text
stringlengths
938
1.05M
/* module flag_cdc( clkA, FlagIn_clkA, clkB, FlagOut_clkB,rst_n); // clkA domain signals input clkA, FlagIn_clkA; input rst_n; // clkB domain signals input clkB; output FlagOut_clkB; reg FlagToggle_clkA; reg [2:0] SyncA_clkB; // this changes level when a flag is seen always @(posedge clkA) begin : cdc_clk_a if (rst_n == 1'b0) begin FlagToggle_clkA <= 1'b0; end else if(FlagIn_clkA == 1'b1) begin FlagToggle_clkA <= ~FlagToggle_clkA; end end // which can then be sync-ed to clkB always @(posedge clkB) SyncA_clkB <= {SyncA_clkB[1:0], FlagToggle_clkA}; // and recreate the flag from the level change assign FlagOut_clkB = (SyncA_clkB[2] ^ SyncA_clkB[1]); endmodule */ module flag_cdc( input clkA, input FlagIn_clkA, input clkB, output FlagOut_clkB, input rst_n ); // this changes level when the FlagIn_clkA is seen in clkA reg FlagToggle_clkA = 1'b0; always @(posedge clkA or negedge rst_n) if (rst_n == 1'b0) begin FlagToggle_clkA <= 1'b0; end else begin FlagToggle_clkA <= FlagToggle_clkA ^ FlagIn_clkA; end // which can then be sync-ed to clkB reg [2:0] SyncA_clkB = 3'b0; always @(posedge clkB or negedge rst_n) if (rst_n == 1'b0) begin SyncA_clkB <= 3'b0; end else begin SyncA_clkB <= {SyncA_clkB[1:0], FlagToggle_clkA}; end // and recreate the flag in clkB assign FlagOut_clkB = (SyncA_clkB[2] ^ SyncA_clkB[1]); endmodule
/* module flag_cdc( clkA, FlagIn_clkA, clkB, FlagOut_clkB,rst_n); // clkA domain signals input clkA, FlagIn_clkA; input rst_n; // clkB domain signals input clkB; output FlagOut_clkB; reg FlagToggle_clkA; reg [2:0] SyncA_clkB; // this changes level when a flag is seen always @(posedge clkA) begin : cdc_clk_a if (rst_n == 1'b0) begin FlagToggle_clkA <= 1'b0; end else if(FlagIn_clkA == 1'b1) begin FlagToggle_clkA <= ~FlagToggle_clkA; end end // which can then be sync-ed to clkB always @(posedge clkB) SyncA_clkB <= {SyncA_clkB[1:0], FlagToggle_clkA}; // and recreate the flag from the level change assign FlagOut_clkB = (SyncA_clkB[2] ^ SyncA_clkB[1]); endmodule */ module flag_cdc( input clkA, input FlagIn_clkA, input clkB, output FlagOut_clkB, input rst_n ); // this changes level when the FlagIn_clkA is seen in clkA reg FlagToggle_clkA = 1'b0; always @(posedge clkA or negedge rst_n) if (rst_n == 1'b0) begin FlagToggle_clkA <= 1'b0; end else begin FlagToggle_clkA <= FlagToggle_clkA ^ FlagIn_clkA; end // which can then be sync-ed to clkB reg [2:0] SyncA_clkB = 3'b0; always @(posedge clkB or negedge rst_n) if (rst_n == 1'b0) begin SyncA_clkB <= 3'b0; end else begin SyncA_clkB <= {SyncA_clkB[1:0], FlagToggle_clkA}; end // and recreate the flag in clkB assign FlagOut_clkB = (SyncA_clkB[2] ^ SyncA_clkB[1]); endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2003 by Wilson Snyder. module t (clk); input clk; reg [31:0] r32; wire [3:0] w4; wire [4:0] w5; assign w4 = NUMONES_8 ( r32[7:0] ); assign w5 = NUMONES_16( r32[15:0] ); function [3:0] NUMONES_8; input [7:0] i8; reg [7:0] i8; begin NUMONES_8 = 4'b1; end endfunction // NUMONES_8 function [4:0] NUMONES_16; input [15:0] i16; reg [15:0] i16; begin NUMONES_16 = ( NUMONES_8( i16[7:0] ) + NUMONES_8( i16[15:8] )); end endfunction integer cyc; initial cyc=1; always @ (posedge clk) begin if (cyc!=0) begin cyc <= cyc + 1; if (cyc==1) begin r32 <= 32'h12345678; end if (cyc==2) begin if (w4 !== 1) $stop; if (w5 !== 2) $stop; $write("*-* All Finished *-*\n"); $finish; end end end endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2003 by Wilson Snyder. module t (clk); input clk; reg [31:0] r32; wire [3:0] w4; wire [4:0] w5; assign w4 = NUMONES_8 ( r32[7:0] ); assign w5 = NUMONES_16( r32[15:0] ); function [3:0] NUMONES_8; input [7:0] i8; reg [7:0] i8; begin NUMONES_8 = 4'b1; end endfunction // NUMONES_8 function [4:0] NUMONES_16; input [15:0] i16; reg [15:0] i16; begin NUMONES_16 = ( NUMONES_8( i16[7:0] ) + NUMONES_8( i16[15:8] )); end endfunction integer cyc; initial cyc=1; always @ (posedge clk) begin if (cyc!=0) begin cyc <= cyc + 1; if (cyc==1) begin r32 <= 32'h12345678; end if (cyc==2) begin if (w4 !== 1) $stop; if (w5 !== 2) $stop; $write("*-* All Finished *-*\n"); $finish; end end end endmodule
// DESCRIPTION: Verilator: Verilog Test module module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc=0; reg [63:0] crc; reg [63:0] sum; // Take CRC data and apply to testblock inputs wire [9:0] in = crc[9:0]; /*AUTOWIRE*/ Test test (/*AUTOINST*/ // Inputs .clk (clk), .in (in[9:0])); // Aggregate outputs into a single result vector wire [63:0] result = {64'h0}; // Test loop always @ (posedge clk) begin `ifdef TEST_VERBOSE $write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result); `endif cyc <= cyc + 1; crc <= {crc[62:0], crc[63]^crc[2]^crc[0]}; sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]}; if (cyc==0) begin // Setup crc <= 64'h5aef0c8d_d70a4497; end else if (cyc<10) begin sum <= 64'h0; end else if (cyc<90) begin end else if (cyc==99) begin $write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum); if (crc !== 64'hc77bb9b3784ea091) $stop; // What checksum will we end up with (above print should match) `define EXPECTED_SUM 64'h0 if (sum !== `EXPECTED_SUM) $stop; $write("*-* All Finished *-*\n"); $finish; end end endmodule module Test (/*AUTOARG*/ // Inputs clk, in ); input clk; input [9:0] in; reg a [9:0]; integer ai; always @* begin for (ai=0;ai<10;ai=ai+1) begin a[ai]=in[ai]; end end reg [1:0] b [9:0]; integer j; generate genvar i; for (i=0; i<2; i=i+1) begin always @(posedge clk) begin for (j=0; j<10; j=j+1) begin if (a[j]) b[i][j] <= 1'b0; else b[i][j] <= 1'b1; end end end endgenerate endmodule
// DESCRIPTION: Verilator: Verilog Test module module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc=0; reg [63:0] crc; reg [63:0] sum; // Take CRC data and apply to testblock inputs wire [9:0] in = crc[9:0]; /*AUTOWIRE*/ Test test (/*AUTOINST*/ // Inputs .clk (clk), .in (in[9:0])); // Aggregate outputs into a single result vector wire [63:0] result = {64'h0}; // Test loop always @ (posedge clk) begin `ifdef TEST_VERBOSE $write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result); `endif cyc <= cyc + 1; crc <= {crc[62:0], crc[63]^crc[2]^crc[0]}; sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]}; if (cyc==0) begin // Setup crc <= 64'h5aef0c8d_d70a4497; end else if (cyc<10) begin sum <= 64'h0; end else if (cyc<90) begin end else if (cyc==99) begin $write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum); if (crc !== 64'hc77bb9b3784ea091) $stop; // What checksum will we end up with (above print should match) `define EXPECTED_SUM 64'h0 if (sum !== `EXPECTED_SUM) $stop; $write("*-* All Finished *-*\n"); $finish; end end endmodule module Test (/*AUTOARG*/ // Inputs clk, in ); input clk; input [9:0] in; reg a [9:0]; integer ai; always @* begin for (ai=0;ai<10;ai=ai+1) begin a[ai]=in[ai]; end end reg [1:0] b [9:0]; integer j; generate genvar i; for (i=0; i<2; i=i+1) begin always @(posedge clk) begin for (j=0; j<10; j=j+1) begin if (a[j]) b[i][j] <= 1'b0; else b[i][j] <= 1'b1; end end end endgenerate endmodule
// DESCRIPTION: Verilator: Verilog Test module module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc=0; reg [63:0] crc; reg [63:0] sum; // Take CRC data and apply to testblock inputs wire [9:0] in = crc[9:0]; /*AUTOWIRE*/ Test test (/*AUTOINST*/ // Inputs .clk (clk), .in (in[9:0])); // Aggregate outputs into a single result vector wire [63:0] result = {64'h0}; // Test loop always @ (posedge clk) begin `ifdef TEST_VERBOSE $write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result); `endif cyc <= cyc + 1; crc <= {crc[62:0], crc[63]^crc[2]^crc[0]}; sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]}; if (cyc==0) begin // Setup crc <= 64'h5aef0c8d_d70a4497; end else if (cyc<10) begin sum <= 64'h0; end else if (cyc<90) begin end else if (cyc==99) begin $write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum); if (crc !== 64'hc77bb9b3784ea091) $stop; // What checksum will we end up with (above print should match) `define EXPECTED_SUM 64'h0 if (sum !== `EXPECTED_SUM) $stop; $write("*-* All Finished *-*\n"); $finish; end end endmodule module Test (/*AUTOARG*/ // Inputs clk, in ); input clk; input [9:0] in; reg a [9:0]; integer ai; always @* begin for (ai=0;ai<10;ai=ai+1) begin a[ai]=in[ai]; end end reg [1:0] b [9:0]; integer j; generate genvar i; for (i=0; i<2; i=i+1) begin always @(posedge clk) begin for (j=0; j<10; j=j+1) begin if (a[j]) b[i][j] <= 1'b0; else b[i][j] <= 1'b1; end end end endgenerate endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2009 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc=0; reg [63:0] crc; reg [63:0] sum; // Take CRC data and apply to testblock inputs wire [2:0] in = (crc[1:0]==0 ? 3'd0 : crc[1:0]==0 ? 3'd1 : crc[1:0]==0 ? 3'd2 : 3'd4); /*AUTOWIRE*/ // Beginning of automatic wires (for undeclared instantiated-module outputs) wire [31:0] out; // From test of Test.v // End of automatics Test test (/*AUTOINST*/ // Outputs .out (out[31:0]), // Inputs .clk (clk), .in (in[2:0])); // Aggregate outputs into a single result vector wire [63:0] result = {32'h0, out}; // Test loop always @ (posedge clk) begin `ifdef TEST_VERBOSE $write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result); `endif cyc <= cyc + 1; crc <= {crc[62:0], crc[63]^crc[2]^crc[0]}; sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]}; if (cyc==0) begin // Setup crc <= 64'h5aef0c8d_d70a4497; sum <= 64'h0; end else if (cyc<10) begin sum <= 64'h0; end else if (cyc<90) begin end else if (cyc==99) begin $write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum); if (crc !== 64'hc77bb9b3784ea091) $stop; // What checksum will we end up with (above print should match) `define EXPECTED_SUM 64'h704ca23e2a83e1c5 if (sum !== `EXPECTED_SUM) $stop; $write("*-* All Finished *-*\n"); $finish; end end endmodule module Test (/*AUTOARG*/ // Outputs out, // Inputs clk, in ); // Replace this module with the device under test. // // Change the code in the t module to apply values to the inputs and // merge the output values into the result vector. input clk; input [2:0] in; output reg [31:0] out; localparam ST_0 = 0; localparam ST_1 = 1; localparam ST_2 = 2; always @(posedge clk) begin case (1'b1) // synopsys parallel_case in[ST_0]: out <= 32'h1234; in[ST_1]: out <= 32'h4356; in[ST_2]: out <= 32'h9874; default: out <= 32'h1; endcase end endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2009 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc=0; reg [63:0] crc; reg [63:0] sum; // Take CRC data and apply to testblock inputs wire [2:0] in = (crc[1:0]==0 ? 3'd0 : crc[1:0]==0 ? 3'd1 : crc[1:0]==0 ? 3'd2 : 3'd4); /*AUTOWIRE*/ // Beginning of automatic wires (for undeclared instantiated-module outputs) wire [31:0] out; // From test of Test.v // End of automatics Test test (/*AUTOINST*/ // Outputs .out (out[31:0]), // Inputs .clk (clk), .in (in[2:0])); // Aggregate outputs into a single result vector wire [63:0] result = {32'h0, out}; // Test loop always @ (posedge clk) begin `ifdef TEST_VERBOSE $write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result); `endif cyc <= cyc + 1; crc <= {crc[62:0], crc[63]^crc[2]^crc[0]}; sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]}; if (cyc==0) begin // Setup crc <= 64'h5aef0c8d_d70a4497; sum <= 64'h0; end else if (cyc<10) begin sum <= 64'h0; end else if (cyc<90) begin end else if (cyc==99) begin $write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum); if (crc !== 64'hc77bb9b3784ea091) $stop; // What checksum will we end up with (above print should match) `define EXPECTED_SUM 64'h704ca23e2a83e1c5 if (sum !== `EXPECTED_SUM) $stop; $write("*-* All Finished *-*\n"); $finish; end end endmodule module Test (/*AUTOARG*/ // Outputs out, // Inputs clk, in ); // Replace this module with the device under test. // // Change the code in the t module to apply values to the inputs and // merge the output values into the result vector. input clk; input [2:0] in; output reg [31:0] out; localparam ST_0 = 0; localparam ST_1 = 1; localparam ST_2 = 2; always @(posedge clk) begin case (1'b1) // synopsys parallel_case in[ST_0]: out <= 32'h1234; in[ST_1]: out <= 32'h4356; in[ST_2]: out <= 32'h9874; default: out <= 32'h1; endcase end endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2009 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc=0; reg [63:0] crc; reg [63:0] sum; // Take CRC data and apply to testblock inputs wire [2:0] in = (crc[1:0]==0 ? 3'd0 : crc[1:0]==0 ? 3'd1 : crc[1:0]==0 ? 3'd2 : 3'd4); /*AUTOWIRE*/ // Beginning of automatic wires (for undeclared instantiated-module outputs) wire [31:0] out; // From test of Test.v // End of automatics Test test (/*AUTOINST*/ // Outputs .out (out[31:0]), // Inputs .clk (clk), .in (in[2:0])); // Aggregate outputs into a single result vector wire [63:0] result = {32'h0, out}; // Test loop always @ (posedge clk) begin `ifdef TEST_VERBOSE $write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result); `endif cyc <= cyc + 1; crc <= {crc[62:0], crc[63]^crc[2]^crc[0]}; sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]}; if (cyc==0) begin // Setup crc <= 64'h5aef0c8d_d70a4497; sum <= 64'h0; end else if (cyc<10) begin sum <= 64'h0; end else if (cyc<90) begin end else if (cyc==99) begin $write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum); if (crc !== 64'hc77bb9b3784ea091) $stop; // What checksum will we end up with (above print should match) `define EXPECTED_SUM 64'h704ca23e2a83e1c5 if (sum !== `EXPECTED_SUM) $stop; $write("*-* All Finished *-*\n"); $finish; end end endmodule module Test (/*AUTOARG*/ // Outputs out, // Inputs clk, in ); // Replace this module with the device under test. // // Change the code in the t module to apply values to the inputs and // merge the output values into the result vector. input clk; input [2:0] in; output reg [31:0] out; localparam ST_0 = 0; localparam ST_1 = 1; localparam ST_2 = 2; always @(posedge clk) begin case (1'b1) // synopsys parallel_case in[ST_0]: out <= 32'h1234; in[ST_1]: out <= 32'h4356; in[ST_2]: out <= 32'h9874; default: out <= 32'h1; endcase end endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2009 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc=0; reg [63:0] crc; reg [63:0] sum; // Take CRC data and apply to testblock inputs wire [2:0] in = (crc[1:0]==0 ? 3'd0 : crc[1:0]==0 ? 3'd1 : crc[1:0]==0 ? 3'd2 : 3'd4); /*AUTOWIRE*/ // Beginning of automatic wires (for undeclared instantiated-module outputs) wire [31:0] out; // From test of Test.v // End of automatics Test test (/*AUTOINST*/ // Outputs .out (out[31:0]), // Inputs .clk (clk), .in (in[2:0])); // Aggregate outputs into a single result vector wire [63:0] result = {32'h0, out}; // Test loop always @ (posedge clk) begin `ifdef TEST_VERBOSE $write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result); `endif cyc <= cyc + 1; crc <= {crc[62:0], crc[63]^crc[2]^crc[0]}; sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]}; if (cyc==0) begin // Setup crc <= 64'h5aef0c8d_d70a4497; sum <= 64'h0; end else if (cyc<10) begin sum <= 64'h0; end else if (cyc<90) begin end else if (cyc==99) begin $write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum); if (crc !== 64'hc77bb9b3784ea091) $stop; // What checksum will we end up with (above print should match) `define EXPECTED_SUM 64'h704ca23e2a83e1c5 if (sum !== `EXPECTED_SUM) $stop; $write("*-* All Finished *-*\n"); $finish; end end endmodule module Test (/*AUTOARG*/ // Outputs out, // Inputs clk, in ); // Replace this module with the device under test. // // Change the code in the t module to apply values to the inputs and // merge the output values into the result vector. input clk; input [2:0] in; output reg [31:0] out; localparam ST_0 = 0; localparam ST_1 = 1; localparam ST_2 = 2; always @(posedge clk) begin case (1'b1) // synopsys parallel_case in[ST_0]: out <= 32'h1234; in[ST_1]: out <= 32'h4356; in[ST_2]: out <= 32'h9874; default: out <= 32'h1; endcase end endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2005 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; reg reset_l; // verilator lint_off GENCLK /*AUTOWIRE*/ // Beginning of automatic wires (for undeclared instantiated-module outputs) // End of automatics reg clkgate_e2r; reg clkgate_e1r_l; always @(posedge clk or negedge reset_l) begin if (!reset_l) begin clkgate_e1r_l <= ~1'b1; end else begin clkgate_e1r_l <= ~clkgate_e2r; end end reg clkgate_e1f; always @(negedge clk) begin // Yes, it's really a = clkgate_e1f = ~clkgate_e1r_l | ~reset_l; end wire clkgated = clk & clkgate_e1f; reg [31:0] countgated; always @(posedge clkgated or negedge reset_l) begin if (!reset_l) begin countgated <= 32'h1000; end else begin countgated <= countgated + 32'd1; end end reg [31:0] count; always @(posedge clk or negedge reset_l) begin if (!reset_l) begin count <= 32'h1000; end else begin count <= count + 32'd1; end end reg [7:0] cyc; initial cyc=0; always @ (posedge clk) begin `ifdef TEST_VERBOSE $write("[%0t] rs %x cyc %d cg1f %x cnt %x cg %x\n",$time,reset_l,cyc,clkgate_e1f,count,countgated); `endif cyc <= cyc + 8'd1; case (cyc) 8'd00: begin reset_l <= ~1'b0; clkgate_e2r <= 1'b1; end 8'd01: begin reset_l <= ~1'b0; end 8'd02: begin end 8'd03: begin reset_l <= ~1'b1; // Need a posedge end 8'd04: begin end 8'd05: begin reset_l <= ~1'b0; end 8'd09: begin clkgate_e2r <= 1'b0; end 8'd11: begin clkgate_e2r <= 1'b1; end 8'd20: begin $write("*-* All Finished *-*\n"); $finish; end default: ; endcase case (cyc) 8'd00: ; 8'd01: ; 8'd02: ; 8'd03: ; 8'd04: if (count!=32'h00001000 || countgated!=32'h 00001000) $stop; 8'd05: if (count!=32'h00001000 || countgated!=32'h 00001000) $stop; 8'd06: if (count!=32'h00001000 || countgated!=32'h 00001000) $stop; 8'd07: if (count!=32'h00001001 || countgated!=32'h 00001001) $stop; 8'd08: if (count!=32'h00001002 || countgated!=32'h 00001002) $stop; 8'd09: if (count!=32'h00001003 || countgated!=32'h 00001003) $stop; 8'd10: if (count!=32'h00001004 || countgated!=32'h 00001004) $stop; 8'd11: if (count!=32'h00001005 || countgated!=32'h 00001005) $stop; 8'd12: if (count!=32'h00001006 || countgated!=32'h 00001005) $stop; 8'd13: if (count!=32'h00001007 || countgated!=32'h 00001005) $stop; 8'd14: if (count!=32'h00001008 || countgated!=32'h 00001006) $stop; 8'd15: if (count!=32'h00001009 || countgated!=32'h 00001007) $stop; 8'd16: if (count!=32'h0000100a || countgated!=32'h 00001008) $stop; 8'd17: if (count!=32'h0000100b || countgated!=32'h 00001009) $stop; 8'd18: if (count!=32'h0000100c || countgated!=32'h 0000100a) $stop; 8'd19: if (count!=32'h0000100d || countgated!=32'h 0000100b) $stop; 8'd20: if (count!=32'h0000100e || countgated!=32'h 0000100c) $stop; default: $stop; endcase end endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2003 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc=0; reg [63:0] crc; reg [63:0] sum; reg rst_n; // Take CRC data and apply to testblock inputs /*AUTOWIRE*/ // Beginning of automatic wires (for undeclared instantiated-module outputs) wire [2:0] pos1; // From test of Test.v wire [2:0] pos2; // From test of Test.v // End of automatics Test test ( // Outputs .pos1 (pos1[2:0]), .pos2 (pos2[2:0]), /*AUTOINST*/ // Inputs .clk (clk), .rst_n (rst_n)); // Aggregate outputs into a single result vector wire [63:0] result = {61'h0, pos1}; // What checksum will we end up with `define EXPECTED_SUM 64'h039ea4d039c2e70b // Test loop always @ (posedge clk) begin `ifdef TEST_VERBOSE $write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result); `endif cyc <= cyc + 1; crc <= {crc[62:0], crc[63]^crc[2]^crc[0]}; sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]}; rst_n <= ~1'b0; if (cyc==0) begin // Setup crc <= 64'h5aef0c8d_d70a4497; rst_n <= ~1'b1; end else if (cyc<10) begin sum <= 64'h0; rst_n <= ~1'b1; end else if (cyc<90) begin if (pos1 !== pos2) $stop; end else if (cyc==99) begin $write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum); if (crc !== 64'hc77bb9b3784ea091) $stop; if (sum !== `EXPECTED_SUM) $stop; $write("*-* All Finished *-*\n"); $finish; end end endmodule module Test #(parameter SAMPLE_WIDTH = 5 ) ( `ifdef verilator // Some simulators don't support clog2 output reg [$clog2(SAMPLE_WIDTH)-1:0] pos1, `else output reg [log2(SAMPLE_WIDTH-1)-1:0] pos1, `endif output reg [log2(SAMPLE_WIDTH-1)-1:0] pos2, // System input clk, input rst_n ); function integer log2(input integer arg); begin for(log2=0; arg>0; log2=log2+1) arg = (arg >> 1); end endfunction always @ (posedge clk or negedge rst_n) if (!rst_n) begin pos1 <= 0; pos2 <= 0; end else begin pos1 <= pos1 + 1; pos2 <= pos2 + 1; end endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2003 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc=0; reg [63:0] crc; reg [63:0] sum; reg rst_n; // Take CRC data and apply to testblock inputs /*AUTOWIRE*/ // Beginning of automatic wires (for undeclared instantiated-module outputs) wire [2:0] pos1; // From test of Test.v wire [2:0] pos2; // From test of Test.v // End of automatics Test test ( // Outputs .pos1 (pos1[2:0]), .pos2 (pos2[2:0]), /*AUTOINST*/ // Inputs .clk (clk), .rst_n (rst_n)); // Aggregate outputs into a single result vector wire [63:0] result = {61'h0, pos1}; // What checksum will we end up with `define EXPECTED_SUM 64'h039ea4d039c2e70b // Test loop always @ (posedge clk) begin `ifdef TEST_VERBOSE $write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result); `endif cyc <= cyc + 1; crc <= {crc[62:0], crc[63]^crc[2]^crc[0]}; sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]}; rst_n <= ~1'b0; if (cyc==0) begin // Setup crc <= 64'h5aef0c8d_d70a4497; rst_n <= ~1'b1; end else if (cyc<10) begin sum <= 64'h0; rst_n <= ~1'b1; end else if (cyc<90) begin if (pos1 !== pos2) $stop; end else if (cyc==99) begin $write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum); if (crc !== 64'hc77bb9b3784ea091) $stop; if (sum !== `EXPECTED_SUM) $stop; $write("*-* All Finished *-*\n"); $finish; end end endmodule module Test #(parameter SAMPLE_WIDTH = 5 ) ( `ifdef verilator // Some simulators don't support clog2 output reg [$clog2(SAMPLE_WIDTH)-1:0] pos1, `else output reg [log2(SAMPLE_WIDTH-1)-1:0] pos1, `endif output reg [log2(SAMPLE_WIDTH-1)-1:0] pos2, // System input clk, input rst_n ); function integer log2(input integer arg); begin for(log2=0; arg>0; log2=log2+1) arg = (arg >> 1); end endfunction always @ (posedge clk or negedge rst_n) if (!rst_n) begin pos1 <= 0; pos2 <= 0; end else begin pos1 <= pos1 + 1; pos2 <= pos2 + 1; end endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2005 by Wilson Snyder. module t_case_huge_sub4 (/*AUTOARG*/ // Outputs outq, // Inputs index ); input [7:0] index; output [9:0] outq; // ============================= /*AUTOREG*/ // Beginning of automatic regs (for this module's undeclared outputs) reg [9:0] outq; // End of automatics // ============================= always @(/*AS*/index) begin case (index) // default below: no change 8'h00: begin outq = 10'h001; end 8'he0: begin outq = 10'h05b; end 8'he1: begin outq = 10'h126; end 8'he2: begin outq = 10'h369; end 8'he3: begin outq = 10'h291; end 8'he4: begin outq = 10'h2ca; end 8'he5: begin outq = 10'h25b; end 8'he6: begin outq = 10'h106; end 8'he7: begin outq = 10'h172; end 8'he8: begin outq = 10'h2f7; end 8'he9: begin outq = 10'h2d3; end 8'hea: begin outq = 10'h182; end 8'heb: begin outq = 10'h327; end 8'hec: begin outq = 10'h1d0; end 8'hed: begin outq = 10'h204; end 8'hee: begin outq = 10'h11f; end 8'hef: begin outq = 10'h365; end 8'hf0: begin outq = 10'h2c2; end 8'hf1: begin outq = 10'h2b5; end 8'hf2: begin outq = 10'h1f8; end 8'hf3: begin outq = 10'h2a7; end 8'hf4: begin outq = 10'h1be; end 8'hf5: begin outq = 10'h25e; end 8'hf6: begin outq = 10'h032; end 8'hf7: begin outq = 10'h2ef; end 8'hf8: begin outq = 10'h02f; end 8'hf9: begin outq = 10'h201; end 8'hfa: begin outq = 10'h054; end 8'hfb: begin outq = 10'h013; end 8'hfc: begin outq = 10'h249; end 8'hfd: begin outq = 10'h09a; end 8'hfe: begin outq = 10'h012; end 8'hff: begin outq = 10'h114; end default: ; // No change endcase end endmodule
// file: main_pll.v // // (c) Copyright 2008 - 2011 Xilinx, Inc. All rights reserved. // // This file contains confidential and proprietary information // of Xilinx, Inc. and is protected under U.S. and // international copyright and other intellectual property // laws. // // DISCLAIMER // This disclaimer is not a license and does not grant any // rights to the materials distributed herewith. Except as // otherwise provided in a valid license issued to you by // Xilinx, and to the maximum extent permitted by applicable // law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // (2) Xilinx shall not be liable (whether in contract or tort, // including negligence, or under any other theory of // liability) for any loss or damage of any kind or nature // related to, arising under or in connection with these // materials, including for any direct, or any indirect, // special, incidental, or consequential loss or damage // (including loss of data, profits, goodwill, or any type of // loss or damage suffered as a result of any action brought // by a third party) even if such damage or loss was // reasonably foreseeable or Xilinx had been advised of the // possibility of the same. // // CRITICAL APPLICATIONS // Xilinx products are not designed or intended to be fail- // safe, or for use in any application requiring fail-safe // performance, such as life-support or safety devices or // systems, Class III medical devices, nuclear facilities, // applications related to the deployment of airbags, or any // other applications that could lead to death, personal // injury, or severe property or environmental damage // (individually and collectively, "Critical // Applications"). Customer assumes the sole risk and // liability of any use of Xilinx products in Critical // Applications, subject only to applicable laws and // regulations governing limitations on product liability. // // THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // PART OF THIS FILE AT ALL TIMES. // //---------------------------------------------------------------------------- // User entered comments //---------------------------------------------------------------------------- // None // //---------------------------------------------------------------------------- // "Output Output Phase Duty Pk-to-Pk Phase" // "Clock Freq (MHz) (degrees) Cycle (%) Jitter (ps) Error (ps)" //---------------------------------------------------------------------------- // CLK_OUT1____75.000______0.000______50.0______466.667_____50.000 // //---------------------------------------------------------------------------- // "Input Clock Freq (MHz) Input Jitter (UI)" //---------------------------------------------------------------------------- // __primary_________100.000____________0.010 `timescale 1ps/1ps (* CORE_GENERATION_INFO = "main_pll,main_pll,{component_name=main_pll,use_phase_alignment=false,use_min_o_jitter=false,use_max_i_jitter=false,use_dyn_phase_shift=false,use_inclk_switchover=false,use_dyn_reconfig=false,feedback_source=FDBK_AUTO,primtype_sel=DCM_SP,num_out_clk=1,clkin1_period=10.0,clkin2_period=10.0,use_power_down=false,use_reset=false,use_locked=false,use_inclk_stopped=false,use_status=false,use_freeze=false,use_clk_valid=false,feedback_type=SINGLE,clock_mgr_type=AUTO,manual_override=false}" *) module main_pll (// Clock in ports input CLK_IN1, // Clock out ports output CLK_OUT1 ); // Input buffering //------------------------------------ IBUFG clkin1_buf (.O (clkin1), .I (CLK_IN1)); // Clocking primitive //------------------------------------ // Instantiation of the DCM primitive // * Unused inputs are tied off // * Unused outputs are labeled unused wire psdone_unused; wire locked_int; wire [7:0] status_int; wire clkfb; wire clk0; wire clkfx; DCM_SP #(.CLKDV_DIVIDE (2.000), .CLKFX_DIVIDE (10), .CLKFX_MULTIPLY (15), .CLKIN_DIVIDE_BY_2 ("FALSE"), .CLKIN_PERIOD (10.0), .CLKOUT_PHASE_SHIFT ("NONE"), .CLK_FEEDBACK ("NONE"), .DESKEW_ADJUST ("SYSTEM_SYNCHRONOUS"), .PHASE_SHIFT (0), .STARTUP_WAIT ("FALSE")) dcm_sp_inst // Input clock (.CLKIN (clkin1), .CLKFB (clkfb), // Output clocks .CLK0 (clk0), .CLK90 (), .CLK180 (), .CLK270 (), .CLK2X (), .CLK2X180 (), .CLKFX (clkfx), .CLKFX180 (), .CLKDV (), // Ports for dynamic phase shift .PSCLK (1'b0), .PSEN (1'b0), .PSINCDEC (1'b0), .PSDONE (), // Other control and status signals .LOCKED (locked_int), .STATUS (status_int), .RST (1'b0), // Unused pin- tie low .DSSEN (1'b0)); // Output buffering //----------------------------------- // no phase alignment active, connect to ground assign clkfb = 1'b0; BUFG clkout1_buf (.O (CLK_OUT1), .I (clkfx)); endmodule
// file: main_pll.v // // (c) Copyright 2008 - 2011 Xilinx, Inc. All rights reserved. // // This file contains confidential and proprietary information // of Xilinx, Inc. and is protected under U.S. and // international copyright and other intellectual property // laws. // // DISCLAIMER // This disclaimer is not a license and does not grant any // rights to the materials distributed herewith. Except as // otherwise provided in a valid license issued to you by // Xilinx, and to the maximum extent permitted by applicable // law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // (2) Xilinx shall not be liable (whether in contract or tort, // including negligence, or under any other theory of // liability) for any loss or damage of any kind or nature // related to, arising under or in connection with these // materials, including for any direct, or any indirect, // special, incidental, or consequential loss or damage // (including loss of data, profits, goodwill, or any type of // loss or damage suffered as a result of any action brought // by a third party) even if such damage or loss was // reasonably foreseeable or Xilinx had been advised of the // possibility of the same. // // CRITICAL APPLICATIONS // Xilinx products are not designed or intended to be fail- // safe, or for use in any application requiring fail-safe // performance, such as life-support or safety devices or // systems, Class III medical devices, nuclear facilities, // applications related to the deployment of airbags, or any // other applications that could lead to death, personal // injury, or severe property or environmental damage // (individually and collectively, "Critical // Applications"). Customer assumes the sole risk and // liability of any use of Xilinx products in Critical // Applications, subject only to applicable laws and // regulations governing limitations on product liability. // // THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // PART OF THIS FILE AT ALL TIMES. // //---------------------------------------------------------------------------- // User entered comments //---------------------------------------------------------------------------- // None // //---------------------------------------------------------------------------- // "Output Output Phase Duty Pk-to-Pk Phase" // "Clock Freq (MHz) (degrees) Cycle (%) Jitter (ps) Error (ps)" //---------------------------------------------------------------------------- // CLK_OUT1____75.000______0.000______50.0______466.667_____50.000 // //---------------------------------------------------------------------------- // "Input Clock Freq (MHz) Input Jitter (UI)" //---------------------------------------------------------------------------- // __primary_________100.000____________0.010 `timescale 1ps/1ps (* CORE_GENERATION_INFO = "main_pll,main_pll,{component_name=main_pll,use_phase_alignment=false,use_min_o_jitter=false,use_max_i_jitter=false,use_dyn_phase_shift=false,use_inclk_switchover=false,use_dyn_reconfig=false,feedback_source=FDBK_AUTO,primtype_sel=DCM_SP,num_out_clk=1,clkin1_period=10.0,clkin2_period=10.0,use_power_down=false,use_reset=false,use_locked=false,use_inclk_stopped=false,use_status=false,use_freeze=false,use_clk_valid=false,feedback_type=SINGLE,clock_mgr_type=AUTO,manual_override=false}" *) module main_pll (// Clock in ports input CLK_IN1, // Clock out ports output CLK_OUT1 ); // Input buffering //------------------------------------ IBUFG clkin1_buf (.O (clkin1), .I (CLK_IN1)); // Clocking primitive //------------------------------------ // Instantiation of the DCM primitive // * Unused inputs are tied off // * Unused outputs are labeled unused wire psdone_unused; wire locked_int; wire [7:0] status_int; wire clkfb; wire clk0; wire clkfx; DCM_SP #(.CLKDV_DIVIDE (2.000), .CLKFX_DIVIDE (10), .CLKFX_MULTIPLY (15), .CLKIN_DIVIDE_BY_2 ("FALSE"), .CLKIN_PERIOD (10.0), .CLKOUT_PHASE_SHIFT ("NONE"), .CLK_FEEDBACK ("NONE"), .DESKEW_ADJUST ("SYSTEM_SYNCHRONOUS"), .PHASE_SHIFT (0), .STARTUP_WAIT ("FALSE")) dcm_sp_inst // Input clock (.CLKIN (clkin1), .CLKFB (clkfb), // Output clocks .CLK0 (clk0), .CLK90 (), .CLK180 (), .CLK270 (), .CLK2X (), .CLK2X180 (), .CLKFX (clkfx), .CLKFX180 (), .CLKDV (), // Ports for dynamic phase shift .PSCLK (1'b0), .PSEN (1'b0), .PSINCDEC (1'b0), .PSDONE (), // Other control and status signals .LOCKED (locked_int), .STATUS (status_int), .RST (1'b0), // Unused pin- tie low .DSSEN (1'b0)); // Output buffering //----------------------------------- // no phase alignment active, connect to ground assign clkfb = 1'b0; BUFG clkout1_buf (.O (CLK_OUT1), .I (clkfx)); endmodule
// file: main_pll.v // // (c) Copyright 2008 - 2011 Xilinx, Inc. All rights reserved. // // This file contains confidential and proprietary information // of Xilinx, Inc. and is protected under U.S. and // international copyright and other intellectual property // laws. // // DISCLAIMER // This disclaimer is not a license and does not grant any // rights to the materials distributed herewith. Except as // otherwise provided in a valid license issued to you by // Xilinx, and to the maximum extent permitted by applicable // law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // (2) Xilinx shall not be liable (whether in contract or tort, // including negligence, or under any other theory of // liability) for any loss or damage of any kind or nature // related to, arising under or in connection with these // materials, including for any direct, or any indirect, // special, incidental, or consequential loss or damage // (including loss of data, profits, goodwill, or any type of // loss or damage suffered as a result of any action brought // by a third party) even if such damage or loss was // reasonably foreseeable or Xilinx had been advised of the // possibility of the same. // // CRITICAL APPLICATIONS // Xilinx products are not designed or intended to be fail- // safe, or for use in any application requiring fail-safe // performance, such as life-support or safety devices or // systems, Class III medical devices, nuclear facilities, // applications related to the deployment of airbags, or any // other applications that could lead to death, personal // injury, or severe property or environmental damage // (individually and collectively, "Critical // Applications"). Customer assumes the sole risk and // liability of any use of Xilinx products in Critical // Applications, subject only to applicable laws and // regulations governing limitations on product liability. // // THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // PART OF THIS FILE AT ALL TIMES. // //---------------------------------------------------------------------------- // User entered comments //---------------------------------------------------------------------------- // None // //---------------------------------------------------------------------------- // "Output Output Phase Duty Pk-to-Pk Phase" // "Clock Freq (MHz) (degrees) Cycle (%) Jitter (ps) Error (ps)" //---------------------------------------------------------------------------- // CLK_OUT1____75.000______0.000______50.0______466.667_____50.000 // //---------------------------------------------------------------------------- // "Input Clock Freq (MHz) Input Jitter (UI)" //---------------------------------------------------------------------------- // __primary_________100.000____________0.010 `timescale 1ps/1ps (* CORE_GENERATION_INFO = "main_pll,main_pll,{component_name=main_pll,use_phase_alignment=false,use_min_o_jitter=false,use_max_i_jitter=false,use_dyn_phase_shift=false,use_inclk_switchover=false,use_dyn_reconfig=false,feedback_source=FDBK_AUTO,primtype_sel=DCM_SP,num_out_clk=1,clkin1_period=10.0,clkin2_period=10.0,use_power_down=false,use_reset=false,use_locked=false,use_inclk_stopped=false,use_status=false,use_freeze=false,use_clk_valid=false,feedback_type=SINGLE,clock_mgr_type=AUTO,manual_override=false}" *) module main_pll (// Clock in ports input CLK_IN1, // Clock out ports output CLK_OUT1 ); // Input buffering //------------------------------------ IBUFG clkin1_buf (.O (clkin1), .I (CLK_IN1)); // Clocking primitive //------------------------------------ // Instantiation of the DCM primitive // * Unused inputs are tied off // * Unused outputs are labeled unused wire psdone_unused; wire locked_int; wire [7:0] status_int; wire clkfb; wire clk0; wire clkfx; DCM_SP #(.CLKDV_DIVIDE (2.000), .CLKFX_DIVIDE (10), .CLKFX_MULTIPLY (15), .CLKIN_DIVIDE_BY_2 ("FALSE"), .CLKIN_PERIOD (10.0), .CLKOUT_PHASE_SHIFT ("NONE"), .CLK_FEEDBACK ("NONE"), .DESKEW_ADJUST ("SYSTEM_SYNCHRONOUS"), .PHASE_SHIFT (0), .STARTUP_WAIT ("FALSE")) dcm_sp_inst // Input clock (.CLKIN (clkin1), .CLKFB (clkfb), // Output clocks .CLK0 (clk0), .CLK90 (), .CLK180 (), .CLK270 (), .CLK2X (), .CLK2X180 (), .CLKFX (clkfx), .CLKFX180 (), .CLKDV (), // Ports for dynamic phase shift .PSCLK (1'b0), .PSEN (1'b0), .PSINCDEC (1'b0), .PSDONE (), // Other control and status signals .LOCKED (locked_int), .STATUS (status_int), .RST (1'b0), // Unused pin- tie low .DSSEN (1'b0)); // Output buffering //----------------------------------- // no phase alignment active, connect to ground assign clkfb = 1'b0; BUFG clkout1_buf (.O (CLK_OUT1), .I (clkfx)); endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2011 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc=0; reg [63:0] crc; reg [63:0] sum; // Take CRC data and apply to testblock inputs wire bit_in = crc[0]; wire [30:0] vec_in = crc[31:1]; wire [123:0] wide_in = {crc[59:0],~crc[63:0]}; /*AUTOWIRE*/ // Beginning of automatic wires (for undeclared instantiated-module outputs) wire exp_bit_out; // From reference of t_embed1_child.v wire exp_did_init_out; // From reference of t_embed1_child.v wire [30:0] exp_vec_out; // From reference of t_embed1_child.v wire [123:0] exp_wide_out; // From reference of t_embed1_child.v wire got_bit_out; // From test of t_embed1_wrap.v wire got_did_init_out; // From test of t_embed1_wrap.v wire [30:0] got_vec_out; // From test of t_embed1_wrap.v wire [123:0] got_wide_out; // From test of t_embed1_wrap.v // End of automatics // A non-embedded master /* t_embed1_child AUTO_TEMPLATE( .\(.*_out\) (exp_\1[]), .is_ref (1'b1)); */ t_embed1_child reference (/*AUTOINST*/ // Outputs .bit_out (exp_bit_out), // Templated .vec_out (exp_vec_out[30:0]), // Templated .wide_out (exp_wide_out[123:0]), // Templated .did_init_out (exp_did_init_out), // Templated // Inputs .clk (clk), .bit_in (bit_in), .vec_in (vec_in[30:0]), .wide_in (wide_in[123:0]), .is_ref (1'b1)); // Templated // The embeded comparison /* t_embed1_wrap AUTO_TEMPLATE( .\(.*_out\) (got_\1[]), .is_ref (1'b0)); */ t_embed1_wrap test (/*AUTOINST*/ // Outputs .bit_out (got_bit_out), // Templated .vec_out (got_vec_out[30:0]), // Templated .wide_out (got_wide_out[123:0]), // Templated .did_init_out (got_did_init_out), // Templated // Inputs .clk (clk), .bit_in (bit_in), .vec_in (vec_in[30:0]), .wide_in (wide_in[123:0]), .is_ref (1'b0)); // Templated // Aggregate outputs into a single result vector wire [63:0] result = {60'h0, got_wide_out !== exp_wide_out, got_vec_out !== exp_vec_out, got_bit_out !== exp_bit_out, got_did_init_out !== exp_did_init_out}; // Test loop always @ (posedge clk) begin `ifdef TEST_VERBOSE $write("[%0t] cyc==%0d crc=%x result=%x gv=%x ev=%x\n",$time, cyc, crc, result, got_vec_out, exp_vec_out); `endif cyc <= cyc + 1; crc <= {crc[62:0], crc[63]^crc[2]^crc[0]}; if (cyc==0) begin // Setup crc <= 64'h5aef0c8d_d70a4497; end else if (cyc<10) begin end else if (cyc<90) begin if (result != 64'h0) begin $display("Bit mismatch, result=%x\n", result); $stop; end end else if (cyc==99) begin $write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum); if (crc !== 64'hc77bb9b3784ea091) $stop; //Child prints this: $write("*-* All Finished *-*\n"); $finish; end end endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2011 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc=0; reg [63:0] crc; reg [63:0] sum; // Take CRC data and apply to testblock inputs wire bit_in = crc[0]; wire [30:0] vec_in = crc[31:1]; wire [123:0] wide_in = {crc[59:0],~crc[63:0]}; /*AUTOWIRE*/ // Beginning of automatic wires (for undeclared instantiated-module outputs) wire exp_bit_out; // From reference of t_embed1_child.v wire exp_did_init_out; // From reference of t_embed1_child.v wire [30:0] exp_vec_out; // From reference of t_embed1_child.v wire [123:0] exp_wide_out; // From reference of t_embed1_child.v wire got_bit_out; // From test of t_embed1_wrap.v wire got_did_init_out; // From test of t_embed1_wrap.v wire [30:0] got_vec_out; // From test of t_embed1_wrap.v wire [123:0] got_wide_out; // From test of t_embed1_wrap.v // End of automatics // A non-embedded master /* t_embed1_child AUTO_TEMPLATE( .\(.*_out\) (exp_\1[]), .is_ref (1'b1)); */ t_embed1_child reference (/*AUTOINST*/ // Outputs .bit_out (exp_bit_out), // Templated .vec_out (exp_vec_out[30:0]), // Templated .wide_out (exp_wide_out[123:0]), // Templated .did_init_out (exp_did_init_out), // Templated // Inputs .clk (clk), .bit_in (bit_in), .vec_in (vec_in[30:0]), .wide_in (wide_in[123:0]), .is_ref (1'b1)); // Templated // The embeded comparison /* t_embed1_wrap AUTO_TEMPLATE( .\(.*_out\) (got_\1[]), .is_ref (1'b0)); */ t_embed1_wrap test (/*AUTOINST*/ // Outputs .bit_out (got_bit_out), // Templated .vec_out (got_vec_out[30:0]), // Templated .wide_out (got_wide_out[123:0]), // Templated .did_init_out (got_did_init_out), // Templated // Inputs .clk (clk), .bit_in (bit_in), .vec_in (vec_in[30:0]), .wide_in (wide_in[123:0]), .is_ref (1'b0)); // Templated // Aggregate outputs into a single result vector wire [63:0] result = {60'h0, got_wide_out !== exp_wide_out, got_vec_out !== exp_vec_out, got_bit_out !== exp_bit_out, got_did_init_out !== exp_did_init_out}; // Test loop always @ (posedge clk) begin `ifdef TEST_VERBOSE $write("[%0t] cyc==%0d crc=%x result=%x gv=%x ev=%x\n",$time, cyc, crc, result, got_vec_out, exp_vec_out); `endif cyc <= cyc + 1; crc <= {crc[62:0], crc[63]^crc[2]^crc[0]}; if (cyc==0) begin // Setup crc <= 64'h5aef0c8d_d70a4497; end else if (cyc<10) begin end else if (cyc<90) begin if (result != 64'h0) begin $display("Bit mismatch, result=%x\n", result); $stop; end end else if (cyc==99) begin $write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum); if (crc !== 64'hc77bb9b3784ea091) $stop; //Child prints this: $write("*-* All Finished *-*\n"); $finish; end end endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2011 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc=0; reg [63:0] crc; reg [63:0] sum; // Take CRC data and apply to testblock inputs wire bit_in = crc[0]; wire [30:0] vec_in = crc[31:1]; wire [123:0] wide_in = {crc[59:0],~crc[63:0]}; /*AUTOWIRE*/ // Beginning of automatic wires (for undeclared instantiated-module outputs) wire exp_bit_out; // From reference of t_embed1_child.v wire exp_did_init_out; // From reference of t_embed1_child.v wire [30:0] exp_vec_out; // From reference of t_embed1_child.v wire [123:0] exp_wide_out; // From reference of t_embed1_child.v wire got_bit_out; // From test of t_embed1_wrap.v wire got_did_init_out; // From test of t_embed1_wrap.v wire [30:0] got_vec_out; // From test of t_embed1_wrap.v wire [123:0] got_wide_out; // From test of t_embed1_wrap.v // End of automatics // A non-embedded master /* t_embed1_child AUTO_TEMPLATE( .\(.*_out\) (exp_\1[]), .is_ref (1'b1)); */ t_embed1_child reference (/*AUTOINST*/ // Outputs .bit_out (exp_bit_out), // Templated .vec_out (exp_vec_out[30:0]), // Templated .wide_out (exp_wide_out[123:0]), // Templated .did_init_out (exp_did_init_out), // Templated // Inputs .clk (clk), .bit_in (bit_in), .vec_in (vec_in[30:0]), .wide_in (wide_in[123:0]), .is_ref (1'b1)); // Templated // The embeded comparison /* t_embed1_wrap AUTO_TEMPLATE( .\(.*_out\) (got_\1[]), .is_ref (1'b0)); */ t_embed1_wrap test (/*AUTOINST*/ // Outputs .bit_out (got_bit_out), // Templated .vec_out (got_vec_out[30:0]), // Templated .wide_out (got_wide_out[123:0]), // Templated .did_init_out (got_did_init_out), // Templated // Inputs .clk (clk), .bit_in (bit_in), .vec_in (vec_in[30:0]), .wide_in (wide_in[123:0]), .is_ref (1'b0)); // Templated // Aggregate outputs into a single result vector wire [63:0] result = {60'h0, got_wide_out !== exp_wide_out, got_vec_out !== exp_vec_out, got_bit_out !== exp_bit_out, got_did_init_out !== exp_did_init_out}; // Test loop always @ (posedge clk) begin `ifdef TEST_VERBOSE $write("[%0t] cyc==%0d crc=%x result=%x gv=%x ev=%x\n",$time, cyc, crc, result, got_vec_out, exp_vec_out); `endif cyc <= cyc + 1; crc <= {crc[62:0], crc[63]^crc[2]^crc[0]}; if (cyc==0) begin // Setup crc <= 64'h5aef0c8d_d70a4497; end else if (cyc<10) begin end else if (cyc<90) begin if (result != 64'h0) begin $display("Bit mismatch, result=%x\n", result); $stop; end end else if (cyc==99) begin $write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum); if (crc !== 64'hc77bb9b3784ea091) $stop; //Child prints this: $write("*-* All Finished *-*\n"); $finish; end end endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2003 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc; initial cyc=1; reg posedge_wr_clocks; reg prev_wr_clocks; reg [31:0] m_din; reg [31:0] m_dout; always @(negedge clk) begin prev_wr_clocks = 0; end reg comb_pos_1; reg comb_prev_1; always @ (/*AS*/clk or posedge_wr_clocks or prev_wr_clocks) begin comb_pos_1 = (clk &~ prev_wr_clocks); comb_prev_1 = comb_pos_1 | posedge_wr_clocks; comb_pos_1 = 1'b1; end always @ (posedge clk) begin posedge_wr_clocks = (clk &~ prev_wr_clocks); //surefire lint_off_line SEQASS prev_wr_clocks = prev_wr_clocks | posedge_wr_clocks; //surefire lint_off_line SEQASS if (posedge_wr_clocks) begin //$write("[%0t] Wrclk\n", $time); m_dout <= m_din; end end always @ (posedge clk) begin if (cyc!=0) begin cyc<=cyc+1; if (cyc==1) begin $write(" %x\n",comb_pos_1); m_din <= 32'hfeed; end if (cyc==2) begin $write(" %x\n",comb_pos_1); m_din <= 32'he11e; end if (cyc==3) begin m_din <= 32'he22e; $write(" %x\n",comb_pos_1); if (m_dout!=32'hfeed) $stop; end if (cyc==4) begin if (m_dout!=32'he11e) $stop; $write("*-* All Finished *-*\n"); $finish; end end end endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2004 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; // verilator lint_off WIDTH //============================================================ reg bad; initial begin bad=0; c96(96'h0_0000_0000_0000_0000, 96'h8_8888_8888_8888_8888, 96'h0_0000_0000_0000_0000, 96'h0); c96(96'h8_8888_8888_8888_8888, 96'h0_0000_0000_0000_0000, 96'h0_0000_0000_0000_0000, 96'h0); c96(96'h8_8888_8888_8888_8888, 96'h0_0000_0000_0000_0002, 96'h4_4444_4444_4444_4444, 96'h0); c96(96'h8_8888_8888_8888_8888, 96'h0_2000_0000_0000_0000, 96'h0_0000_0000_0000_0044, 96'h0_0888_8888_8888_8888); c96(96'h8_8888_8888_8888_8888, 96'h8_8888_8888_8888_8888, 96'h0_0000_0000_0000_0001, 96'h0); c96(96'h8_8888_8888_8888_8888, 96'h8_8888_8888_8888_8889, 96'h0_0000_0000_0000_0000, 96'h8_8888_8888_8888_8888); c96(96'h1_0000_0000_8eba_434a, 96'h0_0000_0000_0000_0001, 96'h1_0000_0000_8eba_434a, 96'h0); c96(96'h0003, 96'h0002, 96'h0001, 96'h0001); c96(96'h0003, 96'h0003, 96'h0001, 96'h0000); c96(96'h0003, 96'h0004, 96'h0000, 96'h0003); c96(96'h0000, 96'hffff, 96'h0000, 96'h0000); c96(96'hffff, 96'h0001, 96'hffff, 96'h0000); c96(96'hffff, 96'hffff, 96'h0001, 96'h0000); c96(96'hffff, 96'h0003, 96'h5555, 96'h0000); c96(96'hffff_ffff, 96'h0001, 96'hffff_ffff, 96'h0000); c96(96'hffff_ffff, 96'hffff, 96'h0001_0001, 96'h0000); c96(96'hfffe_ffff, 96'hffff, 96'h0000_ffff, 96'hfffe); c96(96'h1234_5678, 96'h9abc, 96'h0000_1e1e, 96'h2c70); c96(96'h0000_0000, 96'h0001_0000, 96'h0000, 96'h0000_0000); c96(96'h0007_0000, 96'h0003_0000, 96'h0002, 96'h0001_0000); c96(96'h0007_0005, 96'h0003_0000, 96'h0002, 96'h0001_0005); c96(96'h0006_0000, 96'h0002_0000, 96'h0003, 96'h0000_0000); c96(96'h8000_0001, 96'h4000_7000, 96'h0001, 96'h3fff_9001); c96(96'hbcde_789a, 96'hbcde_789a, 96'h0001, 96'h0000_0000); c96(96'hbcde_789b, 96'hbcde_789a, 96'h0001, 96'h0000_0001); c96(96'hbcde_7899, 96'hbcde_789a, 96'h0000, 96'hbcde_7899); c96(96'hffff_ffff, 96'hffff_ffff, 96'h0001, 96'h0000_0000); c96(96'hffff_ffff, 96'h0001_0000, 96'hffff, 96'h0000_ffff); c96(96'h0123_4567_89ab, 96'h0001_0000, 96'h0123_4567, 96'h0000_89ab); c96(96'h8000_fffe_0000, 96'h8000_ffff, 96'h0000_ffff, 96'h7fff_ffff); c96(96'h8000_0000_0003, 96'h2000_0000_0001, 96'h0003, 96'h2000_0000_0000); c96(96'hffff_ffff_0000_0000, 96'h0001_0000_0000, 96'hffff_ffff, 96'h0000_0000_0000); c96(96'hffff_ffff_0000_0000, 96'hffff_0000_0000, 96'h0001_0001, 96'h0000_0000_0000); c96(96'hfffe_ffff_0000_0000, 96'hffff_0000_0000, 96'h0000_ffff, 96'hfffe_0000_0000); c96(96'h1234_5678_0000_0000, 96'h9abc_0000_0000, 96'h0000_1e1e, 96'h2c70_0000_0000); c96(96'h0000_0000_0000_0000, 96'h0001_0000_0000_0000, 96'h0000, 96'h0000_0000_0000_0000); c96(96'h0007_0000_0000_0000, 96'h0003_0000_0000_0000, 96'h0002, 96'h0001_0000_0000_0000); c96(96'h0007_0005_0000_0000, 96'h0003_0000_0000_0000, 96'h0002, 96'h0001_0005_0000_0000); c96(96'h0006_0000_0000_0000, 96'h0002_0000_0000_0000, 96'h0003, 96'h0000_0000_0000_0000); c96(96'h8000_0001_0000_0000, 96'h4000_7000_0000_0000, 96'h0001, 96'h3fff_9001_0000_0000); c96(96'hbcde_789a_0000_0000, 96'hbcde_789a_0000_0000, 96'h0001, 96'h0000_0000_0000_0000); c96(96'hbcde_789b_0000_0000, 96'hbcde_789a_0000_0000, 96'h0001, 96'h0000_0001_0000_0000); c96(96'hbcde_7899_0000_0000, 96'hbcde_789a_0000_0000, 96'h0000, 96'hbcde_7899_0000_0000); c96(96'hffff_ffff_0000_0000, 96'hffff_ffff_0000_0000, 96'h0001, 96'h0000_0000_0000_0000); c96(96'hffff_ffff_0000_0000, 96'h0001_0000_0000_0000, 96'hffff, 96'h0000_ffff_0000_0000); c96(96'h7fff_8000_0000_0000, 96'h8000_0000_0001, 96'h0000_fffe, 96'h7fff_ffff_0002); c96(96'h8000_0000_fffe_0000, 96'h8000_0000_ffff, 96'h0000_ffff, 96'h7fff_ffff_ffff); c96(96'h0008_8888_8888_8888_8888, 96'h0002_0000_0000_0000, 96'h0004_4444, 96'h0000_8888_8888_8888); if (bad) $stop; $write("*-* All Finished *-*\n"); $finish; end task c96; input [95:0] u; input [95:0] v; input [95:0] expq; input [95:0] expr; c96u( u, v, expq, expr); c96s( u, v, expq, expr); c96s(-u, v,-expq,-expr); c96s( u,-v,-expq, expr); c96s(-u,-v, expq,-expr); endtask task c96u; input [95:0] u; input [95:0] v; input [95:0] expq; input [95:0] expr; reg [95:0] gotq; reg [95:0] gotr; gotq = u/v; gotr = u%v; if (gotq != expq && v!=0) begin bad = 1; end if (gotr != expr && v!=0) begin bad = 1; end if (bad `ifdef TEST_VERBOSE || 1 `endif ) begin $write(" %x /u %x = got %x exp %x %% got %x exp %x", u,v,gotq,expq,gotr,expr); // Test for v=0 to prevent Xs causing grief if (gotq != expq && v!=0) $write(" BADQ"); if (gotr != expr && v!=0) $write(" BADR"); $write("\n"); end endtask task c96s; input signed [95:0] u; input signed [95:0] v; input signed [95:0] expq; input signed [95:0] expr; reg signed [95:0] gotq; reg signed [95:0] gotr; gotq = u/v; gotr = u%v; if (gotq != expq && v!=0) begin bad = 1; end if (gotr != expr && v!=0) begin bad = 1; end if (bad `ifdef TEST_VERBOSE || 1 `endif ) begin $write(" %x /s %x = got %x exp %x %% got %x exp %x", u,v,gotq,expq,gotr,expr); // Test for v=0 to prevent Xs causing grief if (gotq != expq && v!=0) $write(" BADQ"); if (gotr != expr && v!=0) $write(" BADR"); $write("\n"); end endtask endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2004 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; // verilator lint_off WIDTH //============================================================ reg bad; initial begin bad=0; c96(96'h0_0000_0000_0000_0000, 96'h8_8888_8888_8888_8888, 96'h0_0000_0000_0000_0000, 96'h0); c96(96'h8_8888_8888_8888_8888, 96'h0_0000_0000_0000_0000, 96'h0_0000_0000_0000_0000, 96'h0); c96(96'h8_8888_8888_8888_8888, 96'h0_0000_0000_0000_0002, 96'h4_4444_4444_4444_4444, 96'h0); c96(96'h8_8888_8888_8888_8888, 96'h0_2000_0000_0000_0000, 96'h0_0000_0000_0000_0044, 96'h0_0888_8888_8888_8888); c96(96'h8_8888_8888_8888_8888, 96'h8_8888_8888_8888_8888, 96'h0_0000_0000_0000_0001, 96'h0); c96(96'h8_8888_8888_8888_8888, 96'h8_8888_8888_8888_8889, 96'h0_0000_0000_0000_0000, 96'h8_8888_8888_8888_8888); c96(96'h1_0000_0000_8eba_434a, 96'h0_0000_0000_0000_0001, 96'h1_0000_0000_8eba_434a, 96'h0); c96(96'h0003, 96'h0002, 96'h0001, 96'h0001); c96(96'h0003, 96'h0003, 96'h0001, 96'h0000); c96(96'h0003, 96'h0004, 96'h0000, 96'h0003); c96(96'h0000, 96'hffff, 96'h0000, 96'h0000); c96(96'hffff, 96'h0001, 96'hffff, 96'h0000); c96(96'hffff, 96'hffff, 96'h0001, 96'h0000); c96(96'hffff, 96'h0003, 96'h5555, 96'h0000); c96(96'hffff_ffff, 96'h0001, 96'hffff_ffff, 96'h0000); c96(96'hffff_ffff, 96'hffff, 96'h0001_0001, 96'h0000); c96(96'hfffe_ffff, 96'hffff, 96'h0000_ffff, 96'hfffe); c96(96'h1234_5678, 96'h9abc, 96'h0000_1e1e, 96'h2c70); c96(96'h0000_0000, 96'h0001_0000, 96'h0000, 96'h0000_0000); c96(96'h0007_0000, 96'h0003_0000, 96'h0002, 96'h0001_0000); c96(96'h0007_0005, 96'h0003_0000, 96'h0002, 96'h0001_0005); c96(96'h0006_0000, 96'h0002_0000, 96'h0003, 96'h0000_0000); c96(96'h8000_0001, 96'h4000_7000, 96'h0001, 96'h3fff_9001); c96(96'hbcde_789a, 96'hbcde_789a, 96'h0001, 96'h0000_0000); c96(96'hbcde_789b, 96'hbcde_789a, 96'h0001, 96'h0000_0001); c96(96'hbcde_7899, 96'hbcde_789a, 96'h0000, 96'hbcde_7899); c96(96'hffff_ffff, 96'hffff_ffff, 96'h0001, 96'h0000_0000); c96(96'hffff_ffff, 96'h0001_0000, 96'hffff, 96'h0000_ffff); c96(96'h0123_4567_89ab, 96'h0001_0000, 96'h0123_4567, 96'h0000_89ab); c96(96'h8000_fffe_0000, 96'h8000_ffff, 96'h0000_ffff, 96'h7fff_ffff); c96(96'h8000_0000_0003, 96'h2000_0000_0001, 96'h0003, 96'h2000_0000_0000); c96(96'hffff_ffff_0000_0000, 96'h0001_0000_0000, 96'hffff_ffff, 96'h0000_0000_0000); c96(96'hffff_ffff_0000_0000, 96'hffff_0000_0000, 96'h0001_0001, 96'h0000_0000_0000); c96(96'hfffe_ffff_0000_0000, 96'hffff_0000_0000, 96'h0000_ffff, 96'hfffe_0000_0000); c96(96'h1234_5678_0000_0000, 96'h9abc_0000_0000, 96'h0000_1e1e, 96'h2c70_0000_0000); c96(96'h0000_0000_0000_0000, 96'h0001_0000_0000_0000, 96'h0000, 96'h0000_0000_0000_0000); c96(96'h0007_0000_0000_0000, 96'h0003_0000_0000_0000, 96'h0002, 96'h0001_0000_0000_0000); c96(96'h0007_0005_0000_0000, 96'h0003_0000_0000_0000, 96'h0002, 96'h0001_0005_0000_0000); c96(96'h0006_0000_0000_0000, 96'h0002_0000_0000_0000, 96'h0003, 96'h0000_0000_0000_0000); c96(96'h8000_0001_0000_0000, 96'h4000_7000_0000_0000, 96'h0001, 96'h3fff_9001_0000_0000); c96(96'hbcde_789a_0000_0000, 96'hbcde_789a_0000_0000, 96'h0001, 96'h0000_0000_0000_0000); c96(96'hbcde_789b_0000_0000, 96'hbcde_789a_0000_0000, 96'h0001, 96'h0000_0001_0000_0000); c96(96'hbcde_7899_0000_0000, 96'hbcde_789a_0000_0000, 96'h0000, 96'hbcde_7899_0000_0000); c96(96'hffff_ffff_0000_0000, 96'hffff_ffff_0000_0000, 96'h0001, 96'h0000_0000_0000_0000); c96(96'hffff_ffff_0000_0000, 96'h0001_0000_0000_0000, 96'hffff, 96'h0000_ffff_0000_0000); c96(96'h7fff_8000_0000_0000, 96'h8000_0000_0001, 96'h0000_fffe, 96'h7fff_ffff_0002); c96(96'h8000_0000_fffe_0000, 96'h8000_0000_ffff, 96'h0000_ffff, 96'h7fff_ffff_ffff); c96(96'h0008_8888_8888_8888_8888, 96'h0002_0000_0000_0000, 96'h0004_4444, 96'h0000_8888_8888_8888); if (bad) $stop; $write("*-* All Finished *-*\n"); $finish; end task c96; input [95:0] u; input [95:0] v; input [95:0] expq; input [95:0] expr; c96u( u, v, expq, expr); c96s( u, v, expq, expr); c96s(-u, v,-expq,-expr); c96s( u,-v,-expq, expr); c96s(-u,-v, expq,-expr); endtask task c96u; input [95:0] u; input [95:0] v; input [95:0] expq; input [95:0] expr; reg [95:0] gotq; reg [95:0] gotr; gotq = u/v; gotr = u%v; if (gotq != expq && v!=0) begin bad = 1; end if (gotr != expr && v!=0) begin bad = 1; end if (bad `ifdef TEST_VERBOSE || 1 `endif ) begin $write(" %x /u %x = got %x exp %x %% got %x exp %x", u,v,gotq,expq,gotr,expr); // Test for v=0 to prevent Xs causing grief if (gotq != expq && v!=0) $write(" BADQ"); if (gotr != expr && v!=0) $write(" BADR"); $write("\n"); end endtask task c96s; input signed [95:0] u; input signed [95:0] v; input signed [95:0] expq; input signed [95:0] expr; reg signed [95:0] gotq; reg signed [95:0] gotr; gotq = u/v; gotr = u%v; if (gotq != expq && v!=0) begin bad = 1; end if (gotr != expr && v!=0) begin bad = 1; end if (bad `ifdef TEST_VERBOSE || 1 `endif ) begin $write(" %x /s %x = got %x exp %x %% got %x exp %x", u,v,gotq,expq,gotr,expr); // Test for v=0 to prevent Xs causing grief if (gotq != expq && v!=0) $write(" BADQ"); if (gotr != expr && v!=0) $write(" BADR"); $write("\n"); end endtask endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2004 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; // verilator lint_off WIDTH //============================================================ reg bad; initial begin bad=0; c96(96'h0_0000_0000_0000_0000, 96'h8_8888_8888_8888_8888, 96'h0_0000_0000_0000_0000, 96'h0); c96(96'h8_8888_8888_8888_8888, 96'h0_0000_0000_0000_0000, 96'h0_0000_0000_0000_0000, 96'h0); c96(96'h8_8888_8888_8888_8888, 96'h0_0000_0000_0000_0002, 96'h4_4444_4444_4444_4444, 96'h0); c96(96'h8_8888_8888_8888_8888, 96'h0_2000_0000_0000_0000, 96'h0_0000_0000_0000_0044, 96'h0_0888_8888_8888_8888); c96(96'h8_8888_8888_8888_8888, 96'h8_8888_8888_8888_8888, 96'h0_0000_0000_0000_0001, 96'h0); c96(96'h8_8888_8888_8888_8888, 96'h8_8888_8888_8888_8889, 96'h0_0000_0000_0000_0000, 96'h8_8888_8888_8888_8888); c96(96'h1_0000_0000_8eba_434a, 96'h0_0000_0000_0000_0001, 96'h1_0000_0000_8eba_434a, 96'h0); c96(96'h0003, 96'h0002, 96'h0001, 96'h0001); c96(96'h0003, 96'h0003, 96'h0001, 96'h0000); c96(96'h0003, 96'h0004, 96'h0000, 96'h0003); c96(96'h0000, 96'hffff, 96'h0000, 96'h0000); c96(96'hffff, 96'h0001, 96'hffff, 96'h0000); c96(96'hffff, 96'hffff, 96'h0001, 96'h0000); c96(96'hffff, 96'h0003, 96'h5555, 96'h0000); c96(96'hffff_ffff, 96'h0001, 96'hffff_ffff, 96'h0000); c96(96'hffff_ffff, 96'hffff, 96'h0001_0001, 96'h0000); c96(96'hfffe_ffff, 96'hffff, 96'h0000_ffff, 96'hfffe); c96(96'h1234_5678, 96'h9abc, 96'h0000_1e1e, 96'h2c70); c96(96'h0000_0000, 96'h0001_0000, 96'h0000, 96'h0000_0000); c96(96'h0007_0000, 96'h0003_0000, 96'h0002, 96'h0001_0000); c96(96'h0007_0005, 96'h0003_0000, 96'h0002, 96'h0001_0005); c96(96'h0006_0000, 96'h0002_0000, 96'h0003, 96'h0000_0000); c96(96'h8000_0001, 96'h4000_7000, 96'h0001, 96'h3fff_9001); c96(96'hbcde_789a, 96'hbcde_789a, 96'h0001, 96'h0000_0000); c96(96'hbcde_789b, 96'hbcde_789a, 96'h0001, 96'h0000_0001); c96(96'hbcde_7899, 96'hbcde_789a, 96'h0000, 96'hbcde_7899); c96(96'hffff_ffff, 96'hffff_ffff, 96'h0001, 96'h0000_0000); c96(96'hffff_ffff, 96'h0001_0000, 96'hffff, 96'h0000_ffff); c96(96'h0123_4567_89ab, 96'h0001_0000, 96'h0123_4567, 96'h0000_89ab); c96(96'h8000_fffe_0000, 96'h8000_ffff, 96'h0000_ffff, 96'h7fff_ffff); c96(96'h8000_0000_0003, 96'h2000_0000_0001, 96'h0003, 96'h2000_0000_0000); c96(96'hffff_ffff_0000_0000, 96'h0001_0000_0000, 96'hffff_ffff, 96'h0000_0000_0000); c96(96'hffff_ffff_0000_0000, 96'hffff_0000_0000, 96'h0001_0001, 96'h0000_0000_0000); c96(96'hfffe_ffff_0000_0000, 96'hffff_0000_0000, 96'h0000_ffff, 96'hfffe_0000_0000); c96(96'h1234_5678_0000_0000, 96'h9abc_0000_0000, 96'h0000_1e1e, 96'h2c70_0000_0000); c96(96'h0000_0000_0000_0000, 96'h0001_0000_0000_0000, 96'h0000, 96'h0000_0000_0000_0000); c96(96'h0007_0000_0000_0000, 96'h0003_0000_0000_0000, 96'h0002, 96'h0001_0000_0000_0000); c96(96'h0007_0005_0000_0000, 96'h0003_0000_0000_0000, 96'h0002, 96'h0001_0005_0000_0000); c96(96'h0006_0000_0000_0000, 96'h0002_0000_0000_0000, 96'h0003, 96'h0000_0000_0000_0000); c96(96'h8000_0001_0000_0000, 96'h4000_7000_0000_0000, 96'h0001, 96'h3fff_9001_0000_0000); c96(96'hbcde_789a_0000_0000, 96'hbcde_789a_0000_0000, 96'h0001, 96'h0000_0000_0000_0000); c96(96'hbcde_789b_0000_0000, 96'hbcde_789a_0000_0000, 96'h0001, 96'h0000_0001_0000_0000); c96(96'hbcde_7899_0000_0000, 96'hbcde_789a_0000_0000, 96'h0000, 96'hbcde_7899_0000_0000); c96(96'hffff_ffff_0000_0000, 96'hffff_ffff_0000_0000, 96'h0001, 96'h0000_0000_0000_0000); c96(96'hffff_ffff_0000_0000, 96'h0001_0000_0000_0000, 96'hffff, 96'h0000_ffff_0000_0000); c96(96'h7fff_8000_0000_0000, 96'h8000_0000_0001, 96'h0000_fffe, 96'h7fff_ffff_0002); c96(96'h8000_0000_fffe_0000, 96'h8000_0000_ffff, 96'h0000_ffff, 96'h7fff_ffff_ffff); c96(96'h0008_8888_8888_8888_8888, 96'h0002_0000_0000_0000, 96'h0004_4444, 96'h0000_8888_8888_8888); if (bad) $stop; $write("*-* All Finished *-*\n"); $finish; end task c96; input [95:0] u; input [95:0] v; input [95:0] expq; input [95:0] expr; c96u( u, v, expq, expr); c96s( u, v, expq, expr); c96s(-u, v,-expq,-expr); c96s( u,-v,-expq, expr); c96s(-u,-v, expq,-expr); endtask task c96u; input [95:0] u; input [95:0] v; input [95:0] expq; input [95:0] expr; reg [95:0] gotq; reg [95:0] gotr; gotq = u/v; gotr = u%v; if (gotq != expq && v!=0) begin bad = 1; end if (gotr != expr && v!=0) begin bad = 1; end if (bad `ifdef TEST_VERBOSE || 1 `endif ) begin $write(" %x /u %x = got %x exp %x %% got %x exp %x", u,v,gotq,expq,gotr,expr); // Test for v=0 to prevent Xs causing grief if (gotq != expq && v!=0) $write(" BADQ"); if (gotr != expr && v!=0) $write(" BADR"); $write("\n"); end endtask task c96s; input signed [95:0] u; input signed [95:0] v; input signed [95:0] expq; input signed [95:0] expr; reg signed [95:0] gotq; reg signed [95:0] gotr; gotq = u/v; gotr = u%v; if (gotq != expq && v!=0) begin bad = 1; end if (gotr != expr && v!=0) begin bad = 1; end if (bad `ifdef TEST_VERBOSE || 1 `endif ) begin $write(" %x /s %x = got %x exp %x %% got %x exp %x", u,v,gotq,expq,gotr,expr); // Test for v=0 to prevent Xs causing grief if (gotq != expq && v!=0) $write(" BADQ"); if (gotr != expr && v!=0) $write(" BADR"); $write("\n"); end endtask endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2005 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc; initial cyc=0; reg [7:0] crc; reg [2:0] sum; wire [2:0] in = crc[2:0]; wire [2:0] out; MxN_pipeline pipe (in, out, clk); always @ (posedge clk) begin //$write("[%0t] cyc==%0d crc=%b sum=%x\n",$time, cyc, crc, sum); cyc <= cyc + 1; crc <= {crc[6:0], ~^ {crc[7],crc[5],crc[4],crc[3]}}; if (cyc==0) begin // Setup crc <= 8'hed; sum <= 3'h0; end else if (cyc>10 && cyc<90) begin sum <= {sum[1:0],sum[2]} ^ out; end else if (cyc==99) begin if (crc !== 8'b01110000) $stop; if (sum !== 3'h3) $stop; $write("*-* All Finished *-*\n"); $finish; end end endmodule module dffn (q,d,clk); parameter BITS = 1; input [BITS-1:0] d; output reg [BITS-1:0] q; input clk; always @ (posedge clk) begin q <= d; end endmodule module MxN_pipeline (in, out, clk); parameter M=3, N=4; input [M-1:0] in; output [M-1:0] out; input clk; // Unsupported: Per-bit array instantiations with output connections to non-wires. //wire [M*(N-1):1] t; //dffn #(M) p[N:1] ({out,t},{t,in},clk); wire [M*(N-1):1] w; wire [M*N:1] q; dffn #(M) p[N:1] (q,{w,in},clk); assign {out,w} = q; endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2005 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc; initial cyc=0; reg [7:0] crc; reg [2:0] sum; wire [2:0] in = crc[2:0]; wire [2:0] out; MxN_pipeline pipe (in, out, clk); always @ (posedge clk) begin //$write("[%0t] cyc==%0d crc=%b sum=%x\n",$time, cyc, crc, sum); cyc <= cyc + 1; crc <= {crc[6:0], ~^ {crc[7],crc[5],crc[4],crc[3]}}; if (cyc==0) begin // Setup crc <= 8'hed; sum <= 3'h0; end else if (cyc>10 && cyc<90) begin sum <= {sum[1:0],sum[2]} ^ out; end else if (cyc==99) begin if (crc !== 8'b01110000) $stop; if (sum !== 3'h3) $stop; $write("*-* All Finished *-*\n"); $finish; end end endmodule module dffn (q,d,clk); parameter BITS = 1; input [BITS-1:0] d; output reg [BITS-1:0] q; input clk; always @ (posedge clk) begin q <= d; end endmodule module MxN_pipeline (in, out, clk); parameter M=3, N=4; input [M-1:0] in; output [M-1:0] out; input clk; // Unsupported: Per-bit array instantiations with output connections to non-wires. //wire [M*(N-1):1] t; //dffn #(M) p[N:1] ({out,t},{t,in},clk); wire [M*(N-1):1] w; wire [M*N:1] q; dffn #(M) p[N:1] (q,{w,in},clk); assign {out,w} = q; endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2005 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc; initial cyc=0; reg [7:0] crc; reg [2:0] sum; wire [2:0] in = crc[2:0]; wire [2:0] out; MxN_pipeline pipe (in, out, clk); always @ (posedge clk) begin //$write("[%0t] cyc==%0d crc=%b sum=%x\n",$time, cyc, crc, sum); cyc <= cyc + 1; crc <= {crc[6:0], ~^ {crc[7],crc[5],crc[4],crc[3]}}; if (cyc==0) begin // Setup crc <= 8'hed; sum <= 3'h0; end else if (cyc>10 && cyc<90) begin sum <= {sum[1:0],sum[2]} ^ out; end else if (cyc==99) begin if (crc !== 8'b01110000) $stop; if (sum !== 3'h3) $stop; $write("*-* All Finished *-*\n"); $finish; end end endmodule module dffn (q,d,clk); parameter BITS = 1; input [BITS-1:0] d; output reg [BITS-1:0] q; input clk; always @ (posedge clk) begin q <= d; end endmodule module MxN_pipeline (in, out, clk); parameter M=3, N=4; input [M-1:0] in; output [M-1:0] out; input clk; // Unsupported: Per-bit array instantiations with output connections to non-wires. //wire [M*(N-1):1] t; //dffn #(M) p[N:1] ({out,t},{t,in},clk); wire [M*(N-1):1] w; wire [M*N:1] q; dffn #(M) p[N:1] (q,{w,in},clk); assign {out,w} = q; endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2008 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc=0; reg [63:0] crc; reg [63:0] sum; reg reset; reg enable; /*AUTOWIRE*/ // Beginning of automatic wires (for undeclared instantiated-module outputs) wire [31:0] out; // From test of Test.v // End of automatics // Take CRC data and apply to testblock inputs wire [31:0] in = crc[31:0]; Test test (/*AUTOINST*/ // Outputs .out (out[31:0]), // Inputs .clk (clk), .reset (reset), .enable (enable), .in (in[31:0])); wire [63:0] result = {32'h0, out}; // Test loop always @ (posedge clk) begin `ifdef TEST_VERBOSE $write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result); `endif cyc <= cyc + 1; crc <= {crc[62:0], crc[63]^crc[2]^crc[0]}; sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]}; reset <= (cyc < 5); enable <= cyc[4] || (cyc < 2); if (cyc==0) begin // Setup crc <= 64'h5aef0c8d_d70a4497; end else if (cyc<10) begin sum <= 64'h0; end else if (cyc<90) begin end else if (cyc==99) begin $write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum); if (crc !== 64'hc77bb9b3784ea091) $stop; `define EXPECTED_SUM 64'h01e1553da1dcf3af if (sum !== `EXPECTED_SUM) $stop; $write("*-* All Finished *-*\n"); $finish; end end endmodule module Test (/*AUTOARG*/ // Outputs out, // Inputs clk, reset, enable, in ); input clk; input reset; input enable; input [31:0] in; output [31:0] out; // No gating reg [31:0] d10; always @(posedge clk) begin d10 <= in; end reg displayit; `ifdef VERILATOR // Harder test initial displayit = $c1("0"); // Something that won't optimize away `else initial displayit = '0; `endif // Obvious gating + PLI reg [31:0] d20; always @(posedge clk) begin if (enable) begin d20 <= d10; // Obvious gating if (displayit) begin $display("hello!"); // Must glob with other PLI statements end end end // Reset means second-level gating reg [31:0] d30, d31a, d31b, d32; always @(posedge clk) begin d32 <= d31b; if (reset) begin d30 <= 32'h0; d31a <= 32'h0; d31b <= 32'h0; d32 <= 32'h0; // Overlaps above, just to make things interesting end else begin // Mix two outputs d30 <= d20; if (enable) begin d31a <= d30; d31b <= d31a; end end end // Multiple ORs for gater reg [31:0] d40a,d40b; always @(posedge clk) begin if (reset) begin d40a <= 32'h0; d40b <= 32'h0; end if (enable) begin d40a <= d32; d40b <= d40a; end end // Non-optimizable reg [31:0] d91, d92; reg [31:0] inverted; always @(posedge clk) begin inverted = ~d40b; if (reset) begin d91 <= 32'h0; end else begin if (enable) begin d91 <= inverted; end else begin d92 <= inverted ^ 32'h12341234; // Inverted gating condition end end end wire [31:0] out = d91 ^ d92; endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2007 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc=0; reg [63:0] crc; reg [63:0] sum; // Take CRC data and apply to testblock inputs wire [31:0] in = crc[31:0]; /*AUTOWIRE*/ // Beginning of automatic wires (for undeclared instantiated-module outputs) wire [3:0] out; // From test of Test.v // End of automatics Test test (/*AUTOINST*/ // Outputs .out (out[3:0]), // Inputs .clk (clk), .in (in[31:0])); // Aggregate outputs into a single result vector wire [63:0] result = {60'h0, out}; // What checksum will we end up with `define EXPECTED_SUM 64'h1a0d07009b6a30d2 // Test loop always @ (posedge clk) begin `ifdef TEST_VERBOSE $write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result); `endif cyc <= cyc + 1; crc <= {crc[62:0], crc[63]^crc[2]^crc[0]}; sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]}; if (cyc==0) begin // Setup crc <= 64'h5aef0c8d_d70a4497; end else if (cyc<10) begin sum <= 64'h0; end else if (cyc<90) begin end else if (cyc==99) begin $write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum); if (crc !== 64'hc77bb9b3784ea091) $stop; if (sum !== `EXPECTED_SUM) $stop; $write("*-* All Finished *-*\n"); $finish; end end endmodule module Test (/*AUTOARG*/ // Outputs out, // Inputs clk, in ); input clk; input [31:0] in; output [3:0] out; assign out[0] = in[3:0] ==? 4'b1001; assign out[1] = in[3:0] !=? 4'b1001; assign out[2] = in[3:0] ==? 4'bx01x; assign out[3] = in[3:0] !=? 4'bx01x; endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2007 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc=0; reg [63:0] crc; reg [63:0] sum; // Take CRC data and apply to testblock inputs wire [31:0] in = crc[31:0]; /*AUTOWIRE*/ // Beginning of automatic wires (for undeclared instantiated-module outputs) wire [3:0] out; // From test of Test.v // End of automatics Test test (/*AUTOINST*/ // Outputs .out (out[3:0]), // Inputs .clk (clk), .in (in[31:0])); // Aggregate outputs into a single result vector wire [63:0] result = {60'h0, out}; // What checksum will we end up with `define EXPECTED_SUM 64'h1a0d07009b6a30d2 // Test loop always @ (posedge clk) begin `ifdef TEST_VERBOSE $write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result); `endif cyc <= cyc + 1; crc <= {crc[62:0], crc[63]^crc[2]^crc[0]}; sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]}; if (cyc==0) begin // Setup crc <= 64'h5aef0c8d_d70a4497; end else if (cyc<10) begin sum <= 64'h0; end else if (cyc<90) begin end else if (cyc==99) begin $write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum); if (crc !== 64'hc77bb9b3784ea091) $stop; if (sum !== `EXPECTED_SUM) $stop; $write("*-* All Finished *-*\n"); $finish; end end endmodule module Test (/*AUTOARG*/ // Outputs out, // Inputs clk, in ); input clk; input [31:0] in; output [3:0] out; assign out[0] = in[3:0] ==? 4'b1001; assign out[1] = in[3:0] !=? 4'b1001; assign out[2] = in[3:0] ==? 4'bx01x; assign out[3] = in[3:0] !=? 4'bx01x; endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2003 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; // verilator lint_off BLKANDNBLK // verilator lint_off COMBDLY // verilator lint_off UNOPT // verilator lint_off UNOPTFLAT // verilator lint_off MULTIDRIVEN reg [31:0] runnerm1, runner; initial runner = 0; reg [31:0] runcount; initial runcount = 0; reg [31:0] clkrun; initial clkrun = 0; reg [31:0] clkcount; initial clkcount = 0; always @ (/*AS*/runner) begin runnerm1 = runner - 32'd1; end reg run0; always @ (/*AS*/runnerm1) begin if ((runner & 32'hf)!=0) begin runcount = runcount + 1; runner = runnerm1; $write (" seq runcount=%0d runner =%0x\n",runcount, runnerm1); end run0 = (runner[8:4]!=0 && runner[3:0]==0); end always @ (posedge run0) begin // Do something that forces another combo run clkcount <= clkcount + 1; runner[8:4] <= runner[8:4] - 1; runner[3:0] <= 3; $write ("[%0t] posedge runner=%0x\n", $time, runner); end reg [7:0] cyc; initial cyc=0; always @ (posedge clk) begin $write("[%0t] %x counts %0x %0x\n",$time,cyc,runcount,clkcount); cyc <= cyc + 8'd1; case (cyc) 8'd00: begin runner <= 0; end 8'd01: begin runner <= 32'h35; end default: ; endcase case (cyc) 8'd02: begin if (runcount!=32'he) $stop; if (clkcount!=32'h3) $stop; end 8'd03: begin $write("*-* All Finished *-*\n"); $finish; end default: ; endcase end endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2005 by Wilson Snyder. // // Example module to create problem. // // generate a 64 bit value with bits // [HighMaskSel_Bot : LowMaskSel_Bot ] = 1 // [HighMaskSel_Top+32: LowMaskSel_Top+32] = 1 // all other bits zero. module t_math_imm2 (/*AUTOARG*/ // Outputs LogicImm, LowLogicImm, HighLogicImm, // Inputs LowMaskSel_Top, HighMaskSel_Top, LowMaskSel_Bot, HighMaskSel_Bot ); input [4:0] LowMaskSel_Top, HighMaskSel_Top; input [4:0] LowMaskSel_Bot, HighMaskSel_Bot; output [63:0] LogicImm; output [63:0] LowLogicImm, HighLogicImm; /* verilator lint_off UNSIGNED */ /* verilator lint_off CMPCONST */ genvar i; generate for (i=0;i<64;i=i+1) begin : MaskVal if (i >= 32) begin assign LowLogicImm[i] = (LowMaskSel_Top <= i[4:0]); assign HighLogicImm[i] = (HighMaskSel_Top >= i[4:0]); end else begin assign LowLogicImm[i] = (LowMaskSel_Bot <= i[4:0]); assign HighLogicImm[i] = (HighMaskSel_Bot >= i[4:0]); end end endgenerate assign LogicImm = LowLogicImm & HighLogicImm; endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2005 by Wilson Snyder. // // Example module to create problem. // // generate a 64 bit value with bits // [HighMaskSel_Bot : LowMaskSel_Bot ] = 1 // [HighMaskSel_Top+32: LowMaskSel_Top+32] = 1 // all other bits zero. module t_math_imm2 (/*AUTOARG*/ // Outputs LogicImm, LowLogicImm, HighLogicImm, // Inputs LowMaskSel_Top, HighMaskSel_Top, LowMaskSel_Bot, HighMaskSel_Bot ); input [4:0] LowMaskSel_Top, HighMaskSel_Top; input [4:0] LowMaskSel_Bot, HighMaskSel_Bot; output [63:0] LogicImm; output [63:0] LowLogicImm, HighLogicImm; /* verilator lint_off UNSIGNED */ /* verilator lint_off CMPCONST */ genvar i; generate for (i=0;i<64;i=i+1) begin : MaskVal if (i >= 32) begin assign LowLogicImm[i] = (LowMaskSel_Top <= i[4:0]); assign HighLogicImm[i] = (HighMaskSel_Top >= i[4:0]); end else begin assign LowLogicImm[i] = (LowMaskSel_Bot <= i[4:0]); assign HighLogicImm[i] = (HighMaskSel_Bot >= i[4:0]); end end endgenerate assign LogicImm = LowLogicImm & HighLogicImm; endmodule
// (C) 1992-2012 Altera Corporation. All rights reserved. // Your use of Altera Corporation's design tools, logic functions and other // software and tools, and its AMPP partner logic functions, and any output // files any of the foregoing (including device programming or simulation // files), and any associated documentation or information are expressly subject // to the terms and conditions of the Altera Program License Subscription // Agreement, Altera MegaCore Function License Agreement, or other applicable // license agreement, including, without limitation, that your use is for the // sole purpose of programming logic devices manufactured by Altera and sold by // Altera or its authorized distributors. Please refer to the applicable // agreement for further details. //===----------------------------------------------------------------------===// // // Parameterized FIFO with input and output registers and ACL pipeline // protocol ports. This "FIFO" stores no data and only counts the number // of valids. // //===----------------------------------------------------------------------===// module acl_valid_fifo_counter #( parameter integer DEPTH = 32, // >0 parameter integer STRICT_DEPTH = 0, // 0|1 parameter integer ALLOW_FULL_WRITE = 0 // 0|1 ) ( input logic clock, input logic resetn, input logic valid_in, output logic valid_out, input logic stall_in, output logic stall_out, output logic empty, output logic full ); // No data, so just build a counter to count the number of valids stored in this "FIFO". // // The counter is constructed to count up to a MINIMUM value of DEPTH entries. // * Logical range of the counter C0 is [0, DEPTH]. // * empty = (C0 <= 0) // * full = (C0 >= DEPTH) // // To have efficient detection of the empty condition (C0 == 0), the range is offset // by -1 so that a negative number indicates empty. // * Logical range of the counter C1 is [-1, DEPTH-1]. // * empty = (C1 < 0) // * full = (C1 >= DEPTH-1) // The size of counter C1 is $clog2((DEPTH-1) + 1) + 1 => $clog2(DEPTH) + 1. // // To have efficient detection of the full condition (C1 >= DEPTH-1), change the // full condition to C1 == 2^$clog2(DEPTH-1), which is DEPTH-1 rounded up // to the next power of 2. This is only done if STRICT_DEPTH == 0, otherwise // the full condition is comparison vs. DEPTH-1. // * Logical range of the counter C2 is [-1, 2^$clog2(DEPTH-1)] // * empty = (C2 < 0) // * full = (C2 == 2^$clog2(DEPTH - 1)) // The size of counter C2 is $clog2(DEPTH-1) + 2. // * empty = MSB // * full = ~[MSB] & [MSB-1] localparam COUNTER_WIDTH = (STRICT_DEPTH == 0) ? ((DEPTH > 1 ? $clog2(DEPTH-1) : 0) + 2) : ($clog2(DEPTH) + 1); logic [COUNTER_WIDTH - 1:0] valid_counter /* synthesis maxfan=1 dont_merge */; logic incr, decr; assign empty = valid_counter[$bits(valid_counter) - 1]; assign full = (STRICT_DEPTH == 0) ? (~valid_counter[$bits(valid_counter) - 1] & valid_counter[$bits(valid_counter) - 2]) : (valid_counter == DEPTH - 1); assign incr = valid_in & ~stall_out; assign decr = valid_out & ~stall_in; assign valid_out = ~empty; assign stall_out = ALLOW_FULL_WRITE ? (full & stall_in) : full; always @( posedge clock or negedge resetn ) if( !resetn ) valid_counter <= {$bits(valid_counter){1'b1}}; // -1 else valid_counter <= valid_counter + incr - decr; endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2007 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; wire b; reg reset; integer cyc=0; Testit testit (/*AUTOINST*/ // Outputs .b (b), // Inputs .clk (clk), .reset (reset)); always @ (posedge clk) begin cyc <= cyc + 1; if (cyc==0) begin reset <= 1'b0; end else if (cyc<10) begin reset <= 1'b1; end else if (cyc<90) begin reset <= 1'b0; end else if (cyc==99) begin $write("*-* All Finished *-*\n"); $finish; end end endmodule module Testit (clk, reset, b); input clk; input reset; output b; wire [0:0] c; wire my_sig; wire [0:0] d; genvar i; generate for(i = 0; i >= 0; i = i-1) begin: fnxtclk1 fnxtclk fnxtclk1 (.u(c[i]), .reset(reset), .clk(clk), .w(d[i]) ); end endgenerate assign b = d[0]; assign c[0] = my_sig; assign my_sig = 1'b1; endmodule module fnxtclk (u, reset, clk, w ); input u; input reset; input clk; output reg w; always @ (posedge clk or posedge reset) begin if (reset == 1'b1) begin w <= 1'b0; end else begin w <= u; end end endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2007 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; wire b; reg reset; integer cyc=0; Testit testit (/*AUTOINST*/ // Outputs .b (b), // Inputs .clk (clk), .reset (reset)); always @ (posedge clk) begin cyc <= cyc + 1; if (cyc==0) begin reset <= 1'b0; end else if (cyc<10) begin reset <= 1'b1; end else if (cyc<90) begin reset <= 1'b0; end else if (cyc==99) begin $write("*-* All Finished *-*\n"); $finish; end end endmodule module Testit (clk, reset, b); input clk; input reset; output b; wire [0:0] c; wire my_sig; wire [0:0] d; genvar i; generate for(i = 0; i >= 0; i = i-1) begin: fnxtclk1 fnxtclk fnxtclk1 (.u(c[i]), .reset(reset), .clk(clk), .w(d[i]) ); end endgenerate assign b = d[0]; assign c[0] = my_sig; assign my_sig = 1'b1; endmodule module fnxtclk (u, reset, clk, w ); input u; input reset; input clk; output reg w; always @ (posedge clk or posedge reset) begin if (reset == 1'b1) begin w <= 1'b0; end else begin w <= u; end end endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2007 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; wire b; reg reset; integer cyc=0; Testit testit (/*AUTOINST*/ // Outputs .b (b), // Inputs .clk (clk), .reset (reset)); always @ (posedge clk) begin cyc <= cyc + 1; if (cyc==0) begin reset <= 1'b0; end else if (cyc<10) begin reset <= 1'b1; end else if (cyc<90) begin reset <= 1'b0; end else if (cyc==99) begin $write("*-* All Finished *-*\n"); $finish; end end endmodule module Testit (clk, reset, b); input clk; input reset; output b; wire [0:0] c; wire my_sig; wire [0:0] d; genvar i; generate for(i = 0; i >= 0; i = i-1) begin: fnxtclk1 fnxtclk fnxtclk1 (.u(c[i]), .reset(reset), .clk(clk), .w(d[i]) ); end endgenerate assign b = d[0]; assign c[0] = my_sig; assign my_sig = 1'b1; endmodule module fnxtclk (u, reset, clk, w ); input u; input reset; input clk; output reg w; always @ (posedge clk or posedge reset) begin if (reset == 1'b1) begin w <= 1'b0; end else begin w <= u; end end endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2009 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc=0; reg [63:0] crc; reg [63:0] sum; // verilator lint_off LITENDIAN wire [10:41] sel2 = crc[31:0]; wire [10:100] sel3 = {crc[26:0],crc}; wire out20 = sel2[{1'b0,crc[3:0]} + 11]; wire [3:0] out21 = sel2[13 : 16]; wire [3:0] out22 = sel2[{1'b0,crc[3:0]} + 20 +: 4]; wire [3:0] out23 = sel2[{1'b0,crc[3:0]} + 20 -: 4]; wire out30 = sel3[{2'b0,crc[3:0]} + 11]; wire [3:0] out31 = sel3[13 : 16]; wire [3:0] out32 = sel3[crc[5:0] + 20 +: 4]; wire [3:0] out33 = sel3[crc[5:0] + 20 -: 4]; // Aggregate outputs into a single result vector wire [63:0] result = {38'h0, out20, out21, out22, out23, out30, out31, out32, out33}; reg [19:50] sel1; initial begin // Path clearing // 122333445 // 826048260 sel1 = 32'h12345678; if (sel1 != 32'h12345678) $stop; if (sel1[47 : 50] != 4'h8) $stop; if (sel1[31 : 34] != 4'h4) $stop; if (sel1[27 +: 4] != 4'h3) $stop; //==[27:30], in memory as [23:20] if (sel1[26 -: 4] != 4'h2) $stop; //==[23:26], in memory as [27:24] end // Test loop always @ (posedge clk) begin `ifdef TEST_VERBOSE $write("[%0t] sels=%x,%x,%x,%x %x,%x,%x,%x\n",$time, out20,out21,out22,out23, out30,out31,out32,out33); $write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result); `endif cyc <= cyc + 1; crc <= {crc[62:0], crc[63]^crc[2]^crc[0]}; sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]}; if (cyc==0) begin // Setup crc <= 64'h5aef0c8d_d70a4497; end else if (cyc<10) begin sum <= 64'h0; end else if (cyc<90) begin end else if (cyc==99) begin $write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum); if (crc !== 64'hc77bb9b3784ea091) $stop; `define EXPECTED_SUM 64'h28bf65439eb12c00 if (sum !== `EXPECTED_SUM) $stop; $write("*-* All Finished *-*\n"); $finish; end end endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2003 by Wilson Snyder. module t (clk); input clk; // verilator lint_off WIDTH `define INT_RANGE 31:0 `define INT_RANGE_MAX 31 `define VECTOR_RANGE 63:0 reg [`INT_RANGE] stashb, stasha, stashn, stashm; function [`VECTOR_RANGE] copy_range; input [`VECTOR_RANGE] y; input [`INT_RANGE] b; input [`INT_RANGE] a; input [`VECTOR_RANGE] x; input [`INT_RANGE] n; input [`INT_RANGE] m; begin copy_range = y; stashb = b; stasha = a; stashn = n; stashm = m; end endfunction parameter DATA_SIZE = 16; parameter NUM_OF_REGS = 32; reg [NUM_OF_REGS*DATA_SIZE-1 : 0] memread_rf; reg [DATA_SIZE-1:0] memread_rf_reg; always @(memread_rf) begin : memread_convert memread_rf_reg = copy_range('d0, DATA_SIZE-'d1, DATA_SIZE-'d1, memread_rf, DATA_SIZE-'d1, DATA_SIZE-'d1); end integer cyc; initial cyc=1; always @ (posedge clk) begin if (cyc!=0) begin cyc <= cyc + 1; if (cyc==1) begin memread_rf = 512'haa; end if (cyc==3) begin if (stashb != 'd15) $stop; if (stasha != 'd15) $stop; if (stashn != 'd15) $stop; if (stashm != 'd15) $stop; $write("*-* All Finished *-*\n"); $finish; end end end endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2003 by Wilson Snyder. module t (clk); input clk; // verilator lint_off WIDTH `define INT_RANGE 31:0 `define INT_RANGE_MAX 31 `define VECTOR_RANGE 63:0 reg [`INT_RANGE] stashb, stasha, stashn, stashm; function [`VECTOR_RANGE] copy_range; input [`VECTOR_RANGE] y; input [`INT_RANGE] b; input [`INT_RANGE] a; input [`VECTOR_RANGE] x; input [`INT_RANGE] n; input [`INT_RANGE] m; begin copy_range = y; stashb = b; stasha = a; stashn = n; stashm = m; end endfunction parameter DATA_SIZE = 16; parameter NUM_OF_REGS = 32; reg [NUM_OF_REGS*DATA_SIZE-1 : 0] memread_rf; reg [DATA_SIZE-1:0] memread_rf_reg; always @(memread_rf) begin : memread_convert memread_rf_reg = copy_range('d0, DATA_SIZE-'d1, DATA_SIZE-'d1, memread_rf, DATA_SIZE-'d1, DATA_SIZE-'d1); end integer cyc; initial cyc=1; always @ (posedge clk) begin if (cyc!=0) begin cyc <= cyc + 1; if (cyc==1) begin memread_rf = 512'haa; end if (cyc==3) begin if (stashb != 'd15) $stop; if (stasha != 'd15) $stop; if (stashn != 'd15) $stop; if (stashm != 'd15) $stop; $write("*-* All Finished *-*\n"); $finish; end end end endmodule
// This file ONLY is placed into the Public Domain, for any use, // without warranty, 2009 by Wilson Snyder. `define DDIFF_BITS 9 `define AOA_BITS 8 `define HALF_DDIFF `DDIFF_BITS'd256 `define MAX_AOA `AOA_BITS'd255 `define BURP_DIVIDER 9'd16 module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc=0; reg [63:0] crc; reg [63:0] sum; // Take CRC data and apply to testblock inputs wire [`DDIFF_BITS-1:0] DDIFF_B = crc[`DDIFF_BITS-1:0]; wire reset = (cyc<7); /*AUTOWIRE*/ // Beginning of automatic wires (for undeclared instantiated-module outputs) wire [`AOA_BITS-1:0] AOA_B; // From test of Test.v // End of automatics Test test (/*AUTOINST*/ // Outputs .AOA_B (AOA_B[`AOA_BITS-1:0]), // Inputs .DDIFF_B (DDIFF_B[`DDIFF_BITS-1:0]), .reset (reset), .clk (clk)); // Aggregate outputs into a single result vector wire [63:0] result = {56'h0, AOA_B}; // Test loop always @ (posedge clk) begin `ifdef TEST_VERBOSE $write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result); `endif cyc <= cyc + 1; crc <= {crc[62:0], crc[63]^crc[2]^crc[0]}; sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]}; if (cyc==0) begin // Setup crc <= 64'h5aef0c8d_d70a4497; sum <= 64'h0; end else if (cyc<10) begin sum <= 64'h0; end else if (cyc<90) begin end else if (cyc==99) begin $write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum); if (crc !== 64'hc77bb9b3784ea091) $stop; // What checksum will we end up with (above print should match) `define EXPECTED_SUM 64'h3a74e9d34771ad93 if (sum !== `EXPECTED_SUM) $stop; $write("*-* All Finished *-*\n"); $finish; end end endmodule module Test (/*AUTOARG*/ // Outputs AOA_B, // Inputs DDIFF_B, reset, clk ); input [`DDIFF_BITS-1:0] DDIFF_B; input reset; input clk; output reg [`AOA_BITS-1:0] AOA_B; reg [`AOA_BITS-1:0] AOA_NEXT_B; reg [`AOA_BITS-1:0] tmp; always @(posedge clk) begin if (reset) begin AOA_B <= 8'h80; end else begin AOA_B <= AOA_NEXT_B; end end always @* begin // verilator lint_off WIDTH tmp = ((`HALF_DDIFF-DDIFF_B)/`BURP_DIVIDER); t_aoa_update(AOA_NEXT_B, AOA_B, ((`HALF_DDIFF-DDIFF_B)/`BURP_DIVIDER)); // verilator lint_on WIDTH end task t_aoa_update; output [`AOA_BITS-1:0] aoa_reg_next; input [`AOA_BITS-1:0] aoa_reg; input [`AOA_BITS-1:0] aoa_delta_update; begin if ((`MAX_AOA-aoa_reg)<aoa_delta_update) //Overflow protection aoa_reg_next=`MAX_AOA; else aoa_reg_next=aoa_reg+aoa_delta_update; end endtask endmodule
// This file ONLY is placed into the Public Domain, for any use, // without warranty, 2009 by Wilson Snyder. `define DDIFF_BITS 9 `define AOA_BITS 8 `define HALF_DDIFF `DDIFF_BITS'd256 `define MAX_AOA `AOA_BITS'd255 `define BURP_DIVIDER 9'd16 module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc=0; reg [63:0] crc; reg [63:0] sum; // Take CRC data and apply to testblock inputs wire [`DDIFF_BITS-1:0] DDIFF_B = crc[`DDIFF_BITS-1:0]; wire reset = (cyc<7); /*AUTOWIRE*/ // Beginning of automatic wires (for undeclared instantiated-module outputs) wire [`AOA_BITS-1:0] AOA_B; // From test of Test.v // End of automatics Test test (/*AUTOINST*/ // Outputs .AOA_B (AOA_B[`AOA_BITS-1:0]), // Inputs .DDIFF_B (DDIFF_B[`DDIFF_BITS-1:0]), .reset (reset), .clk (clk)); // Aggregate outputs into a single result vector wire [63:0] result = {56'h0, AOA_B}; // Test loop always @ (posedge clk) begin `ifdef TEST_VERBOSE $write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result); `endif cyc <= cyc + 1; crc <= {crc[62:0], crc[63]^crc[2]^crc[0]}; sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]}; if (cyc==0) begin // Setup crc <= 64'h5aef0c8d_d70a4497; sum <= 64'h0; end else if (cyc<10) begin sum <= 64'h0; end else if (cyc<90) begin end else if (cyc==99) begin $write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum); if (crc !== 64'hc77bb9b3784ea091) $stop; // What checksum will we end up with (above print should match) `define EXPECTED_SUM 64'h3a74e9d34771ad93 if (sum !== `EXPECTED_SUM) $stop; $write("*-* All Finished *-*\n"); $finish; end end endmodule module Test (/*AUTOARG*/ // Outputs AOA_B, // Inputs DDIFF_B, reset, clk ); input [`DDIFF_BITS-1:0] DDIFF_B; input reset; input clk; output reg [`AOA_BITS-1:0] AOA_B; reg [`AOA_BITS-1:0] AOA_NEXT_B; reg [`AOA_BITS-1:0] tmp; always @(posedge clk) begin if (reset) begin AOA_B <= 8'h80; end else begin AOA_B <= AOA_NEXT_B; end end always @* begin // verilator lint_off WIDTH tmp = ((`HALF_DDIFF-DDIFF_B)/`BURP_DIVIDER); t_aoa_update(AOA_NEXT_B, AOA_B, ((`HALF_DDIFF-DDIFF_B)/`BURP_DIVIDER)); // verilator lint_on WIDTH end task t_aoa_update; output [`AOA_BITS-1:0] aoa_reg_next; input [`AOA_BITS-1:0] aoa_reg; input [`AOA_BITS-1:0] aoa_delta_update; begin if ((`MAX_AOA-aoa_reg)<aoa_delta_update) //Overflow protection aoa_reg_next=`MAX_AOA; else aoa_reg_next=aoa_reg+aoa_delta_update; end endtask endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2006 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc; initial cyc=0; reg [63:0] crc; reg [31:0] sum; wire [15:0] out0; wire [15:0] out1; wire [15:0] inData = crc[15:0]; wire wr0a = crc[16]; wire wr0b = crc[17]; wire wr1a = crc[18]; wire wr1b = crc[19]; fifo fifo ( // Outputs .out0 (out0[15:0]), .out1 (out1[15:0]), // Inputs .clk (clk), .wr0a (wr0a), .wr0b (wr0b), .wr1a (wr1a), .wr1b (wr1b), .inData (inData[15:0])); always @ (posedge clk) begin //$write("[%0t] cyc==%0d crc=%x q=%x\n",$time, cyc, crc, sum); cyc <= cyc + 1; crc <= {crc[62:0], crc[63]^crc[2]^crc[0]}; if (cyc==0) begin // Setup crc <= 64'h5aef0c8d_d70a4497; sum <= 32'h0; end else if (cyc>10 && cyc<90) begin sum <= {sum[30:0],sum[31]} ^ {out1, out0}; end else if (cyc==99) begin if (sum !== 32'he8bbd130) $stop; $write("*-* All Finished *-*\n"); $finish; end end endmodule module fifo (/*AUTOARG*/ // Outputs out0, out1, // Inputs clk, wr0a, wr0b, wr1a, wr1b, inData ); input clk; input wr0a; input wr0b; input wr1a; input wr1b; input [15:0] inData; output [15:0] out0; output [15:0] out1; reg [15:0] mem [1:0]; reg [15:0] memtemp2 [1:0]; reg [15:0] memtemp3 [1:0]; assign out0 = {mem[0] ^ memtemp2[0]}; assign out1 = {mem[1] ^ memtemp3[1]}; always @(posedge clk) begin // These mem assignments must be done in order after processing if (wr0a) begin memtemp2[0] <= inData; mem[0] <= inData; end if (wr0b) begin memtemp3[0] <= inData; mem[0] <= ~inData; end if (wr1a) begin memtemp3[1] <= inData; mem[1] <= inData; end if (wr1b) begin memtemp2[1] <= inData; mem[1] <= ~inData; end end endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2003 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; reg _ranit; reg rnd; reg [2:0] a; reg [2:0] b; reg [31:0] wide; // surefire lint_off STMINI initial _ranit = 0; wire sigone1 = 1'b1; wire sigone2 = 1'b1; reg ok; parameter [1:0] twounkn = 2'b?; // This gets extended to 2'b?? // Large case statements should be well optimizable. reg [2:0] anot; always @ (/*AS*/a) begin casez (a) default: anot = 3'b001; 3'd0: anot = 3'b111; 3'd1: anot = 3'b110; 3'd2: anot = 3'b101; 3'd3: anot = 3'b101; 3'd4: anot = 3'b011; 3'd5: anot = 3'b010; 3'd6: anot = 3'b001; // Same so folds with 7 endcase end always @ (posedge clk) begin if (!_ranit) begin _ranit <= 1; rnd <= 1; $write("[%0t] t_case: Running\n", $time); // a = 3'b101; b = 3'b111; // verilator lint_off CASEX casex (a) default: $stop; 3'bx1x: $stop; 3'b100: $stop; 3'bx01: ; endcase casez (a) default: $stop; 3'b?1?: $stop; 3'b100: $stop; 3'b?01: ; endcase casez (a) default: $stop; {1'b0, twounkn}: $stop; {1'b1, twounkn}: ; endcase casez (b) default: $stop; {1'b0, twounkn}: $stop; {1'b1, twounkn}: ; // {1'b0, 2'b??}: $stop; // {1'b1, 2'b??}: ; endcase case(a[0]) default: ; endcase casex(a) default: ; 3'b?0?: ; endcase // verilator lint_off CASEX //This is illegal, the default occurs before the statements. //case(a[0]) // default: $stop; // 1'b1: ; //endcase // wide = 32'h12345678; casez (wide) default: $stop; 32'h12345677, 32'h12345678, 32'h12345679: ; endcase // ok = 0; casez ({sigone1,sigone2}) //2'b10, 2'b01, 2'bXX: ; // verilator bails at this since in 2 state it can be true... 2'b10, 2'b01: ; 2'b00: ; default: ok=1'b1; endcase if (ok !== 1'b1) $stop; // if (rnd) begin $write(""); end // $write("*-* All Finished *-*\n"); $finish; end end // Check parameters in case statements parameter ALU_DO_REGISTER = 3'h1; // input selected by reg addr. parameter DSP_REGISTER_V = 6'h03; reg [2:0] alu_ctl_2s; // Delayed version of alu_ctl reg [5:0] reg_addr_2s; // Delayed version of reg_addr reg [7:0] ir_slave_2s; // Instruction Register delayed 2 phases reg [15:10] f_tmp_2s; // Delayed copy of F reg p00_2s; initial begin alu_ctl_2s = 3'h1; reg_addr_2s = 6'h3; ir_slave_2s= 0; f_tmp_2s= 0; casex ({alu_ctl_2s,reg_addr_2s, ir_slave_2s[7],ir_slave_2s[5:4],ir_slave_2s[1:0], f_tmp_2s[11:10]}) default: p00_2s = 1'b0; {ALU_DO_REGISTER,DSP_REGISTER_V,1'bx,2'bx,2'bx,2'bx}: p00_2s = 1'b1; endcase if (1'b0) $display ("%x %x %x %x", alu_ctl_2s, ir_slave_2s, f_tmp_2s, p00_2s); //Prevent unused // case ({1'b1, 1'b1}) default: $stop; {1'b1, p00_2s}: ; endcase end // Check wide overlapping cases // surefire lint_off CSEOVR parameter ANY_STATE = 7'h??; reg [19:0] foo; initial begin foo = {1'b0,1'b0,1'b0,1'b0,1'b0,7'h04,8'b0}; casez (foo) default: $stop; {1'b1,1'b?,1'b?,1'b?,1'b?,ANY_STATE,8'b?}: $stop; {1'b?,1'b1,1'b?,1'b?,1'b?,7'h00,8'b?}: $stop; {1'b?,1'b?,1'b1,1'b?,1'b?,7'h00,8'b?}: $stop; {1'b?,1'b?,1'b?,1'b1,1'b?,7'h00,8'b?}: $stop; {1'b?,1'b?,1'b?,1'b?,1'b?,7'h04,8'b?}: ; {1'b?,1'b?,1'b?,1'b?,1'b?,7'h06,8'hdf}: $stop; {1'b?,1'b?,1'b?,1'b?,1'b?,7'h06,8'h00}: $stop; endcase end initial begin foo = 20'b1010; casex (foo[3:0]) default: $stop; 4'b0xxx, 4'b100x, 4'b11xx: $stop; 4'b1010: ; endcase end initial begin foo = 20'b1010; ok = 1'b0; // Test of RANGE(CONCAT reductions... casex ({foo[3:2],foo[1:0],foo[3]}) 5'bxx10x: begin ok=1'b0; foo=20'd1; ok=1'b1; end // Check multiple expressions 5'bxx00x: $stop; 5'bxx01x: $stop; 5'bxx11x: $stop; endcase if (!ok) $stop; end endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2005 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc; initial cyc=0; reg [63:0] crc; reg [63:0] sum; wire r1_en /*verilator public*/ = crc[12]; wire [1:0] r1_ad /*verilator public*/ = crc[9:8]; wire r2_en /*verilator public*/ = 1'b1; wire [1:0] r2_ad /*verilator public*/ = crc[11:10]; wire w1_en /*verilator public*/ = crc[5]; wire [1:0] w1_a /*verilator public*/ = crc[1:0]; wire [63:0] w1_d /*verilator public*/ = {2{crc[63:32]}}; wire w2_en /*verilator public*/ = crc[4]; wire [1:0] w2_a /*verilator public*/ = crc[3:2]; wire [63:0] w2_d /*verilator public*/ = {2{~crc[63:32]}}; /*AUTOWIRE*/ // Beginning of automatic wires (for undeclared instantiated-module outputs) wire [63:0] r1_d_d2r; // From file of file.v wire [63:0] r2_d_d2r; // From file of file.v // End of automatics file file (/*AUTOINST*/ // Outputs .r1_d_d2r (r1_d_d2r[63:0]), .r2_d_d2r (r2_d_d2r[63:0]), // Inputs .clk (clk), .r1_en (r1_en), .r1_ad (r1_ad[1:0]), .r2_en (r2_en), .r2_ad (r2_ad[1:0]), .w1_en (w1_en), .w1_a (w1_a[1:0]), .w1_d (w1_d[63:0]), .w2_en (w2_en), .w2_a (w2_a[1:0]), .w2_d (w2_d[63:0])); always @ (posedge clk) begin //$write("[%0t] cyc==%0d EN=%b%b%b%b R0=%x R1=%x\n",$time, cyc, r1_en,r2_en,w1_en,w2_en, r1_d_d2r, r2_d_d2r); cyc <= cyc + 1; crc <= {crc[62:0], crc[63]^crc[2]^crc[0]}; sum <= {r1_d_d2r ^ r2_d_d2r} ^ {sum[62:0],sum[63]^sum[2]^sum[0]}; if (cyc==0) begin // Setup crc <= 64'h5aef0c8d_d70a4497; end else if (cyc<10) begin // We've manually verified all X's are out of the design by this point sum <= 64'h0; end else if (cyc<90) begin end else if (cyc==99) begin $write("*-* All Finished *-*\n"); $write("[%0t] cyc==%0d crc=%x %x\n",$time, cyc, crc, sum); if (crc !== 64'hc77bb9b3784ea091) $stop; if (sum !== 64'h5e9ea8c33a97f81e) $stop; $finish; end end endmodule module file (/*AUTOARG*/ // Outputs r1_d_d2r, r2_d_d2r, // Inputs clk, r1_en, r1_ad, r2_en, r2_ad, w1_en, w1_a, w1_d, w2_en, w2_a, w2_d ); input clk; input r1_en; input [1:0] r1_ad; output [63:0] r1_d_d2r; input r2_en; input [1:0] r2_ad; output [63:0] r2_d_d2r; input w1_en; input [1:0] w1_a; input [63:0] w1_d; input w2_en; input [1:0] w2_a; input [63:0] w2_d; /*AUTOWIRE*/ // Beginning of automatic wires (for undeclared instantiated-module outputs) // End of automatics /*AUTOREG*/ // Beginning of automatic regs (for this module's undeclared outputs) reg [63:0] r1_d_d2r; reg [63:0] r2_d_d2r; // End of automatics // Writes wire [3:0] m_w1_onehotwe = ({4{w1_en}} & (4'b1 << w1_a)); wire [3:0] m_w2_onehotwe = ({4{w2_en}} & (4'b1 << w2_a)); wire [63:0] rg0_wrdat = m_w1_onehotwe[0] ? w1_d : w2_d; wire [63:0] rg1_wrdat = m_w1_onehotwe[1] ? w1_d : w2_d; wire [63:0] rg2_wrdat = m_w1_onehotwe[2] ? w1_d : w2_d; wire [63:0] rg3_wrdat = m_w1_onehotwe[3] ? w1_d : w2_d; wire [3:0] m_w_onehotwe = m_w1_onehotwe | m_w2_onehotwe; // Storage reg [63:0] m_rg0_r; reg [63:0] m_rg1_r; reg [63:0] m_rg2_r; reg [63:0] m_rg3_r; always @ (posedge clk) begin if (m_w_onehotwe[0]) m_rg0_r <= rg0_wrdat; if (m_w_onehotwe[1]) m_rg1_r <= rg1_wrdat; if (m_w_onehotwe[2]) m_rg2_r <= rg2_wrdat; if (m_w_onehotwe[3]) m_rg3_r <= rg3_wrdat; end // Reads reg [1:0] m_r1_ad_d1r; reg [1:0] m_r2_ad_d1r; reg [1:0] m_ren_d1r; always @ (posedge clk) begin if (r1_en) m_r1_ad_d1r <= r1_ad; if (r2_en) m_r2_ad_d1r <= r2_ad; m_ren_d1r <= {r2_en, r1_en}; end // Scheme1: shift... wire [3:0] m_r1_onehot_d1 = (4'b1 << m_r1_ad_d1r); // Scheme2: bit mask reg [3:0] m_r2_onehot_d1; always @* begin m_r2_onehot_d1 = 4'd0; m_r2_onehot_d1[m_r2_ad_d1r] = 1'b1; end wire [63:0] m_r1_d_d1 = (({64{m_r1_onehot_d1[0]}} & m_rg0_r) | ({64{m_r1_onehot_d1[1]}} & m_rg1_r) | ({64{m_r1_onehot_d1[2]}} & m_rg2_r) | ({64{m_r1_onehot_d1[3]}} & m_rg3_r)); wire [63:0] m_r2_d_d1 = (({64{m_r2_onehot_d1[0]}} & m_rg0_r) | ({64{m_r2_onehot_d1[1]}} & m_rg1_r) | ({64{m_r2_onehot_d1[2]}} & m_rg2_r) | ({64{m_r2_onehot_d1[3]}} & m_rg3_r)); always @ (posedge clk) begin if (m_ren_d1r[0]) r1_d_d2r <= m_r1_d_d1; if (m_ren_d1r[1]) r2_d_d2r <= m_r2_d_d1; end endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2005 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc; initial cyc=0; reg [63:0] crc; reg [63:0] sum; wire r1_en /*verilator public*/ = crc[12]; wire [1:0] r1_ad /*verilator public*/ = crc[9:8]; wire r2_en /*verilator public*/ = 1'b1; wire [1:0] r2_ad /*verilator public*/ = crc[11:10]; wire w1_en /*verilator public*/ = crc[5]; wire [1:0] w1_a /*verilator public*/ = crc[1:0]; wire [63:0] w1_d /*verilator public*/ = {2{crc[63:32]}}; wire w2_en /*verilator public*/ = crc[4]; wire [1:0] w2_a /*verilator public*/ = crc[3:2]; wire [63:0] w2_d /*verilator public*/ = {2{~crc[63:32]}}; /*AUTOWIRE*/ // Beginning of automatic wires (for undeclared instantiated-module outputs) wire [63:0] r1_d_d2r; // From file of file.v wire [63:0] r2_d_d2r; // From file of file.v // End of automatics file file (/*AUTOINST*/ // Outputs .r1_d_d2r (r1_d_d2r[63:0]), .r2_d_d2r (r2_d_d2r[63:0]), // Inputs .clk (clk), .r1_en (r1_en), .r1_ad (r1_ad[1:0]), .r2_en (r2_en), .r2_ad (r2_ad[1:0]), .w1_en (w1_en), .w1_a (w1_a[1:0]), .w1_d (w1_d[63:0]), .w2_en (w2_en), .w2_a (w2_a[1:0]), .w2_d (w2_d[63:0])); always @ (posedge clk) begin //$write("[%0t] cyc==%0d EN=%b%b%b%b R0=%x R1=%x\n",$time, cyc, r1_en,r2_en,w1_en,w2_en, r1_d_d2r, r2_d_d2r); cyc <= cyc + 1; crc <= {crc[62:0], crc[63]^crc[2]^crc[0]}; sum <= {r1_d_d2r ^ r2_d_d2r} ^ {sum[62:0],sum[63]^sum[2]^sum[0]}; if (cyc==0) begin // Setup crc <= 64'h5aef0c8d_d70a4497; end else if (cyc<10) begin // We've manually verified all X's are out of the design by this point sum <= 64'h0; end else if (cyc<90) begin end else if (cyc==99) begin $write("*-* All Finished *-*\n"); $write("[%0t] cyc==%0d crc=%x %x\n",$time, cyc, crc, sum); if (crc !== 64'hc77bb9b3784ea091) $stop; if (sum !== 64'h5e9ea8c33a97f81e) $stop; $finish; end end endmodule module file (/*AUTOARG*/ // Outputs r1_d_d2r, r2_d_d2r, // Inputs clk, r1_en, r1_ad, r2_en, r2_ad, w1_en, w1_a, w1_d, w2_en, w2_a, w2_d ); input clk; input r1_en; input [1:0] r1_ad; output [63:0] r1_d_d2r; input r2_en; input [1:0] r2_ad; output [63:0] r2_d_d2r; input w1_en; input [1:0] w1_a; input [63:0] w1_d; input w2_en; input [1:0] w2_a; input [63:0] w2_d; /*AUTOWIRE*/ // Beginning of automatic wires (for undeclared instantiated-module outputs) // End of automatics /*AUTOREG*/ // Beginning of automatic regs (for this module's undeclared outputs) reg [63:0] r1_d_d2r; reg [63:0] r2_d_d2r; // End of automatics // Writes wire [3:0] m_w1_onehotwe = ({4{w1_en}} & (4'b1 << w1_a)); wire [3:0] m_w2_onehotwe = ({4{w2_en}} & (4'b1 << w2_a)); wire [63:0] rg0_wrdat = m_w1_onehotwe[0] ? w1_d : w2_d; wire [63:0] rg1_wrdat = m_w1_onehotwe[1] ? w1_d : w2_d; wire [63:0] rg2_wrdat = m_w1_onehotwe[2] ? w1_d : w2_d; wire [63:0] rg3_wrdat = m_w1_onehotwe[3] ? w1_d : w2_d; wire [3:0] m_w_onehotwe = m_w1_onehotwe | m_w2_onehotwe; // Storage reg [63:0] m_rg0_r; reg [63:0] m_rg1_r; reg [63:0] m_rg2_r; reg [63:0] m_rg3_r; always @ (posedge clk) begin if (m_w_onehotwe[0]) m_rg0_r <= rg0_wrdat; if (m_w_onehotwe[1]) m_rg1_r <= rg1_wrdat; if (m_w_onehotwe[2]) m_rg2_r <= rg2_wrdat; if (m_w_onehotwe[3]) m_rg3_r <= rg3_wrdat; end // Reads reg [1:0] m_r1_ad_d1r; reg [1:0] m_r2_ad_d1r; reg [1:0] m_ren_d1r; always @ (posedge clk) begin if (r1_en) m_r1_ad_d1r <= r1_ad; if (r2_en) m_r2_ad_d1r <= r2_ad; m_ren_d1r <= {r2_en, r1_en}; end // Scheme1: shift... wire [3:0] m_r1_onehot_d1 = (4'b1 << m_r1_ad_d1r); // Scheme2: bit mask reg [3:0] m_r2_onehot_d1; always @* begin m_r2_onehot_d1 = 4'd0; m_r2_onehot_d1[m_r2_ad_d1r] = 1'b1; end wire [63:0] m_r1_d_d1 = (({64{m_r1_onehot_d1[0]}} & m_rg0_r) | ({64{m_r1_onehot_d1[1]}} & m_rg1_r) | ({64{m_r1_onehot_d1[2]}} & m_rg2_r) | ({64{m_r1_onehot_d1[3]}} & m_rg3_r)); wire [63:0] m_r2_d_d1 = (({64{m_r2_onehot_d1[0]}} & m_rg0_r) | ({64{m_r2_onehot_d1[1]}} & m_rg1_r) | ({64{m_r2_onehot_d1[2]}} & m_rg2_r) | ({64{m_r2_onehot_d1[3]}} & m_rg3_r)); always @ (posedge clk) begin if (m_ren_d1r[0]) r1_d_d2r <= m_r1_d_d1; if (m_ren_d1r[1]) r2_d_d2r <= m_r2_d_d1; end endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2005 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc; initial cyc=0; reg [63:0] crc; reg [63:0] sum; wire r1_en /*verilator public*/ = crc[12]; wire [1:0] r1_ad /*verilator public*/ = crc[9:8]; wire r2_en /*verilator public*/ = 1'b1; wire [1:0] r2_ad /*verilator public*/ = crc[11:10]; wire w1_en /*verilator public*/ = crc[5]; wire [1:0] w1_a /*verilator public*/ = crc[1:0]; wire [63:0] w1_d /*verilator public*/ = {2{crc[63:32]}}; wire w2_en /*verilator public*/ = crc[4]; wire [1:0] w2_a /*verilator public*/ = crc[3:2]; wire [63:0] w2_d /*verilator public*/ = {2{~crc[63:32]}}; /*AUTOWIRE*/ // Beginning of automatic wires (for undeclared instantiated-module outputs) wire [63:0] r1_d_d2r; // From file of file.v wire [63:0] r2_d_d2r; // From file of file.v // End of automatics file file (/*AUTOINST*/ // Outputs .r1_d_d2r (r1_d_d2r[63:0]), .r2_d_d2r (r2_d_d2r[63:0]), // Inputs .clk (clk), .r1_en (r1_en), .r1_ad (r1_ad[1:0]), .r2_en (r2_en), .r2_ad (r2_ad[1:0]), .w1_en (w1_en), .w1_a (w1_a[1:0]), .w1_d (w1_d[63:0]), .w2_en (w2_en), .w2_a (w2_a[1:0]), .w2_d (w2_d[63:0])); always @ (posedge clk) begin //$write("[%0t] cyc==%0d EN=%b%b%b%b R0=%x R1=%x\n",$time, cyc, r1_en,r2_en,w1_en,w2_en, r1_d_d2r, r2_d_d2r); cyc <= cyc + 1; crc <= {crc[62:0], crc[63]^crc[2]^crc[0]}; sum <= {r1_d_d2r ^ r2_d_d2r} ^ {sum[62:0],sum[63]^sum[2]^sum[0]}; if (cyc==0) begin // Setup crc <= 64'h5aef0c8d_d70a4497; end else if (cyc<10) begin // We've manually verified all X's are out of the design by this point sum <= 64'h0; end else if (cyc<90) begin end else if (cyc==99) begin $write("*-* All Finished *-*\n"); $write("[%0t] cyc==%0d crc=%x %x\n",$time, cyc, crc, sum); if (crc !== 64'hc77bb9b3784ea091) $stop; if (sum !== 64'h5e9ea8c33a97f81e) $stop; $finish; end end endmodule module file (/*AUTOARG*/ // Outputs r1_d_d2r, r2_d_d2r, // Inputs clk, r1_en, r1_ad, r2_en, r2_ad, w1_en, w1_a, w1_d, w2_en, w2_a, w2_d ); input clk; input r1_en; input [1:0] r1_ad; output [63:0] r1_d_d2r; input r2_en; input [1:0] r2_ad; output [63:0] r2_d_d2r; input w1_en; input [1:0] w1_a; input [63:0] w1_d; input w2_en; input [1:0] w2_a; input [63:0] w2_d; /*AUTOWIRE*/ // Beginning of automatic wires (for undeclared instantiated-module outputs) // End of automatics /*AUTOREG*/ // Beginning of automatic regs (for this module's undeclared outputs) reg [63:0] r1_d_d2r; reg [63:0] r2_d_d2r; // End of automatics // Writes wire [3:0] m_w1_onehotwe = ({4{w1_en}} & (4'b1 << w1_a)); wire [3:0] m_w2_onehotwe = ({4{w2_en}} & (4'b1 << w2_a)); wire [63:0] rg0_wrdat = m_w1_onehotwe[0] ? w1_d : w2_d; wire [63:0] rg1_wrdat = m_w1_onehotwe[1] ? w1_d : w2_d; wire [63:0] rg2_wrdat = m_w1_onehotwe[2] ? w1_d : w2_d; wire [63:0] rg3_wrdat = m_w1_onehotwe[3] ? w1_d : w2_d; wire [3:0] m_w_onehotwe = m_w1_onehotwe | m_w2_onehotwe; // Storage reg [63:0] m_rg0_r; reg [63:0] m_rg1_r; reg [63:0] m_rg2_r; reg [63:0] m_rg3_r; always @ (posedge clk) begin if (m_w_onehotwe[0]) m_rg0_r <= rg0_wrdat; if (m_w_onehotwe[1]) m_rg1_r <= rg1_wrdat; if (m_w_onehotwe[2]) m_rg2_r <= rg2_wrdat; if (m_w_onehotwe[3]) m_rg3_r <= rg3_wrdat; end // Reads reg [1:0] m_r1_ad_d1r; reg [1:0] m_r2_ad_d1r; reg [1:0] m_ren_d1r; always @ (posedge clk) begin if (r1_en) m_r1_ad_d1r <= r1_ad; if (r2_en) m_r2_ad_d1r <= r2_ad; m_ren_d1r <= {r2_en, r1_en}; end // Scheme1: shift... wire [3:0] m_r1_onehot_d1 = (4'b1 << m_r1_ad_d1r); // Scheme2: bit mask reg [3:0] m_r2_onehot_d1; always @* begin m_r2_onehot_d1 = 4'd0; m_r2_onehot_d1[m_r2_ad_d1r] = 1'b1; end wire [63:0] m_r1_d_d1 = (({64{m_r1_onehot_d1[0]}} & m_rg0_r) | ({64{m_r1_onehot_d1[1]}} & m_rg1_r) | ({64{m_r1_onehot_d1[2]}} & m_rg2_r) | ({64{m_r1_onehot_d1[3]}} & m_rg3_r)); wire [63:0] m_r2_d_d1 = (({64{m_r2_onehot_d1[0]}} & m_rg0_r) | ({64{m_r2_onehot_d1[1]}} & m_rg1_r) | ({64{m_r2_onehot_d1[2]}} & m_rg2_r) | ({64{m_r2_onehot_d1[3]}} & m_rg3_r)); always @ (posedge clk) begin if (m_ren_d1r[0]) r1_d_d2r <= m_r1_d_d1; if (m_ren_d1r[1]) r2_d_d2r <= m_r2_d_d1; end endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2006 by Wilson Snyder. `include "verilated.v" module t_case_write2_tasks (); // verilator lint_off WIDTH // verilator lint_off CASEINCOMPLETE `define FD_BITS 31:0 parameter STRLEN = 78; task ozonerab; input [6:0] rab; input [`FD_BITS] fd; // verilator no_inline_task begin case (rab[6:0]) 7'h00 : $fwrite (fd, " 0"); 7'h01 : $fwrite (fd, " 1"); 7'h02 : $fwrite (fd, " 2"); 7'h03 : $fwrite (fd, " 3"); 7'h04 : $fwrite (fd, " 4"); 7'h05 : $fwrite (fd, " 5"); 7'h06 : $fwrite (fd, " 6"); 7'h07 : $fwrite (fd, " 7"); 7'h08 : $fwrite (fd, " 8"); 7'h09 : $fwrite (fd, " 9"); 7'h0a : $fwrite (fd, " 10"); 7'h0b : $fwrite (fd, " 11"); 7'h0c : $fwrite (fd, " 12"); 7'h0d : $fwrite (fd, " 13"); 7'h0e : $fwrite (fd, " 14"); 7'h0f : $fwrite (fd, " 15"); 7'h10 : $fwrite (fd, " 16"); 7'h11 : $fwrite (fd, " 17"); 7'h12 : $fwrite (fd, " 18"); 7'h13 : $fwrite (fd, " 19"); 7'h14 : $fwrite (fd, " 20"); 7'h15 : $fwrite (fd, " 21"); 7'h16 : $fwrite (fd, " 22"); 7'h17 : $fwrite (fd, " 23"); 7'h18 : $fwrite (fd, " 24"); 7'h19 : $fwrite (fd, " 25"); 7'h1a : $fwrite (fd, " 26"); 7'h1b : $fwrite (fd, " 27"); 7'h1c : $fwrite (fd, " 28"); 7'h1d : $fwrite (fd, " 29"); 7'h1e : $fwrite (fd, " 30"); 7'h1f : $fwrite (fd, " 31"); 7'h20 : $fwrite (fd, " 32"); 7'h21 : $fwrite (fd, " 33"); 7'h22 : $fwrite (fd, " 34"); 7'h23 : $fwrite (fd, " 35"); 7'h24 : $fwrite (fd, " 36"); 7'h25 : $fwrite (fd, " 37"); 7'h26 : $fwrite (fd, " 38"); 7'h27 : $fwrite (fd, " 39"); 7'h28 : $fwrite (fd, " 40"); 7'h29 : $fwrite (fd, " 41"); 7'h2a : $fwrite (fd, " 42"); 7'h2b : $fwrite (fd, " 43"); 7'h2c : $fwrite (fd, " 44"); 7'h2d : $fwrite (fd, " 45"); 7'h2e : $fwrite (fd, " 46"); 7'h2f : $fwrite (fd, " 47"); 7'h30 : $fwrite (fd, " 48"); 7'h31 : $fwrite (fd, " 49"); 7'h32 : $fwrite (fd, " 50"); 7'h33 : $fwrite (fd, " 51"); 7'h34 : $fwrite (fd, " 52"); 7'h35 : $fwrite (fd, " 53"); 7'h36 : $fwrite (fd, " 54"); 7'h37 : $fwrite (fd, " 55"); 7'h38 : $fwrite (fd, " 56"); 7'h39 : $fwrite (fd, " 57"); 7'h3a : $fwrite (fd, " 58"); 7'h3b : $fwrite (fd, " 59"); 7'h3c : $fwrite (fd, " 60"); 7'h3d : $fwrite (fd, " 61"); 7'h3e : $fwrite (fd, " 62"); 7'h3f : $fwrite (fd, " 63"); 7'h40 : $fwrite (fd, " 64"); 7'h41 : $fwrite (fd, " 65"); 7'h42 : $fwrite (fd, " 66"); 7'h43 : $fwrite (fd, " 67"); 7'h44 : $fwrite (fd, " 68"); 7'h45 : $fwrite (fd, " 69"); 7'h46 : $fwrite (fd, " 70"); 7'h47 : $fwrite (fd, " 71"); 7'h48 : $fwrite (fd, " 72"); 7'h49 : $fwrite (fd, " 73"); 7'h4a : $fwrite (fd, " 74"); 7'h4b : $fwrite (fd, " 75"); 7'h4c : $fwrite (fd, " 76"); 7'h4d : $fwrite (fd, " 77"); 7'h4e : $fwrite (fd, " 78"); 7'h4f : $fwrite (fd, " 79"); 7'h50 : $fwrite (fd, " 80"); 7'h51 : $fwrite (fd, " 81"); 7'h52 : $fwrite (fd, " 82"); 7'h53 : $fwrite (fd, " 83"); 7'h54 : $fwrite (fd, " 84"); 7'h55 : $fwrite (fd, " 85"); 7'h56 : $fwrite (fd, " 86"); 7'h57 : $fwrite (fd, " 87"); 7'h58 : $fwrite (fd, " 88"); 7'h59 : $fwrite (fd, " 89"); 7'h5a : $fwrite (fd, " 90"); 7'h5b : $fwrite (fd, " 91"); 7'h5c : $fwrite (fd, " 92"); 7'h5d : $fwrite (fd, " 93"); 7'h5e : $fwrite (fd, " 94"); 7'h5f : $fwrite (fd, " 95"); 7'h60 : $fwrite (fd, " 96"); 7'h61 : $fwrite (fd, " 97"); 7'h62 : $fwrite (fd, " 98"); 7'h63 : $fwrite (fd, " 99"); 7'h64 : $fwrite (fd, " 100"); 7'h65 : $fwrite (fd, " 101"); 7'h66 : $fwrite (fd, " 102"); 7'h67 : $fwrite (fd, " 103"); 7'h68 : $fwrite (fd, " 104"); 7'h69 : $fwrite (fd, " 105"); 7'h6a : $fwrite (fd, " 106"); 7'h6b : $fwrite (fd, " 107"); 7'h6c : $fwrite (fd, " 108"); 7'h6d : $fwrite (fd, " 109"); 7'h6e : $fwrite (fd, " 110"); 7'h6f : $fwrite (fd, " 111"); 7'h70 : $fwrite (fd, " 112"); 7'h71 : $fwrite (fd, " 113"); 7'h72 : $fwrite (fd, " 114"); 7'h73 : $fwrite (fd, " 115"); 7'h74 : $fwrite (fd, " 116"); 7'h75 : $fwrite (fd, " 117"); 7'h76 : $fwrite (fd, " 118"); 7'h77 : $fwrite (fd, " 119"); 7'h78 : $fwrite (fd, " 120"); 7'h79 : $fwrite (fd, " 121"); 7'h7a : $fwrite (fd, " 122"); 7'h7b : $fwrite (fd, " 123"); 7'h7c : $fwrite (fd, " 124"); 7'h7d : $fwrite (fd, " 125"); 7'h7e : $fwrite (fd, " 126"); 7'h7f : $fwrite (fd, " 127"); default:$fwrite (fd, " 128"); endcase end endtask task ozonerb; input [5:0] rb; input [`FD_BITS] fd; // verilator no_inline_task begin case (rb[5:0]) 6'h10, 6'h17, 6'h1e, 6'h1f: $fwrite (fd, " 129"); default: ozonerab({1'b1, rb}, fd); endcase end endtask task ozonef3f4_iext; input [1:0] foo; input [15:0] im16; input [`FD_BITS] fd; // verilator no_inline_task begin case (foo) 2'h0 : begin skyway({4{im16[15]}}, fd); skyway({4{im16[15]}}, fd); skyway(im16[15:12], fd); skyway(im16[11: 8], fd); skyway(im16[ 7: 4], fd); skyway(im16[ 3:0], fd); $fwrite (fd, " 130"); end 2'h1 : begin $fwrite (fd, " 131"); skyway(im16[15:12], fd); skyway(im16[11: 8], fd); skyway(im16[ 7: 4], fd); skyway(im16[ 3:0], fd); end 2'h2 : begin skyway({4{im16[15]}}, fd); skyway({4{im16[15]}}, fd); skyway(im16[15:12], fd); skyway(im16[11: 8], fd); skyway(im16[ 7: 4], fd); skyway(im16[ 3:0], fd); $fwrite (fd, " 132"); end 2'h3 : begin $fwrite (fd, " 133"); skyway(im16[15:12], fd); skyway(im16[11: 8], fd); skyway(im16[ 7: 4], fd); skyway(im16[ 3:0], fd); end endcase end endtask task skyway; input [ 3:0] hex; input [`FD_BITS] fd; // verilator no_inline_task begin case (hex) 4'h0 : $fwrite (fd, " 134"); 4'h1 : $fwrite (fd, " 135"); 4'h2 : $fwrite (fd, " 136"); 4'h3 : $fwrite (fd, " 137"); 4'h4 : $fwrite (fd, " 138"); 4'h5 : $fwrite (fd, " 139"); 4'h6 : $fwrite (fd, " 140"); 4'h7 : $fwrite (fd, " 141"); 4'h8 : $fwrite (fd, " 142"); 4'h9 : $fwrite (fd, " 143"); 4'ha : $fwrite (fd, " 144"); 4'hb : $fwrite (fd, " 145"); 4'hc : $fwrite (fd, " 146"); 4'hd : $fwrite (fd, " 147"); 4'he : $fwrite (fd, " 148"); 4'hf : $fwrite (fd, " 149"); endcase end endtask task ozonesr; input [ 15:0] foo; input [`FD_BITS] fd; // verilator no_inline_task begin case (foo[11: 9]) 3'h0 : $fwrite (fd, " 158"); 3'h1 : $fwrite (fd, " 159"); 3'h2 : $fwrite (fd, " 160"); 3'h3 : $fwrite (fd, " 161"); 3'h4 : $fwrite (fd, " 162"); 3'h5 : $fwrite (fd, " 163"); 3'h6 : $fwrite (fd, " 164"); 3'h7 : $fwrite (fd, " 165"); endcase end endtask task ozonejk; input k; input [`FD_BITS] fd; // verilator no_inline_task begin if (k) $fwrite (fd, " 166"); else $fwrite (fd, " 167"); end endtask task ozoneae; input [ 2:0] ae; input [`FD_BITS] fd; // verilator no_inline_task begin case (ae) 3'b000 : $fwrite (fd, " 168"); 3'b001 : $fwrite (fd, " 169"); 3'b010 : $fwrite (fd, " 170"); 3'b011 : $fwrite (fd, " 171"); 3'b100 : $fwrite (fd, " 172"); 3'b101 : $fwrite (fd, " 173"); 3'b110 : $fwrite (fd, " 174"); 3'b111 : $fwrite (fd, " 175"); endcase end endtask task ozoneaee; input [ 2:0] aee; input [`FD_BITS] fd; // verilator no_inline_task begin case (aee) 3'b001, 3'b011, 3'b101, 3'b111 : $fwrite (fd, " 176"); 3'b000 : $fwrite (fd, " 177"); 3'b010 : $fwrite (fd, " 178"); 3'b100 : $fwrite (fd, " 179"); 3'b110 : $fwrite (fd, " 180"); endcase end endtask task ozoneape; input [ 2:0] ape; input [`FD_BITS] fd; // verilator no_inline_task begin case (ape) 3'b001, 3'b011, 3'b101, 3'b111 : $fwrite (fd, " 181"); 3'b000 : $fwrite (fd, " 182"); 3'b010 : $fwrite (fd, " 183"); 3'b100 : $fwrite (fd, " 184"); 3'b110 : $fwrite (fd, " 185"); endcase end endtask task ozonef1; input [ 31:0] foo; input [`FD_BITS] fd; // verilator no_inline_task begin case (foo[24:21]) 4'h0 : if (foo[26]) $fwrite (fd, " 186"); else $fwrite (fd, " 187"); 4'h1 : case (foo[26:25]) 2'b00 : $fwrite (fd, " 188"); 2'b01 : $fwrite (fd, " 189"); 2'b10 : $fwrite (fd, " 190"); 2'b11 : $fwrite (fd, " 191"); endcase 4'h2 : $fwrite (fd, " 192"); 4'h3 : case (foo[26:25]) 2'b00 : $fwrite (fd, " 193"); 2'b01 : $fwrite (fd, " 194"); 2'b10 : $fwrite (fd, " 195"); 2'b11 : $fwrite (fd, " 196"); endcase 4'h4 : if (foo[26]) $fwrite (fd, " 197"); else $fwrite (fd, " 198"); 4'h5 : case (foo[26:25]) 2'b00 : $fwrite (fd, " 199"); 2'b01 : $fwrite (fd, " 200"); 2'b10 : $fwrite (fd, " 201"); 2'b11 : $fwrite (fd, " 202"); endcase 4'h6 : $fwrite (fd, " 203"); 4'h7 : case (foo[26:25]) 2'b00 : $fwrite (fd, " 204"); 2'b01 : $fwrite (fd, " 205"); 2'b10 : $fwrite (fd, " 206"); 2'b11 : $fwrite (fd, " 207"); endcase 4'h8 : case (foo[26:25]) 2'b00 : $fwrite (fd, " 208"); 2'b01 : $fwrite (fd, " 209"); 2'b10 : $fwrite (fd, " 210"); 2'b11 : $fwrite (fd, " 211"); endcase 4'h9 : case (foo[26:25]) 2'b00 : $fwrite (fd, " 212"); 2'b01 : $fwrite (fd, " 213"); 2'b10 : $fwrite (fd, " 214"); 2'b11 : $fwrite (fd, " 215"); endcase 4'ha : if (foo[25]) $fwrite (fd, " 216"); else $fwrite (fd, " 217"); 4'hb : if (foo[25]) $fwrite (fd, " 218"); else $fwrite (fd, " 219"); 4'hc : if (foo[26]) $fwrite (fd, " 220"); else $fwrite (fd, " 221"); 4'hd : case (foo[26:25]) 2'b00 : $fwrite (fd, " 222"); 2'b01 : $fwrite (fd, " 223"); 2'b10 : $fwrite (fd, " 224"); 2'b11 : $fwrite (fd, " 225"); endcase 4'he : case (foo[26:25]) 2'b00 : $fwrite (fd, " 226"); 2'b01 : $fwrite (fd, " 227"); 2'b10 : $fwrite (fd, " 228"); 2'b11 : $fwrite (fd, " 229"); endcase 4'hf : case (foo[26:25]) 2'b00 : $fwrite (fd, " 230"); 2'b01 : $fwrite (fd, " 231"); 2'b10 : $fwrite (fd, " 232"); 2'b11 : $fwrite (fd, " 233"); endcase endcase end endtask task ozonef1e; input [ 31:0] foo; input [`FD_BITS] fd; // verilator no_inline_task begin case (foo[27:21]) 7'h00: begin ozoneae(foo[20:18], fd); $fwrite (fd," 234"); $fwrite (fd, " 235"); end 7'h01: begin ozoneae(foo[20:18], fd); $fwrite (fd," 236"); ozoneae(foo[17:15], fd); $fwrite (fd," 237"); $fwrite (fd, " 238"); end 7'h02: $fwrite (fd, " 239"); 7'h03: begin ozoneae(foo[20:18], fd); $fwrite (fd," 240"); ozoneae(foo[17:15], fd); $fwrite (fd," 241"); $fwrite (fd, " 242"); end 7'h04: begin ozoneae(foo[20:18], fd); $fwrite (fd," 243"); $fwrite (fd," 244"); end 7'h05: begin ozoneae(foo[20:18], fd); $fwrite (fd," 245"); ozoneae(foo[17:15], fd); $fwrite (fd," 246"); end 7'h06: $fwrite (fd, " 247"); 7'h07: begin ozoneae(foo[20:18], fd); $fwrite (fd," 248"); ozoneae(foo[17:15], fd); $fwrite (fd," 249"); end 7'h08: begin ozoneae(foo[20:18], fd); $fwrite (fd," 250"); ozoneae(foo[17:15], fd); $fwrite (fd," 251"); end 7'h09: begin ozoneae(foo[20:18], fd); $fwrite (fd," 252"); ozoneae(foo[17:15], fd); $fwrite (fd," 253"); end 7'h0a: begin ozoneae(foo[17:15], fd); $fwrite (fd," 254"); end 7'h0b: begin ozoneae(foo[17:15], fd); $fwrite (fd," 255"); end 7'h0c: begin ozoneae(foo[20:18], fd); $fwrite (fd," 256"); end 7'h0d: begin ozoneae(foo[20:18], fd); $fwrite (fd," 257"); ozoneae(foo[17:15], fd); $fwrite (fd," 258"); end 7'h0e: begin ozoneae(foo[20:18], fd); $fwrite (fd," 259"); ozoneae(foo[17:15], fd); $fwrite (fd," 260"); end 7'h0f: begin ozoneae(foo[20:18], fd); $fwrite (fd," 261"); ozoneae(foo[17:15], fd); $fwrite (fd," 262"); end 7'h10: begin ozoneae(foo[20:18], fd); $fwrite (fd," 263"); ozoneae(foo[17:15], fd); $fwrite (fd," 264"); $fwrite (fd, " 265"); $fwrite (fd, " 266"); end 7'h11: begin ozoneae(foo[20:18], fd); $fwrite (fd," 267"); ozoneae(foo[17:15], fd); $fwrite (fd," 268"); $fwrite (fd, " 269"); $fwrite (fd, " 270"); end 7'h12: begin ozoneae(foo[20:18], fd); $fwrite (fd," 271"); ozoneae(foo[17:15], fd); $fwrite (fd," 272"); $fwrite (fd, " 273"); $fwrite (fd, " 274"); end 7'h13: begin ozoneae(foo[20:18], fd); $fwrite (fd," 275"); ozoneae(foo[17:15], fd); $fwrite (fd," 276"); $fwrite (fd, " 277"); $fwrite (fd, " 278"); end 7'h14: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 279"); ozoneaee(foo[17:15], fd); $fwrite (fd," 280"); ozoneape(foo[20:18], fd); $fwrite (fd," 281"); ozoneape(foo[17:15], fd); $fwrite (fd," 282"); $fwrite (fd, " 283"); $fwrite (fd, " 284"); end 7'h15: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 285"); ozoneaee(foo[17:15], fd); $fwrite (fd," 286"); ozoneape(foo[20:18], fd); $fwrite (fd," 287"); ozoneape(foo[17:15], fd); $fwrite (fd," 288"); $fwrite (fd, " 289"); $fwrite (fd, " 290"); end 7'h16: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 291"); ozoneaee(foo[17:15], fd); $fwrite (fd," 292"); ozoneape(foo[20:18], fd); $fwrite (fd," 293"); ozoneape(foo[17:15], fd); $fwrite (fd," 294"); $fwrite (fd, " 295"); $fwrite (fd, " 296"); end 7'h17: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 297"); ozoneaee(foo[17:15], fd); $fwrite (fd," 298"); ozoneape(foo[20:18], fd); $fwrite (fd," 299"); ozoneape(foo[17:15], fd); $fwrite (fd," 300"); $fwrite (fd, " 301"); $fwrite (fd, " 302"); end 7'h18: begin ozoneae(foo[20:18], fd); $fwrite (fd," 303"); ozoneae(foo[17:15], fd); $fwrite (fd," 304"); $fwrite (fd, " 305"); $fwrite (fd, " 306"); end 7'h19: begin ozoneae(foo[20:18], fd); $fwrite (fd," 307"); ozoneae(foo[17:15], fd); $fwrite (fd," 308"); $fwrite (fd, " 309"); $fwrite (fd, " 310"); end 7'h1a: begin ozoneae(foo[20:18], fd); $fwrite (fd," 311"); ozoneae(foo[17:15], fd); $fwrite (fd," 312"); $fwrite (fd, " 313"); $fwrite (fd, " 314"); end 7'h1b: begin ozoneae(foo[20:18], fd); $fwrite (fd," 315"); ozoneae(foo[17:15], fd); $fwrite (fd," 316"); $fwrite (fd, " 317"); $fwrite (fd, " 318"); end 7'h1c: begin ozoneae(foo[20:18], fd); $fwrite (fd," 319"); ozoneae(foo[17:15], fd); $fwrite (fd," 320"); $fwrite (fd, " 321"); $fwrite (fd, " 322"); end 7'h1d: begin ozoneae(foo[20:18], fd); $fwrite (fd," 323"); ozoneae(foo[17:15], fd); $fwrite (fd," 324"); $fwrite (fd, " 325"); $fwrite (fd, " 326"); end 7'h1e: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 327"); ozoneaee(foo[17:15], fd); $fwrite (fd," 328"); ozoneape(foo[20:18], fd); $fwrite (fd," 329"); ozoneape(foo[17:15], fd); $fwrite (fd," 330"); $fwrite (fd, " 331"); $fwrite (fd, " 332"); end 7'h1f: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 333"); ozoneaee(foo[17:15], fd); $fwrite (fd," 334"); ozoneape(foo[20:18], fd); $fwrite (fd," 335"); ozoneape(foo[17:15], fd); $fwrite (fd," 336"); $fwrite (fd, " 337"); $fwrite (fd, " 338"); end 7'h20: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 339"); ozoneaee(foo[17:15], fd); $fwrite (fd," 340"); ozoneape(foo[20:18], fd); $fwrite (fd," 341"); ozoneape(foo[17:15], fd); $fwrite (fd," 342"); $fwrite (fd, " 343"); $fwrite (fd, " 344"); end 7'h21: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 345"); ozoneaee(foo[17:15], fd); $fwrite (fd," 346"); ozoneape(foo[20:18], fd); $fwrite (fd," 347"); ozoneape(foo[17:15], fd); $fwrite (fd," 348"); $fwrite (fd, " 349"); $fwrite (fd, " 350"); end 7'h22: begin ozoneae(foo[20:18], fd); $fwrite (fd," 351"); ozoneae(foo[17:15], fd); $fwrite (fd," 352"); $fwrite (fd, " 353"); $fwrite (fd, " 354"); end 7'h23: begin ozoneae(foo[20:18], fd); $fwrite (fd," 355"); ozoneae(foo[17:15], fd); $fwrite (fd," 356"); $fwrite (fd, " 357"); $fwrite (fd, " 358"); end 7'h24: begin ozoneae(foo[20:18], fd); $fwrite (fd," 359"); ozoneae(foo[17:15], fd); $fwrite (fd," 360"); $fwrite (fd, " 361"); $fwrite (fd, " 362"); end 7'h25: begin ozoneae(foo[20:18], fd); $fwrite (fd," 363"); ozoneae(foo[17:15], fd); $fwrite (fd," 364"); $fwrite (fd, " 365"); $fwrite (fd, " 366"); end 7'h26: begin ozoneae(foo[20:18], fd); $fwrite (fd," 367"); ozoneae(foo[17:15], fd); $fwrite (fd," 368"); $fwrite (fd, " 369"); $fwrite (fd, " 370"); end 7'h27: begin ozoneae(foo[20:18], fd); $fwrite (fd," 371"); ozoneae(foo[17:15], fd); $fwrite (fd," 372"); $fwrite (fd, " 373"); $fwrite (fd, " 374"); end 7'h28: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 375"); ozoneaee(foo[17:15], fd); $fwrite (fd," 376"); ozoneape(foo[20:18], fd); $fwrite (fd," 377"); ozoneape(foo[17:15], fd); $fwrite (fd," 378"); $fwrite (fd, " 379"); $fwrite (fd, " 380"); end 7'h29: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 381"); ozoneaee(foo[17:15], fd); $fwrite (fd," 382"); ozoneape(foo[20:18], fd); $fwrite (fd," 383"); ozoneape(foo[17:15], fd); $fwrite (fd," 384"); $fwrite (fd, " 385"); $fwrite (fd, " 386"); end 7'h2a: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 387"); ozoneaee(foo[17:15], fd); $fwrite (fd," 388"); ozoneape(foo[20:18], fd); $fwrite (fd," 389"); ozoneape(foo[17:15], fd); $fwrite (fd," 390"); $fwrite (fd, " 391"); $fwrite (fd, " 392"); end 7'h2b: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 393"); ozoneaee(foo[17:15], fd); $fwrite (fd," 394"); ozoneape(foo[20:18], fd); $fwrite (fd," 395"); ozoneape(foo[17:15], fd); $fwrite (fd," 396"); $fwrite (fd, " 397"); $fwrite (fd, " 398"); end 7'h2c: begin ozoneae(foo[20:18], fd); $fwrite (fd," 399"); ozoneae(foo[17:15], fd); $fwrite (fd," 400"); $fwrite (fd, " 401"); $fwrite (fd, " 402"); end 7'h2d: begin ozoneae(foo[20:18], fd); $fwrite (fd," 403"); ozoneae(foo[17:15], fd); $fwrite (fd," 404"); $fwrite (fd, " 405"); $fwrite (fd, " 406"); end 7'h2e: begin ozoneae(foo[20:18], fd); $fwrite (fd," 407"); ozoneae(foo[17:15], fd); $fwrite (fd," 408"); $fwrite (fd, " 409"); $fwrite (fd, " 410"); end 7'h2f: begin ozoneae(foo[20:18], fd); $fwrite (fd," 411"); ozoneae(foo[17:15], fd); $fwrite (fd," 412"); $fwrite (fd, " 413"); $fwrite (fd, " 414"); end 7'h30: begin ozoneae(foo[20:18], fd); $fwrite (fd," 415"); ozoneae(foo[17:15], fd); $fwrite (fd," 416"); $fwrite (fd, " 417"); $fwrite (fd, " 418"); end 7'h31: begin ozoneae(foo[20:18], fd); $fwrite (fd," 419"); ozoneae(foo[17:15], fd); $fwrite (fd," 420"); $fwrite (fd, " 421"); $fwrite (fd, " 422"); end 7'h32: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 423"); ozoneaee(foo[17:15], fd); $fwrite (fd," 424"); ozoneape(foo[20:18], fd); $fwrite (fd," 425"); ozoneape(foo[17:15], fd); $fwrite (fd," 426"); $fwrite (fd, " 427"); $fwrite (fd, " 428"); end 7'h33: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 429"); ozoneaee(foo[17:15], fd); $fwrite (fd," 430"); ozoneape(foo[20:18], fd); $fwrite (fd," 431"); ozoneape(foo[17:15], fd); $fwrite (fd," 432"); $fwrite (fd, " 433"); $fwrite (fd, " 434"); end 7'h34: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 435"); ozoneaee(foo[17:15], fd); $fwrite (fd," 436"); ozoneape(foo[20:18], fd); $fwrite (fd," 437"); ozoneape(foo[17:15], fd); $fwrite (fd," 438"); $fwrite (fd, " 439"); $fwrite (fd, " 440"); end 7'h35: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 441"); ozoneaee(foo[17:15], fd); $fwrite (fd," 442"); ozoneape(foo[20:18], fd); $fwrite (fd," 443"); ozoneape(foo[17:15], fd); $fwrite (fd," 444"); $fwrite (fd, " 445"); $fwrite (fd, " 446"); end 7'h36: begin ozoneae(foo[20:18], fd); $fwrite (fd," 447"); ozoneae(foo[17:15], fd); $fwrite (fd," 448"); $fwrite (fd, " 449"); $fwrite (fd, " 450"); end 7'h37: begin ozoneae(foo[20:18], fd); $fwrite (fd," 451"); ozoneae(foo[17:15], fd); $fwrite (fd," 452"); $fwrite (fd, " 453"); $fwrite (fd, " 454"); end 7'h38: begin ozoneae(foo[20:18], fd); $fwrite (fd," 455"); ozoneae(foo[17:15], fd); $fwrite (fd," 456"); $fwrite (fd, " 457"); end 7'h39: begin ozoneae(foo[20:18], fd); $fwrite (fd," 458"); ozoneae(foo[17:15], fd); $fwrite (fd," 459"); $fwrite (fd, " 460"); end 7'h3a: begin ozoneae(foo[20:18], fd); $fwrite (fd," 461"); ozoneae(foo[17:15], fd); $fwrite (fd," 462"); $fwrite (fd, " 463"); end 7'h3b: begin ozoneae(foo[20:18], fd); $fwrite (fd," 464"); ozoneae(foo[17:15], fd); $fwrite (fd," 465"); $fwrite (fd, " 466"); end 7'h3c: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 467"); ozoneaee(foo[17:15], fd); $fwrite (fd," 468"); ozoneape(foo[20:18], fd); $fwrite (fd," 469"); ozoneape(foo[17:15], fd); $fwrite (fd," 470"); $fwrite (fd, " 471"); end 7'h3d: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 472"); ozoneaee(foo[17:15], fd); $fwrite (fd," 473"); ozoneape(foo[20:18], fd); $fwrite (fd," 474"); ozoneape(foo[17:15], fd); $fwrite (fd," 475"); $fwrite (fd, " 476"); end 7'h3e: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 477"); ozoneaee(foo[17:15], fd); $fwrite (fd," 478"); ozoneape(foo[20:18], fd); $fwrite (fd," 479"); ozoneape(foo[17:15], fd); $fwrite (fd," 480"); $fwrite (fd, " 481"); end 7'h3f: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 482"); ozoneaee(foo[17:15], fd); $fwrite (fd," 483"); ozoneape(foo[20:18], fd); $fwrite (fd," 484"); ozoneape(foo[17:15], fd); $fwrite (fd," 485"); $fwrite (fd, " 486"); end 7'h40: begin ozoneae(foo[20:18], fd); $fwrite (fd," 487"); ozoneae(foo[17:15], fd); $fwrite (fd," 488"); $fwrite (fd, " 489"); $fwrite (fd, " 490"); end 7'h41: begin $fwrite (fd, " 491"); $fwrite (fd, " 492"); end 7'h42: begin $fwrite (fd, " 493"); $fwrite (fd, " 494"); end 7'h43: begin $fwrite (fd, " 495"); $fwrite (fd, " 496"); end 7'h44: begin $fwrite (fd, " 497"); $fwrite (fd, " 498"); end 7'h45: $fwrite (fd, " 499"); 7'h46: begin ozoneae(foo[20:18], fd); $fwrite (fd," 500"); $fwrite (fd, " 501"); $fwrite (fd, " 502"); end 7'h47: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 503"); ozoneae(foo[17:15], fd); $fwrite (fd," 504"); ozoneape(foo[20:18], fd); $fwrite (fd," 505"); ozoneape(foo[20:18], fd); $fwrite (fd," 506"); $fwrite (fd, " 507"); $fwrite (fd, " 508"); end 7'h48: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 509"); ozoneape(foo[20:18], fd); $fwrite (fd," 510"); ozoneape(foo[20:18], fd); $fwrite (fd," 511"); ozoneaee(foo[17:15], fd); $fwrite (fd," 512"); ozoneape(foo[17:15], fd); $fwrite (fd," 513"); end 7'h49: begin ozoneae(foo[20:18], fd); $fwrite (fd," 514"); ozoneaee(foo[17:15], fd); $fwrite (fd," 515"); ozoneape(foo[17:15], fd); $fwrite (fd," 516"); end 7'h4a: $fwrite (fd," 517"); 7'h4b: $fwrite (fd, " 518"); 7'h4c: begin ozoneae(foo[20:18], fd); $fwrite (fd," 519"); $fwrite (fd, " 520"); $fwrite (fd, " 521"); end 7'h4d: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 522"); ozoneae(foo[17:15], fd); $fwrite (fd," 523"); ozoneape(foo[20:18], fd); $fwrite (fd," 524"); ozoneape(foo[20:18], fd); $fwrite (fd," 525"); $fwrite (fd, " 526"); $fwrite (fd, " 527"); end 7'h4e: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 528"); ozoneae(foo[17:15], fd); $fwrite (fd," 529"); ozoneape(foo[20:18], fd); $fwrite (fd," 530"); ozoneape(foo[20:18], fd); $fwrite (fd," 531"); end 7'h4f: begin ozoneae(foo[20:18], fd); $fwrite (fd," 532"); end 7'h50: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 533"); ozoneae(foo[17:15], fd); $fwrite (fd," 534"); ozoneaee(foo[20:18], fd); $fwrite (fd," 535"); ozoneae(foo[17:15], fd); $fwrite (fd," 536"); ozoneape(foo[20:18], fd); $fwrite (fd," 537"); ozoneae(foo[17:15], fd); $fwrite (fd," 538"); ozoneape(foo[20:18], fd); $fwrite (fd," 539"); ozoneae(foo[17:15], fd); $fwrite (fd," 540"); end 7'h51: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 541"); ozoneape(foo[20:18], fd); $fwrite (fd," 542"); ozoneaee(foo[20:18], fd); $fwrite (fd," 543"); ozoneape(foo[20:18], fd); $fwrite (fd," 544"); ozoneae(foo[17:15], fd); $fwrite (fd," 545"); end 7'h52: $fwrite (fd, " 546"); 7'h53: begin ozoneae(foo[20:18], fd); $fwrite (fd, " 547"); end 7'h54: begin ozoneae(foo[20:18], fd); $fwrite (fd," 548"); ozoneae(foo[17:15], fd); $fwrite (fd," 549"); end 7'h55: begin ozoneae(foo[20:18], fd); $fwrite (fd," 550"); ozoneae(foo[17:15], fd); $fwrite (fd," 551"); end 7'h56: begin ozoneae(foo[20:18], fd); $fwrite (fd," 552"); ozoneae(foo[17:15], fd); $fwrite (fd," 553"); $fwrite (fd, " 554"); end 7'h57: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 555"); ozoneae(foo[17:15], fd); $fwrite (fd," 556"); ozoneape(foo[20:18], fd); $fwrite (fd," 557"); ozoneape(foo[20:18], fd); $fwrite (fd," 558"); end 7'h58: begin ozoneae(foo[20:18], fd); $fwrite (fd, " 559"); end 7'h59: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 560"); ozoneae(foo[17:15], fd); $fwrite (fd," 561"); ozoneape(foo[20:18], fd); $fwrite (fd," 562"); ozoneape(foo[20:18], fd); $fwrite (fd," 563"); end 7'h5a: begin ozoneae(foo[20:18], fd); $fwrite (fd," 564"); ozoneae(foo[17:15], fd); $fwrite (fd, " 565"); end 7'h5b: begin ozoneae(foo[20:18], fd); $fwrite (fd," 566"); ozoneae(foo[17:15], fd); $fwrite (fd, " 567"); end 7'h5c: begin $fwrite (fd," 568"); ozoneape(foo[17:15], fd); $fwrite (fd," 569"); $fwrite (fd," 570"); ozoneape(foo[17:15], fd); $fwrite (fd," 571"); ozoneae(foo[20:18], fd); $fwrite (fd," 572"); ozoneaee(foo[17:15], fd); $fwrite (fd, " 573"); end 7'h5d: begin $fwrite (fd," 574"); ozoneape(foo[17:15], fd); $fwrite (fd," 575"); $fwrite (fd," 576"); ozoneape(foo[17:15], fd); $fwrite (fd," 577"); ozoneae(foo[20:18], fd); $fwrite (fd," 578"); ozoneaee(foo[17:15], fd); $fwrite (fd, " 579"); end 7'h5e: begin ozoneae(foo[20:18], fd); $fwrite (fd," 580"); ozoneae(foo[17:15], fd); $fwrite (fd, " 581"); end 7'h5f: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 582"); ozoneae(foo[17:15], fd); $fwrite (fd," 583"); ozoneaee(foo[20:18], fd); $fwrite (fd," 584"); ozoneae(foo[17:15], fd); $fwrite (fd," 585"); ozoneape(foo[20:18], fd); $fwrite (fd," 586"); ozoneae(foo[17:15], fd); $fwrite (fd," 587"); ozoneape(foo[20:18], fd); $fwrite (fd," 588"); ozoneae(foo[17:15], fd); $fwrite (fd," 589"); end 7'h60: begin ozoneae(foo[20:18], fd); $fwrite (fd," 590"); ozoneae(foo[17:15], fd); $fwrite (fd," 591"); end 7'h61: begin ozoneae(foo[20:18], fd); $fwrite (fd," 592"); ozoneae(foo[17:15], fd); $fwrite (fd," 593"); end 7'h62: begin ozoneae(foo[20:18], fd); $fwrite (fd," 594"); ozoneae(foo[17:15], fd); $fwrite (fd," 595"); end 7'h63: begin ozoneae(foo[20:18], fd); $fwrite (fd," 596"); ozoneae(foo[17:15], fd); $fwrite (fd," 597"); end 7'h64: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 598"); ozoneaee(foo[17:15], fd); $fwrite (fd," 599"); ozoneape(foo[20:18], fd); $fwrite (fd," 600"); ozoneape(foo[17:15], fd); $fwrite (fd," 601"); end 7'h65: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 602"); ozoneaee(foo[17:15], fd); $fwrite (fd," 603"); ozoneape(foo[20:18], fd); $fwrite (fd," 604"); ozoneape(foo[17:15], fd); $fwrite (fd," 605"); end 7'h66: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 606"); ozoneaee(foo[17:15], fd); $fwrite (fd," 607"); ozoneape(foo[20:18], fd); $fwrite (fd," 608"); ozoneape(foo[17:15], fd); $fwrite (fd," 609"); end 7'h67: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 610"); ozoneaee(foo[17:15], fd); $fwrite (fd," 611"); ozoneape(foo[20:18], fd); $fwrite (fd," 612"); ozoneape(foo[17:15], fd); $fwrite (fd," 613"); end 7'h68: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 614"); ozoneaee(foo[17:15], fd); $fwrite (fd," 615"); ozoneaee(foo[20:18], fd); $fwrite (fd," 616"); ozoneape(foo[20:18], fd); $fwrite (fd," 617"); ozoneape(foo[20:18], fd); $fwrite (fd," 618"); ozoneape(foo[17:15], fd); end 7'h69: begin ozoneae(foo[20:18], fd); $fwrite (fd," 619"); ozoneae(foo[17:15], fd); $fwrite (fd," 620"); ozoneae(foo[20:18], fd); $fwrite (fd," 621"); end 7'h6a: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 622"); ozoneae(foo[17:15], fd); $fwrite (fd," 623"); ozoneaee(foo[20:18], fd); $fwrite (fd," 624"); ozoneape(foo[20:18], fd); $fwrite (fd," 625"); ozoneaee(foo[20:18], fd); $fwrite (fd," 626"); ozoneae(foo[17:15], fd); end 7'h6b: begin ozoneae(foo[20:18], fd); $fwrite (fd," 627"); ozoneae(foo[17:15], fd); $fwrite (fd," 628"); ozoneae(foo[20:18], fd); $fwrite (fd," 629"); end 7'h6c: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 630"); ozoneae(foo[17:15], fd); $fwrite (fd," 631"); ozoneaee(foo[20:18], fd); $fwrite (fd," 632"); ozoneape(foo[20:18], fd); $fwrite (fd," 633"); ozoneaee(foo[20:18], fd); $fwrite (fd," 634"); ozoneae(foo[17:15], fd); end 7'h6d: begin ozoneae(foo[20:18], fd); $fwrite (fd," 635"); ozoneae(foo[17:15], fd); $fwrite (fd," 636"); ozoneae(foo[20:18], fd); $fwrite (fd," 637"); end 7'h6e: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 638"); ozoneaee(foo[17:15], fd); $fwrite (fd," 639"); ozoneape(foo[20:18], fd); $fwrite (fd," 640"); ozoneape(foo[17:15], fd); $fwrite (fd," 641"); end 7'h6f: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 642"); ozoneaee(foo[17:15], fd); $fwrite (fd," 643"); ozoneape(foo[20:18], fd); $fwrite (fd," 644"); ozoneape(foo[17:15], fd); $fwrite (fd," 645"); end 7'h70: begin ozoneae(foo[20:18], fd); $fwrite (fd," 646"); ozoneae(foo[20:18], fd); $fwrite (fd," 647"); ozoneae(foo[17:15], fd); $fwrite (fd," 648"); ozoneae(foo[17:15], fd); $fwrite (fd, " 649"); end 7'h71: begin ozoneae(foo[20:18], fd); $fwrite (fd," 650"); ozoneae(foo[17:15], fd); $fwrite (fd, " 651"); end 7'h72: begin ozoneae(foo[20:18], fd); $fwrite (fd," 652"); ozoneae(foo[17:15], fd); $fwrite (fd, " 653"); end 7'h73: begin ozoneae(foo[20:18], fd); $fwrite (fd," 654"); ozoneae(foo[20:18], fd); $fwrite (fd," 655"); ozoneae(foo[17:15], fd); end 7'h74: begin ozoneae(foo[20:18], fd); $fwrite (fd," 656"); ozoneae(foo[20:18], fd); $fwrite (fd," 657"); ozoneae(foo[17:15], fd); end 7'h75: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 658"); ozoneaee(foo[17:15], fd); $fwrite (fd," 659"); ozoneape(foo[20:18], fd); $fwrite (fd," 660"); ozoneape(foo[17:15], fd); $fwrite (fd," 661"); $fwrite (fd, " 662"); $fwrite (fd, " 663"); end 7'h76: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 664"); ozoneaee(foo[17:15], fd); $fwrite (fd," 665"); ozoneaee(foo[20:18], fd); $fwrite (fd," 666"); ozoneape(foo[20:18], fd); $fwrite (fd," 667"); ozoneape(foo[17:15], fd); $fwrite (fd," 668"); ozoneape(foo[20:18], fd); $fwrite (fd," 669"); end 7'h77: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 670"); ozoneaee(foo[17:15], fd); $fwrite (fd," 671"); ozoneaee(foo[17:15], fd); $fwrite (fd," 672"); ozoneape(foo[20:18], fd); $fwrite (fd," 673"); ozoneape(foo[17:15], fd); $fwrite (fd," 674"); ozoneape(foo[17:15], fd); $fwrite (fd," 675"); end 7'h78, 7'h79, 7'h7a, 7'h7b, 7'h7c, 7'h7d, 7'h7e, 7'h7f: $fwrite (fd," 676"); endcase end endtask task ozonef2; input [ 31:0] foo; input [`FD_BITS] fd; // verilator no_inline_task begin case (foo[24:21]) 4'h0 : case (foo[26:25]) 2'b00 : $fwrite (fd," 677"); 2'b01 : $fwrite (fd," 678"); 2'b10 : $fwrite (fd," 679"); 2'b11 : $fwrite (fd," 680"); endcase 4'h1 : case (foo[26:25]) 2'b00 : $fwrite (fd," 681"); 2'b01 : $fwrite (fd," 682"); 2'b10 : $fwrite (fd," 683"); 2'b11 : $fwrite (fd," 684"); endcase 4'h2 : case (foo[26:25]) 2'b00 : $fwrite (fd," 685"); 2'b01 : $fwrite (fd," 686"); 2'b10 : $fwrite (fd," 687"); 2'b11 : $fwrite (fd," 688"); endcase 4'h3 : case (foo[26:25]) 2'b00 : $fwrite (fd," 689"); 2'b01 : $fwrite (fd," 690"); 2'b10 : $fwrite (fd," 691"); 2'b11 : $fwrite (fd," 692"); endcase 4'h4 : case (foo[26:25]) 2'b00 : $fwrite (fd," 693"); 2'b01 : $fwrite (fd," 694"); 2'b10 : $fwrite (fd," 695"); 2'b11 : $fwrite (fd," 696"); endcase 4'h5 : case (foo[26:25]) 2'b00 : $fwrite (fd," 697"); 2'b01 : $fwrite (fd," 698"); 2'b10 : $fwrite (fd," 699"); 2'b11 : $fwrite (fd," 700"); endcase 4'h6 : case (foo[26:25]) 2'b00 : $fwrite (fd," 701"); 2'b01 : $fwrite (fd," 702"); 2'b10 : $fwrite (fd," 703"); 2'b11 : $fwrite (fd," 704"); endcase 4'h7 : case (foo[26:25]) 2'b00 : $fwrite (fd," 705"); 2'b01 : $fwrite (fd," 706"); 2'b10 : $fwrite (fd," 707"); 2'b11 : $fwrite (fd," 708"); endcase 4'h8 : if (foo[26]) $fwrite (fd," 709"); else $fwrite (fd," 710"); 4'h9 : case (foo[26:25]) 2'b00 : $fwrite (fd," 711"); 2'b01 : $fwrite (fd," 712"); 2'b10 : $fwrite (fd," 713"); 2'b11 : $fwrite (fd," 714"); endcase 4'ha : case (foo[26:25]) 2'b00 : $fwrite (fd," 715"); 2'b01 : $fwrite (fd," 716"); 2'b10 : $fwrite (fd," 717"); 2'b11 : $fwrite (fd," 718"); endcase 4'hb : case (foo[26:25]) 2'b00 : $fwrite (fd," 719"); 2'b01 : $fwrite (fd," 720"); 2'b10 : $fwrite (fd," 721"); 2'b11 : $fwrite (fd," 722"); endcase 4'hc : if (foo[26]) $fwrite (fd," 723"); else $fwrite (fd," 724"); 4'hd : case (foo[26:25]) 2'b00 : $fwrite (fd," 725"); 2'b01 : $fwrite (fd," 726"); 2'b10 : $fwrite (fd," 727"); 2'b11 : $fwrite (fd," 728"); endcase 4'he : case (foo[26:25]) 2'b00 : $fwrite (fd," 729"); 2'b01 : $fwrite (fd," 730"); 2'b10 : $fwrite (fd," 731"); 2'b11 : $fwrite (fd," 732"); endcase 4'hf : case (foo[26:25]) 2'b00 : $fwrite (fd," 733"); 2'b01 : $fwrite (fd," 734"); 2'b10 : $fwrite (fd," 735"); 2'b11 : $fwrite (fd," 736"); endcase endcase end endtask task ozonef2e; input [ 31:0] foo; input [`FD_BITS] fd; // verilator no_inline_task begin casez (foo[25:21]) 5'h00 : begin ozoneae(foo[20:18], fd); $fwrite (fd," 737"); ozoneae(foo[17:15], fd); $fwrite (fd," 738"); end 5'h01 : begin ozoneae(foo[20:18], fd); $fwrite (fd," 739"); ozoneae(foo[17:15], fd); $fwrite (fd," 740"); end 5'h02 : begin ozoneae(foo[20:18], fd); $fwrite (fd," 741"); ozoneae(foo[17:15], fd); $fwrite (fd," 742"); end 5'h03 : begin ozoneae(foo[20:18], fd); $fwrite (fd," 743"); ozoneae(foo[17:15], fd); $fwrite (fd," 744"); end 5'h04 : begin ozoneae(foo[20:18], fd); $fwrite (fd," 745"); ozoneae(foo[17:15], fd); $fwrite (fd," 746"); end 5'h05 : begin ozoneae(foo[20:18], fd); $fwrite (fd," 747"); ozoneae(foo[17:15], fd); $fwrite (fd," 748"); end 5'h06 : begin ozoneae(foo[20:18], fd); $fwrite (fd," 749"); ozoneae(foo[17:15], fd); $fwrite (fd," 750"); end 5'h07 : begin ozoneae(foo[20:18], fd); $fwrite (fd," 751"); ozoneae(foo[17:15], fd); $fwrite (fd," 752"); end 5'h08 : begin ozoneae(foo[20:18], fd); $fwrite (fd," 753"); if (foo[ 6]) $fwrite (fd," 754"); else $fwrite (fd," 755"); end 5'h09 : begin ozoneae(foo[20:18], fd); $fwrite (fd," 756"); ozoneae(foo[17:15], fd); $fwrite (fd," 757"); end 5'h0a : begin ozoneae(foo[20:18], fd); $fwrite (fd," 758"); ozoneae(foo[17:15], fd); end 5'h0b : begin ozoneae(foo[20:18], fd); $fwrite (fd," 759"); ozoneae(foo[17:15], fd); $fwrite (fd," 760"); end 5'h0c : begin ozoneae(foo[20:18], fd); $fwrite (fd," 761"); end 5'h0d : begin ozoneae(foo[20:18], fd); $fwrite (fd," 762"); ozoneae(foo[17:15], fd); $fwrite (fd," 763"); end 5'h0e : begin ozoneae(foo[20:18], fd); $fwrite (fd," 764"); ozoneae(foo[17:15], fd); end 5'h0f : begin ozoneae(foo[20:18], fd); $fwrite (fd," 765"); ozoneae(foo[17:15], fd); end 5'h10 : begin ozoneae(foo[20:18], fd); $fwrite (fd," 766"); ozoneae(foo[17:15], fd); $fwrite (fd," 767"); end 5'h11 : begin ozoneae(foo[20:18], fd); $fwrite (fd," 768"); ozoneae(foo[17:15], fd); $fwrite (fd," 769"); end 5'h18 : begin ozoneae(foo[20:18], fd); $fwrite (fd," 770"); if (foo[ 6]) $fwrite (fd," 771"); else $fwrite (fd," 772"); end 5'h1a : begin ozoneae(foo[20:18], fd); $fwrite (fd," 773"); ozoneae(foo[17:15], fd); $fwrite (fd," 774"); end 5'h1b : begin ozoneae(foo[20:18], fd); $fwrite (fd," 775"); ozoneae(foo[17:15], fd); $fwrite (fd," 776"); if (foo[ 6]) $fwrite (fd," 777"); else $fwrite (fd," 778"); $fwrite (fd," 779"); end 5'h1c : begin ozoneae(foo[20:18], fd); $fwrite (fd," 780"); end 5'h1d : begin ozoneae(foo[20:18], fd); $fwrite (fd," 781"); if (foo[ 6]) $fwrite (fd," 782"); else $fwrite (fd," 783"); $fwrite (fd," 784"); end 5'h1e : begin ozoneae(foo[20:18], fd); $fwrite (fd," 785"); if (foo[ 6]) $fwrite (fd," 786"); else $fwrite (fd," 787"); $fwrite (fd," 788"); end 5'h1f : begin ozoneae(foo[20:18], fd); $fwrite (fd," 789"); ozoneae(foo[17:15], fd); $fwrite (fd," 790"); if (foo[ 6]) $fwrite (fd," 791"); else $fwrite (fd," 792"); $fwrite (fd," 793"); end default : $fwrite (fd," 794"); endcase end endtask task ozonef3e; input [ 31:0] foo; input [`FD_BITS] fd; // verilator no_inline_task begin case (foo[25:21]) 5'h00, 5'h01, 5'h02: begin ozoneae(foo[20:18], fd); case (foo[22:21]) 2'h0: $fwrite (fd," 795"); 2'h1: $fwrite (fd," 796"); 2'h2: $fwrite (fd," 797"); endcase ozoneae(foo[17:15], fd); $fwrite (fd," 798"); if (foo[ 9]) ozoneae(foo[ 8: 6], fd); else ozonef3e_te(foo[ 8: 6], fd); $fwrite (fd," 799"); end 5'h08, 5'h09, 5'h0d, 5'h0e, 5'h0f: begin ozoneae(foo[20:18], fd); $fwrite (fd," 800"); ozoneae(foo[17:15], fd); case (foo[23:21]) 3'h0: $fwrite (fd," 801"); 3'h1: $fwrite (fd," 802"); 3'h5: $fwrite (fd," 803"); 3'h6: $fwrite (fd," 804"); 3'h7: $fwrite (fd," 805"); endcase if (foo[ 9]) ozoneae(foo[ 8: 6], fd); else ozonef3e_te(foo[ 8: 6], fd); end 5'h0a, 5'h0b: begin ozoneae(foo[17:15], fd); if (foo[21]) $fwrite (fd," 806"); else $fwrite (fd," 807"); if (foo[ 9]) ozoneae(foo[ 8: 6], fd); else ozonef3e_te(foo[ 8: 6], fd); end 5'h0c: begin ozoneae(foo[20:18], fd); $fwrite (fd," 808"); if (foo[ 9]) ozoneae(foo[ 8: 6], fd); else ozonef3e_te(foo[ 8: 6], fd); $fwrite (fd," 809"); ozoneae(foo[17:15], fd); end 5'h10, 5'h11, 5'h12, 5'h13: begin ozoneae(foo[20:18], fd); $fwrite (fd," 810"); ozoneae(foo[17:15], fd); case (foo[22:21]) 2'h0, 2'h2: $fwrite (fd," 811"); 2'h1, 2'h3: $fwrite (fd," 812"); endcase ozoneae(foo[ 8: 6], fd); $fwrite (fd," 813"); ozoneae((foo[20:18]+1), fd); $fwrite (fd," 814"); ozoneae((foo[17:15]+1), fd); case (foo[22:21]) 2'h0, 2'h3: $fwrite (fd," 815"); 2'h1, 2'h2: $fwrite (fd," 816"); endcase ozoneae((foo[ 8: 6]+1), fd); end 5'h18: begin ozoneae(foo[20:18], fd); $fwrite (fd," 817"); ozoneae(foo[17:15], fd); $fwrite (fd," 818"); ozoneae(foo[ 8: 6], fd); $fwrite (fd," 819"); ozoneae(foo[20:18], fd); $fwrite (fd," 820"); ozoneae(foo[17:15], fd); $fwrite (fd," 821"); ozoneae(foo[ 8: 6], fd); end default : $fwrite (fd," 822"); endcase end endtask task ozonef3e_te; input [ 2:0] te; input [`FD_BITS] fd; // verilator no_inline_task begin case (te) 3'b100 : $fwrite (fd, " 823"); 3'b101 : $fwrite (fd, " 824"); 3'b110 : $fwrite (fd, " 825"); default: $fwrite (fd, " 826"); endcase end endtask task ozonearm; input [ 2:0] ate; input [`FD_BITS] fd; // verilator no_inline_task begin case (ate) 3'b000 : $fwrite (fd, " 827"); 3'b001 : $fwrite (fd, " 828"); 3'b010 : $fwrite (fd, " 829"); 3'b011 : $fwrite (fd, " 830"); 3'b100 : $fwrite (fd, " 831"); 3'b101 : $fwrite (fd, " 832"); 3'b110 : $fwrite (fd, " 833"); 3'b111 : $fwrite (fd, " 834"); endcase end endtask task ozonebmuop; input [ 4:0] f4; input [`FD_BITS] fd; // verilator no_inline_task begin case (f4[ 4:0]) 5'h00, 5'h04 : $fwrite (fd, " 835"); 5'h01, 5'h05 : $fwrite (fd, " 836"); 5'h02, 5'h06 : $fwrite (fd, " 837"); 5'h03, 5'h07 : $fwrite (fd, " 838"); 5'h08, 5'h18 : $fwrite (fd, " 839"); 5'h09, 5'h19 : $fwrite (fd, " 840"); 5'h0a, 5'h1a : $fwrite (fd, " 841"); 5'h0b : $fwrite (fd, " 842"); 5'h1b : $fwrite (fd, " 843"); 5'h0c, 5'h1c : $fwrite (fd, " 844"); 5'h0d, 5'h1d : $fwrite (fd, " 845"); 5'h1e : $fwrite (fd, " 846"); endcase end endtask task ozonef3; input [ 31:0] foo; input [`FD_BITS] fd; reg nacho; // verilator no_inline_task begin : f3_body nacho = 1'b0; case (foo[24:21]) 4'h0: case (foo[26:25]) 2'b00 : $fwrite (fd, " 847"); 2'b01 : $fwrite (fd, " 848"); 2'b10 : $fwrite (fd, " 849"); 2'b11 : $fwrite (fd, " 850"); endcase 4'h1: case (foo[26:25]) 2'b00 : $fwrite (fd, " 851"); 2'b01 : $fwrite (fd, " 852"); 2'b10 : $fwrite (fd, " 853"); 2'b11 : $fwrite (fd, " 854"); endcase 4'h2: case (foo[26:25]) 2'b00 : $fwrite (fd, " 855"); 2'b01 : $fwrite (fd, " 856"); 2'b10 : $fwrite (fd, " 857"); 2'b11 : $fwrite (fd, " 858"); endcase 4'h8, 4'h9, 4'hd, 4'he, 4'hf : case (foo[26:25]) 2'b00 : $fwrite (fd, " 859"); 2'b01 : $fwrite (fd, " 860"); 2'b10 : $fwrite (fd, " 861"); 2'b11 : $fwrite (fd, " 862"); endcase 4'ha, 4'hb : if (foo[25]) $fwrite (fd, " 863"); else $fwrite (fd, " 864"); 4'hc : if (foo[26]) $fwrite (fd, " 865"); else $fwrite (fd, " 866"); default : begin $fwrite (fd, " 867"); nacho = 1'b1; end endcase if (~nacho) begin case (foo[24:21]) 4'h8 : $fwrite (fd, " 868"); 4'h9 : $fwrite (fd, " 869"); 4'ha, 4'he : $fwrite (fd, " 870"); 4'hb, 4'hf : $fwrite (fd, " 871"); 4'hd : $fwrite (fd, " 872"); endcase if (foo[20]) case (foo[18:16]) 3'b000 : $fwrite (fd, " 873"); 3'b100 : $fwrite (fd, " 874"); default: $fwrite (fd, " 875"); endcase else ozoneae(foo[18:16], fd); if (foo[24:21] === 4'hc) if (foo[25]) $fwrite (fd, " 876"); else $fwrite (fd, " 877"); case (foo[24:21]) 4'h0, 4'h1, 4'h2: $fwrite (fd, " 878"); endcase end end endtask task ozonerx; input [ 31:0] foo; input [`FD_BITS] fd; // verilator no_inline_task begin case (foo[19:18]) 2'h0 : $fwrite (fd, " 879"); 2'h1 : $fwrite (fd, " 880"); 2'h2 : $fwrite (fd, " 881"); 2'h3 : $fwrite (fd, " 882"); endcase case (foo[17:16]) 2'h1 : $fwrite (fd, " 883"); 2'h2 : $fwrite (fd, " 884"); 2'h3 : $fwrite (fd, " 885"); endcase end endtask task ozonerme; input [ 2:0] rme; input [`FD_BITS] fd; // verilator no_inline_task begin case (rme) 3'h0 : $fwrite (fd, " 886"); 3'h1 : $fwrite (fd, " 887"); 3'h2 : $fwrite (fd, " 888"); 3'h3 : $fwrite (fd, " 889"); 3'h4 : $fwrite (fd, " 890"); 3'h5 : $fwrite (fd, " 891"); 3'h6 : $fwrite (fd, " 892"); 3'h7 : $fwrite (fd, " 893"); endcase end endtask task ozoneye; input [5:0] ye; input l; input [`FD_BITS] fd; // verilator no_inline_task begin $fwrite (fd, " 894"); ozonerme(ye[5:3], fd); case ({ye[ 2:0], l}) 4'h2, 4'ha: $fwrite (fd, " 895"); 4'h4, 4'hb: $fwrite (fd, " 896"); 4'h6, 4'he: $fwrite (fd, " 897"); 4'h8, 4'hc: $fwrite (fd, " 898"); endcase end endtask task ozonef1e_ye; input [5:0] ye; input l; input [`FD_BITS] fd; // verilator no_inline_task begin $fwrite (fd, " 899"); ozonerme(ye[5:3], fd); ozonef1e_inc_dec(ye[5:0], l , fd); end endtask task ozonef1e_h; input [ 2:0] e; input [`FD_BITS] fd; // verilator no_inline_task begin if (e[ 2:0] <= 3'h4) $fwrite (fd, " 900"); end endtask task ozonef1e_inc_dec; input [5:0] ye; input l; input [`FD_BITS] fd; // verilator no_inline_task begin case ({ye[ 2:0], l}) 4'h2, 4'h3, 4'ha: $fwrite (fd, " 901"); 4'h4, 4'h5, 4'hb: $fwrite (fd, " 902"); 4'h6, 4'h7, 4'he: $fwrite (fd, " 903"); 4'h8, 4'h9, 4'hc: $fwrite (fd, " 904"); 4'hf: $fwrite (fd, " 905"); endcase end endtask task ozonef1e_hl; input [ 2:0] e; input l; input [`FD_BITS] fd; // verilator no_inline_task begin case ({e[ 2:0], l}) 4'h0, 4'h2, 4'h4, 4'h6, 4'h8: $fwrite (fd, " 906"); 4'h1, 4'h3, 4'h5, 4'h7, 4'h9: $fwrite (fd, " 907"); endcase end endtask task ozonexe; input [ 3:0] xe; input [`FD_BITS] fd; // verilator no_inline_task begin case (xe[3]) 1'b0 : $fwrite (fd, " 908"); 1'b1 : $fwrite (fd, " 909"); endcase case (xe[ 2:0]) 3'h1, 3'h5: $fwrite (fd, " 910"); 3'h2, 3'h6: $fwrite (fd, " 911"); 3'h3, 3'h7: $fwrite (fd, " 912"); 3'h4: $fwrite (fd, " 913"); endcase end endtask task ozonerp; input [ 2:0] rp; input [`FD_BITS] fd; // verilator no_inline_task begin case (rp) 3'h0 : $fwrite (fd, " 914"); 3'h1 : $fwrite (fd, " 915"); 3'h2 : $fwrite (fd, " 916"); 3'h3 : $fwrite (fd, " 917"); 3'h4 : $fwrite (fd, " 918"); 3'h5 : $fwrite (fd, " 919"); 3'h6 : $fwrite (fd, " 920"); 3'h7 : $fwrite (fd, " 921"); endcase end endtask task ozonery; input [ 3:0] ry; input [`FD_BITS] fd; // verilator no_inline_task begin case (ry) 4'h0 : $fwrite (fd, " 922"); 4'h1 : $fwrite (fd, " 923"); 4'h2 : $fwrite (fd, " 924"); 4'h3 : $fwrite (fd, " 925"); 4'h4 : $fwrite (fd, " 926"); 4'h5 : $fwrite (fd, " 927"); 4'h6 : $fwrite (fd, " 928"); 4'h7 : $fwrite (fd, " 929"); 4'h8 : $fwrite (fd, " 930"); 4'h9 : $fwrite (fd, " 931"); 4'ha : $fwrite (fd, " 932"); 4'hb : $fwrite (fd, " 933"); 4'hc : $fwrite (fd, " 934"); 4'hd : $fwrite (fd, " 935"); 4'he : $fwrite (fd, " 936"); 4'hf : $fwrite (fd, " 937"); endcase end endtask task ozonearx; input [ 15:0] foo; input [`FD_BITS] fd; // verilator no_inline_task begin case (foo[1:0]) 2'h0 : $fwrite (fd, " 938"); 2'h1 : $fwrite (fd, " 939"); 2'h2 : $fwrite (fd, " 940"); 2'h3 : $fwrite (fd, " 941"); endcase end endtask task ozonef3f4imop; input [ 4:0] f3f4iml; input [`FD_BITS] fd; // verilator no_inline_task begin casez (f3f4iml) 5'b000??: $fwrite (fd, " 942"); 5'b001??: $fwrite (fd, " 943"); 5'b?10??: $fwrite (fd, " 944"); 5'b0110?: $fwrite (fd, " 945"); 5'b01110: $fwrite (fd, " 946"); 5'b01111: $fwrite (fd, " 947"); 5'b10???: $fwrite (fd, " 948"); 5'b11100: $fwrite (fd, " 949"); 5'b11101: $fwrite (fd, " 950"); 5'b11110: $fwrite (fd, " 951"); 5'b11111: $fwrite (fd, " 952"); endcase end endtask task ozonecon; input [ 4:0] con; input [`FD_BITS] fd; // verilator no_inline_task begin case (con) 5'h00 : $fwrite (fd, " 953"); 5'h01 : $fwrite (fd, " 954"); 5'h02 : $fwrite (fd, " 955"); 5'h03 : $fwrite (fd, " 956"); 5'h04 : $fwrite (fd, " 957"); 5'h05 : $fwrite (fd, " 958"); 5'h06 : $fwrite (fd, " 959"); 5'h07 : $fwrite (fd, " 960"); 5'h08 : $fwrite (fd, " 961"); 5'h09 : $fwrite (fd, " 962"); 5'h0a : $fwrite (fd, " 963"); 5'h0b : $fwrite (fd, " 964"); 5'h0c : $fwrite (fd, " 965"); 5'h0d : $fwrite (fd, " 966"); 5'h0e : $fwrite (fd, " 967"); 5'h0f : $fwrite (fd, " 968"); 5'h10 : $fwrite (fd, " 969"); 5'h11 : $fwrite (fd, " 970"); 5'h12 : $fwrite (fd, " 971"); 5'h13 : $fwrite (fd, " 972"); 5'h14 : $fwrite (fd, " 973"); 5'h15 : $fwrite (fd, " 974"); 5'h16 : $fwrite (fd, " 975"); 5'h17 : $fwrite (fd, " 976"); 5'h18 : $fwrite (fd, " 977"); 5'h19 : $fwrite (fd, " 978"); 5'h1a : $fwrite (fd, " 979"); 5'h1b : $fwrite (fd, " 980"); 5'h1c : $fwrite (fd, " 981"); 5'h1d : $fwrite (fd, " 982"); 5'h1e : $fwrite (fd, " 983"); 5'h1f : $fwrite (fd, " 984"); endcase end endtask task ozonedr; input [ 15:0] foo; input [`FD_BITS] fd; // verilator no_inline_task begin case (foo[ 9: 6]) 4'h0 : $fwrite (fd, " 985"); 4'h1 : $fwrite (fd, " 986"); 4'h2 : $fwrite (fd, " 987"); 4'h3 : $fwrite (fd, " 988"); 4'h4 : $fwrite (fd, " 989"); 4'h5 : $fwrite (fd, " 990"); 4'h6 : $fwrite (fd, " 991"); 4'h7 : $fwrite (fd, " 992"); 4'h8 : $fwrite (fd, " 993"); 4'h9 : $fwrite (fd, " 994"); 4'ha : $fwrite (fd, " 995"); 4'hb : $fwrite (fd, " 996"); 4'hc : $fwrite (fd, " 997"); 4'hd : $fwrite (fd, " 998"); 4'he : $fwrite (fd, " 999"); 4'hf : $fwrite (fd, " 1000"); endcase end endtask task ozoneshift; input [ 15:0] foo; input [`FD_BITS] fd; // verilator no_inline_task begin case (foo[ 4: 3]) 2'h0 : $fwrite (fd, " 1001"); 2'h1 : $fwrite (fd, " 1002"); 2'h2 : $fwrite (fd, " 1003"); 2'h3 : $fwrite (fd, " 1004"); endcase end endtask task ozoneacc; input foo; input [`FD_BITS] fd; // verilator no_inline_task begin case (foo) 2'h0 : $fwrite (fd, " 1005"); 2'h1 : $fwrite (fd, " 1006"); endcase end endtask task ozonehl; input foo; input [`FD_BITS] fd; // verilator no_inline_task begin case (foo) 2'h0 : $fwrite (fd, " 1007"); 2'h1 : $fwrite (fd, " 1008"); endcase end endtask task dude; input [`FD_BITS] fd; // verilator no_inline_task $fwrite(fd," dude"); endtask task big_case; input [ `FD_BITS] fd; input [ 31:0] foo; // verilator no_inline_task begin $fwrite(fd," 1009"); if (&foo === 1'bx) $fwrite(fd, " 1010"); else casez ( {foo[31:26], foo[19:15], foo[5:0]} ) 17'b00_111?_?_????_??_???? : begin ozonef1(foo, fd); $fwrite (fd, " 1011"); ozoneacc(~foo[26], fd); ozonehl(foo[20], fd); $fwrite (fd, " 1012"); ozonerx(foo, fd); dude(fd); $fwrite (fd, " 1013"); end 17'b01_001?_?_????_??_???? : begin ozonef1(foo, fd); $fwrite (fd, " 1014"); ozonerx(foo, fd); $fwrite (fd, " 1015"); $fwrite (fd, " 1016:%x", foo[20]); ozonehl(foo[20], fd); dude(fd); $fwrite (fd, " 1017"); end 17'b10_100?_?_????_??_???? : begin ozonef1(foo, fd); $fwrite (fd, " 1018"); ozonerx(foo, fd); $fwrite (fd, " 1019"); $fwrite (fd, " 1020"); ozonehl(foo[20], fd); dude(fd); $fwrite (fd, " 1021"); end 17'b10_101?_?_????_??_???? : begin ozonef1(foo, fd); $fwrite (fd, " 1022"); if (foo[20]) begin $fwrite (fd, " 1023"); ozoneacc(foo[18], fd); $fwrite (fd, " 1024"); $fwrite (fd, " 1025"); if (foo[19]) $fwrite (fd, " 1026"); else $fwrite (fd, " 1027"); end else ozonerx(foo, fd); dude(fd); $fwrite (fd, " 1028"); end 17'b10_110?_?_????_??_???? : begin ozonef1(foo, fd); $fwrite (fd, " 1029"); $fwrite (fd, " 1030"); ozonehl(foo[20], fd); $fwrite (fd, " 1031"); ozonerx(foo, fd); dude(fd); $fwrite (fd, " 1032"); end 17'b10_111?_?_????_??_???? : begin ozonef1(foo, fd); $fwrite (fd, " 1033"); $fwrite (fd, " 1034"); ozonehl(foo[20], fd); $fwrite (fd, " 1035"); ozonerx(foo, fd); dude(fd); $fwrite (fd, " 1036"); end 17'b11_001?_?_????_??_???? : begin ozonef1(foo, fd); $fwrite (fd, " 1037"); ozonerx(foo, fd); $fwrite (fd, " 1038"); $fwrite (fd, " 1039"); ozonehl(foo[20], fd); dude(fd); $fwrite (fd, " 1040"); end 17'b11_111?_?_????_??_???? : begin ozonef1(foo, fd); $fwrite (fd, " 1041"); $fwrite (fd, " 1042"); ozonerx(foo, fd); $fwrite (fd, " 1043"); if (foo[20]) $fwrite (fd, " 1044"); else $fwrite (fd, " 1045"); dude(fd); $fwrite (fd, " 1046"); end 17'b00_10??_?_????_?1_1111 : casez (foo[11: 5]) 7'b??_0_010_0: begin $fwrite (fd, " 1047"); ozonecon(foo[14:10], fd); $fwrite (fd, " 1048"); ozonef1e(foo, fd); dude(fd); $fwrite (fd, " 1049"); end 7'b00_?_110_?: begin ozonef1e(foo, fd); $fwrite (fd, " 1050"); case ({foo[ 9],foo[ 5]}) 2'b00: begin $fwrite (fd, " 1051"); ozoneae(foo[14:12], fd); ozonehl(foo[ 5], fd); end 2'b01: begin $fwrite (fd, " 1052"); ozoneae(foo[14:12], fd); ozonehl(foo[ 5], fd); end 2'b10: begin $fwrite (fd, " 1053"); ozoneae(foo[14:12], fd); end 2'b11: $fwrite (fd, " 1054"); endcase dude(fd); $fwrite (fd, " 1055"); end 7'b01_?_110_?: begin ozonef1e(foo, fd); $fwrite (fd, " 1056"); case ({foo[ 9],foo[ 5]}) 2'b00: begin ozoneae(foo[14:12], fd); ozonehl(foo[ 5], fd); $fwrite (fd, " 1057"); end 2'b01: begin ozoneae(foo[14:12], fd); ozonehl(foo[ 5], fd); $fwrite (fd, " 1058"); end 2'b10: begin ozoneae(foo[14:12], fd); $fwrite (fd, " 1059"); end 2'b11: $fwrite (fd, " 1060"); endcase dude(fd); $fwrite (fd, " 1061"); end 7'b10_0_110_0: begin ozonef1e(foo, fd); $fwrite (fd, " 1062"); $fwrite (fd, " 1063"); if (foo[12]) $fwrite (fd, " 1064"); else ozonerab({4'b1001, foo[14:12]}, fd); dude(fd); $fwrite (fd, " 1065"); end 7'b10_0_110_1: begin ozonef1e(foo, fd); $fwrite (fd, " 1066"); if (foo[12]) $fwrite (fd, " 1067"); else ozonerab({4'b1001, foo[14:12]}, fd); $fwrite (fd, " 1068"); dude(fd); $fwrite (fd, " 1069"); end 7'b??_?_000_?: begin ozonef1e(foo, fd); $fwrite (fd, " 1070"); $fwrite (fd, " 1071"); ozonef1e_hl(foo[11:9],foo[ 5], fd); $fwrite (fd, " 1072"); ozonef1e_ye(foo[14:9],foo[ 5], fd); dude(fd); $fwrite (fd, " 1073"); end 7'b??_?_100_?: begin ozonef1e(foo, fd); $fwrite (fd, " 1074"); $fwrite (fd, " 1075"); ozonef1e_hl(foo[11:9],foo[ 5], fd); $fwrite (fd, " 1076"); ozonef1e_ye(foo[14:9],foo[ 5], fd); dude(fd); $fwrite (fd, " 1077"); end 7'b??_?_001_?: begin ozonef1e(foo, fd); $fwrite (fd, " 1078"); ozonef1e_ye(foo[14:9],foo[ 5], fd); $fwrite (fd, " 1079"); $fwrite (fd, " 1080"); ozonef1e_hl(foo[11:9],foo[ 5], fd); dude(fd); $fwrite (fd, " 1081"); end 7'b??_?_011_?: begin ozonef1e(foo, fd); $fwrite (fd, " 1082"); ozonef1e_ye(foo[14:9],foo[ 5], fd); $fwrite (fd, " 1083"); $fwrite (fd, " 1084"); ozonef1e_hl(foo[11:9],foo[ 5], fd); dude(fd); $fwrite (fd, " 1085"); end 7'b??_?_101_?: begin ozonef1e(foo, fd); $fwrite (fd, " 1086"); ozonef1e_ye(foo[14:9],foo[ 5], fd); dude(fd); $fwrite (fd, " 1087"); end endcase 17'b00_10??_?_????_?0_0110 : begin ozonef1e(foo, fd); $fwrite (fd, " 1088"); ozoneae(foo[ 8: 6], fd); ozonef1e_hl(foo[11:9],foo[ 5], fd); $fwrite (fd, " 1089"); ozonef1e_ye(foo[14:9],foo[ 5], fd); dude(fd); $fwrite (fd, " 1090"); end 17'b00_10??_?_????_00_0111 : begin ozonef1e(foo, fd); $fwrite (fd, " 1091"); if (foo[ 6]) $fwrite (fd, " 1092"); else ozonerab({4'b1001, foo[ 8: 6]}, fd); $fwrite (fd, " 1093"); $fwrite (fd, " 1094"); ozonerme(foo[14:12], fd); case (foo[11: 9]) 3'h2, 3'h5, 3'h6, 3'h7: ozonef1e_inc_dec(foo[14:9],1'b0, fd); 3'h1, 3'h3, 3'h4: $fwrite (fd, " 1095"); endcase dude(fd); $fwrite (fd, " 1096"); end 17'b00_10??_?_????_?0_0100 : begin ozonef1e(foo, fd); $fwrite (fd, " 1097"); ozonef1e_ye(foo[14:9],foo[ 5], fd); $fwrite (fd, " 1098"); ozoneae(foo[ 8: 6], fd); ozonef1e_hl(foo[11:9],foo[ 5], fd); dude(fd); $fwrite (fd, " 1099"); end 17'b00_10??_?_????_10_0111 : begin ozonef1e(foo, fd); $fwrite (fd, " 1100"); $fwrite (fd, " 1101"); ozonerme(foo[14:12], fd); case (foo[11: 9]) 3'h2, 3'h5, 3'h6, 3'h7: ozonef1e_inc_dec(foo[14:9],1'b0, fd); 3'h1, 3'h3, 3'h4: $fwrite (fd, " 1102"); endcase $fwrite (fd, " 1103"); if (foo[ 6]) $fwrite (fd, " 1104"); else ozonerab({4'b1001, foo[ 8: 6]}, fd); dude(fd); $fwrite (fd, " 1105"); end 17'b00_10??_?_????_?0_1110 : begin ozonef1e(foo, fd); $fwrite (fd, " 1106"); case (foo[11:9]) 3'h2: begin $fwrite (fd, " 1107"); if (foo[14:12] == 3'h0) $fwrite (fd, " 1108"); else ozonerme(foo[14:12], fd); $fwrite (fd, " 1109"); end 3'h6: begin $fwrite (fd, " 1110"); if (foo[14:12] == 3'h0) $fwrite (fd, " 1111"); else ozonerme(foo[14:12], fd); $fwrite (fd, " 1112"); end 3'h0: begin $fwrite (fd, " 1113"); if (foo[14:12] == 3'h0) $fwrite (fd, " 1114"); else ozonerme(foo[14:12], fd); $fwrite (fd, " 1115"); if (foo[ 7: 5] >= 3'h5) $fwrite (fd, " 1116"); else ozonexe(foo[ 8: 5], fd); end 3'h1: begin $fwrite (fd, " 1117"); if (foo[14:12] == 3'h0) $fwrite (fd, " 1118"); else ozonerme(foo[14:12], fd); $fwrite (fd, " 1119"); if (foo[ 7: 5] >= 3'h5) $fwrite (fd, " 1120"); else ozonexe(foo[ 8: 5], fd); end 3'h4: begin $fwrite (fd, " 1121"); if (foo[14:12] == 3'h0) $fwrite (fd, " 1122"); else ozonerme(foo[14:12], fd); $fwrite (fd, " 1123"); if (foo[ 7: 5] >= 3'h5) $fwrite (fd, " 1124"); else ozonexe(foo[ 8: 5], fd); end 3'h5: begin $fwrite (fd, " 1125"); if (foo[14:12] == 3'h0) $fwrite (fd, " 1126"); else ozonerme(foo[14:12], fd); $fwrite (fd, " 1127"); if (foo[ 7: 5] >= 3'h5) $fwrite (fd, " 1128"); else ozonexe(foo[ 8: 5], fd); end endcase dude(fd); $fwrite (fd, " 1129"); end 17'b00_10??_?_????_?0_1111 : casez (foo[14: 9]) 6'b001_10_?: begin ozonef1e(foo, fd); $fwrite (fd, " 1130"); $fwrite (fd, " 1131"); ozonef1e_hl(foo[ 7: 5],foo[ 9], fd); $fwrite (fd, " 1132"); ozonexe(foo[ 8: 5], fd); dude(fd); $fwrite (fd, " 1133"); end 6'b???_11_?: begin ozonef1e(foo, fd); $fwrite (fd, " 1134"); ozoneae(foo[14:12], fd); ozonef1e_hl(foo[ 7: 5],foo[ 9], fd); $fwrite (fd, " 1135"); ozonexe(foo[ 8: 5], fd); dude(fd); $fwrite (fd, " 1136"); end 6'b000_10_1, 6'b010_10_1, 6'b100_10_1, 6'b110_10_1: begin ozonef1e(foo, fd); $fwrite (fd, " 1137"); ozonerab({4'b1001, foo[14:12]}, fd); $fwrite (fd, " 1138"); if ((foo[ 7: 5] >= 3'h1) & (foo[ 7: 5] <= 3'h3)) $fwrite (fd, " 1139"); else ozonexe(foo[ 8: 5], fd); dude(fd); $fwrite (fd, " 1140"); end 6'b000_10_0, 6'b010_10_0, 6'b100_10_0, 6'b110_10_0: begin ozonef1e(foo, fd); $fwrite (fd, " 1141"); $fwrite (fd, " 1142"); ozonerab({4'b1001, foo[14:12]}, fd); $fwrite (fd, " 1143"); $fwrite (fd, " 1144"); ozonef1e_h(foo[ 7: 5], fd); $fwrite (fd, " 1145"); ozonexe(foo[ 8: 5], fd); dude(fd); $fwrite (fd, " 1146"); end 6'b???_00_?: begin ozonef1e(foo, fd); $fwrite (fd, " 1147"); if (foo[ 9]) begin $fwrite (fd, " 1148"); ozoneae(foo[14:12], fd); end else begin $fwrite (fd, " 1149"); ozoneae(foo[14:12], fd); $fwrite (fd, " 1150"); end $fwrite (fd, " 1151"); $fwrite (fd, " 1152"); ozonef1e_h(foo[ 7: 5], fd); $fwrite (fd, " 1153"); ozonexe(foo[ 8: 5], fd); dude(fd); $fwrite (fd, " 1154"); end 6'b???_01_?: begin ozonef1e(foo, fd); $fwrite (fd, " 1155"); ozoneae(foo[14:12], fd); if (foo[ 9]) $fwrite (fd, " 1156"); else $fwrite (fd, " 1157"); $fwrite (fd, " 1158"); $fwrite (fd, " 1159"); ozonef1e_h(foo[ 7: 5], fd); $fwrite (fd, " 1160"); ozonexe(foo[ 8: 5], fd); dude(fd); $fwrite (fd, " 1161"); end 6'b011_10_0: begin ozonef1e(foo, fd); $fwrite (fd, " 1162"); case (foo[ 8: 5]) 4'h0: $fwrite (fd, " 1163"); 4'h1: $fwrite (fd, " 1164"); 4'h2: $fwrite (fd, " 1165"); 4'h3: $fwrite (fd, " 1166"); 4'h4: $fwrite (fd, " 1167"); 4'h5: $fwrite (fd, " 1168"); 4'h8: $fwrite (fd, " 1169"); 4'h9: $fwrite (fd, " 1170"); 4'ha: $fwrite (fd, " 1171"); 4'hb: $fwrite (fd, " 1172"); 4'hc: $fwrite (fd, " 1173"); 4'hd: $fwrite (fd, " 1174"); default: $fwrite (fd, " 1175"); endcase dude(fd); $fwrite (fd, " 1176"); end default: $fwrite (fd, " 1177"); endcase 17'b00_10??_?_????_?0_110? : begin ozonef1e(foo, fd); $fwrite (fd, " 1178"); $fwrite (fd, " 1179"); ozonef1e_hl(foo[11:9], foo[0], fd); $fwrite (fd, " 1180"); ozonef1e_ye(foo[14:9],1'b0, fd); $fwrite (fd, " 1181"); ozonef1e_h(foo[ 7: 5], fd); $fwrite (fd, " 1182"); ozonexe(foo[ 8: 5], fd); dude(fd); $fwrite (fd, " 1183"); end 17'b00_10??_?_????_?1_110? : begin ozonef1e(foo, fd); $fwrite (fd, " 1184"); $fwrite (fd, " 1185"); ozonef1e_hl(foo[11:9],foo[0], fd); $fwrite (fd, " 1186"); ozonef1e_ye(foo[14:9],foo[ 0], fd); $fwrite (fd, " 1187"); $fwrite (fd, " 1188"); ozonef1e_h(foo[ 7: 5], fd); $fwrite (fd, " 1189"); ozonexe(foo[ 8: 5], fd); dude(fd); $fwrite (fd, " 1190"); end 17'b00_10??_?_????_?0_101? : begin ozonef1e(foo, fd); $fwrite (fd, " 1191"); ozonef1e_ye(foo[14:9],foo[ 0], fd); $fwrite (fd, " 1192"); $fwrite (fd, " 1193"); ozonef1e_hl(foo[11:9],foo[0], fd); $fwrite (fd, " 1194"); $fwrite (fd, " 1195"); ozonef1e_h(foo[ 7: 5], fd); $fwrite (fd, " 1196"); ozonexe(foo[ 8: 5], fd); dude(fd); $fwrite (fd, " 1197"); end 17'b00_10??_?_????_?0_1001 : begin ozonef1e(foo, fd); $fwrite (fd, " 1198"); $fwrite (fd, " 1199"); ozonef1e_h(foo[11:9], fd); $fwrite (fd, " 1200"); ozonef1e_ye(foo[14:9],1'b0, fd); $fwrite (fd, " 1201"); case (foo[ 7: 5]) 3'h1, 3'h2, 3'h3: $fwrite (fd, " 1202"); default: begin $fwrite (fd, " 1203"); $fwrite (fd, " 1204"); ozonexe(foo[ 8: 5], fd); end endcase dude(fd); $fwrite (fd, " 1205"); end 17'b00_10??_?_????_?0_0101 : begin ozonef1e(foo, fd); $fwrite (fd, " 1206"); case (foo[11: 9]) 3'h1, 3'h3, 3'h4: $fwrite (fd, " 1207"); default: begin ozonef1e_ye(foo[14:9],1'b0, fd); $fwrite (fd, " 1208"); $fwrite (fd, " 1209"); end endcase $fwrite (fd, " 1210"); $fwrite (fd, " 1211"); ozonef1e_h(foo[ 7: 5], fd); $fwrite (fd, " 1212"); ozonexe(foo[ 8: 5], fd); dude(fd); $fwrite (fd, " 1213"); end 17'b00_10??_?_????_?1_1110 : begin ozonef1e(foo, fd); $fwrite (fd, " 1214"); ozonef1e_ye(foo[14:9],1'b0, fd); $fwrite (fd, " 1215"); $fwrite (fd, " 1216"); ozonef1e_h(foo[11: 9], fd); $fwrite (fd, " 1217"); $fwrite (fd, " 1218"); ozonef1e_h(foo[ 7: 5], fd); $fwrite (fd, " 1219"); ozonexe(foo[ 8: 5], fd); dude(fd); $fwrite (fd, " 1220"); end 17'b00_10??_?_????_?0_1000 : begin ozonef1e(foo, fd); $fwrite (fd, " 1221"); ozonef1e_ye(foo[14:9],1'b0, fd); $fwrite (fd, " 1222"); $fwrite (fd, " 1223"); ozonef1e_h(foo[11: 9], fd); $fwrite (fd, " 1224"); $fwrite (fd, " 1225"); ozonef1e_h(foo[ 7: 5], fd); $fwrite (fd, " 1226"); ozonexe(foo[ 8: 5], fd); dude(fd); $fwrite (fd, " 1227"); end 17'b10_01??_?_????_??_???? : begin if (foo[27]) $fwrite (fd," 1228"); else $fwrite (fd," 1229"); ozonecon(foo[20:16], fd); $fwrite (fd, " 1230"); ozonef2(foo[31:0], fd); dude(fd); $fwrite (fd, " 1231"); end 17'b00_1000_?_????_01_0011 : if (~|foo[ 9: 8]) begin if (foo[ 7]) $fwrite (fd," 1232"); else $fwrite (fd," 1233"); ozonecon(foo[14:10], fd); $fwrite (fd, " 1234"); ozonef2e(foo[31:0], fd); dude(fd); $fwrite (fd, " 1235"); end else begin $fwrite (fd, " 1236"); ozonecon(foo[14:10], fd); $fwrite (fd, " 1237"); ozonef3e(foo[31:0], fd); dude(fd); $fwrite (fd, " 1238"); end 17'b11_110?_1_????_??_???? : begin ozonef3(foo[31:0], fd); dude(fd); $fwrite(fd, " 1239"); end 17'b11_110?_0_????_??_???? : begin : f4_body casez (foo[24:20]) 5'b0_1110, 5'b1_0???, 5'b1_1111: begin $fwrite (fd, " 1240"); end 5'b0_00??: begin ozoneacc(foo[26], fd); $fwrite (fd, " 1241"); ozoneacc(foo[25], fd); ozonebmuop(foo[24:20], fd); ozoneae(foo[18:16], fd); $fwrite (fd, " 1242"); dude(fd); $fwrite(fd, " 1243"); end 5'b0_01??: begin ozoneacc(foo[26], fd); $fwrite (fd, " 1244"); ozoneacc(foo[25], fd); ozonebmuop(foo[24:20], fd); ozonearm(foo[18:16], fd); dude(fd); $fwrite(fd, " 1245"); end 5'b0_1011: begin ozoneacc(foo[26], fd); $fwrite (fd, " 1246"); ozonebmuop(foo[24:20], fd); $fwrite (fd, " 1247"); ozoneae(foo[18:16], fd); $fwrite (fd, " 1248"); dude(fd); $fwrite(fd, " 1249"); end 5'b0_100?, 5'b0_1010, 5'b0_110? : begin ozoneacc(foo[26], fd); $fwrite (fd, " 1250"); ozonebmuop(foo[24:20], fd); $fwrite (fd, " 1251"); ozoneacc(foo[25], fd); $fwrite (fd, " 1252"); ozoneae(foo[18:16], fd); $fwrite (fd, " 1253"); dude(fd); $fwrite(fd, " 1254"); end 5'b0_1111 : begin ozoneacc(foo[26], fd); $fwrite (fd, " 1255"); ozoneacc(foo[25], fd); $fwrite (fd, " 1256"); ozoneae(foo[18:16], fd); dude(fd); $fwrite(fd, " 1257"); end 5'b1_10??, 5'b1_110?, 5'b1_1110 : begin ozoneacc(foo[26], fd); $fwrite (fd, " 1258"); ozonebmuop(foo[24:20], fd); $fwrite (fd, " 1259"); ozoneacc(foo[25], fd); $fwrite (fd, " 1260"); ozonearm(foo[18:16], fd); $fwrite (fd, " 1261"); dude(fd); $fwrite(fd, " 1262"); end endcase end 17'b11_100?_?_????_??_???? : casez (foo[23:19]) 5'b111??, 5'b0111?: begin ozoneae(foo[26:24], fd); $fwrite (fd, " 1263"); ozonef3f4imop(foo[23:19], fd); $fwrite (fd, " 1264"); ozoneae(foo[18:16], fd); $fwrite (fd, " 1265"); skyway(foo[15:12], fd); skyway(foo[11: 8], fd); skyway(foo[ 7: 4], fd); skyway(foo[ 3:0], fd); $fwrite (fd, " 1266"); dude(fd); $fwrite(fd, " 1267"); end 5'b?0???, 5'b110??: begin ozoneae(foo[26:24], fd); $fwrite (fd, " 1268"); if (foo[23:21] == 3'b100) $fwrite (fd, " 1269"); ozoneae(foo[18:16], fd); if (foo[19]) $fwrite (fd, " 1270"); else $fwrite (fd, " 1271"); ozonef3f4imop(foo[23:19], fd); $fwrite (fd, " 1272"); ozonef3f4_iext(foo[20:19], foo[15:0], fd); dude(fd); $fwrite(fd, " 1273"); end 5'b010??, 5'b0110?: begin ozoneae(foo[18:16], fd); if (foo[19]) $fwrite (fd, " 1274"); else $fwrite (fd, " 1275"); ozonef3f4imop(foo[23:19], fd); $fwrite (fd, " 1276"); ozonef3f4_iext(foo[20:19], foo[15:0], fd); dude(fd); $fwrite(fd, " 1277"); end endcase 17'b00_1000_?_????_11_0011 : begin $fwrite (fd," 1278"); ozonecon(foo[14:10], fd); $fwrite (fd, " 1279"); casez (foo[25:21]) 5'b0_1110, 5'b1_0???, 5'b1_1111: begin $fwrite(fd, " 1280"); end 5'b0_00??: begin ozoneae(foo[20:18], fd); $fwrite (fd, " 1281"); ozoneae(foo[17:15], fd); ozonebmuop(foo[25:21], fd); ozoneae(foo[ 8: 6], fd); $fwrite (fd, " 1282"); dude(fd); $fwrite(fd, " 1283"); end 5'b0_01??: begin ozoneae(foo[20:18], fd); $fwrite (fd, " 1284"); ozoneae(foo[17:15], fd); ozonebmuop(foo[25:21], fd); ozonearm(foo[ 8: 6], fd); dude(fd); $fwrite(fd, " 1285"); end 5'b0_1011: begin ozoneae(foo[20:18], fd); $fwrite (fd, " 1286"); ozonebmuop(foo[25:21], fd); $fwrite (fd, " 1287"); ozoneae(foo[ 8: 6], fd); $fwrite (fd, " 1288"); dude(fd); $fwrite(fd, " 1289"); end 5'b0_100?, 5'b0_1010, 5'b0_110? : begin ozoneae(foo[20:18], fd); $fwrite (fd, " 1290"); ozonebmuop(foo[25:21], fd); $fwrite (fd, " 1291"); ozoneae(foo[17:15], fd); $fwrite (fd, " 1292"); ozoneae(foo[ 8: 6], fd); $fwrite (fd, " 1293"); dude(fd); $fwrite(fd, " 1294"); end 5'b0_1111 : begin ozoneae(foo[20:18], fd); $fwrite (fd, " 1295"); ozoneae(foo[17:15], fd); $fwrite (fd, " 1296"); ozoneae(foo[ 8: 6], fd); dude(fd); $fwrite(fd, " 1297"); end 5'b1_10??, 5'b1_110?, 5'b1_1110 : begin ozoneae(foo[20:18], fd); $fwrite (fd, " 1298"); ozonebmuop(foo[25:21], fd); $fwrite (fd, " 1299"); ozoneae(foo[17:15], fd); $fwrite (fd, " 1300"); ozonearm(foo[ 8: 6], fd); $fwrite (fd, " 1301"); dude(fd); $fwrite(fd, " 1302"); end endcase end 17'b00_0010_?_????_??_???? : begin ozonerab({1'b0, foo[25:20]}, fd); $fwrite (fd, " 1303"); skyway(foo[19:16], fd); dude(fd); $fwrite(fd, " 1304"); end 17'b00_01??_?_????_??_???? : begin if (foo[27]) begin $fwrite (fd, " 1305"); if (foo[26]) $fwrite (fd, " 1306"); else $fwrite (fd, " 1307"); skyway(foo[19:16], fd); $fwrite (fd, " 1308"); ozonerab({1'b0, foo[25:20]}, fd); end else begin ozonerab({1'b0, foo[25:20]}, fd); $fwrite (fd, " 1309"); if (foo[26]) $fwrite (fd, " 1310"); else $fwrite (fd, " 1311"); skyway(foo[19:16], fd); $fwrite (fd, " 1312"); end dude(fd); $fwrite(fd, " 1313"); end 17'b01_000?_?_????_??_???? : begin if (foo[26]) begin ozonerb(foo[25:20], fd); $fwrite (fd, " 1314"); ozoneae(foo[18:16], fd); ozonehl(foo[19], fd); end else begin ozoneae(foo[18:16], fd); ozonehl(foo[19], fd); $fwrite (fd, " 1315"); ozonerb(foo[25:20], fd); end dude(fd); $fwrite(fd, " 1316"); end 17'b01_10??_?_????_??_???? : begin if (foo[27]) begin ozonerab({1'b0, foo[25:20]}, fd); $fwrite (fd, " 1317"); ozonerx(foo, fd); end else begin ozonerx(foo, fd); $fwrite (fd, " 1318"); ozonerab({1'b0, foo[25:20]}, fd); end dude(fd); $fwrite(fd, " 1319"); end 17'b11_101?_?_????_??_???? : begin ozonerab (foo[26:20], fd); $fwrite (fd, " 1320"); skyway(foo[19:16], fd); skyway(foo[15:12], fd); skyway(foo[11: 8], fd); skyway(foo[ 7: 4], fd); skyway(foo[ 3: 0], fd); dude(fd); $fwrite(fd, " 1321"); end 17'b11_0000_?_????_??_???? : begin casez (foo[25:23]) 3'b00?: begin ozonerab(foo[22:16], fd); $fwrite (fd, " 1322"); end 3'b01?: begin $fwrite (fd, " 1323"); if (foo[22:16]>=7'h60) $fwrite (fd, " 1324"); else ozonerab(foo[22:16], fd); end 3'b110: $fwrite (fd, " 1325"); 3'b10?: begin $fwrite (fd, " 1326"); if (foo[22:16]>=7'h60) $fwrite (fd, " 1327"); else ozonerab(foo[22:16], fd); end 3'b111: begin $fwrite (fd, " 1328"); ozonerab(foo[22:16], fd); $fwrite (fd, " 1329"); end endcase dude(fd); $fwrite(fd, " 1330"); end 17'b00_10??_?_????_?1_0000 : begin if (foo[27]) begin $fwrite (fd, " 1331"); ozonerp(foo[14:12], fd); $fwrite (fd, " 1332"); skyway(foo[19:16], fd); skyway({foo[15],foo[11: 9]}, fd); skyway(foo[ 8: 5], fd); $fwrite (fd, " 1333"); if (foo[26:20]>=7'h60) $fwrite (fd, " 1334"); else ozonerab(foo[26:20], fd); end else begin ozonerab(foo[26:20], fd); $fwrite (fd, " 1335"); $fwrite (fd, " 1336"); ozonerp(foo[14:12], fd); $fwrite (fd, " 1337"); skyway(foo[19:16], fd); skyway({foo[15],foo[11: 9]}, fd); skyway(foo[ 8: 5], fd); $fwrite (fd, " 1338"); end dude(fd); $fwrite(fd, " 1339"); end 17'b00_101?_1_0000_?1_0010 : if (~|foo[11: 7]) begin if (foo[ 6]) begin $fwrite (fd, " 1340"); ozonerp(foo[14:12], fd); $fwrite (fd, " 1341"); ozonejk(foo[ 5], fd); $fwrite (fd, " 1342"); if (foo[26:20]>=7'h60) $fwrite (fd, " 1343"); else ozonerab(foo[26:20], fd); end else begin ozonerab(foo[26:20], fd); $fwrite (fd, " 1344"); $fwrite (fd, " 1345"); ozonerp(foo[14:12], fd); $fwrite (fd, " 1346"); ozonejk(foo[ 5], fd); $fwrite (fd, " 1347"); end dude(fd); $fwrite(fd, " 1348"); end else $fwrite(fd, " 1349"); 17'b00_100?_0_0011_?1_0101 : if (~|foo[ 8: 7]) begin if (foo[6]) begin ozonerab(foo[26:20], fd); $fwrite (fd, " 1350"); ozoneye(foo[14: 9],foo[ 5], fd); end else begin ozoneye(foo[14: 9],foo[ 5], fd); $fwrite (fd, " 1351"); if (foo[26:20]>=7'h60) $fwrite (fd, " 1352"); else ozonerab(foo[26:20], fd); end dude(fd); $fwrite(fd, " 1353"); end else $fwrite(fd, " 1354"); 17'b00_1001_0_0000_?1_0010 : if (~|foo[25:20]) begin ozoneye(foo[14: 9],1'b0, fd); $fwrite (fd, " 1355"); ozonef1e_h(foo[11: 9], fd); $fwrite (fd, " 1356"); ozonef1e_h(foo[ 7: 5], fd); $fwrite (fd, " 1357"); ozonexe(foo[ 8: 5], fd); dude(fd); $fwrite(fd, " 1358"); end else $fwrite(fd, " 1359"); 17'b00_101?_0_????_?1_0010 : if (~foo[13]) begin if (foo[12]) begin $fwrite (fd, " 1360"); if (foo[26:20]>=7'h60) $fwrite (fd, " 1361"); else ozonerab(foo[26:20], fd); $fwrite (fd, " 1362"); $fwrite (fd, " 1363"); skyway({1'b0,foo[18:16]}, fd); skyway({foo[15],foo[11: 9]}, fd); skyway(foo[ 8: 5], fd); dude(fd); $fwrite(fd, " 1364"); end else begin ozonerab(foo[26:20], fd); $fwrite (fd, " 1365"); $fwrite (fd, " 1366"); skyway({1'b0,foo[18:16]}, fd); skyway({foo[15],foo[11: 9]}, fd); skyway(foo[ 8: 5], fd); dude(fd); $fwrite(fd, " 1367"); end end else $fwrite(fd, " 1368"); 17'b01_01??_?_????_??_???? : begin ozonerab({1'b0,foo[27:26],foo[19:16]}, fd); $fwrite (fd, " 1369"); ozonerab({1'b0,foo[25:20]}, fd); dude(fd); $fwrite(fd, " 1370"); end 17'b00_100?_?_???0_11_0101 : if (~foo[6]) begin $fwrite (fd," 1371"); ozonecon(foo[14:10], fd); $fwrite (fd, " 1372"); ozonerab({foo[ 9: 7],foo[19:16]}, fd); $fwrite (fd, " 1373"); ozonerab({foo[26:20]}, fd); dude(fd); $fwrite(fd, " 1374"); end else $fwrite(fd, " 1375"); 17'b00_1000_?_????_?1_0010 : if (~|foo[25:24]) begin ozonery(foo[23:20], fd); $fwrite (fd, " 1376"); ozonerp(foo[14:12], fd); $fwrite (fd, " 1377"); skyway(foo[19:16], fd); skyway({foo[15],foo[11: 9]}, fd); skyway(foo[ 8: 5], fd); dude(fd); $fwrite(fd, " 1378"); end else if ((foo[25:24] == 2'b10) & ~|foo[19:15] & ~|foo[11: 6]) begin ozonery(foo[23:20], fd); $fwrite (fd, " 1379"); ozonerp(foo[14:12], fd); $fwrite (fd, " 1380"); ozonejk(foo[ 5], fd); dude(fd); $fwrite(fd, " 1381"); end else $fwrite(fd, " 1382"); 17'b11_01??_?_????_??_????, 17'b10_00??_?_????_??_???? : if (foo[30]) $fwrite(fd, " 1383:%x", foo[27:16]); else $fwrite(fd, " 1384:%x", foo[27:16]); 17'b00_10??_?_????_01_1000 : if (~foo[6]) begin if (foo[7]) $fwrite(fd, " 1385:%x", foo[27: 8]); else $fwrite(fd, " 1386:%x", foo[27: 8]); end else $fwrite(fd, " 1387"); 17'b00_10??_?_????_11_1000 : begin $fwrite (fd," 1388"); ozonecon(foo[14:10], fd); $fwrite (fd, " 1389"); if (foo[15]) $fwrite (fd, " 1390"); else $fwrite (fd, " 1391"); skyway(foo[27:24], fd); skyway(foo[23:20], fd); skyway(foo[19:16], fd); skyway(foo[ 9: 6], fd); dude(fd); $fwrite(fd, " 1392"); end 17'b11_0001_?_????_??_???? : casez (foo[25:22]) 4'b01?? : begin $fwrite (fd," 1393"); ozonecon(foo[20:16], fd); case (foo[23:21]) 3'h0 : $fwrite (fd, " 1394"); 3'h1 : $fwrite (fd, " 1395"); 3'h2 : $fwrite (fd, " 1396"); 3'h3 : $fwrite (fd, " 1397"); 3'h4 : $fwrite (fd, " 1398"); 3'h5 : $fwrite (fd, " 1399"); 3'h6 : $fwrite (fd, " 1400"); 3'h7 : $fwrite (fd, " 1401"); endcase dude(fd); $fwrite(fd, " 1402"); end 4'b0000 : $fwrite(fd, " 1403:%x", foo[21:16]); 4'b0010 : if (~|foo[21:16]) $fwrite(fd, " 1404"); 4'b1010 : if (~|foo[21:17]) begin if (foo[16]) $fwrite(fd, " 1405"); else $fwrite(fd, " 1406"); end default : $fwrite(fd, " 1407"); endcase 17'b01_11??_?_????_??_???? : if (foo[27:23] === 5'h00) $fwrite(fd, " 1408:%x", foo[22:16]); else $fwrite(fd, " 1409:%x", foo[22:16]); default: $fwrite(fd, " 1410"); endcase end endtask //(query-replace-regexp "\\([a-z0-9_]+\\) *( *\\([][a-z0-9_~': ]+\\) *, *\\([][a-z0-9'~: ]+\\) *, *\\([][a-z0-9'~: ]+\\) *);" "$c(\"\\1(\",\\2,\",\",\\3,\",\",\\4,\");\");" nil nil nil) //(query-replace-regexp "\\([a-z0-9_]+\\) *( *\\([][a-z0-9_~': ]+\\) *, *\\([][a-z0-9'~: ]+\\) *);" "$c(\"\\1(\",\\2,\",\",\\3,\");\");" nil nil nil) endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2006 by Wilson Snyder. `include "verilated.v" module t_case_write2_tasks (); // verilator lint_off WIDTH // verilator lint_off CASEINCOMPLETE `define FD_BITS 31:0 parameter STRLEN = 78; task ozonerab; input [6:0] rab; input [`FD_BITS] fd; // verilator no_inline_task begin case (rab[6:0]) 7'h00 : $fwrite (fd, " 0"); 7'h01 : $fwrite (fd, " 1"); 7'h02 : $fwrite (fd, " 2"); 7'h03 : $fwrite (fd, " 3"); 7'h04 : $fwrite (fd, " 4"); 7'h05 : $fwrite (fd, " 5"); 7'h06 : $fwrite (fd, " 6"); 7'h07 : $fwrite (fd, " 7"); 7'h08 : $fwrite (fd, " 8"); 7'h09 : $fwrite (fd, " 9"); 7'h0a : $fwrite (fd, " 10"); 7'h0b : $fwrite (fd, " 11"); 7'h0c : $fwrite (fd, " 12"); 7'h0d : $fwrite (fd, " 13"); 7'h0e : $fwrite (fd, " 14"); 7'h0f : $fwrite (fd, " 15"); 7'h10 : $fwrite (fd, " 16"); 7'h11 : $fwrite (fd, " 17"); 7'h12 : $fwrite (fd, " 18"); 7'h13 : $fwrite (fd, " 19"); 7'h14 : $fwrite (fd, " 20"); 7'h15 : $fwrite (fd, " 21"); 7'h16 : $fwrite (fd, " 22"); 7'h17 : $fwrite (fd, " 23"); 7'h18 : $fwrite (fd, " 24"); 7'h19 : $fwrite (fd, " 25"); 7'h1a : $fwrite (fd, " 26"); 7'h1b : $fwrite (fd, " 27"); 7'h1c : $fwrite (fd, " 28"); 7'h1d : $fwrite (fd, " 29"); 7'h1e : $fwrite (fd, " 30"); 7'h1f : $fwrite (fd, " 31"); 7'h20 : $fwrite (fd, " 32"); 7'h21 : $fwrite (fd, " 33"); 7'h22 : $fwrite (fd, " 34"); 7'h23 : $fwrite (fd, " 35"); 7'h24 : $fwrite (fd, " 36"); 7'h25 : $fwrite (fd, " 37"); 7'h26 : $fwrite (fd, " 38"); 7'h27 : $fwrite (fd, " 39"); 7'h28 : $fwrite (fd, " 40"); 7'h29 : $fwrite (fd, " 41"); 7'h2a : $fwrite (fd, " 42"); 7'h2b : $fwrite (fd, " 43"); 7'h2c : $fwrite (fd, " 44"); 7'h2d : $fwrite (fd, " 45"); 7'h2e : $fwrite (fd, " 46"); 7'h2f : $fwrite (fd, " 47"); 7'h30 : $fwrite (fd, " 48"); 7'h31 : $fwrite (fd, " 49"); 7'h32 : $fwrite (fd, " 50"); 7'h33 : $fwrite (fd, " 51"); 7'h34 : $fwrite (fd, " 52"); 7'h35 : $fwrite (fd, " 53"); 7'h36 : $fwrite (fd, " 54"); 7'h37 : $fwrite (fd, " 55"); 7'h38 : $fwrite (fd, " 56"); 7'h39 : $fwrite (fd, " 57"); 7'h3a : $fwrite (fd, " 58"); 7'h3b : $fwrite (fd, " 59"); 7'h3c : $fwrite (fd, " 60"); 7'h3d : $fwrite (fd, " 61"); 7'h3e : $fwrite (fd, " 62"); 7'h3f : $fwrite (fd, " 63"); 7'h40 : $fwrite (fd, " 64"); 7'h41 : $fwrite (fd, " 65"); 7'h42 : $fwrite (fd, " 66"); 7'h43 : $fwrite (fd, " 67"); 7'h44 : $fwrite (fd, " 68"); 7'h45 : $fwrite (fd, " 69"); 7'h46 : $fwrite (fd, " 70"); 7'h47 : $fwrite (fd, " 71"); 7'h48 : $fwrite (fd, " 72"); 7'h49 : $fwrite (fd, " 73"); 7'h4a : $fwrite (fd, " 74"); 7'h4b : $fwrite (fd, " 75"); 7'h4c : $fwrite (fd, " 76"); 7'h4d : $fwrite (fd, " 77"); 7'h4e : $fwrite (fd, " 78"); 7'h4f : $fwrite (fd, " 79"); 7'h50 : $fwrite (fd, " 80"); 7'h51 : $fwrite (fd, " 81"); 7'h52 : $fwrite (fd, " 82"); 7'h53 : $fwrite (fd, " 83"); 7'h54 : $fwrite (fd, " 84"); 7'h55 : $fwrite (fd, " 85"); 7'h56 : $fwrite (fd, " 86"); 7'h57 : $fwrite (fd, " 87"); 7'h58 : $fwrite (fd, " 88"); 7'h59 : $fwrite (fd, " 89"); 7'h5a : $fwrite (fd, " 90"); 7'h5b : $fwrite (fd, " 91"); 7'h5c : $fwrite (fd, " 92"); 7'h5d : $fwrite (fd, " 93"); 7'h5e : $fwrite (fd, " 94"); 7'h5f : $fwrite (fd, " 95"); 7'h60 : $fwrite (fd, " 96"); 7'h61 : $fwrite (fd, " 97"); 7'h62 : $fwrite (fd, " 98"); 7'h63 : $fwrite (fd, " 99"); 7'h64 : $fwrite (fd, " 100"); 7'h65 : $fwrite (fd, " 101"); 7'h66 : $fwrite (fd, " 102"); 7'h67 : $fwrite (fd, " 103"); 7'h68 : $fwrite (fd, " 104"); 7'h69 : $fwrite (fd, " 105"); 7'h6a : $fwrite (fd, " 106"); 7'h6b : $fwrite (fd, " 107"); 7'h6c : $fwrite (fd, " 108"); 7'h6d : $fwrite (fd, " 109"); 7'h6e : $fwrite (fd, " 110"); 7'h6f : $fwrite (fd, " 111"); 7'h70 : $fwrite (fd, " 112"); 7'h71 : $fwrite (fd, " 113"); 7'h72 : $fwrite (fd, " 114"); 7'h73 : $fwrite (fd, " 115"); 7'h74 : $fwrite (fd, " 116"); 7'h75 : $fwrite (fd, " 117"); 7'h76 : $fwrite (fd, " 118"); 7'h77 : $fwrite (fd, " 119"); 7'h78 : $fwrite (fd, " 120"); 7'h79 : $fwrite (fd, " 121"); 7'h7a : $fwrite (fd, " 122"); 7'h7b : $fwrite (fd, " 123"); 7'h7c : $fwrite (fd, " 124"); 7'h7d : $fwrite (fd, " 125"); 7'h7e : $fwrite (fd, " 126"); 7'h7f : $fwrite (fd, " 127"); default:$fwrite (fd, " 128"); endcase end endtask task ozonerb; input [5:0] rb; input [`FD_BITS] fd; // verilator no_inline_task begin case (rb[5:0]) 6'h10, 6'h17, 6'h1e, 6'h1f: $fwrite (fd, " 129"); default: ozonerab({1'b1, rb}, fd); endcase end endtask task ozonef3f4_iext; input [1:0] foo; input [15:0] im16; input [`FD_BITS] fd; // verilator no_inline_task begin case (foo) 2'h0 : begin skyway({4{im16[15]}}, fd); skyway({4{im16[15]}}, fd); skyway(im16[15:12], fd); skyway(im16[11: 8], fd); skyway(im16[ 7: 4], fd); skyway(im16[ 3:0], fd); $fwrite (fd, " 130"); end 2'h1 : begin $fwrite (fd, " 131"); skyway(im16[15:12], fd); skyway(im16[11: 8], fd); skyway(im16[ 7: 4], fd); skyway(im16[ 3:0], fd); end 2'h2 : begin skyway({4{im16[15]}}, fd); skyway({4{im16[15]}}, fd); skyway(im16[15:12], fd); skyway(im16[11: 8], fd); skyway(im16[ 7: 4], fd); skyway(im16[ 3:0], fd); $fwrite (fd, " 132"); end 2'h3 : begin $fwrite (fd, " 133"); skyway(im16[15:12], fd); skyway(im16[11: 8], fd); skyway(im16[ 7: 4], fd); skyway(im16[ 3:0], fd); end endcase end endtask task skyway; input [ 3:0] hex; input [`FD_BITS] fd; // verilator no_inline_task begin case (hex) 4'h0 : $fwrite (fd, " 134"); 4'h1 : $fwrite (fd, " 135"); 4'h2 : $fwrite (fd, " 136"); 4'h3 : $fwrite (fd, " 137"); 4'h4 : $fwrite (fd, " 138"); 4'h5 : $fwrite (fd, " 139"); 4'h6 : $fwrite (fd, " 140"); 4'h7 : $fwrite (fd, " 141"); 4'h8 : $fwrite (fd, " 142"); 4'h9 : $fwrite (fd, " 143"); 4'ha : $fwrite (fd, " 144"); 4'hb : $fwrite (fd, " 145"); 4'hc : $fwrite (fd, " 146"); 4'hd : $fwrite (fd, " 147"); 4'he : $fwrite (fd, " 148"); 4'hf : $fwrite (fd, " 149"); endcase end endtask task ozonesr; input [ 15:0] foo; input [`FD_BITS] fd; // verilator no_inline_task begin case (foo[11: 9]) 3'h0 : $fwrite (fd, " 158"); 3'h1 : $fwrite (fd, " 159"); 3'h2 : $fwrite (fd, " 160"); 3'h3 : $fwrite (fd, " 161"); 3'h4 : $fwrite (fd, " 162"); 3'h5 : $fwrite (fd, " 163"); 3'h6 : $fwrite (fd, " 164"); 3'h7 : $fwrite (fd, " 165"); endcase end endtask task ozonejk; input k; input [`FD_BITS] fd; // verilator no_inline_task begin if (k) $fwrite (fd, " 166"); else $fwrite (fd, " 167"); end endtask task ozoneae; input [ 2:0] ae; input [`FD_BITS] fd; // verilator no_inline_task begin case (ae) 3'b000 : $fwrite (fd, " 168"); 3'b001 : $fwrite (fd, " 169"); 3'b010 : $fwrite (fd, " 170"); 3'b011 : $fwrite (fd, " 171"); 3'b100 : $fwrite (fd, " 172"); 3'b101 : $fwrite (fd, " 173"); 3'b110 : $fwrite (fd, " 174"); 3'b111 : $fwrite (fd, " 175"); endcase end endtask task ozoneaee; input [ 2:0] aee; input [`FD_BITS] fd; // verilator no_inline_task begin case (aee) 3'b001, 3'b011, 3'b101, 3'b111 : $fwrite (fd, " 176"); 3'b000 : $fwrite (fd, " 177"); 3'b010 : $fwrite (fd, " 178"); 3'b100 : $fwrite (fd, " 179"); 3'b110 : $fwrite (fd, " 180"); endcase end endtask task ozoneape; input [ 2:0] ape; input [`FD_BITS] fd; // verilator no_inline_task begin case (ape) 3'b001, 3'b011, 3'b101, 3'b111 : $fwrite (fd, " 181"); 3'b000 : $fwrite (fd, " 182"); 3'b010 : $fwrite (fd, " 183"); 3'b100 : $fwrite (fd, " 184"); 3'b110 : $fwrite (fd, " 185"); endcase end endtask task ozonef1; input [ 31:0] foo; input [`FD_BITS] fd; // verilator no_inline_task begin case (foo[24:21]) 4'h0 : if (foo[26]) $fwrite (fd, " 186"); else $fwrite (fd, " 187"); 4'h1 : case (foo[26:25]) 2'b00 : $fwrite (fd, " 188"); 2'b01 : $fwrite (fd, " 189"); 2'b10 : $fwrite (fd, " 190"); 2'b11 : $fwrite (fd, " 191"); endcase 4'h2 : $fwrite (fd, " 192"); 4'h3 : case (foo[26:25]) 2'b00 : $fwrite (fd, " 193"); 2'b01 : $fwrite (fd, " 194"); 2'b10 : $fwrite (fd, " 195"); 2'b11 : $fwrite (fd, " 196"); endcase 4'h4 : if (foo[26]) $fwrite (fd, " 197"); else $fwrite (fd, " 198"); 4'h5 : case (foo[26:25]) 2'b00 : $fwrite (fd, " 199"); 2'b01 : $fwrite (fd, " 200"); 2'b10 : $fwrite (fd, " 201"); 2'b11 : $fwrite (fd, " 202"); endcase 4'h6 : $fwrite (fd, " 203"); 4'h7 : case (foo[26:25]) 2'b00 : $fwrite (fd, " 204"); 2'b01 : $fwrite (fd, " 205"); 2'b10 : $fwrite (fd, " 206"); 2'b11 : $fwrite (fd, " 207"); endcase 4'h8 : case (foo[26:25]) 2'b00 : $fwrite (fd, " 208"); 2'b01 : $fwrite (fd, " 209"); 2'b10 : $fwrite (fd, " 210"); 2'b11 : $fwrite (fd, " 211"); endcase 4'h9 : case (foo[26:25]) 2'b00 : $fwrite (fd, " 212"); 2'b01 : $fwrite (fd, " 213"); 2'b10 : $fwrite (fd, " 214"); 2'b11 : $fwrite (fd, " 215"); endcase 4'ha : if (foo[25]) $fwrite (fd, " 216"); else $fwrite (fd, " 217"); 4'hb : if (foo[25]) $fwrite (fd, " 218"); else $fwrite (fd, " 219"); 4'hc : if (foo[26]) $fwrite (fd, " 220"); else $fwrite (fd, " 221"); 4'hd : case (foo[26:25]) 2'b00 : $fwrite (fd, " 222"); 2'b01 : $fwrite (fd, " 223"); 2'b10 : $fwrite (fd, " 224"); 2'b11 : $fwrite (fd, " 225"); endcase 4'he : case (foo[26:25]) 2'b00 : $fwrite (fd, " 226"); 2'b01 : $fwrite (fd, " 227"); 2'b10 : $fwrite (fd, " 228"); 2'b11 : $fwrite (fd, " 229"); endcase 4'hf : case (foo[26:25]) 2'b00 : $fwrite (fd, " 230"); 2'b01 : $fwrite (fd, " 231"); 2'b10 : $fwrite (fd, " 232"); 2'b11 : $fwrite (fd, " 233"); endcase endcase end endtask task ozonef1e; input [ 31:0] foo; input [`FD_BITS] fd; // verilator no_inline_task begin case (foo[27:21]) 7'h00: begin ozoneae(foo[20:18], fd); $fwrite (fd," 234"); $fwrite (fd, " 235"); end 7'h01: begin ozoneae(foo[20:18], fd); $fwrite (fd," 236"); ozoneae(foo[17:15], fd); $fwrite (fd," 237"); $fwrite (fd, " 238"); end 7'h02: $fwrite (fd, " 239"); 7'h03: begin ozoneae(foo[20:18], fd); $fwrite (fd," 240"); ozoneae(foo[17:15], fd); $fwrite (fd," 241"); $fwrite (fd, " 242"); end 7'h04: begin ozoneae(foo[20:18], fd); $fwrite (fd," 243"); $fwrite (fd," 244"); end 7'h05: begin ozoneae(foo[20:18], fd); $fwrite (fd," 245"); ozoneae(foo[17:15], fd); $fwrite (fd," 246"); end 7'h06: $fwrite (fd, " 247"); 7'h07: begin ozoneae(foo[20:18], fd); $fwrite (fd," 248"); ozoneae(foo[17:15], fd); $fwrite (fd," 249"); end 7'h08: begin ozoneae(foo[20:18], fd); $fwrite (fd," 250"); ozoneae(foo[17:15], fd); $fwrite (fd," 251"); end 7'h09: begin ozoneae(foo[20:18], fd); $fwrite (fd," 252"); ozoneae(foo[17:15], fd); $fwrite (fd," 253"); end 7'h0a: begin ozoneae(foo[17:15], fd); $fwrite (fd," 254"); end 7'h0b: begin ozoneae(foo[17:15], fd); $fwrite (fd," 255"); end 7'h0c: begin ozoneae(foo[20:18], fd); $fwrite (fd," 256"); end 7'h0d: begin ozoneae(foo[20:18], fd); $fwrite (fd," 257"); ozoneae(foo[17:15], fd); $fwrite (fd," 258"); end 7'h0e: begin ozoneae(foo[20:18], fd); $fwrite (fd," 259"); ozoneae(foo[17:15], fd); $fwrite (fd," 260"); end 7'h0f: begin ozoneae(foo[20:18], fd); $fwrite (fd," 261"); ozoneae(foo[17:15], fd); $fwrite (fd," 262"); end 7'h10: begin ozoneae(foo[20:18], fd); $fwrite (fd," 263"); ozoneae(foo[17:15], fd); $fwrite (fd," 264"); $fwrite (fd, " 265"); $fwrite (fd, " 266"); end 7'h11: begin ozoneae(foo[20:18], fd); $fwrite (fd," 267"); ozoneae(foo[17:15], fd); $fwrite (fd," 268"); $fwrite (fd, " 269"); $fwrite (fd, " 270"); end 7'h12: begin ozoneae(foo[20:18], fd); $fwrite (fd," 271"); ozoneae(foo[17:15], fd); $fwrite (fd," 272"); $fwrite (fd, " 273"); $fwrite (fd, " 274"); end 7'h13: begin ozoneae(foo[20:18], fd); $fwrite (fd," 275"); ozoneae(foo[17:15], fd); $fwrite (fd," 276"); $fwrite (fd, " 277"); $fwrite (fd, " 278"); end 7'h14: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 279"); ozoneaee(foo[17:15], fd); $fwrite (fd," 280"); ozoneape(foo[20:18], fd); $fwrite (fd," 281"); ozoneape(foo[17:15], fd); $fwrite (fd," 282"); $fwrite (fd, " 283"); $fwrite (fd, " 284"); end 7'h15: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 285"); ozoneaee(foo[17:15], fd); $fwrite (fd," 286"); ozoneape(foo[20:18], fd); $fwrite (fd," 287"); ozoneape(foo[17:15], fd); $fwrite (fd," 288"); $fwrite (fd, " 289"); $fwrite (fd, " 290"); end 7'h16: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 291"); ozoneaee(foo[17:15], fd); $fwrite (fd," 292"); ozoneape(foo[20:18], fd); $fwrite (fd," 293"); ozoneape(foo[17:15], fd); $fwrite (fd," 294"); $fwrite (fd, " 295"); $fwrite (fd, " 296"); end 7'h17: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 297"); ozoneaee(foo[17:15], fd); $fwrite (fd," 298"); ozoneape(foo[20:18], fd); $fwrite (fd," 299"); ozoneape(foo[17:15], fd); $fwrite (fd," 300"); $fwrite (fd, " 301"); $fwrite (fd, " 302"); end 7'h18: begin ozoneae(foo[20:18], fd); $fwrite (fd," 303"); ozoneae(foo[17:15], fd); $fwrite (fd," 304"); $fwrite (fd, " 305"); $fwrite (fd, " 306"); end 7'h19: begin ozoneae(foo[20:18], fd); $fwrite (fd," 307"); ozoneae(foo[17:15], fd); $fwrite (fd," 308"); $fwrite (fd, " 309"); $fwrite (fd, " 310"); end 7'h1a: begin ozoneae(foo[20:18], fd); $fwrite (fd," 311"); ozoneae(foo[17:15], fd); $fwrite (fd," 312"); $fwrite (fd, " 313"); $fwrite (fd, " 314"); end 7'h1b: begin ozoneae(foo[20:18], fd); $fwrite (fd," 315"); ozoneae(foo[17:15], fd); $fwrite (fd," 316"); $fwrite (fd, " 317"); $fwrite (fd, " 318"); end 7'h1c: begin ozoneae(foo[20:18], fd); $fwrite (fd," 319"); ozoneae(foo[17:15], fd); $fwrite (fd," 320"); $fwrite (fd, " 321"); $fwrite (fd, " 322"); end 7'h1d: begin ozoneae(foo[20:18], fd); $fwrite (fd," 323"); ozoneae(foo[17:15], fd); $fwrite (fd," 324"); $fwrite (fd, " 325"); $fwrite (fd, " 326"); end 7'h1e: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 327"); ozoneaee(foo[17:15], fd); $fwrite (fd," 328"); ozoneape(foo[20:18], fd); $fwrite (fd," 329"); ozoneape(foo[17:15], fd); $fwrite (fd," 330"); $fwrite (fd, " 331"); $fwrite (fd, " 332"); end 7'h1f: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 333"); ozoneaee(foo[17:15], fd); $fwrite (fd," 334"); ozoneape(foo[20:18], fd); $fwrite (fd," 335"); ozoneape(foo[17:15], fd); $fwrite (fd," 336"); $fwrite (fd, " 337"); $fwrite (fd, " 338"); end 7'h20: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 339"); ozoneaee(foo[17:15], fd); $fwrite (fd," 340"); ozoneape(foo[20:18], fd); $fwrite (fd," 341"); ozoneape(foo[17:15], fd); $fwrite (fd," 342"); $fwrite (fd, " 343"); $fwrite (fd, " 344"); end 7'h21: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 345"); ozoneaee(foo[17:15], fd); $fwrite (fd," 346"); ozoneape(foo[20:18], fd); $fwrite (fd," 347"); ozoneape(foo[17:15], fd); $fwrite (fd," 348"); $fwrite (fd, " 349"); $fwrite (fd, " 350"); end 7'h22: begin ozoneae(foo[20:18], fd); $fwrite (fd," 351"); ozoneae(foo[17:15], fd); $fwrite (fd," 352"); $fwrite (fd, " 353"); $fwrite (fd, " 354"); end 7'h23: begin ozoneae(foo[20:18], fd); $fwrite (fd," 355"); ozoneae(foo[17:15], fd); $fwrite (fd," 356"); $fwrite (fd, " 357"); $fwrite (fd, " 358"); end 7'h24: begin ozoneae(foo[20:18], fd); $fwrite (fd," 359"); ozoneae(foo[17:15], fd); $fwrite (fd," 360"); $fwrite (fd, " 361"); $fwrite (fd, " 362"); end 7'h25: begin ozoneae(foo[20:18], fd); $fwrite (fd," 363"); ozoneae(foo[17:15], fd); $fwrite (fd," 364"); $fwrite (fd, " 365"); $fwrite (fd, " 366"); end 7'h26: begin ozoneae(foo[20:18], fd); $fwrite (fd," 367"); ozoneae(foo[17:15], fd); $fwrite (fd," 368"); $fwrite (fd, " 369"); $fwrite (fd, " 370"); end 7'h27: begin ozoneae(foo[20:18], fd); $fwrite (fd," 371"); ozoneae(foo[17:15], fd); $fwrite (fd," 372"); $fwrite (fd, " 373"); $fwrite (fd, " 374"); end 7'h28: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 375"); ozoneaee(foo[17:15], fd); $fwrite (fd," 376"); ozoneape(foo[20:18], fd); $fwrite (fd," 377"); ozoneape(foo[17:15], fd); $fwrite (fd," 378"); $fwrite (fd, " 379"); $fwrite (fd, " 380"); end 7'h29: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 381"); ozoneaee(foo[17:15], fd); $fwrite (fd," 382"); ozoneape(foo[20:18], fd); $fwrite (fd," 383"); ozoneape(foo[17:15], fd); $fwrite (fd," 384"); $fwrite (fd, " 385"); $fwrite (fd, " 386"); end 7'h2a: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 387"); ozoneaee(foo[17:15], fd); $fwrite (fd," 388"); ozoneape(foo[20:18], fd); $fwrite (fd," 389"); ozoneape(foo[17:15], fd); $fwrite (fd," 390"); $fwrite (fd, " 391"); $fwrite (fd, " 392"); end 7'h2b: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 393"); ozoneaee(foo[17:15], fd); $fwrite (fd," 394"); ozoneape(foo[20:18], fd); $fwrite (fd," 395"); ozoneape(foo[17:15], fd); $fwrite (fd," 396"); $fwrite (fd, " 397"); $fwrite (fd, " 398"); end 7'h2c: begin ozoneae(foo[20:18], fd); $fwrite (fd," 399"); ozoneae(foo[17:15], fd); $fwrite (fd," 400"); $fwrite (fd, " 401"); $fwrite (fd, " 402"); end 7'h2d: begin ozoneae(foo[20:18], fd); $fwrite (fd," 403"); ozoneae(foo[17:15], fd); $fwrite (fd," 404"); $fwrite (fd, " 405"); $fwrite (fd, " 406"); end 7'h2e: begin ozoneae(foo[20:18], fd); $fwrite (fd," 407"); ozoneae(foo[17:15], fd); $fwrite (fd," 408"); $fwrite (fd, " 409"); $fwrite (fd, " 410"); end 7'h2f: begin ozoneae(foo[20:18], fd); $fwrite (fd," 411"); ozoneae(foo[17:15], fd); $fwrite (fd," 412"); $fwrite (fd, " 413"); $fwrite (fd, " 414"); end 7'h30: begin ozoneae(foo[20:18], fd); $fwrite (fd," 415"); ozoneae(foo[17:15], fd); $fwrite (fd," 416"); $fwrite (fd, " 417"); $fwrite (fd, " 418"); end 7'h31: begin ozoneae(foo[20:18], fd); $fwrite (fd," 419"); ozoneae(foo[17:15], fd); $fwrite (fd," 420"); $fwrite (fd, " 421"); $fwrite (fd, " 422"); end 7'h32: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 423"); ozoneaee(foo[17:15], fd); $fwrite (fd," 424"); ozoneape(foo[20:18], fd); $fwrite (fd," 425"); ozoneape(foo[17:15], fd); $fwrite (fd," 426"); $fwrite (fd, " 427"); $fwrite (fd, " 428"); end 7'h33: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 429"); ozoneaee(foo[17:15], fd); $fwrite (fd," 430"); ozoneape(foo[20:18], fd); $fwrite (fd," 431"); ozoneape(foo[17:15], fd); $fwrite (fd," 432"); $fwrite (fd, " 433"); $fwrite (fd, " 434"); end 7'h34: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 435"); ozoneaee(foo[17:15], fd); $fwrite (fd," 436"); ozoneape(foo[20:18], fd); $fwrite (fd," 437"); ozoneape(foo[17:15], fd); $fwrite (fd," 438"); $fwrite (fd, " 439"); $fwrite (fd, " 440"); end 7'h35: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 441"); ozoneaee(foo[17:15], fd); $fwrite (fd," 442"); ozoneape(foo[20:18], fd); $fwrite (fd," 443"); ozoneape(foo[17:15], fd); $fwrite (fd," 444"); $fwrite (fd, " 445"); $fwrite (fd, " 446"); end 7'h36: begin ozoneae(foo[20:18], fd); $fwrite (fd," 447"); ozoneae(foo[17:15], fd); $fwrite (fd," 448"); $fwrite (fd, " 449"); $fwrite (fd, " 450"); end 7'h37: begin ozoneae(foo[20:18], fd); $fwrite (fd," 451"); ozoneae(foo[17:15], fd); $fwrite (fd," 452"); $fwrite (fd, " 453"); $fwrite (fd, " 454"); end 7'h38: begin ozoneae(foo[20:18], fd); $fwrite (fd," 455"); ozoneae(foo[17:15], fd); $fwrite (fd," 456"); $fwrite (fd, " 457"); end 7'h39: begin ozoneae(foo[20:18], fd); $fwrite (fd," 458"); ozoneae(foo[17:15], fd); $fwrite (fd," 459"); $fwrite (fd, " 460"); end 7'h3a: begin ozoneae(foo[20:18], fd); $fwrite (fd," 461"); ozoneae(foo[17:15], fd); $fwrite (fd," 462"); $fwrite (fd, " 463"); end 7'h3b: begin ozoneae(foo[20:18], fd); $fwrite (fd," 464"); ozoneae(foo[17:15], fd); $fwrite (fd," 465"); $fwrite (fd, " 466"); end 7'h3c: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 467"); ozoneaee(foo[17:15], fd); $fwrite (fd," 468"); ozoneape(foo[20:18], fd); $fwrite (fd," 469"); ozoneape(foo[17:15], fd); $fwrite (fd," 470"); $fwrite (fd, " 471"); end 7'h3d: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 472"); ozoneaee(foo[17:15], fd); $fwrite (fd," 473"); ozoneape(foo[20:18], fd); $fwrite (fd," 474"); ozoneape(foo[17:15], fd); $fwrite (fd," 475"); $fwrite (fd, " 476"); end 7'h3e: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 477"); ozoneaee(foo[17:15], fd); $fwrite (fd," 478"); ozoneape(foo[20:18], fd); $fwrite (fd," 479"); ozoneape(foo[17:15], fd); $fwrite (fd," 480"); $fwrite (fd, " 481"); end 7'h3f: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 482"); ozoneaee(foo[17:15], fd); $fwrite (fd," 483"); ozoneape(foo[20:18], fd); $fwrite (fd," 484"); ozoneape(foo[17:15], fd); $fwrite (fd," 485"); $fwrite (fd, " 486"); end 7'h40: begin ozoneae(foo[20:18], fd); $fwrite (fd," 487"); ozoneae(foo[17:15], fd); $fwrite (fd," 488"); $fwrite (fd, " 489"); $fwrite (fd, " 490"); end 7'h41: begin $fwrite (fd, " 491"); $fwrite (fd, " 492"); end 7'h42: begin $fwrite (fd, " 493"); $fwrite (fd, " 494"); end 7'h43: begin $fwrite (fd, " 495"); $fwrite (fd, " 496"); end 7'h44: begin $fwrite (fd, " 497"); $fwrite (fd, " 498"); end 7'h45: $fwrite (fd, " 499"); 7'h46: begin ozoneae(foo[20:18], fd); $fwrite (fd," 500"); $fwrite (fd, " 501"); $fwrite (fd, " 502"); end 7'h47: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 503"); ozoneae(foo[17:15], fd); $fwrite (fd," 504"); ozoneape(foo[20:18], fd); $fwrite (fd," 505"); ozoneape(foo[20:18], fd); $fwrite (fd," 506"); $fwrite (fd, " 507"); $fwrite (fd, " 508"); end 7'h48: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 509"); ozoneape(foo[20:18], fd); $fwrite (fd," 510"); ozoneape(foo[20:18], fd); $fwrite (fd," 511"); ozoneaee(foo[17:15], fd); $fwrite (fd," 512"); ozoneape(foo[17:15], fd); $fwrite (fd," 513"); end 7'h49: begin ozoneae(foo[20:18], fd); $fwrite (fd," 514"); ozoneaee(foo[17:15], fd); $fwrite (fd," 515"); ozoneape(foo[17:15], fd); $fwrite (fd," 516"); end 7'h4a: $fwrite (fd," 517"); 7'h4b: $fwrite (fd, " 518"); 7'h4c: begin ozoneae(foo[20:18], fd); $fwrite (fd," 519"); $fwrite (fd, " 520"); $fwrite (fd, " 521"); end 7'h4d: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 522"); ozoneae(foo[17:15], fd); $fwrite (fd," 523"); ozoneape(foo[20:18], fd); $fwrite (fd," 524"); ozoneape(foo[20:18], fd); $fwrite (fd," 525"); $fwrite (fd, " 526"); $fwrite (fd, " 527"); end 7'h4e: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 528"); ozoneae(foo[17:15], fd); $fwrite (fd," 529"); ozoneape(foo[20:18], fd); $fwrite (fd," 530"); ozoneape(foo[20:18], fd); $fwrite (fd," 531"); end 7'h4f: begin ozoneae(foo[20:18], fd); $fwrite (fd," 532"); end 7'h50: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 533"); ozoneae(foo[17:15], fd); $fwrite (fd," 534"); ozoneaee(foo[20:18], fd); $fwrite (fd," 535"); ozoneae(foo[17:15], fd); $fwrite (fd," 536"); ozoneape(foo[20:18], fd); $fwrite (fd," 537"); ozoneae(foo[17:15], fd); $fwrite (fd," 538"); ozoneape(foo[20:18], fd); $fwrite (fd," 539"); ozoneae(foo[17:15], fd); $fwrite (fd," 540"); end 7'h51: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 541"); ozoneape(foo[20:18], fd); $fwrite (fd," 542"); ozoneaee(foo[20:18], fd); $fwrite (fd," 543"); ozoneape(foo[20:18], fd); $fwrite (fd," 544"); ozoneae(foo[17:15], fd); $fwrite (fd," 545"); end 7'h52: $fwrite (fd, " 546"); 7'h53: begin ozoneae(foo[20:18], fd); $fwrite (fd, " 547"); end 7'h54: begin ozoneae(foo[20:18], fd); $fwrite (fd," 548"); ozoneae(foo[17:15], fd); $fwrite (fd," 549"); end 7'h55: begin ozoneae(foo[20:18], fd); $fwrite (fd," 550"); ozoneae(foo[17:15], fd); $fwrite (fd," 551"); end 7'h56: begin ozoneae(foo[20:18], fd); $fwrite (fd," 552"); ozoneae(foo[17:15], fd); $fwrite (fd," 553"); $fwrite (fd, " 554"); end 7'h57: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 555"); ozoneae(foo[17:15], fd); $fwrite (fd," 556"); ozoneape(foo[20:18], fd); $fwrite (fd," 557"); ozoneape(foo[20:18], fd); $fwrite (fd," 558"); end 7'h58: begin ozoneae(foo[20:18], fd); $fwrite (fd, " 559"); end 7'h59: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 560"); ozoneae(foo[17:15], fd); $fwrite (fd," 561"); ozoneape(foo[20:18], fd); $fwrite (fd," 562"); ozoneape(foo[20:18], fd); $fwrite (fd," 563"); end 7'h5a: begin ozoneae(foo[20:18], fd); $fwrite (fd," 564"); ozoneae(foo[17:15], fd); $fwrite (fd, " 565"); end 7'h5b: begin ozoneae(foo[20:18], fd); $fwrite (fd," 566"); ozoneae(foo[17:15], fd); $fwrite (fd, " 567"); end 7'h5c: begin $fwrite (fd," 568"); ozoneape(foo[17:15], fd); $fwrite (fd," 569"); $fwrite (fd," 570"); ozoneape(foo[17:15], fd); $fwrite (fd," 571"); ozoneae(foo[20:18], fd); $fwrite (fd," 572"); ozoneaee(foo[17:15], fd); $fwrite (fd, " 573"); end 7'h5d: begin $fwrite (fd," 574"); ozoneape(foo[17:15], fd); $fwrite (fd," 575"); $fwrite (fd," 576"); ozoneape(foo[17:15], fd); $fwrite (fd," 577"); ozoneae(foo[20:18], fd); $fwrite (fd," 578"); ozoneaee(foo[17:15], fd); $fwrite (fd, " 579"); end 7'h5e: begin ozoneae(foo[20:18], fd); $fwrite (fd," 580"); ozoneae(foo[17:15], fd); $fwrite (fd, " 581"); end 7'h5f: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 582"); ozoneae(foo[17:15], fd); $fwrite (fd," 583"); ozoneaee(foo[20:18], fd); $fwrite (fd," 584"); ozoneae(foo[17:15], fd); $fwrite (fd," 585"); ozoneape(foo[20:18], fd); $fwrite (fd," 586"); ozoneae(foo[17:15], fd); $fwrite (fd," 587"); ozoneape(foo[20:18], fd); $fwrite (fd," 588"); ozoneae(foo[17:15], fd); $fwrite (fd," 589"); end 7'h60: begin ozoneae(foo[20:18], fd); $fwrite (fd," 590"); ozoneae(foo[17:15], fd); $fwrite (fd," 591"); end 7'h61: begin ozoneae(foo[20:18], fd); $fwrite (fd," 592"); ozoneae(foo[17:15], fd); $fwrite (fd," 593"); end 7'h62: begin ozoneae(foo[20:18], fd); $fwrite (fd," 594"); ozoneae(foo[17:15], fd); $fwrite (fd," 595"); end 7'h63: begin ozoneae(foo[20:18], fd); $fwrite (fd," 596"); ozoneae(foo[17:15], fd); $fwrite (fd," 597"); end 7'h64: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 598"); ozoneaee(foo[17:15], fd); $fwrite (fd," 599"); ozoneape(foo[20:18], fd); $fwrite (fd," 600"); ozoneape(foo[17:15], fd); $fwrite (fd," 601"); end 7'h65: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 602"); ozoneaee(foo[17:15], fd); $fwrite (fd," 603"); ozoneape(foo[20:18], fd); $fwrite (fd," 604"); ozoneape(foo[17:15], fd); $fwrite (fd," 605"); end 7'h66: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 606"); ozoneaee(foo[17:15], fd); $fwrite (fd," 607"); ozoneape(foo[20:18], fd); $fwrite (fd," 608"); ozoneape(foo[17:15], fd); $fwrite (fd," 609"); end 7'h67: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 610"); ozoneaee(foo[17:15], fd); $fwrite (fd," 611"); ozoneape(foo[20:18], fd); $fwrite (fd," 612"); ozoneape(foo[17:15], fd); $fwrite (fd," 613"); end 7'h68: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 614"); ozoneaee(foo[17:15], fd); $fwrite (fd," 615"); ozoneaee(foo[20:18], fd); $fwrite (fd," 616"); ozoneape(foo[20:18], fd); $fwrite (fd," 617"); ozoneape(foo[20:18], fd); $fwrite (fd," 618"); ozoneape(foo[17:15], fd); end 7'h69: begin ozoneae(foo[20:18], fd); $fwrite (fd," 619"); ozoneae(foo[17:15], fd); $fwrite (fd," 620"); ozoneae(foo[20:18], fd); $fwrite (fd," 621"); end 7'h6a: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 622"); ozoneae(foo[17:15], fd); $fwrite (fd," 623"); ozoneaee(foo[20:18], fd); $fwrite (fd," 624"); ozoneape(foo[20:18], fd); $fwrite (fd," 625"); ozoneaee(foo[20:18], fd); $fwrite (fd," 626"); ozoneae(foo[17:15], fd); end 7'h6b: begin ozoneae(foo[20:18], fd); $fwrite (fd," 627"); ozoneae(foo[17:15], fd); $fwrite (fd," 628"); ozoneae(foo[20:18], fd); $fwrite (fd," 629"); end 7'h6c: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 630"); ozoneae(foo[17:15], fd); $fwrite (fd," 631"); ozoneaee(foo[20:18], fd); $fwrite (fd," 632"); ozoneape(foo[20:18], fd); $fwrite (fd," 633"); ozoneaee(foo[20:18], fd); $fwrite (fd," 634"); ozoneae(foo[17:15], fd); end 7'h6d: begin ozoneae(foo[20:18], fd); $fwrite (fd," 635"); ozoneae(foo[17:15], fd); $fwrite (fd," 636"); ozoneae(foo[20:18], fd); $fwrite (fd," 637"); end 7'h6e: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 638"); ozoneaee(foo[17:15], fd); $fwrite (fd," 639"); ozoneape(foo[20:18], fd); $fwrite (fd," 640"); ozoneape(foo[17:15], fd); $fwrite (fd," 641"); end 7'h6f: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 642"); ozoneaee(foo[17:15], fd); $fwrite (fd," 643"); ozoneape(foo[20:18], fd); $fwrite (fd," 644"); ozoneape(foo[17:15], fd); $fwrite (fd," 645"); end 7'h70: begin ozoneae(foo[20:18], fd); $fwrite (fd," 646"); ozoneae(foo[20:18], fd); $fwrite (fd," 647"); ozoneae(foo[17:15], fd); $fwrite (fd," 648"); ozoneae(foo[17:15], fd); $fwrite (fd, " 649"); end 7'h71: begin ozoneae(foo[20:18], fd); $fwrite (fd," 650"); ozoneae(foo[17:15], fd); $fwrite (fd, " 651"); end 7'h72: begin ozoneae(foo[20:18], fd); $fwrite (fd," 652"); ozoneae(foo[17:15], fd); $fwrite (fd, " 653"); end 7'h73: begin ozoneae(foo[20:18], fd); $fwrite (fd," 654"); ozoneae(foo[20:18], fd); $fwrite (fd," 655"); ozoneae(foo[17:15], fd); end 7'h74: begin ozoneae(foo[20:18], fd); $fwrite (fd," 656"); ozoneae(foo[20:18], fd); $fwrite (fd," 657"); ozoneae(foo[17:15], fd); end 7'h75: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 658"); ozoneaee(foo[17:15], fd); $fwrite (fd," 659"); ozoneape(foo[20:18], fd); $fwrite (fd," 660"); ozoneape(foo[17:15], fd); $fwrite (fd," 661"); $fwrite (fd, " 662"); $fwrite (fd, " 663"); end 7'h76: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 664"); ozoneaee(foo[17:15], fd); $fwrite (fd," 665"); ozoneaee(foo[20:18], fd); $fwrite (fd," 666"); ozoneape(foo[20:18], fd); $fwrite (fd," 667"); ozoneape(foo[17:15], fd); $fwrite (fd," 668"); ozoneape(foo[20:18], fd); $fwrite (fd," 669"); end 7'h77: begin ozoneaee(foo[20:18], fd); $fwrite (fd," 670"); ozoneaee(foo[17:15], fd); $fwrite (fd," 671"); ozoneaee(foo[17:15], fd); $fwrite (fd," 672"); ozoneape(foo[20:18], fd); $fwrite (fd," 673"); ozoneape(foo[17:15], fd); $fwrite (fd," 674"); ozoneape(foo[17:15], fd); $fwrite (fd," 675"); end 7'h78, 7'h79, 7'h7a, 7'h7b, 7'h7c, 7'h7d, 7'h7e, 7'h7f: $fwrite (fd," 676"); endcase end endtask task ozonef2; input [ 31:0] foo; input [`FD_BITS] fd; // verilator no_inline_task begin case (foo[24:21]) 4'h0 : case (foo[26:25]) 2'b00 : $fwrite (fd," 677"); 2'b01 : $fwrite (fd," 678"); 2'b10 : $fwrite (fd," 679"); 2'b11 : $fwrite (fd," 680"); endcase 4'h1 : case (foo[26:25]) 2'b00 : $fwrite (fd," 681"); 2'b01 : $fwrite (fd," 682"); 2'b10 : $fwrite (fd," 683"); 2'b11 : $fwrite (fd," 684"); endcase 4'h2 : case (foo[26:25]) 2'b00 : $fwrite (fd," 685"); 2'b01 : $fwrite (fd," 686"); 2'b10 : $fwrite (fd," 687"); 2'b11 : $fwrite (fd," 688"); endcase 4'h3 : case (foo[26:25]) 2'b00 : $fwrite (fd," 689"); 2'b01 : $fwrite (fd," 690"); 2'b10 : $fwrite (fd," 691"); 2'b11 : $fwrite (fd," 692"); endcase 4'h4 : case (foo[26:25]) 2'b00 : $fwrite (fd," 693"); 2'b01 : $fwrite (fd," 694"); 2'b10 : $fwrite (fd," 695"); 2'b11 : $fwrite (fd," 696"); endcase 4'h5 : case (foo[26:25]) 2'b00 : $fwrite (fd," 697"); 2'b01 : $fwrite (fd," 698"); 2'b10 : $fwrite (fd," 699"); 2'b11 : $fwrite (fd," 700"); endcase 4'h6 : case (foo[26:25]) 2'b00 : $fwrite (fd," 701"); 2'b01 : $fwrite (fd," 702"); 2'b10 : $fwrite (fd," 703"); 2'b11 : $fwrite (fd," 704"); endcase 4'h7 : case (foo[26:25]) 2'b00 : $fwrite (fd," 705"); 2'b01 : $fwrite (fd," 706"); 2'b10 : $fwrite (fd," 707"); 2'b11 : $fwrite (fd," 708"); endcase 4'h8 : if (foo[26]) $fwrite (fd," 709"); else $fwrite (fd," 710"); 4'h9 : case (foo[26:25]) 2'b00 : $fwrite (fd," 711"); 2'b01 : $fwrite (fd," 712"); 2'b10 : $fwrite (fd," 713"); 2'b11 : $fwrite (fd," 714"); endcase 4'ha : case (foo[26:25]) 2'b00 : $fwrite (fd," 715"); 2'b01 : $fwrite (fd," 716"); 2'b10 : $fwrite (fd," 717"); 2'b11 : $fwrite (fd," 718"); endcase 4'hb : case (foo[26:25]) 2'b00 : $fwrite (fd," 719"); 2'b01 : $fwrite (fd," 720"); 2'b10 : $fwrite (fd," 721"); 2'b11 : $fwrite (fd," 722"); endcase 4'hc : if (foo[26]) $fwrite (fd," 723"); else $fwrite (fd," 724"); 4'hd : case (foo[26:25]) 2'b00 : $fwrite (fd," 725"); 2'b01 : $fwrite (fd," 726"); 2'b10 : $fwrite (fd," 727"); 2'b11 : $fwrite (fd," 728"); endcase 4'he : case (foo[26:25]) 2'b00 : $fwrite (fd," 729"); 2'b01 : $fwrite (fd," 730"); 2'b10 : $fwrite (fd," 731"); 2'b11 : $fwrite (fd," 732"); endcase 4'hf : case (foo[26:25]) 2'b00 : $fwrite (fd," 733"); 2'b01 : $fwrite (fd," 734"); 2'b10 : $fwrite (fd," 735"); 2'b11 : $fwrite (fd," 736"); endcase endcase end endtask task ozonef2e; input [ 31:0] foo; input [`FD_BITS] fd; // verilator no_inline_task begin casez (foo[25:21]) 5'h00 : begin ozoneae(foo[20:18], fd); $fwrite (fd," 737"); ozoneae(foo[17:15], fd); $fwrite (fd," 738"); end 5'h01 : begin ozoneae(foo[20:18], fd); $fwrite (fd," 739"); ozoneae(foo[17:15], fd); $fwrite (fd," 740"); end 5'h02 : begin ozoneae(foo[20:18], fd); $fwrite (fd," 741"); ozoneae(foo[17:15], fd); $fwrite (fd," 742"); end 5'h03 : begin ozoneae(foo[20:18], fd); $fwrite (fd," 743"); ozoneae(foo[17:15], fd); $fwrite (fd," 744"); end 5'h04 : begin ozoneae(foo[20:18], fd); $fwrite (fd," 745"); ozoneae(foo[17:15], fd); $fwrite (fd," 746"); end 5'h05 : begin ozoneae(foo[20:18], fd); $fwrite (fd," 747"); ozoneae(foo[17:15], fd); $fwrite (fd," 748"); end 5'h06 : begin ozoneae(foo[20:18], fd); $fwrite (fd," 749"); ozoneae(foo[17:15], fd); $fwrite (fd," 750"); end 5'h07 : begin ozoneae(foo[20:18], fd); $fwrite (fd," 751"); ozoneae(foo[17:15], fd); $fwrite (fd," 752"); end 5'h08 : begin ozoneae(foo[20:18], fd); $fwrite (fd," 753"); if (foo[ 6]) $fwrite (fd," 754"); else $fwrite (fd," 755"); end 5'h09 : begin ozoneae(foo[20:18], fd); $fwrite (fd," 756"); ozoneae(foo[17:15], fd); $fwrite (fd," 757"); end 5'h0a : begin ozoneae(foo[20:18], fd); $fwrite (fd," 758"); ozoneae(foo[17:15], fd); end 5'h0b : begin ozoneae(foo[20:18], fd); $fwrite (fd," 759"); ozoneae(foo[17:15], fd); $fwrite (fd," 760"); end 5'h0c : begin ozoneae(foo[20:18], fd); $fwrite (fd," 761"); end 5'h0d : begin ozoneae(foo[20:18], fd); $fwrite (fd," 762"); ozoneae(foo[17:15], fd); $fwrite (fd," 763"); end 5'h0e : begin ozoneae(foo[20:18], fd); $fwrite (fd," 764"); ozoneae(foo[17:15], fd); end 5'h0f : begin ozoneae(foo[20:18], fd); $fwrite (fd," 765"); ozoneae(foo[17:15], fd); end 5'h10 : begin ozoneae(foo[20:18], fd); $fwrite (fd," 766"); ozoneae(foo[17:15], fd); $fwrite (fd," 767"); end 5'h11 : begin ozoneae(foo[20:18], fd); $fwrite (fd," 768"); ozoneae(foo[17:15], fd); $fwrite (fd," 769"); end 5'h18 : begin ozoneae(foo[20:18], fd); $fwrite (fd," 770"); if (foo[ 6]) $fwrite (fd," 771"); else $fwrite (fd," 772"); end 5'h1a : begin ozoneae(foo[20:18], fd); $fwrite (fd," 773"); ozoneae(foo[17:15], fd); $fwrite (fd," 774"); end 5'h1b : begin ozoneae(foo[20:18], fd); $fwrite (fd," 775"); ozoneae(foo[17:15], fd); $fwrite (fd," 776"); if (foo[ 6]) $fwrite (fd," 777"); else $fwrite (fd," 778"); $fwrite (fd," 779"); end 5'h1c : begin ozoneae(foo[20:18], fd); $fwrite (fd," 780"); end 5'h1d : begin ozoneae(foo[20:18], fd); $fwrite (fd," 781"); if (foo[ 6]) $fwrite (fd," 782"); else $fwrite (fd," 783"); $fwrite (fd," 784"); end 5'h1e : begin ozoneae(foo[20:18], fd); $fwrite (fd," 785"); if (foo[ 6]) $fwrite (fd," 786"); else $fwrite (fd," 787"); $fwrite (fd," 788"); end 5'h1f : begin ozoneae(foo[20:18], fd); $fwrite (fd," 789"); ozoneae(foo[17:15], fd); $fwrite (fd," 790"); if (foo[ 6]) $fwrite (fd," 791"); else $fwrite (fd," 792"); $fwrite (fd," 793"); end default : $fwrite (fd," 794"); endcase end endtask task ozonef3e; input [ 31:0] foo; input [`FD_BITS] fd; // verilator no_inline_task begin case (foo[25:21]) 5'h00, 5'h01, 5'h02: begin ozoneae(foo[20:18], fd); case (foo[22:21]) 2'h0: $fwrite (fd," 795"); 2'h1: $fwrite (fd," 796"); 2'h2: $fwrite (fd," 797"); endcase ozoneae(foo[17:15], fd); $fwrite (fd," 798"); if (foo[ 9]) ozoneae(foo[ 8: 6], fd); else ozonef3e_te(foo[ 8: 6], fd); $fwrite (fd," 799"); end 5'h08, 5'h09, 5'h0d, 5'h0e, 5'h0f: begin ozoneae(foo[20:18], fd); $fwrite (fd," 800"); ozoneae(foo[17:15], fd); case (foo[23:21]) 3'h0: $fwrite (fd," 801"); 3'h1: $fwrite (fd," 802"); 3'h5: $fwrite (fd," 803"); 3'h6: $fwrite (fd," 804"); 3'h7: $fwrite (fd," 805"); endcase if (foo[ 9]) ozoneae(foo[ 8: 6], fd); else ozonef3e_te(foo[ 8: 6], fd); end 5'h0a, 5'h0b: begin ozoneae(foo[17:15], fd); if (foo[21]) $fwrite (fd," 806"); else $fwrite (fd," 807"); if (foo[ 9]) ozoneae(foo[ 8: 6], fd); else ozonef3e_te(foo[ 8: 6], fd); end 5'h0c: begin ozoneae(foo[20:18], fd); $fwrite (fd," 808"); if (foo[ 9]) ozoneae(foo[ 8: 6], fd); else ozonef3e_te(foo[ 8: 6], fd); $fwrite (fd," 809"); ozoneae(foo[17:15], fd); end 5'h10, 5'h11, 5'h12, 5'h13: begin ozoneae(foo[20:18], fd); $fwrite (fd," 810"); ozoneae(foo[17:15], fd); case (foo[22:21]) 2'h0, 2'h2: $fwrite (fd," 811"); 2'h1, 2'h3: $fwrite (fd," 812"); endcase ozoneae(foo[ 8: 6], fd); $fwrite (fd," 813"); ozoneae((foo[20:18]+1), fd); $fwrite (fd," 814"); ozoneae((foo[17:15]+1), fd); case (foo[22:21]) 2'h0, 2'h3: $fwrite (fd," 815"); 2'h1, 2'h2: $fwrite (fd," 816"); endcase ozoneae((foo[ 8: 6]+1), fd); end 5'h18: begin ozoneae(foo[20:18], fd); $fwrite (fd," 817"); ozoneae(foo[17:15], fd); $fwrite (fd," 818"); ozoneae(foo[ 8: 6], fd); $fwrite (fd," 819"); ozoneae(foo[20:18], fd); $fwrite (fd," 820"); ozoneae(foo[17:15], fd); $fwrite (fd," 821"); ozoneae(foo[ 8: 6], fd); end default : $fwrite (fd," 822"); endcase end endtask task ozonef3e_te; input [ 2:0] te; input [`FD_BITS] fd; // verilator no_inline_task begin case (te) 3'b100 : $fwrite (fd, " 823"); 3'b101 : $fwrite (fd, " 824"); 3'b110 : $fwrite (fd, " 825"); default: $fwrite (fd, " 826"); endcase end endtask task ozonearm; input [ 2:0] ate; input [`FD_BITS] fd; // verilator no_inline_task begin case (ate) 3'b000 : $fwrite (fd, " 827"); 3'b001 : $fwrite (fd, " 828"); 3'b010 : $fwrite (fd, " 829"); 3'b011 : $fwrite (fd, " 830"); 3'b100 : $fwrite (fd, " 831"); 3'b101 : $fwrite (fd, " 832"); 3'b110 : $fwrite (fd, " 833"); 3'b111 : $fwrite (fd, " 834"); endcase end endtask task ozonebmuop; input [ 4:0] f4; input [`FD_BITS] fd; // verilator no_inline_task begin case (f4[ 4:0]) 5'h00, 5'h04 : $fwrite (fd, " 835"); 5'h01, 5'h05 : $fwrite (fd, " 836"); 5'h02, 5'h06 : $fwrite (fd, " 837"); 5'h03, 5'h07 : $fwrite (fd, " 838"); 5'h08, 5'h18 : $fwrite (fd, " 839"); 5'h09, 5'h19 : $fwrite (fd, " 840"); 5'h0a, 5'h1a : $fwrite (fd, " 841"); 5'h0b : $fwrite (fd, " 842"); 5'h1b : $fwrite (fd, " 843"); 5'h0c, 5'h1c : $fwrite (fd, " 844"); 5'h0d, 5'h1d : $fwrite (fd, " 845"); 5'h1e : $fwrite (fd, " 846"); endcase end endtask task ozonef3; input [ 31:0] foo; input [`FD_BITS] fd; reg nacho; // verilator no_inline_task begin : f3_body nacho = 1'b0; case (foo[24:21]) 4'h0: case (foo[26:25]) 2'b00 : $fwrite (fd, " 847"); 2'b01 : $fwrite (fd, " 848"); 2'b10 : $fwrite (fd, " 849"); 2'b11 : $fwrite (fd, " 850"); endcase 4'h1: case (foo[26:25]) 2'b00 : $fwrite (fd, " 851"); 2'b01 : $fwrite (fd, " 852"); 2'b10 : $fwrite (fd, " 853"); 2'b11 : $fwrite (fd, " 854"); endcase 4'h2: case (foo[26:25]) 2'b00 : $fwrite (fd, " 855"); 2'b01 : $fwrite (fd, " 856"); 2'b10 : $fwrite (fd, " 857"); 2'b11 : $fwrite (fd, " 858"); endcase 4'h8, 4'h9, 4'hd, 4'he, 4'hf : case (foo[26:25]) 2'b00 : $fwrite (fd, " 859"); 2'b01 : $fwrite (fd, " 860"); 2'b10 : $fwrite (fd, " 861"); 2'b11 : $fwrite (fd, " 862"); endcase 4'ha, 4'hb : if (foo[25]) $fwrite (fd, " 863"); else $fwrite (fd, " 864"); 4'hc : if (foo[26]) $fwrite (fd, " 865"); else $fwrite (fd, " 866"); default : begin $fwrite (fd, " 867"); nacho = 1'b1; end endcase if (~nacho) begin case (foo[24:21]) 4'h8 : $fwrite (fd, " 868"); 4'h9 : $fwrite (fd, " 869"); 4'ha, 4'he : $fwrite (fd, " 870"); 4'hb, 4'hf : $fwrite (fd, " 871"); 4'hd : $fwrite (fd, " 872"); endcase if (foo[20]) case (foo[18:16]) 3'b000 : $fwrite (fd, " 873"); 3'b100 : $fwrite (fd, " 874"); default: $fwrite (fd, " 875"); endcase else ozoneae(foo[18:16], fd); if (foo[24:21] === 4'hc) if (foo[25]) $fwrite (fd, " 876"); else $fwrite (fd, " 877"); case (foo[24:21]) 4'h0, 4'h1, 4'h2: $fwrite (fd, " 878"); endcase end end endtask task ozonerx; input [ 31:0] foo; input [`FD_BITS] fd; // verilator no_inline_task begin case (foo[19:18]) 2'h0 : $fwrite (fd, " 879"); 2'h1 : $fwrite (fd, " 880"); 2'h2 : $fwrite (fd, " 881"); 2'h3 : $fwrite (fd, " 882"); endcase case (foo[17:16]) 2'h1 : $fwrite (fd, " 883"); 2'h2 : $fwrite (fd, " 884"); 2'h3 : $fwrite (fd, " 885"); endcase end endtask task ozonerme; input [ 2:0] rme; input [`FD_BITS] fd; // verilator no_inline_task begin case (rme) 3'h0 : $fwrite (fd, " 886"); 3'h1 : $fwrite (fd, " 887"); 3'h2 : $fwrite (fd, " 888"); 3'h3 : $fwrite (fd, " 889"); 3'h4 : $fwrite (fd, " 890"); 3'h5 : $fwrite (fd, " 891"); 3'h6 : $fwrite (fd, " 892"); 3'h7 : $fwrite (fd, " 893"); endcase end endtask task ozoneye; input [5:0] ye; input l; input [`FD_BITS] fd; // verilator no_inline_task begin $fwrite (fd, " 894"); ozonerme(ye[5:3], fd); case ({ye[ 2:0], l}) 4'h2, 4'ha: $fwrite (fd, " 895"); 4'h4, 4'hb: $fwrite (fd, " 896"); 4'h6, 4'he: $fwrite (fd, " 897"); 4'h8, 4'hc: $fwrite (fd, " 898"); endcase end endtask task ozonef1e_ye; input [5:0] ye; input l; input [`FD_BITS] fd; // verilator no_inline_task begin $fwrite (fd, " 899"); ozonerme(ye[5:3], fd); ozonef1e_inc_dec(ye[5:0], l , fd); end endtask task ozonef1e_h; input [ 2:0] e; input [`FD_BITS] fd; // verilator no_inline_task begin if (e[ 2:0] <= 3'h4) $fwrite (fd, " 900"); end endtask task ozonef1e_inc_dec; input [5:0] ye; input l; input [`FD_BITS] fd; // verilator no_inline_task begin case ({ye[ 2:0], l}) 4'h2, 4'h3, 4'ha: $fwrite (fd, " 901"); 4'h4, 4'h5, 4'hb: $fwrite (fd, " 902"); 4'h6, 4'h7, 4'he: $fwrite (fd, " 903"); 4'h8, 4'h9, 4'hc: $fwrite (fd, " 904"); 4'hf: $fwrite (fd, " 905"); endcase end endtask task ozonef1e_hl; input [ 2:0] e; input l; input [`FD_BITS] fd; // verilator no_inline_task begin case ({e[ 2:0], l}) 4'h0, 4'h2, 4'h4, 4'h6, 4'h8: $fwrite (fd, " 906"); 4'h1, 4'h3, 4'h5, 4'h7, 4'h9: $fwrite (fd, " 907"); endcase end endtask task ozonexe; input [ 3:0] xe; input [`FD_BITS] fd; // verilator no_inline_task begin case (xe[3]) 1'b0 : $fwrite (fd, " 908"); 1'b1 : $fwrite (fd, " 909"); endcase case (xe[ 2:0]) 3'h1, 3'h5: $fwrite (fd, " 910"); 3'h2, 3'h6: $fwrite (fd, " 911"); 3'h3, 3'h7: $fwrite (fd, " 912"); 3'h4: $fwrite (fd, " 913"); endcase end endtask task ozonerp; input [ 2:0] rp; input [`FD_BITS] fd; // verilator no_inline_task begin case (rp) 3'h0 : $fwrite (fd, " 914"); 3'h1 : $fwrite (fd, " 915"); 3'h2 : $fwrite (fd, " 916"); 3'h3 : $fwrite (fd, " 917"); 3'h4 : $fwrite (fd, " 918"); 3'h5 : $fwrite (fd, " 919"); 3'h6 : $fwrite (fd, " 920"); 3'h7 : $fwrite (fd, " 921"); endcase end endtask task ozonery; input [ 3:0] ry; input [`FD_BITS] fd; // verilator no_inline_task begin case (ry) 4'h0 : $fwrite (fd, " 922"); 4'h1 : $fwrite (fd, " 923"); 4'h2 : $fwrite (fd, " 924"); 4'h3 : $fwrite (fd, " 925"); 4'h4 : $fwrite (fd, " 926"); 4'h5 : $fwrite (fd, " 927"); 4'h6 : $fwrite (fd, " 928"); 4'h7 : $fwrite (fd, " 929"); 4'h8 : $fwrite (fd, " 930"); 4'h9 : $fwrite (fd, " 931"); 4'ha : $fwrite (fd, " 932"); 4'hb : $fwrite (fd, " 933"); 4'hc : $fwrite (fd, " 934"); 4'hd : $fwrite (fd, " 935"); 4'he : $fwrite (fd, " 936"); 4'hf : $fwrite (fd, " 937"); endcase end endtask task ozonearx; input [ 15:0] foo; input [`FD_BITS] fd; // verilator no_inline_task begin case (foo[1:0]) 2'h0 : $fwrite (fd, " 938"); 2'h1 : $fwrite (fd, " 939"); 2'h2 : $fwrite (fd, " 940"); 2'h3 : $fwrite (fd, " 941"); endcase end endtask task ozonef3f4imop; input [ 4:0] f3f4iml; input [`FD_BITS] fd; // verilator no_inline_task begin casez (f3f4iml) 5'b000??: $fwrite (fd, " 942"); 5'b001??: $fwrite (fd, " 943"); 5'b?10??: $fwrite (fd, " 944"); 5'b0110?: $fwrite (fd, " 945"); 5'b01110: $fwrite (fd, " 946"); 5'b01111: $fwrite (fd, " 947"); 5'b10???: $fwrite (fd, " 948"); 5'b11100: $fwrite (fd, " 949"); 5'b11101: $fwrite (fd, " 950"); 5'b11110: $fwrite (fd, " 951"); 5'b11111: $fwrite (fd, " 952"); endcase end endtask task ozonecon; input [ 4:0] con; input [`FD_BITS] fd; // verilator no_inline_task begin case (con) 5'h00 : $fwrite (fd, " 953"); 5'h01 : $fwrite (fd, " 954"); 5'h02 : $fwrite (fd, " 955"); 5'h03 : $fwrite (fd, " 956"); 5'h04 : $fwrite (fd, " 957"); 5'h05 : $fwrite (fd, " 958"); 5'h06 : $fwrite (fd, " 959"); 5'h07 : $fwrite (fd, " 960"); 5'h08 : $fwrite (fd, " 961"); 5'h09 : $fwrite (fd, " 962"); 5'h0a : $fwrite (fd, " 963"); 5'h0b : $fwrite (fd, " 964"); 5'h0c : $fwrite (fd, " 965"); 5'h0d : $fwrite (fd, " 966"); 5'h0e : $fwrite (fd, " 967"); 5'h0f : $fwrite (fd, " 968"); 5'h10 : $fwrite (fd, " 969"); 5'h11 : $fwrite (fd, " 970"); 5'h12 : $fwrite (fd, " 971"); 5'h13 : $fwrite (fd, " 972"); 5'h14 : $fwrite (fd, " 973"); 5'h15 : $fwrite (fd, " 974"); 5'h16 : $fwrite (fd, " 975"); 5'h17 : $fwrite (fd, " 976"); 5'h18 : $fwrite (fd, " 977"); 5'h19 : $fwrite (fd, " 978"); 5'h1a : $fwrite (fd, " 979"); 5'h1b : $fwrite (fd, " 980"); 5'h1c : $fwrite (fd, " 981"); 5'h1d : $fwrite (fd, " 982"); 5'h1e : $fwrite (fd, " 983"); 5'h1f : $fwrite (fd, " 984"); endcase end endtask task ozonedr; input [ 15:0] foo; input [`FD_BITS] fd; // verilator no_inline_task begin case (foo[ 9: 6]) 4'h0 : $fwrite (fd, " 985"); 4'h1 : $fwrite (fd, " 986"); 4'h2 : $fwrite (fd, " 987"); 4'h3 : $fwrite (fd, " 988"); 4'h4 : $fwrite (fd, " 989"); 4'h5 : $fwrite (fd, " 990"); 4'h6 : $fwrite (fd, " 991"); 4'h7 : $fwrite (fd, " 992"); 4'h8 : $fwrite (fd, " 993"); 4'h9 : $fwrite (fd, " 994"); 4'ha : $fwrite (fd, " 995"); 4'hb : $fwrite (fd, " 996"); 4'hc : $fwrite (fd, " 997"); 4'hd : $fwrite (fd, " 998"); 4'he : $fwrite (fd, " 999"); 4'hf : $fwrite (fd, " 1000"); endcase end endtask task ozoneshift; input [ 15:0] foo; input [`FD_BITS] fd; // verilator no_inline_task begin case (foo[ 4: 3]) 2'h0 : $fwrite (fd, " 1001"); 2'h1 : $fwrite (fd, " 1002"); 2'h2 : $fwrite (fd, " 1003"); 2'h3 : $fwrite (fd, " 1004"); endcase end endtask task ozoneacc; input foo; input [`FD_BITS] fd; // verilator no_inline_task begin case (foo) 2'h0 : $fwrite (fd, " 1005"); 2'h1 : $fwrite (fd, " 1006"); endcase end endtask task ozonehl; input foo; input [`FD_BITS] fd; // verilator no_inline_task begin case (foo) 2'h0 : $fwrite (fd, " 1007"); 2'h1 : $fwrite (fd, " 1008"); endcase end endtask task dude; input [`FD_BITS] fd; // verilator no_inline_task $fwrite(fd," dude"); endtask task big_case; input [ `FD_BITS] fd; input [ 31:0] foo; // verilator no_inline_task begin $fwrite(fd," 1009"); if (&foo === 1'bx) $fwrite(fd, " 1010"); else casez ( {foo[31:26], foo[19:15], foo[5:0]} ) 17'b00_111?_?_????_??_???? : begin ozonef1(foo, fd); $fwrite (fd, " 1011"); ozoneacc(~foo[26], fd); ozonehl(foo[20], fd); $fwrite (fd, " 1012"); ozonerx(foo, fd); dude(fd); $fwrite (fd, " 1013"); end 17'b01_001?_?_????_??_???? : begin ozonef1(foo, fd); $fwrite (fd, " 1014"); ozonerx(foo, fd); $fwrite (fd, " 1015"); $fwrite (fd, " 1016:%x", foo[20]); ozonehl(foo[20], fd); dude(fd); $fwrite (fd, " 1017"); end 17'b10_100?_?_????_??_???? : begin ozonef1(foo, fd); $fwrite (fd, " 1018"); ozonerx(foo, fd); $fwrite (fd, " 1019"); $fwrite (fd, " 1020"); ozonehl(foo[20], fd); dude(fd); $fwrite (fd, " 1021"); end 17'b10_101?_?_????_??_???? : begin ozonef1(foo, fd); $fwrite (fd, " 1022"); if (foo[20]) begin $fwrite (fd, " 1023"); ozoneacc(foo[18], fd); $fwrite (fd, " 1024"); $fwrite (fd, " 1025"); if (foo[19]) $fwrite (fd, " 1026"); else $fwrite (fd, " 1027"); end else ozonerx(foo, fd); dude(fd); $fwrite (fd, " 1028"); end 17'b10_110?_?_????_??_???? : begin ozonef1(foo, fd); $fwrite (fd, " 1029"); $fwrite (fd, " 1030"); ozonehl(foo[20], fd); $fwrite (fd, " 1031"); ozonerx(foo, fd); dude(fd); $fwrite (fd, " 1032"); end 17'b10_111?_?_????_??_???? : begin ozonef1(foo, fd); $fwrite (fd, " 1033"); $fwrite (fd, " 1034"); ozonehl(foo[20], fd); $fwrite (fd, " 1035"); ozonerx(foo, fd); dude(fd); $fwrite (fd, " 1036"); end 17'b11_001?_?_????_??_???? : begin ozonef1(foo, fd); $fwrite (fd, " 1037"); ozonerx(foo, fd); $fwrite (fd, " 1038"); $fwrite (fd, " 1039"); ozonehl(foo[20], fd); dude(fd); $fwrite (fd, " 1040"); end 17'b11_111?_?_????_??_???? : begin ozonef1(foo, fd); $fwrite (fd, " 1041"); $fwrite (fd, " 1042"); ozonerx(foo, fd); $fwrite (fd, " 1043"); if (foo[20]) $fwrite (fd, " 1044"); else $fwrite (fd, " 1045"); dude(fd); $fwrite (fd, " 1046"); end 17'b00_10??_?_????_?1_1111 : casez (foo[11: 5]) 7'b??_0_010_0: begin $fwrite (fd, " 1047"); ozonecon(foo[14:10], fd); $fwrite (fd, " 1048"); ozonef1e(foo, fd); dude(fd); $fwrite (fd, " 1049"); end 7'b00_?_110_?: begin ozonef1e(foo, fd); $fwrite (fd, " 1050"); case ({foo[ 9],foo[ 5]}) 2'b00: begin $fwrite (fd, " 1051"); ozoneae(foo[14:12], fd); ozonehl(foo[ 5], fd); end 2'b01: begin $fwrite (fd, " 1052"); ozoneae(foo[14:12], fd); ozonehl(foo[ 5], fd); end 2'b10: begin $fwrite (fd, " 1053"); ozoneae(foo[14:12], fd); end 2'b11: $fwrite (fd, " 1054"); endcase dude(fd); $fwrite (fd, " 1055"); end 7'b01_?_110_?: begin ozonef1e(foo, fd); $fwrite (fd, " 1056"); case ({foo[ 9],foo[ 5]}) 2'b00: begin ozoneae(foo[14:12], fd); ozonehl(foo[ 5], fd); $fwrite (fd, " 1057"); end 2'b01: begin ozoneae(foo[14:12], fd); ozonehl(foo[ 5], fd); $fwrite (fd, " 1058"); end 2'b10: begin ozoneae(foo[14:12], fd); $fwrite (fd, " 1059"); end 2'b11: $fwrite (fd, " 1060"); endcase dude(fd); $fwrite (fd, " 1061"); end 7'b10_0_110_0: begin ozonef1e(foo, fd); $fwrite (fd, " 1062"); $fwrite (fd, " 1063"); if (foo[12]) $fwrite (fd, " 1064"); else ozonerab({4'b1001, foo[14:12]}, fd); dude(fd); $fwrite (fd, " 1065"); end 7'b10_0_110_1: begin ozonef1e(foo, fd); $fwrite (fd, " 1066"); if (foo[12]) $fwrite (fd, " 1067"); else ozonerab({4'b1001, foo[14:12]}, fd); $fwrite (fd, " 1068"); dude(fd); $fwrite (fd, " 1069"); end 7'b??_?_000_?: begin ozonef1e(foo, fd); $fwrite (fd, " 1070"); $fwrite (fd, " 1071"); ozonef1e_hl(foo[11:9],foo[ 5], fd); $fwrite (fd, " 1072"); ozonef1e_ye(foo[14:9],foo[ 5], fd); dude(fd); $fwrite (fd, " 1073"); end 7'b??_?_100_?: begin ozonef1e(foo, fd); $fwrite (fd, " 1074"); $fwrite (fd, " 1075"); ozonef1e_hl(foo[11:9],foo[ 5], fd); $fwrite (fd, " 1076"); ozonef1e_ye(foo[14:9],foo[ 5], fd); dude(fd); $fwrite (fd, " 1077"); end 7'b??_?_001_?: begin ozonef1e(foo, fd); $fwrite (fd, " 1078"); ozonef1e_ye(foo[14:9],foo[ 5], fd); $fwrite (fd, " 1079"); $fwrite (fd, " 1080"); ozonef1e_hl(foo[11:9],foo[ 5], fd); dude(fd); $fwrite (fd, " 1081"); end 7'b??_?_011_?: begin ozonef1e(foo, fd); $fwrite (fd, " 1082"); ozonef1e_ye(foo[14:9],foo[ 5], fd); $fwrite (fd, " 1083"); $fwrite (fd, " 1084"); ozonef1e_hl(foo[11:9],foo[ 5], fd); dude(fd); $fwrite (fd, " 1085"); end 7'b??_?_101_?: begin ozonef1e(foo, fd); $fwrite (fd, " 1086"); ozonef1e_ye(foo[14:9],foo[ 5], fd); dude(fd); $fwrite (fd, " 1087"); end endcase 17'b00_10??_?_????_?0_0110 : begin ozonef1e(foo, fd); $fwrite (fd, " 1088"); ozoneae(foo[ 8: 6], fd); ozonef1e_hl(foo[11:9],foo[ 5], fd); $fwrite (fd, " 1089"); ozonef1e_ye(foo[14:9],foo[ 5], fd); dude(fd); $fwrite (fd, " 1090"); end 17'b00_10??_?_????_00_0111 : begin ozonef1e(foo, fd); $fwrite (fd, " 1091"); if (foo[ 6]) $fwrite (fd, " 1092"); else ozonerab({4'b1001, foo[ 8: 6]}, fd); $fwrite (fd, " 1093"); $fwrite (fd, " 1094"); ozonerme(foo[14:12], fd); case (foo[11: 9]) 3'h2, 3'h5, 3'h6, 3'h7: ozonef1e_inc_dec(foo[14:9],1'b0, fd); 3'h1, 3'h3, 3'h4: $fwrite (fd, " 1095"); endcase dude(fd); $fwrite (fd, " 1096"); end 17'b00_10??_?_????_?0_0100 : begin ozonef1e(foo, fd); $fwrite (fd, " 1097"); ozonef1e_ye(foo[14:9],foo[ 5], fd); $fwrite (fd, " 1098"); ozoneae(foo[ 8: 6], fd); ozonef1e_hl(foo[11:9],foo[ 5], fd); dude(fd); $fwrite (fd, " 1099"); end 17'b00_10??_?_????_10_0111 : begin ozonef1e(foo, fd); $fwrite (fd, " 1100"); $fwrite (fd, " 1101"); ozonerme(foo[14:12], fd); case (foo[11: 9]) 3'h2, 3'h5, 3'h6, 3'h7: ozonef1e_inc_dec(foo[14:9],1'b0, fd); 3'h1, 3'h3, 3'h4: $fwrite (fd, " 1102"); endcase $fwrite (fd, " 1103"); if (foo[ 6]) $fwrite (fd, " 1104"); else ozonerab({4'b1001, foo[ 8: 6]}, fd); dude(fd); $fwrite (fd, " 1105"); end 17'b00_10??_?_????_?0_1110 : begin ozonef1e(foo, fd); $fwrite (fd, " 1106"); case (foo[11:9]) 3'h2: begin $fwrite (fd, " 1107"); if (foo[14:12] == 3'h0) $fwrite (fd, " 1108"); else ozonerme(foo[14:12], fd); $fwrite (fd, " 1109"); end 3'h6: begin $fwrite (fd, " 1110"); if (foo[14:12] == 3'h0) $fwrite (fd, " 1111"); else ozonerme(foo[14:12], fd); $fwrite (fd, " 1112"); end 3'h0: begin $fwrite (fd, " 1113"); if (foo[14:12] == 3'h0) $fwrite (fd, " 1114"); else ozonerme(foo[14:12], fd); $fwrite (fd, " 1115"); if (foo[ 7: 5] >= 3'h5) $fwrite (fd, " 1116"); else ozonexe(foo[ 8: 5], fd); end 3'h1: begin $fwrite (fd, " 1117"); if (foo[14:12] == 3'h0) $fwrite (fd, " 1118"); else ozonerme(foo[14:12], fd); $fwrite (fd, " 1119"); if (foo[ 7: 5] >= 3'h5) $fwrite (fd, " 1120"); else ozonexe(foo[ 8: 5], fd); end 3'h4: begin $fwrite (fd, " 1121"); if (foo[14:12] == 3'h0) $fwrite (fd, " 1122"); else ozonerme(foo[14:12], fd); $fwrite (fd, " 1123"); if (foo[ 7: 5] >= 3'h5) $fwrite (fd, " 1124"); else ozonexe(foo[ 8: 5], fd); end 3'h5: begin $fwrite (fd, " 1125"); if (foo[14:12] == 3'h0) $fwrite (fd, " 1126"); else ozonerme(foo[14:12], fd); $fwrite (fd, " 1127"); if (foo[ 7: 5] >= 3'h5) $fwrite (fd, " 1128"); else ozonexe(foo[ 8: 5], fd); end endcase dude(fd); $fwrite (fd, " 1129"); end 17'b00_10??_?_????_?0_1111 : casez (foo[14: 9]) 6'b001_10_?: begin ozonef1e(foo, fd); $fwrite (fd, " 1130"); $fwrite (fd, " 1131"); ozonef1e_hl(foo[ 7: 5],foo[ 9], fd); $fwrite (fd, " 1132"); ozonexe(foo[ 8: 5], fd); dude(fd); $fwrite (fd, " 1133"); end 6'b???_11_?: begin ozonef1e(foo, fd); $fwrite (fd, " 1134"); ozoneae(foo[14:12], fd); ozonef1e_hl(foo[ 7: 5],foo[ 9], fd); $fwrite (fd, " 1135"); ozonexe(foo[ 8: 5], fd); dude(fd); $fwrite (fd, " 1136"); end 6'b000_10_1, 6'b010_10_1, 6'b100_10_1, 6'b110_10_1: begin ozonef1e(foo, fd); $fwrite (fd, " 1137"); ozonerab({4'b1001, foo[14:12]}, fd); $fwrite (fd, " 1138"); if ((foo[ 7: 5] >= 3'h1) & (foo[ 7: 5] <= 3'h3)) $fwrite (fd, " 1139"); else ozonexe(foo[ 8: 5], fd); dude(fd); $fwrite (fd, " 1140"); end 6'b000_10_0, 6'b010_10_0, 6'b100_10_0, 6'b110_10_0: begin ozonef1e(foo, fd); $fwrite (fd, " 1141"); $fwrite (fd, " 1142"); ozonerab({4'b1001, foo[14:12]}, fd); $fwrite (fd, " 1143"); $fwrite (fd, " 1144"); ozonef1e_h(foo[ 7: 5], fd); $fwrite (fd, " 1145"); ozonexe(foo[ 8: 5], fd); dude(fd); $fwrite (fd, " 1146"); end 6'b???_00_?: begin ozonef1e(foo, fd); $fwrite (fd, " 1147"); if (foo[ 9]) begin $fwrite (fd, " 1148"); ozoneae(foo[14:12], fd); end else begin $fwrite (fd, " 1149"); ozoneae(foo[14:12], fd); $fwrite (fd, " 1150"); end $fwrite (fd, " 1151"); $fwrite (fd, " 1152"); ozonef1e_h(foo[ 7: 5], fd); $fwrite (fd, " 1153"); ozonexe(foo[ 8: 5], fd); dude(fd); $fwrite (fd, " 1154"); end 6'b???_01_?: begin ozonef1e(foo, fd); $fwrite (fd, " 1155"); ozoneae(foo[14:12], fd); if (foo[ 9]) $fwrite (fd, " 1156"); else $fwrite (fd, " 1157"); $fwrite (fd, " 1158"); $fwrite (fd, " 1159"); ozonef1e_h(foo[ 7: 5], fd); $fwrite (fd, " 1160"); ozonexe(foo[ 8: 5], fd); dude(fd); $fwrite (fd, " 1161"); end 6'b011_10_0: begin ozonef1e(foo, fd); $fwrite (fd, " 1162"); case (foo[ 8: 5]) 4'h0: $fwrite (fd, " 1163"); 4'h1: $fwrite (fd, " 1164"); 4'h2: $fwrite (fd, " 1165"); 4'h3: $fwrite (fd, " 1166"); 4'h4: $fwrite (fd, " 1167"); 4'h5: $fwrite (fd, " 1168"); 4'h8: $fwrite (fd, " 1169"); 4'h9: $fwrite (fd, " 1170"); 4'ha: $fwrite (fd, " 1171"); 4'hb: $fwrite (fd, " 1172"); 4'hc: $fwrite (fd, " 1173"); 4'hd: $fwrite (fd, " 1174"); default: $fwrite (fd, " 1175"); endcase dude(fd); $fwrite (fd, " 1176"); end default: $fwrite (fd, " 1177"); endcase 17'b00_10??_?_????_?0_110? : begin ozonef1e(foo, fd); $fwrite (fd, " 1178"); $fwrite (fd, " 1179"); ozonef1e_hl(foo[11:9], foo[0], fd); $fwrite (fd, " 1180"); ozonef1e_ye(foo[14:9],1'b0, fd); $fwrite (fd, " 1181"); ozonef1e_h(foo[ 7: 5], fd); $fwrite (fd, " 1182"); ozonexe(foo[ 8: 5], fd); dude(fd); $fwrite (fd, " 1183"); end 17'b00_10??_?_????_?1_110? : begin ozonef1e(foo, fd); $fwrite (fd, " 1184"); $fwrite (fd, " 1185"); ozonef1e_hl(foo[11:9],foo[0], fd); $fwrite (fd, " 1186"); ozonef1e_ye(foo[14:9],foo[ 0], fd); $fwrite (fd, " 1187"); $fwrite (fd, " 1188"); ozonef1e_h(foo[ 7: 5], fd); $fwrite (fd, " 1189"); ozonexe(foo[ 8: 5], fd); dude(fd); $fwrite (fd, " 1190"); end 17'b00_10??_?_????_?0_101? : begin ozonef1e(foo, fd); $fwrite (fd, " 1191"); ozonef1e_ye(foo[14:9],foo[ 0], fd); $fwrite (fd, " 1192"); $fwrite (fd, " 1193"); ozonef1e_hl(foo[11:9],foo[0], fd); $fwrite (fd, " 1194"); $fwrite (fd, " 1195"); ozonef1e_h(foo[ 7: 5], fd); $fwrite (fd, " 1196"); ozonexe(foo[ 8: 5], fd); dude(fd); $fwrite (fd, " 1197"); end 17'b00_10??_?_????_?0_1001 : begin ozonef1e(foo, fd); $fwrite (fd, " 1198"); $fwrite (fd, " 1199"); ozonef1e_h(foo[11:9], fd); $fwrite (fd, " 1200"); ozonef1e_ye(foo[14:9],1'b0, fd); $fwrite (fd, " 1201"); case (foo[ 7: 5]) 3'h1, 3'h2, 3'h3: $fwrite (fd, " 1202"); default: begin $fwrite (fd, " 1203"); $fwrite (fd, " 1204"); ozonexe(foo[ 8: 5], fd); end endcase dude(fd); $fwrite (fd, " 1205"); end 17'b00_10??_?_????_?0_0101 : begin ozonef1e(foo, fd); $fwrite (fd, " 1206"); case (foo[11: 9]) 3'h1, 3'h3, 3'h4: $fwrite (fd, " 1207"); default: begin ozonef1e_ye(foo[14:9],1'b0, fd); $fwrite (fd, " 1208"); $fwrite (fd, " 1209"); end endcase $fwrite (fd, " 1210"); $fwrite (fd, " 1211"); ozonef1e_h(foo[ 7: 5], fd); $fwrite (fd, " 1212"); ozonexe(foo[ 8: 5], fd); dude(fd); $fwrite (fd, " 1213"); end 17'b00_10??_?_????_?1_1110 : begin ozonef1e(foo, fd); $fwrite (fd, " 1214"); ozonef1e_ye(foo[14:9],1'b0, fd); $fwrite (fd, " 1215"); $fwrite (fd, " 1216"); ozonef1e_h(foo[11: 9], fd); $fwrite (fd, " 1217"); $fwrite (fd, " 1218"); ozonef1e_h(foo[ 7: 5], fd); $fwrite (fd, " 1219"); ozonexe(foo[ 8: 5], fd); dude(fd); $fwrite (fd, " 1220"); end 17'b00_10??_?_????_?0_1000 : begin ozonef1e(foo, fd); $fwrite (fd, " 1221"); ozonef1e_ye(foo[14:9],1'b0, fd); $fwrite (fd, " 1222"); $fwrite (fd, " 1223"); ozonef1e_h(foo[11: 9], fd); $fwrite (fd, " 1224"); $fwrite (fd, " 1225"); ozonef1e_h(foo[ 7: 5], fd); $fwrite (fd, " 1226"); ozonexe(foo[ 8: 5], fd); dude(fd); $fwrite (fd, " 1227"); end 17'b10_01??_?_????_??_???? : begin if (foo[27]) $fwrite (fd," 1228"); else $fwrite (fd," 1229"); ozonecon(foo[20:16], fd); $fwrite (fd, " 1230"); ozonef2(foo[31:0], fd); dude(fd); $fwrite (fd, " 1231"); end 17'b00_1000_?_????_01_0011 : if (~|foo[ 9: 8]) begin if (foo[ 7]) $fwrite (fd," 1232"); else $fwrite (fd," 1233"); ozonecon(foo[14:10], fd); $fwrite (fd, " 1234"); ozonef2e(foo[31:0], fd); dude(fd); $fwrite (fd, " 1235"); end else begin $fwrite (fd, " 1236"); ozonecon(foo[14:10], fd); $fwrite (fd, " 1237"); ozonef3e(foo[31:0], fd); dude(fd); $fwrite (fd, " 1238"); end 17'b11_110?_1_????_??_???? : begin ozonef3(foo[31:0], fd); dude(fd); $fwrite(fd, " 1239"); end 17'b11_110?_0_????_??_???? : begin : f4_body casez (foo[24:20]) 5'b0_1110, 5'b1_0???, 5'b1_1111: begin $fwrite (fd, " 1240"); end 5'b0_00??: begin ozoneacc(foo[26], fd); $fwrite (fd, " 1241"); ozoneacc(foo[25], fd); ozonebmuop(foo[24:20], fd); ozoneae(foo[18:16], fd); $fwrite (fd, " 1242"); dude(fd); $fwrite(fd, " 1243"); end 5'b0_01??: begin ozoneacc(foo[26], fd); $fwrite (fd, " 1244"); ozoneacc(foo[25], fd); ozonebmuop(foo[24:20], fd); ozonearm(foo[18:16], fd); dude(fd); $fwrite(fd, " 1245"); end 5'b0_1011: begin ozoneacc(foo[26], fd); $fwrite (fd, " 1246"); ozonebmuop(foo[24:20], fd); $fwrite (fd, " 1247"); ozoneae(foo[18:16], fd); $fwrite (fd, " 1248"); dude(fd); $fwrite(fd, " 1249"); end 5'b0_100?, 5'b0_1010, 5'b0_110? : begin ozoneacc(foo[26], fd); $fwrite (fd, " 1250"); ozonebmuop(foo[24:20], fd); $fwrite (fd, " 1251"); ozoneacc(foo[25], fd); $fwrite (fd, " 1252"); ozoneae(foo[18:16], fd); $fwrite (fd, " 1253"); dude(fd); $fwrite(fd, " 1254"); end 5'b0_1111 : begin ozoneacc(foo[26], fd); $fwrite (fd, " 1255"); ozoneacc(foo[25], fd); $fwrite (fd, " 1256"); ozoneae(foo[18:16], fd); dude(fd); $fwrite(fd, " 1257"); end 5'b1_10??, 5'b1_110?, 5'b1_1110 : begin ozoneacc(foo[26], fd); $fwrite (fd, " 1258"); ozonebmuop(foo[24:20], fd); $fwrite (fd, " 1259"); ozoneacc(foo[25], fd); $fwrite (fd, " 1260"); ozonearm(foo[18:16], fd); $fwrite (fd, " 1261"); dude(fd); $fwrite(fd, " 1262"); end endcase end 17'b11_100?_?_????_??_???? : casez (foo[23:19]) 5'b111??, 5'b0111?: begin ozoneae(foo[26:24], fd); $fwrite (fd, " 1263"); ozonef3f4imop(foo[23:19], fd); $fwrite (fd, " 1264"); ozoneae(foo[18:16], fd); $fwrite (fd, " 1265"); skyway(foo[15:12], fd); skyway(foo[11: 8], fd); skyway(foo[ 7: 4], fd); skyway(foo[ 3:0], fd); $fwrite (fd, " 1266"); dude(fd); $fwrite(fd, " 1267"); end 5'b?0???, 5'b110??: begin ozoneae(foo[26:24], fd); $fwrite (fd, " 1268"); if (foo[23:21] == 3'b100) $fwrite (fd, " 1269"); ozoneae(foo[18:16], fd); if (foo[19]) $fwrite (fd, " 1270"); else $fwrite (fd, " 1271"); ozonef3f4imop(foo[23:19], fd); $fwrite (fd, " 1272"); ozonef3f4_iext(foo[20:19], foo[15:0], fd); dude(fd); $fwrite(fd, " 1273"); end 5'b010??, 5'b0110?: begin ozoneae(foo[18:16], fd); if (foo[19]) $fwrite (fd, " 1274"); else $fwrite (fd, " 1275"); ozonef3f4imop(foo[23:19], fd); $fwrite (fd, " 1276"); ozonef3f4_iext(foo[20:19], foo[15:0], fd); dude(fd); $fwrite(fd, " 1277"); end endcase 17'b00_1000_?_????_11_0011 : begin $fwrite (fd," 1278"); ozonecon(foo[14:10], fd); $fwrite (fd, " 1279"); casez (foo[25:21]) 5'b0_1110, 5'b1_0???, 5'b1_1111: begin $fwrite(fd, " 1280"); end 5'b0_00??: begin ozoneae(foo[20:18], fd); $fwrite (fd, " 1281"); ozoneae(foo[17:15], fd); ozonebmuop(foo[25:21], fd); ozoneae(foo[ 8: 6], fd); $fwrite (fd, " 1282"); dude(fd); $fwrite(fd, " 1283"); end 5'b0_01??: begin ozoneae(foo[20:18], fd); $fwrite (fd, " 1284"); ozoneae(foo[17:15], fd); ozonebmuop(foo[25:21], fd); ozonearm(foo[ 8: 6], fd); dude(fd); $fwrite(fd, " 1285"); end 5'b0_1011: begin ozoneae(foo[20:18], fd); $fwrite (fd, " 1286"); ozonebmuop(foo[25:21], fd); $fwrite (fd, " 1287"); ozoneae(foo[ 8: 6], fd); $fwrite (fd, " 1288"); dude(fd); $fwrite(fd, " 1289"); end 5'b0_100?, 5'b0_1010, 5'b0_110? : begin ozoneae(foo[20:18], fd); $fwrite (fd, " 1290"); ozonebmuop(foo[25:21], fd); $fwrite (fd, " 1291"); ozoneae(foo[17:15], fd); $fwrite (fd, " 1292"); ozoneae(foo[ 8: 6], fd); $fwrite (fd, " 1293"); dude(fd); $fwrite(fd, " 1294"); end 5'b0_1111 : begin ozoneae(foo[20:18], fd); $fwrite (fd, " 1295"); ozoneae(foo[17:15], fd); $fwrite (fd, " 1296"); ozoneae(foo[ 8: 6], fd); dude(fd); $fwrite(fd, " 1297"); end 5'b1_10??, 5'b1_110?, 5'b1_1110 : begin ozoneae(foo[20:18], fd); $fwrite (fd, " 1298"); ozonebmuop(foo[25:21], fd); $fwrite (fd, " 1299"); ozoneae(foo[17:15], fd); $fwrite (fd, " 1300"); ozonearm(foo[ 8: 6], fd); $fwrite (fd, " 1301"); dude(fd); $fwrite(fd, " 1302"); end endcase end 17'b00_0010_?_????_??_???? : begin ozonerab({1'b0, foo[25:20]}, fd); $fwrite (fd, " 1303"); skyway(foo[19:16], fd); dude(fd); $fwrite(fd, " 1304"); end 17'b00_01??_?_????_??_???? : begin if (foo[27]) begin $fwrite (fd, " 1305"); if (foo[26]) $fwrite (fd, " 1306"); else $fwrite (fd, " 1307"); skyway(foo[19:16], fd); $fwrite (fd, " 1308"); ozonerab({1'b0, foo[25:20]}, fd); end else begin ozonerab({1'b0, foo[25:20]}, fd); $fwrite (fd, " 1309"); if (foo[26]) $fwrite (fd, " 1310"); else $fwrite (fd, " 1311"); skyway(foo[19:16], fd); $fwrite (fd, " 1312"); end dude(fd); $fwrite(fd, " 1313"); end 17'b01_000?_?_????_??_???? : begin if (foo[26]) begin ozonerb(foo[25:20], fd); $fwrite (fd, " 1314"); ozoneae(foo[18:16], fd); ozonehl(foo[19], fd); end else begin ozoneae(foo[18:16], fd); ozonehl(foo[19], fd); $fwrite (fd, " 1315"); ozonerb(foo[25:20], fd); end dude(fd); $fwrite(fd, " 1316"); end 17'b01_10??_?_????_??_???? : begin if (foo[27]) begin ozonerab({1'b0, foo[25:20]}, fd); $fwrite (fd, " 1317"); ozonerx(foo, fd); end else begin ozonerx(foo, fd); $fwrite (fd, " 1318"); ozonerab({1'b0, foo[25:20]}, fd); end dude(fd); $fwrite(fd, " 1319"); end 17'b11_101?_?_????_??_???? : begin ozonerab (foo[26:20], fd); $fwrite (fd, " 1320"); skyway(foo[19:16], fd); skyway(foo[15:12], fd); skyway(foo[11: 8], fd); skyway(foo[ 7: 4], fd); skyway(foo[ 3: 0], fd); dude(fd); $fwrite(fd, " 1321"); end 17'b11_0000_?_????_??_???? : begin casez (foo[25:23]) 3'b00?: begin ozonerab(foo[22:16], fd); $fwrite (fd, " 1322"); end 3'b01?: begin $fwrite (fd, " 1323"); if (foo[22:16]>=7'h60) $fwrite (fd, " 1324"); else ozonerab(foo[22:16], fd); end 3'b110: $fwrite (fd, " 1325"); 3'b10?: begin $fwrite (fd, " 1326"); if (foo[22:16]>=7'h60) $fwrite (fd, " 1327"); else ozonerab(foo[22:16], fd); end 3'b111: begin $fwrite (fd, " 1328"); ozonerab(foo[22:16], fd); $fwrite (fd, " 1329"); end endcase dude(fd); $fwrite(fd, " 1330"); end 17'b00_10??_?_????_?1_0000 : begin if (foo[27]) begin $fwrite (fd, " 1331"); ozonerp(foo[14:12], fd); $fwrite (fd, " 1332"); skyway(foo[19:16], fd); skyway({foo[15],foo[11: 9]}, fd); skyway(foo[ 8: 5], fd); $fwrite (fd, " 1333"); if (foo[26:20]>=7'h60) $fwrite (fd, " 1334"); else ozonerab(foo[26:20], fd); end else begin ozonerab(foo[26:20], fd); $fwrite (fd, " 1335"); $fwrite (fd, " 1336"); ozonerp(foo[14:12], fd); $fwrite (fd, " 1337"); skyway(foo[19:16], fd); skyway({foo[15],foo[11: 9]}, fd); skyway(foo[ 8: 5], fd); $fwrite (fd, " 1338"); end dude(fd); $fwrite(fd, " 1339"); end 17'b00_101?_1_0000_?1_0010 : if (~|foo[11: 7]) begin if (foo[ 6]) begin $fwrite (fd, " 1340"); ozonerp(foo[14:12], fd); $fwrite (fd, " 1341"); ozonejk(foo[ 5], fd); $fwrite (fd, " 1342"); if (foo[26:20]>=7'h60) $fwrite (fd, " 1343"); else ozonerab(foo[26:20], fd); end else begin ozonerab(foo[26:20], fd); $fwrite (fd, " 1344"); $fwrite (fd, " 1345"); ozonerp(foo[14:12], fd); $fwrite (fd, " 1346"); ozonejk(foo[ 5], fd); $fwrite (fd, " 1347"); end dude(fd); $fwrite(fd, " 1348"); end else $fwrite(fd, " 1349"); 17'b00_100?_0_0011_?1_0101 : if (~|foo[ 8: 7]) begin if (foo[6]) begin ozonerab(foo[26:20], fd); $fwrite (fd, " 1350"); ozoneye(foo[14: 9],foo[ 5], fd); end else begin ozoneye(foo[14: 9],foo[ 5], fd); $fwrite (fd, " 1351"); if (foo[26:20]>=7'h60) $fwrite (fd, " 1352"); else ozonerab(foo[26:20], fd); end dude(fd); $fwrite(fd, " 1353"); end else $fwrite(fd, " 1354"); 17'b00_1001_0_0000_?1_0010 : if (~|foo[25:20]) begin ozoneye(foo[14: 9],1'b0, fd); $fwrite (fd, " 1355"); ozonef1e_h(foo[11: 9], fd); $fwrite (fd, " 1356"); ozonef1e_h(foo[ 7: 5], fd); $fwrite (fd, " 1357"); ozonexe(foo[ 8: 5], fd); dude(fd); $fwrite(fd, " 1358"); end else $fwrite(fd, " 1359"); 17'b00_101?_0_????_?1_0010 : if (~foo[13]) begin if (foo[12]) begin $fwrite (fd, " 1360"); if (foo[26:20]>=7'h60) $fwrite (fd, " 1361"); else ozonerab(foo[26:20], fd); $fwrite (fd, " 1362"); $fwrite (fd, " 1363"); skyway({1'b0,foo[18:16]}, fd); skyway({foo[15],foo[11: 9]}, fd); skyway(foo[ 8: 5], fd); dude(fd); $fwrite(fd, " 1364"); end else begin ozonerab(foo[26:20], fd); $fwrite (fd, " 1365"); $fwrite (fd, " 1366"); skyway({1'b0,foo[18:16]}, fd); skyway({foo[15],foo[11: 9]}, fd); skyway(foo[ 8: 5], fd); dude(fd); $fwrite(fd, " 1367"); end end else $fwrite(fd, " 1368"); 17'b01_01??_?_????_??_???? : begin ozonerab({1'b0,foo[27:26],foo[19:16]}, fd); $fwrite (fd, " 1369"); ozonerab({1'b0,foo[25:20]}, fd); dude(fd); $fwrite(fd, " 1370"); end 17'b00_100?_?_???0_11_0101 : if (~foo[6]) begin $fwrite (fd," 1371"); ozonecon(foo[14:10], fd); $fwrite (fd, " 1372"); ozonerab({foo[ 9: 7],foo[19:16]}, fd); $fwrite (fd, " 1373"); ozonerab({foo[26:20]}, fd); dude(fd); $fwrite(fd, " 1374"); end else $fwrite(fd, " 1375"); 17'b00_1000_?_????_?1_0010 : if (~|foo[25:24]) begin ozonery(foo[23:20], fd); $fwrite (fd, " 1376"); ozonerp(foo[14:12], fd); $fwrite (fd, " 1377"); skyway(foo[19:16], fd); skyway({foo[15],foo[11: 9]}, fd); skyway(foo[ 8: 5], fd); dude(fd); $fwrite(fd, " 1378"); end else if ((foo[25:24] == 2'b10) & ~|foo[19:15] & ~|foo[11: 6]) begin ozonery(foo[23:20], fd); $fwrite (fd, " 1379"); ozonerp(foo[14:12], fd); $fwrite (fd, " 1380"); ozonejk(foo[ 5], fd); dude(fd); $fwrite(fd, " 1381"); end else $fwrite(fd, " 1382"); 17'b11_01??_?_????_??_????, 17'b10_00??_?_????_??_???? : if (foo[30]) $fwrite(fd, " 1383:%x", foo[27:16]); else $fwrite(fd, " 1384:%x", foo[27:16]); 17'b00_10??_?_????_01_1000 : if (~foo[6]) begin if (foo[7]) $fwrite(fd, " 1385:%x", foo[27: 8]); else $fwrite(fd, " 1386:%x", foo[27: 8]); end else $fwrite(fd, " 1387"); 17'b00_10??_?_????_11_1000 : begin $fwrite (fd," 1388"); ozonecon(foo[14:10], fd); $fwrite (fd, " 1389"); if (foo[15]) $fwrite (fd, " 1390"); else $fwrite (fd, " 1391"); skyway(foo[27:24], fd); skyway(foo[23:20], fd); skyway(foo[19:16], fd); skyway(foo[ 9: 6], fd); dude(fd); $fwrite(fd, " 1392"); end 17'b11_0001_?_????_??_???? : casez (foo[25:22]) 4'b01?? : begin $fwrite (fd," 1393"); ozonecon(foo[20:16], fd); case (foo[23:21]) 3'h0 : $fwrite (fd, " 1394"); 3'h1 : $fwrite (fd, " 1395"); 3'h2 : $fwrite (fd, " 1396"); 3'h3 : $fwrite (fd, " 1397"); 3'h4 : $fwrite (fd, " 1398"); 3'h5 : $fwrite (fd, " 1399"); 3'h6 : $fwrite (fd, " 1400"); 3'h7 : $fwrite (fd, " 1401"); endcase dude(fd); $fwrite(fd, " 1402"); end 4'b0000 : $fwrite(fd, " 1403:%x", foo[21:16]); 4'b0010 : if (~|foo[21:16]) $fwrite(fd, " 1404"); 4'b1010 : if (~|foo[21:17]) begin if (foo[16]) $fwrite(fd, " 1405"); else $fwrite(fd, " 1406"); end default : $fwrite(fd, " 1407"); endcase 17'b01_11??_?_????_??_???? : if (foo[27:23] === 5'h00) $fwrite(fd, " 1408:%x", foo[22:16]); else $fwrite(fd, " 1409:%x", foo[22:16]); default: $fwrite(fd, " 1410"); endcase end endtask //(query-replace-regexp "\\([a-z0-9_]+\\) *( *\\([][a-z0-9_~': ]+\\) *, *\\([][a-z0-9'~: ]+\\) *, *\\([][a-z0-9'~: ]+\\) *);" "$c(\"\\1(\",\\2,\",\",\\3,\",\",\\4,\");\");" nil nil nil) //(query-replace-regexp "\\([a-z0-9_]+\\) *( *\\([][a-z0-9_~': ]+\\) *, *\\([][a-z0-9'~: ]+\\) *);" "$c(\"\\1(\",\\2,\",\",\\3,\");\");" nil nil nil) endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2005 by Wilson Snyder. module t (clk); input clk; reg [2:0] a; reg [2:0] b; reg q; f6 f6 (/*AUTOINST*/ // Outputs .q (q), // Inputs .a (a[2:0]), .b (b[2:0]), .clk (clk)); integer cyc; initial cyc=1; always @ (posedge clk) begin if (cyc!=0) begin cyc <= cyc + 1; if (cyc==1) begin a <= 3'b000; b <= 3'b100; end if (cyc==2) begin a <= 3'b011; b <= 3'b001; if (q != 1'b0) $stop; end if (cyc==3) begin a <= 3'b011; b <= 3'b011; if (q != 1'b0) $stop; end if (cyc==9) begin if (q != 1'b1) $stop; $write("*-* All Finished *-*\n"); $finish; end end end endmodule module f6 (a, b, clk, q); input [2:0] a; input [2:0] b; input clk; output q; reg out; function func6; reg result; input [5:0] src; begin if (src[5:0] == 6'b011011) begin result = 1'b1; end else begin result = 1'b0; end func6 = result; end endfunction wire [5:0] w6 = {a, b}; always @(posedge clk) begin out <= func6(w6); end assign q = out; endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2006 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc; initial cyc=0; reg [63:0] crc; reg [63:0] sum; reg out1; reg [4:0] out2; sub sub (.in(crc[23:0]), .out1(out1), .out2(out2)); always @ (posedge clk) begin //$write("[%0t] cyc==%0d crc=%x sum=%x out=%x,%x\n",$time, cyc, crc, sum, out1,out2); cyc <= cyc + 1; crc <= {crc[62:0], crc[63]^crc[2]^crc[0]}; sum <= {sum[62:0], sum[63]^sum[2]^sum[0]} ^ {58'h0,out1,out2}; if (cyc==0) begin // Setup crc <= 64'h00000000_00000097; sum <= 64'h0; end else if (cyc==90) begin if (sum !== 64'hf0afc2bfa78277c5) $stop; end else if (cyc==91) begin end else if (cyc==92) begin end else if (cyc==93) begin end else if (cyc==94) begin end else if (cyc==99) begin $write("*-* All Finished *-*\n"); $finish; end end endmodule module sub (/*AUTOARG*/ // Outputs out1, out2, // Inputs in ); input [23:0] in; output reg out1; output reg [4:0] out2; always @* begin // Test empty cases casez (in[0]) endcase casez (in) 24'b0000_0000_0000_0000_0000_0000 : {out1,out2} = {1'b0,5'h00}; 24'b????_????_????_????_????_???1 : {out1,out2} = {1'b1,5'h00}; 24'b????_????_????_????_????_??10 : {out1,out2} = {1'b1,5'h01}; 24'b????_????_????_????_????_?100 : {out1,out2} = {1'b1,5'h02}; 24'b????_????_????_????_????_1000 : {out1,out2} = {1'b1,5'h03}; 24'b????_????_????_????_???1_0000 : {out1,out2} = {1'b1,5'h04}; 24'b????_????_????_????_??10_0000 : {out1,out2} = {1'b1,5'h05}; 24'b????_????_????_????_?100_0000 : {out1,out2} = {1'b1,5'h06}; 24'b????_????_????_????_1000_0000 : {out1,out2} = {1'b1,5'h07}; // Same pattern, but reversed to test we work OK. 24'b1000_0000_0000_0000_0000_0000 : {out1,out2} = {1'b1,5'h17}; 24'b?100_0000_0000_0000_0000_0000 : {out1,out2} = {1'b1,5'h16}; 24'b??10_0000_0000_0000_0000_0000 : {out1,out2} = {1'b1,5'h15}; 24'b???1_0000_0000_0000_0000_0000 : {out1,out2} = {1'b1,5'h14}; 24'b????_1000_0000_0000_0000_0000 : {out1,out2} = {1'b1,5'h13}; 24'b????_?100_0000_0000_0000_0000 : {out1,out2} = {1'b1,5'h12}; 24'b????_??10_0000_0000_0000_0000 : {out1,out2} = {1'b1,5'h11}; 24'b????_???1_0000_0000_0000_0000 : {out1,out2} = {1'b1,5'h10}; 24'b????_????_1000_0000_0000_0000 : {out1,out2} = {1'b1,5'h0f}; 24'b????_????_?100_0000_0000_0000 : {out1,out2} = {1'b1,5'h0e}; 24'b????_????_??10_0000_0000_0000 : {out1,out2} = {1'b1,5'h0d}; 24'b????_????_???1_0000_0000_0000 : {out1,out2} = {1'b1,5'h0c}; 24'b????_????_????_1000_0000_0000 : {out1,out2} = {1'b1,5'h0b}; 24'b????_????_????_?100_0000_0000 : {out1,out2} = {1'b1,5'h0a}; 24'b????_????_????_??10_0000_0000 : {out1,out2} = {1'b1,5'h09}; 24'b????_????_????_???1_0000_0000 : {out1,out2} = {1'b1,5'h08}; endcase end endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2006 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc; initial cyc=0; reg [63:0] crc; reg [63:0] sum; reg out1; reg [4:0] out2; sub sub (.in(crc[23:0]), .out1(out1), .out2(out2)); always @ (posedge clk) begin //$write("[%0t] cyc==%0d crc=%x sum=%x out=%x,%x\n",$time, cyc, crc, sum, out1,out2); cyc <= cyc + 1; crc <= {crc[62:0], crc[63]^crc[2]^crc[0]}; sum <= {sum[62:0], sum[63]^sum[2]^sum[0]} ^ {58'h0,out1,out2}; if (cyc==0) begin // Setup crc <= 64'h00000000_00000097; sum <= 64'h0; end else if (cyc==90) begin if (sum !== 64'hf0afc2bfa78277c5) $stop; end else if (cyc==91) begin end else if (cyc==92) begin end else if (cyc==93) begin end else if (cyc==94) begin end else if (cyc==99) begin $write("*-* All Finished *-*\n"); $finish; end end endmodule module sub (/*AUTOARG*/ // Outputs out1, out2, // Inputs in ); input [23:0] in; output reg out1; output reg [4:0] out2; always @* begin // Test empty cases casez (in[0]) endcase casez (in) 24'b0000_0000_0000_0000_0000_0000 : {out1,out2} = {1'b0,5'h00}; 24'b????_????_????_????_????_???1 : {out1,out2} = {1'b1,5'h00}; 24'b????_????_????_????_????_??10 : {out1,out2} = {1'b1,5'h01}; 24'b????_????_????_????_????_?100 : {out1,out2} = {1'b1,5'h02}; 24'b????_????_????_????_????_1000 : {out1,out2} = {1'b1,5'h03}; 24'b????_????_????_????_???1_0000 : {out1,out2} = {1'b1,5'h04}; 24'b????_????_????_????_??10_0000 : {out1,out2} = {1'b1,5'h05}; 24'b????_????_????_????_?100_0000 : {out1,out2} = {1'b1,5'h06}; 24'b????_????_????_????_1000_0000 : {out1,out2} = {1'b1,5'h07}; // Same pattern, but reversed to test we work OK. 24'b1000_0000_0000_0000_0000_0000 : {out1,out2} = {1'b1,5'h17}; 24'b?100_0000_0000_0000_0000_0000 : {out1,out2} = {1'b1,5'h16}; 24'b??10_0000_0000_0000_0000_0000 : {out1,out2} = {1'b1,5'h15}; 24'b???1_0000_0000_0000_0000_0000 : {out1,out2} = {1'b1,5'h14}; 24'b????_1000_0000_0000_0000_0000 : {out1,out2} = {1'b1,5'h13}; 24'b????_?100_0000_0000_0000_0000 : {out1,out2} = {1'b1,5'h12}; 24'b????_??10_0000_0000_0000_0000 : {out1,out2} = {1'b1,5'h11}; 24'b????_???1_0000_0000_0000_0000 : {out1,out2} = {1'b1,5'h10}; 24'b????_????_1000_0000_0000_0000 : {out1,out2} = {1'b1,5'h0f}; 24'b????_????_?100_0000_0000_0000 : {out1,out2} = {1'b1,5'h0e}; 24'b????_????_??10_0000_0000_0000 : {out1,out2} = {1'b1,5'h0d}; 24'b????_????_???1_0000_0000_0000 : {out1,out2} = {1'b1,5'h0c}; 24'b????_????_????_1000_0000_0000 : {out1,out2} = {1'b1,5'h0b}; 24'b????_????_????_?100_0000_0000 : {out1,out2} = {1'b1,5'h0a}; 24'b????_????_????_??10_0000_0000 : {out1,out2} = {1'b1,5'h09}; 24'b????_????_????_???1_0000_0000 : {out1,out2} = {1'b1,5'h08}; endcase end endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2009 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; enum integer { EP_State_IDLE , EP_State_CMDSHIFT0 , EP_State_CMDSHIFT13 , EP_State_CMDSHIFT14 , EP_State_CMDSHIFT15 , EP_State_CMDSHIFT16 , EP_State_DWAIT , EP_State_DSHIFT0 , EP_State_DSHIFT1 , EP_State_DSHIFT15 } m_state_xr, m_state2_xr; // Beginning of automatic ASCII enum decoding reg [79:0] m_stateAscii_xr; // Decode of m_state_xr always @(m_state_xr) begin case ({m_state_xr}) EP_State_IDLE: m_stateAscii_xr = "idle "; EP_State_CMDSHIFT0: m_stateAscii_xr = "cmdshift0 "; EP_State_CMDSHIFT13: m_stateAscii_xr = "cmdshift13"; EP_State_CMDSHIFT14: m_stateAscii_xr = "cmdshift14"; EP_State_CMDSHIFT15: m_stateAscii_xr = "cmdshift15"; EP_State_CMDSHIFT16: m_stateAscii_xr = "cmdshift16"; EP_State_DWAIT: m_stateAscii_xr = "dwait "; EP_State_DSHIFT0: m_stateAscii_xr = "dshift0 "; EP_State_DSHIFT1: m_stateAscii_xr = "dshift1 "; EP_State_DSHIFT15: m_stateAscii_xr = "dshift15 "; default: m_stateAscii_xr = "%Error "; endcase end // End of automatics integer cyc; initial cyc=1; always @ (posedge clk) begin if (cyc!=0) begin cyc <= cyc + 1; //$write("%d %x %x %x\n", cyc, data, wrapcheck_a, wrapcheck_b); if (cyc==1) begin m_state_xr <= EP_State_IDLE; m_state2_xr <= EP_State_IDLE; end if (cyc==2) begin if (m_stateAscii_xr != "idle ") $stop; m_state_xr <= EP_State_CMDSHIFT13; if (m_state2_xr != EP_State_IDLE) $stop; m_state2_xr <= EP_State_CMDSHIFT13; end if (cyc==3) begin if (m_stateAscii_xr != "cmdshift13") $stop; m_state_xr <= EP_State_CMDSHIFT16; if (m_state2_xr != EP_State_CMDSHIFT13) $stop; m_state2_xr <= EP_State_CMDSHIFT16; end if (cyc==4) begin if (m_stateAscii_xr != "cmdshift16") $stop; m_state_xr <= EP_State_DWAIT; if (m_state2_xr != EP_State_CMDSHIFT16) $stop; m_state2_xr <= EP_State_DWAIT; end if (cyc==9) begin if (m_stateAscii_xr != "dwait ") $stop; if (m_state2_xr != EP_State_DWAIT) $stop; $write("*-* All Finished *-*\n"); $finish; end end end endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2005 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs fastclk, clk ); `ifdef EDGE_DETECT_STYLE // Two 'common' forms of latching, with full combo, and with pos/negedge `define posstyle posedge `define negstyle negedge `else `define posstyle `define negstyle `endif input fastclk; input clk; reg [7:0] data; reg [7:0] data_a; reg [7:0] data_a_a; reg [7:0] data_a_b; reg [7:0] data_b; reg [7:0] data_b_a; reg [7:0] data_b_b; reg [8*6-1:0] check [100:0]; wire [8*6-1:0] compare = {data_a,data_a_a,data_b_a,data_b,data_a_b,data_b_b}; initial begin check[7'd19] = {8'h0d, 8'h0e, 8'h0e, 8'h0d, 8'h0e, 8'h0e}; check[7'd20] = {8'h0d, 8'h0e, 8'h0e, 8'h0d, 8'h0e, 8'h0e}; check[7'd21] = {8'h15, 8'h16, 8'h0e, 8'h0d, 8'h0e, 8'h0e}; check[7'd22] = {8'h15, 8'h16, 8'h0e, 8'h0d, 8'h0e, 8'h0e}; check[7'd23] = {8'h15, 8'h16, 8'h0e, 8'h15, 8'h16, 8'h0e}; check[7'd24] = {8'h15, 8'h16, 8'h0e, 8'h15, 8'h16, 8'h0e}; check[7'd25] = {8'h15, 8'h16, 8'h0e, 8'h15, 8'h16, 8'h0e}; check[7'd26] = {8'h15, 8'h16, 8'h16, 8'h15, 8'h16, 8'h0e}; check[7'd27] = {8'h15, 8'h16, 8'h16, 8'h15, 8'h16, 8'h0e}; check[7'd28] = {8'h15, 8'h16, 8'h16, 8'h15, 8'h16, 8'h16}; check[7'd29] = {8'h15, 8'h16, 8'h16, 8'h15, 8'h16, 8'h16}; check[7'd30] = {8'h15, 8'h16, 8'h16, 8'h15, 8'h16, 8'h16}; check[7'd31] = {8'h1f, 8'h20, 8'h16, 8'h15, 8'h16, 8'h16}; check[7'd32] = {8'h1f, 8'h20, 8'h16, 8'h15, 8'h16, 8'h16}; check[7'd33] = {8'h1f, 8'h20, 8'h16, 8'h1f, 8'h20, 8'h16}; check[7'd34] = {8'h1f, 8'h20, 8'h16, 8'h1f, 8'h20, 8'h16}; check[7'd35] = {8'h1f, 8'h20, 8'h16, 8'h1f, 8'h20, 8'h16}; check[7'd36] = {8'h1f, 8'h20, 8'h20, 8'h1f, 8'h20, 8'h16}; check[7'd37] = {8'h1f, 8'h20, 8'h20, 8'h1f, 8'h20, 8'h16}; end // verilator lint_off COMBDLY always @ (`posstyle clk /*AS*/ or data) begin if (clk) begin data_a <= data + 8'd1; end end always @ (`posstyle clk /*AS*/ or data_a) begin if (clk) begin data_a_a <= data_a + 8'd1; end end always @ (`posstyle clk /*AS*/ or data_b) begin if (clk) begin data_b_a <= data_b + 8'd1; end end always @ (`negstyle clk /*AS*/ or data or data_a) begin if (~clk) begin data_b <= data + 8'd1; data_a_b <= data_a + 8'd1; data_b_b <= data_b + 8'd1; end end integer cyc; initial cyc=0; always @ (posedge fastclk) begin cyc <= cyc+1; `ifdef TEST_VERBOSE $write("%d %x %x %x %x %x %x\n",cyc,data_a,data_a_a,data_b_a,data_b,data_a_b,data_b_b); `endif if (cyc>=19 && cyc<36) begin if (compare !== check[cyc]) begin $write("[%0t] Mismatch, got=%x, exp=%x\n", $time, compare, check[cyc]); $stop; end end if (cyc == 10) begin data <= 8'd12; end if (cyc == 20) begin data <= 8'd20; end if (cyc == 30) begin data <= 8'd30; end if (cyc == 40) begin $write("*-* All Finished *-*\n"); $finish; end end endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2005 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs fastclk, clk ); `ifdef EDGE_DETECT_STYLE // Two 'common' forms of latching, with full combo, and with pos/negedge `define posstyle posedge `define negstyle negedge `else `define posstyle `define negstyle `endif input fastclk; input clk; reg [7:0] data; reg [7:0] data_a; reg [7:0] data_a_a; reg [7:0] data_a_b; reg [7:0] data_b; reg [7:0] data_b_a; reg [7:0] data_b_b; reg [8*6-1:0] check [100:0]; wire [8*6-1:0] compare = {data_a,data_a_a,data_b_a,data_b,data_a_b,data_b_b}; initial begin check[7'd19] = {8'h0d, 8'h0e, 8'h0e, 8'h0d, 8'h0e, 8'h0e}; check[7'd20] = {8'h0d, 8'h0e, 8'h0e, 8'h0d, 8'h0e, 8'h0e}; check[7'd21] = {8'h15, 8'h16, 8'h0e, 8'h0d, 8'h0e, 8'h0e}; check[7'd22] = {8'h15, 8'h16, 8'h0e, 8'h0d, 8'h0e, 8'h0e}; check[7'd23] = {8'h15, 8'h16, 8'h0e, 8'h15, 8'h16, 8'h0e}; check[7'd24] = {8'h15, 8'h16, 8'h0e, 8'h15, 8'h16, 8'h0e}; check[7'd25] = {8'h15, 8'h16, 8'h0e, 8'h15, 8'h16, 8'h0e}; check[7'd26] = {8'h15, 8'h16, 8'h16, 8'h15, 8'h16, 8'h0e}; check[7'd27] = {8'h15, 8'h16, 8'h16, 8'h15, 8'h16, 8'h0e}; check[7'd28] = {8'h15, 8'h16, 8'h16, 8'h15, 8'h16, 8'h16}; check[7'd29] = {8'h15, 8'h16, 8'h16, 8'h15, 8'h16, 8'h16}; check[7'd30] = {8'h15, 8'h16, 8'h16, 8'h15, 8'h16, 8'h16}; check[7'd31] = {8'h1f, 8'h20, 8'h16, 8'h15, 8'h16, 8'h16}; check[7'd32] = {8'h1f, 8'h20, 8'h16, 8'h15, 8'h16, 8'h16}; check[7'd33] = {8'h1f, 8'h20, 8'h16, 8'h1f, 8'h20, 8'h16}; check[7'd34] = {8'h1f, 8'h20, 8'h16, 8'h1f, 8'h20, 8'h16}; check[7'd35] = {8'h1f, 8'h20, 8'h16, 8'h1f, 8'h20, 8'h16}; check[7'd36] = {8'h1f, 8'h20, 8'h20, 8'h1f, 8'h20, 8'h16}; check[7'd37] = {8'h1f, 8'h20, 8'h20, 8'h1f, 8'h20, 8'h16}; end // verilator lint_off COMBDLY always @ (`posstyle clk /*AS*/ or data) begin if (clk) begin data_a <= data + 8'd1; end end always @ (`posstyle clk /*AS*/ or data_a) begin if (clk) begin data_a_a <= data_a + 8'd1; end end always @ (`posstyle clk /*AS*/ or data_b) begin if (clk) begin data_b_a <= data_b + 8'd1; end end always @ (`negstyle clk /*AS*/ or data or data_a) begin if (~clk) begin data_b <= data + 8'd1; data_a_b <= data_a + 8'd1; data_b_b <= data_b + 8'd1; end end integer cyc; initial cyc=0; always @ (posedge fastclk) begin cyc <= cyc+1; `ifdef TEST_VERBOSE $write("%d %x %x %x %x %x %x\n",cyc,data_a,data_a_a,data_b_a,data_b,data_a_b,data_b_b); `endif if (cyc>=19 && cyc<36) begin if (compare !== check[cyc]) begin $write("[%0t] Mismatch, got=%x, exp=%x\n", $time, compare, check[cyc]); $stop; end end if (cyc == 10) begin data <= 8'd12; end if (cyc == 20) begin data <= 8'd20; end if (cyc == 30) begin data <= 8'd30; end if (cyc == 40) begin $write("*-* All Finished *-*\n"); $finish; end end endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2005 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs fastclk, clk ); `ifdef EDGE_DETECT_STYLE // Two 'common' forms of latching, with full combo, and with pos/negedge `define posstyle posedge `define negstyle negedge `else `define posstyle `define negstyle `endif input fastclk; input clk; reg [7:0] data; reg [7:0] data_a; reg [7:0] data_a_a; reg [7:0] data_a_b; reg [7:0] data_b; reg [7:0] data_b_a; reg [7:0] data_b_b; reg [8*6-1:0] check [100:0]; wire [8*6-1:0] compare = {data_a,data_a_a,data_b_a,data_b,data_a_b,data_b_b}; initial begin check[7'd19] = {8'h0d, 8'h0e, 8'h0e, 8'h0d, 8'h0e, 8'h0e}; check[7'd20] = {8'h0d, 8'h0e, 8'h0e, 8'h0d, 8'h0e, 8'h0e}; check[7'd21] = {8'h15, 8'h16, 8'h0e, 8'h0d, 8'h0e, 8'h0e}; check[7'd22] = {8'h15, 8'h16, 8'h0e, 8'h0d, 8'h0e, 8'h0e}; check[7'd23] = {8'h15, 8'h16, 8'h0e, 8'h15, 8'h16, 8'h0e}; check[7'd24] = {8'h15, 8'h16, 8'h0e, 8'h15, 8'h16, 8'h0e}; check[7'd25] = {8'h15, 8'h16, 8'h0e, 8'h15, 8'h16, 8'h0e}; check[7'd26] = {8'h15, 8'h16, 8'h16, 8'h15, 8'h16, 8'h0e}; check[7'd27] = {8'h15, 8'h16, 8'h16, 8'h15, 8'h16, 8'h0e}; check[7'd28] = {8'h15, 8'h16, 8'h16, 8'h15, 8'h16, 8'h16}; check[7'd29] = {8'h15, 8'h16, 8'h16, 8'h15, 8'h16, 8'h16}; check[7'd30] = {8'h15, 8'h16, 8'h16, 8'h15, 8'h16, 8'h16}; check[7'd31] = {8'h1f, 8'h20, 8'h16, 8'h15, 8'h16, 8'h16}; check[7'd32] = {8'h1f, 8'h20, 8'h16, 8'h15, 8'h16, 8'h16}; check[7'd33] = {8'h1f, 8'h20, 8'h16, 8'h1f, 8'h20, 8'h16}; check[7'd34] = {8'h1f, 8'h20, 8'h16, 8'h1f, 8'h20, 8'h16}; check[7'd35] = {8'h1f, 8'h20, 8'h16, 8'h1f, 8'h20, 8'h16}; check[7'd36] = {8'h1f, 8'h20, 8'h20, 8'h1f, 8'h20, 8'h16}; check[7'd37] = {8'h1f, 8'h20, 8'h20, 8'h1f, 8'h20, 8'h16}; end // verilator lint_off COMBDLY always @ (`posstyle clk /*AS*/ or data) begin if (clk) begin data_a <= data + 8'd1; end end always @ (`posstyle clk /*AS*/ or data_a) begin if (clk) begin data_a_a <= data_a + 8'd1; end end always @ (`posstyle clk /*AS*/ or data_b) begin if (clk) begin data_b_a <= data_b + 8'd1; end end always @ (`negstyle clk /*AS*/ or data or data_a) begin if (~clk) begin data_b <= data + 8'd1; data_a_b <= data_a + 8'd1; data_b_b <= data_b + 8'd1; end end integer cyc; initial cyc=0; always @ (posedge fastclk) begin cyc <= cyc+1; `ifdef TEST_VERBOSE $write("%d %x %x %x %x %x %x\n",cyc,data_a,data_a_a,data_b_a,data_b,data_a_b,data_b_b); `endif if (cyc>=19 && cyc<36) begin if (compare !== check[cyc]) begin $write("[%0t] Mismatch, got=%x, exp=%x\n", $time, compare, check[cyc]); $stop; end end if (cyc == 10) begin data <= 8'd12; end if (cyc == 20) begin data <= 8'd20; end if (cyc == 30) begin data <= 8'd30; end if (cyc == 40) begin $write("*-* All Finished *-*\n"); $finish; end end endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2006 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc; initial cyc=0; reg [63:0] crc; reg [63:0] sum; wire [31:0] out1; wire [31:0] out2; sub sub (.in1(crc[15:0]), .in2(crc[31:16]), .out1(out1), .out2); always @ (posedge clk) begin `ifdef TEST_VERBOSE $write("[%0t] cyc==%0d crc=%x sum=%x out=%x %x\n",$time, cyc, crc, sum, out1, out2); `endif cyc <= cyc + 1; crc <= {crc[62:0], crc[63]^crc[2]^crc[0]}; sum <= {sum[62:0], sum[63]^sum[2]^sum[0]} ^ {out2,out1}; if (cyc==1) begin // Setup crc <= 64'h00000000_00000097; sum <= 64'h0; end else if (cyc==90) begin if (sum !== 64'he396068aba3898a2) $stop; end else if (cyc==91) begin end else if (cyc==92) begin end else if (cyc==93) begin end else if (cyc==94) begin end else if (cyc==99) begin $write("*-* All Finished *-*\n"); $finish; end end endmodule module sub (/*AUTOARG*/ // Outputs out1, out2, // Inputs in1, in2 ); input [15:0] in1; input [15:0] in2; output reg signed [31:0] out1; output reg unsigned [31:0] out2; always @* begin // verilator lint_off WIDTH out1 = $signed(in1) * $signed(in2); out2 = $unsigned(in1) * $unsigned(in2); // verilator lint_on WIDTH end endmodule
// DESCRIPTION: Verilator: Verilog Test module // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2010 by Wilson Snyder. // bug291 module t (/*AUTOARG*/ // Inputs clk ); input clk; integer out18; /*AUTOWIRE*/ // Beginning of automatic wires (for undeclared instantiated-module outputs) wire out1; // From test of Test.v wire out19; // From test of Test.v wire out1b; // From test of Test.v // End of automatics Test test (/*AUTOINST*/ // Outputs .out1 (out1), .out18 (out18), .out1b (out1b), .out19 (out19)); // Test loop always @ (posedge clk) begin if (out1 !== 1'b1) $stop; if (out18 !== 32'h18) $stop; if (out1b !== 1'b1) $stop; if (out19 !== 1'b1) $stop; $write("*-* All Finished *-*\n"); $finish; end endmodule module Test ( output wire out1 = 1'b1, output integer out18 = 32'h18, output var out1b = 1'b1, output var logic out19 = 1'b1 ); endmodule
(** * PE: Partial Evaluation *) (* Chapter author/maintainer: Chung-chieh Shan *) (** Equiv.v introduced constant folding as an example of a program transformation and proved that it preserves the meaning of the program. Constant folding operates on manifest constants such as [ANum] expressions. For example, it simplifies the command [Y ::= APlus (ANum 3) (ANum 1)] to the command [Y ::= ANum 4]. However, it does not propagate known constants along data flow. For example, it does not simplify the sequence X ::= ANum 3;; Y ::= APlus (AId X) (ANum 1) to X ::= ANum 3;; Y ::= ANum 4 because it forgets that [X] is [3] by the time it gets to [Y]. We naturally want to enhance constant folding so that it propagates known constants and uses them to simplify programs. Doing so constitutes a rudimentary form of _partial evaluation_. As we will see, partial evaluation is so called because it is like running a program, except only part of the program can be evaluated because only part of the input to the program is known. For example, we can only simplify the program X ::= ANum 3;; Y ::= AMinus (APlus (AId X) (ANum 1)) (AId Y) to X ::= ANum 3;; Y ::= AMinus (ANum 4) (AId Y) without knowing the initial value of [Y]. *) Require Export Imp. Require Import FunctionalExtensionality. (* ####################################################### *) (** * Generalizing Constant Folding *) (** The starting point of partial evaluation is to represent our partial knowledge about the state. For example, between the two assignments above, the partial evaluator may know only that [X] is [3] and nothing about any other variable. *) (** ** Partial States *) (** Conceptually speaking, we can think of such partial states as the type [id -> option nat] (as opposed to the type [id -> nat] of concrete, full states). However, in addition to looking up and updating the values of individual variables in a partial state, we may also want to compare two partial states to see if and where they differ, to handle conditional control flow. It is not possible to compare two arbitrary functions in this way, so we represent partial states in a more concrete format: as a list of [id * nat] pairs. *) Definition pe_state := list (id * nat). (** The idea is that a variable [id] appears in the list if and only if we know its current [nat] value. The [pe_lookup] function thus interprets this concrete representation. (If the same variable [id] appears multiple times in the list, the first occurrence wins, but we will define our partial evaluator to never construct such a [pe_state].) *) Fixpoint pe_lookup (pe_st : pe_state) (V:id) : option nat := match pe_st with | [] => None | (V',n')::pe_st => if eq_id_dec V V' then Some n' else pe_lookup pe_st V end. (** For example, [empty_pe_state] represents complete ignorance about every variable -- the function that maps every [id] to [None]. *) Definition empty_pe_state : pe_state := []. (** More generally, if the [list] representing a [pe_state] does not contain some [id], then that [pe_state] must map that [id] to [None]. Before we prove this fact, we first define a useful tactic for reasoning with [id] equality. The tactic compare V V' SCase means to reason by cases over [eq_id_dec V V']. In the case where [V = V'], the tactic substitutes [V] for [V'] throughout. *) Tactic Notation "compare" ident(i) ident(j) ident(c) := let H := fresh "Heq" i j in destruct (eq_id_dec i j); [ Case_aux c "equal"; subst j | Case_aux c "not equal" ]. Theorem pe_domain: forall pe_st V n, pe_lookup pe_st V = Some n -> In V (map (@fst _ _) pe_st). Proof. intros pe_st V n H. induction pe_st as [| [V' n'] pe_st]. Case "[]". inversion H. Case "::". simpl in H. simpl. compare V V' SCase; auto. Qed. (** *** Aside on [In]. We will make heavy use of the [In] predicate from the standard library. [In] is equivalent to the [appears_in] predicate introduced in Logic.v, but defined using a [Fixpoint] rather than an [Inductive]. *) Print In. (* ===> Fixpoint In {A:Type} (a: A) (l:list A) : Prop := match l with | [] => False | b :: m => b = a \/ In a m end : forall A : Type, A -> list A -> Prop *) (** [In] comes with various useful lemmas. *) Check in_or_app. (* ===> in_or_app: forall (A : Type) (l m : list A) (a : A), In a l \/ In a m -> In a (l ++ m) *) Check filter_In. (* ===> filter_In : forall (A : Type) (f : A -> bool) (x : A) (l : list A), In x (filter f l) <-> In x l /\ f x = true *) Check in_dec. (* ===> in_dec : forall A : Type, (forall x y : A, {x = y} + {x <> y}) -> forall (a : A) (l : list A), {In a l} + {~ In a l}] *) (** Note that we can compute with [in_dec], just as with [eq_id_dec]. *) (** ** Arithmetic Expressions *) (** Partial evaluation of [aexp] is straightforward -- it is basically the same as constant folding, [fold_constants_aexp], except that sometimes the partial state tells us the current value of a variable and we can replace it by a constant expression. *) Fixpoint pe_aexp (pe_st : pe_state) (a : aexp) : aexp := match a with | ANum n => ANum n | AId i => match pe_lookup pe_st i with (* <----- NEW *) | Some n => ANum n | None => AId i end | APlus a1 a2 => match (pe_aexp pe_st a1, pe_aexp pe_st a2) with | (ANum n1, ANum n2) => ANum (n1 + n2) | (a1', a2') => APlus a1' a2' end | AMinus a1 a2 => match (pe_aexp pe_st a1, pe_aexp pe_st a2) with | (ANum n1, ANum n2) => ANum (n1 - n2) | (a1', a2') => AMinus a1' a2' end | AMult a1 a2 => match (pe_aexp pe_st a1, pe_aexp pe_st a2) with | (ANum n1, ANum n2) => ANum (n1 * n2) | (a1', a2') => AMult a1' a2' end end. (** This partial evaluator folds constants but does not apply the associativity of addition. *) Example test_pe_aexp1: pe_aexp [(X,3)] (APlus (APlus (AId X) (ANum 1)) (AId Y)) = APlus (ANum 4) (AId Y). Proof. reflexivity. Qed. Example text_pe_aexp2: pe_aexp [(Y,3)] (APlus (APlus (AId X) (ANum 1)) (AId Y)) = APlus (APlus (AId X) (ANum 1)) (ANum 3). Proof. reflexivity. Qed. (** Now, in what sense is [pe_aexp] correct? It is reasonable to define the correctness of [pe_aexp] as follows: whenever a full state [st:state] is _consistent_ with a partial state [pe_st:pe_state] (in other words, every variable to which [pe_st] assigns a value is assigned the same value by [st]), evaluating [a] and evaluating [pe_aexp pe_st a] in [st] yields the same result. This statement is indeed true. *) Definition pe_consistent (st:state) (pe_st:pe_state) := forall V n, Some n = pe_lookup pe_st V -> st V = n. Theorem pe_aexp_correct_weak: forall st pe_st, pe_consistent st pe_st -> forall a, aeval st a = aeval st (pe_aexp pe_st a). Proof. unfold pe_consistent. intros st pe_st H a. aexp_cases (induction a) Case; simpl; try reflexivity; try (destruct (pe_aexp pe_st a1); destruct (pe_aexp pe_st a2); rewrite IHa1; rewrite IHa2; reflexivity). (* Compared to fold_constants_aexp_sound, the only interesting case is AId *) Case "AId". remember (pe_lookup pe_st i) as l. destruct l. SCase "Some". rewrite H with (n:=n) by apply Heql. reflexivity. SCase "None". reflexivity. Qed. (** However, we will soon want our partial evaluator to remove assignments. For example, it will simplify X ::= ANum 3;; Y ::= AMinus (AId X) (AId Y);; X ::= ANum 4 to just Y ::= AMinus (ANum 3) (AId Y);; X ::= ANum 4 by delaying the assignment to [X] until the end. To accomplish this simplification, we need the result of partial evaluating pe_aexp [(X,3)] (AMinus (AId X) (AId Y)) to be equal to [AMinus (ANum 3) (AId Y)] and _not_ the original expression [AMinus (AId X) (AId Y)]. After all, it would be incorrect, not just inefficient, to transform X ::= ANum 3;; Y ::= AMinus (AId X) (AId Y);; X ::= ANum 4 to Y ::= AMinus (AId X) (AId Y);; X ::= ANum 4 even though the output expressions [AMinus (ANum 3) (AId Y)] and [AMinus (AId X) (AId Y)] both satisfy the correctness criterion that we just proved. Indeed, if we were to just define [pe_aexp pe_st a = a] then the theorem [pe_aexp_correct'] would already trivially hold. Instead, we want to prove that the [pe_aexp] is correct in a stronger sense: evaluating the expression produced by partial evaluation ([aeval st (pe_aexp pe_st a)]) must not depend on those parts of the full state [st] that are already specified in the partial state [pe_st]. To be more precise, let us define a function [pe_override], which updates [st] with the contents of [pe_st]. In other words, [pe_override] carries out the assignments listed in [pe_st] on top of [st]. *) Fixpoint pe_override (st:state) (pe_st:pe_state) : state := match pe_st with | [] => st | (V,n)::pe_st => update (pe_override st pe_st) V n end. Example test_pe_override: pe_override (update empty_state Y 1) [(X,3);(Z,2)] = update (update (update empty_state Y 1) Z 2) X 3. Proof. reflexivity. Qed. (** Although [pe_override] operates on a concrete [list] representing a [pe_state], its behavior is defined entirely by the [pe_lookup] interpretation of the [pe_state]. *) Theorem pe_override_correct: forall st pe_st V0, pe_override st pe_st V0 = match pe_lookup pe_st V0 with | Some n => n | None => st V0 end. Proof. intros. induction pe_st as [| [V n] pe_st]. reflexivity. simpl in *. unfold update. compare V0 V Case; auto. rewrite eq_id; auto. rewrite neq_id; auto. Qed. (** We can relate [pe_consistent] to [pe_override] in two ways. First, overriding a state with a partial state always gives a state that is consistent with the partial state. Second, if a state is already consistent with a partial state, then overriding the state with the partial state gives the same state. *) Theorem pe_override_consistent: forall st pe_st, pe_consistent (pe_override st pe_st) pe_st. Proof. intros st pe_st V n H. rewrite pe_override_correct. destruct (pe_lookup pe_st V); inversion H. reflexivity. Qed. Theorem pe_consistent_override: forall st pe_st, pe_consistent st pe_st -> forall V, st V = pe_override st pe_st V. Proof. intros st pe_st H V. rewrite pe_override_correct. remember (pe_lookup pe_st V) as l. destruct l; auto. Qed. (** Now we can state and prove that [pe_aexp] is correct in the stronger sense that will help us define the rest of the partial evaluator. Intuitively, running a program using partial evaluation is a two-stage process. In the first, _static_ stage, we partially evaluate the given program with respect to some partial state to get a _residual_ program. In the second, _dynamic_ stage, we evaluate the residual program with respect to the rest of the state. This dynamic state provides values for those variables that are unknown in the static (partial) state. Thus, the residual program should be equivalent to _prepending_ the assignments listed in the partial state to the original program. *) Theorem pe_aexp_correct: forall (pe_st:pe_state) (a:aexp) (st:state), aeval (pe_override st pe_st) a = aeval st (pe_aexp pe_st a). Proof. intros pe_st a st. aexp_cases (induction a) Case; simpl; try reflexivity; try (destruct (pe_aexp pe_st a1); destruct (pe_aexp pe_st a2); rewrite IHa1; rewrite IHa2; reflexivity). (* Compared to fold_constants_aexp_sound, the only interesting case is AId. *) rewrite pe_override_correct. destruct (pe_lookup pe_st i); reflexivity. Qed. (** ** Boolean Expressions *) (** The partial evaluation of boolean expressions is similar. In fact, it is entirely analogous to the constant folding of boolean expressions, because our language has no boolean variables. *) Fixpoint pe_bexp (pe_st : pe_state) (b : bexp) : bexp := match b with | BTrue => BTrue | BFalse => BFalse | BEq a1 a2 => match (pe_aexp pe_st a1, pe_aexp pe_st a2) with | (ANum n1, ANum n2) => if beq_nat n1 n2 then BTrue else BFalse | (a1', a2') => BEq a1' a2' end | BLe a1 a2 => match (pe_aexp pe_st a1, pe_aexp pe_st a2) with | (ANum n1, ANum n2) => if ble_nat n1 n2 then BTrue else BFalse | (a1', a2') => BLe a1' a2' end | BNot b1 => match (pe_bexp pe_st b1) with | BTrue => BFalse | BFalse => BTrue | b1' => BNot b1' end | BAnd b1 b2 => match (pe_bexp pe_st b1, pe_bexp pe_st b2) with | (BTrue, BTrue) => BTrue | (BTrue, BFalse) => BFalse | (BFalse, BTrue) => BFalse | (BFalse, BFalse) => BFalse | (b1', b2') => BAnd b1' b2' end end. Example test_pe_bexp1: pe_bexp [(X,3)] (BNot (BLe (AId X) (ANum 3))) = BFalse. Proof. reflexivity. Qed. Example test_pe_bexp2: forall b, b = BNot (BLe (AId X) (APlus (AId X) (ANum 1))) -> pe_bexp [] b = b. Proof. intros b H. rewrite -> H. reflexivity. Qed. (** The correctness of [pe_bexp] is analogous to the correctness of [pe_aexp] above. *) Theorem pe_bexp_correct: forall (pe_st:pe_state) (b:bexp) (st:state), beval (pe_override st pe_st) b = beval st (pe_bexp pe_st b). Proof. intros pe_st b st. bexp_cases (induction b) Case; simpl; try reflexivity; try (remember (pe_aexp pe_st a) as a'; remember (pe_aexp pe_st a0) as a0'; assert (Ha: aeval (pe_override st pe_st) a = aeval st a'); assert (Ha0: aeval (pe_override st pe_st) a0 = aeval st a0'); try (subst; apply pe_aexp_correct); destruct a'; destruct a0'; rewrite Ha; rewrite Ha0; simpl; try destruct (beq_nat n n0); try destruct (ble_nat n n0); reflexivity); try (destruct (pe_bexp pe_st b); rewrite IHb; reflexivity); try (destruct (pe_bexp pe_st b1); destruct (pe_bexp pe_st b2); rewrite IHb1; rewrite IHb2; reflexivity). Qed. (* ####################################################### *) (** * Partial Evaluation of Commands, Without Loops *) (** What about the partial evaluation of commands? The analogy between partial evaluation and full evaluation continues: Just as full evaluation of a command turns an initial state into a final state, partial evaluation of a command turns an initial partial state into a final partial state. The difference is that, because the state is partial, some parts of the command may not be executable at the static stage. Therefore, just as [pe_aexp] returns a residual [aexp] and [pe_bexp] returns a residual [bexp] above, partially evaluating a command yields a residual command. Another way in which our partial evaluator is similar to a full evaluator is that it does not terminate on all commands. It is not hard to build a partial evaluator that terminates on all commands; what is hard is building a partial evaluator that terminates on all commands yet automatically performs desired optimizations such as unrolling loops. Often a partial evaluator can be coaxed into terminating more often and performing more optimizations by writing the source program differently so that the separation between static and dynamic information becomes more apparent. Such coaxing is the art of _binding-time improvement_. The binding time of a variable tells when its value is known -- either "static", or "dynamic." Anyway, for now we will just live with the fact that our partial evaluator is not a total function from the source command and the initial partial state to the residual command and the final partial state. To model this non-termination, just as with the full evaluation of commands, we use an inductively defined relation. We write c1 / st || c1' / st' to mean that partially evaluating the source command [c1] in the initial partial state [st] yields the residual command [c1'] and the final partial state [st']. For example, we want something like (X ::= ANum 3 ;; Y ::= AMult (AId Z) (APlus (AId X) (AId X))) / [] || (Y ::= AMult (AId Z) (ANum 6)) / [(X,3)] to hold. The assignment to [X] appears in the final partial state, not the residual command. *) (** ** Assignment *) (** Let's start by considering how to partially evaluate an assignment. The two assignments in the source program above needs to be treated differently. The first assignment [X ::= ANum 3], is _static_: its right-hand-side is a constant (more generally, simplifies to a constant), so we should update our partial state at [X] to [3] and produce no residual code. (Actually, we produce a residual [SKIP].) The second assignment [Y ::= AMult (AId Z) (APlus (AId X) (AId X))] is _dynamic_: its right-hand-side does not simplify to a constant, so we should leave it in the residual code and remove [Y], if present, from our partial state. To implement these two cases, we define the functions [pe_add] and [pe_remove]. Like [pe_override] above, these functions operate on a concrete [list] representing a [pe_state], but the theorems [pe_add_correct] and [pe_remove_correct] specify their behavior by the [pe_lookup] interpretation of the [pe_state]. *) Fixpoint pe_remove (pe_st:pe_state) (V:id) : pe_state := match pe_st with | [] => [] | (V',n')::pe_st => if eq_id_dec V V' then pe_remove pe_st V else (V',n') :: pe_remove pe_st V end. Theorem pe_remove_correct: forall pe_st V V0, pe_lookup (pe_remove pe_st V) V0 = if eq_id_dec V V0 then None else pe_lookup pe_st V0. Proof. intros pe_st V V0. induction pe_st as [| [V' n'] pe_st]. Case "[]". destruct (eq_id_dec V V0); reflexivity. Case "::". simpl. compare V V' SCase. SCase "equal". rewrite IHpe_st. destruct (eq_id_dec V V0). reflexivity. rewrite neq_id; auto. SCase "not equal". simpl. compare V0 V' SSCase. SSCase "equal". rewrite neq_id; auto. SSCase "not equal". rewrite IHpe_st. reflexivity. Qed. Definition pe_add (pe_st:pe_state) (V:id) (n:nat) : pe_state := (V,n) :: pe_remove pe_st V. Theorem pe_add_correct: forall pe_st V n V0, pe_lookup (pe_add pe_st V n) V0 = if eq_id_dec V V0 then Some n else pe_lookup pe_st V0. Proof. intros pe_st V n V0. unfold pe_add. simpl. compare V V0 Case. Case "equal". rewrite eq_id; auto. Case "not equal". rewrite pe_remove_correct. repeat rewrite neq_id; auto. Qed. (** We will use the two theorems below to show that our partial evaluator correctly deals with dynamic assignments and static assignments, respectively. *) Theorem pe_override_update_remove: forall st pe_st V n, update (pe_override st pe_st) V n = pe_override (update st V n) (pe_remove pe_st V). Proof. intros st pe_st V n. apply functional_extensionality. intros V0. unfold update. rewrite !pe_override_correct. rewrite pe_remove_correct. destruct (eq_id_dec V V0); reflexivity. Qed. Theorem pe_override_update_add: forall st pe_st V n, update (pe_override st pe_st) V n = pe_override st (pe_add pe_st V n). Proof. intros st pe_st V n. apply functional_extensionality. intros V0. unfold update. rewrite !pe_override_correct. rewrite pe_add_correct. destruct (eq_id_dec V V0); reflexivity. Qed. (** ** Conditional *) (** Trickier than assignments to partially evaluate is the conditional, [IFB b1 THEN c1 ELSE c2 FI]. If [b1] simplifies to [BTrue] or [BFalse] then it's easy: we know which branch will be taken, so just take that branch. If [b1] does not simplify to a constant, then we need to take both branches, and the final partial state may differ between the two branches! The following program illustrates the difficulty: X ::= ANum 3;; IFB BLe (AId Y) (ANum 4) THEN Y ::= ANum 4;; IFB BEq (AId X) (AId Y) THEN Y ::= ANum 999 ELSE SKIP FI ELSE SKIP FI Suppose the initial partial state is empty. We don't know statically how [Y] compares to [4], so we must partially evaluate both branches of the (outer) conditional. On the [THEN] branch, we know that [Y] is set to [4] and can even use that knowledge to simplify the code somewhat. On the [ELSE] branch, we still don't know the exact value of [Y] at the end. What should the final partial state and residual program be? One way to handle such a dynamic conditional is to take the intersection of the final partial states of the two branches. In this example, we take the intersection of [(Y,4),(X,3)] and [(X,3)], so the overall final partial state is [(X,3)]. To compensate for forgetting that [Y] is [4], we need to add an assignment [Y ::= ANum 4] to the end of the [THEN] branch. So, the residual program will be something like SKIP;; IFB BLe (AId Y) (ANum 4) THEN SKIP;; SKIP;; Y ::= ANum 4 ELSE SKIP FI Programming this case in Coq calls for several auxiliary functions: we need to compute the intersection of two [pe_state]s and turn their difference into sequences of assignments. First, we show how to compute whether two [pe_state]s to disagree at a given variable. In the theorem [pe_disagree_domain], we prove that two [pe_state]s can only disagree at variables that appear in at least one of them. *) Definition pe_disagree_at (pe_st1 pe_st2 : pe_state) (V:id) : bool := match pe_lookup pe_st1 V, pe_lookup pe_st2 V with | Some x, Some y => negb (beq_nat x y) | None, None => false | _, _ => true end. Theorem pe_disagree_domain: forall (pe_st1 pe_st2 : pe_state) (V:id), true = pe_disagree_at pe_st1 pe_st2 V -> In V (map (@fst _ _) pe_st1 ++ map (@fst _ _) pe_st2). Proof. unfold pe_disagree_at. intros pe_st1 pe_st2 V H. apply in_or_app. remember (pe_lookup pe_st1 V) as lookup1. destruct lookup1 as [n1|]. left. apply pe_domain with n1. auto. remember (pe_lookup pe_st2 V) as lookup2. destruct lookup2 as [n2|]. right. apply pe_domain with n2. auto. inversion H. Qed. (** We define the [pe_compare] function to list the variables where two given [pe_state]s disagree. This list is exact, according to the theorem [pe_compare_correct]: a variable appears on the list if and only if the two given [pe_state]s disagree at that variable. Furthermore, we use the [pe_unique] function to eliminate duplicates from the list. *) Fixpoint pe_unique (l : list id) : list id := match l with | [] => [] | x::l => x :: filter (fun y => if eq_id_dec x y then false else true) (pe_unique l) end. Theorem pe_unique_correct: forall l x, In x l <-> In x (pe_unique l). Proof. intros l x. induction l as [| h t]. reflexivity. simpl in *. split. Case "->". intros. inversion H; clear H. left. assumption. destruct (eq_id_dec h x). left. assumption. right. apply filter_In. split. apply IHt. assumption. rewrite neq_id; auto. Case "<-". intros. inversion H; clear H. left. assumption. apply filter_In in H0. inversion H0. right. apply IHt. assumption. Qed. Definition pe_compare (pe_st1 pe_st2 : pe_state) : list id := pe_unique (filter (pe_disagree_at pe_st1 pe_st2) (map (@fst _ _) pe_st1 ++ map (@fst _ _) pe_st2)). Theorem pe_compare_correct: forall pe_st1 pe_st2 V, pe_lookup pe_st1 V = pe_lookup pe_st2 V <-> ~ In V (pe_compare pe_st1 pe_st2). Proof. intros pe_st1 pe_st2 V. unfold pe_compare. rewrite <- pe_unique_correct. rewrite filter_In. split; intros Heq. Case "->". intro. destruct H. unfold pe_disagree_at in H0. rewrite Heq in H0. destruct (pe_lookup pe_st2 V). rewrite <- beq_nat_refl in H0. inversion H0. inversion H0. Case "<-". assert (Hagree: pe_disagree_at pe_st1 pe_st2 V = false). SCase "Proof of assertion". remember (pe_disagree_at pe_st1 pe_st2 V) as disagree. destruct disagree; [| reflexivity]. apply pe_disagree_domain in Heqdisagree. apply ex_falso_quodlibet. apply Heq. split. assumption. reflexivity. unfold pe_disagree_at in Hagree. destruct (pe_lookup pe_st1 V) as [n1|]; destruct (pe_lookup pe_st2 V) as [n2|]; try reflexivity; try solve by inversion. rewrite negb_false_iff in Hagree. apply beq_nat_true in Hagree. subst. reflexivity. Qed. (** The intersection of two partial states is the result of removing from one of them all the variables where the two disagree. We define the function [pe_removes], in terms of [pe_remove] above, to perform such a removal of a whole list of variables at once. The theorem [pe_compare_removes] testifies that the [pe_lookup] interpretation of the result of this intersection operation is the same no matter which of the two partial states we remove the variables from. Because [pe_override] only depends on the [pe_lookup] interpretation of partial states, [pe_override] also does not care which of the two partial states we remove the variables from; that theorem [pe_compare_override] is used in the correctness proof shortly. *) Fixpoint pe_removes (pe_st:pe_state) (ids : list id) : pe_state := match ids with | [] => pe_st | V::ids => pe_remove (pe_removes pe_st ids) V end. Theorem pe_removes_correct: forall pe_st ids V, pe_lookup (pe_removes pe_st ids) V = if in_dec eq_id_dec V ids then None else pe_lookup pe_st V. Proof. intros pe_st ids V. induction ids as [| V' ids]. reflexivity. simpl. rewrite pe_remove_correct. rewrite IHids. compare V' V Case. reflexivity. destruct (in_dec eq_id_dec V ids); reflexivity. Qed. Theorem pe_compare_removes: forall pe_st1 pe_st2 V, pe_lookup (pe_removes pe_st1 (pe_compare pe_st1 pe_st2)) V = pe_lookup (pe_removes pe_st2 (pe_compare pe_st1 pe_st2)) V. Proof. intros pe_st1 pe_st2 V. rewrite !pe_removes_correct. destruct (in_dec eq_id_dec V (pe_compare pe_st1 pe_st2)). reflexivity. apply pe_compare_correct. auto. Qed. Theorem pe_compare_override: forall pe_st1 pe_st2 st, pe_override st (pe_removes pe_st1 (pe_compare pe_st1 pe_st2)) = pe_override st (pe_removes pe_st2 (pe_compare pe_st1 pe_st2)). Proof. intros. apply functional_extensionality. intros V. rewrite !pe_override_correct. rewrite pe_compare_removes. reflexivity. Qed. (** Finally, we define an [assign] function to turn the difference between two partial states into a sequence of assignment commands. More precisely, [assign pe_st ids] generates an assignment command for each variable listed in [ids]. *) Fixpoint assign (pe_st : pe_state) (ids : list id) : com := match ids with | [] => SKIP | V::ids => match pe_lookup pe_st V with | Some n => (assign pe_st ids;; V ::= ANum n) | None => assign pe_st ids end end. (** The command generated by [assign] always terminates, because it is just a sequence of assignments. The (total) function [assigned] below computes the effect of the command on the (dynamic state). The theorem [assign_removes] then confirms that the generated assignments perfectly compensate for removing the variables from the partial state. *) Definition assigned (pe_st:pe_state) (ids : list id) (st:state) : state := fun V => if in_dec eq_id_dec V ids then match pe_lookup pe_st V with | Some n => n | None => st V end else st V. Theorem assign_removes: forall pe_st ids st, pe_override st pe_st = pe_override (assigned pe_st ids st) (pe_removes pe_st ids). Proof. intros pe_st ids st. apply functional_extensionality. intros V. rewrite !pe_override_correct. rewrite pe_removes_correct. unfold assigned. destruct (in_dec eq_id_dec V ids); destruct (pe_lookup pe_st V); reflexivity. Qed. Lemma ceval_extensionality: forall c st st1 st2, c / st || st1 -> (forall V, st1 V = st2 V) -> c / st || st2. Proof. intros c st st1 st2 H Heq. apply functional_extensionality in Heq. rewrite <- Heq. apply H. Qed. Theorem eval_assign: forall pe_st ids st, assign pe_st ids / st || assigned pe_st ids st. Proof. intros pe_st ids st. induction ids as [| V ids]; simpl. Case "[]". eapply ceval_extensionality. apply E_Skip. reflexivity. Case "V::ids". remember (pe_lookup pe_st V) as lookup. destruct lookup. SCase "Some". eapply E_Seq. apply IHids. unfold assigned. simpl. eapply ceval_extensionality. apply E_Ass. simpl. reflexivity. intros V0. unfold update. compare V V0 SSCase. SSCase "equal". rewrite <- Heqlookup. reflexivity. SSCase "not equal". destruct (in_dec eq_id_dec V0 ids); auto. SCase "None". eapply ceval_extensionality. apply IHids. unfold assigned. intros V0. simpl. compare V V0 SSCase. SSCase "equal". rewrite <- Heqlookup. destruct (in_dec eq_id_dec V ids); reflexivity. SSCase "not equal". destruct (in_dec eq_id_dec V0 ids); reflexivity. Qed. (** ** The Partial Evaluation Relation *) (** At long last, we can define a partial evaluator for commands without loops, as an inductive relation! The inequality conditions in [PE_AssDynamic] and [PE_If] are just to keep the partial evaluator deterministic; they are not required for correctness. *) Reserved Notation "c1 '/' st '||' c1' '/' st'" (at level 40, st at level 39, c1' at level 39). Inductive pe_com : com -> pe_state -> com -> pe_state -> Prop := | PE_Skip : forall pe_st, SKIP / pe_st || SKIP / pe_st | PE_AssStatic : forall pe_st a1 n1 l, pe_aexp pe_st a1 = ANum n1 -> (l ::= a1) / pe_st || SKIP / pe_add pe_st l n1 | PE_AssDynamic : forall pe_st a1 a1' l, pe_aexp pe_st a1 = a1' -> (forall n, a1' <> ANum n) -> (l ::= a1) / pe_st || (l ::= a1') / pe_remove pe_st l | PE_Seq : forall pe_st pe_st' pe_st'' c1 c2 c1' c2', c1 / pe_st || c1' / pe_st' -> c2 / pe_st' || c2' / pe_st'' -> (c1 ;; c2) / pe_st || (c1' ;; c2') / pe_st'' | PE_IfTrue : forall pe_st pe_st' b1 c1 c2 c1', pe_bexp pe_st b1 = BTrue -> c1 / pe_st || c1' / pe_st' -> (IFB b1 THEN c1 ELSE c2 FI) / pe_st || c1' / pe_st' | PE_IfFalse : forall pe_st pe_st' b1 c1 c2 c2', pe_bexp pe_st b1 = BFalse -> c2 / pe_st || c2' / pe_st' -> (IFB b1 THEN c1 ELSE c2 FI) / pe_st || c2' / pe_st' | PE_If : forall pe_st pe_st1 pe_st2 b1 c1 c2 c1' c2', pe_bexp pe_st b1 <> BTrue -> pe_bexp pe_st b1 <> BFalse -> c1 / pe_st || c1' / pe_st1 -> c2 / pe_st || c2' / pe_st2 -> (IFB b1 THEN c1 ELSE c2 FI) / pe_st || (IFB pe_bexp pe_st b1 THEN c1' ;; assign pe_st1 (pe_compare pe_st1 pe_st2) ELSE c2' ;; assign pe_st2 (pe_compare pe_st1 pe_st2) FI) / pe_removes pe_st1 (pe_compare pe_st1 pe_st2) where "c1 '/' st '||' c1' '/' st'" := (pe_com c1 st c1' st'). Tactic Notation "pe_com_cases" tactic(first) ident(c) := first; [ Case_aux c "PE_Skip" | Case_aux c "PE_AssStatic" | Case_aux c "PE_AssDynamic" | Case_aux c "PE_Seq" | Case_aux c "PE_IfTrue" | Case_aux c "PE_IfFalse" | Case_aux c "PE_If" ]. Hint Constructors pe_com. Hint Constructors ceval. (** ** Examples *) (** Below are some examples of using the partial evaluator. To make the [pe_com] relation actually usable for automatic partial evaluation, we would need to define more automation tactics in Coq. That is not hard to do, but it is not needed here. *) Example pe_example1: (X ::= ANum 3 ;; Y ::= AMult (AId Z) (APlus (AId X) (AId X))) / [] || (SKIP;; Y ::= AMult (AId Z) (ANum 6)) / [(X,3)]. Proof. eapply PE_Seq. eapply PE_AssStatic. reflexivity. eapply PE_AssDynamic. reflexivity. intros n H. inversion H. Qed. Example pe_example2: (X ::= ANum 3 ;; IFB BLe (AId X) (ANum 4) THEN X ::= ANum 4 ELSE SKIP FI) / [] || (SKIP;; SKIP) / [(X,4)]. Proof. eapply PE_Seq. eapply PE_AssStatic. reflexivity. eapply PE_IfTrue. reflexivity. eapply PE_AssStatic. reflexivity. Qed. Example pe_example3: (X ::= ANum 3;; IFB BLe (AId Y) (ANum 4) THEN Y ::= ANum 4;; IFB BEq (AId X) (AId Y) THEN Y ::= ANum 999 ELSE SKIP FI ELSE SKIP FI) / [] || (SKIP;; IFB BLe (AId Y) (ANum 4) THEN (SKIP;; SKIP);; (SKIP;; Y ::= ANum 4) ELSE SKIP;; SKIP FI) / [(X,3)]. Proof. erewrite f_equal2 with (f := fun c st => _ / _ || c / st). eapply PE_Seq. eapply PE_AssStatic. reflexivity. eapply PE_If; intuition eauto; try solve by inversion. econstructor. eapply PE_AssStatic. reflexivity. eapply PE_IfFalse. reflexivity. econstructor. reflexivity. reflexivity. Qed. (** ** Correctness of Partial Evaluation *) (** Finally let's prove that this partial evaluator is correct! *) Reserved Notation "c' '/' pe_st' '/' st '||' st''" (at level 40, pe_st' at level 39, st at level 39). Inductive pe_ceval (c':com) (pe_st':pe_state) (st:state) (st'':state) : Prop := | pe_ceval_intro : forall st', c' / st || st' -> pe_override st' pe_st' = st'' -> c' / pe_st' / st || st'' where "c' '/' pe_st' '/' st '||' st''" := (pe_ceval c' pe_st' st st''). Hint Constructors pe_ceval. Theorem pe_com_complete: forall c pe_st pe_st' c', c / pe_st || c' / pe_st' -> forall st st'', (c / pe_override st pe_st || st'') -> (c' / pe_st' / st || st''). Proof. intros c pe_st pe_st' c' Hpe. pe_com_cases (induction Hpe) Case; intros st st'' Heval; try (inversion Heval; subst; try (rewrite -> pe_bexp_correct, -> H in *; solve by inversion); []); eauto. Case "PE_AssStatic". econstructor. econstructor. rewrite -> pe_aexp_correct. rewrite <- pe_override_update_add. rewrite -> H. reflexivity. Case "PE_AssDynamic". econstructor. econstructor. reflexivity. rewrite -> pe_aexp_correct. rewrite <- pe_override_update_remove. reflexivity. Case "PE_Seq". edestruct IHHpe1. eassumption. subst. edestruct IHHpe2. eassumption. eauto. Case "PE_If". inversion Heval; subst. SCase "E'IfTrue". edestruct IHHpe1. eassumption. econstructor. apply E_IfTrue. rewrite <- pe_bexp_correct. assumption. eapply E_Seq. eassumption. apply eval_assign. rewrite <- assign_removes. eassumption. SCase "E_IfFalse". edestruct IHHpe2. eassumption. econstructor. apply E_IfFalse. rewrite <- pe_bexp_correct. assumption. eapply E_Seq. eassumption. apply eval_assign. rewrite -> pe_compare_override. rewrite <- assign_removes. eassumption. Qed. Theorem pe_com_sound: forall c pe_st pe_st' c', c / pe_st || c' / pe_st' -> forall st st'', (c' / pe_st' / st || st'') -> (c / pe_override st pe_st || st''). Proof. intros c pe_st pe_st' c' Hpe. pe_com_cases (induction Hpe) Case; intros st st'' [st' Heval Heq]; try (inversion Heval; []; subst); auto. Case "PE_AssStatic". rewrite <- pe_override_update_add. apply E_Ass. rewrite -> pe_aexp_correct. rewrite -> H. reflexivity. Case "PE_AssDynamic". rewrite <- pe_override_update_remove. apply E_Ass. rewrite <- pe_aexp_correct. reflexivity. Case "PE_Seq". eapply E_Seq; eauto. Case "PE_IfTrue". apply E_IfTrue. rewrite -> pe_bexp_correct. rewrite -> H. reflexivity. eauto. Case "PE_IfFalse". apply E_IfFalse. rewrite -> pe_bexp_correct. rewrite -> H. reflexivity. eauto. Case "PE_If". inversion Heval; subst; inversion H7; (eapply ceval_deterministic in H8; [| apply eval_assign]); subst. SCase "E_IfTrue". apply E_IfTrue. rewrite -> pe_bexp_correct. assumption. rewrite <- assign_removes. eauto. SCase "E_IfFalse". rewrite -> pe_compare_override. apply E_IfFalse. rewrite -> pe_bexp_correct. assumption. rewrite <- assign_removes. eauto. Qed. (** The main theorem. Thanks to David Menendez for this formulation! *) Corollary pe_com_correct: forall c pe_st pe_st' c', c / pe_st || c' / pe_st' -> forall st st'', (c / pe_override st pe_st || st'') <-> (c' / pe_st' / st || st''). Proof. intros c pe_st pe_st' c' H st st''. split. Case "->". apply pe_com_complete. apply H. Case "<-". apply pe_com_sound. apply H. Qed. (* ####################################################### *) (** * Partial Evaluation of Loops *) (** It may seem straightforward at first glance to extend the partial evaluation relation [pe_com] above to loops. Indeed, many loops are easy to deal with. Considered this repeated-squaring loop, for example: WHILE BLe (ANum 1) (AId X) DO Y ::= AMult (AId Y) (AId Y);; X ::= AMinus (AId X) (ANum 1) END If we know neither [X] nor [Y] statically, then the entire loop is dynamic and the residual command should be the same. If we know [X] but not [Y], then the loop can be unrolled all the way and the residual command should be Y ::= AMult (AId Y) (AId Y);; Y ::= AMult (AId Y) (AId Y);; Y ::= AMult (AId Y) (AId Y) if [X] is initially [3] (and finally [0]). In general, a loop is easy to partially evaluate if the final partial state of the loop body is equal to the initial state, or if its guard condition is static. But there are other loops for which it is hard to express the residual program we want in Imp. For example, take this program for checking if [Y] is even or odd: X ::= ANum 0;; WHILE BLe (ANum 1) (AId Y) DO Y ::= AMinus (AId Y) (ANum 1);; X ::= AMinus (ANum 1) (AId X) END The value of [X] alternates between [0] and [1] during the loop. Ideally, we would like to unroll this loop, not all the way but _two-fold_, into something like WHILE BLe (ANum 1) (AId Y) DO Y ::= AMinus (AId Y) (ANum 1);; IF BLe (ANum 1) (AId Y) THEN Y ::= AMinus (AId Y) (ANum 1) ELSE X ::= ANum 1;; EXIT FI END;; X ::= ANum 0 Unfortunately, there is no [EXIT] command in Imp. Without extending the range of control structures available in our language, the best we can do is to repeat loop-guard tests or add flag variables. Neither option is terribly attractive. Still, as a digression, below is an attempt at performing partial evaluation on Imp commands. We add one more command argument [c''] to the [pe_com] relation, which keeps track of a loop to roll up. *) Module Loop. Reserved Notation "c1 '/' st '||' c1' '/' st' '/' c''" (at level 40, st at level 39, c1' at level 39, st' at level 39). Inductive pe_com : com -> pe_state -> com -> pe_state -> com -> Prop := | PE_Skip : forall pe_st, SKIP / pe_st || SKIP / pe_st / SKIP | PE_AssStatic : forall pe_st a1 n1 l, pe_aexp pe_st a1 = ANum n1 -> (l ::= a1) / pe_st || SKIP / pe_add pe_st l n1 / SKIP | PE_AssDynamic : forall pe_st a1 a1' l, pe_aexp pe_st a1 = a1' -> (forall n, a1' <> ANum n) -> (l ::= a1) / pe_st || (l ::= a1') / pe_remove pe_st l / SKIP | PE_Seq : forall pe_st pe_st' pe_st'' c1 c2 c1' c2' c'', c1 / pe_st || c1' / pe_st' / SKIP -> c2 / pe_st' || c2' / pe_st'' / c'' -> (c1 ;; c2) / pe_st || (c1' ;; c2') / pe_st'' / c'' | PE_IfTrue : forall pe_st pe_st' b1 c1 c2 c1' c'', pe_bexp pe_st b1 = BTrue -> c1 / pe_st || c1' / pe_st' / c'' -> (IFB b1 THEN c1 ELSE c2 FI) / pe_st || c1' / pe_st' / c'' | PE_IfFalse : forall pe_st pe_st' b1 c1 c2 c2' c'', pe_bexp pe_st b1 = BFalse -> c2 / pe_st || c2' / pe_st' / c'' -> (IFB b1 THEN c1 ELSE c2 FI) / pe_st || c2' / pe_st' / c'' | PE_If : forall pe_st pe_st1 pe_st2 b1 c1 c2 c1' c2' c'', pe_bexp pe_st b1 <> BTrue -> pe_bexp pe_st b1 <> BFalse -> c1 / pe_st || c1' / pe_st1 / c'' -> c2 / pe_st || c2' / pe_st2 / c'' -> (IFB b1 THEN c1 ELSE c2 FI) / pe_st || (IFB pe_bexp pe_st b1 THEN c1' ;; assign pe_st1 (pe_compare pe_st1 pe_st2) ELSE c2' ;; assign pe_st2 (pe_compare pe_st1 pe_st2) FI) / pe_removes pe_st1 (pe_compare pe_st1 pe_st2) / c'' | PE_WhileEnd : forall pe_st b1 c1, pe_bexp pe_st b1 = BFalse -> (WHILE b1 DO c1 END) / pe_st || SKIP / pe_st / SKIP | PE_WhileLoop : forall pe_st pe_st' pe_st'' b1 c1 c1' c2' c2'', pe_bexp pe_st b1 = BTrue -> c1 / pe_st || c1' / pe_st' / SKIP -> (WHILE b1 DO c1 END) / pe_st' || c2' / pe_st'' / c2'' -> pe_compare pe_st pe_st'' <> [] -> (WHILE b1 DO c1 END) / pe_st || (c1';;c2') / pe_st'' / c2'' | PE_While : forall pe_st pe_st' pe_st'' b1 c1 c1' c2' c2'', pe_bexp pe_st b1 <> BFalse -> pe_bexp pe_st b1 <> BTrue -> c1 / pe_st || c1' / pe_st' / SKIP -> (WHILE b1 DO c1 END) / pe_st' || c2' / pe_st'' / c2'' -> pe_compare pe_st pe_st'' <> [] -> (c2'' = SKIP \/ c2'' = WHILE b1 DO c1 END) -> (WHILE b1 DO c1 END) / pe_st || (IFB pe_bexp pe_st b1 THEN c1';; c2';; assign pe_st'' (pe_compare pe_st pe_st'') ELSE assign pe_st (pe_compare pe_st pe_st'') FI) / pe_removes pe_st (pe_compare pe_st pe_st'') / c2'' | PE_WhileFixedEnd : forall pe_st b1 c1, pe_bexp pe_st b1 <> BFalse -> (WHILE b1 DO c1 END) / pe_st || SKIP / pe_st / (WHILE b1 DO c1 END) | PE_WhileFixedLoop : forall pe_st pe_st' pe_st'' b1 c1 c1' c2', pe_bexp pe_st b1 = BTrue -> c1 / pe_st || c1' / pe_st' / SKIP -> (WHILE b1 DO c1 END) / pe_st' || c2' / pe_st'' / (WHILE b1 DO c1 END) -> pe_compare pe_st pe_st'' = [] -> (WHILE b1 DO c1 END) / pe_st || (WHILE BTrue DO SKIP END) / pe_st / SKIP (* Because we have an infinite loop, we should actually start to throw away the rest of the program: (WHILE b1 DO c1 END) / pe_st || SKIP / pe_st / (WHILE BTrue DO SKIP END) *) | PE_WhileFixed : forall pe_st pe_st' pe_st'' b1 c1 c1' c2', pe_bexp pe_st b1 <> BFalse -> pe_bexp pe_st b1 <> BTrue -> c1 / pe_st || c1' / pe_st' / SKIP -> (WHILE b1 DO c1 END) / pe_st' || c2' / pe_st'' / (WHILE b1 DO c1 END) -> pe_compare pe_st pe_st'' = [] -> (WHILE b1 DO c1 END) / pe_st || (WHILE pe_bexp pe_st b1 DO c1';; c2' END) / pe_st / SKIP where "c1 '/' st '||' c1' '/' st' '/' c''" := (pe_com c1 st c1' st' c''). Tactic Notation "pe_com_cases" tactic(first) ident(c) := first; [ Case_aux c "PE_Skip" | Case_aux c "PE_AssStatic" | Case_aux c "PE_AssDynamic" | Case_aux c "PE_Seq" | Case_aux c "PE_IfTrue" | Case_aux c "PE_IfFalse" | Case_aux c "PE_If" | Case_aux c "PE_WhileEnd" | Case_aux c "PE_WhileLoop" | Case_aux c "PE_While" | Case_aux c "PE_WhileFixedEnd" | Case_aux c "PE_WhileFixedLoop" | Case_aux c "PE_WhileFixed" ]. Hint Constructors pe_com. (** ** Examples *) Ltac step i := (eapply i; intuition eauto; try solve by inversion); repeat (try eapply PE_Seq; try (eapply PE_AssStatic; simpl; reflexivity); try (eapply PE_AssDynamic; [ simpl; reflexivity | intuition eauto; solve by inversion ])). Definition square_loop: com := WHILE BLe (ANum 1) (AId X) DO Y ::= AMult (AId Y) (AId Y);; X ::= AMinus (AId X) (ANum 1) END. Example pe_loop_example1: square_loop / [] || (WHILE BLe (ANum 1) (AId X) DO (Y ::= AMult (AId Y) (AId Y);; X ::= AMinus (AId X) (ANum 1));; SKIP END) / [] / SKIP. Proof. erewrite f_equal2 with (f := fun c st => _ / _ || c / st / SKIP). step PE_WhileFixed. step PE_WhileFixedEnd. reflexivity. reflexivity. reflexivity. Qed. Example pe_loop_example2: (X ::= ANum 3;; square_loop) / [] || (SKIP;; (Y ::= AMult (AId Y) (AId Y);; SKIP);; (Y ::= AMult (AId Y) (AId Y);; SKIP);; (Y ::= AMult (AId Y) (AId Y);; SKIP);; SKIP) / [(X,0)] / SKIP. Proof. erewrite f_equal2 with (f := fun c st => _ / _ || c / st / SKIP). eapply PE_Seq. eapply PE_AssStatic. reflexivity. step PE_WhileLoop. step PE_WhileLoop. step PE_WhileLoop. step PE_WhileEnd. inversion H. inversion H. inversion H. reflexivity. reflexivity. Qed. Example pe_loop_example3: (Z ::= ANum 3;; subtract_slowly) / [] || (SKIP;; IFB BNot (BEq (AId X) (ANum 0)) THEN (SKIP;; X ::= AMinus (AId X) (ANum 1));; IFB BNot (BEq (AId X) (ANum 0)) THEN (SKIP;; X ::= AMinus (AId X) (ANum 1));; IFB BNot (BEq (AId X) (ANum 0)) THEN (SKIP;; X ::= AMinus (AId X) (ANum 1));; WHILE BNot (BEq (AId X) (ANum 0)) DO (SKIP;; X ::= AMinus (AId X) (ANum 1));; SKIP END;; SKIP;; Z ::= ANum 0 ELSE SKIP;; Z ::= ANum 1 FI;; SKIP ELSE SKIP;; Z ::= ANum 2 FI;; SKIP ELSE SKIP;; Z ::= ANum 3 FI) / [] / SKIP. Proof. erewrite f_equal2 with (f := fun c st => _ / _ || c / st / SKIP). eapply PE_Seq. eapply PE_AssStatic. reflexivity. step PE_While. step PE_While. step PE_While. step PE_WhileFixed. step PE_WhileFixedEnd. reflexivity. inversion H. inversion H. inversion H. reflexivity. reflexivity. Qed. Example pe_loop_example4: (X ::= ANum 0;; WHILE BLe (AId X) (ANum 2) DO X ::= AMinus (ANum 1) (AId X) END) / [] || (SKIP;; WHILE BTrue DO SKIP END) / [(X,0)] / SKIP. Proof. erewrite f_equal2 with (f := fun c st => _ / _ || c / st / SKIP). eapply PE_Seq. eapply PE_AssStatic. reflexivity. step PE_WhileFixedLoop. step PE_WhileLoop. step PE_WhileFixedEnd. inversion H. reflexivity. reflexivity. reflexivity. Qed. (** ** Correctness *) (** Because this partial evaluator can unroll a loop n-fold where n is a (finite) integer greater than one, in order to show it correct we need to perform induction not structurally on dynamic evaluation but on the number of times dynamic evaluation enters a loop body. *) Reserved Notation "c1 '/' st '||' st' '#' n" (at level 40, st at level 39, st' at level 39). Inductive ceval_count : com -> state -> state -> nat -> Prop := | E'Skip : forall st, SKIP / st || st # 0 | E'Ass : forall st a1 n l, aeval st a1 = n -> (l ::= a1) / st || (update st l n) # 0 | E'Seq : forall c1 c2 st st' st'' n1 n2, c1 / st || st' # n1 -> c2 / st' || st'' # n2 -> (c1 ;; c2) / st || st'' # (n1 + n2) | E'IfTrue : forall st st' b1 c1 c2 n, beval st b1 = true -> c1 / st || st' # n -> (IFB b1 THEN c1 ELSE c2 FI) / st || st' # n | E'IfFalse : forall st st' b1 c1 c2 n, beval st b1 = false -> c2 / st || st' # n -> (IFB b1 THEN c1 ELSE c2 FI) / st || st' # n | E'WhileEnd : forall b1 st c1, beval st b1 = false -> (WHILE b1 DO c1 END) / st || st # 0 | E'WhileLoop : forall st st' st'' b1 c1 n1 n2, beval st b1 = true -> c1 / st || st' # n1 -> (WHILE b1 DO c1 END) / st' || st'' # n2 -> (WHILE b1 DO c1 END) / st || st'' # S (n1 + n2) where "c1 '/' st '||' st' # n" := (ceval_count c1 st st' n). Tactic Notation "ceval_count_cases" tactic(first) ident(c) := first; [ Case_aux c "E'Skip" | Case_aux c "E'Ass" | Case_aux c "E'Seq" | Case_aux c "E'IfTrue" | Case_aux c "E'IfFalse" | Case_aux c "E'WhileEnd" | Case_aux c "E'WhileLoop" ]. Hint Constructors ceval_count. Theorem ceval_count_complete: forall c st st', c / st || st' -> exists n, c / st || st' # n. Proof. intros c st st' Heval. induction Heval; try inversion IHHeval1; try inversion IHHeval2; try inversion IHHeval; eauto. Qed. Theorem ceval_count_sound: forall c st st' n, c / st || st' # n -> c / st || st'. Proof. intros c st st' n Heval. induction Heval; eauto. Qed. Theorem pe_compare_nil_lookup: forall pe_st1 pe_st2, pe_compare pe_st1 pe_st2 = [] -> forall V, pe_lookup pe_st1 V = pe_lookup pe_st2 V. Proof. intros pe_st1 pe_st2 H V. apply (pe_compare_correct pe_st1 pe_st2 V). rewrite H. intro. inversion H0. Qed. Theorem pe_compare_nil_override: forall pe_st1 pe_st2, pe_compare pe_st1 pe_st2 = [] -> forall st, pe_override st pe_st1 = pe_override st pe_st2. Proof. intros pe_st1 pe_st2 H st. apply functional_extensionality. intros V. rewrite !pe_override_correct. apply pe_compare_nil_lookup with (V:=V) in H. rewrite H. reflexivity. Qed. Reserved Notation "c' '/' pe_st' '/' c'' '/' st '||' st'' '#' n" (at level 40, pe_st' at level 39, c'' at level 39, st at level 39, st'' at level 39). Inductive pe_ceval_count (c':com) (pe_st':pe_state) (c'':com) (st:state) (st'':state) (n:nat) : Prop := | pe_ceval_count_intro : forall st' n', c' / st || st' -> c'' / pe_override st' pe_st' || st'' # n' -> n' <= n -> c' / pe_st' / c'' / st || st'' # n where "c' '/' pe_st' '/' c'' '/' st '||' st'' '#' n" := (pe_ceval_count c' pe_st' c'' st st'' n). Hint Constructors pe_ceval_count. Lemma pe_ceval_count_le: forall c' pe_st' c'' st st'' n n', n' <= n -> c' / pe_st' / c'' / st || st'' # n' -> c' / pe_st' / c'' / st || st'' # n. Proof. intros c' pe_st' c'' st st'' n n' Hle H. inversion H. econstructor; try eassumption. omega. Qed. Theorem pe_com_complete: forall c pe_st pe_st' c' c'', c / pe_st || c' / pe_st' / c'' -> forall st st'' n, (c / pe_override st pe_st || st'' # n) -> (c' / pe_st' / c'' / st || st'' # n). Proof. intros c pe_st pe_st' c' c'' Hpe. pe_com_cases (induction Hpe) Case; intros st st'' n Heval; try (inversion Heval; subst; try (rewrite -> pe_bexp_correct, -> H in *; solve by inversion); []); eauto. Case "PE_AssStatic". econstructor. econstructor. rewrite -> pe_aexp_correct. rewrite <- pe_override_update_add. rewrite -> H. apply E'Skip. auto. Case "PE_AssDynamic". econstructor. econstructor. reflexivity. rewrite -> pe_aexp_correct. rewrite <- pe_override_update_remove. apply E'Skip. auto. Case "PE_Seq". edestruct IHHpe1 as [? ? ? Hskip ?]. eassumption. inversion Hskip. subst. edestruct IHHpe2. eassumption. econstructor; eauto. omega. Case "PE_If". inversion Heval; subst. SCase "E'IfTrue". edestruct IHHpe1. eassumption. econstructor. apply E_IfTrue. rewrite <- pe_bexp_correct. assumption. eapply E_Seq. eassumption. apply eval_assign. rewrite <- assign_removes. eassumption. eassumption. SCase "E_IfFalse". edestruct IHHpe2. eassumption. econstructor. apply E_IfFalse. rewrite <- pe_bexp_correct. assumption. eapply E_Seq. eassumption. apply eval_assign. rewrite -> pe_compare_override. rewrite <- assign_removes. eassumption. eassumption. Case "PE_WhileLoop". edestruct IHHpe1 as [? ? ? Hskip ?]. eassumption. inversion Hskip. subst. edestruct IHHpe2. eassumption. econstructor; eauto. omega. Case "PE_While". inversion Heval; subst. SCase "E_WhileEnd". econstructor. apply E_IfFalse. rewrite <- pe_bexp_correct. assumption. apply eval_assign. rewrite <- assign_removes. inversion H2; subst; auto. auto. SCase "E_WhileLoop". edestruct IHHpe1 as [? ? ? Hskip ?]. eassumption. inversion Hskip. subst. edestruct IHHpe2. eassumption. econstructor. apply E_IfTrue. rewrite <- pe_bexp_correct. assumption. repeat eapply E_Seq; eauto. apply eval_assign. rewrite -> pe_compare_override, <- assign_removes. eassumption. omega. Case "PE_WhileFixedLoop". apply ex_falso_quodlibet. generalize dependent (S (n1 + n2)). intros n. clear - Case H H0 IHHpe1 IHHpe2. generalize dependent st. induction n using lt_wf_ind; intros st Heval. inversion Heval; subst. SCase "E'WhileEnd". rewrite pe_bexp_correct, H in H7. inversion H7. SCase "E'WhileLoop". edestruct IHHpe1 as [? ? ? Hskip ?]. eassumption. inversion Hskip. subst. edestruct IHHpe2. eassumption. rewrite <- (pe_compare_nil_override _ _ H0) in H7. apply H1 in H7; [| omega]. inversion H7. Case "PE_WhileFixed". generalize dependent st. induction n using lt_wf_ind; intros st Heval. inversion Heval; subst. SCase "E'WhileEnd". rewrite pe_bexp_correct in H8. eauto. SCase "E'WhileLoop". rewrite pe_bexp_correct in H5. edestruct IHHpe1 as [? ? ? Hskip ?]. eassumption. inversion Hskip. subst. edestruct IHHpe2. eassumption. rewrite <- (pe_compare_nil_override _ _ H1) in H8. apply H2 in H8; [| omega]. inversion H8. econstructor; [ eapply E_WhileLoop; eauto | eassumption | omega]. Qed. Theorem pe_com_sound: forall c pe_st pe_st' c' c'', c / pe_st || c' / pe_st' / c'' -> forall st st'' n, (c' / pe_st' / c'' / st || st'' # n) -> (c / pe_override st pe_st || st''). Proof. intros c pe_st pe_st' c' c'' Hpe. pe_com_cases (induction Hpe) Case; intros st st'' n [st' n' Heval Heval' Hle]; try (inversion Heval; []; subst); try (inversion Heval'; []; subst); eauto. Case "PE_AssStatic". rewrite <- pe_override_update_add. apply E_Ass. rewrite -> pe_aexp_correct. rewrite -> H. reflexivity. Case "PE_AssDynamic". rewrite <- pe_override_update_remove. apply E_Ass. rewrite <- pe_aexp_correct. reflexivity. Case "PE_Seq". eapply E_Seq; eauto. Case "PE_IfTrue". apply E_IfTrue. rewrite -> pe_bexp_correct. rewrite -> H. reflexivity. eapply IHHpe. eauto. Case "PE_IfFalse". apply E_IfFalse. rewrite -> pe_bexp_correct. rewrite -> H. reflexivity. eapply IHHpe. eauto. Case "PE_If". inversion Heval; subst; inversion H7; subst; clear H7. SCase "E_IfTrue". eapply ceval_deterministic in H8; [| apply eval_assign]. subst. rewrite <- assign_removes in Heval'. apply E_IfTrue. rewrite -> pe_bexp_correct. assumption. eapply IHHpe1. eauto. SCase "E_IfFalse". eapply ceval_deterministic in H8; [| apply eval_assign]. subst. rewrite -> pe_compare_override in Heval'. rewrite <- assign_removes in Heval'. apply E_IfFalse. rewrite -> pe_bexp_correct. assumption. eapply IHHpe2. eauto. Case "PE_WhileEnd". apply E_WhileEnd. rewrite -> pe_bexp_correct. rewrite -> H. reflexivity. Case "PE_WhileLoop". eapply E_WhileLoop. rewrite -> pe_bexp_correct. rewrite -> H. reflexivity. eapply IHHpe1. eauto. eapply IHHpe2. eauto. Case "PE_While". inversion Heval; subst. SCase "E_IfTrue". inversion H9. subst. clear H9. inversion H10. subst. clear H10. eapply ceval_deterministic in H11; [| apply eval_assign]. subst. rewrite -> pe_compare_override in Heval'. rewrite <- assign_removes in Heval'. eapply E_WhileLoop. rewrite -> pe_bexp_correct. assumption. eapply IHHpe1. eauto. eapply IHHpe2. eauto. SCase "E_IfFalse". apply ceval_count_sound in Heval'. eapply ceval_deterministic in H9; [| apply eval_assign]. subst. rewrite <- assign_removes in Heval'. inversion H2; subst. SSCase "c2'' = SKIP". inversion Heval'. subst. apply E_WhileEnd. rewrite -> pe_bexp_correct. assumption. SSCase "c2'' = WHILE b1 DO c1 END". assumption. Case "PE_WhileFixedEnd". eapply ceval_count_sound. apply Heval'. Case "PE_WhileFixedLoop". apply loop_never_stops in Heval. inversion Heval. Case "PE_WhileFixed". clear - Case H1 IHHpe1 IHHpe2 Heval. remember (WHILE pe_bexp pe_st b1 DO c1';; c2' END) as c'. ceval_cases (induction Heval) SCase; inversion Heqc'; subst; clear Heqc'. SCase "E_WhileEnd". apply E_WhileEnd. rewrite pe_bexp_correct. assumption. SCase "E_WhileLoop". assert (IHHeval2' := IHHeval2 (refl_equal _)). apply ceval_count_complete in IHHeval2'. inversion IHHeval2'. clear IHHeval1 IHHeval2 IHHeval2'. inversion Heval1. subst. eapply E_WhileLoop. rewrite pe_bexp_correct. assumption. eauto. eapply IHHpe2. econstructor. eassumption. rewrite <- (pe_compare_nil_override _ _ H1). eassumption. apply le_n. Qed. Corollary pe_com_correct: forall c pe_st pe_st' c', c / pe_st || c' / pe_st' / SKIP -> forall st st'', (c / pe_override st pe_st || st'') <-> (exists st', c' / st || st' /\ pe_override st' pe_st' = st''). Proof. intros c pe_st pe_st' c' H st st''. split. Case "->". intros Heval. apply ceval_count_complete in Heval. inversion Heval as [n Heval']. apply pe_com_complete with (st:=st) (st'':=st'') (n:=n) in H. inversion H as [? ? ? Hskip ?]. inversion Hskip. subst. eauto. assumption. Case "<-". intros [st' [Heval Heq]]. subst st''. eapply pe_com_sound in H. apply H. econstructor. apply Heval. apply E'Skip. apply le_n. Qed. End Loop. (* ####################################################### *) (** * Partial Evaluation of Flowchart Programs *) (** Instead of partially evaluating [WHILE] loops directly, the standard approach to partially evaluating imperative programs is to convert them into _flowcharts_. In other words, it turns out that adding labels and jumps to our language makes it much easier to partially evaluate. The result of partially evaluating a flowchart is a residual flowchart. If we are lucky, the jumps in the residual flowchart can be converted back to [WHILE] loops, but that is not possible in general; we do not pursue it here. *) (** ** Basic blocks *) (** A flowchart is made of _basic blocks_, which we represent with the inductive type [block]. A basic block is a sequence of assignments (the constructor [Assign]), concluding with a conditional jump (the constructor [If]) or an unconditional jump (the constructor [Goto]). The destinations of the jumps are specified by _labels_, which can be of any type. Therefore, we parameterize the [block] type by the type of labels. *) Inductive block (Label:Type) : Type := | Goto : Label -> block Label | If : bexp -> Label -> Label -> block Label | Assign : id -> aexp -> block Label -> block Label. Tactic Notation "block_cases" tactic(first) ident(c) := first; [ Case_aux c "Goto" | Case_aux c "If" | Case_aux c "Assign" ]. Arguments Goto {Label} _. Arguments If {Label} _ _ _. Arguments Assign {Label} _ _ _. (** We use the "even or odd" program, expressed above in Imp, as our running example. Converting this program into a flowchart turns out to require 4 labels, so we define the following type. *) Inductive parity_label : Type := | entry : parity_label | loop : parity_label | body : parity_label | done : parity_label. (** The following [block] is the basic block found at the [body] label of the example program. *) Definition parity_body : block parity_label := Assign Y (AMinus (AId Y) (ANum 1)) (Assign X (AMinus (ANum 1) (AId X)) (Goto loop)). (** To evaluate a basic block, given an initial state, is to compute the final state and the label to jump to next. Because basic blocks do not _contain_ loops or other control structures, evaluation of basic blocks is a total function -- we don't need to worry about non-termination. *) Fixpoint keval {L:Type} (st:state) (k : block L) : state * L := match k with | Goto l => (st, l) | If b l1 l2 => (st, if beval st b then l1 else l2) | Assign i a k => keval (update st i (aeval st a)) k end. Example keval_example: keval empty_state parity_body = (update (update empty_state Y 0) X 1, loop). Proof. reflexivity. Qed. (** ** Flowchart programs *) (** A flowchart program is simply a lookup function that maps labels to basic blocks. Actually, some labels are _halting states_ and do not map to any basic block. So, more precisely, a flowchart [program] whose labels are of type [L] is a function from [L] to [option (block L)]. *) Definition program (L:Type) : Type := L -> option (block L). Definition parity : program parity_label := fun l => match l with | entry => Some (Assign X (ANum 0) (Goto loop)) | loop => Some (If (BLe (ANum 1) (AId Y)) body done) | body => Some parity_body | done => None (* halt *) end. (** Unlike a basic block, a program may not terminate, so we model the evaluation of programs by an inductive relation [peval] rather than a recursive function. *) Inductive peval {L:Type} (p : program L) : state -> L -> state -> L -> Prop := | E_None: forall st l, p l = None -> peval p st l st l | E_Some: forall st l k st' l' st'' l'', p l = Some k -> keval st k = (st', l') -> peval p st' l' st'' l'' -> peval p st l st'' l''. Example parity_eval: peval parity empty_state entry empty_state done. Proof. erewrite f_equal with (f := fun st => peval _ _ _ st _). eapply E_Some. reflexivity. reflexivity. eapply E_Some. reflexivity. reflexivity. apply E_None. reflexivity. apply functional_extensionality. intros i. rewrite update_same; auto. Qed. Tactic Notation "peval_cases" tactic(first) ident(c) := first; [ Case_aux c "E_None" | Case_aux c "E_Some" ]. (** ** Partial evaluation of basic blocks and flowchart programs *) (** Partial evaluation changes the label type in a systematic way: if the label type used to be [L], it becomes [pe_state * L]. So the same label in the original program may be unfolded, or blown up, into multiple labels by being paired with different partial states. For example, the label [loop] in the [parity] program will become two labels: [([(X,0)], loop)] and [([(X,1)], loop)]. This change of label type is reflected in the types of [pe_block] and [pe_program] defined presently. *) Fixpoint pe_block {L:Type} (pe_st:pe_state) (k : block L) : block (pe_state * L) := match k with | Goto l => Goto (pe_st, l) | If b l1 l2 => match pe_bexp pe_st b with | BTrue => Goto (pe_st, l1) | BFalse => Goto (pe_st, l2) | b' => If b' (pe_st, l1) (pe_st, l2) end | Assign i a k => match pe_aexp pe_st a with | ANum n => pe_block (pe_add pe_st i n) k | a' => Assign i a' (pe_block (pe_remove pe_st i) k) end end. Example pe_block_example: pe_block [(X,0)] parity_body = Assign Y (AMinus (AId Y) (ANum 1)) (Goto ([(X,1)], loop)). Proof. reflexivity. Qed. Theorem pe_block_correct: forall (L:Type) st pe_st k st' pe_st' (l':L), keval st (pe_block pe_st k) = (st', (pe_st', l')) -> keval (pe_override st pe_st) k = (pe_override st' pe_st', l'). Proof. intros. generalize dependent pe_st. generalize dependent st. block_cases (induction k as [l | b l1 l2 | i a k]) Case; intros st pe_st H. Case "Goto". inversion H; reflexivity. Case "If". replace (keval st (pe_block pe_st (If b l1 l2))) with (keval st (If (pe_bexp pe_st b) (pe_st, l1) (pe_st, l2))) in H by (simpl; destruct (pe_bexp pe_st b); reflexivity). simpl in *. rewrite pe_bexp_correct. destruct (beval st (pe_bexp pe_st b)); inversion H; reflexivity. Case "Assign". simpl in *. rewrite pe_aexp_correct. destruct (pe_aexp pe_st a); simpl; try solve [rewrite pe_override_update_add; apply IHk; apply H]; solve [rewrite pe_override_update_remove; apply IHk; apply H]. Qed. Definition pe_program {L:Type} (p : program L) : program (pe_state * L) := fun pe_l => match pe_l with (pe_st, l) => option_map (pe_block pe_st) (p l) end. Inductive pe_peval {L:Type} (p : program L) (st:state) (pe_st:pe_state) (l:L) (st'o:state) (l':L) : Prop := | pe_peval_intro : forall st' pe_st', peval (pe_program p) st (pe_st, l) st' (pe_st', l') -> pe_override st' pe_st' = st'o -> pe_peval p st pe_st l st'o l'. Theorem pe_program_correct: forall (L:Type) (p : program L) st pe_st l st'o l', peval p (pe_override st pe_st) l st'o l' <-> pe_peval p st pe_st l st'o l'. Proof. intros. split; [Case "->" | Case "<-"]. Case "->". intros Heval. remember (pe_override st pe_st) as sto. generalize dependent pe_st. generalize dependent st. peval_cases (induction Heval as [ sto l Hlookup | sto l k st'o l' st''o l'' Hlookup Hkeval Heval ]) SCase; intros st pe_st Heqsto; subst sto. SCase "E_None". eapply pe_peval_intro. apply E_None. simpl. rewrite Hlookup. reflexivity. reflexivity. SCase "E_Some". remember (keval st (pe_block pe_st k)) as x. destruct x as [st' [pe_st' l'_]]. symmetry in Heqx. erewrite pe_block_correct in Hkeval by apply Heqx. inversion Hkeval. subst st'o l'_. clear Hkeval. edestruct IHHeval. reflexivity. subst st''o. clear IHHeval. eapply pe_peval_intro; [| reflexivity]. eapply E_Some; eauto. simpl. rewrite Hlookup. reflexivity. Case "<-". intros [st' pe_st' Heval Heqst'o]. remember (pe_st, l) as pe_st_l. remember (pe_st', l') as pe_st'_l'. generalize dependent pe_st. generalize dependent l. peval_cases (induction Heval as [ st [pe_st_ l_] Hlookup | st [pe_st_ l_] pe_k st' [pe_st'_ l'_] st'' [pe_st'' l''] Hlookup Hkeval Heval ]) SCase; intros l pe_st Heqpe_st_l; inversion Heqpe_st_l; inversion Heqpe_st'_l'; repeat subst. SCase "E_None". apply E_None. simpl in Hlookup. destruct (p l'); [ solve [ inversion Hlookup ] | reflexivity ]. SCase "E_Some". simpl in Hlookup. remember (p l) as k. destruct k as [k|]; inversion Hlookup; subst. eapply E_Some; eauto. apply pe_block_correct. apply Hkeval. Qed. (** $Date: 2014-12-31 11:17:56 -0500 (Wed, 31 Dec 2014) $ *)
(** * PE: Partial Evaluation *) (* Chapter author/maintainer: Chung-chieh Shan *) (** Equiv.v introduced constant folding as an example of a program transformation and proved that it preserves the meaning of the program. Constant folding operates on manifest constants such as [ANum] expressions. For example, it simplifies the command [Y ::= APlus (ANum 3) (ANum 1)] to the command [Y ::= ANum 4]. However, it does not propagate known constants along data flow. For example, it does not simplify the sequence X ::= ANum 3;; Y ::= APlus (AId X) (ANum 1) to X ::= ANum 3;; Y ::= ANum 4 because it forgets that [X] is [3] by the time it gets to [Y]. We naturally want to enhance constant folding so that it propagates known constants and uses them to simplify programs. Doing so constitutes a rudimentary form of _partial evaluation_. As we will see, partial evaluation is so called because it is like running a program, except only part of the program can be evaluated because only part of the input to the program is known. For example, we can only simplify the program X ::= ANum 3;; Y ::= AMinus (APlus (AId X) (ANum 1)) (AId Y) to X ::= ANum 3;; Y ::= AMinus (ANum 4) (AId Y) without knowing the initial value of [Y]. *) Require Export Imp. Require Import FunctionalExtensionality. (* ####################################################### *) (** * Generalizing Constant Folding *) (** The starting point of partial evaluation is to represent our partial knowledge about the state. For example, between the two assignments above, the partial evaluator may know only that [X] is [3] and nothing about any other variable. *) (** ** Partial States *) (** Conceptually speaking, we can think of such partial states as the type [id -> option nat] (as opposed to the type [id -> nat] of concrete, full states). However, in addition to looking up and updating the values of individual variables in a partial state, we may also want to compare two partial states to see if and where they differ, to handle conditional control flow. It is not possible to compare two arbitrary functions in this way, so we represent partial states in a more concrete format: as a list of [id * nat] pairs. *) Definition pe_state := list (id * nat). (** The idea is that a variable [id] appears in the list if and only if we know its current [nat] value. The [pe_lookup] function thus interprets this concrete representation. (If the same variable [id] appears multiple times in the list, the first occurrence wins, but we will define our partial evaluator to never construct such a [pe_state].) *) Fixpoint pe_lookup (pe_st : pe_state) (V:id) : option nat := match pe_st with | [] => None | (V',n')::pe_st => if eq_id_dec V V' then Some n' else pe_lookup pe_st V end. (** For example, [empty_pe_state] represents complete ignorance about every variable -- the function that maps every [id] to [None]. *) Definition empty_pe_state : pe_state := []. (** More generally, if the [list] representing a [pe_state] does not contain some [id], then that [pe_state] must map that [id] to [None]. Before we prove this fact, we first define a useful tactic for reasoning with [id] equality. The tactic compare V V' SCase means to reason by cases over [eq_id_dec V V']. In the case where [V = V'], the tactic substitutes [V] for [V'] throughout. *) Tactic Notation "compare" ident(i) ident(j) ident(c) := let H := fresh "Heq" i j in destruct (eq_id_dec i j); [ Case_aux c "equal"; subst j | Case_aux c "not equal" ]. Theorem pe_domain: forall pe_st V n, pe_lookup pe_st V = Some n -> In V (map (@fst _ _) pe_st). Proof. intros pe_st V n H. induction pe_st as [| [V' n'] pe_st]. Case "[]". inversion H. Case "::". simpl in H. simpl. compare V V' SCase; auto. Qed. (** *** Aside on [In]. We will make heavy use of the [In] predicate from the standard library. [In] is equivalent to the [appears_in] predicate introduced in Logic.v, but defined using a [Fixpoint] rather than an [Inductive]. *) Print In. (* ===> Fixpoint In {A:Type} (a: A) (l:list A) : Prop := match l with | [] => False | b :: m => b = a \/ In a m end : forall A : Type, A -> list A -> Prop *) (** [In] comes with various useful lemmas. *) Check in_or_app. (* ===> in_or_app: forall (A : Type) (l m : list A) (a : A), In a l \/ In a m -> In a (l ++ m) *) Check filter_In. (* ===> filter_In : forall (A : Type) (f : A -> bool) (x : A) (l : list A), In x (filter f l) <-> In x l /\ f x = true *) Check in_dec. (* ===> in_dec : forall A : Type, (forall x y : A, {x = y} + {x <> y}) -> forall (a : A) (l : list A), {In a l} + {~ In a l}] *) (** Note that we can compute with [in_dec], just as with [eq_id_dec]. *) (** ** Arithmetic Expressions *) (** Partial evaluation of [aexp] is straightforward -- it is basically the same as constant folding, [fold_constants_aexp], except that sometimes the partial state tells us the current value of a variable and we can replace it by a constant expression. *) Fixpoint pe_aexp (pe_st : pe_state) (a : aexp) : aexp := match a with | ANum n => ANum n | AId i => match pe_lookup pe_st i with (* <----- NEW *) | Some n => ANum n | None => AId i end | APlus a1 a2 => match (pe_aexp pe_st a1, pe_aexp pe_st a2) with | (ANum n1, ANum n2) => ANum (n1 + n2) | (a1', a2') => APlus a1' a2' end | AMinus a1 a2 => match (pe_aexp pe_st a1, pe_aexp pe_st a2) with | (ANum n1, ANum n2) => ANum (n1 - n2) | (a1', a2') => AMinus a1' a2' end | AMult a1 a2 => match (pe_aexp pe_st a1, pe_aexp pe_st a2) with | (ANum n1, ANum n2) => ANum (n1 * n2) | (a1', a2') => AMult a1' a2' end end. (** This partial evaluator folds constants but does not apply the associativity of addition. *) Example test_pe_aexp1: pe_aexp [(X,3)] (APlus (APlus (AId X) (ANum 1)) (AId Y)) = APlus (ANum 4) (AId Y). Proof. reflexivity. Qed. Example text_pe_aexp2: pe_aexp [(Y,3)] (APlus (APlus (AId X) (ANum 1)) (AId Y)) = APlus (APlus (AId X) (ANum 1)) (ANum 3). Proof. reflexivity. Qed. (** Now, in what sense is [pe_aexp] correct? It is reasonable to define the correctness of [pe_aexp] as follows: whenever a full state [st:state] is _consistent_ with a partial state [pe_st:pe_state] (in other words, every variable to which [pe_st] assigns a value is assigned the same value by [st]), evaluating [a] and evaluating [pe_aexp pe_st a] in [st] yields the same result. This statement is indeed true. *) Definition pe_consistent (st:state) (pe_st:pe_state) := forall V n, Some n = pe_lookup pe_st V -> st V = n. Theorem pe_aexp_correct_weak: forall st pe_st, pe_consistent st pe_st -> forall a, aeval st a = aeval st (pe_aexp pe_st a). Proof. unfold pe_consistent. intros st pe_st H a. aexp_cases (induction a) Case; simpl; try reflexivity; try (destruct (pe_aexp pe_st a1); destruct (pe_aexp pe_st a2); rewrite IHa1; rewrite IHa2; reflexivity). (* Compared to fold_constants_aexp_sound, the only interesting case is AId *) Case "AId". remember (pe_lookup pe_st i) as l. destruct l. SCase "Some". rewrite H with (n:=n) by apply Heql. reflexivity. SCase "None". reflexivity. Qed. (** However, we will soon want our partial evaluator to remove assignments. For example, it will simplify X ::= ANum 3;; Y ::= AMinus (AId X) (AId Y);; X ::= ANum 4 to just Y ::= AMinus (ANum 3) (AId Y);; X ::= ANum 4 by delaying the assignment to [X] until the end. To accomplish this simplification, we need the result of partial evaluating pe_aexp [(X,3)] (AMinus (AId X) (AId Y)) to be equal to [AMinus (ANum 3) (AId Y)] and _not_ the original expression [AMinus (AId X) (AId Y)]. After all, it would be incorrect, not just inefficient, to transform X ::= ANum 3;; Y ::= AMinus (AId X) (AId Y);; X ::= ANum 4 to Y ::= AMinus (AId X) (AId Y);; X ::= ANum 4 even though the output expressions [AMinus (ANum 3) (AId Y)] and [AMinus (AId X) (AId Y)] both satisfy the correctness criterion that we just proved. Indeed, if we were to just define [pe_aexp pe_st a = a] then the theorem [pe_aexp_correct'] would already trivially hold. Instead, we want to prove that the [pe_aexp] is correct in a stronger sense: evaluating the expression produced by partial evaluation ([aeval st (pe_aexp pe_st a)]) must not depend on those parts of the full state [st] that are already specified in the partial state [pe_st]. To be more precise, let us define a function [pe_override], which updates [st] with the contents of [pe_st]. In other words, [pe_override] carries out the assignments listed in [pe_st] on top of [st]. *) Fixpoint pe_override (st:state) (pe_st:pe_state) : state := match pe_st with | [] => st | (V,n)::pe_st => update (pe_override st pe_st) V n end. Example test_pe_override: pe_override (update empty_state Y 1) [(X,3);(Z,2)] = update (update (update empty_state Y 1) Z 2) X 3. Proof. reflexivity. Qed. (** Although [pe_override] operates on a concrete [list] representing a [pe_state], its behavior is defined entirely by the [pe_lookup] interpretation of the [pe_state]. *) Theorem pe_override_correct: forall st pe_st V0, pe_override st pe_st V0 = match pe_lookup pe_st V0 with | Some n => n | None => st V0 end. Proof. intros. induction pe_st as [| [V n] pe_st]. reflexivity. simpl in *. unfold update. compare V0 V Case; auto. rewrite eq_id; auto. rewrite neq_id; auto. Qed. (** We can relate [pe_consistent] to [pe_override] in two ways. First, overriding a state with a partial state always gives a state that is consistent with the partial state. Second, if a state is already consistent with a partial state, then overriding the state with the partial state gives the same state. *) Theorem pe_override_consistent: forall st pe_st, pe_consistent (pe_override st pe_st) pe_st. Proof. intros st pe_st V n H. rewrite pe_override_correct. destruct (pe_lookup pe_st V); inversion H. reflexivity. Qed. Theorem pe_consistent_override: forall st pe_st, pe_consistent st pe_st -> forall V, st V = pe_override st pe_st V. Proof. intros st pe_st H V. rewrite pe_override_correct. remember (pe_lookup pe_st V) as l. destruct l; auto. Qed. (** Now we can state and prove that [pe_aexp] is correct in the stronger sense that will help us define the rest of the partial evaluator. Intuitively, running a program using partial evaluation is a two-stage process. In the first, _static_ stage, we partially evaluate the given program with respect to some partial state to get a _residual_ program. In the second, _dynamic_ stage, we evaluate the residual program with respect to the rest of the state. This dynamic state provides values for those variables that are unknown in the static (partial) state. Thus, the residual program should be equivalent to _prepending_ the assignments listed in the partial state to the original program. *) Theorem pe_aexp_correct: forall (pe_st:pe_state) (a:aexp) (st:state), aeval (pe_override st pe_st) a = aeval st (pe_aexp pe_st a). Proof. intros pe_st a st. aexp_cases (induction a) Case; simpl; try reflexivity; try (destruct (pe_aexp pe_st a1); destruct (pe_aexp pe_st a2); rewrite IHa1; rewrite IHa2; reflexivity). (* Compared to fold_constants_aexp_sound, the only interesting case is AId. *) rewrite pe_override_correct. destruct (pe_lookup pe_st i); reflexivity. Qed. (** ** Boolean Expressions *) (** The partial evaluation of boolean expressions is similar. In fact, it is entirely analogous to the constant folding of boolean expressions, because our language has no boolean variables. *) Fixpoint pe_bexp (pe_st : pe_state) (b : bexp) : bexp := match b with | BTrue => BTrue | BFalse => BFalse | BEq a1 a2 => match (pe_aexp pe_st a1, pe_aexp pe_st a2) with | (ANum n1, ANum n2) => if beq_nat n1 n2 then BTrue else BFalse | (a1', a2') => BEq a1' a2' end | BLe a1 a2 => match (pe_aexp pe_st a1, pe_aexp pe_st a2) with | (ANum n1, ANum n2) => if ble_nat n1 n2 then BTrue else BFalse | (a1', a2') => BLe a1' a2' end | BNot b1 => match (pe_bexp pe_st b1) with | BTrue => BFalse | BFalse => BTrue | b1' => BNot b1' end | BAnd b1 b2 => match (pe_bexp pe_st b1, pe_bexp pe_st b2) with | (BTrue, BTrue) => BTrue | (BTrue, BFalse) => BFalse | (BFalse, BTrue) => BFalse | (BFalse, BFalse) => BFalse | (b1', b2') => BAnd b1' b2' end end. Example test_pe_bexp1: pe_bexp [(X,3)] (BNot (BLe (AId X) (ANum 3))) = BFalse. Proof. reflexivity. Qed. Example test_pe_bexp2: forall b, b = BNot (BLe (AId X) (APlus (AId X) (ANum 1))) -> pe_bexp [] b = b. Proof. intros b H. rewrite -> H. reflexivity. Qed. (** The correctness of [pe_bexp] is analogous to the correctness of [pe_aexp] above. *) Theorem pe_bexp_correct: forall (pe_st:pe_state) (b:bexp) (st:state), beval (pe_override st pe_st) b = beval st (pe_bexp pe_st b). Proof. intros pe_st b st. bexp_cases (induction b) Case; simpl; try reflexivity; try (remember (pe_aexp pe_st a) as a'; remember (pe_aexp pe_st a0) as a0'; assert (Ha: aeval (pe_override st pe_st) a = aeval st a'); assert (Ha0: aeval (pe_override st pe_st) a0 = aeval st a0'); try (subst; apply pe_aexp_correct); destruct a'; destruct a0'; rewrite Ha; rewrite Ha0; simpl; try destruct (beq_nat n n0); try destruct (ble_nat n n0); reflexivity); try (destruct (pe_bexp pe_st b); rewrite IHb; reflexivity); try (destruct (pe_bexp pe_st b1); destruct (pe_bexp pe_st b2); rewrite IHb1; rewrite IHb2; reflexivity). Qed. (* ####################################################### *) (** * Partial Evaluation of Commands, Without Loops *) (** What about the partial evaluation of commands? The analogy between partial evaluation and full evaluation continues: Just as full evaluation of a command turns an initial state into a final state, partial evaluation of a command turns an initial partial state into a final partial state. The difference is that, because the state is partial, some parts of the command may not be executable at the static stage. Therefore, just as [pe_aexp] returns a residual [aexp] and [pe_bexp] returns a residual [bexp] above, partially evaluating a command yields a residual command. Another way in which our partial evaluator is similar to a full evaluator is that it does not terminate on all commands. It is not hard to build a partial evaluator that terminates on all commands; what is hard is building a partial evaluator that terminates on all commands yet automatically performs desired optimizations such as unrolling loops. Often a partial evaluator can be coaxed into terminating more often and performing more optimizations by writing the source program differently so that the separation between static and dynamic information becomes more apparent. Such coaxing is the art of _binding-time improvement_. The binding time of a variable tells when its value is known -- either "static", or "dynamic." Anyway, for now we will just live with the fact that our partial evaluator is not a total function from the source command and the initial partial state to the residual command and the final partial state. To model this non-termination, just as with the full evaluation of commands, we use an inductively defined relation. We write c1 / st || c1' / st' to mean that partially evaluating the source command [c1] in the initial partial state [st] yields the residual command [c1'] and the final partial state [st']. For example, we want something like (X ::= ANum 3 ;; Y ::= AMult (AId Z) (APlus (AId X) (AId X))) / [] || (Y ::= AMult (AId Z) (ANum 6)) / [(X,3)] to hold. The assignment to [X] appears in the final partial state, not the residual command. *) (** ** Assignment *) (** Let's start by considering how to partially evaluate an assignment. The two assignments in the source program above needs to be treated differently. The first assignment [X ::= ANum 3], is _static_: its right-hand-side is a constant (more generally, simplifies to a constant), so we should update our partial state at [X] to [3] and produce no residual code. (Actually, we produce a residual [SKIP].) The second assignment [Y ::= AMult (AId Z) (APlus (AId X) (AId X))] is _dynamic_: its right-hand-side does not simplify to a constant, so we should leave it in the residual code and remove [Y], if present, from our partial state. To implement these two cases, we define the functions [pe_add] and [pe_remove]. Like [pe_override] above, these functions operate on a concrete [list] representing a [pe_state], but the theorems [pe_add_correct] and [pe_remove_correct] specify their behavior by the [pe_lookup] interpretation of the [pe_state]. *) Fixpoint pe_remove (pe_st:pe_state) (V:id) : pe_state := match pe_st with | [] => [] | (V',n')::pe_st => if eq_id_dec V V' then pe_remove pe_st V else (V',n') :: pe_remove pe_st V end. Theorem pe_remove_correct: forall pe_st V V0, pe_lookup (pe_remove pe_st V) V0 = if eq_id_dec V V0 then None else pe_lookup pe_st V0. Proof. intros pe_st V V0. induction pe_st as [| [V' n'] pe_st]. Case "[]". destruct (eq_id_dec V V0); reflexivity. Case "::". simpl. compare V V' SCase. SCase "equal". rewrite IHpe_st. destruct (eq_id_dec V V0). reflexivity. rewrite neq_id; auto. SCase "not equal". simpl. compare V0 V' SSCase. SSCase "equal". rewrite neq_id; auto. SSCase "not equal". rewrite IHpe_st. reflexivity. Qed. Definition pe_add (pe_st:pe_state) (V:id) (n:nat) : pe_state := (V,n) :: pe_remove pe_st V. Theorem pe_add_correct: forall pe_st V n V0, pe_lookup (pe_add pe_st V n) V0 = if eq_id_dec V V0 then Some n else pe_lookup pe_st V0. Proof. intros pe_st V n V0. unfold pe_add. simpl. compare V V0 Case. Case "equal". rewrite eq_id; auto. Case "not equal". rewrite pe_remove_correct. repeat rewrite neq_id; auto. Qed. (** We will use the two theorems below to show that our partial evaluator correctly deals with dynamic assignments and static assignments, respectively. *) Theorem pe_override_update_remove: forall st pe_st V n, update (pe_override st pe_st) V n = pe_override (update st V n) (pe_remove pe_st V). Proof. intros st pe_st V n. apply functional_extensionality. intros V0. unfold update. rewrite !pe_override_correct. rewrite pe_remove_correct. destruct (eq_id_dec V V0); reflexivity. Qed. Theorem pe_override_update_add: forall st pe_st V n, update (pe_override st pe_st) V n = pe_override st (pe_add pe_st V n). Proof. intros st pe_st V n. apply functional_extensionality. intros V0. unfold update. rewrite !pe_override_correct. rewrite pe_add_correct. destruct (eq_id_dec V V0); reflexivity. Qed. (** ** Conditional *) (** Trickier than assignments to partially evaluate is the conditional, [IFB b1 THEN c1 ELSE c2 FI]. If [b1] simplifies to [BTrue] or [BFalse] then it's easy: we know which branch will be taken, so just take that branch. If [b1] does not simplify to a constant, then we need to take both branches, and the final partial state may differ between the two branches! The following program illustrates the difficulty: X ::= ANum 3;; IFB BLe (AId Y) (ANum 4) THEN Y ::= ANum 4;; IFB BEq (AId X) (AId Y) THEN Y ::= ANum 999 ELSE SKIP FI ELSE SKIP FI Suppose the initial partial state is empty. We don't know statically how [Y] compares to [4], so we must partially evaluate both branches of the (outer) conditional. On the [THEN] branch, we know that [Y] is set to [4] and can even use that knowledge to simplify the code somewhat. On the [ELSE] branch, we still don't know the exact value of [Y] at the end. What should the final partial state and residual program be? One way to handle such a dynamic conditional is to take the intersection of the final partial states of the two branches. In this example, we take the intersection of [(Y,4),(X,3)] and [(X,3)], so the overall final partial state is [(X,3)]. To compensate for forgetting that [Y] is [4], we need to add an assignment [Y ::= ANum 4] to the end of the [THEN] branch. So, the residual program will be something like SKIP;; IFB BLe (AId Y) (ANum 4) THEN SKIP;; SKIP;; Y ::= ANum 4 ELSE SKIP FI Programming this case in Coq calls for several auxiliary functions: we need to compute the intersection of two [pe_state]s and turn their difference into sequences of assignments. First, we show how to compute whether two [pe_state]s to disagree at a given variable. In the theorem [pe_disagree_domain], we prove that two [pe_state]s can only disagree at variables that appear in at least one of them. *) Definition pe_disagree_at (pe_st1 pe_st2 : pe_state) (V:id) : bool := match pe_lookup pe_st1 V, pe_lookup pe_st2 V with | Some x, Some y => negb (beq_nat x y) | None, None => false | _, _ => true end. Theorem pe_disagree_domain: forall (pe_st1 pe_st2 : pe_state) (V:id), true = pe_disagree_at pe_st1 pe_st2 V -> In V (map (@fst _ _) pe_st1 ++ map (@fst _ _) pe_st2). Proof. unfold pe_disagree_at. intros pe_st1 pe_st2 V H. apply in_or_app. remember (pe_lookup pe_st1 V) as lookup1. destruct lookup1 as [n1|]. left. apply pe_domain with n1. auto. remember (pe_lookup pe_st2 V) as lookup2. destruct lookup2 as [n2|]. right. apply pe_domain with n2. auto. inversion H. Qed. (** We define the [pe_compare] function to list the variables where two given [pe_state]s disagree. This list is exact, according to the theorem [pe_compare_correct]: a variable appears on the list if and only if the two given [pe_state]s disagree at that variable. Furthermore, we use the [pe_unique] function to eliminate duplicates from the list. *) Fixpoint pe_unique (l : list id) : list id := match l with | [] => [] | x::l => x :: filter (fun y => if eq_id_dec x y then false else true) (pe_unique l) end. Theorem pe_unique_correct: forall l x, In x l <-> In x (pe_unique l). Proof. intros l x. induction l as [| h t]. reflexivity. simpl in *. split. Case "->". intros. inversion H; clear H. left. assumption. destruct (eq_id_dec h x). left. assumption. right. apply filter_In. split. apply IHt. assumption. rewrite neq_id; auto. Case "<-". intros. inversion H; clear H. left. assumption. apply filter_In in H0. inversion H0. right. apply IHt. assumption. Qed. Definition pe_compare (pe_st1 pe_st2 : pe_state) : list id := pe_unique (filter (pe_disagree_at pe_st1 pe_st2) (map (@fst _ _) pe_st1 ++ map (@fst _ _) pe_st2)). Theorem pe_compare_correct: forall pe_st1 pe_st2 V, pe_lookup pe_st1 V = pe_lookup pe_st2 V <-> ~ In V (pe_compare pe_st1 pe_st2). Proof. intros pe_st1 pe_st2 V. unfold pe_compare. rewrite <- pe_unique_correct. rewrite filter_In. split; intros Heq. Case "->". intro. destruct H. unfold pe_disagree_at in H0. rewrite Heq in H0. destruct (pe_lookup pe_st2 V). rewrite <- beq_nat_refl in H0. inversion H0. inversion H0. Case "<-". assert (Hagree: pe_disagree_at pe_st1 pe_st2 V = false). SCase "Proof of assertion". remember (pe_disagree_at pe_st1 pe_st2 V) as disagree. destruct disagree; [| reflexivity]. apply pe_disagree_domain in Heqdisagree. apply ex_falso_quodlibet. apply Heq. split. assumption. reflexivity. unfold pe_disagree_at in Hagree. destruct (pe_lookup pe_st1 V) as [n1|]; destruct (pe_lookup pe_st2 V) as [n2|]; try reflexivity; try solve by inversion. rewrite negb_false_iff in Hagree. apply beq_nat_true in Hagree. subst. reflexivity. Qed. (** The intersection of two partial states is the result of removing from one of them all the variables where the two disagree. We define the function [pe_removes], in terms of [pe_remove] above, to perform such a removal of a whole list of variables at once. The theorem [pe_compare_removes] testifies that the [pe_lookup] interpretation of the result of this intersection operation is the same no matter which of the two partial states we remove the variables from. Because [pe_override] only depends on the [pe_lookup] interpretation of partial states, [pe_override] also does not care which of the two partial states we remove the variables from; that theorem [pe_compare_override] is used in the correctness proof shortly. *) Fixpoint pe_removes (pe_st:pe_state) (ids : list id) : pe_state := match ids with | [] => pe_st | V::ids => pe_remove (pe_removes pe_st ids) V end. Theorem pe_removes_correct: forall pe_st ids V, pe_lookup (pe_removes pe_st ids) V = if in_dec eq_id_dec V ids then None else pe_lookup pe_st V. Proof. intros pe_st ids V. induction ids as [| V' ids]. reflexivity. simpl. rewrite pe_remove_correct. rewrite IHids. compare V' V Case. reflexivity. destruct (in_dec eq_id_dec V ids); reflexivity. Qed. Theorem pe_compare_removes: forall pe_st1 pe_st2 V, pe_lookup (pe_removes pe_st1 (pe_compare pe_st1 pe_st2)) V = pe_lookup (pe_removes pe_st2 (pe_compare pe_st1 pe_st2)) V. Proof. intros pe_st1 pe_st2 V. rewrite !pe_removes_correct. destruct (in_dec eq_id_dec V (pe_compare pe_st1 pe_st2)). reflexivity. apply pe_compare_correct. auto. Qed. Theorem pe_compare_override: forall pe_st1 pe_st2 st, pe_override st (pe_removes pe_st1 (pe_compare pe_st1 pe_st2)) = pe_override st (pe_removes pe_st2 (pe_compare pe_st1 pe_st2)). Proof. intros. apply functional_extensionality. intros V. rewrite !pe_override_correct. rewrite pe_compare_removes. reflexivity. Qed. (** Finally, we define an [assign] function to turn the difference between two partial states into a sequence of assignment commands. More precisely, [assign pe_st ids] generates an assignment command for each variable listed in [ids]. *) Fixpoint assign (pe_st : pe_state) (ids : list id) : com := match ids with | [] => SKIP | V::ids => match pe_lookup pe_st V with | Some n => (assign pe_st ids;; V ::= ANum n) | None => assign pe_st ids end end. (** The command generated by [assign] always terminates, because it is just a sequence of assignments. The (total) function [assigned] below computes the effect of the command on the (dynamic state). The theorem [assign_removes] then confirms that the generated assignments perfectly compensate for removing the variables from the partial state. *) Definition assigned (pe_st:pe_state) (ids : list id) (st:state) : state := fun V => if in_dec eq_id_dec V ids then match pe_lookup pe_st V with | Some n => n | None => st V end else st V. Theorem assign_removes: forall pe_st ids st, pe_override st pe_st = pe_override (assigned pe_st ids st) (pe_removes pe_st ids). Proof. intros pe_st ids st. apply functional_extensionality. intros V. rewrite !pe_override_correct. rewrite pe_removes_correct. unfold assigned. destruct (in_dec eq_id_dec V ids); destruct (pe_lookup pe_st V); reflexivity. Qed. Lemma ceval_extensionality: forall c st st1 st2, c / st || st1 -> (forall V, st1 V = st2 V) -> c / st || st2. Proof. intros c st st1 st2 H Heq. apply functional_extensionality in Heq. rewrite <- Heq. apply H. Qed. Theorem eval_assign: forall pe_st ids st, assign pe_st ids / st || assigned pe_st ids st. Proof. intros pe_st ids st. induction ids as [| V ids]; simpl. Case "[]". eapply ceval_extensionality. apply E_Skip. reflexivity. Case "V::ids". remember (pe_lookup pe_st V) as lookup. destruct lookup. SCase "Some". eapply E_Seq. apply IHids. unfold assigned. simpl. eapply ceval_extensionality. apply E_Ass. simpl. reflexivity. intros V0. unfold update. compare V V0 SSCase. SSCase "equal". rewrite <- Heqlookup. reflexivity. SSCase "not equal". destruct (in_dec eq_id_dec V0 ids); auto. SCase "None". eapply ceval_extensionality. apply IHids. unfold assigned. intros V0. simpl. compare V V0 SSCase. SSCase "equal". rewrite <- Heqlookup. destruct (in_dec eq_id_dec V ids); reflexivity. SSCase "not equal". destruct (in_dec eq_id_dec V0 ids); reflexivity. Qed. (** ** The Partial Evaluation Relation *) (** At long last, we can define a partial evaluator for commands without loops, as an inductive relation! The inequality conditions in [PE_AssDynamic] and [PE_If] are just to keep the partial evaluator deterministic; they are not required for correctness. *) Reserved Notation "c1 '/' st '||' c1' '/' st'" (at level 40, st at level 39, c1' at level 39). Inductive pe_com : com -> pe_state -> com -> pe_state -> Prop := | PE_Skip : forall pe_st, SKIP / pe_st || SKIP / pe_st | PE_AssStatic : forall pe_st a1 n1 l, pe_aexp pe_st a1 = ANum n1 -> (l ::= a1) / pe_st || SKIP / pe_add pe_st l n1 | PE_AssDynamic : forall pe_st a1 a1' l, pe_aexp pe_st a1 = a1' -> (forall n, a1' <> ANum n) -> (l ::= a1) / pe_st || (l ::= a1') / pe_remove pe_st l | PE_Seq : forall pe_st pe_st' pe_st'' c1 c2 c1' c2', c1 / pe_st || c1' / pe_st' -> c2 / pe_st' || c2' / pe_st'' -> (c1 ;; c2) / pe_st || (c1' ;; c2') / pe_st'' | PE_IfTrue : forall pe_st pe_st' b1 c1 c2 c1', pe_bexp pe_st b1 = BTrue -> c1 / pe_st || c1' / pe_st' -> (IFB b1 THEN c1 ELSE c2 FI) / pe_st || c1' / pe_st' | PE_IfFalse : forall pe_st pe_st' b1 c1 c2 c2', pe_bexp pe_st b1 = BFalse -> c2 / pe_st || c2' / pe_st' -> (IFB b1 THEN c1 ELSE c2 FI) / pe_st || c2' / pe_st' | PE_If : forall pe_st pe_st1 pe_st2 b1 c1 c2 c1' c2', pe_bexp pe_st b1 <> BTrue -> pe_bexp pe_st b1 <> BFalse -> c1 / pe_st || c1' / pe_st1 -> c2 / pe_st || c2' / pe_st2 -> (IFB b1 THEN c1 ELSE c2 FI) / pe_st || (IFB pe_bexp pe_st b1 THEN c1' ;; assign pe_st1 (pe_compare pe_st1 pe_st2) ELSE c2' ;; assign pe_st2 (pe_compare pe_st1 pe_st2) FI) / pe_removes pe_st1 (pe_compare pe_st1 pe_st2) where "c1 '/' st '||' c1' '/' st'" := (pe_com c1 st c1' st'). Tactic Notation "pe_com_cases" tactic(first) ident(c) := first; [ Case_aux c "PE_Skip" | Case_aux c "PE_AssStatic" | Case_aux c "PE_AssDynamic" | Case_aux c "PE_Seq" | Case_aux c "PE_IfTrue" | Case_aux c "PE_IfFalse" | Case_aux c "PE_If" ]. Hint Constructors pe_com. Hint Constructors ceval. (** ** Examples *) (** Below are some examples of using the partial evaluator. To make the [pe_com] relation actually usable for automatic partial evaluation, we would need to define more automation tactics in Coq. That is not hard to do, but it is not needed here. *) Example pe_example1: (X ::= ANum 3 ;; Y ::= AMult (AId Z) (APlus (AId X) (AId X))) / [] || (SKIP;; Y ::= AMult (AId Z) (ANum 6)) / [(X,3)]. Proof. eapply PE_Seq. eapply PE_AssStatic. reflexivity. eapply PE_AssDynamic. reflexivity. intros n H. inversion H. Qed. Example pe_example2: (X ::= ANum 3 ;; IFB BLe (AId X) (ANum 4) THEN X ::= ANum 4 ELSE SKIP FI) / [] || (SKIP;; SKIP) / [(X,4)]. Proof. eapply PE_Seq. eapply PE_AssStatic. reflexivity. eapply PE_IfTrue. reflexivity. eapply PE_AssStatic. reflexivity. Qed. Example pe_example3: (X ::= ANum 3;; IFB BLe (AId Y) (ANum 4) THEN Y ::= ANum 4;; IFB BEq (AId X) (AId Y) THEN Y ::= ANum 999 ELSE SKIP FI ELSE SKIP FI) / [] || (SKIP;; IFB BLe (AId Y) (ANum 4) THEN (SKIP;; SKIP);; (SKIP;; Y ::= ANum 4) ELSE SKIP;; SKIP FI) / [(X,3)]. Proof. erewrite f_equal2 with (f := fun c st => _ / _ || c / st). eapply PE_Seq. eapply PE_AssStatic. reflexivity. eapply PE_If; intuition eauto; try solve by inversion. econstructor. eapply PE_AssStatic. reflexivity. eapply PE_IfFalse. reflexivity. econstructor. reflexivity. reflexivity. Qed. (** ** Correctness of Partial Evaluation *) (** Finally let's prove that this partial evaluator is correct! *) Reserved Notation "c' '/' pe_st' '/' st '||' st''" (at level 40, pe_st' at level 39, st at level 39). Inductive pe_ceval (c':com) (pe_st':pe_state) (st:state) (st'':state) : Prop := | pe_ceval_intro : forall st', c' / st || st' -> pe_override st' pe_st' = st'' -> c' / pe_st' / st || st'' where "c' '/' pe_st' '/' st '||' st''" := (pe_ceval c' pe_st' st st''). Hint Constructors pe_ceval. Theorem pe_com_complete: forall c pe_st pe_st' c', c / pe_st || c' / pe_st' -> forall st st'', (c / pe_override st pe_st || st'') -> (c' / pe_st' / st || st''). Proof. intros c pe_st pe_st' c' Hpe. pe_com_cases (induction Hpe) Case; intros st st'' Heval; try (inversion Heval; subst; try (rewrite -> pe_bexp_correct, -> H in *; solve by inversion); []); eauto. Case "PE_AssStatic". econstructor. econstructor. rewrite -> pe_aexp_correct. rewrite <- pe_override_update_add. rewrite -> H. reflexivity. Case "PE_AssDynamic". econstructor. econstructor. reflexivity. rewrite -> pe_aexp_correct. rewrite <- pe_override_update_remove. reflexivity. Case "PE_Seq". edestruct IHHpe1. eassumption. subst. edestruct IHHpe2. eassumption. eauto. Case "PE_If". inversion Heval; subst. SCase "E'IfTrue". edestruct IHHpe1. eassumption. econstructor. apply E_IfTrue. rewrite <- pe_bexp_correct. assumption. eapply E_Seq. eassumption. apply eval_assign. rewrite <- assign_removes. eassumption. SCase "E_IfFalse". edestruct IHHpe2. eassumption. econstructor. apply E_IfFalse. rewrite <- pe_bexp_correct. assumption. eapply E_Seq. eassumption. apply eval_assign. rewrite -> pe_compare_override. rewrite <- assign_removes. eassumption. Qed. Theorem pe_com_sound: forall c pe_st pe_st' c', c / pe_st || c' / pe_st' -> forall st st'', (c' / pe_st' / st || st'') -> (c / pe_override st pe_st || st''). Proof. intros c pe_st pe_st' c' Hpe. pe_com_cases (induction Hpe) Case; intros st st'' [st' Heval Heq]; try (inversion Heval; []; subst); auto. Case "PE_AssStatic". rewrite <- pe_override_update_add. apply E_Ass. rewrite -> pe_aexp_correct. rewrite -> H. reflexivity. Case "PE_AssDynamic". rewrite <- pe_override_update_remove. apply E_Ass. rewrite <- pe_aexp_correct. reflexivity. Case "PE_Seq". eapply E_Seq; eauto. Case "PE_IfTrue". apply E_IfTrue. rewrite -> pe_bexp_correct. rewrite -> H. reflexivity. eauto. Case "PE_IfFalse". apply E_IfFalse. rewrite -> pe_bexp_correct. rewrite -> H. reflexivity. eauto. Case "PE_If". inversion Heval; subst; inversion H7; (eapply ceval_deterministic in H8; [| apply eval_assign]); subst. SCase "E_IfTrue". apply E_IfTrue. rewrite -> pe_bexp_correct. assumption. rewrite <- assign_removes. eauto. SCase "E_IfFalse". rewrite -> pe_compare_override. apply E_IfFalse. rewrite -> pe_bexp_correct. assumption. rewrite <- assign_removes. eauto. Qed. (** The main theorem. Thanks to David Menendez for this formulation! *) Corollary pe_com_correct: forall c pe_st pe_st' c', c / pe_st || c' / pe_st' -> forall st st'', (c / pe_override st pe_st || st'') <-> (c' / pe_st' / st || st''). Proof. intros c pe_st pe_st' c' H st st''. split. Case "->". apply pe_com_complete. apply H. Case "<-". apply pe_com_sound. apply H. Qed. (* ####################################################### *) (** * Partial Evaluation of Loops *) (** It may seem straightforward at first glance to extend the partial evaluation relation [pe_com] above to loops. Indeed, many loops are easy to deal with. Considered this repeated-squaring loop, for example: WHILE BLe (ANum 1) (AId X) DO Y ::= AMult (AId Y) (AId Y);; X ::= AMinus (AId X) (ANum 1) END If we know neither [X] nor [Y] statically, then the entire loop is dynamic and the residual command should be the same. If we know [X] but not [Y], then the loop can be unrolled all the way and the residual command should be Y ::= AMult (AId Y) (AId Y);; Y ::= AMult (AId Y) (AId Y);; Y ::= AMult (AId Y) (AId Y) if [X] is initially [3] (and finally [0]). In general, a loop is easy to partially evaluate if the final partial state of the loop body is equal to the initial state, or if its guard condition is static. But there are other loops for which it is hard to express the residual program we want in Imp. For example, take this program for checking if [Y] is even or odd: X ::= ANum 0;; WHILE BLe (ANum 1) (AId Y) DO Y ::= AMinus (AId Y) (ANum 1);; X ::= AMinus (ANum 1) (AId X) END The value of [X] alternates between [0] and [1] during the loop. Ideally, we would like to unroll this loop, not all the way but _two-fold_, into something like WHILE BLe (ANum 1) (AId Y) DO Y ::= AMinus (AId Y) (ANum 1);; IF BLe (ANum 1) (AId Y) THEN Y ::= AMinus (AId Y) (ANum 1) ELSE X ::= ANum 1;; EXIT FI END;; X ::= ANum 0 Unfortunately, there is no [EXIT] command in Imp. Without extending the range of control structures available in our language, the best we can do is to repeat loop-guard tests or add flag variables. Neither option is terribly attractive. Still, as a digression, below is an attempt at performing partial evaluation on Imp commands. We add one more command argument [c''] to the [pe_com] relation, which keeps track of a loop to roll up. *) Module Loop. Reserved Notation "c1 '/' st '||' c1' '/' st' '/' c''" (at level 40, st at level 39, c1' at level 39, st' at level 39). Inductive pe_com : com -> pe_state -> com -> pe_state -> com -> Prop := | PE_Skip : forall pe_st, SKIP / pe_st || SKIP / pe_st / SKIP | PE_AssStatic : forall pe_st a1 n1 l, pe_aexp pe_st a1 = ANum n1 -> (l ::= a1) / pe_st || SKIP / pe_add pe_st l n1 / SKIP | PE_AssDynamic : forall pe_st a1 a1' l, pe_aexp pe_st a1 = a1' -> (forall n, a1' <> ANum n) -> (l ::= a1) / pe_st || (l ::= a1') / pe_remove pe_st l / SKIP | PE_Seq : forall pe_st pe_st' pe_st'' c1 c2 c1' c2' c'', c1 / pe_st || c1' / pe_st' / SKIP -> c2 / pe_st' || c2' / pe_st'' / c'' -> (c1 ;; c2) / pe_st || (c1' ;; c2') / pe_st'' / c'' | PE_IfTrue : forall pe_st pe_st' b1 c1 c2 c1' c'', pe_bexp pe_st b1 = BTrue -> c1 / pe_st || c1' / pe_st' / c'' -> (IFB b1 THEN c1 ELSE c2 FI) / pe_st || c1' / pe_st' / c'' | PE_IfFalse : forall pe_st pe_st' b1 c1 c2 c2' c'', pe_bexp pe_st b1 = BFalse -> c2 / pe_st || c2' / pe_st' / c'' -> (IFB b1 THEN c1 ELSE c2 FI) / pe_st || c2' / pe_st' / c'' | PE_If : forall pe_st pe_st1 pe_st2 b1 c1 c2 c1' c2' c'', pe_bexp pe_st b1 <> BTrue -> pe_bexp pe_st b1 <> BFalse -> c1 / pe_st || c1' / pe_st1 / c'' -> c2 / pe_st || c2' / pe_st2 / c'' -> (IFB b1 THEN c1 ELSE c2 FI) / pe_st || (IFB pe_bexp pe_st b1 THEN c1' ;; assign pe_st1 (pe_compare pe_st1 pe_st2) ELSE c2' ;; assign pe_st2 (pe_compare pe_st1 pe_st2) FI) / pe_removes pe_st1 (pe_compare pe_st1 pe_st2) / c'' | PE_WhileEnd : forall pe_st b1 c1, pe_bexp pe_st b1 = BFalse -> (WHILE b1 DO c1 END) / pe_st || SKIP / pe_st / SKIP | PE_WhileLoop : forall pe_st pe_st' pe_st'' b1 c1 c1' c2' c2'', pe_bexp pe_st b1 = BTrue -> c1 / pe_st || c1' / pe_st' / SKIP -> (WHILE b1 DO c1 END) / pe_st' || c2' / pe_st'' / c2'' -> pe_compare pe_st pe_st'' <> [] -> (WHILE b1 DO c1 END) / pe_st || (c1';;c2') / pe_st'' / c2'' | PE_While : forall pe_st pe_st' pe_st'' b1 c1 c1' c2' c2'', pe_bexp pe_st b1 <> BFalse -> pe_bexp pe_st b1 <> BTrue -> c1 / pe_st || c1' / pe_st' / SKIP -> (WHILE b1 DO c1 END) / pe_st' || c2' / pe_st'' / c2'' -> pe_compare pe_st pe_st'' <> [] -> (c2'' = SKIP \/ c2'' = WHILE b1 DO c1 END) -> (WHILE b1 DO c1 END) / pe_st || (IFB pe_bexp pe_st b1 THEN c1';; c2';; assign pe_st'' (pe_compare pe_st pe_st'') ELSE assign pe_st (pe_compare pe_st pe_st'') FI) / pe_removes pe_st (pe_compare pe_st pe_st'') / c2'' | PE_WhileFixedEnd : forall pe_st b1 c1, pe_bexp pe_st b1 <> BFalse -> (WHILE b1 DO c1 END) / pe_st || SKIP / pe_st / (WHILE b1 DO c1 END) | PE_WhileFixedLoop : forall pe_st pe_st' pe_st'' b1 c1 c1' c2', pe_bexp pe_st b1 = BTrue -> c1 / pe_st || c1' / pe_st' / SKIP -> (WHILE b1 DO c1 END) / pe_st' || c2' / pe_st'' / (WHILE b1 DO c1 END) -> pe_compare pe_st pe_st'' = [] -> (WHILE b1 DO c1 END) / pe_st || (WHILE BTrue DO SKIP END) / pe_st / SKIP (* Because we have an infinite loop, we should actually start to throw away the rest of the program: (WHILE b1 DO c1 END) / pe_st || SKIP / pe_st / (WHILE BTrue DO SKIP END) *) | PE_WhileFixed : forall pe_st pe_st' pe_st'' b1 c1 c1' c2', pe_bexp pe_st b1 <> BFalse -> pe_bexp pe_st b1 <> BTrue -> c1 / pe_st || c1' / pe_st' / SKIP -> (WHILE b1 DO c1 END) / pe_st' || c2' / pe_st'' / (WHILE b1 DO c1 END) -> pe_compare pe_st pe_st'' = [] -> (WHILE b1 DO c1 END) / pe_st || (WHILE pe_bexp pe_st b1 DO c1';; c2' END) / pe_st / SKIP where "c1 '/' st '||' c1' '/' st' '/' c''" := (pe_com c1 st c1' st' c''). Tactic Notation "pe_com_cases" tactic(first) ident(c) := first; [ Case_aux c "PE_Skip" | Case_aux c "PE_AssStatic" | Case_aux c "PE_AssDynamic" | Case_aux c "PE_Seq" | Case_aux c "PE_IfTrue" | Case_aux c "PE_IfFalse" | Case_aux c "PE_If" | Case_aux c "PE_WhileEnd" | Case_aux c "PE_WhileLoop" | Case_aux c "PE_While" | Case_aux c "PE_WhileFixedEnd" | Case_aux c "PE_WhileFixedLoop" | Case_aux c "PE_WhileFixed" ]. Hint Constructors pe_com. (** ** Examples *) Ltac step i := (eapply i; intuition eauto; try solve by inversion); repeat (try eapply PE_Seq; try (eapply PE_AssStatic; simpl; reflexivity); try (eapply PE_AssDynamic; [ simpl; reflexivity | intuition eauto; solve by inversion ])). Definition square_loop: com := WHILE BLe (ANum 1) (AId X) DO Y ::= AMult (AId Y) (AId Y);; X ::= AMinus (AId X) (ANum 1) END. Example pe_loop_example1: square_loop / [] || (WHILE BLe (ANum 1) (AId X) DO (Y ::= AMult (AId Y) (AId Y);; X ::= AMinus (AId X) (ANum 1));; SKIP END) / [] / SKIP. Proof. erewrite f_equal2 with (f := fun c st => _ / _ || c / st / SKIP). step PE_WhileFixed. step PE_WhileFixedEnd. reflexivity. reflexivity. reflexivity. Qed. Example pe_loop_example2: (X ::= ANum 3;; square_loop) / [] || (SKIP;; (Y ::= AMult (AId Y) (AId Y);; SKIP);; (Y ::= AMult (AId Y) (AId Y);; SKIP);; (Y ::= AMult (AId Y) (AId Y);; SKIP);; SKIP) / [(X,0)] / SKIP. Proof. erewrite f_equal2 with (f := fun c st => _ / _ || c / st / SKIP). eapply PE_Seq. eapply PE_AssStatic. reflexivity. step PE_WhileLoop. step PE_WhileLoop. step PE_WhileLoop. step PE_WhileEnd. inversion H. inversion H. inversion H. reflexivity. reflexivity. Qed. Example pe_loop_example3: (Z ::= ANum 3;; subtract_slowly) / [] || (SKIP;; IFB BNot (BEq (AId X) (ANum 0)) THEN (SKIP;; X ::= AMinus (AId X) (ANum 1));; IFB BNot (BEq (AId X) (ANum 0)) THEN (SKIP;; X ::= AMinus (AId X) (ANum 1));; IFB BNot (BEq (AId X) (ANum 0)) THEN (SKIP;; X ::= AMinus (AId X) (ANum 1));; WHILE BNot (BEq (AId X) (ANum 0)) DO (SKIP;; X ::= AMinus (AId X) (ANum 1));; SKIP END;; SKIP;; Z ::= ANum 0 ELSE SKIP;; Z ::= ANum 1 FI;; SKIP ELSE SKIP;; Z ::= ANum 2 FI;; SKIP ELSE SKIP;; Z ::= ANum 3 FI) / [] / SKIP. Proof. erewrite f_equal2 with (f := fun c st => _ / _ || c / st / SKIP). eapply PE_Seq. eapply PE_AssStatic. reflexivity. step PE_While. step PE_While. step PE_While. step PE_WhileFixed. step PE_WhileFixedEnd. reflexivity. inversion H. inversion H. inversion H. reflexivity. reflexivity. Qed. Example pe_loop_example4: (X ::= ANum 0;; WHILE BLe (AId X) (ANum 2) DO X ::= AMinus (ANum 1) (AId X) END) / [] || (SKIP;; WHILE BTrue DO SKIP END) / [(X,0)] / SKIP. Proof. erewrite f_equal2 with (f := fun c st => _ / _ || c / st / SKIP). eapply PE_Seq. eapply PE_AssStatic. reflexivity. step PE_WhileFixedLoop. step PE_WhileLoop. step PE_WhileFixedEnd. inversion H. reflexivity. reflexivity. reflexivity. Qed. (** ** Correctness *) (** Because this partial evaluator can unroll a loop n-fold where n is a (finite) integer greater than one, in order to show it correct we need to perform induction not structurally on dynamic evaluation but on the number of times dynamic evaluation enters a loop body. *) Reserved Notation "c1 '/' st '||' st' '#' n" (at level 40, st at level 39, st' at level 39). Inductive ceval_count : com -> state -> state -> nat -> Prop := | E'Skip : forall st, SKIP / st || st # 0 | E'Ass : forall st a1 n l, aeval st a1 = n -> (l ::= a1) / st || (update st l n) # 0 | E'Seq : forall c1 c2 st st' st'' n1 n2, c1 / st || st' # n1 -> c2 / st' || st'' # n2 -> (c1 ;; c2) / st || st'' # (n1 + n2) | E'IfTrue : forall st st' b1 c1 c2 n, beval st b1 = true -> c1 / st || st' # n -> (IFB b1 THEN c1 ELSE c2 FI) / st || st' # n | E'IfFalse : forall st st' b1 c1 c2 n, beval st b1 = false -> c2 / st || st' # n -> (IFB b1 THEN c1 ELSE c2 FI) / st || st' # n | E'WhileEnd : forall b1 st c1, beval st b1 = false -> (WHILE b1 DO c1 END) / st || st # 0 | E'WhileLoop : forall st st' st'' b1 c1 n1 n2, beval st b1 = true -> c1 / st || st' # n1 -> (WHILE b1 DO c1 END) / st' || st'' # n2 -> (WHILE b1 DO c1 END) / st || st'' # S (n1 + n2) where "c1 '/' st '||' st' # n" := (ceval_count c1 st st' n). Tactic Notation "ceval_count_cases" tactic(first) ident(c) := first; [ Case_aux c "E'Skip" | Case_aux c "E'Ass" | Case_aux c "E'Seq" | Case_aux c "E'IfTrue" | Case_aux c "E'IfFalse" | Case_aux c "E'WhileEnd" | Case_aux c "E'WhileLoop" ]. Hint Constructors ceval_count. Theorem ceval_count_complete: forall c st st', c / st || st' -> exists n, c / st || st' # n. Proof. intros c st st' Heval. induction Heval; try inversion IHHeval1; try inversion IHHeval2; try inversion IHHeval; eauto. Qed. Theorem ceval_count_sound: forall c st st' n, c / st || st' # n -> c / st || st'. Proof. intros c st st' n Heval. induction Heval; eauto. Qed. Theorem pe_compare_nil_lookup: forall pe_st1 pe_st2, pe_compare pe_st1 pe_st2 = [] -> forall V, pe_lookup pe_st1 V = pe_lookup pe_st2 V. Proof. intros pe_st1 pe_st2 H V. apply (pe_compare_correct pe_st1 pe_st2 V). rewrite H. intro. inversion H0. Qed. Theorem pe_compare_nil_override: forall pe_st1 pe_st2, pe_compare pe_st1 pe_st2 = [] -> forall st, pe_override st pe_st1 = pe_override st pe_st2. Proof. intros pe_st1 pe_st2 H st. apply functional_extensionality. intros V. rewrite !pe_override_correct. apply pe_compare_nil_lookup with (V:=V) in H. rewrite H. reflexivity. Qed. Reserved Notation "c' '/' pe_st' '/' c'' '/' st '||' st'' '#' n" (at level 40, pe_st' at level 39, c'' at level 39, st at level 39, st'' at level 39). Inductive pe_ceval_count (c':com) (pe_st':pe_state) (c'':com) (st:state) (st'':state) (n:nat) : Prop := | pe_ceval_count_intro : forall st' n', c' / st || st' -> c'' / pe_override st' pe_st' || st'' # n' -> n' <= n -> c' / pe_st' / c'' / st || st'' # n where "c' '/' pe_st' '/' c'' '/' st '||' st'' '#' n" := (pe_ceval_count c' pe_st' c'' st st'' n). Hint Constructors pe_ceval_count. Lemma pe_ceval_count_le: forall c' pe_st' c'' st st'' n n', n' <= n -> c' / pe_st' / c'' / st || st'' # n' -> c' / pe_st' / c'' / st || st'' # n. Proof. intros c' pe_st' c'' st st'' n n' Hle H. inversion H. econstructor; try eassumption. omega. Qed. Theorem pe_com_complete: forall c pe_st pe_st' c' c'', c / pe_st || c' / pe_st' / c'' -> forall st st'' n, (c / pe_override st pe_st || st'' # n) -> (c' / pe_st' / c'' / st || st'' # n). Proof. intros c pe_st pe_st' c' c'' Hpe. pe_com_cases (induction Hpe) Case; intros st st'' n Heval; try (inversion Heval; subst; try (rewrite -> pe_bexp_correct, -> H in *; solve by inversion); []); eauto. Case "PE_AssStatic". econstructor. econstructor. rewrite -> pe_aexp_correct. rewrite <- pe_override_update_add. rewrite -> H. apply E'Skip. auto. Case "PE_AssDynamic". econstructor. econstructor. reflexivity. rewrite -> pe_aexp_correct. rewrite <- pe_override_update_remove. apply E'Skip. auto. Case "PE_Seq". edestruct IHHpe1 as [? ? ? Hskip ?]. eassumption. inversion Hskip. subst. edestruct IHHpe2. eassumption. econstructor; eauto. omega. Case "PE_If". inversion Heval; subst. SCase "E'IfTrue". edestruct IHHpe1. eassumption. econstructor. apply E_IfTrue. rewrite <- pe_bexp_correct. assumption. eapply E_Seq. eassumption. apply eval_assign. rewrite <- assign_removes. eassumption. eassumption. SCase "E_IfFalse". edestruct IHHpe2. eassumption. econstructor. apply E_IfFalse. rewrite <- pe_bexp_correct. assumption. eapply E_Seq. eassumption. apply eval_assign. rewrite -> pe_compare_override. rewrite <- assign_removes. eassumption. eassumption. Case "PE_WhileLoop". edestruct IHHpe1 as [? ? ? Hskip ?]. eassumption. inversion Hskip. subst. edestruct IHHpe2. eassumption. econstructor; eauto. omega. Case "PE_While". inversion Heval; subst. SCase "E_WhileEnd". econstructor. apply E_IfFalse. rewrite <- pe_bexp_correct. assumption. apply eval_assign. rewrite <- assign_removes. inversion H2; subst; auto. auto. SCase "E_WhileLoop". edestruct IHHpe1 as [? ? ? Hskip ?]. eassumption. inversion Hskip. subst. edestruct IHHpe2. eassumption. econstructor. apply E_IfTrue. rewrite <- pe_bexp_correct. assumption. repeat eapply E_Seq; eauto. apply eval_assign. rewrite -> pe_compare_override, <- assign_removes. eassumption. omega. Case "PE_WhileFixedLoop". apply ex_falso_quodlibet. generalize dependent (S (n1 + n2)). intros n. clear - Case H H0 IHHpe1 IHHpe2. generalize dependent st. induction n using lt_wf_ind; intros st Heval. inversion Heval; subst. SCase "E'WhileEnd". rewrite pe_bexp_correct, H in H7. inversion H7. SCase "E'WhileLoop". edestruct IHHpe1 as [? ? ? Hskip ?]. eassumption. inversion Hskip. subst. edestruct IHHpe2. eassumption. rewrite <- (pe_compare_nil_override _ _ H0) in H7. apply H1 in H7; [| omega]. inversion H7. Case "PE_WhileFixed". generalize dependent st. induction n using lt_wf_ind; intros st Heval. inversion Heval; subst. SCase "E'WhileEnd". rewrite pe_bexp_correct in H8. eauto. SCase "E'WhileLoop". rewrite pe_bexp_correct in H5. edestruct IHHpe1 as [? ? ? Hskip ?]. eassumption. inversion Hskip. subst. edestruct IHHpe2. eassumption. rewrite <- (pe_compare_nil_override _ _ H1) in H8. apply H2 in H8; [| omega]. inversion H8. econstructor; [ eapply E_WhileLoop; eauto | eassumption | omega]. Qed. Theorem pe_com_sound: forall c pe_st pe_st' c' c'', c / pe_st || c' / pe_st' / c'' -> forall st st'' n, (c' / pe_st' / c'' / st || st'' # n) -> (c / pe_override st pe_st || st''). Proof. intros c pe_st pe_st' c' c'' Hpe. pe_com_cases (induction Hpe) Case; intros st st'' n [st' n' Heval Heval' Hle]; try (inversion Heval; []; subst); try (inversion Heval'; []; subst); eauto. Case "PE_AssStatic". rewrite <- pe_override_update_add. apply E_Ass. rewrite -> pe_aexp_correct. rewrite -> H. reflexivity. Case "PE_AssDynamic". rewrite <- pe_override_update_remove. apply E_Ass. rewrite <- pe_aexp_correct. reflexivity. Case "PE_Seq". eapply E_Seq; eauto. Case "PE_IfTrue". apply E_IfTrue. rewrite -> pe_bexp_correct. rewrite -> H. reflexivity. eapply IHHpe. eauto. Case "PE_IfFalse". apply E_IfFalse. rewrite -> pe_bexp_correct. rewrite -> H. reflexivity. eapply IHHpe. eauto. Case "PE_If". inversion Heval; subst; inversion H7; subst; clear H7. SCase "E_IfTrue". eapply ceval_deterministic in H8; [| apply eval_assign]. subst. rewrite <- assign_removes in Heval'. apply E_IfTrue. rewrite -> pe_bexp_correct. assumption. eapply IHHpe1. eauto. SCase "E_IfFalse". eapply ceval_deterministic in H8; [| apply eval_assign]. subst. rewrite -> pe_compare_override in Heval'. rewrite <- assign_removes in Heval'. apply E_IfFalse. rewrite -> pe_bexp_correct. assumption. eapply IHHpe2. eauto. Case "PE_WhileEnd". apply E_WhileEnd. rewrite -> pe_bexp_correct. rewrite -> H. reflexivity. Case "PE_WhileLoop". eapply E_WhileLoop. rewrite -> pe_bexp_correct. rewrite -> H. reflexivity. eapply IHHpe1. eauto. eapply IHHpe2. eauto. Case "PE_While". inversion Heval; subst. SCase "E_IfTrue". inversion H9. subst. clear H9. inversion H10. subst. clear H10. eapply ceval_deterministic in H11; [| apply eval_assign]. subst. rewrite -> pe_compare_override in Heval'. rewrite <- assign_removes in Heval'. eapply E_WhileLoop. rewrite -> pe_bexp_correct. assumption. eapply IHHpe1. eauto. eapply IHHpe2. eauto. SCase "E_IfFalse". apply ceval_count_sound in Heval'. eapply ceval_deterministic in H9; [| apply eval_assign]. subst. rewrite <- assign_removes in Heval'. inversion H2; subst. SSCase "c2'' = SKIP". inversion Heval'. subst. apply E_WhileEnd. rewrite -> pe_bexp_correct. assumption. SSCase "c2'' = WHILE b1 DO c1 END". assumption. Case "PE_WhileFixedEnd". eapply ceval_count_sound. apply Heval'. Case "PE_WhileFixedLoop". apply loop_never_stops in Heval. inversion Heval. Case "PE_WhileFixed". clear - Case H1 IHHpe1 IHHpe2 Heval. remember (WHILE pe_bexp pe_st b1 DO c1';; c2' END) as c'. ceval_cases (induction Heval) SCase; inversion Heqc'; subst; clear Heqc'. SCase "E_WhileEnd". apply E_WhileEnd. rewrite pe_bexp_correct. assumption. SCase "E_WhileLoop". assert (IHHeval2' := IHHeval2 (refl_equal _)). apply ceval_count_complete in IHHeval2'. inversion IHHeval2'. clear IHHeval1 IHHeval2 IHHeval2'. inversion Heval1. subst. eapply E_WhileLoop. rewrite pe_bexp_correct. assumption. eauto. eapply IHHpe2. econstructor. eassumption. rewrite <- (pe_compare_nil_override _ _ H1). eassumption. apply le_n. Qed. Corollary pe_com_correct: forall c pe_st pe_st' c', c / pe_st || c' / pe_st' / SKIP -> forall st st'', (c / pe_override st pe_st || st'') <-> (exists st', c' / st || st' /\ pe_override st' pe_st' = st''). Proof. intros c pe_st pe_st' c' H st st''. split. Case "->". intros Heval. apply ceval_count_complete in Heval. inversion Heval as [n Heval']. apply pe_com_complete with (st:=st) (st'':=st'') (n:=n) in H. inversion H as [? ? ? Hskip ?]. inversion Hskip. subst. eauto. assumption. Case "<-". intros [st' [Heval Heq]]. subst st''. eapply pe_com_sound in H. apply H. econstructor. apply Heval. apply E'Skip. apply le_n. Qed. End Loop. (* ####################################################### *) (** * Partial Evaluation of Flowchart Programs *) (** Instead of partially evaluating [WHILE] loops directly, the standard approach to partially evaluating imperative programs is to convert them into _flowcharts_. In other words, it turns out that adding labels and jumps to our language makes it much easier to partially evaluate. The result of partially evaluating a flowchart is a residual flowchart. If we are lucky, the jumps in the residual flowchart can be converted back to [WHILE] loops, but that is not possible in general; we do not pursue it here. *) (** ** Basic blocks *) (** A flowchart is made of _basic blocks_, which we represent with the inductive type [block]. A basic block is a sequence of assignments (the constructor [Assign]), concluding with a conditional jump (the constructor [If]) or an unconditional jump (the constructor [Goto]). The destinations of the jumps are specified by _labels_, which can be of any type. Therefore, we parameterize the [block] type by the type of labels. *) Inductive block (Label:Type) : Type := | Goto : Label -> block Label | If : bexp -> Label -> Label -> block Label | Assign : id -> aexp -> block Label -> block Label. Tactic Notation "block_cases" tactic(first) ident(c) := first; [ Case_aux c "Goto" | Case_aux c "If" | Case_aux c "Assign" ]. Arguments Goto {Label} _. Arguments If {Label} _ _ _. Arguments Assign {Label} _ _ _. (** We use the "even or odd" program, expressed above in Imp, as our running example. Converting this program into a flowchart turns out to require 4 labels, so we define the following type. *) Inductive parity_label : Type := | entry : parity_label | loop : parity_label | body : parity_label | done : parity_label. (** The following [block] is the basic block found at the [body] label of the example program. *) Definition parity_body : block parity_label := Assign Y (AMinus (AId Y) (ANum 1)) (Assign X (AMinus (ANum 1) (AId X)) (Goto loop)). (** To evaluate a basic block, given an initial state, is to compute the final state and the label to jump to next. Because basic blocks do not _contain_ loops or other control structures, evaluation of basic blocks is a total function -- we don't need to worry about non-termination. *) Fixpoint keval {L:Type} (st:state) (k : block L) : state * L := match k with | Goto l => (st, l) | If b l1 l2 => (st, if beval st b then l1 else l2) | Assign i a k => keval (update st i (aeval st a)) k end. Example keval_example: keval empty_state parity_body = (update (update empty_state Y 0) X 1, loop). Proof. reflexivity. Qed. (** ** Flowchart programs *) (** A flowchart program is simply a lookup function that maps labels to basic blocks. Actually, some labels are _halting states_ and do not map to any basic block. So, more precisely, a flowchart [program] whose labels are of type [L] is a function from [L] to [option (block L)]. *) Definition program (L:Type) : Type := L -> option (block L). Definition parity : program parity_label := fun l => match l with | entry => Some (Assign X (ANum 0) (Goto loop)) | loop => Some (If (BLe (ANum 1) (AId Y)) body done) | body => Some parity_body | done => None (* halt *) end. (** Unlike a basic block, a program may not terminate, so we model the evaluation of programs by an inductive relation [peval] rather than a recursive function. *) Inductive peval {L:Type} (p : program L) : state -> L -> state -> L -> Prop := | E_None: forall st l, p l = None -> peval p st l st l | E_Some: forall st l k st' l' st'' l'', p l = Some k -> keval st k = (st', l') -> peval p st' l' st'' l'' -> peval p st l st'' l''. Example parity_eval: peval parity empty_state entry empty_state done. Proof. erewrite f_equal with (f := fun st => peval _ _ _ st _). eapply E_Some. reflexivity. reflexivity. eapply E_Some. reflexivity. reflexivity. apply E_None. reflexivity. apply functional_extensionality. intros i. rewrite update_same; auto. Qed. Tactic Notation "peval_cases" tactic(first) ident(c) := first; [ Case_aux c "E_None" | Case_aux c "E_Some" ]. (** ** Partial evaluation of basic blocks and flowchart programs *) (** Partial evaluation changes the label type in a systematic way: if the label type used to be [L], it becomes [pe_state * L]. So the same label in the original program may be unfolded, or blown up, into multiple labels by being paired with different partial states. For example, the label [loop] in the [parity] program will become two labels: [([(X,0)], loop)] and [([(X,1)], loop)]. This change of label type is reflected in the types of [pe_block] and [pe_program] defined presently. *) Fixpoint pe_block {L:Type} (pe_st:pe_state) (k : block L) : block (pe_state * L) := match k with | Goto l => Goto (pe_st, l) | If b l1 l2 => match pe_bexp pe_st b with | BTrue => Goto (pe_st, l1) | BFalse => Goto (pe_st, l2) | b' => If b' (pe_st, l1) (pe_st, l2) end | Assign i a k => match pe_aexp pe_st a with | ANum n => pe_block (pe_add pe_st i n) k | a' => Assign i a' (pe_block (pe_remove pe_st i) k) end end. Example pe_block_example: pe_block [(X,0)] parity_body = Assign Y (AMinus (AId Y) (ANum 1)) (Goto ([(X,1)], loop)). Proof. reflexivity. Qed. Theorem pe_block_correct: forall (L:Type) st pe_st k st' pe_st' (l':L), keval st (pe_block pe_st k) = (st', (pe_st', l')) -> keval (pe_override st pe_st) k = (pe_override st' pe_st', l'). Proof. intros. generalize dependent pe_st. generalize dependent st. block_cases (induction k as [l | b l1 l2 | i a k]) Case; intros st pe_st H. Case "Goto". inversion H; reflexivity. Case "If". replace (keval st (pe_block pe_st (If b l1 l2))) with (keval st (If (pe_bexp pe_st b) (pe_st, l1) (pe_st, l2))) in H by (simpl; destruct (pe_bexp pe_st b); reflexivity). simpl in *. rewrite pe_bexp_correct. destruct (beval st (pe_bexp pe_st b)); inversion H; reflexivity. Case "Assign". simpl in *. rewrite pe_aexp_correct. destruct (pe_aexp pe_st a); simpl; try solve [rewrite pe_override_update_add; apply IHk; apply H]; solve [rewrite pe_override_update_remove; apply IHk; apply H]. Qed. Definition pe_program {L:Type} (p : program L) : program (pe_state * L) := fun pe_l => match pe_l with (pe_st, l) => option_map (pe_block pe_st) (p l) end. Inductive pe_peval {L:Type} (p : program L) (st:state) (pe_st:pe_state) (l:L) (st'o:state) (l':L) : Prop := | pe_peval_intro : forall st' pe_st', peval (pe_program p) st (pe_st, l) st' (pe_st', l') -> pe_override st' pe_st' = st'o -> pe_peval p st pe_st l st'o l'. Theorem pe_program_correct: forall (L:Type) (p : program L) st pe_st l st'o l', peval p (pe_override st pe_st) l st'o l' <-> pe_peval p st pe_st l st'o l'. Proof. intros. split; [Case "->" | Case "<-"]. Case "->". intros Heval. remember (pe_override st pe_st) as sto. generalize dependent pe_st. generalize dependent st. peval_cases (induction Heval as [ sto l Hlookup | sto l k st'o l' st''o l'' Hlookup Hkeval Heval ]) SCase; intros st pe_st Heqsto; subst sto. SCase "E_None". eapply pe_peval_intro. apply E_None. simpl. rewrite Hlookup. reflexivity. reflexivity. SCase "E_Some". remember (keval st (pe_block pe_st k)) as x. destruct x as [st' [pe_st' l'_]]. symmetry in Heqx. erewrite pe_block_correct in Hkeval by apply Heqx. inversion Hkeval. subst st'o l'_. clear Hkeval. edestruct IHHeval. reflexivity. subst st''o. clear IHHeval. eapply pe_peval_intro; [| reflexivity]. eapply E_Some; eauto. simpl. rewrite Hlookup. reflexivity. Case "<-". intros [st' pe_st' Heval Heqst'o]. remember (pe_st, l) as pe_st_l. remember (pe_st', l') as pe_st'_l'. generalize dependent pe_st. generalize dependent l. peval_cases (induction Heval as [ st [pe_st_ l_] Hlookup | st [pe_st_ l_] pe_k st' [pe_st'_ l'_] st'' [pe_st'' l''] Hlookup Hkeval Heval ]) SCase; intros l pe_st Heqpe_st_l; inversion Heqpe_st_l; inversion Heqpe_st'_l'; repeat subst. SCase "E_None". apply E_None. simpl in Hlookup. destruct (p l'); [ solve [ inversion Hlookup ] | reflexivity ]. SCase "E_Some". simpl in Hlookup. remember (p l) as k. destruct k as [k|]; inversion Hlookup; subst. eapply E_Some; eauto. apply pe_block_correct. apply Hkeval. Qed. (** $Date: 2014-12-31 11:17:56 -0500 (Wed, 31 Dec 2014) $ *)
/* ---------------------------------------------------------------------------------- Copyright (c) 2013-2014 Embedded and Network Computing Lab. Open SSD Project Hanyang University All rights reserved. ---------------------------------------------------------------------------------- Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. All advertising materials mentioning features or use of this source code must display the following acknowledgement: This product includes source code developed by the Embedded and Network Computing Lab. and the Open SSD Project. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------------------- http://enclab.hanyang.ac.kr/ http://www.openssd-project.org/ http://www.hanyang.ac.kr/ ---------------------------------------------------------------------------------- */ `timescale 1ns / 1ps module pcie_dma_cmd_gen # ( parameter C_PCIE_DATA_WIDTH = 128, parameter C_PCIE_ADDR_WIDTH = 36 ) ( input pcie_user_clk, input pcie_user_rst_n, output pcie_cmd_rd_en, input [33:0] pcie_cmd_rd_data, input pcie_cmd_empty_n, output prp_fifo_rd_en, input [C_PCIE_DATA_WIDTH-1:0] prp_fifo_rd_data, output prp_fifo_free_en, output [5:4] prp_fifo_free_len, input prp_fifo_empty_n, output pcie_rx_cmd_wr_en, output [33:0] pcie_rx_cmd_wr_data, input pcie_rx_cmd_full_n, output pcie_tx_cmd_wr_en, output [33:0] pcie_tx_cmd_wr_data, input pcie_tx_cmd_full_n ); localparam S_IDLE = 15'b000000000000001; localparam S_CMD0 = 15'b000000000000010; localparam S_CMD1 = 15'b000000000000100; localparam S_CMD2 = 15'b000000000001000; localparam S_CMD3 = 15'b000000000010000; localparam S_CHECK_PRP_FIFO = 15'b000000000100000; localparam S_RD_PRP0 = 15'b000000001000000; localparam S_RD_PRP1 = 15'b000000010000000; localparam S_PCIE_PRP = 15'b000000100000000; localparam S_CHECK_PCIE_CMD_FIFO0 = 15'b000001000000000; localparam S_PCIE_CMD0 = 15'b000010000000000; localparam S_PCIE_CMD1 = 15'b000100000000000; localparam S_CHECK_PCIE_CMD_FIFO1 = 15'b001000000000000; localparam S_PCIE_CMD2 = 15'b010000000000000; localparam S_PCIE_CMD3 = 15'b100000000000000; reg [14:0] cur_state; reg [14:0] next_state; reg r_dma_cmd_type; reg r_dma_cmd_dir; reg r_2st_valid; reg r_1st_mrd_need; reg r_2st_mrd_need; reg [6:0] r_hcmd_slot_tag; reg r_pcie_rcb_cross; reg [12:2] r_1st_4b_len; reg [12:2] r_2st_4b_len; reg [C_PCIE_ADDR_WIDTH-1:2] r_hcmd_prp_1; reg [C_PCIE_ADDR_WIDTH-1:2] r_hcmd_prp_2; reg [63:2] r_prp_1; reg [63:2] r_prp_2; reg r_pcie_cmd_rd_en; reg r_prp_fifo_rd_en; reg r_prp_fifo_free_en; reg r_pcie_rx_cmd_wr_en; reg r_pcie_tx_cmd_wr_en; reg [3:0] r_pcie_cmd_wr_data_sel; reg [33:0] r_pcie_cmd_wr_data; wire w_pcie_cmd_full_n; assign pcie_cmd_rd_en = r_pcie_cmd_rd_en; assign prp_fifo_rd_en = r_prp_fifo_rd_en; assign prp_fifo_free_en = r_prp_fifo_free_en; assign prp_fifo_free_len = (r_pcie_rcb_cross == 0) ? 2'b01 : 2'b10; assign pcie_rx_cmd_wr_en = r_pcie_rx_cmd_wr_en; assign pcie_rx_cmd_wr_data = r_pcie_cmd_wr_data; assign pcie_tx_cmd_wr_en = r_pcie_tx_cmd_wr_en; assign pcie_tx_cmd_wr_data = r_pcie_cmd_wr_data; always @ (posedge pcie_user_clk or negedge pcie_user_rst_n) begin if(pcie_user_rst_n == 0) cur_state <= S_IDLE; else cur_state <= next_state; end assign w_pcie_cmd_full_n = (r_dma_cmd_dir == 1'b1) ? pcie_tx_cmd_full_n : pcie_rx_cmd_full_n; always @ (*) begin case(cur_state) S_IDLE: begin if(pcie_cmd_empty_n == 1'b1) next_state <= S_CMD0; else next_state <= S_IDLE; end S_CMD0: begin next_state <= S_CMD1; end S_CMD1: begin next_state <= S_CMD2; end S_CMD2: begin next_state <= S_CMD3; end S_CMD3: begin if((r_1st_mrd_need | (r_2st_valid & r_2st_mrd_need)) == 1'b1) next_state <= S_CHECK_PRP_FIFO; else next_state <= S_CHECK_PCIE_CMD_FIFO0; end S_CHECK_PRP_FIFO: begin if(prp_fifo_empty_n == 1) next_state <= S_RD_PRP0; else next_state <= S_CHECK_PRP_FIFO; end S_RD_PRP0: begin if(r_pcie_rcb_cross == 1) next_state <= S_RD_PRP1; else next_state <= S_PCIE_PRP; end S_RD_PRP1: begin next_state <= S_PCIE_PRP; end S_PCIE_PRP: begin next_state <= S_CHECK_PCIE_CMD_FIFO0; end S_CHECK_PCIE_CMD_FIFO0: begin if(w_pcie_cmd_full_n == 1'b1) next_state <= S_PCIE_CMD0; else next_state <= S_CHECK_PCIE_CMD_FIFO0; end S_PCIE_CMD0: begin next_state <= S_PCIE_CMD1; end S_PCIE_CMD1: begin if(r_2st_valid == 1'b1) next_state <= S_CHECK_PCIE_CMD_FIFO1; else next_state <= S_IDLE; end S_CHECK_PCIE_CMD_FIFO1: begin if(w_pcie_cmd_full_n == 1'b1) next_state <= S_PCIE_CMD2; else next_state <= S_CHECK_PCIE_CMD_FIFO1; end S_PCIE_CMD2: begin next_state <= S_PCIE_CMD3; end S_PCIE_CMD3: begin next_state <= S_IDLE; end default: begin next_state <= S_IDLE; end endcase end always @ (posedge pcie_user_clk) begin case(cur_state) S_IDLE: begin end S_CMD0: begin r_dma_cmd_type <= pcie_cmd_rd_data[11]; r_dma_cmd_dir <= pcie_cmd_rd_data[10]; r_2st_valid <= pcie_cmd_rd_data[9]; r_1st_mrd_need <= pcie_cmd_rd_data[8]; r_2st_mrd_need <= pcie_cmd_rd_data[7]; r_hcmd_slot_tag <= pcie_cmd_rd_data[6:0]; end S_CMD1: begin r_pcie_rcb_cross <= pcie_cmd_rd_data[22]; r_1st_4b_len <= pcie_cmd_rd_data[21:11]; r_2st_4b_len <= pcie_cmd_rd_data[10:0]; end S_CMD2: begin r_hcmd_prp_1 <= pcie_cmd_rd_data[33:0]; end S_CMD3: begin r_hcmd_prp_2 <= {pcie_cmd_rd_data[33:10], 10'b0}; end S_CHECK_PRP_FIFO: begin end S_RD_PRP0: begin r_prp_1 <= prp_fifo_rd_data[63:2]; r_prp_2 <= prp_fifo_rd_data[127:66]; end S_RD_PRP1: begin r_prp_2 <= prp_fifo_rd_data[63:2]; end S_PCIE_PRP: begin if(r_1st_mrd_need == 1) begin r_hcmd_prp_1[C_PCIE_ADDR_WIDTH-1:12] <= r_prp_1[C_PCIE_ADDR_WIDTH-1:12]; r_hcmd_prp_2[C_PCIE_ADDR_WIDTH-1:12] <= r_prp_2[C_PCIE_ADDR_WIDTH-1:12]; end else begin r_hcmd_prp_2[C_PCIE_ADDR_WIDTH-1:12] <= r_prp_1[C_PCIE_ADDR_WIDTH-1:12]; end end S_CHECK_PCIE_CMD_FIFO0: begin end S_PCIE_CMD0: begin end S_PCIE_CMD1: begin end S_CHECK_PCIE_CMD_FIFO1: begin end S_PCIE_CMD2: begin end S_PCIE_CMD3: begin end default: begin end endcase end always @ (*) begin case(r_pcie_cmd_wr_data_sel) // synthesis parallel_case full_case 4'b0001: r_pcie_cmd_wr_data <= {14'b0, r_dma_cmd_type, ~r_2st_valid, r_hcmd_slot_tag, r_1st_4b_len}; 4'b0010: r_pcie_cmd_wr_data <= r_hcmd_prp_1; 4'b0100: r_pcie_cmd_wr_data <= {14'b0, r_dma_cmd_type, 1'b1, r_hcmd_slot_tag, r_2st_4b_len}; 4'b1000: r_pcie_cmd_wr_data <= {r_hcmd_prp_2[C_PCIE_ADDR_WIDTH-1:12], 10'b0}; endcase end always @ (*) begin case(cur_state) S_IDLE: begin r_pcie_cmd_rd_en <= 0; r_prp_fifo_rd_en <= 0; r_prp_fifo_free_en <= 0; r_pcie_rx_cmd_wr_en <= 0; r_pcie_tx_cmd_wr_en <= 0; r_pcie_cmd_wr_data_sel <= 4'b0000; end S_CMD0: begin r_pcie_cmd_rd_en <= 1; r_prp_fifo_rd_en <= 0; r_prp_fifo_free_en <= 0; r_pcie_rx_cmd_wr_en <= 0; r_pcie_tx_cmd_wr_en <= 0; r_pcie_cmd_wr_data_sel <= 4'b0000; end S_CMD1: begin r_pcie_cmd_rd_en <= 1; r_prp_fifo_rd_en <= 0; r_prp_fifo_free_en <= 0; r_pcie_rx_cmd_wr_en <= 0; r_pcie_tx_cmd_wr_en <= 0; r_pcie_cmd_wr_data_sel <= 4'b0000; end S_CMD2: begin r_pcie_cmd_rd_en <= 1; r_prp_fifo_rd_en <= 0; r_prp_fifo_free_en <= 0; r_pcie_rx_cmd_wr_en <= 0; r_pcie_tx_cmd_wr_en <= 0; r_pcie_cmd_wr_data_sel <= 4'b0000; end S_CMD3: begin r_pcie_cmd_rd_en <= 1; r_prp_fifo_rd_en <= 0; r_prp_fifo_free_en <= 0; r_pcie_rx_cmd_wr_en <= 0; r_pcie_tx_cmd_wr_en <= 0; r_pcie_cmd_wr_data_sel <= 4'b0000; end S_CHECK_PRP_FIFO: begin r_pcie_cmd_rd_en <= 0; r_prp_fifo_rd_en <= 0; r_prp_fifo_free_en <= 0; r_pcie_rx_cmd_wr_en <= 0; r_pcie_tx_cmd_wr_en <= 0; r_pcie_cmd_wr_data_sel <= 4'b0000; end S_RD_PRP0: begin r_pcie_cmd_rd_en <= 0; r_prp_fifo_rd_en <= 1; r_prp_fifo_free_en <= 1; r_pcie_rx_cmd_wr_en <= 0; r_pcie_tx_cmd_wr_en <= 0; r_pcie_cmd_wr_data_sel <= 4'b0000; end S_RD_PRP1: begin r_pcie_cmd_rd_en <= 0; r_prp_fifo_rd_en <= 1; r_prp_fifo_free_en <= 0; r_pcie_rx_cmd_wr_en <= 0; r_pcie_tx_cmd_wr_en <= 0; r_pcie_cmd_wr_data_sel <= 4'b0000; end S_PCIE_PRP: begin r_pcie_cmd_rd_en <= 0; r_prp_fifo_rd_en <= 0; r_prp_fifo_free_en <= 0; r_pcie_rx_cmd_wr_en <= 0; r_pcie_tx_cmd_wr_en <= 0; r_pcie_cmd_wr_data_sel <= 4'b0000; end S_CHECK_PCIE_CMD_FIFO0: begin r_pcie_cmd_rd_en <= 0; r_prp_fifo_rd_en <= 0; r_prp_fifo_free_en <= 0; r_pcie_rx_cmd_wr_en <= 0; r_pcie_tx_cmd_wr_en <= 0; r_pcie_cmd_wr_data_sel <= 4'b0000; end S_PCIE_CMD0: begin r_pcie_cmd_rd_en <= 0; r_prp_fifo_rd_en <= 0; r_prp_fifo_free_en <= 0; r_pcie_rx_cmd_wr_en <= ~r_dma_cmd_dir; r_pcie_tx_cmd_wr_en <= r_dma_cmd_dir; r_pcie_cmd_wr_data_sel <= 4'b0001; end S_PCIE_CMD1: begin r_pcie_cmd_rd_en <= 0; r_prp_fifo_rd_en <= 0; r_prp_fifo_free_en <= 0; r_pcie_rx_cmd_wr_en <= ~r_dma_cmd_dir; r_pcie_tx_cmd_wr_en <= r_dma_cmd_dir; r_pcie_cmd_wr_data_sel <= 4'b0010; end S_CHECK_PCIE_CMD_FIFO1: begin r_pcie_cmd_rd_en <= 0; r_prp_fifo_rd_en <= 0; r_prp_fifo_free_en <= 0; r_pcie_rx_cmd_wr_en <= 0; r_pcie_tx_cmd_wr_en <= 0; r_pcie_cmd_wr_data_sel <= 4'b0000; end S_PCIE_CMD2: begin r_pcie_cmd_rd_en <= 0; r_prp_fifo_rd_en <= 0; r_prp_fifo_free_en <= 0; r_pcie_rx_cmd_wr_en <= ~r_dma_cmd_dir; r_pcie_tx_cmd_wr_en <= r_dma_cmd_dir; r_pcie_cmd_wr_data_sel <= 4'b0100; end S_PCIE_CMD3: begin r_pcie_cmd_rd_en <= 0; r_prp_fifo_rd_en <= 0; r_prp_fifo_free_en <= 0; r_pcie_rx_cmd_wr_en <= ~r_dma_cmd_dir; r_pcie_tx_cmd_wr_en <= r_dma_cmd_dir; r_pcie_cmd_wr_data_sel <= 4'b1000; end default: begin r_pcie_cmd_rd_en <= 0; r_prp_fifo_rd_en <= 0; r_prp_fifo_free_en <= 0; r_pcie_rx_cmd_wr_en <= 0; r_pcie_tx_cmd_wr_en <= 0; r_pcie_cmd_wr_data_sel <= 4'b0000; end endcase end endmodule
/* ---------------------------------------------------------------------------------- Copyright (c) 2013-2014 Embedded and Network Computing Lab. Open SSD Project Hanyang University All rights reserved. ---------------------------------------------------------------------------------- Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. All advertising materials mentioning features or use of this source code must display the following acknowledgement: This product includes source code developed by the Embedded and Network Computing Lab. and the Open SSD Project. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------------------- http://enclab.hanyang.ac.kr/ http://www.openssd-project.org/ http://www.hanyang.ac.kr/ ---------------------------------------------------------------------------------- */ `timescale 1ns / 1ps module pcie_dma_cmd_gen # ( parameter C_PCIE_DATA_WIDTH = 128, parameter C_PCIE_ADDR_WIDTH = 36 ) ( input pcie_user_clk, input pcie_user_rst_n, output pcie_cmd_rd_en, input [33:0] pcie_cmd_rd_data, input pcie_cmd_empty_n, output prp_fifo_rd_en, input [C_PCIE_DATA_WIDTH-1:0] prp_fifo_rd_data, output prp_fifo_free_en, output [5:4] prp_fifo_free_len, input prp_fifo_empty_n, output pcie_rx_cmd_wr_en, output [33:0] pcie_rx_cmd_wr_data, input pcie_rx_cmd_full_n, output pcie_tx_cmd_wr_en, output [33:0] pcie_tx_cmd_wr_data, input pcie_tx_cmd_full_n ); localparam S_IDLE = 15'b000000000000001; localparam S_CMD0 = 15'b000000000000010; localparam S_CMD1 = 15'b000000000000100; localparam S_CMD2 = 15'b000000000001000; localparam S_CMD3 = 15'b000000000010000; localparam S_CHECK_PRP_FIFO = 15'b000000000100000; localparam S_RD_PRP0 = 15'b000000001000000; localparam S_RD_PRP1 = 15'b000000010000000; localparam S_PCIE_PRP = 15'b000000100000000; localparam S_CHECK_PCIE_CMD_FIFO0 = 15'b000001000000000; localparam S_PCIE_CMD0 = 15'b000010000000000; localparam S_PCIE_CMD1 = 15'b000100000000000; localparam S_CHECK_PCIE_CMD_FIFO1 = 15'b001000000000000; localparam S_PCIE_CMD2 = 15'b010000000000000; localparam S_PCIE_CMD3 = 15'b100000000000000; reg [14:0] cur_state; reg [14:0] next_state; reg r_dma_cmd_type; reg r_dma_cmd_dir; reg r_2st_valid; reg r_1st_mrd_need; reg r_2st_mrd_need; reg [6:0] r_hcmd_slot_tag; reg r_pcie_rcb_cross; reg [12:2] r_1st_4b_len; reg [12:2] r_2st_4b_len; reg [C_PCIE_ADDR_WIDTH-1:2] r_hcmd_prp_1; reg [C_PCIE_ADDR_WIDTH-1:2] r_hcmd_prp_2; reg [63:2] r_prp_1; reg [63:2] r_prp_2; reg r_pcie_cmd_rd_en; reg r_prp_fifo_rd_en; reg r_prp_fifo_free_en; reg r_pcie_rx_cmd_wr_en; reg r_pcie_tx_cmd_wr_en; reg [3:0] r_pcie_cmd_wr_data_sel; reg [33:0] r_pcie_cmd_wr_data; wire w_pcie_cmd_full_n; assign pcie_cmd_rd_en = r_pcie_cmd_rd_en; assign prp_fifo_rd_en = r_prp_fifo_rd_en; assign prp_fifo_free_en = r_prp_fifo_free_en; assign prp_fifo_free_len = (r_pcie_rcb_cross == 0) ? 2'b01 : 2'b10; assign pcie_rx_cmd_wr_en = r_pcie_rx_cmd_wr_en; assign pcie_rx_cmd_wr_data = r_pcie_cmd_wr_data; assign pcie_tx_cmd_wr_en = r_pcie_tx_cmd_wr_en; assign pcie_tx_cmd_wr_data = r_pcie_cmd_wr_data; always @ (posedge pcie_user_clk or negedge pcie_user_rst_n) begin if(pcie_user_rst_n == 0) cur_state <= S_IDLE; else cur_state <= next_state; end assign w_pcie_cmd_full_n = (r_dma_cmd_dir == 1'b1) ? pcie_tx_cmd_full_n : pcie_rx_cmd_full_n; always @ (*) begin case(cur_state) S_IDLE: begin if(pcie_cmd_empty_n == 1'b1) next_state <= S_CMD0; else next_state <= S_IDLE; end S_CMD0: begin next_state <= S_CMD1; end S_CMD1: begin next_state <= S_CMD2; end S_CMD2: begin next_state <= S_CMD3; end S_CMD3: begin if((r_1st_mrd_need | (r_2st_valid & r_2st_mrd_need)) == 1'b1) next_state <= S_CHECK_PRP_FIFO; else next_state <= S_CHECK_PCIE_CMD_FIFO0; end S_CHECK_PRP_FIFO: begin if(prp_fifo_empty_n == 1) next_state <= S_RD_PRP0; else next_state <= S_CHECK_PRP_FIFO; end S_RD_PRP0: begin if(r_pcie_rcb_cross == 1) next_state <= S_RD_PRP1; else next_state <= S_PCIE_PRP; end S_RD_PRP1: begin next_state <= S_PCIE_PRP; end S_PCIE_PRP: begin next_state <= S_CHECK_PCIE_CMD_FIFO0; end S_CHECK_PCIE_CMD_FIFO0: begin if(w_pcie_cmd_full_n == 1'b1) next_state <= S_PCIE_CMD0; else next_state <= S_CHECK_PCIE_CMD_FIFO0; end S_PCIE_CMD0: begin next_state <= S_PCIE_CMD1; end S_PCIE_CMD1: begin if(r_2st_valid == 1'b1) next_state <= S_CHECK_PCIE_CMD_FIFO1; else next_state <= S_IDLE; end S_CHECK_PCIE_CMD_FIFO1: begin if(w_pcie_cmd_full_n == 1'b1) next_state <= S_PCIE_CMD2; else next_state <= S_CHECK_PCIE_CMD_FIFO1; end S_PCIE_CMD2: begin next_state <= S_PCIE_CMD3; end S_PCIE_CMD3: begin next_state <= S_IDLE; end default: begin next_state <= S_IDLE; end endcase end always @ (posedge pcie_user_clk) begin case(cur_state) S_IDLE: begin end S_CMD0: begin r_dma_cmd_type <= pcie_cmd_rd_data[11]; r_dma_cmd_dir <= pcie_cmd_rd_data[10]; r_2st_valid <= pcie_cmd_rd_data[9]; r_1st_mrd_need <= pcie_cmd_rd_data[8]; r_2st_mrd_need <= pcie_cmd_rd_data[7]; r_hcmd_slot_tag <= pcie_cmd_rd_data[6:0]; end S_CMD1: begin r_pcie_rcb_cross <= pcie_cmd_rd_data[22]; r_1st_4b_len <= pcie_cmd_rd_data[21:11]; r_2st_4b_len <= pcie_cmd_rd_data[10:0]; end S_CMD2: begin r_hcmd_prp_1 <= pcie_cmd_rd_data[33:0]; end S_CMD3: begin r_hcmd_prp_2 <= {pcie_cmd_rd_data[33:10], 10'b0}; end S_CHECK_PRP_FIFO: begin end S_RD_PRP0: begin r_prp_1 <= prp_fifo_rd_data[63:2]; r_prp_2 <= prp_fifo_rd_data[127:66]; end S_RD_PRP1: begin r_prp_2 <= prp_fifo_rd_data[63:2]; end S_PCIE_PRP: begin if(r_1st_mrd_need == 1) begin r_hcmd_prp_1[C_PCIE_ADDR_WIDTH-1:12] <= r_prp_1[C_PCIE_ADDR_WIDTH-1:12]; r_hcmd_prp_2[C_PCIE_ADDR_WIDTH-1:12] <= r_prp_2[C_PCIE_ADDR_WIDTH-1:12]; end else begin r_hcmd_prp_2[C_PCIE_ADDR_WIDTH-1:12] <= r_prp_1[C_PCIE_ADDR_WIDTH-1:12]; end end S_CHECK_PCIE_CMD_FIFO0: begin end S_PCIE_CMD0: begin end S_PCIE_CMD1: begin end S_CHECK_PCIE_CMD_FIFO1: begin end S_PCIE_CMD2: begin end S_PCIE_CMD3: begin end default: begin end endcase end always @ (*) begin case(r_pcie_cmd_wr_data_sel) // synthesis parallel_case full_case 4'b0001: r_pcie_cmd_wr_data <= {14'b0, r_dma_cmd_type, ~r_2st_valid, r_hcmd_slot_tag, r_1st_4b_len}; 4'b0010: r_pcie_cmd_wr_data <= r_hcmd_prp_1; 4'b0100: r_pcie_cmd_wr_data <= {14'b0, r_dma_cmd_type, 1'b1, r_hcmd_slot_tag, r_2st_4b_len}; 4'b1000: r_pcie_cmd_wr_data <= {r_hcmd_prp_2[C_PCIE_ADDR_WIDTH-1:12], 10'b0}; endcase end always @ (*) begin case(cur_state) S_IDLE: begin r_pcie_cmd_rd_en <= 0; r_prp_fifo_rd_en <= 0; r_prp_fifo_free_en <= 0; r_pcie_rx_cmd_wr_en <= 0; r_pcie_tx_cmd_wr_en <= 0; r_pcie_cmd_wr_data_sel <= 4'b0000; end S_CMD0: begin r_pcie_cmd_rd_en <= 1; r_prp_fifo_rd_en <= 0; r_prp_fifo_free_en <= 0; r_pcie_rx_cmd_wr_en <= 0; r_pcie_tx_cmd_wr_en <= 0; r_pcie_cmd_wr_data_sel <= 4'b0000; end S_CMD1: begin r_pcie_cmd_rd_en <= 1; r_prp_fifo_rd_en <= 0; r_prp_fifo_free_en <= 0; r_pcie_rx_cmd_wr_en <= 0; r_pcie_tx_cmd_wr_en <= 0; r_pcie_cmd_wr_data_sel <= 4'b0000; end S_CMD2: begin r_pcie_cmd_rd_en <= 1; r_prp_fifo_rd_en <= 0; r_prp_fifo_free_en <= 0; r_pcie_rx_cmd_wr_en <= 0; r_pcie_tx_cmd_wr_en <= 0; r_pcie_cmd_wr_data_sel <= 4'b0000; end S_CMD3: begin r_pcie_cmd_rd_en <= 1; r_prp_fifo_rd_en <= 0; r_prp_fifo_free_en <= 0; r_pcie_rx_cmd_wr_en <= 0; r_pcie_tx_cmd_wr_en <= 0; r_pcie_cmd_wr_data_sel <= 4'b0000; end S_CHECK_PRP_FIFO: begin r_pcie_cmd_rd_en <= 0; r_prp_fifo_rd_en <= 0; r_prp_fifo_free_en <= 0; r_pcie_rx_cmd_wr_en <= 0; r_pcie_tx_cmd_wr_en <= 0; r_pcie_cmd_wr_data_sel <= 4'b0000; end S_RD_PRP0: begin r_pcie_cmd_rd_en <= 0; r_prp_fifo_rd_en <= 1; r_prp_fifo_free_en <= 1; r_pcie_rx_cmd_wr_en <= 0; r_pcie_tx_cmd_wr_en <= 0; r_pcie_cmd_wr_data_sel <= 4'b0000; end S_RD_PRP1: begin r_pcie_cmd_rd_en <= 0; r_prp_fifo_rd_en <= 1; r_prp_fifo_free_en <= 0; r_pcie_rx_cmd_wr_en <= 0; r_pcie_tx_cmd_wr_en <= 0; r_pcie_cmd_wr_data_sel <= 4'b0000; end S_PCIE_PRP: begin r_pcie_cmd_rd_en <= 0; r_prp_fifo_rd_en <= 0; r_prp_fifo_free_en <= 0; r_pcie_rx_cmd_wr_en <= 0; r_pcie_tx_cmd_wr_en <= 0; r_pcie_cmd_wr_data_sel <= 4'b0000; end S_CHECK_PCIE_CMD_FIFO0: begin r_pcie_cmd_rd_en <= 0; r_prp_fifo_rd_en <= 0; r_prp_fifo_free_en <= 0; r_pcie_rx_cmd_wr_en <= 0; r_pcie_tx_cmd_wr_en <= 0; r_pcie_cmd_wr_data_sel <= 4'b0000; end S_PCIE_CMD0: begin r_pcie_cmd_rd_en <= 0; r_prp_fifo_rd_en <= 0; r_prp_fifo_free_en <= 0; r_pcie_rx_cmd_wr_en <= ~r_dma_cmd_dir; r_pcie_tx_cmd_wr_en <= r_dma_cmd_dir; r_pcie_cmd_wr_data_sel <= 4'b0001; end S_PCIE_CMD1: begin r_pcie_cmd_rd_en <= 0; r_prp_fifo_rd_en <= 0; r_prp_fifo_free_en <= 0; r_pcie_rx_cmd_wr_en <= ~r_dma_cmd_dir; r_pcie_tx_cmd_wr_en <= r_dma_cmd_dir; r_pcie_cmd_wr_data_sel <= 4'b0010; end S_CHECK_PCIE_CMD_FIFO1: begin r_pcie_cmd_rd_en <= 0; r_prp_fifo_rd_en <= 0; r_prp_fifo_free_en <= 0; r_pcie_rx_cmd_wr_en <= 0; r_pcie_tx_cmd_wr_en <= 0; r_pcie_cmd_wr_data_sel <= 4'b0000; end S_PCIE_CMD2: begin r_pcie_cmd_rd_en <= 0; r_prp_fifo_rd_en <= 0; r_prp_fifo_free_en <= 0; r_pcie_rx_cmd_wr_en <= ~r_dma_cmd_dir; r_pcie_tx_cmd_wr_en <= r_dma_cmd_dir; r_pcie_cmd_wr_data_sel <= 4'b0100; end S_PCIE_CMD3: begin r_pcie_cmd_rd_en <= 0; r_prp_fifo_rd_en <= 0; r_prp_fifo_free_en <= 0; r_pcie_rx_cmd_wr_en <= ~r_dma_cmd_dir; r_pcie_tx_cmd_wr_en <= r_dma_cmd_dir; r_pcie_cmd_wr_data_sel <= 4'b1000; end default: begin r_pcie_cmd_rd_en <= 0; r_prp_fifo_rd_en <= 0; r_prp_fifo_free_en <= 0; r_pcie_rx_cmd_wr_en <= 0; r_pcie_tx_cmd_wr_en <= 0; r_pcie_cmd_wr_data_sel <= 4'b0000; end endcase end endmodule
// -*- verilog -*- // // USRP - Universal Software Radio Peripheral // // Copyright (C) 2003 Matt Ettus // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Boston, MA 02110-1301 USA // // Interface to Cypress FX2 bus // A packet is 512 Bytes. Each fifo line is 2 bytes // Fifo has 1024 or 2048 lines module tx_buffer ( input usbclk, input bus_reset, // Used here for the 257-Hack to fix the FX2 bug input reset, // standard DSP-side reset input [15:0] usbdata, input wire WR, output wire have_space, output reg tx_underrun, input wire [3:0] channels, output reg [15:0] tx_i_0, output reg [15:0] tx_q_0, output reg [15:0] tx_i_1, output reg [15:0] tx_q_1, output reg [15:0] tx_i_2, output reg [15:0] tx_q_2, output reg [15:0] tx_i_3, output reg [15:0] tx_q_3, input txclk, input txstrobe, input clear_status, output wire tx_empty, output [11:0] debugbus ); wire [11:0] txfifolevel; reg [8:0] write_count; wire tx_full; wire [15:0] fifodata; wire rdreq; reg [3:0] load_next; // DAC Side of FIFO assign rdreq = ((load_next != channels) & !tx_empty); always @(posedge txclk) if(reset) begin {tx_i_0,tx_q_0,tx_i_1,tx_q_1,tx_i_2,tx_q_2,tx_i_3,tx_q_3} <= #1 128'h0; load_next <= #1 4'd0; end else if(load_next != channels) begin load_next <= #1 load_next + 4'd1; case(load_next) 4'd0 : tx_i_0 <= #1 tx_empty ? 16'd0 : fifodata; 4'd1 : tx_q_0 <= #1 tx_empty ? 16'd0 : fifodata; 4'd2 : tx_i_1 <= #1 tx_empty ? 16'd0 : fifodata; 4'd3 : tx_q_1 <= #1 tx_empty ? 16'd0 : fifodata; 4'd4 : tx_i_2 <= #1 tx_empty ? 16'd0 : fifodata; 4'd5 : tx_q_2 <= #1 tx_empty ? 16'd0 : fifodata; 4'd6 : tx_i_3 <= #1 tx_empty ? 16'd0 : fifodata; 4'd7 : tx_q_3 <= #1 tx_empty ? 16'd0 : fifodata; endcase // case(load_next) end // if (load_next != channels) else if(txstrobe & (load_next == channels)) begin load_next <= #1 4'd0; end // USB Side of FIFO assign have_space = (txfifolevel <= (4095-256)); always @(posedge usbclk) if(bus_reset) // Use bus reset because this is on usbclk write_count <= #1 0; else if(WR & ~write_count[8]) write_count <= #1 write_count + 9'd1; else write_count <= #1 WR ? write_count : 9'b0; // Detect Underruns always @(posedge txclk) if(reset) tx_underrun <= 1'b0; else if(txstrobe & (load_next != channels)) tx_underrun <= 1'b1; else if(clear_status) tx_underrun <= 1'b0; // FIFO fifo_4k txfifo ( .data ( usbdata ), .wrreq ( WR & ~write_count[8] ), .wrclk ( usbclk ), .q ( fifodata ), .rdreq ( rdreq ), .rdclk ( txclk ), .aclr ( reset ), // asynch, so we can use either .rdempty ( tx_empty ), .rdusedw ( ), .wrfull ( tx_full ), .wrusedw ( txfifolevel ) ); // Debugging Aids assign debugbus[0] = WR; assign debugbus[1] = have_space; assign debugbus[2] = tx_empty; assign debugbus[3] = tx_full; assign debugbus[4] = tx_underrun; assign debugbus[5] = write_count[8]; assign debugbus[6] = txstrobe; assign debugbus[7] = rdreq; assign debugbus[11:8] = load_next; endmodule // tx_buffer
/* ---------------------------------------------------------------------------------- Copyright (c) 2013-2014 Embedded and Network Computing Lab. Open SSD Project Hanyang University All rights reserved. ---------------------------------------------------------------------------------- Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. All advertising materials mentioning features or use of this source code must display the following acknowledgement: This product includes source code developed by the Embedded and Network Computing Lab. and the Open SSD Project. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------------------- http://enclab.hanyang.ac.kr/ http://www.openssd-project.org/ http://www.hanyang.ac.kr/ ---------------------------------------------------------------------------------- */ `timescale 1ns / 1ps module pcie_rx_cpld_sel# ( parameter C_PCIE_DATA_WIDTH = 128 ) ( input pcie_user_clk, input cpld_fifo_wr_en, input [C_PCIE_DATA_WIDTH-1:0] cpld_fifo_wr_data, input [7:0] cpld_fifo_tag, input cpld_fifo_tag_last, output [7:0] cpld0_fifo_tag, output cpld0_fifo_tag_last, output cpld0_fifo_wr_en, output [C_PCIE_DATA_WIDTH-1:0] cpld0_fifo_wr_data, output [7:0] cpld1_fifo_tag, output cpld1_fifo_tag_last, output cpld1_fifo_wr_en, output [C_PCIE_DATA_WIDTH-1:0] cpld1_fifo_wr_data, output [7:0] cpld2_fifo_tag, output cpld2_fifo_tag_last, output cpld2_fifo_wr_en, output [C_PCIE_DATA_WIDTH-1:0] cpld2_fifo_wr_data ); reg [7:0] r_cpld_fifo_tag; reg [C_PCIE_DATA_WIDTH-1:0] r_cpld_fifo_wr_data; reg r_cpld0_fifo_tag_last; reg r_cpld0_fifo_wr_en; reg r_cpld1_fifo_tag_last; reg r_cpld1_fifo_wr_en; reg r_cpld2_fifo_tag_last; reg r_cpld2_fifo_wr_en; wire [2:0] w_cpld_prefix_tag_hit; assign w_cpld_prefix_tag_hit[0] = (cpld_fifo_tag[7:3] == 5'b00000); assign w_cpld_prefix_tag_hit[1] = (cpld_fifo_tag[7:3] == 5'b00001); assign w_cpld_prefix_tag_hit[2] = (cpld_fifo_tag[7:4] == 4'b0001); assign cpld0_fifo_tag = r_cpld_fifo_tag; assign cpld0_fifo_tag_last = r_cpld0_fifo_tag_last; assign cpld0_fifo_wr_en = r_cpld0_fifo_wr_en; assign cpld0_fifo_wr_data = r_cpld_fifo_wr_data; assign cpld1_fifo_tag = r_cpld_fifo_tag; assign cpld1_fifo_tag_last = r_cpld1_fifo_tag_last; assign cpld1_fifo_wr_en = r_cpld1_fifo_wr_en; assign cpld1_fifo_wr_data = r_cpld_fifo_wr_data; assign cpld2_fifo_tag = r_cpld_fifo_tag; assign cpld2_fifo_tag_last = r_cpld2_fifo_tag_last; assign cpld2_fifo_wr_en = r_cpld2_fifo_wr_en; assign cpld2_fifo_wr_data = r_cpld_fifo_wr_data; always @(posedge pcie_user_clk) begin r_cpld_fifo_tag <= cpld_fifo_tag; r_cpld_fifo_wr_data <= cpld_fifo_wr_data; r_cpld0_fifo_tag_last = cpld_fifo_tag_last & w_cpld_prefix_tag_hit[0]; r_cpld0_fifo_wr_en <= cpld_fifo_wr_en & w_cpld_prefix_tag_hit[0]; r_cpld1_fifo_tag_last = cpld_fifo_tag_last & w_cpld_prefix_tag_hit[1]; r_cpld1_fifo_wr_en <= cpld_fifo_wr_en & w_cpld_prefix_tag_hit[1]; r_cpld2_fifo_tag_last = cpld_fifo_tag_last & w_cpld_prefix_tag_hit[2]; r_cpld2_fifo_wr_en <= cpld_fifo_wr_en & w_cpld_prefix_tag_hit[2]; end endmodule
/* ---------------------------------------------------------------------------------- Copyright (c) 2013-2014 Embedded and Network Computing Lab. Open SSD Project Hanyang University All rights reserved. ---------------------------------------------------------------------------------- Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. All advertising materials mentioning features or use of this source code must display the following acknowledgement: This product includes source code developed by the Embedded and Network Computing Lab. and the Open SSD Project. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------------------- http://enclab.hanyang.ac.kr/ http://www.openssd-project.org/ http://www.hanyang.ac.kr/ ---------------------------------------------------------------------------------- */ `timescale 1ns / 1ps module pcie_rx_cpld_sel# ( parameter C_PCIE_DATA_WIDTH = 128 ) ( input pcie_user_clk, input cpld_fifo_wr_en, input [C_PCIE_DATA_WIDTH-1:0] cpld_fifo_wr_data, input [7:0] cpld_fifo_tag, input cpld_fifo_tag_last, output [7:0] cpld0_fifo_tag, output cpld0_fifo_tag_last, output cpld0_fifo_wr_en, output [C_PCIE_DATA_WIDTH-1:0] cpld0_fifo_wr_data, output [7:0] cpld1_fifo_tag, output cpld1_fifo_tag_last, output cpld1_fifo_wr_en, output [C_PCIE_DATA_WIDTH-1:0] cpld1_fifo_wr_data, output [7:0] cpld2_fifo_tag, output cpld2_fifo_tag_last, output cpld2_fifo_wr_en, output [C_PCIE_DATA_WIDTH-1:0] cpld2_fifo_wr_data ); reg [7:0] r_cpld_fifo_tag; reg [C_PCIE_DATA_WIDTH-1:0] r_cpld_fifo_wr_data; reg r_cpld0_fifo_tag_last; reg r_cpld0_fifo_wr_en; reg r_cpld1_fifo_tag_last; reg r_cpld1_fifo_wr_en; reg r_cpld2_fifo_tag_last; reg r_cpld2_fifo_wr_en; wire [2:0] w_cpld_prefix_tag_hit; assign w_cpld_prefix_tag_hit[0] = (cpld_fifo_tag[7:3] == 5'b00000); assign w_cpld_prefix_tag_hit[1] = (cpld_fifo_tag[7:3] == 5'b00001); assign w_cpld_prefix_tag_hit[2] = (cpld_fifo_tag[7:4] == 4'b0001); assign cpld0_fifo_tag = r_cpld_fifo_tag; assign cpld0_fifo_tag_last = r_cpld0_fifo_tag_last; assign cpld0_fifo_wr_en = r_cpld0_fifo_wr_en; assign cpld0_fifo_wr_data = r_cpld_fifo_wr_data; assign cpld1_fifo_tag = r_cpld_fifo_tag; assign cpld1_fifo_tag_last = r_cpld1_fifo_tag_last; assign cpld1_fifo_wr_en = r_cpld1_fifo_wr_en; assign cpld1_fifo_wr_data = r_cpld_fifo_wr_data; assign cpld2_fifo_tag = r_cpld_fifo_tag; assign cpld2_fifo_tag_last = r_cpld2_fifo_tag_last; assign cpld2_fifo_wr_en = r_cpld2_fifo_wr_en; assign cpld2_fifo_wr_data = r_cpld_fifo_wr_data; always @(posedge pcie_user_clk) begin r_cpld_fifo_tag <= cpld_fifo_tag; r_cpld_fifo_wr_data <= cpld_fifo_wr_data; r_cpld0_fifo_tag_last = cpld_fifo_tag_last & w_cpld_prefix_tag_hit[0]; r_cpld0_fifo_wr_en <= cpld_fifo_wr_en & w_cpld_prefix_tag_hit[0]; r_cpld1_fifo_tag_last = cpld_fifo_tag_last & w_cpld_prefix_tag_hit[1]; r_cpld1_fifo_wr_en <= cpld_fifo_wr_en & w_cpld_prefix_tag_hit[1]; r_cpld2_fifo_tag_last = cpld_fifo_tag_last & w_cpld_prefix_tag_hit[2]; r_cpld2_fifo_wr_en <= cpld_fifo_wr_en & w_cpld_prefix_tag_hit[2]; end endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2005 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc; initial cyc=0; reg [7:0] crc; reg [223:0] sum; wire [255:0] mglehy = {32{~crc}}; wire [215:0] drricx = {27{crc}}; wire [15:0] apqrli = {2{~crc}}; wire [2:0] szlfpf = crc[2:0]; wire [15:0] dzosui = {2{crc}}; wire [31:0] zndrba = {16{crc[1:0]}}; wire [223:0] bxiouf; vliw vliw ( // Outputs .bxiouf (bxiouf), // Inputs .mglehy (mglehy[255:0]), .drricx (drricx[215:0]), .apqrli (apqrli[15:0]), .szlfpf (szlfpf[2:0]), .dzosui (dzosui[15:0]), .zndrba (zndrba[31:0])); always @ (posedge clk) begin cyc <= cyc + 1; crc <= {crc[6:0], ~^ {crc[7],crc[5],crc[4],crc[3]}}; if (cyc==0) begin // Setup crc <= 8'hed; sum <= 224'h0; end else if (cyc<90) begin //$write("[%0t] cyc==%0d BXI=%x\n",$time, cyc, bxiouf); sum <= {sum[222:0],sum[223]} ^ bxiouf; end else if (cyc==99) begin $write("[%0t] cyc==%0d crc=%b %x\n",$time, cyc, crc, sum); if (crc !== 8'b01110000) $stop; if (sum !== 224'h1fdff998855c3c38d467e28124847831f9ad6d4a09f2801098f032a8) $stop; $write("*-* All Finished *-*\n"); $finish; end end endmodule module vliw ( input[255:0] mglehy, input[215:0] drricx, input[15:0] apqrli, input[2:0] szlfpf, input[15:0] dzosui, input[31:0] zndrba, output [223:0] bxiouf ); wire [463:0] zhknfc = ({29{~apqrli}} & {mglehy, drricx[215:8]}) | ({29{apqrli}} & {mglehy[247:0], drricx}); wire [335:0] umntwz = ({21{~dzosui}} & zhknfc[463:128]) | ({21{dzosui}} & zhknfc[335:0]); wire [335:0] viuvoc = umntwz << {szlfpf, 4'b0000}; wire [223:0] rzyeut = viuvoc[335:112]; wire [223:0] bxiouf = {rzyeut[7:0], rzyeut[15:8], rzyeut[23:16], rzyeut[31:24], rzyeut[39:32], rzyeut[47:40], rzyeut[55:48], rzyeut[63:56], rzyeut[71:64], rzyeut[79:72], rzyeut[87:80], rzyeut[95:88], rzyeut[103:96], rzyeut[111:104], rzyeut[119:112], rzyeut[127:120], rzyeut[135:128], rzyeut[143:136], rzyeut[151:144], rzyeut[159:152], rzyeut[167:160], rzyeut[175:168], rzyeut[183:176], rzyeut[191:184], rzyeut[199:192], rzyeut[207:200], rzyeut[215:208], rzyeut[223:216]}; endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2005 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc; initial cyc=0; reg [7:0] crc; reg [223:0] sum; wire [255:0] mglehy = {32{~crc}}; wire [215:0] drricx = {27{crc}}; wire [15:0] apqrli = {2{~crc}}; wire [2:0] szlfpf = crc[2:0]; wire [15:0] dzosui = {2{crc}}; wire [31:0] zndrba = {16{crc[1:0]}}; wire [223:0] bxiouf; vliw vliw ( // Outputs .bxiouf (bxiouf), // Inputs .mglehy (mglehy[255:0]), .drricx (drricx[215:0]), .apqrli (apqrli[15:0]), .szlfpf (szlfpf[2:0]), .dzosui (dzosui[15:0]), .zndrba (zndrba[31:0])); always @ (posedge clk) begin cyc <= cyc + 1; crc <= {crc[6:0], ~^ {crc[7],crc[5],crc[4],crc[3]}}; if (cyc==0) begin // Setup crc <= 8'hed; sum <= 224'h0; end else if (cyc<90) begin //$write("[%0t] cyc==%0d BXI=%x\n",$time, cyc, bxiouf); sum <= {sum[222:0],sum[223]} ^ bxiouf; end else if (cyc==99) begin $write("[%0t] cyc==%0d crc=%b %x\n",$time, cyc, crc, sum); if (crc !== 8'b01110000) $stop; if (sum !== 224'h1fdff998855c3c38d467e28124847831f9ad6d4a09f2801098f032a8) $stop; $write("*-* All Finished *-*\n"); $finish; end end endmodule module vliw ( input[255:0] mglehy, input[215:0] drricx, input[15:0] apqrli, input[2:0] szlfpf, input[15:0] dzosui, input[31:0] zndrba, output [223:0] bxiouf ); wire [463:0] zhknfc = ({29{~apqrli}} & {mglehy, drricx[215:8]}) | ({29{apqrli}} & {mglehy[247:0], drricx}); wire [335:0] umntwz = ({21{~dzosui}} & zhknfc[463:128]) | ({21{dzosui}} & zhknfc[335:0]); wire [335:0] viuvoc = umntwz << {szlfpf, 4'b0000}; wire [223:0] rzyeut = viuvoc[335:112]; wire [223:0] bxiouf = {rzyeut[7:0], rzyeut[15:8], rzyeut[23:16], rzyeut[31:24], rzyeut[39:32], rzyeut[47:40], rzyeut[55:48], rzyeut[63:56], rzyeut[71:64], rzyeut[79:72], rzyeut[87:80], rzyeut[95:88], rzyeut[103:96], rzyeut[111:104], rzyeut[119:112], rzyeut[127:120], rzyeut[135:128], rzyeut[143:136], rzyeut[151:144], rzyeut[159:152], rzyeut[167:160], rzyeut[175:168], rzyeut[183:176], rzyeut[191:184], rzyeut[199:192], rzyeut[207:200], rzyeut[215:208], rzyeut[223:216]}; endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2005 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc; initial cyc=0; reg [7:0] crc; reg [223:0] sum; wire [255:0] mglehy = {32{~crc}}; wire [215:0] drricx = {27{crc}}; wire [15:0] apqrli = {2{~crc}}; wire [2:0] szlfpf = crc[2:0]; wire [15:0] dzosui = {2{crc}}; wire [31:0] zndrba = {16{crc[1:0]}}; wire [223:0] bxiouf; vliw vliw ( // Outputs .bxiouf (bxiouf), // Inputs .mglehy (mglehy[255:0]), .drricx (drricx[215:0]), .apqrli (apqrli[15:0]), .szlfpf (szlfpf[2:0]), .dzosui (dzosui[15:0]), .zndrba (zndrba[31:0])); always @ (posedge clk) begin cyc <= cyc + 1; crc <= {crc[6:0], ~^ {crc[7],crc[5],crc[4],crc[3]}}; if (cyc==0) begin // Setup crc <= 8'hed; sum <= 224'h0; end else if (cyc<90) begin //$write("[%0t] cyc==%0d BXI=%x\n",$time, cyc, bxiouf); sum <= {sum[222:0],sum[223]} ^ bxiouf; end else if (cyc==99) begin $write("[%0t] cyc==%0d crc=%b %x\n",$time, cyc, crc, sum); if (crc !== 8'b01110000) $stop; if (sum !== 224'h1fdff998855c3c38d467e28124847831f9ad6d4a09f2801098f032a8) $stop; $write("*-* All Finished *-*\n"); $finish; end end endmodule module vliw ( input[255:0] mglehy, input[215:0] drricx, input[15:0] apqrli, input[2:0] szlfpf, input[15:0] dzosui, input[31:0] zndrba, output [223:0] bxiouf ); wire [463:0] zhknfc = ({29{~apqrli}} & {mglehy, drricx[215:8]}) | ({29{apqrli}} & {mglehy[247:0], drricx}); wire [335:0] umntwz = ({21{~dzosui}} & zhknfc[463:128]) | ({21{dzosui}} & zhknfc[335:0]); wire [335:0] viuvoc = umntwz << {szlfpf, 4'b0000}; wire [223:0] rzyeut = viuvoc[335:112]; wire [223:0] bxiouf = {rzyeut[7:0], rzyeut[15:8], rzyeut[23:16], rzyeut[31:24], rzyeut[39:32], rzyeut[47:40], rzyeut[55:48], rzyeut[63:56], rzyeut[71:64], rzyeut[79:72], rzyeut[87:80], rzyeut[95:88], rzyeut[103:96], rzyeut[111:104], rzyeut[119:112], rzyeut[127:120], rzyeut[135:128], rzyeut[143:136], rzyeut[151:144], rzyeut[159:152], rzyeut[167:160], rzyeut[175:168], rzyeut[183:176], rzyeut[191:184], rzyeut[199:192], rzyeut[207:200], rzyeut[215:208], rzyeut[223:216]}; endmodule
/* ---------------------------------------------------------------------------------- Copyright (c) 2013-2014 Embedded and Network Computing Lab. Open SSD Project Hanyang University All rights reserved. ---------------------------------------------------------------------------------- Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. All advertising materials mentioning features or use of this source code must display the following acknowledgement: This product includes source code developed by the Embedded and Network Computing Lab. and the Open SSD Project. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------------------- http://enclab.hanyang.ac.kr/ http://www.openssd-project.org/ http://www.hanyang.ac.kr/ ---------------------------------------------------------------------------------- */ `timescale 1ns / 1ps module pcie_tx # ( parameter C_PCIE_DATA_WIDTH = 128, parameter C_PCIE_ADDR_WIDTH = 36 ) ( input pcie_user_clk, input pcie_user_rst_n, input [15:0] pcie_dev_id, output tx_err_drop, input tx_cpld_gnt, input tx_mrd_gnt, input tx_mwr_gnt, //pcie tx signal input m_axis_tx_tready, output [C_PCIE_DATA_WIDTH-1:0] m_axis_tx_tdata, output [(C_PCIE_DATA_WIDTH/8)-1:0] m_axis_tx_tkeep, output [3:0] m_axis_tx_tuser, output m_axis_tx_tlast, output m_axis_tx_tvalid, input tx_cpld_req, input [7:0] tx_cpld_tag, input [15:0] tx_cpld_req_id, input [11:2] tx_cpld_len, input [11:0] tx_cpld_bc, input [6:0] tx_cpld_laddr, input [63:0] tx_cpld_data, output tx_cpld_req_ack, input tx_mrd0_req, input [7:0] tx_mrd0_tag, input [11:2] tx_mrd0_len, input [C_PCIE_ADDR_WIDTH-1:2] tx_mrd0_addr, output tx_mrd0_req_ack, input tx_mrd1_req, input [7:0] tx_mrd1_tag, input [11:2] tx_mrd1_len, input [C_PCIE_ADDR_WIDTH-1:2] tx_mrd1_addr, output tx_mrd1_req_ack, input tx_mrd2_req, input [7:0] tx_mrd2_tag, input [11:2] tx_mrd2_len, input [C_PCIE_ADDR_WIDTH-1:2] tx_mrd2_addr, output tx_mrd2_req_ack, input tx_mwr0_req, input [7:0] tx_mwr0_tag, input [11:2] tx_mwr0_len, input [C_PCIE_ADDR_WIDTH-1:2] tx_mwr0_addr, output tx_mwr0_req_ack, output tx_mwr0_rd_en, input [C_PCIE_DATA_WIDTH-1:0] tx_mwr0_rd_data, output tx_mwr0_data_last, input tx_mwr1_req, input [7:0] tx_mwr1_tag, input [11:2] tx_mwr1_len, input [C_PCIE_ADDR_WIDTH-1:2] tx_mwr1_addr, output tx_mwr1_req_ack, output tx_mwr1_rd_en, input [C_PCIE_DATA_WIDTH-1:0] tx_mwr1_rd_data, output tx_mwr1_data_last ); wire w_tx_arb_valid; wire [5:0] w_tx_arb_gnt; wire [2:0] w_tx_arb_type; wire [11:2] w_tx_pcie_len; wire [127:0] w_tx_pcie_head; wire [31:0] w_tx_cpld_udata; wire w_tx_arb_rdy; pcie_tx_arb # ( .C_PCIE_DATA_WIDTH (C_PCIE_DATA_WIDTH) ) pcie_tx_arb_inst0( .pcie_user_clk (pcie_user_clk), .pcie_user_rst_n (pcie_user_rst_n), .pcie_dev_id (pcie_dev_id), .tx_cpld_gnt (tx_cpld_gnt), .tx_mrd_gnt (tx_mrd_gnt), .tx_mwr_gnt (tx_mwr_gnt), .tx_cpld_req (tx_cpld_req), .tx_cpld_tag (tx_cpld_tag), .tx_cpld_req_id (tx_cpld_req_id), .tx_cpld_len (tx_cpld_len), .tx_cpld_bc (tx_cpld_bc), .tx_cpld_laddr (tx_cpld_laddr), .tx_cpld_data (tx_cpld_data), .tx_cpld_req_ack (tx_cpld_req_ack), .tx_mrd0_req (tx_mrd0_req), .tx_mrd0_tag (tx_mrd0_tag), .tx_mrd0_len (tx_mrd0_len), .tx_mrd0_addr (tx_mrd0_addr), .tx_mrd0_req_ack (tx_mrd0_req_ack), .tx_mrd1_req (tx_mrd1_req), .tx_mrd1_tag (tx_mrd1_tag), .tx_mrd1_len (tx_mrd1_len), .tx_mrd1_addr (tx_mrd1_addr), .tx_mrd1_req_ack (tx_mrd1_req_ack), .tx_mrd2_req (tx_mrd2_req), .tx_mrd2_tag (tx_mrd2_tag), .tx_mrd2_len (tx_mrd2_len), .tx_mrd2_addr (tx_mrd2_addr), .tx_mrd2_req_ack (tx_mrd2_req_ack), .tx_mwr0_req (tx_mwr0_req), .tx_mwr0_tag (tx_mwr0_tag), .tx_mwr0_len (tx_mwr0_len), .tx_mwr0_addr (tx_mwr0_addr), .tx_mwr0_req_ack (tx_mwr0_req_ack), .tx_mwr1_req (tx_mwr1_req), .tx_mwr1_tag (tx_mwr1_tag), .tx_mwr1_len (tx_mwr1_len), .tx_mwr1_addr (tx_mwr1_addr), .tx_mwr1_req_ack (tx_mwr1_req_ack), .tx_arb_valid (w_tx_arb_valid), .tx_arb_gnt (w_tx_arb_gnt), .tx_arb_type (w_tx_arb_type), .tx_pcie_len (w_tx_pcie_len), .tx_pcie_head (w_tx_pcie_head), .tx_cpld_udata (w_tx_cpld_udata), .tx_arb_rdy (w_tx_arb_rdy) ); pcie_tx_tran # ( .C_PCIE_DATA_WIDTH (C_PCIE_DATA_WIDTH) ) pcie_tx_tran_inst0( .pcie_user_clk (pcie_user_clk), .pcie_user_rst_n (pcie_user_rst_n), .tx_err_drop (tx_err_drop), //pcie tx signal .m_axis_tx_tready (m_axis_tx_tready), .m_axis_tx_tdata (m_axis_tx_tdata), .m_axis_tx_tkeep (m_axis_tx_tkeep), .m_axis_tx_tuser (m_axis_tx_tuser), .m_axis_tx_tlast (m_axis_tx_tlast), .m_axis_tx_tvalid (m_axis_tx_tvalid), .tx_arb_valid (w_tx_arb_valid), .tx_arb_gnt (w_tx_arb_gnt), .tx_arb_type (w_tx_arb_type), .tx_pcie_len (w_tx_pcie_len), .tx_pcie_head (w_tx_pcie_head), .tx_cpld_udata (w_tx_cpld_udata), .tx_arb_rdy (w_tx_arb_rdy), .tx_mwr0_rd_en (tx_mwr0_rd_en), .tx_mwr0_rd_data (tx_mwr0_rd_data), .tx_mwr0_data_last (tx_mwr0_data_last), .tx_mwr1_rd_en (tx_mwr1_rd_en), .tx_mwr1_rd_data (tx_mwr1_rd_data), .tx_mwr1_data_last (tx_mwr1_data_last) ); endmodule
/* ---------------------------------------------------------------------------------- Copyright (c) 2013-2014 Embedded and Network Computing Lab. Open SSD Project Hanyang University All rights reserved. ---------------------------------------------------------------------------------- Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. All advertising materials mentioning features or use of this source code must display the following acknowledgement: This product includes source code developed by the Embedded and Network Computing Lab. and the Open SSD Project. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------------------- http://enclab.hanyang.ac.kr/ http://www.openssd-project.org/ http://www.hanyang.ac.kr/ ---------------------------------------------------------------------------------- */ `timescale 1ns / 1ps module pcie_tans_if # ( parameter C_PCIE_DATA_WIDTH = 128, parameter C_PCIE_ADDR_WIDTH = 36 ) ( //PCIe user clock input pcie_user_clk, input pcie_user_rst_n, //PCIe rx interface output mreq_fifo_wr_en, output [C_PCIE_DATA_WIDTH-1:0] mreq_fifo_wr_data, output [7:0] cpld0_fifo_tag, output cpld0_fifo_tag_last, output cpld0_fifo_wr_en, output [C_PCIE_DATA_WIDTH-1:0] cpld0_fifo_wr_data, output [7:0] cpld1_fifo_tag, output cpld1_fifo_tag_last, output cpld1_fifo_wr_en, output [C_PCIE_DATA_WIDTH-1:0] cpld1_fifo_wr_data, output [7:0] cpld2_fifo_tag, output cpld2_fifo_tag_last, output cpld2_fifo_wr_en, output [C_PCIE_DATA_WIDTH-1:0] cpld2_fifo_wr_data, //PCIe tx interface input tx_cpld_req, input [7:0] tx_cpld_tag, input [15:0] tx_cpld_req_id, input [11:2] tx_cpld_len, input [11:0] tx_cpld_bc, input [6:0] tx_cpld_laddr, input [63:0] tx_cpld_data, output tx_cpld_req_ack, input tx_mrd0_req, input [7:0] tx_mrd0_tag, input [11:2] tx_mrd0_len, input [C_PCIE_ADDR_WIDTH-1:2] tx_mrd0_addr, output tx_mrd0_req_ack, input tx_mrd1_req, input [7:0] tx_mrd1_tag, input [11:2] tx_mrd1_len, input [C_PCIE_ADDR_WIDTH-1:2] tx_mrd1_addr, output tx_mrd1_req_ack, input tx_mrd2_req, input [7:0] tx_mrd2_tag, input [11:2] tx_mrd2_len, input [C_PCIE_ADDR_WIDTH-1:2] tx_mrd2_addr, output tx_mrd2_req_ack, input tx_mwr0_req, input [7:0] tx_mwr0_tag, input [11:2] tx_mwr0_len, input [C_PCIE_ADDR_WIDTH-1:2] tx_mwr0_addr, output tx_mwr0_req_ack, output tx_mwr0_rd_en, input [C_PCIE_DATA_WIDTH-1:0] tx_mwr0_rd_data, output tx_mwr0_data_last, input tx_mwr1_req, input [7:0] tx_mwr1_tag, input [11:2] tx_mwr1_len, input [C_PCIE_ADDR_WIDTH-1:2] tx_mwr1_addr, output tx_mwr1_req_ack, output tx_mwr1_rd_en, input [C_PCIE_DATA_WIDTH-1:0] tx_mwr1_rd_data, output tx_mwr1_data_last, output pcie_mreq_err, output pcie_cpld_err, output pcie_cpld_len_err, //PCIe Integrated Block Interface input [5:0] tx_buf_av, input tx_err_drop, input tx_cfg_req, input s_axis_tx_tready, output [C_PCIE_DATA_WIDTH-1:0] s_axis_tx_tdata, output [(C_PCIE_DATA_WIDTH/8)-1:0] s_axis_tx_tkeep, output [3:0] s_axis_tx_tuser, output s_axis_tx_tlast, output s_axis_tx_tvalid, output tx_cfg_gnt, input [C_PCIE_DATA_WIDTH-1:0] m_axis_rx_tdata, input [(C_PCIE_DATA_WIDTH/8)-1:0] m_axis_rx_tkeep, input m_axis_rx_tlast, input m_axis_rx_tvalid, output m_axis_rx_tready, input [21:0] m_axis_rx_tuser, input [11:0] fc_cpld, input [7:0] fc_cplh, input [11:0] fc_npd, input [7:0] fc_nph, input [11:0] fc_pd, input [7:0] fc_ph, output [2:0] fc_sel, input [7:0] cfg_bus_number, input [4:0] cfg_device_number, input [2:0] cfg_function_number ); wire w_tx_cpld_gnt; wire w_tx_mrd_gnt; wire w_tx_mwr_gnt; reg [15:0] r_pcie_dev_id; always @(posedge pcie_user_clk) begin r_pcie_dev_id <= {cfg_bus_number, cfg_device_number, cfg_function_number}; end pcie_fc_cntl pcie_fc_cntl_inst0 ( .pcie_user_clk (pcie_user_clk), .pcie_user_rst_n (pcie_user_rst_n), .fc_cpld (fc_cpld), .fc_cplh (fc_cplh), .fc_npd (fc_npd), .fc_nph (fc_nph), .fc_pd (fc_pd), .fc_ph (fc_ph), .fc_sel (fc_sel), .tx_buf_av (tx_buf_av), .tx_cfg_req (tx_cfg_req), .tx_cfg_gnt (tx_cfg_gnt), .tx_cpld_gnt (w_tx_cpld_gnt), .tx_mrd_gnt (w_tx_mrd_gnt), .tx_mwr_gnt (w_tx_mwr_gnt) ); pcie_rx # ( .C_PCIE_DATA_WIDTH (C_PCIE_DATA_WIDTH) ) pcie_rx_inst0( .pcie_user_clk (pcie_user_clk), .pcie_user_rst_n (pcie_user_rst_n), //pcie rx signal .s_axis_rx_tdata (m_axis_rx_tdata), .s_axis_rx_tkeep (m_axis_rx_tkeep), .s_axis_rx_tlast (m_axis_rx_tlast), .s_axis_rx_tvalid (m_axis_rx_tvalid), .s_axis_rx_tready (m_axis_rx_tready), .s_axis_rx_tuser (m_axis_rx_tuser), .pcie_mreq_err (pcie_mreq_err), .pcie_cpld_err (pcie_cpld_err), .pcie_cpld_len_err (pcie_cpld_len_err), .mreq_fifo_wr_en (mreq_fifo_wr_en), .mreq_fifo_wr_data (mreq_fifo_wr_data), .cpld0_fifo_tag (cpld0_fifo_tag), .cpld0_fifo_tag_last (cpld0_fifo_tag_last), .cpld0_fifo_wr_en (cpld0_fifo_wr_en), .cpld0_fifo_wr_data (cpld0_fifo_wr_data), .cpld1_fifo_tag (cpld1_fifo_tag), .cpld1_fifo_tag_last (cpld1_fifo_tag_last), .cpld1_fifo_wr_en (cpld1_fifo_wr_en), .cpld1_fifo_wr_data (cpld1_fifo_wr_data), .cpld2_fifo_tag (cpld2_fifo_tag), .cpld2_fifo_tag_last (cpld2_fifo_tag_last), .cpld2_fifo_wr_en (cpld2_fifo_wr_en), .cpld2_fifo_wr_data (cpld2_fifo_wr_data) ); pcie_tx # ( .C_PCIE_DATA_WIDTH (C_PCIE_DATA_WIDTH) ) pcie_tx_inst0( .pcie_user_clk (pcie_user_clk), .pcie_user_rst_n (pcie_user_rst_n), .pcie_dev_id (r_pcie_dev_id), .tx_err_drop (tx_err_drop), .tx_cpld_gnt (w_tx_cpld_gnt), .tx_mrd_gnt (w_tx_mrd_gnt), .tx_mwr_gnt (w_tx_mwr_gnt), //pcie tx signal .m_axis_tx_tready (s_axis_tx_tready), .m_axis_tx_tdata (s_axis_tx_tdata), .m_axis_tx_tkeep (s_axis_tx_tkeep), .m_axis_tx_tuser (s_axis_tx_tuser), .m_axis_tx_tlast (s_axis_tx_tlast), .m_axis_tx_tvalid (s_axis_tx_tvalid), .tx_cpld_req (tx_cpld_req), .tx_cpld_tag (tx_cpld_tag), .tx_cpld_req_id (tx_cpld_req_id), .tx_cpld_len (tx_cpld_len), .tx_cpld_bc (tx_cpld_bc), .tx_cpld_laddr (tx_cpld_laddr), .tx_cpld_data (tx_cpld_data), .tx_cpld_req_ack (tx_cpld_req_ack), .tx_mrd0_req (tx_mrd0_req), .tx_mrd0_tag (tx_mrd0_tag), .tx_mrd0_len (tx_mrd0_len), .tx_mrd0_addr (tx_mrd0_addr), .tx_mrd0_req_ack (tx_mrd0_req_ack), .tx_mrd1_req (tx_mrd1_req), .tx_mrd1_tag (tx_mrd1_tag), .tx_mrd1_len (tx_mrd1_len), .tx_mrd1_addr (tx_mrd1_addr), .tx_mrd1_req_ack (tx_mrd1_req_ack), .tx_mrd2_req (tx_mrd2_req), .tx_mrd2_tag (tx_mrd2_tag), .tx_mrd2_len (tx_mrd2_len), .tx_mrd2_addr (tx_mrd2_addr), .tx_mrd2_req_ack (tx_mrd2_req_ack), .tx_mwr0_req (tx_mwr0_req), .tx_mwr0_tag (tx_mwr0_tag), .tx_mwr0_len (tx_mwr0_len), .tx_mwr0_addr (tx_mwr0_addr), .tx_mwr0_req_ack (tx_mwr0_req_ack), .tx_mwr0_rd_en (tx_mwr0_rd_en), .tx_mwr0_rd_data (tx_mwr0_rd_data), .tx_mwr0_data_last (tx_mwr0_data_last), .tx_mwr1_req (tx_mwr1_req), .tx_mwr1_tag (tx_mwr1_tag), .tx_mwr1_len (tx_mwr1_len), .tx_mwr1_addr (tx_mwr1_addr), .tx_mwr1_req_ack (tx_mwr1_req_ack), .tx_mwr1_rd_en (tx_mwr1_rd_en), .tx_mwr1_rd_data (tx_mwr1_rd_data), .tx_mwr1_data_last (tx_mwr1_data_last) ); endmodule
/* ---------------------------------------------------------------------------------- Copyright (c) 2013-2014 Embedded and Network Computing Lab. Open SSD Project Hanyang University All rights reserved. ---------------------------------------------------------------------------------- Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. All advertising materials mentioning features or use of this source code must display the following acknowledgement: This product includes source code developed by the Embedded and Network Computing Lab. and the Open SSD Project. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------------------- http://enclab.hanyang.ac.kr/ http://www.openssd-project.org/ http://www.hanyang.ac.kr/ ---------------------------------------------------------------------------------- */ `timescale 1ns / 1ps module pcie_tans_if # ( parameter C_PCIE_DATA_WIDTH = 128, parameter C_PCIE_ADDR_WIDTH = 36 ) ( //PCIe user clock input pcie_user_clk, input pcie_user_rst_n, //PCIe rx interface output mreq_fifo_wr_en, output [C_PCIE_DATA_WIDTH-1:0] mreq_fifo_wr_data, output [7:0] cpld0_fifo_tag, output cpld0_fifo_tag_last, output cpld0_fifo_wr_en, output [C_PCIE_DATA_WIDTH-1:0] cpld0_fifo_wr_data, output [7:0] cpld1_fifo_tag, output cpld1_fifo_tag_last, output cpld1_fifo_wr_en, output [C_PCIE_DATA_WIDTH-1:0] cpld1_fifo_wr_data, output [7:0] cpld2_fifo_tag, output cpld2_fifo_tag_last, output cpld2_fifo_wr_en, output [C_PCIE_DATA_WIDTH-1:0] cpld2_fifo_wr_data, //PCIe tx interface input tx_cpld_req, input [7:0] tx_cpld_tag, input [15:0] tx_cpld_req_id, input [11:2] tx_cpld_len, input [11:0] tx_cpld_bc, input [6:0] tx_cpld_laddr, input [63:0] tx_cpld_data, output tx_cpld_req_ack, input tx_mrd0_req, input [7:0] tx_mrd0_tag, input [11:2] tx_mrd0_len, input [C_PCIE_ADDR_WIDTH-1:2] tx_mrd0_addr, output tx_mrd0_req_ack, input tx_mrd1_req, input [7:0] tx_mrd1_tag, input [11:2] tx_mrd1_len, input [C_PCIE_ADDR_WIDTH-1:2] tx_mrd1_addr, output tx_mrd1_req_ack, input tx_mrd2_req, input [7:0] tx_mrd2_tag, input [11:2] tx_mrd2_len, input [C_PCIE_ADDR_WIDTH-1:2] tx_mrd2_addr, output tx_mrd2_req_ack, input tx_mwr0_req, input [7:0] tx_mwr0_tag, input [11:2] tx_mwr0_len, input [C_PCIE_ADDR_WIDTH-1:2] tx_mwr0_addr, output tx_mwr0_req_ack, output tx_mwr0_rd_en, input [C_PCIE_DATA_WIDTH-1:0] tx_mwr0_rd_data, output tx_mwr0_data_last, input tx_mwr1_req, input [7:0] tx_mwr1_tag, input [11:2] tx_mwr1_len, input [C_PCIE_ADDR_WIDTH-1:2] tx_mwr1_addr, output tx_mwr1_req_ack, output tx_mwr1_rd_en, input [C_PCIE_DATA_WIDTH-1:0] tx_mwr1_rd_data, output tx_mwr1_data_last, output pcie_mreq_err, output pcie_cpld_err, output pcie_cpld_len_err, //PCIe Integrated Block Interface input [5:0] tx_buf_av, input tx_err_drop, input tx_cfg_req, input s_axis_tx_tready, output [C_PCIE_DATA_WIDTH-1:0] s_axis_tx_tdata, output [(C_PCIE_DATA_WIDTH/8)-1:0] s_axis_tx_tkeep, output [3:0] s_axis_tx_tuser, output s_axis_tx_tlast, output s_axis_tx_tvalid, output tx_cfg_gnt, input [C_PCIE_DATA_WIDTH-1:0] m_axis_rx_tdata, input [(C_PCIE_DATA_WIDTH/8)-1:0] m_axis_rx_tkeep, input m_axis_rx_tlast, input m_axis_rx_tvalid, output m_axis_rx_tready, input [21:0] m_axis_rx_tuser, input [11:0] fc_cpld, input [7:0] fc_cplh, input [11:0] fc_npd, input [7:0] fc_nph, input [11:0] fc_pd, input [7:0] fc_ph, output [2:0] fc_sel, input [7:0] cfg_bus_number, input [4:0] cfg_device_number, input [2:0] cfg_function_number ); wire w_tx_cpld_gnt; wire w_tx_mrd_gnt; wire w_tx_mwr_gnt; reg [15:0] r_pcie_dev_id; always @(posedge pcie_user_clk) begin r_pcie_dev_id <= {cfg_bus_number, cfg_device_number, cfg_function_number}; end pcie_fc_cntl pcie_fc_cntl_inst0 ( .pcie_user_clk (pcie_user_clk), .pcie_user_rst_n (pcie_user_rst_n), .fc_cpld (fc_cpld), .fc_cplh (fc_cplh), .fc_npd (fc_npd), .fc_nph (fc_nph), .fc_pd (fc_pd), .fc_ph (fc_ph), .fc_sel (fc_sel), .tx_buf_av (tx_buf_av), .tx_cfg_req (tx_cfg_req), .tx_cfg_gnt (tx_cfg_gnt), .tx_cpld_gnt (w_tx_cpld_gnt), .tx_mrd_gnt (w_tx_mrd_gnt), .tx_mwr_gnt (w_tx_mwr_gnt) ); pcie_rx # ( .C_PCIE_DATA_WIDTH (C_PCIE_DATA_WIDTH) ) pcie_rx_inst0( .pcie_user_clk (pcie_user_clk), .pcie_user_rst_n (pcie_user_rst_n), //pcie rx signal .s_axis_rx_tdata (m_axis_rx_tdata), .s_axis_rx_tkeep (m_axis_rx_tkeep), .s_axis_rx_tlast (m_axis_rx_tlast), .s_axis_rx_tvalid (m_axis_rx_tvalid), .s_axis_rx_tready (m_axis_rx_tready), .s_axis_rx_tuser (m_axis_rx_tuser), .pcie_mreq_err (pcie_mreq_err), .pcie_cpld_err (pcie_cpld_err), .pcie_cpld_len_err (pcie_cpld_len_err), .mreq_fifo_wr_en (mreq_fifo_wr_en), .mreq_fifo_wr_data (mreq_fifo_wr_data), .cpld0_fifo_tag (cpld0_fifo_tag), .cpld0_fifo_tag_last (cpld0_fifo_tag_last), .cpld0_fifo_wr_en (cpld0_fifo_wr_en), .cpld0_fifo_wr_data (cpld0_fifo_wr_data), .cpld1_fifo_tag (cpld1_fifo_tag), .cpld1_fifo_tag_last (cpld1_fifo_tag_last), .cpld1_fifo_wr_en (cpld1_fifo_wr_en), .cpld1_fifo_wr_data (cpld1_fifo_wr_data), .cpld2_fifo_tag (cpld2_fifo_tag), .cpld2_fifo_tag_last (cpld2_fifo_tag_last), .cpld2_fifo_wr_en (cpld2_fifo_wr_en), .cpld2_fifo_wr_data (cpld2_fifo_wr_data) ); pcie_tx # ( .C_PCIE_DATA_WIDTH (C_PCIE_DATA_WIDTH) ) pcie_tx_inst0( .pcie_user_clk (pcie_user_clk), .pcie_user_rst_n (pcie_user_rst_n), .pcie_dev_id (r_pcie_dev_id), .tx_err_drop (tx_err_drop), .tx_cpld_gnt (w_tx_cpld_gnt), .tx_mrd_gnt (w_tx_mrd_gnt), .tx_mwr_gnt (w_tx_mwr_gnt), //pcie tx signal .m_axis_tx_tready (s_axis_tx_tready), .m_axis_tx_tdata (s_axis_tx_tdata), .m_axis_tx_tkeep (s_axis_tx_tkeep), .m_axis_tx_tuser (s_axis_tx_tuser), .m_axis_tx_tlast (s_axis_tx_tlast), .m_axis_tx_tvalid (s_axis_tx_tvalid), .tx_cpld_req (tx_cpld_req), .tx_cpld_tag (tx_cpld_tag), .tx_cpld_req_id (tx_cpld_req_id), .tx_cpld_len (tx_cpld_len), .tx_cpld_bc (tx_cpld_bc), .tx_cpld_laddr (tx_cpld_laddr), .tx_cpld_data (tx_cpld_data), .tx_cpld_req_ack (tx_cpld_req_ack), .tx_mrd0_req (tx_mrd0_req), .tx_mrd0_tag (tx_mrd0_tag), .tx_mrd0_len (tx_mrd0_len), .tx_mrd0_addr (tx_mrd0_addr), .tx_mrd0_req_ack (tx_mrd0_req_ack), .tx_mrd1_req (tx_mrd1_req), .tx_mrd1_tag (tx_mrd1_tag), .tx_mrd1_len (tx_mrd1_len), .tx_mrd1_addr (tx_mrd1_addr), .tx_mrd1_req_ack (tx_mrd1_req_ack), .tx_mrd2_req (tx_mrd2_req), .tx_mrd2_tag (tx_mrd2_tag), .tx_mrd2_len (tx_mrd2_len), .tx_mrd2_addr (tx_mrd2_addr), .tx_mrd2_req_ack (tx_mrd2_req_ack), .tx_mwr0_req (tx_mwr0_req), .tx_mwr0_tag (tx_mwr0_tag), .tx_mwr0_len (tx_mwr0_len), .tx_mwr0_addr (tx_mwr0_addr), .tx_mwr0_req_ack (tx_mwr0_req_ack), .tx_mwr0_rd_en (tx_mwr0_rd_en), .tx_mwr0_rd_data (tx_mwr0_rd_data), .tx_mwr0_data_last (tx_mwr0_data_last), .tx_mwr1_req (tx_mwr1_req), .tx_mwr1_tag (tx_mwr1_tag), .tx_mwr1_len (tx_mwr1_len), .tx_mwr1_addr (tx_mwr1_addr), .tx_mwr1_req_ack (tx_mwr1_req_ack), .tx_mwr1_rd_en (tx_mwr1_rd_en), .tx_mwr1_rd_data (tx_mwr1_rd_data), .tx_mwr1_data_last (tx_mwr1_data_last) ); endmodule
/* ---------------------------------------------------------------------------------- Copyright (c) 2013-2014 Embedded and Network Computing Lab. Open SSD Project Hanyang University All rights reserved. ---------------------------------------------------------------------------------- Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. All advertising materials mentioning features or use of this source code must display the following acknowledgement: This product includes source code developed by the Embedded and Network Computing Lab. and the Open SSD Project. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------------------- http://enclab.hanyang.ac.kr/ http://www.openssd-project.org/ http://www.hanyang.ac.kr/ ---------------------------------------------------------------------------------- */ `timescale 1ns / 1ps module pcie_tans_if # ( parameter C_PCIE_DATA_WIDTH = 128, parameter C_PCIE_ADDR_WIDTH = 36 ) ( //PCIe user clock input pcie_user_clk, input pcie_user_rst_n, //PCIe rx interface output mreq_fifo_wr_en, output [C_PCIE_DATA_WIDTH-1:0] mreq_fifo_wr_data, output [7:0] cpld0_fifo_tag, output cpld0_fifo_tag_last, output cpld0_fifo_wr_en, output [C_PCIE_DATA_WIDTH-1:0] cpld0_fifo_wr_data, output [7:0] cpld1_fifo_tag, output cpld1_fifo_tag_last, output cpld1_fifo_wr_en, output [C_PCIE_DATA_WIDTH-1:0] cpld1_fifo_wr_data, output [7:0] cpld2_fifo_tag, output cpld2_fifo_tag_last, output cpld2_fifo_wr_en, output [C_PCIE_DATA_WIDTH-1:0] cpld2_fifo_wr_data, //PCIe tx interface input tx_cpld_req, input [7:0] tx_cpld_tag, input [15:0] tx_cpld_req_id, input [11:2] tx_cpld_len, input [11:0] tx_cpld_bc, input [6:0] tx_cpld_laddr, input [63:0] tx_cpld_data, output tx_cpld_req_ack, input tx_mrd0_req, input [7:0] tx_mrd0_tag, input [11:2] tx_mrd0_len, input [C_PCIE_ADDR_WIDTH-1:2] tx_mrd0_addr, output tx_mrd0_req_ack, input tx_mrd1_req, input [7:0] tx_mrd1_tag, input [11:2] tx_mrd1_len, input [C_PCIE_ADDR_WIDTH-1:2] tx_mrd1_addr, output tx_mrd1_req_ack, input tx_mrd2_req, input [7:0] tx_mrd2_tag, input [11:2] tx_mrd2_len, input [C_PCIE_ADDR_WIDTH-1:2] tx_mrd2_addr, output tx_mrd2_req_ack, input tx_mwr0_req, input [7:0] tx_mwr0_tag, input [11:2] tx_mwr0_len, input [C_PCIE_ADDR_WIDTH-1:2] tx_mwr0_addr, output tx_mwr0_req_ack, output tx_mwr0_rd_en, input [C_PCIE_DATA_WIDTH-1:0] tx_mwr0_rd_data, output tx_mwr0_data_last, input tx_mwr1_req, input [7:0] tx_mwr1_tag, input [11:2] tx_mwr1_len, input [C_PCIE_ADDR_WIDTH-1:2] tx_mwr1_addr, output tx_mwr1_req_ack, output tx_mwr1_rd_en, input [C_PCIE_DATA_WIDTH-1:0] tx_mwr1_rd_data, output tx_mwr1_data_last, output pcie_mreq_err, output pcie_cpld_err, output pcie_cpld_len_err, //PCIe Integrated Block Interface input [5:0] tx_buf_av, input tx_err_drop, input tx_cfg_req, input s_axis_tx_tready, output [C_PCIE_DATA_WIDTH-1:0] s_axis_tx_tdata, output [(C_PCIE_DATA_WIDTH/8)-1:0] s_axis_tx_tkeep, output [3:0] s_axis_tx_tuser, output s_axis_tx_tlast, output s_axis_tx_tvalid, output tx_cfg_gnt, input [C_PCIE_DATA_WIDTH-1:0] m_axis_rx_tdata, input [(C_PCIE_DATA_WIDTH/8)-1:0] m_axis_rx_tkeep, input m_axis_rx_tlast, input m_axis_rx_tvalid, output m_axis_rx_tready, input [21:0] m_axis_rx_tuser, input [11:0] fc_cpld, input [7:0] fc_cplh, input [11:0] fc_npd, input [7:0] fc_nph, input [11:0] fc_pd, input [7:0] fc_ph, output [2:0] fc_sel, input [7:0] cfg_bus_number, input [4:0] cfg_device_number, input [2:0] cfg_function_number ); wire w_tx_cpld_gnt; wire w_tx_mrd_gnt; wire w_tx_mwr_gnt; reg [15:0] r_pcie_dev_id; always @(posedge pcie_user_clk) begin r_pcie_dev_id <= {cfg_bus_number, cfg_device_number, cfg_function_number}; end pcie_fc_cntl pcie_fc_cntl_inst0 ( .pcie_user_clk (pcie_user_clk), .pcie_user_rst_n (pcie_user_rst_n), .fc_cpld (fc_cpld), .fc_cplh (fc_cplh), .fc_npd (fc_npd), .fc_nph (fc_nph), .fc_pd (fc_pd), .fc_ph (fc_ph), .fc_sel (fc_sel), .tx_buf_av (tx_buf_av), .tx_cfg_req (tx_cfg_req), .tx_cfg_gnt (tx_cfg_gnt), .tx_cpld_gnt (w_tx_cpld_gnt), .tx_mrd_gnt (w_tx_mrd_gnt), .tx_mwr_gnt (w_tx_mwr_gnt) ); pcie_rx # ( .C_PCIE_DATA_WIDTH (C_PCIE_DATA_WIDTH) ) pcie_rx_inst0( .pcie_user_clk (pcie_user_clk), .pcie_user_rst_n (pcie_user_rst_n), //pcie rx signal .s_axis_rx_tdata (m_axis_rx_tdata), .s_axis_rx_tkeep (m_axis_rx_tkeep), .s_axis_rx_tlast (m_axis_rx_tlast), .s_axis_rx_tvalid (m_axis_rx_tvalid), .s_axis_rx_tready (m_axis_rx_tready), .s_axis_rx_tuser (m_axis_rx_tuser), .pcie_mreq_err (pcie_mreq_err), .pcie_cpld_err (pcie_cpld_err), .pcie_cpld_len_err (pcie_cpld_len_err), .mreq_fifo_wr_en (mreq_fifo_wr_en), .mreq_fifo_wr_data (mreq_fifo_wr_data), .cpld0_fifo_tag (cpld0_fifo_tag), .cpld0_fifo_tag_last (cpld0_fifo_tag_last), .cpld0_fifo_wr_en (cpld0_fifo_wr_en), .cpld0_fifo_wr_data (cpld0_fifo_wr_data), .cpld1_fifo_tag (cpld1_fifo_tag), .cpld1_fifo_tag_last (cpld1_fifo_tag_last), .cpld1_fifo_wr_en (cpld1_fifo_wr_en), .cpld1_fifo_wr_data (cpld1_fifo_wr_data), .cpld2_fifo_tag (cpld2_fifo_tag), .cpld2_fifo_tag_last (cpld2_fifo_tag_last), .cpld2_fifo_wr_en (cpld2_fifo_wr_en), .cpld2_fifo_wr_data (cpld2_fifo_wr_data) ); pcie_tx # ( .C_PCIE_DATA_WIDTH (C_PCIE_DATA_WIDTH) ) pcie_tx_inst0( .pcie_user_clk (pcie_user_clk), .pcie_user_rst_n (pcie_user_rst_n), .pcie_dev_id (r_pcie_dev_id), .tx_err_drop (tx_err_drop), .tx_cpld_gnt (w_tx_cpld_gnt), .tx_mrd_gnt (w_tx_mrd_gnt), .tx_mwr_gnt (w_tx_mwr_gnt), //pcie tx signal .m_axis_tx_tready (s_axis_tx_tready), .m_axis_tx_tdata (s_axis_tx_tdata), .m_axis_tx_tkeep (s_axis_tx_tkeep), .m_axis_tx_tuser (s_axis_tx_tuser), .m_axis_tx_tlast (s_axis_tx_tlast), .m_axis_tx_tvalid (s_axis_tx_tvalid), .tx_cpld_req (tx_cpld_req), .tx_cpld_tag (tx_cpld_tag), .tx_cpld_req_id (tx_cpld_req_id), .tx_cpld_len (tx_cpld_len), .tx_cpld_bc (tx_cpld_bc), .tx_cpld_laddr (tx_cpld_laddr), .tx_cpld_data (tx_cpld_data), .tx_cpld_req_ack (tx_cpld_req_ack), .tx_mrd0_req (tx_mrd0_req), .tx_mrd0_tag (tx_mrd0_tag), .tx_mrd0_len (tx_mrd0_len), .tx_mrd0_addr (tx_mrd0_addr), .tx_mrd0_req_ack (tx_mrd0_req_ack), .tx_mrd1_req (tx_mrd1_req), .tx_mrd1_tag (tx_mrd1_tag), .tx_mrd1_len (tx_mrd1_len), .tx_mrd1_addr (tx_mrd1_addr), .tx_mrd1_req_ack (tx_mrd1_req_ack), .tx_mrd2_req (tx_mrd2_req), .tx_mrd2_tag (tx_mrd2_tag), .tx_mrd2_len (tx_mrd2_len), .tx_mrd2_addr (tx_mrd2_addr), .tx_mrd2_req_ack (tx_mrd2_req_ack), .tx_mwr0_req (tx_mwr0_req), .tx_mwr0_tag (tx_mwr0_tag), .tx_mwr0_len (tx_mwr0_len), .tx_mwr0_addr (tx_mwr0_addr), .tx_mwr0_req_ack (tx_mwr0_req_ack), .tx_mwr0_rd_en (tx_mwr0_rd_en), .tx_mwr0_rd_data (tx_mwr0_rd_data), .tx_mwr0_data_last (tx_mwr0_data_last), .tx_mwr1_req (tx_mwr1_req), .tx_mwr1_tag (tx_mwr1_tag), .tx_mwr1_len (tx_mwr1_len), .tx_mwr1_addr (tx_mwr1_addr), .tx_mwr1_req_ack (tx_mwr1_req_ack), .tx_mwr1_rd_en (tx_mwr1_rd_en), .tx_mwr1_rd_data (tx_mwr1_rd_data), .tx_mwr1_data_last (tx_mwr1_data_last) ); endmodule
/* ---------------------------------------------------------------------------------- Copyright (c) 2013-2014 Embedded and Network Computing Lab. Open SSD Project Hanyang University All rights reserved. ---------------------------------------------------------------------------------- Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. All advertising materials mentioning features or use of this source code must display the following acknowledgement: This product includes source code developed by the Embedded and Network Computing Lab. and the Open SSD Project. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------------------- http://enclab.hanyang.ac.kr/ http://www.openssd-project.org/ http://www.hanyang.ac.kr/ ---------------------------------------------------------------------------------- */ `timescale 1ns / 1ps module pcie_tans_if # ( parameter C_PCIE_DATA_WIDTH = 128, parameter C_PCIE_ADDR_WIDTH = 36 ) ( //PCIe user clock input pcie_user_clk, input pcie_user_rst_n, //PCIe rx interface output mreq_fifo_wr_en, output [C_PCIE_DATA_WIDTH-1:0] mreq_fifo_wr_data, output [7:0] cpld0_fifo_tag, output cpld0_fifo_tag_last, output cpld0_fifo_wr_en, output [C_PCIE_DATA_WIDTH-1:0] cpld0_fifo_wr_data, output [7:0] cpld1_fifo_tag, output cpld1_fifo_tag_last, output cpld1_fifo_wr_en, output [C_PCIE_DATA_WIDTH-1:0] cpld1_fifo_wr_data, output [7:0] cpld2_fifo_tag, output cpld2_fifo_tag_last, output cpld2_fifo_wr_en, output [C_PCIE_DATA_WIDTH-1:0] cpld2_fifo_wr_data, //PCIe tx interface input tx_cpld_req, input [7:0] tx_cpld_tag, input [15:0] tx_cpld_req_id, input [11:2] tx_cpld_len, input [11:0] tx_cpld_bc, input [6:0] tx_cpld_laddr, input [63:0] tx_cpld_data, output tx_cpld_req_ack, input tx_mrd0_req, input [7:0] tx_mrd0_tag, input [11:2] tx_mrd0_len, input [C_PCIE_ADDR_WIDTH-1:2] tx_mrd0_addr, output tx_mrd0_req_ack, input tx_mrd1_req, input [7:0] tx_mrd1_tag, input [11:2] tx_mrd1_len, input [C_PCIE_ADDR_WIDTH-1:2] tx_mrd1_addr, output tx_mrd1_req_ack, input tx_mrd2_req, input [7:0] tx_mrd2_tag, input [11:2] tx_mrd2_len, input [C_PCIE_ADDR_WIDTH-1:2] tx_mrd2_addr, output tx_mrd2_req_ack, input tx_mwr0_req, input [7:0] tx_mwr0_tag, input [11:2] tx_mwr0_len, input [C_PCIE_ADDR_WIDTH-1:2] tx_mwr0_addr, output tx_mwr0_req_ack, output tx_mwr0_rd_en, input [C_PCIE_DATA_WIDTH-1:0] tx_mwr0_rd_data, output tx_mwr0_data_last, input tx_mwr1_req, input [7:0] tx_mwr1_tag, input [11:2] tx_mwr1_len, input [C_PCIE_ADDR_WIDTH-1:2] tx_mwr1_addr, output tx_mwr1_req_ack, output tx_mwr1_rd_en, input [C_PCIE_DATA_WIDTH-1:0] tx_mwr1_rd_data, output tx_mwr1_data_last, output pcie_mreq_err, output pcie_cpld_err, output pcie_cpld_len_err, //PCIe Integrated Block Interface input [5:0] tx_buf_av, input tx_err_drop, input tx_cfg_req, input s_axis_tx_tready, output [C_PCIE_DATA_WIDTH-1:0] s_axis_tx_tdata, output [(C_PCIE_DATA_WIDTH/8)-1:0] s_axis_tx_tkeep, output [3:0] s_axis_tx_tuser, output s_axis_tx_tlast, output s_axis_tx_tvalid, output tx_cfg_gnt, input [C_PCIE_DATA_WIDTH-1:0] m_axis_rx_tdata, input [(C_PCIE_DATA_WIDTH/8)-1:0] m_axis_rx_tkeep, input m_axis_rx_tlast, input m_axis_rx_tvalid, output m_axis_rx_tready, input [21:0] m_axis_rx_tuser, input [11:0] fc_cpld, input [7:0] fc_cplh, input [11:0] fc_npd, input [7:0] fc_nph, input [11:0] fc_pd, input [7:0] fc_ph, output [2:0] fc_sel, input [7:0] cfg_bus_number, input [4:0] cfg_device_number, input [2:0] cfg_function_number ); wire w_tx_cpld_gnt; wire w_tx_mrd_gnt; wire w_tx_mwr_gnt; reg [15:0] r_pcie_dev_id; always @(posedge pcie_user_clk) begin r_pcie_dev_id <= {cfg_bus_number, cfg_device_number, cfg_function_number}; end pcie_fc_cntl pcie_fc_cntl_inst0 ( .pcie_user_clk (pcie_user_clk), .pcie_user_rst_n (pcie_user_rst_n), .fc_cpld (fc_cpld), .fc_cplh (fc_cplh), .fc_npd (fc_npd), .fc_nph (fc_nph), .fc_pd (fc_pd), .fc_ph (fc_ph), .fc_sel (fc_sel), .tx_buf_av (tx_buf_av), .tx_cfg_req (tx_cfg_req), .tx_cfg_gnt (tx_cfg_gnt), .tx_cpld_gnt (w_tx_cpld_gnt), .tx_mrd_gnt (w_tx_mrd_gnt), .tx_mwr_gnt (w_tx_mwr_gnt) ); pcie_rx # ( .C_PCIE_DATA_WIDTH (C_PCIE_DATA_WIDTH) ) pcie_rx_inst0( .pcie_user_clk (pcie_user_clk), .pcie_user_rst_n (pcie_user_rst_n), //pcie rx signal .s_axis_rx_tdata (m_axis_rx_tdata), .s_axis_rx_tkeep (m_axis_rx_tkeep), .s_axis_rx_tlast (m_axis_rx_tlast), .s_axis_rx_tvalid (m_axis_rx_tvalid), .s_axis_rx_tready (m_axis_rx_tready), .s_axis_rx_tuser (m_axis_rx_tuser), .pcie_mreq_err (pcie_mreq_err), .pcie_cpld_err (pcie_cpld_err), .pcie_cpld_len_err (pcie_cpld_len_err), .mreq_fifo_wr_en (mreq_fifo_wr_en), .mreq_fifo_wr_data (mreq_fifo_wr_data), .cpld0_fifo_tag (cpld0_fifo_tag), .cpld0_fifo_tag_last (cpld0_fifo_tag_last), .cpld0_fifo_wr_en (cpld0_fifo_wr_en), .cpld0_fifo_wr_data (cpld0_fifo_wr_data), .cpld1_fifo_tag (cpld1_fifo_tag), .cpld1_fifo_tag_last (cpld1_fifo_tag_last), .cpld1_fifo_wr_en (cpld1_fifo_wr_en), .cpld1_fifo_wr_data (cpld1_fifo_wr_data), .cpld2_fifo_tag (cpld2_fifo_tag), .cpld2_fifo_tag_last (cpld2_fifo_tag_last), .cpld2_fifo_wr_en (cpld2_fifo_wr_en), .cpld2_fifo_wr_data (cpld2_fifo_wr_data) ); pcie_tx # ( .C_PCIE_DATA_WIDTH (C_PCIE_DATA_WIDTH) ) pcie_tx_inst0( .pcie_user_clk (pcie_user_clk), .pcie_user_rst_n (pcie_user_rst_n), .pcie_dev_id (r_pcie_dev_id), .tx_err_drop (tx_err_drop), .tx_cpld_gnt (w_tx_cpld_gnt), .tx_mrd_gnt (w_tx_mrd_gnt), .tx_mwr_gnt (w_tx_mwr_gnt), //pcie tx signal .m_axis_tx_tready (s_axis_tx_tready), .m_axis_tx_tdata (s_axis_tx_tdata), .m_axis_tx_tkeep (s_axis_tx_tkeep), .m_axis_tx_tuser (s_axis_tx_tuser), .m_axis_tx_tlast (s_axis_tx_tlast), .m_axis_tx_tvalid (s_axis_tx_tvalid), .tx_cpld_req (tx_cpld_req), .tx_cpld_tag (tx_cpld_tag), .tx_cpld_req_id (tx_cpld_req_id), .tx_cpld_len (tx_cpld_len), .tx_cpld_bc (tx_cpld_bc), .tx_cpld_laddr (tx_cpld_laddr), .tx_cpld_data (tx_cpld_data), .tx_cpld_req_ack (tx_cpld_req_ack), .tx_mrd0_req (tx_mrd0_req), .tx_mrd0_tag (tx_mrd0_tag), .tx_mrd0_len (tx_mrd0_len), .tx_mrd0_addr (tx_mrd0_addr), .tx_mrd0_req_ack (tx_mrd0_req_ack), .tx_mrd1_req (tx_mrd1_req), .tx_mrd1_tag (tx_mrd1_tag), .tx_mrd1_len (tx_mrd1_len), .tx_mrd1_addr (tx_mrd1_addr), .tx_mrd1_req_ack (tx_mrd1_req_ack), .tx_mrd2_req (tx_mrd2_req), .tx_mrd2_tag (tx_mrd2_tag), .tx_mrd2_len (tx_mrd2_len), .tx_mrd2_addr (tx_mrd2_addr), .tx_mrd2_req_ack (tx_mrd2_req_ack), .tx_mwr0_req (tx_mwr0_req), .tx_mwr0_tag (tx_mwr0_tag), .tx_mwr0_len (tx_mwr0_len), .tx_mwr0_addr (tx_mwr0_addr), .tx_mwr0_req_ack (tx_mwr0_req_ack), .tx_mwr0_rd_en (tx_mwr0_rd_en), .tx_mwr0_rd_data (tx_mwr0_rd_data), .tx_mwr0_data_last (tx_mwr0_data_last), .tx_mwr1_req (tx_mwr1_req), .tx_mwr1_tag (tx_mwr1_tag), .tx_mwr1_len (tx_mwr1_len), .tx_mwr1_addr (tx_mwr1_addr), .tx_mwr1_req_ack (tx_mwr1_req_ack), .tx_mwr1_rd_en (tx_mwr1_rd_en), .tx_mwr1_rd_data (tx_mwr1_rd_data), .tx_mwr1_data_last (tx_mwr1_data_last) ); endmodule
/* ---------------------------------------------------------------------------------- Copyright (c) 2013-2014 Embedded and Network Computing Lab. Open SSD Project Hanyang University All rights reserved. ---------------------------------------------------------------------------------- Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. All advertising materials mentioning features or use of this source code must display the following acknowledgement: This product includes source code developed by the Embedded and Network Computing Lab. and the Open SSD Project. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------------------- http://enclab.hanyang.ac.kr/ http://www.openssd-project.org/ http://www.hanyang.ac.kr/ ---------------------------------------------------------------------------------- */ `timescale 1ns / 1ps module pcie_tx_cmd_fifo # ( parameter P_FIFO_DATA_WIDTH = 34, parameter P_FIFO_DEPTH_WIDTH = 5 ) ( input clk, input rst_n, input wr_en, input [P_FIFO_DATA_WIDTH-1:0] wr_data, output full_n, input rd_en, output [P_FIFO_DATA_WIDTH-1:0] rd_data, output empty_n ); localparam P_FIFO_ALLOC_WIDTH = 1; reg [P_FIFO_DEPTH_WIDTH:0] r_front_addr; reg [P_FIFO_DEPTH_WIDTH:0] r_front_addr_p1; wire [P_FIFO_DEPTH_WIDTH-1:0] w_front_addr; reg [P_FIFO_DEPTH_WIDTH:0] r_rear_addr; assign full_n = ~((r_rear_addr[P_FIFO_DEPTH_WIDTH] ^ r_front_addr[P_FIFO_DEPTH_WIDTH]) & (r_rear_addr[P_FIFO_DEPTH_WIDTH-1:P_FIFO_ALLOC_WIDTH] == r_front_addr[P_FIFO_DEPTH_WIDTH-1:P_FIFO_ALLOC_WIDTH])); assign empty_n = ~(r_front_addr[P_FIFO_DEPTH_WIDTH:P_FIFO_ALLOC_WIDTH] == r_rear_addr[P_FIFO_DEPTH_WIDTH:P_FIFO_ALLOC_WIDTH]); always @(posedge clk or negedge rst_n) begin if (rst_n == 0) begin r_front_addr <= 0; r_front_addr_p1 <= 1; r_rear_addr <= 0; end else begin if (rd_en == 1) begin r_front_addr <= r_front_addr_p1; r_front_addr_p1 <= r_front_addr_p1 + 1; end if (wr_en == 1) begin r_rear_addr <= r_rear_addr + 1; end end end assign w_front_addr = (rd_en == 1) ? r_front_addr_p1[P_FIFO_DEPTH_WIDTH-1:0] : r_front_addr[P_FIFO_DEPTH_WIDTH-1:0]; localparam LP_DEVICE = "7SERIES"; localparam LP_BRAM_SIZE = "18Kb"; localparam LP_DOB_REG = 0; localparam LP_READ_WIDTH = P_FIFO_DATA_WIDTH; localparam LP_WRITE_WIDTH = P_FIFO_DATA_WIDTH; localparam LP_WRITE_MODE = "READ_FIRST"; localparam LP_WE_WIDTH = 4; localparam LP_ADDR_TOTAL_WITDH = 9; localparam LP_ADDR_ZERO_PAD_WITDH = LP_ADDR_TOTAL_WITDH - P_FIFO_DEPTH_WIDTH; generate wire [LP_ADDR_TOTAL_WITDH-1:0] rdaddr; wire [LP_ADDR_TOTAL_WITDH-1:0] wraddr; wire [LP_ADDR_ZERO_PAD_WITDH-1:0] zero_padding = 0; if(LP_ADDR_ZERO_PAD_WITDH == 0) begin : calc_addr assign rdaddr = w_front_addr[P_FIFO_DEPTH_WIDTH-1:0]; assign wraddr = r_rear_addr[P_FIFO_DEPTH_WIDTH-1:0]; end else begin assign rdaddr = {zero_padding[LP_ADDR_ZERO_PAD_WITDH-1:0], w_front_addr[P_FIFO_DEPTH_WIDTH-1:0]}; assign wraddr = {zero_padding[LP_ADDR_ZERO_PAD_WITDH-1:0], r_rear_addr[P_FIFO_DEPTH_WIDTH-1:0]}; end endgenerate BRAM_SDP_MACRO #( .DEVICE (LP_DEVICE), .BRAM_SIZE (LP_BRAM_SIZE), .DO_REG (LP_DOB_REG), .READ_WIDTH (LP_READ_WIDTH), .WRITE_WIDTH (LP_WRITE_WIDTH), .WRITE_MODE (LP_WRITE_MODE) ) ramb18sdp_0( .DO (rd_data[LP_READ_WIDTH-1:0]), .DI (wr_data[LP_WRITE_WIDTH-1:0]), .RDADDR (rdaddr), .RDCLK (clk), .RDEN (1'b1), .REGCE (1'b1), .RST (1'b0), .WE ({LP_WE_WIDTH{1'b1}}), .WRADDR (wraddr), .WRCLK (clk), .WREN (wr_en) ); endmodule
/* ---------------------------------------------------------------------------------- Copyright (c) 2013-2014 Embedded and Network Computing Lab. Open SSD Project Hanyang University All rights reserved. ---------------------------------------------------------------------------------- Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. All advertising materials mentioning features or use of this source code must display the following acknowledgement: This product includes source code developed by the Embedded and Network Computing Lab. and the Open SSD Project. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------------------- http://enclab.hanyang.ac.kr/ http://www.openssd-project.org/ http://www.hanyang.ac.kr/ ---------------------------------------------------------------------------------- */ `timescale 1ns / 1ps module pcie_tx_req # ( parameter C_PCIE_DATA_WIDTH = 128, parameter C_PCIE_ADDR_WIDTH = 36 ) ( input pcie_user_clk, input pcie_user_rst_n, input [2:0] pcie_max_payload_size, output pcie_tx_cmd_rd_en, input [33:0] pcie_tx_cmd_rd_data, input pcie_tx_cmd_empty_n, output pcie_tx_fifo_free_en, output [9:4] pcie_tx_fifo_free_len, input pcie_tx_fifo_empty_n, output tx_dma_mwr_req, output [7:0] tx_dma_mwr_tag, output [11:2] tx_dma_mwr_len, output [C_PCIE_ADDR_WIDTH-1:2] tx_dma_mwr_addr, input tx_dma_mwr_req_ack, input tx_dma_mwr_data_last, output dma_tx_done_wr_en, output [20:0] dma_tx_done_wr_data, input dma_tx_done_wr_rdy_n ); localparam S_IDLE = 10'b0000000001; localparam S_PCIE_TX_CMD_0 = 10'b0000000010; localparam S_PCIE_TX_CMD_1 = 10'b0000000100; localparam S_PCIE_CHK_FIFO = 10'b0000001000; localparam S_PCIE_MWR_REQ = 10'b0000010000; localparam S_PCIE_MWR_ACK = 10'b0000100000; localparam S_PCIE_MWR_DONE = 10'b0001000000; localparam S_PCIE_MWR_NEXT = 10'b0010000000; localparam S_PCIE_DMA_DONE_WR_WAIT = 10'b0100000000; localparam S_PCIE_DMA_DONE_WR = 10'b1000000000; reg [9:0] cur_state; reg [9:0] next_state; reg [2:0] r_pcie_max_payload_size; reg r_pcie_tx_cmd_rd_en; reg r_pcie_tx_fifo_free_en; reg r_tx_dma_mwr_req; reg r_dma_cmd_type; reg r_dma_done_check; reg [6:0] r_hcmd_slot_tag; reg [12:2] r_pcie_tx_len; reg [12:2] r_pcie_orig_len; reg [9:2] r_pcie_tx_cur_len; reg [C_PCIE_ADDR_WIDTH-1:2] r_pcie_addr; reg r_dma_tx_done_wr_en; assign pcie_tx_cmd_rd_en = r_pcie_tx_cmd_rd_en; assign pcie_tx_fifo_free_en = r_pcie_tx_fifo_free_en; assign pcie_tx_fifo_free_len = r_pcie_tx_cur_len[9:4]; assign tx_dma_mwr_req = r_tx_dma_mwr_req; assign tx_dma_mwr_tag = 8'b0; assign tx_dma_mwr_len = {2'b0, r_pcie_tx_cur_len}; assign tx_dma_mwr_addr = r_pcie_addr; assign dma_tx_done_wr_en = r_dma_tx_done_wr_en; assign dma_tx_done_wr_data = {r_dma_cmd_type, r_dma_done_check, 1'b1, r_hcmd_slot_tag, r_pcie_orig_len}; always @ (posedge pcie_user_clk or negedge pcie_user_rst_n) begin if(pcie_user_rst_n == 0) cur_state <= S_IDLE; else cur_state <= next_state; end always @ (*) begin case(cur_state) S_IDLE: begin if(pcie_tx_cmd_empty_n == 1) next_state <= S_PCIE_TX_CMD_0; else next_state <= S_IDLE; end S_PCIE_TX_CMD_0: begin next_state <= S_PCIE_TX_CMD_1; end S_PCIE_TX_CMD_1: begin next_state <= S_PCIE_CHK_FIFO; end S_PCIE_CHK_FIFO: begin if(pcie_tx_fifo_empty_n == 1) next_state <= S_PCIE_MWR_REQ; else next_state <= S_PCIE_CHK_FIFO; end S_PCIE_MWR_REQ: begin next_state <= S_PCIE_MWR_ACK; end S_PCIE_MWR_ACK: begin if(tx_dma_mwr_req_ack == 1) next_state <= S_PCIE_MWR_DONE; else next_state <= S_PCIE_MWR_ACK; end S_PCIE_MWR_DONE: begin next_state <= S_PCIE_MWR_NEXT; end S_PCIE_MWR_NEXT: begin if(r_pcie_tx_len == 0) next_state <= S_PCIE_DMA_DONE_WR_WAIT; else next_state <= S_PCIE_CHK_FIFO; end S_PCIE_DMA_DONE_WR_WAIT: begin if(dma_tx_done_wr_rdy_n == 1) next_state <= S_PCIE_DMA_DONE_WR_WAIT; else next_state <= S_PCIE_DMA_DONE_WR; end S_PCIE_DMA_DONE_WR: begin next_state <= S_IDLE; end default: begin next_state <= S_IDLE; end endcase end always @ (posedge pcie_user_clk) begin r_pcie_max_payload_size <= pcie_max_payload_size; end always @ (posedge pcie_user_clk) begin case(cur_state) S_IDLE: begin end S_PCIE_TX_CMD_0: begin r_dma_cmd_type <= pcie_tx_cmd_rd_data[19]; r_dma_done_check <= pcie_tx_cmd_rd_data[18]; r_hcmd_slot_tag <= pcie_tx_cmd_rd_data[17:11]; r_pcie_tx_len <= {pcie_tx_cmd_rd_data[10:2], 2'b0}; end S_PCIE_TX_CMD_1: begin r_pcie_orig_len <= r_pcie_tx_len; case(r_pcie_max_payload_size) 3'b010: begin if(r_pcie_tx_len[8:7] == 0 && r_pcie_tx_len[6:2] == 0) r_pcie_tx_cur_len[9:7] <= 3'b100; else r_pcie_tx_cur_len[9:7] <= {1'b0, r_pcie_tx_len[8:7]}; end 3'b001: begin if(r_pcie_tx_len[7] == 0 && r_pcie_tx_len[6:2] == 0) r_pcie_tx_cur_len[9:7] <= 3'b010; else r_pcie_tx_cur_len[9:7] <= {2'b0, r_pcie_tx_len[7]}; end default: begin if(r_pcie_tx_len[6:2] == 0) r_pcie_tx_cur_len[9:7] <= 3'b001; else r_pcie_tx_cur_len[9:7] <= 3'b000; end endcase r_pcie_tx_cur_len[6:2] <= r_pcie_tx_len[6:2]; r_pcie_addr <= {pcie_tx_cmd_rd_data[33:2], 2'b0}; end S_PCIE_CHK_FIFO: begin end S_PCIE_MWR_REQ: begin end S_PCIE_MWR_ACK: begin end S_PCIE_MWR_DONE: begin r_pcie_addr <= r_pcie_addr + r_pcie_tx_cur_len; r_pcie_tx_len <= r_pcie_tx_len - r_pcie_tx_cur_len; case(r_pcie_max_payload_size) 3'b010: r_pcie_tx_cur_len <= 8'h80; 3'b001: r_pcie_tx_cur_len <= 8'h40; default: r_pcie_tx_cur_len <= 8'h20; endcase end S_PCIE_MWR_NEXT: begin end S_PCIE_DMA_DONE_WR_WAIT: begin end S_PCIE_DMA_DONE_WR: begin end default: begin end endcase end always @ (*) begin case(cur_state) S_IDLE: begin r_pcie_tx_cmd_rd_en <= 0; r_pcie_tx_fifo_free_en <= 0; r_tx_dma_mwr_req <= 0; r_dma_tx_done_wr_en <= 0; end S_PCIE_TX_CMD_0: begin r_pcie_tx_cmd_rd_en <= 1; r_pcie_tx_fifo_free_en <= 0; r_tx_dma_mwr_req <= 0; r_dma_tx_done_wr_en <= 0; end S_PCIE_TX_CMD_1: begin r_pcie_tx_cmd_rd_en <= 1; r_pcie_tx_fifo_free_en <= 0; r_tx_dma_mwr_req <= 0; r_dma_tx_done_wr_en <= 0; end S_PCIE_CHK_FIFO: begin r_pcie_tx_cmd_rd_en <= 0; r_pcie_tx_fifo_free_en <= 0; r_tx_dma_mwr_req <= 0; r_dma_tx_done_wr_en <= 0; end S_PCIE_MWR_REQ: begin r_pcie_tx_cmd_rd_en <= 0; r_pcie_tx_fifo_free_en <= 1; r_tx_dma_mwr_req <= 1; r_dma_tx_done_wr_en <= 0; end S_PCIE_MWR_ACK: begin r_pcie_tx_cmd_rd_en <= 0; r_pcie_tx_fifo_free_en <= 0; r_tx_dma_mwr_req <= 0; r_dma_tx_done_wr_en <= 0; end S_PCIE_MWR_DONE: begin r_pcie_tx_cmd_rd_en <= 0; r_pcie_tx_fifo_free_en <= 0; r_tx_dma_mwr_req <= 0; r_dma_tx_done_wr_en <= 0; end S_PCIE_MWR_NEXT: begin r_pcie_tx_cmd_rd_en <= 0; r_pcie_tx_fifo_free_en <= 0; r_tx_dma_mwr_req <= 0; r_dma_tx_done_wr_en <= 0; end S_PCIE_DMA_DONE_WR_WAIT: begin r_pcie_tx_cmd_rd_en <= 0; r_pcie_tx_fifo_free_en <= 0; r_tx_dma_mwr_req <= 0; r_dma_tx_done_wr_en <= 0; end S_PCIE_DMA_DONE_WR: begin r_pcie_tx_cmd_rd_en <= 0; r_pcie_tx_fifo_free_en <= 0; r_tx_dma_mwr_req <= 0; r_dma_tx_done_wr_en <= 1; end default: begin r_pcie_tx_cmd_rd_en <= 0; r_pcie_tx_fifo_free_en <= 0; r_tx_dma_mwr_req <= 0; r_dma_tx_done_wr_en <= 0; end endcase end endmodule
/* ---------------------------------------------------------------------------------- Copyright (c) 2013-2014 Embedded and Network Computing Lab. Open SSD Project Hanyang University All rights reserved. ---------------------------------------------------------------------------------- Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. All advertising materials mentioning features or use of this source code must display the following acknowledgement: This product includes source code developed by the Embedded and Network Computing Lab. and the Open SSD Project. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------------------- http://enclab.hanyang.ac.kr/ http://www.openssd-project.org/ http://www.hanyang.ac.kr/ ---------------------------------------------------------------------------------- */ `timescale 1ns / 1ps module pcie_tx_req # ( parameter C_PCIE_DATA_WIDTH = 128, parameter C_PCIE_ADDR_WIDTH = 36 ) ( input pcie_user_clk, input pcie_user_rst_n, input [2:0] pcie_max_payload_size, output pcie_tx_cmd_rd_en, input [33:0] pcie_tx_cmd_rd_data, input pcie_tx_cmd_empty_n, output pcie_tx_fifo_free_en, output [9:4] pcie_tx_fifo_free_len, input pcie_tx_fifo_empty_n, output tx_dma_mwr_req, output [7:0] tx_dma_mwr_tag, output [11:2] tx_dma_mwr_len, output [C_PCIE_ADDR_WIDTH-1:2] tx_dma_mwr_addr, input tx_dma_mwr_req_ack, input tx_dma_mwr_data_last, output dma_tx_done_wr_en, output [20:0] dma_tx_done_wr_data, input dma_tx_done_wr_rdy_n ); localparam S_IDLE = 10'b0000000001; localparam S_PCIE_TX_CMD_0 = 10'b0000000010; localparam S_PCIE_TX_CMD_1 = 10'b0000000100; localparam S_PCIE_CHK_FIFO = 10'b0000001000; localparam S_PCIE_MWR_REQ = 10'b0000010000; localparam S_PCIE_MWR_ACK = 10'b0000100000; localparam S_PCIE_MWR_DONE = 10'b0001000000; localparam S_PCIE_MWR_NEXT = 10'b0010000000; localparam S_PCIE_DMA_DONE_WR_WAIT = 10'b0100000000; localparam S_PCIE_DMA_DONE_WR = 10'b1000000000; reg [9:0] cur_state; reg [9:0] next_state; reg [2:0] r_pcie_max_payload_size; reg r_pcie_tx_cmd_rd_en; reg r_pcie_tx_fifo_free_en; reg r_tx_dma_mwr_req; reg r_dma_cmd_type; reg r_dma_done_check; reg [6:0] r_hcmd_slot_tag; reg [12:2] r_pcie_tx_len; reg [12:2] r_pcie_orig_len; reg [9:2] r_pcie_tx_cur_len; reg [C_PCIE_ADDR_WIDTH-1:2] r_pcie_addr; reg r_dma_tx_done_wr_en; assign pcie_tx_cmd_rd_en = r_pcie_tx_cmd_rd_en; assign pcie_tx_fifo_free_en = r_pcie_tx_fifo_free_en; assign pcie_tx_fifo_free_len = r_pcie_tx_cur_len[9:4]; assign tx_dma_mwr_req = r_tx_dma_mwr_req; assign tx_dma_mwr_tag = 8'b0; assign tx_dma_mwr_len = {2'b0, r_pcie_tx_cur_len}; assign tx_dma_mwr_addr = r_pcie_addr; assign dma_tx_done_wr_en = r_dma_tx_done_wr_en; assign dma_tx_done_wr_data = {r_dma_cmd_type, r_dma_done_check, 1'b1, r_hcmd_slot_tag, r_pcie_orig_len}; always @ (posedge pcie_user_clk or negedge pcie_user_rst_n) begin if(pcie_user_rst_n == 0) cur_state <= S_IDLE; else cur_state <= next_state; end always @ (*) begin case(cur_state) S_IDLE: begin if(pcie_tx_cmd_empty_n == 1) next_state <= S_PCIE_TX_CMD_0; else next_state <= S_IDLE; end S_PCIE_TX_CMD_0: begin next_state <= S_PCIE_TX_CMD_1; end S_PCIE_TX_CMD_1: begin next_state <= S_PCIE_CHK_FIFO; end S_PCIE_CHK_FIFO: begin if(pcie_tx_fifo_empty_n == 1) next_state <= S_PCIE_MWR_REQ; else next_state <= S_PCIE_CHK_FIFO; end S_PCIE_MWR_REQ: begin next_state <= S_PCIE_MWR_ACK; end S_PCIE_MWR_ACK: begin if(tx_dma_mwr_req_ack == 1) next_state <= S_PCIE_MWR_DONE; else next_state <= S_PCIE_MWR_ACK; end S_PCIE_MWR_DONE: begin next_state <= S_PCIE_MWR_NEXT; end S_PCIE_MWR_NEXT: begin if(r_pcie_tx_len == 0) next_state <= S_PCIE_DMA_DONE_WR_WAIT; else next_state <= S_PCIE_CHK_FIFO; end S_PCIE_DMA_DONE_WR_WAIT: begin if(dma_tx_done_wr_rdy_n == 1) next_state <= S_PCIE_DMA_DONE_WR_WAIT; else next_state <= S_PCIE_DMA_DONE_WR; end S_PCIE_DMA_DONE_WR: begin next_state <= S_IDLE; end default: begin next_state <= S_IDLE; end endcase end always @ (posedge pcie_user_clk) begin r_pcie_max_payload_size <= pcie_max_payload_size; end always @ (posedge pcie_user_clk) begin case(cur_state) S_IDLE: begin end S_PCIE_TX_CMD_0: begin r_dma_cmd_type <= pcie_tx_cmd_rd_data[19]; r_dma_done_check <= pcie_tx_cmd_rd_data[18]; r_hcmd_slot_tag <= pcie_tx_cmd_rd_data[17:11]; r_pcie_tx_len <= {pcie_tx_cmd_rd_data[10:2], 2'b0}; end S_PCIE_TX_CMD_1: begin r_pcie_orig_len <= r_pcie_tx_len; case(r_pcie_max_payload_size) 3'b010: begin if(r_pcie_tx_len[8:7] == 0 && r_pcie_tx_len[6:2] == 0) r_pcie_tx_cur_len[9:7] <= 3'b100; else r_pcie_tx_cur_len[9:7] <= {1'b0, r_pcie_tx_len[8:7]}; end 3'b001: begin if(r_pcie_tx_len[7] == 0 && r_pcie_tx_len[6:2] == 0) r_pcie_tx_cur_len[9:7] <= 3'b010; else r_pcie_tx_cur_len[9:7] <= {2'b0, r_pcie_tx_len[7]}; end default: begin if(r_pcie_tx_len[6:2] == 0) r_pcie_tx_cur_len[9:7] <= 3'b001; else r_pcie_tx_cur_len[9:7] <= 3'b000; end endcase r_pcie_tx_cur_len[6:2] <= r_pcie_tx_len[6:2]; r_pcie_addr <= {pcie_tx_cmd_rd_data[33:2], 2'b0}; end S_PCIE_CHK_FIFO: begin end S_PCIE_MWR_REQ: begin end S_PCIE_MWR_ACK: begin end S_PCIE_MWR_DONE: begin r_pcie_addr <= r_pcie_addr + r_pcie_tx_cur_len; r_pcie_tx_len <= r_pcie_tx_len - r_pcie_tx_cur_len; case(r_pcie_max_payload_size) 3'b010: r_pcie_tx_cur_len <= 8'h80; 3'b001: r_pcie_tx_cur_len <= 8'h40; default: r_pcie_tx_cur_len <= 8'h20; endcase end S_PCIE_MWR_NEXT: begin end S_PCIE_DMA_DONE_WR_WAIT: begin end S_PCIE_DMA_DONE_WR: begin end default: begin end endcase end always @ (*) begin case(cur_state) S_IDLE: begin r_pcie_tx_cmd_rd_en <= 0; r_pcie_tx_fifo_free_en <= 0; r_tx_dma_mwr_req <= 0; r_dma_tx_done_wr_en <= 0; end S_PCIE_TX_CMD_0: begin r_pcie_tx_cmd_rd_en <= 1; r_pcie_tx_fifo_free_en <= 0; r_tx_dma_mwr_req <= 0; r_dma_tx_done_wr_en <= 0; end S_PCIE_TX_CMD_1: begin r_pcie_tx_cmd_rd_en <= 1; r_pcie_tx_fifo_free_en <= 0; r_tx_dma_mwr_req <= 0; r_dma_tx_done_wr_en <= 0; end S_PCIE_CHK_FIFO: begin r_pcie_tx_cmd_rd_en <= 0; r_pcie_tx_fifo_free_en <= 0; r_tx_dma_mwr_req <= 0; r_dma_tx_done_wr_en <= 0; end S_PCIE_MWR_REQ: begin r_pcie_tx_cmd_rd_en <= 0; r_pcie_tx_fifo_free_en <= 1; r_tx_dma_mwr_req <= 1; r_dma_tx_done_wr_en <= 0; end S_PCIE_MWR_ACK: begin r_pcie_tx_cmd_rd_en <= 0; r_pcie_tx_fifo_free_en <= 0; r_tx_dma_mwr_req <= 0; r_dma_tx_done_wr_en <= 0; end S_PCIE_MWR_DONE: begin r_pcie_tx_cmd_rd_en <= 0; r_pcie_tx_fifo_free_en <= 0; r_tx_dma_mwr_req <= 0; r_dma_tx_done_wr_en <= 0; end S_PCIE_MWR_NEXT: begin r_pcie_tx_cmd_rd_en <= 0; r_pcie_tx_fifo_free_en <= 0; r_tx_dma_mwr_req <= 0; r_dma_tx_done_wr_en <= 0; end S_PCIE_DMA_DONE_WR_WAIT: begin r_pcie_tx_cmd_rd_en <= 0; r_pcie_tx_fifo_free_en <= 0; r_tx_dma_mwr_req <= 0; r_dma_tx_done_wr_en <= 0; end S_PCIE_DMA_DONE_WR: begin r_pcie_tx_cmd_rd_en <= 0; r_pcie_tx_fifo_free_en <= 0; r_tx_dma_mwr_req <= 0; r_dma_tx_done_wr_en <= 1; end default: begin r_pcie_tx_cmd_rd_en <= 0; r_pcie_tx_fifo_free_en <= 0; r_tx_dma_mwr_req <= 0; r_dma_tx_done_wr_en <= 0; end endcase end endmodule
/* ---------------------------------------------------------------------------------- Copyright (c) 2013-2014 Embedded and Network Computing Lab. Open SSD Project Hanyang University All rights reserved. ---------------------------------------------------------------------------------- Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. All advertising materials mentioning features or use of this source code must display the following acknowledgement: This product includes source code developed by the Embedded and Network Computing Lab. and the Open SSD Project. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------------------- http://enclab.hanyang.ac.kr/ http://www.openssd-project.org/ http://www.hanyang.ac.kr/ ---------------------------------------------------------------------------------- */ `timescale 1ns / 1ps module pcie_tx_req # ( parameter C_PCIE_DATA_WIDTH = 128, parameter C_PCIE_ADDR_WIDTH = 36 ) ( input pcie_user_clk, input pcie_user_rst_n, input [2:0] pcie_max_payload_size, output pcie_tx_cmd_rd_en, input [33:0] pcie_tx_cmd_rd_data, input pcie_tx_cmd_empty_n, output pcie_tx_fifo_free_en, output [9:4] pcie_tx_fifo_free_len, input pcie_tx_fifo_empty_n, output tx_dma_mwr_req, output [7:0] tx_dma_mwr_tag, output [11:2] tx_dma_mwr_len, output [C_PCIE_ADDR_WIDTH-1:2] tx_dma_mwr_addr, input tx_dma_mwr_req_ack, input tx_dma_mwr_data_last, output dma_tx_done_wr_en, output [20:0] dma_tx_done_wr_data, input dma_tx_done_wr_rdy_n ); localparam S_IDLE = 10'b0000000001; localparam S_PCIE_TX_CMD_0 = 10'b0000000010; localparam S_PCIE_TX_CMD_1 = 10'b0000000100; localparam S_PCIE_CHK_FIFO = 10'b0000001000; localparam S_PCIE_MWR_REQ = 10'b0000010000; localparam S_PCIE_MWR_ACK = 10'b0000100000; localparam S_PCIE_MWR_DONE = 10'b0001000000; localparam S_PCIE_MWR_NEXT = 10'b0010000000; localparam S_PCIE_DMA_DONE_WR_WAIT = 10'b0100000000; localparam S_PCIE_DMA_DONE_WR = 10'b1000000000; reg [9:0] cur_state; reg [9:0] next_state; reg [2:0] r_pcie_max_payload_size; reg r_pcie_tx_cmd_rd_en; reg r_pcie_tx_fifo_free_en; reg r_tx_dma_mwr_req; reg r_dma_cmd_type; reg r_dma_done_check; reg [6:0] r_hcmd_slot_tag; reg [12:2] r_pcie_tx_len; reg [12:2] r_pcie_orig_len; reg [9:2] r_pcie_tx_cur_len; reg [C_PCIE_ADDR_WIDTH-1:2] r_pcie_addr; reg r_dma_tx_done_wr_en; assign pcie_tx_cmd_rd_en = r_pcie_tx_cmd_rd_en; assign pcie_tx_fifo_free_en = r_pcie_tx_fifo_free_en; assign pcie_tx_fifo_free_len = r_pcie_tx_cur_len[9:4]; assign tx_dma_mwr_req = r_tx_dma_mwr_req; assign tx_dma_mwr_tag = 8'b0; assign tx_dma_mwr_len = {2'b0, r_pcie_tx_cur_len}; assign tx_dma_mwr_addr = r_pcie_addr; assign dma_tx_done_wr_en = r_dma_tx_done_wr_en; assign dma_tx_done_wr_data = {r_dma_cmd_type, r_dma_done_check, 1'b1, r_hcmd_slot_tag, r_pcie_orig_len}; always @ (posedge pcie_user_clk or negedge pcie_user_rst_n) begin if(pcie_user_rst_n == 0) cur_state <= S_IDLE; else cur_state <= next_state; end always @ (*) begin case(cur_state) S_IDLE: begin if(pcie_tx_cmd_empty_n == 1) next_state <= S_PCIE_TX_CMD_0; else next_state <= S_IDLE; end S_PCIE_TX_CMD_0: begin next_state <= S_PCIE_TX_CMD_1; end S_PCIE_TX_CMD_1: begin next_state <= S_PCIE_CHK_FIFO; end S_PCIE_CHK_FIFO: begin if(pcie_tx_fifo_empty_n == 1) next_state <= S_PCIE_MWR_REQ; else next_state <= S_PCIE_CHK_FIFO; end S_PCIE_MWR_REQ: begin next_state <= S_PCIE_MWR_ACK; end S_PCIE_MWR_ACK: begin if(tx_dma_mwr_req_ack == 1) next_state <= S_PCIE_MWR_DONE; else next_state <= S_PCIE_MWR_ACK; end S_PCIE_MWR_DONE: begin next_state <= S_PCIE_MWR_NEXT; end S_PCIE_MWR_NEXT: begin if(r_pcie_tx_len == 0) next_state <= S_PCIE_DMA_DONE_WR_WAIT; else next_state <= S_PCIE_CHK_FIFO; end S_PCIE_DMA_DONE_WR_WAIT: begin if(dma_tx_done_wr_rdy_n == 1) next_state <= S_PCIE_DMA_DONE_WR_WAIT; else next_state <= S_PCIE_DMA_DONE_WR; end S_PCIE_DMA_DONE_WR: begin next_state <= S_IDLE; end default: begin next_state <= S_IDLE; end endcase end always @ (posedge pcie_user_clk) begin r_pcie_max_payload_size <= pcie_max_payload_size; end always @ (posedge pcie_user_clk) begin case(cur_state) S_IDLE: begin end S_PCIE_TX_CMD_0: begin r_dma_cmd_type <= pcie_tx_cmd_rd_data[19]; r_dma_done_check <= pcie_tx_cmd_rd_data[18]; r_hcmd_slot_tag <= pcie_tx_cmd_rd_data[17:11]; r_pcie_tx_len <= {pcie_tx_cmd_rd_data[10:2], 2'b0}; end S_PCIE_TX_CMD_1: begin r_pcie_orig_len <= r_pcie_tx_len; case(r_pcie_max_payload_size) 3'b010: begin if(r_pcie_tx_len[8:7] == 0 && r_pcie_tx_len[6:2] == 0) r_pcie_tx_cur_len[9:7] <= 3'b100; else r_pcie_tx_cur_len[9:7] <= {1'b0, r_pcie_tx_len[8:7]}; end 3'b001: begin if(r_pcie_tx_len[7] == 0 && r_pcie_tx_len[6:2] == 0) r_pcie_tx_cur_len[9:7] <= 3'b010; else r_pcie_tx_cur_len[9:7] <= {2'b0, r_pcie_tx_len[7]}; end default: begin if(r_pcie_tx_len[6:2] == 0) r_pcie_tx_cur_len[9:7] <= 3'b001; else r_pcie_tx_cur_len[9:7] <= 3'b000; end endcase r_pcie_tx_cur_len[6:2] <= r_pcie_tx_len[6:2]; r_pcie_addr <= {pcie_tx_cmd_rd_data[33:2], 2'b0}; end S_PCIE_CHK_FIFO: begin end S_PCIE_MWR_REQ: begin end S_PCIE_MWR_ACK: begin end S_PCIE_MWR_DONE: begin r_pcie_addr <= r_pcie_addr + r_pcie_tx_cur_len; r_pcie_tx_len <= r_pcie_tx_len - r_pcie_tx_cur_len; case(r_pcie_max_payload_size) 3'b010: r_pcie_tx_cur_len <= 8'h80; 3'b001: r_pcie_tx_cur_len <= 8'h40; default: r_pcie_tx_cur_len <= 8'h20; endcase end S_PCIE_MWR_NEXT: begin end S_PCIE_DMA_DONE_WR_WAIT: begin end S_PCIE_DMA_DONE_WR: begin end default: begin end endcase end always @ (*) begin case(cur_state) S_IDLE: begin r_pcie_tx_cmd_rd_en <= 0; r_pcie_tx_fifo_free_en <= 0; r_tx_dma_mwr_req <= 0; r_dma_tx_done_wr_en <= 0; end S_PCIE_TX_CMD_0: begin r_pcie_tx_cmd_rd_en <= 1; r_pcie_tx_fifo_free_en <= 0; r_tx_dma_mwr_req <= 0; r_dma_tx_done_wr_en <= 0; end S_PCIE_TX_CMD_1: begin r_pcie_tx_cmd_rd_en <= 1; r_pcie_tx_fifo_free_en <= 0; r_tx_dma_mwr_req <= 0; r_dma_tx_done_wr_en <= 0; end S_PCIE_CHK_FIFO: begin r_pcie_tx_cmd_rd_en <= 0; r_pcie_tx_fifo_free_en <= 0; r_tx_dma_mwr_req <= 0; r_dma_tx_done_wr_en <= 0; end S_PCIE_MWR_REQ: begin r_pcie_tx_cmd_rd_en <= 0; r_pcie_tx_fifo_free_en <= 1; r_tx_dma_mwr_req <= 1; r_dma_tx_done_wr_en <= 0; end S_PCIE_MWR_ACK: begin r_pcie_tx_cmd_rd_en <= 0; r_pcie_tx_fifo_free_en <= 0; r_tx_dma_mwr_req <= 0; r_dma_tx_done_wr_en <= 0; end S_PCIE_MWR_DONE: begin r_pcie_tx_cmd_rd_en <= 0; r_pcie_tx_fifo_free_en <= 0; r_tx_dma_mwr_req <= 0; r_dma_tx_done_wr_en <= 0; end S_PCIE_MWR_NEXT: begin r_pcie_tx_cmd_rd_en <= 0; r_pcie_tx_fifo_free_en <= 0; r_tx_dma_mwr_req <= 0; r_dma_tx_done_wr_en <= 0; end S_PCIE_DMA_DONE_WR_WAIT: begin r_pcie_tx_cmd_rd_en <= 0; r_pcie_tx_fifo_free_en <= 0; r_tx_dma_mwr_req <= 0; r_dma_tx_done_wr_en <= 0; end S_PCIE_DMA_DONE_WR: begin r_pcie_tx_cmd_rd_en <= 0; r_pcie_tx_fifo_free_en <= 0; r_tx_dma_mwr_req <= 0; r_dma_tx_done_wr_en <= 1; end default: begin r_pcie_tx_cmd_rd_en <= 0; r_pcie_tx_fifo_free_en <= 0; r_tx_dma_mwr_req <= 0; r_dma_tx_done_wr_en <= 0; end endcase end endmodule
module serial_tx #( parameter CLK_PER_BIT = 50 )( input clk, input rst, output tx, input block, output busy, input [7:0] data, input new_data ); // clog2 is 'ceiling of log base 2' which gives you the number of bits needed to store a value parameter CTR_SIZE = $clog2(CLK_PER_BIT); localparam STATE_SIZE = 2; localparam IDLE = 2'd0, START_BIT = 2'd1, DATA = 2'd2, STOP_BIT = 2'd3; reg [CTR_SIZE-1:0] ctr_d, ctr_q; reg [2:0] bit_ctr_d, bit_ctr_q; reg [7:0] data_d, data_q; reg [STATE_SIZE-1:0] state_d, state_q = IDLE; reg tx_d, tx_q; reg busy_d, busy_q; reg block_d, block_q; assign tx = tx_q; assign busy = busy_q; always @(*) begin block_d = block; ctr_d = ctr_q; bit_ctr_d = bit_ctr_q; data_d = data_q; state_d = state_q; busy_d = busy_q; case (state_q) IDLE: begin if (block_q) begin busy_d = 1'b1; tx_d = 1'b1; end else begin busy_d = 1'b0; tx_d = 1'b1; bit_ctr_d = 3'b0; ctr_d = 1'b0; if (new_data) begin data_d = data; state_d = START_BIT; busy_d = 1'b1; end end end START_BIT: begin busy_d = 1'b1; ctr_d = ctr_q + 1'b1; tx_d = 1'b0; if (ctr_q == CLK_PER_BIT - 1) begin ctr_d = 1'b0; state_d = DATA; end end DATA: begin busy_d = 1'b1; tx_d = data_q[bit_ctr_q]; ctr_d = ctr_q + 1'b1; if (ctr_q == CLK_PER_BIT - 1) begin ctr_d = 1'b0; bit_ctr_d = bit_ctr_q + 1'b1; if (bit_ctr_q == 7) begin state_d = STOP_BIT; end end end STOP_BIT: begin busy_d = 1'b1; tx_d = 1'b1; ctr_d = ctr_q + 1'b1; if (ctr_q == CLK_PER_BIT - 1) begin state_d = IDLE; end end default: begin state_d = IDLE; end endcase end always @(posedge clk) begin if (rst) begin state_q <= IDLE; tx_q <= 1'b1; end else begin state_q <= state_d; tx_q <= tx_d; end block_q <= block_d; data_q <= data_d; bit_ctr_q <= bit_ctr_d; ctr_q <= ctr_d; busy_q <= busy_d; end endmodule
module serial_tx #( parameter CLK_PER_BIT = 50 )( input clk, input rst, output tx, input block, output busy, input [7:0] data, input new_data ); // clog2 is 'ceiling of log base 2' which gives you the number of bits needed to store a value parameter CTR_SIZE = $clog2(CLK_PER_BIT); localparam STATE_SIZE = 2; localparam IDLE = 2'd0, START_BIT = 2'd1, DATA = 2'd2, STOP_BIT = 2'd3; reg [CTR_SIZE-1:0] ctr_d, ctr_q; reg [2:0] bit_ctr_d, bit_ctr_q; reg [7:0] data_d, data_q; reg [STATE_SIZE-1:0] state_d, state_q = IDLE; reg tx_d, tx_q; reg busy_d, busy_q; reg block_d, block_q; assign tx = tx_q; assign busy = busy_q; always @(*) begin block_d = block; ctr_d = ctr_q; bit_ctr_d = bit_ctr_q; data_d = data_q; state_d = state_q; busy_d = busy_q; case (state_q) IDLE: begin if (block_q) begin busy_d = 1'b1; tx_d = 1'b1; end else begin busy_d = 1'b0; tx_d = 1'b1; bit_ctr_d = 3'b0; ctr_d = 1'b0; if (new_data) begin data_d = data; state_d = START_BIT; busy_d = 1'b1; end end end START_BIT: begin busy_d = 1'b1; ctr_d = ctr_q + 1'b1; tx_d = 1'b0; if (ctr_q == CLK_PER_BIT - 1) begin ctr_d = 1'b0; state_d = DATA; end end DATA: begin busy_d = 1'b1; tx_d = data_q[bit_ctr_q]; ctr_d = ctr_q + 1'b1; if (ctr_q == CLK_PER_BIT - 1) begin ctr_d = 1'b0; bit_ctr_d = bit_ctr_q + 1'b1; if (bit_ctr_q == 7) begin state_d = STOP_BIT; end end end STOP_BIT: begin busy_d = 1'b1; tx_d = 1'b1; ctr_d = ctr_q + 1'b1; if (ctr_q == CLK_PER_BIT - 1) begin state_d = IDLE; end end default: begin state_d = IDLE; end endcase end always @(posedge clk) begin if (rst) begin state_q <= IDLE; tx_q <= 1'b1; end else begin state_q <= state_d; tx_q <= tx_d; end block_q <= block_d; data_q <= data_d; bit_ctr_q <= bit_ctr_d; ctr_q <= ctr_d; busy_q <= busy_d; end endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2003 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc; initial cyc=1; // verilator lint_off UNOPT // verilator lint_off UNOPTFLAT reg [31:0] runner; initial runner = 5; reg [31:0] runnerm1; reg [59:0] runnerq; reg [89:0] runnerw; always @ (posedge clk) begin if (cyc!=0) begin cyc <= cyc + 1; if (cyc==1) begin `ifdef verilator if (runner != 0) $stop; // Initial settlement failed `endif end if (cyc==2) begin runner = 20; runnerq = 60'h0; runnerw = 90'h0; end if (cyc==3) begin if (runner != 0) $stop; $write("*-* All Finished *-*\n"); $finish; end end end // This forms a "loop" where we keep going through the always till runner=0 // This isn't "regular" beh code, but insures our change detection is working properly always @ (/*AS*/runner) begin runnerm1 = runner - 32'd1; end always @ (/*AS*/runnerm1) begin if (runner > 0) begin runner = runnerm1; runnerq = runnerq - 60'd1; runnerw = runnerw - 90'd1; $write ("[%0t] runner=%d\n", $time, runner); end end endmodule
//Legal Notice: (C)2016 Altera Corporation. All rights reserved. Your //use of Altera Corporation's design tools, logic functions and other //software and tools, and its AMPP partner logic functions, and any //output files any of the foregoing (including device programming or //simulation files), and any associated documentation or information are //expressly subject to the terms and conditions of the Altera Program //License Subscription Agreement or other applicable license agreement, //including, without limitation, that your use is for the sole purpose //of programming logic devices manufactured by Altera and sold by Altera //or its authorized distributors. Please refer to the applicable //agreement for further details. // synthesis translate_off `timescale 1ns / 1ps // synthesis translate_on // turn off superfluous verilog processor warnings // altera message_level Level1 // altera message_off 10034 10035 10036 10037 10230 10240 10030 module niosii_pio_0 ( // inputs: address, chipselect, clk, reset_n, write_n, writedata, // outputs: out_port, readdata ) ; output [ 7: 0] out_port; output [ 31: 0] readdata; input [ 1: 0] address; input chipselect; input clk; input reset_n; input write_n; input [ 31: 0] writedata; wire clk_en; reg [ 7: 0] data_out; wire [ 7: 0] out_port; wire [ 7: 0] read_mux_out; wire [ 31: 0] readdata; assign clk_en = 1; //s1, which is an e_avalon_slave assign read_mux_out = {8 {(address == 0)}} & data_out; always @(posedge clk or negedge reset_n) begin if (reset_n == 0) data_out <= 0; else if (chipselect && ~write_n && (address == 0)) data_out <= writedata[7 : 0]; end assign readdata = {32'b0 | read_mux_out}; assign out_port = data_out; endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2008 by Wilson Snyder. module t ( input wire CLK, output reg RESET ); neg neg (.clk(CLK)); little little (.clk(CLK)); glbl glbl (); // A vector logic [2:1] vec [4:3]; integer val = 0; always @ (posedge CLK) begin if (RESET) val <= 0; else val <= val + 1; vec[3] <= val[1:0]; vec[4] <= val[3:2]; end initial RESET = 1'b1; always @ (posedge CLK) RESET <= glbl.GSR; endmodule module glbl(); `ifdef PUB_FUNC wire GSR; task setGSR; /* verilator public */ input value; GSR = value; endtask `else wire GSR /*verilator public*/; `endif endmodule module neg ( input clk ); reg [0:-7] i8; initial i8 = '0; reg [-1:-48] i48; initial i48 = '0; reg [63:-64] i128; initial i128 = '0; always @ (posedge clk) begin i8 <= ~i8; i48 <= ~i48; i128 <= ~i128; end endmodule module little ( input clk ); // verilator lint_off LITENDIAN reg [0:7] i8; initial i8 = '0; reg [1:49] i48; initial i48 = '0; reg [63:190] i128; initial i128 = '0; // verilator lint_on LITENDIAN always @ (posedge clk) begin i8 <= ~i8; i48 <= ~i48; i128 <= ~i128; end endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2008 by Wilson Snyder. module t ( input wire CLK, output reg RESET ); neg neg (.clk(CLK)); little little (.clk(CLK)); glbl glbl (); // A vector logic [2:1] vec [4:3]; integer val = 0; always @ (posedge CLK) begin if (RESET) val <= 0; else val <= val + 1; vec[3] <= val[1:0]; vec[4] <= val[3:2]; end initial RESET = 1'b1; always @ (posedge CLK) RESET <= glbl.GSR; endmodule module glbl(); `ifdef PUB_FUNC wire GSR; task setGSR; /* verilator public */ input value; GSR = value; endtask `else wire GSR /*verilator public*/; `endif endmodule module neg ( input clk ); reg [0:-7] i8; initial i8 = '0; reg [-1:-48] i48; initial i48 = '0; reg [63:-64] i128; initial i128 = '0; always @ (posedge clk) begin i8 <= ~i8; i48 <= ~i48; i128 <= ~i128; end endmodule module little ( input clk ); // verilator lint_off LITENDIAN reg [0:7] i8; initial i8 = '0; reg [1:49] i48; initial i48 = '0; reg [63:190] i128; initial i128 = '0; // verilator lint_on LITENDIAN always @ (posedge clk) begin i8 <= ~i8; i48 <= ~i48; i128 <= ~i128; end endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2008 by Wilson Snyder. module t ( input wire CLK, output reg RESET ); neg neg (.clk(CLK)); little little (.clk(CLK)); glbl glbl (); // A vector logic [2:1] vec [4:3]; integer val = 0; always @ (posedge CLK) begin if (RESET) val <= 0; else val <= val + 1; vec[3] <= val[1:0]; vec[4] <= val[3:2]; end initial RESET = 1'b1; always @ (posedge CLK) RESET <= glbl.GSR; endmodule module glbl(); `ifdef PUB_FUNC wire GSR; task setGSR; /* verilator public */ input value; GSR = value; endtask `else wire GSR /*verilator public*/; `endif endmodule module neg ( input clk ); reg [0:-7] i8; initial i8 = '0; reg [-1:-48] i48; initial i48 = '0; reg [63:-64] i128; initial i128 = '0; always @ (posedge clk) begin i8 <= ~i8; i48 <= ~i48; i128 <= ~i128; end endmodule module little ( input clk ); // verilator lint_off LITENDIAN reg [0:7] i8; initial i8 = '0; reg [1:49] i48; initial i48 = '0; reg [63:190] i128; initial i128 = '0; // verilator lint_on LITENDIAN always @ (posedge clk) begin i8 <= ~i8; i48 <= ~i48; i128 <= ~i128; end endmodule
/* salsaengine.v * * Copyright (c) 2013 kramble * Parts copyright (c) 2011 [email protected] * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * */ // NB HALFRAM no longer applies, configure via parameters ADDRBITS, THREADS // Bracket this config option in SIM so we don't accidentally leave it set in a live build `ifdef SIM //`define ONETHREAD // Start one thread only (for SIMULATION less confusing and faster startup) `endif `timescale 1ns/1ps module salsaengine (hash_clk, reset, din, dout, shift, start, busy, result ); input hash_clk; input reset; // NB pbkdf_clk domain (need a long reset (at least THREADS+4) to initialize correctly, this is done in pbkdfengine (15 cycles) input shift; input start; // NB pbkdf_clk domain output busy; output reg result = 1'b0; parameter SBITS = 8; // Shift data path width input [SBITS-1:0] din; output [SBITS-1:0] dout; // Configure ADDRBITS to allocate RAM for core (automatically sets LOOKAHEAD_GAP) // NB do not use ADDRBITS > 13 for THREADS=8 since this corresponds to more than a full scratchpad // These settings are now overriden in ltcminer_icarus.v determined by LOCAL_MINERS ... // parameter ADDRBITS = 13; // 8MBit RAM allocated to core, full scratchpad (will not fit LX150) parameter ADDRBITS = 12; // 4MBit RAM allocated to core, half scratchpad // parameter ADDRBITS = 11; // 2MBit RAM allocated to core, quarter scratchpad // parameter ADDRBITS = 10; // 1MBit RAM allocated to core, eighth scratchpad // Do not change THREADS - this must match the salsa pipeline (code is untested for other values) parameter THREADS = 16; // NB Phase has THREADS+1 cycles function integer clog2; // Courtesy of razorfishsl, replaces $clog2() input integer value; begin value = value-1; for (clog2=0; value>0; clog2=clog2+1) value = value>>1; end endfunction parameter THREADS_BITS = clog2(THREADS); // Workaround for range-reversal error in inactive code when ADDRBITS=13 parameter ADDRBITSX = (ADDRBITS == 13) ? ADDRBITS-1 : ADDRBITS; reg [THREADS_BITS:0]phase = 0; reg [THREADS_BITS:0]phase_d = THREADS+1; reg reset_d=0, fsmreset=0, start_d=0, fsmstart=0; always @ (posedge hash_clk) // Phase control and sync begin phase <= (phase == THREADS) ? 0 : phase + 1; phase_d <= phase; reset_d <= reset; // Synchronise to hash_clk domain fsmreset <= reset_d; start_d <= start; fsmstart <= start_d; end // Salsa Mix FSM (handles both loading of the scratchpad ROM and the subsequent processing) parameter XSnull = 0, XSload = 1, XSmix = 2, XSram = 4; // One-hot since these map directly to mux contrls reg [2:0] XCtl = XSnull; parameter R_IDLE=0, R_START=1, R_WRITE=2, R_MIX=3, R_INT=4, R_WAIT=5; reg [2:0] mstate = R_IDLE; reg [10:0] cycle = 11'd0; reg doneROM = 1'd0; // Yes ROM, as its referred thus in the salsa docs reg addrsourceMix = 1'b0; reg datasourceLoad = 1'b0; reg addrsourceSave = 1'b0; reg resultsourceRam = 1'b0; reg xoren = 1'b1; reg [THREADS_BITS+1:0] intcycles = 0; // Number of interpolation cycles required ... How many do we need? Say THREADS_BITS+1 wire [511:0] Xmix; reg [511:0] X0; reg [511:0] X1; wire [511:0] X0in; wire [511:0] X1in; wire [511:0] X0out; reg [1023:0] salsaShiftReg; reg [31:0] nonce_sr; // In series with salsaShiftReg assign dout = salsaShiftReg[1023:1024-SBITS]; // sstate is implemented in ram (alternatively could use a rotating shift register) reg [THREADS_BITS+30:0] sstate [THREADS-1:0]; // NB initialized via a long reset (see pbkdfengine) // List components of sstate here for ease of maintenance ... wire [2:0] mstate_in; wire [10:0] cycle_in; wire [9:0] writeaddr_in; wire doneROM_in; wire addrsourceMix_in; wire addrsourceSave_in; wire [THREADS_BITS+1:0] intcycles_in; // How many do we need? Say THREADS_BITS+1 wire [9:0] writeaddr_next = writeaddr_in + 10'd1; reg [31:0] snonce [THREADS-1:0]; // Nonce store. Note bidirectional loading below, this will either implement // as registers or dual-port ram, so do NOT integrate with sstate. // NB no busy_in or result_in as these flag are NOT saved on a per-thread basis // Convert salsaShiftReg to little-endian word format to match scrypt.c as its easier to debug it // this way rather than recoding the SMix salsa to work with original buffer wire [1023:0] X; `define IDX(x) (((x)+1)*(32)-1):((x)*(32)) genvar i; generate for (i = 0; i < 32; i = i + 1) begin : Xrewire wire [31:0] tmp; assign tmp = salsaShiftReg[`IDX(i)]; assign X[`IDX(i)] = { tmp[7:0], tmp[15:8], tmp[23:16], tmp[31:24] }; end endgenerate // NB writeaddr is cycle counter in R_WRITE so use full size regardless of RAM size (* S = "TRUE" *) reg [9:0] writeaddr = 10'd0; // ALTRAM Max is 256 bit width, so use four // Ram is registered on inputs vis ram_addr, ram_din and ram_wren // Output is unregistered, OLD data on write (less delay than NEW??) wire [9:0] Xaddr; wire [ADDRBITS-1:0]rd_addr; wire [ADDRBITS-1:0]wr_addr1; wire [ADDRBITS-1:0]wr_addr2; wire [ADDRBITS-1:0]wr_addr3; wire [ADDRBITS-1:0]wr_addr4; wire [255:0]ram1_din; wire [255:0]ram1_dout; wire [255:0]ram2_din; wire [255:0]ram2_dout; wire [255:0]ram3_din; wire [255:0]ram3_dout; wire [255:0]ram4_din; wire [255:0]ram4_dout; wire [1023:0]ramout; (* S = "TRUE" *) reg ram_wren = 1'b0; wire ram_clk; assign ram_clk = hash_clk; // Uses same clock as hasher for now // Top ram address is reserved for X0Save/X1save, so adjust wire [15:0] memtop = 16'hfffe; // One less than the top memory location (per THREAD bank) wire [ADDRBITS-THREADS_BITS-1:0] adj_addr; if (ADDRBITS < 13) assign adj_addr = (Xaddr[9:THREADS_BITS+10-ADDRBITS] == memtop[9:THREADS_BITS+10-ADDRBITS]) ? memtop[ADDRBITS-THREADS_BITS-1:0] : Xaddr[9:THREADS_BITS+10-ADDRBITS]; else assign adj_addr = Xaddr; wire [THREADS_BITS-1:0] phase_addr; assign phase_addr = phase[THREADS_BITS-1:0]; // TODO can we remove the +1 and adjust the wr_addr to use the same prefix via phase_d? assign rd_addr = { phase_addr+1, addrsourceSave_in ? memtop[ADDRBITS-THREADS_BITS:1] : adj_addr }; // LSB are ignored wire [9:0] writeaddr_adj = addrsourceMix ? memtop[10:1] : writeaddr; assign wr_addr1 = { phase_addr, writeaddr_adj[9:THREADS_BITS+10-ADDRBITS] }; assign wr_addr2 = { phase_addr, writeaddr_adj[9:THREADS_BITS+10-ADDRBITS] }; assign wr_addr3 = { phase_addr, writeaddr_adj[9:THREADS_BITS+10-ADDRBITS] }; assign wr_addr4 = { phase_addr, writeaddr_adj[9:THREADS_BITS+10-ADDRBITS] }; // Duplicate address to reduce fanout (its a ridiculous kludge, but seems to be the approved method) (* S = "TRUE" *) reg [ADDRBITS-1:0] rd_addr_z_1 = 0; (* S = "TRUE" *) reg [ADDRBITS-1:0] rd_addr_z_2 = 0; (* S = "TRUE" *) reg [ADDRBITS-1:0] rd_addr_z_3 = 0; (* S = "TRUE" *) reg [ADDRBITS-1:0] rd_addr_z_4 = 0; (* S = "TRUE" *) wire [ADDRBITS-1:0] rd_addr1 = rd_addr | rd_addr_z_1; (* S = "TRUE" *) wire [ADDRBITS-1:0] rd_addr2 = rd_addr | rd_addr_z_2; (* S = "TRUE" *) wire [ADDRBITS-1:0] rd_addr3 = rd_addr | rd_addr_z_3; (* S = "TRUE" *) wire [ADDRBITS-1:0] rd_addr4 = rd_addr | rd_addr_z_4; ram # (.ADDRBITS(ADDRBITS)) ram1_blk (rd_addr1, wr_addr1, ram_clk, ram1_din, ram_wren, ram1_dout); ram # (.ADDRBITS(ADDRBITS)) ram2_blk (rd_addr2, wr_addr2, ram_clk, ram2_din, ram_wren, ram2_dout); ram # (.ADDRBITS(ADDRBITS)) ram3_blk (rd_addr3, wr_addr3, ram_clk, ram3_din, ram_wren, ram3_dout); ram # (.ADDRBITS(ADDRBITS)) ram4_blk (rd_addr4, wr_addr4, ram_clk, ram4_din, ram_wren, ram4_dout); assign ramout = { ram4_dout, ram3_dout, ram2_dout, ram1_dout }; // Unregistered output assign { ram4_din, ram3_din, ram2_din, ram1_din } = datasourceLoad ? X : { Xmix, X0out}; // Registered input // Salsa unit salsa salsa_blk (hash_clk, X0, X1, Xmix, X0out, Xaddr); // Main multiplexer wire [511:0] Zbits; assign Zbits = {512{xoren}}; // xoren enables xor from ram (else we load from ram) // With luck the synthesizer will interpret this correctly as one-hot control ... // DEBUG using default state of 0 for XSnull so as to show up issues with preserved values (previously held value X0/X1) // assign X0in = (XCtl==XSmix) ? X0out : (XCtl==XSram) ? (X0out & Zbits) ^ ramout[511:0] : (XCtl==XSload) ? X[511:0] : 0; // assign X1in = (XCtl==XSmix) ? Xmix : (XCtl==XSram) ? (Xmix & Zbits) ^ ramout[1023:512] : (XCtl==XSload) ? X[1023:512] : 0; // Now using explicit control signals (rather than relying on synthesizer to map correctly) // XSMix is now the default (XSnull is unused as this mapped onto zero in the DEBUG version above) - TODO amend FSM accordingly assign X0in = XCtl[2] ? (X0out & Zbits) ^ ramout[511:0] : XCtl[0] ? X[511:0] : X0out; assign X1in = XCtl[2] ? (Xmix & Zbits) ^ ramout[1023:512] : XCtl[0] ? X[1023:512] : Xmix; // Salsa FSM - TODO may want to move this into a separate function (for floorplanning), see hashvariant-C // Hold separate state for each thread (a bit of a kludge to avoid rewriting FSM from scratch) // NB must ensure shift and result do NOT overlap by carefully controlling timing of start signal // NB Phase has THREADS+1 cycles, but we do not save the state for (phase==THREADS) as it is never active assign { mstate_in, writeaddr_in, cycle_in, doneROM_in, addrsourceMix_in, addrsourceSave_in, intcycles_in} = (phase == THREADS ) ? 0 : sstate[phase]; // Interface FSM ensures threads start evenly (required for correct salsa FSM operation) reg busy_flag = 1'b0; `ifdef ONETHREAD // TEST CONTROLLER ... just allow a single thread to run (busy is currently a common flag) // NB the thread automatically restarts after it completes, so its a slight misnomer to say it starts once. reg start_once = 1'b0; wire start_flag; assign start_flag = fsmstart & ~start_once; assign busy = busy_flag; // Ack to pbkdfengine `else // NB start_flag only has effect when a thread is at R_IDLE, ie after reset, normally a thread will automatically // restart on completion. We need to spread the R_IDLE starts evenly to ensure proper ooperation. NB the pbkdf // engine requires busy and result, but this looks alter itself in the salsa FSM, even though these are global // flags. Reset periodically (on loadnonce in pbkdfengine) to ensure it stays in sync. reg [15:0] start_count = 0; // TODO automatic configuration (currently assumes THREADS 8 or 16, and ADDRBITS 12,11,10 calculated as follows...) // For THREADS=8, lookup_gap=2 salsa takes on average 9*(1024+(1024*1.5)) = 23040 clocks, generically 9*1024*(lookup_gap/2+1.5) // For THREADS=16, use 17*1024*(lookup_gap/2+1.5), where lookupgap is double that for THREADS=8 parameter START_INTERVAL = (THREADS==16) ? ((ADDRBITS==12) ? 60928 : (ADDRBITS==11) ? 95744 : 165376) / THREADS : // 16 threads ((ADDRBITS==12) ? 23040 : (ADDRBITS==11) ? 36864 : 50688) / THREADS ; // 8 threads reg start_flag = 1'b0; assign busy = busy_flag; // Ack to pbkdfengine - this will toggle on transtion through R_START `endif always @ (posedge hash_clk) begin X0 <= X0in; X1 <= X1in; if (phase_d != THREADS) sstate[phase_d] <= fsmreset ? 0 : { mstate, writeaddr, cycle, doneROM, addrsourceMix, addrsourceSave, intcycles }; mstate <= mstate_in; // Set defaults (overridden below as necessary) writeaddr <= writeaddr_in; cycle <= cycle_in; intcycles <= intcycles_in; doneROM <= doneROM_in; addrsourceMix <= addrsourceMix_in; addrsourceSave <= addrsourceSave_in; // Overwritten below, but addrsourceSave_in is used above // Duplicate address to reduce fanout (its a ridiculous kludge, but seems to be the approved method) rd_addr_z_1 <= {ADDRBITS{fsmreset}}; rd_addr_z_2 <= {ADDRBITS{fsmreset}}; rd_addr_z_3 <= {ADDRBITS{fsmreset}}; rd_addr_z_4 <= {ADDRBITS{fsmreset}}; XCtl <= XSnull; // Default states addrsourceSave <= 0; // NB addrsourceSave_in is the active control so this DOES need to be in sstate datasourceLoad <= 0; // Does not need to be saved in sstate resultsourceRam <= 0; // Does not need to be saved in sstate ram_wren <= 0; xoren <= 1; // Interface FSM ensures threads start evenly (required for correct salsa FSM operation) `ifdef ONETHREAD if (fsmstart && phase!=THREADS) start_once <= 1'b1; if (fsmreset) start_once <= 1'b0; `else start_count <= start_count + 1; // start_flag <= 1'b0; // Done below when we transition out of R_IDLE if (fsmreset || start_count == START_INTERVAL) begin start_count <= 0; if (~fsmreset && fsmstart) start_flag <= 1'b1; end `endif // Could use explicit mux for this ... if (shift) begin salsaShiftReg <= { salsaShiftReg[1023-SBITS:0], nonce_sr[31:32-SBITS] }; nonce_sr <= { nonce_sr[31-SBITS:0], din}; end else if (XCtl==XSload && phase_d != THREADS) // Set at end of previous hash - this is executed regardless of phase begin salsaShiftReg <= resultsourceRam ? ramout : { Xmix, X0out }; // Simultaneously with XSload nonce_sr <= snonce[phase_d]; // NB bidirectional load snonce[phase_d] <= nonce_sr; end if (fsmreset == 1'b1) begin mstate <= R_IDLE; // This will propagate to all sstate slots as we hold reset for 10 cycles busy_flag <= 1'b0; result <= 1'b0; end else begin case (mstate_in) R_IDLE: begin // R_IDLE only applies after reset. Normally each thread will reenter at S_START and // assumes that input data is waiting (this relies on the threads being started evenly, // hence the interface FSM at the top of this file) if (phase!=THREADS && start_flag) // Ensure (phase==THREADS) slot is never active begin XCtl <= XSload; // First time only (normally done at end of previous salsa cycle=1023) `ifndef ONETHREAD start_flag <= 1'b0; `endif busy_flag <= 1'b0; // Toggle the busy flag low to ack pbkdfengine (its usually already set // since other threads are running) writeaddr <= 0; // Preset to write X on next cycle addrsourceMix <= 1'b0; datasourceLoad <= 1'b1; ram_wren <= 1'b1; mstate <= R_START; end end R_START: begin // Reentry point after thread completion. ASSUMES new data is ready. XCtl <= XSmix; writeaddr <= writeaddr_next; cycle <= 0; if (ADDRBITS == 13) ram_wren <= 1'b1; // Full scratchpad needs to write to addr=001 next cycle doneROM <= 1'b0; busy_flag <= 1'b1; result <= 1'b0; mstate <= R_WRITE; end R_WRITE: begin XCtl <= XSmix; writeaddr <= writeaddr_next; if (writeaddr_in==1022) doneROM <= 1'b1; // Need to do one more cycle to update X0,X1 else if (~doneROM_in) begin if (ADDRBITS < 13) ram_wren <= ~|writeaddr_next[THREADS_BITS+9-ADDRBITSX:0]; // Only write non-interpolated addresses else ram_wren <= 1'b1; end if (doneROM_in) begin addrsourceMix <= 1'b1; // Remains set for duration of R_MIX mstate <= R_MIX; XCtl <= XSram; // Load from ram next cycle // Need this to cover the case of the initial read being interpolated // NB CODE IS REPLICATED IN R_MIX if (ADDRBITS < 13) begin intcycles <= { {THREADS_BITS+12-ADDRBITSX{1'b0}}, Xaddr[THREADS_BITS+9-ADDRBITSX:0] }; // Interpolated addresses if ( Xaddr[9:THREADS_BITS+10-ADDRBITSX] == memtop[ADDRBITSX-THREADS_BITS:1] ) // Highest address reserved intcycles <= { {THREADS_BITS+11-ADDRBITSX{1'b0}}, 1'b1, Xaddr[THREADS_BITS+9-ADDRBITSX:0] }; if ( (Xaddr[9:THREADS_BITS+10-ADDRBITSX] == memtop[ADDRBITSX-THREADS_BITS:1]) || |Xaddr[THREADS_BITS+9-ADDRBITSX:0] ) begin ram_wren <= 1'b1; xoren <= 0; // Will do direct load from ram, not xor mstate <= R_INT; // Interpolate end // If intcycles will be set to 1, need to preset for readback if ( ( Xaddr[THREADS_BITS+9-ADDRBITSX:0] == 1 ) && !( Xaddr[9:THREADS_BITS+10-ADDRBITSX] == memtop[ADDRBITSX-THREADS_BITS:1] ) ) addrsourceSave <= 1'b1; // Preset to read saved data (9 clocks later) end // END REPLICATED BLOCK end end R_MIX: begin // NB There is an extra step here cf R_WRITE above to read ram data hence 9 not 8 stages. XCtl <= XSmix; cycle <= cycle_in + 11'd1; if (cycle_in==1023) begin busy_flag <= 1'b0; // Will hold at 0 for 9 clocks until set at R_START if (fsmstart) // Check data input is ready begin XCtl <= XSload; // Initial load else we overwrite input NB This is // executed on the next cycle, regardless of phase // Flag the SHA256 FSM to start final PBKDF2_SHA256_80_128_32 result <= 1'b1; mstate <= R_START; // Restart immediately writeaddr <= 0; // Preset to write X on next cycle datasourceLoad <= 1'b1; addrsourceMix <= 1'b0; ram_wren <= 1'b1; end else begin // mstate <= R_IDLE; // Wait for start_flag mstate <= R_WAIT; addrsourceSave <= 1'b1; // Preset to read saved data (9 clocks later) ram_wren <= 1'b1; // Save result end end else begin XCtl <= XSram; // Load from ram next cycle // NB CODE IS REPLICATED IN R_WRITE if (ADDRBITS < 13) begin intcycles <= { {THREADS_BITS+12-ADDRBITSX{1'b0}}, Xaddr[THREADS_BITS+9-ADDRBITSX:0] }; // Interpolated addresses if ( Xaddr[9:THREADS_BITS+10-ADDRBITSX] == memtop[ADDRBITSX-THREADS_BITS:1] ) // Highest address reserved intcycles <= { {THREADS_BITS+11-ADDRBITSX{1'b0}}, 1'b1, Xaddr[THREADS_BITS+9-ADDRBITSX:0] }; if ( (Xaddr[9:THREADS_BITS+10-ADDRBITSX] == memtop[ADDRBITSX-THREADS_BITS:1]) || |Xaddr[THREADS_BITS+9-ADDRBITSX:0] ) begin ram_wren <= 1'b1; xoren <= 0; // Will do direct load from ram, not xor mstate <= R_INT; // Interpolate end // If intcycles will be set to 1, need to preset for readback if ( ( Xaddr[THREADS_BITS+9-ADDRBITSX:0] == 1 ) && !( Xaddr[9:THREADS_BITS+10-ADDRBITSX] == memtop[ADDRBITSX-THREADS_BITS:1] ) ) addrsourceSave <= 1'b1; // Preset to read saved data (9 clocks later) end // END REPLICATED BLOCK end end R_WAIT: begin if (fsmstart) // Check data input is ready begin XCtl <= XSload; // Initial load else we overwrite input NB This is // executed on the next cycle, regardless of phase // Flag the SHA256 FSM to start final PBKDF2_SHA256_80_128_32 result <= 1'b1; mstate <= R_START; // Restart immediately writeaddr <= 0; // Preset to write X on next cycle datasourceLoad <= 1'b1; resultsourceRam <= 1'b1; addrsourceMix <= 1'b0; ram_wren <= 1'b1; end else addrsourceSave <= 1'b1; // Preset to read saved data (9 clocks later) end R_INT: begin // Interpolate scratchpad for odd addresses XCtl <= XSmix; intcycles <= intcycles_in - 1; if (intcycles_in==2) addrsourceSave <= 1'b1; // Preset to read saved data (9 clocks later) if (intcycles_in==1) begin XCtl <= XSram; // Setup to XOR from saved X0/X1 in ram at next cycle mstate <= R_MIX; end // Else mstate remains at R_INT so we continue interpolating end endcase end `ifdef SIM // Print the final Xmix for each cycle to compare with scrypt.c (debugging) if (mstate==R_MIX) $display ("phase %d cycle %d Xmix %08x\n", phase, cycle-1, Xmix[511:480]); `endif end // always @(posedge hash_clk) endmodule
/* salsaengine.v * * Copyright (c) 2013 kramble * Parts copyright (c) 2011 [email protected] * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * */ // NB HALFRAM no longer applies, configure via parameters ADDRBITS, THREADS // Bracket this config option in SIM so we don't accidentally leave it set in a live build `ifdef SIM //`define ONETHREAD // Start one thread only (for SIMULATION less confusing and faster startup) `endif `timescale 1ns/1ps module salsaengine (hash_clk, reset, din, dout, shift, start, busy, result ); input hash_clk; input reset; // NB pbkdf_clk domain (need a long reset (at least THREADS+4) to initialize correctly, this is done in pbkdfengine (15 cycles) input shift; input start; // NB pbkdf_clk domain output busy; output reg result = 1'b0; parameter SBITS = 8; // Shift data path width input [SBITS-1:0] din; output [SBITS-1:0] dout; // Configure ADDRBITS to allocate RAM for core (automatically sets LOOKAHEAD_GAP) // NB do not use ADDRBITS > 13 for THREADS=8 since this corresponds to more than a full scratchpad // These settings are now overriden in ltcminer_icarus.v determined by LOCAL_MINERS ... // parameter ADDRBITS = 13; // 8MBit RAM allocated to core, full scratchpad (will not fit LX150) parameter ADDRBITS = 12; // 4MBit RAM allocated to core, half scratchpad // parameter ADDRBITS = 11; // 2MBit RAM allocated to core, quarter scratchpad // parameter ADDRBITS = 10; // 1MBit RAM allocated to core, eighth scratchpad // Do not change THREADS - this must match the salsa pipeline (code is untested for other values) parameter THREADS = 16; // NB Phase has THREADS+1 cycles function integer clog2; // Courtesy of razorfishsl, replaces $clog2() input integer value; begin value = value-1; for (clog2=0; value>0; clog2=clog2+1) value = value>>1; end endfunction parameter THREADS_BITS = clog2(THREADS); // Workaround for range-reversal error in inactive code when ADDRBITS=13 parameter ADDRBITSX = (ADDRBITS == 13) ? ADDRBITS-1 : ADDRBITS; reg [THREADS_BITS:0]phase = 0; reg [THREADS_BITS:0]phase_d = THREADS+1; reg reset_d=0, fsmreset=0, start_d=0, fsmstart=0; always @ (posedge hash_clk) // Phase control and sync begin phase <= (phase == THREADS) ? 0 : phase + 1; phase_d <= phase; reset_d <= reset; // Synchronise to hash_clk domain fsmreset <= reset_d; start_d <= start; fsmstart <= start_d; end // Salsa Mix FSM (handles both loading of the scratchpad ROM and the subsequent processing) parameter XSnull = 0, XSload = 1, XSmix = 2, XSram = 4; // One-hot since these map directly to mux contrls reg [2:0] XCtl = XSnull; parameter R_IDLE=0, R_START=1, R_WRITE=2, R_MIX=3, R_INT=4, R_WAIT=5; reg [2:0] mstate = R_IDLE; reg [10:0] cycle = 11'd0; reg doneROM = 1'd0; // Yes ROM, as its referred thus in the salsa docs reg addrsourceMix = 1'b0; reg datasourceLoad = 1'b0; reg addrsourceSave = 1'b0; reg resultsourceRam = 1'b0; reg xoren = 1'b1; reg [THREADS_BITS+1:0] intcycles = 0; // Number of interpolation cycles required ... How many do we need? Say THREADS_BITS+1 wire [511:0] Xmix; reg [511:0] X0; reg [511:0] X1; wire [511:0] X0in; wire [511:0] X1in; wire [511:0] X0out; reg [1023:0] salsaShiftReg; reg [31:0] nonce_sr; // In series with salsaShiftReg assign dout = salsaShiftReg[1023:1024-SBITS]; // sstate is implemented in ram (alternatively could use a rotating shift register) reg [THREADS_BITS+30:0] sstate [THREADS-1:0]; // NB initialized via a long reset (see pbkdfengine) // List components of sstate here for ease of maintenance ... wire [2:0] mstate_in; wire [10:0] cycle_in; wire [9:0] writeaddr_in; wire doneROM_in; wire addrsourceMix_in; wire addrsourceSave_in; wire [THREADS_BITS+1:0] intcycles_in; // How many do we need? Say THREADS_BITS+1 wire [9:0] writeaddr_next = writeaddr_in + 10'd1; reg [31:0] snonce [THREADS-1:0]; // Nonce store. Note bidirectional loading below, this will either implement // as registers or dual-port ram, so do NOT integrate with sstate. // NB no busy_in or result_in as these flag are NOT saved on a per-thread basis // Convert salsaShiftReg to little-endian word format to match scrypt.c as its easier to debug it // this way rather than recoding the SMix salsa to work with original buffer wire [1023:0] X; `define IDX(x) (((x)+1)*(32)-1):((x)*(32)) genvar i; generate for (i = 0; i < 32; i = i + 1) begin : Xrewire wire [31:0] tmp; assign tmp = salsaShiftReg[`IDX(i)]; assign X[`IDX(i)] = { tmp[7:0], tmp[15:8], tmp[23:16], tmp[31:24] }; end endgenerate // NB writeaddr is cycle counter in R_WRITE so use full size regardless of RAM size (* S = "TRUE" *) reg [9:0] writeaddr = 10'd0; // ALTRAM Max is 256 bit width, so use four // Ram is registered on inputs vis ram_addr, ram_din and ram_wren // Output is unregistered, OLD data on write (less delay than NEW??) wire [9:0] Xaddr; wire [ADDRBITS-1:0]rd_addr; wire [ADDRBITS-1:0]wr_addr1; wire [ADDRBITS-1:0]wr_addr2; wire [ADDRBITS-1:0]wr_addr3; wire [ADDRBITS-1:0]wr_addr4; wire [255:0]ram1_din; wire [255:0]ram1_dout; wire [255:0]ram2_din; wire [255:0]ram2_dout; wire [255:0]ram3_din; wire [255:0]ram3_dout; wire [255:0]ram4_din; wire [255:0]ram4_dout; wire [1023:0]ramout; (* S = "TRUE" *) reg ram_wren = 1'b0; wire ram_clk; assign ram_clk = hash_clk; // Uses same clock as hasher for now // Top ram address is reserved for X0Save/X1save, so adjust wire [15:0] memtop = 16'hfffe; // One less than the top memory location (per THREAD bank) wire [ADDRBITS-THREADS_BITS-1:0] adj_addr; if (ADDRBITS < 13) assign adj_addr = (Xaddr[9:THREADS_BITS+10-ADDRBITS] == memtop[9:THREADS_BITS+10-ADDRBITS]) ? memtop[ADDRBITS-THREADS_BITS-1:0] : Xaddr[9:THREADS_BITS+10-ADDRBITS]; else assign adj_addr = Xaddr; wire [THREADS_BITS-1:0] phase_addr; assign phase_addr = phase[THREADS_BITS-1:0]; // TODO can we remove the +1 and adjust the wr_addr to use the same prefix via phase_d? assign rd_addr = { phase_addr+1, addrsourceSave_in ? memtop[ADDRBITS-THREADS_BITS:1] : adj_addr }; // LSB are ignored wire [9:0] writeaddr_adj = addrsourceMix ? memtop[10:1] : writeaddr; assign wr_addr1 = { phase_addr, writeaddr_adj[9:THREADS_BITS+10-ADDRBITS] }; assign wr_addr2 = { phase_addr, writeaddr_adj[9:THREADS_BITS+10-ADDRBITS] }; assign wr_addr3 = { phase_addr, writeaddr_adj[9:THREADS_BITS+10-ADDRBITS] }; assign wr_addr4 = { phase_addr, writeaddr_adj[9:THREADS_BITS+10-ADDRBITS] }; // Duplicate address to reduce fanout (its a ridiculous kludge, but seems to be the approved method) (* S = "TRUE" *) reg [ADDRBITS-1:0] rd_addr_z_1 = 0; (* S = "TRUE" *) reg [ADDRBITS-1:0] rd_addr_z_2 = 0; (* S = "TRUE" *) reg [ADDRBITS-1:0] rd_addr_z_3 = 0; (* S = "TRUE" *) reg [ADDRBITS-1:0] rd_addr_z_4 = 0; (* S = "TRUE" *) wire [ADDRBITS-1:0] rd_addr1 = rd_addr | rd_addr_z_1; (* S = "TRUE" *) wire [ADDRBITS-1:0] rd_addr2 = rd_addr | rd_addr_z_2; (* S = "TRUE" *) wire [ADDRBITS-1:0] rd_addr3 = rd_addr | rd_addr_z_3; (* S = "TRUE" *) wire [ADDRBITS-1:0] rd_addr4 = rd_addr | rd_addr_z_4; ram # (.ADDRBITS(ADDRBITS)) ram1_blk (rd_addr1, wr_addr1, ram_clk, ram1_din, ram_wren, ram1_dout); ram # (.ADDRBITS(ADDRBITS)) ram2_blk (rd_addr2, wr_addr2, ram_clk, ram2_din, ram_wren, ram2_dout); ram # (.ADDRBITS(ADDRBITS)) ram3_blk (rd_addr3, wr_addr3, ram_clk, ram3_din, ram_wren, ram3_dout); ram # (.ADDRBITS(ADDRBITS)) ram4_blk (rd_addr4, wr_addr4, ram_clk, ram4_din, ram_wren, ram4_dout); assign ramout = { ram4_dout, ram3_dout, ram2_dout, ram1_dout }; // Unregistered output assign { ram4_din, ram3_din, ram2_din, ram1_din } = datasourceLoad ? X : { Xmix, X0out}; // Registered input // Salsa unit salsa salsa_blk (hash_clk, X0, X1, Xmix, X0out, Xaddr); // Main multiplexer wire [511:0] Zbits; assign Zbits = {512{xoren}}; // xoren enables xor from ram (else we load from ram) // With luck the synthesizer will interpret this correctly as one-hot control ... // DEBUG using default state of 0 for XSnull so as to show up issues with preserved values (previously held value X0/X1) // assign X0in = (XCtl==XSmix) ? X0out : (XCtl==XSram) ? (X0out & Zbits) ^ ramout[511:0] : (XCtl==XSload) ? X[511:0] : 0; // assign X1in = (XCtl==XSmix) ? Xmix : (XCtl==XSram) ? (Xmix & Zbits) ^ ramout[1023:512] : (XCtl==XSload) ? X[1023:512] : 0; // Now using explicit control signals (rather than relying on synthesizer to map correctly) // XSMix is now the default (XSnull is unused as this mapped onto zero in the DEBUG version above) - TODO amend FSM accordingly assign X0in = XCtl[2] ? (X0out & Zbits) ^ ramout[511:0] : XCtl[0] ? X[511:0] : X0out; assign X1in = XCtl[2] ? (Xmix & Zbits) ^ ramout[1023:512] : XCtl[0] ? X[1023:512] : Xmix; // Salsa FSM - TODO may want to move this into a separate function (for floorplanning), see hashvariant-C // Hold separate state for each thread (a bit of a kludge to avoid rewriting FSM from scratch) // NB must ensure shift and result do NOT overlap by carefully controlling timing of start signal // NB Phase has THREADS+1 cycles, but we do not save the state for (phase==THREADS) as it is never active assign { mstate_in, writeaddr_in, cycle_in, doneROM_in, addrsourceMix_in, addrsourceSave_in, intcycles_in} = (phase == THREADS ) ? 0 : sstate[phase]; // Interface FSM ensures threads start evenly (required for correct salsa FSM operation) reg busy_flag = 1'b0; `ifdef ONETHREAD // TEST CONTROLLER ... just allow a single thread to run (busy is currently a common flag) // NB the thread automatically restarts after it completes, so its a slight misnomer to say it starts once. reg start_once = 1'b0; wire start_flag; assign start_flag = fsmstart & ~start_once; assign busy = busy_flag; // Ack to pbkdfengine `else // NB start_flag only has effect when a thread is at R_IDLE, ie after reset, normally a thread will automatically // restart on completion. We need to spread the R_IDLE starts evenly to ensure proper ooperation. NB the pbkdf // engine requires busy and result, but this looks alter itself in the salsa FSM, even though these are global // flags. Reset periodically (on loadnonce in pbkdfengine) to ensure it stays in sync. reg [15:0] start_count = 0; // TODO automatic configuration (currently assumes THREADS 8 or 16, and ADDRBITS 12,11,10 calculated as follows...) // For THREADS=8, lookup_gap=2 salsa takes on average 9*(1024+(1024*1.5)) = 23040 clocks, generically 9*1024*(lookup_gap/2+1.5) // For THREADS=16, use 17*1024*(lookup_gap/2+1.5), where lookupgap is double that for THREADS=8 parameter START_INTERVAL = (THREADS==16) ? ((ADDRBITS==12) ? 60928 : (ADDRBITS==11) ? 95744 : 165376) / THREADS : // 16 threads ((ADDRBITS==12) ? 23040 : (ADDRBITS==11) ? 36864 : 50688) / THREADS ; // 8 threads reg start_flag = 1'b0; assign busy = busy_flag; // Ack to pbkdfengine - this will toggle on transtion through R_START `endif always @ (posedge hash_clk) begin X0 <= X0in; X1 <= X1in; if (phase_d != THREADS) sstate[phase_d] <= fsmreset ? 0 : { mstate, writeaddr, cycle, doneROM, addrsourceMix, addrsourceSave, intcycles }; mstate <= mstate_in; // Set defaults (overridden below as necessary) writeaddr <= writeaddr_in; cycle <= cycle_in; intcycles <= intcycles_in; doneROM <= doneROM_in; addrsourceMix <= addrsourceMix_in; addrsourceSave <= addrsourceSave_in; // Overwritten below, but addrsourceSave_in is used above // Duplicate address to reduce fanout (its a ridiculous kludge, but seems to be the approved method) rd_addr_z_1 <= {ADDRBITS{fsmreset}}; rd_addr_z_2 <= {ADDRBITS{fsmreset}}; rd_addr_z_3 <= {ADDRBITS{fsmreset}}; rd_addr_z_4 <= {ADDRBITS{fsmreset}}; XCtl <= XSnull; // Default states addrsourceSave <= 0; // NB addrsourceSave_in is the active control so this DOES need to be in sstate datasourceLoad <= 0; // Does not need to be saved in sstate resultsourceRam <= 0; // Does not need to be saved in sstate ram_wren <= 0; xoren <= 1; // Interface FSM ensures threads start evenly (required for correct salsa FSM operation) `ifdef ONETHREAD if (fsmstart && phase!=THREADS) start_once <= 1'b1; if (fsmreset) start_once <= 1'b0; `else start_count <= start_count + 1; // start_flag <= 1'b0; // Done below when we transition out of R_IDLE if (fsmreset || start_count == START_INTERVAL) begin start_count <= 0; if (~fsmreset && fsmstart) start_flag <= 1'b1; end `endif // Could use explicit mux for this ... if (shift) begin salsaShiftReg <= { salsaShiftReg[1023-SBITS:0], nonce_sr[31:32-SBITS] }; nonce_sr <= { nonce_sr[31-SBITS:0], din}; end else if (XCtl==XSload && phase_d != THREADS) // Set at end of previous hash - this is executed regardless of phase begin salsaShiftReg <= resultsourceRam ? ramout : { Xmix, X0out }; // Simultaneously with XSload nonce_sr <= snonce[phase_d]; // NB bidirectional load snonce[phase_d] <= nonce_sr; end if (fsmreset == 1'b1) begin mstate <= R_IDLE; // This will propagate to all sstate slots as we hold reset for 10 cycles busy_flag <= 1'b0; result <= 1'b0; end else begin case (mstate_in) R_IDLE: begin // R_IDLE only applies after reset. Normally each thread will reenter at S_START and // assumes that input data is waiting (this relies on the threads being started evenly, // hence the interface FSM at the top of this file) if (phase!=THREADS && start_flag) // Ensure (phase==THREADS) slot is never active begin XCtl <= XSload; // First time only (normally done at end of previous salsa cycle=1023) `ifndef ONETHREAD start_flag <= 1'b0; `endif busy_flag <= 1'b0; // Toggle the busy flag low to ack pbkdfengine (its usually already set // since other threads are running) writeaddr <= 0; // Preset to write X on next cycle addrsourceMix <= 1'b0; datasourceLoad <= 1'b1; ram_wren <= 1'b1; mstate <= R_START; end end R_START: begin // Reentry point after thread completion. ASSUMES new data is ready. XCtl <= XSmix; writeaddr <= writeaddr_next; cycle <= 0; if (ADDRBITS == 13) ram_wren <= 1'b1; // Full scratchpad needs to write to addr=001 next cycle doneROM <= 1'b0; busy_flag <= 1'b1; result <= 1'b0; mstate <= R_WRITE; end R_WRITE: begin XCtl <= XSmix; writeaddr <= writeaddr_next; if (writeaddr_in==1022) doneROM <= 1'b1; // Need to do one more cycle to update X0,X1 else if (~doneROM_in) begin if (ADDRBITS < 13) ram_wren <= ~|writeaddr_next[THREADS_BITS+9-ADDRBITSX:0]; // Only write non-interpolated addresses else ram_wren <= 1'b1; end if (doneROM_in) begin addrsourceMix <= 1'b1; // Remains set for duration of R_MIX mstate <= R_MIX; XCtl <= XSram; // Load from ram next cycle // Need this to cover the case of the initial read being interpolated // NB CODE IS REPLICATED IN R_MIX if (ADDRBITS < 13) begin intcycles <= { {THREADS_BITS+12-ADDRBITSX{1'b0}}, Xaddr[THREADS_BITS+9-ADDRBITSX:0] }; // Interpolated addresses if ( Xaddr[9:THREADS_BITS+10-ADDRBITSX] == memtop[ADDRBITSX-THREADS_BITS:1] ) // Highest address reserved intcycles <= { {THREADS_BITS+11-ADDRBITSX{1'b0}}, 1'b1, Xaddr[THREADS_BITS+9-ADDRBITSX:0] }; if ( (Xaddr[9:THREADS_BITS+10-ADDRBITSX] == memtop[ADDRBITSX-THREADS_BITS:1]) || |Xaddr[THREADS_BITS+9-ADDRBITSX:0] ) begin ram_wren <= 1'b1; xoren <= 0; // Will do direct load from ram, not xor mstate <= R_INT; // Interpolate end // If intcycles will be set to 1, need to preset for readback if ( ( Xaddr[THREADS_BITS+9-ADDRBITSX:0] == 1 ) && !( Xaddr[9:THREADS_BITS+10-ADDRBITSX] == memtop[ADDRBITSX-THREADS_BITS:1] ) ) addrsourceSave <= 1'b1; // Preset to read saved data (9 clocks later) end // END REPLICATED BLOCK end end R_MIX: begin // NB There is an extra step here cf R_WRITE above to read ram data hence 9 not 8 stages. XCtl <= XSmix; cycle <= cycle_in + 11'd1; if (cycle_in==1023) begin busy_flag <= 1'b0; // Will hold at 0 for 9 clocks until set at R_START if (fsmstart) // Check data input is ready begin XCtl <= XSload; // Initial load else we overwrite input NB This is // executed on the next cycle, regardless of phase // Flag the SHA256 FSM to start final PBKDF2_SHA256_80_128_32 result <= 1'b1; mstate <= R_START; // Restart immediately writeaddr <= 0; // Preset to write X on next cycle datasourceLoad <= 1'b1; addrsourceMix <= 1'b0; ram_wren <= 1'b1; end else begin // mstate <= R_IDLE; // Wait for start_flag mstate <= R_WAIT; addrsourceSave <= 1'b1; // Preset to read saved data (9 clocks later) ram_wren <= 1'b1; // Save result end end else begin XCtl <= XSram; // Load from ram next cycle // NB CODE IS REPLICATED IN R_WRITE if (ADDRBITS < 13) begin intcycles <= { {THREADS_BITS+12-ADDRBITSX{1'b0}}, Xaddr[THREADS_BITS+9-ADDRBITSX:0] }; // Interpolated addresses if ( Xaddr[9:THREADS_BITS+10-ADDRBITSX] == memtop[ADDRBITSX-THREADS_BITS:1] ) // Highest address reserved intcycles <= { {THREADS_BITS+11-ADDRBITSX{1'b0}}, 1'b1, Xaddr[THREADS_BITS+9-ADDRBITSX:0] }; if ( (Xaddr[9:THREADS_BITS+10-ADDRBITSX] == memtop[ADDRBITSX-THREADS_BITS:1]) || |Xaddr[THREADS_BITS+9-ADDRBITSX:0] ) begin ram_wren <= 1'b1; xoren <= 0; // Will do direct load from ram, not xor mstate <= R_INT; // Interpolate end // If intcycles will be set to 1, need to preset for readback if ( ( Xaddr[THREADS_BITS+9-ADDRBITSX:0] == 1 ) && !( Xaddr[9:THREADS_BITS+10-ADDRBITSX] == memtop[ADDRBITSX-THREADS_BITS:1] ) ) addrsourceSave <= 1'b1; // Preset to read saved data (9 clocks later) end // END REPLICATED BLOCK end end R_WAIT: begin if (fsmstart) // Check data input is ready begin XCtl <= XSload; // Initial load else we overwrite input NB This is // executed on the next cycle, regardless of phase // Flag the SHA256 FSM to start final PBKDF2_SHA256_80_128_32 result <= 1'b1; mstate <= R_START; // Restart immediately writeaddr <= 0; // Preset to write X on next cycle datasourceLoad <= 1'b1; resultsourceRam <= 1'b1; addrsourceMix <= 1'b0; ram_wren <= 1'b1; end else addrsourceSave <= 1'b1; // Preset to read saved data (9 clocks later) end R_INT: begin // Interpolate scratchpad for odd addresses XCtl <= XSmix; intcycles <= intcycles_in - 1; if (intcycles_in==2) addrsourceSave <= 1'b1; // Preset to read saved data (9 clocks later) if (intcycles_in==1) begin XCtl <= XSram; // Setup to XOR from saved X0/X1 in ram at next cycle mstate <= R_MIX; end // Else mstate remains at R_INT so we continue interpolating end endcase end `ifdef SIM // Print the final Xmix for each cycle to compare with scrypt.c (debugging) if (mstate==R_MIX) $display ("phase %d cycle %d Xmix %08x\n", phase, cycle-1, Xmix[511:480]); `endif end // always @(posedge hash_clk) endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2008 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc=0; reg [63:0] crc; reg [63:0] sum; // Take CRC data and apply to testblock inputs wire [1:0] in = crc[1:0]; /*AUTOWIRE*/ // Beginning of automatic wires (for undeclared instantiated-module outputs) wire [1:0] out; // From test of Test.v // End of automatics Test test (/*AUTOINST*/ // Outputs .out (out[1:0]), // Inputs .in (in[1:0])); // Aggregate outputs into a single result vector wire [63:0] result = {62'h0, out}; // What checksum will we end up with `define EXPECTED_SUM 64'hbb2d9709592f64bd // Test loop always @ (posedge clk) begin `ifdef TEST_VERBOSE $write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result); `endif cyc <= cyc + 1; crc <= {crc[62:0], crc[63]^crc[2]^crc[0]}; sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]}; if (cyc==0) begin // Setup crc <= 64'h5aef0c8d_d70a4497; end else if (cyc<10) begin sum <= 64'h0; end else if (cyc<90) begin end else if (cyc==99) begin $write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum); if (crc !== 64'hc77bb9b3784ea091) $stop; if (sum !== `EXPECTED_SUM) $stop; $write("*-* All Finished *-*\n"); $finish; end end endmodule module Test (/*AUTOARG*/ // Outputs out, // Inputs in ); input [1:0] in; output reg [1:0] out; always @* begin // bug99: Internal Error: ../V3Ast.cpp:495: New node already linked? case (in[1:0]) 2'd0, 2'd1, 2'd2, 2'd3: begin out = in; end endcase end endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2008 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc=0; reg [63:0] crc; reg [63:0] sum; // Take CRC data and apply to testblock inputs wire [1:0] in = crc[1:0]; /*AUTOWIRE*/ // Beginning of automatic wires (for undeclared instantiated-module outputs) wire [1:0] out; // From test of Test.v // End of automatics Test test (/*AUTOINST*/ // Outputs .out (out[1:0]), // Inputs .in (in[1:0])); // Aggregate outputs into a single result vector wire [63:0] result = {62'h0, out}; // What checksum will we end up with `define EXPECTED_SUM 64'hbb2d9709592f64bd // Test loop always @ (posedge clk) begin `ifdef TEST_VERBOSE $write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result); `endif cyc <= cyc + 1; crc <= {crc[62:0], crc[63]^crc[2]^crc[0]}; sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]}; if (cyc==0) begin // Setup crc <= 64'h5aef0c8d_d70a4497; end else if (cyc<10) begin sum <= 64'h0; end else if (cyc<90) begin end else if (cyc==99) begin $write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum); if (crc !== 64'hc77bb9b3784ea091) $stop; if (sum !== `EXPECTED_SUM) $stop; $write("*-* All Finished *-*\n"); $finish; end end endmodule module Test (/*AUTOARG*/ // Outputs out, // Inputs in ); input [1:0] in; output reg [1:0] out; always @* begin // bug99: Internal Error: ../V3Ast.cpp:495: New node already linked? case (in[1:0]) 2'd0, 2'd1, 2'd2, 2'd3: begin out = in; end endcase end endmodule
//Legal Notice: (C)2013 Altera Corporation. All rights reserved. Your //use of Altera Corporation's design tools, logic functions and other //software and tools, and its AMPP partner logic functions, and any //output files any of the foregoing (including device programming or //simulation files), and any associated documentation or information are //expressly subject to the terms and conditions of the Altera Program //License Subscription Agreement or other applicable license agreement, //including, without limitation, that your use is for the sole purpose //of programming logic devices manufactured by Altera and sold by Altera //or its authorized distributors. Please refer to the applicable //agreement for further details. module debounce ( clk, reset_n, data_in, data_out ); parameter WIDTH = 32; // set to be the width of the bus being debounced parameter POLARITY = "HIGH"; // set to be "HIGH" for active high debounce or "LOW" for active low debounce parameter TIMEOUT = 50000; // number of input clock cycles the input signal needs to be in the active state parameter TIMEOUT_WIDTH = 16; // set to be ceil(log2(TIMEOUT)) input wire clk; input wire reset_n; input wire [WIDTH-1:0] data_in; output wire [WIDTH-1:0] data_out; reg [TIMEOUT_WIDTH-1:0] counter [0:WIDTH-1]; wire counter_reset [0:WIDTH-1]; wire counter_enable [0:WIDTH-1]; // need one counter per input to debounce genvar i; generate for (i = 0; i < WIDTH; i = i+1) begin: debounce_counter_loop always @ (posedge clk or negedge reset_n) begin if (reset_n == 0) begin counter[i] <= 0; end else begin if (counter_reset[i] == 1) // resetting the counter needs to win begin counter[i] <= 0; end else if (counter_enable[i] == 1) begin counter[i] <= counter[i] + 1'b1; end end end if (POLARITY == "HIGH") begin assign counter_reset[i] = (data_in[i] == 0); assign counter_enable[i] = (data_in[i] == 1) & (counter[i] < TIMEOUT); assign data_out[i] = (counter[i] == TIMEOUT) ? 1'b1 : 1'b0; end else begin assign counter_reset[i] = (data_in[i] == 1); assign counter_enable[i] = (data_in[i] == 0) & (counter[i] < TIMEOUT); assign data_out[i] = (counter[i] == TIMEOUT) ? 1'b0 : 1'b1; end end endgenerate endmodule
//Legal Notice: (C)2013 Altera Corporation. All rights reserved. Your //use of Altera Corporation's design tools, logic functions and other //software and tools, and its AMPP partner logic functions, and any //output files any of the foregoing (including device programming or //simulation files), and any associated documentation or information are //expressly subject to the terms and conditions of the Altera Program //License Subscription Agreement or other applicable license agreement, //including, without limitation, that your use is for the sole purpose //of programming logic devices manufactured by Altera and sold by Altera //or its authorized distributors. Please refer to the applicable //agreement for further details. module debounce ( clk, reset_n, data_in, data_out ); parameter WIDTH = 32; // set to be the width of the bus being debounced parameter POLARITY = "HIGH"; // set to be "HIGH" for active high debounce or "LOW" for active low debounce parameter TIMEOUT = 50000; // number of input clock cycles the input signal needs to be in the active state parameter TIMEOUT_WIDTH = 16; // set to be ceil(log2(TIMEOUT)) input wire clk; input wire reset_n; input wire [WIDTH-1:0] data_in; output wire [WIDTH-1:0] data_out; reg [TIMEOUT_WIDTH-1:0] counter [0:WIDTH-1]; wire counter_reset [0:WIDTH-1]; wire counter_enable [0:WIDTH-1]; // need one counter per input to debounce genvar i; generate for (i = 0; i < WIDTH; i = i+1) begin: debounce_counter_loop always @ (posedge clk or negedge reset_n) begin if (reset_n == 0) begin counter[i] <= 0; end else begin if (counter_reset[i] == 1) // resetting the counter needs to win begin counter[i] <= 0; end else if (counter_enable[i] == 1) begin counter[i] <= counter[i] + 1'b1; end end end if (POLARITY == "HIGH") begin assign counter_reset[i] = (data_in[i] == 0); assign counter_enable[i] = (data_in[i] == 1) & (counter[i] < TIMEOUT); assign data_out[i] = (counter[i] == TIMEOUT) ? 1'b1 : 1'b0; end else begin assign counter_reset[i] = (data_in[i] == 1); assign counter_enable[i] = (data_in[i] == 0) & (counter[i] < TIMEOUT); assign data_out[i] = (counter[i] == TIMEOUT) ? 1'b0 : 1'b1; end end endgenerate endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2003 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc; initial cyc=1; reg [15:0] m_din; // OK reg [15:0] a_split_1, a_split_2; always @ (/*AS*/m_din) begin a_split_1 = m_din; a_split_2 = m_din; end // OK reg [15:0] b_split_1, b_split_2; always @ (/*AS*/m_din) begin b_split_1 = m_din; b_split_2 = b_split_1; end // Not OK reg [15:0] c_split_1, c_split_2; always @ (/*AS*/m_din) begin c_split_1 = m_din; c_split_2 = c_split_1; c_split_1 = ~m_din; end // OK reg [15:0] d_split_1, d_split_2; always @ (posedge clk) begin d_split_1 <= m_din; d_split_2 <= d_split_1; d_split_1 <= ~m_din; end // Not OK always @ (posedge clk) begin $write(" foo %x", m_din); $write(" bar %x\n", m_din); end // Not OK reg [15:0] e_split_1, e_split_2; always @ (posedge clk) begin e_split_1 = m_din; e_split_2 = e_split_1; end // Not OK reg [15:0] f_split_1, f_split_2; always @ (posedge clk) begin f_split_2 = f_split_1; f_split_1 = m_din; end // Not Ok reg [15:0] l_split_1, l_split_2; always @ (posedge clk) begin l_split_2 <= l_split_1; l_split_1 <= l_split_2 | m_din; end // OK reg [15:0] z_split_1, z_split_2; always @ (posedge clk) begin z_split_1 <= 0; z_split_1 <= ~m_din; end always @ (posedge clk) begin z_split_2 <= 0; z_split_2 <= z_split_1; end always @ (posedge clk) begin if (cyc!=0) begin cyc<=cyc+1; if (cyc==1) begin m_din <= 16'hfeed; end if (cyc==3) begin end if (cyc==4) begin m_din <= 16'he11e; //$write(" A %x %x\n", a_split_1, a_split_2); if (!(a_split_1==16'hfeed && a_split_2==16'hfeed)) $stop; if (!(b_split_1==16'hfeed && b_split_2==16'hfeed)) $stop; if (!(c_split_1==16'h0112 && c_split_2==16'hfeed)) $stop; if (!(d_split_1==16'h0112 && d_split_2==16'h0112)) $stop; if (!(e_split_1==16'hfeed && e_split_2==16'hfeed)) $stop; if (!(f_split_1==16'hfeed && f_split_2==16'hfeed)) $stop; if (!(z_split_1==16'h0112 && z_split_2==16'h0112)) $stop; end if (cyc==5) begin m_din <= 16'he22e; if (!(a_split_1==16'he11e && a_split_2==16'he11e)) $stop; if (!(b_split_1==16'he11e && b_split_2==16'he11e)) $stop; if (!(c_split_1==16'h1ee1 && c_split_2==16'he11e)) $stop; if (!(d_split_1==16'h0112 && d_split_2==16'h0112)) $stop; if (!(z_split_1==16'h0112 && z_split_2==16'h0112)) $stop; // Two valid orderings, as we don't know which posedge clk gets evaled first if (!(e_split_1==16'hfeed && e_split_2==16'hfeed) && !(e_split_1==16'he11e && e_split_2==16'he11e)) $stop; if (!(f_split_1==16'hfeed && f_split_2==16'hfeed) && !(f_split_1==16'he11e && f_split_2==16'hfeed)) $stop; end if (cyc==6) begin m_din <= 16'he33e; if (!(a_split_1==16'he22e && a_split_2==16'he22e)) $stop; if (!(b_split_1==16'he22e && b_split_2==16'he22e)) $stop; if (!(c_split_1==16'h1dd1 && c_split_2==16'he22e)) $stop; if (!(d_split_1==16'h1ee1 && d_split_2==16'h0112)) $stop; if (!(z_split_1==16'h1ee1 && d_split_2==16'h0112)) $stop; // Two valid orderings, as we don't know which posedge clk gets evaled first if (!(e_split_1==16'he11e && e_split_2==16'he11e) && !(e_split_1==16'he22e && e_split_2==16'he22e)) $stop; if (!(f_split_1==16'he11e && f_split_2==16'hfeed) && !(f_split_1==16'he22e && f_split_2==16'he11e)) $stop; end if (cyc==7) begin $write("*-* All Finished *-*\n"); $finish; end end end endmodule
/* ---------------------------------------------------------------------------------- Copyright (c) 2013-2014 Embedded and Network Computing Lab. Open SSD Project Hanyang University All rights reserved. ---------------------------------------------------------------------------------- Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. All advertising materials mentioning features or use of this source code must display the following acknowledgement: This product includes source code developed by the Embedded and Network Computing Lab. and the Open SSD Project. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------------------- http://enclab.hanyang.ac.kr/ http://www.openssd-project.org/ http://www.hanyang.ac.kr/ ---------------------------------------------------------------------------------- */ `timescale 1ns / 1ps module m_axi_dma # ( parameter C_M_AXI_ADDR_WIDTH = 32, parameter C_M_AXI_DATA_WIDTH = 64, parameter C_M_AXI_ID_WIDTH = 1, parameter C_M_AXI_AWUSER_WIDTH = 1, parameter C_M_AXI_WUSER_WIDTH = 1, parameter C_M_AXI_BUSER_WIDTH = 1, parameter C_M_AXI_ARUSER_WIDTH = 1, parameter C_M_AXI_RUSER_WIDTH = 1 ) ( //////////////////////////////////////////////////////////////// //AXI4 master interface signals input m_axi_aclk, input m_axi_aresetn, // Write address channel output [C_M_AXI_ID_WIDTH-1:0] m_axi_awid, output [C_M_AXI_ADDR_WIDTH-1:0] m_axi_awaddr, output [7:0] m_axi_awlen, output [2:0] m_axi_awsize, output [1:0] m_axi_awburst, output [1:0] m_axi_awlock, output [3:0] m_axi_awcache, output [2:0] m_axi_awprot, output [3:0] m_axi_awregion, output [3:0] m_axi_awqos, output [C_M_AXI_AWUSER_WIDTH-1:0] m_axi_awuser, output m_axi_awvalid, input m_axi_awready, // Write data channel output [C_M_AXI_ID_WIDTH-1:0] m_axi_wid, output [C_M_AXI_DATA_WIDTH-1:0] m_axi_wdata, output [(C_M_AXI_DATA_WIDTH/8)-1:0] m_axi_wstrb, output m_axi_wlast, output [C_M_AXI_WUSER_WIDTH-1:0] m_axi_wuser, output m_axi_wvalid, input m_axi_wready, // Write response channel input [C_M_AXI_ID_WIDTH-1:0] m_axi_bid, input [1:0] m_axi_bresp, input m_axi_bvalid, input [C_M_AXI_BUSER_WIDTH-1:0] m_axi_buser, output m_axi_bready, // Read address channel output [C_M_AXI_ID_WIDTH-1:0] m_axi_arid, output [C_M_AXI_ADDR_WIDTH-1:0] m_axi_araddr, output [7:0] m_axi_arlen, output [2:0] m_axi_arsize, output [1:0] m_axi_arburst, output [1:0] m_axi_arlock, output [3:0] m_axi_arcache, output [2:0] m_axi_arprot, output [3:0] m_axi_arregion, output [3:0] m_axi_arqos, output [C_M_AXI_ARUSER_WIDTH-1:0] m_axi_aruser, output m_axi_arvalid, input m_axi_arready, // Read data channel input [C_M_AXI_ID_WIDTH-1:0] m_axi_rid, input [C_M_AXI_DATA_WIDTH-1:0] m_axi_rdata, input [1:0] m_axi_rresp, input m_axi_rlast, input [C_M_AXI_RUSER_WIDTH-1:0] m_axi_ruser, input m_axi_rvalid, output m_axi_rready, output m_axi_bresp_err, output m_axi_rresp_err, output pcie_rx_fifo_rd_en, input [C_M_AXI_DATA_WIDTH-1:0] pcie_rx_fifo_rd_data, output pcie_rx_fifo_free_en, output [9:4] pcie_rx_fifo_free_len, input pcie_rx_fifo_empty_n, output pcie_tx_fifo_alloc_en, output [9:4] pcie_tx_fifo_alloc_len, output pcie_tx_fifo_wr_en, output [C_M_AXI_DATA_WIDTH-1:0] pcie_tx_fifo_wr_data, input pcie_tx_fifo_full_n, input pcie_user_clk, input pcie_user_rst_n, input dev_rx_cmd_wr_en, input [29:0] dev_rx_cmd_wr_data, output dev_rx_cmd_full_n, input dev_tx_cmd_wr_en, input [29:0] dev_tx_cmd_wr_data, output dev_tx_cmd_full_n, output dma_rx_done_wr_en, output [20:0] dma_rx_done_wr_data, input dma_rx_done_wr_rdy_n ); wire w_dev_rx_cmd_rd_en; wire [29:0] w_dev_rx_cmd_rd_data; wire w_dev_rx_cmd_empty_n; wire w_dev_tx_cmd_rd_en; wire [29:0] w_dev_tx_cmd_rd_data; wire w_dev_tx_cmd_empty_n; dev_rx_cmd_fifo dev_rx_cmd_fifo_inst0 ( .wr_clk (pcie_user_clk), .wr_rst_n (pcie_user_rst_n), .wr_en (dev_rx_cmd_wr_en), .wr_data (dev_rx_cmd_wr_data), .full_n (dev_rx_cmd_full_n), .rd_clk (m_axi_aclk), .rd_rst_n (m_axi_aresetn & pcie_user_rst_n), .rd_en (w_dev_rx_cmd_rd_en), .rd_data (w_dev_rx_cmd_rd_data), .empty_n (w_dev_rx_cmd_empty_n) ); dev_tx_cmd_fifo dev_tx_cmd_fifo_inst0 ( .wr_clk (pcie_user_clk), .wr_rst_n (pcie_user_rst_n), .wr_en (dev_tx_cmd_wr_en), .wr_data (dev_tx_cmd_wr_data), .full_n (dev_tx_cmd_full_n), .rd_clk (m_axi_aclk), .rd_rst_n (m_axi_aresetn & pcie_user_rst_n), .rd_en (w_dev_tx_cmd_rd_en), .rd_data (w_dev_tx_cmd_rd_data), .empty_n (w_dev_tx_cmd_empty_n) ); m_axi_write # ( .C_M_AXI_ADDR_WIDTH (C_M_AXI_ADDR_WIDTH), .C_M_AXI_DATA_WIDTH (C_M_AXI_DATA_WIDTH), .C_M_AXI_ID_WIDTH (C_M_AXI_ID_WIDTH), .C_M_AXI_AWUSER_WIDTH (C_M_AXI_AWUSER_WIDTH), .C_M_AXI_WUSER_WIDTH (C_M_AXI_WUSER_WIDTH), .C_M_AXI_BUSER_WIDTH (C_M_AXI_BUSER_WIDTH) ) m_axi_write_inst0( //////////////////////////////////////////////////////////////// //AXI4 master write channel signal .m_axi_aclk (m_axi_aclk), .m_axi_aresetn (m_axi_aresetn), // Write address channel .m_axi_awid (m_axi_awid), .m_axi_awaddr (m_axi_awaddr), .m_axi_awlen (m_axi_awlen), .m_axi_awsize (m_axi_awsize), .m_axi_awburst (m_axi_awburst), .m_axi_awlock (m_axi_awlock), .m_axi_awcache (m_axi_awcache), .m_axi_awprot (m_axi_awprot), .m_axi_awregion (m_axi_awregion), .m_axi_awqos (m_axi_awqos), .m_axi_awuser (m_axi_awuser), .m_axi_awvalid (m_axi_awvalid), .m_axi_awready (m_axi_awready), // Write data channel .m_axi_wid (m_axi_wid), .m_axi_wdata (m_axi_wdata), .m_axi_wstrb (m_axi_wstrb), .m_axi_wlast (m_axi_wlast), .m_axi_wuser (m_axi_wuser), .m_axi_wvalid (m_axi_wvalid), .m_axi_wready (m_axi_wready), // Write response channel .m_axi_bid (m_axi_bid), .m_axi_bresp (m_axi_bresp), .m_axi_bvalid (m_axi_bvalid), .m_axi_buser (m_axi_buser), .m_axi_bready (m_axi_bready), .m_axi_bresp_err (m_axi_bresp_err), .dev_rx_cmd_rd_en (w_dev_rx_cmd_rd_en), .dev_rx_cmd_rd_data (w_dev_rx_cmd_rd_data), .dev_rx_cmd_empty_n (w_dev_rx_cmd_empty_n), .pcie_rx_fifo_rd_en (pcie_rx_fifo_rd_en), .pcie_rx_fifo_rd_data (pcie_rx_fifo_rd_data), .pcie_rx_fifo_free_en (pcie_rx_fifo_free_en), .pcie_rx_fifo_free_len (pcie_rx_fifo_free_len), .pcie_rx_fifo_empty_n (pcie_rx_fifo_empty_n), .dma_rx_done_wr_en (dma_rx_done_wr_en), .dma_rx_done_wr_data (dma_rx_done_wr_data), .dma_rx_done_wr_rdy_n (dma_rx_done_wr_rdy_n) ); m_axi_read # ( .C_M_AXI_ADDR_WIDTH (C_M_AXI_ADDR_WIDTH), .C_M_AXI_DATA_WIDTH (C_M_AXI_DATA_WIDTH), .C_M_AXI_ID_WIDTH (C_M_AXI_ID_WIDTH), .C_M_AXI_ARUSER_WIDTH (C_M_AXI_ARUSER_WIDTH), .C_M_AXI_RUSER_WIDTH (C_M_AXI_RUSER_WIDTH) ) m_axi_read_inst0( //////////////////////////////////////////////////////////////// //AXI4 master read channel signals .m_axi_aclk (m_axi_aclk), .m_axi_aresetn (m_axi_aresetn), // Read address channel .m_axi_arid (m_axi_arid), .m_axi_araddr (m_axi_araddr), .m_axi_arlen (m_axi_arlen), .m_axi_arsize (m_axi_arsize), .m_axi_arburst (m_axi_arburst), .m_axi_arlock (m_axi_arlock), .m_axi_arcache (m_axi_arcache), .m_axi_arprot (m_axi_arprot), .m_axi_arregion (m_axi_arregion), .m_axi_arqos (m_axi_arqos), .m_axi_aruser (m_axi_aruser), .m_axi_arvalid (m_axi_arvalid), .m_axi_arready (m_axi_arready), // Read data channel .m_axi_rid (m_axi_rid), .m_axi_rdata (m_axi_rdata), .m_axi_rresp (m_axi_rresp), .m_axi_rlast (m_axi_rlast), .m_axi_ruser (m_axi_ruser), .m_axi_rvalid (m_axi_rvalid), .m_axi_rready (m_axi_rready), .m_axi_rresp_err (m_axi_rresp_err), .dev_tx_cmd_rd_en (w_dev_tx_cmd_rd_en), .dev_tx_cmd_rd_data (w_dev_tx_cmd_rd_data), .dev_tx_cmd_empty_n (w_dev_tx_cmd_empty_n), .pcie_tx_fifo_alloc_en (pcie_tx_fifo_alloc_en), .pcie_tx_fifo_alloc_len (pcie_tx_fifo_alloc_len), .pcie_tx_fifo_wr_en (pcie_tx_fifo_wr_en), .pcie_tx_fifo_wr_data (pcie_tx_fifo_wr_data), .pcie_tx_fifo_full_n (pcie_tx_fifo_full_n) ); endmodule
/* ---------------------------------------------------------------------------------- Copyright (c) 2013-2014 Embedded and Network Computing Lab. Open SSD Project Hanyang University All rights reserved. ---------------------------------------------------------------------------------- Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. All advertising materials mentioning features or use of this source code must display the following acknowledgement: This product includes source code developed by the Embedded and Network Computing Lab. and the Open SSD Project. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------------------- http://enclab.hanyang.ac.kr/ http://www.openssd-project.org/ http://www.hanyang.ac.kr/ ---------------------------------------------------------------------------------- */ `timescale 1ns / 1ps module m_axi_dma # ( parameter C_M_AXI_ADDR_WIDTH = 32, parameter C_M_AXI_DATA_WIDTH = 64, parameter C_M_AXI_ID_WIDTH = 1, parameter C_M_AXI_AWUSER_WIDTH = 1, parameter C_M_AXI_WUSER_WIDTH = 1, parameter C_M_AXI_BUSER_WIDTH = 1, parameter C_M_AXI_ARUSER_WIDTH = 1, parameter C_M_AXI_RUSER_WIDTH = 1 ) ( //////////////////////////////////////////////////////////////// //AXI4 master interface signals input m_axi_aclk, input m_axi_aresetn, // Write address channel output [C_M_AXI_ID_WIDTH-1:0] m_axi_awid, output [C_M_AXI_ADDR_WIDTH-1:0] m_axi_awaddr, output [7:0] m_axi_awlen, output [2:0] m_axi_awsize, output [1:0] m_axi_awburst, output [1:0] m_axi_awlock, output [3:0] m_axi_awcache, output [2:0] m_axi_awprot, output [3:0] m_axi_awregion, output [3:0] m_axi_awqos, output [C_M_AXI_AWUSER_WIDTH-1:0] m_axi_awuser, output m_axi_awvalid, input m_axi_awready, // Write data channel output [C_M_AXI_ID_WIDTH-1:0] m_axi_wid, output [C_M_AXI_DATA_WIDTH-1:0] m_axi_wdata, output [(C_M_AXI_DATA_WIDTH/8)-1:0] m_axi_wstrb, output m_axi_wlast, output [C_M_AXI_WUSER_WIDTH-1:0] m_axi_wuser, output m_axi_wvalid, input m_axi_wready, // Write response channel input [C_M_AXI_ID_WIDTH-1:0] m_axi_bid, input [1:0] m_axi_bresp, input m_axi_bvalid, input [C_M_AXI_BUSER_WIDTH-1:0] m_axi_buser, output m_axi_bready, // Read address channel output [C_M_AXI_ID_WIDTH-1:0] m_axi_arid, output [C_M_AXI_ADDR_WIDTH-1:0] m_axi_araddr, output [7:0] m_axi_arlen, output [2:0] m_axi_arsize, output [1:0] m_axi_arburst, output [1:0] m_axi_arlock, output [3:0] m_axi_arcache, output [2:0] m_axi_arprot, output [3:0] m_axi_arregion, output [3:0] m_axi_arqos, output [C_M_AXI_ARUSER_WIDTH-1:0] m_axi_aruser, output m_axi_arvalid, input m_axi_arready, // Read data channel input [C_M_AXI_ID_WIDTH-1:0] m_axi_rid, input [C_M_AXI_DATA_WIDTH-1:0] m_axi_rdata, input [1:0] m_axi_rresp, input m_axi_rlast, input [C_M_AXI_RUSER_WIDTH-1:0] m_axi_ruser, input m_axi_rvalid, output m_axi_rready, output m_axi_bresp_err, output m_axi_rresp_err, output pcie_rx_fifo_rd_en, input [C_M_AXI_DATA_WIDTH-1:0] pcie_rx_fifo_rd_data, output pcie_rx_fifo_free_en, output [9:4] pcie_rx_fifo_free_len, input pcie_rx_fifo_empty_n, output pcie_tx_fifo_alloc_en, output [9:4] pcie_tx_fifo_alloc_len, output pcie_tx_fifo_wr_en, output [C_M_AXI_DATA_WIDTH-1:0] pcie_tx_fifo_wr_data, input pcie_tx_fifo_full_n, input pcie_user_clk, input pcie_user_rst_n, input dev_rx_cmd_wr_en, input [29:0] dev_rx_cmd_wr_data, output dev_rx_cmd_full_n, input dev_tx_cmd_wr_en, input [29:0] dev_tx_cmd_wr_data, output dev_tx_cmd_full_n, output dma_rx_done_wr_en, output [20:0] dma_rx_done_wr_data, input dma_rx_done_wr_rdy_n ); wire w_dev_rx_cmd_rd_en; wire [29:0] w_dev_rx_cmd_rd_data; wire w_dev_rx_cmd_empty_n; wire w_dev_tx_cmd_rd_en; wire [29:0] w_dev_tx_cmd_rd_data; wire w_dev_tx_cmd_empty_n; dev_rx_cmd_fifo dev_rx_cmd_fifo_inst0 ( .wr_clk (pcie_user_clk), .wr_rst_n (pcie_user_rst_n), .wr_en (dev_rx_cmd_wr_en), .wr_data (dev_rx_cmd_wr_data), .full_n (dev_rx_cmd_full_n), .rd_clk (m_axi_aclk), .rd_rst_n (m_axi_aresetn & pcie_user_rst_n), .rd_en (w_dev_rx_cmd_rd_en), .rd_data (w_dev_rx_cmd_rd_data), .empty_n (w_dev_rx_cmd_empty_n) ); dev_tx_cmd_fifo dev_tx_cmd_fifo_inst0 ( .wr_clk (pcie_user_clk), .wr_rst_n (pcie_user_rst_n), .wr_en (dev_tx_cmd_wr_en), .wr_data (dev_tx_cmd_wr_data), .full_n (dev_tx_cmd_full_n), .rd_clk (m_axi_aclk), .rd_rst_n (m_axi_aresetn & pcie_user_rst_n), .rd_en (w_dev_tx_cmd_rd_en), .rd_data (w_dev_tx_cmd_rd_data), .empty_n (w_dev_tx_cmd_empty_n) ); m_axi_write # ( .C_M_AXI_ADDR_WIDTH (C_M_AXI_ADDR_WIDTH), .C_M_AXI_DATA_WIDTH (C_M_AXI_DATA_WIDTH), .C_M_AXI_ID_WIDTH (C_M_AXI_ID_WIDTH), .C_M_AXI_AWUSER_WIDTH (C_M_AXI_AWUSER_WIDTH), .C_M_AXI_WUSER_WIDTH (C_M_AXI_WUSER_WIDTH), .C_M_AXI_BUSER_WIDTH (C_M_AXI_BUSER_WIDTH) ) m_axi_write_inst0( //////////////////////////////////////////////////////////////// //AXI4 master write channel signal .m_axi_aclk (m_axi_aclk), .m_axi_aresetn (m_axi_aresetn), // Write address channel .m_axi_awid (m_axi_awid), .m_axi_awaddr (m_axi_awaddr), .m_axi_awlen (m_axi_awlen), .m_axi_awsize (m_axi_awsize), .m_axi_awburst (m_axi_awburst), .m_axi_awlock (m_axi_awlock), .m_axi_awcache (m_axi_awcache), .m_axi_awprot (m_axi_awprot), .m_axi_awregion (m_axi_awregion), .m_axi_awqos (m_axi_awqos), .m_axi_awuser (m_axi_awuser), .m_axi_awvalid (m_axi_awvalid), .m_axi_awready (m_axi_awready), // Write data channel .m_axi_wid (m_axi_wid), .m_axi_wdata (m_axi_wdata), .m_axi_wstrb (m_axi_wstrb), .m_axi_wlast (m_axi_wlast), .m_axi_wuser (m_axi_wuser), .m_axi_wvalid (m_axi_wvalid), .m_axi_wready (m_axi_wready), // Write response channel .m_axi_bid (m_axi_bid), .m_axi_bresp (m_axi_bresp), .m_axi_bvalid (m_axi_bvalid), .m_axi_buser (m_axi_buser), .m_axi_bready (m_axi_bready), .m_axi_bresp_err (m_axi_bresp_err), .dev_rx_cmd_rd_en (w_dev_rx_cmd_rd_en), .dev_rx_cmd_rd_data (w_dev_rx_cmd_rd_data), .dev_rx_cmd_empty_n (w_dev_rx_cmd_empty_n), .pcie_rx_fifo_rd_en (pcie_rx_fifo_rd_en), .pcie_rx_fifo_rd_data (pcie_rx_fifo_rd_data), .pcie_rx_fifo_free_en (pcie_rx_fifo_free_en), .pcie_rx_fifo_free_len (pcie_rx_fifo_free_len), .pcie_rx_fifo_empty_n (pcie_rx_fifo_empty_n), .dma_rx_done_wr_en (dma_rx_done_wr_en), .dma_rx_done_wr_data (dma_rx_done_wr_data), .dma_rx_done_wr_rdy_n (dma_rx_done_wr_rdy_n) ); m_axi_read # ( .C_M_AXI_ADDR_WIDTH (C_M_AXI_ADDR_WIDTH), .C_M_AXI_DATA_WIDTH (C_M_AXI_DATA_WIDTH), .C_M_AXI_ID_WIDTH (C_M_AXI_ID_WIDTH), .C_M_AXI_ARUSER_WIDTH (C_M_AXI_ARUSER_WIDTH), .C_M_AXI_RUSER_WIDTH (C_M_AXI_RUSER_WIDTH) ) m_axi_read_inst0( //////////////////////////////////////////////////////////////// //AXI4 master read channel signals .m_axi_aclk (m_axi_aclk), .m_axi_aresetn (m_axi_aresetn), // Read address channel .m_axi_arid (m_axi_arid), .m_axi_araddr (m_axi_araddr), .m_axi_arlen (m_axi_arlen), .m_axi_arsize (m_axi_arsize), .m_axi_arburst (m_axi_arburst), .m_axi_arlock (m_axi_arlock), .m_axi_arcache (m_axi_arcache), .m_axi_arprot (m_axi_arprot), .m_axi_arregion (m_axi_arregion), .m_axi_arqos (m_axi_arqos), .m_axi_aruser (m_axi_aruser), .m_axi_arvalid (m_axi_arvalid), .m_axi_arready (m_axi_arready), // Read data channel .m_axi_rid (m_axi_rid), .m_axi_rdata (m_axi_rdata), .m_axi_rresp (m_axi_rresp), .m_axi_rlast (m_axi_rlast), .m_axi_ruser (m_axi_ruser), .m_axi_rvalid (m_axi_rvalid), .m_axi_rready (m_axi_rready), .m_axi_rresp_err (m_axi_rresp_err), .dev_tx_cmd_rd_en (w_dev_tx_cmd_rd_en), .dev_tx_cmd_rd_data (w_dev_tx_cmd_rd_data), .dev_tx_cmd_empty_n (w_dev_tx_cmd_empty_n), .pcie_tx_fifo_alloc_en (pcie_tx_fifo_alloc_en), .pcie_tx_fifo_alloc_len (pcie_tx_fifo_alloc_len), .pcie_tx_fifo_wr_en (pcie_tx_fifo_wr_en), .pcie_tx_fifo_wr_data (pcie_tx_fifo_wr_data), .pcie_tx_fifo_full_n (pcie_tx_fifo_full_n) ); endmodule
module cmd_reader (//System input reset, input txclk, input [31:0] adc_time, //FX2 Side output reg skip, output reg rdreq, input [31:0] fifodata, input pkt_waiting, //Rx side input rx_WR_enabled, output reg [15:0] rx_databus, output reg rx_WR, output reg rx_WR_done, //register io input wire [31:0] reg_data_out, output reg [31:0] reg_data_in, output reg [6:0] reg_addr, output reg [1:0] reg_io_enable, output wire [14:0] debug, output reg stop, output reg [15:0] stop_time); // States parameter IDLE = 4'd0; parameter HEADER = 4'd1; parameter TIMESTAMP = 4'd2; parameter WAIT = 4'd3; parameter TEST = 4'd4; parameter SEND = 4'd5; parameter PING = 4'd6; parameter WRITE_REG = 4'd7; parameter WRITE_REG_MASKED = 4'd8; parameter READ_REG = 4'd9; parameter DELAY = 4'd14; `define OP_PING_FIXED 8'd0 `define OP_PING_FIXED_REPLY 8'd1 `define OP_WRITE_REG 8'd2 `define OP_WRITE_REG_MASKED 8'd3 `define OP_READ_REG 8'd4 `define OP_READ_REG_REPLY 8'd5 `define OP_DELAY 8'd12 reg [6:0] payload; reg [6:0] payload_read; reg [3:0] state; reg [15:0] high; reg [15:0] low; reg pending; reg [31:0] value0; reg [31:0] value1; reg [31:0] value2; reg [1:0] lines_in; reg [1:0] lines_out; reg [1:0] lines_out_total; `define JITTER 5 `define OP_CODE 31:24 `define PAYLOAD 8:2 wire [7:0] ops; assign ops = value0[`OP_CODE]; assign debug = {state[3:0], lines_out[1:0], pending, rx_WR, rx_WR_enabled, value0[2:0], ops[2:0]}; always @(posedge txclk) if (reset) begin pending <= 0; state <= IDLE; skip <= 0; rdreq <= 0; rx_WR <= 0; reg_io_enable <= 0; reg_data_in <= 0; reg_addr <= 0; stop <= 0; end else case (state) IDLE : begin payload_read <= 0; skip <= 0; lines_in <= 0; if(pkt_waiting) begin state <= HEADER; rdreq <= 1; end end HEADER : begin payload <= fifodata[`PAYLOAD]; state <= TIMESTAMP; end TIMESTAMP : begin value0 <= fifodata; state <= WAIT; rdreq <= 0; end WAIT : begin // Let's send it if ((value0 <= adc_time + `JITTER && value0 > adc_time) || value0 == 32'hFFFFFFFF) state <= TEST; // Wait a little bit more else if (value0 > adc_time + `JITTER) state <= WAIT; // Outdated else if (value0 < adc_time) begin state <= IDLE; skip <= 1; end end TEST : begin reg_io_enable <= 0; rx_WR <= 0; rx_WR_done <= 1; stop <= 0; if (payload_read == payload) begin skip <= 1; state <= IDLE; rdreq <= 0; end else begin value0 <= fifodata; lines_in <= 2'd1; rdreq <= 1; payload_read <= payload_read + 7'd1; lines_out <= 0; case (fifodata[`OP_CODE]) `OP_PING_FIXED: begin state <= PING; end `OP_WRITE_REG: begin state <= WRITE_REG; pending <= 1; end `OP_WRITE_REG_MASKED: begin state <= WRITE_REG_MASKED; pending <= 1; end `OP_READ_REG: begin state <= READ_REG; end `OP_DELAY: begin state <= DELAY; end default: begin //error, skip this packet skip <= 1; state <= IDLE; end endcase end end SEND: begin rdreq <= 0; rx_WR_done <= 0; if (pending) begin rx_WR <= 1; rx_databus <= high; pending <= 0; if (lines_out == lines_out_total) state <= TEST; else case (ops) `OP_READ_REG: begin state <= READ_REG; end default: begin state <= TEST; end endcase end else begin if (rx_WR_enabled) begin rx_WR <= 1; rx_databus <= low; pending <= 1; lines_out <= lines_out + 2'd1; end else rx_WR <= 0; end end PING: begin rx_WR <= 0; rdreq <= 0; rx_WR_done <= 0; lines_out_total <= 2'd1; pending <= 0; state <= SEND; high <= {`OP_PING_FIXED_REPLY, 8'd2}; low <= value0[15:0]; end READ_REG: begin rx_WR <= 0; rx_WR_done <= 0; rdreq <= 0; lines_out_total <= 2'd2; pending <= 0; state <= SEND; if (lines_out == 0) begin high <= {`OP_READ_REG_REPLY, 8'd6}; low <= value0[15:0]; reg_io_enable <= 2'd3; reg_addr <= value0[6:0]; end else begin high <= reg_data_out[31:16]; low <= reg_data_out[15:0]; end end WRITE_REG: begin rx_WR <= 0; if (pending) pending <= 0; else begin if (lines_in == 2'd1) begin payload_read <= payload_read + 7'd1; lines_in <= lines_in + 2'd1; value1 <= fifodata; rdreq <= 0; end else begin reg_io_enable <= 2'd2; reg_data_in <= value1; reg_addr <= value0[6:0]; state <= TEST; end end end WRITE_REG_MASKED: begin rx_WR <= 0; if (pending) pending <= 0; else begin if (lines_in == 2'd1) begin rdreq <= 1; payload_read <= payload_read + 7'd1; lines_in <= lines_in + 2'd1; value1 <= fifodata; end else if (lines_in == 2'd2) begin rdreq <= 0; payload_read <= payload_read + 7'd1; lines_in <= lines_in + 2'd1; value2 <= fifodata; end else begin reg_io_enable <= 2'd2; reg_data_in <= (value1 & value2); reg_addr <= value0[6:0]; state <= TEST; end end end DELAY : begin rdreq <= 0; stop <= 1; stop_time <= value0[15:0]; state <= TEST; end default : begin //error state handling state <= IDLE; end endcase endmodule
module cmd_reader (//System input reset, input txclk, input [31:0] adc_time, //FX2 Side output reg skip, output reg rdreq, input [31:0] fifodata, input pkt_waiting, //Rx side input rx_WR_enabled, output reg [15:0] rx_databus, output reg rx_WR, output reg rx_WR_done, //register io input wire [31:0] reg_data_out, output reg [31:0] reg_data_in, output reg [6:0] reg_addr, output reg [1:0] reg_io_enable, output wire [14:0] debug, output reg stop, output reg [15:0] stop_time); // States parameter IDLE = 4'd0; parameter HEADER = 4'd1; parameter TIMESTAMP = 4'd2; parameter WAIT = 4'd3; parameter TEST = 4'd4; parameter SEND = 4'd5; parameter PING = 4'd6; parameter WRITE_REG = 4'd7; parameter WRITE_REG_MASKED = 4'd8; parameter READ_REG = 4'd9; parameter DELAY = 4'd14; `define OP_PING_FIXED 8'd0 `define OP_PING_FIXED_REPLY 8'd1 `define OP_WRITE_REG 8'd2 `define OP_WRITE_REG_MASKED 8'd3 `define OP_READ_REG 8'd4 `define OP_READ_REG_REPLY 8'd5 `define OP_DELAY 8'd12 reg [6:0] payload; reg [6:0] payload_read; reg [3:0] state; reg [15:0] high; reg [15:0] low; reg pending; reg [31:0] value0; reg [31:0] value1; reg [31:0] value2; reg [1:0] lines_in; reg [1:0] lines_out; reg [1:0] lines_out_total; `define JITTER 5 `define OP_CODE 31:24 `define PAYLOAD 8:2 wire [7:0] ops; assign ops = value0[`OP_CODE]; assign debug = {state[3:0], lines_out[1:0], pending, rx_WR, rx_WR_enabled, value0[2:0], ops[2:0]}; always @(posedge txclk) if (reset) begin pending <= 0; state <= IDLE; skip <= 0; rdreq <= 0; rx_WR <= 0; reg_io_enable <= 0; reg_data_in <= 0; reg_addr <= 0; stop <= 0; end else case (state) IDLE : begin payload_read <= 0; skip <= 0; lines_in <= 0; if(pkt_waiting) begin state <= HEADER; rdreq <= 1; end end HEADER : begin payload <= fifodata[`PAYLOAD]; state <= TIMESTAMP; end TIMESTAMP : begin value0 <= fifodata; state <= WAIT; rdreq <= 0; end WAIT : begin // Let's send it if ((value0 <= adc_time + `JITTER && value0 > adc_time) || value0 == 32'hFFFFFFFF) state <= TEST; // Wait a little bit more else if (value0 > adc_time + `JITTER) state <= WAIT; // Outdated else if (value0 < adc_time) begin state <= IDLE; skip <= 1; end end TEST : begin reg_io_enable <= 0; rx_WR <= 0; rx_WR_done <= 1; stop <= 0; if (payload_read == payload) begin skip <= 1; state <= IDLE; rdreq <= 0; end else begin value0 <= fifodata; lines_in <= 2'd1; rdreq <= 1; payload_read <= payload_read + 7'd1; lines_out <= 0; case (fifodata[`OP_CODE]) `OP_PING_FIXED: begin state <= PING; end `OP_WRITE_REG: begin state <= WRITE_REG; pending <= 1; end `OP_WRITE_REG_MASKED: begin state <= WRITE_REG_MASKED; pending <= 1; end `OP_READ_REG: begin state <= READ_REG; end `OP_DELAY: begin state <= DELAY; end default: begin //error, skip this packet skip <= 1; state <= IDLE; end endcase end end SEND: begin rdreq <= 0; rx_WR_done <= 0; if (pending) begin rx_WR <= 1; rx_databus <= high; pending <= 0; if (lines_out == lines_out_total) state <= TEST; else case (ops) `OP_READ_REG: begin state <= READ_REG; end default: begin state <= TEST; end endcase end else begin if (rx_WR_enabled) begin rx_WR <= 1; rx_databus <= low; pending <= 1; lines_out <= lines_out + 2'd1; end else rx_WR <= 0; end end PING: begin rx_WR <= 0; rdreq <= 0; rx_WR_done <= 0; lines_out_total <= 2'd1; pending <= 0; state <= SEND; high <= {`OP_PING_FIXED_REPLY, 8'd2}; low <= value0[15:0]; end READ_REG: begin rx_WR <= 0; rx_WR_done <= 0; rdreq <= 0; lines_out_total <= 2'd2; pending <= 0; state <= SEND; if (lines_out == 0) begin high <= {`OP_READ_REG_REPLY, 8'd6}; low <= value0[15:0]; reg_io_enable <= 2'd3; reg_addr <= value0[6:0]; end else begin high <= reg_data_out[31:16]; low <= reg_data_out[15:0]; end end WRITE_REG: begin rx_WR <= 0; if (pending) pending <= 0; else begin if (lines_in == 2'd1) begin payload_read <= payload_read + 7'd1; lines_in <= lines_in + 2'd1; value1 <= fifodata; rdreq <= 0; end else begin reg_io_enable <= 2'd2; reg_data_in <= value1; reg_addr <= value0[6:0]; state <= TEST; end end end WRITE_REG_MASKED: begin rx_WR <= 0; if (pending) pending <= 0; else begin if (lines_in == 2'd1) begin rdreq <= 1; payload_read <= payload_read + 7'd1; lines_in <= lines_in + 2'd1; value1 <= fifodata; end else if (lines_in == 2'd2) begin rdreq <= 0; payload_read <= payload_read + 7'd1; lines_in <= lines_in + 2'd1; value2 <= fifodata; end else begin reg_io_enable <= 2'd2; reg_data_in <= (value1 & value2); reg_addr <= value0[6:0]; state <= TEST; end end end DELAY : begin rdreq <= 0; stop <= 1; stop_time <= value0[15:0]; state <= TEST; end default : begin //error state handling state <= IDLE; end endcase endmodule
module cmd_reader (//System input reset, input txclk, input [31:0] adc_time, //FX2 Side output reg skip, output reg rdreq, input [31:0] fifodata, input pkt_waiting, //Rx side input rx_WR_enabled, output reg [15:0] rx_databus, output reg rx_WR, output reg rx_WR_done, //register io input wire [31:0] reg_data_out, output reg [31:0] reg_data_in, output reg [6:0] reg_addr, output reg [1:0] reg_io_enable, output wire [14:0] debug, output reg stop, output reg [15:0] stop_time); // States parameter IDLE = 4'd0; parameter HEADER = 4'd1; parameter TIMESTAMP = 4'd2; parameter WAIT = 4'd3; parameter TEST = 4'd4; parameter SEND = 4'd5; parameter PING = 4'd6; parameter WRITE_REG = 4'd7; parameter WRITE_REG_MASKED = 4'd8; parameter READ_REG = 4'd9; parameter DELAY = 4'd14; `define OP_PING_FIXED 8'd0 `define OP_PING_FIXED_REPLY 8'd1 `define OP_WRITE_REG 8'd2 `define OP_WRITE_REG_MASKED 8'd3 `define OP_READ_REG 8'd4 `define OP_READ_REG_REPLY 8'd5 `define OP_DELAY 8'd12 reg [6:0] payload; reg [6:0] payload_read; reg [3:0] state; reg [15:0] high; reg [15:0] low; reg pending; reg [31:0] value0; reg [31:0] value1; reg [31:0] value2; reg [1:0] lines_in; reg [1:0] lines_out; reg [1:0] lines_out_total; `define JITTER 5 `define OP_CODE 31:24 `define PAYLOAD 8:2 wire [7:0] ops; assign ops = value0[`OP_CODE]; assign debug = {state[3:0], lines_out[1:0], pending, rx_WR, rx_WR_enabled, value0[2:0], ops[2:0]}; always @(posedge txclk) if (reset) begin pending <= 0; state <= IDLE; skip <= 0; rdreq <= 0; rx_WR <= 0; reg_io_enable <= 0; reg_data_in <= 0; reg_addr <= 0; stop <= 0; end else case (state) IDLE : begin payload_read <= 0; skip <= 0; lines_in <= 0; if(pkt_waiting) begin state <= HEADER; rdreq <= 1; end end HEADER : begin payload <= fifodata[`PAYLOAD]; state <= TIMESTAMP; end TIMESTAMP : begin value0 <= fifodata; state <= WAIT; rdreq <= 0; end WAIT : begin // Let's send it if ((value0 <= adc_time + `JITTER && value0 > adc_time) || value0 == 32'hFFFFFFFF) state <= TEST; // Wait a little bit more else if (value0 > adc_time + `JITTER) state <= WAIT; // Outdated else if (value0 < adc_time) begin state <= IDLE; skip <= 1; end end TEST : begin reg_io_enable <= 0; rx_WR <= 0; rx_WR_done <= 1; stop <= 0; if (payload_read == payload) begin skip <= 1; state <= IDLE; rdreq <= 0; end else begin value0 <= fifodata; lines_in <= 2'd1; rdreq <= 1; payload_read <= payload_read + 7'd1; lines_out <= 0; case (fifodata[`OP_CODE]) `OP_PING_FIXED: begin state <= PING; end `OP_WRITE_REG: begin state <= WRITE_REG; pending <= 1; end `OP_WRITE_REG_MASKED: begin state <= WRITE_REG_MASKED; pending <= 1; end `OP_READ_REG: begin state <= READ_REG; end `OP_DELAY: begin state <= DELAY; end default: begin //error, skip this packet skip <= 1; state <= IDLE; end endcase end end SEND: begin rdreq <= 0; rx_WR_done <= 0; if (pending) begin rx_WR <= 1; rx_databus <= high; pending <= 0; if (lines_out == lines_out_total) state <= TEST; else case (ops) `OP_READ_REG: begin state <= READ_REG; end default: begin state <= TEST; end endcase end else begin if (rx_WR_enabled) begin rx_WR <= 1; rx_databus <= low; pending <= 1; lines_out <= lines_out + 2'd1; end else rx_WR <= 0; end end PING: begin rx_WR <= 0; rdreq <= 0; rx_WR_done <= 0; lines_out_total <= 2'd1; pending <= 0; state <= SEND; high <= {`OP_PING_FIXED_REPLY, 8'd2}; low <= value0[15:0]; end READ_REG: begin rx_WR <= 0; rx_WR_done <= 0; rdreq <= 0; lines_out_total <= 2'd2; pending <= 0; state <= SEND; if (lines_out == 0) begin high <= {`OP_READ_REG_REPLY, 8'd6}; low <= value0[15:0]; reg_io_enable <= 2'd3; reg_addr <= value0[6:0]; end else begin high <= reg_data_out[31:16]; low <= reg_data_out[15:0]; end end WRITE_REG: begin rx_WR <= 0; if (pending) pending <= 0; else begin if (lines_in == 2'd1) begin payload_read <= payload_read + 7'd1; lines_in <= lines_in + 2'd1; value1 <= fifodata; rdreq <= 0; end else begin reg_io_enable <= 2'd2; reg_data_in <= value1; reg_addr <= value0[6:0]; state <= TEST; end end end WRITE_REG_MASKED: begin rx_WR <= 0; if (pending) pending <= 0; else begin if (lines_in == 2'd1) begin rdreq <= 1; payload_read <= payload_read + 7'd1; lines_in <= lines_in + 2'd1; value1 <= fifodata; end else if (lines_in == 2'd2) begin rdreq <= 0; payload_read <= payload_read + 7'd1; lines_in <= lines_in + 2'd1; value2 <= fifodata; end else begin reg_io_enable <= 2'd2; reg_data_in <= (value1 & value2); reg_addr <= value0[6:0]; state <= TEST; end end end DELAY : begin rdreq <= 0; stop <= 1; stop_time <= value0[15:0]; state <= TEST; end default : begin //error state handling state <= IDLE; end endcase endmodule
// niosii_mm_interconnect_0_avalon_st_adapter.v // This file was auto-generated from altera_avalon_st_adapter_hw.tcl. If you edit it your changes // will probably be lost. // // Generated using ACDS version 15.1 185 `timescale 1 ps / 1 ps module niosii_mm_interconnect_0_avalon_st_adapter #( parameter inBitsPerSymbol = 34, parameter inUsePackets = 0, parameter inDataWidth = 34, parameter inChannelWidth = 0, parameter inErrorWidth = 0, parameter inUseEmptyPort = 0, parameter inUseValid = 1, parameter inUseReady = 1, parameter inReadyLatency = 0, parameter outDataWidth = 34, parameter outChannelWidth = 0, parameter outErrorWidth = 1, parameter outUseEmptyPort = 0, parameter outUseValid = 1, parameter outUseReady = 1, parameter outReadyLatency = 0 ) ( input wire in_clk_0_clk, // in_clk_0.clk input wire in_rst_0_reset, // in_rst_0.reset input wire [33:0] in_0_data, // in_0.data input wire in_0_valid, // .valid output wire in_0_ready, // .ready output wire [33:0] out_0_data, // out_0.data output wire out_0_valid, // .valid input wire out_0_ready, // .ready output wire [0:0] out_0_error // .error ); generate // If any of the display statements (or deliberately broken // instantiations) within this generate block triggers then this module // has been instantiated this module with a set of parameters different // from those it was generated for. This will usually result in a // non-functioning system. if (inBitsPerSymbol != 34) begin initial begin $display("Generated module instantiated with wrong parameters"); $stop; end instantiated_with_wrong_parameters_error_see_comment_above inbitspersymbol_check ( .error(1'b1) ); end if (inUsePackets != 0) begin initial begin $display("Generated module instantiated with wrong parameters"); $stop; end instantiated_with_wrong_parameters_error_see_comment_above inusepackets_check ( .error(1'b1) ); end if (inDataWidth != 34) begin initial begin $display("Generated module instantiated with wrong parameters"); $stop; end instantiated_with_wrong_parameters_error_see_comment_above indatawidth_check ( .error(1'b1) ); end if (inChannelWidth != 0) begin initial begin $display("Generated module instantiated with wrong parameters"); $stop; end instantiated_with_wrong_parameters_error_see_comment_above inchannelwidth_check ( .error(1'b1) ); end if (inErrorWidth != 0) begin initial begin $display("Generated module instantiated with wrong parameters"); $stop; end instantiated_with_wrong_parameters_error_see_comment_above inerrorwidth_check ( .error(1'b1) ); end if (inUseEmptyPort != 0) begin initial begin $display("Generated module instantiated with wrong parameters"); $stop; end instantiated_with_wrong_parameters_error_see_comment_above inuseemptyport_check ( .error(1'b1) ); end if (inUseValid != 1) begin initial begin $display("Generated module instantiated with wrong parameters"); $stop; end instantiated_with_wrong_parameters_error_see_comment_above inusevalid_check ( .error(1'b1) ); end if (inUseReady != 1) begin initial begin $display("Generated module instantiated with wrong parameters"); $stop; end instantiated_with_wrong_parameters_error_see_comment_above inuseready_check ( .error(1'b1) ); end if (inReadyLatency != 0) begin initial begin $display("Generated module instantiated with wrong parameters"); $stop; end instantiated_with_wrong_parameters_error_see_comment_above inreadylatency_check ( .error(1'b1) ); end if (outDataWidth != 34) begin initial begin $display("Generated module instantiated with wrong parameters"); $stop; end instantiated_with_wrong_parameters_error_see_comment_above outdatawidth_check ( .error(1'b1) ); end if (outChannelWidth != 0) begin initial begin $display("Generated module instantiated with wrong parameters"); $stop; end instantiated_with_wrong_parameters_error_see_comment_above outchannelwidth_check ( .error(1'b1) ); end if (outErrorWidth != 1) begin initial begin $display("Generated module instantiated with wrong parameters"); $stop; end instantiated_with_wrong_parameters_error_see_comment_above outerrorwidth_check ( .error(1'b1) ); end if (outUseEmptyPort != 0) begin initial begin $display("Generated module instantiated with wrong parameters"); $stop; end instantiated_with_wrong_parameters_error_see_comment_above outuseemptyport_check ( .error(1'b1) ); end if (outUseValid != 1) begin initial begin $display("Generated module instantiated with wrong parameters"); $stop; end instantiated_with_wrong_parameters_error_see_comment_above outusevalid_check ( .error(1'b1) ); end if (outUseReady != 1) begin initial begin $display("Generated module instantiated with wrong parameters"); $stop; end instantiated_with_wrong_parameters_error_see_comment_above outuseready_check ( .error(1'b1) ); end if (outReadyLatency != 0) begin initial begin $display("Generated module instantiated with wrong parameters"); $stop; end instantiated_with_wrong_parameters_error_see_comment_above outreadylatency_check ( .error(1'b1) ); end endgenerate niosii_mm_interconnect_0_avalon_st_adapter_error_adapter_0 error_adapter_0 ( .clk (in_clk_0_clk), // clk.clk .reset_n (~in_rst_0_reset), // reset.reset_n .in_data (in_0_data), // in.data .in_valid (in_0_valid), // .valid .in_ready (in_0_ready), // .ready .out_data (out_0_data), // out.data .out_valid (out_0_valid), // .valid .out_ready (out_0_ready), // .ready .out_error (out_0_error) // .error ); endmodule
// niosii_mm_interconnect_0_avalon_st_adapter.v // This file was auto-generated from altera_avalon_st_adapter_hw.tcl. If you edit it your changes // will probably be lost. // // Generated using ACDS version 15.1 185 `timescale 1 ps / 1 ps module niosii_mm_interconnect_0_avalon_st_adapter #( parameter inBitsPerSymbol = 34, parameter inUsePackets = 0, parameter inDataWidth = 34, parameter inChannelWidth = 0, parameter inErrorWidth = 0, parameter inUseEmptyPort = 0, parameter inUseValid = 1, parameter inUseReady = 1, parameter inReadyLatency = 0, parameter outDataWidth = 34, parameter outChannelWidth = 0, parameter outErrorWidth = 1, parameter outUseEmptyPort = 0, parameter outUseValid = 1, parameter outUseReady = 1, parameter outReadyLatency = 0 ) ( input wire in_clk_0_clk, // in_clk_0.clk input wire in_rst_0_reset, // in_rst_0.reset input wire [33:0] in_0_data, // in_0.data input wire in_0_valid, // .valid output wire in_0_ready, // .ready output wire [33:0] out_0_data, // out_0.data output wire out_0_valid, // .valid input wire out_0_ready, // .ready output wire [0:0] out_0_error // .error ); generate // If any of the display statements (or deliberately broken // instantiations) within this generate block triggers then this module // has been instantiated this module with a set of parameters different // from those it was generated for. This will usually result in a // non-functioning system. if (inBitsPerSymbol != 34) begin initial begin $display("Generated module instantiated with wrong parameters"); $stop; end instantiated_with_wrong_parameters_error_see_comment_above inbitspersymbol_check ( .error(1'b1) ); end if (inUsePackets != 0) begin initial begin $display("Generated module instantiated with wrong parameters"); $stop; end instantiated_with_wrong_parameters_error_see_comment_above inusepackets_check ( .error(1'b1) ); end if (inDataWidth != 34) begin initial begin $display("Generated module instantiated with wrong parameters"); $stop; end instantiated_with_wrong_parameters_error_see_comment_above indatawidth_check ( .error(1'b1) ); end if (inChannelWidth != 0) begin initial begin $display("Generated module instantiated with wrong parameters"); $stop; end instantiated_with_wrong_parameters_error_see_comment_above inchannelwidth_check ( .error(1'b1) ); end if (inErrorWidth != 0) begin initial begin $display("Generated module instantiated with wrong parameters"); $stop; end instantiated_with_wrong_parameters_error_see_comment_above inerrorwidth_check ( .error(1'b1) ); end if (inUseEmptyPort != 0) begin initial begin $display("Generated module instantiated with wrong parameters"); $stop; end instantiated_with_wrong_parameters_error_see_comment_above inuseemptyport_check ( .error(1'b1) ); end if (inUseValid != 1) begin initial begin $display("Generated module instantiated with wrong parameters"); $stop; end instantiated_with_wrong_parameters_error_see_comment_above inusevalid_check ( .error(1'b1) ); end if (inUseReady != 1) begin initial begin $display("Generated module instantiated with wrong parameters"); $stop; end instantiated_with_wrong_parameters_error_see_comment_above inuseready_check ( .error(1'b1) ); end if (inReadyLatency != 0) begin initial begin $display("Generated module instantiated with wrong parameters"); $stop; end instantiated_with_wrong_parameters_error_see_comment_above inreadylatency_check ( .error(1'b1) ); end if (outDataWidth != 34) begin initial begin $display("Generated module instantiated with wrong parameters"); $stop; end instantiated_with_wrong_parameters_error_see_comment_above outdatawidth_check ( .error(1'b1) ); end if (outChannelWidth != 0) begin initial begin $display("Generated module instantiated with wrong parameters"); $stop; end instantiated_with_wrong_parameters_error_see_comment_above outchannelwidth_check ( .error(1'b1) ); end if (outErrorWidth != 1) begin initial begin $display("Generated module instantiated with wrong parameters"); $stop; end instantiated_with_wrong_parameters_error_see_comment_above outerrorwidth_check ( .error(1'b1) ); end if (outUseEmptyPort != 0) begin initial begin $display("Generated module instantiated with wrong parameters"); $stop; end instantiated_with_wrong_parameters_error_see_comment_above outuseemptyport_check ( .error(1'b1) ); end if (outUseValid != 1) begin initial begin $display("Generated module instantiated with wrong parameters"); $stop; end instantiated_with_wrong_parameters_error_see_comment_above outusevalid_check ( .error(1'b1) ); end if (outUseReady != 1) begin initial begin $display("Generated module instantiated with wrong parameters"); $stop; end instantiated_with_wrong_parameters_error_see_comment_above outuseready_check ( .error(1'b1) ); end if (outReadyLatency != 0) begin initial begin $display("Generated module instantiated with wrong parameters"); $stop; end instantiated_with_wrong_parameters_error_see_comment_above outreadylatency_check ( .error(1'b1) ); end endgenerate niosii_mm_interconnect_0_avalon_st_adapter_error_adapter_0 error_adapter_0 ( .clk (in_clk_0_clk), // clk.clk .reset_n (~in_rst_0_reset), // reset.reset_n .in_data (in_0_data), // in.data .in_valid (in_0_valid), // .valid .in_ready (in_0_ready), // .ready .out_data (out_0_data), // out.data .out_valid (out_0_valid), // .valid .out_ready (out_0_ready), // .ready .out_error (out_0_error) // .error ); endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2007 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; reg toggle; integer cyc; initial cyc=1; Test suba (/*AUTOINST*/ // Inputs .clk (clk), .toggle (toggle), .cyc (cyc[31:0])); Test subb (/*AUTOINST*/ // Inputs .clk (clk), .toggle (toggle), .cyc (cyc[31:0])); Test subc (/*AUTOINST*/ // Inputs .clk (clk), .toggle (toggle), .cyc (cyc[31:0])); always @ (posedge clk) begin if (cyc!=0) begin cyc <= cyc + 1; toggle <= !cyc[0]; if (cyc==9) begin end if (cyc==10) begin $write("*-* All Finished *-*\n"); $finish; end end end endmodule module Test ( input clk, input toggle, input [31:0] cyc ); // Don't flatten out these modules please: // verilator no_inline_module // Labeled cover cyc_eq_5: cover property (@(posedge clk) cyc==5) $display("*COVER: Cyc==5"); endmodule