text
stringlengths 938
1.05M
|
---|
//*****************************************************************************
// (c) Copyright 2009 - 2013 Xilinx, Inc. All rights reserved.
//
// This file contains confidential and proprietary information
// of Xilinx, Inc. and is protected under U.S. and
// international copyright and other intellectual property
// laws.
//
// DISCLAIMER
// This disclaimer is not a license and does not grant any
// rights to the materials distributed herewith. Except as
// otherwise provided in a valid license issued to you by
// Xilinx, and to the maximum extent permitted by applicable
// law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// (2) Xilinx shall not be liable (whether in contract or tort,
// including negligence, or under any other theory of
// liability) for any loss or damage of any kind or nature
// related to, arising under or in connection with these
// materials, including for any direct, or any indirect,
// special, incidental, or consequential loss or damage
// (including loss of data, profits, goodwill, or any type of
// loss or damage suffered as a result of any action brought
// by a third party) even if such damage or loss was
// reasonably foreseeable or Xilinx had been advised of the
// possibility of the same.
//
// CRITICAL APPLICATIONS
// Xilinx products are not designed or intended to be fail-
// safe, or for use in any application requiring fail-safe
// performance, such as life-support or safety devices or
// systems, Class III medical devices, nuclear facilities,
// applications related to the deployment of airbags, or any
// other applications that could lead to death, personal
// injury, or severe property or environmental damage
// (individually and collectively, "Critical
// Applications"). Customer assumes the sole risk and
// liability of any use of Xilinx products in Critical
// Applications, subject only to applicable laws and
// regulations governing limitations on product liability.
//
// THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// PART OF THIS FILE AT ALL TIMES.
//
//*****************************************************************************
// ____ ____
// / /\/ /
// /___/ \ / Vendor: Xilinx
// \ \ \/ Version: %version
// \ \ Application: MIG
// / / Filename: ddr_phy_ck_addr_cmd_delay.v
// /___/ /\ Date Last Modified: $Date: 2011/02/25 02:07:40 $
// \ \ / \ Date Created: Aug 03 2009
// \___\/\___\
//
//Device: 7 Series
//Design Name: DDR3 SDRAM
//Purpose: Shift CK/Address/Commands/Controls
//Reference:
//Revision History:
//*****************************************************************************
`timescale 1ps/1ps
module mig_7series_v2_3_ddr_phy_ck_addr_cmd_delay #
(
parameter TCQ = 100,
parameter tCK = 3636,
parameter DQS_CNT_WIDTH = 3,
parameter N_CTL_LANES = 3,
parameter SIM_CAL_OPTION = "NONE"
)
(
input clk,
input rst,
// Start only after PO_CIRC_BUF_DELAY decremented
input cmd_delay_start,
// Control lane being shifted using Phaser_Out fine delay taps
output reg [N_CTL_LANES-1:0] ctl_lane_cnt,
// Inc/dec Phaser_Out fine delay line
output reg po_stg2_f_incdec,
output reg po_en_stg2_f,
output reg po_stg2_c_incdec,
output reg po_en_stg2_c,
// Completed delaying CK/Address/Commands/Controls
output po_ck_addr_cmd_delay_done
);
localparam TAP_CNT_LIMIT = 63;
//Calculate the tap resolution of the PHASER based on the clock period
localparam FREQ_REF_DIV = (tCK > 5000 ? 4 :
tCK > 2500 ? 2 : 1);
localparam integer PHASER_TAP_RES = ((tCK/2)/64);
// Determine whether 300 ps or 350 ps delay required
localparam CALC_TAP_CNT = (tCK >= 1250) ? 350 : 300;
// Determine the number of Phaser_Out taps required to delay by 300 ps
// 300 ps is the PCB trace uncertainty between CK and DQS byte groups
// Increment control byte lanes
localparam TAP_CNT = 0;
//localparam TAP_CNT = (CALC_TAP_CNT + PHASER_TAP_RES - 1)/PHASER_TAP_RES;
//Decrement control byte lanes
localparam TAP_DEC = (SIM_CAL_OPTION == "FAST_CAL") ? 0 : 29;
reg delay_dec_done;
reg delay_done_r1;
reg delay_done_r2;
reg delay_done_r3;
reg delay_done_r4 /* synthesis syn_maxfan = 10 */;
reg [5:0] delay_cnt_r;
reg [5:0] delaydec_cnt_r;
reg po_cnt_inc;
reg po_cnt_dec;
reg [3:0] wait_cnt_r;
assign po_ck_addr_cmd_delay_done = ((TAP_CNT == 0) && (TAP_DEC == 0)) ? 1'b1 : delay_done_r4;
always @(posedge clk) begin
if (rst || po_cnt_dec || po_cnt_inc)
wait_cnt_r <= #TCQ 'd8;
else if (cmd_delay_start && (wait_cnt_r > 'd0))
wait_cnt_r <= #TCQ wait_cnt_r - 1;
end
always @(posedge clk) begin
if (rst || (delaydec_cnt_r > 6'd0) || (delay_cnt_r == 'd0) || (TAP_DEC == 0))
po_cnt_inc <= #TCQ 1'b0;
else if ((delay_cnt_r > 'd0) && (wait_cnt_r == 'd1))
po_cnt_inc <= #TCQ 1'b1;
else
po_cnt_inc <= #TCQ 1'b0;
end
//Tap decrement
always @(posedge clk) begin
if (rst || (delaydec_cnt_r == 'd0))
po_cnt_dec <= #TCQ 1'b0;
else if (cmd_delay_start && (delaydec_cnt_r > 'd0) && (wait_cnt_r == 'd1))
po_cnt_dec <= #TCQ 1'b1;
else
po_cnt_dec <= #TCQ 1'b0;
end
//po_stg2_f_incdec and po_en_stg2_f stay asserted HIGH for TAP_COUNT cycles for every control byte lane
//the alignment is started once the
always @(posedge clk) begin
if (rst) begin
po_stg2_f_incdec <= #TCQ 1'b0;
po_en_stg2_f <= #TCQ 1'b0;
po_stg2_c_incdec <= #TCQ 1'b0;
po_en_stg2_c <= #TCQ 1'b0;
end else begin
if (po_cnt_dec) begin
po_stg2_f_incdec <= #TCQ 1'b0;
po_en_stg2_f <= #TCQ 1'b1;
end else begin
po_stg2_f_incdec <= #TCQ 1'b0;
po_en_stg2_f <= #TCQ 1'b0;
end
if (po_cnt_inc) begin
po_stg2_c_incdec <= #TCQ 1'b1;
po_en_stg2_c <= #TCQ 1'b1;
end else begin
po_stg2_c_incdec <= #TCQ 1'b0;
po_en_stg2_c <= #TCQ 1'b0;
end
end
end
// delay counter to count 2 cycles
// Increment coarse taps by 2 for all control byte lanes
// to mitigate late writes
always @(posedge clk) begin
// load delay counter with init value
if (rst || (tCK > 2500) || (SIM_CAL_OPTION == "FAST_CAL"))
delay_cnt_r <= #TCQ 'd0;
else if ((delaydec_cnt_r > 6'd0) ||((delay_cnt_r == 6'd0) && (ctl_lane_cnt != N_CTL_LANES-1)))
delay_cnt_r <= #TCQ 'd1;
else if (po_cnt_inc && (delay_cnt_r > 6'd0))
delay_cnt_r <= #TCQ delay_cnt_r - 1;
end
// delay counter to count TAP_DEC cycles
always @(posedge clk) begin
// load delay counter with init value of TAP_DEC
if (rst || ~cmd_delay_start ||((delaydec_cnt_r == 6'd0) && (delay_cnt_r == 6'd0) && (ctl_lane_cnt != N_CTL_LANES-1)))
delaydec_cnt_r <= #TCQ TAP_DEC;
else if (po_cnt_dec && (delaydec_cnt_r > 6'd0))
delaydec_cnt_r <= #TCQ delaydec_cnt_r - 1;
end
//ctl_lane_cnt is used to count the number of CTL_LANES or byte lanes that have the address/command phase shifted by 1/4 mem. cycle
//This ensures all ctrl byte lanes have had their output phase shifted.
always @(posedge clk) begin
if (rst || ~cmd_delay_start )
ctl_lane_cnt <= #TCQ 6'b0;
else if (~delay_dec_done && (ctl_lane_cnt == N_CTL_LANES-1) && (delaydec_cnt_r == 6'd1))
ctl_lane_cnt <= #TCQ ctl_lane_cnt;
else if ((ctl_lane_cnt != N_CTL_LANES-1) && (delaydec_cnt_r == 6'd0) && (delay_cnt_r == 'd0))
ctl_lane_cnt <= #TCQ ctl_lane_cnt + 1;
end
// All control lanes have decremented to 31 fine taps from 46
always @(posedge clk) begin
if (rst || ~cmd_delay_start) begin
delay_dec_done <= #TCQ 1'b0;
end else if (((TAP_CNT == 0) && (TAP_DEC == 0)) ||
((delaydec_cnt_r == 6'd0) && (delay_cnt_r == 'd0) && (ctl_lane_cnt == N_CTL_LANES-1))) begin
delay_dec_done <= #TCQ 1'b1;
end
end
always @(posedge clk) begin
delay_done_r1 <= #TCQ delay_dec_done;
delay_done_r2 <= #TCQ delay_done_r1;
delay_done_r3 <= #TCQ delay_done_r2;
delay_done_r4 <= #TCQ delay_done_r3;
end
endmodule
|
//*****************************************************************************
// (c) Copyright 2009 - 2013 Xilinx, Inc. All rights reserved.
//
// This file contains confidential and proprietary information
// of Xilinx, Inc. and is protected under U.S. and
// international copyright and other intellectual property
// laws.
//
// DISCLAIMER
// This disclaimer is not a license and does not grant any
// rights to the materials distributed herewith. Except as
// otherwise provided in a valid license issued to you by
// Xilinx, and to the maximum extent permitted by applicable
// law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// (2) Xilinx shall not be liable (whether in contract or tort,
// including negligence, or under any other theory of
// liability) for any loss or damage of any kind or nature
// related to, arising under or in connection with these
// materials, including for any direct, or any indirect,
// special, incidental, or consequential loss or damage
// (including loss of data, profits, goodwill, or any type of
// loss or damage suffered as a result of any action brought
// by a third party) even if such damage or loss was
// reasonably foreseeable or Xilinx had been advised of the
// possibility of the same.
//
// CRITICAL APPLICATIONS
// Xilinx products are not designed or intended to be fail-
// safe, or for use in any application requiring fail-safe
// performance, such as life-support or safety devices or
// systems, Class III medical devices, nuclear facilities,
// applications related to the deployment of airbags, or any
// other applications that could lead to death, personal
// injury, or severe property or environmental damage
// (individually and collectively, "Critical
// Applications"). Customer assumes the sole risk and
// liability of any use of Xilinx products in Critical
// Applications, subject only to applicable laws and
// regulations governing limitations on product liability.
//
// THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// PART OF THIS FILE AT ALL TIMES.
//
//*****************************************************************************
// ____ ____
// / /\/ /
// /___/ \ / Vendor: Xilinx
// \ \ \/ Version: %version
// \ \ Application: MIG
// / / Filename: ddr_phy_ck_addr_cmd_delay.v
// /___/ /\ Date Last Modified: $Date: 2011/02/25 02:07:40 $
// \ \ / \ Date Created: Aug 03 2009
// \___\/\___\
//
//Device: 7 Series
//Design Name: DDR3 SDRAM
//Purpose: Shift CK/Address/Commands/Controls
//Reference:
//Revision History:
//*****************************************************************************
`timescale 1ps/1ps
module mig_7series_v2_3_ddr_phy_ck_addr_cmd_delay #
(
parameter TCQ = 100,
parameter tCK = 3636,
parameter DQS_CNT_WIDTH = 3,
parameter N_CTL_LANES = 3,
parameter SIM_CAL_OPTION = "NONE"
)
(
input clk,
input rst,
// Start only after PO_CIRC_BUF_DELAY decremented
input cmd_delay_start,
// Control lane being shifted using Phaser_Out fine delay taps
output reg [N_CTL_LANES-1:0] ctl_lane_cnt,
// Inc/dec Phaser_Out fine delay line
output reg po_stg2_f_incdec,
output reg po_en_stg2_f,
output reg po_stg2_c_incdec,
output reg po_en_stg2_c,
// Completed delaying CK/Address/Commands/Controls
output po_ck_addr_cmd_delay_done
);
localparam TAP_CNT_LIMIT = 63;
//Calculate the tap resolution of the PHASER based on the clock period
localparam FREQ_REF_DIV = (tCK > 5000 ? 4 :
tCK > 2500 ? 2 : 1);
localparam integer PHASER_TAP_RES = ((tCK/2)/64);
// Determine whether 300 ps or 350 ps delay required
localparam CALC_TAP_CNT = (tCK >= 1250) ? 350 : 300;
// Determine the number of Phaser_Out taps required to delay by 300 ps
// 300 ps is the PCB trace uncertainty between CK and DQS byte groups
// Increment control byte lanes
localparam TAP_CNT = 0;
//localparam TAP_CNT = (CALC_TAP_CNT + PHASER_TAP_RES - 1)/PHASER_TAP_RES;
//Decrement control byte lanes
localparam TAP_DEC = (SIM_CAL_OPTION == "FAST_CAL") ? 0 : 29;
reg delay_dec_done;
reg delay_done_r1;
reg delay_done_r2;
reg delay_done_r3;
reg delay_done_r4 /* synthesis syn_maxfan = 10 */;
reg [5:0] delay_cnt_r;
reg [5:0] delaydec_cnt_r;
reg po_cnt_inc;
reg po_cnt_dec;
reg [3:0] wait_cnt_r;
assign po_ck_addr_cmd_delay_done = ((TAP_CNT == 0) && (TAP_DEC == 0)) ? 1'b1 : delay_done_r4;
always @(posedge clk) begin
if (rst || po_cnt_dec || po_cnt_inc)
wait_cnt_r <= #TCQ 'd8;
else if (cmd_delay_start && (wait_cnt_r > 'd0))
wait_cnt_r <= #TCQ wait_cnt_r - 1;
end
always @(posedge clk) begin
if (rst || (delaydec_cnt_r > 6'd0) || (delay_cnt_r == 'd0) || (TAP_DEC == 0))
po_cnt_inc <= #TCQ 1'b0;
else if ((delay_cnt_r > 'd0) && (wait_cnt_r == 'd1))
po_cnt_inc <= #TCQ 1'b1;
else
po_cnt_inc <= #TCQ 1'b0;
end
//Tap decrement
always @(posedge clk) begin
if (rst || (delaydec_cnt_r == 'd0))
po_cnt_dec <= #TCQ 1'b0;
else if (cmd_delay_start && (delaydec_cnt_r > 'd0) && (wait_cnt_r == 'd1))
po_cnt_dec <= #TCQ 1'b1;
else
po_cnt_dec <= #TCQ 1'b0;
end
//po_stg2_f_incdec and po_en_stg2_f stay asserted HIGH for TAP_COUNT cycles for every control byte lane
//the alignment is started once the
always @(posedge clk) begin
if (rst) begin
po_stg2_f_incdec <= #TCQ 1'b0;
po_en_stg2_f <= #TCQ 1'b0;
po_stg2_c_incdec <= #TCQ 1'b0;
po_en_stg2_c <= #TCQ 1'b0;
end else begin
if (po_cnt_dec) begin
po_stg2_f_incdec <= #TCQ 1'b0;
po_en_stg2_f <= #TCQ 1'b1;
end else begin
po_stg2_f_incdec <= #TCQ 1'b0;
po_en_stg2_f <= #TCQ 1'b0;
end
if (po_cnt_inc) begin
po_stg2_c_incdec <= #TCQ 1'b1;
po_en_stg2_c <= #TCQ 1'b1;
end else begin
po_stg2_c_incdec <= #TCQ 1'b0;
po_en_stg2_c <= #TCQ 1'b0;
end
end
end
// delay counter to count 2 cycles
// Increment coarse taps by 2 for all control byte lanes
// to mitigate late writes
always @(posedge clk) begin
// load delay counter with init value
if (rst || (tCK > 2500) || (SIM_CAL_OPTION == "FAST_CAL"))
delay_cnt_r <= #TCQ 'd0;
else if ((delaydec_cnt_r > 6'd0) ||((delay_cnt_r == 6'd0) && (ctl_lane_cnt != N_CTL_LANES-1)))
delay_cnt_r <= #TCQ 'd1;
else if (po_cnt_inc && (delay_cnt_r > 6'd0))
delay_cnt_r <= #TCQ delay_cnt_r - 1;
end
// delay counter to count TAP_DEC cycles
always @(posedge clk) begin
// load delay counter with init value of TAP_DEC
if (rst || ~cmd_delay_start ||((delaydec_cnt_r == 6'd0) && (delay_cnt_r == 6'd0) && (ctl_lane_cnt != N_CTL_LANES-1)))
delaydec_cnt_r <= #TCQ TAP_DEC;
else if (po_cnt_dec && (delaydec_cnt_r > 6'd0))
delaydec_cnt_r <= #TCQ delaydec_cnt_r - 1;
end
//ctl_lane_cnt is used to count the number of CTL_LANES or byte lanes that have the address/command phase shifted by 1/4 mem. cycle
//This ensures all ctrl byte lanes have had their output phase shifted.
always @(posedge clk) begin
if (rst || ~cmd_delay_start )
ctl_lane_cnt <= #TCQ 6'b0;
else if (~delay_dec_done && (ctl_lane_cnt == N_CTL_LANES-1) && (delaydec_cnt_r == 6'd1))
ctl_lane_cnt <= #TCQ ctl_lane_cnt;
else if ((ctl_lane_cnt != N_CTL_LANES-1) && (delaydec_cnt_r == 6'd0) && (delay_cnt_r == 'd0))
ctl_lane_cnt <= #TCQ ctl_lane_cnt + 1;
end
// All control lanes have decremented to 31 fine taps from 46
always @(posedge clk) begin
if (rst || ~cmd_delay_start) begin
delay_dec_done <= #TCQ 1'b0;
end else if (((TAP_CNT == 0) && (TAP_DEC == 0)) ||
((delaydec_cnt_r == 6'd0) && (delay_cnt_r == 'd0) && (ctl_lane_cnt == N_CTL_LANES-1))) begin
delay_dec_done <= #TCQ 1'b1;
end
end
always @(posedge clk) begin
delay_done_r1 <= #TCQ delay_dec_done;
delay_done_r2 <= #TCQ delay_done_r1;
delay_done_r3 <= #TCQ delay_done_r2;
delay_done_r4 <= #TCQ delay_done_r3;
end
endmodule
|
//*****************************************************************************
// (c) Copyright 2008 - 2013 Xilinx, Inc. All rights reserved.
//
// This file contains confidential and proprietary information
// of Xilinx, Inc. and is protected under U.S. and
// international copyright and other intellectual property
// laws.
//
// DISCLAIMER
// This disclaimer is not a license and does not grant any
// rights to the materials distributed herewith. Except as
// otherwise provided in a valid license issued to you by
// Xilinx, and to the maximum extent permitted by applicable
// law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// (2) Xilinx shall not be liable (whether in contract or tort,
// including negligence, or under any other theory of
// liability) for any loss or damage of any kind or nature
// related to, arising under or in connection with these
// materials, including for any direct, or any indirect,
// special, incidental, or consequential loss or damage
// (including loss of data, profits, goodwill, or any type of
// loss or damage suffered as a result of any action brought
// by a third party) even if such damage or loss was
// reasonably foreseeable or Xilinx had been advised of the
// possibility of the same.
//
// CRITICAL APPLICATIONS
// Xilinx products are not designed or intended to be fail-
// safe, or for use in any application requiring fail-safe
// performance, such as life-support or safety devices or
// systems, Class III medical devices, nuclear facilities,
// applications related to the deployment of airbags, or any
// other applications that could lead to death, personal
// injury, or severe property or environmental damage
// (individually and collectively, "Critical
// Applications"). Customer assumes the sole risk and
// liability of any use of Xilinx products in Critical
// Applications, subject only to applicable laws and
// regulations governing limitations on product liability.
//
// THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// PART OF THIS FILE AT ALL TIMES.
//
//*****************************************************************************
// ____ ____
// / /\/ /
// /___/ \ / Vendor : Xilinx
// \ \ \/ Version : %version
// \ \ Application : MIG
// / / Filename : ecc_merge_enc.v
// /___/ /\ Date Last Modified : $date$
// \ \ / \ Date Created : Tue Jun 30 2009
// \___\/\___\
//
//Device : 7-Series
//Design Name : DDR3 SDRAM
//Purpose :
//Reference :
//Revision History :
//*****************************************************************************
`timescale 1ps/1ps
module mig_7series_v2_3_ecc_merge_enc
#(
parameter TCQ = 100,
parameter PAYLOAD_WIDTH = 64,
parameter CODE_WIDTH = 72,
parameter DATA_BUF_ADDR_WIDTH = 4,
parameter DATA_BUF_OFFSET_WIDTH = 1,
parameter DATA_WIDTH = 64,
parameter DQ_WIDTH = 72,
parameter ECC_WIDTH = 8,
parameter nCK_PER_CLK = 4
)
(
/*AUTOARG*/
// Outputs
mc_wrdata, mc_wrdata_mask,
// Inputs
clk, rst, wr_data, wr_data_mask, rd_merge_data, h_rows, raw_not_ecc
);
input clk;
input rst;
input [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] wr_data;
input [2*nCK_PER_CLK*DATA_WIDTH/8-1:0] wr_data_mask;
input [2*nCK_PER_CLK*DATA_WIDTH-1:0] rd_merge_data;
reg [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] wr_data_r;
reg [2*nCK_PER_CLK*DATA_WIDTH/8-1:0] wr_data_mask_r;
reg [2*nCK_PER_CLK*DATA_WIDTH-1:0] rd_merge_data_r;
always @(posedge clk) wr_data_r <= #TCQ wr_data;
always @(posedge clk) wr_data_mask_r <= #TCQ wr_data_mask;
always @(posedge clk) rd_merge_data_r <= #TCQ rd_merge_data;
// Merge new data with memory read data.
wire [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] merged_data;
genvar h;
genvar i;
generate
for (h=0; h<2*nCK_PER_CLK; h=h+1) begin : merge_data_outer
for (i=0; i<DATA_WIDTH/8; i=i+1) begin : merge_data_inner
assign merged_data[h*PAYLOAD_WIDTH+i*8+:8] =
wr_data_mask[h*DATA_WIDTH/8+i]
? rd_merge_data[h*DATA_WIDTH+i*8+:8]
: wr_data[h*PAYLOAD_WIDTH+i*8+:8];
end
if (PAYLOAD_WIDTH > DATA_WIDTH)
assign merged_data[(h+1)*PAYLOAD_WIDTH-1-:PAYLOAD_WIDTH-DATA_WIDTH]=
wr_data[(h+1)*PAYLOAD_WIDTH-1-:PAYLOAD_WIDTH-DATA_WIDTH];
end
endgenerate
// Generate ECC and overlay onto mc_wrdata.
input [CODE_WIDTH*ECC_WIDTH-1:0] h_rows;
input [2*nCK_PER_CLK-1:0] raw_not_ecc;
reg [2*nCK_PER_CLK-1:0] raw_not_ecc_r;
always @(posedge clk) raw_not_ecc_r <= #TCQ raw_not_ecc;
output reg [2*nCK_PER_CLK*DQ_WIDTH-1:0] mc_wrdata;
reg [2*nCK_PER_CLK*DQ_WIDTH-1:0] mc_wrdata_c;
genvar j;
integer k;
generate
for (j=0; j<2*nCK_PER_CLK; j=j+1) begin : ecc_word
always @(/*AS*/h_rows or merged_data or raw_not_ecc_r) begin
mc_wrdata_c[j*DQ_WIDTH+:DQ_WIDTH] =
{{DQ_WIDTH-PAYLOAD_WIDTH{1'b0}},
merged_data[j*PAYLOAD_WIDTH+:PAYLOAD_WIDTH]};
for (k=0; k<ECC_WIDTH; k=k+1)
if (~raw_not_ecc_r[j])
mc_wrdata_c[j*DQ_WIDTH+CODE_WIDTH-k-1] =
^(merged_data[j*PAYLOAD_WIDTH+:DATA_WIDTH] &
h_rows[k*CODE_WIDTH+:DATA_WIDTH]);
end
end
endgenerate
always @(posedge clk) mc_wrdata <= mc_wrdata_c;
// Set all DRAM masks to zero.
output wire[2*nCK_PER_CLK*DQ_WIDTH/8-1:0] mc_wrdata_mask;
assign mc_wrdata_mask = {2*nCK_PER_CLK*DQ_WIDTH/8{1'b0}};
endmodule
|
//*****************************************************************************
// (c) Copyright 2008 - 2013 Xilinx, Inc. All rights reserved.
//
// This file contains confidential and proprietary information
// of Xilinx, Inc. and is protected under U.S. and
// international copyright and other intellectual property
// laws.
//
// DISCLAIMER
// This disclaimer is not a license and does not grant any
// rights to the materials distributed herewith. Except as
// otherwise provided in a valid license issued to you by
// Xilinx, and to the maximum extent permitted by applicable
// law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// (2) Xilinx shall not be liable (whether in contract or tort,
// including negligence, or under any other theory of
// liability) for any loss or damage of any kind or nature
// related to, arising under or in connection with these
// materials, including for any direct, or any indirect,
// special, incidental, or consequential loss or damage
// (including loss of data, profits, goodwill, or any type of
// loss or damage suffered as a result of any action brought
// by a third party) even if such damage or loss was
// reasonably foreseeable or Xilinx had been advised of the
// possibility of the same.
//
// CRITICAL APPLICATIONS
// Xilinx products are not designed or intended to be fail-
// safe, or for use in any application requiring fail-safe
// performance, such as life-support or safety devices or
// systems, Class III medical devices, nuclear facilities,
// applications related to the deployment of airbags, or any
// other applications that could lead to death, personal
// injury, or severe property or environmental damage
// (individually and collectively, "Critical
// Applications"). Customer assumes the sole risk and
// liability of any use of Xilinx products in Critical
// Applications, subject only to applicable laws and
// regulations governing limitations on product liability.
//
// THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// PART OF THIS FILE AT ALL TIMES.
//
//*****************************************************************************
// ____ ____
// / /\/ /
// /___/ \ / Vendor : Xilinx
// \ \ \/ Version : %version
// \ \ Application : MIG
// / / Filename : ecc_merge_enc.v
// /___/ /\ Date Last Modified : $date$
// \ \ / \ Date Created : Tue Jun 30 2009
// \___\/\___\
//
//Device : 7-Series
//Design Name : DDR3 SDRAM
//Purpose :
//Reference :
//Revision History :
//*****************************************************************************
`timescale 1ps/1ps
module mig_7series_v2_3_ecc_merge_enc
#(
parameter TCQ = 100,
parameter PAYLOAD_WIDTH = 64,
parameter CODE_WIDTH = 72,
parameter DATA_BUF_ADDR_WIDTH = 4,
parameter DATA_BUF_OFFSET_WIDTH = 1,
parameter DATA_WIDTH = 64,
parameter DQ_WIDTH = 72,
parameter ECC_WIDTH = 8,
parameter nCK_PER_CLK = 4
)
(
/*AUTOARG*/
// Outputs
mc_wrdata, mc_wrdata_mask,
// Inputs
clk, rst, wr_data, wr_data_mask, rd_merge_data, h_rows, raw_not_ecc
);
input clk;
input rst;
input [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] wr_data;
input [2*nCK_PER_CLK*DATA_WIDTH/8-1:0] wr_data_mask;
input [2*nCK_PER_CLK*DATA_WIDTH-1:0] rd_merge_data;
reg [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] wr_data_r;
reg [2*nCK_PER_CLK*DATA_WIDTH/8-1:0] wr_data_mask_r;
reg [2*nCK_PER_CLK*DATA_WIDTH-1:0] rd_merge_data_r;
always @(posedge clk) wr_data_r <= #TCQ wr_data;
always @(posedge clk) wr_data_mask_r <= #TCQ wr_data_mask;
always @(posedge clk) rd_merge_data_r <= #TCQ rd_merge_data;
// Merge new data with memory read data.
wire [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] merged_data;
genvar h;
genvar i;
generate
for (h=0; h<2*nCK_PER_CLK; h=h+1) begin : merge_data_outer
for (i=0; i<DATA_WIDTH/8; i=i+1) begin : merge_data_inner
assign merged_data[h*PAYLOAD_WIDTH+i*8+:8] =
wr_data_mask[h*DATA_WIDTH/8+i]
? rd_merge_data[h*DATA_WIDTH+i*8+:8]
: wr_data[h*PAYLOAD_WIDTH+i*8+:8];
end
if (PAYLOAD_WIDTH > DATA_WIDTH)
assign merged_data[(h+1)*PAYLOAD_WIDTH-1-:PAYLOAD_WIDTH-DATA_WIDTH]=
wr_data[(h+1)*PAYLOAD_WIDTH-1-:PAYLOAD_WIDTH-DATA_WIDTH];
end
endgenerate
// Generate ECC and overlay onto mc_wrdata.
input [CODE_WIDTH*ECC_WIDTH-1:0] h_rows;
input [2*nCK_PER_CLK-1:0] raw_not_ecc;
reg [2*nCK_PER_CLK-1:0] raw_not_ecc_r;
always @(posedge clk) raw_not_ecc_r <= #TCQ raw_not_ecc;
output reg [2*nCK_PER_CLK*DQ_WIDTH-1:0] mc_wrdata;
reg [2*nCK_PER_CLK*DQ_WIDTH-1:0] mc_wrdata_c;
genvar j;
integer k;
generate
for (j=0; j<2*nCK_PER_CLK; j=j+1) begin : ecc_word
always @(/*AS*/h_rows or merged_data or raw_not_ecc_r) begin
mc_wrdata_c[j*DQ_WIDTH+:DQ_WIDTH] =
{{DQ_WIDTH-PAYLOAD_WIDTH{1'b0}},
merged_data[j*PAYLOAD_WIDTH+:PAYLOAD_WIDTH]};
for (k=0; k<ECC_WIDTH; k=k+1)
if (~raw_not_ecc_r[j])
mc_wrdata_c[j*DQ_WIDTH+CODE_WIDTH-k-1] =
^(merged_data[j*PAYLOAD_WIDTH+:DATA_WIDTH] &
h_rows[k*CODE_WIDTH+:DATA_WIDTH]);
end
end
endgenerate
always @(posedge clk) mc_wrdata <= mc_wrdata_c;
// Set all DRAM masks to zero.
output wire[2*nCK_PER_CLK*DQ_WIDTH/8-1:0] mc_wrdata_mask;
assign mc_wrdata_mask = {2*nCK_PER_CLK*DQ_WIDTH/8{1'b0}};
endmodule
|
//*****************************************************************************
// (c) Copyright 2008 - 2013 Xilinx, Inc. All rights reserved.
//
// This file contains confidential and proprietary information
// of Xilinx, Inc. and is protected under U.S. and
// international copyright and other intellectual property
// laws.
//
// DISCLAIMER
// This disclaimer is not a license and does not grant any
// rights to the materials distributed herewith. Except as
// otherwise provided in a valid license issued to you by
// Xilinx, and to the maximum extent permitted by applicable
// law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// (2) Xilinx shall not be liable (whether in contract or tort,
// including negligence, or under any other theory of
// liability) for any loss or damage of any kind or nature
// related to, arising under or in connection with these
// materials, including for any direct, or any indirect,
// special, incidental, or consequential loss or damage
// (including loss of data, profits, goodwill, or any type of
// loss or damage suffered as a result of any action brought
// by a third party) even if such damage or loss was
// reasonably foreseeable or Xilinx had been advised of the
// possibility of the same.
//
// CRITICAL APPLICATIONS
// Xilinx products are not designed or intended to be fail-
// safe, or for use in any application requiring fail-safe
// performance, such as life-support or safety devices or
// systems, Class III medical devices, nuclear facilities,
// applications related to the deployment of airbags, or any
// other applications that could lead to death, personal
// injury, or severe property or environmental damage
// (individually and collectively, "Critical
// Applications"). Customer assumes the sole risk and
// liability of any use of Xilinx products in Critical
// Applications, subject only to applicable laws and
// regulations governing limitations on product liability.
//
// THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// PART OF THIS FILE AT ALL TIMES.
//
//*****************************************************************************
// ____ ____
// / /\/ /
// /___/ \ / Vendor : Xilinx
// \ \ \/ Version : %version
// \ \ Application : MIG
// / / Filename : ecc_merge_enc.v
// /___/ /\ Date Last Modified : $date$
// \ \ / \ Date Created : Tue Jun 30 2009
// \___\/\___\
//
//Device : 7-Series
//Design Name : DDR3 SDRAM
//Purpose :
//Reference :
//Revision History :
//*****************************************************************************
`timescale 1ps/1ps
module mig_7series_v2_3_ecc_merge_enc
#(
parameter TCQ = 100,
parameter PAYLOAD_WIDTH = 64,
parameter CODE_WIDTH = 72,
parameter DATA_BUF_ADDR_WIDTH = 4,
parameter DATA_BUF_OFFSET_WIDTH = 1,
parameter DATA_WIDTH = 64,
parameter DQ_WIDTH = 72,
parameter ECC_WIDTH = 8,
parameter nCK_PER_CLK = 4
)
(
/*AUTOARG*/
// Outputs
mc_wrdata, mc_wrdata_mask,
// Inputs
clk, rst, wr_data, wr_data_mask, rd_merge_data, h_rows, raw_not_ecc
);
input clk;
input rst;
input [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] wr_data;
input [2*nCK_PER_CLK*DATA_WIDTH/8-1:0] wr_data_mask;
input [2*nCK_PER_CLK*DATA_WIDTH-1:0] rd_merge_data;
reg [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] wr_data_r;
reg [2*nCK_PER_CLK*DATA_WIDTH/8-1:0] wr_data_mask_r;
reg [2*nCK_PER_CLK*DATA_WIDTH-1:0] rd_merge_data_r;
always @(posedge clk) wr_data_r <= #TCQ wr_data;
always @(posedge clk) wr_data_mask_r <= #TCQ wr_data_mask;
always @(posedge clk) rd_merge_data_r <= #TCQ rd_merge_data;
// Merge new data with memory read data.
wire [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] merged_data;
genvar h;
genvar i;
generate
for (h=0; h<2*nCK_PER_CLK; h=h+1) begin : merge_data_outer
for (i=0; i<DATA_WIDTH/8; i=i+1) begin : merge_data_inner
assign merged_data[h*PAYLOAD_WIDTH+i*8+:8] =
wr_data_mask[h*DATA_WIDTH/8+i]
? rd_merge_data[h*DATA_WIDTH+i*8+:8]
: wr_data[h*PAYLOAD_WIDTH+i*8+:8];
end
if (PAYLOAD_WIDTH > DATA_WIDTH)
assign merged_data[(h+1)*PAYLOAD_WIDTH-1-:PAYLOAD_WIDTH-DATA_WIDTH]=
wr_data[(h+1)*PAYLOAD_WIDTH-1-:PAYLOAD_WIDTH-DATA_WIDTH];
end
endgenerate
// Generate ECC and overlay onto mc_wrdata.
input [CODE_WIDTH*ECC_WIDTH-1:0] h_rows;
input [2*nCK_PER_CLK-1:0] raw_not_ecc;
reg [2*nCK_PER_CLK-1:0] raw_not_ecc_r;
always @(posedge clk) raw_not_ecc_r <= #TCQ raw_not_ecc;
output reg [2*nCK_PER_CLK*DQ_WIDTH-1:0] mc_wrdata;
reg [2*nCK_PER_CLK*DQ_WIDTH-1:0] mc_wrdata_c;
genvar j;
integer k;
generate
for (j=0; j<2*nCK_PER_CLK; j=j+1) begin : ecc_word
always @(/*AS*/h_rows or merged_data or raw_not_ecc_r) begin
mc_wrdata_c[j*DQ_WIDTH+:DQ_WIDTH] =
{{DQ_WIDTH-PAYLOAD_WIDTH{1'b0}},
merged_data[j*PAYLOAD_WIDTH+:PAYLOAD_WIDTH]};
for (k=0; k<ECC_WIDTH; k=k+1)
if (~raw_not_ecc_r[j])
mc_wrdata_c[j*DQ_WIDTH+CODE_WIDTH-k-1] =
^(merged_data[j*PAYLOAD_WIDTH+:DATA_WIDTH] &
h_rows[k*CODE_WIDTH+:DATA_WIDTH]);
end
end
endgenerate
always @(posedge clk) mc_wrdata <= mc_wrdata_c;
// Set all DRAM masks to zero.
output wire[2*nCK_PER_CLK*DQ_WIDTH/8-1:0] mc_wrdata_mask;
assign mc_wrdata_mask = {2*nCK_PER_CLK*DQ_WIDTH/8{1'b0}};
endmodule
|
//*****************************************************************************
// (c) Copyright 2008 - 2013 Xilinx, Inc. All rights reserved.
//
// This file contains confidential and proprietary information
// of Xilinx, Inc. and is protected under U.S. and
// international copyright and other intellectual property
// laws.
//
// DISCLAIMER
// This disclaimer is not a license and does not grant any
// rights to the materials distributed herewith. Except as
// otherwise provided in a valid license issued to you by
// Xilinx, and to the maximum extent permitted by applicable
// law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// (2) Xilinx shall not be liable (whether in contract or tort,
// including negligence, or under any other theory of
// liability) for any loss or damage of any kind or nature
// related to, arising under or in connection with these
// materials, including for any direct, or any indirect,
// special, incidental, or consequential loss or damage
// (including loss of data, profits, goodwill, or any type of
// loss or damage suffered as a result of any action brought
// by a third party) even if such damage or loss was
// reasonably foreseeable or Xilinx had been advised of the
// possibility of the same.
//
// CRITICAL APPLICATIONS
// Xilinx products are not designed or intended to be fail-
// safe, or for use in any application requiring fail-safe
// performance, such as life-support or safety devices or
// systems, Class III medical devices, nuclear facilities,
// applications related to the deployment of airbags, or any
// other applications that could lead to death, personal
// injury, or severe property or environmental damage
// (individually and collectively, "Critical
// Applications"). Customer assumes the sole risk and
// liability of any use of Xilinx products in Critical
// Applications, subject only to applicable laws and
// regulations governing limitations on product liability.
//
// THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// PART OF THIS FILE AT ALL TIMES.
//
//*****************************************************************************
// ____ ____
// / /\/ /
// /___/ \ / Vendor : Xilinx
// \ \ \/ Version : %version
// \ \ Application : MIG
// / / Filename : ecc_merge_enc.v
// /___/ /\ Date Last Modified : $date$
// \ \ / \ Date Created : Tue Jun 30 2009
// \___\/\___\
//
//Device : 7-Series
//Design Name : DDR3 SDRAM
//Purpose :
//Reference :
//Revision History :
//*****************************************************************************
`timescale 1ps/1ps
module mig_7series_v2_3_ecc_merge_enc
#(
parameter TCQ = 100,
parameter PAYLOAD_WIDTH = 64,
parameter CODE_WIDTH = 72,
parameter DATA_BUF_ADDR_WIDTH = 4,
parameter DATA_BUF_OFFSET_WIDTH = 1,
parameter DATA_WIDTH = 64,
parameter DQ_WIDTH = 72,
parameter ECC_WIDTH = 8,
parameter nCK_PER_CLK = 4
)
(
/*AUTOARG*/
// Outputs
mc_wrdata, mc_wrdata_mask,
// Inputs
clk, rst, wr_data, wr_data_mask, rd_merge_data, h_rows, raw_not_ecc
);
input clk;
input rst;
input [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] wr_data;
input [2*nCK_PER_CLK*DATA_WIDTH/8-1:0] wr_data_mask;
input [2*nCK_PER_CLK*DATA_WIDTH-1:0] rd_merge_data;
reg [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] wr_data_r;
reg [2*nCK_PER_CLK*DATA_WIDTH/8-1:0] wr_data_mask_r;
reg [2*nCK_PER_CLK*DATA_WIDTH-1:0] rd_merge_data_r;
always @(posedge clk) wr_data_r <= #TCQ wr_data;
always @(posedge clk) wr_data_mask_r <= #TCQ wr_data_mask;
always @(posedge clk) rd_merge_data_r <= #TCQ rd_merge_data;
// Merge new data with memory read data.
wire [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] merged_data;
genvar h;
genvar i;
generate
for (h=0; h<2*nCK_PER_CLK; h=h+1) begin : merge_data_outer
for (i=0; i<DATA_WIDTH/8; i=i+1) begin : merge_data_inner
assign merged_data[h*PAYLOAD_WIDTH+i*8+:8] =
wr_data_mask[h*DATA_WIDTH/8+i]
? rd_merge_data[h*DATA_WIDTH+i*8+:8]
: wr_data[h*PAYLOAD_WIDTH+i*8+:8];
end
if (PAYLOAD_WIDTH > DATA_WIDTH)
assign merged_data[(h+1)*PAYLOAD_WIDTH-1-:PAYLOAD_WIDTH-DATA_WIDTH]=
wr_data[(h+1)*PAYLOAD_WIDTH-1-:PAYLOAD_WIDTH-DATA_WIDTH];
end
endgenerate
// Generate ECC and overlay onto mc_wrdata.
input [CODE_WIDTH*ECC_WIDTH-1:0] h_rows;
input [2*nCK_PER_CLK-1:0] raw_not_ecc;
reg [2*nCK_PER_CLK-1:0] raw_not_ecc_r;
always @(posedge clk) raw_not_ecc_r <= #TCQ raw_not_ecc;
output reg [2*nCK_PER_CLK*DQ_WIDTH-1:0] mc_wrdata;
reg [2*nCK_PER_CLK*DQ_WIDTH-1:0] mc_wrdata_c;
genvar j;
integer k;
generate
for (j=0; j<2*nCK_PER_CLK; j=j+1) begin : ecc_word
always @(/*AS*/h_rows or merged_data or raw_not_ecc_r) begin
mc_wrdata_c[j*DQ_WIDTH+:DQ_WIDTH] =
{{DQ_WIDTH-PAYLOAD_WIDTH{1'b0}},
merged_data[j*PAYLOAD_WIDTH+:PAYLOAD_WIDTH]};
for (k=0; k<ECC_WIDTH; k=k+1)
if (~raw_not_ecc_r[j])
mc_wrdata_c[j*DQ_WIDTH+CODE_WIDTH-k-1] =
^(merged_data[j*PAYLOAD_WIDTH+:DATA_WIDTH] &
h_rows[k*CODE_WIDTH+:DATA_WIDTH]);
end
end
endgenerate
always @(posedge clk) mc_wrdata <= mc_wrdata_c;
// Set all DRAM masks to zero.
output wire[2*nCK_PER_CLK*DQ_WIDTH/8-1:0] mc_wrdata_mask;
assign mc_wrdata_mask = {2*nCK_PER_CLK*DQ_WIDTH/8{1'b0}};
endmodule
|
//*****************************************************************************
// (c) Copyright 2008 - 2013 Xilinx, Inc. All rights reserved.
//
// This file contains confidential and proprietary information
// of Xilinx, Inc. and is protected under U.S. and
// international copyright and other intellectual property
// laws.
//
// DISCLAIMER
// This disclaimer is not a license and does not grant any
// rights to the materials distributed herewith. Except as
// otherwise provided in a valid license issued to you by
// Xilinx, and to the maximum extent permitted by applicable
// law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// (2) Xilinx shall not be liable (whether in contract or tort,
// including negligence, or under any other theory of
// liability) for any loss or damage of any kind or nature
// related to, arising under or in connection with these
// materials, including for any direct, or any indirect,
// special, incidental, or consequential loss or damage
// (including loss of data, profits, goodwill, or any type of
// loss or damage suffered as a result of any action brought
// by a third party) even if such damage or loss was
// reasonably foreseeable or Xilinx had been advised of the
// possibility of the same.
//
// CRITICAL APPLICATIONS
// Xilinx products are not designed or intended to be fail-
// safe, or for use in any application requiring fail-safe
// performance, such as life-support or safety devices or
// systems, Class III medical devices, nuclear facilities,
// applications related to the deployment of airbags, or any
// other applications that could lead to death, personal
// injury, or severe property or environmental damage
// (individually and collectively, "Critical
// Applications"). Customer assumes the sole risk and
// liability of any use of Xilinx products in Critical
// Applications, subject only to applicable laws and
// regulations governing limitations on product liability.
//
// THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// PART OF THIS FILE AT ALL TIMES.
//
//*****************************************************************************
// ____ ____
// / /\/ /
// /___/ \ / Vendor : Xilinx
// \ \ \/ Version : %version
// \ \ Application : MIG
// / / Filename : ecc_merge_enc.v
// /___/ /\ Date Last Modified : $date$
// \ \ / \ Date Created : Tue Jun 30 2009
// \___\/\___\
//
//Device : 7-Series
//Design Name : DDR3 SDRAM
//Purpose :
//Reference :
//Revision History :
//*****************************************************************************
`timescale 1ps/1ps
module mig_7series_v2_3_ecc_merge_enc
#(
parameter TCQ = 100,
parameter PAYLOAD_WIDTH = 64,
parameter CODE_WIDTH = 72,
parameter DATA_BUF_ADDR_WIDTH = 4,
parameter DATA_BUF_OFFSET_WIDTH = 1,
parameter DATA_WIDTH = 64,
parameter DQ_WIDTH = 72,
parameter ECC_WIDTH = 8,
parameter nCK_PER_CLK = 4
)
(
/*AUTOARG*/
// Outputs
mc_wrdata, mc_wrdata_mask,
// Inputs
clk, rst, wr_data, wr_data_mask, rd_merge_data, h_rows, raw_not_ecc
);
input clk;
input rst;
input [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] wr_data;
input [2*nCK_PER_CLK*DATA_WIDTH/8-1:0] wr_data_mask;
input [2*nCK_PER_CLK*DATA_WIDTH-1:0] rd_merge_data;
reg [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] wr_data_r;
reg [2*nCK_PER_CLK*DATA_WIDTH/8-1:0] wr_data_mask_r;
reg [2*nCK_PER_CLK*DATA_WIDTH-1:0] rd_merge_data_r;
always @(posedge clk) wr_data_r <= #TCQ wr_data;
always @(posedge clk) wr_data_mask_r <= #TCQ wr_data_mask;
always @(posedge clk) rd_merge_data_r <= #TCQ rd_merge_data;
// Merge new data with memory read data.
wire [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] merged_data;
genvar h;
genvar i;
generate
for (h=0; h<2*nCK_PER_CLK; h=h+1) begin : merge_data_outer
for (i=0; i<DATA_WIDTH/8; i=i+1) begin : merge_data_inner
assign merged_data[h*PAYLOAD_WIDTH+i*8+:8] =
wr_data_mask[h*DATA_WIDTH/8+i]
? rd_merge_data[h*DATA_WIDTH+i*8+:8]
: wr_data[h*PAYLOAD_WIDTH+i*8+:8];
end
if (PAYLOAD_WIDTH > DATA_WIDTH)
assign merged_data[(h+1)*PAYLOAD_WIDTH-1-:PAYLOAD_WIDTH-DATA_WIDTH]=
wr_data[(h+1)*PAYLOAD_WIDTH-1-:PAYLOAD_WIDTH-DATA_WIDTH];
end
endgenerate
// Generate ECC and overlay onto mc_wrdata.
input [CODE_WIDTH*ECC_WIDTH-1:0] h_rows;
input [2*nCK_PER_CLK-1:0] raw_not_ecc;
reg [2*nCK_PER_CLK-1:0] raw_not_ecc_r;
always @(posedge clk) raw_not_ecc_r <= #TCQ raw_not_ecc;
output reg [2*nCK_PER_CLK*DQ_WIDTH-1:0] mc_wrdata;
reg [2*nCK_PER_CLK*DQ_WIDTH-1:0] mc_wrdata_c;
genvar j;
integer k;
generate
for (j=0; j<2*nCK_PER_CLK; j=j+1) begin : ecc_word
always @(/*AS*/h_rows or merged_data or raw_not_ecc_r) begin
mc_wrdata_c[j*DQ_WIDTH+:DQ_WIDTH] =
{{DQ_WIDTH-PAYLOAD_WIDTH{1'b0}},
merged_data[j*PAYLOAD_WIDTH+:PAYLOAD_WIDTH]};
for (k=0; k<ECC_WIDTH; k=k+1)
if (~raw_not_ecc_r[j])
mc_wrdata_c[j*DQ_WIDTH+CODE_WIDTH-k-1] =
^(merged_data[j*PAYLOAD_WIDTH+:DATA_WIDTH] &
h_rows[k*CODE_WIDTH+:DATA_WIDTH]);
end
end
endgenerate
always @(posedge clk) mc_wrdata <= mc_wrdata_c;
// Set all DRAM masks to zero.
output wire[2*nCK_PER_CLK*DQ_WIDTH/8-1:0] mc_wrdata_mask;
assign mc_wrdata_mask = {2*nCK_PER_CLK*DQ_WIDTH/8{1'b0}};
endmodule
|
//*****************************************************************************
// (c) Copyright 2008 - 2013 Xilinx, Inc. All rights reserved.
//
// This file contains confidential and proprietary information
// of Xilinx, Inc. and is protected under U.S. and
// international copyright and other intellectual property
// laws.
//
// DISCLAIMER
// This disclaimer is not a license and does not grant any
// rights to the materials distributed herewith. Except as
// otherwise provided in a valid license issued to you by
// Xilinx, and to the maximum extent permitted by applicable
// law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// (2) Xilinx shall not be liable (whether in contract or tort,
// including negligence, or under any other theory of
// liability) for any loss or damage of any kind or nature
// related to, arising under or in connection with these
// materials, including for any direct, or any indirect,
// special, incidental, or consequential loss or damage
// (including loss of data, profits, goodwill, or any type of
// loss or damage suffered as a result of any action brought
// by a third party) even if such damage or loss was
// reasonably foreseeable or Xilinx had been advised of the
// possibility of the same.
//
// CRITICAL APPLICATIONS
// Xilinx products are not designed or intended to be fail-
// safe, or for use in any application requiring fail-safe
// performance, such as life-support or safety devices or
// systems, Class III medical devices, nuclear facilities,
// applications related to the deployment of airbags, or any
// other applications that could lead to death, personal
// injury, or severe property or environmental damage
// (individually and collectively, "Critical
// Applications"). Customer assumes the sole risk and
// liability of any use of Xilinx products in Critical
// Applications, subject only to applicable laws and
// regulations governing limitations on product liability.
//
// THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// PART OF THIS FILE AT ALL TIMES.
//
//*****************************************************************************
// ____ ____
// / /\/ /
// /___/ \ / Vendor : Xilinx
// \ \ \/ Version : %version
// \ \ Application : MIG
// / / Filename : bank_queue.v
// /___/ /\ Date Last Modified : $date$
// \ \ / \ Date Created : Tue Jun 30 2009
// \___\/\___\
//
//Device : 7-Series
//Design Name : DDR3 SDRAM
//Purpose :
//Reference :
//Revision History :
//*****************************************************************************
// Bank machine queue controller.
//
// Bank machines are always associated with a queue. When the system is
// idle, all bank machines are in the idle queue. As requests are
// received, the bank machine at the head of the idle queue accepts
// the request, removes itself from the idle queue and places itself
// in a queue associated with the rank-bank of the new request.
//
// If the new request is to an idle rank-bank, a new queue is created
// for that rank-bank. If the rank-bank is not idle, then the new
// request is added to the end of the existing rank-bank queue.
//
// When the head of the idle queue accepts a new request, all other
// bank machines move down one in the idle queue. When the idle queue
// is empty, the memory interface deasserts its accept signal.
//
// When new requests are received, the first step is to classify them
// as to whether the request targets an already open rank-bank, and if
// so, does the new request also hit on the already open page? As mentioned
// above, a new request places itself in the existing queue for a
// rank-bank hit. If it is also detected that the last entry in the
// existing rank-bank queue has the same page, then the current tail
// sets a bit telling itself to pass the open row when the column
// command is issued. The "passee" knows its in the head minus one
// position and hence takes control of the rank-bank.
//
// Requests are retired out of order to optimize DRAM array resources.
// However it is required that the user cannot "observe" this out of
// order processing as a data corruption. An ordering queue is
// used to enforce some ordering rules. As controlled by a paramter,
// there can be no ordering (RELAXED), ordering of writes only (NORM), and
// strict (STRICT) ordering whereby input request ordering is
// strictly adhered to.
//
// Note that ordering applies only to column commands. Row commands
// such as activate and precharge are allowed to proceed in any order
// with the proviso that within a rank-bank row commands are processed in
// the request order.
//
// When a bank machine accepts a new request, it looks at the ordering
// mode. If no ordering, nothing is done. If strict ordering, then
// it always places itself at the end of the ordering queue. If "normal"
// or write ordering, the row machine places itself in the ordering
// queue only if the new request is a write. The bank state machine
// looks at the ordering queue, and will only issue a column
// command when it sees itself at the head of the ordering queue.
//
// When a bank machine has completed its request, it must re-enter the
// idle queue. This is done by setting the idle_r bit, and setting q_entry_r
// to the idle count.
//
// There are several situations where more than one bank machine
// will enter the idle queue simultaneously. If two or more
// simply use the idle count to place themselves in the idle queue, multiple
// bank machines will end up at the same location in the idle queue, which
// is illegal.
//
// Based on the bank machine instance numbers, a count is made of
// the number of bank machines entering idle "below" this instance. This
// number is added to the idle count to compute the location in
// idle queue.
//
// There is also a single bit computed that says there were bank machines
// entering the idle queue "above" this instance. This is used to
// compute the tail bit.
//
// The word "queue" is used frequently to describe the behavior of the
// bank_queue block. In reality, there are no queues in the ordinary sense.
// As instantiated in this block, each bank machine has a q_entry_r number.
// This number represents the position of the bank machine in its current
// queue. At any given time, a bank machine may be in the idle queue,
// one of the dynamic rank-bank queues, or a single entry manitenance queue.
// A complete description of which queue a bank machine is currently in is
// given by idle_r, its rank-bank, mainteance status and its q_entry_r number.
//
// DRAM refresh and ZQ have a private single entry queue/channel. However,
// when a refresh request is made, it must be injected into the main queue
// properly. At the time of injection, the refresh rank is compared against
// all entryies in the queue. For those that match, if timing allows, and
// they are the tail of the rank-bank queue, then the auto_pre bit is set.
// Otherwise precharge is in progress. This results in a fully precharged
// rank.
//
// At the time of injection, the refresh channel builds a bit
// vector of queue entries that hit on the refresh rank. Once all
// of these entries finish, the refresh is forced in at the row arbiter.
//
// New requests that come after the refresh request will notice that
// a refresh is in progress for their rank and wait for the refresh
// to finish before attempting to arbitrate to send an activate.
//
// Injection of a refresh sets the q_has_rd bit for all queues hitting
// on the refresh rank. This insures a starved write request will not
// indefinitely hold off a refresh.
//
// Periodic reads are required to compare themselves against requests
// that are in progress. Adding a unique compare channel for this
// is not worthwhile. Periodic read requests inhibit the accept
// signal and override any new request that might be trying to
// enter the queue.
//
// Once a periodic read has entered the queue it is nearly indistinguishable
// from a normal read request. The req_periodic_rd_r bit is set for
// queue entry. This signal is used to inhibit the rd_data_en signal.
`timescale 1ps/1ps
`define BM_SHARED_BV (ID+nBANK_MACHS-1):(ID+1)
module mig_7series_v2_3_bank_queue #
(
parameter TCQ = 100,
parameter BM_CNT_WIDTH = 2,
parameter nBANK_MACHS = 4,
parameter ORDERING = "NORM",
parameter ID = 0
)
(/*AUTOARG*/
// Outputs
head_r, tail_r, idle_ns, idle_r, pass_open_bank_ns,
pass_open_bank_r, auto_pre_r, bm_end, passing_open_bank,
ordered_issued, ordered_r, order_q_zero, rcv_open_bank,
rb_hit_busies_r, q_has_rd, q_has_priority, wait_for_maint_r,
// Inputs
clk, rst, accept_internal_r, use_addr, periodic_rd_ack_r, bm_end_in,
idle_cnt, rb_hit_busy_cnt, accept_req, rb_hit_busy_r, maint_idle,
maint_hit, row_hit_r, pre_wait_r, allow_auto_pre, sending_col,
bank_wait_in_progress, precharge_bm_end, req_wr_r, rd_wr_r,
adv_order_q, order_cnt, rb_hit_busy_ns_in, passing_open_bank_in,
was_wr, maint_req_r, was_priority
);
localparam ZERO = 0;
localparam ONE = 1;
localparam [BM_CNT_WIDTH-1:0] BM_CNT_ZERO = ZERO[0+:BM_CNT_WIDTH];
localparam [BM_CNT_WIDTH-1:0] BM_CNT_ONE = ONE[0+:BM_CNT_WIDTH];
input clk;
input rst;
// Decide if this bank machine should accept a new request.
reg idle_r_lcl;
reg head_r_lcl;
input accept_internal_r;
wire bm_ready = idle_r_lcl && head_r_lcl && accept_internal_r;
// Accept request in this bank machine. Could be maintenance or
// regular request.
input use_addr;
input periodic_rd_ack_r;
wire accept_this_bm = bm_ready && (use_addr || periodic_rd_ack_r);
// Multiple machines may enter the idle queue in a single state.
// Based on bank machine instance number, compute how many
// bank machines with lower instance numbers are entering
// the idle queue.
input [(nBANK_MACHS*2)-1:0] bm_end_in;
reg [BM_CNT_WIDTH-1:0] idlers_below;
integer i;
always @(/*AS*/bm_end_in) begin
idlers_below = BM_CNT_ZERO;
for (i=0; i<ID; i=i+1)
idlers_below = idlers_below + bm_end_in[i];
end
reg idlers_above;
always @(/*AS*/bm_end_in) begin
idlers_above = 1'b0;
for (i=ID+1; i<ID+nBANK_MACHS; i=i+1)
idlers_above = idlers_above || bm_end_in[i];
end
`ifdef MC_SVA
bm_end_and_idlers_above: cover property (@(posedge clk)
(~rst && bm_end && idlers_above));
bm_end_and_idlers_below: cover property (@(posedge clk)
(~rst && bm_end && |idlers_below));
`endif
// Compute the q_entry number.
input [BM_CNT_WIDTH-1:0] idle_cnt;
input [BM_CNT_WIDTH-1:0] rb_hit_busy_cnt;
input accept_req;
wire bm_end_lcl;
reg adv_queue = 1'b0;
reg [BM_CNT_WIDTH-1:0] q_entry_r;
reg [BM_CNT_WIDTH-1:0] q_entry_ns;
wire [BM_CNT_WIDTH-1:0] temp;
// always @(/*AS*/accept_req or accept_this_bm or adv_queue
// or bm_end_lcl or idle_cnt or idle_r_lcl or idlers_below
// or q_entry_r or rb_hit_busy_cnt /*or rst*/) begin
//// if (rst) q_entry_ns = ID[BM_CNT_WIDTH-1:0];
//// else begin
// q_entry_ns = q_entry_r;
// if ((~idle_r_lcl && adv_queue) ||
// (idle_r_lcl && accept_req && ~accept_this_bm))
// q_entry_ns = q_entry_r - BM_CNT_ONE;
// if (accept_this_bm)
//// q_entry_ns = rb_hit_busy_cnt - (adv_queue ? BM_CNT_ONE : BM_CNT_ZERO);
// q_entry_ns = adv_queue ? (rb_hit_busy_cnt - BM_CNT_ONE) : (rb_hit_busy_cnt -BM_CNT_ZERO);
// if (bm_end_lcl) begin
// q_entry_ns = idle_cnt + idlers_below;
// if (accept_req) q_entry_ns = q_entry_ns - BM_CNT_ONE;
//// end
// end
// end
assign temp = idle_cnt + idlers_below;
always @ (*)
begin
if (accept_req & bm_end_lcl)
q_entry_ns = temp - BM_CNT_ONE;
else if (bm_end_lcl)
q_entry_ns = temp;
else if (accept_this_bm)
q_entry_ns = adv_queue ? (rb_hit_busy_cnt - BM_CNT_ONE) : (rb_hit_busy_cnt -BM_CNT_ZERO);
else if ((!idle_r_lcl & adv_queue) |
(idle_r_lcl & accept_req & !accept_this_bm))
q_entry_ns = q_entry_r - BM_CNT_ONE;
else
q_entry_ns = q_entry_r;
end
always @(posedge clk)
if (rst)
q_entry_r <= #TCQ ID[BM_CNT_WIDTH-1:0];
else
q_entry_r <= #TCQ q_entry_ns;
// Determine if this entry is the head of its queue.
reg head_ns;
always @(/*AS*/accept_req or accept_this_bm or adv_queue
or bm_end_lcl or head_r_lcl or idle_cnt or idle_r_lcl
or idlers_below or q_entry_r or rb_hit_busy_cnt or rst) begin
if (rst) head_ns = ~|ID[BM_CNT_WIDTH-1:0];
else begin
head_ns = head_r_lcl;
if (accept_this_bm)
head_ns = ~|(rb_hit_busy_cnt - (adv_queue ? BM_CNT_ONE : BM_CNT_ZERO));
if ((~idle_r_lcl && adv_queue) ||
(idle_r_lcl && accept_req && ~accept_this_bm))
head_ns = ~|(q_entry_r - BM_CNT_ONE);
if (bm_end_lcl) begin
head_ns = ~|(idle_cnt - (accept_req ? BM_CNT_ONE : BM_CNT_ZERO)) &&
~|idlers_below;
end
end
end
always @(posedge clk) head_r_lcl <= #TCQ head_ns;
output wire head_r;
assign head_r = head_r_lcl;
// Determine if this entry is the tail of its queue. Note that
// an entry can be both head and tail.
input rb_hit_busy_r;
reg tail_r_lcl = 1'b1;
generate
if (nBANK_MACHS > 1) begin : compute_tail
reg tail_ns;
always @(accept_req or accept_this_bm
or bm_end_in or bm_end_lcl or idle_r_lcl
or idlers_above or rb_hit_busy_r or rst or tail_r_lcl) begin
if (rst) tail_ns = (ID == nBANK_MACHS);
// The order of the statements below is important in the case where
// another bank machine is retiring and this bank machine is accepting.
else begin
tail_ns = tail_r_lcl;
if ((accept_req && rb_hit_busy_r) ||
(|bm_end_in[`BM_SHARED_BV] && idle_r_lcl))
tail_ns = 1'b0;
if (accept_this_bm || (bm_end_lcl && ~idlers_above)) tail_ns = 1'b1;
end
end
always @(posedge clk) tail_r_lcl <= #TCQ tail_ns;
end // if (nBANK_MACHS > 1)
endgenerate
output wire tail_r;
assign tail_r = tail_r_lcl;
wire clear_req = bm_end_lcl || rst;
// Is this entry in the idle queue?
reg idle_ns_lcl;
always @(/*AS*/accept_this_bm or clear_req or idle_r_lcl) begin
idle_ns_lcl = idle_r_lcl;
if (accept_this_bm) idle_ns_lcl = 1'b0;
if (clear_req) idle_ns_lcl = 1'b1;
end
always @(posedge clk) idle_r_lcl <= #TCQ idle_ns_lcl;
output wire idle_ns;
assign idle_ns = idle_ns_lcl;
output wire idle_r;
assign idle_r = idle_r_lcl;
// Maintenance hitting on this active bank machine is in progress.
input maint_idle;
input maint_hit;
wire maint_hit_this_bm = ~maint_idle && maint_hit;
// Does new request hit on this bank machine while it is able to pass the
// open bank?
input row_hit_r;
input pre_wait_r;
wire pass_open_bank_eligible =
tail_r_lcl && rb_hit_busy_r && row_hit_r && ~pre_wait_r;
// Set pass open bank bit, but not if request preceded active maintenance.
reg wait_for_maint_r_lcl;
reg pass_open_bank_r_lcl;
wire pass_open_bank_ns_lcl = ~clear_req &&
(pass_open_bank_r_lcl ||
(accept_req && pass_open_bank_eligible &&
(~maint_hit_this_bm || wait_for_maint_r_lcl)));
always @(posedge clk) pass_open_bank_r_lcl <= #TCQ pass_open_bank_ns_lcl;
output wire pass_open_bank_ns;
assign pass_open_bank_ns = pass_open_bank_ns_lcl;
output wire pass_open_bank_r;
assign pass_open_bank_r = pass_open_bank_r_lcl;
`ifdef MC_SVA
pass_open_bank: cover property (@(posedge clk) (~rst && pass_open_bank_ns));
pass_open_bank_killed_by_maint: cover property (@(posedge clk)
(~rst && accept_req && pass_open_bank_eligible &&
maint_hit_this_bm && ~wait_for_maint_r_lcl));
pass_open_bank_following_maint: cover property (@(posedge clk)
(~rst && accept_req && pass_open_bank_eligible &&
maint_hit_this_bm && wait_for_maint_r_lcl));
`endif
// Should the column command be sent with the auto precharge bit set? This
// will happen when it is detected that next request is to a different row,
// or the next reqest is the next request is refresh to this rank.
reg auto_pre_r_lcl;
reg auto_pre_ns;
input allow_auto_pre;
always @(/*AS*/accept_req or allow_auto_pre or auto_pre_r_lcl
or clear_req or maint_hit_this_bm or rb_hit_busy_r
or row_hit_r or tail_r_lcl or wait_for_maint_r_lcl) begin
auto_pre_ns = auto_pre_r_lcl;
if (clear_req) auto_pre_ns = 1'b0;
else
if (accept_req && tail_r_lcl && allow_auto_pre && rb_hit_busy_r &&
(~row_hit_r || (maint_hit_this_bm && ~wait_for_maint_r_lcl)))
auto_pre_ns = 1'b1;
end
always @(posedge clk) auto_pre_r_lcl <= #TCQ auto_pre_ns;
output wire auto_pre_r;
assign auto_pre_r = auto_pre_r_lcl;
`ifdef MC_SVA
auto_precharge: cover property (@(posedge clk) (~rst && auto_pre_ns));
maint_triggers_auto_precharge: cover property (@(posedge clk)
(~rst && auto_pre_ns && ~auto_pre_r && row_hit_r));
`endif
// Determine when the current request is finished.
input sending_col;
input req_wr_r;
input rd_wr_r;
wire sending_col_not_rmw_rd = sending_col && !(req_wr_r && rd_wr_r);
input bank_wait_in_progress;
input precharge_bm_end;
reg pre_bm_end_r;
wire pre_bm_end_ns = precharge_bm_end ||
(bank_wait_in_progress && pass_open_bank_ns_lcl);
always @(posedge clk) pre_bm_end_r <= #TCQ pre_bm_end_ns;
assign bm_end_lcl =
pre_bm_end_r || (sending_col_not_rmw_rd && pass_open_bank_r_lcl);
output wire bm_end;
assign bm_end = bm_end_lcl;
// Determine that the open bank should be passed to the successor bank machine.
reg pre_passing_open_bank_r;
wire pre_passing_open_bank_ns =
bank_wait_in_progress && pass_open_bank_ns_lcl;
always @(posedge clk) pre_passing_open_bank_r <= #TCQ
pre_passing_open_bank_ns;
output wire passing_open_bank;
assign passing_open_bank =
pre_passing_open_bank_r || (sending_col_not_rmw_rd && pass_open_bank_r_lcl);
reg ordered_ns;
wire set_order_q = ((ORDERING == "STRICT") || ((ORDERING == "NORM") &&
req_wr_r)) && accept_this_bm;
wire ordered_issued_lcl =
sending_col_not_rmw_rd && !(req_wr_r && rd_wr_r) &&
((ORDERING == "STRICT") || ((ORDERING == "NORM") && req_wr_r));
output wire ordered_issued;
assign ordered_issued = ordered_issued_lcl;
reg ordered_r_lcl;
always @(/*AS*/ordered_issued_lcl or ordered_r_lcl or rst
or set_order_q) begin
if (rst) ordered_ns = 1'b0;
else begin
ordered_ns = ordered_r_lcl;
// Should never see accept_this_bm and adv_order_q at the same time.
if (set_order_q) ordered_ns = 1'b1;
if (ordered_issued_lcl) ordered_ns = 1'b0;
end
end
always @(posedge clk) ordered_r_lcl <= #TCQ ordered_ns;
output wire ordered_r;
assign ordered_r = ordered_r_lcl;
// Figure out when to advance the ordering queue.
input adv_order_q;
input [BM_CNT_WIDTH-1:0] order_cnt;
reg [BM_CNT_WIDTH-1:0] order_q_r;
reg [BM_CNT_WIDTH-1:0] order_q_ns;
always @(/*AS*/adv_order_q or order_cnt or order_q_r or rst
or set_order_q) begin
order_q_ns = order_q_r;
if (rst) order_q_ns = BM_CNT_ZERO;
if (set_order_q)
if (adv_order_q) order_q_ns = order_cnt - BM_CNT_ONE;
else order_q_ns = order_cnt;
if (adv_order_q && |order_q_r) order_q_ns = order_q_r - BM_CNT_ONE;
end
always @(posedge clk) order_q_r <= #TCQ order_q_ns;
output wire order_q_zero;
assign order_q_zero = ~|order_q_r ||
(adv_order_q && (order_q_r == BM_CNT_ONE)) ||
((ORDERING == "NORM") && rd_wr_r);
// Keep track of which other bank machine are ahead of this one in a
// rank-bank queue. This is necessary to know when to advance this bank
// machine in the queue, and when to update bank state machine counter upon
// passing a bank.
input [(nBANK_MACHS*2)-1:0] rb_hit_busy_ns_in;
reg [(nBANK_MACHS*2)-1:0] rb_hit_busies_r_lcl = {nBANK_MACHS*2{1'b0}};
input [(nBANK_MACHS*2)-1:0] passing_open_bank_in;
output reg rcv_open_bank = 1'b0;
generate
if (nBANK_MACHS > 1) begin : rb_hit_busies
// The clear_vector resets bits in the rb_hit_busies vector as bank machines
// completes requests. rst also resets all the bits.
wire [nBANK_MACHS-2:0] clear_vector =
({nBANK_MACHS-1{rst}} | bm_end_in[`BM_SHARED_BV]);
// As this bank machine takes on a new request, capture the vector of
// which other bank machines are in the same queue.
wire [`BM_SHARED_BV] rb_hit_busies_ns =
~clear_vector &
(idle_ns_lcl
? rb_hit_busy_ns_in[`BM_SHARED_BV]
: rb_hit_busies_r_lcl[`BM_SHARED_BV]);
always @(posedge clk) rb_hit_busies_r_lcl[`BM_SHARED_BV] <=
#TCQ rb_hit_busies_ns;
// Compute when to advance this queue entry based on seeing other bank machines
// in the same queue finish.
always @(bm_end_in or rb_hit_busies_r_lcl)
adv_queue =
|(bm_end_in[`BM_SHARED_BV] & rb_hit_busies_r_lcl[`BM_SHARED_BV]);
// Decide when to receive an open bank based on knowing this bank machine is
// one entry from the head, and a passing_open_bank hits on the
// rb_hit_busies vector.
always @(idle_r_lcl
or passing_open_bank_in or q_entry_r
or rb_hit_busies_r_lcl) rcv_open_bank =
|(rb_hit_busies_r_lcl[`BM_SHARED_BV] & passing_open_bank_in[`BM_SHARED_BV])
&& (q_entry_r == BM_CNT_ONE) && ~idle_r_lcl;
end
endgenerate
output wire [nBANK_MACHS*2-1:0] rb_hit_busies_r;
assign rb_hit_busies_r = rb_hit_busies_r_lcl;
// Keep track if the queue this entry is in has priority content.
input was_wr;
input maint_req_r;
reg q_has_rd_r;
wire q_has_rd_ns = ~clear_req &&
(q_has_rd_r || (accept_req && rb_hit_busy_r && ~was_wr) ||
(maint_req_r && maint_hit && ~idle_r_lcl));
always @(posedge clk) q_has_rd_r <= #TCQ q_has_rd_ns;
output wire q_has_rd;
assign q_has_rd = q_has_rd_r;
input was_priority;
reg q_has_priority_r;
wire q_has_priority_ns = ~clear_req &&
(q_has_priority_r || (accept_req && rb_hit_busy_r && was_priority));
always @(posedge clk) q_has_priority_r <= #TCQ q_has_priority_ns;
output wire q_has_priority;
assign q_has_priority = q_has_priority_r;
// Figure out if this entry should wait for maintenance to end.
wire wait_for_maint_ns = ~rst && ~maint_idle &&
(wait_for_maint_r_lcl || (maint_hit && accept_this_bm));
always @(posedge clk) wait_for_maint_r_lcl <= #TCQ wait_for_maint_ns;
output wire wait_for_maint_r;
assign wait_for_maint_r = wait_for_maint_r_lcl;
endmodule // bank_queue
|
//*****************************************************************************
// (c) Copyright 2008 - 2013 Xilinx, Inc. All rights reserved.
//
// This file contains confidential and proprietary information
// of Xilinx, Inc. and is protected under U.S. and
// international copyright and other intellectual property
// laws.
//
// DISCLAIMER
// This disclaimer is not a license and does not grant any
// rights to the materials distributed herewith. Except as
// otherwise provided in a valid license issued to you by
// Xilinx, and to the maximum extent permitted by applicable
// law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// (2) Xilinx shall not be liable (whether in contract or tort,
// including negligence, or under any other theory of
// liability) for any loss or damage of any kind or nature
// related to, arising under or in connection with these
// materials, including for any direct, or any indirect,
// special, incidental, or consequential loss or damage
// (including loss of data, profits, goodwill, or any type of
// loss or damage suffered as a result of any action brought
// by a third party) even if such damage or loss was
// reasonably foreseeable or Xilinx had been advised of the
// possibility of the same.
//
// CRITICAL APPLICATIONS
// Xilinx products are not designed or intended to be fail-
// safe, or for use in any application requiring fail-safe
// performance, such as life-support or safety devices or
// systems, Class III medical devices, nuclear facilities,
// applications related to the deployment of airbags, or any
// other applications that could lead to death, personal
// injury, or severe property or environmental damage
// (individually and collectively, "Critical
// Applications"). Customer assumes the sole risk and
// liability of any use of Xilinx products in Critical
// Applications, subject only to applicable laws and
// regulations governing limitations on product liability.
//
// THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// PART OF THIS FILE AT ALL TIMES.
//
//*****************************************************************************
// ____ ____
// / /\/ /
// /___/ \ / Vendor : Xilinx
// \ \ \/ Version : %version
// \ \ Application : MIG
// / / Filename : bank_queue.v
// /___/ /\ Date Last Modified : $date$
// \ \ / \ Date Created : Tue Jun 30 2009
// \___\/\___\
//
//Device : 7-Series
//Design Name : DDR3 SDRAM
//Purpose :
//Reference :
//Revision History :
//*****************************************************************************
// Bank machine queue controller.
//
// Bank machines are always associated with a queue. When the system is
// idle, all bank machines are in the idle queue. As requests are
// received, the bank machine at the head of the idle queue accepts
// the request, removes itself from the idle queue and places itself
// in a queue associated with the rank-bank of the new request.
//
// If the new request is to an idle rank-bank, a new queue is created
// for that rank-bank. If the rank-bank is not idle, then the new
// request is added to the end of the existing rank-bank queue.
//
// When the head of the idle queue accepts a new request, all other
// bank machines move down one in the idle queue. When the idle queue
// is empty, the memory interface deasserts its accept signal.
//
// When new requests are received, the first step is to classify them
// as to whether the request targets an already open rank-bank, and if
// so, does the new request also hit on the already open page? As mentioned
// above, a new request places itself in the existing queue for a
// rank-bank hit. If it is also detected that the last entry in the
// existing rank-bank queue has the same page, then the current tail
// sets a bit telling itself to pass the open row when the column
// command is issued. The "passee" knows its in the head minus one
// position and hence takes control of the rank-bank.
//
// Requests are retired out of order to optimize DRAM array resources.
// However it is required that the user cannot "observe" this out of
// order processing as a data corruption. An ordering queue is
// used to enforce some ordering rules. As controlled by a paramter,
// there can be no ordering (RELAXED), ordering of writes only (NORM), and
// strict (STRICT) ordering whereby input request ordering is
// strictly adhered to.
//
// Note that ordering applies only to column commands. Row commands
// such as activate and precharge are allowed to proceed in any order
// with the proviso that within a rank-bank row commands are processed in
// the request order.
//
// When a bank machine accepts a new request, it looks at the ordering
// mode. If no ordering, nothing is done. If strict ordering, then
// it always places itself at the end of the ordering queue. If "normal"
// or write ordering, the row machine places itself in the ordering
// queue only if the new request is a write. The bank state machine
// looks at the ordering queue, and will only issue a column
// command when it sees itself at the head of the ordering queue.
//
// When a bank machine has completed its request, it must re-enter the
// idle queue. This is done by setting the idle_r bit, and setting q_entry_r
// to the idle count.
//
// There are several situations where more than one bank machine
// will enter the idle queue simultaneously. If two or more
// simply use the idle count to place themselves in the idle queue, multiple
// bank machines will end up at the same location in the idle queue, which
// is illegal.
//
// Based on the bank machine instance numbers, a count is made of
// the number of bank machines entering idle "below" this instance. This
// number is added to the idle count to compute the location in
// idle queue.
//
// There is also a single bit computed that says there were bank machines
// entering the idle queue "above" this instance. This is used to
// compute the tail bit.
//
// The word "queue" is used frequently to describe the behavior of the
// bank_queue block. In reality, there are no queues in the ordinary sense.
// As instantiated in this block, each bank machine has a q_entry_r number.
// This number represents the position of the bank machine in its current
// queue. At any given time, a bank machine may be in the idle queue,
// one of the dynamic rank-bank queues, or a single entry manitenance queue.
// A complete description of which queue a bank machine is currently in is
// given by idle_r, its rank-bank, mainteance status and its q_entry_r number.
//
// DRAM refresh and ZQ have a private single entry queue/channel. However,
// when a refresh request is made, it must be injected into the main queue
// properly. At the time of injection, the refresh rank is compared against
// all entryies in the queue. For those that match, if timing allows, and
// they are the tail of the rank-bank queue, then the auto_pre bit is set.
// Otherwise precharge is in progress. This results in a fully precharged
// rank.
//
// At the time of injection, the refresh channel builds a bit
// vector of queue entries that hit on the refresh rank. Once all
// of these entries finish, the refresh is forced in at the row arbiter.
//
// New requests that come after the refresh request will notice that
// a refresh is in progress for their rank and wait for the refresh
// to finish before attempting to arbitrate to send an activate.
//
// Injection of a refresh sets the q_has_rd bit for all queues hitting
// on the refresh rank. This insures a starved write request will not
// indefinitely hold off a refresh.
//
// Periodic reads are required to compare themselves against requests
// that are in progress. Adding a unique compare channel for this
// is not worthwhile. Periodic read requests inhibit the accept
// signal and override any new request that might be trying to
// enter the queue.
//
// Once a periodic read has entered the queue it is nearly indistinguishable
// from a normal read request. The req_periodic_rd_r bit is set for
// queue entry. This signal is used to inhibit the rd_data_en signal.
`timescale 1ps/1ps
`define BM_SHARED_BV (ID+nBANK_MACHS-1):(ID+1)
module mig_7series_v2_3_bank_queue #
(
parameter TCQ = 100,
parameter BM_CNT_WIDTH = 2,
parameter nBANK_MACHS = 4,
parameter ORDERING = "NORM",
parameter ID = 0
)
(/*AUTOARG*/
// Outputs
head_r, tail_r, idle_ns, idle_r, pass_open_bank_ns,
pass_open_bank_r, auto_pre_r, bm_end, passing_open_bank,
ordered_issued, ordered_r, order_q_zero, rcv_open_bank,
rb_hit_busies_r, q_has_rd, q_has_priority, wait_for_maint_r,
// Inputs
clk, rst, accept_internal_r, use_addr, periodic_rd_ack_r, bm_end_in,
idle_cnt, rb_hit_busy_cnt, accept_req, rb_hit_busy_r, maint_idle,
maint_hit, row_hit_r, pre_wait_r, allow_auto_pre, sending_col,
bank_wait_in_progress, precharge_bm_end, req_wr_r, rd_wr_r,
adv_order_q, order_cnt, rb_hit_busy_ns_in, passing_open_bank_in,
was_wr, maint_req_r, was_priority
);
localparam ZERO = 0;
localparam ONE = 1;
localparam [BM_CNT_WIDTH-1:0] BM_CNT_ZERO = ZERO[0+:BM_CNT_WIDTH];
localparam [BM_CNT_WIDTH-1:0] BM_CNT_ONE = ONE[0+:BM_CNT_WIDTH];
input clk;
input rst;
// Decide if this bank machine should accept a new request.
reg idle_r_lcl;
reg head_r_lcl;
input accept_internal_r;
wire bm_ready = idle_r_lcl && head_r_lcl && accept_internal_r;
// Accept request in this bank machine. Could be maintenance or
// regular request.
input use_addr;
input periodic_rd_ack_r;
wire accept_this_bm = bm_ready && (use_addr || periodic_rd_ack_r);
// Multiple machines may enter the idle queue in a single state.
// Based on bank machine instance number, compute how many
// bank machines with lower instance numbers are entering
// the idle queue.
input [(nBANK_MACHS*2)-1:0] bm_end_in;
reg [BM_CNT_WIDTH-1:0] idlers_below;
integer i;
always @(/*AS*/bm_end_in) begin
idlers_below = BM_CNT_ZERO;
for (i=0; i<ID; i=i+1)
idlers_below = idlers_below + bm_end_in[i];
end
reg idlers_above;
always @(/*AS*/bm_end_in) begin
idlers_above = 1'b0;
for (i=ID+1; i<ID+nBANK_MACHS; i=i+1)
idlers_above = idlers_above || bm_end_in[i];
end
`ifdef MC_SVA
bm_end_and_idlers_above: cover property (@(posedge clk)
(~rst && bm_end && idlers_above));
bm_end_and_idlers_below: cover property (@(posedge clk)
(~rst && bm_end && |idlers_below));
`endif
// Compute the q_entry number.
input [BM_CNT_WIDTH-1:0] idle_cnt;
input [BM_CNT_WIDTH-1:0] rb_hit_busy_cnt;
input accept_req;
wire bm_end_lcl;
reg adv_queue = 1'b0;
reg [BM_CNT_WIDTH-1:0] q_entry_r;
reg [BM_CNT_WIDTH-1:0] q_entry_ns;
wire [BM_CNT_WIDTH-1:0] temp;
// always @(/*AS*/accept_req or accept_this_bm or adv_queue
// or bm_end_lcl or idle_cnt or idle_r_lcl or idlers_below
// or q_entry_r or rb_hit_busy_cnt /*or rst*/) begin
//// if (rst) q_entry_ns = ID[BM_CNT_WIDTH-1:0];
//// else begin
// q_entry_ns = q_entry_r;
// if ((~idle_r_lcl && adv_queue) ||
// (idle_r_lcl && accept_req && ~accept_this_bm))
// q_entry_ns = q_entry_r - BM_CNT_ONE;
// if (accept_this_bm)
//// q_entry_ns = rb_hit_busy_cnt - (adv_queue ? BM_CNT_ONE : BM_CNT_ZERO);
// q_entry_ns = adv_queue ? (rb_hit_busy_cnt - BM_CNT_ONE) : (rb_hit_busy_cnt -BM_CNT_ZERO);
// if (bm_end_lcl) begin
// q_entry_ns = idle_cnt + idlers_below;
// if (accept_req) q_entry_ns = q_entry_ns - BM_CNT_ONE;
//// end
// end
// end
assign temp = idle_cnt + idlers_below;
always @ (*)
begin
if (accept_req & bm_end_lcl)
q_entry_ns = temp - BM_CNT_ONE;
else if (bm_end_lcl)
q_entry_ns = temp;
else if (accept_this_bm)
q_entry_ns = adv_queue ? (rb_hit_busy_cnt - BM_CNT_ONE) : (rb_hit_busy_cnt -BM_CNT_ZERO);
else if ((!idle_r_lcl & adv_queue) |
(idle_r_lcl & accept_req & !accept_this_bm))
q_entry_ns = q_entry_r - BM_CNT_ONE;
else
q_entry_ns = q_entry_r;
end
always @(posedge clk)
if (rst)
q_entry_r <= #TCQ ID[BM_CNT_WIDTH-1:0];
else
q_entry_r <= #TCQ q_entry_ns;
// Determine if this entry is the head of its queue.
reg head_ns;
always @(/*AS*/accept_req or accept_this_bm or adv_queue
or bm_end_lcl or head_r_lcl or idle_cnt or idle_r_lcl
or idlers_below or q_entry_r or rb_hit_busy_cnt or rst) begin
if (rst) head_ns = ~|ID[BM_CNT_WIDTH-1:0];
else begin
head_ns = head_r_lcl;
if (accept_this_bm)
head_ns = ~|(rb_hit_busy_cnt - (adv_queue ? BM_CNT_ONE : BM_CNT_ZERO));
if ((~idle_r_lcl && adv_queue) ||
(idle_r_lcl && accept_req && ~accept_this_bm))
head_ns = ~|(q_entry_r - BM_CNT_ONE);
if (bm_end_lcl) begin
head_ns = ~|(idle_cnt - (accept_req ? BM_CNT_ONE : BM_CNT_ZERO)) &&
~|idlers_below;
end
end
end
always @(posedge clk) head_r_lcl <= #TCQ head_ns;
output wire head_r;
assign head_r = head_r_lcl;
// Determine if this entry is the tail of its queue. Note that
// an entry can be both head and tail.
input rb_hit_busy_r;
reg tail_r_lcl = 1'b1;
generate
if (nBANK_MACHS > 1) begin : compute_tail
reg tail_ns;
always @(accept_req or accept_this_bm
or bm_end_in or bm_end_lcl or idle_r_lcl
or idlers_above or rb_hit_busy_r or rst or tail_r_lcl) begin
if (rst) tail_ns = (ID == nBANK_MACHS);
// The order of the statements below is important in the case where
// another bank machine is retiring and this bank machine is accepting.
else begin
tail_ns = tail_r_lcl;
if ((accept_req && rb_hit_busy_r) ||
(|bm_end_in[`BM_SHARED_BV] && idle_r_lcl))
tail_ns = 1'b0;
if (accept_this_bm || (bm_end_lcl && ~idlers_above)) tail_ns = 1'b1;
end
end
always @(posedge clk) tail_r_lcl <= #TCQ tail_ns;
end // if (nBANK_MACHS > 1)
endgenerate
output wire tail_r;
assign tail_r = tail_r_lcl;
wire clear_req = bm_end_lcl || rst;
// Is this entry in the idle queue?
reg idle_ns_lcl;
always @(/*AS*/accept_this_bm or clear_req or idle_r_lcl) begin
idle_ns_lcl = idle_r_lcl;
if (accept_this_bm) idle_ns_lcl = 1'b0;
if (clear_req) idle_ns_lcl = 1'b1;
end
always @(posedge clk) idle_r_lcl <= #TCQ idle_ns_lcl;
output wire idle_ns;
assign idle_ns = idle_ns_lcl;
output wire idle_r;
assign idle_r = idle_r_lcl;
// Maintenance hitting on this active bank machine is in progress.
input maint_idle;
input maint_hit;
wire maint_hit_this_bm = ~maint_idle && maint_hit;
// Does new request hit on this bank machine while it is able to pass the
// open bank?
input row_hit_r;
input pre_wait_r;
wire pass_open_bank_eligible =
tail_r_lcl && rb_hit_busy_r && row_hit_r && ~pre_wait_r;
// Set pass open bank bit, but not if request preceded active maintenance.
reg wait_for_maint_r_lcl;
reg pass_open_bank_r_lcl;
wire pass_open_bank_ns_lcl = ~clear_req &&
(pass_open_bank_r_lcl ||
(accept_req && pass_open_bank_eligible &&
(~maint_hit_this_bm || wait_for_maint_r_lcl)));
always @(posedge clk) pass_open_bank_r_lcl <= #TCQ pass_open_bank_ns_lcl;
output wire pass_open_bank_ns;
assign pass_open_bank_ns = pass_open_bank_ns_lcl;
output wire pass_open_bank_r;
assign pass_open_bank_r = pass_open_bank_r_lcl;
`ifdef MC_SVA
pass_open_bank: cover property (@(posedge clk) (~rst && pass_open_bank_ns));
pass_open_bank_killed_by_maint: cover property (@(posedge clk)
(~rst && accept_req && pass_open_bank_eligible &&
maint_hit_this_bm && ~wait_for_maint_r_lcl));
pass_open_bank_following_maint: cover property (@(posedge clk)
(~rst && accept_req && pass_open_bank_eligible &&
maint_hit_this_bm && wait_for_maint_r_lcl));
`endif
// Should the column command be sent with the auto precharge bit set? This
// will happen when it is detected that next request is to a different row,
// or the next reqest is the next request is refresh to this rank.
reg auto_pre_r_lcl;
reg auto_pre_ns;
input allow_auto_pre;
always @(/*AS*/accept_req or allow_auto_pre or auto_pre_r_lcl
or clear_req or maint_hit_this_bm or rb_hit_busy_r
or row_hit_r or tail_r_lcl or wait_for_maint_r_lcl) begin
auto_pre_ns = auto_pre_r_lcl;
if (clear_req) auto_pre_ns = 1'b0;
else
if (accept_req && tail_r_lcl && allow_auto_pre && rb_hit_busy_r &&
(~row_hit_r || (maint_hit_this_bm && ~wait_for_maint_r_lcl)))
auto_pre_ns = 1'b1;
end
always @(posedge clk) auto_pre_r_lcl <= #TCQ auto_pre_ns;
output wire auto_pre_r;
assign auto_pre_r = auto_pre_r_lcl;
`ifdef MC_SVA
auto_precharge: cover property (@(posedge clk) (~rst && auto_pre_ns));
maint_triggers_auto_precharge: cover property (@(posedge clk)
(~rst && auto_pre_ns && ~auto_pre_r && row_hit_r));
`endif
// Determine when the current request is finished.
input sending_col;
input req_wr_r;
input rd_wr_r;
wire sending_col_not_rmw_rd = sending_col && !(req_wr_r && rd_wr_r);
input bank_wait_in_progress;
input precharge_bm_end;
reg pre_bm_end_r;
wire pre_bm_end_ns = precharge_bm_end ||
(bank_wait_in_progress && pass_open_bank_ns_lcl);
always @(posedge clk) pre_bm_end_r <= #TCQ pre_bm_end_ns;
assign bm_end_lcl =
pre_bm_end_r || (sending_col_not_rmw_rd && pass_open_bank_r_lcl);
output wire bm_end;
assign bm_end = bm_end_lcl;
// Determine that the open bank should be passed to the successor bank machine.
reg pre_passing_open_bank_r;
wire pre_passing_open_bank_ns =
bank_wait_in_progress && pass_open_bank_ns_lcl;
always @(posedge clk) pre_passing_open_bank_r <= #TCQ
pre_passing_open_bank_ns;
output wire passing_open_bank;
assign passing_open_bank =
pre_passing_open_bank_r || (sending_col_not_rmw_rd && pass_open_bank_r_lcl);
reg ordered_ns;
wire set_order_q = ((ORDERING == "STRICT") || ((ORDERING == "NORM") &&
req_wr_r)) && accept_this_bm;
wire ordered_issued_lcl =
sending_col_not_rmw_rd && !(req_wr_r && rd_wr_r) &&
((ORDERING == "STRICT") || ((ORDERING == "NORM") && req_wr_r));
output wire ordered_issued;
assign ordered_issued = ordered_issued_lcl;
reg ordered_r_lcl;
always @(/*AS*/ordered_issued_lcl or ordered_r_lcl or rst
or set_order_q) begin
if (rst) ordered_ns = 1'b0;
else begin
ordered_ns = ordered_r_lcl;
// Should never see accept_this_bm and adv_order_q at the same time.
if (set_order_q) ordered_ns = 1'b1;
if (ordered_issued_lcl) ordered_ns = 1'b0;
end
end
always @(posedge clk) ordered_r_lcl <= #TCQ ordered_ns;
output wire ordered_r;
assign ordered_r = ordered_r_lcl;
// Figure out when to advance the ordering queue.
input adv_order_q;
input [BM_CNT_WIDTH-1:0] order_cnt;
reg [BM_CNT_WIDTH-1:0] order_q_r;
reg [BM_CNT_WIDTH-1:0] order_q_ns;
always @(/*AS*/adv_order_q or order_cnt or order_q_r or rst
or set_order_q) begin
order_q_ns = order_q_r;
if (rst) order_q_ns = BM_CNT_ZERO;
if (set_order_q)
if (adv_order_q) order_q_ns = order_cnt - BM_CNT_ONE;
else order_q_ns = order_cnt;
if (adv_order_q && |order_q_r) order_q_ns = order_q_r - BM_CNT_ONE;
end
always @(posedge clk) order_q_r <= #TCQ order_q_ns;
output wire order_q_zero;
assign order_q_zero = ~|order_q_r ||
(adv_order_q && (order_q_r == BM_CNT_ONE)) ||
((ORDERING == "NORM") && rd_wr_r);
// Keep track of which other bank machine are ahead of this one in a
// rank-bank queue. This is necessary to know when to advance this bank
// machine in the queue, and when to update bank state machine counter upon
// passing a bank.
input [(nBANK_MACHS*2)-1:0] rb_hit_busy_ns_in;
reg [(nBANK_MACHS*2)-1:0] rb_hit_busies_r_lcl = {nBANK_MACHS*2{1'b0}};
input [(nBANK_MACHS*2)-1:0] passing_open_bank_in;
output reg rcv_open_bank = 1'b0;
generate
if (nBANK_MACHS > 1) begin : rb_hit_busies
// The clear_vector resets bits in the rb_hit_busies vector as bank machines
// completes requests. rst also resets all the bits.
wire [nBANK_MACHS-2:0] clear_vector =
({nBANK_MACHS-1{rst}} | bm_end_in[`BM_SHARED_BV]);
// As this bank machine takes on a new request, capture the vector of
// which other bank machines are in the same queue.
wire [`BM_SHARED_BV] rb_hit_busies_ns =
~clear_vector &
(idle_ns_lcl
? rb_hit_busy_ns_in[`BM_SHARED_BV]
: rb_hit_busies_r_lcl[`BM_SHARED_BV]);
always @(posedge clk) rb_hit_busies_r_lcl[`BM_SHARED_BV] <=
#TCQ rb_hit_busies_ns;
// Compute when to advance this queue entry based on seeing other bank machines
// in the same queue finish.
always @(bm_end_in or rb_hit_busies_r_lcl)
adv_queue =
|(bm_end_in[`BM_SHARED_BV] & rb_hit_busies_r_lcl[`BM_SHARED_BV]);
// Decide when to receive an open bank based on knowing this bank machine is
// one entry from the head, and a passing_open_bank hits on the
// rb_hit_busies vector.
always @(idle_r_lcl
or passing_open_bank_in or q_entry_r
or rb_hit_busies_r_lcl) rcv_open_bank =
|(rb_hit_busies_r_lcl[`BM_SHARED_BV] & passing_open_bank_in[`BM_SHARED_BV])
&& (q_entry_r == BM_CNT_ONE) && ~idle_r_lcl;
end
endgenerate
output wire [nBANK_MACHS*2-1:0] rb_hit_busies_r;
assign rb_hit_busies_r = rb_hit_busies_r_lcl;
// Keep track if the queue this entry is in has priority content.
input was_wr;
input maint_req_r;
reg q_has_rd_r;
wire q_has_rd_ns = ~clear_req &&
(q_has_rd_r || (accept_req && rb_hit_busy_r && ~was_wr) ||
(maint_req_r && maint_hit && ~idle_r_lcl));
always @(posedge clk) q_has_rd_r <= #TCQ q_has_rd_ns;
output wire q_has_rd;
assign q_has_rd = q_has_rd_r;
input was_priority;
reg q_has_priority_r;
wire q_has_priority_ns = ~clear_req &&
(q_has_priority_r || (accept_req && rb_hit_busy_r && was_priority));
always @(posedge clk) q_has_priority_r <= #TCQ q_has_priority_ns;
output wire q_has_priority;
assign q_has_priority = q_has_priority_r;
// Figure out if this entry should wait for maintenance to end.
wire wait_for_maint_ns = ~rst && ~maint_idle &&
(wait_for_maint_r_lcl || (maint_hit && accept_this_bm));
always @(posedge clk) wait_for_maint_r_lcl <= #TCQ wait_for_maint_ns;
output wire wait_for_maint_r;
assign wait_for_maint_r = wait_for_maint_r_lcl;
endmodule // bank_queue
|
//*****************************************************************************
// (c) Copyright 2008 - 2013 Xilinx, Inc. All rights reserved.
//
// This file contains confidential and proprietary information
// of Xilinx, Inc. and is protected under U.S. and
// international copyright and other intellectual property
// laws.
//
// DISCLAIMER
// This disclaimer is not a license and does not grant any
// rights to the materials distributed herewith. Except as
// otherwise provided in a valid license issued to you by
// Xilinx, and to the maximum extent permitted by applicable
// law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// (2) Xilinx shall not be liable (whether in contract or tort,
// including negligence, or under any other theory of
// liability) for any loss or damage of any kind or nature
// related to, arising under or in connection with these
// materials, including for any direct, or any indirect,
// special, incidental, or consequential loss or damage
// (including loss of data, profits, goodwill, or any type of
// loss or damage suffered as a result of any action brought
// by a third party) even if such damage or loss was
// reasonably foreseeable or Xilinx had been advised of the
// possibility of the same.
//
// CRITICAL APPLICATIONS
// Xilinx products are not designed or intended to be fail-
// safe, or for use in any application requiring fail-safe
// performance, such as life-support or safety devices or
// systems, Class III medical devices, nuclear facilities,
// applications related to the deployment of airbags, or any
// other applications that could lead to death, personal
// injury, or severe property or environmental damage
// (individually and collectively, "Critical
// Applications"). Customer assumes the sole risk and
// liability of any use of Xilinx products in Critical
// Applications, subject only to applicable laws and
// regulations governing limitations on product liability.
//
// THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// PART OF THIS FILE AT ALL TIMES.
//
//*****************************************************************************
// ____ ____
// / /\/ /
// /___/ \ / Vendor : Xilinx
// \ \ \/ Version : %version
// \ \ Application : MIG
// / / Filename : bank_queue.v
// /___/ /\ Date Last Modified : $date$
// \ \ / \ Date Created : Tue Jun 30 2009
// \___\/\___\
//
//Device : 7-Series
//Design Name : DDR3 SDRAM
//Purpose :
//Reference :
//Revision History :
//*****************************************************************************
// Bank machine queue controller.
//
// Bank machines are always associated with a queue. When the system is
// idle, all bank machines are in the idle queue. As requests are
// received, the bank machine at the head of the idle queue accepts
// the request, removes itself from the idle queue and places itself
// in a queue associated with the rank-bank of the new request.
//
// If the new request is to an idle rank-bank, a new queue is created
// for that rank-bank. If the rank-bank is not idle, then the new
// request is added to the end of the existing rank-bank queue.
//
// When the head of the idle queue accepts a new request, all other
// bank machines move down one in the idle queue. When the idle queue
// is empty, the memory interface deasserts its accept signal.
//
// When new requests are received, the first step is to classify them
// as to whether the request targets an already open rank-bank, and if
// so, does the new request also hit on the already open page? As mentioned
// above, a new request places itself in the existing queue for a
// rank-bank hit. If it is also detected that the last entry in the
// existing rank-bank queue has the same page, then the current tail
// sets a bit telling itself to pass the open row when the column
// command is issued. The "passee" knows its in the head minus one
// position and hence takes control of the rank-bank.
//
// Requests are retired out of order to optimize DRAM array resources.
// However it is required that the user cannot "observe" this out of
// order processing as a data corruption. An ordering queue is
// used to enforce some ordering rules. As controlled by a paramter,
// there can be no ordering (RELAXED), ordering of writes only (NORM), and
// strict (STRICT) ordering whereby input request ordering is
// strictly adhered to.
//
// Note that ordering applies only to column commands. Row commands
// such as activate and precharge are allowed to proceed in any order
// with the proviso that within a rank-bank row commands are processed in
// the request order.
//
// When a bank machine accepts a new request, it looks at the ordering
// mode. If no ordering, nothing is done. If strict ordering, then
// it always places itself at the end of the ordering queue. If "normal"
// or write ordering, the row machine places itself in the ordering
// queue only if the new request is a write. The bank state machine
// looks at the ordering queue, and will only issue a column
// command when it sees itself at the head of the ordering queue.
//
// When a bank machine has completed its request, it must re-enter the
// idle queue. This is done by setting the idle_r bit, and setting q_entry_r
// to the idle count.
//
// There are several situations where more than one bank machine
// will enter the idle queue simultaneously. If two or more
// simply use the idle count to place themselves in the idle queue, multiple
// bank machines will end up at the same location in the idle queue, which
// is illegal.
//
// Based on the bank machine instance numbers, a count is made of
// the number of bank machines entering idle "below" this instance. This
// number is added to the idle count to compute the location in
// idle queue.
//
// There is also a single bit computed that says there were bank machines
// entering the idle queue "above" this instance. This is used to
// compute the tail bit.
//
// The word "queue" is used frequently to describe the behavior of the
// bank_queue block. In reality, there are no queues in the ordinary sense.
// As instantiated in this block, each bank machine has a q_entry_r number.
// This number represents the position of the bank machine in its current
// queue. At any given time, a bank machine may be in the idle queue,
// one of the dynamic rank-bank queues, or a single entry manitenance queue.
// A complete description of which queue a bank machine is currently in is
// given by idle_r, its rank-bank, mainteance status and its q_entry_r number.
//
// DRAM refresh and ZQ have a private single entry queue/channel. However,
// when a refresh request is made, it must be injected into the main queue
// properly. At the time of injection, the refresh rank is compared against
// all entryies in the queue. For those that match, if timing allows, and
// they are the tail of the rank-bank queue, then the auto_pre bit is set.
// Otherwise precharge is in progress. This results in a fully precharged
// rank.
//
// At the time of injection, the refresh channel builds a bit
// vector of queue entries that hit on the refresh rank. Once all
// of these entries finish, the refresh is forced in at the row arbiter.
//
// New requests that come after the refresh request will notice that
// a refresh is in progress for their rank and wait for the refresh
// to finish before attempting to arbitrate to send an activate.
//
// Injection of a refresh sets the q_has_rd bit for all queues hitting
// on the refresh rank. This insures a starved write request will not
// indefinitely hold off a refresh.
//
// Periodic reads are required to compare themselves against requests
// that are in progress. Adding a unique compare channel for this
// is not worthwhile. Periodic read requests inhibit the accept
// signal and override any new request that might be trying to
// enter the queue.
//
// Once a periodic read has entered the queue it is nearly indistinguishable
// from a normal read request. The req_periodic_rd_r bit is set for
// queue entry. This signal is used to inhibit the rd_data_en signal.
`timescale 1ps/1ps
`define BM_SHARED_BV (ID+nBANK_MACHS-1):(ID+1)
module mig_7series_v2_3_bank_queue #
(
parameter TCQ = 100,
parameter BM_CNT_WIDTH = 2,
parameter nBANK_MACHS = 4,
parameter ORDERING = "NORM",
parameter ID = 0
)
(/*AUTOARG*/
// Outputs
head_r, tail_r, idle_ns, idle_r, pass_open_bank_ns,
pass_open_bank_r, auto_pre_r, bm_end, passing_open_bank,
ordered_issued, ordered_r, order_q_zero, rcv_open_bank,
rb_hit_busies_r, q_has_rd, q_has_priority, wait_for_maint_r,
// Inputs
clk, rst, accept_internal_r, use_addr, periodic_rd_ack_r, bm_end_in,
idle_cnt, rb_hit_busy_cnt, accept_req, rb_hit_busy_r, maint_idle,
maint_hit, row_hit_r, pre_wait_r, allow_auto_pre, sending_col,
bank_wait_in_progress, precharge_bm_end, req_wr_r, rd_wr_r,
adv_order_q, order_cnt, rb_hit_busy_ns_in, passing_open_bank_in,
was_wr, maint_req_r, was_priority
);
localparam ZERO = 0;
localparam ONE = 1;
localparam [BM_CNT_WIDTH-1:0] BM_CNT_ZERO = ZERO[0+:BM_CNT_WIDTH];
localparam [BM_CNT_WIDTH-1:0] BM_CNT_ONE = ONE[0+:BM_CNT_WIDTH];
input clk;
input rst;
// Decide if this bank machine should accept a new request.
reg idle_r_lcl;
reg head_r_lcl;
input accept_internal_r;
wire bm_ready = idle_r_lcl && head_r_lcl && accept_internal_r;
// Accept request in this bank machine. Could be maintenance or
// regular request.
input use_addr;
input periodic_rd_ack_r;
wire accept_this_bm = bm_ready && (use_addr || periodic_rd_ack_r);
// Multiple machines may enter the idle queue in a single state.
// Based on bank machine instance number, compute how many
// bank machines with lower instance numbers are entering
// the idle queue.
input [(nBANK_MACHS*2)-1:0] bm_end_in;
reg [BM_CNT_WIDTH-1:0] idlers_below;
integer i;
always @(/*AS*/bm_end_in) begin
idlers_below = BM_CNT_ZERO;
for (i=0; i<ID; i=i+1)
idlers_below = idlers_below + bm_end_in[i];
end
reg idlers_above;
always @(/*AS*/bm_end_in) begin
idlers_above = 1'b0;
for (i=ID+1; i<ID+nBANK_MACHS; i=i+1)
idlers_above = idlers_above || bm_end_in[i];
end
`ifdef MC_SVA
bm_end_and_idlers_above: cover property (@(posedge clk)
(~rst && bm_end && idlers_above));
bm_end_and_idlers_below: cover property (@(posedge clk)
(~rst && bm_end && |idlers_below));
`endif
// Compute the q_entry number.
input [BM_CNT_WIDTH-1:0] idle_cnt;
input [BM_CNT_WIDTH-1:0] rb_hit_busy_cnt;
input accept_req;
wire bm_end_lcl;
reg adv_queue = 1'b0;
reg [BM_CNT_WIDTH-1:0] q_entry_r;
reg [BM_CNT_WIDTH-1:0] q_entry_ns;
wire [BM_CNT_WIDTH-1:0] temp;
// always @(/*AS*/accept_req or accept_this_bm or adv_queue
// or bm_end_lcl or idle_cnt or idle_r_lcl or idlers_below
// or q_entry_r or rb_hit_busy_cnt /*or rst*/) begin
//// if (rst) q_entry_ns = ID[BM_CNT_WIDTH-1:0];
//// else begin
// q_entry_ns = q_entry_r;
// if ((~idle_r_lcl && adv_queue) ||
// (idle_r_lcl && accept_req && ~accept_this_bm))
// q_entry_ns = q_entry_r - BM_CNT_ONE;
// if (accept_this_bm)
//// q_entry_ns = rb_hit_busy_cnt - (adv_queue ? BM_CNT_ONE : BM_CNT_ZERO);
// q_entry_ns = adv_queue ? (rb_hit_busy_cnt - BM_CNT_ONE) : (rb_hit_busy_cnt -BM_CNT_ZERO);
// if (bm_end_lcl) begin
// q_entry_ns = idle_cnt + idlers_below;
// if (accept_req) q_entry_ns = q_entry_ns - BM_CNT_ONE;
//// end
// end
// end
assign temp = idle_cnt + idlers_below;
always @ (*)
begin
if (accept_req & bm_end_lcl)
q_entry_ns = temp - BM_CNT_ONE;
else if (bm_end_lcl)
q_entry_ns = temp;
else if (accept_this_bm)
q_entry_ns = adv_queue ? (rb_hit_busy_cnt - BM_CNT_ONE) : (rb_hit_busy_cnt -BM_CNT_ZERO);
else if ((!idle_r_lcl & adv_queue) |
(idle_r_lcl & accept_req & !accept_this_bm))
q_entry_ns = q_entry_r - BM_CNT_ONE;
else
q_entry_ns = q_entry_r;
end
always @(posedge clk)
if (rst)
q_entry_r <= #TCQ ID[BM_CNT_WIDTH-1:0];
else
q_entry_r <= #TCQ q_entry_ns;
// Determine if this entry is the head of its queue.
reg head_ns;
always @(/*AS*/accept_req or accept_this_bm or adv_queue
or bm_end_lcl or head_r_lcl or idle_cnt or idle_r_lcl
or idlers_below or q_entry_r or rb_hit_busy_cnt or rst) begin
if (rst) head_ns = ~|ID[BM_CNT_WIDTH-1:0];
else begin
head_ns = head_r_lcl;
if (accept_this_bm)
head_ns = ~|(rb_hit_busy_cnt - (adv_queue ? BM_CNT_ONE : BM_CNT_ZERO));
if ((~idle_r_lcl && adv_queue) ||
(idle_r_lcl && accept_req && ~accept_this_bm))
head_ns = ~|(q_entry_r - BM_CNT_ONE);
if (bm_end_lcl) begin
head_ns = ~|(idle_cnt - (accept_req ? BM_CNT_ONE : BM_CNT_ZERO)) &&
~|idlers_below;
end
end
end
always @(posedge clk) head_r_lcl <= #TCQ head_ns;
output wire head_r;
assign head_r = head_r_lcl;
// Determine if this entry is the tail of its queue. Note that
// an entry can be both head and tail.
input rb_hit_busy_r;
reg tail_r_lcl = 1'b1;
generate
if (nBANK_MACHS > 1) begin : compute_tail
reg tail_ns;
always @(accept_req or accept_this_bm
or bm_end_in or bm_end_lcl or idle_r_lcl
or idlers_above or rb_hit_busy_r or rst or tail_r_lcl) begin
if (rst) tail_ns = (ID == nBANK_MACHS);
// The order of the statements below is important in the case where
// another bank machine is retiring and this bank machine is accepting.
else begin
tail_ns = tail_r_lcl;
if ((accept_req && rb_hit_busy_r) ||
(|bm_end_in[`BM_SHARED_BV] && idle_r_lcl))
tail_ns = 1'b0;
if (accept_this_bm || (bm_end_lcl && ~idlers_above)) tail_ns = 1'b1;
end
end
always @(posedge clk) tail_r_lcl <= #TCQ tail_ns;
end // if (nBANK_MACHS > 1)
endgenerate
output wire tail_r;
assign tail_r = tail_r_lcl;
wire clear_req = bm_end_lcl || rst;
// Is this entry in the idle queue?
reg idle_ns_lcl;
always @(/*AS*/accept_this_bm or clear_req or idle_r_lcl) begin
idle_ns_lcl = idle_r_lcl;
if (accept_this_bm) idle_ns_lcl = 1'b0;
if (clear_req) idle_ns_lcl = 1'b1;
end
always @(posedge clk) idle_r_lcl <= #TCQ idle_ns_lcl;
output wire idle_ns;
assign idle_ns = idle_ns_lcl;
output wire idle_r;
assign idle_r = idle_r_lcl;
// Maintenance hitting on this active bank machine is in progress.
input maint_idle;
input maint_hit;
wire maint_hit_this_bm = ~maint_idle && maint_hit;
// Does new request hit on this bank machine while it is able to pass the
// open bank?
input row_hit_r;
input pre_wait_r;
wire pass_open_bank_eligible =
tail_r_lcl && rb_hit_busy_r && row_hit_r && ~pre_wait_r;
// Set pass open bank bit, but not if request preceded active maintenance.
reg wait_for_maint_r_lcl;
reg pass_open_bank_r_lcl;
wire pass_open_bank_ns_lcl = ~clear_req &&
(pass_open_bank_r_lcl ||
(accept_req && pass_open_bank_eligible &&
(~maint_hit_this_bm || wait_for_maint_r_lcl)));
always @(posedge clk) pass_open_bank_r_lcl <= #TCQ pass_open_bank_ns_lcl;
output wire pass_open_bank_ns;
assign pass_open_bank_ns = pass_open_bank_ns_lcl;
output wire pass_open_bank_r;
assign pass_open_bank_r = pass_open_bank_r_lcl;
`ifdef MC_SVA
pass_open_bank: cover property (@(posedge clk) (~rst && pass_open_bank_ns));
pass_open_bank_killed_by_maint: cover property (@(posedge clk)
(~rst && accept_req && pass_open_bank_eligible &&
maint_hit_this_bm && ~wait_for_maint_r_lcl));
pass_open_bank_following_maint: cover property (@(posedge clk)
(~rst && accept_req && pass_open_bank_eligible &&
maint_hit_this_bm && wait_for_maint_r_lcl));
`endif
// Should the column command be sent with the auto precharge bit set? This
// will happen when it is detected that next request is to a different row,
// or the next reqest is the next request is refresh to this rank.
reg auto_pre_r_lcl;
reg auto_pre_ns;
input allow_auto_pre;
always @(/*AS*/accept_req or allow_auto_pre or auto_pre_r_lcl
or clear_req or maint_hit_this_bm or rb_hit_busy_r
or row_hit_r or tail_r_lcl or wait_for_maint_r_lcl) begin
auto_pre_ns = auto_pre_r_lcl;
if (clear_req) auto_pre_ns = 1'b0;
else
if (accept_req && tail_r_lcl && allow_auto_pre && rb_hit_busy_r &&
(~row_hit_r || (maint_hit_this_bm && ~wait_for_maint_r_lcl)))
auto_pre_ns = 1'b1;
end
always @(posedge clk) auto_pre_r_lcl <= #TCQ auto_pre_ns;
output wire auto_pre_r;
assign auto_pre_r = auto_pre_r_lcl;
`ifdef MC_SVA
auto_precharge: cover property (@(posedge clk) (~rst && auto_pre_ns));
maint_triggers_auto_precharge: cover property (@(posedge clk)
(~rst && auto_pre_ns && ~auto_pre_r && row_hit_r));
`endif
// Determine when the current request is finished.
input sending_col;
input req_wr_r;
input rd_wr_r;
wire sending_col_not_rmw_rd = sending_col && !(req_wr_r && rd_wr_r);
input bank_wait_in_progress;
input precharge_bm_end;
reg pre_bm_end_r;
wire pre_bm_end_ns = precharge_bm_end ||
(bank_wait_in_progress && pass_open_bank_ns_lcl);
always @(posedge clk) pre_bm_end_r <= #TCQ pre_bm_end_ns;
assign bm_end_lcl =
pre_bm_end_r || (sending_col_not_rmw_rd && pass_open_bank_r_lcl);
output wire bm_end;
assign bm_end = bm_end_lcl;
// Determine that the open bank should be passed to the successor bank machine.
reg pre_passing_open_bank_r;
wire pre_passing_open_bank_ns =
bank_wait_in_progress && pass_open_bank_ns_lcl;
always @(posedge clk) pre_passing_open_bank_r <= #TCQ
pre_passing_open_bank_ns;
output wire passing_open_bank;
assign passing_open_bank =
pre_passing_open_bank_r || (sending_col_not_rmw_rd && pass_open_bank_r_lcl);
reg ordered_ns;
wire set_order_q = ((ORDERING == "STRICT") || ((ORDERING == "NORM") &&
req_wr_r)) && accept_this_bm;
wire ordered_issued_lcl =
sending_col_not_rmw_rd && !(req_wr_r && rd_wr_r) &&
((ORDERING == "STRICT") || ((ORDERING == "NORM") && req_wr_r));
output wire ordered_issued;
assign ordered_issued = ordered_issued_lcl;
reg ordered_r_lcl;
always @(/*AS*/ordered_issued_lcl or ordered_r_lcl or rst
or set_order_q) begin
if (rst) ordered_ns = 1'b0;
else begin
ordered_ns = ordered_r_lcl;
// Should never see accept_this_bm and adv_order_q at the same time.
if (set_order_q) ordered_ns = 1'b1;
if (ordered_issued_lcl) ordered_ns = 1'b0;
end
end
always @(posedge clk) ordered_r_lcl <= #TCQ ordered_ns;
output wire ordered_r;
assign ordered_r = ordered_r_lcl;
// Figure out when to advance the ordering queue.
input adv_order_q;
input [BM_CNT_WIDTH-1:0] order_cnt;
reg [BM_CNT_WIDTH-1:0] order_q_r;
reg [BM_CNT_WIDTH-1:0] order_q_ns;
always @(/*AS*/adv_order_q or order_cnt or order_q_r or rst
or set_order_q) begin
order_q_ns = order_q_r;
if (rst) order_q_ns = BM_CNT_ZERO;
if (set_order_q)
if (adv_order_q) order_q_ns = order_cnt - BM_CNT_ONE;
else order_q_ns = order_cnt;
if (adv_order_q && |order_q_r) order_q_ns = order_q_r - BM_CNT_ONE;
end
always @(posedge clk) order_q_r <= #TCQ order_q_ns;
output wire order_q_zero;
assign order_q_zero = ~|order_q_r ||
(adv_order_q && (order_q_r == BM_CNT_ONE)) ||
((ORDERING == "NORM") && rd_wr_r);
// Keep track of which other bank machine are ahead of this one in a
// rank-bank queue. This is necessary to know when to advance this bank
// machine in the queue, and when to update bank state machine counter upon
// passing a bank.
input [(nBANK_MACHS*2)-1:0] rb_hit_busy_ns_in;
reg [(nBANK_MACHS*2)-1:0] rb_hit_busies_r_lcl = {nBANK_MACHS*2{1'b0}};
input [(nBANK_MACHS*2)-1:0] passing_open_bank_in;
output reg rcv_open_bank = 1'b0;
generate
if (nBANK_MACHS > 1) begin : rb_hit_busies
// The clear_vector resets bits in the rb_hit_busies vector as bank machines
// completes requests. rst also resets all the bits.
wire [nBANK_MACHS-2:0] clear_vector =
({nBANK_MACHS-1{rst}} | bm_end_in[`BM_SHARED_BV]);
// As this bank machine takes on a new request, capture the vector of
// which other bank machines are in the same queue.
wire [`BM_SHARED_BV] rb_hit_busies_ns =
~clear_vector &
(idle_ns_lcl
? rb_hit_busy_ns_in[`BM_SHARED_BV]
: rb_hit_busies_r_lcl[`BM_SHARED_BV]);
always @(posedge clk) rb_hit_busies_r_lcl[`BM_SHARED_BV] <=
#TCQ rb_hit_busies_ns;
// Compute when to advance this queue entry based on seeing other bank machines
// in the same queue finish.
always @(bm_end_in or rb_hit_busies_r_lcl)
adv_queue =
|(bm_end_in[`BM_SHARED_BV] & rb_hit_busies_r_lcl[`BM_SHARED_BV]);
// Decide when to receive an open bank based on knowing this bank machine is
// one entry from the head, and a passing_open_bank hits on the
// rb_hit_busies vector.
always @(idle_r_lcl
or passing_open_bank_in or q_entry_r
or rb_hit_busies_r_lcl) rcv_open_bank =
|(rb_hit_busies_r_lcl[`BM_SHARED_BV] & passing_open_bank_in[`BM_SHARED_BV])
&& (q_entry_r == BM_CNT_ONE) && ~idle_r_lcl;
end
endgenerate
output wire [nBANK_MACHS*2-1:0] rb_hit_busies_r;
assign rb_hit_busies_r = rb_hit_busies_r_lcl;
// Keep track if the queue this entry is in has priority content.
input was_wr;
input maint_req_r;
reg q_has_rd_r;
wire q_has_rd_ns = ~clear_req &&
(q_has_rd_r || (accept_req && rb_hit_busy_r && ~was_wr) ||
(maint_req_r && maint_hit && ~idle_r_lcl));
always @(posedge clk) q_has_rd_r <= #TCQ q_has_rd_ns;
output wire q_has_rd;
assign q_has_rd = q_has_rd_r;
input was_priority;
reg q_has_priority_r;
wire q_has_priority_ns = ~clear_req &&
(q_has_priority_r || (accept_req && rb_hit_busy_r && was_priority));
always @(posedge clk) q_has_priority_r <= #TCQ q_has_priority_ns;
output wire q_has_priority;
assign q_has_priority = q_has_priority_r;
// Figure out if this entry should wait for maintenance to end.
wire wait_for_maint_ns = ~rst && ~maint_idle &&
(wait_for_maint_r_lcl || (maint_hit && accept_this_bm));
always @(posedge clk) wait_for_maint_r_lcl <= #TCQ wait_for_maint_ns;
output wire wait_for_maint_r;
assign wait_for_maint_r = wait_for_maint_r_lcl;
endmodule // bank_queue
|
//*****************************************************************************
// (c) Copyright 2009 - 2013 Xilinx, Inc. All rights reserved.
//
// This file contains confidential and proprietary information
// of Xilinx, Inc. and is protected under U.S. and
// international copyright and other intellectual property
// laws.
//
// DISCLAIMER
// This disclaimer is not a license and does not grant any
// rights to the materials distributed herewith. Except as
// otherwise provided in a valid license issued to you by
// Xilinx, and to the maximum extent permitted by applicable
// law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// (2) Xilinx shall not be liable (whether in contract or tort,
// including negligence, or under any other theory of
// liability) for any loss or damage of any kind or nature
// related to, arising under or in connection with these
// materials, including for any direct, or any indirect,
// special, incidental, or consequential loss or damage
// (including loss of data, profits, goodwill, or any type of
// loss or damage suffered as a result of any action brought
// by a third party) even if such damage or loss was
// reasonably foreseeable or Xilinx had been advised of the
// possibility of the same.
//
// CRITICAL APPLICATIONS
// Xilinx products are not designed or intended to be fail-
// safe, or for use in any application requiring fail-safe
// performance, such as life-support or safety devices or
// systems, Class III medical devices, nuclear facilities,
// applications related to the deployment of airbags, or any
// other applications that could lead to death, personal
// injury, or severe property or environmental damage
// (individually and collectively, "Critical
// Applications"). Customer assumes the sole risk and
// liability of any use of Xilinx products in Critical
// Applications, subject only to applicable laws and
// regulations governing limitations on product liability.
//
// THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// PART OF THIS FILE AT ALL TIMES.
//
//*****************************************************************************
// ____ ____
// / /\/ /
// /___/ \ / Vendor: Xilinx
// \ \ \/ Version: %version
// \ \ Application: MIG
// / / Filename: ddr_phy_v2_3_phy_ocd_edge.v
// /___/ /\ Date Last Modified: $Date: 2011/02/25 02:07:40 $
// \ \ / \ Date Created: Aug 03 2009
// \___\/\___\
//
//Device: 7 Series
//Design Name: DDR3 SDRAM
//Purpose: Detects and stores edges as the test pattern is scanned via
// manipulating the phaser out stage 3 taps.
//
// Scanning always proceeds from the left to the right. For more
// on the scanning algorithm, see the _po_cntlr block.
//
// Four scan results are reported. The edges at fuzz2zero,
// zero2fuzz, fuzz2oneeighty, and oneeighty2fuzz. Each edge
// has a 6 bit stg3 tap value and a valid bit. The valid bits
// are reset before the scan starts.
//
// Once reset_scan is set low, this block waits for the first
// samp_done while scanning_right. This marks the left end
// of the scan, and initializes prev_samp_r with samp_result and
// sets the prev_samp_r valid bit to one.
//
// At each subesquent samp_done, the previous samp is compared
// to the current samp_result. The case statement details how
// edges are identified.
//
// Original design assumed fuzz between valid regions. Design
// has been updated to tolerate transitions from zero to oneeight
// and vice-versa without fuzz in between.
//
//Reference:
//Revision History:
//*****************************************************************************
`timescale 1ps/1ps
module mig_7series_v2_3_ddr_phy_ocd_edge #
(parameter TCQ = 100)
(/*AUTOARG*/
// Outputs
scan_right, z2f, f2z, o2f, f2o, zero2fuzz, fuzz2zero,
oneeighty2fuzz, fuzz2oneeighty,
// Inputs
clk, samp_done, phy_rddata_en_2, reset_scan, scanning_right,
samp_result, stg3
);
localparam [1:0] NULL = 2'b11,
FUZZ = 2'b00,
ONEEIGHTY = 2'b10,
ZERO = 2'b01;
input clk;
input samp_done;
input phy_rddata_en_2;
wire samp_valid = samp_done && phy_rddata_en_2;
input reset_scan;
input scanning_right;
reg prev_samp_valid_ns, prev_samp_valid_r;
always @(posedge clk) prev_samp_valid_r <= #TCQ prev_samp_valid_ns;
always @(*) begin
prev_samp_valid_ns = prev_samp_valid_r;
if (reset_scan) prev_samp_valid_ns = 1'b0;
else if (samp_valid) prev_samp_valid_ns = 1'b1;
end
input [1:0] samp_result;
reg [1:0] prev_samp_ns, prev_samp_r;
always @(posedge clk) prev_samp_r <= #TCQ prev_samp_ns;
always @(*)
if (samp_valid) prev_samp_ns = samp_result;
else prev_samp_ns = prev_samp_r;
reg scan_right_ns, scan_right_r;
always @(posedge clk) scan_right_r <= #TCQ scan_right_ns;
output scan_right;
assign scan_right = scan_right_r;
input [5:0] stg3;
reg z2f_ns, z2f_r, f2z_ns, f2z_r, o2f_ns, o2f_r, f2o_ns, f2o_r;
always @(posedge clk) z2f_r <= #TCQ z2f_ns;
always @(posedge clk) f2z_r <= #TCQ f2z_ns;
always @(posedge clk) o2f_r <= #TCQ o2f_ns;
always @(posedge clk) f2o_r <= #TCQ f2o_ns;
output z2f, f2z, o2f, f2o;
assign z2f = z2f_r;
assign f2z = f2z_r;
assign o2f = o2f_r;
assign f2o = f2o_r;
reg [5:0] zero2fuzz_ns, zero2fuzz_r, fuzz2zero_ns, fuzz2zero_r,
oneeighty2fuzz_ns, oneeighty2fuzz_r, fuzz2oneeighty_ns, fuzz2oneeighty_r;
always @(posedge clk) zero2fuzz_r <= #TCQ zero2fuzz_ns;
always @(posedge clk) fuzz2zero_r <= #TCQ fuzz2zero_ns;
always @(posedge clk) oneeighty2fuzz_r <= #TCQ oneeighty2fuzz_ns;
always @(posedge clk) fuzz2oneeighty_r <= #TCQ fuzz2oneeighty_ns;
output [5:0] zero2fuzz, fuzz2zero, oneeighty2fuzz, fuzz2oneeighty;
assign zero2fuzz = zero2fuzz_r;
assign fuzz2zero = fuzz2zero_r;
assign oneeighty2fuzz = oneeighty2fuzz_r;
assign fuzz2oneeighty = fuzz2oneeighty_r;
always @(*) begin
z2f_ns = z2f_r;
f2z_ns = f2z_r;
o2f_ns = o2f_r;
f2o_ns = f2o_r;
zero2fuzz_ns = zero2fuzz_r;
fuzz2zero_ns = fuzz2zero_r;
oneeighty2fuzz_ns = oneeighty2fuzz_r;
fuzz2oneeighty_ns = fuzz2oneeighty_r;
scan_right_ns = 1'b0;
if (reset_scan) begin
z2f_ns = 1'b0;
f2z_ns = 1'b0;
o2f_ns = 1'b0;
f2o_ns = 1'b0;
end
else if (samp_valid && prev_samp_valid_r)
case (prev_samp_r)
FUZZ :
if (scanning_right) begin
if (samp_result == ZERO) begin
fuzz2zero_ns = stg3;
f2z_ns = 1'b1;
end
if (samp_result == ONEEIGHTY) begin
fuzz2oneeighty_ns = stg3;
f2o_ns = 1'b1;
end
end
ZERO : begin
if (samp_result == FUZZ || samp_result == ONEEIGHTY) scan_right_ns = !scanning_right;
if (scanning_right) begin
if (samp_result == FUZZ) begin
zero2fuzz_ns = stg3 - 6'b1;
z2f_ns = 1'b1;
end
if (samp_result == ONEEIGHTY) begin
zero2fuzz_ns = stg3 - 6'b1;
z2f_ns = 1'b1;
fuzz2oneeighty_ns = stg3;
f2o_ns = 1'b1;
end
end
end
ONEEIGHTY :
if (scanning_right) begin
if (samp_result == FUZZ) begin
oneeighty2fuzz_ns = stg3 - 6'b1;
o2f_ns = 1'b1;
end
if (samp_result == ZERO)
if (f2o_r) begin
oneeighty2fuzz_ns = stg3 - 6'b1;
o2f_ns = 1'b1;
end else begin
fuzz2zero_ns = stg3;
f2z_ns = 1'b1;
end
end // if (scanning_right)
// NULL : // Should never happen
endcase
end
endmodule // mig_7series_v2_3_ddr_phy_ocd_edge
|
//*****************************************************************************
// (c) Copyright 2009 - 2013 Xilinx, Inc. All rights reserved.
//
// This file contains confidential and proprietary information
// of Xilinx, Inc. and is protected under U.S. and
// international copyright and other intellectual property
// laws.
//
// DISCLAIMER
// This disclaimer is not a license and does not grant any
// rights to the materials distributed herewith. Except as
// otherwise provided in a valid license issued to you by
// Xilinx, and to the maximum extent permitted by applicable
// law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// (2) Xilinx shall not be liable (whether in contract or tort,
// including negligence, or under any other theory of
// liability) for any loss or damage of any kind or nature
// related to, arising under or in connection with these
// materials, including for any direct, or any indirect,
// special, incidental, or consequential loss or damage
// (including loss of data, profits, goodwill, or any type of
// loss or damage suffered as a result of any action brought
// by a third party) even if such damage or loss was
// reasonably foreseeable or Xilinx had been advised of the
// possibility of the same.
//
// CRITICAL APPLICATIONS
// Xilinx products are not designed or intended to be fail-
// safe, or for use in any application requiring fail-safe
// performance, such as life-support or safety devices or
// systems, Class III medical devices, nuclear facilities,
// applications related to the deployment of airbags, or any
// other applications that could lead to death, personal
// injury, or severe property or environmental damage
// (individually and collectively, "Critical
// Applications"). Customer assumes the sole risk and
// liability of any use of Xilinx products in Critical
// Applications, subject only to applicable laws and
// regulations governing limitations on product liability.
//
// THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// PART OF THIS FILE AT ALL TIMES.
//
//*****************************************************************************
// ____ ____
// / /\/ /
// /___/ \ / Vendor: Xilinx
// \ \ \/ Version: %version
// \ \ Application: MIG
// / / Filename: ddr_phy_v2_3_phy_ocd_edge.v
// /___/ /\ Date Last Modified: $Date: 2011/02/25 02:07:40 $
// \ \ / \ Date Created: Aug 03 2009
// \___\/\___\
//
//Device: 7 Series
//Design Name: DDR3 SDRAM
//Purpose: Detects and stores edges as the test pattern is scanned via
// manipulating the phaser out stage 3 taps.
//
// Scanning always proceeds from the left to the right. For more
// on the scanning algorithm, see the _po_cntlr block.
//
// Four scan results are reported. The edges at fuzz2zero,
// zero2fuzz, fuzz2oneeighty, and oneeighty2fuzz. Each edge
// has a 6 bit stg3 tap value and a valid bit. The valid bits
// are reset before the scan starts.
//
// Once reset_scan is set low, this block waits for the first
// samp_done while scanning_right. This marks the left end
// of the scan, and initializes prev_samp_r with samp_result and
// sets the prev_samp_r valid bit to one.
//
// At each subesquent samp_done, the previous samp is compared
// to the current samp_result. The case statement details how
// edges are identified.
//
// Original design assumed fuzz between valid regions. Design
// has been updated to tolerate transitions from zero to oneeight
// and vice-versa without fuzz in between.
//
//Reference:
//Revision History:
//*****************************************************************************
`timescale 1ps/1ps
module mig_7series_v2_3_ddr_phy_ocd_edge #
(parameter TCQ = 100)
(/*AUTOARG*/
// Outputs
scan_right, z2f, f2z, o2f, f2o, zero2fuzz, fuzz2zero,
oneeighty2fuzz, fuzz2oneeighty,
// Inputs
clk, samp_done, phy_rddata_en_2, reset_scan, scanning_right,
samp_result, stg3
);
localparam [1:0] NULL = 2'b11,
FUZZ = 2'b00,
ONEEIGHTY = 2'b10,
ZERO = 2'b01;
input clk;
input samp_done;
input phy_rddata_en_2;
wire samp_valid = samp_done && phy_rddata_en_2;
input reset_scan;
input scanning_right;
reg prev_samp_valid_ns, prev_samp_valid_r;
always @(posedge clk) prev_samp_valid_r <= #TCQ prev_samp_valid_ns;
always @(*) begin
prev_samp_valid_ns = prev_samp_valid_r;
if (reset_scan) prev_samp_valid_ns = 1'b0;
else if (samp_valid) prev_samp_valid_ns = 1'b1;
end
input [1:0] samp_result;
reg [1:0] prev_samp_ns, prev_samp_r;
always @(posedge clk) prev_samp_r <= #TCQ prev_samp_ns;
always @(*)
if (samp_valid) prev_samp_ns = samp_result;
else prev_samp_ns = prev_samp_r;
reg scan_right_ns, scan_right_r;
always @(posedge clk) scan_right_r <= #TCQ scan_right_ns;
output scan_right;
assign scan_right = scan_right_r;
input [5:0] stg3;
reg z2f_ns, z2f_r, f2z_ns, f2z_r, o2f_ns, o2f_r, f2o_ns, f2o_r;
always @(posedge clk) z2f_r <= #TCQ z2f_ns;
always @(posedge clk) f2z_r <= #TCQ f2z_ns;
always @(posedge clk) o2f_r <= #TCQ o2f_ns;
always @(posedge clk) f2o_r <= #TCQ f2o_ns;
output z2f, f2z, o2f, f2o;
assign z2f = z2f_r;
assign f2z = f2z_r;
assign o2f = o2f_r;
assign f2o = f2o_r;
reg [5:0] zero2fuzz_ns, zero2fuzz_r, fuzz2zero_ns, fuzz2zero_r,
oneeighty2fuzz_ns, oneeighty2fuzz_r, fuzz2oneeighty_ns, fuzz2oneeighty_r;
always @(posedge clk) zero2fuzz_r <= #TCQ zero2fuzz_ns;
always @(posedge clk) fuzz2zero_r <= #TCQ fuzz2zero_ns;
always @(posedge clk) oneeighty2fuzz_r <= #TCQ oneeighty2fuzz_ns;
always @(posedge clk) fuzz2oneeighty_r <= #TCQ fuzz2oneeighty_ns;
output [5:0] zero2fuzz, fuzz2zero, oneeighty2fuzz, fuzz2oneeighty;
assign zero2fuzz = zero2fuzz_r;
assign fuzz2zero = fuzz2zero_r;
assign oneeighty2fuzz = oneeighty2fuzz_r;
assign fuzz2oneeighty = fuzz2oneeighty_r;
always @(*) begin
z2f_ns = z2f_r;
f2z_ns = f2z_r;
o2f_ns = o2f_r;
f2o_ns = f2o_r;
zero2fuzz_ns = zero2fuzz_r;
fuzz2zero_ns = fuzz2zero_r;
oneeighty2fuzz_ns = oneeighty2fuzz_r;
fuzz2oneeighty_ns = fuzz2oneeighty_r;
scan_right_ns = 1'b0;
if (reset_scan) begin
z2f_ns = 1'b0;
f2z_ns = 1'b0;
o2f_ns = 1'b0;
f2o_ns = 1'b0;
end
else if (samp_valid && prev_samp_valid_r)
case (prev_samp_r)
FUZZ :
if (scanning_right) begin
if (samp_result == ZERO) begin
fuzz2zero_ns = stg3;
f2z_ns = 1'b1;
end
if (samp_result == ONEEIGHTY) begin
fuzz2oneeighty_ns = stg3;
f2o_ns = 1'b1;
end
end
ZERO : begin
if (samp_result == FUZZ || samp_result == ONEEIGHTY) scan_right_ns = !scanning_right;
if (scanning_right) begin
if (samp_result == FUZZ) begin
zero2fuzz_ns = stg3 - 6'b1;
z2f_ns = 1'b1;
end
if (samp_result == ONEEIGHTY) begin
zero2fuzz_ns = stg3 - 6'b1;
z2f_ns = 1'b1;
fuzz2oneeighty_ns = stg3;
f2o_ns = 1'b1;
end
end
end
ONEEIGHTY :
if (scanning_right) begin
if (samp_result == FUZZ) begin
oneeighty2fuzz_ns = stg3 - 6'b1;
o2f_ns = 1'b1;
end
if (samp_result == ZERO)
if (f2o_r) begin
oneeighty2fuzz_ns = stg3 - 6'b1;
o2f_ns = 1'b1;
end else begin
fuzz2zero_ns = stg3;
f2z_ns = 1'b1;
end
end // if (scanning_right)
// NULL : // Should never happen
endcase
end
endmodule // mig_7series_v2_3_ddr_phy_ocd_edge
|
//*****************************************************************************
// (c) Copyright 2009 - 2013 Xilinx, Inc. All rights reserved.
//
// This file contains confidential and proprietary information
// of Xilinx, Inc. and is protected under U.S. and
// international copyright and other intellectual property
// laws.
//
// DISCLAIMER
// This disclaimer is not a license and does not grant any
// rights to the materials distributed herewith. Except as
// otherwise provided in a valid license issued to you by
// Xilinx, and to the maximum extent permitted by applicable
// law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// (2) Xilinx shall not be liable (whether in contract or tort,
// including negligence, or under any other theory of
// liability) for any loss or damage of any kind or nature
// related to, arising under or in connection with these
// materials, including for any direct, or any indirect,
// special, incidental, or consequential loss or damage
// (including loss of data, profits, goodwill, or any type of
// loss or damage suffered as a result of any action brought
// by a third party) even if such damage or loss was
// reasonably foreseeable or Xilinx had been advised of the
// possibility of the same.
//
// CRITICAL APPLICATIONS
// Xilinx products are not designed or intended to be fail-
// safe, or for use in any application requiring fail-safe
// performance, such as life-support or safety devices or
// systems, Class III medical devices, nuclear facilities,
// applications related to the deployment of airbags, or any
// other applications that could lead to death, personal
// injury, or severe property or environmental damage
// (individually and collectively, "Critical
// Applications"). Customer assumes the sole risk and
// liability of any use of Xilinx products in Critical
// Applications, subject only to applicable laws and
// regulations governing limitations on product liability.
//
// THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// PART OF THIS FILE AT ALL TIMES.
//
//*****************************************************************************
// ____ ____
// / /\/ /
// /___/ \ / Vendor: Xilinx
// \ \ \/ Version: %version
// \ \ Application: MIG
// / / Filename: ddr_phy_v2_3_phy_ocd_data.v
// /___/ /\ Date Last Modified: $Date: 2011/02/25 02:07:40 $
// \ \ / \ Date Created: Aug 03 2009
// \___\/\___\
//
//Device: 7 Series
//Design Name: DDR3 SDRAM
//Purpose: Data comparison for both "non-complex" and "complex" data.
//
// Depending on complex_oclkdelay_calib_start, data provided on the phy_rddata
// bus is compared against a fixed ones and zeros pattern, or against data
// provided on the prob_o bus.
//
// In the case of complex data, the phy_rddata data is delayed by two
// clocks to match up with the prbs_o data.
//
// For 4:1 mode, in each fabric clock, a complete DRAM burst may be delivered.
// A DRAM burst is 8 times the width of the DQ bus. For an 8 byte DQ
// bus, 64 bytes are delivered on each clock.
//
// In 2:1 mode the DRAM burst is delivered on two fabric clocks. For
// an 8 byte bus, 32 bytes are delivered with each fabric clock.
//
// For the most part, this block does not use phy_rddata_en. It delivers
// its results and depends on downstream logic to know when its valid.
//
// phy_rddata_en is used for the PRBS compares when the last line of data
// needs to be carried over to a subsequent line.
//
// Since we work on a byte at a time, the comparison only works on
// one byte of the DQ bus at a time. The oclkdelay_calib_cnt field is used to
// select the proper 8 bytes out of both the phy_rddata and prob_o streams.
//
// Comparisons are computed for "zero" or "rise" data, and "oneeighty" or
// "fall" data. The "oneeighty" compares assumes the rising edge clock is
// landing in the oneeighty data.
//
// For the simple data, we don't need to worry about first byte or last
// byte conditions because the sampled data is taken from the middle
// of a 4 burst segment.
//
// The complex (or PRBS) data starts and stops. And we need to be
// careful about ignoring compares that might be using invalid latched
// data. The PRBS generator provides prbs_ignore_first_byte and
// prbs_ignore_last_bytes. The comparison block is procedural. It
// first compares across the entire line, then comes back and overwrites
// any byte compare results as indicated by the _ignore_ wires.
//
// The compares generate an eight bit vector, one for each byte. The
// final step is to bitwise AND this eight bit vector. We end up
// with two sets of two bits. Zero and oneeighty for the fixed pattern
// and the prbs.
//
// complex_oclkdelay_calib_start is used to
// select between the fixed and prbs compares. The final output
// is a two bit match bus.
//
// There is a deprecated feature to mask the compare for any byte.
//
//
//Reference:
//Revision History:
//*****************************************************************************
`timescale 1ps/1ps
module mig_7series_v2_3_ddr_phy_ocd_data #
(parameter TCQ = 100,
parameter nCK_PER_CLK = 4,
parameter DQS_CNT_WIDTH = 3,
parameter DQ_WIDTH = 64)
(/*AUTOARG*/
// Outputs
match,
// Inputs
clk, rst, complex_oclkdelay_calib_start, phy_rddata, prbs_o,
oclkdelay_calib_cnt, prbs_ignore_first_byte, prbs_ignore_last_bytes,
phy_rddata_en_1
);
localparam [7:0] OCAL_DQ_MASK = 8'b0000_0000;
input clk;
input rst;
input complex_oclkdelay_calib_start;
input [2*nCK_PER_CLK*DQ_WIDTH-1:0] phy_rddata;
input [2*nCK_PER_CLK*DQ_WIDTH-1:0] prbs_o;
input [DQS_CNT_WIDTH:0] oclkdelay_calib_cnt;
reg [DQ_WIDTH-1:0] word, word_shifted;
reg [63:0] data_bytes_ns, data_bytes_r, data_bytes_r1, data_bytes_r2, prbs_bytes_ns, prbs_bytes_r;
always @(posedge clk) data_bytes_r <= #TCQ data_bytes_ns;
always @(posedge clk) data_bytes_r1 <= #TCQ data_bytes_r;
always @(posedge clk) data_bytes_r2 <= #TCQ data_bytes_r1;
always @(posedge clk) prbs_bytes_r <= #TCQ prbs_bytes_ns;
input prbs_ignore_first_byte, prbs_ignore_last_bytes;
reg prbs_ignore_first_byte_r, prbs_ignore_last_bytes_r;
always @(posedge clk) prbs_ignore_first_byte_r <= #TCQ prbs_ignore_first_byte;
always @(posedge clk) prbs_ignore_last_bytes_r <= #TCQ prbs_ignore_last_bytes;
input phy_rddata_en_1;
reg [7:0] last_byte_r;
wire [63:0] data_bytes = complex_oclkdelay_calib_start ? data_bytes_r2 : data_bytes_r;
wire [7:0] last_byte_ns;
generate if (nCK_PER_CLK == 4) begin
assign last_byte_ns = phy_rddata_en_1 ? data_bytes[63:56] : last_byte_r;
end else begin
assign last_byte_ns = phy_rddata_en_1 ? data_bytes[31:24] : last_byte_r;
end endgenerate
always @(posedge clk) last_byte_r <= #TCQ last_byte_ns;
reg second_half_ns, second_half_r;
always @(posedge clk) second_half_r <= #TCQ second_half_ns;
always @(*) begin
second_half_ns = second_half_r;
if (rst) second_half_ns = 1'b0;
else second_half_ns = phy_rddata_en_1 ^ second_half_r;
end
reg [7:0] comp0, comp180, prbs0, prbs180;
integer ii;
always @(*) begin
comp0 = 8'hff;
comp180 = 8'hff;
prbs0 = 8'hff;
prbs180 = 8'hff;
data_bytes_ns = 64'b0;
prbs_bytes_ns = 64'b0;
for (ii=0; ii<2*nCK_PER_CLK; ii=ii+1)
begin
word = phy_rddata[ii*DQ_WIDTH+:DQ_WIDTH];
word_shifted = word >> oclkdelay_calib_cnt*8;
data_bytes_ns[ii*8+:8] = word_shifted[7:0];
word = prbs_o[ii*DQ_WIDTH+:DQ_WIDTH];
word_shifted = word >> oclkdelay_calib_cnt*8;
prbs_bytes_ns[ii*8+:8] = word_shifted[7:0];
comp0[ii] = data_bytes[ii*8+:8] == (ii%2 ? 8'hff : 8'h00);
comp180[ii] = data_bytes[ii*8+:8] == (ii%2 ? 8'h00 : 8'hff);
prbs0[ii] = data_bytes[ii*8+:8] == prbs_bytes_r[ii*8+:8];
end // for (ii=0; ii<2*nCK_PER_CLK; ii=ii+1)
prbs180[0] = last_byte_r == prbs_bytes_r[7:0];
for (ii=1; ii<2*nCK_PER_CLK; ii=ii+1)
prbs180[ii] = data_bytes[(ii-1)*8+:8] == prbs_bytes_r[ii*8+:8];
if (nCK_PER_CLK == 4) begin
if (prbs_ignore_last_bytes_r) begin
prbs0[7:6] = 2'b11;
prbs180[7] = 1'b1;
end
if (prbs_ignore_first_byte_r) prbs180[0] = 1'b1;
end else begin
if (second_half_r) begin
if (prbs_ignore_last_bytes_r) begin
prbs0[3:2] = 2'b11;
prbs180[3] = 1'b1;
end
end else if (prbs_ignore_first_byte_r) prbs180[0] = 1'b1;
end // else: !if(nCK_PER_CLK == 4)
end // always @ (*)
wire [7:0] comp0_masked = comp0 | OCAL_DQ_MASK;
wire [7:0] comp180_masked = comp180 | OCAL_DQ_MASK;
wire [7:0] prbs0_masked = prbs0 | OCAL_DQ_MASK;
wire [7:0] prbs180_masked = prbs180 | OCAL_DQ_MASK;
output [1:0] match;
assign match = complex_oclkdelay_calib_start ? {&prbs180_masked, &prbs0_masked} : {&comp180_masked , &comp0_masked};
endmodule // mig_7series_v2_3_ddr_phy_ocd_data
|
//*****************************************************************************
// (c) Copyright 2009 - 2013 Xilinx, Inc. All rights reserved.
//
// This file contains confidential and proprietary information
// of Xilinx, Inc. and is protected under U.S. and
// international copyright and other intellectual property
// laws.
//
// DISCLAIMER
// This disclaimer is not a license and does not grant any
// rights to the materials distributed herewith. Except as
// otherwise provided in a valid license issued to you by
// Xilinx, and to the maximum extent permitted by applicable
// law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// (2) Xilinx shall not be liable (whether in contract or tort,
// including negligence, or under any other theory of
// liability) for any loss or damage of any kind or nature
// related to, arising under or in connection with these
// materials, including for any direct, or any indirect,
// special, incidental, or consequential loss or damage
// (including loss of data, profits, goodwill, or any type of
// loss or damage suffered as a result of any action brought
// by a third party) even if such damage or loss was
// reasonably foreseeable or Xilinx had been advised of the
// possibility of the same.
//
// CRITICAL APPLICATIONS
// Xilinx products are not designed or intended to be fail-
// safe, or for use in any application requiring fail-safe
// performance, such as life-support or safety devices or
// systems, Class III medical devices, nuclear facilities,
// applications related to the deployment of airbags, or any
// other applications that could lead to death, personal
// injury, or severe property or environmental damage
// (individually and collectively, "Critical
// Applications"). Customer assumes the sole risk and
// liability of any use of Xilinx products in Critical
// Applications, subject only to applicable laws and
// regulations governing limitations on product liability.
//
// THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// PART OF THIS FILE AT ALL TIMES.
//
//*****************************************************************************
// ____ ____
// / /\/ /
// /___/ \ / Vendor: Xilinx
// \ \ \/ Version: %version
// \ \ Application: MIG
// / / Filename: ddr_phy_v2_3_phy_ocd_data.v
// /___/ /\ Date Last Modified: $Date: 2011/02/25 02:07:40 $
// \ \ / \ Date Created: Aug 03 2009
// \___\/\___\
//
//Device: 7 Series
//Design Name: DDR3 SDRAM
//Purpose: Data comparison for both "non-complex" and "complex" data.
//
// Depending on complex_oclkdelay_calib_start, data provided on the phy_rddata
// bus is compared against a fixed ones and zeros pattern, or against data
// provided on the prob_o bus.
//
// In the case of complex data, the phy_rddata data is delayed by two
// clocks to match up with the prbs_o data.
//
// For 4:1 mode, in each fabric clock, a complete DRAM burst may be delivered.
// A DRAM burst is 8 times the width of the DQ bus. For an 8 byte DQ
// bus, 64 bytes are delivered on each clock.
//
// In 2:1 mode the DRAM burst is delivered on two fabric clocks. For
// an 8 byte bus, 32 bytes are delivered with each fabric clock.
//
// For the most part, this block does not use phy_rddata_en. It delivers
// its results and depends on downstream logic to know when its valid.
//
// phy_rddata_en is used for the PRBS compares when the last line of data
// needs to be carried over to a subsequent line.
//
// Since we work on a byte at a time, the comparison only works on
// one byte of the DQ bus at a time. The oclkdelay_calib_cnt field is used to
// select the proper 8 bytes out of both the phy_rddata and prob_o streams.
//
// Comparisons are computed for "zero" or "rise" data, and "oneeighty" or
// "fall" data. The "oneeighty" compares assumes the rising edge clock is
// landing in the oneeighty data.
//
// For the simple data, we don't need to worry about first byte or last
// byte conditions because the sampled data is taken from the middle
// of a 4 burst segment.
//
// The complex (or PRBS) data starts and stops. And we need to be
// careful about ignoring compares that might be using invalid latched
// data. The PRBS generator provides prbs_ignore_first_byte and
// prbs_ignore_last_bytes. The comparison block is procedural. It
// first compares across the entire line, then comes back and overwrites
// any byte compare results as indicated by the _ignore_ wires.
//
// The compares generate an eight bit vector, one for each byte. The
// final step is to bitwise AND this eight bit vector. We end up
// with two sets of two bits. Zero and oneeighty for the fixed pattern
// and the prbs.
//
// complex_oclkdelay_calib_start is used to
// select between the fixed and prbs compares. The final output
// is a two bit match bus.
//
// There is a deprecated feature to mask the compare for any byte.
//
//
//Reference:
//Revision History:
//*****************************************************************************
`timescale 1ps/1ps
module mig_7series_v2_3_ddr_phy_ocd_data #
(parameter TCQ = 100,
parameter nCK_PER_CLK = 4,
parameter DQS_CNT_WIDTH = 3,
parameter DQ_WIDTH = 64)
(/*AUTOARG*/
// Outputs
match,
// Inputs
clk, rst, complex_oclkdelay_calib_start, phy_rddata, prbs_o,
oclkdelay_calib_cnt, prbs_ignore_first_byte, prbs_ignore_last_bytes,
phy_rddata_en_1
);
localparam [7:0] OCAL_DQ_MASK = 8'b0000_0000;
input clk;
input rst;
input complex_oclkdelay_calib_start;
input [2*nCK_PER_CLK*DQ_WIDTH-1:0] phy_rddata;
input [2*nCK_PER_CLK*DQ_WIDTH-1:0] prbs_o;
input [DQS_CNT_WIDTH:0] oclkdelay_calib_cnt;
reg [DQ_WIDTH-1:0] word, word_shifted;
reg [63:0] data_bytes_ns, data_bytes_r, data_bytes_r1, data_bytes_r2, prbs_bytes_ns, prbs_bytes_r;
always @(posedge clk) data_bytes_r <= #TCQ data_bytes_ns;
always @(posedge clk) data_bytes_r1 <= #TCQ data_bytes_r;
always @(posedge clk) data_bytes_r2 <= #TCQ data_bytes_r1;
always @(posedge clk) prbs_bytes_r <= #TCQ prbs_bytes_ns;
input prbs_ignore_first_byte, prbs_ignore_last_bytes;
reg prbs_ignore_first_byte_r, prbs_ignore_last_bytes_r;
always @(posedge clk) prbs_ignore_first_byte_r <= #TCQ prbs_ignore_first_byte;
always @(posedge clk) prbs_ignore_last_bytes_r <= #TCQ prbs_ignore_last_bytes;
input phy_rddata_en_1;
reg [7:0] last_byte_r;
wire [63:0] data_bytes = complex_oclkdelay_calib_start ? data_bytes_r2 : data_bytes_r;
wire [7:0] last_byte_ns;
generate if (nCK_PER_CLK == 4) begin
assign last_byte_ns = phy_rddata_en_1 ? data_bytes[63:56] : last_byte_r;
end else begin
assign last_byte_ns = phy_rddata_en_1 ? data_bytes[31:24] : last_byte_r;
end endgenerate
always @(posedge clk) last_byte_r <= #TCQ last_byte_ns;
reg second_half_ns, second_half_r;
always @(posedge clk) second_half_r <= #TCQ second_half_ns;
always @(*) begin
second_half_ns = second_half_r;
if (rst) second_half_ns = 1'b0;
else second_half_ns = phy_rddata_en_1 ^ second_half_r;
end
reg [7:0] comp0, comp180, prbs0, prbs180;
integer ii;
always @(*) begin
comp0 = 8'hff;
comp180 = 8'hff;
prbs0 = 8'hff;
prbs180 = 8'hff;
data_bytes_ns = 64'b0;
prbs_bytes_ns = 64'b0;
for (ii=0; ii<2*nCK_PER_CLK; ii=ii+1)
begin
word = phy_rddata[ii*DQ_WIDTH+:DQ_WIDTH];
word_shifted = word >> oclkdelay_calib_cnt*8;
data_bytes_ns[ii*8+:8] = word_shifted[7:0];
word = prbs_o[ii*DQ_WIDTH+:DQ_WIDTH];
word_shifted = word >> oclkdelay_calib_cnt*8;
prbs_bytes_ns[ii*8+:8] = word_shifted[7:0];
comp0[ii] = data_bytes[ii*8+:8] == (ii%2 ? 8'hff : 8'h00);
comp180[ii] = data_bytes[ii*8+:8] == (ii%2 ? 8'h00 : 8'hff);
prbs0[ii] = data_bytes[ii*8+:8] == prbs_bytes_r[ii*8+:8];
end // for (ii=0; ii<2*nCK_PER_CLK; ii=ii+1)
prbs180[0] = last_byte_r == prbs_bytes_r[7:0];
for (ii=1; ii<2*nCK_PER_CLK; ii=ii+1)
prbs180[ii] = data_bytes[(ii-1)*8+:8] == prbs_bytes_r[ii*8+:8];
if (nCK_PER_CLK == 4) begin
if (prbs_ignore_last_bytes_r) begin
prbs0[7:6] = 2'b11;
prbs180[7] = 1'b1;
end
if (prbs_ignore_first_byte_r) prbs180[0] = 1'b1;
end else begin
if (second_half_r) begin
if (prbs_ignore_last_bytes_r) begin
prbs0[3:2] = 2'b11;
prbs180[3] = 1'b1;
end
end else if (prbs_ignore_first_byte_r) prbs180[0] = 1'b1;
end // else: !if(nCK_PER_CLK == 4)
end // always @ (*)
wire [7:0] comp0_masked = comp0 | OCAL_DQ_MASK;
wire [7:0] comp180_masked = comp180 | OCAL_DQ_MASK;
wire [7:0] prbs0_masked = prbs0 | OCAL_DQ_MASK;
wire [7:0] prbs180_masked = prbs180 | OCAL_DQ_MASK;
output [1:0] match;
assign match = complex_oclkdelay_calib_start ? {&prbs180_masked, &prbs0_masked} : {&comp180_masked , &comp0_masked};
endmodule // mig_7series_v2_3_ddr_phy_ocd_data
|
//*****************************************************************************
// (c) Copyright 2008 - 2014 Xilinx, Inc. All rights reserved.
//
// This file contains confidential and proprietary information
// of Xilinx, Inc. and is protected under U.S. and
// international copyright and other intellectual property
// laws.
//
// DISCLAIMER
// This disclaimer is not a license and does not grant any
// rights to the materials distributed herewith. Except as
// otherwise provided in a valid license issued to you by
// Xilinx, and to the maximum extent permitted by applicable
// law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// (2) Xilinx shall not be liable (whether in contract or tort,
// including negligence, or under any other theory of
// liability) for any loss or damage of any kind or nature
// related to, arising under or in connection with these
// materials, including for any direct, or any indirect,
// special, incidental, or consequential loss or damage
// (including loss of data, profits, goodwill, or any type of
// loss or damage suffered as a result of any action brought
// by a third party) even if such damage or loss was
// reasonably foreseeable or Xilinx had been advised of the
// possibility of the same.
//
// CRITICAL APPLICATIONS
// Xilinx products are not designed or intended to be fail-
// safe, or for use in any application requiring fail-safe
// performance, such as life-support or safety devices or
// systems, Class III medical devices, nuclear facilities,
// applications related to the deployment of airbags, or any
// other applications that could lead to death, personal
// injury, or severe property or environmental damage
// (individually and collectively, "Critical
// Applications"). Customer assumes the sole risk and
// liability of any use of Xilinx products in Critical
// Applications, subject only to applicable laws and
// regulations governing limitations on product liability.
//
// THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// PART OF THIS FILE AT ALL TIMES.
//
//*****************************************************************************
// ____ ____
// / /\/ /
// /___/ \ / Vendor : Xilinx
// \ \ \/ Version : 2.3
// \ \ Application : MIG
// / / Filename : ddr_phy_top.v
// /___/ /\ Date Last Modified : $date$
// \ \ / \ Date Created : Aug 03 2009
// \___\/\___\
//
//Device : 7 Series
//Design Name : DDR3 SDRAM
//Purpose : Top level memory interface block. Instantiates a clock
// and reset generator, the memory controller, the phy and
// the user interface blocks.
//Reference :
//Revision History :
//*****************************************************************************
`timescale 1 ps / 1 ps
module mig_7series_v2_3_ddr_phy_top #
(
parameter TCQ = 100, // Register delay (simulation only)
parameter DDR3_VDD_OP_VOLT = 135, // Voltage mode used for DDR3
parameter AL = "0", // Additive Latency option
parameter BANK_WIDTH = 3, // # of bank bits
parameter BURST_MODE = "8", // Burst length
parameter BURST_TYPE = "SEQ", // Burst type
parameter CA_MIRROR = "OFF", // C/A mirror opt for DDR3 dual rank
parameter CK_WIDTH = 1, // # of CK/CK# outputs to memory
parameter CL = 5,
parameter COL_WIDTH = 12, // column address width
parameter CS_WIDTH = 1, // # of unique CS outputs
parameter CKE_WIDTH = 1, // # of cke outputs
parameter CWL = 5,
parameter DM_WIDTH = 8, // # of DM (data mask)
parameter DQ_WIDTH = 64, // # of DQ (data)
parameter DQS_CNT_WIDTH = 3, // = ceil(log2(DQS_WIDTH))
parameter DQS_WIDTH = 8, // # of DQS (strobe)
parameter DRAM_TYPE = "DDR3",
parameter DRAM_WIDTH = 8, // # of DQ per DQS
parameter MASTER_PHY_CTL = 0, // The bank number where master PHY_CONTROL resides
parameter LP_DDR_CK_WIDTH = 2,
// Hard PHY parameters
parameter PHYCTL_CMD_FIFO = "FALSE",
// five fields, one per possible I/O bank, 4 bits in each field,
// 1 per lane data=1/ctl=0
parameter DATA_CTL_B0 = 4'hc,
parameter DATA_CTL_B1 = 4'hf,
parameter DATA_CTL_B2 = 4'hf,
parameter DATA_CTL_B3 = 4'hf,
parameter DATA_CTL_B4 = 4'hf,
// defines the byte lanes in I/O banks being used in the interface
// 1- Used, 0- Unused
parameter BYTE_LANES_B0 = 4'b1111,
parameter BYTE_LANES_B1 = 4'b0000,
parameter BYTE_LANES_B2 = 4'b0000,
parameter BYTE_LANES_B3 = 4'b0000,
parameter BYTE_LANES_B4 = 4'b0000,
// defines the bit lanes in I/O banks being used in the interface. Each
// parameter = 1 I/O bank = 4 byte lanes = 48 bit lanes. 1-Used, 0-Unused
parameter PHY_0_BITLANES = 48'h0000_0000_0000,
parameter PHY_1_BITLANES = 48'h0000_0000_0000,
parameter PHY_2_BITLANES = 48'h0000_0000_0000,
// control/address/data pin mapping parameters
parameter CK_BYTE_MAP
= 144'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00,
parameter ADDR_MAP
= 192'h000_000_000_000_000_000_000_000_000_000_000_000_000_000_000_000,
parameter BANK_MAP = 36'h000_000_000,
parameter CAS_MAP = 12'h000,
parameter CKE_ODT_BYTE_MAP = 8'h00,
parameter CKE_MAP = 96'h000_000_000_000_000_000_000_000,
parameter ODT_MAP = 96'h000_000_000_000_000_000_000_000,
parameter CKE_ODT_AUX = "FALSE",
parameter CS_MAP = 120'h000_000_000_000_000_000_000_000_000_000,
parameter PARITY_MAP = 12'h000,
parameter RAS_MAP = 12'h000,
parameter WE_MAP = 12'h000,
parameter DQS_BYTE_MAP
= 144'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00,
parameter DATA0_MAP = 96'h000_000_000_000_000_000_000_000,
parameter DATA1_MAP = 96'h000_000_000_000_000_000_000_000,
parameter DATA2_MAP = 96'h000_000_000_000_000_000_000_000,
parameter DATA3_MAP = 96'h000_000_000_000_000_000_000_000,
parameter DATA4_MAP = 96'h000_000_000_000_000_000_000_000,
parameter DATA5_MAP = 96'h000_000_000_000_000_000_000_000,
parameter DATA6_MAP = 96'h000_000_000_000_000_000_000_000,
parameter DATA7_MAP = 96'h000_000_000_000_000_000_000_000,
parameter DATA8_MAP = 96'h000_000_000_000_000_000_000_000,
parameter DATA9_MAP = 96'h000_000_000_000_000_000_000_000,
parameter DATA10_MAP = 96'h000_000_000_000_000_000_000_000,
parameter DATA11_MAP = 96'h000_000_000_000_000_000_000_000,
parameter DATA12_MAP = 96'h000_000_000_000_000_000_000_000,
parameter DATA13_MAP = 96'h000_000_000_000_000_000_000_000,
parameter DATA14_MAP = 96'h000_000_000_000_000_000_000_000,
parameter DATA15_MAP = 96'h000_000_000_000_000_000_000_000,
parameter DATA16_MAP = 96'h000_000_000_000_000_000_000_000,
parameter DATA17_MAP = 96'h000_000_000_000_000_000_000_000,
parameter MASK0_MAP = 108'h000_000_000_000_000_000_000_000_000,
parameter MASK1_MAP = 108'h000_000_000_000_000_000_000_000_000,
// This parameter must be set based on memory clock frequency
// It must be set to 4 for frequencies above 533 MHz?? (undecided)
// and set to 2 for 533 MHz and below
parameter PRE_REV3ES = "OFF", // Delay O/Ps using Phaser_Out fine dly
parameter nCK_PER_CLK = 2, // # of memory CKs per fabric CLK
parameter nCS_PER_RANK = 1, // # of unique CS outputs per rank
parameter ADDR_CMD_MODE = "1T", // ADDR/CTRL timing: "2T", "1T"
parameter BANK_TYPE = "HP_IO", // # = "HP_IO", "HPL_IO", "HR_IO", "HRL_IO"
parameter DATA_IO_PRIM_TYPE = "DEFAULT", // # = "HP_LP", "HR_LP", "DEFAULT"
parameter DATA_IO_IDLE_PWRDWN = "ON", // "ON" or "OFF"
parameter IODELAY_GRP = "IODELAY_MIG",
parameter FPGA_SPEED_GRADE = 1,
parameter IBUF_LPWR_MODE = "OFF", // input buffer low power option
parameter OUTPUT_DRV = "HIGH", // to calib_top
parameter REG_CTRL = "OFF", // to calib_top
parameter RTT_NOM = "60", // to calib_top
parameter RTT_WR = "120", // to calib_top
parameter tCK = 2500, // pS
parameter tRFC = 110000, // pS
parameter tREFI = 7800000, // pS
parameter DDR2_DQSN_ENABLE = "YES", // Enable differential DQS for DDR2
parameter WRLVL = "OFF", // to calib_top
parameter DEBUG_PORT = "OFF", // to calib_top
parameter RANKS = 4,
parameter ODT_WIDTH = 1,
parameter ROW_WIDTH = 16, // DRAM address bus width
parameter [7:0] SLOT_1_CONFIG = 8'b0000_0000,
// calibration Address. The address given below will be used for calibration
// read and write operations.
parameter CALIB_ROW_ADD = 16'h0000,// Calibration row address
parameter CALIB_COL_ADD = 12'h000, // Calibration column address
parameter CALIB_BA_ADD = 3'h0, // Calibration bank address
// Simulation /debug options
parameter SIM_BYPASS_INIT_CAL = "OFF",
// Parameter used to force skipping
// or abbreviation of initialization
// and calibration. Overrides
// SIM_INIT_OPTION, SIM_CAL_OPTION,
// and disables various other blocks
//parameter SIM_INIT_OPTION = "SKIP_PU_DLY", // Skip various init steps
//parameter SIM_CAL_OPTION = "NONE", // Skip various calib steps
parameter REFCLK_FREQ = 200.0, // IODELAY ref clock freq (MHz)
parameter USE_CS_PORT = 1, // Support chip select output
parameter USE_DM_PORT = 1, // Support data mask output
parameter USE_ODT_PORT = 1, // Support ODT output
parameter RD_PATH_REG = 0, // optional registers in the read path
// to MC for timing improvement.
// =1 enabled, = 0 disabled
parameter IDELAY_ADJ = "ON", //ON : IDELAY-1, OFF: No change
parameter FINE_PER_BIT = "ON", //ON : Use per bit calib for complex rdlvl
parameter CENTER_COMP_MODE = "ON", //ON: use PI stg2 tap compensation
parameter PI_VAL_ADJ = "ON", //ON: PI stg2 tap -1 for centering
parameter TAPSPERKCLK = 56,
parameter POC_USE_METASTABLE_SAMP = "FALSE"
)
(
input clk, // Fabric logic clock
// To MC, calib_top, hard PHY
input clk_ref, // Idelay_ctrl reference clock
// To hard PHY (external source)
input freq_refclk, // To hard PHY for Phasers
input mem_refclk, // Memory clock to hard PHY
input pll_lock, // System PLL lock signal
input sync_pulse, // 1/N sync pulse used to synchronize all PHASERS
input mmcm_ps_clk, // Phase shift clock for oclk stg3 centering
input poc_sample_pd, // Tell POC how to avoid metastability.
input error, // Support for TG error detect
output rst_tg_mc, // Support for TG error detect
input [11:0] device_temp,
input tempmon_sample_en,
input dbg_sel_pi_incdec,
input dbg_sel_po_incdec,
input [DQS_CNT_WIDTH:0] dbg_byte_sel,
input dbg_pi_f_inc,
input dbg_pi_f_dec,
input dbg_po_f_inc,
input dbg_po_f_stg23_sel,
input dbg_po_f_dec,
input dbg_idel_down_all,
input dbg_idel_down_cpt,
input dbg_idel_up_all,
input dbg_idel_up_cpt,
input dbg_sel_all_idel_cpt,
input [DQS_CNT_WIDTH-1:0] dbg_sel_idel_cpt,
input rst,
input iddr_rst,
input [7:0] slot_0_present,
input [7:0] slot_1_present,
// From MC
input [nCK_PER_CLK-1:0] mc_ras_n,
input [nCK_PER_CLK-1:0] mc_cas_n,
input [nCK_PER_CLK-1:0] mc_we_n,
input [nCK_PER_CLK*ROW_WIDTH-1:0] mc_address,
input [nCK_PER_CLK*BANK_WIDTH-1:0] mc_bank,
input [CS_WIDTH*nCS_PER_RANK*nCK_PER_CLK-1:0] mc_cs_n,
input mc_reset_n,
input [1:0] mc_odt,
input [nCK_PER_CLK-1:0] mc_cke,
// AUX - For ODT and CKE assertion during reads and writes
input [3:0] mc_aux_out0,
input [3:0] mc_aux_out1,
input mc_cmd_wren,
input mc_ctl_wren,
input [2:0] mc_cmd,
input [1:0] mc_cas_slot,
input [5:0] mc_data_offset,
input [5:0] mc_data_offset_1,
input [5:0] mc_data_offset_2,
input [1:0] mc_rank_cnt,
// Write
input mc_wrdata_en,
input [2*nCK_PER_CLK*DQ_WIDTH-1:0] mc_wrdata,
input [2*nCK_PER_CLK*(DQ_WIDTH/8)-1:0] mc_wrdata_mask,
input idle,
// DDR bus signals
output [ROW_WIDTH-1:0] ddr_addr,
output [BANK_WIDTH-1:0] ddr_ba,
output ddr_cas_n,
output [CK_WIDTH-1:0] ddr_ck_n,
output [CK_WIDTH-1:0] ddr_ck,
output [CKE_WIDTH-1:0] ddr_cke,
output [CS_WIDTH*nCS_PER_RANK-1:0] ddr_cs_n,
output [DM_WIDTH-1:0] ddr_dm,
output [ODT_WIDTH-1:0] ddr_odt,
output ddr_ras_n,
output ddr_reset_n,
output ddr_parity,
output ddr_we_n,
inout [DQ_WIDTH-1:0] ddr_dq,
inout [DQS_WIDTH-1:0] ddr_dqs_n,
inout [DQS_WIDTH-1:0] ddr_dqs,
//phase shift clock control
output psen,
output psincdec,
input psdone,
// Debug Port Outputs
output [255:0] dbg_calib_top,
output [6*DQS_WIDTH*RANKS-1:0] dbg_cpt_first_edge_cnt,
output [6*DQS_WIDTH*RANKS-1:0] dbg_cpt_second_edge_cnt,
output [6*DQS_WIDTH*RANKS-1:0] dbg_cpt_tap_cnt,
output [5*DQS_WIDTH*RANKS-1:0] dbg_dq_idelay_tap_cnt,
output [255:0] dbg_phy_rdlvl,
output [99:0] dbg_phy_wrcal,
output [6*DQS_WIDTH-1:0] dbg_final_po_fine_tap_cnt,
output [3*DQS_WIDTH-1:0] dbg_final_po_coarse_tap_cnt,
output [DQS_WIDTH-1:0] dbg_rd_data_edge_detect,
output [2*nCK_PER_CLK*DQ_WIDTH-1:0] dbg_rddata,
output dbg_rddata_valid,
output [1:0] dbg_rdlvl_done,
output [1:0] dbg_rdlvl_err,
output [1:0] dbg_rdlvl_start,
output [5:0] dbg_tap_cnt_during_wrlvl,
output dbg_wl_edge_detect_valid,
output dbg_wrlvl_done,
output dbg_wrlvl_err,
output dbg_wrlvl_start,
output [6*DQS_WIDTH-1:0] dbg_wrlvl_fine_tap_cnt,
output [3*DQS_WIDTH-1:0] dbg_wrlvl_coarse_tap_cnt,
output [255:0] dbg_phy_wrlvl,
output dbg_pi_phaselock_start,
output dbg_pi_phaselocked_done,
output dbg_pi_phaselock_err,
output [11:0] dbg_pi_phase_locked_phy4lanes,
output dbg_pi_dqsfound_start,
output dbg_pi_dqsfound_done,
output dbg_pi_dqsfound_err,
output [11:0] dbg_pi_dqs_found_lanes_phy4lanes,
output dbg_wrcal_start,
output dbg_wrcal_done,
output dbg_wrcal_err,
// FIFO status flags
output phy_mc_ctl_full,
output phy_mc_cmd_full,
output phy_mc_data_full,
// Calibration status and resultant outputs
output init_calib_complete,
output init_wrcal_complete,
output [6*RANKS-1:0] calib_rd_data_offset_0,
output [6*RANKS-1:0] calib_rd_data_offset_1,
output [6*RANKS-1:0] calib_rd_data_offset_2,
output phy_rddata_valid,
output [2*nCK_PER_CLK*DQ_WIDTH-1:0] phy_rd_data,
output ref_dll_lock,
input rst_phaser_ref,
output [6*RANKS-1:0] dbg_rd_data_offset,
output [255:0] dbg_phy_init,
output [255:0] dbg_prbs_rdlvl,
output [255:0] dbg_dqs_found_cal,
output [5:0] dbg_pi_counter_read_val,
output [8:0] dbg_po_counter_read_val,
output dbg_oclkdelay_calib_start,
output dbg_oclkdelay_calib_done,
output [255:0] dbg_phy_oclkdelay_cal,
output [DRAM_WIDTH*16 -1:0] dbg_oclkdelay_rd_data,
output [6*DQS_WIDTH*RANKS-1:0] prbs_final_dqs_tap_cnt_r,
output [6*DQS_WIDTH*RANKS-1:0] dbg_prbs_first_edge_taps,
output [6*DQS_WIDTH*RANKS-1:0] dbg_prbs_second_edge_taps
);
// Calculate number of slots in the system
localparam nSLOTS = 1 + (|SLOT_1_CONFIG ? 1 : 0);
localparam CLK_PERIOD = tCK * nCK_PER_CLK;
// Parameter used to force skipping or abbreviation of initialization
// and calibration. Overrides SIM_INIT_OPTION, SIM_CAL_OPTION, and
// disables various other blocks depending on the option selected
// This option should only be used during simulation. In the case of
// the "SKIP" option, the testbench used should also not be modeling
// propagation delays.
// Allowable options = {"NONE", "SIM_FULL", "SKIP", "FAST"}
// "NONE" = options determined by the individual parameter settings
// "SIM_FULL" = skip power-up delay. FULL calibration performed without
// averaging algorithm turned ON during window detection.
// "SKIP" = skip power-up delay. Skip calibration not yet supported.
// "FAST" = skip power-up delay, and calibrate (read leveling, write
// leveling, and phase detector) only using one DQS group, and
// apply the results to all other DQS groups.
localparam SIM_INIT_OPTION
= ((SIM_BYPASS_INIT_CAL == "SKIP") ? "SKIP_INIT" :
((SIM_BYPASS_INIT_CAL == "FAST") ||
(SIM_BYPASS_INIT_CAL == "SIM_FULL")) ? "SKIP_PU_DLY" :
"NONE");
localparam SIM_CAL_OPTION
= ((SIM_BYPASS_INIT_CAL == "SKIP") ? "SKIP_CAL" :
(SIM_BYPASS_INIT_CAL == "FAST") ? "FAST_CAL" :
((SIM_BYPASS_INIT_CAL == "SIM_FULL") ||
(SIM_BYPASS_INIT_CAL == "SIM_INIT_CAL_FULL")) ? "FAST_WIN_DETECT" :
"NONE");
localparam WRLVL_W
= (SIM_BYPASS_INIT_CAL == "SKIP") ? "OFF" : WRLVL;
localparam HIGHEST_BANK = (BYTE_LANES_B4 != 0 ? 5 : (BYTE_LANES_B3 != 0 ? 4 :
(BYTE_LANES_B2 != 0 ? 3 :
(BYTE_LANES_B1 != 0 ? 2 : 1))));
localparam HIGHEST_LANE_B0 = BYTE_LANES_B0[3] ? 4 : BYTE_LANES_B0[2] ? 3 :
BYTE_LANES_B0[1] ? 2 : BYTE_LANES_B0[0] ? 1 :
0;
localparam HIGHEST_LANE_B1 = BYTE_LANES_B1[3] ? 4 : BYTE_LANES_B1[2] ? 3 :
BYTE_LANES_B1[1] ? 2 : BYTE_LANES_B1[0] ? 1 :
0;
localparam HIGHEST_LANE_B2 = BYTE_LANES_B2[3] ? 4 : BYTE_LANES_B2[2] ? 3 :
BYTE_LANES_B2[1] ? 2 : BYTE_LANES_B2[0] ? 1 :
0;
localparam HIGHEST_LANE_B3 = BYTE_LANES_B3[3] ? 4 : BYTE_LANES_B3[2] ? 3 :
BYTE_LANES_B3[1] ? 2 : BYTE_LANES_B3[0] ? 1 :
0;
localparam HIGHEST_LANE_B4 = BYTE_LANES_B4[3] ? 4 : BYTE_LANES_B4[2] ? 3 :
BYTE_LANES_B4[1] ? 2 : BYTE_LANES_B4[0] ? 1 :
0;
localparam HIGHEST_LANE =
(HIGHEST_LANE_B4 != 0) ? (HIGHEST_LANE_B4+16) :
((HIGHEST_LANE_B3 != 0) ? (HIGHEST_LANE_B3 + 12) :
((HIGHEST_LANE_B2 != 0) ? (HIGHEST_LANE_B2 + 8) :
((HIGHEST_LANE_B1 != 0) ? (HIGHEST_LANE_B1 + 4) :
HIGHEST_LANE_B0)));
localparam N_CTL_LANES = ((0+(!DATA_CTL_B0[0]) & BYTE_LANES_B0[0]) +
(0+(!DATA_CTL_B0[1]) & BYTE_LANES_B0[1]) +
(0+(!DATA_CTL_B0[2]) & BYTE_LANES_B0[2]) +
(0+(!DATA_CTL_B0[3]) & BYTE_LANES_B0[3])) +
((0+(!DATA_CTL_B1[0]) & BYTE_LANES_B1[0]) +
(0+(!DATA_CTL_B1[1]) & BYTE_LANES_B1[1]) +
(0+(!DATA_CTL_B1[2]) & BYTE_LANES_B1[2]) +
(0+(!DATA_CTL_B1[3]) & BYTE_LANES_B1[3])) +
((0+(!DATA_CTL_B2[0]) & BYTE_LANES_B2[0]) +
(0+(!DATA_CTL_B2[1]) & BYTE_LANES_B2[1]) +
(0+(!DATA_CTL_B2[2]) & BYTE_LANES_B2[2]) +
(0+(!DATA_CTL_B2[3]) & BYTE_LANES_B2[3])) +
((0+(!DATA_CTL_B3[0]) & BYTE_LANES_B3[0]) +
(0+(!DATA_CTL_B3[1]) & BYTE_LANES_B3[1]) +
(0+(!DATA_CTL_B3[2]) & BYTE_LANES_B3[2]) +
(0+(!DATA_CTL_B3[3]) & BYTE_LANES_B3[3])) +
((0+(!DATA_CTL_B4[0]) & BYTE_LANES_B4[0]) +
(0+(!DATA_CTL_B4[1]) & BYTE_LANES_B4[1]) +
(0+(!DATA_CTL_B4[2]) & BYTE_LANES_B4[2]) +
(0+(!DATA_CTL_B4[3]) & BYTE_LANES_B4[3]));
// Assuming Ck/Addr/Cmd and Control are placed in a single IO Bank
// This should be the case since the PLL should be placed adjacent
// to the same IO Bank as Ck/Addr/Cmd and Control
localparam [2:0] CTL_BANK = (((!DATA_CTL_B0[0]) & BYTE_LANES_B0[0]) |
((!DATA_CTL_B0[1]) & BYTE_LANES_B0[1]) |
((!DATA_CTL_B0[2]) & BYTE_LANES_B0[2]) |
((!DATA_CTL_B0[3]) & BYTE_LANES_B0[3])) ?
3'b000 :
(((!DATA_CTL_B1[0]) & BYTE_LANES_B1[0]) |
((!DATA_CTL_B1[1]) & BYTE_LANES_B1[1]) |
((!DATA_CTL_B1[2]) & BYTE_LANES_B1[2]) |
((!DATA_CTL_B1[3]) & BYTE_LANES_B1[3])) ?
3'b001 :
(((!DATA_CTL_B2[0]) & BYTE_LANES_B2[0]) |
((!DATA_CTL_B2[1]) & BYTE_LANES_B2[1]) |
((!DATA_CTL_B2[2]) & BYTE_LANES_B2[2]) |
((!DATA_CTL_B2[3]) & BYTE_LANES_B2[3])) ?
3'b010 :
(((!DATA_CTL_B3[0]) & BYTE_LANES_B3[0]) |
((!DATA_CTL_B3[1]) & BYTE_LANES_B3[1]) |
((!DATA_CTL_B3[2]) & BYTE_LANES_B3[2]) |
((!DATA_CTL_B3[3]) & BYTE_LANES_B3[3])) ?
3'b011 :
(((!DATA_CTL_B4[0]) & BYTE_LANES_B4[0]) |
((!DATA_CTL_B4[1]) & BYTE_LANES_B4[1]) |
((!DATA_CTL_B4[2]) & BYTE_LANES_B4[2]) |
((!DATA_CTL_B4[3]) & BYTE_LANES_B4[3])) ?
3'b100 : 3'b000;
localparam [7:0] CTL_BYTE_LANE = (N_CTL_LANES == 4) ? 8'b11_10_01_00 :
((N_CTL_LANES == 3) &
(((!DATA_CTL_B0[0]) & BYTE_LANES_B0[0] &
(!DATA_CTL_B0[1]) & BYTE_LANES_B0[1] &
(!DATA_CTL_B0[2]) & BYTE_LANES_B0[2]) |
((!DATA_CTL_B1[0]) & BYTE_LANES_B1[0] &
(!DATA_CTL_B1[1]) & BYTE_LANES_B1[1] &
(!DATA_CTL_B1[2]) & BYTE_LANES_B1[2]) |
((!DATA_CTL_B2[0]) & BYTE_LANES_B2[0] &
(!DATA_CTL_B2[1]) & BYTE_LANES_B2[1] &
(!DATA_CTL_B2[2]) & BYTE_LANES_B2[2]) |
((!DATA_CTL_B3[0]) & BYTE_LANES_B3[0] &
(!DATA_CTL_B3[1]) & BYTE_LANES_B3[1] &
(!DATA_CTL_B3[2]) & BYTE_LANES_B3[2]) |
((!DATA_CTL_B4[0]) & BYTE_LANES_B4[0] &
(!DATA_CTL_B4[1]) & BYTE_LANES_B4[1] &
(!DATA_CTL_B4[2]) & BYTE_LANES_B4[2]))) ?
8'b00_10_01_00 :
((N_CTL_LANES == 3) &
(((!DATA_CTL_B0[0]) & BYTE_LANES_B0[0] &
(!DATA_CTL_B0[1]) & BYTE_LANES_B0[1] &
(!DATA_CTL_B0[3]) & BYTE_LANES_B0[3]) |
((!DATA_CTL_B1[0]) & BYTE_LANES_B1[0] &
(!DATA_CTL_B1[1]) & BYTE_LANES_B1[1] &
(!DATA_CTL_B1[3]) & BYTE_LANES_B1[3]) |
((!DATA_CTL_B2[0]) & BYTE_LANES_B2[0] &
(!DATA_CTL_B2[1]) & BYTE_LANES_B2[1] &
(!DATA_CTL_B2[3]) & BYTE_LANES_B2[3]) |
((!DATA_CTL_B3[0]) & BYTE_LANES_B3[0] &
(!DATA_CTL_B3[1]) & BYTE_LANES_B3[1] &
(!DATA_CTL_B3[3]) & BYTE_LANES_B3[3]) |
((!DATA_CTL_B4[0]) & BYTE_LANES_B4[0] &
(!DATA_CTL_B4[1]) & BYTE_LANES_B4[1] &
(!DATA_CTL_B4[3]) & BYTE_LANES_B4[3]))) ?
8'b00_11_01_00 :
((N_CTL_LANES == 3) &
(((!DATA_CTL_B0[0]) & BYTE_LANES_B0[0] &
(!DATA_CTL_B0[2]) & BYTE_LANES_B0[2] &
(!DATA_CTL_B0[3]) & BYTE_LANES_B0[3]) |
((!DATA_CTL_B1[0]) & BYTE_LANES_B1[0] &
(!DATA_CTL_B1[2]) & BYTE_LANES_B1[2] &
(!DATA_CTL_B1[3]) & BYTE_LANES_B1[3]) |
((!DATA_CTL_B2[0]) & BYTE_LANES_B2[0] &
(!DATA_CTL_B2[2]) & BYTE_LANES_B2[2] &
(!DATA_CTL_B2[3]) & BYTE_LANES_B2[3]) |
((!DATA_CTL_B3[0]) & BYTE_LANES_B3[0] &
(!DATA_CTL_B3[2]) & BYTE_LANES_B3[2] &
(!DATA_CTL_B3[3]) & BYTE_LANES_B3[3]) |
((!DATA_CTL_B4[0]) & BYTE_LANES_B4[0] &
(!DATA_CTL_B4[2]) & BYTE_LANES_B4[2] &
(!DATA_CTL_B4[3]) & BYTE_LANES_B4[3]))) ?
8'b00_11_10_00 :
((N_CTL_LANES == 3) &
(((!DATA_CTL_B0[1]) & BYTE_LANES_B0[1] &
(!DATA_CTL_B0[2]) & BYTE_LANES_B0[2] &
(!DATA_CTL_B0[3]) & BYTE_LANES_B0[3]) |
((!DATA_CTL_B1[1]) & BYTE_LANES_B1[1] &
(!DATA_CTL_B1[2]) & BYTE_LANES_B1[2] &
(!DATA_CTL_B1[3]) & BYTE_LANES_B1[3]) |
((!DATA_CTL_B2[1]) & BYTE_LANES_B2[1] &
(!DATA_CTL_B2[2]) & BYTE_LANES_B2[2] &
(!DATA_CTL_B2[3]) & BYTE_LANES_B2[3]) |
((!DATA_CTL_B3[1]) & BYTE_LANES_B3[1] &
(!DATA_CTL_B3[2]) & BYTE_LANES_B3[2] &
(!DATA_CTL_B3[3]) & BYTE_LANES_B3[3]) |
((!DATA_CTL_B4[1]) & BYTE_LANES_B4[1] &
(!DATA_CTL_B4[2]) & BYTE_LANES_B4[2] &
(!DATA_CTL_B4[3]) & BYTE_LANES_B4[3]))) ?
8'b00_11_10_01 :
((N_CTL_LANES == 2) &
(((!DATA_CTL_B0[0]) & BYTE_LANES_B0[0] &
(!DATA_CTL_B0[1]) & BYTE_LANES_B0[1]) |
((!DATA_CTL_B1[0]) & BYTE_LANES_B1[0] &
(!DATA_CTL_B1[1]) & BYTE_LANES_B1[1]) |
((!DATA_CTL_B2[0]) & BYTE_LANES_B2[0] &
(!DATA_CTL_B2[1]) & BYTE_LANES_B2[1]) |
((!DATA_CTL_B3[0]) & BYTE_LANES_B3[0] &
(!DATA_CTL_B3[1]) & BYTE_LANES_B3[1]) |
((!DATA_CTL_B4[0]) & BYTE_LANES_B4[0] &
(!DATA_CTL_B4[1]) & BYTE_LANES_B4[1]))) ?
8'b00_00_01_00 :
((N_CTL_LANES == 2) &
(((!DATA_CTL_B0[0]) & BYTE_LANES_B0[0] &
(!DATA_CTL_B0[3]) & BYTE_LANES_B0[3]) |
((!DATA_CTL_B1[0]) & BYTE_LANES_B1[0] &
(!DATA_CTL_B1[3]) & BYTE_LANES_B1[3]) |
((!DATA_CTL_B2[0]) & BYTE_LANES_B2[0] &
(!DATA_CTL_B2[3]) & BYTE_LANES_B2[3]) |
((!DATA_CTL_B3[0]) & BYTE_LANES_B3[0] &
(!DATA_CTL_B3[3]) & BYTE_LANES_B3[3]) |
((!DATA_CTL_B4[0]) & BYTE_LANES_B4[0] &
(!DATA_CTL_B4[3]) & BYTE_LANES_B4[3]))) ?
8'b00_00_11_00 :
((N_CTL_LANES == 2) &
(((!DATA_CTL_B0[2]) & BYTE_LANES_B0[2] &
(!DATA_CTL_B0[3]) & BYTE_LANES_B0[3]) |
((!DATA_CTL_B1[2]) & BYTE_LANES_B1[2] &
(!DATA_CTL_B1[3]) & BYTE_LANES_B1[3]) |
((!DATA_CTL_B2[2]) & BYTE_LANES_B2[2] &
(!DATA_CTL_B2[3]) & BYTE_LANES_B2[3]) |
((!DATA_CTL_B3[2]) & BYTE_LANES_B3[2] &
(!DATA_CTL_B3[3]) & BYTE_LANES_B3[3]) |
((!DATA_CTL_B4[2]) & BYTE_LANES_B4[2] &
(!DATA_CTL_B4[3]) & BYTE_LANES_B4[3]))) ?
8'b00_00_11_10 :
((N_CTL_LANES == 2) &
(((!DATA_CTL_B0[1]) & BYTE_LANES_B0[1] &
(!DATA_CTL_B0[2]) & BYTE_LANES_B0[2]) |
((!DATA_CTL_B1[1]) & BYTE_LANES_B1[1] &
(!DATA_CTL_B1[2]) & BYTE_LANES_B1[2]) |
((!DATA_CTL_B2[1]) & BYTE_LANES_B2[1] &
(!DATA_CTL_B2[2]) & BYTE_LANES_B2[2]) |
((!DATA_CTL_B3[1]) & BYTE_LANES_B3[1] &
(!DATA_CTL_B3[2]) & BYTE_LANES_B3[2]) |
((!DATA_CTL_B4[1]) & BYTE_LANES_B4[1] &
(!DATA_CTL_B4[2]) & BYTE_LANES_B4[2]))) ?
8'b00_00_10_01 :
((N_CTL_LANES == 2) &
(((!DATA_CTL_B0[1]) & BYTE_LANES_B0[1] &
(!DATA_CTL_B0[3]) & BYTE_LANES_B0[3]) |
((!DATA_CTL_B1[1]) & BYTE_LANES_B1[1] &
(!DATA_CTL_B1[3]) & BYTE_LANES_B1[3]) |
((!DATA_CTL_B2[1]) & BYTE_LANES_B2[1] &
(!DATA_CTL_B2[3]) & BYTE_LANES_B2[3]) |
((!DATA_CTL_B3[1]) & BYTE_LANES_B3[1] &
(!DATA_CTL_B3[3]) & BYTE_LANES_B3[3]) |
((!DATA_CTL_B4[1]) & BYTE_LANES_B4[1] &
(!DATA_CTL_B4[3]) & BYTE_LANES_B4[3]))) ?
8'b00_00_11_01 :
((N_CTL_LANES == 2) &
(((!DATA_CTL_B0[0]) & BYTE_LANES_B0[0] &
(!DATA_CTL_B0[2]) & BYTE_LANES_B0[2]) |
((!DATA_CTL_B1[0]) & BYTE_LANES_B1[0] &
(!DATA_CTL_B1[2]) & BYTE_LANES_B1[2]) |
((!DATA_CTL_B2[0]) & BYTE_LANES_B2[0] &
(!DATA_CTL_B2[2]) & BYTE_LANES_B2[2]) |
((!DATA_CTL_B3[0]) & BYTE_LANES_B3[0] &
(!DATA_CTL_B3[2]) & BYTE_LANES_B3[2]) |
((!DATA_CTL_B4[0]) & BYTE_LANES_B4[0] &
(!DATA_CTL_B4[2]) & BYTE_LANES_B4[2]))) ?
8'b00_00_10_00 : 8'b11_10_01_00;
wire [HIGHEST_LANE*80-1:0] phy_din;
wire [HIGHEST_LANE*80-1:0] phy_dout;
wire [(HIGHEST_LANE*12)-1:0] ddr_cmd_ctl_data;
wire [(((HIGHEST_LANE+3)/4)*4)-1:0] aux_out;
wire [(CK_WIDTH * LP_DDR_CK_WIDTH)-1:0] ddr_clk;
wire phy_mc_go;
wire phy_ctl_full;
wire phy_cmd_full;
wire phy_data_full;
wire phy_pre_data_a_full;
wire if_empty /* synthesis syn_maxfan = 3 */;
wire phy_write_calib;
wire phy_read_calib;
wire [HIGHEST_BANK-1:0] rst_stg1_cal;
wire [5:0] calib_sel;
wire calib_in_common /* synthesis syn_maxfan = 10 */;
wire [HIGHEST_BANK-1:0] calib_zero_inputs;
wire [HIGHEST_BANK-1:0] calib_zero_ctrl;
wire pi_phase_locked;
wire pi_phase_locked_all;
wire pi_found_dqs;
wire pi_dqs_found_all;
wire pi_dqs_out_of_range;
wire pi_enstg2_f;
wire pi_stg2_fincdec;
wire pi_stg2_load;
wire [5:0] pi_stg2_reg_l;
wire idelay_ce;
wire idelay_inc;
wire idelay_ld;
wire [2:0] po_sel_stg2stg3;
wire [2:0] po_stg2_cincdec;
wire [2:0] po_enstg2_c;
wire [2:0] po_stg2_fincdec;
wire [2:0] po_enstg2_f;
wire [8:0] po_counter_read_val;
wire [5:0] pi_counter_read_val;
wire [2*nCK_PER_CLK*DQ_WIDTH-1:0] phy_wrdata;
reg [nCK_PER_CLK-1:0] parity;
wire [nCK_PER_CLK*ROW_WIDTH-1:0] phy_address;
wire [nCK_PER_CLK*BANK_WIDTH-1:0] phy_bank;
wire [CS_WIDTH*nCS_PER_RANK*nCK_PER_CLK-1:0] phy_cs_n;
wire [nCK_PER_CLK-1:0] phy_ras_n;
wire [nCK_PER_CLK-1:0] phy_cas_n;
wire [nCK_PER_CLK-1:0] phy_we_n;
wire phy_reset_n;
wire [3:0] calib_aux_out;
wire [nCK_PER_CLK-1:0] calib_cke;
wire [1:0] calib_odt;
wire calib_ctl_wren;
wire calib_cmd_wren;
wire calib_wrdata_en;
wire [2:0] calib_cmd;
wire [1:0] calib_seq;
wire [5:0] calib_data_offset_0;
wire [5:0] calib_data_offset_1;
wire [5:0] calib_data_offset_2;
wire [1:0] calib_rank_cnt;
wire [1:0] calib_cas_slot;
wire [nCK_PER_CLK*ROW_WIDTH-1:0] mux_address;
wire [3:0] mux_aux_out;
wire [3:0] aux_out_map;
wire [nCK_PER_CLK*BANK_WIDTH-1:0] mux_bank;
wire [2:0] mux_cmd;
wire mux_cmd_wren;
wire [CS_WIDTH*nCS_PER_RANK*nCK_PER_CLK-1:0] mux_cs_n;
wire mux_ctl_wren;
wire [1:0] mux_cas_slot;
wire [5:0] mux_data_offset;
wire [5:0] mux_data_offset_1;
wire [5:0] mux_data_offset_2;
wire [nCK_PER_CLK-1:0] mux_ras_n;
wire [nCK_PER_CLK-1:0] mux_cas_n;
wire [1:0] mux_rank_cnt;
wire mux_reset_n;
wire [nCK_PER_CLK-1:0] mux_we_n;
wire [2*nCK_PER_CLK*DQ_WIDTH-1:0] mux_wrdata;
wire [2*nCK_PER_CLK*(DQ_WIDTH/8)-1:0] mux_wrdata_mask;
wire mux_wrdata_en;
wire [nCK_PER_CLK-1:0] mux_cke ;
wire [1:0] mux_odt ;
wire phy_if_empty_def;
wire phy_if_reset;
wire phy_init_data_sel;
wire [2*nCK_PER_CLK*DQ_WIDTH-1:0] rd_data_map;
wire phy_rddata_valid_w;
reg rddata_valid_reg;
reg [2*nCK_PER_CLK*DQ_WIDTH-1:0] rd_data_reg;
wire [4:0] idelaye2_init_val;
wire [5:0] oclkdelay_init_val;
wire po_counter_load_en;
wire [DQS_CNT_WIDTH:0] byte_sel_cnt;
wire [DRAM_WIDTH-1:0] fine_delay_incdec_pb;
wire fine_delay_sel;
wire pd_out;
//***************************************************************************
assign dbg_rddata_valid = rddata_valid_reg;
assign dbg_rddata = rd_data_reg;
assign dbg_rd_data_offset = calib_rd_data_offset_0;
assign dbg_pi_phaselocked_done = pi_phase_locked_all;
assign dbg_po_counter_read_val = po_counter_read_val;
assign dbg_pi_counter_read_val = pi_counter_read_val;
//***************************************************************************
genvar i;
generate
for (i = 0; i < CK_WIDTH; i = i+1) begin: clock_gen
assign ddr_ck[i] = ddr_clk[LP_DDR_CK_WIDTH * i];
assign ddr_ck_n[i] = ddr_clk[(LP_DDR_CK_WIDTH * i) + 1];
end
endgenerate
//***************************************************************************
// During memory initialization and calibration the calibration logic drives
// the memory signals. After calibration is complete the memory controller
// drives the memory signals.
// Do not expect timing issues in 4:1 mode at 800 MHz/1600 Mbps
//***************************************************************************
wire [CS_WIDTH*nCS_PER_RANK*nCK_PER_CLK-1:0] mc_cs_n_temp ;
genvar v ;
generate
if((REG_CTRL == "ON") && (DRAM_TYPE == "DDR3") && (RANKS == 1) && (nCS_PER_RANK ==2)) begin : cs_rdimm
for(v = 0 ; v < CS_WIDTH*nCS_PER_RANK*nCK_PER_CLK ; v = v+1 ) begin
if((v%(CS_WIDTH*nCS_PER_RANK)) == 0) begin
assign mc_cs_n_temp[v] = mc_cs_n[v] ;
end else begin
assign mc_cs_n_temp[v] = 'b1 ;
end
end
end else begin
assign mc_cs_n_temp = mc_cs_n ;
end
endgenerate
assign mux_wrdata = (phy_init_data_sel | init_wrcal_complete) ? mc_wrdata : phy_wrdata;
assign mux_wrdata_mask = (phy_init_data_sel | init_wrcal_complete) ? mc_wrdata_mask : 'b0;
assign mux_address = (phy_init_data_sel | init_wrcal_complete) ? mc_address : phy_address;
assign mux_bank = (phy_init_data_sel | init_wrcal_complete) ? mc_bank : phy_bank;
assign mux_cs_n = (phy_init_data_sel | init_wrcal_complete) ? mc_cs_n_temp : phy_cs_n;
assign mux_ras_n = (phy_init_data_sel | init_wrcal_complete) ? mc_ras_n : phy_ras_n;
assign mux_cas_n = (phy_init_data_sel | init_wrcal_complete) ? mc_cas_n : phy_cas_n;
assign mux_we_n = (phy_init_data_sel | init_wrcal_complete) ? mc_we_n : phy_we_n;
assign mux_reset_n = (phy_init_data_sel | init_wrcal_complete) ? mc_reset_n : phy_reset_n;
assign mux_aux_out = (phy_init_data_sel | init_wrcal_complete) ? mc_aux_out0 : calib_aux_out;
assign mux_odt = (phy_init_data_sel | init_wrcal_complete) ? mc_odt : calib_odt ;
assign mux_cke = (phy_init_data_sel | init_wrcal_complete) ? mc_cke : calib_cke ;
assign mux_cmd_wren = (phy_init_data_sel | init_wrcal_complete) ? mc_cmd_wren :
calib_cmd_wren;
assign mux_ctl_wren = (phy_init_data_sel | init_wrcal_complete) ? mc_ctl_wren :
calib_ctl_wren;
assign mux_wrdata_en = (phy_init_data_sel | init_wrcal_complete) ? mc_wrdata_en :
calib_wrdata_en;
assign mux_cmd = (phy_init_data_sel | init_wrcal_complete) ? mc_cmd : calib_cmd;
assign mux_cas_slot = (phy_init_data_sel | init_wrcal_complete) ? mc_cas_slot : calib_cas_slot;
assign mux_data_offset = (phy_init_data_sel | init_wrcal_complete) ? mc_data_offset :
calib_data_offset_0;
assign mux_data_offset_1 = (phy_init_data_sel | init_wrcal_complete) ? mc_data_offset_1 :
calib_data_offset_1;
assign mux_data_offset_2 = (phy_init_data_sel | init_wrcal_complete) ? mc_data_offset_2 :
calib_data_offset_2;
// Reserved field. Hard coded to 2'b00 irrespective of the number of ranks. CR 643601
assign mux_rank_cnt = 2'b00;
// Assigning cke & odt for DDR2 & DDR3
// No changes for DDR3 & DDR2 dual rank
// DDR2 single rank systems might potentially need 3 odt signals.
// Aux_out[2] will have the odt toggled by phy and controller
// wiring aux_out[2] to 0 & 3. Depending upon the odt parameter
// all of the three odt bits or some of them might be used.
// mapping done in mc_phy_wrapper module
generate
if(CKE_ODT_AUX == "TRUE") begin
assign aux_out_map = ((DRAM_TYPE == "DDR2") && (RANKS == 1)) ?
{mux_aux_out[1],mux_aux_out[1],mux_aux_out[1],mux_aux_out[0]} :
mux_aux_out;
end else begin
assign aux_out_map = 4'b0000 ;
end
endgenerate
assign init_calib_complete = phy_init_data_sel;
assign phy_mc_ctl_full = phy_ctl_full;
assign phy_mc_cmd_full = phy_cmd_full;
assign phy_mc_data_full = phy_pre_data_a_full;
//***************************************************************************
// Generate parity for DDR3 RDIMM.
//***************************************************************************
generate
if ((DRAM_TYPE == "DDR3") && (REG_CTRL == "ON")) begin: gen_ddr3_parity
if (nCK_PER_CLK == 4) begin
always @(posedge clk) begin
parity[0] <= #TCQ (^{mux_address[(ROW_WIDTH*4)-1:ROW_WIDTH*3],
mux_bank[(BANK_WIDTH*4)-1:BANK_WIDTH*3],
mux_cas_n[3], mux_ras_n[3], mux_we_n[3]});
end
always @(*) begin
parity[1] = (^{mux_address[ROW_WIDTH-1:0], mux_bank[BANK_WIDTH-1:0],
mux_cas_n[0],mux_ras_n[0], mux_we_n[0]});
parity[2] = (^{mux_address[(ROW_WIDTH*2)-1:ROW_WIDTH],
mux_bank[(BANK_WIDTH*2)-1:BANK_WIDTH],
mux_cas_n[1], mux_ras_n[1], mux_we_n[1]});
parity[3] = (^{mux_address[(ROW_WIDTH*3)-1:ROW_WIDTH*2],
mux_bank[(BANK_WIDTH*3)-1:BANK_WIDTH*2],
mux_cas_n[2],mux_ras_n[2], mux_we_n[2]});
end
end else begin
always @(posedge clk) begin
parity[0] <= #TCQ(^{mux_address[(ROW_WIDTH*2)-1:ROW_WIDTH],
mux_bank[(BANK_WIDTH*2)-1:BANK_WIDTH],
mux_cas_n[1], mux_ras_n[1], mux_we_n[1]});
end
always @(*) begin
parity[1] = (^{mux_address[ROW_WIDTH-1:0],
mux_bank[BANK_WIDTH-1:0],
mux_cas_n[0], mux_ras_n[0], mux_we_n[0]});
end
end
end else begin: gen_ddr3_noparity
if (nCK_PER_CLK == 4) begin
always @(posedge clk) begin
parity[0] <= #TCQ 1'b0;
parity[1] <= #TCQ 1'b0;
parity[2] <= #TCQ 1'b0;
parity[3] <= #TCQ 1'b0;
end
end else begin
always @(posedge clk) begin
parity[0] <= #TCQ 1'b0;
parity[1] <= #TCQ 1'b0;
end
end
end
endgenerate
//***************************************************************************
// Code for optional register stage in read path to MC for timing
//***************************************************************************
generate
if(RD_PATH_REG == 1)begin:RD_REG_TIMING
always @(posedge clk)begin
rddata_valid_reg <= #TCQ phy_rddata_valid_w;
rd_data_reg <= #TCQ rd_data_map;
end // always @ (posedge clk)
end else begin : RD_REG_NO_TIMING // block: RD_REG_TIMING
always @(phy_rddata_valid_w or rd_data_map)begin
rddata_valid_reg = phy_rddata_valid_w;
rd_data_reg = rd_data_map;
end
end
endgenerate
assign phy_rddata_valid = rddata_valid_reg;
assign phy_rd_data = rd_data_reg;
//***************************************************************************
// Hard PHY and accompanying bit mapping logic
//***************************************************************************
mig_7series_v2_3_ddr_mc_phy_wrapper #
(
.TCQ (TCQ),
.tCK (tCK),
.BANK_TYPE (BANK_TYPE),
.DATA_IO_PRIM_TYPE (DATA_IO_PRIM_TYPE),
.DATA_IO_IDLE_PWRDWN(DATA_IO_IDLE_PWRDWN),
.IODELAY_GRP (IODELAY_GRP),
.FPGA_SPEED_GRADE (FPGA_SPEED_GRADE),
.nCK_PER_CLK (nCK_PER_CLK),
.nCS_PER_RANK (nCS_PER_RANK),
.BANK_WIDTH (BANK_WIDTH),
.CKE_WIDTH (CKE_WIDTH),
.CS_WIDTH (CS_WIDTH),
.CK_WIDTH (CK_WIDTH),
.LP_DDR_CK_WIDTH (LP_DDR_CK_WIDTH),
.DDR2_DQSN_ENABLE (DDR2_DQSN_ENABLE),
.CWL (CWL),
.DM_WIDTH (DM_WIDTH),
.DQ_WIDTH (DQ_WIDTH),
.DQS_CNT_WIDTH (DQS_CNT_WIDTH),
.DQS_WIDTH (DQS_WIDTH),
.DRAM_TYPE (DRAM_TYPE),
.RANKS (RANKS),
.ODT_WIDTH (ODT_WIDTH),
.REG_CTRL (REG_CTRL),
.ROW_WIDTH (ROW_WIDTH),
.USE_CS_PORT (USE_CS_PORT),
.USE_DM_PORT (USE_DM_PORT),
.USE_ODT_PORT (USE_ODT_PORT),
.IBUF_LPWR_MODE (IBUF_LPWR_MODE),
.PHYCTL_CMD_FIFO (PHYCTL_CMD_FIFO),
.DATA_CTL_B0 (DATA_CTL_B0),
.DATA_CTL_B1 (DATA_CTL_B1),
.DATA_CTL_B2 (DATA_CTL_B2),
.DATA_CTL_B3 (DATA_CTL_B3),
.DATA_CTL_B4 (DATA_CTL_B4),
.BYTE_LANES_B0 (BYTE_LANES_B0),
.BYTE_LANES_B1 (BYTE_LANES_B1),
.BYTE_LANES_B2 (BYTE_LANES_B2),
.BYTE_LANES_B3 (BYTE_LANES_B3),
.BYTE_LANES_B4 (BYTE_LANES_B4),
.PHY_0_BITLANES (PHY_0_BITLANES),
.PHY_1_BITLANES (PHY_1_BITLANES),
.PHY_2_BITLANES (PHY_2_BITLANES),
.HIGHEST_BANK (HIGHEST_BANK),
.HIGHEST_LANE (HIGHEST_LANE),
.CK_BYTE_MAP (CK_BYTE_MAP),
.ADDR_MAP (ADDR_MAP),
.BANK_MAP (BANK_MAP),
.CAS_MAP (CAS_MAP),
.CKE_ODT_BYTE_MAP (CKE_ODT_BYTE_MAP),
.CKE_MAP (CKE_MAP),
.ODT_MAP (ODT_MAP),
.CKE_ODT_AUX (CKE_ODT_AUX),
.CS_MAP (CS_MAP),
.PARITY_MAP (PARITY_MAP),
.RAS_MAP (RAS_MAP),
.WE_MAP (WE_MAP),
.DQS_BYTE_MAP (DQS_BYTE_MAP),
.DATA0_MAP (DATA0_MAP),
.DATA1_MAP (DATA1_MAP),
.DATA2_MAP (DATA2_MAP),
.DATA3_MAP (DATA3_MAP),
.DATA4_MAP (DATA4_MAP),
.DATA5_MAP (DATA5_MAP),
.DATA6_MAP (DATA6_MAP),
.DATA7_MAP (DATA7_MAP),
.DATA8_MAP (DATA8_MAP),
.DATA9_MAP (DATA9_MAP),
.DATA10_MAP (DATA10_MAP),
.DATA11_MAP (DATA11_MAP),
.DATA12_MAP (DATA12_MAP),
.DATA13_MAP (DATA13_MAP),
.DATA14_MAP (DATA14_MAP),
.DATA15_MAP (DATA15_MAP),
.DATA16_MAP (DATA16_MAP),
.DATA17_MAP (DATA17_MAP),
.MASK0_MAP (MASK0_MAP),
.MASK1_MAP (MASK1_MAP),
.SIM_CAL_OPTION (SIM_CAL_OPTION),
.MASTER_PHY_CTL (MASTER_PHY_CTL),
.DRAM_WIDTH (DRAM_WIDTH),
.POC_USE_METASTABLE_SAMP (POC_USE_METASTABLE_SAMP)
)
u_ddr_mc_phy_wrapper
(
.rst (rst),
.iddr_rst (iddr_rst),
.clk (clk),
// For memory frequencies between 400~1066 MHz freq_refclk = mem_refclk
// For memory frequencies below 400 MHz mem_refclk = mem_refclk and
// freq_refclk = 2x or 4x mem_refclk such that it remains in the
// 400~1066 MHz range
.freq_refclk (freq_refclk),
.mem_refclk (mem_refclk),
.mmcm_ps_clk (mmcm_ps_clk),
.pll_lock (pll_lock),
.sync_pulse (sync_pulse),
.idelayctrl_refclk (clk_ref),
.phy_cmd_wr_en (mux_cmd_wren),
.phy_data_wr_en (mux_wrdata_en),
// phy_ctl_wd = {ACTPRE[31:30],EventDelay[29:25],seq[24:23],
// DataOffset[22:17],HiIndex[16:15],LowIndex[14:12],
// AuxOut[11:8],ControlOffset[7:3],PHYCmd[2:0]}
// The fields ACTPRE, and BankCount are only used
// when the hard PHY counters are used by the MC.
.phy_ctl_wd ({5'd0, mux_cas_slot, calib_seq, mux_data_offset,
mux_rank_cnt, 3'd0, aux_out_map,
5'd0, mux_cmd}),
.phy_ctl_wr (mux_ctl_wren),
.phy_if_empty_def (phy_if_empty_def),
.phy_if_reset (phy_if_reset),
.data_offset_1 (mux_data_offset_1),
.data_offset_2 (mux_data_offset_2),
.aux_in_1 (aux_out_map),
.aux_in_2 (aux_out_map),
.idelaye2_init_val (idelaye2_init_val),
.oclkdelay_init_val (oclkdelay_init_val),
.if_empty (if_empty),
.phy_ctl_full (phy_ctl_full),
.phy_cmd_full (phy_cmd_full),
.phy_data_full (phy_data_full),
.phy_pre_data_a_full (phy_pre_data_a_full),
.ddr_clk (ddr_clk),
.phy_mc_go (phy_mc_go),
.phy_write_calib (phy_write_calib),
.phy_read_calib (phy_read_calib),
.po_fine_enable (po_enstg2_f),
.po_coarse_enable (po_enstg2_c),
.po_fine_inc (po_stg2_fincdec),
.po_coarse_inc (po_stg2_cincdec),
.po_counter_load_en (po_counter_load_en),
.po_counter_read_en (1'b1),
.po_sel_fine_oclk_delay (po_sel_stg2stg3),
.po_counter_load_val (),
.po_counter_read_val (po_counter_read_val),
.pi_rst_dqs_find (rst_stg1_cal),
.pi_fine_enable (pi_enstg2_f),
.pi_fine_inc (pi_stg2_fincdec),
.pi_counter_load_en (pi_stg2_load),
.pi_counter_load_val (pi_stg2_reg_l),
.pi_counter_read_val (pi_counter_read_val),
.idelay_ce (idelay_ce),
.idelay_inc (idelay_inc),
.idelay_ld (idelay_ld),
.pi_phase_locked (pi_phase_locked),
.pi_phase_locked_all (pi_phase_locked_all),
.pi_dqs_found (pi_found_dqs),
.pi_dqs_found_all (pi_dqs_found_all),
// Currently not being used. May be used in future if periodic reads
// become a requirement. This output could also be used to signal a
// catastrophic failure in read capture and the need for re-cal
.pi_dqs_out_of_range (pi_dqs_out_of_range),
.phy_init_data_sel (phy_init_data_sel),
.calib_sel (calib_sel),
.calib_in_common (calib_in_common),
.calib_zero_inputs (calib_zero_inputs),
.calib_zero_ctrl (calib_zero_ctrl),
.mux_address (mux_address),
.mux_bank (mux_bank),
.mux_cs_n (mux_cs_n),
.mux_ras_n (mux_ras_n),
.mux_cas_n (mux_cas_n),
.mux_we_n (mux_we_n),
.mux_reset_n (mux_reset_n),
.parity_in (parity),
.mux_wrdata (mux_wrdata),
.mux_wrdata_mask (mux_wrdata_mask),
.mux_odt (mux_odt),
.mux_cke (mux_cke),
.idle (idle),
.rd_data (rd_data_map),
.ddr_addr (ddr_addr),
.ddr_ba (ddr_ba),
.ddr_cas_n (ddr_cas_n),
.ddr_cke (ddr_cke),
.ddr_cs_n (ddr_cs_n),
.ddr_dm (ddr_dm),
.ddr_odt (ddr_odt),
.ddr_parity (ddr_parity),
.ddr_ras_n (ddr_ras_n),
.ddr_we_n (ddr_we_n),
.ddr_dq (ddr_dq),
.ddr_dqs (ddr_dqs),
.ddr_dqs_n (ddr_dqs_n),
.ddr_reset_n (ddr_reset_n),
.dbg_pi_counter_read_en (1'b1),
.ref_dll_lock (ref_dll_lock),
.rst_phaser_ref (rst_phaser_ref),
.dbg_pi_phase_locked_phy4lanes (dbg_pi_phase_locked_phy4lanes),
.dbg_pi_dqs_found_lanes_phy4lanes (dbg_pi_dqs_found_lanes_phy4lanes),
.byte_sel_cnt (byte_sel_cnt),
.pd_out (pd_out),
.fine_delay_incdec_pb (fine_delay_incdec_pb),
.fine_delay_sel (fine_delay_sel)
);
//***************************************************************************
// Soft memory initialization and calibration logic
//***************************************************************************
mig_7series_v2_3_ddr_calib_top #
(
.TCQ (TCQ),
.DDR3_VDD_OP_VOLT (DDR3_VDD_OP_VOLT),
.nCK_PER_CLK (nCK_PER_CLK),
.PRE_REV3ES (PRE_REV3ES),
.tCK (tCK),
.CLK_PERIOD (CLK_PERIOD),
.N_CTL_LANES (N_CTL_LANES),
.CTL_BYTE_LANE (CTL_BYTE_LANE),
.CTL_BANK (CTL_BANK),
.DRAM_TYPE (DRAM_TYPE),
.PRBS_WIDTH (8),
.DQS_BYTE_MAP (DQS_BYTE_MAP),
.HIGHEST_BANK (HIGHEST_BANK),
.BANK_TYPE (BANK_TYPE),
.HIGHEST_LANE (HIGHEST_LANE),
.BYTE_LANES_B0 (BYTE_LANES_B0),
.BYTE_LANES_B1 (BYTE_LANES_B1),
.BYTE_LANES_B2 (BYTE_LANES_B2),
.BYTE_LANES_B3 (BYTE_LANES_B3),
.BYTE_LANES_B4 (BYTE_LANES_B4),
.DATA_CTL_B0 (DATA_CTL_B0),
.DATA_CTL_B1 (DATA_CTL_B1),
.DATA_CTL_B2 (DATA_CTL_B2),
.DATA_CTL_B3 (DATA_CTL_B3),
.DATA_CTL_B4 (DATA_CTL_B4),
.SLOT_1_CONFIG (SLOT_1_CONFIG),
.BANK_WIDTH (BANK_WIDTH),
.CA_MIRROR (CA_MIRROR),
.COL_WIDTH (COL_WIDTH),
.CKE_ODT_AUX (CKE_ODT_AUX),
.nCS_PER_RANK (nCS_PER_RANK),
.DQ_WIDTH (DQ_WIDTH),
.DQS_CNT_WIDTH (DQS_CNT_WIDTH),
.DQS_WIDTH (DQS_WIDTH),
.DRAM_WIDTH (DRAM_WIDTH),
.ROW_WIDTH (ROW_WIDTH),
.RANKS (RANKS),
.CS_WIDTH (CS_WIDTH),
.CKE_WIDTH (CKE_WIDTH),
.DDR2_DQSN_ENABLE (DDR2_DQSN_ENABLE),
.PER_BIT_DESKEW ("OFF"),
.CALIB_ROW_ADD (CALIB_ROW_ADD),
.CALIB_COL_ADD (CALIB_COL_ADD),
.CALIB_BA_ADD (CALIB_BA_ADD),
.AL (AL),
.BURST_MODE (BURST_MODE),
.BURST_TYPE (BURST_TYPE),
.nCL (CL),
.nCWL (CWL),
.tRFC (tRFC),
.tREFI (tREFI),
.OUTPUT_DRV (OUTPUT_DRV),
.REG_CTRL (REG_CTRL),
.ADDR_CMD_MODE (ADDR_CMD_MODE),
.RTT_NOM (RTT_NOM),
.RTT_WR (RTT_WR),
.WRLVL (WRLVL_W),
.USE_ODT_PORT (USE_ODT_PORT),
.SIM_INIT_OPTION (SIM_INIT_OPTION),
.SIM_CAL_OPTION (SIM_CAL_OPTION),
.DEBUG_PORT (DEBUG_PORT),
.IDELAY_ADJ (IDELAY_ADJ),
.FINE_PER_BIT (FINE_PER_BIT),
.CENTER_COMP_MODE (CENTER_COMP_MODE),
.PI_VAL_ADJ (PI_VAL_ADJ),
.TAPSPERKCLK (TAPSPERKCLK),
.POC_USE_METASTABLE_SAMP (POC_USE_METASTABLE_SAMP)
)
u_ddr_calib_top
(
.clk (clk),
.rst (rst),
.tg_err (error),
.rst_tg_mc (rst_tg_mc),
.slot_0_present (slot_0_present),
.slot_1_present (slot_1_present),
// PHY Control Block and IN_FIFO status
.phy_ctl_ready (phy_mc_go),
.phy_ctl_full (1'b0),
.phy_cmd_full (1'b0),
.phy_data_full (1'b0),
.phy_if_empty (if_empty),
.idelaye2_init_val (idelaye2_init_val),
.oclkdelay_init_val (oclkdelay_init_val),
// From calib logic To data IN_FIFO
// DQ IDELAY tap value from Calib logic
// port to be added to mc_phy by Gary
.dlyval_dq (),
// hard PHY calibration modes
.write_calib (phy_write_calib),
.read_calib (phy_read_calib),
// DQS count and ck/addr/cmd to be mapped to calib_sel
// based on parameter that defines placement of ctl lanes
// and DQS byte groups in each bank. When phy_write_calib
// is de-asserted calib_sel should select CK/addr/cmd/ctl.
.calib_sel (calib_sel),
.calib_in_common (calib_in_common),
.calib_zero_inputs (calib_zero_inputs),
.calib_zero_ctrl (calib_zero_ctrl),
.phy_if_empty_def (phy_if_empty_def),
.phy_if_reset (phy_if_reset),
// Signals from calib logic to be MUXED with MC
// signals before sending to hard PHY
.calib_ctl_wren (calib_ctl_wren),
.calib_cmd_wren (calib_cmd_wren),
.calib_seq (calib_seq),
.calib_aux_out (calib_aux_out),
.calib_odt (calib_odt),
.calib_cke (calib_cke),
.calib_cmd (calib_cmd),
.calib_wrdata_en (calib_wrdata_en),
.calib_rank_cnt (calib_rank_cnt),
.calib_cas_slot (calib_cas_slot),
.calib_data_offset_0 (calib_data_offset_0),
.calib_data_offset_1 (calib_data_offset_1),
.calib_data_offset_2 (calib_data_offset_2),
.phy_reset_n (phy_reset_n),
.phy_address (phy_address),
.phy_bank (phy_bank),
.phy_cs_n (phy_cs_n),
.phy_ras_n (phy_ras_n),
.phy_cas_n (phy_cas_n),
.phy_we_n (phy_we_n),
.phy_wrdata (phy_wrdata),
// DQS Phaser_IN calibration/status signals
.pi_phaselocked (pi_phase_locked),
.pi_phase_locked_all (pi_phase_locked_all),
.pi_found_dqs (pi_found_dqs),
.pi_dqs_found_all (pi_dqs_found_all),
.pi_dqs_found_lanes (dbg_pi_dqs_found_lanes_phy4lanes),
.pi_rst_stg1_cal (rst_stg1_cal),
.pi_en_stg2_f (pi_enstg2_f),
.pi_stg2_f_incdec (pi_stg2_fincdec),
.pi_stg2_load (pi_stg2_load),
.pi_stg2_reg_l (pi_stg2_reg_l),
.pi_counter_read_val (pi_counter_read_val),
.device_temp (device_temp),
.tempmon_sample_en (tempmon_sample_en),
// IDELAY tap enable and inc signals
.idelay_ce (idelay_ce),
.idelay_inc (idelay_inc),
.idelay_ld (idelay_ld),
// DQS Phaser_OUT calibration/status signals
.po_sel_stg2stg3 (po_sel_stg2stg3),
.po_stg2_c_incdec (po_stg2_cincdec),
.po_en_stg2_c (po_enstg2_c),
.po_stg2_f_incdec (po_stg2_fincdec),
.po_en_stg2_f (po_enstg2_f),
.po_counter_load_en (po_counter_load_en),
.po_counter_read_val (po_counter_read_val),
// From data IN_FIFO To Calib logic and MC/UI
.phy_rddata (rd_data_map),
// From calib logic To MC
.phy_rddata_valid (phy_rddata_valid_w),
.calib_rd_data_offset_0 (calib_rd_data_offset_0),
.calib_rd_data_offset_1 (calib_rd_data_offset_1),
.calib_rd_data_offset_2 (calib_rd_data_offset_2),
.calib_writes (),
// Mem Init and Calibration status To MC
.init_calib_complete (phy_init_data_sel),
.init_wrcal_complete (init_wrcal_complete),
// Debug Error signals
.pi_phase_locked_err (dbg_pi_phaselock_err),
.pi_dqsfound_err (dbg_pi_dqsfound_err),
.wrcal_err (dbg_wrcal_err),
//used for oclk stg3 centering
.pd_out (pd_out),
.psen (psen),
.psincdec (psincdec),
.psdone (psdone),
.poc_sample_pd (poc_sample_pd),
// Debug Signals
.dbg_pi_phaselock_start (dbg_pi_phaselock_start),
.dbg_pi_dqsfound_start (dbg_pi_dqsfound_start),
.dbg_pi_dqsfound_done (dbg_pi_dqsfound_done),
.dbg_wrlvl_start (dbg_wrlvl_start),
.dbg_wrlvl_done (dbg_wrlvl_done),
.dbg_wrlvl_err (dbg_wrlvl_err),
.dbg_wrlvl_fine_tap_cnt (dbg_wrlvl_fine_tap_cnt),
.dbg_wrlvl_coarse_tap_cnt (dbg_wrlvl_coarse_tap_cnt),
.dbg_phy_wrlvl (dbg_phy_wrlvl),
.dbg_tap_cnt_during_wrlvl (dbg_tap_cnt_during_wrlvl),
.dbg_wl_edge_detect_valid (dbg_wl_edge_detect_valid),
.dbg_rd_data_edge_detect (dbg_rd_data_edge_detect),
.dbg_wrcal_start (dbg_wrcal_start),
.dbg_wrcal_done (dbg_wrcal_done),
.dbg_phy_wrcal (dbg_phy_wrcal),
.dbg_final_po_fine_tap_cnt (dbg_final_po_fine_tap_cnt),
.dbg_final_po_coarse_tap_cnt (dbg_final_po_coarse_tap_cnt),
.dbg_rdlvl_start (dbg_rdlvl_start),
.dbg_rdlvl_done (dbg_rdlvl_done),
.dbg_rdlvl_err (dbg_rdlvl_err),
.dbg_cpt_first_edge_cnt (dbg_cpt_first_edge_cnt),
.dbg_cpt_second_edge_cnt (dbg_cpt_second_edge_cnt),
.dbg_cpt_tap_cnt (dbg_cpt_tap_cnt),
.dbg_dq_idelay_tap_cnt (dbg_dq_idelay_tap_cnt),
.dbg_sel_pi_incdec (dbg_sel_pi_incdec),
.dbg_sel_po_incdec (dbg_sel_po_incdec),
.dbg_byte_sel (dbg_byte_sel),
.dbg_pi_f_inc (dbg_pi_f_inc),
.dbg_pi_f_dec (dbg_pi_f_dec),
.dbg_po_f_inc (dbg_po_f_inc),
.dbg_po_f_stg23_sel (dbg_po_f_stg23_sel),
.dbg_po_f_dec (dbg_po_f_dec),
.dbg_idel_up_all (dbg_idel_up_all),
.dbg_idel_down_all (dbg_idel_down_all),
.dbg_idel_up_cpt (dbg_idel_up_cpt),
.dbg_idel_down_cpt (dbg_idel_down_cpt),
.dbg_sel_idel_cpt (dbg_sel_idel_cpt),
.dbg_sel_all_idel_cpt (dbg_sel_all_idel_cpt),
.dbg_phy_rdlvl (dbg_phy_rdlvl),
.dbg_calib_top (dbg_calib_top),
.dbg_phy_init (dbg_phy_init),
.dbg_prbs_rdlvl (dbg_prbs_rdlvl),
.dbg_dqs_found_cal (dbg_dqs_found_cal),
.dbg_phy_oclkdelay_cal (dbg_phy_oclkdelay_cal),
.dbg_oclkdelay_rd_data (dbg_oclkdelay_rd_data),
.dbg_oclkdelay_calib_start (dbg_oclkdelay_calib_start),
.dbg_oclkdelay_calib_done (dbg_oclkdelay_calib_done),
.prbs_final_dqs_tap_cnt_r (prbs_final_dqs_tap_cnt_r),
.dbg_prbs_first_edge_taps (dbg_prbs_first_edge_taps),
.dbg_prbs_second_edge_taps (dbg_prbs_second_edge_taps),
.byte_sel_cnt (byte_sel_cnt),
.fine_delay_incdec_pb (fine_delay_incdec_pb),
.fine_delay_sel (fine_delay_sel)
);
endmodule
|
//*****************************************************************************
// (c) Copyright 2008 - 2014 Xilinx, Inc. All rights reserved.
//
// This file contains confidential and proprietary information
// of Xilinx, Inc. and is protected under U.S. and
// international copyright and other intellectual property
// laws.
//
// DISCLAIMER
// This disclaimer is not a license and does not grant any
// rights to the materials distributed herewith. Except as
// otherwise provided in a valid license issued to you by
// Xilinx, and to the maximum extent permitted by applicable
// law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// (2) Xilinx shall not be liable (whether in contract or tort,
// including negligence, or under any other theory of
// liability) for any loss or damage of any kind or nature
// related to, arising under or in connection with these
// materials, including for any direct, or any indirect,
// special, incidental, or consequential loss or damage
// (including loss of data, profits, goodwill, or any type of
// loss or damage suffered as a result of any action brought
// by a third party) even if such damage or loss was
// reasonably foreseeable or Xilinx had been advised of the
// possibility of the same.
//
// CRITICAL APPLICATIONS
// Xilinx products are not designed or intended to be fail-
// safe, or for use in any application requiring fail-safe
// performance, such as life-support or safety devices or
// systems, Class III medical devices, nuclear facilities,
// applications related to the deployment of airbags, or any
// other applications that could lead to death, personal
// injury, or severe property or environmental damage
// (individually and collectively, "Critical
// Applications"). Customer assumes the sole risk and
// liability of any use of Xilinx products in Critical
// Applications, subject only to applicable laws and
// regulations governing limitations on product liability.
//
// THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// PART OF THIS FILE AT ALL TIMES.
//
//*****************************************************************************
// ____ ____
// / /\/ /
// /___/ \ / Vendor : Xilinx
// \ \ \/ Version : 2.3
// \ \ Application : MIG
// / / Filename : ddr_phy_top.v
// /___/ /\ Date Last Modified : $date$
// \ \ / \ Date Created : Aug 03 2009
// \___\/\___\
//
//Device : 7 Series
//Design Name : DDR3 SDRAM
//Purpose : Top level memory interface block. Instantiates a clock
// and reset generator, the memory controller, the phy and
// the user interface blocks.
//Reference :
//Revision History :
//*****************************************************************************
`timescale 1 ps / 1 ps
module mig_7series_v2_3_ddr_phy_top #
(
parameter TCQ = 100, // Register delay (simulation only)
parameter DDR3_VDD_OP_VOLT = 135, // Voltage mode used for DDR3
parameter AL = "0", // Additive Latency option
parameter BANK_WIDTH = 3, // # of bank bits
parameter BURST_MODE = "8", // Burst length
parameter BURST_TYPE = "SEQ", // Burst type
parameter CA_MIRROR = "OFF", // C/A mirror opt for DDR3 dual rank
parameter CK_WIDTH = 1, // # of CK/CK# outputs to memory
parameter CL = 5,
parameter COL_WIDTH = 12, // column address width
parameter CS_WIDTH = 1, // # of unique CS outputs
parameter CKE_WIDTH = 1, // # of cke outputs
parameter CWL = 5,
parameter DM_WIDTH = 8, // # of DM (data mask)
parameter DQ_WIDTH = 64, // # of DQ (data)
parameter DQS_CNT_WIDTH = 3, // = ceil(log2(DQS_WIDTH))
parameter DQS_WIDTH = 8, // # of DQS (strobe)
parameter DRAM_TYPE = "DDR3",
parameter DRAM_WIDTH = 8, // # of DQ per DQS
parameter MASTER_PHY_CTL = 0, // The bank number where master PHY_CONTROL resides
parameter LP_DDR_CK_WIDTH = 2,
// Hard PHY parameters
parameter PHYCTL_CMD_FIFO = "FALSE",
// five fields, one per possible I/O bank, 4 bits in each field,
// 1 per lane data=1/ctl=0
parameter DATA_CTL_B0 = 4'hc,
parameter DATA_CTL_B1 = 4'hf,
parameter DATA_CTL_B2 = 4'hf,
parameter DATA_CTL_B3 = 4'hf,
parameter DATA_CTL_B4 = 4'hf,
// defines the byte lanes in I/O banks being used in the interface
// 1- Used, 0- Unused
parameter BYTE_LANES_B0 = 4'b1111,
parameter BYTE_LANES_B1 = 4'b0000,
parameter BYTE_LANES_B2 = 4'b0000,
parameter BYTE_LANES_B3 = 4'b0000,
parameter BYTE_LANES_B4 = 4'b0000,
// defines the bit lanes in I/O banks being used in the interface. Each
// parameter = 1 I/O bank = 4 byte lanes = 48 bit lanes. 1-Used, 0-Unused
parameter PHY_0_BITLANES = 48'h0000_0000_0000,
parameter PHY_1_BITLANES = 48'h0000_0000_0000,
parameter PHY_2_BITLANES = 48'h0000_0000_0000,
// control/address/data pin mapping parameters
parameter CK_BYTE_MAP
= 144'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00,
parameter ADDR_MAP
= 192'h000_000_000_000_000_000_000_000_000_000_000_000_000_000_000_000,
parameter BANK_MAP = 36'h000_000_000,
parameter CAS_MAP = 12'h000,
parameter CKE_ODT_BYTE_MAP = 8'h00,
parameter CKE_MAP = 96'h000_000_000_000_000_000_000_000,
parameter ODT_MAP = 96'h000_000_000_000_000_000_000_000,
parameter CKE_ODT_AUX = "FALSE",
parameter CS_MAP = 120'h000_000_000_000_000_000_000_000_000_000,
parameter PARITY_MAP = 12'h000,
parameter RAS_MAP = 12'h000,
parameter WE_MAP = 12'h000,
parameter DQS_BYTE_MAP
= 144'h00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00,
parameter DATA0_MAP = 96'h000_000_000_000_000_000_000_000,
parameter DATA1_MAP = 96'h000_000_000_000_000_000_000_000,
parameter DATA2_MAP = 96'h000_000_000_000_000_000_000_000,
parameter DATA3_MAP = 96'h000_000_000_000_000_000_000_000,
parameter DATA4_MAP = 96'h000_000_000_000_000_000_000_000,
parameter DATA5_MAP = 96'h000_000_000_000_000_000_000_000,
parameter DATA6_MAP = 96'h000_000_000_000_000_000_000_000,
parameter DATA7_MAP = 96'h000_000_000_000_000_000_000_000,
parameter DATA8_MAP = 96'h000_000_000_000_000_000_000_000,
parameter DATA9_MAP = 96'h000_000_000_000_000_000_000_000,
parameter DATA10_MAP = 96'h000_000_000_000_000_000_000_000,
parameter DATA11_MAP = 96'h000_000_000_000_000_000_000_000,
parameter DATA12_MAP = 96'h000_000_000_000_000_000_000_000,
parameter DATA13_MAP = 96'h000_000_000_000_000_000_000_000,
parameter DATA14_MAP = 96'h000_000_000_000_000_000_000_000,
parameter DATA15_MAP = 96'h000_000_000_000_000_000_000_000,
parameter DATA16_MAP = 96'h000_000_000_000_000_000_000_000,
parameter DATA17_MAP = 96'h000_000_000_000_000_000_000_000,
parameter MASK0_MAP = 108'h000_000_000_000_000_000_000_000_000,
parameter MASK1_MAP = 108'h000_000_000_000_000_000_000_000_000,
// This parameter must be set based on memory clock frequency
// It must be set to 4 for frequencies above 533 MHz?? (undecided)
// and set to 2 for 533 MHz and below
parameter PRE_REV3ES = "OFF", // Delay O/Ps using Phaser_Out fine dly
parameter nCK_PER_CLK = 2, // # of memory CKs per fabric CLK
parameter nCS_PER_RANK = 1, // # of unique CS outputs per rank
parameter ADDR_CMD_MODE = "1T", // ADDR/CTRL timing: "2T", "1T"
parameter BANK_TYPE = "HP_IO", // # = "HP_IO", "HPL_IO", "HR_IO", "HRL_IO"
parameter DATA_IO_PRIM_TYPE = "DEFAULT", // # = "HP_LP", "HR_LP", "DEFAULT"
parameter DATA_IO_IDLE_PWRDWN = "ON", // "ON" or "OFF"
parameter IODELAY_GRP = "IODELAY_MIG",
parameter FPGA_SPEED_GRADE = 1,
parameter IBUF_LPWR_MODE = "OFF", // input buffer low power option
parameter OUTPUT_DRV = "HIGH", // to calib_top
parameter REG_CTRL = "OFF", // to calib_top
parameter RTT_NOM = "60", // to calib_top
parameter RTT_WR = "120", // to calib_top
parameter tCK = 2500, // pS
parameter tRFC = 110000, // pS
parameter tREFI = 7800000, // pS
parameter DDR2_DQSN_ENABLE = "YES", // Enable differential DQS for DDR2
parameter WRLVL = "OFF", // to calib_top
parameter DEBUG_PORT = "OFF", // to calib_top
parameter RANKS = 4,
parameter ODT_WIDTH = 1,
parameter ROW_WIDTH = 16, // DRAM address bus width
parameter [7:0] SLOT_1_CONFIG = 8'b0000_0000,
// calibration Address. The address given below will be used for calibration
// read and write operations.
parameter CALIB_ROW_ADD = 16'h0000,// Calibration row address
parameter CALIB_COL_ADD = 12'h000, // Calibration column address
parameter CALIB_BA_ADD = 3'h0, // Calibration bank address
// Simulation /debug options
parameter SIM_BYPASS_INIT_CAL = "OFF",
// Parameter used to force skipping
// or abbreviation of initialization
// and calibration. Overrides
// SIM_INIT_OPTION, SIM_CAL_OPTION,
// and disables various other blocks
//parameter SIM_INIT_OPTION = "SKIP_PU_DLY", // Skip various init steps
//parameter SIM_CAL_OPTION = "NONE", // Skip various calib steps
parameter REFCLK_FREQ = 200.0, // IODELAY ref clock freq (MHz)
parameter USE_CS_PORT = 1, // Support chip select output
parameter USE_DM_PORT = 1, // Support data mask output
parameter USE_ODT_PORT = 1, // Support ODT output
parameter RD_PATH_REG = 0, // optional registers in the read path
// to MC for timing improvement.
// =1 enabled, = 0 disabled
parameter IDELAY_ADJ = "ON", //ON : IDELAY-1, OFF: No change
parameter FINE_PER_BIT = "ON", //ON : Use per bit calib for complex rdlvl
parameter CENTER_COMP_MODE = "ON", //ON: use PI stg2 tap compensation
parameter PI_VAL_ADJ = "ON", //ON: PI stg2 tap -1 for centering
parameter TAPSPERKCLK = 56,
parameter POC_USE_METASTABLE_SAMP = "FALSE"
)
(
input clk, // Fabric logic clock
// To MC, calib_top, hard PHY
input clk_ref, // Idelay_ctrl reference clock
// To hard PHY (external source)
input freq_refclk, // To hard PHY for Phasers
input mem_refclk, // Memory clock to hard PHY
input pll_lock, // System PLL lock signal
input sync_pulse, // 1/N sync pulse used to synchronize all PHASERS
input mmcm_ps_clk, // Phase shift clock for oclk stg3 centering
input poc_sample_pd, // Tell POC how to avoid metastability.
input error, // Support for TG error detect
output rst_tg_mc, // Support for TG error detect
input [11:0] device_temp,
input tempmon_sample_en,
input dbg_sel_pi_incdec,
input dbg_sel_po_incdec,
input [DQS_CNT_WIDTH:0] dbg_byte_sel,
input dbg_pi_f_inc,
input dbg_pi_f_dec,
input dbg_po_f_inc,
input dbg_po_f_stg23_sel,
input dbg_po_f_dec,
input dbg_idel_down_all,
input dbg_idel_down_cpt,
input dbg_idel_up_all,
input dbg_idel_up_cpt,
input dbg_sel_all_idel_cpt,
input [DQS_CNT_WIDTH-1:0] dbg_sel_idel_cpt,
input rst,
input iddr_rst,
input [7:0] slot_0_present,
input [7:0] slot_1_present,
// From MC
input [nCK_PER_CLK-1:0] mc_ras_n,
input [nCK_PER_CLK-1:0] mc_cas_n,
input [nCK_PER_CLK-1:0] mc_we_n,
input [nCK_PER_CLK*ROW_WIDTH-1:0] mc_address,
input [nCK_PER_CLK*BANK_WIDTH-1:0] mc_bank,
input [CS_WIDTH*nCS_PER_RANK*nCK_PER_CLK-1:0] mc_cs_n,
input mc_reset_n,
input [1:0] mc_odt,
input [nCK_PER_CLK-1:0] mc_cke,
// AUX - For ODT and CKE assertion during reads and writes
input [3:0] mc_aux_out0,
input [3:0] mc_aux_out1,
input mc_cmd_wren,
input mc_ctl_wren,
input [2:0] mc_cmd,
input [1:0] mc_cas_slot,
input [5:0] mc_data_offset,
input [5:0] mc_data_offset_1,
input [5:0] mc_data_offset_2,
input [1:0] mc_rank_cnt,
// Write
input mc_wrdata_en,
input [2*nCK_PER_CLK*DQ_WIDTH-1:0] mc_wrdata,
input [2*nCK_PER_CLK*(DQ_WIDTH/8)-1:0] mc_wrdata_mask,
input idle,
// DDR bus signals
output [ROW_WIDTH-1:0] ddr_addr,
output [BANK_WIDTH-1:0] ddr_ba,
output ddr_cas_n,
output [CK_WIDTH-1:0] ddr_ck_n,
output [CK_WIDTH-1:0] ddr_ck,
output [CKE_WIDTH-1:0] ddr_cke,
output [CS_WIDTH*nCS_PER_RANK-1:0] ddr_cs_n,
output [DM_WIDTH-1:0] ddr_dm,
output [ODT_WIDTH-1:0] ddr_odt,
output ddr_ras_n,
output ddr_reset_n,
output ddr_parity,
output ddr_we_n,
inout [DQ_WIDTH-1:0] ddr_dq,
inout [DQS_WIDTH-1:0] ddr_dqs_n,
inout [DQS_WIDTH-1:0] ddr_dqs,
//phase shift clock control
output psen,
output psincdec,
input psdone,
// Debug Port Outputs
output [255:0] dbg_calib_top,
output [6*DQS_WIDTH*RANKS-1:0] dbg_cpt_first_edge_cnt,
output [6*DQS_WIDTH*RANKS-1:0] dbg_cpt_second_edge_cnt,
output [6*DQS_WIDTH*RANKS-1:0] dbg_cpt_tap_cnt,
output [5*DQS_WIDTH*RANKS-1:0] dbg_dq_idelay_tap_cnt,
output [255:0] dbg_phy_rdlvl,
output [99:0] dbg_phy_wrcal,
output [6*DQS_WIDTH-1:0] dbg_final_po_fine_tap_cnt,
output [3*DQS_WIDTH-1:0] dbg_final_po_coarse_tap_cnt,
output [DQS_WIDTH-1:0] dbg_rd_data_edge_detect,
output [2*nCK_PER_CLK*DQ_WIDTH-1:0] dbg_rddata,
output dbg_rddata_valid,
output [1:0] dbg_rdlvl_done,
output [1:0] dbg_rdlvl_err,
output [1:0] dbg_rdlvl_start,
output [5:0] dbg_tap_cnt_during_wrlvl,
output dbg_wl_edge_detect_valid,
output dbg_wrlvl_done,
output dbg_wrlvl_err,
output dbg_wrlvl_start,
output [6*DQS_WIDTH-1:0] dbg_wrlvl_fine_tap_cnt,
output [3*DQS_WIDTH-1:0] dbg_wrlvl_coarse_tap_cnt,
output [255:0] dbg_phy_wrlvl,
output dbg_pi_phaselock_start,
output dbg_pi_phaselocked_done,
output dbg_pi_phaselock_err,
output [11:0] dbg_pi_phase_locked_phy4lanes,
output dbg_pi_dqsfound_start,
output dbg_pi_dqsfound_done,
output dbg_pi_dqsfound_err,
output [11:0] dbg_pi_dqs_found_lanes_phy4lanes,
output dbg_wrcal_start,
output dbg_wrcal_done,
output dbg_wrcal_err,
// FIFO status flags
output phy_mc_ctl_full,
output phy_mc_cmd_full,
output phy_mc_data_full,
// Calibration status and resultant outputs
output init_calib_complete,
output init_wrcal_complete,
output [6*RANKS-1:0] calib_rd_data_offset_0,
output [6*RANKS-1:0] calib_rd_data_offset_1,
output [6*RANKS-1:0] calib_rd_data_offset_2,
output phy_rddata_valid,
output [2*nCK_PER_CLK*DQ_WIDTH-1:0] phy_rd_data,
output ref_dll_lock,
input rst_phaser_ref,
output [6*RANKS-1:0] dbg_rd_data_offset,
output [255:0] dbg_phy_init,
output [255:0] dbg_prbs_rdlvl,
output [255:0] dbg_dqs_found_cal,
output [5:0] dbg_pi_counter_read_val,
output [8:0] dbg_po_counter_read_val,
output dbg_oclkdelay_calib_start,
output dbg_oclkdelay_calib_done,
output [255:0] dbg_phy_oclkdelay_cal,
output [DRAM_WIDTH*16 -1:0] dbg_oclkdelay_rd_data,
output [6*DQS_WIDTH*RANKS-1:0] prbs_final_dqs_tap_cnt_r,
output [6*DQS_WIDTH*RANKS-1:0] dbg_prbs_first_edge_taps,
output [6*DQS_WIDTH*RANKS-1:0] dbg_prbs_second_edge_taps
);
// Calculate number of slots in the system
localparam nSLOTS = 1 + (|SLOT_1_CONFIG ? 1 : 0);
localparam CLK_PERIOD = tCK * nCK_PER_CLK;
// Parameter used to force skipping or abbreviation of initialization
// and calibration. Overrides SIM_INIT_OPTION, SIM_CAL_OPTION, and
// disables various other blocks depending on the option selected
// This option should only be used during simulation. In the case of
// the "SKIP" option, the testbench used should also not be modeling
// propagation delays.
// Allowable options = {"NONE", "SIM_FULL", "SKIP", "FAST"}
// "NONE" = options determined by the individual parameter settings
// "SIM_FULL" = skip power-up delay. FULL calibration performed without
// averaging algorithm turned ON during window detection.
// "SKIP" = skip power-up delay. Skip calibration not yet supported.
// "FAST" = skip power-up delay, and calibrate (read leveling, write
// leveling, and phase detector) only using one DQS group, and
// apply the results to all other DQS groups.
localparam SIM_INIT_OPTION
= ((SIM_BYPASS_INIT_CAL == "SKIP") ? "SKIP_INIT" :
((SIM_BYPASS_INIT_CAL == "FAST") ||
(SIM_BYPASS_INIT_CAL == "SIM_FULL")) ? "SKIP_PU_DLY" :
"NONE");
localparam SIM_CAL_OPTION
= ((SIM_BYPASS_INIT_CAL == "SKIP") ? "SKIP_CAL" :
(SIM_BYPASS_INIT_CAL == "FAST") ? "FAST_CAL" :
((SIM_BYPASS_INIT_CAL == "SIM_FULL") ||
(SIM_BYPASS_INIT_CAL == "SIM_INIT_CAL_FULL")) ? "FAST_WIN_DETECT" :
"NONE");
localparam WRLVL_W
= (SIM_BYPASS_INIT_CAL == "SKIP") ? "OFF" : WRLVL;
localparam HIGHEST_BANK = (BYTE_LANES_B4 != 0 ? 5 : (BYTE_LANES_B3 != 0 ? 4 :
(BYTE_LANES_B2 != 0 ? 3 :
(BYTE_LANES_B1 != 0 ? 2 : 1))));
localparam HIGHEST_LANE_B0 = BYTE_LANES_B0[3] ? 4 : BYTE_LANES_B0[2] ? 3 :
BYTE_LANES_B0[1] ? 2 : BYTE_LANES_B0[0] ? 1 :
0;
localparam HIGHEST_LANE_B1 = BYTE_LANES_B1[3] ? 4 : BYTE_LANES_B1[2] ? 3 :
BYTE_LANES_B1[1] ? 2 : BYTE_LANES_B1[0] ? 1 :
0;
localparam HIGHEST_LANE_B2 = BYTE_LANES_B2[3] ? 4 : BYTE_LANES_B2[2] ? 3 :
BYTE_LANES_B2[1] ? 2 : BYTE_LANES_B2[0] ? 1 :
0;
localparam HIGHEST_LANE_B3 = BYTE_LANES_B3[3] ? 4 : BYTE_LANES_B3[2] ? 3 :
BYTE_LANES_B3[1] ? 2 : BYTE_LANES_B3[0] ? 1 :
0;
localparam HIGHEST_LANE_B4 = BYTE_LANES_B4[3] ? 4 : BYTE_LANES_B4[2] ? 3 :
BYTE_LANES_B4[1] ? 2 : BYTE_LANES_B4[0] ? 1 :
0;
localparam HIGHEST_LANE =
(HIGHEST_LANE_B4 != 0) ? (HIGHEST_LANE_B4+16) :
((HIGHEST_LANE_B3 != 0) ? (HIGHEST_LANE_B3 + 12) :
((HIGHEST_LANE_B2 != 0) ? (HIGHEST_LANE_B2 + 8) :
((HIGHEST_LANE_B1 != 0) ? (HIGHEST_LANE_B1 + 4) :
HIGHEST_LANE_B0)));
localparam N_CTL_LANES = ((0+(!DATA_CTL_B0[0]) & BYTE_LANES_B0[0]) +
(0+(!DATA_CTL_B0[1]) & BYTE_LANES_B0[1]) +
(0+(!DATA_CTL_B0[2]) & BYTE_LANES_B0[2]) +
(0+(!DATA_CTL_B0[3]) & BYTE_LANES_B0[3])) +
((0+(!DATA_CTL_B1[0]) & BYTE_LANES_B1[0]) +
(0+(!DATA_CTL_B1[1]) & BYTE_LANES_B1[1]) +
(0+(!DATA_CTL_B1[2]) & BYTE_LANES_B1[2]) +
(0+(!DATA_CTL_B1[3]) & BYTE_LANES_B1[3])) +
((0+(!DATA_CTL_B2[0]) & BYTE_LANES_B2[0]) +
(0+(!DATA_CTL_B2[1]) & BYTE_LANES_B2[1]) +
(0+(!DATA_CTL_B2[2]) & BYTE_LANES_B2[2]) +
(0+(!DATA_CTL_B2[3]) & BYTE_LANES_B2[3])) +
((0+(!DATA_CTL_B3[0]) & BYTE_LANES_B3[0]) +
(0+(!DATA_CTL_B3[1]) & BYTE_LANES_B3[1]) +
(0+(!DATA_CTL_B3[2]) & BYTE_LANES_B3[2]) +
(0+(!DATA_CTL_B3[3]) & BYTE_LANES_B3[3])) +
((0+(!DATA_CTL_B4[0]) & BYTE_LANES_B4[0]) +
(0+(!DATA_CTL_B4[1]) & BYTE_LANES_B4[1]) +
(0+(!DATA_CTL_B4[2]) & BYTE_LANES_B4[2]) +
(0+(!DATA_CTL_B4[3]) & BYTE_LANES_B4[3]));
// Assuming Ck/Addr/Cmd and Control are placed in a single IO Bank
// This should be the case since the PLL should be placed adjacent
// to the same IO Bank as Ck/Addr/Cmd and Control
localparam [2:0] CTL_BANK = (((!DATA_CTL_B0[0]) & BYTE_LANES_B0[0]) |
((!DATA_CTL_B0[1]) & BYTE_LANES_B0[1]) |
((!DATA_CTL_B0[2]) & BYTE_LANES_B0[2]) |
((!DATA_CTL_B0[3]) & BYTE_LANES_B0[3])) ?
3'b000 :
(((!DATA_CTL_B1[0]) & BYTE_LANES_B1[0]) |
((!DATA_CTL_B1[1]) & BYTE_LANES_B1[1]) |
((!DATA_CTL_B1[2]) & BYTE_LANES_B1[2]) |
((!DATA_CTL_B1[3]) & BYTE_LANES_B1[3])) ?
3'b001 :
(((!DATA_CTL_B2[0]) & BYTE_LANES_B2[0]) |
((!DATA_CTL_B2[1]) & BYTE_LANES_B2[1]) |
((!DATA_CTL_B2[2]) & BYTE_LANES_B2[2]) |
((!DATA_CTL_B2[3]) & BYTE_LANES_B2[3])) ?
3'b010 :
(((!DATA_CTL_B3[0]) & BYTE_LANES_B3[0]) |
((!DATA_CTL_B3[1]) & BYTE_LANES_B3[1]) |
((!DATA_CTL_B3[2]) & BYTE_LANES_B3[2]) |
((!DATA_CTL_B3[3]) & BYTE_LANES_B3[3])) ?
3'b011 :
(((!DATA_CTL_B4[0]) & BYTE_LANES_B4[0]) |
((!DATA_CTL_B4[1]) & BYTE_LANES_B4[1]) |
((!DATA_CTL_B4[2]) & BYTE_LANES_B4[2]) |
((!DATA_CTL_B4[3]) & BYTE_LANES_B4[3])) ?
3'b100 : 3'b000;
localparam [7:0] CTL_BYTE_LANE = (N_CTL_LANES == 4) ? 8'b11_10_01_00 :
((N_CTL_LANES == 3) &
(((!DATA_CTL_B0[0]) & BYTE_LANES_B0[0] &
(!DATA_CTL_B0[1]) & BYTE_LANES_B0[1] &
(!DATA_CTL_B0[2]) & BYTE_LANES_B0[2]) |
((!DATA_CTL_B1[0]) & BYTE_LANES_B1[0] &
(!DATA_CTL_B1[1]) & BYTE_LANES_B1[1] &
(!DATA_CTL_B1[2]) & BYTE_LANES_B1[2]) |
((!DATA_CTL_B2[0]) & BYTE_LANES_B2[0] &
(!DATA_CTL_B2[1]) & BYTE_LANES_B2[1] &
(!DATA_CTL_B2[2]) & BYTE_LANES_B2[2]) |
((!DATA_CTL_B3[0]) & BYTE_LANES_B3[0] &
(!DATA_CTL_B3[1]) & BYTE_LANES_B3[1] &
(!DATA_CTL_B3[2]) & BYTE_LANES_B3[2]) |
((!DATA_CTL_B4[0]) & BYTE_LANES_B4[0] &
(!DATA_CTL_B4[1]) & BYTE_LANES_B4[1] &
(!DATA_CTL_B4[2]) & BYTE_LANES_B4[2]))) ?
8'b00_10_01_00 :
((N_CTL_LANES == 3) &
(((!DATA_CTL_B0[0]) & BYTE_LANES_B0[0] &
(!DATA_CTL_B0[1]) & BYTE_LANES_B0[1] &
(!DATA_CTL_B0[3]) & BYTE_LANES_B0[3]) |
((!DATA_CTL_B1[0]) & BYTE_LANES_B1[0] &
(!DATA_CTL_B1[1]) & BYTE_LANES_B1[1] &
(!DATA_CTL_B1[3]) & BYTE_LANES_B1[3]) |
((!DATA_CTL_B2[0]) & BYTE_LANES_B2[0] &
(!DATA_CTL_B2[1]) & BYTE_LANES_B2[1] &
(!DATA_CTL_B2[3]) & BYTE_LANES_B2[3]) |
((!DATA_CTL_B3[0]) & BYTE_LANES_B3[0] &
(!DATA_CTL_B3[1]) & BYTE_LANES_B3[1] &
(!DATA_CTL_B3[3]) & BYTE_LANES_B3[3]) |
((!DATA_CTL_B4[0]) & BYTE_LANES_B4[0] &
(!DATA_CTL_B4[1]) & BYTE_LANES_B4[1] &
(!DATA_CTL_B4[3]) & BYTE_LANES_B4[3]))) ?
8'b00_11_01_00 :
((N_CTL_LANES == 3) &
(((!DATA_CTL_B0[0]) & BYTE_LANES_B0[0] &
(!DATA_CTL_B0[2]) & BYTE_LANES_B0[2] &
(!DATA_CTL_B0[3]) & BYTE_LANES_B0[3]) |
((!DATA_CTL_B1[0]) & BYTE_LANES_B1[0] &
(!DATA_CTL_B1[2]) & BYTE_LANES_B1[2] &
(!DATA_CTL_B1[3]) & BYTE_LANES_B1[3]) |
((!DATA_CTL_B2[0]) & BYTE_LANES_B2[0] &
(!DATA_CTL_B2[2]) & BYTE_LANES_B2[2] &
(!DATA_CTL_B2[3]) & BYTE_LANES_B2[3]) |
((!DATA_CTL_B3[0]) & BYTE_LANES_B3[0] &
(!DATA_CTL_B3[2]) & BYTE_LANES_B3[2] &
(!DATA_CTL_B3[3]) & BYTE_LANES_B3[3]) |
((!DATA_CTL_B4[0]) & BYTE_LANES_B4[0] &
(!DATA_CTL_B4[2]) & BYTE_LANES_B4[2] &
(!DATA_CTL_B4[3]) & BYTE_LANES_B4[3]))) ?
8'b00_11_10_00 :
((N_CTL_LANES == 3) &
(((!DATA_CTL_B0[1]) & BYTE_LANES_B0[1] &
(!DATA_CTL_B0[2]) & BYTE_LANES_B0[2] &
(!DATA_CTL_B0[3]) & BYTE_LANES_B0[3]) |
((!DATA_CTL_B1[1]) & BYTE_LANES_B1[1] &
(!DATA_CTL_B1[2]) & BYTE_LANES_B1[2] &
(!DATA_CTL_B1[3]) & BYTE_LANES_B1[3]) |
((!DATA_CTL_B2[1]) & BYTE_LANES_B2[1] &
(!DATA_CTL_B2[2]) & BYTE_LANES_B2[2] &
(!DATA_CTL_B2[3]) & BYTE_LANES_B2[3]) |
((!DATA_CTL_B3[1]) & BYTE_LANES_B3[1] &
(!DATA_CTL_B3[2]) & BYTE_LANES_B3[2] &
(!DATA_CTL_B3[3]) & BYTE_LANES_B3[3]) |
((!DATA_CTL_B4[1]) & BYTE_LANES_B4[1] &
(!DATA_CTL_B4[2]) & BYTE_LANES_B4[2] &
(!DATA_CTL_B4[3]) & BYTE_LANES_B4[3]))) ?
8'b00_11_10_01 :
((N_CTL_LANES == 2) &
(((!DATA_CTL_B0[0]) & BYTE_LANES_B0[0] &
(!DATA_CTL_B0[1]) & BYTE_LANES_B0[1]) |
((!DATA_CTL_B1[0]) & BYTE_LANES_B1[0] &
(!DATA_CTL_B1[1]) & BYTE_LANES_B1[1]) |
((!DATA_CTL_B2[0]) & BYTE_LANES_B2[0] &
(!DATA_CTL_B2[1]) & BYTE_LANES_B2[1]) |
((!DATA_CTL_B3[0]) & BYTE_LANES_B3[0] &
(!DATA_CTL_B3[1]) & BYTE_LANES_B3[1]) |
((!DATA_CTL_B4[0]) & BYTE_LANES_B4[0] &
(!DATA_CTL_B4[1]) & BYTE_LANES_B4[1]))) ?
8'b00_00_01_00 :
((N_CTL_LANES == 2) &
(((!DATA_CTL_B0[0]) & BYTE_LANES_B0[0] &
(!DATA_CTL_B0[3]) & BYTE_LANES_B0[3]) |
((!DATA_CTL_B1[0]) & BYTE_LANES_B1[0] &
(!DATA_CTL_B1[3]) & BYTE_LANES_B1[3]) |
((!DATA_CTL_B2[0]) & BYTE_LANES_B2[0] &
(!DATA_CTL_B2[3]) & BYTE_LANES_B2[3]) |
((!DATA_CTL_B3[0]) & BYTE_LANES_B3[0] &
(!DATA_CTL_B3[3]) & BYTE_LANES_B3[3]) |
((!DATA_CTL_B4[0]) & BYTE_LANES_B4[0] &
(!DATA_CTL_B4[3]) & BYTE_LANES_B4[3]))) ?
8'b00_00_11_00 :
((N_CTL_LANES == 2) &
(((!DATA_CTL_B0[2]) & BYTE_LANES_B0[2] &
(!DATA_CTL_B0[3]) & BYTE_LANES_B0[3]) |
((!DATA_CTL_B1[2]) & BYTE_LANES_B1[2] &
(!DATA_CTL_B1[3]) & BYTE_LANES_B1[3]) |
((!DATA_CTL_B2[2]) & BYTE_LANES_B2[2] &
(!DATA_CTL_B2[3]) & BYTE_LANES_B2[3]) |
((!DATA_CTL_B3[2]) & BYTE_LANES_B3[2] &
(!DATA_CTL_B3[3]) & BYTE_LANES_B3[3]) |
((!DATA_CTL_B4[2]) & BYTE_LANES_B4[2] &
(!DATA_CTL_B4[3]) & BYTE_LANES_B4[3]))) ?
8'b00_00_11_10 :
((N_CTL_LANES == 2) &
(((!DATA_CTL_B0[1]) & BYTE_LANES_B0[1] &
(!DATA_CTL_B0[2]) & BYTE_LANES_B0[2]) |
((!DATA_CTL_B1[1]) & BYTE_LANES_B1[1] &
(!DATA_CTL_B1[2]) & BYTE_LANES_B1[2]) |
((!DATA_CTL_B2[1]) & BYTE_LANES_B2[1] &
(!DATA_CTL_B2[2]) & BYTE_LANES_B2[2]) |
((!DATA_CTL_B3[1]) & BYTE_LANES_B3[1] &
(!DATA_CTL_B3[2]) & BYTE_LANES_B3[2]) |
((!DATA_CTL_B4[1]) & BYTE_LANES_B4[1] &
(!DATA_CTL_B4[2]) & BYTE_LANES_B4[2]))) ?
8'b00_00_10_01 :
((N_CTL_LANES == 2) &
(((!DATA_CTL_B0[1]) & BYTE_LANES_B0[1] &
(!DATA_CTL_B0[3]) & BYTE_LANES_B0[3]) |
((!DATA_CTL_B1[1]) & BYTE_LANES_B1[1] &
(!DATA_CTL_B1[3]) & BYTE_LANES_B1[3]) |
((!DATA_CTL_B2[1]) & BYTE_LANES_B2[1] &
(!DATA_CTL_B2[3]) & BYTE_LANES_B2[3]) |
((!DATA_CTL_B3[1]) & BYTE_LANES_B3[1] &
(!DATA_CTL_B3[3]) & BYTE_LANES_B3[3]) |
((!DATA_CTL_B4[1]) & BYTE_LANES_B4[1] &
(!DATA_CTL_B4[3]) & BYTE_LANES_B4[3]))) ?
8'b00_00_11_01 :
((N_CTL_LANES == 2) &
(((!DATA_CTL_B0[0]) & BYTE_LANES_B0[0] &
(!DATA_CTL_B0[2]) & BYTE_LANES_B0[2]) |
((!DATA_CTL_B1[0]) & BYTE_LANES_B1[0] &
(!DATA_CTL_B1[2]) & BYTE_LANES_B1[2]) |
((!DATA_CTL_B2[0]) & BYTE_LANES_B2[0] &
(!DATA_CTL_B2[2]) & BYTE_LANES_B2[2]) |
((!DATA_CTL_B3[0]) & BYTE_LANES_B3[0] &
(!DATA_CTL_B3[2]) & BYTE_LANES_B3[2]) |
((!DATA_CTL_B4[0]) & BYTE_LANES_B4[0] &
(!DATA_CTL_B4[2]) & BYTE_LANES_B4[2]))) ?
8'b00_00_10_00 : 8'b11_10_01_00;
wire [HIGHEST_LANE*80-1:0] phy_din;
wire [HIGHEST_LANE*80-1:0] phy_dout;
wire [(HIGHEST_LANE*12)-1:0] ddr_cmd_ctl_data;
wire [(((HIGHEST_LANE+3)/4)*4)-1:0] aux_out;
wire [(CK_WIDTH * LP_DDR_CK_WIDTH)-1:0] ddr_clk;
wire phy_mc_go;
wire phy_ctl_full;
wire phy_cmd_full;
wire phy_data_full;
wire phy_pre_data_a_full;
wire if_empty /* synthesis syn_maxfan = 3 */;
wire phy_write_calib;
wire phy_read_calib;
wire [HIGHEST_BANK-1:0] rst_stg1_cal;
wire [5:0] calib_sel;
wire calib_in_common /* synthesis syn_maxfan = 10 */;
wire [HIGHEST_BANK-1:0] calib_zero_inputs;
wire [HIGHEST_BANK-1:0] calib_zero_ctrl;
wire pi_phase_locked;
wire pi_phase_locked_all;
wire pi_found_dqs;
wire pi_dqs_found_all;
wire pi_dqs_out_of_range;
wire pi_enstg2_f;
wire pi_stg2_fincdec;
wire pi_stg2_load;
wire [5:0] pi_stg2_reg_l;
wire idelay_ce;
wire idelay_inc;
wire idelay_ld;
wire [2:0] po_sel_stg2stg3;
wire [2:0] po_stg2_cincdec;
wire [2:0] po_enstg2_c;
wire [2:0] po_stg2_fincdec;
wire [2:0] po_enstg2_f;
wire [8:0] po_counter_read_val;
wire [5:0] pi_counter_read_val;
wire [2*nCK_PER_CLK*DQ_WIDTH-1:0] phy_wrdata;
reg [nCK_PER_CLK-1:0] parity;
wire [nCK_PER_CLK*ROW_WIDTH-1:0] phy_address;
wire [nCK_PER_CLK*BANK_WIDTH-1:0] phy_bank;
wire [CS_WIDTH*nCS_PER_RANK*nCK_PER_CLK-1:0] phy_cs_n;
wire [nCK_PER_CLK-1:0] phy_ras_n;
wire [nCK_PER_CLK-1:0] phy_cas_n;
wire [nCK_PER_CLK-1:0] phy_we_n;
wire phy_reset_n;
wire [3:0] calib_aux_out;
wire [nCK_PER_CLK-1:0] calib_cke;
wire [1:0] calib_odt;
wire calib_ctl_wren;
wire calib_cmd_wren;
wire calib_wrdata_en;
wire [2:0] calib_cmd;
wire [1:0] calib_seq;
wire [5:0] calib_data_offset_0;
wire [5:0] calib_data_offset_1;
wire [5:0] calib_data_offset_2;
wire [1:0] calib_rank_cnt;
wire [1:0] calib_cas_slot;
wire [nCK_PER_CLK*ROW_WIDTH-1:0] mux_address;
wire [3:0] mux_aux_out;
wire [3:0] aux_out_map;
wire [nCK_PER_CLK*BANK_WIDTH-1:0] mux_bank;
wire [2:0] mux_cmd;
wire mux_cmd_wren;
wire [CS_WIDTH*nCS_PER_RANK*nCK_PER_CLK-1:0] mux_cs_n;
wire mux_ctl_wren;
wire [1:0] mux_cas_slot;
wire [5:0] mux_data_offset;
wire [5:0] mux_data_offset_1;
wire [5:0] mux_data_offset_2;
wire [nCK_PER_CLK-1:0] mux_ras_n;
wire [nCK_PER_CLK-1:0] mux_cas_n;
wire [1:0] mux_rank_cnt;
wire mux_reset_n;
wire [nCK_PER_CLK-1:0] mux_we_n;
wire [2*nCK_PER_CLK*DQ_WIDTH-1:0] mux_wrdata;
wire [2*nCK_PER_CLK*(DQ_WIDTH/8)-1:0] mux_wrdata_mask;
wire mux_wrdata_en;
wire [nCK_PER_CLK-1:0] mux_cke ;
wire [1:0] mux_odt ;
wire phy_if_empty_def;
wire phy_if_reset;
wire phy_init_data_sel;
wire [2*nCK_PER_CLK*DQ_WIDTH-1:0] rd_data_map;
wire phy_rddata_valid_w;
reg rddata_valid_reg;
reg [2*nCK_PER_CLK*DQ_WIDTH-1:0] rd_data_reg;
wire [4:0] idelaye2_init_val;
wire [5:0] oclkdelay_init_val;
wire po_counter_load_en;
wire [DQS_CNT_WIDTH:0] byte_sel_cnt;
wire [DRAM_WIDTH-1:0] fine_delay_incdec_pb;
wire fine_delay_sel;
wire pd_out;
//***************************************************************************
assign dbg_rddata_valid = rddata_valid_reg;
assign dbg_rddata = rd_data_reg;
assign dbg_rd_data_offset = calib_rd_data_offset_0;
assign dbg_pi_phaselocked_done = pi_phase_locked_all;
assign dbg_po_counter_read_val = po_counter_read_val;
assign dbg_pi_counter_read_val = pi_counter_read_val;
//***************************************************************************
genvar i;
generate
for (i = 0; i < CK_WIDTH; i = i+1) begin: clock_gen
assign ddr_ck[i] = ddr_clk[LP_DDR_CK_WIDTH * i];
assign ddr_ck_n[i] = ddr_clk[(LP_DDR_CK_WIDTH * i) + 1];
end
endgenerate
//***************************************************************************
// During memory initialization and calibration the calibration logic drives
// the memory signals. After calibration is complete the memory controller
// drives the memory signals.
// Do not expect timing issues in 4:1 mode at 800 MHz/1600 Mbps
//***************************************************************************
wire [CS_WIDTH*nCS_PER_RANK*nCK_PER_CLK-1:0] mc_cs_n_temp ;
genvar v ;
generate
if((REG_CTRL == "ON") && (DRAM_TYPE == "DDR3") && (RANKS == 1) && (nCS_PER_RANK ==2)) begin : cs_rdimm
for(v = 0 ; v < CS_WIDTH*nCS_PER_RANK*nCK_PER_CLK ; v = v+1 ) begin
if((v%(CS_WIDTH*nCS_PER_RANK)) == 0) begin
assign mc_cs_n_temp[v] = mc_cs_n[v] ;
end else begin
assign mc_cs_n_temp[v] = 'b1 ;
end
end
end else begin
assign mc_cs_n_temp = mc_cs_n ;
end
endgenerate
assign mux_wrdata = (phy_init_data_sel | init_wrcal_complete) ? mc_wrdata : phy_wrdata;
assign mux_wrdata_mask = (phy_init_data_sel | init_wrcal_complete) ? mc_wrdata_mask : 'b0;
assign mux_address = (phy_init_data_sel | init_wrcal_complete) ? mc_address : phy_address;
assign mux_bank = (phy_init_data_sel | init_wrcal_complete) ? mc_bank : phy_bank;
assign mux_cs_n = (phy_init_data_sel | init_wrcal_complete) ? mc_cs_n_temp : phy_cs_n;
assign mux_ras_n = (phy_init_data_sel | init_wrcal_complete) ? mc_ras_n : phy_ras_n;
assign mux_cas_n = (phy_init_data_sel | init_wrcal_complete) ? mc_cas_n : phy_cas_n;
assign mux_we_n = (phy_init_data_sel | init_wrcal_complete) ? mc_we_n : phy_we_n;
assign mux_reset_n = (phy_init_data_sel | init_wrcal_complete) ? mc_reset_n : phy_reset_n;
assign mux_aux_out = (phy_init_data_sel | init_wrcal_complete) ? mc_aux_out0 : calib_aux_out;
assign mux_odt = (phy_init_data_sel | init_wrcal_complete) ? mc_odt : calib_odt ;
assign mux_cke = (phy_init_data_sel | init_wrcal_complete) ? mc_cke : calib_cke ;
assign mux_cmd_wren = (phy_init_data_sel | init_wrcal_complete) ? mc_cmd_wren :
calib_cmd_wren;
assign mux_ctl_wren = (phy_init_data_sel | init_wrcal_complete) ? mc_ctl_wren :
calib_ctl_wren;
assign mux_wrdata_en = (phy_init_data_sel | init_wrcal_complete) ? mc_wrdata_en :
calib_wrdata_en;
assign mux_cmd = (phy_init_data_sel | init_wrcal_complete) ? mc_cmd : calib_cmd;
assign mux_cas_slot = (phy_init_data_sel | init_wrcal_complete) ? mc_cas_slot : calib_cas_slot;
assign mux_data_offset = (phy_init_data_sel | init_wrcal_complete) ? mc_data_offset :
calib_data_offset_0;
assign mux_data_offset_1 = (phy_init_data_sel | init_wrcal_complete) ? mc_data_offset_1 :
calib_data_offset_1;
assign mux_data_offset_2 = (phy_init_data_sel | init_wrcal_complete) ? mc_data_offset_2 :
calib_data_offset_2;
// Reserved field. Hard coded to 2'b00 irrespective of the number of ranks. CR 643601
assign mux_rank_cnt = 2'b00;
// Assigning cke & odt for DDR2 & DDR3
// No changes for DDR3 & DDR2 dual rank
// DDR2 single rank systems might potentially need 3 odt signals.
// Aux_out[2] will have the odt toggled by phy and controller
// wiring aux_out[2] to 0 & 3. Depending upon the odt parameter
// all of the three odt bits or some of them might be used.
// mapping done in mc_phy_wrapper module
generate
if(CKE_ODT_AUX == "TRUE") begin
assign aux_out_map = ((DRAM_TYPE == "DDR2") && (RANKS == 1)) ?
{mux_aux_out[1],mux_aux_out[1],mux_aux_out[1],mux_aux_out[0]} :
mux_aux_out;
end else begin
assign aux_out_map = 4'b0000 ;
end
endgenerate
assign init_calib_complete = phy_init_data_sel;
assign phy_mc_ctl_full = phy_ctl_full;
assign phy_mc_cmd_full = phy_cmd_full;
assign phy_mc_data_full = phy_pre_data_a_full;
//***************************************************************************
// Generate parity for DDR3 RDIMM.
//***************************************************************************
generate
if ((DRAM_TYPE == "DDR3") && (REG_CTRL == "ON")) begin: gen_ddr3_parity
if (nCK_PER_CLK == 4) begin
always @(posedge clk) begin
parity[0] <= #TCQ (^{mux_address[(ROW_WIDTH*4)-1:ROW_WIDTH*3],
mux_bank[(BANK_WIDTH*4)-1:BANK_WIDTH*3],
mux_cas_n[3], mux_ras_n[3], mux_we_n[3]});
end
always @(*) begin
parity[1] = (^{mux_address[ROW_WIDTH-1:0], mux_bank[BANK_WIDTH-1:0],
mux_cas_n[0],mux_ras_n[0], mux_we_n[0]});
parity[2] = (^{mux_address[(ROW_WIDTH*2)-1:ROW_WIDTH],
mux_bank[(BANK_WIDTH*2)-1:BANK_WIDTH],
mux_cas_n[1], mux_ras_n[1], mux_we_n[1]});
parity[3] = (^{mux_address[(ROW_WIDTH*3)-1:ROW_WIDTH*2],
mux_bank[(BANK_WIDTH*3)-1:BANK_WIDTH*2],
mux_cas_n[2],mux_ras_n[2], mux_we_n[2]});
end
end else begin
always @(posedge clk) begin
parity[0] <= #TCQ(^{mux_address[(ROW_WIDTH*2)-1:ROW_WIDTH],
mux_bank[(BANK_WIDTH*2)-1:BANK_WIDTH],
mux_cas_n[1], mux_ras_n[1], mux_we_n[1]});
end
always @(*) begin
parity[1] = (^{mux_address[ROW_WIDTH-1:0],
mux_bank[BANK_WIDTH-1:0],
mux_cas_n[0], mux_ras_n[0], mux_we_n[0]});
end
end
end else begin: gen_ddr3_noparity
if (nCK_PER_CLK == 4) begin
always @(posedge clk) begin
parity[0] <= #TCQ 1'b0;
parity[1] <= #TCQ 1'b0;
parity[2] <= #TCQ 1'b0;
parity[3] <= #TCQ 1'b0;
end
end else begin
always @(posedge clk) begin
parity[0] <= #TCQ 1'b0;
parity[1] <= #TCQ 1'b0;
end
end
end
endgenerate
//***************************************************************************
// Code for optional register stage in read path to MC for timing
//***************************************************************************
generate
if(RD_PATH_REG == 1)begin:RD_REG_TIMING
always @(posedge clk)begin
rddata_valid_reg <= #TCQ phy_rddata_valid_w;
rd_data_reg <= #TCQ rd_data_map;
end // always @ (posedge clk)
end else begin : RD_REG_NO_TIMING // block: RD_REG_TIMING
always @(phy_rddata_valid_w or rd_data_map)begin
rddata_valid_reg = phy_rddata_valid_w;
rd_data_reg = rd_data_map;
end
end
endgenerate
assign phy_rddata_valid = rddata_valid_reg;
assign phy_rd_data = rd_data_reg;
//***************************************************************************
// Hard PHY and accompanying bit mapping logic
//***************************************************************************
mig_7series_v2_3_ddr_mc_phy_wrapper #
(
.TCQ (TCQ),
.tCK (tCK),
.BANK_TYPE (BANK_TYPE),
.DATA_IO_PRIM_TYPE (DATA_IO_PRIM_TYPE),
.DATA_IO_IDLE_PWRDWN(DATA_IO_IDLE_PWRDWN),
.IODELAY_GRP (IODELAY_GRP),
.FPGA_SPEED_GRADE (FPGA_SPEED_GRADE),
.nCK_PER_CLK (nCK_PER_CLK),
.nCS_PER_RANK (nCS_PER_RANK),
.BANK_WIDTH (BANK_WIDTH),
.CKE_WIDTH (CKE_WIDTH),
.CS_WIDTH (CS_WIDTH),
.CK_WIDTH (CK_WIDTH),
.LP_DDR_CK_WIDTH (LP_DDR_CK_WIDTH),
.DDR2_DQSN_ENABLE (DDR2_DQSN_ENABLE),
.CWL (CWL),
.DM_WIDTH (DM_WIDTH),
.DQ_WIDTH (DQ_WIDTH),
.DQS_CNT_WIDTH (DQS_CNT_WIDTH),
.DQS_WIDTH (DQS_WIDTH),
.DRAM_TYPE (DRAM_TYPE),
.RANKS (RANKS),
.ODT_WIDTH (ODT_WIDTH),
.REG_CTRL (REG_CTRL),
.ROW_WIDTH (ROW_WIDTH),
.USE_CS_PORT (USE_CS_PORT),
.USE_DM_PORT (USE_DM_PORT),
.USE_ODT_PORT (USE_ODT_PORT),
.IBUF_LPWR_MODE (IBUF_LPWR_MODE),
.PHYCTL_CMD_FIFO (PHYCTL_CMD_FIFO),
.DATA_CTL_B0 (DATA_CTL_B0),
.DATA_CTL_B1 (DATA_CTL_B1),
.DATA_CTL_B2 (DATA_CTL_B2),
.DATA_CTL_B3 (DATA_CTL_B3),
.DATA_CTL_B4 (DATA_CTL_B4),
.BYTE_LANES_B0 (BYTE_LANES_B0),
.BYTE_LANES_B1 (BYTE_LANES_B1),
.BYTE_LANES_B2 (BYTE_LANES_B2),
.BYTE_LANES_B3 (BYTE_LANES_B3),
.BYTE_LANES_B4 (BYTE_LANES_B4),
.PHY_0_BITLANES (PHY_0_BITLANES),
.PHY_1_BITLANES (PHY_1_BITLANES),
.PHY_2_BITLANES (PHY_2_BITLANES),
.HIGHEST_BANK (HIGHEST_BANK),
.HIGHEST_LANE (HIGHEST_LANE),
.CK_BYTE_MAP (CK_BYTE_MAP),
.ADDR_MAP (ADDR_MAP),
.BANK_MAP (BANK_MAP),
.CAS_MAP (CAS_MAP),
.CKE_ODT_BYTE_MAP (CKE_ODT_BYTE_MAP),
.CKE_MAP (CKE_MAP),
.ODT_MAP (ODT_MAP),
.CKE_ODT_AUX (CKE_ODT_AUX),
.CS_MAP (CS_MAP),
.PARITY_MAP (PARITY_MAP),
.RAS_MAP (RAS_MAP),
.WE_MAP (WE_MAP),
.DQS_BYTE_MAP (DQS_BYTE_MAP),
.DATA0_MAP (DATA0_MAP),
.DATA1_MAP (DATA1_MAP),
.DATA2_MAP (DATA2_MAP),
.DATA3_MAP (DATA3_MAP),
.DATA4_MAP (DATA4_MAP),
.DATA5_MAP (DATA5_MAP),
.DATA6_MAP (DATA6_MAP),
.DATA7_MAP (DATA7_MAP),
.DATA8_MAP (DATA8_MAP),
.DATA9_MAP (DATA9_MAP),
.DATA10_MAP (DATA10_MAP),
.DATA11_MAP (DATA11_MAP),
.DATA12_MAP (DATA12_MAP),
.DATA13_MAP (DATA13_MAP),
.DATA14_MAP (DATA14_MAP),
.DATA15_MAP (DATA15_MAP),
.DATA16_MAP (DATA16_MAP),
.DATA17_MAP (DATA17_MAP),
.MASK0_MAP (MASK0_MAP),
.MASK1_MAP (MASK1_MAP),
.SIM_CAL_OPTION (SIM_CAL_OPTION),
.MASTER_PHY_CTL (MASTER_PHY_CTL),
.DRAM_WIDTH (DRAM_WIDTH),
.POC_USE_METASTABLE_SAMP (POC_USE_METASTABLE_SAMP)
)
u_ddr_mc_phy_wrapper
(
.rst (rst),
.iddr_rst (iddr_rst),
.clk (clk),
// For memory frequencies between 400~1066 MHz freq_refclk = mem_refclk
// For memory frequencies below 400 MHz mem_refclk = mem_refclk and
// freq_refclk = 2x or 4x mem_refclk such that it remains in the
// 400~1066 MHz range
.freq_refclk (freq_refclk),
.mem_refclk (mem_refclk),
.mmcm_ps_clk (mmcm_ps_clk),
.pll_lock (pll_lock),
.sync_pulse (sync_pulse),
.idelayctrl_refclk (clk_ref),
.phy_cmd_wr_en (mux_cmd_wren),
.phy_data_wr_en (mux_wrdata_en),
// phy_ctl_wd = {ACTPRE[31:30],EventDelay[29:25],seq[24:23],
// DataOffset[22:17],HiIndex[16:15],LowIndex[14:12],
// AuxOut[11:8],ControlOffset[7:3],PHYCmd[2:0]}
// The fields ACTPRE, and BankCount are only used
// when the hard PHY counters are used by the MC.
.phy_ctl_wd ({5'd0, mux_cas_slot, calib_seq, mux_data_offset,
mux_rank_cnt, 3'd0, aux_out_map,
5'd0, mux_cmd}),
.phy_ctl_wr (mux_ctl_wren),
.phy_if_empty_def (phy_if_empty_def),
.phy_if_reset (phy_if_reset),
.data_offset_1 (mux_data_offset_1),
.data_offset_2 (mux_data_offset_2),
.aux_in_1 (aux_out_map),
.aux_in_2 (aux_out_map),
.idelaye2_init_val (idelaye2_init_val),
.oclkdelay_init_val (oclkdelay_init_val),
.if_empty (if_empty),
.phy_ctl_full (phy_ctl_full),
.phy_cmd_full (phy_cmd_full),
.phy_data_full (phy_data_full),
.phy_pre_data_a_full (phy_pre_data_a_full),
.ddr_clk (ddr_clk),
.phy_mc_go (phy_mc_go),
.phy_write_calib (phy_write_calib),
.phy_read_calib (phy_read_calib),
.po_fine_enable (po_enstg2_f),
.po_coarse_enable (po_enstg2_c),
.po_fine_inc (po_stg2_fincdec),
.po_coarse_inc (po_stg2_cincdec),
.po_counter_load_en (po_counter_load_en),
.po_counter_read_en (1'b1),
.po_sel_fine_oclk_delay (po_sel_stg2stg3),
.po_counter_load_val (),
.po_counter_read_val (po_counter_read_val),
.pi_rst_dqs_find (rst_stg1_cal),
.pi_fine_enable (pi_enstg2_f),
.pi_fine_inc (pi_stg2_fincdec),
.pi_counter_load_en (pi_stg2_load),
.pi_counter_load_val (pi_stg2_reg_l),
.pi_counter_read_val (pi_counter_read_val),
.idelay_ce (idelay_ce),
.idelay_inc (idelay_inc),
.idelay_ld (idelay_ld),
.pi_phase_locked (pi_phase_locked),
.pi_phase_locked_all (pi_phase_locked_all),
.pi_dqs_found (pi_found_dqs),
.pi_dqs_found_all (pi_dqs_found_all),
// Currently not being used. May be used in future if periodic reads
// become a requirement. This output could also be used to signal a
// catastrophic failure in read capture and the need for re-cal
.pi_dqs_out_of_range (pi_dqs_out_of_range),
.phy_init_data_sel (phy_init_data_sel),
.calib_sel (calib_sel),
.calib_in_common (calib_in_common),
.calib_zero_inputs (calib_zero_inputs),
.calib_zero_ctrl (calib_zero_ctrl),
.mux_address (mux_address),
.mux_bank (mux_bank),
.mux_cs_n (mux_cs_n),
.mux_ras_n (mux_ras_n),
.mux_cas_n (mux_cas_n),
.mux_we_n (mux_we_n),
.mux_reset_n (mux_reset_n),
.parity_in (parity),
.mux_wrdata (mux_wrdata),
.mux_wrdata_mask (mux_wrdata_mask),
.mux_odt (mux_odt),
.mux_cke (mux_cke),
.idle (idle),
.rd_data (rd_data_map),
.ddr_addr (ddr_addr),
.ddr_ba (ddr_ba),
.ddr_cas_n (ddr_cas_n),
.ddr_cke (ddr_cke),
.ddr_cs_n (ddr_cs_n),
.ddr_dm (ddr_dm),
.ddr_odt (ddr_odt),
.ddr_parity (ddr_parity),
.ddr_ras_n (ddr_ras_n),
.ddr_we_n (ddr_we_n),
.ddr_dq (ddr_dq),
.ddr_dqs (ddr_dqs),
.ddr_dqs_n (ddr_dqs_n),
.ddr_reset_n (ddr_reset_n),
.dbg_pi_counter_read_en (1'b1),
.ref_dll_lock (ref_dll_lock),
.rst_phaser_ref (rst_phaser_ref),
.dbg_pi_phase_locked_phy4lanes (dbg_pi_phase_locked_phy4lanes),
.dbg_pi_dqs_found_lanes_phy4lanes (dbg_pi_dqs_found_lanes_phy4lanes),
.byte_sel_cnt (byte_sel_cnt),
.pd_out (pd_out),
.fine_delay_incdec_pb (fine_delay_incdec_pb),
.fine_delay_sel (fine_delay_sel)
);
//***************************************************************************
// Soft memory initialization and calibration logic
//***************************************************************************
mig_7series_v2_3_ddr_calib_top #
(
.TCQ (TCQ),
.DDR3_VDD_OP_VOLT (DDR3_VDD_OP_VOLT),
.nCK_PER_CLK (nCK_PER_CLK),
.PRE_REV3ES (PRE_REV3ES),
.tCK (tCK),
.CLK_PERIOD (CLK_PERIOD),
.N_CTL_LANES (N_CTL_LANES),
.CTL_BYTE_LANE (CTL_BYTE_LANE),
.CTL_BANK (CTL_BANK),
.DRAM_TYPE (DRAM_TYPE),
.PRBS_WIDTH (8),
.DQS_BYTE_MAP (DQS_BYTE_MAP),
.HIGHEST_BANK (HIGHEST_BANK),
.BANK_TYPE (BANK_TYPE),
.HIGHEST_LANE (HIGHEST_LANE),
.BYTE_LANES_B0 (BYTE_LANES_B0),
.BYTE_LANES_B1 (BYTE_LANES_B1),
.BYTE_LANES_B2 (BYTE_LANES_B2),
.BYTE_LANES_B3 (BYTE_LANES_B3),
.BYTE_LANES_B4 (BYTE_LANES_B4),
.DATA_CTL_B0 (DATA_CTL_B0),
.DATA_CTL_B1 (DATA_CTL_B1),
.DATA_CTL_B2 (DATA_CTL_B2),
.DATA_CTL_B3 (DATA_CTL_B3),
.DATA_CTL_B4 (DATA_CTL_B4),
.SLOT_1_CONFIG (SLOT_1_CONFIG),
.BANK_WIDTH (BANK_WIDTH),
.CA_MIRROR (CA_MIRROR),
.COL_WIDTH (COL_WIDTH),
.CKE_ODT_AUX (CKE_ODT_AUX),
.nCS_PER_RANK (nCS_PER_RANK),
.DQ_WIDTH (DQ_WIDTH),
.DQS_CNT_WIDTH (DQS_CNT_WIDTH),
.DQS_WIDTH (DQS_WIDTH),
.DRAM_WIDTH (DRAM_WIDTH),
.ROW_WIDTH (ROW_WIDTH),
.RANKS (RANKS),
.CS_WIDTH (CS_WIDTH),
.CKE_WIDTH (CKE_WIDTH),
.DDR2_DQSN_ENABLE (DDR2_DQSN_ENABLE),
.PER_BIT_DESKEW ("OFF"),
.CALIB_ROW_ADD (CALIB_ROW_ADD),
.CALIB_COL_ADD (CALIB_COL_ADD),
.CALIB_BA_ADD (CALIB_BA_ADD),
.AL (AL),
.BURST_MODE (BURST_MODE),
.BURST_TYPE (BURST_TYPE),
.nCL (CL),
.nCWL (CWL),
.tRFC (tRFC),
.tREFI (tREFI),
.OUTPUT_DRV (OUTPUT_DRV),
.REG_CTRL (REG_CTRL),
.ADDR_CMD_MODE (ADDR_CMD_MODE),
.RTT_NOM (RTT_NOM),
.RTT_WR (RTT_WR),
.WRLVL (WRLVL_W),
.USE_ODT_PORT (USE_ODT_PORT),
.SIM_INIT_OPTION (SIM_INIT_OPTION),
.SIM_CAL_OPTION (SIM_CAL_OPTION),
.DEBUG_PORT (DEBUG_PORT),
.IDELAY_ADJ (IDELAY_ADJ),
.FINE_PER_BIT (FINE_PER_BIT),
.CENTER_COMP_MODE (CENTER_COMP_MODE),
.PI_VAL_ADJ (PI_VAL_ADJ),
.TAPSPERKCLK (TAPSPERKCLK),
.POC_USE_METASTABLE_SAMP (POC_USE_METASTABLE_SAMP)
)
u_ddr_calib_top
(
.clk (clk),
.rst (rst),
.tg_err (error),
.rst_tg_mc (rst_tg_mc),
.slot_0_present (slot_0_present),
.slot_1_present (slot_1_present),
// PHY Control Block and IN_FIFO status
.phy_ctl_ready (phy_mc_go),
.phy_ctl_full (1'b0),
.phy_cmd_full (1'b0),
.phy_data_full (1'b0),
.phy_if_empty (if_empty),
.idelaye2_init_val (idelaye2_init_val),
.oclkdelay_init_val (oclkdelay_init_val),
// From calib logic To data IN_FIFO
// DQ IDELAY tap value from Calib logic
// port to be added to mc_phy by Gary
.dlyval_dq (),
// hard PHY calibration modes
.write_calib (phy_write_calib),
.read_calib (phy_read_calib),
// DQS count and ck/addr/cmd to be mapped to calib_sel
// based on parameter that defines placement of ctl lanes
// and DQS byte groups in each bank. When phy_write_calib
// is de-asserted calib_sel should select CK/addr/cmd/ctl.
.calib_sel (calib_sel),
.calib_in_common (calib_in_common),
.calib_zero_inputs (calib_zero_inputs),
.calib_zero_ctrl (calib_zero_ctrl),
.phy_if_empty_def (phy_if_empty_def),
.phy_if_reset (phy_if_reset),
// Signals from calib logic to be MUXED with MC
// signals before sending to hard PHY
.calib_ctl_wren (calib_ctl_wren),
.calib_cmd_wren (calib_cmd_wren),
.calib_seq (calib_seq),
.calib_aux_out (calib_aux_out),
.calib_odt (calib_odt),
.calib_cke (calib_cke),
.calib_cmd (calib_cmd),
.calib_wrdata_en (calib_wrdata_en),
.calib_rank_cnt (calib_rank_cnt),
.calib_cas_slot (calib_cas_slot),
.calib_data_offset_0 (calib_data_offset_0),
.calib_data_offset_1 (calib_data_offset_1),
.calib_data_offset_2 (calib_data_offset_2),
.phy_reset_n (phy_reset_n),
.phy_address (phy_address),
.phy_bank (phy_bank),
.phy_cs_n (phy_cs_n),
.phy_ras_n (phy_ras_n),
.phy_cas_n (phy_cas_n),
.phy_we_n (phy_we_n),
.phy_wrdata (phy_wrdata),
// DQS Phaser_IN calibration/status signals
.pi_phaselocked (pi_phase_locked),
.pi_phase_locked_all (pi_phase_locked_all),
.pi_found_dqs (pi_found_dqs),
.pi_dqs_found_all (pi_dqs_found_all),
.pi_dqs_found_lanes (dbg_pi_dqs_found_lanes_phy4lanes),
.pi_rst_stg1_cal (rst_stg1_cal),
.pi_en_stg2_f (pi_enstg2_f),
.pi_stg2_f_incdec (pi_stg2_fincdec),
.pi_stg2_load (pi_stg2_load),
.pi_stg2_reg_l (pi_stg2_reg_l),
.pi_counter_read_val (pi_counter_read_val),
.device_temp (device_temp),
.tempmon_sample_en (tempmon_sample_en),
// IDELAY tap enable and inc signals
.idelay_ce (idelay_ce),
.idelay_inc (idelay_inc),
.idelay_ld (idelay_ld),
// DQS Phaser_OUT calibration/status signals
.po_sel_stg2stg3 (po_sel_stg2stg3),
.po_stg2_c_incdec (po_stg2_cincdec),
.po_en_stg2_c (po_enstg2_c),
.po_stg2_f_incdec (po_stg2_fincdec),
.po_en_stg2_f (po_enstg2_f),
.po_counter_load_en (po_counter_load_en),
.po_counter_read_val (po_counter_read_val),
// From data IN_FIFO To Calib logic and MC/UI
.phy_rddata (rd_data_map),
// From calib logic To MC
.phy_rddata_valid (phy_rddata_valid_w),
.calib_rd_data_offset_0 (calib_rd_data_offset_0),
.calib_rd_data_offset_1 (calib_rd_data_offset_1),
.calib_rd_data_offset_2 (calib_rd_data_offset_2),
.calib_writes (),
// Mem Init and Calibration status To MC
.init_calib_complete (phy_init_data_sel),
.init_wrcal_complete (init_wrcal_complete),
// Debug Error signals
.pi_phase_locked_err (dbg_pi_phaselock_err),
.pi_dqsfound_err (dbg_pi_dqsfound_err),
.wrcal_err (dbg_wrcal_err),
//used for oclk stg3 centering
.pd_out (pd_out),
.psen (psen),
.psincdec (psincdec),
.psdone (psdone),
.poc_sample_pd (poc_sample_pd),
// Debug Signals
.dbg_pi_phaselock_start (dbg_pi_phaselock_start),
.dbg_pi_dqsfound_start (dbg_pi_dqsfound_start),
.dbg_pi_dqsfound_done (dbg_pi_dqsfound_done),
.dbg_wrlvl_start (dbg_wrlvl_start),
.dbg_wrlvl_done (dbg_wrlvl_done),
.dbg_wrlvl_err (dbg_wrlvl_err),
.dbg_wrlvl_fine_tap_cnt (dbg_wrlvl_fine_tap_cnt),
.dbg_wrlvl_coarse_tap_cnt (dbg_wrlvl_coarse_tap_cnt),
.dbg_phy_wrlvl (dbg_phy_wrlvl),
.dbg_tap_cnt_during_wrlvl (dbg_tap_cnt_during_wrlvl),
.dbg_wl_edge_detect_valid (dbg_wl_edge_detect_valid),
.dbg_rd_data_edge_detect (dbg_rd_data_edge_detect),
.dbg_wrcal_start (dbg_wrcal_start),
.dbg_wrcal_done (dbg_wrcal_done),
.dbg_phy_wrcal (dbg_phy_wrcal),
.dbg_final_po_fine_tap_cnt (dbg_final_po_fine_tap_cnt),
.dbg_final_po_coarse_tap_cnt (dbg_final_po_coarse_tap_cnt),
.dbg_rdlvl_start (dbg_rdlvl_start),
.dbg_rdlvl_done (dbg_rdlvl_done),
.dbg_rdlvl_err (dbg_rdlvl_err),
.dbg_cpt_first_edge_cnt (dbg_cpt_first_edge_cnt),
.dbg_cpt_second_edge_cnt (dbg_cpt_second_edge_cnt),
.dbg_cpt_tap_cnt (dbg_cpt_tap_cnt),
.dbg_dq_idelay_tap_cnt (dbg_dq_idelay_tap_cnt),
.dbg_sel_pi_incdec (dbg_sel_pi_incdec),
.dbg_sel_po_incdec (dbg_sel_po_incdec),
.dbg_byte_sel (dbg_byte_sel),
.dbg_pi_f_inc (dbg_pi_f_inc),
.dbg_pi_f_dec (dbg_pi_f_dec),
.dbg_po_f_inc (dbg_po_f_inc),
.dbg_po_f_stg23_sel (dbg_po_f_stg23_sel),
.dbg_po_f_dec (dbg_po_f_dec),
.dbg_idel_up_all (dbg_idel_up_all),
.dbg_idel_down_all (dbg_idel_down_all),
.dbg_idel_up_cpt (dbg_idel_up_cpt),
.dbg_idel_down_cpt (dbg_idel_down_cpt),
.dbg_sel_idel_cpt (dbg_sel_idel_cpt),
.dbg_sel_all_idel_cpt (dbg_sel_all_idel_cpt),
.dbg_phy_rdlvl (dbg_phy_rdlvl),
.dbg_calib_top (dbg_calib_top),
.dbg_phy_init (dbg_phy_init),
.dbg_prbs_rdlvl (dbg_prbs_rdlvl),
.dbg_dqs_found_cal (dbg_dqs_found_cal),
.dbg_phy_oclkdelay_cal (dbg_phy_oclkdelay_cal),
.dbg_oclkdelay_rd_data (dbg_oclkdelay_rd_data),
.dbg_oclkdelay_calib_start (dbg_oclkdelay_calib_start),
.dbg_oclkdelay_calib_done (dbg_oclkdelay_calib_done),
.prbs_final_dqs_tap_cnt_r (prbs_final_dqs_tap_cnt_r),
.dbg_prbs_first_edge_taps (dbg_prbs_first_edge_taps),
.dbg_prbs_second_edge_taps (dbg_prbs_second_edge_taps),
.byte_sel_cnt (byte_sel_cnt),
.fine_delay_incdec_pb (fine_delay_incdec_pb),
.fine_delay_sel (fine_delay_sel)
);
endmodule
|
/**********************************************************
-- (c) Copyright 2011 - 2014 Xilinx, Inc. All rights reserved.
--
-- This file contains confidential and proprietary information
-- of Xilinx, Inc. and is protected under U.S. and
-- international copyright and other intellectual property
-- laws.
--
-- DISCLAIMER
-- This disclaimer is not a license and does not grant any
-- rights to the materials distributed herewith. Except as
-- otherwise provided in a valid license issued to you by
-- Xilinx, and to the maximum extent permitted by applicable
-- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
-- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
-- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
-- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
-- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
-- (2) Xilinx shall not be liable (whether in contract or tort,
-- including negligence, or under any other theory of
-- liability) for any loss or damage of any kind or nature
-- related to, arising under or in connection with these
-- materials, including for any direct, or any indirect,
-- special, incidental, or consequential loss or damage
-- (including loss of data, profits, goodwill, or any type of
-- loss or damage suffered as a result of any action brought
-- by a third party) even if such damage or loss was
-- reasonably foreseeable or Xilinx had been advised of the
-- possibility of the same.
--
-- CRITICAL APPLICATIONS
-- Xilinx products are not designed or intended to be fail-
-- safe, or for use in any application requiring fail-safe
-- performance, such as life-support or safety devices or
-- systems, Class III medical devices, nuclear facilities,
-- applications related to the deployment of airbags, or any
-- other applications that could lead to death, personal
-- injury, or severe property or environmental damage
-- (individually and collectively, "Critical
-- Applications"). A Customer assumes the sole risk and
-- liability of any use of Xilinx products in Critical
-- Applications, subject only to applicable laws and
-- regulations governing limitations on product liability.
--
-- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
-- PART OF THIS FILE AT ALL TIMES.
//
// THIS NOTICE MUST BE RETAINED AS PART OF THIS FILE AT ALL TIMES.
//
//
// Owner: Gary Martin
// Revision: $Id: //depot/icm/proj/common/head/rtl/v32_cmt/rtl/phy/phy_4lanes.v#6 $
// $Author: gary $
// $DateTime: 2010/05/11 18:05:17 $
// $Change: 490882 $
// Description:
// This verilog file is the parameterizable 4-byte lane phy primitive top
// This module may be ganged to create an N-lane phy.
//
// History:
// Date Engineer Description
// 04/01/2010 G. Martin Initial Checkin.
//
///////////////////////////////////////////////////////////
**********************************************************/
`timescale 1ps/1ps
`define PC_DATA_OFFSET_RANGE 22:17
module mig_7series_v2_3_ddr_phy_4lanes #(
parameter GENERATE_IDELAYCTRL = "TRUE",
parameter IODELAY_GRP = "IODELAY_MIG",
parameter FPGA_SPEED_GRADE = 1,
parameter BANK_TYPE = "HP_IO", // # = "HP_IO", "HPL_IO", "HR_IO", "HRL_IO"
parameter BYTELANES_DDR_CK = 24'b0010_0010_0010_0010_0010_0010,
parameter NUM_DDR_CK = 1,
// next three parameter fields correspond to byte lanes for lane order DCBA
parameter BYTE_LANES = 4'b1111, // lane existence, one per lane
parameter DATA_CTL_N = 4'b1111, // data or control, per lane
parameter BITLANES = 48'hffff_ffff_ffff,
parameter BITLANES_OUTONLY = 48'h0000_0000_0000,
parameter LANE_REMAP = 16'h3210,// 4-bit index
// used to rewire to one of four
// input/output buss lanes
// example: 0321 remaps lanes as:
// D->A
// C->D
// B->C
// A->B
parameter LAST_BANK = "FALSE",
parameter USE_PRE_POST_FIFO = "FALSE",
parameter RCLK_SELECT_LANE = "B",
parameter real TCK = 0.00,
parameter SYNTHESIS = "FALSE",
parameter PO_CTL_COARSE_BYPASS = "FALSE",
parameter PO_FINE_DELAY = 0,
parameter PI_SEL_CLK_OFFSET = 0,
// phy_control paramter used in other paramsters
parameter PC_CLK_RATIO = 4,
//phaser_in parameters
parameter A_PI_FREQ_REF_DIV = "NONE",
parameter A_PI_CLKOUT_DIV = 2,
parameter A_PI_BURST_MODE = "TRUE",
parameter A_PI_OUTPUT_CLK_SRC = "DELAYED_REF" , //"DELAYED_REF",
parameter A_PI_FINE_DELAY = 60,
parameter A_PI_SYNC_IN_DIV_RST = "TRUE",
parameter B_PI_FREQ_REF_DIV = A_PI_FREQ_REF_DIV,
parameter B_PI_CLKOUT_DIV = A_PI_CLKOUT_DIV,
parameter B_PI_BURST_MODE = A_PI_BURST_MODE,
parameter B_PI_OUTPUT_CLK_SRC = A_PI_OUTPUT_CLK_SRC,
parameter B_PI_FINE_DELAY = A_PI_FINE_DELAY,
parameter B_PI_SYNC_IN_DIV_RST = A_PI_SYNC_IN_DIV_RST,
parameter C_PI_FREQ_REF_DIV = A_PI_FREQ_REF_DIV,
parameter C_PI_CLKOUT_DIV = A_PI_CLKOUT_DIV,
parameter C_PI_BURST_MODE = A_PI_BURST_MODE,
parameter C_PI_OUTPUT_CLK_SRC = A_PI_OUTPUT_CLK_SRC,
parameter C_PI_FINE_DELAY = 0,
parameter C_PI_SYNC_IN_DIV_RST = A_PI_SYNC_IN_DIV_RST,
parameter D_PI_FREQ_REF_DIV = A_PI_FREQ_REF_DIV,
parameter D_PI_CLKOUT_DIV = A_PI_CLKOUT_DIV,
parameter D_PI_BURST_MODE = A_PI_BURST_MODE,
parameter D_PI_OUTPUT_CLK_SRC = A_PI_OUTPUT_CLK_SRC,
parameter D_PI_FINE_DELAY = 0,
parameter D_PI_SYNC_IN_DIV_RST = A_PI_SYNC_IN_DIV_RST,
//phaser_out parameters
parameter A_PO_CLKOUT_DIV = (DATA_CTL_N[0] == 0) ? PC_CLK_RATIO : 2,
parameter A_PO_FINE_DELAY = PO_FINE_DELAY,
parameter A_PO_COARSE_DELAY = 0,
parameter A_PO_OCLK_DELAY = 0,
parameter A_PO_OCLKDELAY_INV = "FALSE",
parameter A_PO_OUTPUT_CLK_SRC = "DELAYED_REF",
parameter A_PO_SYNC_IN_DIV_RST = "TRUE",
//parameter A_PO_SYNC_IN_DIV_RST = "FALSE",
parameter B_PO_CLKOUT_DIV = (DATA_CTL_N[1] == 0) ? PC_CLK_RATIO : 2,
parameter B_PO_FINE_DELAY = PO_FINE_DELAY,
parameter B_PO_COARSE_DELAY = A_PO_COARSE_DELAY,
parameter B_PO_OCLK_DELAY = A_PO_OCLK_DELAY,
parameter B_PO_OCLKDELAY_INV = A_PO_OCLKDELAY_INV,
parameter B_PO_OUTPUT_CLK_SRC = A_PO_OUTPUT_CLK_SRC,
parameter B_PO_SYNC_IN_DIV_RST = A_PO_SYNC_IN_DIV_RST,
parameter C_PO_CLKOUT_DIV = (DATA_CTL_N[2] == 0) ? PC_CLK_RATIO : 2,
parameter C_PO_FINE_DELAY = PO_FINE_DELAY,
parameter C_PO_COARSE_DELAY = A_PO_COARSE_DELAY,
parameter C_PO_OCLK_DELAY = A_PO_OCLK_DELAY,
parameter C_PO_OCLKDELAY_INV = A_PO_OCLKDELAY_INV,
parameter C_PO_OUTPUT_CLK_SRC = A_PO_OUTPUT_CLK_SRC,
parameter C_PO_SYNC_IN_DIV_RST = A_PO_SYNC_IN_DIV_RST,
parameter D_PO_CLKOUT_DIV = (DATA_CTL_N[3] == 0) ? PC_CLK_RATIO : 2,
parameter D_PO_FINE_DELAY = PO_FINE_DELAY,
parameter D_PO_COARSE_DELAY = A_PO_COARSE_DELAY,
parameter D_PO_OCLK_DELAY = A_PO_OCLK_DELAY,
parameter D_PO_OCLKDELAY_INV = A_PO_OCLKDELAY_INV,
parameter D_PO_OUTPUT_CLK_SRC = A_PO_OUTPUT_CLK_SRC,
parameter D_PO_SYNC_IN_DIV_RST = A_PO_SYNC_IN_DIV_RST,
parameter A_IDELAYE2_IDELAY_TYPE = "VARIABLE",
parameter A_IDELAYE2_IDELAY_VALUE = 00,
parameter B_IDELAYE2_IDELAY_TYPE = A_IDELAYE2_IDELAY_TYPE,
parameter B_IDELAYE2_IDELAY_VALUE = A_IDELAYE2_IDELAY_VALUE,
parameter C_IDELAYE2_IDELAY_TYPE = A_IDELAYE2_IDELAY_TYPE,
parameter C_IDELAYE2_IDELAY_VALUE = A_IDELAYE2_IDELAY_VALUE,
parameter D_IDELAYE2_IDELAY_TYPE = A_IDELAYE2_IDELAY_TYPE,
parameter D_IDELAYE2_IDELAY_VALUE = A_IDELAYE2_IDELAY_VALUE,
// phy_control parameters
parameter PC_BURST_MODE = "TRUE",
parameter PC_DATA_CTL_N = DATA_CTL_N,
parameter PC_CMD_OFFSET = 0,
parameter PC_RD_CMD_OFFSET_0 = 0,
parameter PC_RD_CMD_OFFSET_1 = 0,
parameter PC_RD_CMD_OFFSET_2 = 0,
parameter PC_RD_CMD_OFFSET_3 = 0,
parameter PC_CO_DURATION = 1,
parameter PC_DI_DURATION = 1,
parameter PC_DO_DURATION = 1,
parameter PC_RD_DURATION_0 = 0,
parameter PC_RD_DURATION_1 = 0,
parameter PC_RD_DURATION_2 = 0,
parameter PC_RD_DURATION_3 = 0,
parameter PC_WR_CMD_OFFSET_0 = 5,
parameter PC_WR_CMD_OFFSET_1 = 5,
parameter PC_WR_CMD_OFFSET_2 = 5,
parameter PC_WR_CMD_OFFSET_3 = 5,
parameter PC_WR_DURATION_0 = 6,
parameter PC_WR_DURATION_1 = 6,
parameter PC_WR_DURATION_2 = 6,
parameter PC_WR_DURATION_3 = 6,
parameter PC_AO_WRLVL_EN = 0,
parameter PC_AO_TOGGLE = 4'b0101, // odd bits are toggle (CKE)
parameter PC_FOUR_WINDOW_CLOCKS = 63,
parameter PC_EVENTS_DELAY = 18,
parameter PC_PHY_COUNT_EN = "TRUE",
parameter PC_SYNC_MODE = "TRUE",
parameter PC_DISABLE_SEQ_MATCH = "TRUE",
parameter PC_MULTI_REGION = "FALSE",
// io fifo parameters
parameter A_OF_ARRAY_MODE = (DATA_CTL_N[0] == 1) ? "ARRAY_MODE_8_X_4" : "ARRAY_MODE_4_X_4",
parameter B_OF_ARRAY_MODE = (DATA_CTL_N[1] == 1) ? "ARRAY_MODE_8_X_4" : "ARRAY_MODE_4_X_4",
parameter C_OF_ARRAY_MODE = (DATA_CTL_N[2] == 1) ? "ARRAY_MODE_8_X_4" : "ARRAY_MODE_4_X_4",
parameter D_OF_ARRAY_MODE = (DATA_CTL_N[3] == 1) ? "ARRAY_MODE_8_X_4" : "ARRAY_MODE_4_X_4",
parameter OF_ALMOST_EMPTY_VALUE = 1,
parameter OF_ALMOST_FULL_VALUE = 1,
parameter OF_OUTPUT_DISABLE = "TRUE",
parameter OF_SYNCHRONOUS_MODE = PC_SYNC_MODE,
parameter A_OS_DATA_RATE = "DDR",
parameter A_OS_DATA_WIDTH = 4,
parameter B_OS_DATA_RATE = A_OS_DATA_RATE,
parameter B_OS_DATA_WIDTH = A_OS_DATA_WIDTH,
parameter C_OS_DATA_RATE = A_OS_DATA_RATE,
parameter C_OS_DATA_WIDTH = A_OS_DATA_WIDTH,
parameter D_OS_DATA_RATE = A_OS_DATA_RATE,
parameter D_OS_DATA_WIDTH = A_OS_DATA_WIDTH,
parameter A_IF_ARRAY_MODE = "ARRAY_MODE_4_X_8",
parameter B_IF_ARRAY_MODE = A_IF_ARRAY_MODE,
parameter C_IF_ARRAY_MODE = A_IF_ARRAY_MODE,
parameter D_IF_ARRAY_MODE = A_IF_ARRAY_MODE,
parameter IF_ALMOST_EMPTY_VALUE = 1,
parameter IF_ALMOST_FULL_VALUE = 1,
parameter IF_SYNCHRONOUS_MODE = PC_SYNC_MODE,
// this is used locally, not for external pushdown
// NOTE: the 0+ is needed in each to coerce to integer for addition.
// otherwise 4x 1'b values are added producing a 1'b value.
parameter HIGHEST_LANE = LAST_BANK == "FALSE" ? 4 : (BYTE_LANES[3] ? 4 : BYTE_LANES[2] ? 3 : BYTE_LANES[1] ? 2 : 1),
parameter N_CTL_LANES = ((0+(!DATA_CTL_N[0]) & BYTE_LANES[0]) + (0+(!DATA_CTL_N[1]) & BYTE_LANES[1]) + (0+(!DATA_CTL_N[2]) & BYTE_LANES[2]) + (0+(!DATA_CTL_N[3]) & BYTE_LANES[3])),
parameter N_BYTE_LANES = (0+BYTE_LANES[0]) + (0+BYTE_LANES[1]) + (0+BYTE_LANES[2]) + (0+BYTE_LANES[3]),
parameter N_DATA_LANES = N_BYTE_LANES - N_CTL_LANES,
// assume odt per rank + any declared cke's
parameter AUXOUT_WIDTH = 4,
parameter LP_DDR_CK_WIDTH = 2
,parameter CKE_ODT_AUX = "FALSE"
)
(
//`include "phy.vh"
input rst,
input phy_clk,
input phy_ctl_clk,
input freq_refclk,
input mem_refclk,
input mem_refclk_div4,
input pll_lock,
input sync_pulse,
input idelayctrl_refclk,
input [HIGHEST_LANE*80-1:0] phy_dout,
input phy_cmd_wr_en,
input phy_data_wr_en,
input phy_rd_en,
input phy_ctl_mstr_empty,
input [31:0] phy_ctl_wd,
input [`PC_DATA_OFFSET_RANGE] data_offset,
input phy_ctl_wr,
input if_empty_def,
input phyGo,
input input_sink,
output [(LP_DDR_CK_WIDTH*24)-1:0] ddr_clk, // to memory
output rclk,
output if_a_empty,
output if_empty,
output byte_rd_en,
output if_empty_or,
output if_empty_and,
output of_ctl_a_full,
output of_data_a_full,
output of_ctl_full,
output of_data_full,
output pre_data_a_full,
output [HIGHEST_LANE*80-1:0]phy_din, // assume input bus same size as output bus
output phy_ctl_empty,
output phy_ctl_a_full,
output phy_ctl_full,
output [HIGHEST_LANE*12-1:0]mem_dq_out,
output [HIGHEST_LANE*12-1:0]mem_dq_ts,
input [HIGHEST_LANE*10-1:0]mem_dq_in,
output [HIGHEST_LANE-1:0] mem_dqs_out,
output [HIGHEST_LANE-1:0] mem_dqs_ts,
input [HIGHEST_LANE-1:0] mem_dqs_in,
input [1:0] byte_rd_en_oth_banks,
output [AUXOUT_WIDTH-1:0] aux_out,
output reg rst_out = 0,
output reg mcGo=0,
output phy_ctl_ready,
output ref_dll_lock,
input if_rst,
input phy_read_calib,
input phy_write_calib,
input idelay_inc,
input idelay_ce,
input idelay_ld,
input [2:0] calib_sel,
input calib_zero_ctrl,
input [HIGHEST_LANE-1:0] calib_zero_lanes,
input calib_in_common,
input po_fine_enable,
input po_coarse_enable,
input po_fine_inc,
input po_coarse_inc,
input po_counter_load_en,
input po_counter_read_en,
input [8:0] po_counter_load_val,
input po_sel_fine_oclk_delay,
output reg po_coarse_overflow,
output reg po_fine_overflow,
output reg [8:0] po_counter_read_val,
input pi_rst_dqs_find,
input pi_fine_enable,
input pi_fine_inc,
input pi_counter_load_en,
input pi_counter_read_en,
input [5:0] pi_counter_load_val,
output reg pi_fine_overflow,
output reg [5:0] pi_counter_read_val,
output reg pi_dqs_found,
output pi_dqs_found_all,
output pi_dqs_found_any,
output [HIGHEST_LANE-1:0] pi_phase_locked_lanes,
output [HIGHEST_LANE-1:0] pi_dqs_found_lanes,
output reg pi_dqs_out_of_range,
output reg pi_phase_locked,
output pi_phase_locked_all,
input [29:0] fine_delay,
input fine_delay_sel
);
localparam DATA_CTL_A = (~DATA_CTL_N[0]);
localparam DATA_CTL_B = (~DATA_CTL_N[1]);
localparam DATA_CTL_C = (~DATA_CTL_N[2]);
localparam DATA_CTL_D = (~DATA_CTL_N[3]);
localparam PRESENT_CTL_A = BYTE_LANES[0] && ! DATA_CTL_N[0];
localparam PRESENT_CTL_B = BYTE_LANES[1] && ! DATA_CTL_N[1];
localparam PRESENT_CTL_C = BYTE_LANES[2] && ! DATA_CTL_N[2];
localparam PRESENT_CTL_D = BYTE_LANES[3] && ! DATA_CTL_N[3];
localparam PRESENT_DATA_A = BYTE_LANES[0] && DATA_CTL_N[0];
localparam PRESENT_DATA_B = BYTE_LANES[1] && DATA_CTL_N[1];
localparam PRESENT_DATA_C = BYTE_LANES[2] && DATA_CTL_N[2];
localparam PRESENT_DATA_D = BYTE_LANES[3] && DATA_CTL_N[3];
localparam PC_DATA_CTL_A = (DATA_CTL_A) ? "FALSE" : "TRUE";
localparam PC_DATA_CTL_B = (DATA_CTL_B) ? "FALSE" : "TRUE";
localparam PC_DATA_CTL_C = (DATA_CTL_C) ? "FALSE" : "TRUE";
localparam PC_DATA_CTL_D = (DATA_CTL_D) ? "FALSE" : "TRUE";
localparam A_PO_COARSE_BYPASS = (DATA_CTL_A) ? PO_CTL_COARSE_BYPASS : "FALSE";
localparam B_PO_COARSE_BYPASS = (DATA_CTL_B) ? PO_CTL_COARSE_BYPASS : "FALSE";
localparam C_PO_COARSE_BYPASS = (DATA_CTL_C) ? PO_CTL_COARSE_BYPASS : "FALSE";
localparam D_PO_COARSE_BYPASS = (DATA_CTL_D) ? PO_CTL_COARSE_BYPASS : "FALSE";
localparam IO_A_START = 41;
localparam IO_A_END = 40;
localparam IO_B_START = 43;
localparam IO_B_END = 42;
localparam IO_C_START = 45;
localparam IO_C_END = 44;
localparam IO_D_START = 47;
localparam IO_D_END = 46;
localparam IO_A_X_START = (HIGHEST_LANE * 10) + 1;
localparam IO_A_X_END = (IO_A_X_START-1);
localparam IO_B_X_START = (IO_A_X_START + 2);
localparam IO_B_X_END = (IO_B_X_START -1);
localparam IO_C_X_START = (IO_B_X_START + 2);
localparam IO_C_X_END = (IO_C_X_START -1);
localparam IO_D_X_START = (IO_C_X_START + 2);
localparam IO_D_X_END = (IO_D_X_START -1);
localparam MSB_BURST_PEND_PO = 3;
localparam MSB_BURST_PEND_PI = 7;
localparam MSB_RANK_SEL_I = MSB_BURST_PEND_PI + 8;
localparam PHASER_CTL_BUS_WIDTH = MSB_RANK_SEL_I + 1;
wire [1:0] oserdes_dqs;
wire [1:0] oserdes_dqs_ts;
wire [1:0] oserdes_dq_ts;
wire [PHASER_CTL_BUS_WIDTH-1:0] phaser_ctl_bus;
wire [7:0] in_rank;
wire [11:0] IO_A;
wire [11:0] IO_B;
wire [11:0] IO_C;
wire [11:0] IO_D;
wire [319:0] phy_din_remap;
reg A_po_counter_read_en;
wire [8:0] A_po_counter_read_val;
reg A_pi_counter_read_en;
wire [5:0] A_pi_counter_read_val;
wire A_pi_fine_overflow;
wire A_po_coarse_overflow;
wire A_po_fine_overflow;
wire A_pi_dqs_found;
wire A_pi_dqs_out_of_range;
wire A_pi_phase_locked;
wire A_pi_iserdes_rst;
reg A_pi_fine_enable;
reg A_pi_fine_inc;
reg A_pi_counter_load_en;
reg [5:0] A_pi_counter_load_val;
reg A_pi_rst_dqs_find;
reg A_po_fine_enable;
reg A_po_coarse_enable;
reg A_po_fine_inc /* synthesis syn_maxfan = 3 */;
reg A_po_sel_fine_oclk_delay;
reg A_po_coarse_inc;
reg A_po_counter_load_en;
reg [8:0] A_po_counter_load_val;
wire A_rclk;
reg A_idelay_ce;
reg A_idelay_ld;
reg [29:0] A_fine_delay;
reg A_fine_delay_sel;
reg B_po_counter_read_en;
wire [8:0] B_po_counter_read_val;
reg B_pi_counter_read_en;
wire [5:0] B_pi_counter_read_val;
wire B_pi_fine_overflow;
wire B_po_coarse_overflow;
wire B_po_fine_overflow;
wire B_pi_phase_locked;
wire B_pi_iserdes_rst;
wire B_pi_dqs_found;
wire B_pi_dqs_out_of_range;
reg B_pi_fine_enable;
reg B_pi_fine_inc;
reg B_pi_counter_load_en;
reg [5:0] B_pi_counter_load_val;
reg B_pi_rst_dqs_find;
reg B_po_fine_enable;
reg B_po_coarse_enable;
reg B_po_fine_inc /* synthesis syn_maxfan = 3 */;
reg B_po_coarse_inc;
reg B_po_sel_fine_oclk_delay;
reg B_po_counter_load_en;
reg [8:0] B_po_counter_load_val;
wire B_rclk;
reg B_idelay_ce;
reg B_idelay_ld;
reg [29:0] B_fine_delay;
reg B_fine_delay_sel;
reg C_pi_fine_inc;
reg D_pi_fine_inc;
reg C_pi_fine_enable;
reg D_pi_fine_enable;
reg C_po_counter_load_en;
reg D_po_counter_load_en;
reg C_po_coarse_inc;
reg D_po_coarse_inc;
reg C_po_fine_inc /* synthesis syn_maxfan = 3 */;
reg D_po_fine_inc /* synthesis syn_maxfan = 3 */;
reg C_po_sel_fine_oclk_delay;
reg D_po_sel_fine_oclk_delay;
reg [5:0] C_pi_counter_load_val;
reg [5:0] D_pi_counter_load_val;
reg [8:0] C_po_counter_load_val;
reg [8:0] D_po_counter_load_val;
reg C_po_coarse_enable;
reg D_po_coarse_enable;
reg C_po_fine_enable;
reg D_po_fine_enable;
wire C_po_coarse_overflow;
wire D_po_coarse_overflow;
wire C_po_fine_overflow;
wire D_po_fine_overflow;
wire [8:0] C_po_counter_read_val;
wire [8:0] D_po_counter_read_val;
reg C_po_counter_read_en;
reg D_po_counter_read_en;
wire C_pi_dqs_found;
wire D_pi_dqs_found;
wire C_pi_fine_overflow;
wire D_pi_fine_overflow;
reg C_pi_counter_read_en;
reg D_pi_counter_read_en;
reg C_pi_counter_load_en;
reg D_pi_counter_load_en;
wire C_pi_phase_locked;
wire C_pi_iserdes_rst;
wire D_pi_phase_locked;
wire D_pi_iserdes_rst;
wire C_pi_dqs_out_of_range;
wire D_pi_dqs_out_of_range;
wire [5:0] C_pi_counter_read_val;
wire [5:0] D_pi_counter_read_val;
wire C_rclk;
wire D_rclk;
reg C_idelay_ce;
reg D_idelay_ce;
reg C_idelay_ld;
reg D_idelay_ld;
reg C_pi_rst_dqs_find;
reg D_pi_rst_dqs_find;
reg [29:0] C_fine_delay;
reg [29:0] D_fine_delay;
reg C_fine_delay_sel;
reg D_fine_delay_sel;
wire pi_iserdes_rst;
wire A_if_empty;
wire B_if_empty;
wire C_if_empty;
wire D_if_empty;
wire A_byte_rd_en;
wire B_byte_rd_en;
wire C_byte_rd_en;
wire D_byte_rd_en;
wire A_if_a_empty;
wire B_if_a_empty;
wire C_if_a_empty;
wire D_if_a_empty;
//wire A_if_full;
//wire B_if_full;
//wire C_if_full;
//wire D_if_full;
//wire A_of_empty;
//wire B_of_empty;
//wire C_of_empty;
//wire D_of_empty;
wire A_of_full;
wire B_of_full;
wire C_of_full;
wire D_of_full;
wire A_of_ctl_full;
wire B_of_ctl_full;
wire C_of_ctl_full;
wire D_of_ctl_full;
wire A_of_data_full;
wire B_of_data_full;
wire C_of_data_full;
wire D_of_data_full;
wire A_of_a_full;
wire B_of_a_full;
wire C_of_a_full;
wire D_of_a_full;
wire A_pre_fifo_a_full;
wire B_pre_fifo_a_full;
wire C_pre_fifo_a_full;
wire D_pre_fifo_a_full;
wire A_of_ctl_a_full;
wire B_of_ctl_a_full;
wire C_of_ctl_a_full;
wire D_of_ctl_a_full;
wire A_of_data_a_full;
wire B_of_data_a_full;
wire C_of_data_a_full;
wire D_of_data_a_full;
wire A_pre_data_a_full;
wire B_pre_data_a_full;
wire C_pre_data_a_full;
wire D_pre_data_a_full;
wire [LP_DDR_CK_WIDTH*6-1:0] A_ddr_clk; // for generation
wire [LP_DDR_CK_WIDTH*6-1:0] B_ddr_clk; //
wire [LP_DDR_CK_WIDTH*6-1:0] C_ddr_clk; //
wire [LP_DDR_CK_WIDTH*6-1:0] D_ddr_clk; //
wire [3:0] dummy_data;
wire [31:0] _phy_ctl_wd;
wire [1:0] phy_encalib;
assign pi_dqs_found_all =
(! PRESENT_DATA_A | A_pi_dqs_found) &
(! PRESENT_DATA_B | B_pi_dqs_found) &
(! PRESENT_DATA_C | C_pi_dqs_found) &
(! PRESENT_DATA_D | D_pi_dqs_found) ;
assign pi_dqs_found_any =
( PRESENT_DATA_A & A_pi_dqs_found) |
( PRESENT_DATA_B & B_pi_dqs_found) |
( PRESENT_DATA_C & C_pi_dqs_found) |
( PRESENT_DATA_D & D_pi_dqs_found) ;
assign pi_phase_locked_all =
(! PRESENT_DATA_A | A_pi_phase_locked) &
(! PRESENT_DATA_B | B_pi_phase_locked) &
(! PRESENT_DATA_C | C_pi_phase_locked) &
(! PRESENT_DATA_D | D_pi_phase_locked);
wire dangling_inputs = (& dummy_data) & input_sink & 1'b0; // this reduces all constant 0 values to 1 signal
// which is combined into another signals such that
// the other signal isn't changed. The purpose
// is to fake the tools into ignoring dangling inputs.
// Because it is anded with 1'b0, the contributing signals
// are folded as constants or trimmed.
assign if_empty = !if_empty_def ? (A_if_empty | B_if_empty | C_if_empty | D_if_empty) : (A_if_empty & B_if_empty & C_if_empty & D_if_empty);
assign byte_rd_en = !if_empty_def ? (A_byte_rd_en & B_byte_rd_en & C_byte_rd_en & D_byte_rd_en) :
(A_byte_rd_en | B_byte_rd_en | C_byte_rd_en | D_byte_rd_en);
assign if_empty_or = (A_if_empty | B_if_empty | C_if_empty | D_if_empty);
assign if_empty_and = (A_if_empty & B_if_empty & C_if_empty & D_if_empty);
assign if_a_empty = A_if_a_empty | B_if_a_empty | C_if_a_empty | D_if_a_empty;
//assign if_full = A_if_full | B_if_full | C_if_full | D_if_full ;
//assign of_empty = A_of_empty & B_of_empty & C_of_empty & D_of_empty;
assign of_ctl_full = A_of_ctl_full | B_of_ctl_full | C_of_ctl_full | D_of_ctl_full ;
assign of_data_full = A_of_data_full | B_of_data_full | C_of_data_full | D_of_data_full ;
assign of_ctl_a_full = A_of_ctl_a_full | B_of_ctl_a_full | C_of_ctl_a_full | D_of_ctl_a_full ;
assign of_data_a_full = A_of_data_a_full | B_of_data_a_full | C_of_data_a_full | D_of_data_a_full | dangling_inputs ;
assign pre_data_a_full = A_pre_data_a_full | B_pre_data_a_full | C_pre_data_a_full | D_pre_data_a_full;
function [79:0] part_select_80;
input [319:0] vector;
input [1:0] select;
begin
case (select)
2'b00 : part_select_80[79:0] = vector[1*80-1:0*80];
2'b01 : part_select_80[79:0] = vector[2*80-1:1*80];
2'b10 : part_select_80[79:0] = vector[3*80-1:2*80];
2'b11 : part_select_80[79:0] = vector[4*80-1:3*80];
endcase
end
endfunction
wire [319:0] phy_dout_remap;
reg rst_out_trig = 1'b0;
reg [31:0] rclk_delay;
reg rst_edge1 = 1'b0;
reg rst_edge2 = 1'b0;
reg rst_edge3 = 1'b0;
reg rst_edge_detect = 1'b0;
wire rclk_;
reg rst_out_start = 1'b0 ;
reg rst_primitives=0;
reg A_rst_primitives=0;
reg B_rst_primitives=0;
reg C_rst_primitives=0;
reg D_rst_primitives=0;
`ifdef USE_PHY_CONTROL_TEST
wire [15:0] test_output;
wire [15:0] test_input;
wire [2:0] test_select=0;
wire scan_enable = 0;
`endif
generate
genvar i;
if (RCLK_SELECT_LANE == "A") begin
assign rclk_ = A_rclk;
assign pi_iserdes_rst = A_pi_iserdes_rst;
end
else if (RCLK_SELECT_LANE == "B") begin
assign rclk_ = B_rclk;
assign pi_iserdes_rst = B_pi_iserdes_rst;
end
else if (RCLK_SELECT_LANE == "C") begin
assign rclk_ = C_rclk;
assign pi_iserdes_rst = C_pi_iserdes_rst;
end
else if (RCLK_SELECT_LANE == "D") begin
assign rclk_ = D_rclk;
assign pi_iserdes_rst = D_pi_iserdes_rst;
end
else begin
assign rclk_ = B_rclk; // default
end
endgenerate
assign ddr_clk[LP_DDR_CK_WIDTH*6-1:0] = A_ddr_clk;
assign ddr_clk[LP_DDR_CK_WIDTH*12-1:LP_DDR_CK_WIDTH*6] = B_ddr_clk;
assign ddr_clk[LP_DDR_CK_WIDTH*18-1:LP_DDR_CK_WIDTH*12] = C_ddr_clk;
assign ddr_clk[LP_DDR_CK_WIDTH*24-1:LP_DDR_CK_WIDTH*18] = D_ddr_clk;
assign pi_phase_locked_lanes =
{(! PRESENT_DATA_A[0] | A_pi_phase_locked),
(! PRESENT_DATA_B[0] | B_pi_phase_locked) ,
(! PRESENT_DATA_C[0] | C_pi_phase_locked) ,
(! PRESENT_DATA_D[0] | D_pi_phase_locked)};
assign pi_dqs_found_lanes = {D_pi_dqs_found, C_pi_dqs_found, B_pi_dqs_found, A_pi_dqs_found};
// this block scrubs X from rclk_delay[11]
reg rclk_delay_11;
always @(rclk_delay[11]) begin : rclk_delay_11_blk
if ( rclk_delay[11])
rclk_delay_11 = 1;
else
rclk_delay_11 = 0;
end
always @(posedge phy_clk or posedge rst ) begin
// scrub 4-state values from rclk_delay[11]
if ( rst) begin
rst_out <= #1 0;
end
else begin
if ( rclk_delay_11)
rst_out <= #1 1;
end
end
always @(posedge phy_clk ) begin
// phy_ctl_ready drives reset of the system
rst_primitives <= !phy_ctl_ready ;
A_rst_primitives <= rst_primitives ;
B_rst_primitives <= rst_primitives ;
C_rst_primitives <= rst_primitives ;
D_rst_primitives <= rst_primitives ;
rclk_delay <= #1 (rclk_delay << 1) | (!rst_primitives && phyGo);
mcGo <= #1 rst_out ;
end
generate
if (BYTE_LANES[0]) begin
assign dummy_data[0] = 0;
end
else begin
assign dummy_data[0] = &phy_dout_remap[1*80-1:0*80];
end
if (BYTE_LANES[1]) begin
assign dummy_data[1] = 0;
end
else begin
assign dummy_data[1] = &phy_dout_remap[2*80-1:1*80];
end
if (BYTE_LANES[2]) begin
assign dummy_data[2] = 0;
end
else begin
assign dummy_data[2] = &phy_dout_remap[3*80-1:2*80];
end
if (BYTE_LANES[3]) begin
assign dummy_data[3] = 0;
end
else begin
assign dummy_data[3] = &phy_dout_remap[4*80-1:3*80];
end
if (PRESENT_DATA_A) begin
assign A_of_data_full = A_of_full;
assign A_of_ctl_full = 0;
assign A_of_data_a_full = A_of_a_full;
assign A_of_ctl_a_full = 0;
assign A_pre_data_a_full = A_pre_fifo_a_full;
end
else begin
assign A_of_ctl_full = A_of_full;
assign A_of_data_full = 0;
assign A_of_ctl_a_full = A_of_a_full;
assign A_of_data_a_full = 0;
assign A_pre_data_a_full = 0;
end
if (PRESENT_DATA_B) begin
assign B_of_data_full = B_of_full;
assign B_of_ctl_full = 0;
assign B_of_data_a_full = B_of_a_full;
assign B_of_ctl_a_full = 0;
assign B_pre_data_a_full = B_pre_fifo_a_full;
end
else begin
assign B_of_ctl_full = B_of_full;
assign B_of_data_full = 0;
assign B_of_ctl_a_full = B_of_a_full;
assign B_of_data_a_full = 0;
assign B_pre_data_a_full = 0;
end
if (PRESENT_DATA_C) begin
assign C_of_data_full = C_of_full;
assign C_of_ctl_full = 0;
assign C_of_data_a_full = C_of_a_full;
assign C_of_ctl_a_full = 0;
assign C_pre_data_a_full = C_pre_fifo_a_full;
end
else begin
assign C_of_ctl_full = C_of_full;
assign C_of_data_full = 0;
assign C_of_ctl_a_full = C_of_a_full;
assign C_of_data_a_full = 0;
assign C_pre_data_a_full = 0;
end
if (PRESENT_DATA_D) begin
assign D_of_data_full = D_of_full;
assign D_of_ctl_full = 0;
assign D_of_data_a_full = D_of_a_full;
assign D_of_ctl_a_full = 0;
assign D_pre_data_a_full = D_pre_fifo_a_full;
end
else begin
assign D_of_ctl_full = D_of_full;
assign D_of_data_full = 0;
assign D_of_ctl_a_full = D_of_a_full;
assign D_of_data_a_full = 0;
assign D_pre_data_a_full = 0;
end
// byte lane must exist and be data lane.
if (PRESENT_DATA_A )
case ( LANE_REMAP[1:0] )
2'b00 : assign phy_din[1*80-1:0] = phy_din_remap[79:0];
2'b01 : assign phy_din[2*80-1:80] = phy_din_remap[79:0];
2'b10 : assign phy_din[3*80-1:160] = phy_din_remap[79:0];
2'b11 : assign phy_din[4*80-1:240] = phy_din_remap[79:0];
endcase
else
case ( LANE_REMAP[1:0] )
2'b00 : assign phy_din[1*80-1:0] = 80'h0;
2'b01 : assign phy_din[2*80-1:80] = 80'h0;
2'b10 : assign phy_din[3*80-1:160] = 80'h0;
2'b11 : assign phy_din[4*80-1:240] = 80'h0;
endcase
if (PRESENT_DATA_B )
case ( LANE_REMAP[5:4] )
2'b00 : assign phy_din[1*80-1:0] = phy_din_remap[159:80];
2'b01 : assign phy_din[2*80-1:80] = phy_din_remap[159:80];
2'b10 : assign phy_din[3*80-1:160] = phy_din_remap[159:80];
2'b11 : assign phy_din[4*80-1:240] = phy_din_remap[159:80];
endcase
else
if (HIGHEST_LANE > 1)
case ( LANE_REMAP[5:4] )
2'b00 : assign phy_din[1*80-1:0] = 80'h0;
2'b01 : assign phy_din[2*80-1:80] = 80'h0;
2'b10 : assign phy_din[3*80-1:160] = 80'h0;
2'b11 : assign phy_din[4*80-1:240] = 80'h0;
endcase
if (PRESENT_DATA_C)
case ( LANE_REMAP[9:8] )
2'b00 : assign phy_din[1*80-1:0] = phy_din_remap[239:160];
2'b01 : assign phy_din[2*80-1:80] = phy_din_remap[239:160];
2'b10 : assign phy_din[3*80-1:160] = phy_din_remap[239:160];
2'b11 : assign phy_din[4*80-1:240] = phy_din_remap[239:160];
endcase
else
if (HIGHEST_LANE > 2)
case ( LANE_REMAP[9:8] )
2'b00 : assign phy_din[1*80-1:0] = 80'h0;
2'b01 : assign phy_din[2*80-1:80] = 80'h0;
2'b10 : assign phy_din[3*80-1:160] = 80'h0;
2'b11 : assign phy_din[4*80-1:240] = 80'h0;
endcase
if (PRESENT_DATA_D )
case ( LANE_REMAP[13:12] )
2'b00 : assign phy_din[1*80-1:0] = phy_din_remap[319:240];
2'b01 : assign phy_din[2*80-1:80] = phy_din_remap[319:240];
2'b10 : assign phy_din[3*80-1:160] = phy_din_remap[319:240];
2'b11 : assign phy_din[4*80-1:240] = phy_din_remap[319:240];
endcase
else
if (HIGHEST_LANE > 3)
case ( LANE_REMAP[13:12] )
2'b00 : assign phy_din[1*80-1:0] = 80'h0;
2'b01 : assign phy_din[2*80-1:80] = 80'h0;
2'b10 : assign phy_din[3*80-1:160] = 80'h0;
2'b11 : assign phy_din[4*80-1:240] = 80'h0;
endcase
if (HIGHEST_LANE > 1)
assign _phy_ctl_wd = {phy_ctl_wd[31:23], data_offset, phy_ctl_wd[16:0]};
if (HIGHEST_LANE == 1)
assign _phy_ctl_wd = phy_ctl_wd;
//BUFR #(.BUFR_DIVIDE ("1")) rclk_buf(.I(rclk_), .O(rclk), .CE (1'b1), .CLR (pi_iserdes_rst));
BUFIO rclk_buf(.I(rclk_), .O(rclk) );
if ( BYTE_LANES[0] ) begin : ddr_byte_lane_A
assign phy_dout_remap[79:0] = part_select_80(phy_dout, (LANE_REMAP[1:0]));
mig_7series_v2_3_ddr_byte_lane #
(
.ABCD ("A"),
.PO_DATA_CTL (PC_DATA_CTL_N[0] ? "TRUE" : "FALSE"),
.BITLANES (BITLANES[11:0]),
.BITLANES_OUTONLY (BITLANES_OUTONLY[11:0]),
.OF_ALMOST_EMPTY_VALUE (OF_ALMOST_EMPTY_VALUE),
.OF_ALMOST_FULL_VALUE (OF_ALMOST_FULL_VALUE),
.OF_SYNCHRONOUS_MODE (OF_SYNCHRONOUS_MODE),
//.OF_OUTPUT_DISABLE (OF_OUTPUT_DISABLE),
//.OF_ARRAY_MODE (A_OF_ARRAY_MODE),
//.IF_ARRAY_MODE (IF_ARRAY_MODE),
.IF_ALMOST_EMPTY_VALUE (IF_ALMOST_EMPTY_VALUE),
.IF_ALMOST_FULL_VALUE (IF_ALMOST_FULL_VALUE),
.IF_SYNCHRONOUS_MODE (IF_SYNCHRONOUS_MODE),
.IODELAY_GRP (IODELAY_GRP),
.FPGA_SPEED_GRADE (FPGA_SPEED_GRADE),
.BANK_TYPE (BANK_TYPE),
.BYTELANES_DDR_CK (BYTELANES_DDR_CK),
.RCLK_SELECT_LANE (RCLK_SELECT_LANE),
.USE_PRE_POST_FIFO (USE_PRE_POST_FIFO),
.SYNTHESIS (SYNTHESIS),
.TCK (TCK),
.PC_CLK_RATIO (PC_CLK_RATIO),
.PI_BURST_MODE (A_PI_BURST_MODE),
.PI_CLKOUT_DIV (A_PI_CLKOUT_DIV),
.PI_FREQ_REF_DIV (A_PI_FREQ_REF_DIV),
.PI_FINE_DELAY (A_PI_FINE_DELAY),
.PI_OUTPUT_CLK_SRC (A_PI_OUTPUT_CLK_SRC),
.PI_SYNC_IN_DIV_RST (A_PI_SYNC_IN_DIV_RST),
.PI_SEL_CLK_OFFSET (PI_SEL_CLK_OFFSET),
.PO_CLKOUT_DIV (A_PO_CLKOUT_DIV),
.PO_FINE_DELAY (A_PO_FINE_DELAY),
.PO_COARSE_BYPASS (A_PO_COARSE_BYPASS),
.PO_COARSE_DELAY (A_PO_COARSE_DELAY),
.PO_OCLK_DELAY (A_PO_OCLK_DELAY),
.PO_OCLKDELAY_INV (A_PO_OCLKDELAY_INV),
.PO_OUTPUT_CLK_SRC (A_PO_OUTPUT_CLK_SRC),
.PO_SYNC_IN_DIV_RST (A_PO_SYNC_IN_DIV_RST),
.OSERDES_DATA_RATE (A_OS_DATA_RATE),
.OSERDES_DATA_WIDTH (A_OS_DATA_WIDTH),
.IDELAYE2_IDELAY_TYPE (A_IDELAYE2_IDELAY_TYPE),
.IDELAYE2_IDELAY_VALUE (A_IDELAYE2_IDELAY_VALUE)
,.CKE_ODT_AUX (CKE_ODT_AUX)
)
ddr_byte_lane_A(
.mem_dq_out (mem_dq_out[11:0]),
.mem_dq_ts (mem_dq_ts[11:0]),
.mem_dq_in (mem_dq_in[9:0]),
.mem_dqs_out (mem_dqs_out[0]),
.mem_dqs_ts (mem_dqs_ts[0]),
.mem_dqs_in (mem_dqs_in[0]),
.rst (A_rst_primitives),
.phy_clk (phy_clk),
.freq_refclk (freq_refclk),
.mem_refclk (mem_refclk),
.idelayctrl_refclk (idelayctrl_refclk),
.sync_pulse (sync_pulse),
.ddr_ck_out (A_ddr_clk),
.rclk (A_rclk),
.pi_dqs_found (A_pi_dqs_found),
.dqs_out_of_range (A_pi_dqs_out_of_range),
.if_empty_def (if_empty_def),
.if_a_empty (A_if_a_empty),
.if_empty (A_if_empty),
.if_a_full (/*if_a_full*/),
.if_full (/*A_if_full*/),
.of_a_empty (/*of_a_empty*/),
.of_empty (/*A_of_empty*/),
.of_a_full (A_of_a_full),
.of_full (A_of_full),
.pre_fifo_a_full (A_pre_fifo_a_full),
.phy_din (phy_din_remap[79:0]),
.phy_dout (phy_dout_remap[79:0]),
.phy_cmd_wr_en (phy_cmd_wr_en),
.phy_data_wr_en (phy_data_wr_en),
.phy_rd_en (phy_rd_en),
.phaser_ctl_bus (phaser_ctl_bus),
.if_rst (if_rst),
.byte_rd_en_oth_lanes ({B_byte_rd_en,C_byte_rd_en,D_byte_rd_en}),
.byte_rd_en_oth_banks (byte_rd_en_oth_banks),
.byte_rd_en (A_byte_rd_en),
// calibration signals
.idelay_inc (idelay_inc),
.idelay_ce (A_idelay_ce),
.idelay_ld (A_idelay_ld),
.pi_rst_dqs_find (A_pi_rst_dqs_find),
.po_en_calib (phy_encalib),
.po_fine_enable (A_po_fine_enable),
.po_coarse_enable (A_po_coarse_enable),
.po_fine_inc (A_po_fine_inc),
.po_coarse_inc (A_po_coarse_inc),
.po_counter_load_en (A_po_counter_load_en),
.po_counter_read_en (A_po_counter_read_en),
.po_counter_load_val (A_po_counter_load_val),
.po_coarse_overflow (A_po_coarse_overflow),
.po_fine_overflow (A_po_fine_overflow),
.po_counter_read_val (A_po_counter_read_val),
.po_sel_fine_oclk_delay(A_po_sel_fine_oclk_delay),
.pi_en_calib (phy_encalib),
.pi_fine_enable (A_pi_fine_enable),
.pi_fine_inc (A_pi_fine_inc),
.pi_counter_load_en (A_pi_counter_load_en),
.pi_counter_read_en (A_pi_counter_read_en),
.pi_counter_load_val (A_pi_counter_load_val),
.pi_fine_overflow (A_pi_fine_overflow),
.pi_counter_read_val (A_pi_counter_read_val),
.pi_iserdes_rst (A_pi_iserdes_rst),
.pi_phase_locked (A_pi_phase_locked),
.fine_delay (A_fine_delay),
.fine_delay_sel (A_fine_delay_sel)
);
end
else begin : no_ddr_byte_lane_A
assign A_of_a_full = 1'b0;
assign A_of_full = 1'b0;
assign A_pre_fifo_a_full = 1'b0;
assign A_if_empty = 1'b0;
assign A_byte_rd_en = 1'b1;
assign A_if_a_empty = 1'b0;
assign A_pi_phase_locked = 1;
assign A_pi_dqs_found = 1;
assign A_rclk = 0;
assign A_ddr_clk = {LP_DDR_CK_WIDTH*6{1'b0}};
assign A_pi_counter_read_val = 0;
assign A_po_counter_read_val = 0;
assign A_pi_fine_overflow = 0;
assign A_po_coarse_overflow = 0;
assign A_po_fine_overflow = 0;
end
if ( BYTE_LANES[1] ) begin : ddr_byte_lane_B
assign phy_dout_remap[159:80] = part_select_80(phy_dout, (LANE_REMAP[5:4]));
mig_7series_v2_3_ddr_byte_lane #
(
.ABCD ("B"),
.PO_DATA_CTL (PC_DATA_CTL_N[1] ? "TRUE" : "FALSE"),
.BITLANES (BITLANES[23:12]),
.BITLANES_OUTONLY (BITLANES_OUTONLY[23:12]),
.OF_ALMOST_EMPTY_VALUE (OF_ALMOST_EMPTY_VALUE),
.OF_ALMOST_FULL_VALUE (OF_ALMOST_FULL_VALUE),
.OF_SYNCHRONOUS_MODE (OF_SYNCHRONOUS_MODE),
//.OF_OUTPUT_DISABLE (OF_OUTPUT_DISABLE),
//.OF_ARRAY_MODE (B_OF_ARRAY_MODE),
//.IF_ARRAY_MODE (IF_ARRAY_MODE),
.IF_ALMOST_EMPTY_VALUE (IF_ALMOST_EMPTY_VALUE),
.IF_ALMOST_FULL_VALUE (IF_ALMOST_FULL_VALUE),
.IF_SYNCHRONOUS_MODE (IF_SYNCHRONOUS_MODE),
.IODELAY_GRP (IODELAY_GRP),
.FPGA_SPEED_GRADE (FPGA_SPEED_GRADE),
.BANK_TYPE (BANK_TYPE),
.BYTELANES_DDR_CK (BYTELANES_DDR_CK),
.RCLK_SELECT_LANE (RCLK_SELECT_LANE),
.USE_PRE_POST_FIFO (USE_PRE_POST_FIFO),
.SYNTHESIS (SYNTHESIS),
.TCK (TCK),
.PC_CLK_RATIO (PC_CLK_RATIO),
.PI_BURST_MODE (B_PI_BURST_MODE),
.PI_CLKOUT_DIV (B_PI_CLKOUT_DIV),
.PI_FREQ_REF_DIV (B_PI_FREQ_REF_DIV),
.PI_FINE_DELAY (B_PI_FINE_DELAY),
.PI_OUTPUT_CLK_SRC (B_PI_OUTPUT_CLK_SRC),
.PI_SYNC_IN_DIV_RST (B_PI_SYNC_IN_DIV_RST),
.PI_SEL_CLK_OFFSET (PI_SEL_CLK_OFFSET),
.PO_CLKOUT_DIV (B_PO_CLKOUT_DIV),
.PO_FINE_DELAY (B_PO_FINE_DELAY),
.PO_COARSE_BYPASS (B_PO_COARSE_BYPASS),
.PO_COARSE_DELAY (B_PO_COARSE_DELAY),
.PO_OCLK_DELAY (B_PO_OCLK_DELAY),
.PO_OCLKDELAY_INV (B_PO_OCLKDELAY_INV),
.PO_OUTPUT_CLK_SRC (B_PO_OUTPUT_CLK_SRC),
.PO_SYNC_IN_DIV_RST (B_PO_SYNC_IN_DIV_RST),
.OSERDES_DATA_RATE (B_OS_DATA_RATE),
.OSERDES_DATA_WIDTH (B_OS_DATA_WIDTH),
.IDELAYE2_IDELAY_TYPE (B_IDELAYE2_IDELAY_TYPE),
.IDELAYE2_IDELAY_VALUE (B_IDELAYE2_IDELAY_VALUE)
,.CKE_ODT_AUX (CKE_ODT_AUX)
)
ddr_byte_lane_B(
.mem_dq_out (mem_dq_out[23:12]),
.mem_dq_ts (mem_dq_ts[23:12]),
.mem_dq_in (mem_dq_in[19:10]),
.mem_dqs_out (mem_dqs_out[1]),
.mem_dqs_ts (mem_dqs_ts[1]),
.mem_dqs_in (mem_dqs_in[1]),
.rst (B_rst_primitives),
.phy_clk (phy_clk),
.freq_refclk (freq_refclk),
.mem_refclk (mem_refclk),
.idelayctrl_refclk (idelayctrl_refclk),
.sync_pulse (sync_pulse),
.ddr_ck_out (B_ddr_clk),
.rclk (B_rclk),
.pi_dqs_found (B_pi_dqs_found),
.dqs_out_of_range (B_pi_dqs_out_of_range),
.if_empty_def (if_empty_def),
.if_a_empty (B_if_a_empty),
.if_empty (B_if_empty),
.if_a_full (/*if_a_full*/),
.if_full (/*B_if_full*/),
.of_a_empty (/*of_a_empty*/),
.of_empty (/*B_of_empty*/),
.of_a_full (B_of_a_full),
.of_full (B_of_full),
.pre_fifo_a_full (B_pre_fifo_a_full),
.phy_din (phy_din_remap[159:80]),
.phy_dout (phy_dout_remap[159:80]),
.phy_cmd_wr_en (phy_cmd_wr_en),
.phy_data_wr_en (phy_data_wr_en),
.phy_rd_en (phy_rd_en),
.phaser_ctl_bus (phaser_ctl_bus),
.if_rst (if_rst),
.byte_rd_en_oth_lanes ({A_byte_rd_en,C_byte_rd_en,D_byte_rd_en}),
.byte_rd_en_oth_banks (byte_rd_en_oth_banks),
.byte_rd_en (B_byte_rd_en),
// calibration signals
.idelay_inc (idelay_inc),
.idelay_ce (B_idelay_ce),
.idelay_ld (B_idelay_ld),
.pi_rst_dqs_find (B_pi_rst_dqs_find),
.po_en_calib (phy_encalib),
.po_fine_enable (B_po_fine_enable),
.po_coarse_enable (B_po_coarse_enable),
.po_fine_inc (B_po_fine_inc),
.po_coarse_inc (B_po_coarse_inc),
.po_counter_load_en (B_po_counter_load_en),
.po_counter_read_en (B_po_counter_read_en),
.po_counter_load_val (B_po_counter_load_val),
.po_coarse_overflow (B_po_coarse_overflow),
.po_fine_overflow (B_po_fine_overflow),
.po_counter_read_val (B_po_counter_read_val),
.po_sel_fine_oclk_delay(B_po_sel_fine_oclk_delay),
.pi_en_calib (phy_encalib),
.pi_fine_enable (B_pi_fine_enable),
.pi_fine_inc (B_pi_fine_inc),
.pi_counter_load_en (B_pi_counter_load_en),
.pi_counter_read_en (B_pi_counter_read_en),
.pi_counter_load_val (B_pi_counter_load_val),
.pi_fine_overflow (B_pi_fine_overflow),
.pi_counter_read_val (B_pi_counter_read_val),
.pi_iserdes_rst (B_pi_iserdes_rst),
.pi_phase_locked (B_pi_phase_locked),
.fine_delay (B_fine_delay),
.fine_delay_sel (B_fine_delay_sel)
);
end
else begin : no_ddr_byte_lane_B
assign B_of_a_full = 1'b0;
assign B_of_full = 1'b0;
assign B_pre_fifo_a_full = 1'b0;
assign B_if_empty = 1'b0;
assign B_if_a_empty = 1'b0;
assign B_byte_rd_en = 1'b1;
assign B_pi_phase_locked = 1;
assign B_pi_dqs_found = 1;
assign B_rclk = 0;
assign B_ddr_clk = {LP_DDR_CK_WIDTH*6{1'b0}};
assign B_pi_counter_read_val = 0;
assign B_po_counter_read_val = 0;
assign B_pi_fine_overflow = 0;
assign B_po_coarse_overflow = 0;
assign B_po_fine_overflow = 0;
end
if ( BYTE_LANES[2] ) begin : ddr_byte_lane_C
assign phy_dout_remap[239:160] = part_select_80(phy_dout, (LANE_REMAP[9:8]));
mig_7series_v2_3_ddr_byte_lane #
(
.ABCD ("C"),
.PO_DATA_CTL (PC_DATA_CTL_N[2] ? "TRUE" : "FALSE"),
.BITLANES (BITLANES[35:24]),
.BITLANES_OUTONLY (BITLANES_OUTONLY[35:24]),
.OF_ALMOST_EMPTY_VALUE (OF_ALMOST_EMPTY_VALUE),
.OF_ALMOST_FULL_VALUE (OF_ALMOST_FULL_VALUE),
.OF_SYNCHRONOUS_MODE (OF_SYNCHRONOUS_MODE),
//.OF_OUTPUT_DISABLE (OF_OUTPUT_DISABLE),
//.OF_ARRAY_MODE (C_OF_ARRAY_MODE),
//.IF_ARRAY_MODE (IF_ARRAY_MODE),
.IF_ALMOST_EMPTY_VALUE (IF_ALMOST_EMPTY_VALUE),
.IF_ALMOST_FULL_VALUE (IF_ALMOST_FULL_VALUE),
.IF_SYNCHRONOUS_MODE (IF_SYNCHRONOUS_MODE),
.IODELAY_GRP (IODELAY_GRP),
.FPGA_SPEED_GRADE (FPGA_SPEED_GRADE),
.BANK_TYPE (BANK_TYPE),
.BYTELANES_DDR_CK (BYTELANES_DDR_CK),
.RCLK_SELECT_LANE (RCLK_SELECT_LANE),
.USE_PRE_POST_FIFO (USE_PRE_POST_FIFO),
.SYNTHESIS (SYNTHESIS),
.TCK (TCK),
.PC_CLK_RATIO (PC_CLK_RATIO),
.PI_BURST_MODE (C_PI_BURST_MODE),
.PI_CLKOUT_DIV (C_PI_CLKOUT_DIV),
.PI_FREQ_REF_DIV (C_PI_FREQ_REF_DIV),
.PI_FINE_DELAY (C_PI_FINE_DELAY),
.PI_OUTPUT_CLK_SRC (C_PI_OUTPUT_CLK_SRC),
.PI_SYNC_IN_DIV_RST (C_PI_SYNC_IN_DIV_RST),
.PI_SEL_CLK_OFFSET (PI_SEL_CLK_OFFSET),
.PO_CLKOUT_DIV (C_PO_CLKOUT_DIV),
.PO_FINE_DELAY (C_PO_FINE_DELAY),
.PO_COARSE_BYPASS (C_PO_COARSE_BYPASS),
.PO_COARSE_DELAY (C_PO_COARSE_DELAY),
.PO_OCLK_DELAY (C_PO_OCLK_DELAY),
.PO_OCLKDELAY_INV (C_PO_OCLKDELAY_INV),
.PO_OUTPUT_CLK_SRC (C_PO_OUTPUT_CLK_SRC),
.PO_SYNC_IN_DIV_RST (C_PO_SYNC_IN_DIV_RST),
.OSERDES_DATA_RATE (C_OS_DATA_RATE),
.OSERDES_DATA_WIDTH (C_OS_DATA_WIDTH),
.IDELAYE2_IDELAY_TYPE (C_IDELAYE2_IDELAY_TYPE),
.IDELAYE2_IDELAY_VALUE (C_IDELAYE2_IDELAY_VALUE)
,.CKE_ODT_AUX (CKE_ODT_AUX)
)
ddr_byte_lane_C(
.mem_dq_out (mem_dq_out[35:24]),
.mem_dq_ts (mem_dq_ts[35:24]),
.mem_dq_in (mem_dq_in[29:20]),
.mem_dqs_out (mem_dqs_out[2]),
.mem_dqs_ts (mem_dqs_ts[2]),
.mem_dqs_in (mem_dqs_in[2]),
.rst (C_rst_primitives),
.phy_clk (phy_clk),
.freq_refclk (freq_refclk),
.mem_refclk (mem_refclk),
.idelayctrl_refclk (idelayctrl_refclk),
.sync_pulse (sync_pulse),
.ddr_ck_out (C_ddr_clk),
.rclk (C_rclk),
.pi_dqs_found (C_pi_dqs_found),
.dqs_out_of_range (C_pi_dqs_out_of_range),
.if_empty_def (if_empty_def),
.if_a_empty (C_if_a_empty),
.if_empty (C_if_empty),
.if_a_full (/*if_a_full*/),
.if_full (/*C_if_full*/),
.of_a_empty (/*of_a_empty*/),
.of_empty (/*C_of_empty*/),
.of_a_full (C_of_a_full),
.of_full (C_of_full),
.pre_fifo_a_full (C_pre_fifo_a_full),
.phy_din (phy_din_remap[239:160]),
.phy_dout (phy_dout_remap[239:160]),
.phy_cmd_wr_en (phy_cmd_wr_en),
.phy_data_wr_en (phy_data_wr_en),
.phy_rd_en (phy_rd_en),
.phaser_ctl_bus (phaser_ctl_bus),
.if_rst (if_rst),
.byte_rd_en_oth_lanes ({A_byte_rd_en,B_byte_rd_en,D_byte_rd_en}),
.byte_rd_en_oth_banks (byte_rd_en_oth_banks),
.byte_rd_en (C_byte_rd_en),
// calibration signals
.idelay_inc (idelay_inc),
.idelay_ce (C_idelay_ce),
.idelay_ld (C_idelay_ld),
.pi_rst_dqs_find (C_pi_rst_dqs_find),
.po_en_calib (phy_encalib),
.po_fine_enable (C_po_fine_enable),
.po_coarse_enable (C_po_coarse_enable),
.po_fine_inc (C_po_fine_inc),
.po_coarse_inc (C_po_coarse_inc),
.po_counter_load_en (C_po_counter_load_en),
.po_counter_read_en (C_po_counter_read_en),
.po_counter_load_val (C_po_counter_load_val),
.po_coarse_overflow (C_po_coarse_overflow),
.po_fine_overflow (C_po_fine_overflow),
.po_counter_read_val (C_po_counter_read_val),
.po_sel_fine_oclk_delay(C_po_sel_fine_oclk_delay),
.pi_en_calib (phy_encalib),
.pi_fine_enable (C_pi_fine_enable),
.pi_fine_inc (C_pi_fine_inc),
.pi_counter_load_en (C_pi_counter_load_en),
.pi_counter_read_en (C_pi_counter_read_en),
.pi_counter_load_val (C_pi_counter_load_val),
.pi_fine_overflow (C_pi_fine_overflow),
.pi_counter_read_val (C_pi_counter_read_val),
.pi_iserdes_rst (C_pi_iserdes_rst),
.pi_phase_locked (C_pi_phase_locked),
.fine_delay (C_fine_delay),
.fine_delay_sel (C_fine_delay_sel)
);
end
else begin : no_ddr_byte_lane_C
assign C_of_a_full = 1'b0;
assign C_of_full = 1'b0;
assign C_pre_fifo_a_full = 1'b0;
assign C_if_empty = 1'b0;
assign C_byte_rd_en = 1'b1;
assign C_if_a_empty = 1'b0;
assign C_pi_phase_locked = 1;
assign C_pi_dqs_found = 1;
assign C_rclk = 0;
assign C_ddr_clk = {LP_DDR_CK_WIDTH*6{1'b0}};
assign C_pi_counter_read_val = 0;
assign C_po_counter_read_val = 0;
assign C_pi_fine_overflow = 0;
assign C_po_coarse_overflow = 0;
assign C_po_fine_overflow = 0;
end
if ( BYTE_LANES[3] ) begin : ddr_byte_lane_D
assign phy_dout_remap[319:240] = part_select_80(phy_dout, (LANE_REMAP[13:12]));
mig_7series_v2_3_ddr_byte_lane #
(
.ABCD ("D"),
.PO_DATA_CTL (PC_DATA_CTL_N[3] ? "TRUE" : "FALSE"),
.BITLANES (BITLANES[47:36]),
.BITLANES_OUTONLY (BITLANES_OUTONLY[47:36]),
.OF_ALMOST_EMPTY_VALUE (OF_ALMOST_EMPTY_VALUE),
.OF_ALMOST_FULL_VALUE (OF_ALMOST_FULL_VALUE),
.OF_SYNCHRONOUS_MODE (OF_SYNCHRONOUS_MODE),
//.OF_OUTPUT_DISABLE (OF_OUTPUT_DISABLE),
//.OF_ARRAY_MODE (D_OF_ARRAY_MODE),
//.IF_ARRAY_MODE (IF_ARRAY_MODE),
.IF_ALMOST_EMPTY_VALUE (IF_ALMOST_EMPTY_VALUE),
.IF_ALMOST_FULL_VALUE (IF_ALMOST_FULL_VALUE),
.IF_SYNCHRONOUS_MODE (IF_SYNCHRONOUS_MODE),
.IODELAY_GRP (IODELAY_GRP),
.FPGA_SPEED_GRADE (FPGA_SPEED_GRADE),
.BANK_TYPE (BANK_TYPE),
.BYTELANES_DDR_CK (BYTELANES_DDR_CK),
.RCLK_SELECT_LANE (RCLK_SELECT_LANE),
.USE_PRE_POST_FIFO (USE_PRE_POST_FIFO),
.SYNTHESIS (SYNTHESIS),
.TCK (TCK),
.PC_CLK_RATIO (PC_CLK_RATIO),
.PI_BURST_MODE (D_PI_BURST_MODE),
.PI_CLKOUT_DIV (D_PI_CLKOUT_DIV),
.PI_FREQ_REF_DIV (D_PI_FREQ_REF_DIV),
.PI_FINE_DELAY (D_PI_FINE_DELAY),
.PI_OUTPUT_CLK_SRC (D_PI_OUTPUT_CLK_SRC),
.PI_SYNC_IN_DIV_RST (D_PI_SYNC_IN_DIV_RST),
.PI_SEL_CLK_OFFSET (PI_SEL_CLK_OFFSET),
.PO_CLKOUT_DIV (D_PO_CLKOUT_DIV),
.PO_FINE_DELAY (D_PO_FINE_DELAY),
.PO_COARSE_BYPASS (D_PO_COARSE_BYPASS),
.PO_COARSE_DELAY (D_PO_COARSE_DELAY),
.PO_OCLK_DELAY (D_PO_OCLK_DELAY),
.PO_OCLKDELAY_INV (D_PO_OCLKDELAY_INV),
.PO_OUTPUT_CLK_SRC (D_PO_OUTPUT_CLK_SRC),
.PO_SYNC_IN_DIV_RST (D_PO_SYNC_IN_DIV_RST),
.OSERDES_DATA_RATE (D_OS_DATA_RATE),
.OSERDES_DATA_WIDTH (D_OS_DATA_WIDTH),
.IDELAYE2_IDELAY_TYPE (D_IDELAYE2_IDELAY_TYPE),
.IDELAYE2_IDELAY_VALUE (D_IDELAYE2_IDELAY_VALUE)
,.CKE_ODT_AUX (CKE_ODT_AUX)
)
ddr_byte_lane_D(
.mem_dq_out (mem_dq_out[47:36]),
.mem_dq_ts (mem_dq_ts[47:36]),
.mem_dq_in (mem_dq_in[39:30]),
.mem_dqs_out (mem_dqs_out[3]),
.mem_dqs_ts (mem_dqs_ts[3]),
.mem_dqs_in (mem_dqs_in[3]),
.rst (D_rst_primitives),
.phy_clk (phy_clk),
.freq_refclk (freq_refclk),
.mem_refclk (mem_refclk),
.idelayctrl_refclk (idelayctrl_refclk),
.sync_pulse (sync_pulse),
.ddr_ck_out (D_ddr_clk),
.rclk (D_rclk),
.pi_dqs_found (D_pi_dqs_found),
.dqs_out_of_range (D_pi_dqs_out_of_range),
.if_empty_def (if_empty_def),
.if_a_empty (D_if_a_empty),
.if_empty (D_if_empty),
.if_a_full (/*if_a_full*/),
.if_full (/*D_if_full*/),
.of_a_empty (/*of_a_empty*/),
.of_empty (/*D_of_empty*/),
.of_a_full (D_of_a_full),
.of_full (D_of_full),
.pre_fifo_a_full (D_pre_fifo_a_full),
.phy_din (phy_din_remap[319:240]),
.phy_dout (phy_dout_remap[319:240]),
.phy_cmd_wr_en (phy_cmd_wr_en),
.phy_data_wr_en (phy_data_wr_en),
.phy_rd_en (phy_rd_en),
.phaser_ctl_bus (phaser_ctl_bus),
.idelay_inc (idelay_inc),
.idelay_ce (D_idelay_ce),
.idelay_ld (D_idelay_ld),
.if_rst (if_rst),
.byte_rd_en_oth_lanes ({A_byte_rd_en,B_byte_rd_en,C_byte_rd_en}),
.byte_rd_en_oth_banks (byte_rd_en_oth_banks),
.byte_rd_en (D_byte_rd_en),
// calibration signals
.pi_rst_dqs_find (D_pi_rst_dqs_find),
.po_en_calib (phy_encalib),
.po_fine_enable (D_po_fine_enable),
.po_coarse_enable (D_po_coarse_enable),
.po_fine_inc (D_po_fine_inc),
.po_coarse_inc (D_po_coarse_inc),
.po_counter_load_en (D_po_counter_load_en),
.po_counter_read_en (D_po_counter_read_en),
.po_counter_load_val (D_po_counter_load_val),
.po_coarse_overflow (D_po_coarse_overflow),
.po_fine_overflow (D_po_fine_overflow),
.po_counter_read_val (D_po_counter_read_val),
.po_sel_fine_oclk_delay(D_po_sel_fine_oclk_delay),
.pi_en_calib (phy_encalib),
.pi_fine_enable (D_pi_fine_enable),
.pi_fine_inc (D_pi_fine_inc),
.pi_counter_load_en (D_pi_counter_load_en),
.pi_counter_read_en (D_pi_counter_read_en),
.pi_counter_load_val (D_pi_counter_load_val),
.pi_fine_overflow (D_pi_fine_overflow),
.pi_counter_read_val (D_pi_counter_read_val),
.pi_iserdes_rst (D_pi_iserdes_rst),
.pi_phase_locked (D_pi_phase_locked),
.fine_delay (D_fine_delay),
.fine_delay_sel (D_fine_delay_sel)
);
end
else begin : no_ddr_byte_lane_D
assign D_of_a_full = 1'b0;
assign D_of_full = 1'b0;
assign D_pre_fifo_a_full = 1'b0;
assign D_if_empty = 1'b0;
assign D_byte_rd_en = 1'b1;
assign D_if_a_empty = 1'b0;
assign D_rclk = 0;
assign D_ddr_clk = {LP_DDR_CK_WIDTH*6{1'b0}};
assign D_pi_dqs_found = 1;
assign D_pi_phase_locked = 1;
assign D_pi_counter_read_val = 0;
assign D_po_counter_read_val = 0;
assign D_pi_fine_overflow = 0;
assign D_po_coarse_overflow = 0;
assign D_po_fine_overflow = 0;
end
endgenerate
assign phaser_ctl_bus[MSB_RANK_SEL_I : MSB_RANK_SEL_I - 7] = in_rank;
PHY_CONTROL #(
.AO_WRLVL_EN ( PC_AO_WRLVL_EN),
.AO_TOGGLE ( PC_AO_TOGGLE),
.BURST_MODE ( PC_BURST_MODE),
.CO_DURATION ( PC_CO_DURATION ),
.CLK_RATIO ( PC_CLK_RATIO),
.DATA_CTL_A_N ( PC_DATA_CTL_A),
.DATA_CTL_B_N ( PC_DATA_CTL_B),
.DATA_CTL_C_N ( PC_DATA_CTL_C),
.DATA_CTL_D_N ( PC_DATA_CTL_D),
.DI_DURATION ( PC_DI_DURATION ),
.DO_DURATION ( PC_DO_DURATION ),
.EVENTS_DELAY ( PC_EVENTS_DELAY),
.FOUR_WINDOW_CLOCKS ( PC_FOUR_WINDOW_CLOCKS),
.MULTI_REGION ( PC_MULTI_REGION ),
.PHY_COUNT_ENABLE ( PC_PHY_COUNT_EN),
.DISABLE_SEQ_MATCH ( PC_DISABLE_SEQ_MATCH),
.SYNC_MODE ( PC_SYNC_MODE),
.CMD_OFFSET ( PC_CMD_OFFSET),
.RD_CMD_OFFSET_0 ( PC_RD_CMD_OFFSET_0),
.RD_CMD_OFFSET_1 ( PC_RD_CMD_OFFSET_1),
.RD_CMD_OFFSET_2 ( PC_RD_CMD_OFFSET_2),
.RD_CMD_OFFSET_3 ( PC_RD_CMD_OFFSET_3),
.RD_DURATION_0 ( PC_RD_DURATION_0),
.RD_DURATION_1 ( PC_RD_DURATION_1),
.RD_DURATION_2 ( PC_RD_DURATION_2),
.RD_DURATION_3 ( PC_RD_DURATION_3),
.WR_CMD_OFFSET_0 ( PC_WR_CMD_OFFSET_0),
.WR_CMD_OFFSET_1 ( PC_WR_CMD_OFFSET_1),
.WR_CMD_OFFSET_2 ( PC_WR_CMD_OFFSET_2),
.WR_CMD_OFFSET_3 ( PC_WR_CMD_OFFSET_3),
.WR_DURATION_0 ( PC_WR_DURATION_0),
.WR_DURATION_1 ( PC_WR_DURATION_1),
.WR_DURATION_2 ( PC_WR_DURATION_2),
.WR_DURATION_3 ( PC_WR_DURATION_3)
) phy_control_i (
.AUXOUTPUT (aux_out),
.INBURSTPENDING (phaser_ctl_bus[MSB_BURST_PEND_PI:MSB_BURST_PEND_PI-3]),
.INRANKA (in_rank[1:0]),
.INRANKB (in_rank[3:2]),
.INRANKC (in_rank[5:4]),
.INRANKD (in_rank[7:6]),
.OUTBURSTPENDING (phaser_ctl_bus[MSB_BURST_PEND_PO:MSB_BURST_PEND_PO-3]),
.PCENABLECALIB (phy_encalib),
.PHYCTLALMOSTFULL (phy_ctl_a_full),
.PHYCTLEMPTY (phy_ctl_empty),
.PHYCTLFULL (phy_ctl_full),
.PHYCTLREADY (phy_ctl_ready),
.MEMREFCLK (mem_refclk),
.PHYCLK (phy_ctl_clk),
.PHYCTLMSTREMPTY (phy_ctl_mstr_empty),
.PHYCTLWD (_phy_ctl_wd),
.PHYCTLWRENABLE (phy_ctl_wr),
.PLLLOCK (pll_lock),
.REFDLLLOCK (ref_dll_lock), // is reset while !locked
.RESET (rst),
.SYNCIN (sync_pulse),
.READCALIBENABLE (phy_read_calib),
.WRITECALIBENABLE (phy_write_calib)
`ifdef USE_PHY_CONTROL_TEST
, .TESTINPUT (16'b0),
.TESTOUTPUT (test_output),
.TESTSELECT (test_select),
.SCANENABLEN (scan_enable)
`endif
);
// register outputs to give extra slack in timing
always @(posedge phy_clk ) begin
case (calib_sel[1:0])
2'h0: begin
po_coarse_overflow <= #1 A_po_coarse_overflow;
po_fine_overflow <= #1 A_po_fine_overflow;
po_counter_read_val <= #1 A_po_counter_read_val;
pi_fine_overflow <= #1 A_pi_fine_overflow;
pi_counter_read_val<= #1 A_pi_counter_read_val;
pi_phase_locked <= #1 A_pi_phase_locked;
if ( calib_in_common)
pi_dqs_found <= #1 pi_dqs_found_any;
else
pi_dqs_found <= #1 A_pi_dqs_found;
pi_dqs_out_of_range <= #1 A_pi_dqs_out_of_range;
end
2'h1: begin
po_coarse_overflow <= #1 B_po_coarse_overflow;
po_fine_overflow <= #1 B_po_fine_overflow;
po_counter_read_val <= #1 B_po_counter_read_val;
pi_fine_overflow <= #1 B_pi_fine_overflow;
pi_counter_read_val <= #1 B_pi_counter_read_val;
pi_phase_locked <= #1 B_pi_phase_locked;
if ( calib_in_common)
pi_dqs_found <= #1 pi_dqs_found_any;
else
pi_dqs_found <= #1 B_pi_dqs_found;
pi_dqs_out_of_range <= #1 B_pi_dqs_out_of_range;
end
2'h2: begin
po_coarse_overflow <= #1 C_po_coarse_overflow;
po_fine_overflow <= #1 C_po_fine_overflow;
po_counter_read_val <= #1 C_po_counter_read_val;
pi_fine_overflow <= #1 C_pi_fine_overflow;
pi_counter_read_val <= #1 C_pi_counter_read_val;
pi_phase_locked <= #1 C_pi_phase_locked;
if ( calib_in_common)
pi_dqs_found <= #1 pi_dqs_found_any;
else
pi_dqs_found <= #1 C_pi_dqs_found;
pi_dqs_out_of_range <= #1 C_pi_dqs_out_of_range;
end
2'h3: begin
po_coarse_overflow <= #1 D_po_coarse_overflow;
po_fine_overflow <= #1 D_po_fine_overflow;
po_counter_read_val <= #1 D_po_counter_read_val;
pi_fine_overflow <= #1 D_pi_fine_overflow;
pi_counter_read_val <= #1 D_pi_counter_read_val;
pi_phase_locked <= #1 D_pi_phase_locked;
if ( calib_in_common)
pi_dqs_found <= #1 pi_dqs_found_any;
else
pi_dqs_found <= #1 D_pi_dqs_found;
pi_dqs_out_of_range <= #1 D_pi_dqs_out_of_range;
end
default: begin
po_coarse_overflow <= po_coarse_overflow;
end
endcase
end
wire B_mux_ctrl;
wire C_mux_ctrl;
wire D_mux_ctrl;
generate
if (HIGHEST_LANE > 1)
assign B_mux_ctrl = ( !calib_zero_lanes[1] && ( ! calib_zero_ctrl || DATA_CTL_N[1]));
else
assign B_mux_ctrl = 0;
if (HIGHEST_LANE > 2)
assign C_mux_ctrl = ( !calib_zero_lanes[2] && (! calib_zero_ctrl || DATA_CTL_N[2]));
else
assign C_mux_ctrl = 0;
if (HIGHEST_LANE > 3)
assign D_mux_ctrl = ( !calib_zero_lanes[3] && ( ! calib_zero_ctrl || DATA_CTL_N[3]));
else
assign D_mux_ctrl = 0;
endgenerate
always @(*) begin
A_pi_fine_enable = 0;
A_pi_fine_inc = 0;
A_pi_counter_load_en = 0;
A_pi_counter_read_en = 0;
A_pi_counter_load_val = 0;
A_pi_rst_dqs_find = 0;
A_po_fine_enable = 0;
A_po_coarse_enable = 0;
A_po_fine_inc = 0;
A_po_coarse_inc = 0;
A_po_counter_load_en = 0;
A_po_counter_read_en = 0;
A_po_counter_load_val = 0;
A_po_sel_fine_oclk_delay = 0;
A_idelay_ce = 0;
A_idelay_ld = 0;
A_fine_delay = 0;
A_fine_delay_sel = 0;
B_pi_fine_enable = 0;
B_pi_fine_inc = 0;
B_pi_counter_load_en = 0;
B_pi_counter_read_en = 0;
B_pi_counter_load_val = 0;
B_pi_rst_dqs_find = 0;
B_po_fine_enable = 0;
B_po_coarse_enable = 0;
B_po_fine_inc = 0;
B_po_coarse_inc = 0;
B_po_counter_load_en = 0;
B_po_counter_read_en = 0;
B_po_counter_load_val = 0;
B_po_sel_fine_oclk_delay = 0;
B_idelay_ce = 0;
B_idelay_ld = 0;
B_fine_delay = 0;
B_fine_delay_sel = 0;
C_pi_fine_enable = 0;
C_pi_fine_inc = 0;
C_pi_counter_load_en = 0;
C_pi_counter_read_en = 0;
C_pi_counter_load_val = 0;
C_pi_rst_dqs_find = 0;
C_po_fine_enable = 0;
C_po_coarse_enable = 0;
C_po_fine_inc = 0;
C_po_coarse_inc = 0;
C_po_counter_load_en = 0;
C_po_counter_read_en = 0;
C_po_counter_load_val = 0;
C_po_sel_fine_oclk_delay = 0;
C_idelay_ce = 0;
C_idelay_ld = 0;
C_fine_delay = 0;
C_fine_delay_sel = 0;
D_pi_fine_enable = 0;
D_pi_fine_inc = 0;
D_pi_counter_load_en = 0;
D_pi_counter_read_en = 0;
D_pi_counter_load_val = 0;
D_pi_rst_dqs_find = 0;
D_po_fine_enable = 0;
D_po_coarse_enable = 0;
D_po_fine_inc = 0;
D_po_coarse_inc = 0;
D_po_counter_load_en = 0;
D_po_counter_read_en = 0;
D_po_counter_load_val = 0;
D_po_sel_fine_oclk_delay = 0;
D_idelay_ce = 0;
D_idelay_ld = 0;
D_fine_delay = 0;
D_fine_delay_sel = 0;
if ( calib_sel[2]) begin
// if this is asserted, all calib signals are deasserted
A_pi_fine_enable = 0;
A_pi_fine_inc = 0;
A_pi_counter_load_en = 0;
A_pi_counter_read_en = 0;
A_pi_counter_load_val = 0;
A_pi_rst_dqs_find = 0;
A_po_fine_enable = 0;
A_po_coarse_enable = 0;
A_po_fine_inc = 0;
A_po_coarse_inc = 0;
A_po_counter_load_en = 0;
A_po_counter_read_en = 0;
A_po_counter_load_val = 0;
A_po_sel_fine_oclk_delay = 0;
A_idelay_ce = 0;
A_idelay_ld = 0;
A_fine_delay = 0;
A_fine_delay_sel = 0;
B_pi_fine_enable = 0;
B_pi_fine_inc = 0;
B_pi_counter_load_en = 0;
B_pi_counter_read_en = 0;
B_pi_counter_load_val = 0;
B_pi_rst_dqs_find = 0;
B_po_fine_enable = 0;
B_po_coarse_enable = 0;
B_po_fine_inc = 0;
B_po_coarse_inc = 0;
B_po_counter_load_en = 0;
B_po_counter_read_en = 0;
B_po_counter_load_val = 0;
B_po_sel_fine_oclk_delay = 0;
B_idelay_ce = 0;
B_idelay_ld = 0;
B_fine_delay = 0;
B_fine_delay_sel = 0;
C_pi_fine_enable = 0;
C_pi_fine_inc = 0;
C_pi_counter_load_en = 0;
C_pi_counter_read_en = 0;
C_pi_counter_load_val = 0;
C_pi_rst_dqs_find = 0;
C_po_fine_enable = 0;
C_po_coarse_enable = 0;
C_po_fine_inc = 0;
C_po_coarse_inc = 0;
C_po_counter_load_en = 0;
C_po_counter_read_en = 0;
C_po_counter_load_val = 0;
C_po_sel_fine_oclk_delay = 0;
C_idelay_ce = 0;
C_idelay_ld = 0;
C_fine_delay = 0;
C_fine_delay_sel = 0;
D_pi_fine_enable = 0;
D_pi_fine_inc = 0;
D_pi_counter_load_en = 0;
D_pi_counter_read_en = 0;
D_pi_counter_load_val = 0;
D_pi_rst_dqs_find = 0;
D_po_fine_enable = 0;
D_po_coarse_enable = 0;
D_po_fine_inc = 0;
D_po_coarse_inc = 0;
D_po_counter_load_en = 0;
D_po_counter_read_en = 0;
D_po_counter_load_val = 0;
D_po_sel_fine_oclk_delay = 0;
D_idelay_ce = 0;
D_idelay_ld = 0;
D_fine_delay = 0;
D_fine_delay_sel = 0;
end else
if (calib_in_common) begin
// if this is asserted, each signal is broadcast to all phasers
// in common
if ( !calib_zero_lanes[0] && (! calib_zero_ctrl || DATA_CTL_N[0])) begin
A_pi_fine_enable = pi_fine_enable;
A_pi_fine_inc = pi_fine_inc;
A_pi_counter_load_en = pi_counter_load_en;
A_pi_counter_read_en = pi_counter_read_en;
A_pi_counter_load_val = pi_counter_load_val;
A_pi_rst_dqs_find = pi_rst_dqs_find;
A_po_fine_enable = po_fine_enable;
A_po_coarse_enable = po_coarse_enable;
A_po_fine_inc = po_fine_inc;
A_po_coarse_inc = po_coarse_inc;
A_po_counter_load_en = po_counter_load_en;
A_po_counter_read_en = po_counter_read_en;
A_po_counter_load_val = po_counter_load_val;
A_po_sel_fine_oclk_delay = po_sel_fine_oclk_delay;
A_idelay_ce = idelay_ce;
A_idelay_ld = idelay_ld;
A_fine_delay = fine_delay ;
A_fine_delay_sel = fine_delay_sel;
end
if ( B_mux_ctrl) begin
B_pi_fine_enable = pi_fine_enable;
B_pi_fine_inc = pi_fine_inc;
B_pi_counter_load_en = pi_counter_load_en;
B_pi_counter_read_en = pi_counter_read_en;
B_pi_counter_load_val = pi_counter_load_val;
B_pi_rst_dqs_find = pi_rst_dqs_find;
B_po_fine_enable = po_fine_enable;
B_po_coarse_enable = po_coarse_enable;
B_po_fine_inc = po_fine_inc;
B_po_coarse_inc = po_coarse_inc;
B_po_counter_load_en = po_counter_load_en;
B_po_counter_read_en = po_counter_read_en;
B_po_counter_load_val = po_counter_load_val;
B_po_sel_fine_oclk_delay = po_sel_fine_oclk_delay;
B_idelay_ce = idelay_ce;
B_idelay_ld = idelay_ld;
B_fine_delay = fine_delay ;
B_fine_delay_sel = fine_delay_sel;
end
if ( C_mux_ctrl) begin
C_pi_fine_enable = pi_fine_enable;
C_pi_fine_inc = pi_fine_inc;
C_pi_counter_load_en = pi_counter_load_en;
C_pi_counter_read_en = pi_counter_read_en;
C_pi_counter_load_val = pi_counter_load_val;
C_pi_rst_dqs_find = pi_rst_dqs_find;
C_po_fine_enable = po_fine_enable;
C_po_coarse_enable = po_coarse_enable;
C_po_fine_inc = po_fine_inc;
C_po_coarse_inc = po_coarse_inc;
C_po_counter_load_en = po_counter_load_en;
C_po_counter_read_en = po_counter_read_en;
C_po_counter_load_val = po_counter_load_val;
C_po_sel_fine_oclk_delay = po_sel_fine_oclk_delay;
C_idelay_ce = idelay_ce;
C_idelay_ld = idelay_ld;
C_fine_delay = fine_delay ;
C_fine_delay_sel = fine_delay_sel;
end
if ( D_mux_ctrl) begin
D_pi_fine_enable = pi_fine_enable;
D_pi_fine_inc = pi_fine_inc;
D_pi_counter_load_en = pi_counter_load_en;
D_pi_counter_read_en = pi_counter_read_en;
D_pi_counter_load_val = pi_counter_load_val;
D_pi_rst_dqs_find = pi_rst_dqs_find;
D_po_fine_enable = po_fine_enable;
D_po_coarse_enable = po_coarse_enable;
D_po_fine_inc = po_fine_inc;
D_po_coarse_inc = po_coarse_inc;
D_po_counter_load_en = po_counter_load_en;
D_po_counter_read_en = po_counter_read_en;
D_po_counter_load_val = po_counter_load_val;
D_po_sel_fine_oclk_delay = po_sel_fine_oclk_delay;
D_idelay_ce = idelay_ce;
D_idelay_ld = idelay_ld;
D_fine_delay = fine_delay ;
D_fine_delay_sel = fine_delay_sel;
end
end
else begin
// otherwise, only a single phaser is selected
case (calib_sel[1:0])
0: begin
A_pi_fine_enable = pi_fine_enable;
A_pi_fine_inc = pi_fine_inc;
A_pi_counter_load_en = pi_counter_load_en;
A_pi_counter_read_en = pi_counter_read_en;
A_pi_counter_load_val = pi_counter_load_val;
A_pi_rst_dqs_find = pi_rst_dqs_find;
A_po_fine_enable = po_fine_enable;
A_po_coarse_enable = po_coarse_enable;
A_po_fine_inc = po_fine_inc;
A_po_coarse_inc = po_coarse_inc;
A_po_counter_load_en = po_counter_load_en;
A_po_counter_read_en = po_counter_read_en;
A_po_counter_load_val = po_counter_load_val;
A_po_sel_fine_oclk_delay = po_sel_fine_oclk_delay;
A_idelay_ce = idelay_ce;
A_idelay_ld = idelay_ld;
A_fine_delay = fine_delay ;
A_fine_delay_sel = fine_delay_sel;
end
1: begin
B_pi_fine_enable = pi_fine_enable;
B_pi_fine_inc = pi_fine_inc;
B_pi_counter_load_en = pi_counter_load_en;
B_pi_counter_read_en = pi_counter_read_en;
B_pi_counter_load_val = pi_counter_load_val;
B_pi_rst_dqs_find = pi_rst_dqs_find;
B_po_fine_enable = po_fine_enable;
B_po_coarse_enable = po_coarse_enable;
B_po_fine_inc = po_fine_inc;
B_po_coarse_inc = po_coarse_inc;
B_po_counter_load_en = po_counter_load_en;
B_po_counter_read_en = po_counter_read_en;
B_po_counter_load_val = po_counter_load_val;
B_po_sel_fine_oclk_delay = po_sel_fine_oclk_delay;
B_idelay_ce = idelay_ce;
B_idelay_ld = idelay_ld;
B_fine_delay = fine_delay ;
B_fine_delay_sel = fine_delay_sel;
end
2: begin
C_pi_fine_enable = pi_fine_enable;
C_pi_fine_inc = pi_fine_inc;
C_pi_counter_load_en = pi_counter_load_en;
C_pi_counter_read_en = pi_counter_read_en;
C_pi_counter_load_val = pi_counter_load_val;
C_pi_rst_dqs_find = pi_rst_dqs_find;
C_po_fine_enable = po_fine_enable;
C_po_coarse_enable = po_coarse_enable;
C_po_fine_inc = po_fine_inc;
C_po_coarse_inc = po_coarse_inc;
C_po_counter_load_en = po_counter_load_en;
C_po_counter_read_en = po_counter_read_en;
C_po_counter_load_val = po_counter_load_val;
C_po_sel_fine_oclk_delay = po_sel_fine_oclk_delay;
C_idelay_ce = idelay_ce;
C_idelay_ld = idelay_ld;
C_fine_delay = fine_delay ;
C_fine_delay_sel = fine_delay_sel;
end
3: begin
D_pi_fine_enable = pi_fine_enable;
D_pi_fine_inc = pi_fine_inc;
D_pi_counter_load_en = pi_counter_load_en;
D_pi_counter_read_en = pi_counter_read_en;
D_pi_counter_load_val = pi_counter_load_val;
D_pi_rst_dqs_find = pi_rst_dqs_find;
D_po_fine_enable = po_fine_enable;
D_po_coarse_enable = po_coarse_enable;
D_po_fine_inc = po_fine_inc;
D_po_coarse_inc = po_coarse_inc;
D_po_counter_load_en = po_counter_load_en;
D_po_counter_load_val = po_counter_load_val;
D_po_counter_read_en = po_counter_read_en;
D_po_sel_fine_oclk_delay = po_sel_fine_oclk_delay;
D_idelay_ce = idelay_ce;
D_idelay_ld = idelay_ld;
D_fine_delay = fine_delay ;
D_fine_delay_sel = fine_delay_sel;
end
endcase
end
end
//obligatory phaser-ref
PHASER_REF phaser_ref_i(
.LOCKED (ref_dll_lock),
.CLKIN (freq_refclk),
.PWRDWN (1'b0),
.RST ( ! pll_lock)
);
// optional idelay_ctrl
generate
if ( GENERATE_IDELAYCTRL == "TRUE")
IDELAYCTRL idelayctrl (
.RDY (/*idelayctrl_rdy*/),
.REFCLK (idelayctrl_refclk),
.RST (rst)
);
endgenerate
endmodule
|
//*****************************************************************************
// (c) Copyright 2009 - 2013 Xilinx, Inc. All rights reserved.
//
// This file contains confidential and proprietary information
// of Xilinx, Inc. and is protected under U.S. and
// international copyright and other intellectual property
// laws.
//
// DISCLAIMER
// This disclaimer is not a license and does not grant any
// rights to the materials distributed herewith. Except as
// otherwise provided in a valid license issued to you by
// Xilinx, and to the maximum extent permitted by applicable
// law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// (2) Xilinx shall not be liable (whether in contract or tort,
// including negligence, or under any other theory of
// liability) for any loss or damage of any kind or nature
// related to, arising under or in connection with these
// materials, including for any direct, or any indirect,
// special, incidental, or consequential loss or damage
// (including loss of data, profits, goodwill, or any type of
// loss or damage suffered as a result of any action brought
// by a third party) even if such damage or loss was
// reasonably foreseeable or Xilinx had been advised of the
// possibility of the same.
//
// CRITICAL APPLICATIONS
// Xilinx products are not designed or intended to be fail-
// safe, or for use in any application requiring fail-safe
// performance, such as life-support or safety devices or
// systems, Class III medical devices, nuclear facilities,
// applications related to the deployment of airbags, or any
// other applications that could lead to death, personal
// injury, or severe property or environmental damage
// (individually and collectively, "Critical
// Applications"). Customer assumes the sole risk and
// liability of any use of Xilinx products in Critical
// Applications, subject only to applicable laws and
// regulations governing limitations on product liability.
//
// THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// PART OF THIS FILE AT ALL TIMES.
//
//*****************************************************************************
// ____ ____
// / /\/ /
// /___/ \ / Vendor: Xilinx
// \ \ \/ Version:
// \ \ Application: MIG
// / / Filename: ddr_phy_wrcal.v
// /___/ /\ Date Last Modified: $Date: 2011/06/02 08:35:09 $
// \ \ / \ Date Created:
// \___\/\___\
//
//Device: 7 Series
//Design Name: DDR3 SDRAM
//Purpose:
// Write calibration logic to align DQS to correct CK edge
//Reference:
//Revision History:
//*****************************************************************************
/******************************************************************************
**$Id: ddr_phy_wrcal.v,v 1.1 2011/06/02 08:35:09 mishra Exp $
**$Date: 2011/06/02 08:35:09 $
**$Author:
**$Revision:
**$Source:
******************************************************************************/
`timescale 1ps/1ps
module mig_7series_v2_3_ddr_phy_wrcal #
(
parameter TCQ = 100, // clk->out delay (sim only)
parameter nCK_PER_CLK = 2, // # of memory clocks per CLK
parameter CLK_PERIOD = 2500,
parameter DQ_WIDTH = 64, // # of DQ (data)
parameter DQS_CNT_WIDTH = 3, // = ceil(log2(DQS_WIDTH))
parameter DQS_WIDTH = 8, // # of DQS (strobe)
parameter DRAM_WIDTH = 8, // # of DQ per DQS
parameter PRE_REV3ES = "OFF", // Delay O/Ps using Phaser_Out fine dly
parameter SIM_CAL_OPTION = "NONE" // Skip various calibration steps
)
(
input clk,
input rst,
// Calibration status, control signals
input wrcal_start,
input wrcal_rd_wait,
input wrcal_sanity_chk,
input dqsfound_retry_done,
input phy_rddata_en,
output dqsfound_retry,
output wrcal_read_req,
output reg wrcal_act_req,
output reg wrcal_done,
output reg wrcal_pat_err,
output reg wrcal_prech_req,
output reg temp_wrcal_done,
output reg wrcal_sanity_chk_done,
input prech_done,
// Captured data in resync clock domain
input [2*nCK_PER_CLK*DQ_WIDTH-1:0] rd_data,
// Write level values of Phaser_Out coarse and fine
// delay taps required to load Phaser_Out register
input [3*DQS_WIDTH-1:0] wl_po_coarse_cnt,
input [6*DQS_WIDTH-1:0] wl_po_fine_cnt,
input wrlvl_byte_done,
output reg wrlvl_byte_redo,
output reg early1_data,
output reg early2_data,
// DQ IDELAY
output reg idelay_ld,
output reg wrcal_pat_resume, // to phy_init for write
output reg [DQS_CNT_WIDTH:0] po_stg2_wrcal_cnt,
output phy_if_reset,
// Debug Port
output [6*DQS_WIDTH-1:0] dbg_final_po_fine_tap_cnt,
output [3*DQS_WIDTH-1:0] dbg_final_po_coarse_tap_cnt,
output [99:0] dbg_phy_wrcal
);
// Length of calibration sequence (in # of words)
//localparam CAL_PAT_LEN = 8;
// Read data shift register length
localparam RD_SHIFT_LEN = 1; //(nCK_PER_CLK == 4) ? 1 : 2;
// # of reads for reliable read capture
localparam NUM_READS = 2;
// # of cycles to wait after changing RDEN count value
localparam RDEN_WAIT_CNT = 12;
localparam COARSE_CNT = (CLK_PERIOD/nCK_PER_CLK <= 2500) ? 3 : 6;
localparam FINE_CNT = (CLK_PERIOD/nCK_PER_CLK <= 2500) ? 22 : 44;
localparam CAL2_IDLE = 4'h0;
localparam CAL2_READ_WAIT = 4'h1;
localparam CAL2_NEXT_DQS = 4'h2;
localparam CAL2_WRLVL_WAIT = 4'h3;
localparam CAL2_IFIFO_RESET = 4'h4;
localparam CAL2_DQ_IDEL_DEC = 4'h5;
localparam CAL2_DONE = 4'h6;
localparam CAL2_SANITY_WAIT = 4'h7;
localparam CAL2_ERR = 4'h8;
integer i,j,k,l,m,p,q,d;
reg [2:0] po_coarse_tap_cnt [0:DQS_WIDTH-1];
reg [3*DQS_WIDTH-1:0] po_coarse_tap_cnt_w;
reg [5:0] po_fine_tap_cnt [0:DQS_WIDTH-1];
reg [6*DQS_WIDTH-1:0] po_fine_tap_cnt_w;
reg [DQS_CNT_WIDTH:0] wrcal_dqs_cnt_r/* synthesis syn_maxfan = 10 */;
reg [4:0] not_empty_wait_cnt;
reg [3:0] tap_inc_wait_cnt;
reg cal2_done_r;
reg cal2_done_r1;
reg cal2_prech_req_r;
reg [3:0] cal2_state_r;
reg [3:0] cal2_state_r1;
reg [2:0] wl_po_coarse_cnt_w [0:DQS_WIDTH-1];
reg [5:0] wl_po_fine_cnt_w [0:DQS_WIDTH-1];
reg cal2_if_reset;
reg wrcal_pat_resume_r;
reg wrcal_pat_resume_r1;
reg wrcal_pat_resume_r2;
reg wrcal_pat_resume_r3;
reg [DRAM_WIDTH-1:0] mux_rd_fall0_r;
reg [DRAM_WIDTH-1:0] mux_rd_fall1_r;
reg [DRAM_WIDTH-1:0] mux_rd_rise0_r;
reg [DRAM_WIDTH-1:0] mux_rd_rise1_r;
reg [DRAM_WIDTH-1:0] mux_rd_fall2_r;
reg [DRAM_WIDTH-1:0] mux_rd_fall3_r;
reg [DRAM_WIDTH-1:0] mux_rd_rise2_r;
reg [DRAM_WIDTH-1:0] mux_rd_rise3_r;
reg pat_data_match_r;
reg pat1_data_match_r;
reg pat1_data_match_r1;
reg pat2_data_match_r;
reg pat_data_match_valid_r;
wire [RD_SHIFT_LEN-1:0] pat_fall0 [3:0];
wire [RD_SHIFT_LEN-1:0] pat_fall1 [3:0];
wire [RD_SHIFT_LEN-1:0] pat_fall2 [3:0];
wire [RD_SHIFT_LEN-1:0] pat_fall3 [3:0];
wire [RD_SHIFT_LEN-1:0] pat1_fall0 [3:0];
wire [RD_SHIFT_LEN-1:0] pat1_fall1 [3:0];
wire [RD_SHIFT_LEN-1:0] pat2_fall0 [3:0];
wire [RD_SHIFT_LEN-1:0] pat2_fall1 [3:0];
wire [RD_SHIFT_LEN-1:0] early_fall0 [3:0];
wire [RD_SHIFT_LEN-1:0] early_fall1 [3:0];
wire [RD_SHIFT_LEN-1:0] early_fall2 [3:0];
wire [RD_SHIFT_LEN-1:0] early_fall3 [3:0];
wire [RD_SHIFT_LEN-1:0] early1_fall0 [3:0];
wire [RD_SHIFT_LEN-1:0] early1_fall1 [3:0];
wire [RD_SHIFT_LEN-1:0] early2_fall0 [3:0];
wire [RD_SHIFT_LEN-1:0] early2_fall1 [3:0];
reg [DRAM_WIDTH-1:0] pat_match_fall0_r;
reg pat_match_fall0_and_r;
reg [DRAM_WIDTH-1:0] pat_match_fall1_r;
reg pat_match_fall1_and_r;
reg [DRAM_WIDTH-1:0] pat_match_fall2_r;
reg pat_match_fall2_and_r;
reg [DRAM_WIDTH-1:0] pat_match_fall3_r;
reg pat_match_fall3_and_r;
reg [DRAM_WIDTH-1:0] pat_match_rise0_r;
reg pat_match_rise0_and_r;
reg [DRAM_WIDTH-1:0] pat_match_rise1_r;
reg pat_match_rise1_and_r;
reg [DRAM_WIDTH-1:0] pat_match_rise2_r;
reg pat_match_rise2_and_r;
reg [DRAM_WIDTH-1:0] pat_match_rise3_r;
reg pat_match_rise3_and_r;
reg [DRAM_WIDTH-1:0] pat1_match_rise0_r;
reg [DRAM_WIDTH-1:0] pat1_match_rise1_r;
reg [DRAM_WIDTH-1:0] pat1_match_fall0_r;
reg [DRAM_WIDTH-1:0] pat1_match_fall1_r;
reg [DRAM_WIDTH-1:0] pat2_match_rise0_r;
reg [DRAM_WIDTH-1:0] pat2_match_rise1_r;
reg [DRAM_WIDTH-1:0] pat2_match_fall0_r;
reg [DRAM_WIDTH-1:0] pat2_match_fall1_r;
reg pat1_match_rise0_and_r;
reg pat1_match_rise1_and_r;
reg pat1_match_fall0_and_r;
reg pat1_match_fall1_and_r;
reg pat2_match_rise0_and_r;
reg pat2_match_rise1_and_r;
reg pat2_match_fall0_and_r;
reg pat2_match_fall1_and_r;
reg early1_data_match_r;
reg early1_data_match_r1;
reg [DRAM_WIDTH-1:0] early1_match_fall0_r;
reg early1_match_fall0_and_r;
reg [DRAM_WIDTH-1:0] early1_match_fall1_r;
reg early1_match_fall1_and_r;
reg [DRAM_WIDTH-1:0] early1_match_fall2_r;
reg early1_match_fall2_and_r;
reg [DRAM_WIDTH-1:0] early1_match_fall3_r;
reg early1_match_fall3_and_r;
reg [DRAM_WIDTH-1:0] early1_match_rise0_r;
reg early1_match_rise0_and_r;
reg [DRAM_WIDTH-1:0] early1_match_rise1_r;
reg early1_match_rise1_and_r;
reg [DRAM_WIDTH-1:0] early1_match_rise2_r;
reg early1_match_rise2_and_r;
reg [DRAM_WIDTH-1:0] early1_match_rise3_r;
reg early1_match_rise3_and_r;
reg early2_data_match_r;
reg [DRAM_WIDTH-1:0] early2_match_fall0_r;
reg early2_match_fall0_and_r;
reg [DRAM_WIDTH-1:0] early2_match_fall1_r;
reg early2_match_fall1_and_r;
reg [DRAM_WIDTH-1:0] early2_match_fall2_r;
reg early2_match_fall2_and_r;
reg [DRAM_WIDTH-1:0] early2_match_fall3_r;
reg early2_match_fall3_and_r;
reg [DRAM_WIDTH-1:0] early2_match_rise0_r;
reg early2_match_rise0_and_r;
reg [DRAM_WIDTH-1:0] early2_match_rise1_r;
reg early2_match_rise1_and_r;
reg [DRAM_WIDTH-1:0] early2_match_rise2_r;
reg early2_match_rise2_and_r;
reg [DRAM_WIDTH-1:0] early2_match_rise3_r;
reg early2_match_rise3_and_r;
wire [RD_SHIFT_LEN-1:0] pat_rise0 [3:0];
wire [RD_SHIFT_LEN-1:0] pat_rise1 [3:0];
wire [RD_SHIFT_LEN-1:0] pat_rise2 [3:0];
wire [RD_SHIFT_LEN-1:0] pat_rise3 [3:0];
wire [RD_SHIFT_LEN-1:0] pat1_rise0 [3:0];
wire [RD_SHIFT_LEN-1:0] pat1_rise1 [3:0];
wire [RD_SHIFT_LEN-1:0] pat2_rise0 [3:0];
wire [RD_SHIFT_LEN-1:0] pat2_rise1 [3:0];
wire [RD_SHIFT_LEN-1:0] early_rise0 [3:0];
wire [RD_SHIFT_LEN-1:0] early_rise1 [3:0];
wire [RD_SHIFT_LEN-1:0] early_rise2 [3:0];
wire [RD_SHIFT_LEN-1:0] early_rise3 [3:0];
wire [RD_SHIFT_LEN-1:0] early1_rise0 [3:0];
wire [RD_SHIFT_LEN-1:0] early1_rise1 [3:0];
wire [RD_SHIFT_LEN-1:0] early2_rise0 [3:0];
wire [RD_SHIFT_LEN-1:0] early2_rise1 [3:0];
wire [DQ_WIDTH-1:0] rd_data_rise0;
wire [DQ_WIDTH-1:0] rd_data_fall0;
wire [DQ_WIDTH-1:0] rd_data_rise1;
wire [DQ_WIDTH-1:0] rd_data_fall1;
wire [DQ_WIDTH-1:0] rd_data_rise2;
wire [DQ_WIDTH-1:0] rd_data_fall2;
wire [DQ_WIDTH-1:0] rd_data_rise3;
wire [DQ_WIDTH-1:0] rd_data_fall3;
reg [DQS_CNT_WIDTH:0] rd_mux_sel_r;
reg rd_active_posedge_r;
reg rd_active_r;
reg rd_active_r1;
reg rd_active_r2;
reg rd_active_r3;
reg rd_active_r4;
reg rd_active_r5;
reg [RD_SHIFT_LEN-1:0] sr_fall0_r [DRAM_WIDTH-1:0];
reg [RD_SHIFT_LEN-1:0] sr_fall1_r [DRAM_WIDTH-1:0];
reg [RD_SHIFT_LEN-1:0] sr_rise0_r [DRAM_WIDTH-1:0];
reg [RD_SHIFT_LEN-1:0] sr_rise1_r [DRAM_WIDTH-1:0];
reg [RD_SHIFT_LEN-1:0] sr_fall2_r [DRAM_WIDTH-1:0];
reg [RD_SHIFT_LEN-1:0] sr_fall3_r [DRAM_WIDTH-1:0];
reg [RD_SHIFT_LEN-1:0] sr_rise2_r [DRAM_WIDTH-1:0];
reg [RD_SHIFT_LEN-1:0] sr_rise3_r [DRAM_WIDTH-1:0];
reg wrlvl_byte_done_r;
reg idelay_ld_done;
reg pat1_detect;
reg early1_detect;
reg wrcal_sanity_chk_r;
reg wrcal_sanity_chk_err;
//***************************************************************************
// Debug
//***************************************************************************
always @(*) begin
for (d = 0; d < DQS_WIDTH; d = d + 1) begin
po_fine_tap_cnt_w[(6*d)+:6] = po_fine_tap_cnt[d];
po_coarse_tap_cnt_w[(3*d)+:3] = po_coarse_tap_cnt[d];
end
end
assign dbg_final_po_fine_tap_cnt = po_fine_tap_cnt_w;
assign dbg_final_po_coarse_tap_cnt = po_coarse_tap_cnt_w;
assign dbg_phy_wrcal[0] = pat_data_match_r;
assign dbg_phy_wrcal[4:1] = cal2_state_r1[3:0];
assign dbg_phy_wrcal[5] = wrcal_sanity_chk_err;
assign dbg_phy_wrcal[6] = wrcal_start;
assign dbg_phy_wrcal[7] = wrcal_done;
assign dbg_phy_wrcal[8] = pat_data_match_valid_r;
assign dbg_phy_wrcal[13+:DQS_CNT_WIDTH]= wrcal_dqs_cnt_r;
assign dbg_phy_wrcal[17+:5] = not_empty_wait_cnt;
assign dbg_phy_wrcal[22] = early1_data;
assign dbg_phy_wrcal[23] = early2_data;
assign dbg_phy_wrcal[24+:8] = mux_rd_rise0_r;
assign dbg_phy_wrcal[32+:8] = mux_rd_fall0_r;
assign dbg_phy_wrcal[40+:8] = mux_rd_rise1_r;
assign dbg_phy_wrcal[48+:8] = mux_rd_fall1_r;
assign dbg_phy_wrcal[56+:8] = mux_rd_rise2_r;
assign dbg_phy_wrcal[64+:8] = mux_rd_fall2_r;
assign dbg_phy_wrcal[72+:8] = mux_rd_rise3_r;
assign dbg_phy_wrcal[80+:8] = mux_rd_fall3_r;
assign dbg_phy_wrcal[88] = early1_data_match_r;
assign dbg_phy_wrcal[89] = early2_data_match_r;
assign dbg_phy_wrcal[90] = wrcal_sanity_chk_r & pat_data_match_valid_r;
assign dbg_phy_wrcal[91] = wrcal_sanity_chk_r;
assign dbg_phy_wrcal[92] = wrcal_sanity_chk_done;
assign dqsfound_retry = 1'b0;
assign wrcal_read_req = 1'b0;
assign phy_if_reset = cal2_if_reset;
//**************************************************************************
// DQS count to hard PHY during write calibration using Phaser_OUT Stage2
// coarse delay
//**************************************************************************
always @(posedge clk) begin
po_stg2_wrcal_cnt <= #TCQ wrcal_dqs_cnt_r;
wrlvl_byte_done_r <= #TCQ wrlvl_byte_done;
wrcal_sanity_chk_r <= #TCQ wrcal_sanity_chk;
end
//***************************************************************************
// Data mux to route appropriate byte to calibration logic - i.e. calibration
// is done sequentially, one byte (or DQS group) at a time
//***************************************************************************
generate
if (nCK_PER_CLK == 4) begin: gen_rd_data_div4
assign rd_data_rise0 = rd_data[DQ_WIDTH-1:0];
assign rd_data_fall0 = rd_data[2*DQ_WIDTH-1:DQ_WIDTH];
assign rd_data_rise1 = rd_data[3*DQ_WIDTH-1:2*DQ_WIDTH];
assign rd_data_fall1 = rd_data[4*DQ_WIDTH-1:3*DQ_WIDTH];
assign rd_data_rise2 = rd_data[5*DQ_WIDTH-1:4*DQ_WIDTH];
assign rd_data_fall2 = rd_data[6*DQ_WIDTH-1:5*DQ_WIDTH];
assign rd_data_rise3 = rd_data[7*DQ_WIDTH-1:6*DQ_WIDTH];
assign rd_data_fall3 = rd_data[8*DQ_WIDTH-1:7*DQ_WIDTH];
end else if (nCK_PER_CLK == 2) begin: gen_rd_data_div2
assign rd_data_rise0 = rd_data[DQ_WIDTH-1:0];
assign rd_data_fall0 = rd_data[2*DQ_WIDTH-1:DQ_WIDTH];
assign rd_data_rise1 = rd_data[3*DQ_WIDTH-1:2*DQ_WIDTH];
assign rd_data_fall1 = rd_data[4*DQ_WIDTH-1:3*DQ_WIDTH];
end
endgenerate
//**************************************************************************
// Final Phaser OUT coarse and fine delay taps after write calibration
// Sum of taps used during write leveling taps and write calibration
//**************************************************************************
always @(*) begin
for (m = 0; m < DQS_WIDTH; m = m + 1) begin
wl_po_coarse_cnt_w[m] = wl_po_coarse_cnt[3*m+:3];
wl_po_fine_cnt_w[m] = wl_po_fine_cnt[6*m+:6];
end
end
always @(posedge clk) begin
if (rst) begin
for (p = 0; p < DQS_WIDTH; p = p + 1) begin
po_coarse_tap_cnt[p] <= #TCQ {3{1'b0}};
po_fine_tap_cnt[p] <= #TCQ {6{1'b0}};
end
end else if (cal2_done_r && ~cal2_done_r1) begin
for (q = 0; q < DQS_WIDTH; q = q + 1) begin
po_coarse_tap_cnt[q] <= #TCQ wl_po_coarse_cnt_w[i];
po_fine_tap_cnt[q] <= #TCQ wl_po_fine_cnt_w[i];
end
end
end
always @(posedge clk) begin
rd_mux_sel_r <= #TCQ wrcal_dqs_cnt_r;
end
// Register outputs for improved timing.
// NOTE: Will need to change when per-bit DQ deskew is supported.
// Currenly all bits in DQS group are checked in aggregate
generate
genvar mux_i;
if (nCK_PER_CLK == 4) begin: gen_mux_rd_div4
for (mux_i = 0; mux_i < DRAM_WIDTH; mux_i = mux_i + 1) begin: gen_mux_rd
always @(posedge clk) begin
mux_rd_rise0_r[mux_i] <= #TCQ rd_data_rise0[DRAM_WIDTH*rd_mux_sel_r + mux_i];
mux_rd_fall0_r[mux_i] <= #TCQ rd_data_fall0[DRAM_WIDTH*rd_mux_sel_r + mux_i];
mux_rd_rise1_r[mux_i] <= #TCQ rd_data_rise1[DRAM_WIDTH*rd_mux_sel_r + mux_i];
mux_rd_fall1_r[mux_i] <= #TCQ rd_data_fall1[DRAM_WIDTH*rd_mux_sel_r + mux_i];
mux_rd_rise2_r[mux_i] <= #TCQ rd_data_rise2[DRAM_WIDTH*rd_mux_sel_r + mux_i];
mux_rd_fall2_r[mux_i] <= #TCQ rd_data_fall2[DRAM_WIDTH*rd_mux_sel_r + mux_i];
mux_rd_rise3_r[mux_i] <= #TCQ rd_data_rise3[DRAM_WIDTH*rd_mux_sel_r + mux_i];
mux_rd_fall3_r[mux_i] <= #TCQ rd_data_fall3[DRAM_WIDTH*rd_mux_sel_r + mux_i];
end
end
end else if (nCK_PER_CLK == 2) begin: gen_mux_rd_div2
for (mux_i = 0; mux_i < DRAM_WIDTH; mux_i = mux_i + 1) begin: gen_mux_rd
always @(posedge clk) begin
mux_rd_rise0_r[mux_i] <= #TCQ rd_data_rise0[DRAM_WIDTH*rd_mux_sel_r + mux_i];
mux_rd_fall0_r[mux_i] <= #TCQ rd_data_fall0[DRAM_WIDTH*rd_mux_sel_r + mux_i];
mux_rd_rise1_r[mux_i] <= #TCQ rd_data_rise1[DRAM_WIDTH*rd_mux_sel_r + mux_i];
mux_rd_fall1_r[mux_i] <= #TCQ rd_data_fall1[DRAM_WIDTH*rd_mux_sel_r + mux_i];
end
end
end
endgenerate
//***************************************************************************
// generate request to PHY_INIT logic to issue precharged. Required when
// calibration can take a long time (during which there are only constant
// reads present on this bus). In this case need to issue perioidic
// precharges to avoid tRAS violation. This signal must meet the following
// requirements: (1) only transition from 0->1 when prech is first needed,
// (2) stay at 1 and only transition 1->0 when RDLVL_PRECH_DONE asserted
//***************************************************************************
always @(posedge clk)
if (rst)
wrcal_prech_req <= #TCQ 1'b0;
else
// Combine requests from all stages here
wrcal_prech_req <= #TCQ cal2_prech_req_r;
//***************************************************************************
// Shift register to store last RDDATA_SHIFT_LEN cycles of data from ISERDES
// NOTE: Written using discrete flops, but SRL can be used if the matching
// logic does the comparison sequentially, rather than parallel
//***************************************************************************
generate
genvar rd_i;
if (nCK_PER_CLK == 4) begin: gen_sr_div4
for (rd_i = 0; rd_i < DRAM_WIDTH; rd_i = rd_i + 1) begin: gen_sr
always @(posedge clk) begin
sr_rise0_r[rd_i] <= #TCQ mux_rd_rise0_r[rd_i];
sr_fall0_r[rd_i] <= #TCQ mux_rd_fall0_r[rd_i];
sr_rise1_r[rd_i] <= #TCQ mux_rd_rise1_r[rd_i];
sr_fall1_r[rd_i] <= #TCQ mux_rd_fall1_r[rd_i];
sr_rise2_r[rd_i] <= #TCQ mux_rd_rise2_r[rd_i];
sr_fall2_r[rd_i] <= #TCQ mux_rd_fall2_r[rd_i];
sr_rise3_r[rd_i] <= #TCQ mux_rd_rise3_r[rd_i];
sr_fall3_r[rd_i] <= #TCQ mux_rd_fall3_r[rd_i];
end
end
end else if (nCK_PER_CLK == 2) begin: gen_sr_div2
for (rd_i = 0; rd_i < DRAM_WIDTH; rd_i = rd_i + 1) begin: gen_sr
always @(posedge clk) begin
sr_rise0_r[rd_i] <= #TCQ mux_rd_rise0_r[rd_i];
sr_fall0_r[rd_i] <= #TCQ mux_rd_fall0_r[rd_i];
sr_rise1_r[rd_i] <= #TCQ mux_rd_rise1_r[rd_i];
sr_fall1_r[rd_i] <= #TCQ mux_rd_fall1_r[rd_i];
end
end
end
endgenerate
//***************************************************************************
// Write calibration:
// During write leveling DQS is aligned to the nearest CK edge that may not
// be the correct CK edge. Write calibration is required to align the DQS to
// the correct CK edge that clocks the write command.
// The Phaser_Out coarse delay line is adjusted if required to add a memory
// clock cycle of delay in order to read back the expected pattern.
//***************************************************************************
always @(posedge clk) begin
rd_active_r <= #TCQ phy_rddata_en;
rd_active_r1 <= #TCQ rd_active_r;
rd_active_r2 <= #TCQ rd_active_r1;
rd_active_r3 <= #TCQ rd_active_r2;
rd_active_r4 <= #TCQ rd_active_r3;
rd_active_r5 <= #TCQ rd_active_r4;
end
//*****************************************************************
// Expected data pattern when properly received by read capture
// logic:
// Based on pattern of ({rise,fall}) =
// 0xF, 0x0, 0xA, 0x5, 0x5, 0xA, 0x9, 0x6
// Each nibble will look like:
// bit3: 1, 0, 1, 0, 0, 1, 1, 0
// bit2: 1, 0, 0, 1, 1, 0, 0, 1
// bit1: 1, 0, 1, 0, 0, 1, 0, 1
// bit0: 1, 0, 0, 1, 1, 0, 1, 0
// Change the hard-coded pattern below accordingly as RD_SHIFT_LEN
// and the actual training pattern contents change
//*****************************************************************
generate
if (nCK_PER_CLK == 4) begin: gen_pat_div4
// FF00AA5555AA9966
assign pat_rise0[3] = 1'b1;
assign pat_fall0[3] = 1'b0;
assign pat_rise1[3] = 1'b1;
assign pat_fall1[3] = 1'b0;
assign pat_rise2[3] = 1'b0;
assign pat_fall2[3] = 1'b1;
assign pat_rise3[3] = 1'b1;
assign pat_fall3[3] = 1'b0;
assign pat_rise0[2] = 1'b1;
assign pat_fall0[2] = 1'b0;
assign pat_rise1[2] = 1'b0;
assign pat_fall1[2] = 1'b1;
assign pat_rise2[2] = 1'b1;
assign pat_fall2[2] = 1'b0;
assign pat_rise3[2] = 1'b0;
assign pat_fall3[2] = 1'b1;
assign pat_rise0[1] = 1'b1;
assign pat_fall0[1] = 1'b0;
assign pat_rise1[1] = 1'b1;
assign pat_fall1[1] = 1'b0;
assign pat_rise2[1] = 1'b0;
assign pat_fall2[1] = 1'b1;
assign pat_rise3[1] = 1'b0;
assign pat_fall3[1] = 1'b1;
assign pat_rise0[0] = 1'b1;
assign pat_fall0[0] = 1'b0;
assign pat_rise1[0] = 1'b0;
assign pat_fall1[0] = 1'b1;
assign pat_rise2[0] = 1'b1;
assign pat_fall2[0] = 1'b0;
assign pat_rise3[0] = 1'b1;
assign pat_fall3[0] = 1'b0;
// Pattern to distinguish between early write and incorrect read
// BB11EE4444EEDD88
assign early_rise0[3] = 1'b1;
assign early_fall0[3] = 1'b0;
assign early_rise1[3] = 1'b1;
assign early_fall1[3] = 1'b0;
assign early_rise2[3] = 1'b0;
assign early_fall2[3] = 1'b1;
assign early_rise3[3] = 1'b1;
assign early_fall3[3] = 1'b1;
assign early_rise0[2] = 1'b0;
assign early_fall0[2] = 1'b0;
assign early_rise1[2] = 1'b1;
assign early_fall1[2] = 1'b1;
assign early_rise2[2] = 1'b1;
assign early_fall2[2] = 1'b1;
assign early_rise3[2] = 1'b1;
assign early_fall3[2] = 1'b0;
assign early_rise0[1] = 1'b1;
assign early_fall0[1] = 1'b0;
assign early_rise1[1] = 1'b1;
assign early_fall1[1] = 1'b0;
assign early_rise2[1] = 1'b0;
assign early_fall2[1] = 1'b1;
assign early_rise3[1] = 1'b0;
assign early_fall3[1] = 1'b0;
assign early_rise0[0] = 1'b1;
assign early_fall0[0] = 1'b1;
assign early_rise1[0] = 1'b0;
assign early_fall1[0] = 1'b0;
assign early_rise2[0] = 1'b0;
assign early_fall2[0] = 1'b0;
assign early_rise3[0] = 1'b1;
assign early_fall3[0] = 1'b0;
end else if (nCK_PER_CLK == 2) begin: gen_pat_div2
// First cycle pattern FF00AA55
assign pat1_rise0[3] = 1'b1;
assign pat1_fall0[3] = 1'b0;
assign pat1_rise1[3] = 1'b1;
assign pat1_fall1[3] = 1'b0;
assign pat1_rise0[2] = 1'b1;
assign pat1_fall0[2] = 1'b0;
assign pat1_rise1[2] = 1'b0;
assign pat1_fall1[2] = 1'b1;
assign pat1_rise0[1] = 1'b1;
assign pat1_fall0[1] = 1'b0;
assign pat1_rise1[1] = 1'b1;
assign pat1_fall1[1] = 1'b0;
assign pat1_rise0[0] = 1'b1;
assign pat1_fall0[0] = 1'b0;
assign pat1_rise1[0] = 1'b0;
assign pat1_fall1[0] = 1'b1;
// Second cycle pattern 55AA9966
assign pat2_rise0[3] = 1'b0;
assign pat2_fall0[3] = 1'b1;
assign pat2_rise1[3] = 1'b1;
assign pat2_fall1[3] = 1'b0;
assign pat2_rise0[2] = 1'b1;
assign pat2_fall0[2] = 1'b0;
assign pat2_rise1[2] = 1'b0;
assign pat2_fall1[2] = 1'b1;
assign pat2_rise0[1] = 1'b0;
assign pat2_fall0[1] = 1'b1;
assign pat2_rise1[1] = 1'b0;
assign pat2_fall1[1] = 1'b1;
assign pat2_rise0[0] = 1'b1;
assign pat2_fall0[0] = 1'b0;
assign pat2_rise1[0] = 1'b1;
assign pat2_fall1[0] = 1'b0;
//Pattern to distinguish between early write and incorrect read
// First cycle pattern AA5555AA
assign early1_rise0[3] = 2'b1;
assign early1_fall0[3] = 2'b0;
assign early1_rise1[3] = 2'b0;
assign early1_fall1[3] = 2'b1;
assign early1_rise0[2] = 2'b0;
assign early1_fall0[2] = 2'b1;
assign early1_rise1[2] = 2'b1;
assign early1_fall1[2] = 2'b0;
assign early1_rise0[1] = 2'b1;
assign early1_fall0[1] = 2'b0;
assign early1_rise1[1] = 2'b0;
assign early1_fall1[1] = 2'b1;
assign early1_rise0[0] = 2'b0;
assign early1_fall0[0] = 2'b1;
assign early1_rise1[0] = 2'b1;
assign early1_fall1[0] = 2'b0;
// Second cycle pattern 9966BB11
assign early2_rise0[3] = 2'b1;
assign early2_fall0[3] = 2'b0;
assign early2_rise1[3] = 2'b1;
assign early2_fall1[3] = 2'b0;
assign early2_rise0[2] = 2'b0;
assign early2_fall0[2] = 2'b1;
assign early2_rise1[2] = 2'b0;
assign early2_fall1[2] = 2'b0;
assign early2_rise0[1] = 2'b0;
assign early2_fall0[1] = 2'b1;
assign early2_rise1[1] = 2'b1;
assign early2_fall1[1] = 2'b0;
assign early2_rise0[0] = 2'b1;
assign early2_fall0[0] = 2'b0;
assign early2_rise1[0] = 2'b1;
assign early2_fall1[0] = 2'b1;
end
endgenerate
// Each bit of each byte is compared to expected pattern.
// This was done to prevent (and "drastically decrease") the chance that
// invalid data clocked in when the DQ bus is tri-state (along with a
// combination of the correct data) will resemble the expected data
// pattern. A better fix for this is to change the training pattern and/or
// make the pattern longer.
generate
genvar pt_i;
if (nCK_PER_CLK == 4) begin: gen_pat_match_div4
for (pt_i = 0; pt_i < DRAM_WIDTH; pt_i = pt_i + 1) begin: gen_pat_match
always @(posedge clk) begin
if (sr_rise0_r[pt_i] == pat_rise0[pt_i%4])
pat_match_rise0_r[pt_i] <= #TCQ 1'b1;
else
pat_match_rise0_r[pt_i] <= #TCQ 1'b0;
if (sr_fall0_r[pt_i] == pat_fall0[pt_i%4])
pat_match_fall0_r[pt_i] <= #TCQ 1'b1;
else
pat_match_fall0_r[pt_i] <= #TCQ 1'b0;
if (sr_rise1_r[pt_i] == pat_rise1[pt_i%4])
pat_match_rise1_r[pt_i] <= #TCQ 1'b1;
else
pat_match_rise1_r[pt_i] <= #TCQ 1'b0;
if (sr_fall1_r[pt_i] == pat_fall1[pt_i%4])
pat_match_fall1_r[pt_i] <= #TCQ 1'b1;
else
pat_match_fall1_r[pt_i] <= #TCQ 1'b0;
if (sr_rise2_r[pt_i] == pat_rise2[pt_i%4])
pat_match_rise2_r[pt_i] <= #TCQ 1'b1;
else
pat_match_rise2_r[pt_i] <= #TCQ 1'b0;
if (sr_fall2_r[pt_i] == pat_fall2[pt_i%4])
pat_match_fall2_r[pt_i] <= #TCQ 1'b1;
else
pat_match_fall2_r[pt_i] <= #TCQ 1'b0;
if (sr_rise3_r[pt_i] == pat_rise3[pt_i%4])
pat_match_rise3_r[pt_i] <= #TCQ 1'b1;
else
pat_match_rise3_r[pt_i] <= #TCQ 1'b0;
if (sr_fall3_r[pt_i] == pat_fall3[pt_i%4])
pat_match_fall3_r[pt_i] <= #TCQ 1'b1;
else
pat_match_fall3_r[pt_i] <= #TCQ 1'b0;
end
always @(posedge clk) begin
if (sr_rise0_r[pt_i] == pat_rise1[pt_i%4])
early1_match_rise0_r[pt_i] <= #TCQ 1'b1;
else
early1_match_rise0_r[pt_i] <= #TCQ 1'b0;
if (sr_fall0_r[pt_i] == pat_fall1[pt_i%4])
early1_match_fall0_r[pt_i] <= #TCQ 1'b1;
else
early1_match_fall0_r[pt_i] <= #TCQ 1'b0;
if (sr_rise1_r[pt_i] == pat_rise2[pt_i%4])
early1_match_rise1_r[pt_i] <= #TCQ 1'b1;
else
early1_match_rise1_r[pt_i] <= #TCQ 1'b0;
if (sr_fall1_r[pt_i] == pat_fall2[pt_i%4])
early1_match_fall1_r[pt_i] <= #TCQ 1'b1;
else
early1_match_fall1_r[pt_i] <= #TCQ 1'b0;
if (sr_rise2_r[pt_i] == pat_rise3[pt_i%4])
early1_match_rise2_r[pt_i] <= #TCQ 1'b1;
else
early1_match_rise2_r[pt_i] <= #TCQ 1'b0;
if (sr_fall2_r[pt_i] == pat_fall3[pt_i%4])
early1_match_fall2_r[pt_i] <= #TCQ 1'b1;
else
early1_match_fall2_r[pt_i] <= #TCQ 1'b0;
if (sr_rise3_r[pt_i] == early_rise0[pt_i%4])
early1_match_rise3_r[pt_i] <= #TCQ 1'b1;
else
early1_match_rise3_r[pt_i] <= #TCQ 1'b0;
if (sr_fall3_r[pt_i] == early_fall0[pt_i%4])
early1_match_fall3_r[pt_i] <= #TCQ 1'b1;
else
early1_match_fall3_r[pt_i] <= #TCQ 1'b0;
end
always @(posedge clk) begin
if (sr_rise0_r[pt_i] == pat_rise2[pt_i%4])
early2_match_rise0_r[pt_i] <= #TCQ 1'b1;
else
early2_match_rise0_r[pt_i] <= #TCQ 1'b0;
if (sr_fall0_r[pt_i] == pat_fall2[pt_i%4])
early2_match_fall0_r[pt_i] <= #TCQ 1'b1;
else
early2_match_fall0_r[pt_i] <= #TCQ 1'b0;
if (sr_rise1_r[pt_i] == pat_rise3[pt_i%4])
early2_match_rise1_r[pt_i] <= #TCQ 1'b1;
else
early2_match_rise1_r[pt_i] <= #TCQ 1'b0;
if (sr_fall1_r[pt_i] == pat_fall3[pt_i%4])
early2_match_fall1_r[pt_i] <= #TCQ 1'b1;
else
early2_match_fall1_r[pt_i] <= #TCQ 1'b0;
if (sr_rise2_r[pt_i] == early_rise0[pt_i%4])
early2_match_rise2_r[pt_i] <= #TCQ 1'b1;
else
early2_match_rise2_r[pt_i] <= #TCQ 1'b0;
if (sr_fall2_r[pt_i] == early_fall0[pt_i%4])
early2_match_fall2_r[pt_i] <= #TCQ 1'b1;
else
early2_match_fall2_r[pt_i] <= #TCQ 1'b0;
if (sr_rise3_r[pt_i] == early_rise1[pt_i%4])
early2_match_rise3_r[pt_i] <= #TCQ 1'b1;
else
early2_match_rise3_r[pt_i] <= #TCQ 1'b0;
if (sr_fall3_r[pt_i] == early_fall1[pt_i%4])
early2_match_fall3_r[pt_i] <= #TCQ 1'b1;
else
early2_match_fall3_r[pt_i] <= #TCQ 1'b0;
end
end
always @(posedge clk) begin
pat_match_rise0_and_r <= #TCQ &pat_match_rise0_r;
pat_match_fall0_and_r <= #TCQ &pat_match_fall0_r;
pat_match_rise1_and_r <= #TCQ &pat_match_rise1_r;
pat_match_fall1_and_r <= #TCQ &pat_match_fall1_r;
pat_match_rise2_and_r <= #TCQ &pat_match_rise2_r;
pat_match_fall2_and_r <= #TCQ &pat_match_fall2_r;
pat_match_rise3_and_r <= #TCQ &pat_match_rise3_r;
pat_match_fall3_and_r <= #TCQ &pat_match_fall3_r;
pat_data_match_r <= #TCQ (pat_match_rise0_and_r &&
pat_match_fall0_and_r &&
pat_match_rise1_and_r &&
pat_match_fall1_and_r &&
pat_match_rise2_and_r &&
pat_match_fall2_and_r &&
pat_match_rise3_and_r &&
pat_match_fall3_and_r);
pat_data_match_valid_r <= #TCQ rd_active_r3;
end
always @(posedge clk) begin
early1_match_rise0_and_r <= #TCQ &early1_match_rise0_r;
early1_match_fall0_and_r <= #TCQ &early1_match_fall0_r;
early1_match_rise1_and_r <= #TCQ &early1_match_rise1_r;
early1_match_fall1_and_r <= #TCQ &early1_match_fall1_r;
early1_match_rise2_and_r <= #TCQ &early1_match_rise2_r;
early1_match_fall2_and_r <= #TCQ &early1_match_fall2_r;
early1_match_rise3_and_r <= #TCQ &early1_match_rise3_r;
early1_match_fall3_and_r <= #TCQ &early1_match_fall3_r;
early1_data_match_r <= #TCQ (early1_match_rise0_and_r &&
early1_match_fall0_and_r &&
early1_match_rise1_and_r &&
early1_match_fall1_and_r &&
early1_match_rise2_and_r &&
early1_match_fall2_and_r &&
early1_match_rise3_and_r &&
early1_match_fall3_and_r);
end
always @(posedge clk) begin
early2_match_rise0_and_r <= #TCQ &early2_match_rise0_r;
early2_match_fall0_and_r <= #TCQ &early2_match_fall0_r;
early2_match_rise1_and_r <= #TCQ &early2_match_rise1_r;
early2_match_fall1_and_r <= #TCQ &early2_match_fall1_r;
early2_match_rise2_and_r <= #TCQ &early2_match_rise2_r;
early2_match_fall2_and_r <= #TCQ &early2_match_fall2_r;
early2_match_rise3_and_r <= #TCQ &early2_match_rise3_r;
early2_match_fall3_and_r <= #TCQ &early2_match_fall3_r;
early2_data_match_r <= #TCQ (early2_match_rise0_and_r &&
early2_match_fall0_and_r &&
early2_match_rise1_and_r &&
early2_match_fall1_and_r &&
early2_match_rise2_and_r &&
early2_match_fall2_and_r &&
early2_match_rise3_and_r &&
early2_match_fall3_and_r);
end
end else if (nCK_PER_CLK == 2) begin: gen_pat_match_div2
for (pt_i = 0; pt_i < DRAM_WIDTH; pt_i = pt_i + 1) begin: gen_pat_match
always @(posedge clk) begin
if (sr_rise0_r[pt_i] == pat1_rise0[pt_i%4])
pat1_match_rise0_r[pt_i] <= #TCQ 1'b1;
else
pat1_match_rise0_r[pt_i] <= #TCQ 1'b0;
if (sr_fall0_r[pt_i] == pat1_fall0[pt_i%4])
pat1_match_fall0_r[pt_i] <= #TCQ 1'b1;
else
pat1_match_fall0_r[pt_i] <= #TCQ 1'b0;
if (sr_rise1_r[pt_i] == pat1_rise1[pt_i%4])
pat1_match_rise1_r[pt_i] <= #TCQ 1'b1;
else
pat1_match_rise1_r[pt_i] <= #TCQ 1'b0;
if (sr_fall1_r[pt_i] == pat1_fall1[pt_i%4])
pat1_match_fall1_r[pt_i] <= #TCQ 1'b1;
else
pat1_match_fall1_r[pt_i] <= #TCQ 1'b0;
end
always @(posedge clk) begin
if (sr_rise0_r[pt_i] == pat2_rise0[pt_i%4])
pat2_match_rise0_r[pt_i] <= #TCQ 1'b1;
else
pat2_match_rise0_r[pt_i] <= #TCQ 1'b0;
if (sr_fall0_r[pt_i] == pat2_fall0[pt_i%4])
pat2_match_fall0_r[pt_i] <= #TCQ 1'b1;
else
pat2_match_fall0_r[pt_i] <= #TCQ 1'b0;
if (sr_rise1_r[pt_i] == pat2_rise1[pt_i%4])
pat2_match_rise1_r[pt_i] <= #TCQ 1'b1;
else
pat2_match_rise1_r[pt_i] <= #TCQ 1'b0;
if (sr_fall1_r[pt_i] == pat2_fall1[pt_i%4])
pat2_match_fall1_r[pt_i] <= #TCQ 1'b1;
else
pat2_match_fall1_r[pt_i] <= #TCQ 1'b0;
end
always @(posedge clk) begin
if (sr_rise0_r[pt_i] == early1_rise0[pt_i%4])
early1_match_rise0_r[pt_i] <= #TCQ 1'b1;
else
early1_match_rise0_r[pt_i] <= #TCQ 1'b0;
if (sr_fall0_r[pt_i] == early1_fall0[pt_i%4])
early1_match_fall0_r[pt_i] <= #TCQ 1'b1;
else
early1_match_fall0_r[pt_i] <= #TCQ 1'b0;
if (sr_rise1_r[pt_i] == early1_rise1[pt_i%4])
early1_match_rise1_r[pt_i] <= #TCQ 1'b1;
else
early1_match_rise1_r[pt_i] <= #TCQ 1'b0;
if (sr_fall1_r[pt_i] == early1_fall1[pt_i%4])
early1_match_fall1_r[pt_i] <= #TCQ 1'b1;
else
early1_match_fall1_r[pt_i] <= #TCQ 1'b0;
end
// early2 in this case does not mean 2 cycles early but
// the second cycle of read data in 2:1 mode
always @(posedge clk) begin
if (sr_rise0_r[pt_i] == early2_rise0[pt_i%4])
early2_match_rise0_r[pt_i] <= #TCQ 1'b1;
else
early2_match_rise0_r[pt_i] <= #TCQ 1'b0;
if (sr_fall0_r[pt_i] == early2_fall0[pt_i%4])
early2_match_fall0_r[pt_i] <= #TCQ 1'b1;
else
early2_match_fall0_r[pt_i] <= #TCQ 1'b0;
if (sr_rise1_r[pt_i] == early2_rise1[pt_i%4])
early2_match_rise1_r[pt_i] <= #TCQ 1'b1;
else
early2_match_rise1_r[pt_i] <= #TCQ 1'b0;
if (sr_fall1_r[pt_i] == early2_fall1[pt_i%4])
early2_match_fall1_r[pt_i] <= #TCQ 1'b1;
else
early2_match_fall1_r[pt_i] <= #TCQ 1'b0;
end
end
always @(posedge clk) begin
pat1_match_rise0_and_r <= #TCQ &pat1_match_rise0_r;
pat1_match_fall0_and_r <= #TCQ &pat1_match_fall0_r;
pat1_match_rise1_and_r <= #TCQ &pat1_match_rise1_r;
pat1_match_fall1_and_r <= #TCQ &pat1_match_fall1_r;
pat1_data_match_r <= #TCQ (pat1_match_rise0_and_r &&
pat1_match_fall0_and_r &&
pat1_match_rise1_and_r &&
pat1_match_fall1_and_r);
pat1_data_match_r1 <= #TCQ pat1_data_match_r;
pat2_match_rise0_and_r <= #TCQ &pat2_match_rise0_r && rd_active_r3;
pat2_match_fall0_and_r <= #TCQ &pat2_match_fall0_r && rd_active_r3;
pat2_match_rise1_and_r <= #TCQ &pat2_match_rise1_r && rd_active_r3;
pat2_match_fall1_and_r <= #TCQ &pat2_match_fall1_r && rd_active_r3;
pat2_data_match_r <= #TCQ (pat2_match_rise0_and_r &&
pat2_match_fall0_and_r &&
pat2_match_rise1_and_r &&
pat2_match_fall1_and_r);
// For 2:1 mode, read valid is asserted for 2 clock cycles -
// here we generate a "match valid" pulse that is only 1 clock
// cycle wide that is simulatenous when the match calculation
// is complete
pat_data_match_valid_r <= #TCQ rd_active_r4 & ~rd_active_r5;
end
always @(posedge clk) begin
early1_match_rise0_and_r <= #TCQ &early1_match_rise0_r;
early1_match_fall0_and_r <= #TCQ &early1_match_fall0_r;
early1_match_rise1_and_r <= #TCQ &early1_match_rise1_r;
early1_match_fall1_and_r <= #TCQ &early1_match_fall1_r;
early1_data_match_r <= #TCQ (early1_match_rise0_and_r &&
early1_match_fall0_and_r &&
early1_match_rise1_and_r &&
early1_match_fall1_and_r);
early1_data_match_r1 <= #TCQ early1_data_match_r;
early2_match_rise0_and_r <= #TCQ &early2_match_rise0_r && rd_active_r3;
early2_match_fall0_and_r <= #TCQ &early2_match_fall0_r && rd_active_r3;
early2_match_rise1_and_r <= #TCQ &early2_match_rise1_r && rd_active_r3;
early2_match_fall1_and_r <= #TCQ &early2_match_fall1_r && rd_active_r3;
early2_data_match_r <= #TCQ (early2_match_rise0_and_r &&
early2_match_fall0_and_r &&
early2_match_rise1_and_r &&
early2_match_fall1_and_r);
end
end
endgenerate
// Need to delay it by 3 cycles in order to wait for Phaser_Out
// coarse delay to take effect before issuing a write command
always @(posedge clk) begin
wrcal_pat_resume_r1 <= #TCQ wrcal_pat_resume_r;
wrcal_pat_resume_r2 <= #TCQ wrcal_pat_resume_r1;
wrcal_pat_resume <= #TCQ wrcal_pat_resume_r2;
end
always @(posedge clk) begin
if (rst)
tap_inc_wait_cnt <= #TCQ 'd0;
else if ((cal2_state_r == CAL2_DQ_IDEL_DEC) ||
(cal2_state_r == CAL2_IFIFO_RESET) ||
(cal2_state_r == CAL2_SANITY_WAIT))
tap_inc_wait_cnt <= #TCQ tap_inc_wait_cnt + 1;
else
tap_inc_wait_cnt <= #TCQ 'd0;
end
always @(posedge clk) begin
if (rst)
not_empty_wait_cnt <= #TCQ 'd0;
else if ((cal2_state_r == CAL2_READ_WAIT) && wrcal_rd_wait)
not_empty_wait_cnt <= #TCQ not_empty_wait_cnt + 1;
else
not_empty_wait_cnt <= #TCQ 'd0;
end
always @(posedge clk)
cal2_state_r1 <= #TCQ cal2_state_r;
//*****************************************************************
// Write Calibration state machine
//*****************************************************************
// when calibrating, check to see if the expected pattern is received.
// Otherwise delay DQS to align to correct CK edge.
// NOTES:
// 1. An error condition can occur due to two reasons:
// a. If the matching logic does not receive the expected data
// pattern. However, the error may be "recoverable" because
// the write calibration is still in progress. If an error is
// found the write calibration logic delays DQS by an additional
// clock cycle and restarts the pattern detection process.
// By design, if the write path timing is incorrect, the correct
// data pattern will never be detected.
// b. Valid data not found even after incrementing Phaser_Out
// coarse delay line.
always @(posedge clk) begin
if (rst) begin
wrcal_dqs_cnt_r <= #TCQ 'b0;
cal2_done_r <= #TCQ 1'b0;
cal2_prech_req_r <= #TCQ 1'b0;
cal2_state_r <= #TCQ CAL2_IDLE;
wrcal_pat_err <= #TCQ 1'b0;
wrcal_pat_resume_r <= #TCQ 1'b0;
wrcal_act_req <= #TCQ 1'b0;
cal2_if_reset <= #TCQ 1'b0;
temp_wrcal_done <= #TCQ 1'b0;
wrlvl_byte_redo <= #TCQ 1'b0;
early1_data <= #TCQ 1'b0;
early2_data <= #TCQ 1'b0;
idelay_ld <= #TCQ 1'b0;
idelay_ld_done <= #TCQ 1'b0;
pat1_detect <= #TCQ 1'b0;
early1_detect <= #TCQ 1'b0;
wrcal_sanity_chk_done <= #TCQ 1'b0;
wrcal_sanity_chk_err <= #TCQ 1'b0;
end else begin
cal2_prech_req_r <= #TCQ 1'b0;
case (cal2_state_r)
CAL2_IDLE: begin
wrcal_pat_err <= #TCQ 1'b0;
if (wrcal_start) begin
cal2_if_reset <= #TCQ 1'b0;
if (SIM_CAL_OPTION == "SKIP_CAL")
// If skip write calibration, then proceed to end.
cal2_state_r <= #TCQ CAL2_DONE;
else
cal2_state_r <= #TCQ CAL2_READ_WAIT;
end
end
// General wait state to wait for read data to be output by the
// IN_FIFO
CAL2_READ_WAIT: begin
wrcal_pat_resume_r <= #TCQ 1'b0;
cal2_if_reset <= #TCQ 1'b0;
// Wait until read data is received, and pattern matching
// calculation is complete. NOTE: Need to add a timeout here
// in case for some reason data is never received (or rather
// the PHASER_IN and IN_FIFO think they never receives data)
if (pat_data_match_valid_r && (nCK_PER_CLK == 4)) begin
if (pat_data_match_r)
// If found data match, then move on to next DQS group
cal2_state_r <= #TCQ CAL2_NEXT_DQS;
else begin
if (wrcal_sanity_chk_r)
cal2_state_r <= #TCQ CAL2_ERR;
// If writes are one or two cycles early then redo
// write leveling for the byte
else if (early1_data_match_r) begin
early1_data <= #TCQ 1'b1;
early2_data <= #TCQ 1'b0;
wrlvl_byte_redo <= #TCQ 1'b1;
cal2_state_r <= #TCQ CAL2_WRLVL_WAIT;
end else if (early2_data_match_r) begin
early1_data <= #TCQ 1'b0;
early2_data <= #TCQ 1'b1;
wrlvl_byte_redo <= #TCQ 1'b1;
cal2_state_r <= #TCQ CAL2_WRLVL_WAIT;
// Read late due to incorrect MPR idelay value
// Decrement Idelay to '0'for the current byte
end else if (~idelay_ld_done) begin
cal2_state_r <= #TCQ CAL2_DQ_IDEL_DEC;
idelay_ld <= #TCQ 1'b1;
end else
cal2_state_r <= #TCQ CAL2_ERR;
end
end else if (pat_data_match_valid_r && (nCK_PER_CLK == 2)) begin
if ((pat1_data_match_r1 && pat2_data_match_r) ||
(pat1_detect && pat2_data_match_r))
// If found data match, then move on to next DQS group
cal2_state_r <= #TCQ CAL2_NEXT_DQS;
else if (pat1_data_match_r1 && ~pat2_data_match_r) begin
cal2_state_r <= #TCQ CAL2_READ_WAIT;
pat1_detect <= #TCQ 1'b1;
end else begin
// If writes are one or two cycles early then redo
// write leveling for the byte
if (wrcal_sanity_chk_r)
cal2_state_r <= #TCQ CAL2_ERR;
else if ((early1_data_match_r1 && early2_data_match_r) ||
(early1_detect && early2_data_match_r)) begin
early1_data <= #TCQ 1'b1;
early2_data <= #TCQ 1'b0;
wrlvl_byte_redo <= #TCQ 1'b1;
cal2_state_r <= #TCQ CAL2_WRLVL_WAIT;
end else if (early1_data_match_r1 && ~early2_data_match_r) begin
early1_detect <= #TCQ 1'b1;
cal2_state_r <= #TCQ CAL2_READ_WAIT;
// Read late due to incorrect MPR idelay value
// Decrement Idelay to '0'for the current byte
end else if (~idelay_ld_done) begin
cal2_state_r <= #TCQ CAL2_DQ_IDEL_DEC;
idelay_ld <= #TCQ 1'b1;
end else
cal2_state_r <= #TCQ CAL2_ERR;
end
end else if (not_empty_wait_cnt == 'd31)
cal2_state_r <= #TCQ CAL2_ERR;
end
CAL2_WRLVL_WAIT: begin
early1_detect <= #TCQ 1'b0;
if (wrlvl_byte_done && ~wrlvl_byte_done_r)
wrlvl_byte_redo <= #TCQ 1'b0;
if (wrlvl_byte_done) begin
if (rd_active_r1 && ~rd_active_r) begin
cal2_state_r <= #TCQ CAL2_IFIFO_RESET;
cal2_if_reset <= #TCQ 1'b1;
early1_data <= #TCQ 1'b0;
early2_data <= #TCQ 1'b0;
end
end
end
CAL2_DQ_IDEL_DEC: begin
if (tap_inc_wait_cnt == 'd4) begin
idelay_ld <= #TCQ 1'b0;
cal2_state_r <= #TCQ CAL2_IFIFO_RESET;
cal2_if_reset <= #TCQ 1'b1;
idelay_ld_done <= #TCQ 1'b1;
end
end
CAL2_IFIFO_RESET: begin
if (tap_inc_wait_cnt == 'd15) begin
cal2_if_reset <= #TCQ 1'b0;
if (wrcal_sanity_chk_r)
cal2_state_r <= #TCQ CAL2_DONE;
else if (idelay_ld_done) begin
wrcal_pat_resume_r <= #TCQ 1'b1;
cal2_state_r <= #TCQ CAL2_READ_WAIT;
end else
cal2_state_r <= #TCQ CAL2_IDLE;
end
end
// Final processing for current DQS group. Move on to next group
CAL2_NEXT_DQS: begin
// At this point, we've just found the correct pattern for the
// current DQS group.
// Request bank/row precharge, and wait for its completion. Always
// precharge after each DQS group to avoid tRAS(max) violation
//verilint STARC-2.2.3.3 off
if (wrcal_sanity_chk_r && (wrcal_dqs_cnt_r != DQS_WIDTH-1)) begin
cal2_prech_req_r <= #TCQ 1'b0;
wrcal_dqs_cnt_r <= #TCQ wrcal_dqs_cnt_r + 1;
cal2_state_r <= #TCQ CAL2_SANITY_WAIT;
end else
cal2_prech_req_r <= #TCQ 1'b1;
idelay_ld_done <= #TCQ 1'b0;
pat1_detect <= #TCQ 1'b0;
if (prech_done)
if (((DQS_WIDTH == 1) || (SIM_CAL_OPTION == "FAST_CAL")) ||
(wrcal_dqs_cnt_r == DQS_WIDTH-1)) begin
// If either FAST_CAL is enabled and first DQS group is
// finished, or if the last DQS group was just finished,
// then end of write calibration
if (wrcal_sanity_chk_r) begin
cal2_if_reset <= #TCQ 1'b1;
cal2_state_r <= #TCQ CAL2_IFIFO_RESET;
end else
cal2_state_r <= #TCQ CAL2_DONE;
end else begin
// Continue to next DQS group
wrcal_dqs_cnt_r <= #TCQ wrcal_dqs_cnt_r + 1;
cal2_state_r <= #TCQ CAL2_READ_WAIT;
end
end
//verilint STARC-2.2.3.3 on
CAL2_SANITY_WAIT: begin
if (tap_inc_wait_cnt == 'd15) begin
cal2_state_r <= #TCQ CAL2_READ_WAIT;
wrcal_pat_resume_r <= #TCQ 1'b1;
end
end
// Finished with read enable calibration
CAL2_DONE: begin
if (wrcal_sanity_chk && ~wrcal_sanity_chk_r) begin
cal2_done_r <= #TCQ 1'b0;
wrcal_dqs_cnt_r <= #TCQ 'd0;
cal2_state_r <= #TCQ CAL2_IDLE;
end else
cal2_done_r <= #TCQ 1'b1;
cal2_prech_req_r <= #TCQ 1'b0;
cal2_if_reset <= #TCQ 1'b0;
if (wrcal_sanity_chk_r)
wrcal_sanity_chk_done <= #TCQ 1'b1;
end
// Assert error signal indicating that writes timing is incorrect
CAL2_ERR: begin
wrcal_pat_resume_r <= #TCQ 1'b0;
if (wrcal_sanity_chk_r)
wrcal_sanity_chk_err <= #TCQ 1'b1;
else
wrcal_pat_err <= #TCQ 1'b1;
cal2_state_r <= #TCQ CAL2_ERR;
end
endcase
end
end
// Delay assertion of wrcal_done for write calibration by a few cycles after
// we've reached CAL2_DONE
always @(posedge clk)
if (rst)
cal2_done_r1 <= #TCQ 1'b0;
else
cal2_done_r1 <= #TCQ cal2_done_r;
always @(posedge clk)
if (rst || (wrcal_sanity_chk && ~wrcal_sanity_chk_r))
wrcal_done <= #TCQ 1'b0;
else if (cal2_done_r)
wrcal_done <= #TCQ 1'b1;
endmodule
|
//*****************************************************************************
// (c) Copyright 2009 - 2013 Xilinx, Inc. All rights reserved.
//
// This file contains confidential and proprietary information
// of Xilinx, Inc. and is protected under U.S. and
// international copyright and other intellectual property
// laws.
//
// DISCLAIMER
// This disclaimer is not a license and does not grant any
// rights to the materials distributed herewith. Except as
// otherwise provided in a valid license issued to you by
// Xilinx, and to the maximum extent permitted by applicable
// law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// (2) Xilinx shall not be liable (whether in contract or tort,
// including negligence, or under any other theory of
// liability) for any loss or damage of any kind or nature
// related to, arising under or in connection with these
// materials, including for any direct, or any indirect,
// special, incidental, or consequential loss or damage
// (including loss of data, profits, goodwill, or any type of
// loss or damage suffered as a result of any action brought
// by a third party) even if such damage or loss was
// reasonably foreseeable or Xilinx had been advised of the
// possibility of the same.
//
// CRITICAL APPLICATIONS
// Xilinx products are not designed or intended to be fail-
// safe, or for use in any application requiring fail-safe
// performance, such as life-support or safety devices or
// systems, Class III medical devices, nuclear facilities,
// applications related to the deployment of airbags, or any
// other applications that could lead to death, personal
// injury, or severe property or environmental damage
// (individually and collectively, "Critical
// Applications"). Customer assumes the sole risk and
// liability of any use of Xilinx products in Critical
// Applications, subject only to applicable laws and
// regulations governing limitations on product liability.
//
// THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// PART OF THIS FILE AT ALL TIMES.
//
//*****************************************************************************
// ____ ____
// / /\/ /
// /___/ \ / Vendor: Xilinx
// \ \ \/ Version: %version
// \ \ Application: MIG
// / / Filename: ddr_phy_wrlvl.v
// /___/ /\ Date Last Modified: $Date: 2011/06/24 14:49:00 $
// \ \ / \ Date Created: Mon Jun 23 2008
// \___\/\___\
//
//Device: 7 Series
//Design Name: DDR3 SDRAM
//Purpose:
// Memory initialization and overall master state control during
// initialization and calibration. Specifically, the following functions
// are performed:
// 1. Memory initialization (initial AR, mode register programming, etc.)
// 2. Initiating write leveling
// 3. Generate training pattern writes for read leveling. Generate
// memory readback for read leveling.
// This module has a DFI interface for providing control/address and write
// data to the rest of the PHY datapath during initialization/calibration.
// Once initialization is complete, control is passed to the MC.
// NOTES:
// 1. Multiple CS (multi-rank) not supported
// 2. DDR2 not supported
// 3. ODT not supported
//Reference:
//Revision History:
//*****************************************************************************
/******************************************************************************
**$Id: ddr_phy_wrlvl.v,v 1.3 2011/06/24 14:49:00 mgeorge Exp $
**$Date: 2011/06/24 14:49:00 $
**$Author: mgeorge $
**$Revision: 1.3 $
**$Source: /devl/xcs/repo/env/Databases/ip/src2/O/mig_7series_v1_3/data/dlib/7series/ddr3_sdram/verilog/rtl/phy/ddr_phy_wrlvl.v,v $
******************************************************************************/
`timescale 1ps/1ps
module mig_7series_v2_3_ddr_phy_wrlvl #
(
parameter TCQ = 100,
parameter DQS_CNT_WIDTH = 3,
parameter DQ_WIDTH = 64,
parameter DQS_WIDTH = 2,
parameter DRAM_WIDTH = 8,
parameter RANKS = 1,
parameter nCK_PER_CLK = 4,
parameter CLK_PERIOD = 4,
parameter SIM_CAL_OPTION = "NONE"
)
(
input clk,
input rst,
input phy_ctl_ready,
input wr_level_start,
input wl_sm_start,
input wrlvl_final,
input wrlvl_byte_redo,
input [DQS_CNT_WIDTH:0] wrcal_cnt,
input early1_data,
input early2_data,
input [DQS_CNT_WIDTH:0] oclkdelay_calib_cnt,
input oclkdelay_calib_done,
input [(DQ_WIDTH)-1:0] rd_data_rise0,
output reg wrlvl_byte_done,
output reg dqs_po_dec_done /* synthesis syn_maxfan = 2 */,
output phy_ctl_rdy_dly,
output reg wr_level_done /* synthesis syn_maxfan = 2 */,
// to phy_init for cs logic
output wrlvl_rank_done,
output done_dqs_tap_inc,
output [DQS_CNT_WIDTH:0] po_stg2_wl_cnt,
// Fine delay line used only during write leveling
// Inc/dec Phaser_Out fine delay line
output reg dqs_po_stg2_f_incdec,
// Enable Phaser_Out fine delay inc/dec
output reg dqs_po_en_stg2_f,
// Coarse delay line used during write leveling
// only if 64 taps of fine delay line were not
// sufficient to detect a 0->1 transition
// Inc Phaser_Out coarse delay line
output reg dqs_wl_po_stg2_c_incdec,
// Enable Phaser_Out coarse delay inc/dec
output reg dqs_wl_po_en_stg2_c,
// Read Phaser_Out delay value
input [8:0] po_counter_read_val,
// output reg dqs_wl_po_stg2_load,
// output reg [8:0] dqs_wl_po_stg2_reg_l,
// CK edge undetected
output reg wrlvl_err,
output reg [3*DQS_WIDTH-1:0] wl_po_coarse_cnt,
output reg [6*DQS_WIDTH-1:0] wl_po_fine_cnt,
// Debug ports
output [5:0] dbg_wl_tap_cnt,
output dbg_wl_edge_detect_valid,
output [(DQS_WIDTH)-1:0] dbg_rd_data_edge_detect,
output [DQS_CNT_WIDTH:0] dbg_dqs_count,
output [4:0] dbg_wl_state,
output [6*DQS_WIDTH-1:0] dbg_wrlvl_fine_tap_cnt,
output [3*DQS_WIDTH-1:0] dbg_wrlvl_coarse_tap_cnt,
output [255:0] dbg_phy_wrlvl
);
localparam WL_IDLE = 5'h0;
localparam WL_INIT = 5'h1;
localparam WL_INIT_FINE_INC = 5'h2;
localparam WL_INIT_FINE_INC_WAIT1= 5'h3;
localparam WL_INIT_FINE_INC_WAIT = 5'h4;
localparam WL_INIT_FINE_DEC = 5'h5;
localparam WL_INIT_FINE_DEC_WAIT = 5'h6;
localparam WL_FINE_INC = 5'h7;
localparam WL_WAIT = 5'h8;
localparam WL_EDGE_CHECK = 5'h9;
localparam WL_DQS_CHECK = 5'hA;
localparam WL_DQS_CNT = 5'hB;
localparam WL_2RANK_TAP_DEC = 5'hC;
localparam WL_2RANK_DQS_CNT = 5'hD;
localparam WL_FINE_DEC = 5'hE;
localparam WL_FINE_DEC_WAIT = 5'hF;
localparam WL_CORSE_INC = 5'h10;
localparam WL_CORSE_INC_WAIT = 5'h11;
localparam WL_CORSE_INC_WAIT1 = 5'h12;
localparam WL_CORSE_INC_WAIT2 = 5'h13;
localparam WL_CORSE_DEC = 5'h14;
localparam WL_CORSE_DEC_WAIT = 5'h15;
localparam WL_CORSE_DEC_WAIT1 = 5'h16;
localparam WL_FINE_INC_WAIT = 5'h17;
localparam WL_2RANK_FINAL_TAP = 5'h18;
localparam WL_INIT_FINE_DEC_WAIT1= 5'h19;
localparam WL_FINE_DEC_WAIT1 = 5'h1A;
localparam WL_CORSE_INC_WAIT_TMP = 5'h1B;
localparam COARSE_TAPS = 7;
localparam FAST_CAL_FINE = (CLK_PERIOD/nCK_PER_CLK <= 2500) ? 45 : 48;
localparam FAST_CAL_COARSE = (CLK_PERIOD/nCK_PER_CLK <= 2500) ? 1 : 2;
localparam REDO_COARSE = (CLK_PERIOD/nCK_PER_CLK <= 2500) ? 2 : 5;
integer i, j, k, l, p, q, r, s, t, m, n, u, v, w, x,y;
reg phy_ctl_ready_r1;
reg phy_ctl_ready_r2;
reg phy_ctl_ready_r3;
reg phy_ctl_ready_r4;
reg phy_ctl_ready_r5;
reg phy_ctl_ready_r6;
(* max_fanout = 50 *) reg [DQS_CNT_WIDTH:0] dqs_count_r;
reg [1:0] rank_cnt_r;
reg [DQS_WIDTH-1:0] rd_data_rise_wl_r;
reg [DQS_WIDTH-1:0] rd_data_previous_r;
reg [DQS_WIDTH-1:0] rd_data_edge_detect_r;
reg wr_level_done_r;
reg wrlvl_rank_done_r;
reg wr_level_start_r;
reg [4:0] wl_state_r, wl_state_r1;
reg inhibit_edge_detect_r;
reg wl_edge_detect_valid_r;
reg [5:0] wl_tap_count_r;
reg [5:0] fine_dec_cnt;
reg [5:0] fine_inc[0:DQS_WIDTH-1]; // DQS_WIDTH number of counters 6-bit each
reg [2:0] corse_dec[0:DQS_WIDTH-1];
reg [2:0] corse_inc[0:DQS_WIDTH-1];
reg dq_cnt_inc;
reg [3:0] stable_cnt;
reg flag_ck_negedge;
//reg past_negedge;
reg flag_init;
reg [2:0] corse_cnt[0:DQS_WIDTH-1];
reg [3*DQS_WIDTH-1:0] corse_cnt_dbg;
reg [2:0] wl_corse_cnt[0:RANKS-1][0:DQS_WIDTH-1];
//reg [3*DQS_WIDTH-1:0] coarse_tap_inc;
reg [2:0] final_coarse_tap[0:DQS_WIDTH-1];
reg [5:0] add_smallest[0:DQS_WIDTH-1];
reg [5:0] add_largest[0:DQS_WIDTH-1];
//reg [6*DQS_WIDTH-1:0] fine_tap_inc;
//reg [6*DQS_WIDTH-1:0] fine_tap_dec;
reg wr_level_done_r1;
reg wr_level_done_r2;
reg wr_level_done_r3;
reg wr_level_done_r4;
reg wr_level_done_r5;
reg [5:0] wl_dqs_tap_count_r[0:RANKS-1][0:DQS_WIDTH-1];
reg [5:0] smallest[0:DQS_WIDTH-1];
reg [5:0] largest[0:DQS_WIDTH-1];
reg [5:0] final_val[0:DQS_WIDTH-1];
reg [5:0] po_dec_cnt[0:DQS_WIDTH-1];
reg done_dqs_dec;
reg [8:0] po_rdval_cnt;
reg po_cnt_dec;
reg po_dec_done;
reg dual_rnk_dec;
wire [DQS_CNT_WIDTH+2:0] dqs_count_w;
reg [5:0] fast_cal_fine_cnt;
reg [2:0] fast_cal_coarse_cnt;
reg wrlvl_byte_redo_r;
reg [2:0] wrlvl_redo_corse_inc;
reg wrlvl_final_r;
reg final_corse_dec;
wire [DQS_CNT_WIDTH+2:0] oclk_count_w;
reg wrlvl_tap_done_r ;
reg [3:0] wait_cnt;
reg [3:0] incdec_wait_cnt;
// Debug ports
assign dbg_wl_edge_detect_valid = wl_edge_detect_valid_r;
assign dbg_rd_data_edge_detect = rd_data_edge_detect_r;
assign dbg_wl_tap_cnt = wl_tap_count_r;
assign dbg_dqs_count = dqs_count_r;
assign dbg_wl_state = wl_state_r;
assign dbg_wrlvl_fine_tap_cnt = wl_po_fine_cnt;
assign dbg_wrlvl_coarse_tap_cnt = wl_po_coarse_cnt;
always @(*) begin
for (v = 0; v < DQS_WIDTH; v = v + 1)
corse_cnt_dbg[3*v+:3] = corse_cnt[v];
end
assign dbg_phy_wrlvl[0+:27] = corse_cnt_dbg;
assign dbg_phy_wrlvl[27+:5] = wl_state_r;
assign dbg_phy_wrlvl[32+:4] = dqs_count_r;
assign dbg_phy_wrlvl[36+:9] = rd_data_rise_wl_r;
assign dbg_phy_wrlvl[45+:9] = rd_data_previous_r;
assign dbg_phy_wrlvl[54+:4] = stable_cnt;
assign dbg_phy_wrlvl[58] = 'd0;
assign dbg_phy_wrlvl[59] = flag_ck_negedge;
assign dbg_phy_wrlvl [60] = wl_edge_detect_valid_r;
assign dbg_phy_wrlvl [61+:6] = wl_tap_count_r;
assign dbg_phy_wrlvl [67+:9] = rd_data_edge_detect_r;
assign dbg_phy_wrlvl [76+:54] = wl_po_fine_cnt;
assign dbg_phy_wrlvl [130+:27] = wl_po_coarse_cnt;
//**************************************************************************
// DQS count to hard PHY during write leveling using Phaser_OUT Stage2 delay
//**************************************************************************
assign po_stg2_wl_cnt = dqs_count_r;
assign wrlvl_rank_done = wrlvl_rank_done_r;
assign done_dqs_tap_inc = done_dqs_dec;
assign phy_ctl_rdy_dly = phy_ctl_ready_r6;
always @(posedge clk) begin
phy_ctl_ready_r1 <= #TCQ phy_ctl_ready;
phy_ctl_ready_r2 <= #TCQ phy_ctl_ready_r1;
phy_ctl_ready_r3 <= #TCQ phy_ctl_ready_r2;
phy_ctl_ready_r4 <= #TCQ phy_ctl_ready_r3;
phy_ctl_ready_r5 <= #TCQ phy_ctl_ready_r4;
phy_ctl_ready_r6 <= #TCQ phy_ctl_ready_r5;
wrlvl_byte_redo_r <= #TCQ wrlvl_byte_redo;
wrlvl_final_r <= #TCQ wrlvl_final;
if ((wrlvl_byte_redo && ~wrlvl_byte_redo_r) ||
(wrlvl_final && ~wrlvl_final_r))
wr_level_done <= #TCQ 1'b0;
else
wr_level_done <= #TCQ done_dqs_dec;
end
// Status signal that will be asserted once the first
// pass of write leveling is done.
always @(posedge clk) begin
if(rst) begin
wrlvl_tap_done_r <= #TCQ 1'b0 ;
end else begin
if(wrlvl_tap_done_r == 1'b0) begin
if(oclkdelay_calib_done) begin
wrlvl_tap_done_r <= #TCQ 1'b1 ;
end
end
end
end
always @(posedge clk) begin
if (rst || po_cnt_dec)
wait_cnt <= #TCQ 'd8;
else if (phy_ctl_ready_r6 && (wait_cnt > 'd0))
wait_cnt <= #TCQ wait_cnt - 1;
end
always @(posedge clk) begin
if (rst) begin
po_rdval_cnt <= #TCQ 'd0;
end else if (phy_ctl_ready_r5 && ~phy_ctl_ready_r6) begin
po_rdval_cnt <= #TCQ po_counter_read_val;
end else if (po_rdval_cnt > 'd0) begin
if (po_cnt_dec)
po_rdval_cnt <= #TCQ po_rdval_cnt - 1;
else
po_rdval_cnt <= #TCQ po_rdval_cnt;
end else if (po_rdval_cnt == 'd0) begin
po_rdval_cnt <= #TCQ po_rdval_cnt;
end
end
always @(posedge clk) begin
if (rst || (po_rdval_cnt == 'd0))
po_cnt_dec <= #TCQ 1'b0;
else if (phy_ctl_ready_r6 && (po_rdval_cnt > 'd0) && (wait_cnt == 'd1))
po_cnt_dec <= #TCQ 1'b1;
else
po_cnt_dec <= #TCQ 1'b0;
end
always @(posedge clk) begin
if (rst)
po_dec_done <= #TCQ 1'b0;
else if (((po_cnt_dec == 'd1) && (po_rdval_cnt == 'd1)) ||
(phy_ctl_ready_r6 && (po_rdval_cnt == 'd0))) begin
po_dec_done <= #TCQ 1'b1;
end
end
always @(posedge clk) begin
dqs_po_dec_done <= #TCQ po_dec_done;
wr_level_done_r1 <= #TCQ wr_level_done_r;
wr_level_done_r2 <= #TCQ wr_level_done_r1;
wr_level_done_r3 <= #TCQ wr_level_done_r2;
wr_level_done_r4 <= #TCQ wr_level_done_r3;
wr_level_done_r5 <= #TCQ wr_level_done_r4;
for (l = 0; l < DQS_WIDTH; l = l + 1) begin
wl_po_coarse_cnt[3*l+:3] <= #TCQ final_coarse_tap[l];
if ((RANKS == 1) || ~oclkdelay_calib_done)
wl_po_fine_cnt[6*l+:6] <= #TCQ smallest[l];
else
wl_po_fine_cnt[6*l+:6] <= #TCQ final_val[l];
end
end
generate
if (RANKS == 2) begin: dual_rank
always @(posedge clk) begin
if (rst || (wrlvl_byte_redo && ~wrlvl_byte_redo_r) ||
(wrlvl_final && ~wrlvl_final_r))
done_dqs_dec <= #TCQ 1'b0;
else if ((SIM_CAL_OPTION == "FAST_CAL") || ~oclkdelay_calib_done)
done_dqs_dec <= #TCQ wr_level_done_r;
else if (wr_level_done_r5 && (wl_state_r == WL_IDLE))
done_dqs_dec <= #TCQ 1'b1;
end
end else begin: single_rank
always @(posedge clk) begin
if (rst || (wrlvl_byte_redo && ~wrlvl_byte_redo_r) ||
(wrlvl_final && ~wrlvl_final_r))
done_dqs_dec <= #TCQ 1'b0;
else if (~oclkdelay_calib_done)
done_dqs_dec <= #TCQ wr_level_done_r;
else if (wr_level_done_r3 && ~wr_level_done_r4)
done_dqs_dec <= #TCQ 1'b1;
end
end
endgenerate
always @(posedge clk)
if (rst || (wrlvl_byte_redo && ~wrlvl_byte_redo_r))
wrlvl_byte_done <= #TCQ 1'b0;
else if (wrlvl_byte_redo && wr_level_done_r3 && ~wr_level_done_r4)
wrlvl_byte_done <= #TCQ 1'b1;
// Storing DQS tap values at the end of each DQS write leveling
always @(posedge clk) begin
if (rst) begin
for (k = 0; k < RANKS; k = k + 1) begin: rst_wl_dqs_tap_count_loop
for (n = 0; n < DQS_WIDTH; n = n + 1) begin
wl_corse_cnt[k][n] <= #TCQ 'b0;
wl_dqs_tap_count_r[k][n] <= #TCQ 'b0;
end
end
end else if ((wl_state_r == WL_DQS_CNT) | (wl_state_r == WL_WAIT) |
(wl_state_r == WL_FINE_DEC_WAIT1) |
(wl_state_r == WL_2RANK_TAP_DEC)) begin
wl_dqs_tap_count_r[rank_cnt_r][dqs_count_r] <= #TCQ wl_tap_count_r;
wl_corse_cnt[rank_cnt_r][dqs_count_r] <= #TCQ corse_cnt[dqs_count_r];
end else if ((SIM_CAL_OPTION == "FAST_CAL") & (wl_state_r == WL_DQS_CHECK)) begin
for (p = 0; p < RANKS; p = p +1) begin: dqs_tap_rank_cnt
for(q = 0; q < DQS_WIDTH; q = q +1) begin: dqs_tap_dqs_cnt
wl_dqs_tap_count_r[p][q] <= #TCQ wl_tap_count_r;
wl_corse_cnt[p][q] <= #TCQ corse_cnt[0];
end
end
end
end
// Convert coarse delay to fine taps in case of unequal number of coarse
// taps between ranks. Assuming a difference of 1 coarse tap counts
// between ranks. A common fine and coarse tap value must be used for both ranks
// because Phaser_Out has only one rank register.
// Coarse tap1 = period(ps)*93/360 = 34 fine taps
// Other coarse taps = period(ps)*103/360 = 38 fine taps
generate
genvar cnt;
if (RANKS == 2) begin // Dual rank
for(cnt = 0; cnt < DQS_WIDTH; cnt = cnt +1) begin: coarse_dqs_cnt
always @(posedge clk) begin
if (rst) begin
//coarse_tap_inc[3*cnt+:3] <= #TCQ 'b0;
add_smallest[cnt] <= #TCQ 'd0;
add_largest[cnt] <= #TCQ 'd0;
final_coarse_tap[cnt] <= #TCQ 'd0;
end else if (wr_level_done_r1 & ~wr_level_done_r2) begin
if (~oclkdelay_calib_done) begin
for(y = 0 ; y < DQS_WIDTH; y = y+1) begin
final_coarse_tap[y] <= #TCQ wl_corse_cnt[0][y];
add_smallest[y] <= #TCQ 'd0;
add_largest[y] <= #TCQ 'd0;
end
end else
if (wl_corse_cnt[0][cnt] == wl_corse_cnt[1][cnt]) begin
// Both ranks have use the same number of coarse delay taps.
// No conversion of coarse tap to fine taps required.
//coarse_tap_inc[3*cnt+:3] <= #TCQ wl_corse_cnt[1][3*cnt+:3];
final_coarse_tap[cnt] <= #TCQ wl_corse_cnt[1][cnt];
add_smallest[cnt] <= #TCQ 'd0;
add_largest[cnt] <= #TCQ 'd0;
end else if (wl_corse_cnt[0][cnt] < wl_corse_cnt[1][cnt]) begin
// Rank 0 uses fewer coarse delay taps than rank1.
// conversion of coarse tap to fine taps required for rank1.
// The final coarse count will the smaller value.
//coarse_tap_inc[3*cnt+:3] <= #TCQ wl_corse_cnt[1][3*cnt+:3] - 1;
final_coarse_tap[cnt] <= #TCQ wl_corse_cnt[1][cnt] - 1;
if (|wl_corse_cnt[0][cnt])
// Coarse tap 2 or higher being converted to fine taps
// This will be added to 'largest' value in final_val
// computation
add_largest[cnt] <= #TCQ 'd38;
else
// Coarse tap 1 being converted to fine taps
// This will be added to 'largest' value in final_val
// computation
add_largest[cnt] <= #TCQ 'd34;
end else if (wl_corse_cnt[0][cnt] > wl_corse_cnt[1][cnt]) begin
// This may be an unlikely scenario in a real system.
// Rank 0 uses more coarse delay taps than rank1.
// conversion of coarse tap to fine taps required.
//coarse_tap_inc[3*cnt+:3] <= #TCQ 'd0;
final_coarse_tap[cnt] <= #TCQ wl_corse_cnt[1][cnt];
if (|wl_corse_cnt[1][cnt])
// Coarse tap 2 or higher being converted to fine taps
// This will be added to 'smallest' value in final_val
// computation
add_smallest[cnt] <= #TCQ 'd38;
else
// Coarse tap 1 being converted to fine taps
// This will be added to 'smallest' value in
// final_val computation
add_smallest[cnt] <= #TCQ 'd34;
end
end
end
end
end else begin
// Single rank
always @(posedge clk) begin
//coarse_tap_inc <= #TCQ 'd0;
for(w = 0; w < DQS_WIDTH; w = w + 1) begin
final_coarse_tap[w] <= #TCQ wl_corse_cnt[0][w];
add_smallest[w] <= #TCQ 'd0;
add_largest[w] <= #TCQ 'd0;
end
end
end
endgenerate
// Determine delay value for DQS in multirank system
// Assuming delay value is the smallest for rank 0 DQS
// and largest delay value for rank 4 DQS
// Set to smallest + ((largest-smallest)/2)
always @(posedge clk) begin
if (rst) begin
for(x = 0; x < DQS_WIDTH; x = x +1) begin
smallest[x] <= #TCQ 'b0;
largest[x] <= #TCQ 'b0;
end
end else if ((wl_state_r == WL_DQS_CNT) & wrlvl_byte_redo) begin
smallest[dqs_count_r] <= #TCQ wl_dqs_tap_count_r[0][dqs_count_r];
largest[dqs_count_r] <= #TCQ wl_dqs_tap_count_r[0][dqs_count_r];
end else if ((wl_state_r == WL_DQS_CNT) |
(wl_state_r == WL_2RANK_TAP_DEC)) begin
smallest[dqs_count_r] <= #TCQ wl_dqs_tap_count_r[0][dqs_count_r];
largest[dqs_count_r] <= #TCQ wl_dqs_tap_count_r[RANKS-1][dqs_count_r];
end else if (((SIM_CAL_OPTION == "FAST_CAL") |
(~oclkdelay_calib_done & ~wrlvl_byte_redo)) &
wr_level_done_r1 & ~wr_level_done_r2) begin
for(i = 0; i < DQS_WIDTH; i = i +1) begin: smallest_dqs
smallest[i] <= #TCQ wl_dqs_tap_count_r[0][i];
largest[i] <= #TCQ wl_dqs_tap_count_r[0][i];
end
end
end
// final_val to be used for all DQSs in all ranks
genvar wr_i;
generate
for (wr_i = 0; wr_i < DQS_WIDTH; wr_i = wr_i +1) begin: gen_final_tap
always @(posedge clk) begin
if (rst)
final_val[wr_i] <= #TCQ 'b0;
else if (wr_level_done_r2 && ~wr_level_done_r3) begin
if (~oclkdelay_calib_done)
final_val[wr_i] <= #TCQ (smallest[wr_i] + add_smallest[wr_i]);
else if ((smallest[wr_i] + add_smallest[wr_i]) <
(largest[wr_i] + add_largest[wr_i]))
final_val[wr_i] <= #TCQ ((smallest[wr_i] + add_smallest[wr_i]) +
(((largest[wr_i] + add_largest[wr_i]) -
(smallest[wr_i] + add_smallest[wr_i]))/2));
else if ((smallest[wr_i] + add_smallest[wr_i]) >
(largest[wr_i] + add_largest[wr_i]))
final_val[wr_i] <= #TCQ ((largest[wr_i] + add_largest[wr_i]) +
(((smallest[wr_i] + add_smallest[wr_i]) -
(largest[wr_i] + add_largest[wr_i]))/2));
else if ((smallest[wr_i] + add_smallest[wr_i]) ==
(largest[wr_i] + add_largest[wr_i]))
final_val[wr_i] <= #TCQ (largest[wr_i] + add_largest[wr_i]);
end
end
end
endgenerate
// // fine tap inc/dec value for all DQSs in all ranks
// genvar dqs_i;
// generate
// for (dqs_i = 0; dqs_i < DQS_WIDTH; dqs_i = dqs_i +1) begin: gen_fine_tap
// always @(posedge clk) begin
// if (rst)
// fine_tap_inc[6*dqs_i+:6] <= #TCQ 'd0;
// //fine_tap_dec[6*dqs_i+:6] <= #TCQ 'd0;
// else if (wr_level_done_r3 && ~wr_level_done_r4) begin
// fine_tap_inc[6*dqs_i+:6] <= #TCQ final_val[6*dqs_i+:6];
// //fine_tap_dec[6*dqs_i+:6] <= #TCQ 'd0;
// end
// end
// endgenerate
// Inc/Dec Phaser_Out stage 2 fine delay line
always @(posedge clk) begin
if (rst) begin
// Fine delay line used only during write leveling
dqs_po_stg2_f_incdec <= #TCQ 1'b0;
dqs_po_en_stg2_f <= #TCQ 1'b0;
// Dec Phaser_Out fine delay (1)before write leveling,
// (2)if no 0 to 1 transition detected with 63 fine delay taps, or
// (3)dual rank case where fine taps for the first rank need to be 0
end else if (po_cnt_dec || (wl_state_r == WL_INIT_FINE_DEC) ||
(wl_state_r == WL_FINE_DEC)) begin
dqs_po_stg2_f_incdec <= #TCQ 1'b0;
dqs_po_en_stg2_f <= #TCQ 1'b1;
// Inc Phaser_Out fine delay during write leveling
end else if ((wl_state_r == WL_INIT_FINE_INC) ||
(wl_state_r == WL_FINE_INC)) begin
dqs_po_stg2_f_incdec <= #TCQ 1'b1;
dqs_po_en_stg2_f <= #TCQ 1'b1;
end else begin
dqs_po_stg2_f_incdec <= #TCQ 1'b0;
dqs_po_en_stg2_f <= #TCQ 1'b0;
end
end
// Inc Phaser_Out stage 2 Coarse delay line
always @(posedge clk) begin
if (rst) begin
// Coarse delay line used during write leveling
// only if no 0->1 transition undetected with 64
// fine delay line taps
dqs_wl_po_stg2_c_incdec <= #TCQ 1'b0;
dqs_wl_po_en_stg2_c <= #TCQ 1'b0;
end else if (wl_state_r == WL_CORSE_INC) begin
// Inc Phaser_Out coarse delay during write leveling
dqs_wl_po_stg2_c_incdec <= #TCQ 1'b1;
dqs_wl_po_en_stg2_c <= #TCQ 1'b1;
end else begin
dqs_wl_po_stg2_c_incdec <= #TCQ 1'b0;
dqs_wl_po_en_stg2_c <= #TCQ 1'b0;
end
end
// only storing the rise data for checking. The data comming back during
// write leveling will be a static value. Just checking for rise data is
// enough.
genvar rd_i;
generate
for(rd_i = 0; rd_i < DQS_WIDTH; rd_i = rd_i +1)begin: gen_rd
always @(posedge clk)
rd_data_rise_wl_r[rd_i] <=
#TCQ |rd_data_rise0[(rd_i*DRAM_WIDTH)+DRAM_WIDTH-1:rd_i*DRAM_WIDTH];
end
endgenerate
// storing the previous data for checking later.
always @(posedge clk)begin
if ((wl_state_r == WL_INIT) || //(wl_state_r == WL_INIT_FINE_INC_WAIT) ||
//(wl_state_r == WL_INIT_FINE_INC_WAIT1) ||
((wl_state_r1 == WL_INIT_FINE_INC_WAIT) & (wl_state_r == WL_INIT_FINE_INC)) ||
(wl_state_r == WL_FINE_DEC) || (wl_state_r == WL_FINE_DEC_WAIT1) || (wl_state_r == WL_FINE_DEC_WAIT) ||
(wl_state_r == WL_CORSE_INC) || (wl_state_r == WL_CORSE_INC_WAIT) || (wl_state_r == WL_CORSE_INC_WAIT_TMP) ||
(wl_state_r == WL_CORSE_INC_WAIT1) || (wl_state_r == WL_CORSE_INC_WAIT2) ||
((wl_state_r == WL_EDGE_CHECK) & (wl_edge_detect_valid_r)))
rd_data_previous_r <= #TCQ rd_data_rise_wl_r;
end
// changed stable count from 3 to 7 because of fine tap resolution
always @(posedge clk)begin
if (rst | (wl_state_r == WL_DQS_CNT) |
(wl_state_r == WL_2RANK_TAP_DEC) |
(wl_state_r == WL_FINE_DEC) |
(rd_data_previous_r[dqs_count_r] != rd_data_rise_wl_r[dqs_count_r]) |
(wl_state_r1 == WL_INIT_FINE_DEC))
stable_cnt <= #TCQ 'd0;
else if ((wl_tap_count_r > 6'd0) &
(((wl_state_r == WL_EDGE_CHECK) & (wl_edge_detect_valid_r)) |
((wl_state_r1 == WL_INIT_FINE_INC_WAIT) & (wl_state_r == WL_INIT_FINE_INC)))) begin
if ((rd_data_previous_r[dqs_count_r] == rd_data_rise_wl_r[dqs_count_r])
& (stable_cnt < 'd14))
stable_cnt <= #TCQ stable_cnt + 1;
end
end
// Signal to ensure that flag_ck_negedge does not incorrectly assert
// when DQS is very close to CK rising edge
//always @(posedge clk) begin
// if (rst | (wl_state_r == WL_DQS_CNT) |
// (wl_state_r == WL_DQS_CHECK) | wr_level_done_r)
// past_negedge <= #TCQ 1'b0;
// else if (~flag_ck_negedge && ~rd_data_previous_r[dqs_count_r] &&
// (stable_cnt == 'd0) && ((wl_state_r == WL_CORSE_INC_WAIT1) |
// (wl_state_r == WL_CORSE_INC_WAIT2)))
// past_negedge <= #TCQ 1'b1;
//end
// Flag to indicate negedge of CK detected and ignore 0->1 transitions
// in this region
always @(posedge clk)begin
if (rst | (wl_state_r == WL_DQS_CNT) |
(wl_state_r == WL_DQS_CHECK) | wr_level_done_r |
(wl_state_r1 == WL_INIT_FINE_DEC))
flag_ck_negedge <= #TCQ 1'd0;
else if ((rd_data_previous_r[dqs_count_r] && ((stable_cnt > 'd0) |
(wl_state_r == WL_FINE_DEC) | (wl_state_r == WL_FINE_DEC_WAIT) | (wl_state_r == WL_FINE_DEC_WAIT1))) |
(wl_state_r == WL_CORSE_INC))
flag_ck_negedge <= #TCQ 1'd1;
else if (~rd_data_previous_r[dqs_count_r] && (stable_cnt == 'd14))
//&& flag_ck_negedge)
flag_ck_negedge <= #TCQ 1'd0;
end
// Flag to inhibit rd_data_edge_detect_r before stable DQ
always @(posedge clk) begin
if (rst)
flag_init <= #TCQ 1'b1;
else if ((wl_state_r == WL_WAIT) && ((wl_state_r1 == WL_INIT_FINE_INC_WAIT) ||
(wl_state_r1 == WL_INIT_FINE_DEC_WAIT)))
flag_init <= #TCQ 1'b0;
end
//checking for transition from 0 to 1
always @(posedge clk)begin
if (rst | flag_ck_negedge | flag_init | (wl_tap_count_r < 'd1) |
inhibit_edge_detect_r)
rd_data_edge_detect_r <= #TCQ {DQS_WIDTH{1'b0}};
else if (rd_data_edge_detect_r[dqs_count_r] == 1'b1) begin
if ((wl_state_r == WL_FINE_DEC) || (wl_state_r == WL_FINE_DEC_WAIT) || (wl_state_r == WL_FINE_DEC_WAIT1) ||
(wl_state_r == WL_CORSE_INC) || (wl_state_r == WL_CORSE_INC_WAIT) || (wl_state_r == WL_CORSE_INC_WAIT_TMP) ||
(wl_state_r == WL_CORSE_INC_WAIT1) || (wl_state_r == WL_CORSE_INC_WAIT2))
rd_data_edge_detect_r <= #TCQ {DQS_WIDTH{1'b0}};
else
rd_data_edge_detect_r <= #TCQ rd_data_edge_detect_r;
end else if (rd_data_previous_r[dqs_count_r] && (stable_cnt < 'd14))
rd_data_edge_detect_r <= #TCQ {DQS_WIDTH{1'b0}};
else
rd_data_edge_detect_r <= #TCQ (~rd_data_previous_r & rd_data_rise_wl_r);
end
// registring the write level start signal
always@(posedge clk) begin
wr_level_start_r <= #TCQ wr_level_start;
end
// Assign dqs_count_r to dqs_count_w to perform the shift operation
// instead of multiply operation
assign dqs_count_w = {2'b00, dqs_count_r};
assign oclk_count_w = {2'b00, oclkdelay_calib_cnt};
always @(posedge clk) begin
if (rst)
incdec_wait_cnt <= #TCQ 'd0;
else if ((wl_state_r == WL_FINE_DEC_WAIT1) ||
(wl_state_r == WL_INIT_FINE_DEC_WAIT1) ||
(wl_state_r == WL_CORSE_INC_WAIT_TMP))
incdec_wait_cnt <= #TCQ incdec_wait_cnt + 1;
else
incdec_wait_cnt <= #TCQ 'd0;
end
// state machine to initiate the write leveling sequence
// The state machine operates on one byte at a time.
// It will increment the delays to the DQS OSERDES
// and sample the DQ from the memory. When it detects
// a transition from 1 to 0 then the write leveling is considered
// done.
always @(posedge clk) begin
if(rst)begin
wrlvl_err <= #TCQ 1'b0;
wr_level_done_r <= #TCQ 1'b0;
wrlvl_rank_done_r <= #TCQ 1'b0;
dqs_count_r <= #TCQ {DQS_CNT_WIDTH+1{1'b0}};
dq_cnt_inc <= #TCQ 1'b1;
rank_cnt_r <= #TCQ 2'b00;
wl_state_r <= #TCQ WL_IDLE;
wl_state_r1 <= #TCQ WL_IDLE;
inhibit_edge_detect_r <= #TCQ 1'b1;
wl_edge_detect_valid_r <= #TCQ 1'b0;
wl_tap_count_r <= #TCQ 6'd0;
fine_dec_cnt <= #TCQ 6'd0;
for (r = 0; r < DQS_WIDTH; r = r + 1) begin
fine_inc[r] <= #TCQ 6'b0;
corse_dec[r] <= #TCQ 3'b0;
corse_inc[r] <= #TCQ 3'b0;
corse_cnt[r] <= #TCQ 3'b0;
end
dual_rnk_dec <= #TCQ 1'b0;
fast_cal_fine_cnt <= #TCQ FAST_CAL_FINE;
fast_cal_coarse_cnt <= #TCQ FAST_CAL_COARSE;
final_corse_dec <= #TCQ 1'b0;
//zero_tran_r <= #TCQ 1'b0;
wrlvl_redo_corse_inc <= #TCQ 'd0;
end else begin
wl_state_r1 <= #TCQ wl_state_r;
case (wl_state_r)
WL_IDLE: begin
wrlvl_rank_done_r <= #TCQ 1'd0;
inhibit_edge_detect_r <= #TCQ 1'b1;
if (wrlvl_byte_redo && ~wrlvl_byte_redo_r) begin
wr_level_done_r <= #TCQ 1'b0;
dqs_count_r <= #TCQ wrcal_cnt;
corse_cnt[wrcal_cnt] <= #TCQ final_coarse_tap[wrcal_cnt];
wl_tap_count_r <= #TCQ smallest[wrcal_cnt];
if (early1_data &&
(((final_coarse_tap[wrcal_cnt] < 'd6) && (CLK_PERIOD/nCK_PER_CLK <= 2500)) ||
((final_coarse_tap[wrcal_cnt] < 'd3) && (CLK_PERIOD/nCK_PER_CLK > 2500))))
wrlvl_redo_corse_inc <= #TCQ REDO_COARSE;
else if (early2_data && (final_coarse_tap[wrcal_cnt] < 'd2))
wrlvl_redo_corse_inc <= #TCQ 3'd6;
else begin
wl_state_r <= #TCQ WL_IDLE;
wrlvl_err <= #TCQ 1'b1;
end
end else if (wrlvl_final && ~wrlvl_final_r) begin
wr_level_done_r <= #TCQ 1'b0;
dqs_count_r <= #TCQ 'd0;
end
// verilint STARC-2.2.3.3 off
if(!wr_level_done_r & wr_level_start_r & wl_sm_start) begin
if (SIM_CAL_OPTION == "FAST_CAL")
wl_state_r <= #TCQ WL_FINE_INC;
else
wl_state_r <= #TCQ WL_INIT;
end
end
// verilint STARC-2.2.3.3 on
WL_INIT: begin
wl_edge_detect_valid_r <= #TCQ 1'b0;
inhibit_edge_detect_r <= #TCQ 1'b1;
wrlvl_rank_done_r <= #TCQ 1'd0;
//zero_tran_r <= #TCQ 1'b0;
if (wrlvl_final)
corse_cnt[dqs_count_w ] <= #TCQ final_coarse_tap[dqs_count_w ];
if (wrlvl_byte_redo) begin
if (|wl_tap_count_r) begin
wl_state_r <= #TCQ WL_FINE_DEC;
fine_dec_cnt <= #TCQ wl_tap_count_r;
end else if ((corse_cnt[dqs_count_w] + wrlvl_redo_corse_inc) <= 'd7)
wl_state_r <= #TCQ WL_CORSE_INC;
else begin
wl_state_r <= #TCQ WL_IDLE;
wrlvl_err <= #TCQ 1'b1;
end
end else if(wl_sm_start)
wl_state_r <= #TCQ WL_INIT_FINE_INC;
end
// Initially Phaser_Out fine delay taps incremented
// until stable_cnt=14. A stable_cnt of 14 indicates
// that rd_data_rise_wl_r=rd_data_previous_r for 14 fine
// tap increments. This is done to inhibit false 0->1
// edge detection when DQS is initially aligned to the
// negedge of CK
WL_INIT_FINE_INC: begin
wl_state_r <= #TCQ WL_INIT_FINE_INC_WAIT1;
wl_tap_count_r <= #TCQ wl_tap_count_r + 1'b1;
final_corse_dec <= #TCQ 1'b0;
end
WL_INIT_FINE_INC_WAIT1: begin
if (wl_sm_start)
wl_state_r <= #TCQ WL_INIT_FINE_INC_WAIT;
end
// Case1: stable value of rd_data_previous_r=0 then
// proceed to 0->1 edge detection.
// Case2: stable value of rd_data_previous_r=1 then
// decrement fine taps to '0' and proceed to 0->1
// edge detection. Need to decrement in this case to
// make sure a valid 0->1 transition was not left
// undetected.
WL_INIT_FINE_INC_WAIT: begin
if (wl_sm_start) begin
if (stable_cnt < 'd14)
wl_state_r <= #TCQ WL_INIT_FINE_INC;
else if (~rd_data_previous_r[dqs_count_r]) begin
wl_state_r <= #TCQ WL_WAIT;
inhibit_edge_detect_r <= #TCQ 1'b0;
end else begin
wl_state_r <= #TCQ WL_INIT_FINE_DEC;
fine_dec_cnt <= #TCQ wl_tap_count_r;
end
end
end
// Case2: stable value of rd_data_previous_r=1 then
// decrement fine taps to '0' and proceed to 0->1
// edge detection. Need to decrement in this case to
// make sure a valid 0->1 transition was not left
// undetected.
WL_INIT_FINE_DEC: begin
wl_tap_count_r <= #TCQ 'd0;
wl_state_r <= #TCQ WL_INIT_FINE_DEC_WAIT1;
if (fine_dec_cnt > 6'd0)
fine_dec_cnt <= #TCQ fine_dec_cnt - 1;
else
fine_dec_cnt <= #TCQ fine_dec_cnt;
end
WL_INIT_FINE_DEC_WAIT1: begin
if (incdec_wait_cnt == 'd8)
wl_state_r <= #TCQ WL_INIT_FINE_DEC_WAIT;
end
WL_INIT_FINE_DEC_WAIT: begin
if (fine_dec_cnt > 6'd0) begin
wl_state_r <= #TCQ WL_INIT_FINE_DEC;
inhibit_edge_detect_r <= #TCQ 1'b1;
end else begin
wl_state_r <= #TCQ WL_WAIT;
inhibit_edge_detect_r <= #TCQ 1'b0;
end
end
// Inc DQS Phaser_Out Stage2 Fine Delay line
WL_FINE_INC: begin
wl_edge_detect_valid_r <= #TCQ 1'b0;
if (SIM_CAL_OPTION == "FAST_CAL") begin
wl_state_r <= #TCQ WL_FINE_INC_WAIT;
if (fast_cal_fine_cnt > 'd0)
fast_cal_fine_cnt <= #TCQ fast_cal_fine_cnt - 1;
else
fast_cal_fine_cnt <= #TCQ fast_cal_fine_cnt;
end else if (wr_level_done_r5) begin
wl_tap_count_r <= #TCQ 'd0;
wl_state_r <= #TCQ WL_FINE_INC_WAIT;
if (|fine_inc[dqs_count_w])
fine_inc[dqs_count_w] <= #TCQ fine_inc[dqs_count_w] - 1;
end else begin
wl_state_r <= #TCQ WL_WAIT;
wl_tap_count_r <= #TCQ wl_tap_count_r + 1'b1;
end
end
WL_FINE_INC_WAIT: begin
if (SIM_CAL_OPTION == "FAST_CAL") begin
if (fast_cal_fine_cnt > 'd0)
wl_state_r <= #TCQ WL_FINE_INC;
else if (fast_cal_coarse_cnt > 'd0)
wl_state_r <= #TCQ WL_CORSE_INC;
else
wl_state_r <= #TCQ WL_DQS_CNT;
end else if (|fine_inc[dqs_count_w])
wl_state_r <= #TCQ WL_FINE_INC;
else if (dqs_count_r == (DQS_WIDTH-1))
wl_state_r <= #TCQ WL_IDLE;
else begin
wl_state_r <= #TCQ WL_2RANK_FINAL_TAP;
dqs_count_r <= #TCQ dqs_count_r + 1;
end
end
WL_FINE_DEC: begin
wl_edge_detect_valid_r <= #TCQ 1'b0;
wl_tap_count_r <= #TCQ 'd0;
wl_state_r <= #TCQ WL_FINE_DEC_WAIT1;
if (fine_dec_cnt > 6'd0)
fine_dec_cnt <= #TCQ fine_dec_cnt - 1;
else
fine_dec_cnt <= #TCQ fine_dec_cnt;
end
WL_FINE_DEC_WAIT1: begin
if (incdec_wait_cnt == 'd8)
wl_state_r <= #TCQ WL_FINE_DEC_WAIT;
end
WL_FINE_DEC_WAIT: begin
if (fine_dec_cnt > 6'd0)
wl_state_r <= #TCQ WL_FINE_DEC;
//else if (zero_tran_r)
// wl_state_r <= #TCQ WL_DQS_CNT;
else if (dual_rnk_dec) begin
if (|corse_dec[dqs_count_r])
wl_state_r <= #TCQ WL_CORSE_DEC;
else
wl_state_r <= #TCQ WL_2RANK_DQS_CNT;
end else if (wrlvl_byte_redo) begin
if ((corse_cnt[dqs_count_w] + wrlvl_redo_corse_inc) <= 'd7)
wl_state_r <= #TCQ WL_CORSE_INC;
else begin
wl_state_r <= #TCQ WL_IDLE;
wrlvl_err <= #TCQ 1'b1;
end
end else
wl_state_r <= #TCQ WL_CORSE_INC;
end
WL_CORSE_DEC: begin
wl_state_r <= #TCQ WL_CORSE_DEC_WAIT;
dual_rnk_dec <= #TCQ 1'b0;
if (|corse_dec[dqs_count_r])
corse_dec[dqs_count_r] <= #TCQ corse_dec[dqs_count_r] - 1;
else
corse_dec[dqs_count_r] <= #TCQ corse_dec[dqs_count_r];
end
WL_CORSE_DEC_WAIT: begin
if (wl_sm_start) begin
//if (|corse_dec[dqs_count_r])
// wl_state_r <= #TCQ WL_CORSE_DEC;
if (|corse_dec[dqs_count_r])
wl_state_r <= #TCQ WL_CORSE_DEC_WAIT1;
else
wl_state_r <= #TCQ WL_2RANK_DQS_CNT;
end
end
WL_CORSE_DEC_WAIT1: begin
if (wl_sm_start)
wl_state_r <= #TCQ WL_CORSE_DEC;
end
WL_CORSE_INC: begin
wl_state_r <= #TCQ WL_CORSE_INC_WAIT_TMP;
if (SIM_CAL_OPTION == "FAST_CAL") begin
if (fast_cal_coarse_cnt > 'd0)
fast_cal_coarse_cnt <= #TCQ fast_cal_coarse_cnt - 1;
else
fast_cal_coarse_cnt <= #TCQ fast_cal_coarse_cnt;
end else if (wrlvl_byte_redo) begin
corse_cnt[dqs_count_w] <= #TCQ corse_cnt[dqs_count_w] + 1;
if (|wrlvl_redo_corse_inc)
wrlvl_redo_corse_inc <= #TCQ wrlvl_redo_corse_inc - 1;
end else if (~wr_level_done_r5)
corse_cnt[dqs_count_r] <= #TCQ corse_cnt[dqs_count_r] + 1;
else if (|corse_inc[dqs_count_w])
corse_inc[dqs_count_w] <= #TCQ corse_inc[dqs_count_w] - 1;
end
WL_CORSE_INC_WAIT_TMP: begin
if (incdec_wait_cnt == 'd8)
wl_state_r <= #TCQ WL_CORSE_INC_WAIT;
end
WL_CORSE_INC_WAIT: begin
if (SIM_CAL_OPTION == "FAST_CAL") begin
if (fast_cal_coarse_cnt > 'd0)
wl_state_r <= #TCQ WL_CORSE_INC;
else
wl_state_r <= #TCQ WL_DQS_CNT;
end else if (wrlvl_byte_redo) begin
if (|wrlvl_redo_corse_inc)
wl_state_r <= #TCQ WL_CORSE_INC;
else begin
wl_state_r <= #TCQ WL_INIT_FINE_INC;
inhibit_edge_detect_r <= #TCQ 1'b1;
end
end else if (~wr_level_done_r5 && wl_sm_start)
wl_state_r <= #TCQ WL_CORSE_INC_WAIT1;
else if (wr_level_done_r5) begin
if (|corse_inc[dqs_count_r])
wl_state_r <= #TCQ WL_CORSE_INC;
else if (|fine_inc[dqs_count_w])
wl_state_r <= #TCQ WL_FINE_INC;
else if (dqs_count_r == (DQS_WIDTH-1))
wl_state_r <= #TCQ WL_IDLE;
else begin
wl_state_r <= #TCQ WL_2RANK_FINAL_TAP;
dqs_count_r <= #TCQ dqs_count_r + 1;
end
end
end
WL_CORSE_INC_WAIT1: begin
if (wl_sm_start)
wl_state_r <= #TCQ WL_CORSE_INC_WAIT2;
end
WL_CORSE_INC_WAIT2: begin
if (wl_sm_start)
wl_state_r <= #TCQ WL_WAIT;
end
WL_WAIT: begin
if (wl_sm_start)
wl_state_r <= #TCQ WL_EDGE_CHECK;
end
WL_EDGE_CHECK: begin // Look for the edge
if (wl_edge_detect_valid_r == 1'b0) begin
wl_state_r <= #TCQ WL_WAIT;
wl_edge_detect_valid_r <= #TCQ 1'b1;
end
// 0->1 transition detected with DQS
else if(rd_data_edge_detect_r[dqs_count_r] &&
wl_edge_detect_valid_r)
begin
wl_tap_count_r <= #TCQ wl_tap_count_r;
if ((SIM_CAL_OPTION == "FAST_CAL") || (RANKS < 2) ||
~oclkdelay_calib_done)
wl_state_r <= #TCQ WL_DQS_CNT;
else
wl_state_r <= #TCQ WL_2RANK_TAP_DEC;
end
// For initial writes check only upto 56 taps. Reserving the
// remaining taps for OCLK calibration.
else if((~wrlvl_tap_done_r) && (wl_tap_count_r > 6'd55)) begin
if (corse_cnt[dqs_count_r] < COARSE_TAPS) begin
wl_state_r <= #TCQ WL_FINE_DEC;
fine_dec_cnt <= #TCQ wl_tap_count_r;
end else begin
wrlvl_err <= #TCQ 1'b1;
wl_state_r <= #TCQ WL_IDLE;
end
end else begin
if (wl_tap_count_r < 6'd56) //for reuse wrlvl for complex ocal
wl_state_r <= #TCQ WL_FINE_INC;
else if (corse_cnt[dqs_count_r] < COARSE_TAPS) begin
wl_state_r <= #TCQ WL_FINE_DEC;
fine_dec_cnt <= #TCQ wl_tap_count_r;
end else begin
wrlvl_err <= #TCQ 1'b1;
wl_state_r <= #TCQ WL_IDLE;
end
end
end
WL_2RANK_TAP_DEC: begin
wl_state_r <= #TCQ WL_FINE_DEC;
fine_dec_cnt <= #TCQ wl_tap_count_r;
for (m = 0; m < DQS_WIDTH; m = m + 1)
corse_dec[m] <= #TCQ corse_cnt[m];
wl_edge_detect_valid_r <= #TCQ 1'b0;
dual_rnk_dec <= #TCQ 1'b1;
end
WL_DQS_CNT: begin
if ((SIM_CAL_OPTION == "FAST_CAL") ||
(dqs_count_r == (DQS_WIDTH-1)) ||
wrlvl_byte_redo) begin
dqs_count_r <= #TCQ dqs_count_r;
dq_cnt_inc <= #TCQ 1'b0;
end else begin
dqs_count_r <= #TCQ dqs_count_r + 1'b1;
dq_cnt_inc <= #TCQ 1'b1;
end
wl_state_r <= #TCQ WL_DQS_CHECK;
wl_edge_detect_valid_r <= #TCQ 1'b0;
end
WL_2RANK_DQS_CNT: begin
if ((SIM_CAL_OPTION == "FAST_CAL") ||
(dqs_count_r == (DQS_WIDTH-1))) begin
dqs_count_r <= #TCQ dqs_count_r;
dq_cnt_inc <= #TCQ 1'b0;
end else begin
dqs_count_r <= #TCQ dqs_count_r + 1'b1;
dq_cnt_inc <= #TCQ 1'b1;
end
wl_state_r <= #TCQ WL_DQS_CHECK;
wl_edge_detect_valid_r <= #TCQ 1'b0;
dual_rnk_dec <= #TCQ 1'b0;
end
WL_DQS_CHECK: begin // check if all DQS have been calibrated
wl_tap_count_r <= #TCQ 'd0;
if (dq_cnt_inc == 1'b0)begin
wrlvl_rank_done_r <= #TCQ 1'd1;
for (t = 0; t < DQS_WIDTH; t = t + 1)
corse_cnt[t] <= #TCQ 3'b0;
if ((SIM_CAL_OPTION == "FAST_CAL") || (RANKS < 2) || ~oclkdelay_calib_done) begin
wl_state_r <= #TCQ WL_IDLE;
if (wrlvl_byte_redo)
dqs_count_r <= #TCQ dqs_count_r;
else
dqs_count_r <= #TCQ 'd0;
end else if (rank_cnt_r == RANKS-1) begin
dqs_count_r <= #TCQ dqs_count_r;
if (RANKS > 1)
wl_state_r <= #TCQ WL_2RANK_FINAL_TAP;
else
wl_state_r <= #TCQ WL_IDLE;
end else begin
wl_state_r <= #TCQ WL_INIT;
dqs_count_r <= #TCQ 'd0;
end
if ((SIM_CAL_OPTION == "FAST_CAL") ||
(rank_cnt_r == RANKS-1)) begin
wr_level_done_r <= #TCQ 1'd1;
rank_cnt_r <= #TCQ 2'b00;
end else begin
wr_level_done_r <= #TCQ 1'd0;
rank_cnt_r <= #TCQ rank_cnt_r + 1'b1;
end
end else
wl_state_r <= #TCQ WL_INIT;
end
WL_2RANK_FINAL_TAP: begin
if (wr_level_done_r4 && ~wr_level_done_r5) begin
for(u = 0; u < DQS_WIDTH; u = u + 1) begin
corse_inc[u] <= #TCQ final_coarse_tap[u];
fine_inc[u] <= #TCQ final_val[u];
end
dqs_count_r <= #TCQ 'd0;
end else if (wr_level_done_r5) begin
if (|corse_inc[dqs_count_r])
wl_state_r <= #TCQ WL_CORSE_INC;
else if (|fine_inc[dqs_count_w])
wl_state_r <= #TCQ WL_FINE_INC;
end
end
endcase
end
end // always @ (posedge clk)
endmodule
|
//*****************************************************************************
// (c) Copyright 2008 - 2013 Xilinx, Inc. All rights reserved.
//
// This file contains confidential and proprietary information
// of Xilinx, Inc. and is protected under U.S. and
// international copyright and other intellectual property
// laws.
//
// DISCLAIMER
// This disclaimer is not a license and does not grant any
// rights to the materials distributed herewith. Except as
// otherwise provided in a valid license issued to you by
// Xilinx, and to the maximum extent permitted by applicable
// law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// (2) Xilinx shall not be liable (whether in contract or tort,
// including negligence, or under any other theory of
// liability) for any loss or damage of any kind or nature
// related to, arising under or in connection with these
// materials, including for any direct, or any indirect,
// special, incidental, or consequential loss or damage
// (including loss of data, profits, goodwill, or any type of
// loss or damage suffered as a result of any action brought
// by a third party) even if such damage or loss was
// reasonably foreseeable or Xilinx had been advised of the
// possibility of the same.
//
// CRITICAL APPLICATIONS
// Xilinx products are not designed or intended to be fail-
// safe, or for use in any application requiring fail-safe
// performance, such as life-support or safety devices or
// systems, Class III medical devices, nuclear facilities,
// applications related to the deployment of airbags, or any
// other applications that could lead to death, personal
// injury, or severe property or environmental damage
// (individually and collectively, "Critical
// Applications"). Customer assumes the sole risk and
// liability of any use of Xilinx products in Critical
// Applications, subject only to applicable laws and
// regulations governing limitations on product liability.
//
// THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// PART OF THIS FILE AT ALL TIMES.
//
//*****************************************************************************
// ____ ____
// / /\/ /
// /___/ \ / Vendor : Xilinx
// \ \ \/ Version : %version
// \ \ Application : MIG
// / / Filename : ecc_dec_fix.v
// /___/ /\ Date Last Modified : $date$
// \ \ / \ Date Created : Tue Jun 30 2009
// \___\/\___\
//
//Device : 7-Series
//Design Name : DDR3 SDRAM
//Purpose :
//Reference :
//Revision History :
//*****************************************************************************
`timescale 1ps/1ps
module mig_7series_v2_3_ecc_dec_fix
#(
parameter TCQ = 100,
parameter PAYLOAD_WIDTH = 64,
parameter CODE_WIDTH = 72,
parameter DATA_WIDTH = 64,
parameter DQ_WIDTH = 72,
parameter ECC_WIDTH = 8,
parameter nCK_PER_CLK = 4
)
(
/*AUTOARG*/
// Outputs
rd_data, ecc_single, ecc_multiple,
// Inputs
clk, rst, h_rows, phy_rddata, correct_en, ecc_status_valid
);
input clk;
input rst;
// Compute syndromes.
input [CODE_WIDTH*ECC_WIDTH-1:0] h_rows;
input [2*nCK_PER_CLK*DQ_WIDTH-1:0] phy_rddata;
wire [2*nCK_PER_CLK*ECC_WIDTH-1:0] syndrome_ns;
genvar k;
genvar m;
generate
for (k=0; k<2*nCK_PER_CLK; k=k+1) begin : ecc_word
for (m=0; m<ECC_WIDTH; m=m+1) begin : ecc_bit
assign syndrome_ns[k*ECC_WIDTH+m] =
^(phy_rddata[k*DQ_WIDTH+:CODE_WIDTH] & h_rows[m*CODE_WIDTH+:CODE_WIDTH]);
end
end
endgenerate
reg [2*nCK_PER_CLK*ECC_WIDTH-1:0] syndrome_r;
always @(posedge clk) syndrome_r <= #TCQ syndrome_ns;
// Extract payload bits from raw DRAM bits and register.
wire [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] ecc_rddata_ns;
genvar i;
generate
for (i=0; i<2*nCK_PER_CLK; i=i+1) begin : extract_payload
assign ecc_rddata_ns[i*PAYLOAD_WIDTH+:PAYLOAD_WIDTH] =
phy_rddata[i*DQ_WIDTH+:PAYLOAD_WIDTH];
end
endgenerate
reg [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] ecc_rddata_r;
always @(posedge clk) ecc_rddata_r <= #TCQ ecc_rddata_ns;
// Regenerate h_matrix from h_rows leaving out the identity part
// since we're not going to correct the ECC bits themselves.
genvar n;
genvar p;
wire [ECC_WIDTH-1:0] h_matrix [DATA_WIDTH-1:0];
generate
for (n=0; n<DATA_WIDTH; n=n+1) begin : h_col
for (p=0; p<ECC_WIDTH; p=p+1) begin : h_bit
assign h_matrix [n][p] = h_rows [p*CODE_WIDTH+n];
end
end
endgenerate
// Compute flip bits.
wire [2*nCK_PER_CLK*DATA_WIDTH-1:0] flip_bits;
genvar q;
genvar r;
generate
for (q=0; q<2*nCK_PER_CLK; q=q+1) begin : flip_word
for (r=0; r<DATA_WIDTH; r=r+1) begin : flip_bit
assign flip_bits[q*DATA_WIDTH+r] =
h_matrix[r] == syndrome_r[q*ECC_WIDTH+:ECC_WIDTH];
end
end
endgenerate
// Correct data.
output reg [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] rd_data;
input correct_en;
integer s;
always @(/*AS*/correct_en or ecc_rddata_r or flip_bits)
for (s=0; s<2*nCK_PER_CLK; s=s+1)
if (correct_en)
rd_data[s*PAYLOAD_WIDTH+:DATA_WIDTH] =
ecc_rddata_r[s*PAYLOAD_WIDTH+:DATA_WIDTH] ^
flip_bits[s*DATA_WIDTH+:DATA_WIDTH];
else rd_data[s*PAYLOAD_WIDTH+:DATA_WIDTH] =
ecc_rddata_r[s*PAYLOAD_WIDTH+:DATA_WIDTH];
// Copy raw payload bits if ECC_TEST is ON.
localparam RAW_BIT_WIDTH = PAYLOAD_WIDTH - DATA_WIDTH;
genvar t;
generate
if (RAW_BIT_WIDTH > 0)
for (t=0; t<2*nCK_PER_CLK; t=t+1) begin : copy_raw_bits
always @(/*AS*/ecc_rddata_r)
rd_data[(t+1)*PAYLOAD_WIDTH-1-:RAW_BIT_WIDTH] =
ecc_rddata_r[(t+1)*PAYLOAD_WIDTH-1-:RAW_BIT_WIDTH];
end
endgenerate
// Generate status information.
input ecc_status_valid;
output wire [2*nCK_PER_CLK-1:0] ecc_single;
output wire [2*nCK_PER_CLK-1:0] ecc_multiple;
genvar v;
generate
for (v=0; v<2*nCK_PER_CLK; v=v+1) begin : compute_status
wire zero = ~|syndrome_r[v*ECC_WIDTH+:ECC_WIDTH];
wire odd = ^syndrome_r[v*ECC_WIDTH+:ECC_WIDTH];
assign ecc_single[v] = ecc_status_valid && ~zero && odd;
assign ecc_multiple[v] = ecc_status_valid && ~zero && ~odd;
end
endgenerate
endmodule
|
//*****************************************************************************
// (c) Copyright 2008 - 2013 Xilinx, Inc. All rights reserved.
//
// This file contains confidential and proprietary information
// of Xilinx, Inc. and is protected under U.S. and
// international copyright and other intellectual property
// laws.
//
// DISCLAIMER
// This disclaimer is not a license and does not grant any
// rights to the materials distributed herewith. Except as
// otherwise provided in a valid license issued to you by
// Xilinx, and to the maximum extent permitted by applicable
// law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// (2) Xilinx shall not be liable (whether in contract or tort,
// including negligence, or under any other theory of
// liability) for any loss or damage of any kind or nature
// related to, arising under or in connection with these
// materials, including for any direct, or any indirect,
// special, incidental, or consequential loss or damage
// (including loss of data, profits, goodwill, or any type of
// loss or damage suffered as a result of any action brought
// by a third party) even if such damage or loss was
// reasonably foreseeable or Xilinx had been advised of the
// possibility of the same.
//
// CRITICAL APPLICATIONS
// Xilinx products are not designed or intended to be fail-
// safe, or for use in any application requiring fail-safe
// performance, such as life-support or safety devices or
// systems, Class III medical devices, nuclear facilities,
// applications related to the deployment of airbags, or any
// other applications that could lead to death, personal
// injury, or severe property or environmental damage
// (individually and collectively, "Critical
// Applications"). Customer assumes the sole risk and
// liability of any use of Xilinx products in Critical
// Applications, subject only to applicable laws and
// regulations governing limitations on product liability.
//
// THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// PART OF THIS FILE AT ALL TIMES.
//
//*****************************************************************************
// ____ ____
// / /\/ /
// /___/ \ / Vendor : Xilinx
// \ \ \/ Version : %version
// \ \ Application : MIG
// / / Filename : ecc_dec_fix.v
// /___/ /\ Date Last Modified : $date$
// \ \ / \ Date Created : Tue Jun 30 2009
// \___\/\___\
//
//Device : 7-Series
//Design Name : DDR3 SDRAM
//Purpose :
//Reference :
//Revision History :
//*****************************************************************************
`timescale 1ps/1ps
module mig_7series_v2_3_ecc_dec_fix
#(
parameter TCQ = 100,
parameter PAYLOAD_WIDTH = 64,
parameter CODE_WIDTH = 72,
parameter DATA_WIDTH = 64,
parameter DQ_WIDTH = 72,
parameter ECC_WIDTH = 8,
parameter nCK_PER_CLK = 4
)
(
/*AUTOARG*/
// Outputs
rd_data, ecc_single, ecc_multiple,
// Inputs
clk, rst, h_rows, phy_rddata, correct_en, ecc_status_valid
);
input clk;
input rst;
// Compute syndromes.
input [CODE_WIDTH*ECC_WIDTH-1:0] h_rows;
input [2*nCK_PER_CLK*DQ_WIDTH-1:0] phy_rddata;
wire [2*nCK_PER_CLK*ECC_WIDTH-1:0] syndrome_ns;
genvar k;
genvar m;
generate
for (k=0; k<2*nCK_PER_CLK; k=k+1) begin : ecc_word
for (m=0; m<ECC_WIDTH; m=m+1) begin : ecc_bit
assign syndrome_ns[k*ECC_WIDTH+m] =
^(phy_rddata[k*DQ_WIDTH+:CODE_WIDTH] & h_rows[m*CODE_WIDTH+:CODE_WIDTH]);
end
end
endgenerate
reg [2*nCK_PER_CLK*ECC_WIDTH-1:0] syndrome_r;
always @(posedge clk) syndrome_r <= #TCQ syndrome_ns;
// Extract payload bits from raw DRAM bits and register.
wire [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] ecc_rddata_ns;
genvar i;
generate
for (i=0; i<2*nCK_PER_CLK; i=i+1) begin : extract_payload
assign ecc_rddata_ns[i*PAYLOAD_WIDTH+:PAYLOAD_WIDTH] =
phy_rddata[i*DQ_WIDTH+:PAYLOAD_WIDTH];
end
endgenerate
reg [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] ecc_rddata_r;
always @(posedge clk) ecc_rddata_r <= #TCQ ecc_rddata_ns;
// Regenerate h_matrix from h_rows leaving out the identity part
// since we're not going to correct the ECC bits themselves.
genvar n;
genvar p;
wire [ECC_WIDTH-1:0] h_matrix [DATA_WIDTH-1:0];
generate
for (n=0; n<DATA_WIDTH; n=n+1) begin : h_col
for (p=0; p<ECC_WIDTH; p=p+1) begin : h_bit
assign h_matrix [n][p] = h_rows [p*CODE_WIDTH+n];
end
end
endgenerate
// Compute flip bits.
wire [2*nCK_PER_CLK*DATA_WIDTH-1:0] flip_bits;
genvar q;
genvar r;
generate
for (q=0; q<2*nCK_PER_CLK; q=q+1) begin : flip_word
for (r=0; r<DATA_WIDTH; r=r+1) begin : flip_bit
assign flip_bits[q*DATA_WIDTH+r] =
h_matrix[r] == syndrome_r[q*ECC_WIDTH+:ECC_WIDTH];
end
end
endgenerate
// Correct data.
output reg [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] rd_data;
input correct_en;
integer s;
always @(/*AS*/correct_en or ecc_rddata_r or flip_bits)
for (s=0; s<2*nCK_PER_CLK; s=s+1)
if (correct_en)
rd_data[s*PAYLOAD_WIDTH+:DATA_WIDTH] =
ecc_rddata_r[s*PAYLOAD_WIDTH+:DATA_WIDTH] ^
flip_bits[s*DATA_WIDTH+:DATA_WIDTH];
else rd_data[s*PAYLOAD_WIDTH+:DATA_WIDTH] =
ecc_rddata_r[s*PAYLOAD_WIDTH+:DATA_WIDTH];
// Copy raw payload bits if ECC_TEST is ON.
localparam RAW_BIT_WIDTH = PAYLOAD_WIDTH - DATA_WIDTH;
genvar t;
generate
if (RAW_BIT_WIDTH > 0)
for (t=0; t<2*nCK_PER_CLK; t=t+1) begin : copy_raw_bits
always @(/*AS*/ecc_rddata_r)
rd_data[(t+1)*PAYLOAD_WIDTH-1-:RAW_BIT_WIDTH] =
ecc_rddata_r[(t+1)*PAYLOAD_WIDTH-1-:RAW_BIT_WIDTH];
end
endgenerate
// Generate status information.
input ecc_status_valid;
output wire [2*nCK_PER_CLK-1:0] ecc_single;
output wire [2*nCK_PER_CLK-1:0] ecc_multiple;
genvar v;
generate
for (v=0; v<2*nCK_PER_CLK; v=v+1) begin : compute_status
wire zero = ~|syndrome_r[v*ECC_WIDTH+:ECC_WIDTH];
wire odd = ^syndrome_r[v*ECC_WIDTH+:ECC_WIDTH];
assign ecc_single[v] = ecc_status_valid && ~zero && odd;
assign ecc_multiple[v] = ecc_status_valid && ~zero && ~odd;
end
endgenerate
endmodule
|
//*****************************************************************************
// (c) Copyright 2008 - 2013 Xilinx, Inc. All rights reserved.
//
// This file contains confidential and proprietary information
// of Xilinx, Inc. and is protected under U.S. and
// international copyright and other intellectual property
// laws.
//
// DISCLAIMER
// This disclaimer is not a license and does not grant any
// rights to the materials distributed herewith. Except as
// otherwise provided in a valid license issued to you by
// Xilinx, and to the maximum extent permitted by applicable
// law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// (2) Xilinx shall not be liable (whether in contract or tort,
// including negligence, or under any other theory of
// liability) for any loss or damage of any kind or nature
// related to, arising under or in connection with these
// materials, including for any direct, or any indirect,
// special, incidental, or consequential loss or damage
// (including loss of data, profits, goodwill, or any type of
// loss or damage suffered as a result of any action brought
// by a third party) even if such damage or loss was
// reasonably foreseeable or Xilinx had been advised of the
// possibility of the same.
//
// CRITICAL APPLICATIONS
// Xilinx products are not designed or intended to be fail-
// safe, or for use in any application requiring fail-safe
// performance, such as life-support or safety devices or
// systems, Class III medical devices, nuclear facilities,
// applications related to the deployment of airbags, or any
// other applications that could lead to death, personal
// injury, or severe property or environmental damage
// (individually and collectively, "Critical
// Applications"). Customer assumes the sole risk and
// liability of any use of Xilinx products in Critical
// Applications, subject only to applicable laws and
// regulations governing limitations on product liability.
//
// THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// PART OF THIS FILE AT ALL TIMES.
//
//*****************************************************************************
// ____ ____
// / /\/ /
// /___/ \ / Vendor : Xilinx
// \ \ \/ Version : %version
// \ \ Application : MIG
// / / Filename : ecc_dec_fix.v
// /___/ /\ Date Last Modified : $date$
// \ \ / \ Date Created : Tue Jun 30 2009
// \___\/\___\
//
//Device : 7-Series
//Design Name : DDR3 SDRAM
//Purpose :
//Reference :
//Revision History :
//*****************************************************************************
`timescale 1ps/1ps
module mig_7series_v2_3_ecc_dec_fix
#(
parameter TCQ = 100,
parameter PAYLOAD_WIDTH = 64,
parameter CODE_WIDTH = 72,
parameter DATA_WIDTH = 64,
parameter DQ_WIDTH = 72,
parameter ECC_WIDTH = 8,
parameter nCK_PER_CLK = 4
)
(
/*AUTOARG*/
// Outputs
rd_data, ecc_single, ecc_multiple,
// Inputs
clk, rst, h_rows, phy_rddata, correct_en, ecc_status_valid
);
input clk;
input rst;
// Compute syndromes.
input [CODE_WIDTH*ECC_WIDTH-1:0] h_rows;
input [2*nCK_PER_CLK*DQ_WIDTH-1:0] phy_rddata;
wire [2*nCK_PER_CLK*ECC_WIDTH-1:0] syndrome_ns;
genvar k;
genvar m;
generate
for (k=0; k<2*nCK_PER_CLK; k=k+1) begin : ecc_word
for (m=0; m<ECC_WIDTH; m=m+1) begin : ecc_bit
assign syndrome_ns[k*ECC_WIDTH+m] =
^(phy_rddata[k*DQ_WIDTH+:CODE_WIDTH] & h_rows[m*CODE_WIDTH+:CODE_WIDTH]);
end
end
endgenerate
reg [2*nCK_PER_CLK*ECC_WIDTH-1:0] syndrome_r;
always @(posedge clk) syndrome_r <= #TCQ syndrome_ns;
// Extract payload bits from raw DRAM bits and register.
wire [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] ecc_rddata_ns;
genvar i;
generate
for (i=0; i<2*nCK_PER_CLK; i=i+1) begin : extract_payload
assign ecc_rddata_ns[i*PAYLOAD_WIDTH+:PAYLOAD_WIDTH] =
phy_rddata[i*DQ_WIDTH+:PAYLOAD_WIDTH];
end
endgenerate
reg [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] ecc_rddata_r;
always @(posedge clk) ecc_rddata_r <= #TCQ ecc_rddata_ns;
// Regenerate h_matrix from h_rows leaving out the identity part
// since we're not going to correct the ECC bits themselves.
genvar n;
genvar p;
wire [ECC_WIDTH-1:0] h_matrix [DATA_WIDTH-1:0];
generate
for (n=0; n<DATA_WIDTH; n=n+1) begin : h_col
for (p=0; p<ECC_WIDTH; p=p+1) begin : h_bit
assign h_matrix [n][p] = h_rows [p*CODE_WIDTH+n];
end
end
endgenerate
// Compute flip bits.
wire [2*nCK_PER_CLK*DATA_WIDTH-1:0] flip_bits;
genvar q;
genvar r;
generate
for (q=0; q<2*nCK_PER_CLK; q=q+1) begin : flip_word
for (r=0; r<DATA_WIDTH; r=r+1) begin : flip_bit
assign flip_bits[q*DATA_WIDTH+r] =
h_matrix[r] == syndrome_r[q*ECC_WIDTH+:ECC_WIDTH];
end
end
endgenerate
// Correct data.
output reg [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] rd_data;
input correct_en;
integer s;
always @(/*AS*/correct_en or ecc_rddata_r or flip_bits)
for (s=0; s<2*nCK_PER_CLK; s=s+1)
if (correct_en)
rd_data[s*PAYLOAD_WIDTH+:DATA_WIDTH] =
ecc_rddata_r[s*PAYLOAD_WIDTH+:DATA_WIDTH] ^
flip_bits[s*DATA_WIDTH+:DATA_WIDTH];
else rd_data[s*PAYLOAD_WIDTH+:DATA_WIDTH] =
ecc_rddata_r[s*PAYLOAD_WIDTH+:DATA_WIDTH];
// Copy raw payload bits if ECC_TEST is ON.
localparam RAW_BIT_WIDTH = PAYLOAD_WIDTH - DATA_WIDTH;
genvar t;
generate
if (RAW_BIT_WIDTH > 0)
for (t=0; t<2*nCK_PER_CLK; t=t+1) begin : copy_raw_bits
always @(/*AS*/ecc_rddata_r)
rd_data[(t+1)*PAYLOAD_WIDTH-1-:RAW_BIT_WIDTH] =
ecc_rddata_r[(t+1)*PAYLOAD_WIDTH-1-:RAW_BIT_WIDTH];
end
endgenerate
// Generate status information.
input ecc_status_valid;
output wire [2*nCK_PER_CLK-1:0] ecc_single;
output wire [2*nCK_PER_CLK-1:0] ecc_multiple;
genvar v;
generate
for (v=0; v<2*nCK_PER_CLK; v=v+1) begin : compute_status
wire zero = ~|syndrome_r[v*ECC_WIDTH+:ECC_WIDTH];
wire odd = ^syndrome_r[v*ECC_WIDTH+:ECC_WIDTH];
assign ecc_single[v] = ecc_status_valid && ~zero && odd;
assign ecc_multiple[v] = ecc_status_valid && ~zero && ~odd;
end
endgenerate
endmodule
|
//*****************************************************************************
// (c) Copyright 2008 - 2013 Xilinx, Inc. All rights reserved.
//
// This file contains confidential and proprietary information
// of Xilinx, Inc. and is protected under U.S. and
// international copyright and other intellectual property
// laws.
//
// DISCLAIMER
// This disclaimer is not a license and does not grant any
// rights to the materials distributed herewith. Except as
// otherwise provided in a valid license issued to you by
// Xilinx, and to the maximum extent permitted by applicable
// law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// (2) Xilinx shall not be liable (whether in contract or tort,
// including negligence, or under any other theory of
// liability) for any loss or damage of any kind or nature
// related to, arising under or in connection with these
// materials, including for any direct, or any indirect,
// special, incidental, or consequential loss or damage
// (including loss of data, profits, goodwill, or any type of
// loss or damage suffered as a result of any action brought
// by a third party) even if such damage or loss was
// reasonably foreseeable or Xilinx had been advised of the
// possibility of the same.
//
// CRITICAL APPLICATIONS
// Xilinx products are not designed or intended to be fail-
// safe, or for use in any application requiring fail-safe
// performance, such as life-support or safety devices or
// systems, Class III medical devices, nuclear facilities,
// applications related to the deployment of airbags, or any
// other applications that could lead to death, personal
// injury, or severe property or environmental damage
// (individually and collectively, "Critical
// Applications"). Customer assumes the sole risk and
// liability of any use of Xilinx products in Critical
// Applications, subject only to applicable laws and
// regulations governing limitations on product liability.
//
// THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// PART OF THIS FILE AT ALL TIMES.
//
//*****************************************************************************
// ____ ____
// / /\/ /
// /___/ \ / Vendor : Xilinx
// \ \ \/ Version : %version
// \ \ Application : MIG
// / / Filename : ecc_dec_fix.v
// /___/ /\ Date Last Modified : $date$
// \ \ / \ Date Created : Tue Jun 30 2009
// \___\/\___\
//
//Device : 7-Series
//Design Name : DDR3 SDRAM
//Purpose :
//Reference :
//Revision History :
//*****************************************************************************
`timescale 1ps/1ps
module mig_7series_v2_3_ecc_dec_fix
#(
parameter TCQ = 100,
parameter PAYLOAD_WIDTH = 64,
parameter CODE_WIDTH = 72,
parameter DATA_WIDTH = 64,
parameter DQ_WIDTH = 72,
parameter ECC_WIDTH = 8,
parameter nCK_PER_CLK = 4
)
(
/*AUTOARG*/
// Outputs
rd_data, ecc_single, ecc_multiple,
// Inputs
clk, rst, h_rows, phy_rddata, correct_en, ecc_status_valid
);
input clk;
input rst;
// Compute syndromes.
input [CODE_WIDTH*ECC_WIDTH-1:0] h_rows;
input [2*nCK_PER_CLK*DQ_WIDTH-1:0] phy_rddata;
wire [2*nCK_PER_CLK*ECC_WIDTH-1:0] syndrome_ns;
genvar k;
genvar m;
generate
for (k=0; k<2*nCK_PER_CLK; k=k+1) begin : ecc_word
for (m=0; m<ECC_WIDTH; m=m+1) begin : ecc_bit
assign syndrome_ns[k*ECC_WIDTH+m] =
^(phy_rddata[k*DQ_WIDTH+:CODE_WIDTH] & h_rows[m*CODE_WIDTH+:CODE_WIDTH]);
end
end
endgenerate
reg [2*nCK_PER_CLK*ECC_WIDTH-1:0] syndrome_r;
always @(posedge clk) syndrome_r <= #TCQ syndrome_ns;
// Extract payload bits from raw DRAM bits and register.
wire [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] ecc_rddata_ns;
genvar i;
generate
for (i=0; i<2*nCK_PER_CLK; i=i+1) begin : extract_payload
assign ecc_rddata_ns[i*PAYLOAD_WIDTH+:PAYLOAD_WIDTH] =
phy_rddata[i*DQ_WIDTH+:PAYLOAD_WIDTH];
end
endgenerate
reg [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] ecc_rddata_r;
always @(posedge clk) ecc_rddata_r <= #TCQ ecc_rddata_ns;
// Regenerate h_matrix from h_rows leaving out the identity part
// since we're not going to correct the ECC bits themselves.
genvar n;
genvar p;
wire [ECC_WIDTH-1:0] h_matrix [DATA_WIDTH-1:0];
generate
for (n=0; n<DATA_WIDTH; n=n+1) begin : h_col
for (p=0; p<ECC_WIDTH; p=p+1) begin : h_bit
assign h_matrix [n][p] = h_rows [p*CODE_WIDTH+n];
end
end
endgenerate
// Compute flip bits.
wire [2*nCK_PER_CLK*DATA_WIDTH-1:0] flip_bits;
genvar q;
genvar r;
generate
for (q=0; q<2*nCK_PER_CLK; q=q+1) begin : flip_word
for (r=0; r<DATA_WIDTH; r=r+1) begin : flip_bit
assign flip_bits[q*DATA_WIDTH+r] =
h_matrix[r] == syndrome_r[q*ECC_WIDTH+:ECC_WIDTH];
end
end
endgenerate
// Correct data.
output reg [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] rd_data;
input correct_en;
integer s;
always @(/*AS*/correct_en or ecc_rddata_r or flip_bits)
for (s=0; s<2*nCK_PER_CLK; s=s+1)
if (correct_en)
rd_data[s*PAYLOAD_WIDTH+:DATA_WIDTH] =
ecc_rddata_r[s*PAYLOAD_WIDTH+:DATA_WIDTH] ^
flip_bits[s*DATA_WIDTH+:DATA_WIDTH];
else rd_data[s*PAYLOAD_WIDTH+:DATA_WIDTH] =
ecc_rddata_r[s*PAYLOAD_WIDTH+:DATA_WIDTH];
// Copy raw payload bits if ECC_TEST is ON.
localparam RAW_BIT_WIDTH = PAYLOAD_WIDTH - DATA_WIDTH;
genvar t;
generate
if (RAW_BIT_WIDTH > 0)
for (t=0; t<2*nCK_PER_CLK; t=t+1) begin : copy_raw_bits
always @(/*AS*/ecc_rddata_r)
rd_data[(t+1)*PAYLOAD_WIDTH-1-:RAW_BIT_WIDTH] =
ecc_rddata_r[(t+1)*PAYLOAD_WIDTH-1-:RAW_BIT_WIDTH];
end
endgenerate
// Generate status information.
input ecc_status_valid;
output wire [2*nCK_PER_CLK-1:0] ecc_single;
output wire [2*nCK_PER_CLK-1:0] ecc_multiple;
genvar v;
generate
for (v=0; v<2*nCK_PER_CLK; v=v+1) begin : compute_status
wire zero = ~|syndrome_r[v*ECC_WIDTH+:ECC_WIDTH];
wire odd = ^syndrome_r[v*ECC_WIDTH+:ECC_WIDTH];
assign ecc_single[v] = ecc_status_valid && ~zero && odd;
assign ecc_multiple[v] = ecc_status_valid && ~zero && ~odd;
end
endgenerate
endmodule
|
//*****************************************************************************
// (c) Copyright 2009 - 2013 Xilinx, Inc. All rights reserved.
//
// This file contains confidential and proprietary information
// of Xilinx, Inc. and is protected under U.S. and
// international copyright and other intellectual property
// laws.
//
// DISCLAIMER
// This disclaimer is not a license and does not grant any
// rights to the materials distributed herewith. Except as
// otherwise provided in a valid license issued to you by
// Xilinx, and to the maximum extent permitted by applicable
// law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// (2) Xilinx shall not be liable (whether in contract or tort,
// including negligence, or under any other theory of
// liability) for any loss or damage of any kind or nature
// related to, arising under or in connection with these
// materials, including for any direct, or any indirect,
// special, incidental, or consequential loss or damage
// (including loss of data, profits, goodwill, or any type of
// loss or damage suffered as a result of any action brought
// by a third party) even if such damage or loss was
// reasonably foreseeable or Xilinx had been advised of the
// possibility of the same.
//
// CRITICAL APPLICATIONS
// Xilinx products are not designed or intended to be fail-
// safe, or for use in any application requiring fail-safe
// performance, such as life-support or safety devices or
// systems, Class III medical devices, nuclear facilities,
// applications related to the deployment of airbags, or any
// other applications that could lead to death, personal
// injury, or severe property or environmental damage
// (individually and collectively, "Critical
// Applications"). Customer assumes the sole risk and
// liability of any use of Xilinx products in Critical
// Applications, subject only to applicable laws and
// regulations governing limitations on product liability.
//
// THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// PART OF THIS FILE AT ALL TIMES.
//
//*****************************************************************************
// ____ ____
// / /\/ /
// /___/ \ / Vendor: Xilinx
// \ \ \/ Version: %version
// \ \ Application: MIG
// / / Filename: ddr_phy_v2_3_phy_ocd_po_cntlr.v
// /___/ /\ Date Last Modified: $Date: 2011/02/25 02:07:40 $
// \ \ / \ Date Created: Aug 03 2009
// \___\/\___\
//
//Device: 7 Series
//Design Name: DDR3 SDRAM
//Purpose: Manipulates phaser out stg2f and stg3 on behalf of
// scan and DQS centering.
//
// Maintains a shadow of the phaser out stg2f and stg3 tap settings.
// The stg3 shadow is 6 bits, just like the phaser out. stg2f is
// 8 bits. This allows the po_cntlr to track how far past the stg2f
// saturation points we have gone when stepping to the limits of stg3.
// This way we're can stay in sync when we step back from the saturation
// limits.
//
// Looks at the edge values and determines which case has been
// detected by the scan. Uses the results to drive the centering.
//
// Main state machine waits until it sees reset_scan go to zero. While
// waiting it is writing the initialzation values to the stg2 and stg3
// shadows. When reset_scan goes low, taps_set is pulsed. This
// tells the sampling block to begin sampling. When the sampling
// block has finished sampling this setting of the phaser out taps,
// is signals by setting samp_done. When the main state machine
// sees samp_done it sets the next value in the phaser out and
// waits for the phaser out to be ready before beginning the next
// sample.
//
// Turns out phy_init is sensitive to the length of the ocal_num_samples_done
// pulse. Something like a precharge and activate time. Added feature
// to resume_wait to wait at least 32 cycles between assertion and
// subsequent deassertion of ocal_num_samples_done.
//
// Also turns out phy_init needs help to get into consistent
// starting state for complex cal. This can be done by preseting
// ocal_num_samples_done to one. Then waiting for 32 fabric clocks,
// turn off _done and then assert _resume.
//
// Scanning algorithm.
//
// Phaser manipulation algoritm.
//
//Reference:
//Revision History:
//*****************************************************************************
`timescale 1ps/1ps
module mig_7series_v2_3_ddr_phy_ocd_po_cntlr #
(parameter DQS_CNT_WIDTH = 3,
parameter DQS_WIDTH = 8,
parameter nCK_PER_CLK = 4,
parameter TCQ = 100)
(/*AUTOARG*/
// Outputs
scan_done, ocal_num_samples_done_r, oclkdelay_center_calib_start,
oclkdelay_center_calib_done, oclk_center_write_resume, ocd2stg2_inc,
ocd2stg2_dec, ocd2stg3_inc, ocd2stg3_dec, stg3, simp_stg3_final,
cmplx_stg3_final, simp_stg3_final_sel, ninety_offsets,
scanning_right, ocd_ktap_left, ocd_ktap_right, ocd_edge_detect_rdy,
taps_set, use_noise_window, ocal_scan_win_not_found,
// Inputs
clk, rst, reset_scan, oclkdelay_init_val, lim2ocal_stg3_right_lim,
lim2ocal_stg3_left_lim, complex_oclkdelay_calib_start,
po_counter_read_val, oclkdelay_calib_cnt, mmcm_edge_detect_done,
mmcm_lbclk_edge_aligned, poc_backup, phy_rddata_en_3, zero2fuzz,
fuzz2zero, oneeighty2fuzz, fuzz2oneeighty, z2f, f2z, o2f, f2o,
scan_right, samp_done, wl_po_fine_cnt_sel, po_rdy
);
input clk;
input rst;
input reset_scan;
reg scan_done_r;
output scan_done;
assign scan_done = scan_done_r;
output [5:0] simp_stg3_final_sel;
reg cmplx_samples_done_ns, cmplx_samples_done_r;
always @(posedge clk) cmplx_samples_done_r <= #TCQ cmplx_samples_done_ns;
output ocal_num_samples_done_r;
assign ocal_num_samples_done_r = cmplx_samples_done_r;
// Write Level signals during OCLKDELAY calibration
input [5:0] oclkdelay_init_val;
input [5:0] lim2ocal_stg3_right_lim;
input [5:0] lim2ocal_stg3_left_lim;
input complex_oclkdelay_calib_start;
reg oclkdelay_center_calib_start_ns, oclkdelay_center_calib_start_r;
always @(posedge clk) oclkdelay_center_calib_start_r <= #TCQ oclkdelay_center_calib_start_ns;
output oclkdelay_center_calib_start;
assign oclkdelay_center_calib_start = oclkdelay_center_calib_start_r;
reg oclkdelay_center_calib_done_ns, oclkdelay_center_calib_done_r;
always @(posedge clk) oclkdelay_center_calib_done_r <= #TCQ oclkdelay_center_calib_done_ns;
output oclkdelay_center_calib_done;
assign oclkdelay_center_calib_done = oclkdelay_center_calib_done_r;
reg oclk_center_write_resume_ns, oclk_center_write_resume_r;
always @(posedge clk) oclk_center_write_resume_r <= #TCQ oclk_center_write_resume_ns;
output oclk_center_write_resume;
assign oclk_center_write_resume = oclk_center_write_resume_r;
reg ocd2stg2_inc_r, ocd2stg2_dec_r, ocd2stg3_inc_r, ocd2stg3_dec_r;
output ocd2stg2_inc, ocd2stg2_dec, ocd2stg3_inc, ocd2stg3_dec;
assign ocd2stg2_inc = ocd2stg2_inc_r;
assign ocd2stg2_dec = ocd2stg2_dec_r;
assign ocd2stg3_inc = ocd2stg3_inc_r;
assign ocd2stg3_dec = ocd2stg3_dec_r;
// Remember, two stage 2 steps for every stg 3 step. And we need a sign bit.
reg [8:0] stg2_ns, stg2_r;
always @(posedge clk) stg2_r <= #TCQ stg2_ns;
reg [5:0] stg3_ns, stg3_r;
always @(posedge clk) stg3_r <= #TCQ stg3_ns;
output [5:0] stg3;
assign stg3 = stg3_r;
input [5:0] wl_po_fine_cnt_sel;
input [8:0] po_counter_read_val;
reg [5:0] po_counter_read_val_r;
always @(posedge clk) po_counter_read_val_r <= #TCQ po_counter_read_val[5:0];
reg [DQS_WIDTH*6-1:0] simp_stg3_final_ns, simp_stg3_final_r, cmplx_stg3_final_ns, cmplx_stg3_final_r;
always @(posedge clk) simp_stg3_final_r <= #TCQ simp_stg3_final_ns;
always @(posedge clk) cmplx_stg3_final_r <= #TCQ cmplx_stg3_final_ns;
output [DQS_WIDTH*6-1:0] simp_stg3_final, cmplx_stg3_final;
assign simp_stg3_final = simp_stg3_final_r;
assign cmplx_stg3_final = cmplx_stg3_final_r;
input [DQS_CNT_WIDTH:0] oclkdelay_calib_cnt;
wire [DQS_WIDTH*6-1:0] simp_stg3_final_shft = simp_stg3_final_r >> oclkdelay_calib_cnt * 6;
assign simp_stg3_final_sel = simp_stg3_final_shft[5:0];
wire [5:0] stg3_init = complex_oclkdelay_calib_start ? simp_stg3_final_sel : oclkdelay_init_val;
wire signed [8:0] stg2_steps = stg3_r > stg3_init
? -9'sd2 * $signed({3'b0, (stg3_r - stg3_init)})
: 9'sd2 * $signed({3'b0, (stg3_init - stg3_r)});
wire signed [8:0] stg2_target_ns = $signed({3'b0, wl_po_fine_cnt_sel}) + stg2_steps;
reg signed [8:0] stg2_target_r;
always @ (posedge clk) stg2_target_r <= #TCQ stg2_target_ns;
reg [5:0] stg2_final_ns, stg2_final_r;
always @(posedge clk) stg2_final_r <= #TCQ stg2_final_ns;
always @(*) stg2_final_ns = stg2_target_r[8] == 1'b1
? 6'd0
: stg2_target_r > 9'd63
? 6'd63
: stg2_target_r[5:0];
wire final_stg2_inc = stg2_final_r > po_counter_read_val_r;
wire final_stg2_dec = stg2_final_r < po_counter_read_val_r;
wire left_lim = stg3_r == lim2ocal_stg3_left_lim;
wire right_lim = stg3_r == lim2ocal_stg3_right_lim;
reg [1:0] ninety_offsets_ns, ninety_offsets_r;
always @(posedge clk) ninety_offsets_r <= #TCQ ninety_offsets_ns;
output [1:0] ninety_offsets;
assign ninety_offsets = ninety_offsets_r;
reg scanning_right_ns, scanning_right_r;
always @(posedge clk) scanning_right_r <= #TCQ scanning_right_ns;
output scanning_right;
assign scanning_right = scanning_right_r;
reg ocd_ktap_left_ns, ocd_ktap_left_r, ocd_ktap_right_ns, ocd_ktap_right_r;
always @(posedge clk) ocd_ktap_left_r <= #TCQ ocd_ktap_left_ns;
always @(posedge clk) ocd_ktap_right_r <= #TCQ ocd_ktap_right_ns;
output ocd_ktap_left, ocd_ktap_right;
assign ocd_ktap_left = ocd_ktap_left_r;
assign ocd_ktap_right = ocd_ktap_right_r;
reg ocd_edge_detect_rdy_ns, ocd_edge_detect_rdy_r;
always @(posedge clk) ocd_edge_detect_rdy_r <= #TCQ ocd_edge_detect_rdy_ns;
output ocd_edge_detect_rdy;
assign ocd_edge_detect_rdy = ocd_edge_detect_rdy_r;
input mmcm_edge_detect_done;
input mmcm_lbclk_edge_aligned;
input poc_backup;
reg poc_backup_ns, poc_backup_r;
always @(posedge clk) poc_backup_r <= #TCQ poc_backup_ns;
reg taps_set_r;
output taps_set;
assign taps_set = taps_set_r;
input phy_rddata_en_3;
input [5:0] zero2fuzz, fuzz2zero, oneeighty2fuzz, fuzz2oneeighty;
input z2f, f2z, o2f, f2o;
wire zero = f2z && z2f;
wire noise = z2f && f2o;
wire oneeighty = f2o && o2f;
reg win_not_found;
reg [1:0] ninety_offsets_final;
reg [5:0] left, right, current_edge;
always @(*) begin
left = lim2ocal_stg3_left_lim;
right = lim2ocal_stg3_right_lim;
ninety_offsets_final = 2'd0;
win_not_found = 1'b0;
if (zero) begin
left = fuzz2zero;
right = zero2fuzz;
end
else if (noise) begin
left = zero2fuzz;
right = fuzz2oneeighty;
ninety_offsets_final = 2'd1;
end
else if (oneeighty) begin
left = fuzz2oneeighty;
right = oneeighty2fuzz;
ninety_offsets_final = 2'd2;
end
else if (z2f) begin
right = zero2fuzz;
end
else if (f2o) begin
left = fuzz2oneeighty;
ninety_offsets_final = 2'd2;
end
else if (f2z) begin
left = fuzz2zero;
end
else win_not_found = 1'b1;
current_edge = ocd_ktap_left_r ? left : right;
end // always @ begin
output use_noise_window;
assign use_noise_window = ninety_offsets == 2'd1;
reg ocal_scan_win_not_found_ns, ocal_scan_win_not_found_r;
always @(posedge clk) ocal_scan_win_not_found_r <= #TCQ ocal_scan_win_not_found_ns;
output ocal_scan_win_not_found;
assign ocal_scan_win_not_found = ocal_scan_win_not_found_r;
wire inc_po_ns = current_edge > stg3_r;
wire dec_po_ns = current_edge < stg3_r;
reg inc_po_r, dec_po_r;
always @(posedge clk) inc_po_r <= #TCQ inc_po_ns;
always @(posedge clk) dec_po_r <= #TCQ dec_po_ns;
input scan_right;
wire left_stop = left_lim || scan_right;
wire right_stop = right_lim || o2f;
reg [4:0] resume_wait_ns, resume_wait_r;
always @(posedge clk) resume_wait_r <= #TCQ resume_wait_ns;
wire resume_wait = |resume_wait_r;
reg po_done_ns, po_done_r;
always @(posedge clk) po_done_r <= #TCQ po_done_ns;
input samp_done;
input po_rdy;
reg up_ns, up_r;
always @(posedge clk) up_r <= #TCQ up_ns;
reg [1:0] two_ns, two_r;
always @(posedge clk) two_r <= #TCQ two_ns;
/* wire stg2_zero = ~|stg2_r;
wire [8:0] stg2_2_zero = stg2_r[8] ? 9'd0
: stg2_r > 9'd63
? 9'd63
: stg2_r; */
reg [3:0] sm_ns, sm_r;
always @(posedge clk) sm_r <= #TCQ sm_ns;
(* dont_touch = "true" *) reg phy_rddata_en_3_second_ns, phy_rddata_en_3_second_r;
always @(posedge clk) phy_rddata_en_3_second_r <= #TCQ phy_rddata_en_3_second_ns;
always @(*) phy_rddata_en_3_second_ns = ~reset_scan && (phy_rddata_en_3
? ~phy_rddata_en_3_second_r
: phy_rddata_en_3_second_r);
(* dont_touch = "true" *) wire use_samp_done = nCK_PER_CLK == 2 ? phy_rddata_en_3 && phy_rddata_en_3_second_r : phy_rddata_en_3;
reg po_center_wait;
reg po_slew;
reg po_finish_scan;
always @(*) begin
// Default next state assignments.
cmplx_samples_done_ns = cmplx_samples_done_r;
cmplx_stg3_final_ns = cmplx_stg3_final_r;
scanning_right_ns = scanning_right_r;
ninety_offsets_ns = ninety_offsets_r;
ocal_scan_win_not_found_ns = ocal_scan_win_not_found_r;
ocd_edge_detect_rdy_ns = ocd_edge_detect_rdy_r;
ocd_ktap_left_ns = ocd_ktap_left_r;
ocd_ktap_right_ns = ocd_ktap_right_r;
ocd2stg2_inc_r = 1'b0;
ocd2stg2_dec_r = 1'b0;
ocd2stg3_inc_r = 1'b0;
ocd2stg3_dec_r = 1'b0;
oclkdelay_center_calib_start_ns = oclkdelay_center_calib_start_r;
oclkdelay_center_calib_done_ns = 1'b0;
oclk_center_write_resume_ns = oclk_center_write_resume_r;
po_center_wait = 1'b0;
po_done_ns = po_done_r;
po_finish_scan = 1'b0;
po_slew = 1'b0;
poc_backup_ns = poc_backup_r;
scan_done_r = 1'b0;
simp_stg3_final_ns = simp_stg3_final_r;
sm_ns = sm_r;
taps_set_r = 1'b0;
up_ns = up_r;
stg2_ns = stg2_r;
stg3_ns = stg3_r;
two_ns = two_r;
resume_wait_ns = resume_wait_r;
if (rst == 1'b1) begin
// RESET next states
cmplx_samples_done_ns = 1'b0;
ocal_scan_win_not_found_ns = 1'b0;
ocd_ktap_left_ns = 1'b0;
ocd_ktap_right_ns = 1'b0;
ocd_edge_detect_rdy_ns = 1'b0;
oclk_center_write_resume_ns = 1'b0;
oclkdelay_center_calib_start_ns = 1'b0;
po_done_ns = 1'b1;
resume_wait_ns = 5'd0;
sm_ns = /*AK("READY")*/4'd0;
end else
// State based actions and next states.
case (sm_r)
/*AL("READY")*/4'd0:begin
poc_backup_ns = 1'b0;
stg2_ns = {3'b0, wl_po_fine_cnt_sel};
stg3_ns = stg3_init;
scanning_right_ns = 1'b0;
if (complex_oclkdelay_calib_start) cmplx_samples_done_ns = 1'b1;
if (!reset_scan && ~resume_wait) begin
cmplx_samples_done_ns = 1'b0;
ocal_scan_win_not_found_ns = 1'b0;
taps_set_r = 1'b1;
sm_ns = /*AK("SAMPLING")*/4'd1;
end
end
/*AL("SAMPLING")*/4'd1:begin
if (samp_done && use_samp_done) begin
if (complex_oclkdelay_calib_start) cmplx_samples_done_ns = 1'b1;
scanning_right_ns = scanning_right_r || left_stop;
if (right_stop && scanning_right_r) begin
oclkdelay_center_calib_start_ns = 1'b1;
ocd_ktap_left_ns = 1'b1;
ocal_scan_win_not_found_ns = win_not_found;
sm_ns = /*AK("SLEW_PO")*/4'd3;
end else begin
if (scanning_right_ns) ocd2stg3_inc_r = 1'b1;
else ocd2stg3_dec_r = 1'b1;
sm_ns = /*AK("PO_WAIT")*/4'd2;
end
end
end
/*AL("PO_WAIT")*/4'd2:begin
if (po_done_r && ~resume_wait) begin
taps_set_r = 1'b1;
sm_ns = /*AK("SAMPLING")*/4'd1;
cmplx_samples_done_ns = 1'b0;
end
end
/*AL("SLEW_PO")*/4'd3:begin
po_slew = 1'b1;
ninety_offsets_ns = |ninety_offsets_final ? 2'b01 : 2'b00;
if (~resume_wait) begin
if (po_done_r) begin
if (inc_po_r) ocd2stg3_inc_r = 1'b1;
else if (dec_po_r) ocd2stg3_dec_r = 1'b1;
else if (~resume_wait) begin
cmplx_samples_done_ns = 1'b0;
sm_ns = /*AK("ALIGN_EDGES")*/4'd4;
oclk_center_write_resume_ns = 1'b1;
end
end // if (po_done)
end
end // case: 3'd3
/*AL("ALIGN_EDGES")*/4'd4:
if (~resume_wait) begin
if (mmcm_edge_detect_done) begin
ocd_edge_detect_rdy_ns = 1'b0;
if (ocd_ktap_left_r) begin
ocd_ktap_left_ns = 1'b0;
ocd_ktap_right_ns = 1'b1;
oclk_center_write_resume_ns = 1'b0;
sm_ns = /*AK("SLEW_PO")*/4'd3;
end else if (ocd_ktap_right_r) begin
ocd_ktap_right_ns = 1'b0;
sm_ns = /*AK("WAIT_ONE")*/4'd5;
end else if (~mmcm_lbclk_edge_aligned) begin
sm_ns = /*AK("DQS_STOP_WAIT")*/4'd6;
oclk_center_write_resume_ns = 1'b0;
end else begin
if (ninety_offsets_r != ninety_offsets_final && ocd_edge_detect_rdy_r) begin
ninety_offsets_ns = ninety_offsets_r + 2'b01;
sm_ns = /*AK("WAIT_ONE")*/4'd5;
end else begin
oclk_center_write_resume_ns = 1'b0;
poc_backup_ns = poc_backup;
// stg2_ns = stg2_2_zero;
sm_ns = /*AK("FINISH_SCAN")*/4'd8;
end
end // else: !if(~mmcm_lbclk_edge_aligned)
end else ocd_edge_detect_rdy_ns = 1'b1;
end // if (~resume_wait)
/*AL("WAIT_ONE")*/4'd5:
sm_ns = /*AK("ALIGN_EDGES")*/4'd4;
/*AL("DQS_STOP_WAIT")*/4'd6:
if (~resume_wait) begin
ocd2stg3_dec_r = 1'b1;
sm_ns = /*AK("CENTER_PO_WAIT")*/4'd7;
end
/*AL("CENTER_PO_WAIT")*/4'd7: begin
po_center_wait = 1'b1; // Kludge to get around limitation of the AUTOs symbols.
if (po_done_r) begin
sm_ns = /*AK("ALIGN_EDGES")*/4'd4;
oclk_center_write_resume_ns = 1'b1;
end
end
/*AL("FINISH_SCAN")*/4'd8: begin
po_finish_scan = 1'b1;
if (resume_wait_r == 5'd1) begin
if (~poc_backup_r) begin
oclkdelay_center_calib_done_ns = 1'b1;
oclkdelay_center_calib_start_ns = 1'b0;
end
end
if (~resume_wait) begin
if (po_rdy)
if (poc_backup_r) begin
ocd2stg3_inc_r = 1'b1;
poc_backup_ns = 1'b0;
end
else if (~final_stg2_inc && ~final_stg2_dec) begin
if (complex_oclkdelay_calib_start) cmplx_stg3_final_ns[oclkdelay_calib_cnt*6+:6] = stg3_r;
else simp_stg3_final_ns[oclkdelay_calib_cnt*6+:6] = stg3_r;
sm_ns = /*AK("READY")*/4'd0;
scan_done_r = 1'b1;
end else begin
ocd2stg2_inc_r = final_stg2_inc;
ocd2stg2_dec_r = final_stg2_dec;
end
end // if (~resume_wait)
end // case: 4'd8
endcase // case (sm_r)
if (ocd2stg3_inc_r) begin
stg3_ns = stg3_r + 6'h1;
up_ns = 1'b0;
end
if (ocd2stg3_dec_r) begin
stg3_ns = stg3_r - 6'h1;
up_ns = 1'b1;
end
if (ocd2stg3_inc_r || ocd2stg3_dec_r) begin
po_done_ns = 1'b0;
two_ns = 2'b00;
end
if (~po_done_r)
if (po_rdy)
if (two_r == 2'b10 || po_center_wait || po_slew || po_finish_scan) po_done_ns = 1'b1;
else begin
two_ns = two_r + 2'b1;
if (up_r) begin
stg2_ns = stg2_r + 9'b1;
if (stg2_r >= 9'd0 && stg2_r < 9'd63) ocd2stg2_inc_r = 1'b1;
end else begin
stg2_ns = stg2_r - 9'b1;
if (stg2_r > 9'd0 && stg2_r <= 9'd63) ocd2stg2_dec_r = 1'b1;
end
end // else: !if(two_r == 2'b10)
if (ocd_ktap_left_ns && ~ocd_ktap_left_r) resume_wait_ns = 5'b1;
else if (oclk_center_write_resume_ns ^ oclk_center_write_resume_r) resume_wait_ns = 5'd15;
else if (cmplx_samples_done_ns & ~cmplx_samples_done_r ||
complex_oclkdelay_calib_start & reset_scan ||
poc_backup_r & ocd2stg3_inc_r) resume_wait_ns = 5'd31;
else if (|resume_wait_r) resume_wait_ns = resume_wait_r - 5'd1;
end // always @ begin
endmodule // mig_7series_v2_3_ddr_phy_ocd_po_cntlr
// Local Variables:
// verilog-autolabel-prefix: "4'd"
// End:
|
//*****************************************************************************
// (c) Copyright 2009 - 2013 Xilinx, Inc. All rights reserved.
//
// This file contains confidential and proprietary information
// of Xilinx, Inc. and is protected under U.S. and
// international copyright and other intellectual property
// laws.
//
// DISCLAIMER
// This disclaimer is not a license and does not grant any
// rights to the materials distributed herewith. Except as
// otherwise provided in a valid license issued to you by
// Xilinx, and to the maximum extent permitted by applicable
// law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// (2) Xilinx shall not be liable (whether in contract or tort,
// including negligence, or under any other theory of
// liability) for any loss or damage of any kind or nature
// related to, arising under or in connection with these
// materials, including for any direct, or any indirect,
// special, incidental, or consequential loss or damage
// (including loss of data, profits, goodwill, or any type of
// loss or damage suffered as a result of any action brought
// by a third party) even if such damage or loss was
// reasonably foreseeable or Xilinx had been advised of the
// possibility of the same.
//
// CRITICAL APPLICATIONS
// Xilinx products are not designed or intended to be fail-
// safe, or for use in any application requiring fail-safe
// performance, such as life-support or safety devices or
// systems, Class III medical devices, nuclear facilities,
// applications related to the deployment of airbags, or any
// other applications that could lead to death, personal
// injury, or severe property or environmental damage
// (individually and collectively, "Critical
// Applications"). Customer assumes the sole risk and
// liability of any use of Xilinx products in Critical
// Applications, subject only to applicable laws and
// regulations governing limitations on product liability.
//
// THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// PART OF THIS FILE AT ALL TIMES.
//
//*****************************************************************************
// ____ ____
// / /\/ /
// /___/ \ / Vendor: Xilinx
// \ \ \/ Version: %version
// \ \ Application: MIG
// / / Filename: ddr_phy_v2_3_phy_ocd_po_cntlr.v
// /___/ /\ Date Last Modified: $Date: 2011/02/25 02:07:40 $
// \ \ / \ Date Created: Aug 03 2009
// \___\/\___\
//
//Device: 7 Series
//Design Name: DDR3 SDRAM
//Purpose: Manipulates phaser out stg2f and stg3 on behalf of
// scan and DQS centering.
//
// Maintains a shadow of the phaser out stg2f and stg3 tap settings.
// The stg3 shadow is 6 bits, just like the phaser out. stg2f is
// 8 bits. This allows the po_cntlr to track how far past the stg2f
// saturation points we have gone when stepping to the limits of stg3.
// This way we're can stay in sync when we step back from the saturation
// limits.
//
// Looks at the edge values and determines which case has been
// detected by the scan. Uses the results to drive the centering.
//
// Main state machine waits until it sees reset_scan go to zero. While
// waiting it is writing the initialzation values to the stg2 and stg3
// shadows. When reset_scan goes low, taps_set is pulsed. This
// tells the sampling block to begin sampling. When the sampling
// block has finished sampling this setting of the phaser out taps,
// is signals by setting samp_done. When the main state machine
// sees samp_done it sets the next value in the phaser out and
// waits for the phaser out to be ready before beginning the next
// sample.
//
// Turns out phy_init is sensitive to the length of the ocal_num_samples_done
// pulse. Something like a precharge and activate time. Added feature
// to resume_wait to wait at least 32 cycles between assertion and
// subsequent deassertion of ocal_num_samples_done.
//
// Also turns out phy_init needs help to get into consistent
// starting state for complex cal. This can be done by preseting
// ocal_num_samples_done to one. Then waiting for 32 fabric clocks,
// turn off _done and then assert _resume.
//
// Scanning algorithm.
//
// Phaser manipulation algoritm.
//
//Reference:
//Revision History:
//*****************************************************************************
`timescale 1ps/1ps
module mig_7series_v2_3_ddr_phy_ocd_po_cntlr #
(parameter DQS_CNT_WIDTH = 3,
parameter DQS_WIDTH = 8,
parameter nCK_PER_CLK = 4,
parameter TCQ = 100)
(/*AUTOARG*/
// Outputs
scan_done, ocal_num_samples_done_r, oclkdelay_center_calib_start,
oclkdelay_center_calib_done, oclk_center_write_resume, ocd2stg2_inc,
ocd2stg2_dec, ocd2stg3_inc, ocd2stg3_dec, stg3, simp_stg3_final,
cmplx_stg3_final, simp_stg3_final_sel, ninety_offsets,
scanning_right, ocd_ktap_left, ocd_ktap_right, ocd_edge_detect_rdy,
taps_set, use_noise_window, ocal_scan_win_not_found,
// Inputs
clk, rst, reset_scan, oclkdelay_init_val, lim2ocal_stg3_right_lim,
lim2ocal_stg3_left_lim, complex_oclkdelay_calib_start,
po_counter_read_val, oclkdelay_calib_cnt, mmcm_edge_detect_done,
mmcm_lbclk_edge_aligned, poc_backup, phy_rddata_en_3, zero2fuzz,
fuzz2zero, oneeighty2fuzz, fuzz2oneeighty, z2f, f2z, o2f, f2o,
scan_right, samp_done, wl_po_fine_cnt_sel, po_rdy
);
input clk;
input rst;
input reset_scan;
reg scan_done_r;
output scan_done;
assign scan_done = scan_done_r;
output [5:0] simp_stg3_final_sel;
reg cmplx_samples_done_ns, cmplx_samples_done_r;
always @(posedge clk) cmplx_samples_done_r <= #TCQ cmplx_samples_done_ns;
output ocal_num_samples_done_r;
assign ocal_num_samples_done_r = cmplx_samples_done_r;
// Write Level signals during OCLKDELAY calibration
input [5:0] oclkdelay_init_val;
input [5:0] lim2ocal_stg3_right_lim;
input [5:0] lim2ocal_stg3_left_lim;
input complex_oclkdelay_calib_start;
reg oclkdelay_center_calib_start_ns, oclkdelay_center_calib_start_r;
always @(posedge clk) oclkdelay_center_calib_start_r <= #TCQ oclkdelay_center_calib_start_ns;
output oclkdelay_center_calib_start;
assign oclkdelay_center_calib_start = oclkdelay_center_calib_start_r;
reg oclkdelay_center_calib_done_ns, oclkdelay_center_calib_done_r;
always @(posedge clk) oclkdelay_center_calib_done_r <= #TCQ oclkdelay_center_calib_done_ns;
output oclkdelay_center_calib_done;
assign oclkdelay_center_calib_done = oclkdelay_center_calib_done_r;
reg oclk_center_write_resume_ns, oclk_center_write_resume_r;
always @(posedge clk) oclk_center_write_resume_r <= #TCQ oclk_center_write_resume_ns;
output oclk_center_write_resume;
assign oclk_center_write_resume = oclk_center_write_resume_r;
reg ocd2stg2_inc_r, ocd2stg2_dec_r, ocd2stg3_inc_r, ocd2stg3_dec_r;
output ocd2stg2_inc, ocd2stg2_dec, ocd2stg3_inc, ocd2stg3_dec;
assign ocd2stg2_inc = ocd2stg2_inc_r;
assign ocd2stg2_dec = ocd2stg2_dec_r;
assign ocd2stg3_inc = ocd2stg3_inc_r;
assign ocd2stg3_dec = ocd2stg3_dec_r;
// Remember, two stage 2 steps for every stg 3 step. And we need a sign bit.
reg [8:0] stg2_ns, stg2_r;
always @(posedge clk) stg2_r <= #TCQ stg2_ns;
reg [5:0] stg3_ns, stg3_r;
always @(posedge clk) stg3_r <= #TCQ stg3_ns;
output [5:0] stg3;
assign stg3 = stg3_r;
input [5:0] wl_po_fine_cnt_sel;
input [8:0] po_counter_read_val;
reg [5:0] po_counter_read_val_r;
always @(posedge clk) po_counter_read_val_r <= #TCQ po_counter_read_val[5:0];
reg [DQS_WIDTH*6-1:0] simp_stg3_final_ns, simp_stg3_final_r, cmplx_stg3_final_ns, cmplx_stg3_final_r;
always @(posedge clk) simp_stg3_final_r <= #TCQ simp_stg3_final_ns;
always @(posedge clk) cmplx_stg3_final_r <= #TCQ cmplx_stg3_final_ns;
output [DQS_WIDTH*6-1:0] simp_stg3_final, cmplx_stg3_final;
assign simp_stg3_final = simp_stg3_final_r;
assign cmplx_stg3_final = cmplx_stg3_final_r;
input [DQS_CNT_WIDTH:0] oclkdelay_calib_cnt;
wire [DQS_WIDTH*6-1:0] simp_stg3_final_shft = simp_stg3_final_r >> oclkdelay_calib_cnt * 6;
assign simp_stg3_final_sel = simp_stg3_final_shft[5:0];
wire [5:0] stg3_init = complex_oclkdelay_calib_start ? simp_stg3_final_sel : oclkdelay_init_val;
wire signed [8:0] stg2_steps = stg3_r > stg3_init
? -9'sd2 * $signed({3'b0, (stg3_r - stg3_init)})
: 9'sd2 * $signed({3'b0, (stg3_init - stg3_r)});
wire signed [8:0] stg2_target_ns = $signed({3'b0, wl_po_fine_cnt_sel}) + stg2_steps;
reg signed [8:0] stg2_target_r;
always @ (posedge clk) stg2_target_r <= #TCQ stg2_target_ns;
reg [5:0] stg2_final_ns, stg2_final_r;
always @(posedge clk) stg2_final_r <= #TCQ stg2_final_ns;
always @(*) stg2_final_ns = stg2_target_r[8] == 1'b1
? 6'd0
: stg2_target_r > 9'd63
? 6'd63
: stg2_target_r[5:0];
wire final_stg2_inc = stg2_final_r > po_counter_read_val_r;
wire final_stg2_dec = stg2_final_r < po_counter_read_val_r;
wire left_lim = stg3_r == lim2ocal_stg3_left_lim;
wire right_lim = stg3_r == lim2ocal_stg3_right_lim;
reg [1:0] ninety_offsets_ns, ninety_offsets_r;
always @(posedge clk) ninety_offsets_r <= #TCQ ninety_offsets_ns;
output [1:0] ninety_offsets;
assign ninety_offsets = ninety_offsets_r;
reg scanning_right_ns, scanning_right_r;
always @(posedge clk) scanning_right_r <= #TCQ scanning_right_ns;
output scanning_right;
assign scanning_right = scanning_right_r;
reg ocd_ktap_left_ns, ocd_ktap_left_r, ocd_ktap_right_ns, ocd_ktap_right_r;
always @(posedge clk) ocd_ktap_left_r <= #TCQ ocd_ktap_left_ns;
always @(posedge clk) ocd_ktap_right_r <= #TCQ ocd_ktap_right_ns;
output ocd_ktap_left, ocd_ktap_right;
assign ocd_ktap_left = ocd_ktap_left_r;
assign ocd_ktap_right = ocd_ktap_right_r;
reg ocd_edge_detect_rdy_ns, ocd_edge_detect_rdy_r;
always @(posedge clk) ocd_edge_detect_rdy_r <= #TCQ ocd_edge_detect_rdy_ns;
output ocd_edge_detect_rdy;
assign ocd_edge_detect_rdy = ocd_edge_detect_rdy_r;
input mmcm_edge_detect_done;
input mmcm_lbclk_edge_aligned;
input poc_backup;
reg poc_backup_ns, poc_backup_r;
always @(posedge clk) poc_backup_r <= #TCQ poc_backup_ns;
reg taps_set_r;
output taps_set;
assign taps_set = taps_set_r;
input phy_rddata_en_3;
input [5:0] zero2fuzz, fuzz2zero, oneeighty2fuzz, fuzz2oneeighty;
input z2f, f2z, o2f, f2o;
wire zero = f2z && z2f;
wire noise = z2f && f2o;
wire oneeighty = f2o && o2f;
reg win_not_found;
reg [1:0] ninety_offsets_final;
reg [5:0] left, right, current_edge;
always @(*) begin
left = lim2ocal_stg3_left_lim;
right = lim2ocal_stg3_right_lim;
ninety_offsets_final = 2'd0;
win_not_found = 1'b0;
if (zero) begin
left = fuzz2zero;
right = zero2fuzz;
end
else if (noise) begin
left = zero2fuzz;
right = fuzz2oneeighty;
ninety_offsets_final = 2'd1;
end
else if (oneeighty) begin
left = fuzz2oneeighty;
right = oneeighty2fuzz;
ninety_offsets_final = 2'd2;
end
else if (z2f) begin
right = zero2fuzz;
end
else if (f2o) begin
left = fuzz2oneeighty;
ninety_offsets_final = 2'd2;
end
else if (f2z) begin
left = fuzz2zero;
end
else win_not_found = 1'b1;
current_edge = ocd_ktap_left_r ? left : right;
end // always @ begin
output use_noise_window;
assign use_noise_window = ninety_offsets == 2'd1;
reg ocal_scan_win_not_found_ns, ocal_scan_win_not_found_r;
always @(posedge clk) ocal_scan_win_not_found_r <= #TCQ ocal_scan_win_not_found_ns;
output ocal_scan_win_not_found;
assign ocal_scan_win_not_found = ocal_scan_win_not_found_r;
wire inc_po_ns = current_edge > stg3_r;
wire dec_po_ns = current_edge < stg3_r;
reg inc_po_r, dec_po_r;
always @(posedge clk) inc_po_r <= #TCQ inc_po_ns;
always @(posedge clk) dec_po_r <= #TCQ dec_po_ns;
input scan_right;
wire left_stop = left_lim || scan_right;
wire right_stop = right_lim || o2f;
reg [4:0] resume_wait_ns, resume_wait_r;
always @(posedge clk) resume_wait_r <= #TCQ resume_wait_ns;
wire resume_wait = |resume_wait_r;
reg po_done_ns, po_done_r;
always @(posedge clk) po_done_r <= #TCQ po_done_ns;
input samp_done;
input po_rdy;
reg up_ns, up_r;
always @(posedge clk) up_r <= #TCQ up_ns;
reg [1:0] two_ns, two_r;
always @(posedge clk) two_r <= #TCQ two_ns;
/* wire stg2_zero = ~|stg2_r;
wire [8:0] stg2_2_zero = stg2_r[8] ? 9'd0
: stg2_r > 9'd63
? 9'd63
: stg2_r; */
reg [3:0] sm_ns, sm_r;
always @(posedge clk) sm_r <= #TCQ sm_ns;
(* dont_touch = "true" *) reg phy_rddata_en_3_second_ns, phy_rddata_en_3_second_r;
always @(posedge clk) phy_rddata_en_3_second_r <= #TCQ phy_rddata_en_3_second_ns;
always @(*) phy_rddata_en_3_second_ns = ~reset_scan && (phy_rddata_en_3
? ~phy_rddata_en_3_second_r
: phy_rddata_en_3_second_r);
(* dont_touch = "true" *) wire use_samp_done = nCK_PER_CLK == 2 ? phy_rddata_en_3 && phy_rddata_en_3_second_r : phy_rddata_en_3;
reg po_center_wait;
reg po_slew;
reg po_finish_scan;
always @(*) begin
// Default next state assignments.
cmplx_samples_done_ns = cmplx_samples_done_r;
cmplx_stg3_final_ns = cmplx_stg3_final_r;
scanning_right_ns = scanning_right_r;
ninety_offsets_ns = ninety_offsets_r;
ocal_scan_win_not_found_ns = ocal_scan_win_not_found_r;
ocd_edge_detect_rdy_ns = ocd_edge_detect_rdy_r;
ocd_ktap_left_ns = ocd_ktap_left_r;
ocd_ktap_right_ns = ocd_ktap_right_r;
ocd2stg2_inc_r = 1'b0;
ocd2stg2_dec_r = 1'b0;
ocd2stg3_inc_r = 1'b0;
ocd2stg3_dec_r = 1'b0;
oclkdelay_center_calib_start_ns = oclkdelay_center_calib_start_r;
oclkdelay_center_calib_done_ns = 1'b0;
oclk_center_write_resume_ns = oclk_center_write_resume_r;
po_center_wait = 1'b0;
po_done_ns = po_done_r;
po_finish_scan = 1'b0;
po_slew = 1'b0;
poc_backup_ns = poc_backup_r;
scan_done_r = 1'b0;
simp_stg3_final_ns = simp_stg3_final_r;
sm_ns = sm_r;
taps_set_r = 1'b0;
up_ns = up_r;
stg2_ns = stg2_r;
stg3_ns = stg3_r;
two_ns = two_r;
resume_wait_ns = resume_wait_r;
if (rst == 1'b1) begin
// RESET next states
cmplx_samples_done_ns = 1'b0;
ocal_scan_win_not_found_ns = 1'b0;
ocd_ktap_left_ns = 1'b0;
ocd_ktap_right_ns = 1'b0;
ocd_edge_detect_rdy_ns = 1'b0;
oclk_center_write_resume_ns = 1'b0;
oclkdelay_center_calib_start_ns = 1'b0;
po_done_ns = 1'b1;
resume_wait_ns = 5'd0;
sm_ns = /*AK("READY")*/4'd0;
end else
// State based actions and next states.
case (sm_r)
/*AL("READY")*/4'd0:begin
poc_backup_ns = 1'b0;
stg2_ns = {3'b0, wl_po_fine_cnt_sel};
stg3_ns = stg3_init;
scanning_right_ns = 1'b0;
if (complex_oclkdelay_calib_start) cmplx_samples_done_ns = 1'b1;
if (!reset_scan && ~resume_wait) begin
cmplx_samples_done_ns = 1'b0;
ocal_scan_win_not_found_ns = 1'b0;
taps_set_r = 1'b1;
sm_ns = /*AK("SAMPLING")*/4'd1;
end
end
/*AL("SAMPLING")*/4'd1:begin
if (samp_done && use_samp_done) begin
if (complex_oclkdelay_calib_start) cmplx_samples_done_ns = 1'b1;
scanning_right_ns = scanning_right_r || left_stop;
if (right_stop && scanning_right_r) begin
oclkdelay_center_calib_start_ns = 1'b1;
ocd_ktap_left_ns = 1'b1;
ocal_scan_win_not_found_ns = win_not_found;
sm_ns = /*AK("SLEW_PO")*/4'd3;
end else begin
if (scanning_right_ns) ocd2stg3_inc_r = 1'b1;
else ocd2stg3_dec_r = 1'b1;
sm_ns = /*AK("PO_WAIT")*/4'd2;
end
end
end
/*AL("PO_WAIT")*/4'd2:begin
if (po_done_r && ~resume_wait) begin
taps_set_r = 1'b1;
sm_ns = /*AK("SAMPLING")*/4'd1;
cmplx_samples_done_ns = 1'b0;
end
end
/*AL("SLEW_PO")*/4'd3:begin
po_slew = 1'b1;
ninety_offsets_ns = |ninety_offsets_final ? 2'b01 : 2'b00;
if (~resume_wait) begin
if (po_done_r) begin
if (inc_po_r) ocd2stg3_inc_r = 1'b1;
else if (dec_po_r) ocd2stg3_dec_r = 1'b1;
else if (~resume_wait) begin
cmplx_samples_done_ns = 1'b0;
sm_ns = /*AK("ALIGN_EDGES")*/4'd4;
oclk_center_write_resume_ns = 1'b1;
end
end // if (po_done)
end
end // case: 3'd3
/*AL("ALIGN_EDGES")*/4'd4:
if (~resume_wait) begin
if (mmcm_edge_detect_done) begin
ocd_edge_detect_rdy_ns = 1'b0;
if (ocd_ktap_left_r) begin
ocd_ktap_left_ns = 1'b0;
ocd_ktap_right_ns = 1'b1;
oclk_center_write_resume_ns = 1'b0;
sm_ns = /*AK("SLEW_PO")*/4'd3;
end else if (ocd_ktap_right_r) begin
ocd_ktap_right_ns = 1'b0;
sm_ns = /*AK("WAIT_ONE")*/4'd5;
end else if (~mmcm_lbclk_edge_aligned) begin
sm_ns = /*AK("DQS_STOP_WAIT")*/4'd6;
oclk_center_write_resume_ns = 1'b0;
end else begin
if (ninety_offsets_r != ninety_offsets_final && ocd_edge_detect_rdy_r) begin
ninety_offsets_ns = ninety_offsets_r + 2'b01;
sm_ns = /*AK("WAIT_ONE")*/4'd5;
end else begin
oclk_center_write_resume_ns = 1'b0;
poc_backup_ns = poc_backup;
// stg2_ns = stg2_2_zero;
sm_ns = /*AK("FINISH_SCAN")*/4'd8;
end
end // else: !if(~mmcm_lbclk_edge_aligned)
end else ocd_edge_detect_rdy_ns = 1'b1;
end // if (~resume_wait)
/*AL("WAIT_ONE")*/4'd5:
sm_ns = /*AK("ALIGN_EDGES")*/4'd4;
/*AL("DQS_STOP_WAIT")*/4'd6:
if (~resume_wait) begin
ocd2stg3_dec_r = 1'b1;
sm_ns = /*AK("CENTER_PO_WAIT")*/4'd7;
end
/*AL("CENTER_PO_WAIT")*/4'd7: begin
po_center_wait = 1'b1; // Kludge to get around limitation of the AUTOs symbols.
if (po_done_r) begin
sm_ns = /*AK("ALIGN_EDGES")*/4'd4;
oclk_center_write_resume_ns = 1'b1;
end
end
/*AL("FINISH_SCAN")*/4'd8: begin
po_finish_scan = 1'b1;
if (resume_wait_r == 5'd1) begin
if (~poc_backup_r) begin
oclkdelay_center_calib_done_ns = 1'b1;
oclkdelay_center_calib_start_ns = 1'b0;
end
end
if (~resume_wait) begin
if (po_rdy)
if (poc_backup_r) begin
ocd2stg3_inc_r = 1'b1;
poc_backup_ns = 1'b0;
end
else if (~final_stg2_inc && ~final_stg2_dec) begin
if (complex_oclkdelay_calib_start) cmplx_stg3_final_ns[oclkdelay_calib_cnt*6+:6] = stg3_r;
else simp_stg3_final_ns[oclkdelay_calib_cnt*6+:6] = stg3_r;
sm_ns = /*AK("READY")*/4'd0;
scan_done_r = 1'b1;
end else begin
ocd2stg2_inc_r = final_stg2_inc;
ocd2stg2_dec_r = final_stg2_dec;
end
end // if (~resume_wait)
end // case: 4'd8
endcase // case (sm_r)
if (ocd2stg3_inc_r) begin
stg3_ns = stg3_r + 6'h1;
up_ns = 1'b0;
end
if (ocd2stg3_dec_r) begin
stg3_ns = stg3_r - 6'h1;
up_ns = 1'b1;
end
if (ocd2stg3_inc_r || ocd2stg3_dec_r) begin
po_done_ns = 1'b0;
two_ns = 2'b00;
end
if (~po_done_r)
if (po_rdy)
if (two_r == 2'b10 || po_center_wait || po_slew || po_finish_scan) po_done_ns = 1'b1;
else begin
two_ns = two_r + 2'b1;
if (up_r) begin
stg2_ns = stg2_r + 9'b1;
if (stg2_r >= 9'd0 && stg2_r < 9'd63) ocd2stg2_inc_r = 1'b1;
end else begin
stg2_ns = stg2_r - 9'b1;
if (stg2_r > 9'd0 && stg2_r <= 9'd63) ocd2stg2_dec_r = 1'b1;
end
end // else: !if(two_r == 2'b10)
if (ocd_ktap_left_ns && ~ocd_ktap_left_r) resume_wait_ns = 5'b1;
else if (oclk_center_write_resume_ns ^ oclk_center_write_resume_r) resume_wait_ns = 5'd15;
else if (cmplx_samples_done_ns & ~cmplx_samples_done_r ||
complex_oclkdelay_calib_start & reset_scan ||
poc_backup_r & ocd2stg3_inc_r) resume_wait_ns = 5'd31;
else if (|resume_wait_r) resume_wait_ns = resume_wait_r - 5'd1;
end // always @ begin
endmodule // mig_7series_v2_3_ddr_phy_ocd_po_cntlr
// Local Variables:
// verilog-autolabel-prefix: "4'd"
// End:
|
// -- (c) Copyright 2009 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// File name: crossbar.v
//
// Description:
// This module is a M-master to N-slave AXI axi_crossbar_v2_1_crossbar switch.
// The interface of this module consists of a vectored slave and master interface
// in which all slots are sized and synchronized to the native width and clock
// of the interconnect.
// The SAMD axi_crossbar_v2_1_crossbar supports only AXI4 and AXI3 protocols.
// All width, clock and protocol conversions are done outside this block, as are
// any pipeline registers or data FIFOs.
// This module contains all arbitration, decoders and channel multiplexing logic.
// It also contains the diagnostic registers and control interface.
//
//-----------------------------------------------------------------------------
//
// Structure:
// crossbar
// si_transactor
// addr_decoder
// comparator_static
// mux_enc
// axic_srl_fifo
// arbiter_resp
// splitter
// wdata_router
// axic_reg_srl_fifo
// wdata_mux
// axic_reg_srl_fifo
// mux_enc
// addr_decoder
// comparator_static
// axic_srl_fifo
// axi_register_slice
// addr_arbiter
// mux_enc
// decerr_slave
//
//-----------------------------------------------------------------------------
`timescale 1ps/1ps
`default_nettype none
(* DowngradeIPIdentifiedWarnings="yes" *)
module axi_crossbar_v2_1_crossbar #
(
parameter C_FAMILY = "none",
parameter integer C_NUM_SLAVE_SLOTS = 1,
parameter integer C_NUM_MASTER_SLOTS = 1,
parameter integer C_NUM_ADDR_RANGES = 1,
parameter integer C_AXI_ID_WIDTH = 1,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_PROTOCOL = 0,
parameter [C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64-1:0] C_M_AXI_BASE_ADDR = {C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64{1'b1}},
parameter [C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64-1:0] C_M_AXI_HIGH_ADDR = {C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64{1'b0}},
parameter [C_NUM_SLAVE_SLOTS*64-1:0] C_S_AXI_BASE_ID = {C_NUM_SLAVE_SLOTS*64{1'b0}},
parameter [C_NUM_SLAVE_SLOTS*64-1:0] C_S_AXI_HIGH_ID = {C_NUM_SLAVE_SLOTS*64{1'b0}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_THREAD_ID_WIDTH = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_AWUSER_WIDTH = 1,
parameter integer C_AXI_ARUSER_WIDTH = 1,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter [C_NUM_SLAVE_SLOTS-1:0] C_S_AXI_SUPPORTS_WRITE = {C_NUM_SLAVE_SLOTS{1'b1}},
parameter [C_NUM_SLAVE_SLOTS-1:0] C_S_AXI_SUPPORTS_READ = {C_NUM_SLAVE_SLOTS{1'b1}},
parameter [C_NUM_MASTER_SLOTS-1:0] C_M_AXI_SUPPORTS_WRITE = {C_NUM_MASTER_SLOTS{1'b1}},
parameter [C_NUM_MASTER_SLOTS-1:0] C_M_AXI_SUPPORTS_READ = {C_NUM_MASTER_SLOTS{1'b1}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_WRITE_CONNECTIVITY = {C_NUM_MASTER_SLOTS*32{1'b1}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_READ_CONNECTIVITY = {C_NUM_MASTER_SLOTS*32{1'b1}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_SINGLE_THREAD = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_WRITE_ACCEPTANCE = {C_NUM_SLAVE_SLOTS{32'h00000001}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_READ_ACCEPTANCE = {C_NUM_SLAVE_SLOTS{32'h00000001}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_WRITE_ISSUING = {C_NUM_MASTER_SLOTS{32'h00000001}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_READ_ISSUING = {C_NUM_MASTER_SLOTS{32'h00000001}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_ARB_PRIORITY = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_SECURE = {C_NUM_MASTER_SLOTS{32'h00000000}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_ERR_MODE = {C_NUM_MASTER_SLOTS{32'h00000000}},
parameter integer C_RANGE_CHECK = 0,
parameter integer C_ADDR_DECODE = 0,
parameter [(C_NUM_MASTER_SLOTS+1)*32-1:0] C_W_ISSUE_WIDTH = {C_NUM_MASTER_SLOTS+1{32'h00000000}},
parameter [(C_NUM_MASTER_SLOTS+1)*32-1:0] C_R_ISSUE_WIDTH = {C_NUM_MASTER_SLOTS+1{32'h00000000}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_W_ACCEPT_WIDTH = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_R_ACCEPT_WIDTH = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter integer C_DEBUG = 1
)
(
// Global Signals
input wire ACLK,
input wire ARESETN,
// Slave Interface Write Address Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_AWID,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR,
input wire [C_NUM_SLAVE_SLOTS*8-1:0] S_AXI_AWLEN,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_AWSIZE,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_AWBURST,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_AWLOCK,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_AWCACHE,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_AWPROT,
// input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_AWREGION,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_AWQOS,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_AWVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_AWREADY,
// Slave Interface Write Data Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_WID,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_WLAST,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_WVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_WREADY,
// Slave Interface Write Response Ports
output wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_BID,
output wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_BRESP,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_BVALID,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_BREADY,
// Slave Interface Read Address Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_ARID,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR,
input wire [C_NUM_SLAVE_SLOTS*8-1:0] S_AXI_ARLEN,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_ARSIZE,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_ARBURST,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_ARLOCK,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_ARCACHE,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_ARPROT,
// input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_ARREGION,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_ARQOS,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_ARVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_ARREADY,
// Slave Interface Read Data Ports
output wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_RID,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA,
output wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_RRESP,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_RLAST,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_RVALID,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_RREADY,
// Master Interface Write Address Port
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_AWID,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR,
output wire [C_NUM_MASTER_SLOTS*8-1:0] M_AXI_AWLEN,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_AWSIZE,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_AWBURST,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_AWLOCK,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_AWCACHE,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_AWPROT,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_AWREGION,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_AWQOS,
output wire [C_NUM_MASTER_SLOTS*C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_AWVALID,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_AWREADY,
// Master Interface Write Data Ports
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_WID,
output wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA,
output wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_WLAST,
output wire [C_NUM_MASTER_SLOTS*C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_WVALID,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_WREADY,
// Master Interface Write Response Ports
input wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_BID,
input wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_BRESP,
input wire [C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_BVALID,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_BREADY,
// Master Interface Read Address Port
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_ARID,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR,
output wire [C_NUM_MASTER_SLOTS*8-1:0] M_AXI_ARLEN,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_ARSIZE,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_ARBURST,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_ARLOCK,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_ARCACHE,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_ARPROT,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_ARREGION,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_ARQOS,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_ARVALID,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_ARREADY,
// Master Interface Read Data Ports
input wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_RID,
input wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA,
input wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_RRESP,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_RLAST,
input wire [C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_RVALID,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_RREADY
);
localparam integer P_AXI4 = 0;
localparam integer P_AXI3 = 1;
localparam integer P_AXILITE = 2;
localparam integer P_WRITE = 0;
localparam integer P_READ = 1;
localparam integer P_NUM_MASTER_SLOTS_LOG = f_ceil_log2(C_NUM_MASTER_SLOTS);
localparam integer P_NUM_SLAVE_SLOTS_LOG = f_ceil_log2((C_NUM_SLAVE_SLOTS>1) ? C_NUM_SLAVE_SLOTS : 2);
localparam integer P_AXI_WID_WIDTH = (C_AXI_PROTOCOL == P_AXI3) ? C_AXI_ID_WIDTH : 1;
localparam integer P_ST_AWMESG_WIDTH = 2+4+4 + C_AXI_AWUSER_WIDTH;
localparam integer P_AA_AWMESG_WIDTH = C_AXI_ID_WIDTH + C_AXI_ADDR_WIDTH + 8+3+2+3+4 + P_ST_AWMESG_WIDTH;
localparam integer P_ST_ARMESG_WIDTH = 2+4+4 + C_AXI_ARUSER_WIDTH;
localparam integer P_AA_ARMESG_WIDTH = C_AXI_ID_WIDTH + C_AXI_ADDR_WIDTH + 8+3+2+3+4 + P_ST_ARMESG_WIDTH;
localparam integer P_ST_BMESG_WIDTH = 2 + C_AXI_BUSER_WIDTH;
localparam integer P_ST_RMESG_WIDTH = 2 + C_AXI_RUSER_WIDTH + C_AXI_DATA_WIDTH;
localparam integer P_WR_WMESG_WIDTH = C_AXI_DATA_WIDTH + C_AXI_DATA_WIDTH/8 + C_AXI_WUSER_WIDTH + P_AXI_WID_WIDTH;
localparam [31:0] P_BYPASS = 32'h00000000;
localparam [31:0] P_FWD_REV = 32'h00000001;
localparam [31:0] P_SIMPLE = 32'h00000007;
localparam [(C_NUM_MASTER_SLOTS+1)-1:0] P_M_AXI_SUPPORTS_READ = {1'b1, C_M_AXI_SUPPORTS_READ[0+:C_NUM_MASTER_SLOTS]};
localparam [(C_NUM_MASTER_SLOTS+1)-1:0] P_M_AXI_SUPPORTS_WRITE = {1'b1, C_M_AXI_SUPPORTS_WRITE[0+:C_NUM_MASTER_SLOTS]};
localparam [(C_NUM_MASTER_SLOTS+1)*32-1:0] P_M_AXI_WRITE_CONNECTIVITY = {{32{1'b1}}, C_M_AXI_WRITE_CONNECTIVITY[0+:C_NUM_MASTER_SLOTS*32]};
localparam [(C_NUM_MASTER_SLOTS+1)*32-1:0] P_M_AXI_READ_CONNECTIVITY = {{32{1'b1}}, C_M_AXI_READ_CONNECTIVITY[0+:C_NUM_MASTER_SLOTS*32]};
localparam [C_NUM_SLAVE_SLOTS*32-1:0] P_S_AXI_WRITE_CONNECTIVITY = f_si_write_connectivity(0);
localparam [C_NUM_SLAVE_SLOTS*32-1:0] P_S_AXI_READ_CONNECTIVITY = f_si_read_connectivity(0);
localparam [(C_NUM_MASTER_SLOTS+1)*32-1:0] P_M_AXI_READ_ISSUING = {32'h00000001, C_M_AXI_READ_ISSUING[0+:C_NUM_MASTER_SLOTS*32]};
localparam [(C_NUM_MASTER_SLOTS+1)*32-1:0] P_M_AXI_WRITE_ISSUING = {32'h00000001, C_M_AXI_WRITE_ISSUING[0+:C_NUM_MASTER_SLOTS*32]};
localparam P_DECERR = 2'b11;
//---------------------------------------------------------------------------
// Functions
//---------------------------------------------------------------------------
// Ceiling of log2(x)
function integer f_ceil_log2
(
input integer x
);
integer acc;
begin
acc=0;
while ((2**acc) < x)
acc = acc + 1;
f_ceil_log2 = acc;
end
endfunction
// Isolate thread bits of input S_ID and add to BASE_ID (RNG00) to form MI-side ID value
// only for end-point SI-slots
function [C_AXI_ID_WIDTH-1:0] f_extend_ID
(
input [C_AXI_ID_WIDTH-1:0] s_id,
input integer slot
);
begin
f_extend_ID = C_S_AXI_BASE_ID[slot*64+:C_AXI_ID_WIDTH] | (s_id & (C_S_AXI_BASE_ID[slot*64+:C_AXI_ID_WIDTH] ^ C_S_AXI_HIGH_ID[slot*64+:C_AXI_ID_WIDTH]));
end
endfunction
// Write connectivity array transposed
function [C_NUM_SLAVE_SLOTS*32-1:0] f_si_write_connectivity
(
input integer null_arg
);
integer si_slot;
integer mi_slot;
reg [C_NUM_SLAVE_SLOTS*32-1:0] result;
begin
result = {C_NUM_SLAVE_SLOTS*32{1'b1}};
for (si_slot=0; si_slot<C_NUM_SLAVE_SLOTS; si_slot=si_slot+1) begin
for (mi_slot=0; mi_slot<C_NUM_MASTER_SLOTS; mi_slot=mi_slot+1) begin
result[si_slot*32+mi_slot] = C_M_AXI_WRITE_CONNECTIVITY[mi_slot*32+si_slot];
end
end
f_si_write_connectivity = result;
end
endfunction
// Read connectivity array transposed
function [C_NUM_SLAVE_SLOTS*32-1:0] f_si_read_connectivity
(
input integer null_arg
);
integer si_slot;
integer mi_slot;
reg [C_NUM_SLAVE_SLOTS*32-1:0] result;
begin
result = {C_NUM_SLAVE_SLOTS*32{1'b1}};
for (si_slot=0; si_slot<C_NUM_SLAVE_SLOTS; si_slot=si_slot+1) begin
for (mi_slot=0; mi_slot<C_NUM_MASTER_SLOTS; mi_slot=mi_slot+1) begin
result[si_slot*32+mi_slot] = C_M_AXI_READ_CONNECTIVITY[mi_slot*32+si_slot];
end
end
f_si_read_connectivity = result;
end
endfunction
genvar gen_si_slot;
genvar gen_mi_slot;
wire [C_NUM_SLAVE_SLOTS*P_ST_AWMESG_WIDTH-1:0] si_st_awmesg ;
wire [C_NUM_SLAVE_SLOTS*P_ST_AWMESG_WIDTH-1:0] st_tmp_awmesg ;
wire [C_NUM_SLAVE_SLOTS*P_AA_AWMESG_WIDTH-1:0] tmp_aa_awmesg ;
wire [P_AA_AWMESG_WIDTH-1:0] aa_mi_awmesg ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] st_aa_awid ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] st_aa_awaddr ;
wire [C_NUM_SLAVE_SLOTS*8-1:0] st_aa_awlen ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] st_aa_awsize ;
wire [C_NUM_SLAVE_SLOTS*2-1:0] st_aa_awlock ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] st_aa_awprot ;
wire [C_NUM_SLAVE_SLOTS*4-1:0] st_aa_awregion ;
wire [C_NUM_SLAVE_SLOTS*8-1:0] st_aa_awerror ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_aa_awtarget_hot ;
wire [C_NUM_SLAVE_SLOTS*(P_NUM_MASTER_SLOTS_LOG+1)-1:0] st_aa_awtarget_enc ;
wire [P_NUM_SLAVE_SLOTS_LOG*1-1:0] aa_wm_awgrant_enc ;
wire [(C_NUM_MASTER_SLOTS+1)-1:0] aa_mi_awtarget_hot ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_aa_awvalid_qual ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_ss_awvalid ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_ss_awready ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] ss_wr_awvalid ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] ss_wr_awready ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] ss_aa_awvalid ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] ss_aa_awready ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] sa_wm_awvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] sa_wm_awready ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_awvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_awready ;
wire aa_sa_awvalid ;
wire aa_sa_awready ;
wire aa_mi_arready ;
wire mi_awvalid_en ;
wire sa_wm_awvalid_en ;
wire sa_wm_awready_mux ;
wire [C_NUM_SLAVE_SLOTS*P_ST_ARMESG_WIDTH-1:0] si_st_armesg ;
wire [C_NUM_SLAVE_SLOTS*P_ST_ARMESG_WIDTH-1:0] st_tmp_armesg ;
wire [C_NUM_SLAVE_SLOTS*P_AA_ARMESG_WIDTH-1:0] tmp_aa_armesg ;
wire [P_AA_ARMESG_WIDTH-1:0] aa_mi_armesg ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] st_aa_arid ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] st_aa_araddr ;
wire [C_NUM_SLAVE_SLOTS*8-1:0] st_aa_arlen ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] st_aa_arsize ;
wire [C_NUM_SLAVE_SLOTS*2-1:0] st_aa_arlock ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] st_aa_arprot ;
wire [C_NUM_SLAVE_SLOTS*4-1:0] st_aa_arregion ;
wire [C_NUM_SLAVE_SLOTS*8-1:0] st_aa_arerror ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_aa_artarget_hot ;
wire [C_NUM_SLAVE_SLOTS*(P_NUM_MASTER_SLOTS_LOG+1)-1:0] st_aa_artarget_enc ;
wire [(C_NUM_MASTER_SLOTS+1)-1:0] aa_mi_artarget_hot ;
wire [P_NUM_SLAVE_SLOTS_LOG*1-1:0] aa_mi_argrant_enc ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_aa_arvalid_qual ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_aa_arvalid ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_aa_arready ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_arvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_arready ;
wire aa_mi_arvalid ;
wire mi_awready_mux ;
wire [C_NUM_SLAVE_SLOTS*P_ST_BMESG_WIDTH-1:0] st_si_bmesg ;
wire [(C_NUM_MASTER_SLOTS+1)*P_ST_BMESG_WIDTH-1:0] st_mr_bmesg ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] st_mr_bid ;
wire [(C_NUM_MASTER_SLOTS+1)*2-1:0] st_mr_bresp ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_BUSER_WIDTH-1:0] st_mr_buser ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] st_mr_bvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] st_mr_bready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_tmp_bready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_tmp_bid_target ;
wire [(C_NUM_MASTER_SLOTS+1)*C_NUM_SLAVE_SLOTS-1:0] tmp_mr_bid_target ;
wire [(C_NUM_MASTER_SLOTS+1)*P_NUM_SLAVE_SLOTS_LOG-1:0] debug_bid_target_i ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] bid_match ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] mi_bid ;
wire [(C_NUM_MASTER_SLOTS+1)*2-1:0] mi_bresp ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_BUSER_WIDTH-1:0] mi_buser ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_bvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_bready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] bready_carry ;
wire [C_NUM_SLAVE_SLOTS*P_ST_RMESG_WIDTH-1:0] st_si_rmesg ;
wire [(C_NUM_MASTER_SLOTS+1)*P_ST_RMESG_WIDTH-1:0] st_mr_rmesg ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] st_mr_rid ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH-1:0] st_mr_rdata ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_RUSER_WIDTH-1:0] st_mr_ruser ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] st_mr_rlast ;
wire [(C_NUM_MASTER_SLOTS+1)*2-1:0] st_mr_rresp ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] st_mr_rvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] st_mr_rready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_tmp_rready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_tmp_rid_target ;
wire [(C_NUM_MASTER_SLOTS+1)*C_NUM_SLAVE_SLOTS-1:0] tmp_mr_rid_target ;
wire [(C_NUM_MASTER_SLOTS+1)*P_NUM_SLAVE_SLOTS_LOG-1:0] debug_rid_target_i ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] rid_match ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] mi_rid ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH-1:0] mi_rdata ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_RUSER_WIDTH-1:0] mi_ruser ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_rlast ;
wire [(C_NUM_MASTER_SLOTS+1)*2-1:0] mi_rresp ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_rvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_rready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] rready_carry ;
wire [C_NUM_SLAVE_SLOTS*P_WR_WMESG_WIDTH-1:0] si_wr_wmesg ;
wire [C_NUM_SLAVE_SLOTS*P_WR_WMESG_WIDTH-1:0] wr_wm_wmesg ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] wr_wm_wlast ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] wr_tmp_wvalid ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] wr_tmp_wready ;
wire [(C_NUM_MASTER_SLOTS+1)*C_NUM_SLAVE_SLOTS-1:0] tmp_wm_wvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*C_NUM_SLAVE_SLOTS-1:0] tmp_wm_wready ;
wire [(C_NUM_MASTER_SLOTS+1)*P_WR_WMESG_WIDTH-1:0] wm_mr_wmesg ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH-1:0] wm_mr_wdata ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH/8-1:0] wm_mr_wstrb ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] wm_mr_wid ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_WUSER_WIDTH-1:0] wm_mr_wuser ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] wm_mr_wlast ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] wm_mr_wvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] wm_mr_wready ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH-1:0] mi_wdata ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH/8-1:0] mi_wstrb ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_WUSER_WIDTH-1:0] mi_wuser ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] mi_wid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_wlast ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_wvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_wready ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] w_cmd_push ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] w_cmd_pop ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] r_cmd_push ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] r_cmd_pop ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_awmaxissuing ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_armaxissuing ;
reg [(C_NUM_MASTER_SLOTS+1)*8-1:0] w_issuing_cnt ;
reg [(C_NUM_MASTER_SLOTS+1)*8-1:0] r_issuing_cnt ;
reg [8-1:0] debug_aw_trans_seq_i ;
reg [8-1:0] debug_ar_trans_seq_i ;
wire [(C_NUM_MASTER_SLOTS+1)*8-1:0] debug_w_trans_seq_i ;
reg [(C_NUM_MASTER_SLOTS+1)*8-1:0] debug_w_beat_cnt_i ;
reg aresetn_d = 1'b0; // Reset delay register
always @(posedge ACLK) begin
if (~ARESETN) begin
aresetn_d <= 1'b0;
end else begin
aresetn_d <= ARESETN;
end
end
wire reset;
assign reset = ~aresetn_d;
generate
for (gen_si_slot=0; gen_si_slot<C_NUM_SLAVE_SLOTS; gen_si_slot=gen_si_slot+1) begin : gen_slave_slots
if (C_S_AXI_SUPPORTS_READ[gen_si_slot]) begin : gen_si_read
axi_crossbar_v2_1_si_transactor # // "ST": SI Transactor (read channel)
(
.C_FAMILY (C_FAMILY),
.C_SI (gen_si_slot),
.C_DIR (P_READ),
.C_NUM_ADDR_RANGES (C_NUM_ADDR_RANGES),
.C_NUM_M (C_NUM_MASTER_SLOTS),
.C_NUM_M_LOG (P_NUM_MASTER_SLOTS_LOG),
.C_ACCEPTANCE (C_S_AXI_READ_ACCEPTANCE[gen_si_slot*32+:32]),
.C_ACCEPTANCE_LOG (C_R_ACCEPT_WIDTH[gen_si_slot*32+:32]),
.C_ID_WIDTH (C_AXI_ID_WIDTH),
.C_THREAD_ID_WIDTH (C_S_AXI_THREAD_ID_WIDTH[gen_si_slot*32+:32]),
.C_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AMESG_WIDTH (P_ST_ARMESG_WIDTH),
.C_RMESG_WIDTH (P_ST_RMESG_WIDTH),
.C_BASE_ID (C_S_AXI_BASE_ID[gen_si_slot*64+:C_AXI_ID_WIDTH]),
.C_HIGH_ID (C_S_AXI_HIGH_ID[gen_si_slot*64+:C_AXI_ID_WIDTH]),
.C_SINGLE_THREAD (C_S_AXI_SINGLE_THREAD[gen_si_slot*32+:32]),
.C_BASE_ADDR (C_M_AXI_BASE_ADDR),
.C_HIGH_ADDR (C_M_AXI_HIGH_ADDR),
.C_TARGET_QUAL (P_S_AXI_READ_CONNECTIVITY[gen_si_slot*32+:C_NUM_MASTER_SLOTS]),
.C_M_AXI_SECURE (C_M_AXI_SECURE),
.C_RANGE_CHECK (C_RANGE_CHECK),
.C_ADDR_DECODE (C_ADDR_DECODE),
.C_ERR_MODE (C_M_AXI_ERR_MODE),
.C_DEBUG (C_DEBUG)
)
si_transactor_ar
(
.ACLK (ACLK),
.ARESET (reset),
.S_AID (f_extend_ID(S_AXI_ARID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH], gen_si_slot)),
.S_AADDR (S_AXI_ARADDR[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH]),
.S_ALEN (S_AXI_ARLEN[gen_si_slot*8+:8]),
.S_ASIZE (S_AXI_ARSIZE[gen_si_slot*3+:3]),
.S_ABURST (S_AXI_ARBURST[gen_si_slot*2+:2]),
.S_ALOCK (S_AXI_ARLOCK[gen_si_slot*2+:2]),
.S_APROT (S_AXI_ARPROT[gen_si_slot*3+:3]),
// .S_AREGION (S_AXI_ARREGION[gen_si_slot*4+:4]),
.S_AMESG (si_st_armesg[gen_si_slot*P_ST_ARMESG_WIDTH+:P_ST_ARMESG_WIDTH]),
.S_AVALID (S_AXI_ARVALID[gen_si_slot]),
.S_AREADY (S_AXI_ARREADY[gen_si_slot]),
.M_AID (st_aa_arid[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.M_AADDR (st_aa_araddr[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH]),
.M_ALEN (st_aa_arlen[gen_si_slot*8+:8]),
.M_ASIZE (st_aa_arsize[gen_si_slot*3+:3]),
.M_ALOCK (st_aa_arlock[gen_si_slot*2+:2]),
.M_APROT (st_aa_arprot[gen_si_slot*3+:3]),
.M_AREGION (st_aa_arregion[gen_si_slot*4+:4]),
.M_AMESG (st_tmp_armesg[gen_si_slot*P_ST_ARMESG_WIDTH+:P_ST_ARMESG_WIDTH]),
.M_ATARGET_HOT (st_aa_artarget_hot[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.M_ATARGET_ENC (st_aa_artarget_enc[gen_si_slot*(P_NUM_MASTER_SLOTS_LOG+1)+:(P_NUM_MASTER_SLOTS_LOG+1)]),
.M_AERROR (st_aa_arerror[gen_si_slot*8+:8]),
.M_AVALID_QUAL (st_aa_arvalid_qual[gen_si_slot]),
.M_AVALID (st_aa_arvalid[gen_si_slot]),
.M_AREADY (st_aa_arready[gen_si_slot]),
.S_RID (S_AXI_RID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.S_RMESG (st_si_rmesg[gen_si_slot*P_ST_RMESG_WIDTH+:P_ST_RMESG_WIDTH]),
.S_RLAST (S_AXI_RLAST[gen_si_slot]),
.S_RVALID (S_AXI_RVALID[gen_si_slot]),
.S_RREADY (S_AXI_RREADY[gen_si_slot]),
.M_RID (st_mr_rid),
.M_RLAST (st_mr_rlast),
.M_RMESG (st_mr_rmesg),
.M_RVALID (st_mr_rvalid),
.M_RREADY (st_tmp_rready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.M_RTARGET (st_tmp_rid_target[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.DEBUG_A_TRANS_SEQ (C_DEBUG ? debug_ar_trans_seq_i : 8'h0)
);
assign si_st_armesg[gen_si_slot*P_ST_ARMESG_WIDTH+:P_ST_ARMESG_WIDTH] = {
S_AXI_ARUSER[gen_si_slot*C_AXI_ARUSER_WIDTH+:C_AXI_ARUSER_WIDTH],
S_AXI_ARQOS[gen_si_slot*4+:4],
S_AXI_ARCACHE[gen_si_slot*4+:4],
S_AXI_ARBURST[gen_si_slot*2+:2]
};
assign tmp_aa_armesg[gen_si_slot*P_AA_ARMESG_WIDTH+:P_AA_ARMESG_WIDTH] = {
st_tmp_armesg[gen_si_slot*P_ST_ARMESG_WIDTH+:P_ST_ARMESG_WIDTH],
st_aa_arregion[gen_si_slot*4+:4],
st_aa_arprot[gen_si_slot*3+:3],
st_aa_arlock[gen_si_slot*2+:2],
st_aa_arsize[gen_si_slot*3+:3],
st_aa_arlen[gen_si_slot*8+:8],
st_aa_araddr[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH],
st_aa_arid[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]
};
assign S_AXI_RRESP[gen_si_slot*2+:2] = st_si_rmesg[gen_si_slot*P_ST_RMESG_WIDTH+:2];
assign S_AXI_RUSER[gen_si_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] = st_si_rmesg[gen_si_slot*P_ST_RMESG_WIDTH+2 +: C_AXI_RUSER_WIDTH];
assign S_AXI_RDATA[gen_si_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = st_si_rmesg[gen_si_slot*P_ST_RMESG_WIDTH+2+C_AXI_RUSER_WIDTH +: C_AXI_DATA_WIDTH];
end else begin : gen_no_si_read
assign S_AXI_ARREADY[gen_si_slot] = 1'b0;
assign st_aa_arvalid[gen_si_slot] = 1'b0;
assign st_aa_arvalid_qual[gen_si_slot] = 1'b1;
assign tmp_aa_armesg[gen_si_slot*P_AA_ARMESG_WIDTH+:P_AA_ARMESG_WIDTH] = 0;
assign S_AXI_RID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = 0;
assign S_AXI_RRESP[gen_si_slot*2+:2] = 0;
assign S_AXI_RUSER[gen_si_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] = 0;
assign S_AXI_RDATA[gen_si_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = 0;
assign S_AXI_RVALID[gen_si_slot] = 1'b0;
assign S_AXI_RLAST[gen_si_slot] = 1'b0;
assign st_tmp_rready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)] = 0;
assign st_aa_artarget_hot[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)] = 0;
end // gen_si_read
if (C_S_AXI_SUPPORTS_WRITE[gen_si_slot]) begin : gen_si_write
axi_crossbar_v2_1_si_transactor # // "ST": SI Transactor (write channel)
(
.C_FAMILY (C_FAMILY),
.C_SI (gen_si_slot),
.C_DIR (P_WRITE),
.C_NUM_ADDR_RANGES (C_NUM_ADDR_RANGES),
.C_NUM_M (C_NUM_MASTER_SLOTS),
.C_NUM_M_LOG (P_NUM_MASTER_SLOTS_LOG),
.C_ACCEPTANCE (C_S_AXI_WRITE_ACCEPTANCE[gen_si_slot*32+:32]),
.C_ACCEPTANCE_LOG (C_W_ACCEPT_WIDTH[gen_si_slot*32+:32]),
.C_ID_WIDTH (C_AXI_ID_WIDTH),
.C_THREAD_ID_WIDTH (C_S_AXI_THREAD_ID_WIDTH[gen_si_slot*32+:32]),
.C_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AMESG_WIDTH (P_ST_AWMESG_WIDTH),
.C_RMESG_WIDTH (P_ST_BMESG_WIDTH),
.C_BASE_ID (C_S_AXI_BASE_ID[gen_si_slot*64+:C_AXI_ID_WIDTH]),
.C_HIGH_ID (C_S_AXI_HIGH_ID[gen_si_slot*64+:C_AXI_ID_WIDTH]),
.C_SINGLE_THREAD (C_S_AXI_SINGLE_THREAD[gen_si_slot*32+:32]),
.C_BASE_ADDR (C_M_AXI_BASE_ADDR),
.C_HIGH_ADDR (C_M_AXI_HIGH_ADDR),
.C_TARGET_QUAL (P_S_AXI_WRITE_CONNECTIVITY[gen_si_slot*32+:C_NUM_MASTER_SLOTS]),
.C_M_AXI_SECURE (C_M_AXI_SECURE),
.C_RANGE_CHECK (C_RANGE_CHECK),
.C_ADDR_DECODE (C_ADDR_DECODE),
.C_ERR_MODE (C_M_AXI_ERR_MODE),
.C_DEBUG (C_DEBUG)
)
si_transactor_aw
(
.ACLK (ACLK),
.ARESET (reset),
.S_AID (f_extend_ID(S_AXI_AWID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH], gen_si_slot)),
.S_AADDR (S_AXI_AWADDR[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH]),
.S_ALEN (S_AXI_AWLEN[gen_si_slot*8+:8]),
.S_ASIZE (S_AXI_AWSIZE[gen_si_slot*3+:3]),
.S_ABURST (S_AXI_AWBURST[gen_si_slot*2+:2]),
.S_ALOCK (S_AXI_AWLOCK[gen_si_slot*2+:2]),
.S_APROT (S_AXI_AWPROT[gen_si_slot*3+:3]),
// .S_AREGION (S_AXI_AWREGION[gen_si_slot*4+:4]),
.S_AMESG (si_st_awmesg[gen_si_slot*P_ST_AWMESG_WIDTH+:P_ST_AWMESG_WIDTH]),
.S_AVALID (S_AXI_AWVALID[gen_si_slot]),
.S_AREADY (S_AXI_AWREADY[gen_si_slot]),
.M_AID (st_aa_awid[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.M_AADDR (st_aa_awaddr[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH]),
.M_ALEN (st_aa_awlen[gen_si_slot*8+:8]),
.M_ASIZE (st_aa_awsize[gen_si_slot*3+:3]),
.M_ALOCK (st_aa_awlock[gen_si_slot*2+:2]),
.M_APROT (st_aa_awprot[gen_si_slot*3+:3]),
.M_AREGION (st_aa_awregion[gen_si_slot*4+:4]),
.M_AMESG (st_tmp_awmesg[gen_si_slot*P_ST_AWMESG_WIDTH+:P_ST_AWMESG_WIDTH]),
.M_ATARGET_HOT (st_aa_awtarget_hot[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.M_ATARGET_ENC (st_aa_awtarget_enc[gen_si_slot*(P_NUM_MASTER_SLOTS_LOG+1)+:(P_NUM_MASTER_SLOTS_LOG+1)]),
.M_AERROR (st_aa_awerror[gen_si_slot*8+:8]),
.M_AVALID_QUAL (st_aa_awvalid_qual[gen_si_slot]),
.M_AVALID (st_ss_awvalid[gen_si_slot]),
.M_AREADY (st_ss_awready[gen_si_slot]),
.S_RID (S_AXI_BID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.S_RMESG (st_si_bmesg[gen_si_slot*P_ST_BMESG_WIDTH+:P_ST_BMESG_WIDTH]),
.S_RLAST (),
.S_RVALID (S_AXI_BVALID[gen_si_slot]),
.S_RREADY (S_AXI_BREADY[gen_si_slot]),
.M_RID (st_mr_bid),
.M_RLAST ({(C_NUM_MASTER_SLOTS+1){1'b1}}),
.M_RMESG (st_mr_bmesg),
.M_RVALID (st_mr_bvalid),
.M_RREADY (st_tmp_bready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.M_RTARGET (st_tmp_bid_target[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.DEBUG_A_TRANS_SEQ (C_DEBUG ? debug_aw_trans_seq_i : 8'h0)
);
// Note: Concatenation of mesg signals is from MSB to LSB; assignments that chop mesg signals appear in opposite order.
assign si_st_awmesg[gen_si_slot*P_ST_AWMESG_WIDTH+:P_ST_AWMESG_WIDTH] = {
S_AXI_AWUSER[gen_si_slot*C_AXI_AWUSER_WIDTH+:C_AXI_AWUSER_WIDTH],
S_AXI_AWQOS[gen_si_slot*4+:4],
S_AXI_AWCACHE[gen_si_slot*4+:4],
S_AXI_AWBURST[gen_si_slot*2+:2]
};
assign tmp_aa_awmesg[gen_si_slot*P_AA_AWMESG_WIDTH+:P_AA_AWMESG_WIDTH] = {
st_tmp_awmesg[gen_si_slot*P_ST_AWMESG_WIDTH+:P_ST_AWMESG_WIDTH],
st_aa_awregion[gen_si_slot*4+:4],
st_aa_awprot[gen_si_slot*3+:3],
st_aa_awlock[gen_si_slot*2+:2],
st_aa_awsize[gen_si_slot*3+:3],
st_aa_awlen[gen_si_slot*8+:8],
st_aa_awaddr[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH],
st_aa_awid[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]
};
assign S_AXI_BRESP[gen_si_slot*2+:2] = st_si_bmesg[gen_si_slot*P_ST_BMESG_WIDTH+:2];
assign S_AXI_BUSER[gen_si_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] = st_si_bmesg[gen_si_slot*P_ST_BMESG_WIDTH+2 +: C_AXI_BUSER_WIDTH];
// AW SI-transactor transfer completes upon completion of both W-router address acceptance (command push) and AW arbitration
axi_crossbar_v2_1_splitter # // "SS": Splitter from SI-Transactor (write channel)
(
.C_NUM_M (2)
)
splitter_aw_si
(
.ACLK (ACLK),
.ARESET (reset),
.S_VALID (st_ss_awvalid[gen_si_slot]),
.S_READY (st_ss_awready[gen_si_slot]),
.M_VALID ({ss_wr_awvalid[gen_si_slot], ss_aa_awvalid[gen_si_slot]}),
.M_READY ({ss_wr_awready[gen_si_slot], ss_aa_awready[gen_si_slot]})
);
axi_crossbar_v2_1_wdata_router # // "WR": Write data Router
(
.C_FAMILY (C_FAMILY),
.C_NUM_MASTER_SLOTS (C_NUM_MASTER_SLOTS+1),
.C_SELECT_WIDTH (P_NUM_MASTER_SLOTS_LOG+1),
.C_WMESG_WIDTH (P_WR_WMESG_WIDTH),
.C_FIFO_DEPTH_LOG (C_W_ACCEPT_WIDTH[gen_si_slot*32+:6])
)
wdata_router_w
(
.ACLK (ACLK),
.ARESET (reset),
// Write transfer input from the current SI-slot
.S_WMESG (si_wr_wmesg[gen_si_slot*P_WR_WMESG_WIDTH+:P_WR_WMESG_WIDTH]),
.S_WLAST (S_AXI_WLAST[gen_si_slot]),
.S_WVALID (S_AXI_WVALID[gen_si_slot]),
.S_WREADY (S_AXI_WREADY[gen_si_slot]),
// Vector of write transfer outputs to each MI-slot's W-mux
.M_WMESG (wr_wm_wmesg[gen_si_slot*(P_WR_WMESG_WIDTH)+:P_WR_WMESG_WIDTH]),
.M_WLAST (wr_wm_wlast[gen_si_slot]),
.M_WVALID (wr_tmp_wvalid[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.M_WREADY (wr_tmp_wready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
// AW command push from local SI-slot
.S_ASELECT (st_aa_awtarget_enc[gen_si_slot*(P_NUM_MASTER_SLOTS_LOG+1)+:(P_NUM_MASTER_SLOTS_LOG+1)]), // Target MI-slot
.S_AVALID (ss_wr_awvalid[gen_si_slot]),
.S_AREADY (ss_wr_awready[gen_si_slot])
);
assign si_wr_wmesg[gen_si_slot*P_WR_WMESG_WIDTH+:P_WR_WMESG_WIDTH] = {
((C_AXI_PROTOCOL == P_AXI3) ? f_extend_ID(S_AXI_WID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH], gen_si_slot) : 1'b0),
S_AXI_WUSER[gen_si_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH],
S_AXI_WSTRB[gen_si_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8],
S_AXI_WDATA[gen_si_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH]
};
end else begin : gen_no_si_write
assign S_AXI_AWREADY[gen_si_slot] = 1'b0;
assign ss_aa_awvalid[gen_si_slot] = 1'b0;
assign st_aa_awvalid_qual[gen_si_slot] = 1'b1;
assign tmp_aa_awmesg[gen_si_slot*P_AA_AWMESG_WIDTH+:P_AA_AWMESG_WIDTH] = 0;
assign S_AXI_BID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = 0;
assign S_AXI_BRESP[gen_si_slot*2+:2] = 0;
assign S_AXI_BUSER[gen_si_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] = 0;
assign S_AXI_BVALID[gen_si_slot] = 1'b0;
assign st_tmp_bready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)] = 0;
assign S_AXI_WREADY[gen_si_slot] = 1'b0;
assign wr_wm_wmesg[gen_si_slot*(P_WR_WMESG_WIDTH)+:P_WR_WMESG_WIDTH] = 0;
assign wr_wm_wlast[gen_si_slot] = 1'b0;
assign wr_tmp_wvalid[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)] = 0;
assign st_aa_awtarget_hot[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)] = 0;
end // gen_si_write
end // gen_slave_slots
for (gen_mi_slot=0; gen_mi_slot<C_NUM_MASTER_SLOTS+1; gen_mi_slot=gen_mi_slot+1) begin : gen_master_slots
if (P_M_AXI_SUPPORTS_READ[gen_mi_slot]) begin : gen_mi_read
if (C_NUM_SLAVE_SLOTS>1) begin : gen_rid_decoder
axi_crossbar_v2_1_addr_decoder #
(
.C_FAMILY (C_FAMILY),
.C_NUM_TARGETS (C_NUM_SLAVE_SLOTS),
.C_NUM_TARGETS_LOG (P_NUM_SLAVE_SLOTS_LOG),
.C_NUM_RANGES (1),
.C_ADDR_WIDTH (C_AXI_ID_WIDTH),
.C_TARGET_ENC (C_DEBUG),
.C_TARGET_HOT (1),
.C_REGION_ENC (0),
.C_BASE_ADDR (C_S_AXI_BASE_ID),
.C_HIGH_ADDR (C_S_AXI_HIGH_ID),
.C_TARGET_QUAL (P_M_AXI_READ_CONNECTIVITY[gen_mi_slot*32+:C_NUM_SLAVE_SLOTS]),
.C_RESOLUTION (0)
)
rid_decoder_inst
(
.ADDR (st_mr_rid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.TARGET_HOT (tmp_mr_rid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS]),
.TARGET_ENC (debug_rid_target_i[gen_mi_slot*P_NUM_SLAVE_SLOTS_LOG+:P_NUM_SLAVE_SLOTS_LOG]),
.MATCH (rid_match[gen_mi_slot]),
.REGION ()
);
end else begin : gen_no_rid_decoder
assign tmp_mr_rid_target[gen_mi_slot] = 1'b1; // All response transfers route to solo SI-slot.
assign rid_match[gen_mi_slot] = 1'b1;
end
assign st_mr_rmesg[gen_mi_slot*P_ST_RMESG_WIDTH+:P_ST_RMESG_WIDTH] = {
st_mr_rdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH],
st_mr_ruser[gen_mi_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH],
st_mr_rresp[gen_mi_slot*2+:2]
};
end else begin : gen_no_mi_read
assign tmp_mr_rid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS] = 0;
assign rid_match[gen_mi_slot] = 1'b0;
assign st_mr_rmesg[gen_mi_slot*P_ST_RMESG_WIDTH+:P_ST_RMESG_WIDTH] = 0;
end // gen_mi_read
if (P_M_AXI_SUPPORTS_WRITE[gen_mi_slot]) begin : gen_mi_write
if (C_NUM_SLAVE_SLOTS>1) begin : gen_bid_decoder
axi_crossbar_v2_1_addr_decoder #
(
.C_FAMILY (C_FAMILY),
.C_NUM_TARGETS (C_NUM_SLAVE_SLOTS),
.C_NUM_TARGETS_LOG (P_NUM_SLAVE_SLOTS_LOG),
.C_NUM_RANGES (1),
.C_ADDR_WIDTH (C_AXI_ID_WIDTH),
.C_TARGET_ENC (C_DEBUG),
.C_TARGET_HOT (1),
.C_REGION_ENC (0),
.C_BASE_ADDR (C_S_AXI_BASE_ID),
.C_HIGH_ADDR (C_S_AXI_HIGH_ID),
.C_TARGET_QUAL (P_M_AXI_WRITE_CONNECTIVITY[gen_mi_slot*32+:C_NUM_SLAVE_SLOTS]),
.C_RESOLUTION (0)
)
bid_decoder_inst
(
.ADDR (st_mr_bid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.TARGET_HOT (tmp_mr_bid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS]),
.TARGET_ENC (debug_bid_target_i[gen_mi_slot*P_NUM_SLAVE_SLOTS_LOG+:P_NUM_SLAVE_SLOTS_LOG]),
.MATCH (bid_match[gen_mi_slot]),
.REGION ()
);
end else begin : gen_no_bid_decoder
assign tmp_mr_bid_target[gen_mi_slot] = 1'b1; // All response transfers route to solo SI-slot.
assign bid_match[gen_mi_slot] = 1'b1;
end
axi_crossbar_v2_1_wdata_mux # // "WM": Write data Mux, per MI-slot (incl error-handler)
(
.C_FAMILY (C_FAMILY),
.C_NUM_SLAVE_SLOTS (C_NUM_SLAVE_SLOTS),
.C_SELECT_WIDTH (P_NUM_SLAVE_SLOTS_LOG),
.C_WMESG_WIDTH (P_WR_WMESG_WIDTH),
.C_FIFO_DEPTH_LOG (C_W_ISSUE_WIDTH[gen_mi_slot*32+:6])
)
wdata_mux_w
(
.ACLK (ACLK),
.ARESET (reset),
// Vector of write transfer inputs from each SI-slot's W-router
.S_WMESG (wr_wm_wmesg),
.S_WLAST (wr_wm_wlast),
.S_WVALID (tmp_wm_wvalid[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS]),
.S_WREADY (tmp_wm_wready[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS]),
// Write transfer output to the current MI-slot
.M_WMESG (wm_mr_wmesg[gen_mi_slot*P_WR_WMESG_WIDTH+:P_WR_WMESG_WIDTH]),
.M_WLAST (wm_mr_wlast[gen_mi_slot]),
.M_WVALID (wm_mr_wvalid[gen_mi_slot]),
.M_WREADY (wm_mr_wready[gen_mi_slot]),
// AW command push from AW arbiter output
.S_ASELECT (aa_wm_awgrant_enc), // SI-slot selected by arbiter
.S_AVALID (sa_wm_awvalid[gen_mi_slot]),
.S_AREADY (sa_wm_awready[gen_mi_slot])
);
if (C_DEBUG) begin : gen_debug_w
// DEBUG WRITE BEAT COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_w_beat_cnt_i[gen_mi_slot*8+:8] <= 0;
end else begin
if (mi_wvalid[gen_mi_slot] & mi_wready[gen_mi_slot]) begin
if (mi_wlast[gen_mi_slot]) begin
debug_w_beat_cnt_i[gen_mi_slot*8+:8] <= 0;
end else begin
debug_w_beat_cnt_i[gen_mi_slot*8+:8] <= debug_w_beat_cnt_i[gen_mi_slot*8+:8] + 1;
end
end
end
end // clocked process
// DEBUG W-CHANNEL TRANSACTION SEQUENCE QUEUE
axi_data_fifo_v2_1_axic_srl_fifo #
(
.C_FAMILY (C_FAMILY),
.C_FIFO_WIDTH (8),
.C_FIFO_DEPTH_LOG (C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]),
.C_USE_FULL (0)
)
debug_w_seq_fifo
(
.ACLK (ACLK),
.ARESET (reset),
.S_MESG (debug_aw_trans_seq_i),
.S_VALID (sa_wm_awvalid[gen_mi_slot]),
.S_READY (),
.M_MESG (debug_w_trans_seq_i[gen_mi_slot*8+:8]),
.M_VALID (),
.M_READY (mi_wvalid[gen_mi_slot] & mi_wready[gen_mi_slot] & mi_wlast[gen_mi_slot])
);
end // gen_debug_w
assign wm_mr_wdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = wm_mr_wmesg[gen_mi_slot*P_WR_WMESG_WIDTH +: C_AXI_DATA_WIDTH];
assign wm_mr_wstrb[gen_mi_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8] = wm_mr_wmesg[gen_mi_slot*P_WR_WMESG_WIDTH+C_AXI_DATA_WIDTH +: C_AXI_DATA_WIDTH/8];
assign wm_mr_wuser[gen_mi_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH] = wm_mr_wmesg[gen_mi_slot*P_WR_WMESG_WIDTH+C_AXI_DATA_WIDTH+C_AXI_DATA_WIDTH/8 +: C_AXI_WUSER_WIDTH];
assign wm_mr_wid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = wm_mr_wmesg[gen_mi_slot*P_WR_WMESG_WIDTH+C_AXI_DATA_WIDTH+(C_AXI_DATA_WIDTH/8)+C_AXI_WUSER_WIDTH +: P_AXI_WID_WIDTH];
assign st_mr_bmesg[gen_mi_slot*P_ST_BMESG_WIDTH+:P_ST_BMESG_WIDTH] = {
st_mr_buser[gen_mi_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH],
st_mr_bresp[gen_mi_slot*2+:2]
};
end else begin : gen_no_mi_write
assign tmp_mr_bid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS] = 0;
assign bid_match[gen_mi_slot] = 1'b0;
assign wm_mr_wvalid[gen_mi_slot] = 0;
assign wm_mr_wlast[gen_mi_slot] = 0;
assign wm_mr_wdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = 0;
assign wm_mr_wstrb[gen_mi_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8] = 0;
assign wm_mr_wuser[gen_mi_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH] = 0;
assign wm_mr_wid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = 0;
assign st_mr_bmesg[gen_mi_slot*P_ST_BMESG_WIDTH+:P_ST_BMESG_WIDTH] = 0;
assign tmp_wm_wready[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS] = 0;
assign sa_wm_awready[gen_mi_slot] = 0;
end // gen_mi_write
for (gen_si_slot=0; gen_si_slot<C_NUM_SLAVE_SLOTS; gen_si_slot=gen_si_slot+1) begin : gen_trans_si
// Transpose handshakes from W-router (SxM) to W-mux (MxS).
assign tmp_wm_wvalid[gen_mi_slot*C_NUM_SLAVE_SLOTS+gen_si_slot] = wr_tmp_wvalid[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot];
assign wr_tmp_wready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] = tmp_wm_wready[gen_mi_slot*C_NUM_SLAVE_SLOTS+gen_si_slot];
// Transpose response enables from ID decoders (MxS) to si_transactors (SxM).
assign st_tmp_bid_target[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] = tmp_mr_bid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+gen_si_slot];
assign st_tmp_rid_target[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] = tmp_mr_rid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+gen_si_slot];
end // gen_trans_si
assign bready_carry[gen_mi_slot] = st_tmp_bready[gen_mi_slot];
assign rready_carry[gen_mi_slot] = st_tmp_rready[gen_mi_slot];
for (gen_si_slot=1; gen_si_slot<C_NUM_SLAVE_SLOTS; gen_si_slot=gen_si_slot+1) begin : gen_resp_carry_si
assign bready_carry[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] = // Generate M_BREADY if ...
bready_carry[(gen_si_slot-1)*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] | // For any SI-slot (OR carry-chain across all SI-slots), ...
st_tmp_bready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot]; // The write SI transactor indicates BREADY for that MI-slot.
assign rready_carry[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] = // Generate M_RREADY if ...
rready_carry[(gen_si_slot-1)*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] | // For any SI-slot (OR carry-chain across all SI-slots), ...
st_tmp_rready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot]; // The write SI transactor indicates RREADY for that MI-slot.
end // gen_resp_carry_si
assign w_cmd_push[gen_mi_slot] = mi_awvalid[gen_mi_slot] && mi_awready[gen_mi_slot] && P_M_AXI_SUPPORTS_WRITE[gen_mi_slot];
assign r_cmd_push[gen_mi_slot] = mi_arvalid[gen_mi_slot] && mi_arready[gen_mi_slot] && P_M_AXI_SUPPORTS_READ[gen_mi_slot];
assign w_cmd_pop[gen_mi_slot] = st_mr_bvalid[gen_mi_slot] && st_mr_bready[gen_mi_slot] && P_M_AXI_SUPPORTS_WRITE[gen_mi_slot];
assign r_cmd_pop[gen_mi_slot] = st_mr_rvalid[gen_mi_slot] && st_mr_rready[gen_mi_slot] && st_mr_rlast[gen_mi_slot] && P_M_AXI_SUPPORTS_READ[gen_mi_slot];
// Disqualify arbitration of SI-slot if targeted MI-slot has reached its issuing limit.
assign mi_awmaxissuing[gen_mi_slot] = (w_issuing_cnt[gen_mi_slot*8 +: (C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] ==
P_M_AXI_WRITE_ISSUING[gen_mi_slot*32 +: (C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)]) & ~w_cmd_pop[gen_mi_slot];
assign mi_armaxissuing[gen_mi_slot] = (r_issuing_cnt[gen_mi_slot*8 +: (C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] ==
P_M_AXI_READ_ISSUING[gen_mi_slot*32 +: (C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)]) & ~r_cmd_pop[gen_mi_slot];
always @(posedge ACLK) begin
if (reset) begin
w_issuing_cnt[gen_mi_slot*8+:8] <= 0; // Some high-order bits remain constant 0
r_issuing_cnt[gen_mi_slot*8+:8] <= 0; // Some high-order bits remain constant 0
end else begin
if (w_cmd_push[gen_mi_slot] && ~w_cmd_pop[gen_mi_slot]) begin
w_issuing_cnt[gen_mi_slot*8+:(C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] <= w_issuing_cnt[gen_mi_slot*8+:(C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] + 1;
end else if (w_cmd_pop[gen_mi_slot] && ~w_cmd_push[gen_mi_slot] && (|w_issuing_cnt[gen_mi_slot*8+:(C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)])) begin
w_issuing_cnt[gen_mi_slot*8+:(C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] <= w_issuing_cnt[gen_mi_slot*8+:(C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] - 1;
end
if (r_cmd_push[gen_mi_slot] && ~r_cmd_pop[gen_mi_slot]) begin
r_issuing_cnt[gen_mi_slot*8+:(C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] <= r_issuing_cnt[gen_mi_slot*8+:(C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] + 1;
end else if (r_cmd_pop[gen_mi_slot] && ~r_cmd_push[gen_mi_slot] && (|r_issuing_cnt[gen_mi_slot*8+:(C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)])) begin
r_issuing_cnt[gen_mi_slot*8+:(C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] <= r_issuing_cnt[gen_mi_slot*8+:(C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] - 1;
end
end
end // Clocked process
// Reg-slice must break combinatorial path from M_BID and M_RID inputs to M_BREADY and M_RREADY outputs.
// (See m_rready_i and m_resp_en combinatorial assignments in si_transactor.)
// Reg-slice incurs +1 latency, but no bubble-cycles.
axi_register_slice_v2_1_axi_register_slice # // "MR": MI-side R/B-channel Reg-slice, per MI-slot (pass-through if only 1 SI-slot configured)
(
.C_FAMILY (C_FAMILY),
.C_AXI_PROTOCOL ((C_AXI_PROTOCOL == P_AXI3) ? P_AXI3 : P_AXI4),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_ADDR_WIDTH (1),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS),
.C_AXI_AWUSER_WIDTH (1),
.C_AXI_ARUSER_WIDTH (1),
.C_AXI_WUSER_WIDTH (C_AXI_WUSER_WIDTH),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_REG_CONFIG_AW (P_BYPASS),
.C_REG_CONFIG_AR (P_BYPASS),
.C_REG_CONFIG_W (P_BYPASS),
.C_REG_CONFIG_R (P_M_AXI_SUPPORTS_READ[gen_mi_slot] ? P_FWD_REV : P_BYPASS),
.C_REG_CONFIG_B (P_M_AXI_SUPPORTS_WRITE[gen_mi_slot] ? P_SIMPLE : P_BYPASS)
)
reg_slice_mi
(
.aresetn (ARESETN),
.aclk (ACLK),
.s_axi_awid ({C_AXI_ID_WIDTH{1'b0}}),
.s_axi_awaddr ({1{1'b0}}),
.s_axi_awlen ({((C_AXI_PROTOCOL == P_AXI3) ? 4 : 8){1'b0}}),
.s_axi_awsize ({3{1'b0}}),
.s_axi_awburst ({2{1'b0}}),
.s_axi_awlock ({((C_AXI_PROTOCOL == P_AXI3) ? 2 : 1){1'b0}}),
.s_axi_awcache ({4{1'b0}}),
.s_axi_awprot ({3{1'b0}}),
.s_axi_awregion ({4{1'b0}}),
.s_axi_awqos ({4{1'b0}}),
.s_axi_awuser ({1{1'b0}}),
.s_axi_awvalid ({1{1'b0}}),
.s_axi_awready (),
.s_axi_wid (wm_mr_wid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.s_axi_wdata (wm_mr_wdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH]),
.s_axi_wstrb (wm_mr_wstrb[gen_mi_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8]),
.s_axi_wlast (wm_mr_wlast[gen_mi_slot]),
.s_axi_wuser (wm_mr_wuser[gen_mi_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH]),
.s_axi_wvalid (wm_mr_wvalid[gen_mi_slot]),
.s_axi_wready (wm_mr_wready[gen_mi_slot]),
.s_axi_bid (st_mr_bid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] ),
.s_axi_bresp (st_mr_bresp[gen_mi_slot*2+:2] ),
.s_axi_buser (st_mr_buser[gen_mi_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] ),
.s_axi_bvalid (st_mr_bvalid[gen_mi_slot*1+:1] ),
.s_axi_bready (st_mr_bready[gen_mi_slot*1+:1] ),
.s_axi_arid ({C_AXI_ID_WIDTH{1'b0}}),
.s_axi_araddr ({1{1'b0}}),
.s_axi_arlen ({((C_AXI_PROTOCOL == P_AXI3) ? 4 : 8){1'b0}}),
.s_axi_arsize ({3{1'b0}}),
.s_axi_arburst ({2{1'b0}}),
.s_axi_arlock ({((C_AXI_PROTOCOL == P_AXI3) ? 2 : 1){1'b0}}),
.s_axi_arcache ({4{1'b0}}),
.s_axi_arprot ({3{1'b0}}),
.s_axi_arregion ({4{1'b0}}),
.s_axi_arqos ({4{1'b0}}),
.s_axi_aruser ({1{1'b0}}),
.s_axi_arvalid ({1{1'b0}}),
.s_axi_arready (),
.s_axi_rid (st_mr_rid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] ),
.s_axi_rdata (st_mr_rdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] ),
.s_axi_rresp (st_mr_rresp[gen_mi_slot*2+:2] ),
.s_axi_rlast (st_mr_rlast[gen_mi_slot*1+:1] ),
.s_axi_ruser (st_mr_ruser[gen_mi_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] ),
.s_axi_rvalid (st_mr_rvalid[gen_mi_slot*1+:1] ),
.s_axi_rready (st_mr_rready[gen_mi_slot*1+:1] ),
.m_axi_awid (),
.m_axi_awaddr (),
.m_axi_awlen (),
.m_axi_awsize (),
.m_axi_awburst (),
.m_axi_awlock (),
.m_axi_awcache (),
.m_axi_awprot (),
.m_axi_awregion (),
.m_axi_awqos (),
.m_axi_awuser (),
.m_axi_awvalid (),
.m_axi_awready ({1{1'b0}}),
.m_axi_wid (mi_wid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.m_axi_wdata (mi_wdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH]),
.m_axi_wstrb (mi_wstrb[gen_mi_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8]),
.m_axi_wlast (mi_wlast[gen_mi_slot]),
.m_axi_wuser (mi_wuser[gen_mi_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH]),
.m_axi_wvalid (mi_wvalid[gen_mi_slot]),
.m_axi_wready (mi_wready[gen_mi_slot]),
.m_axi_bid (mi_bid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] ),
.m_axi_bresp (mi_bresp[gen_mi_slot*2+:2] ),
.m_axi_buser (mi_buser[gen_mi_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] ),
.m_axi_bvalid (mi_bvalid[gen_mi_slot*1+:1] ),
.m_axi_bready (mi_bready[gen_mi_slot*1+:1] ),
.m_axi_arid (),
.m_axi_araddr (),
.m_axi_arlen (),
.m_axi_arsize (),
.m_axi_arburst (),
.m_axi_arlock (),
.m_axi_arcache (),
.m_axi_arprot (),
.m_axi_arregion (),
.m_axi_arqos (),
.m_axi_aruser (),
.m_axi_arvalid (),
.m_axi_arready ({1{1'b0}}),
.m_axi_rid (mi_rid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] ),
.m_axi_rdata (mi_rdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] ),
.m_axi_rresp (mi_rresp[gen_mi_slot*2+:2] ),
.m_axi_rlast (mi_rlast[gen_mi_slot*1+:1] ),
.m_axi_ruser (mi_ruser[gen_mi_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] ),
.m_axi_rvalid (mi_rvalid[gen_mi_slot*1+:1] ),
.m_axi_rready (mi_rready[gen_mi_slot*1+:1] )
);
end // gen_master_slots (Next gen_mi_slot)
// Highest row of *ready_carry contains accumulated OR across all SI-slots, for each MI-slot.
assign st_mr_bready = bready_carry[(C_NUM_SLAVE_SLOTS-1)*(C_NUM_MASTER_SLOTS+1) +: C_NUM_MASTER_SLOTS+1];
assign st_mr_rready = rready_carry[(C_NUM_SLAVE_SLOTS-1)*(C_NUM_MASTER_SLOTS+1) +: C_NUM_MASTER_SLOTS+1];
// Assign MI-side B, R and W channel ports (exclude error handler signals).
assign mi_bid[0+:C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH] = M_AXI_BID;
assign mi_bvalid[0+:C_NUM_MASTER_SLOTS] = M_AXI_BVALID;
assign mi_bresp[0+:C_NUM_MASTER_SLOTS*2] = M_AXI_BRESP;
assign mi_buser[0+:C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH] = M_AXI_BUSER;
assign M_AXI_BREADY = mi_bready[0+:C_NUM_MASTER_SLOTS];
assign mi_rid[0+:C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH] = M_AXI_RID;
assign mi_rlast[0+:C_NUM_MASTER_SLOTS] = M_AXI_RLAST;
assign mi_rvalid[0+:C_NUM_MASTER_SLOTS] = M_AXI_RVALID;
assign mi_rresp[0+:C_NUM_MASTER_SLOTS*2] = M_AXI_RRESP;
assign mi_ruser[0+:C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH] = M_AXI_RUSER;
assign mi_rdata[0+:C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH] = M_AXI_RDATA;
assign M_AXI_RREADY = mi_rready[0+:C_NUM_MASTER_SLOTS];
assign M_AXI_WLAST = mi_wlast[0+:C_NUM_MASTER_SLOTS];
assign M_AXI_WVALID = mi_wvalid[0+:C_NUM_MASTER_SLOTS];
assign M_AXI_WUSER = mi_wuser[0+:C_NUM_MASTER_SLOTS*C_AXI_WUSER_WIDTH];
assign M_AXI_WID = (C_AXI_PROTOCOL == P_AXI3) ? mi_wid[0+:C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH] : 0;
assign M_AXI_WDATA = mi_wdata[0+:C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH];
assign M_AXI_WSTRB = mi_wstrb[0+:C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH/8];
assign mi_wready[0+:C_NUM_MASTER_SLOTS] = M_AXI_WREADY;
axi_crossbar_v2_1_addr_arbiter # // "AA": Addr Arbiter (AW channel)
(
.C_FAMILY (C_FAMILY),
.C_NUM_M (C_NUM_MASTER_SLOTS+1),
.C_NUM_S (C_NUM_SLAVE_SLOTS),
.C_NUM_S_LOG (P_NUM_SLAVE_SLOTS_LOG),
.C_MESG_WIDTH (P_AA_AWMESG_WIDTH),
.C_ARB_PRIORITY (C_S_AXI_ARB_PRIORITY)
)
addr_arbiter_aw
(
.ACLK (ACLK),
.ARESET (reset),
// Vector of SI-side AW command request inputs
.S_MESG (tmp_aa_awmesg),
.S_TARGET_HOT (st_aa_awtarget_hot),
.S_VALID (ss_aa_awvalid),
.S_VALID_QUAL (st_aa_awvalid_qual),
.S_READY (ss_aa_awready),
// Granted AW command output
.M_MESG (aa_mi_awmesg),
.M_TARGET_HOT (aa_mi_awtarget_hot), // MI-slot targeted by granted command
.M_GRANT_ENC (aa_wm_awgrant_enc), // SI-slot index of granted command
.M_VALID (aa_sa_awvalid),
.M_READY (aa_sa_awready),
.ISSUING_LIMIT (mi_awmaxissuing)
);
// Broadcast AW transfer payload to all MI-slots
assign M_AXI_AWID = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[0+:C_AXI_ID_WIDTH]}};
assign M_AXI_AWADDR = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+:C_AXI_ADDR_WIDTH]}};
assign M_AXI_AWLEN = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH +:8]}};
assign M_AXI_AWSIZE = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8 +:3]}};
assign M_AXI_AWLOCK = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3 +:2]}};
assign M_AXI_AWPROT = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2 +:3]}};
assign M_AXI_AWREGION = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3 +:4]}};
assign M_AXI_AWBURST = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4 +:2]}};
assign M_AXI_AWCACHE = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2 +:4]}};
assign M_AXI_AWQOS = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2+4 +:4]}};
assign M_AXI_AWUSER = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2+4+4 +:C_AXI_AWUSER_WIDTH]}};
axi_crossbar_v2_1_addr_arbiter # // "AA": Addr Arbiter (AR channel)
(
.C_FAMILY (C_FAMILY),
.C_NUM_M (C_NUM_MASTER_SLOTS+1),
.C_NUM_S (C_NUM_SLAVE_SLOTS),
.C_NUM_S_LOG (P_NUM_SLAVE_SLOTS_LOG),
.C_MESG_WIDTH (P_AA_ARMESG_WIDTH),
.C_ARB_PRIORITY (C_S_AXI_ARB_PRIORITY)
)
addr_arbiter_ar
(
.ACLK (ACLK),
.ARESET (reset),
// Vector of SI-side AR command request inputs
.S_MESG (tmp_aa_armesg),
.S_TARGET_HOT (st_aa_artarget_hot),
.S_VALID_QUAL (st_aa_arvalid_qual),
.S_VALID (st_aa_arvalid),
.S_READY (st_aa_arready),
// Granted AR command output
.M_MESG (aa_mi_armesg),
.M_TARGET_HOT (aa_mi_artarget_hot), // MI-slot targeted by granted command
.M_GRANT_ENC (aa_mi_argrant_enc),
.M_VALID (aa_mi_arvalid), // SI-slot index of granted command
.M_READY (aa_mi_arready),
.ISSUING_LIMIT (mi_armaxissuing)
);
if (C_DEBUG) begin : gen_debug_trans_seq
// DEBUG WRITE TRANSACTION SEQUENCE COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_aw_trans_seq_i <= 1;
end else begin
if (aa_sa_awvalid && aa_sa_awready) begin
debug_aw_trans_seq_i <= debug_aw_trans_seq_i + 1;
end
end
end
// DEBUG READ TRANSACTION SEQUENCE COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_ar_trans_seq_i <= 1;
end else begin
if (aa_mi_arvalid && aa_mi_arready) begin
debug_ar_trans_seq_i <= debug_ar_trans_seq_i + 1;
end
end
end
end // gen_debug_trans_seq
// Broadcast AR transfer payload to all MI-slots
assign M_AXI_ARID = {C_NUM_MASTER_SLOTS{aa_mi_armesg[0+:C_AXI_ID_WIDTH]}};
assign M_AXI_ARADDR = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+:C_AXI_ADDR_WIDTH]}};
assign M_AXI_ARLEN = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH +:8]}};
assign M_AXI_ARSIZE = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8 +:3]}};
assign M_AXI_ARLOCK = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3 +:2]}};
assign M_AXI_ARPROT = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2 +:3]}};
assign M_AXI_ARREGION = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3 +:4]}};
assign M_AXI_ARBURST = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4 +:2]}};
assign M_AXI_ARCACHE = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2 +:4]}};
assign M_AXI_ARQOS = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2+4 +:4]}};
assign M_AXI_ARUSER = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2+4+4 +:C_AXI_ARUSER_WIDTH]}};
// AW arbiter command transfer completes upon completion of both M-side AW-channel transfer and W-mux address acceptance (command push).
axi_crossbar_v2_1_splitter # // "SA": Splitter for Write Addr Arbiter
(
.C_NUM_M (2)
)
splitter_aw_mi
(
.ACLK (ACLK),
.ARESET (reset),
.S_VALID (aa_sa_awvalid),
.S_READY (aa_sa_awready),
.M_VALID ({mi_awvalid_en, sa_wm_awvalid_en}),
.M_READY ({mi_awready_mux, sa_wm_awready_mux})
);
assign mi_awvalid = aa_mi_awtarget_hot & {C_NUM_MASTER_SLOTS+1{mi_awvalid_en}};
assign mi_awready_mux = |(aa_mi_awtarget_hot & mi_awready);
assign M_AXI_AWVALID = mi_awvalid[0+:C_NUM_MASTER_SLOTS]; // Slot C_NUM_MASTER_SLOTS+1 is the error handler
assign mi_awready[0+:C_NUM_MASTER_SLOTS] = M_AXI_AWREADY;
assign sa_wm_awvalid = aa_mi_awtarget_hot & {C_NUM_MASTER_SLOTS+1{sa_wm_awvalid_en}};
assign sa_wm_awready_mux = |(aa_mi_awtarget_hot & sa_wm_awready);
assign mi_arvalid = aa_mi_artarget_hot & {C_NUM_MASTER_SLOTS+1{aa_mi_arvalid}};
assign aa_mi_arready = |(aa_mi_artarget_hot & mi_arready);
assign M_AXI_ARVALID = mi_arvalid[0+:C_NUM_MASTER_SLOTS]; // Slot C_NUM_MASTER_SLOTS+1 is the error handler
assign mi_arready[0+:C_NUM_MASTER_SLOTS] = M_AXI_ARREADY;
// MI-slot # C_NUM_MASTER_SLOTS is the error handler
if (C_RANGE_CHECK) begin : gen_decerr_slave
axi_crossbar_v2_1_decerr_slave #
(
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_AXI_PROTOCOL (C_AXI_PROTOCOL),
.C_RESP (P_DECERR)
)
decerr_slave_inst
(
.S_AXI_ACLK (ACLK),
.S_AXI_ARESET (reset),
.S_AXI_AWID (aa_mi_awmesg[0+:C_AXI_ID_WIDTH]),
.S_AXI_AWVALID (mi_awvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_AWREADY (mi_awready[C_NUM_MASTER_SLOTS]),
.S_AXI_WLAST (mi_wlast[C_NUM_MASTER_SLOTS]),
.S_AXI_WVALID (mi_wvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_WREADY (mi_wready[C_NUM_MASTER_SLOTS]),
.S_AXI_BID (mi_bid[C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.S_AXI_BRESP (mi_bresp[C_NUM_MASTER_SLOTS*2+:2]),
.S_AXI_BUSER (mi_buser[C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH]),
.S_AXI_BVALID (mi_bvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_BREADY (mi_bready[C_NUM_MASTER_SLOTS]),
.S_AXI_ARID (aa_mi_armesg[0+:C_AXI_ID_WIDTH]),
.S_AXI_ARLEN (aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH +:8]),
.S_AXI_ARVALID (mi_arvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_ARREADY (mi_arready[C_NUM_MASTER_SLOTS]),
.S_AXI_RID (mi_rid[C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.S_AXI_RDATA (mi_rdata[C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH]),
.S_AXI_RRESP (mi_rresp[C_NUM_MASTER_SLOTS*2+:2]),
.S_AXI_RUSER (mi_ruser[C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH]),
.S_AXI_RLAST (mi_rlast[C_NUM_MASTER_SLOTS]),
.S_AXI_RVALID (mi_rvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_RREADY (mi_rready[C_NUM_MASTER_SLOTS])
);
end else begin : gen_no_decerr_slave
assign mi_awready[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_wready[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_arready[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_awready[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_awready[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_bid[C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = 0;
assign mi_bresp[C_NUM_MASTER_SLOTS*2+:2] = 0;
assign mi_buser[C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] = 0;
assign mi_bvalid[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_rid[C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = 0;
assign mi_rdata[C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = 0;
assign mi_rresp[C_NUM_MASTER_SLOTS*2+:2] = 0;
assign mi_ruser[C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] = 0;
assign mi_rlast[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_rvalid[C_NUM_MASTER_SLOTS] = 1'b0;
end // gen_decerr_slave
endgenerate
endmodule
`default_nettype wire
|
// -- (c) Copyright 2009 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// File name: crossbar.v
//
// Description:
// This module is a M-master to N-slave AXI axi_crossbar_v2_1_crossbar switch.
// The interface of this module consists of a vectored slave and master interface
// in which all slots are sized and synchronized to the native width and clock
// of the interconnect.
// The SAMD axi_crossbar_v2_1_crossbar supports only AXI4 and AXI3 protocols.
// All width, clock and protocol conversions are done outside this block, as are
// any pipeline registers or data FIFOs.
// This module contains all arbitration, decoders and channel multiplexing logic.
// It also contains the diagnostic registers and control interface.
//
//-----------------------------------------------------------------------------
//
// Structure:
// crossbar
// si_transactor
// addr_decoder
// comparator_static
// mux_enc
// axic_srl_fifo
// arbiter_resp
// splitter
// wdata_router
// axic_reg_srl_fifo
// wdata_mux
// axic_reg_srl_fifo
// mux_enc
// addr_decoder
// comparator_static
// axic_srl_fifo
// axi_register_slice
// addr_arbiter
// mux_enc
// decerr_slave
//
//-----------------------------------------------------------------------------
`timescale 1ps/1ps
`default_nettype none
(* DowngradeIPIdentifiedWarnings="yes" *)
module axi_crossbar_v2_1_crossbar #
(
parameter C_FAMILY = "none",
parameter integer C_NUM_SLAVE_SLOTS = 1,
parameter integer C_NUM_MASTER_SLOTS = 1,
parameter integer C_NUM_ADDR_RANGES = 1,
parameter integer C_AXI_ID_WIDTH = 1,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_PROTOCOL = 0,
parameter [C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64-1:0] C_M_AXI_BASE_ADDR = {C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64{1'b1}},
parameter [C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64-1:0] C_M_AXI_HIGH_ADDR = {C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64{1'b0}},
parameter [C_NUM_SLAVE_SLOTS*64-1:0] C_S_AXI_BASE_ID = {C_NUM_SLAVE_SLOTS*64{1'b0}},
parameter [C_NUM_SLAVE_SLOTS*64-1:0] C_S_AXI_HIGH_ID = {C_NUM_SLAVE_SLOTS*64{1'b0}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_THREAD_ID_WIDTH = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_AWUSER_WIDTH = 1,
parameter integer C_AXI_ARUSER_WIDTH = 1,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter [C_NUM_SLAVE_SLOTS-1:0] C_S_AXI_SUPPORTS_WRITE = {C_NUM_SLAVE_SLOTS{1'b1}},
parameter [C_NUM_SLAVE_SLOTS-1:0] C_S_AXI_SUPPORTS_READ = {C_NUM_SLAVE_SLOTS{1'b1}},
parameter [C_NUM_MASTER_SLOTS-1:0] C_M_AXI_SUPPORTS_WRITE = {C_NUM_MASTER_SLOTS{1'b1}},
parameter [C_NUM_MASTER_SLOTS-1:0] C_M_AXI_SUPPORTS_READ = {C_NUM_MASTER_SLOTS{1'b1}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_WRITE_CONNECTIVITY = {C_NUM_MASTER_SLOTS*32{1'b1}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_READ_CONNECTIVITY = {C_NUM_MASTER_SLOTS*32{1'b1}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_SINGLE_THREAD = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_WRITE_ACCEPTANCE = {C_NUM_SLAVE_SLOTS{32'h00000001}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_READ_ACCEPTANCE = {C_NUM_SLAVE_SLOTS{32'h00000001}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_WRITE_ISSUING = {C_NUM_MASTER_SLOTS{32'h00000001}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_READ_ISSUING = {C_NUM_MASTER_SLOTS{32'h00000001}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_ARB_PRIORITY = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_SECURE = {C_NUM_MASTER_SLOTS{32'h00000000}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_ERR_MODE = {C_NUM_MASTER_SLOTS{32'h00000000}},
parameter integer C_RANGE_CHECK = 0,
parameter integer C_ADDR_DECODE = 0,
parameter [(C_NUM_MASTER_SLOTS+1)*32-1:0] C_W_ISSUE_WIDTH = {C_NUM_MASTER_SLOTS+1{32'h00000000}},
parameter [(C_NUM_MASTER_SLOTS+1)*32-1:0] C_R_ISSUE_WIDTH = {C_NUM_MASTER_SLOTS+1{32'h00000000}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_W_ACCEPT_WIDTH = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_R_ACCEPT_WIDTH = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter integer C_DEBUG = 1
)
(
// Global Signals
input wire ACLK,
input wire ARESETN,
// Slave Interface Write Address Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_AWID,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR,
input wire [C_NUM_SLAVE_SLOTS*8-1:0] S_AXI_AWLEN,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_AWSIZE,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_AWBURST,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_AWLOCK,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_AWCACHE,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_AWPROT,
// input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_AWREGION,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_AWQOS,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_AWVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_AWREADY,
// Slave Interface Write Data Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_WID,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_WLAST,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_WVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_WREADY,
// Slave Interface Write Response Ports
output wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_BID,
output wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_BRESP,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_BVALID,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_BREADY,
// Slave Interface Read Address Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_ARID,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR,
input wire [C_NUM_SLAVE_SLOTS*8-1:0] S_AXI_ARLEN,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_ARSIZE,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_ARBURST,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_ARLOCK,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_ARCACHE,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_ARPROT,
// input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_ARREGION,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_ARQOS,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_ARVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_ARREADY,
// Slave Interface Read Data Ports
output wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_RID,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA,
output wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_RRESP,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_RLAST,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_RVALID,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_RREADY,
// Master Interface Write Address Port
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_AWID,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR,
output wire [C_NUM_MASTER_SLOTS*8-1:0] M_AXI_AWLEN,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_AWSIZE,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_AWBURST,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_AWLOCK,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_AWCACHE,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_AWPROT,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_AWREGION,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_AWQOS,
output wire [C_NUM_MASTER_SLOTS*C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_AWVALID,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_AWREADY,
// Master Interface Write Data Ports
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_WID,
output wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA,
output wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_WLAST,
output wire [C_NUM_MASTER_SLOTS*C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_WVALID,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_WREADY,
// Master Interface Write Response Ports
input wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_BID,
input wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_BRESP,
input wire [C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_BVALID,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_BREADY,
// Master Interface Read Address Port
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_ARID,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR,
output wire [C_NUM_MASTER_SLOTS*8-1:0] M_AXI_ARLEN,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_ARSIZE,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_ARBURST,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_ARLOCK,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_ARCACHE,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_ARPROT,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_ARREGION,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_ARQOS,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_ARVALID,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_ARREADY,
// Master Interface Read Data Ports
input wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_RID,
input wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA,
input wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_RRESP,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_RLAST,
input wire [C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_RVALID,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_RREADY
);
localparam integer P_AXI4 = 0;
localparam integer P_AXI3 = 1;
localparam integer P_AXILITE = 2;
localparam integer P_WRITE = 0;
localparam integer P_READ = 1;
localparam integer P_NUM_MASTER_SLOTS_LOG = f_ceil_log2(C_NUM_MASTER_SLOTS);
localparam integer P_NUM_SLAVE_SLOTS_LOG = f_ceil_log2((C_NUM_SLAVE_SLOTS>1) ? C_NUM_SLAVE_SLOTS : 2);
localparam integer P_AXI_WID_WIDTH = (C_AXI_PROTOCOL == P_AXI3) ? C_AXI_ID_WIDTH : 1;
localparam integer P_ST_AWMESG_WIDTH = 2+4+4 + C_AXI_AWUSER_WIDTH;
localparam integer P_AA_AWMESG_WIDTH = C_AXI_ID_WIDTH + C_AXI_ADDR_WIDTH + 8+3+2+3+4 + P_ST_AWMESG_WIDTH;
localparam integer P_ST_ARMESG_WIDTH = 2+4+4 + C_AXI_ARUSER_WIDTH;
localparam integer P_AA_ARMESG_WIDTH = C_AXI_ID_WIDTH + C_AXI_ADDR_WIDTH + 8+3+2+3+4 + P_ST_ARMESG_WIDTH;
localparam integer P_ST_BMESG_WIDTH = 2 + C_AXI_BUSER_WIDTH;
localparam integer P_ST_RMESG_WIDTH = 2 + C_AXI_RUSER_WIDTH + C_AXI_DATA_WIDTH;
localparam integer P_WR_WMESG_WIDTH = C_AXI_DATA_WIDTH + C_AXI_DATA_WIDTH/8 + C_AXI_WUSER_WIDTH + P_AXI_WID_WIDTH;
localparam [31:0] P_BYPASS = 32'h00000000;
localparam [31:0] P_FWD_REV = 32'h00000001;
localparam [31:0] P_SIMPLE = 32'h00000007;
localparam [(C_NUM_MASTER_SLOTS+1)-1:0] P_M_AXI_SUPPORTS_READ = {1'b1, C_M_AXI_SUPPORTS_READ[0+:C_NUM_MASTER_SLOTS]};
localparam [(C_NUM_MASTER_SLOTS+1)-1:0] P_M_AXI_SUPPORTS_WRITE = {1'b1, C_M_AXI_SUPPORTS_WRITE[0+:C_NUM_MASTER_SLOTS]};
localparam [(C_NUM_MASTER_SLOTS+1)*32-1:0] P_M_AXI_WRITE_CONNECTIVITY = {{32{1'b1}}, C_M_AXI_WRITE_CONNECTIVITY[0+:C_NUM_MASTER_SLOTS*32]};
localparam [(C_NUM_MASTER_SLOTS+1)*32-1:0] P_M_AXI_READ_CONNECTIVITY = {{32{1'b1}}, C_M_AXI_READ_CONNECTIVITY[0+:C_NUM_MASTER_SLOTS*32]};
localparam [C_NUM_SLAVE_SLOTS*32-1:0] P_S_AXI_WRITE_CONNECTIVITY = f_si_write_connectivity(0);
localparam [C_NUM_SLAVE_SLOTS*32-1:0] P_S_AXI_READ_CONNECTIVITY = f_si_read_connectivity(0);
localparam [(C_NUM_MASTER_SLOTS+1)*32-1:0] P_M_AXI_READ_ISSUING = {32'h00000001, C_M_AXI_READ_ISSUING[0+:C_NUM_MASTER_SLOTS*32]};
localparam [(C_NUM_MASTER_SLOTS+1)*32-1:0] P_M_AXI_WRITE_ISSUING = {32'h00000001, C_M_AXI_WRITE_ISSUING[0+:C_NUM_MASTER_SLOTS*32]};
localparam P_DECERR = 2'b11;
//---------------------------------------------------------------------------
// Functions
//---------------------------------------------------------------------------
// Ceiling of log2(x)
function integer f_ceil_log2
(
input integer x
);
integer acc;
begin
acc=0;
while ((2**acc) < x)
acc = acc + 1;
f_ceil_log2 = acc;
end
endfunction
// Isolate thread bits of input S_ID and add to BASE_ID (RNG00) to form MI-side ID value
// only for end-point SI-slots
function [C_AXI_ID_WIDTH-1:0] f_extend_ID
(
input [C_AXI_ID_WIDTH-1:0] s_id,
input integer slot
);
begin
f_extend_ID = C_S_AXI_BASE_ID[slot*64+:C_AXI_ID_WIDTH] | (s_id & (C_S_AXI_BASE_ID[slot*64+:C_AXI_ID_WIDTH] ^ C_S_AXI_HIGH_ID[slot*64+:C_AXI_ID_WIDTH]));
end
endfunction
// Write connectivity array transposed
function [C_NUM_SLAVE_SLOTS*32-1:0] f_si_write_connectivity
(
input integer null_arg
);
integer si_slot;
integer mi_slot;
reg [C_NUM_SLAVE_SLOTS*32-1:0] result;
begin
result = {C_NUM_SLAVE_SLOTS*32{1'b1}};
for (si_slot=0; si_slot<C_NUM_SLAVE_SLOTS; si_slot=si_slot+1) begin
for (mi_slot=0; mi_slot<C_NUM_MASTER_SLOTS; mi_slot=mi_slot+1) begin
result[si_slot*32+mi_slot] = C_M_AXI_WRITE_CONNECTIVITY[mi_slot*32+si_slot];
end
end
f_si_write_connectivity = result;
end
endfunction
// Read connectivity array transposed
function [C_NUM_SLAVE_SLOTS*32-1:0] f_si_read_connectivity
(
input integer null_arg
);
integer si_slot;
integer mi_slot;
reg [C_NUM_SLAVE_SLOTS*32-1:0] result;
begin
result = {C_NUM_SLAVE_SLOTS*32{1'b1}};
for (si_slot=0; si_slot<C_NUM_SLAVE_SLOTS; si_slot=si_slot+1) begin
for (mi_slot=0; mi_slot<C_NUM_MASTER_SLOTS; mi_slot=mi_slot+1) begin
result[si_slot*32+mi_slot] = C_M_AXI_READ_CONNECTIVITY[mi_slot*32+si_slot];
end
end
f_si_read_connectivity = result;
end
endfunction
genvar gen_si_slot;
genvar gen_mi_slot;
wire [C_NUM_SLAVE_SLOTS*P_ST_AWMESG_WIDTH-1:0] si_st_awmesg ;
wire [C_NUM_SLAVE_SLOTS*P_ST_AWMESG_WIDTH-1:0] st_tmp_awmesg ;
wire [C_NUM_SLAVE_SLOTS*P_AA_AWMESG_WIDTH-1:0] tmp_aa_awmesg ;
wire [P_AA_AWMESG_WIDTH-1:0] aa_mi_awmesg ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] st_aa_awid ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] st_aa_awaddr ;
wire [C_NUM_SLAVE_SLOTS*8-1:0] st_aa_awlen ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] st_aa_awsize ;
wire [C_NUM_SLAVE_SLOTS*2-1:0] st_aa_awlock ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] st_aa_awprot ;
wire [C_NUM_SLAVE_SLOTS*4-1:0] st_aa_awregion ;
wire [C_NUM_SLAVE_SLOTS*8-1:0] st_aa_awerror ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_aa_awtarget_hot ;
wire [C_NUM_SLAVE_SLOTS*(P_NUM_MASTER_SLOTS_LOG+1)-1:0] st_aa_awtarget_enc ;
wire [P_NUM_SLAVE_SLOTS_LOG*1-1:0] aa_wm_awgrant_enc ;
wire [(C_NUM_MASTER_SLOTS+1)-1:0] aa_mi_awtarget_hot ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_aa_awvalid_qual ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_ss_awvalid ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_ss_awready ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] ss_wr_awvalid ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] ss_wr_awready ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] ss_aa_awvalid ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] ss_aa_awready ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] sa_wm_awvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] sa_wm_awready ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_awvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_awready ;
wire aa_sa_awvalid ;
wire aa_sa_awready ;
wire aa_mi_arready ;
wire mi_awvalid_en ;
wire sa_wm_awvalid_en ;
wire sa_wm_awready_mux ;
wire [C_NUM_SLAVE_SLOTS*P_ST_ARMESG_WIDTH-1:0] si_st_armesg ;
wire [C_NUM_SLAVE_SLOTS*P_ST_ARMESG_WIDTH-1:0] st_tmp_armesg ;
wire [C_NUM_SLAVE_SLOTS*P_AA_ARMESG_WIDTH-1:0] tmp_aa_armesg ;
wire [P_AA_ARMESG_WIDTH-1:0] aa_mi_armesg ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] st_aa_arid ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] st_aa_araddr ;
wire [C_NUM_SLAVE_SLOTS*8-1:0] st_aa_arlen ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] st_aa_arsize ;
wire [C_NUM_SLAVE_SLOTS*2-1:0] st_aa_arlock ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] st_aa_arprot ;
wire [C_NUM_SLAVE_SLOTS*4-1:0] st_aa_arregion ;
wire [C_NUM_SLAVE_SLOTS*8-1:0] st_aa_arerror ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_aa_artarget_hot ;
wire [C_NUM_SLAVE_SLOTS*(P_NUM_MASTER_SLOTS_LOG+1)-1:0] st_aa_artarget_enc ;
wire [(C_NUM_MASTER_SLOTS+1)-1:0] aa_mi_artarget_hot ;
wire [P_NUM_SLAVE_SLOTS_LOG*1-1:0] aa_mi_argrant_enc ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_aa_arvalid_qual ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_aa_arvalid ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_aa_arready ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_arvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_arready ;
wire aa_mi_arvalid ;
wire mi_awready_mux ;
wire [C_NUM_SLAVE_SLOTS*P_ST_BMESG_WIDTH-1:0] st_si_bmesg ;
wire [(C_NUM_MASTER_SLOTS+1)*P_ST_BMESG_WIDTH-1:0] st_mr_bmesg ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] st_mr_bid ;
wire [(C_NUM_MASTER_SLOTS+1)*2-1:0] st_mr_bresp ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_BUSER_WIDTH-1:0] st_mr_buser ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] st_mr_bvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] st_mr_bready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_tmp_bready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_tmp_bid_target ;
wire [(C_NUM_MASTER_SLOTS+1)*C_NUM_SLAVE_SLOTS-1:0] tmp_mr_bid_target ;
wire [(C_NUM_MASTER_SLOTS+1)*P_NUM_SLAVE_SLOTS_LOG-1:0] debug_bid_target_i ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] bid_match ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] mi_bid ;
wire [(C_NUM_MASTER_SLOTS+1)*2-1:0] mi_bresp ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_BUSER_WIDTH-1:0] mi_buser ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_bvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_bready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] bready_carry ;
wire [C_NUM_SLAVE_SLOTS*P_ST_RMESG_WIDTH-1:0] st_si_rmesg ;
wire [(C_NUM_MASTER_SLOTS+1)*P_ST_RMESG_WIDTH-1:0] st_mr_rmesg ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] st_mr_rid ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH-1:0] st_mr_rdata ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_RUSER_WIDTH-1:0] st_mr_ruser ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] st_mr_rlast ;
wire [(C_NUM_MASTER_SLOTS+1)*2-1:0] st_mr_rresp ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] st_mr_rvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] st_mr_rready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_tmp_rready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_tmp_rid_target ;
wire [(C_NUM_MASTER_SLOTS+1)*C_NUM_SLAVE_SLOTS-1:0] tmp_mr_rid_target ;
wire [(C_NUM_MASTER_SLOTS+1)*P_NUM_SLAVE_SLOTS_LOG-1:0] debug_rid_target_i ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] rid_match ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] mi_rid ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH-1:0] mi_rdata ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_RUSER_WIDTH-1:0] mi_ruser ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_rlast ;
wire [(C_NUM_MASTER_SLOTS+1)*2-1:0] mi_rresp ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_rvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_rready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] rready_carry ;
wire [C_NUM_SLAVE_SLOTS*P_WR_WMESG_WIDTH-1:0] si_wr_wmesg ;
wire [C_NUM_SLAVE_SLOTS*P_WR_WMESG_WIDTH-1:0] wr_wm_wmesg ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] wr_wm_wlast ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] wr_tmp_wvalid ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] wr_tmp_wready ;
wire [(C_NUM_MASTER_SLOTS+1)*C_NUM_SLAVE_SLOTS-1:0] tmp_wm_wvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*C_NUM_SLAVE_SLOTS-1:0] tmp_wm_wready ;
wire [(C_NUM_MASTER_SLOTS+1)*P_WR_WMESG_WIDTH-1:0] wm_mr_wmesg ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH-1:0] wm_mr_wdata ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH/8-1:0] wm_mr_wstrb ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] wm_mr_wid ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_WUSER_WIDTH-1:0] wm_mr_wuser ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] wm_mr_wlast ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] wm_mr_wvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] wm_mr_wready ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH-1:0] mi_wdata ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH/8-1:0] mi_wstrb ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_WUSER_WIDTH-1:0] mi_wuser ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] mi_wid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_wlast ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_wvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_wready ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] w_cmd_push ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] w_cmd_pop ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] r_cmd_push ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] r_cmd_pop ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_awmaxissuing ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_armaxissuing ;
reg [(C_NUM_MASTER_SLOTS+1)*8-1:0] w_issuing_cnt ;
reg [(C_NUM_MASTER_SLOTS+1)*8-1:0] r_issuing_cnt ;
reg [8-1:0] debug_aw_trans_seq_i ;
reg [8-1:0] debug_ar_trans_seq_i ;
wire [(C_NUM_MASTER_SLOTS+1)*8-1:0] debug_w_trans_seq_i ;
reg [(C_NUM_MASTER_SLOTS+1)*8-1:0] debug_w_beat_cnt_i ;
reg aresetn_d = 1'b0; // Reset delay register
always @(posedge ACLK) begin
if (~ARESETN) begin
aresetn_d <= 1'b0;
end else begin
aresetn_d <= ARESETN;
end
end
wire reset;
assign reset = ~aresetn_d;
generate
for (gen_si_slot=0; gen_si_slot<C_NUM_SLAVE_SLOTS; gen_si_slot=gen_si_slot+1) begin : gen_slave_slots
if (C_S_AXI_SUPPORTS_READ[gen_si_slot]) begin : gen_si_read
axi_crossbar_v2_1_si_transactor # // "ST": SI Transactor (read channel)
(
.C_FAMILY (C_FAMILY),
.C_SI (gen_si_slot),
.C_DIR (P_READ),
.C_NUM_ADDR_RANGES (C_NUM_ADDR_RANGES),
.C_NUM_M (C_NUM_MASTER_SLOTS),
.C_NUM_M_LOG (P_NUM_MASTER_SLOTS_LOG),
.C_ACCEPTANCE (C_S_AXI_READ_ACCEPTANCE[gen_si_slot*32+:32]),
.C_ACCEPTANCE_LOG (C_R_ACCEPT_WIDTH[gen_si_slot*32+:32]),
.C_ID_WIDTH (C_AXI_ID_WIDTH),
.C_THREAD_ID_WIDTH (C_S_AXI_THREAD_ID_WIDTH[gen_si_slot*32+:32]),
.C_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AMESG_WIDTH (P_ST_ARMESG_WIDTH),
.C_RMESG_WIDTH (P_ST_RMESG_WIDTH),
.C_BASE_ID (C_S_AXI_BASE_ID[gen_si_slot*64+:C_AXI_ID_WIDTH]),
.C_HIGH_ID (C_S_AXI_HIGH_ID[gen_si_slot*64+:C_AXI_ID_WIDTH]),
.C_SINGLE_THREAD (C_S_AXI_SINGLE_THREAD[gen_si_slot*32+:32]),
.C_BASE_ADDR (C_M_AXI_BASE_ADDR),
.C_HIGH_ADDR (C_M_AXI_HIGH_ADDR),
.C_TARGET_QUAL (P_S_AXI_READ_CONNECTIVITY[gen_si_slot*32+:C_NUM_MASTER_SLOTS]),
.C_M_AXI_SECURE (C_M_AXI_SECURE),
.C_RANGE_CHECK (C_RANGE_CHECK),
.C_ADDR_DECODE (C_ADDR_DECODE),
.C_ERR_MODE (C_M_AXI_ERR_MODE),
.C_DEBUG (C_DEBUG)
)
si_transactor_ar
(
.ACLK (ACLK),
.ARESET (reset),
.S_AID (f_extend_ID(S_AXI_ARID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH], gen_si_slot)),
.S_AADDR (S_AXI_ARADDR[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH]),
.S_ALEN (S_AXI_ARLEN[gen_si_slot*8+:8]),
.S_ASIZE (S_AXI_ARSIZE[gen_si_slot*3+:3]),
.S_ABURST (S_AXI_ARBURST[gen_si_slot*2+:2]),
.S_ALOCK (S_AXI_ARLOCK[gen_si_slot*2+:2]),
.S_APROT (S_AXI_ARPROT[gen_si_slot*3+:3]),
// .S_AREGION (S_AXI_ARREGION[gen_si_slot*4+:4]),
.S_AMESG (si_st_armesg[gen_si_slot*P_ST_ARMESG_WIDTH+:P_ST_ARMESG_WIDTH]),
.S_AVALID (S_AXI_ARVALID[gen_si_slot]),
.S_AREADY (S_AXI_ARREADY[gen_si_slot]),
.M_AID (st_aa_arid[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.M_AADDR (st_aa_araddr[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH]),
.M_ALEN (st_aa_arlen[gen_si_slot*8+:8]),
.M_ASIZE (st_aa_arsize[gen_si_slot*3+:3]),
.M_ALOCK (st_aa_arlock[gen_si_slot*2+:2]),
.M_APROT (st_aa_arprot[gen_si_slot*3+:3]),
.M_AREGION (st_aa_arregion[gen_si_slot*4+:4]),
.M_AMESG (st_tmp_armesg[gen_si_slot*P_ST_ARMESG_WIDTH+:P_ST_ARMESG_WIDTH]),
.M_ATARGET_HOT (st_aa_artarget_hot[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.M_ATARGET_ENC (st_aa_artarget_enc[gen_si_slot*(P_NUM_MASTER_SLOTS_LOG+1)+:(P_NUM_MASTER_SLOTS_LOG+1)]),
.M_AERROR (st_aa_arerror[gen_si_slot*8+:8]),
.M_AVALID_QUAL (st_aa_arvalid_qual[gen_si_slot]),
.M_AVALID (st_aa_arvalid[gen_si_slot]),
.M_AREADY (st_aa_arready[gen_si_slot]),
.S_RID (S_AXI_RID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.S_RMESG (st_si_rmesg[gen_si_slot*P_ST_RMESG_WIDTH+:P_ST_RMESG_WIDTH]),
.S_RLAST (S_AXI_RLAST[gen_si_slot]),
.S_RVALID (S_AXI_RVALID[gen_si_slot]),
.S_RREADY (S_AXI_RREADY[gen_si_slot]),
.M_RID (st_mr_rid),
.M_RLAST (st_mr_rlast),
.M_RMESG (st_mr_rmesg),
.M_RVALID (st_mr_rvalid),
.M_RREADY (st_tmp_rready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.M_RTARGET (st_tmp_rid_target[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.DEBUG_A_TRANS_SEQ (C_DEBUG ? debug_ar_trans_seq_i : 8'h0)
);
assign si_st_armesg[gen_si_slot*P_ST_ARMESG_WIDTH+:P_ST_ARMESG_WIDTH] = {
S_AXI_ARUSER[gen_si_slot*C_AXI_ARUSER_WIDTH+:C_AXI_ARUSER_WIDTH],
S_AXI_ARQOS[gen_si_slot*4+:4],
S_AXI_ARCACHE[gen_si_slot*4+:4],
S_AXI_ARBURST[gen_si_slot*2+:2]
};
assign tmp_aa_armesg[gen_si_slot*P_AA_ARMESG_WIDTH+:P_AA_ARMESG_WIDTH] = {
st_tmp_armesg[gen_si_slot*P_ST_ARMESG_WIDTH+:P_ST_ARMESG_WIDTH],
st_aa_arregion[gen_si_slot*4+:4],
st_aa_arprot[gen_si_slot*3+:3],
st_aa_arlock[gen_si_slot*2+:2],
st_aa_arsize[gen_si_slot*3+:3],
st_aa_arlen[gen_si_slot*8+:8],
st_aa_araddr[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH],
st_aa_arid[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]
};
assign S_AXI_RRESP[gen_si_slot*2+:2] = st_si_rmesg[gen_si_slot*P_ST_RMESG_WIDTH+:2];
assign S_AXI_RUSER[gen_si_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] = st_si_rmesg[gen_si_slot*P_ST_RMESG_WIDTH+2 +: C_AXI_RUSER_WIDTH];
assign S_AXI_RDATA[gen_si_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = st_si_rmesg[gen_si_slot*P_ST_RMESG_WIDTH+2+C_AXI_RUSER_WIDTH +: C_AXI_DATA_WIDTH];
end else begin : gen_no_si_read
assign S_AXI_ARREADY[gen_si_slot] = 1'b0;
assign st_aa_arvalid[gen_si_slot] = 1'b0;
assign st_aa_arvalid_qual[gen_si_slot] = 1'b1;
assign tmp_aa_armesg[gen_si_slot*P_AA_ARMESG_WIDTH+:P_AA_ARMESG_WIDTH] = 0;
assign S_AXI_RID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = 0;
assign S_AXI_RRESP[gen_si_slot*2+:2] = 0;
assign S_AXI_RUSER[gen_si_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] = 0;
assign S_AXI_RDATA[gen_si_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = 0;
assign S_AXI_RVALID[gen_si_slot] = 1'b0;
assign S_AXI_RLAST[gen_si_slot] = 1'b0;
assign st_tmp_rready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)] = 0;
assign st_aa_artarget_hot[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)] = 0;
end // gen_si_read
if (C_S_AXI_SUPPORTS_WRITE[gen_si_slot]) begin : gen_si_write
axi_crossbar_v2_1_si_transactor # // "ST": SI Transactor (write channel)
(
.C_FAMILY (C_FAMILY),
.C_SI (gen_si_slot),
.C_DIR (P_WRITE),
.C_NUM_ADDR_RANGES (C_NUM_ADDR_RANGES),
.C_NUM_M (C_NUM_MASTER_SLOTS),
.C_NUM_M_LOG (P_NUM_MASTER_SLOTS_LOG),
.C_ACCEPTANCE (C_S_AXI_WRITE_ACCEPTANCE[gen_si_slot*32+:32]),
.C_ACCEPTANCE_LOG (C_W_ACCEPT_WIDTH[gen_si_slot*32+:32]),
.C_ID_WIDTH (C_AXI_ID_WIDTH),
.C_THREAD_ID_WIDTH (C_S_AXI_THREAD_ID_WIDTH[gen_si_slot*32+:32]),
.C_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AMESG_WIDTH (P_ST_AWMESG_WIDTH),
.C_RMESG_WIDTH (P_ST_BMESG_WIDTH),
.C_BASE_ID (C_S_AXI_BASE_ID[gen_si_slot*64+:C_AXI_ID_WIDTH]),
.C_HIGH_ID (C_S_AXI_HIGH_ID[gen_si_slot*64+:C_AXI_ID_WIDTH]),
.C_SINGLE_THREAD (C_S_AXI_SINGLE_THREAD[gen_si_slot*32+:32]),
.C_BASE_ADDR (C_M_AXI_BASE_ADDR),
.C_HIGH_ADDR (C_M_AXI_HIGH_ADDR),
.C_TARGET_QUAL (P_S_AXI_WRITE_CONNECTIVITY[gen_si_slot*32+:C_NUM_MASTER_SLOTS]),
.C_M_AXI_SECURE (C_M_AXI_SECURE),
.C_RANGE_CHECK (C_RANGE_CHECK),
.C_ADDR_DECODE (C_ADDR_DECODE),
.C_ERR_MODE (C_M_AXI_ERR_MODE),
.C_DEBUG (C_DEBUG)
)
si_transactor_aw
(
.ACLK (ACLK),
.ARESET (reset),
.S_AID (f_extend_ID(S_AXI_AWID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH], gen_si_slot)),
.S_AADDR (S_AXI_AWADDR[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH]),
.S_ALEN (S_AXI_AWLEN[gen_si_slot*8+:8]),
.S_ASIZE (S_AXI_AWSIZE[gen_si_slot*3+:3]),
.S_ABURST (S_AXI_AWBURST[gen_si_slot*2+:2]),
.S_ALOCK (S_AXI_AWLOCK[gen_si_slot*2+:2]),
.S_APROT (S_AXI_AWPROT[gen_si_slot*3+:3]),
// .S_AREGION (S_AXI_AWREGION[gen_si_slot*4+:4]),
.S_AMESG (si_st_awmesg[gen_si_slot*P_ST_AWMESG_WIDTH+:P_ST_AWMESG_WIDTH]),
.S_AVALID (S_AXI_AWVALID[gen_si_slot]),
.S_AREADY (S_AXI_AWREADY[gen_si_slot]),
.M_AID (st_aa_awid[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.M_AADDR (st_aa_awaddr[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH]),
.M_ALEN (st_aa_awlen[gen_si_slot*8+:8]),
.M_ASIZE (st_aa_awsize[gen_si_slot*3+:3]),
.M_ALOCK (st_aa_awlock[gen_si_slot*2+:2]),
.M_APROT (st_aa_awprot[gen_si_slot*3+:3]),
.M_AREGION (st_aa_awregion[gen_si_slot*4+:4]),
.M_AMESG (st_tmp_awmesg[gen_si_slot*P_ST_AWMESG_WIDTH+:P_ST_AWMESG_WIDTH]),
.M_ATARGET_HOT (st_aa_awtarget_hot[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.M_ATARGET_ENC (st_aa_awtarget_enc[gen_si_slot*(P_NUM_MASTER_SLOTS_LOG+1)+:(P_NUM_MASTER_SLOTS_LOG+1)]),
.M_AERROR (st_aa_awerror[gen_si_slot*8+:8]),
.M_AVALID_QUAL (st_aa_awvalid_qual[gen_si_slot]),
.M_AVALID (st_ss_awvalid[gen_si_slot]),
.M_AREADY (st_ss_awready[gen_si_slot]),
.S_RID (S_AXI_BID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.S_RMESG (st_si_bmesg[gen_si_slot*P_ST_BMESG_WIDTH+:P_ST_BMESG_WIDTH]),
.S_RLAST (),
.S_RVALID (S_AXI_BVALID[gen_si_slot]),
.S_RREADY (S_AXI_BREADY[gen_si_slot]),
.M_RID (st_mr_bid),
.M_RLAST ({(C_NUM_MASTER_SLOTS+1){1'b1}}),
.M_RMESG (st_mr_bmesg),
.M_RVALID (st_mr_bvalid),
.M_RREADY (st_tmp_bready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.M_RTARGET (st_tmp_bid_target[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.DEBUG_A_TRANS_SEQ (C_DEBUG ? debug_aw_trans_seq_i : 8'h0)
);
// Note: Concatenation of mesg signals is from MSB to LSB; assignments that chop mesg signals appear in opposite order.
assign si_st_awmesg[gen_si_slot*P_ST_AWMESG_WIDTH+:P_ST_AWMESG_WIDTH] = {
S_AXI_AWUSER[gen_si_slot*C_AXI_AWUSER_WIDTH+:C_AXI_AWUSER_WIDTH],
S_AXI_AWQOS[gen_si_slot*4+:4],
S_AXI_AWCACHE[gen_si_slot*4+:4],
S_AXI_AWBURST[gen_si_slot*2+:2]
};
assign tmp_aa_awmesg[gen_si_slot*P_AA_AWMESG_WIDTH+:P_AA_AWMESG_WIDTH] = {
st_tmp_awmesg[gen_si_slot*P_ST_AWMESG_WIDTH+:P_ST_AWMESG_WIDTH],
st_aa_awregion[gen_si_slot*4+:4],
st_aa_awprot[gen_si_slot*3+:3],
st_aa_awlock[gen_si_slot*2+:2],
st_aa_awsize[gen_si_slot*3+:3],
st_aa_awlen[gen_si_slot*8+:8],
st_aa_awaddr[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH],
st_aa_awid[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]
};
assign S_AXI_BRESP[gen_si_slot*2+:2] = st_si_bmesg[gen_si_slot*P_ST_BMESG_WIDTH+:2];
assign S_AXI_BUSER[gen_si_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] = st_si_bmesg[gen_si_slot*P_ST_BMESG_WIDTH+2 +: C_AXI_BUSER_WIDTH];
// AW SI-transactor transfer completes upon completion of both W-router address acceptance (command push) and AW arbitration
axi_crossbar_v2_1_splitter # // "SS": Splitter from SI-Transactor (write channel)
(
.C_NUM_M (2)
)
splitter_aw_si
(
.ACLK (ACLK),
.ARESET (reset),
.S_VALID (st_ss_awvalid[gen_si_slot]),
.S_READY (st_ss_awready[gen_si_slot]),
.M_VALID ({ss_wr_awvalid[gen_si_slot], ss_aa_awvalid[gen_si_slot]}),
.M_READY ({ss_wr_awready[gen_si_slot], ss_aa_awready[gen_si_slot]})
);
axi_crossbar_v2_1_wdata_router # // "WR": Write data Router
(
.C_FAMILY (C_FAMILY),
.C_NUM_MASTER_SLOTS (C_NUM_MASTER_SLOTS+1),
.C_SELECT_WIDTH (P_NUM_MASTER_SLOTS_LOG+1),
.C_WMESG_WIDTH (P_WR_WMESG_WIDTH),
.C_FIFO_DEPTH_LOG (C_W_ACCEPT_WIDTH[gen_si_slot*32+:6])
)
wdata_router_w
(
.ACLK (ACLK),
.ARESET (reset),
// Write transfer input from the current SI-slot
.S_WMESG (si_wr_wmesg[gen_si_slot*P_WR_WMESG_WIDTH+:P_WR_WMESG_WIDTH]),
.S_WLAST (S_AXI_WLAST[gen_si_slot]),
.S_WVALID (S_AXI_WVALID[gen_si_slot]),
.S_WREADY (S_AXI_WREADY[gen_si_slot]),
// Vector of write transfer outputs to each MI-slot's W-mux
.M_WMESG (wr_wm_wmesg[gen_si_slot*(P_WR_WMESG_WIDTH)+:P_WR_WMESG_WIDTH]),
.M_WLAST (wr_wm_wlast[gen_si_slot]),
.M_WVALID (wr_tmp_wvalid[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.M_WREADY (wr_tmp_wready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
// AW command push from local SI-slot
.S_ASELECT (st_aa_awtarget_enc[gen_si_slot*(P_NUM_MASTER_SLOTS_LOG+1)+:(P_NUM_MASTER_SLOTS_LOG+1)]), // Target MI-slot
.S_AVALID (ss_wr_awvalid[gen_si_slot]),
.S_AREADY (ss_wr_awready[gen_si_slot])
);
assign si_wr_wmesg[gen_si_slot*P_WR_WMESG_WIDTH+:P_WR_WMESG_WIDTH] = {
((C_AXI_PROTOCOL == P_AXI3) ? f_extend_ID(S_AXI_WID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH], gen_si_slot) : 1'b0),
S_AXI_WUSER[gen_si_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH],
S_AXI_WSTRB[gen_si_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8],
S_AXI_WDATA[gen_si_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH]
};
end else begin : gen_no_si_write
assign S_AXI_AWREADY[gen_si_slot] = 1'b0;
assign ss_aa_awvalid[gen_si_slot] = 1'b0;
assign st_aa_awvalid_qual[gen_si_slot] = 1'b1;
assign tmp_aa_awmesg[gen_si_slot*P_AA_AWMESG_WIDTH+:P_AA_AWMESG_WIDTH] = 0;
assign S_AXI_BID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = 0;
assign S_AXI_BRESP[gen_si_slot*2+:2] = 0;
assign S_AXI_BUSER[gen_si_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] = 0;
assign S_AXI_BVALID[gen_si_slot] = 1'b0;
assign st_tmp_bready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)] = 0;
assign S_AXI_WREADY[gen_si_slot] = 1'b0;
assign wr_wm_wmesg[gen_si_slot*(P_WR_WMESG_WIDTH)+:P_WR_WMESG_WIDTH] = 0;
assign wr_wm_wlast[gen_si_slot] = 1'b0;
assign wr_tmp_wvalid[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)] = 0;
assign st_aa_awtarget_hot[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)] = 0;
end // gen_si_write
end // gen_slave_slots
for (gen_mi_slot=0; gen_mi_slot<C_NUM_MASTER_SLOTS+1; gen_mi_slot=gen_mi_slot+1) begin : gen_master_slots
if (P_M_AXI_SUPPORTS_READ[gen_mi_slot]) begin : gen_mi_read
if (C_NUM_SLAVE_SLOTS>1) begin : gen_rid_decoder
axi_crossbar_v2_1_addr_decoder #
(
.C_FAMILY (C_FAMILY),
.C_NUM_TARGETS (C_NUM_SLAVE_SLOTS),
.C_NUM_TARGETS_LOG (P_NUM_SLAVE_SLOTS_LOG),
.C_NUM_RANGES (1),
.C_ADDR_WIDTH (C_AXI_ID_WIDTH),
.C_TARGET_ENC (C_DEBUG),
.C_TARGET_HOT (1),
.C_REGION_ENC (0),
.C_BASE_ADDR (C_S_AXI_BASE_ID),
.C_HIGH_ADDR (C_S_AXI_HIGH_ID),
.C_TARGET_QUAL (P_M_AXI_READ_CONNECTIVITY[gen_mi_slot*32+:C_NUM_SLAVE_SLOTS]),
.C_RESOLUTION (0)
)
rid_decoder_inst
(
.ADDR (st_mr_rid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.TARGET_HOT (tmp_mr_rid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS]),
.TARGET_ENC (debug_rid_target_i[gen_mi_slot*P_NUM_SLAVE_SLOTS_LOG+:P_NUM_SLAVE_SLOTS_LOG]),
.MATCH (rid_match[gen_mi_slot]),
.REGION ()
);
end else begin : gen_no_rid_decoder
assign tmp_mr_rid_target[gen_mi_slot] = 1'b1; // All response transfers route to solo SI-slot.
assign rid_match[gen_mi_slot] = 1'b1;
end
assign st_mr_rmesg[gen_mi_slot*P_ST_RMESG_WIDTH+:P_ST_RMESG_WIDTH] = {
st_mr_rdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH],
st_mr_ruser[gen_mi_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH],
st_mr_rresp[gen_mi_slot*2+:2]
};
end else begin : gen_no_mi_read
assign tmp_mr_rid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS] = 0;
assign rid_match[gen_mi_slot] = 1'b0;
assign st_mr_rmesg[gen_mi_slot*P_ST_RMESG_WIDTH+:P_ST_RMESG_WIDTH] = 0;
end // gen_mi_read
if (P_M_AXI_SUPPORTS_WRITE[gen_mi_slot]) begin : gen_mi_write
if (C_NUM_SLAVE_SLOTS>1) begin : gen_bid_decoder
axi_crossbar_v2_1_addr_decoder #
(
.C_FAMILY (C_FAMILY),
.C_NUM_TARGETS (C_NUM_SLAVE_SLOTS),
.C_NUM_TARGETS_LOG (P_NUM_SLAVE_SLOTS_LOG),
.C_NUM_RANGES (1),
.C_ADDR_WIDTH (C_AXI_ID_WIDTH),
.C_TARGET_ENC (C_DEBUG),
.C_TARGET_HOT (1),
.C_REGION_ENC (0),
.C_BASE_ADDR (C_S_AXI_BASE_ID),
.C_HIGH_ADDR (C_S_AXI_HIGH_ID),
.C_TARGET_QUAL (P_M_AXI_WRITE_CONNECTIVITY[gen_mi_slot*32+:C_NUM_SLAVE_SLOTS]),
.C_RESOLUTION (0)
)
bid_decoder_inst
(
.ADDR (st_mr_bid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.TARGET_HOT (tmp_mr_bid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS]),
.TARGET_ENC (debug_bid_target_i[gen_mi_slot*P_NUM_SLAVE_SLOTS_LOG+:P_NUM_SLAVE_SLOTS_LOG]),
.MATCH (bid_match[gen_mi_slot]),
.REGION ()
);
end else begin : gen_no_bid_decoder
assign tmp_mr_bid_target[gen_mi_slot] = 1'b1; // All response transfers route to solo SI-slot.
assign bid_match[gen_mi_slot] = 1'b1;
end
axi_crossbar_v2_1_wdata_mux # // "WM": Write data Mux, per MI-slot (incl error-handler)
(
.C_FAMILY (C_FAMILY),
.C_NUM_SLAVE_SLOTS (C_NUM_SLAVE_SLOTS),
.C_SELECT_WIDTH (P_NUM_SLAVE_SLOTS_LOG),
.C_WMESG_WIDTH (P_WR_WMESG_WIDTH),
.C_FIFO_DEPTH_LOG (C_W_ISSUE_WIDTH[gen_mi_slot*32+:6])
)
wdata_mux_w
(
.ACLK (ACLK),
.ARESET (reset),
// Vector of write transfer inputs from each SI-slot's W-router
.S_WMESG (wr_wm_wmesg),
.S_WLAST (wr_wm_wlast),
.S_WVALID (tmp_wm_wvalid[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS]),
.S_WREADY (tmp_wm_wready[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS]),
// Write transfer output to the current MI-slot
.M_WMESG (wm_mr_wmesg[gen_mi_slot*P_WR_WMESG_WIDTH+:P_WR_WMESG_WIDTH]),
.M_WLAST (wm_mr_wlast[gen_mi_slot]),
.M_WVALID (wm_mr_wvalid[gen_mi_slot]),
.M_WREADY (wm_mr_wready[gen_mi_slot]),
// AW command push from AW arbiter output
.S_ASELECT (aa_wm_awgrant_enc), // SI-slot selected by arbiter
.S_AVALID (sa_wm_awvalid[gen_mi_slot]),
.S_AREADY (sa_wm_awready[gen_mi_slot])
);
if (C_DEBUG) begin : gen_debug_w
// DEBUG WRITE BEAT COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_w_beat_cnt_i[gen_mi_slot*8+:8] <= 0;
end else begin
if (mi_wvalid[gen_mi_slot] & mi_wready[gen_mi_slot]) begin
if (mi_wlast[gen_mi_slot]) begin
debug_w_beat_cnt_i[gen_mi_slot*8+:8] <= 0;
end else begin
debug_w_beat_cnt_i[gen_mi_slot*8+:8] <= debug_w_beat_cnt_i[gen_mi_slot*8+:8] + 1;
end
end
end
end // clocked process
// DEBUG W-CHANNEL TRANSACTION SEQUENCE QUEUE
axi_data_fifo_v2_1_axic_srl_fifo #
(
.C_FAMILY (C_FAMILY),
.C_FIFO_WIDTH (8),
.C_FIFO_DEPTH_LOG (C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]),
.C_USE_FULL (0)
)
debug_w_seq_fifo
(
.ACLK (ACLK),
.ARESET (reset),
.S_MESG (debug_aw_trans_seq_i),
.S_VALID (sa_wm_awvalid[gen_mi_slot]),
.S_READY (),
.M_MESG (debug_w_trans_seq_i[gen_mi_slot*8+:8]),
.M_VALID (),
.M_READY (mi_wvalid[gen_mi_slot] & mi_wready[gen_mi_slot] & mi_wlast[gen_mi_slot])
);
end // gen_debug_w
assign wm_mr_wdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = wm_mr_wmesg[gen_mi_slot*P_WR_WMESG_WIDTH +: C_AXI_DATA_WIDTH];
assign wm_mr_wstrb[gen_mi_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8] = wm_mr_wmesg[gen_mi_slot*P_WR_WMESG_WIDTH+C_AXI_DATA_WIDTH +: C_AXI_DATA_WIDTH/8];
assign wm_mr_wuser[gen_mi_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH] = wm_mr_wmesg[gen_mi_slot*P_WR_WMESG_WIDTH+C_AXI_DATA_WIDTH+C_AXI_DATA_WIDTH/8 +: C_AXI_WUSER_WIDTH];
assign wm_mr_wid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = wm_mr_wmesg[gen_mi_slot*P_WR_WMESG_WIDTH+C_AXI_DATA_WIDTH+(C_AXI_DATA_WIDTH/8)+C_AXI_WUSER_WIDTH +: P_AXI_WID_WIDTH];
assign st_mr_bmesg[gen_mi_slot*P_ST_BMESG_WIDTH+:P_ST_BMESG_WIDTH] = {
st_mr_buser[gen_mi_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH],
st_mr_bresp[gen_mi_slot*2+:2]
};
end else begin : gen_no_mi_write
assign tmp_mr_bid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS] = 0;
assign bid_match[gen_mi_slot] = 1'b0;
assign wm_mr_wvalid[gen_mi_slot] = 0;
assign wm_mr_wlast[gen_mi_slot] = 0;
assign wm_mr_wdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = 0;
assign wm_mr_wstrb[gen_mi_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8] = 0;
assign wm_mr_wuser[gen_mi_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH] = 0;
assign wm_mr_wid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = 0;
assign st_mr_bmesg[gen_mi_slot*P_ST_BMESG_WIDTH+:P_ST_BMESG_WIDTH] = 0;
assign tmp_wm_wready[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS] = 0;
assign sa_wm_awready[gen_mi_slot] = 0;
end // gen_mi_write
for (gen_si_slot=0; gen_si_slot<C_NUM_SLAVE_SLOTS; gen_si_slot=gen_si_slot+1) begin : gen_trans_si
// Transpose handshakes from W-router (SxM) to W-mux (MxS).
assign tmp_wm_wvalid[gen_mi_slot*C_NUM_SLAVE_SLOTS+gen_si_slot] = wr_tmp_wvalid[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot];
assign wr_tmp_wready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] = tmp_wm_wready[gen_mi_slot*C_NUM_SLAVE_SLOTS+gen_si_slot];
// Transpose response enables from ID decoders (MxS) to si_transactors (SxM).
assign st_tmp_bid_target[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] = tmp_mr_bid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+gen_si_slot];
assign st_tmp_rid_target[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] = tmp_mr_rid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+gen_si_slot];
end // gen_trans_si
assign bready_carry[gen_mi_slot] = st_tmp_bready[gen_mi_slot];
assign rready_carry[gen_mi_slot] = st_tmp_rready[gen_mi_slot];
for (gen_si_slot=1; gen_si_slot<C_NUM_SLAVE_SLOTS; gen_si_slot=gen_si_slot+1) begin : gen_resp_carry_si
assign bready_carry[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] = // Generate M_BREADY if ...
bready_carry[(gen_si_slot-1)*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] | // For any SI-slot (OR carry-chain across all SI-slots), ...
st_tmp_bready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot]; // The write SI transactor indicates BREADY for that MI-slot.
assign rready_carry[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] = // Generate M_RREADY if ...
rready_carry[(gen_si_slot-1)*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] | // For any SI-slot (OR carry-chain across all SI-slots), ...
st_tmp_rready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot]; // The write SI transactor indicates RREADY for that MI-slot.
end // gen_resp_carry_si
assign w_cmd_push[gen_mi_slot] = mi_awvalid[gen_mi_slot] && mi_awready[gen_mi_slot] && P_M_AXI_SUPPORTS_WRITE[gen_mi_slot];
assign r_cmd_push[gen_mi_slot] = mi_arvalid[gen_mi_slot] && mi_arready[gen_mi_slot] && P_M_AXI_SUPPORTS_READ[gen_mi_slot];
assign w_cmd_pop[gen_mi_slot] = st_mr_bvalid[gen_mi_slot] && st_mr_bready[gen_mi_slot] && P_M_AXI_SUPPORTS_WRITE[gen_mi_slot];
assign r_cmd_pop[gen_mi_slot] = st_mr_rvalid[gen_mi_slot] && st_mr_rready[gen_mi_slot] && st_mr_rlast[gen_mi_slot] && P_M_AXI_SUPPORTS_READ[gen_mi_slot];
// Disqualify arbitration of SI-slot if targeted MI-slot has reached its issuing limit.
assign mi_awmaxissuing[gen_mi_slot] = (w_issuing_cnt[gen_mi_slot*8 +: (C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] ==
P_M_AXI_WRITE_ISSUING[gen_mi_slot*32 +: (C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)]) & ~w_cmd_pop[gen_mi_slot];
assign mi_armaxissuing[gen_mi_slot] = (r_issuing_cnt[gen_mi_slot*8 +: (C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] ==
P_M_AXI_READ_ISSUING[gen_mi_slot*32 +: (C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)]) & ~r_cmd_pop[gen_mi_slot];
always @(posedge ACLK) begin
if (reset) begin
w_issuing_cnt[gen_mi_slot*8+:8] <= 0; // Some high-order bits remain constant 0
r_issuing_cnt[gen_mi_slot*8+:8] <= 0; // Some high-order bits remain constant 0
end else begin
if (w_cmd_push[gen_mi_slot] && ~w_cmd_pop[gen_mi_slot]) begin
w_issuing_cnt[gen_mi_slot*8+:(C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] <= w_issuing_cnt[gen_mi_slot*8+:(C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] + 1;
end else if (w_cmd_pop[gen_mi_slot] && ~w_cmd_push[gen_mi_slot] && (|w_issuing_cnt[gen_mi_slot*8+:(C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)])) begin
w_issuing_cnt[gen_mi_slot*8+:(C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] <= w_issuing_cnt[gen_mi_slot*8+:(C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] - 1;
end
if (r_cmd_push[gen_mi_slot] && ~r_cmd_pop[gen_mi_slot]) begin
r_issuing_cnt[gen_mi_slot*8+:(C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] <= r_issuing_cnt[gen_mi_slot*8+:(C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] + 1;
end else if (r_cmd_pop[gen_mi_slot] && ~r_cmd_push[gen_mi_slot] && (|r_issuing_cnt[gen_mi_slot*8+:(C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)])) begin
r_issuing_cnt[gen_mi_slot*8+:(C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] <= r_issuing_cnt[gen_mi_slot*8+:(C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] - 1;
end
end
end // Clocked process
// Reg-slice must break combinatorial path from M_BID and M_RID inputs to M_BREADY and M_RREADY outputs.
// (See m_rready_i and m_resp_en combinatorial assignments in si_transactor.)
// Reg-slice incurs +1 latency, but no bubble-cycles.
axi_register_slice_v2_1_axi_register_slice # // "MR": MI-side R/B-channel Reg-slice, per MI-slot (pass-through if only 1 SI-slot configured)
(
.C_FAMILY (C_FAMILY),
.C_AXI_PROTOCOL ((C_AXI_PROTOCOL == P_AXI3) ? P_AXI3 : P_AXI4),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_ADDR_WIDTH (1),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS),
.C_AXI_AWUSER_WIDTH (1),
.C_AXI_ARUSER_WIDTH (1),
.C_AXI_WUSER_WIDTH (C_AXI_WUSER_WIDTH),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_REG_CONFIG_AW (P_BYPASS),
.C_REG_CONFIG_AR (P_BYPASS),
.C_REG_CONFIG_W (P_BYPASS),
.C_REG_CONFIG_R (P_M_AXI_SUPPORTS_READ[gen_mi_slot] ? P_FWD_REV : P_BYPASS),
.C_REG_CONFIG_B (P_M_AXI_SUPPORTS_WRITE[gen_mi_slot] ? P_SIMPLE : P_BYPASS)
)
reg_slice_mi
(
.aresetn (ARESETN),
.aclk (ACLK),
.s_axi_awid ({C_AXI_ID_WIDTH{1'b0}}),
.s_axi_awaddr ({1{1'b0}}),
.s_axi_awlen ({((C_AXI_PROTOCOL == P_AXI3) ? 4 : 8){1'b0}}),
.s_axi_awsize ({3{1'b0}}),
.s_axi_awburst ({2{1'b0}}),
.s_axi_awlock ({((C_AXI_PROTOCOL == P_AXI3) ? 2 : 1){1'b0}}),
.s_axi_awcache ({4{1'b0}}),
.s_axi_awprot ({3{1'b0}}),
.s_axi_awregion ({4{1'b0}}),
.s_axi_awqos ({4{1'b0}}),
.s_axi_awuser ({1{1'b0}}),
.s_axi_awvalid ({1{1'b0}}),
.s_axi_awready (),
.s_axi_wid (wm_mr_wid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.s_axi_wdata (wm_mr_wdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH]),
.s_axi_wstrb (wm_mr_wstrb[gen_mi_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8]),
.s_axi_wlast (wm_mr_wlast[gen_mi_slot]),
.s_axi_wuser (wm_mr_wuser[gen_mi_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH]),
.s_axi_wvalid (wm_mr_wvalid[gen_mi_slot]),
.s_axi_wready (wm_mr_wready[gen_mi_slot]),
.s_axi_bid (st_mr_bid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] ),
.s_axi_bresp (st_mr_bresp[gen_mi_slot*2+:2] ),
.s_axi_buser (st_mr_buser[gen_mi_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] ),
.s_axi_bvalid (st_mr_bvalid[gen_mi_slot*1+:1] ),
.s_axi_bready (st_mr_bready[gen_mi_slot*1+:1] ),
.s_axi_arid ({C_AXI_ID_WIDTH{1'b0}}),
.s_axi_araddr ({1{1'b0}}),
.s_axi_arlen ({((C_AXI_PROTOCOL == P_AXI3) ? 4 : 8){1'b0}}),
.s_axi_arsize ({3{1'b0}}),
.s_axi_arburst ({2{1'b0}}),
.s_axi_arlock ({((C_AXI_PROTOCOL == P_AXI3) ? 2 : 1){1'b0}}),
.s_axi_arcache ({4{1'b0}}),
.s_axi_arprot ({3{1'b0}}),
.s_axi_arregion ({4{1'b0}}),
.s_axi_arqos ({4{1'b0}}),
.s_axi_aruser ({1{1'b0}}),
.s_axi_arvalid ({1{1'b0}}),
.s_axi_arready (),
.s_axi_rid (st_mr_rid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] ),
.s_axi_rdata (st_mr_rdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] ),
.s_axi_rresp (st_mr_rresp[gen_mi_slot*2+:2] ),
.s_axi_rlast (st_mr_rlast[gen_mi_slot*1+:1] ),
.s_axi_ruser (st_mr_ruser[gen_mi_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] ),
.s_axi_rvalid (st_mr_rvalid[gen_mi_slot*1+:1] ),
.s_axi_rready (st_mr_rready[gen_mi_slot*1+:1] ),
.m_axi_awid (),
.m_axi_awaddr (),
.m_axi_awlen (),
.m_axi_awsize (),
.m_axi_awburst (),
.m_axi_awlock (),
.m_axi_awcache (),
.m_axi_awprot (),
.m_axi_awregion (),
.m_axi_awqos (),
.m_axi_awuser (),
.m_axi_awvalid (),
.m_axi_awready ({1{1'b0}}),
.m_axi_wid (mi_wid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.m_axi_wdata (mi_wdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH]),
.m_axi_wstrb (mi_wstrb[gen_mi_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8]),
.m_axi_wlast (mi_wlast[gen_mi_slot]),
.m_axi_wuser (mi_wuser[gen_mi_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH]),
.m_axi_wvalid (mi_wvalid[gen_mi_slot]),
.m_axi_wready (mi_wready[gen_mi_slot]),
.m_axi_bid (mi_bid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] ),
.m_axi_bresp (mi_bresp[gen_mi_slot*2+:2] ),
.m_axi_buser (mi_buser[gen_mi_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] ),
.m_axi_bvalid (mi_bvalid[gen_mi_slot*1+:1] ),
.m_axi_bready (mi_bready[gen_mi_slot*1+:1] ),
.m_axi_arid (),
.m_axi_araddr (),
.m_axi_arlen (),
.m_axi_arsize (),
.m_axi_arburst (),
.m_axi_arlock (),
.m_axi_arcache (),
.m_axi_arprot (),
.m_axi_arregion (),
.m_axi_arqos (),
.m_axi_aruser (),
.m_axi_arvalid (),
.m_axi_arready ({1{1'b0}}),
.m_axi_rid (mi_rid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] ),
.m_axi_rdata (mi_rdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] ),
.m_axi_rresp (mi_rresp[gen_mi_slot*2+:2] ),
.m_axi_rlast (mi_rlast[gen_mi_slot*1+:1] ),
.m_axi_ruser (mi_ruser[gen_mi_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] ),
.m_axi_rvalid (mi_rvalid[gen_mi_slot*1+:1] ),
.m_axi_rready (mi_rready[gen_mi_slot*1+:1] )
);
end // gen_master_slots (Next gen_mi_slot)
// Highest row of *ready_carry contains accumulated OR across all SI-slots, for each MI-slot.
assign st_mr_bready = bready_carry[(C_NUM_SLAVE_SLOTS-1)*(C_NUM_MASTER_SLOTS+1) +: C_NUM_MASTER_SLOTS+1];
assign st_mr_rready = rready_carry[(C_NUM_SLAVE_SLOTS-1)*(C_NUM_MASTER_SLOTS+1) +: C_NUM_MASTER_SLOTS+1];
// Assign MI-side B, R and W channel ports (exclude error handler signals).
assign mi_bid[0+:C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH] = M_AXI_BID;
assign mi_bvalid[0+:C_NUM_MASTER_SLOTS] = M_AXI_BVALID;
assign mi_bresp[0+:C_NUM_MASTER_SLOTS*2] = M_AXI_BRESP;
assign mi_buser[0+:C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH] = M_AXI_BUSER;
assign M_AXI_BREADY = mi_bready[0+:C_NUM_MASTER_SLOTS];
assign mi_rid[0+:C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH] = M_AXI_RID;
assign mi_rlast[0+:C_NUM_MASTER_SLOTS] = M_AXI_RLAST;
assign mi_rvalid[0+:C_NUM_MASTER_SLOTS] = M_AXI_RVALID;
assign mi_rresp[0+:C_NUM_MASTER_SLOTS*2] = M_AXI_RRESP;
assign mi_ruser[0+:C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH] = M_AXI_RUSER;
assign mi_rdata[0+:C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH] = M_AXI_RDATA;
assign M_AXI_RREADY = mi_rready[0+:C_NUM_MASTER_SLOTS];
assign M_AXI_WLAST = mi_wlast[0+:C_NUM_MASTER_SLOTS];
assign M_AXI_WVALID = mi_wvalid[0+:C_NUM_MASTER_SLOTS];
assign M_AXI_WUSER = mi_wuser[0+:C_NUM_MASTER_SLOTS*C_AXI_WUSER_WIDTH];
assign M_AXI_WID = (C_AXI_PROTOCOL == P_AXI3) ? mi_wid[0+:C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH] : 0;
assign M_AXI_WDATA = mi_wdata[0+:C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH];
assign M_AXI_WSTRB = mi_wstrb[0+:C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH/8];
assign mi_wready[0+:C_NUM_MASTER_SLOTS] = M_AXI_WREADY;
axi_crossbar_v2_1_addr_arbiter # // "AA": Addr Arbiter (AW channel)
(
.C_FAMILY (C_FAMILY),
.C_NUM_M (C_NUM_MASTER_SLOTS+1),
.C_NUM_S (C_NUM_SLAVE_SLOTS),
.C_NUM_S_LOG (P_NUM_SLAVE_SLOTS_LOG),
.C_MESG_WIDTH (P_AA_AWMESG_WIDTH),
.C_ARB_PRIORITY (C_S_AXI_ARB_PRIORITY)
)
addr_arbiter_aw
(
.ACLK (ACLK),
.ARESET (reset),
// Vector of SI-side AW command request inputs
.S_MESG (tmp_aa_awmesg),
.S_TARGET_HOT (st_aa_awtarget_hot),
.S_VALID (ss_aa_awvalid),
.S_VALID_QUAL (st_aa_awvalid_qual),
.S_READY (ss_aa_awready),
// Granted AW command output
.M_MESG (aa_mi_awmesg),
.M_TARGET_HOT (aa_mi_awtarget_hot), // MI-slot targeted by granted command
.M_GRANT_ENC (aa_wm_awgrant_enc), // SI-slot index of granted command
.M_VALID (aa_sa_awvalid),
.M_READY (aa_sa_awready),
.ISSUING_LIMIT (mi_awmaxissuing)
);
// Broadcast AW transfer payload to all MI-slots
assign M_AXI_AWID = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[0+:C_AXI_ID_WIDTH]}};
assign M_AXI_AWADDR = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+:C_AXI_ADDR_WIDTH]}};
assign M_AXI_AWLEN = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH +:8]}};
assign M_AXI_AWSIZE = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8 +:3]}};
assign M_AXI_AWLOCK = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3 +:2]}};
assign M_AXI_AWPROT = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2 +:3]}};
assign M_AXI_AWREGION = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3 +:4]}};
assign M_AXI_AWBURST = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4 +:2]}};
assign M_AXI_AWCACHE = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2 +:4]}};
assign M_AXI_AWQOS = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2+4 +:4]}};
assign M_AXI_AWUSER = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2+4+4 +:C_AXI_AWUSER_WIDTH]}};
axi_crossbar_v2_1_addr_arbiter # // "AA": Addr Arbiter (AR channel)
(
.C_FAMILY (C_FAMILY),
.C_NUM_M (C_NUM_MASTER_SLOTS+1),
.C_NUM_S (C_NUM_SLAVE_SLOTS),
.C_NUM_S_LOG (P_NUM_SLAVE_SLOTS_LOG),
.C_MESG_WIDTH (P_AA_ARMESG_WIDTH),
.C_ARB_PRIORITY (C_S_AXI_ARB_PRIORITY)
)
addr_arbiter_ar
(
.ACLK (ACLK),
.ARESET (reset),
// Vector of SI-side AR command request inputs
.S_MESG (tmp_aa_armesg),
.S_TARGET_HOT (st_aa_artarget_hot),
.S_VALID_QUAL (st_aa_arvalid_qual),
.S_VALID (st_aa_arvalid),
.S_READY (st_aa_arready),
// Granted AR command output
.M_MESG (aa_mi_armesg),
.M_TARGET_HOT (aa_mi_artarget_hot), // MI-slot targeted by granted command
.M_GRANT_ENC (aa_mi_argrant_enc),
.M_VALID (aa_mi_arvalid), // SI-slot index of granted command
.M_READY (aa_mi_arready),
.ISSUING_LIMIT (mi_armaxissuing)
);
if (C_DEBUG) begin : gen_debug_trans_seq
// DEBUG WRITE TRANSACTION SEQUENCE COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_aw_trans_seq_i <= 1;
end else begin
if (aa_sa_awvalid && aa_sa_awready) begin
debug_aw_trans_seq_i <= debug_aw_trans_seq_i + 1;
end
end
end
// DEBUG READ TRANSACTION SEQUENCE COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_ar_trans_seq_i <= 1;
end else begin
if (aa_mi_arvalid && aa_mi_arready) begin
debug_ar_trans_seq_i <= debug_ar_trans_seq_i + 1;
end
end
end
end // gen_debug_trans_seq
// Broadcast AR transfer payload to all MI-slots
assign M_AXI_ARID = {C_NUM_MASTER_SLOTS{aa_mi_armesg[0+:C_AXI_ID_WIDTH]}};
assign M_AXI_ARADDR = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+:C_AXI_ADDR_WIDTH]}};
assign M_AXI_ARLEN = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH +:8]}};
assign M_AXI_ARSIZE = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8 +:3]}};
assign M_AXI_ARLOCK = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3 +:2]}};
assign M_AXI_ARPROT = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2 +:3]}};
assign M_AXI_ARREGION = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3 +:4]}};
assign M_AXI_ARBURST = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4 +:2]}};
assign M_AXI_ARCACHE = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2 +:4]}};
assign M_AXI_ARQOS = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2+4 +:4]}};
assign M_AXI_ARUSER = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2+4+4 +:C_AXI_ARUSER_WIDTH]}};
// AW arbiter command transfer completes upon completion of both M-side AW-channel transfer and W-mux address acceptance (command push).
axi_crossbar_v2_1_splitter # // "SA": Splitter for Write Addr Arbiter
(
.C_NUM_M (2)
)
splitter_aw_mi
(
.ACLK (ACLK),
.ARESET (reset),
.S_VALID (aa_sa_awvalid),
.S_READY (aa_sa_awready),
.M_VALID ({mi_awvalid_en, sa_wm_awvalid_en}),
.M_READY ({mi_awready_mux, sa_wm_awready_mux})
);
assign mi_awvalid = aa_mi_awtarget_hot & {C_NUM_MASTER_SLOTS+1{mi_awvalid_en}};
assign mi_awready_mux = |(aa_mi_awtarget_hot & mi_awready);
assign M_AXI_AWVALID = mi_awvalid[0+:C_NUM_MASTER_SLOTS]; // Slot C_NUM_MASTER_SLOTS+1 is the error handler
assign mi_awready[0+:C_NUM_MASTER_SLOTS] = M_AXI_AWREADY;
assign sa_wm_awvalid = aa_mi_awtarget_hot & {C_NUM_MASTER_SLOTS+1{sa_wm_awvalid_en}};
assign sa_wm_awready_mux = |(aa_mi_awtarget_hot & sa_wm_awready);
assign mi_arvalid = aa_mi_artarget_hot & {C_NUM_MASTER_SLOTS+1{aa_mi_arvalid}};
assign aa_mi_arready = |(aa_mi_artarget_hot & mi_arready);
assign M_AXI_ARVALID = mi_arvalid[0+:C_NUM_MASTER_SLOTS]; // Slot C_NUM_MASTER_SLOTS+1 is the error handler
assign mi_arready[0+:C_NUM_MASTER_SLOTS] = M_AXI_ARREADY;
// MI-slot # C_NUM_MASTER_SLOTS is the error handler
if (C_RANGE_CHECK) begin : gen_decerr_slave
axi_crossbar_v2_1_decerr_slave #
(
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_AXI_PROTOCOL (C_AXI_PROTOCOL),
.C_RESP (P_DECERR)
)
decerr_slave_inst
(
.S_AXI_ACLK (ACLK),
.S_AXI_ARESET (reset),
.S_AXI_AWID (aa_mi_awmesg[0+:C_AXI_ID_WIDTH]),
.S_AXI_AWVALID (mi_awvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_AWREADY (mi_awready[C_NUM_MASTER_SLOTS]),
.S_AXI_WLAST (mi_wlast[C_NUM_MASTER_SLOTS]),
.S_AXI_WVALID (mi_wvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_WREADY (mi_wready[C_NUM_MASTER_SLOTS]),
.S_AXI_BID (mi_bid[C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.S_AXI_BRESP (mi_bresp[C_NUM_MASTER_SLOTS*2+:2]),
.S_AXI_BUSER (mi_buser[C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH]),
.S_AXI_BVALID (mi_bvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_BREADY (mi_bready[C_NUM_MASTER_SLOTS]),
.S_AXI_ARID (aa_mi_armesg[0+:C_AXI_ID_WIDTH]),
.S_AXI_ARLEN (aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH +:8]),
.S_AXI_ARVALID (mi_arvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_ARREADY (mi_arready[C_NUM_MASTER_SLOTS]),
.S_AXI_RID (mi_rid[C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.S_AXI_RDATA (mi_rdata[C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH]),
.S_AXI_RRESP (mi_rresp[C_NUM_MASTER_SLOTS*2+:2]),
.S_AXI_RUSER (mi_ruser[C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH]),
.S_AXI_RLAST (mi_rlast[C_NUM_MASTER_SLOTS]),
.S_AXI_RVALID (mi_rvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_RREADY (mi_rready[C_NUM_MASTER_SLOTS])
);
end else begin : gen_no_decerr_slave
assign mi_awready[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_wready[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_arready[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_awready[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_awready[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_bid[C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = 0;
assign mi_bresp[C_NUM_MASTER_SLOTS*2+:2] = 0;
assign mi_buser[C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] = 0;
assign mi_bvalid[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_rid[C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = 0;
assign mi_rdata[C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = 0;
assign mi_rresp[C_NUM_MASTER_SLOTS*2+:2] = 0;
assign mi_ruser[C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] = 0;
assign mi_rlast[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_rvalid[C_NUM_MASTER_SLOTS] = 1'b0;
end // gen_decerr_slave
endgenerate
endmodule
`default_nettype wire
|
// -- (c) Copyright 2009 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// File name: crossbar.v
//
// Description:
// This module is a M-master to N-slave AXI axi_crossbar_v2_1_crossbar switch.
// The interface of this module consists of a vectored slave and master interface
// in which all slots are sized and synchronized to the native width and clock
// of the interconnect.
// The SAMD axi_crossbar_v2_1_crossbar supports only AXI4 and AXI3 protocols.
// All width, clock and protocol conversions are done outside this block, as are
// any pipeline registers or data FIFOs.
// This module contains all arbitration, decoders and channel multiplexing logic.
// It also contains the diagnostic registers and control interface.
//
//-----------------------------------------------------------------------------
//
// Structure:
// crossbar
// si_transactor
// addr_decoder
// comparator_static
// mux_enc
// axic_srl_fifo
// arbiter_resp
// splitter
// wdata_router
// axic_reg_srl_fifo
// wdata_mux
// axic_reg_srl_fifo
// mux_enc
// addr_decoder
// comparator_static
// axic_srl_fifo
// axi_register_slice
// addr_arbiter
// mux_enc
// decerr_slave
//
//-----------------------------------------------------------------------------
`timescale 1ps/1ps
`default_nettype none
(* DowngradeIPIdentifiedWarnings="yes" *)
module axi_crossbar_v2_1_crossbar #
(
parameter C_FAMILY = "none",
parameter integer C_NUM_SLAVE_SLOTS = 1,
parameter integer C_NUM_MASTER_SLOTS = 1,
parameter integer C_NUM_ADDR_RANGES = 1,
parameter integer C_AXI_ID_WIDTH = 1,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_PROTOCOL = 0,
parameter [C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64-1:0] C_M_AXI_BASE_ADDR = {C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64{1'b1}},
parameter [C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64-1:0] C_M_AXI_HIGH_ADDR = {C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64{1'b0}},
parameter [C_NUM_SLAVE_SLOTS*64-1:0] C_S_AXI_BASE_ID = {C_NUM_SLAVE_SLOTS*64{1'b0}},
parameter [C_NUM_SLAVE_SLOTS*64-1:0] C_S_AXI_HIGH_ID = {C_NUM_SLAVE_SLOTS*64{1'b0}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_THREAD_ID_WIDTH = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_AWUSER_WIDTH = 1,
parameter integer C_AXI_ARUSER_WIDTH = 1,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter [C_NUM_SLAVE_SLOTS-1:0] C_S_AXI_SUPPORTS_WRITE = {C_NUM_SLAVE_SLOTS{1'b1}},
parameter [C_NUM_SLAVE_SLOTS-1:0] C_S_AXI_SUPPORTS_READ = {C_NUM_SLAVE_SLOTS{1'b1}},
parameter [C_NUM_MASTER_SLOTS-1:0] C_M_AXI_SUPPORTS_WRITE = {C_NUM_MASTER_SLOTS{1'b1}},
parameter [C_NUM_MASTER_SLOTS-1:0] C_M_AXI_SUPPORTS_READ = {C_NUM_MASTER_SLOTS{1'b1}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_WRITE_CONNECTIVITY = {C_NUM_MASTER_SLOTS*32{1'b1}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_READ_CONNECTIVITY = {C_NUM_MASTER_SLOTS*32{1'b1}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_SINGLE_THREAD = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_WRITE_ACCEPTANCE = {C_NUM_SLAVE_SLOTS{32'h00000001}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_READ_ACCEPTANCE = {C_NUM_SLAVE_SLOTS{32'h00000001}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_WRITE_ISSUING = {C_NUM_MASTER_SLOTS{32'h00000001}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_READ_ISSUING = {C_NUM_MASTER_SLOTS{32'h00000001}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_ARB_PRIORITY = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_SECURE = {C_NUM_MASTER_SLOTS{32'h00000000}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_ERR_MODE = {C_NUM_MASTER_SLOTS{32'h00000000}},
parameter integer C_RANGE_CHECK = 0,
parameter integer C_ADDR_DECODE = 0,
parameter [(C_NUM_MASTER_SLOTS+1)*32-1:0] C_W_ISSUE_WIDTH = {C_NUM_MASTER_SLOTS+1{32'h00000000}},
parameter [(C_NUM_MASTER_SLOTS+1)*32-1:0] C_R_ISSUE_WIDTH = {C_NUM_MASTER_SLOTS+1{32'h00000000}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_W_ACCEPT_WIDTH = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_R_ACCEPT_WIDTH = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter integer C_DEBUG = 1
)
(
// Global Signals
input wire ACLK,
input wire ARESETN,
// Slave Interface Write Address Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_AWID,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR,
input wire [C_NUM_SLAVE_SLOTS*8-1:0] S_AXI_AWLEN,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_AWSIZE,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_AWBURST,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_AWLOCK,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_AWCACHE,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_AWPROT,
// input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_AWREGION,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_AWQOS,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_AWVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_AWREADY,
// Slave Interface Write Data Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_WID,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_WLAST,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_WVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_WREADY,
// Slave Interface Write Response Ports
output wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_BID,
output wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_BRESP,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_BVALID,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_BREADY,
// Slave Interface Read Address Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_ARID,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR,
input wire [C_NUM_SLAVE_SLOTS*8-1:0] S_AXI_ARLEN,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_ARSIZE,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_ARBURST,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_ARLOCK,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_ARCACHE,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_ARPROT,
// input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_ARREGION,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_ARQOS,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_ARVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_ARREADY,
// Slave Interface Read Data Ports
output wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_RID,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA,
output wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_RRESP,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_RLAST,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_RVALID,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_RREADY,
// Master Interface Write Address Port
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_AWID,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR,
output wire [C_NUM_MASTER_SLOTS*8-1:0] M_AXI_AWLEN,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_AWSIZE,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_AWBURST,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_AWLOCK,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_AWCACHE,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_AWPROT,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_AWREGION,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_AWQOS,
output wire [C_NUM_MASTER_SLOTS*C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_AWVALID,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_AWREADY,
// Master Interface Write Data Ports
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_WID,
output wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA,
output wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_WLAST,
output wire [C_NUM_MASTER_SLOTS*C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_WVALID,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_WREADY,
// Master Interface Write Response Ports
input wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_BID,
input wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_BRESP,
input wire [C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_BVALID,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_BREADY,
// Master Interface Read Address Port
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_ARID,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR,
output wire [C_NUM_MASTER_SLOTS*8-1:0] M_AXI_ARLEN,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_ARSIZE,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_ARBURST,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_ARLOCK,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_ARCACHE,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_ARPROT,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_ARREGION,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_ARQOS,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_ARVALID,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_ARREADY,
// Master Interface Read Data Ports
input wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_RID,
input wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA,
input wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_RRESP,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_RLAST,
input wire [C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_RVALID,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_RREADY
);
localparam integer P_AXI4 = 0;
localparam integer P_AXI3 = 1;
localparam integer P_AXILITE = 2;
localparam integer P_WRITE = 0;
localparam integer P_READ = 1;
localparam integer P_NUM_MASTER_SLOTS_LOG = f_ceil_log2(C_NUM_MASTER_SLOTS);
localparam integer P_NUM_SLAVE_SLOTS_LOG = f_ceil_log2((C_NUM_SLAVE_SLOTS>1) ? C_NUM_SLAVE_SLOTS : 2);
localparam integer P_AXI_WID_WIDTH = (C_AXI_PROTOCOL == P_AXI3) ? C_AXI_ID_WIDTH : 1;
localparam integer P_ST_AWMESG_WIDTH = 2+4+4 + C_AXI_AWUSER_WIDTH;
localparam integer P_AA_AWMESG_WIDTH = C_AXI_ID_WIDTH + C_AXI_ADDR_WIDTH + 8+3+2+3+4 + P_ST_AWMESG_WIDTH;
localparam integer P_ST_ARMESG_WIDTH = 2+4+4 + C_AXI_ARUSER_WIDTH;
localparam integer P_AA_ARMESG_WIDTH = C_AXI_ID_WIDTH + C_AXI_ADDR_WIDTH + 8+3+2+3+4 + P_ST_ARMESG_WIDTH;
localparam integer P_ST_BMESG_WIDTH = 2 + C_AXI_BUSER_WIDTH;
localparam integer P_ST_RMESG_WIDTH = 2 + C_AXI_RUSER_WIDTH + C_AXI_DATA_WIDTH;
localparam integer P_WR_WMESG_WIDTH = C_AXI_DATA_WIDTH + C_AXI_DATA_WIDTH/8 + C_AXI_WUSER_WIDTH + P_AXI_WID_WIDTH;
localparam [31:0] P_BYPASS = 32'h00000000;
localparam [31:0] P_FWD_REV = 32'h00000001;
localparam [31:0] P_SIMPLE = 32'h00000007;
localparam [(C_NUM_MASTER_SLOTS+1)-1:0] P_M_AXI_SUPPORTS_READ = {1'b1, C_M_AXI_SUPPORTS_READ[0+:C_NUM_MASTER_SLOTS]};
localparam [(C_NUM_MASTER_SLOTS+1)-1:0] P_M_AXI_SUPPORTS_WRITE = {1'b1, C_M_AXI_SUPPORTS_WRITE[0+:C_NUM_MASTER_SLOTS]};
localparam [(C_NUM_MASTER_SLOTS+1)*32-1:0] P_M_AXI_WRITE_CONNECTIVITY = {{32{1'b1}}, C_M_AXI_WRITE_CONNECTIVITY[0+:C_NUM_MASTER_SLOTS*32]};
localparam [(C_NUM_MASTER_SLOTS+1)*32-1:0] P_M_AXI_READ_CONNECTIVITY = {{32{1'b1}}, C_M_AXI_READ_CONNECTIVITY[0+:C_NUM_MASTER_SLOTS*32]};
localparam [C_NUM_SLAVE_SLOTS*32-1:0] P_S_AXI_WRITE_CONNECTIVITY = f_si_write_connectivity(0);
localparam [C_NUM_SLAVE_SLOTS*32-1:0] P_S_AXI_READ_CONNECTIVITY = f_si_read_connectivity(0);
localparam [(C_NUM_MASTER_SLOTS+1)*32-1:0] P_M_AXI_READ_ISSUING = {32'h00000001, C_M_AXI_READ_ISSUING[0+:C_NUM_MASTER_SLOTS*32]};
localparam [(C_NUM_MASTER_SLOTS+1)*32-1:0] P_M_AXI_WRITE_ISSUING = {32'h00000001, C_M_AXI_WRITE_ISSUING[0+:C_NUM_MASTER_SLOTS*32]};
localparam P_DECERR = 2'b11;
//---------------------------------------------------------------------------
// Functions
//---------------------------------------------------------------------------
// Ceiling of log2(x)
function integer f_ceil_log2
(
input integer x
);
integer acc;
begin
acc=0;
while ((2**acc) < x)
acc = acc + 1;
f_ceil_log2 = acc;
end
endfunction
// Isolate thread bits of input S_ID and add to BASE_ID (RNG00) to form MI-side ID value
// only for end-point SI-slots
function [C_AXI_ID_WIDTH-1:0] f_extend_ID
(
input [C_AXI_ID_WIDTH-1:0] s_id,
input integer slot
);
begin
f_extend_ID = C_S_AXI_BASE_ID[slot*64+:C_AXI_ID_WIDTH] | (s_id & (C_S_AXI_BASE_ID[slot*64+:C_AXI_ID_WIDTH] ^ C_S_AXI_HIGH_ID[slot*64+:C_AXI_ID_WIDTH]));
end
endfunction
// Write connectivity array transposed
function [C_NUM_SLAVE_SLOTS*32-1:0] f_si_write_connectivity
(
input integer null_arg
);
integer si_slot;
integer mi_slot;
reg [C_NUM_SLAVE_SLOTS*32-1:0] result;
begin
result = {C_NUM_SLAVE_SLOTS*32{1'b1}};
for (si_slot=0; si_slot<C_NUM_SLAVE_SLOTS; si_slot=si_slot+1) begin
for (mi_slot=0; mi_slot<C_NUM_MASTER_SLOTS; mi_slot=mi_slot+1) begin
result[si_slot*32+mi_slot] = C_M_AXI_WRITE_CONNECTIVITY[mi_slot*32+si_slot];
end
end
f_si_write_connectivity = result;
end
endfunction
// Read connectivity array transposed
function [C_NUM_SLAVE_SLOTS*32-1:0] f_si_read_connectivity
(
input integer null_arg
);
integer si_slot;
integer mi_slot;
reg [C_NUM_SLAVE_SLOTS*32-1:0] result;
begin
result = {C_NUM_SLAVE_SLOTS*32{1'b1}};
for (si_slot=0; si_slot<C_NUM_SLAVE_SLOTS; si_slot=si_slot+1) begin
for (mi_slot=0; mi_slot<C_NUM_MASTER_SLOTS; mi_slot=mi_slot+1) begin
result[si_slot*32+mi_slot] = C_M_AXI_READ_CONNECTIVITY[mi_slot*32+si_slot];
end
end
f_si_read_connectivity = result;
end
endfunction
genvar gen_si_slot;
genvar gen_mi_slot;
wire [C_NUM_SLAVE_SLOTS*P_ST_AWMESG_WIDTH-1:0] si_st_awmesg ;
wire [C_NUM_SLAVE_SLOTS*P_ST_AWMESG_WIDTH-1:0] st_tmp_awmesg ;
wire [C_NUM_SLAVE_SLOTS*P_AA_AWMESG_WIDTH-1:0] tmp_aa_awmesg ;
wire [P_AA_AWMESG_WIDTH-1:0] aa_mi_awmesg ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] st_aa_awid ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] st_aa_awaddr ;
wire [C_NUM_SLAVE_SLOTS*8-1:0] st_aa_awlen ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] st_aa_awsize ;
wire [C_NUM_SLAVE_SLOTS*2-1:0] st_aa_awlock ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] st_aa_awprot ;
wire [C_NUM_SLAVE_SLOTS*4-1:0] st_aa_awregion ;
wire [C_NUM_SLAVE_SLOTS*8-1:0] st_aa_awerror ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_aa_awtarget_hot ;
wire [C_NUM_SLAVE_SLOTS*(P_NUM_MASTER_SLOTS_LOG+1)-1:0] st_aa_awtarget_enc ;
wire [P_NUM_SLAVE_SLOTS_LOG*1-1:0] aa_wm_awgrant_enc ;
wire [(C_NUM_MASTER_SLOTS+1)-1:0] aa_mi_awtarget_hot ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_aa_awvalid_qual ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_ss_awvalid ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_ss_awready ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] ss_wr_awvalid ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] ss_wr_awready ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] ss_aa_awvalid ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] ss_aa_awready ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] sa_wm_awvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] sa_wm_awready ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_awvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_awready ;
wire aa_sa_awvalid ;
wire aa_sa_awready ;
wire aa_mi_arready ;
wire mi_awvalid_en ;
wire sa_wm_awvalid_en ;
wire sa_wm_awready_mux ;
wire [C_NUM_SLAVE_SLOTS*P_ST_ARMESG_WIDTH-1:0] si_st_armesg ;
wire [C_NUM_SLAVE_SLOTS*P_ST_ARMESG_WIDTH-1:0] st_tmp_armesg ;
wire [C_NUM_SLAVE_SLOTS*P_AA_ARMESG_WIDTH-1:0] tmp_aa_armesg ;
wire [P_AA_ARMESG_WIDTH-1:0] aa_mi_armesg ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] st_aa_arid ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] st_aa_araddr ;
wire [C_NUM_SLAVE_SLOTS*8-1:0] st_aa_arlen ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] st_aa_arsize ;
wire [C_NUM_SLAVE_SLOTS*2-1:0] st_aa_arlock ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] st_aa_arprot ;
wire [C_NUM_SLAVE_SLOTS*4-1:0] st_aa_arregion ;
wire [C_NUM_SLAVE_SLOTS*8-1:0] st_aa_arerror ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_aa_artarget_hot ;
wire [C_NUM_SLAVE_SLOTS*(P_NUM_MASTER_SLOTS_LOG+1)-1:0] st_aa_artarget_enc ;
wire [(C_NUM_MASTER_SLOTS+1)-1:0] aa_mi_artarget_hot ;
wire [P_NUM_SLAVE_SLOTS_LOG*1-1:0] aa_mi_argrant_enc ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_aa_arvalid_qual ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_aa_arvalid ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_aa_arready ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_arvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_arready ;
wire aa_mi_arvalid ;
wire mi_awready_mux ;
wire [C_NUM_SLAVE_SLOTS*P_ST_BMESG_WIDTH-1:0] st_si_bmesg ;
wire [(C_NUM_MASTER_SLOTS+1)*P_ST_BMESG_WIDTH-1:0] st_mr_bmesg ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] st_mr_bid ;
wire [(C_NUM_MASTER_SLOTS+1)*2-1:0] st_mr_bresp ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_BUSER_WIDTH-1:0] st_mr_buser ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] st_mr_bvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] st_mr_bready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_tmp_bready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_tmp_bid_target ;
wire [(C_NUM_MASTER_SLOTS+1)*C_NUM_SLAVE_SLOTS-1:0] tmp_mr_bid_target ;
wire [(C_NUM_MASTER_SLOTS+1)*P_NUM_SLAVE_SLOTS_LOG-1:0] debug_bid_target_i ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] bid_match ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] mi_bid ;
wire [(C_NUM_MASTER_SLOTS+1)*2-1:0] mi_bresp ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_BUSER_WIDTH-1:0] mi_buser ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_bvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_bready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] bready_carry ;
wire [C_NUM_SLAVE_SLOTS*P_ST_RMESG_WIDTH-1:0] st_si_rmesg ;
wire [(C_NUM_MASTER_SLOTS+1)*P_ST_RMESG_WIDTH-1:0] st_mr_rmesg ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] st_mr_rid ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH-1:0] st_mr_rdata ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_RUSER_WIDTH-1:0] st_mr_ruser ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] st_mr_rlast ;
wire [(C_NUM_MASTER_SLOTS+1)*2-1:0] st_mr_rresp ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] st_mr_rvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] st_mr_rready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_tmp_rready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_tmp_rid_target ;
wire [(C_NUM_MASTER_SLOTS+1)*C_NUM_SLAVE_SLOTS-1:0] tmp_mr_rid_target ;
wire [(C_NUM_MASTER_SLOTS+1)*P_NUM_SLAVE_SLOTS_LOG-1:0] debug_rid_target_i ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] rid_match ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] mi_rid ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH-1:0] mi_rdata ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_RUSER_WIDTH-1:0] mi_ruser ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_rlast ;
wire [(C_NUM_MASTER_SLOTS+1)*2-1:0] mi_rresp ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_rvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_rready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] rready_carry ;
wire [C_NUM_SLAVE_SLOTS*P_WR_WMESG_WIDTH-1:0] si_wr_wmesg ;
wire [C_NUM_SLAVE_SLOTS*P_WR_WMESG_WIDTH-1:0] wr_wm_wmesg ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] wr_wm_wlast ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] wr_tmp_wvalid ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] wr_tmp_wready ;
wire [(C_NUM_MASTER_SLOTS+1)*C_NUM_SLAVE_SLOTS-1:0] tmp_wm_wvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*C_NUM_SLAVE_SLOTS-1:0] tmp_wm_wready ;
wire [(C_NUM_MASTER_SLOTS+1)*P_WR_WMESG_WIDTH-1:0] wm_mr_wmesg ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH-1:0] wm_mr_wdata ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH/8-1:0] wm_mr_wstrb ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] wm_mr_wid ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_WUSER_WIDTH-1:0] wm_mr_wuser ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] wm_mr_wlast ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] wm_mr_wvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] wm_mr_wready ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH-1:0] mi_wdata ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH/8-1:0] mi_wstrb ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_WUSER_WIDTH-1:0] mi_wuser ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] mi_wid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_wlast ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_wvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_wready ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] w_cmd_push ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] w_cmd_pop ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] r_cmd_push ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] r_cmd_pop ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_awmaxissuing ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_armaxissuing ;
reg [(C_NUM_MASTER_SLOTS+1)*8-1:0] w_issuing_cnt ;
reg [(C_NUM_MASTER_SLOTS+1)*8-1:0] r_issuing_cnt ;
reg [8-1:0] debug_aw_trans_seq_i ;
reg [8-1:0] debug_ar_trans_seq_i ;
wire [(C_NUM_MASTER_SLOTS+1)*8-1:0] debug_w_trans_seq_i ;
reg [(C_NUM_MASTER_SLOTS+1)*8-1:0] debug_w_beat_cnt_i ;
reg aresetn_d = 1'b0; // Reset delay register
always @(posedge ACLK) begin
if (~ARESETN) begin
aresetn_d <= 1'b0;
end else begin
aresetn_d <= ARESETN;
end
end
wire reset;
assign reset = ~aresetn_d;
generate
for (gen_si_slot=0; gen_si_slot<C_NUM_SLAVE_SLOTS; gen_si_slot=gen_si_slot+1) begin : gen_slave_slots
if (C_S_AXI_SUPPORTS_READ[gen_si_slot]) begin : gen_si_read
axi_crossbar_v2_1_si_transactor # // "ST": SI Transactor (read channel)
(
.C_FAMILY (C_FAMILY),
.C_SI (gen_si_slot),
.C_DIR (P_READ),
.C_NUM_ADDR_RANGES (C_NUM_ADDR_RANGES),
.C_NUM_M (C_NUM_MASTER_SLOTS),
.C_NUM_M_LOG (P_NUM_MASTER_SLOTS_LOG),
.C_ACCEPTANCE (C_S_AXI_READ_ACCEPTANCE[gen_si_slot*32+:32]),
.C_ACCEPTANCE_LOG (C_R_ACCEPT_WIDTH[gen_si_slot*32+:32]),
.C_ID_WIDTH (C_AXI_ID_WIDTH),
.C_THREAD_ID_WIDTH (C_S_AXI_THREAD_ID_WIDTH[gen_si_slot*32+:32]),
.C_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AMESG_WIDTH (P_ST_ARMESG_WIDTH),
.C_RMESG_WIDTH (P_ST_RMESG_WIDTH),
.C_BASE_ID (C_S_AXI_BASE_ID[gen_si_slot*64+:C_AXI_ID_WIDTH]),
.C_HIGH_ID (C_S_AXI_HIGH_ID[gen_si_slot*64+:C_AXI_ID_WIDTH]),
.C_SINGLE_THREAD (C_S_AXI_SINGLE_THREAD[gen_si_slot*32+:32]),
.C_BASE_ADDR (C_M_AXI_BASE_ADDR),
.C_HIGH_ADDR (C_M_AXI_HIGH_ADDR),
.C_TARGET_QUAL (P_S_AXI_READ_CONNECTIVITY[gen_si_slot*32+:C_NUM_MASTER_SLOTS]),
.C_M_AXI_SECURE (C_M_AXI_SECURE),
.C_RANGE_CHECK (C_RANGE_CHECK),
.C_ADDR_DECODE (C_ADDR_DECODE),
.C_ERR_MODE (C_M_AXI_ERR_MODE),
.C_DEBUG (C_DEBUG)
)
si_transactor_ar
(
.ACLK (ACLK),
.ARESET (reset),
.S_AID (f_extend_ID(S_AXI_ARID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH], gen_si_slot)),
.S_AADDR (S_AXI_ARADDR[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH]),
.S_ALEN (S_AXI_ARLEN[gen_si_slot*8+:8]),
.S_ASIZE (S_AXI_ARSIZE[gen_si_slot*3+:3]),
.S_ABURST (S_AXI_ARBURST[gen_si_slot*2+:2]),
.S_ALOCK (S_AXI_ARLOCK[gen_si_slot*2+:2]),
.S_APROT (S_AXI_ARPROT[gen_si_slot*3+:3]),
// .S_AREGION (S_AXI_ARREGION[gen_si_slot*4+:4]),
.S_AMESG (si_st_armesg[gen_si_slot*P_ST_ARMESG_WIDTH+:P_ST_ARMESG_WIDTH]),
.S_AVALID (S_AXI_ARVALID[gen_si_slot]),
.S_AREADY (S_AXI_ARREADY[gen_si_slot]),
.M_AID (st_aa_arid[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.M_AADDR (st_aa_araddr[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH]),
.M_ALEN (st_aa_arlen[gen_si_slot*8+:8]),
.M_ASIZE (st_aa_arsize[gen_si_slot*3+:3]),
.M_ALOCK (st_aa_arlock[gen_si_slot*2+:2]),
.M_APROT (st_aa_arprot[gen_si_slot*3+:3]),
.M_AREGION (st_aa_arregion[gen_si_slot*4+:4]),
.M_AMESG (st_tmp_armesg[gen_si_slot*P_ST_ARMESG_WIDTH+:P_ST_ARMESG_WIDTH]),
.M_ATARGET_HOT (st_aa_artarget_hot[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.M_ATARGET_ENC (st_aa_artarget_enc[gen_si_slot*(P_NUM_MASTER_SLOTS_LOG+1)+:(P_NUM_MASTER_SLOTS_LOG+1)]),
.M_AERROR (st_aa_arerror[gen_si_slot*8+:8]),
.M_AVALID_QUAL (st_aa_arvalid_qual[gen_si_slot]),
.M_AVALID (st_aa_arvalid[gen_si_slot]),
.M_AREADY (st_aa_arready[gen_si_slot]),
.S_RID (S_AXI_RID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.S_RMESG (st_si_rmesg[gen_si_slot*P_ST_RMESG_WIDTH+:P_ST_RMESG_WIDTH]),
.S_RLAST (S_AXI_RLAST[gen_si_slot]),
.S_RVALID (S_AXI_RVALID[gen_si_slot]),
.S_RREADY (S_AXI_RREADY[gen_si_slot]),
.M_RID (st_mr_rid),
.M_RLAST (st_mr_rlast),
.M_RMESG (st_mr_rmesg),
.M_RVALID (st_mr_rvalid),
.M_RREADY (st_tmp_rready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.M_RTARGET (st_tmp_rid_target[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.DEBUG_A_TRANS_SEQ (C_DEBUG ? debug_ar_trans_seq_i : 8'h0)
);
assign si_st_armesg[gen_si_slot*P_ST_ARMESG_WIDTH+:P_ST_ARMESG_WIDTH] = {
S_AXI_ARUSER[gen_si_slot*C_AXI_ARUSER_WIDTH+:C_AXI_ARUSER_WIDTH],
S_AXI_ARQOS[gen_si_slot*4+:4],
S_AXI_ARCACHE[gen_si_slot*4+:4],
S_AXI_ARBURST[gen_si_slot*2+:2]
};
assign tmp_aa_armesg[gen_si_slot*P_AA_ARMESG_WIDTH+:P_AA_ARMESG_WIDTH] = {
st_tmp_armesg[gen_si_slot*P_ST_ARMESG_WIDTH+:P_ST_ARMESG_WIDTH],
st_aa_arregion[gen_si_slot*4+:4],
st_aa_arprot[gen_si_slot*3+:3],
st_aa_arlock[gen_si_slot*2+:2],
st_aa_arsize[gen_si_slot*3+:3],
st_aa_arlen[gen_si_slot*8+:8],
st_aa_araddr[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH],
st_aa_arid[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]
};
assign S_AXI_RRESP[gen_si_slot*2+:2] = st_si_rmesg[gen_si_slot*P_ST_RMESG_WIDTH+:2];
assign S_AXI_RUSER[gen_si_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] = st_si_rmesg[gen_si_slot*P_ST_RMESG_WIDTH+2 +: C_AXI_RUSER_WIDTH];
assign S_AXI_RDATA[gen_si_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = st_si_rmesg[gen_si_slot*P_ST_RMESG_WIDTH+2+C_AXI_RUSER_WIDTH +: C_AXI_DATA_WIDTH];
end else begin : gen_no_si_read
assign S_AXI_ARREADY[gen_si_slot] = 1'b0;
assign st_aa_arvalid[gen_si_slot] = 1'b0;
assign st_aa_arvalid_qual[gen_si_slot] = 1'b1;
assign tmp_aa_armesg[gen_si_slot*P_AA_ARMESG_WIDTH+:P_AA_ARMESG_WIDTH] = 0;
assign S_AXI_RID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = 0;
assign S_AXI_RRESP[gen_si_slot*2+:2] = 0;
assign S_AXI_RUSER[gen_si_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] = 0;
assign S_AXI_RDATA[gen_si_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = 0;
assign S_AXI_RVALID[gen_si_slot] = 1'b0;
assign S_AXI_RLAST[gen_si_slot] = 1'b0;
assign st_tmp_rready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)] = 0;
assign st_aa_artarget_hot[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)] = 0;
end // gen_si_read
if (C_S_AXI_SUPPORTS_WRITE[gen_si_slot]) begin : gen_si_write
axi_crossbar_v2_1_si_transactor # // "ST": SI Transactor (write channel)
(
.C_FAMILY (C_FAMILY),
.C_SI (gen_si_slot),
.C_DIR (P_WRITE),
.C_NUM_ADDR_RANGES (C_NUM_ADDR_RANGES),
.C_NUM_M (C_NUM_MASTER_SLOTS),
.C_NUM_M_LOG (P_NUM_MASTER_SLOTS_LOG),
.C_ACCEPTANCE (C_S_AXI_WRITE_ACCEPTANCE[gen_si_slot*32+:32]),
.C_ACCEPTANCE_LOG (C_W_ACCEPT_WIDTH[gen_si_slot*32+:32]),
.C_ID_WIDTH (C_AXI_ID_WIDTH),
.C_THREAD_ID_WIDTH (C_S_AXI_THREAD_ID_WIDTH[gen_si_slot*32+:32]),
.C_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AMESG_WIDTH (P_ST_AWMESG_WIDTH),
.C_RMESG_WIDTH (P_ST_BMESG_WIDTH),
.C_BASE_ID (C_S_AXI_BASE_ID[gen_si_slot*64+:C_AXI_ID_WIDTH]),
.C_HIGH_ID (C_S_AXI_HIGH_ID[gen_si_slot*64+:C_AXI_ID_WIDTH]),
.C_SINGLE_THREAD (C_S_AXI_SINGLE_THREAD[gen_si_slot*32+:32]),
.C_BASE_ADDR (C_M_AXI_BASE_ADDR),
.C_HIGH_ADDR (C_M_AXI_HIGH_ADDR),
.C_TARGET_QUAL (P_S_AXI_WRITE_CONNECTIVITY[gen_si_slot*32+:C_NUM_MASTER_SLOTS]),
.C_M_AXI_SECURE (C_M_AXI_SECURE),
.C_RANGE_CHECK (C_RANGE_CHECK),
.C_ADDR_DECODE (C_ADDR_DECODE),
.C_ERR_MODE (C_M_AXI_ERR_MODE),
.C_DEBUG (C_DEBUG)
)
si_transactor_aw
(
.ACLK (ACLK),
.ARESET (reset),
.S_AID (f_extend_ID(S_AXI_AWID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH], gen_si_slot)),
.S_AADDR (S_AXI_AWADDR[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH]),
.S_ALEN (S_AXI_AWLEN[gen_si_slot*8+:8]),
.S_ASIZE (S_AXI_AWSIZE[gen_si_slot*3+:3]),
.S_ABURST (S_AXI_AWBURST[gen_si_slot*2+:2]),
.S_ALOCK (S_AXI_AWLOCK[gen_si_slot*2+:2]),
.S_APROT (S_AXI_AWPROT[gen_si_slot*3+:3]),
// .S_AREGION (S_AXI_AWREGION[gen_si_slot*4+:4]),
.S_AMESG (si_st_awmesg[gen_si_slot*P_ST_AWMESG_WIDTH+:P_ST_AWMESG_WIDTH]),
.S_AVALID (S_AXI_AWVALID[gen_si_slot]),
.S_AREADY (S_AXI_AWREADY[gen_si_slot]),
.M_AID (st_aa_awid[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.M_AADDR (st_aa_awaddr[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH]),
.M_ALEN (st_aa_awlen[gen_si_slot*8+:8]),
.M_ASIZE (st_aa_awsize[gen_si_slot*3+:3]),
.M_ALOCK (st_aa_awlock[gen_si_slot*2+:2]),
.M_APROT (st_aa_awprot[gen_si_slot*3+:3]),
.M_AREGION (st_aa_awregion[gen_si_slot*4+:4]),
.M_AMESG (st_tmp_awmesg[gen_si_slot*P_ST_AWMESG_WIDTH+:P_ST_AWMESG_WIDTH]),
.M_ATARGET_HOT (st_aa_awtarget_hot[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.M_ATARGET_ENC (st_aa_awtarget_enc[gen_si_slot*(P_NUM_MASTER_SLOTS_LOG+1)+:(P_NUM_MASTER_SLOTS_LOG+1)]),
.M_AERROR (st_aa_awerror[gen_si_slot*8+:8]),
.M_AVALID_QUAL (st_aa_awvalid_qual[gen_si_slot]),
.M_AVALID (st_ss_awvalid[gen_si_slot]),
.M_AREADY (st_ss_awready[gen_si_slot]),
.S_RID (S_AXI_BID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.S_RMESG (st_si_bmesg[gen_si_slot*P_ST_BMESG_WIDTH+:P_ST_BMESG_WIDTH]),
.S_RLAST (),
.S_RVALID (S_AXI_BVALID[gen_si_slot]),
.S_RREADY (S_AXI_BREADY[gen_si_slot]),
.M_RID (st_mr_bid),
.M_RLAST ({(C_NUM_MASTER_SLOTS+1){1'b1}}),
.M_RMESG (st_mr_bmesg),
.M_RVALID (st_mr_bvalid),
.M_RREADY (st_tmp_bready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.M_RTARGET (st_tmp_bid_target[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.DEBUG_A_TRANS_SEQ (C_DEBUG ? debug_aw_trans_seq_i : 8'h0)
);
// Note: Concatenation of mesg signals is from MSB to LSB; assignments that chop mesg signals appear in opposite order.
assign si_st_awmesg[gen_si_slot*P_ST_AWMESG_WIDTH+:P_ST_AWMESG_WIDTH] = {
S_AXI_AWUSER[gen_si_slot*C_AXI_AWUSER_WIDTH+:C_AXI_AWUSER_WIDTH],
S_AXI_AWQOS[gen_si_slot*4+:4],
S_AXI_AWCACHE[gen_si_slot*4+:4],
S_AXI_AWBURST[gen_si_slot*2+:2]
};
assign tmp_aa_awmesg[gen_si_slot*P_AA_AWMESG_WIDTH+:P_AA_AWMESG_WIDTH] = {
st_tmp_awmesg[gen_si_slot*P_ST_AWMESG_WIDTH+:P_ST_AWMESG_WIDTH],
st_aa_awregion[gen_si_slot*4+:4],
st_aa_awprot[gen_si_slot*3+:3],
st_aa_awlock[gen_si_slot*2+:2],
st_aa_awsize[gen_si_slot*3+:3],
st_aa_awlen[gen_si_slot*8+:8],
st_aa_awaddr[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH],
st_aa_awid[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]
};
assign S_AXI_BRESP[gen_si_slot*2+:2] = st_si_bmesg[gen_si_slot*P_ST_BMESG_WIDTH+:2];
assign S_AXI_BUSER[gen_si_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] = st_si_bmesg[gen_si_slot*P_ST_BMESG_WIDTH+2 +: C_AXI_BUSER_WIDTH];
// AW SI-transactor transfer completes upon completion of both W-router address acceptance (command push) and AW arbitration
axi_crossbar_v2_1_splitter # // "SS": Splitter from SI-Transactor (write channel)
(
.C_NUM_M (2)
)
splitter_aw_si
(
.ACLK (ACLK),
.ARESET (reset),
.S_VALID (st_ss_awvalid[gen_si_slot]),
.S_READY (st_ss_awready[gen_si_slot]),
.M_VALID ({ss_wr_awvalid[gen_si_slot], ss_aa_awvalid[gen_si_slot]}),
.M_READY ({ss_wr_awready[gen_si_slot], ss_aa_awready[gen_si_slot]})
);
axi_crossbar_v2_1_wdata_router # // "WR": Write data Router
(
.C_FAMILY (C_FAMILY),
.C_NUM_MASTER_SLOTS (C_NUM_MASTER_SLOTS+1),
.C_SELECT_WIDTH (P_NUM_MASTER_SLOTS_LOG+1),
.C_WMESG_WIDTH (P_WR_WMESG_WIDTH),
.C_FIFO_DEPTH_LOG (C_W_ACCEPT_WIDTH[gen_si_slot*32+:6])
)
wdata_router_w
(
.ACLK (ACLK),
.ARESET (reset),
// Write transfer input from the current SI-slot
.S_WMESG (si_wr_wmesg[gen_si_slot*P_WR_WMESG_WIDTH+:P_WR_WMESG_WIDTH]),
.S_WLAST (S_AXI_WLAST[gen_si_slot]),
.S_WVALID (S_AXI_WVALID[gen_si_slot]),
.S_WREADY (S_AXI_WREADY[gen_si_slot]),
// Vector of write transfer outputs to each MI-slot's W-mux
.M_WMESG (wr_wm_wmesg[gen_si_slot*(P_WR_WMESG_WIDTH)+:P_WR_WMESG_WIDTH]),
.M_WLAST (wr_wm_wlast[gen_si_slot]),
.M_WVALID (wr_tmp_wvalid[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.M_WREADY (wr_tmp_wready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
// AW command push from local SI-slot
.S_ASELECT (st_aa_awtarget_enc[gen_si_slot*(P_NUM_MASTER_SLOTS_LOG+1)+:(P_NUM_MASTER_SLOTS_LOG+1)]), // Target MI-slot
.S_AVALID (ss_wr_awvalid[gen_si_slot]),
.S_AREADY (ss_wr_awready[gen_si_slot])
);
assign si_wr_wmesg[gen_si_slot*P_WR_WMESG_WIDTH+:P_WR_WMESG_WIDTH] = {
((C_AXI_PROTOCOL == P_AXI3) ? f_extend_ID(S_AXI_WID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH], gen_si_slot) : 1'b0),
S_AXI_WUSER[gen_si_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH],
S_AXI_WSTRB[gen_si_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8],
S_AXI_WDATA[gen_si_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH]
};
end else begin : gen_no_si_write
assign S_AXI_AWREADY[gen_si_slot] = 1'b0;
assign ss_aa_awvalid[gen_si_slot] = 1'b0;
assign st_aa_awvalid_qual[gen_si_slot] = 1'b1;
assign tmp_aa_awmesg[gen_si_slot*P_AA_AWMESG_WIDTH+:P_AA_AWMESG_WIDTH] = 0;
assign S_AXI_BID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = 0;
assign S_AXI_BRESP[gen_si_slot*2+:2] = 0;
assign S_AXI_BUSER[gen_si_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] = 0;
assign S_AXI_BVALID[gen_si_slot] = 1'b0;
assign st_tmp_bready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)] = 0;
assign S_AXI_WREADY[gen_si_slot] = 1'b0;
assign wr_wm_wmesg[gen_si_slot*(P_WR_WMESG_WIDTH)+:P_WR_WMESG_WIDTH] = 0;
assign wr_wm_wlast[gen_si_slot] = 1'b0;
assign wr_tmp_wvalid[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)] = 0;
assign st_aa_awtarget_hot[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)] = 0;
end // gen_si_write
end // gen_slave_slots
for (gen_mi_slot=0; gen_mi_slot<C_NUM_MASTER_SLOTS+1; gen_mi_slot=gen_mi_slot+1) begin : gen_master_slots
if (P_M_AXI_SUPPORTS_READ[gen_mi_slot]) begin : gen_mi_read
if (C_NUM_SLAVE_SLOTS>1) begin : gen_rid_decoder
axi_crossbar_v2_1_addr_decoder #
(
.C_FAMILY (C_FAMILY),
.C_NUM_TARGETS (C_NUM_SLAVE_SLOTS),
.C_NUM_TARGETS_LOG (P_NUM_SLAVE_SLOTS_LOG),
.C_NUM_RANGES (1),
.C_ADDR_WIDTH (C_AXI_ID_WIDTH),
.C_TARGET_ENC (C_DEBUG),
.C_TARGET_HOT (1),
.C_REGION_ENC (0),
.C_BASE_ADDR (C_S_AXI_BASE_ID),
.C_HIGH_ADDR (C_S_AXI_HIGH_ID),
.C_TARGET_QUAL (P_M_AXI_READ_CONNECTIVITY[gen_mi_slot*32+:C_NUM_SLAVE_SLOTS]),
.C_RESOLUTION (0)
)
rid_decoder_inst
(
.ADDR (st_mr_rid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.TARGET_HOT (tmp_mr_rid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS]),
.TARGET_ENC (debug_rid_target_i[gen_mi_slot*P_NUM_SLAVE_SLOTS_LOG+:P_NUM_SLAVE_SLOTS_LOG]),
.MATCH (rid_match[gen_mi_slot]),
.REGION ()
);
end else begin : gen_no_rid_decoder
assign tmp_mr_rid_target[gen_mi_slot] = 1'b1; // All response transfers route to solo SI-slot.
assign rid_match[gen_mi_slot] = 1'b1;
end
assign st_mr_rmesg[gen_mi_slot*P_ST_RMESG_WIDTH+:P_ST_RMESG_WIDTH] = {
st_mr_rdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH],
st_mr_ruser[gen_mi_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH],
st_mr_rresp[gen_mi_slot*2+:2]
};
end else begin : gen_no_mi_read
assign tmp_mr_rid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS] = 0;
assign rid_match[gen_mi_slot] = 1'b0;
assign st_mr_rmesg[gen_mi_slot*P_ST_RMESG_WIDTH+:P_ST_RMESG_WIDTH] = 0;
end // gen_mi_read
if (P_M_AXI_SUPPORTS_WRITE[gen_mi_slot]) begin : gen_mi_write
if (C_NUM_SLAVE_SLOTS>1) begin : gen_bid_decoder
axi_crossbar_v2_1_addr_decoder #
(
.C_FAMILY (C_FAMILY),
.C_NUM_TARGETS (C_NUM_SLAVE_SLOTS),
.C_NUM_TARGETS_LOG (P_NUM_SLAVE_SLOTS_LOG),
.C_NUM_RANGES (1),
.C_ADDR_WIDTH (C_AXI_ID_WIDTH),
.C_TARGET_ENC (C_DEBUG),
.C_TARGET_HOT (1),
.C_REGION_ENC (0),
.C_BASE_ADDR (C_S_AXI_BASE_ID),
.C_HIGH_ADDR (C_S_AXI_HIGH_ID),
.C_TARGET_QUAL (P_M_AXI_WRITE_CONNECTIVITY[gen_mi_slot*32+:C_NUM_SLAVE_SLOTS]),
.C_RESOLUTION (0)
)
bid_decoder_inst
(
.ADDR (st_mr_bid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.TARGET_HOT (tmp_mr_bid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS]),
.TARGET_ENC (debug_bid_target_i[gen_mi_slot*P_NUM_SLAVE_SLOTS_LOG+:P_NUM_SLAVE_SLOTS_LOG]),
.MATCH (bid_match[gen_mi_slot]),
.REGION ()
);
end else begin : gen_no_bid_decoder
assign tmp_mr_bid_target[gen_mi_slot] = 1'b1; // All response transfers route to solo SI-slot.
assign bid_match[gen_mi_slot] = 1'b1;
end
axi_crossbar_v2_1_wdata_mux # // "WM": Write data Mux, per MI-slot (incl error-handler)
(
.C_FAMILY (C_FAMILY),
.C_NUM_SLAVE_SLOTS (C_NUM_SLAVE_SLOTS),
.C_SELECT_WIDTH (P_NUM_SLAVE_SLOTS_LOG),
.C_WMESG_WIDTH (P_WR_WMESG_WIDTH),
.C_FIFO_DEPTH_LOG (C_W_ISSUE_WIDTH[gen_mi_slot*32+:6])
)
wdata_mux_w
(
.ACLK (ACLK),
.ARESET (reset),
// Vector of write transfer inputs from each SI-slot's W-router
.S_WMESG (wr_wm_wmesg),
.S_WLAST (wr_wm_wlast),
.S_WVALID (tmp_wm_wvalid[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS]),
.S_WREADY (tmp_wm_wready[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS]),
// Write transfer output to the current MI-slot
.M_WMESG (wm_mr_wmesg[gen_mi_slot*P_WR_WMESG_WIDTH+:P_WR_WMESG_WIDTH]),
.M_WLAST (wm_mr_wlast[gen_mi_slot]),
.M_WVALID (wm_mr_wvalid[gen_mi_slot]),
.M_WREADY (wm_mr_wready[gen_mi_slot]),
// AW command push from AW arbiter output
.S_ASELECT (aa_wm_awgrant_enc), // SI-slot selected by arbiter
.S_AVALID (sa_wm_awvalid[gen_mi_slot]),
.S_AREADY (sa_wm_awready[gen_mi_slot])
);
if (C_DEBUG) begin : gen_debug_w
// DEBUG WRITE BEAT COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_w_beat_cnt_i[gen_mi_slot*8+:8] <= 0;
end else begin
if (mi_wvalid[gen_mi_slot] & mi_wready[gen_mi_slot]) begin
if (mi_wlast[gen_mi_slot]) begin
debug_w_beat_cnt_i[gen_mi_slot*8+:8] <= 0;
end else begin
debug_w_beat_cnt_i[gen_mi_slot*8+:8] <= debug_w_beat_cnt_i[gen_mi_slot*8+:8] + 1;
end
end
end
end // clocked process
// DEBUG W-CHANNEL TRANSACTION SEQUENCE QUEUE
axi_data_fifo_v2_1_axic_srl_fifo #
(
.C_FAMILY (C_FAMILY),
.C_FIFO_WIDTH (8),
.C_FIFO_DEPTH_LOG (C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]),
.C_USE_FULL (0)
)
debug_w_seq_fifo
(
.ACLK (ACLK),
.ARESET (reset),
.S_MESG (debug_aw_trans_seq_i),
.S_VALID (sa_wm_awvalid[gen_mi_slot]),
.S_READY (),
.M_MESG (debug_w_trans_seq_i[gen_mi_slot*8+:8]),
.M_VALID (),
.M_READY (mi_wvalid[gen_mi_slot] & mi_wready[gen_mi_slot] & mi_wlast[gen_mi_slot])
);
end // gen_debug_w
assign wm_mr_wdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = wm_mr_wmesg[gen_mi_slot*P_WR_WMESG_WIDTH +: C_AXI_DATA_WIDTH];
assign wm_mr_wstrb[gen_mi_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8] = wm_mr_wmesg[gen_mi_slot*P_WR_WMESG_WIDTH+C_AXI_DATA_WIDTH +: C_AXI_DATA_WIDTH/8];
assign wm_mr_wuser[gen_mi_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH] = wm_mr_wmesg[gen_mi_slot*P_WR_WMESG_WIDTH+C_AXI_DATA_WIDTH+C_AXI_DATA_WIDTH/8 +: C_AXI_WUSER_WIDTH];
assign wm_mr_wid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = wm_mr_wmesg[gen_mi_slot*P_WR_WMESG_WIDTH+C_AXI_DATA_WIDTH+(C_AXI_DATA_WIDTH/8)+C_AXI_WUSER_WIDTH +: P_AXI_WID_WIDTH];
assign st_mr_bmesg[gen_mi_slot*P_ST_BMESG_WIDTH+:P_ST_BMESG_WIDTH] = {
st_mr_buser[gen_mi_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH],
st_mr_bresp[gen_mi_slot*2+:2]
};
end else begin : gen_no_mi_write
assign tmp_mr_bid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS] = 0;
assign bid_match[gen_mi_slot] = 1'b0;
assign wm_mr_wvalid[gen_mi_slot] = 0;
assign wm_mr_wlast[gen_mi_slot] = 0;
assign wm_mr_wdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = 0;
assign wm_mr_wstrb[gen_mi_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8] = 0;
assign wm_mr_wuser[gen_mi_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH] = 0;
assign wm_mr_wid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = 0;
assign st_mr_bmesg[gen_mi_slot*P_ST_BMESG_WIDTH+:P_ST_BMESG_WIDTH] = 0;
assign tmp_wm_wready[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS] = 0;
assign sa_wm_awready[gen_mi_slot] = 0;
end // gen_mi_write
for (gen_si_slot=0; gen_si_slot<C_NUM_SLAVE_SLOTS; gen_si_slot=gen_si_slot+1) begin : gen_trans_si
// Transpose handshakes from W-router (SxM) to W-mux (MxS).
assign tmp_wm_wvalid[gen_mi_slot*C_NUM_SLAVE_SLOTS+gen_si_slot] = wr_tmp_wvalid[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot];
assign wr_tmp_wready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] = tmp_wm_wready[gen_mi_slot*C_NUM_SLAVE_SLOTS+gen_si_slot];
// Transpose response enables from ID decoders (MxS) to si_transactors (SxM).
assign st_tmp_bid_target[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] = tmp_mr_bid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+gen_si_slot];
assign st_tmp_rid_target[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] = tmp_mr_rid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+gen_si_slot];
end // gen_trans_si
assign bready_carry[gen_mi_slot] = st_tmp_bready[gen_mi_slot];
assign rready_carry[gen_mi_slot] = st_tmp_rready[gen_mi_slot];
for (gen_si_slot=1; gen_si_slot<C_NUM_SLAVE_SLOTS; gen_si_slot=gen_si_slot+1) begin : gen_resp_carry_si
assign bready_carry[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] = // Generate M_BREADY if ...
bready_carry[(gen_si_slot-1)*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] | // For any SI-slot (OR carry-chain across all SI-slots), ...
st_tmp_bready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot]; // The write SI transactor indicates BREADY for that MI-slot.
assign rready_carry[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] = // Generate M_RREADY if ...
rready_carry[(gen_si_slot-1)*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] | // For any SI-slot (OR carry-chain across all SI-slots), ...
st_tmp_rready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot]; // The write SI transactor indicates RREADY for that MI-slot.
end // gen_resp_carry_si
assign w_cmd_push[gen_mi_slot] = mi_awvalid[gen_mi_slot] && mi_awready[gen_mi_slot] && P_M_AXI_SUPPORTS_WRITE[gen_mi_slot];
assign r_cmd_push[gen_mi_slot] = mi_arvalid[gen_mi_slot] && mi_arready[gen_mi_slot] && P_M_AXI_SUPPORTS_READ[gen_mi_slot];
assign w_cmd_pop[gen_mi_slot] = st_mr_bvalid[gen_mi_slot] && st_mr_bready[gen_mi_slot] && P_M_AXI_SUPPORTS_WRITE[gen_mi_slot];
assign r_cmd_pop[gen_mi_slot] = st_mr_rvalid[gen_mi_slot] && st_mr_rready[gen_mi_slot] && st_mr_rlast[gen_mi_slot] && P_M_AXI_SUPPORTS_READ[gen_mi_slot];
// Disqualify arbitration of SI-slot if targeted MI-slot has reached its issuing limit.
assign mi_awmaxissuing[gen_mi_slot] = (w_issuing_cnt[gen_mi_slot*8 +: (C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] ==
P_M_AXI_WRITE_ISSUING[gen_mi_slot*32 +: (C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)]) & ~w_cmd_pop[gen_mi_slot];
assign mi_armaxissuing[gen_mi_slot] = (r_issuing_cnt[gen_mi_slot*8 +: (C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] ==
P_M_AXI_READ_ISSUING[gen_mi_slot*32 +: (C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)]) & ~r_cmd_pop[gen_mi_slot];
always @(posedge ACLK) begin
if (reset) begin
w_issuing_cnt[gen_mi_slot*8+:8] <= 0; // Some high-order bits remain constant 0
r_issuing_cnt[gen_mi_slot*8+:8] <= 0; // Some high-order bits remain constant 0
end else begin
if (w_cmd_push[gen_mi_slot] && ~w_cmd_pop[gen_mi_slot]) begin
w_issuing_cnt[gen_mi_slot*8+:(C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] <= w_issuing_cnt[gen_mi_slot*8+:(C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] + 1;
end else if (w_cmd_pop[gen_mi_slot] && ~w_cmd_push[gen_mi_slot] && (|w_issuing_cnt[gen_mi_slot*8+:(C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)])) begin
w_issuing_cnt[gen_mi_slot*8+:(C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] <= w_issuing_cnt[gen_mi_slot*8+:(C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] - 1;
end
if (r_cmd_push[gen_mi_slot] && ~r_cmd_pop[gen_mi_slot]) begin
r_issuing_cnt[gen_mi_slot*8+:(C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] <= r_issuing_cnt[gen_mi_slot*8+:(C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] + 1;
end else if (r_cmd_pop[gen_mi_slot] && ~r_cmd_push[gen_mi_slot] && (|r_issuing_cnt[gen_mi_slot*8+:(C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)])) begin
r_issuing_cnt[gen_mi_slot*8+:(C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] <= r_issuing_cnt[gen_mi_slot*8+:(C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] - 1;
end
end
end // Clocked process
// Reg-slice must break combinatorial path from M_BID and M_RID inputs to M_BREADY and M_RREADY outputs.
// (See m_rready_i and m_resp_en combinatorial assignments in si_transactor.)
// Reg-slice incurs +1 latency, but no bubble-cycles.
axi_register_slice_v2_1_axi_register_slice # // "MR": MI-side R/B-channel Reg-slice, per MI-slot (pass-through if only 1 SI-slot configured)
(
.C_FAMILY (C_FAMILY),
.C_AXI_PROTOCOL ((C_AXI_PROTOCOL == P_AXI3) ? P_AXI3 : P_AXI4),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_ADDR_WIDTH (1),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS),
.C_AXI_AWUSER_WIDTH (1),
.C_AXI_ARUSER_WIDTH (1),
.C_AXI_WUSER_WIDTH (C_AXI_WUSER_WIDTH),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_REG_CONFIG_AW (P_BYPASS),
.C_REG_CONFIG_AR (P_BYPASS),
.C_REG_CONFIG_W (P_BYPASS),
.C_REG_CONFIG_R (P_M_AXI_SUPPORTS_READ[gen_mi_slot] ? P_FWD_REV : P_BYPASS),
.C_REG_CONFIG_B (P_M_AXI_SUPPORTS_WRITE[gen_mi_slot] ? P_SIMPLE : P_BYPASS)
)
reg_slice_mi
(
.aresetn (ARESETN),
.aclk (ACLK),
.s_axi_awid ({C_AXI_ID_WIDTH{1'b0}}),
.s_axi_awaddr ({1{1'b0}}),
.s_axi_awlen ({((C_AXI_PROTOCOL == P_AXI3) ? 4 : 8){1'b0}}),
.s_axi_awsize ({3{1'b0}}),
.s_axi_awburst ({2{1'b0}}),
.s_axi_awlock ({((C_AXI_PROTOCOL == P_AXI3) ? 2 : 1){1'b0}}),
.s_axi_awcache ({4{1'b0}}),
.s_axi_awprot ({3{1'b0}}),
.s_axi_awregion ({4{1'b0}}),
.s_axi_awqos ({4{1'b0}}),
.s_axi_awuser ({1{1'b0}}),
.s_axi_awvalid ({1{1'b0}}),
.s_axi_awready (),
.s_axi_wid (wm_mr_wid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.s_axi_wdata (wm_mr_wdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH]),
.s_axi_wstrb (wm_mr_wstrb[gen_mi_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8]),
.s_axi_wlast (wm_mr_wlast[gen_mi_slot]),
.s_axi_wuser (wm_mr_wuser[gen_mi_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH]),
.s_axi_wvalid (wm_mr_wvalid[gen_mi_slot]),
.s_axi_wready (wm_mr_wready[gen_mi_slot]),
.s_axi_bid (st_mr_bid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] ),
.s_axi_bresp (st_mr_bresp[gen_mi_slot*2+:2] ),
.s_axi_buser (st_mr_buser[gen_mi_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] ),
.s_axi_bvalid (st_mr_bvalid[gen_mi_slot*1+:1] ),
.s_axi_bready (st_mr_bready[gen_mi_slot*1+:1] ),
.s_axi_arid ({C_AXI_ID_WIDTH{1'b0}}),
.s_axi_araddr ({1{1'b0}}),
.s_axi_arlen ({((C_AXI_PROTOCOL == P_AXI3) ? 4 : 8){1'b0}}),
.s_axi_arsize ({3{1'b0}}),
.s_axi_arburst ({2{1'b0}}),
.s_axi_arlock ({((C_AXI_PROTOCOL == P_AXI3) ? 2 : 1){1'b0}}),
.s_axi_arcache ({4{1'b0}}),
.s_axi_arprot ({3{1'b0}}),
.s_axi_arregion ({4{1'b0}}),
.s_axi_arqos ({4{1'b0}}),
.s_axi_aruser ({1{1'b0}}),
.s_axi_arvalid ({1{1'b0}}),
.s_axi_arready (),
.s_axi_rid (st_mr_rid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] ),
.s_axi_rdata (st_mr_rdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] ),
.s_axi_rresp (st_mr_rresp[gen_mi_slot*2+:2] ),
.s_axi_rlast (st_mr_rlast[gen_mi_slot*1+:1] ),
.s_axi_ruser (st_mr_ruser[gen_mi_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] ),
.s_axi_rvalid (st_mr_rvalid[gen_mi_slot*1+:1] ),
.s_axi_rready (st_mr_rready[gen_mi_slot*1+:1] ),
.m_axi_awid (),
.m_axi_awaddr (),
.m_axi_awlen (),
.m_axi_awsize (),
.m_axi_awburst (),
.m_axi_awlock (),
.m_axi_awcache (),
.m_axi_awprot (),
.m_axi_awregion (),
.m_axi_awqos (),
.m_axi_awuser (),
.m_axi_awvalid (),
.m_axi_awready ({1{1'b0}}),
.m_axi_wid (mi_wid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.m_axi_wdata (mi_wdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH]),
.m_axi_wstrb (mi_wstrb[gen_mi_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8]),
.m_axi_wlast (mi_wlast[gen_mi_slot]),
.m_axi_wuser (mi_wuser[gen_mi_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH]),
.m_axi_wvalid (mi_wvalid[gen_mi_slot]),
.m_axi_wready (mi_wready[gen_mi_slot]),
.m_axi_bid (mi_bid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] ),
.m_axi_bresp (mi_bresp[gen_mi_slot*2+:2] ),
.m_axi_buser (mi_buser[gen_mi_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] ),
.m_axi_bvalid (mi_bvalid[gen_mi_slot*1+:1] ),
.m_axi_bready (mi_bready[gen_mi_slot*1+:1] ),
.m_axi_arid (),
.m_axi_araddr (),
.m_axi_arlen (),
.m_axi_arsize (),
.m_axi_arburst (),
.m_axi_arlock (),
.m_axi_arcache (),
.m_axi_arprot (),
.m_axi_arregion (),
.m_axi_arqos (),
.m_axi_aruser (),
.m_axi_arvalid (),
.m_axi_arready ({1{1'b0}}),
.m_axi_rid (mi_rid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] ),
.m_axi_rdata (mi_rdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] ),
.m_axi_rresp (mi_rresp[gen_mi_slot*2+:2] ),
.m_axi_rlast (mi_rlast[gen_mi_slot*1+:1] ),
.m_axi_ruser (mi_ruser[gen_mi_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] ),
.m_axi_rvalid (mi_rvalid[gen_mi_slot*1+:1] ),
.m_axi_rready (mi_rready[gen_mi_slot*1+:1] )
);
end // gen_master_slots (Next gen_mi_slot)
// Highest row of *ready_carry contains accumulated OR across all SI-slots, for each MI-slot.
assign st_mr_bready = bready_carry[(C_NUM_SLAVE_SLOTS-1)*(C_NUM_MASTER_SLOTS+1) +: C_NUM_MASTER_SLOTS+1];
assign st_mr_rready = rready_carry[(C_NUM_SLAVE_SLOTS-1)*(C_NUM_MASTER_SLOTS+1) +: C_NUM_MASTER_SLOTS+1];
// Assign MI-side B, R and W channel ports (exclude error handler signals).
assign mi_bid[0+:C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH] = M_AXI_BID;
assign mi_bvalid[0+:C_NUM_MASTER_SLOTS] = M_AXI_BVALID;
assign mi_bresp[0+:C_NUM_MASTER_SLOTS*2] = M_AXI_BRESP;
assign mi_buser[0+:C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH] = M_AXI_BUSER;
assign M_AXI_BREADY = mi_bready[0+:C_NUM_MASTER_SLOTS];
assign mi_rid[0+:C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH] = M_AXI_RID;
assign mi_rlast[0+:C_NUM_MASTER_SLOTS] = M_AXI_RLAST;
assign mi_rvalid[0+:C_NUM_MASTER_SLOTS] = M_AXI_RVALID;
assign mi_rresp[0+:C_NUM_MASTER_SLOTS*2] = M_AXI_RRESP;
assign mi_ruser[0+:C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH] = M_AXI_RUSER;
assign mi_rdata[0+:C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH] = M_AXI_RDATA;
assign M_AXI_RREADY = mi_rready[0+:C_NUM_MASTER_SLOTS];
assign M_AXI_WLAST = mi_wlast[0+:C_NUM_MASTER_SLOTS];
assign M_AXI_WVALID = mi_wvalid[0+:C_NUM_MASTER_SLOTS];
assign M_AXI_WUSER = mi_wuser[0+:C_NUM_MASTER_SLOTS*C_AXI_WUSER_WIDTH];
assign M_AXI_WID = (C_AXI_PROTOCOL == P_AXI3) ? mi_wid[0+:C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH] : 0;
assign M_AXI_WDATA = mi_wdata[0+:C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH];
assign M_AXI_WSTRB = mi_wstrb[0+:C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH/8];
assign mi_wready[0+:C_NUM_MASTER_SLOTS] = M_AXI_WREADY;
axi_crossbar_v2_1_addr_arbiter # // "AA": Addr Arbiter (AW channel)
(
.C_FAMILY (C_FAMILY),
.C_NUM_M (C_NUM_MASTER_SLOTS+1),
.C_NUM_S (C_NUM_SLAVE_SLOTS),
.C_NUM_S_LOG (P_NUM_SLAVE_SLOTS_LOG),
.C_MESG_WIDTH (P_AA_AWMESG_WIDTH),
.C_ARB_PRIORITY (C_S_AXI_ARB_PRIORITY)
)
addr_arbiter_aw
(
.ACLK (ACLK),
.ARESET (reset),
// Vector of SI-side AW command request inputs
.S_MESG (tmp_aa_awmesg),
.S_TARGET_HOT (st_aa_awtarget_hot),
.S_VALID (ss_aa_awvalid),
.S_VALID_QUAL (st_aa_awvalid_qual),
.S_READY (ss_aa_awready),
// Granted AW command output
.M_MESG (aa_mi_awmesg),
.M_TARGET_HOT (aa_mi_awtarget_hot), // MI-slot targeted by granted command
.M_GRANT_ENC (aa_wm_awgrant_enc), // SI-slot index of granted command
.M_VALID (aa_sa_awvalid),
.M_READY (aa_sa_awready),
.ISSUING_LIMIT (mi_awmaxissuing)
);
// Broadcast AW transfer payload to all MI-slots
assign M_AXI_AWID = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[0+:C_AXI_ID_WIDTH]}};
assign M_AXI_AWADDR = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+:C_AXI_ADDR_WIDTH]}};
assign M_AXI_AWLEN = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH +:8]}};
assign M_AXI_AWSIZE = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8 +:3]}};
assign M_AXI_AWLOCK = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3 +:2]}};
assign M_AXI_AWPROT = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2 +:3]}};
assign M_AXI_AWREGION = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3 +:4]}};
assign M_AXI_AWBURST = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4 +:2]}};
assign M_AXI_AWCACHE = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2 +:4]}};
assign M_AXI_AWQOS = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2+4 +:4]}};
assign M_AXI_AWUSER = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2+4+4 +:C_AXI_AWUSER_WIDTH]}};
axi_crossbar_v2_1_addr_arbiter # // "AA": Addr Arbiter (AR channel)
(
.C_FAMILY (C_FAMILY),
.C_NUM_M (C_NUM_MASTER_SLOTS+1),
.C_NUM_S (C_NUM_SLAVE_SLOTS),
.C_NUM_S_LOG (P_NUM_SLAVE_SLOTS_LOG),
.C_MESG_WIDTH (P_AA_ARMESG_WIDTH),
.C_ARB_PRIORITY (C_S_AXI_ARB_PRIORITY)
)
addr_arbiter_ar
(
.ACLK (ACLK),
.ARESET (reset),
// Vector of SI-side AR command request inputs
.S_MESG (tmp_aa_armesg),
.S_TARGET_HOT (st_aa_artarget_hot),
.S_VALID_QUAL (st_aa_arvalid_qual),
.S_VALID (st_aa_arvalid),
.S_READY (st_aa_arready),
// Granted AR command output
.M_MESG (aa_mi_armesg),
.M_TARGET_HOT (aa_mi_artarget_hot), // MI-slot targeted by granted command
.M_GRANT_ENC (aa_mi_argrant_enc),
.M_VALID (aa_mi_arvalid), // SI-slot index of granted command
.M_READY (aa_mi_arready),
.ISSUING_LIMIT (mi_armaxissuing)
);
if (C_DEBUG) begin : gen_debug_trans_seq
// DEBUG WRITE TRANSACTION SEQUENCE COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_aw_trans_seq_i <= 1;
end else begin
if (aa_sa_awvalid && aa_sa_awready) begin
debug_aw_trans_seq_i <= debug_aw_trans_seq_i + 1;
end
end
end
// DEBUG READ TRANSACTION SEQUENCE COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_ar_trans_seq_i <= 1;
end else begin
if (aa_mi_arvalid && aa_mi_arready) begin
debug_ar_trans_seq_i <= debug_ar_trans_seq_i + 1;
end
end
end
end // gen_debug_trans_seq
// Broadcast AR transfer payload to all MI-slots
assign M_AXI_ARID = {C_NUM_MASTER_SLOTS{aa_mi_armesg[0+:C_AXI_ID_WIDTH]}};
assign M_AXI_ARADDR = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+:C_AXI_ADDR_WIDTH]}};
assign M_AXI_ARLEN = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH +:8]}};
assign M_AXI_ARSIZE = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8 +:3]}};
assign M_AXI_ARLOCK = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3 +:2]}};
assign M_AXI_ARPROT = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2 +:3]}};
assign M_AXI_ARREGION = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3 +:4]}};
assign M_AXI_ARBURST = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4 +:2]}};
assign M_AXI_ARCACHE = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2 +:4]}};
assign M_AXI_ARQOS = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2+4 +:4]}};
assign M_AXI_ARUSER = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2+4+4 +:C_AXI_ARUSER_WIDTH]}};
// AW arbiter command transfer completes upon completion of both M-side AW-channel transfer and W-mux address acceptance (command push).
axi_crossbar_v2_1_splitter # // "SA": Splitter for Write Addr Arbiter
(
.C_NUM_M (2)
)
splitter_aw_mi
(
.ACLK (ACLK),
.ARESET (reset),
.S_VALID (aa_sa_awvalid),
.S_READY (aa_sa_awready),
.M_VALID ({mi_awvalid_en, sa_wm_awvalid_en}),
.M_READY ({mi_awready_mux, sa_wm_awready_mux})
);
assign mi_awvalid = aa_mi_awtarget_hot & {C_NUM_MASTER_SLOTS+1{mi_awvalid_en}};
assign mi_awready_mux = |(aa_mi_awtarget_hot & mi_awready);
assign M_AXI_AWVALID = mi_awvalid[0+:C_NUM_MASTER_SLOTS]; // Slot C_NUM_MASTER_SLOTS+1 is the error handler
assign mi_awready[0+:C_NUM_MASTER_SLOTS] = M_AXI_AWREADY;
assign sa_wm_awvalid = aa_mi_awtarget_hot & {C_NUM_MASTER_SLOTS+1{sa_wm_awvalid_en}};
assign sa_wm_awready_mux = |(aa_mi_awtarget_hot & sa_wm_awready);
assign mi_arvalid = aa_mi_artarget_hot & {C_NUM_MASTER_SLOTS+1{aa_mi_arvalid}};
assign aa_mi_arready = |(aa_mi_artarget_hot & mi_arready);
assign M_AXI_ARVALID = mi_arvalid[0+:C_NUM_MASTER_SLOTS]; // Slot C_NUM_MASTER_SLOTS+1 is the error handler
assign mi_arready[0+:C_NUM_MASTER_SLOTS] = M_AXI_ARREADY;
// MI-slot # C_NUM_MASTER_SLOTS is the error handler
if (C_RANGE_CHECK) begin : gen_decerr_slave
axi_crossbar_v2_1_decerr_slave #
(
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_AXI_PROTOCOL (C_AXI_PROTOCOL),
.C_RESP (P_DECERR)
)
decerr_slave_inst
(
.S_AXI_ACLK (ACLK),
.S_AXI_ARESET (reset),
.S_AXI_AWID (aa_mi_awmesg[0+:C_AXI_ID_WIDTH]),
.S_AXI_AWVALID (mi_awvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_AWREADY (mi_awready[C_NUM_MASTER_SLOTS]),
.S_AXI_WLAST (mi_wlast[C_NUM_MASTER_SLOTS]),
.S_AXI_WVALID (mi_wvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_WREADY (mi_wready[C_NUM_MASTER_SLOTS]),
.S_AXI_BID (mi_bid[C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.S_AXI_BRESP (mi_bresp[C_NUM_MASTER_SLOTS*2+:2]),
.S_AXI_BUSER (mi_buser[C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH]),
.S_AXI_BVALID (mi_bvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_BREADY (mi_bready[C_NUM_MASTER_SLOTS]),
.S_AXI_ARID (aa_mi_armesg[0+:C_AXI_ID_WIDTH]),
.S_AXI_ARLEN (aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH +:8]),
.S_AXI_ARVALID (mi_arvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_ARREADY (mi_arready[C_NUM_MASTER_SLOTS]),
.S_AXI_RID (mi_rid[C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.S_AXI_RDATA (mi_rdata[C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH]),
.S_AXI_RRESP (mi_rresp[C_NUM_MASTER_SLOTS*2+:2]),
.S_AXI_RUSER (mi_ruser[C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH]),
.S_AXI_RLAST (mi_rlast[C_NUM_MASTER_SLOTS]),
.S_AXI_RVALID (mi_rvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_RREADY (mi_rready[C_NUM_MASTER_SLOTS])
);
end else begin : gen_no_decerr_slave
assign mi_awready[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_wready[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_arready[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_awready[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_awready[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_bid[C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = 0;
assign mi_bresp[C_NUM_MASTER_SLOTS*2+:2] = 0;
assign mi_buser[C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] = 0;
assign mi_bvalid[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_rid[C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = 0;
assign mi_rdata[C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = 0;
assign mi_rresp[C_NUM_MASTER_SLOTS*2+:2] = 0;
assign mi_ruser[C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] = 0;
assign mi_rlast[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_rvalid[C_NUM_MASTER_SLOTS] = 1'b0;
end // gen_decerr_slave
endgenerate
endmodule
`default_nettype wire
|
// -- (c) Copyright 2009 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// File name: crossbar.v
//
// Description:
// This module is a M-master to N-slave AXI axi_crossbar_v2_1_crossbar switch.
// The interface of this module consists of a vectored slave and master interface
// in which all slots are sized and synchronized to the native width and clock
// of the interconnect.
// The SAMD axi_crossbar_v2_1_crossbar supports only AXI4 and AXI3 protocols.
// All width, clock and protocol conversions are done outside this block, as are
// any pipeline registers or data FIFOs.
// This module contains all arbitration, decoders and channel multiplexing logic.
// It also contains the diagnostic registers and control interface.
//
//-----------------------------------------------------------------------------
//
// Structure:
// crossbar
// si_transactor
// addr_decoder
// comparator_static
// mux_enc
// axic_srl_fifo
// arbiter_resp
// splitter
// wdata_router
// axic_reg_srl_fifo
// wdata_mux
// axic_reg_srl_fifo
// mux_enc
// addr_decoder
// comparator_static
// axic_srl_fifo
// axi_register_slice
// addr_arbiter
// mux_enc
// decerr_slave
//
//-----------------------------------------------------------------------------
`timescale 1ps/1ps
`default_nettype none
(* DowngradeIPIdentifiedWarnings="yes" *)
module axi_crossbar_v2_1_crossbar #
(
parameter C_FAMILY = "none",
parameter integer C_NUM_SLAVE_SLOTS = 1,
parameter integer C_NUM_MASTER_SLOTS = 1,
parameter integer C_NUM_ADDR_RANGES = 1,
parameter integer C_AXI_ID_WIDTH = 1,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_PROTOCOL = 0,
parameter [C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64-1:0] C_M_AXI_BASE_ADDR = {C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64{1'b1}},
parameter [C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64-1:0] C_M_AXI_HIGH_ADDR = {C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64{1'b0}},
parameter [C_NUM_SLAVE_SLOTS*64-1:0] C_S_AXI_BASE_ID = {C_NUM_SLAVE_SLOTS*64{1'b0}},
parameter [C_NUM_SLAVE_SLOTS*64-1:0] C_S_AXI_HIGH_ID = {C_NUM_SLAVE_SLOTS*64{1'b0}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_THREAD_ID_WIDTH = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_AWUSER_WIDTH = 1,
parameter integer C_AXI_ARUSER_WIDTH = 1,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter [C_NUM_SLAVE_SLOTS-1:0] C_S_AXI_SUPPORTS_WRITE = {C_NUM_SLAVE_SLOTS{1'b1}},
parameter [C_NUM_SLAVE_SLOTS-1:0] C_S_AXI_SUPPORTS_READ = {C_NUM_SLAVE_SLOTS{1'b1}},
parameter [C_NUM_MASTER_SLOTS-1:0] C_M_AXI_SUPPORTS_WRITE = {C_NUM_MASTER_SLOTS{1'b1}},
parameter [C_NUM_MASTER_SLOTS-1:0] C_M_AXI_SUPPORTS_READ = {C_NUM_MASTER_SLOTS{1'b1}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_WRITE_CONNECTIVITY = {C_NUM_MASTER_SLOTS*32{1'b1}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_READ_CONNECTIVITY = {C_NUM_MASTER_SLOTS*32{1'b1}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_SINGLE_THREAD = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_WRITE_ACCEPTANCE = {C_NUM_SLAVE_SLOTS{32'h00000001}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_READ_ACCEPTANCE = {C_NUM_SLAVE_SLOTS{32'h00000001}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_WRITE_ISSUING = {C_NUM_MASTER_SLOTS{32'h00000001}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_READ_ISSUING = {C_NUM_MASTER_SLOTS{32'h00000001}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_ARB_PRIORITY = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_SECURE = {C_NUM_MASTER_SLOTS{32'h00000000}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_ERR_MODE = {C_NUM_MASTER_SLOTS{32'h00000000}},
parameter integer C_RANGE_CHECK = 0,
parameter integer C_ADDR_DECODE = 0,
parameter [(C_NUM_MASTER_SLOTS+1)*32-1:0] C_W_ISSUE_WIDTH = {C_NUM_MASTER_SLOTS+1{32'h00000000}},
parameter [(C_NUM_MASTER_SLOTS+1)*32-1:0] C_R_ISSUE_WIDTH = {C_NUM_MASTER_SLOTS+1{32'h00000000}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_W_ACCEPT_WIDTH = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_R_ACCEPT_WIDTH = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter integer C_DEBUG = 1
)
(
// Global Signals
input wire ACLK,
input wire ARESETN,
// Slave Interface Write Address Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_AWID,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR,
input wire [C_NUM_SLAVE_SLOTS*8-1:0] S_AXI_AWLEN,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_AWSIZE,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_AWBURST,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_AWLOCK,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_AWCACHE,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_AWPROT,
// input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_AWREGION,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_AWQOS,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_AWVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_AWREADY,
// Slave Interface Write Data Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_WID,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_WLAST,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_WVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_WREADY,
// Slave Interface Write Response Ports
output wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_BID,
output wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_BRESP,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_BVALID,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_BREADY,
// Slave Interface Read Address Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_ARID,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR,
input wire [C_NUM_SLAVE_SLOTS*8-1:0] S_AXI_ARLEN,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_ARSIZE,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_ARBURST,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_ARLOCK,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_ARCACHE,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_ARPROT,
// input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_ARREGION,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_ARQOS,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_ARVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_ARREADY,
// Slave Interface Read Data Ports
output wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_RID,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA,
output wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_RRESP,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_RLAST,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_RVALID,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_RREADY,
// Master Interface Write Address Port
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_AWID,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR,
output wire [C_NUM_MASTER_SLOTS*8-1:0] M_AXI_AWLEN,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_AWSIZE,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_AWBURST,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_AWLOCK,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_AWCACHE,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_AWPROT,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_AWREGION,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_AWQOS,
output wire [C_NUM_MASTER_SLOTS*C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_AWVALID,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_AWREADY,
// Master Interface Write Data Ports
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_WID,
output wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA,
output wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_WLAST,
output wire [C_NUM_MASTER_SLOTS*C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_WVALID,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_WREADY,
// Master Interface Write Response Ports
input wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_BID,
input wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_BRESP,
input wire [C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_BVALID,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_BREADY,
// Master Interface Read Address Port
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_ARID,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR,
output wire [C_NUM_MASTER_SLOTS*8-1:0] M_AXI_ARLEN,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_ARSIZE,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_ARBURST,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_ARLOCK,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_ARCACHE,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_ARPROT,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_ARREGION,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_ARQOS,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_ARVALID,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_ARREADY,
// Master Interface Read Data Ports
input wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_RID,
input wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA,
input wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_RRESP,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_RLAST,
input wire [C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_RVALID,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_RREADY
);
localparam integer P_AXI4 = 0;
localparam integer P_AXI3 = 1;
localparam integer P_AXILITE = 2;
localparam integer P_WRITE = 0;
localparam integer P_READ = 1;
localparam integer P_NUM_MASTER_SLOTS_LOG = f_ceil_log2(C_NUM_MASTER_SLOTS);
localparam integer P_NUM_SLAVE_SLOTS_LOG = f_ceil_log2((C_NUM_SLAVE_SLOTS>1) ? C_NUM_SLAVE_SLOTS : 2);
localparam integer P_AXI_WID_WIDTH = (C_AXI_PROTOCOL == P_AXI3) ? C_AXI_ID_WIDTH : 1;
localparam integer P_ST_AWMESG_WIDTH = 2+4+4 + C_AXI_AWUSER_WIDTH;
localparam integer P_AA_AWMESG_WIDTH = C_AXI_ID_WIDTH + C_AXI_ADDR_WIDTH + 8+3+2+3+4 + P_ST_AWMESG_WIDTH;
localparam integer P_ST_ARMESG_WIDTH = 2+4+4 + C_AXI_ARUSER_WIDTH;
localparam integer P_AA_ARMESG_WIDTH = C_AXI_ID_WIDTH + C_AXI_ADDR_WIDTH + 8+3+2+3+4 + P_ST_ARMESG_WIDTH;
localparam integer P_ST_BMESG_WIDTH = 2 + C_AXI_BUSER_WIDTH;
localparam integer P_ST_RMESG_WIDTH = 2 + C_AXI_RUSER_WIDTH + C_AXI_DATA_WIDTH;
localparam integer P_WR_WMESG_WIDTH = C_AXI_DATA_WIDTH + C_AXI_DATA_WIDTH/8 + C_AXI_WUSER_WIDTH + P_AXI_WID_WIDTH;
localparam [31:0] P_BYPASS = 32'h00000000;
localparam [31:0] P_FWD_REV = 32'h00000001;
localparam [31:0] P_SIMPLE = 32'h00000007;
localparam [(C_NUM_MASTER_SLOTS+1)-1:0] P_M_AXI_SUPPORTS_READ = {1'b1, C_M_AXI_SUPPORTS_READ[0+:C_NUM_MASTER_SLOTS]};
localparam [(C_NUM_MASTER_SLOTS+1)-1:0] P_M_AXI_SUPPORTS_WRITE = {1'b1, C_M_AXI_SUPPORTS_WRITE[0+:C_NUM_MASTER_SLOTS]};
localparam [(C_NUM_MASTER_SLOTS+1)*32-1:0] P_M_AXI_WRITE_CONNECTIVITY = {{32{1'b1}}, C_M_AXI_WRITE_CONNECTIVITY[0+:C_NUM_MASTER_SLOTS*32]};
localparam [(C_NUM_MASTER_SLOTS+1)*32-1:0] P_M_AXI_READ_CONNECTIVITY = {{32{1'b1}}, C_M_AXI_READ_CONNECTIVITY[0+:C_NUM_MASTER_SLOTS*32]};
localparam [C_NUM_SLAVE_SLOTS*32-1:0] P_S_AXI_WRITE_CONNECTIVITY = f_si_write_connectivity(0);
localparam [C_NUM_SLAVE_SLOTS*32-1:0] P_S_AXI_READ_CONNECTIVITY = f_si_read_connectivity(0);
localparam [(C_NUM_MASTER_SLOTS+1)*32-1:0] P_M_AXI_READ_ISSUING = {32'h00000001, C_M_AXI_READ_ISSUING[0+:C_NUM_MASTER_SLOTS*32]};
localparam [(C_NUM_MASTER_SLOTS+1)*32-1:0] P_M_AXI_WRITE_ISSUING = {32'h00000001, C_M_AXI_WRITE_ISSUING[0+:C_NUM_MASTER_SLOTS*32]};
localparam P_DECERR = 2'b11;
//---------------------------------------------------------------------------
// Functions
//---------------------------------------------------------------------------
// Ceiling of log2(x)
function integer f_ceil_log2
(
input integer x
);
integer acc;
begin
acc=0;
while ((2**acc) < x)
acc = acc + 1;
f_ceil_log2 = acc;
end
endfunction
// Isolate thread bits of input S_ID and add to BASE_ID (RNG00) to form MI-side ID value
// only for end-point SI-slots
function [C_AXI_ID_WIDTH-1:0] f_extend_ID
(
input [C_AXI_ID_WIDTH-1:0] s_id,
input integer slot
);
begin
f_extend_ID = C_S_AXI_BASE_ID[slot*64+:C_AXI_ID_WIDTH] | (s_id & (C_S_AXI_BASE_ID[slot*64+:C_AXI_ID_WIDTH] ^ C_S_AXI_HIGH_ID[slot*64+:C_AXI_ID_WIDTH]));
end
endfunction
// Write connectivity array transposed
function [C_NUM_SLAVE_SLOTS*32-1:0] f_si_write_connectivity
(
input integer null_arg
);
integer si_slot;
integer mi_slot;
reg [C_NUM_SLAVE_SLOTS*32-1:0] result;
begin
result = {C_NUM_SLAVE_SLOTS*32{1'b1}};
for (si_slot=0; si_slot<C_NUM_SLAVE_SLOTS; si_slot=si_slot+1) begin
for (mi_slot=0; mi_slot<C_NUM_MASTER_SLOTS; mi_slot=mi_slot+1) begin
result[si_slot*32+mi_slot] = C_M_AXI_WRITE_CONNECTIVITY[mi_slot*32+si_slot];
end
end
f_si_write_connectivity = result;
end
endfunction
// Read connectivity array transposed
function [C_NUM_SLAVE_SLOTS*32-1:0] f_si_read_connectivity
(
input integer null_arg
);
integer si_slot;
integer mi_slot;
reg [C_NUM_SLAVE_SLOTS*32-1:0] result;
begin
result = {C_NUM_SLAVE_SLOTS*32{1'b1}};
for (si_slot=0; si_slot<C_NUM_SLAVE_SLOTS; si_slot=si_slot+1) begin
for (mi_slot=0; mi_slot<C_NUM_MASTER_SLOTS; mi_slot=mi_slot+1) begin
result[si_slot*32+mi_slot] = C_M_AXI_READ_CONNECTIVITY[mi_slot*32+si_slot];
end
end
f_si_read_connectivity = result;
end
endfunction
genvar gen_si_slot;
genvar gen_mi_slot;
wire [C_NUM_SLAVE_SLOTS*P_ST_AWMESG_WIDTH-1:0] si_st_awmesg ;
wire [C_NUM_SLAVE_SLOTS*P_ST_AWMESG_WIDTH-1:0] st_tmp_awmesg ;
wire [C_NUM_SLAVE_SLOTS*P_AA_AWMESG_WIDTH-1:0] tmp_aa_awmesg ;
wire [P_AA_AWMESG_WIDTH-1:0] aa_mi_awmesg ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] st_aa_awid ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] st_aa_awaddr ;
wire [C_NUM_SLAVE_SLOTS*8-1:0] st_aa_awlen ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] st_aa_awsize ;
wire [C_NUM_SLAVE_SLOTS*2-1:0] st_aa_awlock ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] st_aa_awprot ;
wire [C_NUM_SLAVE_SLOTS*4-1:0] st_aa_awregion ;
wire [C_NUM_SLAVE_SLOTS*8-1:0] st_aa_awerror ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_aa_awtarget_hot ;
wire [C_NUM_SLAVE_SLOTS*(P_NUM_MASTER_SLOTS_LOG+1)-1:0] st_aa_awtarget_enc ;
wire [P_NUM_SLAVE_SLOTS_LOG*1-1:0] aa_wm_awgrant_enc ;
wire [(C_NUM_MASTER_SLOTS+1)-1:0] aa_mi_awtarget_hot ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_aa_awvalid_qual ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_ss_awvalid ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_ss_awready ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] ss_wr_awvalid ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] ss_wr_awready ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] ss_aa_awvalid ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] ss_aa_awready ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] sa_wm_awvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] sa_wm_awready ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_awvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_awready ;
wire aa_sa_awvalid ;
wire aa_sa_awready ;
wire aa_mi_arready ;
wire mi_awvalid_en ;
wire sa_wm_awvalid_en ;
wire sa_wm_awready_mux ;
wire [C_NUM_SLAVE_SLOTS*P_ST_ARMESG_WIDTH-1:0] si_st_armesg ;
wire [C_NUM_SLAVE_SLOTS*P_ST_ARMESG_WIDTH-1:0] st_tmp_armesg ;
wire [C_NUM_SLAVE_SLOTS*P_AA_ARMESG_WIDTH-1:0] tmp_aa_armesg ;
wire [P_AA_ARMESG_WIDTH-1:0] aa_mi_armesg ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] st_aa_arid ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] st_aa_araddr ;
wire [C_NUM_SLAVE_SLOTS*8-1:0] st_aa_arlen ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] st_aa_arsize ;
wire [C_NUM_SLAVE_SLOTS*2-1:0] st_aa_arlock ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] st_aa_arprot ;
wire [C_NUM_SLAVE_SLOTS*4-1:0] st_aa_arregion ;
wire [C_NUM_SLAVE_SLOTS*8-1:0] st_aa_arerror ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_aa_artarget_hot ;
wire [C_NUM_SLAVE_SLOTS*(P_NUM_MASTER_SLOTS_LOG+1)-1:0] st_aa_artarget_enc ;
wire [(C_NUM_MASTER_SLOTS+1)-1:0] aa_mi_artarget_hot ;
wire [P_NUM_SLAVE_SLOTS_LOG*1-1:0] aa_mi_argrant_enc ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_aa_arvalid_qual ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_aa_arvalid ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_aa_arready ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_arvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_arready ;
wire aa_mi_arvalid ;
wire mi_awready_mux ;
wire [C_NUM_SLAVE_SLOTS*P_ST_BMESG_WIDTH-1:0] st_si_bmesg ;
wire [(C_NUM_MASTER_SLOTS+1)*P_ST_BMESG_WIDTH-1:0] st_mr_bmesg ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] st_mr_bid ;
wire [(C_NUM_MASTER_SLOTS+1)*2-1:0] st_mr_bresp ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_BUSER_WIDTH-1:0] st_mr_buser ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] st_mr_bvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] st_mr_bready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_tmp_bready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_tmp_bid_target ;
wire [(C_NUM_MASTER_SLOTS+1)*C_NUM_SLAVE_SLOTS-1:0] tmp_mr_bid_target ;
wire [(C_NUM_MASTER_SLOTS+1)*P_NUM_SLAVE_SLOTS_LOG-1:0] debug_bid_target_i ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] bid_match ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] mi_bid ;
wire [(C_NUM_MASTER_SLOTS+1)*2-1:0] mi_bresp ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_BUSER_WIDTH-1:0] mi_buser ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_bvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_bready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] bready_carry ;
wire [C_NUM_SLAVE_SLOTS*P_ST_RMESG_WIDTH-1:0] st_si_rmesg ;
wire [(C_NUM_MASTER_SLOTS+1)*P_ST_RMESG_WIDTH-1:0] st_mr_rmesg ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] st_mr_rid ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH-1:0] st_mr_rdata ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_RUSER_WIDTH-1:0] st_mr_ruser ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] st_mr_rlast ;
wire [(C_NUM_MASTER_SLOTS+1)*2-1:0] st_mr_rresp ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] st_mr_rvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] st_mr_rready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_tmp_rready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_tmp_rid_target ;
wire [(C_NUM_MASTER_SLOTS+1)*C_NUM_SLAVE_SLOTS-1:0] tmp_mr_rid_target ;
wire [(C_NUM_MASTER_SLOTS+1)*P_NUM_SLAVE_SLOTS_LOG-1:0] debug_rid_target_i ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] rid_match ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] mi_rid ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH-1:0] mi_rdata ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_RUSER_WIDTH-1:0] mi_ruser ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_rlast ;
wire [(C_NUM_MASTER_SLOTS+1)*2-1:0] mi_rresp ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_rvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_rready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] rready_carry ;
wire [C_NUM_SLAVE_SLOTS*P_WR_WMESG_WIDTH-1:0] si_wr_wmesg ;
wire [C_NUM_SLAVE_SLOTS*P_WR_WMESG_WIDTH-1:0] wr_wm_wmesg ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] wr_wm_wlast ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] wr_tmp_wvalid ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] wr_tmp_wready ;
wire [(C_NUM_MASTER_SLOTS+1)*C_NUM_SLAVE_SLOTS-1:0] tmp_wm_wvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*C_NUM_SLAVE_SLOTS-1:0] tmp_wm_wready ;
wire [(C_NUM_MASTER_SLOTS+1)*P_WR_WMESG_WIDTH-1:0] wm_mr_wmesg ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH-1:0] wm_mr_wdata ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH/8-1:0] wm_mr_wstrb ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] wm_mr_wid ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_WUSER_WIDTH-1:0] wm_mr_wuser ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] wm_mr_wlast ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] wm_mr_wvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] wm_mr_wready ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH-1:0] mi_wdata ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH/8-1:0] mi_wstrb ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_WUSER_WIDTH-1:0] mi_wuser ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] mi_wid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_wlast ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_wvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_wready ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] w_cmd_push ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] w_cmd_pop ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] r_cmd_push ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] r_cmd_pop ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_awmaxissuing ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_armaxissuing ;
reg [(C_NUM_MASTER_SLOTS+1)*8-1:0] w_issuing_cnt ;
reg [(C_NUM_MASTER_SLOTS+1)*8-1:0] r_issuing_cnt ;
reg [8-1:0] debug_aw_trans_seq_i ;
reg [8-1:0] debug_ar_trans_seq_i ;
wire [(C_NUM_MASTER_SLOTS+1)*8-1:0] debug_w_trans_seq_i ;
reg [(C_NUM_MASTER_SLOTS+1)*8-1:0] debug_w_beat_cnt_i ;
reg aresetn_d = 1'b0; // Reset delay register
always @(posedge ACLK) begin
if (~ARESETN) begin
aresetn_d <= 1'b0;
end else begin
aresetn_d <= ARESETN;
end
end
wire reset;
assign reset = ~aresetn_d;
generate
for (gen_si_slot=0; gen_si_slot<C_NUM_SLAVE_SLOTS; gen_si_slot=gen_si_slot+1) begin : gen_slave_slots
if (C_S_AXI_SUPPORTS_READ[gen_si_slot]) begin : gen_si_read
axi_crossbar_v2_1_si_transactor # // "ST": SI Transactor (read channel)
(
.C_FAMILY (C_FAMILY),
.C_SI (gen_si_slot),
.C_DIR (P_READ),
.C_NUM_ADDR_RANGES (C_NUM_ADDR_RANGES),
.C_NUM_M (C_NUM_MASTER_SLOTS),
.C_NUM_M_LOG (P_NUM_MASTER_SLOTS_LOG),
.C_ACCEPTANCE (C_S_AXI_READ_ACCEPTANCE[gen_si_slot*32+:32]),
.C_ACCEPTANCE_LOG (C_R_ACCEPT_WIDTH[gen_si_slot*32+:32]),
.C_ID_WIDTH (C_AXI_ID_WIDTH),
.C_THREAD_ID_WIDTH (C_S_AXI_THREAD_ID_WIDTH[gen_si_slot*32+:32]),
.C_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AMESG_WIDTH (P_ST_ARMESG_WIDTH),
.C_RMESG_WIDTH (P_ST_RMESG_WIDTH),
.C_BASE_ID (C_S_AXI_BASE_ID[gen_si_slot*64+:C_AXI_ID_WIDTH]),
.C_HIGH_ID (C_S_AXI_HIGH_ID[gen_si_slot*64+:C_AXI_ID_WIDTH]),
.C_SINGLE_THREAD (C_S_AXI_SINGLE_THREAD[gen_si_slot*32+:32]),
.C_BASE_ADDR (C_M_AXI_BASE_ADDR),
.C_HIGH_ADDR (C_M_AXI_HIGH_ADDR),
.C_TARGET_QUAL (P_S_AXI_READ_CONNECTIVITY[gen_si_slot*32+:C_NUM_MASTER_SLOTS]),
.C_M_AXI_SECURE (C_M_AXI_SECURE),
.C_RANGE_CHECK (C_RANGE_CHECK),
.C_ADDR_DECODE (C_ADDR_DECODE),
.C_ERR_MODE (C_M_AXI_ERR_MODE),
.C_DEBUG (C_DEBUG)
)
si_transactor_ar
(
.ACLK (ACLK),
.ARESET (reset),
.S_AID (f_extend_ID(S_AXI_ARID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH], gen_si_slot)),
.S_AADDR (S_AXI_ARADDR[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH]),
.S_ALEN (S_AXI_ARLEN[gen_si_slot*8+:8]),
.S_ASIZE (S_AXI_ARSIZE[gen_si_slot*3+:3]),
.S_ABURST (S_AXI_ARBURST[gen_si_slot*2+:2]),
.S_ALOCK (S_AXI_ARLOCK[gen_si_slot*2+:2]),
.S_APROT (S_AXI_ARPROT[gen_si_slot*3+:3]),
// .S_AREGION (S_AXI_ARREGION[gen_si_slot*4+:4]),
.S_AMESG (si_st_armesg[gen_si_slot*P_ST_ARMESG_WIDTH+:P_ST_ARMESG_WIDTH]),
.S_AVALID (S_AXI_ARVALID[gen_si_slot]),
.S_AREADY (S_AXI_ARREADY[gen_si_slot]),
.M_AID (st_aa_arid[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.M_AADDR (st_aa_araddr[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH]),
.M_ALEN (st_aa_arlen[gen_si_slot*8+:8]),
.M_ASIZE (st_aa_arsize[gen_si_slot*3+:3]),
.M_ALOCK (st_aa_arlock[gen_si_slot*2+:2]),
.M_APROT (st_aa_arprot[gen_si_slot*3+:3]),
.M_AREGION (st_aa_arregion[gen_si_slot*4+:4]),
.M_AMESG (st_tmp_armesg[gen_si_slot*P_ST_ARMESG_WIDTH+:P_ST_ARMESG_WIDTH]),
.M_ATARGET_HOT (st_aa_artarget_hot[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.M_ATARGET_ENC (st_aa_artarget_enc[gen_si_slot*(P_NUM_MASTER_SLOTS_LOG+1)+:(P_NUM_MASTER_SLOTS_LOG+1)]),
.M_AERROR (st_aa_arerror[gen_si_slot*8+:8]),
.M_AVALID_QUAL (st_aa_arvalid_qual[gen_si_slot]),
.M_AVALID (st_aa_arvalid[gen_si_slot]),
.M_AREADY (st_aa_arready[gen_si_slot]),
.S_RID (S_AXI_RID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.S_RMESG (st_si_rmesg[gen_si_slot*P_ST_RMESG_WIDTH+:P_ST_RMESG_WIDTH]),
.S_RLAST (S_AXI_RLAST[gen_si_slot]),
.S_RVALID (S_AXI_RVALID[gen_si_slot]),
.S_RREADY (S_AXI_RREADY[gen_si_slot]),
.M_RID (st_mr_rid),
.M_RLAST (st_mr_rlast),
.M_RMESG (st_mr_rmesg),
.M_RVALID (st_mr_rvalid),
.M_RREADY (st_tmp_rready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.M_RTARGET (st_tmp_rid_target[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.DEBUG_A_TRANS_SEQ (C_DEBUG ? debug_ar_trans_seq_i : 8'h0)
);
assign si_st_armesg[gen_si_slot*P_ST_ARMESG_WIDTH+:P_ST_ARMESG_WIDTH] = {
S_AXI_ARUSER[gen_si_slot*C_AXI_ARUSER_WIDTH+:C_AXI_ARUSER_WIDTH],
S_AXI_ARQOS[gen_si_slot*4+:4],
S_AXI_ARCACHE[gen_si_slot*4+:4],
S_AXI_ARBURST[gen_si_slot*2+:2]
};
assign tmp_aa_armesg[gen_si_slot*P_AA_ARMESG_WIDTH+:P_AA_ARMESG_WIDTH] = {
st_tmp_armesg[gen_si_slot*P_ST_ARMESG_WIDTH+:P_ST_ARMESG_WIDTH],
st_aa_arregion[gen_si_slot*4+:4],
st_aa_arprot[gen_si_slot*3+:3],
st_aa_arlock[gen_si_slot*2+:2],
st_aa_arsize[gen_si_slot*3+:3],
st_aa_arlen[gen_si_slot*8+:8],
st_aa_araddr[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH],
st_aa_arid[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]
};
assign S_AXI_RRESP[gen_si_slot*2+:2] = st_si_rmesg[gen_si_slot*P_ST_RMESG_WIDTH+:2];
assign S_AXI_RUSER[gen_si_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] = st_si_rmesg[gen_si_slot*P_ST_RMESG_WIDTH+2 +: C_AXI_RUSER_WIDTH];
assign S_AXI_RDATA[gen_si_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = st_si_rmesg[gen_si_slot*P_ST_RMESG_WIDTH+2+C_AXI_RUSER_WIDTH +: C_AXI_DATA_WIDTH];
end else begin : gen_no_si_read
assign S_AXI_ARREADY[gen_si_slot] = 1'b0;
assign st_aa_arvalid[gen_si_slot] = 1'b0;
assign st_aa_arvalid_qual[gen_si_slot] = 1'b1;
assign tmp_aa_armesg[gen_si_slot*P_AA_ARMESG_WIDTH+:P_AA_ARMESG_WIDTH] = 0;
assign S_AXI_RID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = 0;
assign S_AXI_RRESP[gen_si_slot*2+:2] = 0;
assign S_AXI_RUSER[gen_si_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] = 0;
assign S_AXI_RDATA[gen_si_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = 0;
assign S_AXI_RVALID[gen_si_slot] = 1'b0;
assign S_AXI_RLAST[gen_si_slot] = 1'b0;
assign st_tmp_rready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)] = 0;
assign st_aa_artarget_hot[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)] = 0;
end // gen_si_read
if (C_S_AXI_SUPPORTS_WRITE[gen_si_slot]) begin : gen_si_write
axi_crossbar_v2_1_si_transactor # // "ST": SI Transactor (write channel)
(
.C_FAMILY (C_FAMILY),
.C_SI (gen_si_slot),
.C_DIR (P_WRITE),
.C_NUM_ADDR_RANGES (C_NUM_ADDR_RANGES),
.C_NUM_M (C_NUM_MASTER_SLOTS),
.C_NUM_M_LOG (P_NUM_MASTER_SLOTS_LOG),
.C_ACCEPTANCE (C_S_AXI_WRITE_ACCEPTANCE[gen_si_slot*32+:32]),
.C_ACCEPTANCE_LOG (C_W_ACCEPT_WIDTH[gen_si_slot*32+:32]),
.C_ID_WIDTH (C_AXI_ID_WIDTH),
.C_THREAD_ID_WIDTH (C_S_AXI_THREAD_ID_WIDTH[gen_si_slot*32+:32]),
.C_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AMESG_WIDTH (P_ST_AWMESG_WIDTH),
.C_RMESG_WIDTH (P_ST_BMESG_WIDTH),
.C_BASE_ID (C_S_AXI_BASE_ID[gen_si_slot*64+:C_AXI_ID_WIDTH]),
.C_HIGH_ID (C_S_AXI_HIGH_ID[gen_si_slot*64+:C_AXI_ID_WIDTH]),
.C_SINGLE_THREAD (C_S_AXI_SINGLE_THREAD[gen_si_slot*32+:32]),
.C_BASE_ADDR (C_M_AXI_BASE_ADDR),
.C_HIGH_ADDR (C_M_AXI_HIGH_ADDR),
.C_TARGET_QUAL (P_S_AXI_WRITE_CONNECTIVITY[gen_si_slot*32+:C_NUM_MASTER_SLOTS]),
.C_M_AXI_SECURE (C_M_AXI_SECURE),
.C_RANGE_CHECK (C_RANGE_CHECK),
.C_ADDR_DECODE (C_ADDR_DECODE),
.C_ERR_MODE (C_M_AXI_ERR_MODE),
.C_DEBUG (C_DEBUG)
)
si_transactor_aw
(
.ACLK (ACLK),
.ARESET (reset),
.S_AID (f_extend_ID(S_AXI_AWID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH], gen_si_slot)),
.S_AADDR (S_AXI_AWADDR[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH]),
.S_ALEN (S_AXI_AWLEN[gen_si_slot*8+:8]),
.S_ASIZE (S_AXI_AWSIZE[gen_si_slot*3+:3]),
.S_ABURST (S_AXI_AWBURST[gen_si_slot*2+:2]),
.S_ALOCK (S_AXI_AWLOCK[gen_si_slot*2+:2]),
.S_APROT (S_AXI_AWPROT[gen_si_slot*3+:3]),
// .S_AREGION (S_AXI_AWREGION[gen_si_slot*4+:4]),
.S_AMESG (si_st_awmesg[gen_si_slot*P_ST_AWMESG_WIDTH+:P_ST_AWMESG_WIDTH]),
.S_AVALID (S_AXI_AWVALID[gen_si_slot]),
.S_AREADY (S_AXI_AWREADY[gen_si_slot]),
.M_AID (st_aa_awid[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.M_AADDR (st_aa_awaddr[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH]),
.M_ALEN (st_aa_awlen[gen_si_slot*8+:8]),
.M_ASIZE (st_aa_awsize[gen_si_slot*3+:3]),
.M_ALOCK (st_aa_awlock[gen_si_slot*2+:2]),
.M_APROT (st_aa_awprot[gen_si_slot*3+:3]),
.M_AREGION (st_aa_awregion[gen_si_slot*4+:4]),
.M_AMESG (st_tmp_awmesg[gen_si_slot*P_ST_AWMESG_WIDTH+:P_ST_AWMESG_WIDTH]),
.M_ATARGET_HOT (st_aa_awtarget_hot[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.M_ATARGET_ENC (st_aa_awtarget_enc[gen_si_slot*(P_NUM_MASTER_SLOTS_LOG+1)+:(P_NUM_MASTER_SLOTS_LOG+1)]),
.M_AERROR (st_aa_awerror[gen_si_slot*8+:8]),
.M_AVALID_QUAL (st_aa_awvalid_qual[gen_si_slot]),
.M_AVALID (st_ss_awvalid[gen_si_slot]),
.M_AREADY (st_ss_awready[gen_si_slot]),
.S_RID (S_AXI_BID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.S_RMESG (st_si_bmesg[gen_si_slot*P_ST_BMESG_WIDTH+:P_ST_BMESG_WIDTH]),
.S_RLAST (),
.S_RVALID (S_AXI_BVALID[gen_si_slot]),
.S_RREADY (S_AXI_BREADY[gen_si_slot]),
.M_RID (st_mr_bid),
.M_RLAST ({(C_NUM_MASTER_SLOTS+1){1'b1}}),
.M_RMESG (st_mr_bmesg),
.M_RVALID (st_mr_bvalid),
.M_RREADY (st_tmp_bready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.M_RTARGET (st_tmp_bid_target[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.DEBUG_A_TRANS_SEQ (C_DEBUG ? debug_aw_trans_seq_i : 8'h0)
);
// Note: Concatenation of mesg signals is from MSB to LSB; assignments that chop mesg signals appear in opposite order.
assign si_st_awmesg[gen_si_slot*P_ST_AWMESG_WIDTH+:P_ST_AWMESG_WIDTH] = {
S_AXI_AWUSER[gen_si_slot*C_AXI_AWUSER_WIDTH+:C_AXI_AWUSER_WIDTH],
S_AXI_AWQOS[gen_si_slot*4+:4],
S_AXI_AWCACHE[gen_si_slot*4+:4],
S_AXI_AWBURST[gen_si_slot*2+:2]
};
assign tmp_aa_awmesg[gen_si_slot*P_AA_AWMESG_WIDTH+:P_AA_AWMESG_WIDTH] = {
st_tmp_awmesg[gen_si_slot*P_ST_AWMESG_WIDTH+:P_ST_AWMESG_WIDTH],
st_aa_awregion[gen_si_slot*4+:4],
st_aa_awprot[gen_si_slot*3+:3],
st_aa_awlock[gen_si_slot*2+:2],
st_aa_awsize[gen_si_slot*3+:3],
st_aa_awlen[gen_si_slot*8+:8],
st_aa_awaddr[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH],
st_aa_awid[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]
};
assign S_AXI_BRESP[gen_si_slot*2+:2] = st_si_bmesg[gen_si_slot*P_ST_BMESG_WIDTH+:2];
assign S_AXI_BUSER[gen_si_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] = st_si_bmesg[gen_si_slot*P_ST_BMESG_WIDTH+2 +: C_AXI_BUSER_WIDTH];
// AW SI-transactor transfer completes upon completion of both W-router address acceptance (command push) and AW arbitration
axi_crossbar_v2_1_splitter # // "SS": Splitter from SI-Transactor (write channel)
(
.C_NUM_M (2)
)
splitter_aw_si
(
.ACLK (ACLK),
.ARESET (reset),
.S_VALID (st_ss_awvalid[gen_si_slot]),
.S_READY (st_ss_awready[gen_si_slot]),
.M_VALID ({ss_wr_awvalid[gen_si_slot], ss_aa_awvalid[gen_si_slot]}),
.M_READY ({ss_wr_awready[gen_si_slot], ss_aa_awready[gen_si_slot]})
);
axi_crossbar_v2_1_wdata_router # // "WR": Write data Router
(
.C_FAMILY (C_FAMILY),
.C_NUM_MASTER_SLOTS (C_NUM_MASTER_SLOTS+1),
.C_SELECT_WIDTH (P_NUM_MASTER_SLOTS_LOG+1),
.C_WMESG_WIDTH (P_WR_WMESG_WIDTH),
.C_FIFO_DEPTH_LOG (C_W_ACCEPT_WIDTH[gen_si_slot*32+:6])
)
wdata_router_w
(
.ACLK (ACLK),
.ARESET (reset),
// Write transfer input from the current SI-slot
.S_WMESG (si_wr_wmesg[gen_si_slot*P_WR_WMESG_WIDTH+:P_WR_WMESG_WIDTH]),
.S_WLAST (S_AXI_WLAST[gen_si_slot]),
.S_WVALID (S_AXI_WVALID[gen_si_slot]),
.S_WREADY (S_AXI_WREADY[gen_si_slot]),
// Vector of write transfer outputs to each MI-slot's W-mux
.M_WMESG (wr_wm_wmesg[gen_si_slot*(P_WR_WMESG_WIDTH)+:P_WR_WMESG_WIDTH]),
.M_WLAST (wr_wm_wlast[gen_si_slot]),
.M_WVALID (wr_tmp_wvalid[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.M_WREADY (wr_tmp_wready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
// AW command push from local SI-slot
.S_ASELECT (st_aa_awtarget_enc[gen_si_slot*(P_NUM_MASTER_SLOTS_LOG+1)+:(P_NUM_MASTER_SLOTS_LOG+1)]), // Target MI-slot
.S_AVALID (ss_wr_awvalid[gen_si_slot]),
.S_AREADY (ss_wr_awready[gen_si_slot])
);
assign si_wr_wmesg[gen_si_slot*P_WR_WMESG_WIDTH+:P_WR_WMESG_WIDTH] = {
((C_AXI_PROTOCOL == P_AXI3) ? f_extend_ID(S_AXI_WID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH], gen_si_slot) : 1'b0),
S_AXI_WUSER[gen_si_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH],
S_AXI_WSTRB[gen_si_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8],
S_AXI_WDATA[gen_si_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH]
};
end else begin : gen_no_si_write
assign S_AXI_AWREADY[gen_si_slot] = 1'b0;
assign ss_aa_awvalid[gen_si_slot] = 1'b0;
assign st_aa_awvalid_qual[gen_si_slot] = 1'b1;
assign tmp_aa_awmesg[gen_si_slot*P_AA_AWMESG_WIDTH+:P_AA_AWMESG_WIDTH] = 0;
assign S_AXI_BID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = 0;
assign S_AXI_BRESP[gen_si_slot*2+:2] = 0;
assign S_AXI_BUSER[gen_si_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] = 0;
assign S_AXI_BVALID[gen_si_slot] = 1'b0;
assign st_tmp_bready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)] = 0;
assign S_AXI_WREADY[gen_si_slot] = 1'b0;
assign wr_wm_wmesg[gen_si_slot*(P_WR_WMESG_WIDTH)+:P_WR_WMESG_WIDTH] = 0;
assign wr_wm_wlast[gen_si_slot] = 1'b0;
assign wr_tmp_wvalid[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)] = 0;
assign st_aa_awtarget_hot[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)] = 0;
end // gen_si_write
end // gen_slave_slots
for (gen_mi_slot=0; gen_mi_slot<C_NUM_MASTER_SLOTS+1; gen_mi_slot=gen_mi_slot+1) begin : gen_master_slots
if (P_M_AXI_SUPPORTS_READ[gen_mi_slot]) begin : gen_mi_read
if (C_NUM_SLAVE_SLOTS>1) begin : gen_rid_decoder
axi_crossbar_v2_1_addr_decoder #
(
.C_FAMILY (C_FAMILY),
.C_NUM_TARGETS (C_NUM_SLAVE_SLOTS),
.C_NUM_TARGETS_LOG (P_NUM_SLAVE_SLOTS_LOG),
.C_NUM_RANGES (1),
.C_ADDR_WIDTH (C_AXI_ID_WIDTH),
.C_TARGET_ENC (C_DEBUG),
.C_TARGET_HOT (1),
.C_REGION_ENC (0),
.C_BASE_ADDR (C_S_AXI_BASE_ID),
.C_HIGH_ADDR (C_S_AXI_HIGH_ID),
.C_TARGET_QUAL (P_M_AXI_READ_CONNECTIVITY[gen_mi_slot*32+:C_NUM_SLAVE_SLOTS]),
.C_RESOLUTION (0)
)
rid_decoder_inst
(
.ADDR (st_mr_rid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.TARGET_HOT (tmp_mr_rid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS]),
.TARGET_ENC (debug_rid_target_i[gen_mi_slot*P_NUM_SLAVE_SLOTS_LOG+:P_NUM_SLAVE_SLOTS_LOG]),
.MATCH (rid_match[gen_mi_slot]),
.REGION ()
);
end else begin : gen_no_rid_decoder
assign tmp_mr_rid_target[gen_mi_slot] = 1'b1; // All response transfers route to solo SI-slot.
assign rid_match[gen_mi_slot] = 1'b1;
end
assign st_mr_rmesg[gen_mi_slot*P_ST_RMESG_WIDTH+:P_ST_RMESG_WIDTH] = {
st_mr_rdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH],
st_mr_ruser[gen_mi_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH],
st_mr_rresp[gen_mi_slot*2+:2]
};
end else begin : gen_no_mi_read
assign tmp_mr_rid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS] = 0;
assign rid_match[gen_mi_slot] = 1'b0;
assign st_mr_rmesg[gen_mi_slot*P_ST_RMESG_WIDTH+:P_ST_RMESG_WIDTH] = 0;
end // gen_mi_read
if (P_M_AXI_SUPPORTS_WRITE[gen_mi_slot]) begin : gen_mi_write
if (C_NUM_SLAVE_SLOTS>1) begin : gen_bid_decoder
axi_crossbar_v2_1_addr_decoder #
(
.C_FAMILY (C_FAMILY),
.C_NUM_TARGETS (C_NUM_SLAVE_SLOTS),
.C_NUM_TARGETS_LOG (P_NUM_SLAVE_SLOTS_LOG),
.C_NUM_RANGES (1),
.C_ADDR_WIDTH (C_AXI_ID_WIDTH),
.C_TARGET_ENC (C_DEBUG),
.C_TARGET_HOT (1),
.C_REGION_ENC (0),
.C_BASE_ADDR (C_S_AXI_BASE_ID),
.C_HIGH_ADDR (C_S_AXI_HIGH_ID),
.C_TARGET_QUAL (P_M_AXI_WRITE_CONNECTIVITY[gen_mi_slot*32+:C_NUM_SLAVE_SLOTS]),
.C_RESOLUTION (0)
)
bid_decoder_inst
(
.ADDR (st_mr_bid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.TARGET_HOT (tmp_mr_bid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS]),
.TARGET_ENC (debug_bid_target_i[gen_mi_slot*P_NUM_SLAVE_SLOTS_LOG+:P_NUM_SLAVE_SLOTS_LOG]),
.MATCH (bid_match[gen_mi_slot]),
.REGION ()
);
end else begin : gen_no_bid_decoder
assign tmp_mr_bid_target[gen_mi_slot] = 1'b1; // All response transfers route to solo SI-slot.
assign bid_match[gen_mi_slot] = 1'b1;
end
axi_crossbar_v2_1_wdata_mux # // "WM": Write data Mux, per MI-slot (incl error-handler)
(
.C_FAMILY (C_FAMILY),
.C_NUM_SLAVE_SLOTS (C_NUM_SLAVE_SLOTS),
.C_SELECT_WIDTH (P_NUM_SLAVE_SLOTS_LOG),
.C_WMESG_WIDTH (P_WR_WMESG_WIDTH),
.C_FIFO_DEPTH_LOG (C_W_ISSUE_WIDTH[gen_mi_slot*32+:6])
)
wdata_mux_w
(
.ACLK (ACLK),
.ARESET (reset),
// Vector of write transfer inputs from each SI-slot's W-router
.S_WMESG (wr_wm_wmesg),
.S_WLAST (wr_wm_wlast),
.S_WVALID (tmp_wm_wvalid[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS]),
.S_WREADY (tmp_wm_wready[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS]),
// Write transfer output to the current MI-slot
.M_WMESG (wm_mr_wmesg[gen_mi_slot*P_WR_WMESG_WIDTH+:P_WR_WMESG_WIDTH]),
.M_WLAST (wm_mr_wlast[gen_mi_slot]),
.M_WVALID (wm_mr_wvalid[gen_mi_slot]),
.M_WREADY (wm_mr_wready[gen_mi_slot]),
// AW command push from AW arbiter output
.S_ASELECT (aa_wm_awgrant_enc), // SI-slot selected by arbiter
.S_AVALID (sa_wm_awvalid[gen_mi_slot]),
.S_AREADY (sa_wm_awready[gen_mi_slot])
);
if (C_DEBUG) begin : gen_debug_w
// DEBUG WRITE BEAT COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_w_beat_cnt_i[gen_mi_slot*8+:8] <= 0;
end else begin
if (mi_wvalid[gen_mi_slot] & mi_wready[gen_mi_slot]) begin
if (mi_wlast[gen_mi_slot]) begin
debug_w_beat_cnt_i[gen_mi_slot*8+:8] <= 0;
end else begin
debug_w_beat_cnt_i[gen_mi_slot*8+:8] <= debug_w_beat_cnt_i[gen_mi_slot*8+:8] + 1;
end
end
end
end // clocked process
// DEBUG W-CHANNEL TRANSACTION SEQUENCE QUEUE
axi_data_fifo_v2_1_axic_srl_fifo #
(
.C_FAMILY (C_FAMILY),
.C_FIFO_WIDTH (8),
.C_FIFO_DEPTH_LOG (C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]),
.C_USE_FULL (0)
)
debug_w_seq_fifo
(
.ACLK (ACLK),
.ARESET (reset),
.S_MESG (debug_aw_trans_seq_i),
.S_VALID (sa_wm_awvalid[gen_mi_slot]),
.S_READY (),
.M_MESG (debug_w_trans_seq_i[gen_mi_slot*8+:8]),
.M_VALID (),
.M_READY (mi_wvalid[gen_mi_slot] & mi_wready[gen_mi_slot] & mi_wlast[gen_mi_slot])
);
end // gen_debug_w
assign wm_mr_wdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = wm_mr_wmesg[gen_mi_slot*P_WR_WMESG_WIDTH +: C_AXI_DATA_WIDTH];
assign wm_mr_wstrb[gen_mi_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8] = wm_mr_wmesg[gen_mi_slot*P_WR_WMESG_WIDTH+C_AXI_DATA_WIDTH +: C_AXI_DATA_WIDTH/8];
assign wm_mr_wuser[gen_mi_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH] = wm_mr_wmesg[gen_mi_slot*P_WR_WMESG_WIDTH+C_AXI_DATA_WIDTH+C_AXI_DATA_WIDTH/8 +: C_AXI_WUSER_WIDTH];
assign wm_mr_wid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = wm_mr_wmesg[gen_mi_slot*P_WR_WMESG_WIDTH+C_AXI_DATA_WIDTH+(C_AXI_DATA_WIDTH/8)+C_AXI_WUSER_WIDTH +: P_AXI_WID_WIDTH];
assign st_mr_bmesg[gen_mi_slot*P_ST_BMESG_WIDTH+:P_ST_BMESG_WIDTH] = {
st_mr_buser[gen_mi_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH],
st_mr_bresp[gen_mi_slot*2+:2]
};
end else begin : gen_no_mi_write
assign tmp_mr_bid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS] = 0;
assign bid_match[gen_mi_slot] = 1'b0;
assign wm_mr_wvalid[gen_mi_slot] = 0;
assign wm_mr_wlast[gen_mi_slot] = 0;
assign wm_mr_wdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = 0;
assign wm_mr_wstrb[gen_mi_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8] = 0;
assign wm_mr_wuser[gen_mi_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH] = 0;
assign wm_mr_wid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = 0;
assign st_mr_bmesg[gen_mi_slot*P_ST_BMESG_WIDTH+:P_ST_BMESG_WIDTH] = 0;
assign tmp_wm_wready[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS] = 0;
assign sa_wm_awready[gen_mi_slot] = 0;
end // gen_mi_write
for (gen_si_slot=0; gen_si_slot<C_NUM_SLAVE_SLOTS; gen_si_slot=gen_si_slot+1) begin : gen_trans_si
// Transpose handshakes from W-router (SxM) to W-mux (MxS).
assign tmp_wm_wvalid[gen_mi_slot*C_NUM_SLAVE_SLOTS+gen_si_slot] = wr_tmp_wvalid[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot];
assign wr_tmp_wready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] = tmp_wm_wready[gen_mi_slot*C_NUM_SLAVE_SLOTS+gen_si_slot];
// Transpose response enables from ID decoders (MxS) to si_transactors (SxM).
assign st_tmp_bid_target[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] = tmp_mr_bid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+gen_si_slot];
assign st_tmp_rid_target[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] = tmp_mr_rid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+gen_si_slot];
end // gen_trans_si
assign bready_carry[gen_mi_slot] = st_tmp_bready[gen_mi_slot];
assign rready_carry[gen_mi_slot] = st_tmp_rready[gen_mi_slot];
for (gen_si_slot=1; gen_si_slot<C_NUM_SLAVE_SLOTS; gen_si_slot=gen_si_slot+1) begin : gen_resp_carry_si
assign bready_carry[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] = // Generate M_BREADY if ...
bready_carry[(gen_si_slot-1)*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] | // For any SI-slot (OR carry-chain across all SI-slots), ...
st_tmp_bready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot]; // The write SI transactor indicates BREADY for that MI-slot.
assign rready_carry[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] = // Generate M_RREADY if ...
rready_carry[(gen_si_slot-1)*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] | // For any SI-slot (OR carry-chain across all SI-slots), ...
st_tmp_rready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot]; // The write SI transactor indicates RREADY for that MI-slot.
end // gen_resp_carry_si
assign w_cmd_push[gen_mi_slot] = mi_awvalid[gen_mi_slot] && mi_awready[gen_mi_slot] && P_M_AXI_SUPPORTS_WRITE[gen_mi_slot];
assign r_cmd_push[gen_mi_slot] = mi_arvalid[gen_mi_slot] && mi_arready[gen_mi_slot] && P_M_AXI_SUPPORTS_READ[gen_mi_slot];
assign w_cmd_pop[gen_mi_slot] = st_mr_bvalid[gen_mi_slot] && st_mr_bready[gen_mi_slot] && P_M_AXI_SUPPORTS_WRITE[gen_mi_slot];
assign r_cmd_pop[gen_mi_slot] = st_mr_rvalid[gen_mi_slot] && st_mr_rready[gen_mi_slot] && st_mr_rlast[gen_mi_slot] && P_M_AXI_SUPPORTS_READ[gen_mi_slot];
// Disqualify arbitration of SI-slot if targeted MI-slot has reached its issuing limit.
assign mi_awmaxissuing[gen_mi_slot] = (w_issuing_cnt[gen_mi_slot*8 +: (C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] ==
P_M_AXI_WRITE_ISSUING[gen_mi_slot*32 +: (C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)]) & ~w_cmd_pop[gen_mi_slot];
assign mi_armaxissuing[gen_mi_slot] = (r_issuing_cnt[gen_mi_slot*8 +: (C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] ==
P_M_AXI_READ_ISSUING[gen_mi_slot*32 +: (C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)]) & ~r_cmd_pop[gen_mi_slot];
always @(posedge ACLK) begin
if (reset) begin
w_issuing_cnt[gen_mi_slot*8+:8] <= 0; // Some high-order bits remain constant 0
r_issuing_cnt[gen_mi_slot*8+:8] <= 0; // Some high-order bits remain constant 0
end else begin
if (w_cmd_push[gen_mi_slot] && ~w_cmd_pop[gen_mi_slot]) begin
w_issuing_cnt[gen_mi_slot*8+:(C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] <= w_issuing_cnt[gen_mi_slot*8+:(C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] + 1;
end else if (w_cmd_pop[gen_mi_slot] && ~w_cmd_push[gen_mi_slot] && (|w_issuing_cnt[gen_mi_slot*8+:(C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)])) begin
w_issuing_cnt[gen_mi_slot*8+:(C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] <= w_issuing_cnt[gen_mi_slot*8+:(C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] - 1;
end
if (r_cmd_push[gen_mi_slot] && ~r_cmd_pop[gen_mi_slot]) begin
r_issuing_cnt[gen_mi_slot*8+:(C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] <= r_issuing_cnt[gen_mi_slot*8+:(C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] + 1;
end else if (r_cmd_pop[gen_mi_slot] && ~r_cmd_push[gen_mi_slot] && (|r_issuing_cnt[gen_mi_slot*8+:(C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)])) begin
r_issuing_cnt[gen_mi_slot*8+:(C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] <= r_issuing_cnt[gen_mi_slot*8+:(C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] - 1;
end
end
end // Clocked process
// Reg-slice must break combinatorial path from M_BID and M_RID inputs to M_BREADY and M_RREADY outputs.
// (See m_rready_i and m_resp_en combinatorial assignments in si_transactor.)
// Reg-slice incurs +1 latency, but no bubble-cycles.
axi_register_slice_v2_1_axi_register_slice # // "MR": MI-side R/B-channel Reg-slice, per MI-slot (pass-through if only 1 SI-slot configured)
(
.C_FAMILY (C_FAMILY),
.C_AXI_PROTOCOL ((C_AXI_PROTOCOL == P_AXI3) ? P_AXI3 : P_AXI4),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_ADDR_WIDTH (1),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS),
.C_AXI_AWUSER_WIDTH (1),
.C_AXI_ARUSER_WIDTH (1),
.C_AXI_WUSER_WIDTH (C_AXI_WUSER_WIDTH),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_REG_CONFIG_AW (P_BYPASS),
.C_REG_CONFIG_AR (P_BYPASS),
.C_REG_CONFIG_W (P_BYPASS),
.C_REG_CONFIG_R (P_M_AXI_SUPPORTS_READ[gen_mi_slot] ? P_FWD_REV : P_BYPASS),
.C_REG_CONFIG_B (P_M_AXI_SUPPORTS_WRITE[gen_mi_slot] ? P_SIMPLE : P_BYPASS)
)
reg_slice_mi
(
.aresetn (ARESETN),
.aclk (ACLK),
.s_axi_awid ({C_AXI_ID_WIDTH{1'b0}}),
.s_axi_awaddr ({1{1'b0}}),
.s_axi_awlen ({((C_AXI_PROTOCOL == P_AXI3) ? 4 : 8){1'b0}}),
.s_axi_awsize ({3{1'b0}}),
.s_axi_awburst ({2{1'b0}}),
.s_axi_awlock ({((C_AXI_PROTOCOL == P_AXI3) ? 2 : 1){1'b0}}),
.s_axi_awcache ({4{1'b0}}),
.s_axi_awprot ({3{1'b0}}),
.s_axi_awregion ({4{1'b0}}),
.s_axi_awqos ({4{1'b0}}),
.s_axi_awuser ({1{1'b0}}),
.s_axi_awvalid ({1{1'b0}}),
.s_axi_awready (),
.s_axi_wid (wm_mr_wid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.s_axi_wdata (wm_mr_wdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH]),
.s_axi_wstrb (wm_mr_wstrb[gen_mi_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8]),
.s_axi_wlast (wm_mr_wlast[gen_mi_slot]),
.s_axi_wuser (wm_mr_wuser[gen_mi_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH]),
.s_axi_wvalid (wm_mr_wvalid[gen_mi_slot]),
.s_axi_wready (wm_mr_wready[gen_mi_slot]),
.s_axi_bid (st_mr_bid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] ),
.s_axi_bresp (st_mr_bresp[gen_mi_slot*2+:2] ),
.s_axi_buser (st_mr_buser[gen_mi_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] ),
.s_axi_bvalid (st_mr_bvalid[gen_mi_slot*1+:1] ),
.s_axi_bready (st_mr_bready[gen_mi_slot*1+:1] ),
.s_axi_arid ({C_AXI_ID_WIDTH{1'b0}}),
.s_axi_araddr ({1{1'b0}}),
.s_axi_arlen ({((C_AXI_PROTOCOL == P_AXI3) ? 4 : 8){1'b0}}),
.s_axi_arsize ({3{1'b0}}),
.s_axi_arburst ({2{1'b0}}),
.s_axi_arlock ({((C_AXI_PROTOCOL == P_AXI3) ? 2 : 1){1'b0}}),
.s_axi_arcache ({4{1'b0}}),
.s_axi_arprot ({3{1'b0}}),
.s_axi_arregion ({4{1'b0}}),
.s_axi_arqos ({4{1'b0}}),
.s_axi_aruser ({1{1'b0}}),
.s_axi_arvalid ({1{1'b0}}),
.s_axi_arready (),
.s_axi_rid (st_mr_rid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] ),
.s_axi_rdata (st_mr_rdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] ),
.s_axi_rresp (st_mr_rresp[gen_mi_slot*2+:2] ),
.s_axi_rlast (st_mr_rlast[gen_mi_slot*1+:1] ),
.s_axi_ruser (st_mr_ruser[gen_mi_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] ),
.s_axi_rvalid (st_mr_rvalid[gen_mi_slot*1+:1] ),
.s_axi_rready (st_mr_rready[gen_mi_slot*1+:1] ),
.m_axi_awid (),
.m_axi_awaddr (),
.m_axi_awlen (),
.m_axi_awsize (),
.m_axi_awburst (),
.m_axi_awlock (),
.m_axi_awcache (),
.m_axi_awprot (),
.m_axi_awregion (),
.m_axi_awqos (),
.m_axi_awuser (),
.m_axi_awvalid (),
.m_axi_awready ({1{1'b0}}),
.m_axi_wid (mi_wid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.m_axi_wdata (mi_wdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH]),
.m_axi_wstrb (mi_wstrb[gen_mi_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8]),
.m_axi_wlast (mi_wlast[gen_mi_slot]),
.m_axi_wuser (mi_wuser[gen_mi_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH]),
.m_axi_wvalid (mi_wvalid[gen_mi_slot]),
.m_axi_wready (mi_wready[gen_mi_slot]),
.m_axi_bid (mi_bid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] ),
.m_axi_bresp (mi_bresp[gen_mi_slot*2+:2] ),
.m_axi_buser (mi_buser[gen_mi_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] ),
.m_axi_bvalid (mi_bvalid[gen_mi_slot*1+:1] ),
.m_axi_bready (mi_bready[gen_mi_slot*1+:1] ),
.m_axi_arid (),
.m_axi_araddr (),
.m_axi_arlen (),
.m_axi_arsize (),
.m_axi_arburst (),
.m_axi_arlock (),
.m_axi_arcache (),
.m_axi_arprot (),
.m_axi_arregion (),
.m_axi_arqos (),
.m_axi_aruser (),
.m_axi_arvalid (),
.m_axi_arready ({1{1'b0}}),
.m_axi_rid (mi_rid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] ),
.m_axi_rdata (mi_rdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] ),
.m_axi_rresp (mi_rresp[gen_mi_slot*2+:2] ),
.m_axi_rlast (mi_rlast[gen_mi_slot*1+:1] ),
.m_axi_ruser (mi_ruser[gen_mi_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] ),
.m_axi_rvalid (mi_rvalid[gen_mi_slot*1+:1] ),
.m_axi_rready (mi_rready[gen_mi_slot*1+:1] )
);
end // gen_master_slots (Next gen_mi_slot)
// Highest row of *ready_carry contains accumulated OR across all SI-slots, for each MI-slot.
assign st_mr_bready = bready_carry[(C_NUM_SLAVE_SLOTS-1)*(C_NUM_MASTER_SLOTS+1) +: C_NUM_MASTER_SLOTS+1];
assign st_mr_rready = rready_carry[(C_NUM_SLAVE_SLOTS-1)*(C_NUM_MASTER_SLOTS+1) +: C_NUM_MASTER_SLOTS+1];
// Assign MI-side B, R and W channel ports (exclude error handler signals).
assign mi_bid[0+:C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH] = M_AXI_BID;
assign mi_bvalid[0+:C_NUM_MASTER_SLOTS] = M_AXI_BVALID;
assign mi_bresp[0+:C_NUM_MASTER_SLOTS*2] = M_AXI_BRESP;
assign mi_buser[0+:C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH] = M_AXI_BUSER;
assign M_AXI_BREADY = mi_bready[0+:C_NUM_MASTER_SLOTS];
assign mi_rid[0+:C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH] = M_AXI_RID;
assign mi_rlast[0+:C_NUM_MASTER_SLOTS] = M_AXI_RLAST;
assign mi_rvalid[0+:C_NUM_MASTER_SLOTS] = M_AXI_RVALID;
assign mi_rresp[0+:C_NUM_MASTER_SLOTS*2] = M_AXI_RRESP;
assign mi_ruser[0+:C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH] = M_AXI_RUSER;
assign mi_rdata[0+:C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH] = M_AXI_RDATA;
assign M_AXI_RREADY = mi_rready[0+:C_NUM_MASTER_SLOTS];
assign M_AXI_WLAST = mi_wlast[0+:C_NUM_MASTER_SLOTS];
assign M_AXI_WVALID = mi_wvalid[0+:C_NUM_MASTER_SLOTS];
assign M_AXI_WUSER = mi_wuser[0+:C_NUM_MASTER_SLOTS*C_AXI_WUSER_WIDTH];
assign M_AXI_WID = (C_AXI_PROTOCOL == P_AXI3) ? mi_wid[0+:C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH] : 0;
assign M_AXI_WDATA = mi_wdata[0+:C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH];
assign M_AXI_WSTRB = mi_wstrb[0+:C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH/8];
assign mi_wready[0+:C_NUM_MASTER_SLOTS] = M_AXI_WREADY;
axi_crossbar_v2_1_addr_arbiter # // "AA": Addr Arbiter (AW channel)
(
.C_FAMILY (C_FAMILY),
.C_NUM_M (C_NUM_MASTER_SLOTS+1),
.C_NUM_S (C_NUM_SLAVE_SLOTS),
.C_NUM_S_LOG (P_NUM_SLAVE_SLOTS_LOG),
.C_MESG_WIDTH (P_AA_AWMESG_WIDTH),
.C_ARB_PRIORITY (C_S_AXI_ARB_PRIORITY)
)
addr_arbiter_aw
(
.ACLK (ACLK),
.ARESET (reset),
// Vector of SI-side AW command request inputs
.S_MESG (tmp_aa_awmesg),
.S_TARGET_HOT (st_aa_awtarget_hot),
.S_VALID (ss_aa_awvalid),
.S_VALID_QUAL (st_aa_awvalid_qual),
.S_READY (ss_aa_awready),
// Granted AW command output
.M_MESG (aa_mi_awmesg),
.M_TARGET_HOT (aa_mi_awtarget_hot), // MI-slot targeted by granted command
.M_GRANT_ENC (aa_wm_awgrant_enc), // SI-slot index of granted command
.M_VALID (aa_sa_awvalid),
.M_READY (aa_sa_awready),
.ISSUING_LIMIT (mi_awmaxissuing)
);
// Broadcast AW transfer payload to all MI-slots
assign M_AXI_AWID = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[0+:C_AXI_ID_WIDTH]}};
assign M_AXI_AWADDR = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+:C_AXI_ADDR_WIDTH]}};
assign M_AXI_AWLEN = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH +:8]}};
assign M_AXI_AWSIZE = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8 +:3]}};
assign M_AXI_AWLOCK = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3 +:2]}};
assign M_AXI_AWPROT = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2 +:3]}};
assign M_AXI_AWREGION = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3 +:4]}};
assign M_AXI_AWBURST = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4 +:2]}};
assign M_AXI_AWCACHE = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2 +:4]}};
assign M_AXI_AWQOS = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2+4 +:4]}};
assign M_AXI_AWUSER = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2+4+4 +:C_AXI_AWUSER_WIDTH]}};
axi_crossbar_v2_1_addr_arbiter # // "AA": Addr Arbiter (AR channel)
(
.C_FAMILY (C_FAMILY),
.C_NUM_M (C_NUM_MASTER_SLOTS+1),
.C_NUM_S (C_NUM_SLAVE_SLOTS),
.C_NUM_S_LOG (P_NUM_SLAVE_SLOTS_LOG),
.C_MESG_WIDTH (P_AA_ARMESG_WIDTH),
.C_ARB_PRIORITY (C_S_AXI_ARB_PRIORITY)
)
addr_arbiter_ar
(
.ACLK (ACLK),
.ARESET (reset),
// Vector of SI-side AR command request inputs
.S_MESG (tmp_aa_armesg),
.S_TARGET_HOT (st_aa_artarget_hot),
.S_VALID_QUAL (st_aa_arvalid_qual),
.S_VALID (st_aa_arvalid),
.S_READY (st_aa_arready),
// Granted AR command output
.M_MESG (aa_mi_armesg),
.M_TARGET_HOT (aa_mi_artarget_hot), // MI-slot targeted by granted command
.M_GRANT_ENC (aa_mi_argrant_enc),
.M_VALID (aa_mi_arvalid), // SI-slot index of granted command
.M_READY (aa_mi_arready),
.ISSUING_LIMIT (mi_armaxissuing)
);
if (C_DEBUG) begin : gen_debug_trans_seq
// DEBUG WRITE TRANSACTION SEQUENCE COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_aw_trans_seq_i <= 1;
end else begin
if (aa_sa_awvalid && aa_sa_awready) begin
debug_aw_trans_seq_i <= debug_aw_trans_seq_i + 1;
end
end
end
// DEBUG READ TRANSACTION SEQUENCE COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_ar_trans_seq_i <= 1;
end else begin
if (aa_mi_arvalid && aa_mi_arready) begin
debug_ar_trans_seq_i <= debug_ar_trans_seq_i + 1;
end
end
end
end // gen_debug_trans_seq
// Broadcast AR transfer payload to all MI-slots
assign M_AXI_ARID = {C_NUM_MASTER_SLOTS{aa_mi_armesg[0+:C_AXI_ID_WIDTH]}};
assign M_AXI_ARADDR = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+:C_AXI_ADDR_WIDTH]}};
assign M_AXI_ARLEN = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH +:8]}};
assign M_AXI_ARSIZE = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8 +:3]}};
assign M_AXI_ARLOCK = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3 +:2]}};
assign M_AXI_ARPROT = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2 +:3]}};
assign M_AXI_ARREGION = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3 +:4]}};
assign M_AXI_ARBURST = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4 +:2]}};
assign M_AXI_ARCACHE = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2 +:4]}};
assign M_AXI_ARQOS = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2+4 +:4]}};
assign M_AXI_ARUSER = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2+4+4 +:C_AXI_ARUSER_WIDTH]}};
// AW arbiter command transfer completes upon completion of both M-side AW-channel transfer and W-mux address acceptance (command push).
axi_crossbar_v2_1_splitter # // "SA": Splitter for Write Addr Arbiter
(
.C_NUM_M (2)
)
splitter_aw_mi
(
.ACLK (ACLK),
.ARESET (reset),
.S_VALID (aa_sa_awvalid),
.S_READY (aa_sa_awready),
.M_VALID ({mi_awvalid_en, sa_wm_awvalid_en}),
.M_READY ({mi_awready_mux, sa_wm_awready_mux})
);
assign mi_awvalid = aa_mi_awtarget_hot & {C_NUM_MASTER_SLOTS+1{mi_awvalid_en}};
assign mi_awready_mux = |(aa_mi_awtarget_hot & mi_awready);
assign M_AXI_AWVALID = mi_awvalid[0+:C_NUM_MASTER_SLOTS]; // Slot C_NUM_MASTER_SLOTS+1 is the error handler
assign mi_awready[0+:C_NUM_MASTER_SLOTS] = M_AXI_AWREADY;
assign sa_wm_awvalid = aa_mi_awtarget_hot & {C_NUM_MASTER_SLOTS+1{sa_wm_awvalid_en}};
assign sa_wm_awready_mux = |(aa_mi_awtarget_hot & sa_wm_awready);
assign mi_arvalid = aa_mi_artarget_hot & {C_NUM_MASTER_SLOTS+1{aa_mi_arvalid}};
assign aa_mi_arready = |(aa_mi_artarget_hot & mi_arready);
assign M_AXI_ARVALID = mi_arvalid[0+:C_NUM_MASTER_SLOTS]; // Slot C_NUM_MASTER_SLOTS+1 is the error handler
assign mi_arready[0+:C_NUM_MASTER_SLOTS] = M_AXI_ARREADY;
// MI-slot # C_NUM_MASTER_SLOTS is the error handler
if (C_RANGE_CHECK) begin : gen_decerr_slave
axi_crossbar_v2_1_decerr_slave #
(
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_AXI_PROTOCOL (C_AXI_PROTOCOL),
.C_RESP (P_DECERR)
)
decerr_slave_inst
(
.S_AXI_ACLK (ACLK),
.S_AXI_ARESET (reset),
.S_AXI_AWID (aa_mi_awmesg[0+:C_AXI_ID_WIDTH]),
.S_AXI_AWVALID (mi_awvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_AWREADY (mi_awready[C_NUM_MASTER_SLOTS]),
.S_AXI_WLAST (mi_wlast[C_NUM_MASTER_SLOTS]),
.S_AXI_WVALID (mi_wvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_WREADY (mi_wready[C_NUM_MASTER_SLOTS]),
.S_AXI_BID (mi_bid[C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.S_AXI_BRESP (mi_bresp[C_NUM_MASTER_SLOTS*2+:2]),
.S_AXI_BUSER (mi_buser[C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH]),
.S_AXI_BVALID (mi_bvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_BREADY (mi_bready[C_NUM_MASTER_SLOTS]),
.S_AXI_ARID (aa_mi_armesg[0+:C_AXI_ID_WIDTH]),
.S_AXI_ARLEN (aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH +:8]),
.S_AXI_ARVALID (mi_arvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_ARREADY (mi_arready[C_NUM_MASTER_SLOTS]),
.S_AXI_RID (mi_rid[C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.S_AXI_RDATA (mi_rdata[C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH]),
.S_AXI_RRESP (mi_rresp[C_NUM_MASTER_SLOTS*2+:2]),
.S_AXI_RUSER (mi_ruser[C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH]),
.S_AXI_RLAST (mi_rlast[C_NUM_MASTER_SLOTS]),
.S_AXI_RVALID (mi_rvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_RREADY (mi_rready[C_NUM_MASTER_SLOTS])
);
end else begin : gen_no_decerr_slave
assign mi_awready[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_wready[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_arready[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_awready[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_awready[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_bid[C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = 0;
assign mi_bresp[C_NUM_MASTER_SLOTS*2+:2] = 0;
assign mi_buser[C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] = 0;
assign mi_bvalid[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_rid[C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = 0;
assign mi_rdata[C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = 0;
assign mi_rresp[C_NUM_MASTER_SLOTS*2+:2] = 0;
assign mi_ruser[C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] = 0;
assign mi_rlast[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_rvalid[C_NUM_MASTER_SLOTS] = 1'b0;
end // gen_decerr_slave
endgenerate
endmodule
`default_nettype wire
|
`timescale 1ns / 1ps
//////////////////////////////////////////////////////////////////////////////////
// Company:
// Engineer:
//
// Create Date: 03/12/2016 06:18:20 PM
// Design Name:
// Module Name: Mux_Array
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//////////////////////////////////////////////////////////////////////////////////
module Mux_Array
#(parameter SWR=26, parameter EWR=5)
(
input wire clk,
input wire rst,
input wire load_i,
input wire [SWR-1:0] Data_i,
input wire FSM_left_right_i,
input wire [EWR-1:0] Shift_Value_i,
input wire bit_shift_i,
output wire [SWR-1:0] Data_o
);
////
wire [SWR-1:0] Data_array[EWR+1:0];
//////////////////7
genvar k;//Level
///////////////////77777
Rotate_Mux_Array #(.SWR(SWR)) first_rotate(
.Data_i(Data_i),
.select_i(FSM_left_right_i),
.Data_o(Data_array [0][SWR-1:0])
);
generate for (k=0; k < 3; k=k+1) begin
shift_mux_array #(.SWR(SWR), .LEVEL(k)) shift_mux_array(
.Data_i(Data_array[k]),
.select_i(Shift_Value_i[k]),
.bit_shift_i(bit_shift_i),
.Data_o(Data_array[k+1])
);
end
endgenerate
RegisterAdd #(.W(SWR)) Mid_Reg(
.clk(clk),
.rst(rst),
.load(1'b1),
.D(Data_array[3]),
.Q(Data_array[4])
);
generate for (k=3; k < EWR; k=k+1) begin
shift_mux_array #(.SWR(SWR), .LEVEL(k)) shift_mux_array(
.Data_i(Data_array[k+1]),
.select_i(Shift_Value_i[k]),
.bit_shift_i(bit_shift_i),
.Data_o(Data_array[k+2])
);
end
endgenerate
Rotate_Mux_Array #(.SWR(SWR)) last_rotate(
.Data_i(Data_array[EWR+1]),
.select_i(FSM_left_right_i),
.Data_o(Data_o)
);
endmodule
|
`timescale 1ns / 1ps
//////////////////////////////////////////////////////////////////////////////////
// Company:
// Engineer:
//
// Create Date: 03/12/2016 06:18:20 PM
// Design Name:
// Module Name: Mux_Array
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//////////////////////////////////////////////////////////////////////////////////
module Mux_Array
#(parameter SWR=26, parameter EWR=5)
(
input wire clk,
input wire rst,
input wire load_i,
input wire [SWR-1:0] Data_i,
input wire FSM_left_right_i,
input wire [EWR-1:0] Shift_Value_i,
input wire bit_shift_i,
output wire [SWR-1:0] Data_o
);
////
wire [SWR-1:0] Data_array[EWR+1:0];
//////////////////7
genvar k;//Level
///////////////////77777
Rotate_Mux_Array #(.SWR(SWR)) first_rotate(
.Data_i(Data_i),
.select_i(FSM_left_right_i),
.Data_o(Data_array [0][SWR-1:0])
);
generate for (k=0; k < 3; k=k+1) begin
shift_mux_array #(.SWR(SWR), .LEVEL(k)) shift_mux_array(
.Data_i(Data_array[k]),
.select_i(Shift_Value_i[k]),
.bit_shift_i(bit_shift_i),
.Data_o(Data_array[k+1])
);
end
endgenerate
RegisterAdd #(.W(SWR)) Mid_Reg(
.clk(clk),
.rst(rst),
.load(1'b1),
.D(Data_array[3]),
.Q(Data_array[4])
);
generate for (k=3; k < EWR; k=k+1) begin
shift_mux_array #(.SWR(SWR), .LEVEL(k)) shift_mux_array(
.Data_i(Data_array[k+1]),
.select_i(Shift_Value_i[k]),
.bit_shift_i(bit_shift_i),
.Data_o(Data_array[k+2])
);
end
endgenerate
Rotate_Mux_Array #(.SWR(SWR)) last_rotate(
.Data_i(Data_array[EWR+1]),
.select_i(FSM_left_right_i),
.Data_o(Data_o)
);
endmodule
|
`timescale 1ns / 1ps
//////////////////////////////////////////////////////////////////////////////////
// Company:
// Engineer:
//
// Create Date: 03/12/2016 06:18:20 PM
// Design Name:
// Module Name: Mux_Array
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//////////////////////////////////////////////////////////////////////////////////
module Mux_Array
#(parameter SWR=26, parameter EWR=5)
(
input wire clk,
input wire rst,
input wire load_i,
input wire [SWR-1:0] Data_i,
input wire FSM_left_right_i,
input wire [EWR-1:0] Shift_Value_i,
input wire bit_shift_i,
output wire [SWR-1:0] Data_o
);
////
wire [SWR-1:0] Data_array[EWR+1:0];
//////////////////7
genvar k;//Level
///////////////////77777
Rotate_Mux_Array #(.SWR(SWR)) first_rotate(
.Data_i(Data_i),
.select_i(FSM_left_right_i),
.Data_o(Data_array [0][SWR-1:0])
);
generate for (k=0; k < 3; k=k+1) begin
shift_mux_array #(.SWR(SWR), .LEVEL(k)) shift_mux_array(
.Data_i(Data_array[k]),
.select_i(Shift_Value_i[k]),
.bit_shift_i(bit_shift_i),
.Data_o(Data_array[k+1])
);
end
endgenerate
RegisterAdd #(.W(SWR)) Mid_Reg(
.clk(clk),
.rst(rst),
.load(1'b1),
.D(Data_array[3]),
.Q(Data_array[4])
);
generate for (k=3; k < EWR; k=k+1) begin
shift_mux_array #(.SWR(SWR), .LEVEL(k)) shift_mux_array(
.Data_i(Data_array[k+1]),
.select_i(Shift_Value_i[k]),
.bit_shift_i(bit_shift_i),
.Data_o(Data_array[k+2])
);
end
endgenerate
Rotate_Mux_Array #(.SWR(SWR)) last_rotate(
.Data_i(Data_array[EWR+1]),
.select_i(FSM_left_right_i),
.Data_o(Data_o)
);
endmodule
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_intr_wr_mem.v
*
* Date : 2012-11
*
* Description : Mimics interconnect for Writes between AFI and DDRC/OCM
*
*****************************************************************************/
`timescale 1ns/1ps
module processing_system7_bfm_v2_0_5_intr_wr_mem(
sw_clk,
rstn,
full,
WR_DATA_ACK_OCM,
WR_DATA_ACK_DDR,
WR_ADDR,
WR_DATA,
WR_BYTES,
WR_QOS,
WR_DATA_VALID_OCM,
WR_DATA_VALID_DDR
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
/* local parameters for interconnect wr fifo model */
input sw_clk, rstn;
output full;
input WR_DATA_ACK_DDR, WR_DATA_ACK_OCM;
output reg WR_DATA_VALID_DDR, WR_DATA_VALID_OCM;
output reg [max_burst_bits-1:0] WR_DATA;
output reg [addr_width-1:0] WR_ADDR;
output reg [max_burst_bytes_width:0] WR_BYTES;
output reg [axi_qos_width-1:0] WR_QOS;
reg [intr_cnt_width-1:0] wr_ptr = 0, rd_ptr = 0;
reg [wr_fifo_data_bits-1:0] wr_fifo [0:intr_max_outstanding-1];
wire empty;
assign empty = (wr_ptr === rd_ptr)?1'b1: 1'b0;
assign full = ((wr_ptr[intr_cnt_width-1]!== rd_ptr[intr_cnt_width-1]) && (wr_ptr[intr_cnt_width-2:0] === rd_ptr[intr_cnt_width-2:0]))?1'b1 :1'b0;
parameter SEND_DATA = 0, WAIT_ACK = 1;
reg state;
task automatic write_mem;
input [wr_fifo_data_bits-1:0] data;
begin
wr_fifo[wr_ptr[intr_cnt_width-2:0]] = data;
if(wr_ptr[intr_cnt_width-2:0] === intr_max_outstanding-1)
wr_ptr[intr_cnt_width-2:0] = 0;
else
wr_ptr = wr_ptr + 1;
end
endtask
always@(negedge rstn or posedge sw_clk)
begin
if(!rstn) begin
wr_ptr = 0;
rd_ptr = 0;
WR_DATA_VALID_DDR = 1'b0;
WR_DATA_VALID_OCM = 1'b0;
WR_QOS = 0;
state = SEND_DATA;
end else begin
case(state)
SEND_DATA :begin
state = SEND_DATA;
WR_DATA_VALID_OCM = 1'b0;
WR_DATA_VALID_DDR = 1'b0;
if(!empty) begin
WR_DATA = wr_fifo[rd_ptr[intr_cnt_width-2:0]][wr_data_msb : wr_data_lsb];
WR_ADDR = wr_fifo[rd_ptr[intr_cnt_width-2:0]][wr_addr_msb : wr_addr_lsb];
WR_BYTES = wr_fifo[rd_ptr[intr_cnt_width-2:0]][wr_bytes_msb : wr_bytes_lsb];
WR_QOS = wr_fifo[rd_ptr[intr_cnt_width-2:0]][wr_qos_msb : wr_qos_lsb];
state = WAIT_ACK;
case(decode_address(wr_fifo[rd_ptr[intr_cnt_width-2:0]][wr_addr_msb : wr_addr_lsb]))
OCM_MEM : WR_DATA_VALID_OCM = 1;
DDR_MEM : WR_DATA_VALID_DDR = 1;
default : state = SEND_DATA;
endcase
if(rd_ptr[intr_cnt_width-2:0] === intr_max_outstanding-1) begin
rd_ptr[intr_cnt_width-2:0] = 0;
end else begin
rd_ptr = rd_ptr+1;
end
end
end
WAIT_ACK :begin
state = WAIT_ACK;
if(WR_DATA_ACK_OCM | WR_DATA_ACK_DDR) begin
WR_DATA_VALID_OCM = 1'b0;
WR_DATA_VALID_DDR = 1'b0;
state = SEND_DATA;
end
end
endcase
end
end
endmodule
|
// -- (c) Copyright 2009 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// File name: addr_arbiter.v
//
// Description:
// Instantiates generic priority encoder.
// Each request is qualified if its target has not reached its issuing limit.
// Muxes mesg and target inputs based on arbitration results.
//-----------------------------------------------------------------------------
//
// Structure:
// addr_arbiter
// mux_enc
//-----------------------------------------------------------------------------
`timescale 1ps/1ps
`default_nettype none
(* DowngradeIPIdentifiedWarnings="yes" *)
module axi_crossbar_v2_1_addr_arbiter #
(
parameter C_FAMILY = "none",
parameter integer C_NUM_S = 1,
parameter integer C_NUM_S_LOG = 1,
parameter integer C_NUM_M = 1,
parameter integer C_MESG_WIDTH = 1,
parameter [C_NUM_S*32-1:0] C_ARB_PRIORITY = {C_NUM_S{32'h00000000}}
// Arbitration priority among each SI slot.
// Higher values indicate higher priority.
// Format: C_NUM_SLAVE_SLOTS{Bit32};
// Range: 'h0-'hF.
)
(
// Global Signals
input wire ACLK,
input wire ARESET,
// Slave Ports
input wire [C_NUM_S*C_MESG_WIDTH-1:0] S_MESG,
input wire [C_NUM_S*C_NUM_M-1:0] S_TARGET_HOT,
input wire [C_NUM_S-1:0] S_VALID,
input wire [C_NUM_S-1:0] S_VALID_QUAL,
output wire [C_NUM_S-1:0] S_READY,
// Master Ports
output wire [C_MESG_WIDTH-1:0] M_MESG,
output wire [C_NUM_M-1:0] M_TARGET_HOT,
output wire [C_NUM_S_LOG-1:0] M_GRANT_ENC,
output wire M_VALID,
input wire M_READY,
// Sideband input
input wire [C_NUM_M-1:0] ISSUING_LIMIT
);
// Generates a mask for all input slots that are priority based
function [C_NUM_S-1:0] f_prio_mask
(
input integer null_arg
);
reg [C_NUM_S-1:0] mask;
integer i;
begin
mask = 0;
for (i=0; i < C_NUM_S; i=i+1) begin
mask[i] = (C_ARB_PRIORITY[i*32+:32] != 0);
end
f_prio_mask = mask;
end
endfunction
// Convert 16-bit one-hot to 4-bit binary
function [3:0] f_hot2enc
(
input [15:0] one_hot
);
begin
f_hot2enc[0] = |(one_hot & 16'b1010101010101010);
f_hot2enc[1] = |(one_hot & 16'b1100110011001100);
f_hot2enc[2] = |(one_hot & 16'b1111000011110000);
f_hot2enc[3] = |(one_hot & 16'b1111111100000000);
end
endfunction
localparam [C_NUM_S-1:0] P_PRIO_MASK = f_prio_mask(0);
reg m_valid_i;
reg [C_NUM_S-1:0] s_ready_i;
reg [C_NUM_S-1:0] qual_reg;
reg [C_NUM_S-1:0] grant_hot;
reg [C_NUM_S-1:0] last_rr_hot;
reg any_grant;
reg any_prio;
reg found_prio;
reg [C_NUM_S-1:0] which_prio_hot;
reg [C_NUM_S-1:0] next_prio_hot;
reg [C_NUM_S_LOG-1:0] which_prio_enc;
reg [C_NUM_S_LOG-1:0] next_prio_enc;
reg [4:0] current_highest;
wire [C_NUM_S-1:0] valid_rr;
reg [15:0] next_rr_hot;
reg [C_NUM_S_LOG-1:0] next_rr_enc;
reg [C_NUM_S*C_NUM_S-1:0] carry_rr;
reg [C_NUM_S*C_NUM_S-1:0] mask_rr;
reg found_rr;
wire [C_NUM_S-1:0] next_hot;
wire [C_NUM_S_LOG-1:0] next_enc;
reg prio_stall;
integer i;
wire [C_NUM_S-1:0] valid_qual_i;
reg [C_NUM_S_LOG-1:0] m_grant_enc_i;
reg [C_NUM_M-1:0] m_target_hot_i;
wire [C_NUM_M-1:0] m_target_hot_mux;
reg [C_MESG_WIDTH-1:0] m_mesg_i;
wire [C_MESG_WIDTH-1:0] m_mesg_mux;
genvar gen_si;
assign M_VALID = m_valid_i;
assign S_READY = s_ready_i;
assign M_GRANT_ENC = m_grant_enc_i;
assign M_MESG = m_mesg_i;
assign M_TARGET_HOT = m_target_hot_i;
generate
if (C_NUM_S>1) begin : gen_arbiter
always @(posedge ACLK) begin
if (ARESET) begin
qual_reg <= 0;
end else begin
qual_reg <= valid_qual_i | ~S_VALID; // Don't disqualify when bus not VALID (valid_qual_i would be garbage)
end
end
for (gen_si=0; gen_si<C_NUM_S; gen_si=gen_si+1) begin : gen_req_qual
assign valid_qual_i[gen_si] = S_VALID_QUAL[gen_si] & (|(S_TARGET_HOT[gen_si*C_NUM_M+:C_NUM_M] & ~ISSUING_LIMIT));
end
/////////////////////////////////////////////////////////////////////////////
// Grant a new request when there is none still pending.
// If no qualified requests found, de-assert M_VALID.
/////////////////////////////////////////////////////////////////////////////
assign next_hot = found_prio ? next_prio_hot : next_rr_hot;
assign next_enc = found_prio ? next_prio_enc : next_rr_enc;
always @(posedge ACLK) begin
if (ARESET) begin
m_valid_i <= 0;
s_ready_i <= 0;
grant_hot <= 0;
any_grant <= 1'b0;
m_grant_enc_i <= 0;
last_rr_hot <= {1'b1, {C_NUM_S-1{1'b0}}};
m_target_hot_i <= 0;
end else begin
s_ready_i <= 0;
if (m_valid_i) begin
// Stall 1 cycle after each master-side completion.
if (M_READY) begin // Master-side completion
m_valid_i <= 1'b0;
grant_hot <= 0;
any_grant <= 1'b0;
end
end else if (any_grant) begin
m_valid_i <= 1'b1;
s_ready_i <= grant_hot; // Assert S_AW/READY for 1 cycle to complete SI address transfer (regardless of M_AREADY)
end else begin
if ((found_prio | found_rr) & ~prio_stall) begin
// Waste 1 cycle and re-arbitrate if target of highest prio hit issuing limit in previous cycle (valid_qual_i).
if (|(next_hot & valid_qual_i)) begin
grant_hot <= next_hot;
m_grant_enc_i <= next_enc;
any_grant <= 1'b1;
if (~found_prio) begin
last_rr_hot <= next_rr_hot;
end
m_target_hot_i <= m_target_hot_mux;
end
end
end
end
end
/////////////////////////////////////////////////////////////////////////////
// Fixed Priority arbiter
// Selects next request to grant from among inputs with PRIO > 0, if any.
/////////////////////////////////////////////////////////////////////////////
always @ * begin : ALG_PRIO
integer ip;
any_prio = 1'b0;
prio_stall = 1'b0;
which_prio_hot = 0;
which_prio_enc = 0;
current_highest = 0;
for (ip=0; ip < C_NUM_S; ip=ip+1) begin
// Disqualify slot if target hit issuing limit (pass to lower prio slot).
if (P_PRIO_MASK[ip] & S_VALID[ip] & qual_reg[ip]) begin
if ({1'b0, C_ARB_PRIORITY[ip*32+:4]} > current_highest) begin
current_highest[0+:4] = C_ARB_PRIORITY[ip*32+:4];
// Stall 1 cycle when highest prio is recovering from SI-side handshake.
// (Do not allow lower-prio slot to win arbitration.)
if (s_ready_i[ip]) begin
any_prio = 1'b0;
prio_stall = 1'b1;
which_prio_hot = 0;
which_prio_enc = 0;
end else begin
any_prio = 1'b1;
which_prio_hot = 1'b1 << ip;
which_prio_enc = ip;
end
end
end
end
found_prio = any_prio;
next_prio_hot = which_prio_hot;
next_prio_enc = which_prio_enc;
end
/////////////////////////////////////////////////////////////////////////////
// Round-robin arbiter
// Selects next request to grant from among inputs with PRIO = 0, if any.
/////////////////////////////////////////////////////////////////////////////
// Disqualify slot if target hit issuing limit 2 or more cycles earlier (pass to next RR slot).
// Disqualify for 1 cycle a slot that is recovering from SI-side handshake (s_ready_i),
// and allow arbitration to pass to any other RR requester.
assign valid_rr = ~P_PRIO_MASK & S_VALID & ~s_ready_i & qual_reg;
always @ * begin : ALG_RR
integer ir, jr, nr;
next_rr_hot = 0;
for (ir=0;ir<C_NUM_S;ir=ir+1) begin
nr = (ir>0) ? (ir-1) : (C_NUM_S-1);
carry_rr[ir*C_NUM_S] = last_rr_hot[nr];
mask_rr[ir*C_NUM_S] = ~valid_rr[nr];
for (jr=1;jr<C_NUM_S;jr=jr+1) begin
nr = (ir-jr > 0) ? (ir-jr-1) : (C_NUM_S+ir-jr-1);
carry_rr[ir*C_NUM_S+jr] = carry_rr[ir*C_NUM_S+jr-1] | (last_rr_hot[nr] & mask_rr[ir*C_NUM_S+jr-1]);
if (jr < C_NUM_S-1) begin
mask_rr[ir*C_NUM_S+jr] = mask_rr[ir*C_NUM_S+jr-1] & ~valid_rr[nr];
end
end
next_rr_hot[ir] = valid_rr[ir] & carry_rr[(ir+1)*C_NUM_S-1];
end
next_rr_enc = f_hot2enc(next_rr_hot);
found_rr = |(next_rr_hot);
end
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_S),
.C_SEL_WIDTH (C_NUM_S_LOG),
.C_DATA_WIDTH (C_MESG_WIDTH)
) mux_mesg
(
.S (m_grant_enc_i),
.A (S_MESG),
.O (m_mesg_mux),
.OE (1'b1)
);
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_S),
.C_SEL_WIDTH (C_NUM_S_LOG),
.C_DATA_WIDTH (C_NUM_M)
) si_amesg_mux_inst
(
.S (next_enc),
.A (S_TARGET_HOT),
.O (m_target_hot_mux),
.OE (1'b1)
);
always @(posedge ACLK) begin
if (ARESET) begin
m_mesg_i <= 0;
end else if (~m_valid_i) begin
m_mesg_i <= m_mesg_mux;
end
end
end else begin : gen_no_arbiter
assign valid_qual_i = S_VALID_QUAL & |(S_TARGET_HOT & ~ISSUING_LIMIT);
always @ (posedge ACLK) begin
if (ARESET) begin
m_valid_i <= 1'b0;
s_ready_i <= 1'b0;
m_grant_enc_i <= 0;
end else begin
s_ready_i <= 1'b0;
if (m_valid_i) begin
if (M_READY) begin
m_valid_i <= 1'b0;
end
end else if (S_VALID[0] & valid_qual_i[0] & ~s_ready_i) begin
m_valid_i <= 1'b1;
s_ready_i <= 1'b1;
m_target_hot_i <= S_TARGET_HOT;
end
end
end
always @(posedge ACLK) begin
if (ARESET) begin
m_mesg_i <= 0;
end else if (~m_valid_i) begin
m_mesg_i <= S_MESG;
end
end
end // gen_arbiter
endgenerate
endmodule
`default_nettype wire
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_intr_rd_mem.v
*
* Date : 2012-11
*
* Description : Mimics interconnect for Reads between AFI and DDRC/OCM
*
*****************************************************************************/
`timescale 1ns/1ps
module processing_system7_bfm_v2_0_5_intr_rd_mem(
sw_clk,
rstn,
full,
empty,
req,
invalid_rd_req,
rd_info,
RD_DATA_OCM,
RD_DATA_DDR,
RD_DATA_VALID_OCM,
RD_DATA_VALID_DDR
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input sw_clk, rstn;
output full, empty;
input RD_DATA_VALID_DDR, RD_DATA_VALID_OCM;
input [max_burst_bits-1:0] RD_DATA_DDR, RD_DATA_OCM;
input req, invalid_rd_req;
input [rd_info_bits-1:0] rd_info;
reg [intr_cnt_width-1:0] wr_ptr = 0, rd_ptr = 0;
reg [rd_afi_fifo_bits-1:0] rd_fifo [0:intr_max_outstanding-1]; // Data, addr, size, burst, len, RID, RRESP, valid bytes
wire full, empty;
assign empty = (wr_ptr === rd_ptr)?1'b1: 1'b0;
assign full = ((wr_ptr[intr_cnt_width-1]!== rd_ptr[intr_cnt_width-1]) && (wr_ptr[intr_cnt_width-2:0] === rd_ptr[intr_cnt_width-2:0]))?1'b1 :1'b0;
/* read from the fifo */
task read_mem;
output [rd_afi_fifo_bits-1:0] data;
begin
data = rd_fifo[rd_ptr[intr_cnt_width-1:0]];
if(rd_ptr[intr_cnt_width-2:0] === intr_max_outstanding-1)
rd_ptr[intr_cnt_width-2:0] = 0;
else
rd_ptr = rd_ptr + 1;
end
endtask
reg state;
reg invalid_rd;
/* write in the fifo */
always@(negedge rstn or posedge sw_clk)
begin
if(!rstn) begin
wr_ptr = 0;
rd_ptr = 0;
state = 0;
invalid_rd = 0;
end else begin
case (state)
0 : begin
state = 0;
invalid_rd = 0;
if(req)begin
state = 1;
invalid_rd = invalid_rd_req;
end
end
1 : begin
state = 1;
if(RD_DATA_VALID_OCM | RD_DATA_VALID_DDR | invalid_rd) begin
if(RD_DATA_VALID_DDR)
rd_fifo[wr_ptr[intr_cnt_width-2:0]] = {RD_DATA_DDR,rd_info};
else if(RD_DATA_VALID_OCM)
rd_fifo[wr_ptr[intr_cnt_width-2:0]] = {RD_DATA_OCM,rd_info};
else
rd_fifo[wr_ptr[intr_cnt_width-2:0]] = rd_info;
if(wr_ptr[intr_cnt_width-2:0] === intr_max_outstanding-1)
wr_ptr[intr_cnt_width-2:0] = 0;
else
wr_ptr = wr_ptr + 1;
state = 0;
invalid_rd = 0;
end
end
endcase
end
end
endmodule
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_intr_rd_mem.v
*
* Date : 2012-11
*
* Description : Mimics interconnect for Reads between AFI and DDRC/OCM
*
*****************************************************************************/
`timescale 1ns/1ps
module processing_system7_bfm_v2_0_5_intr_rd_mem(
sw_clk,
rstn,
full,
empty,
req,
invalid_rd_req,
rd_info,
RD_DATA_OCM,
RD_DATA_DDR,
RD_DATA_VALID_OCM,
RD_DATA_VALID_DDR
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input sw_clk, rstn;
output full, empty;
input RD_DATA_VALID_DDR, RD_DATA_VALID_OCM;
input [max_burst_bits-1:0] RD_DATA_DDR, RD_DATA_OCM;
input req, invalid_rd_req;
input [rd_info_bits-1:0] rd_info;
reg [intr_cnt_width-1:0] wr_ptr = 0, rd_ptr = 0;
reg [rd_afi_fifo_bits-1:0] rd_fifo [0:intr_max_outstanding-1]; // Data, addr, size, burst, len, RID, RRESP, valid bytes
wire full, empty;
assign empty = (wr_ptr === rd_ptr)?1'b1: 1'b0;
assign full = ((wr_ptr[intr_cnt_width-1]!== rd_ptr[intr_cnt_width-1]) && (wr_ptr[intr_cnt_width-2:0] === rd_ptr[intr_cnt_width-2:0]))?1'b1 :1'b0;
/* read from the fifo */
task read_mem;
output [rd_afi_fifo_bits-1:0] data;
begin
data = rd_fifo[rd_ptr[intr_cnt_width-1:0]];
if(rd_ptr[intr_cnt_width-2:0] === intr_max_outstanding-1)
rd_ptr[intr_cnt_width-2:0] = 0;
else
rd_ptr = rd_ptr + 1;
end
endtask
reg state;
reg invalid_rd;
/* write in the fifo */
always@(negedge rstn or posedge sw_clk)
begin
if(!rstn) begin
wr_ptr = 0;
rd_ptr = 0;
state = 0;
invalid_rd = 0;
end else begin
case (state)
0 : begin
state = 0;
invalid_rd = 0;
if(req)begin
state = 1;
invalid_rd = invalid_rd_req;
end
end
1 : begin
state = 1;
if(RD_DATA_VALID_OCM | RD_DATA_VALID_DDR | invalid_rd) begin
if(RD_DATA_VALID_DDR)
rd_fifo[wr_ptr[intr_cnt_width-2:0]] = {RD_DATA_DDR,rd_info};
else if(RD_DATA_VALID_OCM)
rd_fifo[wr_ptr[intr_cnt_width-2:0]] = {RD_DATA_OCM,rd_info};
else
rd_fifo[wr_ptr[intr_cnt_width-2:0]] = rd_info;
if(wr_ptr[intr_cnt_width-2:0] === intr_max_outstanding-1)
wr_ptr[intr_cnt_width-2:0] = 0;
else
wr_ptr = wr_ptr + 1;
state = 0;
invalid_rd = 0;
end
end
endcase
end
end
endmodule
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_intr_rd_mem.v
*
* Date : 2012-11
*
* Description : Mimics interconnect for Reads between AFI and DDRC/OCM
*
*****************************************************************************/
`timescale 1ns/1ps
module processing_system7_bfm_v2_0_5_intr_rd_mem(
sw_clk,
rstn,
full,
empty,
req,
invalid_rd_req,
rd_info,
RD_DATA_OCM,
RD_DATA_DDR,
RD_DATA_VALID_OCM,
RD_DATA_VALID_DDR
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input sw_clk, rstn;
output full, empty;
input RD_DATA_VALID_DDR, RD_DATA_VALID_OCM;
input [max_burst_bits-1:0] RD_DATA_DDR, RD_DATA_OCM;
input req, invalid_rd_req;
input [rd_info_bits-1:0] rd_info;
reg [intr_cnt_width-1:0] wr_ptr = 0, rd_ptr = 0;
reg [rd_afi_fifo_bits-1:0] rd_fifo [0:intr_max_outstanding-1]; // Data, addr, size, burst, len, RID, RRESP, valid bytes
wire full, empty;
assign empty = (wr_ptr === rd_ptr)?1'b1: 1'b0;
assign full = ((wr_ptr[intr_cnt_width-1]!== rd_ptr[intr_cnt_width-1]) && (wr_ptr[intr_cnt_width-2:0] === rd_ptr[intr_cnt_width-2:0]))?1'b1 :1'b0;
/* read from the fifo */
task read_mem;
output [rd_afi_fifo_bits-1:0] data;
begin
data = rd_fifo[rd_ptr[intr_cnt_width-1:0]];
if(rd_ptr[intr_cnt_width-2:0] === intr_max_outstanding-1)
rd_ptr[intr_cnt_width-2:0] = 0;
else
rd_ptr = rd_ptr + 1;
end
endtask
reg state;
reg invalid_rd;
/* write in the fifo */
always@(negedge rstn or posedge sw_clk)
begin
if(!rstn) begin
wr_ptr = 0;
rd_ptr = 0;
state = 0;
invalid_rd = 0;
end else begin
case (state)
0 : begin
state = 0;
invalid_rd = 0;
if(req)begin
state = 1;
invalid_rd = invalid_rd_req;
end
end
1 : begin
state = 1;
if(RD_DATA_VALID_OCM | RD_DATA_VALID_DDR | invalid_rd) begin
if(RD_DATA_VALID_DDR)
rd_fifo[wr_ptr[intr_cnt_width-2:0]] = {RD_DATA_DDR,rd_info};
else if(RD_DATA_VALID_OCM)
rd_fifo[wr_ptr[intr_cnt_width-2:0]] = {RD_DATA_OCM,rd_info};
else
rd_fifo[wr_ptr[intr_cnt_width-2:0]] = rd_info;
if(wr_ptr[intr_cnt_width-2:0] === intr_max_outstanding-1)
wr_ptr[intr_cnt_width-2:0] = 0;
else
wr_ptr = wr_ptr + 1;
state = 0;
invalid_rd = 0;
end
end
endcase
end
end
endmodule
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_intr_rd_mem.v
*
* Date : 2012-11
*
* Description : Mimics interconnect for Reads between AFI and DDRC/OCM
*
*****************************************************************************/
`timescale 1ns/1ps
module processing_system7_bfm_v2_0_5_intr_rd_mem(
sw_clk,
rstn,
full,
empty,
req,
invalid_rd_req,
rd_info,
RD_DATA_OCM,
RD_DATA_DDR,
RD_DATA_VALID_OCM,
RD_DATA_VALID_DDR
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input sw_clk, rstn;
output full, empty;
input RD_DATA_VALID_DDR, RD_DATA_VALID_OCM;
input [max_burst_bits-1:0] RD_DATA_DDR, RD_DATA_OCM;
input req, invalid_rd_req;
input [rd_info_bits-1:0] rd_info;
reg [intr_cnt_width-1:0] wr_ptr = 0, rd_ptr = 0;
reg [rd_afi_fifo_bits-1:0] rd_fifo [0:intr_max_outstanding-1]; // Data, addr, size, burst, len, RID, RRESP, valid bytes
wire full, empty;
assign empty = (wr_ptr === rd_ptr)?1'b1: 1'b0;
assign full = ((wr_ptr[intr_cnt_width-1]!== rd_ptr[intr_cnt_width-1]) && (wr_ptr[intr_cnt_width-2:0] === rd_ptr[intr_cnt_width-2:0]))?1'b1 :1'b0;
/* read from the fifo */
task read_mem;
output [rd_afi_fifo_bits-1:0] data;
begin
data = rd_fifo[rd_ptr[intr_cnt_width-1:0]];
if(rd_ptr[intr_cnt_width-2:0] === intr_max_outstanding-1)
rd_ptr[intr_cnt_width-2:0] = 0;
else
rd_ptr = rd_ptr + 1;
end
endtask
reg state;
reg invalid_rd;
/* write in the fifo */
always@(negedge rstn or posedge sw_clk)
begin
if(!rstn) begin
wr_ptr = 0;
rd_ptr = 0;
state = 0;
invalid_rd = 0;
end else begin
case (state)
0 : begin
state = 0;
invalid_rd = 0;
if(req)begin
state = 1;
invalid_rd = invalid_rd_req;
end
end
1 : begin
state = 1;
if(RD_DATA_VALID_OCM | RD_DATA_VALID_DDR | invalid_rd) begin
if(RD_DATA_VALID_DDR)
rd_fifo[wr_ptr[intr_cnt_width-2:0]] = {RD_DATA_DDR,rd_info};
else if(RD_DATA_VALID_OCM)
rd_fifo[wr_ptr[intr_cnt_width-2:0]] = {RD_DATA_OCM,rd_info};
else
rd_fifo[wr_ptr[intr_cnt_width-2:0]] = rd_info;
if(wr_ptr[intr_cnt_width-2:0] === intr_max_outstanding-1)
wr_ptr[intr_cnt_width-2:0] = 0;
else
wr_ptr = wr_ptr + 1;
state = 0;
invalid_rd = 0;
end
end
endcase
end
end
endmodule
|
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// Description: AXI Splitter
// Each transfer received on the AXI handshake slave port is replicated onto
// each of the master ports, and is completed back to the slave (S_READY)
// once all master ports have completed.
//
// M_VALID is asserted combinatorially from S_VALID assertion.
// Each M_VALID is masked off beginning the cycle after each M_READY is
// received (if S_READY remains low) until the cycle after both S_VALID
// and S_READY are asserted.
// S_READY is asserted combinatorially when the last (or all) of the M_READY
// inputs have been received.
// If all M_READYs are asserted when S_VALID is asserted, back-to-back
// handshakes can occur without bubble cycles.
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
// splitter
//
//--------------------------------------------------------------------------
`timescale 1ps/1ps
(* DowngradeIPIdentifiedWarnings="yes" *)
module axi_crossbar_v2_1_splitter #
(
parameter integer C_NUM_M = 2 // Number of master ports = [2:16]
)
(
// Global Signals
input wire ACLK,
input wire ARESET,
// Slave Port
input wire S_VALID,
output wire S_READY,
// Master Ports
output wire [C_NUM_M-1:0] M_VALID,
input wire [C_NUM_M-1:0] M_READY
);
reg [C_NUM_M-1:0] m_ready_d;
wire s_ready_i;
wire [C_NUM_M-1:0] m_valid_i;
always @(posedge ACLK) begin
if (ARESET | s_ready_i) m_ready_d <= {C_NUM_M{1'b0}};
else m_ready_d <= m_ready_d | (m_valid_i & M_READY);
end
assign s_ready_i = &(m_ready_d | M_READY);
assign m_valid_i = {C_NUM_M{S_VALID}} & ~m_ready_d;
assign M_VALID = m_valid_i;
assign S_READY = s_ready_i;
endmodule
|
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// Description: AXI Splitter
// Each transfer received on the AXI handshake slave port is replicated onto
// each of the master ports, and is completed back to the slave (S_READY)
// once all master ports have completed.
//
// M_VALID is asserted combinatorially from S_VALID assertion.
// Each M_VALID is masked off beginning the cycle after each M_READY is
// received (if S_READY remains low) until the cycle after both S_VALID
// and S_READY are asserted.
// S_READY is asserted combinatorially when the last (or all) of the M_READY
// inputs have been received.
// If all M_READYs are asserted when S_VALID is asserted, back-to-back
// handshakes can occur without bubble cycles.
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
// splitter
//
//--------------------------------------------------------------------------
`timescale 1ps/1ps
(* DowngradeIPIdentifiedWarnings="yes" *)
module axi_crossbar_v2_1_splitter #
(
parameter integer C_NUM_M = 2 // Number of master ports = [2:16]
)
(
// Global Signals
input wire ACLK,
input wire ARESET,
// Slave Port
input wire S_VALID,
output wire S_READY,
// Master Ports
output wire [C_NUM_M-1:0] M_VALID,
input wire [C_NUM_M-1:0] M_READY
);
reg [C_NUM_M-1:0] m_ready_d;
wire s_ready_i;
wire [C_NUM_M-1:0] m_valid_i;
always @(posedge ACLK) begin
if (ARESET | s_ready_i) m_ready_d <= {C_NUM_M{1'b0}};
else m_ready_d <= m_ready_d | (m_valid_i & M_READY);
end
assign s_ready_i = &(m_ready_d | M_READY);
assign m_valid_i = {C_NUM_M{S_VALID}} & ~m_ready_d;
assign M_VALID = m_valid_i;
assign S_READY = s_ready_i;
endmodule
|
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// Description: AXI Splitter
// Each transfer received on the AXI handshake slave port is replicated onto
// each of the master ports, and is completed back to the slave (S_READY)
// once all master ports have completed.
//
// M_VALID is asserted combinatorially from S_VALID assertion.
// Each M_VALID is masked off beginning the cycle after each M_READY is
// received (if S_READY remains low) until the cycle after both S_VALID
// and S_READY are asserted.
// S_READY is asserted combinatorially when the last (or all) of the M_READY
// inputs have been received.
// If all M_READYs are asserted when S_VALID is asserted, back-to-back
// handshakes can occur without bubble cycles.
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
// splitter
//
//--------------------------------------------------------------------------
`timescale 1ps/1ps
(* DowngradeIPIdentifiedWarnings="yes" *)
module axi_crossbar_v2_1_splitter #
(
parameter integer C_NUM_M = 2 // Number of master ports = [2:16]
)
(
// Global Signals
input wire ACLK,
input wire ARESET,
// Slave Port
input wire S_VALID,
output wire S_READY,
// Master Ports
output wire [C_NUM_M-1:0] M_VALID,
input wire [C_NUM_M-1:0] M_READY
);
reg [C_NUM_M-1:0] m_ready_d;
wire s_ready_i;
wire [C_NUM_M-1:0] m_valid_i;
always @(posedge ACLK) begin
if (ARESET | s_ready_i) m_ready_d <= {C_NUM_M{1'b0}};
else m_ready_d <= m_ready_d | (m_valid_i & M_READY);
end
assign s_ready_i = &(m_ready_d | M_READY);
assign m_valid_i = {C_NUM_M{S_VALID}} & ~m_ready_d;
assign M_VALID = m_valid_i;
assign S_READY = s_ready_i;
endmodule
|
// -- (c) Copyright 2009 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// File name: crossbar_sasd.v
//
// Description:
// This module is a M-master to N-slave AXI axi_crossbar_v2_1_crossbar switch.
// Single transaction issuing, single arbiter (both W&R), single data pathways.
// The interface of this module consists of a vectored slave and master interface
// in which all slots are sized and synchronized to the native width and clock
// of the interconnect, and are all AXI4 protocol.
// All width, clock and protocol conversions are done outside this block, as are
// any pipeline registers or data FIFOs.
// This module contains all arbitration, decoders and channel multiplexing logic.
// It also contains the diagnostic registers and control interface.
//
//--------------------------------------------------------------------------
//
// Structure:
// crossbar_sasd
// addr_arbiter_sasd
// mux_enc
// addr_decoder
// comparator_static
// splitter
// mux_enc
// axic_register_slice
// decerr_slave
//
//-----------------------------------------------------------------------------
`timescale 1ps/1ps
`default_nettype none
(* DowngradeIPIdentifiedWarnings="yes" *)
module axi_crossbar_v2_1_crossbar_sasd #
(
parameter C_FAMILY = "none",
parameter integer C_NUM_SLAVE_SLOTS = 1,
parameter integer C_NUM_MASTER_SLOTS = 1,
parameter integer C_NUM_ADDR_RANGES = 1,
parameter integer C_AXI_ID_WIDTH = 1,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_PROTOCOL = 0,
parameter [C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64-1:0] C_M_AXI_BASE_ADDR = {C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64{1'b1}},
parameter [C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64-1:0] C_M_AXI_HIGH_ADDR = {C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64{1'b0}},
parameter [C_NUM_SLAVE_SLOTS*64-1:0] C_S_AXI_BASE_ID = {C_NUM_SLAVE_SLOTS*64{1'b0}},
parameter [C_NUM_SLAVE_SLOTS*64-1:0] C_S_AXI_HIGH_ID = {C_NUM_SLAVE_SLOTS*64{1'b0}},
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_AWUSER_WIDTH = 1,
parameter integer C_AXI_ARUSER_WIDTH = 1,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter [C_NUM_SLAVE_SLOTS-1:0] C_S_AXI_SUPPORTS_WRITE = {C_NUM_SLAVE_SLOTS{1'b1}},
parameter [C_NUM_SLAVE_SLOTS-1:0] C_S_AXI_SUPPORTS_READ = {C_NUM_SLAVE_SLOTS{1'b1}},
parameter [C_NUM_MASTER_SLOTS-1:0] C_M_AXI_SUPPORTS_WRITE = {C_NUM_MASTER_SLOTS{1'b1}},
parameter [C_NUM_MASTER_SLOTS-1:0] C_M_AXI_SUPPORTS_READ = {C_NUM_MASTER_SLOTS{1'b1}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_ARB_PRIORITY = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_SECURE = {C_NUM_MASTER_SLOTS{32'h00000000}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_ERR_MODE = {C_NUM_MASTER_SLOTS{32'h00000000}},
parameter integer C_R_REGISTER = 0,
parameter integer C_RANGE_CHECK = 0,
parameter integer C_ADDR_DECODE = 0,
parameter integer C_DEBUG = 1
)
(
// Global Signals
input wire ACLK,
input wire ARESETN,
// Slave Interface Write Address Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_AWID,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR,
input wire [C_NUM_SLAVE_SLOTS*8-1:0] S_AXI_AWLEN,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_AWSIZE,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_AWBURST,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_AWLOCK,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_AWCACHE,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_AWPROT,
// input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_AWREGION,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_AWQOS,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_AWVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_AWREADY,
// Slave Interface Write Data Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_WID,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_WLAST,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_WVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_WREADY,
// Slave Interface Write Response Ports
output wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_BID,
output wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_BRESP,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_BVALID,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_BREADY,
// Slave Interface Read Address Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_ARID,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR,
input wire [C_NUM_SLAVE_SLOTS*8-1:0] S_AXI_ARLEN,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_ARSIZE,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_ARBURST,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_ARLOCK,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_ARCACHE,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_ARPROT,
// input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_ARREGION,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_ARQOS,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_ARVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_ARREADY,
// Slave Interface Read Data Ports
output wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_RID,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA,
output wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_RRESP,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_RLAST,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_RVALID,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_RREADY,
// Master Interface Write Address Port
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_AWID,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR,
output wire [C_NUM_MASTER_SLOTS*8-1:0] M_AXI_AWLEN,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_AWSIZE,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_AWBURST,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_AWLOCK,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_AWCACHE,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_AWPROT,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_AWREGION,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_AWQOS,
output wire [C_NUM_MASTER_SLOTS*C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_AWVALID,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_AWREADY,
// Master Interface Write Data Ports
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_WID,
output wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA,
output wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_WLAST,
output wire [C_NUM_MASTER_SLOTS*C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_WVALID,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_WREADY,
// Master Interface Write Response Ports
input wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_BID, // Unused
input wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_BRESP,
input wire [C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_BVALID,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_BREADY,
// Master Interface Read Address Port
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_ARID,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR,
output wire [C_NUM_MASTER_SLOTS*8-1:0] M_AXI_ARLEN,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_ARSIZE,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_ARBURST,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_ARLOCK,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_ARCACHE,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_ARPROT,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_ARREGION,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_ARQOS,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_ARVALID,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_ARREADY,
// Master Interface Read Data Ports
input wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_RID, // Unused
input wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA,
input wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_RRESP,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_RLAST,
input wire [C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_RVALID,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_RREADY
);
localparam integer P_AXI4 = 0;
localparam integer P_AXI3 = 1;
localparam integer P_AXILITE = 2;
localparam integer P_NUM_MASTER_SLOTS_DE = C_RANGE_CHECK ? C_NUM_MASTER_SLOTS+1 : C_NUM_MASTER_SLOTS;
localparam integer P_NUM_MASTER_SLOTS_LOG = (C_NUM_MASTER_SLOTS>1) ? f_ceil_log2(C_NUM_MASTER_SLOTS) : 1;
localparam integer P_NUM_MASTER_SLOTS_DE_LOG = (P_NUM_MASTER_SLOTS_DE>1) ? f_ceil_log2(P_NUM_MASTER_SLOTS_DE) : 1;
localparam integer P_NUM_SLAVE_SLOTS_LOG = (C_NUM_SLAVE_SLOTS>1) ? f_ceil_log2(C_NUM_SLAVE_SLOTS) : 1;
localparam integer P_AXI_AUSER_WIDTH = (C_AXI_AWUSER_WIDTH > C_AXI_ARUSER_WIDTH) ? C_AXI_AWUSER_WIDTH : C_AXI_ARUSER_WIDTH;
localparam integer P_AXI_WID_WIDTH = (C_AXI_PROTOCOL == P_AXI3) ? C_AXI_ID_WIDTH : 1;
localparam integer P_AMESG_WIDTH = C_AXI_ID_WIDTH + C_AXI_ADDR_WIDTH + 8+3+2+3+2+4+4 + P_AXI_AUSER_WIDTH + 4;
localparam integer P_BMESG_WIDTH = 2 + C_AXI_BUSER_WIDTH;
localparam integer P_RMESG_WIDTH = 1+2 + C_AXI_DATA_WIDTH + C_AXI_RUSER_WIDTH;
localparam integer P_WMESG_WIDTH = 1 + C_AXI_DATA_WIDTH + C_AXI_DATA_WIDTH/8 + C_AXI_WUSER_WIDTH + P_AXI_WID_WIDTH;
localparam [31:0] P_AXILITE_ERRMODE = 32'h00000001;
localparam integer P_NONSECURE_BIT = 1;
localparam [C_NUM_MASTER_SLOTS-1:0] P_M_SECURE_MASK = f_bit32to1_mi(C_M_AXI_SECURE); // Mask of secure MI-slots
localparam [C_NUM_MASTER_SLOTS-1:0] P_M_AXILITE_MASK = f_m_axilite(0); // Mask of axilite rule-check MI-slots
localparam [1:0] P_FIXED = 2'b00;
localparam integer P_BYPASS = 0;
localparam integer P_LIGHTWT = 7;
localparam integer P_FULLY_REG = 1;
localparam integer P_R_REG_CONFIG = C_R_REGISTER == 8 ? // "Automatic" reg-slice
(C_RANGE_CHECK ? ((C_AXI_PROTOCOL == P_AXILITE) ? P_LIGHTWT : P_FULLY_REG) : P_BYPASS) : // Bypass if no R-channel mux
C_R_REGISTER;
localparam P_DECERR = 2'b11;
//---------------------------------------------------------------------------
// Functions
//---------------------------------------------------------------------------
// Ceiling of log2(x)
function integer f_ceil_log2
(
input integer x
);
integer acc;
begin
acc=0;
while ((2**acc) < x)
acc = acc + 1;
f_ceil_log2 = acc;
end
endfunction
// Isolate thread bits of input S_ID and add to BASE_ID (RNG00) to form MI-side ID value
// only for end-point SI-slots
function [C_AXI_ID_WIDTH-1:0] f_extend_ID
(
input [C_AXI_ID_WIDTH-1:0] s_id,
input integer slot
);
begin
f_extend_ID = C_S_AXI_BASE_ID[slot*64+:C_AXI_ID_WIDTH] | (s_id & (C_S_AXI_BASE_ID[slot*64+:C_AXI_ID_WIDTH] ^ C_S_AXI_HIGH_ID[slot*64+:C_AXI_ID_WIDTH]));
end
endfunction
// Convert Bit32 vector of range [0,1] to Bit1 vector on MI
function [C_NUM_MASTER_SLOTS-1:0] f_bit32to1_mi
(input [C_NUM_MASTER_SLOTS*32-1:0] vec32);
integer mi;
begin
for (mi=0; mi<C_NUM_MASTER_SLOTS; mi=mi+1) begin
f_bit32to1_mi[mi] = vec32[mi*32];
end
end
endfunction
// AxiLite error-checking mask (on MI)
function [C_NUM_MASTER_SLOTS-1:0] f_m_axilite
(
input integer null_arg
);
integer mi;
begin
for (mi=0; mi<C_NUM_MASTER_SLOTS; mi=mi+1) begin
f_m_axilite[mi] = (C_M_AXI_ERR_MODE[mi*32+:32] == P_AXILITE_ERRMODE);
end
end
endfunction
genvar gen_si_slot;
genvar gen_mi_slot;
wire [C_NUM_SLAVE_SLOTS*P_AMESG_WIDTH-1:0] si_awmesg ;
wire [C_NUM_SLAVE_SLOTS*P_AMESG_WIDTH-1:0] si_armesg ;
wire [P_AMESG_WIDTH-1:0] aa_amesg ;
wire [C_AXI_ID_WIDTH-1:0] mi_aid ;
wire [C_AXI_ADDR_WIDTH-1:0] mi_aaddr ;
wire [8-1:0] mi_alen ;
wire [3-1:0] mi_asize ;
wire [2-1:0] mi_alock ;
wire [3-1:0] mi_aprot ;
wire [2-1:0] mi_aburst ;
wire [4-1:0] mi_acache ;
wire [4-1:0] mi_aregion ;
wire [4-1:0] mi_aqos ;
wire [P_AXI_AUSER_WIDTH-1:0] mi_auser ;
wire [4-1:0] target_region ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] aa_grant_hot ;
wire [P_NUM_SLAVE_SLOTS_LOG-1:0] aa_grant_enc ;
wire aa_grant_rnw ;
wire aa_grant_any ;
wire [C_NUM_MASTER_SLOTS-1:0] target_mi_hot ;
wire [P_NUM_MASTER_SLOTS_LOG-1:0] target_mi_enc ;
reg [P_NUM_MASTER_SLOTS_DE-1:0] m_atarget_hot ;
reg [P_NUM_MASTER_SLOTS_DE_LOG-1:0] m_atarget_enc ;
wire [P_NUM_MASTER_SLOTS_DE_LOG-1:0] m_atarget_enc_comb ;
wire match;
wire any_error ;
wire [7:0] m_aerror_i ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_awvalid ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_awready ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_arvalid ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_arready ;
wire aa_awvalid ;
wire aa_awready ;
wire aa_arvalid ;
wire aa_arready ;
wire mi_awvalid_en;
wire mi_awready_mux;
wire mi_arvalid_en;
wire mi_arready_mux;
wire w_transfer_en;
wire w_complete_mux;
wire b_transfer_en;
wire b_complete_mux;
wire r_transfer_en;
wire r_complete_mux;
wire target_secure;
wire target_write;
wire target_read;
wire target_axilite;
wire [P_BMESG_WIDTH-1:0] si_bmesg ;
wire [P_NUM_MASTER_SLOTS_DE*P_BMESG_WIDTH-1:0] mi_bmesg ;
wire [P_NUM_MASTER_SLOTS_DE*2-1:0] mi_bresp ;
wire [P_NUM_MASTER_SLOTS_DE*C_AXI_BUSER_WIDTH-1:0] mi_buser ;
wire [2-1:0] si_bresp ;
wire [C_AXI_BUSER_WIDTH-1:0] si_buser ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_bvalid ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_bready ;
wire aa_bvalid ;
wire aa_bready ;
wire si_bready ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_bvalid;
wire [P_RMESG_WIDTH-1:0] aa_rmesg ;
wire [P_RMESG_WIDTH-1:0] sr_rmesg ;
wire [P_NUM_MASTER_SLOTS_DE*P_RMESG_WIDTH-1:0] mi_rmesg ;
wire [P_NUM_MASTER_SLOTS_DE*2-1:0] mi_rresp ;
wire [P_NUM_MASTER_SLOTS_DE*C_AXI_RUSER_WIDTH-1:0] mi_ruser ;
wire [P_NUM_MASTER_SLOTS_DE*C_AXI_DATA_WIDTH-1:0] mi_rdata ;
wire [P_NUM_MASTER_SLOTS_DE*1-1:0] mi_rlast ;
wire [2-1:0] si_rresp ;
wire [C_AXI_RUSER_WIDTH-1:0] si_ruser ;
wire [C_AXI_DATA_WIDTH-1:0] si_rdata ;
wire si_rlast ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_rvalid ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_rready ;
wire aa_rvalid ;
wire aa_rready ;
wire sr_rvalid ;
wire si_rready ;
wire sr_rready ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_rvalid;
wire [C_NUM_SLAVE_SLOTS*P_WMESG_WIDTH-1:0] si_wmesg ;
wire [P_WMESG_WIDTH-1:0] mi_wmesg ;
wire [C_AXI_ID_WIDTH-1:0] mi_wid ;
wire [C_AXI_DATA_WIDTH-1:0] mi_wdata ;
wire [C_AXI_DATA_WIDTH/8-1:0] mi_wstrb ;
wire [C_AXI_WUSER_WIDTH-1:0] mi_wuser ;
wire [1-1:0] mi_wlast ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_wvalid ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_wready ;
wire aa_wvalid ;
wire aa_wready ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_wready;
reg [7:0] debug_r_beat_cnt_i;
reg [7:0] debug_w_beat_cnt_i;
reg [7:0] debug_aw_trans_seq_i;
reg [7:0] debug_ar_trans_seq_i;
reg aresetn_d = 1'b0; // Reset delay register
always @(posedge ACLK) begin
if (~ARESETN) begin
aresetn_d <= 1'b0;
end else begin
aresetn_d <= ARESETN;
end
end
wire reset;
assign reset = ~aresetn_d;
generate
axi_crossbar_v2_1_addr_arbiter_sasd #
(
.C_FAMILY (C_FAMILY),
.C_NUM_S (C_NUM_SLAVE_SLOTS),
.C_NUM_S_LOG (P_NUM_SLAVE_SLOTS_LOG),
.C_AMESG_WIDTH (P_AMESG_WIDTH),
.C_GRANT_ENC (1),
.C_ARB_PRIORITY (C_S_AXI_ARB_PRIORITY)
)
addr_arbiter_inst
(
.ACLK (ACLK),
.ARESET (reset),
// Vector of SI-side AW command request inputs
.S_AWMESG (si_awmesg),
.S_ARMESG (si_armesg),
.S_AWVALID (S_AXI_AWVALID),
.S_AWREADY (S_AXI_AWREADY),
.S_ARVALID (S_AXI_ARVALID),
.S_ARREADY (S_AXI_ARREADY),
.M_GRANT_ENC (aa_grant_enc),
.M_GRANT_HOT (aa_grant_hot), // SI-slot 1-hot mask of granted command
.M_GRANT_ANY (aa_grant_any),
.M_GRANT_RNW (aa_grant_rnw),
.M_AMESG (aa_amesg), // Either S_AWMESG or S_ARMESG, as indicated by M_AWVALID and M_ARVALID.
.M_AWVALID (aa_awvalid),
.M_AWREADY (aa_awready),
.M_ARVALID (aa_arvalid),
.M_ARREADY (aa_arready)
);
if (C_ADDR_DECODE) begin : gen_addr_decoder
axi_crossbar_v2_1_addr_decoder #
(
.C_FAMILY (C_FAMILY),
.C_NUM_TARGETS (C_NUM_MASTER_SLOTS),
.C_NUM_TARGETS_LOG (P_NUM_MASTER_SLOTS_LOG),
.C_NUM_RANGES (C_NUM_ADDR_RANGES),
.C_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_TARGET_ENC (1),
.C_TARGET_HOT (1),
.C_REGION_ENC (1),
.C_BASE_ADDR (C_M_AXI_BASE_ADDR),
.C_HIGH_ADDR (C_M_AXI_HIGH_ADDR),
.C_TARGET_QUAL ({C_NUM_MASTER_SLOTS{1'b1}}),
.C_RESOLUTION (2)
)
addr_decoder_inst
(
.ADDR (mi_aaddr),
.TARGET_HOT (target_mi_hot),
.TARGET_ENC (target_mi_enc),
.MATCH (match),
.REGION (target_region)
);
end else begin : gen_no_addr_decoder
assign target_mi_hot = 1;
assign match = 1'b1;
assign target_region = 4'b0000;
end // gen_addr_decoder
// AW-channel arbiter command transfer completes upon completion of both M-side AW-channel transfer and B channel completion.
axi_crossbar_v2_1_splitter #
(
.C_NUM_M (3)
)
splitter_aw
(
.ACLK (ACLK),
.ARESET (reset),
.S_VALID (aa_awvalid),
.S_READY (aa_awready),
.M_VALID ({mi_awvalid_en, w_transfer_en, b_transfer_en}),
.M_READY ({mi_awready_mux, w_complete_mux, b_complete_mux})
);
// AR-channel arbiter command transfer completes upon completion of both M-side AR-channel transfer and R channel completion.
axi_crossbar_v2_1_splitter #
(
.C_NUM_M (2)
)
splitter_ar
(
.ACLK (ACLK),
.ARESET (reset),
.S_VALID (aa_arvalid),
.S_READY (aa_arready),
.M_VALID ({mi_arvalid_en, r_transfer_en}),
.M_READY ({mi_arready_mux, r_complete_mux})
);
assign target_secure = |(target_mi_hot & P_M_SECURE_MASK);
assign target_write = |(target_mi_hot & C_M_AXI_SUPPORTS_WRITE);
assign target_read = |(target_mi_hot & C_M_AXI_SUPPORTS_READ);
assign target_axilite = |(target_mi_hot & P_M_AXILITE_MASK);
assign any_error = C_RANGE_CHECK && (m_aerror_i != 0); // DECERR if error-detection enabled and any error condition.
assign m_aerror_i[0] = ~match; // Invalid target address
assign m_aerror_i[1] = target_secure && mi_aprot[P_NONSECURE_BIT]; // TrustZone violation
assign m_aerror_i[2] = target_axilite && ((mi_alen != 0) ||
(mi_asize[1:0] == 2'b11) || (mi_asize[2] == 1'b1)); // AxiLite access violation
assign m_aerror_i[3] = (~aa_grant_rnw && ~target_write) ||
(aa_grant_rnw && ~target_read); // R/W direction unsupported by target
assign m_aerror_i[7:4] = 4'b0000; // Reserved
assign m_atarget_enc_comb = any_error ? (P_NUM_MASTER_SLOTS_DE-1) : target_mi_enc; // Select MI slot or decerr_slave
always @(posedge ACLK) begin
if (reset) begin
m_atarget_hot <= 0;
m_atarget_enc <= 0;
end else begin
m_atarget_hot <= {P_NUM_MASTER_SLOTS_DE{aa_grant_any}} & (any_error ? {1'b1, {C_NUM_MASTER_SLOTS{1'b0}}} : {1'b0, target_mi_hot}); // Select MI slot or decerr_slave
m_atarget_enc <= m_atarget_enc_comb;
end
end
// Receive AWREADY from targeted MI.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (P_NUM_MASTER_SLOTS_DE),
.C_SEL_WIDTH (P_NUM_MASTER_SLOTS_DE_LOG),
.C_DATA_WIDTH (1)
) mi_awready_mux_inst
(
.S (m_atarget_enc),
.A (mi_awready),
.O (mi_awready_mux),
.OE (mi_awvalid_en)
);
// Receive ARREADY from targeted MI.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (P_NUM_MASTER_SLOTS_DE),
.C_SEL_WIDTH (P_NUM_MASTER_SLOTS_DE_LOG),
.C_DATA_WIDTH (1)
) mi_arready_mux_inst
(
.S (m_atarget_enc),
.A (mi_arready),
.O (mi_arready_mux),
.OE (mi_arvalid_en)
);
assign mi_awvalid = m_atarget_hot & {P_NUM_MASTER_SLOTS_DE{mi_awvalid_en}}; // Assert AWVALID on targeted MI.
assign mi_arvalid = m_atarget_hot & {P_NUM_MASTER_SLOTS_DE{mi_arvalid_en}}; // Assert ARVALID on targeted MI.
assign M_AXI_AWVALID = mi_awvalid[0+:C_NUM_MASTER_SLOTS]; // Propagate to MI slots.
assign M_AXI_ARVALID = mi_arvalid[0+:C_NUM_MASTER_SLOTS]; // Propagate to MI slots.
assign mi_awready[0+:C_NUM_MASTER_SLOTS] = M_AXI_AWREADY; // Copy from MI slots.
assign mi_arready[0+:C_NUM_MASTER_SLOTS] = M_AXI_ARREADY; // Copy from MI slots.
// Receive WREADY from targeted MI.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (P_NUM_MASTER_SLOTS_DE),
.C_SEL_WIDTH (P_NUM_MASTER_SLOTS_DE_LOG),
.C_DATA_WIDTH (1)
) mi_wready_mux_inst
(
.S (m_atarget_enc),
.A (mi_wready),
.O (aa_wready),
.OE (w_transfer_en)
);
assign mi_wvalid = m_atarget_hot & {P_NUM_MASTER_SLOTS_DE{aa_wvalid}}; // Assert WVALID on targeted MI.
assign si_wready = aa_grant_hot & {C_NUM_SLAVE_SLOTS{aa_wready}}; // Assert WREADY on granted SI.
assign S_AXI_WREADY = si_wready;
assign w_complete_mux = aa_wready & aa_wvalid & mi_wlast; // W burst complete on on designated SI/MI.
// Receive RREADY from granted SI.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_SLAVE_SLOTS),
.C_SEL_WIDTH (P_NUM_SLAVE_SLOTS_LOG),
.C_DATA_WIDTH (1)
) si_rready_mux_inst
(
.S (aa_grant_enc),
.A (S_AXI_RREADY),
.O (si_rready),
.OE (r_transfer_en)
);
assign sr_rready = si_rready & r_transfer_en;
assign mi_rready = m_atarget_hot & {P_NUM_MASTER_SLOTS_DE{aa_rready}}; // Assert RREADY on targeted MI.
assign si_rvalid = aa_grant_hot & {C_NUM_SLAVE_SLOTS{sr_rvalid}}; // Assert RVALID on granted SI.
assign S_AXI_RVALID = si_rvalid;
assign r_complete_mux = sr_rready & sr_rvalid & si_rlast; // R burst complete on on designated SI/MI.
// Receive BREADY from granted SI.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_SLAVE_SLOTS),
.C_SEL_WIDTH (P_NUM_SLAVE_SLOTS_LOG),
.C_DATA_WIDTH (1)
) si_bready_mux_inst
(
.S (aa_grant_enc),
.A (S_AXI_BREADY),
.O (si_bready),
.OE (b_transfer_en)
);
assign aa_bready = si_bready & b_transfer_en;
assign mi_bready = m_atarget_hot & {P_NUM_MASTER_SLOTS_DE{aa_bready}}; // Assert BREADY on targeted MI.
assign si_bvalid = aa_grant_hot & {C_NUM_SLAVE_SLOTS{aa_bvalid}}; // Assert BVALID on granted SI.
assign S_AXI_BVALID = si_bvalid;
assign b_complete_mux = aa_bready & aa_bvalid; // B transfer complete on on designated SI/MI.
for (gen_si_slot=0; gen_si_slot<C_NUM_SLAVE_SLOTS; gen_si_slot=gen_si_slot+1) begin : gen_si_amesg
assign si_armesg[gen_si_slot*P_AMESG_WIDTH +: P_AMESG_WIDTH] = { // Concatenate from MSB to LSB
4'b0000,
// S_AXI_ARREGION[gen_si_slot*4+:4],
S_AXI_ARUSER[gen_si_slot*C_AXI_ARUSER_WIDTH +: C_AXI_ARUSER_WIDTH],
S_AXI_ARQOS[gen_si_slot*4+:4],
S_AXI_ARCACHE[gen_si_slot*4+:4],
S_AXI_ARBURST[gen_si_slot*2+:2],
S_AXI_ARPROT[gen_si_slot*3+:3],
S_AXI_ARLOCK[gen_si_slot*2+:2],
S_AXI_ARSIZE[gen_si_slot*3+:3],
S_AXI_ARLEN[gen_si_slot*8+:8],
S_AXI_ARADDR[gen_si_slot*C_AXI_ADDR_WIDTH +: C_AXI_ADDR_WIDTH],
f_extend_ID(S_AXI_ARID[gen_si_slot*C_AXI_ID_WIDTH +: C_AXI_ID_WIDTH], gen_si_slot)
};
assign si_awmesg[gen_si_slot*P_AMESG_WIDTH +: P_AMESG_WIDTH] = { // Concatenate from MSB to LSB
4'b0000,
// S_AXI_AWREGION[gen_si_slot*4+:4],
S_AXI_AWUSER[gen_si_slot*C_AXI_AWUSER_WIDTH +: C_AXI_AWUSER_WIDTH],
S_AXI_AWQOS[gen_si_slot*4+:4],
S_AXI_AWCACHE[gen_si_slot*4+:4],
S_AXI_AWBURST[gen_si_slot*2+:2],
S_AXI_AWPROT[gen_si_slot*3+:3],
S_AXI_AWLOCK[gen_si_slot*2+:2],
S_AXI_AWSIZE[gen_si_slot*3+:3],
S_AXI_AWLEN[gen_si_slot*8+:8],
S_AXI_AWADDR[gen_si_slot*C_AXI_ADDR_WIDTH +: C_AXI_ADDR_WIDTH],
f_extend_ID(S_AXI_AWID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH], gen_si_slot)
};
end // gen_si_amesg
assign mi_aid = aa_amesg[0 +: C_AXI_ID_WIDTH];
assign mi_aaddr = aa_amesg[C_AXI_ID_WIDTH +: C_AXI_ADDR_WIDTH];
assign mi_alen = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH +: 8];
assign mi_asize = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8 +: 3];
assign mi_alock = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3 +: 2];
assign mi_aprot = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2 +: 3];
assign mi_aburst = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3 +: 2];
assign mi_acache = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+2 +: 4];
assign mi_aqos = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+2+4 +: 4];
assign mi_auser = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+2+4+4 +: P_AXI_AUSER_WIDTH];
assign mi_aregion = (C_ADDR_DECODE != 0) ? target_region : aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+2+4+4+P_AXI_AUSER_WIDTH +: 4];
// Broadcast AW transfer payload to all MI-slots
assign M_AXI_AWID = {C_NUM_MASTER_SLOTS{mi_aid}};
assign M_AXI_AWADDR = {C_NUM_MASTER_SLOTS{mi_aaddr}};
assign M_AXI_AWLEN = {C_NUM_MASTER_SLOTS{mi_alen }};
assign M_AXI_AWSIZE = {C_NUM_MASTER_SLOTS{mi_asize}};
assign M_AXI_AWLOCK = {C_NUM_MASTER_SLOTS{mi_alock}};
assign M_AXI_AWPROT = {C_NUM_MASTER_SLOTS{mi_aprot}};
assign M_AXI_AWREGION = {C_NUM_MASTER_SLOTS{mi_aregion}};
assign M_AXI_AWBURST = {C_NUM_MASTER_SLOTS{mi_aburst}};
assign M_AXI_AWCACHE = {C_NUM_MASTER_SLOTS{mi_acache}};
assign M_AXI_AWQOS = {C_NUM_MASTER_SLOTS{mi_aqos }};
assign M_AXI_AWUSER = {C_NUM_MASTER_SLOTS{mi_auser[0+:C_AXI_AWUSER_WIDTH] }};
// Broadcast AR transfer payload to all MI-slots
assign M_AXI_ARID = {C_NUM_MASTER_SLOTS{mi_aid}};
assign M_AXI_ARADDR = {C_NUM_MASTER_SLOTS{mi_aaddr}};
assign M_AXI_ARLEN = {C_NUM_MASTER_SLOTS{mi_alen }};
assign M_AXI_ARSIZE = {C_NUM_MASTER_SLOTS{mi_asize}};
assign M_AXI_ARLOCK = {C_NUM_MASTER_SLOTS{mi_alock}};
assign M_AXI_ARPROT = {C_NUM_MASTER_SLOTS{mi_aprot}};
assign M_AXI_ARREGION = {C_NUM_MASTER_SLOTS{mi_aregion}};
assign M_AXI_ARBURST = {C_NUM_MASTER_SLOTS{mi_aburst}};
assign M_AXI_ARCACHE = {C_NUM_MASTER_SLOTS{mi_acache}};
assign M_AXI_ARQOS = {C_NUM_MASTER_SLOTS{mi_aqos }};
assign M_AXI_ARUSER = {C_NUM_MASTER_SLOTS{mi_auser[0+:C_AXI_ARUSER_WIDTH] }};
// W-channel MI handshakes
assign M_AXI_WVALID = mi_wvalid[0+:C_NUM_MASTER_SLOTS];
assign mi_wready[0+:C_NUM_MASTER_SLOTS] = M_AXI_WREADY;
// Broadcast W transfer payload to all MI-slots
assign M_AXI_WLAST = {C_NUM_MASTER_SLOTS{mi_wlast}};
assign M_AXI_WUSER = {C_NUM_MASTER_SLOTS{mi_wuser}};
assign M_AXI_WDATA = {C_NUM_MASTER_SLOTS{mi_wdata}};
assign M_AXI_WSTRB = {C_NUM_MASTER_SLOTS{mi_wstrb}};
assign M_AXI_WID = {C_NUM_MASTER_SLOTS{mi_wid}};
// Broadcast R transfer payload to all SI-slots
assign S_AXI_RLAST = {C_NUM_SLAVE_SLOTS{si_rlast}};
assign S_AXI_RRESP = {C_NUM_SLAVE_SLOTS{si_rresp}};
assign S_AXI_RUSER = {C_NUM_SLAVE_SLOTS{si_ruser}};
assign S_AXI_RDATA = {C_NUM_SLAVE_SLOTS{si_rdata}};
assign S_AXI_RID = {C_NUM_SLAVE_SLOTS{mi_aid}};
// Broadcast B transfer payload to all SI-slots
assign S_AXI_BRESP = {C_NUM_SLAVE_SLOTS{si_bresp}};
assign S_AXI_BUSER = {C_NUM_SLAVE_SLOTS{si_buser}};
assign S_AXI_BID = {C_NUM_SLAVE_SLOTS{mi_aid}};
if (C_NUM_SLAVE_SLOTS>1) begin : gen_wmux
// SI WVALID mux.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_SLAVE_SLOTS),
.C_SEL_WIDTH (P_NUM_SLAVE_SLOTS_LOG),
.C_DATA_WIDTH (1)
) si_w_valid_mux_inst
(
.S (aa_grant_enc),
.A (S_AXI_WVALID),
.O (aa_wvalid),
.OE (w_transfer_en)
);
// SI W-channel payload mux
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_SLAVE_SLOTS),
.C_SEL_WIDTH (P_NUM_SLAVE_SLOTS_LOG),
.C_DATA_WIDTH (P_WMESG_WIDTH)
) si_w_payload_mux_inst
(
.S (aa_grant_enc),
.A (si_wmesg),
.O (mi_wmesg),
.OE (1'b1)
);
for (gen_si_slot=0; gen_si_slot<C_NUM_SLAVE_SLOTS; gen_si_slot=gen_si_slot+1) begin : gen_wmesg
assign si_wmesg[gen_si_slot*P_WMESG_WIDTH+:P_WMESG_WIDTH] = { // Concatenate from MSB to LSB
((C_AXI_PROTOCOL == P_AXI3) ? f_extend_ID(S_AXI_WID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH], gen_si_slot) : 1'b0),
S_AXI_WUSER[gen_si_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH],
S_AXI_WSTRB[gen_si_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8],
S_AXI_WDATA[gen_si_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH],
S_AXI_WLAST[gen_si_slot*1+:1]
};
end // gen_wmesg
assign mi_wlast = mi_wmesg[0];
assign mi_wdata = mi_wmesg[1 +: C_AXI_DATA_WIDTH];
assign mi_wstrb = mi_wmesg[1+C_AXI_DATA_WIDTH +: C_AXI_DATA_WIDTH/8];
assign mi_wuser = mi_wmesg[1+C_AXI_DATA_WIDTH+C_AXI_DATA_WIDTH/8 +: C_AXI_WUSER_WIDTH];
assign mi_wid = mi_wmesg[1+C_AXI_DATA_WIDTH+C_AXI_DATA_WIDTH/8+C_AXI_WUSER_WIDTH +: P_AXI_WID_WIDTH];
end else begin : gen_no_wmux
assign aa_wvalid = w_transfer_en & S_AXI_WVALID;
assign mi_wlast = S_AXI_WLAST;
assign mi_wdata = S_AXI_WDATA;
assign mi_wstrb = S_AXI_WSTRB;
assign mi_wuser = S_AXI_WUSER;
assign mi_wid = S_AXI_WID;
end // gen_wmux
// Receive RVALID from targeted MI.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (P_NUM_MASTER_SLOTS_DE),
.C_SEL_WIDTH (P_NUM_MASTER_SLOTS_DE_LOG),
.C_DATA_WIDTH (1)
) mi_rvalid_mux_inst
(
.S (m_atarget_enc),
.A (mi_rvalid),
.O (aa_rvalid),
.OE (r_transfer_en)
);
// MI R-channel payload mux
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (P_NUM_MASTER_SLOTS_DE),
.C_SEL_WIDTH (P_NUM_MASTER_SLOTS_DE_LOG),
.C_DATA_WIDTH (P_RMESG_WIDTH)
) mi_rmesg_mux_inst
(
.S (m_atarget_enc),
.A (mi_rmesg),
.O (aa_rmesg),
.OE (1'b1)
);
axi_register_slice_v2_1_axic_register_slice #
(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (P_RMESG_WIDTH),
.C_REG_CONFIG (P_R_REG_CONFIG)
)
reg_slice_r
(
// System Signals
.ACLK(ACLK),
.ARESET(reset),
// Slave side
.S_PAYLOAD_DATA(aa_rmesg),
.S_VALID(aa_rvalid),
.S_READY(aa_rready),
// Master side
.M_PAYLOAD_DATA(sr_rmesg),
.M_VALID(sr_rvalid),
.M_READY(sr_rready)
);
assign mi_rvalid[0+:C_NUM_MASTER_SLOTS] = M_AXI_RVALID;
assign mi_rlast[0+:C_NUM_MASTER_SLOTS] = M_AXI_RLAST;
assign mi_rresp[0+:C_NUM_MASTER_SLOTS*2] = M_AXI_RRESP;
assign mi_ruser[0+:C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH] = M_AXI_RUSER;
assign mi_rdata[0+:C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH] = M_AXI_RDATA;
assign M_AXI_RREADY = mi_rready[0+:C_NUM_MASTER_SLOTS];
for (gen_mi_slot=0; gen_mi_slot<P_NUM_MASTER_SLOTS_DE; gen_mi_slot=gen_mi_slot+1) begin : gen_rmesg
assign mi_rmesg[gen_mi_slot*P_RMESG_WIDTH+:P_RMESG_WIDTH] = { // Concatenate from MSB to LSB
mi_ruser[gen_mi_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH],
mi_rdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH],
mi_rresp[gen_mi_slot*2+:2],
mi_rlast[gen_mi_slot*1+:1]
};
end // gen_rmesg
assign si_rlast = sr_rmesg[0];
assign si_rresp = sr_rmesg[1 +: 2];
assign si_rdata = sr_rmesg[1+2 +: C_AXI_DATA_WIDTH];
assign si_ruser = sr_rmesg[1+2+C_AXI_DATA_WIDTH +: C_AXI_RUSER_WIDTH];
// Receive BVALID from targeted MI.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (P_NUM_MASTER_SLOTS_DE),
.C_SEL_WIDTH (P_NUM_MASTER_SLOTS_DE_LOG),
.C_DATA_WIDTH (1)
) mi_bvalid_mux_inst
(
.S (m_atarget_enc),
.A (mi_bvalid),
.O (aa_bvalid),
.OE (b_transfer_en)
);
// MI B-channel payload mux
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (P_NUM_MASTER_SLOTS_DE),
.C_SEL_WIDTH (P_NUM_MASTER_SLOTS_DE_LOG),
.C_DATA_WIDTH (P_BMESG_WIDTH)
) mi_bmesg_mux_inst
(
.S (m_atarget_enc),
.A (mi_bmesg),
.O (si_bmesg),
.OE (1'b1)
);
assign mi_bvalid[0+:C_NUM_MASTER_SLOTS] = M_AXI_BVALID;
assign mi_bresp[0+:C_NUM_MASTER_SLOTS*2] = M_AXI_BRESP;
assign mi_buser[0+:C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH] = M_AXI_BUSER;
assign M_AXI_BREADY = mi_bready[0+:C_NUM_MASTER_SLOTS];
for (gen_mi_slot=0; gen_mi_slot<P_NUM_MASTER_SLOTS_DE; gen_mi_slot=gen_mi_slot+1) begin : gen_bmesg
assign mi_bmesg[gen_mi_slot*P_BMESG_WIDTH+:P_BMESG_WIDTH] = { // Concatenate from MSB to LSB
mi_buser[gen_mi_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH],
mi_bresp[gen_mi_slot*2+:2]
};
end // gen_bmesg
assign si_bresp = si_bmesg[0 +: 2];
assign si_buser = si_bmesg[2 +: C_AXI_BUSER_WIDTH];
if (C_DEBUG) begin : gen_debug_trans_seq
// DEBUG WRITE TRANSACTION SEQUENCE COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_aw_trans_seq_i <= 1;
end else begin
if (aa_awvalid && aa_awready) begin
debug_aw_trans_seq_i <= debug_aw_trans_seq_i + 1;
end
end
end
// DEBUG READ TRANSACTION SEQUENCE COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_ar_trans_seq_i <= 1;
end else begin
if (aa_arvalid && aa_arready) begin
debug_ar_trans_seq_i <= debug_ar_trans_seq_i + 1;
end
end
end
// DEBUG WRITE BEAT COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_w_beat_cnt_i <= 0;
end else if (aa_wready & aa_wvalid) begin
if (mi_wlast) begin
debug_w_beat_cnt_i <= 0;
end else begin
debug_w_beat_cnt_i <= debug_w_beat_cnt_i + 1;
end
end
end // Clocked process
// DEBUG READ BEAT COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_r_beat_cnt_i <= 0;
end else if (sr_rready & sr_rvalid) begin
if (si_rlast) begin
debug_r_beat_cnt_i <= 0;
end else begin
debug_r_beat_cnt_i <= debug_r_beat_cnt_i + 1;
end
end
end // Clocked process
end // gen_debug_trans_seq
if (C_RANGE_CHECK) begin : gen_decerr
// Highest MI-slot (index C_NUM_MASTER_SLOTS) is the error handler
axi_crossbar_v2_1_decerr_slave #
(
.C_AXI_ID_WIDTH (1),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_AXI_PROTOCOL (C_AXI_PROTOCOL),
.C_RESP (P_DECERR)
)
decerr_slave_inst
(
.S_AXI_ACLK (ACLK),
.S_AXI_ARESET (reset),
.S_AXI_AWID (1'b0),
.S_AXI_AWVALID (mi_awvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_AWREADY (mi_awready[C_NUM_MASTER_SLOTS]),
.S_AXI_WLAST (mi_wlast),
.S_AXI_WVALID (mi_wvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_WREADY (mi_wready[C_NUM_MASTER_SLOTS]),
.S_AXI_BID (),
.S_AXI_BRESP (mi_bresp[C_NUM_MASTER_SLOTS*2+:2]),
.S_AXI_BUSER (mi_buser[C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH]),
.S_AXI_BVALID (mi_bvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_BREADY (mi_bready[C_NUM_MASTER_SLOTS]),
.S_AXI_ARID (1'b0),
.S_AXI_ARLEN (mi_alen),
.S_AXI_ARVALID (mi_arvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_ARREADY (mi_arready[C_NUM_MASTER_SLOTS]),
.S_AXI_RID (),
.S_AXI_RDATA (mi_rdata[C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH]),
.S_AXI_RRESP (mi_rresp[C_NUM_MASTER_SLOTS*2+:2]),
.S_AXI_RUSER (mi_ruser[C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH]),
.S_AXI_RLAST (mi_rlast[C_NUM_MASTER_SLOTS]),
.S_AXI_RVALID (mi_rvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_RREADY (mi_rready[C_NUM_MASTER_SLOTS])
);
end // gen_decerr
endgenerate
endmodule
`default_nettype wire
|
// -- (c) Copyright 2009 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// File name: crossbar_sasd.v
//
// Description:
// This module is a M-master to N-slave AXI axi_crossbar_v2_1_crossbar switch.
// Single transaction issuing, single arbiter (both W&R), single data pathways.
// The interface of this module consists of a vectored slave and master interface
// in which all slots are sized and synchronized to the native width and clock
// of the interconnect, and are all AXI4 protocol.
// All width, clock and protocol conversions are done outside this block, as are
// any pipeline registers or data FIFOs.
// This module contains all arbitration, decoders and channel multiplexing logic.
// It also contains the diagnostic registers and control interface.
//
//--------------------------------------------------------------------------
//
// Structure:
// crossbar_sasd
// addr_arbiter_sasd
// mux_enc
// addr_decoder
// comparator_static
// splitter
// mux_enc
// axic_register_slice
// decerr_slave
//
//-----------------------------------------------------------------------------
`timescale 1ps/1ps
`default_nettype none
(* DowngradeIPIdentifiedWarnings="yes" *)
module axi_crossbar_v2_1_crossbar_sasd #
(
parameter C_FAMILY = "none",
parameter integer C_NUM_SLAVE_SLOTS = 1,
parameter integer C_NUM_MASTER_SLOTS = 1,
parameter integer C_NUM_ADDR_RANGES = 1,
parameter integer C_AXI_ID_WIDTH = 1,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_PROTOCOL = 0,
parameter [C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64-1:0] C_M_AXI_BASE_ADDR = {C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64{1'b1}},
parameter [C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64-1:0] C_M_AXI_HIGH_ADDR = {C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64{1'b0}},
parameter [C_NUM_SLAVE_SLOTS*64-1:0] C_S_AXI_BASE_ID = {C_NUM_SLAVE_SLOTS*64{1'b0}},
parameter [C_NUM_SLAVE_SLOTS*64-1:0] C_S_AXI_HIGH_ID = {C_NUM_SLAVE_SLOTS*64{1'b0}},
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_AWUSER_WIDTH = 1,
parameter integer C_AXI_ARUSER_WIDTH = 1,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter [C_NUM_SLAVE_SLOTS-1:0] C_S_AXI_SUPPORTS_WRITE = {C_NUM_SLAVE_SLOTS{1'b1}},
parameter [C_NUM_SLAVE_SLOTS-1:0] C_S_AXI_SUPPORTS_READ = {C_NUM_SLAVE_SLOTS{1'b1}},
parameter [C_NUM_MASTER_SLOTS-1:0] C_M_AXI_SUPPORTS_WRITE = {C_NUM_MASTER_SLOTS{1'b1}},
parameter [C_NUM_MASTER_SLOTS-1:0] C_M_AXI_SUPPORTS_READ = {C_NUM_MASTER_SLOTS{1'b1}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_ARB_PRIORITY = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_SECURE = {C_NUM_MASTER_SLOTS{32'h00000000}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_ERR_MODE = {C_NUM_MASTER_SLOTS{32'h00000000}},
parameter integer C_R_REGISTER = 0,
parameter integer C_RANGE_CHECK = 0,
parameter integer C_ADDR_DECODE = 0,
parameter integer C_DEBUG = 1
)
(
// Global Signals
input wire ACLK,
input wire ARESETN,
// Slave Interface Write Address Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_AWID,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR,
input wire [C_NUM_SLAVE_SLOTS*8-1:0] S_AXI_AWLEN,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_AWSIZE,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_AWBURST,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_AWLOCK,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_AWCACHE,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_AWPROT,
// input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_AWREGION,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_AWQOS,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_AWVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_AWREADY,
// Slave Interface Write Data Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_WID,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_WLAST,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_WVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_WREADY,
// Slave Interface Write Response Ports
output wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_BID,
output wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_BRESP,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_BVALID,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_BREADY,
// Slave Interface Read Address Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_ARID,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR,
input wire [C_NUM_SLAVE_SLOTS*8-1:0] S_AXI_ARLEN,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_ARSIZE,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_ARBURST,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_ARLOCK,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_ARCACHE,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_ARPROT,
// input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_ARREGION,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_ARQOS,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_ARVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_ARREADY,
// Slave Interface Read Data Ports
output wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_RID,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA,
output wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_RRESP,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_RLAST,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_RVALID,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_RREADY,
// Master Interface Write Address Port
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_AWID,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR,
output wire [C_NUM_MASTER_SLOTS*8-1:0] M_AXI_AWLEN,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_AWSIZE,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_AWBURST,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_AWLOCK,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_AWCACHE,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_AWPROT,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_AWREGION,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_AWQOS,
output wire [C_NUM_MASTER_SLOTS*C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_AWVALID,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_AWREADY,
// Master Interface Write Data Ports
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_WID,
output wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA,
output wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_WLAST,
output wire [C_NUM_MASTER_SLOTS*C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_WVALID,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_WREADY,
// Master Interface Write Response Ports
input wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_BID, // Unused
input wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_BRESP,
input wire [C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_BVALID,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_BREADY,
// Master Interface Read Address Port
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_ARID,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR,
output wire [C_NUM_MASTER_SLOTS*8-1:0] M_AXI_ARLEN,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_ARSIZE,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_ARBURST,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_ARLOCK,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_ARCACHE,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_ARPROT,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_ARREGION,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_ARQOS,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_ARVALID,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_ARREADY,
// Master Interface Read Data Ports
input wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_RID, // Unused
input wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA,
input wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_RRESP,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_RLAST,
input wire [C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_RVALID,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_RREADY
);
localparam integer P_AXI4 = 0;
localparam integer P_AXI3 = 1;
localparam integer P_AXILITE = 2;
localparam integer P_NUM_MASTER_SLOTS_DE = C_RANGE_CHECK ? C_NUM_MASTER_SLOTS+1 : C_NUM_MASTER_SLOTS;
localparam integer P_NUM_MASTER_SLOTS_LOG = (C_NUM_MASTER_SLOTS>1) ? f_ceil_log2(C_NUM_MASTER_SLOTS) : 1;
localparam integer P_NUM_MASTER_SLOTS_DE_LOG = (P_NUM_MASTER_SLOTS_DE>1) ? f_ceil_log2(P_NUM_MASTER_SLOTS_DE) : 1;
localparam integer P_NUM_SLAVE_SLOTS_LOG = (C_NUM_SLAVE_SLOTS>1) ? f_ceil_log2(C_NUM_SLAVE_SLOTS) : 1;
localparam integer P_AXI_AUSER_WIDTH = (C_AXI_AWUSER_WIDTH > C_AXI_ARUSER_WIDTH) ? C_AXI_AWUSER_WIDTH : C_AXI_ARUSER_WIDTH;
localparam integer P_AXI_WID_WIDTH = (C_AXI_PROTOCOL == P_AXI3) ? C_AXI_ID_WIDTH : 1;
localparam integer P_AMESG_WIDTH = C_AXI_ID_WIDTH + C_AXI_ADDR_WIDTH + 8+3+2+3+2+4+4 + P_AXI_AUSER_WIDTH + 4;
localparam integer P_BMESG_WIDTH = 2 + C_AXI_BUSER_WIDTH;
localparam integer P_RMESG_WIDTH = 1+2 + C_AXI_DATA_WIDTH + C_AXI_RUSER_WIDTH;
localparam integer P_WMESG_WIDTH = 1 + C_AXI_DATA_WIDTH + C_AXI_DATA_WIDTH/8 + C_AXI_WUSER_WIDTH + P_AXI_WID_WIDTH;
localparam [31:0] P_AXILITE_ERRMODE = 32'h00000001;
localparam integer P_NONSECURE_BIT = 1;
localparam [C_NUM_MASTER_SLOTS-1:0] P_M_SECURE_MASK = f_bit32to1_mi(C_M_AXI_SECURE); // Mask of secure MI-slots
localparam [C_NUM_MASTER_SLOTS-1:0] P_M_AXILITE_MASK = f_m_axilite(0); // Mask of axilite rule-check MI-slots
localparam [1:0] P_FIXED = 2'b00;
localparam integer P_BYPASS = 0;
localparam integer P_LIGHTWT = 7;
localparam integer P_FULLY_REG = 1;
localparam integer P_R_REG_CONFIG = C_R_REGISTER == 8 ? // "Automatic" reg-slice
(C_RANGE_CHECK ? ((C_AXI_PROTOCOL == P_AXILITE) ? P_LIGHTWT : P_FULLY_REG) : P_BYPASS) : // Bypass if no R-channel mux
C_R_REGISTER;
localparam P_DECERR = 2'b11;
//---------------------------------------------------------------------------
// Functions
//---------------------------------------------------------------------------
// Ceiling of log2(x)
function integer f_ceil_log2
(
input integer x
);
integer acc;
begin
acc=0;
while ((2**acc) < x)
acc = acc + 1;
f_ceil_log2 = acc;
end
endfunction
// Isolate thread bits of input S_ID and add to BASE_ID (RNG00) to form MI-side ID value
// only for end-point SI-slots
function [C_AXI_ID_WIDTH-1:0] f_extend_ID
(
input [C_AXI_ID_WIDTH-1:0] s_id,
input integer slot
);
begin
f_extend_ID = C_S_AXI_BASE_ID[slot*64+:C_AXI_ID_WIDTH] | (s_id & (C_S_AXI_BASE_ID[slot*64+:C_AXI_ID_WIDTH] ^ C_S_AXI_HIGH_ID[slot*64+:C_AXI_ID_WIDTH]));
end
endfunction
// Convert Bit32 vector of range [0,1] to Bit1 vector on MI
function [C_NUM_MASTER_SLOTS-1:0] f_bit32to1_mi
(input [C_NUM_MASTER_SLOTS*32-1:0] vec32);
integer mi;
begin
for (mi=0; mi<C_NUM_MASTER_SLOTS; mi=mi+1) begin
f_bit32to1_mi[mi] = vec32[mi*32];
end
end
endfunction
// AxiLite error-checking mask (on MI)
function [C_NUM_MASTER_SLOTS-1:0] f_m_axilite
(
input integer null_arg
);
integer mi;
begin
for (mi=0; mi<C_NUM_MASTER_SLOTS; mi=mi+1) begin
f_m_axilite[mi] = (C_M_AXI_ERR_MODE[mi*32+:32] == P_AXILITE_ERRMODE);
end
end
endfunction
genvar gen_si_slot;
genvar gen_mi_slot;
wire [C_NUM_SLAVE_SLOTS*P_AMESG_WIDTH-1:0] si_awmesg ;
wire [C_NUM_SLAVE_SLOTS*P_AMESG_WIDTH-1:0] si_armesg ;
wire [P_AMESG_WIDTH-1:0] aa_amesg ;
wire [C_AXI_ID_WIDTH-1:0] mi_aid ;
wire [C_AXI_ADDR_WIDTH-1:0] mi_aaddr ;
wire [8-1:0] mi_alen ;
wire [3-1:0] mi_asize ;
wire [2-1:0] mi_alock ;
wire [3-1:0] mi_aprot ;
wire [2-1:0] mi_aburst ;
wire [4-1:0] mi_acache ;
wire [4-1:0] mi_aregion ;
wire [4-1:0] mi_aqos ;
wire [P_AXI_AUSER_WIDTH-1:0] mi_auser ;
wire [4-1:0] target_region ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] aa_grant_hot ;
wire [P_NUM_SLAVE_SLOTS_LOG-1:0] aa_grant_enc ;
wire aa_grant_rnw ;
wire aa_grant_any ;
wire [C_NUM_MASTER_SLOTS-1:0] target_mi_hot ;
wire [P_NUM_MASTER_SLOTS_LOG-1:0] target_mi_enc ;
reg [P_NUM_MASTER_SLOTS_DE-1:0] m_atarget_hot ;
reg [P_NUM_MASTER_SLOTS_DE_LOG-1:0] m_atarget_enc ;
wire [P_NUM_MASTER_SLOTS_DE_LOG-1:0] m_atarget_enc_comb ;
wire match;
wire any_error ;
wire [7:0] m_aerror_i ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_awvalid ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_awready ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_arvalid ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_arready ;
wire aa_awvalid ;
wire aa_awready ;
wire aa_arvalid ;
wire aa_arready ;
wire mi_awvalid_en;
wire mi_awready_mux;
wire mi_arvalid_en;
wire mi_arready_mux;
wire w_transfer_en;
wire w_complete_mux;
wire b_transfer_en;
wire b_complete_mux;
wire r_transfer_en;
wire r_complete_mux;
wire target_secure;
wire target_write;
wire target_read;
wire target_axilite;
wire [P_BMESG_WIDTH-1:0] si_bmesg ;
wire [P_NUM_MASTER_SLOTS_DE*P_BMESG_WIDTH-1:0] mi_bmesg ;
wire [P_NUM_MASTER_SLOTS_DE*2-1:0] mi_bresp ;
wire [P_NUM_MASTER_SLOTS_DE*C_AXI_BUSER_WIDTH-1:0] mi_buser ;
wire [2-1:0] si_bresp ;
wire [C_AXI_BUSER_WIDTH-1:0] si_buser ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_bvalid ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_bready ;
wire aa_bvalid ;
wire aa_bready ;
wire si_bready ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_bvalid;
wire [P_RMESG_WIDTH-1:0] aa_rmesg ;
wire [P_RMESG_WIDTH-1:0] sr_rmesg ;
wire [P_NUM_MASTER_SLOTS_DE*P_RMESG_WIDTH-1:0] mi_rmesg ;
wire [P_NUM_MASTER_SLOTS_DE*2-1:0] mi_rresp ;
wire [P_NUM_MASTER_SLOTS_DE*C_AXI_RUSER_WIDTH-1:0] mi_ruser ;
wire [P_NUM_MASTER_SLOTS_DE*C_AXI_DATA_WIDTH-1:0] mi_rdata ;
wire [P_NUM_MASTER_SLOTS_DE*1-1:0] mi_rlast ;
wire [2-1:0] si_rresp ;
wire [C_AXI_RUSER_WIDTH-1:0] si_ruser ;
wire [C_AXI_DATA_WIDTH-1:0] si_rdata ;
wire si_rlast ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_rvalid ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_rready ;
wire aa_rvalid ;
wire aa_rready ;
wire sr_rvalid ;
wire si_rready ;
wire sr_rready ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_rvalid;
wire [C_NUM_SLAVE_SLOTS*P_WMESG_WIDTH-1:0] si_wmesg ;
wire [P_WMESG_WIDTH-1:0] mi_wmesg ;
wire [C_AXI_ID_WIDTH-1:0] mi_wid ;
wire [C_AXI_DATA_WIDTH-1:0] mi_wdata ;
wire [C_AXI_DATA_WIDTH/8-1:0] mi_wstrb ;
wire [C_AXI_WUSER_WIDTH-1:0] mi_wuser ;
wire [1-1:0] mi_wlast ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_wvalid ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_wready ;
wire aa_wvalid ;
wire aa_wready ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_wready;
reg [7:0] debug_r_beat_cnt_i;
reg [7:0] debug_w_beat_cnt_i;
reg [7:0] debug_aw_trans_seq_i;
reg [7:0] debug_ar_trans_seq_i;
reg aresetn_d = 1'b0; // Reset delay register
always @(posedge ACLK) begin
if (~ARESETN) begin
aresetn_d <= 1'b0;
end else begin
aresetn_d <= ARESETN;
end
end
wire reset;
assign reset = ~aresetn_d;
generate
axi_crossbar_v2_1_addr_arbiter_sasd #
(
.C_FAMILY (C_FAMILY),
.C_NUM_S (C_NUM_SLAVE_SLOTS),
.C_NUM_S_LOG (P_NUM_SLAVE_SLOTS_LOG),
.C_AMESG_WIDTH (P_AMESG_WIDTH),
.C_GRANT_ENC (1),
.C_ARB_PRIORITY (C_S_AXI_ARB_PRIORITY)
)
addr_arbiter_inst
(
.ACLK (ACLK),
.ARESET (reset),
// Vector of SI-side AW command request inputs
.S_AWMESG (si_awmesg),
.S_ARMESG (si_armesg),
.S_AWVALID (S_AXI_AWVALID),
.S_AWREADY (S_AXI_AWREADY),
.S_ARVALID (S_AXI_ARVALID),
.S_ARREADY (S_AXI_ARREADY),
.M_GRANT_ENC (aa_grant_enc),
.M_GRANT_HOT (aa_grant_hot), // SI-slot 1-hot mask of granted command
.M_GRANT_ANY (aa_grant_any),
.M_GRANT_RNW (aa_grant_rnw),
.M_AMESG (aa_amesg), // Either S_AWMESG or S_ARMESG, as indicated by M_AWVALID and M_ARVALID.
.M_AWVALID (aa_awvalid),
.M_AWREADY (aa_awready),
.M_ARVALID (aa_arvalid),
.M_ARREADY (aa_arready)
);
if (C_ADDR_DECODE) begin : gen_addr_decoder
axi_crossbar_v2_1_addr_decoder #
(
.C_FAMILY (C_FAMILY),
.C_NUM_TARGETS (C_NUM_MASTER_SLOTS),
.C_NUM_TARGETS_LOG (P_NUM_MASTER_SLOTS_LOG),
.C_NUM_RANGES (C_NUM_ADDR_RANGES),
.C_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_TARGET_ENC (1),
.C_TARGET_HOT (1),
.C_REGION_ENC (1),
.C_BASE_ADDR (C_M_AXI_BASE_ADDR),
.C_HIGH_ADDR (C_M_AXI_HIGH_ADDR),
.C_TARGET_QUAL ({C_NUM_MASTER_SLOTS{1'b1}}),
.C_RESOLUTION (2)
)
addr_decoder_inst
(
.ADDR (mi_aaddr),
.TARGET_HOT (target_mi_hot),
.TARGET_ENC (target_mi_enc),
.MATCH (match),
.REGION (target_region)
);
end else begin : gen_no_addr_decoder
assign target_mi_hot = 1;
assign match = 1'b1;
assign target_region = 4'b0000;
end // gen_addr_decoder
// AW-channel arbiter command transfer completes upon completion of both M-side AW-channel transfer and B channel completion.
axi_crossbar_v2_1_splitter #
(
.C_NUM_M (3)
)
splitter_aw
(
.ACLK (ACLK),
.ARESET (reset),
.S_VALID (aa_awvalid),
.S_READY (aa_awready),
.M_VALID ({mi_awvalid_en, w_transfer_en, b_transfer_en}),
.M_READY ({mi_awready_mux, w_complete_mux, b_complete_mux})
);
// AR-channel arbiter command transfer completes upon completion of both M-side AR-channel transfer and R channel completion.
axi_crossbar_v2_1_splitter #
(
.C_NUM_M (2)
)
splitter_ar
(
.ACLK (ACLK),
.ARESET (reset),
.S_VALID (aa_arvalid),
.S_READY (aa_arready),
.M_VALID ({mi_arvalid_en, r_transfer_en}),
.M_READY ({mi_arready_mux, r_complete_mux})
);
assign target_secure = |(target_mi_hot & P_M_SECURE_MASK);
assign target_write = |(target_mi_hot & C_M_AXI_SUPPORTS_WRITE);
assign target_read = |(target_mi_hot & C_M_AXI_SUPPORTS_READ);
assign target_axilite = |(target_mi_hot & P_M_AXILITE_MASK);
assign any_error = C_RANGE_CHECK && (m_aerror_i != 0); // DECERR if error-detection enabled and any error condition.
assign m_aerror_i[0] = ~match; // Invalid target address
assign m_aerror_i[1] = target_secure && mi_aprot[P_NONSECURE_BIT]; // TrustZone violation
assign m_aerror_i[2] = target_axilite && ((mi_alen != 0) ||
(mi_asize[1:0] == 2'b11) || (mi_asize[2] == 1'b1)); // AxiLite access violation
assign m_aerror_i[3] = (~aa_grant_rnw && ~target_write) ||
(aa_grant_rnw && ~target_read); // R/W direction unsupported by target
assign m_aerror_i[7:4] = 4'b0000; // Reserved
assign m_atarget_enc_comb = any_error ? (P_NUM_MASTER_SLOTS_DE-1) : target_mi_enc; // Select MI slot or decerr_slave
always @(posedge ACLK) begin
if (reset) begin
m_atarget_hot <= 0;
m_atarget_enc <= 0;
end else begin
m_atarget_hot <= {P_NUM_MASTER_SLOTS_DE{aa_grant_any}} & (any_error ? {1'b1, {C_NUM_MASTER_SLOTS{1'b0}}} : {1'b0, target_mi_hot}); // Select MI slot or decerr_slave
m_atarget_enc <= m_atarget_enc_comb;
end
end
// Receive AWREADY from targeted MI.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (P_NUM_MASTER_SLOTS_DE),
.C_SEL_WIDTH (P_NUM_MASTER_SLOTS_DE_LOG),
.C_DATA_WIDTH (1)
) mi_awready_mux_inst
(
.S (m_atarget_enc),
.A (mi_awready),
.O (mi_awready_mux),
.OE (mi_awvalid_en)
);
// Receive ARREADY from targeted MI.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (P_NUM_MASTER_SLOTS_DE),
.C_SEL_WIDTH (P_NUM_MASTER_SLOTS_DE_LOG),
.C_DATA_WIDTH (1)
) mi_arready_mux_inst
(
.S (m_atarget_enc),
.A (mi_arready),
.O (mi_arready_mux),
.OE (mi_arvalid_en)
);
assign mi_awvalid = m_atarget_hot & {P_NUM_MASTER_SLOTS_DE{mi_awvalid_en}}; // Assert AWVALID on targeted MI.
assign mi_arvalid = m_atarget_hot & {P_NUM_MASTER_SLOTS_DE{mi_arvalid_en}}; // Assert ARVALID on targeted MI.
assign M_AXI_AWVALID = mi_awvalid[0+:C_NUM_MASTER_SLOTS]; // Propagate to MI slots.
assign M_AXI_ARVALID = mi_arvalid[0+:C_NUM_MASTER_SLOTS]; // Propagate to MI slots.
assign mi_awready[0+:C_NUM_MASTER_SLOTS] = M_AXI_AWREADY; // Copy from MI slots.
assign mi_arready[0+:C_NUM_MASTER_SLOTS] = M_AXI_ARREADY; // Copy from MI slots.
// Receive WREADY from targeted MI.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (P_NUM_MASTER_SLOTS_DE),
.C_SEL_WIDTH (P_NUM_MASTER_SLOTS_DE_LOG),
.C_DATA_WIDTH (1)
) mi_wready_mux_inst
(
.S (m_atarget_enc),
.A (mi_wready),
.O (aa_wready),
.OE (w_transfer_en)
);
assign mi_wvalid = m_atarget_hot & {P_NUM_MASTER_SLOTS_DE{aa_wvalid}}; // Assert WVALID on targeted MI.
assign si_wready = aa_grant_hot & {C_NUM_SLAVE_SLOTS{aa_wready}}; // Assert WREADY on granted SI.
assign S_AXI_WREADY = si_wready;
assign w_complete_mux = aa_wready & aa_wvalid & mi_wlast; // W burst complete on on designated SI/MI.
// Receive RREADY from granted SI.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_SLAVE_SLOTS),
.C_SEL_WIDTH (P_NUM_SLAVE_SLOTS_LOG),
.C_DATA_WIDTH (1)
) si_rready_mux_inst
(
.S (aa_grant_enc),
.A (S_AXI_RREADY),
.O (si_rready),
.OE (r_transfer_en)
);
assign sr_rready = si_rready & r_transfer_en;
assign mi_rready = m_atarget_hot & {P_NUM_MASTER_SLOTS_DE{aa_rready}}; // Assert RREADY on targeted MI.
assign si_rvalid = aa_grant_hot & {C_NUM_SLAVE_SLOTS{sr_rvalid}}; // Assert RVALID on granted SI.
assign S_AXI_RVALID = si_rvalid;
assign r_complete_mux = sr_rready & sr_rvalid & si_rlast; // R burst complete on on designated SI/MI.
// Receive BREADY from granted SI.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_SLAVE_SLOTS),
.C_SEL_WIDTH (P_NUM_SLAVE_SLOTS_LOG),
.C_DATA_WIDTH (1)
) si_bready_mux_inst
(
.S (aa_grant_enc),
.A (S_AXI_BREADY),
.O (si_bready),
.OE (b_transfer_en)
);
assign aa_bready = si_bready & b_transfer_en;
assign mi_bready = m_atarget_hot & {P_NUM_MASTER_SLOTS_DE{aa_bready}}; // Assert BREADY on targeted MI.
assign si_bvalid = aa_grant_hot & {C_NUM_SLAVE_SLOTS{aa_bvalid}}; // Assert BVALID on granted SI.
assign S_AXI_BVALID = si_bvalid;
assign b_complete_mux = aa_bready & aa_bvalid; // B transfer complete on on designated SI/MI.
for (gen_si_slot=0; gen_si_slot<C_NUM_SLAVE_SLOTS; gen_si_slot=gen_si_slot+1) begin : gen_si_amesg
assign si_armesg[gen_si_slot*P_AMESG_WIDTH +: P_AMESG_WIDTH] = { // Concatenate from MSB to LSB
4'b0000,
// S_AXI_ARREGION[gen_si_slot*4+:4],
S_AXI_ARUSER[gen_si_slot*C_AXI_ARUSER_WIDTH +: C_AXI_ARUSER_WIDTH],
S_AXI_ARQOS[gen_si_slot*4+:4],
S_AXI_ARCACHE[gen_si_slot*4+:4],
S_AXI_ARBURST[gen_si_slot*2+:2],
S_AXI_ARPROT[gen_si_slot*3+:3],
S_AXI_ARLOCK[gen_si_slot*2+:2],
S_AXI_ARSIZE[gen_si_slot*3+:3],
S_AXI_ARLEN[gen_si_slot*8+:8],
S_AXI_ARADDR[gen_si_slot*C_AXI_ADDR_WIDTH +: C_AXI_ADDR_WIDTH],
f_extend_ID(S_AXI_ARID[gen_si_slot*C_AXI_ID_WIDTH +: C_AXI_ID_WIDTH], gen_si_slot)
};
assign si_awmesg[gen_si_slot*P_AMESG_WIDTH +: P_AMESG_WIDTH] = { // Concatenate from MSB to LSB
4'b0000,
// S_AXI_AWREGION[gen_si_slot*4+:4],
S_AXI_AWUSER[gen_si_slot*C_AXI_AWUSER_WIDTH +: C_AXI_AWUSER_WIDTH],
S_AXI_AWQOS[gen_si_slot*4+:4],
S_AXI_AWCACHE[gen_si_slot*4+:4],
S_AXI_AWBURST[gen_si_slot*2+:2],
S_AXI_AWPROT[gen_si_slot*3+:3],
S_AXI_AWLOCK[gen_si_slot*2+:2],
S_AXI_AWSIZE[gen_si_slot*3+:3],
S_AXI_AWLEN[gen_si_slot*8+:8],
S_AXI_AWADDR[gen_si_slot*C_AXI_ADDR_WIDTH +: C_AXI_ADDR_WIDTH],
f_extend_ID(S_AXI_AWID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH], gen_si_slot)
};
end // gen_si_amesg
assign mi_aid = aa_amesg[0 +: C_AXI_ID_WIDTH];
assign mi_aaddr = aa_amesg[C_AXI_ID_WIDTH +: C_AXI_ADDR_WIDTH];
assign mi_alen = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH +: 8];
assign mi_asize = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8 +: 3];
assign mi_alock = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3 +: 2];
assign mi_aprot = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2 +: 3];
assign mi_aburst = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3 +: 2];
assign mi_acache = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+2 +: 4];
assign mi_aqos = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+2+4 +: 4];
assign mi_auser = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+2+4+4 +: P_AXI_AUSER_WIDTH];
assign mi_aregion = (C_ADDR_DECODE != 0) ? target_region : aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+2+4+4+P_AXI_AUSER_WIDTH +: 4];
// Broadcast AW transfer payload to all MI-slots
assign M_AXI_AWID = {C_NUM_MASTER_SLOTS{mi_aid}};
assign M_AXI_AWADDR = {C_NUM_MASTER_SLOTS{mi_aaddr}};
assign M_AXI_AWLEN = {C_NUM_MASTER_SLOTS{mi_alen }};
assign M_AXI_AWSIZE = {C_NUM_MASTER_SLOTS{mi_asize}};
assign M_AXI_AWLOCK = {C_NUM_MASTER_SLOTS{mi_alock}};
assign M_AXI_AWPROT = {C_NUM_MASTER_SLOTS{mi_aprot}};
assign M_AXI_AWREGION = {C_NUM_MASTER_SLOTS{mi_aregion}};
assign M_AXI_AWBURST = {C_NUM_MASTER_SLOTS{mi_aburst}};
assign M_AXI_AWCACHE = {C_NUM_MASTER_SLOTS{mi_acache}};
assign M_AXI_AWQOS = {C_NUM_MASTER_SLOTS{mi_aqos }};
assign M_AXI_AWUSER = {C_NUM_MASTER_SLOTS{mi_auser[0+:C_AXI_AWUSER_WIDTH] }};
// Broadcast AR transfer payload to all MI-slots
assign M_AXI_ARID = {C_NUM_MASTER_SLOTS{mi_aid}};
assign M_AXI_ARADDR = {C_NUM_MASTER_SLOTS{mi_aaddr}};
assign M_AXI_ARLEN = {C_NUM_MASTER_SLOTS{mi_alen }};
assign M_AXI_ARSIZE = {C_NUM_MASTER_SLOTS{mi_asize}};
assign M_AXI_ARLOCK = {C_NUM_MASTER_SLOTS{mi_alock}};
assign M_AXI_ARPROT = {C_NUM_MASTER_SLOTS{mi_aprot}};
assign M_AXI_ARREGION = {C_NUM_MASTER_SLOTS{mi_aregion}};
assign M_AXI_ARBURST = {C_NUM_MASTER_SLOTS{mi_aburst}};
assign M_AXI_ARCACHE = {C_NUM_MASTER_SLOTS{mi_acache}};
assign M_AXI_ARQOS = {C_NUM_MASTER_SLOTS{mi_aqos }};
assign M_AXI_ARUSER = {C_NUM_MASTER_SLOTS{mi_auser[0+:C_AXI_ARUSER_WIDTH] }};
// W-channel MI handshakes
assign M_AXI_WVALID = mi_wvalid[0+:C_NUM_MASTER_SLOTS];
assign mi_wready[0+:C_NUM_MASTER_SLOTS] = M_AXI_WREADY;
// Broadcast W transfer payload to all MI-slots
assign M_AXI_WLAST = {C_NUM_MASTER_SLOTS{mi_wlast}};
assign M_AXI_WUSER = {C_NUM_MASTER_SLOTS{mi_wuser}};
assign M_AXI_WDATA = {C_NUM_MASTER_SLOTS{mi_wdata}};
assign M_AXI_WSTRB = {C_NUM_MASTER_SLOTS{mi_wstrb}};
assign M_AXI_WID = {C_NUM_MASTER_SLOTS{mi_wid}};
// Broadcast R transfer payload to all SI-slots
assign S_AXI_RLAST = {C_NUM_SLAVE_SLOTS{si_rlast}};
assign S_AXI_RRESP = {C_NUM_SLAVE_SLOTS{si_rresp}};
assign S_AXI_RUSER = {C_NUM_SLAVE_SLOTS{si_ruser}};
assign S_AXI_RDATA = {C_NUM_SLAVE_SLOTS{si_rdata}};
assign S_AXI_RID = {C_NUM_SLAVE_SLOTS{mi_aid}};
// Broadcast B transfer payload to all SI-slots
assign S_AXI_BRESP = {C_NUM_SLAVE_SLOTS{si_bresp}};
assign S_AXI_BUSER = {C_NUM_SLAVE_SLOTS{si_buser}};
assign S_AXI_BID = {C_NUM_SLAVE_SLOTS{mi_aid}};
if (C_NUM_SLAVE_SLOTS>1) begin : gen_wmux
// SI WVALID mux.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_SLAVE_SLOTS),
.C_SEL_WIDTH (P_NUM_SLAVE_SLOTS_LOG),
.C_DATA_WIDTH (1)
) si_w_valid_mux_inst
(
.S (aa_grant_enc),
.A (S_AXI_WVALID),
.O (aa_wvalid),
.OE (w_transfer_en)
);
// SI W-channel payload mux
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_SLAVE_SLOTS),
.C_SEL_WIDTH (P_NUM_SLAVE_SLOTS_LOG),
.C_DATA_WIDTH (P_WMESG_WIDTH)
) si_w_payload_mux_inst
(
.S (aa_grant_enc),
.A (si_wmesg),
.O (mi_wmesg),
.OE (1'b1)
);
for (gen_si_slot=0; gen_si_slot<C_NUM_SLAVE_SLOTS; gen_si_slot=gen_si_slot+1) begin : gen_wmesg
assign si_wmesg[gen_si_slot*P_WMESG_WIDTH+:P_WMESG_WIDTH] = { // Concatenate from MSB to LSB
((C_AXI_PROTOCOL == P_AXI3) ? f_extend_ID(S_AXI_WID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH], gen_si_slot) : 1'b0),
S_AXI_WUSER[gen_si_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH],
S_AXI_WSTRB[gen_si_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8],
S_AXI_WDATA[gen_si_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH],
S_AXI_WLAST[gen_si_slot*1+:1]
};
end // gen_wmesg
assign mi_wlast = mi_wmesg[0];
assign mi_wdata = mi_wmesg[1 +: C_AXI_DATA_WIDTH];
assign mi_wstrb = mi_wmesg[1+C_AXI_DATA_WIDTH +: C_AXI_DATA_WIDTH/8];
assign mi_wuser = mi_wmesg[1+C_AXI_DATA_WIDTH+C_AXI_DATA_WIDTH/8 +: C_AXI_WUSER_WIDTH];
assign mi_wid = mi_wmesg[1+C_AXI_DATA_WIDTH+C_AXI_DATA_WIDTH/8+C_AXI_WUSER_WIDTH +: P_AXI_WID_WIDTH];
end else begin : gen_no_wmux
assign aa_wvalid = w_transfer_en & S_AXI_WVALID;
assign mi_wlast = S_AXI_WLAST;
assign mi_wdata = S_AXI_WDATA;
assign mi_wstrb = S_AXI_WSTRB;
assign mi_wuser = S_AXI_WUSER;
assign mi_wid = S_AXI_WID;
end // gen_wmux
// Receive RVALID from targeted MI.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (P_NUM_MASTER_SLOTS_DE),
.C_SEL_WIDTH (P_NUM_MASTER_SLOTS_DE_LOG),
.C_DATA_WIDTH (1)
) mi_rvalid_mux_inst
(
.S (m_atarget_enc),
.A (mi_rvalid),
.O (aa_rvalid),
.OE (r_transfer_en)
);
// MI R-channel payload mux
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (P_NUM_MASTER_SLOTS_DE),
.C_SEL_WIDTH (P_NUM_MASTER_SLOTS_DE_LOG),
.C_DATA_WIDTH (P_RMESG_WIDTH)
) mi_rmesg_mux_inst
(
.S (m_atarget_enc),
.A (mi_rmesg),
.O (aa_rmesg),
.OE (1'b1)
);
axi_register_slice_v2_1_axic_register_slice #
(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (P_RMESG_WIDTH),
.C_REG_CONFIG (P_R_REG_CONFIG)
)
reg_slice_r
(
// System Signals
.ACLK(ACLK),
.ARESET(reset),
// Slave side
.S_PAYLOAD_DATA(aa_rmesg),
.S_VALID(aa_rvalid),
.S_READY(aa_rready),
// Master side
.M_PAYLOAD_DATA(sr_rmesg),
.M_VALID(sr_rvalid),
.M_READY(sr_rready)
);
assign mi_rvalid[0+:C_NUM_MASTER_SLOTS] = M_AXI_RVALID;
assign mi_rlast[0+:C_NUM_MASTER_SLOTS] = M_AXI_RLAST;
assign mi_rresp[0+:C_NUM_MASTER_SLOTS*2] = M_AXI_RRESP;
assign mi_ruser[0+:C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH] = M_AXI_RUSER;
assign mi_rdata[0+:C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH] = M_AXI_RDATA;
assign M_AXI_RREADY = mi_rready[0+:C_NUM_MASTER_SLOTS];
for (gen_mi_slot=0; gen_mi_slot<P_NUM_MASTER_SLOTS_DE; gen_mi_slot=gen_mi_slot+1) begin : gen_rmesg
assign mi_rmesg[gen_mi_slot*P_RMESG_WIDTH+:P_RMESG_WIDTH] = { // Concatenate from MSB to LSB
mi_ruser[gen_mi_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH],
mi_rdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH],
mi_rresp[gen_mi_slot*2+:2],
mi_rlast[gen_mi_slot*1+:1]
};
end // gen_rmesg
assign si_rlast = sr_rmesg[0];
assign si_rresp = sr_rmesg[1 +: 2];
assign si_rdata = sr_rmesg[1+2 +: C_AXI_DATA_WIDTH];
assign si_ruser = sr_rmesg[1+2+C_AXI_DATA_WIDTH +: C_AXI_RUSER_WIDTH];
// Receive BVALID from targeted MI.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (P_NUM_MASTER_SLOTS_DE),
.C_SEL_WIDTH (P_NUM_MASTER_SLOTS_DE_LOG),
.C_DATA_WIDTH (1)
) mi_bvalid_mux_inst
(
.S (m_atarget_enc),
.A (mi_bvalid),
.O (aa_bvalid),
.OE (b_transfer_en)
);
// MI B-channel payload mux
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (P_NUM_MASTER_SLOTS_DE),
.C_SEL_WIDTH (P_NUM_MASTER_SLOTS_DE_LOG),
.C_DATA_WIDTH (P_BMESG_WIDTH)
) mi_bmesg_mux_inst
(
.S (m_atarget_enc),
.A (mi_bmesg),
.O (si_bmesg),
.OE (1'b1)
);
assign mi_bvalid[0+:C_NUM_MASTER_SLOTS] = M_AXI_BVALID;
assign mi_bresp[0+:C_NUM_MASTER_SLOTS*2] = M_AXI_BRESP;
assign mi_buser[0+:C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH] = M_AXI_BUSER;
assign M_AXI_BREADY = mi_bready[0+:C_NUM_MASTER_SLOTS];
for (gen_mi_slot=0; gen_mi_slot<P_NUM_MASTER_SLOTS_DE; gen_mi_slot=gen_mi_slot+1) begin : gen_bmesg
assign mi_bmesg[gen_mi_slot*P_BMESG_WIDTH+:P_BMESG_WIDTH] = { // Concatenate from MSB to LSB
mi_buser[gen_mi_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH],
mi_bresp[gen_mi_slot*2+:2]
};
end // gen_bmesg
assign si_bresp = si_bmesg[0 +: 2];
assign si_buser = si_bmesg[2 +: C_AXI_BUSER_WIDTH];
if (C_DEBUG) begin : gen_debug_trans_seq
// DEBUG WRITE TRANSACTION SEQUENCE COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_aw_trans_seq_i <= 1;
end else begin
if (aa_awvalid && aa_awready) begin
debug_aw_trans_seq_i <= debug_aw_trans_seq_i + 1;
end
end
end
// DEBUG READ TRANSACTION SEQUENCE COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_ar_trans_seq_i <= 1;
end else begin
if (aa_arvalid && aa_arready) begin
debug_ar_trans_seq_i <= debug_ar_trans_seq_i + 1;
end
end
end
// DEBUG WRITE BEAT COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_w_beat_cnt_i <= 0;
end else if (aa_wready & aa_wvalid) begin
if (mi_wlast) begin
debug_w_beat_cnt_i <= 0;
end else begin
debug_w_beat_cnt_i <= debug_w_beat_cnt_i + 1;
end
end
end // Clocked process
// DEBUG READ BEAT COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_r_beat_cnt_i <= 0;
end else if (sr_rready & sr_rvalid) begin
if (si_rlast) begin
debug_r_beat_cnt_i <= 0;
end else begin
debug_r_beat_cnt_i <= debug_r_beat_cnt_i + 1;
end
end
end // Clocked process
end // gen_debug_trans_seq
if (C_RANGE_CHECK) begin : gen_decerr
// Highest MI-slot (index C_NUM_MASTER_SLOTS) is the error handler
axi_crossbar_v2_1_decerr_slave #
(
.C_AXI_ID_WIDTH (1),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_AXI_PROTOCOL (C_AXI_PROTOCOL),
.C_RESP (P_DECERR)
)
decerr_slave_inst
(
.S_AXI_ACLK (ACLK),
.S_AXI_ARESET (reset),
.S_AXI_AWID (1'b0),
.S_AXI_AWVALID (mi_awvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_AWREADY (mi_awready[C_NUM_MASTER_SLOTS]),
.S_AXI_WLAST (mi_wlast),
.S_AXI_WVALID (mi_wvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_WREADY (mi_wready[C_NUM_MASTER_SLOTS]),
.S_AXI_BID (),
.S_AXI_BRESP (mi_bresp[C_NUM_MASTER_SLOTS*2+:2]),
.S_AXI_BUSER (mi_buser[C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH]),
.S_AXI_BVALID (mi_bvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_BREADY (mi_bready[C_NUM_MASTER_SLOTS]),
.S_AXI_ARID (1'b0),
.S_AXI_ARLEN (mi_alen),
.S_AXI_ARVALID (mi_arvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_ARREADY (mi_arready[C_NUM_MASTER_SLOTS]),
.S_AXI_RID (),
.S_AXI_RDATA (mi_rdata[C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH]),
.S_AXI_RRESP (mi_rresp[C_NUM_MASTER_SLOTS*2+:2]),
.S_AXI_RUSER (mi_ruser[C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH]),
.S_AXI_RLAST (mi_rlast[C_NUM_MASTER_SLOTS]),
.S_AXI_RVALID (mi_rvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_RREADY (mi_rready[C_NUM_MASTER_SLOTS])
);
end // gen_decerr
endgenerate
endmodule
`default_nettype wire
|
// -- (c) Copyright 2009 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// File name: crossbar_sasd.v
//
// Description:
// This module is a M-master to N-slave AXI axi_crossbar_v2_1_crossbar switch.
// Single transaction issuing, single arbiter (both W&R), single data pathways.
// The interface of this module consists of a vectored slave and master interface
// in which all slots are sized and synchronized to the native width and clock
// of the interconnect, and are all AXI4 protocol.
// All width, clock and protocol conversions are done outside this block, as are
// any pipeline registers or data FIFOs.
// This module contains all arbitration, decoders and channel multiplexing logic.
// It also contains the diagnostic registers and control interface.
//
//--------------------------------------------------------------------------
//
// Structure:
// crossbar_sasd
// addr_arbiter_sasd
// mux_enc
// addr_decoder
// comparator_static
// splitter
// mux_enc
// axic_register_slice
// decerr_slave
//
//-----------------------------------------------------------------------------
`timescale 1ps/1ps
`default_nettype none
(* DowngradeIPIdentifiedWarnings="yes" *)
module axi_crossbar_v2_1_crossbar_sasd #
(
parameter C_FAMILY = "none",
parameter integer C_NUM_SLAVE_SLOTS = 1,
parameter integer C_NUM_MASTER_SLOTS = 1,
parameter integer C_NUM_ADDR_RANGES = 1,
parameter integer C_AXI_ID_WIDTH = 1,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_PROTOCOL = 0,
parameter [C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64-1:0] C_M_AXI_BASE_ADDR = {C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64{1'b1}},
parameter [C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64-1:0] C_M_AXI_HIGH_ADDR = {C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64{1'b0}},
parameter [C_NUM_SLAVE_SLOTS*64-1:0] C_S_AXI_BASE_ID = {C_NUM_SLAVE_SLOTS*64{1'b0}},
parameter [C_NUM_SLAVE_SLOTS*64-1:0] C_S_AXI_HIGH_ID = {C_NUM_SLAVE_SLOTS*64{1'b0}},
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_AWUSER_WIDTH = 1,
parameter integer C_AXI_ARUSER_WIDTH = 1,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter [C_NUM_SLAVE_SLOTS-1:0] C_S_AXI_SUPPORTS_WRITE = {C_NUM_SLAVE_SLOTS{1'b1}},
parameter [C_NUM_SLAVE_SLOTS-1:0] C_S_AXI_SUPPORTS_READ = {C_NUM_SLAVE_SLOTS{1'b1}},
parameter [C_NUM_MASTER_SLOTS-1:0] C_M_AXI_SUPPORTS_WRITE = {C_NUM_MASTER_SLOTS{1'b1}},
parameter [C_NUM_MASTER_SLOTS-1:0] C_M_AXI_SUPPORTS_READ = {C_NUM_MASTER_SLOTS{1'b1}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_ARB_PRIORITY = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_SECURE = {C_NUM_MASTER_SLOTS{32'h00000000}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_ERR_MODE = {C_NUM_MASTER_SLOTS{32'h00000000}},
parameter integer C_R_REGISTER = 0,
parameter integer C_RANGE_CHECK = 0,
parameter integer C_ADDR_DECODE = 0,
parameter integer C_DEBUG = 1
)
(
// Global Signals
input wire ACLK,
input wire ARESETN,
// Slave Interface Write Address Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_AWID,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR,
input wire [C_NUM_SLAVE_SLOTS*8-1:0] S_AXI_AWLEN,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_AWSIZE,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_AWBURST,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_AWLOCK,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_AWCACHE,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_AWPROT,
// input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_AWREGION,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_AWQOS,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_AWVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_AWREADY,
// Slave Interface Write Data Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_WID,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_WLAST,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_WVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_WREADY,
// Slave Interface Write Response Ports
output wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_BID,
output wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_BRESP,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_BVALID,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_BREADY,
// Slave Interface Read Address Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_ARID,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR,
input wire [C_NUM_SLAVE_SLOTS*8-1:0] S_AXI_ARLEN,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_ARSIZE,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_ARBURST,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_ARLOCK,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_ARCACHE,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_ARPROT,
// input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_ARREGION,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_ARQOS,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_ARVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_ARREADY,
// Slave Interface Read Data Ports
output wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_RID,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA,
output wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_RRESP,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_RLAST,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_RVALID,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_RREADY,
// Master Interface Write Address Port
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_AWID,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR,
output wire [C_NUM_MASTER_SLOTS*8-1:0] M_AXI_AWLEN,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_AWSIZE,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_AWBURST,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_AWLOCK,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_AWCACHE,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_AWPROT,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_AWREGION,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_AWQOS,
output wire [C_NUM_MASTER_SLOTS*C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_AWVALID,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_AWREADY,
// Master Interface Write Data Ports
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_WID,
output wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA,
output wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_WLAST,
output wire [C_NUM_MASTER_SLOTS*C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_WVALID,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_WREADY,
// Master Interface Write Response Ports
input wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_BID, // Unused
input wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_BRESP,
input wire [C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_BVALID,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_BREADY,
// Master Interface Read Address Port
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_ARID,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR,
output wire [C_NUM_MASTER_SLOTS*8-1:0] M_AXI_ARLEN,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_ARSIZE,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_ARBURST,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_ARLOCK,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_ARCACHE,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_ARPROT,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_ARREGION,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_ARQOS,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_ARVALID,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_ARREADY,
// Master Interface Read Data Ports
input wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_RID, // Unused
input wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA,
input wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_RRESP,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_RLAST,
input wire [C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_RVALID,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_RREADY
);
localparam integer P_AXI4 = 0;
localparam integer P_AXI3 = 1;
localparam integer P_AXILITE = 2;
localparam integer P_NUM_MASTER_SLOTS_DE = C_RANGE_CHECK ? C_NUM_MASTER_SLOTS+1 : C_NUM_MASTER_SLOTS;
localparam integer P_NUM_MASTER_SLOTS_LOG = (C_NUM_MASTER_SLOTS>1) ? f_ceil_log2(C_NUM_MASTER_SLOTS) : 1;
localparam integer P_NUM_MASTER_SLOTS_DE_LOG = (P_NUM_MASTER_SLOTS_DE>1) ? f_ceil_log2(P_NUM_MASTER_SLOTS_DE) : 1;
localparam integer P_NUM_SLAVE_SLOTS_LOG = (C_NUM_SLAVE_SLOTS>1) ? f_ceil_log2(C_NUM_SLAVE_SLOTS) : 1;
localparam integer P_AXI_AUSER_WIDTH = (C_AXI_AWUSER_WIDTH > C_AXI_ARUSER_WIDTH) ? C_AXI_AWUSER_WIDTH : C_AXI_ARUSER_WIDTH;
localparam integer P_AXI_WID_WIDTH = (C_AXI_PROTOCOL == P_AXI3) ? C_AXI_ID_WIDTH : 1;
localparam integer P_AMESG_WIDTH = C_AXI_ID_WIDTH + C_AXI_ADDR_WIDTH + 8+3+2+3+2+4+4 + P_AXI_AUSER_WIDTH + 4;
localparam integer P_BMESG_WIDTH = 2 + C_AXI_BUSER_WIDTH;
localparam integer P_RMESG_WIDTH = 1+2 + C_AXI_DATA_WIDTH + C_AXI_RUSER_WIDTH;
localparam integer P_WMESG_WIDTH = 1 + C_AXI_DATA_WIDTH + C_AXI_DATA_WIDTH/8 + C_AXI_WUSER_WIDTH + P_AXI_WID_WIDTH;
localparam [31:0] P_AXILITE_ERRMODE = 32'h00000001;
localparam integer P_NONSECURE_BIT = 1;
localparam [C_NUM_MASTER_SLOTS-1:0] P_M_SECURE_MASK = f_bit32to1_mi(C_M_AXI_SECURE); // Mask of secure MI-slots
localparam [C_NUM_MASTER_SLOTS-1:0] P_M_AXILITE_MASK = f_m_axilite(0); // Mask of axilite rule-check MI-slots
localparam [1:0] P_FIXED = 2'b00;
localparam integer P_BYPASS = 0;
localparam integer P_LIGHTWT = 7;
localparam integer P_FULLY_REG = 1;
localparam integer P_R_REG_CONFIG = C_R_REGISTER == 8 ? // "Automatic" reg-slice
(C_RANGE_CHECK ? ((C_AXI_PROTOCOL == P_AXILITE) ? P_LIGHTWT : P_FULLY_REG) : P_BYPASS) : // Bypass if no R-channel mux
C_R_REGISTER;
localparam P_DECERR = 2'b11;
//---------------------------------------------------------------------------
// Functions
//---------------------------------------------------------------------------
// Ceiling of log2(x)
function integer f_ceil_log2
(
input integer x
);
integer acc;
begin
acc=0;
while ((2**acc) < x)
acc = acc + 1;
f_ceil_log2 = acc;
end
endfunction
// Isolate thread bits of input S_ID and add to BASE_ID (RNG00) to form MI-side ID value
// only for end-point SI-slots
function [C_AXI_ID_WIDTH-1:0] f_extend_ID
(
input [C_AXI_ID_WIDTH-1:0] s_id,
input integer slot
);
begin
f_extend_ID = C_S_AXI_BASE_ID[slot*64+:C_AXI_ID_WIDTH] | (s_id & (C_S_AXI_BASE_ID[slot*64+:C_AXI_ID_WIDTH] ^ C_S_AXI_HIGH_ID[slot*64+:C_AXI_ID_WIDTH]));
end
endfunction
// Convert Bit32 vector of range [0,1] to Bit1 vector on MI
function [C_NUM_MASTER_SLOTS-1:0] f_bit32to1_mi
(input [C_NUM_MASTER_SLOTS*32-1:0] vec32);
integer mi;
begin
for (mi=0; mi<C_NUM_MASTER_SLOTS; mi=mi+1) begin
f_bit32to1_mi[mi] = vec32[mi*32];
end
end
endfunction
// AxiLite error-checking mask (on MI)
function [C_NUM_MASTER_SLOTS-1:0] f_m_axilite
(
input integer null_arg
);
integer mi;
begin
for (mi=0; mi<C_NUM_MASTER_SLOTS; mi=mi+1) begin
f_m_axilite[mi] = (C_M_AXI_ERR_MODE[mi*32+:32] == P_AXILITE_ERRMODE);
end
end
endfunction
genvar gen_si_slot;
genvar gen_mi_slot;
wire [C_NUM_SLAVE_SLOTS*P_AMESG_WIDTH-1:0] si_awmesg ;
wire [C_NUM_SLAVE_SLOTS*P_AMESG_WIDTH-1:0] si_armesg ;
wire [P_AMESG_WIDTH-1:0] aa_amesg ;
wire [C_AXI_ID_WIDTH-1:0] mi_aid ;
wire [C_AXI_ADDR_WIDTH-1:0] mi_aaddr ;
wire [8-1:0] mi_alen ;
wire [3-1:0] mi_asize ;
wire [2-1:0] mi_alock ;
wire [3-1:0] mi_aprot ;
wire [2-1:0] mi_aburst ;
wire [4-1:0] mi_acache ;
wire [4-1:0] mi_aregion ;
wire [4-1:0] mi_aqos ;
wire [P_AXI_AUSER_WIDTH-1:0] mi_auser ;
wire [4-1:0] target_region ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] aa_grant_hot ;
wire [P_NUM_SLAVE_SLOTS_LOG-1:0] aa_grant_enc ;
wire aa_grant_rnw ;
wire aa_grant_any ;
wire [C_NUM_MASTER_SLOTS-1:0] target_mi_hot ;
wire [P_NUM_MASTER_SLOTS_LOG-1:0] target_mi_enc ;
reg [P_NUM_MASTER_SLOTS_DE-1:0] m_atarget_hot ;
reg [P_NUM_MASTER_SLOTS_DE_LOG-1:0] m_atarget_enc ;
wire [P_NUM_MASTER_SLOTS_DE_LOG-1:0] m_atarget_enc_comb ;
wire match;
wire any_error ;
wire [7:0] m_aerror_i ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_awvalid ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_awready ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_arvalid ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_arready ;
wire aa_awvalid ;
wire aa_awready ;
wire aa_arvalid ;
wire aa_arready ;
wire mi_awvalid_en;
wire mi_awready_mux;
wire mi_arvalid_en;
wire mi_arready_mux;
wire w_transfer_en;
wire w_complete_mux;
wire b_transfer_en;
wire b_complete_mux;
wire r_transfer_en;
wire r_complete_mux;
wire target_secure;
wire target_write;
wire target_read;
wire target_axilite;
wire [P_BMESG_WIDTH-1:0] si_bmesg ;
wire [P_NUM_MASTER_SLOTS_DE*P_BMESG_WIDTH-1:0] mi_bmesg ;
wire [P_NUM_MASTER_SLOTS_DE*2-1:0] mi_bresp ;
wire [P_NUM_MASTER_SLOTS_DE*C_AXI_BUSER_WIDTH-1:0] mi_buser ;
wire [2-1:0] si_bresp ;
wire [C_AXI_BUSER_WIDTH-1:0] si_buser ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_bvalid ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_bready ;
wire aa_bvalid ;
wire aa_bready ;
wire si_bready ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_bvalid;
wire [P_RMESG_WIDTH-1:0] aa_rmesg ;
wire [P_RMESG_WIDTH-1:0] sr_rmesg ;
wire [P_NUM_MASTER_SLOTS_DE*P_RMESG_WIDTH-1:0] mi_rmesg ;
wire [P_NUM_MASTER_SLOTS_DE*2-1:0] mi_rresp ;
wire [P_NUM_MASTER_SLOTS_DE*C_AXI_RUSER_WIDTH-1:0] mi_ruser ;
wire [P_NUM_MASTER_SLOTS_DE*C_AXI_DATA_WIDTH-1:0] mi_rdata ;
wire [P_NUM_MASTER_SLOTS_DE*1-1:0] mi_rlast ;
wire [2-1:0] si_rresp ;
wire [C_AXI_RUSER_WIDTH-1:0] si_ruser ;
wire [C_AXI_DATA_WIDTH-1:0] si_rdata ;
wire si_rlast ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_rvalid ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_rready ;
wire aa_rvalid ;
wire aa_rready ;
wire sr_rvalid ;
wire si_rready ;
wire sr_rready ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_rvalid;
wire [C_NUM_SLAVE_SLOTS*P_WMESG_WIDTH-1:0] si_wmesg ;
wire [P_WMESG_WIDTH-1:0] mi_wmesg ;
wire [C_AXI_ID_WIDTH-1:0] mi_wid ;
wire [C_AXI_DATA_WIDTH-1:0] mi_wdata ;
wire [C_AXI_DATA_WIDTH/8-1:0] mi_wstrb ;
wire [C_AXI_WUSER_WIDTH-1:0] mi_wuser ;
wire [1-1:0] mi_wlast ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_wvalid ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_wready ;
wire aa_wvalid ;
wire aa_wready ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_wready;
reg [7:0] debug_r_beat_cnt_i;
reg [7:0] debug_w_beat_cnt_i;
reg [7:0] debug_aw_trans_seq_i;
reg [7:0] debug_ar_trans_seq_i;
reg aresetn_d = 1'b0; // Reset delay register
always @(posedge ACLK) begin
if (~ARESETN) begin
aresetn_d <= 1'b0;
end else begin
aresetn_d <= ARESETN;
end
end
wire reset;
assign reset = ~aresetn_d;
generate
axi_crossbar_v2_1_addr_arbiter_sasd #
(
.C_FAMILY (C_FAMILY),
.C_NUM_S (C_NUM_SLAVE_SLOTS),
.C_NUM_S_LOG (P_NUM_SLAVE_SLOTS_LOG),
.C_AMESG_WIDTH (P_AMESG_WIDTH),
.C_GRANT_ENC (1),
.C_ARB_PRIORITY (C_S_AXI_ARB_PRIORITY)
)
addr_arbiter_inst
(
.ACLK (ACLK),
.ARESET (reset),
// Vector of SI-side AW command request inputs
.S_AWMESG (si_awmesg),
.S_ARMESG (si_armesg),
.S_AWVALID (S_AXI_AWVALID),
.S_AWREADY (S_AXI_AWREADY),
.S_ARVALID (S_AXI_ARVALID),
.S_ARREADY (S_AXI_ARREADY),
.M_GRANT_ENC (aa_grant_enc),
.M_GRANT_HOT (aa_grant_hot), // SI-slot 1-hot mask of granted command
.M_GRANT_ANY (aa_grant_any),
.M_GRANT_RNW (aa_grant_rnw),
.M_AMESG (aa_amesg), // Either S_AWMESG or S_ARMESG, as indicated by M_AWVALID and M_ARVALID.
.M_AWVALID (aa_awvalid),
.M_AWREADY (aa_awready),
.M_ARVALID (aa_arvalid),
.M_ARREADY (aa_arready)
);
if (C_ADDR_DECODE) begin : gen_addr_decoder
axi_crossbar_v2_1_addr_decoder #
(
.C_FAMILY (C_FAMILY),
.C_NUM_TARGETS (C_NUM_MASTER_SLOTS),
.C_NUM_TARGETS_LOG (P_NUM_MASTER_SLOTS_LOG),
.C_NUM_RANGES (C_NUM_ADDR_RANGES),
.C_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_TARGET_ENC (1),
.C_TARGET_HOT (1),
.C_REGION_ENC (1),
.C_BASE_ADDR (C_M_AXI_BASE_ADDR),
.C_HIGH_ADDR (C_M_AXI_HIGH_ADDR),
.C_TARGET_QUAL ({C_NUM_MASTER_SLOTS{1'b1}}),
.C_RESOLUTION (2)
)
addr_decoder_inst
(
.ADDR (mi_aaddr),
.TARGET_HOT (target_mi_hot),
.TARGET_ENC (target_mi_enc),
.MATCH (match),
.REGION (target_region)
);
end else begin : gen_no_addr_decoder
assign target_mi_hot = 1;
assign match = 1'b1;
assign target_region = 4'b0000;
end // gen_addr_decoder
// AW-channel arbiter command transfer completes upon completion of both M-side AW-channel transfer and B channel completion.
axi_crossbar_v2_1_splitter #
(
.C_NUM_M (3)
)
splitter_aw
(
.ACLK (ACLK),
.ARESET (reset),
.S_VALID (aa_awvalid),
.S_READY (aa_awready),
.M_VALID ({mi_awvalid_en, w_transfer_en, b_transfer_en}),
.M_READY ({mi_awready_mux, w_complete_mux, b_complete_mux})
);
// AR-channel arbiter command transfer completes upon completion of both M-side AR-channel transfer and R channel completion.
axi_crossbar_v2_1_splitter #
(
.C_NUM_M (2)
)
splitter_ar
(
.ACLK (ACLK),
.ARESET (reset),
.S_VALID (aa_arvalid),
.S_READY (aa_arready),
.M_VALID ({mi_arvalid_en, r_transfer_en}),
.M_READY ({mi_arready_mux, r_complete_mux})
);
assign target_secure = |(target_mi_hot & P_M_SECURE_MASK);
assign target_write = |(target_mi_hot & C_M_AXI_SUPPORTS_WRITE);
assign target_read = |(target_mi_hot & C_M_AXI_SUPPORTS_READ);
assign target_axilite = |(target_mi_hot & P_M_AXILITE_MASK);
assign any_error = C_RANGE_CHECK && (m_aerror_i != 0); // DECERR if error-detection enabled and any error condition.
assign m_aerror_i[0] = ~match; // Invalid target address
assign m_aerror_i[1] = target_secure && mi_aprot[P_NONSECURE_BIT]; // TrustZone violation
assign m_aerror_i[2] = target_axilite && ((mi_alen != 0) ||
(mi_asize[1:0] == 2'b11) || (mi_asize[2] == 1'b1)); // AxiLite access violation
assign m_aerror_i[3] = (~aa_grant_rnw && ~target_write) ||
(aa_grant_rnw && ~target_read); // R/W direction unsupported by target
assign m_aerror_i[7:4] = 4'b0000; // Reserved
assign m_atarget_enc_comb = any_error ? (P_NUM_MASTER_SLOTS_DE-1) : target_mi_enc; // Select MI slot or decerr_slave
always @(posedge ACLK) begin
if (reset) begin
m_atarget_hot <= 0;
m_atarget_enc <= 0;
end else begin
m_atarget_hot <= {P_NUM_MASTER_SLOTS_DE{aa_grant_any}} & (any_error ? {1'b1, {C_NUM_MASTER_SLOTS{1'b0}}} : {1'b0, target_mi_hot}); // Select MI slot or decerr_slave
m_atarget_enc <= m_atarget_enc_comb;
end
end
// Receive AWREADY from targeted MI.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (P_NUM_MASTER_SLOTS_DE),
.C_SEL_WIDTH (P_NUM_MASTER_SLOTS_DE_LOG),
.C_DATA_WIDTH (1)
) mi_awready_mux_inst
(
.S (m_atarget_enc),
.A (mi_awready),
.O (mi_awready_mux),
.OE (mi_awvalid_en)
);
// Receive ARREADY from targeted MI.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (P_NUM_MASTER_SLOTS_DE),
.C_SEL_WIDTH (P_NUM_MASTER_SLOTS_DE_LOG),
.C_DATA_WIDTH (1)
) mi_arready_mux_inst
(
.S (m_atarget_enc),
.A (mi_arready),
.O (mi_arready_mux),
.OE (mi_arvalid_en)
);
assign mi_awvalid = m_atarget_hot & {P_NUM_MASTER_SLOTS_DE{mi_awvalid_en}}; // Assert AWVALID on targeted MI.
assign mi_arvalid = m_atarget_hot & {P_NUM_MASTER_SLOTS_DE{mi_arvalid_en}}; // Assert ARVALID on targeted MI.
assign M_AXI_AWVALID = mi_awvalid[0+:C_NUM_MASTER_SLOTS]; // Propagate to MI slots.
assign M_AXI_ARVALID = mi_arvalid[0+:C_NUM_MASTER_SLOTS]; // Propagate to MI slots.
assign mi_awready[0+:C_NUM_MASTER_SLOTS] = M_AXI_AWREADY; // Copy from MI slots.
assign mi_arready[0+:C_NUM_MASTER_SLOTS] = M_AXI_ARREADY; // Copy from MI slots.
// Receive WREADY from targeted MI.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (P_NUM_MASTER_SLOTS_DE),
.C_SEL_WIDTH (P_NUM_MASTER_SLOTS_DE_LOG),
.C_DATA_WIDTH (1)
) mi_wready_mux_inst
(
.S (m_atarget_enc),
.A (mi_wready),
.O (aa_wready),
.OE (w_transfer_en)
);
assign mi_wvalid = m_atarget_hot & {P_NUM_MASTER_SLOTS_DE{aa_wvalid}}; // Assert WVALID on targeted MI.
assign si_wready = aa_grant_hot & {C_NUM_SLAVE_SLOTS{aa_wready}}; // Assert WREADY on granted SI.
assign S_AXI_WREADY = si_wready;
assign w_complete_mux = aa_wready & aa_wvalid & mi_wlast; // W burst complete on on designated SI/MI.
// Receive RREADY from granted SI.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_SLAVE_SLOTS),
.C_SEL_WIDTH (P_NUM_SLAVE_SLOTS_LOG),
.C_DATA_WIDTH (1)
) si_rready_mux_inst
(
.S (aa_grant_enc),
.A (S_AXI_RREADY),
.O (si_rready),
.OE (r_transfer_en)
);
assign sr_rready = si_rready & r_transfer_en;
assign mi_rready = m_atarget_hot & {P_NUM_MASTER_SLOTS_DE{aa_rready}}; // Assert RREADY on targeted MI.
assign si_rvalid = aa_grant_hot & {C_NUM_SLAVE_SLOTS{sr_rvalid}}; // Assert RVALID on granted SI.
assign S_AXI_RVALID = si_rvalid;
assign r_complete_mux = sr_rready & sr_rvalid & si_rlast; // R burst complete on on designated SI/MI.
// Receive BREADY from granted SI.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_SLAVE_SLOTS),
.C_SEL_WIDTH (P_NUM_SLAVE_SLOTS_LOG),
.C_DATA_WIDTH (1)
) si_bready_mux_inst
(
.S (aa_grant_enc),
.A (S_AXI_BREADY),
.O (si_bready),
.OE (b_transfer_en)
);
assign aa_bready = si_bready & b_transfer_en;
assign mi_bready = m_atarget_hot & {P_NUM_MASTER_SLOTS_DE{aa_bready}}; // Assert BREADY on targeted MI.
assign si_bvalid = aa_grant_hot & {C_NUM_SLAVE_SLOTS{aa_bvalid}}; // Assert BVALID on granted SI.
assign S_AXI_BVALID = si_bvalid;
assign b_complete_mux = aa_bready & aa_bvalid; // B transfer complete on on designated SI/MI.
for (gen_si_slot=0; gen_si_slot<C_NUM_SLAVE_SLOTS; gen_si_slot=gen_si_slot+1) begin : gen_si_amesg
assign si_armesg[gen_si_slot*P_AMESG_WIDTH +: P_AMESG_WIDTH] = { // Concatenate from MSB to LSB
4'b0000,
// S_AXI_ARREGION[gen_si_slot*4+:4],
S_AXI_ARUSER[gen_si_slot*C_AXI_ARUSER_WIDTH +: C_AXI_ARUSER_WIDTH],
S_AXI_ARQOS[gen_si_slot*4+:4],
S_AXI_ARCACHE[gen_si_slot*4+:4],
S_AXI_ARBURST[gen_si_slot*2+:2],
S_AXI_ARPROT[gen_si_slot*3+:3],
S_AXI_ARLOCK[gen_si_slot*2+:2],
S_AXI_ARSIZE[gen_si_slot*3+:3],
S_AXI_ARLEN[gen_si_slot*8+:8],
S_AXI_ARADDR[gen_si_slot*C_AXI_ADDR_WIDTH +: C_AXI_ADDR_WIDTH],
f_extend_ID(S_AXI_ARID[gen_si_slot*C_AXI_ID_WIDTH +: C_AXI_ID_WIDTH], gen_si_slot)
};
assign si_awmesg[gen_si_slot*P_AMESG_WIDTH +: P_AMESG_WIDTH] = { // Concatenate from MSB to LSB
4'b0000,
// S_AXI_AWREGION[gen_si_slot*4+:4],
S_AXI_AWUSER[gen_si_slot*C_AXI_AWUSER_WIDTH +: C_AXI_AWUSER_WIDTH],
S_AXI_AWQOS[gen_si_slot*4+:4],
S_AXI_AWCACHE[gen_si_slot*4+:4],
S_AXI_AWBURST[gen_si_slot*2+:2],
S_AXI_AWPROT[gen_si_slot*3+:3],
S_AXI_AWLOCK[gen_si_slot*2+:2],
S_AXI_AWSIZE[gen_si_slot*3+:3],
S_AXI_AWLEN[gen_si_slot*8+:8],
S_AXI_AWADDR[gen_si_slot*C_AXI_ADDR_WIDTH +: C_AXI_ADDR_WIDTH],
f_extend_ID(S_AXI_AWID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH], gen_si_slot)
};
end // gen_si_amesg
assign mi_aid = aa_amesg[0 +: C_AXI_ID_WIDTH];
assign mi_aaddr = aa_amesg[C_AXI_ID_WIDTH +: C_AXI_ADDR_WIDTH];
assign mi_alen = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH +: 8];
assign mi_asize = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8 +: 3];
assign mi_alock = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3 +: 2];
assign mi_aprot = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2 +: 3];
assign mi_aburst = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3 +: 2];
assign mi_acache = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+2 +: 4];
assign mi_aqos = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+2+4 +: 4];
assign mi_auser = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+2+4+4 +: P_AXI_AUSER_WIDTH];
assign mi_aregion = (C_ADDR_DECODE != 0) ? target_region : aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+2+4+4+P_AXI_AUSER_WIDTH +: 4];
// Broadcast AW transfer payload to all MI-slots
assign M_AXI_AWID = {C_NUM_MASTER_SLOTS{mi_aid}};
assign M_AXI_AWADDR = {C_NUM_MASTER_SLOTS{mi_aaddr}};
assign M_AXI_AWLEN = {C_NUM_MASTER_SLOTS{mi_alen }};
assign M_AXI_AWSIZE = {C_NUM_MASTER_SLOTS{mi_asize}};
assign M_AXI_AWLOCK = {C_NUM_MASTER_SLOTS{mi_alock}};
assign M_AXI_AWPROT = {C_NUM_MASTER_SLOTS{mi_aprot}};
assign M_AXI_AWREGION = {C_NUM_MASTER_SLOTS{mi_aregion}};
assign M_AXI_AWBURST = {C_NUM_MASTER_SLOTS{mi_aburst}};
assign M_AXI_AWCACHE = {C_NUM_MASTER_SLOTS{mi_acache}};
assign M_AXI_AWQOS = {C_NUM_MASTER_SLOTS{mi_aqos }};
assign M_AXI_AWUSER = {C_NUM_MASTER_SLOTS{mi_auser[0+:C_AXI_AWUSER_WIDTH] }};
// Broadcast AR transfer payload to all MI-slots
assign M_AXI_ARID = {C_NUM_MASTER_SLOTS{mi_aid}};
assign M_AXI_ARADDR = {C_NUM_MASTER_SLOTS{mi_aaddr}};
assign M_AXI_ARLEN = {C_NUM_MASTER_SLOTS{mi_alen }};
assign M_AXI_ARSIZE = {C_NUM_MASTER_SLOTS{mi_asize}};
assign M_AXI_ARLOCK = {C_NUM_MASTER_SLOTS{mi_alock}};
assign M_AXI_ARPROT = {C_NUM_MASTER_SLOTS{mi_aprot}};
assign M_AXI_ARREGION = {C_NUM_MASTER_SLOTS{mi_aregion}};
assign M_AXI_ARBURST = {C_NUM_MASTER_SLOTS{mi_aburst}};
assign M_AXI_ARCACHE = {C_NUM_MASTER_SLOTS{mi_acache}};
assign M_AXI_ARQOS = {C_NUM_MASTER_SLOTS{mi_aqos }};
assign M_AXI_ARUSER = {C_NUM_MASTER_SLOTS{mi_auser[0+:C_AXI_ARUSER_WIDTH] }};
// W-channel MI handshakes
assign M_AXI_WVALID = mi_wvalid[0+:C_NUM_MASTER_SLOTS];
assign mi_wready[0+:C_NUM_MASTER_SLOTS] = M_AXI_WREADY;
// Broadcast W transfer payload to all MI-slots
assign M_AXI_WLAST = {C_NUM_MASTER_SLOTS{mi_wlast}};
assign M_AXI_WUSER = {C_NUM_MASTER_SLOTS{mi_wuser}};
assign M_AXI_WDATA = {C_NUM_MASTER_SLOTS{mi_wdata}};
assign M_AXI_WSTRB = {C_NUM_MASTER_SLOTS{mi_wstrb}};
assign M_AXI_WID = {C_NUM_MASTER_SLOTS{mi_wid}};
// Broadcast R transfer payload to all SI-slots
assign S_AXI_RLAST = {C_NUM_SLAVE_SLOTS{si_rlast}};
assign S_AXI_RRESP = {C_NUM_SLAVE_SLOTS{si_rresp}};
assign S_AXI_RUSER = {C_NUM_SLAVE_SLOTS{si_ruser}};
assign S_AXI_RDATA = {C_NUM_SLAVE_SLOTS{si_rdata}};
assign S_AXI_RID = {C_NUM_SLAVE_SLOTS{mi_aid}};
// Broadcast B transfer payload to all SI-slots
assign S_AXI_BRESP = {C_NUM_SLAVE_SLOTS{si_bresp}};
assign S_AXI_BUSER = {C_NUM_SLAVE_SLOTS{si_buser}};
assign S_AXI_BID = {C_NUM_SLAVE_SLOTS{mi_aid}};
if (C_NUM_SLAVE_SLOTS>1) begin : gen_wmux
// SI WVALID mux.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_SLAVE_SLOTS),
.C_SEL_WIDTH (P_NUM_SLAVE_SLOTS_LOG),
.C_DATA_WIDTH (1)
) si_w_valid_mux_inst
(
.S (aa_grant_enc),
.A (S_AXI_WVALID),
.O (aa_wvalid),
.OE (w_transfer_en)
);
// SI W-channel payload mux
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_SLAVE_SLOTS),
.C_SEL_WIDTH (P_NUM_SLAVE_SLOTS_LOG),
.C_DATA_WIDTH (P_WMESG_WIDTH)
) si_w_payload_mux_inst
(
.S (aa_grant_enc),
.A (si_wmesg),
.O (mi_wmesg),
.OE (1'b1)
);
for (gen_si_slot=0; gen_si_slot<C_NUM_SLAVE_SLOTS; gen_si_slot=gen_si_slot+1) begin : gen_wmesg
assign si_wmesg[gen_si_slot*P_WMESG_WIDTH+:P_WMESG_WIDTH] = { // Concatenate from MSB to LSB
((C_AXI_PROTOCOL == P_AXI3) ? f_extend_ID(S_AXI_WID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH], gen_si_slot) : 1'b0),
S_AXI_WUSER[gen_si_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH],
S_AXI_WSTRB[gen_si_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8],
S_AXI_WDATA[gen_si_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH],
S_AXI_WLAST[gen_si_slot*1+:1]
};
end // gen_wmesg
assign mi_wlast = mi_wmesg[0];
assign mi_wdata = mi_wmesg[1 +: C_AXI_DATA_WIDTH];
assign mi_wstrb = mi_wmesg[1+C_AXI_DATA_WIDTH +: C_AXI_DATA_WIDTH/8];
assign mi_wuser = mi_wmesg[1+C_AXI_DATA_WIDTH+C_AXI_DATA_WIDTH/8 +: C_AXI_WUSER_WIDTH];
assign mi_wid = mi_wmesg[1+C_AXI_DATA_WIDTH+C_AXI_DATA_WIDTH/8+C_AXI_WUSER_WIDTH +: P_AXI_WID_WIDTH];
end else begin : gen_no_wmux
assign aa_wvalid = w_transfer_en & S_AXI_WVALID;
assign mi_wlast = S_AXI_WLAST;
assign mi_wdata = S_AXI_WDATA;
assign mi_wstrb = S_AXI_WSTRB;
assign mi_wuser = S_AXI_WUSER;
assign mi_wid = S_AXI_WID;
end // gen_wmux
// Receive RVALID from targeted MI.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (P_NUM_MASTER_SLOTS_DE),
.C_SEL_WIDTH (P_NUM_MASTER_SLOTS_DE_LOG),
.C_DATA_WIDTH (1)
) mi_rvalid_mux_inst
(
.S (m_atarget_enc),
.A (mi_rvalid),
.O (aa_rvalid),
.OE (r_transfer_en)
);
// MI R-channel payload mux
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (P_NUM_MASTER_SLOTS_DE),
.C_SEL_WIDTH (P_NUM_MASTER_SLOTS_DE_LOG),
.C_DATA_WIDTH (P_RMESG_WIDTH)
) mi_rmesg_mux_inst
(
.S (m_atarget_enc),
.A (mi_rmesg),
.O (aa_rmesg),
.OE (1'b1)
);
axi_register_slice_v2_1_axic_register_slice #
(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (P_RMESG_WIDTH),
.C_REG_CONFIG (P_R_REG_CONFIG)
)
reg_slice_r
(
// System Signals
.ACLK(ACLK),
.ARESET(reset),
// Slave side
.S_PAYLOAD_DATA(aa_rmesg),
.S_VALID(aa_rvalid),
.S_READY(aa_rready),
// Master side
.M_PAYLOAD_DATA(sr_rmesg),
.M_VALID(sr_rvalid),
.M_READY(sr_rready)
);
assign mi_rvalid[0+:C_NUM_MASTER_SLOTS] = M_AXI_RVALID;
assign mi_rlast[0+:C_NUM_MASTER_SLOTS] = M_AXI_RLAST;
assign mi_rresp[0+:C_NUM_MASTER_SLOTS*2] = M_AXI_RRESP;
assign mi_ruser[0+:C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH] = M_AXI_RUSER;
assign mi_rdata[0+:C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH] = M_AXI_RDATA;
assign M_AXI_RREADY = mi_rready[0+:C_NUM_MASTER_SLOTS];
for (gen_mi_slot=0; gen_mi_slot<P_NUM_MASTER_SLOTS_DE; gen_mi_slot=gen_mi_slot+1) begin : gen_rmesg
assign mi_rmesg[gen_mi_slot*P_RMESG_WIDTH+:P_RMESG_WIDTH] = { // Concatenate from MSB to LSB
mi_ruser[gen_mi_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH],
mi_rdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH],
mi_rresp[gen_mi_slot*2+:2],
mi_rlast[gen_mi_slot*1+:1]
};
end // gen_rmesg
assign si_rlast = sr_rmesg[0];
assign si_rresp = sr_rmesg[1 +: 2];
assign si_rdata = sr_rmesg[1+2 +: C_AXI_DATA_WIDTH];
assign si_ruser = sr_rmesg[1+2+C_AXI_DATA_WIDTH +: C_AXI_RUSER_WIDTH];
// Receive BVALID from targeted MI.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (P_NUM_MASTER_SLOTS_DE),
.C_SEL_WIDTH (P_NUM_MASTER_SLOTS_DE_LOG),
.C_DATA_WIDTH (1)
) mi_bvalid_mux_inst
(
.S (m_atarget_enc),
.A (mi_bvalid),
.O (aa_bvalid),
.OE (b_transfer_en)
);
// MI B-channel payload mux
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (P_NUM_MASTER_SLOTS_DE),
.C_SEL_WIDTH (P_NUM_MASTER_SLOTS_DE_LOG),
.C_DATA_WIDTH (P_BMESG_WIDTH)
) mi_bmesg_mux_inst
(
.S (m_atarget_enc),
.A (mi_bmesg),
.O (si_bmesg),
.OE (1'b1)
);
assign mi_bvalid[0+:C_NUM_MASTER_SLOTS] = M_AXI_BVALID;
assign mi_bresp[0+:C_NUM_MASTER_SLOTS*2] = M_AXI_BRESP;
assign mi_buser[0+:C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH] = M_AXI_BUSER;
assign M_AXI_BREADY = mi_bready[0+:C_NUM_MASTER_SLOTS];
for (gen_mi_slot=0; gen_mi_slot<P_NUM_MASTER_SLOTS_DE; gen_mi_slot=gen_mi_slot+1) begin : gen_bmesg
assign mi_bmesg[gen_mi_slot*P_BMESG_WIDTH+:P_BMESG_WIDTH] = { // Concatenate from MSB to LSB
mi_buser[gen_mi_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH],
mi_bresp[gen_mi_slot*2+:2]
};
end // gen_bmesg
assign si_bresp = si_bmesg[0 +: 2];
assign si_buser = si_bmesg[2 +: C_AXI_BUSER_WIDTH];
if (C_DEBUG) begin : gen_debug_trans_seq
// DEBUG WRITE TRANSACTION SEQUENCE COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_aw_trans_seq_i <= 1;
end else begin
if (aa_awvalid && aa_awready) begin
debug_aw_trans_seq_i <= debug_aw_trans_seq_i + 1;
end
end
end
// DEBUG READ TRANSACTION SEQUENCE COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_ar_trans_seq_i <= 1;
end else begin
if (aa_arvalid && aa_arready) begin
debug_ar_trans_seq_i <= debug_ar_trans_seq_i + 1;
end
end
end
// DEBUG WRITE BEAT COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_w_beat_cnt_i <= 0;
end else if (aa_wready & aa_wvalid) begin
if (mi_wlast) begin
debug_w_beat_cnt_i <= 0;
end else begin
debug_w_beat_cnt_i <= debug_w_beat_cnt_i + 1;
end
end
end // Clocked process
// DEBUG READ BEAT COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_r_beat_cnt_i <= 0;
end else if (sr_rready & sr_rvalid) begin
if (si_rlast) begin
debug_r_beat_cnt_i <= 0;
end else begin
debug_r_beat_cnt_i <= debug_r_beat_cnt_i + 1;
end
end
end // Clocked process
end // gen_debug_trans_seq
if (C_RANGE_CHECK) begin : gen_decerr
// Highest MI-slot (index C_NUM_MASTER_SLOTS) is the error handler
axi_crossbar_v2_1_decerr_slave #
(
.C_AXI_ID_WIDTH (1),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_AXI_PROTOCOL (C_AXI_PROTOCOL),
.C_RESP (P_DECERR)
)
decerr_slave_inst
(
.S_AXI_ACLK (ACLK),
.S_AXI_ARESET (reset),
.S_AXI_AWID (1'b0),
.S_AXI_AWVALID (mi_awvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_AWREADY (mi_awready[C_NUM_MASTER_SLOTS]),
.S_AXI_WLAST (mi_wlast),
.S_AXI_WVALID (mi_wvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_WREADY (mi_wready[C_NUM_MASTER_SLOTS]),
.S_AXI_BID (),
.S_AXI_BRESP (mi_bresp[C_NUM_MASTER_SLOTS*2+:2]),
.S_AXI_BUSER (mi_buser[C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH]),
.S_AXI_BVALID (mi_bvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_BREADY (mi_bready[C_NUM_MASTER_SLOTS]),
.S_AXI_ARID (1'b0),
.S_AXI_ARLEN (mi_alen),
.S_AXI_ARVALID (mi_arvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_ARREADY (mi_arready[C_NUM_MASTER_SLOTS]),
.S_AXI_RID (),
.S_AXI_RDATA (mi_rdata[C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH]),
.S_AXI_RRESP (mi_rresp[C_NUM_MASTER_SLOTS*2+:2]),
.S_AXI_RUSER (mi_ruser[C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH]),
.S_AXI_RLAST (mi_rlast[C_NUM_MASTER_SLOTS]),
.S_AXI_RVALID (mi_rvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_RREADY (mi_rready[C_NUM_MASTER_SLOTS])
);
end // gen_decerr
endgenerate
endmodule
`default_nettype wire
|
/*
Copyright (c) 2014-2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog-2001
`resetall
`timescale 1 ns / 1 ps
`default_nettype none
/*
* Synchronizes switch and button inputs with a slow sampled shift register
*/
module debounce_switch #(
parameter WIDTH=1, // width of the input and output signals
parameter N=3, // length of shift register
parameter RATE=125000 // clock division factor
)(
input wire clk,
input wire rst,
input wire [WIDTH-1:0] in,
output wire [WIDTH-1:0] out
);
reg [23:0] cnt_reg = 24'd0;
reg [N-1:0] debounce_reg[WIDTH-1:0];
reg [WIDTH-1:0] state;
/*
* The synchronized output is the state register
*/
assign out = state;
integer k;
always @(posedge clk or posedge rst) begin
if (rst) begin
cnt_reg <= 0;
state <= 0;
for (k = 0; k < WIDTH; k = k + 1) begin
debounce_reg[k] <= 0;
end
end else begin
if (cnt_reg < RATE) begin
cnt_reg <= cnt_reg + 24'd1;
end else begin
cnt_reg <= 24'd0;
end
if (cnt_reg == 24'd0) begin
for (k = 0; k < WIDTH; k = k + 1) begin
debounce_reg[k] <= {debounce_reg[k][N-2:0], in[k]};
end
end
for (k = 0; k < WIDTH; k = k + 1) begin
if (|debounce_reg[k] == 0) begin
state[k] <= 0;
end else if (&debounce_reg[k] == 1) begin
state[k] <= 1;
end else begin
state[k] <= state[k];
end
end
end
end
endmodule
`resetall
|
/*
Copyright (c) 2014-2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog-2001
`resetall
`timescale 1 ns / 1 ps
`default_nettype none
/*
* Synchronizes switch and button inputs with a slow sampled shift register
*/
module debounce_switch #(
parameter WIDTH=1, // width of the input and output signals
parameter N=3, // length of shift register
parameter RATE=125000 // clock division factor
)(
input wire clk,
input wire rst,
input wire [WIDTH-1:0] in,
output wire [WIDTH-1:0] out
);
reg [23:0] cnt_reg = 24'd0;
reg [N-1:0] debounce_reg[WIDTH-1:0];
reg [WIDTH-1:0] state;
/*
* The synchronized output is the state register
*/
assign out = state;
integer k;
always @(posedge clk or posedge rst) begin
if (rst) begin
cnt_reg <= 0;
state <= 0;
for (k = 0; k < WIDTH; k = k + 1) begin
debounce_reg[k] <= 0;
end
end else begin
if (cnt_reg < RATE) begin
cnt_reg <= cnt_reg + 24'd1;
end else begin
cnt_reg <= 24'd0;
end
if (cnt_reg == 24'd0) begin
for (k = 0; k < WIDTH; k = k + 1) begin
debounce_reg[k] <= {debounce_reg[k][N-2:0], in[k]};
end
end
for (k = 0; k < WIDTH; k = k + 1) begin
if (|debounce_reg[k] == 0) begin
state[k] <= 0;
end else if (&debounce_reg[k] == 1) begin
state[k] <= 1;
end else begin
state[k] <= state[k];
end
end
end
end
endmodule
`resetall
|
/*
Copyright (c) 2014-2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog-2001
`resetall
`timescale 1 ns / 1 ps
`default_nettype none
/*
* Synchronizes switch and button inputs with a slow sampled shift register
*/
module debounce_switch #(
parameter WIDTH=1, // width of the input and output signals
parameter N=3, // length of shift register
parameter RATE=125000 // clock division factor
)(
input wire clk,
input wire rst,
input wire [WIDTH-1:0] in,
output wire [WIDTH-1:0] out
);
reg [23:0] cnt_reg = 24'd0;
reg [N-1:0] debounce_reg[WIDTH-1:0];
reg [WIDTH-1:0] state;
/*
* The synchronized output is the state register
*/
assign out = state;
integer k;
always @(posedge clk or posedge rst) begin
if (rst) begin
cnt_reg <= 0;
state <= 0;
for (k = 0; k < WIDTH; k = k + 1) begin
debounce_reg[k] <= 0;
end
end else begin
if (cnt_reg < RATE) begin
cnt_reg <= cnt_reg + 24'd1;
end else begin
cnt_reg <= 24'd0;
end
if (cnt_reg == 24'd0) begin
for (k = 0; k < WIDTH; k = k + 1) begin
debounce_reg[k] <= {debounce_reg[k][N-2:0], in[k]};
end
end
for (k = 0; k < WIDTH; k = k + 1) begin
if (|debounce_reg[k] == 0) begin
state[k] <= 0;
end else if (&debounce_reg[k] == 1) begin
state[k] <= 1;
end else begin
state[k] <= state[k];
end
end
end
end
endmodule
`resetall
|
/*
Copyright (c) 2014-2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog-2001
`resetall
`timescale 1 ns / 1 ps
`default_nettype none
/*
* Synchronizes switch and button inputs with a slow sampled shift register
*/
module debounce_switch #(
parameter WIDTH=1, // width of the input and output signals
parameter N=3, // length of shift register
parameter RATE=125000 // clock division factor
)(
input wire clk,
input wire rst,
input wire [WIDTH-1:0] in,
output wire [WIDTH-1:0] out
);
reg [23:0] cnt_reg = 24'd0;
reg [N-1:0] debounce_reg[WIDTH-1:0];
reg [WIDTH-1:0] state;
/*
* The synchronized output is the state register
*/
assign out = state;
integer k;
always @(posedge clk or posedge rst) begin
if (rst) begin
cnt_reg <= 0;
state <= 0;
for (k = 0; k < WIDTH; k = k + 1) begin
debounce_reg[k] <= 0;
end
end else begin
if (cnt_reg < RATE) begin
cnt_reg <= cnt_reg + 24'd1;
end else begin
cnt_reg <= 24'd0;
end
if (cnt_reg == 24'd0) begin
for (k = 0; k < WIDTH; k = k + 1) begin
debounce_reg[k] <= {debounce_reg[k][N-2:0], in[k]};
end
end
for (k = 0; k < WIDTH; k = k + 1) begin
if (|debounce_reg[k] == 0) begin
state[k] <= 0;
end else if (&debounce_reg[k] == 1) begin
state[k] <= 1;
end else begin
state[k] <= state[k];
end
end
end
end
endmodule
`resetall
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_arb_hp2_3.v
*
* Date : 2012-11
*
* Description : Module that arbitrates between RD/WR requests from 2 ports.
* Used for modelling the Top_Interconnect switch.
*****************************************************************************/
`timescale 1ns/1ps
module processing_system7_bfm_v2_0_5_arb_hp2_3(
sw_clk,
rstn,
w_qos_hp2,
r_qos_hp2,
w_qos_hp3,
r_qos_hp3,
wr_ack_ddr_hp2,
wr_data_hp2,
wr_addr_hp2,
wr_bytes_hp2,
wr_dv_ddr_hp2,
rd_req_ddr_hp2,
rd_addr_hp2,
rd_bytes_hp2,
rd_data_ddr_hp2,
rd_dv_ddr_hp2,
wr_ack_ddr_hp3,
wr_data_hp3,
wr_addr_hp3,
wr_bytes_hp3,
wr_dv_ddr_hp3,
rd_req_ddr_hp3,
rd_addr_hp3,
rd_bytes_hp3,
rd_data_ddr_hp3,
rd_dv_ddr_hp3,
ddr_wr_ack,
ddr_wr_dv,
ddr_rd_req,
ddr_rd_dv,
ddr_rd_qos,
ddr_wr_qos,
ddr_wr_addr,
ddr_wr_data,
ddr_wr_bytes,
ddr_rd_addr,
ddr_rd_data,
ddr_rd_bytes
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input sw_clk;
input rstn;
input [axi_qos_width-1:0] w_qos_hp2;
input [axi_qos_width-1:0] r_qos_hp2;
input [axi_qos_width-1:0] w_qos_hp3;
input [axi_qos_width-1:0] r_qos_hp3;
input [axi_qos_width-1:0] ddr_rd_qos;
input [axi_qos_width-1:0] ddr_wr_qos;
output wr_ack_ddr_hp2;
input [max_burst_bits-1:0] wr_data_hp2;
input [addr_width-1:0] wr_addr_hp2;
input [max_burst_bytes_width:0] wr_bytes_hp2;
output wr_dv_ddr_hp2;
input rd_req_ddr_hp2;
input [addr_width-1:0] rd_addr_hp2;
input [max_burst_bytes_width:0] rd_bytes_hp2;
output [max_burst_bits-1:0] rd_data_ddr_hp2;
output rd_dv_ddr_hp2;
output wr_ack_ddr_hp3;
input [max_burst_bits-1:0] wr_data_hp3;
input [addr_width-1:0] wr_addr_hp3;
input [max_burst_bytes_width:0] wr_bytes_hp3;
output wr_dv_ddr_hp3;
input rd_req_ddr_hp3;
input [addr_width-1:0] rd_addr_hp3;
input [max_burst_bytes_width:0] rd_bytes_hp3;
output [max_burst_bits-1:0] rd_data_ddr_hp3;
output rd_dv_ddr_hp3;
input ddr_wr_ack;
output ddr_wr_dv;
output [addr_width-1:0]ddr_wr_addr;
output [max_burst_bits-1:0]ddr_wr_data;
output [max_burst_bytes_width:0]ddr_wr_bytes;
input ddr_rd_dv;
input [max_burst_bits-1:0] ddr_rd_data;
output ddr_rd_req;
output [addr_width-1:0] ddr_rd_addr;
output [max_burst_bytes_width:0] ddr_rd_bytes;
processing_system7_bfm_v2_0_5_arb_wr ddr_hp_wr(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(w_qos_hp2),
.qos2(w_qos_hp3),
.prt_dv1(wr_dv_ddr_hp2),
.prt_dv2(wr_dv_ddr_hp3),
.prt_data1(wr_data_hp2),
.prt_data2(wr_data_hp3),
.prt_addr1(wr_addr_hp2),
.prt_addr2(wr_addr_hp3),
.prt_bytes1(wr_bytes_hp2),
.prt_bytes2(wr_bytes_hp3),
.prt_ack1(wr_ack_ddr_hp2),
.prt_ack2(wr_ack_ddr_hp3),
.prt_req(ddr_wr_dv),
.prt_qos(ddr_wr_qos),
.prt_data(ddr_wr_data),
.prt_addr(ddr_wr_addr),
.prt_bytes(ddr_wr_bytes),
.prt_ack(ddr_wr_ack)
);
processing_system7_bfm_v2_0_5_arb_rd ddr_hp_rd(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(r_qos_hp2),
.qos2(r_qos_hp3),
.prt_req1(rd_req_ddr_hp2),
.prt_req2(rd_req_ddr_hp3),
.prt_data1(rd_data_ddr_hp2),
.prt_data2(rd_data_ddr_hp3),
.prt_addr1(rd_addr_hp2),
.prt_addr2(rd_addr_hp3),
.prt_bytes1(rd_bytes_hp2),
.prt_bytes2(rd_bytes_hp3),
.prt_dv1(rd_dv_ddr_hp2),
.prt_dv2(rd_dv_ddr_hp3),
.prt_req(ddr_rd_req),
.prt_qos(ddr_rd_qos),
.prt_data(ddr_rd_data),
.prt_addr(ddr_rd_addr),
.prt_bytes(ddr_rd_bytes),
.prt_dv(ddr_rd_dv)
);
endmodule
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_arb_hp2_3.v
*
* Date : 2012-11
*
* Description : Module that arbitrates between RD/WR requests from 2 ports.
* Used for modelling the Top_Interconnect switch.
*****************************************************************************/
`timescale 1ns/1ps
module processing_system7_bfm_v2_0_5_arb_hp2_3(
sw_clk,
rstn,
w_qos_hp2,
r_qos_hp2,
w_qos_hp3,
r_qos_hp3,
wr_ack_ddr_hp2,
wr_data_hp2,
wr_addr_hp2,
wr_bytes_hp2,
wr_dv_ddr_hp2,
rd_req_ddr_hp2,
rd_addr_hp2,
rd_bytes_hp2,
rd_data_ddr_hp2,
rd_dv_ddr_hp2,
wr_ack_ddr_hp3,
wr_data_hp3,
wr_addr_hp3,
wr_bytes_hp3,
wr_dv_ddr_hp3,
rd_req_ddr_hp3,
rd_addr_hp3,
rd_bytes_hp3,
rd_data_ddr_hp3,
rd_dv_ddr_hp3,
ddr_wr_ack,
ddr_wr_dv,
ddr_rd_req,
ddr_rd_dv,
ddr_rd_qos,
ddr_wr_qos,
ddr_wr_addr,
ddr_wr_data,
ddr_wr_bytes,
ddr_rd_addr,
ddr_rd_data,
ddr_rd_bytes
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input sw_clk;
input rstn;
input [axi_qos_width-1:0] w_qos_hp2;
input [axi_qos_width-1:0] r_qos_hp2;
input [axi_qos_width-1:0] w_qos_hp3;
input [axi_qos_width-1:0] r_qos_hp3;
input [axi_qos_width-1:0] ddr_rd_qos;
input [axi_qos_width-1:0] ddr_wr_qos;
output wr_ack_ddr_hp2;
input [max_burst_bits-1:0] wr_data_hp2;
input [addr_width-1:0] wr_addr_hp2;
input [max_burst_bytes_width:0] wr_bytes_hp2;
output wr_dv_ddr_hp2;
input rd_req_ddr_hp2;
input [addr_width-1:0] rd_addr_hp2;
input [max_burst_bytes_width:0] rd_bytes_hp2;
output [max_burst_bits-1:0] rd_data_ddr_hp2;
output rd_dv_ddr_hp2;
output wr_ack_ddr_hp3;
input [max_burst_bits-1:0] wr_data_hp3;
input [addr_width-1:0] wr_addr_hp3;
input [max_burst_bytes_width:0] wr_bytes_hp3;
output wr_dv_ddr_hp3;
input rd_req_ddr_hp3;
input [addr_width-1:0] rd_addr_hp3;
input [max_burst_bytes_width:0] rd_bytes_hp3;
output [max_burst_bits-1:0] rd_data_ddr_hp3;
output rd_dv_ddr_hp3;
input ddr_wr_ack;
output ddr_wr_dv;
output [addr_width-1:0]ddr_wr_addr;
output [max_burst_bits-1:0]ddr_wr_data;
output [max_burst_bytes_width:0]ddr_wr_bytes;
input ddr_rd_dv;
input [max_burst_bits-1:0] ddr_rd_data;
output ddr_rd_req;
output [addr_width-1:0] ddr_rd_addr;
output [max_burst_bytes_width:0] ddr_rd_bytes;
processing_system7_bfm_v2_0_5_arb_wr ddr_hp_wr(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(w_qos_hp2),
.qos2(w_qos_hp3),
.prt_dv1(wr_dv_ddr_hp2),
.prt_dv2(wr_dv_ddr_hp3),
.prt_data1(wr_data_hp2),
.prt_data2(wr_data_hp3),
.prt_addr1(wr_addr_hp2),
.prt_addr2(wr_addr_hp3),
.prt_bytes1(wr_bytes_hp2),
.prt_bytes2(wr_bytes_hp3),
.prt_ack1(wr_ack_ddr_hp2),
.prt_ack2(wr_ack_ddr_hp3),
.prt_req(ddr_wr_dv),
.prt_qos(ddr_wr_qos),
.prt_data(ddr_wr_data),
.prt_addr(ddr_wr_addr),
.prt_bytes(ddr_wr_bytes),
.prt_ack(ddr_wr_ack)
);
processing_system7_bfm_v2_0_5_arb_rd ddr_hp_rd(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(r_qos_hp2),
.qos2(r_qos_hp3),
.prt_req1(rd_req_ddr_hp2),
.prt_req2(rd_req_ddr_hp3),
.prt_data1(rd_data_ddr_hp2),
.prt_data2(rd_data_ddr_hp3),
.prt_addr1(rd_addr_hp2),
.prt_addr2(rd_addr_hp3),
.prt_bytes1(rd_bytes_hp2),
.prt_bytes2(rd_bytes_hp3),
.prt_dv1(rd_dv_ddr_hp2),
.prt_dv2(rd_dv_ddr_hp3),
.prt_req(ddr_rd_req),
.prt_qos(ddr_rd_qos),
.prt_data(ddr_rd_data),
.prt_addr(ddr_rd_addr),
.prt_bytes(ddr_rd_bytes),
.prt_dv(ddr_rd_dv)
);
endmodule
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_arb_hp2_3.v
*
* Date : 2012-11
*
* Description : Module that arbitrates between RD/WR requests from 2 ports.
* Used for modelling the Top_Interconnect switch.
*****************************************************************************/
`timescale 1ns/1ps
module processing_system7_bfm_v2_0_5_arb_hp2_3(
sw_clk,
rstn,
w_qos_hp2,
r_qos_hp2,
w_qos_hp3,
r_qos_hp3,
wr_ack_ddr_hp2,
wr_data_hp2,
wr_addr_hp2,
wr_bytes_hp2,
wr_dv_ddr_hp2,
rd_req_ddr_hp2,
rd_addr_hp2,
rd_bytes_hp2,
rd_data_ddr_hp2,
rd_dv_ddr_hp2,
wr_ack_ddr_hp3,
wr_data_hp3,
wr_addr_hp3,
wr_bytes_hp3,
wr_dv_ddr_hp3,
rd_req_ddr_hp3,
rd_addr_hp3,
rd_bytes_hp3,
rd_data_ddr_hp3,
rd_dv_ddr_hp3,
ddr_wr_ack,
ddr_wr_dv,
ddr_rd_req,
ddr_rd_dv,
ddr_rd_qos,
ddr_wr_qos,
ddr_wr_addr,
ddr_wr_data,
ddr_wr_bytes,
ddr_rd_addr,
ddr_rd_data,
ddr_rd_bytes
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input sw_clk;
input rstn;
input [axi_qos_width-1:0] w_qos_hp2;
input [axi_qos_width-1:0] r_qos_hp2;
input [axi_qos_width-1:0] w_qos_hp3;
input [axi_qos_width-1:0] r_qos_hp3;
input [axi_qos_width-1:0] ddr_rd_qos;
input [axi_qos_width-1:0] ddr_wr_qos;
output wr_ack_ddr_hp2;
input [max_burst_bits-1:0] wr_data_hp2;
input [addr_width-1:0] wr_addr_hp2;
input [max_burst_bytes_width:0] wr_bytes_hp2;
output wr_dv_ddr_hp2;
input rd_req_ddr_hp2;
input [addr_width-1:0] rd_addr_hp2;
input [max_burst_bytes_width:0] rd_bytes_hp2;
output [max_burst_bits-1:0] rd_data_ddr_hp2;
output rd_dv_ddr_hp2;
output wr_ack_ddr_hp3;
input [max_burst_bits-1:0] wr_data_hp3;
input [addr_width-1:0] wr_addr_hp3;
input [max_burst_bytes_width:0] wr_bytes_hp3;
output wr_dv_ddr_hp3;
input rd_req_ddr_hp3;
input [addr_width-1:0] rd_addr_hp3;
input [max_burst_bytes_width:0] rd_bytes_hp3;
output [max_burst_bits-1:0] rd_data_ddr_hp3;
output rd_dv_ddr_hp3;
input ddr_wr_ack;
output ddr_wr_dv;
output [addr_width-1:0]ddr_wr_addr;
output [max_burst_bits-1:0]ddr_wr_data;
output [max_burst_bytes_width:0]ddr_wr_bytes;
input ddr_rd_dv;
input [max_burst_bits-1:0] ddr_rd_data;
output ddr_rd_req;
output [addr_width-1:0] ddr_rd_addr;
output [max_burst_bytes_width:0] ddr_rd_bytes;
processing_system7_bfm_v2_0_5_arb_wr ddr_hp_wr(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(w_qos_hp2),
.qos2(w_qos_hp3),
.prt_dv1(wr_dv_ddr_hp2),
.prt_dv2(wr_dv_ddr_hp3),
.prt_data1(wr_data_hp2),
.prt_data2(wr_data_hp3),
.prt_addr1(wr_addr_hp2),
.prt_addr2(wr_addr_hp3),
.prt_bytes1(wr_bytes_hp2),
.prt_bytes2(wr_bytes_hp3),
.prt_ack1(wr_ack_ddr_hp2),
.prt_ack2(wr_ack_ddr_hp3),
.prt_req(ddr_wr_dv),
.prt_qos(ddr_wr_qos),
.prt_data(ddr_wr_data),
.prt_addr(ddr_wr_addr),
.prt_bytes(ddr_wr_bytes),
.prt_ack(ddr_wr_ack)
);
processing_system7_bfm_v2_0_5_arb_rd ddr_hp_rd(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(r_qos_hp2),
.qos2(r_qos_hp3),
.prt_req1(rd_req_ddr_hp2),
.prt_req2(rd_req_ddr_hp3),
.prt_data1(rd_data_ddr_hp2),
.prt_data2(rd_data_ddr_hp3),
.prt_addr1(rd_addr_hp2),
.prt_addr2(rd_addr_hp3),
.prt_bytes1(rd_bytes_hp2),
.prt_bytes2(rd_bytes_hp3),
.prt_dv1(rd_dv_ddr_hp2),
.prt_dv2(rd_dv_ddr_hp3),
.prt_req(ddr_rd_req),
.prt_qos(ddr_rd_qos),
.prt_data(ddr_rd_data),
.prt_addr(ddr_rd_addr),
.prt_bytes(ddr_rd_bytes),
.prt_dv(ddr_rd_dv)
);
endmodule
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_arb_hp2_3.v
*
* Date : 2012-11
*
* Description : Module that arbitrates between RD/WR requests from 2 ports.
* Used for modelling the Top_Interconnect switch.
*****************************************************************************/
`timescale 1ns/1ps
module processing_system7_bfm_v2_0_5_arb_hp2_3(
sw_clk,
rstn,
w_qos_hp2,
r_qos_hp2,
w_qos_hp3,
r_qos_hp3,
wr_ack_ddr_hp2,
wr_data_hp2,
wr_addr_hp2,
wr_bytes_hp2,
wr_dv_ddr_hp2,
rd_req_ddr_hp2,
rd_addr_hp2,
rd_bytes_hp2,
rd_data_ddr_hp2,
rd_dv_ddr_hp2,
wr_ack_ddr_hp3,
wr_data_hp3,
wr_addr_hp3,
wr_bytes_hp3,
wr_dv_ddr_hp3,
rd_req_ddr_hp3,
rd_addr_hp3,
rd_bytes_hp3,
rd_data_ddr_hp3,
rd_dv_ddr_hp3,
ddr_wr_ack,
ddr_wr_dv,
ddr_rd_req,
ddr_rd_dv,
ddr_rd_qos,
ddr_wr_qos,
ddr_wr_addr,
ddr_wr_data,
ddr_wr_bytes,
ddr_rd_addr,
ddr_rd_data,
ddr_rd_bytes
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input sw_clk;
input rstn;
input [axi_qos_width-1:0] w_qos_hp2;
input [axi_qos_width-1:0] r_qos_hp2;
input [axi_qos_width-1:0] w_qos_hp3;
input [axi_qos_width-1:0] r_qos_hp3;
input [axi_qos_width-1:0] ddr_rd_qos;
input [axi_qos_width-1:0] ddr_wr_qos;
output wr_ack_ddr_hp2;
input [max_burst_bits-1:0] wr_data_hp2;
input [addr_width-1:0] wr_addr_hp2;
input [max_burst_bytes_width:0] wr_bytes_hp2;
output wr_dv_ddr_hp2;
input rd_req_ddr_hp2;
input [addr_width-1:0] rd_addr_hp2;
input [max_burst_bytes_width:0] rd_bytes_hp2;
output [max_burst_bits-1:0] rd_data_ddr_hp2;
output rd_dv_ddr_hp2;
output wr_ack_ddr_hp3;
input [max_burst_bits-1:0] wr_data_hp3;
input [addr_width-1:0] wr_addr_hp3;
input [max_burst_bytes_width:0] wr_bytes_hp3;
output wr_dv_ddr_hp3;
input rd_req_ddr_hp3;
input [addr_width-1:0] rd_addr_hp3;
input [max_burst_bytes_width:0] rd_bytes_hp3;
output [max_burst_bits-1:0] rd_data_ddr_hp3;
output rd_dv_ddr_hp3;
input ddr_wr_ack;
output ddr_wr_dv;
output [addr_width-1:0]ddr_wr_addr;
output [max_burst_bits-1:0]ddr_wr_data;
output [max_burst_bytes_width:0]ddr_wr_bytes;
input ddr_rd_dv;
input [max_burst_bits-1:0] ddr_rd_data;
output ddr_rd_req;
output [addr_width-1:0] ddr_rd_addr;
output [max_burst_bytes_width:0] ddr_rd_bytes;
processing_system7_bfm_v2_0_5_arb_wr ddr_hp_wr(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(w_qos_hp2),
.qos2(w_qos_hp3),
.prt_dv1(wr_dv_ddr_hp2),
.prt_dv2(wr_dv_ddr_hp3),
.prt_data1(wr_data_hp2),
.prt_data2(wr_data_hp3),
.prt_addr1(wr_addr_hp2),
.prt_addr2(wr_addr_hp3),
.prt_bytes1(wr_bytes_hp2),
.prt_bytes2(wr_bytes_hp3),
.prt_ack1(wr_ack_ddr_hp2),
.prt_ack2(wr_ack_ddr_hp3),
.prt_req(ddr_wr_dv),
.prt_qos(ddr_wr_qos),
.prt_data(ddr_wr_data),
.prt_addr(ddr_wr_addr),
.prt_bytes(ddr_wr_bytes),
.prt_ack(ddr_wr_ack)
);
processing_system7_bfm_v2_0_5_arb_rd ddr_hp_rd(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(r_qos_hp2),
.qos2(r_qos_hp3),
.prt_req1(rd_req_ddr_hp2),
.prt_req2(rd_req_ddr_hp3),
.prt_data1(rd_data_ddr_hp2),
.prt_data2(rd_data_ddr_hp3),
.prt_addr1(rd_addr_hp2),
.prt_addr2(rd_addr_hp3),
.prt_bytes1(rd_bytes_hp2),
.prt_bytes2(rd_bytes_hp3),
.prt_dv1(rd_dv_ddr_hp2),
.prt_dv2(rd_dv_ddr_hp3),
.prt_req(ddr_rd_req),
.prt_qos(ddr_rd_qos),
.prt_data(ddr_rd_data),
.prt_addr(ddr_rd_addr),
.prt_bytes(ddr_rd_bytes),
.prt_dv(ddr_rd_dv)
);
endmodule
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_gen_clock.v
*
* Date : 2012-11
*
* Description : Module that generates FCLK clocks and internal clock for Zynq BFM.
*
*****************************************************************************/
`timescale 1ns/1ps
module processing_system7_bfm_v2_0_5_gen_clock(
ps_clk,
sw_clk,
fclk_clk3,
fclk_clk2,
fclk_clk1,
fclk_clk0
);
input ps_clk;
output sw_clk;
output fclk_clk3;
output fclk_clk2;
output fclk_clk1;
output fclk_clk0;
parameter freq_clk3 = 50;
parameter freq_clk2 = 50;
parameter freq_clk1 = 50;
parameter freq_clk0 = 50;
reg clk0 = 1'b0;
reg clk1 = 1'b0;
reg clk2 = 1'b0;
reg clk3 = 1'b0;
reg sw_clk = 1'b0;
assign fclk_clk0 = clk0;
assign fclk_clk1 = clk1;
assign fclk_clk2 = clk2;
assign fclk_clk3 = clk3;
real clk3_p = (1000.00/freq_clk3)/2;
real clk2_p = (1000.00/freq_clk2)/2;
real clk1_p = (1000.00/freq_clk1)/2;
real clk0_p = (1000.00/freq_clk0)/2;
always #(clk3_p) clk3 = !clk3;
always #(clk2_p) clk2 = !clk2;
always #(clk1_p) clk1 = !clk1;
always #(clk0_p) clk0 = !clk0;
always #(0.5) sw_clk = !sw_clk;
endmodule
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_gen_clock.v
*
* Date : 2012-11
*
* Description : Module that generates FCLK clocks and internal clock for Zynq BFM.
*
*****************************************************************************/
`timescale 1ns/1ps
module processing_system7_bfm_v2_0_5_gen_clock(
ps_clk,
sw_clk,
fclk_clk3,
fclk_clk2,
fclk_clk1,
fclk_clk0
);
input ps_clk;
output sw_clk;
output fclk_clk3;
output fclk_clk2;
output fclk_clk1;
output fclk_clk0;
parameter freq_clk3 = 50;
parameter freq_clk2 = 50;
parameter freq_clk1 = 50;
parameter freq_clk0 = 50;
reg clk0 = 1'b0;
reg clk1 = 1'b0;
reg clk2 = 1'b0;
reg clk3 = 1'b0;
reg sw_clk = 1'b0;
assign fclk_clk0 = clk0;
assign fclk_clk1 = clk1;
assign fclk_clk2 = clk2;
assign fclk_clk3 = clk3;
real clk3_p = (1000.00/freq_clk3)/2;
real clk2_p = (1000.00/freq_clk2)/2;
real clk1_p = (1000.00/freq_clk1)/2;
real clk0_p = (1000.00/freq_clk0)/2;
always #(clk3_p) clk3 = !clk3;
always #(clk2_p) clk2 = !clk2;
always #(clk1_p) clk1 = !clk1;
always #(clk0_p) clk0 = !clk0;
always #(0.5) sw_clk = !sw_clk;
endmodule
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_fmsw_gp.v
*
* Date : 2012-11
*
* Description : Mimics FMSW switch.
*
*****************************************************************************/
`timescale 1ns/1ps
module processing_system7_bfm_v2_0_5_fmsw_gp(
sw_clk,
rstn,
w_qos_gp0,
r_qos_gp0,
wr_ack_ocm_gp0,
wr_ack_ddr_gp0,
wr_data_gp0,
wr_addr_gp0,
wr_bytes_gp0,
wr_dv_ocm_gp0,
wr_dv_ddr_gp0,
rd_req_ocm_gp0,
rd_req_ddr_gp0,
rd_req_reg_gp0,
rd_addr_gp0,
rd_bytes_gp0,
rd_data_ocm_gp0,
rd_data_ddr_gp0,
rd_data_reg_gp0,
rd_dv_ocm_gp0,
rd_dv_ddr_gp0,
rd_dv_reg_gp0,
w_qos_gp1,
r_qos_gp1,
wr_ack_ocm_gp1,
wr_ack_ddr_gp1,
wr_data_gp1,
wr_addr_gp1,
wr_bytes_gp1,
wr_dv_ocm_gp1,
wr_dv_ddr_gp1,
rd_req_ocm_gp1,
rd_req_ddr_gp1,
rd_req_reg_gp1,
rd_addr_gp1,
rd_bytes_gp1,
rd_data_ocm_gp1,
rd_data_ddr_gp1,
rd_data_reg_gp1,
rd_dv_ocm_gp1,
rd_dv_ddr_gp1,
rd_dv_reg_gp1,
ocm_wr_ack,
ocm_wr_dv,
ocm_rd_req,
ocm_rd_dv,
ddr_wr_ack,
ddr_wr_dv,
ddr_rd_req,
ddr_rd_dv,
reg_rd_req,
reg_rd_dv,
ocm_wr_qos,
ddr_wr_qos,
ocm_rd_qos,
ddr_rd_qos,
reg_rd_qos,
ocm_wr_addr,
ocm_wr_data,
ocm_wr_bytes,
ocm_rd_addr,
ocm_rd_data,
ocm_rd_bytes,
ddr_wr_addr,
ddr_wr_data,
ddr_wr_bytes,
ddr_rd_addr,
ddr_rd_data,
ddr_rd_bytes,
reg_rd_addr,
reg_rd_data,
reg_rd_bytes
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input sw_clk;
input rstn;
input [axi_qos_width-1:0]w_qos_gp0;
input [axi_qos_width-1:0]r_qos_gp0;
input [axi_qos_width-1:0]w_qos_gp1;
input [axi_qos_width-1:0]r_qos_gp1;
output [axi_qos_width-1:0]ocm_wr_qos;
output [axi_qos_width-1:0]ocm_rd_qos;
output [axi_qos_width-1:0]ddr_wr_qos;
output [axi_qos_width-1:0]ddr_rd_qos;
output [axi_qos_width-1:0]reg_rd_qos;
output wr_ack_ocm_gp0;
output wr_ack_ddr_gp0;
input [max_burst_bits-1:0] wr_data_gp0;
input [addr_width-1:0] wr_addr_gp0;
input [max_burst_bytes_width:0] wr_bytes_gp0;
output wr_dv_ocm_gp0;
output wr_dv_ddr_gp0;
input rd_req_ocm_gp0;
input rd_req_ddr_gp0;
input rd_req_reg_gp0;
input [addr_width-1:0] rd_addr_gp0;
input [max_burst_bytes_width:0] rd_bytes_gp0;
output [max_burst_bits-1:0] rd_data_ocm_gp0;
output [max_burst_bits-1:0] rd_data_ddr_gp0;
output [max_burst_bits-1:0] rd_data_reg_gp0;
output rd_dv_ocm_gp0;
output rd_dv_ddr_gp0;
output rd_dv_reg_gp0;
output wr_ack_ocm_gp1;
output wr_ack_ddr_gp1;
input [max_burst_bits-1:0] wr_data_gp1;
input [addr_width-1:0] wr_addr_gp1;
input [max_burst_bytes_width:0] wr_bytes_gp1;
output wr_dv_ocm_gp1;
output wr_dv_ddr_gp1;
input rd_req_ocm_gp1;
input rd_req_ddr_gp1;
input rd_req_reg_gp1;
input [addr_width-1:0] rd_addr_gp1;
input [max_burst_bytes_width:0] rd_bytes_gp1;
output [max_burst_bits-1:0] rd_data_ocm_gp1;
output [max_burst_bits-1:0] rd_data_ddr_gp1;
output [max_burst_bits-1:0] rd_data_reg_gp1;
output rd_dv_ocm_gp1;
output rd_dv_ddr_gp1;
output rd_dv_reg_gp1;
input ocm_wr_ack;
output ocm_wr_dv;
output [addr_width-1:0]ocm_wr_addr;
output [max_burst_bits-1:0]ocm_wr_data;
output [max_burst_bytes_width:0]ocm_wr_bytes;
input ocm_rd_dv;
input [max_burst_bits-1:0] ocm_rd_data;
output ocm_rd_req;
output [addr_width-1:0] ocm_rd_addr;
output [max_burst_bytes_width:0] ocm_rd_bytes;
input ddr_wr_ack;
output ddr_wr_dv;
output [addr_width-1:0]ddr_wr_addr;
output [max_burst_bits-1:0]ddr_wr_data;
output [max_burst_bytes_width:0]ddr_wr_bytes;
input ddr_rd_dv;
input [max_burst_bits-1:0] ddr_rd_data;
output ddr_rd_req;
output [addr_width-1:0] ddr_rd_addr;
output [max_burst_bytes_width:0] ddr_rd_bytes;
input reg_rd_dv;
input [max_burst_bits-1:0] reg_rd_data;
output reg_rd_req;
output [addr_width-1:0] reg_rd_addr;
output [max_burst_bytes_width:0] reg_rd_bytes;
processing_system7_bfm_v2_0_5_arb_wr ocm_gp_wr(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(w_qos_gp0),
.qos2(w_qos_gp1),
.prt_dv1(wr_dv_ocm_gp0),
.prt_dv2(wr_dv_ocm_gp1),
.prt_data1(wr_data_gp0),
.prt_data2(wr_data_gp1),
.prt_addr1(wr_addr_gp0),
.prt_addr2(wr_addr_gp1),
.prt_bytes1(wr_bytes_gp0),
.prt_bytes2(wr_bytes_gp1),
.prt_ack1(wr_ack_ocm_gp0),
.prt_ack2(wr_ack_ocm_gp1),
.prt_req(ocm_wr_dv),
.prt_qos(ocm_wr_qos),
.prt_data(ocm_wr_data),
.prt_addr(ocm_wr_addr),
.prt_bytes(ocm_wr_bytes),
.prt_ack(ocm_wr_ack)
);
processing_system7_bfm_v2_0_5_arb_wr ddr_gp_wr(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(w_qos_gp0),
.qos2(w_qos_gp1),
.prt_dv1(wr_dv_ddr_gp0),
.prt_dv2(wr_dv_ddr_gp1),
.prt_data1(wr_data_gp0),
.prt_data2(wr_data_gp1),
.prt_addr1(wr_addr_gp0),
.prt_addr2(wr_addr_gp1),
.prt_bytes1(wr_bytes_gp0),
.prt_bytes2(wr_bytes_gp1),
.prt_ack1(wr_ack_ddr_gp0),
.prt_ack2(wr_ack_ddr_gp1),
.prt_req(ddr_wr_dv),
.prt_qos(ddr_wr_qos),
.prt_data(ddr_wr_data),
.prt_addr(ddr_wr_addr),
.prt_bytes(ddr_wr_bytes),
.prt_ack(ddr_wr_ack)
);
processing_system7_bfm_v2_0_5_arb_rd ocm_gp_rd(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(r_qos_gp0),
.qos2(r_qos_gp1),
.prt_req1(rd_req_ocm_gp0),
.prt_req2(rd_req_ocm_gp1),
.prt_data1(rd_data_ocm_gp0),
.prt_data2(rd_data_ocm_gp1),
.prt_addr1(rd_addr_gp0),
.prt_addr2(rd_addr_gp1),
.prt_bytes1(rd_bytes_gp0),
.prt_bytes2(rd_bytes_gp1),
.prt_dv1(rd_dv_ocm_gp0),
.prt_dv2(rd_dv_ocm_gp1),
.prt_req(ocm_rd_req),
.prt_qos(ocm_rd_qos),
.prt_data(ocm_rd_data),
.prt_addr(ocm_rd_addr),
.prt_bytes(ocm_rd_bytes),
.prt_dv(ocm_rd_dv)
);
processing_system7_bfm_v2_0_5_arb_rd ddr_gp_rd(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(r_qos_gp0),
.qos2(r_qos_gp1),
.prt_req1(rd_req_ddr_gp0),
.prt_req2(rd_req_ddr_gp1),
.prt_data1(rd_data_ddr_gp0),
.prt_data2(rd_data_ddr_gp1),
.prt_addr1(rd_addr_gp0),
.prt_addr2(rd_addr_gp1),
.prt_bytes1(rd_bytes_gp0),
.prt_bytes2(rd_bytes_gp1),
.prt_dv1(rd_dv_ddr_gp0),
.prt_dv2(rd_dv_ddr_gp1),
.prt_req(ddr_rd_req),
.prt_qos(ddr_rd_qos),
.prt_data(ddr_rd_data),
.prt_addr(ddr_rd_addr),
.prt_bytes(ddr_rd_bytes),
.prt_dv(ddr_rd_dv)
);
processing_system7_bfm_v2_0_5_arb_rd reg_gp_rd(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(r_qos_gp0),
.qos2(r_qos_gp1),
.prt_req1(rd_req_reg_gp0),
.prt_req2(rd_req_reg_gp1),
.prt_data1(rd_data_reg_gp0),
.prt_data2(rd_data_reg_gp1),
.prt_addr1(rd_addr_gp0),
.prt_addr2(rd_addr_gp1),
.prt_bytes1(rd_bytes_gp0),
.prt_bytes2(rd_bytes_gp1),
.prt_dv1(rd_dv_reg_gp0),
.prt_dv2(rd_dv_reg_gp1),
.prt_req(reg_rd_req),
.prt_qos(reg_rd_qos),
.prt_data(reg_rd_data),
.prt_addr(reg_rd_addr),
.prt_bytes(reg_rd_bytes),
.prt_dv(reg_rd_dv)
);
endmodule
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_fmsw_gp.v
*
* Date : 2012-11
*
* Description : Mimics FMSW switch.
*
*****************************************************************************/
`timescale 1ns/1ps
module processing_system7_bfm_v2_0_5_fmsw_gp(
sw_clk,
rstn,
w_qos_gp0,
r_qos_gp0,
wr_ack_ocm_gp0,
wr_ack_ddr_gp0,
wr_data_gp0,
wr_addr_gp0,
wr_bytes_gp0,
wr_dv_ocm_gp0,
wr_dv_ddr_gp0,
rd_req_ocm_gp0,
rd_req_ddr_gp0,
rd_req_reg_gp0,
rd_addr_gp0,
rd_bytes_gp0,
rd_data_ocm_gp0,
rd_data_ddr_gp0,
rd_data_reg_gp0,
rd_dv_ocm_gp0,
rd_dv_ddr_gp0,
rd_dv_reg_gp0,
w_qos_gp1,
r_qos_gp1,
wr_ack_ocm_gp1,
wr_ack_ddr_gp1,
wr_data_gp1,
wr_addr_gp1,
wr_bytes_gp1,
wr_dv_ocm_gp1,
wr_dv_ddr_gp1,
rd_req_ocm_gp1,
rd_req_ddr_gp1,
rd_req_reg_gp1,
rd_addr_gp1,
rd_bytes_gp1,
rd_data_ocm_gp1,
rd_data_ddr_gp1,
rd_data_reg_gp1,
rd_dv_ocm_gp1,
rd_dv_ddr_gp1,
rd_dv_reg_gp1,
ocm_wr_ack,
ocm_wr_dv,
ocm_rd_req,
ocm_rd_dv,
ddr_wr_ack,
ddr_wr_dv,
ddr_rd_req,
ddr_rd_dv,
reg_rd_req,
reg_rd_dv,
ocm_wr_qos,
ddr_wr_qos,
ocm_rd_qos,
ddr_rd_qos,
reg_rd_qos,
ocm_wr_addr,
ocm_wr_data,
ocm_wr_bytes,
ocm_rd_addr,
ocm_rd_data,
ocm_rd_bytes,
ddr_wr_addr,
ddr_wr_data,
ddr_wr_bytes,
ddr_rd_addr,
ddr_rd_data,
ddr_rd_bytes,
reg_rd_addr,
reg_rd_data,
reg_rd_bytes
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input sw_clk;
input rstn;
input [axi_qos_width-1:0]w_qos_gp0;
input [axi_qos_width-1:0]r_qos_gp0;
input [axi_qos_width-1:0]w_qos_gp1;
input [axi_qos_width-1:0]r_qos_gp1;
output [axi_qos_width-1:0]ocm_wr_qos;
output [axi_qos_width-1:0]ocm_rd_qos;
output [axi_qos_width-1:0]ddr_wr_qos;
output [axi_qos_width-1:0]ddr_rd_qos;
output [axi_qos_width-1:0]reg_rd_qos;
output wr_ack_ocm_gp0;
output wr_ack_ddr_gp0;
input [max_burst_bits-1:0] wr_data_gp0;
input [addr_width-1:0] wr_addr_gp0;
input [max_burst_bytes_width:0] wr_bytes_gp0;
output wr_dv_ocm_gp0;
output wr_dv_ddr_gp0;
input rd_req_ocm_gp0;
input rd_req_ddr_gp0;
input rd_req_reg_gp0;
input [addr_width-1:0] rd_addr_gp0;
input [max_burst_bytes_width:0] rd_bytes_gp0;
output [max_burst_bits-1:0] rd_data_ocm_gp0;
output [max_burst_bits-1:0] rd_data_ddr_gp0;
output [max_burst_bits-1:0] rd_data_reg_gp0;
output rd_dv_ocm_gp0;
output rd_dv_ddr_gp0;
output rd_dv_reg_gp0;
output wr_ack_ocm_gp1;
output wr_ack_ddr_gp1;
input [max_burst_bits-1:0] wr_data_gp1;
input [addr_width-1:0] wr_addr_gp1;
input [max_burst_bytes_width:0] wr_bytes_gp1;
output wr_dv_ocm_gp1;
output wr_dv_ddr_gp1;
input rd_req_ocm_gp1;
input rd_req_ddr_gp1;
input rd_req_reg_gp1;
input [addr_width-1:0] rd_addr_gp1;
input [max_burst_bytes_width:0] rd_bytes_gp1;
output [max_burst_bits-1:0] rd_data_ocm_gp1;
output [max_burst_bits-1:0] rd_data_ddr_gp1;
output [max_burst_bits-1:0] rd_data_reg_gp1;
output rd_dv_ocm_gp1;
output rd_dv_ddr_gp1;
output rd_dv_reg_gp1;
input ocm_wr_ack;
output ocm_wr_dv;
output [addr_width-1:0]ocm_wr_addr;
output [max_burst_bits-1:0]ocm_wr_data;
output [max_burst_bytes_width:0]ocm_wr_bytes;
input ocm_rd_dv;
input [max_burst_bits-1:0] ocm_rd_data;
output ocm_rd_req;
output [addr_width-1:0] ocm_rd_addr;
output [max_burst_bytes_width:0] ocm_rd_bytes;
input ddr_wr_ack;
output ddr_wr_dv;
output [addr_width-1:0]ddr_wr_addr;
output [max_burst_bits-1:0]ddr_wr_data;
output [max_burst_bytes_width:0]ddr_wr_bytes;
input ddr_rd_dv;
input [max_burst_bits-1:0] ddr_rd_data;
output ddr_rd_req;
output [addr_width-1:0] ddr_rd_addr;
output [max_burst_bytes_width:0] ddr_rd_bytes;
input reg_rd_dv;
input [max_burst_bits-1:0] reg_rd_data;
output reg_rd_req;
output [addr_width-1:0] reg_rd_addr;
output [max_burst_bytes_width:0] reg_rd_bytes;
processing_system7_bfm_v2_0_5_arb_wr ocm_gp_wr(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(w_qos_gp0),
.qos2(w_qos_gp1),
.prt_dv1(wr_dv_ocm_gp0),
.prt_dv2(wr_dv_ocm_gp1),
.prt_data1(wr_data_gp0),
.prt_data2(wr_data_gp1),
.prt_addr1(wr_addr_gp0),
.prt_addr2(wr_addr_gp1),
.prt_bytes1(wr_bytes_gp0),
.prt_bytes2(wr_bytes_gp1),
.prt_ack1(wr_ack_ocm_gp0),
.prt_ack2(wr_ack_ocm_gp1),
.prt_req(ocm_wr_dv),
.prt_qos(ocm_wr_qos),
.prt_data(ocm_wr_data),
.prt_addr(ocm_wr_addr),
.prt_bytes(ocm_wr_bytes),
.prt_ack(ocm_wr_ack)
);
processing_system7_bfm_v2_0_5_arb_wr ddr_gp_wr(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(w_qos_gp0),
.qos2(w_qos_gp1),
.prt_dv1(wr_dv_ddr_gp0),
.prt_dv2(wr_dv_ddr_gp1),
.prt_data1(wr_data_gp0),
.prt_data2(wr_data_gp1),
.prt_addr1(wr_addr_gp0),
.prt_addr2(wr_addr_gp1),
.prt_bytes1(wr_bytes_gp0),
.prt_bytes2(wr_bytes_gp1),
.prt_ack1(wr_ack_ddr_gp0),
.prt_ack2(wr_ack_ddr_gp1),
.prt_req(ddr_wr_dv),
.prt_qos(ddr_wr_qos),
.prt_data(ddr_wr_data),
.prt_addr(ddr_wr_addr),
.prt_bytes(ddr_wr_bytes),
.prt_ack(ddr_wr_ack)
);
processing_system7_bfm_v2_0_5_arb_rd ocm_gp_rd(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(r_qos_gp0),
.qos2(r_qos_gp1),
.prt_req1(rd_req_ocm_gp0),
.prt_req2(rd_req_ocm_gp1),
.prt_data1(rd_data_ocm_gp0),
.prt_data2(rd_data_ocm_gp1),
.prt_addr1(rd_addr_gp0),
.prt_addr2(rd_addr_gp1),
.prt_bytes1(rd_bytes_gp0),
.prt_bytes2(rd_bytes_gp1),
.prt_dv1(rd_dv_ocm_gp0),
.prt_dv2(rd_dv_ocm_gp1),
.prt_req(ocm_rd_req),
.prt_qos(ocm_rd_qos),
.prt_data(ocm_rd_data),
.prt_addr(ocm_rd_addr),
.prt_bytes(ocm_rd_bytes),
.prt_dv(ocm_rd_dv)
);
processing_system7_bfm_v2_0_5_arb_rd ddr_gp_rd(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(r_qos_gp0),
.qos2(r_qos_gp1),
.prt_req1(rd_req_ddr_gp0),
.prt_req2(rd_req_ddr_gp1),
.prt_data1(rd_data_ddr_gp0),
.prt_data2(rd_data_ddr_gp1),
.prt_addr1(rd_addr_gp0),
.prt_addr2(rd_addr_gp1),
.prt_bytes1(rd_bytes_gp0),
.prt_bytes2(rd_bytes_gp1),
.prt_dv1(rd_dv_ddr_gp0),
.prt_dv2(rd_dv_ddr_gp1),
.prt_req(ddr_rd_req),
.prt_qos(ddr_rd_qos),
.prt_data(ddr_rd_data),
.prt_addr(ddr_rd_addr),
.prt_bytes(ddr_rd_bytes),
.prt_dv(ddr_rd_dv)
);
processing_system7_bfm_v2_0_5_arb_rd reg_gp_rd(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(r_qos_gp0),
.qos2(r_qos_gp1),
.prt_req1(rd_req_reg_gp0),
.prt_req2(rd_req_reg_gp1),
.prt_data1(rd_data_reg_gp0),
.prt_data2(rd_data_reg_gp1),
.prt_addr1(rd_addr_gp0),
.prt_addr2(rd_addr_gp1),
.prt_bytes1(rd_bytes_gp0),
.prt_bytes2(rd_bytes_gp1),
.prt_dv1(rd_dv_reg_gp0),
.prt_dv2(rd_dv_reg_gp1),
.prt_req(reg_rd_req),
.prt_qos(reg_rd_qos),
.prt_data(reg_rd_data),
.prt_addr(reg_rd_addr),
.prt_bytes(reg_rd_bytes),
.prt_dv(reg_rd_dv)
);
endmodule
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_fmsw_gp.v
*
* Date : 2012-11
*
* Description : Mimics FMSW switch.
*
*****************************************************************************/
`timescale 1ns/1ps
module processing_system7_bfm_v2_0_5_fmsw_gp(
sw_clk,
rstn,
w_qos_gp0,
r_qos_gp0,
wr_ack_ocm_gp0,
wr_ack_ddr_gp0,
wr_data_gp0,
wr_addr_gp0,
wr_bytes_gp0,
wr_dv_ocm_gp0,
wr_dv_ddr_gp0,
rd_req_ocm_gp0,
rd_req_ddr_gp0,
rd_req_reg_gp0,
rd_addr_gp0,
rd_bytes_gp0,
rd_data_ocm_gp0,
rd_data_ddr_gp0,
rd_data_reg_gp0,
rd_dv_ocm_gp0,
rd_dv_ddr_gp0,
rd_dv_reg_gp0,
w_qos_gp1,
r_qos_gp1,
wr_ack_ocm_gp1,
wr_ack_ddr_gp1,
wr_data_gp1,
wr_addr_gp1,
wr_bytes_gp1,
wr_dv_ocm_gp1,
wr_dv_ddr_gp1,
rd_req_ocm_gp1,
rd_req_ddr_gp1,
rd_req_reg_gp1,
rd_addr_gp1,
rd_bytes_gp1,
rd_data_ocm_gp1,
rd_data_ddr_gp1,
rd_data_reg_gp1,
rd_dv_ocm_gp1,
rd_dv_ddr_gp1,
rd_dv_reg_gp1,
ocm_wr_ack,
ocm_wr_dv,
ocm_rd_req,
ocm_rd_dv,
ddr_wr_ack,
ddr_wr_dv,
ddr_rd_req,
ddr_rd_dv,
reg_rd_req,
reg_rd_dv,
ocm_wr_qos,
ddr_wr_qos,
ocm_rd_qos,
ddr_rd_qos,
reg_rd_qos,
ocm_wr_addr,
ocm_wr_data,
ocm_wr_bytes,
ocm_rd_addr,
ocm_rd_data,
ocm_rd_bytes,
ddr_wr_addr,
ddr_wr_data,
ddr_wr_bytes,
ddr_rd_addr,
ddr_rd_data,
ddr_rd_bytes,
reg_rd_addr,
reg_rd_data,
reg_rd_bytes
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input sw_clk;
input rstn;
input [axi_qos_width-1:0]w_qos_gp0;
input [axi_qos_width-1:0]r_qos_gp0;
input [axi_qos_width-1:0]w_qos_gp1;
input [axi_qos_width-1:0]r_qos_gp1;
output [axi_qos_width-1:0]ocm_wr_qos;
output [axi_qos_width-1:0]ocm_rd_qos;
output [axi_qos_width-1:0]ddr_wr_qos;
output [axi_qos_width-1:0]ddr_rd_qos;
output [axi_qos_width-1:0]reg_rd_qos;
output wr_ack_ocm_gp0;
output wr_ack_ddr_gp0;
input [max_burst_bits-1:0] wr_data_gp0;
input [addr_width-1:0] wr_addr_gp0;
input [max_burst_bytes_width:0] wr_bytes_gp0;
output wr_dv_ocm_gp0;
output wr_dv_ddr_gp0;
input rd_req_ocm_gp0;
input rd_req_ddr_gp0;
input rd_req_reg_gp0;
input [addr_width-1:0] rd_addr_gp0;
input [max_burst_bytes_width:0] rd_bytes_gp0;
output [max_burst_bits-1:0] rd_data_ocm_gp0;
output [max_burst_bits-1:0] rd_data_ddr_gp0;
output [max_burst_bits-1:0] rd_data_reg_gp0;
output rd_dv_ocm_gp0;
output rd_dv_ddr_gp0;
output rd_dv_reg_gp0;
output wr_ack_ocm_gp1;
output wr_ack_ddr_gp1;
input [max_burst_bits-1:0] wr_data_gp1;
input [addr_width-1:0] wr_addr_gp1;
input [max_burst_bytes_width:0] wr_bytes_gp1;
output wr_dv_ocm_gp1;
output wr_dv_ddr_gp1;
input rd_req_ocm_gp1;
input rd_req_ddr_gp1;
input rd_req_reg_gp1;
input [addr_width-1:0] rd_addr_gp1;
input [max_burst_bytes_width:0] rd_bytes_gp1;
output [max_burst_bits-1:0] rd_data_ocm_gp1;
output [max_burst_bits-1:0] rd_data_ddr_gp1;
output [max_burst_bits-1:0] rd_data_reg_gp1;
output rd_dv_ocm_gp1;
output rd_dv_ddr_gp1;
output rd_dv_reg_gp1;
input ocm_wr_ack;
output ocm_wr_dv;
output [addr_width-1:0]ocm_wr_addr;
output [max_burst_bits-1:0]ocm_wr_data;
output [max_burst_bytes_width:0]ocm_wr_bytes;
input ocm_rd_dv;
input [max_burst_bits-1:0] ocm_rd_data;
output ocm_rd_req;
output [addr_width-1:0] ocm_rd_addr;
output [max_burst_bytes_width:0] ocm_rd_bytes;
input ddr_wr_ack;
output ddr_wr_dv;
output [addr_width-1:0]ddr_wr_addr;
output [max_burst_bits-1:0]ddr_wr_data;
output [max_burst_bytes_width:0]ddr_wr_bytes;
input ddr_rd_dv;
input [max_burst_bits-1:0] ddr_rd_data;
output ddr_rd_req;
output [addr_width-1:0] ddr_rd_addr;
output [max_burst_bytes_width:0] ddr_rd_bytes;
input reg_rd_dv;
input [max_burst_bits-1:0] reg_rd_data;
output reg_rd_req;
output [addr_width-1:0] reg_rd_addr;
output [max_burst_bytes_width:0] reg_rd_bytes;
processing_system7_bfm_v2_0_5_arb_wr ocm_gp_wr(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(w_qos_gp0),
.qos2(w_qos_gp1),
.prt_dv1(wr_dv_ocm_gp0),
.prt_dv2(wr_dv_ocm_gp1),
.prt_data1(wr_data_gp0),
.prt_data2(wr_data_gp1),
.prt_addr1(wr_addr_gp0),
.prt_addr2(wr_addr_gp1),
.prt_bytes1(wr_bytes_gp0),
.prt_bytes2(wr_bytes_gp1),
.prt_ack1(wr_ack_ocm_gp0),
.prt_ack2(wr_ack_ocm_gp1),
.prt_req(ocm_wr_dv),
.prt_qos(ocm_wr_qos),
.prt_data(ocm_wr_data),
.prt_addr(ocm_wr_addr),
.prt_bytes(ocm_wr_bytes),
.prt_ack(ocm_wr_ack)
);
processing_system7_bfm_v2_0_5_arb_wr ddr_gp_wr(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(w_qos_gp0),
.qos2(w_qos_gp1),
.prt_dv1(wr_dv_ddr_gp0),
.prt_dv2(wr_dv_ddr_gp1),
.prt_data1(wr_data_gp0),
.prt_data2(wr_data_gp1),
.prt_addr1(wr_addr_gp0),
.prt_addr2(wr_addr_gp1),
.prt_bytes1(wr_bytes_gp0),
.prt_bytes2(wr_bytes_gp1),
.prt_ack1(wr_ack_ddr_gp0),
.prt_ack2(wr_ack_ddr_gp1),
.prt_req(ddr_wr_dv),
.prt_qos(ddr_wr_qos),
.prt_data(ddr_wr_data),
.prt_addr(ddr_wr_addr),
.prt_bytes(ddr_wr_bytes),
.prt_ack(ddr_wr_ack)
);
processing_system7_bfm_v2_0_5_arb_rd ocm_gp_rd(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(r_qos_gp0),
.qos2(r_qos_gp1),
.prt_req1(rd_req_ocm_gp0),
.prt_req2(rd_req_ocm_gp1),
.prt_data1(rd_data_ocm_gp0),
.prt_data2(rd_data_ocm_gp1),
.prt_addr1(rd_addr_gp0),
.prt_addr2(rd_addr_gp1),
.prt_bytes1(rd_bytes_gp0),
.prt_bytes2(rd_bytes_gp1),
.prt_dv1(rd_dv_ocm_gp0),
.prt_dv2(rd_dv_ocm_gp1),
.prt_req(ocm_rd_req),
.prt_qos(ocm_rd_qos),
.prt_data(ocm_rd_data),
.prt_addr(ocm_rd_addr),
.prt_bytes(ocm_rd_bytes),
.prt_dv(ocm_rd_dv)
);
processing_system7_bfm_v2_0_5_arb_rd ddr_gp_rd(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(r_qos_gp0),
.qos2(r_qos_gp1),
.prt_req1(rd_req_ddr_gp0),
.prt_req2(rd_req_ddr_gp1),
.prt_data1(rd_data_ddr_gp0),
.prt_data2(rd_data_ddr_gp1),
.prt_addr1(rd_addr_gp0),
.prt_addr2(rd_addr_gp1),
.prt_bytes1(rd_bytes_gp0),
.prt_bytes2(rd_bytes_gp1),
.prt_dv1(rd_dv_ddr_gp0),
.prt_dv2(rd_dv_ddr_gp1),
.prt_req(ddr_rd_req),
.prt_qos(ddr_rd_qos),
.prt_data(ddr_rd_data),
.prt_addr(ddr_rd_addr),
.prt_bytes(ddr_rd_bytes),
.prt_dv(ddr_rd_dv)
);
processing_system7_bfm_v2_0_5_arb_rd reg_gp_rd(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(r_qos_gp0),
.qos2(r_qos_gp1),
.prt_req1(rd_req_reg_gp0),
.prt_req2(rd_req_reg_gp1),
.prt_data1(rd_data_reg_gp0),
.prt_data2(rd_data_reg_gp1),
.prt_addr1(rd_addr_gp0),
.prt_addr2(rd_addr_gp1),
.prt_bytes1(rd_bytes_gp0),
.prt_bytes2(rd_bytes_gp1),
.prt_dv1(rd_dv_reg_gp0),
.prt_dv2(rd_dv_reg_gp1),
.prt_req(reg_rd_req),
.prt_qos(reg_rd_qos),
.prt_data(reg_rd_data),
.prt_addr(reg_rd_addr),
.prt_bytes(reg_rd_bytes),
.prt_dv(reg_rd_dv)
);
endmodule
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_arb_hp0_1.v
*
* Date : 2012-11
*
* Description : Module that arbitrates between RD/WR requests from 2 ports.
* Used for modelling the Top_Interconnect switch.
*****************************************************************************/
`timescale 1ns/1ps
module processing_system7_bfm_v2_0_5_arb_hp0_1(
sw_clk,
rstn,
w_qos_hp0,
r_qos_hp0,
w_qos_hp1,
r_qos_hp1,
wr_ack_ddr_hp0,
wr_data_hp0,
wr_addr_hp0,
wr_bytes_hp0,
wr_dv_ddr_hp0,
rd_req_ddr_hp0,
rd_addr_hp0,
rd_bytes_hp0,
rd_data_ddr_hp0,
rd_dv_ddr_hp0,
wr_ack_ddr_hp1,
wr_data_hp1,
wr_addr_hp1,
wr_bytes_hp1,
wr_dv_ddr_hp1,
rd_req_ddr_hp1,
rd_addr_hp1,
rd_bytes_hp1,
rd_data_ddr_hp1,
rd_dv_ddr_hp1,
ddr_wr_ack,
ddr_wr_dv,
ddr_rd_req,
ddr_rd_dv,
ddr_rd_qos,
ddr_wr_qos,
ddr_wr_addr,
ddr_wr_data,
ddr_wr_bytes,
ddr_rd_addr,
ddr_rd_data,
ddr_rd_bytes
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input sw_clk;
input rstn;
input [axi_qos_width-1:0] w_qos_hp0;
input [axi_qos_width-1:0] r_qos_hp0;
input [axi_qos_width-1:0] w_qos_hp1;
input [axi_qos_width-1:0] r_qos_hp1;
input [axi_qos_width-1:0] ddr_rd_qos;
input [axi_qos_width-1:0] ddr_wr_qos;
output wr_ack_ddr_hp0;
input [max_burst_bits-1:0] wr_data_hp0;
input [addr_width-1:0] wr_addr_hp0;
input [max_burst_bytes_width:0] wr_bytes_hp0;
output wr_dv_ddr_hp0;
input rd_req_ddr_hp0;
input [addr_width-1:0] rd_addr_hp0;
input [max_burst_bytes_width:0] rd_bytes_hp0;
output [max_burst_bits-1:0] rd_data_ddr_hp0;
output rd_dv_ddr_hp0;
output wr_ack_ddr_hp1;
input [max_burst_bits-1:0] wr_data_hp1;
input [addr_width-1:0] wr_addr_hp1;
input [max_burst_bytes_width:0] wr_bytes_hp1;
output wr_dv_ddr_hp1;
input rd_req_ddr_hp1;
input [addr_width-1:0] rd_addr_hp1;
input [max_burst_bytes_width:0] rd_bytes_hp1;
output [max_burst_bits-1:0] rd_data_ddr_hp1;
output rd_dv_ddr_hp1;
input ddr_wr_ack;
output ddr_wr_dv;
output [addr_width-1:0]ddr_wr_addr;
output [max_burst_bits-1:0]ddr_wr_data;
output [max_burst_bytes_width:0]ddr_wr_bytes;
input ddr_rd_dv;
input [max_burst_bits-1:0] ddr_rd_data;
output ddr_rd_req;
output [addr_width-1:0] ddr_rd_addr;
output [max_burst_bytes_width:0] ddr_rd_bytes;
processing_system7_bfm_v2_0_5_arb_wr ddr_hp_wr(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(w_qos_hp0),
.qos2(w_qos_hp1),
.prt_dv1(wr_dv_ddr_hp0),
.prt_dv2(wr_dv_ddr_hp1),
.prt_data1(wr_data_hp0),
.prt_data2(wr_data_hp1),
.prt_addr1(wr_addr_hp0),
.prt_addr2(wr_addr_hp1),
.prt_bytes1(wr_bytes_hp0),
.prt_bytes2(wr_bytes_hp1),
.prt_ack1(wr_ack_ddr_hp0),
.prt_ack2(wr_ack_ddr_hp1),
.prt_req(ddr_wr_dv),
.prt_qos(ddr_wr_qos),
.prt_data(ddr_wr_data),
.prt_addr(ddr_wr_addr),
.prt_bytes(ddr_wr_bytes),
.prt_ack(ddr_wr_ack)
);
processing_system7_bfm_v2_0_5_arb_rd ddr_hp_rd(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(r_qos_hp0),
.qos2(r_qos_hp1),
.prt_req1(rd_req_ddr_hp0),
.prt_req2(rd_req_ddr_hp1),
.prt_data1(rd_data_ddr_hp0),
.prt_data2(rd_data_ddr_hp1),
.prt_addr1(rd_addr_hp0),
.prt_addr2(rd_addr_hp1),
.prt_bytes1(rd_bytes_hp0),
.prt_bytes2(rd_bytes_hp1),
.prt_dv1(rd_dv_ddr_hp0),
.prt_dv2(rd_dv_ddr_hp1),
.prt_qos(ddr_rd_qos),
.prt_req(ddr_rd_req),
.prt_data(ddr_rd_data),
.prt_addr(ddr_rd_addr),
.prt_bytes(ddr_rd_bytes),
.prt_dv(ddr_rd_dv)
);
endmodule
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_arb_hp0_1.v
*
* Date : 2012-11
*
* Description : Module that arbitrates between RD/WR requests from 2 ports.
* Used for modelling the Top_Interconnect switch.
*****************************************************************************/
`timescale 1ns/1ps
module processing_system7_bfm_v2_0_5_arb_hp0_1(
sw_clk,
rstn,
w_qos_hp0,
r_qos_hp0,
w_qos_hp1,
r_qos_hp1,
wr_ack_ddr_hp0,
wr_data_hp0,
wr_addr_hp0,
wr_bytes_hp0,
wr_dv_ddr_hp0,
rd_req_ddr_hp0,
rd_addr_hp0,
rd_bytes_hp0,
rd_data_ddr_hp0,
rd_dv_ddr_hp0,
wr_ack_ddr_hp1,
wr_data_hp1,
wr_addr_hp1,
wr_bytes_hp1,
wr_dv_ddr_hp1,
rd_req_ddr_hp1,
rd_addr_hp1,
rd_bytes_hp1,
rd_data_ddr_hp1,
rd_dv_ddr_hp1,
ddr_wr_ack,
ddr_wr_dv,
ddr_rd_req,
ddr_rd_dv,
ddr_rd_qos,
ddr_wr_qos,
ddr_wr_addr,
ddr_wr_data,
ddr_wr_bytes,
ddr_rd_addr,
ddr_rd_data,
ddr_rd_bytes
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input sw_clk;
input rstn;
input [axi_qos_width-1:0] w_qos_hp0;
input [axi_qos_width-1:0] r_qos_hp0;
input [axi_qos_width-1:0] w_qos_hp1;
input [axi_qos_width-1:0] r_qos_hp1;
input [axi_qos_width-1:0] ddr_rd_qos;
input [axi_qos_width-1:0] ddr_wr_qos;
output wr_ack_ddr_hp0;
input [max_burst_bits-1:0] wr_data_hp0;
input [addr_width-1:0] wr_addr_hp0;
input [max_burst_bytes_width:0] wr_bytes_hp0;
output wr_dv_ddr_hp0;
input rd_req_ddr_hp0;
input [addr_width-1:0] rd_addr_hp0;
input [max_burst_bytes_width:0] rd_bytes_hp0;
output [max_burst_bits-1:0] rd_data_ddr_hp0;
output rd_dv_ddr_hp0;
output wr_ack_ddr_hp1;
input [max_burst_bits-1:0] wr_data_hp1;
input [addr_width-1:0] wr_addr_hp1;
input [max_burst_bytes_width:0] wr_bytes_hp1;
output wr_dv_ddr_hp1;
input rd_req_ddr_hp1;
input [addr_width-1:0] rd_addr_hp1;
input [max_burst_bytes_width:0] rd_bytes_hp1;
output [max_burst_bits-1:0] rd_data_ddr_hp1;
output rd_dv_ddr_hp1;
input ddr_wr_ack;
output ddr_wr_dv;
output [addr_width-1:0]ddr_wr_addr;
output [max_burst_bits-1:0]ddr_wr_data;
output [max_burst_bytes_width:0]ddr_wr_bytes;
input ddr_rd_dv;
input [max_burst_bits-1:0] ddr_rd_data;
output ddr_rd_req;
output [addr_width-1:0] ddr_rd_addr;
output [max_burst_bytes_width:0] ddr_rd_bytes;
processing_system7_bfm_v2_0_5_arb_wr ddr_hp_wr(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(w_qos_hp0),
.qos2(w_qos_hp1),
.prt_dv1(wr_dv_ddr_hp0),
.prt_dv2(wr_dv_ddr_hp1),
.prt_data1(wr_data_hp0),
.prt_data2(wr_data_hp1),
.prt_addr1(wr_addr_hp0),
.prt_addr2(wr_addr_hp1),
.prt_bytes1(wr_bytes_hp0),
.prt_bytes2(wr_bytes_hp1),
.prt_ack1(wr_ack_ddr_hp0),
.prt_ack2(wr_ack_ddr_hp1),
.prt_req(ddr_wr_dv),
.prt_qos(ddr_wr_qos),
.prt_data(ddr_wr_data),
.prt_addr(ddr_wr_addr),
.prt_bytes(ddr_wr_bytes),
.prt_ack(ddr_wr_ack)
);
processing_system7_bfm_v2_0_5_arb_rd ddr_hp_rd(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(r_qos_hp0),
.qos2(r_qos_hp1),
.prt_req1(rd_req_ddr_hp0),
.prt_req2(rd_req_ddr_hp1),
.prt_data1(rd_data_ddr_hp0),
.prt_data2(rd_data_ddr_hp1),
.prt_addr1(rd_addr_hp0),
.prt_addr2(rd_addr_hp1),
.prt_bytes1(rd_bytes_hp0),
.prt_bytes2(rd_bytes_hp1),
.prt_dv1(rd_dv_ddr_hp0),
.prt_dv2(rd_dv_ddr_hp1),
.prt_qos(ddr_rd_qos),
.prt_req(ddr_rd_req),
.prt_data(ddr_rd_data),
.prt_addr(ddr_rd_addr),
.prt_bytes(ddr_rd_bytes),
.prt_dv(ddr_rd_dv)
);
endmodule
|
// -- (c) Copyright 2009 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// File name: decerr_slave.v
//
// Description:
// Phantom slave interface used to complete W, R and B channel transfers when an
// erroneous transaction is trapped in the crossbar.
//--------------------------------------------------------------------------
//
// Structure:
// decerr_slave
//
//-----------------------------------------------------------------------------
`timescale 1ps/1ps
`default_nettype none
(* DowngradeIPIdentifiedWarnings="yes" *)
module axi_crossbar_v2_1_decerr_slave #
(
parameter integer C_AXI_ID_WIDTH = 1,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AXI_PROTOCOL = 0,
parameter integer C_RESP = 2'b11
)
(
input wire S_AXI_ACLK,
input wire S_AXI_ARESET,
input wire [(C_AXI_ID_WIDTH-1):0] S_AXI_AWID,
input wire S_AXI_AWVALID,
output wire S_AXI_AWREADY,
input wire S_AXI_WLAST,
input wire S_AXI_WVALID,
output wire S_AXI_WREADY,
output wire [(C_AXI_ID_WIDTH-1):0] S_AXI_BID,
output wire [1:0] S_AXI_BRESP,
output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER,
output wire S_AXI_BVALID,
input wire S_AXI_BREADY,
input wire [(C_AXI_ID_WIDTH-1):0] S_AXI_ARID,
input wire [7:0] S_AXI_ARLEN,
input wire S_AXI_ARVALID,
output wire S_AXI_ARREADY,
output wire [(C_AXI_ID_WIDTH-1):0] S_AXI_RID,
output wire [(C_AXI_DATA_WIDTH-1):0] S_AXI_RDATA,
output wire [1:0] S_AXI_RRESP,
output wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER,
output wire S_AXI_RLAST,
output wire S_AXI_RVALID,
input wire S_AXI_RREADY
);
reg s_axi_awready_i;
reg s_axi_wready_i;
reg s_axi_bvalid_i;
reg s_axi_arready_i;
reg s_axi_rvalid_i;
localparam P_WRITE_IDLE = 2'b00;
localparam P_WRITE_DATA = 2'b01;
localparam P_WRITE_RESP = 2'b10;
localparam P_READ_IDLE = 1'b0;
localparam P_READ_DATA = 1'b1;
localparam integer P_AXI4 = 0;
localparam integer P_AXI3 = 1;
localparam integer P_AXILITE = 2;
assign S_AXI_BRESP = C_RESP;
assign S_AXI_RRESP = C_RESP;
assign S_AXI_RDATA = {C_AXI_DATA_WIDTH{1'b0}};
assign S_AXI_BUSER = {C_AXI_BUSER_WIDTH{1'b0}};
assign S_AXI_RUSER = {C_AXI_RUSER_WIDTH{1'b0}};
assign S_AXI_AWREADY = s_axi_awready_i;
assign S_AXI_WREADY = s_axi_wready_i;
assign S_AXI_BVALID = s_axi_bvalid_i;
assign S_AXI_ARREADY = s_axi_arready_i;
assign S_AXI_RVALID = s_axi_rvalid_i;
generate
if (C_AXI_PROTOCOL == P_AXILITE) begin : gen_axilite
assign S_AXI_RLAST = 1'b1;
assign S_AXI_BID = 0;
assign S_AXI_RID = 0;
always @(posedge S_AXI_ACLK) begin
if (S_AXI_ARESET) begin
s_axi_awready_i <= 1'b0;
s_axi_wready_i <= 1'b0;
s_axi_bvalid_i <= 1'b0;
end else begin
if (s_axi_bvalid_i) begin
if (S_AXI_BREADY) begin
s_axi_bvalid_i <= 1'b0;
end
end else if (S_AXI_AWVALID & S_AXI_WVALID) begin
if (s_axi_awready_i) begin
s_axi_awready_i <= 1'b0;
s_axi_wready_i <= 1'b0;
s_axi_bvalid_i <= 1'b1;
end else begin
s_axi_awready_i <= 1'b1;
s_axi_wready_i <= 1'b1;
end
end
end
end
always @(posedge S_AXI_ACLK) begin
if (S_AXI_ARESET) begin
s_axi_arready_i <= 1'b0;
s_axi_rvalid_i <= 1'b0;
end else begin
if (s_axi_rvalid_i) begin
if (S_AXI_RREADY) begin
s_axi_rvalid_i <= 1'b0;
end
end else if (S_AXI_ARVALID & s_axi_arready_i) begin
s_axi_arready_i <= 1'b0;
s_axi_rvalid_i <= 1'b1;
end else begin
s_axi_arready_i <= 1'b1;
end
end
end
end else begin : gen_axi
reg s_axi_rlast_i;
reg [(C_AXI_ID_WIDTH-1):0] s_axi_bid_i;
reg [(C_AXI_ID_WIDTH-1):0] s_axi_rid_i;
reg [7:0] read_cnt;
reg [1:0] write_cs;
reg [0:0] read_cs;
assign S_AXI_RLAST = s_axi_rlast_i;
assign S_AXI_BID = s_axi_bid_i;
assign S_AXI_RID = s_axi_rid_i;
always @(posedge S_AXI_ACLK) begin
if (S_AXI_ARESET) begin
write_cs <= P_WRITE_IDLE;
s_axi_awready_i <= 1'b0;
s_axi_wready_i <= 1'b0;
s_axi_bvalid_i <= 1'b0;
s_axi_bid_i <= 0;
end else begin
case (write_cs)
P_WRITE_IDLE:
begin
if (S_AXI_AWVALID & s_axi_awready_i) begin
s_axi_awready_i <= 1'b0;
s_axi_bid_i <= S_AXI_AWID;
s_axi_wready_i <= 1'b1;
write_cs <= P_WRITE_DATA;
end else begin
s_axi_awready_i <= 1'b1;
end
end
P_WRITE_DATA:
begin
if (S_AXI_WVALID & S_AXI_WLAST) begin
s_axi_wready_i <= 1'b0;
s_axi_bvalid_i <= 1'b1;
write_cs <= P_WRITE_RESP;
end
end
P_WRITE_RESP:
begin
if (S_AXI_BREADY) begin
s_axi_bvalid_i <= 1'b0;
s_axi_awready_i <= 1'b1;
write_cs <= P_WRITE_IDLE;
end
end
endcase
end
end
always @(posedge S_AXI_ACLK) begin
if (S_AXI_ARESET) begin
read_cs <= P_READ_IDLE;
s_axi_arready_i <= 1'b0;
s_axi_rvalid_i <= 1'b0;
s_axi_rlast_i <= 1'b0;
s_axi_rid_i <= 0;
read_cnt <= 0;
end else begin
case (read_cs)
P_READ_IDLE:
begin
if (S_AXI_ARVALID & s_axi_arready_i) begin
s_axi_arready_i <= 1'b0;
s_axi_rid_i <= S_AXI_ARID;
read_cnt <= S_AXI_ARLEN;
s_axi_rvalid_i <= 1'b1;
if (S_AXI_ARLEN == 0) begin
s_axi_rlast_i <= 1'b1;
end else begin
s_axi_rlast_i <= 1'b0;
end
read_cs <= P_READ_DATA;
end else begin
s_axi_arready_i <= 1'b1;
end
end
P_READ_DATA:
begin
if (S_AXI_RREADY) begin
if (read_cnt == 0) begin
s_axi_rvalid_i <= 1'b0;
s_axi_rlast_i <= 1'b0;
s_axi_arready_i <= 1'b1;
read_cs <= P_READ_IDLE;
end else begin
if (read_cnt == 1) begin
s_axi_rlast_i <= 1'b1;
end
read_cnt <= read_cnt - 1;
end
end
end
endcase
end
end
end
endgenerate
endmodule
`default_nettype wire
|
// -- (c) Copyright 2009 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// File name: decerr_slave.v
//
// Description:
// Phantom slave interface used to complete W, R and B channel transfers when an
// erroneous transaction is trapped in the crossbar.
//--------------------------------------------------------------------------
//
// Structure:
// decerr_slave
//
//-----------------------------------------------------------------------------
`timescale 1ps/1ps
`default_nettype none
(* DowngradeIPIdentifiedWarnings="yes" *)
module axi_crossbar_v2_1_decerr_slave #
(
parameter integer C_AXI_ID_WIDTH = 1,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AXI_PROTOCOL = 0,
parameter integer C_RESP = 2'b11
)
(
input wire S_AXI_ACLK,
input wire S_AXI_ARESET,
input wire [(C_AXI_ID_WIDTH-1):0] S_AXI_AWID,
input wire S_AXI_AWVALID,
output wire S_AXI_AWREADY,
input wire S_AXI_WLAST,
input wire S_AXI_WVALID,
output wire S_AXI_WREADY,
output wire [(C_AXI_ID_WIDTH-1):0] S_AXI_BID,
output wire [1:0] S_AXI_BRESP,
output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER,
output wire S_AXI_BVALID,
input wire S_AXI_BREADY,
input wire [(C_AXI_ID_WIDTH-1):0] S_AXI_ARID,
input wire [7:0] S_AXI_ARLEN,
input wire S_AXI_ARVALID,
output wire S_AXI_ARREADY,
output wire [(C_AXI_ID_WIDTH-1):0] S_AXI_RID,
output wire [(C_AXI_DATA_WIDTH-1):0] S_AXI_RDATA,
output wire [1:0] S_AXI_RRESP,
output wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER,
output wire S_AXI_RLAST,
output wire S_AXI_RVALID,
input wire S_AXI_RREADY
);
reg s_axi_awready_i;
reg s_axi_wready_i;
reg s_axi_bvalid_i;
reg s_axi_arready_i;
reg s_axi_rvalid_i;
localparam P_WRITE_IDLE = 2'b00;
localparam P_WRITE_DATA = 2'b01;
localparam P_WRITE_RESP = 2'b10;
localparam P_READ_IDLE = 1'b0;
localparam P_READ_DATA = 1'b1;
localparam integer P_AXI4 = 0;
localparam integer P_AXI3 = 1;
localparam integer P_AXILITE = 2;
assign S_AXI_BRESP = C_RESP;
assign S_AXI_RRESP = C_RESP;
assign S_AXI_RDATA = {C_AXI_DATA_WIDTH{1'b0}};
assign S_AXI_BUSER = {C_AXI_BUSER_WIDTH{1'b0}};
assign S_AXI_RUSER = {C_AXI_RUSER_WIDTH{1'b0}};
assign S_AXI_AWREADY = s_axi_awready_i;
assign S_AXI_WREADY = s_axi_wready_i;
assign S_AXI_BVALID = s_axi_bvalid_i;
assign S_AXI_ARREADY = s_axi_arready_i;
assign S_AXI_RVALID = s_axi_rvalid_i;
generate
if (C_AXI_PROTOCOL == P_AXILITE) begin : gen_axilite
assign S_AXI_RLAST = 1'b1;
assign S_AXI_BID = 0;
assign S_AXI_RID = 0;
always @(posedge S_AXI_ACLK) begin
if (S_AXI_ARESET) begin
s_axi_awready_i <= 1'b0;
s_axi_wready_i <= 1'b0;
s_axi_bvalid_i <= 1'b0;
end else begin
if (s_axi_bvalid_i) begin
if (S_AXI_BREADY) begin
s_axi_bvalid_i <= 1'b0;
end
end else if (S_AXI_AWVALID & S_AXI_WVALID) begin
if (s_axi_awready_i) begin
s_axi_awready_i <= 1'b0;
s_axi_wready_i <= 1'b0;
s_axi_bvalid_i <= 1'b1;
end else begin
s_axi_awready_i <= 1'b1;
s_axi_wready_i <= 1'b1;
end
end
end
end
always @(posedge S_AXI_ACLK) begin
if (S_AXI_ARESET) begin
s_axi_arready_i <= 1'b0;
s_axi_rvalid_i <= 1'b0;
end else begin
if (s_axi_rvalid_i) begin
if (S_AXI_RREADY) begin
s_axi_rvalid_i <= 1'b0;
end
end else if (S_AXI_ARVALID & s_axi_arready_i) begin
s_axi_arready_i <= 1'b0;
s_axi_rvalid_i <= 1'b1;
end else begin
s_axi_arready_i <= 1'b1;
end
end
end
end else begin : gen_axi
reg s_axi_rlast_i;
reg [(C_AXI_ID_WIDTH-1):0] s_axi_bid_i;
reg [(C_AXI_ID_WIDTH-1):0] s_axi_rid_i;
reg [7:0] read_cnt;
reg [1:0] write_cs;
reg [0:0] read_cs;
assign S_AXI_RLAST = s_axi_rlast_i;
assign S_AXI_BID = s_axi_bid_i;
assign S_AXI_RID = s_axi_rid_i;
always @(posedge S_AXI_ACLK) begin
if (S_AXI_ARESET) begin
write_cs <= P_WRITE_IDLE;
s_axi_awready_i <= 1'b0;
s_axi_wready_i <= 1'b0;
s_axi_bvalid_i <= 1'b0;
s_axi_bid_i <= 0;
end else begin
case (write_cs)
P_WRITE_IDLE:
begin
if (S_AXI_AWVALID & s_axi_awready_i) begin
s_axi_awready_i <= 1'b0;
s_axi_bid_i <= S_AXI_AWID;
s_axi_wready_i <= 1'b1;
write_cs <= P_WRITE_DATA;
end else begin
s_axi_awready_i <= 1'b1;
end
end
P_WRITE_DATA:
begin
if (S_AXI_WVALID & S_AXI_WLAST) begin
s_axi_wready_i <= 1'b0;
s_axi_bvalid_i <= 1'b1;
write_cs <= P_WRITE_RESP;
end
end
P_WRITE_RESP:
begin
if (S_AXI_BREADY) begin
s_axi_bvalid_i <= 1'b0;
s_axi_awready_i <= 1'b1;
write_cs <= P_WRITE_IDLE;
end
end
endcase
end
end
always @(posedge S_AXI_ACLK) begin
if (S_AXI_ARESET) begin
read_cs <= P_READ_IDLE;
s_axi_arready_i <= 1'b0;
s_axi_rvalid_i <= 1'b0;
s_axi_rlast_i <= 1'b0;
s_axi_rid_i <= 0;
read_cnt <= 0;
end else begin
case (read_cs)
P_READ_IDLE:
begin
if (S_AXI_ARVALID & s_axi_arready_i) begin
s_axi_arready_i <= 1'b0;
s_axi_rid_i <= S_AXI_ARID;
read_cnt <= S_AXI_ARLEN;
s_axi_rvalid_i <= 1'b1;
if (S_AXI_ARLEN == 0) begin
s_axi_rlast_i <= 1'b1;
end else begin
s_axi_rlast_i <= 1'b0;
end
read_cs <= P_READ_DATA;
end else begin
s_axi_arready_i <= 1'b1;
end
end
P_READ_DATA:
begin
if (S_AXI_RREADY) begin
if (read_cnt == 0) begin
s_axi_rvalid_i <= 1'b0;
s_axi_rlast_i <= 1'b0;
s_axi_arready_i <= 1'b1;
read_cs <= P_READ_IDLE;
end else begin
if (read_cnt == 1) begin
s_axi_rlast_i <= 1'b1;
end
read_cnt <= read_cnt - 1;
end
end
end
endcase
end
end
end
endgenerate
endmodule
`default_nettype wire
|
// -- (c) Copyright 2009 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// File name: decerr_slave.v
//
// Description:
// Phantom slave interface used to complete W, R and B channel transfers when an
// erroneous transaction is trapped in the crossbar.
//--------------------------------------------------------------------------
//
// Structure:
// decerr_slave
//
//-----------------------------------------------------------------------------
`timescale 1ps/1ps
`default_nettype none
(* DowngradeIPIdentifiedWarnings="yes" *)
module axi_crossbar_v2_1_decerr_slave #
(
parameter integer C_AXI_ID_WIDTH = 1,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AXI_PROTOCOL = 0,
parameter integer C_RESP = 2'b11
)
(
input wire S_AXI_ACLK,
input wire S_AXI_ARESET,
input wire [(C_AXI_ID_WIDTH-1):0] S_AXI_AWID,
input wire S_AXI_AWVALID,
output wire S_AXI_AWREADY,
input wire S_AXI_WLAST,
input wire S_AXI_WVALID,
output wire S_AXI_WREADY,
output wire [(C_AXI_ID_WIDTH-1):0] S_AXI_BID,
output wire [1:0] S_AXI_BRESP,
output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER,
output wire S_AXI_BVALID,
input wire S_AXI_BREADY,
input wire [(C_AXI_ID_WIDTH-1):0] S_AXI_ARID,
input wire [7:0] S_AXI_ARLEN,
input wire S_AXI_ARVALID,
output wire S_AXI_ARREADY,
output wire [(C_AXI_ID_WIDTH-1):0] S_AXI_RID,
output wire [(C_AXI_DATA_WIDTH-1):0] S_AXI_RDATA,
output wire [1:0] S_AXI_RRESP,
output wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER,
output wire S_AXI_RLAST,
output wire S_AXI_RVALID,
input wire S_AXI_RREADY
);
reg s_axi_awready_i;
reg s_axi_wready_i;
reg s_axi_bvalid_i;
reg s_axi_arready_i;
reg s_axi_rvalid_i;
localparam P_WRITE_IDLE = 2'b00;
localparam P_WRITE_DATA = 2'b01;
localparam P_WRITE_RESP = 2'b10;
localparam P_READ_IDLE = 1'b0;
localparam P_READ_DATA = 1'b1;
localparam integer P_AXI4 = 0;
localparam integer P_AXI3 = 1;
localparam integer P_AXILITE = 2;
assign S_AXI_BRESP = C_RESP;
assign S_AXI_RRESP = C_RESP;
assign S_AXI_RDATA = {C_AXI_DATA_WIDTH{1'b0}};
assign S_AXI_BUSER = {C_AXI_BUSER_WIDTH{1'b0}};
assign S_AXI_RUSER = {C_AXI_RUSER_WIDTH{1'b0}};
assign S_AXI_AWREADY = s_axi_awready_i;
assign S_AXI_WREADY = s_axi_wready_i;
assign S_AXI_BVALID = s_axi_bvalid_i;
assign S_AXI_ARREADY = s_axi_arready_i;
assign S_AXI_RVALID = s_axi_rvalid_i;
generate
if (C_AXI_PROTOCOL == P_AXILITE) begin : gen_axilite
assign S_AXI_RLAST = 1'b1;
assign S_AXI_BID = 0;
assign S_AXI_RID = 0;
always @(posedge S_AXI_ACLK) begin
if (S_AXI_ARESET) begin
s_axi_awready_i <= 1'b0;
s_axi_wready_i <= 1'b0;
s_axi_bvalid_i <= 1'b0;
end else begin
if (s_axi_bvalid_i) begin
if (S_AXI_BREADY) begin
s_axi_bvalid_i <= 1'b0;
end
end else if (S_AXI_AWVALID & S_AXI_WVALID) begin
if (s_axi_awready_i) begin
s_axi_awready_i <= 1'b0;
s_axi_wready_i <= 1'b0;
s_axi_bvalid_i <= 1'b1;
end else begin
s_axi_awready_i <= 1'b1;
s_axi_wready_i <= 1'b1;
end
end
end
end
always @(posedge S_AXI_ACLK) begin
if (S_AXI_ARESET) begin
s_axi_arready_i <= 1'b0;
s_axi_rvalid_i <= 1'b0;
end else begin
if (s_axi_rvalid_i) begin
if (S_AXI_RREADY) begin
s_axi_rvalid_i <= 1'b0;
end
end else if (S_AXI_ARVALID & s_axi_arready_i) begin
s_axi_arready_i <= 1'b0;
s_axi_rvalid_i <= 1'b1;
end else begin
s_axi_arready_i <= 1'b1;
end
end
end
end else begin : gen_axi
reg s_axi_rlast_i;
reg [(C_AXI_ID_WIDTH-1):0] s_axi_bid_i;
reg [(C_AXI_ID_WIDTH-1):0] s_axi_rid_i;
reg [7:0] read_cnt;
reg [1:0] write_cs;
reg [0:0] read_cs;
assign S_AXI_RLAST = s_axi_rlast_i;
assign S_AXI_BID = s_axi_bid_i;
assign S_AXI_RID = s_axi_rid_i;
always @(posedge S_AXI_ACLK) begin
if (S_AXI_ARESET) begin
write_cs <= P_WRITE_IDLE;
s_axi_awready_i <= 1'b0;
s_axi_wready_i <= 1'b0;
s_axi_bvalid_i <= 1'b0;
s_axi_bid_i <= 0;
end else begin
case (write_cs)
P_WRITE_IDLE:
begin
if (S_AXI_AWVALID & s_axi_awready_i) begin
s_axi_awready_i <= 1'b0;
s_axi_bid_i <= S_AXI_AWID;
s_axi_wready_i <= 1'b1;
write_cs <= P_WRITE_DATA;
end else begin
s_axi_awready_i <= 1'b1;
end
end
P_WRITE_DATA:
begin
if (S_AXI_WVALID & S_AXI_WLAST) begin
s_axi_wready_i <= 1'b0;
s_axi_bvalid_i <= 1'b1;
write_cs <= P_WRITE_RESP;
end
end
P_WRITE_RESP:
begin
if (S_AXI_BREADY) begin
s_axi_bvalid_i <= 1'b0;
s_axi_awready_i <= 1'b1;
write_cs <= P_WRITE_IDLE;
end
end
endcase
end
end
always @(posedge S_AXI_ACLK) begin
if (S_AXI_ARESET) begin
read_cs <= P_READ_IDLE;
s_axi_arready_i <= 1'b0;
s_axi_rvalid_i <= 1'b0;
s_axi_rlast_i <= 1'b0;
s_axi_rid_i <= 0;
read_cnt <= 0;
end else begin
case (read_cs)
P_READ_IDLE:
begin
if (S_AXI_ARVALID & s_axi_arready_i) begin
s_axi_arready_i <= 1'b0;
s_axi_rid_i <= S_AXI_ARID;
read_cnt <= S_AXI_ARLEN;
s_axi_rvalid_i <= 1'b1;
if (S_AXI_ARLEN == 0) begin
s_axi_rlast_i <= 1'b1;
end else begin
s_axi_rlast_i <= 1'b0;
end
read_cs <= P_READ_DATA;
end else begin
s_axi_arready_i <= 1'b1;
end
end
P_READ_DATA:
begin
if (S_AXI_RREADY) begin
if (read_cnt == 0) begin
s_axi_rvalid_i <= 1'b0;
s_axi_rlast_i <= 1'b0;
s_axi_arready_i <= 1'b1;
read_cs <= P_READ_IDLE;
end else begin
if (read_cnt == 1) begin
s_axi_rlast_i <= 1'b1;
end
read_cnt <= read_cnt - 1;
end
end
end
endcase
end
end
end
endgenerate
endmodule
`default_nettype wire
|
// -- (c) Copyright 2009 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// File name: si_transactor.v
//
// Description:
// This module manages multi-threaded transactions for one SI-slot.
// The module interface consists of a 1-slave to 1-master address channel, plus a
// (M+1)-master (from M MI-slots plus error handler) to 1-slave response channel.
// The module maintains transaction thread control registers that count the
// number of outstanding transations for each thread and the target MI-slot.
// On the address channel, the module decodes addresses to select among MI-slots
// accessible to the SI-slot where it is instantiated.
// It then qualifies whether each received transaction
// should be propagated as a request to the address channel arbiter.
// Transactions are blocked while there is any outstanding transaction to a
// different slave (MI-slot) for the requested ID thread (for deadlock avoidance).
// On the response channel, the module mulitplexes transfers from each of the
// MI-slots whenever a transfer targets the ID of an active thread,
// arbitrating between MI-slots if multiple threads respond concurrently.
//
//--------------------------------------------------------------------------
//
// Structure:
// si_transactor
// addr_decoder
// comparator_static
// mux_enc
// axic_srl_fifo
// arbiter_resp
//
//-----------------------------------------------------------------------------
`timescale 1ps/1ps
`default_nettype none
(* DowngradeIPIdentifiedWarnings="yes" *)
module axi_crossbar_v2_1_si_transactor #
(
parameter C_FAMILY = "none",
parameter integer C_SI = 0, // SI-slot number of current instance.
parameter integer C_DIR = 0, // Direction: 0 = Write; 1 = Read.
parameter integer C_NUM_ADDR_RANGES = 1,
parameter integer C_NUM_M = 2,
parameter integer C_NUM_M_LOG = 1,
parameter integer C_ACCEPTANCE = 1, // Acceptance limit of this SI-slot.
parameter integer C_ACCEPTANCE_LOG = 0, // Width of acceptance counter for this SI-slot.
parameter integer C_ID_WIDTH = 1,
parameter integer C_THREAD_ID_WIDTH = 0,
parameter integer C_ADDR_WIDTH = 32,
parameter integer C_AMESG_WIDTH = 1, // Used for AW or AR channel payload, depending on instantiation.
parameter integer C_RMESG_WIDTH = 1, // Used for B or R channel payload, depending on instantiation.
parameter [C_ID_WIDTH-1:0] C_BASE_ID = {C_ID_WIDTH{1'b0}},
parameter [C_ID_WIDTH-1:0] C_HIGH_ID = {C_ID_WIDTH{1'b0}},
parameter [C_NUM_M*C_NUM_ADDR_RANGES*64-1:0] C_BASE_ADDR = {C_NUM_M*C_NUM_ADDR_RANGES*64{1'b1}},
parameter [C_NUM_M*C_NUM_ADDR_RANGES*64-1:0] C_HIGH_ADDR = {C_NUM_M*C_NUM_ADDR_RANGES*64{1'b0}},
parameter integer C_SINGLE_THREAD = 0,
parameter [C_NUM_M-1:0] C_TARGET_QUAL = {C_NUM_M{1'b1}},
parameter [C_NUM_M*32-1:0] C_M_AXI_SECURE = {C_NUM_M{32'h00000000}},
parameter integer C_RANGE_CHECK = 0,
parameter integer C_ADDR_DECODE =0,
parameter [C_NUM_M*32-1:0] C_ERR_MODE = {C_NUM_M{32'h00000000}},
parameter integer C_DEBUG = 1
)
(
// Global Signals
input wire ACLK,
input wire ARESET,
// Slave Address Channel Interface Ports
input wire [C_ID_WIDTH-1:0] S_AID,
input wire [C_ADDR_WIDTH-1:0] S_AADDR,
input wire [8-1:0] S_ALEN,
input wire [3-1:0] S_ASIZE,
input wire [2-1:0] S_ABURST,
input wire [2-1:0] S_ALOCK,
input wire [3-1:0] S_APROT,
// input wire [4-1:0] S_AREGION,
input wire [C_AMESG_WIDTH-1:0] S_AMESG,
input wire S_AVALID,
output wire S_AREADY,
// Master Address Channel Interface Ports
output wire [C_ID_WIDTH-1:0] M_AID,
output wire [C_ADDR_WIDTH-1:0] M_AADDR,
output wire [8-1:0] M_ALEN,
output wire [3-1:0] M_ASIZE,
output wire [2-1:0] M_ALOCK,
output wire [3-1:0] M_APROT,
output wire [4-1:0] M_AREGION,
output wire [C_AMESG_WIDTH-1:0] M_AMESG,
output wire [(C_NUM_M+1)-1:0] M_ATARGET_HOT,
output wire [(C_NUM_M_LOG+1)-1:0] M_ATARGET_ENC,
output wire [7:0] M_AERROR,
output wire M_AVALID_QUAL,
output wire M_AVALID,
input wire M_AREADY,
// Slave Response Channel Interface Ports
output wire [C_ID_WIDTH-1:0] S_RID,
output wire [C_RMESG_WIDTH-1:0] S_RMESG,
output wire S_RLAST,
output wire S_RVALID,
input wire S_RREADY,
// Master Response Channel Interface Ports
input wire [(C_NUM_M+1)*C_ID_WIDTH-1:0] M_RID,
input wire [(C_NUM_M+1)*C_RMESG_WIDTH-1:0] M_RMESG,
input wire [(C_NUM_M+1)-1:0] M_RLAST,
input wire [(C_NUM_M+1)-1:0] M_RVALID,
output wire [(C_NUM_M+1)-1:0] M_RREADY,
input wire [(C_NUM_M+1)-1:0] M_RTARGET, // Does response ID from each MI-slot target this SI slot?
input wire [8-1:0] DEBUG_A_TRANS_SEQ
);
localparam integer P_WRITE = 0;
localparam integer P_READ = 1;
localparam integer P_RMUX_MESG_WIDTH = C_ID_WIDTH + C_RMESG_WIDTH + 1;
localparam [31:0] P_AXILITE_ERRMODE = 32'h00000001;
localparam integer P_NONSECURE_BIT = 1;
localparam integer P_NUM_M_LOG_M1 = C_NUM_M_LOG ? C_NUM_M_LOG : 1;
localparam [C_NUM_M-1:0] P_M_AXILITE = f_m_axilite(0); // Mask of AxiLite MI-slots
localparam [1:0] P_FIXED = 2'b00;
localparam integer P_NUM_M_DE_LOG = f_ceil_log2(C_NUM_M+1);
localparam integer P_THREAD_ID_WIDTH_M1 = (C_THREAD_ID_WIDTH > 0) ? C_THREAD_ID_WIDTH : 1;
localparam integer P_NUM_ID_VAL = 2**C_THREAD_ID_WIDTH;
localparam integer P_NUM_THREADS = (P_NUM_ID_VAL < C_ACCEPTANCE) ? P_NUM_ID_VAL : C_ACCEPTANCE;
localparam [C_NUM_M-1:0] P_M_SECURE_MASK = f_bit32to1_mi(C_M_AXI_SECURE); // Mask of secure MI-slots
// Ceiling of log2(x)
function integer f_ceil_log2
(
input integer x
);
integer acc;
begin
acc=0;
while ((2**acc) < x)
acc = acc + 1;
f_ceil_log2 = acc;
end
endfunction
// AxiLite protocol flag vector
function [C_NUM_M-1:0] f_m_axilite
(
input integer null_arg
);
integer mi;
begin
for (mi=0; mi<C_NUM_M; mi=mi+1) begin
f_m_axilite[mi] = (C_ERR_MODE[mi*32+:32] == P_AXILITE_ERRMODE);
end
end
endfunction
// Convert Bit32 vector of range [0,1] to Bit1 vector on MI
function [C_NUM_M-1:0] f_bit32to1_mi
(input [C_NUM_M*32-1:0] vec32);
integer mi;
begin
for (mi=0; mi<C_NUM_M; mi=mi+1) begin
f_bit32to1_mi[mi] = vec32[mi*32];
end
end
endfunction
wire [C_NUM_M-1:0] target_mi_hot;
wire [P_NUM_M_LOG_M1-1:0] target_mi_enc;
wire [(C_NUM_M+1)-1:0] m_atarget_hot_i;
wire [(P_NUM_M_DE_LOG)-1:0] m_atarget_enc_i;
wire match;
wire [3:0] target_region;
wire [3:0] m_aregion_i;
wire m_avalid_i;
wire s_aready_i;
wire any_error;
wire s_rvalid_i;
wire [C_ID_WIDTH-1:0] s_rid_i;
wire s_rlast_i;
wire [P_RMUX_MESG_WIDTH-1:0] si_rmux_mesg;
wire [(C_NUM_M+1)*P_RMUX_MESG_WIDTH-1:0] mi_rmux_mesg;
wire [(C_NUM_M+1)-1:0] m_rvalid_qual;
wire [(C_NUM_M+1)-1:0] m_rready_arb;
wire [(C_NUM_M+1)-1:0] m_rready_i;
wire target_secure;
wire target_axilite;
wire m_avalid_qual_i;
wire [7:0] m_aerror_i;
genvar gen_mi;
genvar gen_thread;
generate
if (C_ADDR_DECODE) begin : gen_addr_decoder
axi_crossbar_v2_1_addr_decoder #
(
.C_FAMILY (C_FAMILY),
.C_NUM_TARGETS (C_NUM_M),
.C_NUM_TARGETS_LOG (P_NUM_M_LOG_M1),
.C_NUM_RANGES (C_NUM_ADDR_RANGES),
.C_ADDR_WIDTH (C_ADDR_WIDTH),
.C_TARGET_ENC (1),
.C_TARGET_HOT (1),
.C_REGION_ENC (1),
.C_BASE_ADDR (C_BASE_ADDR),
.C_HIGH_ADDR (C_HIGH_ADDR),
.C_TARGET_QUAL (C_TARGET_QUAL),
.C_RESOLUTION (2)
)
addr_decoder_inst
(
.ADDR (S_AADDR),
.TARGET_HOT (target_mi_hot),
.TARGET_ENC (target_mi_enc),
.MATCH (match),
.REGION (target_region)
);
end else begin : gen_no_addr_decoder
assign target_mi_hot = 1;
assign target_mi_enc = 0;
assign match = 1'b1;
assign target_region = 4'b0000;
end
endgenerate
assign target_secure = |(target_mi_hot & P_M_SECURE_MASK);
assign target_axilite = |(target_mi_hot & P_M_AXILITE);
assign any_error = C_RANGE_CHECK && (m_aerror_i != 0); // DECERR if error-detection enabled and any error condition.
assign m_aerror_i[0] = ~match; // Invalid target address
assign m_aerror_i[1] = target_secure && S_APROT[P_NONSECURE_BIT]; // TrustZone violation
assign m_aerror_i[2] = target_axilite && ((S_ALEN != 0) ||
(S_ASIZE[1:0] == 2'b11) || (S_ASIZE[2] == 1'b1)); // AxiLite access violation
assign m_aerror_i[7:3] = 5'b00000; // Reserved
assign M_ATARGET_HOT = m_atarget_hot_i;
assign m_atarget_hot_i = (any_error ? {1'b1, {C_NUM_M{1'b0}}} : {1'b0, target_mi_hot});
assign m_atarget_enc_i = (any_error ? C_NUM_M : target_mi_enc);
assign M_AVALID = m_avalid_i;
assign m_avalid_i = S_AVALID;
assign M_AVALID_QUAL = m_avalid_qual_i;
assign S_AREADY = s_aready_i;
assign s_aready_i = M_AREADY;
assign M_AERROR = m_aerror_i;
assign M_ATARGET_ENC = m_atarget_enc_i;
assign m_aregion_i = any_error ? 4'b0000 : (C_ADDR_DECODE != 0) ? target_region : 4'b0000;
// assign m_aregion_i = any_error ? 4'b0000 : (C_ADDR_DECODE != 0) ? target_region : S_AREGION;
assign M_AREGION = m_aregion_i;
assign M_AID = S_AID;
assign M_AADDR = S_AADDR;
assign M_ALEN = S_ALEN;
assign M_ASIZE = S_ASIZE;
assign M_ALOCK = S_ALOCK;
assign M_APROT = S_APROT;
assign M_AMESG = S_AMESG;
assign S_RVALID = s_rvalid_i;
assign M_RREADY = m_rready_i;
assign s_rid_i = si_rmux_mesg[0+:C_ID_WIDTH];
assign S_RMESG = si_rmux_mesg[C_ID_WIDTH+:C_RMESG_WIDTH];
assign s_rlast_i = si_rmux_mesg[C_ID_WIDTH+C_RMESG_WIDTH+:1];
assign S_RID = s_rid_i;
assign S_RLAST = s_rlast_i;
assign m_rvalid_qual = M_RVALID & M_RTARGET;
assign m_rready_i = m_rready_arb & M_RTARGET;
generate
for (gen_mi=0; gen_mi<(C_NUM_M+1); gen_mi=gen_mi+1) begin : gen_rmesg_mi
// Note: Concatenation of mesg signals is from MSB to LSB; assignments that chop mesg signals appear in opposite order.
assign mi_rmux_mesg[gen_mi*P_RMUX_MESG_WIDTH+:P_RMUX_MESG_WIDTH] = {
M_RLAST[gen_mi],
M_RMESG[gen_mi*C_RMESG_WIDTH+:C_RMESG_WIDTH],
M_RID[gen_mi*C_ID_WIDTH+:C_ID_WIDTH]
};
end // gen_rmesg_mi
if (C_ACCEPTANCE == 1) begin : gen_single_issue
wire cmd_push;
wire cmd_pop;
reg [(C_NUM_M+1)-1:0] active_target_hot;
reg [P_NUM_M_DE_LOG-1:0] active_target_enc;
reg accept_cnt;
reg [8-1:0] debug_r_beat_cnt_i;
wire [8-1:0] debug_r_trans_seq_i;
assign cmd_push = M_AREADY;
assign cmd_pop = s_rvalid_i && S_RREADY && s_rlast_i; // Pop command queue if end of read burst
assign m_avalid_qual_i = ~accept_cnt | cmd_pop; // Ready for arbitration if no outstanding transaction or transaction being completed
always @(posedge ACLK) begin
if (ARESET) begin
accept_cnt <= 1'b0;
active_target_enc <= 0;
active_target_hot <= 0;
end else begin
if (cmd_push) begin
active_target_enc <= m_atarget_enc_i;
active_target_hot <= m_atarget_hot_i;
accept_cnt <= 1'b1;
end else if (cmd_pop) begin
accept_cnt <= 1'b0;
end
end
end // Clocked process
assign m_rready_arb = active_target_hot & {(C_NUM_M+1){S_RREADY}};
assign s_rvalid_i = |(active_target_hot & m_rvalid_qual);
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY (C_FAMILY),
.C_RATIO (C_NUM_M+1),
.C_SEL_WIDTH (P_NUM_M_DE_LOG),
.C_DATA_WIDTH (P_RMUX_MESG_WIDTH)
) mux_resp_single_issue
(
.S (active_target_enc),
.A (mi_rmux_mesg),
.O (si_rmux_mesg),
.OE (1'b1)
);
if (C_DEBUG) begin : gen_debug_r_single_issue
// DEBUG READ BEAT COUNTER (only meaningful for R-channel)
always @(posedge ACLK) begin
if (ARESET) begin
debug_r_beat_cnt_i <= 0;
end else if (C_DIR == P_READ) begin
if (s_rvalid_i && S_RREADY) begin
if (s_rlast_i) begin
debug_r_beat_cnt_i <= 0;
end else begin
debug_r_beat_cnt_i <= debug_r_beat_cnt_i + 1;
end
end
end else begin
debug_r_beat_cnt_i <= 0;
end
end // Clocked process
// DEBUG R-CHANNEL TRANSACTION SEQUENCE FIFO
axi_data_fifo_v2_1_axic_srl_fifo #
(
.C_FAMILY (C_FAMILY),
.C_FIFO_WIDTH (8),
.C_FIFO_DEPTH_LOG (C_ACCEPTANCE_LOG+1),
.C_USE_FULL (0)
)
debug_r_seq_fifo_single_issue
(
.ACLK (ACLK),
.ARESET (ARESET),
.S_MESG (DEBUG_A_TRANS_SEQ),
.S_VALID (cmd_push),
.S_READY (),
.M_MESG (debug_r_trans_seq_i),
.M_VALID (),
.M_READY (cmd_pop)
);
end // gen_debug_r
end else if (C_SINGLE_THREAD || (P_NUM_ID_VAL==1)) begin : gen_single_thread
wire s_avalid_en;
wire cmd_push;
wire cmd_pop;
reg [C_ID_WIDTH-1:0] active_id;
reg [(C_NUM_M+1)-1:0] active_target_hot;
reg [P_NUM_M_DE_LOG-1:0] active_target_enc;
reg [4-1:0] active_region;
reg [(C_ACCEPTANCE_LOG+1)-1:0] accept_cnt;
reg [8-1:0] debug_r_beat_cnt_i;
wire [8-1:0] debug_r_trans_seq_i;
wire accept_limit ;
// Implement single-region-per-ID cyclic dependency avoidance method.
assign s_avalid_en = // This transaction is qualified to request arbitration if ...
(accept_cnt == 0) || // Either there are no outstanding transactions, or ...
(((P_NUM_ID_VAL==1) || (S_AID[P_THREAD_ID_WIDTH_M1-1:0] == active_id[P_THREAD_ID_WIDTH_M1-1:0])) && // the current transaction ID matches the previous, and ...
(active_target_enc == m_atarget_enc_i) && // all outstanding transactions are to the same target MI ...
(active_region == m_aregion_i)); // and to the same REGION.
assign cmd_push = M_AREADY;
assign cmd_pop = s_rvalid_i && S_RREADY && s_rlast_i; // Pop command queue if end of read burst
assign accept_limit = (accept_cnt == C_ACCEPTANCE) & ~cmd_pop; // Allow next push if a transaction is currently being completed
assign m_avalid_qual_i = s_avalid_en & ~accept_limit;
always @(posedge ACLK) begin
if (ARESET) begin
accept_cnt <= 0;
active_id <= 0;
active_target_enc <= 0;
active_target_hot <= 0;
active_region <= 0;
end else begin
if (cmd_push) begin
active_id <= S_AID[P_THREAD_ID_WIDTH_M1-1:0];
active_target_enc <= m_atarget_enc_i;
active_target_hot <= m_atarget_hot_i;
active_region <= m_aregion_i;
if (~cmd_pop) begin
accept_cnt <= accept_cnt + 1;
end
end else begin
if (cmd_pop & (accept_cnt != 0)) begin
accept_cnt <= accept_cnt - 1;
end
end
end
end // Clocked process
assign m_rready_arb = active_target_hot & {(C_NUM_M+1){S_RREADY}};
assign s_rvalid_i = |(active_target_hot & m_rvalid_qual);
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY (C_FAMILY),
.C_RATIO (C_NUM_M+1),
.C_SEL_WIDTH (P_NUM_M_DE_LOG),
.C_DATA_WIDTH (P_RMUX_MESG_WIDTH)
) mux_resp_single_thread
(
.S (active_target_enc),
.A (mi_rmux_mesg),
.O (si_rmux_mesg),
.OE (1'b1)
);
if (C_DEBUG) begin : gen_debug_r_single_thread
// DEBUG READ BEAT COUNTER (only meaningful for R-channel)
always @(posedge ACLK) begin
if (ARESET) begin
debug_r_beat_cnt_i <= 0;
end else if (C_DIR == P_READ) begin
if (s_rvalid_i && S_RREADY) begin
if (s_rlast_i) begin
debug_r_beat_cnt_i <= 0;
end else begin
debug_r_beat_cnt_i <= debug_r_beat_cnt_i + 1;
end
end
end else begin
debug_r_beat_cnt_i <= 0;
end
end // Clocked process
// DEBUG R-CHANNEL TRANSACTION SEQUENCE FIFO
axi_data_fifo_v2_1_axic_srl_fifo #
(
.C_FAMILY (C_FAMILY),
.C_FIFO_WIDTH (8),
.C_FIFO_DEPTH_LOG (C_ACCEPTANCE_LOG+1),
.C_USE_FULL (0)
)
debug_r_seq_fifo_single_thread
(
.ACLK (ACLK),
.ARESET (ARESET),
.S_MESG (DEBUG_A_TRANS_SEQ),
.S_VALID (cmd_push),
.S_READY (),
.M_MESG (debug_r_trans_seq_i),
.M_VALID (),
.M_READY (cmd_pop)
);
end // gen_debug_r
end else begin : gen_multi_thread
wire [(P_NUM_M_DE_LOG)-1:0] resp_select;
reg [(C_ACCEPTANCE_LOG+1)-1:0] accept_cnt;
wire [P_NUM_THREADS-1:0] s_avalid_en;
wire [P_NUM_THREADS-1:0] thread_valid;
wire [P_NUM_THREADS-1:0] aid_match;
wire [P_NUM_THREADS-1:0] rid_match;
wire [P_NUM_THREADS-1:0] cmd_push;
wire [P_NUM_THREADS-1:0] cmd_pop;
wire [P_NUM_THREADS:0] accum_push;
reg [P_NUM_THREADS*C_ID_WIDTH-1:0] active_id;
reg [P_NUM_THREADS*8-1:0] active_target;
reg [P_NUM_THREADS*8-1:0] active_region;
reg [P_NUM_THREADS*8-1:0] active_cnt;
reg [P_NUM_THREADS*8-1:0] debug_r_beat_cnt_i;
wire [P_NUM_THREADS*8-1:0] debug_r_trans_seq_i;
wire any_aid_match;
wire any_rid_match;
wire accept_limit;
wire any_push;
wire any_pop;
axi_crossbar_v2_1_arbiter_resp # // Multi-thread response arbiter
(
.C_FAMILY (C_FAMILY),
.C_NUM_S (C_NUM_M+1),
.C_NUM_S_LOG (P_NUM_M_DE_LOG),
.C_GRANT_ENC (1),
.C_GRANT_HOT (0)
)
arbiter_resp_inst
(
.ACLK (ACLK),
.ARESET (ARESET),
.S_VALID (m_rvalid_qual),
.S_READY (m_rready_arb),
.M_GRANT_HOT (),
.M_GRANT_ENC (resp_select),
.M_VALID (s_rvalid_i),
.M_READY (S_RREADY)
);
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY (C_FAMILY),
.C_RATIO (C_NUM_M+1),
.C_SEL_WIDTH (P_NUM_M_DE_LOG),
.C_DATA_WIDTH (P_RMUX_MESG_WIDTH)
) mux_resp_multi_thread
(
.S (resp_select),
.A (mi_rmux_mesg),
.O (si_rmux_mesg),
.OE (1'b1)
);
assign any_push = M_AREADY;
assign any_pop = s_rvalid_i & S_RREADY & s_rlast_i;
assign accept_limit = (accept_cnt == C_ACCEPTANCE) & ~any_pop; // Allow next push if a transaction is currently being completed
assign m_avalid_qual_i = (&s_avalid_en) & ~accept_limit; // The current request is qualified for arbitration when it is qualified against all outstanding transaction threads.
assign any_aid_match = |aid_match;
assign any_rid_match = |rid_match;
assign accum_push[0] = 1'b0;
always @(posedge ACLK) begin
if (ARESET) begin
accept_cnt <= 0;
end else begin
if (any_push & ~any_pop) begin
accept_cnt <= accept_cnt + 1;
end else if (any_pop & ~any_push & (accept_cnt != 0)) begin
accept_cnt <= accept_cnt - 1;
end
end
end // Clocked process
for (gen_thread=0; gen_thread<P_NUM_THREADS; gen_thread=gen_thread+1) begin : gen_thread_loop
assign thread_valid[gen_thread] = (active_cnt[gen_thread*8 +: C_ACCEPTANCE_LOG+1] != 0);
assign aid_match[gen_thread] = // The currect thread is active for the requested transaction if
thread_valid[gen_thread] && // this thread slot is not vacant, and
((S_AID[P_THREAD_ID_WIDTH_M1-1:0]) == active_id[gen_thread*C_ID_WIDTH+:P_THREAD_ID_WIDTH_M1]); // the requested ID matches the active ID for this thread.
assign s_avalid_en[gen_thread] = // The current request is qualified against this thread slot if
(~aid_match[gen_thread]) || // This thread slot is not active for the requested ID, or
((m_atarget_enc_i == active_target[gen_thread*8+:P_NUM_M_DE_LOG]) && // this outstanding transaction was to the same target and
(m_aregion_i == active_region[gen_thread*8+:4])); // to the same region.
// cmd_push points to the position of either the active thread for the requested ID or the lowest vacant thread slot.
assign accum_push[gen_thread+1] = accum_push[gen_thread] | ~thread_valid[gen_thread];
assign cmd_push[gen_thread] = any_push & (aid_match[gen_thread] | ((~any_aid_match) & ~thread_valid[gen_thread] & ~accum_push[gen_thread]));
// cmd_pop points to the position of the active thread that matches the current RID.
assign rid_match[gen_thread] = thread_valid[gen_thread] & ((s_rid_i[P_THREAD_ID_WIDTH_M1-1:0]) == active_id[gen_thread*C_ID_WIDTH+:P_THREAD_ID_WIDTH_M1]);
assign cmd_pop[gen_thread] = any_pop & rid_match[gen_thread];
always @(posedge ACLK) begin
if (ARESET) begin
active_id[gen_thread*C_ID_WIDTH+:C_ID_WIDTH] <= 0;
active_target[gen_thread*8+:8] <= 0;
active_region[gen_thread*8+:8] <= 0;
active_cnt[gen_thread*8+:8] <= 0;
end else begin
if (cmd_push[gen_thread]) begin
active_id[gen_thread*C_ID_WIDTH+:P_THREAD_ID_WIDTH_M1] <= S_AID[P_THREAD_ID_WIDTH_M1-1:0];
active_target[gen_thread*8+:P_NUM_M_DE_LOG] <= m_atarget_enc_i;
active_region[gen_thread*8+:4] <= m_aregion_i;
if (~cmd_pop[gen_thread]) begin
active_cnt[gen_thread*8+:C_ACCEPTANCE_LOG+1] <= active_cnt[gen_thread*8+:C_ACCEPTANCE_LOG+1] + 1;
end
end else if (cmd_pop[gen_thread]) begin
active_cnt[gen_thread*8+:C_ACCEPTANCE_LOG+1] <= active_cnt[gen_thread*8+:C_ACCEPTANCE_LOG+1] - 1;
end
end
end // Clocked process
if (C_DEBUG) begin : gen_debug_r_multi_thread
// DEBUG READ BEAT COUNTER (only meaningful for R-channel)
always @(posedge ACLK) begin
if (ARESET) begin
debug_r_beat_cnt_i[gen_thread*8+:8] <= 0;
end else if (C_DIR == P_READ) begin
if (s_rvalid_i & S_RREADY & rid_match[gen_thread]) begin
if (s_rlast_i) begin
debug_r_beat_cnt_i[gen_thread*8+:8] <= 0;
end else begin
debug_r_beat_cnt_i[gen_thread*8+:8] <= debug_r_beat_cnt_i[gen_thread*8+:8] + 1;
end
end
end else begin
debug_r_beat_cnt_i[gen_thread*8+:8] <= 0;
end
end // Clocked process
// DEBUG R-CHANNEL TRANSACTION SEQUENCE FIFO
axi_data_fifo_v2_1_axic_srl_fifo #
(
.C_FAMILY (C_FAMILY),
.C_FIFO_WIDTH (8),
.C_FIFO_DEPTH_LOG (C_ACCEPTANCE_LOG+1),
.C_USE_FULL (0)
)
debug_r_seq_fifo_multi_thread
(
.ACLK (ACLK),
.ARESET (ARESET),
.S_MESG (DEBUG_A_TRANS_SEQ),
.S_VALID (cmd_push[gen_thread]),
.S_READY (),
.M_MESG (debug_r_trans_seq_i[gen_thread*8+:8]),
.M_VALID (),
.M_READY (cmd_pop[gen_thread])
);
end // gen_debug_r_multi_thread
end // Next gen_thread_loop
end // thread control
endgenerate
endmodule
`default_nettype wire
|
// -- (c) Copyright 2009 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// File name: si_transactor.v
//
// Description:
// This module manages multi-threaded transactions for one SI-slot.
// The module interface consists of a 1-slave to 1-master address channel, plus a
// (M+1)-master (from M MI-slots plus error handler) to 1-slave response channel.
// The module maintains transaction thread control registers that count the
// number of outstanding transations for each thread and the target MI-slot.
// On the address channel, the module decodes addresses to select among MI-slots
// accessible to the SI-slot where it is instantiated.
// It then qualifies whether each received transaction
// should be propagated as a request to the address channel arbiter.
// Transactions are blocked while there is any outstanding transaction to a
// different slave (MI-slot) for the requested ID thread (for deadlock avoidance).
// On the response channel, the module mulitplexes transfers from each of the
// MI-slots whenever a transfer targets the ID of an active thread,
// arbitrating between MI-slots if multiple threads respond concurrently.
//
//--------------------------------------------------------------------------
//
// Structure:
// si_transactor
// addr_decoder
// comparator_static
// mux_enc
// axic_srl_fifo
// arbiter_resp
//
//-----------------------------------------------------------------------------
`timescale 1ps/1ps
`default_nettype none
(* DowngradeIPIdentifiedWarnings="yes" *)
module axi_crossbar_v2_1_si_transactor #
(
parameter C_FAMILY = "none",
parameter integer C_SI = 0, // SI-slot number of current instance.
parameter integer C_DIR = 0, // Direction: 0 = Write; 1 = Read.
parameter integer C_NUM_ADDR_RANGES = 1,
parameter integer C_NUM_M = 2,
parameter integer C_NUM_M_LOG = 1,
parameter integer C_ACCEPTANCE = 1, // Acceptance limit of this SI-slot.
parameter integer C_ACCEPTANCE_LOG = 0, // Width of acceptance counter for this SI-slot.
parameter integer C_ID_WIDTH = 1,
parameter integer C_THREAD_ID_WIDTH = 0,
parameter integer C_ADDR_WIDTH = 32,
parameter integer C_AMESG_WIDTH = 1, // Used for AW or AR channel payload, depending on instantiation.
parameter integer C_RMESG_WIDTH = 1, // Used for B or R channel payload, depending on instantiation.
parameter [C_ID_WIDTH-1:0] C_BASE_ID = {C_ID_WIDTH{1'b0}},
parameter [C_ID_WIDTH-1:0] C_HIGH_ID = {C_ID_WIDTH{1'b0}},
parameter [C_NUM_M*C_NUM_ADDR_RANGES*64-1:0] C_BASE_ADDR = {C_NUM_M*C_NUM_ADDR_RANGES*64{1'b1}},
parameter [C_NUM_M*C_NUM_ADDR_RANGES*64-1:0] C_HIGH_ADDR = {C_NUM_M*C_NUM_ADDR_RANGES*64{1'b0}},
parameter integer C_SINGLE_THREAD = 0,
parameter [C_NUM_M-1:0] C_TARGET_QUAL = {C_NUM_M{1'b1}},
parameter [C_NUM_M*32-1:0] C_M_AXI_SECURE = {C_NUM_M{32'h00000000}},
parameter integer C_RANGE_CHECK = 0,
parameter integer C_ADDR_DECODE =0,
parameter [C_NUM_M*32-1:0] C_ERR_MODE = {C_NUM_M{32'h00000000}},
parameter integer C_DEBUG = 1
)
(
// Global Signals
input wire ACLK,
input wire ARESET,
// Slave Address Channel Interface Ports
input wire [C_ID_WIDTH-1:0] S_AID,
input wire [C_ADDR_WIDTH-1:0] S_AADDR,
input wire [8-1:0] S_ALEN,
input wire [3-1:0] S_ASIZE,
input wire [2-1:0] S_ABURST,
input wire [2-1:0] S_ALOCK,
input wire [3-1:0] S_APROT,
// input wire [4-1:0] S_AREGION,
input wire [C_AMESG_WIDTH-1:0] S_AMESG,
input wire S_AVALID,
output wire S_AREADY,
// Master Address Channel Interface Ports
output wire [C_ID_WIDTH-1:0] M_AID,
output wire [C_ADDR_WIDTH-1:0] M_AADDR,
output wire [8-1:0] M_ALEN,
output wire [3-1:0] M_ASIZE,
output wire [2-1:0] M_ALOCK,
output wire [3-1:0] M_APROT,
output wire [4-1:0] M_AREGION,
output wire [C_AMESG_WIDTH-1:0] M_AMESG,
output wire [(C_NUM_M+1)-1:0] M_ATARGET_HOT,
output wire [(C_NUM_M_LOG+1)-1:0] M_ATARGET_ENC,
output wire [7:0] M_AERROR,
output wire M_AVALID_QUAL,
output wire M_AVALID,
input wire M_AREADY,
// Slave Response Channel Interface Ports
output wire [C_ID_WIDTH-1:0] S_RID,
output wire [C_RMESG_WIDTH-1:0] S_RMESG,
output wire S_RLAST,
output wire S_RVALID,
input wire S_RREADY,
// Master Response Channel Interface Ports
input wire [(C_NUM_M+1)*C_ID_WIDTH-1:0] M_RID,
input wire [(C_NUM_M+1)*C_RMESG_WIDTH-1:0] M_RMESG,
input wire [(C_NUM_M+1)-1:0] M_RLAST,
input wire [(C_NUM_M+1)-1:0] M_RVALID,
output wire [(C_NUM_M+1)-1:0] M_RREADY,
input wire [(C_NUM_M+1)-1:0] M_RTARGET, // Does response ID from each MI-slot target this SI slot?
input wire [8-1:0] DEBUG_A_TRANS_SEQ
);
localparam integer P_WRITE = 0;
localparam integer P_READ = 1;
localparam integer P_RMUX_MESG_WIDTH = C_ID_WIDTH + C_RMESG_WIDTH + 1;
localparam [31:0] P_AXILITE_ERRMODE = 32'h00000001;
localparam integer P_NONSECURE_BIT = 1;
localparam integer P_NUM_M_LOG_M1 = C_NUM_M_LOG ? C_NUM_M_LOG : 1;
localparam [C_NUM_M-1:0] P_M_AXILITE = f_m_axilite(0); // Mask of AxiLite MI-slots
localparam [1:0] P_FIXED = 2'b00;
localparam integer P_NUM_M_DE_LOG = f_ceil_log2(C_NUM_M+1);
localparam integer P_THREAD_ID_WIDTH_M1 = (C_THREAD_ID_WIDTH > 0) ? C_THREAD_ID_WIDTH : 1;
localparam integer P_NUM_ID_VAL = 2**C_THREAD_ID_WIDTH;
localparam integer P_NUM_THREADS = (P_NUM_ID_VAL < C_ACCEPTANCE) ? P_NUM_ID_VAL : C_ACCEPTANCE;
localparam [C_NUM_M-1:0] P_M_SECURE_MASK = f_bit32to1_mi(C_M_AXI_SECURE); // Mask of secure MI-slots
// Ceiling of log2(x)
function integer f_ceil_log2
(
input integer x
);
integer acc;
begin
acc=0;
while ((2**acc) < x)
acc = acc + 1;
f_ceil_log2 = acc;
end
endfunction
// AxiLite protocol flag vector
function [C_NUM_M-1:0] f_m_axilite
(
input integer null_arg
);
integer mi;
begin
for (mi=0; mi<C_NUM_M; mi=mi+1) begin
f_m_axilite[mi] = (C_ERR_MODE[mi*32+:32] == P_AXILITE_ERRMODE);
end
end
endfunction
// Convert Bit32 vector of range [0,1] to Bit1 vector on MI
function [C_NUM_M-1:0] f_bit32to1_mi
(input [C_NUM_M*32-1:0] vec32);
integer mi;
begin
for (mi=0; mi<C_NUM_M; mi=mi+1) begin
f_bit32to1_mi[mi] = vec32[mi*32];
end
end
endfunction
wire [C_NUM_M-1:0] target_mi_hot;
wire [P_NUM_M_LOG_M1-1:0] target_mi_enc;
wire [(C_NUM_M+1)-1:0] m_atarget_hot_i;
wire [(P_NUM_M_DE_LOG)-1:0] m_atarget_enc_i;
wire match;
wire [3:0] target_region;
wire [3:0] m_aregion_i;
wire m_avalid_i;
wire s_aready_i;
wire any_error;
wire s_rvalid_i;
wire [C_ID_WIDTH-1:0] s_rid_i;
wire s_rlast_i;
wire [P_RMUX_MESG_WIDTH-1:0] si_rmux_mesg;
wire [(C_NUM_M+1)*P_RMUX_MESG_WIDTH-1:0] mi_rmux_mesg;
wire [(C_NUM_M+1)-1:0] m_rvalid_qual;
wire [(C_NUM_M+1)-1:0] m_rready_arb;
wire [(C_NUM_M+1)-1:0] m_rready_i;
wire target_secure;
wire target_axilite;
wire m_avalid_qual_i;
wire [7:0] m_aerror_i;
genvar gen_mi;
genvar gen_thread;
generate
if (C_ADDR_DECODE) begin : gen_addr_decoder
axi_crossbar_v2_1_addr_decoder #
(
.C_FAMILY (C_FAMILY),
.C_NUM_TARGETS (C_NUM_M),
.C_NUM_TARGETS_LOG (P_NUM_M_LOG_M1),
.C_NUM_RANGES (C_NUM_ADDR_RANGES),
.C_ADDR_WIDTH (C_ADDR_WIDTH),
.C_TARGET_ENC (1),
.C_TARGET_HOT (1),
.C_REGION_ENC (1),
.C_BASE_ADDR (C_BASE_ADDR),
.C_HIGH_ADDR (C_HIGH_ADDR),
.C_TARGET_QUAL (C_TARGET_QUAL),
.C_RESOLUTION (2)
)
addr_decoder_inst
(
.ADDR (S_AADDR),
.TARGET_HOT (target_mi_hot),
.TARGET_ENC (target_mi_enc),
.MATCH (match),
.REGION (target_region)
);
end else begin : gen_no_addr_decoder
assign target_mi_hot = 1;
assign target_mi_enc = 0;
assign match = 1'b1;
assign target_region = 4'b0000;
end
endgenerate
assign target_secure = |(target_mi_hot & P_M_SECURE_MASK);
assign target_axilite = |(target_mi_hot & P_M_AXILITE);
assign any_error = C_RANGE_CHECK && (m_aerror_i != 0); // DECERR if error-detection enabled and any error condition.
assign m_aerror_i[0] = ~match; // Invalid target address
assign m_aerror_i[1] = target_secure && S_APROT[P_NONSECURE_BIT]; // TrustZone violation
assign m_aerror_i[2] = target_axilite && ((S_ALEN != 0) ||
(S_ASIZE[1:0] == 2'b11) || (S_ASIZE[2] == 1'b1)); // AxiLite access violation
assign m_aerror_i[7:3] = 5'b00000; // Reserved
assign M_ATARGET_HOT = m_atarget_hot_i;
assign m_atarget_hot_i = (any_error ? {1'b1, {C_NUM_M{1'b0}}} : {1'b0, target_mi_hot});
assign m_atarget_enc_i = (any_error ? C_NUM_M : target_mi_enc);
assign M_AVALID = m_avalid_i;
assign m_avalid_i = S_AVALID;
assign M_AVALID_QUAL = m_avalid_qual_i;
assign S_AREADY = s_aready_i;
assign s_aready_i = M_AREADY;
assign M_AERROR = m_aerror_i;
assign M_ATARGET_ENC = m_atarget_enc_i;
assign m_aregion_i = any_error ? 4'b0000 : (C_ADDR_DECODE != 0) ? target_region : 4'b0000;
// assign m_aregion_i = any_error ? 4'b0000 : (C_ADDR_DECODE != 0) ? target_region : S_AREGION;
assign M_AREGION = m_aregion_i;
assign M_AID = S_AID;
assign M_AADDR = S_AADDR;
assign M_ALEN = S_ALEN;
assign M_ASIZE = S_ASIZE;
assign M_ALOCK = S_ALOCK;
assign M_APROT = S_APROT;
assign M_AMESG = S_AMESG;
assign S_RVALID = s_rvalid_i;
assign M_RREADY = m_rready_i;
assign s_rid_i = si_rmux_mesg[0+:C_ID_WIDTH];
assign S_RMESG = si_rmux_mesg[C_ID_WIDTH+:C_RMESG_WIDTH];
assign s_rlast_i = si_rmux_mesg[C_ID_WIDTH+C_RMESG_WIDTH+:1];
assign S_RID = s_rid_i;
assign S_RLAST = s_rlast_i;
assign m_rvalid_qual = M_RVALID & M_RTARGET;
assign m_rready_i = m_rready_arb & M_RTARGET;
generate
for (gen_mi=0; gen_mi<(C_NUM_M+1); gen_mi=gen_mi+1) begin : gen_rmesg_mi
// Note: Concatenation of mesg signals is from MSB to LSB; assignments that chop mesg signals appear in opposite order.
assign mi_rmux_mesg[gen_mi*P_RMUX_MESG_WIDTH+:P_RMUX_MESG_WIDTH] = {
M_RLAST[gen_mi],
M_RMESG[gen_mi*C_RMESG_WIDTH+:C_RMESG_WIDTH],
M_RID[gen_mi*C_ID_WIDTH+:C_ID_WIDTH]
};
end // gen_rmesg_mi
if (C_ACCEPTANCE == 1) begin : gen_single_issue
wire cmd_push;
wire cmd_pop;
reg [(C_NUM_M+1)-1:0] active_target_hot;
reg [P_NUM_M_DE_LOG-1:0] active_target_enc;
reg accept_cnt;
reg [8-1:0] debug_r_beat_cnt_i;
wire [8-1:0] debug_r_trans_seq_i;
assign cmd_push = M_AREADY;
assign cmd_pop = s_rvalid_i && S_RREADY && s_rlast_i; // Pop command queue if end of read burst
assign m_avalid_qual_i = ~accept_cnt | cmd_pop; // Ready for arbitration if no outstanding transaction or transaction being completed
always @(posedge ACLK) begin
if (ARESET) begin
accept_cnt <= 1'b0;
active_target_enc <= 0;
active_target_hot <= 0;
end else begin
if (cmd_push) begin
active_target_enc <= m_atarget_enc_i;
active_target_hot <= m_atarget_hot_i;
accept_cnt <= 1'b1;
end else if (cmd_pop) begin
accept_cnt <= 1'b0;
end
end
end // Clocked process
assign m_rready_arb = active_target_hot & {(C_NUM_M+1){S_RREADY}};
assign s_rvalid_i = |(active_target_hot & m_rvalid_qual);
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY (C_FAMILY),
.C_RATIO (C_NUM_M+1),
.C_SEL_WIDTH (P_NUM_M_DE_LOG),
.C_DATA_WIDTH (P_RMUX_MESG_WIDTH)
) mux_resp_single_issue
(
.S (active_target_enc),
.A (mi_rmux_mesg),
.O (si_rmux_mesg),
.OE (1'b1)
);
if (C_DEBUG) begin : gen_debug_r_single_issue
// DEBUG READ BEAT COUNTER (only meaningful for R-channel)
always @(posedge ACLK) begin
if (ARESET) begin
debug_r_beat_cnt_i <= 0;
end else if (C_DIR == P_READ) begin
if (s_rvalid_i && S_RREADY) begin
if (s_rlast_i) begin
debug_r_beat_cnt_i <= 0;
end else begin
debug_r_beat_cnt_i <= debug_r_beat_cnt_i + 1;
end
end
end else begin
debug_r_beat_cnt_i <= 0;
end
end // Clocked process
// DEBUG R-CHANNEL TRANSACTION SEQUENCE FIFO
axi_data_fifo_v2_1_axic_srl_fifo #
(
.C_FAMILY (C_FAMILY),
.C_FIFO_WIDTH (8),
.C_FIFO_DEPTH_LOG (C_ACCEPTANCE_LOG+1),
.C_USE_FULL (0)
)
debug_r_seq_fifo_single_issue
(
.ACLK (ACLK),
.ARESET (ARESET),
.S_MESG (DEBUG_A_TRANS_SEQ),
.S_VALID (cmd_push),
.S_READY (),
.M_MESG (debug_r_trans_seq_i),
.M_VALID (),
.M_READY (cmd_pop)
);
end // gen_debug_r
end else if (C_SINGLE_THREAD || (P_NUM_ID_VAL==1)) begin : gen_single_thread
wire s_avalid_en;
wire cmd_push;
wire cmd_pop;
reg [C_ID_WIDTH-1:0] active_id;
reg [(C_NUM_M+1)-1:0] active_target_hot;
reg [P_NUM_M_DE_LOG-1:0] active_target_enc;
reg [4-1:0] active_region;
reg [(C_ACCEPTANCE_LOG+1)-1:0] accept_cnt;
reg [8-1:0] debug_r_beat_cnt_i;
wire [8-1:0] debug_r_trans_seq_i;
wire accept_limit ;
// Implement single-region-per-ID cyclic dependency avoidance method.
assign s_avalid_en = // This transaction is qualified to request arbitration if ...
(accept_cnt == 0) || // Either there are no outstanding transactions, or ...
(((P_NUM_ID_VAL==1) || (S_AID[P_THREAD_ID_WIDTH_M1-1:0] == active_id[P_THREAD_ID_WIDTH_M1-1:0])) && // the current transaction ID matches the previous, and ...
(active_target_enc == m_atarget_enc_i) && // all outstanding transactions are to the same target MI ...
(active_region == m_aregion_i)); // and to the same REGION.
assign cmd_push = M_AREADY;
assign cmd_pop = s_rvalid_i && S_RREADY && s_rlast_i; // Pop command queue if end of read burst
assign accept_limit = (accept_cnt == C_ACCEPTANCE) & ~cmd_pop; // Allow next push if a transaction is currently being completed
assign m_avalid_qual_i = s_avalid_en & ~accept_limit;
always @(posedge ACLK) begin
if (ARESET) begin
accept_cnt <= 0;
active_id <= 0;
active_target_enc <= 0;
active_target_hot <= 0;
active_region <= 0;
end else begin
if (cmd_push) begin
active_id <= S_AID[P_THREAD_ID_WIDTH_M1-1:0];
active_target_enc <= m_atarget_enc_i;
active_target_hot <= m_atarget_hot_i;
active_region <= m_aregion_i;
if (~cmd_pop) begin
accept_cnt <= accept_cnt + 1;
end
end else begin
if (cmd_pop & (accept_cnt != 0)) begin
accept_cnt <= accept_cnt - 1;
end
end
end
end // Clocked process
assign m_rready_arb = active_target_hot & {(C_NUM_M+1){S_RREADY}};
assign s_rvalid_i = |(active_target_hot & m_rvalid_qual);
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY (C_FAMILY),
.C_RATIO (C_NUM_M+1),
.C_SEL_WIDTH (P_NUM_M_DE_LOG),
.C_DATA_WIDTH (P_RMUX_MESG_WIDTH)
) mux_resp_single_thread
(
.S (active_target_enc),
.A (mi_rmux_mesg),
.O (si_rmux_mesg),
.OE (1'b1)
);
if (C_DEBUG) begin : gen_debug_r_single_thread
// DEBUG READ BEAT COUNTER (only meaningful for R-channel)
always @(posedge ACLK) begin
if (ARESET) begin
debug_r_beat_cnt_i <= 0;
end else if (C_DIR == P_READ) begin
if (s_rvalid_i && S_RREADY) begin
if (s_rlast_i) begin
debug_r_beat_cnt_i <= 0;
end else begin
debug_r_beat_cnt_i <= debug_r_beat_cnt_i + 1;
end
end
end else begin
debug_r_beat_cnt_i <= 0;
end
end // Clocked process
// DEBUG R-CHANNEL TRANSACTION SEQUENCE FIFO
axi_data_fifo_v2_1_axic_srl_fifo #
(
.C_FAMILY (C_FAMILY),
.C_FIFO_WIDTH (8),
.C_FIFO_DEPTH_LOG (C_ACCEPTANCE_LOG+1),
.C_USE_FULL (0)
)
debug_r_seq_fifo_single_thread
(
.ACLK (ACLK),
.ARESET (ARESET),
.S_MESG (DEBUG_A_TRANS_SEQ),
.S_VALID (cmd_push),
.S_READY (),
.M_MESG (debug_r_trans_seq_i),
.M_VALID (),
.M_READY (cmd_pop)
);
end // gen_debug_r
end else begin : gen_multi_thread
wire [(P_NUM_M_DE_LOG)-1:0] resp_select;
reg [(C_ACCEPTANCE_LOG+1)-1:0] accept_cnt;
wire [P_NUM_THREADS-1:0] s_avalid_en;
wire [P_NUM_THREADS-1:0] thread_valid;
wire [P_NUM_THREADS-1:0] aid_match;
wire [P_NUM_THREADS-1:0] rid_match;
wire [P_NUM_THREADS-1:0] cmd_push;
wire [P_NUM_THREADS-1:0] cmd_pop;
wire [P_NUM_THREADS:0] accum_push;
reg [P_NUM_THREADS*C_ID_WIDTH-1:0] active_id;
reg [P_NUM_THREADS*8-1:0] active_target;
reg [P_NUM_THREADS*8-1:0] active_region;
reg [P_NUM_THREADS*8-1:0] active_cnt;
reg [P_NUM_THREADS*8-1:0] debug_r_beat_cnt_i;
wire [P_NUM_THREADS*8-1:0] debug_r_trans_seq_i;
wire any_aid_match;
wire any_rid_match;
wire accept_limit;
wire any_push;
wire any_pop;
axi_crossbar_v2_1_arbiter_resp # // Multi-thread response arbiter
(
.C_FAMILY (C_FAMILY),
.C_NUM_S (C_NUM_M+1),
.C_NUM_S_LOG (P_NUM_M_DE_LOG),
.C_GRANT_ENC (1),
.C_GRANT_HOT (0)
)
arbiter_resp_inst
(
.ACLK (ACLK),
.ARESET (ARESET),
.S_VALID (m_rvalid_qual),
.S_READY (m_rready_arb),
.M_GRANT_HOT (),
.M_GRANT_ENC (resp_select),
.M_VALID (s_rvalid_i),
.M_READY (S_RREADY)
);
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY (C_FAMILY),
.C_RATIO (C_NUM_M+1),
.C_SEL_WIDTH (P_NUM_M_DE_LOG),
.C_DATA_WIDTH (P_RMUX_MESG_WIDTH)
) mux_resp_multi_thread
(
.S (resp_select),
.A (mi_rmux_mesg),
.O (si_rmux_mesg),
.OE (1'b1)
);
assign any_push = M_AREADY;
assign any_pop = s_rvalid_i & S_RREADY & s_rlast_i;
assign accept_limit = (accept_cnt == C_ACCEPTANCE) & ~any_pop; // Allow next push if a transaction is currently being completed
assign m_avalid_qual_i = (&s_avalid_en) & ~accept_limit; // The current request is qualified for arbitration when it is qualified against all outstanding transaction threads.
assign any_aid_match = |aid_match;
assign any_rid_match = |rid_match;
assign accum_push[0] = 1'b0;
always @(posedge ACLK) begin
if (ARESET) begin
accept_cnt <= 0;
end else begin
if (any_push & ~any_pop) begin
accept_cnt <= accept_cnt + 1;
end else if (any_pop & ~any_push & (accept_cnt != 0)) begin
accept_cnt <= accept_cnt - 1;
end
end
end // Clocked process
for (gen_thread=0; gen_thread<P_NUM_THREADS; gen_thread=gen_thread+1) begin : gen_thread_loop
assign thread_valid[gen_thread] = (active_cnt[gen_thread*8 +: C_ACCEPTANCE_LOG+1] != 0);
assign aid_match[gen_thread] = // The currect thread is active for the requested transaction if
thread_valid[gen_thread] && // this thread slot is not vacant, and
((S_AID[P_THREAD_ID_WIDTH_M1-1:0]) == active_id[gen_thread*C_ID_WIDTH+:P_THREAD_ID_WIDTH_M1]); // the requested ID matches the active ID for this thread.
assign s_avalid_en[gen_thread] = // The current request is qualified against this thread slot if
(~aid_match[gen_thread]) || // This thread slot is not active for the requested ID, or
((m_atarget_enc_i == active_target[gen_thread*8+:P_NUM_M_DE_LOG]) && // this outstanding transaction was to the same target and
(m_aregion_i == active_region[gen_thread*8+:4])); // to the same region.
// cmd_push points to the position of either the active thread for the requested ID or the lowest vacant thread slot.
assign accum_push[gen_thread+1] = accum_push[gen_thread] | ~thread_valid[gen_thread];
assign cmd_push[gen_thread] = any_push & (aid_match[gen_thread] | ((~any_aid_match) & ~thread_valid[gen_thread] & ~accum_push[gen_thread]));
// cmd_pop points to the position of the active thread that matches the current RID.
assign rid_match[gen_thread] = thread_valid[gen_thread] & ((s_rid_i[P_THREAD_ID_WIDTH_M1-1:0]) == active_id[gen_thread*C_ID_WIDTH+:P_THREAD_ID_WIDTH_M1]);
assign cmd_pop[gen_thread] = any_pop & rid_match[gen_thread];
always @(posedge ACLK) begin
if (ARESET) begin
active_id[gen_thread*C_ID_WIDTH+:C_ID_WIDTH] <= 0;
active_target[gen_thread*8+:8] <= 0;
active_region[gen_thread*8+:8] <= 0;
active_cnt[gen_thread*8+:8] <= 0;
end else begin
if (cmd_push[gen_thread]) begin
active_id[gen_thread*C_ID_WIDTH+:P_THREAD_ID_WIDTH_M1] <= S_AID[P_THREAD_ID_WIDTH_M1-1:0];
active_target[gen_thread*8+:P_NUM_M_DE_LOG] <= m_atarget_enc_i;
active_region[gen_thread*8+:4] <= m_aregion_i;
if (~cmd_pop[gen_thread]) begin
active_cnt[gen_thread*8+:C_ACCEPTANCE_LOG+1] <= active_cnt[gen_thread*8+:C_ACCEPTANCE_LOG+1] + 1;
end
end else if (cmd_pop[gen_thread]) begin
active_cnt[gen_thread*8+:C_ACCEPTANCE_LOG+1] <= active_cnt[gen_thread*8+:C_ACCEPTANCE_LOG+1] - 1;
end
end
end // Clocked process
if (C_DEBUG) begin : gen_debug_r_multi_thread
// DEBUG READ BEAT COUNTER (only meaningful for R-channel)
always @(posedge ACLK) begin
if (ARESET) begin
debug_r_beat_cnt_i[gen_thread*8+:8] <= 0;
end else if (C_DIR == P_READ) begin
if (s_rvalid_i & S_RREADY & rid_match[gen_thread]) begin
if (s_rlast_i) begin
debug_r_beat_cnt_i[gen_thread*8+:8] <= 0;
end else begin
debug_r_beat_cnt_i[gen_thread*8+:8] <= debug_r_beat_cnt_i[gen_thread*8+:8] + 1;
end
end
end else begin
debug_r_beat_cnt_i[gen_thread*8+:8] <= 0;
end
end // Clocked process
// DEBUG R-CHANNEL TRANSACTION SEQUENCE FIFO
axi_data_fifo_v2_1_axic_srl_fifo #
(
.C_FAMILY (C_FAMILY),
.C_FIFO_WIDTH (8),
.C_FIFO_DEPTH_LOG (C_ACCEPTANCE_LOG+1),
.C_USE_FULL (0)
)
debug_r_seq_fifo_multi_thread
(
.ACLK (ACLK),
.ARESET (ARESET),
.S_MESG (DEBUG_A_TRANS_SEQ),
.S_VALID (cmd_push[gen_thread]),
.S_READY (),
.M_MESG (debug_r_trans_seq_i[gen_thread*8+:8]),
.M_VALID (),
.M_READY (cmd_pop[gen_thread])
);
end // gen_debug_r_multi_thread
end // Next gen_thread_loop
end // thread control
endgenerate
endmodule
`default_nettype wire
|
// -- (c) Copyright 2009 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// File name: si_transactor.v
//
// Description:
// This module manages multi-threaded transactions for one SI-slot.
// The module interface consists of a 1-slave to 1-master address channel, plus a
// (M+1)-master (from M MI-slots plus error handler) to 1-slave response channel.
// The module maintains transaction thread control registers that count the
// number of outstanding transations for each thread and the target MI-slot.
// On the address channel, the module decodes addresses to select among MI-slots
// accessible to the SI-slot where it is instantiated.
// It then qualifies whether each received transaction
// should be propagated as a request to the address channel arbiter.
// Transactions are blocked while there is any outstanding transaction to a
// different slave (MI-slot) for the requested ID thread (for deadlock avoidance).
// On the response channel, the module mulitplexes transfers from each of the
// MI-slots whenever a transfer targets the ID of an active thread,
// arbitrating between MI-slots if multiple threads respond concurrently.
//
//--------------------------------------------------------------------------
//
// Structure:
// si_transactor
// addr_decoder
// comparator_static
// mux_enc
// axic_srl_fifo
// arbiter_resp
//
//-----------------------------------------------------------------------------
`timescale 1ps/1ps
`default_nettype none
(* DowngradeIPIdentifiedWarnings="yes" *)
module axi_crossbar_v2_1_si_transactor #
(
parameter C_FAMILY = "none",
parameter integer C_SI = 0, // SI-slot number of current instance.
parameter integer C_DIR = 0, // Direction: 0 = Write; 1 = Read.
parameter integer C_NUM_ADDR_RANGES = 1,
parameter integer C_NUM_M = 2,
parameter integer C_NUM_M_LOG = 1,
parameter integer C_ACCEPTANCE = 1, // Acceptance limit of this SI-slot.
parameter integer C_ACCEPTANCE_LOG = 0, // Width of acceptance counter for this SI-slot.
parameter integer C_ID_WIDTH = 1,
parameter integer C_THREAD_ID_WIDTH = 0,
parameter integer C_ADDR_WIDTH = 32,
parameter integer C_AMESG_WIDTH = 1, // Used for AW or AR channel payload, depending on instantiation.
parameter integer C_RMESG_WIDTH = 1, // Used for B or R channel payload, depending on instantiation.
parameter [C_ID_WIDTH-1:0] C_BASE_ID = {C_ID_WIDTH{1'b0}},
parameter [C_ID_WIDTH-1:0] C_HIGH_ID = {C_ID_WIDTH{1'b0}},
parameter [C_NUM_M*C_NUM_ADDR_RANGES*64-1:0] C_BASE_ADDR = {C_NUM_M*C_NUM_ADDR_RANGES*64{1'b1}},
parameter [C_NUM_M*C_NUM_ADDR_RANGES*64-1:0] C_HIGH_ADDR = {C_NUM_M*C_NUM_ADDR_RANGES*64{1'b0}},
parameter integer C_SINGLE_THREAD = 0,
parameter [C_NUM_M-1:0] C_TARGET_QUAL = {C_NUM_M{1'b1}},
parameter [C_NUM_M*32-1:0] C_M_AXI_SECURE = {C_NUM_M{32'h00000000}},
parameter integer C_RANGE_CHECK = 0,
parameter integer C_ADDR_DECODE =0,
parameter [C_NUM_M*32-1:0] C_ERR_MODE = {C_NUM_M{32'h00000000}},
parameter integer C_DEBUG = 1
)
(
// Global Signals
input wire ACLK,
input wire ARESET,
// Slave Address Channel Interface Ports
input wire [C_ID_WIDTH-1:0] S_AID,
input wire [C_ADDR_WIDTH-1:0] S_AADDR,
input wire [8-1:0] S_ALEN,
input wire [3-1:0] S_ASIZE,
input wire [2-1:0] S_ABURST,
input wire [2-1:0] S_ALOCK,
input wire [3-1:0] S_APROT,
// input wire [4-1:0] S_AREGION,
input wire [C_AMESG_WIDTH-1:0] S_AMESG,
input wire S_AVALID,
output wire S_AREADY,
// Master Address Channel Interface Ports
output wire [C_ID_WIDTH-1:0] M_AID,
output wire [C_ADDR_WIDTH-1:0] M_AADDR,
output wire [8-1:0] M_ALEN,
output wire [3-1:0] M_ASIZE,
output wire [2-1:0] M_ALOCK,
output wire [3-1:0] M_APROT,
output wire [4-1:0] M_AREGION,
output wire [C_AMESG_WIDTH-1:0] M_AMESG,
output wire [(C_NUM_M+1)-1:0] M_ATARGET_HOT,
output wire [(C_NUM_M_LOG+1)-1:0] M_ATARGET_ENC,
output wire [7:0] M_AERROR,
output wire M_AVALID_QUAL,
output wire M_AVALID,
input wire M_AREADY,
// Slave Response Channel Interface Ports
output wire [C_ID_WIDTH-1:0] S_RID,
output wire [C_RMESG_WIDTH-1:0] S_RMESG,
output wire S_RLAST,
output wire S_RVALID,
input wire S_RREADY,
// Master Response Channel Interface Ports
input wire [(C_NUM_M+1)*C_ID_WIDTH-1:0] M_RID,
input wire [(C_NUM_M+1)*C_RMESG_WIDTH-1:0] M_RMESG,
input wire [(C_NUM_M+1)-1:0] M_RLAST,
input wire [(C_NUM_M+1)-1:0] M_RVALID,
output wire [(C_NUM_M+1)-1:0] M_RREADY,
input wire [(C_NUM_M+1)-1:0] M_RTARGET, // Does response ID from each MI-slot target this SI slot?
input wire [8-1:0] DEBUG_A_TRANS_SEQ
);
localparam integer P_WRITE = 0;
localparam integer P_READ = 1;
localparam integer P_RMUX_MESG_WIDTH = C_ID_WIDTH + C_RMESG_WIDTH + 1;
localparam [31:0] P_AXILITE_ERRMODE = 32'h00000001;
localparam integer P_NONSECURE_BIT = 1;
localparam integer P_NUM_M_LOG_M1 = C_NUM_M_LOG ? C_NUM_M_LOG : 1;
localparam [C_NUM_M-1:0] P_M_AXILITE = f_m_axilite(0); // Mask of AxiLite MI-slots
localparam [1:0] P_FIXED = 2'b00;
localparam integer P_NUM_M_DE_LOG = f_ceil_log2(C_NUM_M+1);
localparam integer P_THREAD_ID_WIDTH_M1 = (C_THREAD_ID_WIDTH > 0) ? C_THREAD_ID_WIDTH : 1;
localparam integer P_NUM_ID_VAL = 2**C_THREAD_ID_WIDTH;
localparam integer P_NUM_THREADS = (P_NUM_ID_VAL < C_ACCEPTANCE) ? P_NUM_ID_VAL : C_ACCEPTANCE;
localparam [C_NUM_M-1:0] P_M_SECURE_MASK = f_bit32to1_mi(C_M_AXI_SECURE); // Mask of secure MI-slots
// Ceiling of log2(x)
function integer f_ceil_log2
(
input integer x
);
integer acc;
begin
acc=0;
while ((2**acc) < x)
acc = acc + 1;
f_ceil_log2 = acc;
end
endfunction
// AxiLite protocol flag vector
function [C_NUM_M-1:0] f_m_axilite
(
input integer null_arg
);
integer mi;
begin
for (mi=0; mi<C_NUM_M; mi=mi+1) begin
f_m_axilite[mi] = (C_ERR_MODE[mi*32+:32] == P_AXILITE_ERRMODE);
end
end
endfunction
// Convert Bit32 vector of range [0,1] to Bit1 vector on MI
function [C_NUM_M-1:0] f_bit32to1_mi
(input [C_NUM_M*32-1:0] vec32);
integer mi;
begin
for (mi=0; mi<C_NUM_M; mi=mi+1) begin
f_bit32to1_mi[mi] = vec32[mi*32];
end
end
endfunction
wire [C_NUM_M-1:0] target_mi_hot;
wire [P_NUM_M_LOG_M1-1:0] target_mi_enc;
wire [(C_NUM_M+1)-1:0] m_atarget_hot_i;
wire [(P_NUM_M_DE_LOG)-1:0] m_atarget_enc_i;
wire match;
wire [3:0] target_region;
wire [3:0] m_aregion_i;
wire m_avalid_i;
wire s_aready_i;
wire any_error;
wire s_rvalid_i;
wire [C_ID_WIDTH-1:0] s_rid_i;
wire s_rlast_i;
wire [P_RMUX_MESG_WIDTH-1:0] si_rmux_mesg;
wire [(C_NUM_M+1)*P_RMUX_MESG_WIDTH-1:0] mi_rmux_mesg;
wire [(C_NUM_M+1)-1:0] m_rvalid_qual;
wire [(C_NUM_M+1)-1:0] m_rready_arb;
wire [(C_NUM_M+1)-1:0] m_rready_i;
wire target_secure;
wire target_axilite;
wire m_avalid_qual_i;
wire [7:0] m_aerror_i;
genvar gen_mi;
genvar gen_thread;
generate
if (C_ADDR_DECODE) begin : gen_addr_decoder
axi_crossbar_v2_1_addr_decoder #
(
.C_FAMILY (C_FAMILY),
.C_NUM_TARGETS (C_NUM_M),
.C_NUM_TARGETS_LOG (P_NUM_M_LOG_M1),
.C_NUM_RANGES (C_NUM_ADDR_RANGES),
.C_ADDR_WIDTH (C_ADDR_WIDTH),
.C_TARGET_ENC (1),
.C_TARGET_HOT (1),
.C_REGION_ENC (1),
.C_BASE_ADDR (C_BASE_ADDR),
.C_HIGH_ADDR (C_HIGH_ADDR),
.C_TARGET_QUAL (C_TARGET_QUAL),
.C_RESOLUTION (2)
)
addr_decoder_inst
(
.ADDR (S_AADDR),
.TARGET_HOT (target_mi_hot),
.TARGET_ENC (target_mi_enc),
.MATCH (match),
.REGION (target_region)
);
end else begin : gen_no_addr_decoder
assign target_mi_hot = 1;
assign target_mi_enc = 0;
assign match = 1'b1;
assign target_region = 4'b0000;
end
endgenerate
assign target_secure = |(target_mi_hot & P_M_SECURE_MASK);
assign target_axilite = |(target_mi_hot & P_M_AXILITE);
assign any_error = C_RANGE_CHECK && (m_aerror_i != 0); // DECERR if error-detection enabled and any error condition.
assign m_aerror_i[0] = ~match; // Invalid target address
assign m_aerror_i[1] = target_secure && S_APROT[P_NONSECURE_BIT]; // TrustZone violation
assign m_aerror_i[2] = target_axilite && ((S_ALEN != 0) ||
(S_ASIZE[1:0] == 2'b11) || (S_ASIZE[2] == 1'b1)); // AxiLite access violation
assign m_aerror_i[7:3] = 5'b00000; // Reserved
assign M_ATARGET_HOT = m_atarget_hot_i;
assign m_atarget_hot_i = (any_error ? {1'b1, {C_NUM_M{1'b0}}} : {1'b0, target_mi_hot});
assign m_atarget_enc_i = (any_error ? C_NUM_M : target_mi_enc);
assign M_AVALID = m_avalid_i;
assign m_avalid_i = S_AVALID;
assign M_AVALID_QUAL = m_avalid_qual_i;
assign S_AREADY = s_aready_i;
assign s_aready_i = M_AREADY;
assign M_AERROR = m_aerror_i;
assign M_ATARGET_ENC = m_atarget_enc_i;
assign m_aregion_i = any_error ? 4'b0000 : (C_ADDR_DECODE != 0) ? target_region : 4'b0000;
// assign m_aregion_i = any_error ? 4'b0000 : (C_ADDR_DECODE != 0) ? target_region : S_AREGION;
assign M_AREGION = m_aregion_i;
assign M_AID = S_AID;
assign M_AADDR = S_AADDR;
assign M_ALEN = S_ALEN;
assign M_ASIZE = S_ASIZE;
assign M_ALOCK = S_ALOCK;
assign M_APROT = S_APROT;
assign M_AMESG = S_AMESG;
assign S_RVALID = s_rvalid_i;
assign M_RREADY = m_rready_i;
assign s_rid_i = si_rmux_mesg[0+:C_ID_WIDTH];
assign S_RMESG = si_rmux_mesg[C_ID_WIDTH+:C_RMESG_WIDTH];
assign s_rlast_i = si_rmux_mesg[C_ID_WIDTH+C_RMESG_WIDTH+:1];
assign S_RID = s_rid_i;
assign S_RLAST = s_rlast_i;
assign m_rvalid_qual = M_RVALID & M_RTARGET;
assign m_rready_i = m_rready_arb & M_RTARGET;
generate
for (gen_mi=0; gen_mi<(C_NUM_M+1); gen_mi=gen_mi+1) begin : gen_rmesg_mi
// Note: Concatenation of mesg signals is from MSB to LSB; assignments that chop mesg signals appear in opposite order.
assign mi_rmux_mesg[gen_mi*P_RMUX_MESG_WIDTH+:P_RMUX_MESG_WIDTH] = {
M_RLAST[gen_mi],
M_RMESG[gen_mi*C_RMESG_WIDTH+:C_RMESG_WIDTH],
M_RID[gen_mi*C_ID_WIDTH+:C_ID_WIDTH]
};
end // gen_rmesg_mi
if (C_ACCEPTANCE == 1) begin : gen_single_issue
wire cmd_push;
wire cmd_pop;
reg [(C_NUM_M+1)-1:0] active_target_hot;
reg [P_NUM_M_DE_LOG-1:0] active_target_enc;
reg accept_cnt;
reg [8-1:0] debug_r_beat_cnt_i;
wire [8-1:0] debug_r_trans_seq_i;
assign cmd_push = M_AREADY;
assign cmd_pop = s_rvalid_i && S_RREADY && s_rlast_i; // Pop command queue if end of read burst
assign m_avalid_qual_i = ~accept_cnt | cmd_pop; // Ready for arbitration if no outstanding transaction or transaction being completed
always @(posedge ACLK) begin
if (ARESET) begin
accept_cnt <= 1'b0;
active_target_enc <= 0;
active_target_hot <= 0;
end else begin
if (cmd_push) begin
active_target_enc <= m_atarget_enc_i;
active_target_hot <= m_atarget_hot_i;
accept_cnt <= 1'b1;
end else if (cmd_pop) begin
accept_cnt <= 1'b0;
end
end
end // Clocked process
assign m_rready_arb = active_target_hot & {(C_NUM_M+1){S_RREADY}};
assign s_rvalid_i = |(active_target_hot & m_rvalid_qual);
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY (C_FAMILY),
.C_RATIO (C_NUM_M+1),
.C_SEL_WIDTH (P_NUM_M_DE_LOG),
.C_DATA_WIDTH (P_RMUX_MESG_WIDTH)
) mux_resp_single_issue
(
.S (active_target_enc),
.A (mi_rmux_mesg),
.O (si_rmux_mesg),
.OE (1'b1)
);
if (C_DEBUG) begin : gen_debug_r_single_issue
// DEBUG READ BEAT COUNTER (only meaningful for R-channel)
always @(posedge ACLK) begin
if (ARESET) begin
debug_r_beat_cnt_i <= 0;
end else if (C_DIR == P_READ) begin
if (s_rvalid_i && S_RREADY) begin
if (s_rlast_i) begin
debug_r_beat_cnt_i <= 0;
end else begin
debug_r_beat_cnt_i <= debug_r_beat_cnt_i + 1;
end
end
end else begin
debug_r_beat_cnt_i <= 0;
end
end // Clocked process
// DEBUG R-CHANNEL TRANSACTION SEQUENCE FIFO
axi_data_fifo_v2_1_axic_srl_fifo #
(
.C_FAMILY (C_FAMILY),
.C_FIFO_WIDTH (8),
.C_FIFO_DEPTH_LOG (C_ACCEPTANCE_LOG+1),
.C_USE_FULL (0)
)
debug_r_seq_fifo_single_issue
(
.ACLK (ACLK),
.ARESET (ARESET),
.S_MESG (DEBUG_A_TRANS_SEQ),
.S_VALID (cmd_push),
.S_READY (),
.M_MESG (debug_r_trans_seq_i),
.M_VALID (),
.M_READY (cmd_pop)
);
end // gen_debug_r
end else if (C_SINGLE_THREAD || (P_NUM_ID_VAL==1)) begin : gen_single_thread
wire s_avalid_en;
wire cmd_push;
wire cmd_pop;
reg [C_ID_WIDTH-1:0] active_id;
reg [(C_NUM_M+1)-1:0] active_target_hot;
reg [P_NUM_M_DE_LOG-1:0] active_target_enc;
reg [4-1:0] active_region;
reg [(C_ACCEPTANCE_LOG+1)-1:0] accept_cnt;
reg [8-1:0] debug_r_beat_cnt_i;
wire [8-1:0] debug_r_trans_seq_i;
wire accept_limit ;
// Implement single-region-per-ID cyclic dependency avoidance method.
assign s_avalid_en = // This transaction is qualified to request arbitration if ...
(accept_cnt == 0) || // Either there are no outstanding transactions, or ...
(((P_NUM_ID_VAL==1) || (S_AID[P_THREAD_ID_WIDTH_M1-1:0] == active_id[P_THREAD_ID_WIDTH_M1-1:0])) && // the current transaction ID matches the previous, and ...
(active_target_enc == m_atarget_enc_i) && // all outstanding transactions are to the same target MI ...
(active_region == m_aregion_i)); // and to the same REGION.
assign cmd_push = M_AREADY;
assign cmd_pop = s_rvalid_i && S_RREADY && s_rlast_i; // Pop command queue if end of read burst
assign accept_limit = (accept_cnt == C_ACCEPTANCE) & ~cmd_pop; // Allow next push if a transaction is currently being completed
assign m_avalid_qual_i = s_avalid_en & ~accept_limit;
always @(posedge ACLK) begin
if (ARESET) begin
accept_cnt <= 0;
active_id <= 0;
active_target_enc <= 0;
active_target_hot <= 0;
active_region <= 0;
end else begin
if (cmd_push) begin
active_id <= S_AID[P_THREAD_ID_WIDTH_M1-1:0];
active_target_enc <= m_atarget_enc_i;
active_target_hot <= m_atarget_hot_i;
active_region <= m_aregion_i;
if (~cmd_pop) begin
accept_cnt <= accept_cnt + 1;
end
end else begin
if (cmd_pop & (accept_cnt != 0)) begin
accept_cnt <= accept_cnt - 1;
end
end
end
end // Clocked process
assign m_rready_arb = active_target_hot & {(C_NUM_M+1){S_RREADY}};
assign s_rvalid_i = |(active_target_hot & m_rvalid_qual);
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY (C_FAMILY),
.C_RATIO (C_NUM_M+1),
.C_SEL_WIDTH (P_NUM_M_DE_LOG),
.C_DATA_WIDTH (P_RMUX_MESG_WIDTH)
) mux_resp_single_thread
(
.S (active_target_enc),
.A (mi_rmux_mesg),
.O (si_rmux_mesg),
.OE (1'b1)
);
if (C_DEBUG) begin : gen_debug_r_single_thread
// DEBUG READ BEAT COUNTER (only meaningful for R-channel)
always @(posedge ACLK) begin
if (ARESET) begin
debug_r_beat_cnt_i <= 0;
end else if (C_DIR == P_READ) begin
if (s_rvalid_i && S_RREADY) begin
if (s_rlast_i) begin
debug_r_beat_cnt_i <= 0;
end else begin
debug_r_beat_cnt_i <= debug_r_beat_cnt_i + 1;
end
end
end else begin
debug_r_beat_cnt_i <= 0;
end
end // Clocked process
// DEBUG R-CHANNEL TRANSACTION SEQUENCE FIFO
axi_data_fifo_v2_1_axic_srl_fifo #
(
.C_FAMILY (C_FAMILY),
.C_FIFO_WIDTH (8),
.C_FIFO_DEPTH_LOG (C_ACCEPTANCE_LOG+1),
.C_USE_FULL (0)
)
debug_r_seq_fifo_single_thread
(
.ACLK (ACLK),
.ARESET (ARESET),
.S_MESG (DEBUG_A_TRANS_SEQ),
.S_VALID (cmd_push),
.S_READY (),
.M_MESG (debug_r_trans_seq_i),
.M_VALID (),
.M_READY (cmd_pop)
);
end // gen_debug_r
end else begin : gen_multi_thread
wire [(P_NUM_M_DE_LOG)-1:0] resp_select;
reg [(C_ACCEPTANCE_LOG+1)-1:0] accept_cnt;
wire [P_NUM_THREADS-1:0] s_avalid_en;
wire [P_NUM_THREADS-1:0] thread_valid;
wire [P_NUM_THREADS-1:0] aid_match;
wire [P_NUM_THREADS-1:0] rid_match;
wire [P_NUM_THREADS-1:0] cmd_push;
wire [P_NUM_THREADS-1:0] cmd_pop;
wire [P_NUM_THREADS:0] accum_push;
reg [P_NUM_THREADS*C_ID_WIDTH-1:0] active_id;
reg [P_NUM_THREADS*8-1:0] active_target;
reg [P_NUM_THREADS*8-1:0] active_region;
reg [P_NUM_THREADS*8-1:0] active_cnt;
reg [P_NUM_THREADS*8-1:0] debug_r_beat_cnt_i;
wire [P_NUM_THREADS*8-1:0] debug_r_trans_seq_i;
wire any_aid_match;
wire any_rid_match;
wire accept_limit;
wire any_push;
wire any_pop;
axi_crossbar_v2_1_arbiter_resp # // Multi-thread response arbiter
(
.C_FAMILY (C_FAMILY),
.C_NUM_S (C_NUM_M+1),
.C_NUM_S_LOG (P_NUM_M_DE_LOG),
.C_GRANT_ENC (1),
.C_GRANT_HOT (0)
)
arbiter_resp_inst
(
.ACLK (ACLK),
.ARESET (ARESET),
.S_VALID (m_rvalid_qual),
.S_READY (m_rready_arb),
.M_GRANT_HOT (),
.M_GRANT_ENC (resp_select),
.M_VALID (s_rvalid_i),
.M_READY (S_RREADY)
);
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY (C_FAMILY),
.C_RATIO (C_NUM_M+1),
.C_SEL_WIDTH (P_NUM_M_DE_LOG),
.C_DATA_WIDTH (P_RMUX_MESG_WIDTH)
) mux_resp_multi_thread
(
.S (resp_select),
.A (mi_rmux_mesg),
.O (si_rmux_mesg),
.OE (1'b1)
);
assign any_push = M_AREADY;
assign any_pop = s_rvalid_i & S_RREADY & s_rlast_i;
assign accept_limit = (accept_cnt == C_ACCEPTANCE) & ~any_pop; // Allow next push if a transaction is currently being completed
assign m_avalid_qual_i = (&s_avalid_en) & ~accept_limit; // The current request is qualified for arbitration when it is qualified against all outstanding transaction threads.
assign any_aid_match = |aid_match;
assign any_rid_match = |rid_match;
assign accum_push[0] = 1'b0;
always @(posedge ACLK) begin
if (ARESET) begin
accept_cnt <= 0;
end else begin
if (any_push & ~any_pop) begin
accept_cnt <= accept_cnt + 1;
end else if (any_pop & ~any_push & (accept_cnt != 0)) begin
accept_cnt <= accept_cnt - 1;
end
end
end // Clocked process
for (gen_thread=0; gen_thread<P_NUM_THREADS; gen_thread=gen_thread+1) begin : gen_thread_loop
assign thread_valid[gen_thread] = (active_cnt[gen_thread*8 +: C_ACCEPTANCE_LOG+1] != 0);
assign aid_match[gen_thread] = // The currect thread is active for the requested transaction if
thread_valid[gen_thread] && // this thread slot is not vacant, and
((S_AID[P_THREAD_ID_WIDTH_M1-1:0]) == active_id[gen_thread*C_ID_WIDTH+:P_THREAD_ID_WIDTH_M1]); // the requested ID matches the active ID for this thread.
assign s_avalid_en[gen_thread] = // The current request is qualified against this thread slot if
(~aid_match[gen_thread]) || // This thread slot is not active for the requested ID, or
((m_atarget_enc_i == active_target[gen_thread*8+:P_NUM_M_DE_LOG]) && // this outstanding transaction was to the same target and
(m_aregion_i == active_region[gen_thread*8+:4])); // to the same region.
// cmd_push points to the position of either the active thread for the requested ID or the lowest vacant thread slot.
assign accum_push[gen_thread+1] = accum_push[gen_thread] | ~thread_valid[gen_thread];
assign cmd_push[gen_thread] = any_push & (aid_match[gen_thread] | ((~any_aid_match) & ~thread_valid[gen_thread] & ~accum_push[gen_thread]));
// cmd_pop points to the position of the active thread that matches the current RID.
assign rid_match[gen_thread] = thread_valid[gen_thread] & ((s_rid_i[P_THREAD_ID_WIDTH_M1-1:0]) == active_id[gen_thread*C_ID_WIDTH+:P_THREAD_ID_WIDTH_M1]);
assign cmd_pop[gen_thread] = any_pop & rid_match[gen_thread];
always @(posedge ACLK) begin
if (ARESET) begin
active_id[gen_thread*C_ID_WIDTH+:C_ID_WIDTH] <= 0;
active_target[gen_thread*8+:8] <= 0;
active_region[gen_thread*8+:8] <= 0;
active_cnt[gen_thread*8+:8] <= 0;
end else begin
if (cmd_push[gen_thread]) begin
active_id[gen_thread*C_ID_WIDTH+:P_THREAD_ID_WIDTH_M1] <= S_AID[P_THREAD_ID_WIDTH_M1-1:0];
active_target[gen_thread*8+:P_NUM_M_DE_LOG] <= m_atarget_enc_i;
active_region[gen_thread*8+:4] <= m_aregion_i;
if (~cmd_pop[gen_thread]) begin
active_cnt[gen_thread*8+:C_ACCEPTANCE_LOG+1] <= active_cnt[gen_thread*8+:C_ACCEPTANCE_LOG+1] + 1;
end
end else if (cmd_pop[gen_thread]) begin
active_cnt[gen_thread*8+:C_ACCEPTANCE_LOG+1] <= active_cnt[gen_thread*8+:C_ACCEPTANCE_LOG+1] - 1;
end
end
end // Clocked process
if (C_DEBUG) begin : gen_debug_r_multi_thread
// DEBUG READ BEAT COUNTER (only meaningful for R-channel)
always @(posedge ACLK) begin
if (ARESET) begin
debug_r_beat_cnt_i[gen_thread*8+:8] <= 0;
end else if (C_DIR == P_READ) begin
if (s_rvalid_i & S_RREADY & rid_match[gen_thread]) begin
if (s_rlast_i) begin
debug_r_beat_cnt_i[gen_thread*8+:8] <= 0;
end else begin
debug_r_beat_cnt_i[gen_thread*8+:8] <= debug_r_beat_cnt_i[gen_thread*8+:8] + 1;
end
end
end else begin
debug_r_beat_cnt_i[gen_thread*8+:8] <= 0;
end
end // Clocked process
// DEBUG R-CHANNEL TRANSACTION SEQUENCE FIFO
axi_data_fifo_v2_1_axic_srl_fifo #
(
.C_FAMILY (C_FAMILY),
.C_FIFO_WIDTH (8),
.C_FIFO_DEPTH_LOG (C_ACCEPTANCE_LOG+1),
.C_USE_FULL (0)
)
debug_r_seq_fifo_multi_thread
(
.ACLK (ACLK),
.ARESET (ARESET),
.S_MESG (DEBUG_A_TRANS_SEQ),
.S_VALID (cmd_push[gen_thread]),
.S_READY (),
.M_MESG (debug_r_trans_seq_i[gen_thread*8+:8]),
.M_VALID (),
.M_READY (cmd_pop[gen_thread])
);
end // gen_debug_r_multi_thread
end // Next gen_thread_loop
end // thread control
endgenerate
endmodule
`default_nettype wire
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_interconnect_model.v
*
* Date : 2012-11
*
* Description : Mimics Top_interconnect Switch.
*
*****************************************************************************/
`timescale 1ns/1ps
module processing_system7_bfm_v2_0_5_interconnect_model (
rstn,
sw_clk,
w_qos_gp0,
w_qos_gp1,
w_qos_hp0,
w_qos_hp1,
w_qos_hp2,
w_qos_hp3,
r_qos_gp0,
r_qos_gp1,
r_qos_hp0,
r_qos_hp1,
r_qos_hp2,
r_qos_hp3,
wr_ack_ddr_gp0,
wr_ack_ocm_gp0,
wr_data_gp0,
wr_addr_gp0,
wr_bytes_gp0,
wr_dv_ddr_gp0,
wr_dv_ocm_gp0,
rd_req_ddr_gp0,
rd_req_ocm_gp0,
rd_req_reg_gp0,
rd_addr_gp0,
rd_bytes_gp0,
rd_data_ddr_gp0,
rd_data_ocm_gp0,
rd_data_reg_gp0,
rd_dv_ddr_gp0,
rd_dv_ocm_gp0,
rd_dv_reg_gp0,
wr_ack_ddr_gp1,
wr_ack_ocm_gp1,
wr_data_gp1,
wr_addr_gp1,
wr_bytes_gp1,
wr_dv_ddr_gp1,
wr_dv_ocm_gp1,
rd_req_ddr_gp1,
rd_req_ocm_gp1,
rd_req_reg_gp1,
rd_addr_gp1,
rd_bytes_gp1,
rd_data_ddr_gp1,
rd_data_ocm_gp1,
rd_data_reg_gp1,
rd_dv_ddr_gp1,
rd_dv_ocm_gp1,
rd_dv_reg_gp1,
wr_ack_ddr_hp0,
wr_ack_ocm_hp0,
wr_data_hp0,
wr_addr_hp0,
wr_bytes_hp0,
wr_dv_ddr_hp0,
wr_dv_ocm_hp0,
rd_req_ddr_hp0,
rd_req_ocm_hp0,
rd_addr_hp0,
rd_bytes_hp0,
rd_data_ddr_hp0,
rd_data_ocm_hp0,
rd_dv_ddr_hp0,
rd_dv_ocm_hp0,
wr_ack_ddr_hp1,
wr_ack_ocm_hp1,
wr_data_hp1,
wr_addr_hp1,
wr_bytes_hp1,
wr_dv_ddr_hp1,
wr_dv_ocm_hp1,
rd_req_ddr_hp1,
rd_req_ocm_hp1,
rd_addr_hp1,
rd_bytes_hp1,
rd_data_ddr_hp1,
rd_data_ocm_hp1,
rd_dv_ddr_hp1,
rd_dv_ocm_hp1,
wr_ack_ddr_hp2,
wr_ack_ocm_hp2,
wr_data_hp2,
wr_addr_hp2,
wr_bytes_hp2,
wr_dv_ddr_hp2,
wr_dv_ocm_hp2,
rd_req_ddr_hp2,
rd_req_ocm_hp2,
rd_addr_hp2,
rd_bytes_hp2,
rd_data_ddr_hp2,
rd_data_ocm_hp2,
rd_dv_ddr_hp2,
rd_dv_ocm_hp2,
wr_ack_ddr_hp3,
wr_ack_ocm_hp3,
wr_data_hp3,
wr_addr_hp3,
wr_bytes_hp3,
wr_dv_ddr_hp3,
wr_dv_ocm_hp3,
rd_req_ddr_hp3,
rd_req_ocm_hp3,
rd_addr_hp3,
rd_bytes_hp3,
rd_data_ddr_hp3,
rd_data_ocm_hp3,
rd_dv_ddr_hp3,
rd_dv_ocm_hp3,
/* Goes to port 1 of DDR */
ddr_wr_ack_port1,
ddr_wr_dv_port1,
ddr_rd_req_port1,
ddr_rd_dv_port1,
ddr_wr_addr_port1,
ddr_wr_data_port1,
ddr_wr_bytes_port1,
ddr_rd_addr_port1,
ddr_rd_data_port1,
ddr_rd_bytes_port1,
ddr_wr_qos_port1,
ddr_rd_qos_port1,
/* Goes to port2 of DDR */
ddr_wr_ack_port2,
ddr_wr_dv_port2,
ddr_rd_req_port2,
ddr_rd_dv_port2,
ddr_wr_addr_port2,
ddr_wr_data_port2,
ddr_wr_bytes_port2,
ddr_rd_addr_port2,
ddr_rd_data_port2,
ddr_rd_bytes_port2,
ddr_wr_qos_port2,
ddr_rd_qos_port2,
/* Goes to port3 of DDR */
ddr_wr_ack_port3,
ddr_wr_dv_port3,
ddr_rd_req_port3,
ddr_rd_dv_port3,
ddr_wr_addr_port3,
ddr_wr_data_port3,
ddr_wr_bytes_port3,
ddr_rd_addr_port3,
ddr_rd_data_port3,
ddr_rd_bytes_port3,
ddr_wr_qos_port3,
ddr_rd_qos_port3,
/* Goes to port1 of OCM */
ocm_wr_qos_port1,
ocm_rd_qos_port1,
ocm_wr_dv_port1,
ocm_wr_data_port1,
ocm_wr_addr_port1,
ocm_wr_bytes_port1,
ocm_wr_ack_port1,
ocm_rd_req_port1,
ocm_rd_data_port1,
ocm_rd_addr_port1,
ocm_rd_bytes_port1,
ocm_rd_dv_port1,
/* Goes to port1 for RegMap */
reg_rd_qos_port1,
reg_rd_req_port1,
reg_rd_data_port1,
reg_rd_addr_port1,
reg_rd_bytes_port1,
reg_rd_dv_port1
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input rstn;
input sw_clk;
input [axi_qos_width-1:0] w_qos_gp0;
input [axi_qos_width-1:0] w_qos_gp1;
input [axi_qos_width-1:0] w_qos_hp0;
input [axi_qos_width-1:0] w_qos_hp1;
input [axi_qos_width-1:0] w_qos_hp2;
input [axi_qos_width-1:0] w_qos_hp3;
input [axi_qos_width-1:0] r_qos_gp0;
input [axi_qos_width-1:0] r_qos_gp1;
input [axi_qos_width-1:0] r_qos_hp0;
input [axi_qos_width-1:0] r_qos_hp1;
input [axi_qos_width-1:0] r_qos_hp2;
input [axi_qos_width-1:0] r_qos_hp3;
output [axi_qos_width-1:0] ocm_wr_qos_port1;
output [axi_qos_width-1:0] ocm_rd_qos_port1;
output wr_ack_ddr_gp0;
output wr_ack_ocm_gp0;
input[max_burst_bits-1:0] wr_data_gp0;
input[addr_width-1:0] wr_addr_gp0;
input[max_burst_bytes_width:0] wr_bytes_gp0;
input wr_dv_ddr_gp0;
input wr_dv_ocm_gp0;
input rd_req_ddr_gp0;
input rd_req_ocm_gp0;
input rd_req_reg_gp0;
input[addr_width-1:0] rd_addr_gp0;
input[max_burst_bytes_width:0] rd_bytes_gp0;
output[max_burst_bits-1:0] rd_data_ddr_gp0;
output[max_burst_bits-1:0] rd_data_ocm_gp0;
output[max_burst_bits-1:0] rd_data_reg_gp0;
output rd_dv_ddr_gp0;
output rd_dv_ocm_gp0;
output rd_dv_reg_gp0;
output wr_ack_ddr_gp1;
output wr_ack_ocm_gp1;
input[max_burst_bits-1:0] wr_data_gp1;
input[addr_width-1:0] wr_addr_gp1;
input[max_burst_bytes_width:0] wr_bytes_gp1;
input wr_dv_ddr_gp1;
input wr_dv_ocm_gp1;
input rd_req_ddr_gp1;
input rd_req_ocm_gp1;
input rd_req_reg_gp1;
input[addr_width-1:0] rd_addr_gp1;
input[max_burst_bytes_width:0] rd_bytes_gp1;
output[max_burst_bits-1:0] rd_data_ddr_gp1;
output[max_burst_bits-1:0] rd_data_ocm_gp1;
output[max_burst_bits-1:0] rd_data_reg_gp1;
output rd_dv_ddr_gp1;
output rd_dv_ocm_gp1;
output rd_dv_reg_gp1;
output wr_ack_ddr_hp0;
output wr_ack_ocm_hp0;
input[max_burst_bits-1:0] wr_data_hp0;
input[addr_width-1:0] wr_addr_hp0;
input[max_burst_bytes_width:0] wr_bytes_hp0;
input wr_dv_ddr_hp0;
input wr_dv_ocm_hp0;
input rd_req_ddr_hp0;
input rd_req_ocm_hp0;
input[addr_width-1:0] rd_addr_hp0;
input[max_burst_bytes_width:0] rd_bytes_hp0;
output[max_burst_bits-1:0] rd_data_ddr_hp0;
output[max_burst_bits-1:0] rd_data_ocm_hp0;
output rd_dv_ddr_hp0;
output rd_dv_ocm_hp0;
output wr_ack_ddr_hp1;
output wr_ack_ocm_hp1;
input[max_burst_bits-1:0] wr_data_hp1;
input[addr_width-1:0] wr_addr_hp1;
input[max_burst_bytes_width:0] wr_bytes_hp1;
input wr_dv_ddr_hp1;
input wr_dv_ocm_hp1;
input rd_req_ddr_hp1;
input rd_req_ocm_hp1;
input[addr_width-1:0] rd_addr_hp1;
input[max_burst_bytes_width:0] rd_bytes_hp1;
output[max_burst_bits-1:0] rd_data_ddr_hp1;
output[max_burst_bits-1:0] rd_data_ocm_hp1;
output rd_dv_ddr_hp1;
output rd_dv_ocm_hp1;
output wr_ack_ddr_hp2;
output wr_ack_ocm_hp2;
input[max_burst_bits-1:0] wr_data_hp2;
input[addr_width-1:0] wr_addr_hp2;
input[max_burst_bytes_width:0] wr_bytes_hp2;
input wr_dv_ddr_hp2;
input wr_dv_ocm_hp2;
input rd_req_ddr_hp2;
input rd_req_ocm_hp2;
input[addr_width-1:0] rd_addr_hp2;
input[max_burst_bytes_width:0] rd_bytes_hp2;
output[max_burst_bits-1:0] rd_data_ddr_hp2;
output[max_burst_bits-1:0] rd_data_ocm_hp2;
output rd_dv_ddr_hp2;
output rd_dv_ocm_hp2;
output wr_ack_ddr_hp3;
output wr_ack_ocm_hp3;
input[max_burst_bits-1:0] wr_data_hp3;
input[addr_width-1:0] wr_addr_hp3;
input[max_burst_bytes_width:0] wr_bytes_hp3;
input wr_dv_ddr_hp3;
input wr_dv_ocm_hp3;
input rd_req_ddr_hp3;
input rd_req_ocm_hp3;
input[addr_width-1:0] rd_addr_hp3;
input[max_burst_bytes_width:0] rd_bytes_hp3;
output[max_burst_bits-1:0] rd_data_ddr_hp3;
output[max_burst_bits-1:0] rd_data_ocm_hp3;
output rd_dv_ddr_hp3;
output rd_dv_ocm_hp3;
/* Goes to port 1 of DDR */
input ddr_wr_ack_port1;
output ddr_wr_dv_port1;
output ddr_rd_req_port1;
input ddr_rd_dv_port1;
output[addr_width-1:0] ddr_wr_addr_port1;
output[max_burst_bits-1:0] ddr_wr_data_port1;
output[max_burst_bytes_width:0] ddr_wr_bytes_port1;
output[addr_width-1:0] ddr_rd_addr_port1;
input[max_burst_bits-1:0] ddr_rd_data_port1;
output[max_burst_bytes_width:0] ddr_rd_bytes_port1;
output [axi_qos_width-1:0] ddr_wr_qos_port1;
output [axi_qos_width-1:0] ddr_rd_qos_port1;
/* Goes to port2 of DDR */
input ddr_wr_ack_port2;
output ddr_wr_dv_port2;
output ddr_rd_req_port2;
input ddr_rd_dv_port2;
output[addr_width-1:0] ddr_wr_addr_port2;
output[max_burst_bits-1:0] ddr_wr_data_port2;
output[max_burst_bytes_width:0] ddr_wr_bytes_port2;
output[addr_width-1:0] ddr_rd_addr_port2;
input[max_burst_bits-1:0] ddr_rd_data_port2;
output[max_burst_bytes_width:0] ddr_rd_bytes_port2;
output [axi_qos_width-1:0] ddr_wr_qos_port2;
output [axi_qos_width-1:0] ddr_rd_qos_port2;
/* Goes to port3 of DDR */
input ddr_wr_ack_port3;
output ddr_wr_dv_port3;
output ddr_rd_req_port3;
input ddr_rd_dv_port3;
output[addr_width-1:0] ddr_wr_addr_port3;
output[max_burst_bits-1:0] ddr_wr_data_port3;
output[max_burst_bytes_width:0] ddr_wr_bytes_port3;
output[addr_width-1:0] ddr_rd_addr_port3;
input[max_burst_bits-1:0] ddr_rd_data_port3;
output[max_burst_bytes_width:0] ddr_rd_bytes_port3;
output [axi_qos_width-1:0] ddr_wr_qos_port3;
output [axi_qos_width-1:0] ddr_rd_qos_port3;
/* Goes to port1 of OCM */
input ocm_wr_ack_port1;
output ocm_wr_dv_port1;
output ocm_rd_req_port1;
input ocm_rd_dv_port1;
output[max_burst_bits-1:0] ocm_wr_data_port1;
output[addr_width-1:0] ocm_wr_addr_port1;
output[max_burst_bytes_width:0] ocm_wr_bytes_port1;
input[max_burst_bits-1:0] ocm_rd_data_port1;
output[addr_width-1:0] ocm_rd_addr_port1;
output[max_burst_bytes_width:0] ocm_rd_bytes_port1;
/* Goes to port1 of REG */
output [axi_qos_width-1:0] reg_rd_qos_port1;
output reg_rd_req_port1;
input reg_rd_dv_port1;
input[max_burst_bits-1:0] reg_rd_data_port1;
output[addr_width-1:0] reg_rd_addr_port1;
output[max_burst_bytes_width:0] reg_rd_bytes_port1;
wire ocm_wr_dv_osw0;
wire ocm_wr_dv_osw1;
wire[max_burst_bits-1:0] ocm_wr_data_osw0;
wire[max_burst_bits-1:0] ocm_wr_data_osw1;
wire[addr_width-1:0] ocm_wr_addr_osw0;
wire[addr_width-1:0] ocm_wr_addr_osw1;
wire[max_burst_bytes_width:0] ocm_wr_bytes_osw0;
wire[max_burst_bytes_width:0] ocm_wr_bytes_osw1;
wire ocm_wr_ack_osw0;
wire ocm_wr_ack_osw1;
wire ocm_rd_req_osw0;
wire ocm_rd_req_osw1;
wire[max_burst_bits-1:0] ocm_rd_data_osw0;
wire[max_burst_bits-1:0] ocm_rd_data_osw1;
wire[addr_width-1:0] ocm_rd_addr_osw0;
wire[addr_width-1:0] ocm_rd_addr_osw1;
wire[max_burst_bytes_width:0] ocm_rd_bytes_osw0;
wire[max_burst_bytes_width:0] ocm_rd_bytes_osw1;
wire ocm_rd_dv_osw0;
wire ocm_rd_dv_osw1;
wire [axi_qos_width-1:0] ocm_wr_qos_osw0;
wire [axi_qos_width-1:0] ocm_wr_qos_osw1;
wire [axi_qos_width-1:0] ocm_rd_qos_osw0;
wire [axi_qos_width-1:0] ocm_rd_qos_osw1;
processing_system7_bfm_v2_0_5_fmsw_gp fmsw (
.sw_clk(sw_clk),
.rstn(rstn),
.w_qos_gp0(w_qos_gp0),
.r_qos_gp0(r_qos_gp0),
.wr_ack_ocm_gp0(wr_ack_ocm_gp0),
.wr_ack_ddr_gp0(wr_ack_ddr_gp0),
.wr_data_gp0(wr_data_gp0),
.wr_addr_gp0(wr_addr_gp0),
.wr_bytes_gp0(wr_bytes_gp0),
.wr_dv_ocm_gp0(wr_dv_ocm_gp0),
.wr_dv_ddr_gp0(wr_dv_ddr_gp0),
.rd_req_ocm_gp0(rd_req_ocm_gp0),
.rd_req_ddr_gp0(rd_req_ddr_gp0),
.rd_req_reg_gp0(rd_req_reg_gp0),
.rd_addr_gp0(rd_addr_gp0),
.rd_bytes_gp0(rd_bytes_gp0),
.rd_data_ddr_gp0(rd_data_ddr_gp0),
.rd_data_ocm_gp0(rd_data_ocm_gp0),
.rd_data_reg_gp0(rd_data_reg_gp0),
.rd_dv_ocm_gp0(rd_dv_ocm_gp0),
.rd_dv_ddr_gp0(rd_dv_ddr_gp0),
.rd_dv_reg_gp0(rd_dv_reg_gp0),
.w_qos_gp1(w_qos_gp1),
.r_qos_gp1(r_qos_gp1),
.wr_ack_ocm_gp1(wr_ack_ocm_gp1),
.wr_ack_ddr_gp1(wr_ack_ddr_gp1),
.wr_data_gp1(wr_data_gp1),
.wr_addr_gp1(wr_addr_gp1),
.wr_bytes_gp1(wr_bytes_gp1),
.wr_dv_ocm_gp1(wr_dv_ocm_gp1),
.wr_dv_ddr_gp1(wr_dv_ddr_gp1),
.rd_req_ocm_gp1(rd_req_ocm_gp1),
.rd_req_ddr_gp1(rd_req_ddr_gp1),
.rd_req_reg_gp1(rd_req_reg_gp1),
.rd_addr_gp1(rd_addr_gp1),
.rd_bytes_gp1(rd_bytes_gp1),
.rd_data_ddr_gp1(rd_data_ddr_gp1),
.rd_data_ocm_gp1(rd_data_ocm_gp1),
.rd_data_reg_gp1(rd_data_reg_gp1),
.rd_dv_ocm_gp1(rd_dv_ocm_gp1),
.rd_dv_ddr_gp1(rd_dv_ddr_gp1),
.rd_dv_reg_gp1(rd_dv_reg_gp1),
.ocm_wr_ack (ocm_wr_ack_osw0),
.ocm_wr_dv (ocm_wr_dv_osw0),
.ocm_rd_req (ocm_rd_req_osw0),
.ocm_rd_dv (ocm_rd_dv_osw0),
.ocm_wr_addr(ocm_wr_addr_osw0),
.ocm_wr_data(ocm_wr_data_osw0),
.ocm_wr_bytes(ocm_wr_bytes_osw0),
.ocm_rd_addr(ocm_rd_addr_osw0),
.ocm_rd_data(ocm_rd_data_osw0),
.ocm_rd_bytes(ocm_rd_bytes_osw0),
.ocm_wr_qos(ocm_wr_qos_osw0),
.ocm_rd_qos(ocm_rd_qos_osw0),
.ddr_wr_qos(ddr_wr_qos_port1),
.ddr_rd_qos(ddr_rd_qos_port1),
.reg_rd_qos(reg_rd_qos_port1),
.ddr_wr_ack(ddr_wr_ack_port1),
.ddr_wr_dv(ddr_wr_dv_port1),
.ddr_rd_req(ddr_rd_req_port1),
.ddr_rd_dv(ddr_rd_dv_port1),
.ddr_wr_addr(ddr_wr_addr_port1),
.ddr_wr_data(ddr_wr_data_port1),
.ddr_wr_bytes(ddr_wr_bytes_port1),
.ddr_rd_addr(ddr_rd_addr_port1),
.ddr_rd_data(ddr_rd_data_port1),
.ddr_rd_bytes(ddr_rd_bytes_port1),
.reg_rd_req(reg_rd_req_port1),
.reg_rd_dv(reg_rd_dv_port1),
.reg_rd_addr(reg_rd_addr_port1),
.reg_rd_data(reg_rd_data_port1),
.reg_rd_bytes(reg_rd_bytes_port1)
);
processing_system7_bfm_v2_0_5_ssw_hp ssw(
.sw_clk(sw_clk),
.rstn(rstn),
.w_qos_hp0(w_qos_hp0),
.r_qos_hp0(r_qos_hp0),
.w_qos_hp1(w_qos_hp1),
.r_qos_hp1(r_qos_hp1),
.w_qos_hp2(w_qos_hp2),
.r_qos_hp2(r_qos_hp2),
.w_qos_hp3(w_qos_hp3),
.r_qos_hp3(r_qos_hp3),
.wr_ack_ddr_hp0(wr_ack_ddr_hp0),
.wr_data_hp0(wr_data_hp0),
.wr_addr_hp0(wr_addr_hp0),
.wr_bytes_hp0(wr_bytes_hp0),
.wr_dv_ddr_hp0(wr_dv_ddr_hp0),
.rd_req_ddr_hp0(rd_req_ddr_hp0),
.rd_addr_hp0(rd_addr_hp0),
.rd_bytes_hp0(rd_bytes_hp0),
.rd_data_ddr_hp0(rd_data_ddr_hp0),
.rd_data_ocm_hp0(rd_data_ocm_hp0),
.rd_dv_ddr_hp0(rd_dv_ddr_hp0),
.wr_ack_ocm_hp0(wr_ack_ocm_hp0),
.wr_dv_ocm_hp0(wr_dv_ocm_hp0),
.rd_req_ocm_hp0(rd_req_ocm_hp0),
.rd_dv_ocm_hp0(rd_dv_ocm_hp0),
.wr_ack_ddr_hp1(wr_ack_ddr_hp1),
.wr_data_hp1(wr_data_hp1),
.wr_addr_hp1(wr_addr_hp1),
.wr_bytes_hp1(wr_bytes_hp1),
.wr_dv_ddr_hp1(wr_dv_ddr_hp1),
.rd_req_ddr_hp1(rd_req_ddr_hp1),
.rd_addr_hp1(rd_addr_hp1),
.rd_bytes_hp1(rd_bytes_hp1),
.rd_data_ddr_hp1(rd_data_ddr_hp1),
.rd_data_ocm_hp1(rd_data_ocm_hp1),
.rd_dv_ddr_hp1(rd_dv_ddr_hp1),
.wr_ack_ocm_hp1(wr_ack_ocm_hp1),
.wr_dv_ocm_hp1(wr_dv_ocm_hp1),
.rd_req_ocm_hp1(rd_req_ocm_hp1),
.rd_dv_ocm_hp1(rd_dv_ocm_hp1),
.wr_ack_ddr_hp2(wr_ack_ddr_hp2),
.wr_data_hp2(wr_data_hp2),
.wr_addr_hp2(wr_addr_hp2),
.wr_bytes_hp2(wr_bytes_hp2),
.wr_dv_ddr_hp2(wr_dv_ddr_hp2),
.rd_req_ddr_hp2(rd_req_ddr_hp2),
.rd_addr_hp2(rd_addr_hp2),
.rd_bytes_hp2(rd_bytes_hp2),
.rd_data_ddr_hp2(rd_data_ddr_hp2),
.rd_data_ocm_hp2(rd_data_ocm_hp2),
.rd_dv_ddr_hp2(rd_dv_ddr_hp2),
.wr_ack_ocm_hp2(wr_ack_ocm_hp2),
.wr_dv_ocm_hp2(wr_dv_ocm_hp2),
.rd_req_ocm_hp2(rd_req_ocm_hp2),
.rd_dv_ocm_hp2(rd_dv_ocm_hp2),
.wr_ack_ddr_hp3(wr_ack_ddr_hp3),
.wr_data_hp3(wr_data_hp3),
.wr_addr_hp3(wr_addr_hp3),
.wr_bytes_hp3(wr_bytes_hp3),
.wr_dv_ddr_hp3(wr_dv_ddr_hp3),
.rd_req_ddr_hp3(rd_req_ddr_hp3),
.rd_addr_hp3(rd_addr_hp3),
.rd_bytes_hp3(rd_bytes_hp3),
.rd_data_ddr_hp3(rd_data_ddr_hp3),
.rd_data_ocm_hp3(rd_data_ocm_hp3),
.rd_dv_ddr_hp3(rd_dv_ddr_hp3),
.wr_ack_ocm_hp3(wr_ack_ocm_hp3),
.wr_dv_ocm_hp3(wr_dv_ocm_hp3),
.rd_req_ocm_hp3(rd_req_ocm_hp3),
.rd_dv_ocm_hp3(rd_dv_ocm_hp3),
.ddr_wr_ack0(ddr_wr_ack_port2),
.ddr_wr_dv0(ddr_wr_dv_port2),
.ddr_rd_req0(ddr_rd_req_port2),
.ddr_rd_dv0(ddr_rd_dv_port2),
.ddr_wr_addr0(ddr_wr_addr_port2),
.ddr_wr_data0(ddr_wr_data_port2),
.ddr_wr_bytes0(ddr_wr_bytes_port2),
.ddr_rd_addr0(ddr_rd_addr_port2),
.ddr_rd_data0(ddr_rd_data_port2),
.ddr_rd_bytes0(ddr_rd_bytes_port2),
.ddr_wr_qos0(ddr_wr_qos_port2),
.ddr_rd_qos0(ddr_rd_qos_port2),
.ddr_wr_ack1(ddr_wr_ack_port3),
.ddr_wr_dv1(ddr_wr_dv_port3),
.ddr_rd_req1(ddr_rd_req_port3),
.ddr_rd_dv1(ddr_rd_dv_port3),
.ddr_wr_addr1(ddr_wr_addr_port3),
.ddr_wr_data1(ddr_wr_data_port3),
.ddr_wr_bytes1(ddr_wr_bytes_port3),
.ddr_rd_addr1(ddr_rd_addr_port3),
.ddr_rd_data1(ddr_rd_data_port3),
.ddr_rd_bytes1(ddr_rd_bytes_port3),
.ddr_wr_qos1(ddr_wr_qos_port3),
.ddr_rd_qos1(ddr_rd_qos_port3),
.ocm_wr_qos(ocm_wr_qos_osw1),
.ocm_rd_qos(ocm_rd_qos_osw1),
.ocm_wr_ack (ocm_wr_ack_osw1),
.ocm_wr_dv (ocm_wr_dv_osw1),
.ocm_rd_req (ocm_rd_req_osw1),
.ocm_rd_dv (ocm_rd_dv_osw1),
.ocm_wr_addr(ocm_wr_addr_osw1),
.ocm_wr_data(ocm_wr_data_osw1),
.ocm_wr_bytes(ocm_wr_bytes_osw1),
.ocm_rd_addr(ocm_rd_addr_osw1),
.ocm_rd_data(ocm_rd_data_osw1),
.ocm_rd_bytes(ocm_rd_bytes_osw1)
);
processing_system7_bfm_v2_0_5_arb_wr osw_wr (
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(ocm_wr_qos_osw0), /// chk
.qos2(ocm_wr_qos_osw1), /// chk
.prt_dv1(ocm_wr_dv_osw0),
.prt_dv2(ocm_wr_dv_osw1),
.prt_data1(ocm_wr_data_osw0),
.prt_data2(ocm_wr_data_osw1),
.prt_addr1(ocm_wr_addr_osw0),
.prt_addr2(ocm_wr_addr_osw1),
.prt_bytes1(ocm_wr_bytes_osw0),
.prt_bytes2(ocm_wr_bytes_osw1),
.prt_ack1(ocm_wr_ack_osw0),
.prt_ack2(ocm_wr_ack_osw1),
.prt_req(ocm_wr_dv_port1),
.prt_qos(ocm_wr_qos_port1),
.prt_data(ocm_wr_data_port1),
.prt_addr(ocm_wr_addr_port1),
.prt_bytes(ocm_wr_bytes_port1),
.prt_ack(ocm_wr_ack_port1)
);
processing_system7_bfm_v2_0_5_arb_rd osw_rd(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(ocm_rd_qos_osw0), // chk
.qos2(ocm_rd_qos_osw1), // chk
.prt_req1(ocm_rd_req_osw0),
.prt_req2(ocm_rd_req_osw1),
.prt_data1(ocm_rd_data_osw0),
.prt_data2(ocm_rd_data_osw1),
.prt_addr1(ocm_rd_addr_osw0),
.prt_addr2(ocm_rd_addr_osw1),
.prt_bytes1(ocm_rd_bytes_osw0),
.prt_bytes2(ocm_rd_bytes_osw1),
.prt_dv1(ocm_rd_dv_osw0),
.prt_dv2(ocm_rd_dv_osw1),
.prt_req(ocm_rd_req_port1),
.prt_qos(ocm_rd_qos_port1),
.prt_data(ocm_rd_data_port1),
.prt_addr(ocm_rd_addr_port1),
.prt_bytes(ocm_rd_bytes_port1),
.prt_dv(ocm_rd_dv_port1)
);
endmodule
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_interconnect_model.v
*
* Date : 2012-11
*
* Description : Mimics Top_interconnect Switch.
*
*****************************************************************************/
`timescale 1ns/1ps
module processing_system7_bfm_v2_0_5_interconnect_model (
rstn,
sw_clk,
w_qos_gp0,
w_qos_gp1,
w_qos_hp0,
w_qos_hp1,
w_qos_hp2,
w_qos_hp3,
r_qos_gp0,
r_qos_gp1,
r_qos_hp0,
r_qos_hp1,
r_qos_hp2,
r_qos_hp3,
wr_ack_ddr_gp0,
wr_ack_ocm_gp0,
wr_data_gp0,
wr_addr_gp0,
wr_bytes_gp0,
wr_dv_ddr_gp0,
wr_dv_ocm_gp0,
rd_req_ddr_gp0,
rd_req_ocm_gp0,
rd_req_reg_gp0,
rd_addr_gp0,
rd_bytes_gp0,
rd_data_ddr_gp0,
rd_data_ocm_gp0,
rd_data_reg_gp0,
rd_dv_ddr_gp0,
rd_dv_ocm_gp0,
rd_dv_reg_gp0,
wr_ack_ddr_gp1,
wr_ack_ocm_gp1,
wr_data_gp1,
wr_addr_gp1,
wr_bytes_gp1,
wr_dv_ddr_gp1,
wr_dv_ocm_gp1,
rd_req_ddr_gp1,
rd_req_ocm_gp1,
rd_req_reg_gp1,
rd_addr_gp1,
rd_bytes_gp1,
rd_data_ddr_gp1,
rd_data_ocm_gp1,
rd_data_reg_gp1,
rd_dv_ddr_gp1,
rd_dv_ocm_gp1,
rd_dv_reg_gp1,
wr_ack_ddr_hp0,
wr_ack_ocm_hp0,
wr_data_hp0,
wr_addr_hp0,
wr_bytes_hp0,
wr_dv_ddr_hp0,
wr_dv_ocm_hp0,
rd_req_ddr_hp0,
rd_req_ocm_hp0,
rd_addr_hp0,
rd_bytes_hp0,
rd_data_ddr_hp0,
rd_data_ocm_hp0,
rd_dv_ddr_hp0,
rd_dv_ocm_hp0,
wr_ack_ddr_hp1,
wr_ack_ocm_hp1,
wr_data_hp1,
wr_addr_hp1,
wr_bytes_hp1,
wr_dv_ddr_hp1,
wr_dv_ocm_hp1,
rd_req_ddr_hp1,
rd_req_ocm_hp1,
rd_addr_hp1,
rd_bytes_hp1,
rd_data_ddr_hp1,
rd_data_ocm_hp1,
rd_dv_ddr_hp1,
rd_dv_ocm_hp1,
wr_ack_ddr_hp2,
wr_ack_ocm_hp2,
wr_data_hp2,
wr_addr_hp2,
wr_bytes_hp2,
wr_dv_ddr_hp2,
wr_dv_ocm_hp2,
rd_req_ddr_hp2,
rd_req_ocm_hp2,
rd_addr_hp2,
rd_bytes_hp2,
rd_data_ddr_hp2,
rd_data_ocm_hp2,
rd_dv_ddr_hp2,
rd_dv_ocm_hp2,
wr_ack_ddr_hp3,
wr_ack_ocm_hp3,
wr_data_hp3,
wr_addr_hp3,
wr_bytes_hp3,
wr_dv_ddr_hp3,
wr_dv_ocm_hp3,
rd_req_ddr_hp3,
rd_req_ocm_hp3,
rd_addr_hp3,
rd_bytes_hp3,
rd_data_ddr_hp3,
rd_data_ocm_hp3,
rd_dv_ddr_hp3,
rd_dv_ocm_hp3,
/* Goes to port 1 of DDR */
ddr_wr_ack_port1,
ddr_wr_dv_port1,
ddr_rd_req_port1,
ddr_rd_dv_port1,
ddr_wr_addr_port1,
ddr_wr_data_port1,
ddr_wr_bytes_port1,
ddr_rd_addr_port1,
ddr_rd_data_port1,
ddr_rd_bytes_port1,
ddr_wr_qos_port1,
ddr_rd_qos_port1,
/* Goes to port2 of DDR */
ddr_wr_ack_port2,
ddr_wr_dv_port2,
ddr_rd_req_port2,
ddr_rd_dv_port2,
ddr_wr_addr_port2,
ddr_wr_data_port2,
ddr_wr_bytes_port2,
ddr_rd_addr_port2,
ddr_rd_data_port2,
ddr_rd_bytes_port2,
ddr_wr_qos_port2,
ddr_rd_qos_port2,
/* Goes to port3 of DDR */
ddr_wr_ack_port3,
ddr_wr_dv_port3,
ddr_rd_req_port3,
ddr_rd_dv_port3,
ddr_wr_addr_port3,
ddr_wr_data_port3,
ddr_wr_bytes_port3,
ddr_rd_addr_port3,
ddr_rd_data_port3,
ddr_rd_bytes_port3,
ddr_wr_qos_port3,
ddr_rd_qos_port3,
/* Goes to port1 of OCM */
ocm_wr_qos_port1,
ocm_rd_qos_port1,
ocm_wr_dv_port1,
ocm_wr_data_port1,
ocm_wr_addr_port1,
ocm_wr_bytes_port1,
ocm_wr_ack_port1,
ocm_rd_req_port1,
ocm_rd_data_port1,
ocm_rd_addr_port1,
ocm_rd_bytes_port1,
ocm_rd_dv_port1,
/* Goes to port1 for RegMap */
reg_rd_qos_port1,
reg_rd_req_port1,
reg_rd_data_port1,
reg_rd_addr_port1,
reg_rd_bytes_port1,
reg_rd_dv_port1
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input rstn;
input sw_clk;
input [axi_qos_width-1:0] w_qos_gp0;
input [axi_qos_width-1:0] w_qos_gp1;
input [axi_qos_width-1:0] w_qos_hp0;
input [axi_qos_width-1:0] w_qos_hp1;
input [axi_qos_width-1:0] w_qos_hp2;
input [axi_qos_width-1:0] w_qos_hp3;
input [axi_qos_width-1:0] r_qos_gp0;
input [axi_qos_width-1:0] r_qos_gp1;
input [axi_qos_width-1:0] r_qos_hp0;
input [axi_qos_width-1:0] r_qos_hp1;
input [axi_qos_width-1:0] r_qos_hp2;
input [axi_qos_width-1:0] r_qos_hp3;
output [axi_qos_width-1:0] ocm_wr_qos_port1;
output [axi_qos_width-1:0] ocm_rd_qos_port1;
output wr_ack_ddr_gp0;
output wr_ack_ocm_gp0;
input[max_burst_bits-1:0] wr_data_gp0;
input[addr_width-1:0] wr_addr_gp0;
input[max_burst_bytes_width:0] wr_bytes_gp0;
input wr_dv_ddr_gp0;
input wr_dv_ocm_gp0;
input rd_req_ddr_gp0;
input rd_req_ocm_gp0;
input rd_req_reg_gp0;
input[addr_width-1:0] rd_addr_gp0;
input[max_burst_bytes_width:0] rd_bytes_gp0;
output[max_burst_bits-1:0] rd_data_ddr_gp0;
output[max_burst_bits-1:0] rd_data_ocm_gp0;
output[max_burst_bits-1:0] rd_data_reg_gp0;
output rd_dv_ddr_gp0;
output rd_dv_ocm_gp0;
output rd_dv_reg_gp0;
output wr_ack_ddr_gp1;
output wr_ack_ocm_gp1;
input[max_burst_bits-1:0] wr_data_gp1;
input[addr_width-1:0] wr_addr_gp1;
input[max_burst_bytes_width:0] wr_bytes_gp1;
input wr_dv_ddr_gp1;
input wr_dv_ocm_gp1;
input rd_req_ddr_gp1;
input rd_req_ocm_gp1;
input rd_req_reg_gp1;
input[addr_width-1:0] rd_addr_gp1;
input[max_burst_bytes_width:0] rd_bytes_gp1;
output[max_burst_bits-1:0] rd_data_ddr_gp1;
output[max_burst_bits-1:0] rd_data_ocm_gp1;
output[max_burst_bits-1:0] rd_data_reg_gp1;
output rd_dv_ddr_gp1;
output rd_dv_ocm_gp1;
output rd_dv_reg_gp1;
output wr_ack_ddr_hp0;
output wr_ack_ocm_hp0;
input[max_burst_bits-1:0] wr_data_hp0;
input[addr_width-1:0] wr_addr_hp0;
input[max_burst_bytes_width:0] wr_bytes_hp0;
input wr_dv_ddr_hp0;
input wr_dv_ocm_hp0;
input rd_req_ddr_hp0;
input rd_req_ocm_hp0;
input[addr_width-1:0] rd_addr_hp0;
input[max_burst_bytes_width:0] rd_bytes_hp0;
output[max_burst_bits-1:0] rd_data_ddr_hp0;
output[max_burst_bits-1:0] rd_data_ocm_hp0;
output rd_dv_ddr_hp0;
output rd_dv_ocm_hp0;
output wr_ack_ddr_hp1;
output wr_ack_ocm_hp1;
input[max_burst_bits-1:0] wr_data_hp1;
input[addr_width-1:0] wr_addr_hp1;
input[max_burst_bytes_width:0] wr_bytes_hp1;
input wr_dv_ddr_hp1;
input wr_dv_ocm_hp1;
input rd_req_ddr_hp1;
input rd_req_ocm_hp1;
input[addr_width-1:0] rd_addr_hp1;
input[max_burst_bytes_width:0] rd_bytes_hp1;
output[max_burst_bits-1:0] rd_data_ddr_hp1;
output[max_burst_bits-1:0] rd_data_ocm_hp1;
output rd_dv_ddr_hp1;
output rd_dv_ocm_hp1;
output wr_ack_ddr_hp2;
output wr_ack_ocm_hp2;
input[max_burst_bits-1:0] wr_data_hp2;
input[addr_width-1:0] wr_addr_hp2;
input[max_burst_bytes_width:0] wr_bytes_hp2;
input wr_dv_ddr_hp2;
input wr_dv_ocm_hp2;
input rd_req_ddr_hp2;
input rd_req_ocm_hp2;
input[addr_width-1:0] rd_addr_hp2;
input[max_burst_bytes_width:0] rd_bytes_hp2;
output[max_burst_bits-1:0] rd_data_ddr_hp2;
output[max_burst_bits-1:0] rd_data_ocm_hp2;
output rd_dv_ddr_hp2;
output rd_dv_ocm_hp2;
output wr_ack_ddr_hp3;
output wr_ack_ocm_hp3;
input[max_burst_bits-1:0] wr_data_hp3;
input[addr_width-1:0] wr_addr_hp3;
input[max_burst_bytes_width:0] wr_bytes_hp3;
input wr_dv_ddr_hp3;
input wr_dv_ocm_hp3;
input rd_req_ddr_hp3;
input rd_req_ocm_hp3;
input[addr_width-1:0] rd_addr_hp3;
input[max_burst_bytes_width:0] rd_bytes_hp3;
output[max_burst_bits-1:0] rd_data_ddr_hp3;
output[max_burst_bits-1:0] rd_data_ocm_hp3;
output rd_dv_ddr_hp3;
output rd_dv_ocm_hp3;
/* Goes to port 1 of DDR */
input ddr_wr_ack_port1;
output ddr_wr_dv_port1;
output ddr_rd_req_port1;
input ddr_rd_dv_port1;
output[addr_width-1:0] ddr_wr_addr_port1;
output[max_burst_bits-1:0] ddr_wr_data_port1;
output[max_burst_bytes_width:0] ddr_wr_bytes_port1;
output[addr_width-1:0] ddr_rd_addr_port1;
input[max_burst_bits-1:0] ddr_rd_data_port1;
output[max_burst_bytes_width:0] ddr_rd_bytes_port1;
output [axi_qos_width-1:0] ddr_wr_qos_port1;
output [axi_qos_width-1:0] ddr_rd_qos_port1;
/* Goes to port2 of DDR */
input ddr_wr_ack_port2;
output ddr_wr_dv_port2;
output ddr_rd_req_port2;
input ddr_rd_dv_port2;
output[addr_width-1:0] ddr_wr_addr_port2;
output[max_burst_bits-1:0] ddr_wr_data_port2;
output[max_burst_bytes_width:0] ddr_wr_bytes_port2;
output[addr_width-1:0] ddr_rd_addr_port2;
input[max_burst_bits-1:0] ddr_rd_data_port2;
output[max_burst_bytes_width:0] ddr_rd_bytes_port2;
output [axi_qos_width-1:0] ddr_wr_qos_port2;
output [axi_qos_width-1:0] ddr_rd_qos_port2;
/* Goes to port3 of DDR */
input ddr_wr_ack_port3;
output ddr_wr_dv_port3;
output ddr_rd_req_port3;
input ddr_rd_dv_port3;
output[addr_width-1:0] ddr_wr_addr_port3;
output[max_burst_bits-1:0] ddr_wr_data_port3;
output[max_burst_bytes_width:0] ddr_wr_bytes_port3;
output[addr_width-1:0] ddr_rd_addr_port3;
input[max_burst_bits-1:0] ddr_rd_data_port3;
output[max_burst_bytes_width:0] ddr_rd_bytes_port3;
output [axi_qos_width-1:0] ddr_wr_qos_port3;
output [axi_qos_width-1:0] ddr_rd_qos_port3;
/* Goes to port1 of OCM */
input ocm_wr_ack_port1;
output ocm_wr_dv_port1;
output ocm_rd_req_port1;
input ocm_rd_dv_port1;
output[max_burst_bits-1:0] ocm_wr_data_port1;
output[addr_width-1:0] ocm_wr_addr_port1;
output[max_burst_bytes_width:0] ocm_wr_bytes_port1;
input[max_burst_bits-1:0] ocm_rd_data_port1;
output[addr_width-1:0] ocm_rd_addr_port1;
output[max_burst_bytes_width:0] ocm_rd_bytes_port1;
/* Goes to port1 of REG */
output [axi_qos_width-1:0] reg_rd_qos_port1;
output reg_rd_req_port1;
input reg_rd_dv_port1;
input[max_burst_bits-1:0] reg_rd_data_port1;
output[addr_width-1:0] reg_rd_addr_port1;
output[max_burst_bytes_width:0] reg_rd_bytes_port1;
wire ocm_wr_dv_osw0;
wire ocm_wr_dv_osw1;
wire[max_burst_bits-1:0] ocm_wr_data_osw0;
wire[max_burst_bits-1:0] ocm_wr_data_osw1;
wire[addr_width-1:0] ocm_wr_addr_osw0;
wire[addr_width-1:0] ocm_wr_addr_osw1;
wire[max_burst_bytes_width:0] ocm_wr_bytes_osw0;
wire[max_burst_bytes_width:0] ocm_wr_bytes_osw1;
wire ocm_wr_ack_osw0;
wire ocm_wr_ack_osw1;
wire ocm_rd_req_osw0;
wire ocm_rd_req_osw1;
wire[max_burst_bits-1:0] ocm_rd_data_osw0;
wire[max_burst_bits-1:0] ocm_rd_data_osw1;
wire[addr_width-1:0] ocm_rd_addr_osw0;
wire[addr_width-1:0] ocm_rd_addr_osw1;
wire[max_burst_bytes_width:0] ocm_rd_bytes_osw0;
wire[max_burst_bytes_width:0] ocm_rd_bytes_osw1;
wire ocm_rd_dv_osw0;
wire ocm_rd_dv_osw1;
wire [axi_qos_width-1:0] ocm_wr_qos_osw0;
wire [axi_qos_width-1:0] ocm_wr_qos_osw1;
wire [axi_qos_width-1:0] ocm_rd_qos_osw0;
wire [axi_qos_width-1:0] ocm_rd_qos_osw1;
processing_system7_bfm_v2_0_5_fmsw_gp fmsw (
.sw_clk(sw_clk),
.rstn(rstn),
.w_qos_gp0(w_qos_gp0),
.r_qos_gp0(r_qos_gp0),
.wr_ack_ocm_gp0(wr_ack_ocm_gp0),
.wr_ack_ddr_gp0(wr_ack_ddr_gp0),
.wr_data_gp0(wr_data_gp0),
.wr_addr_gp0(wr_addr_gp0),
.wr_bytes_gp0(wr_bytes_gp0),
.wr_dv_ocm_gp0(wr_dv_ocm_gp0),
.wr_dv_ddr_gp0(wr_dv_ddr_gp0),
.rd_req_ocm_gp0(rd_req_ocm_gp0),
.rd_req_ddr_gp0(rd_req_ddr_gp0),
.rd_req_reg_gp0(rd_req_reg_gp0),
.rd_addr_gp0(rd_addr_gp0),
.rd_bytes_gp0(rd_bytes_gp0),
.rd_data_ddr_gp0(rd_data_ddr_gp0),
.rd_data_ocm_gp0(rd_data_ocm_gp0),
.rd_data_reg_gp0(rd_data_reg_gp0),
.rd_dv_ocm_gp0(rd_dv_ocm_gp0),
.rd_dv_ddr_gp0(rd_dv_ddr_gp0),
.rd_dv_reg_gp0(rd_dv_reg_gp0),
.w_qos_gp1(w_qos_gp1),
.r_qos_gp1(r_qos_gp1),
.wr_ack_ocm_gp1(wr_ack_ocm_gp1),
.wr_ack_ddr_gp1(wr_ack_ddr_gp1),
.wr_data_gp1(wr_data_gp1),
.wr_addr_gp1(wr_addr_gp1),
.wr_bytes_gp1(wr_bytes_gp1),
.wr_dv_ocm_gp1(wr_dv_ocm_gp1),
.wr_dv_ddr_gp1(wr_dv_ddr_gp1),
.rd_req_ocm_gp1(rd_req_ocm_gp1),
.rd_req_ddr_gp1(rd_req_ddr_gp1),
.rd_req_reg_gp1(rd_req_reg_gp1),
.rd_addr_gp1(rd_addr_gp1),
.rd_bytes_gp1(rd_bytes_gp1),
.rd_data_ddr_gp1(rd_data_ddr_gp1),
.rd_data_ocm_gp1(rd_data_ocm_gp1),
.rd_data_reg_gp1(rd_data_reg_gp1),
.rd_dv_ocm_gp1(rd_dv_ocm_gp1),
.rd_dv_ddr_gp1(rd_dv_ddr_gp1),
.rd_dv_reg_gp1(rd_dv_reg_gp1),
.ocm_wr_ack (ocm_wr_ack_osw0),
.ocm_wr_dv (ocm_wr_dv_osw0),
.ocm_rd_req (ocm_rd_req_osw0),
.ocm_rd_dv (ocm_rd_dv_osw0),
.ocm_wr_addr(ocm_wr_addr_osw0),
.ocm_wr_data(ocm_wr_data_osw0),
.ocm_wr_bytes(ocm_wr_bytes_osw0),
.ocm_rd_addr(ocm_rd_addr_osw0),
.ocm_rd_data(ocm_rd_data_osw0),
.ocm_rd_bytes(ocm_rd_bytes_osw0),
.ocm_wr_qos(ocm_wr_qos_osw0),
.ocm_rd_qos(ocm_rd_qos_osw0),
.ddr_wr_qos(ddr_wr_qos_port1),
.ddr_rd_qos(ddr_rd_qos_port1),
.reg_rd_qos(reg_rd_qos_port1),
.ddr_wr_ack(ddr_wr_ack_port1),
.ddr_wr_dv(ddr_wr_dv_port1),
.ddr_rd_req(ddr_rd_req_port1),
.ddr_rd_dv(ddr_rd_dv_port1),
.ddr_wr_addr(ddr_wr_addr_port1),
.ddr_wr_data(ddr_wr_data_port1),
.ddr_wr_bytes(ddr_wr_bytes_port1),
.ddr_rd_addr(ddr_rd_addr_port1),
.ddr_rd_data(ddr_rd_data_port1),
.ddr_rd_bytes(ddr_rd_bytes_port1),
.reg_rd_req(reg_rd_req_port1),
.reg_rd_dv(reg_rd_dv_port1),
.reg_rd_addr(reg_rd_addr_port1),
.reg_rd_data(reg_rd_data_port1),
.reg_rd_bytes(reg_rd_bytes_port1)
);
processing_system7_bfm_v2_0_5_ssw_hp ssw(
.sw_clk(sw_clk),
.rstn(rstn),
.w_qos_hp0(w_qos_hp0),
.r_qos_hp0(r_qos_hp0),
.w_qos_hp1(w_qos_hp1),
.r_qos_hp1(r_qos_hp1),
.w_qos_hp2(w_qos_hp2),
.r_qos_hp2(r_qos_hp2),
.w_qos_hp3(w_qos_hp3),
.r_qos_hp3(r_qos_hp3),
.wr_ack_ddr_hp0(wr_ack_ddr_hp0),
.wr_data_hp0(wr_data_hp0),
.wr_addr_hp0(wr_addr_hp0),
.wr_bytes_hp0(wr_bytes_hp0),
.wr_dv_ddr_hp0(wr_dv_ddr_hp0),
.rd_req_ddr_hp0(rd_req_ddr_hp0),
.rd_addr_hp0(rd_addr_hp0),
.rd_bytes_hp0(rd_bytes_hp0),
.rd_data_ddr_hp0(rd_data_ddr_hp0),
.rd_data_ocm_hp0(rd_data_ocm_hp0),
.rd_dv_ddr_hp0(rd_dv_ddr_hp0),
.wr_ack_ocm_hp0(wr_ack_ocm_hp0),
.wr_dv_ocm_hp0(wr_dv_ocm_hp0),
.rd_req_ocm_hp0(rd_req_ocm_hp0),
.rd_dv_ocm_hp0(rd_dv_ocm_hp0),
.wr_ack_ddr_hp1(wr_ack_ddr_hp1),
.wr_data_hp1(wr_data_hp1),
.wr_addr_hp1(wr_addr_hp1),
.wr_bytes_hp1(wr_bytes_hp1),
.wr_dv_ddr_hp1(wr_dv_ddr_hp1),
.rd_req_ddr_hp1(rd_req_ddr_hp1),
.rd_addr_hp1(rd_addr_hp1),
.rd_bytes_hp1(rd_bytes_hp1),
.rd_data_ddr_hp1(rd_data_ddr_hp1),
.rd_data_ocm_hp1(rd_data_ocm_hp1),
.rd_dv_ddr_hp1(rd_dv_ddr_hp1),
.wr_ack_ocm_hp1(wr_ack_ocm_hp1),
.wr_dv_ocm_hp1(wr_dv_ocm_hp1),
.rd_req_ocm_hp1(rd_req_ocm_hp1),
.rd_dv_ocm_hp1(rd_dv_ocm_hp1),
.wr_ack_ddr_hp2(wr_ack_ddr_hp2),
.wr_data_hp2(wr_data_hp2),
.wr_addr_hp2(wr_addr_hp2),
.wr_bytes_hp2(wr_bytes_hp2),
.wr_dv_ddr_hp2(wr_dv_ddr_hp2),
.rd_req_ddr_hp2(rd_req_ddr_hp2),
.rd_addr_hp2(rd_addr_hp2),
.rd_bytes_hp2(rd_bytes_hp2),
.rd_data_ddr_hp2(rd_data_ddr_hp2),
.rd_data_ocm_hp2(rd_data_ocm_hp2),
.rd_dv_ddr_hp2(rd_dv_ddr_hp2),
.wr_ack_ocm_hp2(wr_ack_ocm_hp2),
.wr_dv_ocm_hp2(wr_dv_ocm_hp2),
.rd_req_ocm_hp2(rd_req_ocm_hp2),
.rd_dv_ocm_hp2(rd_dv_ocm_hp2),
.wr_ack_ddr_hp3(wr_ack_ddr_hp3),
.wr_data_hp3(wr_data_hp3),
.wr_addr_hp3(wr_addr_hp3),
.wr_bytes_hp3(wr_bytes_hp3),
.wr_dv_ddr_hp3(wr_dv_ddr_hp3),
.rd_req_ddr_hp3(rd_req_ddr_hp3),
.rd_addr_hp3(rd_addr_hp3),
.rd_bytes_hp3(rd_bytes_hp3),
.rd_data_ddr_hp3(rd_data_ddr_hp3),
.rd_data_ocm_hp3(rd_data_ocm_hp3),
.rd_dv_ddr_hp3(rd_dv_ddr_hp3),
.wr_ack_ocm_hp3(wr_ack_ocm_hp3),
.wr_dv_ocm_hp3(wr_dv_ocm_hp3),
.rd_req_ocm_hp3(rd_req_ocm_hp3),
.rd_dv_ocm_hp3(rd_dv_ocm_hp3),
.ddr_wr_ack0(ddr_wr_ack_port2),
.ddr_wr_dv0(ddr_wr_dv_port2),
.ddr_rd_req0(ddr_rd_req_port2),
.ddr_rd_dv0(ddr_rd_dv_port2),
.ddr_wr_addr0(ddr_wr_addr_port2),
.ddr_wr_data0(ddr_wr_data_port2),
.ddr_wr_bytes0(ddr_wr_bytes_port2),
.ddr_rd_addr0(ddr_rd_addr_port2),
.ddr_rd_data0(ddr_rd_data_port2),
.ddr_rd_bytes0(ddr_rd_bytes_port2),
.ddr_wr_qos0(ddr_wr_qos_port2),
.ddr_rd_qos0(ddr_rd_qos_port2),
.ddr_wr_ack1(ddr_wr_ack_port3),
.ddr_wr_dv1(ddr_wr_dv_port3),
.ddr_rd_req1(ddr_rd_req_port3),
.ddr_rd_dv1(ddr_rd_dv_port3),
.ddr_wr_addr1(ddr_wr_addr_port3),
.ddr_wr_data1(ddr_wr_data_port3),
.ddr_wr_bytes1(ddr_wr_bytes_port3),
.ddr_rd_addr1(ddr_rd_addr_port3),
.ddr_rd_data1(ddr_rd_data_port3),
.ddr_rd_bytes1(ddr_rd_bytes_port3),
.ddr_wr_qos1(ddr_wr_qos_port3),
.ddr_rd_qos1(ddr_rd_qos_port3),
.ocm_wr_qos(ocm_wr_qos_osw1),
.ocm_rd_qos(ocm_rd_qos_osw1),
.ocm_wr_ack (ocm_wr_ack_osw1),
.ocm_wr_dv (ocm_wr_dv_osw1),
.ocm_rd_req (ocm_rd_req_osw1),
.ocm_rd_dv (ocm_rd_dv_osw1),
.ocm_wr_addr(ocm_wr_addr_osw1),
.ocm_wr_data(ocm_wr_data_osw1),
.ocm_wr_bytes(ocm_wr_bytes_osw1),
.ocm_rd_addr(ocm_rd_addr_osw1),
.ocm_rd_data(ocm_rd_data_osw1),
.ocm_rd_bytes(ocm_rd_bytes_osw1)
);
processing_system7_bfm_v2_0_5_arb_wr osw_wr (
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(ocm_wr_qos_osw0), /// chk
.qos2(ocm_wr_qos_osw1), /// chk
.prt_dv1(ocm_wr_dv_osw0),
.prt_dv2(ocm_wr_dv_osw1),
.prt_data1(ocm_wr_data_osw0),
.prt_data2(ocm_wr_data_osw1),
.prt_addr1(ocm_wr_addr_osw0),
.prt_addr2(ocm_wr_addr_osw1),
.prt_bytes1(ocm_wr_bytes_osw0),
.prt_bytes2(ocm_wr_bytes_osw1),
.prt_ack1(ocm_wr_ack_osw0),
.prt_ack2(ocm_wr_ack_osw1),
.prt_req(ocm_wr_dv_port1),
.prt_qos(ocm_wr_qos_port1),
.prt_data(ocm_wr_data_port1),
.prt_addr(ocm_wr_addr_port1),
.prt_bytes(ocm_wr_bytes_port1),
.prt_ack(ocm_wr_ack_port1)
);
processing_system7_bfm_v2_0_5_arb_rd osw_rd(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(ocm_rd_qos_osw0), // chk
.qos2(ocm_rd_qos_osw1), // chk
.prt_req1(ocm_rd_req_osw0),
.prt_req2(ocm_rd_req_osw1),
.prt_data1(ocm_rd_data_osw0),
.prt_data2(ocm_rd_data_osw1),
.prt_addr1(ocm_rd_addr_osw0),
.prt_addr2(ocm_rd_addr_osw1),
.prt_bytes1(ocm_rd_bytes_osw0),
.prt_bytes2(ocm_rd_bytes_osw1),
.prt_dv1(ocm_rd_dv_osw0),
.prt_dv2(ocm_rd_dv_osw1),
.prt_req(ocm_rd_req_port1),
.prt_qos(ocm_rd_qos_port1),
.prt_data(ocm_rd_data_port1),
.prt_addr(ocm_rd_addr_port1),
.prt_bytes(ocm_rd_bytes_port1),
.prt_dv(ocm_rd_dv_port1)
);
endmodule
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_arb_wr_4.v
*
* Date : 2012-11
*
* Description : Module that arbitrates between 4 write requests from 4 ports.
*
*****************************************************************************/
`timescale 1ns/1ps
module processing_system7_bfm_v2_0_5_arb_wr_4(
rstn,
sw_clk,
qos1,
qos2,
qos3,
qos4,
prt_dv1,
prt_dv2,
prt_dv3,
prt_dv4,
prt_data1,
prt_data2,
prt_data3,
prt_data4,
prt_addr1,
prt_addr2,
prt_addr3,
prt_addr4,
prt_bytes1,
prt_bytes2,
prt_bytes3,
prt_bytes4,
prt_ack1,
prt_ack2,
prt_ack3,
prt_ack4,
prt_qos,
prt_req,
prt_data,
prt_addr,
prt_bytes,
prt_ack
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input rstn, sw_clk;
input [axi_qos_width-1:0] qos1,qos2,qos3,qos4;
input [max_burst_bits-1:0] prt_data1,prt_data2,prt_data3,prt_data4;
input [addr_width-1:0] prt_addr1,prt_addr2,prt_addr3,prt_addr4;
input [max_burst_bytes_width:0] prt_bytes1,prt_bytes2,prt_bytes3,prt_bytes4;
input prt_dv1, prt_dv2,prt_dv3, prt_dv4, prt_ack;
output reg prt_ack1,prt_ack2,prt_ack3,prt_ack4,prt_req;
output reg [max_burst_bits-1:0] prt_data;
output reg [addr_width-1:0] prt_addr;
output reg [max_burst_bytes_width:0] prt_bytes;
output reg [axi_qos_width-1:0] prt_qos;
parameter wait_req = 3'b000, serv_req1 = 3'b001, serv_req2 = 3'b010, serv_req3 = 3'b011, serv_req4 = 4'b100,wait_ack_low = 3'b101;
reg [2:0] state;
always@(posedge sw_clk or negedge rstn)
begin
if(!rstn) begin
state = wait_req;
prt_req = 1'b0;
prt_ack1 = 1'b0;
prt_ack2 = 1'b0;
prt_ack3 = 1'b0;
prt_ack4 = 1'b0;
prt_qos = 0;
end else begin
case(state)
wait_req:begin
state = wait_req;
prt_ack1 = 1'b0;
prt_ack2 = 1'b0;
prt_ack3 = 1'b0;
prt_ack4 = 1'b0;
prt_req = 0;
if(prt_dv1) begin
state = serv_req1;
prt_req = 1;
prt_qos = qos1;
prt_data = prt_data1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(prt_dv2) begin
state = serv_req2;
prt_req = 1;
prt_qos = qos2;
prt_data = prt_data2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_dv3) begin
state = serv_req3;
prt_req = 1;
prt_qos = qos3;
prt_data = prt_data3;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
end else if(prt_dv4) begin
prt_req = 1;
prt_qos = qos4;
prt_data = prt_data4;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
state = serv_req4;
end
end
serv_req1:begin
state = serv_req1;
prt_ack2 = 1'b0;
prt_ack3 = 1'b0;
prt_ack4 = 1'b0;
if(prt_ack)begin
prt_ack1 = 1'b1;
//state = wait_req;
state = wait_ack_low;
prt_req = 0;
if(prt_dv2) begin
state = serv_req2;
prt_qos = qos2;
prt_req = 1;
prt_data = prt_data2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_dv3) begin
state = serv_req3;
prt_req = 1;
prt_qos = qos3;
prt_data = prt_data3;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
end else if(prt_dv4) begin
prt_req = 1;
prt_qos = qos4;
prt_data = prt_data4;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
state = serv_req4;
end
end
end
serv_req2:begin
state = serv_req2;
prt_ack1 = 1'b0;
prt_ack3 = 1'b0;
prt_ack4 = 1'b0;
if(prt_ack)begin
prt_ack2 = 1'b1;
//state = wait_req;
state = wait_ack_low;
prt_req = 0;
if(prt_dv3) begin
state = serv_req3;
prt_qos = qos3;
prt_req = 1;
prt_data = prt_data3;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
end else if(prt_dv4) begin
state = serv_req4;
prt_req = 1;
prt_qos = qos4;
prt_data = prt_data4;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
end else if(prt_dv1) begin
prt_req = 1;
prt_qos = qos1;
prt_data = prt_data1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
state = serv_req1;
end
end
end
serv_req3:begin
state = serv_req3;
prt_ack1 = 1'b0;
prt_ack2 = 1'b0;
prt_ack4 = 1'b0;
if(prt_ack)begin
prt_ack3 = 1'b1;
// state = wait_req;
state = wait_ack_low;
prt_req = 0;
if(prt_dv4) begin
state = serv_req4;
prt_qos = qos4;
prt_req = 1;
prt_data = prt_data4;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
end else if(prt_dv1) begin
state = serv_req1;
prt_req = 1;
prt_qos = qos1;
prt_data = prt_data1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(prt_dv2) begin
prt_req = 1;
prt_qos = qos2;
prt_data = prt_data2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
state = serv_req2;
end
end
end
serv_req4:begin
state = serv_req4;
prt_ack1 = 1'b0;
prt_ack2 = 1'b0;
prt_ack3 = 1'b0;
if(prt_ack)begin
prt_ack4 = 1'b1;
//state = wait_req;
state = wait_ack_low;
prt_req = 0;
if(prt_dv1) begin
state = serv_req1;
prt_req = 1;
prt_qos = qos1;
prt_data = prt_data1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(prt_dv2) begin
state = serv_req2;
prt_req = 1;
prt_qos = qos2;
prt_data = prt_data2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_dv3) begin
prt_req = 1;
prt_qos = qos3;
prt_data = prt_data3;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
state = serv_req3;
end
end
end
wait_ack_low:begin
state = wait_ack_low;
prt_ack1 = 1'b0;
prt_ack2 = 1'b0;
prt_ack3 = 1'b0;
prt_ack4 = 1'b0;
if(!prt_ack)
state = wait_req;
end
endcase
end /// if else
end /// always
endmodule
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_arb_wr_4.v
*
* Date : 2012-11
*
* Description : Module that arbitrates between 4 write requests from 4 ports.
*
*****************************************************************************/
`timescale 1ns/1ps
module processing_system7_bfm_v2_0_5_arb_wr_4(
rstn,
sw_clk,
qos1,
qos2,
qos3,
qos4,
prt_dv1,
prt_dv2,
prt_dv3,
prt_dv4,
prt_data1,
prt_data2,
prt_data3,
prt_data4,
prt_addr1,
prt_addr2,
prt_addr3,
prt_addr4,
prt_bytes1,
prt_bytes2,
prt_bytes3,
prt_bytes4,
prt_ack1,
prt_ack2,
prt_ack3,
prt_ack4,
prt_qos,
prt_req,
prt_data,
prt_addr,
prt_bytes,
prt_ack
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input rstn, sw_clk;
input [axi_qos_width-1:0] qos1,qos2,qos3,qos4;
input [max_burst_bits-1:0] prt_data1,prt_data2,prt_data3,prt_data4;
input [addr_width-1:0] prt_addr1,prt_addr2,prt_addr3,prt_addr4;
input [max_burst_bytes_width:0] prt_bytes1,prt_bytes2,prt_bytes3,prt_bytes4;
input prt_dv1, prt_dv2,prt_dv3, prt_dv4, prt_ack;
output reg prt_ack1,prt_ack2,prt_ack3,prt_ack4,prt_req;
output reg [max_burst_bits-1:0] prt_data;
output reg [addr_width-1:0] prt_addr;
output reg [max_burst_bytes_width:0] prt_bytes;
output reg [axi_qos_width-1:0] prt_qos;
parameter wait_req = 3'b000, serv_req1 = 3'b001, serv_req2 = 3'b010, serv_req3 = 3'b011, serv_req4 = 4'b100,wait_ack_low = 3'b101;
reg [2:0] state;
always@(posedge sw_clk or negedge rstn)
begin
if(!rstn) begin
state = wait_req;
prt_req = 1'b0;
prt_ack1 = 1'b0;
prt_ack2 = 1'b0;
prt_ack3 = 1'b0;
prt_ack4 = 1'b0;
prt_qos = 0;
end else begin
case(state)
wait_req:begin
state = wait_req;
prt_ack1 = 1'b0;
prt_ack2 = 1'b0;
prt_ack3 = 1'b0;
prt_ack4 = 1'b0;
prt_req = 0;
if(prt_dv1) begin
state = serv_req1;
prt_req = 1;
prt_qos = qos1;
prt_data = prt_data1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(prt_dv2) begin
state = serv_req2;
prt_req = 1;
prt_qos = qos2;
prt_data = prt_data2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_dv3) begin
state = serv_req3;
prt_req = 1;
prt_qos = qos3;
prt_data = prt_data3;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
end else if(prt_dv4) begin
prt_req = 1;
prt_qos = qos4;
prt_data = prt_data4;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
state = serv_req4;
end
end
serv_req1:begin
state = serv_req1;
prt_ack2 = 1'b0;
prt_ack3 = 1'b0;
prt_ack4 = 1'b0;
if(prt_ack)begin
prt_ack1 = 1'b1;
//state = wait_req;
state = wait_ack_low;
prt_req = 0;
if(prt_dv2) begin
state = serv_req2;
prt_qos = qos2;
prt_req = 1;
prt_data = prt_data2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_dv3) begin
state = serv_req3;
prt_req = 1;
prt_qos = qos3;
prt_data = prt_data3;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
end else if(prt_dv4) begin
prt_req = 1;
prt_qos = qos4;
prt_data = prt_data4;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
state = serv_req4;
end
end
end
serv_req2:begin
state = serv_req2;
prt_ack1 = 1'b0;
prt_ack3 = 1'b0;
prt_ack4 = 1'b0;
if(prt_ack)begin
prt_ack2 = 1'b1;
//state = wait_req;
state = wait_ack_low;
prt_req = 0;
if(prt_dv3) begin
state = serv_req3;
prt_qos = qos3;
prt_req = 1;
prt_data = prt_data3;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
end else if(prt_dv4) begin
state = serv_req4;
prt_req = 1;
prt_qos = qos4;
prt_data = prt_data4;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
end else if(prt_dv1) begin
prt_req = 1;
prt_qos = qos1;
prt_data = prt_data1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
state = serv_req1;
end
end
end
serv_req3:begin
state = serv_req3;
prt_ack1 = 1'b0;
prt_ack2 = 1'b0;
prt_ack4 = 1'b0;
if(prt_ack)begin
prt_ack3 = 1'b1;
// state = wait_req;
state = wait_ack_low;
prt_req = 0;
if(prt_dv4) begin
state = serv_req4;
prt_qos = qos4;
prt_req = 1;
prt_data = prt_data4;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
end else if(prt_dv1) begin
state = serv_req1;
prt_req = 1;
prt_qos = qos1;
prt_data = prt_data1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(prt_dv2) begin
prt_req = 1;
prt_qos = qos2;
prt_data = prt_data2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
state = serv_req2;
end
end
end
serv_req4:begin
state = serv_req4;
prt_ack1 = 1'b0;
prt_ack2 = 1'b0;
prt_ack3 = 1'b0;
if(prt_ack)begin
prt_ack4 = 1'b1;
//state = wait_req;
state = wait_ack_low;
prt_req = 0;
if(prt_dv1) begin
state = serv_req1;
prt_req = 1;
prt_qos = qos1;
prt_data = prt_data1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(prt_dv2) begin
state = serv_req2;
prt_req = 1;
prt_qos = qos2;
prt_data = prt_data2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_dv3) begin
prt_req = 1;
prt_qos = qos3;
prt_data = prt_data3;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
state = serv_req3;
end
end
end
wait_ack_low:begin
state = wait_ack_low;
prt_ack1 = 1'b0;
prt_ack2 = 1'b0;
prt_ack3 = 1'b0;
prt_ack4 = 1'b0;
if(!prt_ack)
state = wait_req;
end
endcase
end /// if else
end /// always
endmodule
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_arb_wr_4.v
*
* Date : 2012-11
*
* Description : Module that arbitrates between 4 write requests from 4 ports.
*
*****************************************************************************/
`timescale 1ns/1ps
module processing_system7_bfm_v2_0_5_arb_wr_4(
rstn,
sw_clk,
qos1,
qos2,
qos3,
qos4,
prt_dv1,
prt_dv2,
prt_dv3,
prt_dv4,
prt_data1,
prt_data2,
prt_data3,
prt_data4,
prt_addr1,
prt_addr2,
prt_addr3,
prt_addr4,
prt_bytes1,
prt_bytes2,
prt_bytes3,
prt_bytes4,
prt_ack1,
prt_ack2,
prt_ack3,
prt_ack4,
prt_qos,
prt_req,
prt_data,
prt_addr,
prt_bytes,
prt_ack
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input rstn, sw_clk;
input [axi_qos_width-1:0] qos1,qos2,qos3,qos4;
input [max_burst_bits-1:0] prt_data1,prt_data2,prt_data3,prt_data4;
input [addr_width-1:0] prt_addr1,prt_addr2,prt_addr3,prt_addr4;
input [max_burst_bytes_width:0] prt_bytes1,prt_bytes2,prt_bytes3,prt_bytes4;
input prt_dv1, prt_dv2,prt_dv3, prt_dv4, prt_ack;
output reg prt_ack1,prt_ack2,prt_ack3,prt_ack4,prt_req;
output reg [max_burst_bits-1:0] prt_data;
output reg [addr_width-1:0] prt_addr;
output reg [max_burst_bytes_width:0] prt_bytes;
output reg [axi_qos_width-1:0] prt_qos;
parameter wait_req = 3'b000, serv_req1 = 3'b001, serv_req2 = 3'b010, serv_req3 = 3'b011, serv_req4 = 4'b100,wait_ack_low = 3'b101;
reg [2:0] state;
always@(posedge sw_clk or negedge rstn)
begin
if(!rstn) begin
state = wait_req;
prt_req = 1'b0;
prt_ack1 = 1'b0;
prt_ack2 = 1'b0;
prt_ack3 = 1'b0;
prt_ack4 = 1'b0;
prt_qos = 0;
end else begin
case(state)
wait_req:begin
state = wait_req;
prt_ack1 = 1'b0;
prt_ack2 = 1'b0;
prt_ack3 = 1'b0;
prt_ack4 = 1'b0;
prt_req = 0;
if(prt_dv1) begin
state = serv_req1;
prt_req = 1;
prt_qos = qos1;
prt_data = prt_data1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(prt_dv2) begin
state = serv_req2;
prt_req = 1;
prt_qos = qos2;
prt_data = prt_data2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_dv3) begin
state = serv_req3;
prt_req = 1;
prt_qos = qos3;
prt_data = prt_data3;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
end else if(prt_dv4) begin
prt_req = 1;
prt_qos = qos4;
prt_data = prt_data4;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
state = serv_req4;
end
end
serv_req1:begin
state = serv_req1;
prt_ack2 = 1'b0;
prt_ack3 = 1'b0;
prt_ack4 = 1'b0;
if(prt_ack)begin
prt_ack1 = 1'b1;
//state = wait_req;
state = wait_ack_low;
prt_req = 0;
if(prt_dv2) begin
state = serv_req2;
prt_qos = qos2;
prt_req = 1;
prt_data = prt_data2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_dv3) begin
state = serv_req3;
prt_req = 1;
prt_qos = qos3;
prt_data = prt_data3;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
end else if(prt_dv4) begin
prt_req = 1;
prt_qos = qos4;
prt_data = prt_data4;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
state = serv_req4;
end
end
end
serv_req2:begin
state = serv_req2;
prt_ack1 = 1'b0;
prt_ack3 = 1'b0;
prt_ack4 = 1'b0;
if(prt_ack)begin
prt_ack2 = 1'b1;
//state = wait_req;
state = wait_ack_low;
prt_req = 0;
if(prt_dv3) begin
state = serv_req3;
prt_qos = qos3;
prt_req = 1;
prt_data = prt_data3;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
end else if(prt_dv4) begin
state = serv_req4;
prt_req = 1;
prt_qos = qos4;
prt_data = prt_data4;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
end else if(prt_dv1) begin
prt_req = 1;
prt_qos = qos1;
prt_data = prt_data1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
state = serv_req1;
end
end
end
serv_req3:begin
state = serv_req3;
prt_ack1 = 1'b0;
prt_ack2 = 1'b0;
prt_ack4 = 1'b0;
if(prt_ack)begin
prt_ack3 = 1'b1;
// state = wait_req;
state = wait_ack_low;
prt_req = 0;
if(prt_dv4) begin
state = serv_req4;
prt_qos = qos4;
prt_req = 1;
prt_data = prt_data4;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
end else if(prt_dv1) begin
state = serv_req1;
prt_req = 1;
prt_qos = qos1;
prt_data = prt_data1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(prt_dv2) begin
prt_req = 1;
prt_qos = qos2;
prt_data = prt_data2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
state = serv_req2;
end
end
end
serv_req4:begin
state = serv_req4;
prt_ack1 = 1'b0;
prt_ack2 = 1'b0;
prt_ack3 = 1'b0;
if(prt_ack)begin
prt_ack4 = 1'b1;
//state = wait_req;
state = wait_ack_low;
prt_req = 0;
if(prt_dv1) begin
state = serv_req1;
prt_req = 1;
prt_qos = qos1;
prt_data = prt_data1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(prt_dv2) begin
state = serv_req2;
prt_req = 1;
prt_qos = qos2;
prt_data = prt_data2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_dv3) begin
prt_req = 1;
prt_qos = qos3;
prt_data = prt_data3;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
state = serv_req3;
end
end
end
wait_ack_low:begin
state = wait_ack_low;
prt_ack1 = 1'b0;
prt_ack2 = 1'b0;
prt_ack3 = 1'b0;
prt_ack4 = 1'b0;
if(!prt_ack)
state = wait_req;
end
endcase
end /// if else
end /// always
endmodule
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_arb_wr_4.v
*
* Date : 2012-11
*
* Description : Module that arbitrates between 4 write requests from 4 ports.
*
*****************************************************************************/
`timescale 1ns/1ps
module processing_system7_bfm_v2_0_5_arb_wr_4(
rstn,
sw_clk,
qos1,
qos2,
qos3,
qos4,
prt_dv1,
prt_dv2,
prt_dv3,
prt_dv4,
prt_data1,
prt_data2,
prt_data3,
prt_data4,
prt_addr1,
prt_addr2,
prt_addr3,
prt_addr4,
prt_bytes1,
prt_bytes2,
prt_bytes3,
prt_bytes4,
prt_ack1,
prt_ack2,
prt_ack3,
prt_ack4,
prt_qos,
prt_req,
prt_data,
prt_addr,
prt_bytes,
prt_ack
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input rstn, sw_clk;
input [axi_qos_width-1:0] qos1,qos2,qos3,qos4;
input [max_burst_bits-1:0] prt_data1,prt_data2,prt_data3,prt_data4;
input [addr_width-1:0] prt_addr1,prt_addr2,prt_addr3,prt_addr4;
input [max_burst_bytes_width:0] prt_bytes1,prt_bytes2,prt_bytes3,prt_bytes4;
input prt_dv1, prt_dv2,prt_dv3, prt_dv4, prt_ack;
output reg prt_ack1,prt_ack2,prt_ack3,prt_ack4,prt_req;
output reg [max_burst_bits-1:0] prt_data;
output reg [addr_width-1:0] prt_addr;
output reg [max_burst_bytes_width:0] prt_bytes;
output reg [axi_qos_width-1:0] prt_qos;
parameter wait_req = 3'b000, serv_req1 = 3'b001, serv_req2 = 3'b010, serv_req3 = 3'b011, serv_req4 = 4'b100,wait_ack_low = 3'b101;
reg [2:0] state;
always@(posedge sw_clk or negedge rstn)
begin
if(!rstn) begin
state = wait_req;
prt_req = 1'b0;
prt_ack1 = 1'b0;
prt_ack2 = 1'b0;
prt_ack3 = 1'b0;
prt_ack4 = 1'b0;
prt_qos = 0;
end else begin
case(state)
wait_req:begin
state = wait_req;
prt_ack1 = 1'b0;
prt_ack2 = 1'b0;
prt_ack3 = 1'b0;
prt_ack4 = 1'b0;
prt_req = 0;
if(prt_dv1) begin
state = serv_req1;
prt_req = 1;
prt_qos = qos1;
prt_data = prt_data1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(prt_dv2) begin
state = serv_req2;
prt_req = 1;
prt_qos = qos2;
prt_data = prt_data2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_dv3) begin
state = serv_req3;
prt_req = 1;
prt_qos = qos3;
prt_data = prt_data3;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
end else if(prt_dv4) begin
prt_req = 1;
prt_qos = qos4;
prt_data = prt_data4;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
state = serv_req4;
end
end
serv_req1:begin
state = serv_req1;
prt_ack2 = 1'b0;
prt_ack3 = 1'b0;
prt_ack4 = 1'b0;
if(prt_ack)begin
prt_ack1 = 1'b1;
//state = wait_req;
state = wait_ack_low;
prt_req = 0;
if(prt_dv2) begin
state = serv_req2;
prt_qos = qos2;
prt_req = 1;
prt_data = prt_data2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_dv3) begin
state = serv_req3;
prt_req = 1;
prt_qos = qos3;
prt_data = prt_data3;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
end else if(prt_dv4) begin
prt_req = 1;
prt_qos = qos4;
prt_data = prt_data4;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
state = serv_req4;
end
end
end
serv_req2:begin
state = serv_req2;
prt_ack1 = 1'b0;
prt_ack3 = 1'b0;
prt_ack4 = 1'b0;
if(prt_ack)begin
prt_ack2 = 1'b1;
//state = wait_req;
state = wait_ack_low;
prt_req = 0;
if(prt_dv3) begin
state = serv_req3;
prt_qos = qos3;
prt_req = 1;
prt_data = prt_data3;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
end else if(prt_dv4) begin
state = serv_req4;
prt_req = 1;
prt_qos = qos4;
prt_data = prt_data4;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
end else if(prt_dv1) begin
prt_req = 1;
prt_qos = qos1;
prt_data = prt_data1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
state = serv_req1;
end
end
end
serv_req3:begin
state = serv_req3;
prt_ack1 = 1'b0;
prt_ack2 = 1'b0;
prt_ack4 = 1'b0;
if(prt_ack)begin
prt_ack3 = 1'b1;
// state = wait_req;
state = wait_ack_low;
prt_req = 0;
if(prt_dv4) begin
state = serv_req4;
prt_qos = qos4;
prt_req = 1;
prt_data = prt_data4;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
end else if(prt_dv1) begin
state = serv_req1;
prt_req = 1;
prt_qos = qos1;
prt_data = prt_data1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(prt_dv2) begin
prt_req = 1;
prt_qos = qos2;
prt_data = prt_data2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
state = serv_req2;
end
end
end
serv_req4:begin
state = serv_req4;
prt_ack1 = 1'b0;
prt_ack2 = 1'b0;
prt_ack3 = 1'b0;
if(prt_ack)begin
prt_ack4 = 1'b1;
//state = wait_req;
state = wait_ack_low;
prt_req = 0;
if(prt_dv1) begin
state = serv_req1;
prt_req = 1;
prt_qos = qos1;
prt_data = prt_data1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(prt_dv2) begin
state = serv_req2;
prt_req = 1;
prt_qos = qos2;
prt_data = prt_data2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_dv3) begin
prt_req = 1;
prt_qos = qos3;
prt_data = prt_data3;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
state = serv_req3;
end
end
end
wait_ack_low:begin
state = wait_ack_low;
prt_ack1 = 1'b0;
prt_ack2 = 1'b0;
prt_ack3 = 1'b0;
prt_ack4 = 1'b0;
if(!prt_ack)
state = wait_req;
end
endcase
end /// if else
end /// always
endmodule
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_gen_reset.v
*
* Date : 2012-11
*
* Description : Module that generates FPGA_RESETs and synchronizes RESETs to the
* respective clocks.
*****************************************************************************/
`timescale 1ns/1ps
module processing_system7_bfm_v2_0_5_gen_reset(
por_rst_n,
sys_rst_n,
rst_out_n,
m_axi_gp0_clk,
m_axi_gp1_clk,
s_axi_gp0_clk,
s_axi_gp1_clk,
s_axi_hp0_clk,
s_axi_hp1_clk,
s_axi_hp2_clk,
s_axi_hp3_clk,
s_axi_acp_clk,
m_axi_gp0_rstn,
m_axi_gp1_rstn,
s_axi_gp0_rstn,
s_axi_gp1_rstn,
s_axi_hp0_rstn,
s_axi_hp1_rstn,
s_axi_hp2_rstn,
s_axi_hp3_rstn,
s_axi_acp_rstn,
fclk_reset3_n,
fclk_reset2_n,
fclk_reset1_n,
fclk_reset0_n,
fpga_acp_reset_n,
fpga_gp_m0_reset_n,
fpga_gp_m1_reset_n,
fpga_gp_s0_reset_n,
fpga_gp_s1_reset_n,
fpga_hp_s0_reset_n,
fpga_hp_s1_reset_n,
fpga_hp_s2_reset_n,
fpga_hp_s3_reset_n
);
input por_rst_n;
input sys_rst_n;
input m_axi_gp0_clk;
input m_axi_gp1_clk;
input s_axi_gp0_clk;
input s_axi_gp1_clk;
input s_axi_hp0_clk;
input s_axi_hp1_clk;
input s_axi_hp2_clk;
input s_axi_hp3_clk;
input s_axi_acp_clk;
output reg m_axi_gp0_rstn;
output reg m_axi_gp1_rstn;
output reg s_axi_gp0_rstn;
output reg s_axi_gp1_rstn;
output reg s_axi_hp0_rstn;
output reg s_axi_hp1_rstn;
output reg s_axi_hp2_rstn;
output reg s_axi_hp3_rstn;
output reg s_axi_acp_rstn;
output rst_out_n;
output fclk_reset3_n;
output fclk_reset2_n;
output fclk_reset1_n;
output fclk_reset0_n;
output fpga_acp_reset_n;
output fpga_gp_m0_reset_n;
output fpga_gp_m1_reset_n;
output fpga_gp_s0_reset_n;
output fpga_gp_s1_reset_n;
output fpga_hp_s0_reset_n;
output fpga_hp_s1_reset_n;
output fpga_hp_s2_reset_n;
output fpga_hp_s3_reset_n;
reg [31:0] fabric_rst_n;
reg r_m_axi_gp0_rstn;
reg r_m_axi_gp1_rstn;
reg r_s_axi_gp0_rstn;
reg r_s_axi_gp1_rstn;
reg r_s_axi_hp0_rstn;
reg r_s_axi_hp1_rstn;
reg r_s_axi_hp2_rstn;
reg r_s_axi_hp3_rstn;
reg r_s_axi_acp_rstn;
assign rst_out_n = por_rst_n & sys_rst_n;
assign fclk_reset0_n = !fabric_rst_n[0];
assign fclk_reset1_n = !fabric_rst_n[1];
assign fclk_reset2_n = !fabric_rst_n[2];
assign fclk_reset3_n = !fabric_rst_n[3];
assign fpga_acp_reset_n = !fabric_rst_n[24];
assign fpga_hp_s3_reset_n = !fabric_rst_n[23];
assign fpga_hp_s2_reset_n = !fabric_rst_n[22];
assign fpga_hp_s1_reset_n = !fabric_rst_n[21];
assign fpga_hp_s0_reset_n = !fabric_rst_n[20];
assign fpga_gp_s1_reset_n = !fabric_rst_n[17];
assign fpga_gp_s0_reset_n = !fabric_rst_n[16];
assign fpga_gp_m1_reset_n = !fabric_rst_n[13];
assign fpga_gp_m0_reset_n = !fabric_rst_n[12];
task fpga_soft_reset;
input[31:0] reset_ctrl;
begin
fabric_rst_n[0] = reset_ctrl[0];
fabric_rst_n[1] = reset_ctrl[1];
fabric_rst_n[2] = reset_ctrl[2];
fabric_rst_n[3] = reset_ctrl[3];
fabric_rst_n[12] = reset_ctrl[12];
fabric_rst_n[13] = reset_ctrl[13];
fabric_rst_n[16] = reset_ctrl[16];
fabric_rst_n[17] = reset_ctrl[17];
fabric_rst_n[20] = reset_ctrl[20];
fabric_rst_n[21] = reset_ctrl[21];
fabric_rst_n[22] = reset_ctrl[22];
fabric_rst_n[23] = reset_ctrl[23];
fabric_rst_n[24] = reset_ctrl[24];
end
endtask
always@(negedge por_rst_n or negedge sys_rst_n) fabric_rst_n = 32'h01f3_300f;
always@(posedge m_axi_gp0_clk or negedge (por_rst_n & sys_rst_n))
begin
if (!(por_rst_n & sys_rst_n))
m_axi_gp0_rstn = 1'b0;
else
m_axi_gp0_rstn = 1'b1;
end
always@(posedge m_axi_gp1_clk or negedge (por_rst_n & sys_rst_n))
begin
if (!(por_rst_n & sys_rst_n))
m_axi_gp1_rstn = 1'b0;
else
m_axi_gp1_rstn = 1'b1;
end
always@(posedge s_axi_gp0_clk or negedge (por_rst_n & sys_rst_n))
begin
if (!(por_rst_n & sys_rst_n))
s_axi_gp0_rstn = 1'b0;
else
s_axi_gp0_rstn = 1'b1;
end
always@(posedge s_axi_gp1_clk or negedge (por_rst_n & sys_rst_n))
begin
if (!(por_rst_n & sys_rst_n))
s_axi_gp1_rstn = 1'b0;
else
s_axi_gp1_rstn = 1'b1;
end
always@(posedge s_axi_hp0_clk or negedge (por_rst_n & sys_rst_n))
begin
if (!(por_rst_n & sys_rst_n))
s_axi_hp0_rstn = 1'b0;
else
s_axi_hp0_rstn = 1'b1;
end
always@(posedge s_axi_hp1_clk or negedge (por_rst_n & sys_rst_n))
begin
if (!(por_rst_n & sys_rst_n))
s_axi_hp1_rstn = 1'b0;
else
s_axi_hp1_rstn = 1'b1;
end
always@(posedge s_axi_hp2_clk or negedge (por_rst_n & sys_rst_n))
begin
if (!(por_rst_n & sys_rst_n))
s_axi_hp2_rstn = 1'b0;
else
s_axi_hp2_rstn = 1'b1;
end
always@(posedge s_axi_hp3_clk or negedge (por_rst_n & sys_rst_n))
begin
if (!(por_rst_n & sys_rst_n))
s_axi_hp3_rstn = 1'b0;
else
s_axi_hp3_rstn = 1'b1;
end
always@(posedge s_axi_acp_clk or negedge (por_rst_n & sys_rst_n))
begin
if (!(por_rst_n & sys_rst_n))
s_axi_acp_rstn = 1'b0;
else
s_axi_acp_rstn = 1'b1;
end
always@(*) begin
if ((por_rst_n!= 1'b0) && (por_rst_n!= 1'b1) && (sys_rst_n != 1'b0) && (sys_rst_n != 1'b1)) begin
$display(" Error:processing_system7_bfm_v2_0_5_gen_reset. PS_PORB and PS_SRSTB must be driven to known state");
$finish();
end
end
endmodule
|
// -- (c) Copyright 2009 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// File name: addr_arbiter_sasd.v
//
// Description:
// Hybrid priority + round-robin arbiter.
// Read & write requests combined (read preferred) at each slot
// Muxes AR and AW channel payload inputs based on arbitration results.
//-----------------------------------------------------------------------------
//
// Structure:
// addr_arbiter_sasd
// mux_enc
//-----------------------------------------------------------------------------
`timescale 1ps/1ps
`default_nettype none
(* DowngradeIPIdentifiedWarnings="yes" *)
module axi_crossbar_v2_1_addr_arbiter_sasd #
(
parameter C_FAMILY = "none",
parameter integer C_NUM_S = 1,
parameter integer C_NUM_S_LOG = 1,
parameter integer C_AMESG_WIDTH = 1,
parameter C_GRANT_ENC = 0,
parameter [C_NUM_S*32-1:0] C_ARB_PRIORITY = {C_NUM_S{32'h00000000}}
// Arbitration priority among each SI slot.
// Higher values indicate higher priority.
// Format: C_NUM_SLAVE_SLOTS{Bit32};
// Range: 'h0-'hF.
)
(
// Global Signals
input wire ACLK,
input wire ARESET,
// Slave Ports
input wire [C_NUM_S*C_AMESG_WIDTH-1:0] S_AWMESG,
input wire [C_NUM_S*C_AMESG_WIDTH-1:0] S_ARMESG,
input wire [C_NUM_S-1:0] S_AWVALID,
output wire [C_NUM_S-1:0] S_AWREADY,
input wire [C_NUM_S-1:0] S_ARVALID,
output wire [C_NUM_S-1:0] S_ARREADY,
// Master Ports
output wire [C_AMESG_WIDTH-1:0] M_AMESG,
output wire [C_NUM_S_LOG-1:0] M_GRANT_ENC,
output wire [C_NUM_S-1:0] M_GRANT_HOT,
output wire M_GRANT_RNW,
output wire M_GRANT_ANY,
output wire M_AWVALID,
input wire M_AWREADY,
output wire M_ARVALID,
input wire M_ARREADY
);
// Generates a mask for all input slots that are priority based
function [C_NUM_S-1:0] f_prio_mask
(
input integer null_arg
);
reg [C_NUM_S-1:0] mask;
integer i;
begin
mask = 0;
for (i=0; i < C_NUM_S; i=i+1) begin
mask[i] = (C_ARB_PRIORITY[i*32+:32] != 0);
end
f_prio_mask = mask;
end
endfunction
// Convert 16-bit one-hot to 4-bit binary
function [3:0] f_hot2enc
(
input [15:0] one_hot
);
begin
f_hot2enc[0] = |(one_hot & 16'b1010101010101010);
f_hot2enc[1] = |(one_hot & 16'b1100110011001100);
f_hot2enc[2] = |(one_hot & 16'b1111000011110000);
f_hot2enc[3] = |(one_hot & 16'b1111111100000000);
end
endfunction
localparam [C_NUM_S-1:0] P_PRIO_MASK = f_prio_mask(0);
reg m_valid_i;
reg [C_NUM_S-1:0] s_ready_i;
reg [C_NUM_S-1:0] s_awvalid_reg;
reg [C_NUM_S-1:0] s_arvalid_reg;
wire [15:0] s_avalid;
wire m_aready;
wire [C_NUM_S-1:0] rnw;
reg grant_rnw;
reg [C_NUM_S_LOG-1:0] m_grant_enc_i;
reg [C_NUM_S-1:0] m_grant_hot_i;
reg [C_NUM_S-1:0] last_rr_hot;
reg any_grant;
reg any_prio;
reg [C_NUM_S-1:0] which_prio_hot;
reg [C_NUM_S_LOG-1:0] which_prio_enc;
reg [4:0] current_highest;
reg [15:0] next_prio_hot;
reg [C_NUM_S_LOG-1:0] next_prio_enc;
reg found_prio;
wire [C_NUM_S-1:0] valid_rr;
reg [15:0] next_rr_hot;
reg [C_NUM_S_LOG-1:0] next_rr_enc;
reg [C_NUM_S*C_NUM_S-1:0] carry_rr;
reg [C_NUM_S*C_NUM_S-1:0] mask_rr;
reg found_rr;
wire [C_NUM_S-1:0] next_hot;
wire [C_NUM_S_LOG-1:0] next_enc;
integer i;
wire [C_AMESG_WIDTH-1:0] amesg_mux;
reg [C_AMESG_WIDTH-1:0] m_amesg_i;
wire [C_NUM_S*C_AMESG_WIDTH-1:0] s_amesg;
genvar gen_si;
always @(posedge ACLK) begin
if (ARESET) begin
s_awvalid_reg <= 0;
s_arvalid_reg <= 0;
end else if (|s_ready_i) begin
s_awvalid_reg <= 0;
s_arvalid_reg <= 0;
end else begin
s_arvalid_reg <= S_ARVALID & ~s_awvalid_reg;
s_awvalid_reg <= S_AWVALID & ~s_arvalid_reg & (~S_ARVALID | s_awvalid_reg);
end
end
assign s_avalid = S_AWVALID | S_ARVALID;
assign M_AWVALID = m_valid_i & ~grant_rnw;
assign M_ARVALID = m_valid_i & grant_rnw;
assign S_AWREADY = s_ready_i & {C_NUM_S{~grant_rnw}};
assign S_ARREADY = s_ready_i & {C_NUM_S{grant_rnw}};
assign M_GRANT_ENC = C_GRANT_ENC ? m_grant_enc_i : 0;
assign M_GRANT_HOT = m_grant_hot_i;
assign M_GRANT_RNW = grant_rnw;
assign rnw = S_ARVALID & ~s_awvalid_reg;
assign M_AMESG = m_amesg_i;
assign m_aready = grant_rnw ? M_ARREADY : M_AWREADY;
generate
for (gen_si=0; gen_si<C_NUM_S; gen_si=gen_si+1) begin : gen_mesg_mux
assign s_amesg[C_AMESG_WIDTH*gen_si +: C_AMESG_WIDTH] = rnw[gen_si] ? S_ARMESG[C_AMESG_WIDTH*gen_si +: C_AMESG_WIDTH] : S_AWMESG[C_AMESG_WIDTH*gen_si +: C_AMESG_WIDTH];
end // gen_mesg_mux
if (C_NUM_S>1) begin : gen_arbiter
/////////////////////////////////////////////////////////////////////////////
// Grant a new request when there is none still pending.
// If no qualified requests found, de-assert M_VALID.
/////////////////////////////////////////////////////////////////////////////
assign M_GRANT_ANY = any_grant;
assign next_hot = found_prio ? next_prio_hot : next_rr_hot;
assign next_enc = found_prio ? next_prio_enc : next_rr_enc;
always @(posedge ACLK) begin
if (ARESET) begin
m_valid_i <= 0;
s_ready_i <= 0;
m_grant_hot_i <= 0;
m_grant_enc_i <= 0;
any_grant <= 1'b0;
last_rr_hot <= {1'b1, {C_NUM_S-1{1'b0}}};
grant_rnw <= 1'b0;
end else begin
s_ready_i <= 0;
if (m_valid_i) begin
// Stall 1 cycle after each master-side completion.
if (m_aready) begin // Master-side completion
m_valid_i <= 1'b0;
m_grant_hot_i <= 0;
any_grant <= 1'b0;
end
end else if (any_grant) begin
m_valid_i <= 1'b1;
s_ready_i <= m_grant_hot_i; // Assert S_AW/READY for 1 cycle to complete SI address transfer
end else begin
if (found_prio | found_rr) begin
m_grant_hot_i <= next_hot;
m_grant_enc_i <= next_enc;
any_grant <= 1'b1;
grant_rnw <= |(rnw & next_hot);
if (~found_prio) begin
last_rr_hot <= next_rr_hot;
end
end
end
end
end
/////////////////////////////////////////////////////////////////////////////
// Fixed Priority arbiter
// Selects next request to grant from among inputs with PRIO > 0, if any.
/////////////////////////////////////////////////////////////////////////////
always @ * begin : ALG_PRIO
integer ip;
any_prio = 1'b0;
which_prio_hot = 0;
which_prio_enc = 0;
current_highest = 0;
for (ip=0; ip < C_NUM_S; ip=ip+1) begin
if (P_PRIO_MASK[ip] & ({1'b0, C_ARB_PRIORITY[ip*32+:4]} > current_highest)) begin
if (s_avalid[ip]) begin
current_highest[0+:4] = C_ARB_PRIORITY[ip*32+:4];
any_prio = 1'b1;
which_prio_hot = 1'b1 << ip;
which_prio_enc = ip;
end
end
end
found_prio = any_prio;
next_prio_hot = which_prio_hot;
next_prio_enc = which_prio_enc;
end
/////////////////////////////////////////////////////////////////////////////
// Round-robin arbiter
// Selects next request to grant from among inputs with PRIO = 0, if any.
/////////////////////////////////////////////////////////////////////////////
assign valid_rr = ~P_PRIO_MASK & s_avalid;
always @ * begin : ALG_RR
integer ir, jr, nr;
next_rr_hot = 0;
for (ir=0;ir<C_NUM_S;ir=ir+1) begin
nr = (ir>0) ? (ir-1) : (C_NUM_S-1);
carry_rr[ir*C_NUM_S] = last_rr_hot[nr];
mask_rr[ir*C_NUM_S] = ~valid_rr[nr];
for (jr=1;jr<C_NUM_S;jr=jr+1) begin
nr = (ir-jr > 0) ? (ir-jr-1) : (C_NUM_S+ir-jr-1);
carry_rr[ir*C_NUM_S+jr] = carry_rr[ir*C_NUM_S+jr-1] | (last_rr_hot[nr] & mask_rr[ir*C_NUM_S+jr-1]);
if (jr < C_NUM_S-1) begin
mask_rr[ir*C_NUM_S+jr] = mask_rr[ir*C_NUM_S+jr-1] & ~valid_rr[nr];
end
end
next_rr_hot[ir] = valid_rr[ir] & carry_rr[(ir+1)*C_NUM_S-1];
end
next_rr_enc = f_hot2enc(next_rr_hot);
found_rr = |(next_rr_hot);
end
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_S),
.C_SEL_WIDTH (C_NUM_S_LOG),
.C_DATA_WIDTH (C_AMESG_WIDTH)
) si_amesg_mux_inst
(
.S (next_enc),
.A (s_amesg),
.O (amesg_mux),
.OE (1'b1)
);
always @(posedge ACLK) begin
if (ARESET) begin
m_amesg_i <= 0;
end else if (~any_grant) begin
m_amesg_i <= amesg_mux;
end
end
end else begin : gen_no_arbiter
assign M_GRANT_ANY = m_grant_hot_i;
always @ (posedge ACLK) begin
if (ARESET) begin
m_valid_i <= 1'b0;
s_ready_i <= 1'b0;
m_grant_enc_i <= 0;
m_grant_hot_i <= 1'b0;
grant_rnw <= 1'b0;
end else begin
s_ready_i <= 1'b0;
if (m_valid_i) begin
if (m_aready) begin
m_valid_i <= 1'b0;
m_grant_hot_i <= 1'b0;
end
end else if (m_grant_hot_i) begin
m_valid_i <= 1'b1;
s_ready_i[0] <= 1'b1; // Assert S_AW/READY for 1 cycle to complete SI address transfer
end else if (s_avalid[0]) begin
m_grant_hot_i <= 1'b1;
grant_rnw <= rnw[0];
end
end
end
always @ (posedge ACLK) begin
if (ARESET) begin
m_amesg_i <= 0;
end else if (~m_grant_hot_i) begin
m_amesg_i <= s_amesg;
end
end
end // gen_arbiter
endgenerate
endmodule
`default_nettype wire
|
// -- (c) Copyright 2009 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// File name: addr_arbiter_sasd.v
//
// Description:
// Hybrid priority + round-robin arbiter.
// Read & write requests combined (read preferred) at each slot
// Muxes AR and AW channel payload inputs based on arbitration results.
//-----------------------------------------------------------------------------
//
// Structure:
// addr_arbiter_sasd
// mux_enc
//-----------------------------------------------------------------------------
`timescale 1ps/1ps
`default_nettype none
(* DowngradeIPIdentifiedWarnings="yes" *)
module axi_crossbar_v2_1_addr_arbiter_sasd #
(
parameter C_FAMILY = "none",
parameter integer C_NUM_S = 1,
parameter integer C_NUM_S_LOG = 1,
parameter integer C_AMESG_WIDTH = 1,
parameter C_GRANT_ENC = 0,
parameter [C_NUM_S*32-1:0] C_ARB_PRIORITY = {C_NUM_S{32'h00000000}}
// Arbitration priority among each SI slot.
// Higher values indicate higher priority.
// Format: C_NUM_SLAVE_SLOTS{Bit32};
// Range: 'h0-'hF.
)
(
// Global Signals
input wire ACLK,
input wire ARESET,
// Slave Ports
input wire [C_NUM_S*C_AMESG_WIDTH-1:0] S_AWMESG,
input wire [C_NUM_S*C_AMESG_WIDTH-1:0] S_ARMESG,
input wire [C_NUM_S-1:0] S_AWVALID,
output wire [C_NUM_S-1:0] S_AWREADY,
input wire [C_NUM_S-1:0] S_ARVALID,
output wire [C_NUM_S-1:0] S_ARREADY,
// Master Ports
output wire [C_AMESG_WIDTH-1:0] M_AMESG,
output wire [C_NUM_S_LOG-1:0] M_GRANT_ENC,
output wire [C_NUM_S-1:0] M_GRANT_HOT,
output wire M_GRANT_RNW,
output wire M_GRANT_ANY,
output wire M_AWVALID,
input wire M_AWREADY,
output wire M_ARVALID,
input wire M_ARREADY
);
// Generates a mask for all input slots that are priority based
function [C_NUM_S-1:0] f_prio_mask
(
input integer null_arg
);
reg [C_NUM_S-1:0] mask;
integer i;
begin
mask = 0;
for (i=0; i < C_NUM_S; i=i+1) begin
mask[i] = (C_ARB_PRIORITY[i*32+:32] != 0);
end
f_prio_mask = mask;
end
endfunction
// Convert 16-bit one-hot to 4-bit binary
function [3:0] f_hot2enc
(
input [15:0] one_hot
);
begin
f_hot2enc[0] = |(one_hot & 16'b1010101010101010);
f_hot2enc[1] = |(one_hot & 16'b1100110011001100);
f_hot2enc[2] = |(one_hot & 16'b1111000011110000);
f_hot2enc[3] = |(one_hot & 16'b1111111100000000);
end
endfunction
localparam [C_NUM_S-1:0] P_PRIO_MASK = f_prio_mask(0);
reg m_valid_i;
reg [C_NUM_S-1:0] s_ready_i;
reg [C_NUM_S-1:0] s_awvalid_reg;
reg [C_NUM_S-1:0] s_arvalid_reg;
wire [15:0] s_avalid;
wire m_aready;
wire [C_NUM_S-1:0] rnw;
reg grant_rnw;
reg [C_NUM_S_LOG-1:0] m_grant_enc_i;
reg [C_NUM_S-1:0] m_grant_hot_i;
reg [C_NUM_S-1:0] last_rr_hot;
reg any_grant;
reg any_prio;
reg [C_NUM_S-1:0] which_prio_hot;
reg [C_NUM_S_LOG-1:0] which_prio_enc;
reg [4:0] current_highest;
reg [15:0] next_prio_hot;
reg [C_NUM_S_LOG-1:0] next_prio_enc;
reg found_prio;
wire [C_NUM_S-1:0] valid_rr;
reg [15:0] next_rr_hot;
reg [C_NUM_S_LOG-1:0] next_rr_enc;
reg [C_NUM_S*C_NUM_S-1:0] carry_rr;
reg [C_NUM_S*C_NUM_S-1:0] mask_rr;
reg found_rr;
wire [C_NUM_S-1:0] next_hot;
wire [C_NUM_S_LOG-1:0] next_enc;
integer i;
wire [C_AMESG_WIDTH-1:0] amesg_mux;
reg [C_AMESG_WIDTH-1:0] m_amesg_i;
wire [C_NUM_S*C_AMESG_WIDTH-1:0] s_amesg;
genvar gen_si;
always @(posedge ACLK) begin
if (ARESET) begin
s_awvalid_reg <= 0;
s_arvalid_reg <= 0;
end else if (|s_ready_i) begin
s_awvalid_reg <= 0;
s_arvalid_reg <= 0;
end else begin
s_arvalid_reg <= S_ARVALID & ~s_awvalid_reg;
s_awvalid_reg <= S_AWVALID & ~s_arvalid_reg & (~S_ARVALID | s_awvalid_reg);
end
end
assign s_avalid = S_AWVALID | S_ARVALID;
assign M_AWVALID = m_valid_i & ~grant_rnw;
assign M_ARVALID = m_valid_i & grant_rnw;
assign S_AWREADY = s_ready_i & {C_NUM_S{~grant_rnw}};
assign S_ARREADY = s_ready_i & {C_NUM_S{grant_rnw}};
assign M_GRANT_ENC = C_GRANT_ENC ? m_grant_enc_i : 0;
assign M_GRANT_HOT = m_grant_hot_i;
assign M_GRANT_RNW = grant_rnw;
assign rnw = S_ARVALID & ~s_awvalid_reg;
assign M_AMESG = m_amesg_i;
assign m_aready = grant_rnw ? M_ARREADY : M_AWREADY;
generate
for (gen_si=0; gen_si<C_NUM_S; gen_si=gen_si+1) begin : gen_mesg_mux
assign s_amesg[C_AMESG_WIDTH*gen_si +: C_AMESG_WIDTH] = rnw[gen_si] ? S_ARMESG[C_AMESG_WIDTH*gen_si +: C_AMESG_WIDTH] : S_AWMESG[C_AMESG_WIDTH*gen_si +: C_AMESG_WIDTH];
end // gen_mesg_mux
if (C_NUM_S>1) begin : gen_arbiter
/////////////////////////////////////////////////////////////////////////////
// Grant a new request when there is none still pending.
// If no qualified requests found, de-assert M_VALID.
/////////////////////////////////////////////////////////////////////////////
assign M_GRANT_ANY = any_grant;
assign next_hot = found_prio ? next_prio_hot : next_rr_hot;
assign next_enc = found_prio ? next_prio_enc : next_rr_enc;
always @(posedge ACLK) begin
if (ARESET) begin
m_valid_i <= 0;
s_ready_i <= 0;
m_grant_hot_i <= 0;
m_grant_enc_i <= 0;
any_grant <= 1'b0;
last_rr_hot <= {1'b1, {C_NUM_S-1{1'b0}}};
grant_rnw <= 1'b0;
end else begin
s_ready_i <= 0;
if (m_valid_i) begin
// Stall 1 cycle after each master-side completion.
if (m_aready) begin // Master-side completion
m_valid_i <= 1'b0;
m_grant_hot_i <= 0;
any_grant <= 1'b0;
end
end else if (any_grant) begin
m_valid_i <= 1'b1;
s_ready_i <= m_grant_hot_i; // Assert S_AW/READY for 1 cycle to complete SI address transfer
end else begin
if (found_prio | found_rr) begin
m_grant_hot_i <= next_hot;
m_grant_enc_i <= next_enc;
any_grant <= 1'b1;
grant_rnw <= |(rnw & next_hot);
if (~found_prio) begin
last_rr_hot <= next_rr_hot;
end
end
end
end
end
/////////////////////////////////////////////////////////////////////////////
// Fixed Priority arbiter
// Selects next request to grant from among inputs with PRIO > 0, if any.
/////////////////////////////////////////////////////////////////////////////
always @ * begin : ALG_PRIO
integer ip;
any_prio = 1'b0;
which_prio_hot = 0;
which_prio_enc = 0;
current_highest = 0;
for (ip=0; ip < C_NUM_S; ip=ip+1) begin
if (P_PRIO_MASK[ip] & ({1'b0, C_ARB_PRIORITY[ip*32+:4]} > current_highest)) begin
if (s_avalid[ip]) begin
current_highest[0+:4] = C_ARB_PRIORITY[ip*32+:4];
any_prio = 1'b1;
which_prio_hot = 1'b1 << ip;
which_prio_enc = ip;
end
end
end
found_prio = any_prio;
next_prio_hot = which_prio_hot;
next_prio_enc = which_prio_enc;
end
/////////////////////////////////////////////////////////////////////////////
// Round-robin arbiter
// Selects next request to grant from among inputs with PRIO = 0, if any.
/////////////////////////////////////////////////////////////////////////////
assign valid_rr = ~P_PRIO_MASK & s_avalid;
always @ * begin : ALG_RR
integer ir, jr, nr;
next_rr_hot = 0;
for (ir=0;ir<C_NUM_S;ir=ir+1) begin
nr = (ir>0) ? (ir-1) : (C_NUM_S-1);
carry_rr[ir*C_NUM_S] = last_rr_hot[nr];
mask_rr[ir*C_NUM_S] = ~valid_rr[nr];
for (jr=1;jr<C_NUM_S;jr=jr+1) begin
nr = (ir-jr > 0) ? (ir-jr-1) : (C_NUM_S+ir-jr-1);
carry_rr[ir*C_NUM_S+jr] = carry_rr[ir*C_NUM_S+jr-1] | (last_rr_hot[nr] & mask_rr[ir*C_NUM_S+jr-1]);
if (jr < C_NUM_S-1) begin
mask_rr[ir*C_NUM_S+jr] = mask_rr[ir*C_NUM_S+jr-1] & ~valid_rr[nr];
end
end
next_rr_hot[ir] = valid_rr[ir] & carry_rr[(ir+1)*C_NUM_S-1];
end
next_rr_enc = f_hot2enc(next_rr_hot);
found_rr = |(next_rr_hot);
end
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_S),
.C_SEL_WIDTH (C_NUM_S_LOG),
.C_DATA_WIDTH (C_AMESG_WIDTH)
) si_amesg_mux_inst
(
.S (next_enc),
.A (s_amesg),
.O (amesg_mux),
.OE (1'b1)
);
always @(posedge ACLK) begin
if (ARESET) begin
m_amesg_i <= 0;
end else if (~any_grant) begin
m_amesg_i <= amesg_mux;
end
end
end else begin : gen_no_arbiter
assign M_GRANT_ANY = m_grant_hot_i;
always @ (posedge ACLK) begin
if (ARESET) begin
m_valid_i <= 1'b0;
s_ready_i <= 1'b0;
m_grant_enc_i <= 0;
m_grant_hot_i <= 1'b0;
grant_rnw <= 1'b0;
end else begin
s_ready_i <= 1'b0;
if (m_valid_i) begin
if (m_aready) begin
m_valid_i <= 1'b0;
m_grant_hot_i <= 1'b0;
end
end else if (m_grant_hot_i) begin
m_valid_i <= 1'b1;
s_ready_i[0] <= 1'b1; // Assert S_AW/READY for 1 cycle to complete SI address transfer
end else if (s_avalid[0]) begin
m_grant_hot_i <= 1'b1;
grant_rnw <= rnw[0];
end
end
end
always @ (posedge ACLK) begin
if (ARESET) begin
m_amesg_i <= 0;
end else if (~m_grant_hot_i) begin
m_amesg_i <= s_amesg;
end
end
end // gen_arbiter
endgenerate
endmodule
`default_nettype wire
|
// -- (c) Copyright 2009 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// File name: addr_arbiter_sasd.v
//
// Description:
// Hybrid priority + round-robin arbiter.
// Read & write requests combined (read preferred) at each slot
// Muxes AR and AW channel payload inputs based on arbitration results.
//-----------------------------------------------------------------------------
//
// Structure:
// addr_arbiter_sasd
// mux_enc
//-----------------------------------------------------------------------------
`timescale 1ps/1ps
`default_nettype none
(* DowngradeIPIdentifiedWarnings="yes" *)
module axi_crossbar_v2_1_addr_arbiter_sasd #
(
parameter C_FAMILY = "none",
parameter integer C_NUM_S = 1,
parameter integer C_NUM_S_LOG = 1,
parameter integer C_AMESG_WIDTH = 1,
parameter C_GRANT_ENC = 0,
parameter [C_NUM_S*32-1:0] C_ARB_PRIORITY = {C_NUM_S{32'h00000000}}
// Arbitration priority among each SI slot.
// Higher values indicate higher priority.
// Format: C_NUM_SLAVE_SLOTS{Bit32};
// Range: 'h0-'hF.
)
(
// Global Signals
input wire ACLK,
input wire ARESET,
// Slave Ports
input wire [C_NUM_S*C_AMESG_WIDTH-1:0] S_AWMESG,
input wire [C_NUM_S*C_AMESG_WIDTH-1:0] S_ARMESG,
input wire [C_NUM_S-1:0] S_AWVALID,
output wire [C_NUM_S-1:0] S_AWREADY,
input wire [C_NUM_S-1:0] S_ARVALID,
output wire [C_NUM_S-1:0] S_ARREADY,
// Master Ports
output wire [C_AMESG_WIDTH-1:0] M_AMESG,
output wire [C_NUM_S_LOG-1:0] M_GRANT_ENC,
output wire [C_NUM_S-1:0] M_GRANT_HOT,
output wire M_GRANT_RNW,
output wire M_GRANT_ANY,
output wire M_AWVALID,
input wire M_AWREADY,
output wire M_ARVALID,
input wire M_ARREADY
);
// Generates a mask for all input slots that are priority based
function [C_NUM_S-1:0] f_prio_mask
(
input integer null_arg
);
reg [C_NUM_S-1:0] mask;
integer i;
begin
mask = 0;
for (i=0; i < C_NUM_S; i=i+1) begin
mask[i] = (C_ARB_PRIORITY[i*32+:32] != 0);
end
f_prio_mask = mask;
end
endfunction
// Convert 16-bit one-hot to 4-bit binary
function [3:0] f_hot2enc
(
input [15:0] one_hot
);
begin
f_hot2enc[0] = |(one_hot & 16'b1010101010101010);
f_hot2enc[1] = |(one_hot & 16'b1100110011001100);
f_hot2enc[2] = |(one_hot & 16'b1111000011110000);
f_hot2enc[3] = |(one_hot & 16'b1111111100000000);
end
endfunction
localparam [C_NUM_S-1:0] P_PRIO_MASK = f_prio_mask(0);
reg m_valid_i;
reg [C_NUM_S-1:0] s_ready_i;
reg [C_NUM_S-1:0] s_awvalid_reg;
reg [C_NUM_S-1:0] s_arvalid_reg;
wire [15:0] s_avalid;
wire m_aready;
wire [C_NUM_S-1:0] rnw;
reg grant_rnw;
reg [C_NUM_S_LOG-1:0] m_grant_enc_i;
reg [C_NUM_S-1:0] m_grant_hot_i;
reg [C_NUM_S-1:0] last_rr_hot;
reg any_grant;
reg any_prio;
reg [C_NUM_S-1:0] which_prio_hot;
reg [C_NUM_S_LOG-1:0] which_prio_enc;
reg [4:0] current_highest;
reg [15:0] next_prio_hot;
reg [C_NUM_S_LOG-1:0] next_prio_enc;
reg found_prio;
wire [C_NUM_S-1:0] valid_rr;
reg [15:0] next_rr_hot;
reg [C_NUM_S_LOG-1:0] next_rr_enc;
reg [C_NUM_S*C_NUM_S-1:0] carry_rr;
reg [C_NUM_S*C_NUM_S-1:0] mask_rr;
reg found_rr;
wire [C_NUM_S-1:0] next_hot;
wire [C_NUM_S_LOG-1:0] next_enc;
integer i;
wire [C_AMESG_WIDTH-1:0] amesg_mux;
reg [C_AMESG_WIDTH-1:0] m_amesg_i;
wire [C_NUM_S*C_AMESG_WIDTH-1:0] s_amesg;
genvar gen_si;
always @(posedge ACLK) begin
if (ARESET) begin
s_awvalid_reg <= 0;
s_arvalid_reg <= 0;
end else if (|s_ready_i) begin
s_awvalid_reg <= 0;
s_arvalid_reg <= 0;
end else begin
s_arvalid_reg <= S_ARVALID & ~s_awvalid_reg;
s_awvalid_reg <= S_AWVALID & ~s_arvalid_reg & (~S_ARVALID | s_awvalid_reg);
end
end
assign s_avalid = S_AWVALID | S_ARVALID;
assign M_AWVALID = m_valid_i & ~grant_rnw;
assign M_ARVALID = m_valid_i & grant_rnw;
assign S_AWREADY = s_ready_i & {C_NUM_S{~grant_rnw}};
assign S_ARREADY = s_ready_i & {C_NUM_S{grant_rnw}};
assign M_GRANT_ENC = C_GRANT_ENC ? m_grant_enc_i : 0;
assign M_GRANT_HOT = m_grant_hot_i;
assign M_GRANT_RNW = grant_rnw;
assign rnw = S_ARVALID & ~s_awvalid_reg;
assign M_AMESG = m_amesg_i;
assign m_aready = grant_rnw ? M_ARREADY : M_AWREADY;
generate
for (gen_si=0; gen_si<C_NUM_S; gen_si=gen_si+1) begin : gen_mesg_mux
assign s_amesg[C_AMESG_WIDTH*gen_si +: C_AMESG_WIDTH] = rnw[gen_si] ? S_ARMESG[C_AMESG_WIDTH*gen_si +: C_AMESG_WIDTH] : S_AWMESG[C_AMESG_WIDTH*gen_si +: C_AMESG_WIDTH];
end // gen_mesg_mux
if (C_NUM_S>1) begin : gen_arbiter
/////////////////////////////////////////////////////////////////////////////
// Grant a new request when there is none still pending.
// If no qualified requests found, de-assert M_VALID.
/////////////////////////////////////////////////////////////////////////////
assign M_GRANT_ANY = any_grant;
assign next_hot = found_prio ? next_prio_hot : next_rr_hot;
assign next_enc = found_prio ? next_prio_enc : next_rr_enc;
always @(posedge ACLK) begin
if (ARESET) begin
m_valid_i <= 0;
s_ready_i <= 0;
m_grant_hot_i <= 0;
m_grant_enc_i <= 0;
any_grant <= 1'b0;
last_rr_hot <= {1'b1, {C_NUM_S-1{1'b0}}};
grant_rnw <= 1'b0;
end else begin
s_ready_i <= 0;
if (m_valid_i) begin
// Stall 1 cycle after each master-side completion.
if (m_aready) begin // Master-side completion
m_valid_i <= 1'b0;
m_grant_hot_i <= 0;
any_grant <= 1'b0;
end
end else if (any_grant) begin
m_valid_i <= 1'b1;
s_ready_i <= m_grant_hot_i; // Assert S_AW/READY for 1 cycle to complete SI address transfer
end else begin
if (found_prio | found_rr) begin
m_grant_hot_i <= next_hot;
m_grant_enc_i <= next_enc;
any_grant <= 1'b1;
grant_rnw <= |(rnw & next_hot);
if (~found_prio) begin
last_rr_hot <= next_rr_hot;
end
end
end
end
end
/////////////////////////////////////////////////////////////////////////////
// Fixed Priority arbiter
// Selects next request to grant from among inputs with PRIO > 0, if any.
/////////////////////////////////////////////////////////////////////////////
always @ * begin : ALG_PRIO
integer ip;
any_prio = 1'b0;
which_prio_hot = 0;
which_prio_enc = 0;
current_highest = 0;
for (ip=0; ip < C_NUM_S; ip=ip+1) begin
if (P_PRIO_MASK[ip] & ({1'b0, C_ARB_PRIORITY[ip*32+:4]} > current_highest)) begin
if (s_avalid[ip]) begin
current_highest[0+:4] = C_ARB_PRIORITY[ip*32+:4];
any_prio = 1'b1;
which_prio_hot = 1'b1 << ip;
which_prio_enc = ip;
end
end
end
found_prio = any_prio;
next_prio_hot = which_prio_hot;
next_prio_enc = which_prio_enc;
end
/////////////////////////////////////////////////////////////////////////////
// Round-robin arbiter
// Selects next request to grant from among inputs with PRIO = 0, if any.
/////////////////////////////////////////////////////////////////////////////
assign valid_rr = ~P_PRIO_MASK & s_avalid;
always @ * begin : ALG_RR
integer ir, jr, nr;
next_rr_hot = 0;
for (ir=0;ir<C_NUM_S;ir=ir+1) begin
nr = (ir>0) ? (ir-1) : (C_NUM_S-1);
carry_rr[ir*C_NUM_S] = last_rr_hot[nr];
mask_rr[ir*C_NUM_S] = ~valid_rr[nr];
for (jr=1;jr<C_NUM_S;jr=jr+1) begin
nr = (ir-jr > 0) ? (ir-jr-1) : (C_NUM_S+ir-jr-1);
carry_rr[ir*C_NUM_S+jr] = carry_rr[ir*C_NUM_S+jr-1] | (last_rr_hot[nr] & mask_rr[ir*C_NUM_S+jr-1]);
if (jr < C_NUM_S-1) begin
mask_rr[ir*C_NUM_S+jr] = mask_rr[ir*C_NUM_S+jr-1] & ~valid_rr[nr];
end
end
next_rr_hot[ir] = valid_rr[ir] & carry_rr[(ir+1)*C_NUM_S-1];
end
next_rr_enc = f_hot2enc(next_rr_hot);
found_rr = |(next_rr_hot);
end
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_S),
.C_SEL_WIDTH (C_NUM_S_LOG),
.C_DATA_WIDTH (C_AMESG_WIDTH)
) si_amesg_mux_inst
(
.S (next_enc),
.A (s_amesg),
.O (amesg_mux),
.OE (1'b1)
);
always @(posedge ACLK) begin
if (ARESET) begin
m_amesg_i <= 0;
end else if (~any_grant) begin
m_amesg_i <= amesg_mux;
end
end
end else begin : gen_no_arbiter
assign M_GRANT_ANY = m_grant_hot_i;
always @ (posedge ACLK) begin
if (ARESET) begin
m_valid_i <= 1'b0;
s_ready_i <= 1'b0;
m_grant_enc_i <= 0;
m_grant_hot_i <= 1'b0;
grant_rnw <= 1'b0;
end else begin
s_ready_i <= 1'b0;
if (m_valid_i) begin
if (m_aready) begin
m_valid_i <= 1'b0;
m_grant_hot_i <= 1'b0;
end
end else if (m_grant_hot_i) begin
m_valid_i <= 1'b1;
s_ready_i[0] <= 1'b1; // Assert S_AW/READY for 1 cycle to complete SI address transfer
end else if (s_avalid[0]) begin
m_grant_hot_i <= 1'b1;
grant_rnw <= rnw[0];
end
end
end
always @ (posedge ACLK) begin
if (ARESET) begin
m_amesg_i <= 0;
end else if (~m_grant_hot_i) begin
m_amesg_i <= s_amesg;
end
end
end // gen_arbiter
endgenerate
endmodule
`default_nettype wire
|
// -- (c) Copyright 2009 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// File name: addr_arbiter_sasd.v
//
// Description:
// Hybrid priority + round-robin arbiter.
// Read & write requests combined (read preferred) at each slot
// Muxes AR and AW channel payload inputs based on arbitration results.
//-----------------------------------------------------------------------------
//
// Structure:
// addr_arbiter_sasd
// mux_enc
//-----------------------------------------------------------------------------
`timescale 1ps/1ps
`default_nettype none
(* DowngradeIPIdentifiedWarnings="yes" *)
module axi_crossbar_v2_1_addr_arbiter_sasd #
(
parameter C_FAMILY = "none",
parameter integer C_NUM_S = 1,
parameter integer C_NUM_S_LOG = 1,
parameter integer C_AMESG_WIDTH = 1,
parameter C_GRANT_ENC = 0,
parameter [C_NUM_S*32-1:0] C_ARB_PRIORITY = {C_NUM_S{32'h00000000}}
// Arbitration priority among each SI slot.
// Higher values indicate higher priority.
// Format: C_NUM_SLAVE_SLOTS{Bit32};
// Range: 'h0-'hF.
)
(
// Global Signals
input wire ACLK,
input wire ARESET,
// Slave Ports
input wire [C_NUM_S*C_AMESG_WIDTH-1:0] S_AWMESG,
input wire [C_NUM_S*C_AMESG_WIDTH-1:0] S_ARMESG,
input wire [C_NUM_S-1:0] S_AWVALID,
output wire [C_NUM_S-1:0] S_AWREADY,
input wire [C_NUM_S-1:0] S_ARVALID,
output wire [C_NUM_S-1:0] S_ARREADY,
// Master Ports
output wire [C_AMESG_WIDTH-1:0] M_AMESG,
output wire [C_NUM_S_LOG-1:0] M_GRANT_ENC,
output wire [C_NUM_S-1:0] M_GRANT_HOT,
output wire M_GRANT_RNW,
output wire M_GRANT_ANY,
output wire M_AWVALID,
input wire M_AWREADY,
output wire M_ARVALID,
input wire M_ARREADY
);
// Generates a mask for all input slots that are priority based
function [C_NUM_S-1:0] f_prio_mask
(
input integer null_arg
);
reg [C_NUM_S-1:0] mask;
integer i;
begin
mask = 0;
for (i=0; i < C_NUM_S; i=i+1) begin
mask[i] = (C_ARB_PRIORITY[i*32+:32] != 0);
end
f_prio_mask = mask;
end
endfunction
// Convert 16-bit one-hot to 4-bit binary
function [3:0] f_hot2enc
(
input [15:0] one_hot
);
begin
f_hot2enc[0] = |(one_hot & 16'b1010101010101010);
f_hot2enc[1] = |(one_hot & 16'b1100110011001100);
f_hot2enc[2] = |(one_hot & 16'b1111000011110000);
f_hot2enc[3] = |(one_hot & 16'b1111111100000000);
end
endfunction
localparam [C_NUM_S-1:0] P_PRIO_MASK = f_prio_mask(0);
reg m_valid_i;
reg [C_NUM_S-1:0] s_ready_i;
reg [C_NUM_S-1:0] s_awvalid_reg;
reg [C_NUM_S-1:0] s_arvalid_reg;
wire [15:0] s_avalid;
wire m_aready;
wire [C_NUM_S-1:0] rnw;
reg grant_rnw;
reg [C_NUM_S_LOG-1:0] m_grant_enc_i;
reg [C_NUM_S-1:0] m_grant_hot_i;
reg [C_NUM_S-1:0] last_rr_hot;
reg any_grant;
reg any_prio;
reg [C_NUM_S-1:0] which_prio_hot;
reg [C_NUM_S_LOG-1:0] which_prio_enc;
reg [4:0] current_highest;
reg [15:0] next_prio_hot;
reg [C_NUM_S_LOG-1:0] next_prio_enc;
reg found_prio;
wire [C_NUM_S-1:0] valid_rr;
reg [15:0] next_rr_hot;
reg [C_NUM_S_LOG-1:0] next_rr_enc;
reg [C_NUM_S*C_NUM_S-1:0] carry_rr;
reg [C_NUM_S*C_NUM_S-1:0] mask_rr;
reg found_rr;
wire [C_NUM_S-1:0] next_hot;
wire [C_NUM_S_LOG-1:0] next_enc;
integer i;
wire [C_AMESG_WIDTH-1:0] amesg_mux;
reg [C_AMESG_WIDTH-1:0] m_amesg_i;
wire [C_NUM_S*C_AMESG_WIDTH-1:0] s_amesg;
genvar gen_si;
always @(posedge ACLK) begin
if (ARESET) begin
s_awvalid_reg <= 0;
s_arvalid_reg <= 0;
end else if (|s_ready_i) begin
s_awvalid_reg <= 0;
s_arvalid_reg <= 0;
end else begin
s_arvalid_reg <= S_ARVALID & ~s_awvalid_reg;
s_awvalid_reg <= S_AWVALID & ~s_arvalid_reg & (~S_ARVALID | s_awvalid_reg);
end
end
assign s_avalid = S_AWVALID | S_ARVALID;
assign M_AWVALID = m_valid_i & ~grant_rnw;
assign M_ARVALID = m_valid_i & grant_rnw;
assign S_AWREADY = s_ready_i & {C_NUM_S{~grant_rnw}};
assign S_ARREADY = s_ready_i & {C_NUM_S{grant_rnw}};
assign M_GRANT_ENC = C_GRANT_ENC ? m_grant_enc_i : 0;
assign M_GRANT_HOT = m_grant_hot_i;
assign M_GRANT_RNW = grant_rnw;
assign rnw = S_ARVALID & ~s_awvalid_reg;
assign M_AMESG = m_amesg_i;
assign m_aready = grant_rnw ? M_ARREADY : M_AWREADY;
generate
for (gen_si=0; gen_si<C_NUM_S; gen_si=gen_si+1) begin : gen_mesg_mux
assign s_amesg[C_AMESG_WIDTH*gen_si +: C_AMESG_WIDTH] = rnw[gen_si] ? S_ARMESG[C_AMESG_WIDTH*gen_si +: C_AMESG_WIDTH] : S_AWMESG[C_AMESG_WIDTH*gen_si +: C_AMESG_WIDTH];
end // gen_mesg_mux
if (C_NUM_S>1) begin : gen_arbiter
/////////////////////////////////////////////////////////////////////////////
// Grant a new request when there is none still pending.
// If no qualified requests found, de-assert M_VALID.
/////////////////////////////////////////////////////////////////////////////
assign M_GRANT_ANY = any_grant;
assign next_hot = found_prio ? next_prio_hot : next_rr_hot;
assign next_enc = found_prio ? next_prio_enc : next_rr_enc;
always @(posedge ACLK) begin
if (ARESET) begin
m_valid_i <= 0;
s_ready_i <= 0;
m_grant_hot_i <= 0;
m_grant_enc_i <= 0;
any_grant <= 1'b0;
last_rr_hot <= {1'b1, {C_NUM_S-1{1'b0}}};
grant_rnw <= 1'b0;
end else begin
s_ready_i <= 0;
if (m_valid_i) begin
// Stall 1 cycle after each master-side completion.
if (m_aready) begin // Master-side completion
m_valid_i <= 1'b0;
m_grant_hot_i <= 0;
any_grant <= 1'b0;
end
end else if (any_grant) begin
m_valid_i <= 1'b1;
s_ready_i <= m_grant_hot_i; // Assert S_AW/READY for 1 cycle to complete SI address transfer
end else begin
if (found_prio | found_rr) begin
m_grant_hot_i <= next_hot;
m_grant_enc_i <= next_enc;
any_grant <= 1'b1;
grant_rnw <= |(rnw & next_hot);
if (~found_prio) begin
last_rr_hot <= next_rr_hot;
end
end
end
end
end
/////////////////////////////////////////////////////////////////////////////
// Fixed Priority arbiter
// Selects next request to grant from among inputs with PRIO > 0, if any.
/////////////////////////////////////////////////////////////////////////////
always @ * begin : ALG_PRIO
integer ip;
any_prio = 1'b0;
which_prio_hot = 0;
which_prio_enc = 0;
current_highest = 0;
for (ip=0; ip < C_NUM_S; ip=ip+1) begin
if (P_PRIO_MASK[ip] & ({1'b0, C_ARB_PRIORITY[ip*32+:4]} > current_highest)) begin
if (s_avalid[ip]) begin
current_highest[0+:4] = C_ARB_PRIORITY[ip*32+:4];
any_prio = 1'b1;
which_prio_hot = 1'b1 << ip;
which_prio_enc = ip;
end
end
end
found_prio = any_prio;
next_prio_hot = which_prio_hot;
next_prio_enc = which_prio_enc;
end
/////////////////////////////////////////////////////////////////////////////
// Round-robin arbiter
// Selects next request to grant from among inputs with PRIO = 0, if any.
/////////////////////////////////////////////////////////////////////////////
assign valid_rr = ~P_PRIO_MASK & s_avalid;
always @ * begin : ALG_RR
integer ir, jr, nr;
next_rr_hot = 0;
for (ir=0;ir<C_NUM_S;ir=ir+1) begin
nr = (ir>0) ? (ir-1) : (C_NUM_S-1);
carry_rr[ir*C_NUM_S] = last_rr_hot[nr];
mask_rr[ir*C_NUM_S] = ~valid_rr[nr];
for (jr=1;jr<C_NUM_S;jr=jr+1) begin
nr = (ir-jr > 0) ? (ir-jr-1) : (C_NUM_S+ir-jr-1);
carry_rr[ir*C_NUM_S+jr] = carry_rr[ir*C_NUM_S+jr-1] | (last_rr_hot[nr] & mask_rr[ir*C_NUM_S+jr-1]);
if (jr < C_NUM_S-1) begin
mask_rr[ir*C_NUM_S+jr] = mask_rr[ir*C_NUM_S+jr-1] & ~valid_rr[nr];
end
end
next_rr_hot[ir] = valid_rr[ir] & carry_rr[(ir+1)*C_NUM_S-1];
end
next_rr_enc = f_hot2enc(next_rr_hot);
found_rr = |(next_rr_hot);
end
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_S),
.C_SEL_WIDTH (C_NUM_S_LOG),
.C_DATA_WIDTH (C_AMESG_WIDTH)
) si_amesg_mux_inst
(
.S (next_enc),
.A (s_amesg),
.O (amesg_mux),
.OE (1'b1)
);
always @(posedge ACLK) begin
if (ARESET) begin
m_amesg_i <= 0;
end else if (~any_grant) begin
m_amesg_i <= amesg_mux;
end
end
end else begin : gen_no_arbiter
assign M_GRANT_ANY = m_grant_hot_i;
always @ (posedge ACLK) begin
if (ARESET) begin
m_valid_i <= 1'b0;
s_ready_i <= 1'b0;
m_grant_enc_i <= 0;
m_grant_hot_i <= 1'b0;
grant_rnw <= 1'b0;
end else begin
s_ready_i <= 1'b0;
if (m_valid_i) begin
if (m_aready) begin
m_valid_i <= 1'b0;
m_grant_hot_i <= 1'b0;
end
end else if (m_grant_hot_i) begin
m_valid_i <= 1'b1;
s_ready_i[0] <= 1'b1; // Assert S_AW/READY for 1 cycle to complete SI address transfer
end else if (s_avalid[0]) begin
m_grant_hot_i <= 1'b1;
grant_rnw <= rnw[0];
end
end
end
always @ (posedge ACLK) begin
if (ARESET) begin
m_amesg_i <= 0;
end else if (~m_grant_hot_i) begin
m_amesg_i <= s_amesg;
end
end
end // gen_arbiter
endgenerate
endmodule
`default_nettype wire
|
// -- (c) Copyright 2009 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// File name: addr_arbiter_sasd.v
//
// Description:
// Hybrid priority + round-robin arbiter.
// Read & write requests combined (read preferred) at each slot
// Muxes AR and AW channel payload inputs based on arbitration results.
//-----------------------------------------------------------------------------
//
// Structure:
// addr_arbiter_sasd
// mux_enc
//-----------------------------------------------------------------------------
`timescale 1ps/1ps
`default_nettype none
(* DowngradeIPIdentifiedWarnings="yes" *)
module axi_crossbar_v2_1_addr_arbiter_sasd #
(
parameter C_FAMILY = "none",
parameter integer C_NUM_S = 1,
parameter integer C_NUM_S_LOG = 1,
parameter integer C_AMESG_WIDTH = 1,
parameter C_GRANT_ENC = 0,
parameter [C_NUM_S*32-1:0] C_ARB_PRIORITY = {C_NUM_S{32'h00000000}}
// Arbitration priority among each SI slot.
// Higher values indicate higher priority.
// Format: C_NUM_SLAVE_SLOTS{Bit32};
// Range: 'h0-'hF.
)
(
// Global Signals
input wire ACLK,
input wire ARESET,
// Slave Ports
input wire [C_NUM_S*C_AMESG_WIDTH-1:0] S_AWMESG,
input wire [C_NUM_S*C_AMESG_WIDTH-1:0] S_ARMESG,
input wire [C_NUM_S-1:0] S_AWVALID,
output wire [C_NUM_S-1:0] S_AWREADY,
input wire [C_NUM_S-1:0] S_ARVALID,
output wire [C_NUM_S-1:0] S_ARREADY,
// Master Ports
output wire [C_AMESG_WIDTH-1:0] M_AMESG,
output wire [C_NUM_S_LOG-1:0] M_GRANT_ENC,
output wire [C_NUM_S-1:0] M_GRANT_HOT,
output wire M_GRANT_RNW,
output wire M_GRANT_ANY,
output wire M_AWVALID,
input wire M_AWREADY,
output wire M_ARVALID,
input wire M_ARREADY
);
// Generates a mask for all input slots that are priority based
function [C_NUM_S-1:0] f_prio_mask
(
input integer null_arg
);
reg [C_NUM_S-1:0] mask;
integer i;
begin
mask = 0;
for (i=0; i < C_NUM_S; i=i+1) begin
mask[i] = (C_ARB_PRIORITY[i*32+:32] != 0);
end
f_prio_mask = mask;
end
endfunction
// Convert 16-bit one-hot to 4-bit binary
function [3:0] f_hot2enc
(
input [15:0] one_hot
);
begin
f_hot2enc[0] = |(one_hot & 16'b1010101010101010);
f_hot2enc[1] = |(one_hot & 16'b1100110011001100);
f_hot2enc[2] = |(one_hot & 16'b1111000011110000);
f_hot2enc[3] = |(one_hot & 16'b1111111100000000);
end
endfunction
localparam [C_NUM_S-1:0] P_PRIO_MASK = f_prio_mask(0);
reg m_valid_i;
reg [C_NUM_S-1:0] s_ready_i;
reg [C_NUM_S-1:0] s_awvalid_reg;
reg [C_NUM_S-1:0] s_arvalid_reg;
wire [15:0] s_avalid;
wire m_aready;
wire [C_NUM_S-1:0] rnw;
reg grant_rnw;
reg [C_NUM_S_LOG-1:0] m_grant_enc_i;
reg [C_NUM_S-1:0] m_grant_hot_i;
reg [C_NUM_S-1:0] last_rr_hot;
reg any_grant;
reg any_prio;
reg [C_NUM_S-1:0] which_prio_hot;
reg [C_NUM_S_LOG-1:0] which_prio_enc;
reg [4:0] current_highest;
reg [15:0] next_prio_hot;
reg [C_NUM_S_LOG-1:0] next_prio_enc;
reg found_prio;
wire [C_NUM_S-1:0] valid_rr;
reg [15:0] next_rr_hot;
reg [C_NUM_S_LOG-1:0] next_rr_enc;
reg [C_NUM_S*C_NUM_S-1:0] carry_rr;
reg [C_NUM_S*C_NUM_S-1:0] mask_rr;
reg found_rr;
wire [C_NUM_S-1:0] next_hot;
wire [C_NUM_S_LOG-1:0] next_enc;
integer i;
wire [C_AMESG_WIDTH-1:0] amesg_mux;
reg [C_AMESG_WIDTH-1:0] m_amesg_i;
wire [C_NUM_S*C_AMESG_WIDTH-1:0] s_amesg;
genvar gen_si;
always @(posedge ACLK) begin
if (ARESET) begin
s_awvalid_reg <= 0;
s_arvalid_reg <= 0;
end else if (|s_ready_i) begin
s_awvalid_reg <= 0;
s_arvalid_reg <= 0;
end else begin
s_arvalid_reg <= S_ARVALID & ~s_awvalid_reg;
s_awvalid_reg <= S_AWVALID & ~s_arvalid_reg & (~S_ARVALID | s_awvalid_reg);
end
end
assign s_avalid = S_AWVALID | S_ARVALID;
assign M_AWVALID = m_valid_i & ~grant_rnw;
assign M_ARVALID = m_valid_i & grant_rnw;
assign S_AWREADY = s_ready_i & {C_NUM_S{~grant_rnw}};
assign S_ARREADY = s_ready_i & {C_NUM_S{grant_rnw}};
assign M_GRANT_ENC = C_GRANT_ENC ? m_grant_enc_i : 0;
assign M_GRANT_HOT = m_grant_hot_i;
assign M_GRANT_RNW = grant_rnw;
assign rnw = S_ARVALID & ~s_awvalid_reg;
assign M_AMESG = m_amesg_i;
assign m_aready = grant_rnw ? M_ARREADY : M_AWREADY;
generate
for (gen_si=0; gen_si<C_NUM_S; gen_si=gen_si+1) begin : gen_mesg_mux
assign s_amesg[C_AMESG_WIDTH*gen_si +: C_AMESG_WIDTH] = rnw[gen_si] ? S_ARMESG[C_AMESG_WIDTH*gen_si +: C_AMESG_WIDTH] : S_AWMESG[C_AMESG_WIDTH*gen_si +: C_AMESG_WIDTH];
end // gen_mesg_mux
if (C_NUM_S>1) begin : gen_arbiter
/////////////////////////////////////////////////////////////////////////////
// Grant a new request when there is none still pending.
// If no qualified requests found, de-assert M_VALID.
/////////////////////////////////////////////////////////////////////////////
assign M_GRANT_ANY = any_grant;
assign next_hot = found_prio ? next_prio_hot : next_rr_hot;
assign next_enc = found_prio ? next_prio_enc : next_rr_enc;
always @(posedge ACLK) begin
if (ARESET) begin
m_valid_i <= 0;
s_ready_i <= 0;
m_grant_hot_i <= 0;
m_grant_enc_i <= 0;
any_grant <= 1'b0;
last_rr_hot <= {1'b1, {C_NUM_S-1{1'b0}}};
grant_rnw <= 1'b0;
end else begin
s_ready_i <= 0;
if (m_valid_i) begin
// Stall 1 cycle after each master-side completion.
if (m_aready) begin // Master-side completion
m_valid_i <= 1'b0;
m_grant_hot_i <= 0;
any_grant <= 1'b0;
end
end else if (any_grant) begin
m_valid_i <= 1'b1;
s_ready_i <= m_grant_hot_i; // Assert S_AW/READY for 1 cycle to complete SI address transfer
end else begin
if (found_prio | found_rr) begin
m_grant_hot_i <= next_hot;
m_grant_enc_i <= next_enc;
any_grant <= 1'b1;
grant_rnw <= |(rnw & next_hot);
if (~found_prio) begin
last_rr_hot <= next_rr_hot;
end
end
end
end
end
/////////////////////////////////////////////////////////////////////////////
// Fixed Priority arbiter
// Selects next request to grant from among inputs with PRIO > 0, if any.
/////////////////////////////////////////////////////////////////////////////
always @ * begin : ALG_PRIO
integer ip;
any_prio = 1'b0;
which_prio_hot = 0;
which_prio_enc = 0;
current_highest = 0;
for (ip=0; ip < C_NUM_S; ip=ip+1) begin
if (P_PRIO_MASK[ip] & ({1'b0, C_ARB_PRIORITY[ip*32+:4]} > current_highest)) begin
if (s_avalid[ip]) begin
current_highest[0+:4] = C_ARB_PRIORITY[ip*32+:4];
any_prio = 1'b1;
which_prio_hot = 1'b1 << ip;
which_prio_enc = ip;
end
end
end
found_prio = any_prio;
next_prio_hot = which_prio_hot;
next_prio_enc = which_prio_enc;
end
/////////////////////////////////////////////////////////////////////////////
// Round-robin arbiter
// Selects next request to grant from among inputs with PRIO = 0, if any.
/////////////////////////////////////////////////////////////////////////////
assign valid_rr = ~P_PRIO_MASK & s_avalid;
always @ * begin : ALG_RR
integer ir, jr, nr;
next_rr_hot = 0;
for (ir=0;ir<C_NUM_S;ir=ir+1) begin
nr = (ir>0) ? (ir-1) : (C_NUM_S-1);
carry_rr[ir*C_NUM_S] = last_rr_hot[nr];
mask_rr[ir*C_NUM_S] = ~valid_rr[nr];
for (jr=1;jr<C_NUM_S;jr=jr+1) begin
nr = (ir-jr > 0) ? (ir-jr-1) : (C_NUM_S+ir-jr-1);
carry_rr[ir*C_NUM_S+jr] = carry_rr[ir*C_NUM_S+jr-1] | (last_rr_hot[nr] & mask_rr[ir*C_NUM_S+jr-1]);
if (jr < C_NUM_S-1) begin
mask_rr[ir*C_NUM_S+jr] = mask_rr[ir*C_NUM_S+jr-1] & ~valid_rr[nr];
end
end
next_rr_hot[ir] = valid_rr[ir] & carry_rr[(ir+1)*C_NUM_S-1];
end
next_rr_enc = f_hot2enc(next_rr_hot);
found_rr = |(next_rr_hot);
end
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_S),
.C_SEL_WIDTH (C_NUM_S_LOG),
.C_DATA_WIDTH (C_AMESG_WIDTH)
) si_amesg_mux_inst
(
.S (next_enc),
.A (s_amesg),
.O (amesg_mux),
.OE (1'b1)
);
always @(posedge ACLK) begin
if (ARESET) begin
m_amesg_i <= 0;
end else if (~any_grant) begin
m_amesg_i <= amesg_mux;
end
end
end else begin : gen_no_arbiter
assign M_GRANT_ANY = m_grant_hot_i;
always @ (posedge ACLK) begin
if (ARESET) begin
m_valid_i <= 1'b0;
s_ready_i <= 1'b0;
m_grant_enc_i <= 0;
m_grant_hot_i <= 1'b0;
grant_rnw <= 1'b0;
end else begin
s_ready_i <= 1'b0;
if (m_valid_i) begin
if (m_aready) begin
m_valid_i <= 1'b0;
m_grant_hot_i <= 1'b0;
end
end else if (m_grant_hot_i) begin
m_valid_i <= 1'b1;
s_ready_i[0] <= 1'b1; // Assert S_AW/READY for 1 cycle to complete SI address transfer
end else if (s_avalid[0]) begin
m_grant_hot_i <= 1'b1;
grant_rnw <= rnw[0];
end
end
end
always @ (posedge ACLK) begin
if (ARESET) begin
m_amesg_i <= 0;
end else if (~m_grant_hot_i) begin
m_amesg_i <= s_amesg;
end
end
end // gen_arbiter
endgenerate
endmodule
`default_nettype wire
|
// -- (c) Copyright 2009 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// File name: addr_arbiter_sasd.v
//
// Description:
// Hybrid priority + round-robin arbiter.
// Read & write requests combined (read preferred) at each slot
// Muxes AR and AW channel payload inputs based on arbitration results.
//-----------------------------------------------------------------------------
//
// Structure:
// addr_arbiter_sasd
// mux_enc
//-----------------------------------------------------------------------------
`timescale 1ps/1ps
`default_nettype none
(* DowngradeIPIdentifiedWarnings="yes" *)
module axi_crossbar_v2_1_addr_arbiter_sasd #
(
parameter C_FAMILY = "none",
parameter integer C_NUM_S = 1,
parameter integer C_NUM_S_LOG = 1,
parameter integer C_AMESG_WIDTH = 1,
parameter C_GRANT_ENC = 0,
parameter [C_NUM_S*32-1:0] C_ARB_PRIORITY = {C_NUM_S{32'h00000000}}
// Arbitration priority among each SI slot.
// Higher values indicate higher priority.
// Format: C_NUM_SLAVE_SLOTS{Bit32};
// Range: 'h0-'hF.
)
(
// Global Signals
input wire ACLK,
input wire ARESET,
// Slave Ports
input wire [C_NUM_S*C_AMESG_WIDTH-1:0] S_AWMESG,
input wire [C_NUM_S*C_AMESG_WIDTH-1:0] S_ARMESG,
input wire [C_NUM_S-1:0] S_AWVALID,
output wire [C_NUM_S-1:0] S_AWREADY,
input wire [C_NUM_S-1:0] S_ARVALID,
output wire [C_NUM_S-1:0] S_ARREADY,
// Master Ports
output wire [C_AMESG_WIDTH-1:0] M_AMESG,
output wire [C_NUM_S_LOG-1:0] M_GRANT_ENC,
output wire [C_NUM_S-1:0] M_GRANT_HOT,
output wire M_GRANT_RNW,
output wire M_GRANT_ANY,
output wire M_AWVALID,
input wire M_AWREADY,
output wire M_ARVALID,
input wire M_ARREADY
);
// Generates a mask for all input slots that are priority based
function [C_NUM_S-1:0] f_prio_mask
(
input integer null_arg
);
reg [C_NUM_S-1:0] mask;
integer i;
begin
mask = 0;
for (i=0; i < C_NUM_S; i=i+1) begin
mask[i] = (C_ARB_PRIORITY[i*32+:32] != 0);
end
f_prio_mask = mask;
end
endfunction
// Convert 16-bit one-hot to 4-bit binary
function [3:0] f_hot2enc
(
input [15:0] one_hot
);
begin
f_hot2enc[0] = |(one_hot & 16'b1010101010101010);
f_hot2enc[1] = |(one_hot & 16'b1100110011001100);
f_hot2enc[2] = |(one_hot & 16'b1111000011110000);
f_hot2enc[3] = |(one_hot & 16'b1111111100000000);
end
endfunction
localparam [C_NUM_S-1:0] P_PRIO_MASK = f_prio_mask(0);
reg m_valid_i;
reg [C_NUM_S-1:0] s_ready_i;
reg [C_NUM_S-1:0] s_awvalid_reg;
reg [C_NUM_S-1:0] s_arvalid_reg;
wire [15:0] s_avalid;
wire m_aready;
wire [C_NUM_S-1:0] rnw;
reg grant_rnw;
reg [C_NUM_S_LOG-1:0] m_grant_enc_i;
reg [C_NUM_S-1:0] m_grant_hot_i;
reg [C_NUM_S-1:0] last_rr_hot;
reg any_grant;
reg any_prio;
reg [C_NUM_S-1:0] which_prio_hot;
reg [C_NUM_S_LOG-1:0] which_prio_enc;
reg [4:0] current_highest;
reg [15:0] next_prio_hot;
reg [C_NUM_S_LOG-1:0] next_prio_enc;
reg found_prio;
wire [C_NUM_S-1:0] valid_rr;
reg [15:0] next_rr_hot;
reg [C_NUM_S_LOG-1:0] next_rr_enc;
reg [C_NUM_S*C_NUM_S-1:0] carry_rr;
reg [C_NUM_S*C_NUM_S-1:0] mask_rr;
reg found_rr;
wire [C_NUM_S-1:0] next_hot;
wire [C_NUM_S_LOG-1:0] next_enc;
integer i;
wire [C_AMESG_WIDTH-1:0] amesg_mux;
reg [C_AMESG_WIDTH-1:0] m_amesg_i;
wire [C_NUM_S*C_AMESG_WIDTH-1:0] s_amesg;
genvar gen_si;
always @(posedge ACLK) begin
if (ARESET) begin
s_awvalid_reg <= 0;
s_arvalid_reg <= 0;
end else if (|s_ready_i) begin
s_awvalid_reg <= 0;
s_arvalid_reg <= 0;
end else begin
s_arvalid_reg <= S_ARVALID & ~s_awvalid_reg;
s_awvalid_reg <= S_AWVALID & ~s_arvalid_reg & (~S_ARVALID | s_awvalid_reg);
end
end
assign s_avalid = S_AWVALID | S_ARVALID;
assign M_AWVALID = m_valid_i & ~grant_rnw;
assign M_ARVALID = m_valid_i & grant_rnw;
assign S_AWREADY = s_ready_i & {C_NUM_S{~grant_rnw}};
assign S_ARREADY = s_ready_i & {C_NUM_S{grant_rnw}};
assign M_GRANT_ENC = C_GRANT_ENC ? m_grant_enc_i : 0;
assign M_GRANT_HOT = m_grant_hot_i;
assign M_GRANT_RNW = grant_rnw;
assign rnw = S_ARVALID & ~s_awvalid_reg;
assign M_AMESG = m_amesg_i;
assign m_aready = grant_rnw ? M_ARREADY : M_AWREADY;
generate
for (gen_si=0; gen_si<C_NUM_S; gen_si=gen_si+1) begin : gen_mesg_mux
assign s_amesg[C_AMESG_WIDTH*gen_si +: C_AMESG_WIDTH] = rnw[gen_si] ? S_ARMESG[C_AMESG_WIDTH*gen_si +: C_AMESG_WIDTH] : S_AWMESG[C_AMESG_WIDTH*gen_si +: C_AMESG_WIDTH];
end // gen_mesg_mux
if (C_NUM_S>1) begin : gen_arbiter
/////////////////////////////////////////////////////////////////////////////
// Grant a new request when there is none still pending.
// If no qualified requests found, de-assert M_VALID.
/////////////////////////////////////////////////////////////////////////////
assign M_GRANT_ANY = any_grant;
assign next_hot = found_prio ? next_prio_hot : next_rr_hot;
assign next_enc = found_prio ? next_prio_enc : next_rr_enc;
always @(posedge ACLK) begin
if (ARESET) begin
m_valid_i <= 0;
s_ready_i <= 0;
m_grant_hot_i <= 0;
m_grant_enc_i <= 0;
any_grant <= 1'b0;
last_rr_hot <= {1'b1, {C_NUM_S-1{1'b0}}};
grant_rnw <= 1'b0;
end else begin
s_ready_i <= 0;
if (m_valid_i) begin
// Stall 1 cycle after each master-side completion.
if (m_aready) begin // Master-side completion
m_valid_i <= 1'b0;
m_grant_hot_i <= 0;
any_grant <= 1'b0;
end
end else if (any_grant) begin
m_valid_i <= 1'b1;
s_ready_i <= m_grant_hot_i; // Assert S_AW/READY for 1 cycle to complete SI address transfer
end else begin
if (found_prio | found_rr) begin
m_grant_hot_i <= next_hot;
m_grant_enc_i <= next_enc;
any_grant <= 1'b1;
grant_rnw <= |(rnw & next_hot);
if (~found_prio) begin
last_rr_hot <= next_rr_hot;
end
end
end
end
end
/////////////////////////////////////////////////////////////////////////////
// Fixed Priority arbiter
// Selects next request to grant from among inputs with PRIO > 0, if any.
/////////////////////////////////////////////////////////////////////////////
always @ * begin : ALG_PRIO
integer ip;
any_prio = 1'b0;
which_prio_hot = 0;
which_prio_enc = 0;
current_highest = 0;
for (ip=0; ip < C_NUM_S; ip=ip+1) begin
if (P_PRIO_MASK[ip] & ({1'b0, C_ARB_PRIORITY[ip*32+:4]} > current_highest)) begin
if (s_avalid[ip]) begin
current_highest[0+:4] = C_ARB_PRIORITY[ip*32+:4];
any_prio = 1'b1;
which_prio_hot = 1'b1 << ip;
which_prio_enc = ip;
end
end
end
found_prio = any_prio;
next_prio_hot = which_prio_hot;
next_prio_enc = which_prio_enc;
end
/////////////////////////////////////////////////////////////////////////////
// Round-robin arbiter
// Selects next request to grant from among inputs with PRIO = 0, if any.
/////////////////////////////////////////////////////////////////////////////
assign valid_rr = ~P_PRIO_MASK & s_avalid;
always @ * begin : ALG_RR
integer ir, jr, nr;
next_rr_hot = 0;
for (ir=0;ir<C_NUM_S;ir=ir+1) begin
nr = (ir>0) ? (ir-1) : (C_NUM_S-1);
carry_rr[ir*C_NUM_S] = last_rr_hot[nr];
mask_rr[ir*C_NUM_S] = ~valid_rr[nr];
for (jr=1;jr<C_NUM_S;jr=jr+1) begin
nr = (ir-jr > 0) ? (ir-jr-1) : (C_NUM_S+ir-jr-1);
carry_rr[ir*C_NUM_S+jr] = carry_rr[ir*C_NUM_S+jr-1] | (last_rr_hot[nr] & mask_rr[ir*C_NUM_S+jr-1]);
if (jr < C_NUM_S-1) begin
mask_rr[ir*C_NUM_S+jr] = mask_rr[ir*C_NUM_S+jr-1] & ~valid_rr[nr];
end
end
next_rr_hot[ir] = valid_rr[ir] & carry_rr[(ir+1)*C_NUM_S-1];
end
next_rr_enc = f_hot2enc(next_rr_hot);
found_rr = |(next_rr_hot);
end
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_S),
.C_SEL_WIDTH (C_NUM_S_LOG),
.C_DATA_WIDTH (C_AMESG_WIDTH)
) si_amesg_mux_inst
(
.S (next_enc),
.A (s_amesg),
.O (amesg_mux),
.OE (1'b1)
);
always @(posedge ACLK) begin
if (ARESET) begin
m_amesg_i <= 0;
end else if (~any_grant) begin
m_amesg_i <= amesg_mux;
end
end
end else begin : gen_no_arbiter
assign M_GRANT_ANY = m_grant_hot_i;
always @ (posedge ACLK) begin
if (ARESET) begin
m_valid_i <= 1'b0;
s_ready_i <= 1'b0;
m_grant_enc_i <= 0;
m_grant_hot_i <= 1'b0;
grant_rnw <= 1'b0;
end else begin
s_ready_i <= 1'b0;
if (m_valid_i) begin
if (m_aready) begin
m_valid_i <= 1'b0;
m_grant_hot_i <= 1'b0;
end
end else if (m_grant_hot_i) begin
m_valid_i <= 1'b1;
s_ready_i[0] <= 1'b1; // Assert S_AW/READY for 1 cycle to complete SI address transfer
end else if (s_avalid[0]) begin
m_grant_hot_i <= 1'b1;
grant_rnw <= rnw[0];
end
end
end
always @ (posedge ACLK) begin
if (ARESET) begin
m_amesg_i <= 0;
end else if (~m_grant_hot_i) begin
m_amesg_i <= s_amesg;
end
end
end // gen_arbiter
endgenerate
endmodule
`default_nettype wire
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_arb_wr.v
*
* Date : 2012-11
*
* Description : Module that arbitrates between 2 write requests from 2 ports.
*
*****************************************************************************/
`timescale 1ns/1ps
module processing_system7_bfm_v2_0_5_arb_wr(
rstn,
sw_clk,
qos1,
qos2,
prt_dv1,
prt_dv2,
prt_data1,
prt_data2,
prt_addr1,
prt_addr2,
prt_bytes1,
prt_bytes2,
prt_ack1,
prt_ack2,
prt_qos,
prt_req,
prt_data,
prt_addr,
prt_bytes,
prt_ack
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input rstn, sw_clk;
input [axi_qos_width-1:0] qos1,qos2;
input [max_burst_bits-1:0] prt_data1,prt_data2;
input [addr_width-1:0] prt_addr1,prt_addr2;
input [max_burst_bytes_width:0] prt_bytes1,prt_bytes2;
input prt_dv1, prt_dv2, prt_ack;
output reg prt_ack1,prt_ack2,prt_req;
output reg [max_burst_bits-1:0] prt_data;
output reg [addr_width-1:0] prt_addr;
output reg [max_burst_bytes_width:0] prt_bytes;
output reg [axi_qos_width-1:0] prt_qos;
parameter wait_req = 2'b00, serv_req1 = 2'b01, serv_req2 = 2'b10,wait_ack_low = 2'b11;
reg [1:0] state,temp_state;
always@(posedge sw_clk or negedge rstn)
begin
if(!rstn) begin
state = wait_req;
prt_req = 1'b0;
prt_ack1 = 1'b0;
prt_ack2 = 1'b0;
prt_qos = 0;
end else begin
case(state)
wait_req:begin
state = wait_req;
prt_ack1 = 1'b0;
prt_ack2 = 1'b0;
prt_req = 1'b0;
if(prt_dv1 && !prt_dv2) begin
state = serv_req1;
prt_req = 1;
prt_data = prt_data1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
prt_qos = qos1;
end else if(!prt_dv1 && prt_dv2) begin
state = serv_req2;
prt_req = 1;
prt_qos = qos2;
prt_data = prt_data2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_dv1 && prt_dv2) begin
if(qos1 > qos2) begin
prt_req = 1;
prt_qos = qos1;
prt_data = prt_data1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
state = serv_req1;
end else if(qos1 < qos2) begin
prt_req = 1;
prt_qos = qos2;
prt_data = prt_data2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
state = serv_req2;
end else begin
prt_req = 1;
prt_qos = qos1;
prt_data = prt_data1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
state = serv_req1;
end
end
end
serv_req1:begin
state = serv_req1;
prt_ack2 = 1'b0;
if(prt_ack) begin
prt_ack1 = 1'b1;
prt_req = 0;
if(prt_dv2) begin
prt_req = 1;
prt_qos = qos2;
prt_data = prt_data2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
state = serv_req2;
end else begin
// state = wait_req;
state = wait_ack_low;
end
end
end
serv_req2:begin
state = serv_req2;
prt_ack1 = 1'b0;
if(prt_ack) begin
prt_ack2 = 1'b1;
prt_req = 0;
if(prt_dv1) begin
prt_req = 1;
prt_qos = qos1;
prt_data = prt_data1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
state = serv_req1;
end else begin
state = wait_ack_low;
// state = wait_req;
end
end
end
wait_ack_low:begin
prt_ack1 = 1'b0;
prt_ack2 = 1'b0;
state = wait_ack_low;
if(!prt_ack)
state = wait_req;
end
endcase
end /// if else
end /// always
endmodule
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_arb_wr.v
*
* Date : 2012-11
*
* Description : Module that arbitrates between 2 write requests from 2 ports.
*
*****************************************************************************/
`timescale 1ns/1ps
module processing_system7_bfm_v2_0_5_arb_wr(
rstn,
sw_clk,
qos1,
qos2,
prt_dv1,
prt_dv2,
prt_data1,
prt_data2,
prt_addr1,
prt_addr2,
prt_bytes1,
prt_bytes2,
prt_ack1,
prt_ack2,
prt_qos,
prt_req,
prt_data,
prt_addr,
prt_bytes,
prt_ack
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input rstn, sw_clk;
input [axi_qos_width-1:0] qos1,qos2;
input [max_burst_bits-1:0] prt_data1,prt_data2;
input [addr_width-1:0] prt_addr1,prt_addr2;
input [max_burst_bytes_width:0] prt_bytes1,prt_bytes2;
input prt_dv1, prt_dv2, prt_ack;
output reg prt_ack1,prt_ack2,prt_req;
output reg [max_burst_bits-1:0] prt_data;
output reg [addr_width-1:0] prt_addr;
output reg [max_burst_bytes_width:0] prt_bytes;
output reg [axi_qos_width-1:0] prt_qos;
parameter wait_req = 2'b00, serv_req1 = 2'b01, serv_req2 = 2'b10,wait_ack_low = 2'b11;
reg [1:0] state,temp_state;
always@(posedge sw_clk or negedge rstn)
begin
if(!rstn) begin
state = wait_req;
prt_req = 1'b0;
prt_ack1 = 1'b0;
prt_ack2 = 1'b0;
prt_qos = 0;
end else begin
case(state)
wait_req:begin
state = wait_req;
prt_ack1 = 1'b0;
prt_ack2 = 1'b0;
prt_req = 1'b0;
if(prt_dv1 && !prt_dv2) begin
state = serv_req1;
prt_req = 1;
prt_data = prt_data1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
prt_qos = qos1;
end else if(!prt_dv1 && prt_dv2) begin
state = serv_req2;
prt_req = 1;
prt_qos = qos2;
prt_data = prt_data2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_dv1 && prt_dv2) begin
if(qos1 > qos2) begin
prt_req = 1;
prt_qos = qos1;
prt_data = prt_data1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
state = serv_req1;
end else if(qos1 < qos2) begin
prt_req = 1;
prt_qos = qos2;
prt_data = prt_data2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
state = serv_req2;
end else begin
prt_req = 1;
prt_qos = qos1;
prt_data = prt_data1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
state = serv_req1;
end
end
end
serv_req1:begin
state = serv_req1;
prt_ack2 = 1'b0;
if(prt_ack) begin
prt_ack1 = 1'b1;
prt_req = 0;
if(prt_dv2) begin
prt_req = 1;
prt_qos = qos2;
prt_data = prt_data2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
state = serv_req2;
end else begin
// state = wait_req;
state = wait_ack_low;
end
end
end
serv_req2:begin
state = serv_req2;
prt_ack1 = 1'b0;
if(prt_ack) begin
prt_ack2 = 1'b1;
prt_req = 0;
if(prt_dv1) begin
prt_req = 1;
prt_qos = qos1;
prt_data = prt_data1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
state = serv_req1;
end else begin
state = wait_ack_low;
// state = wait_req;
end
end
end
wait_ack_low:begin
prt_ack1 = 1'b0;
prt_ack2 = 1'b0;
state = wait_ack_low;
if(!prt_ack)
state = wait_req;
end
endcase
end /// if else
end /// always
endmodule
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_arb_wr.v
*
* Date : 2012-11
*
* Description : Module that arbitrates between 2 write requests from 2 ports.
*
*****************************************************************************/
`timescale 1ns/1ps
module processing_system7_bfm_v2_0_5_arb_wr(
rstn,
sw_clk,
qos1,
qos2,
prt_dv1,
prt_dv2,
prt_data1,
prt_data2,
prt_addr1,
prt_addr2,
prt_bytes1,
prt_bytes2,
prt_ack1,
prt_ack2,
prt_qos,
prt_req,
prt_data,
prt_addr,
prt_bytes,
prt_ack
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input rstn, sw_clk;
input [axi_qos_width-1:0] qos1,qos2;
input [max_burst_bits-1:0] prt_data1,prt_data2;
input [addr_width-1:0] prt_addr1,prt_addr2;
input [max_burst_bytes_width:0] prt_bytes1,prt_bytes2;
input prt_dv1, prt_dv2, prt_ack;
output reg prt_ack1,prt_ack2,prt_req;
output reg [max_burst_bits-1:0] prt_data;
output reg [addr_width-1:0] prt_addr;
output reg [max_burst_bytes_width:0] prt_bytes;
output reg [axi_qos_width-1:0] prt_qos;
parameter wait_req = 2'b00, serv_req1 = 2'b01, serv_req2 = 2'b10,wait_ack_low = 2'b11;
reg [1:0] state,temp_state;
always@(posedge sw_clk or negedge rstn)
begin
if(!rstn) begin
state = wait_req;
prt_req = 1'b0;
prt_ack1 = 1'b0;
prt_ack2 = 1'b0;
prt_qos = 0;
end else begin
case(state)
wait_req:begin
state = wait_req;
prt_ack1 = 1'b0;
prt_ack2 = 1'b0;
prt_req = 1'b0;
if(prt_dv1 && !prt_dv2) begin
state = serv_req1;
prt_req = 1;
prt_data = prt_data1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
prt_qos = qos1;
end else if(!prt_dv1 && prt_dv2) begin
state = serv_req2;
prt_req = 1;
prt_qos = qos2;
prt_data = prt_data2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_dv1 && prt_dv2) begin
if(qos1 > qos2) begin
prt_req = 1;
prt_qos = qos1;
prt_data = prt_data1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
state = serv_req1;
end else if(qos1 < qos2) begin
prt_req = 1;
prt_qos = qos2;
prt_data = prt_data2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
state = serv_req2;
end else begin
prt_req = 1;
prt_qos = qos1;
prt_data = prt_data1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
state = serv_req1;
end
end
end
serv_req1:begin
state = serv_req1;
prt_ack2 = 1'b0;
if(prt_ack) begin
prt_ack1 = 1'b1;
prt_req = 0;
if(prt_dv2) begin
prt_req = 1;
prt_qos = qos2;
prt_data = prt_data2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
state = serv_req2;
end else begin
// state = wait_req;
state = wait_ack_low;
end
end
end
serv_req2:begin
state = serv_req2;
prt_ack1 = 1'b0;
if(prt_ack) begin
prt_ack2 = 1'b1;
prt_req = 0;
if(prt_dv1) begin
prt_req = 1;
prt_qos = qos1;
prt_data = prt_data1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
state = serv_req1;
end else begin
state = wait_ack_low;
// state = wait_req;
end
end
end
wait_ack_low:begin
prt_ack1 = 1'b0;
prt_ack2 = 1'b0;
state = wait_ack_low;
if(!prt_ack)
state = wait_req;
end
endcase
end /// if else
end /// always
endmodule
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_afi_slave.v
*
* Date : 2012-11
*
* Description : Model that acts as AFI port interface. It uses AXI3 Slave BFM
* from Cadence.
*****************************************************************************/
`timescale 1ns/1ps
module processing_system7_bfm_v2_0_5_afi_slave (
S_RESETN,
S_ARREADY,
S_AWREADY,
S_BVALID,
S_RLAST,
S_RVALID,
S_WREADY,
S_BRESP,
S_RRESP,
S_RDATA,
S_BID,
S_RID,
S_ACLK,
S_ARVALID,
S_AWVALID,
S_BREADY,
S_RREADY,
S_WLAST,
S_WVALID,
S_ARBURST,
S_ARLOCK,
S_ARSIZE,
S_AWBURST,
S_AWLOCK,
S_AWSIZE,
S_ARPROT,
S_AWPROT,
S_ARADDR,
S_AWADDR,
S_WDATA,
S_ARCACHE,
S_ARLEN,
S_AWCACHE,
S_AWLEN,
S_WSTRB,
S_ARID,
S_AWID,
S_WID,
S_AWQOS,
S_ARQOS,
SW_CLK,
WR_DATA_ACK_OCM,
WR_DATA_ACK_DDR,
WR_ADDR,
WR_DATA,
WR_BYTES,
WR_DATA_VALID_OCM,
WR_DATA_VALID_DDR,
WR_QOS,
RD_REQ_DDR,
RD_REQ_OCM,
RD_ADDR,
RD_DATA_OCM,
RD_DATA_DDR,
RD_BYTES,
RD_QOS,
RD_DATA_VALID_OCM,
RD_DATA_VALID_DDR,
S_RDISSUECAP1_EN,
S_WRISSUECAP1_EN,
S_RCOUNT,
S_WCOUNT,
S_RACOUNT,
S_WACOUNT
);
parameter enable_this_port = 0;
parameter slave_name = "Slave";
parameter data_bus_width = 32;
parameter address_bus_width = 32;
parameter id_bus_width = 6;
parameter slave_base_address = 0;
parameter slave_high_address = 4;
parameter max_outstanding_transactions = 8;
parameter exclusive_access_supported = 0;
`include "processing_system7_bfm_v2_0_5_local_params.v"
/* Local parameters only for this module */
/* Internal counters that are used as Read/Write pointers to the fifo's that store all the transaction info on all channles.
This parameter is used to define the width of these pointers --> depending on Maximum outstanding transactions supported.
1-bit extra width than the no.of.bits needed to represent the outstanding transactions
Extra bit helps in generating the empty and full flags
*/
parameter int_cntr_width = clogb2(max_outstanding_transactions)+1;
/* RESP data */
parameter rsp_fifo_bits = axi_rsp_width+id_bus_width;
parameter rsp_lsb = 0;
parameter rsp_msb = axi_rsp_width-1;
parameter rsp_id_lsb = rsp_msb + 1;
parameter rsp_id_msb = rsp_id_lsb + id_bus_width-1;
input S_RESETN;
output S_ARREADY;
output S_AWREADY;
output S_BVALID;
output S_RLAST;
output S_RVALID;
output S_WREADY;
output [axi_rsp_width-1:0] S_BRESP;
output [axi_rsp_width-1:0] S_RRESP;
output [data_bus_width-1:0] S_RDATA;
output [id_bus_width-1:0] S_BID;
output [id_bus_width-1:0] S_RID;
input S_ACLK;
input S_ARVALID;
input S_AWVALID;
input S_BREADY;
input S_RREADY;
input S_WLAST;
input S_WVALID;
input [axi_brst_type_width-1:0] S_ARBURST;
input [axi_lock_width-1:0] S_ARLOCK;
input [axi_size_width-1:0] S_ARSIZE;
input [axi_brst_type_width-1:0] S_AWBURST;
input [axi_lock_width-1:0] S_AWLOCK;
input [axi_size_width-1:0] S_AWSIZE;
input [axi_prot_width-1:0] S_ARPROT;
input [axi_prot_width-1:0] S_AWPROT;
input [address_bus_width-1:0] S_ARADDR;
input [address_bus_width-1:0] S_AWADDR;
input [data_bus_width-1:0] S_WDATA;
input [axi_cache_width-1:0] S_ARCACHE;
input [axi_cache_width-1:0] S_ARLEN;
input [axi_qos_width-1:0] S_ARQOS;
input [axi_cache_width-1:0] S_AWCACHE;
input [axi_len_width-1:0] S_AWLEN;
input [axi_qos_width-1:0] S_AWQOS;
input [(data_bus_width/8)-1:0] S_WSTRB;
input [id_bus_width-1:0] S_ARID;
input [id_bus_width-1:0] S_AWID;
input [id_bus_width-1:0] S_WID;
input SW_CLK;
input WR_DATA_ACK_DDR, WR_DATA_ACK_OCM;
output WR_DATA_VALID_DDR, WR_DATA_VALID_OCM;
output [max_burst_bits-1:0] WR_DATA;
output [addr_width-1:0] WR_ADDR;
output [max_transfer_bytes_width:0] WR_BYTES;
output reg RD_REQ_OCM, RD_REQ_DDR;
output reg [addr_width-1:0] RD_ADDR;
input [max_burst_bits-1:0] RD_DATA_DDR,RD_DATA_OCM;
output reg[max_transfer_bytes_width:0] RD_BYTES;
input RD_DATA_VALID_OCM,RD_DATA_VALID_DDR;
output [axi_qos_width-1:0] WR_QOS;
output reg [axi_qos_width-1:0] RD_QOS;
input S_RDISSUECAP1_EN;
input S_WRISSUECAP1_EN;
output [7:0] S_RCOUNT;
output [7:0] S_WCOUNT;
output [2:0] S_RACOUNT;
output [5:0] S_WACOUNT;
wire net_ARVALID;
wire net_AWVALID;
wire net_WVALID;
real s_aclk_period;
cdn_axi3_slave_bfm #(slave_name,
data_bus_width,
address_bus_width,
id_bus_width,
slave_base_address,
(slave_high_address- slave_base_address),
max_outstanding_transactions,
0, ///MEMORY_MODEL_MODE,
exclusive_access_supported)
slave (.ACLK (S_ACLK),
.ARESETn (S_RESETN), /// confirm this
// Write Address Channel
.AWID (S_AWID),
.AWADDR (S_AWADDR),
.AWLEN (S_AWLEN),
.AWSIZE (S_AWSIZE),
.AWBURST (S_AWBURST),
.AWLOCK (S_AWLOCK),
.AWCACHE (S_AWCACHE),
.AWPROT (S_AWPROT),
.AWVALID (net_AWVALID),
.AWREADY (S_AWREADY),
// Write Data Channel Signals.
.WID (S_WID),
.WDATA (S_WDATA),
.WSTRB (S_WSTRB),
.WLAST (S_WLAST),
.WVALID (net_WVALID),
.WREADY (S_WREADY),
// Write Response Channel Signals.
.BID (S_BID),
.BRESP (S_BRESP),
.BVALID (S_BVALID),
.BREADY (S_BREADY),
// Read Address Channel Signals.
.ARID (S_ARID),
.ARADDR (S_ARADDR),
.ARLEN (S_ARLEN),
.ARSIZE (S_ARSIZE),
.ARBURST (S_ARBURST),
.ARLOCK (S_ARLOCK),
.ARCACHE (S_ARCACHE),
.ARPROT (S_ARPROT),
.ARVALID (net_ARVALID),
.ARREADY (S_ARREADY),
// Read Data Channel Signals.
.RID (S_RID),
.RDATA (S_RDATA),
.RRESP (S_RRESP),
.RLAST (S_RLAST),
.RVALID (S_RVALID),
.RREADY (S_RREADY));
wire wr_intr_fifo_full;
reg temp_wr_intr_fifo_full;
/* Interconnect WR_FIFO model instance */
processing_system7_bfm_v2_0_5_intr_wr_mem wr_intr_fifo(SW_CLK, S_RESETN, wr_intr_fifo_full, WR_DATA_ACK_OCM, WR_DATA_ACK_DDR, WR_ADDR, WR_DATA, WR_BYTES, WR_QOS, WR_DATA_VALID_OCM, WR_DATA_VALID_DDR);
/* Register the async 'full' signal to S_ACLK clock */
always@(posedge S_ACLK) temp_wr_intr_fifo_full = wr_intr_fifo_full;
/* Latency type and Debug/Error Control */
reg[1:0] latency_type = RANDOM_CASE;
reg DEBUG_INFO = 1;
reg STOP_ON_ERROR = 1'b1;
/* Internal nets/regs for calling slave BFM API's*/
reg [wr_afi_fifo_data_bits-1:0] wr_fifo [0:max_outstanding_transactions-1];
reg [int_cntr_width-1:0] wr_fifo_wr_ptr = 0, wr_fifo_rd_ptr = 0;
wire wr_fifo_empty;
/* Store the awvalid receive time --- necessary for calculating the bresp latency */
reg [7:0] aw_time_cnt = 0,bresp_time_cnt = 0;
real awvalid_receive_time[0:max_outstanding_transactions]; // store the time when a new awvalid is received
reg awvalid_flag[0:max_outstanding_transactions]; // store the time when a new awvalid is received
/* Address Write Channel handshake*/
reg[int_cntr_width-1:0] aw_cnt = 0;//
/* various FIFOs for storing the ADDR channel info */
reg [axi_size_width-1:0] awsize [0:max_outstanding_transactions-1];
reg [axi_prot_width-1:0] awprot [0:max_outstanding_transactions-1];
reg [axi_lock_width-1:0] awlock [0:max_outstanding_transactions-1];
reg [axi_cache_width-1:0] awcache [0:max_outstanding_transactions-1];
reg [axi_brst_type_width-1:0] awbrst [0:max_outstanding_transactions-1];
reg [axi_len_width-1:0] awlen [0:max_outstanding_transactions-1];
reg aw_flag [0:max_outstanding_transactions-1];
reg [addr_width-1:0] awaddr [0:max_outstanding_transactions-1];
reg [id_bus_width-1:0] awid [0:max_outstanding_transactions-1];
reg [axi_qos_width-1:0] awqos [0:max_outstanding_transactions-1];
wire aw_fifo_full; // indicates awvalid_fifo is full (max outstanding transactions reached)
/* internal fifos to store burst write data, ID & strobes*/
reg [(data_bus_width*axi_burst_len)-1:0] burst_data [0:max_outstanding_transactions-1];
reg [max_burst_bytes_width:0] burst_valid_bytes [0:max_outstanding_transactions-1]; /// total valid bytes received in a complete burst transfer
reg wlast_flag [0:max_outstanding_transactions-1]; // flag to indicate WLAST received
wire wd_fifo_full;
/* Write Data Channel and Write Response handshake signals*/
reg [int_cntr_width-1:0] wd_cnt = 0;
reg [(data_bus_width*axi_burst_len)-1:0] aligned_wr_data;
reg [addr_width-1:0] aligned_wr_addr;
reg [max_burst_bytes_width:0] valid_data_bytes;
reg [int_cntr_width-1:0] wr_bresp_cnt = 0;
reg [axi_rsp_width-1:0] bresp;
reg [rsp_fifo_bits-1:0] fifo_bresp [0:max_outstanding_transactions-1]; // store the ID and its corresponding response
reg enable_write_bresp;
reg [int_cntr_width-1:0] rd_bresp_cnt = 0;
integer wr_latency_count;
reg wr_delayed;
wire bresp_fifo_empty;
/* keep track of count values */
reg[7:0] wcount;
reg[5:0] wacount;
/* Qos*/
reg [axi_qos_width-1:0] ar_qos, aw_qos;
initial begin
if(DEBUG_INFO) begin
if(enable_this_port)
$display("[%0d] : %0s : %0s : Port is ENABLED.",$time, DISP_INFO, slave_name);
else
$display("[%0d] : %0s : %0s : Port is DISABLED.",$time, DISP_INFO, slave_name);
end
end
/*--------------------------------------------------------------------------------*/
/* Store the Clock cycle time period */
always@(S_RESETN)
begin
if(S_RESETN) begin
@(posedge S_ACLK);
s_aclk_period = $time;
@(posedge S_ACLK);
s_aclk_period = $time - s_aclk_period;
end
end
/*--------------------------------------------------------------------------------*/
initial slave.set_disable_reset_value_checks(1);
initial begin
repeat(2) @(posedge S_ACLK);
if(!enable_this_port) begin
slave.set_channel_level_info(0);
slave.set_function_level_info(0);
end
slave.RESPONSE_TIMEOUT = 0;
end
/*--------------------------------------------------------------------------------*/
/* Set Latency type to be used */
task set_latency_type;
input[1:0] lat;
begin
if(enable_this_port)
latency_type = lat;
else begin
//if(DEBUG_INFO)
$display("[%0d] : %0s : %0s : Port is disabled. 'Latency Profile' will not be set...",$time, DISP_WARN, slave_name);
end
end
endtask
/*--------------------------------------------------------------------------------*/
/* Set ARQoS to be used */
task set_arqos;
input[axi_qos_width-1:0] qos;
begin
if(enable_this_port)
ar_qos = qos;
else begin
if(DEBUG_INFO)
$display("[%0d] : %0s : %0s : Port is disabled. 'ARQOS' will not be set...",$time, DISP_WARN, slave_name);
end
end
endtask
/*--------------------------------------------------------------------------------*/
/* Set AWQoS to be used */
task set_awqos;
input[axi_qos_width-1:0] qos;
begin
if(enable_this_port)
aw_qos = qos;
else begin
if(DEBUG_INFO)
$display("[%0d] : %0s : %0s : Port is disabled. 'AWQOS' will not be set...",$time, DISP_WARN, slave_name);
end
end
endtask
/*--------------------------------------------------------------------------------*/
/* get the wr latency number */
function [31:0] get_wr_lat_number;
input dummy;
reg[1:0] temp;
begin
case(latency_type)
BEST_CASE : get_wr_lat_number = afi_wr_min;
AVG_CASE : get_wr_lat_number = afi_wr_avg;
WORST_CASE : get_wr_lat_number = afi_wr_max;
default : begin // RANDOM_CASE
temp = $random;
case(temp)
2'b00 : get_wr_lat_number = ($random()%10+ afi_wr_min);
2'b01 : get_wr_lat_number = ($random()%40+ afi_wr_avg);
default : get_wr_lat_number = ($random()%60+ afi_wr_max);
endcase
end
endcase
end
endfunction
/*--------------------------------------------------------------------------------*/
/* get the rd latency number */
function [31:0] get_rd_lat_number;
input dummy;
reg[1:0] temp;
begin
case(latency_type)
BEST_CASE : get_rd_lat_number = afi_rd_min;
AVG_CASE : get_rd_lat_number = afi_rd_avg;
WORST_CASE : get_rd_lat_number = afi_rd_max;
default : begin // RANDOM_CASE
temp = $random;
case(temp)
2'b00 : get_rd_lat_number = ($random()%10+ afi_rd_min);
2'b01 : get_rd_lat_number = ($random()%40+ afi_rd_avg);
default : get_rd_lat_number = ($random()%60+ afi_rd_max);
endcase
end
endcase
end
endfunction
/*--------------------------------------------------------------------------------*/
/* Check for any WRITE/READs when this port is disabled */
always@(S_AWVALID or S_WVALID or S_ARVALID)
begin
if((S_AWVALID | S_WVALID | S_ARVALID) && !enable_this_port) begin
$display("[%0d] : %0s : %0s : Port is disabled. AXI transaction is initiated on this port ...\nSimulation will halt ..",$time, DISP_ERR, slave_name);
$stop;
end
end
/*--------------------------------------------------------------------------------*/
assign net_ARVALID = enable_this_port ? S_ARVALID : 1'b0;
assign net_AWVALID = enable_this_port ? S_AWVALID : 1'b0;
assign net_WVALID = enable_this_port ? S_WVALID : 1'b0;
assign wr_fifo_empty = (wr_fifo_wr_ptr === wr_fifo_rd_ptr)?1'b1: 1'b0;
assign bresp_fifo_empty = (wr_bresp_cnt === rd_bresp_cnt)?1'b1:1'b0;
assign bresp_fifo_full = ((wr_bresp_cnt[int_cntr_width-1] !== rd_bresp_cnt[int_cntr_width-1]) && (wr_bresp_cnt[int_cntr_width-2:0] === rd_bresp_cnt[int_cntr_width-2:0]))?1'b1:1'b0;
assign S_WCOUNT = wcount;
assign S_WACOUNT = wacount;
// FIFO_STATUS (only if AFI port) 1- full
function automatic wrfifo_full ;
input [axi_len_width:0] fifo_space_exp;
integer fifo_space_left;
begin
fifo_space_left = afi_fifo_locations - wcount;
if(fifo_space_left < fifo_space_exp)
wrfifo_full = 1;
else
wrfifo_full = 0;
end
endfunction
/*--------------------------------------------------------------------------------*/
/* Store the awvalid receive time --- necessary for calculating the bresp latency */
always@(negedge S_RESETN or S_AWID or S_AWADDR or S_AWVALID )
begin
if(!S_RESETN)
aw_time_cnt = 0;
else begin
if(S_AWVALID) begin
awvalid_receive_time[aw_time_cnt] = $time;
awvalid_flag[aw_time_cnt] = 1'b1;
aw_time_cnt = aw_time_cnt + 1;
end
end // else
end /// always
/*--------------------------------------------------------------------------------*/
always@(posedge S_ACLK)
begin
if(net_AWVALID && S_AWREADY) begin
if(S_AWQOS === 0) awqos[aw_cnt[int_cntr_width-2:0]] = aw_qos;
else awqos[aw_cnt[int_cntr_width-2:0]] = S_AWQOS;
end
end
/* Address Write Channel handshake*/
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
aw_cnt = 0;
wacount = 0;
end else begin
if(S_AWVALID && !wrfifo_full(S_AWLEN+1)) begin
slave.RECEIVE_WRITE_ADDRESS(0,
id_invalid,
awaddr[aw_cnt[int_cntr_width-2:0]],
awlen[aw_cnt[int_cntr_width-2:0]],
awsize[aw_cnt[int_cntr_width-2:0]],
awbrst[aw_cnt[int_cntr_width-2:0]],
awlock[aw_cnt[int_cntr_width-2:0]],
awcache[aw_cnt[int_cntr_width-2:0]],
awprot[aw_cnt[int_cntr_width-2:0]],
awid[aw_cnt[int_cntr_width-2:0]]); /// sampled valid ID.
aw_flag[aw_cnt[int_cntr_width-2:0]] = 1'b1;
aw_cnt = aw_cnt + 1;
wacount = wacount + 1;
end // if (!aw_fifo_full)
end /// if else
end /// always
/*--------------------------------------------------------------------------------*/
/* Write Data Channel Handshake */
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
wd_cnt = 0;
end else begin
if(aw_flag[wd_cnt[int_cntr_width-2:0]]) begin
if(S_WVALID && !wrfifo_full(awlen[wd_cnt[int_cntr_width-2:0]] + 1)) begin
slave.RECEIVE_WRITE_BURST_NO_CHECKS(S_WID, burst_data[wd_cnt[int_cntr_width-2:0]], burst_valid_bytes[wd_cnt[int_cntr_width-2:0]]);
wlast_flag[wd_cnt[int_cntr_width-2:0]] = 1'b1;
wd_cnt = wd_cnt + 1;
end
end else begin
if(!wrfifo_full(axi_burst_len+1) && S_WVALID) begin
slave.RECEIVE_WRITE_BURST_NO_CHECKS(S_WID, burst_data[wd_cnt[int_cntr_width-2:0]], burst_valid_bytes[wd_cnt[int_cntr_width-2:0]]);
wlast_flag[wd_cnt[int_cntr_width-2:0]] = 1'b1;
wd_cnt = wd_cnt + 1;
end
end /// if
end /// else
end /// always
/*--------------------------------------------------------------------------------*/
/* Align the wrap data for write transaction */
task automatic get_wrap_aligned_wr_data;
output [(data_bus_width*axi_burst_len)-1:0] aligned_data;
output [addr_width-1:0] start_addr; /// aligned start address
input [addr_width-1:0] addr;
input [(data_bus_width*axi_burst_len)-1:0] b_data;
input [max_burst_bytes_width:0] v_bytes;
reg [(data_bus_width*axi_burst_len)-1:0] temp_data, wrp_data;
integer wrp_bytes;
integer i;
begin
start_addr = (addr/v_bytes) * v_bytes;
wrp_bytes = addr - start_addr;
wrp_data = b_data;
temp_data = 0;
wrp_data = wrp_data << ((data_bus_width*axi_burst_len) - (v_bytes*8));
while(wrp_bytes > 0) begin /// get the data that is wrapped
temp_data = temp_data << 8;
temp_data[7:0] = wrp_data[(data_bus_width*axi_burst_len)-1 : (data_bus_width*axi_burst_len)-8];
wrp_data = wrp_data << 8;
wrp_bytes = wrp_bytes - 1;
end
wrp_bytes = addr - start_addr;
wrp_data = b_data << (wrp_bytes*8);
aligned_data = (temp_data | wrp_data);
end
endtask
/*--------------------------------------------------------------------------------*/
/* Calculate the Response for each read/write transaction */
function [axi_rsp_width-1:0] calculate_resp;
input [addr_width-1:0] awaddr;
input [axi_prot_width-1:0] awprot;
reg [axi_rsp_width-1:0] rsp;
begin
rsp = AXI_OK;
/* Address Decode */
if(decode_address(awaddr) === INVALID_MEM_TYPE) begin
rsp = AXI_SLV_ERR; //slave error
$display("[%0d] : %0s : %0s : AXI Access to Invalid location(0x%0h) ",$time, DISP_ERR, slave_name, awaddr);
end
else if(decode_address(awaddr) === REG_MEM) begin
rsp = AXI_SLV_ERR; //slave error
$display("[%0d] : %0s : %0s : AXI Access to Register Map(0x%0h) is not allowed through this port.",$time, DISP_ERR, slave_name, awaddr);
end
if(secure_access_enabled && awprot[1])
rsp = AXI_DEC_ERR; // decode error
calculate_resp = rsp;
end
endfunction
/*--------------------------------------------------------------------------------*/
reg[max_burst_bits-1:0] temp_wr_data;
/* Store the Write response for each write transaction */
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
wr_fifo_wr_ptr = 0;
wcount = 0;
end else begin
enable_write_bresp = aw_flag[wr_fifo_wr_ptr[int_cntr_width-2:0]] && wlast_flag[wr_fifo_wr_ptr[int_cntr_width-2:0]];
/* calculate bresp only when AWVALID && WLAST is received */
if(enable_write_bresp) begin
aw_flag[wr_fifo_wr_ptr[int_cntr_width-2:0]] = 0;
wlast_flag[wr_fifo_wr_ptr[int_cntr_width-2:0]] = 0;
bresp = calculate_resp(awaddr[wr_fifo_wr_ptr[int_cntr_width-2:0]], awprot[wr_fifo_wr_ptr[int_cntr_width-2:0]]);
/* Fill AFI_WR_data FIFO */
if(bresp === AXI_OK ) begin
if(awbrst[wr_fifo_wr_ptr[int_cntr_width-2:0]]=== AXI_WRAP) begin /// wrap type? then align the data
get_wrap_aligned_wr_data(aligned_wr_data, aligned_wr_addr, awaddr[wr_fifo_wr_ptr[int_cntr_width-2:0]], burst_data[wr_fifo_wr_ptr[int_cntr_width-2:0]],burst_valid_bytes[wr_fifo_wr_ptr[int_cntr_width-2:0]]); /// gives wrapped start address
end else begin
aligned_wr_data = burst_data[wr_fifo_wr_ptr[int_cntr_width-2:0]];
aligned_wr_addr = awaddr[wr_fifo_wr_ptr[int_cntr_width-2:0]] ;
end
valid_data_bytes = burst_valid_bytes[wr_fifo_wr_ptr[int_cntr_width-2:0]];
end else
valid_data_bytes = 0;
temp_wr_data = aligned_wr_data;
wr_fifo[wr_fifo_wr_ptr[int_cntr_width-2:0]] = {awqos[wr_fifo_wr_ptr[int_cntr_width-2:0]], awlen[wr_fifo_wr_ptr[int_cntr_width-2:0]], awid[wr_fifo_wr_ptr[int_cntr_width-2:0]], bresp, temp_wr_data, aligned_wr_addr, valid_data_bytes};
wcount = wcount + awlen[wr_fifo_wr_ptr[int_cntr_width-2:0]]+1;
wr_fifo_wr_ptr = wr_fifo_wr_ptr + 1;
end
end // else
end // always
/*--------------------------------------------------------------------------------*/
/* Send Write Response Channel handshake */
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
rd_bresp_cnt = 0;
wr_latency_count = get_wr_lat_number(1);
wr_delayed = 0;
bresp_time_cnt = 0;
end else begin
wr_delayed = 1'b0;
if(awvalid_flag[bresp_time_cnt] && (($time - awvalid_receive_time[bresp_time_cnt])/s_aclk_period >= wr_latency_count))
wr_delayed = 1;
if(!bresp_fifo_empty && wr_delayed) begin
slave.SEND_WRITE_RESPONSE(fifo_bresp[rd_bresp_cnt[int_cntr_width-2:0]][rsp_id_msb : rsp_id_lsb], // ID
fifo_bresp[rd_bresp_cnt[int_cntr_width-2:0]][rsp_msb : rsp_lsb] // Response
);
wr_delayed = 0;
awvalid_flag[bresp_time_cnt] = 1'b0;
bresp_time_cnt = bresp_time_cnt+1;
rd_bresp_cnt = rd_bresp_cnt + 1;
wr_latency_count = get_wr_lat_number(1);
end
end // else
end//always
/*--------------------------------------------------------------------------------*/
/* Write Response Channel handshake */
reg wr_int_state;
/* Reading from the wr_fifo and sending to Interconnect fifo*/
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
wr_int_state = 1'b0;
wr_bresp_cnt = 0;
wr_fifo_rd_ptr = 0;
end else begin
case(wr_int_state)
1'b0 : begin
wr_int_state = 1'b0;
if(!temp_wr_intr_fifo_full && !bresp_fifo_full && !wr_fifo_empty) begin
wr_intr_fifo.write_mem({wr_fifo[wr_fifo_rd_ptr[int_cntr_width-2:0]][wr_afi_qos_msb:wr_afi_qos_lsb], wr_fifo[wr_fifo_rd_ptr[int_cntr_width-2:0]][wr_afi_data_msb:wr_afi_bytes_lsb]}); /// qos, data, address and valid_bytes
wr_int_state = 1'b1;
/* start filling the write response fifo at the same time */
fifo_bresp[wr_bresp_cnt[int_cntr_width-2:0]] = wr_fifo[wr_fifo_rd_ptr[int_cntr_width-2:0]][wr_afi_id_msb:wr_afi_rsp_lsb]; // ID and Resp
wcount = wcount - (wr_fifo[wr_fifo_rd_ptr[int_cntr_width-2:0]][wr_afi_ln_msb:wr_afi_ln_lsb] + 1); /// burst length
wacount = wacount - 1;
wr_fifo_rd_ptr = wr_fifo_rd_ptr + 1;
wr_bresp_cnt = wr_bresp_cnt+1;
end
end
1'b1 : begin
wr_int_state = 0;
end
endcase
end
end
/*--------------------------------------------------------------------------------*/
/*-------------------------------- WRITE HANDSHAKE END ----------------------------------------*/
/*-------------------------------- READ HANDSHAKE ---------------------------------------------*/
/* READ CHANNELS */
/* Store the arvalid receive time --- necessary for calculating latency in sending the rresp latency */
reg [7:0] ar_time_cnt = 0,rresp_time_cnt = 0;
real arvalid_receive_time[0:max_outstanding_transactions]; // store the time when a new arvalid is received
reg arvalid_flag[0:max_outstanding_transactions]; // store the time when a new arvalid is received
reg [int_cntr_width-1:0] ar_cnt = 0;// counter for arvalid info
/* various FIFOs for storing the ADDR channel info */
reg [axi_size_width-1:0] arsize [0:max_outstanding_transactions-1];
reg [axi_prot_width-1:0] arprot [0:max_outstanding_transactions-1];
reg [axi_brst_type_width-1:0] arbrst [0:max_outstanding_transactions-1];
reg [axi_len_width-1:0] arlen [0:max_outstanding_transactions-1];
reg [axi_cache_width-1:0] arcache [0:max_outstanding_transactions-1];
reg [axi_lock_width-1:0] arlock [0:max_outstanding_transactions-1];
reg ar_flag [0:max_outstanding_transactions-1];
reg [addr_width-1:0] araddr [0:max_outstanding_transactions-1];
reg [id_bus_width-1:0] arid [0:max_outstanding_transactions-1];
reg [axi_qos_width-1:0] arqos [0:max_outstanding_transactions-1];
wire ar_fifo_full; // indicates arvalid_fifo is full (max outstanding transactions reached)
reg [int_cntr_width-1:0] wr_rresp_cnt = 0;
reg [axi_rsp_width-1:0] rresp;
reg [rsp_fifo_bits-1:0] fifo_rresp [0:max_outstanding_transactions-1]; // store the ID and its corresponding response
reg enable_write_rresp;
/* Send Read Response & Data Channel handshake */
integer rd_latency_count;
reg rd_delayed;
reg [rd_afi_fifo_bits-1:0] read_fifo[0:max_outstanding_transactions-1]; /// Read Burst Data, addr, size, burst, len, RID, RRESP, valid_bytes
reg [int_cntr_width-1:0] rd_fifo_wr_ptr = 0, rd_fifo_rd_ptr = 0;
wire read_fifo_full;
reg [7:0] rcount;
reg [2:0] racount;
wire rd_intr_fifo_full, rd_intr_fifo_empty;
wire read_fifo_empty;
/* signals to communicate with interconnect RD_FIFO model */
reg rd_req, invalid_rd_req;
/* REad control Info
56:25 : Address (32)
24:22 : Size (3)
21:20 : BRST (2)
19:16 : LEN (4)
15:10 : RID (6)
9:8 : RRSP (2)
7:0 : byte cnt (8)
*/
reg [rd_info_bits-1:0] read_control_info;
reg [(data_bus_width*axi_burst_len)-1:0] aligned_rd_data;
reg temp_rd_intr_fifo_empty;
processing_system7_bfm_v2_0_5_intr_rd_mem rd_intr_fifo(SW_CLK, S_RESETN, rd_intr_fifo_full, rd_intr_fifo_empty, rd_req, invalid_rd_req, read_control_info , RD_DATA_OCM, RD_DATA_DDR, RD_DATA_VALID_OCM, RD_DATA_VALID_DDR);
assign read_fifo_empty = (rd_fifo_wr_ptr === rd_fifo_rd_ptr)?1'b1: 1'b0;
assign S_RCOUNT = rcount;
assign S_RACOUNT = racount;
/* Register the asynch signal empty coming from Interconnect READ FIFO */
always@(posedge S_ACLK) temp_rd_intr_fifo_empty = rd_intr_fifo_empty;
// FIFO_STATUS (only if AFI port) 1- full
function automatic rdfifo_full ;
input [axi_len_width:0] fifo_space_exp;
integer fifo_space_left;
begin
fifo_space_left = afi_fifo_locations - rcount;
if(fifo_space_left < fifo_space_exp)
rdfifo_full = 1;
else
rdfifo_full = 0;
end
endfunction
/* Store the arvalid receive time --- necessary for calculating the bresp latency */
always@(negedge S_RESETN or S_ARID or S_ARADDR or S_ARVALID )
begin
if(!S_RESETN)
ar_time_cnt = 0;
else begin
if(S_ARVALID) begin
arvalid_receive_time[ar_time_cnt] = $time;
arvalid_flag[ar_time_cnt] = 1'b1;
ar_time_cnt = ar_time_cnt + 1;
end
end // else
end /// always
/*--------------------------------------------------------------------------------*/
always@(posedge S_ACLK)
begin
if(net_ARVALID && S_ARREADY) begin
if(S_ARQOS === 0) arqos[aw_cnt[int_cntr_width-2:0]] = ar_qos;
else arqos[aw_cnt[int_cntr_width-2:0]] = S_ARQOS;
end
end
/* Address Read Channel handshake*/
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
ar_cnt = 0;
racount = 0;
end else begin
if(S_ARVALID && !rdfifo_full(S_ARLEN+1)) begin /// if AFI read fifo is not full
slave.RECEIVE_READ_ADDRESS(0,
id_invalid,
araddr[ar_cnt[int_cntr_width-2:0]],
arlen[ar_cnt[int_cntr_width-2:0]],
arsize[ar_cnt[int_cntr_width-2:0]],
arbrst[ar_cnt[int_cntr_width-2:0]],
arlock[ar_cnt[int_cntr_width-2:0]],
arcache[ar_cnt[int_cntr_width-2:0]],
arprot[ar_cnt[int_cntr_width-2:0]],
arid[ar_cnt[int_cntr_width-2:0]]); /// sampled valid ID.
ar_flag[ar_cnt[int_cntr_width-2:0]] = 1'b1;
ar_cnt = ar_cnt+1;
racount = racount + 1;
end /// if(!ar_fifo_full)
end /// if else
end /// always*/
/*--------------------------------------------------------------------------------*/
/* Align Wrap data for read transaction*/
task automatic get_wrap_aligned_rd_data;
output [(data_bus_width*axi_burst_len)-1:0] aligned_data;
input [addr_width-1:0] addr;
input [(data_bus_width*axi_burst_len)-1:0] b_data;
input [max_burst_bytes_width:0] v_bytes;
reg [addr_width-1:0] start_addr;
reg [(data_bus_width*axi_burst_len)-1:0] temp_data, wrp_data;
integer wrp_bytes;
integer i;
begin
start_addr = (addr/v_bytes) * v_bytes;
wrp_bytes = addr - start_addr;
wrp_data = b_data;
temp_data = 0;
while(wrp_bytes > 0) begin /// get the data that is wrapped
temp_data = temp_data >> 8;
temp_data[(data_bus_width*axi_burst_len)-1 : (data_bus_width*axi_burst_len)-8] = wrp_data[7:0];
wrp_data = wrp_data >> 8;
wrp_bytes = wrp_bytes - 1;
end
temp_data = temp_data >> ((data_bus_width*axi_burst_len) - (v_bytes*8));
wrp_bytes = addr - start_addr;
wrp_data = b_data >> (wrp_bytes*8);
aligned_data = (temp_data | wrp_data);
end
endtask
/*--------------------------------------------------------------------------------*/
parameter RD_DATA_REQ = 1'b0, WAIT_RD_VALID = 1'b1;
reg rd_fifo_state;
reg [addr_width-1:0] temp_read_address;
reg [max_burst_bytes_width:0] temp_rd_valid_bytes;
/* get the data from memory && also calculate the rresp*/
always@(negedge S_RESETN or posedge SW_CLK)
begin
if(!S_RESETN)begin
wr_rresp_cnt =0;
rd_fifo_state = RD_DATA_REQ;
temp_rd_valid_bytes = 0;
temp_read_address = 0;
RD_REQ_DDR = 1'b0;
RD_REQ_OCM = 1'b0;
rd_req = 0;
invalid_rd_req= 0;
RD_QOS = 0;
end else begin
case(rd_fifo_state)
RD_DATA_REQ : begin
rd_fifo_state = RD_DATA_REQ;
RD_REQ_DDR = 1'b0;
RD_REQ_OCM = 1'b0;
invalid_rd_req = 0;
if(ar_flag[wr_rresp_cnt[int_cntr_width-2:0]] && !rd_intr_fifo_full) begin /// check the rd_fifo_bytes, interconnect fifo full condition
ar_flag[wr_rresp_cnt[int_cntr_width-2:0]] = 0;
rresp = calculate_resp(araddr[wr_rresp_cnt[int_cntr_width-2:0]],arprot[wr_rresp_cnt[int_cntr_width-2:0]]);
temp_rd_valid_bytes = (arlen[wr_rresp_cnt[int_cntr_width-2:0]]+1)*(2**arsize[wr_rresp_cnt[int_cntr_width-2:0]]);//data_bus_width/8;
if(arbrst[wr_rresp_cnt[int_cntr_width-2:0]] === AXI_WRAP) /// wrap begin
temp_read_address = (araddr[wr_rresp_cnt[int_cntr_width-2:0]]/temp_rd_valid_bytes) * temp_rd_valid_bytes;
else
temp_read_address = araddr[wr_rresp_cnt[int_cntr_width-2:0]];
if(rresp === AXI_OK) begin
case(decode_address(temp_read_address))//decode_address(araddr[wr_rresp_cnt[int_cntr_width-2:0]]);
OCM_MEM : RD_REQ_OCM = 1;
DDR_MEM : RD_REQ_DDR = 1;
default : invalid_rd_req = 1;
endcase
end else
invalid_rd_req = 1;
RD_ADDR = temp_read_address; ///araddr[wr_rresp_cnt[int_cntr_width-2:0]];
RD_BYTES = temp_rd_valid_bytes;
RD_QOS = arqos[wr_rresp_cnt[int_cntr_width-2:0]];
rd_fifo_state = WAIT_RD_VALID;
rd_req = 1;
racount = racount - 1;
read_control_info = {araddr[wr_rresp_cnt[int_cntr_width-2:0]], arsize[wr_rresp_cnt[int_cntr_width-2:0]], arbrst[wr_rresp_cnt[int_cntr_width-2:0]], arlen[wr_rresp_cnt[int_cntr_width-2:0]], arid[wr_rresp_cnt[int_cntr_width-2:0]], rresp, temp_rd_valid_bytes };
wr_rresp_cnt = wr_rresp_cnt + 1;
end
end
WAIT_RD_VALID : begin
rd_fifo_state = WAIT_RD_VALID;
rd_req = 0;
if(RD_DATA_VALID_OCM | RD_DATA_VALID_DDR | invalid_rd_req) begin ///temp_dec == 2'b11) begin
RD_REQ_DDR = 1'b0;
RD_REQ_OCM = 1'b0;
invalid_rd_req = 0;
rd_fifo_state = RD_DATA_REQ;
end
end
endcase
end /// else
end /// always
/*--------------------------------------------------------------------------------*/
/* thread to fill in the AFI RD_FIFO */
reg[rd_afi_fifo_bits-1:0] temp_rd_data;//Read Burst Data, addr, size, burst, len, RID, RRESP, valid bytes
reg tmp_state;
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN)begin
rd_fifo_wr_ptr = 0;
rcount = 0;
tmp_state = 0;
end else begin
case(tmp_state)
0 : begin
tmp_state = 0;
if(!temp_rd_intr_fifo_empty) begin
rd_intr_fifo.read_mem(temp_rd_data);
tmp_state = 1;
end
end
1 : begin
tmp_state = 1;
if(!rdfifo_full(temp_rd_data[rd_afi_ln_msb:rd_afi_ln_lsb]+1)) begin
read_fifo[rd_fifo_wr_ptr[int_cntr_width-2:0]] = temp_rd_data;
rd_fifo_wr_ptr = rd_fifo_wr_ptr + 1;
rcount = rcount + temp_rd_data[rd_afi_ln_msb:rd_afi_ln_lsb]+1; /// Burst length
tmp_state = 0;
end
end
endcase
end
end
/*--------------------------------------------------------------------------------*/
reg[max_burst_bytes_width:0] rd_v_b;
reg[rd_afi_fifo_bits-1:0] tmp_fifo_rd; /// Data, addr, size, burst, len, RID, RRESP,valid_bytes
reg[(data_bus_width*axi_burst_len)-1:0] temp_read_data;
reg[(axi_rsp_width*axi_burst_len)-1:0] temp_read_rsp;
/* Read Data Channel handshake */
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN)begin
rd_fifo_rd_ptr = 0;
rd_latency_count = get_rd_lat_number(1);
rd_delayed = 0;
rresp_time_cnt = 0;
rd_v_b = 0;
end else begin
if(arvalid_flag[rresp_time_cnt] && ((($time - arvalid_receive_time[rresp_time_cnt])/s_aclk_period) >= rd_latency_count)) begin
rd_delayed = 1;
end
if(!read_fifo_empty && rd_delayed)begin
rd_delayed = 0;
arvalid_flag[rresp_time_cnt] = 1'b0;
tmp_fifo_rd = read_fifo[rd_fifo_rd_ptr[int_cntr_width-2:0]];
rd_v_b = (tmp_fifo_rd[rd_afi_ln_msb : rd_afi_ln_lsb]+1)*(2**tmp_fifo_rd[rd_afi_siz_msb : rd_afi_siz_lsb]);
temp_read_data = tmp_fifo_rd[rd_afi_data_msb : rd_afi_data_lsb];
if(tmp_fifo_rd[rd_afi_brst_msb : rd_afi_brst_lsb] === AXI_WRAP) begin
get_wrap_aligned_rd_data(aligned_rd_data, tmp_fifo_rd[rd_afi_addr_msb : rd_afi_addr_lsb], tmp_fifo_rd[rd_afi_data_msb : rd_afi_data_lsb], rd_v_b);
temp_read_data = aligned_rd_data;
end
temp_read_rsp = 0;
repeat(axi_burst_len) begin
temp_read_rsp = temp_read_rsp >> axi_rsp_width;
temp_read_rsp[(axi_rsp_width*axi_burst_len)-1:(axi_rsp_width*axi_burst_len)-axi_rsp_width] = tmp_fifo_rd[rd_afi_rsp_msb : rd_afi_rsp_lsb];
end
slave.SEND_READ_BURST_RESP_CTRL(tmp_fifo_rd[rd_afi_id_msb : rd_afi_id_lsb],
tmp_fifo_rd[rd_afi_addr_msb : rd_afi_addr_lsb],
tmp_fifo_rd[rd_afi_ln_msb : rd_afi_ln_lsb],
tmp_fifo_rd[rd_afi_siz_msb : rd_afi_siz_lsb],
tmp_fifo_rd[rd_afi_brst_msb : rd_afi_brst_lsb],
temp_read_data,
temp_read_rsp);
rcount = rcount - (tmp_fifo_rd[rd_afi_ln_msb : rd_afi_ln_lsb]+ 1) ;
rresp_time_cnt = rresp_time_cnt+1;
rd_latency_count = get_rd_lat_number(1);
rd_fifo_rd_ptr = rd_fifo_rd_ptr+1;
end
end /// else
end /// always
endmodule
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_afi_slave.v
*
* Date : 2012-11
*
* Description : Model that acts as AFI port interface. It uses AXI3 Slave BFM
* from Cadence.
*****************************************************************************/
`timescale 1ns/1ps
module processing_system7_bfm_v2_0_5_afi_slave (
S_RESETN,
S_ARREADY,
S_AWREADY,
S_BVALID,
S_RLAST,
S_RVALID,
S_WREADY,
S_BRESP,
S_RRESP,
S_RDATA,
S_BID,
S_RID,
S_ACLK,
S_ARVALID,
S_AWVALID,
S_BREADY,
S_RREADY,
S_WLAST,
S_WVALID,
S_ARBURST,
S_ARLOCK,
S_ARSIZE,
S_AWBURST,
S_AWLOCK,
S_AWSIZE,
S_ARPROT,
S_AWPROT,
S_ARADDR,
S_AWADDR,
S_WDATA,
S_ARCACHE,
S_ARLEN,
S_AWCACHE,
S_AWLEN,
S_WSTRB,
S_ARID,
S_AWID,
S_WID,
S_AWQOS,
S_ARQOS,
SW_CLK,
WR_DATA_ACK_OCM,
WR_DATA_ACK_DDR,
WR_ADDR,
WR_DATA,
WR_BYTES,
WR_DATA_VALID_OCM,
WR_DATA_VALID_DDR,
WR_QOS,
RD_REQ_DDR,
RD_REQ_OCM,
RD_ADDR,
RD_DATA_OCM,
RD_DATA_DDR,
RD_BYTES,
RD_QOS,
RD_DATA_VALID_OCM,
RD_DATA_VALID_DDR,
S_RDISSUECAP1_EN,
S_WRISSUECAP1_EN,
S_RCOUNT,
S_WCOUNT,
S_RACOUNT,
S_WACOUNT
);
parameter enable_this_port = 0;
parameter slave_name = "Slave";
parameter data_bus_width = 32;
parameter address_bus_width = 32;
parameter id_bus_width = 6;
parameter slave_base_address = 0;
parameter slave_high_address = 4;
parameter max_outstanding_transactions = 8;
parameter exclusive_access_supported = 0;
`include "processing_system7_bfm_v2_0_5_local_params.v"
/* Local parameters only for this module */
/* Internal counters that are used as Read/Write pointers to the fifo's that store all the transaction info on all channles.
This parameter is used to define the width of these pointers --> depending on Maximum outstanding transactions supported.
1-bit extra width than the no.of.bits needed to represent the outstanding transactions
Extra bit helps in generating the empty and full flags
*/
parameter int_cntr_width = clogb2(max_outstanding_transactions)+1;
/* RESP data */
parameter rsp_fifo_bits = axi_rsp_width+id_bus_width;
parameter rsp_lsb = 0;
parameter rsp_msb = axi_rsp_width-1;
parameter rsp_id_lsb = rsp_msb + 1;
parameter rsp_id_msb = rsp_id_lsb + id_bus_width-1;
input S_RESETN;
output S_ARREADY;
output S_AWREADY;
output S_BVALID;
output S_RLAST;
output S_RVALID;
output S_WREADY;
output [axi_rsp_width-1:0] S_BRESP;
output [axi_rsp_width-1:0] S_RRESP;
output [data_bus_width-1:0] S_RDATA;
output [id_bus_width-1:0] S_BID;
output [id_bus_width-1:0] S_RID;
input S_ACLK;
input S_ARVALID;
input S_AWVALID;
input S_BREADY;
input S_RREADY;
input S_WLAST;
input S_WVALID;
input [axi_brst_type_width-1:0] S_ARBURST;
input [axi_lock_width-1:0] S_ARLOCK;
input [axi_size_width-1:0] S_ARSIZE;
input [axi_brst_type_width-1:0] S_AWBURST;
input [axi_lock_width-1:0] S_AWLOCK;
input [axi_size_width-1:0] S_AWSIZE;
input [axi_prot_width-1:0] S_ARPROT;
input [axi_prot_width-1:0] S_AWPROT;
input [address_bus_width-1:0] S_ARADDR;
input [address_bus_width-1:0] S_AWADDR;
input [data_bus_width-1:0] S_WDATA;
input [axi_cache_width-1:0] S_ARCACHE;
input [axi_cache_width-1:0] S_ARLEN;
input [axi_qos_width-1:0] S_ARQOS;
input [axi_cache_width-1:0] S_AWCACHE;
input [axi_len_width-1:0] S_AWLEN;
input [axi_qos_width-1:0] S_AWQOS;
input [(data_bus_width/8)-1:0] S_WSTRB;
input [id_bus_width-1:0] S_ARID;
input [id_bus_width-1:0] S_AWID;
input [id_bus_width-1:0] S_WID;
input SW_CLK;
input WR_DATA_ACK_DDR, WR_DATA_ACK_OCM;
output WR_DATA_VALID_DDR, WR_DATA_VALID_OCM;
output [max_burst_bits-1:0] WR_DATA;
output [addr_width-1:0] WR_ADDR;
output [max_transfer_bytes_width:0] WR_BYTES;
output reg RD_REQ_OCM, RD_REQ_DDR;
output reg [addr_width-1:0] RD_ADDR;
input [max_burst_bits-1:0] RD_DATA_DDR,RD_DATA_OCM;
output reg[max_transfer_bytes_width:0] RD_BYTES;
input RD_DATA_VALID_OCM,RD_DATA_VALID_DDR;
output [axi_qos_width-1:0] WR_QOS;
output reg [axi_qos_width-1:0] RD_QOS;
input S_RDISSUECAP1_EN;
input S_WRISSUECAP1_EN;
output [7:0] S_RCOUNT;
output [7:0] S_WCOUNT;
output [2:0] S_RACOUNT;
output [5:0] S_WACOUNT;
wire net_ARVALID;
wire net_AWVALID;
wire net_WVALID;
real s_aclk_period;
cdn_axi3_slave_bfm #(slave_name,
data_bus_width,
address_bus_width,
id_bus_width,
slave_base_address,
(slave_high_address- slave_base_address),
max_outstanding_transactions,
0, ///MEMORY_MODEL_MODE,
exclusive_access_supported)
slave (.ACLK (S_ACLK),
.ARESETn (S_RESETN), /// confirm this
// Write Address Channel
.AWID (S_AWID),
.AWADDR (S_AWADDR),
.AWLEN (S_AWLEN),
.AWSIZE (S_AWSIZE),
.AWBURST (S_AWBURST),
.AWLOCK (S_AWLOCK),
.AWCACHE (S_AWCACHE),
.AWPROT (S_AWPROT),
.AWVALID (net_AWVALID),
.AWREADY (S_AWREADY),
// Write Data Channel Signals.
.WID (S_WID),
.WDATA (S_WDATA),
.WSTRB (S_WSTRB),
.WLAST (S_WLAST),
.WVALID (net_WVALID),
.WREADY (S_WREADY),
// Write Response Channel Signals.
.BID (S_BID),
.BRESP (S_BRESP),
.BVALID (S_BVALID),
.BREADY (S_BREADY),
// Read Address Channel Signals.
.ARID (S_ARID),
.ARADDR (S_ARADDR),
.ARLEN (S_ARLEN),
.ARSIZE (S_ARSIZE),
.ARBURST (S_ARBURST),
.ARLOCK (S_ARLOCK),
.ARCACHE (S_ARCACHE),
.ARPROT (S_ARPROT),
.ARVALID (net_ARVALID),
.ARREADY (S_ARREADY),
// Read Data Channel Signals.
.RID (S_RID),
.RDATA (S_RDATA),
.RRESP (S_RRESP),
.RLAST (S_RLAST),
.RVALID (S_RVALID),
.RREADY (S_RREADY));
wire wr_intr_fifo_full;
reg temp_wr_intr_fifo_full;
/* Interconnect WR_FIFO model instance */
processing_system7_bfm_v2_0_5_intr_wr_mem wr_intr_fifo(SW_CLK, S_RESETN, wr_intr_fifo_full, WR_DATA_ACK_OCM, WR_DATA_ACK_DDR, WR_ADDR, WR_DATA, WR_BYTES, WR_QOS, WR_DATA_VALID_OCM, WR_DATA_VALID_DDR);
/* Register the async 'full' signal to S_ACLK clock */
always@(posedge S_ACLK) temp_wr_intr_fifo_full = wr_intr_fifo_full;
/* Latency type and Debug/Error Control */
reg[1:0] latency_type = RANDOM_CASE;
reg DEBUG_INFO = 1;
reg STOP_ON_ERROR = 1'b1;
/* Internal nets/regs for calling slave BFM API's*/
reg [wr_afi_fifo_data_bits-1:0] wr_fifo [0:max_outstanding_transactions-1];
reg [int_cntr_width-1:0] wr_fifo_wr_ptr = 0, wr_fifo_rd_ptr = 0;
wire wr_fifo_empty;
/* Store the awvalid receive time --- necessary for calculating the bresp latency */
reg [7:0] aw_time_cnt = 0,bresp_time_cnt = 0;
real awvalid_receive_time[0:max_outstanding_transactions]; // store the time when a new awvalid is received
reg awvalid_flag[0:max_outstanding_transactions]; // store the time when a new awvalid is received
/* Address Write Channel handshake*/
reg[int_cntr_width-1:0] aw_cnt = 0;//
/* various FIFOs for storing the ADDR channel info */
reg [axi_size_width-1:0] awsize [0:max_outstanding_transactions-1];
reg [axi_prot_width-1:0] awprot [0:max_outstanding_transactions-1];
reg [axi_lock_width-1:0] awlock [0:max_outstanding_transactions-1];
reg [axi_cache_width-1:0] awcache [0:max_outstanding_transactions-1];
reg [axi_brst_type_width-1:0] awbrst [0:max_outstanding_transactions-1];
reg [axi_len_width-1:0] awlen [0:max_outstanding_transactions-1];
reg aw_flag [0:max_outstanding_transactions-1];
reg [addr_width-1:0] awaddr [0:max_outstanding_transactions-1];
reg [id_bus_width-1:0] awid [0:max_outstanding_transactions-1];
reg [axi_qos_width-1:0] awqos [0:max_outstanding_transactions-1];
wire aw_fifo_full; // indicates awvalid_fifo is full (max outstanding transactions reached)
/* internal fifos to store burst write data, ID & strobes*/
reg [(data_bus_width*axi_burst_len)-1:0] burst_data [0:max_outstanding_transactions-1];
reg [max_burst_bytes_width:0] burst_valid_bytes [0:max_outstanding_transactions-1]; /// total valid bytes received in a complete burst transfer
reg wlast_flag [0:max_outstanding_transactions-1]; // flag to indicate WLAST received
wire wd_fifo_full;
/* Write Data Channel and Write Response handshake signals*/
reg [int_cntr_width-1:0] wd_cnt = 0;
reg [(data_bus_width*axi_burst_len)-1:0] aligned_wr_data;
reg [addr_width-1:0] aligned_wr_addr;
reg [max_burst_bytes_width:0] valid_data_bytes;
reg [int_cntr_width-1:0] wr_bresp_cnt = 0;
reg [axi_rsp_width-1:0] bresp;
reg [rsp_fifo_bits-1:0] fifo_bresp [0:max_outstanding_transactions-1]; // store the ID and its corresponding response
reg enable_write_bresp;
reg [int_cntr_width-1:0] rd_bresp_cnt = 0;
integer wr_latency_count;
reg wr_delayed;
wire bresp_fifo_empty;
/* keep track of count values */
reg[7:0] wcount;
reg[5:0] wacount;
/* Qos*/
reg [axi_qos_width-1:0] ar_qos, aw_qos;
initial begin
if(DEBUG_INFO) begin
if(enable_this_port)
$display("[%0d] : %0s : %0s : Port is ENABLED.",$time, DISP_INFO, slave_name);
else
$display("[%0d] : %0s : %0s : Port is DISABLED.",$time, DISP_INFO, slave_name);
end
end
/*--------------------------------------------------------------------------------*/
/* Store the Clock cycle time period */
always@(S_RESETN)
begin
if(S_RESETN) begin
@(posedge S_ACLK);
s_aclk_period = $time;
@(posedge S_ACLK);
s_aclk_period = $time - s_aclk_period;
end
end
/*--------------------------------------------------------------------------------*/
initial slave.set_disable_reset_value_checks(1);
initial begin
repeat(2) @(posedge S_ACLK);
if(!enable_this_port) begin
slave.set_channel_level_info(0);
slave.set_function_level_info(0);
end
slave.RESPONSE_TIMEOUT = 0;
end
/*--------------------------------------------------------------------------------*/
/* Set Latency type to be used */
task set_latency_type;
input[1:0] lat;
begin
if(enable_this_port)
latency_type = lat;
else begin
//if(DEBUG_INFO)
$display("[%0d] : %0s : %0s : Port is disabled. 'Latency Profile' will not be set...",$time, DISP_WARN, slave_name);
end
end
endtask
/*--------------------------------------------------------------------------------*/
/* Set ARQoS to be used */
task set_arqos;
input[axi_qos_width-1:0] qos;
begin
if(enable_this_port)
ar_qos = qos;
else begin
if(DEBUG_INFO)
$display("[%0d] : %0s : %0s : Port is disabled. 'ARQOS' will not be set...",$time, DISP_WARN, slave_name);
end
end
endtask
/*--------------------------------------------------------------------------------*/
/* Set AWQoS to be used */
task set_awqos;
input[axi_qos_width-1:0] qos;
begin
if(enable_this_port)
aw_qos = qos;
else begin
if(DEBUG_INFO)
$display("[%0d] : %0s : %0s : Port is disabled. 'AWQOS' will not be set...",$time, DISP_WARN, slave_name);
end
end
endtask
/*--------------------------------------------------------------------------------*/
/* get the wr latency number */
function [31:0] get_wr_lat_number;
input dummy;
reg[1:0] temp;
begin
case(latency_type)
BEST_CASE : get_wr_lat_number = afi_wr_min;
AVG_CASE : get_wr_lat_number = afi_wr_avg;
WORST_CASE : get_wr_lat_number = afi_wr_max;
default : begin // RANDOM_CASE
temp = $random;
case(temp)
2'b00 : get_wr_lat_number = ($random()%10+ afi_wr_min);
2'b01 : get_wr_lat_number = ($random()%40+ afi_wr_avg);
default : get_wr_lat_number = ($random()%60+ afi_wr_max);
endcase
end
endcase
end
endfunction
/*--------------------------------------------------------------------------------*/
/* get the rd latency number */
function [31:0] get_rd_lat_number;
input dummy;
reg[1:0] temp;
begin
case(latency_type)
BEST_CASE : get_rd_lat_number = afi_rd_min;
AVG_CASE : get_rd_lat_number = afi_rd_avg;
WORST_CASE : get_rd_lat_number = afi_rd_max;
default : begin // RANDOM_CASE
temp = $random;
case(temp)
2'b00 : get_rd_lat_number = ($random()%10+ afi_rd_min);
2'b01 : get_rd_lat_number = ($random()%40+ afi_rd_avg);
default : get_rd_lat_number = ($random()%60+ afi_rd_max);
endcase
end
endcase
end
endfunction
/*--------------------------------------------------------------------------------*/
/* Check for any WRITE/READs when this port is disabled */
always@(S_AWVALID or S_WVALID or S_ARVALID)
begin
if((S_AWVALID | S_WVALID | S_ARVALID) && !enable_this_port) begin
$display("[%0d] : %0s : %0s : Port is disabled. AXI transaction is initiated on this port ...\nSimulation will halt ..",$time, DISP_ERR, slave_name);
$stop;
end
end
/*--------------------------------------------------------------------------------*/
assign net_ARVALID = enable_this_port ? S_ARVALID : 1'b0;
assign net_AWVALID = enable_this_port ? S_AWVALID : 1'b0;
assign net_WVALID = enable_this_port ? S_WVALID : 1'b0;
assign wr_fifo_empty = (wr_fifo_wr_ptr === wr_fifo_rd_ptr)?1'b1: 1'b0;
assign bresp_fifo_empty = (wr_bresp_cnt === rd_bresp_cnt)?1'b1:1'b0;
assign bresp_fifo_full = ((wr_bresp_cnt[int_cntr_width-1] !== rd_bresp_cnt[int_cntr_width-1]) && (wr_bresp_cnt[int_cntr_width-2:0] === rd_bresp_cnt[int_cntr_width-2:0]))?1'b1:1'b0;
assign S_WCOUNT = wcount;
assign S_WACOUNT = wacount;
// FIFO_STATUS (only if AFI port) 1- full
function automatic wrfifo_full ;
input [axi_len_width:0] fifo_space_exp;
integer fifo_space_left;
begin
fifo_space_left = afi_fifo_locations - wcount;
if(fifo_space_left < fifo_space_exp)
wrfifo_full = 1;
else
wrfifo_full = 0;
end
endfunction
/*--------------------------------------------------------------------------------*/
/* Store the awvalid receive time --- necessary for calculating the bresp latency */
always@(negedge S_RESETN or S_AWID or S_AWADDR or S_AWVALID )
begin
if(!S_RESETN)
aw_time_cnt = 0;
else begin
if(S_AWVALID) begin
awvalid_receive_time[aw_time_cnt] = $time;
awvalid_flag[aw_time_cnt] = 1'b1;
aw_time_cnt = aw_time_cnt + 1;
end
end // else
end /// always
/*--------------------------------------------------------------------------------*/
always@(posedge S_ACLK)
begin
if(net_AWVALID && S_AWREADY) begin
if(S_AWQOS === 0) awqos[aw_cnt[int_cntr_width-2:0]] = aw_qos;
else awqos[aw_cnt[int_cntr_width-2:0]] = S_AWQOS;
end
end
/* Address Write Channel handshake*/
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
aw_cnt = 0;
wacount = 0;
end else begin
if(S_AWVALID && !wrfifo_full(S_AWLEN+1)) begin
slave.RECEIVE_WRITE_ADDRESS(0,
id_invalid,
awaddr[aw_cnt[int_cntr_width-2:0]],
awlen[aw_cnt[int_cntr_width-2:0]],
awsize[aw_cnt[int_cntr_width-2:0]],
awbrst[aw_cnt[int_cntr_width-2:0]],
awlock[aw_cnt[int_cntr_width-2:0]],
awcache[aw_cnt[int_cntr_width-2:0]],
awprot[aw_cnt[int_cntr_width-2:0]],
awid[aw_cnt[int_cntr_width-2:0]]); /// sampled valid ID.
aw_flag[aw_cnt[int_cntr_width-2:0]] = 1'b1;
aw_cnt = aw_cnt + 1;
wacount = wacount + 1;
end // if (!aw_fifo_full)
end /// if else
end /// always
/*--------------------------------------------------------------------------------*/
/* Write Data Channel Handshake */
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
wd_cnt = 0;
end else begin
if(aw_flag[wd_cnt[int_cntr_width-2:0]]) begin
if(S_WVALID && !wrfifo_full(awlen[wd_cnt[int_cntr_width-2:0]] + 1)) begin
slave.RECEIVE_WRITE_BURST_NO_CHECKS(S_WID, burst_data[wd_cnt[int_cntr_width-2:0]], burst_valid_bytes[wd_cnt[int_cntr_width-2:0]]);
wlast_flag[wd_cnt[int_cntr_width-2:0]] = 1'b1;
wd_cnt = wd_cnt + 1;
end
end else begin
if(!wrfifo_full(axi_burst_len+1) && S_WVALID) begin
slave.RECEIVE_WRITE_BURST_NO_CHECKS(S_WID, burst_data[wd_cnt[int_cntr_width-2:0]], burst_valid_bytes[wd_cnt[int_cntr_width-2:0]]);
wlast_flag[wd_cnt[int_cntr_width-2:0]] = 1'b1;
wd_cnt = wd_cnt + 1;
end
end /// if
end /// else
end /// always
/*--------------------------------------------------------------------------------*/
/* Align the wrap data for write transaction */
task automatic get_wrap_aligned_wr_data;
output [(data_bus_width*axi_burst_len)-1:0] aligned_data;
output [addr_width-1:0] start_addr; /// aligned start address
input [addr_width-1:0] addr;
input [(data_bus_width*axi_burst_len)-1:0] b_data;
input [max_burst_bytes_width:0] v_bytes;
reg [(data_bus_width*axi_burst_len)-1:0] temp_data, wrp_data;
integer wrp_bytes;
integer i;
begin
start_addr = (addr/v_bytes) * v_bytes;
wrp_bytes = addr - start_addr;
wrp_data = b_data;
temp_data = 0;
wrp_data = wrp_data << ((data_bus_width*axi_burst_len) - (v_bytes*8));
while(wrp_bytes > 0) begin /// get the data that is wrapped
temp_data = temp_data << 8;
temp_data[7:0] = wrp_data[(data_bus_width*axi_burst_len)-1 : (data_bus_width*axi_burst_len)-8];
wrp_data = wrp_data << 8;
wrp_bytes = wrp_bytes - 1;
end
wrp_bytes = addr - start_addr;
wrp_data = b_data << (wrp_bytes*8);
aligned_data = (temp_data | wrp_data);
end
endtask
/*--------------------------------------------------------------------------------*/
/* Calculate the Response for each read/write transaction */
function [axi_rsp_width-1:0] calculate_resp;
input [addr_width-1:0] awaddr;
input [axi_prot_width-1:0] awprot;
reg [axi_rsp_width-1:0] rsp;
begin
rsp = AXI_OK;
/* Address Decode */
if(decode_address(awaddr) === INVALID_MEM_TYPE) begin
rsp = AXI_SLV_ERR; //slave error
$display("[%0d] : %0s : %0s : AXI Access to Invalid location(0x%0h) ",$time, DISP_ERR, slave_name, awaddr);
end
else if(decode_address(awaddr) === REG_MEM) begin
rsp = AXI_SLV_ERR; //slave error
$display("[%0d] : %0s : %0s : AXI Access to Register Map(0x%0h) is not allowed through this port.",$time, DISP_ERR, slave_name, awaddr);
end
if(secure_access_enabled && awprot[1])
rsp = AXI_DEC_ERR; // decode error
calculate_resp = rsp;
end
endfunction
/*--------------------------------------------------------------------------------*/
reg[max_burst_bits-1:0] temp_wr_data;
/* Store the Write response for each write transaction */
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
wr_fifo_wr_ptr = 0;
wcount = 0;
end else begin
enable_write_bresp = aw_flag[wr_fifo_wr_ptr[int_cntr_width-2:0]] && wlast_flag[wr_fifo_wr_ptr[int_cntr_width-2:0]];
/* calculate bresp only when AWVALID && WLAST is received */
if(enable_write_bresp) begin
aw_flag[wr_fifo_wr_ptr[int_cntr_width-2:0]] = 0;
wlast_flag[wr_fifo_wr_ptr[int_cntr_width-2:0]] = 0;
bresp = calculate_resp(awaddr[wr_fifo_wr_ptr[int_cntr_width-2:0]], awprot[wr_fifo_wr_ptr[int_cntr_width-2:0]]);
/* Fill AFI_WR_data FIFO */
if(bresp === AXI_OK ) begin
if(awbrst[wr_fifo_wr_ptr[int_cntr_width-2:0]]=== AXI_WRAP) begin /// wrap type? then align the data
get_wrap_aligned_wr_data(aligned_wr_data, aligned_wr_addr, awaddr[wr_fifo_wr_ptr[int_cntr_width-2:0]], burst_data[wr_fifo_wr_ptr[int_cntr_width-2:0]],burst_valid_bytes[wr_fifo_wr_ptr[int_cntr_width-2:0]]); /// gives wrapped start address
end else begin
aligned_wr_data = burst_data[wr_fifo_wr_ptr[int_cntr_width-2:0]];
aligned_wr_addr = awaddr[wr_fifo_wr_ptr[int_cntr_width-2:0]] ;
end
valid_data_bytes = burst_valid_bytes[wr_fifo_wr_ptr[int_cntr_width-2:0]];
end else
valid_data_bytes = 0;
temp_wr_data = aligned_wr_data;
wr_fifo[wr_fifo_wr_ptr[int_cntr_width-2:0]] = {awqos[wr_fifo_wr_ptr[int_cntr_width-2:0]], awlen[wr_fifo_wr_ptr[int_cntr_width-2:0]], awid[wr_fifo_wr_ptr[int_cntr_width-2:0]], bresp, temp_wr_data, aligned_wr_addr, valid_data_bytes};
wcount = wcount + awlen[wr_fifo_wr_ptr[int_cntr_width-2:0]]+1;
wr_fifo_wr_ptr = wr_fifo_wr_ptr + 1;
end
end // else
end // always
/*--------------------------------------------------------------------------------*/
/* Send Write Response Channel handshake */
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
rd_bresp_cnt = 0;
wr_latency_count = get_wr_lat_number(1);
wr_delayed = 0;
bresp_time_cnt = 0;
end else begin
wr_delayed = 1'b0;
if(awvalid_flag[bresp_time_cnt] && (($time - awvalid_receive_time[bresp_time_cnt])/s_aclk_period >= wr_latency_count))
wr_delayed = 1;
if(!bresp_fifo_empty && wr_delayed) begin
slave.SEND_WRITE_RESPONSE(fifo_bresp[rd_bresp_cnt[int_cntr_width-2:0]][rsp_id_msb : rsp_id_lsb], // ID
fifo_bresp[rd_bresp_cnt[int_cntr_width-2:0]][rsp_msb : rsp_lsb] // Response
);
wr_delayed = 0;
awvalid_flag[bresp_time_cnt] = 1'b0;
bresp_time_cnt = bresp_time_cnt+1;
rd_bresp_cnt = rd_bresp_cnt + 1;
wr_latency_count = get_wr_lat_number(1);
end
end // else
end//always
/*--------------------------------------------------------------------------------*/
/* Write Response Channel handshake */
reg wr_int_state;
/* Reading from the wr_fifo and sending to Interconnect fifo*/
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
wr_int_state = 1'b0;
wr_bresp_cnt = 0;
wr_fifo_rd_ptr = 0;
end else begin
case(wr_int_state)
1'b0 : begin
wr_int_state = 1'b0;
if(!temp_wr_intr_fifo_full && !bresp_fifo_full && !wr_fifo_empty) begin
wr_intr_fifo.write_mem({wr_fifo[wr_fifo_rd_ptr[int_cntr_width-2:0]][wr_afi_qos_msb:wr_afi_qos_lsb], wr_fifo[wr_fifo_rd_ptr[int_cntr_width-2:0]][wr_afi_data_msb:wr_afi_bytes_lsb]}); /// qos, data, address and valid_bytes
wr_int_state = 1'b1;
/* start filling the write response fifo at the same time */
fifo_bresp[wr_bresp_cnt[int_cntr_width-2:0]] = wr_fifo[wr_fifo_rd_ptr[int_cntr_width-2:0]][wr_afi_id_msb:wr_afi_rsp_lsb]; // ID and Resp
wcount = wcount - (wr_fifo[wr_fifo_rd_ptr[int_cntr_width-2:0]][wr_afi_ln_msb:wr_afi_ln_lsb] + 1); /// burst length
wacount = wacount - 1;
wr_fifo_rd_ptr = wr_fifo_rd_ptr + 1;
wr_bresp_cnt = wr_bresp_cnt+1;
end
end
1'b1 : begin
wr_int_state = 0;
end
endcase
end
end
/*--------------------------------------------------------------------------------*/
/*-------------------------------- WRITE HANDSHAKE END ----------------------------------------*/
/*-------------------------------- READ HANDSHAKE ---------------------------------------------*/
/* READ CHANNELS */
/* Store the arvalid receive time --- necessary for calculating latency in sending the rresp latency */
reg [7:0] ar_time_cnt = 0,rresp_time_cnt = 0;
real arvalid_receive_time[0:max_outstanding_transactions]; // store the time when a new arvalid is received
reg arvalid_flag[0:max_outstanding_transactions]; // store the time when a new arvalid is received
reg [int_cntr_width-1:0] ar_cnt = 0;// counter for arvalid info
/* various FIFOs for storing the ADDR channel info */
reg [axi_size_width-1:0] arsize [0:max_outstanding_transactions-1];
reg [axi_prot_width-1:0] arprot [0:max_outstanding_transactions-1];
reg [axi_brst_type_width-1:0] arbrst [0:max_outstanding_transactions-1];
reg [axi_len_width-1:0] arlen [0:max_outstanding_transactions-1];
reg [axi_cache_width-1:0] arcache [0:max_outstanding_transactions-1];
reg [axi_lock_width-1:0] arlock [0:max_outstanding_transactions-1];
reg ar_flag [0:max_outstanding_transactions-1];
reg [addr_width-1:0] araddr [0:max_outstanding_transactions-1];
reg [id_bus_width-1:0] arid [0:max_outstanding_transactions-1];
reg [axi_qos_width-1:0] arqos [0:max_outstanding_transactions-1];
wire ar_fifo_full; // indicates arvalid_fifo is full (max outstanding transactions reached)
reg [int_cntr_width-1:0] wr_rresp_cnt = 0;
reg [axi_rsp_width-1:0] rresp;
reg [rsp_fifo_bits-1:0] fifo_rresp [0:max_outstanding_transactions-1]; // store the ID and its corresponding response
reg enable_write_rresp;
/* Send Read Response & Data Channel handshake */
integer rd_latency_count;
reg rd_delayed;
reg [rd_afi_fifo_bits-1:0] read_fifo[0:max_outstanding_transactions-1]; /// Read Burst Data, addr, size, burst, len, RID, RRESP, valid_bytes
reg [int_cntr_width-1:0] rd_fifo_wr_ptr = 0, rd_fifo_rd_ptr = 0;
wire read_fifo_full;
reg [7:0] rcount;
reg [2:0] racount;
wire rd_intr_fifo_full, rd_intr_fifo_empty;
wire read_fifo_empty;
/* signals to communicate with interconnect RD_FIFO model */
reg rd_req, invalid_rd_req;
/* REad control Info
56:25 : Address (32)
24:22 : Size (3)
21:20 : BRST (2)
19:16 : LEN (4)
15:10 : RID (6)
9:8 : RRSP (2)
7:0 : byte cnt (8)
*/
reg [rd_info_bits-1:0] read_control_info;
reg [(data_bus_width*axi_burst_len)-1:0] aligned_rd_data;
reg temp_rd_intr_fifo_empty;
processing_system7_bfm_v2_0_5_intr_rd_mem rd_intr_fifo(SW_CLK, S_RESETN, rd_intr_fifo_full, rd_intr_fifo_empty, rd_req, invalid_rd_req, read_control_info , RD_DATA_OCM, RD_DATA_DDR, RD_DATA_VALID_OCM, RD_DATA_VALID_DDR);
assign read_fifo_empty = (rd_fifo_wr_ptr === rd_fifo_rd_ptr)?1'b1: 1'b0;
assign S_RCOUNT = rcount;
assign S_RACOUNT = racount;
/* Register the asynch signal empty coming from Interconnect READ FIFO */
always@(posedge S_ACLK) temp_rd_intr_fifo_empty = rd_intr_fifo_empty;
// FIFO_STATUS (only if AFI port) 1- full
function automatic rdfifo_full ;
input [axi_len_width:0] fifo_space_exp;
integer fifo_space_left;
begin
fifo_space_left = afi_fifo_locations - rcount;
if(fifo_space_left < fifo_space_exp)
rdfifo_full = 1;
else
rdfifo_full = 0;
end
endfunction
/* Store the arvalid receive time --- necessary for calculating the bresp latency */
always@(negedge S_RESETN or S_ARID or S_ARADDR or S_ARVALID )
begin
if(!S_RESETN)
ar_time_cnt = 0;
else begin
if(S_ARVALID) begin
arvalid_receive_time[ar_time_cnt] = $time;
arvalid_flag[ar_time_cnt] = 1'b1;
ar_time_cnt = ar_time_cnt + 1;
end
end // else
end /// always
/*--------------------------------------------------------------------------------*/
always@(posedge S_ACLK)
begin
if(net_ARVALID && S_ARREADY) begin
if(S_ARQOS === 0) arqos[aw_cnt[int_cntr_width-2:0]] = ar_qos;
else arqos[aw_cnt[int_cntr_width-2:0]] = S_ARQOS;
end
end
/* Address Read Channel handshake*/
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
ar_cnt = 0;
racount = 0;
end else begin
if(S_ARVALID && !rdfifo_full(S_ARLEN+1)) begin /// if AFI read fifo is not full
slave.RECEIVE_READ_ADDRESS(0,
id_invalid,
araddr[ar_cnt[int_cntr_width-2:0]],
arlen[ar_cnt[int_cntr_width-2:0]],
arsize[ar_cnt[int_cntr_width-2:0]],
arbrst[ar_cnt[int_cntr_width-2:0]],
arlock[ar_cnt[int_cntr_width-2:0]],
arcache[ar_cnt[int_cntr_width-2:0]],
arprot[ar_cnt[int_cntr_width-2:0]],
arid[ar_cnt[int_cntr_width-2:0]]); /// sampled valid ID.
ar_flag[ar_cnt[int_cntr_width-2:0]] = 1'b1;
ar_cnt = ar_cnt+1;
racount = racount + 1;
end /// if(!ar_fifo_full)
end /// if else
end /// always*/
/*--------------------------------------------------------------------------------*/
/* Align Wrap data for read transaction*/
task automatic get_wrap_aligned_rd_data;
output [(data_bus_width*axi_burst_len)-1:0] aligned_data;
input [addr_width-1:0] addr;
input [(data_bus_width*axi_burst_len)-1:0] b_data;
input [max_burst_bytes_width:0] v_bytes;
reg [addr_width-1:0] start_addr;
reg [(data_bus_width*axi_burst_len)-1:0] temp_data, wrp_data;
integer wrp_bytes;
integer i;
begin
start_addr = (addr/v_bytes) * v_bytes;
wrp_bytes = addr - start_addr;
wrp_data = b_data;
temp_data = 0;
while(wrp_bytes > 0) begin /// get the data that is wrapped
temp_data = temp_data >> 8;
temp_data[(data_bus_width*axi_burst_len)-1 : (data_bus_width*axi_burst_len)-8] = wrp_data[7:0];
wrp_data = wrp_data >> 8;
wrp_bytes = wrp_bytes - 1;
end
temp_data = temp_data >> ((data_bus_width*axi_burst_len) - (v_bytes*8));
wrp_bytes = addr - start_addr;
wrp_data = b_data >> (wrp_bytes*8);
aligned_data = (temp_data | wrp_data);
end
endtask
/*--------------------------------------------------------------------------------*/
parameter RD_DATA_REQ = 1'b0, WAIT_RD_VALID = 1'b1;
reg rd_fifo_state;
reg [addr_width-1:0] temp_read_address;
reg [max_burst_bytes_width:0] temp_rd_valid_bytes;
/* get the data from memory && also calculate the rresp*/
always@(negedge S_RESETN or posedge SW_CLK)
begin
if(!S_RESETN)begin
wr_rresp_cnt =0;
rd_fifo_state = RD_DATA_REQ;
temp_rd_valid_bytes = 0;
temp_read_address = 0;
RD_REQ_DDR = 1'b0;
RD_REQ_OCM = 1'b0;
rd_req = 0;
invalid_rd_req= 0;
RD_QOS = 0;
end else begin
case(rd_fifo_state)
RD_DATA_REQ : begin
rd_fifo_state = RD_DATA_REQ;
RD_REQ_DDR = 1'b0;
RD_REQ_OCM = 1'b0;
invalid_rd_req = 0;
if(ar_flag[wr_rresp_cnt[int_cntr_width-2:0]] && !rd_intr_fifo_full) begin /// check the rd_fifo_bytes, interconnect fifo full condition
ar_flag[wr_rresp_cnt[int_cntr_width-2:0]] = 0;
rresp = calculate_resp(araddr[wr_rresp_cnt[int_cntr_width-2:0]],arprot[wr_rresp_cnt[int_cntr_width-2:0]]);
temp_rd_valid_bytes = (arlen[wr_rresp_cnt[int_cntr_width-2:0]]+1)*(2**arsize[wr_rresp_cnt[int_cntr_width-2:0]]);//data_bus_width/8;
if(arbrst[wr_rresp_cnt[int_cntr_width-2:0]] === AXI_WRAP) /// wrap begin
temp_read_address = (araddr[wr_rresp_cnt[int_cntr_width-2:0]]/temp_rd_valid_bytes) * temp_rd_valid_bytes;
else
temp_read_address = araddr[wr_rresp_cnt[int_cntr_width-2:0]];
if(rresp === AXI_OK) begin
case(decode_address(temp_read_address))//decode_address(araddr[wr_rresp_cnt[int_cntr_width-2:0]]);
OCM_MEM : RD_REQ_OCM = 1;
DDR_MEM : RD_REQ_DDR = 1;
default : invalid_rd_req = 1;
endcase
end else
invalid_rd_req = 1;
RD_ADDR = temp_read_address; ///araddr[wr_rresp_cnt[int_cntr_width-2:0]];
RD_BYTES = temp_rd_valid_bytes;
RD_QOS = arqos[wr_rresp_cnt[int_cntr_width-2:0]];
rd_fifo_state = WAIT_RD_VALID;
rd_req = 1;
racount = racount - 1;
read_control_info = {araddr[wr_rresp_cnt[int_cntr_width-2:0]], arsize[wr_rresp_cnt[int_cntr_width-2:0]], arbrst[wr_rresp_cnt[int_cntr_width-2:0]], arlen[wr_rresp_cnt[int_cntr_width-2:0]], arid[wr_rresp_cnt[int_cntr_width-2:0]], rresp, temp_rd_valid_bytes };
wr_rresp_cnt = wr_rresp_cnt + 1;
end
end
WAIT_RD_VALID : begin
rd_fifo_state = WAIT_RD_VALID;
rd_req = 0;
if(RD_DATA_VALID_OCM | RD_DATA_VALID_DDR | invalid_rd_req) begin ///temp_dec == 2'b11) begin
RD_REQ_DDR = 1'b0;
RD_REQ_OCM = 1'b0;
invalid_rd_req = 0;
rd_fifo_state = RD_DATA_REQ;
end
end
endcase
end /// else
end /// always
/*--------------------------------------------------------------------------------*/
/* thread to fill in the AFI RD_FIFO */
reg[rd_afi_fifo_bits-1:0] temp_rd_data;//Read Burst Data, addr, size, burst, len, RID, RRESP, valid bytes
reg tmp_state;
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN)begin
rd_fifo_wr_ptr = 0;
rcount = 0;
tmp_state = 0;
end else begin
case(tmp_state)
0 : begin
tmp_state = 0;
if(!temp_rd_intr_fifo_empty) begin
rd_intr_fifo.read_mem(temp_rd_data);
tmp_state = 1;
end
end
1 : begin
tmp_state = 1;
if(!rdfifo_full(temp_rd_data[rd_afi_ln_msb:rd_afi_ln_lsb]+1)) begin
read_fifo[rd_fifo_wr_ptr[int_cntr_width-2:0]] = temp_rd_data;
rd_fifo_wr_ptr = rd_fifo_wr_ptr + 1;
rcount = rcount + temp_rd_data[rd_afi_ln_msb:rd_afi_ln_lsb]+1; /// Burst length
tmp_state = 0;
end
end
endcase
end
end
/*--------------------------------------------------------------------------------*/
reg[max_burst_bytes_width:0] rd_v_b;
reg[rd_afi_fifo_bits-1:0] tmp_fifo_rd; /// Data, addr, size, burst, len, RID, RRESP,valid_bytes
reg[(data_bus_width*axi_burst_len)-1:0] temp_read_data;
reg[(axi_rsp_width*axi_burst_len)-1:0] temp_read_rsp;
/* Read Data Channel handshake */
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN)begin
rd_fifo_rd_ptr = 0;
rd_latency_count = get_rd_lat_number(1);
rd_delayed = 0;
rresp_time_cnt = 0;
rd_v_b = 0;
end else begin
if(arvalid_flag[rresp_time_cnt] && ((($time - arvalid_receive_time[rresp_time_cnt])/s_aclk_period) >= rd_latency_count)) begin
rd_delayed = 1;
end
if(!read_fifo_empty && rd_delayed)begin
rd_delayed = 0;
arvalid_flag[rresp_time_cnt] = 1'b0;
tmp_fifo_rd = read_fifo[rd_fifo_rd_ptr[int_cntr_width-2:0]];
rd_v_b = (tmp_fifo_rd[rd_afi_ln_msb : rd_afi_ln_lsb]+1)*(2**tmp_fifo_rd[rd_afi_siz_msb : rd_afi_siz_lsb]);
temp_read_data = tmp_fifo_rd[rd_afi_data_msb : rd_afi_data_lsb];
if(tmp_fifo_rd[rd_afi_brst_msb : rd_afi_brst_lsb] === AXI_WRAP) begin
get_wrap_aligned_rd_data(aligned_rd_data, tmp_fifo_rd[rd_afi_addr_msb : rd_afi_addr_lsb], tmp_fifo_rd[rd_afi_data_msb : rd_afi_data_lsb], rd_v_b);
temp_read_data = aligned_rd_data;
end
temp_read_rsp = 0;
repeat(axi_burst_len) begin
temp_read_rsp = temp_read_rsp >> axi_rsp_width;
temp_read_rsp[(axi_rsp_width*axi_burst_len)-1:(axi_rsp_width*axi_burst_len)-axi_rsp_width] = tmp_fifo_rd[rd_afi_rsp_msb : rd_afi_rsp_lsb];
end
slave.SEND_READ_BURST_RESP_CTRL(tmp_fifo_rd[rd_afi_id_msb : rd_afi_id_lsb],
tmp_fifo_rd[rd_afi_addr_msb : rd_afi_addr_lsb],
tmp_fifo_rd[rd_afi_ln_msb : rd_afi_ln_lsb],
tmp_fifo_rd[rd_afi_siz_msb : rd_afi_siz_lsb],
tmp_fifo_rd[rd_afi_brst_msb : rd_afi_brst_lsb],
temp_read_data,
temp_read_rsp);
rcount = rcount - (tmp_fifo_rd[rd_afi_ln_msb : rd_afi_ln_lsb]+ 1) ;
rresp_time_cnt = rresp_time_cnt+1;
rd_latency_count = get_rd_lat_number(1);
rd_fifo_rd_ptr = rd_fifo_rd_ptr+1;
end
end /// else
end /// always
endmodule
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_regc.v
*
* Date : 2012-11
*
* Description : Controller for Register Map Memory
*
*****************************************************************************/
`timescale 1ns/1ps
module processing_system7_bfm_v2_0_5_regc(
rstn,
sw_clk,
/* Goes to port 0 of REG */
reg_rd_req_port0,
reg_rd_dv_port0,
reg_rd_addr_port0,
reg_rd_data_port0,
reg_rd_bytes_port0,
reg_rd_qos_port0,
/* Goes to port 1 of REG */
reg_rd_req_port1,
reg_rd_dv_port1,
reg_rd_addr_port1,
reg_rd_data_port1,
reg_rd_bytes_port1,
reg_rd_qos_port1
);
input rstn;
input sw_clk;
input reg_rd_req_port0;
output reg_rd_dv_port0;
input[31:0] reg_rd_addr_port0;
output[1023:0] reg_rd_data_port0;
input[7:0] reg_rd_bytes_port0;
input [3:0] reg_rd_qos_port0;
input reg_rd_req_port1;
output reg_rd_dv_port1;
input[31:0] reg_rd_addr_port1;
output[1023:0] reg_rd_data_port1;
input[7:0] reg_rd_bytes_port1;
input[3:0] reg_rd_qos_port1;
wire [3:0] rd_qos;
reg [1023:0] rd_data;
wire [31:0] rd_addr;
wire [7:0] rd_bytes;
reg rd_dv;
wire rd_req;
processing_system7_bfm_v2_0_5_arb_rd reg_read_ports (
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(reg_rd_qos_port0),
.qos2(reg_rd_qos_port1),
.prt_req1(reg_rd_req_port0),
.prt_req2(reg_rd_req_port1),
.prt_data1(reg_rd_data_port0),
.prt_data2(reg_rd_data_port1),
.prt_addr1(reg_rd_addr_port0),
.prt_addr2(reg_rd_addr_port1),
.prt_bytes1(reg_rd_bytes_port0),
.prt_bytes2(reg_rd_bytes_port1),
.prt_dv1(reg_rd_dv_port0),
.prt_dv2(reg_rd_dv_port1),
.prt_qos(rd_qos),
.prt_req(rd_req),
.prt_data(rd_data),
.prt_addr(rd_addr),
.prt_bytes(rd_bytes),
.prt_dv(rd_dv)
);
processing_system7_bfm_v2_0_5_reg_map regm();
reg state;
always@(posedge sw_clk or negedge rstn)
begin
if(!rstn) begin
rd_dv <= 0;
state <= 0;
end else begin
case(state)
0:begin
state <= 0;
rd_dv <= 0;
if(rd_req) begin
regm.read_reg_mem(rd_data,rd_addr, rd_bytes);
rd_dv <= 1;
state <= 1;
end
end
1:begin
rd_dv <= 0;
state <= 0;
end
endcase
end /// if
end// always
endmodule
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_arb_rd_4.v
*
* Date : 2012-11
*
* Description : Module that arbitrates between 4 read requests from 4 ports.
*
*****************************************************************************/
`timescale 1ns/1ps
module processing_system7_bfm_v2_0_5_arb_rd_4(
rstn,
sw_clk,
qos1,
qos2,
qos3,
qos4,
prt_req1,
prt_req2,
prt_req3,
prt_req4,
prt_data1,
prt_data2,
prt_data3,
prt_data4,
prt_addr1,
prt_addr2,
prt_addr3,
prt_addr4,
prt_bytes1,
prt_bytes2,
prt_bytes3,
prt_bytes4,
prt_dv1,
prt_dv2,
prt_dv3,
prt_dv4,
prt_qos,
prt_req,
prt_data,
prt_addr,
prt_bytes,
prt_dv
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input rstn, sw_clk;
input [axi_qos_width-1:0] qos1,qos2,qos3,qos4;
input prt_req1, prt_req2,prt_req3, prt_req4, prt_dv;
output reg [max_burst_bits-1:0] prt_data1,prt_data2,prt_data3,prt_data4;
input [addr_width-1:0] prt_addr1,prt_addr2,prt_addr3,prt_addr4;
input [max_burst_bytes_width:0] prt_bytes1,prt_bytes2,prt_bytes3,prt_bytes4;
output reg prt_dv1,prt_dv2,prt_dv3,prt_dv4,prt_req;
input [max_burst_bits-1:0] prt_data;
output reg [addr_width-1:0] prt_addr;
output reg [max_burst_bytes_width:0] prt_bytes;
output reg [axi_qos_width-1:0] prt_qos;
parameter wait_req = 3'b000, serv_req1 = 3'b001, serv_req2 = 3'b010, serv_req3 = 3'b011, serv_req4 = 3'b100, wait_dv_low=3'b101;
reg [2:0] state;
always@(posedge sw_clk or negedge rstn)
begin
if(!rstn) begin
state = wait_req;
prt_req = 1'b0;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_dv3 = 1'b0;
prt_dv4 = 1'b0;
prt_qos = 0;
end else begin
case(state)
wait_req:begin
state = wait_req;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_dv3 = 1'b0;
prt_dv4 = 1'b0;
prt_req = 1'b0;
if(prt_req1) begin
state = serv_req1;
prt_req = 1;
prt_qos = qos1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(prt_req2) begin
state = serv_req2;
prt_req = 1;
prt_qos = qos2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_req3) begin
state = serv_req3;
prt_req = 1;
prt_qos = qos3;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
end else if(prt_req4) begin
prt_req = 1;
prt_addr = prt_addr4;
prt_qos = qos4;
prt_bytes = prt_bytes4;
state = serv_req4;
end
end
serv_req1:begin
state = serv_req1;
prt_dv2 = 1'b0;
prt_dv3 = 1'b0;
prt_dv4 = 1'b0;
if(prt_dv)begin
prt_dv1 = 1'b1;
prt_data1 = prt_data;
//state = wait_req;
state = wait_dv_low;
prt_req = 1'b0;
if(prt_req2) begin
state = serv_req2;
prt_qos = qos2;
prt_req = 1;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_req3) begin
state = serv_req3;
prt_qos = qos3;
prt_req = 1;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
end else if(prt_req4) begin
prt_req = 1;
prt_qos = qos4;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
state = serv_req4;
end
end
end
serv_req2:begin
state = serv_req2;
prt_dv1 = 1'b0;
prt_dv3 = 1'b0;
prt_dv4 = 1'b0;
if(prt_dv)begin
prt_dv2 = 1'b1;
prt_data2 = prt_data;
//state = wait_req;
state = wait_dv_low;
prt_req = 1'b0;
if(prt_req3) begin
state = serv_req3;
prt_req = 1;
prt_qos = qos3;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
end else if(prt_req4) begin
state = serv_req4;
prt_req = 1;
prt_qos = qos4;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
end else if(prt_req1) begin
prt_req = 1;
prt_addr = prt_addr1;
prt_qos = qos1;
prt_bytes = prt_bytes1;
state = serv_req1;
end
end
end
serv_req3:begin
state = serv_req3;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_dv4 = 1'b0;
if(prt_dv)begin
prt_dv3 = 1'b1;
prt_data3 = prt_data;
//state = wait_req;
state = wait_dv_low;
prt_req = 1'b0;
if(prt_req4) begin
state = serv_req4;
prt_qos = qos4;
prt_req = 1;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
end else if(prt_req1) begin
state = serv_req1;
prt_req = 1;
prt_qos = qos1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(prt_req2) begin
prt_req = 1;
prt_qos = qos2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
state = serv_req2;
end
end
end
serv_req4:begin
state = serv_req4;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_dv3 = 1'b0;
if(prt_dv)begin
prt_dv4 = 1'b1;
prt_data4 = prt_data;
//state = wait_req;
state = wait_dv_low;
prt_req = 1'b0;
if(prt_req1) begin
state = serv_req1;
prt_qos = qos1;
prt_req = 1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(prt_req2) begin
state = serv_req2;
prt_req = 1;
prt_qos = qos2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_req3) begin
prt_req = 1;
prt_addr = prt_addr3;
prt_qos = qos3;
prt_bytes = prt_bytes3;
state = serv_req3;
end
end
end
wait_dv_low:begin
state = wait_dv_low;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_dv3 = 1'b0;
prt_dv4 = 1'b0;
if(!prt_dv)
state = wait_req;
end
endcase
end /// if else
end /// always
endmodule
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_arb_rd_4.v
*
* Date : 2012-11
*
* Description : Module that arbitrates between 4 read requests from 4 ports.
*
*****************************************************************************/
`timescale 1ns/1ps
module processing_system7_bfm_v2_0_5_arb_rd_4(
rstn,
sw_clk,
qos1,
qos2,
qos3,
qos4,
prt_req1,
prt_req2,
prt_req3,
prt_req4,
prt_data1,
prt_data2,
prt_data3,
prt_data4,
prt_addr1,
prt_addr2,
prt_addr3,
prt_addr4,
prt_bytes1,
prt_bytes2,
prt_bytes3,
prt_bytes4,
prt_dv1,
prt_dv2,
prt_dv3,
prt_dv4,
prt_qos,
prt_req,
prt_data,
prt_addr,
prt_bytes,
prt_dv
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input rstn, sw_clk;
input [axi_qos_width-1:0] qos1,qos2,qos3,qos4;
input prt_req1, prt_req2,prt_req3, prt_req4, prt_dv;
output reg [max_burst_bits-1:0] prt_data1,prt_data2,prt_data3,prt_data4;
input [addr_width-1:0] prt_addr1,prt_addr2,prt_addr3,prt_addr4;
input [max_burst_bytes_width:0] prt_bytes1,prt_bytes2,prt_bytes3,prt_bytes4;
output reg prt_dv1,prt_dv2,prt_dv3,prt_dv4,prt_req;
input [max_burst_bits-1:0] prt_data;
output reg [addr_width-1:0] prt_addr;
output reg [max_burst_bytes_width:0] prt_bytes;
output reg [axi_qos_width-1:0] prt_qos;
parameter wait_req = 3'b000, serv_req1 = 3'b001, serv_req2 = 3'b010, serv_req3 = 3'b011, serv_req4 = 3'b100, wait_dv_low=3'b101;
reg [2:0] state;
always@(posedge sw_clk or negedge rstn)
begin
if(!rstn) begin
state = wait_req;
prt_req = 1'b0;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_dv3 = 1'b0;
prt_dv4 = 1'b0;
prt_qos = 0;
end else begin
case(state)
wait_req:begin
state = wait_req;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_dv3 = 1'b0;
prt_dv4 = 1'b0;
prt_req = 1'b0;
if(prt_req1) begin
state = serv_req1;
prt_req = 1;
prt_qos = qos1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(prt_req2) begin
state = serv_req2;
prt_req = 1;
prt_qos = qos2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_req3) begin
state = serv_req3;
prt_req = 1;
prt_qos = qos3;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
end else if(prt_req4) begin
prt_req = 1;
prt_addr = prt_addr4;
prt_qos = qos4;
prt_bytes = prt_bytes4;
state = serv_req4;
end
end
serv_req1:begin
state = serv_req1;
prt_dv2 = 1'b0;
prt_dv3 = 1'b0;
prt_dv4 = 1'b0;
if(prt_dv)begin
prt_dv1 = 1'b1;
prt_data1 = prt_data;
//state = wait_req;
state = wait_dv_low;
prt_req = 1'b0;
if(prt_req2) begin
state = serv_req2;
prt_qos = qos2;
prt_req = 1;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_req3) begin
state = serv_req3;
prt_qos = qos3;
prt_req = 1;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
end else if(prt_req4) begin
prt_req = 1;
prt_qos = qos4;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
state = serv_req4;
end
end
end
serv_req2:begin
state = serv_req2;
prt_dv1 = 1'b0;
prt_dv3 = 1'b0;
prt_dv4 = 1'b0;
if(prt_dv)begin
prt_dv2 = 1'b1;
prt_data2 = prt_data;
//state = wait_req;
state = wait_dv_low;
prt_req = 1'b0;
if(prt_req3) begin
state = serv_req3;
prt_req = 1;
prt_qos = qos3;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
end else if(prt_req4) begin
state = serv_req4;
prt_req = 1;
prt_qos = qos4;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
end else if(prt_req1) begin
prt_req = 1;
prt_addr = prt_addr1;
prt_qos = qos1;
prt_bytes = prt_bytes1;
state = serv_req1;
end
end
end
serv_req3:begin
state = serv_req3;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_dv4 = 1'b0;
if(prt_dv)begin
prt_dv3 = 1'b1;
prt_data3 = prt_data;
//state = wait_req;
state = wait_dv_low;
prt_req = 1'b0;
if(prt_req4) begin
state = serv_req4;
prt_qos = qos4;
prt_req = 1;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
end else if(prt_req1) begin
state = serv_req1;
prt_req = 1;
prt_qos = qos1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(prt_req2) begin
prt_req = 1;
prt_qos = qos2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
state = serv_req2;
end
end
end
serv_req4:begin
state = serv_req4;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_dv3 = 1'b0;
if(prt_dv)begin
prt_dv4 = 1'b1;
prt_data4 = prt_data;
//state = wait_req;
state = wait_dv_low;
prt_req = 1'b0;
if(prt_req1) begin
state = serv_req1;
prt_qos = qos1;
prt_req = 1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(prt_req2) begin
state = serv_req2;
prt_req = 1;
prt_qos = qos2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_req3) begin
prt_req = 1;
prt_addr = prt_addr3;
prt_qos = qos3;
prt_bytes = prt_bytes3;
state = serv_req3;
end
end
end
wait_dv_low:begin
state = wait_dv_low;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_dv3 = 1'b0;
prt_dv4 = 1'b0;
if(!prt_dv)
state = wait_req;
end
endcase
end /// if else
end /// always
endmodule
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_arb_rd_4.v
*
* Date : 2012-11
*
* Description : Module that arbitrates between 4 read requests from 4 ports.
*
*****************************************************************************/
`timescale 1ns/1ps
module processing_system7_bfm_v2_0_5_arb_rd_4(
rstn,
sw_clk,
qos1,
qos2,
qos3,
qos4,
prt_req1,
prt_req2,
prt_req3,
prt_req4,
prt_data1,
prt_data2,
prt_data3,
prt_data4,
prt_addr1,
prt_addr2,
prt_addr3,
prt_addr4,
prt_bytes1,
prt_bytes2,
prt_bytes3,
prt_bytes4,
prt_dv1,
prt_dv2,
prt_dv3,
prt_dv4,
prt_qos,
prt_req,
prt_data,
prt_addr,
prt_bytes,
prt_dv
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input rstn, sw_clk;
input [axi_qos_width-1:0] qos1,qos2,qos3,qos4;
input prt_req1, prt_req2,prt_req3, prt_req4, prt_dv;
output reg [max_burst_bits-1:0] prt_data1,prt_data2,prt_data3,prt_data4;
input [addr_width-1:0] prt_addr1,prt_addr2,prt_addr3,prt_addr4;
input [max_burst_bytes_width:0] prt_bytes1,prt_bytes2,prt_bytes3,prt_bytes4;
output reg prt_dv1,prt_dv2,prt_dv3,prt_dv4,prt_req;
input [max_burst_bits-1:0] prt_data;
output reg [addr_width-1:0] prt_addr;
output reg [max_burst_bytes_width:0] prt_bytes;
output reg [axi_qos_width-1:0] prt_qos;
parameter wait_req = 3'b000, serv_req1 = 3'b001, serv_req2 = 3'b010, serv_req3 = 3'b011, serv_req4 = 3'b100, wait_dv_low=3'b101;
reg [2:0] state;
always@(posedge sw_clk or negedge rstn)
begin
if(!rstn) begin
state = wait_req;
prt_req = 1'b0;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_dv3 = 1'b0;
prt_dv4 = 1'b0;
prt_qos = 0;
end else begin
case(state)
wait_req:begin
state = wait_req;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_dv3 = 1'b0;
prt_dv4 = 1'b0;
prt_req = 1'b0;
if(prt_req1) begin
state = serv_req1;
prt_req = 1;
prt_qos = qos1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(prt_req2) begin
state = serv_req2;
prt_req = 1;
prt_qos = qos2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_req3) begin
state = serv_req3;
prt_req = 1;
prt_qos = qos3;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
end else if(prt_req4) begin
prt_req = 1;
prt_addr = prt_addr4;
prt_qos = qos4;
prt_bytes = prt_bytes4;
state = serv_req4;
end
end
serv_req1:begin
state = serv_req1;
prt_dv2 = 1'b0;
prt_dv3 = 1'b0;
prt_dv4 = 1'b0;
if(prt_dv)begin
prt_dv1 = 1'b1;
prt_data1 = prt_data;
//state = wait_req;
state = wait_dv_low;
prt_req = 1'b0;
if(prt_req2) begin
state = serv_req2;
prt_qos = qos2;
prt_req = 1;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_req3) begin
state = serv_req3;
prt_qos = qos3;
prt_req = 1;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
end else if(prt_req4) begin
prt_req = 1;
prt_qos = qos4;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
state = serv_req4;
end
end
end
serv_req2:begin
state = serv_req2;
prt_dv1 = 1'b0;
prt_dv3 = 1'b0;
prt_dv4 = 1'b0;
if(prt_dv)begin
prt_dv2 = 1'b1;
prt_data2 = prt_data;
//state = wait_req;
state = wait_dv_low;
prt_req = 1'b0;
if(prt_req3) begin
state = serv_req3;
prt_req = 1;
prt_qos = qos3;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
end else if(prt_req4) begin
state = serv_req4;
prt_req = 1;
prt_qos = qos4;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
end else if(prt_req1) begin
prt_req = 1;
prt_addr = prt_addr1;
prt_qos = qos1;
prt_bytes = prt_bytes1;
state = serv_req1;
end
end
end
serv_req3:begin
state = serv_req3;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_dv4 = 1'b0;
if(prt_dv)begin
prt_dv3 = 1'b1;
prt_data3 = prt_data;
//state = wait_req;
state = wait_dv_low;
prt_req = 1'b0;
if(prt_req4) begin
state = serv_req4;
prt_qos = qos4;
prt_req = 1;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
end else if(prt_req1) begin
state = serv_req1;
prt_req = 1;
prt_qos = qos1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(prt_req2) begin
prt_req = 1;
prt_qos = qos2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
state = serv_req2;
end
end
end
serv_req4:begin
state = serv_req4;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_dv3 = 1'b0;
if(prt_dv)begin
prt_dv4 = 1'b1;
prt_data4 = prt_data;
//state = wait_req;
state = wait_dv_low;
prt_req = 1'b0;
if(prt_req1) begin
state = serv_req1;
prt_qos = qos1;
prt_req = 1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(prt_req2) begin
state = serv_req2;
prt_req = 1;
prt_qos = qos2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_req3) begin
prt_req = 1;
prt_addr = prt_addr3;
prt_qos = qos3;
prt_bytes = prt_bytes3;
state = serv_req3;
end
end
end
wait_dv_low:begin
state = wait_dv_low;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_dv3 = 1'b0;
prt_dv4 = 1'b0;
if(!prt_dv)
state = wait_req;
end
endcase
end /// if else
end /// always
endmodule
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_ssw_hp.v
*
* Date : 2012-11
*
* Description : SSW switch Model
*
*****************************************************************************/
`timescale 1ns/1ps
module processing_system7_bfm_v2_0_5_ssw_hp(
sw_clk,
rstn,
w_qos_hp0,
r_qos_hp0,
w_qos_hp1,
r_qos_hp1,
w_qos_hp2,
r_qos_hp2,
w_qos_hp3,
r_qos_hp3,
wr_ack_ddr_hp0,
wr_data_hp0,
wr_addr_hp0,
wr_bytes_hp0,
wr_dv_ddr_hp0,
rd_req_ddr_hp0,
rd_addr_hp0,
rd_bytes_hp0,
rd_data_ddr_hp0,
rd_dv_ddr_hp0,
rd_data_ocm_hp0,
wr_ack_ocm_hp0,
wr_dv_ocm_hp0,
rd_req_ocm_hp0,
rd_dv_ocm_hp0,
wr_ack_ddr_hp1,
wr_data_hp1,
wr_addr_hp1,
wr_bytes_hp1,
wr_dv_ddr_hp1,
rd_req_ddr_hp1,
rd_addr_hp1,
rd_bytes_hp1,
rd_data_ddr_hp1,
rd_data_ocm_hp1,
rd_dv_ddr_hp1,
wr_ack_ocm_hp1,
wr_dv_ocm_hp1,
rd_req_ocm_hp1,
rd_dv_ocm_hp1,
wr_ack_ddr_hp2,
wr_data_hp2,
wr_addr_hp2,
wr_bytes_hp2,
wr_dv_ddr_hp2,
rd_req_ddr_hp2,
rd_addr_hp2,
rd_bytes_hp2,
rd_data_ddr_hp2,
rd_data_ocm_hp2,
rd_dv_ddr_hp2,
wr_ack_ocm_hp2,
wr_dv_ocm_hp2,
rd_req_ocm_hp2,
rd_dv_ocm_hp2,
wr_ack_ddr_hp3,
wr_data_hp3,
wr_addr_hp3,
wr_bytes_hp3,
wr_dv_ddr_hp3,
rd_req_ddr_hp3,
rd_addr_hp3,
rd_bytes_hp3,
rd_data_ocm_hp3,
rd_data_ddr_hp3,
rd_dv_ddr_hp3,
wr_ack_ocm_hp3,
wr_dv_ocm_hp3,
rd_req_ocm_hp3,
rd_dv_ocm_hp3,
ddr_wr_ack0,
ddr_wr_dv0,
ddr_rd_req0,
ddr_rd_dv0,
ddr_rd_qos0,
ddr_wr_qos0,
ddr_wr_addr0,
ddr_wr_data0,
ddr_wr_bytes0,
ddr_rd_addr0,
ddr_rd_data0,
ddr_rd_bytes0,
ddr_wr_ack1,
ddr_wr_dv1,
ddr_rd_req1,
ddr_rd_dv1,
ddr_rd_qos1,
ddr_wr_qos1,
ddr_wr_addr1,
ddr_wr_data1,
ddr_wr_bytes1,
ddr_rd_addr1,
ddr_rd_data1,
ddr_rd_bytes1,
ocm_wr_ack,
ocm_wr_dv,
ocm_rd_req,
ocm_rd_dv,
ocm_wr_qos,
ocm_rd_qos,
ocm_wr_addr,
ocm_wr_data,
ocm_wr_bytes,
ocm_rd_addr,
ocm_rd_data,
ocm_rd_bytes
);
input sw_clk;
input rstn;
input [3:0] w_qos_hp0;
input [3:0] r_qos_hp0;
input [3:0] w_qos_hp1;
input [3:0] r_qos_hp1;
input [3:0] w_qos_hp2;
input [3:0] r_qos_hp2;
input [3:0] w_qos_hp3;
input [3:0] r_qos_hp3;
output [3:0] ddr_rd_qos0;
output [3:0] ddr_wr_qos0;
output [3:0] ddr_rd_qos1;
output [3:0] ddr_wr_qos1;
output [3:0] ocm_wr_qos;
output [3:0] ocm_rd_qos;
output wr_ack_ddr_hp0;
input [1023:0] wr_data_hp0;
input [31:0] wr_addr_hp0;
input [7:0] wr_bytes_hp0;
output wr_dv_ddr_hp0;
input rd_req_ddr_hp0;
input [31:0] rd_addr_hp0;
input [7:0] rd_bytes_hp0;
output [1023:0] rd_data_ddr_hp0;
output rd_dv_ddr_hp0;
output wr_ack_ddr_hp1;
input [1023:0] wr_data_hp1;
input [31:0] wr_addr_hp1;
input [7:0] wr_bytes_hp1;
output wr_dv_ddr_hp1;
input rd_req_ddr_hp1;
input [31:0] rd_addr_hp1;
input [7:0] rd_bytes_hp1;
output [1023:0] rd_data_ddr_hp1;
output rd_dv_ddr_hp1;
output wr_ack_ddr_hp2;
input [1023:0] wr_data_hp2;
input [31:0] wr_addr_hp2;
input [7:0] wr_bytes_hp2;
output wr_dv_ddr_hp2;
input rd_req_ddr_hp2;
input [31:0] rd_addr_hp2;
input [7:0] rd_bytes_hp2;
output [1023:0] rd_data_ddr_hp2;
output rd_dv_ddr_hp2;
output wr_ack_ddr_hp3;
input [1023:0] wr_data_hp3;
input [31:0] wr_addr_hp3;
input [7:0] wr_bytes_hp3;
output wr_dv_ddr_hp3;
input rd_req_ddr_hp3;
input [31:0] rd_addr_hp3;
input [7:0] rd_bytes_hp3;
output [1023:0] rd_data_ddr_hp3;
output rd_dv_ddr_hp3;
input ddr_wr_ack0;
output ddr_wr_dv0;
output [31:0]ddr_wr_addr0;
output [1023:0]ddr_wr_data0;
output [7:0]ddr_wr_bytes0;
input ddr_rd_dv0;
input [1023:0] ddr_rd_data0;
output ddr_rd_req0;
output [31:0] ddr_rd_addr0;
output [7:0] ddr_rd_bytes0;
input ddr_wr_ack1;
output ddr_wr_dv1;
output [31:0]ddr_wr_addr1;
output [1023:0]ddr_wr_data1;
output [7:0]ddr_wr_bytes1;
input ddr_rd_dv1;
input [1023:0] ddr_rd_data1;
output ddr_rd_req1;
output [31:0] ddr_rd_addr1;
output [7:0] ddr_rd_bytes1;
output wr_ack_ocm_hp0;
input wr_dv_ocm_hp0;
input rd_req_ocm_hp0;
output rd_dv_ocm_hp0;
output [1023:0] rd_data_ocm_hp0;
output wr_ack_ocm_hp1;
input wr_dv_ocm_hp1;
input rd_req_ocm_hp1;
output rd_dv_ocm_hp1;
output [1023:0] rd_data_ocm_hp1;
output wr_ack_ocm_hp2;
input wr_dv_ocm_hp2;
input rd_req_ocm_hp2;
output rd_dv_ocm_hp2;
output [1023:0] rd_data_ocm_hp2;
output wr_ack_ocm_hp3;
input wr_dv_ocm_hp3;
input rd_req_ocm_hp3;
output rd_dv_ocm_hp3;
output [1023:0] rd_data_ocm_hp3;
input ocm_wr_ack;
output ocm_wr_dv;
output [31:0]ocm_wr_addr;
output [1023:0]ocm_wr_data;
output [7:0]ocm_wr_bytes;
input ocm_rd_dv;
input [1023:0] ocm_rd_data;
output ocm_rd_req;
output [31:0] ocm_rd_addr;
output [7:0] ocm_rd_bytes;
/* FOR DDR */
processing_system7_bfm_v2_0_5_arb_hp0_1 ddr_hp01 (
.sw_clk(sw_clk),
.rstn(rstn),
.w_qos_hp0(w_qos_hp0),
.r_qos_hp0(r_qos_hp0),
.w_qos_hp1(w_qos_hp1),
.r_qos_hp1(r_qos_hp1),
.wr_ack_ddr_hp0(wr_ack_ddr_hp0),
.wr_data_hp0(wr_data_hp0),
.wr_addr_hp0(wr_addr_hp0),
.wr_bytes_hp0(wr_bytes_hp0),
.wr_dv_ddr_hp0(wr_dv_ddr_hp0),
.rd_req_ddr_hp0(rd_req_ddr_hp0),
.rd_addr_hp0(rd_addr_hp0),
.rd_bytes_hp0(rd_bytes_hp0),
.rd_data_ddr_hp0(rd_data_ddr_hp0),
.rd_dv_ddr_hp0(rd_dv_ddr_hp0),
.wr_ack_ddr_hp1(wr_ack_ddr_hp1),
.wr_data_hp1(wr_data_hp1),
.wr_addr_hp1(wr_addr_hp1),
.wr_bytes_hp1(wr_bytes_hp1),
.wr_dv_ddr_hp1(wr_dv_ddr_hp1),
.rd_req_ddr_hp1(rd_req_ddr_hp1),
.rd_addr_hp1(rd_addr_hp1),
.rd_bytes_hp1(rd_bytes_hp1),
.rd_data_ddr_hp1(rd_data_ddr_hp1),
.rd_dv_ddr_hp1(rd_dv_ddr_hp1),
.ddr_wr_ack(ddr_wr_ack0),
.ddr_wr_dv(ddr_wr_dv0),
.ddr_rd_req(ddr_rd_req0),
.ddr_rd_dv(ddr_rd_dv0),
.ddr_rd_qos(ddr_rd_qos0),
.ddr_wr_qos(ddr_wr_qos0),
.ddr_wr_addr(ddr_wr_addr0),
.ddr_wr_data(ddr_wr_data0),
.ddr_wr_bytes(ddr_wr_bytes0),
.ddr_rd_addr(ddr_rd_addr0),
.ddr_rd_data(ddr_rd_data0),
.ddr_rd_bytes(ddr_rd_bytes0)
);
/* FOR DDR */
processing_system7_bfm_v2_0_5_arb_hp2_3 ddr_hp23 (
.sw_clk(sw_clk),
.rstn(rstn),
.w_qos_hp2(w_qos_hp2),
.r_qos_hp2(r_qos_hp2),
.w_qos_hp3(w_qos_hp3),
.r_qos_hp3(r_qos_hp3),
.wr_ack_ddr_hp2(wr_ack_ddr_hp2),
.wr_data_hp2(wr_data_hp2),
.wr_addr_hp2(wr_addr_hp2),
.wr_bytes_hp2(wr_bytes_hp2),
.wr_dv_ddr_hp2(wr_dv_ddr_hp2),
.rd_req_ddr_hp2(rd_req_ddr_hp2),
.rd_addr_hp2(rd_addr_hp2),
.rd_bytes_hp2(rd_bytes_hp2),
.rd_data_ddr_hp2(rd_data_ddr_hp2),
.rd_dv_ddr_hp2(rd_dv_ddr_hp2),
.wr_ack_ddr_hp3(wr_ack_ddr_hp3),
.wr_data_hp3(wr_data_hp3),
.wr_addr_hp3(wr_addr_hp3),
.wr_bytes_hp3(wr_bytes_hp3),
.wr_dv_ddr_hp3(wr_dv_ddr_hp3),
.rd_req_ddr_hp3(rd_req_ddr_hp3),
.rd_addr_hp3(rd_addr_hp3),
.rd_bytes_hp3(rd_bytes_hp3),
.rd_data_ddr_hp3(rd_data_ddr_hp3),
.rd_dv_ddr_hp3(rd_dv_ddr_hp3),
.ddr_wr_ack(ddr_wr_ack1),
.ddr_wr_dv(ddr_wr_dv1),
.ddr_rd_req(ddr_rd_req1),
.ddr_rd_dv(ddr_rd_dv1),
.ddr_rd_qos(ddr_rd_qos1),
.ddr_wr_qos(ddr_wr_qos1),
.ddr_wr_addr(ddr_wr_addr1),
.ddr_wr_data(ddr_wr_data1),
.ddr_wr_bytes(ddr_wr_bytes1),
.ddr_rd_addr(ddr_rd_addr1),
.ddr_rd_data(ddr_rd_data1),
.ddr_rd_bytes(ddr_rd_bytes1)
);
/* FOR OCM_WR */
processing_system7_bfm_v2_0_5_arb_wr_4 ocm_wr_hp(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(w_qos_hp0),
.qos2(w_qos_hp1),
.qos3(w_qos_hp2),
.qos4(w_qos_hp3),
.prt_dv1(wr_dv_ocm_hp0),
.prt_dv2(wr_dv_ocm_hp1),
.prt_dv3(wr_dv_ocm_hp2),
.prt_dv4(wr_dv_ocm_hp3),
.prt_data1(wr_data_hp0),
.prt_data2(wr_data_hp1),
.prt_data3(wr_data_hp2),
.prt_data4(wr_data_hp3),
.prt_addr1(wr_addr_hp0),
.prt_addr2(wr_addr_hp1),
.prt_addr3(wr_addr_hp2),
.prt_addr4(wr_addr_hp3),
.prt_bytes1(wr_bytes_hp0),
.prt_bytes2(wr_bytes_hp1),
.prt_bytes3(wr_bytes_hp2),
.prt_bytes4(wr_bytes_hp3),
.prt_ack1(wr_ack_ocm_hp0),
.prt_ack2(wr_ack_ocm_hp1),
.prt_ack3(wr_ack_ocm_hp2),
.prt_ack4(wr_ack_ocm_hp3),
.prt_qos(ocm_wr_qos),
.prt_req(ocm_wr_dv),
.prt_data(ocm_wr_data),
.prt_addr(ocm_wr_addr),
.prt_bytes(ocm_wr_bytes),
.prt_ack(ocm_wr_ack)
);
/* FOR OCM_RD */
processing_system7_bfm_v2_0_5_arb_rd_4 ocm_rd_hp(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(r_qos_hp0),
.qos2(r_qos_hp1),
.qos3(r_qos_hp2),
.qos4(r_qos_hp3),
.prt_req1(rd_req_ocm_hp0),
.prt_req2(rd_req_ocm_hp1),
.prt_req3(rd_req_ocm_hp2),
.prt_req4(rd_req_ocm_hp3),
.prt_data1(rd_data_ocm_hp0),
.prt_data2(rd_data_ocm_hp1),
.prt_data3(rd_data_ocm_hp2),
.prt_data4(rd_data_ocm_hp3),
.prt_addr1(rd_addr_hp0),
.prt_addr2(rd_addr_hp1),
.prt_addr3(rd_addr_hp2),
.prt_addr4(rd_addr_hp3),
.prt_bytes1(rd_bytes_hp0),
.prt_bytes2(rd_bytes_hp1),
.prt_bytes3(rd_bytes_hp2),
.prt_bytes4(rd_bytes_hp3),
.prt_dv1(rd_dv_ocm_hp0),
.prt_dv2(rd_dv_ocm_hp1),
.prt_dv3(rd_dv_ocm_hp2),
.prt_dv4(rd_dv_ocm_hp3),
.prt_qos(ocm_rd_qos),
.prt_req(ocm_rd_req),
.prt_data(ocm_rd_data),
.prt_addr(ocm_rd_addr),
.prt_bytes(ocm_rd_bytes),
.prt_dv(ocm_rd_dv)
);
endmodule
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_ssw_hp.v
*
* Date : 2012-11
*
* Description : SSW switch Model
*
*****************************************************************************/
`timescale 1ns/1ps
module processing_system7_bfm_v2_0_5_ssw_hp(
sw_clk,
rstn,
w_qos_hp0,
r_qos_hp0,
w_qos_hp1,
r_qos_hp1,
w_qos_hp2,
r_qos_hp2,
w_qos_hp3,
r_qos_hp3,
wr_ack_ddr_hp0,
wr_data_hp0,
wr_addr_hp0,
wr_bytes_hp0,
wr_dv_ddr_hp0,
rd_req_ddr_hp0,
rd_addr_hp0,
rd_bytes_hp0,
rd_data_ddr_hp0,
rd_dv_ddr_hp0,
rd_data_ocm_hp0,
wr_ack_ocm_hp0,
wr_dv_ocm_hp0,
rd_req_ocm_hp0,
rd_dv_ocm_hp0,
wr_ack_ddr_hp1,
wr_data_hp1,
wr_addr_hp1,
wr_bytes_hp1,
wr_dv_ddr_hp1,
rd_req_ddr_hp1,
rd_addr_hp1,
rd_bytes_hp1,
rd_data_ddr_hp1,
rd_data_ocm_hp1,
rd_dv_ddr_hp1,
wr_ack_ocm_hp1,
wr_dv_ocm_hp1,
rd_req_ocm_hp1,
rd_dv_ocm_hp1,
wr_ack_ddr_hp2,
wr_data_hp2,
wr_addr_hp2,
wr_bytes_hp2,
wr_dv_ddr_hp2,
rd_req_ddr_hp2,
rd_addr_hp2,
rd_bytes_hp2,
rd_data_ddr_hp2,
rd_data_ocm_hp2,
rd_dv_ddr_hp2,
wr_ack_ocm_hp2,
wr_dv_ocm_hp2,
rd_req_ocm_hp2,
rd_dv_ocm_hp2,
wr_ack_ddr_hp3,
wr_data_hp3,
wr_addr_hp3,
wr_bytes_hp3,
wr_dv_ddr_hp3,
rd_req_ddr_hp3,
rd_addr_hp3,
rd_bytes_hp3,
rd_data_ocm_hp3,
rd_data_ddr_hp3,
rd_dv_ddr_hp3,
wr_ack_ocm_hp3,
wr_dv_ocm_hp3,
rd_req_ocm_hp3,
rd_dv_ocm_hp3,
ddr_wr_ack0,
ddr_wr_dv0,
ddr_rd_req0,
ddr_rd_dv0,
ddr_rd_qos0,
ddr_wr_qos0,
ddr_wr_addr0,
ddr_wr_data0,
ddr_wr_bytes0,
ddr_rd_addr0,
ddr_rd_data0,
ddr_rd_bytes0,
ddr_wr_ack1,
ddr_wr_dv1,
ddr_rd_req1,
ddr_rd_dv1,
ddr_rd_qos1,
ddr_wr_qos1,
ddr_wr_addr1,
ddr_wr_data1,
ddr_wr_bytes1,
ddr_rd_addr1,
ddr_rd_data1,
ddr_rd_bytes1,
ocm_wr_ack,
ocm_wr_dv,
ocm_rd_req,
ocm_rd_dv,
ocm_wr_qos,
ocm_rd_qos,
ocm_wr_addr,
ocm_wr_data,
ocm_wr_bytes,
ocm_rd_addr,
ocm_rd_data,
ocm_rd_bytes
);
input sw_clk;
input rstn;
input [3:0] w_qos_hp0;
input [3:0] r_qos_hp0;
input [3:0] w_qos_hp1;
input [3:0] r_qos_hp1;
input [3:0] w_qos_hp2;
input [3:0] r_qos_hp2;
input [3:0] w_qos_hp3;
input [3:0] r_qos_hp3;
output [3:0] ddr_rd_qos0;
output [3:0] ddr_wr_qos0;
output [3:0] ddr_rd_qos1;
output [3:0] ddr_wr_qos1;
output [3:0] ocm_wr_qos;
output [3:0] ocm_rd_qos;
output wr_ack_ddr_hp0;
input [1023:0] wr_data_hp0;
input [31:0] wr_addr_hp0;
input [7:0] wr_bytes_hp0;
output wr_dv_ddr_hp0;
input rd_req_ddr_hp0;
input [31:0] rd_addr_hp0;
input [7:0] rd_bytes_hp0;
output [1023:0] rd_data_ddr_hp0;
output rd_dv_ddr_hp0;
output wr_ack_ddr_hp1;
input [1023:0] wr_data_hp1;
input [31:0] wr_addr_hp1;
input [7:0] wr_bytes_hp1;
output wr_dv_ddr_hp1;
input rd_req_ddr_hp1;
input [31:0] rd_addr_hp1;
input [7:0] rd_bytes_hp1;
output [1023:0] rd_data_ddr_hp1;
output rd_dv_ddr_hp1;
output wr_ack_ddr_hp2;
input [1023:0] wr_data_hp2;
input [31:0] wr_addr_hp2;
input [7:0] wr_bytes_hp2;
output wr_dv_ddr_hp2;
input rd_req_ddr_hp2;
input [31:0] rd_addr_hp2;
input [7:0] rd_bytes_hp2;
output [1023:0] rd_data_ddr_hp2;
output rd_dv_ddr_hp2;
output wr_ack_ddr_hp3;
input [1023:0] wr_data_hp3;
input [31:0] wr_addr_hp3;
input [7:0] wr_bytes_hp3;
output wr_dv_ddr_hp3;
input rd_req_ddr_hp3;
input [31:0] rd_addr_hp3;
input [7:0] rd_bytes_hp3;
output [1023:0] rd_data_ddr_hp3;
output rd_dv_ddr_hp3;
input ddr_wr_ack0;
output ddr_wr_dv0;
output [31:0]ddr_wr_addr0;
output [1023:0]ddr_wr_data0;
output [7:0]ddr_wr_bytes0;
input ddr_rd_dv0;
input [1023:0] ddr_rd_data0;
output ddr_rd_req0;
output [31:0] ddr_rd_addr0;
output [7:0] ddr_rd_bytes0;
input ddr_wr_ack1;
output ddr_wr_dv1;
output [31:0]ddr_wr_addr1;
output [1023:0]ddr_wr_data1;
output [7:0]ddr_wr_bytes1;
input ddr_rd_dv1;
input [1023:0] ddr_rd_data1;
output ddr_rd_req1;
output [31:0] ddr_rd_addr1;
output [7:0] ddr_rd_bytes1;
output wr_ack_ocm_hp0;
input wr_dv_ocm_hp0;
input rd_req_ocm_hp0;
output rd_dv_ocm_hp0;
output [1023:0] rd_data_ocm_hp0;
output wr_ack_ocm_hp1;
input wr_dv_ocm_hp1;
input rd_req_ocm_hp1;
output rd_dv_ocm_hp1;
output [1023:0] rd_data_ocm_hp1;
output wr_ack_ocm_hp2;
input wr_dv_ocm_hp2;
input rd_req_ocm_hp2;
output rd_dv_ocm_hp2;
output [1023:0] rd_data_ocm_hp2;
output wr_ack_ocm_hp3;
input wr_dv_ocm_hp3;
input rd_req_ocm_hp3;
output rd_dv_ocm_hp3;
output [1023:0] rd_data_ocm_hp3;
input ocm_wr_ack;
output ocm_wr_dv;
output [31:0]ocm_wr_addr;
output [1023:0]ocm_wr_data;
output [7:0]ocm_wr_bytes;
input ocm_rd_dv;
input [1023:0] ocm_rd_data;
output ocm_rd_req;
output [31:0] ocm_rd_addr;
output [7:0] ocm_rd_bytes;
/* FOR DDR */
processing_system7_bfm_v2_0_5_arb_hp0_1 ddr_hp01 (
.sw_clk(sw_clk),
.rstn(rstn),
.w_qos_hp0(w_qos_hp0),
.r_qos_hp0(r_qos_hp0),
.w_qos_hp1(w_qos_hp1),
.r_qos_hp1(r_qos_hp1),
.wr_ack_ddr_hp0(wr_ack_ddr_hp0),
.wr_data_hp0(wr_data_hp0),
.wr_addr_hp0(wr_addr_hp0),
.wr_bytes_hp0(wr_bytes_hp0),
.wr_dv_ddr_hp0(wr_dv_ddr_hp0),
.rd_req_ddr_hp0(rd_req_ddr_hp0),
.rd_addr_hp0(rd_addr_hp0),
.rd_bytes_hp0(rd_bytes_hp0),
.rd_data_ddr_hp0(rd_data_ddr_hp0),
.rd_dv_ddr_hp0(rd_dv_ddr_hp0),
.wr_ack_ddr_hp1(wr_ack_ddr_hp1),
.wr_data_hp1(wr_data_hp1),
.wr_addr_hp1(wr_addr_hp1),
.wr_bytes_hp1(wr_bytes_hp1),
.wr_dv_ddr_hp1(wr_dv_ddr_hp1),
.rd_req_ddr_hp1(rd_req_ddr_hp1),
.rd_addr_hp1(rd_addr_hp1),
.rd_bytes_hp1(rd_bytes_hp1),
.rd_data_ddr_hp1(rd_data_ddr_hp1),
.rd_dv_ddr_hp1(rd_dv_ddr_hp1),
.ddr_wr_ack(ddr_wr_ack0),
.ddr_wr_dv(ddr_wr_dv0),
.ddr_rd_req(ddr_rd_req0),
.ddr_rd_dv(ddr_rd_dv0),
.ddr_rd_qos(ddr_rd_qos0),
.ddr_wr_qos(ddr_wr_qos0),
.ddr_wr_addr(ddr_wr_addr0),
.ddr_wr_data(ddr_wr_data0),
.ddr_wr_bytes(ddr_wr_bytes0),
.ddr_rd_addr(ddr_rd_addr0),
.ddr_rd_data(ddr_rd_data0),
.ddr_rd_bytes(ddr_rd_bytes0)
);
/* FOR DDR */
processing_system7_bfm_v2_0_5_arb_hp2_3 ddr_hp23 (
.sw_clk(sw_clk),
.rstn(rstn),
.w_qos_hp2(w_qos_hp2),
.r_qos_hp2(r_qos_hp2),
.w_qos_hp3(w_qos_hp3),
.r_qos_hp3(r_qos_hp3),
.wr_ack_ddr_hp2(wr_ack_ddr_hp2),
.wr_data_hp2(wr_data_hp2),
.wr_addr_hp2(wr_addr_hp2),
.wr_bytes_hp2(wr_bytes_hp2),
.wr_dv_ddr_hp2(wr_dv_ddr_hp2),
.rd_req_ddr_hp2(rd_req_ddr_hp2),
.rd_addr_hp2(rd_addr_hp2),
.rd_bytes_hp2(rd_bytes_hp2),
.rd_data_ddr_hp2(rd_data_ddr_hp2),
.rd_dv_ddr_hp2(rd_dv_ddr_hp2),
.wr_ack_ddr_hp3(wr_ack_ddr_hp3),
.wr_data_hp3(wr_data_hp3),
.wr_addr_hp3(wr_addr_hp3),
.wr_bytes_hp3(wr_bytes_hp3),
.wr_dv_ddr_hp3(wr_dv_ddr_hp3),
.rd_req_ddr_hp3(rd_req_ddr_hp3),
.rd_addr_hp3(rd_addr_hp3),
.rd_bytes_hp3(rd_bytes_hp3),
.rd_data_ddr_hp3(rd_data_ddr_hp3),
.rd_dv_ddr_hp3(rd_dv_ddr_hp3),
.ddr_wr_ack(ddr_wr_ack1),
.ddr_wr_dv(ddr_wr_dv1),
.ddr_rd_req(ddr_rd_req1),
.ddr_rd_dv(ddr_rd_dv1),
.ddr_rd_qos(ddr_rd_qos1),
.ddr_wr_qos(ddr_wr_qos1),
.ddr_wr_addr(ddr_wr_addr1),
.ddr_wr_data(ddr_wr_data1),
.ddr_wr_bytes(ddr_wr_bytes1),
.ddr_rd_addr(ddr_rd_addr1),
.ddr_rd_data(ddr_rd_data1),
.ddr_rd_bytes(ddr_rd_bytes1)
);
/* FOR OCM_WR */
processing_system7_bfm_v2_0_5_arb_wr_4 ocm_wr_hp(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(w_qos_hp0),
.qos2(w_qos_hp1),
.qos3(w_qos_hp2),
.qos4(w_qos_hp3),
.prt_dv1(wr_dv_ocm_hp0),
.prt_dv2(wr_dv_ocm_hp1),
.prt_dv3(wr_dv_ocm_hp2),
.prt_dv4(wr_dv_ocm_hp3),
.prt_data1(wr_data_hp0),
.prt_data2(wr_data_hp1),
.prt_data3(wr_data_hp2),
.prt_data4(wr_data_hp3),
.prt_addr1(wr_addr_hp0),
.prt_addr2(wr_addr_hp1),
.prt_addr3(wr_addr_hp2),
.prt_addr4(wr_addr_hp3),
.prt_bytes1(wr_bytes_hp0),
.prt_bytes2(wr_bytes_hp1),
.prt_bytes3(wr_bytes_hp2),
.prt_bytes4(wr_bytes_hp3),
.prt_ack1(wr_ack_ocm_hp0),
.prt_ack2(wr_ack_ocm_hp1),
.prt_ack3(wr_ack_ocm_hp2),
.prt_ack4(wr_ack_ocm_hp3),
.prt_qos(ocm_wr_qos),
.prt_req(ocm_wr_dv),
.prt_data(ocm_wr_data),
.prt_addr(ocm_wr_addr),
.prt_bytes(ocm_wr_bytes),
.prt_ack(ocm_wr_ack)
);
/* FOR OCM_RD */
processing_system7_bfm_v2_0_5_arb_rd_4 ocm_rd_hp(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(r_qos_hp0),
.qos2(r_qos_hp1),
.qos3(r_qos_hp2),
.qos4(r_qos_hp3),
.prt_req1(rd_req_ocm_hp0),
.prt_req2(rd_req_ocm_hp1),
.prt_req3(rd_req_ocm_hp2),
.prt_req4(rd_req_ocm_hp3),
.prt_data1(rd_data_ocm_hp0),
.prt_data2(rd_data_ocm_hp1),
.prt_data3(rd_data_ocm_hp2),
.prt_data4(rd_data_ocm_hp3),
.prt_addr1(rd_addr_hp0),
.prt_addr2(rd_addr_hp1),
.prt_addr3(rd_addr_hp2),
.prt_addr4(rd_addr_hp3),
.prt_bytes1(rd_bytes_hp0),
.prt_bytes2(rd_bytes_hp1),
.prt_bytes3(rd_bytes_hp2),
.prt_bytes4(rd_bytes_hp3),
.prt_dv1(rd_dv_ocm_hp0),
.prt_dv2(rd_dv_ocm_hp1),
.prt_dv3(rd_dv_ocm_hp2),
.prt_dv4(rd_dv_ocm_hp3),
.prt_qos(ocm_rd_qos),
.prt_req(ocm_rd_req),
.prt_data(ocm_rd_data),
.prt_addr(ocm_rd_addr),
.prt_bytes(ocm_rd_bytes),
.prt_dv(ocm_rd_dv)
);
endmodule
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_ssw_hp.v
*
* Date : 2012-11
*
* Description : SSW switch Model
*
*****************************************************************************/
`timescale 1ns/1ps
module processing_system7_bfm_v2_0_5_ssw_hp(
sw_clk,
rstn,
w_qos_hp0,
r_qos_hp0,
w_qos_hp1,
r_qos_hp1,
w_qos_hp2,
r_qos_hp2,
w_qos_hp3,
r_qos_hp3,
wr_ack_ddr_hp0,
wr_data_hp0,
wr_addr_hp0,
wr_bytes_hp0,
wr_dv_ddr_hp0,
rd_req_ddr_hp0,
rd_addr_hp0,
rd_bytes_hp0,
rd_data_ddr_hp0,
rd_dv_ddr_hp0,
rd_data_ocm_hp0,
wr_ack_ocm_hp0,
wr_dv_ocm_hp0,
rd_req_ocm_hp0,
rd_dv_ocm_hp0,
wr_ack_ddr_hp1,
wr_data_hp1,
wr_addr_hp1,
wr_bytes_hp1,
wr_dv_ddr_hp1,
rd_req_ddr_hp1,
rd_addr_hp1,
rd_bytes_hp1,
rd_data_ddr_hp1,
rd_data_ocm_hp1,
rd_dv_ddr_hp1,
wr_ack_ocm_hp1,
wr_dv_ocm_hp1,
rd_req_ocm_hp1,
rd_dv_ocm_hp1,
wr_ack_ddr_hp2,
wr_data_hp2,
wr_addr_hp2,
wr_bytes_hp2,
wr_dv_ddr_hp2,
rd_req_ddr_hp2,
rd_addr_hp2,
rd_bytes_hp2,
rd_data_ddr_hp2,
rd_data_ocm_hp2,
rd_dv_ddr_hp2,
wr_ack_ocm_hp2,
wr_dv_ocm_hp2,
rd_req_ocm_hp2,
rd_dv_ocm_hp2,
wr_ack_ddr_hp3,
wr_data_hp3,
wr_addr_hp3,
wr_bytes_hp3,
wr_dv_ddr_hp3,
rd_req_ddr_hp3,
rd_addr_hp3,
rd_bytes_hp3,
rd_data_ocm_hp3,
rd_data_ddr_hp3,
rd_dv_ddr_hp3,
wr_ack_ocm_hp3,
wr_dv_ocm_hp3,
rd_req_ocm_hp3,
rd_dv_ocm_hp3,
ddr_wr_ack0,
ddr_wr_dv0,
ddr_rd_req0,
ddr_rd_dv0,
ddr_rd_qos0,
ddr_wr_qos0,
ddr_wr_addr0,
ddr_wr_data0,
ddr_wr_bytes0,
ddr_rd_addr0,
ddr_rd_data0,
ddr_rd_bytes0,
ddr_wr_ack1,
ddr_wr_dv1,
ddr_rd_req1,
ddr_rd_dv1,
ddr_rd_qos1,
ddr_wr_qos1,
ddr_wr_addr1,
ddr_wr_data1,
ddr_wr_bytes1,
ddr_rd_addr1,
ddr_rd_data1,
ddr_rd_bytes1,
ocm_wr_ack,
ocm_wr_dv,
ocm_rd_req,
ocm_rd_dv,
ocm_wr_qos,
ocm_rd_qos,
ocm_wr_addr,
ocm_wr_data,
ocm_wr_bytes,
ocm_rd_addr,
ocm_rd_data,
ocm_rd_bytes
);
input sw_clk;
input rstn;
input [3:0] w_qos_hp0;
input [3:0] r_qos_hp0;
input [3:0] w_qos_hp1;
input [3:0] r_qos_hp1;
input [3:0] w_qos_hp2;
input [3:0] r_qos_hp2;
input [3:0] w_qos_hp3;
input [3:0] r_qos_hp3;
output [3:0] ddr_rd_qos0;
output [3:0] ddr_wr_qos0;
output [3:0] ddr_rd_qos1;
output [3:0] ddr_wr_qos1;
output [3:0] ocm_wr_qos;
output [3:0] ocm_rd_qos;
output wr_ack_ddr_hp0;
input [1023:0] wr_data_hp0;
input [31:0] wr_addr_hp0;
input [7:0] wr_bytes_hp0;
output wr_dv_ddr_hp0;
input rd_req_ddr_hp0;
input [31:0] rd_addr_hp0;
input [7:0] rd_bytes_hp0;
output [1023:0] rd_data_ddr_hp0;
output rd_dv_ddr_hp0;
output wr_ack_ddr_hp1;
input [1023:0] wr_data_hp1;
input [31:0] wr_addr_hp1;
input [7:0] wr_bytes_hp1;
output wr_dv_ddr_hp1;
input rd_req_ddr_hp1;
input [31:0] rd_addr_hp1;
input [7:0] rd_bytes_hp1;
output [1023:0] rd_data_ddr_hp1;
output rd_dv_ddr_hp1;
output wr_ack_ddr_hp2;
input [1023:0] wr_data_hp2;
input [31:0] wr_addr_hp2;
input [7:0] wr_bytes_hp2;
output wr_dv_ddr_hp2;
input rd_req_ddr_hp2;
input [31:0] rd_addr_hp2;
input [7:0] rd_bytes_hp2;
output [1023:0] rd_data_ddr_hp2;
output rd_dv_ddr_hp2;
output wr_ack_ddr_hp3;
input [1023:0] wr_data_hp3;
input [31:0] wr_addr_hp3;
input [7:0] wr_bytes_hp3;
output wr_dv_ddr_hp3;
input rd_req_ddr_hp3;
input [31:0] rd_addr_hp3;
input [7:0] rd_bytes_hp3;
output [1023:0] rd_data_ddr_hp3;
output rd_dv_ddr_hp3;
input ddr_wr_ack0;
output ddr_wr_dv0;
output [31:0]ddr_wr_addr0;
output [1023:0]ddr_wr_data0;
output [7:0]ddr_wr_bytes0;
input ddr_rd_dv0;
input [1023:0] ddr_rd_data0;
output ddr_rd_req0;
output [31:0] ddr_rd_addr0;
output [7:0] ddr_rd_bytes0;
input ddr_wr_ack1;
output ddr_wr_dv1;
output [31:0]ddr_wr_addr1;
output [1023:0]ddr_wr_data1;
output [7:0]ddr_wr_bytes1;
input ddr_rd_dv1;
input [1023:0] ddr_rd_data1;
output ddr_rd_req1;
output [31:0] ddr_rd_addr1;
output [7:0] ddr_rd_bytes1;
output wr_ack_ocm_hp0;
input wr_dv_ocm_hp0;
input rd_req_ocm_hp0;
output rd_dv_ocm_hp0;
output [1023:0] rd_data_ocm_hp0;
output wr_ack_ocm_hp1;
input wr_dv_ocm_hp1;
input rd_req_ocm_hp1;
output rd_dv_ocm_hp1;
output [1023:0] rd_data_ocm_hp1;
output wr_ack_ocm_hp2;
input wr_dv_ocm_hp2;
input rd_req_ocm_hp2;
output rd_dv_ocm_hp2;
output [1023:0] rd_data_ocm_hp2;
output wr_ack_ocm_hp3;
input wr_dv_ocm_hp3;
input rd_req_ocm_hp3;
output rd_dv_ocm_hp3;
output [1023:0] rd_data_ocm_hp3;
input ocm_wr_ack;
output ocm_wr_dv;
output [31:0]ocm_wr_addr;
output [1023:0]ocm_wr_data;
output [7:0]ocm_wr_bytes;
input ocm_rd_dv;
input [1023:0] ocm_rd_data;
output ocm_rd_req;
output [31:0] ocm_rd_addr;
output [7:0] ocm_rd_bytes;
/* FOR DDR */
processing_system7_bfm_v2_0_5_arb_hp0_1 ddr_hp01 (
.sw_clk(sw_clk),
.rstn(rstn),
.w_qos_hp0(w_qos_hp0),
.r_qos_hp0(r_qos_hp0),
.w_qos_hp1(w_qos_hp1),
.r_qos_hp1(r_qos_hp1),
.wr_ack_ddr_hp0(wr_ack_ddr_hp0),
.wr_data_hp0(wr_data_hp0),
.wr_addr_hp0(wr_addr_hp0),
.wr_bytes_hp0(wr_bytes_hp0),
.wr_dv_ddr_hp0(wr_dv_ddr_hp0),
.rd_req_ddr_hp0(rd_req_ddr_hp0),
.rd_addr_hp0(rd_addr_hp0),
.rd_bytes_hp0(rd_bytes_hp0),
.rd_data_ddr_hp0(rd_data_ddr_hp0),
.rd_dv_ddr_hp0(rd_dv_ddr_hp0),
.wr_ack_ddr_hp1(wr_ack_ddr_hp1),
.wr_data_hp1(wr_data_hp1),
.wr_addr_hp1(wr_addr_hp1),
.wr_bytes_hp1(wr_bytes_hp1),
.wr_dv_ddr_hp1(wr_dv_ddr_hp1),
.rd_req_ddr_hp1(rd_req_ddr_hp1),
.rd_addr_hp1(rd_addr_hp1),
.rd_bytes_hp1(rd_bytes_hp1),
.rd_data_ddr_hp1(rd_data_ddr_hp1),
.rd_dv_ddr_hp1(rd_dv_ddr_hp1),
.ddr_wr_ack(ddr_wr_ack0),
.ddr_wr_dv(ddr_wr_dv0),
.ddr_rd_req(ddr_rd_req0),
.ddr_rd_dv(ddr_rd_dv0),
.ddr_rd_qos(ddr_rd_qos0),
.ddr_wr_qos(ddr_wr_qos0),
.ddr_wr_addr(ddr_wr_addr0),
.ddr_wr_data(ddr_wr_data0),
.ddr_wr_bytes(ddr_wr_bytes0),
.ddr_rd_addr(ddr_rd_addr0),
.ddr_rd_data(ddr_rd_data0),
.ddr_rd_bytes(ddr_rd_bytes0)
);
/* FOR DDR */
processing_system7_bfm_v2_0_5_arb_hp2_3 ddr_hp23 (
.sw_clk(sw_clk),
.rstn(rstn),
.w_qos_hp2(w_qos_hp2),
.r_qos_hp2(r_qos_hp2),
.w_qos_hp3(w_qos_hp3),
.r_qos_hp3(r_qos_hp3),
.wr_ack_ddr_hp2(wr_ack_ddr_hp2),
.wr_data_hp2(wr_data_hp2),
.wr_addr_hp2(wr_addr_hp2),
.wr_bytes_hp2(wr_bytes_hp2),
.wr_dv_ddr_hp2(wr_dv_ddr_hp2),
.rd_req_ddr_hp2(rd_req_ddr_hp2),
.rd_addr_hp2(rd_addr_hp2),
.rd_bytes_hp2(rd_bytes_hp2),
.rd_data_ddr_hp2(rd_data_ddr_hp2),
.rd_dv_ddr_hp2(rd_dv_ddr_hp2),
.wr_ack_ddr_hp3(wr_ack_ddr_hp3),
.wr_data_hp3(wr_data_hp3),
.wr_addr_hp3(wr_addr_hp3),
.wr_bytes_hp3(wr_bytes_hp3),
.wr_dv_ddr_hp3(wr_dv_ddr_hp3),
.rd_req_ddr_hp3(rd_req_ddr_hp3),
.rd_addr_hp3(rd_addr_hp3),
.rd_bytes_hp3(rd_bytes_hp3),
.rd_data_ddr_hp3(rd_data_ddr_hp3),
.rd_dv_ddr_hp3(rd_dv_ddr_hp3),
.ddr_wr_ack(ddr_wr_ack1),
.ddr_wr_dv(ddr_wr_dv1),
.ddr_rd_req(ddr_rd_req1),
.ddr_rd_dv(ddr_rd_dv1),
.ddr_rd_qos(ddr_rd_qos1),
.ddr_wr_qos(ddr_wr_qos1),
.ddr_wr_addr(ddr_wr_addr1),
.ddr_wr_data(ddr_wr_data1),
.ddr_wr_bytes(ddr_wr_bytes1),
.ddr_rd_addr(ddr_rd_addr1),
.ddr_rd_data(ddr_rd_data1),
.ddr_rd_bytes(ddr_rd_bytes1)
);
/* FOR OCM_WR */
processing_system7_bfm_v2_0_5_arb_wr_4 ocm_wr_hp(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(w_qos_hp0),
.qos2(w_qos_hp1),
.qos3(w_qos_hp2),
.qos4(w_qos_hp3),
.prt_dv1(wr_dv_ocm_hp0),
.prt_dv2(wr_dv_ocm_hp1),
.prt_dv3(wr_dv_ocm_hp2),
.prt_dv4(wr_dv_ocm_hp3),
.prt_data1(wr_data_hp0),
.prt_data2(wr_data_hp1),
.prt_data3(wr_data_hp2),
.prt_data4(wr_data_hp3),
.prt_addr1(wr_addr_hp0),
.prt_addr2(wr_addr_hp1),
.prt_addr3(wr_addr_hp2),
.prt_addr4(wr_addr_hp3),
.prt_bytes1(wr_bytes_hp0),
.prt_bytes2(wr_bytes_hp1),
.prt_bytes3(wr_bytes_hp2),
.prt_bytes4(wr_bytes_hp3),
.prt_ack1(wr_ack_ocm_hp0),
.prt_ack2(wr_ack_ocm_hp1),
.prt_ack3(wr_ack_ocm_hp2),
.prt_ack4(wr_ack_ocm_hp3),
.prt_qos(ocm_wr_qos),
.prt_req(ocm_wr_dv),
.prt_data(ocm_wr_data),
.prt_addr(ocm_wr_addr),
.prt_bytes(ocm_wr_bytes),
.prt_ack(ocm_wr_ack)
);
/* FOR OCM_RD */
processing_system7_bfm_v2_0_5_arb_rd_4 ocm_rd_hp(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(r_qos_hp0),
.qos2(r_qos_hp1),
.qos3(r_qos_hp2),
.qos4(r_qos_hp3),
.prt_req1(rd_req_ocm_hp0),
.prt_req2(rd_req_ocm_hp1),
.prt_req3(rd_req_ocm_hp2),
.prt_req4(rd_req_ocm_hp3),
.prt_data1(rd_data_ocm_hp0),
.prt_data2(rd_data_ocm_hp1),
.prt_data3(rd_data_ocm_hp2),
.prt_data4(rd_data_ocm_hp3),
.prt_addr1(rd_addr_hp0),
.prt_addr2(rd_addr_hp1),
.prt_addr3(rd_addr_hp2),
.prt_addr4(rd_addr_hp3),
.prt_bytes1(rd_bytes_hp0),
.prt_bytes2(rd_bytes_hp1),
.prt_bytes3(rd_bytes_hp2),
.prt_bytes4(rd_bytes_hp3),
.prt_dv1(rd_dv_ocm_hp0),
.prt_dv2(rd_dv_ocm_hp1),
.prt_dv3(rd_dv_ocm_hp2),
.prt_dv4(rd_dv_ocm_hp3),
.prt_qos(ocm_rd_qos),
.prt_req(ocm_rd_req),
.prt_data(ocm_rd_data),
.prt_addr(ocm_rd_addr),
.prt_bytes(ocm_rd_bytes),
.prt_dv(ocm_rd_dv)
);
endmodule
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_processing_system7_bfm.v
*
* Date : 2012-11
*
* Description : Processing_system7_bfm Top (zynq_bfm top)
*
*****************************************************************************/
`timescale 1ns/1ps
module processing_system7_bfm_v2_0_5_processing_system7_bfm
(
CAN0_PHY_TX,
CAN0_PHY_RX,
CAN1_PHY_TX,
CAN1_PHY_RX,
ENET0_GMII_TX_EN,
ENET0_GMII_TX_ER,
ENET0_MDIO_MDC,
ENET0_MDIO_O,
ENET0_MDIO_T,
ENET0_PTP_DELAY_REQ_RX,
ENET0_PTP_DELAY_REQ_TX,
ENET0_PTP_PDELAY_REQ_RX,
ENET0_PTP_PDELAY_REQ_TX,
ENET0_PTP_PDELAY_RESP_RX,
ENET0_PTP_PDELAY_RESP_TX,
ENET0_PTP_SYNC_FRAME_RX,
ENET0_PTP_SYNC_FRAME_TX,
ENET0_SOF_RX,
ENET0_SOF_TX,
ENET0_GMII_TXD,
ENET0_GMII_COL,
ENET0_GMII_CRS,
ENET0_EXT_INTIN,
ENET0_GMII_RX_CLK,
ENET0_GMII_RX_DV,
ENET0_GMII_RX_ER,
ENET0_GMII_TX_CLK,
ENET0_MDIO_I,
ENET0_GMII_RXD,
ENET1_GMII_TX_EN,
ENET1_GMII_TX_ER,
ENET1_MDIO_MDC,
ENET1_MDIO_O,
ENET1_MDIO_T,
ENET1_PTP_DELAY_REQ_RX,
ENET1_PTP_DELAY_REQ_TX,
ENET1_PTP_PDELAY_REQ_RX,
ENET1_PTP_PDELAY_REQ_TX,
ENET1_PTP_PDELAY_RESP_RX,
ENET1_PTP_PDELAY_RESP_TX,
ENET1_PTP_SYNC_FRAME_RX,
ENET1_PTP_SYNC_FRAME_TX,
ENET1_SOF_RX,
ENET1_SOF_TX,
ENET1_GMII_TXD,
ENET1_GMII_COL,
ENET1_GMII_CRS,
ENET1_EXT_INTIN,
ENET1_GMII_RX_CLK,
ENET1_GMII_RX_DV,
ENET1_GMII_RX_ER,
ENET1_GMII_TX_CLK,
ENET1_MDIO_I,
ENET1_GMII_RXD,
GPIO_I,
GPIO_O,
GPIO_T,
I2C0_SDA_I,
I2C0_SDA_O,
I2C0_SDA_T,
I2C0_SCL_I,
I2C0_SCL_O,
I2C0_SCL_T,
I2C1_SDA_I,
I2C1_SDA_O,
I2C1_SDA_T,
I2C1_SCL_I,
I2C1_SCL_O,
I2C1_SCL_T,
PJTAG_TCK,
PJTAG_TMS,
PJTAG_TD_I,
PJTAG_TD_T,
PJTAG_TD_O,
SDIO0_CLK,
SDIO0_CLK_FB,
SDIO0_CMD_O,
SDIO0_CMD_I,
SDIO0_CMD_T,
SDIO0_DATA_I,
SDIO0_DATA_O,
SDIO0_DATA_T,
SDIO0_LED,
SDIO0_CDN,
SDIO0_WP,
SDIO0_BUSPOW,
SDIO0_BUSVOLT,
SDIO1_CLK,
SDIO1_CLK_FB,
SDIO1_CMD_O,
SDIO1_CMD_I,
SDIO1_CMD_T,
SDIO1_DATA_I,
SDIO1_DATA_O,
SDIO1_DATA_T,
SDIO1_LED,
SDIO1_CDN,
SDIO1_WP,
SDIO1_BUSPOW,
SDIO1_BUSVOLT,
SPI0_SCLK_I,
SPI0_SCLK_O,
SPI0_SCLK_T,
SPI0_MOSI_I,
SPI0_MOSI_O,
SPI0_MOSI_T,
SPI0_MISO_I,
SPI0_MISO_O,
SPI0_MISO_T,
SPI0_SS_I,
SPI0_SS_O,
SPI0_SS1_O,
SPI0_SS2_O,
SPI0_SS_T,
SPI1_SCLK_I,
SPI1_SCLK_O,
SPI1_SCLK_T,
SPI1_MOSI_I,
SPI1_MOSI_O,
SPI1_MOSI_T,
SPI1_MISO_I,
SPI1_MISO_O,
SPI1_MISO_T,
SPI1_SS_I,
SPI1_SS_O,
SPI1_SS1_O,
SPI1_SS2_O,
SPI1_SS_T,
UART0_DTRN,
UART0_RTSN,
UART0_TX,
UART0_CTSN,
UART0_DCDN,
UART0_DSRN,
UART0_RIN,
UART0_RX,
UART1_DTRN,
UART1_RTSN,
UART1_TX,
UART1_CTSN,
UART1_DCDN,
UART1_DSRN,
UART1_RIN,
UART1_RX,
TTC0_WAVE0_OUT,
TTC0_WAVE1_OUT,
TTC0_WAVE2_OUT,
TTC0_CLK0_IN,
TTC0_CLK1_IN,
TTC0_CLK2_IN,
TTC1_WAVE0_OUT,
TTC1_WAVE1_OUT,
TTC1_WAVE2_OUT,
TTC1_CLK0_IN,
TTC1_CLK1_IN,
TTC1_CLK2_IN,
WDT_CLK_IN,
WDT_RST_OUT,
TRACE_CLK,
TRACE_CTL,
TRACE_DATA,
USB0_PORT_INDCTL,
USB1_PORT_INDCTL,
USB0_VBUS_PWRSELECT,
USB1_VBUS_PWRSELECT,
USB0_VBUS_PWRFAULT,
USB1_VBUS_PWRFAULT,
SRAM_INTIN,
M_AXI_GP0_ARVALID,
M_AXI_GP0_AWVALID,
M_AXI_GP0_BREADY,
M_AXI_GP0_RREADY,
M_AXI_GP0_WLAST,
M_AXI_GP0_WVALID,
M_AXI_GP0_ARID,
M_AXI_GP0_AWID,
M_AXI_GP0_WID,
M_AXI_GP0_ARBURST,
M_AXI_GP0_ARLOCK,
M_AXI_GP0_ARSIZE,
M_AXI_GP0_AWBURST,
M_AXI_GP0_AWLOCK,
M_AXI_GP0_AWSIZE,
M_AXI_GP0_ARPROT,
M_AXI_GP0_AWPROT,
M_AXI_GP0_ARADDR,
M_AXI_GP0_AWADDR,
M_AXI_GP0_WDATA,
M_AXI_GP0_ARCACHE,
M_AXI_GP0_ARLEN,
M_AXI_GP0_ARQOS,
M_AXI_GP0_AWCACHE,
M_AXI_GP0_AWLEN,
M_AXI_GP0_AWQOS,
M_AXI_GP0_WSTRB,
M_AXI_GP0_ACLK,
M_AXI_GP0_ARREADY,
M_AXI_GP0_AWREADY,
M_AXI_GP0_BVALID,
M_AXI_GP0_RLAST,
M_AXI_GP0_RVALID,
M_AXI_GP0_WREADY,
M_AXI_GP0_BID,
M_AXI_GP0_RID,
M_AXI_GP0_BRESP,
M_AXI_GP0_RRESP,
M_AXI_GP0_RDATA,
M_AXI_GP1_ARVALID,
M_AXI_GP1_AWVALID,
M_AXI_GP1_BREADY,
M_AXI_GP1_RREADY,
M_AXI_GP1_WLAST,
M_AXI_GP1_WVALID,
M_AXI_GP1_ARID,
M_AXI_GP1_AWID,
M_AXI_GP1_WID,
M_AXI_GP1_ARBURST,
M_AXI_GP1_ARLOCK,
M_AXI_GP1_ARSIZE,
M_AXI_GP1_AWBURST,
M_AXI_GP1_AWLOCK,
M_AXI_GP1_AWSIZE,
M_AXI_GP1_ARPROT,
M_AXI_GP1_AWPROT,
M_AXI_GP1_ARADDR,
M_AXI_GP1_AWADDR,
M_AXI_GP1_WDATA,
M_AXI_GP1_ARCACHE,
M_AXI_GP1_ARLEN,
M_AXI_GP1_ARQOS,
M_AXI_GP1_AWCACHE,
M_AXI_GP1_AWLEN,
M_AXI_GP1_AWQOS,
M_AXI_GP1_WSTRB,
M_AXI_GP1_ACLK,
M_AXI_GP1_ARREADY,
M_AXI_GP1_AWREADY,
M_AXI_GP1_BVALID,
M_AXI_GP1_RLAST,
M_AXI_GP1_RVALID,
M_AXI_GP1_WREADY,
M_AXI_GP1_BID,
M_AXI_GP1_RID,
M_AXI_GP1_BRESP,
M_AXI_GP1_RRESP,
M_AXI_GP1_RDATA,
S_AXI_GP0_ARREADY,
S_AXI_GP0_AWREADY,
S_AXI_GP0_BVALID,
S_AXI_GP0_RLAST,
S_AXI_GP0_RVALID,
S_AXI_GP0_WREADY,
S_AXI_GP0_BRESP,
S_AXI_GP0_RRESP,
S_AXI_GP0_RDATA,
S_AXI_GP0_BID,
S_AXI_GP0_RID,
S_AXI_GP0_ACLK,
S_AXI_GP0_ARVALID,
S_AXI_GP0_AWVALID,
S_AXI_GP0_BREADY,
S_AXI_GP0_RREADY,
S_AXI_GP0_WLAST,
S_AXI_GP0_WVALID,
S_AXI_GP0_ARBURST,
S_AXI_GP0_ARLOCK,
S_AXI_GP0_ARSIZE,
S_AXI_GP0_AWBURST,
S_AXI_GP0_AWLOCK,
S_AXI_GP0_AWSIZE,
S_AXI_GP0_ARPROT,
S_AXI_GP0_AWPROT,
S_AXI_GP0_ARADDR,
S_AXI_GP0_AWADDR,
S_AXI_GP0_WDATA,
S_AXI_GP0_ARCACHE,
S_AXI_GP0_ARLEN,
S_AXI_GP0_ARQOS,
S_AXI_GP0_AWCACHE,
S_AXI_GP0_AWLEN,
S_AXI_GP0_AWQOS,
S_AXI_GP0_WSTRB,
S_AXI_GP0_ARID,
S_AXI_GP0_AWID,
S_AXI_GP0_WID,
S_AXI_GP1_ARREADY,
S_AXI_GP1_AWREADY,
S_AXI_GP1_BVALID,
S_AXI_GP1_RLAST,
S_AXI_GP1_RVALID,
S_AXI_GP1_WREADY,
S_AXI_GP1_BRESP,
S_AXI_GP1_RRESP,
S_AXI_GP1_RDATA,
S_AXI_GP1_BID,
S_AXI_GP1_RID,
S_AXI_GP1_ACLK,
S_AXI_GP1_ARVALID,
S_AXI_GP1_AWVALID,
S_AXI_GP1_BREADY,
S_AXI_GP1_RREADY,
S_AXI_GP1_WLAST,
S_AXI_GP1_WVALID,
S_AXI_GP1_ARBURST,
S_AXI_GP1_ARLOCK,
S_AXI_GP1_ARSIZE,
S_AXI_GP1_AWBURST,
S_AXI_GP1_AWLOCK,
S_AXI_GP1_AWSIZE,
S_AXI_GP1_ARPROT,
S_AXI_GP1_AWPROT,
S_AXI_GP1_ARADDR,
S_AXI_GP1_AWADDR,
S_AXI_GP1_WDATA,
S_AXI_GP1_ARCACHE,
S_AXI_GP1_ARLEN,
S_AXI_GP1_ARQOS,
S_AXI_GP1_AWCACHE,
S_AXI_GP1_AWLEN,
S_AXI_GP1_AWQOS,
S_AXI_GP1_WSTRB,
S_AXI_GP1_ARID,
S_AXI_GP1_AWID,
S_AXI_GP1_WID,
S_AXI_ACP_AWREADY,
S_AXI_ACP_ARREADY,
S_AXI_ACP_BVALID,
S_AXI_ACP_RLAST,
S_AXI_ACP_RVALID,
S_AXI_ACP_WREADY,
S_AXI_ACP_BRESP,
S_AXI_ACP_RRESP,
S_AXI_ACP_BID,
S_AXI_ACP_RID,
S_AXI_ACP_RDATA,
S_AXI_ACP_ACLK,
S_AXI_ACP_ARVALID,
S_AXI_ACP_AWVALID,
S_AXI_ACP_BREADY,
S_AXI_ACP_RREADY,
S_AXI_ACP_WLAST,
S_AXI_ACP_WVALID,
S_AXI_ACP_ARID,
S_AXI_ACP_ARPROT,
S_AXI_ACP_AWID,
S_AXI_ACP_AWPROT,
S_AXI_ACP_WID,
S_AXI_ACP_ARADDR,
S_AXI_ACP_AWADDR,
S_AXI_ACP_ARCACHE,
S_AXI_ACP_ARLEN,
S_AXI_ACP_ARQOS,
S_AXI_ACP_AWCACHE,
S_AXI_ACP_AWLEN,
S_AXI_ACP_AWQOS,
S_AXI_ACP_ARBURST,
S_AXI_ACP_ARLOCK,
S_AXI_ACP_ARSIZE,
S_AXI_ACP_AWBURST,
S_AXI_ACP_AWLOCK,
S_AXI_ACP_AWSIZE,
S_AXI_ACP_ARUSER,
S_AXI_ACP_AWUSER,
S_AXI_ACP_WDATA,
S_AXI_ACP_WSTRB,
S_AXI_HP0_ARREADY,
S_AXI_HP0_AWREADY,
S_AXI_HP0_BVALID,
S_AXI_HP0_RLAST,
S_AXI_HP0_RVALID,
S_AXI_HP0_WREADY,
S_AXI_HP0_BRESP,
S_AXI_HP0_RRESP,
S_AXI_HP0_BID,
S_AXI_HP0_RID,
S_AXI_HP0_RDATA,
S_AXI_HP0_RCOUNT,
S_AXI_HP0_WCOUNT,
S_AXI_HP0_RACOUNT,
S_AXI_HP0_WACOUNT,
S_AXI_HP0_ACLK,
S_AXI_HP0_ARVALID,
S_AXI_HP0_AWVALID,
S_AXI_HP0_BREADY,
S_AXI_HP0_RDISSUECAP1_EN,
S_AXI_HP0_RREADY,
S_AXI_HP0_WLAST,
S_AXI_HP0_WRISSUECAP1_EN,
S_AXI_HP0_WVALID,
S_AXI_HP0_ARBURST,
S_AXI_HP0_ARLOCK,
S_AXI_HP0_ARSIZE,
S_AXI_HP0_AWBURST,
S_AXI_HP0_AWLOCK,
S_AXI_HP0_AWSIZE,
S_AXI_HP0_ARPROT,
S_AXI_HP0_AWPROT,
S_AXI_HP0_ARADDR,
S_AXI_HP0_AWADDR,
S_AXI_HP0_ARCACHE,
S_AXI_HP0_ARLEN,
S_AXI_HP0_ARQOS,
S_AXI_HP0_AWCACHE,
S_AXI_HP0_AWLEN,
S_AXI_HP0_AWQOS,
S_AXI_HP0_ARID,
S_AXI_HP0_AWID,
S_AXI_HP0_WID,
S_AXI_HP0_WDATA,
S_AXI_HP0_WSTRB,
S_AXI_HP1_ARREADY,
S_AXI_HP1_AWREADY,
S_AXI_HP1_BVALID,
S_AXI_HP1_RLAST,
S_AXI_HP1_RVALID,
S_AXI_HP1_WREADY,
S_AXI_HP1_BRESP,
S_AXI_HP1_RRESP,
S_AXI_HP1_BID,
S_AXI_HP1_RID,
S_AXI_HP1_RDATA,
S_AXI_HP1_RCOUNT,
S_AXI_HP1_WCOUNT,
S_AXI_HP1_RACOUNT,
S_AXI_HP1_WACOUNT,
S_AXI_HP1_ACLK,
S_AXI_HP1_ARVALID,
S_AXI_HP1_AWVALID,
S_AXI_HP1_BREADY,
S_AXI_HP1_RDISSUECAP1_EN,
S_AXI_HP1_RREADY,
S_AXI_HP1_WLAST,
S_AXI_HP1_WRISSUECAP1_EN,
S_AXI_HP1_WVALID,
S_AXI_HP1_ARBURST,
S_AXI_HP1_ARLOCK,
S_AXI_HP1_ARSIZE,
S_AXI_HP1_AWBURST,
S_AXI_HP1_AWLOCK,
S_AXI_HP1_AWSIZE,
S_AXI_HP1_ARPROT,
S_AXI_HP1_AWPROT,
S_AXI_HP1_ARADDR,
S_AXI_HP1_AWADDR,
S_AXI_HP1_ARCACHE,
S_AXI_HP1_ARLEN,
S_AXI_HP1_ARQOS,
S_AXI_HP1_AWCACHE,
S_AXI_HP1_AWLEN,
S_AXI_HP1_AWQOS,
S_AXI_HP1_ARID,
S_AXI_HP1_AWID,
S_AXI_HP1_WID,
S_AXI_HP1_WDATA,
S_AXI_HP1_WSTRB,
S_AXI_HP2_ARREADY,
S_AXI_HP2_AWREADY,
S_AXI_HP2_BVALID,
S_AXI_HP2_RLAST,
S_AXI_HP2_RVALID,
S_AXI_HP2_WREADY,
S_AXI_HP2_BRESP,
S_AXI_HP2_RRESP,
S_AXI_HP2_BID,
S_AXI_HP2_RID,
S_AXI_HP2_RDATA,
S_AXI_HP2_RCOUNT,
S_AXI_HP2_WCOUNT,
S_AXI_HP2_RACOUNT,
S_AXI_HP2_WACOUNT,
S_AXI_HP2_ACLK,
S_AXI_HP2_ARVALID,
S_AXI_HP2_AWVALID,
S_AXI_HP2_BREADY,
S_AXI_HP2_RDISSUECAP1_EN,
S_AXI_HP2_RREADY,
S_AXI_HP2_WLAST,
S_AXI_HP2_WRISSUECAP1_EN,
S_AXI_HP2_WVALID,
S_AXI_HP2_ARBURST,
S_AXI_HP2_ARLOCK,
S_AXI_HP2_ARSIZE,
S_AXI_HP2_AWBURST,
S_AXI_HP2_AWLOCK,
S_AXI_HP2_AWSIZE,
S_AXI_HP2_ARPROT,
S_AXI_HP2_AWPROT,
S_AXI_HP2_ARADDR,
S_AXI_HP2_AWADDR,
S_AXI_HP2_ARCACHE,
S_AXI_HP2_ARLEN,
S_AXI_HP2_ARQOS,
S_AXI_HP2_AWCACHE,
S_AXI_HP2_AWLEN,
S_AXI_HP2_AWQOS,
S_AXI_HP2_ARID,
S_AXI_HP2_AWID,
S_AXI_HP2_WID,
S_AXI_HP2_WDATA,
S_AXI_HP2_WSTRB,
S_AXI_HP3_ARREADY,
S_AXI_HP3_AWREADY,
S_AXI_HP3_BVALID,
S_AXI_HP3_RLAST,
S_AXI_HP3_RVALID,
S_AXI_HP3_WREADY,
S_AXI_HP3_BRESP,
S_AXI_HP3_RRESP,
S_AXI_HP3_BID,
S_AXI_HP3_RID,
S_AXI_HP3_RDATA,
S_AXI_HP3_RCOUNT,
S_AXI_HP3_WCOUNT,
S_AXI_HP3_RACOUNT,
S_AXI_HP3_WACOUNT,
S_AXI_HP3_ACLK,
S_AXI_HP3_ARVALID,
S_AXI_HP3_AWVALID,
S_AXI_HP3_BREADY,
S_AXI_HP3_RDISSUECAP1_EN,
S_AXI_HP3_RREADY,
S_AXI_HP3_WLAST,
S_AXI_HP3_WRISSUECAP1_EN,
S_AXI_HP3_WVALID,
S_AXI_HP3_ARBURST,
S_AXI_HP3_ARLOCK,
S_AXI_HP3_ARSIZE,
S_AXI_HP3_AWBURST,
S_AXI_HP3_AWLOCK,
S_AXI_HP3_AWSIZE,
S_AXI_HP3_ARPROT,
S_AXI_HP3_AWPROT,
S_AXI_HP3_ARADDR,
S_AXI_HP3_AWADDR,
S_AXI_HP3_ARCACHE,
S_AXI_HP3_ARLEN,
S_AXI_HP3_ARQOS,
S_AXI_HP3_AWCACHE,
S_AXI_HP3_AWLEN,
S_AXI_HP3_AWQOS,
S_AXI_HP3_ARID,
S_AXI_HP3_AWID,
S_AXI_HP3_WID,
S_AXI_HP3_WDATA,
S_AXI_HP3_WSTRB,
DMA0_DATYPE,
DMA0_DAVALID,
DMA0_DRREADY,
DMA0_ACLK,
DMA0_DAREADY,
DMA0_DRLAST,
DMA0_DRVALID,
DMA0_DRTYPE,
DMA1_DATYPE,
DMA1_DAVALID,
DMA1_DRREADY,
DMA1_ACLK,
DMA1_DAREADY,
DMA1_DRLAST,
DMA1_DRVALID,
DMA1_DRTYPE,
DMA2_DATYPE,
DMA2_DAVALID,
DMA2_DRREADY,
DMA2_ACLK,
DMA2_DAREADY,
DMA2_DRLAST,
DMA2_DRVALID,
DMA3_DRVALID,
DMA3_DATYPE,
DMA3_DAVALID,
DMA3_DRREADY,
DMA3_ACLK,
DMA3_DAREADY,
DMA3_DRLAST,
DMA2_DRTYPE,
DMA3_DRTYPE,
FTMD_TRACEIN_DATA,
FTMD_TRACEIN_VALID,
FTMD_TRACEIN_CLK,
FTMD_TRACEIN_ATID,
FTMT_F2P_TRIG,
FTMT_F2P_TRIGACK,
FTMT_F2P_DEBUG,
FTMT_P2F_TRIGACK,
FTMT_P2F_TRIG,
FTMT_P2F_DEBUG,
FCLK_CLK3,
FCLK_CLK2,
FCLK_CLK1,
FCLK_CLK0,
FCLK_CLKTRIG3_N,
FCLK_CLKTRIG2_N,
FCLK_CLKTRIG1_N,
FCLK_CLKTRIG0_N,
FCLK_RESET3_N,
FCLK_RESET2_N,
FCLK_RESET1_N,
FCLK_RESET0_N,
FPGA_IDLE_N,
DDR_ARB,
IRQ_F2P,
Core0_nFIQ,
Core0_nIRQ,
Core1_nFIQ,
Core1_nIRQ,
EVENT_EVENTO,
EVENT_STANDBYWFE,
EVENT_STANDBYWFI,
EVENT_EVENTI,
MIO,
DDR_Clk,
DDR_Clk_n,
DDR_CKE,
DDR_CS_n,
DDR_RAS_n,
DDR_CAS_n,
DDR_WEB,
DDR_BankAddr,
DDR_Addr,
DDR_ODT,
DDR_DRSTB,
DDR_DQ,
DDR_DM,
DDR_DQS,
DDR_DQS_n,
DDR_VRN,
DDR_VRP,
PS_SRSTB,
PS_CLK,
PS_PORB,
IRQ_P2F_DMAC_ABORT,
IRQ_P2F_DMAC0,
IRQ_P2F_DMAC1,
IRQ_P2F_DMAC2,
IRQ_P2F_DMAC3,
IRQ_P2F_DMAC4,
IRQ_P2F_DMAC5,
IRQ_P2F_DMAC6,
IRQ_P2F_DMAC7,
IRQ_P2F_SMC,
IRQ_P2F_QSPI,
IRQ_P2F_CTI,
IRQ_P2F_GPIO,
IRQ_P2F_USB0,
IRQ_P2F_ENET0,
IRQ_P2F_ENET_WAKE0,
IRQ_P2F_SDIO0,
IRQ_P2F_I2C0,
IRQ_P2F_SPI0,
IRQ_P2F_UART0,
IRQ_P2F_CAN0,
IRQ_P2F_USB1,
IRQ_P2F_ENET1,
IRQ_P2F_ENET_WAKE1,
IRQ_P2F_SDIO1,
IRQ_P2F_I2C1,
IRQ_P2F_SPI1,
IRQ_P2F_UART1,
IRQ_P2F_CAN1
);
/* parameters for gen_clk */
parameter C_FCLK_CLK0_FREQ = 50;
parameter C_FCLK_CLK1_FREQ = 50;
parameter C_FCLK_CLK3_FREQ = 50;
parameter C_FCLK_CLK2_FREQ = 50;
parameter C_HIGH_OCM_EN = 0;
/* parameters for HP ports */
parameter C_USE_S_AXI_HP0 = 0;
parameter C_USE_S_AXI_HP1 = 0;
parameter C_USE_S_AXI_HP2 = 0;
parameter C_USE_S_AXI_HP3 = 0;
parameter C_S_AXI_HP0_DATA_WIDTH = 32;
parameter C_S_AXI_HP1_DATA_WIDTH = 32;
parameter C_S_AXI_HP2_DATA_WIDTH = 32;
parameter C_S_AXI_HP3_DATA_WIDTH = 32;
parameter C_M_AXI_GP0_THREAD_ID_WIDTH = 12;
parameter C_M_AXI_GP1_THREAD_ID_WIDTH = 12;
parameter C_M_AXI_GP0_ENABLE_STATIC_REMAP = 0;
parameter C_M_AXI_GP1_ENABLE_STATIC_REMAP = 0;
/* Do we need these
parameter C_S_AXI_HP0_ENABLE_HIGHOCM = 0;
parameter C_S_AXI_HP1_ENABLE_HIGHOCM = 0;
parameter C_S_AXI_HP2_ENABLE_HIGHOCM = 0;
parameter C_S_AXI_HP3_ENABLE_HIGHOCM = 0; */
parameter C_S_AXI_HP0_BASEADDR = 32'h0000_0000;
parameter C_S_AXI_HP1_BASEADDR = 32'h0000_0000;
parameter C_S_AXI_HP2_BASEADDR = 32'h0000_0000;
parameter C_S_AXI_HP3_BASEADDR = 32'h0000_0000;
parameter C_S_AXI_HP0_HIGHADDR = 32'hFFFF_FFFF;
parameter C_S_AXI_HP1_HIGHADDR = 32'hFFFF_FFFF;
parameter C_S_AXI_HP2_HIGHADDR = 32'hFFFF_FFFF;
parameter C_S_AXI_HP3_HIGHADDR = 32'hFFFF_FFFF;
/* parameters for GP and ACP ports */
parameter C_USE_M_AXI_GP0 = 0;
parameter C_USE_M_AXI_GP1 = 0;
parameter C_USE_S_AXI_GP0 = 1;
parameter C_USE_S_AXI_GP1 = 1;
/* Do we need this?
parameter C_M_AXI_GP0_ENABLE_HIGHOCM = 0;
parameter C_M_AXI_GP1_ENABLE_HIGHOCM = 0;
parameter C_S_AXI_GP0_ENABLE_HIGHOCM = 0;
parameter C_S_AXI_GP1_ENABLE_HIGHOCM = 0;
parameter C_S_AXI_ACP_ENABLE_HIGHOCM = 0;*/
parameter C_S_AXI_GP0_BASEADDR = 32'h0000_0000;
parameter C_S_AXI_GP1_BASEADDR = 32'h0000_0000;
parameter C_S_AXI_GP0_HIGHADDR = 32'hFFFF_FFFF;
parameter C_S_AXI_GP1_HIGHADDR = 32'hFFFF_FFFF;
parameter C_USE_S_AXI_ACP = 1;
parameter C_S_AXI_ACP_BASEADDR = 32'h0000_0000;
parameter C_S_AXI_ACP_HIGHADDR = 32'hFFFF_FFFF;
`include "processing_system7_bfm_v2_0_5_local_params.v"
output CAN0_PHY_TX;
input CAN0_PHY_RX;
output CAN1_PHY_TX;
input CAN1_PHY_RX;
output ENET0_GMII_TX_EN;
output ENET0_GMII_TX_ER;
output ENET0_MDIO_MDC;
output ENET0_MDIO_O;
output ENET0_MDIO_T;
output ENET0_PTP_DELAY_REQ_RX;
output ENET0_PTP_DELAY_REQ_TX;
output ENET0_PTP_PDELAY_REQ_RX;
output ENET0_PTP_PDELAY_REQ_TX;
output ENET0_PTP_PDELAY_RESP_RX;
output ENET0_PTP_PDELAY_RESP_TX;
output ENET0_PTP_SYNC_FRAME_RX;
output ENET0_PTP_SYNC_FRAME_TX;
output ENET0_SOF_RX;
output ENET0_SOF_TX;
output [7:0] ENET0_GMII_TXD;
input ENET0_GMII_COL;
input ENET0_GMII_CRS;
input ENET0_EXT_INTIN;
input ENET0_GMII_RX_CLK;
input ENET0_GMII_RX_DV;
input ENET0_GMII_RX_ER;
input ENET0_GMII_TX_CLK;
input ENET0_MDIO_I;
input [7:0] ENET0_GMII_RXD;
output ENET1_GMII_TX_EN;
output ENET1_GMII_TX_ER;
output ENET1_MDIO_MDC;
output ENET1_MDIO_O;
output ENET1_MDIO_T;
output ENET1_PTP_DELAY_REQ_RX;
output ENET1_PTP_DELAY_REQ_TX;
output ENET1_PTP_PDELAY_REQ_RX;
output ENET1_PTP_PDELAY_REQ_TX;
output ENET1_PTP_PDELAY_RESP_RX;
output ENET1_PTP_PDELAY_RESP_TX;
output ENET1_PTP_SYNC_FRAME_RX;
output ENET1_PTP_SYNC_FRAME_TX;
output ENET1_SOF_RX;
output ENET1_SOF_TX;
output [7:0] ENET1_GMII_TXD;
input ENET1_GMII_COL;
input ENET1_GMII_CRS;
input ENET1_EXT_INTIN;
input ENET1_GMII_RX_CLK;
input ENET1_GMII_RX_DV;
input ENET1_GMII_RX_ER;
input ENET1_GMII_TX_CLK;
input ENET1_MDIO_I;
input [7:0] ENET1_GMII_RXD;
input [63:0] GPIO_I;
output [63:0] GPIO_O;
output [63:0] GPIO_T;
input I2C0_SDA_I;
output I2C0_SDA_O;
output I2C0_SDA_T;
input I2C0_SCL_I;
output I2C0_SCL_O;
output I2C0_SCL_T;
input I2C1_SDA_I;
output I2C1_SDA_O;
output I2C1_SDA_T;
input I2C1_SCL_I;
output I2C1_SCL_O;
output I2C1_SCL_T;
input PJTAG_TCK;
input PJTAG_TMS;
input PJTAG_TD_I;
output PJTAG_TD_T;
output PJTAG_TD_O;
output SDIO0_CLK;
input SDIO0_CLK_FB;
output SDIO0_CMD_O;
input SDIO0_CMD_I;
output SDIO0_CMD_T;
input [3:0] SDIO0_DATA_I;
output [3:0] SDIO0_DATA_O;
output [3:0] SDIO0_DATA_T;
output SDIO0_LED;
input SDIO0_CDN;
input SDIO0_WP;
output SDIO0_BUSPOW;
output [2:0] SDIO0_BUSVOLT;
output SDIO1_CLK;
input SDIO1_CLK_FB;
output SDIO1_CMD_O;
input SDIO1_CMD_I;
output SDIO1_CMD_T;
input [3:0] SDIO1_DATA_I;
output [3:0] SDIO1_DATA_O;
output [3:0] SDIO1_DATA_T;
output SDIO1_LED;
input SDIO1_CDN;
input SDIO1_WP;
output SDIO1_BUSPOW;
output [2:0] SDIO1_BUSVOLT;
input SPI0_SCLK_I;
output SPI0_SCLK_O;
output SPI0_SCLK_T;
input SPI0_MOSI_I;
output SPI0_MOSI_O;
output SPI0_MOSI_T;
input SPI0_MISO_I;
output SPI0_MISO_O;
output SPI0_MISO_T;
input SPI0_SS_I;
output SPI0_SS_O;
output SPI0_SS1_O;
output SPI0_SS2_O;
output SPI0_SS_T;
input SPI1_SCLK_I;
output SPI1_SCLK_O;
output SPI1_SCLK_T;
input SPI1_MOSI_I;
output SPI1_MOSI_O;
output SPI1_MOSI_T;
input SPI1_MISO_I;
output SPI1_MISO_O;
output SPI1_MISO_T;
input SPI1_SS_I;
output SPI1_SS_O;
output SPI1_SS1_O;
output SPI1_SS2_O;
output SPI1_SS_T;
output UART0_DTRN;
output UART0_RTSN;
output UART0_TX;
input UART0_CTSN;
input UART0_DCDN;
input UART0_DSRN;
input UART0_RIN;
input UART0_RX;
output UART1_DTRN;
output UART1_RTSN;
output UART1_TX;
input UART1_CTSN;
input UART1_DCDN;
input UART1_DSRN;
input UART1_RIN;
input UART1_RX;
output TTC0_WAVE0_OUT;
output TTC0_WAVE1_OUT;
output TTC0_WAVE2_OUT;
input TTC0_CLK0_IN;
input TTC0_CLK1_IN;
input TTC0_CLK2_IN;
output TTC1_WAVE0_OUT;
output TTC1_WAVE1_OUT;
output TTC1_WAVE2_OUT;
input TTC1_CLK0_IN;
input TTC1_CLK1_IN;
input TTC1_CLK2_IN;
input WDT_CLK_IN;
output WDT_RST_OUT;
input TRACE_CLK;
output TRACE_CTL;
output [31:0] TRACE_DATA;
output [1:0] USB0_PORT_INDCTL;
output [1:0] USB1_PORT_INDCTL;
output USB0_VBUS_PWRSELECT;
output USB1_VBUS_PWRSELECT;
input USB0_VBUS_PWRFAULT;
input USB1_VBUS_PWRFAULT;
input SRAM_INTIN;
output M_AXI_GP0_ARVALID;
output M_AXI_GP0_AWVALID;
output M_AXI_GP0_BREADY;
output M_AXI_GP0_RREADY;
output M_AXI_GP0_WLAST;
output M_AXI_GP0_WVALID;
output [C_M_AXI_GP0_THREAD_ID_WIDTH-1:0] M_AXI_GP0_ARID;
output [C_M_AXI_GP0_THREAD_ID_WIDTH-1:0] M_AXI_GP0_AWID;
output [C_M_AXI_GP0_THREAD_ID_WIDTH-1:0] M_AXI_GP0_WID;
output [1:0] M_AXI_GP0_ARBURST;
output [1:0] M_AXI_GP0_ARLOCK;
output [2:0] M_AXI_GP0_ARSIZE;
output [1:0] M_AXI_GP0_AWBURST;
output [1:0] M_AXI_GP0_AWLOCK;
output [2:0] M_AXI_GP0_AWSIZE;
output [2:0] M_AXI_GP0_ARPROT;
output [2:0] M_AXI_GP0_AWPROT;
output [31:0] M_AXI_GP0_ARADDR;
output [31:0] M_AXI_GP0_AWADDR;
output [31:0] M_AXI_GP0_WDATA;
output [3:0] M_AXI_GP0_ARCACHE;
output [3:0] M_AXI_GP0_ARLEN;
output [3:0] M_AXI_GP0_ARQOS;
output [3:0] M_AXI_GP0_AWCACHE;
output [3:0] M_AXI_GP0_AWLEN;
output [3:0] M_AXI_GP0_AWQOS;
output [3:0] M_AXI_GP0_WSTRB;
input M_AXI_GP0_ACLK;
input M_AXI_GP0_ARREADY;
input M_AXI_GP0_AWREADY;
input M_AXI_GP0_BVALID;
input M_AXI_GP0_RLAST;
input M_AXI_GP0_RVALID;
input M_AXI_GP0_WREADY;
input [C_M_AXI_GP0_THREAD_ID_WIDTH-1:0] M_AXI_GP0_BID;
input [C_M_AXI_GP0_THREAD_ID_WIDTH-1:0] M_AXI_GP0_RID;
input [1:0] M_AXI_GP0_BRESP;
input [1:0] M_AXI_GP0_RRESP;
input [31:0] M_AXI_GP0_RDATA;
output M_AXI_GP1_ARVALID;
output M_AXI_GP1_AWVALID;
output M_AXI_GP1_BREADY;
output M_AXI_GP1_RREADY;
output M_AXI_GP1_WLAST;
output M_AXI_GP1_WVALID;
output [C_M_AXI_GP1_THREAD_ID_WIDTH-1:0] M_AXI_GP1_ARID;
output [C_M_AXI_GP1_THREAD_ID_WIDTH-1:0] M_AXI_GP1_AWID;
output [C_M_AXI_GP1_THREAD_ID_WIDTH-1:0] M_AXI_GP1_WID;
output [1:0] M_AXI_GP1_ARBURST;
output [1:0] M_AXI_GP1_ARLOCK;
output [2:0] M_AXI_GP1_ARSIZE;
output [1:0] M_AXI_GP1_AWBURST;
output [1:0] M_AXI_GP1_AWLOCK;
output [2:0] M_AXI_GP1_AWSIZE;
output [2:0] M_AXI_GP1_ARPROT;
output [2:0] M_AXI_GP1_AWPROT;
output [31:0] M_AXI_GP1_ARADDR;
output [31:0] M_AXI_GP1_AWADDR;
output [31:0] M_AXI_GP1_WDATA;
output [3:0] M_AXI_GP1_ARCACHE;
output [3:0] M_AXI_GP1_ARLEN;
output [3:0] M_AXI_GP1_ARQOS;
output [3:0] M_AXI_GP1_AWCACHE;
output [3:0] M_AXI_GP1_AWLEN;
output [3:0] M_AXI_GP1_AWQOS;
output [3:0] M_AXI_GP1_WSTRB;
input M_AXI_GP1_ACLK;
input M_AXI_GP1_ARREADY;
input M_AXI_GP1_AWREADY;
input M_AXI_GP1_BVALID;
input M_AXI_GP1_RLAST;
input M_AXI_GP1_RVALID;
input M_AXI_GP1_WREADY;
input [C_M_AXI_GP1_THREAD_ID_WIDTH-1:0] M_AXI_GP1_BID;
input [C_M_AXI_GP1_THREAD_ID_WIDTH-1:0] M_AXI_GP1_RID;
input [1:0] M_AXI_GP1_BRESP;
input [1:0] M_AXI_GP1_RRESP;
input [31:0] M_AXI_GP1_RDATA;
output S_AXI_GP0_ARREADY;
output S_AXI_GP0_AWREADY;
output S_AXI_GP0_BVALID;
output S_AXI_GP0_RLAST;
output S_AXI_GP0_RVALID;
output S_AXI_GP0_WREADY;
output [1:0] S_AXI_GP0_BRESP;
output [1:0] S_AXI_GP0_RRESP;
output [31:0] S_AXI_GP0_RDATA;
output [5:0] S_AXI_GP0_BID;
output [5:0] S_AXI_GP0_RID;
input S_AXI_GP0_ACLK;
input S_AXI_GP0_ARVALID;
input S_AXI_GP0_AWVALID;
input S_AXI_GP0_BREADY;
input S_AXI_GP0_RREADY;
input S_AXI_GP0_WLAST;
input S_AXI_GP0_WVALID;
input [1:0] S_AXI_GP0_ARBURST;
input [1:0] S_AXI_GP0_ARLOCK;
input [2:0] S_AXI_GP0_ARSIZE;
input [1:0] S_AXI_GP0_AWBURST;
input [1:0] S_AXI_GP0_AWLOCK;
input [2:0] S_AXI_GP0_AWSIZE;
input [2:0] S_AXI_GP0_ARPROT;
input [2:0] S_AXI_GP0_AWPROT;
input [31:0] S_AXI_GP0_ARADDR;
input [31:0] S_AXI_GP0_AWADDR;
input [31:0] S_AXI_GP0_WDATA;
input [3:0] S_AXI_GP0_ARCACHE;
input [3:0] S_AXI_GP0_ARLEN;
input [3:0] S_AXI_GP0_ARQOS;
input [3:0] S_AXI_GP0_AWCACHE;
input [3:0] S_AXI_GP0_AWLEN;
input [3:0] S_AXI_GP0_AWQOS;
input [3:0] S_AXI_GP0_WSTRB;
input [5:0] S_AXI_GP0_ARID;
input [5:0] S_AXI_GP0_AWID;
input [5:0] S_AXI_GP0_WID;
output S_AXI_GP1_ARREADY;
output S_AXI_GP1_AWREADY;
output S_AXI_GP1_BVALID;
output S_AXI_GP1_RLAST;
output S_AXI_GP1_RVALID;
output S_AXI_GP1_WREADY;
output [1:0] S_AXI_GP1_BRESP;
output [1:0] S_AXI_GP1_RRESP;
output [31:0] S_AXI_GP1_RDATA;
output [5:0] S_AXI_GP1_BID;
output [5:0] S_AXI_GP1_RID;
input S_AXI_GP1_ACLK;
input S_AXI_GP1_ARVALID;
input S_AXI_GP1_AWVALID;
input S_AXI_GP1_BREADY;
input S_AXI_GP1_RREADY;
input S_AXI_GP1_WLAST;
input S_AXI_GP1_WVALID;
input [1:0] S_AXI_GP1_ARBURST;
input [1:0] S_AXI_GP1_ARLOCK;
input [2:0] S_AXI_GP1_ARSIZE;
input [1:0] S_AXI_GP1_AWBURST;
input [1:0] S_AXI_GP1_AWLOCK;
input [2:0] S_AXI_GP1_AWSIZE;
input [2:0] S_AXI_GP1_ARPROT;
input [2:0] S_AXI_GP1_AWPROT;
input [31:0] S_AXI_GP1_ARADDR;
input [31:0] S_AXI_GP1_AWADDR;
input [31:0] S_AXI_GP1_WDATA;
input [3:0] S_AXI_GP1_ARCACHE;
input [3:0] S_AXI_GP1_ARLEN;
input [3:0] S_AXI_GP1_ARQOS;
input [3:0] S_AXI_GP1_AWCACHE;
input [3:0] S_AXI_GP1_AWLEN;
input [3:0] S_AXI_GP1_AWQOS;
input [3:0] S_AXI_GP1_WSTRB;
input [5:0] S_AXI_GP1_ARID;
input [5:0] S_AXI_GP1_AWID;
input [5:0] S_AXI_GP1_WID;
output S_AXI_ACP_AWREADY;
output S_AXI_ACP_ARREADY;
output S_AXI_ACP_BVALID;
output S_AXI_ACP_RLAST;
output S_AXI_ACP_RVALID;
output S_AXI_ACP_WREADY;
output [1:0] S_AXI_ACP_BRESP;
output [1:0] S_AXI_ACP_RRESP;
output [2:0] S_AXI_ACP_BID;
output [2:0] S_AXI_ACP_RID;
output [63:0] S_AXI_ACP_RDATA;
input S_AXI_ACP_ACLK;
input S_AXI_ACP_ARVALID;
input S_AXI_ACP_AWVALID;
input S_AXI_ACP_BREADY;
input S_AXI_ACP_RREADY;
input S_AXI_ACP_WLAST;
input S_AXI_ACP_WVALID;
input [2:0] S_AXI_ACP_ARID;
input [2:0] S_AXI_ACP_ARPROT;
input [2:0] S_AXI_ACP_AWID;
input [2:0] S_AXI_ACP_AWPROT;
input [2:0] S_AXI_ACP_WID;
input [31:0] S_AXI_ACP_ARADDR;
input [31:0] S_AXI_ACP_AWADDR;
input [3:0] S_AXI_ACP_ARCACHE;
input [3:0] S_AXI_ACP_ARLEN;
input [3:0] S_AXI_ACP_ARQOS;
input [3:0] S_AXI_ACP_AWCACHE;
input [3:0] S_AXI_ACP_AWLEN;
input [3:0] S_AXI_ACP_AWQOS;
input [1:0] S_AXI_ACP_ARBURST;
input [1:0] S_AXI_ACP_ARLOCK;
input [2:0] S_AXI_ACP_ARSIZE;
input [1:0] S_AXI_ACP_AWBURST;
input [1:0] S_AXI_ACP_AWLOCK;
input [2:0] S_AXI_ACP_AWSIZE;
input [4:0] S_AXI_ACP_ARUSER;
input [4:0] S_AXI_ACP_AWUSER;
input [63:0] S_AXI_ACP_WDATA;
input [7:0] S_AXI_ACP_WSTRB;
output S_AXI_HP0_ARREADY;
output S_AXI_HP0_AWREADY;
output S_AXI_HP0_BVALID;
output S_AXI_HP0_RLAST;
output S_AXI_HP0_RVALID;
output S_AXI_HP0_WREADY;
output [1:0] S_AXI_HP0_BRESP;
output [1:0] S_AXI_HP0_RRESP;
output [5:0] S_AXI_HP0_BID;
output [5:0] S_AXI_HP0_RID;
output [C_S_AXI_HP0_DATA_WIDTH-1:0] S_AXI_HP0_RDATA;
output [7:0] S_AXI_HP0_RCOUNT;
output [7:0] S_AXI_HP0_WCOUNT;
output [2:0] S_AXI_HP0_RACOUNT;
output [5:0] S_AXI_HP0_WACOUNT;
input S_AXI_HP0_ACLK;
input S_AXI_HP0_ARVALID;
input S_AXI_HP0_AWVALID;
input S_AXI_HP0_BREADY;
input S_AXI_HP0_RDISSUECAP1_EN;
input S_AXI_HP0_RREADY;
input S_AXI_HP0_WLAST;
input S_AXI_HP0_WRISSUECAP1_EN;
input S_AXI_HP0_WVALID;
input [1:0] S_AXI_HP0_ARBURST;
input [1:0] S_AXI_HP0_ARLOCK;
input [2:0] S_AXI_HP0_ARSIZE;
input [1:0] S_AXI_HP0_AWBURST;
input [1:0] S_AXI_HP0_AWLOCK;
input [2:0] S_AXI_HP0_AWSIZE;
input [2:0] S_AXI_HP0_ARPROT;
input [2:0] S_AXI_HP0_AWPROT;
input [31:0] S_AXI_HP0_ARADDR;
input [31:0] S_AXI_HP0_AWADDR;
input [3:0] S_AXI_HP0_ARCACHE;
input [3:0] S_AXI_HP0_ARLEN;
input [3:0] S_AXI_HP0_ARQOS;
input [3:0] S_AXI_HP0_AWCACHE;
input [3:0] S_AXI_HP0_AWLEN;
input [3:0] S_AXI_HP0_AWQOS;
input [5:0] S_AXI_HP0_ARID;
input [5:0] S_AXI_HP0_AWID;
input [5:0] S_AXI_HP0_WID;
input [C_S_AXI_HP0_DATA_WIDTH-1:0] S_AXI_HP0_WDATA;
input [C_S_AXI_HP0_DATA_WIDTH/8-1:0] S_AXI_HP0_WSTRB;
output S_AXI_HP1_ARREADY;
output S_AXI_HP1_AWREADY;
output S_AXI_HP1_BVALID;
output S_AXI_HP1_RLAST;
output S_AXI_HP1_RVALID;
output S_AXI_HP1_WREADY;
output [1:0] S_AXI_HP1_BRESP;
output [1:0] S_AXI_HP1_RRESP;
output [5:0] S_AXI_HP1_BID;
output [5:0] S_AXI_HP1_RID;
output [C_S_AXI_HP1_DATA_WIDTH-1:0] S_AXI_HP1_RDATA;
output [7:0] S_AXI_HP1_RCOUNT;
output [7:0] S_AXI_HP1_WCOUNT;
output [2:0] S_AXI_HP1_RACOUNT;
output [5:0] S_AXI_HP1_WACOUNT;
input S_AXI_HP1_ACLK;
input S_AXI_HP1_ARVALID;
input S_AXI_HP1_AWVALID;
input S_AXI_HP1_BREADY;
input S_AXI_HP1_RDISSUECAP1_EN;
input S_AXI_HP1_RREADY;
input S_AXI_HP1_WLAST;
input S_AXI_HP1_WRISSUECAP1_EN;
input S_AXI_HP1_WVALID;
input [1:0] S_AXI_HP1_ARBURST;
input [1:0] S_AXI_HP1_ARLOCK;
input [2:0] S_AXI_HP1_ARSIZE;
input [1:0] S_AXI_HP1_AWBURST;
input [1:0] S_AXI_HP1_AWLOCK;
input [2:0] S_AXI_HP1_AWSIZE;
input [2:0] S_AXI_HP1_ARPROT;
input [2:0] S_AXI_HP1_AWPROT;
input [31:0] S_AXI_HP1_ARADDR;
input [31:0] S_AXI_HP1_AWADDR;
input [3:0] S_AXI_HP1_ARCACHE;
input [3:0] S_AXI_HP1_ARLEN;
input [3:0] S_AXI_HP1_ARQOS;
input [3:0] S_AXI_HP1_AWCACHE;
input [3:0] S_AXI_HP1_AWLEN;
input [3:0] S_AXI_HP1_AWQOS;
input [5:0] S_AXI_HP1_ARID;
input [5:0] S_AXI_HP1_AWID;
input [5:0] S_AXI_HP1_WID;
input [C_S_AXI_HP1_DATA_WIDTH-1:0] S_AXI_HP1_WDATA;
input [C_S_AXI_HP1_DATA_WIDTH/8-1:0] S_AXI_HP1_WSTRB;
output S_AXI_HP2_ARREADY;
output S_AXI_HP2_AWREADY;
output S_AXI_HP2_BVALID;
output S_AXI_HP2_RLAST;
output S_AXI_HP2_RVALID;
output S_AXI_HP2_WREADY;
output [1:0] S_AXI_HP2_BRESP;
output [1:0] S_AXI_HP2_RRESP;
output [5:0] S_AXI_HP2_BID;
output [5:0] S_AXI_HP2_RID;
output [C_S_AXI_HP2_DATA_WIDTH-1:0] S_AXI_HP2_RDATA;
output [7:0] S_AXI_HP2_RCOUNT;
output [7:0] S_AXI_HP2_WCOUNT;
output [2:0] S_AXI_HP2_RACOUNT;
output [5:0] S_AXI_HP2_WACOUNT;
input S_AXI_HP2_ACLK;
input S_AXI_HP2_ARVALID;
input S_AXI_HP2_AWVALID;
input S_AXI_HP2_BREADY;
input S_AXI_HP2_RDISSUECAP1_EN;
input S_AXI_HP2_RREADY;
input S_AXI_HP2_WLAST;
input S_AXI_HP2_WRISSUECAP1_EN;
input S_AXI_HP2_WVALID;
input [1:0] S_AXI_HP2_ARBURST;
input [1:0] S_AXI_HP2_ARLOCK;
input [2:0] S_AXI_HP2_ARSIZE;
input [1:0] S_AXI_HP2_AWBURST;
input [1:0] S_AXI_HP2_AWLOCK;
input [2:0] S_AXI_HP2_AWSIZE;
input [2:0] S_AXI_HP2_ARPROT;
input [2:0] S_AXI_HP2_AWPROT;
input [31:0] S_AXI_HP2_ARADDR;
input [31:0] S_AXI_HP2_AWADDR;
input [3:0] S_AXI_HP2_ARCACHE;
input [3:0] S_AXI_HP2_ARLEN;
input [3:0] S_AXI_HP2_ARQOS;
input [3:0] S_AXI_HP2_AWCACHE;
input [3:0] S_AXI_HP2_AWLEN;
input [3:0] S_AXI_HP2_AWQOS;
input [5:0] S_AXI_HP2_ARID;
input [5:0] S_AXI_HP2_AWID;
input [5:0] S_AXI_HP2_WID;
input [C_S_AXI_HP2_DATA_WIDTH-1:0] S_AXI_HP2_WDATA;
input [C_S_AXI_HP2_DATA_WIDTH/8-1:0] S_AXI_HP2_WSTRB;
output S_AXI_HP3_ARREADY;
output S_AXI_HP3_AWREADY;
output S_AXI_HP3_BVALID;
output S_AXI_HP3_RLAST;
output S_AXI_HP3_RVALID;
output S_AXI_HP3_WREADY;
output [1:0] S_AXI_HP3_BRESP;
output [1:0] S_AXI_HP3_RRESP;
output [5:0] S_AXI_HP3_BID;
output [5:0] S_AXI_HP3_RID;
output [C_S_AXI_HP3_DATA_WIDTH-1:0] S_AXI_HP3_RDATA;
output [7:0] S_AXI_HP3_RCOUNT;
output [7:0] S_AXI_HP3_WCOUNT;
output [2:0] S_AXI_HP3_RACOUNT;
output [5:0] S_AXI_HP3_WACOUNT;
input S_AXI_HP3_ACLK;
input S_AXI_HP3_ARVALID;
input S_AXI_HP3_AWVALID;
input S_AXI_HP3_BREADY;
input S_AXI_HP3_RDISSUECAP1_EN;
input S_AXI_HP3_RREADY;
input S_AXI_HP3_WLAST;
input S_AXI_HP3_WRISSUECAP1_EN;
input S_AXI_HP3_WVALID;
input [1:0] S_AXI_HP3_ARBURST;
input [1:0] S_AXI_HP3_ARLOCK;
input [2:0] S_AXI_HP3_ARSIZE;
input [1:0] S_AXI_HP3_AWBURST;
input [1:0] S_AXI_HP3_AWLOCK;
input [2:0] S_AXI_HP3_AWSIZE;
input [2:0] S_AXI_HP3_ARPROT;
input [2:0] S_AXI_HP3_AWPROT;
input [31:0] S_AXI_HP3_ARADDR;
input [31:0] S_AXI_HP3_AWADDR;
input [3:0] S_AXI_HP3_ARCACHE;
input [3:0] S_AXI_HP3_ARLEN;
input [3:0] S_AXI_HP3_ARQOS;
input [3:0] S_AXI_HP3_AWCACHE;
input [3:0] S_AXI_HP3_AWLEN;
input [3:0] S_AXI_HP3_AWQOS;
input [5:0] S_AXI_HP3_ARID;
input [5:0] S_AXI_HP3_AWID;
input [5:0] S_AXI_HP3_WID;
input [C_S_AXI_HP3_DATA_WIDTH-1:0] S_AXI_HP3_WDATA;
input [C_S_AXI_HP3_DATA_WIDTH/8-1:0] S_AXI_HP3_WSTRB;
output [1:0] DMA0_DATYPE;
output DMA0_DAVALID;
output DMA0_DRREADY;
input DMA0_ACLK;
input DMA0_DAREADY;
input DMA0_DRLAST;
input DMA0_DRVALID;
input [1:0] DMA0_DRTYPE;
output [1:0] DMA1_DATYPE;
output DMA1_DAVALID;
output DMA1_DRREADY;
input DMA1_ACLK;
input DMA1_DAREADY;
input DMA1_DRLAST;
input DMA1_DRVALID;
input [1:0] DMA1_DRTYPE;
output [1:0] DMA2_DATYPE;
output DMA2_DAVALID;
output DMA2_DRREADY;
input DMA2_ACLK;
input DMA2_DAREADY;
input DMA2_DRLAST;
input DMA2_DRVALID;
input DMA3_DRVALID;
output [1:0] DMA3_DATYPE;
output DMA3_DAVALID;
output DMA3_DRREADY;
input DMA3_ACLK;
input DMA3_DAREADY;
input DMA3_DRLAST;
input [1:0] DMA2_DRTYPE;
input [1:0] DMA3_DRTYPE;
input [31:0] FTMD_TRACEIN_DATA;
input FTMD_TRACEIN_VALID;
input FTMD_TRACEIN_CLK;
input [3:0] FTMD_TRACEIN_ATID;
input [3:0] FTMT_F2P_TRIG;
output [3:0] FTMT_F2P_TRIGACK;
input [31:0] FTMT_F2P_DEBUG;
input [3:0] FTMT_P2F_TRIGACK;
output [3:0] FTMT_P2F_TRIG;
output [31:0] FTMT_P2F_DEBUG;
output FCLK_CLK3;
output FCLK_CLK2;
output FCLK_CLK1;
output FCLK_CLK0;
input FCLK_CLKTRIG3_N;
input FCLK_CLKTRIG2_N;
input FCLK_CLKTRIG1_N;
input FCLK_CLKTRIG0_N;
output FCLK_RESET3_N;
output FCLK_RESET2_N;
output FCLK_RESET1_N;
output FCLK_RESET0_N;
input FPGA_IDLE_N;
input [3:0] DDR_ARB;
input [irq_width-1:0] IRQ_F2P;
input Core0_nFIQ;
input Core0_nIRQ;
input Core1_nFIQ;
input Core1_nIRQ;
output EVENT_EVENTO;
output [1:0] EVENT_STANDBYWFE;
output [1:0] EVENT_STANDBYWFI;
input EVENT_EVENTI;
inout [53:0] MIO;
inout DDR_Clk;
inout DDR_Clk_n;
inout DDR_CKE;
inout DDR_CS_n;
inout DDR_RAS_n;
inout DDR_CAS_n;
output DDR_WEB;
inout [2:0] DDR_BankAddr;
inout [14:0] DDR_Addr;
inout DDR_ODT;
inout DDR_DRSTB;
inout [31:0] DDR_DQ;
inout [3:0] DDR_DM;
inout [3:0] DDR_DQS;
inout [3:0] DDR_DQS_n;
inout DDR_VRN;
inout DDR_VRP;
/* Reset Input & Clock Input */
input PS_SRSTB;
input PS_CLK;
input PS_PORB;
output IRQ_P2F_DMAC_ABORT;
output IRQ_P2F_DMAC0;
output IRQ_P2F_DMAC1;
output IRQ_P2F_DMAC2;
output IRQ_P2F_DMAC3;
output IRQ_P2F_DMAC4;
output IRQ_P2F_DMAC5;
output IRQ_P2F_DMAC6;
output IRQ_P2F_DMAC7;
output IRQ_P2F_SMC;
output IRQ_P2F_QSPI;
output IRQ_P2F_CTI;
output IRQ_P2F_GPIO;
output IRQ_P2F_USB0;
output IRQ_P2F_ENET0;
output IRQ_P2F_ENET_WAKE0;
output IRQ_P2F_SDIO0;
output IRQ_P2F_I2C0;
output IRQ_P2F_SPI0;
output IRQ_P2F_UART0;
output IRQ_P2F_CAN0;
output IRQ_P2F_USB1;
output IRQ_P2F_ENET1;
output IRQ_P2F_ENET_WAKE1;
output IRQ_P2F_SDIO1;
output IRQ_P2F_I2C1;
output IRQ_P2F_SPI1;
output IRQ_P2F_UART1;
output IRQ_P2F_CAN1;
/* Internal wires/nets used for connectivity */
wire net_rstn;
wire net_sw_clk;
wire net_ocm_clk;
wire net_arbiter_clk;
wire net_axi_mgp0_rstn;
wire net_axi_mgp1_rstn;
wire net_axi_gp0_rstn;
wire net_axi_gp1_rstn;
wire net_axi_hp0_rstn;
wire net_axi_hp1_rstn;
wire net_axi_hp2_rstn;
wire net_axi_hp3_rstn;
wire net_axi_acp_rstn;
wire [4:0] net_axi_acp_awuser;
wire [4:0] net_axi_acp_aruser;
/* Dummy */
assign net_axi_acp_awuser = S_AXI_ACP_AWUSER;
assign net_axi_acp_aruser = S_AXI_ACP_ARUSER;
/* Global variables */
reg DEBUG_INFO = 1;
reg STOP_ON_ERROR = 1;
/* local variable acting as semaphore for wait_mem_update and wait_reg_update task */
reg mem_update_key = 1;
reg reg_update_key_0 = 1;
reg reg_update_key_1 = 1;
/* assignments and semantic checks for unused ports */
`include "processing_system7_bfm_v2_0_5_unused_ports.v"
/* include api definition */
`include "processing_system7_bfm_v2_0_5_apis.v"
/* Reset Generator */
processing_system7_bfm_v2_0_5_gen_reset gen_rst(.por_rst_n(PS_PORB),
.sys_rst_n(PS_SRSTB),
.rst_out_n(net_rstn),
.m_axi_gp0_clk(M_AXI_GP0_ACLK),
.m_axi_gp1_clk(M_AXI_GP1_ACLK),
.s_axi_gp0_clk(S_AXI_GP0_ACLK),
.s_axi_gp1_clk(S_AXI_GP1_ACLK),
.s_axi_hp0_clk(S_AXI_HP0_ACLK),
.s_axi_hp1_clk(S_AXI_HP1_ACLK),
.s_axi_hp2_clk(S_AXI_HP2_ACLK),
.s_axi_hp3_clk(S_AXI_HP3_ACLK),
.s_axi_acp_clk(S_AXI_ACP_ACLK),
.m_axi_gp0_rstn(net_axi_mgp0_rstn),
.m_axi_gp1_rstn(net_axi_mgp1_rstn),
.s_axi_gp0_rstn(net_axi_gp0_rstn),
.s_axi_gp1_rstn(net_axi_gp1_rstn),
.s_axi_hp0_rstn(net_axi_hp0_rstn),
.s_axi_hp1_rstn(net_axi_hp1_rstn),
.s_axi_hp2_rstn(net_axi_hp2_rstn),
.s_axi_hp3_rstn(net_axi_hp3_rstn),
.s_axi_acp_rstn(net_axi_acp_rstn),
.fclk_reset3_n(FCLK_RESET3_N),
.fclk_reset2_n(FCLK_RESET2_N),
.fclk_reset1_n(FCLK_RESET1_N),
.fclk_reset0_n(FCLK_RESET0_N),
.fpga_acp_reset_n(), ////S_AXI_ACP_ARESETN), (These are removed from Zynq IP)
.fpga_gp_m0_reset_n(), ////M_AXI_GP0_ARESETN),
.fpga_gp_m1_reset_n(), ////M_AXI_GP1_ARESETN),
.fpga_gp_s0_reset_n(), ////S_AXI_GP0_ARESETN),
.fpga_gp_s1_reset_n(), ////S_AXI_GP1_ARESETN),
.fpga_hp_s0_reset_n(), ////S_AXI_HP0_ARESETN),
.fpga_hp_s1_reset_n(), ////S_AXI_HP1_ARESETN),
.fpga_hp_s2_reset_n(), ////S_AXI_HP2_ARESETN),
.fpga_hp_s3_reset_n() ////S_AXI_HP3_ARESETN)
);
/* Clock Generator */
processing_system7_bfm_v2_0_5_gen_clock #(C_FCLK_CLK3_FREQ, C_FCLK_CLK2_FREQ, C_FCLK_CLK1_FREQ, C_FCLK_CLK0_FREQ)
gen_clk(.ps_clk(PS_CLK),
.sw_clk(net_sw_clk),
.fclk_clk3(FCLK_CLK3),
.fclk_clk2(FCLK_CLK2),
.fclk_clk1(FCLK_CLK1),
.fclk_clk0(FCLK_CLK0)
);
wire net_wr_ack_ocm_gp0, net_wr_ack_ddr_gp0, net_wr_ack_ocm_gp1, net_wr_ack_ddr_gp1;
wire net_wr_dv_ocm_gp0, net_wr_dv_ddr_gp0, net_wr_dv_ocm_gp1, net_wr_dv_ddr_gp1;
wire [max_burst_bits-1:0] net_wr_data_gp0, net_wr_data_gp1;
wire [addr_width-1:0] net_wr_addr_gp0, net_wr_addr_gp1;
wire [max_burst_bytes_width:0] net_wr_bytes_gp0, net_wr_bytes_gp1;
wire [axi_qos_width-1:0] net_wr_qos_gp0, net_wr_qos_gp1;
wire net_rd_req_ddr_gp0, net_rd_req_ddr_gp1;
wire net_rd_req_ocm_gp0, net_rd_req_ocm_gp1;
wire net_rd_req_reg_gp0, net_rd_req_reg_gp1;
wire [addr_width-1:0] net_rd_addr_gp0, net_rd_addr_gp1;
wire [max_burst_bytes_width:0] net_rd_bytes_gp0, net_rd_bytes_gp1;
wire [max_burst_bits-1:0] net_rd_data_ddr_gp0, net_rd_data_ddr_gp1;
wire [max_burst_bits-1:0] net_rd_data_ocm_gp0, net_rd_data_ocm_gp1;
wire [max_burst_bits-1:0] net_rd_data_reg_gp0, net_rd_data_reg_gp1;
wire net_rd_dv_ddr_gp0, net_rd_dv_ddr_gp1;
wire net_rd_dv_ocm_gp0, net_rd_dv_ocm_gp1;
wire net_rd_dv_reg_gp0, net_rd_dv_reg_gp1;
wire [axi_qos_width-1:0] net_rd_qos_gp0, net_rd_qos_gp1;
wire net_wr_ack_ddr_hp0, net_wr_ack_ddr_hp1, net_wr_ack_ddr_hp2, net_wr_ack_ddr_hp3;
wire net_wr_ack_ocm_hp0, net_wr_ack_ocm_hp1, net_wr_ack_ocm_hp2, net_wr_ack_ocm_hp3;
wire net_wr_dv_ddr_hp0, net_wr_dv_ddr_hp1, net_wr_dv_ddr_hp2, net_wr_dv_ddr_hp3;
wire net_wr_dv_ocm_hp0, net_wr_dv_ocm_hp1, net_wr_dv_ocm_hp2, net_wr_dv_ocm_hp3;
wire [max_burst_bits-1:0] net_wr_data_hp0, net_wr_data_hp1, net_wr_data_hp2, net_wr_data_hp3;
wire [addr_width-1:0] net_wr_addr_hp0, net_wr_addr_hp1, net_wr_addr_hp2, net_wr_addr_hp3;
wire [max_burst_bytes_width:0] net_wr_bytes_hp0, net_wr_bytes_hp1, net_wr_bytes_hp2, net_wr_bytes_hp3;
wire [axi_qos_width-1:0] net_wr_qos_hp0, net_wr_qos_hp1, net_wr_qos_hp2, net_wr_qos_hp3;
wire net_rd_req_ddr_hp0, net_rd_req_ddr_hp1, net_rd_req_ddr_hp2, net_rd_req_ddr_hp3;
wire net_rd_req_ocm_hp0, net_rd_req_ocm_hp1, net_rd_req_ocm_hp2, net_rd_req_ocm_hp3;
wire [addr_width-1:0] net_rd_addr_hp0, net_rd_addr_hp1, net_rd_addr_hp2, net_rd_addr_hp3;
wire [max_burst_bytes_width:0] net_rd_bytes_hp0, net_rd_bytes_hp1, net_rd_bytes_hp2, net_rd_bytes_hp3;
wire [max_burst_bits-1:0] net_rd_data_ddr_hp0, net_rd_data_ddr_hp1, net_rd_data_ddr_hp2, net_rd_data_ddr_hp3;
wire [max_burst_bits-1:0] net_rd_data_ocm_hp0, net_rd_data_ocm_hp1, net_rd_data_ocm_hp2, net_rd_data_ocm_hp3;
wire net_rd_dv_ddr_hp0, net_rd_dv_ddr_hp1, net_rd_dv_ddr_hp2, net_rd_dv_ddr_hp3;
wire net_rd_dv_ocm_hp0, net_rd_dv_ocm_hp1, net_rd_dv_ocm_hp2, net_rd_dv_ocm_hp3;
wire [axi_qos_width-1:0] net_rd_qos_hp0, net_rd_qos_hp1, net_rd_qos_hp2, net_rd_qos_hp3;
wire net_wr_ack_ddr_acp,net_wr_ack_ocm_acp;
wire net_wr_dv_ddr_acp,net_wr_dv_ocm_acp;
wire [max_burst_bits-1:0] net_wr_data_acp;
wire [addr_width-1:0] net_wr_addr_acp;
wire [max_burst_bytes_width:0] net_wr_bytes_acp;
wire [axi_qos_width-1:0] net_wr_qos_acp;
wire net_rd_req_ddr_acp, net_rd_req_ocm_acp;
wire [addr_width-1:0] net_rd_addr_acp;
wire [max_burst_bytes_width:0] net_rd_bytes_acp;
wire [max_burst_bits-1:0] net_rd_data_ddr_acp;
wire [max_burst_bits-1:0] net_rd_data_ocm_acp;
wire net_rd_dv_ddr_acp,net_rd_dv_ocm_acp;
wire [axi_qos_width-1:0] net_rd_qos_acp;
wire ocm_wr_ack_port0;
wire ocm_wr_dv_port0;
wire ocm_rd_req_port0;
wire ocm_rd_dv_port0;
wire [addr_width-1:0] ocm_wr_addr_port0;
wire [max_burst_bits-1:0] ocm_wr_data_port0;
wire [max_burst_bytes_width:0] ocm_wr_bytes_port0;
wire [addr_width-1:0] ocm_rd_addr_port0;
wire [max_burst_bits-1:0] ocm_rd_data_port0;
wire [max_burst_bytes_width:0] ocm_rd_bytes_port0;
wire [axi_qos_width-1:0] ocm_wr_qos_port0;
wire [axi_qos_width-1:0] ocm_rd_qos_port0;
wire ocm_wr_ack_port1;
wire ocm_wr_dv_port1;
wire ocm_rd_req_port1;
wire ocm_rd_dv_port1;
wire [addr_width-1:0] ocm_wr_addr_port1;
wire [max_burst_bits-1:0] ocm_wr_data_port1;
wire [max_burst_bytes_width:0] ocm_wr_bytes_port1;
wire [addr_width-1:0] ocm_rd_addr_port1;
wire [max_burst_bits-1:0] ocm_rd_data_port1;
wire [max_burst_bytes_width:0] ocm_rd_bytes_port1;
wire [axi_qos_width-1:0] ocm_wr_qos_port1;
wire [axi_qos_width-1:0] ocm_rd_qos_port1;
wire ddr_wr_ack_port0;
wire ddr_wr_dv_port0;
wire ddr_rd_req_port0;
wire ddr_rd_dv_port0;
wire[addr_width-1:0] ddr_wr_addr_port0;
wire[max_burst_bits-1:0] ddr_wr_data_port0;
wire[max_burst_bytes_width:0] ddr_wr_bytes_port0;
wire[addr_width-1:0] ddr_rd_addr_port0;
wire[max_burst_bits-1:0] ddr_rd_data_port0;
wire[max_burst_bytes_width:0] ddr_rd_bytes_port0;
wire [axi_qos_width-1:0] ddr_wr_qos_port0;
wire [axi_qos_width-1:0] ddr_rd_qos_port0;
wire ddr_wr_ack_port1;
wire ddr_wr_dv_port1;
wire ddr_rd_req_port1;
wire ddr_rd_dv_port1;
wire[addr_width-1:0] ddr_wr_addr_port1;
wire[max_burst_bits-1:0] ddr_wr_data_port1;
wire[max_burst_bytes_width:0] ddr_wr_bytes_port1;
wire[addr_width-1:0] ddr_rd_addr_port1;
wire[max_burst_bits-1:0] ddr_rd_data_port1;
wire[max_burst_bytes_width:0] ddr_rd_bytes_port1;
wire[axi_qos_width-1:0] ddr_wr_qos_port1;
wire[axi_qos_width-1:0] ddr_rd_qos_port1;
wire ddr_wr_ack_port2;
wire ddr_wr_dv_port2;
wire ddr_rd_req_port2;
wire ddr_rd_dv_port2;
wire[addr_width-1:0] ddr_wr_addr_port2;
wire[max_burst_bits-1:0] ddr_wr_data_port2;
wire[max_burst_bytes_width:0] ddr_wr_bytes_port2;
wire[addr_width-1:0] ddr_rd_addr_port2;
wire[max_burst_bits-1:0] ddr_rd_data_port2;
wire[max_burst_bytes_width:0] ddr_rd_bytes_port2;
wire[axi_qos_width-1:0] ddr_wr_qos_port2;
wire[axi_qos_width-1:0] ddr_rd_qos_port2;
wire ddr_wr_ack_port3;
wire ddr_wr_dv_port3;
wire ddr_rd_req_port3;
wire ddr_rd_dv_port3;
wire[addr_width-1:0] ddr_wr_addr_port3;
wire[max_burst_bits-1:0] ddr_wr_data_port3;
wire[max_burst_bytes_width:0] ddr_wr_bytes_port3;
wire[addr_width-1:0] ddr_rd_addr_port3;
wire[max_burst_bits-1:0] ddr_rd_data_port3;
wire[max_burst_bytes_width:0] ddr_rd_bytes_port3;
wire[axi_qos_width-1:0] ddr_wr_qos_port3;
wire[axi_qos_width-1:0] ddr_rd_qos_port3;
wire reg_rd_req_port0;
wire reg_rd_dv_port0;
wire[addr_width-1:0] reg_rd_addr_port0;
wire[max_burst_bits-1:0] reg_rd_data_port0;
wire[max_burst_bytes_width:0] reg_rd_bytes_port0;
wire [axi_qos_width-1:0] reg_rd_qos_port0;
wire reg_rd_req_port1;
wire reg_rd_dv_port1;
wire[addr_width-1:0] reg_rd_addr_port1;
wire[max_burst_bits-1:0] reg_rd_data_port1;
wire[max_burst_bytes_width:0] reg_rd_bytes_port1;
wire [axi_qos_width-1:0] reg_rd_qos_port1;
wire [11:0] M_AXI_GP0_AWID_FULL;
wire [11:0] M_AXI_GP0_WID_FULL;
wire [11:0] M_AXI_GP0_ARID_FULL;
wire [11:0] M_AXI_GP0_BID_FULL;
wire [11:0] M_AXI_GP0_RID_FULL;
wire [11:0] M_AXI_GP1_AWID_FULL;
wire [11:0] M_AXI_GP1_WID_FULL;
wire [11:0] M_AXI_GP1_ARID_FULL;
wire [11:0] M_AXI_GP1_BID_FULL;
wire [11:0] M_AXI_GP1_RID_FULL;
function [5:0] compress_id;
input [11:0] id;
begin
compress_id = id[5:0];
end
endfunction
function [11:0] uncompress_id;
input [5:0] id;
begin
uncompress_id = {6'b110000, id[5:0]};
end
endfunction
assign M_AXI_GP0_AWID = (C_M_AXI_GP0_ENABLE_STATIC_REMAP == 1) ? compress_id(M_AXI_GP0_AWID_FULL) : M_AXI_GP0_AWID_FULL;
assign M_AXI_GP0_WID = (C_M_AXI_GP0_ENABLE_STATIC_REMAP == 1) ? compress_id(M_AXI_GP0_WID_FULL) : M_AXI_GP0_WID_FULL;
assign M_AXI_GP0_ARID = (C_M_AXI_GP0_ENABLE_STATIC_REMAP == 1) ? compress_id(M_AXI_GP0_ARID_FULL) : M_AXI_GP0_ARID_FULL;
assign M_AXI_GP0_BID_FULL = (C_M_AXI_GP0_ENABLE_STATIC_REMAP == 1) ? uncompress_id(M_AXI_GP0_BID) : M_AXI_GP0_BID;
assign M_AXI_GP0_RID_FULL = (C_M_AXI_GP0_ENABLE_STATIC_REMAP == 1) ? uncompress_id(M_AXI_GP0_RID) : M_AXI_GP0_RID;
assign M_AXI_GP1_AWID = (C_M_AXI_GP1_ENABLE_STATIC_REMAP == 1) ? compress_id(M_AXI_GP1_AWID_FULL) : M_AXI_GP1_AWID_FULL;
assign M_AXI_GP1_WID = (C_M_AXI_GP1_ENABLE_STATIC_REMAP == 1) ? compress_id(M_AXI_GP1_WID_FULL) : M_AXI_GP1_WID_FULL;
assign M_AXI_GP1_ARID = (C_M_AXI_GP1_ENABLE_STATIC_REMAP == 1) ? compress_id(M_AXI_GP1_ARID_FULL) : M_AXI_GP1_ARID_FULL;
assign M_AXI_GP1_BID_FULL = (C_M_AXI_GP1_ENABLE_STATIC_REMAP == 1) ? uncompress_id(M_AXI_GP1_BID) : M_AXI_GP1_BID;
assign M_AXI_GP1_RID_FULL = (C_M_AXI_GP1_ENABLE_STATIC_REMAP == 1) ? uncompress_id(M_AXI_GP1_RID) : M_AXI_GP1_RID;
processing_system7_bfm_v2_0_5_interconnect_model icm (
.rstn(net_rstn),
.sw_clk(net_sw_clk),
.w_qos_gp0(net_wr_qos_gp0),
.w_qos_gp1(net_wr_qos_gp1),
.w_qos_hp0(net_wr_qos_hp0),
.w_qos_hp1(net_wr_qos_hp1),
.w_qos_hp2(net_wr_qos_hp2),
.w_qos_hp3(net_wr_qos_hp3),
.r_qos_gp0(net_rd_qos_gp0),
.r_qos_gp1(net_rd_qos_gp1),
.r_qos_hp0(net_rd_qos_hp0),
.r_qos_hp1(net_rd_qos_hp1),
.r_qos_hp2(net_rd_qos_hp2),
.r_qos_hp3(net_rd_qos_hp3),
/* GP Slave ports access */
.wr_ack_ddr_gp0(net_wr_ack_ddr_gp0),
.wr_ack_ocm_gp0(net_wr_ack_ocm_gp0),
.wr_data_gp0(net_wr_data_gp0),
.wr_addr_gp0(net_wr_addr_gp0),
.wr_bytes_gp0(net_wr_bytes_gp0),
.wr_dv_ddr_gp0(net_wr_dv_ddr_gp0),
.wr_dv_ocm_gp0(net_wr_dv_ocm_gp0),
.rd_req_ddr_gp0(net_rd_req_ddr_gp0),
.rd_req_ocm_gp0(net_rd_req_ocm_gp0),
.rd_req_reg_gp0(net_rd_req_reg_gp0),
.rd_addr_gp0(net_rd_addr_gp0),
.rd_bytes_gp0(net_rd_bytes_gp0),
.rd_data_ddr_gp0(net_rd_data_ddr_gp0),
.rd_data_ocm_gp0(net_rd_data_ocm_gp0),
.rd_data_reg_gp0(net_rd_data_reg_gp0),
.rd_dv_ddr_gp0(net_rd_dv_ddr_gp0),
.rd_dv_ocm_gp0(net_rd_dv_ocm_gp0),
.rd_dv_reg_gp0(net_rd_dv_reg_gp0),
.wr_ack_ddr_gp1(net_wr_ack_ddr_gp1),
.wr_ack_ocm_gp1(net_wr_ack_ocm_gp1),
.wr_data_gp1(net_wr_data_gp1),
.wr_addr_gp1(net_wr_addr_gp1),
.wr_bytes_gp1(net_wr_bytes_gp1),
.wr_dv_ddr_gp1(net_wr_dv_ddr_gp1),
.wr_dv_ocm_gp1(net_wr_dv_ocm_gp1),
.rd_req_ddr_gp1(net_rd_req_ddr_gp1),
.rd_req_ocm_gp1(net_rd_req_ocm_gp1),
.rd_req_reg_gp1(net_rd_req_reg_gp1),
.rd_addr_gp1(net_rd_addr_gp1),
.rd_bytes_gp1(net_rd_bytes_gp1),
.rd_data_ddr_gp1(net_rd_data_ddr_gp1),
.rd_data_ocm_gp1(net_rd_data_ocm_gp1),
.rd_data_reg_gp1(net_rd_data_reg_gp1),
.rd_dv_ddr_gp1(net_rd_dv_ddr_gp1),
.rd_dv_ocm_gp1(net_rd_dv_ocm_gp1),
.rd_dv_reg_gp1(net_rd_dv_reg_gp1),
/* HP Slave ports access */
.wr_ack_ddr_hp0(net_wr_ack_ddr_hp0),
.wr_ack_ocm_hp0(net_wr_ack_ocm_hp0),
.wr_data_hp0(net_wr_data_hp0),
.wr_addr_hp0(net_wr_addr_hp0),
.wr_bytes_hp0(net_wr_bytes_hp0),
.wr_dv_ddr_hp0(net_wr_dv_ddr_hp0),
.wr_dv_ocm_hp0(net_wr_dv_ocm_hp0),
.rd_req_ddr_hp0(net_rd_req_ddr_hp0),
.rd_req_ocm_hp0(net_rd_req_ocm_hp0),
.rd_addr_hp0(net_rd_addr_hp0),
.rd_bytes_hp0(net_rd_bytes_hp0),
.rd_data_ddr_hp0(net_rd_data_ddr_hp0),
.rd_data_ocm_hp0(net_rd_data_ocm_hp0),
.rd_dv_ddr_hp0(net_rd_dv_ddr_hp0),
.rd_dv_ocm_hp0(net_rd_dv_ocm_hp0),
.wr_ack_ddr_hp1(net_wr_ack_ddr_hp1),
.wr_ack_ocm_hp1(net_wr_ack_ocm_hp1),
.wr_data_hp1(net_wr_data_hp1),
.wr_addr_hp1(net_wr_addr_hp1),
.wr_bytes_hp1(net_wr_bytes_hp1),
.wr_dv_ddr_hp1(net_wr_dv_ddr_hp1),
.wr_dv_ocm_hp1(net_wr_dv_ocm_hp1),
.rd_req_ddr_hp1(net_rd_req_ddr_hp1),
.rd_req_ocm_hp1(net_rd_req_ocm_hp1),
.rd_addr_hp1(net_rd_addr_hp1),
.rd_bytes_hp1(net_rd_bytes_hp1),
.rd_data_ddr_hp1(net_rd_data_ddr_hp1),
.rd_data_ocm_hp1(net_rd_data_ocm_hp1),
.rd_dv_ocm_hp1(net_rd_dv_ocm_hp1),
.rd_dv_ddr_hp1(net_rd_dv_ddr_hp1),
.wr_ack_ddr_hp2(net_wr_ack_ddr_hp2),
.wr_ack_ocm_hp2(net_wr_ack_ocm_hp2),
.wr_data_hp2(net_wr_data_hp2),
.wr_addr_hp2(net_wr_addr_hp2),
.wr_bytes_hp2(net_wr_bytes_hp2),
.wr_dv_ocm_hp2(net_wr_dv_ocm_hp2),
.wr_dv_ddr_hp2(net_wr_dv_ddr_hp2),
.rd_req_ddr_hp2(net_rd_req_ddr_hp2),
.rd_req_ocm_hp2(net_rd_req_ocm_hp2),
.rd_addr_hp2(net_rd_addr_hp2),
.rd_bytes_hp2(net_rd_bytes_hp2),
.rd_data_ddr_hp2(net_rd_data_ddr_hp2),
.rd_data_ocm_hp2(net_rd_data_ocm_hp2),
.rd_dv_ddr_hp2(net_rd_dv_ddr_hp2),
.rd_dv_ocm_hp2(net_rd_dv_ocm_hp2),
.wr_ack_ocm_hp3(net_wr_ack_ocm_hp3),
.wr_ack_ddr_hp3(net_wr_ack_ddr_hp3),
.wr_data_hp3(net_wr_data_hp3),
.wr_addr_hp3(net_wr_addr_hp3),
.wr_bytes_hp3(net_wr_bytes_hp3),
.wr_dv_ddr_hp3(net_wr_dv_ddr_hp3),
.wr_dv_ocm_hp3(net_wr_dv_ocm_hp3),
.rd_req_ddr_hp3(net_rd_req_ddr_hp3),
.rd_req_ocm_hp3(net_rd_req_ocm_hp3),
.rd_addr_hp3(net_rd_addr_hp3),
.rd_bytes_hp3(net_rd_bytes_hp3),
.rd_data_ddr_hp3(net_rd_data_ddr_hp3),
.rd_data_ocm_hp3(net_rd_data_ocm_hp3),
.rd_dv_ddr_hp3(net_rd_dv_ddr_hp3),
.rd_dv_ocm_hp3(net_rd_dv_ocm_hp3),
/* Goes to port 1 of DDR */
.ddr_wr_ack_port1(ddr_wr_ack_port1),
.ddr_wr_dv_port1(ddr_wr_dv_port1),
.ddr_rd_req_port1(ddr_rd_req_port1),
.ddr_rd_dv_port1 (ddr_rd_dv_port1),
.ddr_wr_addr_port1(ddr_wr_addr_port1),
.ddr_wr_data_port1(ddr_wr_data_port1),
.ddr_wr_bytes_port1(ddr_wr_bytes_port1),
.ddr_rd_addr_port1(ddr_rd_addr_port1),
.ddr_rd_data_port1(ddr_rd_data_port1),
.ddr_rd_bytes_port1(ddr_rd_bytes_port1),
.ddr_wr_qos_port1(ddr_wr_qos_port1),
.ddr_rd_qos_port1(ddr_rd_qos_port1),
/* Goes to port2 of DDR */
.ddr_wr_ack_port2 (ddr_wr_ack_port2),
.ddr_wr_dv_port2 (ddr_wr_dv_port2),
.ddr_rd_req_port2 (ddr_rd_req_port2),
.ddr_rd_dv_port2 (ddr_rd_dv_port2),
.ddr_wr_addr_port2(ddr_wr_addr_port2),
.ddr_wr_data_port2(ddr_wr_data_port2),
.ddr_wr_bytes_port2(ddr_wr_bytes_port2),
.ddr_rd_addr_port2(ddr_rd_addr_port2),
.ddr_rd_data_port2(ddr_rd_data_port2),
.ddr_rd_bytes_port2(ddr_rd_bytes_port2),
.ddr_wr_qos_port2 (ddr_wr_qos_port2),
.ddr_rd_qos_port2 (ddr_rd_qos_port2),
/* Goes to port3 of DDR */
.ddr_wr_ack_port3 (ddr_wr_ack_port3),
.ddr_wr_dv_port3 (ddr_wr_dv_port3),
.ddr_rd_req_port3 (ddr_rd_req_port3),
.ddr_rd_dv_port3 (ddr_rd_dv_port3),
.ddr_wr_addr_port3(ddr_wr_addr_port3),
.ddr_wr_data_port3(ddr_wr_data_port3),
.ddr_wr_bytes_port3(ddr_wr_bytes_port3),
.ddr_rd_addr_port3(ddr_rd_addr_port3),
.ddr_rd_data_port3(ddr_rd_data_port3),
.ddr_rd_bytes_port3(ddr_rd_bytes_port3),
.ddr_wr_qos_port3 (ddr_wr_qos_port3),
.ddr_rd_qos_port3 (ddr_rd_qos_port3),
/* Goes to port 0 of OCM */
.ocm_wr_ack_port1 (ocm_wr_ack_port1),
.ocm_wr_dv_port1 (ocm_wr_dv_port1),
.ocm_rd_req_port1 (ocm_rd_req_port1),
.ocm_rd_dv_port1 (ocm_rd_dv_port1),
.ocm_wr_addr_port1(ocm_wr_addr_port1),
.ocm_wr_data_port1(ocm_wr_data_port1),
.ocm_wr_bytes_port1(ocm_wr_bytes_port1),
.ocm_rd_addr_port1(ocm_rd_addr_port1),
.ocm_rd_data_port1(ocm_rd_data_port1),
.ocm_rd_bytes_port1(ocm_rd_bytes_port1),
.ocm_wr_qos_port1(ocm_wr_qos_port1),
.ocm_rd_qos_port1(ocm_rd_qos_port1),
/* Goes to port 0 of REG */
.reg_rd_qos_port1 (reg_rd_qos_port1) ,
.reg_rd_req_port1 (reg_rd_req_port1),
.reg_rd_dv_port1 (reg_rd_dv_port1),
.reg_rd_addr_port1(reg_rd_addr_port1),
.reg_rd_data_port1(reg_rd_data_port1),
.reg_rd_bytes_port1(reg_rd_bytes_port1)
);
processing_system7_bfm_v2_0_5_ddrc ddrc (
.rstn(net_rstn),
.sw_clk(net_sw_clk),
/* Goes to port 0 of DDR */
.ddr_wr_ack_port0 (ddr_wr_ack_port0),
.ddr_wr_dv_port0 (ddr_wr_dv_port0),
.ddr_rd_req_port0 (ddr_rd_req_port0),
.ddr_rd_dv_port0 (ddr_rd_dv_port0),
.ddr_wr_addr_port0(net_wr_addr_acp),
.ddr_wr_data_port0(net_wr_data_acp),
.ddr_wr_bytes_port0(net_wr_bytes_acp),
.ddr_rd_addr_port0(net_rd_addr_acp),
.ddr_rd_bytes_port0(net_rd_bytes_acp),
.ddr_rd_data_port0(ddr_rd_data_port0),
.ddr_wr_qos_port0 (net_wr_qos_acp),
.ddr_rd_qos_port0 (net_rd_qos_acp),
/* Goes to port 1 of DDR */
.ddr_wr_ack_port1 (ddr_wr_ack_port1),
.ddr_wr_dv_port1 (ddr_wr_dv_port1),
.ddr_rd_req_port1 (ddr_rd_req_port1),
.ddr_rd_dv_port1 (ddr_rd_dv_port1),
.ddr_wr_addr_port1(ddr_wr_addr_port1),
.ddr_wr_data_port1(ddr_wr_data_port1),
.ddr_wr_bytes_port1(ddr_wr_bytes_port1),
.ddr_rd_addr_port1(ddr_rd_addr_port1),
.ddr_rd_data_port1(ddr_rd_data_port1),
.ddr_rd_bytes_port1(ddr_rd_bytes_port1),
.ddr_wr_qos_port1 (ddr_wr_qos_port1),
.ddr_rd_qos_port1 (ddr_rd_qos_port1),
/* Goes to port2 of DDR */
.ddr_wr_ack_port2 (ddr_wr_ack_port2),
.ddr_wr_dv_port2 (ddr_wr_dv_port2),
.ddr_rd_req_port2 (ddr_rd_req_port2),
.ddr_rd_dv_port2 (ddr_rd_dv_port2),
.ddr_wr_addr_port2(ddr_wr_addr_port2),
.ddr_wr_data_port2(ddr_wr_data_port2),
.ddr_wr_bytes_port2(ddr_wr_bytes_port2),
.ddr_rd_addr_port2(ddr_rd_addr_port2),
.ddr_rd_data_port2(ddr_rd_data_port2),
.ddr_rd_bytes_port2(ddr_rd_bytes_port2),
.ddr_wr_qos_port2 (ddr_wr_qos_port2),
.ddr_rd_qos_port2 (ddr_rd_qos_port2),
/* Goes to port3 of DDR */
.ddr_wr_ack_port3 (ddr_wr_ack_port3),
.ddr_wr_dv_port3 (ddr_wr_dv_port3),
.ddr_rd_req_port3 (ddr_rd_req_port3),
.ddr_rd_dv_port3 (ddr_rd_dv_port3),
.ddr_wr_addr_port3(ddr_wr_addr_port3),
.ddr_wr_data_port3(ddr_wr_data_port3),
.ddr_wr_bytes_port3(ddr_wr_bytes_port3),
.ddr_rd_addr_port3(ddr_rd_addr_port3),
.ddr_rd_data_port3(ddr_rd_data_port3),
.ddr_rd_bytes_port3(ddr_rd_bytes_port3),
.ddr_wr_qos_port3 (ddr_wr_qos_port3),
.ddr_rd_qos_port3 (ddr_rd_qos_port3)
);
processing_system7_bfm_v2_0_5_ocmc ocmc (
.rstn(net_rstn),
.sw_clk(net_sw_clk),
/* Goes to port 0 of OCM */
.ocm_wr_ack_port0 (ocm_wr_ack_port0),
.ocm_wr_dv_port0 (ocm_wr_dv_port0),
.ocm_rd_req_port0 (ocm_rd_req_port0),
.ocm_rd_dv_port0 (ocm_rd_dv_port0),
.ocm_wr_addr_port0(net_wr_addr_acp),
.ocm_wr_data_port0(net_wr_data_acp),
.ocm_wr_bytes_port0(net_wr_bytes_acp),
.ocm_rd_addr_port0(net_rd_addr_acp),
.ocm_rd_bytes_port0(net_rd_bytes_acp),
.ocm_rd_data_port0(ocm_rd_data_port0),
.ocm_wr_qos_port0 (net_wr_qos_acp),
.ocm_rd_qos_port0 (net_rd_qos_acp),
/* Goes to port 1 of OCM */
.ocm_wr_ack_port1 (ocm_wr_ack_port1),
.ocm_wr_dv_port1 (ocm_wr_dv_port1),
.ocm_rd_req_port1 (ocm_rd_req_port1),
.ocm_rd_dv_port1 (ocm_rd_dv_port1),
.ocm_wr_addr_port1(ocm_wr_addr_port1),
.ocm_wr_data_port1(ocm_wr_data_port1),
.ocm_wr_bytes_port1(ocm_wr_bytes_port1),
.ocm_rd_addr_port1(ocm_rd_addr_port1),
.ocm_rd_data_port1(ocm_rd_data_port1),
.ocm_rd_bytes_port1(ocm_rd_bytes_port1),
.ocm_wr_qos_port1(ocm_wr_qos_port1),
.ocm_rd_qos_port1(ocm_rd_qos_port1)
);
processing_system7_bfm_v2_0_5_regc regc (
.rstn(net_rstn),
.sw_clk(net_sw_clk),
/* Goes to port 0 of REG */
.reg_rd_req_port0 (reg_rd_req_port0),
.reg_rd_dv_port0 (reg_rd_dv_port0),
.reg_rd_addr_port0(net_rd_addr_acp),
.reg_rd_bytes_port0(net_rd_bytes_acp),
.reg_rd_data_port0(reg_rd_data_port0),
.reg_rd_qos_port0 (net_rd_qos_acp),
/* Goes to port 1 of REG */
.reg_rd_req_port1 (reg_rd_req_port1),
.reg_rd_dv_port1 (reg_rd_dv_port1),
.reg_rd_addr_port1(reg_rd_addr_port1),
.reg_rd_data_port1(reg_rd_data_port1),
.reg_rd_bytes_port1(reg_rd_bytes_port1),
.reg_rd_qos_port1(reg_rd_qos_port1)
);
/* include axi_gp port instantiations */
`include "processing_system7_bfm_v2_0_5_axi_gp.v"
/* include axi_hp port instantiations */
`include "processing_system7_bfm_v2_0_5_axi_hp.v"
/* include axi_acp port instantiations */
`include "processing_system7_bfm_v2_0_5_axi_acp.v"
endmodule
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_processing_system7_bfm.v
*
* Date : 2012-11
*
* Description : Processing_system7_bfm Top (zynq_bfm top)
*
*****************************************************************************/
`timescale 1ns/1ps
module processing_system7_bfm_v2_0_5_processing_system7_bfm
(
CAN0_PHY_TX,
CAN0_PHY_RX,
CAN1_PHY_TX,
CAN1_PHY_RX,
ENET0_GMII_TX_EN,
ENET0_GMII_TX_ER,
ENET0_MDIO_MDC,
ENET0_MDIO_O,
ENET0_MDIO_T,
ENET0_PTP_DELAY_REQ_RX,
ENET0_PTP_DELAY_REQ_TX,
ENET0_PTP_PDELAY_REQ_RX,
ENET0_PTP_PDELAY_REQ_TX,
ENET0_PTP_PDELAY_RESP_RX,
ENET0_PTP_PDELAY_RESP_TX,
ENET0_PTP_SYNC_FRAME_RX,
ENET0_PTP_SYNC_FRAME_TX,
ENET0_SOF_RX,
ENET0_SOF_TX,
ENET0_GMII_TXD,
ENET0_GMII_COL,
ENET0_GMII_CRS,
ENET0_EXT_INTIN,
ENET0_GMII_RX_CLK,
ENET0_GMII_RX_DV,
ENET0_GMII_RX_ER,
ENET0_GMII_TX_CLK,
ENET0_MDIO_I,
ENET0_GMII_RXD,
ENET1_GMII_TX_EN,
ENET1_GMII_TX_ER,
ENET1_MDIO_MDC,
ENET1_MDIO_O,
ENET1_MDIO_T,
ENET1_PTP_DELAY_REQ_RX,
ENET1_PTP_DELAY_REQ_TX,
ENET1_PTP_PDELAY_REQ_RX,
ENET1_PTP_PDELAY_REQ_TX,
ENET1_PTP_PDELAY_RESP_RX,
ENET1_PTP_PDELAY_RESP_TX,
ENET1_PTP_SYNC_FRAME_RX,
ENET1_PTP_SYNC_FRAME_TX,
ENET1_SOF_RX,
ENET1_SOF_TX,
ENET1_GMII_TXD,
ENET1_GMII_COL,
ENET1_GMII_CRS,
ENET1_EXT_INTIN,
ENET1_GMII_RX_CLK,
ENET1_GMII_RX_DV,
ENET1_GMII_RX_ER,
ENET1_GMII_TX_CLK,
ENET1_MDIO_I,
ENET1_GMII_RXD,
GPIO_I,
GPIO_O,
GPIO_T,
I2C0_SDA_I,
I2C0_SDA_O,
I2C0_SDA_T,
I2C0_SCL_I,
I2C0_SCL_O,
I2C0_SCL_T,
I2C1_SDA_I,
I2C1_SDA_O,
I2C1_SDA_T,
I2C1_SCL_I,
I2C1_SCL_O,
I2C1_SCL_T,
PJTAG_TCK,
PJTAG_TMS,
PJTAG_TD_I,
PJTAG_TD_T,
PJTAG_TD_O,
SDIO0_CLK,
SDIO0_CLK_FB,
SDIO0_CMD_O,
SDIO0_CMD_I,
SDIO0_CMD_T,
SDIO0_DATA_I,
SDIO0_DATA_O,
SDIO0_DATA_T,
SDIO0_LED,
SDIO0_CDN,
SDIO0_WP,
SDIO0_BUSPOW,
SDIO0_BUSVOLT,
SDIO1_CLK,
SDIO1_CLK_FB,
SDIO1_CMD_O,
SDIO1_CMD_I,
SDIO1_CMD_T,
SDIO1_DATA_I,
SDIO1_DATA_O,
SDIO1_DATA_T,
SDIO1_LED,
SDIO1_CDN,
SDIO1_WP,
SDIO1_BUSPOW,
SDIO1_BUSVOLT,
SPI0_SCLK_I,
SPI0_SCLK_O,
SPI0_SCLK_T,
SPI0_MOSI_I,
SPI0_MOSI_O,
SPI0_MOSI_T,
SPI0_MISO_I,
SPI0_MISO_O,
SPI0_MISO_T,
SPI0_SS_I,
SPI0_SS_O,
SPI0_SS1_O,
SPI0_SS2_O,
SPI0_SS_T,
SPI1_SCLK_I,
SPI1_SCLK_O,
SPI1_SCLK_T,
SPI1_MOSI_I,
SPI1_MOSI_O,
SPI1_MOSI_T,
SPI1_MISO_I,
SPI1_MISO_O,
SPI1_MISO_T,
SPI1_SS_I,
SPI1_SS_O,
SPI1_SS1_O,
SPI1_SS2_O,
SPI1_SS_T,
UART0_DTRN,
UART0_RTSN,
UART0_TX,
UART0_CTSN,
UART0_DCDN,
UART0_DSRN,
UART0_RIN,
UART0_RX,
UART1_DTRN,
UART1_RTSN,
UART1_TX,
UART1_CTSN,
UART1_DCDN,
UART1_DSRN,
UART1_RIN,
UART1_RX,
TTC0_WAVE0_OUT,
TTC0_WAVE1_OUT,
TTC0_WAVE2_OUT,
TTC0_CLK0_IN,
TTC0_CLK1_IN,
TTC0_CLK2_IN,
TTC1_WAVE0_OUT,
TTC1_WAVE1_OUT,
TTC1_WAVE2_OUT,
TTC1_CLK0_IN,
TTC1_CLK1_IN,
TTC1_CLK2_IN,
WDT_CLK_IN,
WDT_RST_OUT,
TRACE_CLK,
TRACE_CTL,
TRACE_DATA,
USB0_PORT_INDCTL,
USB1_PORT_INDCTL,
USB0_VBUS_PWRSELECT,
USB1_VBUS_PWRSELECT,
USB0_VBUS_PWRFAULT,
USB1_VBUS_PWRFAULT,
SRAM_INTIN,
M_AXI_GP0_ARVALID,
M_AXI_GP0_AWVALID,
M_AXI_GP0_BREADY,
M_AXI_GP0_RREADY,
M_AXI_GP0_WLAST,
M_AXI_GP0_WVALID,
M_AXI_GP0_ARID,
M_AXI_GP0_AWID,
M_AXI_GP0_WID,
M_AXI_GP0_ARBURST,
M_AXI_GP0_ARLOCK,
M_AXI_GP0_ARSIZE,
M_AXI_GP0_AWBURST,
M_AXI_GP0_AWLOCK,
M_AXI_GP0_AWSIZE,
M_AXI_GP0_ARPROT,
M_AXI_GP0_AWPROT,
M_AXI_GP0_ARADDR,
M_AXI_GP0_AWADDR,
M_AXI_GP0_WDATA,
M_AXI_GP0_ARCACHE,
M_AXI_GP0_ARLEN,
M_AXI_GP0_ARQOS,
M_AXI_GP0_AWCACHE,
M_AXI_GP0_AWLEN,
M_AXI_GP0_AWQOS,
M_AXI_GP0_WSTRB,
M_AXI_GP0_ACLK,
M_AXI_GP0_ARREADY,
M_AXI_GP0_AWREADY,
M_AXI_GP0_BVALID,
M_AXI_GP0_RLAST,
M_AXI_GP0_RVALID,
M_AXI_GP0_WREADY,
M_AXI_GP0_BID,
M_AXI_GP0_RID,
M_AXI_GP0_BRESP,
M_AXI_GP0_RRESP,
M_AXI_GP0_RDATA,
M_AXI_GP1_ARVALID,
M_AXI_GP1_AWVALID,
M_AXI_GP1_BREADY,
M_AXI_GP1_RREADY,
M_AXI_GP1_WLAST,
M_AXI_GP1_WVALID,
M_AXI_GP1_ARID,
M_AXI_GP1_AWID,
M_AXI_GP1_WID,
M_AXI_GP1_ARBURST,
M_AXI_GP1_ARLOCK,
M_AXI_GP1_ARSIZE,
M_AXI_GP1_AWBURST,
M_AXI_GP1_AWLOCK,
M_AXI_GP1_AWSIZE,
M_AXI_GP1_ARPROT,
M_AXI_GP1_AWPROT,
M_AXI_GP1_ARADDR,
M_AXI_GP1_AWADDR,
M_AXI_GP1_WDATA,
M_AXI_GP1_ARCACHE,
M_AXI_GP1_ARLEN,
M_AXI_GP1_ARQOS,
M_AXI_GP1_AWCACHE,
M_AXI_GP1_AWLEN,
M_AXI_GP1_AWQOS,
M_AXI_GP1_WSTRB,
M_AXI_GP1_ACLK,
M_AXI_GP1_ARREADY,
M_AXI_GP1_AWREADY,
M_AXI_GP1_BVALID,
M_AXI_GP1_RLAST,
M_AXI_GP1_RVALID,
M_AXI_GP1_WREADY,
M_AXI_GP1_BID,
M_AXI_GP1_RID,
M_AXI_GP1_BRESP,
M_AXI_GP1_RRESP,
M_AXI_GP1_RDATA,
S_AXI_GP0_ARREADY,
S_AXI_GP0_AWREADY,
S_AXI_GP0_BVALID,
S_AXI_GP0_RLAST,
S_AXI_GP0_RVALID,
S_AXI_GP0_WREADY,
S_AXI_GP0_BRESP,
S_AXI_GP0_RRESP,
S_AXI_GP0_RDATA,
S_AXI_GP0_BID,
S_AXI_GP0_RID,
S_AXI_GP0_ACLK,
S_AXI_GP0_ARVALID,
S_AXI_GP0_AWVALID,
S_AXI_GP0_BREADY,
S_AXI_GP0_RREADY,
S_AXI_GP0_WLAST,
S_AXI_GP0_WVALID,
S_AXI_GP0_ARBURST,
S_AXI_GP0_ARLOCK,
S_AXI_GP0_ARSIZE,
S_AXI_GP0_AWBURST,
S_AXI_GP0_AWLOCK,
S_AXI_GP0_AWSIZE,
S_AXI_GP0_ARPROT,
S_AXI_GP0_AWPROT,
S_AXI_GP0_ARADDR,
S_AXI_GP0_AWADDR,
S_AXI_GP0_WDATA,
S_AXI_GP0_ARCACHE,
S_AXI_GP0_ARLEN,
S_AXI_GP0_ARQOS,
S_AXI_GP0_AWCACHE,
S_AXI_GP0_AWLEN,
S_AXI_GP0_AWQOS,
S_AXI_GP0_WSTRB,
S_AXI_GP0_ARID,
S_AXI_GP0_AWID,
S_AXI_GP0_WID,
S_AXI_GP1_ARREADY,
S_AXI_GP1_AWREADY,
S_AXI_GP1_BVALID,
S_AXI_GP1_RLAST,
S_AXI_GP1_RVALID,
S_AXI_GP1_WREADY,
S_AXI_GP1_BRESP,
S_AXI_GP1_RRESP,
S_AXI_GP1_RDATA,
S_AXI_GP1_BID,
S_AXI_GP1_RID,
S_AXI_GP1_ACLK,
S_AXI_GP1_ARVALID,
S_AXI_GP1_AWVALID,
S_AXI_GP1_BREADY,
S_AXI_GP1_RREADY,
S_AXI_GP1_WLAST,
S_AXI_GP1_WVALID,
S_AXI_GP1_ARBURST,
S_AXI_GP1_ARLOCK,
S_AXI_GP1_ARSIZE,
S_AXI_GP1_AWBURST,
S_AXI_GP1_AWLOCK,
S_AXI_GP1_AWSIZE,
S_AXI_GP1_ARPROT,
S_AXI_GP1_AWPROT,
S_AXI_GP1_ARADDR,
S_AXI_GP1_AWADDR,
S_AXI_GP1_WDATA,
S_AXI_GP1_ARCACHE,
S_AXI_GP1_ARLEN,
S_AXI_GP1_ARQOS,
S_AXI_GP1_AWCACHE,
S_AXI_GP1_AWLEN,
S_AXI_GP1_AWQOS,
S_AXI_GP1_WSTRB,
S_AXI_GP1_ARID,
S_AXI_GP1_AWID,
S_AXI_GP1_WID,
S_AXI_ACP_AWREADY,
S_AXI_ACP_ARREADY,
S_AXI_ACP_BVALID,
S_AXI_ACP_RLAST,
S_AXI_ACP_RVALID,
S_AXI_ACP_WREADY,
S_AXI_ACP_BRESP,
S_AXI_ACP_RRESP,
S_AXI_ACP_BID,
S_AXI_ACP_RID,
S_AXI_ACP_RDATA,
S_AXI_ACP_ACLK,
S_AXI_ACP_ARVALID,
S_AXI_ACP_AWVALID,
S_AXI_ACP_BREADY,
S_AXI_ACP_RREADY,
S_AXI_ACP_WLAST,
S_AXI_ACP_WVALID,
S_AXI_ACP_ARID,
S_AXI_ACP_ARPROT,
S_AXI_ACP_AWID,
S_AXI_ACP_AWPROT,
S_AXI_ACP_WID,
S_AXI_ACP_ARADDR,
S_AXI_ACP_AWADDR,
S_AXI_ACP_ARCACHE,
S_AXI_ACP_ARLEN,
S_AXI_ACP_ARQOS,
S_AXI_ACP_AWCACHE,
S_AXI_ACP_AWLEN,
S_AXI_ACP_AWQOS,
S_AXI_ACP_ARBURST,
S_AXI_ACP_ARLOCK,
S_AXI_ACP_ARSIZE,
S_AXI_ACP_AWBURST,
S_AXI_ACP_AWLOCK,
S_AXI_ACP_AWSIZE,
S_AXI_ACP_ARUSER,
S_AXI_ACP_AWUSER,
S_AXI_ACP_WDATA,
S_AXI_ACP_WSTRB,
S_AXI_HP0_ARREADY,
S_AXI_HP0_AWREADY,
S_AXI_HP0_BVALID,
S_AXI_HP0_RLAST,
S_AXI_HP0_RVALID,
S_AXI_HP0_WREADY,
S_AXI_HP0_BRESP,
S_AXI_HP0_RRESP,
S_AXI_HP0_BID,
S_AXI_HP0_RID,
S_AXI_HP0_RDATA,
S_AXI_HP0_RCOUNT,
S_AXI_HP0_WCOUNT,
S_AXI_HP0_RACOUNT,
S_AXI_HP0_WACOUNT,
S_AXI_HP0_ACLK,
S_AXI_HP0_ARVALID,
S_AXI_HP0_AWVALID,
S_AXI_HP0_BREADY,
S_AXI_HP0_RDISSUECAP1_EN,
S_AXI_HP0_RREADY,
S_AXI_HP0_WLAST,
S_AXI_HP0_WRISSUECAP1_EN,
S_AXI_HP0_WVALID,
S_AXI_HP0_ARBURST,
S_AXI_HP0_ARLOCK,
S_AXI_HP0_ARSIZE,
S_AXI_HP0_AWBURST,
S_AXI_HP0_AWLOCK,
S_AXI_HP0_AWSIZE,
S_AXI_HP0_ARPROT,
S_AXI_HP0_AWPROT,
S_AXI_HP0_ARADDR,
S_AXI_HP0_AWADDR,
S_AXI_HP0_ARCACHE,
S_AXI_HP0_ARLEN,
S_AXI_HP0_ARQOS,
S_AXI_HP0_AWCACHE,
S_AXI_HP0_AWLEN,
S_AXI_HP0_AWQOS,
S_AXI_HP0_ARID,
S_AXI_HP0_AWID,
S_AXI_HP0_WID,
S_AXI_HP0_WDATA,
S_AXI_HP0_WSTRB,
S_AXI_HP1_ARREADY,
S_AXI_HP1_AWREADY,
S_AXI_HP1_BVALID,
S_AXI_HP1_RLAST,
S_AXI_HP1_RVALID,
S_AXI_HP1_WREADY,
S_AXI_HP1_BRESP,
S_AXI_HP1_RRESP,
S_AXI_HP1_BID,
S_AXI_HP1_RID,
S_AXI_HP1_RDATA,
S_AXI_HP1_RCOUNT,
S_AXI_HP1_WCOUNT,
S_AXI_HP1_RACOUNT,
S_AXI_HP1_WACOUNT,
S_AXI_HP1_ACLK,
S_AXI_HP1_ARVALID,
S_AXI_HP1_AWVALID,
S_AXI_HP1_BREADY,
S_AXI_HP1_RDISSUECAP1_EN,
S_AXI_HP1_RREADY,
S_AXI_HP1_WLAST,
S_AXI_HP1_WRISSUECAP1_EN,
S_AXI_HP1_WVALID,
S_AXI_HP1_ARBURST,
S_AXI_HP1_ARLOCK,
S_AXI_HP1_ARSIZE,
S_AXI_HP1_AWBURST,
S_AXI_HP1_AWLOCK,
S_AXI_HP1_AWSIZE,
S_AXI_HP1_ARPROT,
S_AXI_HP1_AWPROT,
S_AXI_HP1_ARADDR,
S_AXI_HP1_AWADDR,
S_AXI_HP1_ARCACHE,
S_AXI_HP1_ARLEN,
S_AXI_HP1_ARQOS,
S_AXI_HP1_AWCACHE,
S_AXI_HP1_AWLEN,
S_AXI_HP1_AWQOS,
S_AXI_HP1_ARID,
S_AXI_HP1_AWID,
S_AXI_HP1_WID,
S_AXI_HP1_WDATA,
S_AXI_HP1_WSTRB,
S_AXI_HP2_ARREADY,
S_AXI_HP2_AWREADY,
S_AXI_HP2_BVALID,
S_AXI_HP2_RLAST,
S_AXI_HP2_RVALID,
S_AXI_HP2_WREADY,
S_AXI_HP2_BRESP,
S_AXI_HP2_RRESP,
S_AXI_HP2_BID,
S_AXI_HP2_RID,
S_AXI_HP2_RDATA,
S_AXI_HP2_RCOUNT,
S_AXI_HP2_WCOUNT,
S_AXI_HP2_RACOUNT,
S_AXI_HP2_WACOUNT,
S_AXI_HP2_ACLK,
S_AXI_HP2_ARVALID,
S_AXI_HP2_AWVALID,
S_AXI_HP2_BREADY,
S_AXI_HP2_RDISSUECAP1_EN,
S_AXI_HP2_RREADY,
S_AXI_HP2_WLAST,
S_AXI_HP2_WRISSUECAP1_EN,
S_AXI_HP2_WVALID,
S_AXI_HP2_ARBURST,
S_AXI_HP2_ARLOCK,
S_AXI_HP2_ARSIZE,
S_AXI_HP2_AWBURST,
S_AXI_HP2_AWLOCK,
S_AXI_HP2_AWSIZE,
S_AXI_HP2_ARPROT,
S_AXI_HP2_AWPROT,
S_AXI_HP2_ARADDR,
S_AXI_HP2_AWADDR,
S_AXI_HP2_ARCACHE,
S_AXI_HP2_ARLEN,
S_AXI_HP2_ARQOS,
S_AXI_HP2_AWCACHE,
S_AXI_HP2_AWLEN,
S_AXI_HP2_AWQOS,
S_AXI_HP2_ARID,
S_AXI_HP2_AWID,
S_AXI_HP2_WID,
S_AXI_HP2_WDATA,
S_AXI_HP2_WSTRB,
S_AXI_HP3_ARREADY,
S_AXI_HP3_AWREADY,
S_AXI_HP3_BVALID,
S_AXI_HP3_RLAST,
S_AXI_HP3_RVALID,
S_AXI_HP3_WREADY,
S_AXI_HP3_BRESP,
S_AXI_HP3_RRESP,
S_AXI_HP3_BID,
S_AXI_HP3_RID,
S_AXI_HP3_RDATA,
S_AXI_HP3_RCOUNT,
S_AXI_HP3_WCOUNT,
S_AXI_HP3_RACOUNT,
S_AXI_HP3_WACOUNT,
S_AXI_HP3_ACLK,
S_AXI_HP3_ARVALID,
S_AXI_HP3_AWVALID,
S_AXI_HP3_BREADY,
S_AXI_HP3_RDISSUECAP1_EN,
S_AXI_HP3_RREADY,
S_AXI_HP3_WLAST,
S_AXI_HP3_WRISSUECAP1_EN,
S_AXI_HP3_WVALID,
S_AXI_HP3_ARBURST,
S_AXI_HP3_ARLOCK,
S_AXI_HP3_ARSIZE,
S_AXI_HP3_AWBURST,
S_AXI_HP3_AWLOCK,
S_AXI_HP3_AWSIZE,
S_AXI_HP3_ARPROT,
S_AXI_HP3_AWPROT,
S_AXI_HP3_ARADDR,
S_AXI_HP3_AWADDR,
S_AXI_HP3_ARCACHE,
S_AXI_HP3_ARLEN,
S_AXI_HP3_ARQOS,
S_AXI_HP3_AWCACHE,
S_AXI_HP3_AWLEN,
S_AXI_HP3_AWQOS,
S_AXI_HP3_ARID,
S_AXI_HP3_AWID,
S_AXI_HP3_WID,
S_AXI_HP3_WDATA,
S_AXI_HP3_WSTRB,
DMA0_DATYPE,
DMA0_DAVALID,
DMA0_DRREADY,
DMA0_ACLK,
DMA0_DAREADY,
DMA0_DRLAST,
DMA0_DRVALID,
DMA0_DRTYPE,
DMA1_DATYPE,
DMA1_DAVALID,
DMA1_DRREADY,
DMA1_ACLK,
DMA1_DAREADY,
DMA1_DRLAST,
DMA1_DRVALID,
DMA1_DRTYPE,
DMA2_DATYPE,
DMA2_DAVALID,
DMA2_DRREADY,
DMA2_ACLK,
DMA2_DAREADY,
DMA2_DRLAST,
DMA2_DRVALID,
DMA3_DRVALID,
DMA3_DATYPE,
DMA3_DAVALID,
DMA3_DRREADY,
DMA3_ACLK,
DMA3_DAREADY,
DMA3_DRLAST,
DMA2_DRTYPE,
DMA3_DRTYPE,
FTMD_TRACEIN_DATA,
FTMD_TRACEIN_VALID,
FTMD_TRACEIN_CLK,
FTMD_TRACEIN_ATID,
FTMT_F2P_TRIG,
FTMT_F2P_TRIGACK,
FTMT_F2P_DEBUG,
FTMT_P2F_TRIGACK,
FTMT_P2F_TRIG,
FTMT_P2F_DEBUG,
FCLK_CLK3,
FCLK_CLK2,
FCLK_CLK1,
FCLK_CLK0,
FCLK_CLKTRIG3_N,
FCLK_CLKTRIG2_N,
FCLK_CLKTRIG1_N,
FCLK_CLKTRIG0_N,
FCLK_RESET3_N,
FCLK_RESET2_N,
FCLK_RESET1_N,
FCLK_RESET0_N,
FPGA_IDLE_N,
DDR_ARB,
IRQ_F2P,
Core0_nFIQ,
Core0_nIRQ,
Core1_nFIQ,
Core1_nIRQ,
EVENT_EVENTO,
EVENT_STANDBYWFE,
EVENT_STANDBYWFI,
EVENT_EVENTI,
MIO,
DDR_Clk,
DDR_Clk_n,
DDR_CKE,
DDR_CS_n,
DDR_RAS_n,
DDR_CAS_n,
DDR_WEB,
DDR_BankAddr,
DDR_Addr,
DDR_ODT,
DDR_DRSTB,
DDR_DQ,
DDR_DM,
DDR_DQS,
DDR_DQS_n,
DDR_VRN,
DDR_VRP,
PS_SRSTB,
PS_CLK,
PS_PORB,
IRQ_P2F_DMAC_ABORT,
IRQ_P2F_DMAC0,
IRQ_P2F_DMAC1,
IRQ_P2F_DMAC2,
IRQ_P2F_DMAC3,
IRQ_P2F_DMAC4,
IRQ_P2F_DMAC5,
IRQ_P2F_DMAC6,
IRQ_P2F_DMAC7,
IRQ_P2F_SMC,
IRQ_P2F_QSPI,
IRQ_P2F_CTI,
IRQ_P2F_GPIO,
IRQ_P2F_USB0,
IRQ_P2F_ENET0,
IRQ_P2F_ENET_WAKE0,
IRQ_P2F_SDIO0,
IRQ_P2F_I2C0,
IRQ_P2F_SPI0,
IRQ_P2F_UART0,
IRQ_P2F_CAN0,
IRQ_P2F_USB1,
IRQ_P2F_ENET1,
IRQ_P2F_ENET_WAKE1,
IRQ_P2F_SDIO1,
IRQ_P2F_I2C1,
IRQ_P2F_SPI1,
IRQ_P2F_UART1,
IRQ_P2F_CAN1
);
/* parameters for gen_clk */
parameter C_FCLK_CLK0_FREQ = 50;
parameter C_FCLK_CLK1_FREQ = 50;
parameter C_FCLK_CLK3_FREQ = 50;
parameter C_FCLK_CLK2_FREQ = 50;
parameter C_HIGH_OCM_EN = 0;
/* parameters for HP ports */
parameter C_USE_S_AXI_HP0 = 0;
parameter C_USE_S_AXI_HP1 = 0;
parameter C_USE_S_AXI_HP2 = 0;
parameter C_USE_S_AXI_HP3 = 0;
parameter C_S_AXI_HP0_DATA_WIDTH = 32;
parameter C_S_AXI_HP1_DATA_WIDTH = 32;
parameter C_S_AXI_HP2_DATA_WIDTH = 32;
parameter C_S_AXI_HP3_DATA_WIDTH = 32;
parameter C_M_AXI_GP0_THREAD_ID_WIDTH = 12;
parameter C_M_AXI_GP1_THREAD_ID_WIDTH = 12;
parameter C_M_AXI_GP0_ENABLE_STATIC_REMAP = 0;
parameter C_M_AXI_GP1_ENABLE_STATIC_REMAP = 0;
/* Do we need these
parameter C_S_AXI_HP0_ENABLE_HIGHOCM = 0;
parameter C_S_AXI_HP1_ENABLE_HIGHOCM = 0;
parameter C_S_AXI_HP2_ENABLE_HIGHOCM = 0;
parameter C_S_AXI_HP3_ENABLE_HIGHOCM = 0; */
parameter C_S_AXI_HP0_BASEADDR = 32'h0000_0000;
parameter C_S_AXI_HP1_BASEADDR = 32'h0000_0000;
parameter C_S_AXI_HP2_BASEADDR = 32'h0000_0000;
parameter C_S_AXI_HP3_BASEADDR = 32'h0000_0000;
parameter C_S_AXI_HP0_HIGHADDR = 32'hFFFF_FFFF;
parameter C_S_AXI_HP1_HIGHADDR = 32'hFFFF_FFFF;
parameter C_S_AXI_HP2_HIGHADDR = 32'hFFFF_FFFF;
parameter C_S_AXI_HP3_HIGHADDR = 32'hFFFF_FFFF;
/* parameters for GP and ACP ports */
parameter C_USE_M_AXI_GP0 = 0;
parameter C_USE_M_AXI_GP1 = 0;
parameter C_USE_S_AXI_GP0 = 1;
parameter C_USE_S_AXI_GP1 = 1;
/* Do we need this?
parameter C_M_AXI_GP0_ENABLE_HIGHOCM = 0;
parameter C_M_AXI_GP1_ENABLE_HIGHOCM = 0;
parameter C_S_AXI_GP0_ENABLE_HIGHOCM = 0;
parameter C_S_AXI_GP1_ENABLE_HIGHOCM = 0;
parameter C_S_AXI_ACP_ENABLE_HIGHOCM = 0;*/
parameter C_S_AXI_GP0_BASEADDR = 32'h0000_0000;
parameter C_S_AXI_GP1_BASEADDR = 32'h0000_0000;
parameter C_S_AXI_GP0_HIGHADDR = 32'hFFFF_FFFF;
parameter C_S_AXI_GP1_HIGHADDR = 32'hFFFF_FFFF;
parameter C_USE_S_AXI_ACP = 1;
parameter C_S_AXI_ACP_BASEADDR = 32'h0000_0000;
parameter C_S_AXI_ACP_HIGHADDR = 32'hFFFF_FFFF;
`include "processing_system7_bfm_v2_0_5_local_params.v"
output CAN0_PHY_TX;
input CAN0_PHY_RX;
output CAN1_PHY_TX;
input CAN1_PHY_RX;
output ENET0_GMII_TX_EN;
output ENET0_GMII_TX_ER;
output ENET0_MDIO_MDC;
output ENET0_MDIO_O;
output ENET0_MDIO_T;
output ENET0_PTP_DELAY_REQ_RX;
output ENET0_PTP_DELAY_REQ_TX;
output ENET0_PTP_PDELAY_REQ_RX;
output ENET0_PTP_PDELAY_REQ_TX;
output ENET0_PTP_PDELAY_RESP_RX;
output ENET0_PTP_PDELAY_RESP_TX;
output ENET0_PTP_SYNC_FRAME_RX;
output ENET0_PTP_SYNC_FRAME_TX;
output ENET0_SOF_RX;
output ENET0_SOF_TX;
output [7:0] ENET0_GMII_TXD;
input ENET0_GMII_COL;
input ENET0_GMII_CRS;
input ENET0_EXT_INTIN;
input ENET0_GMII_RX_CLK;
input ENET0_GMII_RX_DV;
input ENET0_GMII_RX_ER;
input ENET0_GMII_TX_CLK;
input ENET0_MDIO_I;
input [7:0] ENET0_GMII_RXD;
output ENET1_GMII_TX_EN;
output ENET1_GMII_TX_ER;
output ENET1_MDIO_MDC;
output ENET1_MDIO_O;
output ENET1_MDIO_T;
output ENET1_PTP_DELAY_REQ_RX;
output ENET1_PTP_DELAY_REQ_TX;
output ENET1_PTP_PDELAY_REQ_RX;
output ENET1_PTP_PDELAY_REQ_TX;
output ENET1_PTP_PDELAY_RESP_RX;
output ENET1_PTP_PDELAY_RESP_TX;
output ENET1_PTP_SYNC_FRAME_RX;
output ENET1_PTP_SYNC_FRAME_TX;
output ENET1_SOF_RX;
output ENET1_SOF_TX;
output [7:0] ENET1_GMII_TXD;
input ENET1_GMII_COL;
input ENET1_GMII_CRS;
input ENET1_EXT_INTIN;
input ENET1_GMII_RX_CLK;
input ENET1_GMII_RX_DV;
input ENET1_GMII_RX_ER;
input ENET1_GMII_TX_CLK;
input ENET1_MDIO_I;
input [7:0] ENET1_GMII_RXD;
input [63:0] GPIO_I;
output [63:0] GPIO_O;
output [63:0] GPIO_T;
input I2C0_SDA_I;
output I2C0_SDA_O;
output I2C0_SDA_T;
input I2C0_SCL_I;
output I2C0_SCL_O;
output I2C0_SCL_T;
input I2C1_SDA_I;
output I2C1_SDA_O;
output I2C1_SDA_T;
input I2C1_SCL_I;
output I2C1_SCL_O;
output I2C1_SCL_T;
input PJTAG_TCK;
input PJTAG_TMS;
input PJTAG_TD_I;
output PJTAG_TD_T;
output PJTAG_TD_O;
output SDIO0_CLK;
input SDIO0_CLK_FB;
output SDIO0_CMD_O;
input SDIO0_CMD_I;
output SDIO0_CMD_T;
input [3:0] SDIO0_DATA_I;
output [3:0] SDIO0_DATA_O;
output [3:0] SDIO0_DATA_T;
output SDIO0_LED;
input SDIO0_CDN;
input SDIO0_WP;
output SDIO0_BUSPOW;
output [2:0] SDIO0_BUSVOLT;
output SDIO1_CLK;
input SDIO1_CLK_FB;
output SDIO1_CMD_O;
input SDIO1_CMD_I;
output SDIO1_CMD_T;
input [3:0] SDIO1_DATA_I;
output [3:0] SDIO1_DATA_O;
output [3:0] SDIO1_DATA_T;
output SDIO1_LED;
input SDIO1_CDN;
input SDIO1_WP;
output SDIO1_BUSPOW;
output [2:0] SDIO1_BUSVOLT;
input SPI0_SCLK_I;
output SPI0_SCLK_O;
output SPI0_SCLK_T;
input SPI0_MOSI_I;
output SPI0_MOSI_O;
output SPI0_MOSI_T;
input SPI0_MISO_I;
output SPI0_MISO_O;
output SPI0_MISO_T;
input SPI0_SS_I;
output SPI0_SS_O;
output SPI0_SS1_O;
output SPI0_SS2_O;
output SPI0_SS_T;
input SPI1_SCLK_I;
output SPI1_SCLK_O;
output SPI1_SCLK_T;
input SPI1_MOSI_I;
output SPI1_MOSI_O;
output SPI1_MOSI_T;
input SPI1_MISO_I;
output SPI1_MISO_O;
output SPI1_MISO_T;
input SPI1_SS_I;
output SPI1_SS_O;
output SPI1_SS1_O;
output SPI1_SS2_O;
output SPI1_SS_T;
output UART0_DTRN;
output UART0_RTSN;
output UART0_TX;
input UART0_CTSN;
input UART0_DCDN;
input UART0_DSRN;
input UART0_RIN;
input UART0_RX;
output UART1_DTRN;
output UART1_RTSN;
output UART1_TX;
input UART1_CTSN;
input UART1_DCDN;
input UART1_DSRN;
input UART1_RIN;
input UART1_RX;
output TTC0_WAVE0_OUT;
output TTC0_WAVE1_OUT;
output TTC0_WAVE2_OUT;
input TTC0_CLK0_IN;
input TTC0_CLK1_IN;
input TTC0_CLK2_IN;
output TTC1_WAVE0_OUT;
output TTC1_WAVE1_OUT;
output TTC1_WAVE2_OUT;
input TTC1_CLK0_IN;
input TTC1_CLK1_IN;
input TTC1_CLK2_IN;
input WDT_CLK_IN;
output WDT_RST_OUT;
input TRACE_CLK;
output TRACE_CTL;
output [31:0] TRACE_DATA;
output [1:0] USB0_PORT_INDCTL;
output [1:0] USB1_PORT_INDCTL;
output USB0_VBUS_PWRSELECT;
output USB1_VBUS_PWRSELECT;
input USB0_VBUS_PWRFAULT;
input USB1_VBUS_PWRFAULT;
input SRAM_INTIN;
output M_AXI_GP0_ARVALID;
output M_AXI_GP0_AWVALID;
output M_AXI_GP0_BREADY;
output M_AXI_GP0_RREADY;
output M_AXI_GP0_WLAST;
output M_AXI_GP0_WVALID;
output [C_M_AXI_GP0_THREAD_ID_WIDTH-1:0] M_AXI_GP0_ARID;
output [C_M_AXI_GP0_THREAD_ID_WIDTH-1:0] M_AXI_GP0_AWID;
output [C_M_AXI_GP0_THREAD_ID_WIDTH-1:0] M_AXI_GP0_WID;
output [1:0] M_AXI_GP0_ARBURST;
output [1:0] M_AXI_GP0_ARLOCK;
output [2:0] M_AXI_GP0_ARSIZE;
output [1:0] M_AXI_GP0_AWBURST;
output [1:0] M_AXI_GP0_AWLOCK;
output [2:0] M_AXI_GP0_AWSIZE;
output [2:0] M_AXI_GP0_ARPROT;
output [2:0] M_AXI_GP0_AWPROT;
output [31:0] M_AXI_GP0_ARADDR;
output [31:0] M_AXI_GP0_AWADDR;
output [31:0] M_AXI_GP0_WDATA;
output [3:0] M_AXI_GP0_ARCACHE;
output [3:0] M_AXI_GP0_ARLEN;
output [3:0] M_AXI_GP0_ARQOS;
output [3:0] M_AXI_GP0_AWCACHE;
output [3:0] M_AXI_GP0_AWLEN;
output [3:0] M_AXI_GP0_AWQOS;
output [3:0] M_AXI_GP0_WSTRB;
input M_AXI_GP0_ACLK;
input M_AXI_GP0_ARREADY;
input M_AXI_GP0_AWREADY;
input M_AXI_GP0_BVALID;
input M_AXI_GP0_RLAST;
input M_AXI_GP0_RVALID;
input M_AXI_GP0_WREADY;
input [C_M_AXI_GP0_THREAD_ID_WIDTH-1:0] M_AXI_GP0_BID;
input [C_M_AXI_GP0_THREAD_ID_WIDTH-1:0] M_AXI_GP0_RID;
input [1:0] M_AXI_GP0_BRESP;
input [1:0] M_AXI_GP0_RRESP;
input [31:0] M_AXI_GP0_RDATA;
output M_AXI_GP1_ARVALID;
output M_AXI_GP1_AWVALID;
output M_AXI_GP1_BREADY;
output M_AXI_GP1_RREADY;
output M_AXI_GP1_WLAST;
output M_AXI_GP1_WVALID;
output [C_M_AXI_GP1_THREAD_ID_WIDTH-1:0] M_AXI_GP1_ARID;
output [C_M_AXI_GP1_THREAD_ID_WIDTH-1:0] M_AXI_GP1_AWID;
output [C_M_AXI_GP1_THREAD_ID_WIDTH-1:0] M_AXI_GP1_WID;
output [1:0] M_AXI_GP1_ARBURST;
output [1:0] M_AXI_GP1_ARLOCK;
output [2:0] M_AXI_GP1_ARSIZE;
output [1:0] M_AXI_GP1_AWBURST;
output [1:0] M_AXI_GP1_AWLOCK;
output [2:0] M_AXI_GP1_AWSIZE;
output [2:0] M_AXI_GP1_ARPROT;
output [2:0] M_AXI_GP1_AWPROT;
output [31:0] M_AXI_GP1_ARADDR;
output [31:0] M_AXI_GP1_AWADDR;
output [31:0] M_AXI_GP1_WDATA;
output [3:0] M_AXI_GP1_ARCACHE;
output [3:0] M_AXI_GP1_ARLEN;
output [3:0] M_AXI_GP1_ARQOS;
output [3:0] M_AXI_GP1_AWCACHE;
output [3:0] M_AXI_GP1_AWLEN;
output [3:0] M_AXI_GP1_AWQOS;
output [3:0] M_AXI_GP1_WSTRB;
input M_AXI_GP1_ACLK;
input M_AXI_GP1_ARREADY;
input M_AXI_GP1_AWREADY;
input M_AXI_GP1_BVALID;
input M_AXI_GP1_RLAST;
input M_AXI_GP1_RVALID;
input M_AXI_GP1_WREADY;
input [C_M_AXI_GP1_THREAD_ID_WIDTH-1:0] M_AXI_GP1_BID;
input [C_M_AXI_GP1_THREAD_ID_WIDTH-1:0] M_AXI_GP1_RID;
input [1:0] M_AXI_GP1_BRESP;
input [1:0] M_AXI_GP1_RRESP;
input [31:0] M_AXI_GP1_RDATA;
output S_AXI_GP0_ARREADY;
output S_AXI_GP0_AWREADY;
output S_AXI_GP0_BVALID;
output S_AXI_GP0_RLAST;
output S_AXI_GP0_RVALID;
output S_AXI_GP0_WREADY;
output [1:0] S_AXI_GP0_BRESP;
output [1:0] S_AXI_GP0_RRESP;
output [31:0] S_AXI_GP0_RDATA;
output [5:0] S_AXI_GP0_BID;
output [5:0] S_AXI_GP0_RID;
input S_AXI_GP0_ACLK;
input S_AXI_GP0_ARVALID;
input S_AXI_GP0_AWVALID;
input S_AXI_GP0_BREADY;
input S_AXI_GP0_RREADY;
input S_AXI_GP0_WLAST;
input S_AXI_GP0_WVALID;
input [1:0] S_AXI_GP0_ARBURST;
input [1:0] S_AXI_GP0_ARLOCK;
input [2:0] S_AXI_GP0_ARSIZE;
input [1:0] S_AXI_GP0_AWBURST;
input [1:0] S_AXI_GP0_AWLOCK;
input [2:0] S_AXI_GP0_AWSIZE;
input [2:0] S_AXI_GP0_ARPROT;
input [2:0] S_AXI_GP0_AWPROT;
input [31:0] S_AXI_GP0_ARADDR;
input [31:0] S_AXI_GP0_AWADDR;
input [31:0] S_AXI_GP0_WDATA;
input [3:0] S_AXI_GP0_ARCACHE;
input [3:0] S_AXI_GP0_ARLEN;
input [3:0] S_AXI_GP0_ARQOS;
input [3:0] S_AXI_GP0_AWCACHE;
input [3:0] S_AXI_GP0_AWLEN;
input [3:0] S_AXI_GP0_AWQOS;
input [3:0] S_AXI_GP0_WSTRB;
input [5:0] S_AXI_GP0_ARID;
input [5:0] S_AXI_GP0_AWID;
input [5:0] S_AXI_GP0_WID;
output S_AXI_GP1_ARREADY;
output S_AXI_GP1_AWREADY;
output S_AXI_GP1_BVALID;
output S_AXI_GP1_RLAST;
output S_AXI_GP1_RVALID;
output S_AXI_GP1_WREADY;
output [1:0] S_AXI_GP1_BRESP;
output [1:0] S_AXI_GP1_RRESP;
output [31:0] S_AXI_GP1_RDATA;
output [5:0] S_AXI_GP1_BID;
output [5:0] S_AXI_GP1_RID;
input S_AXI_GP1_ACLK;
input S_AXI_GP1_ARVALID;
input S_AXI_GP1_AWVALID;
input S_AXI_GP1_BREADY;
input S_AXI_GP1_RREADY;
input S_AXI_GP1_WLAST;
input S_AXI_GP1_WVALID;
input [1:0] S_AXI_GP1_ARBURST;
input [1:0] S_AXI_GP1_ARLOCK;
input [2:0] S_AXI_GP1_ARSIZE;
input [1:0] S_AXI_GP1_AWBURST;
input [1:0] S_AXI_GP1_AWLOCK;
input [2:0] S_AXI_GP1_AWSIZE;
input [2:0] S_AXI_GP1_ARPROT;
input [2:0] S_AXI_GP1_AWPROT;
input [31:0] S_AXI_GP1_ARADDR;
input [31:0] S_AXI_GP1_AWADDR;
input [31:0] S_AXI_GP1_WDATA;
input [3:0] S_AXI_GP1_ARCACHE;
input [3:0] S_AXI_GP1_ARLEN;
input [3:0] S_AXI_GP1_ARQOS;
input [3:0] S_AXI_GP1_AWCACHE;
input [3:0] S_AXI_GP1_AWLEN;
input [3:0] S_AXI_GP1_AWQOS;
input [3:0] S_AXI_GP1_WSTRB;
input [5:0] S_AXI_GP1_ARID;
input [5:0] S_AXI_GP1_AWID;
input [5:0] S_AXI_GP1_WID;
output S_AXI_ACP_AWREADY;
output S_AXI_ACP_ARREADY;
output S_AXI_ACP_BVALID;
output S_AXI_ACP_RLAST;
output S_AXI_ACP_RVALID;
output S_AXI_ACP_WREADY;
output [1:0] S_AXI_ACP_BRESP;
output [1:0] S_AXI_ACP_RRESP;
output [2:0] S_AXI_ACP_BID;
output [2:0] S_AXI_ACP_RID;
output [63:0] S_AXI_ACP_RDATA;
input S_AXI_ACP_ACLK;
input S_AXI_ACP_ARVALID;
input S_AXI_ACP_AWVALID;
input S_AXI_ACP_BREADY;
input S_AXI_ACP_RREADY;
input S_AXI_ACP_WLAST;
input S_AXI_ACP_WVALID;
input [2:0] S_AXI_ACP_ARID;
input [2:0] S_AXI_ACP_ARPROT;
input [2:0] S_AXI_ACP_AWID;
input [2:0] S_AXI_ACP_AWPROT;
input [2:0] S_AXI_ACP_WID;
input [31:0] S_AXI_ACP_ARADDR;
input [31:0] S_AXI_ACP_AWADDR;
input [3:0] S_AXI_ACP_ARCACHE;
input [3:0] S_AXI_ACP_ARLEN;
input [3:0] S_AXI_ACP_ARQOS;
input [3:0] S_AXI_ACP_AWCACHE;
input [3:0] S_AXI_ACP_AWLEN;
input [3:0] S_AXI_ACP_AWQOS;
input [1:0] S_AXI_ACP_ARBURST;
input [1:0] S_AXI_ACP_ARLOCK;
input [2:0] S_AXI_ACP_ARSIZE;
input [1:0] S_AXI_ACP_AWBURST;
input [1:0] S_AXI_ACP_AWLOCK;
input [2:0] S_AXI_ACP_AWSIZE;
input [4:0] S_AXI_ACP_ARUSER;
input [4:0] S_AXI_ACP_AWUSER;
input [63:0] S_AXI_ACP_WDATA;
input [7:0] S_AXI_ACP_WSTRB;
output S_AXI_HP0_ARREADY;
output S_AXI_HP0_AWREADY;
output S_AXI_HP0_BVALID;
output S_AXI_HP0_RLAST;
output S_AXI_HP0_RVALID;
output S_AXI_HP0_WREADY;
output [1:0] S_AXI_HP0_BRESP;
output [1:0] S_AXI_HP0_RRESP;
output [5:0] S_AXI_HP0_BID;
output [5:0] S_AXI_HP0_RID;
output [C_S_AXI_HP0_DATA_WIDTH-1:0] S_AXI_HP0_RDATA;
output [7:0] S_AXI_HP0_RCOUNT;
output [7:0] S_AXI_HP0_WCOUNT;
output [2:0] S_AXI_HP0_RACOUNT;
output [5:0] S_AXI_HP0_WACOUNT;
input S_AXI_HP0_ACLK;
input S_AXI_HP0_ARVALID;
input S_AXI_HP0_AWVALID;
input S_AXI_HP0_BREADY;
input S_AXI_HP0_RDISSUECAP1_EN;
input S_AXI_HP0_RREADY;
input S_AXI_HP0_WLAST;
input S_AXI_HP0_WRISSUECAP1_EN;
input S_AXI_HP0_WVALID;
input [1:0] S_AXI_HP0_ARBURST;
input [1:0] S_AXI_HP0_ARLOCK;
input [2:0] S_AXI_HP0_ARSIZE;
input [1:0] S_AXI_HP0_AWBURST;
input [1:0] S_AXI_HP0_AWLOCK;
input [2:0] S_AXI_HP0_AWSIZE;
input [2:0] S_AXI_HP0_ARPROT;
input [2:0] S_AXI_HP0_AWPROT;
input [31:0] S_AXI_HP0_ARADDR;
input [31:0] S_AXI_HP0_AWADDR;
input [3:0] S_AXI_HP0_ARCACHE;
input [3:0] S_AXI_HP0_ARLEN;
input [3:0] S_AXI_HP0_ARQOS;
input [3:0] S_AXI_HP0_AWCACHE;
input [3:0] S_AXI_HP0_AWLEN;
input [3:0] S_AXI_HP0_AWQOS;
input [5:0] S_AXI_HP0_ARID;
input [5:0] S_AXI_HP0_AWID;
input [5:0] S_AXI_HP0_WID;
input [C_S_AXI_HP0_DATA_WIDTH-1:0] S_AXI_HP0_WDATA;
input [C_S_AXI_HP0_DATA_WIDTH/8-1:0] S_AXI_HP0_WSTRB;
output S_AXI_HP1_ARREADY;
output S_AXI_HP1_AWREADY;
output S_AXI_HP1_BVALID;
output S_AXI_HP1_RLAST;
output S_AXI_HP1_RVALID;
output S_AXI_HP1_WREADY;
output [1:0] S_AXI_HP1_BRESP;
output [1:0] S_AXI_HP1_RRESP;
output [5:0] S_AXI_HP1_BID;
output [5:0] S_AXI_HP1_RID;
output [C_S_AXI_HP1_DATA_WIDTH-1:0] S_AXI_HP1_RDATA;
output [7:0] S_AXI_HP1_RCOUNT;
output [7:0] S_AXI_HP1_WCOUNT;
output [2:0] S_AXI_HP1_RACOUNT;
output [5:0] S_AXI_HP1_WACOUNT;
input S_AXI_HP1_ACLK;
input S_AXI_HP1_ARVALID;
input S_AXI_HP1_AWVALID;
input S_AXI_HP1_BREADY;
input S_AXI_HP1_RDISSUECAP1_EN;
input S_AXI_HP1_RREADY;
input S_AXI_HP1_WLAST;
input S_AXI_HP1_WRISSUECAP1_EN;
input S_AXI_HP1_WVALID;
input [1:0] S_AXI_HP1_ARBURST;
input [1:0] S_AXI_HP1_ARLOCK;
input [2:0] S_AXI_HP1_ARSIZE;
input [1:0] S_AXI_HP1_AWBURST;
input [1:0] S_AXI_HP1_AWLOCK;
input [2:0] S_AXI_HP1_AWSIZE;
input [2:0] S_AXI_HP1_ARPROT;
input [2:0] S_AXI_HP1_AWPROT;
input [31:0] S_AXI_HP1_ARADDR;
input [31:0] S_AXI_HP1_AWADDR;
input [3:0] S_AXI_HP1_ARCACHE;
input [3:0] S_AXI_HP1_ARLEN;
input [3:0] S_AXI_HP1_ARQOS;
input [3:0] S_AXI_HP1_AWCACHE;
input [3:0] S_AXI_HP1_AWLEN;
input [3:0] S_AXI_HP1_AWQOS;
input [5:0] S_AXI_HP1_ARID;
input [5:0] S_AXI_HP1_AWID;
input [5:0] S_AXI_HP1_WID;
input [C_S_AXI_HP1_DATA_WIDTH-1:0] S_AXI_HP1_WDATA;
input [C_S_AXI_HP1_DATA_WIDTH/8-1:0] S_AXI_HP1_WSTRB;
output S_AXI_HP2_ARREADY;
output S_AXI_HP2_AWREADY;
output S_AXI_HP2_BVALID;
output S_AXI_HP2_RLAST;
output S_AXI_HP2_RVALID;
output S_AXI_HP2_WREADY;
output [1:0] S_AXI_HP2_BRESP;
output [1:0] S_AXI_HP2_RRESP;
output [5:0] S_AXI_HP2_BID;
output [5:0] S_AXI_HP2_RID;
output [C_S_AXI_HP2_DATA_WIDTH-1:0] S_AXI_HP2_RDATA;
output [7:0] S_AXI_HP2_RCOUNT;
output [7:0] S_AXI_HP2_WCOUNT;
output [2:0] S_AXI_HP2_RACOUNT;
output [5:0] S_AXI_HP2_WACOUNT;
input S_AXI_HP2_ACLK;
input S_AXI_HP2_ARVALID;
input S_AXI_HP2_AWVALID;
input S_AXI_HP2_BREADY;
input S_AXI_HP2_RDISSUECAP1_EN;
input S_AXI_HP2_RREADY;
input S_AXI_HP2_WLAST;
input S_AXI_HP2_WRISSUECAP1_EN;
input S_AXI_HP2_WVALID;
input [1:0] S_AXI_HP2_ARBURST;
input [1:0] S_AXI_HP2_ARLOCK;
input [2:0] S_AXI_HP2_ARSIZE;
input [1:0] S_AXI_HP2_AWBURST;
input [1:0] S_AXI_HP2_AWLOCK;
input [2:0] S_AXI_HP2_AWSIZE;
input [2:0] S_AXI_HP2_ARPROT;
input [2:0] S_AXI_HP2_AWPROT;
input [31:0] S_AXI_HP2_ARADDR;
input [31:0] S_AXI_HP2_AWADDR;
input [3:0] S_AXI_HP2_ARCACHE;
input [3:0] S_AXI_HP2_ARLEN;
input [3:0] S_AXI_HP2_ARQOS;
input [3:0] S_AXI_HP2_AWCACHE;
input [3:0] S_AXI_HP2_AWLEN;
input [3:0] S_AXI_HP2_AWQOS;
input [5:0] S_AXI_HP2_ARID;
input [5:0] S_AXI_HP2_AWID;
input [5:0] S_AXI_HP2_WID;
input [C_S_AXI_HP2_DATA_WIDTH-1:0] S_AXI_HP2_WDATA;
input [C_S_AXI_HP2_DATA_WIDTH/8-1:0] S_AXI_HP2_WSTRB;
output S_AXI_HP3_ARREADY;
output S_AXI_HP3_AWREADY;
output S_AXI_HP3_BVALID;
output S_AXI_HP3_RLAST;
output S_AXI_HP3_RVALID;
output S_AXI_HP3_WREADY;
output [1:0] S_AXI_HP3_BRESP;
output [1:0] S_AXI_HP3_RRESP;
output [5:0] S_AXI_HP3_BID;
output [5:0] S_AXI_HP3_RID;
output [C_S_AXI_HP3_DATA_WIDTH-1:0] S_AXI_HP3_RDATA;
output [7:0] S_AXI_HP3_RCOUNT;
output [7:0] S_AXI_HP3_WCOUNT;
output [2:0] S_AXI_HP3_RACOUNT;
output [5:0] S_AXI_HP3_WACOUNT;
input S_AXI_HP3_ACLK;
input S_AXI_HP3_ARVALID;
input S_AXI_HP3_AWVALID;
input S_AXI_HP3_BREADY;
input S_AXI_HP3_RDISSUECAP1_EN;
input S_AXI_HP3_RREADY;
input S_AXI_HP3_WLAST;
input S_AXI_HP3_WRISSUECAP1_EN;
input S_AXI_HP3_WVALID;
input [1:0] S_AXI_HP3_ARBURST;
input [1:0] S_AXI_HP3_ARLOCK;
input [2:0] S_AXI_HP3_ARSIZE;
input [1:0] S_AXI_HP3_AWBURST;
input [1:0] S_AXI_HP3_AWLOCK;
input [2:0] S_AXI_HP3_AWSIZE;
input [2:0] S_AXI_HP3_ARPROT;
input [2:0] S_AXI_HP3_AWPROT;
input [31:0] S_AXI_HP3_ARADDR;
input [31:0] S_AXI_HP3_AWADDR;
input [3:0] S_AXI_HP3_ARCACHE;
input [3:0] S_AXI_HP3_ARLEN;
input [3:0] S_AXI_HP3_ARQOS;
input [3:0] S_AXI_HP3_AWCACHE;
input [3:0] S_AXI_HP3_AWLEN;
input [3:0] S_AXI_HP3_AWQOS;
input [5:0] S_AXI_HP3_ARID;
input [5:0] S_AXI_HP3_AWID;
input [5:0] S_AXI_HP3_WID;
input [C_S_AXI_HP3_DATA_WIDTH-1:0] S_AXI_HP3_WDATA;
input [C_S_AXI_HP3_DATA_WIDTH/8-1:0] S_AXI_HP3_WSTRB;
output [1:0] DMA0_DATYPE;
output DMA0_DAVALID;
output DMA0_DRREADY;
input DMA0_ACLK;
input DMA0_DAREADY;
input DMA0_DRLAST;
input DMA0_DRVALID;
input [1:0] DMA0_DRTYPE;
output [1:0] DMA1_DATYPE;
output DMA1_DAVALID;
output DMA1_DRREADY;
input DMA1_ACLK;
input DMA1_DAREADY;
input DMA1_DRLAST;
input DMA1_DRVALID;
input [1:0] DMA1_DRTYPE;
output [1:0] DMA2_DATYPE;
output DMA2_DAVALID;
output DMA2_DRREADY;
input DMA2_ACLK;
input DMA2_DAREADY;
input DMA2_DRLAST;
input DMA2_DRVALID;
input DMA3_DRVALID;
output [1:0] DMA3_DATYPE;
output DMA3_DAVALID;
output DMA3_DRREADY;
input DMA3_ACLK;
input DMA3_DAREADY;
input DMA3_DRLAST;
input [1:0] DMA2_DRTYPE;
input [1:0] DMA3_DRTYPE;
input [31:0] FTMD_TRACEIN_DATA;
input FTMD_TRACEIN_VALID;
input FTMD_TRACEIN_CLK;
input [3:0] FTMD_TRACEIN_ATID;
input [3:0] FTMT_F2P_TRIG;
output [3:0] FTMT_F2P_TRIGACK;
input [31:0] FTMT_F2P_DEBUG;
input [3:0] FTMT_P2F_TRIGACK;
output [3:0] FTMT_P2F_TRIG;
output [31:0] FTMT_P2F_DEBUG;
output FCLK_CLK3;
output FCLK_CLK2;
output FCLK_CLK1;
output FCLK_CLK0;
input FCLK_CLKTRIG3_N;
input FCLK_CLKTRIG2_N;
input FCLK_CLKTRIG1_N;
input FCLK_CLKTRIG0_N;
output FCLK_RESET3_N;
output FCLK_RESET2_N;
output FCLK_RESET1_N;
output FCLK_RESET0_N;
input FPGA_IDLE_N;
input [3:0] DDR_ARB;
input [irq_width-1:0] IRQ_F2P;
input Core0_nFIQ;
input Core0_nIRQ;
input Core1_nFIQ;
input Core1_nIRQ;
output EVENT_EVENTO;
output [1:0] EVENT_STANDBYWFE;
output [1:0] EVENT_STANDBYWFI;
input EVENT_EVENTI;
inout [53:0] MIO;
inout DDR_Clk;
inout DDR_Clk_n;
inout DDR_CKE;
inout DDR_CS_n;
inout DDR_RAS_n;
inout DDR_CAS_n;
output DDR_WEB;
inout [2:0] DDR_BankAddr;
inout [14:0] DDR_Addr;
inout DDR_ODT;
inout DDR_DRSTB;
inout [31:0] DDR_DQ;
inout [3:0] DDR_DM;
inout [3:0] DDR_DQS;
inout [3:0] DDR_DQS_n;
inout DDR_VRN;
inout DDR_VRP;
/* Reset Input & Clock Input */
input PS_SRSTB;
input PS_CLK;
input PS_PORB;
output IRQ_P2F_DMAC_ABORT;
output IRQ_P2F_DMAC0;
output IRQ_P2F_DMAC1;
output IRQ_P2F_DMAC2;
output IRQ_P2F_DMAC3;
output IRQ_P2F_DMAC4;
output IRQ_P2F_DMAC5;
output IRQ_P2F_DMAC6;
output IRQ_P2F_DMAC7;
output IRQ_P2F_SMC;
output IRQ_P2F_QSPI;
output IRQ_P2F_CTI;
output IRQ_P2F_GPIO;
output IRQ_P2F_USB0;
output IRQ_P2F_ENET0;
output IRQ_P2F_ENET_WAKE0;
output IRQ_P2F_SDIO0;
output IRQ_P2F_I2C0;
output IRQ_P2F_SPI0;
output IRQ_P2F_UART0;
output IRQ_P2F_CAN0;
output IRQ_P2F_USB1;
output IRQ_P2F_ENET1;
output IRQ_P2F_ENET_WAKE1;
output IRQ_P2F_SDIO1;
output IRQ_P2F_I2C1;
output IRQ_P2F_SPI1;
output IRQ_P2F_UART1;
output IRQ_P2F_CAN1;
/* Internal wires/nets used for connectivity */
wire net_rstn;
wire net_sw_clk;
wire net_ocm_clk;
wire net_arbiter_clk;
wire net_axi_mgp0_rstn;
wire net_axi_mgp1_rstn;
wire net_axi_gp0_rstn;
wire net_axi_gp1_rstn;
wire net_axi_hp0_rstn;
wire net_axi_hp1_rstn;
wire net_axi_hp2_rstn;
wire net_axi_hp3_rstn;
wire net_axi_acp_rstn;
wire [4:0] net_axi_acp_awuser;
wire [4:0] net_axi_acp_aruser;
/* Dummy */
assign net_axi_acp_awuser = S_AXI_ACP_AWUSER;
assign net_axi_acp_aruser = S_AXI_ACP_ARUSER;
/* Global variables */
reg DEBUG_INFO = 1;
reg STOP_ON_ERROR = 1;
/* local variable acting as semaphore for wait_mem_update and wait_reg_update task */
reg mem_update_key = 1;
reg reg_update_key_0 = 1;
reg reg_update_key_1 = 1;
/* assignments and semantic checks for unused ports */
`include "processing_system7_bfm_v2_0_5_unused_ports.v"
/* include api definition */
`include "processing_system7_bfm_v2_0_5_apis.v"
/* Reset Generator */
processing_system7_bfm_v2_0_5_gen_reset gen_rst(.por_rst_n(PS_PORB),
.sys_rst_n(PS_SRSTB),
.rst_out_n(net_rstn),
.m_axi_gp0_clk(M_AXI_GP0_ACLK),
.m_axi_gp1_clk(M_AXI_GP1_ACLK),
.s_axi_gp0_clk(S_AXI_GP0_ACLK),
.s_axi_gp1_clk(S_AXI_GP1_ACLK),
.s_axi_hp0_clk(S_AXI_HP0_ACLK),
.s_axi_hp1_clk(S_AXI_HP1_ACLK),
.s_axi_hp2_clk(S_AXI_HP2_ACLK),
.s_axi_hp3_clk(S_AXI_HP3_ACLK),
.s_axi_acp_clk(S_AXI_ACP_ACLK),
.m_axi_gp0_rstn(net_axi_mgp0_rstn),
.m_axi_gp1_rstn(net_axi_mgp1_rstn),
.s_axi_gp0_rstn(net_axi_gp0_rstn),
.s_axi_gp1_rstn(net_axi_gp1_rstn),
.s_axi_hp0_rstn(net_axi_hp0_rstn),
.s_axi_hp1_rstn(net_axi_hp1_rstn),
.s_axi_hp2_rstn(net_axi_hp2_rstn),
.s_axi_hp3_rstn(net_axi_hp3_rstn),
.s_axi_acp_rstn(net_axi_acp_rstn),
.fclk_reset3_n(FCLK_RESET3_N),
.fclk_reset2_n(FCLK_RESET2_N),
.fclk_reset1_n(FCLK_RESET1_N),
.fclk_reset0_n(FCLK_RESET0_N),
.fpga_acp_reset_n(), ////S_AXI_ACP_ARESETN), (These are removed from Zynq IP)
.fpga_gp_m0_reset_n(), ////M_AXI_GP0_ARESETN),
.fpga_gp_m1_reset_n(), ////M_AXI_GP1_ARESETN),
.fpga_gp_s0_reset_n(), ////S_AXI_GP0_ARESETN),
.fpga_gp_s1_reset_n(), ////S_AXI_GP1_ARESETN),
.fpga_hp_s0_reset_n(), ////S_AXI_HP0_ARESETN),
.fpga_hp_s1_reset_n(), ////S_AXI_HP1_ARESETN),
.fpga_hp_s2_reset_n(), ////S_AXI_HP2_ARESETN),
.fpga_hp_s3_reset_n() ////S_AXI_HP3_ARESETN)
);
/* Clock Generator */
processing_system7_bfm_v2_0_5_gen_clock #(C_FCLK_CLK3_FREQ, C_FCLK_CLK2_FREQ, C_FCLK_CLK1_FREQ, C_FCLK_CLK0_FREQ)
gen_clk(.ps_clk(PS_CLK),
.sw_clk(net_sw_clk),
.fclk_clk3(FCLK_CLK3),
.fclk_clk2(FCLK_CLK2),
.fclk_clk1(FCLK_CLK1),
.fclk_clk0(FCLK_CLK0)
);
wire net_wr_ack_ocm_gp0, net_wr_ack_ddr_gp0, net_wr_ack_ocm_gp1, net_wr_ack_ddr_gp1;
wire net_wr_dv_ocm_gp0, net_wr_dv_ddr_gp0, net_wr_dv_ocm_gp1, net_wr_dv_ddr_gp1;
wire [max_burst_bits-1:0] net_wr_data_gp0, net_wr_data_gp1;
wire [addr_width-1:0] net_wr_addr_gp0, net_wr_addr_gp1;
wire [max_burst_bytes_width:0] net_wr_bytes_gp0, net_wr_bytes_gp1;
wire [axi_qos_width-1:0] net_wr_qos_gp0, net_wr_qos_gp1;
wire net_rd_req_ddr_gp0, net_rd_req_ddr_gp1;
wire net_rd_req_ocm_gp0, net_rd_req_ocm_gp1;
wire net_rd_req_reg_gp0, net_rd_req_reg_gp1;
wire [addr_width-1:0] net_rd_addr_gp0, net_rd_addr_gp1;
wire [max_burst_bytes_width:0] net_rd_bytes_gp0, net_rd_bytes_gp1;
wire [max_burst_bits-1:0] net_rd_data_ddr_gp0, net_rd_data_ddr_gp1;
wire [max_burst_bits-1:0] net_rd_data_ocm_gp0, net_rd_data_ocm_gp1;
wire [max_burst_bits-1:0] net_rd_data_reg_gp0, net_rd_data_reg_gp1;
wire net_rd_dv_ddr_gp0, net_rd_dv_ddr_gp1;
wire net_rd_dv_ocm_gp0, net_rd_dv_ocm_gp1;
wire net_rd_dv_reg_gp0, net_rd_dv_reg_gp1;
wire [axi_qos_width-1:0] net_rd_qos_gp0, net_rd_qos_gp1;
wire net_wr_ack_ddr_hp0, net_wr_ack_ddr_hp1, net_wr_ack_ddr_hp2, net_wr_ack_ddr_hp3;
wire net_wr_ack_ocm_hp0, net_wr_ack_ocm_hp1, net_wr_ack_ocm_hp2, net_wr_ack_ocm_hp3;
wire net_wr_dv_ddr_hp0, net_wr_dv_ddr_hp1, net_wr_dv_ddr_hp2, net_wr_dv_ddr_hp3;
wire net_wr_dv_ocm_hp0, net_wr_dv_ocm_hp1, net_wr_dv_ocm_hp2, net_wr_dv_ocm_hp3;
wire [max_burst_bits-1:0] net_wr_data_hp0, net_wr_data_hp1, net_wr_data_hp2, net_wr_data_hp3;
wire [addr_width-1:0] net_wr_addr_hp0, net_wr_addr_hp1, net_wr_addr_hp2, net_wr_addr_hp3;
wire [max_burst_bytes_width:0] net_wr_bytes_hp0, net_wr_bytes_hp1, net_wr_bytes_hp2, net_wr_bytes_hp3;
wire [axi_qos_width-1:0] net_wr_qos_hp0, net_wr_qos_hp1, net_wr_qos_hp2, net_wr_qos_hp3;
wire net_rd_req_ddr_hp0, net_rd_req_ddr_hp1, net_rd_req_ddr_hp2, net_rd_req_ddr_hp3;
wire net_rd_req_ocm_hp0, net_rd_req_ocm_hp1, net_rd_req_ocm_hp2, net_rd_req_ocm_hp3;
wire [addr_width-1:0] net_rd_addr_hp0, net_rd_addr_hp1, net_rd_addr_hp2, net_rd_addr_hp3;
wire [max_burst_bytes_width:0] net_rd_bytes_hp0, net_rd_bytes_hp1, net_rd_bytes_hp2, net_rd_bytes_hp3;
wire [max_burst_bits-1:0] net_rd_data_ddr_hp0, net_rd_data_ddr_hp1, net_rd_data_ddr_hp2, net_rd_data_ddr_hp3;
wire [max_burst_bits-1:0] net_rd_data_ocm_hp0, net_rd_data_ocm_hp1, net_rd_data_ocm_hp2, net_rd_data_ocm_hp3;
wire net_rd_dv_ddr_hp0, net_rd_dv_ddr_hp1, net_rd_dv_ddr_hp2, net_rd_dv_ddr_hp3;
wire net_rd_dv_ocm_hp0, net_rd_dv_ocm_hp1, net_rd_dv_ocm_hp2, net_rd_dv_ocm_hp3;
wire [axi_qos_width-1:0] net_rd_qos_hp0, net_rd_qos_hp1, net_rd_qos_hp2, net_rd_qos_hp3;
wire net_wr_ack_ddr_acp,net_wr_ack_ocm_acp;
wire net_wr_dv_ddr_acp,net_wr_dv_ocm_acp;
wire [max_burst_bits-1:0] net_wr_data_acp;
wire [addr_width-1:0] net_wr_addr_acp;
wire [max_burst_bytes_width:0] net_wr_bytes_acp;
wire [axi_qos_width-1:0] net_wr_qos_acp;
wire net_rd_req_ddr_acp, net_rd_req_ocm_acp;
wire [addr_width-1:0] net_rd_addr_acp;
wire [max_burst_bytes_width:0] net_rd_bytes_acp;
wire [max_burst_bits-1:0] net_rd_data_ddr_acp;
wire [max_burst_bits-1:0] net_rd_data_ocm_acp;
wire net_rd_dv_ddr_acp,net_rd_dv_ocm_acp;
wire [axi_qos_width-1:0] net_rd_qos_acp;
wire ocm_wr_ack_port0;
wire ocm_wr_dv_port0;
wire ocm_rd_req_port0;
wire ocm_rd_dv_port0;
wire [addr_width-1:0] ocm_wr_addr_port0;
wire [max_burst_bits-1:0] ocm_wr_data_port0;
wire [max_burst_bytes_width:0] ocm_wr_bytes_port0;
wire [addr_width-1:0] ocm_rd_addr_port0;
wire [max_burst_bits-1:0] ocm_rd_data_port0;
wire [max_burst_bytes_width:0] ocm_rd_bytes_port0;
wire [axi_qos_width-1:0] ocm_wr_qos_port0;
wire [axi_qos_width-1:0] ocm_rd_qos_port0;
wire ocm_wr_ack_port1;
wire ocm_wr_dv_port1;
wire ocm_rd_req_port1;
wire ocm_rd_dv_port1;
wire [addr_width-1:0] ocm_wr_addr_port1;
wire [max_burst_bits-1:0] ocm_wr_data_port1;
wire [max_burst_bytes_width:0] ocm_wr_bytes_port1;
wire [addr_width-1:0] ocm_rd_addr_port1;
wire [max_burst_bits-1:0] ocm_rd_data_port1;
wire [max_burst_bytes_width:0] ocm_rd_bytes_port1;
wire [axi_qos_width-1:0] ocm_wr_qos_port1;
wire [axi_qos_width-1:0] ocm_rd_qos_port1;
wire ddr_wr_ack_port0;
wire ddr_wr_dv_port0;
wire ddr_rd_req_port0;
wire ddr_rd_dv_port0;
wire[addr_width-1:0] ddr_wr_addr_port0;
wire[max_burst_bits-1:0] ddr_wr_data_port0;
wire[max_burst_bytes_width:0] ddr_wr_bytes_port0;
wire[addr_width-1:0] ddr_rd_addr_port0;
wire[max_burst_bits-1:0] ddr_rd_data_port0;
wire[max_burst_bytes_width:0] ddr_rd_bytes_port0;
wire [axi_qos_width-1:0] ddr_wr_qos_port0;
wire [axi_qos_width-1:0] ddr_rd_qos_port0;
wire ddr_wr_ack_port1;
wire ddr_wr_dv_port1;
wire ddr_rd_req_port1;
wire ddr_rd_dv_port1;
wire[addr_width-1:0] ddr_wr_addr_port1;
wire[max_burst_bits-1:0] ddr_wr_data_port1;
wire[max_burst_bytes_width:0] ddr_wr_bytes_port1;
wire[addr_width-1:0] ddr_rd_addr_port1;
wire[max_burst_bits-1:0] ddr_rd_data_port1;
wire[max_burst_bytes_width:0] ddr_rd_bytes_port1;
wire[axi_qos_width-1:0] ddr_wr_qos_port1;
wire[axi_qos_width-1:0] ddr_rd_qos_port1;
wire ddr_wr_ack_port2;
wire ddr_wr_dv_port2;
wire ddr_rd_req_port2;
wire ddr_rd_dv_port2;
wire[addr_width-1:0] ddr_wr_addr_port2;
wire[max_burst_bits-1:0] ddr_wr_data_port2;
wire[max_burst_bytes_width:0] ddr_wr_bytes_port2;
wire[addr_width-1:0] ddr_rd_addr_port2;
wire[max_burst_bits-1:0] ddr_rd_data_port2;
wire[max_burst_bytes_width:0] ddr_rd_bytes_port2;
wire[axi_qos_width-1:0] ddr_wr_qos_port2;
wire[axi_qos_width-1:0] ddr_rd_qos_port2;
wire ddr_wr_ack_port3;
wire ddr_wr_dv_port3;
wire ddr_rd_req_port3;
wire ddr_rd_dv_port3;
wire[addr_width-1:0] ddr_wr_addr_port3;
wire[max_burst_bits-1:0] ddr_wr_data_port3;
wire[max_burst_bytes_width:0] ddr_wr_bytes_port3;
wire[addr_width-1:0] ddr_rd_addr_port3;
wire[max_burst_bits-1:0] ddr_rd_data_port3;
wire[max_burst_bytes_width:0] ddr_rd_bytes_port3;
wire[axi_qos_width-1:0] ddr_wr_qos_port3;
wire[axi_qos_width-1:0] ddr_rd_qos_port3;
wire reg_rd_req_port0;
wire reg_rd_dv_port0;
wire[addr_width-1:0] reg_rd_addr_port0;
wire[max_burst_bits-1:0] reg_rd_data_port0;
wire[max_burst_bytes_width:0] reg_rd_bytes_port0;
wire [axi_qos_width-1:0] reg_rd_qos_port0;
wire reg_rd_req_port1;
wire reg_rd_dv_port1;
wire[addr_width-1:0] reg_rd_addr_port1;
wire[max_burst_bits-1:0] reg_rd_data_port1;
wire[max_burst_bytes_width:0] reg_rd_bytes_port1;
wire [axi_qos_width-1:0] reg_rd_qos_port1;
wire [11:0] M_AXI_GP0_AWID_FULL;
wire [11:0] M_AXI_GP0_WID_FULL;
wire [11:0] M_AXI_GP0_ARID_FULL;
wire [11:0] M_AXI_GP0_BID_FULL;
wire [11:0] M_AXI_GP0_RID_FULL;
wire [11:0] M_AXI_GP1_AWID_FULL;
wire [11:0] M_AXI_GP1_WID_FULL;
wire [11:0] M_AXI_GP1_ARID_FULL;
wire [11:0] M_AXI_GP1_BID_FULL;
wire [11:0] M_AXI_GP1_RID_FULL;
function [5:0] compress_id;
input [11:0] id;
begin
compress_id = id[5:0];
end
endfunction
function [11:0] uncompress_id;
input [5:0] id;
begin
uncompress_id = {6'b110000, id[5:0]};
end
endfunction
assign M_AXI_GP0_AWID = (C_M_AXI_GP0_ENABLE_STATIC_REMAP == 1) ? compress_id(M_AXI_GP0_AWID_FULL) : M_AXI_GP0_AWID_FULL;
assign M_AXI_GP0_WID = (C_M_AXI_GP0_ENABLE_STATIC_REMAP == 1) ? compress_id(M_AXI_GP0_WID_FULL) : M_AXI_GP0_WID_FULL;
assign M_AXI_GP0_ARID = (C_M_AXI_GP0_ENABLE_STATIC_REMAP == 1) ? compress_id(M_AXI_GP0_ARID_FULL) : M_AXI_GP0_ARID_FULL;
assign M_AXI_GP0_BID_FULL = (C_M_AXI_GP0_ENABLE_STATIC_REMAP == 1) ? uncompress_id(M_AXI_GP0_BID) : M_AXI_GP0_BID;
assign M_AXI_GP0_RID_FULL = (C_M_AXI_GP0_ENABLE_STATIC_REMAP == 1) ? uncompress_id(M_AXI_GP0_RID) : M_AXI_GP0_RID;
assign M_AXI_GP1_AWID = (C_M_AXI_GP1_ENABLE_STATIC_REMAP == 1) ? compress_id(M_AXI_GP1_AWID_FULL) : M_AXI_GP1_AWID_FULL;
assign M_AXI_GP1_WID = (C_M_AXI_GP1_ENABLE_STATIC_REMAP == 1) ? compress_id(M_AXI_GP1_WID_FULL) : M_AXI_GP1_WID_FULL;
assign M_AXI_GP1_ARID = (C_M_AXI_GP1_ENABLE_STATIC_REMAP == 1) ? compress_id(M_AXI_GP1_ARID_FULL) : M_AXI_GP1_ARID_FULL;
assign M_AXI_GP1_BID_FULL = (C_M_AXI_GP1_ENABLE_STATIC_REMAP == 1) ? uncompress_id(M_AXI_GP1_BID) : M_AXI_GP1_BID;
assign M_AXI_GP1_RID_FULL = (C_M_AXI_GP1_ENABLE_STATIC_REMAP == 1) ? uncompress_id(M_AXI_GP1_RID) : M_AXI_GP1_RID;
processing_system7_bfm_v2_0_5_interconnect_model icm (
.rstn(net_rstn),
.sw_clk(net_sw_clk),
.w_qos_gp0(net_wr_qos_gp0),
.w_qos_gp1(net_wr_qos_gp1),
.w_qos_hp0(net_wr_qos_hp0),
.w_qos_hp1(net_wr_qos_hp1),
.w_qos_hp2(net_wr_qos_hp2),
.w_qos_hp3(net_wr_qos_hp3),
.r_qos_gp0(net_rd_qos_gp0),
.r_qos_gp1(net_rd_qos_gp1),
.r_qos_hp0(net_rd_qos_hp0),
.r_qos_hp1(net_rd_qos_hp1),
.r_qos_hp2(net_rd_qos_hp2),
.r_qos_hp3(net_rd_qos_hp3),
/* GP Slave ports access */
.wr_ack_ddr_gp0(net_wr_ack_ddr_gp0),
.wr_ack_ocm_gp0(net_wr_ack_ocm_gp0),
.wr_data_gp0(net_wr_data_gp0),
.wr_addr_gp0(net_wr_addr_gp0),
.wr_bytes_gp0(net_wr_bytes_gp0),
.wr_dv_ddr_gp0(net_wr_dv_ddr_gp0),
.wr_dv_ocm_gp0(net_wr_dv_ocm_gp0),
.rd_req_ddr_gp0(net_rd_req_ddr_gp0),
.rd_req_ocm_gp0(net_rd_req_ocm_gp0),
.rd_req_reg_gp0(net_rd_req_reg_gp0),
.rd_addr_gp0(net_rd_addr_gp0),
.rd_bytes_gp0(net_rd_bytes_gp0),
.rd_data_ddr_gp0(net_rd_data_ddr_gp0),
.rd_data_ocm_gp0(net_rd_data_ocm_gp0),
.rd_data_reg_gp0(net_rd_data_reg_gp0),
.rd_dv_ddr_gp0(net_rd_dv_ddr_gp0),
.rd_dv_ocm_gp0(net_rd_dv_ocm_gp0),
.rd_dv_reg_gp0(net_rd_dv_reg_gp0),
.wr_ack_ddr_gp1(net_wr_ack_ddr_gp1),
.wr_ack_ocm_gp1(net_wr_ack_ocm_gp1),
.wr_data_gp1(net_wr_data_gp1),
.wr_addr_gp1(net_wr_addr_gp1),
.wr_bytes_gp1(net_wr_bytes_gp1),
.wr_dv_ddr_gp1(net_wr_dv_ddr_gp1),
.wr_dv_ocm_gp1(net_wr_dv_ocm_gp1),
.rd_req_ddr_gp1(net_rd_req_ddr_gp1),
.rd_req_ocm_gp1(net_rd_req_ocm_gp1),
.rd_req_reg_gp1(net_rd_req_reg_gp1),
.rd_addr_gp1(net_rd_addr_gp1),
.rd_bytes_gp1(net_rd_bytes_gp1),
.rd_data_ddr_gp1(net_rd_data_ddr_gp1),
.rd_data_ocm_gp1(net_rd_data_ocm_gp1),
.rd_data_reg_gp1(net_rd_data_reg_gp1),
.rd_dv_ddr_gp1(net_rd_dv_ddr_gp1),
.rd_dv_ocm_gp1(net_rd_dv_ocm_gp1),
.rd_dv_reg_gp1(net_rd_dv_reg_gp1),
/* HP Slave ports access */
.wr_ack_ddr_hp0(net_wr_ack_ddr_hp0),
.wr_ack_ocm_hp0(net_wr_ack_ocm_hp0),
.wr_data_hp0(net_wr_data_hp0),
.wr_addr_hp0(net_wr_addr_hp0),
.wr_bytes_hp0(net_wr_bytes_hp0),
.wr_dv_ddr_hp0(net_wr_dv_ddr_hp0),
.wr_dv_ocm_hp0(net_wr_dv_ocm_hp0),
.rd_req_ddr_hp0(net_rd_req_ddr_hp0),
.rd_req_ocm_hp0(net_rd_req_ocm_hp0),
.rd_addr_hp0(net_rd_addr_hp0),
.rd_bytes_hp0(net_rd_bytes_hp0),
.rd_data_ddr_hp0(net_rd_data_ddr_hp0),
.rd_data_ocm_hp0(net_rd_data_ocm_hp0),
.rd_dv_ddr_hp0(net_rd_dv_ddr_hp0),
.rd_dv_ocm_hp0(net_rd_dv_ocm_hp0),
.wr_ack_ddr_hp1(net_wr_ack_ddr_hp1),
.wr_ack_ocm_hp1(net_wr_ack_ocm_hp1),
.wr_data_hp1(net_wr_data_hp1),
.wr_addr_hp1(net_wr_addr_hp1),
.wr_bytes_hp1(net_wr_bytes_hp1),
.wr_dv_ddr_hp1(net_wr_dv_ddr_hp1),
.wr_dv_ocm_hp1(net_wr_dv_ocm_hp1),
.rd_req_ddr_hp1(net_rd_req_ddr_hp1),
.rd_req_ocm_hp1(net_rd_req_ocm_hp1),
.rd_addr_hp1(net_rd_addr_hp1),
.rd_bytes_hp1(net_rd_bytes_hp1),
.rd_data_ddr_hp1(net_rd_data_ddr_hp1),
.rd_data_ocm_hp1(net_rd_data_ocm_hp1),
.rd_dv_ocm_hp1(net_rd_dv_ocm_hp1),
.rd_dv_ddr_hp1(net_rd_dv_ddr_hp1),
.wr_ack_ddr_hp2(net_wr_ack_ddr_hp2),
.wr_ack_ocm_hp2(net_wr_ack_ocm_hp2),
.wr_data_hp2(net_wr_data_hp2),
.wr_addr_hp2(net_wr_addr_hp2),
.wr_bytes_hp2(net_wr_bytes_hp2),
.wr_dv_ocm_hp2(net_wr_dv_ocm_hp2),
.wr_dv_ddr_hp2(net_wr_dv_ddr_hp2),
.rd_req_ddr_hp2(net_rd_req_ddr_hp2),
.rd_req_ocm_hp2(net_rd_req_ocm_hp2),
.rd_addr_hp2(net_rd_addr_hp2),
.rd_bytes_hp2(net_rd_bytes_hp2),
.rd_data_ddr_hp2(net_rd_data_ddr_hp2),
.rd_data_ocm_hp2(net_rd_data_ocm_hp2),
.rd_dv_ddr_hp2(net_rd_dv_ddr_hp2),
.rd_dv_ocm_hp2(net_rd_dv_ocm_hp2),
.wr_ack_ocm_hp3(net_wr_ack_ocm_hp3),
.wr_ack_ddr_hp3(net_wr_ack_ddr_hp3),
.wr_data_hp3(net_wr_data_hp3),
.wr_addr_hp3(net_wr_addr_hp3),
.wr_bytes_hp3(net_wr_bytes_hp3),
.wr_dv_ddr_hp3(net_wr_dv_ddr_hp3),
.wr_dv_ocm_hp3(net_wr_dv_ocm_hp3),
.rd_req_ddr_hp3(net_rd_req_ddr_hp3),
.rd_req_ocm_hp3(net_rd_req_ocm_hp3),
.rd_addr_hp3(net_rd_addr_hp3),
.rd_bytes_hp3(net_rd_bytes_hp3),
.rd_data_ddr_hp3(net_rd_data_ddr_hp3),
.rd_data_ocm_hp3(net_rd_data_ocm_hp3),
.rd_dv_ddr_hp3(net_rd_dv_ddr_hp3),
.rd_dv_ocm_hp3(net_rd_dv_ocm_hp3),
/* Goes to port 1 of DDR */
.ddr_wr_ack_port1(ddr_wr_ack_port1),
.ddr_wr_dv_port1(ddr_wr_dv_port1),
.ddr_rd_req_port1(ddr_rd_req_port1),
.ddr_rd_dv_port1 (ddr_rd_dv_port1),
.ddr_wr_addr_port1(ddr_wr_addr_port1),
.ddr_wr_data_port1(ddr_wr_data_port1),
.ddr_wr_bytes_port1(ddr_wr_bytes_port1),
.ddr_rd_addr_port1(ddr_rd_addr_port1),
.ddr_rd_data_port1(ddr_rd_data_port1),
.ddr_rd_bytes_port1(ddr_rd_bytes_port1),
.ddr_wr_qos_port1(ddr_wr_qos_port1),
.ddr_rd_qos_port1(ddr_rd_qos_port1),
/* Goes to port2 of DDR */
.ddr_wr_ack_port2 (ddr_wr_ack_port2),
.ddr_wr_dv_port2 (ddr_wr_dv_port2),
.ddr_rd_req_port2 (ddr_rd_req_port2),
.ddr_rd_dv_port2 (ddr_rd_dv_port2),
.ddr_wr_addr_port2(ddr_wr_addr_port2),
.ddr_wr_data_port2(ddr_wr_data_port2),
.ddr_wr_bytes_port2(ddr_wr_bytes_port2),
.ddr_rd_addr_port2(ddr_rd_addr_port2),
.ddr_rd_data_port2(ddr_rd_data_port2),
.ddr_rd_bytes_port2(ddr_rd_bytes_port2),
.ddr_wr_qos_port2 (ddr_wr_qos_port2),
.ddr_rd_qos_port2 (ddr_rd_qos_port2),
/* Goes to port3 of DDR */
.ddr_wr_ack_port3 (ddr_wr_ack_port3),
.ddr_wr_dv_port3 (ddr_wr_dv_port3),
.ddr_rd_req_port3 (ddr_rd_req_port3),
.ddr_rd_dv_port3 (ddr_rd_dv_port3),
.ddr_wr_addr_port3(ddr_wr_addr_port3),
.ddr_wr_data_port3(ddr_wr_data_port3),
.ddr_wr_bytes_port3(ddr_wr_bytes_port3),
.ddr_rd_addr_port3(ddr_rd_addr_port3),
.ddr_rd_data_port3(ddr_rd_data_port3),
.ddr_rd_bytes_port3(ddr_rd_bytes_port3),
.ddr_wr_qos_port3 (ddr_wr_qos_port3),
.ddr_rd_qos_port3 (ddr_rd_qos_port3),
/* Goes to port 0 of OCM */
.ocm_wr_ack_port1 (ocm_wr_ack_port1),
.ocm_wr_dv_port1 (ocm_wr_dv_port1),
.ocm_rd_req_port1 (ocm_rd_req_port1),
.ocm_rd_dv_port1 (ocm_rd_dv_port1),
.ocm_wr_addr_port1(ocm_wr_addr_port1),
.ocm_wr_data_port1(ocm_wr_data_port1),
.ocm_wr_bytes_port1(ocm_wr_bytes_port1),
.ocm_rd_addr_port1(ocm_rd_addr_port1),
.ocm_rd_data_port1(ocm_rd_data_port1),
.ocm_rd_bytes_port1(ocm_rd_bytes_port1),
.ocm_wr_qos_port1(ocm_wr_qos_port1),
.ocm_rd_qos_port1(ocm_rd_qos_port1),
/* Goes to port 0 of REG */
.reg_rd_qos_port1 (reg_rd_qos_port1) ,
.reg_rd_req_port1 (reg_rd_req_port1),
.reg_rd_dv_port1 (reg_rd_dv_port1),
.reg_rd_addr_port1(reg_rd_addr_port1),
.reg_rd_data_port1(reg_rd_data_port1),
.reg_rd_bytes_port1(reg_rd_bytes_port1)
);
processing_system7_bfm_v2_0_5_ddrc ddrc (
.rstn(net_rstn),
.sw_clk(net_sw_clk),
/* Goes to port 0 of DDR */
.ddr_wr_ack_port0 (ddr_wr_ack_port0),
.ddr_wr_dv_port0 (ddr_wr_dv_port0),
.ddr_rd_req_port0 (ddr_rd_req_port0),
.ddr_rd_dv_port0 (ddr_rd_dv_port0),
.ddr_wr_addr_port0(net_wr_addr_acp),
.ddr_wr_data_port0(net_wr_data_acp),
.ddr_wr_bytes_port0(net_wr_bytes_acp),
.ddr_rd_addr_port0(net_rd_addr_acp),
.ddr_rd_bytes_port0(net_rd_bytes_acp),
.ddr_rd_data_port0(ddr_rd_data_port0),
.ddr_wr_qos_port0 (net_wr_qos_acp),
.ddr_rd_qos_port0 (net_rd_qos_acp),
/* Goes to port 1 of DDR */
.ddr_wr_ack_port1 (ddr_wr_ack_port1),
.ddr_wr_dv_port1 (ddr_wr_dv_port1),
.ddr_rd_req_port1 (ddr_rd_req_port1),
.ddr_rd_dv_port1 (ddr_rd_dv_port1),
.ddr_wr_addr_port1(ddr_wr_addr_port1),
.ddr_wr_data_port1(ddr_wr_data_port1),
.ddr_wr_bytes_port1(ddr_wr_bytes_port1),
.ddr_rd_addr_port1(ddr_rd_addr_port1),
.ddr_rd_data_port1(ddr_rd_data_port1),
.ddr_rd_bytes_port1(ddr_rd_bytes_port1),
.ddr_wr_qos_port1 (ddr_wr_qos_port1),
.ddr_rd_qos_port1 (ddr_rd_qos_port1),
/* Goes to port2 of DDR */
.ddr_wr_ack_port2 (ddr_wr_ack_port2),
.ddr_wr_dv_port2 (ddr_wr_dv_port2),
.ddr_rd_req_port2 (ddr_rd_req_port2),
.ddr_rd_dv_port2 (ddr_rd_dv_port2),
.ddr_wr_addr_port2(ddr_wr_addr_port2),
.ddr_wr_data_port2(ddr_wr_data_port2),
.ddr_wr_bytes_port2(ddr_wr_bytes_port2),
.ddr_rd_addr_port2(ddr_rd_addr_port2),
.ddr_rd_data_port2(ddr_rd_data_port2),
.ddr_rd_bytes_port2(ddr_rd_bytes_port2),
.ddr_wr_qos_port2 (ddr_wr_qos_port2),
.ddr_rd_qos_port2 (ddr_rd_qos_port2),
/* Goes to port3 of DDR */
.ddr_wr_ack_port3 (ddr_wr_ack_port3),
.ddr_wr_dv_port3 (ddr_wr_dv_port3),
.ddr_rd_req_port3 (ddr_rd_req_port3),
.ddr_rd_dv_port3 (ddr_rd_dv_port3),
.ddr_wr_addr_port3(ddr_wr_addr_port3),
.ddr_wr_data_port3(ddr_wr_data_port3),
.ddr_wr_bytes_port3(ddr_wr_bytes_port3),
.ddr_rd_addr_port3(ddr_rd_addr_port3),
.ddr_rd_data_port3(ddr_rd_data_port3),
.ddr_rd_bytes_port3(ddr_rd_bytes_port3),
.ddr_wr_qos_port3 (ddr_wr_qos_port3),
.ddr_rd_qos_port3 (ddr_rd_qos_port3)
);
processing_system7_bfm_v2_0_5_ocmc ocmc (
.rstn(net_rstn),
.sw_clk(net_sw_clk),
/* Goes to port 0 of OCM */
.ocm_wr_ack_port0 (ocm_wr_ack_port0),
.ocm_wr_dv_port0 (ocm_wr_dv_port0),
.ocm_rd_req_port0 (ocm_rd_req_port0),
.ocm_rd_dv_port0 (ocm_rd_dv_port0),
.ocm_wr_addr_port0(net_wr_addr_acp),
.ocm_wr_data_port0(net_wr_data_acp),
.ocm_wr_bytes_port0(net_wr_bytes_acp),
.ocm_rd_addr_port0(net_rd_addr_acp),
.ocm_rd_bytes_port0(net_rd_bytes_acp),
.ocm_rd_data_port0(ocm_rd_data_port0),
.ocm_wr_qos_port0 (net_wr_qos_acp),
.ocm_rd_qos_port0 (net_rd_qos_acp),
/* Goes to port 1 of OCM */
.ocm_wr_ack_port1 (ocm_wr_ack_port1),
.ocm_wr_dv_port1 (ocm_wr_dv_port1),
.ocm_rd_req_port1 (ocm_rd_req_port1),
.ocm_rd_dv_port1 (ocm_rd_dv_port1),
.ocm_wr_addr_port1(ocm_wr_addr_port1),
.ocm_wr_data_port1(ocm_wr_data_port1),
.ocm_wr_bytes_port1(ocm_wr_bytes_port1),
.ocm_rd_addr_port1(ocm_rd_addr_port1),
.ocm_rd_data_port1(ocm_rd_data_port1),
.ocm_rd_bytes_port1(ocm_rd_bytes_port1),
.ocm_wr_qos_port1(ocm_wr_qos_port1),
.ocm_rd_qos_port1(ocm_rd_qos_port1)
);
processing_system7_bfm_v2_0_5_regc regc (
.rstn(net_rstn),
.sw_clk(net_sw_clk),
/* Goes to port 0 of REG */
.reg_rd_req_port0 (reg_rd_req_port0),
.reg_rd_dv_port0 (reg_rd_dv_port0),
.reg_rd_addr_port0(net_rd_addr_acp),
.reg_rd_bytes_port0(net_rd_bytes_acp),
.reg_rd_data_port0(reg_rd_data_port0),
.reg_rd_qos_port0 (net_rd_qos_acp),
/* Goes to port 1 of REG */
.reg_rd_req_port1 (reg_rd_req_port1),
.reg_rd_dv_port1 (reg_rd_dv_port1),
.reg_rd_addr_port1(reg_rd_addr_port1),
.reg_rd_data_port1(reg_rd_data_port1),
.reg_rd_bytes_port1(reg_rd_bytes_port1),
.reg_rd_qos_port1(reg_rd_qos_port1)
);
/* include axi_gp port instantiations */
`include "processing_system7_bfm_v2_0_5_axi_gp.v"
/* include axi_hp port instantiations */
`include "processing_system7_bfm_v2_0_5_axi_hp.v"
/* include axi_acp port instantiations */
`include "processing_system7_bfm_v2_0_5_axi_acp.v"
endmodule
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_ddrc.v
*
* Date : 2012-11
*
* Description : Module that acts as controller for sparse memory (DDR).
*
*****************************************************************************/
`timescale 1ns/1ps
module processing_system7_bfm_v2_0_5_ddrc(
rstn,
sw_clk,
/* Goes to port 0 of DDR */
ddr_wr_ack_port0,
ddr_wr_dv_port0,
ddr_rd_req_port0,
ddr_rd_dv_port0,
ddr_wr_addr_port0,
ddr_wr_data_port0,
ddr_wr_bytes_port0,
ddr_rd_addr_port0,
ddr_rd_data_port0,
ddr_rd_bytes_port0,
ddr_wr_qos_port0,
ddr_rd_qos_port0,
/* Goes to port 1 of DDR */
ddr_wr_ack_port1,
ddr_wr_dv_port1,
ddr_rd_req_port1,
ddr_rd_dv_port1,
ddr_wr_addr_port1,
ddr_wr_data_port1,
ddr_wr_bytes_port1,
ddr_rd_addr_port1,
ddr_rd_data_port1,
ddr_rd_bytes_port1,
ddr_wr_qos_port1,
ddr_rd_qos_port1,
/* Goes to port2 of DDR */
ddr_wr_ack_port2,
ddr_wr_dv_port2,
ddr_rd_req_port2,
ddr_rd_dv_port2,
ddr_wr_addr_port2,
ddr_wr_data_port2,
ddr_wr_bytes_port2,
ddr_rd_addr_port2,
ddr_rd_data_port2,
ddr_rd_bytes_port2,
ddr_wr_qos_port2,
ddr_rd_qos_port2,
/* Goes to port3 of DDR */
ddr_wr_ack_port3,
ddr_wr_dv_port3,
ddr_rd_req_port3,
ddr_rd_dv_port3,
ddr_wr_addr_port3,
ddr_wr_data_port3,
ddr_wr_bytes_port3,
ddr_rd_addr_port3,
ddr_rd_data_port3,
ddr_rd_bytes_port3,
ddr_wr_qos_port3,
ddr_rd_qos_port3
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input rstn;
input sw_clk;
output ddr_wr_ack_port0;
input ddr_wr_dv_port0;
input ddr_rd_req_port0;
output ddr_rd_dv_port0;
input[addr_width-1:0] ddr_wr_addr_port0;
input[max_burst_bits-1:0] ddr_wr_data_port0;
input[max_burst_bytes_width:0] ddr_wr_bytes_port0;
input[addr_width-1:0] ddr_rd_addr_port0;
output[max_burst_bits-1:0] ddr_rd_data_port0;
input[max_burst_bytes_width:0] ddr_rd_bytes_port0;
input [axi_qos_width-1:0] ddr_wr_qos_port0;
input [axi_qos_width-1:0] ddr_rd_qos_port0;
output ddr_wr_ack_port1;
input ddr_wr_dv_port1;
input ddr_rd_req_port1;
output ddr_rd_dv_port1;
input[addr_width-1:0] ddr_wr_addr_port1;
input[max_burst_bits-1:0] ddr_wr_data_port1;
input[max_burst_bytes_width:0] ddr_wr_bytes_port1;
input[addr_width-1:0] ddr_rd_addr_port1;
output[max_burst_bits-1:0] ddr_rd_data_port1;
input[max_burst_bytes_width:0] ddr_rd_bytes_port1;
input[axi_qos_width-1:0] ddr_wr_qos_port1;
input[axi_qos_width-1:0] ddr_rd_qos_port1;
output ddr_wr_ack_port2;
input ddr_wr_dv_port2;
input ddr_rd_req_port2;
output ddr_rd_dv_port2;
input[addr_width-1:0] ddr_wr_addr_port2;
input[max_burst_bits-1:0] ddr_wr_data_port2;
input[max_burst_bytes_width:0] ddr_wr_bytes_port2;
input[addr_width-1:0] ddr_rd_addr_port2;
output[max_burst_bits-1:0] ddr_rd_data_port2;
input[max_burst_bytes_width:0] ddr_rd_bytes_port2;
input[axi_qos_width-1:0] ddr_wr_qos_port2;
input[axi_qos_width-1:0] ddr_rd_qos_port2;
output ddr_wr_ack_port3;
input ddr_wr_dv_port3;
input ddr_rd_req_port3;
output ddr_rd_dv_port3;
input[addr_width-1:0] ddr_wr_addr_port3;
input[max_burst_bits-1:0] ddr_wr_data_port3;
input[max_burst_bytes_width:0] ddr_wr_bytes_port3;
input[addr_width-1:0] ddr_rd_addr_port3;
output[max_burst_bits-1:0] ddr_rd_data_port3;
input[max_burst_bytes_width:0] ddr_rd_bytes_port3;
input[axi_qos_width-1:0] ddr_wr_qos_port3;
input[axi_qos_width-1:0] ddr_rd_qos_port3;
wire [axi_qos_width-1:0] wr_qos;
wire wr_req;
wire [max_burst_bits-1:0] wr_data;
wire [addr_width-1:0] wr_addr;
wire [max_burst_bytes_width:0] wr_bytes;
reg wr_ack;
wire [axi_qos_width-1:0] rd_qos;
reg [max_burst_bits-1:0] rd_data;
wire [addr_width-1:0] rd_addr;
wire [max_burst_bytes_width:0] rd_bytes;
reg rd_dv;
wire rd_req;
processing_system7_bfm_v2_0_5_arb_wr_4 ddr_write_ports (
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(ddr_wr_qos_port0),
.qos2(ddr_wr_qos_port1),
.qos3(ddr_wr_qos_port2),
.qos4(ddr_wr_qos_port3),
.prt_dv1(ddr_wr_dv_port0),
.prt_dv2(ddr_wr_dv_port1),
.prt_dv3(ddr_wr_dv_port2),
.prt_dv4(ddr_wr_dv_port3),
.prt_data1(ddr_wr_data_port0),
.prt_data2(ddr_wr_data_port1),
.prt_data3(ddr_wr_data_port2),
.prt_data4(ddr_wr_data_port3),
.prt_addr1(ddr_wr_addr_port0),
.prt_addr2(ddr_wr_addr_port1),
.prt_addr3(ddr_wr_addr_port2),
.prt_addr4(ddr_wr_addr_port3),
.prt_bytes1(ddr_wr_bytes_port0),
.prt_bytes2(ddr_wr_bytes_port1),
.prt_bytes3(ddr_wr_bytes_port2),
.prt_bytes4(ddr_wr_bytes_port3),
.prt_ack1(ddr_wr_ack_port0),
.prt_ack2(ddr_wr_ack_port1),
.prt_ack3(ddr_wr_ack_port2),
.prt_ack4(ddr_wr_ack_port3),
.prt_qos(wr_qos),
.prt_req(wr_req),
.prt_data(wr_data),
.prt_addr(wr_addr),
.prt_bytes(wr_bytes),
.prt_ack(wr_ack)
);
processing_system7_bfm_v2_0_5_arb_rd_4 ddr_read_ports (
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(ddr_rd_qos_port0),
.qos2(ddr_rd_qos_port1),
.qos3(ddr_rd_qos_port2),
.qos4(ddr_rd_qos_port3),
.prt_req1(ddr_rd_req_port0),
.prt_req2(ddr_rd_req_port1),
.prt_req3(ddr_rd_req_port2),
.prt_req4(ddr_rd_req_port3),
.prt_data1(ddr_rd_data_port0),
.prt_data2(ddr_rd_data_port1),
.prt_data3(ddr_rd_data_port2),
.prt_data4(ddr_rd_data_port3),
.prt_addr1(ddr_rd_addr_port0),
.prt_addr2(ddr_rd_addr_port1),
.prt_addr3(ddr_rd_addr_port2),
.prt_addr4(ddr_rd_addr_port3),
.prt_bytes1(ddr_rd_bytes_port0),
.prt_bytes2(ddr_rd_bytes_port1),
.prt_bytes3(ddr_rd_bytes_port2),
.prt_bytes4(ddr_rd_bytes_port3),
.prt_dv1(ddr_rd_dv_port0),
.prt_dv2(ddr_rd_dv_port1),
.prt_dv3(ddr_rd_dv_port2),
.prt_dv4(ddr_rd_dv_port3),
.prt_qos(rd_qos),
.prt_req(rd_req),
.prt_data(rd_data),
.prt_addr(rd_addr),
.prt_bytes(rd_bytes),
.prt_dv(rd_dv)
);
processing_system7_bfm_v2_0_5_sparse_mem ddr();
reg [1:0] state;
always@(posedge sw_clk or negedge rstn)
begin
if(!rstn) begin
wr_ack <= 0;
rd_dv <= 0;
state <= 2'd0;
end else begin
case(state)
0:begin
state <= 0;
wr_ack <= 0;
rd_dv <= 0;
if(wr_req) begin
ddr.write_mem(wr_data , wr_addr, wr_bytes);
wr_ack <= 1;
state <= 1;
end
if(rd_req) begin
ddr.read_mem(rd_data,rd_addr, rd_bytes);
rd_dv <= 1;
state <= 1;
end
end
1:begin
wr_ack <= 0;
rd_dv <= 0;
state <= 0;
end
endcase
end /// if
end// always
endmodule
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_ddrc.v
*
* Date : 2012-11
*
* Description : Module that acts as controller for sparse memory (DDR).
*
*****************************************************************************/
`timescale 1ns/1ps
module processing_system7_bfm_v2_0_5_ddrc(
rstn,
sw_clk,
/* Goes to port 0 of DDR */
ddr_wr_ack_port0,
ddr_wr_dv_port0,
ddr_rd_req_port0,
ddr_rd_dv_port0,
ddr_wr_addr_port0,
ddr_wr_data_port0,
ddr_wr_bytes_port0,
ddr_rd_addr_port0,
ddr_rd_data_port0,
ddr_rd_bytes_port0,
ddr_wr_qos_port0,
ddr_rd_qos_port0,
/* Goes to port 1 of DDR */
ddr_wr_ack_port1,
ddr_wr_dv_port1,
ddr_rd_req_port1,
ddr_rd_dv_port1,
ddr_wr_addr_port1,
ddr_wr_data_port1,
ddr_wr_bytes_port1,
ddr_rd_addr_port1,
ddr_rd_data_port1,
ddr_rd_bytes_port1,
ddr_wr_qos_port1,
ddr_rd_qos_port1,
/* Goes to port2 of DDR */
ddr_wr_ack_port2,
ddr_wr_dv_port2,
ddr_rd_req_port2,
ddr_rd_dv_port2,
ddr_wr_addr_port2,
ddr_wr_data_port2,
ddr_wr_bytes_port2,
ddr_rd_addr_port2,
ddr_rd_data_port2,
ddr_rd_bytes_port2,
ddr_wr_qos_port2,
ddr_rd_qos_port2,
/* Goes to port3 of DDR */
ddr_wr_ack_port3,
ddr_wr_dv_port3,
ddr_rd_req_port3,
ddr_rd_dv_port3,
ddr_wr_addr_port3,
ddr_wr_data_port3,
ddr_wr_bytes_port3,
ddr_rd_addr_port3,
ddr_rd_data_port3,
ddr_rd_bytes_port3,
ddr_wr_qos_port3,
ddr_rd_qos_port3
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input rstn;
input sw_clk;
output ddr_wr_ack_port0;
input ddr_wr_dv_port0;
input ddr_rd_req_port0;
output ddr_rd_dv_port0;
input[addr_width-1:0] ddr_wr_addr_port0;
input[max_burst_bits-1:0] ddr_wr_data_port0;
input[max_burst_bytes_width:0] ddr_wr_bytes_port0;
input[addr_width-1:0] ddr_rd_addr_port0;
output[max_burst_bits-1:0] ddr_rd_data_port0;
input[max_burst_bytes_width:0] ddr_rd_bytes_port0;
input [axi_qos_width-1:0] ddr_wr_qos_port0;
input [axi_qos_width-1:0] ddr_rd_qos_port0;
output ddr_wr_ack_port1;
input ddr_wr_dv_port1;
input ddr_rd_req_port1;
output ddr_rd_dv_port1;
input[addr_width-1:0] ddr_wr_addr_port1;
input[max_burst_bits-1:0] ddr_wr_data_port1;
input[max_burst_bytes_width:0] ddr_wr_bytes_port1;
input[addr_width-1:0] ddr_rd_addr_port1;
output[max_burst_bits-1:0] ddr_rd_data_port1;
input[max_burst_bytes_width:0] ddr_rd_bytes_port1;
input[axi_qos_width-1:0] ddr_wr_qos_port1;
input[axi_qos_width-1:0] ddr_rd_qos_port1;
output ddr_wr_ack_port2;
input ddr_wr_dv_port2;
input ddr_rd_req_port2;
output ddr_rd_dv_port2;
input[addr_width-1:0] ddr_wr_addr_port2;
input[max_burst_bits-1:0] ddr_wr_data_port2;
input[max_burst_bytes_width:0] ddr_wr_bytes_port2;
input[addr_width-1:0] ddr_rd_addr_port2;
output[max_burst_bits-1:0] ddr_rd_data_port2;
input[max_burst_bytes_width:0] ddr_rd_bytes_port2;
input[axi_qos_width-1:0] ddr_wr_qos_port2;
input[axi_qos_width-1:0] ddr_rd_qos_port2;
output ddr_wr_ack_port3;
input ddr_wr_dv_port3;
input ddr_rd_req_port3;
output ddr_rd_dv_port3;
input[addr_width-1:0] ddr_wr_addr_port3;
input[max_burst_bits-1:0] ddr_wr_data_port3;
input[max_burst_bytes_width:0] ddr_wr_bytes_port3;
input[addr_width-1:0] ddr_rd_addr_port3;
output[max_burst_bits-1:0] ddr_rd_data_port3;
input[max_burst_bytes_width:0] ddr_rd_bytes_port3;
input[axi_qos_width-1:0] ddr_wr_qos_port3;
input[axi_qos_width-1:0] ddr_rd_qos_port3;
wire [axi_qos_width-1:0] wr_qos;
wire wr_req;
wire [max_burst_bits-1:0] wr_data;
wire [addr_width-1:0] wr_addr;
wire [max_burst_bytes_width:0] wr_bytes;
reg wr_ack;
wire [axi_qos_width-1:0] rd_qos;
reg [max_burst_bits-1:0] rd_data;
wire [addr_width-1:0] rd_addr;
wire [max_burst_bytes_width:0] rd_bytes;
reg rd_dv;
wire rd_req;
processing_system7_bfm_v2_0_5_arb_wr_4 ddr_write_ports (
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(ddr_wr_qos_port0),
.qos2(ddr_wr_qos_port1),
.qos3(ddr_wr_qos_port2),
.qos4(ddr_wr_qos_port3),
.prt_dv1(ddr_wr_dv_port0),
.prt_dv2(ddr_wr_dv_port1),
.prt_dv3(ddr_wr_dv_port2),
.prt_dv4(ddr_wr_dv_port3),
.prt_data1(ddr_wr_data_port0),
.prt_data2(ddr_wr_data_port1),
.prt_data3(ddr_wr_data_port2),
.prt_data4(ddr_wr_data_port3),
.prt_addr1(ddr_wr_addr_port0),
.prt_addr2(ddr_wr_addr_port1),
.prt_addr3(ddr_wr_addr_port2),
.prt_addr4(ddr_wr_addr_port3),
.prt_bytes1(ddr_wr_bytes_port0),
.prt_bytes2(ddr_wr_bytes_port1),
.prt_bytes3(ddr_wr_bytes_port2),
.prt_bytes4(ddr_wr_bytes_port3),
.prt_ack1(ddr_wr_ack_port0),
.prt_ack2(ddr_wr_ack_port1),
.prt_ack3(ddr_wr_ack_port2),
.prt_ack4(ddr_wr_ack_port3),
.prt_qos(wr_qos),
.prt_req(wr_req),
.prt_data(wr_data),
.prt_addr(wr_addr),
.prt_bytes(wr_bytes),
.prt_ack(wr_ack)
);
processing_system7_bfm_v2_0_5_arb_rd_4 ddr_read_ports (
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(ddr_rd_qos_port0),
.qos2(ddr_rd_qos_port1),
.qos3(ddr_rd_qos_port2),
.qos4(ddr_rd_qos_port3),
.prt_req1(ddr_rd_req_port0),
.prt_req2(ddr_rd_req_port1),
.prt_req3(ddr_rd_req_port2),
.prt_req4(ddr_rd_req_port3),
.prt_data1(ddr_rd_data_port0),
.prt_data2(ddr_rd_data_port1),
.prt_data3(ddr_rd_data_port2),
.prt_data4(ddr_rd_data_port3),
.prt_addr1(ddr_rd_addr_port0),
.prt_addr2(ddr_rd_addr_port1),
.prt_addr3(ddr_rd_addr_port2),
.prt_addr4(ddr_rd_addr_port3),
.prt_bytes1(ddr_rd_bytes_port0),
.prt_bytes2(ddr_rd_bytes_port1),
.prt_bytes3(ddr_rd_bytes_port2),
.prt_bytes4(ddr_rd_bytes_port3),
.prt_dv1(ddr_rd_dv_port0),
.prt_dv2(ddr_rd_dv_port1),
.prt_dv3(ddr_rd_dv_port2),
.prt_dv4(ddr_rd_dv_port3),
.prt_qos(rd_qos),
.prt_req(rd_req),
.prt_data(rd_data),
.prt_addr(rd_addr),
.prt_bytes(rd_bytes),
.prt_dv(rd_dv)
);
processing_system7_bfm_v2_0_5_sparse_mem ddr();
reg [1:0] state;
always@(posedge sw_clk or negedge rstn)
begin
if(!rstn) begin
wr_ack <= 0;
rd_dv <= 0;
state <= 2'd0;
end else begin
case(state)
0:begin
state <= 0;
wr_ack <= 0;
rd_dv <= 0;
if(wr_req) begin
ddr.write_mem(wr_data , wr_addr, wr_bytes);
wr_ack <= 1;
state <= 1;
end
if(rd_req) begin
ddr.read_mem(rd_data,rd_addr, rd_bytes);
rd_dv <= 1;
state <= 1;
end
end
1:begin
wr_ack <= 0;
rd_dv <= 0;
state <= 0;
end
endcase
end /// if
end// always
endmodule
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_ddrc.v
*
* Date : 2012-11
*
* Description : Module that acts as controller for sparse memory (DDR).
*
*****************************************************************************/
`timescale 1ns/1ps
module processing_system7_bfm_v2_0_5_ddrc(
rstn,
sw_clk,
/* Goes to port 0 of DDR */
ddr_wr_ack_port0,
ddr_wr_dv_port0,
ddr_rd_req_port0,
ddr_rd_dv_port0,
ddr_wr_addr_port0,
ddr_wr_data_port0,
ddr_wr_bytes_port0,
ddr_rd_addr_port0,
ddr_rd_data_port0,
ddr_rd_bytes_port0,
ddr_wr_qos_port0,
ddr_rd_qos_port0,
/* Goes to port 1 of DDR */
ddr_wr_ack_port1,
ddr_wr_dv_port1,
ddr_rd_req_port1,
ddr_rd_dv_port1,
ddr_wr_addr_port1,
ddr_wr_data_port1,
ddr_wr_bytes_port1,
ddr_rd_addr_port1,
ddr_rd_data_port1,
ddr_rd_bytes_port1,
ddr_wr_qos_port1,
ddr_rd_qos_port1,
/* Goes to port2 of DDR */
ddr_wr_ack_port2,
ddr_wr_dv_port2,
ddr_rd_req_port2,
ddr_rd_dv_port2,
ddr_wr_addr_port2,
ddr_wr_data_port2,
ddr_wr_bytes_port2,
ddr_rd_addr_port2,
ddr_rd_data_port2,
ddr_rd_bytes_port2,
ddr_wr_qos_port2,
ddr_rd_qos_port2,
/* Goes to port3 of DDR */
ddr_wr_ack_port3,
ddr_wr_dv_port3,
ddr_rd_req_port3,
ddr_rd_dv_port3,
ddr_wr_addr_port3,
ddr_wr_data_port3,
ddr_wr_bytes_port3,
ddr_rd_addr_port3,
ddr_rd_data_port3,
ddr_rd_bytes_port3,
ddr_wr_qos_port3,
ddr_rd_qos_port3
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input rstn;
input sw_clk;
output ddr_wr_ack_port0;
input ddr_wr_dv_port0;
input ddr_rd_req_port0;
output ddr_rd_dv_port0;
input[addr_width-1:0] ddr_wr_addr_port0;
input[max_burst_bits-1:0] ddr_wr_data_port0;
input[max_burst_bytes_width:0] ddr_wr_bytes_port0;
input[addr_width-1:0] ddr_rd_addr_port0;
output[max_burst_bits-1:0] ddr_rd_data_port0;
input[max_burst_bytes_width:0] ddr_rd_bytes_port0;
input [axi_qos_width-1:0] ddr_wr_qos_port0;
input [axi_qos_width-1:0] ddr_rd_qos_port0;
output ddr_wr_ack_port1;
input ddr_wr_dv_port1;
input ddr_rd_req_port1;
output ddr_rd_dv_port1;
input[addr_width-1:0] ddr_wr_addr_port1;
input[max_burst_bits-1:0] ddr_wr_data_port1;
input[max_burst_bytes_width:0] ddr_wr_bytes_port1;
input[addr_width-1:0] ddr_rd_addr_port1;
output[max_burst_bits-1:0] ddr_rd_data_port1;
input[max_burst_bytes_width:0] ddr_rd_bytes_port1;
input[axi_qos_width-1:0] ddr_wr_qos_port1;
input[axi_qos_width-1:0] ddr_rd_qos_port1;
output ddr_wr_ack_port2;
input ddr_wr_dv_port2;
input ddr_rd_req_port2;
output ddr_rd_dv_port2;
input[addr_width-1:0] ddr_wr_addr_port2;
input[max_burst_bits-1:0] ddr_wr_data_port2;
input[max_burst_bytes_width:0] ddr_wr_bytes_port2;
input[addr_width-1:0] ddr_rd_addr_port2;
output[max_burst_bits-1:0] ddr_rd_data_port2;
input[max_burst_bytes_width:0] ddr_rd_bytes_port2;
input[axi_qos_width-1:0] ddr_wr_qos_port2;
input[axi_qos_width-1:0] ddr_rd_qos_port2;
output ddr_wr_ack_port3;
input ddr_wr_dv_port3;
input ddr_rd_req_port3;
output ddr_rd_dv_port3;
input[addr_width-1:0] ddr_wr_addr_port3;
input[max_burst_bits-1:0] ddr_wr_data_port3;
input[max_burst_bytes_width:0] ddr_wr_bytes_port3;
input[addr_width-1:0] ddr_rd_addr_port3;
output[max_burst_bits-1:0] ddr_rd_data_port3;
input[max_burst_bytes_width:0] ddr_rd_bytes_port3;
input[axi_qos_width-1:0] ddr_wr_qos_port3;
input[axi_qos_width-1:0] ddr_rd_qos_port3;
wire [axi_qos_width-1:0] wr_qos;
wire wr_req;
wire [max_burst_bits-1:0] wr_data;
wire [addr_width-1:0] wr_addr;
wire [max_burst_bytes_width:0] wr_bytes;
reg wr_ack;
wire [axi_qos_width-1:0] rd_qos;
reg [max_burst_bits-1:0] rd_data;
wire [addr_width-1:0] rd_addr;
wire [max_burst_bytes_width:0] rd_bytes;
reg rd_dv;
wire rd_req;
processing_system7_bfm_v2_0_5_arb_wr_4 ddr_write_ports (
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(ddr_wr_qos_port0),
.qos2(ddr_wr_qos_port1),
.qos3(ddr_wr_qos_port2),
.qos4(ddr_wr_qos_port3),
.prt_dv1(ddr_wr_dv_port0),
.prt_dv2(ddr_wr_dv_port1),
.prt_dv3(ddr_wr_dv_port2),
.prt_dv4(ddr_wr_dv_port3),
.prt_data1(ddr_wr_data_port0),
.prt_data2(ddr_wr_data_port1),
.prt_data3(ddr_wr_data_port2),
.prt_data4(ddr_wr_data_port3),
.prt_addr1(ddr_wr_addr_port0),
.prt_addr2(ddr_wr_addr_port1),
.prt_addr3(ddr_wr_addr_port2),
.prt_addr4(ddr_wr_addr_port3),
.prt_bytes1(ddr_wr_bytes_port0),
.prt_bytes2(ddr_wr_bytes_port1),
.prt_bytes3(ddr_wr_bytes_port2),
.prt_bytes4(ddr_wr_bytes_port3),
.prt_ack1(ddr_wr_ack_port0),
.prt_ack2(ddr_wr_ack_port1),
.prt_ack3(ddr_wr_ack_port2),
.prt_ack4(ddr_wr_ack_port3),
.prt_qos(wr_qos),
.prt_req(wr_req),
.prt_data(wr_data),
.prt_addr(wr_addr),
.prt_bytes(wr_bytes),
.prt_ack(wr_ack)
);
processing_system7_bfm_v2_0_5_arb_rd_4 ddr_read_ports (
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(ddr_rd_qos_port0),
.qos2(ddr_rd_qos_port1),
.qos3(ddr_rd_qos_port2),
.qos4(ddr_rd_qos_port3),
.prt_req1(ddr_rd_req_port0),
.prt_req2(ddr_rd_req_port1),
.prt_req3(ddr_rd_req_port2),
.prt_req4(ddr_rd_req_port3),
.prt_data1(ddr_rd_data_port0),
.prt_data2(ddr_rd_data_port1),
.prt_data3(ddr_rd_data_port2),
.prt_data4(ddr_rd_data_port3),
.prt_addr1(ddr_rd_addr_port0),
.prt_addr2(ddr_rd_addr_port1),
.prt_addr3(ddr_rd_addr_port2),
.prt_addr4(ddr_rd_addr_port3),
.prt_bytes1(ddr_rd_bytes_port0),
.prt_bytes2(ddr_rd_bytes_port1),
.prt_bytes3(ddr_rd_bytes_port2),
.prt_bytes4(ddr_rd_bytes_port3),
.prt_dv1(ddr_rd_dv_port0),
.prt_dv2(ddr_rd_dv_port1),
.prt_dv3(ddr_rd_dv_port2),
.prt_dv4(ddr_rd_dv_port3),
.prt_qos(rd_qos),
.prt_req(rd_req),
.prt_data(rd_data),
.prt_addr(rd_addr),
.prt_bytes(rd_bytes),
.prt_dv(rd_dv)
);
processing_system7_bfm_v2_0_5_sparse_mem ddr();
reg [1:0] state;
always@(posedge sw_clk or negedge rstn)
begin
if(!rstn) begin
wr_ack <= 0;
rd_dv <= 0;
state <= 2'd0;
end else begin
case(state)
0:begin
state <= 0;
wr_ack <= 0;
rd_dv <= 0;
if(wr_req) begin
ddr.write_mem(wr_data , wr_addr, wr_bytes);
wr_ack <= 1;
state <= 1;
end
if(rd_req) begin
ddr.read_mem(rd_data,rd_addr, rd_bytes);
rd_dv <= 1;
state <= 1;
end
end
1:begin
wr_ack <= 0;
rd_dv <= 0;
state <= 0;
end
endcase
end /// if
end// always
endmodule
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_ddrc.v
*
* Date : 2012-11
*
* Description : Module that acts as controller for sparse memory (DDR).
*
*****************************************************************************/
`timescale 1ns/1ps
module processing_system7_bfm_v2_0_5_ddrc(
rstn,
sw_clk,
/* Goes to port 0 of DDR */
ddr_wr_ack_port0,
ddr_wr_dv_port0,
ddr_rd_req_port0,
ddr_rd_dv_port0,
ddr_wr_addr_port0,
ddr_wr_data_port0,
ddr_wr_bytes_port0,
ddr_rd_addr_port0,
ddr_rd_data_port0,
ddr_rd_bytes_port0,
ddr_wr_qos_port0,
ddr_rd_qos_port0,
/* Goes to port 1 of DDR */
ddr_wr_ack_port1,
ddr_wr_dv_port1,
ddr_rd_req_port1,
ddr_rd_dv_port1,
ddr_wr_addr_port1,
ddr_wr_data_port1,
ddr_wr_bytes_port1,
ddr_rd_addr_port1,
ddr_rd_data_port1,
ddr_rd_bytes_port1,
ddr_wr_qos_port1,
ddr_rd_qos_port1,
/* Goes to port2 of DDR */
ddr_wr_ack_port2,
ddr_wr_dv_port2,
ddr_rd_req_port2,
ddr_rd_dv_port2,
ddr_wr_addr_port2,
ddr_wr_data_port2,
ddr_wr_bytes_port2,
ddr_rd_addr_port2,
ddr_rd_data_port2,
ddr_rd_bytes_port2,
ddr_wr_qos_port2,
ddr_rd_qos_port2,
/* Goes to port3 of DDR */
ddr_wr_ack_port3,
ddr_wr_dv_port3,
ddr_rd_req_port3,
ddr_rd_dv_port3,
ddr_wr_addr_port3,
ddr_wr_data_port3,
ddr_wr_bytes_port3,
ddr_rd_addr_port3,
ddr_rd_data_port3,
ddr_rd_bytes_port3,
ddr_wr_qos_port3,
ddr_rd_qos_port3
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input rstn;
input sw_clk;
output ddr_wr_ack_port0;
input ddr_wr_dv_port0;
input ddr_rd_req_port0;
output ddr_rd_dv_port0;
input[addr_width-1:0] ddr_wr_addr_port0;
input[max_burst_bits-1:0] ddr_wr_data_port0;
input[max_burst_bytes_width:0] ddr_wr_bytes_port0;
input[addr_width-1:0] ddr_rd_addr_port0;
output[max_burst_bits-1:0] ddr_rd_data_port0;
input[max_burst_bytes_width:0] ddr_rd_bytes_port0;
input [axi_qos_width-1:0] ddr_wr_qos_port0;
input [axi_qos_width-1:0] ddr_rd_qos_port0;
output ddr_wr_ack_port1;
input ddr_wr_dv_port1;
input ddr_rd_req_port1;
output ddr_rd_dv_port1;
input[addr_width-1:0] ddr_wr_addr_port1;
input[max_burst_bits-1:0] ddr_wr_data_port1;
input[max_burst_bytes_width:0] ddr_wr_bytes_port1;
input[addr_width-1:0] ddr_rd_addr_port1;
output[max_burst_bits-1:0] ddr_rd_data_port1;
input[max_burst_bytes_width:0] ddr_rd_bytes_port1;
input[axi_qos_width-1:0] ddr_wr_qos_port1;
input[axi_qos_width-1:0] ddr_rd_qos_port1;
output ddr_wr_ack_port2;
input ddr_wr_dv_port2;
input ddr_rd_req_port2;
output ddr_rd_dv_port2;
input[addr_width-1:0] ddr_wr_addr_port2;
input[max_burst_bits-1:0] ddr_wr_data_port2;
input[max_burst_bytes_width:0] ddr_wr_bytes_port2;
input[addr_width-1:0] ddr_rd_addr_port2;
output[max_burst_bits-1:0] ddr_rd_data_port2;
input[max_burst_bytes_width:0] ddr_rd_bytes_port2;
input[axi_qos_width-1:0] ddr_wr_qos_port2;
input[axi_qos_width-1:0] ddr_rd_qos_port2;
output ddr_wr_ack_port3;
input ddr_wr_dv_port3;
input ddr_rd_req_port3;
output ddr_rd_dv_port3;
input[addr_width-1:0] ddr_wr_addr_port3;
input[max_burst_bits-1:0] ddr_wr_data_port3;
input[max_burst_bytes_width:0] ddr_wr_bytes_port3;
input[addr_width-1:0] ddr_rd_addr_port3;
output[max_burst_bits-1:0] ddr_rd_data_port3;
input[max_burst_bytes_width:0] ddr_rd_bytes_port3;
input[axi_qos_width-1:0] ddr_wr_qos_port3;
input[axi_qos_width-1:0] ddr_rd_qos_port3;
wire [axi_qos_width-1:0] wr_qos;
wire wr_req;
wire [max_burst_bits-1:0] wr_data;
wire [addr_width-1:0] wr_addr;
wire [max_burst_bytes_width:0] wr_bytes;
reg wr_ack;
wire [axi_qos_width-1:0] rd_qos;
reg [max_burst_bits-1:0] rd_data;
wire [addr_width-1:0] rd_addr;
wire [max_burst_bytes_width:0] rd_bytes;
reg rd_dv;
wire rd_req;
processing_system7_bfm_v2_0_5_arb_wr_4 ddr_write_ports (
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(ddr_wr_qos_port0),
.qos2(ddr_wr_qos_port1),
.qos3(ddr_wr_qos_port2),
.qos4(ddr_wr_qos_port3),
.prt_dv1(ddr_wr_dv_port0),
.prt_dv2(ddr_wr_dv_port1),
.prt_dv3(ddr_wr_dv_port2),
.prt_dv4(ddr_wr_dv_port3),
.prt_data1(ddr_wr_data_port0),
.prt_data2(ddr_wr_data_port1),
.prt_data3(ddr_wr_data_port2),
.prt_data4(ddr_wr_data_port3),
.prt_addr1(ddr_wr_addr_port0),
.prt_addr2(ddr_wr_addr_port1),
.prt_addr3(ddr_wr_addr_port2),
.prt_addr4(ddr_wr_addr_port3),
.prt_bytes1(ddr_wr_bytes_port0),
.prt_bytes2(ddr_wr_bytes_port1),
.prt_bytes3(ddr_wr_bytes_port2),
.prt_bytes4(ddr_wr_bytes_port3),
.prt_ack1(ddr_wr_ack_port0),
.prt_ack2(ddr_wr_ack_port1),
.prt_ack3(ddr_wr_ack_port2),
.prt_ack4(ddr_wr_ack_port3),
.prt_qos(wr_qos),
.prt_req(wr_req),
.prt_data(wr_data),
.prt_addr(wr_addr),
.prt_bytes(wr_bytes),
.prt_ack(wr_ack)
);
processing_system7_bfm_v2_0_5_arb_rd_4 ddr_read_ports (
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(ddr_rd_qos_port0),
.qos2(ddr_rd_qos_port1),
.qos3(ddr_rd_qos_port2),
.qos4(ddr_rd_qos_port3),
.prt_req1(ddr_rd_req_port0),
.prt_req2(ddr_rd_req_port1),
.prt_req3(ddr_rd_req_port2),
.prt_req4(ddr_rd_req_port3),
.prt_data1(ddr_rd_data_port0),
.prt_data2(ddr_rd_data_port1),
.prt_data3(ddr_rd_data_port2),
.prt_data4(ddr_rd_data_port3),
.prt_addr1(ddr_rd_addr_port0),
.prt_addr2(ddr_rd_addr_port1),
.prt_addr3(ddr_rd_addr_port2),
.prt_addr4(ddr_rd_addr_port3),
.prt_bytes1(ddr_rd_bytes_port0),
.prt_bytes2(ddr_rd_bytes_port1),
.prt_bytes3(ddr_rd_bytes_port2),
.prt_bytes4(ddr_rd_bytes_port3),
.prt_dv1(ddr_rd_dv_port0),
.prt_dv2(ddr_rd_dv_port1),
.prt_dv3(ddr_rd_dv_port2),
.prt_dv4(ddr_rd_dv_port3),
.prt_qos(rd_qos),
.prt_req(rd_req),
.prt_data(rd_data),
.prt_addr(rd_addr),
.prt_bytes(rd_bytes),
.prt_dv(rd_dv)
);
processing_system7_bfm_v2_0_5_sparse_mem ddr();
reg [1:0] state;
always@(posedge sw_clk or negedge rstn)
begin
if(!rstn) begin
wr_ack <= 0;
rd_dv <= 0;
state <= 2'd0;
end else begin
case(state)
0:begin
state <= 0;
wr_ack <= 0;
rd_dv <= 0;
if(wr_req) begin
ddr.write_mem(wr_data , wr_addr, wr_bytes);
wr_ack <= 1;
state <= 1;
end
if(rd_req) begin
ddr.read_mem(rd_data,rd_addr, rd_bytes);
rd_dv <= 1;
state <= 1;
end
end
1:begin
wr_ack <= 0;
rd_dv <= 0;
state <= 0;
end
endcase
end /// if
end// always
endmodule
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_arb_rd.v
*
* Date : 2012-11
*
* Description : Module that arbitrates between 2 read requests from 2 ports.
*
*****************************************************************************/
`timescale 1ns/1ps
module processing_system7_bfm_v2_0_5_arb_rd(
rstn,
sw_clk,
qos1,
qos2,
prt_req1,
prt_req2,
prt_bytes1,
prt_bytes2,
prt_addr1,
prt_addr2,
prt_data1,
prt_data2,
prt_dv1,
prt_dv2,
prt_req,
prt_qos,
prt_addr,
prt_bytes,
prt_data,
prt_dv
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input rstn, sw_clk;
input [axi_qos_width-1:0] qos1,qos2;
input prt_req1, prt_req2;
input [addr_width-1:0] prt_addr1, prt_addr2;
input [max_burst_bytes_width:0] prt_bytes1, prt_bytes2;
output reg prt_dv1, prt_dv2;
output reg [max_burst_bits-1:0] prt_data1,prt_data2;
output reg prt_req;
output reg [axi_qos_width-1:0] prt_qos;
output reg [addr_width-1:0] prt_addr;
output reg [max_burst_bytes_width:0] prt_bytes;
input [max_burst_bits-1:0] prt_data;
input prt_dv;
parameter wait_req = 2'b00, serv_req1 = 2'b01, serv_req2 = 2'b10,wait_dv_low = 2'b11;
reg [1:0] state;
always@(posedge sw_clk or negedge rstn)
begin
if(!rstn) begin
state = wait_req;
prt_req = 1'b0;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_qos = 0;
end else begin
case(state)
wait_req:begin
state = wait_req;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_req = 0;
if(prt_req1 && !prt_req2) begin
state = serv_req1;
prt_req = 1;
prt_qos = qos1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(!prt_req1 && prt_req2) begin
state = serv_req2;
prt_req = 1;
prt_qos = qos2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_req1 && prt_req2) begin
if(qos1 > qos2) begin
prt_req = 1;
prt_qos = qos1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
state = serv_req1;
end else if(qos1 < qos2) begin
prt_req = 1;
prt_addr = prt_addr2;
prt_qos = qos2;
prt_bytes = prt_bytes2;
state = serv_req2;
end else begin
prt_req = 1;
prt_qos = qos1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
state = serv_req1;
end
end
end
serv_req1:begin
state = serv_req1;
prt_dv2 = 1'b0;
if(prt_dv) begin
prt_dv1 = 1'b1;
prt_data1 = prt_data;
prt_req = 0;
if(prt_req2) begin
prt_req = 1;
prt_qos = qos2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
state = serv_req2;
end else begin
state = wait_dv_low;
//state = wait_req;
end
end
end
serv_req2:begin
state = serv_req2;
prt_dv1 = 1'b0;
if(prt_dv) begin
prt_dv2 = 1'b1;
prt_data2 = prt_data;
prt_req = 0;
if(prt_req1) begin
prt_req = 1;
prt_qos = qos1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
state = serv_req1;
end else begin
state = wait_dv_low;
//state = wait_req;
end
end
end
wait_dv_low:begin
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
state = wait_dv_low;
if(!prt_dv)
state = wait_req;
end
endcase
end /// if else
end /// always
endmodule
|
/*****************************************************************************
* File : processing_system7_bfm_v2_0_5_arb_rd.v
*
* Date : 2012-11
*
* Description : Module that arbitrates between 2 read requests from 2 ports.
*
*****************************************************************************/
`timescale 1ns/1ps
module processing_system7_bfm_v2_0_5_arb_rd(
rstn,
sw_clk,
qos1,
qos2,
prt_req1,
prt_req2,
prt_bytes1,
prt_bytes2,
prt_addr1,
prt_addr2,
prt_data1,
prt_data2,
prt_dv1,
prt_dv2,
prt_req,
prt_qos,
prt_addr,
prt_bytes,
prt_data,
prt_dv
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input rstn, sw_clk;
input [axi_qos_width-1:0] qos1,qos2;
input prt_req1, prt_req2;
input [addr_width-1:0] prt_addr1, prt_addr2;
input [max_burst_bytes_width:0] prt_bytes1, prt_bytes2;
output reg prt_dv1, prt_dv2;
output reg [max_burst_bits-1:0] prt_data1,prt_data2;
output reg prt_req;
output reg [axi_qos_width-1:0] prt_qos;
output reg [addr_width-1:0] prt_addr;
output reg [max_burst_bytes_width:0] prt_bytes;
input [max_burst_bits-1:0] prt_data;
input prt_dv;
parameter wait_req = 2'b00, serv_req1 = 2'b01, serv_req2 = 2'b10,wait_dv_low = 2'b11;
reg [1:0] state;
always@(posedge sw_clk or negedge rstn)
begin
if(!rstn) begin
state = wait_req;
prt_req = 1'b0;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_qos = 0;
end else begin
case(state)
wait_req:begin
state = wait_req;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_req = 0;
if(prt_req1 && !prt_req2) begin
state = serv_req1;
prt_req = 1;
prt_qos = qos1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(!prt_req1 && prt_req2) begin
state = serv_req2;
prt_req = 1;
prt_qos = qos2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_req1 && prt_req2) begin
if(qos1 > qos2) begin
prt_req = 1;
prt_qos = qos1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
state = serv_req1;
end else if(qos1 < qos2) begin
prt_req = 1;
prt_addr = prt_addr2;
prt_qos = qos2;
prt_bytes = prt_bytes2;
state = serv_req2;
end else begin
prt_req = 1;
prt_qos = qos1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
state = serv_req1;
end
end
end
serv_req1:begin
state = serv_req1;
prt_dv2 = 1'b0;
if(prt_dv) begin
prt_dv1 = 1'b1;
prt_data1 = prt_data;
prt_req = 0;
if(prt_req2) begin
prt_req = 1;
prt_qos = qos2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
state = serv_req2;
end else begin
state = wait_dv_low;
//state = wait_req;
end
end
end
serv_req2:begin
state = serv_req2;
prt_dv1 = 1'b0;
if(prt_dv) begin
prt_dv2 = 1'b1;
prt_data2 = prt_data;
prt_req = 0;
if(prt_req1) begin
prt_req = 1;
prt_qos = qos1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
state = serv_req1;
end else begin
state = wait_dv_low;
//state = wait_req;
end
end
end
wait_dv_low:begin
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
state = wait_dv_low;
if(!prt_dv)
state = wait_req;
end
endcase
end /// if else
end /// always
endmodule
|
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// Round-Robin Arbiter for R and B channel responses
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
// arbiter_resp
//--------------------------------------------------------------------------
`timescale 1ps/1ps
(* DowngradeIPIdentifiedWarnings="yes" *)
module axi_crossbar_v2_1_arbiter_resp #
(
parameter C_FAMILY = "none",
parameter integer C_NUM_S = 4, // Number of requesting Slave ports = [2:16]
parameter integer C_NUM_S_LOG = 2, // Log2(C_NUM_S)
parameter integer C_GRANT_ENC = 0, // Enable encoded grant output
parameter integer C_GRANT_HOT = 1 // Enable 1-hot grant output
)
(
// Global Inputs
input wire ACLK,
input wire ARESET,
// Slave Ports
input wire [C_NUM_S-1:0] S_VALID, // Request from each slave
output wire [C_NUM_S-1:0] S_READY, // Grant response to each slave
// Master Ports
output wire [C_NUM_S_LOG-1:0] M_GRANT_ENC, // Granted slave index (encoded)
output wire [C_NUM_S-1:0] M_GRANT_HOT, // Granted slave index (1-hot)
output wire M_VALID, // Grant event
input wire M_READY
);
// Generates a binary coded from onehotone encoded
function [4:0] f_hot2enc
(
input [16:0] one_hot
);
begin
f_hot2enc[0] = |(one_hot & 17'b01010101010101010);
f_hot2enc[1] = |(one_hot & 17'b01100110011001100);
f_hot2enc[2] = |(one_hot & 17'b01111000011110000);
f_hot2enc[3] = |(one_hot & 17'b01111111100000000);
f_hot2enc[4] = |(one_hot & 17'b10000000000000000);
end
endfunction
(* use_clock_enable = "yes" *)
reg [C_NUM_S-1:0] chosen;
wire [C_NUM_S-1:0] grant_hot;
wire master_selected;
wire active_master;
wire need_arbitration;
wire m_valid_i;
wire [C_NUM_S-1:0] s_ready_i;
wire access_done;
reg [C_NUM_S-1:0] last_rr_hot;
wire [C_NUM_S-1:0] valid_rr;
reg [C_NUM_S-1:0] next_rr_hot;
reg [C_NUM_S*C_NUM_S-1:0] carry_rr;
reg [C_NUM_S*C_NUM_S-1:0] mask_rr;
integer i;
integer j;
integer n;
/////////////////////////////////////////////////////////////////////////////
//
// Implementation of the arbiter outputs independant of arbitration
//
/////////////////////////////////////////////////////////////////////////////
// Mask the current requests with the chosen master
assign grant_hot = chosen & S_VALID;
// See if we have a selected master
assign master_selected = |grant_hot[0+:C_NUM_S];
// See if we have current requests
assign active_master = |S_VALID;
// Access is completed
assign access_done = m_valid_i & M_READY;
// Need to handle if we drive S_ready combinatorial and without an IDLE state
// Drive S_READY on the master who has been chosen when we get a M_READY
assign s_ready_i = {C_NUM_S{M_READY}} & grant_hot[0+:C_NUM_S];
// Drive M_VALID if we have a selected master
assign m_valid_i = master_selected;
// If we have request and not a selected master, we need to arbitrate a new chosen
assign need_arbitration = (active_master & ~master_selected) | access_done;
// need internal signals of the output signals
assign M_VALID = m_valid_i;
assign S_READY = s_ready_i;
/////////////////////////////////////////////////////////////////////////////
// Assign conditional onehot target output signal.
assign M_GRANT_HOT = (C_GRANT_HOT == 1) ? grant_hot[0+:C_NUM_S] : {C_NUM_S{1'b0}};
/////////////////////////////////////////////////////////////////////////////
// Assign conditional encoded target output signal.
assign M_GRANT_ENC = (C_GRANT_ENC == 1) ? f_hot2enc(grant_hot) : {C_NUM_S_LOG{1'b0}};
/////////////////////////////////////////////////////////////////////////////
// Select a new chosen when we need to arbitrate
// If we don't have a new chosen, keep the old one since it's a good chance
// that it will do another request
always @(posedge ACLK)
begin
if (ARESET) begin
chosen <= {C_NUM_S{1'b0}};
last_rr_hot <= {1'b1, {C_NUM_S-1{1'b0}}};
end else if (need_arbitration) begin
chosen <= next_rr_hot;
if (|next_rr_hot) last_rr_hot <= next_rr_hot;
end
end
assign valid_rr = S_VALID;
/////////////////////////////////////////////////////////////////////////////
// Round-robin arbiter
// Selects next request to grant from among inputs with PRIO = 0, if any.
/////////////////////////////////////////////////////////////////////////////
always @ * begin
next_rr_hot = 0;
for (i=0;i<C_NUM_S;i=i+1) begin
n = (i>0) ? (i-1) : (C_NUM_S-1);
carry_rr[i*C_NUM_S] = last_rr_hot[n];
mask_rr[i*C_NUM_S] = ~valid_rr[n];
for (j=1;j<C_NUM_S;j=j+1) begin
n = (i-j > 0) ? (i-j-1) : (C_NUM_S+i-j-1);
carry_rr[i*C_NUM_S+j] = carry_rr[i*C_NUM_S+j-1] | (last_rr_hot[n] & mask_rr[i*C_NUM_S+j-1]);
if (j < C_NUM_S-1) begin
mask_rr[i*C_NUM_S+j] = mask_rr[i*C_NUM_S+j-1] & ~valid_rr[n];
end
end
next_rr_hot[i] = valid_rr[i] & carry_rr[(i+1)*C_NUM_S-1];
end
end
endmodule
|
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// Round-Robin Arbiter for R and B channel responses
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
// arbiter_resp
//--------------------------------------------------------------------------
`timescale 1ps/1ps
(* DowngradeIPIdentifiedWarnings="yes" *)
module axi_crossbar_v2_1_arbiter_resp #
(
parameter C_FAMILY = "none",
parameter integer C_NUM_S = 4, // Number of requesting Slave ports = [2:16]
parameter integer C_NUM_S_LOG = 2, // Log2(C_NUM_S)
parameter integer C_GRANT_ENC = 0, // Enable encoded grant output
parameter integer C_GRANT_HOT = 1 // Enable 1-hot grant output
)
(
// Global Inputs
input wire ACLK,
input wire ARESET,
// Slave Ports
input wire [C_NUM_S-1:0] S_VALID, // Request from each slave
output wire [C_NUM_S-1:0] S_READY, // Grant response to each slave
// Master Ports
output wire [C_NUM_S_LOG-1:0] M_GRANT_ENC, // Granted slave index (encoded)
output wire [C_NUM_S-1:0] M_GRANT_HOT, // Granted slave index (1-hot)
output wire M_VALID, // Grant event
input wire M_READY
);
// Generates a binary coded from onehotone encoded
function [4:0] f_hot2enc
(
input [16:0] one_hot
);
begin
f_hot2enc[0] = |(one_hot & 17'b01010101010101010);
f_hot2enc[1] = |(one_hot & 17'b01100110011001100);
f_hot2enc[2] = |(one_hot & 17'b01111000011110000);
f_hot2enc[3] = |(one_hot & 17'b01111111100000000);
f_hot2enc[4] = |(one_hot & 17'b10000000000000000);
end
endfunction
(* use_clock_enable = "yes" *)
reg [C_NUM_S-1:0] chosen;
wire [C_NUM_S-1:0] grant_hot;
wire master_selected;
wire active_master;
wire need_arbitration;
wire m_valid_i;
wire [C_NUM_S-1:0] s_ready_i;
wire access_done;
reg [C_NUM_S-1:0] last_rr_hot;
wire [C_NUM_S-1:0] valid_rr;
reg [C_NUM_S-1:0] next_rr_hot;
reg [C_NUM_S*C_NUM_S-1:0] carry_rr;
reg [C_NUM_S*C_NUM_S-1:0] mask_rr;
integer i;
integer j;
integer n;
/////////////////////////////////////////////////////////////////////////////
//
// Implementation of the arbiter outputs independant of arbitration
//
/////////////////////////////////////////////////////////////////////////////
// Mask the current requests with the chosen master
assign grant_hot = chosen & S_VALID;
// See if we have a selected master
assign master_selected = |grant_hot[0+:C_NUM_S];
// See if we have current requests
assign active_master = |S_VALID;
// Access is completed
assign access_done = m_valid_i & M_READY;
// Need to handle if we drive S_ready combinatorial and without an IDLE state
// Drive S_READY on the master who has been chosen when we get a M_READY
assign s_ready_i = {C_NUM_S{M_READY}} & grant_hot[0+:C_NUM_S];
// Drive M_VALID if we have a selected master
assign m_valid_i = master_selected;
// If we have request and not a selected master, we need to arbitrate a new chosen
assign need_arbitration = (active_master & ~master_selected) | access_done;
// need internal signals of the output signals
assign M_VALID = m_valid_i;
assign S_READY = s_ready_i;
/////////////////////////////////////////////////////////////////////////////
// Assign conditional onehot target output signal.
assign M_GRANT_HOT = (C_GRANT_HOT == 1) ? grant_hot[0+:C_NUM_S] : {C_NUM_S{1'b0}};
/////////////////////////////////////////////////////////////////////////////
// Assign conditional encoded target output signal.
assign M_GRANT_ENC = (C_GRANT_ENC == 1) ? f_hot2enc(grant_hot) : {C_NUM_S_LOG{1'b0}};
/////////////////////////////////////////////////////////////////////////////
// Select a new chosen when we need to arbitrate
// If we don't have a new chosen, keep the old one since it's a good chance
// that it will do another request
always @(posedge ACLK)
begin
if (ARESET) begin
chosen <= {C_NUM_S{1'b0}};
last_rr_hot <= {1'b1, {C_NUM_S-1{1'b0}}};
end else if (need_arbitration) begin
chosen <= next_rr_hot;
if (|next_rr_hot) last_rr_hot <= next_rr_hot;
end
end
assign valid_rr = S_VALID;
/////////////////////////////////////////////////////////////////////////////
// Round-robin arbiter
// Selects next request to grant from among inputs with PRIO = 0, if any.
/////////////////////////////////////////////////////////////////////////////
always @ * begin
next_rr_hot = 0;
for (i=0;i<C_NUM_S;i=i+1) begin
n = (i>0) ? (i-1) : (C_NUM_S-1);
carry_rr[i*C_NUM_S] = last_rr_hot[n];
mask_rr[i*C_NUM_S] = ~valid_rr[n];
for (j=1;j<C_NUM_S;j=j+1) begin
n = (i-j > 0) ? (i-j-1) : (C_NUM_S+i-j-1);
carry_rr[i*C_NUM_S+j] = carry_rr[i*C_NUM_S+j-1] | (last_rr_hot[n] & mask_rr[i*C_NUM_S+j-1]);
if (j < C_NUM_S-1) begin
mask_rr[i*C_NUM_S+j] = mask_rr[i*C_NUM_S+j-1] & ~valid_rr[n];
end
end
next_rr_hot[i] = valid_rr[i] & carry_rr[(i+1)*C_NUM_S-1];
end
end
endmodule
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.