = AWPROT_OFFSET - C_AXI_QOS_WIDTH;
localparam AWREGION_OFFSET = C_AXI_TYPE == 1 ? AWQOS_OFFSET - C_AXI_REGION_WIDTH : AWQOS_OFFSET;
localparam AWUSER_OFFSET = C_HAS_AXI_AWUSER == 1 ? AWREGION_OFFSET-C_AXI_AWUSER_WIDTH : AWREGION_OFFSET;
localparam WID_OFFSET = (C_AXI_TYPE == 3 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_WDCH - C_AXI_ID_WIDTH : C_DIN_WIDTH_WDCH;
localparam WDATA_OFFSET = WID_OFFSET - C_AXI_DATA_WIDTH;
localparam WSTRB_OFFSET = WDATA_OFFSET - C_AXI_DATA_WIDTH/8;
localparam WUSER_OFFSET = C_HAS_AXI_WUSER == 1 ? WSTRB_OFFSET-C_AXI_WUSER_WIDTH : WSTRB_OFFSET;
localparam BID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_WRCH - C_AXI_ID_WIDTH : C_DIN_WIDTH_WRCH;
localparam BRESP_OFFSET = BID_OFFSET - C_AXI_BRESP_WIDTH;
localparam BUSER_OFFSET = C_HAS_AXI_BUSER == 1 ? BRESP_OFFSET-C_AXI_BUSER_WIDTH : BRESP_OFFSET;
wire [C_DIN_WIDTH_WACH-1:0] wach_din ;
wire [C_DIN_WIDTH_WACH-1:0] wach_dout ;
wire [C_DIN_WIDTH_WACH-1:0] wach_dout_pkt ;
wire wach_full ;
wire wach_almost_full ;
wire wach_prog_full ;
wire wach_empty ;
wire wach_almost_empty ;
wire wach_prog_empty ;
wire [C_DIN_WIDTH_WDCH-1:0] wdch_din ;
wire [C_DIN_WIDTH_WDCH-1:0] wdch_dout ;
wire wdch_full ;
wire wdch_almost_full ;
wire wdch_prog_full ;
wire wdch_empty ;
wire wdch_almost_empty ;
wire wdch_prog_empty ;
wire [C_DIN_WIDTH_WRCH-1:0] wrch_din ;
wire [C_DIN_WIDTH_WRCH-1:0] wrch_dout ;
wire wrch_full ;
wire wrch_almost_full ;
wire wrch_prog_full ;
wire wrch_empty ;
wire wrch_almost_empty ;
wire wrch_prog_empty ;
wire axi_aw_underflow_i;
wire axi_w_underflow_i ;
wire axi_b_underflow_i ;
wire axi_aw_overflow_i ;
wire axi_w_overflow_i ;
wire axi_b_overflow_i ;
wire axi_wr_underflow_i;
wire axi_wr_overflow_i ;
wire wach_s_axi_awready;
wire wach_m_axi_awvalid;
wire wach_wr_en ;
wire wach_rd_en ;
wire wdch_s_axi_wready ;
wire wdch_m_axi_wvalid ;
wire wdch_wr_en ;
wire wdch_rd_en ;
wire wrch_s_axi_bvalid ;
wire wrch_m_axi_bready ;
wire wrch_wr_en ;
wire wrch_rd_en ;
wire txn_count_up ;
wire txn_count_down ;
wire awvalid_en ;
wire awvalid_pkt ;
wire awready_pkt ;
integer wr_pkt_count ;
wire wach_we ;
wire wach_re ;
wire wdch_we ;
wire wdch_re ;
wire wrch_we ;
wire wrch_re ;
generate if (IS_WR_ADDR_CH == 1) begin : axi_write_address_channel
// Write protection when almost full or prog_full is high
assign wach_we = (C_PROG_FULL_TYPE_WACH != 0) ? wach_s_axi_awready & S_AXI_AWVALID : S_AXI_AWVALID;
// Read protection when almost empty or prog_empty is high
assign wach_re = (C_PROG_EMPTY_TYPE_WACH != 0 && C_APPLICATION_TYPE_WACH == 1) ?
wach_m_axi_awvalid & awready_pkt & awvalid_en :
(C_PROG_EMPTY_TYPE_WACH != 0 && C_APPLICATION_TYPE_WACH != 1) ?
M_AXI_AWREADY && wach_m_axi_awvalid :
(C_PROG_EMPTY_TYPE_WACH == 0 && C_APPLICATION_TYPE_WACH == 1) ?
awready_pkt & awvalid_en :
(C_PROG_EMPTY_TYPE_WACH == 0 && C_APPLICATION_TYPE_WACH != 1) ?
M_AXI_AWREADY : 1'b0;
assign wach_wr_en = (C_HAS_SLAVE_CE == 1) ? wach_we & S_ACLK_EN : wach_we;
assign wach_rd_en = (C_HAS_MASTER_CE == 1) ? wach_re & M_ACLK_EN : wach_re;
fifo_generator_v13_1_1_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_WACH == 1 || C_IMPLEMENTATION_TYPE_WACH == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_WACH == 2 || C_IMPLEMENTATION_TYPE_WACH == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_WACH == 1 || C_IMPLEMENTATION_TYPE_WACH == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_WACH == 11 || C_IMPLEMENTATION_TYPE_WACH == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_WACH),
.C_INTERFACE_TYPE (C_INTERFACE_TYPE),
.C_WR_DEPTH (C_WR_DEPTH_WACH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_WACH),
.C_DOUT_WIDTH (C_DIN_WIDTH_WACH),
.C_RD_DEPTH (C_WR_DEPTH_WACH),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_WACH),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_WACH),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_WACH),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_WACH),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH),
.C_USE_ECC (C_USE_ECC_WACH),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_WACH),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_FIFO_TYPE ((C_APPLICATION_TYPE_WACH == 1)?0:C_APPLICATION_TYPE_WACH),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_EN_SAFETY_CKT (1),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_WACH == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WACH + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WACH == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WACH + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WACH == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WACH + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_EMBEDDED_REG (0),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
//.C_EN_SAFETY_CKT (1),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v13_1_1_wach_dut
(
.CLK (S_ACLK),
.WR_CLK (S_ACLK),
.RD_CLK (M_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (wach_wr_en),
.RD_EN (wach_rd_en),
.PROG_FULL_THRESH (AXI_AW_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WACH{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WACH{1'b0}}),
.PROG_EMPTY_THRESH (AXI_AW_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WACH{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WACH{1'b0}}),
.INJECTDBITERR (AXI_AW_INJECTDBITERR),
.INJECTSBITERR (AXI_AW_INJECTSBITERR),
.DIN (wach_din),
.DOUT (wach_dout_pkt),
.FULL (wach_full),
.EMPTY (wach_empty),
.ALMOST_FULL (),
.PROG_FULL (AXI_AW_PROG_FULL),
.ALMOST_EMPTY (),
.PROG_EMPTY (AXI_AW_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (axi_aw_overflow_i),
.VALID (),
.UNDERFLOW (axi_aw_underflow_i),
.DATA_COUNT (AXI_AW_DATA_COUNT),
.RD_DATA_COUNT (AXI_AW_RD_DATA_COUNT),
.WR_DATA_COUNT (AXI_AW_WR_DATA_COUNT),
.SBITERR (AXI_AW_SBITERR),
.DBITERR (AXI_AW_DBITERR),
.wr_rst_busy (wr_rst_busy_wach),
.rd_rst_busy (rd_rst_busy_wach),
.wr_rst_i_out (),
.rd_rst_i_out (),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign wach_s_axi_awready = (IS_8SERIES == 0) ? ~wach_full : (C_IMPLEMENTATION_TYPE_WACH == 5 || C_IMPLEMENTATION_TYPE_WACH == 13) ? ~(wach_full | wr_rst_busy_wach) : ~wach_full;
assign wach_m_axi_awvalid = ~wach_empty;
assign S_AXI_AWREADY = wach_s_axi_awready;
assign AXI_AW_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_aw_underflow_i : 0;
assign AXI_AW_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_aw_overflow_i : 0;
end endgenerate // axi_write_address_channel
// Register Slice for Write Address Channel
generate if (C_WACH_TYPE == 1) begin : gwach_reg_slice
fifo_generator_v13_1_1_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_WACH),
.C_REG_CONFIG (C_REG_SLICE_MODE_WACH)
)
wach_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (wach_din),
.S_VALID (S_AXI_AWVALID),
.S_READY (S_AXI_AWREADY),
// Master side
.M_PAYLOAD_DATA (wach_dout),
.M_VALID (M_AXI_AWVALID),
.M_READY (M_AXI_AWREADY)
);
end endgenerate // gwach_reg_slice
generate if (C_APPLICATION_TYPE_WACH == 1 && C_HAS_AXI_WR_CHANNEL == 1) begin : axi_mm_pkt_fifo_wr
fifo_generator_v13_1_1_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_WACH),
.C_REG_CONFIG (1)
)
wach_pkt_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (inverted_reset),
// Slave side
.S_PAYLOAD_DATA (wach_dout_pkt),
.S_VALID (awvalid_pkt),
.S_READY (awready_pkt),
// Master side
.M_PAYLOAD_DATA (wach_dout),
.M_VALID (M_AXI_AWVALID),
.M_READY (M_AXI_AWREADY)
);
assign awvalid_pkt = wach_m_axi_awvalid && awvalid_en;
assign txn_count_up = wdch_s_axi_wready && wdch_wr_en && wdch_din[0];
assign txn_count_down = wach_m_axi_awvalid && awready_pkt && awvalid_en;
always@(posedge S_ACLK or posedge inverted_reset) begin
if(inverted_reset == 1) begin
wr_pkt_count <= 0;
end else begin
if(txn_count_up == 1 && txn_count_down == 0) begin
wr_pkt_count <= wr_pkt_count + 1;
end else if(txn_count_up == 0 && txn_count_down == 1) begin
wr_pkt_count <= wr_pkt_count - 1;
end
end
end //Always end
assign awvalid_en = (wr_pkt_count > 0)?1:0;
end endgenerate
generate if (C_APPLICATION_TYPE_WACH != 1) begin : axi_mm_fifo_wr
assign awvalid_en = 1;
assign wach_dout = wach_dout_pkt;
assign M_AXI_AWVALID = wach_m_axi_awvalid;
end
endgenerate
generate if (IS_WR_DATA_CH == 1) begin : axi_write_data_channel
// Write protection when almost full or prog_full is high
assign wdch_we = (C_PROG_FULL_TYPE_WDCH != 0) ? wdch_s_axi_wready & S_AXI_WVALID : S_AXI_WVALID;
// Read protection when almost empty or prog_empty is high
assign wdch_re = (C_PROG_EMPTY_TYPE_WDCH != 0) ? wdch_m_axi_wvalid & M_AXI_WREADY : M_AXI_WREADY;
assign wdch_wr_en = (C_HAS_SLAVE_CE == 1) ? wdch_we & S_ACLK_EN : wdch_we;
assign wdch_rd_en = (C_HAS_MASTER_CE == 1) ? wdch_re & M_ACLK_EN : wdch_re;
fifo_generator_v13_1_1_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_WDCH == 1 || C_IMPLEMENTATION_TYPE_WDCH == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_WDCH == 2 || C_IMPLEMENTATION_TYPE_WDCH == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_WDCH == 1 || C_IMPLEMENTATION_TYPE_WDCH == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_WDCH == 11 || C_IMPLEMENTATION_TYPE_WDCH == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_WDCH),
.C_WR_DEPTH (C_WR_DEPTH_WDCH),
.C_INTERFACE_TYPE (C_INTERFACE_TYPE),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_WDCH),
.C_DOUT_WIDTH (C_DIN_WIDTH_WDCH),
.C_RD_DEPTH (C_WR_DEPTH_WDCH),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_WDCH),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_WDCH),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_WDCH),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_WDCH),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH),
.C_USE_ECC (C_USE_ECC_WDCH),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_WDCH),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_FIFO_TYPE (C_APPLICATION_TYPE_WDCH),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_WDCH == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WDCH + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WDCH == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WDCH + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WDCH == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WDCH + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_EMBEDDED_REG (0),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
.C_EN_SAFETY_CKT (1),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v13_1_1_wdch_dut
(
.CLK (S_ACLK),
.WR_CLK (S_ACLK),
.RD_CLK (M_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (wdch_wr_en),
.RD_EN (wdch_rd_en),
.PROG_FULL_THRESH (AXI_W_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WDCH{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WDCH{1'b0}}),
.PROG_EMPTY_THRESH (AXI_W_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WDCH{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WDCH{1'b0}}),
.INJECTDBITERR (AXI_W_INJECTDBITERR),
.INJECTSBITERR (AXI_W_INJECTSBITERR),
.DIN (wdch_din),
.DOUT (wdch_dout),
.FULL (wdch_full),
.EMPTY (wdch_empty),
.ALMOST_FULL (),
.PROG_FULL (AXI_W_PROG_FULL),
.ALMOST_EMPTY (),
.PROG_EMPTY (AXI_W_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (axi_w_overflow_i),
.VALID (),
.UNDERFLOW (axi_w_underflow_i),
.DATA_COUNT (AXI_W_DATA_COUNT),
.RD_DATA_COUNT (AXI_W_RD_DATA_COUNT),
.WR_DATA_COUNT (AXI_W_WR_DATA_COUNT),
.SBITERR (AXI_W_SBITERR),
.DBITERR (AXI_W_DBITERR),
.wr_rst_busy (wr_rst_busy_wdch),
.rd_rst_busy (rd_rst_busy_wdch),
.wr_rst_i_out (),
.rd_rst_i_out (),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign wdch_s_axi_wready = (IS_8SERIES == 0) ? ~wdch_full : (C_IMPLEMENTATION_TYPE_WDCH == 5 || C_IMPLEMENTATION_TYPE_WDCH == 13) ? ~(wdch_full | wr_rst_busy_wdch) : ~wdch_full;
assign wdch_m_axi_wvalid = ~wdch_empty;
assign S_AXI_WREADY = wdch_s_axi_wready;
assign M_AXI_WVALID = wdch_m_axi_wvalid;
assign AXI_W_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_w_underflow_i : 0;
assign AXI_W_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_w_overflow_i : 0;
end endgenerate // axi_write_data_channel
// Register Slice for Write Data Channel
generate if (C_WDCH_TYPE == 1) begin : gwdch_reg_slice
fifo_generator_v13_1_1_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_WDCH),
.C_REG_CONFIG (C_REG_SLICE_MODE_WDCH)
)
wdch_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (wdch_din),
.S_VALID (S_AXI_WVALID),
.S_READY (S_AXI_WREADY),
// Master side
.M_PAYLOAD_DATA (wdch_dout),
.M_VALID (M_AXI_WVALID),
.M_READY (M_AXI_WREADY)
);
end endgenerate // gwdch_reg_slice
generate if (IS_WR_RESP_CH == 1) begin : axi_write_resp_channel
// Write protection when almost full or prog_full is high
assign wrch_we = (C_PROG_FULL_TYPE_WRCH != 0) ? wrch_m_axi_bready & M_AXI_BVALID : M_AXI_BVALID;
// Read protection when almost empty or prog_empty is high
assign wrch_re = (C_PROG_EMPTY_TYPE_WRCH != 0) ? wrch_s_axi_bvalid & S_AXI_BREADY : S_AXI_BREADY;
assign wrch_wr_en = (C_HAS_MASTER_CE == 1) ? wrch_we & M_ACLK_EN : wrch_we;
assign wrch_rd_en = (C_HAS_SLAVE_CE == 1) ? wrch_re & S_ACLK_EN : wrch_re;
fifo_generator_v13_1_1_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_WRCH == 1 || C_IMPLEMENTATION_TYPE_WRCH == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_WRCH == 2 || C_IMPLEMENTATION_TYPE_WRCH == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_WRCH == 1 || C_IMPLEMENTATION_TYPE_WRCH == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_WRCH == 11 || C_IMPLEMENTATION_TYPE_WRCH == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_WRCH),
.C_WR_DEPTH (C_WR_DEPTH_WRCH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_WRCH),
.C_DOUT_WIDTH (C_DIN_WIDTH_WRCH),
.C_INTERFACE_TYPE (C_INTERFACE_TYPE),
.C_RD_DEPTH (C_WR_DEPTH_WRCH),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_WRCH),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_WRCH),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_WRCH),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_WRCH),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH),
.C_USE_ECC (C_USE_ECC_WRCH),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_WRCH),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_FIFO_TYPE (C_APPLICATION_TYPE_WRCH),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_WRCH == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WRCH + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WRCH == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WRCH + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WRCH == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WRCH + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_EMBEDDED_REG (0),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
.C_EN_SAFETY_CKT (1),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v13_1_1_wrch_dut
(
.CLK (S_ACLK),
.WR_CLK (M_ACLK),
.RD_CLK (S_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (wrch_wr_en),
.RD_EN (wrch_rd_en),
.PROG_FULL_THRESH (AXI_B_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WRCH{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WRCH{1'b0}}),
.PROG_EMPTY_THRESH (AXI_B_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WRCH{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WRCH{1'b0}}),
.INJECTDBITERR (AXI_B_INJECTDBITERR),
.INJECTSBITERR (AXI_B_INJECTSBITERR),
.DIN (wrch_din),
.DOUT (wrch_dout),
.FULL (wrch_full),
.EMPTY (wrch_empty),
.ALMOST_FULL (),
.ALMOST_EMPTY (),
.PROG_FULL (AXI_B_PROG_FULL),
.PROG_EMPTY (AXI_B_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (axi_b_overflow_i),
.VALID (),
.UNDERFLOW (axi_b_underflow_i),
.DATA_COUNT (AXI_B_DATA_COUNT),
.RD_DATA_COUNT (AXI_B_RD_DATA_COUNT),
.WR_DATA_COUNT (AXI_B_WR_DATA_COUNT),
.SBITERR (AXI_B_SBITERR),
.DBITERR (AXI_B_DBITERR),
.wr_rst_busy (wr_rst_busy_wrch),
.rd_rst_busy (rd_rst_busy_wrch),
.wr_rst_i_out (),
.rd_rst_i_out (),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign wrch_s_axi_bvalid = ~wrch_empty;
assign wrch_m_axi_bready = (IS_8SERIES == 0) ? ~wrch_full : (C_IMPLEMENTATION_TYPE_WRCH == 5 || C_IMPLEMENTATION_TYPE_WRCH == 13) ? ~(wrch_full | wr_rst_busy_wrch) : ~wrch_full;
assign S_AXI_BVALID = wrch_s_axi_bvalid;
assign M_AXI_BREADY = wrch_m_axi_bready;
assign AXI_B_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_b_underflow_i : 0;
assign AXI_B_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_b_overflow_i : 0;
end endgenerate // axi_write_resp_channel
// Register Slice for Write Response Channel
generate if (C_WRCH_TYPE == 1) begin : gwrch_reg_slice
fifo_generator_v13_1_1_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_WRCH),
.C_REG_CONFIG (C_REG_SLICE_MODE_WRCH)
)
wrch_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (wrch_din),
.S_VALID (M_AXI_BVALID),
.S_READY (M_AXI_BREADY),
// Master side
.M_PAYLOAD_DATA (wrch_dout),
.M_VALID (S_AXI_BVALID),
.M_READY (S_AXI_BREADY)
);
end endgenerate // gwrch_reg_slice
assign axi_wr_underflow_i = C_USE_COMMON_UNDERFLOW == 1 ? (axi_aw_underflow_i || axi_w_underflow_i || axi_b_underflow_i) : 0;
assign axi_wr_overflow_i = C_USE_COMMON_OVERFLOW == 1 ? (axi_aw_overflow_i || axi_w_overflow_i || axi_b_overflow_i) : 0;
generate if (IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) begin : axi_wach_output
assign M_AXI_AWADDR = wach_dout[AWID_OFFSET-1:AWADDR_OFFSET];
assign M_AXI_AWLEN = wach_dout[AWADDR_OFFSET-1:AWLEN_OFFSET];
assign M_AXI_AWSIZE = wach_dout[AWLEN_OFFSET-1:AWSIZE_OFFSET];
assign M_AXI_AWBURST = wach_dout[AWSIZE_OFFSET-1:AWBURST_OFFSET];
assign M_AXI_AWLOCK = wach_dout[AWBURST_OFFSET-1:AWLOCK_OFFSET];
assign M_AXI_AWCACHE = wach_dout[AWLOCK_OFFSET-1:AWCACHE_OFFSET];
assign M_AXI_AWPROT = wach_dout[AWCACHE_OFFSET-1:AWPROT_OFFSET];
assign M_AXI_AWQOS = wach_dout[AWPROT_OFFSET-1:AWQOS_OFFSET];
assign wach_din[AWID_OFFSET-1:AWADDR_OFFSET] = S_AXI_AWADDR;
assign wach_din[AWADDR_OFFSET-1:AWLEN_OFFSET] = S_AXI_AWLEN;
assign wach_din[AWLEN_OFFSET-1:AWSIZE_OFFSET] = S_AXI_AWSIZE;
assign wach_din[AWSIZE_OFFSET-1:AWBURST_OFFSET] = S_AXI_AWBURST;
assign wach_din[AWBURST_OFFSET-1:AWLOCK_OFFSET] = S_AXI_AWLOCK;
assign wach_din[AWLOCK_OFFSET-1:AWCACHE_OFFSET] = S_AXI_AWCACHE;
assign wach_din[AWCACHE_OFFSET-1:AWPROT_OFFSET] = S_AXI_AWPROT;
assign wach_din[AWPROT_OFFSET-1:AWQOS_OFFSET] = S_AXI_AWQOS;
end endgenerate // axi_wach_output
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_AXI_TYPE == 1) begin : axi_awregion
assign M_AXI_AWREGION = wach_dout[AWQOS_OFFSET-1:AWREGION_OFFSET];
end endgenerate // axi_awregion
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_AXI_TYPE != 1) begin : naxi_awregion
assign M_AXI_AWREGION = 0;
end endgenerate // naxi_awregion
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_AWUSER == 1) begin : axi_awuser
assign M_AXI_AWUSER = wach_dout[AWREGION_OFFSET-1:AWUSER_OFFSET];
end endgenerate // axi_awuser
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_AWUSER == 0) begin : naxi_awuser
assign M_AXI_AWUSER = 0;
end endgenerate // naxi_awuser
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_awid
assign M_AXI_AWID = wach_dout[C_DIN_WIDTH_WACH-1:AWID_OFFSET];
end endgenerate //axi_awid
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_awid
assign M_AXI_AWID = 0;
end endgenerate //naxi_awid
generate if (IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) begin : axi_wdch_output
assign M_AXI_WDATA = wdch_dout[WID_OFFSET-1:WDATA_OFFSET];
assign M_AXI_WSTRB = wdch_dout[WDATA_OFFSET-1:WSTRB_OFFSET];
assign M_AXI_WLAST = wdch_dout[0];
assign wdch_din[WID_OFFSET-1:WDATA_OFFSET] = S_AXI_WDATA;
assign wdch_din[WDATA_OFFSET-1:WSTRB_OFFSET] = S_AXI_WSTRB;
assign wdch_din[0] = S_AXI_WLAST;
end endgenerate // axi_wdch_output
generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_ID == 1 && C_AXI_TYPE == 3) begin
assign M_AXI_WID = wdch_dout[C_DIN_WIDTH_WDCH-1:WID_OFFSET];
end endgenerate
generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && (C_HAS_AXI_ID == 0 || C_AXI_TYPE != 3)) begin
assign M_AXI_WID = 0;
end endgenerate
generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_WUSER == 1 ) begin
assign M_AXI_WUSER = wdch_dout[WSTRB_OFFSET-1:WUSER_OFFSET];
end endgenerate
generate if (C_HAS_AXI_WUSER == 0) begin
assign M_AXI_WUSER = 0;
end endgenerate
generate if (IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) begin : axi_wrch_output
assign S_AXI_BRESP = wrch_dout[BID_OFFSET-1:BRESP_OFFSET];
assign wrch_din[BID_OFFSET-1:BRESP_OFFSET] = M_AXI_BRESP;
end endgenerate // axi_wrch_output
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_BUSER == 1) begin : axi_buser
assign S_AXI_BUSER = wrch_dout[BRESP_OFFSET-1:BUSER_OFFSET];
end endgenerate // axi_buser
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_BUSER == 0) begin : naxi_buser
assign S_AXI_BUSER = 0;
end endgenerate // naxi_buser
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_bid
assign S_AXI_BID = wrch_dout[C_DIN_WIDTH_WRCH-1:BID_OFFSET];
end endgenerate // axi_bid
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_bid
assign S_AXI_BID = 0 ;
end endgenerate // naxi_bid
generate if (IS_AXI_LITE_WACH == 1 || (IS_AXI_LITE == 1 && C_WACH_TYPE == 1)) begin : axi_wach_output1
assign wach_din = {S_AXI_AWADDR, S_AXI_AWPROT};
assign M_AXI_AWADDR = wach_dout[C_DIN_WIDTH_WACH-1:AWADDR_OFFSET];
assign M_AXI_AWPROT = wach_dout[AWADDR_OFFSET-1:AWPROT_OFFSET];
end endgenerate // axi_wach_output1
generate if (IS_AXI_LITE_WDCH == 1 || (IS_AXI_LITE == 1 && C_WDCH_TYPE == 1)) begin : axi_wdch_output1
assign wdch_din = {S_AXI_WDATA, S_AXI_WSTRB};
assign M_AXI_WDATA = wdch_dout[C_DIN_WIDTH_WDCH-1:WDATA_OFFSET];
assign M_AXI_WSTRB = wdch_dout[WDATA_OFFSET-1:WSTRB_OFFSET];
end endgenerate // axi_wdch_output1
generate if (IS_AXI_LITE_WRCH == 1 || (IS_AXI_LITE == 1 && C_WRCH_TYPE == 1)) begin : axi_wrch_output1
assign wrch_din = M_AXI_BRESP;
assign S_AXI_BRESP = wrch_dout[C_DIN_WIDTH_WRCH-1:BRESP_OFFSET];
end endgenerate // axi_wrch_output1
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_AWUSER == 1) begin : gwach_din1
assign wach_din[AWREGION_OFFSET-1:AWUSER_OFFSET] = S_AXI_AWUSER;
end endgenerate // gwach_din1
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : gwach_din2
assign wach_din[C_DIN_WIDTH_WACH-1:AWID_OFFSET] = S_AXI_AWID;
end endgenerate // gwach_din2
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_AXI_TYPE == 1) begin : gwach_din3
assign wach_din[AWQOS_OFFSET-1:AWREGION_OFFSET] = S_AXI_AWREGION;
end endgenerate // gwach_din3
generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_WUSER == 1) begin : gwdch_din1
assign wdch_din[WSTRB_OFFSET-1:WUSER_OFFSET] = S_AXI_WUSER;
end endgenerate // gwdch_din1
generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_ID == 1 && C_AXI_TYPE == 3) begin : gwdch_din2
assign wdch_din[C_DIN_WIDTH_WDCH-1:WID_OFFSET] = S_AXI_WID;
end endgenerate // gwdch_din2
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_BUSER == 1) begin : gwrch_din1
assign wrch_din[BRESP_OFFSET-1:BUSER_OFFSET] = M_AXI_BUSER;
end endgenerate // gwrch_din1
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : gwrch_din2
assign wrch_din[C_DIN_WIDTH_WRCH-1:BID_OFFSET] = M_AXI_BID;
end endgenerate // gwrch_din2
//end of axi_write_channel
//###########################################################################
// AXI FULL Read Channel (axi_read_channel)
//###########################################################################
wire [C_DIN_WIDTH_RACH-1:0] rach_din ;
wire [C_DIN_WIDTH_RACH-1:0] rach_dout ;
wire [C_DIN_WIDTH_RACH-1:0] rach_dout_pkt ;
wire rach_full ;
wire rach_almost_full ;
wire rach_prog_full ;
wire rach_empty ;
wire rach_almost_empty ;
wire rach_prog_empty ;
wire [C_DIN_WIDTH_RDCH-1:0] rdch_din ;
wire [C_DIN_WIDTH_RDCH-1:0] rdch_dout ;
wire rdch_full ;
wire rdch_almost_full ;
wire rdch_prog_full ;
wire rdch_empty ;
wire rdch_almost_empty ;
wire rdch_prog_empty ;
wire axi_ar_underflow_i ;
wire axi_r_underflow_i ;
wire axi_ar_overflow_i ;
wire axi_r_overflow_i ;
wire axi_rd_underflow_i ;
wire axi_rd_overflow_i ;
wire rach_s_axi_arready ;
wire rach_m_axi_arvalid ;
wire rach_wr_en ;
wire rach_rd_en ;
wire rdch_m_axi_rready ;
wire rdch_s_axi_rvalid ;
wire rdch_wr_en ;
wire rdch_rd_en ;
wire arvalid_pkt ;
wire arready_pkt ;
wire arvalid_en ;
wire rdch_rd_ok ;
wire accept_next_pkt ;
integer rdch_free_space ;
integer rdch_commited_space ;
wire rach_we ;
wire rach_re ;
wire rdch_we ;
wire rdch_re ;
localparam ARID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_RACH - C_AXI_ID_WIDTH : C_DIN_WIDTH_RACH;
localparam ARADDR_OFFSET = ARID_OFFSET - C_AXI_ADDR_WIDTH;
localparam ARLEN_OFFSET = C_AXI_TYPE != 2 ? ARADDR_OFFSET - C_AXI_LEN_WIDTH : ARADDR_OFFSET;
localparam ARSIZE_OFFSET = C_AXI_TYPE != 2 ? ARLEN_OFFSET - C_AXI_SIZE_WIDTH : ARLEN_OFFSET;
localparam ARBURST_OFFSET = C_AXI_TYPE != 2 ? ARSIZE_OFFSET - C_AXI_BURST_WIDTH : ARSIZE_OFFSET;
localparam ARLOCK_OFFSET = C_AXI_TYPE != 2 ? ARBURST_OFFSET - C_AXI_LOCK_WIDTH : ARBURST_OFFSET;
localparam ARCACHE_OFFSET = C_AXI_TYPE != 2 ? ARLOCK_OFFSET - C_AXI_CACHE_WIDTH : ARLOCK_OFFSET;
localparam ARPROT_OFFSET = ARCACHE_OFFSET - C_AXI_PROT_WIDTH;
localparam ARQOS_OFFSET = ARPROT_OFFSET - C_AXI_QOS_WIDTH;
localparam ARREGION_OFFSET = C_AXI_TYPE == 1 ? ARQOS_OFFSET - C_AXI_REGION_WIDTH : ARQOS_OFFSET;
localparam ARUSER_OFFSET = C_HAS_AXI_ARUSER == 1 ? ARREGION_OFFSET-C_AXI_ARUSER_WIDTH : ARREGION_OFFSET;
localparam RID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_RDCH - C_AXI_ID_WIDTH : C_DIN_WIDTH_RDCH;
localparam RDATA_OFFSET = RID_OFFSET - C_AXI_DATA_WIDTH;
localparam RRESP_OFFSET = RDATA_OFFSET - C_AXI_RRESP_WIDTH;
localparam RUSER_OFFSET = C_HAS_AXI_RUSER == 1 ? RRESP_OFFSET-C_AXI_RUSER_WIDTH : RRESP_OFFSET;
generate if (IS_RD_ADDR_CH == 1) begin : axi_read_addr_channel
// Write protection when almost full or prog_full is high
assign rach_we = (C_PROG_FULL_TYPE_RACH != 0) ? rach_s_axi_arready & S_AXI_ARVALID : S_AXI_ARVALID;
// Read protection when almost empty or prog_empty is high
// assign rach_rd_en = (C_PROG_EMPTY_TYPE_RACH != 5) ? rach_m_axi_arvalid & M_AXI_ARREADY : M_AXI_ARREADY && arvalid_en;
assign rach_re = (C_PROG_EMPTY_TYPE_RACH != 0 && C_APPLICATION_TYPE_RACH == 1) ?
rach_m_axi_arvalid & arready_pkt & arvalid_en :
(C_PROG_EMPTY_TYPE_RACH != 0 && C_APPLICATION_TYPE_RACH != 1) ?
M_AXI_ARREADY && rach_m_axi_arvalid :
(C_PROG_EMPTY_TYPE_RACH == 0 && C_APPLICATION_TYPE_RACH == 1) ?
arready_pkt & arvalid_en :
(C_PROG_EMPTY_TYPE_RACH == 0 && C_APPLICATION_TYPE_RACH != 1) ?
M_AXI_ARREADY : 1'b0;
assign rach_wr_en = (C_HAS_SLAVE_CE == 1) ? rach_we & S_ACLK_EN : rach_we;
assign rach_rd_en = (C_HAS_MASTER_CE == 1) ? rach_re & M_ACLK_EN : rach_re;
fifo_generator_v13_1_1_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_RACH == 1 || C_IMPLEMENTATION_TYPE_RACH == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_RACH == 2 || C_IMPLEMENTATION_TYPE_RACH == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_RACH == 1 || C_IMPLEMENTATION_TYPE_RACH == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_RACH == 11 || C_IMPLEMENTATION_TYPE_RACH == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_RACH),
.C_WR_DEPTH (C_WR_DEPTH_RACH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_RACH),
.C_INTERFACE_TYPE (C_INTERFACE_TYPE),
.C_DOUT_WIDTH (C_DIN_WIDTH_RACH),
.C_RD_DEPTH (C_WR_DEPTH_RACH),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_RACH),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_RACH),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_RACH),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_RACH),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH),
.C_USE_ECC (C_USE_ECC_RACH),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_RACH),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_FIFO_TYPE ((C_APPLICATION_TYPE_RACH == 1)?0:C_APPLICATION_TYPE_RACH),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_RACH == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RACH + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RACH == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RACH + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RACH == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RACH + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_EMBEDDED_REG (0),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
.C_EN_SAFETY_CKT (1),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v13_1_1_rach_dut
(
.CLK (S_ACLK),
.WR_CLK (S_ACLK),
.RD_CLK (M_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (rach_wr_en),
.RD_EN (rach_rd_en),
.PROG_FULL_THRESH (AXI_AR_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RACH{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RACH{1'b0}}),
.PROG_EMPTY_THRESH (AXI_AR_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RACH{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RACH{1'b0}}),
.INJECTDBITERR (AXI_AR_INJECTDBITERR),
.INJECTSBITERR (AXI_AR_INJECTSBITERR),
.DIN (rach_din),
.DOUT (rach_dout_pkt),
.FULL (rach_full),
.EMPTY (rach_empty),
.ALMOST_FULL (),
.ALMOST_EMPTY (),
.PROG_FULL (AXI_AR_PROG_FULL),
.PROG_EMPTY (AXI_AR_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (axi_ar_overflow_i),
.VALID (),
.UNDERFLOW (axi_ar_underflow_i),
.DATA_COUNT (AXI_AR_DATA_COUNT),
.RD_DATA_COUNT (AXI_AR_RD_DATA_COUNT),
.WR_DATA_COUNT (AXI_AR_WR_DATA_COUNT),
.SBITERR (AXI_AR_SBITERR),
.DBITERR (AXI_AR_DBITERR),
.wr_rst_busy (wr_rst_busy_rach),
.rd_rst_busy (rd_rst_busy_rach),
.wr_rst_i_out (),
.rd_rst_i_out (),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign rach_s_axi_arready = (IS_8SERIES == 0) ? ~rach_full : (C_IMPLEMENTATION_TYPE_RACH == 5 || C_IMPLEMENTATION_TYPE_RACH == 13) ? ~(rach_full | wr_rst_busy_rach) : ~rach_full;
assign rach_m_axi_arvalid = ~rach_empty;
assign S_AXI_ARREADY = rach_s_axi_arready;
assign AXI_AR_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_ar_underflow_i : 0;
assign AXI_AR_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_ar_overflow_i : 0;
end endgenerate // axi_read_addr_channel
// Register Slice for Read Address Channel
generate if (C_RACH_TYPE == 1) begin : grach_reg_slice
fifo_generator_v13_1_1_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_RACH),
.C_REG_CONFIG (C_REG_SLICE_MODE_RACH)
)
rach_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (rach_din),
.S_VALID (S_AXI_ARVALID),
.S_READY (S_AXI_ARREADY),
// Master side
.M_PAYLOAD_DATA (rach_dout),
.M_VALID (M_AXI_ARVALID),
.M_READY (M_AXI_ARREADY)
);
end endgenerate // grach_reg_slice
// Register Slice for Read Address Channel for MM Packet FIFO
generate if (C_RACH_TYPE == 0 && C_APPLICATION_TYPE_RACH == 1) begin : grach_reg_slice_mm_pkt_fifo
fifo_generator_v13_1_1_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_RACH),
.C_REG_CONFIG (1)
)
reg_slice_mm_pkt_fifo_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (inverted_reset),
// Slave side
.S_PAYLOAD_DATA (rach_dout_pkt),
.S_VALID (arvalid_pkt),
.S_READY (arready_pkt),
// Master side
.M_PAYLOAD_DATA (rach_dout),
.M_VALID (M_AXI_ARVALID),
.M_READY (M_AXI_ARREADY)
);
end endgenerate // grach_reg_slice_mm_pkt_fifo
generate if (C_RACH_TYPE == 0 && C_APPLICATION_TYPE_RACH != 1) begin : grach_m_axi_arvalid
assign M_AXI_ARVALID = rach_m_axi_arvalid;
assign rach_dout = rach_dout_pkt;
end endgenerate // grach_m_axi_arvalid
generate if (C_APPLICATION_TYPE_RACH == 1 && C_HAS_AXI_RD_CHANNEL == 1) begin : axi_mm_pkt_fifo_rd
assign rdch_rd_ok = rdch_s_axi_rvalid && rdch_rd_en;
assign arvalid_pkt = rach_m_axi_arvalid && arvalid_en;
assign accept_next_pkt = rach_m_axi_arvalid && arready_pkt && arvalid_en;
always@(posedge S_ACLK or posedge inverted_reset) begin
if(inverted_reset) begin
rdch_commited_space <= 0;
end else begin
if(rdch_rd_ok && !accept_next_pkt) begin
rdch_commited_space <= rdch_commited_space-1;
end else if(!rdch_rd_ok && accept_next_pkt) begin
rdch_commited_space <= rdch_commited_space+(rach_dout_pkt[ARADDR_OFFSET-1:ARLEN_OFFSET]+1);
end else if(rdch_rd_ok && accept_next_pkt) begin
rdch_commited_space <= rdch_commited_space+(rach_dout_pkt[ARADDR_OFFSET-1:ARLEN_OFFSET]);
end
end
end //Always end
always@(*) begin
rdch_free_space <= (C_WR_DEPTH_RDCH-(rdch_commited_space+rach_dout_pkt[ARADDR_OFFSET-1:ARLEN_OFFSET]+1));
end
assign arvalid_en = (rdch_free_space >= 0)?1:0;
end
endgenerate
generate if (C_APPLICATION_TYPE_RACH != 1) begin : axi_mm_fifo_rd
assign arvalid_en = 1;
end
endgenerate
generate if (IS_RD_DATA_CH == 1) begin : axi_read_data_channel
// Write protection when almost full or prog_full is high
assign rdch_we = (C_PROG_FULL_TYPE_RDCH != 0) ? rdch_m_axi_rready & M_AXI_RVALID : M_AXI_RVALID;
// Read protection when almost empty or prog_empty is high
assign rdch_re = (C_PROG_EMPTY_TYPE_RDCH != 0) ? rdch_s_axi_rvalid & S_AXI_RREADY : S_AXI_RREADY;
assign rdch_wr_en = (C_HAS_MASTER_CE == 1) ? rdch_we & M_ACLK_EN : rdch_we;
assign rdch_rd_en = (C_HAS_SLAVE_CE == 1) ? rdch_re & S_ACLK_EN : rdch_re;
fifo_generator_v13_1_1_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_RDCH == 1 || C_IMPLEMENTATION_TYPE_RDCH == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_RDCH == 2 || C_IMPLEMENTATION_TYPE_RDCH == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_RDCH == 1 || C_IMPLEMENTATION_TYPE_RDCH == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_RDCH == 11 || C_IMPLEMENTATION_TYPE_RDCH == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_RDCH),
.C_WR_DEPTH (C_WR_DEPTH_RDCH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_RDCH),
.C_DOUT_WIDTH (C_DIN_WIDTH_RDCH),
.C_RD_DEPTH (C_WR_DEPTH_RDCH),
.C_INTERFACE_TYPE (C_INTERFACE_TYPE),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_RDCH),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_RDCH),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_RDCH),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_RDCH),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH),
.C_USE_ECC (C_USE_ECC_RDCH),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_RDCH),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_FIFO_TYPE (C_APPLICATION_TYPE_RDCH),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_RDCH == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RDCH + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RDCH == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RDCH + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RDCH == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RDCH + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_EMBEDDED_REG (0),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
.C_EN_SAFETY_CKT (1),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v13_1_1_rdch_dut
(
.CLK (S_ACLK),
.WR_CLK (M_ACLK),
.RD_CLK (S_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (rdch_wr_en),
.RD_EN (rdch_rd_en),
.PROG_FULL_THRESH (AXI_R_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RDCH{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RDCH{1'b0}}),
.PROG_EMPTY_THRESH (AXI_R_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RDCH{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RDCH{1'b0}}),
.INJECTDBITERR (AXI_R_INJECTDBITERR),
.INJECTSBITERR (AXI_R_INJECTSBITERR),
.DIN (rdch_din),
.DOUT (rdch_dout),
.FULL (rdch_full),
.EMPTY (rdch_empty),
.ALMOST_FULL (),
.ALMOST_EMPTY (),
.PROG_FULL (AXI_R_PROG_FULL),
.PROG_EMPTY (AXI_R_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (axi_r_overflow_i),
.VALID (),
.UNDERFLOW (axi_r_underflow_i),
.DATA_COUNT (AXI_R_DATA_COUNT),
.RD_DATA_COUNT (AXI_R_RD_DATA_COUNT),
.WR_DATA_COUNT (AXI_R_WR_DATA_COUNT),
.SBITERR (AXI_R_SBITERR),
.DBITERR (AXI_R_DBITERR),
.wr_rst_busy (wr_rst_busy_rdch),
.rd_rst_busy (rd_rst_busy_rdch),
.wr_rst_i_out (),
.rd_rst_i_out (),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign rdch_s_axi_rvalid = ~rdch_empty;
assign rdch_m_axi_rready = (IS_8SERIES == 0) ? ~rdch_full : (C_IMPLEMENTATION_TYPE_RDCH == 5 || C_IMPLEMENTATION_TYPE_RDCH == 13) ? ~(rdch_full | wr_rst_busy_rdch) : ~rdch_full;
assign S_AXI_RVALID = rdch_s_axi_rvalid;
assign M_AXI_RREADY = rdch_m_axi_rready;
assign AXI_R_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_r_underflow_i : 0;
assign AXI_R_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_r_overflow_i : 0;
end endgenerate //axi_read_data_channel
// Register Slice for read Data Channel
generate if (C_RDCH_TYPE == 1) begin : grdch_reg_slice
fifo_generator_v13_1_1_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_RDCH),
.C_REG_CONFIG (C_REG_SLICE_MODE_RDCH)
)
rdch_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (rdch_din),
.S_VALID (M_AXI_RVALID),
.S_READY (M_AXI_RREADY),
// Master side
.M_PAYLOAD_DATA (rdch_dout),
.M_VALID (S_AXI_RVALID),
.M_READY (S_AXI_RREADY)
);
end endgenerate // grdch_reg_slice
assign axi_rd_underflow_i = C_USE_COMMON_UNDERFLOW == 1 ? (axi_ar_underflow_i || axi_r_underflow_i) : 0;
assign axi_rd_overflow_i = C_USE_COMMON_OVERFLOW == 1 ? (axi_ar_overflow_i || axi_r_overflow_i) : 0;
generate if (IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) begin : axi_full_rach_output
assign M_AXI_ARADDR = rach_dout[ARID_OFFSET-1:ARADDR_OFFSET];
assign M_AXI_ARLEN = rach_dout[ARADDR_OFFSET-1:ARLEN_OFFSET];
assign M_AXI_ARSIZE = rach_dout[ARLEN_OFFSET-1:ARSIZE_OFFSET];
assign M_AXI_ARBURST = rach_dout[ARSIZE_OFFSET-1:ARBURST_OFFSET];
assign M_AXI_ARLOCK = rach_dout[ARBURST_OFFSET-1:ARLOCK_OFFSET];
assign M_AXI_ARCACHE = rach_dout[ARLOCK_OFFSET-1:ARCACHE_OFFSET];
assign M_AXI_ARPROT = rach_dout[ARCACHE_OFFSET-1:ARPROT_OFFSET];
assign M_AXI_ARQOS = rach_dout[ARPROT_OFFSET-1:ARQOS_OFFSET];
assign rach_din[ARID_OFFSET-1:ARADDR_OFFSET] = S_AXI_ARADDR;
assign rach_din[ARADDR_OFFSET-1:ARLEN_OFFSET] = S_AXI_ARLEN;
assign rach_din[ARLEN_OFFSET-1:ARSIZE_OFFSET] = S_AXI_ARSIZE;
assign rach_din[ARSIZE_OFFSET-1:ARBURST_OFFSET] = S_AXI_ARBURST;
assign rach_din[ARBURST_OFFSET-1:ARLOCK_OFFSET] = S_AXI_ARLOCK;
assign rach_din[ARLOCK_OFFSET-1:ARCACHE_OFFSET] = S_AXI_ARCACHE;
assign rach_din[ARCACHE_OFFSET-1:ARPROT_OFFSET] = S_AXI_ARPROT;
assign rach_din[ARPROT_OFFSET-1:ARQOS_OFFSET] = S_AXI_ARQOS;
end endgenerate // axi_full_rach_output
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_AXI_TYPE == 1) begin : axi_arregion
assign M_AXI_ARREGION = rach_dout[ARQOS_OFFSET-1:ARREGION_OFFSET];
end endgenerate // axi_arregion
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_AXI_TYPE != 1) begin : naxi_arregion
assign M_AXI_ARREGION = 0;
end endgenerate // naxi_arregion
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ARUSER == 1) begin : axi_aruser
assign M_AXI_ARUSER = rach_dout[ARREGION_OFFSET-1:ARUSER_OFFSET];
end endgenerate // axi_aruser
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ARUSER == 0) begin : naxi_aruser
assign M_AXI_ARUSER = 0;
end endgenerate // naxi_aruser
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_arid
assign M_AXI_ARID = rach_dout[C_DIN_WIDTH_RACH-1:ARID_OFFSET];
end endgenerate // axi_arid
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_arid
assign M_AXI_ARID = 0;
end endgenerate // naxi_arid
generate if (IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) begin : axi_full_rdch_output
assign S_AXI_RDATA = rdch_dout[RID_OFFSET-1:RDATA_OFFSET];
assign S_AXI_RRESP = rdch_dout[RDATA_OFFSET-1:RRESP_OFFSET];
assign S_AXI_RLAST = rdch_dout[0];
assign rdch_din[RID_OFFSET-1:RDATA_OFFSET] = M_AXI_RDATA;
assign rdch_din[RDATA_OFFSET-1:RRESP_OFFSET] = M_AXI_RRESP;
assign rdch_din[0] = M_AXI_RLAST;
end endgenerate // axi_full_rdch_output
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_RUSER == 1) begin : axi_full_ruser_output
assign S_AXI_RUSER = rdch_dout[RRESP_OFFSET-1:RUSER_OFFSET];
end endgenerate // axi_full_ruser_output
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_RUSER == 0) begin : axi_full_nruser_output
assign S_AXI_RUSER = 0;
end endgenerate // axi_full_nruser_output
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_rid
assign S_AXI_RID = rdch_dout[C_DIN_WIDTH_RDCH-1:RID_OFFSET];
end endgenerate // axi_rid
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_rid
assign S_AXI_RID = 0;
end endgenerate // naxi_rid
generate if (IS_AXI_LITE_RACH == 1 || (IS_AXI_LITE == 1 && C_RACH_TYPE == 1)) begin : axi_lite_rach_output1
assign rach_din = {S_AXI_ARADDR, S_AXI_ARPROT};
assign M_AXI_ARADDR = rach_dout[C_DIN_WIDTH_RACH-1:ARADDR_OFFSET];
assign M_AXI_ARPROT = rach_dout[ARADDR_OFFSET-1:ARPROT_OFFSET];
end endgenerate // axi_lite_rach_output
generate if (IS_AXI_LITE_RDCH == 1 || (IS_AXI_LITE == 1 && C_RDCH_TYPE == 1)) begin : axi_lite_rdch_output1
assign rdch_din = {M_AXI_RDATA, M_AXI_RRESP};
assign S_AXI_RDATA = rdch_dout[C_DIN_WIDTH_RDCH-1:RDATA_OFFSET];
assign S_AXI_RRESP = rdch_dout[RDATA_OFFSET-1:RRESP_OFFSET];
end endgenerate // axi_lite_rdch_output
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ARUSER == 1) begin : grach_din1
assign rach_din[ARREGION_OFFSET-1:ARUSER_OFFSET] = S_AXI_ARUSER;
end endgenerate // grach_din1
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : grach_din2
assign rach_din[C_DIN_WIDTH_RACH-1:ARID_OFFSET] = S_AXI_ARID;
end endgenerate // grach_din2
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_AXI_TYPE == 1) begin
assign rach_din[ARQOS_OFFSET-1:ARREGION_OFFSET] = S_AXI_ARREGION;
end endgenerate
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_RUSER == 1) begin : grdch_din1
assign rdch_din[RRESP_OFFSET-1:RUSER_OFFSET] = M_AXI_RUSER;
end endgenerate // grdch_din1
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : grdch_din2
assign rdch_din[C_DIN_WIDTH_RDCH-1:RID_OFFSET] = M_AXI_RID;
end endgenerate // grdch_din2
//end of axi_read_channel
generate if (C_INTERFACE_TYPE == 1 && C_USE_COMMON_UNDERFLOW == 1) begin : gaxi_comm_uf
assign UNDERFLOW = (C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 1) ? (axi_wr_underflow_i || axi_rd_underflow_i) :
(C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 0) ? axi_wr_underflow_i :
(C_HAS_AXI_WR_CHANNEL == 0 && C_HAS_AXI_RD_CHANNEL == 1) ? axi_rd_underflow_i : 0;
end endgenerate // gaxi_comm_uf
generate if (C_INTERFACE_TYPE == 1 && C_USE_COMMON_OVERFLOW == 1) begin : gaxi_comm_of
assign OVERFLOW = (C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 1) ? (axi_wr_overflow_i || axi_rd_overflow_i) :
(C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 0) ? axi_wr_overflow_i :
(C_HAS_AXI_WR_CHANNEL == 0 && C_HAS_AXI_RD_CHANNEL == 1) ? axi_rd_overflow_i : 0;
end endgenerate // gaxi_comm_of
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
// Pass Through Logic or Wiring Logic
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
// Pass Through Logic for Read Channel
//-------------------------------------------------------------------------
// Wiring logic for Write Address Channel
generate if (C_WACH_TYPE == 2) begin : gwach_pass_through
assign M_AXI_AWID = S_AXI_AWID;
assign M_AXI_AWADDR = S_AXI_AWADDR;
assign M_AXI_AWLEN = S_AXI_AWLEN;
assign M_AXI_AWSIZE = S_AXI_AWSIZE;
assign M_AXI_AWBURST = S_AXI_AWBURST;
assign M_AXI_AWLOCK = S_AXI_AWLOCK;
assign M_AXI_AWCACHE = S_AXI_AWCACHE;
assign M_AXI_AWPROT = S_AXI_AWPROT;
assign M_AXI_AWQOS = S_AXI_AWQOS;
assign M_AXI_AWREGION = S_AXI_AWREGION;
assign M_AXI_AWUSER = S_AXI_AWUSER;
assign S_AXI_AWREADY = M_AXI_AWREADY;
assign M_AXI_AWVALID = S_AXI_AWVALID;
end endgenerate // gwach_pass_through;
// Wiring logic for Write Data Channel
generate if (C_WDCH_TYPE == 2) begin : gwdch_pass_through
assign M_AXI_WID = S_AXI_WID;
assign M_AXI_WDATA = S_AXI_WDATA;
assign M_AXI_WSTRB = S_AXI_WSTRB;
assign M_AXI_WLAST = S_AXI_WLAST;
assign M_AXI_WUSER = S_AXI_WUSER;
assign S_AXI_WREADY = M_AXI_WREADY;
assign M_AXI_WVALID = S_AXI_WVALID;
end endgenerate // gwdch_pass_through;
// Wiring logic for Write Response Channel
generate if (C_WRCH_TYPE == 2) begin : gwrch_pass_through
assign S_AXI_BID = M_AXI_BID;
assign S_AXI_BRESP = M_AXI_BRESP;
assign S_AXI_BUSER = M_AXI_BUSER;
assign M_AXI_BREADY = S_AXI_BREADY;
assign S_AXI_BVALID = M_AXI_BVALID;
end endgenerate // gwrch_pass_through;
//-------------------------------------------------------------------------
// Pass Through Logic for Read Channel
//-------------------------------------------------------------------------
// Wiring logic for Read Address Channel
generate if (C_RACH_TYPE == 2) begin : grach_pass_through
assign M_AXI_ARID = S_AXI_ARID;
assign M_AXI_ARADDR = S_AXI_ARADDR;
assign M_AXI_ARLEN = S_AXI_ARLEN;
assign M_AXI_ARSIZE = S_AXI_ARSIZE;
assign M_AXI_ARBURST = S_AXI_ARBURST;
assign M_AXI_ARLOCK = S_AXI_ARLOCK;
assign M_AXI_ARCACHE = S_AXI_ARCACHE;
assign M_AXI_ARPROT = S_AXI_ARPROT;
assign M_AXI_ARQOS = S_AXI_ARQOS;
assign M_AXI_ARREGION = S_AXI_ARREGION;
assign M_AXI_ARUSER = S_AXI_ARUSER;
assign S_AXI_ARREADY = M_AXI_ARREADY;
assign M_AXI_ARVALID = S_AXI_ARVALID;
end endgenerate // grach_pass_through;
// Wiring logic for Read Data Channel
generate if (C_RDCH_TYPE == 2) begin : grdch_pass_through
assign S_AXI_RID = M_AXI_RID;
assign S_AXI_RLAST = M_AXI_RLAST;
assign S_AXI_RUSER = M_AXI_RUSER;
assign S_AXI_RDATA = M_AXI_RDATA;
assign S_AXI_RRESP = M_AXI_RRESP;
assign S_AXI_RVALID = M_AXI_RVALID;
assign M_AXI_RREADY = S_AXI_RREADY;
end endgenerate // grdch_pass_through;
// Wiring logic for AXI Streaming
generate if (C_AXIS_TYPE == 2) begin : gaxis_pass_through
assign M_AXIS_TDATA = S_AXIS_TDATA;
assign M_AXIS_TSTRB = S_AXIS_TSTRB;
assign M_AXIS_TKEEP = S_AXIS_TKEEP;
assign M_AXIS_TID = S_AXIS_TID;
assign M_AXIS_TDEST = S_AXIS_TDEST;
assign M_AXIS_TUSER = S_AXIS_TUSER;
assign M_AXIS_TLAST = S_AXIS_TLAST;
assign S_AXIS_TREADY = M_AXIS_TREADY;
assign M_AXIS_TVALID = S_AXIS_TVALID;
end endgenerate // gaxis_pass_through;
endmodule //fifo_generator_v13_1_1
/*******************************************************************************
* Declaration of top-level module for Conventional FIFO
******************************************************************************/
module fifo_generator_v13_1_1_CONV_VER
#(
parameter C_COMMON_CLOCK = 0,
parameter C_INTERFACE_TYPE = 0,
parameter C_EN_SAFETY_CKT = 0,
parameter C_COUNT_TYPE = 0,
parameter C_DATA_COUNT_WIDTH = 2,
parameter C_DEFAULT_VALUE = "",
parameter C_DIN_WIDTH = 8,
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_ENABLE_RLOCS = 0,
parameter C_FAMILY = "virtex7", //Not allowed in Verilog model
parameter C_FULL_FLAGS_RST_VAL = 1,
parameter C_HAS_ALMOST_EMPTY = 0,
parameter C_HAS_ALMOST_FULL = 0,
parameter C_HAS_BACKUP = 0,
parameter C_HAS_DATA_COUNT = 0,
parameter C_HAS_INT_CLK = 0,
parameter C_HAS_MEMINIT_FILE = 0,
parameter C_HAS_OVERFLOW = 0,
parameter C_HAS_RD_DATA_COUNT = 0,
parameter C_HAS_RD_RST = 0,
parameter C_HAS_RST = 0,
parameter C_HAS_SRST = 0,
parameter C_HAS_UNDERFLOW = 0,
parameter C_HAS_VALID = 0,
parameter C_HAS_WR_ACK = 0,
parameter C_HAS_WR_DATA_COUNT = 0,
parameter C_HAS_WR_RST = 0,
parameter C_IMPLEMENTATION_TYPE = 0,
parameter C_INIT_WR_PNTR_VAL = 0,
parameter C_MEMORY_TYPE = 1,
parameter C_MIF_FILE_NAME = "",
parameter C_OPTIMIZATION_MODE = 0,
parameter C_OVERFLOW_LOW = 0,
parameter C_PRELOAD_LATENCY = 1,
parameter C_PRELOAD_REGS = 0,
parameter C_PRIM_FIFO_TYPE = "",
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0,
parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0,
parameter C_PROG_EMPTY_TYPE = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0,
parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0,
parameter C_PROG_FULL_TYPE = 0,
parameter C_RD_DATA_COUNT_WIDTH = 2,
parameter C_RD_DEPTH = 256,
parameter C_RD_FREQ = 1,
parameter C_RD_PNTR_WIDTH = 8,
parameter C_UNDERFLOW_LOW = 0,
parameter C_USE_DOUT_RST = 0,
parameter C_USE_ECC = 0,
parameter C_USE_EMBEDDED_REG = 0,
parameter C_USE_FIFO16_FLAGS = 0,
parameter C_USE_FWFT_DATA_COUNT = 0,
parameter C_VALID_LOW = 0,
parameter C_WR_ACK_LOW = 0,
parameter C_WR_DATA_COUNT_WIDTH = 2,
parameter C_WR_DEPTH = 256,
parameter C_WR_FREQ = 1,
parameter C_WR_PNTR_WIDTH = 8,
parameter C_WR_RESPONSE_LATENCY = 1,
parameter C_MSGON_VAL = 1,
parameter C_ENABLE_RST_SYNC = 1,
parameter C_ERROR_INJECTION_TYPE = 0,
parameter C_FIFO_TYPE = 0,
parameter C_SYNCHRONIZER_STAGE = 2,
parameter C_AXI_TYPE = 0
)
(
input BACKUP,
input BACKUP_MARKER,
input CLK,
input RST,
input SRST,
input WR_CLK,
input WR_RST,
input RD_CLK,
input RD_RST,
input [C_DIN_WIDTH-1:0] DIN,
input WR_EN,
input RD_EN,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE,
input INT_CLK,
input INJECTDBITERR,
input INJECTSBITERR,
output [C_DOUT_WIDTH-1:0] DOUT,
output FULL,
output ALMOST_FULL,
output WR_ACK,
output OVERFLOW,
output EMPTY,
output ALMOST_EMPTY,
output VALID,
output UNDERFLOW,
output [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT,
output [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT,
output [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT,
output PROG_FULL,
output PROG_EMPTY,
output SBITERR,
output DBITERR,
output wr_rst_busy,
output rd_rst_busy,
output wr_rst_i_out,
output rd_rst_i_out
);
/*
******************************************************************************
* Definition of Parameters
******************************************************************************
* C_COMMON_CLOCK : Common Clock (1), Independent Clocks (0)
* C_COUNT_TYPE : *not used
* C_DATA_COUNT_WIDTH : Width of DATA_COUNT bus
* C_DEFAULT_VALUE : *not used
* C_DIN_WIDTH : Width of DIN bus
* C_DOUT_RST_VAL : Reset value of DOUT
* C_DOUT_WIDTH : Width of DOUT bus
* C_ENABLE_RLOCS : *not used
* C_FAMILY : not used in bhv model
* C_FULL_FLAGS_RST_VAL : Full flags rst val (0 or 1)
* C_HAS_ALMOST_EMPTY : 1=Core has ALMOST_EMPTY flag
* C_HAS_ALMOST_FULL : 1=Core has ALMOST_FULL flag
* C_HAS_BACKUP : *not used
* C_HAS_DATA_COUNT : 1=Core has DATA_COUNT bus
* C_HAS_INT_CLK : not used in bhv model
* C_HAS_MEMINIT_FILE : *not used
* C_HAS_OVERFLOW : 1=Core has OVERFLOW flag
* C_HAS_RD_DATA_COUNT : 1=Core has RD_DATA_COUNT bus
* C_HAS_RD_RST : *not used
* C_HAS_RST : 1=Core has Async Rst
* C_HAS_SRST : 1=Core has Sync Rst
* C_HAS_UNDERFLOW : 1=Core has UNDERFLOW flag
* C_HAS_VALID : 1=Core has VALID flag
* C_HAS_WR_ACK : 1=Core has WR_ACK flag
* C_HAS_WR_DATA_COUNT : 1=Core has WR_DATA_COUNT bus
* C_HAS_WR_RST : *not used
* C_IMPLEMENTATION_TYPE : 0=Common-Clock Bram/Dram
* 1=Common-Clock ShiftRam
* 2=Indep. Clocks Bram/Dram
* 3=Virtex-4 Built-in
* 4=Virtex-5 Built-in
* C_INIT_WR_PNTR_VAL : *not used
* C_MEMORY_TYPE : 1=Block RAM
* 2=Distributed RAM
* 3=Shift RAM
* 4=Built-in FIFO
* C_MIF_FILE_NAME : *not used
* C_OPTIMIZATION_MODE : *not used
* C_OVERFLOW_LOW : 1=OVERFLOW active low
* C_PRELOAD_LATENCY : Latency of read: 0, 1, 2
* C_PRELOAD_REGS : 1=Use output registers
* C_PRIM_FIFO_TYPE : not used in bhv model
* C_PROG_EMPTY_THRESH_ASSERT_VAL: PROG_EMPTY assert threshold
* C_PROG_EMPTY_THRESH_NEGATE_VAL: PROG_EMPTY negate threshold
* C_PROG_EMPTY_TYPE : 0=No programmable empty
* 1=Single prog empty thresh constant
* 2=Multiple prog empty thresh constants
* 3=Single prog empty thresh input
* 4=Multiple prog empty thresh inputs
* C_PROG_FULL_THRESH_ASSERT_VAL : PROG_FULL assert threshold
* C_PROG_FULL_THRESH_NEGATE_VAL : PROG_FULL negate threshold
* C_PROG_FULL_TYPE : 0=No prog full
* 1=Single prog full thresh constant
* 2=Multiple prog full thresh constants
* 3=Single prog full thresh input
* 4=Multiple prog full thresh inputs
* C_RD_DATA_COUNT_WIDTH : Width of RD_DATA_COUNT bus
* C_RD_DEPTH : Depth of read interface (2^N)
* C_RD_FREQ : not used in bhv model
* C_RD_PNTR_WIDTH : always log2(C_RD_DEPTH)
* C_UNDERFLOW_LOW : 1=UNDERFLOW active low
* C_USE_DOUT_RST : 1=Resets DOUT on RST
* C_USE_ECC : Used for error injection purpose
* C_USE_EMBEDDED_REG : 1=Use BRAM embedded output register
* C_USE_FIFO16_FLAGS : not used in bhv model
* C_USE_FWFT_DATA_COUNT : 1=Use extra logic for FWFT data count
* C_VALID_LOW : 1=VALID active low
* C_WR_ACK_LOW : 1=WR_ACK active low
* C_WR_DATA_COUNT_WIDTH : Width of WR_DATA_COUNT bus
* C_WR_DEPTH : Depth of write interface (2^N)
* C_WR_FREQ : not used in bhv model
* C_WR_PNTR_WIDTH : always log2(C_WR_DEPTH)
* C_WR_RESPONSE_LATENCY : *not used
* C_MSGON_VAL : *not used by bhv model
* C_ENABLE_RST_SYNC : 0 = Use WR_RST & RD_RST
* 1 = Use RST
* C_ERROR_INJECTION_TYPE : 0 = No error injection
* 1 = Single bit error injection only
* 2 = Double bit error injection only
* 3 = Single and double bit error injection
******************************************************************************
* Definition of Ports
******************************************************************************
* BACKUP : Not used
* BACKUP_MARKER: Not used
* CLK : Clock
* DIN : Input data bus
* PROG_EMPTY_THRESH : Threshold for Programmable Empty Flag
* PROG_EMPTY_THRESH_ASSERT: Threshold for Programmable Empty Flag
* PROG_EMPTY_THRESH_NEGATE: Threshold for Programmable Empty Flag
* PROG_FULL_THRESH : Threshold for Programmable Full Flag
* PROG_FULL_THRESH_ASSERT : Threshold for Programmable Full Flag
* PROG_FULL_THRESH_NEGATE : Threshold for Programmable Full Flag
* RD_CLK : Read Domain Clock
* RD_EN : Read enable
* RD_RST : Read Reset
* RST : Asynchronous Reset
* SRST : Synchronous Reset
* WR_CLK : Write Domain Clock
* WR_EN : Write enable
* WR_RST : Write Reset
* INT_CLK : Internal Clock
* INJECTSBITERR: Inject Signle bit error
* INJECTDBITERR: Inject Double bit error
* ALMOST_EMPTY : One word remaining in FIFO
* ALMOST_FULL : One empty space remaining in FIFO
* DATA_COUNT : Number of data words in fifo( synchronous to CLK)
* DOUT : Output data bus
* EMPTY : Empty flag
* FULL : Full flag
* OVERFLOW : Last write rejected
* PROG_EMPTY : Programmable Empty Flag
* PROG_FULL : Programmable Full Flag
* RD_DATA_COUNT: Number of data words in fifo (synchronous to RD_CLK)
* UNDERFLOW : Last read rejected
* VALID : Last read acknowledged, DOUT bus VALID
* WR_ACK : Last write acknowledged
* WR_DATA_COUNT: Number of data words in fifo (synchronous to WR_CLK)
* SBITERR : Single Bit ECC Error Detected
* DBITERR : Double Bit ECC Error Detected
******************************************************************************
*/
//----------------------------------------------------------------------------
//- Internal Signals for delayed input signals
//- All the input signals except Clock are delayed by 100 ps and then given to
//- the models.
//----------------------------------------------------------------------------
reg rst_delayed ;
reg empty_fb ;
reg srst_delayed ;
reg wr_rst_delayed ;
reg rd_rst_delayed ;
reg wr_en_delayed ;
reg rd_en_delayed ;
reg [C_DIN_WIDTH-1:0] din_delayed ;
reg [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_delayed ;
reg [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_assert_delayed ;
reg [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_negate_delayed ;
reg [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_delayed ;
reg [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_assert_delayed ;
reg [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_negate_delayed ;
reg injectdbiterr_delayed ;
reg injectsbiterr_delayed ;
wire empty_p0_out;
always @* rst_delayed <= #`TCQ RST ;
always @* empty_fb <= #`TCQ empty_p0_out ;
always @* srst_delayed <= #`TCQ SRST ;
always @* wr_rst_delayed <= #`TCQ WR_RST ;
always @* rd_rst_delayed <= #`TCQ RD_RST ;
always @* din_delayed <= #`TCQ DIN ;
always @* wr_en_delayed <= #`TCQ WR_EN ;
always @* rd_en_delayed <= #`TCQ RD_EN ;
always @* prog_empty_thresh_delayed <= #`TCQ PROG_EMPTY_THRESH ;
always @* prog_empty_thresh_assert_delayed <= #`TCQ PROG_EMPTY_THRESH_ASSERT ;
always @* prog_empty_thresh_negate_delayed <= #`TCQ PROG_EMPTY_THRESH_NEGATE ;
always @* prog_full_thresh_delayed <= #`TCQ PROG_FULL_THRESH ;
always @* prog_full_thresh_assert_delayed <= #`TCQ PROG_FULL_THRESH_ASSERT ;
always @* prog_full_thresh_negate_delayed <= #`TCQ PROG_FULL_THRESH_NEGATE ;
always @* injectdbiterr_delayed <= #`TCQ INJECTDBITERR ;
always @* injectsbiterr_delayed <= #`TCQ INJECTSBITERR ;
/*****************************************************************************
* Derived parameters
****************************************************************************/
//There are 2 Verilog behavioral models
// 0 = Common-Clock FIFO/ShiftRam FIFO
// 1 = Independent Clocks FIFO
// 2 = Low Latency Synchronous FIFO
// 3 = Low Latency Asynchronous FIFO
localparam C_VERILOG_IMPL = (C_FIFO_TYPE == 3) ? 2 :
(C_IMPLEMENTATION_TYPE == 2) ? 1 : 0;
localparam IS_8SERIES = (C_FAMILY == "virtexu" || C_FAMILY == "kintexu" || C_FAMILY == "artixu" || C_FAMILY == "virtexuplus" || C_FAMILY == "zynquplus" || C_FAMILY == "kintexuplus") ? 1 : 0;
//Internal reset signals
reg rd_rst_asreg = 0;
reg rd_rst_asreg_d1 = 0;
reg rd_rst_asreg_d2 = 0;
reg rd_rst_asreg_d3 = 0;
reg rd_rst_reg = 0;
wire rd_rst_comb;
reg wr_rst_d0 = 0;
reg wr_rst_d1 = 0;
reg wr_rst_d2 = 0;
reg rd_rst_d0 = 0;
reg rd_rst_d1 = 0;
reg rd_rst_d2 = 0;
reg rd_rst_d3 = 0;
reg wrrst_done = 0;
reg rdrst_done = 0;
reg wr_rst_asreg = 0;
reg wr_rst_asreg_d1 = 0;
reg wr_rst_asreg_d2 = 0;
reg wr_rst_asreg_d3 = 0;
reg rd_rst_wr_d0 = 0;
reg rd_rst_wr_d1 = 0;
reg rd_rst_wr_d2 = 0;
reg wr_rst_reg = 0;
reg rst_active_i = 1'b1;
reg rst_delayed_d1 = 1'b1;
reg rst_delayed_d2 = 1'b1;
wire wr_rst_comb;
wire wr_rst_i;
wire rd_rst_i;
wire rst_i;
//Internal reset signals
reg rst_asreg = 0;
reg srst_asreg = 0;
reg rst_asreg_d1 = 0;
reg rst_asreg_d2 = 0;
reg srst_asreg_d1 = 0;
reg srst_asreg_d2 = 0;
reg rst_reg = 0;
reg srst_reg = 0;
wire rst_comb;
wire srst_comb;
reg rst_full_gen_i = 0;
reg rst_full_ff_i = 0;
wire RD_CLK_P0_IN;
wire RST_P0_IN;
wire RD_EN_FIFO_IN;
wire RD_EN_P0_IN;
wire ALMOST_EMPTY_FIFO_OUT;
wire ALMOST_FULL_FIFO_OUT;
wire [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT_FIFO_OUT;
wire [C_DOUT_WIDTH-1:0] DOUT_FIFO_OUT;
wire EMPTY_FIFO_OUT;
wire FULL_FIFO_OUT;
wire OVERFLOW_FIFO_OUT;
wire PROG_EMPTY_FIFO_OUT;
wire PROG_FULL_FIFO_OUT;
wire VALID_FIFO_OUT;
wire [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT_FIFO_OUT;
wire UNDERFLOW_FIFO_OUT;
wire WR_ACK_FIFO_OUT;
wire [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT_FIFO_OUT;
//***************************************************************************
// Internal Signals
// The core uses either the internal_ wires or the preload0_ wires depending
// on whether the core uses Preload0 or not.
// When using preload0, the internal signals connect the internal core to
// the preload logic, and the external core's interfaces are tied to the
// preload0 signals from the preload logic.
//***************************************************************************
wire [C_DOUT_WIDTH-1:0] DATA_P0_OUT;
wire VALID_P0_OUT;
wire EMPTY_P0_OUT;
wire ALMOSTEMPTY_P0_OUT;
reg EMPTY_P0_OUT_Q;
reg ALMOSTEMPTY_P0_OUT_Q;
wire UNDERFLOW_P0_OUT;
wire RDEN_P0_OUT;
wire [C_DOUT_WIDTH-1:0] DATA_P0_IN;
wire EMPTY_P0_IN;
reg [31:0] DATA_COUNT_FWFT;
reg SS_FWFT_WR ;
reg SS_FWFT_RD ;
wire sbiterr_fifo_out;
wire dbiterr_fifo_out;
wire inject_sbit_err;
wire inject_dbit_err;
wire w_fab_read_data_valid_i;
wire w_read_data_valid_i;
wire w_ram_valid_i;
// Assign 0 if not selected to avoid 'X' propogation to S/DBITERR.
assign inject_sbit_err = ((C_ERROR_INJECTION_TYPE == 1) || (C_ERROR_INJECTION_TYPE == 3)) ?
injectsbiterr_delayed : 0;
assign inject_dbit_err = ((C_ERROR_INJECTION_TYPE == 2) || (C_ERROR_INJECTION_TYPE == 3)) ?
injectdbiterr_delayed : 0;
assign wr_rst_i_out = wr_rst_i;
assign rd_rst_i_out = rd_rst_i;
// Choose the behavioral model to instantiate based on the C_VERILOG_IMPL
// parameter (1=Independent Clocks, 0=Common Clock)
localparam FULL_FLAGS_RST_VAL = (C_HAS_SRST == 1) ? 0 : C_FULL_FLAGS_RST_VAL;
generate
case (C_VERILOG_IMPL)
0 : begin : block1
//Common Clock Behavioral Model
fifo_generator_v13_1_1_bhv_ver_ss
#(
.C_FAMILY (C_FAMILY),
.C_DATA_COUNT_WIDTH (C_DATA_COUNT_WIDTH),
.C_DIN_WIDTH (C_DIN_WIDTH),
.C_DOUT_RST_VAL (C_DOUT_RST_VAL),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_FULL_FLAGS_RST_VAL (FULL_FLAGS_RST_VAL),
.C_HAS_ALMOST_EMPTY (C_HAS_ALMOST_EMPTY),
.C_HAS_ALMOST_FULL ((C_AXI_TYPE == 0 && C_FIFO_TYPE == 1) ? 1 : C_HAS_ALMOST_FULL),
.C_HAS_DATA_COUNT (C_HAS_DATA_COUNT),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT),
.C_HAS_RST (C_HAS_RST),
.C_HAS_SRST (C_HAS_SRST),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_HAS_VALID (C_HAS_VALID),
.C_HAS_WR_ACK (C_HAS_WR_ACK),
.C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT),
.C_IMPLEMENTATION_TYPE (C_IMPLEMENTATION_TYPE),
.C_MEMORY_TYPE (C_MEMORY_TYPE),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_PRELOAD_LATENCY (C_PRELOAD_LATENCY),
.C_PRELOAD_REGS (C_PRELOAD_REGS),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL),
.C_PROG_EMPTY_THRESH_NEGATE_VAL (C_PROG_EMPTY_THRESH_NEGATE_VAL),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL),
.C_PROG_FULL_THRESH_NEGATE_VAL (C_PROG_FULL_THRESH_NEGATE_VAL),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE),
.C_RD_DATA_COUNT_WIDTH (C_RD_DATA_COUNT_WIDTH),
.C_RD_DEPTH (C_RD_DEPTH),
.C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG),
.C_EN_SAFETY_CKT (C_EN_SAFETY_CKT),
.C_USE_FWFT_DATA_COUNT (C_USE_FWFT_DATA_COUNT),
.C_VALID_LOW (C_VALID_LOW),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH),
.C_WR_DEPTH (C_WR_DEPTH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH),
.C_USE_ECC (C_USE_ECC),
.C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE),
.C_FIFO_TYPE (C_FIFO_TYPE)
)
gen_ss
(
.CLK (CLK),
.RST (rst_i),
.SRST (srst_delayed),
.RST_FULL_GEN (rst_full_gen_i),
.RST_FULL_FF (rst_full_ff_i),
.DIN (din_delayed),
.WR_EN (wr_en_delayed),
.RD_EN (RD_EN_FIFO_IN),
.RD_EN_USER (rd_en_delayed),
.USER_EMPTY_FB (empty_fb),
.PROG_EMPTY_THRESH (prog_empty_thresh_delayed),
.PROG_EMPTY_THRESH_ASSERT (prog_empty_thresh_assert_delayed),
.PROG_EMPTY_THRESH_NEGATE (prog_empty_thresh_negate_delayed),
.PROG_FULL_THRESH (prog_full_thresh_delayed),
.PROG_FULL_THRESH_ASSERT (prog_full_thresh_assert_delayed),
.PROG_FULL_THRESH_NEGATE (prog_full_thresh_negate_delayed),
.INJECTSBITERR (inject_sbit_err),
.INJECTDBITERR (inject_dbit_err),
.DOUT (DOUT_FIFO_OUT),
.FULL (FULL_FIFO_OUT),
.ALMOST_FULL (ALMOST_FULL_FIFO_OUT),
.WR_ACK (WR_ACK_FIFO_OUT),
.OVERFLOW (OVERFLOW_FIFO_OUT),
.EMPTY (EMPTY_FIFO_OUT),
.ALMOST_EMPTY (ALMOST_EMPTY_FIFO_OUT),
.VALID (VALID_FIFO_OUT),
.UNDERFLOW (UNDERFLOW_FIFO_OUT),
.DATA_COUNT (DATA_COUNT_FIFO_OUT),
.RD_DATA_COUNT (RD_DATA_COUNT_FIFO_OUT),
.WR_DATA_COUNT (WR_DATA_COUNT_FIFO_OUT),
.PROG_FULL (PROG_FULL_FIFO_OUT),
.PROG_EMPTY (PROG_EMPTY_FIFO_OUT),
.WR_RST_BUSY (wr_rst_busy),
.RD_RST_BUSY (rd_rst_busy),
.SBITERR (sbiterr_fifo_out),
.DBITERR (dbiterr_fifo_out)
);
end
1 : begin : block1
//Independent Clocks Behavioral Model
fifo_generator_v13_1_1_bhv_ver_as
#(
.C_FAMILY (C_FAMILY),
.C_DATA_COUNT_WIDTH (C_DATA_COUNT_WIDTH),
.C_DIN_WIDTH (C_DIN_WIDTH),
.C_DOUT_RST_VAL (C_DOUT_RST_VAL),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_FULL_FLAGS_RST_VAL (C_FULL_FLAGS_RST_VAL),
.C_HAS_ALMOST_EMPTY (C_HAS_ALMOST_EMPTY),
.C_HAS_ALMOST_FULL (C_HAS_ALMOST_FULL),
.C_HAS_DATA_COUNT (C_HAS_DATA_COUNT),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT),
.C_HAS_RST (C_HAS_RST),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_HAS_VALID (C_HAS_VALID),
.C_HAS_WR_ACK (C_HAS_WR_ACK),
.C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT),
.C_IMPLEMENTATION_TYPE (C_IMPLEMENTATION_TYPE),
.C_MEMORY_TYPE (C_MEMORY_TYPE),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_PRELOAD_LATENCY (C_PRELOAD_LATENCY),
.C_PRELOAD_REGS (C_PRELOAD_REGS),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL),
.C_PROG_EMPTY_THRESH_NEGATE_VAL (C_PROG_EMPTY_THRESH_NEGATE_VAL),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL),
.C_PROG_FULL_THRESH_NEGATE_VAL (C_PROG_FULL_THRESH_NEGATE_VAL),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE),
.C_RD_DATA_COUNT_WIDTH (C_RD_DATA_COUNT_WIDTH),
.C_RD_DEPTH (C_RD_DEPTH),
.C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG),
.C_EN_SAFETY_CKT (C_EN_SAFETY_CKT),
.C_USE_FWFT_DATA_COUNT (C_USE_FWFT_DATA_COUNT),
.C_VALID_LOW (C_VALID_LOW),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH),
.C_WR_DEPTH (C_WR_DEPTH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH),
.C_USE_ECC (C_USE_ECC),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE)
)
gen_as
(
.WR_CLK (WR_CLK),
.RD_CLK (RD_CLK),
.RST (rst_i),
.RST_FULL_GEN (rst_full_gen_i),
.RST_FULL_FF (rst_full_ff_i),
.WR_RST (wr_rst_i),
.RD_RST (rd_rst_i),
.DIN (din_delayed),
.WR_EN (wr_en_delayed),
.RD_EN (RD_EN_FIFO_IN),
.RD_EN_USER (rd_en_delayed),
.PROG_EMPTY_THRESH (prog_empty_thresh_delayed),
.PROG_EMPTY_THRESH_ASSERT (prog_empty_thresh_assert_delayed),
.PROG_EMPTY_THRESH_NEGATE (prog_empty_thresh_negate_delayed),
.PROG_FULL_THRESH (prog_full_thresh_delayed),
.PROG_FULL_THRESH_ASSERT (prog_full_thresh_assert_delayed),
.PROG_FULL_THRESH_NEGATE (prog_full_thresh_negate_delayed),
.INJECTSBITERR (inject_sbit_err),
.INJECTDBITERR (inject_dbit_err),
.USER_EMPTY_FB (EMPTY_P0_OUT),
.DOUT (DOUT_FIFO_OUT),
.FULL (FULL_FIFO_OUT),
.ALMOST_FULL (ALMOST_FULL_FIFO_OUT),
.WR_ACK (WR_ACK_FIFO_OUT),
.OVERFLOW (OVERFLOW_FIFO_OUT),
.EMPTY (EMPTY_FIFO_OUT),
.ALMOST_EMPTY (ALMOST_EMPTY_FIFO_OUT),
.VALID (VALID_FIFO_OUT),
.UNDERFLOW (UNDERFLOW_FIFO_OUT),
.RD_DATA_COUNT (RD_DATA_COUNT_FIFO_OUT),
.WR_DATA_COUNT (WR_DATA_COUNT_FIFO_OUT),
.PROG_FULL (PROG_FULL_FIFO_OUT),
.PROG_EMPTY (PROG_EMPTY_FIFO_OUT),
.SBITERR (sbiterr_fifo_out),
.fab_read_data_valid_i (w_fab_read_data_valid_i),
.read_data_valid_i (w_read_data_valid_i),
.ram_valid_i (w_ram_valid_i),
.DBITERR (dbiterr_fifo_out)
);
end
2 : begin : ll_afifo_inst
fifo_generator_v13_1_1_beh_ver_ll_afifo
#(
.C_DIN_WIDTH (C_DIN_WIDTH),
.C_DOUT_RST_VAL (C_DOUT_RST_VAL),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_FULL_FLAGS_RST_VAL (C_FULL_FLAGS_RST_VAL),
.C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT),
.C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT),
.C_RD_DEPTH (C_RD_DEPTH),
.C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH),
.C_WR_DEPTH (C_WR_DEPTH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH),
.C_FIFO_TYPE (C_FIFO_TYPE)
)
gen_ll_afifo
(
.DIN (din_delayed),
.RD_CLK (RD_CLK),
.RD_EN (rd_en_delayed),
.WR_RST (wr_rst_i),
.RD_RST (rd_rst_i),
.WR_CLK (WR_CLK),
.WR_EN (wr_en_delayed),
.DOUT (DOUT),
.EMPTY (EMPTY),
.FULL (FULL)
);
end
default : begin : block1
//Independent Clocks Behavioral Model
fifo_generator_v13_1_1_bhv_ver_as
#(
.C_FAMILY (C_FAMILY),
.C_DATA_COUNT_WIDTH (C_DATA_COUNT_WIDTH),
.C_DIN_WIDTH (C_DIN_WIDTH),
.C_DOUT_RST_VAL (C_DOUT_RST_VAL),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_FULL_FLAGS_RST_VAL (C_FULL_FLAGS_RST_VAL),
.C_HAS_ALMOST_EMPTY (C_HAS_ALMOST_EMPTY),
.C_HAS_ALMOST_FULL (C_HAS_ALMOST_FULL),
.C_HAS_DATA_COUNT (C_HAS_DATA_COUNT),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT),
.C_HAS_RST (C_HAS_RST),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_HAS_VALID (C_HAS_VALID),
.C_HAS_WR_ACK (C_HAS_WR_ACK),
.C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT),
.C_IMPLEMENTATION_TYPE (C_IMPLEMENTATION_TYPE),
.C_MEMORY_TYPE (C_MEMORY_TYPE),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_PRELOAD_LATENCY (C_PRELOAD_LATENCY),
.C_PRELOAD_REGS (C_PRELOAD_REGS),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL),
.C_PROG_EMPTY_THRESH_NEGATE_VAL (C_PROG_EMPTY_THRESH_NEGATE_VAL),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL),
.C_PROG_FULL_THRESH_NEGATE_VAL (C_PROG_FULL_THRESH_NEGATE_VAL),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE),
.C_RD_DATA_COUNT_WIDTH (C_RD_DATA_COUNT_WIDTH),
.C_RD_DEPTH (C_RD_DEPTH),
.C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG),
.C_EN_SAFETY_CKT (C_EN_SAFETY_CKT),
.C_USE_FWFT_DATA_COUNT (C_USE_FWFT_DATA_COUNT),
.C_VALID_LOW (C_VALID_LOW),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH),
.C_WR_DEPTH (C_WR_DEPTH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH),
.C_USE_ECC (C_USE_ECC),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE)
)
gen_as
(
.WR_CLK (WR_CLK),
.RD_CLK (RD_CLK),
.RST (rst_i),
.RST_FULL_GEN (rst_full_gen_i),
.RST_FULL_FF (rst_full_ff_i),
.WR_RST (wr_rst_i),
.RD_RST (rd_rst_i),
.DIN (din_delayed),
.WR_EN (wr_en_delayed),
.RD_EN (RD_EN_FIFO_IN),
.RD_EN_USER (rd_en_delayed),
.PROG_EMPTY_THRESH (prog_empty_thresh_delayed),
.PROG_EMPTY_THRESH_ASSERT (prog_empty_thresh_assert_delayed),
.PROG_EMPTY_THRESH_NEGATE (prog_empty_thresh_negate_delayed),
.PROG_FULL_THRESH (prog_full_thresh_delayed),
.PROG_FULL_THRESH_ASSERT (prog_full_thresh_assert_delayed),
.PROG_FULL_THRESH_NEGATE (prog_full_thresh_negate_delayed),
.INJECTSBITERR (inject_sbit_err),
.INJECTDBITERR (inject_dbit_err),
.USER_EMPTY_FB (EMPTY_P0_OUT),
.DOUT (DOUT_FIFO_OUT),
.FULL (FULL_FIFO_OUT),
.ALMOST_FULL (ALMOST_FULL_FIFO_OUT),
.WR_ACK (WR_ACK_FIFO_OUT),
.OVERFLOW (OVERFLOW_FIFO_OUT),
.EMPTY (EMPTY_FIFO_OUT),
.ALMOST_EMPTY (ALMOST_EMPTY_FIFO_OUT),
.VALID (VALID_FIFO_OUT),
.UNDERFLOW (UNDERFLOW_FIFO_OUT),
.RD_DATA_COUNT (RD_DATA_COUNT_FIFO_OUT),
.WR_DATA_COUNT (WR_DATA_COUNT_FIFO_OUT),
.PROG_FULL (PROG_FULL_FIFO_OUT),
.PROG_EMPTY (PROG_EMPTY_FIFO_OUT),
.SBITERR (sbiterr_fifo_out),
.DBITERR (dbiterr_fifo_out)
);
end
endcase
endgenerate
//**************************************************************************
// Connect Internal Signals
// (Signals labeled internal_*)
// In the normal case, these signals tie directly to the FIFO's inputs and
// outputs.
// In the case of Preload Latency 0 or 1, there are intermediate
// signals between the internal FIFO and the preload logic.
//**************************************************************************
//***********************************************
// If First-Word Fall-Through, instantiate
// the preload0 (FWFT) module
//***********************************************
wire rd_en_to_fwft_fifo;
wire sbiterr_fwft;
wire dbiterr_fwft;
wire [C_DOUT_WIDTH-1:0] dout_fwft;
wire empty_fwft;
wire rd_en_fifo_in;
wire stage2_reg_en_i;
wire [1:0] valid_stages_i;
wire rst_fwft;
//wire empty_p0_out;
reg [C_SYNCHRONIZER_STAGE-1:0] pkt_empty_sync = 'b1;
localparam IS_FWFT = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ? 1 : 0;
localparam IS_PKT_FIFO = (C_FIFO_TYPE == 1) ? 1 : 0;
localparam IS_AXIS_PKT_FIFO = (C_FIFO_TYPE == 1 && C_AXI_TYPE == 0) ? 1 : 0;
assign rst_fwft = (C_COMMON_CLOCK == 0) ? rd_rst_i : (C_HAS_RST == 1) ? rst_i : 1'b0;
generate if (IS_FWFT == 1 && C_FIFO_TYPE != 3) begin : block2
fifo_generator_v13_1_1_bhv_ver_preload0
#(
.C_DOUT_RST_VAL (C_DOUT_RST_VAL),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_HAS_RST (C_HAS_RST),
.C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC),
.C_HAS_SRST (C_HAS_SRST),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG),
.C_USE_ECC (C_USE_ECC),
.C_USERVALID_LOW (C_VALID_LOW),
.C_USERUNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_EN_SAFETY_CKT (C_EN_SAFETY_CKT),
.C_MEMORY_TYPE (C_MEMORY_TYPE),
.C_FIFO_TYPE (C_FIFO_TYPE)
)
fgpl0
(
.RD_CLK (RD_CLK_P0_IN),
.RD_RST (RST_P0_IN),
.SRST (srst_delayed),
.WR_RST_BUSY (wr_rst_busy),
.RD_RST_BUSY (rd_rst_busy),
.RD_EN (RD_EN_P0_IN),
.FIFOEMPTY (EMPTY_P0_IN),
.FIFODATA (DATA_P0_IN),
.FIFOSBITERR (sbiterr_fifo_out),
.FIFODBITERR (dbiterr_fifo_out),
// Output
.USERDATA (dout_fwft),
.USERVALID (VALID_P0_OUT),
.USEREMPTY (empty_fwft),
.USERALMOSTEMPTY (ALMOSTEMPTY_P0_OUT),
.USERUNDERFLOW (UNDERFLOW_P0_OUT),
.RAMVALID (),
.FIFORDEN (rd_en_fifo_in),
.USERSBITERR (sbiterr_fwft),
.USERDBITERR (dbiterr_fwft),
.STAGE2_REG_EN (stage2_reg_en_i),
.fab_read_data_valid_i_o (w_fab_read_data_valid_i),
.read_data_valid_i_o (w_read_data_valid_i),
.ram_valid_i_o (w_ram_valid_i),
.VALID_STAGES (valid_stages_i)
);
//***********************************************
// Connect inputs to preload (FWFT) module
//***********************************************
//Connect the RD_CLK of the Preload (FWFT) module to CLK if we
// have a common-clock FIFO, or RD_CLK if we have an
// independent clock FIFO
assign RD_CLK_P0_IN = ((C_VERILOG_IMPL == 0) ? CLK : RD_CLK);
assign RST_P0_IN = (C_COMMON_CLOCK == 0) ? rd_rst_i : (C_HAS_RST == 1) ? rst_i : 0;
assign RD_EN_P0_IN = (C_FIFO_TYPE != 1) ? rd_en_delayed : rd_en_to_fwft_fifo;
assign EMPTY_P0_IN = EMPTY_FIFO_OUT;
assign DATA_P0_IN = DOUT_FIFO_OUT;
//***********************************************
// Connect outputs from preload (FWFT) module
//***********************************************
assign VALID = VALID_P0_OUT ;
assign ALMOST_EMPTY = ALMOSTEMPTY_P0_OUT;
assign UNDERFLOW = UNDERFLOW_P0_OUT ;
assign RD_EN_FIFO_IN = rd_en_fifo_in;
//***********************************************
// Create DATA_COUNT from First-Word Fall-Through
// data count
//***********************************************
assign DATA_COUNT = (C_USE_FWFT_DATA_COUNT == 0)? DATA_COUNT_FIFO_OUT:
(C_DATA_COUNT_WIDTH>C_RD_PNTR_WIDTH) ? DATA_COUNT_FWFT[C_RD_PNTR_WIDTH:0] :
DATA_COUNT_FWFT[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH-C_DATA_COUNT_WIDTH+1];
//***********************************************
// Create DATA_COUNT from First-Word Fall-Through
// data count
//***********************************************
always @ (posedge RD_CLK_P0_IN or posedge RST_P0_IN) begin
if (RST_P0_IN) begin
EMPTY_P0_OUT_Q <= #`TCQ 1;
ALMOSTEMPTY_P0_OUT_Q <= #`TCQ 1;
end else begin
EMPTY_P0_OUT_Q <= #`TCQ empty_p0_out;
// EMPTY_P0_OUT_Q <= #`TCQ EMPTY_FIFO_OUT;
ALMOSTEMPTY_P0_OUT_Q <= #`TCQ ALMOSTEMPTY_P0_OUT;
end
end //always
//***********************************************
// logic for common-clock data count when FWFT is selected
//***********************************************
initial begin
SS_FWFT_RD = 1'b0;
DATA_COUNT_FWFT = 0 ;
SS_FWFT_WR = 1'b0 ;
end //initial
//***********************************************
// common-clock data count is implemented as an
// up-down counter. SS_FWFT_WR and SS_FWFT_RD
// are the up/down enables for the counter.
//***********************************************
always @ (RD_EN or VALID_P0_OUT or WR_EN or FULL_FIFO_OUT or empty_p0_out) begin
if (C_VALID_LOW == 1) begin
SS_FWFT_RD = (C_FIFO_TYPE != 1) ? (RD_EN && ~VALID_P0_OUT) : (~empty_p0_out && RD_EN && ~VALID_P0_OUT) ;
end else begin
SS_FWFT_RD = (C_FIFO_TYPE != 1) ? (RD_EN && VALID_P0_OUT) : (~empty_p0_out && RD_EN && VALID_P0_OUT) ;
end
SS_FWFT_WR = (WR_EN && (~FULL_FIFO_OUT)) ;
end
//***********************************************
// common-clock data count is implemented as an
// up-down counter for FWFT. This always block
// calculates the counter.
//***********************************************
always @ (posedge RD_CLK_P0_IN or posedge RST_P0_IN) begin
if (RST_P0_IN) begin
DATA_COUNT_FWFT <= #`TCQ 0;
end else begin
//if (srst_delayed && (C_HAS_SRST == 1) ) begin
if ((srst_delayed | wr_rst_busy | rd_rst_busy) && (C_HAS_SRST == 1) ) begin
DATA_COUNT_FWFT <= #`TCQ 0;
end else begin
case ( {SS_FWFT_WR, SS_FWFT_RD})
2'b00: DATA_COUNT_FWFT <= #`TCQ DATA_COUNT_FWFT ;
2'b01: DATA_COUNT_FWFT <= #`TCQ DATA_COUNT_FWFT - 1 ;
2'b10: DATA_COUNT_FWFT <= #`TCQ DATA_COUNT_FWFT + 1 ;
2'b11: DATA_COUNT_FWFT <= #`TCQ DATA_COUNT_FWFT ;
endcase
end //if SRST
end //IF RST
end //always
end endgenerate // : block2
// AXI Streaming Packet FIFO
reg [C_WR_PNTR_WIDTH-1:0] wr_pkt_count = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pkt_count = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pkt_count_plus1 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pkt_count_reg = 0;
reg partial_packet = 0;
reg stage1_eop_d1 = 0;
reg rd_en_fifo_in_d1 = 0;
reg eop_at_stage2 = 0;
reg ram_pkt_empty = 0;
reg ram_pkt_empty_d1 = 0;
wire [C_DOUT_WIDTH-1:0] dout_p0_out;
wire packet_empty_wr;
wire wr_rst_fwft_pkt_fifo;
wire dummy_wr_eop;
wire ram_wr_en_pkt_fifo;
wire wr_eop;
wire ram_rd_en_compare;
wire stage1_eop;
wire pkt_ready_to_read;
wire rd_en_2_stage2;
// Generate Dummy WR_EOP for partial packet (Only for AXI Streaming)
// When Packet EMPTY is high, and FIFO is full, then generate the dummy WR_EOP
// When dummy WR_EOP is high, mask the actual EOP to avoid double increment of
// write packet count
generate if (IS_FWFT == 1 && IS_AXIS_PKT_FIFO == 1) begin // gdummy_wr_eop
always @ (posedge wr_rst_fwft_pkt_fifo or posedge WR_CLK) begin
if (wr_rst_fwft_pkt_fifo)
partial_packet <= 1'b0;
else begin
if (srst_delayed | wr_rst_busy | rd_rst_busy)
partial_packet <= #`TCQ 1'b0;
else if (ALMOST_FULL_FIFO_OUT && ram_wr_en_pkt_fifo && packet_empty_wr && (~din_delayed[0]))
partial_packet <= #`TCQ 1'b1;
else if (partial_packet && din_delayed[0] && ram_wr_en_pkt_fifo)
partial_packet <= #`TCQ 1'b0;
end
end
end endgenerate // gdummy_wr_eop
generate if (IS_FWFT == 1 && IS_PKT_FIFO == 1) begin // gpkt_fifo_fwft
assign wr_rst_fwft_pkt_fifo = (C_COMMON_CLOCK == 0) ? wr_rst_i : (C_HAS_RST == 1) ? rst_i:1'b0;
assign dummy_wr_eop = ALMOST_FULL_FIFO_OUT && ram_wr_en_pkt_fifo && packet_empty_wr && (~din_delayed[0]) && (~partial_packet);
assign packet_empty_wr = (C_COMMON_CLOCK == 1) ? empty_p0_out : pkt_empty_sync[C_SYNCHRONIZER_STAGE-1];
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft) begin
stage1_eop_d1 <= 1'b0;
rd_en_fifo_in_d1 <= 1'b0;
end else begin
if (srst_delayed | wr_rst_busy | rd_rst_busy) begin
stage1_eop_d1 <= #`TCQ 1'b0;
rd_en_fifo_in_d1 <= #`TCQ 1'b0;
end else begin
stage1_eop_d1 <= #`TCQ stage1_eop;
rd_en_fifo_in_d1 <= #`TCQ rd_en_fifo_in;
end
end
end
assign stage1_eop = (rd_en_fifo_in_d1) ? DOUT_FIFO_OUT[0] : stage1_eop_d1;
assign ram_wr_en_pkt_fifo = wr_en_delayed && (~FULL_FIFO_OUT);
assign wr_eop = ram_wr_en_pkt_fifo && ((din_delayed[0] && (~partial_packet)) || dummy_wr_eop);
assign ram_rd_en_compare = stage2_reg_en_i && stage1_eop;
fifo_generator_v13_1_1_bhv_ver_preload0
#(
.C_DOUT_RST_VAL (C_DOUT_RST_VAL),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_HAS_RST (C_HAS_RST),
.C_HAS_SRST (C_HAS_SRST),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_USE_ECC (C_USE_ECC),
.C_USERVALID_LOW (C_VALID_LOW),
.C_EN_SAFETY_CKT (C_EN_SAFETY_CKT),
.C_USERUNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC),
.C_MEMORY_TYPE (C_MEMORY_TYPE),
.C_FIFO_TYPE (2) // Enable low latency fwft logic
)
pkt_fifo_fwft
(
.RD_CLK (RD_CLK_P0_IN),
.RD_RST (rst_fwft),
.SRST (srst_delayed),
.WR_RST_BUSY (wr_rst_busy),
.RD_RST_BUSY (rd_rst_busy),
.RD_EN (rd_en_delayed),
.FIFOEMPTY (pkt_ready_to_read),
.FIFODATA (dout_fwft),
.FIFOSBITERR (sbiterr_fwft),
.FIFODBITERR (dbiterr_fwft),
// Output
.USERDATA (dout_p0_out),
.USERVALID (),
.USEREMPTY (empty_p0_out),
.USERALMOSTEMPTY (),
.USERUNDERFLOW (),
.RAMVALID (),
.FIFORDEN (rd_en_2_stage2),
.USERSBITERR (SBITERR),
.USERDBITERR (DBITERR),
.STAGE2_REG_EN (),
.VALID_STAGES ()
);
assign pkt_ready_to_read = ~(!(ram_pkt_empty || empty_fwft) && ((valid_stages_i[0] && valid_stages_i[1]) || eop_at_stage2));
assign rd_en_to_fwft_fifo = ~empty_fwft && rd_en_2_stage2;
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft)
eop_at_stage2 <= 1'b0;
else if (stage2_reg_en_i)
eop_at_stage2 <= #`TCQ stage1_eop;
end
//---------------------------------------------------------------------------
// Write and Read Packet Count
//---------------------------------------------------------------------------
always @ (posedge wr_rst_fwft_pkt_fifo or posedge WR_CLK) begin
if (wr_rst_fwft_pkt_fifo)
wr_pkt_count <= 0;
else if (srst_delayed | wr_rst_busy | rd_rst_busy)
wr_pkt_count <= #`TCQ 0;
else if (wr_eop)
wr_pkt_count <= #`TCQ wr_pkt_count + 1;
end
end endgenerate // gpkt_fifo_fwft
assign DOUT = (C_FIFO_TYPE != 1) ? dout_fwft : dout_p0_out;
assign EMPTY = (C_FIFO_TYPE != 1) ? empty_fwft : empty_p0_out;
generate if (IS_FWFT == 1 && IS_PKT_FIFO == 1 && C_COMMON_CLOCK == 1) begin // grss_pkt_cnt
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft) begin
rd_pkt_count <= 0;
rd_pkt_count_plus1 <= 1;
end else if (srst_delayed | wr_rst_busy | rd_rst_busy) begin
rd_pkt_count <= #`TCQ 0;
rd_pkt_count_plus1 <= #`TCQ 1;
end else if (stage2_reg_en_i && stage1_eop) begin
rd_pkt_count <= #`TCQ rd_pkt_count + 1;
rd_pkt_count_plus1 <= #`TCQ rd_pkt_count_plus1 + 1;
end
end
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft) begin
ram_pkt_empty <= 1'b1;
ram_pkt_empty_d1 <= 1'b1;
end else if (SRST | wr_rst_busy | rd_rst_busy) begin
ram_pkt_empty <= #`TCQ 1'b1;
ram_pkt_empty_d1 <= #`TCQ 1'b1;
end else if ((rd_pkt_count == wr_pkt_count) && wr_eop) begin
ram_pkt_empty <= #`TCQ 1'b0;
ram_pkt_empty_d1 <= #`TCQ 1'b0;
end else if (ram_pkt_empty_d1 && rd_en_to_fwft_fifo) begin
ram_pkt_empty <= #`TCQ 1'b1;
end else if ((rd_pkt_count_plus1 == wr_pkt_count) && ~wr_eop && ~ALMOST_FULL_FIFO_OUT && ram_rd_en_compare) begin
ram_pkt_empty_d1 <= #`TCQ 1'b1;
end
end
end endgenerate //grss_pkt_cnt
localparam SYNC_STAGE_WIDTH = (C_SYNCHRONIZER_STAGE+1)*C_WR_PNTR_WIDTH;
reg [SYNC_STAGE_WIDTH-1:0] wr_pkt_count_q = 0;
reg [C_WR_PNTR_WIDTH-1:0] wr_pkt_count_b2g = 0;
wire [C_WR_PNTR_WIDTH-1:0] wr_pkt_count_rd;
generate if (IS_FWFT == 1 && IS_PKT_FIFO == 1 && C_COMMON_CLOCK == 0) begin // gras_pkt_cnt
// Delay the write packet count in write clock domain to accomodate the binary to gray conversion delay
always @ (posedge wr_rst_fwft_pkt_fifo or posedge WR_CLK) begin
if (wr_rst_fwft_pkt_fifo)
wr_pkt_count_b2g <= 0;
else
wr_pkt_count_b2g <= #`TCQ wr_pkt_count;
end
// Synchronize the delayed write packet count in read domain, and also compensate the gray to binay conversion delay
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft)
wr_pkt_count_q <= 0;
else
wr_pkt_count_q <= #`TCQ {wr_pkt_count_q[SYNC_STAGE_WIDTH-C_WR_PNTR_WIDTH-1:0],wr_pkt_count_b2g};
end
always @* begin
if (stage1_eop)
rd_pkt_count <= rd_pkt_count_reg + 1;
else
rd_pkt_count <= rd_pkt_count_reg;
end
assign wr_pkt_count_rd = wr_pkt_count_q[SYNC_STAGE_WIDTH-1:SYNC_STAGE_WIDTH-C_WR_PNTR_WIDTH];
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft)
rd_pkt_count_reg <= 0;
else if (rd_en_fifo_in)
rd_pkt_count_reg <= #`TCQ rd_pkt_count;
end
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft) begin
ram_pkt_empty <= 1'b1;
ram_pkt_empty_d1 <= 1'b1;
end else if (rd_pkt_count != wr_pkt_count_rd) begin
ram_pkt_empty <= #`TCQ 1'b0;
ram_pkt_empty_d1 <= #`TCQ 1'b0;
end else if (ram_pkt_empty_d1 && rd_en_to_fwft_fifo) begin
ram_pkt_empty <= #`TCQ 1'b1;
end else if ((rd_pkt_count == wr_pkt_count_rd) && stage2_reg_en_i) begin
ram_pkt_empty_d1 <= #`TCQ 1'b1;
end
end
// Synchronize the empty in write domain
always @ (posedge wr_rst_fwft_pkt_fifo or posedge WR_CLK) begin
if (wr_rst_fwft_pkt_fifo)
pkt_empty_sync <= 'b1;
else
pkt_empty_sync <= #`TCQ {pkt_empty_sync[C_SYNCHRONIZER_STAGE-2:0], empty_p0_out};
end
end endgenerate //gras_pkt_cnt
generate if (IS_FWFT == 0 || C_FIFO_TYPE == 3) begin : STD_FIFO
//***********************************************
// If NOT First-Word Fall-Through, wire the outputs
// of the internal _ss or _as FIFO directly to the
// output, and do not instantiate the preload0
// module.
//***********************************************
assign RD_CLK_P0_IN = 0;
assign RST_P0_IN = 0;
assign RD_EN_P0_IN = 0;
assign RD_EN_FIFO_IN = rd_en_delayed;
assign DOUT = DOUT_FIFO_OUT;
assign DATA_P0_IN = 0;
assign VALID = VALID_FIFO_OUT;
assign EMPTY = EMPTY_FIFO_OUT;
assign ALMOST_EMPTY = ALMOST_EMPTY_FIFO_OUT;
assign EMPTY_P0_IN = 0;
assign UNDERFLOW = UNDERFLOW_FIFO_OUT;
assign DATA_COUNT = DATA_COUNT_FIFO_OUT;
assign SBITERR = sbiterr_fifo_out;
assign DBITERR = dbiterr_fifo_out;
end endgenerate // STD_FIFO
generate if (IS_FWFT == 1 && C_FIFO_TYPE != 1) begin : NO_PKT_FIFO
assign empty_p0_out = empty_fwft;
assign SBITERR = sbiterr_fwft;
assign DBITERR = dbiterr_fwft;
assign DOUT = dout_fwft;
assign RD_EN_P0_IN = (C_FIFO_TYPE != 1) ? rd_en_delayed : rd_en_to_fwft_fifo;
end endgenerate // NO_PKT_FIFO
//***********************************************
// Connect user flags to internal signals
//***********************************************
//If we are using extra logic for the FWFT data count, then override the
//RD_DATA_COUNT output when we are EMPTY or ALMOST_EMPTY.
//RD_DATA_COUNT is 0 when EMPTY and 1 when ALMOST_EMPTY.
generate
if (C_USE_FWFT_DATA_COUNT==1 && (C_RD_DATA_COUNT_WIDTH>C_RD_PNTR_WIDTH) && (C_USE_EMBEDDED_REG < 3) ) begin : block3
if (C_COMMON_CLOCK == 0) begin : block_ic
assign RD_DATA_COUNT = (EMPTY_P0_OUT_Q | RST_P0_IN) ? 0 : (ALMOSTEMPTY_P0_OUT_Q ? 1 : RD_DATA_COUNT_FIFO_OUT);
end //block_ic
else begin
assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT;
end
end //block3
endgenerate
//If we are using extra logic for the FWFT data count, then override the
//RD_DATA_COUNT output when we are EMPTY or ALMOST_EMPTY.
//Due to asymmetric ports, RD_DATA_COUNT is 0 when EMPTY or ALMOST_EMPTY.
generate
if (C_USE_FWFT_DATA_COUNT==1 && (C_RD_DATA_COUNT_WIDTH <=C_RD_PNTR_WIDTH) && (C_USE_EMBEDDED_REG < 3) ) begin : block30
if (C_COMMON_CLOCK == 0) begin : block_ic
assign RD_DATA_COUNT = (EMPTY_P0_OUT_Q | RST_P0_IN) ? 0 : (ALMOSTEMPTY_P0_OUT_Q ? 0 : RD_DATA_COUNT_FIFO_OUT);
end
else begin
assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT;
end
end //block30
endgenerate
//If we are using extra logic for the FWFT data count, then override the
//RD_DATA_COUNT output when we are EMPTY or ALMOST_EMPTY.
//Due to asymmetric ports, RD_DATA_COUNT is 0 when EMPTY or ALMOST_EMPTY.
generate
if (C_USE_FWFT_DATA_COUNT==1 && (C_RD_DATA_COUNT_WIDTH <=C_RD_PNTR_WIDTH) && (C_USE_EMBEDDED_REG == 3) ) begin : block30_both
if (C_COMMON_CLOCK == 0) begin : block_ic_both
assign RD_DATA_COUNT = (EMPTY_P0_OUT_Q | RST_P0_IN) ? 0 : (ALMOSTEMPTY_P0_OUT_Q ? 0 : (RD_DATA_COUNT_FIFO_OUT));
end
else begin
assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT;
end
end //block30_both
endgenerate
generate
if (C_USE_FWFT_DATA_COUNT==1 && (C_RD_DATA_COUNT_WIDTH>C_RD_PNTR_WIDTH) && (C_USE_EMBEDDED_REG == 3) ) begin : block3_both
if (C_COMMON_CLOCK == 0) begin : block_ic_both
assign RD_DATA_COUNT = (EMPTY_P0_OUT_Q | RST_P0_IN) ? 0 : (ALMOSTEMPTY_P0_OUT_Q ? 1 : (RD_DATA_COUNT_FIFO_OUT));
end //block_ic_both
else begin
assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT;
end
end //block3_both
endgenerate
//If we are not using extra logic for the FWFT data count,
//then connect RD_DATA_COUNT to the RD_DATA_COUNT from the
//internal FIFO instance
generate
if (C_USE_FWFT_DATA_COUNT==0 ) begin : block31
assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT;
end
endgenerate
//Always connect WR_DATA_COUNT to the WR_DATA_COUNT from the internal
//FIFO instance
generate
if (C_USE_FWFT_DATA_COUNT==1) begin : block4
assign WR_DATA_COUNT = WR_DATA_COUNT_FIFO_OUT;
end
else begin : block4
assign WR_DATA_COUNT = WR_DATA_COUNT_FIFO_OUT;
end
endgenerate
//Connect other flags to the internal FIFO instance
assign FULL = FULL_FIFO_OUT;
assign ALMOST_FULL = ALMOST_FULL_FIFO_OUT;
assign WR_ACK = WR_ACK_FIFO_OUT;
assign OVERFLOW = OVERFLOW_FIFO_OUT;
assign PROG_FULL = PROG_FULL_FIFO_OUT;
assign PROG_EMPTY = PROG_EMPTY_FIFO_OUT;
/**************************************************************************
* find_log2
* Returns the 'log2' value for the input value for the supported ratios
***************************************************************************/
function integer find_log2;
input integer int_val;
integer i,j;
begin
i = 1;
j = 0;
for (i = 1; i < int_val; i = i*2) begin
j = j + 1;
end
find_log2 = j;
end
endfunction
// if an asynchronous FIFO has been selected, display a message that the FIFO
// will not be cycle-accurate in simulation
initial begin
if (C_IMPLEMENTATION_TYPE == 2) begin
$display("WARNING: Behavioral models for independent clock FIFO configurations do not model synchronization delays. The behavioral models are functionally correct, and will represent the behavior of the configured FIFO. See the FIFO Generator User Guide for more information.");
end else if (C_MEMORY_TYPE == 4) begin
$display("FAILURE : Behavioral models do not support built-in FIFO configurations. Please use post-synthesis or post-implement simulation in Vivado.");
$finish;
end
if (C_WR_PNTR_WIDTH != find_log2(C_WR_DEPTH)) begin
$display("FAILURE : C_WR_PNTR_WIDTH is not log2 of C_WR_DEPTH.");
$finish;
end
if (C_RD_PNTR_WIDTH != find_log2(C_RD_DEPTH)) begin
$display("FAILURE : C_RD_PNTR_WIDTH is not log2 of C_RD_DEPTH.");
$finish;
end
if (C_USE_ECC == 1) begin
if (C_DIN_WIDTH != C_DOUT_WIDTH) begin
$display("FAILURE : C_DIN_WIDTH and C_DOUT_WIDTH must be equal for ECC configuration.");
$finish;
end
if (C_DIN_WIDTH == 1 && C_ERROR_INJECTION_TYPE > 1) begin
$display("FAILURE : C_DIN_WIDTH and C_DOUT_WIDTH must be > 1 for double bit error injection.");
$finish;
end
end
end //initial
/**************************************************************************
* Internal reset logic
**************************************************************************/
assign wr_rst_i = (C_HAS_RST == 1 || C_ENABLE_RST_SYNC == 0) ? wr_rst_reg : 0;
assign rd_rst_i = (C_HAS_RST == 1 || C_ENABLE_RST_SYNC == 0) ? rd_rst_reg : 0;
assign rst_i = C_HAS_RST ? rst_reg : 0;
wire rst_2_sync;
wire rst_2_sync_safety = (C_ENABLE_RST_SYNC == 1) ? RST : RD_RST;
wire clk_2_sync = (C_COMMON_CLOCK == 1) ? CLK : WR_CLK;
wire clk_2_sync_safety = (C_COMMON_CLOCK == 1) ? CLK : RD_CLK;
generate
if (C_EN_SAFETY_CKT == 1 && C_INTERFACE_TYPE == 0) begin : grst_safety_ckt
reg[1:0] rst_d1_safety =1;
reg[1:0] rst_d2_safety =1;
reg[1:0] rst_d3_safety =1;
reg[1:0] rst_d4_safety =1;
reg[1:0] rst_d5_safety =1;
reg[1:0] rst_d6_safety =1;
reg[1:0] rst_d7_safety =1;
always@(posedge rst_2_sync_safety or posedge clk_2_sync_safety) begin : prst
if (rst_2_sync_safety == 1'b1) begin
rst_d1_safety <= 1'b1;
rst_d2_safety <= 1'b1;
rst_d3_safety <= 1'b1;
rst_d4_safety <= 1'b1;
rst_d5_safety <= 1'b1;
rst_d6_safety <= 1'b1;
rst_d7_safety <= 1'b1;
end
else begin
rst_d1_safety <= #`TCQ 1'b0;
rst_d2_safety <= #`TCQ rst_d1_safety;
rst_d3_safety <= #`TCQ rst_d2_safety;
rst_d4_safety <= #`TCQ rst_d3_safety;
rst_d5_safety <= #`TCQ rst_d4_safety;
rst_d6_safety <= #`TCQ rst_d5_safety;
rst_d7_safety <= #`TCQ rst_d6_safety;
end //if
end //prst
always@(posedge rst_d7_safety or posedge WR_EN) begin : assert_safety
if(rst_d7_safety == 1 && WR_EN == 1) begin
$display("WARNING:A write attempt has been made within the 7 clock cycles of reset de-assertion. This can lead to data discrepancy when safety circuit is enabled.");
end //if
end //always
end // grst_safety_ckt
endgenerate
// if (C_EN_SAFET_CKT == 1)
// assertion:the reset shud be atleast 3 cycles wide.
generate
if (C_ENABLE_RST_SYNC == 0) begin : gnrst_sync
always @* begin
wr_rst_reg <= wr_rst_delayed;
rd_rst_reg <= rd_rst_delayed;
rst_reg <= 1'b0;
srst_reg <= 1'b0;
end
assign rst_2_sync = wr_rst_delayed;
assign wr_rst_busy = 1'b0;
assign rd_rst_busy = 1'b0;
end else if (C_HAS_RST == 1 && C_COMMON_CLOCK == 0) begin : g7s_ic_rst
assign wr_rst_comb = !wr_rst_asreg_d2 && wr_rst_asreg;
assign rd_rst_comb = !rd_rst_asreg_d2 && rd_rst_asreg;
assign rst_2_sync = rst_delayed;
assign wr_rst_busy = 1'b0;
assign rd_rst_busy = 1'b0;
always @(posedge WR_CLK or posedge rst_delayed) begin
if (rst_delayed == 1'b1) begin
wr_rst_asreg <= #`TCQ 1'b1;
end else begin
if (wr_rst_asreg_d1 == 1'b1) begin
wr_rst_asreg <= #`TCQ 1'b0;
end else begin
wr_rst_asreg <= #`TCQ wr_rst_asreg;
end
end
end
always @(posedge WR_CLK) begin
wr_rst_asreg_d1 <= #`TCQ wr_rst_asreg;
wr_rst_asreg_d2 <= #`TCQ wr_rst_asreg_d1;
end
always @(posedge WR_CLK or posedge wr_rst_comb) begin
if (wr_rst_comb == 1'b1) begin
wr_rst_reg <= #`TCQ 1'b1;
end else begin
wr_rst_reg <= #`TCQ 1'b0;
end
end
always @(posedge RD_CLK or posedge rst_delayed) begin
if (rst_delayed == 1'b1) begin
rd_rst_asreg <= #`TCQ 1'b1;
end else begin
if (rd_rst_asreg_d1 == 1'b1) begin
rd_rst_asreg <= #`TCQ 1'b0;
end else begin
rd_rst_asreg <= #`TCQ rd_rst_asreg;
end
end
end
always @(posedge RD_CLK) begin
rd_rst_asreg_d1 <= #`TCQ rd_rst_asreg;
rd_rst_asreg_d2 <= #`TCQ rd_rst_asreg_d1;
end
always @(posedge RD_CLK or posedge rd_rst_comb) begin
if (rd_rst_comb == 1'b1) begin
rd_rst_reg <= #`TCQ 1'b1;
end else begin
rd_rst_reg <= #`TCQ 1'b0;
end
end
end else if (C_HAS_RST == 1 && C_COMMON_CLOCK == 1) begin : g7s_cc_rst
assign rst_comb = !rst_asreg_d2 && rst_asreg;
assign rst_2_sync = rst_delayed;
assign wr_rst_busy = 1'b0;
assign rd_rst_busy = 1'b0;
always @(posedge CLK or posedge rst_delayed) begin
if (rst_delayed == 1'b1) begin
rst_asreg <= #`TCQ 1'b1;
end else begin
if (rst_asreg_d1 == 1'b1) begin
rst_asreg <= #`TCQ 1'b0;
end else begin
rst_asreg <= #`TCQ rst_asreg;
end
end
end
always @(posedge CLK) begin
rst_asreg_d1 <= #`TCQ rst_asreg;
rst_asreg_d2 <= #`TCQ rst_asreg_d1;
end
always @(posedge CLK or posedge rst_comb) begin
if (rst_comb == 1'b1) begin
rst_reg <= #`TCQ 1'b1;
end else begin
rst_reg <= #`TCQ 1'b0;
end
end
end else if (IS_8SERIES == 1 && C_HAS_SRST == 1 && C_COMMON_CLOCK == 1) begin : g8s_cc_rst
assign wr_rst_busy = (C_MEMORY_TYPE != 4) ? rst_reg : rst_active_i;
assign rd_rst_busy = rst_reg;
assign rst_2_sync = srst_delayed;
always @* rst_full_ff_i <= rst_reg;
always @* rst_full_gen_i <= C_FULL_FLAGS_RST_VAL == 1 ? rst_active_i : 0;
always @(posedge CLK) begin
rst_delayed_d1 <= #`TCQ srst_delayed;
rst_delayed_d2 <= #`TCQ rst_delayed_d1;
if (rst_reg || rst_delayed_d2) begin
rst_active_i <= #`TCQ 1'b1;
end else begin
rst_active_i <= #`TCQ rst_reg;
end
end
always @(posedge CLK) begin
if (~rst_reg && srst_delayed) begin
rst_reg <= #`TCQ 1'b1;
end else if (rst_reg) begin
rst_reg <= #`TCQ 1'b0;
end else begin
rst_reg <= #`TCQ rst_reg;
end
end
end else begin
assign wr_rst_busy = 1'b0;
assign rd_rst_busy = 1'b0;
end
// end g8s_cc_rst
endgenerate
reg rst_d1 = 1'b0;
reg rst_d2 = 1'b0;
reg rst_d3 = 1'b0;
reg rst_d4 = 1'b0;
reg rst_d5 = 1'b0;
reg rst_d6 = 1'b0;
reg rst_d7 = 1'b0;
generate
if ((C_HAS_RST == 1 || C_HAS_SRST == 1 || C_ENABLE_RST_SYNC == 0) && C_FULL_FLAGS_RST_VAL == 1 && C_INTERFACE_TYPE == 0) begin : grstd1
// RST_FULL_GEN replaces the reset falling edge detection used to de-assert
// FULL, ALMOST_FULL & PROG_FULL flags if C_FULL_FLAGS_RST_VAL = 1.
// RST_FULL_FF goes to the reset pin of the final flop of FULL, ALMOST_FULL &
// PROG_FULL
always @ (posedge rst_2_sync or posedge clk_2_sync) begin
if (rst_2_sync) begin
rst_d1 <= 1'b1;
rst_d2 <= 1'b1;
rst_d3 <= 1'b1;
rst_d4 <= 1'b1;
rst_d5 <= 1'b1;
rst_d6 <= 1'b1;
rst_d7 <= 1'b1;
end else begin
if (srst_delayed) begin
rst_d1 <= #`TCQ 1'b1;
rst_d2 <= #`TCQ 1'b1;
rst_d3 <= #`TCQ 1'b1;
rst_d4 <= #`TCQ 1'b1;
rst_d5 <= #`TCQ 1'b1;
rst_d6 <= #`TCQ 1'b1;
rst_d7 <= #`TCQ 1'b1;
end else begin
rst_d1 <= #`TCQ 1'b0;
rst_d2 <= #`TCQ rst_d1;
rst_d3 <= #`TCQ rst_d2;
rst_d4 <= #`TCQ rst_d3;
rst_d5 <= #`TCQ rst_d4;
rst_d6 <= #`TCQ rst_d5;
rst_d7 <= #`TCQ rst_d6;
end
end
end
always @* rst_full_ff_i <= (C_HAS_SRST == 0 && C_EN_SAFETY_CKT == 0) ? rst_d2 : (C_HAS_SRST == 0 && C_EN_SAFETY_CKT == 1) ? rst_d6 : 1'b0 ;
//always @* rst_full_gen_i <= rst_d4;
always @* rst_full_gen_i <= (C_HAS_SRST == 1) ? rst_d4 : (C_EN_SAFETY_CKT == 0) ? rst_d3 : rst_d7;
end else if ((C_HAS_RST == 1 || C_HAS_SRST == 1 || C_ENABLE_RST_SYNC == 0) && C_FULL_FLAGS_RST_VAL == 0 && C_INTERFACE_TYPE == 0) begin : gnrst_full
always @* rst_full_ff_i <= (C_COMMON_CLOCK == 0) ? wr_rst_i : rst_i;
end
endgenerate // grstd1
generate
if ((C_HAS_RST == 1 || C_HAS_SRST == 1 || C_ENABLE_RST_SYNC == 0) && C_FULL_FLAGS_RST_VAL == 1 && C_INTERFACE_TYPE > 0) begin : grstd1_axis
// RST_FULL_GEN replaces the reset falling edge detection used to de-assert
// FULL, ALMOST_FULL & PROG_FULL flags if C_FULL_FLAGS_RST_VAL = 1.
// RST_FULL_FF goes to the reset pin of the final flop of FULL, ALMOST_FULL &
// PROG_FULL
always @ (posedge rst_2_sync or posedge clk_2_sync) begin
if (rst_2_sync) begin
rst_d1 <= 1'b1;
rst_d2 <= 1'b1;
rst_d3 <= 1'b1;
rst_d4 <= 1'b1;
rst_d5 <= 1'b1;
rst_d6 <= 1'b1;
rst_d7 <= 1'b1;
end else begin
if (srst_delayed) begin
rst_d1 <= #`TCQ 1'b1;
rst_d2 <= #`TCQ 1'b1;
rst_d3 <= #`TCQ 1'b1;
rst_d4 <= #`TCQ 1'b1;
rst_d5 <= #`TCQ 1'b1;
rst_d6 <= #`TCQ 1'b1;
rst_d7 <= #`TCQ 1'b1;
end else begin
rst_d1 <= #`TCQ 1'b0;
rst_d2 <= #`TCQ rst_d1;
rst_d3 <= #`TCQ rst_d2;
rst_d4 <= #`TCQ rst_d3;
rst_d5 <= #`TCQ rst_d4;
rst_d6 <= #`TCQ rst_d5;
rst_d7 <= #`TCQ rst_d6;
end
end
end
always @* rst_full_ff_i <= (C_HAS_SRST == 0) ? rst_d2 : 1'b0 ;
//always @* rst_full_gen_i <= rst_d4;
always @* rst_full_gen_i <= (C_HAS_SRST == 1) ? rst_d4 : (C_EN_SAFETY_CKT == 0) ? rst_d3 : rst_d5;
end else if ((C_HAS_RST == 1 || C_HAS_SRST == 1 || C_ENABLE_RST_SYNC == 0) && C_FULL_FLAGS_RST_VAL == 0 && C_INTERFACE_TYPE > 0) begin : gnrst_full_axis
always @* rst_full_ff_i <= (C_COMMON_CLOCK == 0) ? wr_rst_i : rst_i;
end
endgenerate // grstd1_axis
endmodule //fifo_generator_v13_1_1_CONV_VER
module fifo_generator_v13_1_1_sync_stage
#(
parameter C_WIDTH = 10
)
(
input RST,
input CLK,
input [C_WIDTH-1:0] DIN,
output reg [C_WIDTH-1:0] DOUT = 0
);
always @ (posedge RST or posedge CLK) begin
if (RST)
DOUT <= 0;
else
DOUT <= #`TCQ DIN;
end
endmodule // fifo_generator_v13_1_1_sync_stage
/*******************************************************************************
* Declaration of Independent-Clocks FIFO Module
******************************************************************************/
module fifo_generator_v13_1_1_bhv_ver_as
/***************************************************************************
* Declare user parameters and their defaults
***************************************************************************/
#(
parameter C_FAMILY = "virtex7",
parameter C_DATA_COUNT_WIDTH = 2,
parameter C_DIN_WIDTH = 8,
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_FULL_FLAGS_RST_VAL = 1,
parameter C_HAS_ALMOST_EMPTY = 0,
parameter C_HAS_ALMOST_FULL = 0,
parameter C_HAS_DATA_COUNT = 0,
parameter C_HAS_OVERFLOW = 0,
parameter C_HAS_RD_DATA_COUNT = 0,
parameter C_HAS_RST = 0,
parameter C_HAS_UNDERFLOW = 0,
parameter C_HAS_VALID = 0,
parameter C_HAS_WR_ACK = 0,
parameter C_HAS_WR_DATA_COUNT = 0,
parameter C_IMPLEMENTATION_TYPE = 0,
parameter C_MEMORY_TYPE = 1,
parameter C_OVERFLOW_LOW = 0,
parameter C_PRELOAD_LATENCY = 1,
parameter C_PRELOAD_REGS = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0,
parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0,
parameter C_PROG_EMPTY_TYPE = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0,
parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0,
parameter C_PROG_FULL_TYPE = 0,
parameter C_RD_DATA_COUNT_WIDTH = 2,
parameter C_RD_DEPTH = 256,
parameter C_RD_PNTR_WIDTH = 8,
parameter C_UNDERFLOW_LOW = 0,
parameter C_USE_DOUT_RST = 0,
parameter C_USE_EMBEDDED_REG = 0,
parameter C_EN_SAFETY_CKT = 0,
parameter C_USE_FWFT_DATA_COUNT = 0,
parameter C_VALID_LOW = 0,
parameter C_WR_ACK_LOW = 0,
parameter C_WR_DATA_COUNT_WIDTH = 2,
parameter C_WR_DEPTH = 256,
parameter C_WR_PNTR_WIDTH = 8,
parameter C_USE_ECC = 0,
parameter C_ENABLE_RST_SYNC = 1,
parameter C_ERROR_INJECTION_TYPE = 0,
parameter C_SYNCHRONIZER_STAGE = 2
)
/***************************************************************************
* Declare Input and Output Ports
***************************************************************************/
(
input [C_DIN_WIDTH-1:0] DIN,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE,
input RD_CLK,
input RD_EN,
input RD_EN_USER,
input RST,
input RST_FULL_GEN,
input RST_FULL_FF,
input WR_RST,
input RD_RST,
input WR_CLK,
input WR_EN,
input INJECTDBITERR,
input INJECTSBITERR,
input USER_EMPTY_FB,
input fab_read_data_valid_i,
input read_data_valid_i,
input ram_valid_i,
output reg ALMOST_EMPTY = 1'b1,
output reg ALMOST_FULL = C_FULL_FLAGS_RST_VAL,
output [C_DOUT_WIDTH-1:0] DOUT,
output reg EMPTY = 1'b1,
output reg FULL = C_FULL_FLAGS_RST_VAL,
output OVERFLOW,
output PROG_EMPTY,
output PROG_FULL,
output VALID,
output [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT,
output UNDERFLOW,
output WR_ACK,
output [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT,
output SBITERR,
output DBITERR
);
reg [C_RD_PNTR_WIDTH:0] rd_data_count_int = 0;
reg [C_WR_PNTR_WIDTH:0] wr_data_count_int = 0;
reg [C_WR_PNTR_WIDTH:0] wdc_fwft_ext_as = 0;
/***************************************************************************
* Parameters used as constants
**************************************************************************/
localparam IS_8SERIES = (C_FAMILY == "virtexu" || C_FAMILY == "kintexu" || C_FAMILY == "artixu" || C_FAMILY == "virtexuplus" || C_FAMILY == "zynquplus" || C_FAMILY == "kintexuplus") ? 1 : 0;
//When RST is present, set FULL reset value to '1'.
//If core has no RST, make sure FULL powers-on as '0'.
localparam C_DEPTH_RATIO_WR =
(C_WR_DEPTH>C_RD_DEPTH) ? (C_WR_DEPTH/C_RD_DEPTH) : 1;
localparam C_DEPTH_RATIO_RD =
(C_RD_DEPTH>C_WR_DEPTH) ? (C_RD_DEPTH/C_WR_DEPTH) : 1;
localparam C_FIFO_WR_DEPTH = C_WR_DEPTH - 1;
localparam C_FIFO_RD_DEPTH = C_RD_DEPTH - 1;
// C_DEPTH_RATIO_WR | C_DEPTH_RATIO_RD | C_PNTR_WIDTH | EXTRA_WORDS_DC
// -----------------|------------------|-----------------|---------------
// 1 | 8 | C_RD_PNTR_WIDTH | 2
// 1 | 4 | C_RD_PNTR_WIDTH | 2
// 1 | 2 | C_RD_PNTR_WIDTH | 2
// 1 | 1 | C_WR_PNTR_WIDTH | 2
// 2 | 1 | C_WR_PNTR_WIDTH | 4
// 4 | 1 | C_WR_PNTR_WIDTH | 8
// 8 | 1 | C_WR_PNTR_WIDTH | 16
localparam C_PNTR_WIDTH = (C_WR_PNTR_WIDTH>=C_RD_PNTR_WIDTH) ? C_WR_PNTR_WIDTH : C_RD_PNTR_WIDTH;
wire [C_PNTR_WIDTH:0] EXTRA_WORDS_DC = (C_DEPTH_RATIO_WR == 1) ? 2 : (2 * C_DEPTH_RATIO_WR/C_DEPTH_RATIO_RD);
localparam [31:0] reads_per_write = C_DIN_WIDTH/C_DOUT_WIDTH;
localparam [31:0] log2_reads_per_write = log2_val(reads_per_write);
localparam [31:0] writes_per_read = C_DOUT_WIDTH/C_DIN_WIDTH;
localparam [31:0] log2_writes_per_read = log2_val(writes_per_read);
/**************************************************************************
* FIFO Contents Tracking and Data Count Calculations
*************************************************************************/
// Memory which will be used to simulate a FIFO
reg [C_DIN_WIDTH-1:0] memory[C_WR_DEPTH-1:0];
// Local parameters used to determine whether to inject ECC error or not
localparam SYMMETRIC_PORT = (C_DIN_WIDTH == C_DOUT_WIDTH) ? 1 : 0;
localparam ERR_INJECTION = (C_ERROR_INJECTION_TYPE != 0) ? 1 : 0;
localparam C_USE_ECC_1 = (C_USE_ECC == 1 || C_USE_ECC ==2) ? 1:0;
localparam ENABLE_ERR_INJECTION = C_USE_ECC_1 && SYMMETRIC_PORT && ERR_INJECTION;
// Array that holds the error injection type (single/double bit error) on
// a specific write operation, which is returned on read to corrupt the
// output data.
reg [1:0] ecc_err[C_WR_DEPTH-1:0];
//The amount of data stored in the FIFO at any time is given
// by num_wr_bits (in the WR_CLK domain) and num_rd_bits (in the RD_CLK
// domain.
//num_wr_bits is calculated by considering the total words in the FIFO,
// and the state of the read pointer (which may not have yet crossed clock
// domains.)
//num_rd_bits is calculated by considering the total words in the FIFO,
// and the state of the write pointer (which may not have yet crossed clock
// domains.)
reg [31:0] num_wr_bits;
reg [31:0] num_rd_bits;
reg [31:0] next_num_wr_bits;
reg [31:0] next_num_rd_bits;
//The write pointer - tracks write operations
// (Works opposite to core: wr_ptr is a DOWN counter)
reg [31:0] wr_ptr;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr = 0; // UP counter: Rolls back to 0 when reaches to max value.
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd1 = 0;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd2 = 0;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd3 = 0;
wire [C_RD_PNTR_WIDTH-1:0] adj_wr_pntr_rd;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd = 0;
wire wr_rst_i = WR_RST;
reg wr_rst_d1 =0;
//The read pointer - tracks read operations
// (rd_ptr Works opposite to core: rd_ptr is a DOWN counter)
reg [31:0] rd_ptr;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr = 0; // UP counter: Rolls back to 0 when reaches to max value.
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr1 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr2 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr3 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr4 = 0;
wire [C_WR_PNTR_WIDTH-1:0] adj_rd_pntr_wr;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr = 0;
wire rd_rst_i = RD_RST;
wire ram_rd_en;
wire empty_int;
wire almost_empty_int;
wire ram_wr_en;
wire full_int;
wire almost_full_int;
reg ram_rd_en_d1 = 1'b0;
reg fab_rd_en_d1 = 1'b0;
// Delayed ram_rd_en is needed only for STD Embedded register option
generate
if (C_PRELOAD_LATENCY == 2) begin : grd_d
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i)
ram_rd_en_d1 <= #`TCQ 1'b0;
else
ram_rd_en_d1 <= #`TCQ ram_rd_en;
end
end
endgenerate
generate
if (C_PRELOAD_LATENCY == 2 && C_USE_EMBEDDED_REG == 3) begin : grd_d1
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i)
ram_rd_en_d1 <= #`TCQ 1'b0;
else
ram_rd_en_d1 <= #`TCQ ram_rd_en;
fab_rd_en_d1 <= #`TCQ ram_rd_en_d1;
end
end
endgenerate
// Write pointer adjustment based on pointers width for EMPTY/ALMOST_EMPTY generation
generate
if (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) begin : rdg // Read depth greater than write depth
assign adj_wr_pntr_rd[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr_rd;
assign adj_wr_pntr_rd[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1:0] = 0;
end else begin : rdl // Read depth lesser than or equal to write depth
assign adj_wr_pntr_rd = wr_pntr_rd[C_WR_PNTR_WIDTH-1:C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH];
end
endgenerate
// Generate Empty and Almost Empty
// ram_rd_en used to determine EMPTY should depend on the EMPTY.
assign ram_rd_en = RD_EN & !EMPTY;
assign empty_int = ((adj_wr_pntr_rd == rd_pntr) || (ram_rd_en && (adj_wr_pntr_rd == (rd_pntr+1'h1))));
assign almost_empty_int = ((adj_wr_pntr_rd == (rd_pntr+1'h1)) || (ram_rd_en && (adj_wr_pntr_rd == (rd_pntr+2'h2))));
// Register Empty and Almost Empty
always @ (posedge RD_CLK or posedge rd_rst_i)
begin
if (rd_rst_i) begin
EMPTY <= #`TCQ 1'b1;
ALMOST_EMPTY <= #`TCQ 1'b1;
rd_data_count_int <= #`TCQ {C_RD_PNTR_WIDTH{1'b0}};
end else begin
rd_data_count_int <= #`TCQ {(adj_wr_pntr_rd[C_RD_PNTR_WIDTH-1:0] - rd_pntr[C_RD_PNTR_WIDTH-1:0]), 1'b0};
if (empty_int)
EMPTY <= #`TCQ 1'b1;
else
EMPTY <= #`TCQ 1'b0;
if (!EMPTY) begin
if (almost_empty_int)
ALMOST_EMPTY <= #`TCQ 1'b1;
else
ALMOST_EMPTY <= #`TCQ 1'b0;
end
end // rd_rst_i
end // always
// Read pointer adjustment based on pointers width for EMPTY/ALMOST_EMPTY generation
generate
if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : wdg // Write depth greater than read depth
assign adj_rd_pntr_wr[C_WR_PNTR_WIDTH-1:C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH] = rd_pntr_wr;
assign adj_rd_pntr_wr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1:0] = 0;
end else begin : wdl // Write depth lesser than or equal to read depth
assign adj_rd_pntr_wr = rd_pntr_wr[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH];
end
endgenerate
// Generate FULL and ALMOST_FULL
// ram_wr_en used to determine FULL should depend on the FULL.
assign ram_wr_en = WR_EN & !FULL;
assign full_int = ((adj_rd_pntr_wr == (wr_pntr+1'h1)) || (ram_wr_en && (adj_rd_pntr_wr == (wr_pntr+2'h2))));
assign almost_full_int = ((adj_rd_pntr_wr == (wr_pntr+2'h2)) || (ram_wr_en && (adj_rd_pntr_wr == (wr_pntr+3'h3))));
// Register FULL and ALMOST_FULL Empty
always @ (posedge WR_CLK or posedge RST_FULL_FF)
begin
if (RST_FULL_FF) begin
FULL <= #`TCQ C_FULL_FLAGS_RST_VAL;
ALMOST_FULL <= #`TCQ C_FULL_FLAGS_RST_VAL;
end else begin
if (full_int) begin
FULL <= #`TCQ 1'b1;
end else begin
FULL <= #`TCQ 1'b0;
end
if (RST_FULL_GEN) begin
ALMOST_FULL <= #`TCQ 1'b0;
end else if (!FULL) begin
if (almost_full_int)
ALMOST_FULL <= #`TCQ 1'b1;
else
ALMOST_FULL <= #`TCQ 1'b0;
end
end // wr_rst_i
end // always
always @ (posedge WR_CLK or posedge wr_rst_i)
begin
if (wr_rst_i) begin
wr_data_count_int <= #`TCQ {C_WR_DATA_COUNT_WIDTH{1'b0}};
end else begin
wr_data_count_int <= #`TCQ {(wr_pntr[C_WR_PNTR_WIDTH-1:0] - adj_rd_pntr_wr[C_WR_PNTR_WIDTH-1:0]), 1'b0};
end // wr_rst_i
end // always
// Determine which stage in FWFT registers are valid
reg stage1_valid = 0;
reg stage2_valid = 0;
generate
if (C_PRELOAD_LATENCY == 0) begin : grd_fwft_proc
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
stage1_valid <= #`TCQ 0;
stage2_valid <= #`TCQ 0;
end else begin
if (!stage1_valid && !stage2_valid) begin
if (!EMPTY)
stage1_valid <= #`TCQ 1'b1;
else
stage1_valid <= #`TCQ 1'b0;
end else if (stage1_valid && !stage2_valid) begin
if (EMPTY) begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b1;
end else begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b1;
end
end else if (!stage1_valid && stage2_valid) begin
if (EMPTY && RD_EN_USER) begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b0;
end else if (!EMPTY && RD_EN_USER) begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b0;
end else if (!EMPTY && !RD_EN_USER) begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b1;
end else begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b1;
end
end else if (stage1_valid && stage2_valid) begin
if (EMPTY && RD_EN_USER) begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b1;
end else begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b1;
end
end else begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b0;
end
end // rd_rst_i
end // always
end
endgenerate
//Pointers passed into opposite clock domain
reg [31:0] wr_ptr_rdclk;
reg [31:0] wr_ptr_rdclk_next;
reg [31:0] rd_ptr_wrclk;
reg [31:0] rd_ptr_wrclk_next;
//Amount of data stored in the FIFO scaled to the narrowest (deepest) port
// (Do not include data in FWFT stages)
//Used to calculate PROG_EMPTY.
wire [31:0] num_read_words_pe =
num_rd_bits/(C_DOUT_WIDTH/C_DEPTH_RATIO_WR);
//Amount of data stored in the FIFO scaled to the narrowest (deepest) port
// (Do not include data in FWFT stages)
//Used to calculate PROG_FULL.
wire [31:0] num_write_words_pf =
num_wr_bits/(C_DIN_WIDTH/C_DEPTH_RATIO_RD);
/**************************
* Read Data Count
*************************/
reg [31:0] num_read_words_dc;
reg [C_RD_DATA_COUNT_WIDTH-1:0] num_read_words_sized_i;
always @(num_rd_bits) begin
if (C_USE_FWFT_DATA_COUNT) begin
//If using extra logic for FWFT Data Counts,
// then scale FIFO contents to read domain,
// and add two read words for FWFT stages
//This value is only a temporary value and not used in the code.
num_read_words_dc = (num_rd_bits/C_DOUT_WIDTH+2);
//Trim the read words for use with RD_DATA_COUNT
num_read_words_sized_i =
num_read_words_dc[C_RD_PNTR_WIDTH : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH+1];
end else begin
//If not using extra logic for FWFT Data Counts,
// then scale FIFO contents to read domain.
//This value is only a temporary value and not used in the code.
num_read_words_dc = num_rd_bits/C_DOUT_WIDTH;
//Trim the read words for use with RD_DATA_COUNT
num_read_words_sized_i =
num_read_words_dc[C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH];
end //if (C_USE_FWFT_DATA_COUNT)
end //always
/**************************
* Write Data Count
*************************/
reg [31:0] num_write_words_dc;
reg [C_WR_DATA_COUNT_WIDTH-1:0] num_write_words_sized_i;
always @(num_wr_bits) begin
if (C_USE_FWFT_DATA_COUNT) begin
//Calculate the Data Count value for the number of write words,
// when using First-Word Fall-Through with extra logic for Data
// Counts. This takes into consideration the number of words that
// are expected to be stored in the FWFT register stages (it always
// assumes they are filled).
//This value is scaled to the Write Domain.
//The expression (((A-1)/B))+1 divides A/B, but takes the
// ceiling of the result.
//When num_wr_bits==0, set the result manually to prevent
// division errors.
//EXTRA_WORDS_DC is the number of words added to write_words
// due to FWFT.
//This value is only a temporary value and not used in the code.
num_write_words_dc = (num_wr_bits==0) ? EXTRA_WORDS_DC : (((num_wr_bits-1)/C_DIN_WIDTH)+1) + EXTRA_WORDS_DC ;
//Trim the write words for use with WR_DATA_COUNT
num_write_words_sized_i =
num_write_words_dc[C_WR_PNTR_WIDTH : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH+1];
end else begin
//Calculate the Data Count value for the number of write words, when NOT
// using First-Word Fall-Through with extra logic for Data Counts. This
// calculates only the number of words in the internal FIFO.
//The expression (((A-1)/B))+1 divides A/B, but takes the
// ceiling of the result.
//This value is scaled to the Write Domain.
//When num_wr_bits==0, set the result manually to prevent
// division errors.
//This value is only a temporary value and not used in the code.
num_write_words_dc = (num_wr_bits==0) ? 0 : ((num_wr_bits-1)/C_DIN_WIDTH)+1;
//Trim the read words for use with RD_DATA_COUNT
num_write_words_sized_i =
num_write_words_dc[C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH];
end //if (C_USE_FWFT_DATA_COUNT)
end //always
/***************************************************************************
* Internal registers and wires
**************************************************************************/
//Temporary signals used for calculating the model's outputs. These
//are only used in the assign statements immediately following wire,
//parameter, and function declarations.
wire [C_DOUT_WIDTH-1:0] ideal_dout_out;
wire valid_i;
wire valid_out1;
wire valid_out2;
wire valid_out;
wire underflow_i;
//Ideal FIFO signals. These are the raw output of the behavioral model,
//which behaves like an ideal FIFO.
reg [1:0] err_type = 0;
reg [1:0] err_type_d1 = 0;
reg [1:0] err_type_both = 0;
reg [C_DOUT_WIDTH-1:0] ideal_dout = 0;
reg [C_DOUT_WIDTH-1:0] ideal_dout_d1 = 0;
reg [C_DOUT_WIDTH-1:0] ideal_dout_both = 0;
reg ideal_wr_ack = 0;
reg ideal_valid = 0;
reg ideal_overflow = C_OVERFLOW_LOW;
reg ideal_underflow = C_UNDERFLOW_LOW;
reg ideal_prog_full = 0;
reg ideal_prog_empty = 1;
reg [C_WR_DATA_COUNT_WIDTH-1 : 0] ideal_wr_count = 0;
reg [C_RD_DATA_COUNT_WIDTH-1 : 0] ideal_rd_count = 0;
//Assorted reg values for delayed versions of signals
reg valid_d1 = 0;
reg valid_d2 = 0;
//user specified value for reseting the size of the fifo
reg [C_DOUT_WIDTH-1:0] dout_reset_val = 0;
//temporary registers for WR_RESPONSE_LATENCY feature
integer tmp_wr_listsize;
integer tmp_rd_listsize;
//Signal for registered version of prog full and empty
//Threshold values for Programmable Flags
integer prog_empty_actual_thresh_assert;
integer prog_empty_actual_thresh_negate;
integer prog_full_actual_thresh_assert;
integer prog_full_actual_thresh_negate;
/****************************************************************************
* Function Declarations
***************************************************************************/
/**************************************************************************
* write_fifo
* This task writes a word to the FIFO memory and updates the
* write pointer.
* FIFO size is relative to write domain.
***************************************************************************/
task write_fifo;
begin
memory[wr_ptr] <= DIN;
wr_pntr <= #`TCQ wr_pntr + 1;
// Store the type of error injection (double/single) on write
case (C_ERROR_INJECTION_TYPE)
3: ecc_err[wr_ptr] <= {INJECTDBITERR,INJECTSBITERR};
2: ecc_err[wr_ptr] <= {INJECTDBITERR,1'b0};
1: ecc_err[wr_ptr] <= {1'b0,INJECTSBITERR};
default: ecc_err[wr_ptr] <= 0;
endcase
// (Works opposite to core: wr_ptr is a DOWN counter)
if (wr_ptr == 0) begin
wr_ptr <= C_WR_DEPTH - 1;
end else begin
wr_ptr <= wr_ptr - 1;
end
end
endtask // write_fifo
/**************************************************************************
* read_fifo
* This task reads a word from the FIFO memory and updates the read
* pointer. It's output is the ideal_dout bus.
* FIFO size is relative to write domain.
***************************************************************************/
task read_fifo;
integer i;
reg [C_DOUT_WIDTH-1:0] tmp_dout;
reg [C_DIN_WIDTH-1:0] memory_read;
reg [31:0] tmp_rd_ptr;
reg [31:0] rd_ptr_high;
reg [31:0] rd_ptr_low;
reg [1:0] tmp_ecc_err;
begin
rd_pntr <= #`TCQ rd_pntr + 1;
// output is wider than input
if (reads_per_write == 0) begin
tmp_dout = 0;
tmp_rd_ptr = (rd_ptr << log2_writes_per_read)+(writes_per_read-1);
for (i = writes_per_read - 1; i >= 0; i = i - 1) begin
tmp_dout = tmp_dout << C_DIN_WIDTH;
tmp_dout = tmp_dout | memory[tmp_rd_ptr];
// (Works opposite to core: rd_ptr is a DOWN counter)
if (tmp_rd_ptr == 0) begin
tmp_rd_ptr = C_WR_DEPTH - 1;
end else begin
tmp_rd_ptr = tmp_rd_ptr - 1;
end
end
// output is symmetric
end else if (reads_per_write == 1) begin
tmp_dout = memory[rd_ptr][C_DIN_WIDTH-1:0];
// Retreive the error injection type. Based on the error injection type
// corrupt the output data.
tmp_ecc_err = ecc_err[rd_ptr];
if (ENABLE_ERR_INJECTION && C_DIN_WIDTH == C_DOUT_WIDTH) begin
if (tmp_ecc_err[1]) begin // Corrupt the output data only for double bit error
if (C_DOUT_WIDTH == 1) begin
$display("FAILURE : Data width must be >= 2 for double bit error injection.");
$finish;
end else if (C_DOUT_WIDTH == 2)
tmp_dout = {~tmp_dout[C_DOUT_WIDTH-1],~tmp_dout[C_DOUT_WIDTH-2]};
else
tmp_dout = {~tmp_dout[C_DOUT_WIDTH-1],~tmp_dout[C_DOUT_WIDTH-2],(tmp_dout << 2)};
end else begin
tmp_dout = tmp_dout[C_DOUT_WIDTH-1:0];
end
err_type <= {tmp_ecc_err[1], tmp_ecc_err[0] & !tmp_ecc_err[1]};
end else begin
err_type <= 0;
end
// input is wider than output
end else begin
rd_ptr_high = rd_ptr >> log2_reads_per_write;
rd_ptr_low = rd_ptr & (reads_per_write - 1);
memory_read = memory[rd_ptr_high];
tmp_dout = memory_read >> (rd_ptr_low*C_DOUT_WIDTH);
end
ideal_dout <= tmp_dout;
// (Works opposite to core: rd_ptr is a DOWN counter)
if (rd_ptr == 0) begin
rd_ptr <= C_RD_DEPTH - 1;
end else begin
rd_ptr <= rd_ptr - 1;
end
end
endtask
/**************************************************************************
* log2_val
* Returns the 'log2' value for the input value for the supported ratios
***************************************************************************/
function [31:0] log2_val;
input [31:0] binary_val;
begin
if (binary_val == 8) begin
log2_val = 3;
end else if (binary_val == 4) begin
log2_val = 2;
end else begin
log2_val = 1;
end
end
endfunction
/***********************************************************************
* hexstr_conv
* Converts a string of type hex to a binary value (for C_DOUT_RST_VAL)
***********************************************************************/
function [C_DOUT_WIDTH-1:0] hexstr_conv;
input [(C_DOUT_WIDTH*8)-1:0] def_data;
integer index,i,j;
reg [3:0] bin;
begin
index = 0;
hexstr_conv = 'b0;
for( i=C_DOUT_WIDTH-1; i>=0; i=i-1 )
begin
case (def_data[7:0])
8'b00000000 :
begin
bin = 4'b0000;
i = -1;
end
8'b00110000 : bin = 4'b0000;
8'b00110001 : bin = 4'b0001;
8'b00110010 : bin = 4'b0010;
8'b00110011 : bin = 4'b0011;
8'b00110100 : bin = 4'b0100;
8'b00110101 : bin = 4'b0101;
8'b00110110 : bin = 4'b0110;
8'b00110111 : bin = 4'b0111;
8'b00111000 : bin = 4'b1000;
8'b00111001 : bin = 4'b1001;
8'b01000001 : bin = 4'b1010;
8'b01000010 : bin = 4'b1011;
8'b01000011 : bin = 4'b1100;
8'b01000100 : bin = 4'b1101;
8'b01000101 : bin = 4'b1110;
8'b01000110 : bin = 4'b1111;
8'b01100001 : bin = 4'b1010;
8'b01100010 : bin = 4'b1011;
8'b01100011 : bin = 4'b1100;
8'b01100100 : bin = 4'b1101;
8'b01100101 : bin = 4'b1110;
8'b01100110 : bin = 4'b1111;
default :
begin
bin = 4'bx;
end
endcase
for( j=0; j<4; j=j+1)
begin
if ((index*4)+j < C_DOUT_WIDTH)
begin
hexstr_conv[(index*4)+j] = bin[j];
end
end
index = index + 1;
def_data = def_data >> 8;
end
end
endfunction
/*************************************************************************
* Initialize Signals for clean power-on simulation
*************************************************************************/
initial begin
num_wr_bits = 0;
num_rd_bits = 0;
next_num_wr_bits = 0;
next_num_rd_bits = 0;
rd_ptr = C_RD_DEPTH - 1;
wr_ptr = C_WR_DEPTH - 1;
wr_pntr = 0;
rd_pntr = 0;
rd_ptr_wrclk = rd_ptr;
wr_ptr_rdclk = wr_ptr;
dout_reset_val = hexstr_conv(C_DOUT_RST_VAL);
ideal_dout = dout_reset_val;
err_type = 0;
ideal_dout_d1 = dout_reset_val;
ideal_wr_ack = 1'b0;
ideal_valid = 1'b0;
valid_d1 = 1'b0;
valid_d2 = 1'b0;
ideal_overflow = C_OVERFLOW_LOW;
ideal_underflow = C_UNDERFLOW_LOW;
ideal_wr_count = 0;
ideal_rd_count = 0;
ideal_prog_full = 1'b0;
ideal_prog_empty = 1'b1;
end
/*************************************************************************
* Connect the module inputs and outputs to the internal signals of the
* behavioral model.
*************************************************************************/
//Inputs
/*
wire [C_DIN_WIDTH-1:0] DIN;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE;
wire RD_CLK;
wire RD_EN;
wire RST;
wire WR_CLK;
wire WR_EN;
*/
//***************************************************************************
// Dout may change behavior based on latency
//***************************************************************************
assign ideal_dout_out[C_DOUT_WIDTH-1:0] = (C_PRELOAD_LATENCY==2 &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) )?
ideal_dout_d1: ideal_dout;
assign DOUT[C_DOUT_WIDTH-1:0] = ideal_dout_out;
//***************************************************************************
// Assign SBITERR and DBITERR based on latency
//***************************************************************************
assign SBITERR = (C_ERROR_INJECTION_TYPE == 1 || C_ERROR_INJECTION_TYPE == 3) &&
(C_PRELOAD_LATENCY == 2 &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) ) ?
err_type_d1[0]: err_type[0];
assign DBITERR = (C_ERROR_INJECTION_TYPE == 2 || C_ERROR_INJECTION_TYPE == 3) &&
(C_PRELOAD_LATENCY==2 && (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1)) ?
err_type_d1[1]: err_type[1];
//***************************************************************************
// Safety-ckt logic with embedded reg/fabric reg
//***************************************************************************
generate
if ((C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) && C_EN_SAFETY_CKT==1 && C_USE_EMBEDDED_REG < 3) begin
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d1;
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d2;
reg [1:0] rst_delayed_sft1 =1;
reg [1:0] rst_delayed_sft2 =1;
reg [1:0] rst_delayed_sft3 =1;
reg [1:0] rst_delayed_sft4 =1;
// if (C_HAS_VALID == 1) begin
// assign valid_out = valid_d1;
// end
always@(posedge RD_CLK)
begin
rst_delayed_sft1 <= #`TCQ rd_rst_i;
rst_delayed_sft2 <= #`TCQ rst_delayed_sft1;
rst_delayed_sft3 <= #`TCQ rst_delayed_sft2;
rst_delayed_sft4 <= #`TCQ rst_delayed_sft3;
end
always@(posedge rst_delayed_sft4 or posedge rd_rst_i or posedge RD_CLK)
begin
if( rst_delayed_sft4 == 1'b1 || rd_rst_i == 1'b1)
ram_rd_en_d1 <= #`TCQ 1'b0;
else
ram_rd_en_d1 <= #`TCQ ram_rd_en;
end
always@(posedge rst_delayed_sft2 or posedge RD_CLK)
begin
if (rst_delayed_sft2 == 1'b1) begin
if (C_USE_DOUT_RST == 1'b1) begin
@(posedge RD_CLK)
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
end
else begin
if (ram_rd_en_d1) begin
ideal_dout_d1 <= #`TCQ ideal_dout;
err_type_d1[0] <= #`TCQ err_type[0];
err_type_d1[1] <= #`TCQ err_type[1];
end
end
end
end
endgenerate
//***************************************************************************
// Safety-ckt logic with embedded reg + fabric reg
//***************************************************************************
generate
if ((C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) && C_EN_SAFETY_CKT==1 && C_USE_EMBEDDED_REG == 3) begin
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d1;
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d2;
reg [1:0] rst_delayed_sft1 =1;
reg [1:0] rst_delayed_sft2 =1;
reg [1:0] rst_delayed_sft3 =1;
reg [1:0] rst_delayed_sft4 =1;
// if (C_HAS_VALID == 1) begin
// assign valid_out = valid_d2;
// end
always@(posedge RD_CLK)
begin
rst_delayed_sft1 <= #`TCQ rd_rst_i;
rst_delayed_sft2 <= #`TCQ rst_delayed_sft1;
rst_delayed_sft3 <= #`TCQ rst_delayed_sft2;
rst_delayed_sft4 <= #`TCQ rst_delayed_sft3;
end
always@(posedge rst_delayed_sft4 or posedge rd_rst_i or posedge RD_CLK)
begin
if( rst_delayed_sft4 == 1'b1 || rd_rst_i == 1'b1)
ram_rd_en_d1 <= #`TCQ 1'b0;
else
ram_rd_en_d1 <= #`TCQ ram_rd_en;
fab_rd_en_d1 <= #`TCQ ram_rd_en_d1;
end
always@(posedge rst_delayed_sft2 or posedge RD_CLK)
begin
if (rst_delayed_sft2 == 1'b1) begin
if (C_USE_DOUT_RST == 1'b1) begin
@(posedge RD_CLK)
ideal_dout_d1 <= #`TCQ dout_reset_val;
ideal_dout_both <= #`TCQ dout_reset_val;
end
end
else begin
if (ram_rd_en_d1) begin
ideal_dout_both <= #`TCQ ideal_dout;
err_type_both[0] <= #`TCQ err_type[0];
err_type_both[1] <= #`TCQ err_type[1];
end
if (fab_rd_en_d1) begin
ideal_dout_d1 <= #`TCQ ideal_dout_both;
err_type_d1[0] <= #`TCQ err_type_both[0];
err_type_d1[1] <= #`TCQ err_type_both[1];
end
end
end
end
endgenerate
//***************************************************************************
// Overflow may be active-low
//***************************************************************************
generate
if (C_HAS_OVERFLOW==1) begin : blockOF1
assign OVERFLOW = ideal_overflow ? !C_OVERFLOW_LOW : C_OVERFLOW_LOW;
end
endgenerate
assign PROG_EMPTY = ideal_prog_empty;
assign PROG_FULL = ideal_prog_full;
//***************************************************************************
// Valid may change behavior based on latency or active-low
//***************************************************************************
generate
if (C_HAS_VALID==1) begin : blockVL1
assign valid_i = (C_PRELOAD_LATENCY==0) ? (RD_EN & ~EMPTY) : ideal_valid;
assign valid_out1 = (C_PRELOAD_LATENCY==2 &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) && C_USE_EMBEDDED_REG < 3)?
valid_d1: valid_i;
assign valid_out2 = (C_PRELOAD_LATENCY==2 &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) && C_USE_EMBEDDED_REG == 3)?
valid_d2: valid_i;
assign valid_out = (C_USE_EMBEDDED_REG == 3) ? valid_out2 : valid_out1;
assign VALID = valid_out ? !C_VALID_LOW : C_VALID_LOW;
end
endgenerate
//***************************************************************************
// Underflow may change behavior based on latency or active-low
//***************************************************************************
generate
if (C_HAS_UNDERFLOW==1) begin : blockUF1
assign underflow_i = (C_PRELOAD_LATENCY==0) ? (RD_EN & EMPTY) : ideal_underflow;
assign UNDERFLOW = underflow_i ? !C_UNDERFLOW_LOW : C_UNDERFLOW_LOW;
end
endgenerate
//***************************************************************************
// Write acknowledge may be active low
//***************************************************************************
generate
if (C_HAS_WR_ACK==1) begin : blockWK1
assign WR_ACK = ideal_wr_ack ? !C_WR_ACK_LOW : C_WR_ACK_LOW;
end
endgenerate
//***************************************************************************
// Generate RD_DATA_COUNT if Use Extra Logic option is selected
//***************************************************************************
generate
if (C_HAS_WR_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT == 1) begin : wdc_fwft_ext
reg [C_PNTR_WIDTH-1:0] adjusted_wr_pntr = 0;
reg [C_PNTR_WIDTH-1:0] adjusted_rd_pntr = 0;
wire [C_PNTR_WIDTH-1:0] diff_wr_rd_tmp;
wire [C_PNTR_WIDTH:0] diff_wr_rd;
reg [C_PNTR_WIDTH:0] wr_data_count_i = 0;
always @* begin
if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin
adjusted_wr_pntr = wr_pntr;
adjusted_rd_pntr = 0;
adjusted_rd_pntr[C_PNTR_WIDTH-1:C_PNTR_WIDTH-C_RD_PNTR_WIDTH] = rd_pntr_wr;
end else if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin
adjusted_rd_pntr = rd_pntr_wr;
adjusted_wr_pntr = 0;
adjusted_wr_pntr[C_PNTR_WIDTH-1:C_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr;
end else begin
adjusted_wr_pntr = wr_pntr;
adjusted_rd_pntr = rd_pntr_wr;
end
end // always @*
assign diff_wr_rd_tmp = adjusted_wr_pntr - adjusted_rd_pntr;
assign diff_wr_rd = {1'b0,diff_wr_rd_tmp};
always @ (posedge wr_rst_i or posedge WR_CLK)
begin
if (wr_rst_i)
wr_data_count_i <= #`TCQ 0;
else
wr_data_count_i <= #`TCQ diff_wr_rd + EXTRA_WORDS_DC;
end // always @ (posedge WR_CLK or posedge WR_CLK)
always @* begin
if (C_WR_PNTR_WIDTH >= C_RD_PNTR_WIDTH)
wdc_fwft_ext_as = wr_data_count_i[C_PNTR_WIDTH:0];
else
wdc_fwft_ext_as = wr_data_count_i[C_PNTR_WIDTH:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH];
end // always @*
end // wdc_fwft_ext
endgenerate
//***************************************************************************
// Generate RD_DATA_COUNT if Use Extra Logic option is selected
//***************************************************************************
reg [C_RD_PNTR_WIDTH:0] rdc_fwft_ext_as = 0;
generate if (C_USE_EMBEDDED_REG < 3) begin: rdc_fwft_ext_both
if (C_HAS_RD_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT == 1) begin : rdc_fwft_ext
reg [C_RD_PNTR_WIDTH-1:0] adjusted_wr_pntr_rd = 0;
wire [C_RD_PNTR_WIDTH-1:0] diff_rd_wr_tmp;
wire [C_RD_PNTR_WIDTH:0] diff_rd_wr;
always @* begin
if (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) begin
adjusted_wr_pntr_rd = 0;
adjusted_wr_pntr_rd[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr_rd;
end else begin
adjusted_wr_pntr_rd = wr_pntr_rd[C_WR_PNTR_WIDTH-1:C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH];
end
end // always @*
assign diff_rd_wr_tmp = adjusted_wr_pntr_rd - rd_pntr;
assign diff_rd_wr = {1'b0,diff_rd_wr_tmp};
always @ (posedge rd_rst_i or posedge RD_CLK)
begin
if (rd_rst_i) begin
rdc_fwft_ext_as <= #`TCQ 0;
end else begin
if (!stage2_valid)
rdc_fwft_ext_as <= #`TCQ 0;
else if (!stage1_valid && stage2_valid)
rdc_fwft_ext_as <= #`TCQ 1;
else
rdc_fwft_ext_as <= #`TCQ diff_rd_wr + 2'h2;
end
end // always @ (posedge WR_CLK or posedge WR_CLK)
end // rdc_fwft_ext
end
endgenerate
generate if (C_USE_EMBEDDED_REG == 3) begin
if (C_HAS_RD_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT == 1) begin : rdc_fwft_ext
reg [C_RD_PNTR_WIDTH-1:0] adjusted_wr_pntr_rd = 0;
wire [C_RD_PNTR_WIDTH-1:0] diff_rd_wr_tmp;
wire [C_RD_PNTR_WIDTH:0] diff_rd_wr;
always @* begin
if (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) begin
adjusted_wr_pntr_rd = 0;
adjusted_wr_pntr_rd[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr_rd;
end else begin
adjusted_wr_pntr_rd = wr_pntr_rd[C_WR_PNTR_WIDTH-1:C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH];
end
end // always @*
assign diff_rd_wr_tmp = adjusted_wr_pntr_rd - rd_pntr;
assign diff_rd_wr = {1'b0,diff_rd_wr_tmp};
wire [C_RD_PNTR_WIDTH:0] diff_rd_wr_1;
// assign diff_rd_wr_1 = diff_rd_wr +2'h2;
always @ (posedge rd_rst_i or posedge RD_CLK)
begin
if (rd_rst_i) begin
rdc_fwft_ext_as <= #`TCQ 0;
end else begin
//if (fab_read_data_valid_i == 1'b0 && ((ram_valid_i == 1'b0 && read_data_valid_i ==1'b0) || (ram_valid_i == 1'b0 && read_data_valid_i ==1'b1) || (ram_valid_i == 1'b1 && read_data_valid_i ==1'b0) || (ram_valid_i == 1'b1 && read_data_valid_i ==1'b1)))
// rdc_fwft_ext_as <= 1'b0;
//else if (fab_read_data_valid_i == 1'b1 && ((ram_valid_i == 1'b0 && read_data_valid_i ==1'b0) || (ram_valid_i == 1'b0 && read_data_valid_i ==1'b1)))
// rdc_fwft_ext_as <= 1'b1;
//else
rdc_fwft_ext_as <= diff_rd_wr + 2'h2 ;
end
end
end
end
endgenerate
//***************************************************************************
// Assign the read data count value only if it is selected,
// otherwise output zeros.
//***************************************************************************
generate
if (C_HAS_RD_DATA_COUNT == 1) begin : grdc
assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = C_USE_FWFT_DATA_COUNT ?
rdc_fwft_ext_as[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH+1-C_RD_DATA_COUNT_WIDTH] :
rd_data_count_int[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH+1-C_RD_DATA_COUNT_WIDTH];
end
endgenerate
generate
if (C_HAS_RD_DATA_COUNT == 0) begin : gnrdc
assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = {C_RD_DATA_COUNT_WIDTH{1'b0}};
end
endgenerate
//***************************************************************************
// Assign the write data count value only if it is selected,
// otherwise output zeros
//***************************************************************************
generate
if (C_HAS_WR_DATA_COUNT == 1) begin : gwdc
assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = (C_USE_FWFT_DATA_COUNT == 1) ?
wdc_fwft_ext_as[C_WR_PNTR_WIDTH:C_WR_PNTR_WIDTH+1-C_WR_DATA_COUNT_WIDTH] :
wr_data_count_int[C_WR_PNTR_WIDTH:C_WR_PNTR_WIDTH+1-C_WR_DATA_COUNT_WIDTH];
end
endgenerate
generate
if (C_HAS_WR_DATA_COUNT == 0) begin : gnwdc
assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = {C_WR_DATA_COUNT_WIDTH{1'b0}};
end
endgenerate
/**************************************************************************
* Assorted registers for delayed versions of signals
**************************************************************************/
//Capture delayed version of valid
generate
if (C_HAS_VALID==1) begin : blockVL2
always @(posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i == 1'b1) begin
valid_d1 <= #`TCQ 1'b0;
valid_d2 <= #`TCQ 1'b0;
end else begin
valid_d1 <= #`TCQ valid_i;
valid_d2 <= #`TCQ valid_d1;
end
// if (C_USE_EMBEDDED_REG == 3 && (C_EN_SAFETY_CKT == 0 || C_EN_SAFETY_CKT == 1 ) begin
// valid_d2 <= #`TCQ valid_d1;
// end
end
end
endgenerate
//Capture delayed version of dout
/**************************************************************************
*embedded/fabric reg with no safety ckt
**************************************************************************/
generate
if (C_EN_SAFETY_CKT==0 && C_USE_EMBEDDED_REG < 3) begin
always @(posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i == 1'b1) begin
if (C_USE_DOUT_RST == 1'b1) begin
@(posedge RD_CLK)
ideal_dout_d1 <= #`TCQ dout_reset_val;
ideal_dout <= #`TCQ dout_reset_val;
end
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type_d1 <= #`TCQ 0;
end else if (ram_rd_en_d1) begin
ideal_dout_d1 <= #`TCQ ideal_dout;
err_type_d1 <= #`TCQ err_type;
end
end
end
endgenerate
/**************************************************************************
*embedded + fabric reg with no safety ckt
**************************************************************************/
generate
if (C_EN_SAFETY_CKT==0 && C_USE_EMBEDDED_REG == 3) begin
always @(posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i == 1'b1) begin
if (C_USE_DOUT_RST == 1'b1) begin
@(posedge RD_CLK)
ideal_dout <= #`TCQ dout_reset_val;
ideal_dout_d1 <= #`TCQ dout_reset_val;
ideal_dout_both <= #`TCQ dout_reset_val;
end
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type_d1 <= #`TCQ 0;
end else if (ram_rd_en_d1) begin
ideal_dout_both <= #`TCQ ideal_dout;
err_type_both <= #`TCQ err_type;
end
if (fab_rd_en_d1) begin
ideal_dout_d1 <= #`TCQ ideal_dout_both;
err_type_d1 <= #`TCQ err_type_both;
end
end
end
endgenerate
/**************************************************************************
* Overflow and Underflow Flag calculation
* (handled separately because they don't support rst)
**************************************************************************/
generate
if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 0) begin : g7s_ovflw
always @(posedge WR_CLK) begin
ideal_overflow <= #`TCQ WR_EN & FULL;
end
end else if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 1) begin : g8s_ovflw
always @(posedge WR_CLK) begin
//ideal_overflow <= #`TCQ WR_EN & (FULL | wr_rst_i);
ideal_overflow <= #`TCQ WR_EN & (FULL );
end
end
endgenerate
generate
if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 0) begin : g7s_unflw
always @(posedge RD_CLK) begin
ideal_underflow <= #`TCQ EMPTY & RD_EN;
end
end else if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 1) begin : g8s_unflw
always @(posedge RD_CLK) begin
ideal_underflow <= #`TCQ (EMPTY) & RD_EN;
//ideal_underflow <= #`TCQ (rd_rst_i | EMPTY) & RD_EN;
end
end
endgenerate
/**************************************************************************
* Write/Read Pointer Synchronization
**************************************************************************/
localparam NO_OF_SYNC_STAGE_INC_G2B = C_SYNCHRONIZER_STAGE + 1;
wire [C_WR_PNTR_WIDTH-1:0] wr_pntr_sync_stgs [0:NO_OF_SYNC_STAGE_INC_G2B];
wire [C_RD_PNTR_WIDTH-1:0] rd_pntr_sync_stgs [0:NO_OF_SYNC_STAGE_INC_G2B];
genvar gss;
generate for (gss = 1; gss <= NO_OF_SYNC_STAGE_INC_G2B; gss = gss + 1) begin : Sync_stage_inst
fifo_generator_v13_1_1_sync_stage
#(
.C_WIDTH (C_WR_PNTR_WIDTH)
)
rd_stg_inst
(
.RST (rd_rst_i),
.CLK (RD_CLK),
.DIN (wr_pntr_sync_stgs[gss-1]),
.DOUT (wr_pntr_sync_stgs[gss])
);
fifo_generator_v13_1_1_sync_stage
#(
.C_WIDTH (C_RD_PNTR_WIDTH)
)
wr_stg_inst
(
.RST (wr_rst_i),
.CLK (WR_CLK),
.DIN (rd_pntr_sync_stgs[gss-1]),
.DOUT (rd_pntr_sync_stgs[gss])
);
end endgenerate // Sync_stage_inst
assign wr_pntr_sync_stgs[0] = wr_pntr_rd1;
assign rd_pntr_sync_stgs[0] = rd_pntr_wr1;
always@* begin
wr_pntr_rd <= wr_pntr_sync_stgs[NO_OF_SYNC_STAGE_INC_G2B];
rd_pntr_wr <= rd_pntr_sync_stgs[NO_OF_SYNC_STAGE_INC_G2B];
end
/**************************************************************************
* Write Domain Logic
**************************************************************************/
reg [C_WR_PNTR_WIDTH-1:0] diff_pntr = 0;
always @(posedge WR_CLK or posedge wr_rst_i ) begin : gen_fifo_w
/****** Reset fifo (case 1)***************************************/
if (wr_rst_i == 1'b1) begin
num_wr_bits <= #`TCQ 0;
next_num_wr_bits = #`TCQ 0;
wr_ptr <= #`TCQ C_WR_DEPTH - 1;
rd_ptr_wrclk <= #`TCQ C_RD_DEPTH - 1;
ideal_wr_ack <= #`TCQ 0;
ideal_wr_count <= #`TCQ 0;
tmp_wr_listsize = #`TCQ 0;
rd_ptr_wrclk_next <= #`TCQ 0;
wr_pntr <= #`TCQ 0;
wr_pntr_rd1 <= #`TCQ 0;
end else begin //wr_rst_i==0
wr_pntr_rd1 <= #`TCQ wr_pntr;
//Determine the current number of words in the FIFO
tmp_wr_listsize = (C_DEPTH_RATIO_RD > 1) ? num_wr_bits/C_DOUT_WIDTH :
num_wr_bits/C_DIN_WIDTH;
rd_ptr_wrclk_next = rd_ptr;
if (rd_ptr_wrclk < rd_ptr_wrclk_next) begin
next_num_wr_bits = num_wr_bits -
C_DOUT_WIDTH*(rd_ptr_wrclk + C_RD_DEPTH
- rd_ptr_wrclk_next);
end else begin
next_num_wr_bits = num_wr_bits -
C_DOUT_WIDTH*(rd_ptr_wrclk - rd_ptr_wrclk_next);
end
//If this is a write, handle the write by adding the value
// to the linked list, and updating all outputs appropriately
if (WR_EN == 1'b1) begin
if (FULL == 1'b1) begin
//If the FIFO is full, do NOT perform the write,
// update flags accordingly
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD
>= C_FIFO_WR_DEPTH) begin
//write unsuccessful - do not change contents
//Do not acknowledge the write
ideal_wr_ack <= #`TCQ 0;
//Reminder that FIFO is still full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
//If the FIFO is one from full, but reporting full
end else
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD ==
C_FIFO_WR_DEPTH-1) begin
//No change to FIFO
//Write not successful
ideal_wr_ack <= #`TCQ 0;
//With DEPTH-1 words in the FIFO, it is almost_full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
//If the FIFO is completely empty, but it is
// reporting FULL for some reason (like reset)
end else
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD <=
C_FIFO_WR_DEPTH-2) begin
//No change to FIFO
//Write not successful
ideal_wr_ack <= #`TCQ 0;
//FIFO is really not close to full, so change flag status.
ideal_wr_count <= #`TCQ num_write_words_sized_i;
end //(tmp_wr_listsize == 0)
end else begin
//If the FIFO is full, do NOT perform the write,
// update flags accordingly
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD >=
C_FIFO_WR_DEPTH) begin
//write unsuccessful - do not change contents
//Do not acknowledge the write
ideal_wr_ack <= #`TCQ 0;
//Reminder that FIFO is still full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
//If the FIFO is one from full
end else
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD ==
C_FIFO_WR_DEPTH-1) begin
//Add value on DIN port to FIFO
write_fifo;
next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH;
//Write successful, so issue acknowledge
// and no error
ideal_wr_ack <= #`TCQ 1;
//This write is CAUSING the FIFO to go full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
//If the FIFO is 2 from full
end else
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD ==
C_FIFO_WR_DEPTH-2) begin
//Add value on DIN port to FIFO
write_fifo;
next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH;
//Write successful, so issue acknowledge
// and no error
ideal_wr_ack <= #`TCQ 1;
//Still 2 from full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
//If the FIFO is not close to being full
end else
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD <
C_FIFO_WR_DEPTH-2) begin
//Add value on DIN port to FIFO
write_fifo;
next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH;
//Write successful, so issue acknowledge
// and no error
ideal_wr_ack <= #`TCQ 1;
//Not even close to full.
ideal_wr_count <= num_write_words_sized_i;
end
end
end else begin //(WR_EN == 1'b1)
//If user did not attempt a write, then do not
// give ack or err
ideal_wr_ack <= #`TCQ 0;
ideal_wr_count <= #`TCQ num_write_words_sized_i;
end
num_wr_bits <= #`TCQ next_num_wr_bits;
rd_ptr_wrclk <= #`TCQ rd_ptr;
end //wr_rst_i==0
end // gen_fifo_w
/***************************************************************************
* Programmable FULL flags
***************************************************************************/
wire [C_WR_PNTR_WIDTH-1:0] pf_thr_assert_val;
wire [C_WR_PNTR_WIDTH-1:0] pf_thr_negate_val;
generate if (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) begin : FWFT
assign pf_thr_assert_val = C_PROG_FULL_THRESH_ASSERT_VAL - EXTRA_WORDS_DC;
assign pf_thr_negate_val = C_PROG_FULL_THRESH_NEGATE_VAL - EXTRA_WORDS_DC;
end else begin // STD
assign pf_thr_assert_val = C_PROG_FULL_THRESH_ASSERT_VAL;
assign pf_thr_negate_val = C_PROG_FULL_THRESH_NEGATE_VAL;
end endgenerate
always @(posedge WR_CLK or posedge wr_rst_i) begin
if (wr_rst_i == 1'b1) begin
diff_pntr <= 0;
end else begin
if (ram_wr_en)
diff_pntr <= #`TCQ (wr_pntr - adj_rd_pntr_wr + 2'h1);
else if (!ram_wr_en)
diff_pntr <= #`TCQ (wr_pntr - adj_rd_pntr_wr);
end
end
always @(posedge WR_CLK or posedge RST_FULL_FF) begin : gen_pf
if (RST_FULL_FF == 1'b1) begin
ideal_prog_full <= #`TCQ C_FULL_FLAGS_RST_VAL;
end else begin
if (RST_FULL_GEN)
ideal_prog_full <= #`TCQ 0;
//Single Programmable Full Constant Threshold
else if (C_PROG_FULL_TYPE == 1) begin
if (FULL == 0) begin
if (diff_pntr >= pf_thr_assert_val)
ideal_prog_full <= #`TCQ 1;
else
ideal_prog_full <= #`TCQ 0;
end else
ideal_prog_full <= #`TCQ ideal_prog_full;
//Two Programmable Full Constant Thresholds
end else if (C_PROG_FULL_TYPE == 2) begin
if (FULL == 0) begin
if (diff_pntr >= pf_thr_assert_val)
ideal_prog_full <= #`TCQ 1;
else if (diff_pntr < pf_thr_negate_val)
ideal_prog_full <= #`TCQ 0;
else
ideal_prog_full <= #`TCQ ideal_prog_full;
end else
ideal_prog_full <= #`TCQ ideal_prog_full;
//Single Programmable Full Threshold Input
end else if (C_PROG_FULL_TYPE == 3) begin
if (FULL == 0) begin
if (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) begin // FWFT
if (diff_pntr >= (PROG_FULL_THRESH - EXTRA_WORDS_DC))
ideal_prog_full <= #`TCQ 1;
else
ideal_prog_full <= #`TCQ 0;
end else begin // STD
if (diff_pntr >= PROG_FULL_THRESH)
ideal_prog_full <= #`TCQ 1;
else
ideal_prog_full <= #`TCQ 0;
end
end else
ideal_prog_full <= #`TCQ ideal_prog_full;
//Two Programmable Full Threshold Inputs
end else if (C_PROG_FULL_TYPE == 4) begin
if (FULL == 0) begin
if (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) begin // FWFT
if (diff_pntr >= (PROG_FULL_THRESH_ASSERT - EXTRA_WORDS_DC))
ideal_prog_full <= #`TCQ 1;
else if (diff_pntr < (PROG_FULL_THRESH_NEGATE - EXTRA_WORDS_DC))
ideal_prog_full <= #`TCQ 0;
else
ideal_prog_full <= #`TCQ ideal_prog_full;
end else begin // STD
if (diff_pntr >= PROG_FULL_THRESH_ASSERT)
ideal_prog_full <= #`TCQ 1;
else if (diff_pntr < PROG_FULL_THRESH_NEGATE)
ideal_prog_full <= #`TCQ 0;
else
ideal_prog_full <= #`TCQ ideal_prog_full;
end
end else
ideal_prog_full <= #`TCQ ideal_prog_full;
end // C_PROG_FULL_TYPE
end //wr_rst_i==0
end //
/**************************************************************************
* Read Domain Logic
**************************************************************************/
/*********************************************************
* Programmable EMPTY flags
*********************************************************/
//Determine the Assert and Negate thresholds for Programmable Empty
wire [C_RD_PNTR_WIDTH-1:0] pe_thr_assert_val;
wire [C_RD_PNTR_WIDTH-1:0] pe_thr_negate_val;
reg [C_RD_PNTR_WIDTH-1:0] diff_pntr_rd = 0;
always @(posedge RD_CLK or posedge rd_rst_i) begin : gen_pe
if (rd_rst_i) begin
diff_pntr_rd <= #`TCQ 0;
ideal_prog_empty <= #`TCQ 1'b1;
end else begin
if (ram_rd_en)
diff_pntr_rd <= #`TCQ (adj_wr_pntr_rd - rd_pntr) - 1'h1;
else if (!ram_rd_en)
diff_pntr_rd <= #`TCQ (adj_wr_pntr_rd - rd_pntr);
else
diff_pntr_rd <= #`TCQ diff_pntr_rd;
if (C_PROG_EMPTY_TYPE == 1) begin
if (EMPTY == 0) begin
if (diff_pntr_rd <= pe_thr_assert_val)
ideal_prog_empty <= #`TCQ 1;
else
ideal_prog_empty <= #`TCQ 0;
end else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end else if (C_PROG_EMPTY_TYPE == 2) begin
if (EMPTY == 0) begin
if (diff_pntr_rd <= pe_thr_assert_val)
ideal_prog_empty <= #`TCQ 1;
else if (diff_pntr_rd > pe_thr_negate_val)
ideal_prog_empty <= #`TCQ 0;
else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end else if (C_PROG_EMPTY_TYPE == 3) begin
if (EMPTY == 0) begin
if (diff_pntr_rd <= pe_thr_assert_val)
ideal_prog_empty <= #`TCQ 1;
else
ideal_prog_empty <= #`TCQ 0;
end else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end else if (C_PROG_EMPTY_TYPE == 4) begin
if (EMPTY == 0) begin
if (diff_pntr_rd <= pe_thr_assert_val)
ideal_prog_empty <= #`TCQ 1;
else if (diff_pntr_rd > pe_thr_negate_val)
ideal_prog_empty <= #`TCQ 0;
else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end //C_PROG_EMPTY_TYPE
end
end // gen_pe
generate if (C_PROG_EMPTY_TYPE == 3) begin : single_pe_thr_input
assign pe_thr_assert_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ?
PROG_EMPTY_THRESH - 2'h2 : PROG_EMPTY_THRESH;
end endgenerate // single_pe_thr_input
generate if (C_PROG_EMPTY_TYPE == 4) begin : multiple_pe_thr_input
assign pe_thr_assert_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ?
PROG_EMPTY_THRESH_ASSERT - 2'h2 : PROG_EMPTY_THRESH_ASSERT;
assign pe_thr_negate_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ?
PROG_EMPTY_THRESH_NEGATE - 2'h2 : PROG_EMPTY_THRESH_NEGATE;
end endgenerate // multiple_pe_thr_input
generate if (C_PROG_EMPTY_TYPE < 3) begin : single_multiple_pe_thr_const
assign pe_thr_assert_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ?
C_PROG_EMPTY_THRESH_ASSERT_VAL - 2'h2 : C_PROG_EMPTY_THRESH_ASSERT_VAL;
assign pe_thr_negate_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ?
C_PROG_EMPTY_THRESH_NEGATE_VAL - 2'h2 : C_PROG_EMPTY_THRESH_NEGATE_VAL;
end endgenerate // single_multiple_pe_thr_const
// // block memory has a synchronous reset
// always @(posedge RD_CLK) begin : gen_fifo_blkmemdout
// // make it consistent with the core.
// if (rd_rst_i) begin
// // Reset err_type only if ECC is not selected
// if (C_USE_ECC == 0 && C_MEMORY_TYPE < 2)
// err_type <= #`TCQ 0;
//
// // BRAM resets synchronously
// if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE < 2) begin
// //ideal_dout <= #`TCQ dout_reset_val;
// //ideal_dout_d1 <= #`TCQ dout_reset_val;
// end
// end
// end //always
always @(posedge RD_CLK or posedge rd_rst_i ) begin : gen_fifo_r
/****** Reset fifo (case 1)***************************************/
if (rd_rst_i == 1'b1 ) begin
num_rd_bits <= #`TCQ 0;
next_num_rd_bits = #`TCQ 0;
rd_ptr <= #`TCQ C_RD_DEPTH -1;
rd_pntr <= #`TCQ 0;
rd_pntr_wr1 <= #`TCQ 0;
wr_ptr_rdclk <= #`TCQ C_WR_DEPTH -1;
// DRAM resets asynchronously
if (C_MEMORY_TYPE == 2 && C_USE_DOUT_RST == 1)
ideal_dout <= #`TCQ dout_reset_val;
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type <= #`TCQ 0;
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ 0;
end else begin //rd_rst_i==0
rd_pntr_wr1 <= #`TCQ rd_pntr;
//Determine the current number of words in the FIFO
tmp_rd_listsize = (C_DEPTH_RATIO_WR > 1) ? num_rd_bits/C_DIN_WIDTH :
num_rd_bits/C_DOUT_WIDTH;
wr_ptr_rdclk_next = wr_ptr;
if (wr_ptr_rdclk < wr_ptr_rdclk_next) begin
next_num_rd_bits = num_rd_bits +
C_DIN_WIDTH*(wr_ptr_rdclk +C_WR_DEPTH
- wr_ptr_rdclk_next);
end else begin
next_num_rd_bits = num_rd_bits +
C_DIN_WIDTH*(wr_ptr_rdclk - wr_ptr_rdclk_next);
end
/*****************************************************************/
// Read Operation - Read Latency 1
/*****************************************************************/
if (C_PRELOAD_LATENCY==1 || C_PRELOAD_LATENCY==2) begin
ideal_valid <= #`TCQ 1'b0;
if (ram_rd_en == 1'b1) begin
if (EMPTY == 1'b1) begin
//If the FIFO is completely empty, and is reporting empty
if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0)
begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Reminder that FIFO is still empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize <= 0)
//If the FIFO is one from empty, but it is reporting empty
else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 1)
begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Note that FIFO is no longer empty, but is almost empty (has one word left)
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == 1)
//If the FIFO is two from empty, and is reporting empty
else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2)
begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Fifo has two words, so is neither empty or almost empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == 2)
//If the FIFO is not close to empty, but is reporting that it is
// Treat the FIFO as empty this time, but unset EMPTY flags.
if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) && (tmp_rd_listsize/C_DEPTH_RATIO_WR<C_FIFO_RD_DEPTH))
begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Note that the FIFO is No Longer Empty or Almost Empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if ((tmp_rd_listsize > 2) && (tmp_rd_listsize<=C_FIFO_RD_DEPTH-1))
end // else: if(ideal_empty == 1'b1)
else //if (ideal_empty == 1'b0)
begin
//If the FIFO is completely full, and we are successfully reading from it
if (tmp_rd_listsize/C_DEPTH_RATIO_WR >= C_FIFO_RD_DEPTH)
begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Not close to empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == C_FIFO_RD_DEPTH)
//If the FIFO is not close to being empty
else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) && (tmp_rd_listsize/C_DEPTH_RATIO_WR<=C_FIFO_RD_DEPTH))
begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Not close to empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if ((tmp_rd_listsize > 2) && (tmp_rd_listsize<=C_FIFO_RD_DEPTH-1))
//If the FIFO is two from empty
else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2)
begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Fifo is not yet empty. It is going almost_empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == 2)
//If the FIFO is one from empty
else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR == 1))
begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Note that FIFO is GOING empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == 1)
//If the FIFO is completely empty
else if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0)
begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize <= 0)
end // if (ideal_empty == 1'b0)
end //(RD_EN == 1'b1)
else //if (RD_EN == 1'b0)
begin
//If user did not attempt a read, do not give an ack or err
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // else: !if(RD_EN == 1'b1)
/*****************************************************************/
// Read Operation - Read Latency 0
/*****************************************************************/
end else if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) begin
ideal_valid <= #`TCQ 1'b0;
if (ram_rd_en == 1'b1) begin
if (EMPTY == 1'b1) begin
//If the FIFO is completely empty, and is reporting empty
if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0) begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Reminder that FIFO is still empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is one from empty, but it is reporting empty
end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 1) begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Note that FIFO is no longer empty, but is almost empty (has one word left)
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is two from empty, and is reporting empty
end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2) begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Fifo has two words, so is neither empty or almost empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is not close to empty, but is reporting that it is
// Treat the FIFO as empty this time, but unset EMPTY flags.
end else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) &&
(tmp_rd_listsize/C_DEPTH_RATIO_WR<C_FIFO_RD_DEPTH)) begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Note that the FIFO is No Longer Empty or Almost Empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if ((tmp_rd_listsize > 2) && (tmp_rd_listsize<=C_FIFO_RD_DEPTH-1))
end else begin
//If the FIFO is completely full, and we are successfully reading from it
if (tmp_rd_listsize/C_DEPTH_RATIO_WR >= C_FIFO_RD_DEPTH) begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Not close to empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is not close to being empty
end else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) &&
(tmp_rd_listsize/C_DEPTH_RATIO_WR<=C_FIFO_RD_DEPTH)) begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Not close to empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is two from empty
end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2) begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Fifo is not yet empty. It is going almost_empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is one from empty
end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 1) begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Note that FIFO is GOING empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is completely empty
end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0) begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Reminder that FIFO is still empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize <= 0)
end // if (ideal_empty == 1'b0)
end else begin//(RD_EN == 1'b0)
//If user did not attempt a read, do not give an ack or err
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // else: !if(RD_EN == 1'b1)
end //if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0)
num_rd_bits <= #`TCQ next_num_rd_bits;
wr_ptr_rdclk <= #`TCQ wr_ptr;
end //rd_rst_i==0
end //always
endmodule // fifo_generator_v13_1_1_bhv_ver_as
/*******************************************************************************
* Declaration of Low Latency Asynchronous FIFO
******************************************************************************/
module fifo_generator_v13_1_1_beh_ver_ll_afifo
/***************************************************************************
* Declare user parameters and their defaults
***************************************************************************/
#(
parameter C_DIN_WIDTH = 8,
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_FULL_FLAGS_RST_VAL = 1,
parameter C_HAS_RD_DATA_COUNT = 0,
parameter C_HAS_WR_DATA_COUNT = 0,
parameter C_RD_DEPTH = 256,
parameter C_RD_PNTR_WIDTH = 8,
parameter C_USE_DOUT_RST = 0,
parameter C_WR_DATA_COUNT_WIDTH = 2,
parameter C_WR_DEPTH = 256,
parameter C_WR_PNTR_WIDTH = 8,
parameter C_FIFO_TYPE = 0
)
/***************************************************************************
* Declare Input and Output Ports
***************************************************************************/
(
input [C_DIN_WIDTH-1:0] DIN,
input RD_CLK,
input RD_EN,
input WR_RST,
input RD_RST,
input WR_CLK,
input WR_EN,
output reg [C_DOUT_WIDTH-1:0] DOUT = 0,
output reg EMPTY = 1'b1,
output reg FULL = C_FULL_FLAGS_RST_VAL
);
//-----------------------------------------------------------------------------
// Low Latency Asynchronous FIFO
//-----------------------------------------------------------------------------
// Memory which will be used to simulate a FIFO
reg [C_DIN_WIDTH-1:0] memory[C_WR_DEPTH-1:0];
integer i;
initial begin
for (i = 0; i < C_WR_DEPTH; i = i + 1)
memory[i] = 0;
end
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_ll_afifo = 0;
wire [C_RD_PNTR_WIDTH-1:0] rd_pntr_ll_afifo;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_ll_afifo_q = 0;
reg ll_afifo_full = 1'b0;
reg ll_afifo_empty = 1'b1;
wire write_allow;
wire read_allow;
assign write_allow = WR_EN & ~ll_afifo_full;
assign read_allow = RD_EN & ~ll_afifo_empty;
//-----------------------------------------------------------------------------
// Write Pointer Generation
//-----------------------------------------------------------------------------
always @(posedge WR_CLK or posedge WR_RST) begin
if (WR_RST)
wr_pntr_ll_afifo <= 0;
else if (write_allow)
wr_pntr_ll_afifo <= #`TCQ wr_pntr_ll_afifo + 1;
end
//-----------------------------------------------------------------------------
// Read Pointer Generation
//-----------------------------------------------------------------------------
always @(posedge RD_CLK or posedge RD_RST) begin
if (RD_RST)
rd_pntr_ll_afifo_q <= 0;
else
rd_pntr_ll_afifo_q <= #`TCQ rd_pntr_ll_afifo;
end
assign rd_pntr_ll_afifo = read_allow ? rd_pntr_ll_afifo_q + 1 : rd_pntr_ll_afifo_q;
//-----------------------------------------------------------------------------
// Fill the Memory
//-----------------------------------------------------------------------------
always @(posedge WR_CLK) begin
if (write_allow)
memory[wr_pntr_ll_afifo] <= #`TCQ DIN;
end
//-----------------------------------------------------------------------------
// Generate DOUT
//-----------------------------------------------------------------------------
always @(posedge RD_CLK) begin
DOUT <= #`TCQ memory[rd_pntr_ll_afifo];
end
//-----------------------------------------------------------------------------
// Generate EMPTY
//-----------------------------------------------------------------------------
always @(posedge RD_CLK or posedge RD_RST) begin
if (RD_RST)
ll_afifo_empty <= 1'b1;
else
ll_afifo_empty <= ((wr_pntr_ll_afifo == rd_pntr_ll_afifo_q) |
(read_allow & (wr_pntr_ll_afifo == (rd_pntr_ll_afifo_q + 2'h1))));
end
//-----------------------------------------------------------------------------
// Generate FULL
//-----------------------------------------------------------------------------
always @(posedge WR_CLK or posedge WR_RST) begin
if (WR_RST)
ll_afifo_full <= 1'b1;
else
ll_afifo_full <= ((rd_pntr_ll_afifo_q == (wr_pntr_ll_afifo + 2'h1)) |
(write_allow & (rd_pntr_ll_afifo_q == (wr_pntr_ll_afifo + 2'h2))));
end
always @* begin
FULL <= ll_afifo_full;
EMPTY <= ll_afifo_empty;
end
endmodule // fifo_generator_v13_1_1_beh_ver_ll_afifo
/*******************************************************************************
* Declaration of top-level module
******************************************************************************/
module fifo_generator_v13_1_1_bhv_ver_ss
/**************************************************************************
* Declare user parameters and their defaults
*************************************************************************/
#(
parameter C_FAMILY = "virtex7",
parameter C_DATA_COUNT_WIDTH = 2,
parameter C_DIN_WIDTH = 8,
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_FULL_FLAGS_RST_VAL = 1,
parameter C_HAS_ALMOST_EMPTY = 0,
parameter C_HAS_ALMOST_FULL = 0,
parameter C_HAS_DATA_COUNT = 0,
parameter C_HAS_OVERFLOW = 0,
parameter C_HAS_RD_DATA_COUNT = 0,
parameter C_HAS_RST = 0,
parameter C_HAS_SRST = 0,
parameter C_HAS_UNDERFLOW = 0,
parameter C_HAS_VALID = 0,
parameter C_HAS_WR_ACK = 0,
parameter C_HAS_WR_DATA_COUNT = 0,
parameter C_IMPLEMENTATION_TYPE = 0,
parameter C_MEMORY_TYPE = 1,
parameter C_OVERFLOW_LOW = 0,
parameter C_PRELOAD_LATENCY = 1,
parameter C_PRELOAD_REGS = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0,
parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0,
parameter C_PROG_EMPTY_TYPE = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0,
parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0,
parameter C_PROG_FULL_TYPE = 0,
parameter C_RD_DATA_COUNT_WIDTH = 2,
parameter C_RD_DEPTH = 256,
parameter C_RD_PNTR_WIDTH = 8,
parameter C_UNDERFLOW_LOW = 0,
parameter C_USE_DOUT_RST = 0,
parameter C_USE_EMBEDDED_REG = 0,
parameter C_EN_SAFETY_CKT = 0,
parameter C_USE_FWFT_DATA_COUNT = 0,
parameter C_VALID_LOW = 0,
parameter C_WR_ACK_LOW = 0,
parameter C_WR_DATA_COUNT_WIDTH = 2,
parameter C_WR_DEPTH = 256,
parameter C_WR_PNTR_WIDTH = 8,
parameter C_USE_ECC = 0,
parameter C_ENABLE_RST_SYNC = 1,
parameter C_ERROR_INJECTION_TYPE = 0,
parameter C_FIFO_TYPE = 0
)
/**************************************************************************
* Declare Input and Output Ports
*************************************************************************/
(
//Inputs
input CLK,
input [C_DIN_WIDTH-1:0] DIN,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE,
input RD_EN,
input RD_EN_USER,
input USER_EMPTY_FB,
input RST,
input RST_FULL_GEN,
input RST_FULL_FF,
input SRST,
input WR_EN,
input INJECTDBITERR,
input INJECTSBITERR,
input WR_RST_BUSY,
input RD_RST_BUSY,
//Outputs
output ALMOST_EMPTY,
output ALMOST_FULL,
output reg [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT = 0,
output [C_DOUT_WIDTH-1:0] DOUT,
output EMPTY,
output FULL,
output OVERFLOW,
output [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT,
output [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT,
output PROG_EMPTY,
output PROG_FULL,
output VALID,
output UNDERFLOW,
output WR_ACK,
output SBITERR,
output DBITERR
);
reg [C_RD_PNTR_WIDTH:0] rd_data_count_int = 0;
reg [C_WR_PNTR_WIDTH:0] wr_data_count_int = 0;
wire [C_RD_PNTR_WIDTH:0] rd_data_count_i_ss;
wire [C_WR_PNTR_WIDTH:0] wr_data_count_i_ss;
reg [C_WR_PNTR_WIDTH:0] wdc_fwft_ext_as = 0;
/***************************************************************************
* Parameters used as constants
**************************************************************************/
localparam IS_8SERIES = (C_FAMILY == "virtexu" || C_FAMILY == "kintexu" || C_FAMILY == "artixu" || C_FAMILY == "virtexuplus" || C_FAMILY == "zynquplus" || C_FAMILY == "kintexuplus") ? 1 : 0;
localparam C_DEPTH_RATIO_WR =
(C_WR_DEPTH>C_RD_DEPTH) ? (C_WR_DEPTH/C_RD_DEPTH) : 1;
localparam C_DEPTH_RATIO_RD =
(C_RD_DEPTH>C_WR_DEPTH) ? (C_RD_DEPTH/C_WR_DEPTH) : 1;
//localparam C_FIFO_WR_DEPTH = C_WR_DEPTH - 1;
//localparam C_FIFO_RD_DEPTH = C_RD_DEPTH - 1;
localparam C_GRTR_PNTR_WIDTH = (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) ? C_WR_PNTR_WIDTH : C_RD_PNTR_WIDTH ;
// C_DEPTH_RATIO_WR | C_DEPTH_RATIO_RD | C_PNTR_WIDTH | EXTRA_WORDS_DC
// -----------------|------------------|-----------------|---------------
// 1 | 8 | C_RD_PNTR_WIDTH | 2
// 1 | 4 | C_RD_PNTR_WIDTH | 2
// 1 | 2 | C_RD_PNTR_WIDTH | 2
// 1 | 1 | C_WR_PNTR_WIDTH | 2
// 2 | 1 | C_WR_PNTR_WIDTH | 4
// 4 | 1 | C_WR_PNTR_WIDTH | 8
// 8 | 1 | C_WR_PNTR_WIDTH | 16
localparam C_PNTR_WIDTH = (C_WR_PNTR_WIDTH>=C_RD_PNTR_WIDTH) ? C_WR_PNTR_WIDTH : C_RD_PNTR_WIDTH;
wire [C_PNTR_WIDTH:0] EXTRA_WORDS_DC = (C_DEPTH_RATIO_WR == 1) ? 2 : (2 * C_DEPTH_RATIO_WR/C_DEPTH_RATIO_RD);
wire [C_WR_PNTR_WIDTH:0] EXTRA_WORDS_PF = (C_DEPTH_RATIO_WR == 1) ? 2 : (2 * C_DEPTH_RATIO_WR/C_DEPTH_RATIO_RD);
//wire [C_RD_PNTR_WIDTH:0] EXTRA_WORDS_PE = (C_DEPTH_RATIO_RD == 1) ? 2 : (2 * C_DEPTH_RATIO_RD/C_DEPTH_RATIO_WR);
localparam EXTRA_WORDS_PF_PARAM = (C_DEPTH_RATIO_WR == 1) ? 2 : (2 * C_DEPTH_RATIO_WR/C_DEPTH_RATIO_RD);
//localparam EXTRA_WORDS_PE_PARAM = (C_DEPTH_RATIO_RD == 1) ? 2 : (2 * C_DEPTH_RATIO_RD/C_DEPTH_RATIO_WR);
localparam [31:0] reads_per_write = C_DIN_WIDTH/C_DOUT_WIDTH;
localparam [31:0] log2_reads_per_write = log2_val(reads_per_write);
localparam [31:0] writes_per_read = C_DOUT_WIDTH/C_DIN_WIDTH;
localparam [31:0] log2_writes_per_read = log2_val(writes_per_read);
//When RST is present, set FULL reset value to '1'.
//If core has no RST, make sure FULL powers-on as '0'.
//The reset value assignments for FULL, ALMOST_FULL, and PROG_FULL are not
//changed for v3.2(IP2_Im). When the core has Sync Reset, C_HAS_SRST=1 and C_HAS_RST=0.
// Therefore, during SRST, all the FULL flags reset to 0.
localparam C_HAS_FAST_FIFO = 0;
localparam C_FIFO_WR_DEPTH = C_WR_DEPTH;
localparam C_FIFO_RD_DEPTH = C_RD_DEPTH;
// Local parameters used to determine whether to inject ECC error or not
localparam SYMMETRIC_PORT = (C_DIN_WIDTH == C_DOUT_WIDTH) ? 1 : 0;
localparam ERR_INJECTION = (C_ERROR_INJECTION_TYPE != 0) ? 1 : 0;
localparam C_USE_ECC_1 = (C_USE_ECC == 1 || C_USE_ECC ==2) ? 1:0;
localparam ENABLE_ERR_INJECTION = C_USE_ECC && SYMMETRIC_PORT && ERR_INJECTION;
localparam C_DATA_WIDTH = (ENABLE_ERR_INJECTION == 1) ? (C_DIN_WIDTH+2) : C_DIN_WIDTH;
localparam IS_ASYMMETRY = (C_DIN_WIDTH == C_DOUT_WIDTH) ? 0 : 1;
localparam LESSER_WIDTH = (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) ? C_WR_PNTR_WIDTH : C_RD_PNTR_WIDTH;
localparam [C_RD_PNTR_WIDTH-1 : 0] DIFF_MAX_RD = {C_RD_PNTR_WIDTH{1'b1}};
localparam [C_WR_PNTR_WIDTH-1 : 0] DIFF_MAX_WR = {C_WR_PNTR_WIDTH{1'b1}};
/**************************************************************************
* FIFO Contents Tracking and Data Count Calculations
*************************************************************************/
// Memory which will be used to simulate a FIFO
reg [C_DIN_WIDTH-1:0] memory[C_WR_DEPTH-1:0];
reg [1:0] ecc_err[C_WR_DEPTH-1:0];
/**************************************************************************
* Internal Registers and wires
*************************************************************************/
//Temporary signals used for calculating the model's outputs. These
//are only used in the assign statements immediately following wire,
//parameter, and function declarations.
wire underflow_i;
wire valid_i;
wire valid_out;
reg [31:0] num_wr_bits;
reg [31:0] num_rd_bits;
reg [31:0] next_num_wr_bits;
reg [31:0] next_num_rd_bits;
//The write pointer - tracks write operations
// (Works opposite to core: wr_ptr is a DOWN counter)
reg [31:0] wr_ptr;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd1 = 0;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd2 = 0;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd3 = 0;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd = 0;
reg wr_rst_d1 =0;
//The read pointer - tracks read operations
// (rd_ptr Works opposite to core: rd_ptr is a DOWN counter)
reg [31:0] rd_ptr;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr1 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr2 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr3 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr4 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr = 0;
wire ram_rd_en;
wire empty_int;
wire almost_empty_int;
wire ram_wr_en;
wire full_int;
wire almost_full_int;
reg ram_rd_en_reg = 1'b0;
reg ram_rd_en_d1 = 1'b0;
reg fab_rd_en_d1 = 1'b0;
wire srst_rrst_busy;
//Ideal FIFO signals. These are the raw output of the behavioral model,
//which behaves like an ideal FIFO.
reg [1:0] err_type = 0;
reg [1:0] err_type_d1 = 0;
reg [1:0] err_type_both = 0;
reg [C_DOUT_WIDTH-1:0] ideal_dout = 0;
reg [C_DOUT_WIDTH-1:0] ideal_dout_d1 = 0;
reg [C_DOUT_WIDTH-1:0] ideal_dout_both = 0;
wire [C_DOUT_WIDTH-1:0] ideal_dout_out;
wire fwft_enabled;
reg ideal_wr_ack = 0;
reg ideal_valid = 0;
reg ideal_overflow = C_OVERFLOW_LOW;
reg ideal_underflow = C_UNDERFLOW_LOW;
reg full_i = C_FULL_FLAGS_RST_VAL;
reg full_i_temp = 0;
reg empty_i = 1;
reg almost_full_i = 0;
reg almost_empty_i = 1;
reg prog_full_i = 0;
reg prog_empty_i = 1;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr = 0;
wire [C_RD_PNTR_WIDTH-1:0] adj_wr_pntr_rd;
wire [C_WR_PNTR_WIDTH-1:0] adj_rd_pntr_wr;
reg [C_RD_PNTR_WIDTH-1:0] diff_count = 0;
reg write_allow_q = 0;
reg read_allow_q = 0;
reg valid_d1 = 0;
reg valid_both = 0;
reg valid_d2 = 0;
wire rst_i;
wire srst_i;
//user specified value for reseting the size of the fifo
reg [C_DOUT_WIDTH-1:0] dout_reset_val = 0;
reg [31:0] wr_ptr_rdclk;
reg [31:0] wr_ptr_rdclk_next;
reg [31:0] rd_ptr_wrclk;
reg [31:0] rd_ptr_wrclk_next;
/****************************************************************************
* Function Declarations
***************************************************************************/
/****************************************************************************
* hexstr_conv
* Converts a string of type hex to a binary value (for C_DOUT_RST_VAL)
***************************************************************************/
function [C_DOUT_WIDTH-1:0] hexstr_conv;
input [(C_DOUT_WIDTH*8)-1:0] def_data;
integer index,i,j;
reg [3:0] bin;
begin
index = 0;
hexstr_conv = 'b0;
for( i=C_DOUT_WIDTH-1; i>=0; i=i-1 ) begin
case (def_data[7:0])
8'b00000000 : begin
bin = 4'b0000;
i = -1;
end
8'b00110000 : bin = 4'b0000;
8'b00110001 : bin = 4'b0001;
8'b00110010 : bin = 4'b0010;
8'b00110011 : bin = 4'b0011;
8'b00110100 : bin = 4'b0100;
8'b00110101 : bin = 4'b0101;
8'b00110110 : bin = 4'b0110;
8'b00110111 : bin = 4'b0111;
8'b00111000 : bin = 4'b1000;
8'b00111001 : bin = 4'b1001;
8'b01000001 : bin = 4'b1010;
8'b01000010 : bin = 4'b1011;
8'b01000011 : bin = 4'b1100;
8'b01000100 : bin = 4'b1101;
8'b01000101 : bin = 4'b1110;
8'b01000110 : bin = 4'b1111;
8'b01100001 : bin = 4'b1010;
8'b01100010 : bin = 4'b1011;
8'b01100011 : bin = 4'b1100;
8'b01100100 : bin = 4'b1101;
8'b01100101 : bin = 4'b1110;
8'b01100110 : bin = 4'b1111;
default : begin
bin = 4'bx;
end
endcase
for( j=0; j<4; j=j+1) begin
if ((index*4)+j < C_DOUT_WIDTH) begin
hexstr_conv[(index*4)+j] = bin[j];
end
end
index = index + 1;
def_data = def_data >> 8;
end
end
endfunction
/**************************************************************************
* log2_val
* Returns the 'log2' value for the input value for the supported ratios
***************************************************************************/
function [31:0] log2_val;
input [31:0] binary_val;
begin
if (binary_val == 8) begin
log2_val = 3;
end else if (binary_val == 4) begin
log2_val = 2;
end else begin
log2_val = 1;
end
end
endfunction
reg ideal_prog_full = 0;
reg ideal_prog_empty = 1;
reg [C_WR_DATA_COUNT_WIDTH-1 : 0] ideal_wr_count = 0;
reg [C_RD_DATA_COUNT_WIDTH-1 : 0] ideal_rd_count = 0;
//Assorted reg values for delayed versions of signals
//reg valid_d1 = 0;
//user specified value for reseting the size of the fifo
//reg [C_DOUT_WIDTH-1:0] dout_reset_val = 0;
//temporary registers for WR_RESPONSE_LATENCY feature
integer tmp_wr_listsize;
integer tmp_rd_listsize;
//Signal for registered version of prog full and empty
//Threshold values for Programmable Flags
integer prog_empty_actual_thresh_assert;
integer prog_empty_actual_thresh_negate;
integer prog_full_actual_thresh_assert;
integer prog_full_actual_thresh_negate;
/**************************************************************************
* write_fifo
* This task writes a word to the FIFO memory and updates the
* write pointer.
* FIFO size is relative to write domain.
***************************************************************************/
task write_fifo;
begin
memory[wr_ptr] <= DIN;
wr_pntr <= #`TCQ wr_pntr + 1;
// Store the type of error injection (double/single) on write
case (C_ERROR_INJECTION_TYPE)
3: ecc_err[wr_ptr] <= {INJECTDBITERR,INJECTSBITERR};
2: ecc_err[wr_ptr] <= {INJECTDBITERR,1'b0};
1: ecc_err[wr_ptr] <= {1'b0,INJECTSBITERR};
default: ecc_err[wr_ptr] <= 0;
endcase
// (Works opposite to core: wr_ptr is a DOWN counter)
if (wr_ptr == 0) begin
wr_ptr <= C_WR_DEPTH - 1;
end else begin
wr_ptr <= wr_ptr - 1;
end
end
endtask // write_fifo
/**************************************************************************
* read_fifo
* This task reads a word from the FIFO memory and updates the read
* pointer. It's output is the ideal_dout bus.
* FIFO size is relative to write domain.
***************************************************************************/
task read_fifo;
integer i;
reg [C_DOUT_WIDTH-1:0] tmp_dout;
reg [C_DIN_WIDTH-1:0] memory_read;
reg [31:0] tmp_rd_ptr;
reg [31:0] rd_ptr_high;
reg [31:0] rd_ptr_low;
reg [1:0] tmp_ecc_err;
begin
rd_pntr <= #`TCQ rd_pntr + 1;
// output is wider than input
if (reads_per_write == 0) begin
tmp_dout = 0;
tmp_rd_ptr = (rd_ptr << log2_writes_per_read)+(writes_per_read-1);
for (i = writes_per_read - 1; i >= 0; i = i - 1) begin
tmp_dout = tmp_dout << C_DIN_WIDTH;
tmp_dout = tmp_dout | memory[tmp_rd_ptr];
// (Works opposite to core: rd_ptr is a DOWN counter)
if (tmp_rd_ptr == 0) begin
tmp_rd_ptr = C_WR_DEPTH - 1;
end else begin
tmp_rd_ptr = tmp_rd_ptr - 1;
end
end
// output is symmetric
end else if (reads_per_write == 1) begin
tmp_dout = memory[rd_ptr][C_DIN_WIDTH-1:0];
// Retreive the error injection type. Based on the error injection type
// corrupt the output data.
tmp_ecc_err = ecc_err[rd_ptr];
if (ENABLE_ERR_INJECTION && C_DIN_WIDTH == C_DOUT_WIDTH) begin
if (tmp_ecc_err[1]) begin // Corrupt the output data only for double bit error
if (C_DOUT_WIDTH == 1) begin
$display("FAILURE : Data width must be >= 2 for double bit error injection.");
$finish;
end else if (C_DOUT_WIDTH == 2)
tmp_dout = {~tmp_dout[C_DOUT_WIDTH-1],~tmp_dout[C_DOUT_WIDTH-2]};
else
tmp_dout = {~tmp_dout[C_DOUT_WIDTH-1],~tmp_dout[C_DOUT_WIDTH-2],(tmp_dout << 2)};
end else begin
tmp_dout = tmp_dout[C_DOUT_WIDTH-1:0];
end
err_type <= {tmp_ecc_err[1], tmp_ecc_err[0] & !tmp_ecc_err[1]};
end else begin
err_type <= 0;
end
// input is wider than output
end else begin
rd_ptr_high = rd_ptr >> log2_reads_per_write;
rd_ptr_low = rd_ptr & (reads_per_write - 1);
memory_read = memory[rd_ptr_high];
tmp_dout = memory_read >> (rd_ptr_low*C_DOUT_WIDTH);
end
ideal_dout <= tmp_dout;
// (Works opposite to core: rd_ptr is a DOWN counter)
if (rd_ptr == 0) begin
rd_ptr <= C_RD_DEPTH - 1;
end else begin
rd_ptr <= rd_ptr - 1;
end
end
endtask
/*************************************************************************
* Initialize Signals for clean power-on simulation
*************************************************************************/
initial begin
num_wr_bits = 0;
num_rd_bits = 0;
next_num_wr_bits = 0;
next_num_rd_bits = 0;
rd_ptr = C_RD_DEPTH - 1;
wr_ptr = C_WR_DEPTH - 1;
wr_pntr = 0;
rd_pntr = 0;
rd_ptr_wrclk = rd_ptr;
wr_ptr_rdclk = wr_ptr;
dout_reset_val = hexstr_conv(C_DOUT_RST_VAL);
ideal_dout = dout_reset_val;
err_type = 0;
ideal_dout_d1 = dout_reset_val;
ideal_dout_both = dout_reset_val;
ideal_wr_ack = 1'b0;
ideal_valid = 1'b0;
valid_d1 = 1'b0;
valid_both = 1'b0;
ideal_overflow = C_OVERFLOW_LOW;
ideal_underflow = C_UNDERFLOW_LOW;
ideal_wr_count = 0;
ideal_rd_count = 0;
ideal_prog_full = 1'b0;
ideal_prog_empty = 1'b1;
end
/*************************************************************************
* Connect the module inputs and outputs to the internal signals of the
* behavioral model.
*************************************************************************/
//Inputs
/*
wire CLK;
wire [C_DIN_WIDTH-1:0] DIN;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE;
wire RD_EN;
wire RST;
wire WR_EN;
*/
// Assign ALMOST_EPMTY
generate if (C_HAS_ALMOST_EMPTY == 1) begin : gae
assign ALMOST_EMPTY = almost_empty_i;
end else begin : gnae
assign ALMOST_EMPTY = 0;
end endgenerate // gae
// Assign ALMOST_FULL
generate if (C_HAS_ALMOST_FULL==1) begin : gaf
assign ALMOST_FULL = almost_full_i;
end else begin : gnaf
assign ALMOST_FULL = 0;
end endgenerate // gaf
// Dout may change behavior based on latency
localparam C_FWFT_ENABLED = (C_PRELOAD_LATENCY == 0 && C_PRELOAD_REGS == 1)?
1: 0;
assign fwft_enabled = (C_PRELOAD_LATENCY == 0 && C_PRELOAD_REGS == 1)?
1: 0;
assign ideal_dout_out= ((C_USE_EMBEDDED_REG>0 && (fwft_enabled == 0)) &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1))?
ideal_dout_d1: ideal_dout;
assign DOUT = ideal_dout_out;
// Assign SBITERR and DBITERR based on latency
assign SBITERR = (C_ERROR_INJECTION_TYPE == 1 || C_ERROR_INJECTION_TYPE == 3) &&
((C_USE_EMBEDDED_REG>0 && (fwft_enabled == 0)) &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1)) ?
err_type_d1[0]: err_type[0];
assign DBITERR = (C_ERROR_INJECTION_TYPE == 2 || C_ERROR_INJECTION_TYPE == 3) &&
((C_USE_EMBEDDED_REG>0 && (fwft_enabled == 0)) &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1)) ?
err_type_d1[1]: err_type[1];
assign EMPTY = empty_i;
assign FULL = full_i;
//saftey_ckt with one register
generate
if ((C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) && C_EN_SAFETY_CKT==1 && (C_USE_EMBEDDED_REG == 1 || C_USE_EMBEDDED_REG == 2 )) begin
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d1;
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d2;
reg [1:0] rst_delayed_sft1 =1;
reg [1:0] rst_delayed_sft2 =1;
reg [1:0] rst_delayed_sft3 =1;
reg [1:0] rst_delayed_sft4 =1;
always@(posedge CLK)
begin
rst_delayed_sft1 <= #`TCQ rst_i;
rst_delayed_sft2 <= #`TCQ rst_delayed_sft1;
rst_delayed_sft3 <= #`TCQ rst_delayed_sft2;
rst_delayed_sft4 <= #`TCQ rst_delayed_sft3;
end
always@(posedge rst_delayed_sft2 or posedge rst_i or posedge CLK)
begin
if( rst_delayed_sft2 == 1'b1 || rst_i == 1'b1) begin
ram_rd_en_d1 <= #`TCQ 1'b0;
valid_d1 <= #`TCQ 1'b0;
end
else begin
ram_rd_en_d1 <= #`TCQ (RD_EN && ~(empty_i));
valid_d1 <= #`TCQ valid_i;
end
end
always@(posedge rst_delayed_sft2 or posedge CLK)
begin
if (rst_delayed_sft2 == 1'b1) begin
if (C_USE_DOUT_RST == 1'b1) begin
@(posedge CLK)
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
end
else if (srst_rrst_busy == 1'b1) begin
if (C_USE_DOUT_RST == 1'b1) begin
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
end else if (ram_rd_en_d1) begin
ideal_dout_d1 <= #`TCQ ideal_dout;
err_type_d1[0] <= #`TCQ err_type[0];
err_type_d1[1] <= #`TCQ err_type[1];
end
end
end //if
endgenerate
//safety ckt with both registers
generate
if ((C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) && C_EN_SAFETY_CKT==1 && C_USE_EMBEDDED_REG == 3) begin
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d1;
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d2;
reg [1:0] rst_delayed_sft1 =1;
reg [1:0] rst_delayed_sft2 =1;
reg [1:0] rst_delayed_sft3 =1;
reg [1:0] rst_delayed_sft4 =1;
always@(posedge CLK)
begin
rst_delayed_sft1 <= #`TCQ rst_i;
rst_delayed_sft2 <= #`TCQ rst_delayed_sft1;
rst_delayed_sft3 <= #`TCQ rst_delayed_sft2;
rst_delayed_sft4 <= #`TCQ rst_delayed_sft3;
end
always@(posedge rst_delayed_sft2 or posedge rst_i or posedge CLK)
begin
if( rst_delayed_sft2 == 1'b1 || rst_i == 1'b1) begin
ram_rd_en_d1 <= #`TCQ 1'b0;
valid_d1 <= #`TCQ 1'b0;
end
else begin
ram_rd_en_d1 <= #`TCQ (RD_EN && ~(empty_i));
fab_rd_en_d1 <= #`TCQ ram_rd_en_d1;
valid_both <= #`TCQ valid_i;
valid_d1 <= #`TCQ valid_both;
end
end
always@(posedge rst_delayed_sft2 or posedge CLK)
begin
if (rst_delayed_sft2 == 1'b1) begin
if (C_USE_DOUT_RST == 1'b1) begin
@(posedge CLK)
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
end
else if (srst_rrst_busy == 1'b1) begin
if (C_USE_DOUT_RST == 1'b1) begin
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
end else if (ram_rd_en_d1) begin
ideal_dout_both <= #`TCQ ideal_dout;
err_type_both[0] <= #`TCQ err_type[0];
err_type_both[1] <= #`TCQ err_type[1];
end
if (fab_rd_en_d1) begin
ideal_dout_d1 <= #`TCQ ideal_dout_both;
err_type_d1[0] <= #`TCQ err_type_both[0];
err_type_d1[1] <= #`TCQ err_type_both[1];
end
end
//assign SBITERR = (C_USE_ECC == 0) ? err_type[0]:err_type_d1[0];
//assign DBITERR = (C_USE_ECC == 0) ? err_type[1]:err_type_d1[1];
//assign DOUT[C_DOUT_WIDTH-1:0] = ideal_dout_d1;
end //if
endgenerate
//Overflow may be active-low
generate if (C_HAS_OVERFLOW==1) begin : gof
assign OVERFLOW = ideal_overflow ? !C_OVERFLOW_LOW : C_OVERFLOW_LOW;
end else begin : gnof
assign OVERFLOW = 0;
end endgenerate // gof
assign PROG_EMPTY = prog_empty_i;
assign PROG_FULL = prog_full_i;
//Valid may change behavior based on latency or active-low
generate if (C_HAS_VALID==1) begin : gvalid
assign valid_i = (C_PRELOAD_LATENCY == 0) ? (RD_EN & ~EMPTY) : ideal_valid;
assign valid_out = (C_PRELOAD_LATENCY == 2 && C_MEMORY_TYPE < 2) ?
valid_d1 : valid_i;
assign VALID = valid_out ? !C_VALID_LOW : C_VALID_LOW;
end else begin : gnvalid
assign VALID = 0;
end endgenerate // gvalid
//Trim data count differently depending on set widths
generate if (C_HAS_DATA_COUNT == 1) begin : gdc
always @* begin
diff_count <= wr_pntr - rd_pntr;
if (C_DATA_COUNT_WIDTH > C_RD_PNTR_WIDTH) begin
DATA_COUNT[C_RD_PNTR_WIDTH-1:0] <= diff_count;
DATA_COUNT[C_DATA_COUNT_WIDTH-1] <= 1'b0 ;
end else begin
DATA_COUNT <= diff_count[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_DATA_COUNT_WIDTH];
end
end
// end else begin : gndc
// always @* DATA_COUNT <= 0;
end endgenerate // gdc
//Underflow may change behavior based on latency or active-low
generate if (C_HAS_UNDERFLOW==1) begin : guf
assign underflow_i = ideal_underflow;
assign UNDERFLOW = underflow_i ? !C_UNDERFLOW_LOW : C_UNDERFLOW_LOW;
end else begin : gnuf
assign UNDERFLOW = 0;
end endgenerate // guf
//Write acknowledge may be active low
generate if (C_HAS_WR_ACK==1) begin : gwr_ack
assign WR_ACK = ideal_wr_ack ? !C_WR_ACK_LOW : C_WR_ACK_LOW;
end else begin : gnwr_ack
assign WR_ACK = 0;
end endgenerate // gwr_ack
/*****************************************************************************
* Internal reset logic
****************************************************************************/
assign srst_i = C_HAS_SRST ? SRST : 0;
assign srst_wrst_busy = C_HAS_SRST ? (SRST || WR_RST_BUSY) : 0;
assign srst_rrst_busy = C_HAS_SRST ? (SRST || RD_RST_BUSY) : 0;
assign rst_i = C_HAS_RST ? RST : 0;
/**************************************************************************
* Assorted registers for delayed versions of signals
**************************************************************************/
//Capture delayed version of valid
generate if (C_HAS_VALID == 1 && (C_USE_EMBEDDED_REG <3)) begin : blockVL20
always @(posedge CLK or posedge rst_i) begin
if (rst_i == 1'b1) begin
valid_d1 <= #`TCQ 1'b0;
end else begin
if (srst_rrst_busy) begin
valid_d1 <= #`TCQ 1'b0;
end else begin
valid_d1 <= #`TCQ valid_i;
end
end
end // always @ (posedge CLK or posedge rst_i)
end
endgenerate // blockVL20
generate if (C_HAS_VALID == 1 && (C_USE_EMBEDDED_REG == 3)) begin
always @(posedge CLK or posedge rst_i) begin
if (rst_i == 1'b1) begin
valid_d1 <= #`TCQ 1'b0;
valid_both <= #`TCQ 1'b0;
end else begin
if (srst_rrst_busy) begin
valid_d1 <= #`TCQ 1'b0;
valid_both <= #`TCQ 1'b0;
end else begin
valid_both <= #`TCQ valid_i;
valid_d1 <= #`TCQ valid_both;
end
end
end // always @ (posedge CLK or posedge rst_i)
end
endgenerate // blockVL20
// Determine which stage in FWFT registers are valid
reg stage1_valid = 0;
reg stage2_valid = 0;
generate
if (C_PRELOAD_LATENCY == 0) begin : grd_fwft_proc
always @ (posedge CLK or posedge rst_i) begin
if (rst_i) begin
stage1_valid <= #`TCQ 0;
stage2_valid <= #`TCQ 0;
end else begin
if (!stage1_valid && !stage2_valid) begin
if (!EMPTY)
stage1_valid <= #`TCQ 1'b1;
else
stage1_valid <= #`TCQ 1'b0;
end else if (stage1_valid && !stage2_valid) begin
if (EMPTY) begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b1;
end else begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b1;
end
end else if (!stage1_valid && stage2_valid) begin
if (EMPTY && RD_EN) begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b0;
end else if (!EMPTY && RD_EN) begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b0;
end else if (!EMPTY && !RD_EN) begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b1;
end else begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b1;
end
end else if (stage1_valid && stage2_valid) begin
if (EMPTY && RD_EN) begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b1;
end else begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b1;
end
end else begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b0;
end
end // rd_rst_i
end // always
end
endgenerate
//***************************************************************************
// Assign the read data count value only if it is selected,
// otherwise output zeros.
//***************************************************************************
generate
if (C_HAS_RD_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT ==1) begin : grdc
assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = rd_data_count_i_ss[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH+1-C_RD_DATA_COUNT_WIDTH];
end
endgenerate
generate
if (C_HAS_RD_DATA_COUNT == 0) begin : gnrdc
assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = {C_RD_DATA_COUNT_WIDTH{1'b0}};
end
endgenerate
//***************************************************************************
// Assign the write data count value only if it is selected,
// otherwise output zeros
//***************************************************************************
generate
if (C_HAS_WR_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT == 1) begin : gwdc
assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = wr_data_count_i_ss[C_WR_PNTR_WIDTH:C_WR_PNTR_WIDTH+1-C_WR_DATA_COUNT_WIDTH] ;
end
endgenerate
generate
if (C_HAS_WR_DATA_COUNT == 0) begin : gnwdc
assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = {C_WR_DATA_COUNT_WIDTH{1'b0}};
end
endgenerate
// block memory has a synchronous reset
// no safety ckt with emb/fabric reg
//generate if (C_MEMORY_TYPE < 2 && C_EN_SAFETY_CKT == 0) begin : gen_fifo_blkmemdout_emb
// always @(posedge CLK) begin
// // BRAM resets synchronously
// // make it consistent with the core.
// if ((rst_i || srst_rrst_busy) && (C_USE_DOUT_RST == 1))
// ideal_dout_d1 <= #`TCQ dout_reset_val;
// ideal_dout_both <= #`TCQ dout_reset_val;
// end //always
//end endgenerate // gen_fifo_blkmemdout_emb
//reg ram_rd_en_d1 = 1'b0;
//Capture delayed version of dout
generate if (C_EN_SAFETY_CKT == 0 && (C_USE_EMBEDDED_REG<3)) begin
always @(posedge CLK or posedge rst_i) begin
if (rst_i == 1'b1) begin
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type_d1 <= #`TCQ 0;
// DRAM and SRAM reset asynchronously
if ((C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3) && C_USE_DOUT_RST == 1) begin
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
ram_rd_en_d1 <= #`TCQ 1'b0;
if (C_USE_DOUT_RST == 1) begin
@(posedge CLK)
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
end else begin
ram_rd_en_d1 <= #`TCQ RD_EN & ~EMPTY;
if (srst_rrst_busy) begin
ram_rd_en_d1 <= #`TCQ 1'b0;
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0) begin
err_type_d1 <= #`TCQ 0;
end
// Reset DRAM and SRAM based FIFO, BRAM based FIFO is reset above
if ((C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3) && C_USE_DOUT_RST == 1) begin
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
if (C_USE_DOUT_RST == 1) begin
// @(posedge CLK)
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
end else begin
if (ram_rd_en_d1 ) begin
ideal_dout_d1 <= #`TCQ ideal_dout;
err_type_d1 <= #`TCQ err_type;
end
end
end
end // always
end
endgenerate
//no safety ckt with both registers
generate if (C_EN_SAFETY_CKT == 0 && (C_USE_EMBEDDED_REG==3)) begin
always @(posedge CLK or posedge rst_i) begin
if (rst_i == 1'b1) begin
ram_rd_en_d1 <= #`TCQ 1'b0;
fab_rd_en_d1 <= #`TCQ 1'b0;
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type_d1 <= #`TCQ 0;
// DRAM and SRAM reset asynchronously
if ((C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3) && C_USE_DOUT_RST == 1) begin
ideal_dout_d1 <= #`TCQ dout_reset_val;
ideal_dout_both <= #`TCQ dout_reset_val;
end
if (C_USE_DOUT_RST == 1) begin
@(posedge CLK)
ideal_dout_d1 <= #`TCQ dout_reset_val;
ideal_dout_both <= #`TCQ dout_reset_val;
end
end else begin
ram_rd_en_d1 <= #`TCQ RD_EN & ~EMPTY;
fab_rd_en_d1 <= #`TCQ (ram_rd_en_d1);
if (srst_rrst_busy) begin
ram_rd_en_d1 <= #`TCQ 1'b0;
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0) begin
err_type_d1 <= #`TCQ 0;
end
// Reset DRAM and SRAM based FIFO, BRAM based FIFO is reset above
if ((C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3) && C_USE_DOUT_RST == 1) begin
ideal_dout_d1 <= #`TCQ dout_reset_val;
// ideal_dout_both <= #`TCQ dout_reset_val;
end
if (C_USE_DOUT_RST == 1) begin
// @(posedge CLK)
ideal_dout_d1 <= #`TCQ dout_reset_val;
// ideal_dout_both <= #`TCQ dout_reset_val;
end
end else begin
if (ram_rd_en_d1 ) begin
ideal_dout_both <= #`TCQ ideal_dout;
err_type_both <= #`TCQ err_type;
end
if (fab_rd_en_d1 ) begin
ideal_dout_d1 <= #`TCQ ideal_dout_both;
err_type_d1 <= #`TCQ err_type_both;
end
end
end
end // always
end
endgenerate
/**************************************************************************
* Overflow and Underflow Flag calculation
* (handled separately because they don't support rst)
**************************************************************************/
generate if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 0) begin : g7s_ovflw
always @(posedge CLK) begin
ideal_overflow <= #`TCQ WR_EN & full_i;
end
end else if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 1) begin : g8s_ovflw
always @(posedge CLK) begin
//ideal_overflow <= #`TCQ WR_EN & (rst_i | full_i);
ideal_overflow <= #`TCQ WR_EN & (WR_RST_BUSY | full_i);
end
end endgenerate // blockOF20
generate if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 0) begin : g7s_unflw
always @(posedge CLK) begin
ideal_underflow <= #`TCQ empty_i & RD_EN;
end
end else if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 1) begin : g8s_unflw
always @(posedge CLK) begin
//ideal_underflow <= #`TCQ (rst_i | empty_i) & RD_EN;
ideal_underflow <= #`TCQ (RD_RST_BUSY | empty_i) & RD_EN;
end
end endgenerate // blockUF20
/**************************
* Read Data Count
*************************/
reg [31:0] num_read_words_dc;
reg [C_RD_DATA_COUNT_WIDTH-1:0] num_read_words_sized_i;
always @(num_rd_bits) begin
if (C_USE_FWFT_DATA_COUNT) begin
//If using extra logic for FWFT Data Counts,
// then scale FIFO contents to read domain,
// and add two read words for FWFT stages
//This value is only a temporary value and not used in the code.
num_read_words_dc = (num_rd_bits/C_DOUT_WIDTH+2);
//Trim the read words for use with RD_DATA_COUNT
num_read_words_sized_i =
num_read_words_dc[C_RD_PNTR_WIDTH : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH+1];
end else begin
//If not using extra logic for FWFT Data Counts,
// then scale FIFO contents to read domain.
//This value is only a temporary value and not used in the code.
num_read_words_dc = num_rd_bits/C_DOUT_WIDTH;
//Trim the read words for use with RD_DATA_COUNT
num_read_words_sized_i =
num_read_words_dc[C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH];
end //if (C_USE_FWFT_DATA_COUNT)
end //always
/**************************
* Write Data Count
*************************/
reg [31:0] num_write_words_dc;
reg [C_WR_DATA_COUNT_WIDTH-1:0] num_write_words_sized_i;
always @(num_wr_bits) begin
if (C_USE_FWFT_DATA_COUNT) begin
//Calculate the Data Count value for the number of write words,
// when using First-Word Fall-Through with extra logic for Data
// Counts. This takes into consideration the number of words that
// are expected to be stored in the FWFT register stages (it always
// assumes they are filled).
//This value is scaled to the Write Domain.
//The expression (((A-1)/B))+1 divides A/B, but takes the
// ceiling of the result.
//When num_wr_bits==0, set the result manually to prevent
// division errors.
//EXTRA_WORDS_DC is the number of words added to write_words
// due to FWFT.
//This value is only a temporary value and not used in the code.
num_write_words_dc = (num_wr_bits==0) ? EXTRA_WORDS_DC : (((num_wr_bits-1)/C_DIN_WIDTH)+1) + EXTRA_WORDS_DC ;
//Trim the write words for use with WR_DATA_COUNT
num_write_words_sized_i =
num_write_words_dc[C_WR_PNTR_WIDTH : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH+1];
end else begin
//Calculate the Data Count value for the number of write words, when NOT
// using First-Word Fall-Through with extra logic for Data Counts. This
// calculates only the number of words in the internal FIFO.
//The expression (((A-1)/B))+1 divides A/B, but takes the
// ceiling of the result.
//This value is scaled to the Write Domain.
//When num_wr_bits==0, set the result manually to prevent
// division errors.
//This value is only a temporary value and not used in the code.
num_write_words_dc = (num_wr_bits==0) ? 0 : ((num_wr_bits-1)/C_DIN_WIDTH)+1;
//Trim the read words for use with RD_DATA_COUNT
num_write_words_sized_i =
num_write_words_dc[C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH];
end //if (C_USE_FWFT_DATA_COUNT)
end //always
/*************************************************************************
* Write and Read Logic
************************************************************************/
wire write_allow;
wire read_allow;
wire read_allow_dc;
wire write_only;
wire read_only;
//wire write_only_q;
reg write_only_q;
//wire read_only_q;
reg read_only_q;
reg full_reg;
reg rst_full_ff_reg1;
reg rst_full_ff_reg2;
wire ram_full_comb;
wire carry;
assign write_allow = WR_EN & ~full_i;
assign read_allow = RD_EN & ~empty_i;
assign read_allow_dc = RD_EN_USER & ~USER_EMPTY_FB;
//assign write_only = write_allow & ~read_allow;
//assign write_only_q = write_allow_q;
//assign read_only = read_allow & ~write_allow;
//assign read_only_q = read_allow_q ;
wire [C_WR_PNTR_WIDTH-1:0] diff_pntr;
wire [C_RD_PNTR_WIDTH-1:0] diff_pntr_pe;
reg [C_WR_PNTR_WIDTH-1:0] diff_pntr_reg1 = 0;
reg [C_RD_PNTR_WIDTH-1:0] diff_pntr_pe_reg1 = 0;
reg [C_RD_PNTR_WIDTH:0] diff_pntr_pe_asym = 0;
wire [C_RD_PNTR_WIDTH:0] adj_wr_pntr_rd_asym ;
wire [C_RD_PNTR_WIDTH:0] rd_pntr_asym;
reg [C_WR_PNTR_WIDTH-1:0] diff_pntr_reg2 = 0;
reg [C_WR_PNTR_WIDTH-1:0] diff_pntr_pe_reg2 = 0;
wire [C_RD_PNTR_WIDTH-1:0] diff_pntr_pe_max;
wire [C_RD_PNTR_WIDTH-1:0] diff_pntr_max;
assign diff_pntr_pe_max = DIFF_MAX_RD;
assign diff_pntr_max = DIFF_MAX_WR;
generate if (IS_ASYMMETRY == 0) begin : diff_pntr_sym
assign write_only = write_allow & ~read_allow;
assign read_only = read_allow & ~write_allow;
end endgenerate
generate if ( IS_ASYMMETRY == 1 && C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : wr_grt_rd
assign read_only = read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0]) & ~write_allow;
assign write_only = write_allow & ~(read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0]));
end endgenerate
generate if (IS_ASYMMETRY ==1 && C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : rd_grt_wr
assign read_only = read_allow & ~(write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]));
assign write_only = write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]) & ~read_allow;
end endgenerate
//-----------------------------------------------------------------------------
// Write and Read pointer generation
//-----------------------------------------------------------------------------
always @(posedge CLK or posedge rst_i) begin
if (rst_i) begin
wr_pntr <= 0;
rd_pntr <= 0;
end else begin
if (srst_i || srst_wrst_busy || srst_rrst_busy ) begin
if (srst_wrst_busy)
wr_pntr <= #`TCQ 0;
if (srst_rrst_busy)
rd_pntr <= #`TCQ 0;
end else begin
if (write_allow) wr_pntr <= #`TCQ wr_pntr + 1;
if (read_allow) rd_pntr <= #`TCQ rd_pntr + 1;
end
end
end
generate if (C_FIFO_TYPE == 2) begin : gll_dm_dout
always @(posedge CLK) begin
if (write_allow) begin
if (ENABLE_ERR_INJECTION == 1)
memory[wr_pntr] <= #`TCQ {INJECTDBITERR,INJECTSBITERR,DIN};
else
memory[wr_pntr] <= #`TCQ DIN;
end
end
reg [C_DATA_WIDTH-1:0] dout_tmp_q;
reg [C_DATA_WIDTH-1:0] dout_tmp = 0;
reg [C_DATA_WIDTH-1:0] dout_tmp1 = 0;
always @(posedge CLK) begin
dout_tmp_q <= #`TCQ ideal_dout;
end
always @* begin
if (read_allow)
ideal_dout <= memory[rd_pntr];
else
ideal_dout <= dout_tmp_q;
end
end endgenerate // gll_dm_dout
/**************************************************************************
* Write Domain Logic
**************************************************************************/
assign ram_rd_en = RD_EN & !EMPTY;
//reg [C_WR_PNTR_WIDTH-1:0] diff_pntr = 0;
generate if (C_FIFO_TYPE != 2) begin : gnll_din
always @(posedge CLK or posedge rst_i) begin : gen_fifo_w
/****** Reset fifo (case 1)***************************************/
if (rst_i == 1'b1) begin
num_wr_bits <= #`TCQ 0;
next_num_wr_bits = #`TCQ 0;
wr_ptr <= #`TCQ C_WR_DEPTH - 1;
rd_ptr_wrclk <= #`TCQ C_RD_DEPTH - 1;
ideal_wr_ack <= #`TCQ 0;
ideal_wr_count <= #`TCQ 0;
tmp_wr_listsize = #`TCQ 0;
rd_ptr_wrclk_next <= #`TCQ 0;
wr_pntr <= #`TCQ 0;
wr_pntr_rd1 <= #`TCQ 0;
end else begin //rst_i==0
if (srst_wrst_busy) begin
num_wr_bits <= #`TCQ 0;
next_num_wr_bits = #`TCQ 0;
wr_ptr <= #`TCQ C_WR_DEPTH - 1;
rd_ptr_wrclk <= #`TCQ C_RD_DEPTH - 1;
ideal_wr_ack <= #`TCQ 0;
ideal_wr_count <= #`TCQ 0;
tmp_wr_listsize = #`TCQ 0;
rd_ptr_wrclk_next <= #`TCQ 0;
wr_pntr <= #`TCQ 0;
wr_pntr_rd1 <= #`TCQ 0;
end else begin//srst_i=0
wr_pntr_rd1 <= #`TCQ wr_pntr;
//Determine the current number of words in the FIFO
tmp_wr_listsize = (C_DEPTH_RATIO_RD > 1) ? num_wr_bits/C_DOUT_WIDTH :
num_wr_bits/C_DIN_WIDTH;
rd_ptr_wrclk_next = rd_ptr;
if (rd_ptr_wrclk < rd_ptr_wrclk_next) begin
next_num_wr_bits = num_wr_bits -
C_DOUT_WIDTH*(rd_ptr_wrclk + C_RD_DEPTH
- rd_ptr_wrclk_next);
end else begin
next_num_wr_bits = num_wr_bits -
C_DOUT_WIDTH*(rd_ptr_wrclk - rd_ptr_wrclk_next);
end
if (WR_EN == 1'b1) begin
if (FULL == 1'b1) begin
ideal_wr_ack <= #`TCQ 0;
//Reminder that FIFO is still full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
end else begin
write_fifo;
next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH;
//Write successful, so issue acknowledge
// and no error
ideal_wr_ack <= #`TCQ 1;
//Not even close to full.
ideal_wr_count <= num_write_words_sized_i;
//end
end
end else begin //(WR_EN == 1'b1)
//If user did not attempt a write, then do not
// give ack or err
ideal_wr_ack <= #`TCQ 0;
ideal_wr_count <= #`TCQ num_write_words_sized_i;
end
num_wr_bits <= #`TCQ next_num_wr_bits;
rd_ptr_wrclk <= #`TCQ rd_ptr;
end //srst_i==0
end //wr_rst_i==0
end // gen_fifo_w
end endgenerate
generate if (C_FIFO_TYPE < 2 && C_MEMORY_TYPE < 2 && C_EN_SAFETY_CKT == 0) begin : gnll_dm_dout
always @(posedge CLK) begin
if (rst_i || srst_rrst_busy) begin
if (C_USE_DOUT_RST == 1)
ideal_dout <= #`TCQ dout_reset_val;
ideal_dout_both <= #`TCQ dout_reset_val;
end
end
end endgenerate
generate if (C_FIFO_TYPE != 2) begin : gnll_dout
always @(posedge CLK or posedge rst_i) begin : gen_fifo_r
/****** Reset fifo (case 1)***************************************/
if (rst_i) begin
num_rd_bits <= #`TCQ 0;
next_num_rd_bits = #`TCQ 0;
rd_ptr <= #`TCQ C_RD_DEPTH -1;
rd_pntr <= #`TCQ 0;
//rd_pntr_wr1 <= #`TCQ 0;
wr_ptr_rdclk <= #`TCQ C_WR_DEPTH -1;
// DRAM resets asynchronously
if (C_FIFO_TYPE < 2 && (C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3 )&& C_USE_DOUT_RST == 1)
ideal_dout <= #`TCQ dout_reset_val;
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type <= #`TCQ 0;
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ 0;
end else begin //rd_rst_i==0
if (srst_rrst_busy) begin
num_rd_bits <= #`TCQ 0;
next_num_rd_bits = #`TCQ 0;
rd_ptr <= #`TCQ C_RD_DEPTH -1;
rd_pntr <= #`TCQ 0;
//rd_pntr_wr1 <= #`TCQ 0;
wr_ptr_rdclk <= #`TCQ C_WR_DEPTH -1;
// DRAM resets synchronously
if (C_FIFO_TYPE < 2 && (C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3 )&& C_USE_DOUT_RST == 1)
ideal_dout <= #`TCQ dout_reset_val;
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type <= #`TCQ 0;
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ 0;
end //srst_i
else begin
//rd_pntr_wr1 <= #`TCQ rd_pntr;
//Determine the current number of words in the FIFO
tmp_rd_listsize = (C_DEPTH_RATIO_WR > 1) ? num_rd_bits/C_DIN_WIDTH :
num_rd_bits/C_DOUT_WIDTH;
wr_ptr_rdclk_next = wr_ptr;
if (wr_ptr_rdclk < wr_ptr_rdclk_next) begin
next_num_rd_bits = num_rd_bits +
C_DIN_WIDTH*(wr_ptr_rdclk +C_WR_DEPTH
- wr_ptr_rdclk_next);
end else begin
next_num_rd_bits = num_rd_bits +
C_DIN_WIDTH*(wr_ptr_rdclk - wr_ptr_rdclk_next);
end
if (RD_EN == 1'b1) begin
if (EMPTY == 1'b1) begin
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end
else
begin
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == 2)
end
num_rd_bits <= #`TCQ next_num_rd_bits;
wr_ptr_rdclk <= #`TCQ wr_ptr;
end //s_rst_i==0
end //rd_rst_i==0
end //always
end endgenerate
//-----------------------------------------------------------------------------
// Generate diff_pntr for PROG_FULL generation
// Generate diff_pntr_pe for PROG_EMPTY generation
//-----------------------------------------------------------------------------
generate if ((C_PROG_FULL_TYPE != 0 || C_PROG_EMPTY_TYPE != 0) && IS_ASYMMETRY == 0) begin : reg_write_allow
always @(posedge CLK ) begin
if (rst_i) begin
write_only_q <= 1'b0;
read_only_q <= 1'b0;
diff_pntr_reg1 <= 0;
diff_pntr_pe_reg1 <= 0;
diff_pntr_reg2 <= 0;
diff_pntr_pe_reg2 <= 0;
end else begin
if (srst_i || srst_wrst_busy || srst_rrst_busy) begin
if (srst_rrst_busy) begin
read_only_q <= #`TCQ 1'b0;
diff_pntr_pe_reg1 <= #`TCQ 0;
diff_pntr_pe_reg2 <= #`TCQ 0;
end
if (srst_wrst_busy) begin
write_only_q <= #`TCQ 1'b0;
diff_pntr_reg1 <= #`TCQ 0;
diff_pntr_reg2 <= #`TCQ 0;
end
end else begin
write_only_q <= #`TCQ write_only;
read_only_q <= #`TCQ read_only;
diff_pntr_reg2 <= #`TCQ diff_pntr_reg1;
diff_pntr_pe_reg2 <= #`TCQ diff_pntr_pe_reg1;
// Add 1 to the difference pointer value when only write happens.
if (write_only)
diff_pntr_reg1 <= #`TCQ wr_pntr - adj_rd_pntr_wr + 1;
else
diff_pntr_reg1 <= #`TCQ wr_pntr - adj_rd_pntr_wr;
// Add 1 to the difference pointer value when write or both write & read or no write & read happen.
if (read_only)
diff_pntr_pe_reg1 <= #`TCQ adj_wr_pntr_rd - rd_pntr - 1;
else
diff_pntr_pe_reg1 <= #`TCQ adj_wr_pntr_rd - rd_pntr;
end
end
end
assign diff_pntr_pe = diff_pntr_pe_reg1;
assign diff_pntr = diff_pntr_reg1;
end endgenerate // reg_write_allow
generate if ((C_PROG_FULL_TYPE != 0 || C_PROG_EMPTY_TYPE != 0) && IS_ASYMMETRY == 1) begin : reg_write_allow_asym
assign adj_wr_pntr_rd_asym[C_RD_PNTR_WIDTH:0] = {adj_wr_pntr_rd,1'b1};
assign rd_pntr_asym[C_RD_PNTR_WIDTH:0] = {~rd_pntr,1'b1};
always @(posedge CLK ) begin
if (rst_i) begin
diff_pntr_pe_asym <= 0;
diff_pntr_reg1 <= 0;
full_reg <= 0;
rst_full_ff_reg1 <= 1;
rst_full_ff_reg2 <= 1;
diff_pntr_pe_reg1 <= 0;
end else begin
if (srst_i || srst_wrst_busy || srst_rrst_busy) begin
if (srst_wrst_busy)
diff_pntr_reg1 <= #`TCQ 0;
if (srst_rrst_busy)
full_reg <= #`TCQ 0;
rst_full_ff_reg1 <= #`TCQ 1;
rst_full_ff_reg2 <= #`TCQ 1;
diff_pntr_pe_asym <= #`TCQ 0;
diff_pntr_pe_reg1 <= #`TCQ 0;
end else begin
diff_pntr_pe_asym <= #`TCQ adj_wr_pntr_rd_asym + rd_pntr_asym;
full_reg <= #`TCQ full_i;
rst_full_ff_reg1 <= #`TCQ RST_FULL_FF;
rst_full_ff_reg2 <= #`TCQ rst_full_ff_reg1;
if (~full_i) begin
diff_pntr_reg1 <= #`TCQ wr_pntr - adj_rd_pntr_wr;
end
end
end
end
assign carry = (~(|(diff_pntr_pe_asym [C_RD_PNTR_WIDTH : 1])));
assign diff_pntr_pe = (full_reg && ~rst_full_ff_reg2 && carry ) ? diff_pntr_pe_max : diff_pntr_pe_asym[C_RD_PNTR_WIDTH:1];
assign diff_pntr = diff_pntr_reg1;
end endgenerate // reg_write_allow_asym
//-----------------------------------------------------------------------------
// Generate FULL flag
//-----------------------------------------------------------------------------
wire comp0;
wire comp1;
wire going_full;
wire leaving_full;
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gpad
assign adj_rd_pntr_wr [C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH] = rd_pntr;
assign adj_rd_pntr_wr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0] = 0;
end endgenerate
generate if (C_WR_PNTR_WIDTH <= C_RD_PNTR_WIDTH) begin : gtrim
assign adj_rd_pntr_wr = rd_pntr[C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH];
end endgenerate
assign comp1 = (adj_rd_pntr_wr == (wr_pntr + 1'b1));
assign comp0 = (adj_rd_pntr_wr == wr_pntr);
generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : gf_wp_eq_rp
assign going_full = (comp1 & write_allow & ~read_allow);
assign leaving_full = (comp0 & read_allow) | RST_FULL_GEN;
end endgenerate
// Write data width is bigger than read data width
// Write depth is smaller than read depth
// One write could be equal to 2 or 4 or 8 reads
generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : gf_asym
assign going_full = (comp1 & write_allow & (~ (read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0]))));
assign leaving_full = (comp0 & read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0])) | RST_FULL_GEN;
end endgenerate
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gf_wp_gt_rp
assign going_full = (comp1 & write_allow & ~read_allow);
assign leaving_full =(comp0 & read_allow) | RST_FULL_GEN;
end endgenerate
assign ram_full_comb = going_full | (~leaving_full & full_i);
always @(posedge CLK or posedge RST_FULL_FF) begin
if (RST_FULL_FF)
full_i <= C_FULL_FLAGS_RST_VAL;
else if (srst_wrst_busy)
full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else
full_i <= #`TCQ ram_full_comb;
end
//-----------------------------------------------------------------------------
// Generate EMPTY flag
//-----------------------------------------------------------------------------
wire ecomp0;
wire ecomp1;
wire going_empty;
wire leaving_empty;
wire ram_empty_comb;
generate if (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) begin : pad
assign adj_wr_pntr_rd [C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr;
assign adj_wr_pntr_rd[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0] = 0;
end endgenerate
generate if (C_RD_PNTR_WIDTH <= C_WR_PNTR_WIDTH) begin : trim
assign adj_wr_pntr_rd = wr_pntr[C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH];
end endgenerate
assign ecomp1 = (adj_wr_pntr_rd == (rd_pntr + 1'b1));
assign ecomp0 = (adj_wr_pntr_rd == rd_pntr);
generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : ge_wp_eq_rp
assign going_empty = (ecomp1 & ~write_allow & read_allow);
assign leaving_empty = (ecomp0 & write_allow);
end endgenerate
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : ge_wp_gt_rp
assign going_empty = (ecomp1 & read_allow & (~(write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]))));
assign leaving_empty = (ecomp0 & write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]));
end endgenerate
generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : ge_wp_lt_rp
assign going_empty = (ecomp1 & ~write_allow & read_allow);
assign leaving_empty =(ecomp0 & write_allow);
end endgenerate
assign ram_empty_comb = going_empty | (~leaving_empty & empty_i);
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
empty_i <= 1'b1;
else if (srst_rrst_busy)
empty_i <= #`TCQ 1'b1;
else
empty_i <= #`TCQ ram_empty_comb;
end
//-----------------------------------------------------------------------------
// Generate Read and write data counts for asymmetic common clock
//-----------------------------------------------------------------------------
reg [C_GRTR_PNTR_WIDTH :0] count_dc = 0;
wire [C_GRTR_PNTR_WIDTH :0] ratio;
wire decr_by_one;
wire incr_by_ratio;
wire incr_by_one;
wire decr_by_ratio;
localparam IS_FWFT = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ? 1 : 0;
generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : rd_depth_gt_wr
assign ratio = C_DEPTH_RATIO_RD;
assign decr_by_one = (IS_FWFT == 1)? read_allow_dc : read_allow;
assign incr_by_ratio = write_allow;
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
count_dc <= #`TCQ 0;
else if (srst_wrst_busy)
count_dc <= #`TCQ 0;
else begin
if (decr_by_one) begin
if (!incr_by_ratio)
count_dc <= #`TCQ count_dc - 1;
else
count_dc <= #`TCQ count_dc - 1 + ratio ;
end
else begin
if (!incr_by_ratio)
count_dc <= #`TCQ count_dc ;
else
count_dc <= #`TCQ count_dc + ratio ;
end
end
end
assign rd_data_count_i_ss[C_RD_PNTR_WIDTH : 0] = count_dc;
assign wr_data_count_i_ss[C_WR_PNTR_WIDTH : 0] = count_dc[C_RD_PNTR_WIDTH : C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH];
end endgenerate
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : wr_depth_gt_rd
assign ratio = C_DEPTH_RATIO_WR;
assign incr_by_one = write_allow;
assign decr_by_ratio = (IS_FWFT == 1)? read_allow_dc : read_allow;
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
count_dc <= #`TCQ 0;
else if (srst_wrst_busy)
count_dc <= #`TCQ 0;
else begin
if (incr_by_one) begin
if (!decr_by_ratio)
count_dc <= #`TCQ count_dc + 1;
else
count_dc <= #`TCQ count_dc + 1 - ratio ;
end
else begin
if (!decr_by_ratio)
count_dc <= #`TCQ count_dc ;
else
count_dc <= #`TCQ count_dc - ratio ;
end
end
end
assign wr_data_count_i_ss[C_WR_PNTR_WIDTH : 0] = count_dc;
assign rd_data_count_i_ss[C_RD_PNTR_WIDTH : 0] = count_dc[C_WR_PNTR_WIDTH : C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH];
end endgenerate
//-----------------------------------------------------------------------------
// Generate WR_ACK flag
//-----------------------------------------------------------------------------
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
ideal_wr_ack <= 1'b0;
else if (srst_wrst_busy)
ideal_wr_ack <= #`TCQ 1'b0;
else if (WR_EN & ~full_i)
ideal_wr_ack <= #`TCQ 1'b1;
else
ideal_wr_ack <= #`TCQ 1'b0;
end
//-----------------------------------------------------------------------------
// Generate VALID flag
//-----------------------------------------------------------------------------
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
ideal_valid <= 1'b0;
else if (srst_rrst_busy)
ideal_valid <= #`TCQ 1'b0;
else if (RD_EN & ~empty_i)
ideal_valid <= #`TCQ 1'b1;
else
ideal_valid <= #`TCQ 1'b0;
end
//-----------------------------------------------------------------------------
// Generate ALMOST_FULL flag
//-----------------------------------------------------------------------------
//generate if (C_HAS_ALMOST_FULL == 1 || C_PROG_FULL_TYPE > 2 || C_PROG_EMPTY_TYPE > 2) begin : gaf_ss
wire fcomp2;
wire going_afull;
wire leaving_afull;
wire ram_afull_comb;
assign fcomp2 = (adj_rd_pntr_wr == (wr_pntr + 2'h2));
generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : gaf_wp_eq_rp
assign going_afull = (fcomp2 & write_allow & ~read_allow);
assign leaving_afull = (comp1 & read_allow & ~write_allow) | RST_FULL_GEN;
end endgenerate
// Write data width is bigger than read data width
// Write depth is smaller than read depth
// One write could be equal to 2 or 4 or 8 reads
generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : gaf_asym
assign going_afull = (fcomp2 & write_allow & (~ (read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0]))));
assign leaving_afull = (comp1 & (~write_allow) & read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0])) | RST_FULL_GEN;
end endgenerate
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gaf_wp_gt_rp
assign going_afull = (fcomp2 & write_allow & ~read_allow);
assign leaving_afull =((comp0 | comp1 | fcomp2) & read_allow) | RST_FULL_GEN;
end endgenerate
assign ram_afull_comb = going_afull | (~leaving_afull & almost_full_i);
always @(posedge CLK or posedge RST_FULL_FF) begin
if (RST_FULL_FF)
almost_full_i <= C_FULL_FLAGS_RST_VAL;
else if (srst_wrst_busy)
almost_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else
almost_full_i <= #`TCQ ram_afull_comb;
end
// end endgenerate // gaf_ss
//-----------------------------------------------------------------------------
// Generate ALMOST_EMPTY flag
//-----------------------------------------------------------------------------
//generate if (C_HAS_ALMOST_EMPTY == 1) begin : gae_ss
wire ecomp2;
wire going_aempty;
wire leaving_aempty;
wire ram_aempty_comb;
assign ecomp2 = (adj_wr_pntr_rd == (rd_pntr + 2'h2));
generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : gae_wp_eq_rp
assign going_aempty = (ecomp2 & ~write_allow & read_allow);
assign leaving_aempty = (ecomp1 & write_allow & ~read_allow);
end endgenerate
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gae_wp_gt_rp
assign going_aempty = (ecomp2 & read_allow & (~(write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]))));
assign leaving_aempty = (ecomp1 & ~read_allow & write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]));
end endgenerate
generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : gae_wp_lt_rp
assign going_aempty = (ecomp2 & ~write_allow & read_allow);
assign leaving_aempty =((ecomp2 | ecomp1 |ecomp0) & write_allow);
end endgenerate
assign ram_aempty_comb = going_aempty | (~leaving_aempty & almost_empty_i);
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
almost_empty_i <= 1'b1;
else if (srst_rrst_busy)
almost_empty_i <= #`TCQ 1'b1;
else
almost_empty_i <= #`TCQ ram_aempty_comb;
end
// end endgenerate // gae_ss
//-----------------------------------------------------------------------------
// Generate PROG_FULL
//-----------------------------------------------------------------------------
localparam C_PF_ASSERT_VAL = (C_PRELOAD_LATENCY == 0) ?
C_PROG_FULL_THRESH_ASSERT_VAL - EXTRA_WORDS_PF_PARAM : // FWFT
C_PROG_FULL_THRESH_ASSERT_VAL; // STD
localparam C_PF_NEGATE_VAL = (C_PRELOAD_LATENCY == 0) ?
C_PROG_FULL_THRESH_NEGATE_VAL - EXTRA_WORDS_PF_PARAM: // FWFT
C_PROG_FULL_THRESH_NEGATE_VAL; // STD
//-----------------------------------------------------------------------------
// Generate PROG_FULL for single programmable threshold constant
//-----------------------------------------------------------------------------
wire [C_WR_PNTR_WIDTH-1:0] temp = C_PF_ASSERT_VAL;
generate if (C_PROG_FULL_TYPE == 1) begin : single_pf_const
always @(posedge CLK or posedge RST_FULL_FF) begin
if (RST_FULL_FF && C_HAS_RST)
prog_full_i <= C_FULL_FLAGS_RST_VAL;
else begin
if (srst_wrst_busy)
prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else if (IS_ASYMMETRY == 0) begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (diff_pntr == C_PF_ASSERT_VAL && write_only_q)
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr == C_PF_ASSERT_VAL && read_only_q)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ prog_full_i;
end
else begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~RST_FULL_GEN ) begin
if (diff_pntr>= C_PF_ASSERT_VAL )
prog_full_i <= #`TCQ 1'b1;
else if ((diff_pntr) < C_PF_ASSERT_VAL )
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ 1'b0;
end
else
prog_full_i <= #`TCQ prog_full_i;
end
end
end
end endgenerate // single_pf_const
//-----------------------------------------------------------------------------
// Generate PROG_FULL for multiple programmable threshold constants
//-----------------------------------------------------------------------------
generate if (C_PROG_FULL_TYPE == 2) begin : multiple_pf_const
always @(posedge CLK or posedge RST_FULL_FF) begin
//if (RST_FULL_FF)
if (RST_FULL_FF && C_HAS_RST)
prog_full_i <= C_FULL_FLAGS_RST_VAL;
else begin
if (srst_wrst_busy)
prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else if (IS_ASYMMETRY == 0) begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (diff_pntr == C_PF_ASSERT_VAL && write_only_q)
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr == C_PF_NEGATE_VAL && read_only_q)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ prog_full_i;
end
else begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~RST_FULL_GEN ) begin
if (diff_pntr >= C_PF_ASSERT_VAL )
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr < C_PF_NEGATE_VAL)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ prog_full_i;
end
else
prog_full_i <= #`TCQ prog_full_i;
end
end
end
end endgenerate //multiple_pf_const
//-----------------------------------------------------------------------------
// Generate PROG_FULL for single programmable threshold input port
//-----------------------------------------------------------------------------
wire [C_WR_PNTR_WIDTH-1:0] pf3_assert_val = (C_PRELOAD_LATENCY == 0) ?
PROG_FULL_THRESH - EXTRA_WORDS_PF: // FWFT
PROG_FULL_THRESH; // STD
generate if (C_PROG_FULL_TYPE == 3) begin : single_pf_input
always @(posedge CLK or posedge RST_FULL_FF) begin//0
//if (RST_FULL_FF)
if (RST_FULL_FF && C_HAS_RST)
prog_full_i <= C_FULL_FLAGS_RST_VAL;
else begin //1
if (srst_wrst_busy)
prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else if (IS_ASYMMETRY == 0) begin//2
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~almost_full_i) begin//3
if (diff_pntr > pf3_assert_val)
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr == pf3_assert_val) begin//4
if (read_only_q)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ 1'b1;
end else//4
prog_full_i <= #`TCQ 1'b0;
end else//3
prog_full_i <= #`TCQ prog_full_i;
end //2
else begin//5
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~full_i ) begin//6
if (diff_pntr >= pf3_assert_val )
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr < pf3_assert_val) begin//7
prog_full_i <= #`TCQ 1'b0;
end//7
end//6
else
prog_full_i <= #`TCQ prog_full_i;
end//5
end//1
end//0
end endgenerate //single_pf_input
//-----------------------------------------------------------------------------
// Generate PROG_FULL for multiple programmable threshold input ports
//-----------------------------------------------------------------------------
wire [C_WR_PNTR_WIDTH-1:0] pf_assert_val = (C_PRELOAD_LATENCY == 0) ?
(PROG_FULL_THRESH_ASSERT -EXTRA_WORDS_PF) : // FWFT
PROG_FULL_THRESH_ASSERT; // STD
wire [C_WR_PNTR_WIDTH-1:0] pf_negate_val = (C_PRELOAD_LATENCY == 0) ?
(PROG_FULL_THRESH_NEGATE -EXTRA_WORDS_PF) : // FWFT
PROG_FULL_THRESH_NEGATE; // STD
generate if (C_PROG_FULL_TYPE == 4) begin : multiple_pf_inputs
always @(posedge CLK or posedge RST_FULL_FF) begin
if (RST_FULL_FF && C_HAS_RST)
prog_full_i <= C_FULL_FLAGS_RST_VAL;
else begin
if (srst_wrst_busy)
prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else if (IS_ASYMMETRY == 0) begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~almost_full_i) begin
if (diff_pntr >= pf_assert_val)
prog_full_i <= #`TCQ 1'b1;
else if ((diff_pntr == pf_negate_val && read_only_q) ||
diff_pntr < pf_negate_val)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ prog_full_i;
end else
prog_full_i <= #`TCQ prog_full_i;
end
else begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~full_i ) begin
if (diff_pntr >= pf_assert_val )
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr < pf_negate_val)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ prog_full_i;
end
else
prog_full_i <= #`TCQ prog_full_i;
end
end
end
end endgenerate //multiple_pf_inputs
//-----------------------------------------------------------------------------
// Generate PROG_EMPTY
//-----------------------------------------------------------------------------
localparam C_PE_ASSERT_VAL = (C_PRELOAD_LATENCY == 0) ?
C_PROG_EMPTY_THRESH_ASSERT_VAL - 2: // FWFT
C_PROG_EMPTY_THRESH_ASSERT_VAL; // STD
localparam C_PE_NEGATE_VAL = (C_PRELOAD_LATENCY == 0) ?
C_PROG_EMPTY_THRESH_NEGATE_VAL - 2: // FWFT
C_PROG_EMPTY_THRESH_NEGATE_VAL; // STD
//-----------------------------------------------------------------------------
// Generate PROG_EMPTY for single programmable threshold constant
//-----------------------------------------------------------------------------
generate if (C_PROG_EMPTY_TYPE == 1) begin : single_pe_const
always @(posedge CLK or posedge rst_i) begin
//if (rst_i)
if (rst_i && C_HAS_RST)
prog_empty_i <= 1'b1;
else begin
if (srst_rrst_busy)
prog_empty_i <= #`TCQ 1'b1;
else if (IS_ASYMMETRY == 0) begin
if (diff_pntr_pe == C_PE_ASSERT_VAL && read_only_q)
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe == C_PE_ASSERT_VAL && write_only_q)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ prog_empty_i;
end
else begin
if (~rst_i ) begin
if (diff_pntr_pe <= C_PE_ASSERT_VAL)
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe > C_PE_ASSERT_VAL)
prog_empty_i <= #`TCQ 1'b0;
end
else
prog_empty_i <= #`TCQ prog_empty_i;
end
end
end
end endgenerate // single_pe_const
//-----------------------------------------------------------------------------
// Generate PROG_EMPTY for multiple programmable threshold constants
//-----------------------------------------------------------------------------
generate if (C_PROG_EMPTY_TYPE == 2) begin : multiple_pe_const
always @(posedge CLK or posedge rst_i) begin
//if (rst_i)
if (rst_i && C_HAS_RST)
prog_empty_i <= 1'b1;
else begin
if (srst_rrst_busy)
prog_empty_i <= #`TCQ 1'b1;
else if (IS_ASYMMETRY == 0) begin
if (diff_pntr_pe == C_PE_ASSERT_VAL && read_only_q)
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe == C_PE_NEGATE_VAL && write_only_q)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ prog_empty_i;
end
else begin
if (~rst_i ) begin
if (diff_pntr_pe <= C_PE_ASSERT_VAL )
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe > C_PE_NEGATE_VAL)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ prog_empty_i;
end
else
prog_empty_i <= #`TCQ prog_empty_i;
end
end
end
end endgenerate //multiple_pe_const
//-----------------------------------------------------------------------------
// Generate PROG_EMPTY for single programmable threshold input port
//-----------------------------------------------------------------------------
wire [C_RD_PNTR_WIDTH-1:0] pe3_assert_val = (C_PRELOAD_LATENCY == 0) ?
(PROG_EMPTY_THRESH -2) : // FWFT
PROG_EMPTY_THRESH; // STD
generate if (C_PROG_EMPTY_TYPE == 3) begin : single_pe_input
always @(posedge CLK or posedge rst_i) begin
//if (rst_i)
if (rst_i && C_HAS_RST)
prog_empty_i <= 1'b1;
else begin
if (srst_rrst_busy)
prog_empty_i <= #`TCQ 1'b1;
else if (IS_ASYMMETRY == 0) begin
if (~almost_full_i) begin
if (diff_pntr_pe < pe3_assert_val)
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe == pe3_assert_val) begin
if (write_only_q)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ 1'b1;
end else
prog_empty_i <= #`TCQ 1'b0;
end else
prog_empty_i <= #`TCQ prog_empty_i;
end
else begin
if (diff_pntr_pe <= pe3_assert_val )
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe > pe3_assert_val)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ prog_empty_i;
end
end
end
end endgenerate // single_pe_input
//-----------------------------------------------------------------------------
// Generate PROG_EMPTY for multiple programmable threshold input ports
//-----------------------------------------------------------------------------
wire [C_RD_PNTR_WIDTH-1:0] pe4_assert_val = (C_PRELOAD_LATENCY == 0) ?
(PROG_EMPTY_THRESH_ASSERT - 2) : // FWFT
PROG_EMPTY_THRESH_ASSERT; // STD
wire [C_RD_PNTR_WIDTH-1:0] pe4_negate_val = (C_PRELOAD_LATENCY == 0) ?
(PROG_EMPTY_THRESH_NEGATE - 2) : // FWFT
PROG_EMPTY_THRESH_NEGATE; // STD
generate if (C_PROG_EMPTY_TYPE == 4) begin : multiple_pe_inputs
always @(posedge CLK or posedge rst_i) begin
//if (rst_i)
if (rst_i && C_HAS_RST)
prog_empty_i <= 1'b1;
else begin
if (srst_rrst_busy)
prog_empty_i <= #`TCQ 1'b1;
else if (IS_ASYMMETRY == 0) begin
if (~almost_full_i) begin
if (diff_pntr_pe <= pe4_assert_val)
prog_empty_i <= #`TCQ 1'b1;
else if (((diff_pntr_pe == pe4_negate_val) && write_only_q) ||
(diff_pntr_pe > pe4_negate_val)) begin
prog_empty_i <= #`TCQ 1'b0;
end else
prog_empty_i <= #`TCQ prog_empty_i;
end else
prog_empty_i <= #`TCQ prog_empty_i;
end
else begin
if (diff_pntr_pe <= pe4_assert_val )
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe > pe4_negate_val)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ prog_empty_i;
end
end
end
end endgenerate // multiple_pe_inputs
endmodule // fifo_generator_v13_1_1_bhv_ver_ss
/**************************************************************************
* First-Word Fall-Through module (preload 0)
**************************************************************************/
module fifo_generator_v13_1_1_bhv_ver_preload0
#(
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_HAS_RST = 0,
parameter C_ENABLE_RST_SYNC = 0,
parameter C_HAS_SRST = 0,
parameter C_USE_EMBEDDED_REG = 0,
parameter C_EN_SAFETY_CKT = 0,
parameter C_USE_DOUT_RST = 0,
parameter C_USE_ECC = 0,
parameter C_USERVALID_LOW = 0,
parameter C_USERUNDERFLOW_LOW = 0,
parameter C_MEMORY_TYPE = 0,
parameter C_FIFO_TYPE = 0
)
(
//Inputs
input RD_CLK,
input RD_RST,
input SRST,
input WR_RST_BUSY,
input RD_RST_BUSY,
input RD_EN,
input FIFOEMPTY,
input [C_DOUT_WIDTH-1:0] FIFODATA,
input FIFOSBITERR,
input FIFODBITERR,
//Outputs
output reg [C_DOUT_WIDTH-1:0] USERDATA,
output reg [C_DOUT_WIDTH-1:0] USERDATA_BOTH,
output USERVALID,
output USERVALID_BOTH,
output USERVALID_ONE,
output USERUNDERFLOW,
output USEREMPTY,
output USERALMOSTEMPTY,
output RAMVALID,
output FIFORDEN,
output reg USERSBITERR,
output reg USERDBITERR,
output reg USERSBITERR_BOTH,
output reg USERDBITERR_BOTH,
output reg STAGE2_REG_EN,
output fab_read_data_valid_i_o,
output read_data_valid_i_o,
output ram_valid_i_o,
output [1:0] VALID_STAGES
);
//Internal signals
wire preloadstage1;
wire preloadstage2;
reg ram_valid_i;
reg fab_valid;
reg read_data_valid_i;
reg fab_read_data_valid_i;
reg fab_read_data_valid_i_1;
reg ram_valid_i_d;
reg read_data_valid_i_d;
reg fab_read_data_valid_i_d;
wire ram_regout_en;
reg ram_regout_en_d1;
reg ram_regout_en_d2;
wire fab_regout_en;
wire ram_rd_en;
reg empty_i = 1'b1;
reg empty_q = 1'b1;
reg rd_en_q = 1'b0;
reg almost_empty_i = 1'b1;
reg almost_empty_q = 1'b1;
wire rd_rst_i;
wire srst_i;
assign ram_valid_i_o = ram_valid_i;
assign read_data_valid_i_o = read_data_valid_i;
assign fab_read_data_valid_i_o = fab_read_data_valid_i;
/*************************************************************************
* FUNCTIONS
*************************************************************************/
/*************************************************************************
* hexstr_conv
* Converts a string of type hex to a binary value (for C_DOUT_RST_VAL)
***********************************************************************/
function [C_DOUT_WIDTH-1:0] hexstr_conv;
input [(C_DOUT_WIDTH*8)-1:0] def_data;
integer index,i,j;
reg [3:0] bin;
begin
index = 0;
hexstr_conv = 'b0;
for( i=C_DOUT_WIDTH-1; i>=0; i=i-1 )
begin
case (def_data[7:0])
8'b00000000 :
begin
bin = 4'b0000;
i = -1;
end
8'b00110000 : bin = 4'b0000;
8'b00110001 : bin = 4'b0001;
8'b00110010 : bin = 4'b0010;
8'b00110011 : bin = 4'b0011;
8'b00110100 : bin = 4'b0100;
8'b00110101 : bin = 4'b0101;
8'b00110110 : bin = 4'b0110;
8'b00110111 : bin = 4'b0111;
8'b00111000 : bin = 4'b1000;
8'b00111001 : bin = 4'b1001;
8'b01000001 : bin = 4'b1010;
8'b01000010 : bin = 4'b1011;
8'b01000011 : bin = 4'b1100;
8'b01000100 : bin = 4'b1101;
8'b01000101 : bin = 4'b1110;
8'b01000110 : bin = 4'b1111;
8'b01100001 : bin = 4'b1010;
8'b01100010 : bin = 4'b1011;
8'b01100011 : bin = 4'b1100;
8'b01100100 : bin = 4'b1101;
8'b01100101 : bin = 4'b1110;
8'b01100110 : bin = 4'b1111;
default :
begin
bin = 4'bx;
end
endcase
for( j=0; j<4; j=j+1)
begin
if ((index*4)+j < C_DOUT_WIDTH)
begin
hexstr_conv[(index*4)+j] = bin[j];
end
end
index = index + 1;
def_data = def_data >> 8;
end
end
endfunction
//*************************************************************************
// Set power-on states for regs
//*************************************************************************
initial begin
ram_valid_i = 1'b0;
fab_valid = 1'b0;
read_data_valid_i = 1'b0;
fab_read_data_valid_i = 1'b0;
fab_read_data_valid_i_1 = 1'b0;
USERDATA = hexstr_conv(C_DOUT_RST_VAL);
USERDATA_BOTH = hexstr_conv(C_DOUT_RST_VAL);
USERSBITERR = 1'b0;
USERDBITERR = 1'b0;
end //initial
//***************************************************************************
// connect up optional reset
//***************************************************************************
assign rd_rst_i = (C_HAS_RST == 1 || C_ENABLE_RST_SYNC == 0) ? RD_RST : 0;
assign srst_i = C_HAS_SRST ? SRST || WR_RST_BUSY || RD_RST_BUSY : 0;
localparam INVALID = 0;
localparam STAGE1_VALID = 2;
localparam STAGE2_VALID = 1;
localparam BOTH_STAGES_VALID = 3;
reg [1:0] curr_fwft_state = INVALID;
reg [1:0] next_fwft_state = INVALID;
generate if (C_USE_EMBEDDED_REG < 3 && C_FIFO_TYPE != 2) begin
always @* begin
case (curr_fwft_state)
INVALID: begin
if (~FIFOEMPTY)
next_fwft_state <= STAGE1_VALID;
else
next_fwft_state <= INVALID;
end
STAGE1_VALID: begin
if (FIFOEMPTY)
next_fwft_state <= STAGE2_VALID;
else
next_fwft_state <= BOTH_STAGES_VALID;
end
STAGE2_VALID: begin
if (FIFOEMPTY && RD_EN)
next_fwft_state <= INVALID;
else if (~FIFOEMPTY && RD_EN)
next_fwft_state <= STAGE1_VALID;
else if (~FIFOEMPTY && ~RD_EN)
next_fwft_state <= BOTH_STAGES_VALID;
else
next_fwft_state <= STAGE2_VALID;
end
BOTH_STAGES_VALID: begin
if (FIFOEMPTY && RD_EN)
next_fwft_state <= STAGE2_VALID;
else if (~FIFOEMPTY && RD_EN)
next_fwft_state <= BOTH_STAGES_VALID;
else
next_fwft_state <= BOTH_STAGES_VALID;
end
default: next_fwft_state <= INVALID;
endcase
end
always @ (posedge rd_rst_i or posedge RD_CLK) begin
if (rd_rst_i)
curr_fwft_state <= INVALID;
else if (srst_i)
curr_fwft_state <= #`TCQ INVALID;
else
curr_fwft_state <= #`TCQ next_fwft_state;
end
always @* begin
case (curr_fwft_state)
INVALID: STAGE2_REG_EN <= 1'b0;
STAGE1_VALID: STAGE2_REG_EN <= 1'b1;
STAGE2_VALID: STAGE2_REG_EN <= 1'b0;
BOTH_STAGES_VALID: STAGE2_REG_EN <= RD_EN;
default: STAGE2_REG_EN <= 1'b0;
endcase
end
assign VALID_STAGES = curr_fwft_state;
//***************************************************************************
// preloadstage2 indicates that stage2 needs to be updated. This is true
// whenever read_data_valid is false, and RAM_valid is true.
//***************************************************************************
assign preloadstage2 = ram_valid_i & (~read_data_valid_i | RD_EN );
//***************************************************************************
// preloadstage1 indicates that stage1 needs to be updated. This is true
// whenever the RAM has data (RAM_EMPTY is false), and either RAM_Valid is
// false (indicating that Stage1 needs updating), or preloadstage2 is active
// (indicating that Stage2 is going to update, so Stage1, therefore, must
// also be updated to keep it valid.
//***************************************************************************
assign preloadstage1 = ((~ram_valid_i | preloadstage2) & ~FIFOEMPTY);
//***************************************************************************
// Calculate RAM_REGOUT_EN
// The output registers are controlled by the ram_regout_en signal.
// These registers should be updated either when the output in Stage2 is
// invalid (preloadstage2), OR when the user is reading, in which case the
// Stage2 value will go invalid unless it is replenished.
//***************************************************************************
assign ram_regout_en = preloadstage2;
//***************************************************************************
// Calculate RAM_RD_EN
// RAM_RD_EN will be asserted whenever the RAM needs to be read in order to
// update the value in Stage1.
// One case when this happens is when preloadstage1=true, which indicates
// that the data in Stage1 or Stage2 is invalid, and needs to automatically
// be updated.
// The other case is when the user is reading from the FIFO, which
// guarantees that Stage1 or Stage2 will be invalid on the next clock
// cycle, unless it is replinished by data from the memory. So, as long
// as the RAM has data in it, a read of the RAM should occur.
//***************************************************************************
assign ram_rd_en = (RD_EN & ~FIFOEMPTY) | preloadstage1;
end
endgenerate // gnll_fifo
reg curr_state = 0;
reg next_state = 0;
reg leaving_empty_fwft = 0;
reg going_empty_fwft = 0;
reg empty_i_q = 0;
reg ram_rd_en_fwft = 0;
generate if (C_FIFO_TYPE == 2) begin : gll_fifo
always @* begin // FSM fo FWFT
case (curr_state)
1'b0: begin
if (~FIFOEMPTY)
next_state <= 1'b1;
else
next_state <= 1'b0;
end
1'b1: begin
if (FIFOEMPTY && RD_EN)
next_state <= 1'b0;
else
next_state <= 1'b1;
end
default: next_state <= 1'b0;
endcase
end
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
empty_i <= 1'b1;
empty_i_q <= 1'b1;
curr_state <= 1'b0;
ram_valid_i <= 1'b0;
end else if (srst_i) begin
empty_i <= #`TCQ 1'b1;
empty_i_q <= #`TCQ 1'b1;
curr_state <= #`TCQ 1'b0;
ram_valid_i <= #`TCQ 1'b0;
end else begin
empty_i <= #`TCQ going_empty_fwft | (~leaving_empty_fwft & empty_i);
empty_i_q <= #`TCQ FIFOEMPTY;
curr_state <= #`TCQ next_state;
ram_valid_i <= #`TCQ next_state;
end
end //always
wire fe_of_empty;
assign fe_of_empty = empty_i_q & ~FIFOEMPTY;
always @* begin // Finding leaving empty
case (curr_state)
1'b0: leaving_empty_fwft <= fe_of_empty;
1'b1: leaving_empty_fwft <= 1'b1;
default: leaving_empty_fwft <= 1'b0;
endcase
end
always @* begin // Finding going empty
case (curr_state)
1'b1: going_empty_fwft <= FIFOEMPTY & RD_EN;
default: going_empty_fwft <= 1'b0;
endcase
end
always @* begin // Generating FWFT rd_en
case (curr_state)
1'b0: ram_rd_en_fwft <= ~FIFOEMPTY;
1'b1: ram_rd_en_fwft <= ~FIFOEMPTY & RD_EN;
default: ram_rd_en_fwft <= 1'b0;
endcase
end
assign ram_regout_en = ram_rd_en_fwft;
//assign ram_regout_en_d1 = ram_rd_en_fwft;
//assign ram_regout_en_d2 = ram_rd_en_fwft;
assign ram_rd_en = ram_rd_en_fwft;
end endgenerate // gll_fifo
//***************************************************************************
// Calculate RAMVALID_P0_OUT
// RAMVALID_P0_OUT indicates that the data in Stage1 is valid.
//
// If the RAM is being read from on this clock cycle (ram_rd_en=1), then
// RAMVALID_P0_OUT is certainly going to be true.
// If the RAM is not being read from, but the output registers are being
// updated to fill Stage2 (ram_regout_en=1), then Stage1 will be emptying,
// therefore causing RAMVALID_P0_OUT to be false.
// Otherwise, RAMVALID_P0_OUT will remain unchanged.
//***************************************************************************
// PROCESS regout_valid
generate if (C_FIFO_TYPE < 2) begin : gnll_fifo_ram_valid
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
// asynchronous reset (active high)
ram_valid_i <= #`TCQ 1'b0;
end else begin
if (srst_i) begin
// synchronous reset (active high)
ram_valid_i <= #`TCQ 1'b0;
end else begin
if (ram_rd_en == 1'b1) begin
ram_valid_i <= #`TCQ 1'b1;
end else begin
if (ram_regout_en == 1'b1)
ram_valid_i <= #`TCQ 1'b0;
else
ram_valid_i <= #`TCQ ram_valid_i;
end
end //srst_i
end //rd_rst_i
end //always
end endgenerate // gnll_fifo_ram_valid
//***************************************************************************
// Calculate READ_DATA_VALID
// READ_DATA_VALID indicates whether the value in Stage2 is valid or not.
// Stage2 has valid data whenever Stage1 had valid data and
// ram_regout_en_i=1, such that the data in Stage1 is propogated
// into Stage2.
//***************************************************************************
generate if(C_USE_EMBEDDED_REG < 3) begin
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i)
read_data_valid_i <= #`TCQ 1'b0;
else if (srst_i)
read_data_valid_i <= #`TCQ 1'b0;
else
read_data_valid_i <= #`TCQ ram_valid_i | (read_data_valid_i & ~RD_EN);
end //always
end
endgenerate
//**************************************************************************
// Calculate EMPTY
// Defined as the inverse of READ_DATA_VALID
//
// Description:
//
// If read_data_valid_i indicates that the output is not valid,
// and there is no valid data on the output of the ram to preload it
// with, then we will report empty.
//
// If there is no valid data on the output of the ram and we are
// reading, then the FIFO will go empty.
//
//**************************************************************************
generate if (C_FIFO_TYPE < 2 && C_USE_EMBEDDED_REG < 3) begin : gnll_fifo_empty
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
// asynchronous reset (active high)
empty_i <= #`TCQ 1'b1;
end else begin
if (srst_i) begin
// synchronous reset (active high)
empty_i <= #`TCQ 1'b1;
end else begin
// rising clock edge
empty_i <= #`TCQ (~ram_valid_i & ~read_data_valid_i) | (~ram_valid_i & RD_EN);
end
end
end //always
end endgenerate // gnll_fifo_empty
// Register RD_EN from user to calculate USERUNDERFLOW.
// Register empty_i to calculate USERUNDERFLOW.
always @ (posedge RD_CLK) begin
rd_en_q <= #`TCQ RD_EN;
empty_q <= #`TCQ empty_i;
end //always
//***************************************************************************
// Calculate user_almost_empty
// user_almost_empty is defined such that, unless more words are written
// to the FIFO, the next read will cause the FIFO to go EMPTY.
//
// In most cases, whenever the output registers are updated (due to a user
// read or a preload condition), then user_almost_empty will update to
// whatever RAM_EMPTY is.
//
// The exception is when the output is valid, the user is not reading, and
// Stage1 is not empty. In this condition, Stage1 will be preloaded from the
// memory, so we need to make sure user_almost_empty deasserts properly under
// this condition.
//***************************************************************************
generate if ( C_USE_EMBEDDED_REG < 3) begin
always @ (posedge RD_CLK or posedge rd_rst_i)
begin
if (rd_rst_i) begin // asynchronous reset (active high)
almost_empty_i <= #`TCQ 1'b1;
almost_empty_q <= #`TCQ 1'b1;
end else begin // rising clock edge
if (srst_i) begin // synchronous reset (active high)
almost_empty_i <= #`TCQ 1'b1;
almost_empty_q <= #`TCQ 1'b1;
end else begin
if ((ram_regout_en) | (~FIFOEMPTY & read_data_valid_i & ~RD_EN)) begin
almost_empty_i <= #`TCQ FIFOEMPTY;
end
almost_empty_q <= #`TCQ empty_i;
end
end
end //always
end
endgenerate
// BRAM resets synchronously
generate
if (C_EN_SAFETY_CKT==0 && C_USE_EMBEDDED_REG < 3) begin
always @ ( posedge rd_rst_i)
begin
if (rd_rst_i || srst_i) begin
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE < 2)
@(posedge RD_CLK)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end //always
always @ (posedge RD_CLK or posedge rd_rst_i)
begin
if (rd_rst_i) begin //asynchronous reset (active high)
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
// DRAM resets asynchronously
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2) begin //asynchronous reset (active high)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end else begin // rising clock edge
if (srst_i) begin
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
if (C_USE_DOUT_RST == 1) begin
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end else begin
if (ram_regout_en) begin
USERDATA <= #`TCQ FIFODATA;
USERSBITERR <= #`TCQ FIFOSBITERR;
USERDBITERR <= #`TCQ FIFODBITERR;
end
end
end
end //always
end //if
endgenerate
//safety ckt with one register
generate
if (C_EN_SAFETY_CKT==1 && C_USE_EMBEDDED_REG < 3) begin
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d1;
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d2;
reg [1:0] rst_delayed_sft1 =1;
reg [1:0] rst_delayed_sft2 =1;
reg [1:0] rst_delayed_sft3 =1;
reg [1:0] rst_delayed_sft4 =1;
always@(posedge RD_CLK)
begin
rst_delayed_sft1 <= #`TCQ rd_rst_i;
rst_delayed_sft2 <= #`TCQ rst_delayed_sft1;
rst_delayed_sft3 <= #`TCQ rst_delayed_sft2;
rst_delayed_sft4 <= #`TCQ rst_delayed_sft3;
end
always @ (posedge RD_CLK)
begin
if (rd_rst_i || srst_i) begin
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE < 2 && rst_delayed_sft1 == 1'b1) begin
@(posedge RD_CLK)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end
end //always
always @ (posedge RD_CLK or posedge rd_rst_i)
begin
if (rd_rst_i) begin //asynchronous reset (active high)
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
// DRAM resets asynchronously
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2)begin //asynchronous reset (active high)
//@(posedge RD_CLK)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end
else begin // rising clock edge
if (srst_i) begin
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
if (C_USE_DOUT_RST == 1) begin
// @(posedge RD_CLK)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end else begin
if (ram_regout_en == 1'b1 && rd_rst_i == 1'b0) begin
USERDATA <= #`TCQ FIFODATA;
USERSBITERR <= #`TCQ FIFOSBITERR;
USERDBITERR <= #`TCQ FIFODBITERR;
end
end
end
end //always
end //if
endgenerate
generate if (C_USE_EMBEDDED_REG == 3 && C_FIFO_TYPE != 2) begin
always @* begin
case (curr_fwft_state)
INVALID: begin
if (~FIFOEMPTY)
next_fwft_state <= STAGE1_VALID;
else
next_fwft_state <= INVALID;
end
STAGE1_VALID: begin
if (FIFOEMPTY)
next_fwft_state <= STAGE2_VALID;
else
next_fwft_state <= BOTH_STAGES_VALID;
end
STAGE2_VALID: begin
if (FIFOEMPTY && RD_EN)
next_fwft_state <= INVALID;
else if (~FIFOEMPTY && RD_EN)
next_fwft_state <= STAGE1_VALID;
else if (~FIFOEMPTY && ~RD_EN)
next_fwft_state <= BOTH_STAGES_VALID;
else
next_fwft_state <= STAGE2_VALID;
end
BOTH_STAGES_VALID: begin
if (FIFOEMPTY && RD_EN)
next_fwft_state <= STAGE2_VALID;
else if (~FIFOEMPTY && RD_EN)
next_fwft_state <= BOTH_STAGES_VALID;
else
next_fwft_state <= BOTH_STAGES_VALID;
end
default: next_fwft_state <= INVALID;
endcase
end
always @ (posedge rd_rst_i or posedge RD_CLK) begin
if (rd_rst_i)
curr_fwft_state <= INVALID;
else if (srst_i)
curr_fwft_state <= #`TCQ INVALID;
else
curr_fwft_state <= #`TCQ next_fwft_state;
end
always @ (posedge RD_CLK or posedge rd_rst_i) begin : proc_delay
if (rd_rst_i == 1) begin
ram_regout_en_d1 <= #`TCQ 1'b0;
end
else begin
if (srst_i == 1'b1)
ram_regout_en_d1 <= #`TCQ 1'b0;
else
ram_regout_en_d1 <= #`TCQ ram_regout_en;
end
end //always
// assign fab_regout_en = ((ram_regout_en_d1 & ~(ram_regout_en_d2) & empty_i) | (RD_EN & !empty_i));
assign fab_regout_en = ((ram_valid_i == 1'b0 || ram_valid_i == 1'b1) && read_data_valid_i == 1'b1 && fab_read_data_valid_i == 1'b0 )? 1'b1: ((ram_valid_i == 1'b0 || ram_valid_i == 1'b1) && read_data_valid_i == 1'b1 && fab_read_data_valid_i == 1'b1) ? RD_EN : 1'b0;
always @ (posedge RD_CLK or posedge rd_rst_i) begin : proc_delay1
if (rd_rst_i == 1) begin
ram_regout_en_d2 <= #`TCQ 1'b0;
end
else begin
if (srst_i == 1'b1)
ram_regout_en_d2 <= #`TCQ 1'b0;
else
ram_regout_en_d2 <= #`TCQ ram_regout_en_d1;
end
end //always
always @* begin
case (curr_fwft_state)
INVALID: STAGE2_REG_EN <= 1'b0;
STAGE1_VALID: STAGE2_REG_EN <= 1'b1;
STAGE2_VALID: STAGE2_REG_EN <= 1'b0;
BOTH_STAGES_VALID: STAGE2_REG_EN <= RD_EN;
default: STAGE2_REG_EN <= 1'b0;
endcase
end
always @ (posedge RD_CLK) begin
ram_valid_i_d <= #`TCQ ram_valid_i;
read_data_valid_i_d <= #`TCQ read_data_valid_i;
fab_read_data_valid_i_d <= #`TCQ fab_read_data_valid_i;
end
assign VALID_STAGES = curr_fwft_state;
//***************************************************************************
// preloadstage2 indicates that stage2 needs to be updated. This is true
// whenever read_data_valid is false, and RAM_valid is true.
//***************************************************************************
assign preloadstage2 = ram_valid_i & (~read_data_valid_i | RD_EN );
//***************************************************************************
// preloadstage1 indicates that stage1 needs to be updated. This is true
// whenever the RAM has data (RAM_EMPTY is false), and either RAM_Valid is
// false (indicating that Stage1 needs updating), or preloadstage2 is active
// (indicating that Stage2 is going to update, so Stage1, therefore, must
// also be updated to keep it valid.
//***************************************************************************
assign preloadstage1 = ((~ram_valid_i | preloadstage2) & ~FIFOEMPTY);
//***************************************************************************
// Calculate RAM_REGOUT_EN
// The output registers are controlled by the ram_regout_en signal.
// These registers should be updated either when the output in Stage2 is
// invalid (preloadstage2), OR when the user is reading, in which case the
// Stage2 value will go invalid unless it is replenished.
//***************************************************************************
assign ram_regout_en = (ram_valid_i == 1'b1 && (read_data_valid_i == 1'b0 || fab_read_data_valid_i == 1'b0)) ? 1'b1 : (read_data_valid_i == 1'b1 && fab_read_data_valid_i == 1'b1 && ram_valid_i == 1'b1) ? RD_EN : 1'b0;
//***************************************************************************
// Calculate RAM_RD_EN
// RAM_RD_EN will be asserted whenever the RAM needs to be read in order to
// update the value in Stage1.
// One case when this happens is when preloadstage1=true, which indicates
// that the data in Stage1 or Stage2 is invalid, and needs to automatically
// be updated.
// The other case is when the user is reading from the FIFO, which
// guarantees that Stage1 or Stage2 will be invalid on the next clock
// cycle, unless it is replinished by data from the memory. So, as long
// as the RAM has data in it, a read of the RAM should occur.
//***************************************************************************
assign ram_rd_en = ((RD_EN | ~ fab_read_data_valid_i) & ~FIFOEMPTY) | preloadstage1;
end
endgenerate // gnll_fifo
//***************************************************************************
// Calculate RAMVALID_P0_OUT
// RAMVALID_P0_OUT indicates that the data in Stage1 is valid.
//
// If the RAM is being read from on this clock cycle (ram_rd_en=1), then
// RAMVALID_P0_OUT is certainly going to be true.
// If the RAM is not being read from, but the output registers are being
// updated to fill Stage2 (ram_regout_en=1), then Stage1 will be emptying,
// therefore causing RAMVALID_P0_OUT to be false // Otherwise, RAMVALID_P0_OUT will remain unchanged.
//***************************************************************************
// PROCESS regout_valid
generate if (C_FIFO_TYPE < 2 && C_USE_EMBEDDED_REG == 3) begin : gnll_fifo_fab_valid
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
// asynchronous reset (active high)
fab_valid <= #`TCQ 1'b0;
end else begin
if (srst_i) begin
// synchronous reset (active high)
fab_valid <= #`TCQ 1'b0;
end else begin
if (ram_regout_en == 1'b1) begin
fab_valid <= #`TCQ 1'b1;
end else begin
if (fab_regout_en == 1'b1)
fab_valid <= #`TCQ 1'b0;
else
fab_valid <= #`TCQ fab_valid;
end
end //srst_i
end //rd_rst_i
end //always
end endgenerate // gnll_fifo_fab_valid
//***************************************************************************
// Calculate READ_DATA_VALID
// READ_DATA_VALID indicates whether the value in Stage2 is valid or not.
// Stage2 has valid data whenever Stage1 had valid data and
// ram_regout_en_i=1, such that the data in Stage1 is propogated
// into Stage2.
//***************************************************************************
generate if(C_USE_EMBEDDED_REG == 3) begin
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i)
read_data_valid_i <= #`TCQ 1'b0;
else if (srst_i)
read_data_valid_i <= #`TCQ 1'b0;
else begin
if (ram_regout_en == 1'b1) begin
read_data_valid_i <= #`TCQ 1'b1;
end else begin
if (fab_regout_en == 1'b1)
read_data_valid_i <= #`TCQ 1'b0;
else
read_data_valid_i <= #`TCQ read_data_valid_i;
end
end
end //always
end
endgenerate
//generate if(C_USE_EMBEDDED_REG == 3) begin
// always @ (posedge RD_CLK or posedge rd_rst_i) begin
// if (rd_rst_i)
// read_data_valid_i <= #`TCQ 1'b0;
// else if (srst_i)
// read_data_valid_i <= #`TCQ 1'b0;
//
// if (ram_regout_en == 1'b1) begin
// fab_read_data_valid_i <= #`TCQ 1'b0;
// end else begin
// if (fab_regout_en == 1'b1)
// fab_read_data_valid_i <= #`TCQ 1'b1;
// else
// fab_read_data_valid_i <= #`TCQ fab_read_data_valid_i;
// end
// end //always
//end
//endgenerate
generate if(C_USE_EMBEDDED_REG == 3 ) begin
always @ (posedge RD_CLK or posedge rd_rst_i) begin :fabout_dvalid
if (rd_rst_i)
fab_read_data_valid_i <= #`TCQ 1'b0;
else if (srst_i)
fab_read_data_valid_i <= #`TCQ 1'b0;
else
fab_read_data_valid_i <= #`TCQ fab_valid | (fab_read_data_valid_i & ~RD_EN);
end //always
end
endgenerate
always @ (posedge RD_CLK ) begin : proc_del1
begin
fab_read_data_valid_i_1 <= #`TCQ fab_read_data_valid_i;
end
end //always
//**************************************************************************
// Calculate EMPTY
// Defined as the inverse of READ_DATA_VALID
//
// Description:
//
// If read_data_valid_i indicates that the output is not valid,
// and there is no valid data on the output of the ram to preload it
// with, then we will report empty.
//
// If there is no valid data on the output of the ram and we are
// reading, then the FIFO will go empty.
//
//**************************************************************************
generate if (C_FIFO_TYPE < 2 && C_USE_EMBEDDED_REG == 3 ) begin : gnll_fifo_empty_both
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
// asynchronous reset (active high)
empty_i <= #`TCQ 1'b1;
end else begin
if (srst_i) begin
// synchronous reset (active high)
empty_i <= #`TCQ 1'b1;
end else begin
// rising clock edge
empty_i <= #`TCQ (~fab_valid & ~fab_read_data_valid_i) | (~fab_valid & RD_EN);
end
end
end //always
end endgenerate // gnll_fifo_empty_both
// Register RD_EN from user to calculate USERUNDERFLOW.
// Register empty_i to calculate USERUNDERFLOW.
always @ (posedge RD_CLK) begin
rd_en_q <= #`TCQ RD_EN;
empty_q <= #`TCQ empty_i;
end //always
//***************************************************************************
// Calculate user_almost_empty
// user_almost_empty is defined such that, unless more words are written
// to the FIFO, the next read will cause the FIFO to go EMPTY.
//
// In most cases, whenever the output registers are updated (due to a user
// read or a preload condition), then user_almost_empty will update to
// whatever RAM_EMPTY is.
//
// The exception is when the output is valid, the user is not reading, and
// Stage1 is not empty. In this condition, Stage1 will be preloaded from the
// memory, so we need to make sure user_almost_empty deasserts properly under
// this condition.
//***************************************************************************
reg FIFOEMPTY_1;
generate if (C_USE_EMBEDDED_REG == 3 ) begin
always @(posedge RD_CLK) begin
FIFOEMPTY_1 <= #`TCQ FIFOEMPTY;
end
end
endgenerate
generate if (C_USE_EMBEDDED_REG == 3 ) begin
always @ (posedge RD_CLK or posedge rd_rst_i)
// begin
// if (((ram_valid_i == 1'b1) && (read_data_valid_i == 1'b1) && (fab_read_data_valid_i == 1'b1)) || ((ram_valid_i == 1'b0) && (read_data_valid_i == 1'b1) && (fab_read_data_valid_i == 1'b1)))
// almost_empty_i <= #`TCQ 1'b0;
// else
// almost_empty_i <= #`TCQ 1'b1;
begin
if (rd_rst_i) begin // asynchronous reset (active high)
almost_empty_i <= #`TCQ 1'b1;
almost_empty_q <= #`TCQ 1'b1;
end else begin // rising clock edge
if (srst_i) begin // synchronous reset (active high)
almost_empty_i <= #`TCQ 1'b1;
almost_empty_q <= #`TCQ 1'b1;
end else begin
if ((fab_regout_en) | (ram_valid_i & fab_read_data_valid_i & ~RD_EN)) begin
almost_empty_i <= #`TCQ (~ram_valid_i);
end
almost_empty_q <= #`TCQ empty_i;
end
end
end //always
end
endgenerate
assign USEREMPTY = empty_i;
assign USERALMOSTEMPTY = almost_empty_i;
assign FIFORDEN = ram_rd_en;
assign RAMVALID = (C_USE_EMBEDDED_REG == 3)? fab_valid : ram_valid_i;
assign USERVALID_BOTH = (C_USERVALID_LOW && C_USE_EMBEDDED_REG == 3) ? ~fab_read_data_valid_i : ((C_USERVALID_LOW == 0 && C_USE_EMBEDDED_REG == 3) ? fab_read_data_valid_i : 1'b0);
assign USERVALID_ONE = (C_USERVALID_LOW && C_USE_EMBEDDED_REG < 3) ? ~read_data_valid_i :((C_USERVALID_LOW == 0 && C_USE_EMBEDDED_REG < 3) ? read_data_valid_i : 1'b0);
assign USERVALID = (C_USE_EMBEDDED_REG == 3) ? USERVALID_BOTH : USERVALID_ONE;
assign USERUNDERFLOW = C_USERUNDERFLOW_LOW ? ~(empty_q & rd_en_q) : empty_q & rd_en_q;
//no safety ckt with both reg
generate
if (C_EN_SAFETY_CKT==0 && C_USE_EMBEDDED_REG == 3 ) begin
always @ (posedge RD_CLK)
begin
if (rd_rst_i || srst_i) begin
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE < 2)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
USERDATA_BOTH <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end //always
always @ (posedge RD_CLK or posedge rd_rst_i)
begin
if (rd_rst_i) begin //asynchronous reset (active high)
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
// DRAM resets asynchronously
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2) begin //asynchronous reset (active high)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
USERDATA_BOTH <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end else begin // rising clock edge
if (srst_i) begin
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2) begin
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
USERDATA_BOTH <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end else begin
if (ram_regout_en) begin
USERDATA_BOTH <= #`TCQ FIFODATA;
USERDBITERR <= #`TCQ FIFODBITERR;
USERSBITERR <= #`TCQ FIFOSBITERR;
end
if (fab_regout_en) begin
USERDATA <= #`TCQ USERDATA_BOTH;
end
end
end
end //always
end //if
endgenerate
//safety_ckt with both registers
generate
if (C_EN_SAFETY_CKT==1 && C_USE_EMBEDDED_REG == 3) begin
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d1;
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d2;
reg [1:0] rst_delayed_sft1 =1;
reg [1:0] rst_delayed_sft2 =1;
reg [1:0] rst_delayed_sft3 =1;
reg [1:0] rst_delayed_sft4 =1;
always@(posedge RD_CLK)
begin
rst_delayed_sft1 <= #`TCQ rd_rst_i;
rst_delayed_sft2 <= #`TCQ rst_delayed_sft1;
rst_delayed_sft3 <= #`TCQ rst_delayed_sft2;
rst_delayed_sft4 <= #`TCQ rst_delayed_sft3;
end
always @ (posedge RD_CLK)
begin
if (rd_rst_i || srst_i) begin
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE < 2 && rst_delayed_sft1 == 1'b1) begin
@(posedge RD_CLK)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
USERDATA_BOTH <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end
end //always
always @ (posedge RD_CLK or posedge rd_rst_i)
begin
if (rd_rst_i) begin //asynchronous reset (active high)
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
// DRAM resets asynchronously
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2)begin //asynchronous reset (active high)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
USERDATA_BOTH <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end
else begin // rising clock edge
if (srst_i) begin
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2) begin
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end else begin
if (ram_regout_en == 1'b1 && rd_rst_i == 1'b0) begin
USERDATA_BOTH <= #`TCQ FIFODATA;
USERDBITERR <= #`TCQ FIFODBITERR;
USERSBITERR <= #`TCQ FIFOSBITERR;
end
if (fab_regout_en == 1'b1 && rd_rst_i == 1'b0) begin
USERDATA <= #`TCQ USERDATA_BOTH;
end
end
end
end //always
end //if
endgenerate
endmodule //fifo_generator_v13_1_1_bhv_ver_preload0
//-----------------------------------------------------------------------------
//
// Register Slice
// Register one AXI channel on forward and/or reverse signal path
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
// reg_slice
//
//--------------------------------------------------------------------------
module fifo_generator_v13_1_1_axic_reg_slice #
(
parameter C_FAMILY = "virtex7",
parameter C_DATA_WIDTH = 32,
parameter C_REG_CONFIG = 32'h00000000
)
(
// System Signals
input wire ACLK,
input wire ARESET,
// Slave side
input wire [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA,
input wire S_VALID,
output wire S_READY,
// Master side
output wire [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA,
output wire M_VALID,
input wire M_READY
);
generate
////////////////////////////////////////////////////////////////////
//
// Both FWD and REV mode
//
////////////////////////////////////////////////////////////////////
if (C_REG_CONFIG == 32'h00000000)
begin
reg [1:0] state;
localparam [1:0]
ZERO = 2'b10,
ONE = 2'b11,
TWO = 2'b01;
reg [C_DATA_WIDTH-1:0] storage_data1 = 0;
reg [C_DATA_WIDTH-1:0] storage_data2 = 0;
reg load_s1;
wire load_s2;
wire load_s1_from_s2;
reg s_ready_i; //local signal of output
wire m_valid_i; //local signal of output
// assign local signal to its output signal
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
reg areset_d1; // Reset delay register
always @(posedge ACLK) begin
areset_d1 <= ARESET;
end
// Load storage1 with either slave side data or from storage2
always @(posedge ACLK)
begin
if (load_s1)
if (load_s1_from_s2)
storage_data1 <= storage_data2;
else
storage_data1 <= S_PAYLOAD_DATA;
end
// Load storage2 with slave side data
always @(posedge ACLK)
begin
if (load_s2)
storage_data2 <= S_PAYLOAD_DATA;
end
assign M_PAYLOAD_DATA = storage_data1;
// Always load s2 on a valid transaction even if it's unnecessary
assign load_s2 = S_VALID & s_ready_i;
// Loading s1
always @ *
begin
if ( ((state == ZERO) && (S_VALID == 1)) || // Load when empty on slave transaction
// Load when ONE if we both have read and write at the same time
((state == ONE) && (S_VALID == 1) && (M_READY == 1)) ||
// Load when TWO and we have a transaction on Master side
((state == TWO) && (M_READY == 1)))
load_s1 = 1'b1;
else
load_s1 = 1'b0;
end // always @ *
assign load_s1_from_s2 = (state == TWO);
// State Machine for handling output signals
always @(posedge ACLK) begin
if (ARESET) begin
s_ready_i <= 1'b0;
state <= ZERO;
end else if (areset_d1) begin
s_ready_i <= 1'b1;
end else begin
case (state)
// No transaction stored locally
ZERO: if (S_VALID) state <= ONE; // Got one so move to ONE
// One transaction stored locally
ONE: begin
if (M_READY & ~S_VALID) state <= ZERO; // Read out one so move to ZERO
if (~M_READY & S_VALID) begin
state <= TWO; // Got another one so move to TWO
s_ready_i <= 1'b0;
end
end
// TWO transaction stored locally
TWO: if (M_READY) begin
state <= ONE; // Read out one so move to ONE
s_ready_i <= 1'b1;
end
endcase // case (state)
end
end // always @ (posedge ACLK)
assign m_valid_i = state[0];
end // if (C_REG_CONFIG == 1)
////////////////////////////////////////////////////////////////////
//
// 1-stage pipeline register with bubble cycle, both FWD and REV pipelining
// Operates same as 1-deep FIFO
//
////////////////////////////////////////////////////////////////////
else if (C_REG_CONFIG == 32'h00000001)
begin
reg [C_DATA_WIDTH-1:0] storage_data1 = 0;
reg s_ready_i; //local signal of output
reg m_valid_i; //local signal of output
// assign local signal to its output signal
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
reg areset_d1; // Reset delay register
always @(posedge ACLK) begin
areset_d1 <= ARESET;
end
// Load storage1 with slave side data
always @(posedge ACLK)
begin
if (ARESET) begin
s_ready_i <= 1'b0;
m_valid_i <= 1'b0;
end else if (areset_d1) begin
s_ready_i <= 1'b1;
end else if (m_valid_i & M_READY) begin
s_ready_i <= 1'b1;
m_valid_i <= 1'b0;
end else if (S_VALID & s_ready_i) begin
s_ready_i <= 1'b0;
m_valid_i <= 1'b1;
end
if (~m_valid_i) begin
storage_data1 <= S_PAYLOAD_DATA;
end
end
assign M_PAYLOAD_DATA = storage_data1;
end // if (C_REG_CONFIG == 7)
else begin : default_case
// Passthrough
assign M_PAYLOAD_DATA = S_PAYLOAD_DATA;
assign M_VALID = S_VALID;
assign S_READY = M_READY;
end
endgenerate
endmodule // reg_slice
|
/*
----------------------------------------------------------------------------------
Copyright (c) 2013-2014
Embedded and Network Computing Lab.
Open SSD Project
Hanyang University
All rights reserved.
----------------------------------------------------------------------------------
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this source code
must display the following acknowledgement:
This product includes source code developed
by the Embedded and Network Computing Lab. and the Open SSD Project.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------------------
http://enclab.hanyang.ac.kr/
http://www.openssd-project.org/
http://www.hanyang.ac.kr/
----------------------------------------------------------------------------------
*/
`timescale 1ns / 1ps
module pcie_rx_req # (
parameter P_PCIE_DATA_WIDTH = 128,
parameter C_PCIE_ADDR_WIDTH = 36
)
(
input pcie_user_clk,
input pcie_user_rst_n,
input [2:0] pcie_max_read_req_size,
output pcie_rx_cmd_rd_en,
input [33:0] pcie_rx_cmd_rd_data,
input pcie_rx_cmd_empty_n,
output pcie_tag_alloc,
output [7:0] pcie_alloc_tag,
output [9:4] pcie_tag_alloc_len,
input pcie_tag_full_n,
input pcie_rx_fifo_full_n,
output tx_dma_mrd_req,
output [7:0] tx_dma_mrd_tag,
output [11:2] tx_dma_mrd_len,
output [C_PCIE_ADDR_WIDTH-1:2] tx_dma_mrd_addr,
input tx_dma_mrd_req_ack
);
localparam LP_PCIE_TAG_PREFIX = 4'b0001;
localparam LP_PCIE_MRD_DELAY = 8;
localparam S_IDLE = 9'b000000001;
localparam S_PCIE_RX_CMD_0 = 9'b000000010;
localparam S_PCIE_RX_CMD_1 = 9'b000000100;
localparam S_PCIE_CHK_NUM_MRD = 9'b000001000;
localparam S_PCIE_MRD_REQ = 9'b000010000;
localparam S_PCIE_MRD_ACK = 9'b000100000;
localparam S_PCIE_MRD_DONE = 9'b001000000;
localparam S_PCIE_MRD_DELAY = 9'b010000000;
localparam S_PCIE_MRD_NEXT = 9'b100000000;
reg [8:0] cur_state;
reg [8:0] next_state;
reg [2:0] r_pcie_max_read_req_size;
reg r_pcie_rx_cmd_rd_en;
reg [12:2] r_pcie_rx_len;
reg [9:2] r_pcie_rx_cur_len;
reg [C_PCIE_ADDR_WIDTH-1:2] r_pcie_addr;
reg [3:0] r_pcie_rx_tag;
reg r_pcie_rx_tag_update;
reg [5:0] r_pcie_mrd_delay;
reg r_pcie_tag_alloc;
reg r_tx_dma_mrd_req;
assign pcie_rx_cmd_rd_en = r_pcie_rx_cmd_rd_en;
assign pcie_tag_alloc = r_pcie_tag_alloc;
assign pcie_alloc_tag = {LP_PCIE_TAG_PREFIX, r_pcie_rx_tag};
assign pcie_tag_alloc_len = r_pcie_rx_cur_len[9:4];
assign tx_dma_mrd_req = r_tx_dma_mrd_req;
assign tx_dma_mrd_tag = {LP_PCIE_TAG_PREFIX, r_pcie_rx_tag};
assign tx_dma_mrd_len = {2'b0, r_pcie_rx_cur_len};
assign tx_dma_mrd_addr = r_pcie_addr;
always @ (posedge pcie_user_clk or negedge pcie_user_rst_n)
begin
if(pcie_user_rst_n == 0)
cur_state <= S_IDLE;
else
cur_state <= next_state;
end
always @ (*)
begin
case(cur_state)
S_IDLE: begin
if(pcie_rx_cmd_empty_n == 1)
next_state <= S_PCIE_RX_CMD_0;
else
next_state <= S_IDLE;
end
S_PCIE_RX_CMD_0: begin
next_state <= S_PCIE_RX_CMD_1;
end
S_PCIE_RX_CMD_1: begin
next_state <= S_PCIE_CHK_NUM_MRD;
end
S_PCIE_CHK_NUM_MRD: begin
if(pcie_rx_fifo_full_n == 1 && pcie_tag_full_n == 1)
next_state <= S_PCIE_MRD_REQ;
else
next_state <= S_PCIE_CHK_NUM_MRD;
end
S_PCIE_MRD_REQ: begin
next_state <= S_PCIE_MRD_ACK;
end
S_PCIE_MRD_ACK: begin
if(tx_dma_mrd_req_ack == 1)
next_state <= S_PCIE_MRD_DONE;
else
next_state <= S_PCIE_MRD_ACK;
end
S_PCIE_MRD_DONE: begin
next_state <= S_PCIE_MRD_DELAY;
end
S_PCIE_MRD_DELAY: begin
if(r_pcie_mrd_delay == 0)
next_state <= S_PCIE_MRD_NEXT;
else
next_state <= S_PCIE_MRD_DELAY;
end
S_PCIE_MRD_NEXT: begin
if(r_pcie_rx_len == 0)
next_state <= S_IDLE;
else
next_state <= S_PCIE_CHK_NUM_MRD;
end
default: begin
next_state <= S_IDLE;
end
endcase
end
always @ (posedge pcie_user_clk or negedge pcie_user_rst_n)
begin
if(pcie_user_rst_n == 0) begin
r_pcie_rx_tag <= 0;
end
else begin
if(r_pcie_rx_tag_update == 1)
r_pcie_rx_tag <= r_pcie_rx_tag + 1;
end
end
always @ (posedge pcie_user_clk)
begin
r_pcie_max_read_req_size <= pcie_max_read_req_size;
end
always @ (posedge pcie_user_clk)
begin
case(cur_state)
S_IDLE: begin
end
S_PCIE_RX_CMD_0: begin
r_pcie_rx_len <= {pcie_rx_cmd_rd_data[10:2], 2'b0};
end
S_PCIE_RX_CMD_1: begin
case(r_pcie_max_read_req_size)
3'b010: begin
if(r_pcie_rx_len[8:7] == 0 && r_pcie_rx_len[6:2] == 0)
r_pcie_rx_cur_len[9:7] <= 3'b100;
else
r_pcie_rx_cur_len[9:7] <= {1'b0, r_pcie_rx_len[8:7]};
end
3'b001: begin
if(r_pcie_rx_len[7] == 0 && r_pcie_rx_len[6:2] == 0)
r_pcie_rx_cur_len[9:7] <= 3'b010;
else
r_pcie_rx_cur_len[9:7] <= {2'b0, r_pcie_rx_len[7]};
end
default: begin
if(r_pcie_rx_len[6:2] == 0)
r_pcie_rx_cur_len[9:7] <= 3'b001;
else
r_pcie_rx_cur_len[9:7] <= 3'b000;
end
endcase
r_pcie_rx_cur_len[6:2] <= r_pcie_rx_len[6:2];
r_pcie_addr <= {pcie_rx_cmd_rd_data[33:2], 2'b0};
end
S_PCIE_CHK_NUM_MRD: begin
end
S_PCIE_MRD_REQ: begin
end
S_PCIE_MRD_ACK: begin
end
S_PCIE_MRD_DONE: begin
r_pcie_addr <= r_pcie_addr + r_pcie_rx_cur_len;
r_pcie_rx_len <= r_pcie_rx_len - r_pcie_rx_cur_len;
case(r_pcie_max_read_req_size)
3'b010: r_pcie_rx_cur_len <= 8'h80;
3'b001: r_pcie_rx_cur_len <= 8'h40;
default: r_pcie_rx_cur_len <= 8'h20;
endcase
r_pcie_mrd_delay <= LP_PCIE_MRD_DELAY;
end
S_PCIE_MRD_DELAY: begin
r_pcie_mrd_delay <= r_pcie_mrd_delay - 1'b1;
end
S_PCIE_MRD_NEXT: begin
end
default: begin
end
endcase
end
always @ (*)
begin
case(cur_state)
S_IDLE: begin
r_pcie_rx_cmd_rd_en <= 0;
r_pcie_tag_alloc <= 0;
r_tx_dma_mrd_req <= 0;
r_pcie_rx_tag_update <= 0;
end
S_PCIE_RX_CMD_0: begin
r_pcie_rx_cmd_rd_en <= 1;
r_pcie_tag_alloc <= 0;
r_tx_dma_mrd_req <= 0;
r_pcie_rx_tag_update <= 0;
end
S_PCIE_RX_CMD_1: begin
r_pcie_rx_cmd_rd_en <= 1;
r_pcie_tag_alloc <= 0;
r_tx_dma_mrd_req <= 0;
r_pcie_rx_tag_update <= 0;
end
S_PCIE_CHK_NUM_MRD: begin
r_pcie_rx_cmd_rd_en <= 0;
r_pcie_tag_alloc <= 0;
r_tx_dma_mrd_req <= 0;
r_pcie_rx_tag_update <= 0;
end
S_PCIE_MRD_REQ: begin
r_pcie_rx_cmd_rd_en <= 0;
r_pcie_tag_alloc <= 1;
r_tx_dma_mrd_req <= 1;
r_pcie_rx_tag_update <= 0;
end
S_PCIE_MRD_ACK: begin
r_pcie_rx_cmd_rd_en <= 0;
r_pcie_tag_alloc <= 0;
r_tx_dma_mrd_req <= 0;
r_pcie_rx_tag_update <= 0;
end
S_PCIE_MRD_DONE: begin
r_pcie_rx_cmd_rd_en <= 0;
r_pcie_tag_alloc <= 0;
r_tx_dma_mrd_req <= 0;
r_pcie_rx_tag_update <= 1;
end
S_PCIE_MRD_DELAY: begin
r_pcie_rx_cmd_rd_en <= 0;
r_pcie_tag_alloc <= 0;
r_tx_dma_mrd_req <= 0;
r_pcie_rx_tag_update <= 0;
end
S_PCIE_MRD_NEXT: begin
r_pcie_rx_cmd_rd_en <= 0;
r_pcie_tag_alloc <= 0;
r_tx_dma_mrd_req <= 0;
r_pcie_rx_tag_update <= 0;
end
default: begin
r_pcie_rx_cmd_rd_en <= 0;
r_pcie_tag_alloc <= 0;
r_tx_dma_mrd_req <= 0;
r_pcie_rx_tag_update <= 0;
end
endcase
end
endmodule
|
/*
----------------------------------------------------------------------------------
Copyright (c) 2013-2014
Embedded and Network Computing Lab.
Open SSD Project
Hanyang University
All rights reserved.
----------------------------------------------------------------------------------
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this source code
must display the following acknowledgement:
This product includes source code developed
by the Embedded and Network Computing Lab. and the Open SSD Project.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------------------
http://enclab.hanyang.ac.kr/
http://www.openssd-project.org/
http://www.hanyang.ac.kr/
----------------------------------------------------------------------------------
*/
`timescale 1ns / 1ps
module pcie_rx_req # (
parameter P_PCIE_DATA_WIDTH = 128,
parameter C_PCIE_ADDR_WIDTH = 36
)
(
input pcie_user_clk,
input pcie_user_rst_n,
input [2:0] pcie_max_read_req_size,
output pcie_rx_cmd_rd_en,
input [33:0] pcie_rx_cmd_rd_data,
input pcie_rx_cmd_empty_n,
output pcie_tag_alloc,
output [7:0] pcie_alloc_tag,
output [9:4] pcie_tag_alloc_len,
input pcie_tag_full_n,
input pcie_rx_fifo_full_n,
output tx_dma_mrd_req,
output [7:0] tx_dma_mrd_tag,
output [11:2] tx_dma_mrd_len,
output [C_PCIE_ADDR_WIDTH-1:2] tx_dma_mrd_addr,
input tx_dma_mrd_req_ack
);
localparam LP_PCIE_TAG_PREFIX = 4'b0001;
localparam LP_PCIE_MRD_DELAY = 8;
localparam S_IDLE = 9'b000000001;
localparam S_PCIE_RX_CMD_0 = 9'b000000010;
localparam S_PCIE_RX_CMD_1 = 9'b000000100;
localparam S_PCIE_CHK_NUM_MRD = 9'b000001000;
localparam S_PCIE_MRD_REQ = 9'b000010000;
localparam S_PCIE_MRD_ACK = 9'b000100000;
localparam S_PCIE_MRD_DONE = 9'b001000000;
localparam S_PCIE_MRD_DELAY = 9'b010000000;
localparam S_PCIE_MRD_NEXT = 9'b100000000;
reg [8:0] cur_state;
reg [8:0] next_state;
reg [2:0] r_pcie_max_read_req_size;
reg r_pcie_rx_cmd_rd_en;
reg [12:2] r_pcie_rx_len;
reg [9:2] r_pcie_rx_cur_len;
reg [C_PCIE_ADDR_WIDTH-1:2] r_pcie_addr;
reg [3:0] r_pcie_rx_tag;
reg r_pcie_rx_tag_update;
reg [5:0] r_pcie_mrd_delay;
reg r_pcie_tag_alloc;
reg r_tx_dma_mrd_req;
assign pcie_rx_cmd_rd_en = r_pcie_rx_cmd_rd_en;
assign pcie_tag_alloc = r_pcie_tag_alloc;
assign pcie_alloc_tag = {LP_PCIE_TAG_PREFIX, r_pcie_rx_tag};
assign pcie_tag_alloc_len = r_pcie_rx_cur_len[9:4];
assign tx_dma_mrd_req = r_tx_dma_mrd_req;
assign tx_dma_mrd_tag = {LP_PCIE_TAG_PREFIX, r_pcie_rx_tag};
assign tx_dma_mrd_len = {2'b0, r_pcie_rx_cur_len};
assign tx_dma_mrd_addr = r_pcie_addr;
always @ (posedge pcie_user_clk or negedge pcie_user_rst_n)
begin
if(pcie_user_rst_n == 0)
cur_state <= S_IDLE;
else
cur_state <= next_state;
end
always @ (*)
begin
case(cur_state)
S_IDLE: begin
if(pcie_rx_cmd_empty_n == 1)
next_state <= S_PCIE_RX_CMD_0;
else
next_state <= S_IDLE;
end
S_PCIE_RX_CMD_0: begin
next_state <= S_PCIE_RX_CMD_1;
end
S_PCIE_RX_CMD_1: begin
next_state <= S_PCIE_CHK_NUM_MRD;
end
S_PCIE_CHK_NUM_MRD: begin
if(pcie_rx_fifo_full_n == 1 && pcie_tag_full_n == 1)
next_state <= S_PCIE_MRD_REQ;
else
next_state <= S_PCIE_CHK_NUM_MRD;
end
S_PCIE_MRD_REQ: begin
next_state <= S_PCIE_MRD_ACK;
end
S_PCIE_MRD_ACK: begin
if(tx_dma_mrd_req_ack == 1)
next_state <= S_PCIE_MRD_DONE;
else
next_state <= S_PCIE_MRD_ACK;
end
S_PCIE_MRD_DONE: begin
next_state <= S_PCIE_MRD_DELAY;
end
S_PCIE_MRD_DELAY: begin
if(r_pcie_mrd_delay == 0)
next_state <= S_PCIE_MRD_NEXT;
else
next_state <= S_PCIE_MRD_DELAY;
end
S_PCIE_MRD_NEXT: begin
if(r_pcie_rx_len == 0)
next_state <= S_IDLE;
else
next_state <= S_PCIE_CHK_NUM_MRD;
end
default: begin
next_state <= S_IDLE;
end
endcase
end
always @ (posedge pcie_user_clk or negedge pcie_user_rst_n)
begin
if(pcie_user_rst_n == 0) begin
r_pcie_rx_tag <= 0;
end
else begin
if(r_pcie_rx_tag_update == 1)
r_pcie_rx_tag <= r_pcie_rx_tag + 1;
end
end
always @ (posedge pcie_user_clk)
begin
r_pcie_max_read_req_size <= pcie_max_read_req_size;
end
always @ (posedge pcie_user_clk)
begin
case(cur_state)
S_IDLE: begin
end
S_PCIE_RX_CMD_0: begin
r_pcie_rx_len <= {pcie_rx_cmd_rd_data[10:2], 2'b0};
end
S_PCIE_RX_CMD_1: begin
case(r_pcie_max_read_req_size)
3'b010: begin
if(r_pcie_rx_len[8:7] == 0 && r_pcie_rx_len[6:2] == 0)
r_pcie_rx_cur_len[9:7] <= 3'b100;
else
r_pcie_rx_cur_len[9:7] <= {1'b0, r_pcie_rx_len[8:7]};
end
3'b001: begin
if(r_pcie_rx_len[7] == 0 && r_pcie_rx_len[6:2] == 0)
r_pcie_rx_cur_len[9:7] <= 3'b010;
else
r_pcie_rx_cur_len[9:7] <= {2'b0, r_pcie_rx_len[7]};
end
default: begin
if(r_pcie_rx_len[6:2] == 0)
r_pcie_rx_cur_len[9:7] <= 3'b001;
else
r_pcie_rx_cur_len[9:7] <= 3'b000;
end
endcase
r_pcie_rx_cur_len[6:2] <= r_pcie_rx_len[6:2];
r_pcie_addr <= {pcie_rx_cmd_rd_data[33:2], 2'b0};
end
S_PCIE_CHK_NUM_MRD: begin
end
S_PCIE_MRD_REQ: begin
end
S_PCIE_MRD_ACK: begin
end
S_PCIE_MRD_DONE: begin
r_pcie_addr <= r_pcie_addr + r_pcie_rx_cur_len;
r_pcie_rx_len <= r_pcie_rx_len - r_pcie_rx_cur_len;
case(r_pcie_max_read_req_size)
3'b010: r_pcie_rx_cur_len <= 8'h80;
3'b001: r_pcie_rx_cur_len <= 8'h40;
default: r_pcie_rx_cur_len <= 8'h20;
endcase
r_pcie_mrd_delay <= LP_PCIE_MRD_DELAY;
end
S_PCIE_MRD_DELAY: begin
r_pcie_mrd_delay <= r_pcie_mrd_delay - 1'b1;
end
S_PCIE_MRD_NEXT: begin
end
default: begin
end
endcase
end
always @ (*)
begin
case(cur_state)
S_IDLE: begin
r_pcie_rx_cmd_rd_en <= 0;
r_pcie_tag_alloc <= 0;
r_tx_dma_mrd_req <= 0;
r_pcie_rx_tag_update <= 0;
end
S_PCIE_RX_CMD_0: begin
r_pcie_rx_cmd_rd_en <= 1;
r_pcie_tag_alloc <= 0;
r_tx_dma_mrd_req <= 0;
r_pcie_rx_tag_update <= 0;
end
S_PCIE_RX_CMD_1: begin
r_pcie_rx_cmd_rd_en <= 1;
r_pcie_tag_alloc <= 0;
r_tx_dma_mrd_req <= 0;
r_pcie_rx_tag_update <= 0;
end
S_PCIE_CHK_NUM_MRD: begin
r_pcie_rx_cmd_rd_en <= 0;
r_pcie_tag_alloc <= 0;
r_tx_dma_mrd_req <= 0;
r_pcie_rx_tag_update <= 0;
end
S_PCIE_MRD_REQ: begin
r_pcie_rx_cmd_rd_en <= 0;
r_pcie_tag_alloc <= 1;
r_tx_dma_mrd_req <= 1;
r_pcie_rx_tag_update <= 0;
end
S_PCIE_MRD_ACK: begin
r_pcie_rx_cmd_rd_en <= 0;
r_pcie_tag_alloc <= 0;
r_tx_dma_mrd_req <= 0;
r_pcie_rx_tag_update <= 0;
end
S_PCIE_MRD_DONE: begin
r_pcie_rx_cmd_rd_en <= 0;
r_pcie_tag_alloc <= 0;
r_tx_dma_mrd_req <= 0;
r_pcie_rx_tag_update <= 1;
end
S_PCIE_MRD_DELAY: begin
r_pcie_rx_cmd_rd_en <= 0;
r_pcie_tag_alloc <= 0;
r_tx_dma_mrd_req <= 0;
r_pcie_rx_tag_update <= 0;
end
S_PCIE_MRD_NEXT: begin
r_pcie_rx_cmd_rd_en <= 0;
r_pcie_tag_alloc <= 0;
r_tx_dma_mrd_req <= 0;
r_pcie_rx_tag_update <= 0;
end
default: begin
r_pcie_rx_cmd_rd_en <= 0;
r_pcie_tag_alloc <= 0;
r_tx_dma_mrd_req <= 0;
r_pcie_rx_tag_update <= 0;
end
endcase
end
endmodule
|
/*
----------------------------------------------------------------------------------
Copyright (c) 2013-2014
Embedded and Network Computing Lab.
Open SSD Project
Hanyang University
All rights reserved.
----------------------------------------------------------------------------------
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this source code
must display the following acknowledgement:
This product includes source code developed
by the Embedded and Network Computing Lab. and the Open SSD Project.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------------------
http://enclab.hanyang.ac.kr/
http://www.openssd-project.org/
http://www.hanyang.ac.kr/
----------------------------------------------------------------------------------
*/
`timescale 1ns / 1ps
module pcie_rx_req # (
parameter P_PCIE_DATA_WIDTH = 128,
parameter C_PCIE_ADDR_WIDTH = 36
)
(
input pcie_user_clk,
input pcie_user_rst_n,
input [2:0] pcie_max_read_req_size,
output pcie_rx_cmd_rd_en,
input [33:0] pcie_rx_cmd_rd_data,
input pcie_rx_cmd_empty_n,
output pcie_tag_alloc,
output [7:0] pcie_alloc_tag,
output [9:4] pcie_tag_alloc_len,
input pcie_tag_full_n,
input pcie_rx_fifo_full_n,
output tx_dma_mrd_req,
output [7:0] tx_dma_mrd_tag,
output [11:2] tx_dma_mrd_len,
output [C_PCIE_ADDR_WIDTH-1:2] tx_dma_mrd_addr,
input tx_dma_mrd_req_ack
);
localparam LP_PCIE_TAG_PREFIX = 4'b0001;
localparam LP_PCIE_MRD_DELAY = 8;
localparam S_IDLE = 9'b000000001;
localparam S_PCIE_RX_CMD_0 = 9'b000000010;
localparam S_PCIE_RX_CMD_1 = 9'b000000100;
localparam S_PCIE_CHK_NUM_MRD = 9'b000001000;
localparam S_PCIE_MRD_REQ = 9'b000010000;
localparam S_PCIE_MRD_ACK = 9'b000100000;
localparam S_PCIE_MRD_DONE = 9'b001000000;
localparam S_PCIE_MRD_DELAY = 9'b010000000;
localparam S_PCIE_MRD_NEXT = 9'b100000000;
reg [8:0] cur_state;
reg [8:0] next_state;
reg [2:0] r_pcie_max_read_req_size;
reg r_pcie_rx_cmd_rd_en;
reg [12:2] r_pcie_rx_len;
reg [9:2] r_pcie_rx_cur_len;
reg [C_PCIE_ADDR_WIDTH-1:2] r_pcie_addr;
reg [3:0] r_pcie_rx_tag;
reg r_pcie_rx_tag_update;
reg [5:0] r_pcie_mrd_delay;
reg r_pcie_tag_alloc;
reg r_tx_dma_mrd_req;
assign pcie_rx_cmd_rd_en = r_pcie_rx_cmd_rd_en;
assign pcie_tag_alloc = r_pcie_tag_alloc;
assign pcie_alloc_tag = {LP_PCIE_TAG_PREFIX, r_pcie_rx_tag};
assign pcie_tag_alloc_len = r_pcie_rx_cur_len[9:4];
assign tx_dma_mrd_req = r_tx_dma_mrd_req;
assign tx_dma_mrd_tag = {LP_PCIE_TAG_PREFIX, r_pcie_rx_tag};
assign tx_dma_mrd_len = {2'b0, r_pcie_rx_cur_len};
assign tx_dma_mrd_addr = r_pcie_addr;
always @ (posedge pcie_user_clk or negedge pcie_user_rst_n)
begin
if(pcie_user_rst_n == 0)
cur_state <= S_IDLE;
else
cur_state <= next_state;
end
always @ (*)
begin
case(cur_state)
S_IDLE: begin
if(pcie_rx_cmd_empty_n == 1)
next_state <= S_PCIE_RX_CMD_0;
else
next_state <= S_IDLE;
end
S_PCIE_RX_CMD_0: begin
next_state <= S_PCIE_RX_CMD_1;
end
S_PCIE_RX_CMD_1: begin
next_state <= S_PCIE_CHK_NUM_MRD;
end
S_PCIE_CHK_NUM_MRD: begin
if(pcie_rx_fifo_full_n == 1 && pcie_tag_full_n == 1)
next_state <= S_PCIE_MRD_REQ;
else
next_state <= S_PCIE_CHK_NUM_MRD;
end
S_PCIE_MRD_REQ: begin
next_state <= S_PCIE_MRD_ACK;
end
S_PCIE_MRD_ACK: begin
if(tx_dma_mrd_req_ack == 1)
next_state <= S_PCIE_MRD_DONE;
else
next_state <= S_PCIE_MRD_ACK;
end
S_PCIE_MRD_DONE: begin
next_state <= S_PCIE_MRD_DELAY;
end
S_PCIE_MRD_DELAY: begin
if(r_pcie_mrd_delay == 0)
next_state <= S_PCIE_MRD_NEXT;
else
next_state <= S_PCIE_MRD_DELAY;
end
S_PCIE_MRD_NEXT: begin
if(r_pcie_rx_len == 0)
next_state <= S_IDLE;
else
next_state <= S_PCIE_CHK_NUM_MRD;
end
default: begin
next_state <= S_IDLE;
end
endcase
end
always @ (posedge pcie_user_clk or negedge pcie_user_rst_n)
begin
if(pcie_user_rst_n == 0) begin
r_pcie_rx_tag <= 0;
end
else begin
if(r_pcie_rx_tag_update == 1)
r_pcie_rx_tag <= r_pcie_rx_tag + 1;
end
end
always @ (posedge pcie_user_clk)
begin
r_pcie_max_read_req_size <= pcie_max_read_req_size;
end
always @ (posedge pcie_user_clk)
begin
case(cur_state)
S_IDLE: begin
end
S_PCIE_RX_CMD_0: begin
r_pcie_rx_len <= {pcie_rx_cmd_rd_data[10:2], 2'b0};
end
S_PCIE_RX_CMD_1: begin
case(r_pcie_max_read_req_size)
3'b010: begin
if(r_pcie_rx_len[8:7] == 0 && r_pcie_rx_len[6:2] == 0)
r_pcie_rx_cur_len[9:7] <= 3'b100;
else
r_pcie_rx_cur_len[9:7] <= {1'b0, r_pcie_rx_len[8:7]};
end
3'b001: begin
if(r_pcie_rx_len[7] == 0 && r_pcie_rx_len[6:2] == 0)
r_pcie_rx_cur_len[9:7] <= 3'b010;
else
r_pcie_rx_cur_len[9:7] <= {2'b0, r_pcie_rx_len[7]};
end
default: begin
if(r_pcie_rx_len[6:2] == 0)
r_pcie_rx_cur_len[9:7] <= 3'b001;
else
r_pcie_rx_cur_len[9:7] <= 3'b000;
end
endcase
r_pcie_rx_cur_len[6:2] <= r_pcie_rx_len[6:2];
r_pcie_addr <= {pcie_rx_cmd_rd_data[33:2], 2'b0};
end
S_PCIE_CHK_NUM_MRD: begin
end
S_PCIE_MRD_REQ: begin
end
S_PCIE_MRD_ACK: begin
end
S_PCIE_MRD_DONE: begin
r_pcie_addr <= r_pcie_addr + r_pcie_rx_cur_len;
r_pcie_rx_len <= r_pcie_rx_len - r_pcie_rx_cur_len;
case(r_pcie_max_read_req_size)
3'b010: r_pcie_rx_cur_len <= 8'h80;
3'b001: r_pcie_rx_cur_len <= 8'h40;
default: r_pcie_rx_cur_len <= 8'h20;
endcase
r_pcie_mrd_delay <= LP_PCIE_MRD_DELAY;
end
S_PCIE_MRD_DELAY: begin
r_pcie_mrd_delay <= r_pcie_mrd_delay - 1'b1;
end
S_PCIE_MRD_NEXT: begin
end
default: begin
end
endcase
end
always @ (*)
begin
case(cur_state)
S_IDLE: begin
r_pcie_rx_cmd_rd_en <= 0;
r_pcie_tag_alloc <= 0;
r_tx_dma_mrd_req <= 0;
r_pcie_rx_tag_update <= 0;
end
S_PCIE_RX_CMD_0: begin
r_pcie_rx_cmd_rd_en <= 1;
r_pcie_tag_alloc <= 0;
r_tx_dma_mrd_req <= 0;
r_pcie_rx_tag_update <= 0;
end
S_PCIE_RX_CMD_1: begin
r_pcie_rx_cmd_rd_en <= 1;
r_pcie_tag_alloc <= 0;
r_tx_dma_mrd_req <= 0;
r_pcie_rx_tag_update <= 0;
end
S_PCIE_CHK_NUM_MRD: begin
r_pcie_rx_cmd_rd_en <= 0;
r_pcie_tag_alloc <= 0;
r_tx_dma_mrd_req <= 0;
r_pcie_rx_tag_update <= 0;
end
S_PCIE_MRD_REQ: begin
r_pcie_rx_cmd_rd_en <= 0;
r_pcie_tag_alloc <= 1;
r_tx_dma_mrd_req <= 1;
r_pcie_rx_tag_update <= 0;
end
S_PCIE_MRD_ACK: begin
r_pcie_rx_cmd_rd_en <= 0;
r_pcie_tag_alloc <= 0;
r_tx_dma_mrd_req <= 0;
r_pcie_rx_tag_update <= 0;
end
S_PCIE_MRD_DONE: begin
r_pcie_rx_cmd_rd_en <= 0;
r_pcie_tag_alloc <= 0;
r_tx_dma_mrd_req <= 0;
r_pcie_rx_tag_update <= 1;
end
S_PCIE_MRD_DELAY: begin
r_pcie_rx_cmd_rd_en <= 0;
r_pcie_tag_alloc <= 0;
r_tx_dma_mrd_req <= 0;
r_pcie_rx_tag_update <= 0;
end
S_PCIE_MRD_NEXT: begin
r_pcie_rx_cmd_rd_en <= 0;
r_pcie_tag_alloc <= 0;
r_tx_dma_mrd_req <= 0;
r_pcie_rx_tag_update <= 0;
end
default: begin
r_pcie_rx_cmd_rd_en <= 0;
r_pcie_tag_alloc <= 0;
r_tx_dma_mrd_req <= 0;
r_pcie_rx_tag_update <= 0;
end
endcase
end
endmodule
|
/*
----------------------------------------------------------------------------------
Copyright (c) 2013-2014
Embedded and Network Computing Lab.
Open SSD Project
Hanyang University
All rights reserved.
----------------------------------------------------------------------------------
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this source code
must display the following acknowledgement:
This product includes source code developed
by the Embedded and Network Computing Lab. and the Open SSD Project.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------------------
http://enclab.hanyang.ac.kr/
http://www.openssd-project.org/
http://www.hanyang.ac.kr/
----------------------------------------------------------------------------------
*/
`timescale 1ns / 1ps
module pcie_tx_dma # (
parameter C_PCIE_DATA_WIDTH = 128,
parameter C_PCIE_ADDR_WIDTH = 36,
parameter C_M_AXI_DATA_WIDTH = 64
)
(
input pcie_user_clk,
input pcie_user_rst_n,
input [2:0] pcie_max_payload_size,
input pcie_tx_cmd_wr_en,
input [33:0] pcie_tx_cmd_wr_data,
output pcie_tx_cmd_full_n,
output tx_dma_mwr_req,
output [7:0] tx_dma_mwr_tag,
output [11:2] tx_dma_mwr_len,
output [C_PCIE_ADDR_WIDTH-1:2] tx_dma_mwr_addr,
input tx_dma_mwr_req_ack,
input tx_dma_mwr_data_last,
input pcie_tx_dma_fifo_rd_en,
output [C_PCIE_DATA_WIDTH-1:0] pcie_tx_dma_fifo_rd_data,
output dma_tx_done_wr_en,
output [20:0] dma_tx_done_wr_data,
input dma_tx_done_wr_rdy_n,
input dma_bus_clk,
input dma_bus_rst_n,
input pcie_tx_fifo_alloc_en,
input [9:4] pcie_tx_fifo_alloc_len,
input pcie_tx_fifo_wr_en,
input [C_M_AXI_DATA_WIDTH-1:0] pcie_tx_fifo_wr_data,
output pcie_tx_fifo_full_n
);
wire w_pcie_tx_cmd_rd_en;
wire [33:0] w_pcie_tx_cmd_rd_data;
wire w_pcie_tx_cmd_empty_n;
wire w_pcie_tx_fifo_free_en;
wire [9:4] w_pcie_tx_fifo_free_len;
wire w_pcie_tx_fifo_empty_n;
pcie_tx_cmd_fifo
pcie_tx_cmd_fifo_inst0
(
.clk (pcie_user_clk),
.rst_n (pcie_user_rst_n),
.wr_en (pcie_tx_cmd_wr_en),
.wr_data (pcie_tx_cmd_wr_data),
.full_n (pcie_tx_cmd_full_n),
.rd_en (w_pcie_tx_cmd_rd_en),
.rd_data (w_pcie_tx_cmd_rd_data),
.empty_n (w_pcie_tx_cmd_empty_n)
);
pcie_tx_fifo
pcie_tx_fifo_inst0
(
.wr_clk (dma_bus_clk),
.wr_rst_n (pcie_user_rst_n),
.alloc_en (pcie_tx_fifo_alloc_en),
.alloc_len (pcie_tx_fifo_alloc_len),
.wr_en (pcie_tx_fifo_wr_en),
.wr_data (pcie_tx_fifo_wr_data),
.full_n (pcie_tx_fifo_full_n),
.rd_clk (pcie_user_clk),
.rd_rst_n (pcie_user_rst_n),
.rd_en (pcie_tx_dma_fifo_rd_en),
.rd_data (pcie_tx_dma_fifo_rd_data),
.free_en (w_pcie_tx_fifo_free_en),
.free_len (w_pcie_tx_fifo_free_len),
.empty_n (w_pcie_tx_fifo_empty_n)
);
pcie_tx_req # (
.C_PCIE_DATA_WIDTH (C_PCIE_DATA_WIDTH),
.C_PCIE_ADDR_WIDTH (C_PCIE_ADDR_WIDTH)
)
pcie_tx_req_inst0(
.pcie_user_clk (pcie_user_clk),
.pcie_user_rst_n (pcie_user_rst_n),
.pcie_max_payload_size (pcie_max_payload_size),
.pcie_tx_cmd_rd_en (w_pcie_tx_cmd_rd_en),
.pcie_tx_cmd_rd_data (w_pcie_tx_cmd_rd_data),
.pcie_tx_cmd_empty_n (w_pcie_tx_cmd_empty_n),
.pcie_tx_fifo_free_en (w_pcie_tx_fifo_free_en),
.pcie_tx_fifo_free_len (w_pcie_tx_fifo_free_len),
.pcie_tx_fifo_empty_n (w_pcie_tx_fifo_empty_n),
.tx_dma_mwr_req (tx_dma_mwr_req),
.tx_dma_mwr_tag (tx_dma_mwr_tag),
.tx_dma_mwr_len (tx_dma_mwr_len),
.tx_dma_mwr_addr (tx_dma_mwr_addr),
.tx_dma_mwr_req_ack (tx_dma_mwr_req_ack),
.tx_dma_mwr_data_last (tx_dma_mwr_data_last),
.dma_tx_done_wr_en (dma_tx_done_wr_en),
.dma_tx_done_wr_data (dma_tx_done_wr_data),
.dma_tx_done_wr_rdy_n (dma_tx_done_wr_rdy_n)
);
endmodule
|
// -*- verilog -*-
//
// USRP - Universal Software Radio Peripheral
//
// Copyright (C) 2003 Matt Ettus
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Boston, MA 02110-1301 USA
//
// Interface to Cypress FX2 bus
// A packet is 512 Bytes. Each fifo line is 2 bytes
// Fifo has 1024 or 2048 lines
`include "../../firmware/include/fpga_regs_common.v"
`include "../../firmware/include/fpga_regs_standard.v"
module rx_buffer
( input usbclk,
input bus_reset, // Not used in RX
input reset, // DSP side reset (used here), do not reset registers
input reset_regs, //Only reset registers
output [15:0] usbdata,
input RD,
output wire have_pkt_rdy,
output reg rx_overrun,
input wire [3:0] channels,
input wire [15:0] ch_0,
input wire [15:0] ch_1,
input wire [15:0] ch_2,
input wire [15:0] ch_3,
input wire [15:0] ch_4,
input wire [15:0] ch_5,
input wire [15:0] ch_6,
input wire [15:0] ch_7,
input rxclk,
input rxstrobe,
input clear_status,
input [6:0] serial_addr, input [31:0] serial_data, input serial_strobe,
output [15:0] debugbus
);
wire [15:0] fifodata, fifodata_8;
reg [15:0] fifodata_16;
wire [11:0] rxfifolevel;
wire rx_empty, rx_full;
wire bypass_hb, want_q;
wire [4:0] bitwidth;
wire [3:0] bitshift;
setting_reg #(`FR_RX_FORMAT) sr_rxformat(.clock(rxclk),.reset(reset_regs),
.strobe(serial_strobe),.addr(serial_addr),.in(serial_data),
.out({bypass_hb,want_q,bitwidth,bitshift}));
// Receive FIFO (ADC --> USB)
// 257 Bug Fix
reg [8:0] read_count;
always @(negedge usbclk)
if(bus_reset)
read_count <= #1 9'd0;
else if(RD & ~read_count[8])
read_count <= #1 read_count + 9'd1;
else
read_count <= #1 RD ? read_count : 9'b0;
// Detect overrun
always @(posedge rxclk)
if(reset)
rx_overrun <= 1'b0;
else if(rxstrobe & (store_next != 0))
rx_overrun <= 1'b1;
else if(clear_status)
rx_overrun <= 1'b0;
reg [3:0] store_next;
always @(posedge rxclk)
if(reset)
store_next <= #1 4'd0;
else if(rxstrobe & (store_next == 0))
store_next <= #1 4'd1;
else if(~rx_full & (store_next == channels))
store_next <= #1 4'd0;
else if(~rx_full & (bitwidth == 5'd8) & (store_next == (channels>>1)))
store_next <= #1 4'd0;
else if(~rx_full & (store_next != 0))
store_next <= #1 store_next + 4'd1;
assign fifodata = (bitwidth == 5'd8) ? fifodata_8 : fifodata_16;
assign fifodata_8 = {round_8(top),round_8(bottom)};
reg [15:0] top,bottom;
function [7:0] round_8;
input [15:0] in_val;
round_8 = in_val[15:8] + (in_val[15] & |in_val[7:0]);
endfunction // round_8
always @*
case(store_next)
4'd1 : begin
bottom = ch_0;
top = ch_1;
end
4'd2 : begin
bottom = ch_2;
top = ch_3;
end
4'd3 : begin
bottom = ch_4;
top = ch_5;
end
4'd4 : begin
bottom = ch_6;
top = ch_7;
end
default : begin
top = 16'hFFFF;
bottom = 16'hFFFF;
end
endcase // case(store_next)
always @*
case(store_next)
4'd1 : fifodata_16 = ch_0;
4'd2 : fifodata_16 = ch_1;
4'd3 : fifodata_16 = ch_2;
4'd4 : fifodata_16 = ch_3;
4'd5 : fifodata_16 = ch_4;
4'd6 : fifodata_16 = ch_5;
4'd7 : fifodata_16 = ch_6;
4'd8 : fifodata_16 = ch_7;
default : fifodata_16 = 16'hFFFF;
endcase // case(store_next)
fifo_4k rxfifo
( .data ( fifodata ),
.wrreq (~rx_full & (store_next != 0)),
.wrclk ( rxclk ),
.q ( usbdata ),
.rdreq ( RD & ~read_count[8] ),
.rdclk ( ~usbclk ),
.aclr ( reset ), // This one is asynchronous, so we can use either reset
.rdempty ( rx_empty ),
.rdusedw ( rxfifolevel ),
.wrfull ( rx_full ),
.wrusedw ( )
);
assign have_pkt_rdy = (rxfifolevel >= 256);
// Debugging Aids
assign debugbus[0] = RD;
assign debugbus[1] = rx_overrun;
assign debugbus[2] = read_count[8];
assign debugbus[3] = rx_full;
assign debugbus[4] = rxstrobe;
assign debugbus[5] = usbclk;
assign debugbus[6] = have_pkt_rdy;
assign debugbus[10:7] = store_next;
//assign debugbus[15:11] = rxfifolevel[4:0];
assign debugbus[15:11] = bitwidth;
endmodule // rx_buffer
|
// -*- verilog -*-
//
// USRP - Universal Software Radio Peripheral
//
// Copyright (C) 2003 Matt Ettus
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Boston, MA 02110-1301 USA
//
// Interface to Cypress FX2 bus
// A packet is 512 Bytes. Each fifo line is 2 bytes
// Fifo has 1024 or 2048 lines
`include "../../firmware/include/fpga_regs_common.v"
`include "../../firmware/include/fpga_regs_standard.v"
module rx_buffer
( input usbclk,
input bus_reset, // Not used in RX
input reset, // DSP side reset (used here), do not reset registers
input reset_regs, //Only reset registers
output [15:0] usbdata,
input RD,
output wire have_pkt_rdy,
output reg rx_overrun,
input wire [3:0] channels,
input wire [15:0] ch_0,
input wire [15:0] ch_1,
input wire [15:0] ch_2,
input wire [15:0] ch_3,
input wire [15:0] ch_4,
input wire [15:0] ch_5,
input wire [15:0] ch_6,
input wire [15:0] ch_7,
input rxclk,
input rxstrobe,
input clear_status,
input [6:0] serial_addr, input [31:0] serial_data, input serial_strobe,
output [15:0] debugbus
);
wire [15:0] fifodata, fifodata_8;
reg [15:0] fifodata_16;
wire [11:0] rxfifolevel;
wire rx_empty, rx_full;
wire bypass_hb, want_q;
wire [4:0] bitwidth;
wire [3:0] bitshift;
setting_reg #(`FR_RX_FORMAT) sr_rxformat(.clock(rxclk),.reset(reset_regs),
.strobe(serial_strobe),.addr(serial_addr),.in(serial_data),
.out({bypass_hb,want_q,bitwidth,bitshift}));
// Receive FIFO (ADC --> USB)
// 257 Bug Fix
reg [8:0] read_count;
always @(negedge usbclk)
if(bus_reset)
read_count <= #1 9'd0;
else if(RD & ~read_count[8])
read_count <= #1 read_count + 9'd1;
else
read_count <= #1 RD ? read_count : 9'b0;
// Detect overrun
always @(posedge rxclk)
if(reset)
rx_overrun <= 1'b0;
else if(rxstrobe & (store_next != 0))
rx_overrun <= 1'b1;
else if(clear_status)
rx_overrun <= 1'b0;
reg [3:0] store_next;
always @(posedge rxclk)
if(reset)
store_next <= #1 4'd0;
else if(rxstrobe & (store_next == 0))
store_next <= #1 4'd1;
else if(~rx_full & (store_next == channels))
store_next <= #1 4'd0;
else if(~rx_full & (bitwidth == 5'd8) & (store_next == (channels>>1)))
store_next <= #1 4'd0;
else if(~rx_full & (store_next != 0))
store_next <= #1 store_next + 4'd1;
assign fifodata = (bitwidth == 5'd8) ? fifodata_8 : fifodata_16;
assign fifodata_8 = {round_8(top),round_8(bottom)};
reg [15:0] top,bottom;
function [7:0] round_8;
input [15:0] in_val;
round_8 = in_val[15:8] + (in_val[15] & |in_val[7:0]);
endfunction // round_8
always @*
case(store_next)
4'd1 : begin
bottom = ch_0;
top = ch_1;
end
4'd2 : begin
bottom = ch_2;
top = ch_3;
end
4'd3 : begin
bottom = ch_4;
top = ch_5;
end
4'd4 : begin
bottom = ch_6;
top = ch_7;
end
default : begin
top = 16'hFFFF;
bottom = 16'hFFFF;
end
endcase // case(store_next)
always @*
case(store_next)
4'd1 : fifodata_16 = ch_0;
4'd2 : fifodata_16 = ch_1;
4'd3 : fifodata_16 = ch_2;
4'd4 : fifodata_16 = ch_3;
4'd5 : fifodata_16 = ch_4;
4'd6 : fifodata_16 = ch_5;
4'd7 : fifodata_16 = ch_6;
4'd8 : fifodata_16 = ch_7;
default : fifodata_16 = 16'hFFFF;
endcase // case(store_next)
fifo_4k rxfifo
( .data ( fifodata ),
.wrreq (~rx_full & (store_next != 0)),
.wrclk ( rxclk ),
.q ( usbdata ),
.rdreq ( RD & ~read_count[8] ),
.rdclk ( ~usbclk ),
.aclr ( reset ), // This one is asynchronous, so we can use either reset
.rdempty ( rx_empty ),
.rdusedw ( rxfifolevel ),
.wrfull ( rx_full ),
.wrusedw ( )
);
assign have_pkt_rdy = (rxfifolevel >= 256);
// Debugging Aids
assign debugbus[0] = RD;
assign debugbus[1] = rx_overrun;
assign debugbus[2] = read_count[8];
assign debugbus[3] = rx_full;
assign debugbus[4] = rxstrobe;
assign debugbus[5] = usbclk;
assign debugbus[6] = have_pkt_rdy;
assign debugbus[10:7] = store_next;
//assign debugbus[15:11] = rxfifolevel[4:0];
assign debugbus[15:11] = bitwidth;
endmodule // rx_buffer
|
// -*- verilog -*-
//
// USRP - Universal Software Radio Peripheral
//
// Copyright (C) 2003 Matt Ettus
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Boston, MA 02110-1301 USA
//
// Interface to Cypress FX2 bus
// A packet is 512 Bytes. Each fifo line is 2 bytes
// Fifo has 1024 or 2048 lines
`include "../../firmware/include/fpga_regs_common.v"
`include "../../firmware/include/fpga_regs_standard.v"
module rx_buffer
( input usbclk,
input bus_reset, // Not used in RX
input reset, // DSP side reset (used here), do not reset registers
input reset_regs, //Only reset registers
output [15:0] usbdata,
input RD,
output wire have_pkt_rdy,
output reg rx_overrun,
input wire [3:0] channels,
input wire [15:0] ch_0,
input wire [15:0] ch_1,
input wire [15:0] ch_2,
input wire [15:0] ch_3,
input wire [15:0] ch_4,
input wire [15:0] ch_5,
input wire [15:0] ch_6,
input wire [15:0] ch_7,
input rxclk,
input rxstrobe,
input clear_status,
input [6:0] serial_addr, input [31:0] serial_data, input serial_strobe,
output [15:0] debugbus
);
wire [15:0] fifodata, fifodata_8;
reg [15:0] fifodata_16;
wire [11:0] rxfifolevel;
wire rx_empty, rx_full;
wire bypass_hb, want_q;
wire [4:0] bitwidth;
wire [3:0] bitshift;
setting_reg #(`FR_RX_FORMAT) sr_rxformat(.clock(rxclk),.reset(reset_regs),
.strobe(serial_strobe),.addr(serial_addr),.in(serial_data),
.out({bypass_hb,want_q,bitwidth,bitshift}));
// Receive FIFO (ADC --> USB)
// 257 Bug Fix
reg [8:0] read_count;
always @(negedge usbclk)
if(bus_reset)
read_count <= #1 9'd0;
else if(RD & ~read_count[8])
read_count <= #1 read_count + 9'd1;
else
read_count <= #1 RD ? read_count : 9'b0;
// Detect overrun
always @(posedge rxclk)
if(reset)
rx_overrun <= 1'b0;
else if(rxstrobe & (store_next != 0))
rx_overrun <= 1'b1;
else if(clear_status)
rx_overrun <= 1'b0;
reg [3:0] store_next;
always @(posedge rxclk)
if(reset)
store_next <= #1 4'd0;
else if(rxstrobe & (store_next == 0))
store_next <= #1 4'd1;
else if(~rx_full & (store_next == channels))
store_next <= #1 4'd0;
else if(~rx_full & (bitwidth == 5'd8) & (store_next == (channels>>1)))
store_next <= #1 4'd0;
else if(~rx_full & (store_next != 0))
store_next <= #1 store_next + 4'd1;
assign fifodata = (bitwidth == 5'd8) ? fifodata_8 : fifodata_16;
assign fifodata_8 = {round_8(top),round_8(bottom)};
reg [15:0] top,bottom;
function [7:0] round_8;
input [15:0] in_val;
round_8 = in_val[15:8] + (in_val[15] & |in_val[7:0]);
endfunction // round_8
always @*
case(store_next)
4'd1 : begin
bottom = ch_0;
top = ch_1;
end
4'd2 : begin
bottom = ch_2;
top = ch_3;
end
4'd3 : begin
bottom = ch_4;
top = ch_5;
end
4'd4 : begin
bottom = ch_6;
top = ch_7;
end
default : begin
top = 16'hFFFF;
bottom = 16'hFFFF;
end
endcase // case(store_next)
always @*
case(store_next)
4'd1 : fifodata_16 = ch_0;
4'd2 : fifodata_16 = ch_1;
4'd3 : fifodata_16 = ch_2;
4'd4 : fifodata_16 = ch_3;
4'd5 : fifodata_16 = ch_4;
4'd6 : fifodata_16 = ch_5;
4'd7 : fifodata_16 = ch_6;
4'd8 : fifodata_16 = ch_7;
default : fifodata_16 = 16'hFFFF;
endcase // case(store_next)
fifo_4k rxfifo
( .data ( fifodata ),
.wrreq (~rx_full & (store_next != 0)),
.wrclk ( rxclk ),
.q ( usbdata ),
.rdreq ( RD & ~read_count[8] ),
.rdclk ( ~usbclk ),
.aclr ( reset ), // This one is asynchronous, so we can use either reset
.rdempty ( rx_empty ),
.rdusedw ( rxfifolevel ),
.wrfull ( rx_full ),
.wrusedw ( )
);
assign have_pkt_rdy = (rxfifolevel >= 256);
// Debugging Aids
assign debugbus[0] = RD;
assign debugbus[1] = rx_overrun;
assign debugbus[2] = read_count[8];
assign debugbus[3] = rx_full;
assign debugbus[4] = rxstrobe;
assign debugbus[5] = usbclk;
assign debugbus[6] = have_pkt_rdy;
assign debugbus[10:7] = store_next;
//assign debugbus[15:11] = rxfifolevel[4:0];
assign debugbus[15:11] = bitwidth;
endmodule // rx_buffer
|
// -*- verilog -*-
//
// USRP - Universal Software Radio Peripheral
//
// Copyright (C) 2003 Matt Ettus
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Boston, MA 02110-1301 USA
//
// Interface to Cypress FX2 bus
// A packet is 512 Bytes. Each fifo line is 2 bytes
// Fifo has 1024 or 2048 lines
`include "../../firmware/include/fpga_regs_common.v"
`include "../../firmware/include/fpga_regs_standard.v"
module rx_buffer
( input usbclk,
input bus_reset, // Not used in RX
input reset, // DSP side reset (used here), do not reset registers
input reset_regs, //Only reset registers
output [15:0] usbdata,
input RD,
output wire have_pkt_rdy,
output reg rx_overrun,
input wire [3:0] channels,
input wire [15:0] ch_0,
input wire [15:0] ch_1,
input wire [15:0] ch_2,
input wire [15:0] ch_3,
input wire [15:0] ch_4,
input wire [15:0] ch_5,
input wire [15:0] ch_6,
input wire [15:0] ch_7,
input rxclk,
input rxstrobe,
input clear_status,
input [6:0] serial_addr, input [31:0] serial_data, input serial_strobe,
output [15:0] debugbus
);
wire [15:0] fifodata, fifodata_8;
reg [15:0] fifodata_16;
wire [11:0] rxfifolevel;
wire rx_empty, rx_full;
wire bypass_hb, want_q;
wire [4:0] bitwidth;
wire [3:0] bitshift;
setting_reg #(`FR_RX_FORMAT) sr_rxformat(.clock(rxclk),.reset(reset_regs),
.strobe(serial_strobe),.addr(serial_addr),.in(serial_data),
.out({bypass_hb,want_q,bitwidth,bitshift}));
// Receive FIFO (ADC --> USB)
// 257 Bug Fix
reg [8:0] read_count;
always @(negedge usbclk)
if(bus_reset)
read_count <= #1 9'd0;
else if(RD & ~read_count[8])
read_count <= #1 read_count + 9'd1;
else
read_count <= #1 RD ? read_count : 9'b0;
// Detect overrun
always @(posedge rxclk)
if(reset)
rx_overrun <= 1'b0;
else if(rxstrobe & (store_next != 0))
rx_overrun <= 1'b1;
else if(clear_status)
rx_overrun <= 1'b0;
reg [3:0] store_next;
always @(posedge rxclk)
if(reset)
store_next <= #1 4'd0;
else if(rxstrobe & (store_next == 0))
store_next <= #1 4'd1;
else if(~rx_full & (store_next == channels))
store_next <= #1 4'd0;
else if(~rx_full & (bitwidth == 5'd8) & (store_next == (channels>>1)))
store_next <= #1 4'd0;
else if(~rx_full & (store_next != 0))
store_next <= #1 store_next + 4'd1;
assign fifodata = (bitwidth == 5'd8) ? fifodata_8 : fifodata_16;
assign fifodata_8 = {round_8(top),round_8(bottom)};
reg [15:0] top,bottom;
function [7:0] round_8;
input [15:0] in_val;
round_8 = in_val[15:8] + (in_val[15] & |in_val[7:0]);
endfunction // round_8
always @*
case(store_next)
4'd1 : begin
bottom = ch_0;
top = ch_1;
end
4'd2 : begin
bottom = ch_2;
top = ch_3;
end
4'd3 : begin
bottom = ch_4;
top = ch_5;
end
4'd4 : begin
bottom = ch_6;
top = ch_7;
end
default : begin
top = 16'hFFFF;
bottom = 16'hFFFF;
end
endcase // case(store_next)
always @*
case(store_next)
4'd1 : fifodata_16 = ch_0;
4'd2 : fifodata_16 = ch_1;
4'd3 : fifodata_16 = ch_2;
4'd4 : fifodata_16 = ch_3;
4'd5 : fifodata_16 = ch_4;
4'd6 : fifodata_16 = ch_5;
4'd7 : fifodata_16 = ch_6;
4'd8 : fifodata_16 = ch_7;
default : fifodata_16 = 16'hFFFF;
endcase // case(store_next)
fifo_4k rxfifo
( .data ( fifodata ),
.wrreq (~rx_full & (store_next != 0)),
.wrclk ( rxclk ),
.q ( usbdata ),
.rdreq ( RD & ~read_count[8] ),
.rdclk ( ~usbclk ),
.aclr ( reset ), // This one is asynchronous, so we can use either reset
.rdempty ( rx_empty ),
.rdusedw ( rxfifolevel ),
.wrfull ( rx_full ),
.wrusedw ( )
);
assign have_pkt_rdy = (rxfifolevel >= 256);
// Debugging Aids
assign debugbus[0] = RD;
assign debugbus[1] = rx_overrun;
assign debugbus[2] = read_count[8];
assign debugbus[3] = rx_full;
assign debugbus[4] = rxstrobe;
assign debugbus[5] = usbclk;
assign debugbus[6] = have_pkt_rdy;
assign debugbus[10:7] = store_next;
//assign debugbus[15:11] = rxfifolevel[4:0];
assign debugbus[15:11] = bitwidth;
endmodule // rx_buffer
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2009 by Wilson Snyder.
module t;
integer p_i;
reg [7*8:1] p_str;
initial begin
if ($test$plusargs("PLUS")!==1) $stop;
if ($test$plusargs("PLUSNOT")!==0) $stop;
if ($test$plusargs("PL")!==1) $stop;
//if ($test$plusargs("")!==1) $stop; // Simulators differ in this answer
if ($test$plusargs("NOTTHERE")!==0) $stop;
p_i = 10;
if ($value$plusargs("NOTTHERE%d", p_i)!==0) $stop;
if (p_i !== 10) $stop;
if ($value$plusargs("INT=%d", p_i)!==1) $stop;
if (p_i !== 32'd1234) $stop;
if ($value$plusargs("INT=%H", p_i)!==1) $stop; // tests uppercase % also
if (p_i !== 32'h1234) $stop;
if ($value$plusargs("INT=%o", p_i)!==1) $stop;
if (p_i !== 32'o1234) $stop;
if ($value$plusargs("IN%s", p_str)!==1) $stop;
$display("str='%s'",p_str);
if (p_str !== "T=1234") $stop;
$write("*-* All Finished *-*\n");
$finish;
end
endmodule
|
/*
----------------------------------------------------------------------------------
Copyright (c) 2013-2014
Embedded and Network Computing Lab.
Open SSD Project
Hanyang University
All rights reserved.
----------------------------------------------------------------------------------
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this source code
must display the following acknowledgement:
This product includes source code developed
by the Embedded and Network Computing Lab. and the Open SSD Project.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------------------
http://enclab.hanyang.ac.kr/
http://www.openssd-project.org/
http://www.hanyang.ac.kr/
----------------------------------------------------------------------------------
*/
`timescale 1ns / 1ps
module nvme_pcie # (
parameter C_PCIE_DATA_WIDTH = 128,
parameter C_PCIE_ADDR_WIDTH = 36,
parameter C_M_AXI_DATA_WIDTH = 64
)
(
input pcie_ref_clk_p,
input pcie_ref_clk_n,
//PCIe user clock
input pcie_user_clk,
input pcie_user_rst_n,
output dev_rx_cmd_wr_en,
output [29:0] dev_rx_cmd_wr_data,
input dev_rx_cmd_full_n,
output dev_tx_cmd_wr_en,
output [29:0] dev_tx_cmd_wr_data,
input dev_tx_cmd_full_n,
input cpu_bus_clk,
input cpu_bus_rst_n,
output nvme_cc_en,
output [1:0] nvme_cc_shn,
input [1:0] nvme_csts_shst,
input nvme_csts_rdy,
input [8:0] sq_rst_n,
input [8:0] sq_valid,
input [7:0] io_sq1_size,
input [7:0] io_sq2_size,
input [7:0] io_sq3_size,
input [7:0] io_sq4_size,
input [7:0] io_sq5_size,
input [7:0] io_sq6_size,
input [7:0] io_sq7_size,
input [7:0] io_sq8_size,
input [C_PCIE_ADDR_WIDTH-1:2] io_sq1_bs_addr,
input [C_PCIE_ADDR_WIDTH-1:2] io_sq2_bs_addr,
input [C_PCIE_ADDR_WIDTH-1:2] io_sq3_bs_addr,
input [C_PCIE_ADDR_WIDTH-1:2] io_sq4_bs_addr,
input [C_PCIE_ADDR_WIDTH-1:2] io_sq5_bs_addr,
input [C_PCIE_ADDR_WIDTH-1:2] io_sq6_bs_addr,
input [C_PCIE_ADDR_WIDTH-1:2] io_sq7_bs_addr,
input [C_PCIE_ADDR_WIDTH-1:2] io_sq8_bs_addr,
input [3:0] io_sq1_cq_vec,
input [3:0] io_sq2_cq_vec,
input [3:0] io_sq3_cq_vec,
input [3:0] io_sq4_cq_vec,
input [3:0] io_sq5_cq_vec,
input [3:0] io_sq6_cq_vec,
input [3:0] io_sq7_cq_vec,
input [3:0] io_sq8_cq_vec,
input [8:0] cq_rst_n,
input [8:0] cq_valid,
input [7:0] io_cq1_size,
input [7:0] io_cq2_size,
input [7:0] io_cq3_size,
input [7:0] io_cq4_size,
input [7:0] io_cq5_size,
input [7:0] io_cq6_size,
input [7:0] io_cq7_size,
input [7:0] io_cq8_size,
input [C_PCIE_ADDR_WIDTH-1:2] io_cq1_bs_addr,
input [C_PCIE_ADDR_WIDTH-1:2] io_cq2_bs_addr,
input [C_PCIE_ADDR_WIDTH-1:2] io_cq3_bs_addr,
input [C_PCIE_ADDR_WIDTH-1:2] io_cq4_bs_addr,
input [C_PCIE_ADDR_WIDTH-1:2] io_cq5_bs_addr,
input [C_PCIE_ADDR_WIDTH-1:2] io_cq6_bs_addr,
input [C_PCIE_ADDR_WIDTH-1:2] io_cq7_bs_addr,
input [C_PCIE_ADDR_WIDTH-1:2] io_cq8_bs_addr,
input [8:0] io_cq_irq_en,
input [2:0] io_cq1_iv,
input [2:0] io_cq2_iv,
input [2:0] io_cq3_iv,
input [2:0] io_cq4_iv,
input [2:0] io_cq5_iv,
input [2:0] io_cq6_iv,
input [2:0] io_cq7_iv,
input [2:0] io_cq8_iv,
input hcmd_sq_rd_en,
output [18:0] hcmd_sq_rd_data,
output hcmd_sq_empty_n,
input [10:0] hcmd_table_rd_addr,
output [31:0] hcmd_table_rd_data,
input hcmd_cq_wr1_en,
input [34:0] hcmd_cq_wr1_data0,
input [34:0] hcmd_cq_wr1_data1,
output hcmd_cq_wr1_rdy_n,
input dma_cmd_wr_en,
input [49:0] dma_cmd_wr_data0,
input [49:0] dma_cmd_wr_data1,
output dma_cmd_wr_rdy_n,
output [7:0] dma_rx_direct_done_cnt,
output [7:0] dma_tx_direct_done_cnt,
output [7:0] dma_rx_done_cnt,
output [7:0] dma_tx_done_cnt,
input dma_bus_clk,
input dma_bus_rst_n,
input pcie_rx_fifo_rd_en,
output [C_M_AXI_DATA_WIDTH-1:0] pcie_rx_fifo_rd_data,
input pcie_rx_fifo_free_en,
input [9:4] pcie_rx_fifo_free_len,
output pcie_rx_fifo_empty_n,
input pcie_tx_fifo_alloc_en,
input [9:4] pcie_tx_fifo_alloc_len,
input pcie_tx_fifo_wr_en,
input [C_M_AXI_DATA_WIDTH-1:0] pcie_tx_fifo_wr_data,
output pcie_tx_fifo_full_n,
input dma_rx_done_wr_en,
input [20:0] dma_rx_done_wr_data,
output dma_rx_done_wr_rdy_n,
output pcie_mreq_err,
output pcie_cpld_err,
output pcie_cpld_len_err,
//PCIe Integrated Block Interface
input [5:0] tx_buf_av,
input tx_err_drop,
input tx_cfg_req,
input s_axis_tx_tready,
output [C_PCIE_DATA_WIDTH-1:0] s_axis_tx_tdata,
output [(C_PCIE_DATA_WIDTH/8)-1:0] s_axis_tx_tkeep,
output [3:0] s_axis_tx_tuser,
output s_axis_tx_tlast,
output s_axis_tx_tvalid,
output tx_cfg_gnt,
input [C_PCIE_DATA_WIDTH-1:0] m_axis_rx_tdata,
input [(C_PCIE_DATA_WIDTH/8)-1:0] m_axis_rx_tkeep,
input m_axis_rx_tlast,
input m_axis_rx_tvalid,
output m_axis_rx_tready,
input [21:0] m_axis_rx_tuser,
output rx_np_ok,
output rx_np_req,
input [11:0] fc_cpld,
input [7:0] fc_cplh,
input [11:0] fc_npd,
input [7:0] fc_nph,
input [11:0] fc_pd,
input [7:0] fc_ph,
output [2:0] fc_sel,
output cfg_interrupt,
input cfg_interrupt_rdy,
output cfg_interrupt_assert,
output [7:0] cfg_interrupt_di,
input [7:0] cfg_interrupt_do,
input [2:0] cfg_interrupt_mmenable,
input cfg_interrupt_msienable,
input cfg_interrupt_msixenable,
input cfg_interrupt_msixfm,
output cfg_interrupt_stat,
output [4:0] cfg_pciecap_interrupt_msgnum,
input [7:0] cfg_bus_number,
input [4:0] cfg_device_number,
input [2:0] cfg_function_number,
input cfg_to_turnoff,
output cfg_turnoff_ok,
input [15:0] cfg_command,
input [15:0] cfg_dcommand,
input [15:0] cfg_lcommand,
output sys_clk
);
wire w_nvme_intms_ivms;
wire w_nvme_intmc_ivmc;
wire w_cq_irq_status;
wire [7:0] w_hcmd_prp_rd_addr;
wire [44:0] w_hcmd_prp_rd_data;
wire w_hcmd_nlb_wr1_en;
wire [6:0] w_hcmd_nlb_wr1_addr;
wire [18:0] w_hcmd_nlb_wr1_data;
wire w_hcmd_nlb_wr1_rdy_n;
wire [6:0] w_hcmd_nlb_rd_addr;
wire [18:0] w_hcmd_nlb_rd_data;
wire w_hcmd_cq_wr0_en;
wire [34:0] w_hcmd_cq_wr0_data0;
wire [34:0] w_hcmd_cq_wr0_data1;
wire w_hcmd_cq_wr0_rdy_n;
wire w_mreq_fifo_wr_en;
wire [C_PCIE_DATA_WIDTH-1:0] w_mreq_fifo_wr_data;
wire [7:0] w_cpld0_fifo_tag;
wire w_cpld0_fifo_tag_last;
wire w_cpld0_fifo_wr_en;
wire [C_PCIE_DATA_WIDTH-1:0] w_cpld0_fifo_wr_data;
wire [7:0] w_cpld1_fifo_tag;
wire w_cpld1_fifo_tag_last;
wire w_cpld1_fifo_wr_en;
wire [C_PCIE_DATA_WIDTH-1:0] w_cpld1_fifo_wr_data;
wire [7:0] w_cpld2_fifo_tag;
wire w_cpld2_fifo_tag_last;
wire w_cpld2_fifo_wr_en;
wire [C_PCIE_DATA_WIDTH-1:0] w_cpld2_fifo_wr_data;
wire w_tx_cpld_req;
wire [7:0] w_tx_cpld_tag;
wire [15:0] w_tx_cpld_req_id;
wire [11:2] w_tx_cpld_len;
wire [11:0] w_tx_cpld_bc;
wire [6:0] w_tx_cpld_laddr;
wire [63:0] w_tx_cpld_data;
wire w_tx_cpld_req_ack;
wire w_tx_mrd0_req;
wire [7:0] w_tx_mrd0_tag;
wire [11:2] w_tx_mrd0_len;
wire [C_PCIE_ADDR_WIDTH-1:2] w_tx_mrd0_addr;
wire w_tx_mrd0_req_ack;
wire w_tx_mrd1_req;
wire [7:0] w_tx_mrd1_tag;
wire [11:2] w_tx_mrd1_len;
wire [C_PCIE_ADDR_WIDTH-1:2] w_tx_mrd1_addr;
wire w_tx_mrd1_req_ack;
wire w_tx_mrd2_req;
wire [7:0] w_tx_mrd2_tag;
wire [11:2] w_tx_mrd2_len;
wire [C_PCIE_ADDR_WIDTH-1:2] w_tx_mrd2_addr;
wire w_tx_mrd2_req_ack;
wire w_tx_mwr0_req;
wire [7:0] w_tx_mwr0_tag;
wire [11:2] w_tx_mwr0_len;
wire [C_PCIE_ADDR_WIDTH-1:2] w_tx_mwr0_addr;
wire w_tx_mwr0_req_ack;
wire w_tx_mwr0_rd_en;
wire [C_PCIE_DATA_WIDTH-1 : 0] w_tx_mwr0_rd_data;
wire w_tx_mwr0_data_last;
wire w_tx_mwr1_req;
wire [7:0] w_tx_mwr1_tag;
wire [11:2] w_tx_mwr1_len;
wire [C_PCIE_ADDR_WIDTH-1:2] w_tx_mwr1_addr;
wire w_tx_mwr1_req_ack;
wire w_tx_mwr1_rd_en;
wire [C_PCIE_DATA_WIDTH-1:0] w_tx_mwr1_rd_data;
wire w_tx_mwr1_data_last;
wire [C_PCIE_ADDR_WIDTH-1:2] w_admin_sq_bs_addr;
wire [C_PCIE_ADDR_WIDTH-1:2] w_admin_cq_bs_addr;
wire [7:0] w_admin_sq_size;
wire [7:0] w_admin_cq_size;
wire [7:0] w_admin_sq_tail_ptr;
wire [7:0] w_io_sq1_tail_ptr;
wire [7:0] w_io_sq2_tail_ptr;
wire [7:0] w_io_sq3_tail_ptr;
wire [7:0] w_io_sq4_tail_ptr;
wire [7:0] w_io_sq5_tail_ptr;
wire [7:0] w_io_sq6_tail_ptr;
wire [7:0] w_io_sq7_tail_ptr;
wire [7:0] w_io_sq8_tail_ptr;
wire [7:0] w_admin_cq_tail_ptr;
wire [7:0] w_io_cq1_tail_ptr;
wire [7:0] w_io_cq2_tail_ptr;
wire [7:0] w_io_cq3_tail_ptr;
wire [7:0] w_io_cq4_tail_ptr;
wire [7:0] w_io_cq5_tail_ptr;
wire [7:0] w_io_cq6_tail_ptr;
wire [7:0] w_io_cq7_tail_ptr;
wire [7:0] w_io_cq8_tail_ptr;
wire [7:0] w_admin_cq_head_ptr;
wire [7:0] w_io_cq1_head_ptr;
wire [7:0] w_io_cq2_head_ptr;
wire [7:0] w_io_cq3_head_ptr;
wire [7:0] w_io_cq4_head_ptr;
wire [7:0] w_io_cq5_head_ptr;
wire [7:0] w_io_cq6_head_ptr;
wire [7:0] w_io_cq7_head_ptr;
wire [7:0] w_io_cq8_head_ptr;
wire [8:0] w_cq_head_update;
reg r_cfg_turnoff_ok;
IBUFDS_GTE2 pcie_ref_clk_ibuf (.O(sys_clk), .ODIV2(), .I(pcie_ref_clk_p), .CEB(1'b0), .IB(pcie_ref_clk_n));
assign cfg_turnoff_ok = r_cfg_turnoff_ok;
always @(posedge pcie_user_clk) begin
r_cfg_turnoff_ok <= cfg_to_turnoff;
end
pcie_cntl_slave # (
.C_PCIE_DATA_WIDTH (C_PCIE_DATA_WIDTH)
)
pcie_cntl_slave_inst0(
.pcie_user_clk (pcie_user_clk),
.pcie_user_rst_n (pcie_user_rst_n),
.rx_np_ok (rx_np_ok),
.rx_np_req (rx_np_req),
.mreq_fifo_wr_en (w_mreq_fifo_wr_en),
.mreq_fifo_wr_data (w_mreq_fifo_wr_data),
.tx_cpld_req (w_tx_cpld_req),
.tx_cpld_tag (w_tx_cpld_tag),
.tx_cpld_req_id (w_tx_cpld_req_id),
.tx_cpld_len (w_tx_cpld_len),
.tx_cpld_bc (w_tx_cpld_bc),
.tx_cpld_laddr (w_tx_cpld_laddr),
.tx_cpld_data (w_tx_cpld_data),
.tx_cpld_req_ack (w_tx_cpld_req_ack),
.nvme_cc_en (nvme_cc_en),
.nvme_cc_shn (nvme_cc_shn),
.nvme_csts_shst (nvme_csts_shst),
.nvme_csts_rdy (nvme_csts_rdy),
.nvme_intms_ivms (w_nvme_intms_ivms),
.nvme_intmc_ivmc (w_nvme_intmc_ivmc),
.cq_irq_status (w_cq_irq_status),
.sq_rst_n (sq_rst_n),
.cq_rst_n (cq_rst_n),
.admin_sq_bs_addr (w_admin_sq_bs_addr),
.admin_cq_bs_addr (w_admin_cq_bs_addr),
.admin_sq_size (w_admin_sq_size),
.admin_cq_size (w_admin_cq_size),
.admin_sq_tail_ptr (w_admin_sq_tail_ptr),
.io_sq1_tail_ptr (w_io_sq1_tail_ptr),
.io_sq2_tail_ptr (w_io_sq2_tail_ptr),
.io_sq3_tail_ptr (w_io_sq3_tail_ptr),
.io_sq4_tail_ptr (w_io_sq4_tail_ptr),
.io_sq5_tail_ptr (w_io_sq5_tail_ptr),
.io_sq6_tail_ptr (w_io_sq6_tail_ptr),
.io_sq7_tail_ptr (w_io_sq7_tail_ptr),
.io_sq8_tail_ptr (w_io_sq8_tail_ptr),
.admin_cq_head_ptr (w_admin_cq_head_ptr),
.io_cq1_head_ptr (w_io_cq1_head_ptr),
.io_cq2_head_ptr (w_io_cq2_head_ptr),
.io_cq3_head_ptr (w_io_cq3_head_ptr),
.io_cq4_head_ptr (w_io_cq4_head_ptr),
.io_cq5_head_ptr (w_io_cq5_head_ptr),
.io_cq6_head_ptr (w_io_cq6_head_ptr),
.io_cq7_head_ptr (w_io_cq7_head_ptr),
.io_cq8_head_ptr (w_io_cq8_head_ptr),
.cq_head_update (w_cq_head_update)
);
pcie_hcmd # (
.C_PCIE_DATA_WIDTH (C_PCIE_DATA_WIDTH)
)
pcie_hcmd_inst0(
.pcie_user_clk (pcie_user_clk),
.pcie_user_rst_n (pcie_user_rst_n),
.admin_sq_bs_addr (w_admin_sq_bs_addr),
.admin_cq_bs_addr (w_admin_cq_bs_addr),
.admin_sq_size (w_admin_sq_size),
.admin_cq_size (w_admin_cq_size),
.admin_sq_tail_ptr (w_admin_sq_tail_ptr),
.io_sq1_tail_ptr (w_io_sq1_tail_ptr),
.io_sq2_tail_ptr (w_io_sq2_tail_ptr),
.io_sq3_tail_ptr (w_io_sq3_tail_ptr),
.io_sq4_tail_ptr (w_io_sq4_tail_ptr),
.io_sq5_tail_ptr (w_io_sq5_tail_ptr),
.io_sq6_tail_ptr (w_io_sq6_tail_ptr),
.io_sq7_tail_ptr (w_io_sq7_tail_ptr),
.io_sq8_tail_ptr (w_io_sq8_tail_ptr),
.cpld_sq_fifo_tag (w_cpld0_fifo_tag),
.cpld_sq_fifo_wr_data (w_cpld0_fifo_wr_data),
.cpld_sq_fifo_wr_en (w_cpld0_fifo_wr_en),
.cpld_sq_fifo_tag_last (w_cpld0_fifo_tag_last),
.tx_mrd_req (w_tx_mrd0_req),
.tx_mrd_tag (w_tx_mrd0_tag),
.tx_mrd_len (w_tx_mrd0_len),
.tx_mrd_addr (w_tx_mrd0_addr),
.tx_mrd_req_ack (w_tx_mrd0_req_ack),
.admin_cq_tail_ptr (w_admin_cq_tail_ptr),
.io_cq1_tail_ptr (w_io_cq1_tail_ptr),
.io_cq2_tail_ptr (w_io_cq2_tail_ptr),
.io_cq3_tail_ptr (w_io_cq3_tail_ptr),
.io_cq4_tail_ptr (w_io_cq4_tail_ptr),
.io_cq5_tail_ptr (w_io_cq5_tail_ptr),
.io_cq6_tail_ptr (w_io_cq6_tail_ptr),
.io_cq7_tail_ptr (w_io_cq7_tail_ptr),
.io_cq8_tail_ptr (w_io_cq8_tail_ptr),
.tx_cq_mwr_req (w_tx_mwr0_req),
.tx_cq_mwr_tag (w_tx_mwr0_tag),
.tx_cq_mwr_len (w_tx_mwr0_len),
.tx_cq_mwr_addr (w_tx_mwr0_addr),
.tx_cq_mwr_req_ack (w_tx_mwr0_req_ack),
.tx_cq_mwr_rd_en (w_tx_mwr0_rd_en),
.tx_cq_mwr_rd_data (w_tx_mwr0_rd_data),
.tx_cq_mwr_data_last (w_tx_mwr0_data_last),
.hcmd_prp_rd_addr (w_hcmd_prp_rd_addr),
.hcmd_prp_rd_data (w_hcmd_prp_rd_data),
.hcmd_nlb_wr1_en (w_hcmd_nlb_wr1_en),
.hcmd_nlb_wr1_addr (w_hcmd_nlb_wr1_addr),
.hcmd_nlb_wr1_data (w_hcmd_nlb_wr1_data),
.hcmd_nlb_wr1_rdy_n (w_hcmd_nlb_wr1_rdy_n),
.hcmd_nlb_rd_addr (w_hcmd_nlb_rd_addr),
.hcmd_nlb_rd_data (w_hcmd_nlb_rd_data),
.hcmd_cq_wr0_en (w_hcmd_cq_wr0_en),
.hcmd_cq_wr0_data0 (w_hcmd_cq_wr0_data0),
.hcmd_cq_wr0_data1 (w_hcmd_cq_wr0_data1),
.hcmd_cq_wr0_rdy_n (w_hcmd_cq_wr0_rdy_n),
.cpu_bus_clk (cpu_bus_clk),
.cpu_bus_rst_n (cpu_bus_rst_n),
.sq_rst_n (sq_rst_n),
.sq_valid (sq_valid),
.io_sq1_size (io_sq1_size),
.io_sq2_size (io_sq2_size),
.io_sq3_size (io_sq3_size),
.io_sq4_size (io_sq4_size),
.io_sq5_size (io_sq5_size),
.io_sq6_size (io_sq6_size),
.io_sq7_size (io_sq7_size),
.io_sq8_size (io_sq8_size),
.io_sq1_bs_addr (io_sq1_bs_addr),
.io_sq2_bs_addr (io_sq2_bs_addr),
.io_sq3_bs_addr (io_sq3_bs_addr),
.io_sq4_bs_addr (io_sq4_bs_addr),
.io_sq5_bs_addr (io_sq5_bs_addr),
.io_sq6_bs_addr (io_sq6_bs_addr),
.io_sq7_bs_addr (io_sq7_bs_addr),
.io_sq8_bs_addr (io_sq8_bs_addr),
.io_sq1_cq_vec (io_sq1_cq_vec),
.io_sq2_cq_vec (io_sq2_cq_vec),
.io_sq3_cq_vec (io_sq3_cq_vec),
.io_sq4_cq_vec (io_sq4_cq_vec),
.io_sq5_cq_vec (io_sq5_cq_vec),
.io_sq6_cq_vec (io_sq6_cq_vec),
.io_sq7_cq_vec (io_sq7_cq_vec),
.io_sq8_cq_vec (io_sq8_cq_vec),
.cq_rst_n (cq_rst_n),
.cq_valid (cq_valid),
.io_cq1_size (io_cq1_size),
.io_cq2_size (io_cq2_size),
.io_cq3_size (io_cq3_size),
.io_cq4_size (io_cq4_size),
.io_cq5_size (io_cq5_size),
.io_cq6_size (io_cq6_size),
.io_cq7_size (io_cq7_size),
.io_cq8_size (io_cq8_size),
.io_cq1_bs_addr (io_cq1_bs_addr),
.io_cq2_bs_addr (io_cq2_bs_addr),
.io_cq3_bs_addr (io_cq3_bs_addr),
.io_cq4_bs_addr (io_cq4_bs_addr),
.io_cq5_bs_addr (io_cq5_bs_addr),
.io_cq6_bs_addr (io_cq6_bs_addr),
.io_cq7_bs_addr (io_cq7_bs_addr),
.io_cq8_bs_addr (io_cq8_bs_addr),
.hcmd_sq_rd_en (hcmd_sq_rd_en),
.hcmd_sq_rd_data (hcmd_sq_rd_data),
.hcmd_sq_empty_n (hcmd_sq_empty_n),
.hcmd_table_rd_addr (hcmd_table_rd_addr),
.hcmd_table_rd_data (hcmd_table_rd_data),
.hcmd_cq_wr1_en (hcmd_cq_wr1_en),
.hcmd_cq_wr1_data0 (hcmd_cq_wr1_data0),
.hcmd_cq_wr1_data1 (hcmd_cq_wr1_data1),
.hcmd_cq_wr1_rdy_n (hcmd_cq_wr1_rdy_n)
);
dma_if
dma_if_inst0
(
.pcie_user_clk (pcie_user_clk),
.pcie_user_rst_n (pcie_user_rst_n),
.pcie_max_payload_size (cfg_dcommand[7:5]),
.pcie_max_read_req_size (cfg_dcommand[14:12]),
.pcie_rcb (cfg_lcommand[3]),
.hcmd_prp_rd_addr (w_hcmd_prp_rd_addr),
.hcmd_prp_rd_data (w_hcmd_prp_rd_data),
.hcmd_nlb_wr1_en (w_hcmd_nlb_wr1_en),
.hcmd_nlb_wr1_addr (w_hcmd_nlb_wr1_addr),
.hcmd_nlb_wr1_data (w_hcmd_nlb_wr1_data),
.hcmd_nlb_wr1_rdy_n (w_hcmd_nlb_wr1_rdy_n),
.hcmd_nlb_rd_addr (w_hcmd_nlb_rd_addr),
.hcmd_nlb_rd_data (w_hcmd_nlb_rd_data),
.dev_rx_cmd_wr_en (dev_rx_cmd_wr_en),
.dev_rx_cmd_wr_data (dev_rx_cmd_wr_data),
.dev_rx_cmd_full_n (dev_rx_cmd_full_n),
.dev_tx_cmd_wr_en (dev_tx_cmd_wr_en),
.dev_tx_cmd_wr_data (dev_tx_cmd_wr_data),
.dev_tx_cmd_full_n (dev_tx_cmd_full_n),
.tx_prp_mrd_req (w_tx_mrd1_req),
.tx_prp_mrd_tag (w_tx_mrd1_tag),
.tx_prp_mrd_len (w_tx_mrd1_len),
.tx_prp_mrd_addr (w_tx_mrd1_addr),
.tx_prp_mrd_req_ack (w_tx_mrd1_req_ack),
.cpld_prp_fifo_tag (w_cpld1_fifo_tag),
.cpld_prp_fifo_wr_data (w_cpld1_fifo_wr_data),
.cpld_prp_fifo_wr_en (w_cpld1_fifo_wr_en),
.cpld_prp_fifo_tag_last (w_cpld1_fifo_tag_last),
.tx_dma_mrd_req (w_tx_mrd2_req),
.tx_dma_mrd_tag (w_tx_mrd2_tag),
.tx_dma_mrd_len (w_tx_mrd2_len),
.tx_dma_mrd_addr (w_tx_mrd2_addr),
.tx_dma_mrd_req_ack (w_tx_mrd2_req_ack),
.cpld_dma_fifo_tag (w_cpld2_fifo_tag),
.cpld_dma_fifo_wr_data (w_cpld2_fifo_wr_data),
.cpld_dma_fifo_wr_en (w_cpld2_fifo_wr_en),
.cpld_dma_fifo_tag_last (w_cpld2_fifo_tag_last),
.tx_dma_mwr_req (w_tx_mwr1_req),
.tx_dma_mwr_tag (w_tx_mwr1_tag),
.tx_dma_mwr_len (w_tx_mwr1_len),
.tx_dma_mwr_addr (w_tx_mwr1_addr),
.tx_dma_mwr_req_ack (w_tx_mwr1_req_ack),
.tx_dma_mwr_data_last (w_tx_mwr1_data_last),
.pcie_tx_dma_fifo_rd_en (w_tx_mwr1_rd_en),
.pcie_tx_dma_fifo_rd_data (w_tx_mwr1_rd_data),
.hcmd_cq_wr0_en (w_hcmd_cq_wr0_en),
.hcmd_cq_wr0_data0 (w_hcmd_cq_wr0_data0),
.hcmd_cq_wr0_data1 (w_hcmd_cq_wr0_data1),
.hcmd_cq_wr0_rdy_n (w_hcmd_cq_wr0_rdy_n),
.cpu_bus_clk (cpu_bus_clk),
.cpu_bus_rst_n (cpu_bus_rst_n),
.dma_cmd_wr_en (dma_cmd_wr_en),
.dma_cmd_wr_data0 (dma_cmd_wr_data0),
.dma_cmd_wr_data1 (dma_cmd_wr_data1),
.dma_cmd_wr_rdy_n (dma_cmd_wr_rdy_n),
.dma_rx_direct_done_cnt (dma_rx_direct_done_cnt),
.dma_tx_direct_done_cnt (dma_tx_direct_done_cnt),
.dma_rx_done_cnt (dma_rx_done_cnt),
.dma_tx_done_cnt (dma_tx_done_cnt),
.dma_bus_clk (dma_bus_clk),
.dma_bus_rst_n (dma_bus_rst_n),
.pcie_rx_fifo_rd_en (pcie_rx_fifo_rd_en),
.pcie_rx_fifo_rd_data (pcie_rx_fifo_rd_data),
.pcie_rx_fifo_free_en (pcie_rx_fifo_free_en),
.pcie_rx_fifo_free_len (pcie_rx_fifo_free_len),
.pcie_rx_fifo_empty_n (pcie_rx_fifo_empty_n),
.pcie_tx_fifo_alloc_en (pcie_tx_fifo_alloc_en),
.pcie_tx_fifo_alloc_len (pcie_tx_fifo_alloc_len),
.pcie_tx_fifo_wr_en (pcie_tx_fifo_wr_en),
.pcie_tx_fifo_wr_data (pcie_tx_fifo_wr_data),
.pcie_tx_fifo_full_n (pcie_tx_fifo_full_n),
.dma_rx_done_wr_en (dma_rx_done_wr_en),
.dma_rx_done_wr_data (dma_rx_done_wr_data),
.dma_rx_done_wr_rdy_n (dma_rx_done_wr_rdy_n)
);
pcie_tans_if # (
.C_PCIE_DATA_WIDTH (C_PCIE_DATA_WIDTH)
)
pcie_tans_if_inst0(
//PCIe user clock
.pcie_user_clk (pcie_user_clk),
.pcie_user_rst_n (pcie_user_rst_n),
//pcie rx signal
.mreq_fifo_wr_en (w_mreq_fifo_wr_en),
.mreq_fifo_wr_data (w_mreq_fifo_wr_data),
.cpld0_fifo_tag (w_cpld0_fifo_tag),
.cpld0_fifo_tag_last (w_cpld0_fifo_tag_last),
.cpld0_fifo_wr_en (w_cpld0_fifo_wr_en),
.cpld0_fifo_wr_data (w_cpld0_fifo_wr_data),
.cpld1_fifo_tag (w_cpld1_fifo_tag),
.cpld1_fifo_tag_last (w_cpld1_fifo_tag_last),
.cpld1_fifo_wr_en (w_cpld1_fifo_wr_en),
.cpld1_fifo_wr_data (w_cpld1_fifo_wr_data),
.cpld2_fifo_tag (w_cpld2_fifo_tag),
.cpld2_fifo_tag_last (w_cpld2_fifo_tag_last),
.cpld2_fifo_wr_en (w_cpld2_fifo_wr_en),
.cpld2_fifo_wr_data (w_cpld2_fifo_wr_data),
.tx_cpld_req (w_tx_cpld_req),
.tx_cpld_tag (w_tx_cpld_tag),
.tx_cpld_req_id (w_tx_cpld_req_id),
.tx_cpld_len (w_tx_cpld_len),
.tx_cpld_bc (w_tx_cpld_bc),
.tx_cpld_laddr (w_tx_cpld_laddr),
.tx_cpld_data (w_tx_cpld_data),
.tx_cpld_req_ack (w_tx_cpld_req_ack),
.tx_mrd0_req (w_tx_mrd0_req),
.tx_mrd0_tag (w_tx_mrd0_tag),
.tx_mrd0_len (w_tx_mrd0_len),
.tx_mrd0_addr (w_tx_mrd0_addr),
.tx_mrd0_req_ack (w_tx_mrd0_req_ack),
.tx_mrd1_req (w_tx_mrd1_req),
.tx_mrd1_tag (w_tx_mrd1_tag),
.tx_mrd1_len (w_tx_mrd1_len),
.tx_mrd1_addr (w_tx_mrd1_addr),
.tx_mrd1_req_ack (w_tx_mrd1_req_ack),
.tx_mrd2_req (w_tx_mrd2_req),
.tx_mrd2_tag (w_tx_mrd2_tag),
.tx_mrd2_len (w_tx_mrd2_len),
.tx_mrd2_addr (w_tx_mrd2_addr),
.tx_mrd2_req_ack (w_tx_mrd2_req_ack),
.tx_mwr0_req (w_tx_mwr0_req),
.tx_mwr0_tag (w_tx_mwr0_tag),
.tx_mwr0_len (w_tx_mwr0_len),
.tx_mwr0_addr (w_tx_mwr0_addr),
.tx_mwr0_req_ack (w_tx_mwr0_req_ack),
.tx_mwr0_rd_en (w_tx_mwr0_rd_en),
.tx_mwr0_rd_data (w_tx_mwr0_rd_data),
.tx_mwr0_data_last (w_tx_mwr0_data_last),
.tx_mwr1_req (w_tx_mwr1_req),
.tx_mwr1_tag (w_tx_mwr1_tag),
.tx_mwr1_len (w_tx_mwr1_len),
.tx_mwr1_addr (w_tx_mwr1_addr),
.tx_mwr1_req_ack (w_tx_mwr1_req_ack),
.tx_mwr1_rd_en (w_tx_mwr1_rd_en),
.tx_mwr1_rd_data (w_tx_mwr1_rd_data),
.tx_mwr1_data_last (w_tx_mwr1_data_last),
.pcie_mreq_err (pcie_mreq_err),
.pcie_cpld_err (pcie_cpld_err),
.pcie_cpld_len_err (pcie_cpld_len_err),
.tx_buf_av (tx_buf_av),
.tx_err_drop (tx_err_drop),
.tx_cfg_req (tx_cfg_req),
.s_axis_tx_tready (s_axis_tx_tready),
.s_axis_tx_tdata (s_axis_tx_tdata),
.s_axis_tx_tkeep (s_axis_tx_tkeep),
.s_axis_tx_tuser (s_axis_tx_tuser),
.s_axis_tx_tlast (s_axis_tx_tlast),
.s_axis_tx_tvalid (s_axis_tx_tvalid),
.tx_cfg_gnt (tx_cfg_gnt),
.m_axis_rx_tdata (m_axis_rx_tdata),
.m_axis_rx_tkeep (m_axis_rx_tkeep),
.m_axis_rx_tlast (m_axis_rx_tlast),
.m_axis_rx_tvalid (m_axis_rx_tvalid),
.m_axis_rx_tready (m_axis_rx_tready),
.m_axis_rx_tuser (m_axis_rx_tuser),
.fc_cpld (fc_cpld),
.fc_cplh (fc_cplh),
.fc_npd (fc_npd),
.fc_nph (fc_nph),
.fc_pd (fc_pd),
.fc_ph (fc_ph),
.fc_sel (fc_sel),
.cfg_bus_number (cfg_bus_number),
.cfg_device_number (cfg_device_number),
.cfg_function_number (cfg_function_number)
);
nvme_irq
nvme_irq_inst0
(
.pcie_user_clk (pcie_user_clk),
.pcie_user_rst_n (pcie_user_rst_n),
.cfg_command (cfg_command),
.cfg_interrupt (cfg_interrupt),
.cfg_interrupt_rdy (cfg_interrupt_rdy),
.cfg_interrupt_assert (cfg_interrupt_assert),
.cfg_interrupt_di (cfg_interrupt_di),
.cfg_interrupt_do (cfg_interrupt_do),
.cfg_interrupt_mmenable (cfg_interrupt_mmenable),
.cfg_interrupt_msienable (cfg_interrupt_msienable),
.cfg_interrupt_msixenable (cfg_interrupt_msixenable),
.cfg_interrupt_msixfm (cfg_interrupt_msixfm),
.cfg_interrupt_stat (cfg_interrupt_stat),
.cfg_pciecap_interrupt_msgnum (cfg_pciecap_interrupt_msgnum),
.nvme_intms_ivms (w_nvme_intms_ivms),
.nvme_intmc_ivmc (w_nvme_intmc_ivmc),
.cq_irq_status (w_cq_irq_status),
.cq_rst_n (cq_rst_n),
.cq_valid (cq_valid),
.io_cq_irq_en (io_cq_irq_en),
.io_cq1_iv (io_cq1_iv),
.io_cq2_iv (io_cq2_iv),
.io_cq3_iv (io_cq3_iv),
.io_cq4_iv (io_cq4_iv),
.io_cq5_iv (io_cq5_iv),
.io_cq6_iv (io_cq6_iv),
.io_cq7_iv (io_cq7_iv),
.io_cq8_iv (io_cq8_iv),
.admin_cq_tail_ptr (w_admin_cq_tail_ptr),
.io_cq1_tail_ptr (w_io_cq1_tail_ptr),
.io_cq2_tail_ptr (w_io_cq2_tail_ptr),
.io_cq3_tail_ptr (w_io_cq3_tail_ptr),
.io_cq4_tail_ptr (w_io_cq4_tail_ptr),
.io_cq5_tail_ptr (w_io_cq5_tail_ptr),
.io_cq6_tail_ptr (w_io_cq6_tail_ptr),
.io_cq7_tail_ptr (w_io_cq7_tail_ptr),
.io_cq8_tail_ptr (w_io_cq8_tail_ptr),
.admin_cq_head_ptr (w_admin_cq_head_ptr),
.io_cq1_head_ptr (w_io_cq1_head_ptr),
.io_cq2_head_ptr (w_io_cq2_head_ptr),
.io_cq3_head_ptr (w_io_cq3_head_ptr),
.io_cq4_head_ptr (w_io_cq4_head_ptr),
.io_cq5_head_ptr (w_io_cq5_head_ptr),
.io_cq6_head_ptr (w_io_cq6_head_ptr),
.io_cq7_head_ptr (w_io_cq7_head_ptr),
.io_cq8_head_ptr (w_io_cq8_head_ptr),
.cq_head_update (w_cq_head_update)
);
endmodule
|
/*
----------------------------------------------------------------------------------
Copyright (c) 2013-2014
Embedded and Network Computing Lab.
Open SSD Project
Hanyang University
All rights reserved.
----------------------------------------------------------------------------------
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this source code
must display the following acknowledgement:
This product includes source code developed
by the Embedded and Network Computing Lab. and the Open SSD Project.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------------------
http://enclab.hanyang.ac.kr/
http://www.openssd-project.org/
http://www.hanyang.ac.kr/
----------------------------------------------------------------------------------
*/
`timescale 1ns / 1ps
module nvme_pcie # (
parameter C_PCIE_DATA_WIDTH = 128,
parameter C_PCIE_ADDR_WIDTH = 36,
parameter C_M_AXI_DATA_WIDTH = 64
)
(
input pcie_ref_clk_p,
input pcie_ref_clk_n,
//PCIe user clock
input pcie_user_clk,
input pcie_user_rst_n,
output dev_rx_cmd_wr_en,
output [29:0] dev_rx_cmd_wr_data,
input dev_rx_cmd_full_n,
output dev_tx_cmd_wr_en,
output [29:0] dev_tx_cmd_wr_data,
input dev_tx_cmd_full_n,
input cpu_bus_clk,
input cpu_bus_rst_n,
output nvme_cc_en,
output [1:0] nvme_cc_shn,
input [1:0] nvme_csts_shst,
input nvme_csts_rdy,
input [8:0] sq_rst_n,
input [8:0] sq_valid,
input [7:0] io_sq1_size,
input [7:0] io_sq2_size,
input [7:0] io_sq3_size,
input [7:0] io_sq4_size,
input [7:0] io_sq5_size,
input [7:0] io_sq6_size,
input [7:0] io_sq7_size,
input [7:0] io_sq8_size,
input [C_PCIE_ADDR_WIDTH-1:2] io_sq1_bs_addr,
input [C_PCIE_ADDR_WIDTH-1:2] io_sq2_bs_addr,
input [C_PCIE_ADDR_WIDTH-1:2] io_sq3_bs_addr,
input [C_PCIE_ADDR_WIDTH-1:2] io_sq4_bs_addr,
input [C_PCIE_ADDR_WIDTH-1:2] io_sq5_bs_addr,
input [C_PCIE_ADDR_WIDTH-1:2] io_sq6_bs_addr,
input [C_PCIE_ADDR_WIDTH-1:2] io_sq7_bs_addr,
input [C_PCIE_ADDR_WIDTH-1:2] io_sq8_bs_addr,
input [3:0] io_sq1_cq_vec,
input [3:0] io_sq2_cq_vec,
input [3:0] io_sq3_cq_vec,
input [3:0] io_sq4_cq_vec,
input [3:0] io_sq5_cq_vec,
input [3:0] io_sq6_cq_vec,
input [3:0] io_sq7_cq_vec,
input [3:0] io_sq8_cq_vec,
input [8:0] cq_rst_n,
input [8:0] cq_valid,
input [7:0] io_cq1_size,
input [7:0] io_cq2_size,
input [7:0] io_cq3_size,
input [7:0] io_cq4_size,
input [7:0] io_cq5_size,
input [7:0] io_cq6_size,
input [7:0] io_cq7_size,
input [7:0] io_cq8_size,
input [C_PCIE_ADDR_WIDTH-1:2] io_cq1_bs_addr,
input [C_PCIE_ADDR_WIDTH-1:2] io_cq2_bs_addr,
input [C_PCIE_ADDR_WIDTH-1:2] io_cq3_bs_addr,
input [C_PCIE_ADDR_WIDTH-1:2] io_cq4_bs_addr,
input [C_PCIE_ADDR_WIDTH-1:2] io_cq5_bs_addr,
input [C_PCIE_ADDR_WIDTH-1:2] io_cq6_bs_addr,
input [C_PCIE_ADDR_WIDTH-1:2] io_cq7_bs_addr,
input [C_PCIE_ADDR_WIDTH-1:2] io_cq8_bs_addr,
input [8:0] io_cq_irq_en,
input [2:0] io_cq1_iv,
input [2:0] io_cq2_iv,
input [2:0] io_cq3_iv,
input [2:0] io_cq4_iv,
input [2:0] io_cq5_iv,
input [2:0] io_cq6_iv,
input [2:0] io_cq7_iv,
input [2:0] io_cq8_iv,
input hcmd_sq_rd_en,
output [18:0] hcmd_sq_rd_data,
output hcmd_sq_empty_n,
input [10:0] hcmd_table_rd_addr,
output [31:0] hcmd_table_rd_data,
input hcmd_cq_wr1_en,
input [34:0] hcmd_cq_wr1_data0,
input [34:0] hcmd_cq_wr1_data1,
output hcmd_cq_wr1_rdy_n,
input dma_cmd_wr_en,
input [49:0] dma_cmd_wr_data0,
input [49:0] dma_cmd_wr_data1,
output dma_cmd_wr_rdy_n,
output [7:0] dma_rx_direct_done_cnt,
output [7:0] dma_tx_direct_done_cnt,
output [7:0] dma_rx_done_cnt,
output [7:0] dma_tx_done_cnt,
input dma_bus_clk,
input dma_bus_rst_n,
input pcie_rx_fifo_rd_en,
output [C_M_AXI_DATA_WIDTH-1:0] pcie_rx_fifo_rd_data,
input pcie_rx_fifo_free_en,
input [9:4] pcie_rx_fifo_free_len,
output pcie_rx_fifo_empty_n,
input pcie_tx_fifo_alloc_en,
input [9:4] pcie_tx_fifo_alloc_len,
input pcie_tx_fifo_wr_en,
input [C_M_AXI_DATA_WIDTH-1:0] pcie_tx_fifo_wr_data,
output pcie_tx_fifo_full_n,
input dma_rx_done_wr_en,
input [20:0] dma_rx_done_wr_data,
output dma_rx_done_wr_rdy_n,
output pcie_mreq_err,
output pcie_cpld_err,
output pcie_cpld_len_err,
//PCIe Integrated Block Interface
input [5:0] tx_buf_av,
input tx_err_drop,
input tx_cfg_req,
input s_axis_tx_tready,
output [C_PCIE_DATA_WIDTH-1:0] s_axis_tx_tdata,
output [(C_PCIE_DATA_WIDTH/8)-1:0] s_axis_tx_tkeep,
output [3:0] s_axis_tx_tuser,
output s_axis_tx_tlast,
output s_axis_tx_tvalid,
output tx_cfg_gnt,
input [C_PCIE_DATA_WIDTH-1:0] m_axis_rx_tdata,
input [(C_PCIE_DATA_WIDTH/8)-1:0] m_axis_rx_tkeep,
input m_axis_rx_tlast,
input m_axis_rx_tvalid,
output m_axis_rx_tready,
input [21:0] m_axis_rx_tuser,
output rx_np_ok,
output rx_np_req,
input [11:0] fc_cpld,
input [7:0] fc_cplh,
input [11:0] fc_npd,
input [7:0] fc_nph,
input [11:0] fc_pd,
input [7:0] fc_ph,
output [2:0] fc_sel,
output cfg_interrupt,
input cfg_interrupt_rdy,
output cfg_interrupt_assert,
output [7:0] cfg_interrupt_di,
input [7:0] cfg_interrupt_do,
input [2:0] cfg_interrupt_mmenable,
input cfg_interrupt_msienable,
input cfg_interrupt_msixenable,
input cfg_interrupt_msixfm,
output cfg_interrupt_stat,
output [4:0] cfg_pciecap_interrupt_msgnum,
input [7:0] cfg_bus_number,
input [4:0] cfg_device_number,
input [2:0] cfg_function_number,
input cfg_to_turnoff,
output cfg_turnoff_ok,
input [15:0] cfg_command,
input [15:0] cfg_dcommand,
input [15:0] cfg_lcommand,
output sys_clk
);
wire w_nvme_intms_ivms;
wire w_nvme_intmc_ivmc;
wire w_cq_irq_status;
wire [7:0] w_hcmd_prp_rd_addr;
wire [44:0] w_hcmd_prp_rd_data;
wire w_hcmd_nlb_wr1_en;
wire [6:0] w_hcmd_nlb_wr1_addr;
wire [18:0] w_hcmd_nlb_wr1_data;
wire w_hcmd_nlb_wr1_rdy_n;
wire [6:0] w_hcmd_nlb_rd_addr;
wire [18:0] w_hcmd_nlb_rd_data;
wire w_hcmd_cq_wr0_en;
wire [34:0] w_hcmd_cq_wr0_data0;
wire [34:0] w_hcmd_cq_wr0_data1;
wire w_hcmd_cq_wr0_rdy_n;
wire w_mreq_fifo_wr_en;
wire [C_PCIE_DATA_WIDTH-1:0] w_mreq_fifo_wr_data;
wire [7:0] w_cpld0_fifo_tag;
wire w_cpld0_fifo_tag_last;
wire w_cpld0_fifo_wr_en;
wire [C_PCIE_DATA_WIDTH-1:0] w_cpld0_fifo_wr_data;
wire [7:0] w_cpld1_fifo_tag;
wire w_cpld1_fifo_tag_last;
wire w_cpld1_fifo_wr_en;
wire [C_PCIE_DATA_WIDTH-1:0] w_cpld1_fifo_wr_data;
wire [7:0] w_cpld2_fifo_tag;
wire w_cpld2_fifo_tag_last;
wire w_cpld2_fifo_wr_en;
wire [C_PCIE_DATA_WIDTH-1:0] w_cpld2_fifo_wr_data;
wire w_tx_cpld_req;
wire [7:0] w_tx_cpld_tag;
wire [15:0] w_tx_cpld_req_id;
wire [11:2] w_tx_cpld_len;
wire [11:0] w_tx_cpld_bc;
wire [6:0] w_tx_cpld_laddr;
wire [63:0] w_tx_cpld_data;
wire w_tx_cpld_req_ack;
wire w_tx_mrd0_req;
wire [7:0] w_tx_mrd0_tag;
wire [11:2] w_tx_mrd0_len;
wire [C_PCIE_ADDR_WIDTH-1:2] w_tx_mrd0_addr;
wire w_tx_mrd0_req_ack;
wire w_tx_mrd1_req;
wire [7:0] w_tx_mrd1_tag;
wire [11:2] w_tx_mrd1_len;
wire [C_PCIE_ADDR_WIDTH-1:2] w_tx_mrd1_addr;
wire w_tx_mrd1_req_ack;
wire w_tx_mrd2_req;
wire [7:0] w_tx_mrd2_tag;
wire [11:2] w_tx_mrd2_len;
wire [C_PCIE_ADDR_WIDTH-1:2] w_tx_mrd2_addr;
wire w_tx_mrd2_req_ack;
wire w_tx_mwr0_req;
wire [7:0] w_tx_mwr0_tag;
wire [11:2] w_tx_mwr0_len;
wire [C_PCIE_ADDR_WIDTH-1:2] w_tx_mwr0_addr;
wire w_tx_mwr0_req_ack;
wire w_tx_mwr0_rd_en;
wire [C_PCIE_DATA_WIDTH-1 : 0] w_tx_mwr0_rd_data;
wire w_tx_mwr0_data_last;
wire w_tx_mwr1_req;
wire [7:0] w_tx_mwr1_tag;
wire [11:2] w_tx_mwr1_len;
wire [C_PCIE_ADDR_WIDTH-1:2] w_tx_mwr1_addr;
wire w_tx_mwr1_req_ack;
wire w_tx_mwr1_rd_en;
wire [C_PCIE_DATA_WIDTH-1:0] w_tx_mwr1_rd_data;
wire w_tx_mwr1_data_last;
wire [C_PCIE_ADDR_WIDTH-1:2] w_admin_sq_bs_addr;
wire [C_PCIE_ADDR_WIDTH-1:2] w_admin_cq_bs_addr;
wire [7:0] w_admin_sq_size;
wire [7:0] w_admin_cq_size;
wire [7:0] w_admin_sq_tail_ptr;
wire [7:0] w_io_sq1_tail_ptr;
wire [7:0] w_io_sq2_tail_ptr;
wire [7:0] w_io_sq3_tail_ptr;
wire [7:0] w_io_sq4_tail_ptr;
wire [7:0] w_io_sq5_tail_ptr;
wire [7:0] w_io_sq6_tail_ptr;
wire [7:0] w_io_sq7_tail_ptr;
wire [7:0] w_io_sq8_tail_ptr;
wire [7:0] w_admin_cq_tail_ptr;
wire [7:0] w_io_cq1_tail_ptr;
wire [7:0] w_io_cq2_tail_ptr;
wire [7:0] w_io_cq3_tail_ptr;
wire [7:0] w_io_cq4_tail_ptr;
wire [7:0] w_io_cq5_tail_ptr;
wire [7:0] w_io_cq6_tail_ptr;
wire [7:0] w_io_cq7_tail_ptr;
wire [7:0] w_io_cq8_tail_ptr;
wire [7:0] w_admin_cq_head_ptr;
wire [7:0] w_io_cq1_head_ptr;
wire [7:0] w_io_cq2_head_ptr;
wire [7:0] w_io_cq3_head_ptr;
wire [7:0] w_io_cq4_head_ptr;
wire [7:0] w_io_cq5_head_ptr;
wire [7:0] w_io_cq6_head_ptr;
wire [7:0] w_io_cq7_head_ptr;
wire [7:0] w_io_cq8_head_ptr;
wire [8:0] w_cq_head_update;
reg r_cfg_turnoff_ok;
IBUFDS_GTE2 pcie_ref_clk_ibuf (.O(sys_clk), .ODIV2(), .I(pcie_ref_clk_p), .CEB(1'b0), .IB(pcie_ref_clk_n));
assign cfg_turnoff_ok = r_cfg_turnoff_ok;
always @(posedge pcie_user_clk) begin
r_cfg_turnoff_ok <= cfg_to_turnoff;
end
pcie_cntl_slave # (
.C_PCIE_DATA_WIDTH (C_PCIE_DATA_WIDTH)
)
pcie_cntl_slave_inst0(
.pcie_user_clk (pcie_user_clk),
.pcie_user_rst_n (pcie_user_rst_n),
.rx_np_ok (rx_np_ok),
.rx_np_req (rx_np_req),
.mreq_fifo_wr_en (w_mreq_fifo_wr_en),
.mreq_fifo_wr_data (w_mreq_fifo_wr_data),
.tx_cpld_req (w_tx_cpld_req),
.tx_cpld_tag (w_tx_cpld_tag),
.tx_cpld_req_id (w_tx_cpld_req_id),
.tx_cpld_len (w_tx_cpld_len),
.tx_cpld_bc (w_tx_cpld_bc),
.tx_cpld_laddr (w_tx_cpld_laddr),
.tx_cpld_data (w_tx_cpld_data),
.tx_cpld_req_ack (w_tx_cpld_req_ack),
.nvme_cc_en (nvme_cc_en),
.nvme_cc_shn (nvme_cc_shn),
.nvme_csts_shst (nvme_csts_shst),
.nvme_csts_rdy (nvme_csts_rdy),
.nvme_intms_ivms (w_nvme_intms_ivms),
.nvme_intmc_ivmc (w_nvme_intmc_ivmc),
.cq_irq_status (w_cq_irq_status),
.sq_rst_n (sq_rst_n),
.cq_rst_n (cq_rst_n),
.admin_sq_bs_addr (w_admin_sq_bs_addr),
.admin_cq_bs_addr (w_admin_cq_bs_addr),
.admin_sq_size (w_admin_sq_size),
.admin_cq_size (w_admin_cq_size),
.admin_sq_tail_ptr (w_admin_sq_tail_ptr),
.io_sq1_tail_ptr (w_io_sq1_tail_ptr),
.io_sq2_tail_ptr (w_io_sq2_tail_ptr),
.io_sq3_tail_ptr (w_io_sq3_tail_ptr),
.io_sq4_tail_ptr (w_io_sq4_tail_ptr),
.io_sq5_tail_ptr (w_io_sq5_tail_ptr),
.io_sq6_tail_ptr (w_io_sq6_tail_ptr),
.io_sq7_tail_ptr (w_io_sq7_tail_ptr),
.io_sq8_tail_ptr (w_io_sq8_tail_ptr),
.admin_cq_head_ptr (w_admin_cq_head_ptr),
.io_cq1_head_ptr (w_io_cq1_head_ptr),
.io_cq2_head_ptr (w_io_cq2_head_ptr),
.io_cq3_head_ptr (w_io_cq3_head_ptr),
.io_cq4_head_ptr (w_io_cq4_head_ptr),
.io_cq5_head_ptr (w_io_cq5_head_ptr),
.io_cq6_head_ptr (w_io_cq6_head_ptr),
.io_cq7_head_ptr (w_io_cq7_head_ptr),
.io_cq8_head_ptr (w_io_cq8_head_ptr),
.cq_head_update (w_cq_head_update)
);
pcie_hcmd # (
.C_PCIE_DATA_WIDTH (C_PCIE_DATA_WIDTH)
)
pcie_hcmd_inst0(
.pcie_user_clk (pcie_user_clk),
.pcie_user_rst_n (pcie_user_rst_n),
.admin_sq_bs_addr (w_admin_sq_bs_addr),
.admin_cq_bs_addr (w_admin_cq_bs_addr),
.admin_sq_size (w_admin_sq_size),
.admin_cq_size (w_admin_cq_size),
.admin_sq_tail_ptr (w_admin_sq_tail_ptr),
.io_sq1_tail_ptr (w_io_sq1_tail_ptr),
.io_sq2_tail_ptr (w_io_sq2_tail_ptr),
.io_sq3_tail_ptr (w_io_sq3_tail_ptr),
.io_sq4_tail_ptr (w_io_sq4_tail_ptr),
.io_sq5_tail_ptr (w_io_sq5_tail_ptr),
.io_sq6_tail_ptr (w_io_sq6_tail_ptr),
.io_sq7_tail_ptr (w_io_sq7_tail_ptr),
.io_sq8_tail_ptr (w_io_sq8_tail_ptr),
.cpld_sq_fifo_tag (w_cpld0_fifo_tag),
.cpld_sq_fifo_wr_data (w_cpld0_fifo_wr_data),
.cpld_sq_fifo_wr_en (w_cpld0_fifo_wr_en),
.cpld_sq_fifo_tag_last (w_cpld0_fifo_tag_last),
.tx_mrd_req (w_tx_mrd0_req),
.tx_mrd_tag (w_tx_mrd0_tag),
.tx_mrd_len (w_tx_mrd0_len),
.tx_mrd_addr (w_tx_mrd0_addr),
.tx_mrd_req_ack (w_tx_mrd0_req_ack),
.admin_cq_tail_ptr (w_admin_cq_tail_ptr),
.io_cq1_tail_ptr (w_io_cq1_tail_ptr),
.io_cq2_tail_ptr (w_io_cq2_tail_ptr),
.io_cq3_tail_ptr (w_io_cq3_tail_ptr),
.io_cq4_tail_ptr (w_io_cq4_tail_ptr),
.io_cq5_tail_ptr (w_io_cq5_tail_ptr),
.io_cq6_tail_ptr (w_io_cq6_tail_ptr),
.io_cq7_tail_ptr (w_io_cq7_tail_ptr),
.io_cq8_tail_ptr (w_io_cq8_tail_ptr),
.tx_cq_mwr_req (w_tx_mwr0_req),
.tx_cq_mwr_tag (w_tx_mwr0_tag),
.tx_cq_mwr_len (w_tx_mwr0_len),
.tx_cq_mwr_addr (w_tx_mwr0_addr),
.tx_cq_mwr_req_ack (w_tx_mwr0_req_ack),
.tx_cq_mwr_rd_en (w_tx_mwr0_rd_en),
.tx_cq_mwr_rd_data (w_tx_mwr0_rd_data),
.tx_cq_mwr_data_last (w_tx_mwr0_data_last),
.hcmd_prp_rd_addr (w_hcmd_prp_rd_addr),
.hcmd_prp_rd_data (w_hcmd_prp_rd_data),
.hcmd_nlb_wr1_en (w_hcmd_nlb_wr1_en),
.hcmd_nlb_wr1_addr (w_hcmd_nlb_wr1_addr),
.hcmd_nlb_wr1_data (w_hcmd_nlb_wr1_data),
.hcmd_nlb_wr1_rdy_n (w_hcmd_nlb_wr1_rdy_n),
.hcmd_nlb_rd_addr (w_hcmd_nlb_rd_addr),
.hcmd_nlb_rd_data (w_hcmd_nlb_rd_data),
.hcmd_cq_wr0_en (w_hcmd_cq_wr0_en),
.hcmd_cq_wr0_data0 (w_hcmd_cq_wr0_data0),
.hcmd_cq_wr0_data1 (w_hcmd_cq_wr0_data1),
.hcmd_cq_wr0_rdy_n (w_hcmd_cq_wr0_rdy_n),
.cpu_bus_clk (cpu_bus_clk),
.cpu_bus_rst_n (cpu_bus_rst_n),
.sq_rst_n (sq_rst_n),
.sq_valid (sq_valid),
.io_sq1_size (io_sq1_size),
.io_sq2_size (io_sq2_size),
.io_sq3_size (io_sq3_size),
.io_sq4_size (io_sq4_size),
.io_sq5_size (io_sq5_size),
.io_sq6_size (io_sq6_size),
.io_sq7_size (io_sq7_size),
.io_sq8_size (io_sq8_size),
.io_sq1_bs_addr (io_sq1_bs_addr),
.io_sq2_bs_addr (io_sq2_bs_addr),
.io_sq3_bs_addr (io_sq3_bs_addr),
.io_sq4_bs_addr (io_sq4_bs_addr),
.io_sq5_bs_addr (io_sq5_bs_addr),
.io_sq6_bs_addr (io_sq6_bs_addr),
.io_sq7_bs_addr (io_sq7_bs_addr),
.io_sq8_bs_addr (io_sq8_bs_addr),
.io_sq1_cq_vec (io_sq1_cq_vec),
.io_sq2_cq_vec (io_sq2_cq_vec),
.io_sq3_cq_vec (io_sq3_cq_vec),
.io_sq4_cq_vec (io_sq4_cq_vec),
.io_sq5_cq_vec (io_sq5_cq_vec),
.io_sq6_cq_vec (io_sq6_cq_vec),
.io_sq7_cq_vec (io_sq7_cq_vec),
.io_sq8_cq_vec (io_sq8_cq_vec),
.cq_rst_n (cq_rst_n),
.cq_valid (cq_valid),
.io_cq1_size (io_cq1_size),
.io_cq2_size (io_cq2_size),
.io_cq3_size (io_cq3_size),
.io_cq4_size (io_cq4_size),
.io_cq5_size (io_cq5_size),
.io_cq6_size (io_cq6_size),
.io_cq7_size (io_cq7_size),
.io_cq8_size (io_cq8_size),
.io_cq1_bs_addr (io_cq1_bs_addr),
.io_cq2_bs_addr (io_cq2_bs_addr),
.io_cq3_bs_addr (io_cq3_bs_addr),
.io_cq4_bs_addr (io_cq4_bs_addr),
.io_cq5_bs_addr (io_cq5_bs_addr),
.io_cq6_bs_addr (io_cq6_bs_addr),
.io_cq7_bs_addr (io_cq7_bs_addr),
.io_cq8_bs_addr (io_cq8_bs_addr),
.hcmd_sq_rd_en (hcmd_sq_rd_en),
.hcmd_sq_rd_data (hcmd_sq_rd_data),
.hcmd_sq_empty_n (hcmd_sq_empty_n),
.hcmd_table_rd_addr (hcmd_table_rd_addr),
.hcmd_table_rd_data (hcmd_table_rd_data),
.hcmd_cq_wr1_en (hcmd_cq_wr1_en),
.hcmd_cq_wr1_data0 (hcmd_cq_wr1_data0),
.hcmd_cq_wr1_data1 (hcmd_cq_wr1_data1),
.hcmd_cq_wr1_rdy_n (hcmd_cq_wr1_rdy_n)
);
dma_if
dma_if_inst0
(
.pcie_user_clk (pcie_user_clk),
.pcie_user_rst_n (pcie_user_rst_n),
.pcie_max_payload_size (cfg_dcommand[7:5]),
.pcie_max_read_req_size (cfg_dcommand[14:12]),
.pcie_rcb (cfg_lcommand[3]),
.hcmd_prp_rd_addr (w_hcmd_prp_rd_addr),
.hcmd_prp_rd_data (w_hcmd_prp_rd_data),
.hcmd_nlb_wr1_en (w_hcmd_nlb_wr1_en),
.hcmd_nlb_wr1_addr (w_hcmd_nlb_wr1_addr),
.hcmd_nlb_wr1_data (w_hcmd_nlb_wr1_data),
.hcmd_nlb_wr1_rdy_n (w_hcmd_nlb_wr1_rdy_n),
.hcmd_nlb_rd_addr (w_hcmd_nlb_rd_addr),
.hcmd_nlb_rd_data (w_hcmd_nlb_rd_data),
.dev_rx_cmd_wr_en (dev_rx_cmd_wr_en),
.dev_rx_cmd_wr_data (dev_rx_cmd_wr_data),
.dev_rx_cmd_full_n (dev_rx_cmd_full_n),
.dev_tx_cmd_wr_en (dev_tx_cmd_wr_en),
.dev_tx_cmd_wr_data (dev_tx_cmd_wr_data),
.dev_tx_cmd_full_n (dev_tx_cmd_full_n),
.tx_prp_mrd_req (w_tx_mrd1_req),
.tx_prp_mrd_tag (w_tx_mrd1_tag),
.tx_prp_mrd_len (w_tx_mrd1_len),
.tx_prp_mrd_addr (w_tx_mrd1_addr),
.tx_prp_mrd_req_ack (w_tx_mrd1_req_ack),
.cpld_prp_fifo_tag (w_cpld1_fifo_tag),
.cpld_prp_fifo_wr_data (w_cpld1_fifo_wr_data),
.cpld_prp_fifo_wr_en (w_cpld1_fifo_wr_en),
.cpld_prp_fifo_tag_last (w_cpld1_fifo_tag_last),
.tx_dma_mrd_req (w_tx_mrd2_req),
.tx_dma_mrd_tag (w_tx_mrd2_tag),
.tx_dma_mrd_len (w_tx_mrd2_len),
.tx_dma_mrd_addr (w_tx_mrd2_addr),
.tx_dma_mrd_req_ack (w_tx_mrd2_req_ack),
.cpld_dma_fifo_tag (w_cpld2_fifo_tag),
.cpld_dma_fifo_wr_data (w_cpld2_fifo_wr_data),
.cpld_dma_fifo_wr_en (w_cpld2_fifo_wr_en),
.cpld_dma_fifo_tag_last (w_cpld2_fifo_tag_last),
.tx_dma_mwr_req (w_tx_mwr1_req),
.tx_dma_mwr_tag (w_tx_mwr1_tag),
.tx_dma_mwr_len (w_tx_mwr1_len),
.tx_dma_mwr_addr (w_tx_mwr1_addr),
.tx_dma_mwr_req_ack (w_tx_mwr1_req_ack),
.tx_dma_mwr_data_last (w_tx_mwr1_data_last),
.pcie_tx_dma_fifo_rd_en (w_tx_mwr1_rd_en),
.pcie_tx_dma_fifo_rd_data (w_tx_mwr1_rd_data),
.hcmd_cq_wr0_en (w_hcmd_cq_wr0_en),
.hcmd_cq_wr0_data0 (w_hcmd_cq_wr0_data0),
.hcmd_cq_wr0_data1 (w_hcmd_cq_wr0_data1),
.hcmd_cq_wr0_rdy_n (w_hcmd_cq_wr0_rdy_n),
.cpu_bus_clk (cpu_bus_clk),
.cpu_bus_rst_n (cpu_bus_rst_n),
.dma_cmd_wr_en (dma_cmd_wr_en),
.dma_cmd_wr_data0 (dma_cmd_wr_data0),
.dma_cmd_wr_data1 (dma_cmd_wr_data1),
.dma_cmd_wr_rdy_n (dma_cmd_wr_rdy_n),
.dma_rx_direct_done_cnt (dma_rx_direct_done_cnt),
.dma_tx_direct_done_cnt (dma_tx_direct_done_cnt),
.dma_rx_done_cnt (dma_rx_done_cnt),
.dma_tx_done_cnt (dma_tx_done_cnt),
.dma_bus_clk (dma_bus_clk),
.dma_bus_rst_n (dma_bus_rst_n),
.pcie_rx_fifo_rd_en (pcie_rx_fifo_rd_en),
.pcie_rx_fifo_rd_data (pcie_rx_fifo_rd_data),
.pcie_rx_fifo_free_en (pcie_rx_fifo_free_en),
.pcie_rx_fifo_free_len (pcie_rx_fifo_free_len),
.pcie_rx_fifo_empty_n (pcie_rx_fifo_empty_n),
.pcie_tx_fifo_alloc_en (pcie_tx_fifo_alloc_en),
.pcie_tx_fifo_alloc_len (pcie_tx_fifo_alloc_len),
.pcie_tx_fifo_wr_en (pcie_tx_fifo_wr_en),
.pcie_tx_fifo_wr_data (pcie_tx_fifo_wr_data),
.pcie_tx_fifo_full_n (pcie_tx_fifo_full_n),
.dma_rx_done_wr_en (dma_rx_done_wr_en),
.dma_rx_done_wr_data (dma_rx_done_wr_data),
.dma_rx_done_wr_rdy_n (dma_rx_done_wr_rdy_n)
);
pcie_tans_if # (
.C_PCIE_DATA_WIDTH (C_PCIE_DATA_WIDTH)
)
pcie_tans_if_inst0(
//PCIe user clock
.pcie_user_clk (pcie_user_clk),
.pcie_user_rst_n (pcie_user_rst_n),
//pcie rx signal
.mreq_fifo_wr_en (w_mreq_fifo_wr_en),
.mreq_fifo_wr_data (w_mreq_fifo_wr_data),
.cpld0_fifo_tag (w_cpld0_fifo_tag),
.cpld0_fifo_tag_last (w_cpld0_fifo_tag_last),
.cpld0_fifo_wr_en (w_cpld0_fifo_wr_en),
.cpld0_fifo_wr_data (w_cpld0_fifo_wr_data),
.cpld1_fifo_tag (w_cpld1_fifo_tag),
.cpld1_fifo_tag_last (w_cpld1_fifo_tag_last),
.cpld1_fifo_wr_en (w_cpld1_fifo_wr_en),
.cpld1_fifo_wr_data (w_cpld1_fifo_wr_data),
.cpld2_fifo_tag (w_cpld2_fifo_tag),
.cpld2_fifo_tag_last (w_cpld2_fifo_tag_last),
.cpld2_fifo_wr_en (w_cpld2_fifo_wr_en),
.cpld2_fifo_wr_data (w_cpld2_fifo_wr_data),
.tx_cpld_req (w_tx_cpld_req),
.tx_cpld_tag (w_tx_cpld_tag),
.tx_cpld_req_id (w_tx_cpld_req_id),
.tx_cpld_len (w_tx_cpld_len),
.tx_cpld_bc (w_tx_cpld_bc),
.tx_cpld_laddr (w_tx_cpld_laddr),
.tx_cpld_data (w_tx_cpld_data),
.tx_cpld_req_ack (w_tx_cpld_req_ack),
.tx_mrd0_req (w_tx_mrd0_req),
.tx_mrd0_tag (w_tx_mrd0_tag),
.tx_mrd0_len (w_tx_mrd0_len),
.tx_mrd0_addr (w_tx_mrd0_addr),
.tx_mrd0_req_ack (w_tx_mrd0_req_ack),
.tx_mrd1_req (w_tx_mrd1_req),
.tx_mrd1_tag (w_tx_mrd1_tag),
.tx_mrd1_len (w_tx_mrd1_len),
.tx_mrd1_addr (w_tx_mrd1_addr),
.tx_mrd1_req_ack (w_tx_mrd1_req_ack),
.tx_mrd2_req (w_tx_mrd2_req),
.tx_mrd2_tag (w_tx_mrd2_tag),
.tx_mrd2_len (w_tx_mrd2_len),
.tx_mrd2_addr (w_tx_mrd2_addr),
.tx_mrd2_req_ack (w_tx_mrd2_req_ack),
.tx_mwr0_req (w_tx_mwr0_req),
.tx_mwr0_tag (w_tx_mwr0_tag),
.tx_mwr0_len (w_tx_mwr0_len),
.tx_mwr0_addr (w_tx_mwr0_addr),
.tx_mwr0_req_ack (w_tx_mwr0_req_ack),
.tx_mwr0_rd_en (w_tx_mwr0_rd_en),
.tx_mwr0_rd_data (w_tx_mwr0_rd_data),
.tx_mwr0_data_last (w_tx_mwr0_data_last),
.tx_mwr1_req (w_tx_mwr1_req),
.tx_mwr1_tag (w_tx_mwr1_tag),
.tx_mwr1_len (w_tx_mwr1_len),
.tx_mwr1_addr (w_tx_mwr1_addr),
.tx_mwr1_req_ack (w_tx_mwr1_req_ack),
.tx_mwr1_rd_en (w_tx_mwr1_rd_en),
.tx_mwr1_rd_data (w_tx_mwr1_rd_data),
.tx_mwr1_data_last (w_tx_mwr1_data_last),
.pcie_mreq_err (pcie_mreq_err),
.pcie_cpld_err (pcie_cpld_err),
.pcie_cpld_len_err (pcie_cpld_len_err),
.tx_buf_av (tx_buf_av),
.tx_err_drop (tx_err_drop),
.tx_cfg_req (tx_cfg_req),
.s_axis_tx_tready (s_axis_tx_tready),
.s_axis_tx_tdata (s_axis_tx_tdata),
.s_axis_tx_tkeep (s_axis_tx_tkeep),
.s_axis_tx_tuser (s_axis_tx_tuser),
.s_axis_tx_tlast (s_axis_tx_tlast),
.s_axis_tx_tvalid (s_axis_tx_tvalid),
.tx_cfg_gnt (tx_cfg_gnt),
.m_axis_rx_tdata (m_axis_rx_tdata),
.m_axis_rx_tkeep (m_axis_rx_tkeep),
.m_axis_rx_tlast (m_axis_rx_tlast),
.m_axis_rx_tvalid (m_axis_rx_tvalid),
.m_axis_rx_tready (m_axis_rx_tready),
.m_axis_rx_tuser (m_axis_rx_tuser),
.fc_cpld (fc_cpld),
.fc_cplh (fc_cplh),
.fc_npd (fc_npd),
.fc_nph (fc_nph),
.fc_pd (fc_pd),
.fc_ph (fc_ph),
.fc_sel (fc_sel),
.cfg_bus_number (cfg_bus_number),
.cfg_device_number (cfg_device_number),
.cfg_function_number (cfg_function_number)
);
nvme_irq
nvme_irq_inst0
(
.pcie_user_clk (pcie_user_clk),
.pcie_user_rst_n (pcie_user_rst_n),
.cfg_command (cfg_command),
.cfg_interrupt (cfg_interrupt),
.cfg_interrupt_rdy (cfg_interrupt_rdy),
.cfg_interrupt_assert (cfg_interrupt_assert),
.cfg_interrupt_di (cfg_interrupt_di),
.cfg_interrupt_do (cfg_interrupt_do),
.cfg_interrupt_mmenable (cfg_interrupt_mmenable),
.cfg_interrupt_msienable (cfg_interrupt_msienable),
.cfg_interrupt_msixenable (cfg_interrupt_msixenable),
.cfg_interrupt_msixfm (cfg_interrupt_msixfm),
.cfg_interrupt_stat (cfg_interrupt_stat),
.cfg_pciecap_interrupt_msgnum (cfg_pciecap_interrupt_msgnum),
.nvme_intms_ivms (w_nvme_intms_ivms),
.nvme_intmc_ivmc (w_nvme_intmc_ivmc),
.cq_irq_status (w_cq_irq_status),
.cq_rst_n (cq_rst_n),
.cq_valid (cq_valid),
.io_cq_irq_en (io_cq_irq_en),
.io_cq1_iv (io_cq1_iv),
.io_cq2_iv (io_cq2_iv),
.io_cq3_iv (io_cq3_iv),
.io_cq4_iv (io_cq4_iv),
.io_cq5_iv (io_cq5_iv),
.io_cq6_iv (io_cq6_iv),
.io_cq7_iv (io_cq7_iv),
.io_cq8_iv (io_cq8_iv),
.admin_cq_tail_ptr (w_admin_cq_tail_ptr),
.io_cq1_tail_ptr (w_io_cq1_tail_ptr),
.io_cq2_tail_ptr (w_io_cq2_tail_ptr),
.io_cq3_tail_ptr (w_io_cq3_tail_ptr),
.io_cq4_tail_ptr (w_io_cq4_tail_ptr),
.io_cq5_tail_ptr (w_io_cq5_tail_ptr),
.io_cq6_tail_ptr (w_io_cq6_tail_ptr),
.io_cq7_tail_ptr (w_io_cq7_tail_ptr),
.io_cq8_tail_ptr (w_io_cq8_tail_ptr),
.admin_cq_head_ptr (w_admin_cq_head_ptr),
.io_cq1_head_ptr (w_io_cq1_head_ptr),
.io_cq2_head_ptr (w_io_cq2_head_ptr),
.io_cq3_head_ptr (w_io_cq3_head_ptr),
.io_cq4_head_ptr (w_io_cq4_head_ptr),
.io_cq5_head_ptr (w_io_cq5_head_ptr),
.io_cq6_head_ptr (w_io_cq6_head_ptr),
.io_cq7_head_ptr (w_io_cq7_head_ptr),
.io_cq8_head_ptr (w_io_cq8_head_ptr),
.cq_head_update (w_cq_head_update)
);
endmodule
|
/*
----------------------------------------------------------------------------------
Copyright (c) 2013-2014
Embedded and Network Computing Lab.
Open SSD Project
Hanyang University
All rights reserved.
----------------------------------------------------------------------------------
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this source code
must display the following acknowledgement:
This product includes source code developed
by the Embedded and Network Computing Lab. and the Open SSD Project.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------------------
http://enclab.hanyang.ac.kr/
http://www.openssd-project.org/
http://www.hanyang.ac.kr/
----------------------------------------------------------------------------------
*/
`timescale 1ns / 1ps
module nvme_pcie # (
parameter C_PCIE_DATA_WIDTH = 128,
parameter C_PCIE_ADDR_WIDTH = 36,
parameter C_M_AXI_DATA_WIDTH = 64
)
(
input pcie_ref_clk_p,
input pcie_ref_clk_n,
//PCIe user clock
input pcie_user_clk,
input pcie_user_rst_n,
output dev_rx_cmd_wr_en,
output [29:0] dev_rx_cmd_wr_data,
input dev_rx_cmd_full_n,
output dev_tx_cmd_wr_en,
output [29:0] dev_tx_cmd_wr_data,
input dev_tx_cmd_full_n,
input cpu_bus_clk,
input cpu_bus_rst_n,
output nvme_cc_en,
output [1:0] nvme_cc_shn,
input [1:0] nvme_csts_shst,
input nvme_csts_rdy,
input [8:0] sq_rst_n,
input [8:0] sq_valid,
input [7:0] io_sq1_size,
input [7:0] io_sq2_size,
input [7:0] io_sq3_size,
input [7:0] io_sq4_size,
input [7:0] io_sq5_size,
input [7:0] io_sq6_size,
input [7:0] io_sq7_size,
input [7:0] io_sq8_size,
input [C_PCIE_ADDR_WIDTH-1:2] io_sq1_bs_addr,
input [C_PCIE_ADDR_WIDTH-1:2] io_sq2_bs_addr,
input [C_PCIE_ADDR_WIDTH-1:2] io_sq3_bs_addr,
input [C_PCIE_ADDR_WIDTH-1:2] io_sq4_bs_addr,
input [C_PCIE_ADDR_WIDTH-1:2] io_sq5_bs_addr,
input [C_PCIE_ADDR_WIDTH-1:2] io_sq6_bs_addr,
input [C_PCIE_ADDR_WIDTH-1:2] io_sq7_bs_addr,
input [C_PCIE_ADDR_WIDTH-1:2] io_sq8_bs_addr,
input [3:0] io_sq1_cq_vec,
input [3:0] io_sq2_cq_vec,
input [3:0] io_sq3_cq_vec,
input [3:0] io_sq4_cq_vec,
input [3:0] io_sq5_cq_vec,
input [3:0] io_sq6_cq_vec,
input [3:0] io_sq7_cq_vec,
input [3:0] io_sq8_cq_vec,
input [8:0] cq_rst_n,
input [8:0] cq_valid,
input [7:0] io_cq1_size,
input [7:0] io_cq2_size,
input [7:0] io_cq3_size,
input [7:0] io_cq4_size,
input [7:0] io_cq5_size,
input [7:0] io_cq6_size,
input [7:0] io_cq7_size,
input [7:0] io_cq8_size,
input [C_PCIE_ADDR_WIDTH-1:2] io_cq1_bs_addr,
input [C_PCIE_ADDR_WIDTH-1:2] io_cq2_bs_addr,
input [C_PCIE_ADDR_WIDTH-1:2] io_cq3_bs_addr,
input [C_PCIE_ADDR_WIDTH-1:2] io_cq4_bs_addr,
input [C_PCIE_ADDR_WIDTH-1:2] io_cq5_bs_addr,
input [C_PCIE_ADDR_WIDTH-1:2] io_cq6_bs_addr,
input [C_PCIE_ADDR_WIDTH-1:2] io_cq7_bs_addr,
input [C_PCIE_ADDR_WIDTH-1:2] io_cq8_bs_addr,
input [8:0] io_cq_irq_en,
input [2:0] io_cq1_iv,
input [2:0] io_cq2_iv,
input [2:0] io_cq3_iv,
input [2:0] io_cq4_iv,
input [2:0] io_cq5_iv,
input [2:0] io_cq6_iv,
input [2:0] io_cq7_iv,
input [2:0] io_cq8_iv,
input hcmd_sq_rd_en,
output [18:0] hcmd_sq_rd_data,
output hcmd_sq_empty_n,
input [10:0] hcmd_table_rd_addr,
output [31:0] hcmd_table_rd_data,
input hcmd_cq_wr1_en,
input [34:0] hcmd_cq_wr1_data0,
input [34:0] hcmd_cq_wr1_data1,
output hcmd_cq_wr1_rdy_n,
input dma_cmd_wr_en,
input [49:0] dma_cmd_wr_data0,
input [49:0] dma_cmd_wr_data1,
output dma_cmd_wr_rdy_n,
output [7:0] dma_rx_direct_done_cnt,
output [7:0] dma_tx_direct_done_cnt,
output [7:0] dma_rx_done_cnt,
output [7:0] dma_tx_done_cnt,
input dma_bus_clk,
input dma_bus_rst_n,
input pcie_rx_fifo_rd_en,
output [C_M_AXI_DATA_WIDTH-1:0] pcie_rx_fifo_rd_data,
input pcie_rx_fifo_free_en,
input [9:4] pcie_rx_fifo_free_len,
output pcie_rx_fifo_empty_n,
input pcie_tx_fifo_alloc_en,
input [9:4] pcie_tx_fifo_alloc_len,
input pcie_tx_fifo_wr_en,
input [C_M_AXI_DATA_WIDTH-1:0] pcie_tx_fifo_wr_data,
output pcie_tx_fifo_full_n,
input dma_rx_done_wr_en,
input [20:0] dma_rx_done_wr_data,
output dma_rx_done_wr_rdy_n,
output pcie_mreq_err,
output pcie_cpld_err,
output pcie_cpld_len_err,
//PCIe Integrated Block Interface
input [5:0] tx_buf_av,
input tx_err_drop,
input tx_cfg_req,
input s_axis_tx_tready,
output [C_PCIE_DATA_WIDTH-1:0] s_axis_tx_tdata,
output [(C_PCIE_DATA_WIDTH/8)-1:0] s_axis_tx_tkeep,
output [3:0] s_axis_tx_tuser,
output s_axis_tx_tlast,
output s_axis_tx_tvalid,
output tx_cfg_gnt,
input [C_PCIE_DATA_WIDTH-1:0] m_axis_rx_tdata,
input [(C_PCIE_DATA_WIDTH/8)-1:0] m_axis_rx_tkeep,
input m_axis_rx_tlast,
input m_axis_rx_tvalid,
output m_axis_rx_tready,
input [21:0] m_axis_rx_tuser,
output rx_np_ok,
output rx_np_req,
input [11:0] fc_cpld,
input [7:0] fc_cplh,
input [11:0] fc_npd,
input [7:0] fc_nph,
input [11:0] fc_pd,
input [7:0] fc_ph,
output [2:0] fc_sel,
output cfg_interrupt,
input cfg_interrupt_rdy,
output cfg_interrupt_assert,
output [7:0] cfg_interrupt_di,
input [7:0] cfg_interrupt_do,
input [2:0] cfg_interrupt_mmenable,
input cfg_interrupt_msienable,
input cfg_interrupt_msixenable,
input cfg_interrupt_msixfm,
output cfg_interrupt_stat,
output [4:0] cfg_pciecap_interrupt_msgnum,
input [7:0] cfg_bus_number,
input [4:0] cfg_device_number,
input [2:0] cfg_function_number,
input cfg_to_turnoff,
output cfg_turnoff_ok,
input [15:0] cfg_command,
input [15:0] cfg_dcommand,
input [15:0] cfg_lcommand,
output sys_clk
);
wire w_nvme_intms_ivms;
wire w_nvme_intmc_ivmc;
wire w_cq_irq_status;
wire [7:0] w_hcmd_prp_rd_addr;
wire [44:0] w_hcmd_prp_rd_data;
wire w_hcmd_nlb_wr1_en;
wire [6:0] w_hcmd_nlb_wr1_addr;
wire [18:0] w_hcmd_nlb_wr1_data;
wire w_hcmd_nlb_wr1_rdy_n;
wire [6:0] w_hcmd_nlb_rd_addr;
wire [18:0] w_hcmd_nlb_rd_data;
wire w_hcmd_cq_wr0_en;
wire [34:0] w_hcmd_cq_wr0_data0;
wire [34:0] w_hcmd_cq_wr0_data1;
wire w_hcmd_cq_wr0_rdy_n;
wire w_mreq_fifo_wr_en;
wire [C_PCIE_DATA_WIDTH-1:0] w_mreq_fifo_wr_data;
wire [7:0] w_cpld0_fifo_tag;
wire w_cpld0_fifo_tag_last;
wire w_cpld0_fifo_wr_en;
wire [C_PCIE_DATA_WIDTH-1:0] w_cpld0_fifo_wr_data;
wire [7:0] w_cpld1_fifo_tag;
wire w_cpld1_fifo_tag_last;
wire w_cpld1_fifo_wr_en;
wire [C_PCIE_DATA_WIDTH-1:0] w_cpld1_fifo_wr_data;
wire [7:0] w_cpld2_fifo_tag;
wire w_cpld2_fifo_tag_last;
wire w_cpld2_fifo_wr_en;
wire [C_PCIE_DATA_WIDTH-1:0] w_cpld2_fifo_wr_data;
wire w_tx_cpld_req;
wire [7:0] w_tx_cpld_tag;
wire [15:0] w_tx_cpld_req_id;
wire [11:2] w_tx_cpld_len;
wire [11:0] w_tx_cpld_bc;
wire [6:0] w_tx_cpld_laddr;
wire [63:0] w_tx_cpld_data;
wire w_tx_cpld_req_ack;
wire w_tx_mrd0_req;
wire [7:0] w_tx_mrd0_tag;
wire [11:2] w_tx_mrd0_len;
wire [C_PCIE_ADDR_WIDTH-1:2] w_tx_mrd0_addr;
wire w_tx_mrd0_req_ack;
wire w_tx_mrd1_req;
wire [7:0] w_tx_mrd1_tag;
wire [11:2] w_tx_mrd1_len;
wire [C_PCIE_ADDR_WIDTH-1:2] w_tx_mrd1_addr;
wire w_tx_mrd1_req_ack;
wire w_tx_mrd2_req;
wire [7:0] w_tx_mrd2_tag;
wire [11:2] w_tx_mrd2_len;
wire [C_PCIE_ADDR_WIDTH-1:2] w_tx_mrd2_addr;
wire w_tx_mrd2_req_ack;
wire w_tx_mwr0_req;
wire [7:0] w_tx_mwr0_tag;
wire [11:2] w_tx_mwr0_len;
wire [C_PCIE_ADDR_WIDTH-1:2] w_tx_mwr0_addr;
wire w_tx_mwr0_req_ack;
wire w_tx_mwr0_rd_en;
wire [C_PCIE_DATA_WIDTH-1 : 0] w_tx_mwr0_rd_data;
wire w_tx_mwr0_data_last;
wire w_tx_mwr1_req;
wire [7:0] w_tx_mwr1_tag;
wire [11:2] w_tx_mwr1_len;
wire [C_PCIE_ADDR_WIDTH-1:2] w_tx_mwr1_addr;
wire w_tx_mwr1_req_ack;
wire w_tx_mwr1_rd_en;
wire [C_PCIE_DATA_WIDTH-1:0] w_tx_mwr1_rd_data;
wire w_tx_mwr1_data_last;
wire [C_PCIE_ADDR_WIDTH-1:2] w_admin_sq_bs_addr;
wire [C_PCIE_ADDR_WIDTH-1:2] w_admin_cq_bs_addr;
wire [7:0] w_admin_sq_size;
wire [7:0] w_admin_cq_size;
wire [7:0] w_admin_sq_tail_ptr;
wire [7:0] w_io_sq1_tail_ptr;
wire [7:0] w_io_sq2_tail_ptr;
wire [7:0] w_io_sq3_tail_ptr;
wire [7:0] w_io_sq4_tail_ptr;
wire [7:0] w_io_sq5_tail_ptr;
wire [7:0] w_io_sq6_tail_ptr;
wire [7:0] w_io_sq7_tail_ptr;
wire [7:0] w_io_sq8_tail_ptr;
wire [7:0] w_admin_cq_tail_ptr;
wire [7:0] w_io_cq1_tail_ptr;
wire [7:0] w_io_cq2_tail_ptr;
wire [7:0] w_io_cq3_tail_ptr;
wire [7:0] w_io_cq4_tail_ptr;
wire [7:0] w_io_cq5_tail_ptr;
wire [7:0] w_io_cq6_tail_ptr;
wire [7:0] w_io_cq7_tail_ptr;
wire [7:0] w_io_cq8_tail_ptr;
wire [7:0] w_admin_cq_head_ptr;
wire [7:0] w_io_cq1_head_ptr;
wire [7:0] w_io_cq2_head_ptr;
wire [7:0] w_io_cq3_head_ptr;
wire [7:0] w_io_cq4_head_ptr;
wire [7:0] w_io_cq5_head_ptr;
wire [7:0] w_io_cq6_head_ptr;
wire [7:0] w_io_cq7_head_ptr;
wire [7:0] w_io_cq8_head_ptr;
wire [8:0] w_cq_head_update;
reg r_cfg_turnoff_ok;
IBUFDS_GTE2 pcie_ref_clk_ibuf (.O(sys_clk), .ODIV2(), .I(pcie_ref_clk_p), .CEB(1'b0), .IB(pcie_ref_clk_n));
assign cfg_turnoff_ok = r_cfg_turnoff_ok;
always @(posedge pcie_user_clk) begin
r_cfg_turnoff_ok <= cfg_to_turnoff;
end
pcie_cntl_slave # (
.C_PCIE_DATA_WIDTH (C_PCIE_DATA_WIDTH)
)
pcie_cntl_slave_inst0(
.pcie_user_clk (pcie_user_clk),
.pcie_user_rst_n (pcie_user_rst_n),
.rx_np_ok (rx_np_ok),
.rx_np_req (rx_np_req),
.mreq_fifo_wr_en (w_mreq_fifo_wr_en),
.mreq_fifo_wr_data (w_mreq_fifo_wr_data),
.tx_cpld_req (w_tx_cpld_req),
.tx_cpld_tag (w_tx_cpld_tag),
.tx_cpld_req_id (w_tx_cpld_req_id),
.tx_cpld_len (w_tx_cpld_len),
.tx_cpld_bc (w_tx_cpld_bc),
.tx_cpld_laddr (w_tx_cpld_laddr),
.tx_cpld_data (w_tx_cpld_data),
.tx_cpld_req_ack (w_tx_cpld_req_ack),
.nvme_cc_en (nvme_cc_en),
.nvme_cc_shn (nvme_cc_shn),
.nvme_csts_shst (nvme_csts_shst),
.nvme_csts_rdy (nvme_csts_rdy),
.nvme_intms_ivms (w_nvme_intms_ivms),
.nvme_intmc_ivmc (w_nvme_intmc_ivmc),
.cq_irq_status (w_cq_irq_status),
.sq_rst_n (sq_rst_n),
.cq_rst_n (cq_rst_n),
.admin_sq_bs_addr (w_admin_sq_bs_addr),
.admin_cq_bs_addr (w_admin_cq_bs_addr),
.admin_sq_size (w_admin_sq_size),
.admin_cq_size (w_admin_cq_size),
.admin_sq_tail_ptr (w_admin_sq_tail_ptr),
.io_sq1_tail_ptr (w_io_sq1_tail_ptr),
.io_sq2_tail_ptr (w_io_sq2_tail_ptr),
.io_sq3_tail_ptr (w_io_sq3_tail_ptr),
.io_sq4_tail_ptr (w_io_sq4_tail_ptr),
.io_sq5_tail_ptr (w_io_sq5_tail_ptr),
.io_sq6_tail_ptr (w_io_sq6_tail_ptr),
.io_sq7_tail_ptr (w_io_sq7_tail_ptr),
.io_sq8_tail_ptr (w_io_sq8_tail_ptr),
.admin_cq_head_ptr (w_admin_cq_head_ptr),
.io_cq1_head_ptr (w_io_cq1_head_ptr),
.io_cq2_head_ptr (w_io_cq2_head_ptr),
.io_cq3_head_ptr (w_io_cq3_head_ptr),
.io_cq4_head_ptr (w_io_cq4_head_ptr),
.io_cq5_head_ptr (w_io_cq5_head_ptr),
.io_cq6_head_ptr (w_io_cq6_head_ptr),
.io_cq7_head_ptr (w_io_cq7_head_ptr),
.io_cq8_head_ptr (w_io_cq8_head_ptr),
.cq_head_update (w_cq_head_update)
);
pcie_hcmd # (
.C_PCIE_DATA_WIDTH (C_PCIE_DATA_WIDTH)
)
pcie_hcmd_inst0(
.pcie_user_clk (pcie_user_clk),
.pcie_user_rst_n (pcie_user_rst_n),
.admin_sq_bs_addr (w_admin_sq_bs_addr),
.admin_cq_bs_addr (w_admin_cq_bs_addr),
.admin_sq_size (w_admin_sq_size),
.admin_cq_size (w_admin_cq_size),
.admin_sq_tail_ptr (w_admin_sq_tail_ptr),
.io_sq1_tail_ptr (w_io_sq1_tail_ptr),
.io_sq2_tail_ptr (w_io_sq2_tail_ptr),
.io_sq3_tail_ptr (w_io_sq3_tail_ptr),
.io_sq4_tail_ptr (w_io_sq4_tail_ptr),
.io_sq5_tail_ptr (w_io_sq5_tail_ptr),
.io_sq6_tail_ptr (w_io_sq6_tail_ptr),
.io_sq7_tail_ptr (w_io_sq7_tail_ptr),
.io_sq8_tail_ptr (w_io_sq8_tail_ptr),
.cpld_sq_fifo_tag (w_cpld0_fifo_tag),
.cpld_sq_fifo_wr_data (w_cpld0_fifo_wr_data),
.cpld_sq_fifo_wr_en (w_cpld0_fifo_wr_en),
.cpld_sq_fifo_tag_last (w_cpld0_fifo_tag_last),
.tx_mrd_req (w_tx_mrd0_req),
.tx_mrd_tag (w_tx_mrd0_tag),
.tx_mrd_len (w_tx_mrd0_len),
.tx_mrd_addr (w_tx_mrd0_addr),
.tx_mrd_req_ack (w_tx_mrd0_req_ack),
.admin_cq_tail_ptr (w_admin_cq_tail_ptr),
.io_cq1_tail_ptr (w_io_cq1_tail_ptr),
.io_cq2_tail_ptr (w_io_cq2_tail_ptr),
.io_cq3_tail_ptr (w_io_cq3_tail_ptr),
.io_cq4_tail_ptr (w_io_cq4_tail_ptr),
.io_cq5_tail_ptr (w_io_cq5_tail_ptr),
.io_cq6_tail_ptr (w_io_cq6_tail_ptr),
.io_cq7_tail_ptr (w_io_cq7_tail_ptr),
.io_cq8_tail_ptr (w_io_cq8_tail_ptr),
.tx_cq_mwr_req (w_tx_mwr0_req),
.tx_cq_mwr_tag (w_tx_mwr0_tag),
.tx_cq_mwr_len (w_tx_mwr0_len),
.tx_cq_mwr_addr (w_tx_mwr0_addr),
.tx_cq_mwr_req_ack (w_tx_mwr0_req_ack),
.tx_cq_mwr_rd_en (w_tx_mwr0_rd_en),
.tx_cq_mwr_rd_data (w_tx_mwr0_rd_data),
.tx_cq_mwr_data_last (w_tx_mwr0_data_last),
.hcmd_prp_rd_addr (w_hcmd_prp_rd_addr),
.hcmd_prp_rd_data (w_hcmd_prp_rd_data),
.hcmd_nlb_wr1_en (w_hcmd_nlb_wr1_en),
.hcmd_nlb_wr1_addr (w_hcmd_nlb_wr1_addr),
.hcmd_nlb_wr1_data (w_hcmd_nlb_wr1_data),
.hcmd_nlb_wr1_rdy_n (w_hcmd_nlb_wr1_rdy_n),
.hcmd_nlb_rd_addr (w_hcmd_nlb_rd_addr),
.hcmd_nlb_rd_data (w_hcmd_nlb_rd_data),
.hcmd_cq_wr0_en (w_hcmd_cq_wr0_en),
.hcmd_cq_wr0_data0 (w_hcmd_cq_wr0_data0),
.hcmd_cq_wr0_data1 (w_hcmd_cq_wr0_data1),
.hcmd_cq_wr0_rdy_n (w_hcmd_cq_wr0_rdy_n),
.cpu_bus_clk (cpu_bus_clk),
.cpu_bus_rst_n (cpu_bus_rst_n),
.sq_rst_n (sq_rst_n),
.sq_valid (sq_valid),
.io_sq1_size (io_sq1_size),
.io_sq2_size (io_sq2_size),
.io_sq3_size (io_sq3_size),
.io_sq4_size (io_sq4_size),
.io_sq5_size (io_sq5_size),
.io_sq6_size (io_sq6_size),
.io_sq7_size (io_sq7_size),
.io_sq8_size (io_sq8_size),
.io_sq1_bs_addr (io_sq1_bs_addr),
.io_sq2_bs_addr (io_sq2_bs_addr),
.io_sq3_bs_addr (io_sq3_bs_addr),
.io_sq4_bs_addr (io_sq4_bs_addr),
.io_sq5_bs_addr (io_sq5_bs_addr),
.io_sq6_bs_addr (io_sq6_bs_addr),
.io_sq7_bs_addr (io_sq7_bs_addr),
.io_sq8_bs_addr (io_sq8_bs_addr),
.io_sq1_cq_vec (io_sq1_cq_vec),
.io_sq2_cq_vec (io_sq2_cq_vec),
.io_sq3_cq_vec (io_sq3_cq_vec),
.io_sq4_cq_vec (io_sq4_cq_vec),
.io_sq5_cq_vec (io_sq5_cq_vec),
.io_sq6_cq_vec (io_sq6_cq_vec),
.io_sq7_cq_vec (io_sq7_cq_vec),
.io_sq8_cq_vec (io_sq8_cq_vec),
.cq_rst_n (cq_rst_n),
.cq_valid (cq_valid),
.io_cq1_size (io_cq1_size),
.io_cq2_size (io_cq2_size),
.io_cq3_size (io_cq3_size),
.io_cq4_size (io_cq4_size),
.io_cq5_size (io_cq5_size),
.io_cq6_size (io_cq6_size),
.io_cq7_size (io_cq7_size),
.io_cq8_size (io_cq8_size),
.io_cq1_bs_addr (io_cq1_bs_addr),
.io_cq2_bs_addr (io_cq2_bs_addr),
.io_cq3_bs_addr (io_cq3_bs_addr),
.io_cq4_bs_addr (io_cq4_bs_addr),
.io_cq5_bs_addr (io_cq5_bs_addr),
.io_cq6_bs_addr (io_cq6_bs_addr),
.io_cq7_bs_addr (io_cq7_bs_addr),
.io_cq8_bs_addr (io_cq8_bs_addr),
.hcmd_sq_rd_en (hcmd_sq_rd_en),
.hcmd_sq_rd_data (hcmd_sq_rd_data),
.hcmd_sq_empty_n (hcmd_sq_empty_n),
.hcmd_table_rd_addr (hcmd_table_rd_addr),
.hcmd_table_rd_data (hcmd_table_rd_data),
.hcmd_cq_wr1_en (hcmd_cq_wr1_en),
.hcmd_cq_wr1_data0 (hcmd_cq_wr1_data0),
.hcmd_cq_wr1_data1 (hcmd_cq_wr1_data1),
.hcmd_cq_wr1_rdy_n (hcmd_cq_wr1_rdy_n)
);
dma_if
dma_if_inst0
(
.pcie_user_clk (pcie_user_clk),
.pcie_user_rst_n (pcie_user_rst_n),
.pcie_max_payload_size (cfg_dcommand[7:5]),
.pcie_max_read_req_size (cfg_dcommand[14:12]),
.pcie_rcb (cfg_lcommand[3]),
.hcmd_prp_rd_addr (w_hcmd_prp_rd_addr),
.hcmd_prp_rd_data (w_hcmd_prp_rd_data),
.hcmd_nlb_wr1_en (w_hcmd_nlb_wr1_en),
.hcmd_nlb_wr1_addr (w_hcmd_nlb_wr1_addr),
.hcmd_nlb_wr1_data (w_hcmd_nlb_wr1_data),
.hcmd_nlb_wr1_rdy_n (w_hcmd_nlb_wr1_rdy_n),
.hcmd_nlb_rd_addr (w_hcmd_nlb_rd_addr),
.hcmd_nlb_rd_data (w_hcmd_nlb_rd_data),
.dev_rx_cmd_wr_en (dev_rx_cmd_wr_en),
.dev_rx_cmd_wr_data (dev_rx_cmd_wr_data),
.dev_rx_cmd_full_n (dev_rx_cmd_full_n),
.dev_tx_cmd_wr_en (dev_tx_cmd_wr_en),
.dev_tx_cmd_wr_data (dev_tx_cmd_wr_data),
.dev_tx_cmd_full_n (dev_tx_cmd_full_n),
.tx_prp_mrd_req (w_tx_mrd1_req),
.tx_prp_mrd_tag (w_tx_mrd1_tag),
.tx_prp_mrd_len (w_tx_mrd1_len),
.tx_prp_mrd_addr (w_tx_mrd1_addr),
.tx_prp_mrd_req_ack (w_tx_mrd1_req_ack),
.cpld_prp_fifo_tag (w_cpld1_fifo_tag),
.cpld_prp_fifo_wr_data (w_cpld1_fifo_wr_data),
.cpld_prp_fifo_wr_en (w_cpld1_fifo_wr_en),
.cpld_prp_fifo_tag_last (w_cpld1_fifo_tag_last),
.tx_dma_mrd_req (w_tx_mrd2_req),
.tx_dma_mrd_tag (w_tx_mrd2_tag),
.tx_dma_mrd_len (w_tx_mrd2_len),
.tx_dma_mrd_addr (w_tx_mrd2_addr),
.tx_dma_mrd_req_ack (w_tx_mrd2_req_ack),
.cpld_dma_fifo_tag (w_cpld2_fifo_tag),
.cpld_dma_fifo_wr_data (w_cpld2_fifo_wr_data),
.cpld_dma_fifo_wr_en (w_cpld2_fifo_wr_en),
.cpld_dma_fifo_tag_last (w_cpld2_fifo_tag_last),
.tx_dma_mwr_req (w_tx_mwr1_req),
.tx_dma_mwr_tag (w_tx_mwr1_tag),
.tx_dma_mwr_len (w_tx_mwr1_len),
.tx_dma_mwr_addr (w_tx_mwr1_addr),
.tx_dma_mwr_req_ack (w_tx_mwr1_req_ack),
.tx_dma_mwr_data_last (w_tx_mwr1_data_last),
.pcie_tx_dma_fifo_rd_en (w_tx_mwr1_rd_en),
.pcie_tx_dma_fifo_rd_data (w_tx_mwr1_rd_data),
.hcmd_cq_wr0_en (w_hcmd_cq_wr0_en),
.hcmd_cq_wr0_data0 (w_hcmd_cq_wr0_data0),
.hcmd_cq_wr0_data1 (w_hcmd_cq_wr0_data1),
.hcmd_cq_wr0_rdy_n (w_hcmd_cq_wr0_rdy_n),
.cpu_bus_clk (cpu_bus_clk),
.cpu_bus_rst_n (cpu_bus_rst_n),
.dma_cmd_wr_en (dma_cmd_wr_en),
.dma_cmd_wr_data0 (dma_cmd_wr_data0),
.dma_cmd_wr_data1 (dma_cmd_wr_data1),
.dma_cmd_wr_rdy_n (dma_cmd_wr_rdy_n),
.dma_rx_direct_done_cnt (dma_rx_direct_done_cnt),
.dma_tx_direct_done_cnt (dma_tx_direct_done_cnt),
.dma_rx_done_cnt (dma_rx_done_cnt),
.dma_tx_done_cnt (dma_tx_done_cnt),
.dma_bus_clk (dma_bus_clk),
.dma_bus_rst_n (dma_bus_rst_n),
.pcie_rx_fifo_rd_en (pcie_rx_fifo_rd_en),
.pcie_rx_fifo_rd_data (pcie_rx_fifo_rd_data),
.pcie_rx_fifo_free_en (pcie_rx_fifo_free_en),
.pcie_rx_fifo_free_len (pcie_rx_fifo_free_len),
.pcie_rx_fifo_empty_n (pcie_rx_fifo_empty_n),
.pcie_tx_fifo_alloc_en (pcie_tx_fifo_alloc_en),
.pcie_tx_fifo_alloc_len (pcie_tx_fifo_alloc_len),
.pcie_tx_fifo_wr_en (pcie_tx_fifo_wr_en),
.pcie_tx_fifo_wr_data (pcie_tx_fifo_wr_data),
.pcie_tx_fifo_full_n (pcie_tx_fifo_full_n),
.dma_rx_done_wr_en (dma_rx_done_wr_en),
.dma_rx_done_wr_data (dma_rx_done_wr_data),
.dma_rx_done_wr_rdy_n (dma_rx_done_wr_rdy_n)
);
pcie_tans_if # (
.C_PCIE_DATA_WIDTH (C_PCIE_DATA_WIDTH)
)
pcie_tans_if_inst0(
//PCIe user clock
.pcie_user_clk (pcie_user_clk),
.pcie_user_rst_n (pcie_user_rst_n),
//pcie rx signal
.mreq_fifo_wr_en (w_mreq_fifo_wr_en),
.mreq_fifo_wr_data (w_mreq_fifo_wr_data),
.cpld0_fifo_tag (w_cpld0_fifo_tag),
.cpld0_fifo_tag_last (w_cpld0_fifo_tag_last),
.cpld0_fifo_wr_en (w_cpld0_fifo_wr_en),
.cpld0_fifo_wr_data (w_cpld0_fifo_wr_data),
.cpld1_fifo_tag (w_cpld1_fifo_tag),
.cpld1_fifo_tag_last (w_cpld1_fifo_tag_last),
.cpld1_fifo_wr_en (w_cpld1_fifo_wr_en),
.cpld1_fifo_wr_data (w_cpld1_fifo_wr_data),
.cpld2_fifo_tag (w_cpld2_fifo_tag),
.cpld2_fifo_tag_last (w_cpld2_fifo_tag_last),
.cpld2_fifo_wr_en (w_cpld2_fifo_wr_en),
.cpld2_fifo_wr_data (w_cpld2_fifo_wr_data),
.tx_cpld_req (w_tx_cpld_req),
.tx_cpld_tag (w_tx_cpld_tag),
.tx_cpld_req_id (w_tx_cpld_req_id),
.tx_cpld_len (w_tx_cpld_len),
.tx_cpld_bc (w_tx_cpld_bc),
.tx_cpld_laddr (w_tx_cpld_laddr),
.tx_cpld_data (w_tx_cpld_data),
.tx_cpld_req_ack (w_tx_cpld_req_ack),
.tx_mrd0_req (w_tx_mrd0_req),
.tx_mrd0_tag (w_tx_mrd0_tag),
.tx_mrd0_len (w_tx_mrd0_len),
.tx_mrd0_addr (w_tx_mrd0_addr),
.tx_mrd0_req_ack (w_tx_mrd0_req_ack),
.tx_mrd1_req (w_tx_mrd1_req),
.tx_mrd1_tag (w_tx_mrd1_tag),
.tx_mrd1_len (w_tx_mrd1_len),
.tx_mrd1_addr (w_tx_mrd1_addr),
.tx_mrd1_req_ack (w_tx_mrd1_req_ack),
.tx_mrd2_req (w_tx_mrd2_req),
.tx_mrd2_tag (w_tx_mrd2_tag),
.tx_mrd2_len (w_tx_mrd2_len),
.tx_mrd2_addr (w_tx_mrd2_addr),
.tx_mrd2_req_ack (w_tx_mrd2_req_ack),
.tx_mwr0_req (w_tx_mwr0_req),
.tx_mwr0_tag (w_tx_mwr0_tag),
.tx_mwr0_len (w_tx_mwr0_len),
.tx_mwr0_addr (w_tx_mwr0_addr),
.tx_mwr0_req_ack (w_tx_mwr0_req_ack),
.tx_mwr0_rd_en (w_tx_mwr0_rd_en),
.tx_mwr0_rd_data (w_tx_mwr0_rd_data),
.tx_mwr0_data_last (w_tx_mwr0_data_last),
.tx_mwr1_req (w_tx_mwr1_req),
.tx_mwr1_tag (w_tx_mwr1_tag),
.tx_mwr1_len (w_tx_mwr1_len),
.tx_mwr1_addr (w_tx_mwr1_addr),
.tx_mwr1_req_ack (w_tx_mwr1_req_ack),
.tx_mwr1_rd_en (w_tx_mwr1_rd_en),
.tx_mwr1_rd_data (w_tx_mwr1_rd_data),
.tx_mwr1_data_last (w_tx_mwr1_data_last),
.pcie_mreq_err (pcie_mreq_err),
.pcie_cpld_err (pcie_cpld_err),
.pcie_cpld_len_err (pcie_cpld_len_err),
.tx_buf_av (tx_buf_av),
.tx_err_drop (tx_err_drop),
.tx_cfg_req (tx_cfg_req),
.s_axis_tx_tready (s_axis_tx_tready),
.s_axis_tx_tdata (s_axis_tx_tdata),
.s_axis_tx_tkeep (s_axis_tx_tkeep),
.s_axis_tx_tuser (s_axis_tx_tuser),
.s_axis_tx_tlast (s_axis_tx_tlast),
.s_axis_tx_tvalid (s_axis_tx_tvalid),
.tx_cfg_gnt (tx_cfg_gnt),
.m_axis_rx_tdata (m_axis_rx_tdata),
.m_axis_rx_tkeep (m_axis_rx_tkeep),
.m_axis_rx_tlast (m_axis_rx_tlast),
.m_axis_rx_tvalid (m_axis_rx_tvalid),
.m_axis_rx_tready (m_axis_rx_tready),
.m_axis_rx_tuser (m_axis_rx_tuser),
.fc_cpld (fc_cpld),
.fc_cplh (fc_cplh),
.fc_npd (fc_npd),
.fc_nph (fc_nph),
.fc_pd (fc_pd),
.fc_ph (fc_ph),
.fc_sel (fc_sel),
.cfg_bus_number (cfg_bus_number),
.cfg_device_number (cfg_device_number),
.cfg_function_number (cfg_function_number)
);
nvme_irq
nvme_irq_inst0
(
.pcie_user_clk (pcie_user_clk),
.pcie_user_rst_n (pcie_user_rst_n),
.cfg_command (cfg_command),
.cfg_interrupt (cfg_interrupt),
.cfg_interrupt_rdy (cfg_interrupt_rdy),
.cfg_interrupt_assert (cfg_interrupt_assert),
.cfg_interrupt_di (cfg_interrupt_di),
.cfg_interrupt_do (cfg_interrupt_do),
.cfg_interrupt_mmenable (cfg_interrupt_mmenable),
.cfg_interrupt_msienable (cfg_interrupt_msienable),
.cfg_interrupt_msixenable (cfg_interrupt_msixenable),
.cfg_interrupt_msixfm (cfg_interrupt_msixfm),
.cfg_interrupt_stat (cfg_interrupt_stat),
.cfg_pciecap_interrupt_msgnum (cfg_pciecap_interrupt_msgnum),
.nvme_intms_ivms (w_nvme_intms_ivms),
.nvme_intmc_ivmc (w_nvme_intmc_ivmc),
.cq_irq_status (w_cq_irq_status),
.cq_rst_n (cq_rst_n),
.cq_valid (cq_valid),
.io_cq_irq_en (io_cq_irq_en),
.io_cq1_iv (io_cq1_iv),
.io_cq2_iv (io_cq2_iv),
.io_cq3_iv (io_cq3_iv),
.io_cq4_iv (io_cq4_iv),
.io_cq5_iv (io_cq5_iv),
.io_cq6_iv (io_cq6_iv),
.io_cq7_iv (io_cq7_iv),
.io_cq8_iv (io_cq8_iv),
.admin_cq_tail_ptr (w_admin_cq_tail_ptr),
.io_cq1_tail_ptr (w_io_cq1_tail_ptr),
.io_cq2_tail_ptr (w_io_cq2_tail_ptr),
.io_cq3_tail_ptr (w_io_cq3_tail_ptr),
.io_cq4_tail_ptr (w_io_cq4_tail_ptr),
.io_cq5_tail_ptr (w_io_cq5_tail_ptr),
.io_cq6_tail_ptr (w_io_cq6_tail_ptr),
.io_cq7_tail_ptr (w_io_cq7_tail_ptr),
.io_cq8_tail_ptr (w_io_cq8_tail_ptr),
.admin_cq_head_ptr (w_admin_cq_head_ptr),
.io_cq1_head_ptr (w_io_cq1_head_ptr),
.io_cq2_head_ptr (w_io_cq2_head_ptr),
.io_cq3_head_ptr (w_io_cq3_head_ptr),
.io_cq4_head_ptr (w_io_cq4_head_ptr),
.io_cq5_head_ptr (w_io_cq5_head_ptr),
.io_cq6_head_ptr (w_io_cq6_head_ptr),
.io_cq7_head_ptr (w_io_cq7_head_ptr),
.io_cq8_head_ptr (w_io_cq8_head_ptr),
.cq_head_update (w_cq_head_update)
);
endmodule
|
/*
----------------------------------------------------------------------------------
Copyright (c) 2013-2014
Embedded and Network Computing Lab.
Open SSD Project
Hanyang University
All rights reserved.
----------------------------------------------------------------------------------
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this source code
must display the following acknowledgement:
This product includes source code developed
by the Embedded and Network Computing Lab. and the Open SSD Project.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------------------
http://enclab.hanyang.ac.kr/
http://www.openssd-project.org/
http://www.hanyang.ac.kr/
----------------------------------------------------------------------------------
*/
`timescale 1ns / 1ps
module pcie_hcmd_table # (
parameter P_DATA_WIDTH = 128,
parameter P_ADDR_WIDTH = 9
)
(
input wr_clk,
input wr_en,
input [P_ADDR_WIDTH-1:0] wr_addr,
input [P_DATA_WIDTH-1:0] wr_data,
input rd_clk,
input [P_ADDR_WIDTH+1:0] rd_addr,
output [31:0] rd_data
);
wire [P_DATA_WIDTH-1:0] w_rd_data;
reg [31:0] r_rd_data;
assign rd_data = r_rd_data;
always @ (*)
begin
case(rd_addr[1:0]) // synthesis parallel_case full_case
2'b00: r_rd_data <= w_rd_data[31:0];
2'b01: r_rd_data <= w_rd_data[63:32];
2'b10: r_rd_data <= w_rd_data[95:64];
2'b11: r_rd_data <= w_rd_data[127:96];
endcase
end
localparam LP_DEVICE = "7SERIES";
localparam LP_BRAM_SIZE = "36Kb";
localparam LP_DOB_REG = 0;
localparam LP_READ_WIDTH = P_DATA_WIDTH/2;
localparam LP_WRITE_WIDTH = P_DATA_WIDTH/2;
localparam LP_WRITE_MODE = "WRITE_FIRST";
localparam LP_WE_WIDTH = 8;
localparam LP_ADDR_TOTAL_WITDH = 9;
localparam LP_ADDR_ZERO_PAD_WITDH = LP_ADDR_TOTAL_WITDH - P_ADDR_WIDTH;
generate
wire [LP_ADDR_TOTAL_WITDH-1:0] rdaddr;
wire [LP_ADDR_TOTAL_WITDH-1:0] wraddr;
wire [LP_ADDR_ZERO_PAD_WITDH-1:0] zero_padding = 0;
if(LP_ADDR_ZERO_PAD_WITDH == 0) begin : CALC_ADDR
assign rdaddr = rd_addr[P_ADDR_WIDTH+1:2];
assign wraddr = wr_addr[P_ADDR_WIDTH-1:0];
end
else begin
wire [LP_ADDR_ZERO_PAD_WITDH-1:0] zero_padding = 0;
assign rdaddr = {zero_padding, rd_addr[P_ADDR_WIDTH+1:2]};
assign wraddr = {zero_padding, wr_addr[P_ADDR_WIDTH-1:0]};
end
endgenerate
BRAM_SDP_MACRO #(
.DEVICE (LP_DEVICE),
.BRAM_SIZE (LP_BRAM_SIZE),
.DO_REG (LP_DOB_REG),
.READ_WIDTH (LP_READ_WIDTH),
.WRITE_WIDTH (LP_WRITE_WIDTH),
.WRITE_MODE (LP_WRITE_MODE)
)
ramb36sdp_0(
.DO (w_rd_data[LP_READ_WIDTH-1:0]),
.DI (wr_data[LP_WRITE_WIDTH-1:0]),
.RDADDR (rdaddr),
.RDCLK (rd_clk),
.RDEN (1'b1),
.REGCE (1'b1),
.RST (1'b0),
.WE ({LP_WE_WIDTH{1'b1}}),
.WRADDR (wraddr),
.WRCLK (wr_clk),
.WREN (wr_en)
);
BRAM_SDP_MACRO #(
.DEVICE (LP_DEVICE),
.BRAM_SIZE (LP_BRAM_SIZE),
.DO_REG (LP_DOB_REG),
.READ_WIDTH (LP_READ_WIDTH),
.WRITE_WIDTH (LP_WRITE_WIDTH),
.WRITE_MODE (LP_WRITE_MODE)
)
ramb36sdp_1(
.DO (w_rd_data[P_DATA_WIDTH-1:LP_READ_WIDTH]),
.DI (wr_data[P_DATA_WIDTH-1:LP_WRITE_WIDTH]),
.RDADDR (rdaddr),
.RDCLK (rd_clk),
.RDEN (1'b1),
.REGCE (1'b1),
.RST (1'b0),
.WE ({LP_WE_WIDTH{1'b1}}),
.WRADDR (wraddr),
.WRCLK (wr_clk),
.WREN (wr_en)
);
endmodule
|
/*
----------------------------------------------------------------------------------
Copyright (c) 2013-2014
Embedded and Network Computing Lab.
Open SSD Project
Hanyang University
All rights reserved.
----------------------------------------------------------------------------------
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this source code
must display the following acknowledgement:
This product includes source code developed
by the Embedded and Network Computing Lab. and the Open SSD Project.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------------------
http://enclab.hanyang.ac.kr/
http://www.openssd-project.org/
http://www.hanyang.ac.kr/
----------------------------------------------------------------------------------
*/
`timescale 1ns / 1ps
module pcie_hcmd_table # (
parameter P_DATA_WIDTH = 128,
parameter P_ADDR_WIDTH = 9
)
(
input wr_clk,
input wr_en,
input [P_ADDR_WIDTH-1:0] wr_addr,
input [P_DATA_WIDTH-1:0] wr_data,
input rd_clk,
input [P_ADDR_WIDTH+1:0] rd_addr,
output [31:0] rd_data
);
wire [P_DATA_WIDTH-1:0] w_rd_data;
reg [31:0] r_rd_data;
assign rd_data = r_rd_data;
always @ (*)
begin
case(rd_addr[1:0]) // synthesis parallel_case full_case
2'b00: r_rd_data <= w_rd_data[31:0];
2'b01: r_rd_data <= w_rd_data[63:32];
2'b10: r_rd_data <= w_rd_data[95:64];
2'b11: r_rd_data <= w_rd_data[127:96];
endcase
end
localparam LP_DEVICE = "7SERIES";
localparam LP_BRAM_SIZE = "36Kb";
localparam LP_DOB_REG = 0;
localparam LP_READ_WIDTH = P_DATA_WIDTH/2;
localparam LP_WRITE_WIDTH = P_DATA_WIDTH/2;
localparam LP_WRITE_MODE = "WRITE_FIRST";
localparam LP_WE_WIDTH = 8;
localparam LP_ADDR_TOTAL_WITDH = 9;
localparam LP_ADDR_ZERO_PAD_WITDH = LP_ADDR_TOTAL_WITDH - P_ADDR_WIDTH;
generate
wire [LP_ADDR_TOTAL_WITDH-1:0] rdaddr;
wire [LP_ADDR_TOTAL_WITDH-1:0] wraddr;
wire [LP_ADDR_ZERO_PAD_WITDH-1:0] zero_padding = 0;
if(LP_ADDR_ZERO_PAD_WITDH == 0) begin : CALC_ADDR
assign rdaddr = rd_addr[P_ADDR_WIDTH+1:2];
assign wraddr = wr_addr[P_ADDR_WIDTH-1:0];
end
else begin
wire [LP_ADDR_ZERO_PAD_WITDH-1:0] zero_padding = 0;
assign rdaddr = {zero_padding, rd_addr[P_ADDR_WIDTH+1:2]};
assign wraddr = {zero_padding, wr_addr[P_ADDR_WIDTH-1:0]};
end
endgenerate
BRAM_SDP_MACRO #(
.DEVICE (LP_DEVICE),
.BRAM_SIZE (LP_BRAM_SIZE),
.DO_REG (LP_DOB_REG),
.READ_WIDTH (LP_READ_WIDTH),
.WRITE_WIDTH (LP_WRITE_WIDTH),
.WRITE_MODE (LP_WRITE_MODE)
)
ramb36sdp_0(
.DO (w_rd_data[LP_READ_WIDTH-1:0]),
.DI (wr_data[LP_WRITE_WIDTH-1:0]),
.RDADDR (rdaddr),
.RDCLK (rd_clk),
.RDEN (1'b1),
.REGCE (1'b1),
.RST (1'b0),
.WE ({LP_WE_WIDTH{1'b1}}),
.WRADDR (wraddr),
.WRCLK (wr_clk),
.WREN (wr_en)
);
BRAM_SDP_MACRO #(
.DEVICE (LP_DEVICE),
.BRAM_SIZE (LP_BRAM_SIZE),
.DO_REG (LP_DOB_REG),
.READ_WIDTH (LP_READ_WIDTH),
.WRITE_WIDTH (LP_WRITE_WIDTH),
.WRITE_MODE (LP_WRITE_MODE)
)
ramb36sdp_1(
.DO (w_rd_data[P_DATA_WIDTH-1:LP_READ_WIDTH]),
.DI (wr_data[P_DATA_WIDTH-1:LP_WRITE_WIDTH]),
.RDADDR (rdaddr),
.RDCLK (rd_clk),
.RDEN (1'b1),
.REGCE (1'b1),
.RST (1'b0),
.WE ({LP_WE_WIDTH{1'b1}}),
.WRADDR (wraddr),
.WRCLK (wr_clk),
.WREN (wr_en)
);
endmodule
|
/*
----------------------------------------------------------------------------------
Copyright (c) 2013-2014
Embedded and Network Computing Lab.
Open SSD Project
Hanyang University
All rights reserved.
----------------------------------------------------------------------------------
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this source code
must display the following acknowledgement:
This product includes source code developed
by the Embedded and Network Computing Lab. and the Open SSD Project.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------------------
http://enclab.hanyang.ac.kr/
http://www.openssd-project.org/
http://www.hanyang.ac.kr/
----------------------------------------------------------------------------------
*/
`timescale 1ns / 1ps
module pcie_hcmd_table # (
parameter P_DATA_WIDTH = 128,
parameter P_ADDR_WIDTH = 9
)
(
input wr_clk,
input wr_en,
input [P_ADDR_WIDTH-1:0] wr_addr,
input [P_DATA_WIDTH-1:0] wr_data,
input rd_clk,
input [P_ADDR_WIDTH+1:0] rd_addr,
output [31:0] rd_data
);
wire [P_DATA_WIDTH-1:0] w_rd_data;
reg [31:0] r_rd_data;
assign rd_data = r_rd_data;
always @ (*)
begin
case(rd_addr[1:0]) // synthesis parallel_case full_case
2'b00: r_rd_data <= w_rd_data[31:0];
2'b01: r_rd_data <= w_rd_data[63:32];
2'b10: r_rd_data <= w_rd_data[95:64];
2'b11: r_rd_data <= w_rd_data[127:96];
endcase
end
localparam LP_DEVICE = "7SERIES";
localparam LP_BRAM_SIZE = "36Kb";
localparam LP_DOB_REG = 0;
localparam LP_READ_WIDTH = P_DATA_WIDTH/2;
localparam LP_WRITE_WIDTH = P_DATA_WIDTH/2;
localparam LP_WRITE_MODE = "WRITE_FIRST";
localparam LP_WE_WIDTH = 8;
localparam LP_ADDR_TOTAL_WITDH = 9;
localparam LP_ADDR_ZERO_PAD_WITDH = LP_ADDR_TOTAL_WITDH - P_ADDR_WIDTH;
generate
wire [LP_ADDR_TOTAL_WITDH-1:0] rdaddr;
wire [LP_ADDR_TOTAL_WITDH-1:0] wraddr;
wire [LP_ADDR_ZERO_PAD_WITDH-1:0] zero_padding = 0;
if(LP_ADDR_ZERO_PAD_WITDH == 0) begin : CALC_ADDR
assign rdaddr = rd_addr[P_ADDR_WIDTH+1:2];
assign wraddr = wr_addr[P_ADDR_WIDTH-1:0];
end
else begin
wire [LP_ADDR_ZERO_PAD_WITDH-1:0] zero_padding = 0;
assign rdaddr = {zero_padding, rd_addr[P_ADDR_WIDTH+1:2]};
assign wraddr = {zero_padding, wr_addr[P_ADDR_WIDTH-1:0]};
end
endgenerate
BRAM_SDP_MACRO #(
.DEVICE (LP_DEVICE),
.BRAM_SIZE (LP_BRAM_SIZE),
.DO_REG (LP_DOB_REG),
.READ_WIDTH (LP_READ_WIDTH),
.WRITE_WIDTH (LP_WRITE_WIDTH),
.WRITE_MODE (LP_WRITE_MODE)
)
ramb36sdp_0(
.DO (w_rd_data[LP_READ_WIDTH-1:0]),
.DI (wr_data[LP_WRITE_WIDTH-1:0]),
.RDADDR (rdaddr),
.RDCLK (rd_clk),
.RDEN (1'b1),
.REGCE (1'b1),
.RST (1'b0),
.WE ({LP_WE_WIDTH{1'b1}}),
.WRADDR (wraddr),
.WRCLK (wr_clk),
.WREN (wr_en)
);
BRAM_SDP_MACRO #(
.DEVICE (LP_DEVICE),
.BRAM_SIZE (LP_BRAM_SIZE),
.DO_REG (LP_DOB_REG),
.READ_WIDTH (LP_READ_WIDTH),
.WRITE_WIDTH (LP_WRITE_WIDTH),
.WRITE_MODE (LP_WRITE_MODE)
)
ramb36sdp_1(
.DO (w_rd_data[P_DATA_WIDTH-1:LP_READ_WIDTH]),
.DI (wr_data[P_DATA_WIDTH-1:LP_WRITE_WIDTH]),
.RDADDR (rdaddr),
.RDCLK (rd_clk),
.RDEN (1'b1),
.REGCE (1'b1),
.RST (1'b0),
.WE ({LP_WE_WIDTH{1'b1}}),
.WRADDR (wraddr),
.WRCLK (wr_clk),
.WREN (wr_en)
);
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// Copyright 2012 by Wilson Snyder. This program is free software; you can
// redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
module t (/*AUTOARG*/);
`define ASSERT(x) initial if (!(x)) $stop
// See IEEE 6.20.2 on value parameters
localparam unsigned [63:0] UNSIGNED =64'h99934567_89abcdef;
localparam signed [63:0] SIGNED =64'sh99934567_89abcdef;
localparam real REAL=1.234;
`ASSERT(UNSIGNED > 0);
`ASSERT(SIGNED < 0);
// bullet 1
localparam A1_WIDE = UNSIGNED;
`ASSERT($bits(A1_WIDE)==64);
localparam A2_REAL = REAL;
`ASSERT(A2_REAL == 1.234);
localparam A3_SIGNED = SIGNED;
`ASSERT($bits(A3_SIGNED)==64 && A3_SIGNED < 0);
localparam A4_EXPR = (2'b01 + 2'b10);
`ASSERT($bits(A4_EXPR)==2 && A4_EXPR==2'b11);
// bullet 2
localparam [63:0] B_UNSIGNED = SIGNED;
`ASSERT($bits(B_UNSIGNED)==64 && B_UNSIGNED > 0);
// bullet 3
localparam signed C_SIGNED = UNSIGNED;
`ASSERT($bits(C_SIGNED)==64 && C_SIGNED < 0);
localparam unsigned C_UNSIGNED = SIGNED;
`ASSERT($bits(C_UNSIGNED)==64 && C_UNSIGNED > 0);
// bullet 4
// verilator lint_off WIDTH
localparam signed [59:0] D_SIGNED = UNSIGNED;
`ASSERT($bits(D_SIGNED)==60 && D_SIGNED < 0);
// verilator lint_on WIDTH
// verilator lint_off WIDTH
localparam unsigned [59:0] D_UNSIGNED = SIGNED;
`ASSERT($bits(D_UNSIGNED)==60 && D_UNSIGNED > 0);
// verilator lint_on WIDTH
// bullet 6
localparam UNSIZED = 23;
`ASSERT($bits(UNSIZED)>=32);
initial begin
$write("*-* All Finished *-*\n");
$finish;
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// Copyright 2012 by Wilson Snyder. This program is free software; you can
// redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
module t (/*AUTOARG*/);
`define ASSERT(x) initial if (!(x)) $stop
// See IEEE 6.20.2 on value parameters
localparam unsigned [63:0] UNSIGNED =64'h99934567_89abcdef;
localparam signed [63:0] SIGNED =64'sh99934567_89abcdef;
localparam real REAL=1.234;
`ASSERT(UNSIGNED > 0);
`ASSERT(SIGNED < 0);
// bullet 1
localparam A1_WIDE = UNSIGNED;
`ASSERT($bits(A1_WIDE)==64);
localparam A2_REAL = REAL;
`ASSERT(A2_REAL == 1.234);
localparam A3_SIGNED = SIGNED;
`ASSERT($bits(A3_SIGNED)==64 && A3_SIGNED < 0);
localparam A4_EXPR = (2'b01 + 2'b10);
`ASSERT($bits(A4_EXPR)==2 && A4_EXPR==2'b11);
// bullet 2
localparam [63:0] B_UNSIGNED = SIGNED;
`ASSERT($bits(B_UNSIGNED)==64 && B_UNSIGNED > 0);
// bullet 3
localparam signed C_SIGNED = UNSIGNED;
`ASSERT($bits(C_SIGNED)==64 && C_SIGNED < 0);
localparam unsigned C_UNSIGNED = SIGNED;
`ASSERT($bits(C_UNSIGNED)==64 && C_UNSIGNED > 0);
// bullet 4
// verilator lint_off WIDTH
localparam signed [59:0] D_SIGNED = UNSIGNED;
`ASSERT($bits(D_SIGNED)==60 && D_SIGNED < 0);
// verilator lint_on WIDTH
// verilator lint_off WIDTH
localparam unsigned [59:0] D_UNSIGNED = SIGNED;
`ASSERT($bits(D_UNSIGNED)==60 && D_UNSIGNED > 0);
// verilator lint_on WIDTH
// bullet 6
localparam UNSIZED = 23;
`ASSERT($bits(UNSIZED)>=32);
initial begin
$write("*-* All Finished *-*\n");
$finish;
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// Copyright 2012 by Wilson Snyder. This program is free software; you can
// redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
module t (/*AUTOARG*/);
`define ASSERT(x) initial if (!(x)) $stop
// See IEEE 6.20.2 on value parameters
localparam unsigned [63:0] UNSIGNED =64'h99934567_89abcdef;
localparam signed [63:0] SIGNED =64'sh99934567_89abcdef;
localparam real REAL=1.234;
`ASSERT(UNSIGNED > 0);
`ASSERT(SIGNED < 0);
// bullet 1
localparam A1_WIDE = UNSIGNED;
`ASSERT($bits(A1_WIDE)==64);
localparam A2_REAL = REAL;
`ASSERT(A2_REAL == 1.234);
localparam A3_SIGNED = SIGNED;
`ASSERT($bits(A3_SIGNED)==64 && A3_SIGNED < 0);
localparam A4_EXPR = (2'b01 + 2'b10);
`ASSERT($bits(A4_EXPR)==2 && A4_EXPR==2'b11);
// bullet 2
localparam [63:0] B_UNSIGNED = SIGNED;
`ASSERT($bits(B_UNSIGNED)==64 && B_UNSIGNED > 0);
// bullet 3
localparam signed C_SIGNED = UNSIGNED;
`ASSERT($bits(C_SIGNED)==64 && C_SIGNED < 0);
localparam unsigned C_UNSIGNED = SIGNED;
`ASSERT($bits(C_UNSIGNED)==64 && C_UNSIGNED > 0);
// bullet 4
// verilator lint_off WIDTH
localparam signed [59:0] D_SIGNED = UNSIGNED;
`ASSERT($bits(D_SIGNED)==60 && D_SIGNED < 0);
// verilator lint_on WIDTH
// verilator lint_off WIDTH
localparam unsigned [59:0] D_UNSIGNED = SIGNED;
`ASSERT($bits(D_UNSIGNED)==60 && D_UNSIGNED > 0);
// verilator lint_on WIDTH
// bullet 6
localparam UNSIZED = 23;
`ASSERT($bits(UNSIZED)>=32);
initial begin
$write("*-* All Finished *-*\n");
$finish;
end
endmodule
|
/*
----------------------------------------------------------------------------------
Copyright (c) 2013-2014
Embedded and Network Computing Lab.
Open SSD Project
Hanyang University
All rights reserved.
----------------------------------------------------------------------------------
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this source code
must display the following acknowledgement:
This product includes source code developed
by the Embedded and Network Computing Lab. and the Open SSD Project.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------------------
http://enclab.hanyang.ac.kr/
http://www.openssd-project.org/
http://www.hanyang.ac.kr/
----------------------------------------------------------------------------------
*/
`timescale 1ns / 1ps
module pcie_hcmd_table_prp # (
parameter P_DATA_WIDTH = 45,
parameter P_ADDR_WIDTH = 8
)
(
input clk,
input wr_en,
input [P_ADDR_WIDTH-1:0] wr_addr,
input [P_DATA_WIDTH-1:0] wr_data,
input [P_ADDR_WIDTH-1:0] rd_addr,
output [P_DATA_WIDTH-1:0] rd_data
);
localparam LP_DEVICE = "7SERIES";
localparam LP_BRAM_SIZE = "36Kb";
localparam LP_DOB_REG = 0;
localparam LP_READ_WIDTH = P_DATA_WIDTH;
localparam LP_WRITE_WIDTH = P_DATA_WIDTH;
localparam LP_WRITE_MODE = "READ_FIRST";
localparam LP_WE_WIDTH = 8;
localparam LP_ADDR_TOTAL_WITDH = 9;
localparam LP_ADDR_ZERO_PAD_WITDH = LP_ADDR_TOTAL_WITDH - P_ADDR_WIDTH;
generate
wire [LP_ADDR_TOTAL_WITDH-1:0] rdaddr;
wire [LP_ADDR_TOTAL_WITDH-1:0] wraddr;
wire [LP_ADDR_ZERO_PAD_WITDH-1:0] zero_padding = 0;
if(LP_ADDR_ZERO_PAD_WITDH == 0) begin : CALC_ADDR
assign rdaddr = rd_addr[P_ADDR_WIDTH-1:0];
assign wraddr = wr_addr[P_ADDR_WIDTH-1:0];
end
else begin
wire [LP_ADDR_ZERO_PAD_WITDH-1:0] zero_padding = 0;
assign rdaddr = {zero_padding, rd_addr[P_ADDR_WIDTH-1:0]};
assign wraddr = {zero_padding, wr_addr[P_ADDR_WIDTH-1:0]};
end
endgenerate
BRAM_SDP_MACRO #(
.DEVICE (LP_DEVICE),
.BRAM_SIZE (LP_BRAM_SIZE),
.DO_REG (LP_DOB_REG),
.READ_WIDTH (LP_READ_WIDTH),
.WRITE_WIDTH (LP_WRITE_WIDTH),
.WRITE_MODE (LP_WRITE_MODE)
)
ramb36sdp_0(
.DO (rd_data),
.DI (wr_data),
.RDADDR (rdaddr),
.RDCLK (clk),
.RDEN (1'b1),
.REGCE (1'b1),
.RST (1'b0),
.WE ({LP_WE_WIDTH{1'b1}}),
.WRADDR (wraddr),
.WRCLK (clk),
.WREN (wr_en)
);
endmodule
|
/*
----------------------------------------------------------------------------------
Copyright (c) 2013-2014
Embedded and Network Computing Lab.
Open SSD Project
Hanyang University
All rights reserved.
----------------------------------------------------------------------------------
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this source code
must display the following acknowledgement:
This product includes source code developed
by the Embedded and Network Computing Lab. and the Open SSD Project.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------------------
http://enclab.hanyang.ac.kr/
http://www.openssd-project.org/
http://www.hanyang.ac.kr/
----------------------------------------------------------------------------------
*/
`timescale 1ns / 1ps
module pcie_hcmd_table_prp # (
parameter P_DATA_WIDTH = 45,
parameter P_ADDR_WIDTH = 8
)
(
input clk,
input wr_en,
input [P_ADDR_WIDTH-1:0] wr_addr,
input [P_DATA_WIDTH-1:0] wr_data,
input [P_ADDR_WIDTH-1:0] rd_addr,
output [P_DATA_WIDTH-1:0] rd_data
);
localparam LP_DEVICE = "7SERIES";
localparam LP_BRAM_SIZE = "36Kb";
localparam LP_DOB_REG = 0;
localparam LP_READ_WIDTH = P_DATA_WIDTH;
localparam LP_WRITE_WIDTH = P_DATA_WIDTH;
localparam LP_WRITE_MODE = "READ_FIRST";
localparam LP_WE_WIDTH = 8;
localparam LP_ADDR_TOTAL_WITDH = 9;
localparam LP_ADDR_ZERO_PAD_WITDH = LP_ADDR_TOTAL_WITDH - P_ADDR_WIDTH;
generate
wire [LP_ADDR_TOTAL_WITDH-1:0] rdaddr;
wire [LP_ADDR_TOTAL_WITDH-1:0] wraddr;
wire [LP_ADDR_ZERO_PAD_WITDH-1:0] zero_padding = 0;
if(LP_ADDR_ZERO_PAD_WITDH == 0) begin : CALC_ADDR
assign rdaddr = rd_addr[P_ADDR_WIDTH-1:0];
assign wraddr = wr_addr[P_ADDR_WIDTH-1:0];
end
else begin
wire [LP_ADDR_ZERO_PAD_WITDH-1:0] zero_padding = 0;
assign rdaddr = {zero_padding, rd_addr[P_ADDR_WIDTH-1:0]};
assign wraddr = {zero_padding, wr_addr[P_ADDR_WIDTH-1:0]};
end
endgenerate
BRAM_SDP_MACRO #(
.DEVICE (LP_DEVICE),
.BRAM_SIZE (LP_BRAM_SIZE),
.DO_REG (LP_DOB_REG),
.READ_WIDTH (LP_READ_WIDTH),
.WRITE_WIDTH (LP_WRITE_WIDTH),
.WRITE_MODE (LP_WRITE_MODE)
)
ramb36sdp_0(
.DO (rd_data),
.DI (wr_data),
.RDADDR (rdaddr),
.RDCLK (clk),
.RDEN (1'b1),
.REGCE (1'b1),
.RST (1'b0),
.WE ({LP_WE_WIDTH{1'b1}}),
.WRADDR (wraddr),
.WRCLK (clk),
.WREN (wr_en)
);
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2005 by Wilson Snyder.
module t_case_huge_sub3 (/*AUTOARG*/
// Outputs
outr,
// Inputs
clk, index
);
input clk;
input [9:0] index;
output [3:0] outr;
// =============================
/*AUTOREG*/
// Beginning of automatic regs (for this module's undeclared outputs)
reg [3:0] outr;
// End of automatics
// =============================
// Created from perl
//for $i (0..255) { $r=rand(4); printf "\t8'h%02x: begin outr <= outr^index[8:5]^4'h%01x; end\n", $i,
//rand(256); };
// Reset cheating
initial outr = 4'b0;
always @(posedge clk) begin
case (index[7:0])
8'h00: begin outr <= 4'h0; end
8'h01: begin /*No Change*/ end
8'h02: begin outr <= outr^index[8:5]^4'ha; end
8'h03: begin outr <= outr^index[8:5]^4'h4; end
8'h04: begin outr <= outr^index[8:5]^4'hd; end
8'h05: begin outr <= outr^index[8:5]^4'h1; end
8'h06: begin outr <= outr^index[8:5]^4'hf; end
8'h07: begin outr <= outr^index[8:5]^4'he; end
8'h08: begin outr <= outr^index[8:5]^4'h0; end
8'h09: begin outr <= outr^index[8:5]^4'h4; end
8'h0a: begin outr <= outr^index[8:5]^4'h5; end
8'h0b: begin outr <= outr^index[8:5]^4'ha; end
8'h0c: begin outr <= outr^index[8:5]^4'h2; end
8'h0d: begin outr <= outr^index[8:5]^4'hf; end
8'h0e: begin outr <= outr^index[8:5]^4'h5; end
8'h0f: begin outr <= outr^index[8:5]^4'h0; end
8'h10: begin outr <= outr^index[8:5]^4'h3; end
8'h11: begin outr <= outr^index[8:5]^4'hb; end
8'h12: begin outr <= outr^index[8:5]^4'h0; end
8'h13: begin outr <= outr^index[8:5]^4'hf; end
8'h14: begin outr <= outr^index[8:5]^4'h3; end
8'h15: begin outr <= outr^index[8:5]^4'h5; end
8'h16: begin outr <= outr^index[8:5]^4'h7; end
8'h17: begin outr <= outr^index[8:5]^4'h2; end
8'h18: begin outr <= outr^index[8:5]^4'h3; end
8'h19: begin outr <= outr^index[8:5]^4'hb; end
8'h1a: begin outr <= outr^index[8:5]^4'h5; end
8'h1b: begin outr <= outr^index[8:5]^4'h4; end
8'h1c: begin outr <= outr^index[8:5]^4'h2; end
8'h1d: begin outr <= outr^index[8:5]^4'hf; end
8'h1e: begin outr <= outr^index[8:5]^4'h0; end
8'h1f: begin outr <= outr^index[8:5]^4'h4; end
8'h20: begin outr <= outr^index[8:5]^4'h6; end
8'h21: begin outr <= outr^index[8:5]^4'ha; end
8'h22: begin outr <= outr^index[8:5]^4'h6; end
8'h23: begin outr <= outr^index[8:5]^4'hb; end
8'h24: begin outr <= outr^index[8:5]^4'ha; end
8'h25: begin outr <= outr^index[8:5]^4'he; end
8'h26: begin outr <= outr^index[8:5]^4'h7; end
8'h27: begin outr <= outr^index[8:5]^4'ha; end
8'h28: begin outr <= outr^index[8:5]^4'h3; end
8'h29: begin outr <= outr^index[8:5]^4'h8; end
8'h2a: begin outr <= outr^index[8:5]^4'h1; end
8'h2b: begin outr <= outr^index[8:5]^4'h8; end
8'h2c: begin outr <= outr^index[8:5]^4'h4; end
8'h2d: begin outr <= outr^index[8:5]^4'h4; end
8'h2e: begin outr <= outr^index[8:5]^4'he; end
8'h2f: begin outr <= outr^index[8:5]^4'h8; end
8'h30: begin outr <= outr^index[8:5]^4'ha; end
8'h31: begin outr <= outr^index[8:5]^4'h7; end
8'h32: begin outr <= outr^index[8:5]^4'h0; end
8'h33: begin outr <= outr^index[8:5]^4'h3; end
8'h34: begin outr <= outr^index[8:5]^4'h1; end
8'h35: begin outr <= outr^index[8:5]^4'h3; end
8'h36: begin outr <= outr^index[8:5]^4'h4; end
8'h37: begin outr <= outr^index[8:5]^4'h6; end
8'h38: begin outr <= outr^index[8:5]^4'h4; end
8'h39: begin outr <= outr^index[8:5]^4'hb; end
8'h3a: begin outr <= outr^index[8:5]^4'h7; end
8'h3b: begin outr <= outr^index[8:5]^4'h1; end
8'h3c: begin outr <= outr^index[8:5]^4'h2; end
8'h3d: begin outr <= outr^index[8:5]^4'h0; end
8'h3e: begin outr <= outr^index[8:5]^4'h2; end
8'h3f: begin outr <= outr^index[8:5]^4'ha; end
8'h40: begin outr <= outr^index[8:5]^4'h7; end
8'h41: begin outr <= outr^index[8:5]^4'h5; end
8'h42: begin outr <= outr^index[8:5]^4'h5; end
8'h43: begin outr <= outr^index[8:5]^4'h4; end
8'h44: begin outr <= outr^index[8:5]^4'h8; end
8'h45: begin outr <= outr^index[8:5]^4'h5; end
8'h46: begin outr <= outr^index[8:5]^4'hf; end
8'h47: begin outr <= outr^index[8:5]^4'h6; end
8'h48: begin outr <= outr^index[8:5]^4'h7; end
8'h49: begin outr <= outr^index[8:5]^4'h4; end
8'h4a: begin outr <= outr^index[8:5]^4'ha; end
8'h4b: begin outr <= outr^index[8:5]^4'hd; end
8'h4c: begin outr <= outr^index[8:5]^4'hb; end
8'h4d: begin outr <= outr^index[8:5]^4'hf; end
8'h4e: begin outr <= outr^index[8:5]^4'hd; end
8'h4f: begin outr <= outr^index[8:5]^4'h7; end
8'h50: begin outr <= outr^index[8:5]^4'h9; end
8'h51: begin outr <= outr^index[8:5]^4'ha; end
8'h52: begin outr <= outr^index[8:5]^4'hf; end
8'h53: begin outr <= outr^index[8:5]^4'h3; end
8'h54: begin outr <= outr^index[8:5]^4'h1; end
8'h55: begin outr <= outr^index[8:5]^4'h0; end
8'h56: begin outr <= outr^index[8:5]^4'h2; end
8'h57: begin outr <= outr^index[8:5]^4'h9; end
8'h58: begin outr <= outr^index[8:5]^4'h2; end
8'h59: begin outr <= outr^index[8:5]^4'h4; end
8'h5a: begin outr <= outr^index[8:5]^4'hc; end
8'h5b: begin outr <= outr^index[8:5]^4'hd; end
8'h5c: begin outr <= outr^index[8:5]^4'h3; end
8'h5d: begin outr <= outr^index[8:5]^4'hb; end
8'h5e: begin outr <= outr^index[8:5]^4'hd; end
8'h5f: begin outr <= outr^index[8:5]^4'h7; end
8'h60: begin outr <= outr^index[8:5]^4'h7; end
8'h61: begin outr <= outr^index[8:5]^4'h3; end
8'h62: begin outr <= outr^index[8:5]^4'h3; end
8'h63: begin outr <= outr^index[8:5]^4'hb; end
8'h64: begin outr <= outr^index[8:5]^4'h9; end
8'h65: begin outr <= outr^index[8:5]^4'h4; end
8'h66: begin outr <= outr^index[8:5]^4'h3; end
8'h67: begin outr <= outr^index[8:5]^4'h6; end
8'h68: begin outr <= outr^index[8:5]^4'h7; end
8'h69: begin outr <= outr^index[8:5]^4'h7; end
8'h6a: begin outr <= outr^index[8:5]^4'hf; end
8'h6b: begin outr <= outr^index[8:5]^4'h6; end
8'h6c: begin outr <= outr^index[8:5]^4'h8; end
8'h6d: begin outr <= outr^index[8:5]^4'he; end
8'h6e: begin outr <= outr^index[8:5]^4'h4; end
8'h6f: begin outr <= outr^index[8:5]^4'h6; end
8'h70: begin outr <= outr^index[8:5]^4'hc; end
8'h71: begin outr <= outr^index[8:5]^4'h9; end
8'h72: begin outr <= outr^index[8:5]^4'h5; end
8'h73: begin outr <= outr^index[8:5]^4'ha; end
8'h74: begin outr <= outr^index[8:5]^4'h7; end
8'h75: begin outr <= outr^index[8:5]^4'h0; end
8'h76: begin outr <= outr^index[8:5]^4'h1; end
8'h77: begin outr <= outr^index[8:5]^4'he; end
8'h78: begin outr <= outr^index[8:5]^4'ha; end
8'h79: begin outr <= outr^index[8:5]^4'h7; end
8'h7a: begin outr <= outr^index[8:5]^4'hf; end
8'h7b: begin outr <= outr^index[8:5]^4'he; end
8'h7c: begin outr <= outr^index[8:5]^4'h6; end
8'h7d: begin outr <= outr^index[8:5]^4'hc; end
8'h7e: begin outr <= outr^index[8:5]^4'hc; end
8'h7f: begin outr <= outr^index[8:5]^4'h0; end
8'h80: begin outr <= outr^index[8:5]^4'h0; end
8'h81: begin outr <= outr^index[8:5]^4'hd; end
8'h82: begin outr <= outr^index[8:5]^4'hb; end
8'h83: begin outr <= outr^index[8:5]^4'hc; end
8'h84: begin outr <= outr^index[8:5]^4'h2; end
8'h85: begin outr <= outr^index[8:5]^4'h8; end
8'h86: begin outr <= outr^index[8:5]^4'h3; end
8'h87: begin outr <= outr^index[8:5]^4'ha; end
8'h88: begin outr <= outr^index[8:5]^4'he; end
8'h89: begin outr <= outr^index[8:5]^4'h9; end
8'h8a: begin outr <= outr^index[8:5]^4'h1; end
8'h8b: begin outr <= outr^index[8:5]^4'h1; end
8'h8c: begin outr <= outr^index[8:5]^4'hc; end
8'h8d: begin outr <= outr^index[8:5]^4'h2; end
8'h8e: begin outr <= outr^index[8:5]^4'h2; end
8'h8f: begin outr <= outr^index[8:5]^4'hd; end
8'h90: begin outr <= outr^index[8:5]^4'h0; end
8'h91: begin outr <= outr^index[8:5]^4'h6; end
8'h92: begin outr <= outr^index[8:5]^4'h7; end
8'h93: begin outr <= outr^index[8:5]^4'hc; end
8'h94: begin outr <= outr^index[8:5]^4'hb; end
8'h95: begin outr <= outr^index[8:5]^4'h3; end
8'h96: begin outr <= outr^index[8:5]^4'h0; end
8'h97: begin outr <= outr^index[8:5]^4'hc; end
8'h98: begin outr <= outr^index[8:5]^4'hc; end
8'h99: begin outr <= outr^index[8:5]^4'hb; end
8'h9a: begin outr <= outr^index[8:5]^4'h6; end
8'h9b: begin outr <= outr^index[8:5]^4'h5; end
8'h9c: begin outr <= outr^index[8:5]^4'h5; end
8'h9d: begin outr <= outr^index[8:5]^4'h4; end
8'h9e: begin outr <= outr^index[8:5]^4'h7; end
8'h9f: begin outr <= outr^index[8:5]^4'he; end
8'ha0: begin outr <= outr^index[8:5]^4'hc; end
8'ha1: begin outr <= outr^index[8:5]^4'hc; end
8'ha2: begin outr <= outr^index[8:5]^4'h0; end
8'ha3: begin outr <= outr^index[8:5]^4'h1; end
8'ha4: begin outr <= outr^index[8:5]^4'hd; end
8'ha5: begin outr <= outr^index[8:5]^4'h3; end
8'ha6: begin outr <= outr^index[8:5]^4'hc; end
8'ha7: begin outr <= outr^index[8:5]^4'h2; end
8'ha8: begin outr <= outr^index[8:5]^4'h3; end
8'ha9: begin outr <= outr^index[8:5]^4'hd; end
8'haa: begin outr <= outr^index[8:5]^4'h5; end
8'hab: begin outr <= outr^index[8:5]^4'hb; end
8'hac: begin outr <= outr^index[8:5]^4'he; end
8'had: begin outr <= outr^index[8:5]^4'h0; end
8'hae: begin outr <= outr^index[8:5]^4'hf; end
8'haf: begin outr <= outr^index[8:5]^4'h9; end
8'hb0: begin outr <= outr^index[8:5]^4'hf; end
8'hb1: begin outr <= outr^index[8:5]^4'h7; end
8'hb2: begin outr <= outr^index[8:5]^4'h9; end
8'hb3: begin outr <= outr^index[8:5]^4'hf; end
8'hb4: begin outr <= outr^index[8:5]^4'he; end
8'hb5: begin outr <= outr^index[8:5]^4'h3; end
8'hb6: begin outr <= outr^index[8:5]^4'he; end
8'hb7: begin outr <= outr^index[8:5]^4'h8; end
8'hb8: begin outr <= outr^index[8:5]^4'hf; end
8'hb9: begin outr <= outr^index[8:5]^4'hd; end
8'hba: begin outr <= outr^index[8:5]^4'h3; end
8'hbb: begin outr <= outr^index[8:5]^4'h5; end
8'hbc: begin outr <= outr^index[8:5]^4'hd; end
8'hbd: begin outr <= outr^index[8:5]^4'ha; end
8'hbe: begin outr <= outr^index[8:5]^4'h7; end
8'hbf: begin outr <= outr^index[8:5]^4'he; end
8'hc0: begin outr <= outr^index[8:5]^4'h2; end
8'hc1: begin outr <= outr^index[8:5]^4'he; end
8'hc2: begin outr <= outr^index[8:5]^4'h9; end
8'hc3: begin outr <= outr^index[8:5]^4'hb; end
8'hc4: begin outr <= outr^index[8:5]^4'h0; end
8'hc5: begin outr <= outr^index[8:5]^4'h5; end
8'hc6: begin outr <= outr^index[8:5]^4'h9; end
8'hc7: begin outr <= outr^index[8:5]^4'h6; end
8'hc8: begin outr <= outr^index[8:5]^4'ha; end
8'hc9: begin outr <= outr^index[8:5]^4'hf; end
8'hca: begin outr <= outr^index[8:5]^4'h3; end
8'hcb: begin outr <= outr^index[8:5]^4'hb; end
8'hcc: begin outr <= outr^index[8:5]^4'he; end
8'hcd: begin outr <= outr^index[8:5]^4'h2; end
8'hce: begin outr <= outr^index[8:5]^4'h5; end
8'hcf: begin outr <= outr^index[8:5]^4'hf; end
8'hd0: begin outr <= outr^index[8:5]^4'h2; end
8'hd1: begin outr <= outr^index[8:5]^4'h9; end
8'hd2: begin outr <= outr^index[8:5]^4'hb; end
8'hd3: begin outr <= outr^index[8:5]^4'h8; end
8'hd4: begin outr <= outr^index[8:5]^4'h0; end
8'hd5: begin outr <= outr^index[8:5]^4'h2; end
8'hd6: begin outr <= outr^index[8:5]^4'hb; end
8'hd7: begin outr <= outr^index[8:5]^4'h2; end
8'hd8: begin outr <= outr^index[8:5]^4'ha; end
8'hd9: begin outr <= outr^index[8:5]^4'hf; end
8'hda: begin outr <= outr^index[8:5]^4'h8; end
8'hdb: begin outr <= outr^index[8:5]^4'h4; end
8'hdc: begin outr <= outr^index[8:5]^4'he; end
8'hdd: begin outr <= outr^index[8:5]^4'h6; end
8'hde: begin outr <= outr^index[8:5]^4'h9; end
8'hdf: begin outr <= outr^index[8:5]^4'h9; end
8'he0: begin outr <= outr^index[8:5]^4'h7; end
8'he1: begin outr <= outr^index[8:5]^4'h0; end
8'he2: begin outr <= outr^index[8:5]^4'h9; end
8'he3: begin outr <= outr^index[8:5]^4'h3; end
8'he4: begin outr <= outr^index[8:5]^4'h2; end
8'he5: begin outr <= outr^index[8:5]^4'h4; end
8'he6: begin outr <= outr^index[8:5]^4'h5; end
8'he7: begin outr <= outr^index[8:5]^4'h5; end
8'he8: begin outr <= outr^index[8:5]^4'hf; end
8'he9: begin outr <= outr^index[8:5]^4'ha; end
8'hea: begin outr <= outr^index[8:5]^4'hc; end
8'heb: begin outr <= outr^index[8:5]^4'hd; end
8'hec: begin outr <= outr^index[8:5]^4'h1; end
8'hed: begin outr <= outr^index[8:5]^4'h5; end
8'hee: begin outr <= outr^index[8:5]^4'h9; end
8'hef: begin outr <= outr^index[8:5]^4'h0; end
8'hf0: begin outr <= outr^index[8:5]^4'hd; end
8'hf1: begin outr <= outr^index[8:5]^4'hf; end
8'hf2: begin outr <= outr^index[8:5]^4'h4; end
8'hf3: begin outr <= outr^index[8:5]^4'ha; end
8'hf4: begin outr <= outr^index[8:5]^4'h8; end
8'hf5: begin outr <= outr^index[8:5]^4'he; end
8'hf6: begin outr <= outr^index[8:5]^4'he; end
8'hf7: begin outr <= outr^index[8:5]^4'h1; end
8'hf8: begin outr <= outr^index[8:5]^4'h6; end
8'hf9: begin outr <= outr^index[8:5]^4'h0; end
8'hfa: begin outr <= outr^index[8:5]^4'h5; end
8'hfb: begin outr <= outr^index[8:5]^4'h1; end
8'hfc: begin outr <= outr^index[8:5]^4'h8; end
8'hfd: begin outr <= outr^index[8:5]^4'h6; end
8'hfe: begin outr <= outr^index[8:5]^4'h1; end
default: begin outr <= outr^index[8:5]^4'h6; end
endcase
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2005 by Wilson Snyder.
module t_case_huge_sub3 (/*AUTOARG*/
// Outputs
outr,
// Inputs
clk, index
);
input clk;
input [9:0] index;
output [3:0] outr;
// =============================
/*AUTOREG*/
// Beginning of automatic regs (for this module's undeclared outputs)
reg [3:0] outr;
// End of automatics
// =============================
// Created from perl
//for $i (0..255) { $r=rand(4); printf "\t8'h%02x: begin outr <= outr^index[8:5]^4'h%01x; end\n", $i,
//rand(256); };
// Reset cheating
initial outr = 4'b0;
always @(posedge clk) begin
case (index[7:0])
8'h00: begin outr <= 4'h0; end
8'h01: begin /*No Change*/ end
8'h02: begin outr <= outr^index[8:5]^4'ha; end
8'h03: begin outr <= outr^index[8:5]^4'h4; end
8'h04: begin outr <= outr^index[8:5]^4'hd; end
8'h05: begin outr <= outr^index[8:5]^4'h1; end
8'h06: begin outr <= outr^index[8:5]^4'hf; end
8'h07: begin outr <= outr^index[8:5]^4'he; end
8'h08: begin outr <= outr^index[8:5]^4'h0; end
8'h09: begin outr <= outr^index[8:5]^4'h4; end
8'h0a: begin outr <= outr^index[8:5]^4'h5; end
8'h0b: begin outr <= outr^index[8:5]^4'ha; end
8'h0c: begin outr <= outr^index[8:5]^4'h2; end
8'h0d: begin outr <= outr^index[8:5]^4'hf; end
8'h0e: begin outr <= outr^index[8:5]^4'h5; end
8'h0f: begin outr <= outr^index[8:5]^4'h0; end
8'h10: begin outr <= outr^index[8:5]^4'h3; end
8'h11: begin outr <= outr^index[8:5]^4'hb; end
8'h12: begin outr <= outr^index[8:5]^4'h0; end
8'h13: begin outr <= outr^index[8:5]^4'hf; end
8'h14: begin outr <= outr^index[8:5]^4'h3; end
8'h15: begin outr <= outr^index[8:5]^4'h5; end
8'h16: begin outr <= outr^index[8:5]^4'h7; end
8'h17: begin outr <= outr^index[8:5]^4'h2; end
8'h18: begin outr <= outr^index[8:5]^4'h3; end
8'h19: begin outr <= outr^index[8:5]^4'hb; end
8'h1a: begin outr <= outr^index[8:5]^4'h5; end
8'h1b: begin outr <= outr^index[8:5]^4'h4; end
8'h1c: begin outr <= outr^index[8:5]^4'h2; end
8'h1d: begin outr <= outr^index[8:5]^4'hf; end
8'h1e: begin outr <= outr^index[8:5]^4'h0; end
8'h1f: begin outr <= outr^index[8:5]^4'h4; end
8'h20: begin outr <= outr^index[8:5]^4'h6; end
8'h21: begin outr <= outr^index[8:5]^4'ha; end
8'h22: begin outr <= outr^index[8:5]^4'h6; end
8'h23: begin outr <= outr^index[8:5]^4'hb; end
8'h24: begin outr <= outr^index[8:5]^4'ha; end
8'h25: begin outr <= outr^index[8:5]^4'he; end
8'h26: begin outr <= outr^index[8:5]^4'h7; end
8'h27: begin outr <= outr^index[8:5]^4'ha; end
8'h28: begin outr <= outr^index[8:5]^4'h3; end
8'h29: begin outr <= outr^index[8:5]^4'h8; end
8'h2a: begin outr <= outr^index[8:5]^4'h1; end
8'h2b: begin outr <= outr^index[8:5]^4'h8; end
8'h2c: begin outr <= outr^index[8:5]^4'h4; end
8'h2d: begin outr <= outr^index[8:5]^4'h4; end
8'h2e: begin outr <= outr^index[8:5]^4'he; end
8'h2f: begin outr <= outr^index[8:5]^4'h8; end
8'h30: begin outr <= outr^index[8:5]^4'ha; end
8'h31: begin outr <= outr^index[8:5]^4'h7; end
8'h32: begin outr <= outr^index[8:5]^4'h0; end
8'h33: begin outr <= outr^index[8:5]^4'h3; end
8'h34: begin outr <= outr^index[8:5]^4'h1; end
8'h35: begin outr <= outr^index[8:5]^4'h3; end
8'h36: begin outr <= outr^index[8:5]^4'h4; end
8'h37: begin outr <= outr^index[8:5]^4'h6; end
8'h38: begin outr <= outr^index[8:5]^4'h4; end
8'h39: begin outr <= outr^index[8:5]^4'hb; end
8'h3a: begin outr <= outr^index[8:5]^4'h7; end
8'h3b: begin outr <= outr^index[8:5]^4'h1; end
8'h3c: begin outr <= outr^index[8:5]^4'h2; end
8'h3d: begin outr <= outr^index[8:5]^4'h0; end
8'h3e: begin outr <= outr^index[8:5]^4'h2; end
8'h3f: begin outr <= outr^index[8:5]^4'ha; end
8'h40: begin outr <= outr^index[8:5]^4'h7; end
8'h41: begin outr <= outr^index[8:5]^4'h5; end
8'h42: begin outr <= outr^index[8:5]^4'h5; end
8'h43: begin outr <= outr^index[8:5]^4'h4; end
8'h44: begin outr <= outr^index[8:5]^4'h8; end
8'h45: begin outr <= outr^index[8:5]^4'h5; end
8'h46: begin outr <= outr^index[8:5]^4'hf; end
8'h47: begin outr <= outr^index[8:5]^4'h6; end
8'h48: begin outr <= outr^index[8:5]^4'h7; end
8'h49: begin outr <= outr^index[8:5]^4'h4; end
8'h4a: begin outr <= outr^index[8:5]^4'ha; end
8'h4b: begin outr <= outr^index[8:5]^4'hd; end
8'h4c: begin outr <= outr^index[8:5]^4'hb; end
8'h4d: begin outr <= outr^index[8:5]^4'hf; end
8'h4e: begin outr <= outr^index[8:5]^4'hd; end
8'h4f: begin outr <= outr^index[8:5]^4'h7; end
8'h50: begin outr <= outr^index[8:5]^4'h9; end
8'h51: begin outr <= outr^index[8:5]^4'ha; end
8'h52: begin outr <= outr^index[8:5]^4'hf; end
8'h53: begin outr <= outr^index[8:5]^4'h3; end
8'h54: begin outr <= outr^index[8:5]^4'h1; end
8'h55: begin outr <= outr^index[8:5]^4'h0; end
8'h56: begin outr <= outr^index[8:5]^4'h2; end
8'h57: begin outr <= outr^index[8:5]^4'h9; end
8'h58: begin outr <= outr^index[8:5]^4'h2; end
8'h59: begin outr <= outr^index[8:5]^4'h4; end
8'h5a: begin outr <= outr^index[8:5]^4'hc; end
8'h5b: begin outr <= outr^index[8:5]^4'hd; end
8'h5c: begin outr <= outr^index[8:5]^4'h3; end
8'h5d: begin outr <= outr^index[8:5]^4'hb; end
8'h5e: begin outr <= outr^index[8:5]^4'hd; end
8'h5f: begin outr <= outr^index[8:5]^4'h7; end
8'h60: begin outr <= outr^index[8:5]^4'h7; end
8'h61: begin outr <= outr^index[8:5]^4'h3; end
8'h62: begin outr <= outr^index[8:5]^4'h3; end
8'h63: begin outr <= outr^index[8:5]^4'hb; end
8'h64: begin outr <= outr^index[8:5]^4'h9; end
8'h65: begin outr <= outr^index[8:5]^4'h4; end
8'h66: begin outr <= outr^index[8:5]^4'h3; end
8'h67: begin outr <= outr^index[8:5]^4'h6; end
8'h68: begin outr <= outr^index[8:5]^4'h7; end
8'h69: begin outr <= outr^index[8:5]^4'h7; end
8'h6a: begin outr <= outr^index[8:5]^4'hf; end
8'h6b: begin outr <= outr^index[8:5]^4'h6; end
8'h6c: begin outr <= outr^index[8:5]^4'h8; end
8'h6d: begin outr <= outr^index[8:5]^4'he; end
8'h6e: begin outr <= outr^index[8:5]^4'h4; end
8'h6f: begin outr <= outr^index[8:5]^4'h6; end
8'h70: begin outr <= outr^index[8:5]^4'hc; end
8'h71: begin outr <= outr^index[8:5]^4'h9; end
8'h72: begin outr <= outr^index[8:5]^4'h5; end
8'h73: begin outr <= outr^index[8:5]^4'ha; end
8'h74: begin outr <= outr^index[8:5]^4'h7; end
8'h75: begin outr <= outr^index[8:5]^4'h0; end
8'h76: begin outr <= outr^index[8:5]^4'h1; end
8'h77: begin outr <= outr^index[8:5]^4'he; end
8'h78: begin outr <= outr^index[8:5]^4'ha; end
8'h79: begin outr <= outr^index[8:5]^4'h7; end
8'h7a: begin outr <= outr^index[8:5]^4'hf; end
8'h7b: begin outr <= outr^index[8:5]^4'he; end
8'h7c: begin outr <= outr^index[8:5]^4'h6; end
8'h7d: begin outr <= outr^index[8:5]^4'hc; end
8'h7e: begin outr <= outr^index[8:5]^4'hc; end
8'h7f: begin outr <= outr^index[8:5]^4'h0; end
8'h80: begin outr <= outr^index[8:5]^4'h0; end
8'h81: begin outr <= outr^index[8:5]^4'hd; end
8'h82: begin outr <= outr^index[8:5]^4'hb; end
8'h83: begin outr <= outr^index[8:5]^4'hc; end
8'h84: begin outr <= outr^index[8:5]^4'h2; end
8'h85: begin outr <= outr^index[8:5]^4'h8; end
8'h86: begin outr <= outr^index[8:5]^4'h3; end
8'h87: begin outr <= outr^index[8:5]^4'ha; end
8'h88: begin outr <= outr^index[8:5]^4'he; end
8'h89: begin outr <= outr^index[8:5]^4'h9; end
8'h8a: begin outr <= outr^index[8:5]^4'h1; end
8'h8b: begin outr <= outr^index[8:5]^4'h1; end
8'h8c: begin outr <= outr^index[8:5]^4'hc; end
8'h8d: begin outr <= outr^index[8:5]^4'h2; end
8'h8e: begin outr <= outr^index[8:5]^4'h2; end
8'h8f: begin outr <= outr^index[8:5]^4'hd; end
8'h90: begin outr <= outr^index[8:5]^4'h0; end
8'h91: begin outr <= outr^index[8:5]^4'h6; end
8'h92: begin outr <= outr^index[8:5]^4'h7; end
8'h93: begin outr <= outr^index[8:5]^4'hc; end
8'h94: begin outr <= outr^index[8:5]^4'hb; end
8'h95: begin outr <= outr^index[8:5]^4'h3; end
8'h96: begin outr <= outr^index[8:5]^4'h0; end
8'h97: begin outr <= outr^index[8:5]^4'hc; end
8'h98: begin outr <= outr^index[8:5]^4'hc; end
8'h99: begin outr <= outr^index[8:5]^4'hb; end
8'h9a: begin outr <= outr^index[8:5]^4'h6; end
8'h9b: begin outr <= outr^index[8:5]^4'h5; end
8'h9c: begin outr <= outr^index[8:5]^4'h5; end
8'h9d: begin outr <= outr^index[8:5]^4'h4; end
8'h9e: begin outr <= outr^index[8:5]^4'h7; end
8'h9f: begin outr <= outr^index[8:5]^4'he; end
8'ha0: begin outr <= outr^index[8:5]^4'hc; end
8'ha1: begin outr <= outr^index[8:5]^4'hc; end
8'ha2: begin outr <= outr^index[8:5]^4'h0; end
8'ha3: begin outr <= outr^index[8:5]^4'h1; end
8'ha4: begin outr <= outr^index[8:5]^4'hd; end
8'ha5: begin outr <= outr^index[8:5]^4'h3; end
8'ha6: begin outr <= outr^index[8:5]^4'hc; end
8'ha7: begin outr <= outr^index[8:5]^4'h2; end
8'ha8: begin outr <= outr^index[8:5]^4'h3; end
8'ha9: begin outr <= outr^index[8:5]^4'hd; end
8'haa: begin outr <= outr^index[8:5]^4'h5; end
8'hab: begin outr <= outr^index[8:5]^4'hb; end
8'hac: begin outr <= outr^index[8:5]^4'he; end
8'had: begin outr <= outr^index[8:5]^4'h0; end
8'hae: begin outr <= outr^index[8:5]^4'hf; end
8'haf: begin outr <= outr^index[8:5]^4'h9; end
8'hb0: begin outr <= outr^index[8:5]^4'hf; end
8'hb1: begin outr <= outr^index[8:5]^4'h7; end
8'hb2: begin outr <= outr^index[8:5]^4'h9; end
8'hb3: begin outr <= outr^index[8:5]^4'hf; end
8'hb4: begin outr <= outr^index[8:5]^4'he; end
8'hb5: begin outr <= outr^index[8:5]^4'h3; end
8'hb6: begin outr <= outr^index[8:5]^4'he; end
8'hb7: begin outr <= outr^index[8:5]^4'h8; end
8'hb8: begin outr <= outr^index[8:5]^4'hf; end
8'hb9: begin outr <= outr^index[8:5]^4'hd; end
8'hba: begin outr <= outr^index[8:5]^4'h3; end
8'hbb: begin outr <= outr^index[8:5]^4'h5; end
8'hbc: begin outr <= outr^index[8:5]^4'hd; end
8'hbd: begin outr <= outr^index[8:5]^4'ha; end
8'hbe: begin outr <= outr^index[8:5]^4'h7; end
8'hbf: begin outr <= outr^index[8:5]^4'he; end
8'hc0: begin outr <= outr^index[8:5]^4'h2; end
8'hc1: begin outr <= outr^index[8:5]^4'he; end
8'hc2: begin outr <= outr^index[8:5]^4'h9; end
8'hc3: begin outr <= outr^index[8:5]^4'hb; end
8'hc4: begin outr <= outr^index[8:5]^4'h0; end
8'hc5: begin outr <= outr^index[8:5]^4'h5; end
8'hc6: begin outr <= outr^index[8:5]^4'h9; end
8'hc7: begin outr <= outr^index[8:5]^4'h6; end
8'hc8: begin outr <= outr^index[8:5]^4'ha; end
8'hc9: begin outr <= outr^index[8:5]^4'hf; end
8'hca: begin outr <= outr^index[8:5]^4'h3; end
8'hcb: begin outr <= outr^index[8:5]^4'hb; end
8'hcc: begin outr <= outr^index[8:5]^4'he; end
8'hcd: begin outr <= outr^index[8:5]^4'h2; end
8'hce: begin outr <= outr^index[8:5]^4'h5; end
8'hcf: begin outr <= outr^index[8:5]^4'hf; end
8'hd0: begin outr <= outr^index[8:5]^4'h2; end
8'hd1: begin outr <= outr^index[8:5]^4'h9; end
8'hd2: begin outr <= outr^index[8:5]^4'hb; end
8'hd3: begin outr <= outr^index[8:5]^4'h8; end
8'hd4: begin outr <= outr^index[8:5]^4'h0; end
8'hd5: begin outr <= outr^index[8:5]^4'h2; end
8'hd6: begin outr <= outr^index[8:5]^4'hb; end
8'hd7: begin outr <= outr^index[8:5]^4'h2; end
8'hd8: begin outr <= outr^index[8:5]^4'ha; end
8'hd9: begin outr <= outr^index[8:5]^4'hf; end
8'hda: begin outr <= outr^index[8:5]^4'h8; end
8'hdb: begin outr <= outr^index[8:5]^4'h4; end
8'hdc: begin outr <= outr^index[8:5]^4'he; end
8'hdd: begin outr <= outr^index[8:5]^4'h6; end
8'hde: begin outr <= outr^index[8:5]^4'h9; end
8'hdf: begin outr <= outr^index[8:5]^4'h9; end
8'he0: begin outr <= outr^index[8:5]^4'h7; end
8'he1: begin outr <= outr^index[8:5]^4'h0; end
8'he2: begin outr <= outr^index[8:5]^4'h9; end
8'he3: begin outr <= outr^index[8:5]^4'h3; end
8'he4: begin outr <= outr^index[8:5]^4'h2; end
8'he5: begin outr <= outr^index[8:5]^4'h4; end
8'he6: begin outr <= outr^index[8:5]^4'h5; end
8'he7: begin outr <= outr^index[8:5]^4'h5; end
8'he8: begin outr <= outr^index[8:5]^4'hf; end
8'he9: begin outr <= outr^index[8:5]^4'ha; end
8'hea: begin outr <= outr^index[8:5]^4'hc; end
8'heb: begin outr <= outr^index[8:5]^4'hd; end
8'hec: begin outr <= outr^index[8:5]^4'h1; end
8'hed: begin outr <= outr^index[8:5]^4'h5; end
8'hee: begin outr <= outr^index[8:5]^4'h9; end
8'hef: begin outr <= outr^index[8:5]^4'h0; end
8'hf0: begin outr <= outr^index[8:5]^4'hd; end
8'hf1: begin outr <= outr^index[8:5]^4'hf; end
8'hf2: begin outr <= outr^index[8:5]^4'h4; end
8'hf3: begin outr <= outr^index[8:5]^4'ha; end
8'hf4: begin outr <= outr^index[8:5]^4'h8; end
8'hf5: begin outr <= outr^index[8:5]^4'he; end
8'hf6: begin outr <= outr^index[8:5]^4'he; end
8'hf7: begin outr <= outr^index[8:5]^4'h1; end
8'hf8: begin outr <= outr^index[8:5]^4'h6; end
8'hf9: begin outr <= outr^index[8:5]^4'h0; end
8'hfa: begin outr <= outr^index[8:5]^4'h5; end
8'hfb: begin outr <= outr^index[8:5]^4'h1; end
8'hfc: begin outr <= outr^index[8:5]^4'h8; end
8'hfd: begin outr <= outr^index[8:5]^4'h6; end
8'hfe: begin outr <= outr^index[8:5]^4'h1; end
default: begin outr <= outr^index[8:5]^4'h6; end
endcase
end
endmodule
|
module serial_rx #(
parameter CLK_PER_BIT = 50
)(
input clk,
input rst,
input rx,
output [7:0] data,
output new_data
);
// clog2 is 'ceiling of log base 2' which gives you the number of bits needed to store a value
parameter CTR_SIZE = $clog2(CLK_PER_BIT);
localparam STATE_SIZE = 2;
localparam IDLE = 2'd0,
WAIT_HALF = 2'd1,
WAIT_FULL = 2'd2,
WAIT_HIGH = 2'd3;
reg [CTR_SIZE-1:0] ctr_d, ctr_q;
reg [2:0] bit_ctr_d, bit_ctr_q;
reg [7:0] data_d, data_q;
reg new_data_d, new_data_q;
reg [STATE_SIZE-1:0] state_d, state_q = IDLE;
reg rx_d, rx_q;
assign new_data = new_data_q;
assign data = data_q;
always @(*) begin
rx_d = rx;
state_d = state_q;
ctr_d = ctr_q;
bit_ctr_d = bit_ctr_q;
data_d = data_q;
new_data_d = 1'b0;
case (state_q)
IDLE: begin
bit_ctr_d = 3'b0;
ctr_d = 1'b0;
if (rx_q == 1'b0) begin
state_d = WAIT_HALF;
end
end
WAIT_HALF: begin
ctr_d = ctr_q + 1'b1;
if (ctr_q == (CLK_PER_BIT >> 1)) begin
ctr_d = 1'b0;
state_d = WAIT_FULL;
end
end
WAIT_FULL: begin
ctr_d = ctr_q + 1'b1;
if (ctr_q == CLK_PER_BIT - 1) begin
data_d = {rx_q, data_q[7:1]};
bit_ctr_d = bit_ctr_q + 1'b1;
ctr_d = 1'b0;
if (bit_ctr_q == 3'd7) begin
state_d = WAIT_HIGH;
new_data_d = 1'b1;
end
end
end
WAIT_HIGH: begin
if (rx_q == 1'b1) begin
state_d = IDLE;
end
end
default: begin
state_d = IDLE;
end
endcase
end
always @(posedge clk) begin
if (rst) begin
ctr_q <= 1'b0;
bit_ctr_q <= 3'b0;
new_data_q <= 1'b0;
state_q <= IDLE;
end else begin
ctr_q <= ctr_d;
bit_ctr_q <= bit_ctr_d;
new_data_q <= new_data_d;
state_q <= state_d;
end
rx_q <= rx_d;
data_q <= data_d;
end
endmodule
|
/*
----------------------------------------------------------------------------------
Copyright (c) 2013-2014
Embedded and Network Computing Lab.
Open SSD Project
Hanyang University
All rights reserved.
----------------------------------------------------------------------------------
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this source code
must display the following acknowledgement:
This product includes source code developed
by the Embedded and Network Computing Lab. and the Open SSD Project.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------------------
http://enclab.hanyang.ac.kr/
http://www.openssd-project.org/
http://www.hanyang.ac.kr/
----------------------------------------------------------------------------------
*/
`timescale 1ns / 1ps
module dev_rx_cmd_fifo # (
parameter P_FIFO_DATA_WIDTH = 30,
parameter P_FIFO_DEPTH_WIDTH = 4
)
(
input wr_clk,
input wr_rst_n,
input wr_en,
input [P_FIFO_DATA_WIDTH-1:0] wr_data,
output full_n,
input rd_clk,
input rd_rst_n,
input rd_en,
output [P_FIFO_DATA_WIDTH-1:0] rd_data,
output empty_n
);
localparam P_FIFO_ALLOC_WIDTH = 1;
localparam S_SYNC_STAGE0 = 3'b001;
localparam S_SYNC_STAGE1 = 3'b010;
localparam S_SYNC_STAGE2 = 3'b100;
reg [2:0] cur_wr_state;
reg [2:0] next_wr_state;
reg [2:0] cur_rd_state;
reg [2:0] next_rd_state;
reg [P_FIFO_DEPTH_WIDTH:0] r_rear_addr;
(* KEEP = "TRUE", EQUIVALENT_REGISTER_REMOVAL = "NO" *) reg r_rear_sync;
(* KEEP = "TRUE", EQUIVALENT_REGISTER_REMOVAL = "NO" *) reg r_rear_sync_en;
reg [P_FIFO_DEPTH_WIDTH
:P_FIFO_ALLOC_WIDTH] r_rear_sync_data;
(* KEEP = "TRUE", SHIFT_EXTRACT = "NO" *) reg r_front_sync_en_d1;
(* KEEP = "TRUE", SHIFT_EXTRACT = "NO" *) reg r_front_sync_en_d2;
(* KEEP = "TRUE", SHIFT_EXTRACT = "NO" *) reg [P_FIFO_DEPTH_WIDTH
:P_FIFO_ALLOC_WIDTH] r_front_sync_addr;
reg [P_FIFO_DEPTH_WIDTH:0] r_front_addr;
reg [P_FIFO_DEPTH_WIDTH:0] r_front_addr_p1;
(* KEEP = "TRUE", EQUIVALENT_REGISTER_REMOVAL = "NO" *) reg r_front_sync;
(* KEEP = "TRUE", EQUIVALENT_REGISTER_REMOVAL = "NO" *) reg r_front_sync_en;
reg [P_FIFO_DEPTH_WIDTH
:P_FIFO_ALLOC_WIDTH] r_front_sync_data;
(* KEEP = "TRUE", SHIFT_EXTRACT = "NO" *) reg r_rear_sync_en_d1;
(* KEEP = "TRUE", SHIFT_EXTRACT = "NO" *) reg r_rear_sync_en_d2;
(* KEEP = "TRUE", SHIFT_EXTRACT = "NO" *) reg [P_FIFO_DEPTH_WIDTH
:P_FIFO_ALLOC_WIDTH] r_rear_sync_addr;
wire [P_FIFO_DEPTH_WIDTH-1:0] w_front_addr;
assign full_n = ~((r_rear_addr[P_FIFO_DEPTH_WIDTH] ^ r_front_sync_addr[P_FIFO_DEPTH_WIDTH])
& (r_rear_addr[P_FIFO_DEPTH_WIDTH-1:P_FIFO_ALLOC_WIDTH]
== r_front_sync_addr[P_FIFO_DEPTH_WIDTH-1:P_FIFO_ALLOC_WIDTH]));
always @(posedge wr_clk or negedge wr_rst_n)
begin
if (wr_rst_n == 0) begin
r_rear_addr <= 0;
end
else begin
if (wr_en == 1)
r_rear_addr <= r_rear_addr + 1;
end
end
assign empty_n = ~(r_front_addr[P_FIFO_DEPTH_WIDTH:P_FIFO_ALLOC_WIDTH]
== r_rear_sync_addr);
always @(posedge rd_clk or negedge rd_rst_n)
begin
if (rd_rst_n == 0) begin
r_front_addr <= 0;
r_front_addr_p1 <= 1;
end
else begin
if (rd_en == 1) begin
r_front_addr <= r_front_addr_p1;
r_front_addr_p1 <= r_front_addr_p1 + 1;
end
end
end
assign w_front_addr = (rd_en == 1) ? r_front_addr_p1[P_FIFO_DEPTH_WIDTH-1:0]
: r_front_addr[P_FIFO_DEPTH_WIDTH-1:0];
/////////////////////////////////////////////////////////////////////////////////////////////
always @ (posedge wr_clk or negedge wr_rst_n)
begin
if(wr_rst_n == 0)
cur_wr_state <= S_SYNC_STAGE0;
else
cur_wr_state <= next_wr_state;
end
always @(posedge wr_clk or negedge wr_rst_n)
begin
if(wr_rst_n == 0)
r_rear_sync_en <= 0;
else
r_rear_sync_en <= r_rear_sync;
end
always @(posedge wr_clk)
begin
r_front_sync_en_d1 <= r_front_sync_en;
r_front_sync_en_d2 <= r_front_sync_en_d1;
end
always @ (*)
begin
case(cur_wr_state)
S_SYNC_STAGE0: begin
if(r_front_sync_en_d2 == 1)
next_wr_state <= S_SYNC_STAGE1;
else
next_wr_state <= S_SYNC_STAGE0;
end
S_SYNC_STAGE1: begin
next_wr_state <= S_SYNC_STAGE2;
end
S_SYNC_STAGE2: begin
if(r_front_sync_en_d2 == 0)
next_wr_state <= S_SYNC_STAGE0;
else
next_wr_state <= S_SYNC_STAGE2;
end
default: begin
next_wr_state <= S_SYNC_STAGE0;
end
endcase
end
always @ (posedge wr_clk or negedge wr_rst_n)
begin
if(wr_rst_n == 0) begin
r_rear_sync_data <= 0;
r_front_sync_addr <= 0;
end
else begin
case(cur_wr_state)
S_SYNC_STAGE0: begin
end
S_SYNC_STAGE1: begin
r_rear_sync_data <= r_rear_addr[P_FIFO_DEPTH_WIDTH:P_FIFO_ALLOC_WIDTH];
r_front_sync_addr <= r_front_sync_data;
end
S_SYNC_STAGE2: begin
end
default: begin
end
endcase
end
end
always @ (*)
begin
case(cur_wr_state)
S_SYNC_STAGE0: begin
r_rear_sync <= 0;
end
S_SYNC_STAGE1: begin
r_rear_sync <= 0;
end
S_SYNC_STAGE2: begin
r_rear_sync <= 1;
end
default: begin
r_rear_sync <= 0;
end
endcase
end
always @ (posedge rd_clk or negedge rd_rst_n)
begin
if(rd_rst_n == 0)
cur_rd_state <= S_SYNC_STAGE0;
else
cur_rd_state <= next_rd_state;
end
always @(posedge rd_clk or negedge rd_rst_n)
begin
if(rd_rst_n == 0)
r_front_sync_en <= 0;
else
r_front_sync_en <= r_front_sync;
end
always @(posedge rd_clk)
begin
r_rear_sync_en_d1 <= r_rear_sync_en;
r_rear_sync_en_d2 <= r_rear_sync_en_d1;
end
always @ (*)
begin
case(cur_rd_state)
S_SYNC_STAGE0: begin
if(r_rear_sync_en_d2 == 1)
next_rd_state <= S_SYNC_STAGE1;
else
next_rd_state <= S_SYNC_STAGE0;
end
S_SYNC_STAGE1: begin
next_rd_state <= S_SYNC_STAGE2;
end
S_SYNC_STAGE2: begin
if(r_rear_sync_en_d2 == 0)
next_rd_state <= S_SYNC_STAGE0;
else
next_rd_state <= S_SYNC_STAGE2;
end
default: begin
next_rd_state <= S_SYNC_STAGE0;
end
endcase
end
always @ (posedge rd_clk or negedge rd_rst_n)
begin
if(rd_rst_n == 0) begin
r_front_sync_data <= 0;
r_rear_sync_addr <= 0;
end
else begin
case(cur_rd_state)
S_SYNC_STAGE0: begin
end
S_SYNC_STAGE1: begin
r_front_sync_data <= r_front_addr[P_FIFO_DEPTH_WIDTH:P_FIFO_ALLOC_WIDTH];
r_rear_sync_addr <= r_rear_sync_data;
end
S_SYNC_STAGE2: begin
end
default: begin
end
endcase
end
end
always @ (*)
begin
case(cur_rd_state)
S_SYNC_STAGE0: begin
r_front_sync <= 1;
end
S_SYNC_STAGE1: begin
r_front_sync <= 1;
end
S_SYNC_STAGE2: begin
r_front_sync <= 0;
end
default: begin
r_front_sync <= 0;
end
endcase
end
/////////////////////////////////////////////////////////////////////////////////////////////
localparam LP_DEVICE = "7SERIES";
localparam LP_BRAM_SIZE = "18Kb";
localparam LP_DOB_REG = 0;
localparam LP_READ_WIDTH = P_FIFO_DATA_WIDTH;
localparam LP_WRITE_WIDTH = P_FIFO_DATA_WIDTH;
localparam LP_WRITE_MODE = "WRITE_FIRST";
localparam LP_WE_WIDTH = 4;
localparam LP_ADDR_TOTAL_WITDH = 9;
localparam LP_ADDR_ZERO_PAD_WITDH = LP_ADDR_TOTAL_WITDH - P_FIFO_DEPTH_WIDTH;
generate
wire [LP_ADDR_TOTAL_WITDH-1:0] rdaddr;
wire [LP_ADDR_TOTAL_WITDH-1:0] wraddr;
wire [LP_ADDR_ZERO_PAD_WITDH-1:0] zero_padding = 0;
if(LP_ADDR_ZERO_PAD_WITDH == 0) begin : CALC_ADDR
assign rdaddr = w_front_addr[P_FIFO_DEPTH_WIDTH-1:0];
assign wraddr = r_rear_addr[P_FIFO_DEPTH_WIDTH-1:0];
end
else begin
wire [LP_ADDR_ZERO_PAD_WITDH-1:0] zero_padding = 0;
assign rdaddr = {zero_padding, w_front_addr[P_FIFO_DEPTH_WIDTH-1:0]};
assign wraddr = {zero_padding, r_rear_addr[P_FIFO_DEPTH_WIDTH-1:0]};
end
endgenerate
BRAM_SDP_MACRO #(
.DEVICE (LP_DEVICE),
.BRAM_SIZE (LP_BRAM_SIZE),
.DO_REG (LP_DOB_REG),
.READ_WIDTH (LP_READ_WIDTH),
.WRITE_WIDTH (LP_WRITE_WIDTH),
.WRITE_MODE (LP_WRITE_MODE)
)
ramb18sdp_0(
.DO (rd_data),
.DI (wr_data),
.RDADDR (rdaddr),
.RDCLK (rd_clk),
.RDEN (1'b1),
.REGCE (1'b1),
.RST (1'b0),
.WE ({LP_WE_WIDTH{1'b1}}),
.WRADDR (wraddr),
.WRCLK (wr_clk),
.WREN (wr_en)
);
endmodule
|
/*
----------------------------------------------------------------------------------
Copyright (c) 2013-2014
Embedded and Network Computing Lab.
Open SSD Project
Hanyang University
All rights reserved.
----------------------------------------------------------------------------------
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this source code
must display the following acknowledgement:
This product includes source code developed
by the Embedded and Network Computing Lab. and the Open SSD Project.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------------------
http://enclab.hanyang.ac.kr/
http://www.openssd-project.org/
http://www.hanyang.ac.kr/
----------------------------------------------------------------------------------
*/
`timescale 1ns / 1ps
module dev_rx_cmd_fifo # (
parameter P_FIFO_DATA_WIDTH = 30,
parameter P_FIFO_DEPTH_WIDTH = 4
)
(
input wr_clk,
input wr_rst_n,
input wr_en,
input [P_FIFO_DATA_WIDTH-1:0] wr_data,
output full_n,
input rd_clk,
input rd_rst_n,
input rd_en,
output [P_FIFO_DATA_WIDTH-1:0] rd_data,
output empty_n
);
localparam P_FIFO_ALLOC_WIDTH = 1;
localparam S_SYNC_STAGE0 = 3'b001;
localparam S_SYNC_STAGE1 = 3'b010;
localparam S_SYNC_STAGE2 = 3'b100;
reg [2:0] cur_wr_state;
reg [2:0] next_wr_state;
reg [2:0] cur_rd_state;
reg [2:0] next_rd_state;
reg [P_FIFO_DEPTH_WIDTH:0] r_rear_addr;
(* KEEP = "TRUE", EQUIVALENT_REGISTER_REMOVAL = "NO" *) reg r_rear_sync;
(* KEEP = "TRUE", EQUIVALENT_REGISTER_REMOVAL = "NO" *) reg r_rear_sync_en;
reg [P_FIFO_DEPTH_WIDTH
:P_FIFO_ALLOC_WIDTH] r_rear_sync_data;
(* KEEP = "TRUE", SHIFT_EXTRACT = "NO" *) reg r_front_sync_en_d1;
(* KEEP = "TRUE", SHIFT_EXTRACT = "NO" *) reg r_front_sync_en_d2;
(* KEEP = "TRUE", SHIFT_EXTRACT = "NO" *) reg [P_FIFO_DEPTH_WIDTH
:P_FIFO_ALLOC_WIDTH] r_front_sync_addr;
reg [P_FIFO_DEPTH_WIDTH:0] r_front_addr;
reg [P_FIFO_DEPTH_WIDTH:0] r_front_addr_p1;
(* KEEP = "TRUE", EQUIVALENT_REGISTER_REMOVAL = "NO" *) reg r_front_sync;
(* KEEP = "TRUE", EQUIVALENT_REGISTER_REMOVAL = "NO" *) reg r_front_sync_en;
reg [P_FIFO_DEPTH_WIDTH
:P_FIFO_ALLOC_WIDTH] r_front_sync_data;
(* KEEP = "TRUE", SHIFT_EXTRACT = "NO" *) reg r_rear_sync_en_d1;
(* KEEP = "TRUE", SHIFT_EXTRACT = "NO" *) reg r_rear_sync_en_d2;
(* KEEP = "TRUE", SHIFT_EXTRACT = "NO" *) reg [P_FIFO_DEPTH_WIDTH
:P_FIFO_ALLOC_WIDTH] r_rear_sync_addr;
wire [P_FIFO_DEPTH_WIDTH-1:0] w_front_addr;
assign full_n = ~((r_rear_addr[P_FIFO_DEPTH_WIDTH] ^ r_front_sync_addr[P_FIFO_DEPTH_WIDTH])
& (r_rear_addr[P_FIFO_DEPTH_WIDTH-1:P_FIFO_ALLOC_WIDTH]
== r_front_sync_addr[P_FIFO_DEPTH_WIDTH-1:P_FIFO_ALLOC_WIDTH]));
always @(posedge wr_clk or negedge wr_rst_n)
begin
if (wr_rst_n == 0) begin
r_rear_addr <= 0;
end
else begin
if (wr_en == 1)
r_rear_addr <= r_rear_addr + 1;
end
end
assign empty_n = ~(r_front_addr[P_FIFO_DEPTH_WIDTH:P_FIFO_ALLOC_WIDTH]
== r_rear_sync_addr);
always @(posedge rd_clk or negedge rd_rst_n)
begin
if (rd_rst_n == 0) begin
r_front_addr <= 0;
r_front_addr_p1 <= 1;
end
else begin
if (rd_en == 1) begin
r_front_addr <= r_front_addr_p1;
r_front_addr_p1 <= r_front_addr_p1 + 1;
end
end
end
assign w_front_addr = (rd_en == 1) ? r_front_addr_p1[P_FIFO_DEPTH_WIDTH-1:0]
: r_front_addr[P_FIFO_DEPTH_WIDTH-1:0];
/////////////////////////////////////////////////////////////////////////////////////////////
always @ (posedge wr_clk or negedge wr_rst_n)
begin
if(wr_rst_n == 0)
cur_wr_state <= S_SYNC_STAGE0;
else
cur_wr_state <= next_wr_state;
end
always @(posedge wr_clk or negedge wr_rst_n)
begin
if(wr_rst_n == 0)
r_rear_sync_en <= 0;
else
r_rear_sync_en <= r_rear_sync;
end
always @(posedge wr_clk)
begin
r_front_sync_en_d1 <= r_front_sync_en;
r_front_sync_en_d2 <= r_front_sync_en_d1;
end
always @ (*)
begin
case(cur_wr_state)
S_SYNC_STAGE0: begin
if(r_front_sync_en_d2 == 1)
next_wr_state <= S_SYNC_STAGE1;
else
next_wr_state <= S_SYNC_STAGE0;
end
S_SYNC_STAGE1: begin
next_wr_state <= S_SYNC_STAGE2;
end
S_SYNC_STAGE2: begin
if(r_front_sync_en_d2 == 0)
next_wr_state <= S_SYNC_STAGE0;
else
next_wr_state <= S_SYNC_STAGE2;
end
default: begin
next_wr_state <= S_SYNC_STAGE0;
end
endcase
end
always @ (posedge wr_clk or negedge wr_rst_n)
begin
if(wr_rst_n == 0) begin
r_rear_sync_data <= 0;
r_front_sync_addr <= 0;
end
else begin
case(cur_wr_state)
S_SYNC_STAGE0: begin
end
S_SYNC_STAGE1: begin
r_rear_sync_data <= r_rear_addr[P_FIFO_DEPTH_WIDTH:P_FIFO_ALLOC_WIDTH];
r_front_sync_addr <= r_front_sync_data;
end
S_SYNC_STAGE2: begin
end
default: begin
end
endcase
end
end
always @ (*)
begin
case(cur_wr_state)
S_SYNC_STAGE0: begin
r_rear_sync <= 0;
end
S_SYNC_STAGE1: begin
r_rear_sync <= 0;
end
S_SYNC_STAGE2: begin
r_rear_sync <= 1;
end
default: begin
r_rear_sync <= 0;
end
endcase
end
always @ (posedge rd_clk or negedge rd_rst_n)
begin
if(rd_rst_n == 0)
cur_rd_state <= S_SYNC_STAGE0;
else
cur_rd_state <= next_rd_state;
end
always @(posedge rd_clk or negedge rd_rst_n)
begin
if(rd_rst_n == 0)
r_front_sync_en <= 0;
else
r_front_sync_en <= r_front_sync;
end
always @(posedge rd_clk)
begin
r_rear_sync_en_d1 <= r_rear_sync_en;
r_rear_sync_en_d2 <= r_rear_sync_en_d1;
end
always @ (*)
begin
case(cur_rd_state)
S_SYNC_STAGE0: begin
if(r_rear_sync_en_d2 == 1)
next_rd_state <= S_SYNC_STAGE1;
else
next_rd_state <= S_SYNC_STAGE0;
end
S_SYNC_STAGE1: begin
next_rd_state <= S_SYNC_STAGE2;
end
S_SYNC_STAGE2: begin
if(r_rear_sync_en_d2 == 0)
next_rd_state <= S_SYNC_STAGE0;
else
next_rd_state <= S_SYNC_STAGE2;
end
default: begin
next_rd_state <= S_SYNC_STAGE0;
end
endcase
end
always @ (posedge rd_clk or negedge rd_rst_n)
begin
if(rd_rst_n == 0) begin
r_front_sync_data <= 0;
r_rear_sync_addr <= 0;
end
else begin
case(cur_rd_state)
S_SYNC_STAGE0: begin
end
S_SYNC_STAGE1: begin
r_front_sync_data <= r_front_addr[P_FIFO_DEPTH_WIDTH:P_FIFO_ALLOC_WIDTH];
r_rear_sync_addr <= r_rear_sync_data;
end
S_SYNC_STAGE2: begin
end
default: begin
end
endcase
end
end
always @ (*)
begin
case(cur_rd_state)
S_SYNC_STAGE0: begin
r_front_sync <= 1;
end
S_SYNC_STAGE1: begin
r_front_sync <= 1;
end
S_SYNC_STAGE2: begin
r_front_sync <= 0;
end
default: begin
r_front_sync <= 0;
end
endcase
end
/////////////////////////////////////////////////////////////////////////////////////////////
localparam LP_DEVICE = "7SERIES";
localparam LP_BRAM_SIZE = "18Kb";
localparam LP_DOB_REG = 0;
localparam LP_READ_WIDTH = P_FIFO_DATA_WIDTH;
localparam LP_WRITE_WIDTH = P_FIFO_DATA_WIDTH;
localparam LP_WRITE_MODE = "WRITE_FIRST";
localparam LP_WE_WIDTH = 4;
localparam LP_ADDR_TOTAL_WITDH = 9;
localparam LP_ADDR_ZERO_PAD_WITDH = LP_ADDR_TOTAL_WITDH - P_FIFO_DEPTH_WIDTH;
generate
wire [LP_ADDR_TOTAL_WITDH-1:0] rdaddr;
wire [LP_ADDR_TOTAL_WITDH-1:0] wraddr;
wire [LP_ADDR_ZERO_PAD_WITDH-1:0] zero_padding = 0;
if(LP_ADDR_ZERO_PAD_WITDH == 0) begin : CALC_ADDR
assign rdaddr = w_front_addr[P_FIFO_DEPTH_WIDTH-1:0];
assign wraddr = r_rear_addr[P_FIFO_DEPTH_WIDTH-1:0];
end
else begin
wire [LP_ADDR_ZERO_PAD_WITDH-1:0] zero_padding = 0;
assign rdaddr = {zero_padding, w_front_addr[P_FIFO_DEPTH_WIDTH-1:0]};
assign wraddr = {zero_padding, r_rear_addr[P_FIFO_DEPTH_WIDTH-1:0]};
end
endgenerate
BRAM_SDP_MACRO #(
.DEVICE (LP_DEVICE),
.BRAM_SIZE (LP_BRAM_SIZE),
.DO_REG (LP_DOB_REG),
.READ_WIDTH (LP_READ_WIDTH),
.WRITE_WIDTH (LP_WRITE_WIDTH),
.WRITE_MODE (LP_WRITE_MODE)
)
ramb18sdp_0(
.DO (rd_data),
.DI (wr_data),
.RDADDR (rdaddr),
.RDCLK (rd_clk),
.RDEN (1'b1),
.REGCE (1'b1),
.RST (1'b0),
.WE ({LP_WE_WIDTH{1'b1}}),
.WRADDR (wraddr),
.WRCLK (wr_clk),
.WREN (wr_en)
);
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2008 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc=0;
reg [63:0] crc;
reg [63:0] sum;
wire [31:0] inp = crc[31:0];
wire reset = (cyc < 5);
/*AUTOWIRE*/
// Beginning of automatic wires (for undeclared instantiated-module outputs)
wire [31:0] outp; // From test of Test.v
// End of automatics
Test test (/*AUTOINST*/
// Outputs
.outp (outp[31:0]),
// Inputs
.reset (reset),
.clk (clk),
.inp (inp[31:0]));
// Aggregate outputs into a single result vector
wire [63:0] result = {32'h0, outp};
// What checksum will we end up with
`define EXPECTED_SUM 64'ha7f0a34f9cf56ccb
// Test loop
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result);
`endif
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]};
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
end
else if (cyc<10) begin
sum <= 64'h0;
end
else if (cyc<90) begin
end
else if (cyc==99) begin
$write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum);
if (crc !== 64'hc77bb9b3784ea091) $stop;
if (sum !== `EXPECTED_SUM) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
module Test (/*AUTOARG*/
// Outputs
outp,
// Inputs
reset, clk, inp
);
input reset;
input clk;
input [31:0] inp;
output [31:0] outp;
function [31:0] no_inline_function;
input [31:0] var1;
input [31:0] var2;
/*verilator no_inline_task*/
reg [31*2:0] product1 ;
reg [31*2:0] product2 ;
integer i;
reg [31:0] tmp;
begin
product2 = {(31*2+1){1'b0}};
for (i = 0; i < 32; i = i + 1)
if (var2[i]) begin
product1 = { {31*2+1-32{1'b0}}, var1} << i;
product2 = product2 ^ product1;
end
no_inline_function = 0;
for (i= 0; i < 31; i = i + 1 )
no_inline_function[i+1] = no_inline_function[i] ^ product2[i] ^ var1[i];
end
endfunction
reg [31:0] outp;
reg [31:0] inp_d;
always @( posedge clk ) begin
if( reset ) begin
outp <= 0;
end
else begin
inp_d <= inp;
outp <= no_inline_function(inp, inp_d);
end
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2008 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc=0;
reg [63:0] crc;
reg [63:0] sum;
wire [31:0] inp = crc[31:0];
wire reset = (cyc < 5);
/*AUTOWIRE*/
// Beginning of automatic wires (for undeclared instantiated-module outputs)
wire [31:0] outp; // From test of Test.v
// End of automatics
Test test (/*AUTOINST*/
// Outputs
.outp (outp[31:0]),
// Inputs
.reset (reset),
.clk (clk),
.inp (inp[31:0]));
// Aggregate outputs into a single result vector
wire [63:0] result = {32'h0, outp};
// What checksum will we end up with
`define EXPECTED_SUM 64'ha7f0a34f9cf56ccb
// Test loop
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result);
`endif
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]};
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
end
else if (cyc<10) begin
sum <= 64'h0;
end
else if (cyc<90) begin
end
else if (cyc==99) begin
$write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum);
if (crc !== 64'hc77bb9b3784ea091) $stop;
if (sum !== `EXPECTED_SUM) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
module Test (/*AUTOARG*/
// Outputs
outp,
// Inputs
reset, clk, inp
);
input reset;
input clk;
input [31:0] inp;
output [31:0] outp;
function [31:0] no_inline_function;
input [31:0] var1;
input [31:0] var2;
/*verilator no_inline_task*/
reg [31*2:0] product1 ;
reg [31*2:0] product2 ;
integer i;
reg [31:0] tmp;
begin
product2 = {(31*2+1){1'b0}};
for (i = 0; i < 32; i = i + 1)
if (var2[i]) begin
product1 = { {31*2+1-32{1'b0}}, var1} << i;
product2 = product2 ^ product1;
end
no_inline_function = 0;
for (i= 0; i < 31; i = i + 1 )
no_inline_function[i+1] = no_inline_function[i] ^ product2[i] ^ var1[i];
end
endfunction
reg [31:0] outp;
reg [31:0] inp_d;
always @( posedge clk ) begin
if( reset ) begin
outp <= 0;
end
else begin
inp_d <= inp;
outp <= no_inline_function(inp, inp_d);
end
end
endmodule
|
/*
----------------------------------------------------------------------------------
Copyright (c) 2013-2014
Embedded and Network Computing Lab.
Open SSD Project
Hanyang University
All rights reserved.
----------------------------------------------------------------------------------
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this source code
must display the following acknowledgement:
This product includes source code developed
by the Embedded and Network Computing Lab. and the Open SSD Project.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------------------
http://enclab.hanyang.ac.kr/
http://www.openssd-project.org/
http://www.hanyang.ac.kr/
----------------------------------------------------------------------------------
*/
`timescale 1ns / 1ps
module pcie_cntl_rx_fifo # (
parameter P_FIFO_DATA_WIDTH = 128,
parameter P_FIFO_DEPTH_WIDTH = 5
)
(
input clk,
input rst_n,
input wr_en,
input [P_FIFO_DATA_WIDTH-1:0] wr_data,
output full_n,
output almost_full_n,
input rd_en,
output [P_FIFO_DATA_WIDTH-1:0] rd_data,
output empty_n
);
localparam P_FIFO_ALLOC_WIDTH = 0; //128 bits
reg [P_FIFO_DEPTH_WIDTH:0] r_front_addr;
reg [P_FIFO_DEPTH_WIDTH:0] r_front_addr_p1;
wire [P_FIFO_DEPTH_WIDTH-1:0] w_front_addr;
reg [P_FIFO_DEPTH_WIDTH:0] r_rear_addr;
reg r_almost_full_n;
wire w_almost_full_n;
wire [P_FIFO_DEPTH_WIDTH:0] w_invalid_space;
wire [P_FIFO_DEPTH_WIDTH:0] w_invalid_front_addr;
assign full_n = ~(( r_rear_addr[P_FIFO_DEPTH_WIDTH] ^ r_front_addr[P_FIFO_DEPTH_WIDTH])
& (r_rear_addr[P_FIFO_DEPTH_WIDTH-1:P_FIFO_ALLOC_WIDTH]
== r_front_addr[P_FIFO_DEPTH_WIDTH-1:P_FIFO_ALLOC_WIDTH]));
assign almost_full_n = r_almost_full_n;
assign w_invalid_front_addr = {~r_front_addr[P_FIFO_DEPTH_WIDTH], r_front_addr[P_FIFO_DEPTH_WIDTH-1:P_FIFO_ALLOC_WIDTH]};
assign w_invalid_space = w_invalid_front_addr - r_rear_addr;
assign w_almost_full_n = (w_invalid_space > 8);
always @(posedge clk)
begin
r_almost_full_n <= w_almost_full_n;
end
assign empty_n = ~(r_front_addr[P_FIFO_DEPTH_WIDTH:P_FIFO_ALLOC_WIDTH]
== r_rear_addr[P_FIFO_DEPTH_WIDTH:P_FIFO_ALLOC_WIDTH]);
always @(posedge clk or negedge rst_n)
begin
if (rst_n == 0) begin
r_front_addr <= 0;
r_front_addr_p1 <= 1;
r_rear_addr <= 0;
end
else begin
if (rd_en == 1) begin
r_front_addr <= r_front_addr_p1;
r_front_addr_p1 <= r_front_addr_p1 + 1;
end
if (wr_en == 1) begin
r_rear_addr <= r_rear_addr + 1;
end
end
end
assign w_front_addr = (rd_en == 1) ? r_front_addr_p1[P_FIFO_DEPTH_WIDTH-1:0]
: r_front_addr[P_FIFO_DEPTH_WIDTH-1:0];
localparam LP_DEVICE = "7SERIES";
localparam LP_BRAM_SIZE = "36Kb";
localparam LP_DOB_REG = 0;
localparam LP_READ_WIDTH = P_FIFO_DATA_WIDTH/2;
localparam LP_WRITE_WIDTH = P_FIFO_DATA_WIDTH/2;
localparam LP_WRITE_MODE = "READ_FIRST";
localparam LP_WE_WIDTH = 8;
localparam LP_ADDR_TOTAL_WITDH = 9;
localparam LP_ADDR_ZERO_PAD_WITDH = LP_ADDR_TOTAL_WITDH - P_FIFO_DEPTH_WIDTH;
generate
wire [LP_ADDR_TOTAL_WITDH-1:0] rdaddr;
wire [LP_ADDR_TOTAL_WITDH-1:0] wraddr;
wire [LP_ADDR_ZERO_PAD_WITDH-1:0] zero_padding = 0;
if(LP_ADDR_ZERO_PAD_WITDH == 0) begin : calc_addr
assign rdaddr = w_front_addr[P_FIFO_DEPTH_WIDTH-1:0];
assign wraddr = r_rear_addr[P_FIFO_DEPTH_WIDTH-1:0];
end
else begin
assign rdaddr = {zero_padding[LP_ADDR_ZERO_PAD_WITDH-1:0], w_front_addr[P_FIFO_DEPTH_WIDTH-1:0]};
assign wraddr = {zero_padding[LP_ADDR_ZERO_PAD_WITDH-1:0], r_rear_addr[P_FIFO_DEPTH_WIDTH-1:0]};
end
endgenerate
BRAM_SDP_MACRO #(
.DEVICE (LP_DEVICE),
.BRAM_SIZE (LP_BRAM_SIZE),
.DO_REG (LP_DOB_REG),
.READ_WIDTH (LP_READ_WIDTH),
.WRITE_WIDTH (LP_WRITE_WIDTH),
.WRITE_MODE (LP_WRITE_MODE)
)
ramb36sdp_0(
.DO (rd_data[LP_READ_WIDTH-1:0]),
.DI (wr_data[LP_WRITE_WIDTH-1:0]),
.RDADDR (rdaddr),
.RDCLK (clk),
.RDEN (1'b1),
.REGCE (1'b1),
.RST (1'b0),
.WE ({LP_WE_WIDTH{1'b1}}),
.WRADDR (wraddr),
.WRCLK (clk),
.WREN (wr_en)
);
BRAM_SDP_MACRO #(
.DEVICE (LP_DEVICE),
.BRAM_SIZE (LP_BRAM_SIZE),
.DO_REG (LP_DOB_REG),
.READ_WIDTH (LP_READ_WIDTH),
.WRITE_WIDTH (LP_WRITE_WIDTH),
.WRITE_MODE (LP_WRITE_MODE)
)
ramb36sdp_1(
.DO (rd_data[P_FIFO_DATA_WIDTH-1:LP_READ_WIDTH]),
.DI (wr_data[P_FIFO_DATA_WIDTH-1:LP_WRITE_WIDTH]),
.RDADDR (rdaddr),
.RDCLK (clk),
.RDEN (1'b1),
.REGCE (1'b1),
.RST (1'b0),
.WE ({LP_WE_WIDTH{1'b1}}),
.WRADDR (wraddr),
.WRCLK (clk),
.WREN (wr_en)
);
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2003-2007 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc=0;
wire out;
reg in;
Genit g (.clk(clk), .value(in), .result(out));
always @ (posedge clk) begin
//$write("[%0t] cyc==%0d %x %x\n",$time, cyc, in, out);
cyc <= cyc + 1;
if (cyc==0) begin
// Setup
in <= 1'b1;
end
else if (cyc==1) begin
in <= 1'b0;
end
else if (cyc==2) begin
if (out != 1'b1) $stop;
end
else if (cyc==3) begin
if (out != 1'b0) $stop;
end
else if (cyc==9) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
//`define WAVES
`ifdef WAVES
initial begin
$dumpfile("obj_dir/t_gen_intdot/t_gen_intdot.vcd");
$dumpvars(12, t);
end
`endif
endmodule
module Generate (clk, value, result);
input clk;
input value;
output result;
reg Internal;
assign result = Internal ^ clk;
always @(posedge clk)
Internal <= #1 value;
endmodule
module Checker (clk, value);
input clk, value;
always @(posedge clk) begin
$write ("[%0t] value=%h\n", $time, value);
end
endmodule
module Test (clk, value, result);
input clk;
input value;
output result;
Generate gen (clk, value, result);
Checker chk (clk, gen.Internal);
endmodule
module Genit (clk, value, result);
input clk;
input value;
output result;
`ifndef ATSIM // else unsupported
`ifndef NC // else unsupported
`define WITH_FOR_GENVAR
`endif
`endif
`define WITH_GENERATE
`ifdef WITH_GENERATE
`ifndef WITH_FOR_GENVAR
genvar i;
`endif
generate
for (
`ifdef WITH_FOR_GENVAR
genvar
`endif
i = 0; i < 1; i = i + 1)
begin : foo
Test tt (clk, value, result);
end
endgenerate
`else
Test tt (clk, value, result);
`endif
wire Result2 = t.g.foo[0].tt.gen.Internal; // Works - Do not change!
always @ (posedge clk) begin
$write("[%0t] Result2 = %x\n", $time, Result2);
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2003-2007 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc=0;
wire out;
reg in;
Genit g (.clk(clk), .value(in), .result(out));
always @ (posedge clk) begin
//$write("[%0t] cyc==%0d %x %x\n",$time, cyc, in, out);
cyc <= cyc + 1;
if (cyc==0) begin
// Setup
in <= 1'b1;
end
else if (cyc==1) begin
in <= 1'b0;
end
else if (cyc==2) begin
if (out != 1'b1) $stop;
end
else if (cyc==3) begin
if (out != 1'b0) $stop;
end
else if (cyc==9) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
//`define WAVES
`ifdef WAVES
initial begin
$dumpfile("obj_dir/t_gen_intdot/t_gen_intdot.vcd");
$dumpvars(12, t);
end
`endif
endmodule
module Generate (clk, value, result);
input clk;
input value;
output result;
reg Internal;
assign result = Internal ^ clk;
always @(posedge clk)
Internal <= #1 value;
endmodule
module Checker (clk, value);
input clk, value;
always @(posedge clk) begin
$write ("[%0t] value=%h\n", $time, value);
end
endmodule
module Test (clk, value, result);
input clk;
input value;
output result;
Generate gen (clk, value, result);
Checker chk (clk, gen.Internal);
endmodule
module Genit (clk, value, result);
input clk;
input value;
output result;
`ifndef ATSIM // else unsupported
`ifndef NC // else unsupported
`define WITH_FOR_GENVAR
`endif
`endif
`define WITH_GENERATE
`ifdef WITH_GENERATE
`ifndef WITH_FOR_GENVAR
genvar i;
`endif
generate
for (
`ifdef WITH_FOR_GENVAR
genvar
`endif
i = 0; i < 1; i = i + 1)
begin : foo
Test tt (clk, value, result);
end
endgenerate
`else
Test tt (clk, value, result);
`endif
wire Result2 = t.g.foo[0].tt.gen.Internal; // Works - Do not change!
always @ (posedge clk) begin
$write("[%0t] Result2 = %x\n", $time, Result2);
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2003-2007 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc=0;
wire out;
reg in;
Genit g (.clk(clk), .value(in), .result(out));
always @ (posedge clk) begin
//$write("[%0t] cyc==%0d %x %x\n",$time, cyc, in, out);
cyc <= cyc + 1;
if (cyc==0) begin
// Setup
in <= 1'b1;
end
else if (cyc==1) begin
in <= 1'b0;
end
else if (cyc==2) begin
if (out != 1'b1) $stop;
end
else if (cyc==3) begin
if (out != 1'b0) $stop;
end
else if (cyc==9) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
//`define WAVES
`ifdef WAVES
initial begin
$dumpfile("obj_dir/t_gen_intdot/t_gen_intdot.vcd");
$dumpvars(12, t);
end
`endif
endmodule
module Generate (clk, value, result);
input clk;
input value;
output result;
reg Internal;
assign result = Internal ^ clk;
always @(posedge clk)
Internal <= #1 value;
endmodule
module Checker (clk, value);
input clk, value;
always @(posedge clk) begin
$write ("[%0t] value=%h\n", $time, value);
end
endmodule
module Test (clk, value, result);
input clk;
input value;
output result;
Generate gen (clk, value, result);
Checker chk (clk, gen.Internal);
endmodule
module Genit (clk, value, result);
input clk;
input value;
output result;
`ifndef ATSIM // else unsupported
`ifndef NC // else unsupported
`define WITH_FOR_GENVAR
`endif
`endif
`define WITH_GENERATE
`ifdef WITH_GENERATE
`ifndef WITH_FOR_GENVAR
genvar i;
`endif
generate
for (
`ifdef WITH_FOR_GENVAR
genvar
`endif
i = 0; i < 1; i = i + 1)
begin : foo
Test tt (clk, value, result);
end
endgenerate
`else
Test tt (clk, value, result);
`endif
wire Result2 = t.g.foo[0].tt.gen.Internal; // Works - Do not change!
always @ (posedge clk) begin
$write("[%0t] Result2 = %x\n", $time, Result2);
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2003-2007 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc=0;
wire out;
reg in;
Genit g (.clk(clk), .value(in), .result(out));
always @ (posedge clk) begin
//$write("[%0t] cyc==%0d %x %x\n",$time, cyc, in, out);
cyc <= cyc + 1;
if (cyc==0) begin
// Setup
in <= 1'b1;
end
else if (cyc==1) begin
in <= 1'b0;
end
else if (cyc==2) begin
if (out != 1'b1) $stop;
end
else if (cyc==3) begin
if (out != 1'b0) $stop;
end
else if (cyc==9) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
//`define WAVES
`ifdef WAVES
initial begin
$dumpfile("obj_dir/t_gen_intdot/t_gen_intdot.vcd");
$dumpvars(12, t);
end
`endif
endmodule
module Generate (clk, value, result);
input clk;
input value;
output result;
reg Internal;
assign result = Internal ^ clk;
always @(posedge clk)
Internal <= #1 value;
endmodule
module Checker (clk, value);
input clk, value;
always @(posedge clk) begin
$write ("[%0t] value=%h\n", $time, value);
end
endmodule
module Test (clk, value, result);
input clk;
input value;
output result;
Generate gen (clk, value, result);
Checker chk (clk, gen.Internal);
endmodule
module Genit (clk, value, result);
input clk;
input value;
output result;
`ifndef ATSIM // else unsupported
`ifndef NC // else unsupported
`define WITH_FOR_GENVAR
`endif
`endif
`define WITH_GENERATE
`ifdef WITH_GENERATE
`ifndef WITH_FOR_GENVAR
genvar i;
`endif
generate
for (
`ifdef WITH_FOR_GENVAR
genvar
`endif
i = 0; i < 1; i = i + 1)
begin : foo
Test tt (clk, value, result);
end
endgenerate
`else
Test tt (clk, value, result);
`endif
wire Result2 = t.g.foo[0].tt.gen.Internal; // Works - Do not change!
always @ (posedge clk) begin
$write("[%0t] Result2 = %x\n", $time, Result2);
end
endmodule
|
/*
----------------------------------------------------------------------------------
Copyright (c) 2013-2014
Embedded and Network Computing Lab.
Open SSD Project
Hanyang University
All rights reserved.
----------------------------------------------------------------------------------
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this source code
must display the following acknowledgement:
This product includes source code developed
by the Embedded and Network Computing Lab. and the Open SSD Project.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------------------
http://enclab.hanyang.ac.kr/
http://www.openssd-project.org/
http://www.hanyang.ac.kr/
----------------------------------------------------------------------------------
*/
`timescale 1ns / 1ps
`include "def_nvme.vh"
module pcie_cntl_reg # (
parameter C_PCIE_DATA_WIDTH = 128,
parameter C_PCIE_ADDR_WIDTH = 36
)
(
input pcie_user_clk,
input pcie_user_rst_n,
output rx_np_ok,
output rx_np_req,
output mreq_fifo_rd_en,
input [C_PCIE_DATA_WIDTH-1:0] mreq_fifo_rd_data,
input mreq_fifo_empty_n,
output tx_cpld_req,
output [7:0] tx_cpld_tag,
output [15:0] tx_cpld_req_id,
output [11:2] tx_cpld_len,
output [11:0] tx_cpld_bc,
output [6:0] tx_cpld_laddr,
output [63:0] tx_cpld_data,
input tx_cpld_req_ack,
output nvme_cc_en,
output [1:0] nvme_cc_shn,
input [1:0] nvme_csts_shst,
input nvme_csts_rdy,
output nvme_intms_ivms,
output nvme_intmc_ivmc,
input cq_irq_status,
input [8:0] sq_rst_n,
input [8:0] cq_rst_n,
output [C_PCIE_ADDR_WIDTH-1:2] admin_sq_bs_addr,
output [C_PCIE_ADDR_WIDTH-1:2] admin_cq_bs_addr,
output [7:0] admin_sq_size,
output [7:0] admin_cq_size,
output [7:0] admin_sq_tail_ptr,
output [7:0] io_sq1_tail_ptr,
output [7:0] io_sq2_tail_ptr,
output [7:0] io_sq3_tail_ptr,
output [7:0] io_sq4_tail_ptr,
output [7:0] io_sq5_tail_ptr,
output [7:0] io_sq6_tail_ptr,
output [7:0] io_sq7_tail_ptr,
output [7:0] io_sq8_tail_ptr,
output [7:0] admin_cq_head_ptr,
output [7:0] io_cq1_head_ptr,
output [7:0] io_cq2_head_ptr,
output [7:0] io_cq3_head_ptr,
output [7:0] io_cq4_head_ptr,
output [7:0] io_cq5_head_ptr,
output [7:0] io_cq6_head_ptr,
output [7:0] io_cq7_head_ptr,
output [7:0] io_cq8_head_ptr,
output [8:0] cq_head_update
);
localparam S_IDLE = 9'b000000001;
localparam S_PCIE_RD_HEAD = 9'b000000010;
localparam S_PCIE_ADDR = 9'b000000100;
localparam S_PCIE_WAIT_WR_DATA = 9'b000001000;
localparam S_PCIE_WR_DATA = 9'b000010000;
localparam S_PCIE_MWR = 9'b000100000;
localparam S_PCIE_MRD = 9'b001000000;
localparam S_PCIE_CPLD_REQ = 9'b010000000;
localparam S_PCIE_CPLD_ACK = 9'b100000000;
reg [8:0] cur_state;
reg [8:0] next_state;
reg r_intms_ivms;
reg r_intmc_ivmc;
reg r_cq_irq_status;
reg [23:20] r_cc_iocqes;
reg [19:16] r_cc_iosqes;
reg [15:14] r_cc_shn;
reg [13:11] r_cc_asm;
reg [10:7] r_cc_mps;
reg [6:4] r_cc_ccs;
reg [0:0] r_cc_en;
reg [23:16] r_aqa_acqs;
reg [7:0] r_aqa_asqs;
reg [C_PCIE_ADDR_WIDTH-1:2] r_asq_asqb;
reg [C_PCIE_ADDR_WIDTH-1:2] r_acq_acqb;
reg [7:0] r_reg_sq0tdbl;
reg [7:0] r_reg_sq1tdbl;
reg [7:0] r_reg_sq2tdbl;
reg [7:0] r_reg_sq3tdbl;
reg [7:0] r_reg_sq4tdbl;
reg [7:0] r_reg_sq5tdbl;
reg [7:0] r_reg_sq6tdbl;
reg [7:0] r_reg_sq7tdbl;
reg [7:0] r_reg_sq8tdbl;
reg [7:0] r_reg_cq0hdbl;
reg [7:0] r_reg_cq1hdbl;
reg [7:0] r_reg_cq2hdbl;
reg [7:0] r_reg_cq3hdbl;
reg [7:0] r_reg_cq4hdbl;
reg [7:0] r_reg_cq5hdbl;
reg [7:0] r_reg_cq6hdbl;
reg [7:0] r_reg_cq7hdbl;
reg [7:0] r_reg_cq8hdbl;
reg [8:0] r_cq_head_update;
wire [31:0] w_pcie_head0;
wire [31:0] w_pcie_head1;
wire [31:0] w_pcie_head2;
wire [31:0] w_pcie_head3;
reg [31:0] r_pcie_head2;
reg [31:0] r_pcie_head3;
wire [2:0] w_mreq_head_fmt;
//wire [4:0] w_mreq_head_type;
//wire [2:0] w_mreq_head_tc;
//wire w_mreq_head_attr1;
//wire w_mreq_head_th;
//wire w_mreq_head_td;
//wire w_mreq_head_ep;
//wire [1:0] w_mreq_head_attr0;
//wire [1:0] w_mreq_head_at;
wire [9:0] w_mreq_head_len;
wire [7:0] w_mreq_head_req_bus_num;
wire [4:0] w_mreq_head_req_dev_num;
wire [2:0] w_mreq_head_req_func_num;
wire [15:0] w_mreq_head_req_id;
wire [7:0] w_mreq_head_tag;
wire [3:0] w_mreq_head_last_be;
wire [3:0] w_mreq_head_1st_be;
//reg [4:0] r_rx_np_req_cnt;
//reg r_rx_np_req;
wire w_mwr;
wire w_4dw;
reg [2:0] r_mreq_head_fmt;
reg [9:0] r_mreq_head_len;
reg [15:0] r_mreq_head_req_id;
reg [7:0] r_mreq_head_tag;
reg [3:0] r_mreq_head_last_be;
reg [3:0] r_mreq_head_1st_be;
reg [12:0] r_mreq_addr;
reg [63:0] r_mreq_data;
reg [3:0] r_cpld_bc;
reg r_lbytes_en;
reg r_hbytes_en;
reg r_wr_reg;
reg r_wr_doorbell;
reg r_tx_cpld_req;
reg [63:0] r_rd_data;
reg [63:0] r_rd_reg;
reg [63:0] r_rd_doorbell;
reg r_mreq_fifo_rd_en;
wire [8:0] w_sq_rst_n;
wire [8:0] w_cq_rst_n;
//pcie mrd or mwr, memory rd/wr request
assign w_pcie_head0 = mreq_fifo_rd_data[31:0];
assign w_pcie_head1 = mreq_fifo_rd_data[63:32];
assign w_pcie_head2 = mreq_fifo_rd_data[95:64];
assign w_pcie_head3 = mreq_fifo_rd_data[127:96];
assign w_mreq_head_fmt = w_pcie_head0[31:29];
//assign w_mreq_head_type = w_pcie_head0[28:24];
//assign w_mreq_head_tc = w_pcie_head0[22:20];
//assign w_mreq_head_attr1 = w_pcie_head0[18];
//assign w_mreq_head_th = w_pcie_head0[16];
//assign w_mreq_head_td = w_pcie_head0[15];
//assign w_mreq_head_ep = w_pcie_head0[14];
//assign w_mreq_head_attr0 = w_pcie_head0[13:12];
//assign w_mreq_head_at = w_pcie_head0[11:10];
assign w_mreq_head_len = w_pcie_head0[9:0];
assign w_mreq_head_req_bus_num = w_pcie_head1[31:24];
assign w_mreq_head_req_dev_num = w_pcie_head1[23:19];
assign w_mreq_head_req_func_num = w_pcie_head1[18:16];
assign w_mreq_head_req_id = {w_mreq_head_req_bus_num, w_mreq_head_req_dev_num, w_mreq_head_req_func_num};
assign w_mreq_head_tag = w_pcie_head1[15:8];
assign w_mreq_head_last_be = w_pcie_head1[7:4];
assign w_mreq_head_1st_be = w_pcie_head1[3:0];
assign w_mwr = r_mreq_head_fmt[1];
assign w_4dw = r_mreq_head_fmt[0];
assign tx_cpld_req = r_tx_cpld_req;
assign tx_cpld_tag = r_mreq_head_tag;
assign tx_cpld_req_id = r_mreq_head_req_id;
assign tx_cpld_len = {8'b0, r_mreq_head_len[1:0]};
assign tx_cpld_bc = {8'b0, r_cpld_bc};
assign tx_cpld_laddr = r_mreq_addr[6:0];
assign tx_cpld_data = (r_mreq_addr[2] == 1) ? {32'b0, r_rd_data[63:32]} : r_rd_data;
assign rx_np_ok = 1'b1;
assign rx_np_req = 1'b1;
assign mreq_fifo_rd_en = r_mreq_fifo_rd_en;
assign admin_sq_bs_addr = r_asq_asqb;
assign admin_cq_bs_addr = r_acq_acqb;
assign nvme_cc_en = r_cc_en;
assign nvme_cc_shn = r_cc_shn;
assign nvme_intms_ivms = r_intms_ivms;
assign nvme_intmc_ivmc = r_intmc_ivmc;
assign admin_sq_size = r_aqa_asqs;
assign admin_cq_size = r_aqa_acqs;
assign admin_sq_tail_ptr = r_reg_sq0tdbl;
assign io_sq1_tail_ptr = r_reg_sq1tdbl;
assign io_sq2_tail_ptr = r_reg_sq2tdbl;
assign io_sq3_tail_ptr = r_reg_sq3tdbl;
assign io_sq4_tail_ptr = r_reg_sq4tdbl;
assign io_sq5_tail_ptr = r_reg_sq5tdbl;
assign io_sq6_tail_ptr = r_reg_sq6tdbl;
assign io_sq7_tail_ptr = r_reg_sq7tdbl;
assign io_sq8_tail_ptr = r_reg_sq8tdbl;
assign admin_cq_head_ptr = r_reg_cq0hdbl;
assign io_cq1_head_ptr = r_reg_cq1hdbl;
assign io_cq2_head_ptr = r_reg_cq2hdbl;
assign io_cq3_head_ptr = r_reg_cq3hdbl;
assign io_cq4_head_ptr = r_reg_cq4hdbl;
assign io_cq5_head_ptr = r_reg_cq5hdbl;
assign io_cq6_head_ptr = r_reg_cq6hdbl;
assign io_cq7_head_ptr = r_reg_cq7hdbl;
assign io_cq8_head_ptr = r_reg_cq8hdbl;
assign cq_head_update = r_cq_head_update;
always @ (posedge pcie_user_clk)
begin
r_cq_irq_status <= cq_irq_status;
end
always @ (posedge pcie_user_clk or negedge pcie_user_rst_n)
begin
if(pcie_user_rst_n == 0)
cur_state <= S_IDLE;
else
cur_state <= next_state;
end
always @ (*)
begin
case(cur_state)
S_IDLE: begin
if(mreq_fifo_empty_n == 1)
next_state <= S_PCIE_RD_HEAD;
else
next_state <= S_IDLE;
end
S_PCIE_RD_HEAD: begin
next_state <= S_PCIE_ADDR;
end
S_PCIE_ADDR: begin
if(w_mwr == 1) begin
if(w_4dw == 1 || r_mreq_head_len[1] == 1) begin
if(mreq_fifo_empty_n == 1)
next_state <= S_PCIE_WR_DATA;
else
next_state <= S_PCIE_WAIT_WR_DATA;
end
else
next_state <= S_PCIE_MWR;
end
else begin
next_state <= S_PCIE_MRD;
end
end
S_PCIE_WAIT_WR_DATA: begin
if(mreq_fifo_empty_n == 1)
next_state <= S_PCIE_WR_DATA;
else
next_state <= S_PCIE_WAIT_WR_DATA;
end
S_PCIE_WR_DATA: begin
next_state <= S_PCIE_MWR;
end
S_PCIE_MWR: begin
next_state <= S_IDLE;
end
S_PCIE_MRD: begin
next_state <= S_PCIE_CPLD_REQ;
end
S_PCIE_CPLD_REQ: begin
next_state <= S_PCIE_CPLD_ACK;
end
S_PCIE_CPLD_ACK: begin
if(tx_cpld_req_ack == 1)
next_state <= S_IDLE;
else
next_state <= S_PCIE_CPLD_ACK;
end
default: begin
next_state <= S_IDLE;
end
endcase
end
always @ (posedge pcie_user_clk)
begin
case(cur_state)
S_IDLE: begin
end
S_PCIE_RD_HEAD: begin
r_mreq_head_fmt <= w_mreq_head_fmt;
r_mreq_head_len <= w_mreq_head_len;
r_mreq_head_req_id <= w_mreq_head_req_id;
r_mreq_head_tag <= w_mreq_head_tag;
r_mreq_head_last_be <= w_mreq_head_last_be;
r_mreq_head_1st_be <= w_mreq_head_1st_be;
r_pcie_head2 <= w_pcie_head2;
r_pcie_head3 <= w_pcie_head3;
end
S_PCIE_ADDR: begin
if(w_4dw == 1) begin
r_mreq_addr[12:2] <= r_pcie_head3[12:2];
r_lbytes_en <= ~r_pcie_head3[2] & (r_pcie_head3[11:7] == 0);
r_hbytes_en <= (r_pcie_head3[2] | r_mreq_head_len[1]) & (r_pcie_head3[11:7] == 0);
end
else begin
r_mreq_addr[12:2] <= r_pcie_head2[12:2];
r_lbytes_en <= ~r_pcie_head2[2] & (r_pcie_head2[11:7] == 0);;
r_hbytes_en <= (r_pcie_head2[2] | r_mreq_head_len[1]) & (r_pcie_head2[11:7] == 0);
if(r_pcie_head2[2] == 1)
r_mreq_data[63:32] <= {r_pcie_head3[7:0], r_pcie_head3[15:8], r_pcie_head3[23:16], r_pcie_head3[31:24]};
else
r_mreq_data[31:0] <= {r_pcie_head3[7:0], r_pcie_head3[15:8], r_pcie_head3[23:16], r_pcie_head3[31:24]};
end
end
S_PCIE_WAIT_WR_DATA: begin
end
S_PCIE_WR_DATA: begin
if(w_4dw == 1) begin
if(r_mreq_addr[2] == 1)
r_mreq_data[63:32] <= {mreq_fifo_rd_data[7:0], mreq_fifo_rd_data[15:8], mreq_fifo_rd_data[23:16], mreq_fifo_rd_data[31:24]};
else begin
r_mreq_data[31:0] <= {mreq_fifo_rd_data[7:0], mreq_fifo_rd_data[15:8], mreq_fifo_rd_data[23:16], mreq_fifo_rd_data[31:24]};
r_mreq_data[63:32] <= {mreq_fifo_rd_data[39:32], mreq_fifo_rd_data[47:40], mreq_fifo_rd_data[55:48], mreq_fifo_rd_data[63:56]};
end
end
else
r_mreq_data[63:32] <= {mreq_fifo_rd_data[7:0], mreq_fifo_rd_data[15:8], mreq_fifo_rd_data[23:16], mreq_fifo_rd_data[31:24]};
end
S_PCIE_MWR: begin
end
S_PCIE_MRD: begin
if(r_lbytes_en | r_hbytes_en) begin
if(r_mreq_addr[12] == 1) begin
r_rd_data[31:0] <= {r_rd_doorbell[7:0], r_rd_doorbell[15:8], r_rd_doorbell[23:16], r_rd_doorbell[31:24]};
r_rd_data[63:32] <= {r_rd_doorbell[39:32], r_rd_doorbell[47:40], r_rd_doorbell[55:48], r_rd_doorbell[63:56]};
end
else begin
r_rd_data[31:0] <= {r_rd_reg[7:0], r_rd_reg[15:8], r_rd_reg[23:16], r_rd_reg[31:24]};
r_rd_data[63:32] <= {r_rd_reg[39:32], r_rd_reg[47:40], r_rd_reg[55:48], r_rd_reg[63:56]};
end
end
else
r_rd_data <= 64'b0;
if(r_mreq_head_1st_be[0] == 1)
r_mreq_addr[1:0] <= 2'b00;
else if(r_mreq_head_1st_be[1] == 1)
r_mreq_addr[1:0] <= 2'b01;
else if(r_mreq_head_1st_be[2] == 1)
r_mreq_addr[1:0] <= 2'b10;
else
r_mreq_addr[1:0] <= 2'b11;
r_cpld_bc <= ((r_mreq_head_1st_be[0] + r_mreq_head_1st_be[1])
+ (r_mreq_head_1st_be[2] + r_mreq_head_1st_be[3]))
+ ((r_mreq_head_last_be[0] + r_mreq_head_last_be[1])
+ (r_mreq_head_last_be[2] + r_mreq_head_last_be[3]));
end
S_PCIE_CPLD_REQ: begin
end
S_PCIE_CPLD_ACK: begin
end
default: begin
end
endcase
end
always @ (*)
begin
case(cur_state)
S_IDLE: begin
r_mreq_fifo_rd_en <= 0;
r_wr_reg <= 0;
r_wr_doorbell <= 0;
r_tx_cpld_req <= 0;
//r_rx_np_req <= 0;
end
S_PCIE_RD_HEAD: begin
r_mreq_fifo_rd_en <= 1;
r_wr_reg <= 0;
r_wr_doorbell <= 0;
r_tx_cpld_req <= 0;
//r_rx_np_req <= 0;
end
S_PCIE_ADDR: begin
r_mreq_fifo_rd_en <= 0;
r_wr_reg <= 0;
r_wr_doorbell <= 0;
r_tx_cpld_req <= 0;
//r_rx_np_req <= 0;
end
S_PCIE_WAIT_WR_DATA: begin
r_mreq_fifo_rd_en <= 0;
r_wr_reg <= 0;
r_wr_doorbell <= 0;
r_tx_cpld_req <= 0;
//r_rx_np_req <= 0;
end
S_PCIE_WR_DATA: begin
r_mreq_fifo_rd_en <= 1;
r_wr_reg <= 0;
r_wr_doorbell <= 0;
r_tx_cpld_req <= 0;
//r_rx_np_req <= 0;
end
S_PCIE_MWR: begin
r_mreq_fifo_rd_en <= 0;
r_wr_reg <= ~r_mreq_addr[12];
r_wr_doorbell <= r_mreq_addr[12];
r_tx_cpld_req <= 0;
//r_rx_np_req <= 0;
end
S_PCIE_MRD: begin
r_mreq_fifo_rd_en <= 0;
r_wr_reg <= 0;
r_wr_doorbell <= 0;
r_tx_cpld_req <= 0;
//r_rx_np_req <= 0;
end
S_PCIE_CPLD_REQ: begin
r_mreq_fifo_rd_en <= 0;
r_wr_reg <= 0;
r_wr_doorbell <= 0;
r_tx_cpld_req <= 1;
//r_rx_np_req <= 1;
end
S_PCIE_CPLD_ACK: begin
r_mreq_fifo_rd_en <= 0;
r_wr_reg <= 0;
r_wr_doorbell <= 0;
r_tx_cpld_req <= 0;
//r_rx_np_req <= 0;
end
default: begin
r_mreq_fifo_rd_en <= 0;
r_wr_reg <= 0;
r_wr_doorbell <= 0;
r_tx_cpld_req <= 0;
//r_rx_np_req <= 0;
end
endcase
end
always @ (posedge pcie_user_clk or negedge pcie_user_rst_n)
begin
if(pcie_user_rst_n == 0) begin
r_intms_ivms <= 0;
r_intmc_ivmc <= 0;
{r_cc_iocqes, r_cc_iosqes, r_cc_shn, r_cc_asm, r_cc_mps, r_cc_ccs, r_cc_en} <= 0;
{r_aqa_acqs, r_aqa_asqs} <= 0;
r_asq_asqb <= 0;
r_acq_acqb <= 0;
end
else begin
if(r_wr_reg == 1) begin
if(r_lbytes_en == 1) begin
case(r_mreq_addr[6:3]) // synthesis parallel_case
4'h5: r_asq_asqb[31:2] <= r_mreq_data[31:2];
4'h6: r_acq_acqb[31:2] <= r_mreq_data[31:2];
endcase
if(r_mreq_addr[6:3] == 4'h1)
r_intmc_ivmc <= r_mreq_data[0];
else
r_intmc_ivmc <= 0;
end
if(r_hbytes_en == 1) begin
case(r_mreq_addr[6:3]) // synthesis parallel_case
4'h2: {r_cc_iocqes, r_cc_iosqes, r_cc_shn, r_cc_asm, r_cc_mps, r_cc_ccs, r_cc_en}
<= {r_mreq_data[55:52], r_mreq_data[51:48], r_mreq_data[47:46], r_mreq_data[45:43], r_mreq_data[42:39], r_mreq_data[38:36], r_mreq_data[32]};
4'h4: {r_aqa_acqs, r_aqa_asqs} <= {r_mreq_data[55:48], r_mreq_data[39:32]};
4'h5: r_asq_asqb[C_PCIE_ADDR_WIDTH-1:32] <= r_mreq_data[C_PCIE_ADDR_WIDTH-1:32];
4'h6: r_acq_acqb[C_PCIE_ADDR_WIDTH-1:32] <= r_mreq_data[C_PCIE_ADDR_WIDTH-1:32];
endcase
if(r_mreq_addr[6:3] == 4'h1)
r_intms_ivms <= r_mreq_data[32];
else
r_intms_ivms <= 0;
end
end
else begin
r_intms_ivms <= 0;
r_intmc_ivmc <= 0;
end
end
end
assign w_sq_rst_n[0] = pcie_user_rst_n & sq_rst_n[0];
assign w_sq_rst_n[1] = pcie_user_rst_n & sq_rst_n[1];
assign w_sq_rst_n[2] = pcie_user_rst_n & sq_rst_n[2];
assign w_sq_rst_n[3] = pcie_user_rst_n & sq_rst_n[3];
assign w_sq_rst_n[4] = pcie_user_rst_n & sq_rst_n[4];
assign w_sq_rst_n[5] = pcie_user_rst_n & sq_rst_n[5];
assign w_sq_rst_n[6] = pcie_user_rst_n & sq_rst_n[6];
assign w_sq_rst_n[7] = pcie_user_rst_n & sq_rst_n[7];
assign w_sq_rst_n[8] = pcie_user_rst_n & sq_rst_n[8];
always @ (posedge pcie_user_clk or negedge w_sq_rst_n[0])
begin
if(w_sq_rst_n[0] == 0) begin
r_reg_sq0tdbl <= 0;
end
else begin
if((r_wr_doorbell & r_lbytes_en & (r_mreq_addr[6:3] == 4'h0)) == 1)
r_reg_sq0tdbl <= r_mreq_data[7:0];
end
end
always @ (posedge pcie_user_clk or negedge w_sq_rst_n[1])
begin
if(w_sq_rst_n[1] == 0) begin
r_reg_sq1tdbl <= 0;
end
else begin
if((r_wr_doorbell & r_lbytes_en & (r_mreq_addr[6:3] == 4'h1)) == 1)
r_reg_sq1tdbl <= r_mreq_data[7:0];
end
end
always @ (posedge pcie_user_clk or negedge w_sq_rst_n[2])
begin
if(w_sq_rst_n[2] == 0) begin
r_reg_sq2tdbl <= 0;
end
else begin
if((r_wr_doorbell & r_lbytes_en & (r_mreq_addr[6:3] == 4'h2)) == 1)
r_reg_sq2tdbl <= r_mreq_data[7:0];
end
end
always @ (posedge pcie_user_clk or negedge w_sq_rst_n[3])
begin
if(w_sq_rst_n[3] == 0) begin
r_reg_sq3tdbl <= 0;
end
else begin
if((r_wr_doorbell & r_lbytes_en & (r_mreq_addr[6:3] == 4'h3)) == 1)
r_reg_sq3tdbl <= r_mreq_data[7:0];
end
end
always @ (posedge pcie_user_clk or negedge w_sq_rst_n[4])
begin
if(w_sq_rst_n[4] == 0) begin
r_reg_sq4tdbl <= 0;
end
else begin
if((r_wr_doorbell & r_lbytes_en & (r_mreq_addr[6:3] == 4'h4)) == 1)
r_reg_sq4tdbl <= r_mreq_data[7:0];
end
end
always @ (posedge pcie_user_clk or negedge w_sq_rst_n[5])
begin
if(w_sq_rst_n[5] == 0) begin
r_reg_sq5tdbl <= 0;
end
else begin
if((r_wr_doorbell & r_lbytes_en & (r_mreq_addr[6:3] == 4'h5)) == 1)
r_reg_sq5tdbl <= r_mreq_data[7:0];
end
end
always @ (posedge pcie_user_clk or negedge w_sq_rst_n[6])
begin
if(w_sq_rst_n[6] == 0) begin
r_reg_sq6tdbl <= 0;
end
else begin
if((r_wr_doorbell & r_lbytes_en & (r_mreq_addr[6:3] == 4'h6)) == 1)
r_reg_sq6tdbl <= r_mreq_data[7:0];
end
end
always @ (posedge pcie_user_clk or negedge w_sq_rst_n[7])
begin
if(w_sq_rst_n[7] == 0) begin
r_reg_sq7tdbl <= 0;
end
else begin
if((r_wr_doorbell & r_lbytes_en & (r_mreq_addr[6:3] == 4'h7)) == 1)
r_reg_sq7tdbl <= r_mreq_data[7:0];
end
end
always @ (posedge pcie_user_clk or negedge w_sq_rst_n[8])
begin
if(w_sq_rst_n[8] == 0) begin
r_reg_sq8tdbl <= 0;
end
else begin
if((r_wr_doorbell & r_lbytes_en & (r_mreq_addr[6:3] == 4'h8)) == 1)
r_reg_sq8tdbl <= r_mreq_data[7:0];
end
end
assign w_cq_rst_n[0] = pcie_user_rst_n & cq_rst_n[0];
assign w_cq_rst_n[1] = pcie_user_rst_n & cq_rst_n[1];
assign w_cq_rst_n[2] = pcie_user_rst_n & cq_rst_n[2];
assign w_cq_rst_n[3] = pcie_user_rst_n & cq_rst_n[3];
assign w_cq_rst_n[4] = pcie_user_rst_n & cq_rst_n[4];
assign w_cq_rst_n[5] = pcie_user_rst_n & cq_rst_n[5];
assign w_cq_rst_n[6] = pcie_user_rst_n & cq_rst_n[6];
assign w_cq_rst_n[7] = pcie_user_rst_n & cq_rst_n[7];
assign w_cq_rst_n[8] = pcie_user_rst_n & cq_rst_n[8];
always @ (posedge pcie_user_clk or negedge w_cq_rst_n[0])
begin
if(w_cq_rst_n[0] == 0) begin
r_reg_cq0hdbl <= 0;
r_cq_head_update[0] <= 0;
end
else begin
if((r_wr_doorbell & r_hbytes_en & (r_mreq_addr[6:3] == 4'h0)) == 1) begin
r_reg_cq0hdbl <= r_mreq_data[39:32];
r_cq_head_update[0] <= 1;
end
else
r_cq_head_update[0] <= 0;
end
end
always @ (posedge pcie_user_clk or negedge w_cq_rst_n[1])
begin
if(w_cq_rst_n[1] == 0) begin
r_reg_cq1hdbl <= 0;
r_cq_head_update[1] <= 0;
end
else begin
if((r_wr_doorbell & r_hbytes_en & (r_mreq_addr[6:3] == 4'h1)) == 1) begin
r_reg_cq1hdbl <= r_mreq_data[39:32];
r_cq_head_update[1] <= 1;
end
else
r_cq_head_update[1] <= 0;
end
end
always @ (posedge pcie_user_clk or negedge w_cq_rst_n[2])
begin
if(w_cq_rst_n[2] == 0) begin
r_reg_cq2hdbl <= 0;
r_cq_head_update[2] <= 0;
end
else begin
if((r_wr_doorbell & r_hbytes_en & (r_mreq_addr[6:3] == 4'h2)) == 1) begin
r_reg_cq2hdbl <= r_mreq_data[39:32];
r_cq_head_update[2] <= 1;
end
else
r_cq_head_update[2] <= 0;
end
end
always @ (posedge pcie_user_clk or negedge w_cq_rst_n[3])
begin
if(w_cq_rst_n[3] == 0) begin
r_reg_cq3hdbl <= 0;
r_cq_head_update[3] <= 0;
end
else begin
if((r_wr_doorbell & r_hbytes_en & (r_mreq_addr[6:3] == 4'h3)) == 1) begin
r_reg_cq3hdbl <= r_mreq_data[39:32];
r_cq_head_update[3] <= 1;
end
else
r_cq_head_update[3] <= 0;
end
end
always @ (posedge pcie_user_clk or negedge w_cq_rst_n[4])
begin
if(w_cq_rst_n[4] == 0) begin
r_reg_cq4hdbl <= 0;
r_cq_head_update[4] <= 0;
end
else begin
if((r_wr_doorbell & r_hbytes_en & (r_mreq_addr[6:3] == 4'h4)) == 1) begin
r_reg_cq4hdbl <= r_mreq_data[39:32];
r_cq_head_update[4] <= 1;
end
else
r_cq_head_update[4] <= 0;
end
end
always @ (posedge pcie_user_clk or negedge w_cq_rst_n[5])
begin
if(w_cq_rst_n[5] == 0) begin
r_reg_cq5hdbl <= 0;
r_cq_head_update[5] <= 0;
end
else begin
if((r_wr_doorbell & r_hbytes_en & (r_mreq_addr[6:3] == 4'h5)) == 1) begin
r_reg_cq5hdbl <= r_mreq_data[39:32];
r_cq_head_update[5] <= 1;
end
else
r_cq_head_update[5] <= 0;
end
end
always @ (posedge pcie_user_clk or negedge w_cq_rst_n[6])
begin
if(w_cq_rst_n[6] == 0) begin
r_reg_cq6hdbl <= 0;
r_cq_head_update[6] <= 0;
end
else begin
if((r_wr_doorbell & r_hbytes_en & (r_mreq_addr[6:3] == 4'h6)) == 1) begin
r_reg_cq6hdbl <= r_mreq_data[39:32];
r_cq_head_update[6] <= 1;
end
else
r_cq_head_update[6] <= 0;
end
end
always @ (posedge pcie_user_clk or negedge w_cq_rst_n[7])
begin
if(w_cq_rst_n[7] == 0) begin
r_reg_cq7hdbl <= 0;
r_cq_head_update[7] <= 0;
end
else begin
if((r_wr_doorbell & r_hbytes_en & (r_mreq_addr[6:3] == 4'h7)) == 1) begin
r_reg_cq7hdbl <= r_mreq_data[39:32];
r_cq_head_update[7] <= 1;
end
else
r_cq_head_update[7] <= 0;
end
end
always @ (posedge pcie_user_clk or negedge w_cq_rst_n[8])
begin
if(w_cq_rst_n[8] == 0) begin
r_reg_cq8hdbl <= 0;
r_cq_head_update[8] <= 0;
end
else begin
if((r_wr_doorbell & r_hbytes_en & (r_mreq_addr[6:3] == 4'h8)) == 1) begin
r_reg_cq8hdbl <= r_mreq_data[39:32];
r_cq_head_update[8] <= 1;
end
else
r_cq_head_update[8] <= 0;
end
end
always @ (*)
begin
case(r_mreq_addr[6:3]) // synthesis parallel_case
4'h0: r_rd_reg <= {8'h0, `D_CAP_MPSMAX, `D_CAP_MPSMIN, 3'h0, `D_CAP_CSS, `D_CAP_NSSRS, `D_CAP_DSTRD, `D_CAP_TO, 5'h0, `D_CAP_AMS, `D_CAP_CQR, `D_CAP_MQES};
4'h1: r_rd_reg <= {31'b0, r_cq_irq_status, `D_VS_MJR, `D_VS_MNR, 8'b0};
4'h2: r_rd_reg <= {8'b0, r_cc_iocqes, r_cc_iosqes, r_cc_shn, r_cc_asm, r_cc_mps, r_cc_ccs, 3'b0, r_cc_en, 31'b0, r_cq_irq_status};
4'h3: r_rd_reg <= {28'b0, nvme_csts_shst, 1'b0, nvme_csts_rdy, 32'b0};
4'h4: r_rd_reg <= {8'b0, r_aqa_acqs, 8'b0, r_aqa_asqs, 32'b0};
4'h5: r_rd_reg <= {26'b0, r_asq_asqb, 2'b0};
4'h6: r_rd_reg <= {26'b0, r_acq_acqb, 2'b0};
default: r_rd_reg <= 64'b0;
endcase
end
always @ (*)
begin
case(r_mreq_addr[6:3]) // synthesis parallel_case
4'h0: r_rd_doorbell <= {24'b0, r_reg_cq0hdbl, 24'b0, r_reg_sq0tdbl};
4'h1: r_rd_doorbell <= {24'b0, r_reg_cq1hdbl, 24'b0, r_reg_sq1tdbl};
4'h2: r_rd_doorbell <= {24'b0, r_reg_cq2hdbl, 24'b0, r_reg_sq2tdbl};
4'h3: r_rd_doorbell <= {24'b0, r_reg_cq3hdbl, 24'b0, r_reg_sq3tdbl};
4'h4: r_rd_doorbell <= {24'b0, r_reg_cq4hdbl, 24'b0, r_reg_sq4tdbl};
4'h5: r_rd_doorbell <= {24'b0, r_reg_cq5hdbl, 24'b0, r_reg_sq5tdbl};
4'h6: r_rd_doorbell <= {24'b0, r_reg_cq6hdbl, 24'b0, r_reg_sq6tdbl};
4'h7: r_rd_doorbell <= {24'b0, r_reg_cq7hdbl, 24'b0, r_reg_sq7tdbl};
4'h8: r_rd_doorbell <= {24'b0, r_reg_cq8hdbl, 24'b0, r_reg_sq8tdbl};
default: r_rd_doorbell <= 64'b0;
endcase
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2010 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
rst_sync_l, rst_both_l, rst_async_l, d, clk
);
/*AUTOINPUT*/
// Beginning of automatic inputs (from unused autoinst inputs)
input clk; // To sub1 of sub1.v, ...
input d; // To sub1 of sub1.v, ...
input rst_async_l; // To sub2 of sub2.v
input rst_both_l; // To sub1 of sub1.v, ...
input rst_sync_l; // To sub1 of sub1.v
// End of automatics
sub1 sub1 (/*AUTOINST*/
// Inputs
.clk (clk),
.rst_both_l (rst_both_l),
.rst_sync_l (rst_sync_l),
.d (d));
sub2 sub2 (/*AUTOINST*/
// Inputs
.clk (clk),
.rst_both_l (rst_both_l),
.rst_async_l (rst_async_l),
.d (d));
endmodule
module sub1 (/*AUTOARG*/
// Inputs
clk, rst_both_l, rst_sync_l, d
);
input clk;
input rst_both_l;
input rst_sync_l;
//input rst_async_l;
input d;
reg q1;
reg q2;
always @(posedge clk) begin
if (~rst_sync_l) begin
/*AUTORESET*/
// Beginning of autoreset for uninitialized flops
q1 <= 1'h0;
// End of automatics
end else begin
q1 <= d;
end
end
always @(posedge clk) begin
q2 <= (~rst_both_l) ? 1'b0 : d;
if (0 && q1 && q2) ;
end
endmodule
module sub2 (/*AUTOARG*/
// Inputs
clk, rst_both_l, rst_async_l, d
);
input clk;
input rst_both_l;
//input rst_sync_l;
input rst_async_l;
input d;
reg q1;
reg q2;
reg q3;
always @(posedge clk or negedge rst_async_l) begin
if (~rst_async_l) begin
/*AUTORESET*/
// Beginning of autoreset for uninitialized flops
q1 <= 1'h0;
// End of automatics
end else begin
q1 <= d;
end
end
always @(posedge clk or negedge rst_both_l) begin
q2 <= (~rst_both_l) ? 1'b0 : d;
end
// Make there be more async uses than sync uses
always @(posedge clk or negedge rst_both_l) begin
q3 <= (~rst_both_l) ? 1'b0 : d;
if (0 && q1 && q2 && q3) ;
end
endmodule
|
/*
----------------------------------------------------------------------------------
Copyright (c) 2013-2014
Embedded and Network Computing Lab.
Open SSD Project
Hanyang University
All rights reserved.
----------------------------------------------------------------------------------
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this source code
must display the following acknowledgement:
This product includes source code developed
by the Embedded and Network Computing Lab. and the Open SSD Project.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------------------
http://enclab.hanyang.ac.kr/
http://www.openssd-project.org/
http://www.hanyang.ac.kr/
----------------------------------------------------------------------------------
*/
`timescale 1ns / 1ps
module user_top # (
parameter C_S0_AXI_ADDR_WIDTH = 32,
parameter C_S0_AXI_DATA_WIDTH = 32,
parameter C_S0_AXI_BASEADDR = 32'h80000000,
parameter C_S0_AXI_HIGHADDR = 32'h80010000,
parameter C_M0_AXI_ADDR_WIDTH = 32,
parameter C_M0_AXI_DATA_WIDTH = 64,
parameter C_M0_AXI_ID_WIDTH = 1,
parameter C_M0_AXI_AWUSER_WIDTH = 1,
parameter C_M0_AXI_WUSER_WIDTH = 1,
parameter C_M0_AXI_BUSER_WIDTH = 1,
parameter C_M0_AXI_ARUSER_WIDTH = 1,
parameter C_M0_AXI_RUSER_WIDTH = 1,
parameter C_PCIE_DATA_WIDTH = 128
)
(
////////////////////////////////////////////////////////////////
//AXI4-lite slave interface signals
input s0_axi_aclk,
input s0_axi_aresetn,
//Write address channel
input [C_S0_AXI_ADDR_WIDTH-1 : 0] s0_axi_awaddr,
output s0_axi_awready,
input s0_axi_awvalid,
input [2 : 0] s0_axi_awprot,
//Write data channel
input s0_axi_wvalid,
output s0_axi_wready,
input [C_S0_AXI_DATA_WIDTH-1 : 0] s0_axi_wdata,
input [(C_S0_AXI_DATA_WIDTH/8)-1 : 0] s0_axi_wstrb,
//Write response channel
output s0_axi_bvalid,
input s0_axi_bready,
output [1 : 0] s0_axi_bresp,
//Read address channel
input s0_axi_arvalid,
output s0_axi_arready,
input [C_S0_AXI_ADDR_WIDTH-1 : 0] s0_axi_araddr,
input [2 : 0] s0_axi_arprot,
//Read data channel
output s0_axi_rvalid,
input s0_axi_rready,
output [C_S0_AXI_DATA_WIDTH-1 : 0] s0_axi_rdata,
output [1 : 0] s0_axi_rresp,
////////////////////////////////////////////////////////////////
//AXI4 master interface signals
input m0_axi_aclk,
input m0_axi_aresetn,
// Write address channel
output [C_M0_AXI_ID_WIDTH-1:0] m0_axi_awid,
output [C_M0_AXI_ADDR_WIDTH-1:0] m0_axi_awaddr,
output [7:0] m0_axi_awlen,
output [2:0] m0_axi_awsize,
output [1:0] m0_axi_awburst,
output [1:0] m0_axi_awlock,
output [3:0] m0_axi_awcache,
output [2:0] m0_axi_awprot,
output [3:0] m0_axi_awregion,
output [3:0] m0_axi_awqos,
output [C_M0_AXI_AWUSER_WIDTH-1:0] m0_axi_awuser,
output m0_axi_awvalid,
input m0_axi_awready,
// Write data channel
output [C_M0_AXI_ID_WIDTH-1:0] m0_axi_wid,
output [C_M0_AXI_DATA_WIDTH-1:0] m0_axi_wdata,
output [(C_M0_AXI_DATA_WIDTH/8)-1:0] m0_axi_wstrb,
output m0_axi_wlast,
output [C_M0_AXI_WUSER_WIDTH-1:0] m0_axi_wuser,
output m0_axi_wvalid,
input m0_axi_wready,
// Write response channel
input [C_M0_AXI_ID_WIDTH-1:0] m0_axi_bid,
input [1:0] m0_axi_bresp,
input m0_axi_bvalid,
input [C_M0_AXI_BUSER_WIDTH-1:0] m0_axi_buser,
output m0_axi_bready,
// Read address channel
output [C_M0_AXI_ID_WIDTH-1:0] m0_axi_arid,
output [C_M0_AXI_ADDR_WIDTH-1:0] m0_axi_araddr,
output [7:0] m0_axi_arlen,
output [2:0] m0_axi_arsize,
output [1:0] m0_axi_arburst,
output [1:0] m0_axi_arlock,
output [3:0] m0_axi_arcache,
output [2:0] m0_axi_arprot,
output [3:0] m0_axi_arregion,
output [3:0] m0_axi_arqos,
output [C_M0_AXI_ARUSER_WIDTH-1:0] m0_axi_aruser,
output m0_axi_arvalid,
input m0_axi_arready,
// Read data channel
input [C_M0_AXI_ID_WIDTH-1:0] m0_axi_rid,
input [C_M0_AXI_DATA_WIDTH-1:0] m0_axi_rdata,
input [1:0] m0_axi_rresp,
input m0_axi_rlast,
input [C_M0_AXI_RUSER_WIDTH-1:0] m0_axi_ruser,
input m0_axi_rvalid,
output m0_axi_rready,
input pcie_ref_clk_p,
input pcie_ref_clk_n,
input pcie_perst_n,
output dev_irq_assert,
//PCIe Integrated Block Interface
input user_clk_out,
input user_reset_out,
input user_lnk_up,
input [5:0] tx_buf_av,
input tx_err_drop,
input tx_cfg_req,
input s_axis_tx_tready,
output [C_PCIE_DATA_WIDTH-1:0] s_axis_tx_tdata,
output [(C_PCIE_DATA_WIDTH/8)-1:0] s_axis_tx_tkeep,
output [3:0] s_axis_tx_tuser,
output s_axis_tx_tlast,
output s_axis_tx_tvalid,
output tx_cfg_gnt,
input [C_PCIE_DATA_WIDTH-1:0] m_axis_rx_tdata,
input [(C_PCIE_DATA_WIDTH/8)-1:0] m_axis_rx_tkeep,
input m_axis_rx_tlast,
input m_axis_rx_tvalid,
output m_axis_rx_tready,
input [21:0] m_axis_rx_tuser,
output rx_np_ok,
output rx_np_req,
input [11:0] fc_cpld,
input [7:0] fc_cplh,
input [11:0] fc_npd,
input [7:0] fc_nph,
input [11:0] fc_pd,
input [7:0] fc_ph,
output [2:0] fc_sel,
input [7:0] cfg_bus_number,
input [4:0] cfg_device_number,
input [2:0] cfg_function_number,
output cfg_interrupt,
input cfg_interrupt_rdy,
output cfg_interrupt_assert,
output [7:0] cfg_interrupt_di,
input [7:0] cfg_interrupt_do,
input [2:0] cfg_interrupt_mmenable,
input cfg_interrupt_msienable,
input cfg_interrupt_msixenable,
input cfg_interrupt_msixfm,
output cfg_interrupt_stat,
output [4:0] cfg_pciecap_interrupt_msgnum,
input cfg_to_turnoff,
output cfg_turnoff_ok,
input [15:0] cfg_command,
input [15:0] cfg_dcommand,
input [15:0] cfg_lcommand,
input [5:0] pl_ltssm_state,
input pl_received_hot_rst,
output sys_clk,
output sys_rst_n
);
parameter C_PCIE_ADDR_WIDTH = 36;
wire pcie_user_rst_n;
wire w_pcie_user_logic_rst;
wire w_pcie_link_up_sync;
wire [5:0] w_pl_ltssm_state_sync;
wire [15:0] w_cfg_command_sync;
wire [2:0] w_cfg_interrupt_mmenable_sync;
wire w_cfg_interrupt_msienable_sync;
wire w_cfg_interrupt_msixenable_sync;
wire w_pcie_mreq_err_sync;
wire w_pcie_cpld_err_sync;
wire w_pcie_cpld_len_err_sync;
wire w_nvme_cc_en_sync;
wire [1:0] w_nvme_cc_shn_sync;
wire [1:0] w_nvme_csts_shst;
wire w_nvme_csts_rdy;
wire [8:0] w_sq_valid;
wire [7:0] w_io_sq1_size;
wire [7:0] w_io_sq2_size;
wire [7:0] w_io_sq3_size;
wire [7:0] w_io_sq4_size;
wire [7:0] w_io_sq5_size;
wire [7:0] w_io_sq6_size;
wire [7:0] w_io_sq7_size;
wire [7:0] w_io_sq8_size;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_sq1_bs_addr;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_sq2_bs_addr;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_sq3_bs_addr;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_sq4_bs_addr;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_sq5_bs_addr;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_sq6_bs_addr;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_sq7_bs_addr;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_sq8_bs_addr;
wire [3:0] w_io_sq1_cq_vec;
wire [3:0] w_io_sq2_cq_vec;
wire [3:0] w_io_sq3_cq_vec;
wire [3:0] w_io_sq4_cq_vec;
wire [3:0] w_io_sq5_cq_vec;
wire [3:0] w_io_sq6_cq_vec;
wire [3:0] w_io_sq7_cq_vec;
wire [3:0] w_io_sq8_cq_vec;
wire [8:0] w_cq_valid;
wire [7:0] w_io_cq1_size;
wire [7:0] w_io_cq2_size;
wire [7:0] w_io_cq3_size;
wire [7:0] w_io_cq4_size;
wire [7:0] w_io_cq5_size;
wire [7:0] w_io_cq6_size;
wire [7:0] w_io_cq7_size;
wire [7:0] w_io_cq8_size;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_cq1_bs_addr;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_cq2_bs_addr;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_cq3_bs_addr;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_cq4_bs_addr;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_cq5_bs_addr;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_cq6_bs_addr;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_cq7_bs_addr;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_cq8_bs_addr;
wire [8:0] w_io_cq_irq_en;
wire [2:0] w_io_cq1_iv;
wire [2:0] w_io_cq2_iv;
wire [2:0] w_io_cq3_iv;
wire [2:0] w_io_cq4_iv;
wire [2:0] w_io_cq5_iv;
wire [2:0] w_io_cq6_iv;
wire [2:0] w_io_cq7_iv;
wire [2:0] w_io_cq8_iv;
wire w_nvme_cc_en;
wire [1:0] w_nvme_cc_shn;
wire w_pcie_mreq_err;
wire w_pcie_cpld_err;
wire w_pcie_cpld_len_err;
wire [1:0] w_nvme_csts_shst_sync;
wire w_nvme_csts_rdy_sync;
wire [8:0] w_sq_rst_n_sync;
wire [8:0] w_sq_valid_sync;
wire [7:0] w_io_sq1_size_sync;
wire [7:0] w_io_sq2_size_sync;
wire [7:0] w_io_sq3_size_sync;
wire [7:0] w_io_sq4_size_sync;
wire [7:0] w_io_sq5_size_sync;
wire [7:0] w_io_sq6_size_sync;
wire [7:0] w_io_sq7_size_sync;
wire [7:0] w_io_sq8_size_sync;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_sq1_bs_addr_sync;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_sq2_bs_addr_sync;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_sq3_bs_addr_sync;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_sq4_bs_addr_sync;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_sq5_bs_addr_sync;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_sq6_bs_addr_sync;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_sq7_bs_addr_sync;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_sq8_bs_addr_sync;
wire [3:0] w_io_sq1_cq_vec_sync;
wire [3:0] w_io_sq2_cq_vec_sync;
wire [3:0] w_io_sq3_cq_vec_sync;
wire [3:0] w_io_sq4_cq_vec_sync;
wire [3:0] w_io_sq5_cq_vec_sync;
wire [3:0] w_io_sq6_cq_vec_sync;
wire [3:0] w_io_sq7_cq_vec_sync;
wire [3:0] w_io_sq8_cq_vec_sync;
wire [8:0] w_cq_rst_n_sync;
wire [8:0] w_cq_valid_sync;
wire [7:0] w_io_cq1_size_sync;
wire [7:0] w_io_cq2_size_sync;
wire [7:0] w_io_cq3_size_sync;
wire [7:0] w_io_cq4_size_sync;
wire [7:0] w_io_cq5_size_sync;
wire [7:0] w_io_cq6_size_sync;
wire [7:0] w_io_cq7_size_sync;
wire [7:0] w_io_cq8_size_sync;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_cq1_bs_addr_sync;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_cq2_bs_addr_sync;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_cq3_bs_addr_sync;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_cq4_bs_addr_sync;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_cq5_bs_addr_sync;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_cq6_bs_addr_sync;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_cq7_bs_addr_sync;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_cq8_bs_addr_sync;
wire [8:0] w_io_cq_irq_en_sync;
wire [2:0] w_io_cq1_iv_sync;
wire [2:0] w_io_cq2_iv_sync;
wire [2:0] w_io_cq3_iv_sync;
wire [2:0] w_io_cq4_iv_sync;
wire [2:0] w_io_cq5_iv_sync;
wire [2:0] w_io_cq6_iv_sync;
wire [2:0] w_io_cq7_iv_sync;
wire [2:0] w_io_cq8_iv_sync;
wire [10:0] w_hcmd_table_rd_addr;
wire [31:0] w_hcmd_table_rd_data;
wire w_hcmd_sq_rd_en;
wire [18:0] w_hcmd_sq_rd_data;
wire w_hcmd_sq_empty_n;
wire w_hcmd_cq_wr1_en;
wire [34:0] w_hcmd_cq_wr1_data0;
wire [34:0] w_hcmd_cq_wr1_data1;
wire w_hcmd_cq_wr1_rdy_n;
wire w_dma_cmd_wr_en;
wire [49:0] w_dma_cmd_wr_data0;
wire [49:0] w_dma_cmd_wr_data1;
wire w_dma_cmd_wr_rdy_n;
wire [7:0] w_dma_rx_direct_done_cnt;
wire [7:0] w_dma_tx_direct_done_cnt;
wire [7:0] w_dma_rx_done_cnt;
wire [7:0] w_dma_tx_done_cnt;
wire w_pcie_rx_fifo_rd_en;
wire [C_M0_AXI_DATA_WIDTH-1:0] w_pcie_rx_fifo_rd_data;
wire w_pcie_rx_fifo_free_en;
wire [9:4] w_pcie_rx_fifo_free_len;
wire w_pcie_rx_fifo_empty_n;
wire w_pcie_tx_fifo_alloc_en;
wire [9:4] w_pcie_tx_fifo_alloc_len;
wire w_pcie_tx_fifo_wr_en;
wire [C_M0_AXI_DATA_WIDTH-1:0] w_pcie_tx_fifo_wr_data;
wire w_pcie_tx_fifo_full_n;
wire w_dma_rx_done_wr_en;
wire [20:0] w_dma_rx_done_wr_data;
wire w_dma_rx_done_wr_rdy_n;
wire w_dev_rx_cmd_wr_en;
wire [29:0] w_dev_rx_cmd_wr_data;
wire w_dev_rx_cmd_full_n;
wire w_dev_tx_cmd_wr_en;
wire [29:0] w_dev_tx_cmd_wr_data;
wire w_dev_tx_cmd_full_n;
sys_rst
sys_rst_inst0(
.cpu_bus_clk (s0_axi_aclk),
.cpu_bus_rst_n (s0_axi_aresetn),
.pcie_perst_n (pcie_perst_n),
.user_reset_out (user_reset_out),
.pcie_pl_hot_rst (pl_received_hot_rst),
.pcie_user_logic_rst (w_pcie_user_logic_rst),
.pcie_sys_rst_n (sys_rst_n),
.pcie_user_rst_n (pcie_user_rst_n)
);
s_axi_top # (
.C_S0_AXI_ADDR_WIDTH (C_S0_AXI_ADDR_WIDTH),
.C_S0_AXI_DATA_WIDTH (C_S0_AXI_DATA_WIDTH),
.C_S0_AXI_BASEADDR (C_S0_AXI_BASEADDR),
.C_S0_AXI_HIGHADDR (C_S0_AXI_HIGHADDR),
.C_M0_AXI_ADDR_WIDTH (C_M0_AXI_ADDR_WIDTH),
.C_M0_AXI_DATA_WIDTH (C_M0_AXI_DATA_WIDTH),
.C_M0_AXI_ID_WIDTH (C_M0_AXI_ID_WIDTH),
.C_M0_AXI_AWUSER_WIDTH (C_M0_AXI_AWUSER_WIDTH),
.C_M0_AXI_WUSER_WIDTH (C_M0_AXI_WUSER_WIDTH),
.C_M0_AXI_BUSER_WIDTH (C_M0_AXI_BUSER_WIDTH),
.C_M0_AXI_ARUSER_WIDTH (C_M0_AXI_ARUSER_WIDTH),
.C_M0_AXI_RUSER_WIDTH (C_M0_AXI_RUSER_WIDTH)
)
s_axi_top_inst0 (
////////////////////////////////////////////////////////////////
//AXI4-lite slave interface signals
.s0_axi_aclk (s0_axi_aclk),
.s0_axi_aresetn (s0_axi_aresetn),
//Write address channel
.s0_axi_awaddr (s0_axi_awaddr),
.s0_axi_awready (s0_axi_awready),
.s0_axi_awvalid (s0_axi_awvalid),
.s0_axi_awprot (s0_axi_awprot),
//Write data channel
.s0_axi_wvalid (s0_axi_wvalid),
.s0_axi_wready (s0_axi_wready),
.s0_axi_wdata (s0_axi_wdata),
.s0_axi_wstrb (s0_axi_wstrb),
//Write response channel
.s0_axi_bvalid (s0_axi_bvalid),
.s0_axi_bready (s0_axi_bready),
.s0_axi_bresp (s0_axi_bresp),
//Read address channel
.s0_axi_arvalid (s0_axi_arvalid),
.s0_axi_arready (s0_axi_arready),
.s0_axi_araddr (s0_axi_araddr),
.s0_axi_arprot (s0_axi_arprot),
//Read data channel
.s0_axi_rvalid (s0_axi_rvalid),
.s0_axi_rready (s0_axi_rready),
.s0_axi_rdata (s0_axi_rdata),
.s0_axi_rresp (s0_axi_rresp),
.pcie_mreq_err (w_pcie_mreq_err_sync),
.pcie_cpld_err (w_pcie_cpld_err_sync),
.pcie_cpld_len_err (w_pcie_cpld_len_err_sync),
.dev_irq_assert (dev_irq_assert),
.pcie_user_logic_rst (w_pcie_user_logic_rst),
.nvme_cc_en (w_nvme_cc_en_sync),
.nvme_cc_shn (w_nvme_cc_shn_sync),
.nvme_csts_shst (w_nvme_csts_shst),
.nvme_csts_rdy (w_nvme_csts_rdy),
.sq_valid (w_sq_valid),
.io_sq1_size (w_io_sq1_size),
.io_sq2_size (w_io_sq2_size),
.io_sq3_size (w_io_sq3_size),
.io_sq4_size (w_io_sq4_size),
.io_sq5_size (w_io_sq5_size),
.io_sq6_size (w_io_sq6_size),
.io_sq7_size (w_io_sq7_size),
.io_sq8_size (w_io_sq8_size),
.io_sq1_bs_addr (w_io_sq1_bs_addr),
.io_sq2_bs_addr (w_io_sq2_bs_addr),
.io_sq3_bs_addr (w_io_sq3_bs_addr),
.io_sq4_bs_addr (w_io_sq4_bs_addr),
.io_sq5_bs_addr (w_io_sq5_bs_addr),
.io_sq6_bs_addr (w_io_sq6_bs_addr),
.io_sq7_bs_addr (w_io_sq7_bs_addr),
.io_sq8_bs_addr (w_io_sq8_bs_addr),
.io_sq1_cq_vec (w_io_sq1_cq_vec),
.io_sq2_cq_vec (w_io_sq2_cq_vec),
.io_sq3_cq_vec (w_io_sq3_cq_vec),
.io_sq4_cq_vec (w_io_sq4_cq_vec),
.io_sq5_cq_vec (w_io_sq5_cq_vec),
.io_sq6_cq_vec (w_io_sq6_cq_vec),
.io_sq7_cq_vec (w_io_sq7_cq_vec),
.io_sq8_cq_vec (w_io_sq8_cq_vec),
.cq_valid (w_cq_valid),
.io_cq1_size (w_io_cq1_size),
.io_cq2_size (w_io_cq2_size),
.io_cq3_size (w_io_cq3_size),
.io_cq4_size (w_io_cq4_size),
.io_cq5_size (w_io_cq5_size),
.io_cq6_size (w_io_cq6_size),
.io_cq7_size (w_io_cq7_size),
.io_cq8_size (w_io_cq8_size),
.io_cq1_bs_addr (w_io_cq1_bs_addr),
.io_cq2_bs_addr (w_io_cq2_bs_addr),
.io_cq3_bs_addr (w_io_cq3_bs_addr),
.io_cq4_bs_addr (w_io_cq4_bs_addr),
.io_cq5_bs_addr (w_io_cq5_bs_addr),
.io_cq6_bs_addr (w_io_cq6_bs_addr),
.io_cq7_bs_addr (w_io_cq7_bs_addr),
.io_cq8_bs_addr (w_io_cq8_bs_addr),
.io_cq_irq_en (w_io_cq_irq_en),
.io_cq1_iv (w_io_cq1_iv),
.io_cq2_iv (w_io_cq2_iv),
.io_cq3_iv (w_io_cq3_iv),
.io_cq4_iv (w_io_cq4_iv),
.io_cq5_iv (w_io_cq5_iv),
.io_cq6_iv (w_io_cq6_iv),
.io_cq7_iv (w_io_cq7_iv),
.io_cq8_iv (w_io_cq8_iv),
.hcmd_sq_rd_en (w_hcmd_sq_rd_en),
.hcmd_sq_rd_data (w_hcmd_sq_rd_data),
.hcmd_sq_empty_n (w_hcmd_sq_empty_n),
.hcmd_table_rd_addr (w_hcmd_table_rd_addr),
.hcmd_table_rd_data (w_hcmd_table_rd_data),
.hcmd_cq_wr1_en (w_hcmd_cq_wr1_en),
.hcmd_cq_wr1_data0 (w_hcmd_cq_wr1_data0),
.hcmd_cq_wr1_data1 (w_hcmd_cq_wr1_data1),
.hcmd_cq_wr1_rdy_n (w_hcmd_cq_wr1_rdy_n),
.dma_cmd_wr_en (w_dma_cmd_wr_en),
.dma_cmd_wr_data0 (w_dma_cmd_wr_data0),
.dma_cmd_wr_data1 (w_dma_cmd_wr_data1),
.dma_cmd_wr_rdy_n (w_dma_cmd_wr_rdy_n),
////////////////////////////////////////////////////////////////
//AXI4 master interface signals
.m0_axi_aclk (m0_axi_aclk),
.m0_axi_aresetn (m0_axi_aresetn),
// Write address channel
.m0_axi_awid (m0_axi_awid),
.m0_axi_awaddr (m0_axi_awaddr),
.m0_axi_awlen (m0_axi_awlen),
.m0_axi_awsize (m0_axi_awsize),
.m0_axi_awburst (m0_axi_awburst),
.m0_axi_awlock (m0_axi_awlock),
.m0_axi_awcache (m0_axi_awcache),
.m0_axi_awprot (m0_axi_awprot),
.m0_axi_awregion (m0_axi_awregion),
.m0_axi_awqos (m0_axi_awqos),
.m0_axi_awuser (m0_axi_awuser),
.m0_axi_awvalid (m0_axi_awvalid),
.m0_axi_awready (m0_axi_awready),
// Write data channel
.m0_axi_wid (m0_axi_wid),
.m0_axi_wdata (m0_axi_wdata),
.m0_axi_wstrb (m0_axi_wstrb),
.m0_axi_wlast (m0_axi_wlast),
.m0_axi_wuser (m0_axi_wuser),
.m0_axi_wvalid (m0_axi_wvalid),
.m0_axi_wready (m0_axi_wready),
// Write response channel
.m0_axi_bid (m0_axi_bid),
.m0_axi_bresp (m0_axi_bresp),
.m0_axi_bvalid (m0_axi_bvalid),
.m0_axi_buser (m0_axi_buser),
.m0_axi_bready (m0_axi_bready),
// Read address channel
.m0_axi_arid (m0_axi_arid),
.m0_axi_araddr (m0_axi_araddr),
.m0_axi_arlen (m0_axi_arlen),
.m0_axi_arsize (m0_axi_arsize),
.m0_axi_arburst (m0_axi_arburst),
.m0_axi_arlock (m0_axi_arlock),
.m0_axi_arcache (m0_axi_arcache),
.m0_axi_arprot (m0_axi_arprot),
.m0_axi_arregion (m0_axi_arregion),
.m0_axi_arqos (m0_axi_arqos),
.m0_axi_aruser (m0_axi_aruser),
.m0_axi_arvalid (m0_axi_arvalid),
.m0_axi_arready (m0_axi_arready),
// Read data channel
.m0_axi_rid (m0_axi_rid),
.m0_axi_rdata (m0_axi_rdata),
.m0_axi_rresp (m0_axi_rresp),
.m0_axi_rlast (m0_axi_rlast),
.m0_axi_ruser (m0_axi_ruser),
.m0_axi_rvalid (m0_axi_rvalid),
.m0_axi_rready (m0_axi_rready),
.pcie_rx_fifo_rd_en (w_pcie_rx_fifo_rd_en),
.pcie_rx_fifo_rd_data (w_pcie_rx_fifo_rd_data),
.pcie_rx_fifo_free_en (w_pcie_rx_fifo_free_en),
.pcie_rx_fifo_free_len (w_pcie_rx_fifo_free_len),
.pcie_rx_fifo_empty_n (w_pcie_rx_fifo_empty_n),
.pcie_tx_fifo_alloc_en (w_pcie_tx_fifo_alloc_en),
.pcie_tx_fifo_alloc_len (w_pcie_tx_fifo_alloc_len),
.pcie_tx_fifo_wr_en (w_pcie_tx_fifo_wr_en),
.pcie_tx_fifo_wr_data (w_pcie_tx_fifo_wr_data),
.pcie_tx_fifo_full_n (w_pcie_tx_fifo_full_n),
.dma_rx_done_wr_en (w_dma_rx_done_wr_en),
.dma_rx_done_wr_data (w_dma_rx_done_wr_data),
.dma_rx_done_wr_rdy_n (w_dma_rx_done_wr_rdy_n),
.pcie_user_clk (user_clk_out),
.pcie_user_rst_n (pcie_user_rst_n),
.dev_rx_cmd_wr_en (w_dev_rx_cmd_wr_en),
.dev_rx_cmd_wr_data (w_dev_rx_cmd_wr_data),
.dev_rx_cmd_full_n (w_dev_rx_cmd_full_n),
.dev_tx_cmd_wr_en (w_dev_tx_cmd_wr_en),
.dev_tx_cmd_wr_data (w_dev_tx_cmd_wr_data),
.dev_tx_cmd_full_n (w_dev_tx_cmd_full_n),
.dma_rx_direct_done_cnt (w_dma_rx_direct_done_cnt),
.dma_tx_direct_done_cnt (w_dma_tx_direct_done_cnt),
.dma_rx_done_cnt (w_dma_rx_done_cnt),
.dma_tx_done_cnt (w_dma_tx_done_cnt),
.pcie_link_up (w_pcie_link_up_sync),
.pl_ltssm_state (w_pl_ltssm_state_sync),
.cfg_command (w_cfg_command_sync),
.cfg_interrupt_mmenable (w_cfg_interrupt_mmenable_sync),
.cfg_interrupt_msienable (w_cfg_interrupt_msienable_sync),
.cfg_interrupt_msixenable (w_cfg_interrupt_msixenable_sync)
);
reg_cpu_pcie_sync
reg_cpu_pcie_sync_isnt0
(
.cpu_bus_clk (s0_axi_aclk),
.nvme_csts_shst (w_nvme_csts_shst),
.nvme_csts_rdy (w_nvme_csts_rdy),
.sq_valid (w_sq_valid),
.io_sq1_size (w_io_sq1_size),
.io_sq2_size (w_io_sq2_size),
.io_sq3_size (w_io_sq3_size),
.io_sq4_size (w_io_sq4_size),
.io_sq5_size (w_io_sq5_size),
.io_sq6_size (w_io_sq6_size),
.io_sq7_size (w_io_sq7_size),
.io_sq8_size (w_io_sq8_size),
.io_sq1_bs_addr (w_io_sq1_bs_addr),
.io_sq2_bs_addr (w_io_sq2_bs_addr),
.io_sq3_bs_addr (w_io_sq3_bs_addr),
.io_sq4_bs_addr (w_io_sq4_bs_addr),
.io_sq5_bs_addr (w_io_sq5_bs_addr),
.io_sq6_bs_addr (w_io_sq6_bs_addr),
.io_sq7_bs_addr (w_io_sq7_bs_addr),
.io_sq8_bs_addr (w_io_sq8_bs_addr),
.io_sq1_cq_vec (w_io_sq1_cq_vec),
.io_sq2_cq_vec (w_io_sq2_cq_vec),
.io_sq3_cq_vec (w_io_sq3_cq_vec),
.io_sq4_cq_vec (w_io_sq4_cq_vec),
.io_sq5_cq_vec (w_io_sq5_cq_vec),
.io_sq6_cq_vec (w_io_sq6_cq_vec),
.io_sq7_cq_vec (w_io_sq7_cq_vec),
.io_sq8_cq_vec (w_io_sq8_cq_vec),
.cq_valid (w_cq_valid),
.io_cq1_size (w_io_cq1_size),
.io_cq2_size (w_io_cq2_size),
.io_cq3_size (w_io_cq3_size),
.io_cq4_size (w_io_cq4_size),
.io_cq5_size (w_io_cq5_size),
.io_cq6_size (w_io_cq6_size),
.io_cq7_size (w_io_cq7_size),
.io_cq8_size (w_io_cq8_size),
.io_cq1_bs_addr (w_io_cq1_bs_addr),
.io_cq2_bs_addr (w_io_cq2_bs_addr),
.io_cq3_bs_addr (w_io_cq3_bs_addr),
.io_cq4_bs_addr (w_io_cq4_bs_addr),
.io_cq5_bs_addr (w_io_cq5_bs_addr),
.io_cq6_bs_addr (w_io_cq6_bs_addr),
.io_cq7_bs_addr (w_io_cq7_bs_addr),
.io_cq8_bs_addr (w_io_cq8_bs_addr),
.io_cq_irq_en (w_io_cq_irq_en),
.io_cq1_iv (w_io_cq1_iv),
.io_cq2_iv (w_io_cq2_iv),
.io_cq3_iv (w_io_cq3_iv),
.io_cq4_iv (w_io_cq4_iv),
.io_cq5_iv (w_io_cq5_iv),
.io_cq6_iv (w_io_cq6_iv),
.io_cq7_iv (w_io_cq7_iv),
.io_cq8_iv (w_io_cq8_iv),
.pcie_link_up_sync (w_pcie_link_up_sync),
.pl_ltssm_state_sync (w_pl_ltssm_state_sync),
.cfg_command_sync (w_cfg_command_sync),
.cfg_interrupt_mmenable_sync (w_cfg_interrupt_mmenable_sync),
.cfg_interrupt_msienable_sync (w_cfg_interrupt_msienable_sync),
.cfg_interrupt_msixenable_sync (w_cfg_interrupt_msixenable_sync),
.pcie_mreq_err_sync (w_pcie_mreq_err_sync),
.pcie_cpld_err_sync (w_pcie_cpld_err_sync),
.pcie_cpld_len_err_sync (w_pcie_cpld_len_err_sync),
.nvme_cc_en_sync (w_nvme_cc_en_sync),
.nvme_cc_shn_sync (w_nvme_cc_shn_sync),
.pcie_user_clk (user_clk_out),
.pcie_link_up (user_lnk_up),
.pl_ltssm_state (pl_ltssm_state),
.cfg_command (cfg_command),
.cfg_interrupt_mmenable (cfg_interrupt_mmenable),
.cfg_interrupt_msienable (cfg_interrupt_msienable),
.cfg_interrupt_msixenable (cfg_interrupt_msixenable),
.pcie_mreq_err (w_pcie_mreq_err),
.pcie_cpld_err (w_pcie_cpld_err),
.pcie_cpld_len_err (w_pcie_cpld_len_err),
.nvme_cc_en (w_nvme_cc_en),
.nvme_cc_shn (w_nvme_cc_shn),
.nvme_csts_shst_sync (w_nvme_csts_shst_sync),
.nvme_csts_rdy_sync (w_nvme_csts_rdy_sync),
.sq_rst_n_sync (w_sq_rst_n_sync),
.sq_valid_sync (w_sq_valid_sync),
.io_sq1_size_sync (w_io_sq1_size_sync),
.io_sq2_size_sync (w_io_sq2_size_sync),
.io_sq3_size_sync (w_io_sq3_size_sync),
.io_sq4_size_sync (w_io_sq4_size_sync),
.io_sq5_size_sync (w_io_sq5_size_sync),
.io_sq6_size_sync (w_io_sq6_size_sync),
.io_sq7_size_sync (w_io_sq7_size_sync),
.io_sq8_size_sync (w_io_sq8_size_sync),
.io_sq1_bs_addr_sync (w_io_sq1_bs_addr_sync),
.io_sq2_bs_addr_sync (w_io_sq2_bs_addr_sync),
.io_sq3_bs_addr_sync (w_io_sq3_bs_addr_sync),
.io_sq4_bs_addr_sync (w_io_sq4_bs_addr_sync),
.io_sq5_bs_addr_sync (w_io_sq5_bs_addr_sync),
.io_sq6_bs_addr_sync (w_io_sq6_bs_addr_sync),
.io_sq7_bs_addr_sync (w_io_sq7_bs_addr_sync),
.io_sq8_bs_addr_sync (w_io_sq8_bs_addr_sync),
.io_sq1_cq_vec_sync (w_io_sq1_cq_vec_sync),
.io_sq2_cq_vec_sync (w_io_sq2_cq_vec_sync),
.io_sq3_cq_vec_sync (w_io_sq3_cq_vec_sync),
.io_sq4_cq_vec_sync (w_io_sq4_cq_vec_sync),
.io_sq5_cq_vec_sync (w_io_sq5_cq_vec_sync),
.io_sq6_cq_vec_sync (w_io_sq6_cq_vec_sync),
.io_sq7_cq_vec_sync (w_io_sq7_cq_vec_sync),
.io_sq8_cq_vec_sync (w_io_sq8_cq_vec_sync),
.cq_rst_n_sync (w_cq_rst_n_sync),
.cq_valid_sync (w_cq_valid_sync),
.io_cq1_size_sync (w_io_cq1_size_sync),
.io_cq2_size_sync (w_io_cq2_size_sync),
.io_cq3_size_sync (w_io_cq3_size_sync),
.io_cq4_size_sync (w_io_cq4_size_sync),
.io_cq5_size_sync (w_io_cq5_size_sync),
.io_cq6_size_sync (w_io_cq6_size_sync),
.io_cq7_size_sync (w_io_cq7_size_sync),
.io_cq8_size_sync (w_io_cq8_size_sync),
.io_cq1_bs_addr_sync (w_io_cq1_bs_addr_sync),
.io_cq2_bs_addr_sync (w_io_cq2_bs_addr_sync),
.io_cq3_bs_addr_sync (w_io_cq3_bs_addr_sync),
.io_cq4_bs_addr_sync (w_io_cq4_bs_addr_sync),
.io_cq5_bs_addr_sync (w_io_cq5_bs_addr_sync),
.io_cq6_bs_addr_sync (w_io_cq6_bs_addr_sync),
.io_cq7_bs_addr_sync (w_io_cq7_bs_addr_sync),
.io_cq8_bs_addr_sync (w_io_cq8_bs_addr_sync),
.io_cq_irq_en_sync (w_io_cq_irq_en_sync),
.io_cq1_iv_sync (w_io_cq1_iv_sync),
.io_cq2_iv_sync (w_io_cq2_iv_sync),
.io_cq3_iv_sync (w_io_cq3_iv_sync),
.io_cq4_iv_sync (w_io_cq4_iv_sync),
.io_cq5_iv_sync (w_io_cq5_iv_sync),
.io_cq6_iv_sync (w_io_cq6_iv_sync),
.io_cq7_iv_sync (w_io_cq7_iv_sync),
.io_cq8_iv_sync (w_io_cq8_iv_sync)
);
nvme_pcie # (
.C_PCIE_DATA_WIDTH (128)
)
nvme_pcie_inst0(
.pcie_ref_clk_p (pcie_ref_clk_p),
.pcie_ref_clk_n (pcie_ref_clk_n),
//PCIe user clock
.pcie_user_clk (user_clk_out),
.pcie_user_rst_n (pcie_user_rst_n),
.dev_rx_cmd_wr_en (w_dev_rx_cmd_wr_en),
.dev_rx_cmd_wr_data (w_dev_rx_cmd_wr_data),
.dev_rx_cmd_full_n (w_dev_rx_cmd_full_n),
.dev_tx_cmd_wr_en (w_dev_tx_cmd_wr_en),
.dev_tx_cmd_wr_data (w_dev_tx_cmd_wr_data),
.dev_tx_cmd_full_n (w_dev_tx_cmd_full_n),
.cpu_bus_clk (s0_axi_aclk),
.cpu_bus_rst_n (s0_axi_aresetn),
.nvme_cc_en (w_nvme_cc_en),
.nvme_cc_shn (w_nvme_cc_shn),
.nvme_csts_shst (w_nvme_csts_shst_sync),
.nvme_csts_rdy (w_nvme_csts_rdy_sync),
.sq_rst_n (w_sq_rst_n_sync),
.sq_valid (w_sq_valid_sync),
.io_sq1_size (w_io_sq1_size_sync),
.io_sq2_size (w_io_sq2_size_sync),
.io_sq3_size (w_io_sq3_size_sync),
.io_sq4_size (w_io_sq4_size_sync),
.io_sq5_size (w_io_sq5_size_sync),
.io_sq6_size (w_io_sq6_size_sync),
.io_sq7_size (w_io_sq7_size_sync),
.io_sq8_size (w_io_sq8_size_sync),
.io_sq1_bs_addr (w_io_sq1_bs_addr_sync),
.io_sq2_bs_addr (w_io_sq2_bs_addr_sync),
.io_sq3_bs_addr (w_io_sq3_bs_addr_sync),
.io_sq4_bs_addr (w_io_sq4_bs_addr_sync),
.io_sq5_bs_addr (w_io_sq5_bs_addr_sync),
.io_sq6_bs_addr (w_io_sq6_bs_addr_sync),
.io_sq7_bs_addr (w_io_sq7_bs_addr_sync),
.io_sq8_bs_addr (w_io_sq8_bs_addr_sync),
.io_sq1_cq_vec (w_io_sq1_cq_vec_sync),
.io_sq2_cq_vec (w_io_sq2_cq_vec_sync),
.io_sq3_cq_vec (w_io_sq3_cq_vec_sync),
.io_sq4_cq_vec (w_io_sq4_cq_vec_sync),
.io_sq5_cq_vec (w_io_sq5_cq_vec_sync),
.io_sq6_cq_vec (w_io_sq6_cq_vec_sync),
.io_sq7_cq_vec (w_io_sq7_cq_vec_sync),
.io_sq8_cq_vec (w_io_sq8_cq_vec_sync),
.cq_rst_n (w_cq_rst_n_sync),
.cq_valid (w_cq_valid_sync),
.io_cq1_size (w_io_cq1_size_sync),
.io_cq2_size (w_io_cq2_size_sync),
.io_cq3_size (w_io_cq3_size_sync),
.io_cq4_size (w_io_cq4_size_sync),
.io_cq5_size (w_io_cq5_size_sync),
.io_cq6_size (w_io_cq6_size_sync),
.io_cq7_size (w_io_cq7_size_sync),
.io_cq8_size (w_io_cq8_size_sync),
.io_cq1_bs_addr (w_io_cq1_bs_addr_sync),
.io_cq2_bs_addr (w_io_cq2_bs_addr_sync),
.io_cq3_bs_addr (w_io_cq3_bs_addr_sync),
.io_cq4_bs_addr (w_io_cq4_bs_addr_sync),
.io_cq5_bs_addr (w_io_cq5_bs_addr_sync),
.io_cq6_bs_addr (w_io_cq6_bs_addr_sync),
.io_cq7_bs_addr (w_io_cq7_bs_addr_sync),
.io_cq8_bs_addr (w_io_cq8_bs_addr_sync),
.io_cq_irq_en (w_io_cq_irq_en_sync),
.io_cq1_iv (w_io_cq1_iv_sync),
.io_cq2_iv (w_io_cq2_iv_sync),
.io_cq3_iv (w_io_cq3_iv_sync),
.io_cq4_iv (w_io_cq4_iv_sync),
.io_cq5_iv (w_io_cq5_iv_sync),
.io_cq6_iv (w_io_cq6_iv_sync),
.io_cq7_iv (w_io_cq7_iv_sync),
.io_cq8_iv (w_io_cq8_iv_sync),
.hcmd_sq_rd_en (w_hcmd_sq_rd_en),
.hcmd_sq_rd_data (w_hcmd_sq_rd_data),
.hcmd_sq_empty_n (w_hcmd_sq_empty_n),
.hcmd_table_rd_addr (w_hcmd_table_rd_addr),
.hcmd_table_rd_data (w_hcmd_table_rd_data),
.hcmd_cq_wr1_en (w_hcmd_cq_wr1_en),
.hcmd_cq_wr1_data0 (w_hcmd_cq_wr1_data0),
.hcmd_cq_wr1_data1 (w_hcmd_cq_wr1_data1),
.hcmd_cq_wr1_rdy_n (w_hcmd_cq_wr1_rdy_n),
.dma_cmd_wr_en (w_dma_cmd_wr_en),
.dma_cmd_wr_data0 (w_dma_cmd_wr_data0),
.dma_cmd_wr_data1 (w_dma_cmd_wr_data1),
.dma_cmd_wr_rdy_n (w_dma_cmd_wr_rdy_n),
.dma_rx_direct_done_cnt (w_dma_rx_direct_done_cnt),
.dma_tx_direct_done_cnt (w_dma_tx_direct_done_cnt),
.dma_rx_done_cnt (w_dma_rx_done_cnt),
.dma_tx_done_cnt (w_dma_tx_done_cnt),
.dma_bus_clk (m0_axi_aclk),
.dma_bus_rst_n (m0_axi_aresetn),
.pcie_rx_fifo_rd_en (w_pcie_rx_fifo_rd_en),
.pcie_rx_fifo_rd_data (w_pcie_rx_fifo_rd_data),
.pcie_rx_fifo_free_en (w_pcie_rx_fifo_free_en),
.pcie_rx_fifo_free_len (w_pcie_rx_fifo_free_len),
.pcie_rx_fifo_empty_n (w_pcie_rx_fifo_empty_n),
.pcie_tx_fifo_alloc_en (w_pcie_tx_fifo_alloc_en),
.pcie_tx_fifo_alloc_len (w_pcie_tx_fifo_alloc_len),
.pcie_tx_fifo_wr_en (w_pcie_tx_fifo_wr_en),
.pcie_tx_fifo_wr_data (w_pcie_tx_fifo_wr_data),
.pcie_tx_fifo_full_n (w_pcie_tx_fifo_full_n),
.dma_rx_done_wr_en (w_dma_rx_done_wr_en),
.dma_rx_done_wr_data (w_dma_rx_done_wr_data),
.dma_rx_done_wr_rdy_n (w_dma_rx_done_wr_rdy_n),
.pcie_mreq_err (w_pcie_mreq_err),
.pcie_cpld_err (w_pcie_cpld_err),
.pcie_cpld_len_err (w_pcie_cpld_len_err),
.tx_buf_av (tx_buf_av),
.tx_err_drop (tx_err_drop),
.tx_cfg_req (tx_cfg_req),
.s_axis_tx_tready (s_axis_tx_tready),
.s_axis_tx_tdata (s_axis_tx_tdata),
.s_axis_tx_tkeep (s_axis_tx_tkeep),
.s_axis_tx_tuser (s_axis_tx_tuser),
.s_axis_tx_tlast (s_axis_tx_tlast),
.s_axis_tx_tvalid (s_axis_tx_tvalid),
.tx_cfg_gnt (tx_cfg_gnt),
.m_axis_rx_tdata (m_axis_rx_tdata),
.m_axis_rx_tkeep (m_axis_rx_tkeep),
.m_axis_rx_tlast (m_axis_rx_tlast),
.m_axis_rx_tvalid (m_axis_rx_tvalid),
.m_axis_rx_tready (m_axis_rx_tready),
.m_axis_rx_tuser (m_axis_rx_tuser),
.rx_np_ok (rx_np_ok),
.rx_np_req (rx_np_req),
.fc_cpld (fc_cpld),
.fc_cplh (fc_cplh),
.fc_npd (fc_npd),
.fc_nph (fc_nph),
.fc_pd (fc_pd),
.fc_ph (fc_ph),
.fc_sel (fc_sel),
.cfg_interrupt (cfg_interrupt),
.cfg_interrupt_rdy (cfg_interrupt_rdy),
.cfg_interrupt_assert (cfg_interrupt_assert),
.cfg_interrupt_di (cfg_interrupt_di),
.cfg_interrupt_do (cfg_interrupt_do),
.cfg_interrupt_mmenable (cfg_interrupt_mmenable),
.cfg_interrupt_msienable (cfg_interrupt_msienable),
.cfg_interrupt_msixenable (cfg_interrupt_msixenable),
.cfg_interrupt_msixfm (cfg_interrupt_msixfm),
.cfg_interrupt_stat (cfg_interrupt_stat),
.cfg_pciecap_interrupt_msgnum (cfg_pciecap_interrupt_msgnum),
.cfg_bus_number (cfg_bus_number),
.cfg_device_number (cfg_device_number),
.cfg_function_number (cfg_function_number),
.cfg_to_turnoff (cfg_to_turnoff),
.cfg_turnoff_ok (cfg_turnoff_ok),
.cfg_command (cfg_command),
.cfg_dcommand (cfg_dcommand),
.cfg_lcommand (cfg_lcommand),
.sys_clk (sys_clk)
);
endmodule
|
/*
----------------------------------------------------------------------------------
Copyright (c) 2013-2014
Embedded and Network Computing Lab.
Open SSD Project
Hanyang University
All rights reserved.
----------------------------------------------------------------------------------
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this source code
must display the following acknowledgement:
This product includes source code developed
by the Embedded and Network Computing Lab. and the Open SSD Project.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------------------
http://enclab.hanyang.ac.kr/
http://www.openssd-project.org/
http://www.hanyang.ac.kr/
----------------------------------------------------------------------------------
*/
`timescale 1ns / 1ps
module user_top # (
parameter C_S0_AXI_ADDR_WIDTH = 32,
parameter C_S0_AXI_DATA_WIDTH = 32,
parameter C_S0_AXI_BASEADDR = 32'h80000000,
parameter C_S0_AXI_HIGHADDR = 32'h80010000,
parameter C_M0_AXI_ADDR_WIDTH = 32,
parameter C_M0_AXI_DATA_WIDTH = 64,
parameter C_M0_AXI_ID_WIDTH = 1,
parameter C_M0_AXI_AWUSER_WIDTH = 1,
parameter C_M0_AXI_WUSER_WIDTH = 1,
parameter C_M0_AXI_BUSER_WIDTH = 1,
parameter C_M0_AXI_ARUSER_WIDTH = 1,
parameter C_M0_AXI_RUSER_WIDTH = 1,
parameter C_PCIE_DATA_WIDTH = 128
)
(
////////////////////////////////////////////////////////////////
//AXI4-lite slave interface signals
input s0_axi_aclk,
input s0_axi_aresetn,
//Write address channel
input [C_S0_AXI_ADDR_WIDTH-1 : 0] s0_axi_awaddr,
output s0_axi_awready,
input s0_axi_awvalid,
input [2 : 0] s0_axi_awprot,
//Write data channel
input s0_axi_wvalid,
output s0_axi_wready,
input [C_S0_AXI_DATA_WIDTH-1 : 0] s0_axi_wdata,
input [(C_S0_AXI_DATA_WIDTH/8)-1 : 0] s0_axi_wstrb,
//Write response channel
output s0_axi_bvalid,
input s0_axi_bready,
output [1 : 0] s0_axi_bresp,
//Read address channel
input s0_axi_arvalid,
output s0_axi_arready,
input [C_S0_AXI_ADDR_WIDTH-1 : 0] s0_axi_araddr,
input [2 : 0] s0_axi_arprot,
//Read data channel
output s0_axi_rvalid,
input s0_axi_rready,
output [C_S0_AXI_DATA_WIDTH-1 : 0] s0_axi_rdata,
output [1 : 0] s0_axi_rresp,
////////////////////////////////////////////////////////////////
//AXI4 master interface signals
input m0_axi_aclk,
input m0_axi_aresetn,
// Write address channel
output [C_M0_AXI_ID_WIDTH-1:0] m0_axi_awid,
output [C_M0_AXI_ADDR_WIDTH-1:0] m0_axi_awaddr,
output [7:0] m0_axi_awlen,
output [2:0] m0_axi_awsize,
output [1:0] m0_axi_awburst,
output [1:0] m0_axi_awlock,
output [3:0] m0_axi_awcache,
output [2:0] m0_axi_awprot,
output [3:0] m0_axi_awregion,
output [3:0] m0_axi_awqos,
output [C_M0_AXI_AWUSER_WIDTH-1:0] m0_axi_awuser,
output m0_axi_awvalid,
input m0_axi_awready,
// Write data channel
output [C_M0_AXI_ID_WIDTH-1:0] m0_axi_wid,
output [C_M0_AXI_DATA_WIDTH-1:0] m0_axi_wdata,
output [(C_M0_AXI_DATA_WIDTH/8)-1:0] m0_axi_wstrb,
output m0_axi_wlast,
output [C_M0_AXI_WUSER_WIDTH-1:0] m0_axi_wuser,
output m0_axi_wvalid,
input m0_axi_wready,
// Write response channel
input [C_M0_AXI_ID_WIDTH-1:0] m0_axi_bid,
input [1:0] m0_axi_bresp,
input m0_axi_bvalid,
input [C_M0_AXI_BUSER_WIDTH-1:0] m0_axi_buser,
output m0_axi_bready,
// Read address channel
output [C_M0_AXI_ID_WIDTH-1:0] m0_axi_arid,
output [C_M0_AXI_ADDR_WIDTH-1:0] m0_axi_araddr,
output [7:0] m0_axi_arlen,
output [2:0] m0_axi_arsize,
output [1:0] m0_axi_arburst,
output [1:0] m0_axi_arlock,
output [3:0] m0_axi_arcache,
output [2:0] m0_axi_arprot,
output [3:0] m0_axi_arregion,
output [3:0] m0_axi_arqos,
output [C_M0_AXI_ARUSER_WIDTH-1:0] m0_axi_aruser,
output m0_axi_arvalid,
input m0_axi_arready,
// Read data channel
input [C_M0_AXI_ID_WIDTH-1:0] m0_axi_rid,
input [C_M0_AXI_DATA_WIDTH-1:0] m0_axi_rdata,
input [1:0] m0_axi_rresp,
input m0_axi_rlast,
input [C_M0_AXI_RUSER_WIDTH-1:0] m0_axi_ruser,
input m0_axi_rvalid,
output m0_axi_rready,
input pcie_ref_clk_p,
input pcie_ref_clk_n,
input pcie_perst_n,
output dev_irq_assert,
//PCIe Integrated Block Interface
input user_clk_out,
input user_reset_out,
input user_lnk_up,
input [5:0] tx_buf_av,
input tx_err_drop,
input tx_cfg_req,
input s_axis_tx_tready,
output [C_PCIE_DATA_WIDTH-1:0] s_axis_tx_tdata,
output [(C_PCIE_DATA_WIDTH/8)-1:0] s_axis_tx_tkeep,
output [3:0] s_axis_tx_tuser,
output s_axis_tx_tlast,
output s_axis_tx_tvalid,
output tx_cfg_gnt,
input [C_PCIE_DATA_WIDTH-1:0] m_axis_rx_tdata,
input [(C_PCIE_DATA_WIDTH/8)-1:0] m_axis_rx_tkeep,
input m_axis_rx_tlast,
input m_axis_rx_tvalid,
output m_axis_rx_tready,
input [21:0] m_axis_rx_tuser,
output rx_np_ok,
output rx_np_req,
input [11:0] fc_cpld,
input [7:0] fc_cplh,
input [11:0] fc_npd,
input [7:0] fc_nph,
input [11:0] fc_pd,
input [7:0] fc_ph,
output [2:0] fc_sel,
input [7:0] cfg_bus_number,
input [4:0] cfg_device_number,
input [2:0] cfg_function_number,
output cfg_interrupt,
input cfg_interrupt_rdy,
output cfg_interrupt_assert,
output [7:0] cfg_interrupt_di,
input [7:0] cfg_interrupt_do,
input [2:0] cfg_interrupt_mmenable,
input cfg_interrupt_msienable,
input cfg_interrupt_msixenable,
input cfg_interrupt_msixfm,
output cfg_interrupt_stat,
output [4:0] cfg_pciecap_interrupt_msgnum,
input cfg_to_turnoff,
output cfg_turnoff_ok,
input [15:0] cfg_command,
input [15:0] cfg_dcommand,
input [15:0] cfg_lcommand,
input [5:0] pl_ltssm_state,
input pl_received_hot_rst,
output sys_clk,
output sys_rst_n
);
parameter C_PCIE_ADDR_WIDTH = 36;
wire pcie_user_rst_n;
wire w_pcie_user_logic_rst;
wire w_pcie_link_up_sync;
wire [5:0] w_pl_ltssm_state_sync;
wire [15:0] w_cfg_command_sync;
wire [2:0] w_cfg_interrupt_mmenable_sync;
wire w_cfg_interrupt_msienable_sync;
wire w_cfg_interrupt_msixenable_sync;
wire w_pcie_mreq_err_sync;
wire w_pcie_cpld_err_sync;
wire w_pcie_cpld_len_err_sync;
wire w_nvme_cc_en_sync;
wire [1:0] w_nvme_cc_shn_sync;
wire [1:0] w_nvme_csts_shst;
wire w_nvme_csts_rdy;
wire [8:0] w_sq_valid;
wire [7:0] w_io_sq1_size;
wire [7:0] w_io_sq2_size;
wire [7:0] w_io_sq3_size;
wire [7:0] w_io_sq4_size;
wire [7:0] w_io_sq5_size;
wire [7:0] w_io_sq6_size;
wire [7:0] w_io_sq7_size;
wire [7:0] w_io_sq8_size;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_sq1_bs_addr;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_sq2_bs_addr;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_sq3_bs_addr;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_sq4_bs_addr;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_sq5_bs_addr;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_sq6_bs_addr;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_sq7_bs_addr;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_sq8_bs_addr;
wire [3:0] w_io_sq1_cq_vec;
wire [3:0] w_io_sq2_cq_vec;
wire [3:0] w_io_sq3_cq_vec;
wire [3:0] w_io_sq4_cq_vec;
wire [3:0] w_io_sq5_cq_vec;
wire [3:0] w_io_sq6_cq_vec;
wire [3:0] w_io_sq7_cq_vec;
wire [3:0] w_io_sq8_cq_vec;
wire [8:0] w_cq_valid;
wire [7:0] w_io_cq1_size;
wire [7:0] w_io_cq2_size;
wire [7:0] w_io_cq3_size;
wire [7:0] w_io_cq4_size;
wire [7:0] w_io_cq5_size;
wire [7:0] w_io_cq6_size;
wire [7:0] w_io_cq7_size;
wire [7:0] w_io_cq8_size;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_cq1_bs_addr;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_cq2_bs_addr;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_cq3_bs_addr;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_cq4_bs_addr;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_cq5_bs_addr;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_cq6_bs_addr;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_cq7_bs_addr;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_cq8_bs_addr;
wire [8:0] w_io_cq_irq_en;
wire [2:0] w_io_cq1_iv;
wire [2:0] w_io_cq2_iv;
wire [2:0] w_io_cq3_iv;
wire [2:0] w_io_cq4_iv;
wire [2:0] w_io_cq5_iv;
wire [2:0] w_io_cq6_iv;
wire [2:0] w_io_cq7_iv;
wire [2:0] w_io_cq8_iv;
wire w_nvme_cc_en;
wire [1:0] w_nvme_cc_shn;
wire w_pcie_mreq_err;
wire w_pcie_cpld_err;
wire w_pcie_cpld_len_err;
wire [1:0] w_nvme_csts_shst_sync;
wire w_nvme_csts_rdy_sync;
wire [8:0] w_sq_rst_n_sync;
wire [8:0] w_sq_valid_sync;
wire [7:0] w_io_sq1_size_sync;
wire [7:0] w_io_sq2_size_sync;
wire [7:0] w_io_sq3_size_sync;
wire [7:0] w_io_sq4_size_sync;
wire [7:0] w_io_sq5_size_sync;
wire [7:0] w_io_sq6_size_sync;
wire [7:0] w_io_sq7_size_sync;
wire [7:0] w_io_sq8_size_sync;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_sq1_bs_addr_sync;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_sq2_bs_addr_sync;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_sq3_bs_addr_sync;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_sq4_bs_addr_sync;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_sq5_bs_addr_sync;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_sq6_bs_addr_sync;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_sq7_bs_addr_sync;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_sq8_bs_addr_sync;
wire [3:0] w_io_sq1_cq_vec_sync;
wire [3:0] w_io_sq2_cq_vec_sync;
wire [3:0] w_io_sq3_cq_vec_sync;
wire [3:0] w_io_sq4_cq_vec_sync;
wire [3:0] w_io_sq5_cq_vec_sync;
wire [3:0] w_io_sq6_cq_vec_sync;
wire [3:0] w_io_sq7_cq_vec_sync;
wire [3:0] w_io_sq8_cq_vec_sync;
wire [8:0] w_cq_rst_n_sync;
wire [8:0] w_cq_valid_sync;
wire [7:0] w_io_cq1_size_sync;
wire [7:0] w_io_cq2_size_sync;
wire [7:0] w_io_cq3_size_sync;
wire [7:0] w_io_cq4_size_sync;
wire [7:0] w_io_cq5_size_sync;
wire [7:0] w_io_cq6_size_sync;
wire [7:0] w_io_cq7_size_sync;
wire [7:0] w_io_cq8_size_sync;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_cq1_bs_addr_sync;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_cq2_bs_addr_sync;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_cq3_bs_addr_sync;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_cq4_bs_addr_sync;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_cq5_bs_addr_sync;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_cq6_bs_addr_sync;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_cq7_bs_addr_sync;
wire [C_PCIE_ADDR_WIDTH-1:2] w_io_cq8_bs_addr_sync;
wire [8:0] w_io_cq_irq_en_sync;
wire [2:0] w_io_cq1_iv_sync;
wire [2:0] w_io_cq2_iv_sync;
wire [2:0] w_io_cq3_iv_sync;
wire [2:0] w_io_cq4_iv_sync;
wire [2:0] w_io_cq5_iv_sync;
wire [2:0] w_io_cq6_iv_sync;
wire [2:0] w_io_cq7_iv_sync;
wire [2:0] w_io_cq8_iv_sync;
wire [10:0] w_hcmd_table_rd_addr;
wire [31:0] w_hcmd_table_rd_data;
wire w_hcmd_sq_rd_en;
wire [18:0] w_hcmd_sq_rd_data;
wire w_hcmd_sq_empty_n;
wire w_hcmd_cq_wr1_en;
wire [34:0] w_hcmd_cq_wr1_data0;
wire [34:0] w_hcmd_cq_wr1_data1;
wire w_hcmd_cq_wr1_rdy_n;
wire w_dma_cmd_wr_en;
wire [49:0] w_dma_cmd_wr_data0;
wire [49:0] w_dma_cmd_wr_data1;
wire w_dma_cmd_wr_rdy_n;
wire [7:0] w_dma_rx_direct_done_cnt;
wire [7:0] w_dma_tx_direct_done_cnt;
wire [7:0] w_dma_rx_done_cnt;
wire [7:0] w_dma_tx_done_cnt;
wire w_pcie_rx_fifo_rd_en;
wire [C_M0_AXI_DATA_WIDTH-1:0] w_pcie_rx_fifo_rd_data;
wire w_pcie_rx_fifo_free_en;
wire [9:4] w_pcie_rx_fifo_free_len;
wire w_pcie_rx_fifo_empty_n;
wire w_pcie_tx_fifo_alloc_en;
wire [9:4] w_pcie_tx_fifo_alloc_len;
wire w_pcie_tx_fifo_wr_en;
wire [C_M0_AXI_DATA_WIDTH-1:0] w_pcie_tx_fifo_wr_data;
wire w_pcie_tx_fifo_full_n;
wire w_dma_rx_done_wr_en;
wire [20:0] w_dma_rx_done_wr_data;
wire w_dma_rx_done_wr_rdy_n;
wire w_dev_rx_cmd_wr_en;
wire [29:0] w_dev_rx_cmd_wr_data;
wire w_dev_rx_cmd_full_n;
wire w_dev_tx_cmd_wr_en;
wire [29:0] w_dev_tx_cmd_wr_data;
wire w_dev_tx_cmd_full_n;
sys_rst
sys_rst_inst0(
.cpu_bus_clk (s0_axi_aclk),
.cpu_bus_rst_n (s0_axi_aresetn),
.pcie_perst_n (pcie_perst_n),
.user_reset_out (user_reset_out),
.pcie_pl_hot_rst (pl_received_hot_rst),
.pcie_user_logic_rst (w_pcie_user_logic_rst),
.pcie_sys_rst_n (sys_rst_n),
.pcie_user_rst_n (pcie_user_rst_n)
);
s_axi_top # (
.C_S0_AXI_ADDR_WIDTH (C_S0_AXI_ADDR_WIDTH),
.C_S0_AXI_DATA_WIDTH (C_S0_AXI_DATA_WIDTH),
.C_S0_AXI_BASEADDR (C_S0_AXI_BASEADDR),
.C_S0_AXI_HIGHADDR (C_S0_AXI_HIGHADDR),
.C_M0_AXI_ADDR_WIDTH (C_M0_AXI_ADDR_WIDTH),
.C_M0_AXI_DATA_WIDTH (C_M0_AXI_DATA_WIDTH),
.C_M0_AXI_ID_WIDTH (C_M0_AXI_ID_WIDTH),
.C_M0_AXI_AWUSER_WIDTH (C_M0_AXI_AWUSER_WIDTH),
.C_M0_AXI_WUSER_WIDTH (C_M0_AXI_WUSER_WIDTH),
.C_M0_AXI_BUSER_WIDTH (C_M0_AXI_BUSER_WIDTH),
.C_M0_AXI_ARUSER_WIDTH (C_M0_AXI_ARUSER_WIDTH),
.C_M0_AXI_RUSER_WIDTH (C_M0_AXI_RUSER_WIDTH)
)
s_axi_top_inst0 (
////////////////////////////////////////////////////////////////
//AXI4-lite slave interface signals
.s0_axi_aclk (s0_axi_aclk),
.s0_axi_aresetn (s0_axi_aresetn),
//Write address channel
.s0_axi_awaddr (s0_axi_awaddr),
.s0_axi_awready (s0_axi_awready),
.s0_axi_awvalid (s0_axi_awvalid),
.s0_axi_awprot (s0_axi_awprot),
//Write data channel
.s0_axi_wvalid (s0_axi_wvalid),
.s0_axi_wready (s0_axi_wready),
.s0_axi_wdata (s0_axi_wdata),
.s0_axi_wstrb (s0_axi_wstrb),
//Write response channel
.s0_axi_bvalid (s0_axi_bvalid),
.s0_axi_bready (s0_axi_bready),
.s0_axi_bresp (s0_axi_bresp),
//Read address channel
.s0_axi_arvalid (s0_axi_arvalid),
.s0_axi_arready (s0_axi_arready),
.s0_axi_araddr (s0_axi_araddr),
.s0_axi_arprot (s0_axi_arprot),
//Read data channel
.s0_axi_rvalid (s0_axi_rvalid),
.s0_axi_rready (s0_axi_rready),
.s0_axi_rdata (s0_axi_rdata),
.s0_axi_rresp (s0_axi_rresp),
.pcie_mreq_err (w_pcie_mreq_err_sync),
.pcie_cpld_err (w_pcie_cpld_err_sync),
.pcie_cpld_len_err (w_pcie_cpld_len_err_sync),
.dev_irq_assert (dev_irq_assert),
.pcie_user_logic_rst (w_pcie_user_logic_rst),
.nvme_cc_en (w_nvme_cc_en_sync),
.nvme_cc_shn (w_nvme_cc_shn_sync),
.nvme_csts_shst (w_nvme_csts_shst),
.nvme_csts_rdy (w_nvme_csts_rdy),
.sq_valid (w_sq_valid),
.io_sq1_size (w_io_sq1_size),
.io_sq2_size (w_io_sq2_size),
.io_sq3_size (w_io_sq3_size),
.io_sq4_size (w_io_sq4_size),
.io_sq5_size (w_io_sq5_size),
.io_sq6_size (w_io_sq6_size),
.io_sq7_size (w_io_sq7_size),
.io_sq8_size (w_io_sq8_size),
.io_sq1_bs_addr (w_io_sq1_bs_addr),
.io_sq2_bs_addr (w_io_sq2_bs_addr),
.io_sq3_bs_addr (w_io_sq3_bs_addr),
.io_sq4_bs_addr (w_io_sq4_bs_addr),
.io_sq5_bs_addr (w_io_sq5_bs_addr),
.io_sq6_bs_addr (w_io_sq6_bs_addr),
.io_sq7_bs_addr (w_io_sq7_bs_addr),
.io_sq8_bs_addr (w_io_sq8_bs_addr),
.io_sq1_cq_vec (w_io_sq1_cq_vec),
.io_sq2_cq_vec (w_io_sq2_cq_vec),
.io_sq3_cq_vec (w_io_sq3_cq_vec),
.io_sq4_cq_vec (w_io_sq4_cq_vec),
.io_sq5_cq_vec (w_io_sq5_cq_vec),
.io_sq6_cq_vec (w_io_sq6_cq_vec),
.io_sq7_cq_vec (w_io_sq7_cq_vec),
.io_sq8_cq_vec (w_io_sq8_cq_vec),
.cq_valid (w_cq_valid),
.io_cq1_size (w_io_cq1_size),
.io_cq2_size (w_io_cq2_size),
.io_cq3_size (w_io_cq3_size),
.io_cq4_size (w_io_cq4_size),
.io_cq5_size (w_io_cq5_size),
.io_cq6_size (w_io_cq6_size),
.io_cq7_size (w_io_cq7_size),
.io_cq8_size (w_io_cq8_size),
.io_cq1_bs_addr (w_io_cq1_bs_addr),
.io_cq2_bs_addr (w_io_cq2_bs_addr),
.io_cq3_bs_addr (w_io_cq3_bs_addr),
.io_cq4_bs_addr (w_io_cq4_bs_addr),
.io_cq5_bs_addr (w_io_cq5_bs_addr),
.io_cq6_bs_addr (w_io_cq6_bs_addr),
.io_cq7_bs_addr (w_io_cq7_bs_addr),
.io_cq8_bs_addr (w_io_cq8_bs_addr),
.io_cq_irq_en (w_io_cq_irq_en),
.io_cq1_iv (w_io_cq1_iv),
.io_cq2_iv (w_io_cq2_iv),
.io_cq3_iv (w_io_cq3_iv),
.io_cq4_iv (w_io_cq4_iv),
.io_cq5_iv (w_io_cq5_iv),
.io_cq6_iv (w_io_cq6_iv),
.io_cq7_iv (w_io_cq7_iv),
.io_cq8_iv (w_io_cq8_iv),
.hcmd_sq_rd_en (w_hcmd_sq_rd_en),
.hcmd_sq_rd_data (w_hcmd_sq_rd_data),
.hcmd_sq_empty_n (w_hcmd_sq_empty_n),
.hcmd_table_rd_addr (w_hcmd_table_rd_addr),
.hcmd_table_rd_data (w_hcmd_table_rd_data),
.hcmd_cq_wr1_en (w_hcmd_cq_wr1_en),
.hcmd_cq_wr1_data0 (w_hcmd_cq_wr1_data0),
.hcmd_cq_wr1_data1 (w_hcmd_cq_wr1_data1),
.hcmd_cq_wr1_rdy_n (w_hcmd_cq_wr1_rdy_n),
.dma_cmd_wr_en (w_dma_cmd_wr_en),
.dma_cmd_wr_data0 (w_dma_cmd_wr_data0),
.dma_cmd_wr_data1 (w_dma_cmd_wr_data1),
.dma_cmd_wr_rdy_n (w_dma_cmd_wr_rdy_n),
////////////////////////////////////////////////////////////////
//AXI4 master interface signals
.m0_axi_aclk (m0_axi_aclk),
.m0_axi_aresetn (m0_axi_aresetn),
// Write address channel
.m0_axi_awid (m0_axi_awid),
.m0_axi_awaddr (m0_axi_awaddr),
.m0_axi_awlen (m0_axi_awlen),
.m0_axi_awsize (m0_axi_awsize),
.m0_axi_awburst (m0_axi_awburst),
.m0_axi_awlock (m0_axi_awlock),
.m0_axi_awcache (m0_axi_awcache),
.m0_axi_awprot (m0_axi_awprot),
.m0_axi_awregion (m0_axi_awregion),
.m0_axi_awqos (m0_axi_awqos),
.m0_axi_awuser (m0_axi_awuser),
.m0_axi_awvalid (m0_axi_awvalid),
.m0_axi_awready (m0_axi_awready),
// Write data channel
.m0_axi_wid (m0_axi_wid),
.m0_axi_wdata (m0_axi_wdata),
.m0_axi_wstrb (m0_axi_wstrb),
.m0_axi_wlast (m0_axi_wlast),
.m0_axi_wuser (m0_axi_wuser),
.m0_axi_wvalid (m0_axi_wvalid),
.m0_axi_wready (m0_axi_wready),
// Write response channel
.m0_axi_bid (m0_axi_bid),
.m0_axi_bresp (m0_axi_bresp),
.m0_axi_bvalid (m0_axi_bvalid),
.m0_axi_buser (m0_axi_buser),
.m0_axi_bready (m0_axi_bready),
// Read address channel
.m0_axi_arid (m0_axi_arid),
.m0_axi_araddr (m0_axi_araddr),
.m0_axi_arlen (m0_axi_arlen),
.m0_axi_arsize (m0_axi_arsize),
.m0_axi_arburst (m0_axi_arburst),
.m0_axi_arlock (m0_axi_arlock),
.m0_axi_arcache (m0_axi_arcache),
.m0_axi_arprot (m0_axi_arprot),
.m0_axi_arregion (m0_axi_arregion),
.m0_axi_arqos (m0_axi_arqos),
.m0_axi_aruser (m0_axi_aruser),
.m0_axi_arvalid (m0_axi_arvalid),
.m0_axi_arready (m0_axi_arready),
// Read data channel
.m0_axi_rid (m0_axi_rid),
.m0_axi_rdata (m0_axi_rdata),
.m0_axi_rresp (m0_axi_rresp),
.m0_axi_rlast (m0_axi_rlast),
.m0_axi_ruser (m0_axi_ruser),
.m0_axi_rvalid (m0_axi_rvalid),
.m0_axi_rready (m0_axi_rready),
.pcie_rx_fifo_rd_en (w_pcie_rx_fifo_rd_en),
.pcie_rx_fifo_rd_data (w_pcie_rx_fifo_rd_data),
.pcie_rx_fifo_free_en (w_pcie_rx_fifo_free_en),
.pcie_rx_fifo_free_len (w_pcie_rx_fifo_free_len),
.pcie_rx_fifo_empty_n (w_pcie_rx_fifo_empty_n),
.pcie_tx_fifo_alloc_en (w_pcie_tx_fifo_alloc_en),
.pcie_tx_fifo_alloc_len (w_pcie_tx_fifo_alloc_len),
.pcie_tx_fifo_wr_en (w_pcie_tx_fifo_wr_en),
.pcie_tx_fifo_wr_data (w_pcie_tx_fifo_wr_data),
.pcie_tx_fifo_full_n (w_pcie_tx_fifo_full_n),
.dma_rx_done_wr_en (w_dma_rx_done_wr_en),
.dma_rx_done_wr_data (w_dma_rx_done_wr_data),
.dma_rx_done_wr_rdy_n (w_dma_rx_done_wr_rdy_n),
.pcie_user_clk (user_clk_out),
.pcie_user_rst_n (pcie_user_rst_n),
.dev_rx_cmd_wr_en (w_dev_rx_cmd_wr_en),
.dev_rx_cmd_wr_data (w_dev_rx_cmd_wr_data),
.dev_rx_cmd_full_n (w_dev_rx_cmd_full_n),
.dev_tx_cmd_wr_en (w_dev_tx_cmd_wr_en),
.dev_tx_cmd_wr_data (w_dev_tx_cmd_wr_data),
.dev_tx_cmd_full_n (w_dev_tx_cmd_full_n),
.dma_rx_direct_done_cnt (w_dma_rx_direct_done_cnt),
.dma_tx_direct_done_cnt (w_dma_tx_direct_done_cnt),
.dma_rx_done_cnt (w_dma_rx_done_cnt),
.dma_tx_done_cnt (w_dma_tx_done_cnt),
.pcie_link_up (w_pcie_link_up_sync),
.pl_ltssm_state (w_pl_ltssm_state_sync),
.cfg_command (w_cfg_command_sync),
.cfg_interrupt_mmenable (w_cfg_interrupt_mmenable_sync),
.cfg_interrupt_msienable (w_cfg_interrupt_msienable_sync),
.cfg_interrupt_msixenable (w_cfg_interrupt_msixenable_sync)
);
reg_cpu_pcie_sync
reg_cpu_pcie_sync_isnt0
(
.cpu_bus_clk (s0_axi_aclk),
.nvme_csts_shst (w_nvme_csts_shst),
.nvme_csts_rdy (w_nvme_csts_rdy),
.sq_valid (w_sq_valid),
.io_sq1_size (w_io_sq1_size),
.io_sq2_size (w_io_sq2_size),
.io_sq3_size (w_io_sq3_size),
.io_sq4_size (w_io_sq4_size),
.io_sq5_size (w_io_sq5_size),
.io_sq6_size (w_io_sq6_size),
.io_sq7_size (w_io_sq7_size),
.io_sq8_size (w_io_sq8_size),
.io_sq1_bs_addr (w_io_sq1_bs_addr),
.io_sq2_bs_addr (w_io_sq2_bs_addr),
.io_sq3_bs_addr (w_io_sq3_bs_addr),
.io_sq4_bs_addr (w_io_sq4_bs_addr),
.io_sq5_bs_addr (w_io_sq5_bs_addr),
.io_sq6_bs_addr (w_io_sq6_bs_addr),
.io_sq7_bs_addr (w_io_sq7_bs_addr),
.io_sq8_bs_addr (w_io_sq8_bs_addr),
.io_sq1_cq_vec (w_io_sq1_cq_vec),
.io_sq2_cq_vec (w_io_sq2_cq_vec),
.io_sq3_cq_vec (w_io_sq3_cq_vec),
.io_sq4_cq_vec (w_io_sq4_cq_vec),
.io_sq5_cq_vec (w_io_sq5_cq_vec),
.io_sq6_cq_vec (w_io_sq6_cq_vec),
.io_sq7_cq_vec (w_io_sq7_cq_vec),
.io_sq8_cq_vec (w_io_sq8_cq_vec),
.cq_valid (w_cq_valid),
.io_cq1_size (w_io_cq1_size),
.io_cq2_size (w_io_cq2_size),
.io_cq3_size (w_io_cq3_size),
.io_cq4_size (w_io_cq4_size),
.io_cq5_size (w_io_cq5_size),
.io_cq6_size (w_io_cq6_size),
.io_cq7_size (w_io_cq7_size),
.io_cq8_size (w_io_cq8_size),
.io_cq1_bs_addr (w_io_cq1_bs_addr),
.io_cq2_bs_addr (w_io_cq2_bs_addr),
.io_cq3_bs_addr (w_io_cq3_bs_addr),
.io_cq4_bs_addr (w_io_cq4_bs_addr),
.io_cq5_bs_addr (w_io_cq5_bs_addr),
.io_cq6_bs_addr (w_io_cq6_bs_addr),
.io_cq7_bs_addr (w_io_cq7_bs_addr),
.io_cq8_bs_addr (w_io_cq8_bs_addr),
.io_cq_irq_en (w_io_cq_irq_en),
.io_cq1_iv (w_io_cq1_iv),
.io_cq2_iv (w_io_cq2_iv),
.io_cq3_iv (w_io_cq3_iv),
.io_cq4_iv (w_io_cq4_iv),
.io_cq5_iv (w_io_cq5_iv),
.io_cq6_iv (w_io_cq6_iv),
.io_cq7_iv (w_io_cq7_iv),
.io_cq8_iv (w_io_cq8_iv),
.pcie_link_up_sync (w_pcie_link_up_sync),
.pl_ltssm_state_sync (w_pl_ltssm_state_sync),
.cfg_command_sync (w_cfg_command_sync),
.cfg_interrupt_mmenable_sync (w_cfg_interrupt_mmenable_sync),
.cfg_interrupt_msienable_sync (w_cfg_interrupt_msienable_sync),
.cfg_interrupt_msixenable_sync (w_cfg_interrupt_msixenable_sync),
.pcie_mreq_err_sync (w_pcie_mreq_err_sync),
.pcie_cpld_err_sync (w_pcie_cpld_err_sync),
.pcie_cpld_len_err_sync (w_pcie_cpld_len_err_sync),
.nvme_cc_en_sync (w_nvme_cc_en_sync),
.nvme_cc_shn_sync (w_nvme_cc_shn_sync),
.pcie_user_clk (user_clk_out),
.pcie_link_up (user_lnk_up),
.pl_ltssm_state (pl_ltssm_state),
.cfg_command (cfg_command),
.cfg_interrupt_mmenable (cfg_interrupt_mmenable),
.cfg_interrupt_msienable (cfg_interrupt_msienable),
.cfg_interrupt_msixenable (cfg_interrupt_msixenable),
.pcie_mreq_err (w_pcie_mreq_err),
.pcie_cpld_err (w_pcie_cpld_err),
.pcie_cpld_len_err (w_pcie_cpld_len_err),
.nvme_cc_en (w_nvme_cc_en),
.nvme_cc_shn (w_nvme_cc_shn),
.nvme_csts_shst_sync (w_nvme_csts_shst_sync),
.nvme_csts_rdy_sync (w_nvme_csts_rdy_sync),
.sq_rst_n_sync (w_sq_rst_n_sync),
.sq_valid_sync (w_sq_valid_sync),
.io_sq1_size_sync (w_io_sq1_size_sync),
.io_sq2_size_sync (w_io_sq2_size_sync),
.io_sq3_size_sync (w_io_sq3_size_sync),
.io_sq4_size_sync (w_io_sq4_size_sync),
.io_sq5_size_sync (w_io_sq5_size_sync),
.io_sq6_size_sync (w_io_sq6_size_sync),
.io_sq7_size_sync (w_io_sq7_size_sync),
.io_sq8_size_sync (w_io_sq8_size_sync),
.io_sq1_bs_addr_sync (w_io_sq1_bs_addr_sync),
.io_sq2_bs_addr_sync (w_io_sq2_bs_addr_sync),
.io_sq3_bs_addr_sync (w_io_sq3_bs_addr_sync),
.io_sq4_bs_addr_sync (w_io_sq4_bs_addr_sync),
.io_sq5_bs_addr_sync (w_io_sq5_bs_addr_sync),
.io_sq6_bs_addr_sync (w_io_sq6_bs_addr_sync),
.io_sq7_bs_addr_sync (w_io_sq7_bs_addr_sync),
.io_sq8_bs_addr_sync (w_io_sq8_bs_addr_sync),
.io_sq1_cq_vec_sync (w_io_sq1_cq_vec_sync),
.io_sq2_cq_vec_sync (w_io_sq2_cq_vec_sync),
.io_sq3_cq_vec_sync (w_io_sq3_cq_vec_sync),
.io_sq4_cq_vec_sync (w_io_sq4_cq_vec_sync),
.io_sq5_cq_vec_sync (w_io_sq5_cq_vec_sync),
.io_sq6_cq_vec_sync (w_io_sq6_cq_vec_sync),
.io_sq7_cq_vec_sync (w_io_sq7_cq_vec_sync),
.io_sq8_cq_vec_sync (w_io_sq8_cq_vec_sync),
.cq_rst_n_sync (w_cq_rst_n_sync),
.cq_valid_sync (w_cq_valid_sync),
.io_cq1_size_sync (w_io_cq1_size_sync),
.io_cq2_size_sync (w_io_cq2_size_sync),
.io_cq3_size_sync (w_io_cq3_size_sync),
.io_cq4_size_sync (w_io_cq4_size_sync),
.io_cq5_size_sync (w_io_cq5_size_sync),
.io_cq6_size_sync (w_io_cq6_size_sync),
.io_cq7_size_sync (w_io_cq7_size_sync),
.io_cq8_size_sync (w_io_cq8_size_sync),
.io_cq1_bs_addr_sync (w_io_cq1_bs_addr_sync),
.io_cq2_bs_addr_sync (w_io_cq2_bs_addr_sync),
.io_cq3_bs_addr_sync (w_io_cq3_bs_addr_sync),
.io_cq4_bs_addr_sync (w_io_cq4_bs_addr_sync),
.io_cq5_bs_addr_sync (w_io_cq5_bs_addr_sync),
.io_cq6_bs_addr_sync (w_io_cq6_bs_addr_sync),
.io_cq7_bs_addr_sync (w_io_cq7_bs_addr_sync),
.io_cq8_bs_addr_sync (w_io_cq8_bs_addr_sync),
.io_cq_irq_en_sync (w_io_cq_irq_en_sync),
.io_cq1_iv_sync (w_io_cq1_iv_sync),
.io_cq2_iv_sync (w_io_cq2_iv_sync),
.io_cq3_iv_sync (w_io_cq3_iv_sync),
.io_cq4_iv_sync (w_io_cq4_iv_sync),
.io_cq5_iv_sync (w_io_cq5_iv_sync),
.io_cq6_iv_sync (w_io_cq6_iv_sync),
.io_cq7_iv_sync (w_io_cq7_iv_sync),
.io_cq8_iv_sync (w_io_cq8_iv_sync)
);
nvme_pcie # (
.C_PCIE_DATA_WIDTH (128)
)
nvme_pcie_inst0(
.pcie_ref_clk_p (pcie_ref_clk_p),
.pcie_ref_clk_n (pcie_ref_clk_n),
//PCIe user clock
.pcie_user_clk (user_clk_out),
.pcie_user_rst_n (pcie_user_rst_n),
.dev_rx_cmd_wr_en (w_dev_rx_cmd_wr_en),
.dev_rx_cmd_wr_data (w_dev_rx_cmd_wr_data),
.dev_rx_cmd_full_n (w_dev_rx_cmd_full_n),
.dev_tx_cmd_wr_en (w_dev_tx_cmd_wr_en),
.dev_tx_cmd_wr_data (w_dev_tx_cmd_wr_data),
.dev_tx_cmd_full_n (w_dev_tx_cmd_full_n),
.cpu_bus_clk (s0_axi_aclk),
.cpu_bus_rst_n (s0_axi_aresetn),
.nvme_cc_en (w_nvme_cc_en),
.nvme_cc_shn (w_nvme_cc_shn),
.nvme_csts_shst (w_nvme_csts_shst_sync),
.nvme_csts_rdy (w_nvme_csts_rdy_sync),
.sq_rst_n (w_sq_rst_n_sync),
.sq_valid (w_sq_valid_sync),
.io_sq1_size (w_io_sq1_size_sync),
.io_sq2_size (w_io_sq2_size_sync),
.io_sq3_size (w_io_sq3_size_sync),
.io_sq4_size (w_io_sq4_size_sync),
.io_sq5_size (w_io_sq5_size_sync),
.io_sq6_size (w_io_sq6_size_sync),
.io_sq7_size (w_io_sq7_size_sync),
.io_sq8_size (w_io_sq8_size_sync),
.io_sq1_bs_addr (w_io_sq1_bs_addr_sync),
.io_sq2_bs_addr (w_io_sq2_bs_addr_sync),
.io_sq3_bs_addr (w_io_sq3_bs_addr_sync),
.io_sq4_bs_addr (w_io_sq4_bs_addr_sync),
.io_sq5_bs_addr (w_io_sq5_bs_addr_sync),
.io_sq6_bs_addr (w_io_sq6_bs_addr_sync),
.io_sq7_bs_addr (w_io_sq7_bs_addr_sync),
.io_sq8_bs_addr (w_io_sq8_bs_addr_sync),
.io_sq1_cq_vec (w_io_sq1_cq_vec_sync),
.io_sq2_cq_vec (w_io_sq2_cq_vec_sync),
.io_sq3_cq_vec (w_io_sq3_cq_vec_sync),
.io_sq4_cq_vec (w_io_sq4_cq_vec_sync),
.io_sq5_cq_vec (w_io_sq5_cq_vec_sync),
.io_sq6_cq_vec (w_io_sq6_cq_vec_sync),
.io_sq7_cq_vec (w_io_sq7_cq_vec_sync),
.io_sq8_cq_vec (w_io_sq8_cq_vec_sync),
.cq_rst_n (w_cq_rst_n_sync),
.cq_valid (w_cq_valid_sync),
.io_cq1_size (w_io_cq1_size_sync),
.io_cq2_size (w_io_cq2_size_sync),
.io_cq3_size (w_io_cq3_size_sync),
.io_cq4_size (w_io_cq4_size_sync),
.io_cq5_size (w_io_cq5_size_sync),
.io_cq6_size (w_io_cq6_size_sync),
.io_cq7_size (w_io_cq7_size_sync),
.io_cq8_size (w_io_cq8_size_sync),
.io_cq1_bs_addr (w_io_cq1_bs_addr_sync),
.io_cq2_bs_addr (w_io_cq2_bs_addr_sync),
.io_cq3_bs_addr (w_io_cq3_bs_addr_sync),
.io_cq4_bs_addr (w_io_cq4_bs_addr_sync),
.io_cq5_bs_addr (w_io_cq5_bs_addr_sync),
.io_cq6_bs_addr (w_io_cq6_bs_addr_sync),
.io_cq7_bs_addr (w_io_cq7_bs_addr_sync),
.io_cq8_bs_addr (w_io_cq8_bs_addr_sync),
.io_cq_irq_en (w_io_cq_irq_en_sync),
.io_cq1_iv (w_io_cq1_iv_sync),
.io_cq2_iv (w_io_cq2_iv_sync),
.io_cq3_iv (w_io_cq3_iv_sync),
.io_cq4_iv (w_io_cq4_iv_sync),
.io_cq5_iv (w_io_cq5_iv_sync),
.io_cq6_iv (w_io_cq6_iv_sync),
.io_cq7_iv (w_io_cq7_iv_sync),
.io_cq8_iv (w_io_cq8_iv_sync),
.hcmd_sq_rd_en (w_hcmd_sq_rd_en),
.hcmd_sq_rd_data (w_hcmd_sq_rd_data),
.hcmd_sq_empty_n (w_hcmd_sq_empty_n),
.hcmd_table_rd_addr (w_hcmd_table_rd_addr),
.hcmd_table_rd_data (w_hcmd_table_rd_data),
.hcmd_cq_wr1_en (w_hcmd_cq_wr1_en),
.hcmd_cq_wr1_data0 (w_hcmd_cq_wr1_data0),
.hcmd_cq_wr1_data1 (w_hcmd_cq_wr1_data1),
.hcmd_cq_wr1_rdy_n (w_hcmd_cq_wr1_rdy_n),
.dma_cmd_wr_en (w_dma_cmd_wr_en),
.dma_cmd_wr_data0 (w_dma_cmd_wr_data0),
.dma_cmd_wr_data1 (w_dma_cmd_wr_data1),
.dma_cmd_wr_rdy_n (w_dma_cmd_wr_rdy_n),
.dma_rx_direct_done_cnt (w_dma_rx_direct_done_cnt),
.dma_tx_direct_done_cnt (w_dma_tx_direct_done_cnt),
.dma_rx_done_cnt (w_dma_rx_done_cnt),
.dma_tx_done_cnt (w_dma_tx_done_cnt),
.dma_bus_clk (m0_axi_aclk),
.dma_bus_rst_n (m0_axi_aresetn),
.pcie_rx_fifo_rd_en (w_pcie_rx_fifo_rd_en),
.pcie_rx_fifo_rd_data (w_pcie_rx_fifo_rd_data),
.pcie_rx_fifo_free_en (w_pcie_rx_fifo_free_en),
.pcie_rx_fifo_free_len (w_pcie_rx_fifo_free_len),
.pcie_rx_fifo_empty_n (w_pcie_rx_fifo_empty_n),
.pcie_tx_fifo_alloc_en (w_pcie_tx_fifo_alloc_en),
.pcie_tx_fifo_alloc_len (w_pcie_tx_fifo_alloc_len),
.pcie_tx_fifo_wr_en (w_pcie_tx_fifo_wr_en),
.pcie_tx_fifo_wr_data (w_pcie_tx_fifo_wr_data),
.pcie_tx_fifo_full_n (w_pcie_tx_fifo_full_n),
.dma_rx_done_wr_en (w_dma_rx_done_wr_en),
.dma_rx_done_wr_data (w_dma_rx_done_wr_data),
.dma_rx_done_wr_rdy_n (w_dma_rx_done_wr_rdy_n),
.pcie_mreq_err (w_pcie_mreq_err),
.pcie_cpld_err (w_pcie_cpld_err),
.pcie_cpld_len_err (w_pcie_cpld_len_err),
.tx_buf_av (tx_buf_av),
.tx_err_drop (tx_err_drop),
.tx_cfg_req (tx_cfg_req),
.s_axis_tx_tready (s_axis_tx_tready),
.s_axis_tx_tdata (s_axis_tx_tdata),
.s_axis_tx_tkeep (s_axis_tx_tkeep),
.s_axis_tx_tuser (s_axis_tx_tuser),
.s_axis_tx_tlast (s_axis_tx_tlast),
.s_axis_tx_tvalid (s_axis_tx_tvalid),
.tx_cfg_gnt (tx_cfg_gnt),
.m_axis_rx_tdata (m_axis_rx_tdata),
.m_axis_rx_tkeep (m_axis_rx_tkeep),
.m_axis_rx_tlast (m_axis_rx_tlast),
.m_axis_rx_tvalid (m_axis_rx_tvalid),
.m_axis_rx_tready (m_axis_rx_tready),
.m_axis_rx_tuser (m_axis_rx_tuser),
.rx_np_ok (rx_np_ok),
.rx_np_req (rx_np_req),
.fc_cpld (fc_cpld),
.fc_cplh (fc_cplh),
.fc_npd (fc_npd),
.fc_nph (fc_nph),
.fc_pd (fc_pd),
.fc_ph (fc_ph),
.fc_sel (fc_sel),
.cfg_interrupt (cfg_interrupt),
.cfg_interrupt_rdy (cfg_interrupt_rdy),
.cfg_interrupt_assert (cfg_interrupt_assert),
.cfg_interrupt_di (cfg_interrupt_di),
.cfg_interrupt_do (cfg_interrupt_do),
.cfg_interrupt_mmenable (cfg_interrupt_mmenable),
.cfg_interrupt_msienable (cfg_interrupt_msienable),
.cfg_interrupt_msixenable (cfg_interrupt_msixenable),
.cfg_interrupt_msixfm (cfg_interrupt_msixfm),
.cfg_interrupt_stat (cfg_interrupt_stat),
.cfg_pciecap_interrupt_msgnum (cfg_pciecap_interrupt_msgnum),
.cfg_bus_number (cfg_bus_number),
.cfg_device_number (cfg_device_number),
.cfg_function_number (cfg_function_number),
.cfg_to_turnoff (cfg_to_turnoff),
.cfg_turnoff_ok (cfg_turnoff_ok),
.cfg_command (cfg_command),
.cfg_dcommand (cfg_dcommand),
.cfg_lcommand (cfg_lcommand),
.sys_clk (sys_clk)
);
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2003 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc; initial cyc=1;
// verilator lint_off GENCLK
reg printclk;
// verilator lint_on GENCLK
ps ps (printclk);
reg [7:0] a;
wire [7:0] z;
l1 u (~a,z);
always @ (posedge clk) begin
printclk <= 0;
if (cyc!=0) begin
cyc <= cyc + 1;
if (cyc==1) begin
printclk <= 1'b1;
end
if (cyc==2) begin
a <= 8'b1;
end
if (cyc==3) begin
if (z !== 8'hf8) $stop;
//if (u.u1.u1.u1.u0.PARAM !== 1) $stop;
//if (u.u1.u1.u1.u1.PARAM !== 2) $stop;
//if (u.u0.u0.u0.u0.z !== 8'hfe) $stop;
//if (u.u0.u0.u0.u1.z !== 8'hff) $stop;
//if (u.u1.u1.u1.u0.z !== 8'h00) $stop;
//if (u.u1.u1.u1.u1.z !== 8'h01) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
end
endmodule
`ifdef USE_INLINE
`define INLINE_MODULE /*verilator inline_module*/
`else
`define INLINE_MODULE /*verilator public_module*/
`endif
`ifdef USE_PUBLIC
`define PUBLIC /*verilator public*/
`else
`define PUBLIC
`endif
module ps (input printclk);
`INLINE_MODULE
// Check that %m stays correct across inlines
always @ (posedge printclk) $write("[%0t] %m: Clocked\n", $time);
endmodule
module l1 (input [7:0] a, output [7:0] z);
`INLINE_MODULE
wire [7:0] z0 `PUBLIC; wire [7:0] z1 `PUBLIC;
wire [7:0] z `PUBLIC; assign z = z0+z1;
l2 u0 (a, z0); l2 u1 (a, z1);
endmodule
module l2 (input [7:0] a, output [7:0] z);
`INLINE_MODULE
wire [7:0] z0 `PUBLIC; wire [7:0] z1 `PUBLIC;
wire [7:0] z `PUBLIC; assign z = z0+z1;
wire [7:0] a1 = a+8'd1;
l3 u0 (a, z0); l3 u1 (a1, z1);
endmodule
module l3 (input [7:0] a, output [7:0] z);
`INLINE_MODULE
wire [7:0] z0 `PUBLIC; wire [7:0] z1 `PUBLIC;
wire [7:0] z `PUBLIC; assign z = z0+z1;
wire [7:0] a1 = a+8'd1;
l4 u0 (a, z0); l4 u1 (a1, z1);
endmodule
module l4 (input [7:0] a, output [7:0] z);
`INLINE_MODULE
wire [7:0] z0 `PUBLIC; wire [7:0] z1 `PUBLIC;
wire [7:0] z `PUBLIC; assign z = z0+z1;
wire [7:0] a1 = a+8'd1;
l5 #(1) u0 (a, z0); l5 #(2) u1 (a1, z1);
endmodule
module l5 (input [7:0] a, output [7:0] z);
`INLINE_MODULE
parameter PARAM = 5;
wire [7:0] z0 `PUBLIC; wire [7:0] z1 `PUBLIC;
wire [7:0] z `PUBLIC; assign z = a;
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2003 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc; initial cyc=1;
// verilator lint_off GENCLK
reg printclk;
// verilator lint_on GENCLK
ps ps (printclk);
reg [7:0] a;
wire [7:0] z;
l1 u (~a,z);
always @ (posedge clk) begin
printclk <= 0;
if (cyc!=0) begin
cyc <= cyc + 1;
if (cyc==1) begin
printclk <= 1'b1;
end
if (cyc==2) begin
a <= 8'b1;
end
if (cyc==3) begin
if (z !== 8'hf8) $stop;
//if (u.u1.u1.u1.u0.PARAM !== 1) $stop;
//if (u.u1.u1.u1.u1.PARAM !== 2) $stop;
//if (u.u0.u0.u0.u0.z !== 8'hfe) $stop;
//if (u.u0.u0.u0.u1.z !== 8'hff) $stop;
//if (u.u1.u1.u1.u0.z !== 8'h00) $stop;
//if (u.u1.u1.u1.u1.z !== 8'h01) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
end
endmodule
`ifdef USE_INLINE
`define INLINE_MODULE /*verilator inline_module*/
`else
`define INLINE_MODULE /*verilator public_module*/
`endif
`ifdef USE_PUBLIC
`define PUBLIC /*verilator public*/
`else
`define PUBLIC
`endif
module ps (input printclk);
`INLINE_MODULE
// Check that %m stays correct across inlines
always @ (posedge printclk) $write("[%0t] %m: Clocked\n", $time);
endmodule
module l1 (input [7:0] a, output [7:0] z);
`INLINE_MODULE
wire [7:0] z0 `PUBLIC; wire [7:0] z1 `PUBLIC;
wire [7:0] z `PUBLIC; assign z = z0+z1;
l2 u0 (a, z0); l2 u1 (a, z1);
endmodule
module l2 (input [7:0] a, output [7:0] z);
`INLINE_MODULE
wire [7:0] z0 `PUBLIC; wire [7:0] z1 `PUBLIC;
wire [7:0] z `PUBLIC; assign z = z0+z1;
wire [7:0] a1 = a+8'd1;
l3 u0 (a, z0); l3 u1 (a1, z1);
endmodule
module l3 (input [7:0] a, output [7:0] z);
`INLINE_MODULE
wire [7:0] z0 `PUBLIC; wire [7:0] z1 `PUBLIC;
wire [7:0] z `PUBLIC; assign z = z0+z1;
wire [7:0] a1 = a+8'd1;
l4 u0 (a, z0); l4 u1 (a1, z1);
endmodule
module l4 (input [7:0] a, output [7:0] z);
`INLINE_MODULE
wire [7:0] z0 `PUBLIC; wire [7:0] z1 `PUBLIC;
wire [7:0] z `PUBLIC; assign z = z0+z1;
wire [7:0] a1 = a+8'd1;
l5 #(1) u0 (a, z0); l5 #(2) u1 (a1, z1);
endmodule
module l5 (input [7:0] a, output [7:0] z);
`INLINE_MODULE
parameter PARAM = 5;
wire [7:0] z0 `PUBLIC; wire [7:0] z1 `PUBLIC;
wire [7:0] z `PUBLIC; assign z = a;
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2003 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc; initial cyc=1;
// verilator lint_off GENCLK
reg printclk;
// verilator lint_on GENCLK
ps ps (printclk);
reg [7:0] a;
wire [7:0] z;
l1 u (~a,z);
always @ (posedge clk) begin
printclk <= 0;
if (cyc!=0) begin
cyc <= cyc + 1;
if (cyc==1) begin
printclk <= 1'b1;
end
if (cyc==2) begin
a <= 8'b1;
end
if (cyc==3) begin
if (z !== 8'hf8) $stop;
//if (u.u1.u1.u1.u0.PARAM !== 1) $stop;
//if (u.u1.u1.u1.u1.PARAM !== 2) $stop;
//if (u.u0.u0.u0.u0.z !== 8'hfe) $stop;
//if (u.u0.u0.u0.u1.z !== 8'hff) $stop;
//if (u.u1.u1.u1.u0.z !== 8'h00) $stop;
//if (u.u1.u1.u1.u1.z !== 8'h01) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
end
endmodule
`ifdef USE_INLINE
`define INLINE_MODULE /*verilator inline_module*/
`else
`define INLINE_MODULE /*verilator public_module*/
`endif
`ifdef USE_PUBLIC
`define PUBLIC /*verilator public*/
`else
`define PUBLIC
`endif
module ps (input printclk);
`INLINE_MODULE
// Check that %m stays correct across inlines
always @ (posedge printclk) $write("[%0t] %m: Clocked\n", $time);
endmodule
module l1 (input [7:0] a, output [7:0] z);
`INLINE_MODULE
wire [7:0] z0 `PUBLIC; wire [7:0] z1 `PUBLIC;
wire [7:0] z `PUBLIC; assign z = z0+z1;
l2 u0 (a, z0); l2 u1 (a, z1);
endmodule
module l2 (input [7:0] a, output [7:0] z);
`INLINE_MODULE
wire [7:0] z0 `PUBLIC; wire [7:0] z1 `PUBLIC;
wire [7:0] z `PUBLIC; assign z = z0+z1;
wire [7:0] a1 = a+8'd1;
l3 u0 (a, z0); l3 u1 (a1, z1);
endmodule
module l3 (input [7:0] a, output [7:0] z);
`INLINE_MODULE
wire [7:0] z0 `PUBLIC; wire [7:0] z1 `PUBLIC;
wire [7:0] z `PUBLIC; assign z = z0+z1;
wire [7:0] a1 = a+8'd1;
l4 u0 (a, z0); l4 u1 (a1, z1);
endmodule
module l4 (input [7:0] a, output [7:0] z);
`INLINE_MODULE
wire [7:0] z0 `PUBLIC; wire [7:0] z1 `PUBLIC;
wire [7:0] z `PUBLIC; assign z = z0+z1;
wire [7:0] a1 = a+8'd1;
l5 #(1) u0 (a, z0); l5 #(2) u1 (a1, z1);
endmodule
module l5 (input [7:0] a, output [7:0] z);
`INLINE_MODULE
parameter PARAM = 5;
wire [7:0] z0 `PUBLIC; wire [7:0] z1 `PUBLIC;
wire [7:0] z `PUBLIC; assign z = a;
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2003 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc; initial cyc=1;
// verilator lint_off GENCLK
reg printclk;
// verilator lint_on GENCLK
ps ps (printclk);
reg [7:0] a;
wire [7:0] z;
l1 u (~a,z);
always @ (posedge clk) begin
printclk <= 0;
if (cyc!=0) begin
cyc <= cyc + 1;
if (cyc==1) begin
printclk <= 1'b1;
end
if (cyc==2) begin
a <= 8'b1;
end
if (cyc==3) begin
if (z !== 8'hf8) $stop;
//if (u.u1.u1.u1.u0.PARAM !== 1) $stop;
//if (u.u1.u1.u1.u1.PARAM !== 2) $stop;
//if (u.u0.u0.u0.u0.z !== 8'hfe) $stop;
//if (u.u0.u0.u0.u1.z !== 8'hff) $stop;
//if (u.u1.u1.u1.u0.z !== 8'h00) $stop;
//if (u.u1.u1.u1.u1.z !== 8'h01) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
end
endmodule
`ifdef USE_INLINE
`define INLINE_MODULE /*verilator inline_module*/
`else
`define INLINE_MODULE /*verilator public_module*/
`endif
`ifdef USE_PUBLIC
`define PUBLIC /*verilator public*/
`else
`define PUBLIC
`endif
module ps (input printclk);
`INLINE_MODULE
// Check that %m stays correct across inlines
always @ (posedge printclk) $write("[%0t] %m: Clocked\n", $time);
endmodule
module l1 (input [7:0] a, output [7:0] z);
`INLINE_MODULE
wire [7:0] z0 `PUBLIC; wire [7:0] z1 `PUBLIC;
wire [7:0] z `PUBLIC; assign z = z0+z1;
l2 u0 (a, z0); l2 u1 (a, z1);
endmodule
module l2 (input [7:0] a, output [7:0] z);
`INLINE_MODULE
wire [7:0] z0 `PUBLIC; wire [7:0] z1 `PUBLIC;
wire [7:0] z `PUBLIC; assign z = z0+z1;
wire [7:0] a1 = a+8'd1;
l3 u0 (a, z0); l3 u1 (a1, z1);
endmodule
module l3 (input [7:0] a, output [7:0] z);
`INLINE_MODULE
wire [7:0] z0 `PUBLIC; wire [7:0] z1 `PUBLIC;
wire [7:0] z `PUBLIC; assign z = z0+z1;
wire [7:0] a1 = a+8'd1;
l4 u0 (a, z0); l4 u1 (a1, z1);
endmodule
module l4 (input [7:0] a, output [7:0] z);
`INLINE_MODULE
wire [7:0] z0 `PUBLIC; wire [7:0] z1 `PUBLIC;
wire [7:0] z `PUBLIC; assign z = z0+z1;
wire [7:0] a1 = a+8'd1;
l5 #(1) u0 (a, z0); l5 #(2) u1 (a1, z1);
endmodule
module l5 (input [7:0] a, output [7:0] z);
`INLINE_MODULE
parameter PARAM = 5;
wire [7:0] z0 `PUBLIC; wire [7:0] z1 `PUBLIC;
wire [7:0] z `PUBLIC; assign z = a;
endmodule
|
// (C) 1992-2012 Altera Corporation. All rights reserved.
// Your use of Altera Corporation's design tools, logic functions and other
// software and tools, and its AMPP partner logic functions, and any output
// files any of the foregoing (including device programming or simulation
// files), and any associated documentation or information are expressly subject
// to the terms and conditions of the Altera Program License Subscription
// Agreement, Altera MegaCore Function License Agreement, or other applicable
// license agreement, including, without limitation, that your use is for the
// sole purpose of programming logic devices manufactured by Altera and sold by
// Altera or its authorized distributors. Please refer to the applicable
// agreement for further details.
//===----------------------------------------------------------------------===//
//
// Parameterized FIFO with input and output registers and ACL pipeline
// protocol ports. This "FIFO" stores no data and only counts the number
// of valids.
//
//===----------------------------------------------------------------------===//
module acl_valid_fifo_counter
#(
parameter integer DEPTH = 32, // >0
parameter integer STRICT_DEPTH = 0, // 0|1
parameter integer ALLOW_FULL_WRITE = 0 // 0|1
)
(
input logic clock,
input logic resetn,
input logic valid_in,
output logic valid_out,
input logic stall_in,
output logic stall_out,
output logic empty,
output logic full
);
// No data, so just build a counter to count the number of valids stored in this "FIFO".
//
// The counter is constructed to count up to a MINIMUM value of DEPTH entries.
// * Logical range of the counter C0 is [0, DEPTH].
// * empty = (C0 <= 0)
// * full = (C0 >= DEPTH)
//
// To have efficient detection of the empty condition (C0 == 0), the range is offset
// by -1 so that a negative number indicates empty.
// * Logical range of the counter C1 is [-1, DEPTH-1].
// * empty = (C1 < 0)
// * full = (C1 >= DEPTH-1)
// The size of counter C1 is $clog2((DEPTH-1) + 1) + 1 => $clog2(DEPTH) + 1.
//
// To have efficient detection of the full condition (C1 >= DEPTH-1), change the
// full condition to C1 == 2^$clog2(DEPTH-1), which is DEPTH-1 rounded up
// to the next power of 2. This is only done if STRICT_DEPTH == 0, otherwise
// the full condition is comparison vs. DEPTH-1.
// * Logical range of the counter C2 is [-1, 2^$clog2(DEPTH-1)]
// * empty = (C2 < 0)
// * full = (C2 == 2^$clog2(DEPTH - 1))
// The size of counter C2 is $clog2(DEPTH-1) + 2.
// * empty = MSB
// * full = ~[MSB] & [MSB-1]
localparam COUNTER_WIDTH = (STRICT_DEPTH == 0) ?
((DEPTH > 1 ? $clog2(DEPTH-1) : 0) + 2) :
($clog2(DEPTH) + 1);
logic [COUNTER_WIDTH - 1:0] valid_counter /* synthesis maxfan=1 dont_merge */;
logic incr, decr;
assign empty = valid_counter[$bits(valid_counter) - 1];
assign full = (STRICT_DEPTH == 0) ?
(~valid_counter[$bits(valid_counter) - 1] & valid_counter[$bits(valid_counter) - 2]) :
(valid_counter == DEPTH - 1);
assign incr = valid_in & ~stall_out;
assign decr = valid_out & ~stall_in;
assign valid_out = ~empty;
assign stall_out = ALLOW_FULL_WRITE ? (full & stall_in) : full;
always @( posedge clock or negedge resetn )
if( !resetn )
valid_counter <= {$bits(valid_counter){1'b1}}; // -1
else
valid_counter <= valid_counter + incr - decr;
endmodule
|
// (C) 1992-2012 Altera Corporation. All rights reserved.
// Your use of Altera Corporation's design tools, logic functions and other
// software and tools, and its AMPP partner logic functions, and any output
// files any of the foregoing (including device programming or simulation
// files), and any associated documentation or information are expressly subject
// to the terms and conditions of the Altera Program License Subscription
// Agreement, Altera MegaCore Function License Agreement, or other applicable
// license agreement, including, without limitation, that your use is for the
// sole purpose of programming logic devices manufactured by Altera and sold by
// Altera or its authorized distributors. Please refer to the applicable
// agreement for further details.
//===----------------------------------------------------------------------===//
//
// Parameterized FIFO with input and output registers and ACL pipeline
// protocol ports. This "FIFO" stores no data and only counts the number
// of valids.
//
//===----------------------------------------------------------------------===//
module acl_valid_fifo_counter
#(
parameter integer DEPTH = 32, // >0
parameter integer STRICT_DEPTH = 0, // 0|1
parameter integer ALLOW_FULL_WRITE = 0 // 0|1
)
(
input logic clock,
input logic resetn,
input logic valid_in,
output logic valid_out,
input logic stall_in,
output logic stall_out,
output logic empty,
output logic full
);
// No data, so just build a counter to count the number of valids stored in this "FIFO".
//
// The counter is constructed to count up to a MINIMUM value of DEPTH entries.
// * Logical range of the counter C0 is [0, DEPTH].
// * empty = (C0 <= 0)
// * full = (C0 >= DEPTH)
//
// To have efficient detection of the empty condition (C0 == 0), the range is offset
// by -1 so that a negative number indicates empty.
// * Logical range of the counter C1 is [-1, DEPTH-1].
// * empty = (C1 < 0)
// * full = (C1 >= DEPTH-1)
// The size of counter C1 is $clog2((DEPTH-1) + 1) + 1 => $clog2(DEPTH) + 1.
//
// To have efficient detection of the full condition (C1 >= DEPTH-1), change the
// full condition to C1 == 2^$clog2(DEPTH-1), which is DEPTH-1 rounded up
// to the next power of 2. This is only done if STRICT_DEPTH == 0, otherwise
// the full condition is comparison vs. DEPTH-1.
// * Logical range of the counter C2 is [-1, 2^$clog2(DEPTH-1)]
// * empty = (C2 < 0)
// * full = (C2 == 2^$clog2(DEPTH - 1))
// The size of counter C2 is $clog2(DEPTH-1) + 2.
// * empty = MSB
// * full = ~[MSB] & [MSB-1]
localparam COUNTER_WIDTH = (STRICT_DEPTH == 0) ?
((DEPTH > 1 ? $clog2(DEPTH-1) : 0) + 2) :
($clog2(DEPTH) + 1);
logic [COUNTER_WIDTH - 1:0] valid_counter /* synthesis maxfan=1 dont_merge */;
logic incr, decr;
assign empty = valid_counter[$bits(valid_counter) - 1];
assign full = (STRICT_DEPTH == 0) ?
(~valid_counter[$bits(valid_counter) - 1] & valid_counter[$bits(valid_counter) - 2]) :
(valid_counter == DEPTH - 1);
assign incr = valid_in & ~stall_out;
assign decr = valid_out & ~stall_in;
assign valid_out = ~empty;
assign stall_out = ALLOW_FULL_WRITE ? (full & stall_in) : full;
always @( posedge clock or negedge resetn )
if( !resetn )
valid_counter <= {$bits(valid_counter){1'b1}}; // -1
else
valid_counter <= valid_counter + incr - decr;
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2003 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer _mode; initial _mode=0;
reg [7:0] a;
reg [7:0] b;
reg [7:0] c;
reg [7:0] mode_d1r;
reg [7:0] mode_d2r;
reg [7:0] mode_d3r;
// surefire lint_off ITENST
// surefire lint_off STMINI
// surefire lint_off NBAJAM
always @ (posedge clk) begin // filp-flops with asynchronous reset
if (0) begin
_mode <= 0;
end
else begin
_mode <= _mode + 1;
if (_mode==0) begin
$write("[%0t] t_blocking: Running\n", $time);
a <= 8'd0;
b <= 8'd0;
c <= 8'd0;
end
else if (_mode==1) begin
if (a !== 8'd0) $stop;
if (b !== 8'd0) $stop;
if (c !== 8'd0) $stop;
a <= b;
b <= 8'd1;
c <= b;
if (a !== 8'd0) $stop;
if (b !== 8'd0) $stop;
if (c !== 8'd0) $stop;
end
else if (_mode==2) begin
if (a !== 8'd0) $stop;
if (b !== 8'd1) $stop;
if (c !== 8'd0) $stop;
a <= b;
b <= 8'd2;
c <= b;
if (a !== 8'd0) $stop;
if (b !== 8'd1) $stop;
if (c !== 8'd0) $stop;
end
else if (_mode==3) begin
if (a !== 8'd1) $stop;
if (b !== 8'd2) $stop;
if (c !== 8'd1) $stop;
end
else if (_mode==4) begin
if (mode_d3r != 8'd1) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
end
always @ (posedge clk) begin
mode_d3r <= mode_d2r;
mode_d2r <= mode_d1r;
mode_d1r <= _mode[7:0];
end
reg [14:10] bits;
// surefire lint_off SEQASS
always @ (posedge clk) begin
if (_mode==1) begin
bits[14:13] <= 2'b11;
bits[12] <= 1'b1;
end
if (_mode==2) begin
bits[11:10] <= 2'b10;
bits[13] <= 0;
end
if (_mode==3) begin
if (bits !== 5'b10110) $stop;
end
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2009 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc=0;
reg [63:0] crc;
reg [63:0] sum;
// verilator lint_off LITENDIAN
wire [10:41] sel2 = crc[31:0];
wire [10:100] sel3 = {crc[26:0],crc};
wire out20 = sel2[{1'b0,crc[3:0]} + 11];
wire [3:0] out21 = sel2[13 : 16];
wire [3:0] out22 = sel2[{1'b0,crc[3:0]} + 20 +: 4];
wire [3:0] out23 = sel2[{1'b0,crc[3:0]} + 20 -: 4];
wire out30 = sel3[{2'b0,crc[3:0]} + 11];
wire [3:0] out31 = sel3[13 : 16];
wire [3:0] out32 = sel3[crc[5:0] + 20 +: 4];
wire [3:0] out33 = sel3[crc[5:0] + 20 -: 4];
// Aggregate outputs into a single result vector
wire [63:0] result = {38'h0, out20, out21, out22, out23, out30, out31, out32, out33};
reg [19:50] sel1;
initial begin
// Path clearing
// 122333445
// 826048260
sel1 = 32'h12345678;
if (sel1 != 32'h12345678) $stop;
if (sel1[47 : 50] != 4'h8) $stop;
if (sel1[31 : 34] != 4'h4) $stop;
if (sel1[27 +: 4] != 4'h3) $stop; //==[27:30], in memory as [23:20]
if (sel1[26 -: 4] != 4'h2) $stop; //==[23:26], in memory as [27:24]
end
// Test loop
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] sels=%x,%x,%x,%x %x,%x,%x,%x\n",$time, out20,out21,out22,out23, out30,out31,out32,out33);
$write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result);
`endif
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]};
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
end
else if (cyc<10) begin
sum <= 64'h0;
end
else if (cyc<90) begin
end
else if (cyc==99) begin
$write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum);
if (crc !== 64'hc77bb9b3784ea091) $stop;
`define EXPECTED_SUM 64'h28bf65439eb12c00
if (sum !== `EXPECTED_SUM) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2003 by Wilson Snyder.
module t (clk);
input clk;
// verilator lint_off WIDTH
`define INT_RANGE 31:0
`define INT_RANGE_MAX 31
`define VECTOR_RANGE 63:0
reg [`INT_RANGE] stashb, stasha, stashn, stashm;
function [`VECTOR_RANGE] copy_range;
input [`VECTOR_RANGE] y;
input [`INT_RANGE] b;
input [`INT_RANGE] a;
input [`VECTOR_RANGE] x;
input [`INT_RANGE] n;
input [`INT_RANGE] m;
begin
copy_range = y;
stashb = b;
stasha = a;
stashn = n;
stashm = m;
end
endfunction
parameter DATA_SIZE = 16;
parameter NUM_OF_REGS = 32;
reg [NUM_OF_REGS*DATA_SIZE-1 : 0] memread_rf;
reg [DATA_SIZE-1:0] memread_rf_reg;
always @(memread_rf) begin : memread_convert
memread_rf_reg = copy_range('d0, DATA_SIZE-'d1, DATA_SIZE-'d1, memread_rf,
DATA_SIZE-'d1, DATA_SIZE-'d1);
end
integer cyc; initial cyc=1;
always @ (posedge clk) begin
if (cyc!=0) begin
cyc <= cyc + 1;
if (cyc==1) begin
memread_rf = 512'haa;
end
if (cyc==3) begin
if (stashb != 'd15) $stop;
if (stasha != 'd15) $stop;
if (stashn != 'd15) $stop;
if (stashm != 'd15) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2003 by Wilson Snyder.
module t (clk);
input clk;
// verilator lint_off WIDTH
`define INT_RANGE 31:0
`define INT_RANGE_MAX 31
`define VECTOR_RANGE 63:0
reg [`INT_RANGE] stashb, stasha, stashn, stashm;
function [`VECTOR_RANGE] copy_range;
input [`VECTOR_RANGE] y;
input [`INT_RANGE] b;
input [`INT_RANGE] a;
input [`VECTOR_RANGE] x;
input [`INT_RANGE] n;
input [`INT_RANGE] m;
begin
copy_range = y;
stashb = b;
stasha = a;
stashn = n;
stashm = m;
end
endfunction
parameter DATA_SIZE = 16;
parameter NUM_OF_REGS = 32;
reg [NUM_OF_REGS*DATA_SIZE-1 : 0] memread_rf;
reg [DATA_SIZE-1:0] memread_rf_reg;
always @(memread_rf) begin : memread_convert
memread_rf_reg = copy_range('d0, DATA_SIZE-'d1, DATA_SIZE-'d1, memread_rf,
DATA_SIZE-'d1, DATA_SIZE-'d1);
end
integer cyc; initial cyc=1;
always @ (posedge clk) begin
if (cyc!=0) begin
cyc <= cyc + 1;
if (cyc==1) begin
memread_rf = 512'haa;
end
if (cyc==3) begin
if (stashb != 'd15) $stop;
if (stasha != 'd15) $stop;
if (stashn != 'd15) $stop;
if (stashm != 'd15) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
end
endmodule
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.