text
stringlengths
938
1.05M
`timescale 1ns / 1ps ////////////////////////////////////////////////////////////////////////////////// // Company: // Engineer: // // Create Date: 11:05:40 09/06/2015 // Design Name: // Module Name: Deco_Round_Mult // Project Name: // Target Devices: // Tool versions: // Description: // // Dependencies: // // Revision: // Revision 0.01 - File Created // Additional Comments: // ////////////////////////////////////////////////////////////////////////////////// module Deco_Round_Mult( input wire [1:0] round_mode, input wire or_info, //23 less significant bits from the product of significands input wire xor_info, //Brings information about the sign of the operation output reg ctrl //control signal mux --- control of the rounded significand ); always @* case ({xor_info,or_info,round_mode}) // Round to infinity - (Round down) //1'b0: Let pass the significand without rounding //1'b1: Let pass the rounded significand //Round towards - infinity //0: positive number ; 01: Round towards - inifnity ; XX rounding bits //Positive Number //xor, or, round 4'b0101: ctrl <= 1'b0; //Negative Number 4'b1101: ctrl <= 1'b1; //Round towards + infinity //Positive Number 4'b0110: ctrl <= 1'b1; //Negative Number 4'b1110: ctrl <= 1'b0; default: ctrl <= 1'b0; //Truncation endcase endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2013 by Wilson Snyder. // Very simple test for interface pathclearing module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc=1; ifc #(2) itopa(); ifc #(4) itopb(); sub ca (.isub(itopa.out_modport), .clk); sub cb (.isub(itopb.out_modport), .clk); always @ (posedge clk) begin `ifdef TEST_VERBOSE $write("[%0t] cyc==%0d result=%b %b\n",$time, cyc, itopa.valueo, itopb.valueo); `endif cyc <= cyc + 1; itopa.valuei <= cyc[1:0]; itopb.valuei <= cyc[3:0]; if (cyc==1) begin if (itopa.WIDTH != 2) $stop; if (itopb.WIDTH != 4) $stop; if ($bits(itopa.valueo) != 2) $stop; if ($bits(itopb.valueo) != 4) $stop; if ($bits(itopa.out_modport.valueo) != 2) $stop; if ($bits(itopb.out_modport.valueo) != 4) $stop; end if (cyc==4) begin if (itopa.valueo != 2'b11) $stop; if (itopb.valueo != 4'b0011) $stop; end if (cyc==5) begin if (itopa.valueo != 2'b00) $stop; if (itopb.valueo != 4'b0100) $stop; end if (cyc==20) begin $write("*-* All Finished *-*\n"); $finish; end end endmodule interface ifc #(parameter WIDTH = 1); // verilator lint_off MULTIDRIVEN logic [WIDTH-1:0] valuei; logic [WIDTH-1:0] valueo; // verilator lint_on MULTIDRIVEN modport out_modport (input valuei, output valueo); endinterface // Note not parameterized module sub ( ifc.out_modport isub, input clk ); always @(posedge clk) isub.valueo <= isub.valuei + 1; endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2012 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; `define checkh(gotv,expv) do if ((gotv) !== (expv)) begin $write("%%Error: %s:%0d: got='h%x exp='h%x\n", `__FILE__,`__LINE__, (gotv), (expv)); $stop; end while(0); `define checkr(gotv,expv) do if ((gotv) != (expv)) begin $write("%%Error: %s:%0d: got=%g exp=%g\n", `__FILE__,`__LINE__, (gotv), (expv)); $stop; end while(0); // IEEE: integer_atom_type wire byte w_byte; wire shortint w_shortint; wire int w_int; wire longint w_longint; wire integer w_integer; // IEEE: integer_atom_type wire bit w_bit; wire logic w_logic; wire bit [1:0] w_bit2; wire logic [1:0] w_logic2; // IEEE: non_integer_type //UNSUP shortreal w_shortreal; wire real w_real; assign w_byte = 8'h12; assign w_shortint = 16'h1234; assign w_int = -123456; assign w_longint = -1234567; assign w_integer = -123456; assign w_bit = 1'b1; assign w_logic = 1'b1; assign w_bit2 = 2'b10; assign w_logic2 = 2'b10; assign w_real = 3.14; always @ (posedge clk) begin `checkh(w_byte, 8'h12); `checkh(w_shortint, 16'h1234); `checkh(w_int, -123456); `checkh(w_longint, -1234567); `checkh(w_integer, -123456); `checkh(w_bit, 1'b1); `checkh(w_logic, 1'b1); `checkh(w_bit2, 2'b10); `checkh(w_logic2, 2'b10); `checkr(w_real, 3.14); $write("*-* All Finished *-*\n"); $finish; end endmodule
/*+-------------------------------------------------------------------------- Copyright (c) 2015, Microsoft Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------------*/ ////////////////////////////////////////////////////////////////////////////////// // Company: Microsoft Research Asia // Engineer: Jiansong Zhang // // Create Date: 21:39:39 06/01/2009 // Design Name: // Module Name: tx_engine // Project Name: Sora // Target Devices: Virtex5 LX50T // Tool versions: ISE10.1.03 // Description: // Purpose: Posted Packet Builder module. This module takes the // length info from the Posted Packet Slicer, and requests a tag from // the Tag Generator and uses that info to build a posted memory write header // which it writes into a FIFO // // Dependencies: // // Revision: // Revision 0.01 - File Created // Additional Comments: // ////////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module posted_pkt_builder( input clk, input rst, input [15:0] req_id, //from pcie block //to/from posted_pkt_slicer input posted_fifo_full, input go, output reg ack, input [63:0] dmawad, input [9:0] length, //to posted_pkt_header_fifo output reg [63:0] header_data_out, output reg header_data_wren ); //State machine states localparam IDLE = 4'h0; localparam HEAD1 = 4'h1; localparam HEAD2 = 4'h2; localparam WAIT_FOR_GO_DEASSERT = 4'h3; //parameters used to define fixed header fields localparam rsvd = 1'b0; //reserved and unused header fields to zero localparam MWr = 5'b00000; //format for memory write header localparam TC = 3'b000; //traffic class 0 localparam TD = 1'b0; //digest bit always 0 localparam EP = 1'b0; //poisoned bit always 0 localparam ATTR = 2'b00; //no snoop or relaxed-ordering localparam LastBE = 4'b1111; //LastBE is always asserted since all transfers //are on 128B boundaries and are always at least //128B long localparam FirstBE = 4'b1111;//FirstBE is always asserted since all transfers //are on 128B boundaries wire [1:0] fmt; reg [3:0] state; reg [63:0] dmawad_reg; reg rst_reg; always@(posedge clk) rst_reg <= rst; //if the upper DWord of the destination address is zero //than make the format of the packet header 3DW; otherwise 4DW assign fmt[1:0] = (dmawad_reg[63:32] == 0) ? 2'b10 : 2'b11; //if the posted_pkt_slicer asserts "go" then register the dma write params always@(posedge clk)begin if(rst_reg)begin dmawad_reg[63:0] <= 0; end else if(go)begin dmawad_reg <= dmawad; end end // State machine // Builds headers for posted memory writes // Writes them into a FIFO always @ (posedge clk) begin if (rst_reg) begin header_data_out <= 0; header_data_wren <= 1'b0; ack <= 1'b0; state <= IDLE; end else begin case (state) IDLE : begin header_data_out <= 0; header_data_wren <= 1'b0; ack <= 1'b0; if(go & ~posted_fifo_full) // Jiansong: prevent p_hdr_fifo overflow state<= HEAD1; else state<= IDLE; end HEAD1 : begin //write the first 64-bits of a posted header into the //posted fifo header_data_out <= {rsvd,fmt[1:0],MWr,rsvd,TC,rsvd,rsvd,rsvd,rsvd, TD,EP,ATTR,rsvd,rsvd,length[9:0],req_id[15:0], 8'b00000000 ,LastBE,FirstBE}; ack <= 0; header_data_wren <= 1'b1; state <= HEAD2; end HEAD2 : begin //write the next 32 or 64 bits of a posted header to the //posted header fifo (32 if 3DW - 64 if 4DW header) header_data_out <= (fmt[0]==1'b1) ? {dmawad_reg[63:2],2'b00} : {dmawad_reg[31:2], 2'b00, dmawad_reg[63:32]}; header_data_wren <= 1'b1; ack <= 1'b1; //acknowledge to the posted_packet_slicer that //the packet has been queued up for transmission state <= WAIT_FOR_GO_DEASSERT; end WAIT_FOR_GO_DEASSERT: begin //ack causes "go" to deassert but we need to give the //posted_pkt_slicer a chance to deassert "go" before returning //to IDLE header_data_out <= 0; header_data_wren <= 1'b0; ack <= 1'b0; state <= IDLE; end default : begin header_data_out <= 0; header_data_wren <= 1'b0; ack <= 1'b0; state <= IDLE; end endcase end end endmodule
/*+-------------------------------------------------------------------------- Copyright (c) 2015, Microsoft Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------------*/ ////////////////////////////////////////////////////////////////////////////////// // Company: Microsoft Research Asia // Engineer: Jiansong Zhang // // Create Date: 21:39:39 06/01/2009 // Design Name: // Module Name: tx_engine // Project Name: Sora // Target Devices: Virtex5 LX50T // Tool versions: ISE10.1.03 // Description: // Purpose: Detects rising edge of input signal and outputs a single-shot // signal upon detection // // Dependencies: // // Revision: // Revision 0.01 - File Created // Additional Comments: // ////////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module rising_edge_detect( input clk, input rst, input in, output one_shot_out); reg in_reg; //register the input always@(posedge clk)begin if(rst)begin in_reg <= 1'b0; end else begin in_reg <= in; end end //detect the rising edge assign one_shot_out = ~in_reg & in; endmodule
/*+-------------------------------------------------------------------------- Copyright (c) 2015, Microsoft Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------------*/ ////////////////////////////////////////////////////////////////////////////////// // Company: Microsoft Research Asia // Engineer: Jiansong Zhang // // Create Date: 21:39:39 06/01/2009 // Design Name: // Module Name: tx_engine // Project Name: Sora // Target Devices: Virtex5 LX50T // Tool versions: ISE10.1.03 // Description: // Purpose: Detects rising edge of input signal and outputs a single-shot // signal upon detection // // Dependencies: // // Revision: // Revision 0.01 - File Created // Additional Comments: // ////////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module rising_edge_detect( input clk, input rst, input in, output one_shot_out); reg in_reg; //register the input always@(posedge clk)begin if(rst)begin in_reg <= 1'b0; end else begin in_reg <= in; end end //detect the rising edge assign one_shot_out = ~in_reg & in; endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This test case is used for testing a modeule parameterized with a typed // localparam. // // We find Verilator appears to mis-evaluate the parameter WIDTH as -16 when // used in the test module to set the value of MSB. A number of warnings and // errors follow, starting with: // // %Warning-LITENDIAN: t/t_param_module.v:42: Little bit endian vector: MSB // < LSB of bit range: -17:0 // // This file ONLY is placed into the Public Domain, for any use, without // warranty, 2013 by Jie Xu. // bug606 module t (/*AUTOARG*/ // Inputs clk ); input clk; localparam logic[4:0] WID = 16; //localparam WID = 16; // No problem if defined like this wire [15:0] b33; test #(WID) i_test_33(.clk (clk), .b (b33)); endmodule module test (/*AUTOARG*/ //Inputs clk, // Outputs b ); parameter WIDTH = 10; localparam MSB = WIDTH - 1; input clk; output wire [MSB:0] b; wire [MSB:0] a; assign b = {~a[MSB-1:0], clk}; initial begin if ($bits(WIDTH)!=5) $stop; // Comes from the parent! if ($bits(MSB)!=32) $stop; $write("*-* All Finished *-*\n"); $finish; end endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This test case is used for testing a modeule parameterized with a typed // localparam. // // We find Verilator appears to mis-evaluate the parameter WIDTH as -16 when // used in the test module to set the value of MSB. A number of warnings and // errors follow, starting with: // // %Warning-LITENDIAN: t/t_param_module.v:42: Little bit endian vector: MSB // < LSB of bit range: -17:0 // // This file ONLY is placed into the Public Domain, for any use, without // warranty, 2013 by Jie Xu. // bug606 module t (/*AUTOARG*/ // Inputs clk ); input clk; localparam logic[4:0] WID = 16; //localparam WID = 16; // No problem if defined like this wire [15:0] b33; test #(WID) i_test_33(.clk (clk), .b (b33)); endmodule module test (/*AUTOARG*/ //Inputs clk, // Outputs b ); parameter WIDTH = 10; localparam MSB = WIDTH - 1; input clk; output wire [MSB:0] b; wire [MSB:0] a; assign b = {~a[MSB-1:0], clk}; initial begin if ($bits(WIDTH)!=5) $stop; // Comes from the parent! if ($bits(MSB)!=32) $stop; $write("*-* All Finished *-*\n"); $finish; end endmodule
/*+-------------------------------------------------------------------------- Copyright (c) 2015, Microsoft Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------------*/ ////////////////////////////////////////////////////////////////////////////////// // Company: Microsoft Research Asia // Engineer: Jiansong Zhang // // Create Date: 21:39:39 06/01/2009 // Design Name: // Module Name: tx_engine // Project Name: Sora // Target Devices: Virtex5 LX50T // Tool versions: ISE10.1.03 // Description: // Purpose: Detects rising and falling edge of input signal and outputs a // single-cycle signal upon detection // // Dependencies: // // Revision: // Revision 0.01 - File Created // Additional Comments: // ////////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module edge_detect( input clk, input rst, input in, output rise_out, //single-shot output output fall_out); //single-shot output reg in_reg; //one pipeline reg for the input signal always@(posedge clk)begin if(rst)begin in_reg <= 1'b0; end else begin in_reg <= in; end end //detect the rising edge assign rise_out = ~in_reg & in; //detect the falling edge assign fall_out = in_reg & ~in; endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2013 by Alex Solomatnikov. module t (/*AUTOARG*/ // Inputs clk ); input clk; logic [6-1:0] foo[4-1:0]; //initial $display("%m: %p\n", foo); //initial $display("%m: %p\n", foo[3:0]); // VCS not supported %p with slice //logic [6-1:0] foo2[4-1:0][5:6]; //initial $display("%m: %p\n", foo2[3:0][5:6]); // This is not legal dut #(.W(6), .D(4)) udut(.clk(clk), .foo(foo[4-1:0])); endmodule module dut #(parameter W = 1, parameter D = 1) (input logic clk, input logic [W-1:0] foo[D-1:0]); genvar i, j; generate for (j = 0; j < D; j++) begin for (i = 0; i < W; i++) begin suba ua(.clk(clk), .foo(foo[j][i])); end end endgenerate endmodule module suba (input logic clk, input logic foo); always @(posedge clk) begin $write("*-* All Finished *-*\n"); $finish; end endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2013 by Alex Solomatnikov. module t (/*AUTOARG*/ // Inputs clk ); input clk; logic [6-1:0] foo[4-1:0]; //initial $display("%m: %p\n", foo); //initial $display("%m: %p\n", foo[3:0]); // VCS not supported %p with slice //logic [6-1:0] foo2[4-1:0][5:6]; //initial $display("%m: %p\n", foo2[3:0][5:6]); // This is not legal dut #(.W(6), .D(4)) udut(.clk(clk), .foo(foo[4-1:0])); endmodule module dut #(parameter W = 1, parameter D = 1) (input logic clk, input logic [W-1:0] foo[D-1:0]); genvar i, j; generate for (j = 0; j < D; j++) begin for (i = 0; i < W; i++) begin suba ua(.clk(clk), .foo(foo[j][i])); end end endgenerate endmodule module suba (input logic clk, input logic foo); always @(posedge clk) begin $write("*-* All Finished *-*\n"); $finish; end endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2013 by Alex Solomatnikov. module t (/*AUTOARG*/ // Inputs clk ); input clk; logic [6-1:0] foo[4-1:0]; //initial $display("%m: %p\n", foo); //initial $display("%m: %p\n", foo[3:0]); // VCS not supported %p with slice //logic [6-1:0] foo2[4-1:0][5:6]; //initial $display("%m: %p\n", foo2[3:0][5:6]); // This is not legal dut #(.W(6), .D(4)) udut(.clk(clk), .foo(foo[4-1:0])); endmodule module dut #(parameter W = 1, parameter D = 1) (input logic clk, input logic [W-1:0] foo[D-1:0]); genvar i, j; generate for (j = 0; j < D; j++) begin for (i = 0; i < W; i++) begin suba ua(.clk(clk), .foo(foo[j][i])); end end endgenerate endmodule module suba (input logic clk, input logic foo); always @(posedge clk) begin $write("*-* All Finished *-*\n"); $finish; end endmodule
/*+-------------------------------------------------------------------------- Copyright (c) 2015, Microsoft Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------------*/ `timescale 1ns / 1ps ////////////////////////////////////////////////////////////////////////////////// // Company: // Engineer: // // Create Date: 14:54:18 08/11/2009 // Design Name: // Module Name: STATUS_OUT // Project Name: // Target Devices: // Tool versions: // Description: // // Dependencies: // // Revision: // Revision 0.01 - File Created // Additional Comments: // ////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////// ///// ///// Generate four patterns for specific states ///// Idle 00000000 ///// Reset 01010101 ///// FIFO full 00001111 ///// Training_done 00110011 ///// ///////////////////////////////////////////////////////////////////////////////// module RCB_FRL_STATUS_OUT( CLK, RESET, // input indicating whether channel is reset, reset pulse of the whole lvds channel MODULE_RST, // reset pulse for this module only, should be shorter than RESET FIFO_FULL, // input indicating whether FIFO is FULL TRAINING_DONE, // input indicating whether TRAINING is done STATUS, INT_SAT // coded status output ); ///////////////////////////////////////////////////////////////////////////////// input CLK; input MODULE_RST; input RESET, FIFO_FULL, TRAINING_DONE; output STATUS; ///////////////////////////////////////////////////////////////////////////////// reg STATUS; output reg [1:0] INT_SAT; parameter RST = 2'b00; parameter FULL = 2'b01; parameter DONE = 2'b10; parameter IDLE = 2'b11; reg [2:0] counter; wire MODULE_RST_one; rising_edge_detect MODULE_RESET_one_inst( .clk(CLK), .rst(1'b0), .in(MODULE_RST), .one_shot_out(MODULE_RST_one) ); ///////////////////////////////////////////////////////////////////////////////// /// Determine which state it is always @ ( posedge CLK ) begin if ( counter == 3'b000 ) begin if ( RESET == 1'b1 ) begin INT_SAT <= RST; end else if ( FIFO_FULL == 1'b1 & TRAINING_DONE == 1'b1 ) begin INT_SAT <= FULL; end else if ( TRAINING_DONE == 1'b1 ) begin INT_SAT <= DONE; end else begin INT_SAT <= IDLE; end end end ///////////////////////////////////////////////////////////////////////////////// /// Counter runs always @ ( posedge CLK ) begin // if ( MODULE_RST == 1'b1 ) begin // Jiansong: how can it send out reset status if ( MODULE_RST_one == 1'b1 ) begin counter <= 3'b000; end else begin counter <= counter + 3'b001; end end ///////////////////////////////////////////////////////////////////////////////// /// pattern encode /// Idle 00000000 /// Reset 01010101 /// FIFO_full 00001111 /// Train Done 00110011 always @ ( posedge CLK) begin if ( INT_SAT == RST ) begin if ( counter == 3'b000 | counter == 3'b010 | counter == 3'b100 | counter == 3'b110 ) begin STATUS <= 1'b0; end else if (counter == 3'b001 | counter == 3'b011 | counter == 3'b101 | counter == 3'b111 ) begin STATUS <= 1'b1; end end else if ( INT_SAT == FULL) begin if (counter == 3'b000 | counter == 3'b001 | counter == 3'b010 | counter == 3'b011 ) begin STATUS <= 1'b0; end else if ( counter == 3'b100 | counter == 3'b101 | counter == 3'b110 | counter == 3'b111 ) begin STATUS <= 1'b1; end end else if ( INT_SAT == DONE) begin if ( counter == 3'b000 | counter == 3'b001 | counter == 3'b100 | counter == 3'b101 ) begin STATUS <= 1'b0; end else if ( counter == 3'b010 | counter == 3'b011 | counter == 3'b110 | counter == 3'b111 )begin STATUS <= 1'b1; end end else if ( INT_SAT == IDLE) begin STATUS <= 1'b0; end end endmodule
// This file ONLY is placed into the Public Domain, for any use, // without warranty, 2008 by Lane Brooks module t (clk); input clk; reg [31:0] state; initial state=0; wire A = state[0]; wire OE = state[1]; wire Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9; wire [3:0] Z10; wire Z11; Test1 test1(/*AUTOINST*/ // Inouts .Z1 (Z1), // Inputs .OE (OE), .A (A)); Test2 test2(/*AUTOINST*/ // Inouts .Z2 (Z2), // Inputs .OE (OE), .A (A)); Test3 test3(/*AUTOINST*/ // Inouts .Z3 (Z3), // Inputs .OE (OE), .A (A)); Test4 test4(/*AUTOINST*/ // Outputs .Z4 (Z4), // Inouts .Z5 (Z5)); Test5 test5(/*AUTOINST*/ // Inouts .Z6 (Z6), .Z7 (Z7), .Z8 (Z8), .Z9 (Z9), // Inputs .OE (OE)); Test6 test6(/*AUTOINST*/ // Inouts .Z10 (Z10[3:0]), // Inputs .OE (OE)); Test7 test7(/*AUTOINST*/ // Outputs .Z11 (Z11), // Inputs .state (state[2:0])); always @(posedge clk) begin state <= state + 1; `ifdef TEST_VERBOSE $write("[%0t] state=%d Z1=%b 2=%b 3=%b 4=%b 5=%b 6=%b 7=%b 8=%b 9=%b 10=%b 11=%b\n", $time, state, Z1,Z2,Z3,Z4,Z5,Z6,Z7,Z8,Z9,Z10,Z11); `endif if(state == 0) begin if(Z1 !== 1'b1) $stop; // tests pullups if(Z2 !== 1'b1) $stop; if(Z3 !== 1'b1) $stop; `ifndef VERILATOR if(Z4 !== 1'b1) $stop; `endif if(Z5 !== 1'b1) $stop; if(Z6 !== 1'b1) $stop; if(Z7 !== 1'b0) $stop; if(Z8 !== 1'b0) $stop; if(Z9 !== 1'b1) $stop; if(Z10 !== 4'b0001) $stop; if(Z11 !== 1'b0) $stop; end else if(state == 1) begin if(Z1 !== 1'b1) $stop; // tests pullup if(Z2 !== 1'b1) $stop; if(Z3 !== 1'b1) $stop; `ifndef VERILATOR if(Z4 !== 1'b1) $stop; `endif if(Z5 !== 1'b1) $stop; if(Z6 !== 1'b1) $stop; if(Z7 !== 1'b0) $stop; if(Z8 !== 1'b0) $stop; if(Z9 !== 1'b1) $stop; if(Z10 !== 4'b0001) $stop; if(Z11 !== 1'b1) $stop; end else if(state == 2) begin if(Z1 !== 1'b0) $stop; // tests output driver low if(Z2 !== 1'b0) $stop; if(Z3 !== 1'b1 && Z3 !== 1'bx) $stop; // Conflicts `ifndef VERILATOR if(Z4 !== 1'b1) $stop; `endif if(Z5 !== 1'b1) $stop; if(Z6 !== 1'b0) $stop; if(Z7 !== 1'b1) $stop; if(Z8 !== 1'b1) $stop; if(Z9 !== 1'b0) $stop; if(Z10 !== 4'b0010) $stop; //if(Z11 !== 1'bx) $stop; // Doesn't matter end else if(state == 3) begin if(Z1 !== 1'b1) $stop; // tests output driver high if(Z2 !== 1'b1) $stop; if(Z3 !== 1'b1) $stop; `ifndef VERILATOR if(Z4 !== 1'b1) $stop; `endif if(Z5 !== 1'b1) $stop; if(Z6 !== 1'b0) $stop; if(Z7 !== 1'b1) $stop; if(Z8 !== 1'b1) $stop; if(Z9 !== 1'b0) $stop; if(Z10 !== 4'b0010) $stop; if(Z11 !== 1'b1) $stop; end else if(state == 4) begin $write("*-* All Finished *-*\n"); $finish; end end pullup(Z1); pullup(Z2); pullup(Z3); pullup(Z4); pullup(Z5); pullup(Z6); pulldown(Z7); pullup(Z8); pulldown(Z9); pulldown pd10[3:0] (Z10); endmodule module Test1(input OE, input A, inout Z1); assign Z1 = (OE) ? A : 1'bz; endmodule module Test2(input OE, input A, inout Z2); assign Z2 = (OE) ? A : 1'bz; endmodule // mixed low-Z and tristate module Test3(input OE, input A, inout Z3); assign Z3 = (OE) ? A : 1'bz; assign Z3 = 1'b1; endmodule // floating output and inout `ifndef VERILATOR // Note verilator doesn't know to make Z4 a tristate unless marked an inout `endif module Test4(output Z4, inout Z5); endmodule // AND gate tristates module Test5(input OE, inout Z6, inout Z7, inout Z8, inout Z9); assign Z6 = (OE) ? 1'b0 : 1'bz; assign Z7 = (OE) ? 1'b1 : 1'bz; assign Z8 = (OE) ? 1'bz : 1'b0; assign Z9 = (OE) ? 1'bz : 1'b1; endmodule // AND gate tristates module Test6(input OE, inout [3:0] Z10); wire [1:0] i; Test6a a (.OE(OE), .Z({Z10[0],Z10[1]})); Test6a b (.OE(~OE), .Z({Z10[2],Z10[0]})); endmodule module Test6a(input OE, inout [1:0] Z); assign Z = (OE) ? 2'b01 : 2'bzz; endmodule module Test7(input [2:0] state, output reg Z11); always @(*) begin casez (state) 3'b000: Z11 = 1'b0; 3'b0?1: Z11 = 1'b1; default: Z11 = 1'bx; endcase end endmodule // This is not implemented yet //module Test3(input OE, input A, inout Z3); // always @(*) begin // if(OE) begin // Z3 = A; // end else begin // Z3 = 1'bz; // end // end //endmodule
// This file ONLY is placed into the Public Domain, for any use, // without warranty, 2008 by Lane Brooks module t (clk); input clk; reg [31:0] state; initial state=0; wire A = state[0]; wire OE = state[1]; wire Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9; wire [3:0] Z10; wire Z11; Test1 test1(/*AUTOINST*/ // Inouts .Z1 (Z1), // Inputs .OE (OE), .A (A)); Test2 test2(/*AUTOINST*/ // Inouts .Z2 (Z2), // Inputs .OE (OE), .A (A)); Test3 test3(/*AUTOINST*/ // Inouts .Z3 (Z3), // Inputs .OE (OE), .A (A)); Test4 test4(/*AUTOINST*/ // Outputs .Z4 (Z4), // Inouts .Z5 (Z5)); Test5 test5(/*AUTOINST*/ // Inouts .Z6 (Z6), .Z7 (Z7), .Z8 (Z8), .Z9 (Z9), // Inputs .OE (OE)); Test6 test6(/*AUTOINST*/ // Inouts .Z10 (Z10[3:0]), // Inputs .OE (OE)); Test7 test7(/*AUTOINST*/ // Outputs .Z11 (Z11), // Inputs .state (state[2:0])); always @(posedge clk) begin state <= state + 1; `ifdef TEST_VERBOSE $write("[%0t] state=%d Z1=%b 2=%b 3=%b 4=%b 5=%b 6=%b 7=%b 8=%b 9=%b 10=%b 11=%b\n", $time, state, Z1,Z2,Z3,Z4,Z5,Z6,Z7,Z8,Z9,Z10,Z11); `endif if(state == 0) begin if(Z1 !== 1'b1) $stop; // tests pullups if(Z2 !== 1'b1) $stop; if(Z3 !== 1'b1) $stop; `ifndef VERILATOR if(Z4 !== 1'b1) $stop; `endif if(Z5 !== 1'b1) $stop; if(Z6 !== 1'b1) $stop; if(Z7 !== 1'b0) $stop; if(Z8 !== 1'b0) $stop; if(Z9 !== 1'b1) $stop; if(Z10 !== 4'b0001) $stop; if(Z11 !== 1'b0) $stop; end else if(state == 1) begin if(Z1 !== 1'b1) $stop; // tests pullup if(Z2 !== 1'b1) $stop; if(Z3 !== 1'b1) $stop; `ifndef VERILATOR if(Z4 !== 1'b1) $stop; `endif if(Z5 !== 1'b1) $stop; if(Z6 !== 1'b1) $stop; if(Z7 !== 1'b0) $stop; if(Z8 !== 1'b0) $stop; if(Z9 !== 1'b1) $stop; if(Z10 !== 4'b0001) $stop; if(Z11 !== 1'b1) $stop; end else if(state == 2) begin if(Z1 !== 1'b0) $stop; // tests output driver low if(Z2 !== 1'b0) $stop; if(Z3 !== 1'b1 && Z3 !== 1'bx) $stop; // Conflicts `ifndef VERILATOR if(Z4 !== 1'b1) $stop; `endif if(Z5 !== 1'b1) $stop; if(Z6 !== 1'b0) $stop; if(Z7 !== 1'b1) $stop; if(Z8 !== 1'b1) $stop; if(Z9 !== 1'b0) $stop; if(Z10 !== 4'b0010) $stop; //if(Z11 !== 1'bx) $stop; // Doesn't matter end else if(state == 3) begin if(Z1 !== 1'b1) $stop; // tests output driver high if(Z2 !== 1'b1) $stop; if(Z3 !== 1'b1) $stop; `ifndef VERILATOR if(Z4 !== 1'b1) $stop; `endif if(Z5 !== 1'b1) $stop; if(Z6 !== 1'b0) $stop; if(Z7 !== 1'b1) $stop; if(Z8 !== 1'b1) $stop; if(Z9 !== 1'b0) $stop; if(Z10 !== 4'b0010) $stop; if(Z11 !== 1'b1) $stop; end else if(state == 4) begin $write("*-* All Finished *-*\n"); $finish; end end pullup(Z1); pullup(Z2); pullup(Z3); pullup(Z4); pullup(Z5); pullup(Z6); pulldown(Z7); pullup(Z8); pulldown(Z9); pulldown pd10[3:0] (Z10); endmodule module Test1(input OE, input A, inout Z1); assign Z1 = (OE) ? A : 1'bz; endmodule module Test2(input OE, input A, inout Z2); assign Z2 = (OE) ? A : 1'bz; endmodule // mixed low-Z and tristate module Test3(input OE, input A, inout Z3); assign Z3 = (OE) ? A : 1'bz; assign Z3 = 1'b1; endmodule // floating output and inout `ifndef VERILATOR // Note verilator doesn't know to make Z4 a tristate unless marked an inout `endif module Test4(output Z4, inout Z5); endmodule // AND gate tristates module Test5(input OE, inout Z6, inout Z7, inout Z8, inout Z9); assign Z6 = (OE) ? 1'b0 : 1'bz; assign Z7 = (OE) ? 1'b1 : 1'bz; assign Z8 = (OE) ? 1'bz : 1'b0; assign Z9 = (OE) ? 1'bz : 1'b1; endmodule // AND gate tristates module Test6(input OE, inout [3:0] Z10); wire [1:0] i; Test6a a (.OE(OE), .Z({Z10[0],Z10[1]})); Test6a b (.OE(~OE), .Z({Z10[2],Z10[0]})); endmodule module Test6a(input OE, inout [1:0] Z); assign Z = (OE) ? 2'b01 : 2'bzz; endmodule module Test7(input [2:0] state, output reg Z11); always @(*) begin casez (state) 3'b000: Z11 = 1'b0; 3'b0?1: Z11 = 1'b1; default: Z11 = 1'bx; endcase end endmodule // This is not implemented yet //module Test3(input OE, input A, inout Z3); // always @(*) begin // if(OE) begin // Z3 = A; // end else begin // Z3 = 1'bz; // end // end //endmodule
// This file ONLY is placed into the Public Domain, for any use, // without warranty, 2008 by Lane Brooks module t (clk); input clk; reg [31:0] state; initial state=0; wire A = state[0]; wire OE = state[1]; wire Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9; wire [3:0] Z10; wire Z11; Test1 test1(/*AUTOINST*/ // Inouts .Z1 (Z1), // Inputs .OE (OE), .A (A)); Test2 test2(/*AUTOINST*/ // Inouts .Z2 (Z2), // Inputs .OE (OE), .A (A)); Test3 test3(/*AUTOINST*/ // Inouts .Z3 (Z3), // Inputs .OE (OE), .A (A)); Test4 test4(/*AUTOINST*/ // Outputs .Z4 (Z4), // Inouts .Z5 (Z5)); Test5 test5(/*AUTOINST*/ // Inouts .Z6 (Z6), .Z7 (Z7), .Z8 (Z8), .Z9 (Z9), // Inputs .OE (OE)); Test6 test6(/*AUTOINST*/ // Inouts .Z10 (Z10[3:0]), // Inputs .OE (OE)); Test7 test7(/*AUTOINST*/ // Outputs .Z11 (Z11), // Inputs .state (state[2:0])); always @(posedge clk) begin state <= state + 1; `ifdef TEST_VERBOSE $write("[%0t] state=%d Z1=%b 2=%b 3=%b 4=%b 5=%b 6=%b 7=%b 8=%b 9=%b 10=%b 11=%b\n", $time, state, Z1,Z2,Z3,Z4,Z5,Z6,Z7,Z8,Z9,Z10,Z11); `endif if(state == 0) begin if(Z1 !== 1'b1) $stop; // tests pullups if(Z2 !== 1'b1) $stop; if(Z3 !== 1'b1) $stop; `ifndef VERILATOR if(Z4 !== 1'b1) $stop; `endif if(Z5 !== 1'b1) $stop; if(Z6 !== 1'b1) $stop; if(Z7 !== 1'b0) $stop; if(Z8 !== 1'b0) $stop; if(Z9 !== 1'b1) $stop; if(Z10 !== 4'b0001) $stop; if(Z11 !== 1'b0) $stop; end else if(state == 1) begin if(Z1 !== 1'b1) $stop; // tests pullup if(Z2 !== 1'b1) $stop; if(Z3 !== 1'b1) $stop; `ifndef VERILATOR if(Z4 !== 1'b1) $stop; `endif if(Z5 !== 1'b1) $stop; if(Z6 !== 1'b1) $stop; if(Z7 !== 1'b0) $stop; if(Z8 !== 1'b0) $stop; if(Z9 !== 1'b1) $stop; if(Z10 !== 4'b0001) $stop; if(Z11 !== 1'b1) $stop; end else if(state == 2) begin if(Z1 !== 1'b0) $stop; // tests output driver low if(Z2 !== 1'b0) $stop; if(Z3 !== 1'b1 && Z3 !== 1'bx) $stop; // Conflicts `ifndef VERILATOR if(Z4 !== 1'b1) $stop; `endif if(Z5 !== 1'b1) $stop; if(Z6 !== 1'b0) $stop; if(Z7 !== 1'b1) $stop; if(Z8 !== 1'b1) $stop; if(Z9 !== 1'b0) $stop; if(Z10 !== 4'b0010) $stop; //if(Z11 !== 1'bx) $stop; // Doesn't matter end else if(state == 3) begin if(Z1 !== 1'b1) $stop; // tests output driver high if(Z2 !== 1'b1) $stop; if(Z3 !== 1'b1) $stop; `ifndef VERILATOR if(Z4 !== 1'b1) $stop; `endif if(Z5 !== 1'b1) $stop; if(Z6 !== 1'b0) $stop; if(Z7 !== 1'b1) $stop; if(Z8 !== 1'b1) $stop; if(Z9 !== 1'b0) $stop; if(Z10 !== 4'b0010) $stop; if(Z11 !== 1'b1) $stop; end else if(state == 4) begin $write("*-* All Finished *-*\n"); $finish; end end pullup(Z1); pullup(Z2); pullup(Z3); pullup(Z4); pullup(Z5); pullup(Z6); pulldown(Z7); pullup(Z8); pulldown(Z9); pulldown pd10[3:0] (Z10); endmodule module Test1(input OE, input A, inout Z1); assign Z1 = (OE) ? A : 1'bz; endmodule module Test2(input OE, input A, inout Z2); assign Z2 = (OE) ? A : 1'bz; endmodule // mixed low-Z and tristate module Test3(input OE, input A, inout Z3); assign Z3 = (OE) ? A : 1'bz; assign Z3 = 1'b1; endmodule // floating output and inout `ifndef VERILATOR // Note verilator doesn't know to make Z4 a tristate unless marked an inout `endif module Test4(output Z4, inout Z5); endmodule // AND gate tristates module Test5(input OE, inout Z6, inout Z7, inout Z8, inout Z9); assign Z6 = (OE) ? 1'b0 : 1'bz; assign Z7 = (OE) ? 1'b1 : 1'bz; assign Z8 = (OE) ? 1'bz : 1'b0; assign Z9 = (OE) ? 1'bz : 1'b1; endmodule // AND gate tristates module Test6(input OE, inout [3:0] Z10); wire [1:0] i; Test6a a (.OE(OE), .Z({Z10[0],Z10[1]})); Test6a b (.OE(~OE), .Z({Z10[2],Z10[0]})); endmodule module Test6a(input OE, inout [1:0] Z); assign Z = (OE) ? 2'b01 : 2'bzz; endmodule module Test7(input [2:0] state, output reg Z11); always @(*) begin casez (state) 3'b000: Z11 = 1'b0; 3'b0?1: Z11 = 1'b1; default: Z11 = 1'bx; endcase end endmodule // This is not implemented yet //module Test3(input OE, input A, inout Z3); // always @(*) begin // if(OE) begin // Z3 = A; // end else begin // Z3 = 1'bz; // end // end //endmodule
// This file ONLY is placed into the Public Domain, for any use, // without warranty, 2008 by Lane Brooks module t (clk); input clk; reg [31:0] state; initial state=0; wire A = state[0]; wire OE = state[1]; wire Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9; wire [3:0] Z10; wire Z11; Test1 test1(/*AUTOINST*/ // Inouts .Z1 (Z1), // Inputs .OE (OE), .A (A)); Test2 test2(/*AUTOINST*/ // Inouts .Z2 (Z2), // Inputs .OE (OE), .A (A)); Test3 test3(/*AUTOINST*/ // Inouts .Z3 (Z3), // Inputs .OE (OE), .A (A)); Test4 test4(/*AUTOINST*/ // Outputs .Z4 (Z4), // Inouts .Z5 (Z5)); Test5 test5(/*AUTOINST*/ // Inouts .Z6 (Z6), .Z7 (Z7), .Z8 (Z8), .Z9 (Z9), // Inputs .OE (OE)); Test6 test6(/*AUTOINST*/ // Inouts .Z10 (Z10[3:0]), // Inputs .OE (OE)); Test7 test7(/*AUTOINST*/ // Outputs .Z11 (Z11), // Inputs .state (state[2:0])); always @(posedge clk) begin state <= state + 1; `ifdef TEST_VERBOSE $write("[%0t] state=%d Z1=%b 2=%b 3=%b 4=%b 5=%b 6=%b 7=%b 8=%b 9=%b 10=%b 11=%b\n", $time, state, Z1,Z2,Z3,Z4,Z5,Z6,Z7,Z8,Z9,Z10,Z11); `endif if(state == 0) begin if(Z1 !== 1'b1) $stop; // tests pullups if(Z2 !== 1'b1) $stop; if(Z3 !== 1'b1) $stop; `ifndef VERILATOR if(Z4 !== 1'b1) $stop; `endif if(Z5 !== 1'b1) $stop; if(Z6 !== 1'b1) $stop; if(Z7 !== 1'b0) $stop; if(Z8 !== 1'b0) $stop; if(Z9 !== 1'b1) $stop; if(Z10 !== 4'b0001) $stop; if(Z11 !== 1'b0) $stop; end else if(state == 1) begin if(Z1 !== 1'b1) $stop; // tests pullup if(Z2 !== 1'b1) $stop; if(Z3 !== 1'b1) $stop; `ifndef VERILATOR if(Z4 !== 1'b1) $stop; `endif if(Z5 !== 1'b1) $stop; if(Z6 !== 1'b1) $stop; if(Z7 !== 1'b0) $stop; if(Z8 !== 1'b0) $stop; if(Z9 !== 1'b1) $stop; if(Z10 !== 4'b0001) $stop; if(Z11 !== 1'b1) $stop; end else if(state == 2) begin if(Z1 !== 1'b0) $stop; // tests output driver low if(Z2 !== 1'b0) $stop; if(Z3 !== 1'b1 && Z3 !== 1'bx) $stop; // Conflicts `ifndef VERILATOR if(Z4 !== 1'b1) $stop; `endif if(Z5 !== 1'b1) $stop; if(Z6 !== 1'b0) $stop; if(Z7 !== 1'b1) $stop; if(Z8 !== 1'b1) $stop; if(Z9 !== 1'b0) $stop; if(Z10 !== 4'b0010) $stop; //if(Z11 !== 1'bx) $stop; // Doesn't matter end else if(state == 3) begin if(Z1 !== 1'b1) $stop; // tests output driver high if(Z2 !== 1'b1) $stop; if(Z3 !== 1'b1) $stop; `ifndef VERILATOR if(Z4 !== 1'b1) $stop; `endif if(Z5 !== 1'b1) $stop; if(Z6 !== 1'b0) $stop; if(Z7 !== 1'b1) $stop; if(Z8 !== 1'b1) $stop; if(Z9 !== 1'b0) $stop; if(Z10 !== 4'b0010) $stop; if(Z11 !== 1'b1) $stop; end else if(state == 4) begin $write("*-* All Finished *-*\n"); $finish; end end pullup(Z1); pullup(Z2); pullup(Z3); pullup(Z4); pullup(Z5); pullup(Z6); pulldown(Z7); pullup(Z8); pulldown(Z9); pulldown pd10[3:0] (Z10); endmodule module Test1(input OE, input A, inout Z1); assign Z1 = (OE) ? A : 1'bz; endmodule module Test2(input OE, input A, inout Z2); assign Z2 = (OE) ? A : 1'bz; endmodule // mixed low-Z and tristate module Test3(input OE, input A, inout Z3); assign Z3 = (OE) ? A : 1'bz; assign Z3 = 1'b1; endmodule // floating output and inout `ifndef VERILATOR // Note verilator doesn't know to make Z4 a tristate unless marked an inout `endif module Test4(output Z4, inout Z5); endmodule // AND gate tristates module Test5(input OE, inout Z6, inout Z7, inout Z8, inout Z9); assign Z6 = (OE) ? 1'b0 : 1'bz; assign Z7 = (OE) ? 1'b1 : 1'bz; assign Z8 = (OE) ? 1'bz : 1'b0; assign Z9 = (OE) ? 1'bz : 1'b1; endmodule // AND gate tristates module Test6(input OE, inout [3:0] Z10); wire [1:0] i; Test6a a (.OE(OE), .Z({Z10[0],Z10[1]})); Test6a b (.OE(~OE), .Z({Z10[2],Z10[0]})); endmodule module Test6a(input OE, inout [1:0] Z); assign Z = (OE) ? 2'b01 : 2'bzz; endmodule module Test7(input [2:0] state, output reg Z11); always @(*) begin casez (state) 3'b000: Z11 = 1'b0; 3'b0?1: Z11 = 1'b1; default: Z11 = 1'bx; endcase end endmodule // This is not implemented yet //module Test3(input OE, input A, inout Z3); // always @(*) begin // if(OE) begin // Z3 = A; // end else begin // Z3 = 1'bz; // end // end //endmodule
// DESCRIPTION: Verilator: SystemVerilog interface test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2012 by Iztok Jeras. module t (/*AUTOARG*/ // Inputs clk ); input clk; logic rst = 1'b1; // reset integer rst_cnt = 0; // reset is removed after a delay always @ (posedge clk) begin rst_cnt <= rst_cnt + 1; rst <= rst_cnt <= 3; end // counters int cnt; int cnt_src; int cnt_drn; // add all counters assign cnt = cnt_src + cnt_drn + inf.cnt; // finish report always @ (posedge clk) if (cnt == 3*16) begin $write("*-* All Finished *-*\n"); $finish; end // interface instance handshake inf ( .clk (clk), .rst (rst) ); // source instance source #( .RW (8), .RP (8'b11100001) ) source ( .clk (clk), .rst (rst), .inf (inf), .cnt (cnt_src) ); // drain instance drain #( .RW (8), .RP (8'b11010100) ) drain ( .clk (clk), .rst (rst), .inf (inf), .cnt (cnt_drn) ); endmodule : t // interface definition interface handshake #( parameter int unsigned WC = 32 )( input logic clk, input logic rst ); // modport signals logic req; // request logic grt; // grant logic inc; // increment // local signals integer cnt; // counter // source modport src ( output req, input grt ); // drain modport drn ( input req, output grt ); // incremet condition assign inc = req & grt; // local logic (counter) always @ (posedge clk, posedge rst) if (rst) cnt <= '0; else cnt <= cnt + {31'h0, inc}; endinterface : handshake // source module module source #( // random generator parameters parameter int unsigned RW=1, // LFSR width parameter bit [RW-1:0] RP='0, // LFSR polinom parameter bit [RW-1:0] RR='1 // LFSR reset state )( input logic clk, input logic rst, handshake.src inf, output integer cnt ); // LFSR logic [RW-1:0] rnd; // LFSR in Galois form always @ (posedge clk, posedge rst) if (rst) rnd <= RR; else rnd <= {rnd[0], rnd[RW-1:1]} ^ ({RW{rnd[0]}} & RP); // counter always @ (posedge clk, posedge rst) if (rst) cnt <= 32'd0; else cnt <= cnt + {31'd0, (inf.req & inf.grt)}; // request signal assign inf.req = rnd[0]; endmodule : source // drain module module drain #( // random generator parameters parameter int unsigned RW=1, // LFSR width parameter bit [RW-1:0] RP='0, // LFSR polinom parameter bit [RW-1:0] RR='1 // LFSR reset state )( input logic clk, input logic rst, handshake.drn inf, output integer cnt ); // LFSR logic [RW-1:0] rnd; // LFSR in Galois form always @ (posedge clk, posedge rst) if (rst) rnd <= RR; else rnd <= {rnd[0], rnd[RW-1:1]} ^ ({RW{rnd[0]}} & RP); // counter always @ (posedge clk, posedge rst) if (rst) cnt <= 32'd0; else cnt <= cnt + {31'd0, (inf.req & inf.grt)}; // grant signal assign inf.grt = rnd[0]; endmodule : drain
// DESCRIPTION: Verilator: SystemVerilog interface test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2012 by Iztok Jeras. module t (/*AUTOARG*/ // Inputs clk ); input clk; logic rst = 1'b1; // reset integer rst_cnt = 0; // reset is removed after a delay always @ (posedge clk) begin rst_cnt <= rst_cnt + 1; rst <= rst_cnt <= 3; end // counters int cnt; int cnt_src; int cnt_drn; // add all counters assign cnt = cnt_src + cnt_drn + inf.cnt; // finish report always @ (posedge clk) if (cnt == 3*16) begin $write("*-* All Finished *-*\n"); $finish; end // interface instance handshake inf ( .clk (clk), .rst (rst) ); // source instance source #( .RW (8), .RP (8'b11100001) ) source ( .clk (clk), .rst (rst), .inf (inf), .cnt (cnt_src) ); // drain instance drain #( .RW (8), .RP (8'b11010100) ) drain ( .clk (clk), .rst (rst), .inf (inf), .cnt (cnt_drn) ); endmodule : t // interface definition interface handshake #( parameter int unsigned WC = 32 )( input logic clk, input logic rst ); // modport signals logic req; // request logic grt; // grant logic inc; // increment // local signals integer cnt; // counter // source modport src ( output req, input grt ); // drain modport drn ( input req, output grt ); // incremet condition assign inc = req & grt; // local logic (counter) always @ (posedge clk, posedge rst) if (rst) cnt <= '0; else cnt <= cnt + {31'h0, inc}; endinterface : handshake // source module module source #( // random generator parameters parameter int unsigned RW=1, // LFSR width parameter bit [RW-1:0] RP='0, // LFSR polinom parameter bit [RW-1:0] RR='1 // LFSR reset state )( input logic clk, input logic rst, handshake.src inf, output integer cnt ); // LFSR logic [RW-1:0] rnd; // LFSR in Galois form always @ (posedge clk, posedge rst) if (rst) rnd <= RR; else rnd <= {rnd[0], rnd[RW-1:1]} ^ ({RW{rnd[0]}} & RP); // counter always @ (posedge clk, posedge rst) if (rst) cnt <= 32'd0; else cnt <= cnt + {31'd0, (inf.req & inf.grt)}; // request signal assign inf.req = rnd[0]; endmodule : source // drain module module drain #( // random generator parameters parameter int unsigned RW=1, // LFSR width parameter bit [RW-1:0] RP='0, // LFSR polinom parameter bit [RW-1:0] RR='1 // LFSR reset state )( input logic clk, input logic rst, handshake.drn inf, output integer cnt ); // LFSR logic [RW-1:0] rnd; // LFSR in Galois form always @ (posedge clk, posedge rst) if (rst) rnd <= RR; else rnd <= {rnd[0], rnd[RW-1:1]} ^ ({RW{rnd[0]}} & RP); // counter always @ (posedge clk, posedge rst) if (rst) cnt <= 32'd0; else cnt <= cnt + {31'd0, (inf.req & inf.grt)}; // grant signal assign inf.grt = rnd[0]; endmodule : drain
/*+-------------------------------------------------------------------------- Copyright (c) 2015, Microsoft Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------------*/ ////////////////////////////////////////////////////////////////////////////////// // Company: Microsoft Research Asia // Engineer: Jiansong Zhang // // Create Date: 21:39:39 06/01/2009 // Design Name: // Module Name: tx_engine // Project Name: Sora // Target Devices: Virtex5 LX50T // Tool versions: ISE10.1.03 // Description: // Purpose: Contains 25 ms timers for each outstanding read request. If any // timer reaches 0 than completion timeout is signalled. // // Dependencies: // // Revision: // Revision 0.01 - File Created // Additional Comments: // ////////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module completion_timeout( input clk, input rst, input [31:0] pending_req, output reg comp_timeout ); `ifdef ML505 reg [15:0] count; `else reg [17:0] count; //free running counter creates 1.048576 ms timer `endif wire [31:0] pending_req_rise; wire [31:0] pending_req_fall; reg [31:0] shift_in = 0; reg [4:0] reset_count[31:0]; wire [31:0] srl_reset; wire [31:0] comp_timeout_vector; reg [31:0] comp_timeout_vector_d1; wire comp_timeout_or; wire comp_timeout_one; reg comp_timeout_d1; always@(posedge clk)begin if(rst) count <= 0; else count <= count + 1; end //timer is asserted every 1.045876 ms assign timer = (count == 0) ? 1'b1 : 1'b0; //create 32 shift register instances and associated logic genvar i; generate for(i=0;i<32;i=i+1)begin: replicate edge_detect edge_detect_inst( .clk(clk), .rst(rst), .in(pending_req[i]), .rise_out(pending_req_rise[i]), .fall_out(pending_req_fall[i]) ); //pending req logic //create a signal that sets when pending req is high and resets //timer pulses. Pending req gets priority over timer if both //signals occur simultaneously always@(posedge clk)begin if(pending_req_rise[i]) //set latch shift_in[i] <= 1'b1; else if(timer || pending_req_fall[i]) //reset latch shift_in[i] <= 1'b0; end always@(posedge clk)begin if(rst) reset_count[i][4:0] <= 5'b00000; else if (pending_req_fall[i] == 1'b1) reset_count[i][4:0] <= 5'b11001; else if (reset_count[i][4:0] == 5'b00000) reset_count[i][4:0] <= 5'b00000; else reset_count[i][4:0] <= reset_count[i][4:0] - 1; end assign srl_reset[i] = | reset_count[i][4:0]; SRLC32E #( .INIT(32'h00000000) ) SRLC32E_inst ( .Q(comp_timeout_vector[i]), // SRL data output .Q31(), // SRL cascade output pin .A(5'b11000), // 5-bit shift depth select input .CE((srl_reset[i]) ? srl_reset[i] : timer), // Clock enable input .CLK(clk), // Clock input .D((srl_reset[i]) ? ~srl_reset[i] : shift_in[i]) // SRL data input ); end endgenerate always@(posedge clk)begin comp_timeout_vector_d1[31:0] <= comp_timeout_vector[31:0]; end assign comp_timeout_or = |comp_timeout_vector_d1[31:0]; rising_edge_detect comp_timeout_one_inst( .clk(clk), .rst(rst), .in(comp_timeout_or), .one_shot_out(comp_timeout_one) ); always@(posedge clk)begin comp_timeout_d1 <= comp_timeout_one; comp_timeout <= comp_timeout_d1; end endmodule
// ----------------------------------------------------------- // Legal Notice: (C)2007 Altera Corporation. All rights reserved. Your // use of Altera Corporation's design tools, logic functions and other // software and tools, and its AMPP partner logic functions, and any // output files any of the foregoing (including device programming or // simulation files), and any associated documentation or information are // expressly subject to the terms and conditions of the Altera Program // License Subscription Agreement or other applicable license agreement, // including, without limitation, that your use is for the sole purpose // of programming logic devices manufactured by Altera and sold by Altera // or its authorized distributors. Please refer to the applicable // agreement for further details. // // Description: Single clock Avalon-ST FIFO. // ----------------------------------------------------------- `timescale 1 ns / 1 ns //altera message_off 10036 module altera_avalon_sc_fifo #( // -------------------------------------------------- // Parameters // -------------------------------------------------- parameter SYMBOLS_PER_BEAT = 1, parameter BITS_PER_SYMBOL = 8, parameter FIFO_DEPTH = 16, parameter CHANNEL_WIDTH = 0, parameter ERROR_WIDTH = 0, parameter USE_PACKETS = 0, parameter USE_FILL_LEVEL = 0, parameter USE_STORE_FORWARD = 0, parameter USE_ALMOST_FULL_IF = 0, parameter USE_ALMOST_EMPTY_IF = 0, // -------------------------------------------------- // Empty latency is defined as the number of cycles // required for a write to deassert the empty flag. // For example, a latency of 1 means that the empty // flag is deasserted on the cycle after a write. // // Another way to think of it is the latency for a // write to propagate to the output. // // An empty latency of 0 implies lookahead, which is // only implemented for the register-based FIFO. // -------------------------------------------------- parameter EMPTY_LATENCY = 3, parameter USE_MEMORY_BLOCKS = 1, // -------------------------------------------------- // Internal Parameters // -------------------------------------------------- parameter DATA_WIDTH = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL, parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT) ) ( // -------------------------------------------------- // Ports // -------------------------------------------------- input clk, input reset, input [DATA_WIDTH-1: 0] in_data, input in_valid, input in_startofpacket, input in_endofpacket, input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] in_empty, input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] in_error, input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] in_channel, output in_ready, output [DATA_WIDTH-1 : 0] out_data, output reg out_valid, output out_startofpacket, output out_endofpacket, output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] out_empty, output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] out_error, output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel, input out_ready, input [(USE_STORE_FORWARD ? 2 : 1) : 0] csr_address, input csr_write, input csr_read, input [31 : 0] csr_writedata, output reg [31 : 0] csr_readdata, output wire almost_full_data, output wire almost_empty_data ); // -------------------------------------------------- // Local Parameters // -------------------------------------------------- localparam ADDR_WIDTH = log2ceil(FIFO_DEPTH); localparam DEPTH = FIFO_DEPTH; localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH; localparam PAYLOAD_WIDTH = (USE_PACKETS == 1) ? 2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH: DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH; // -------------------------------------------------- // Internal Signals // -------------------------------------------------- genvar i; reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0]; reg [ADDR_WIDTH-1 : 0] wr_ptr; reg [ADDR_WIDTH-1 : 0] rd_ptr; reg [DEPTH-1 : 0] mem_used; wire [ADDR_WIDTH-1 : 0] next_wr_ptr; wire [ADDR_WIDTH-1 : 0] next_rd_ptr; wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr; wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr; wire [ADDR_WIDTH-1 : 0] mem_rd_ptr; wire read; wire write; reg empty; reg next_empty; reg full; reg next_full; wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals; wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals; wire [PAYLOAD_WIDTH-1 : 0] in_payload; reg [PAYLOAD_WIDTH-1 : 0] internal_out_payload; reg [PAYLOAD_WIDTH-1 : 0] out_payload; reg internal_out_valid; wire internal_out_ready; reg [ADDR_WIDTH : 0] fifo_fill_level; reg [ADDR_WIDTH : 0] fill_level; reg [ADDR_WIDTH-1 : 0] sop_ptr = 0; reg [23:0] almost_full_threshold; reg [23:0] almost_empty_threshold; reg [23:0] cut_through_threshold; reg [15:0] pkt_cnt; reg [15:0] pkt_cnt_r; reg [15:0] pkt_cnt_plusone; reg [15:0] pkt_cnt_minusone; reg drop_on_error_en; reg error_in_pkt; reg pkt_has_started; reg sop_has_left_fifo; reg fifo_too_small_r; reg pkt_cnt_eq_zero; reg pkt_cnt_eq_one; reg pkt_cnt_changed; wire wait_for_threshold; reg pkt_mode; wire wait_for_pkt; wire ok_to_forward; wire in_pkt_eop_arrive; wire out_pkt_leave; wire in_pkt_start; wire in_pkt_error; wire drop_on_error; wire fifo_too_small; wire out_pkt_sop_leave; wire [31:0] max_fifo_size; reg fifo_fill_level_lt_cut_through_threshold; // -------------------------------------------------- // Define Payload // // Icky part where we decide which signals form the // payload to the FIFO with generate blocks. // -------------------------------------------------- generate if (EMPTY_WIDTH > 0) begin assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty}; assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals; end else begin assign out_empty = in_error; assign in_packet_signals = {in_startofpacket, in_endofpacket}; assign {out_startofpacket, out_endofpacket} = out_packet_signals; end endgenerate generate if (USE_PACKETS) begin if (ERROR_WIDTH > 0) begin if (CHANNEL_WIDTH > 0) begin assign in_payload = {in_packet_signals, in_data, in_error, in_channel}; assign {out_packet_signals, out_data, out_error, out_channel} = out_payload; end else begin assign out_channel = in_channel; assign in_payload = {in_packet_signals, in_data, in_error}; assign {out_packet_signals, out_data, out_error} = out_payload; end end else begin assign out_error = in_error; if (CHANNEL_WIDTH > 0) begin assign in_payload = {in_packet_signals, in_data, in_channel}; assign {out_packet_signals, out_data, out_channel} = out_payload; end else begin assign out_channel = in_channel; assign in_payload = {in_packet_signals, in_data}; assign {out_packet_signals, out_data} = out_payload; end end end else begin assign out_packet_signals = 0; if (ERROR_WIDTH > 0) begin if (CHANNEL_WIDTH > 0) begin assign in_payload = {in_data, in_error, in_channel}; assign {out_data, out_error, out_channel} = out_payload; end else begin assign out_channel = in_channel; assign in_payload = {in_data, in_error}; assign {out_data, out_error} = out_payload; end end else begin assign out_error = in_error; if (CHANNEL_WIDTH > 0) begin assign in_payload = {in_data, in_channel}; assign {out_data, out_channel} = out_payload; end else begin assign out_channel = in_channel; assign in_payload = in_data; assign out_data = out_payload; end end end endgenerate // -------------------------------------------------- // Memory-based FIFO storage // // To allow a ready latency of 0, the read index is // obtained from the next read pointer and memory // outputs are unregistered. // // If the empty latency is 1, we infer bypass logic // around the memory so writes propagate to the // outputs on the next cycle. // // Do not change the way this is coded: Quartus needs // a perfect match to the template, and any attempt to // refactor the two always blocks into one will break // memory inference. // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin if (EMPTY_LATENCY == 1) begin always @(posedge clk) begin if (in_valid && in_ready) mem[wr_ptr] = in_payload; internal_out_payload = mem[mem_rd_ptr]; end end else begin always @(posedge clk) begin if (in_valid && in_ready) mem[wr_ptr] <= in_payload; internal_out_payload <= mem[mem_rd_ptr]; end end assign mem_rd_ptr = next_rd_ptr; end else begin // -------------------------------------------------- // Register-based FIFO storage // // Uses a shift register as the storage element. Each // shift register slot has a bit which indicates if // the slot is occupied (credit to Sam H for the idea). // The occupancy bits are contiguous and start from the // lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep // FIFO. // // Each slot is enabled during a read or when it // is unoccupied. New data is always written to every // going-to-be-empty slot (we keep track of which ones // are actually useful with the occupancy bits). On a // read we shift occupied slots. // // The exception is the last slot, which always gets // new data when it is unoccupied. // -------------------------------------------------- for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg always @(posedge clk or posedge reset) begin if (reset) begin mem[i] <= 0; end else if (read || !mem_used[i]) begin if (!mem_used[i+1]) mem[i] <= in_payload; else mem[i] <= mem[i+1]; end end end always @(posedge clk, posedge reset) begin if (reset) begin mem[DEPTH-1] <= 0; end else begin if (!mem_used[DEPTH-1]) mem[DEPTH-1] <= in_payload; if (DEPTH == 1) begin if (write) mem[DEPTH-1] <= in_payload; end end end end endgenerate assign read = internal_out_ready && internal_out_valid && ok_to_forward; assign write = in_ready && in_valid; // -------------------------------------------------- // Pointer Management // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin assign incremented_wr_ptr = wr_ptr + 1'b1; assign incremented_rd_ptr = rd_ptr + 1'b1; assign next_wr_ptr = drop_on_error ? sop_ptr : write ? incremented_wr_ptr : wr_ptr; assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr; always @(posedge clk or posedge reset) begin if (reset) begin wr_ptr <= 0; rd_ptr <= 0; end else begin wr_ptr <= next_wr_ptr; rd_ptr <= next_rd_ptr; end end end else begin // -------------------------------------------------- // Shift Register Occupancy Bits // // Consider a 4-deep FIFO with 2 entries: 0011 // On a read and write, do not modify the bits. // On a write, left-shift the bits to get 0111. // On a read, right-shift the bits to get 0001. // // Also, on a write we set bit0 (the head), while // clearing the tail on a read. // -------------------------------------------------- always @(posedge clk or posedge reset) begin if (reset) begin mem_used[0] <= 0; end else begin if (write ^ read) begin if (read) begin if (DEPTH > 1) mem_used[0] <= mem_used[1]; else mem_used[0] <= 0; end if (write) mem_used[0] <= 1; end end end if (DEPTH > 1) begin always @(posedge clk or posedge reset) begin if (reset) begin mem_used[DEPTH-1] <= 0; end else begin if (write ^ read) begin mem_used[DEPTH-1] <= 0; if (write) mem_used[DEPTH-1] <= mem_used[DEPTH-2]; end end end end for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic always @(posedge clk, posedge reset) begin if (reset) begin mem_used[i] <= 0; end else begin if (write ^ read) begin if (read) mem_used[i] <= mem_used[i+1]; if (write) mem_used[i] <= mem_used[i-1]; end end end end end endgenerate // -------------------------------------------------- // Memory FIFO Status Management // // Generates the full and empty signals from the // pointers. The FIFO is full when the next write // pointer will be equal to the read pointer after // a write. Reading from a FIFO clears full. // // The FIFO is empty when the next read pointer will // be equal to the write pointer after a read. Writing // to a FIFO clears empty. // // A simultaneous read and write must not change any of // the empty or full flags unless there is a drop on error event. // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin always @* begin next_full = full; next_empty = empty; if (read && !write) begin next_full = 1'b0; if (incremented_rd_ptr == wr_ptr) next_empty = 1'b1; end if (write && !read) begin if (!drop_on_error) next_empty = 1'b0; else if (sop_ptr == rd_ptr) // drop on error and only 1 pkt in fifo next_empty = 1'b1; if (incremented_wr_ptr == rd_ptr && !drop_on_error) next_full = 1'b1; end if (write && read && drop_on_error) begin if (sop_ptr == next_rd_ptr) next_empty = 1'b1; end end always @(posedge clk or posedge reset) begin if (reset) begin empty <= 1; full <= 0; end else begin empty <= next_empty; full <= next_full; end end end else begin // -------------------------------------------------- // Register FIFO Status Management // // Full when the tail occupancy bit is 1. Empty when // the head occupancy bit is 0. // -------------------------------------------------- always @* begin full = mem_used[DEPTH-1]; empty = !mem_used[0]; // ------------------------------------------ // For a single slot FIFO, reading clears the // full status immediately. // ------------------------------------------ if (DEPTH == 1) full = mem_used[0] && !read; internal_out_payload = mem[0]; // ------------------------------------------ // Writes clear empty immediately for lookahead modes. // Note that we use in_valid instead of write to avoid // combinational loops (in lookahead mode, qualifying // with in_ready is meaningless). // // In a 1-deep FIFO, a possible combinational loop runs // from write -> out_valid -> out_ready -> write // ------------------------------------------ if (EMPTY_LATENCY == 0) begin empty = !mem_used[0] && !in_valid; if (!mem_used[0] && in_valid) internal_out_payload = in_payload; end end end endgenerate // -------------------------------------------------- // Avalon-ST Signals // // The in_ready signal is straightforward. // // To match memory latency when empty latency > 1, // out_valid assertions must be delayed by one clock // cycle. // // Note: out_valid deassertions must not be delayed or // the FIFO will underflow. // -------------------------------------------------- assign in_ready = !full; assign internal_out_ready = out_ready || !out_valid; generate if (EMPTY_LATENCY > 1) begin always @(posedge clk or posedge reset) begin if (reset) internal_out_valid <= 0; else begin internal_out_valid <= !empty & ok_to_forward & ~drop_on_error; if (read) begin if (incremented_rd_ptr == wr_ptr) internal_out_valid <= 1'b0; end end end end else begin always @* begin internal_out_valid = !empty & ok_to_forward; end end endgenerate // -------------------------------------------------- // Single Output Pipeline Stage // // This output pipeline stage is enabled if the FIFO's // empty latency is set to 3 (default). It is disabled // for all other allowed latencies. // // Reason: The memory outputs are unregistered, so we have to // register the output or fmax will drop if combinatorial // logic is present on the output datapath. // // Q: The Avalon-ST spec says that I have to register my outputs // But isn't the memory counted as a register? // A: The path from the address lookup to the memory output is // slow. Registering the memory outputs is a good idea. // // The registers get packed into the memory by the fitter // which means minimal resources are consumed (the result // is a altsyncram with registered outputs, available on // all modern Altera devices). // // This output stage acts as an extra slot in the FIFO, // and complicates the fill level. // -------------------------------------------------- generate if (EMPTY_LATENCY == 3) begin always @(posedge clk or posedge reset) begin if (reset) begin out_valid <= 0; out_payload <= 0; end else begin if (internal_out_ready) begin out_valid <= internal_out_valid & ok_to_forward; out_payload <= internal_out_payload; end end end end else begin always @* begin out_valid = internal_out_valid; out_payload = internal_out_payload; end end endgenerate // -------------------------------------------------- // Fill Level // // The fill level is calculated from the next write // and read pointers to avoid unnecessary latency. // // If the output pipeline is enabled, the fill level // must account for it, or we'll always be off by one. // This may, or may not be important depending on the // application. // // For now, we'll always calculate the exact fill level // at the cost of an extra adder when the output stage // is enabled. // -------------------------------------------------- generate if (USE_FILL_LEVEL) begin wire [31:0] depth32; assign depth32 = DEPTH; always @(posedge clk or posedge reset) begin if (reset) fifo_fill_level <= 0; else if (next_full & !drop_on_error) fifo_fill_level <= depth32[ADDR_WIDTH:0]; else begin fifo_fill_level[ADDR_WIDTH] <= 1'b0; fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr; end end always @* begin fill_level = fifo_fill_level; if (EMPTY_LATENCY == 3) fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid}; end end else begin always @* begin fill_level = 0; end end endgenerate generate if (USE_ALMOST_FULL_IF) begin assign almost_full_data = (fill_level >= almost_full_threshold); end else assign almost_full_data = 0; endgenerate generate if (USE_ALMOST_EMPTY_IF) begin assign almost_empty_data = (fill_level <= almost_empty_threshold); end else assign almost_empty_data = 0; endgenerate // -------------------------------------------------- // Avalon-MM Status & Control Connection Point // // Register map: // // | Addr | RW | 31 - 0 | // | 0 | R | Fill level | // // The registering of this connection point means // that there is a cycle of latency between // reads/writes and the updating of the fill level. // -------------------------------------------------- generate if (USE_STORE_FORWARD) begin assign max_fifo_size = FIFO_DEPTH - 1; always @(posedge clk or posedge reset) begin if (reset) begin almost_full_threshold <= max_fifo_size[23 : 0]; almost_empty_threshold <= 0; cut_through_threshold <= 0; drop_on_error_en <= 0; csr_readdata <= 0; pkt_mode <= 1'b1; end else begin if (csr_write) begin if(csr_address == 3'b010) almost_full_threshold <= csr_writedata[23:0]; if(csr_address == 3'b011) almost_empty_threshold <= csr_writedata[23:0]; if(csr_address == 3'b100) begin cut_through_threshold <= csr_writedata[23:0]; pkt_mode <= (csr_writedata[23:0] == 0); end if(csr_address == 3'b101) drop_on_error_en <= csr_writedata[0]; end if (csr_read) begin csr_readdata <= 32'b0; if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; if (csr_address == 2) csr_readdata <= {8'b0, almost_full_threshold}; if (csr_address == 3) csr_readdata <= {8'b0, almost_empty_threshold}; if (csr_address == 4) csr_readdata <= {8'b0, cut_through_threshold}; if (csr_address == 5) csr_readdata <= {31'b0, drop_on_error_en}; end end end end else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin assign max_fifo_size = FIFO_DEPTH - 1; always @(posedge clk or posedge reset) begin if (reset) begin almost_full_threshold <= max_fifo_size[23 : 0]; almost_empty_threshold <= 0; csr_readdata <= 0; end else begin if (csr_write) begin if(csr_address == 3'b010) almost_full_threshold <= csr_writedata[23:0]; if(csr_address == 3'b011) almost_empty_threshold <= csr_writedata[23:0]; end if (csr_read) begin csr_readdata <= 32'b0; if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; if (csr_address == 2) csr_readdata <= {8'b0, almost_full_threshold}; if (csr_address == 3) csr_readdata <= {8'b0, almost_empty_threshold}; end end end end else begin always @(posedge clk or posedge reset) begin if (reset) begin csr_readdata <= 0; end else if (csr_read) begin csr_readdata <= 0; if (csr_address == 0) csr_readdata <= fill_level; end end end endgenerate // -------------------------------------------------- // Store and forward logic // -------------------------------------------------- // if the fifo gets full before the entire packet or the // cut-threshold condition is met then start sending out // data in order to avoid dead-lock situation generate if (USE_STORE_FORWARD) begin assign wait_for_threshold = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ; assign wait_for_pkt = pkt_cnt_eq_zero | (pkt_cnt_eq_one & out_pkt_leave); assign ok_to_forward = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) : ~wait_for_threshold) | fifo_too_small_r; assign in_pkt_eop_arrive = in_valid & in_ready & in_endofpacket; assign in_pkt_start = in_valid & in_ready & in_startofpacket; assign in_pkt_error = in_valid & in_ready & |in_error; assign out_pkt_sop_leave = out_valid & out_ready & out_startofpacket; assign out_pkt_leave = out_valid & out_ready & out_endofpacket; assign fifo_too_small = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready; // count packets coming and going into the fifo always @(posedge clk or posedge reset) begin if (reset) begin pkt_cnt <= 0; pkt_cnt_r <= 0; pkt_cnt_plusone <= 1; pkt_cnt_minusone <= 0; pkt_cnt_changed <= 0; pkt_has_started <= 0; sop_has_left_fifo <= 0; fifo_too_small_r <= 0; pkt_cnt_eq_zero <= 1'b1; pkt_cnt_eq_one <= 1'b0; fifo_fill_level_lt_cut_through_threshold <= 1'b1; end else begin fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold; fifo_too_small_r <= fifo_too_small; pkt_cnt_plusone <= pkt_cnt + 1'b1; pkt_cnt_minusone <= pkt_cnt - 1'b1; pkt_cnt_r <= pkt_cnt; pkt_cnt_changed <= 1'b0; if( in_pkt_eop_arrive ) sop_has_left_fifo <= 1'b0; else if (out_pkt_sop_leave & pkt_cnt_eq_zero ) sop_has_left_fifo <= 1'b1; if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin pkt_cnt_changed <= 1'b1; pkt_cnt <= pkt_cnt_changed ? pkt_cnt_r : pkt_cnt_plusone; pkt_cnt_eq_zero <= 0; if (pkt_cnt == 0) pkt_cnt_eq_one <= 1'b1; else pkt_cnt_eq_one <= 1'b0; end else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin pkt_cnt_changed <= 1'b1; pkt_cnt <= pkt_cnt_changed ? pkt_cnt_r : pkt_cnt_minusone; if (pkt_cnt == 1) pkt_cnt_eq_zero <= 1'b1; else pkt_cnt_eq_zero <= 1'b0; if (pkt_cnt == 2) pkt_cnt_eq_one <= 1'b1; else pkt_cnt_eq_one <= 1'b0; end if (in_pkt_start) pkt_has_started <= 1'b1; else if (in_pkt_eop_arrive) pkt_has_started <= 1'b0; end end // drop on error logic always @(posedge clk or posedge reset) begin if (reset) begin sop_ptr <= 0; error_in_pkt <= 0; end else begin // save the location of the SOP if ( in_pkt_start ) sop_ptr <= wr_ptr; // remember if error in pkt // log error only if packet has already started if (in_pkt_eop_arrive) error_in_pkt <= 1'b0; else if ( in_pkt_error & (pkt_has_started | in_pkt_start)) error_in_pkt <= 1'b1; end end assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive & ~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero); end else begin assign ok_to_forward = 1'b1; assign drop_on_error = 1'b0; end endgenerate // -------------------------------------------------- // Calculates the log2ceil of the input value // -------------------------------------------------- function integer log2ceil; input integer val; integer i; begin i = 1; log2ceil = 0; while (i < val) begin log2ceil = log2ceil + 1; i = i << 1; end end endfunction endmodule
//----------------------------------------------------------------------------- // Copyright (C) 2014 iZsh <izsh at fail0verflow.com> // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // testbench for min_max_tracker `include "min_max_tracker.v" `define FIN "tb_tmp/data.filtered.gold" `define FOUT_MIN "tb_tmp/data.min" `define FOUT_MAX "tb_tmp/data.max" module min_max_tracker_tb; integer fin; integer fout_min, fout_max; integer r; reg clk; reg [7:0] adc_d; wire [7:0] min; wire [7:0] max; initial begin clk = 0; fin = $fopen(`FIN, "r"); if (!fin) begin $display("ERROR: can't open the data file"); $finish; end fout_min = $fopen(`FOUT_MIN, "w+"); fout_max = $fopen(`FOUT_MAX, "w+"); if (!$feof(fin)) adc_d = $fgetc(fin); // read the first value end always # 1 clk = !clk; // input initial begin while (!$feof(fin)) begin @(negedge clk) adc_d <= $fgetc(fin); end if ($feof(fin)) begin # 3 $fclose(fin); $fclose(fout_min); $fclose(fout_max); $finish; end end initial begin // $monitor("%d\t min: %x, max: %x", $time, min, max); end // output always @(negedge clk) if ($time > 2) begin r = $fputc(min, fout_min); r = $fputc(max, fout_max); end // module to test min_max_tracker tracker(clk, adc_d, 8'd127, min, max); endmodule
//----------------------------------------------------------------------------- // Copyright (C) 2014 iZsh <izsh at fail0verflow.com> // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // testbench for min_max_tracker `include "min_max_tracker.v" `define FIN "tb_tmp/data.filtered.gold" `define FOUT_MIN "tb_tmp/data.min" `define FOUT_MAX "tb_tmp/data.max" module min_max_tracker_tb; integer fin; integer fout_min, fout_max; integer r; reg clk; reg [7:0] adc_d; wire [7:0] min; wire [7:0] max; initial begin clk = 0; fin = $fopen(`FIN, "r"); if (!fin) begin $display("ERROR: can't open the data file"); $finish; end fout_min = $fopen(`FOUT_MIN, "w+"); fout_max = $fopen(`FOUT_MAX, "w+"); if (!$feof(fin)) adc_d = $fgetc(fin); // read the first value end always # 1 clk = !clk; // input initial begin while (!$feof(fin)) begin @(negedge clk) adc_d <= $fgetc(fin); end if ($feof(fin)) begin # 3 $fclose(fin); $fclose(fout_min); $fclose(fout_max); $finish; end end initial begin // $monitor("%d\t min: %x, max: %x", $time, min, max); end // output always @(negedge clk) if ($time > 2) begin r = $fputc(min, fout_min); r = $fputc(max, fout_max); end // module to test min_max_tracker tracker(clk, adc_d, 8'd127, min, max); endmodule
/*+-------------------------------------------------------------------------- Copyright (c) 2015, Microsoft Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------------*/ `timescale 1ns / 1ps module RCB_FRL_fifo_MSG(ALMOSTEMPTY, ALMOSTFULL, DO, EMPTY, FULL, DI, RDCLK, RDEN, WRCLK, WREN, RST); output ALMOSTEMPTY, ALMOSTFULL, EMPTY, FULL; output [39:0] DO; input [39:0] DI; input RDCLK, RDEN, WRCLK, WREN, RST; wire [63:40] zero; FIFO36_72 #( .ALMOST_FULL_OFFSET(9'h080), // Sets almost full threshold .ALMOST_EMPTY_OFFSET(9'h080), // Sets the almost empty threshold .DO_REG(1), // Enable output register (0 or 1) // Must be 1 if EN_SYN = "FALSE" .EN_ECC_READ("FALSE"), // Enable ECC decoder, "TRUE" or "FALSE" .EN_ECC_WRITE("FALSE"), // Enable ECC encoder, "TRUE" or "FALSE" .EN_SYN("FALSE"), // Specifies FIFO as Asynchronous ("FALSE") // or Synchronous ("TRUE") .FIRST_WORD_FALL_THROUGH("FALSE") // Sets the FIFO FWFT to "TRUE" or "FALSE" ) FIFO36_72_inst ( .ALMOSTEMPTY(ALMOSTEMPTY), // 1-bit almost empty output flag .ALMOSTFULL(ALMOSTFULL), // 1-bit almost full output flag .DBITERR(), // 1-bit double bit error status output .DO({zero[63:40],DO[39:0]}), // 32-bit data output .DOP(), // 4-bit parity data output .ECCPARITY(), // 8-bit generated error correction parity .EMPTY(EMPTY), // 1-bit empty output flag .FULL(FULL), // 1-bit full output flag .RDCOUNT(), // 9-bit read count output .RDERR(), // 1-bit read error output .SBITERR(), // 1-bit single bit error status output .WRCOUNT(), // 9-bit write count output .WRERR(), // 1-bit write error .DI({24'h000,DI}), // 32-bit data input .DIP(), // 4-bit parity input .RDCLK(RDCLK), // 1-bit read clock input .RDEN(RDEN), // 1-bit read enable input .RST(RST), // 1-bit reset input .WRCLK(WRCLK), // 1-bit write clock input .WREN(WREN) // 1-bit write enable input ); endmodule
/*+-------------------------------------------------------------------------- Copyright (c) 2015, Microsoft Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------------*/ `timescale 1ns / 1ps module RCB_FRL_fifo_MSG(ALMOSTEMPTY, ALMOSTFULL, DO, EMPTY, FULL, DI, RDCLK, RDEN, WRCLK, WREN, RST); output ALMOSTEMPTY, ALMOSTFULL, EMPTY, FULL; output [39:0] DO; input [39:0] DI; input RDCLK, RDEN, WRCLK, WREN, RST; wire [63:40] zero; FIFO36_72 #( .ALMOST_FULL_OFFSET(9'h080), // Sets almost full threshold .ALMOST_EMPTY_OFFSET(9'h080), // Sets the almost empty threshold .DO_REG(1), // Enable output register (0 or 1) // Must be 1 if EN_SYN = "FALSE" .EN_ECC_READ("FALSE"), // Enable ECC decoder, "TRUE" or "FALSE" .EN_ECC_WRITE("FALSE"), // Enable ECC encoder, "TRUE" or "FALSE" .EN_SYN("FALSE"), // Specifies FIFO as Asynchronous ("FALSE") // or Synchronous ("TRUE") .FIRST_WORD_FALL_THROUGH("FALSE") // Sets the FIFO FWFT to "TRUE" or "FALSE" ) FIFO36_72_inst ( .ALMOSTEMPTY(ALMOSTEMPTY), // 1-bit almost empty output flag .ALMOSTFULL(ALMOSTFULL), // 1-bit almost full output flag .DBITERR(), // 1-bit double bit error status output .DO({zero[63:40],DO[39:0]}), // 32-bit data output .DOP(), // 4-bit parity data output .ECCPARITY(), // 8-bit generated error correction parity .EMPTY(EMPTY), // 1-bit empty output flag .FULL(FULL), // 1-bit full output flag .RDCOUNT(), // 9-bit read count output .RDERR(), // 1-bit read error output .SBITERR(), // 1-bit single bit error status output .WRCOUNT(), // 9-bit write count output .WRERR(), // 1-bit write error .DI({24'h000,DI}), // 32-bit data input .DIP(), // 4-bit parity input .RDCLK(RDCLK), // 1-bit read clock input .RDEN(RDEN), // 1-bit read enable input .RST(RST), // 1-bit reset input .WRCLK(WRCLK), // 1-bit write clock input .WREN(WREN) // 1-bit write enable input ); endmodule
(***********************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *) (* \VV/ *************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (***********************************************************************) (**************************************************************) (* FSetDecide.v *) (* *) (* Author: Aaron Bohannon *) (**************************************************************) (** This file implements a decision procedure for a certain class of propositions involving finite sets. *) Require Import Decidable Setoid DecidableTypeEx FSetFacts. (** First, a version for Weak Sets in functorial presentation *) Module WDecide_fun (E : DecidableType)(Import M : WSfun E). Module F := FSetFacts.WFacts_fun E M. (** * Overview This functor defines the tactic [fsetdec], which will solve any valid goal of the form << forall s1 ... sn, forall x1 ... xm, P1 -> ... -> Pk -> P >> where [P]'s are defined by the grammar: << P ::= | Q | Empty F | Subset F F' | Equal F F' Q ::= | E.eq X X' | In X F | Q /\ Q' | Q \/ Q' | Q -> Q' | Q <-> Q' | ~ Q | True | False F ::= | S | empty | singleton X | add X F | remove X F | union F F' | inter F F' | diff F F' X ::= x1 | ... | xm S ::= s1 | ... | sn >> The tactic will also work on some goals that vary slightly from the above form: - The variables and hypotheses may be mixed in any order and may have already been introduced into the context. Moreover, there may be additional, unrelated hypotheses mixed in (these will be ignored). - A conjunction of hypotheses will be handled as easily as separate hypotheses, i.e., [P1 /\ P2 -> P] can be solved iff [P1 -> P2 -> P] can be solved. - [fsetdec] should solve any goal if the FSet-related hypotheses are contradictory. - [fsetdec] will first perform any necessary zeta and beta reductions and will invoke [subst] to eliminate any Coq equalities between finite sets or their elements. - If [E.eq] is convertible with Coq's equality, it will not matter which one is used in the hypotheses or conclusion. - The tactic can solve goals where the finite sets or set elements are expressed by Coq terms that are more complicated than variables. However, non-local definitions are not expanded, and Coq equalities between non-variable terms are not used. For example, this goal will be solved: << forall (f : t -> t), forall (g : elt -> elt), forall (s1 s2 : t), forall (x1 x2 : elt), Equal s1 (f s2) -> E.eq x1 (g (g x2)) -> In x1 s1 -> In (g (g x2)) (f s2) >> This one will not be solved: << forall (f : t -> t), forall (g : elt -> elt), forall (s1 s2 : t), forall (x1 x2 : elt), Equal s1 (f s2) -> E.eq x1 (g x2) -> In x1 s1 -> g x2 = g (g x2) -> In (g (g x2)) (f s2) >> *) (** * Facts and Tactics for Propositional Logic These lemmas and tactics are in a module so that they do not affect the namespace if you import the enclosing module [Decide]. *) Module FSetLogicalFacts. Export Decidable. Export Setoid. (** ** Lemmas and Tactics About Decidable Propositions *) (** ** Propositional Equivalences Involving Negation These are all written with the unfolded form of negation, since I am not sure if setoid rewriting will always perform conversion. *) (** ** Tactics for Negations *) Tactic Notation "fold" "any" "not" := repeat ( match goal with | H: context [?P -> False] |- _ => fold (~ P) in H | |- context [?P -> False] => fold (~ P) end). (** [push not using db] will pushes all negations to the leaves of propositions in the goal, using the lemmas in [db] to assist in checking the decidability of the propositions involved. If [using db] is omitted, then [core] will be used. Additional versions are provided to manipulate the hypotheses or the hypotheses and goal together. XXX: This tactic and the similar subsequent ones should have been defined using [autorewrite]. However, dealing with multiples rewrite sites and side-conditions is done more cleverly with the following explicit analysis of goals. *) Ltac or_not_l_iff P Q tac := (rewrite (or_not_l_iff_1 P Q) by tac) || (rewrite (or_not_l_iff_2 P Q) by tac). Ltac or_not_r_iff P Q tac := (rewrite (or_not_r_iff_1 P Q) by tac) || (rewrite (or_not_r_iff_2 P Q) by tac). Ltac or_not_l_iff_in P Q H tac := (rewrite (or_not_l_iff_1 P Q) in H by tac) || (rewrite (or_not_l_iff_2 P Q) in H by tac). Ltac or_not_r_iff_in P Q H tac := (rewrite (or_not_r_iff_1 P Q) in H by tac) || (rewrite (or_not_r_iff_2 P Q) in H by tac). Tactic Notation "push" "not" "using" ident(db) := let dec := solve_decidable using db in unfold not, iff; repeat ( match goal with | |- context [True -> False] => rewrite not_true_iff | |- context [False -> False] => rewrite not_false_iff | |- context [(?P -> False) -> False] => rewrite (not_not_iff P) by dec | |- context [(?P -> False) -> (?Q -> False)] => rewrite (contrapositive P Q) by dec | |- context [(?P -> False) \/ ?Q] => or_not_l_iff P Q dec | |- context [?P \/ (?Q -> False)] => or_not_r_iff P Q dec | |- context [(?P -> False) -> ?Q] => rewrite (imp_not_l P Q) by dec | |- context [?P \/ ?Q -> False] => rewrite (not_or_iff P Q) | |- context [?P /\ ?Q -> False] => rewrite (not_and_iff P Q) | |- context [(?P -> ?Q) -> False] => rewrite (not_imp_iff P Q) by dec end); fold any not. Tactic Notation "push" "not" := push not using core. Tactic Notation "push" "not" "in" "*" "|-" "using" ident(db) := let dec := solve_decidable using db in unfold not, iff in * |-; repeat ( match goal with | H: context [True -> False] |- _ => rewrite not_true_iff in H | H: context [False -> False] |- _ => rewrite not_false_iff in H | H: context [(?P -> False) -> False] |- _ => rewrite (not_not_iff P) in H by dec | H: context [(?P -> False) -> (?Q -> False)] |- _ => rewrite (contrapositive P Q) in H by dec | H: context [(?P -> False) \/ ?Q] |- _ => or_not_l_iff_in P Q H dec | H: context [?P \/ (?Q -> False)] |- _ => or_not_r_iff_in P Q H dec | H: context [(?P -> False) -> ?Q] |- _ => rewrite (imp_not_l P Q) in H by dec | H: context [?P \/ ?Q -> False] |- _ => rewrite (not_or_iff P Q) in H | H: context [?P /\ ?Q -> False] |- _ => rewrite (not_and_iff P Q) in H | H: context [(?P -> ?Q) -> False] |- _ => rewrite (not_imp_iff P Q) in H by dec end); fold any not. Tactic Notation "push" "not" "in" "*" "|-" := push not in * |- using core. Tactic Notation "push" "not" "in" "*" "using" ident(db) := push not using db; push not in * |- using db. Tactic Notation "push" "not" "in" "*" := push not in * using core. (** A simple test case to see how this works. *) Lemma test_push : forall P Q R : Prop, decidable P -> decidable Q -> (~ True) -> (~ False) -> (~ ~ P) -> (~ (P /\ Q) -> ~ R) -> ((P /\ Q) \/ ~ R) -> (~ (P /\ Q) \/ R) -> (R \/ ~ (P /\ Q)) -> (~ R \/ (P /\ Q)) -> (~ P -> R) -> (~ ((R -> P) \/ (Q -> R))) -> (~ (P /\ R)) -> (~ (P -> R)) -> True. Proof. intros. push not in *. (* note that ~(R->P) remains (since R isnt decidable) *) tauto. Qed. (** [pull not using db] will pull as many negations as possible toward the top of the propositions in the goal, using the lemmas in [db] to assist in checking the decidability of the propositions involved. If [using db] is omitted, then [core] will be used. Additional versions are provided to manipulate the hypotheses or the hypotheses and goal together. *) Tactic Notation "pull" "not" "using" ident(db) := let dec := solve_decidable using db in unfold not, iff; repeat ( match goal with | |- context [True -> False] => rewrite not_true_iff | |- context [False -> False] => rewrite not_false_iff | |- context [(?P -> False) -> False] => rewrite (not_not_iff P) by dec | |- context [(?P -> False) -> (?Q -> False)] => rewrite (contrapositive P Q) by dec | |- context [(?P -> False) \/ ?Q] => or_not_l_iff P Q dec | |- context [?P \/ (?Q -> False)] => or_not_r_iff P Q dec | |- context [(?P -> False) -> ?Q] => rewrite (imp_not_l P Q) by dec | |- context [(?P -> False) /\ (?Q -> False)] => rewrite <- (not_or_iff P Q) | |- context [?P -> ?Q -> False] => rewrite <- (not_and_iff P Q) | |- context [?P /\ (?Q -> False)] => rewrite <- (not_imp_iff P Q) by dec | |- context [(?Q -> False) /\ ?P] => rewrite <- (not_imp_rev_iff P Q) by dec end); fold any not. Tactic Notation "pull" "not" := pull not using core. Tactic Notation "pull" "not" "in" "*" "|-" "using" ident(db) := let dec := solve_decidable using db in unfold not, iff in * |-; repeat ( match goal with | H: context [True -> False] |- _ => rewrite not_true_iff in H | H: context [False -> False] |- _ => rewrite not_false_iff in H | H: context [(?P -> False) -> False] |- _ => rewrite (not_not_iff P) in H by dec | H: context [(?P -> False) -> (?Q -> False)] |- _ => rewrite (contrapositive P Q) in H by dec | H: context [(?P -> False) \/ ?Q] |- _ => or_not_l_iff_in P Q H dec | H: context [?P \/ (?Q -> False)] |- _ => or_not_r_iff_in P Q H dec | H: context [(?P -> False) -> ?Q] |- _ => rewrite (imp_not_l P Q) in H by dec | H: context [(?P -> False) /\ (?Q -> False)] |- _ => rewrite <- (not_or_iff P Q) in H | H: context [?P -> ?Q -> False] |- _ => rewrite <- (not_and_iff P Q) in H | H: context [?P /\ (?Q -> False)] |- _ => rewrite <- (not_imp_iff P Q) in H by dec | H: context [(?Q -> False) /\ ?P] |- _ => rewrite <- (not_imp_rev_iff P Q) in H by dec end); fold any not. Tactic Notation "pull" "not" "in" "*" "|-" := pull not in * |- using core. Tactic Notation "pull" "not" "in" "*" "using" ident(db) := pull not using db; pull not in * |- using db. Tactic Notation "pull" "not" "in" "*" := pull not in * using core. (** A simple test case to see how this works. *) Lemma test_pull : forall P Q R : Prop, decidable P -> decidable Q -> (~ True) -> (~ False) -> (~ ~ P) -> (~ (P /\ Q) -> ~ R) -> ((P /\ Q) \/ ~ R) -> (~ (P /\ Q) \/ R) -> (R \/ ~ (P /\ Q)) -> (~ R \/ (P /\ Q)) -> (~ P -> R) -> (~ (R -> P) /\ ~ (Q -> R)) -> (~ P \/ ~ R) -> (P /\ ~ R) -> (~ R /\ P) -> True. Proof. intros. pull not in *. tauto. Qed. End FSetLogicalFacts. Import FSetLogicalFacts. (** * Auxiliary Tactics Again, these lemmas and tactics are in a module so that they do not affect the namespace if you import the enclosing module [Decide]. *) Module FSetDecideAuxiliary. (** ** Generic Tactics We begin by defining a few generic, useful tactics. *) (** remove logical hypothesis inter-dependencies (fix #2136). *) Ltac no_logical_interdep := match goal with | H : ?P |- _ => match type of P with | Prop => match goal with H' : context [ H ] |- _ => clear dependent H' end | _ => fail end; no_logical_interdep | _ => idtac end. (** [if t then t1 else t2] executes [t] and, if it does not fail, then [t1] will be applied to all subgoals produced. If [t] fails, then [t2] is executed. *) Tactic Notation "if" tactic(t) "then" tactic(t1) "else" tactic(t2) := first [ t; first [ t1 | fail 2 ] | t2 ]. Ltac abstract_term t := if (is_var t) then fail "no need to abstract a variable" else (let x := fresh "x" in set (x := t) in *; try clearbody x). Ltac abstract_elements := repeat (match goal with | |- context [ singleton ?t ] => abstract_term t | _ : context [ singleton ?t ] |- _ => abstract_term t | |- context [ add ?t _ ] => abstract_term t | _ : context [ add ?t _ ] |- _ => abstract_term t | |- context [ remove ?t _ ] => abstract_term t | _ : context [ remove ?t _ ] |- _ => abstract_term t | |- context [ In ?t _ ] => abstract_term t | _ : context [ In ?t _ ] |- _ => abstract_term t end). (** [prop P holds by t] succeeds (but does not modify the goal or context) if the proposition [P] can be proved by [t] in the current context. Otherwise, the tactic fails. *) Tactic Notation "prop" constr(P) "holds" "by" tactic(t) := let H := fresh in assert P as H by t; clear H. (** This tactic acts just like [assert ... by ...] but will fail if the context already contains the proposition. *) Tactic Notation "assert" "new" constr(e) "by" tactic(t) := match goal with | H: e |- _ => fail 1 | _ => assert e by t end. (** [subst++] is similar to [subst] except that - it never fails (as [subst] does on recursive equations), - it substitutes locally defined variable for their definitions, - it performs beta reductions everywhere, which may arise after substituting a locally defined function for its definition. *) Tactic Notation "subst" "++" := repeat ( match goal with | x : _ |- _ => subst x end); cbv zeta beta in *. (** [decompose records] calls [decompose record H] on every relevant hypothesis [H]. *) Tactic Notation "decompose" "records" := repeat ( match goal with | H: _ |- _ => progress (decompose record H); clear H end). (** ** Discarding Irrelevant Hypotheses We will want to clear the context of any non-FSet-related hypotheses in order to increase the speed of the tactic. To do this, we will need to be able to decide which are relevant. We do this by making a simple inductive definition classifying the propositions of interest. *) Inductive FSet_elt_Prop : Prop -> Prop := | eq_Prop : forall (S : Type) (x y : S), FSet_elt_Prop (x = y) | eq_elt_prop : forall x y, FSet_elt_Prop (E.eq x y) | In_elt_prop : forall x s, FSet_elt_Prop (In x s) | True_elt_prop : FSet_elt_Prop True | False_elt_prop : FSet_elt_Prop False | conj_elt_prop : forall P Q, FSet_elt_Prop P -> FSet_elt_Prop Q -> FSet_elt_Prop (P /\ Q) | disj_elt_prop : forall P Q, FSet_elt_Prop P -> FSet_elt_Prop Q -> FSet_elt_Prop (P \/ Q) | impl_elt_prop : forall P Q, FSet_elt_Prop P -> FSet_elt_Prop Q -> FSet_elt_Prop (P -> Q) | not_elt_prop : forall P, FSet_elt_Prop P -> FSet_elt_Prop (~ P). Inductive FSet_Prop : Prop -> Prop := | elt_FSet_Prop : forall P, FSet_elt_Prop P -> FSet_Prop P | Empty_FSet_Prop : forall s, FSet_Prop (Empty s) | Subset_FSet_Prop : forall s1 s2, FSet_Prop (Subset s1 s2) | Equal_FSet_Prop : forall s1 s2, FSet_Prop (Equal s1 s2). (** Here is the tactic that will throw away hypotheses that are not useful (for the intended scope of the [fsetdec] tactic). *) Hint Constructors FSet_elt_Prop FSet_Prop : FSet_Prop. Ltac discard_nonFSet := repeat ( match goal with | H : context [ @Logic.eq ?T ?x ?y ] |- _ => if (change T with E.t in H) then fail else if (change T with t in H) then fail else clear H | H : ?P |- _ => if prop (FSet_Prop P) holds by (auto 100 with FSet_Prop) then fail else clear H end). (** ** Turning Set Operators into Propositional Connectives The lemmas from [FSetFacts] will be used to break down set operations into propositional formulas built over the predicates [In] and [E.eq] applied only to variables. We are going to use them with [autorewrite]. *) Hint Rewrite F.empty_iff F.singleton_iff F.add_iff F.remove_iff F.union_iff F.inter_iff F.diff_iff : set_simpl. Lemma eq_refl_iff (x : E.t) : E.eq x x <-> True. Proof. now split. Qed. Hint Rewrite eq_refl_iff : set_eq_simpl. (** ** Decidability of FSet Propositions *) (** [In] is decidable. *) Lemma dec_In : forall x s, decidable (In x s). Proof. red; intros; generalize (F.mem_iff s x); case (mem x s); intuition. Qed. (** [E.eq] is decidable. *) Lemma dec_eq : forall (x y : E.t), decidable (E.eq x y). Proof. red; intros x y; destruct (E.eq_dec x y); auto. Qed. (** The hint database [FSet_decidability] will be given to the [push_neg] tactic from the module [Negation]. *) Hint Resolve dec_In dec_eq : FSet_decidability. (** ** Normalizing Propositions About Equality We have to deal with the fact that [E.eq] may be convertible with Coq's equality. Thus, we will find the following tactics useful to replace one form with the other everywhere. *) (** The next tactic, [Logic_eq_to_E_eq], mentions the term [E.t]; thus, we must ensure that [E.t] is used in favor of any other convertible but syntactically distinct term. *) Ltac change_to_E_t := repeat ( match goal with | H : ?T |- _ => progress (change T with E.t in H); repeat ( match goal with | J : _ |- _ => progress (change T with E.t in J) | |- _ => progress (change T with E.t) end ) | H : forall x : ?T, _ |- _ => progress (change T with E.t in H); repeat ( match goal with | J : _ |- _ => progress (change T with E.t in J) | |- _ => progress (change T with E.t) end ) end). (** These two tactics take us from Coq's built-in equality to [E.eq] (and vice versa) when possible. *) Ltac Logic_eq_to_E_eq := repeat ( match goal with | H: _ |- _ => progress (change (@Logic.eq E.t) with E.eq in H) | |- _ => progress (change (@Logic.eq E.t) with E.eq) end). Ltac E_eq_to_Logic_eq := repeat ( match goal with | H: _ |- _ => progress (change E.eq with (@Logic.eq E.t) in H) | |- _ => progress (change E.eq with (@Logic.eq E.t)) end). (** This tactic works like the built-in tactic [subst], but at the level of set element equality (which may not be the convertible with Coq's equality). *) Ltac substFSet := repeat ( match goal with | H: E.eq ?x ?x |- _ => clear H | H: E.eq ?x ?y |- _ => rewrite H in *; clear H end); autorewrite with set_eq_simpl in *. (** ** Considering Decidability of Base Propositions This tactic adds assertions about the decidability of [E.eq] and [In] to the context. This is necessary for the completeness of the [fsetdec] tactic. However, in order to minimize the cost of proof search, we should be careful to not add more than we need. Once negations have been pushed to the leaves of the propositions, we only need to worry about decidability for those base propositions that appear in a negated form. *) Ltac assert_decidability := (** We actually don't want these rules to fire if the syntactic context in the patterns below is trivially empty, but we'll just do some clean-up at the afterward. *) repeat ( match goal with | H: context [~ E.eq ?x ?y] |- _ => assert new (E.eq x y \/ ~ E.eq x y) by (apply dec_eq) | H: context [~ In ?x ?s] |- _ => assert new (In x s \/ ~ In x s) by (apply dec_In) | |- context [~ E.eq ?x ?y] => assert new (E.eq x y \/ ~ E.eq x y) by (apply dec_eq) | |- context [~ In ?x ?s] => assert new (In x s \/ ~ In x s) by (apply dec_In) end); (** Now we eliminate the useless facts we added (because they would likely be very harmful to performance). *) repeat ( match goal with | _: ~ ?P, H : ?P \/ ~ ?P |- _ => clear H end). (** ** Handling [Empty], [Subset], and [Equal] This tactic instantiates universally quantified hypotheses (which arise from the unfolding of [Empty], [Subset], and [Equal]) for each of the set element expressions that is involved in some membership or equality fact. Then it throws away those hypotheses, which should no longer be needed. *) Ltac inst_FSet_hypotheses := repeat ( match goal with | H : forall a : E.t, _, _ : context [ In ?x _ ] |- _ => let P := type of (H x) in assert new P by (exact (H x)) | H : forall a : E.t, _ |- context [ In ?x _ ] => let P := type of (H x) in assert new P by (exact (H x)) | H : forall a : E.t, _, _ : context [ E.eq ?x _ ] |- _ => let P := type of (H x) in assert new P by (exact (H x)) | H : forall a : E.t, _ |- context [ E.eq ?x _ ] => let P := type of (H x) in assert new P by (exact (H x)) | H : forall a : E.t, _, _ : context [ E.eq _ ?x ] |- _ => let P := type of (H x) in assert new P by (exact (H x)) | H : forall a : E.t, _ |- context [ E.eq _ ?x ] => let P := type of (H x) in assert new P by (exact (H x)) end); repeat ( match goal with | H : forall a : E.t, _ |- _ => clear H end). (** ** The Core [fsetdec] Auxiliary Tactics *) (** Here is the crux of the proof search. Recursion through [intuition]! (This will terminate if I correctly understand the behavior of [intuition].) *) Ltac fsetdec_rec := progress substFSet; intuition fsetdec_rec. (** If we add [unfold Empty, Subset, Equal in *; intros;] to the beginning of this tactic, it will satisfy the same specification as the [fsetdec] tactic; however, it will be much slower than necessary without the pre-processing done by the wrapper tactic [fsetdec]. *) Ltac fsetdec_body := autorewrite with set_eq_simpl in *; inst_FSet_hypotheses; autorewrite with set_simpl set_eq_simpl in *; push not in * using FSet_decidability; substFSet; assert_decidability; auto; (intuition fsetdec_rec) || fail 1 "because the goal is beyond the scope of this tactic". End FSetDecideAuxiliary. Import FSetDecideAuxiliary. (** * The [fsetdec] Tactic Here is the top-level tactic (the only one intended for clients of this library). It's specification is given at the top of the file. *) Ltac fsetdec := (** We first unfold any occurrences of [iff]. *) unfold iff in *; (** We fold occurrences of [not] because it is better for [intros] to leave us with a goal of [~ P] than a goal of [False]. *) fold any not; intros; (** We don't care about the value of elements : complex ones are abstracted as new variables (avoiding potential dependencies, see bug #2464) *) abstract_elements; (** We remove dependencies to logical hypothesis. This way, later "clear" will work nicely (see bug #2136) *) no_logical_interdep; (** Now we decompose conjunctions, which will allow the [discard_nonFSet] and [assert_decidability] tactics to do a much better job. *) decompose records; discard_nonFSet; (** We unfold these defined propositions on finite sets. If our goal was one of them, then have one more item to introduce now. *) unfold Empty, Subset, Equal in *; intros; (** We now want to get rid of all uses of [=] in favor of [E.eq]. However, the best way to eliminate a [=] is in the context is with [subst], so we will try that first. In fact, we may as well convert uses of [E.eq] into [=] when possible before we do [subst] so that we can even more mileage out of it. Then we will convert all remaining uses of [=] back to [E.eq] when possible. We use [change_to_E_t] to ensure that we have a canonical name for set elements, so that [Logic_eq_to_E_eq] will work properly. *) change_to_E_t; E_eq_to_Logic_eq; subst++; Logic_eq_to_E_eq; (** The next optimization is to swap a negated goal with a negated hypothesis when possible. Any swap will improve performance by eliminating the total number of negations, but we will get the maximum benefit if we swap the goal with a hypotheses mentioning the same set element, so we try that first. If we reach the fourth branch below, we attempt any swap. However, to maintain completeness of this tactic, we can only perform such a swap with a decidable proposition; hence, we first test whether the hypothesis is an [FSet_elt_Prop], noting that any [FSet_elt_Prop] is decidable. *) pull not using FSet_decidability; unfold not in *; match goal with | H: (In ?x ?r) -> False |- (In ?x ?s) -> False => contradict H; fsetdec_body | H: (In ?x ?r) -> False |- (E.eq ?x ?y) -> False => contradict H; fsetdec_body | H: (In ?x ?r) -> False |- (E.eq ?y ?x) -> False => contradict H; fsetdec_body | H: ?P -> False |- ?Q -> False => if prop (FSet_elt_Prop P) holds by (auto 100 with FSet_Prop) then (contradict H; fsetdec_body) else fsetdec_body | |- _ => fsetdec_body end. (** * Examples *) Module FSetDecideTestCases. Lemma test_eq_trans_1 : forall x y z s, E.eq x y -> ~ ~ E.eq z y -> In x s -> In z s. Proof. fsetdec. Qed. Lemma test_eq_trans_2 : forall x y z r s, In x (singleton y) -> ~ In z r -> ~ ~ In z (add y r) -> In x s -> In z s. Proof. fsetdec. Qed. Lemma test_eq_neq_trans_1 : forall w x y z s, E.eq x w -> ~ ~ E.eq x y -> ~ E.eq y z -> In w s -> In w (remove z s). Proof. fsetdec. Qed. Lemma test_eq_neq_trans_2 : forall w x y z r1 r2 s, In x (singleton w) -> ~ In x r1 -> In x (add y r1) -> In y r2 -> In y (remove z r2) -> In w s -> In w (remove z s). Proof. fsetdec. Qed. Lemma test_In_singleton : forall x, In x (singleton x). Proof. fsetdec. Qed. Lemma test_add_In : forall x y s, In x (add y s) -> ~ E.eq x y -> In x s. Proof. fsetdec. Qed. Lemma test_Subset_add_remove : forall x s, s [<=] (add x (remove x s)). Proof. fsetdec. Qed. Lemma test_eq_disjunction : forall w x y z, In w (add x (add y (singleton z))) -> E.eq w x \/ E.eq w y \/ E.eq w z. Proof. fsetdec. Qed. Lemma test_not_In_disj : forall x y s1 s2 s3 s4, ~ In x (union s1 (union s2 (union s3 (add y s4)))) -> ~ (In x s1 \/ In x s4 \/ E.eq y x). Proof. fsetdec. Qed. Lemma test_not_In_conj : forall x y s1 s2 s3 s4, ~ In x (union s1 (union s2 (union s3 (add y s4)))) -> ~ In x s1 /\ ~ In x s4 /\ ~ E.eq y x. Proof. fsetdec. Qed. Lemma test_iff_conj : forall a x s s', (In a s' <-> E.eq x a \/ In a s) -> (In a s' <-> In a (add x s)). Proof. fsetdec. Qed. Lemma test_set_ops_1 : forall x q r s, (singleton x) [<=] s -> Empty (union q r) -> Empty (inter (diff s q) (diff s r)) -> ~ In x s. Proof. fsetdec. Qed. Lemma eq_chain_test : forall x1 x2 x3 x4 s1 s2 s3 s4, Empty s1 -> In x2 (add x1 s1) -> In x3 s2 -> ~ In x3 (remove x2 s2) -> ~ In x4 s3 -> In x4 (add x3 s3) -> In x1 s4 -> Subset (add x4 s4) s4. Proof. fsetdec. Qed. Lemma test_too_complex : forall x y z r s, E.eq x y -> (In x (singleton y) -> r [<=] s) -> In z r -> In z s. Proof. (** [fsetdec] is not intended to solve this directly. *) intros until s; intros Heq H Hr; lapply H; fsetdec. Qed. Lemma function_test_1 : forall (f : t -> t), forall (g : elt -> elt), forall (s1 s2 : t), forall (x1 x2 : elt), Equal s1 (f s2) -> E.eq x1 (g (g x2)) -> In x1 s1 -> In (g (g x2)) (f s2). Proof. fsetdec. Qed. Lemma function_test_2 : forall (f : t -> t), forall (g : elt -> elt), forall (s1 s2 : t), forall (x1 x2 : elt), Equal s1 (f s2) -> E.eq x1 (g x2) -> In x1 s1 -> g x2 = g (g x2) -> In (g (g x2)) (f s2). Proof. (** [fsetdec] is not intended to solve this directly. *) intros until 3. intros g_eq. rewrite <- g_eq. fsetdec. Qed. Lemma test_baydemir : forall (f : t -> t), forall (s : t), forall (x y : elt), In x (add y (f s)) -> ~ E.eq x y -> In x (f s). Proof. fsetdec. Qed. End FSetDecideTestCases. End WDecide_fun. Require Import FSetInterface. (** Now comes variants for self-contained weak sets and for full sets. For these variants, only one argument is necessary. Thanks to the subtyping [WS<=S], the [Decide] functor which is meant to be used on modules [(M:S)] can simply be an alias of [WDecide]. *) Module WDecide (M:WS) := !WDecide_fun M.E M. Module Decide := WDecide.
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2010 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc=1; counter_io c1_data(); counter_io c2_data(); //counter_io c3_data; // IEEE illegal, and VCS doesn't allow non-() as it does with cells counter_io c3_data(); counter_ansi c1 (.clkm(clk), .c_data(c1_data), .i_value(4'h1)); counter_ansi c2 (.clkm(clk), .c_data(c2_data), .i_value(4'h2)); `ifdef VERILATOR counter_ansi `else counter_nansi `endif /**/ c3 (.clkm(clk), .c_data(c3_data), .i_value(4'h3)); initial begin c1_data.value = 4'h4; c2_data.value = 4'h5; c3_data.value = 4'h6; end always @ (posedge clk) begin cyc <= cyc + 1; if (cyc<2) begin c1_data.reset <= 1; c2_data.reset <= 1; c3_data.reset <= 1; end if (cyc==2) begin c1_data.reset <= 0; c2_data.reset <= 0; c3_data.reset <= 0; end if (cyc==3) begin if (c1_data.get_lcl() != 12345) $stop; end if (cyc==20) begin $write("[%0t] c1 cyc%0d: c1 %0x %0x c2 %0x %0x c3 %0x %0x\n", $time, cyc, c1_data.value, c1_data.reset, c2_data.value, c2_data.reset, c3_data.value, c3_data.reset); if (c1_data.value != 2) $stop; if (c2_data.value != 3) $stop; if (c3_data.value != 4) $stop; $write("*-* All Finished *-*\n"); $finish; end end endmodule interface counter_io; logic [3:0] value; logic reset; integer lcl; task set_lcl (input integer a); lcl=a; endtask function integer get_lcl (); return lcl; endfunction endinterface interface ifunused; logic unused; endinterface module counter_ansi ( input clkm, counter_io c_data, input logic [3:0] i_value ); initial begin c_data.set_lcl(12345); end always @ (posedge clkm) begin c_data.value <= c_data.reset ? i_value : c_data.value + 1; end endmodule : counter_ansi `ifndef VERILATOR // non-ansi modports not seen in the wild yet. Verilog-Perl needs parser improvement too. module counter_nansi(clkm, c_data, i_value); input clkm; counter_io c_data; input logic [3:0] i_value; always @ (posedge clkm) begin c_data.value <= c_data.reset ? i_value : c_data.value + 1; end endmodule : counter_nansi `endif module modunused (ifunused ifinunused); ifunused ifunused(); endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2013 by Wilson Snyder. interface ifc; integer value; endinterface module t (/*AUTOARG*/ // Inputs clk ); `ifdef INLINE_A //verilator inline_module `else //verilator no_inline_module `endif input clk; integer cyc=1; ifc itop1a(); ifc itop1b(); ifc itop2a(); ifc itop2b(); wrapper c1 (.isuba(itop1a), .isubb(itop1b), .i_valuea(14), .i_valueb(15)); wrapper c2 (.isuba(itop2a), .isubb(itop2b), .i_valuea(24), .i_valueb(25)); always @ (posedge clk) begin cyc <= cyc + 1; if (cyc==20) begin if (itop1a.value != 14) $stop; if (itop1b.value != 15) $stop; if (itop2a.value != 24) $stop; if (itop2b.value != 25) $stop; $write("*-* All Finished *-*\n"); $finish; end end endmodule module wrapper ( ifc isuba, ifc isubb, input integer i_valuea, input integer i_valueb ); `ifdef INLINE_B //verilator inline_module `else //verilator no_inline_module `endif lower subsuba (.isub(isuba), .i_value(i_valuea)); lower subsubb (.isub(isubb), .i_value(i_valueb)); endmodule module lower ( ifc isub, input integer i_value ); `ifdef INLINE_C //verilator inline_module `else //verilator no_inline_module `endif always @* begin isub.value = i_value; end endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2013 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc=0; reg [63:0] crc; reg [63:0] sum; // Take CRC data and apply to testblock inputs wire [3:0] datai = crc[3:0]; /*AUTOWIRE*/ // Beginning of automatic wires (for undeclared instantiated-module outputs) logic [3:0] datao; // From test of Test.v // End of automatics Test test (/*AUTOINST*/ // Outputs .datao (datao[3:0]), // Inputs .clk (clk), .datai (datai[3:0])); // Aggregate outputs into a single result vector wire [63:0] result = {60'h0, datao}; // Test loop always @ (posedge clk) begin `ifdef TEST_VERBOSE $write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result); `endif cyc <= cyc + 1; crc <= {crc[62:0], crc[63]^crc[2]^crc[0]}; sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]}; if (cyc==0) begin // Setup crc <= 64'h5aef0c8d_d70a4497; sum <= 64'h0; end else if (cyc<10) begin sum <= 64'h0; end else if (cyc<90) begin end else if (cyc==99) begin $write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum); if (crc !== 64'hc77bb9b3784ea091) $stop; // What checksum will we end up with (above print should match) `define EXPECTED_SUM 64'h3db7bc8bfe61f983 if (sum !== `EXPECTED_SUM) $stop; $write("*-* All Finished *-*\n"); $finish; end end endmodule module Test ( input logic clk, input logic [3:0] datai, output logic [3:0] datao ); genvar i; parameter SIZE = 4; logic [SIZE:1][3:0] delay; always_ff @(posedge clk) begin delay[1][3:0] <= datai; end generate for (i = 2; i < (SIZE+1); i++) begin always_ff @(posedge clk) begin delay[i][3:0] <= delay[i-1][3:0]; end end endgenerate always_comb datao = delay[SIZE][3:0]; endmodule
/*+-------------------------------------------------------------------------- Copyright (c) 2015, Microsoft Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------------*/ `timescale 1ns / 1ps module RCB_FRL_data_check(CLK,RST,RDEN_DATA,RDEN_MSG,DATA,MSG,ERR0,ERR1,ERR2,ERR3,ERR_MSG); input CLK,RST,RDEN_DATA,RDEN_MSG; input [31:0] DATA; input [39:0] MSG; output reg [3:0] ERR0,ERR1,ERR2,ERR3,ERR_MSG; reg [31:0] DATA_TEMP; reg [7:0] MSG_TEMP; always @ (posedge CLK) begin if(RST) begin ERR0 <= 0; ERR1 <= 0; ERR2 <= 0; ERR3 <= 0; ERR_MSG <= 0; DATA_TEMP <= 0; MSG_TEMP <= 0; end else if(RDEN_DATA) begin DATA_TEMP <= DATA; MSG_TEMP <= MSG; if(DATA_TEMP[7:0] + 1 != DATA[7:0] && DATA[7:0] != 0) ERR0 <= ERR0 + 1; if(DATA_TEMP[15:8] + 1 != DATA[15:8] && DATA[15:8] != 0) ERR1 <= ERR1 + 1; if(DATA_TEMP[23:16] + 1 != DATA[23:16] && DATA[23:16] != 0) ERR2 <= ERR2 + 1; if(DATA_TEMP[31:24] + 1 != DATA[31:24] && DATA[31:24] != 0) ERR3 <= ERR3 + 1; if(MSG[39:32] + 1 != MSG[31:24] || MSG[31:24] + 1 != MSG[23:16] || MSG[23:16] + 1 != MSG[15:8] || MSG[15:8] + 1 != MSG[7:0]) ERR_MSG <= ERR_MSG + 1; end end endmodule
`timescale 1ns / 1ps ////////////////////////////////////////////////////////////////////////////////// // Company: // Engineer: // // Create Date: 04/14/2016 06:25:09 AM // Design Name: // Module Name: Exp_operation_m // Project Name: // Target Devices: // Tool Versions: // Description: // // Dependencies: // // Revision: // Revision 0.01 - File Created // Additional Comments: // ////////////////////////////////////////////////////////////////////////////////// module Exp_Operation_m #(parameter EW = 8) //Exponent Width ( input wire clk, //system clock input wire rst, //reset of the module input wire load_a_i,//underflow input wire load_b_i,//overflow input wire load_c_i,//result input wire [EW:0] Data_A_i, input wire [EW:0] Data_B_i, input wire Add_Subt_i, ///////////////////////////////////////////////////////////////////77 output wire [EW:0] Data_Result_o, output wire Overflow_flag_o, output wire Underflow_flag_o ); /////////////////////////////////////////////// wire [EW:0] Data_S; wire Overflow_A; wire Overflow_flag_A; wire underflow_exp_reg; wire [EW:0] U_Limit; /////////////////////////////Exponent calculation/// add_sub_carry_out #(.W(EW+1)) exp_add_subt_m( .op_mode (Add_Subt_i), .Data_A (Data_A_i), .Data_B (Data_B_i), .Data_S ({Overflow_A,Data_S}) ); RegisterMult #(.W(EW+1)) exp_result_m( .clk (clk), .rst (rst), .load (load_c_i), .D (Data_S), .Q (Data_Result_o) ); //Overflow///////////////////////////////// RegisterMult#(.W(1)) Oflow_A_m ( .clk(clk), .rst(rst), .load(load_b_i), .D(Overflow_A), .Q(Overflow_flag_A) ); assign Overflow_flag_o = Overflow_flag_A | Data_Result_o[EW]; //Underflow////////////////////////////// Comparator_Less #(.W(EW+1)) Exp_unflow_Comparator_m ( .Data_A(Data_S), .Data_B(U_Limit), .less(underflow_exp_reg) ); RegisterMult #(.W(1)) Underflow_m ( .clk(clk), .rst(rst), .load(load_a_i), .D(underflow_exp_reg), .Q(Underflow_flag_o) ); generate if (EW == 8) assign U_Limit = 9'd127; else assign U_Limit = 12'd1023; endgenerate endmodule
`timescale 1ns / 1ps ////////////////////////////////////////////////////////////////////////////////// // Company: // Engineer: // // Create Date: 04/14/2016 06:25:09 AM // Design Name: // Module Name: Exp_operation_m // Project Name: // Target Devices: // Tool Versions: // Description: // // Dependencies: // // Revision: // Revision 0.01 - File Created // Additional Comments: // ////////////////////////////////////////////////////////////////////////////////// module Exp_Operation_m #(parameter EW = 8) //Exponent Width ( input wire clk, //system clock input wire rst, //reset of the module input wire load_a_i,//underflow input wire load_b_i,//overflow input wire load_c_i,//result input wire [EW:0] Data_A_i, input wire [EW:0] Data_B_i, input wire Add_Subt_i, ///////////////////////////////////////////////////////////////////77 output wire [EW:0] Data_Result_o, output wire Overflow_flag_o, output wire Underflow_flag_o ); /////////////////////////////////////////////// wire [EW:0] Data_S; wire Overflow_A; wire Overflow_flag_A; wire underflow_exp_reg; wire [EW:0] U_Limit; /////////////////////////////Exponent calculation/// add_sub_carry_out #(.W(EW+1)) exp_add_subt_m( .op_mode (Add_Subt_i), .Data_A (Data_A_i), .Data_B (Data_B_i), .Data_S ({Overflow_A,Data_S}) ); RegisterMult #(.W(EW+1)) exp_result_m( .clk (clk), .rst (rst), .load (load_c_i), .D (Data_S), .Q (Data_Result_o) ); //Overflow///////////////////////////////// RegisterMult#(.W(1)) Oflow_A_m ( .clk(clk), .rst(rst), .load(load_b_i), .D(Overflow_A), .Q(Overflow_flag_A) ); assign Overflow_flag_o = Overflow_flag_A | Data_Result_o[EW]; //Underflow////////////////////////////// Comparator_Less #(.W(EW+1)) Exp_unflow_Comparator_m ( .Data_A(Data_S), .Data_B(U_Limit), .less(underflow_exp_reg) ); RegisterMult #(.W(1)) Underflow_m ( .clk(clk), .rst(rst), .load(load_a_i), .D(underflow_exp_reg), .Q(Underflow_flag_o) ); generate if (EW == 8) assign U_Limit = 9'd127; else assign U_Limit = 12'd1023; endgenerate endmodule
`timescale 1ns / 1ps ////////////////////////////////////////////////////////////////////////////////// // Company: // Engineer: // // Create Date: 04/14/2016 06:25:09 AM // Design Name: // Module Name: Exp_operation_m // Project Name: // Target Devices: // Tool Versions: // Description: // // Dependencies: // // Revision: // Revision 0.01 - File Created // Additional Comments: // ////////////////////////////////////////////////////////////////////////////////// module Exp_Operation_m #(parameter EW = 8) //Exponent Width ( input wire clk, //system clock input wire rst, //reset of the module input wire load_a_i,//underflow input wire load_b_i,//overflow input wire load_c_i,//result input wire [EW:0] Data_A_i, input wire [EW:0] Data_B_i, input wire Add_Subt_i, ///////////////////////////////////////////////////////////////////77 output wire [EW:0] Data_Result_o, output wire Overflow_flag_o, output wire Underflow_flag_o ); /////////////////////////////////////////////// wire [EW:0] Data_S; wire Overflow_A; wire Overflow_flag_A; wire underflow_exp_reg; wire [EW:0] U_Limit; /////////////////////////////Exponent calculation/// add_sub_carry_out #(.W(EW+1)) exp_add_subt_m( .op_mode (Add_Subt_i), .Data_A (Data_A_i), .Data_B (Data_B_i), .Data_S ({Overflow_A,Data_S}) ); RegisterMult #(.W(EW+1)) exp_result_m( .clk (clk), .rst (rst), .load (load_c_i), .D (Data_S), .Q (Data_Result_o) ); //Overflow///////////////////////////////// RegisterMult#(.W(1)) Oflow_A_m ( .clk(clk), .rst(rst), .load(load_b_i), .D(Overflow_A), .Q(Overflow_flag_A) ); assign Overflow_flag_o = Overflow_flag_A | Data_Result_o[EW]; //Underflow////////////////////////////// Comparator_Less #(.W(EW+1)) Exp_unflow_Comparator_m ( .Data_A(Data_S), .Data_B(U_Limit), .less(underflow_exp_reg) ); RegisterMult #(.W(1)) Underflow_m ( .clk(clk), .rst(rst), .load(load_a_i), .D(underflow_exp_reg), .Q(Underflow_flag_o) ); generate if (EW == 8) assign U_Limit = 9'd127; else assign U_Limit = 12'd1023; endgenerate endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2003 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc; initial cyc=1; supply0 [1:0] low; supply1 [1:0] high; reg [7:0] isizedwire; reg ionewire; `ifdef never_just_for_verilog_mode wire oonewire; // From sub of t_inst_v2k__sub.v `endif wire [7:0] osizedreg; // From sub of t_inst_v2k__sub.v wire [1:0] tied; wire [3:0] tied_also; hello hsub (.tied_also); // Double underscore tests bug631 t_inst_v2k__sub sub ( // Outputs .osizedreg (osizedreg[7:0]), // verilator lint_off IMPLICIT .oonewire (oonewire), // verilator lint_on IMPLICIT .tied (tied[1:0]), // Inputs .isizedwire (isizedwire[7:0]), .ionewire (ionewire)); always @ (posedge clk) begin if (cyc!=0) begin cyc <= cyc + 1; if (cyc==1) begin ionewire <= 1'b1; isizedwire <= 8'd8; end if (cyc==2) begin if (low != 2'b00) $stop; if (high != 2'b11) $stop; if (oonewire !== 1'b1) $stop; if (isizedwire !== 8'd8) $stop; if (tied != 2'b10) $stop; if (tied_also != 4'b1010) $stop; $write("*-* All Finished *-*\n"); $finish; end end end endmodule module hello(tied_also); initial $write ("Hello\n"); output reg [3:0] tied_also = 4'b1010; endmodule
///////////////////////////////////////////////////////////////////////// // // pLIB // D-FLIP-FLOPS ///////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////// // p_I_FD FD error at input ///////////////////////////////////////////////////////////////////////// module p_I_FD (Q,D,C,E); parameter INIT=1'b0; output Q; input D; input C; input E; wire Dtemp; // Xilinx FD instance defparam FD_z.INIT=INIT; FD FD_z (.Q(Q),.D(Dtemp),.C(C)); // Error injection xor (Dtemp,D,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_O_FD FD error at output ///////////////////////////////////////////////////////////////////////// module p_O_FD (Q,D,C,E); parameter INIT = 1'b0; output Q; input D; input C; input E; wire Qtemp; // Xilinx FD instance FD #(.INIT(INIT)) FD_z (.Q(Qtemp),.D(D),.C(C)); // Error injection xor (Q,Qtemp,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_I_FD_1 FD_1 error at input ///////////////////////////////////////////////////////////////////////// module p_I_FD_1 (Q,D,C,E); output Q; input D; input C; input E; wire Dtemp; // Xilinx FD instance FD_1 FD_z (.Q(Q),.D(Dtemp),.C(C)); // Error injection xor (Dtemp,D,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_O_FD_1 FD_1 error at output ///////////////////////////////////////////////////////////////////////// module p_O_FD_1 (Q,D,C,E); output Q; input D; input C; input E; wire Qtemp; // Xilinx FD instance FD_1 FD_z (.Q(Qtemp),.D(D),.C(C)); // Error injection xor (Q,Qtemp,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_I_FDC FDC error at input ///////////////////////////////////////////////////////////////////////// module p_I_FDC (Q,D,C,CLR,E); output Q; input D; input C; input E; input CLR; wire Dtemp; // Xilinx FD instance FDC FD_z (.Q(Q),.D(Dtemp),.C(C),.CLR(CLR)); // Error injection xor (Dtemp,D,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_O_FDC FDC error at output ///////////////////////////////////////////////////////////////////////// module p_O_FDC (Q,D,C,CLR,E); output Q; input D; input C; input E; input CLR; wire Qtemp; // Xilinx FD instance FDC FD_z (.Q(Qtemp),.D(D),.C(C),.CLR(CLR)); // Error injection xor (Q,Qtemp,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_I_FDC_1 FDC_1 error at input ///////////////////////////////////////////////////////////////////////// module p_I_FDC_1 (Q,D,C,CLR,E); output Q; input D; input C; input E; input CLR; wire Dtemp; // Xilinx FD instance FDC_1 FD_z (.Q(Q),.D(Dtemp),.C(C),.CLR(CLR)); // Error injection xor (Dtemp,D,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_O_FDC_1 FDC_1 error at output ///////////////////////////////////////////////////////////////////////// module p_O_FDC_1 (Q,D,C,CLR,E); output Q; input D; input C; input E; input CLR; wire Qtemp; // Xilinx FD instance FDC_1 FD_z (.Q(Qtemp),.D(D),.C(C),.CLR(CLR)); // Error injection xor (Q,Qtemp,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_I_FDCE FDCE error at input ///////////////////////////////////////////////////////////////////////// module p_I_FDCE (Q,D,C,CLR,CE,E); output Q; input D; input C; input E; input CLR; input CE; wire Dtemp; // Xilinx FD instance FDCE FD_z (.Q(Q),.D(Dtemp),.C(C),.CLR(CLR),.CE(CE)); // Error injection xor (Dtemp,D,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_O_FDCE FDCE error at output ///////////////////////////////////////////////////////////////////////// module p_O_FDCE (Q,D,C,CLR,CE,E); output Q; input D; input C; input E; input CLR; input CE; wire Qtemp; // Xilinx FD instance FDCE FD_z (.Q(Qtemp),.D(D),.C(C),.CLR(CLR),.CE(CE)); // Error injection xor (Q,Qtemp,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_I_FDCE_1 FDCE error at input ///////////////////////////////////////////////////////////////////////// module p_I_FDCE_1 (Q,D,C,CLR,CE,E); output Q; input D; input C; input E; input CLR; input CE; wire Dtemp; // Xilinx FD instance FDCE_1 FD_z (.Q(Q),.D(Dtemp),.C(C),.CLR(CLR),.CE(CE)); // Error injection xor (Dtemp,D,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_O_FDCE_1 FDCE_1 error at output ///////////////////////////////////////////////////////////////////////// module p_O_FDCE_1 (Q,D,C,CLR,CE,E); output Q; input D; input C; input E; input CLR; input CE; wire Qtemp; // Xilinx FD instance FDCE_1 FD_z (.Q(Qtemp),.D(D),.C(C),.CLR(CLR),.CE(CE)); // Error injection xor (Q,Qtemp,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_I_FDCP FDCP error at input ///////////////////////////////////////////////////////////////////////// module p_I_FDCP (Q,D,C,CLR,PRE,E); output Q; input D; input C; input E; input CLR; input PRE; wire Dtemp; // Xilinx FD instance FDCP FD_z (.Q(Q),.D(Dtemp),.C(C),.CLR(CLR),.PRE(PRE)); // Error injection xor (Dtemp,D,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_O_FDCP FDCP error at output ///////////////////////////////////////////////////////////////////////// module p_O_FDCP (Q,D,C,CLR,PRE,E); output Q; input D; input C; input E; input CLR; input PRE; wire Qtemp; // Xilinx FD instance FDCP FD_z (.Q(Qtemp),.D(D),.C(C),.CLR(CLR),.PRE(PRE)); // Error injection xor (Q,Qtemp,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_I_FDCP_1 FDCP_1 error at input ///////////////////////////////////////////////////////////////////////// module p_I_FDCP_1 (Q,D,C,CLR,PRE,E); output Q; input D; input C; input E; input CLR; input PRE; wire Dtemp; // Xilinx FD instance FDCP_1 FD_z (.Q(Q),.D(Dtemp),.C(C),.CLR(CLR),.PRE(PRE)); // Error injection xor (Dtemp,D,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_O_FDCP_1 FDCP_1 error at output ///////////////////////////////////////////////////////////////////////// module p_O_FDCP_1 (Q,D,C,CLR,PRE,E); output Q; input D; input C; input E; input CLR; input PRE; wire Qtemp; // Xilinx FD instance FDCP_1 FD_z (.Q(Qtemp),.D(D),.C(C),.CLR(CLR),.PRE(PRE)); // Error injection xor (Q,Qtemp,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_I_FDCPE FDCPE error at input ///////////////////////////////////////////////////////////////////////// module p_I_FDCPE (Q,D,C,CLR,PRE,CE,E); output Q; input D; input C; input E; input CLR; input PRE; input CE; wire Dtemp; // Xilinx FD instance FDCPE FD_z (.Q(Q),.D(Dtemp),.C(C),.CLR(CLR),.PRE(PRE),.CE(CE)); // Error injection xor (Dtemp,D,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_O_FDCPE FDCPE error at output ///////////////////////////////////////////////////////////////////////// module p_O_FDCPE (Q,D,C,CLR,PRE,CE,E); output Q; input D; input C; input E; input CLR; input PRE; input CE; wire Qtemp; // Xilinx FD instance FDCPE FD_z (.Q(Qtemp),.D(D),.C(C),.CLR(CLR),.PRE(PRE),.CE(CE)); // Error injection xor (Q,Qtemp,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_I_FDCPE_1 FDCPE_1 error at input ///////////////////////////////////////////////////////////////////////// module p_I_FDCPE_1 (Q,D,C,CLR,PRE,CE,E); output Q; input D; input C; input E; input CLR; input PRE; input CE; wire Dtemp; // Xilinx FD instance FDCPE_1 FD_z (.Q(Q),.D(Dtemp),.C(C),.CLR(CLR),.PRE(PRE),.CE(CE)); // Error injection xor (Dtemp,D,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_O_FDCPE_1 FDCPE_1 error at output ///////////////////////////////////////////////////////////////////////// module p_O_FDCPE_1 (Q,D,C,CLR,PRE,CE,E); output Q; input D; input C; input E; input CLR; input PRE; input CE; wire Qtemp; // Xilinx FD instance FDCPE_1 FD_z (.Q(Qtemp),.D(D),.C(C),.CLR(CLR),.PRE(PRE),.CE(CE)); // Error injection xor (Q,Qtemp,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_I_FDE FDE error at input ///////////////////////////////////////////////////////////////////////// module p_I_FDE (Q,D,C,CE,E); output Q; input D; input C; input E; input CE; wire Dtemp; // Xilinx FD instance FDE FD_z (.Q(Q),.D(Dtemp),.C(C),.CE(CE)); // Error injection xor (Dtemp,D,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_O_FDE FDE error at output ///////////////////////////////////////////////////////////////////////// module p_O_FDE (Q,D,C,CE,E); output Q; input D; input C; input E; input CE; wire Qtemp; // Xilinx FD instance FDE FD_z (.Q(Qtemp),.D(D),.C(C),.CE(CE)); // Error injection xor (Q,Qtemp,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_I_FDE_1 FDE_1 error at input ///////////////////////////////////////////////////////////////////////// module p_I_FDE_1 (Q,D,C,CE,E); output Q; input D; input C; input E; input CE; wire Dtemp; // Xilinx FD instance FDE_1 FD_z (.Q(Q),.D(Dtemp),.C(C),.CE(CE)); // Error injection xor (Dtemp,D,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_O_FDE_1 FDE_1 error at output ///////////////////////////////////////////////////////////////////////// module p_O_FDE_1 (Q,D,C,CE,E); output Q; input D; input C; input E; input CE; wire Qtemp; // Xilinx FD instance FDE_1 FD_z (.Q(Qtemp),.D(D),.C(C),.CE(CE)); // Error injection xor (Q,Qtemp,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_I_FDP FDP error at input ///////////////////////////////////////////////////////////////////////// module p_I_FDP (Q,D,C,PRE,E); output Q; input D; input C; input E; input PRE; wire Dtemp; // Xilinx FD instance FDP FD_z (.Q(Q),.D(Dtemp),.C(C),.PRE(PRE)); // Error injection xor (Dtemp,D,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_O_FDP FDP error at output ///////////////////////////////////////////////////////////////////////// module p_O_FDP (Q,D,C,PRE,E); output Q; input D; input C; input E; input PRE; wire Qtemp; // Xilinx FD instance FDP FD_z (.Q(Qtemp),.D(D),.C(C),.PRE(PRE)); // Error injection xor (Q,Qtemp,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_I_FDP_1 FDP_1 error at input ///////////////////////////////////////////////////////////////////////// module p_I_FDP_1 (Q,D,C,PRE,E); output Q; input D; input C; input E; input PRE; wire Dtemp; // Xilinx FD instance FDP_1 FD_z (.Q(Q),.D(Dtemp),.C(C),.PRE(PRE)); // Error injection xor (Dtemp,D,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_O_FDP_1 FDP_1 error at output ///////////////////////////////////////////////////////////////////////// module p_O_FDP_1 (Q,D,C,PRE,E); output Q; input D; input C; input E; input PRE; wire Qtemp; // Xilinx FD instance FDP_1 FD_z (.Q(Qtemp),.D(D),.C(C),.PRE(PRE)); // Error injection xor (Q,Qtemp,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_I_FDPE FDPE error at input ///////////////////////////////////////////////////////////////////////// module p_I_FDPE (Q,D,C,PRE,CE,E); output Q; input D; input C; input E; input PRE; input CE; wire Dtemp; // Xilinx FD instance FDPE FD_z (.Q(Q),.D(Dtemp),.C(C),.PRE(PRE),.CE(CE)); // Error injection xor (Dtemp,D,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_O_FDPE FDPE error at output ///////////////////////////////////////////////////////////////////////// module p_O_FDPE (Q,D,C,PRE,CE,E); output Q; input D; input C; input E; input PRE; input CE; wire Qtemp; // Xilinx FD instance FDPE FD_z (.Q(Qtemp),.D(D),.C(C),.PRE(PRE),.CE(CE)); // Error injection xor (Q,Qtemp,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_I_FDPE_1 FDPE_1 error at input ///////////////////////////////////////////////////////////////////////// module p_I_FDPE_1 (Q,D,C,PRE,CE,E); output Q; input D; input C; input E; input PRE; input CE; wire Dtemp; // Xilinx FD instance FDPE_1 FD_z (.Q(Q),.D(Dtemp),.C(C),.PRE(PRE),.CE(CE)); // Error injection xor (Dtemp,D,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_O_FDPE_1 FDPE_1 error at output ///////////////////////////////////////////////////////////////////////// module p_O_FDPE_1 (Q,D,C,PRE,CE,E); output Q; input D; input C; input E; input PRE; input CE; wire Qtemp; // Xilinx FD instance FDPE_1 FD_z (.Q(Qtemp),.D(D),.C(C),.PRE(PRE),.CE(CE)); // Error injection xor (Q,Qtemp,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_I_FDR FDR error at input ///////////////////////////////////////////////////////////////////////// module p_I_FDR (Q,D,C,R,E); output Q; input D; input C; input E; input R; wire Dtemp; // Xilinx FD instance FDR FD_z (.Q(Q),.D(Dtemp),.C(C),.R(R)); // Error injection xor (Dtemp,D,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_O_FDR FDR error at output ///////////////////////////////////////////////////////////////////////// module p_O_FDR (Q,D,C,R,E); parameter INIT=1'b0; output Q; input D; input C; input E; input R; wire Qtemp; defparam FD_z.INIT=INIT; // Xilinx FD instance FDR FD_z (.Q(Qtemp),.D(D),.C(C),.R(R)); // Error injection xor (Q,Qtemp,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_I_FDR_1 FDR_1 error at input ///////////////////////////////////////////////////////////////////////// module p_I_FDR_1 (Q,D,C,R,E); output Q; input D; input C; input E; input R; wire Dtemp; // Xilinx FD instance FDR_1 FD_z (.Q(Q),.D(Dtemp),.C(C),.R(R)); // Error injection xor (Dtemp,D,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_O_FDR_1 FDR_1 error at output ///////////////////////////////////////////////////////////////////////// module p_O_FDR_1 (Q,D,C,R,E); output Q; input D; input C; input E; input R; wire Qtemp; // Xilinx FD instance FDR_1 FD_z (.Q(Qtemp),.D(D),.C(C),.R(R)); // Error injection xor (Q,Qtemp,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_I_FDRE FDRE error at input ///////////////////////////////////////////////////////////////////////// module p_I_FDRE (Q,D,C,R,CE,E); output Q; input D; input C; input E; input R; input CE; wire Dtemp; // Xilinx FD instance FDRE FD_z (.Q(Q),.D(Dtemp),.C(C),.R(R),.CE(CE)); // Error injection xor (Dtemp,D,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_O_FDRE FDRE error at output ///////////////////////////////////////////////////////////////////////// module p_O_FDRE (Q,D,C,R,CE,E); parameter INIT=1'b0; output Q; input D; input C; input E; input R; input CE; wire Qtemp; // Xilinx FD instance FDRE #(.INIT(INIT)) FD_z (.Q(Qtemp),.D(D),.C(C),.R(R),.CE(CE)); // Error injection xor (Q,Qtemp,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_I_FDRE_1 FDRE_1 error at input ///////////////////////////////////////////////////////////////////////// module p_I_FDRE_1 (Q,D,C,R,CE,E); output Q; input D; input C; input E; input R; input CE; wire Dtemp; // Xilinx FD instance FDRE_1 FD_z (.Q(Q),.D(Dtemp),.C(C),.R(R),.CE(CE)); // Error injection xor (Dtemp,D,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_O_FDRE_1 FDRE_1 error at output ///////////////////////////////////////////////////////////////////////// module p_O_FDRE_1 (Q,D,C,R,CE,E); output Q; input D; input C; input E; input R; input CE; wire Qtemp; // Xilinx FD instance FDRE_1 FD_z (.Q(Qtemp),.D(D),.C(C),.R(R),.CE(CE)); // Error injection xor (Q,Qtemp,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_I_FDRS FDRS error at input ///////////////////////////////////////////////////////////////////////// module p_I_FDRS (Q,D,C,R,S,E); output Q; input D; input C; input E; input R; input S; wire Dtemp; // Xilinx FD instance FDRS FD_z (.Q(Q),.D(Dtemp),.C(C),.R(R),.S(S)); // Error injection xor (Dtemp,D,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_O_FDRS FDRS error at output ///////////////////////////////////////////////////////////////////////// module p_O_FDRS (Q,D,C,R,S,E); output Q; input D; input C; input E; input R; input S; wire Qtemp; // Xilinx FD instance FDRS FD_z (.Q(Qtemp),.D(D),.C(C),.R(R),.S(S)); // Error injection xor (Q,Qtemp,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_I_FDRS_1 FDRS_1 error at input ///////////////////////////////////////////////////////////////////////// module p_I_FDRS_1 (Q,D,C,R,S,E); output Q; input D; input C; input E; input R; input S; wire Dtemp; // Xilinx FD instance FDRS_1 FD_z (.Q(Q),.D(Dtemp),.C(C),.R(R),.S(S)); // Error injection xor (Dtemp,D,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_O_FDRS_1 FDRS_1 error at output ///////////////////////////////////////////////////////////////////////// module p_O_FDRS_1 (Q,D,C,R,S,E); output Q; input D; input C; input E; input R; input S; wire Qtemp; // Xilinx FD instance FDRS_1 FD_z (.Q(Qtemp),.D(D),.C(C),.R(R),.S(S)); // Error injection xor (Q,Qtemp,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_I_FDRSE FDRS error at input ///////////////////////////////////////////////////////////////////////// module p_I_FDRSE (Q,D,C,R,S,CE,E); output Q; input D; input C; input E; input R; input S; input CE; wire Dtemp; // Xilinx FD instance FDRSE FD_z (.Q(Q),.D(Dtemp),.C(C),.R(R),.S(S),.CE(CE)); // Error injection xor (Dtemp,D,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_O_FDRSE FDRSE error at output ///////////////////////////////////////////////////////////////////////// module p_O_FDRSE (Q,D,C,R,S,CE,E); output Q; input D; input C; input E; input R; input S; input CE; wire Qtemp; // Xilinx FD instance FDRSE FD_z (.Q(Qtemp),.D(D),.C(C),.R(R),.S(S),.CE(CE)); // Error injection xor (Q,Qtemp,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_I_FDRSE_1 FDRSE_1 error at input ///////////////////////////////////////////////////////////////////////// module p_I_FDRSE_1 (Q,D,C,R,S,CE,E); output Q; input D; input C; input E; input R; input S; input CE; wire Dtemp; // Xilinx FD instance FDRSE_1 FD_z (.Q(Q),.D(Dtemp),.C(C),.R(R),.S(S),.CE(CE)); // Error injection xor (Dtemp,D,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_O_FDRSE_1 FDRSE_1 error at output ///////////////////////////////////////////////////////////////////////// module p_O_FDRSE_1 (Q,D,C,R,S,CE,E); output Q; input D; input C; input E; input R; input S; input CE; wire Qtemp; // Xilinx FD instance FDRSE_1 FD_z (.Q(Qtemp),.D(D),.C(C),.R(R),.S(S),.CE(CE)); // Error injection xor (Q,Qtemp,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_I_FDS FDS error at input ///////////////////////////////////////////////////////////////////////// module p_I_FDS (Q,D,C,S,E); output Q; input D; input C; input E; input S; wire Dtemp; // Xilinx FD instance FDS FD_z (.Q(Q),.D(Dtemp),.C(C),.S(S)); // Error injection xor (Dtemp,D,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_O_FDS FDS error at output ///////////////////////////////////////////////////////////////////////// module p_O_FDS (Q,D,C,S,E); output Q; input D; input C; input E; input S; wire Qtemp; // Xilinx FD instance FDS FD_z (.Q(Qtemp),.D(D),.C(C),.S(S)); // Error injection xor (Q,Qtemp,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_I_FDS_1 FDS_1 error at input ///////////////////////////////////////////////////////////////////////// module p_I_FDS_1 (Q,D,C,S,E); output Q; input D; input C; input E; input S; wire Dtemp; // Xilinx FD instance FDS_1 FD_z (.Q(Q),.D(Dtemp),.C(C),.S(S)); // Error injection xor (Dtemp,D,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_O_FDS_1 FDS_1 error at output ///////////////////////////////////////////////////////////////////////// module p_O_FDS_1 (Q,D,C,S,E); output Q; input D; input C; input E; input S; wire Qtemp; // Xilinx FD instance FDS_1 FD_z (.Q(Qtemp),.D(D),.C(C),.S(S)); // Error injection xor (Q,Qtemp,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_I_FDSE FDSE error at input ///////////////////////////////////////////////////////////////////////// module p_I_FDSE (Q,D,C,S,CE,E); output Q; input D; input C; input E; input S; input CE; wire Dtemp; // Xilinx FD instance FDSE FD_z (.Q(Q),.D(Dtemp),.C(C),.S(S),.CE(CE)); // Error injection xor (Dtemp,D,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_O_FDSE FDSE error at output ///////////////////////////////////////////////////////////////////////// module p_O_FDSE (Q,D,C,S,CE,E); output Q; input D; input C; input E; input S; input CE; wire Qtemp; // Xilinx FD instance FDSE FD_z (.Q(Qtemp),.D(D),.C(C),.S(S),.CE(CE)); // Error injection xor (Q,Qtemp,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_I_FDSE_1 FDSE_1 error at input ///////////////////////////////////////////////////////////////////////// module p_I_FDSE_1 (Q,D,C,S,CE,E); output Q; input D; input C; input E; input S; input CE; wire Dtemp; // Xilinx FD instance FDSE_1 FD_z (.Q(Q),.D(Dtemp),.C(C),.S(S),.CE(CE)); // Error injection xor (Dtemp,D,E); endmodule ///////////////////////////////////////////////////////////////////////// // p_O_FDSE_1 FDSE_1 error at output ///////////////////////////////////////////////////////////////////////// module p_O_FDSE_1 (Q,D,C,S,CE,E); output Q; input D; input C; input E; input S; input CE; wire Qtemp; // Xilinx FD instance FDSE_1 FD_z (.Q(Qtemp),.D(D),.C(C),.S(S),.CE(CE)); // Error injection xor (Q,Qtemp,E); endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2013 by Wilson Snyder. // This test demonstrates how not only parameters but the type of a parent // interface could propagate down to child modules, changing their data type // determinations. Note presently unsupported in all commercial simulators. interface ifc; parameter MODE = 0; generate // Note block must be named per SystemVerilog 2005 if (MODE==1) begin : g integer value; end else if (MODE==2) begin : g real value; end endgenerate endinterface module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc=1; ifc #(1) itop1a(); ifc #(1) itop1b(); ifc #(2) itop2a(); ifc #(2) itop2b(); wrapper c1 (.isuba(itop1a), .isubb(itop1b), .i_valuea(14.1), .i_valueb(15.2)); wrapper c2 (.isuba(itop2a), .isubb(itop2b), .i_valuea(24.3), .i_valueb(25.4)); always @ (posedge clk) begin cyc <= cyc + 1; if (cyc==20) begin if (itop1a.g.value != 14) $stop; if (itop1b.g.value != 15) $stop; if (itop2a.g.value != 24) $stop; if (itop2b.g.value != 25) $stop; $write("*-* All Finished *-*\n"); $finish; end end endmodule module wrapper ( ifc isuba, ifc isubb, input real i_valuea, input real i_valueb ); lower subsuba (.isub(isuba), .i_value(i_valuea)); lower subsubb (.isub(isubb), .i_value(i_valueb)); endmodule module lower ( ifc isub, input real i_value ); always @* begin `error Commercial sims choke on cross ref here isub.g.value = i_value; end endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2012 by Iztok Jeras. module t (/*AUTOARG*/ // Inputs clk ); input clk; // counters int cnt; int cnt_bit ; int cnt_byte; int cnt_int ; int cnt_ar1d; int cnt_ar2d; // sizes int siz_bit ; int siz_byte; int siz_int ; int siz_ar1d; int siz_ar2d; // add all counters assign cnt = cnt_bit + cnt_byte + cnt_int + cnt_ar1d + cnt_ar2d; // finish report always @ (posedge clk) if (cnt == 5) begin if (siz_bit != 1) $stop(); if (siz_byte != 8) $stop(); if (siz_int != 32) $stop(); if (siz_ar1d != 24) $stop(); if (siz_ar2d != 16) $stop(); end else if (cnt > 5) begin $write("*-* All Finished *-*\n"); $finish; end // instances with various types mod_typ #(.TYP (bit )) mod_bit (clk, cnt_bit [ 1-1:0], siz_bit ); mod_typ #(.TYP (byte )) mod_byte (clk, cnt_byte[ 8-1:0], siz_byte); mod_typ #(.TYP (int )) mod_int (clk, cnt_int [32-1:0], siz_int ); mod_typ #(.TYP (bit [23:0] )) mod_ar1d (clk, cnt_ar1d[24-1:0], siz_ar1d); mod_typ #(.TYP (bit [3:0][3:0])) mod_ar2d (clk, cnt_ar2d[16-1:0], siz_ar2d); endmodule : t module mod_typ #( parameter type TYP = byte )( input logic clk, output TYP cnt = 0, output int siz ); always @ (posedge clk) cnt <= cnt + 1; assign siz = $bits (cnt); endmodule
/*+-------------------------------------------------------------------------- Copyright (c) 2015, Microsoft Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------------*/ ////////////////////////////////////////////////////////////////////////////////// // Company: Microsoft Research Asia // Engineer: Jiansong Zhang // // Create Date: 21:39:39 06/01/2009 // Design Name: // Module Name: completer_pkt_gen // Project Name: Sora // Target Devices: Virtex5 LX50T // Tool versions: ISE10.1.03 // Description: // Purpose: Completer Packet Generator module. This block creates the header // info for completer packets- it also passes along the data source and // address info for the TRN state machine block to request the data from // the egress data presenter. // // Dependencies: // // Revision: // Revision 0.01 - File Created // Additional Comments: // ////////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module completer_pkt_gen( input clk, input rst, //interface from RX Engine input [6:0] bar_hit, //denotes which base address was hit input comp_req, //gets asserted when the rx engine recevies a MemRd request input [31:0] MEM_addr, //needed to fetch data from egress_data_presenter input [15:0] MEM_req_id,//needed for completion header input [15:0] comp_id, //needed for completion header input [7:0] MEM_tag, //neede for completion header //interface to completion header fifo output reg comp_fifo_wren, output reg [63:0] comp_fifo_data ); //State machine states localparam IDLE = 4'h0; localparam HEAD1 = 4'h1; localparam HEAD2 = 4'h2; //parameters used to define fixed header fields localparam rsvd = 1'b0; localparam fmt = 2'b10; //always with data localparam CplD = 5'b01010; //completer localparam TC = 3'b000; localparam TD = 1'b0; localparam EP = 1'b0; localparam ATTR = 2'b00; localparam Length = 10'b0000000001; //length is always one DWORD localparam ByteCount = 12'b000000000100; //BC is always one DWORD localparam BCM = 1'b0; reg [3:0] state; reg [6:0] bar_hit_reg; reg [26:0] MEM_addr_reg; reg [15:0] MEM_req_id_reg; reg [15:0] comp_id_reg; reg [7:0] MEM_tag_reg; reg rst_reg; always@(posedge clk) rst_reg <= rst; //if there is a memory read request then latch the header information //needed to create the completion TLP header always@(posedge clk)begin if(comp_req)begin bar_hit_reg <= bar_hit; MEM_addr_reg[26:0] <= MEM_addr[26:0]; MEM_req_id_reg <= MEM_req_id; comp_id_reg <= comp_id; MEM_tag_reg <= MEM_tag; end end // State machine // Builds headers for completion TLP headers // Writes them into a FIFO always @ (posedge clk) begin if (rst_reg) begin comp_fifo_data <= 0; comp_fifo_wren <= 1'b0; state <= IDLE; end else begin case (state) IDLE : begin comp_fifo_data <= 0; comp_fifo_wren <= 1'b0; if(comp_req) state<= HEAD1; else state<= IDLE; end HEAD1 : begin //create first 64-bit completion TLP header //NOTE: bar_hit_reg[6:0],MEM_addr_reg[26:2] are not part of completion TLP //header but are used by tx_trn_sm module to fetch data from the //egress_data_presenter comp_fifo_data <= {bar_hit_reg[6:0],MEM_addr_reg[26:2], rsvd,fmt,CplD,rsvd,TC,rsvd,rsvd,rsvd,rsvd, TD,EP,ATTR,rsvd,rsvd,Length}; comp_fifo_wren <= 1'b1; //write to comp header fifo state <= HEAD2; end HEAD2 : begin //create second 64-bit completion TLP header comp_fifo_data <= {comp_id_reg[15:0],3'b000, BCM,ByteCount, MEM_req_id_reg[15:0],MEM_tag_reg[7:0],rsvd, MEM_addr_reg[6:0]}; comp_fifo_wren <= 1'b1; //write to comp header fifo state <= IDLE; end default : begin comp_fifo_data <= 0; comp_fifo_wren <= 1'b0; state <= IDLE; end endcase end end endmodule
/*+-------------------------------------------------------------------------- Copyright (c) 2015, Microsoft Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------------*/ ////////////////////////////////////////////////////////////////////////////////// // Company: Microsoft Research Asia // Engineer: Jiansong Zhang // // Create Date: 21:39:39 06/01/2009 // Design Name: // Module Name: completer_pkt_gen // Project Name: Sora // Target Devices: Virtex5 LX50T // Tool versions: ISE10.1.03 // Description: // Purpose: Completer Packet Generator module. This block creates the header // info for completer packets- it also passes along the data source and // address info for the TRN state machine block to request the data from // the egress data presenter. // // Dependencies: // // Revision: // Revision 0.01 - File Created // Additional Comments: // ////////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module completer_pkt_gen( input clk, input rst, //interface from RX Engine input [6:0] bar_hit, //denotes which base address was hit input comp_req, //gets asserted when the rx engine recevies a MemRd request input [31:0] MEM_addr, //needed to fetch data from egress_data_presenter input [15:0] MEM_req_id,//needed for completion header input [15:0] comp_id, //needed for completion header input [7:0] MEM_tag, //neede for completion header //interface to completion header fifo output reg comp_fifo_wren, output reg [63:0] comp_fifo_data ); //State machine states localparam IDLE = 4'h0; localparam HEAD1 = 4'h1; localparam HEAD2 = 4'h2; //parameters used to define fixed header fields localparam rsvd = 1'b0; localparam fmt = 2'b10; //always with data localparam CplD = 5'b01010; //completer localparam TC = 3'b000; localparam TD = 1'b0; localparam EP = 1'b0; localparam ATTR = 2'b00; localparam Length = 10'b0000000001; //length is always one DWORD localparam ByteCount = 12'b000000000100; //BC is always one DWORD localparam BCM = 1'b0; reg [3:0] state; reg [6:0] bar_hit_reg; reg [26:0] MEM_addr_reg; reg [15:0] MEM_req_id_reg; reg [15:0] comp_id_reg; reg [7:0] MEM_tag_reg; reg rst_reg; always@(posedge clk) rst_reg <= rst; //if there is a memory read request then latch the header information //needed to create the completion TLP header always@(posedge clk)begin if(comp_req)begin bar_hit_reg <= bar_hit; MEM_addr_reg[26:0] <= MEM_addr[26:0]; MEM_req_id_reg <= MEM_req_id; comp_id_reg <= comp_id; MEM_tag_reg <= MEM_tag; end end // State machine // Builds headers for completion TLP headers // Writes them into a FIFO always @ (posedge clk) begin if (rst_reg) begin comp_fifo_data <= 0; comp_fifo_wren <= 1'b0; state <= IDLE; end else begin case (state) IDLE : begin comp_fifo_data <= 0; comp_fifo_wren <= 1'b0; if(comp_req) state<= HEAD1; else state<= IDLE; end HEAD1 : begin //create first 64-bit completion TLP header //NOTE: bar_hit_reg[6:0],MEM_addr_reg[26:2] are not part of completion TLP //header but are used by tx_trn_sm module to fetch data from the //egress_data_presenter comp_fifo_data <= {bar_hit_reg[6:0],MEM_addr_reg[26:2], rsvd,fmt,CplD,rsvd,TC,rsvd,rsvd,rsvd,rsvd, TD,EP,ATTR,rsvd,rsvd,Length}; comp_fifo_wren <= 1'b1; //write to comp header fifo state <= HEAD2; end HEAD2 : begin //create second 64-bit completion TLP header comp_fifo_data <= {comp_id_reg[15:0],3'b000, BCM,ByteCount, MEM_req_id_reg[15:0],MEM_tag_reg[7:0],rsvd, MEM_addr_reg[6:0]}; comp_fifo_wren <= 1'b1; //write to comp header fifo state <= IDLE; end default : begin comp_fifo_data <= 0; comp_fifo_wren <= 1'b0; state <= IDLE; end endcase end end endmodule
(** * Types: Type Systems *) Require Export Smallstep. Hint Constructors multi. (** Our next major topic is _type systems_ -- static program analyses that classify expressions according to the "shapes" of their results. We'll begin with a typed version of a very simple language with just booleans and numbers, to introduce the basic ideas of types, typing rules, and the fundamental theorems about type systems: _type preservation_ and _progress_. Then we'll move on to the _simply typed lambda-calculus_, which lives at the core of every modern functional programming language (including Coq). *) (* ###################################################################### *) (** * Typed Arithmetic Expressions *) (** To motivate the discussion of type systems, let's begin as usual with an extremely simple toy language. We want it to have the potential for programs "going wrong" because of runtime type errors, so we need something a tiny bit more complex than the language of constants and addition that we used in chapter [Smallstep]: a single kind of data (just numbers) is too simple, but just two kinds (numbers and booleans) already gives us enough material to tell an interesting story. The language definition is completely routine. *) (* ###################################################################### *) (** ** Syntax *) (** Informally: t ::= true | false | if t then t else t | 0 | succ t | pred t | iszero t Formally: *) Inductive tm : Type := | ttrue : tm | tfalse : tm | tif : tm -> tm -> tm -> tm | tzero : tm | tsucc : tm -> tm | tpred : tm -> tm | tiszero : tm -> tm. (** _Values_ are [true], [false], and numeric values... *) Inductive bvalue : tm -> Prop := | bv_true : bvalue ttrue | bv_false : bvalue tfalse. Inductive nvalue : tm -> Prop := | nv_zero : nvalue tzero | nv_succ : forall t, nvalue t -> nvalue (tsucc t). Definition value (t:tm) := bvalue t \/ nvalue t. Hint Constructors bvalue nvalue. Hint Unfold value. Hint Unfold extend. (* ###################################################################### *) (** ** Operational Semantics *) (** Informally: *) (** ------------------------------ (ST_IfTrue) if true then t1 else t2 ==> t1 ------------------------------- (ST_IfFalse) if false then t1 else t2 ==> t2 t1 ==> t1' ------------------------- (ST_If) if t1 then t2 else t3 ==> if t1' then t2 else t3 t1 ==> t1' -------------------- (ST_Succ) succ t1 ==> succ t1' ------------ (ST_PredZero) pred 0 ==> 0 numeric value v1 --------------------- (ST_PredSucc) pred (succ v1) ==> v1 t1 ==> t1' -------------------- (ST_Pred) pred t1 ==> pred t1' ----------------- (ST_IszeroZero) iszero 0 ==> true numeric value v1 -------------------------- (ST_IszeroSucc) iszero (succ v1) ==> false t1 ==> t1' ------------------------ (ST_Iszero) iszero t1 ==> iszero t1' *) (** Formally: *) Reserved Notation "t1 '==>' t2" (at level 40). Inductive step : tm -> tm -> Prop := | ST_IfTrue : forall t1 t2, (tif ttrue t1 t2) ==> t1 | ST_IfFalse : forall t1 t2, (tif tfalse t1 t2) ==> t2 | ST_If : forall t1 t1' t2 t3, t1 ==> t1' -> (tif t1 t2 t3) ==> (tif t1' t2 t3) | ST_Succ : forall t1 t1', t1 ==> t1' -> (tsucc t1) ==> (tsucc t1') | ST_PredZero : (tpred tzero) ==> tzero | ST_PredSucc : forall t1, nvalue t1 -> (tpred (tsucc t1)) ==> t1 | ST_Pred : forall t1 t1', t1 ==> t1' -> (tpred t1) ==> (tpred t1') | ST_IszeroZero : (tiszero tzero) ==> ttrue | ST_IszeroSucc : forall t1, nvalue t1 -> (tiszero (tsucc t1)) ==> tfalse | ST_Iszero : forall t1 t1', t1 ==> t1' -> (tiszero t1) ==> (tiszero t1') where "t1 '==>' t2" := (step t1 t2). Tactic Notation "step_cases" tactic(first) ident(c) := first; [ Case_aux c "ST_IfTrue" | Case_aux c "ST_IfFalse" | Case_aux c "ST_If" | Case_aux c "ST_Succ" | Case_aux c "ST_PredZero" | Case_aux c "ST_PredSucc" | Case_aux c "ST_Pred" | Case_aux c "ST_IszeroZero" | Case_aux c "ST_IszeroSucc" | Case_aux c "ST_Iszero" ]. Hint Constructors step. (** Notice that the [step] relation doesn't care about whether expressions make global sense -- it just checks that the operation in the _next_ reduction step is being applied to the right kinds of operands. For example, the term [succ true] (i.e., [tsucc ttrue] in the formal syntax) cannot take a step, but the almost as obviously nonsensical term succ (if true then true else true) can take a step (once, before becoming stuck). *) (* ###################################################################### *) (** ** Normal Forms and Values *) (** The first interesting thing about the [step] relation in this language is that the strong progress theorem from the Smallstep chapter fails! That is, there are terms that are normal forms (they can't take a step) but not values (because we have not included them in our definition of possible "results of evaluation"). Such terms are _stuck_. *) Notation step_normal_form := (normal_form step). Definition stuck (t:tm) : Prop := step_normal_form t /\ ~ value t. Hint Unfold stuck. (** **** Exercise: 2 stars (some_term_is_stuck) *) Example some_term_is_stuck : exists t, stuck t. Proof. (* FILL IN HERE *) Admitted. (** [] *) (** However, although values and normal forms are not the same in this language, the former set is included in the latter. This is important because it shows we did not accidentally define things so that some value could still take a step. *) (** **** Exercise: 3 stars, advanced (value_is_nf) *) (** Hint: You will reach a point in this proof where you need to use an induction to reason about a term that is known to be a numeric value. This induction can be performed either over the term itself or over the evidence that it is a numeric value. The proof goes through in either case, but you will find that one way is quite a bit shorter than the other. For the sake of the exercise, try to complete the proof both ways. *) Lemma value_is_nf : forall t, value t -> step_normal_form t. Proof. (* FILL IN HERE *) Admitted. (** [] *) (** **** Exercise: 3 stars, optional (step_deterministic) *) (** Using [value_is_nf], we can show that the [step] relation is also deterministic... *) Theorem step_deterministic: deterministic step. Proof with eauto. (* FILL IN HERE *) Admitted. (** [] *) (* ###################################################################### *) (** ** Typing *) (** The next critical observation about this language is that, although there are stuck terms, they are all "nonsensical", mixing booleans and numbers in a way that we don't even _want_ to have a meaning. We can easily exclude such ill-typed terms by defining a _typing relation_ that relates terms to the types (either numeric or boolean) of their final results. *) Inductive ty : Type := | TBool : ty | TNat : ty. (** In informal notation, the typing relation is often written [|- t \in T], pronounced "[t] has type [T]." The [|-] symbol is called a "turnstile". (Below, we're going to see richer typing relations where an additional "context" argument is written to the left of the turnstile. Here, the context is always empty.) *) (** ---------------- (T_True) |- true \in Bool ----------------- (T_False) |- false \in Bool |- t1 \in Bool |- t2 \in T |- t3 \in T -------------------------------------------- (T_If) |- if t1 then t2 else t3 \in T ------------ (T_Zero) |- 0 \in Nat |- t1 \in Nat ------------------ (T_Succ) |- succ t1 \in Nat |- t1 \in Nat ------------------ (T_Pred) |- pred t1 \in Nat |- t1 \in Nat --------------------- (T_IsZero) |- iszero t1 \in Bool *) Reserved Notation "'|-' t '\in' T" (at level 40). Inductive has_type : tm -> ty -> Prop := | T_True : |- ttrue \in TBool | T_False : |- tfalse \in TBool | T_If : forall t1 t2 t3 T, |- t1 \in TBool -> |- t2 \in T -> |- t3 \in T -> |- tif t1 t2 t3 \in T | T_Zero : |- tzero \in TNat | T_Succ : forall t1, |- t1 \in TNat -> |- tsucc t1 \in TNat | T_Pred : forall t1, |- t1 \in TNat -> |- tpred t1 \in TNat | T_Iszero : forall t1, |- t1 \in TNat -> |- tiszero t1 \in TBool where "'|-' t '\in' T" := (has_type t T). Tactic Notation "has_type_cases" tactic(first) ident(c) := first; [ Case_aux c "T_True" | Case_aux c "T_False" | Case_aux c "T_If" | Case_aux c "T_Zero" | Case_aux c "T_Succ" | Case_aux c "T_Pred" | Case_aux c "T_Iszero" ]. Hint Constructors has_type. (* ###################################################################### *) (** *** Examples *) (** It's important to realize that the typing relation is a _conservative_ (or _static_) approximation: it does not calculate the type of the normal form of a term. *) Example has_type_1 : |- tif tfalse tzero (tsucc tzero) \in TNat. Proof. apply T_If. apply T_False. apply T_Zero. apply T_Succ. apply T_Zero. Qed. (** (Since we've included all the constructors of the typing relation in the hint database, the [auto] tactic can actually find this proof automatically.) *) Example has_type_not : ~ (|- tif tfalse tzero ttrue \in TBool). Proof. intros Contra. solve by inversion 2. Qed. (** **** Exercise: 1 star, optional (succ_hastype_nat__hastype_nat) *) Example succ_hastype_nat__hastype_nat : forall t, |- tsucc t \in TNat -> |- t \in TNat. Proof. (* FILL IN HERE *) Admitted. (** [] *) (* ###################################################################### *) (** ** Canonical forms *) (** The following two lemmas capture the basic property that defines the shape of well-typed values. They say that the definition of value and the typing relation agree. *) Lemma bool_canonical : forall t, |- t \in TBool -> value t -> bvalue t. Proof. intros t HT HV. inversion HV; auto. induction H; inversion HT; auto. Qed. Lemma nat_canonical : forall t, |- t \in TNat -> value t -> nvalue t. Proof. intros t HT HV. inversion HV. inversion H; subst; inversion HT. auto. Qed. (* ###################################################################### *) (** ** Progress *) (** The typing relation enjoys two critical properties. The first is that well-typed normal forms are values (i.e., not stuck). *) Theorem progress : forall t T, |- t \in T -> value t \/ exists t', t ==> t'. (** **** Exercise: 3 stars (finish_progress) *) (** Complete the formal proof of the [progress] property. (Make sure you understand the informal proof fragment in the following exercise before starting -- this will save you a lot of time.) *) Proof with auto. intros t T HT. has_type_cases (induction HT) Case... (* The cases that were obviously values, like T_True and T_False, were eliminated immediately by auto *) Case "T_If". right. inversion IHHT1; clear IHHT1. SCase "t1 is a value". apply (bool_canonical t1 HT1) in H. inversion H; subst; clear H. exists t2... exists t3... SCase "t1 can take a step". inversion H as [t1' H1]. exists (tif t1' t2 t3)... (* FILL IN HERE *) Admitted. (** [] *) (** **** Exercise: 3 stars, advanced (finish_progress_informal) *) (** Complete the corresponding informal proof: *) (** _Theorem_: If [|- t \in T], then either [t] is a value or else [t ==> t'] for some [t']. *) (** _Proof_: By induction on a derivation of [|- t \in T]. - If the last rule in the derivation is [T_If], then [t = if t1 then t2 else t3], with [|- t1 \in Bool], [|- t2 \in T] and [|- t3 \in T]. By the IH, either [t1] is a value or else [t1] can step to some [t1']. - If [t1] is a value, then by the canonical forms lemmas and the fact that [|- t1 \in Bool] we have that [t1] is a [bvalue] -- i.e., it is either [true] or [false]. If [t1 = true], then [t] steps to [t2] by [ST_IfTrue], while if [t1 = false], then [t] steps to [t3] by [ST_IfFalse]. Either way, [t] can step, which is what we wanted to show. - If [t1] itself can take a step, then, by [ST_If], so can [t]. (* FILL IN HERE *) [] *) (** This is more interesting than the strong progress theorem that we saw in the Smallstep chapter, where _all_ normal forms were values. Here, a term can be stuck, but only if it is ill typed. *) (** **** Exercise: 1 star (step_review) *) (** Quick review. Answer _true_ or _false_. In this language... - Every well-typed normal form is a value. - Every value is a normal form. - The single-step evaluation relation is a partial function (i.e., it is deterministic). - The single-step evaluation relation is a _total_ function. *) (** [] *) (* ###################################################################### *) (** ** Type Preservation *) (** The second critical property of typing is that, when a well-typed term takes a step, the result is also a well-typed term. This theorem is often called the _subject reduction_ property, because it tells us what happens when the "subject" of the typing relation is reduced. This terminology comes from thinking of typing statements as sentences, where the term is the subject and the type is the predicate. *) Theorem preservation : forall t t' T, |- t \in T -> t ==> t' -> |- t' \in T. (** **** Exercise: 2 stars (finish_preservation) *) (** Complete the formal proof of the [preservation] property. (Again, make sure you understand the informal proof fragment in the following exercise first.) *) Proof with auto. intros t t' T HT HE. generalize dependent t'. has_type_cases (induction HT) Case; (* every case needs to introduce a couple of things *) intros t' HE; (* and we can deal with several impossible cases all at once *) try (solve by inversion). Case "T_If". inversion HE; subst; clear HE. SCase "ST_IFTrue". assumption. SCase "ST_IfFalse". assumption. SCase "ST_If". apply T_If; try assumption. apply IHHT1; assumption. (* FILL IN HERE *) Admitted. (** [] *) (** **** Exercise: 3 stars, advanced (finish_preservation_informal) *) (** Complete the following proof: *) (** _Theorem_: If [|- t \in T] and [t ==> t'], then [|- t' \in T]. *) (** _Proof_: By induction on a derivation of [|- t \in T]. - If the last rule in the derivation is [T_If], then [t = if t1 then t2 else t3], with [|- t1 \in Bool], [|- t2 \in T] and [|- t3 \in T]. Inspecting the rules for the small-step reduction relation and remembering that [t] has the form [if ...], we see that the only ones that could have been used to prove [t ==> t'] are [ST_IfTrue], [ST_IfFalse], or [ST_If]. - If the last rule was [ST_IfTrue], then [t' = t2]. But we know that [|- t2 \in T], so we are done. - If the last rule was [ST_IfFalse], then [t' = t3]. But we know that [|- t3 \in T], so we are done. - If the last rule was [ST_If], then [t' = if t1' then t2 else t3], where [t1 ==> t1']. We know [|- t1 \in Bool] so, by the IH, [|- t1' \in Bool]. The [T_If] rule then gives us [|- if t1' then t2 else t3 \in T], as required. (* FILL IN HERE *) [] *) (** **** Exercise: 3 stars (preservation_alternate_proof) *) (** Now prove the same property again by induction on the _evaluation_ derivation instead of on the typing derivation. Begin by carefully reading and thinking about the first few lines of the above proof to make sure you understand what each one is doing. The set-up for this proof is similar, but not exactly the same. *) Theorem preservation' : forall t t' T, |- t \in T -> t ==> t' -> |- t' \in T. Proof with eauto. (* FILL IN HERE *) Admitted. (** [] *) (* ###################################################################### *) (** ** Type Soundness *) (** Putting progress and preservation together, we can see that a well-typed term can _never_ reach a stuck state. *) Definition multistep := (multi step). Notation "t1 '==>*' t2" := (multistep t1 t2) (at level 40). Corollary soundness : forall t t' T, |- t \in T -> t ==>* t' -> ~(stuck t'). Proof. intros t t' T HT P. induction P; intros [R S]. destruct (progress x T HT); auto. apply IHP. apply (preservation x y T HT H). unfold stuck. split; auto. Qed. (* ###################################################################### *) (** * Aside: the [normalize] Tactic *) (** When experimenting with definitions of programming languages in Coq, we often want to see what a particular concrete term steps to -- i.e., we want to find proofs for goals of the form [t ==>* t'], where [t] is a completely concrete term and [t'] is unknown. These proofs are simple but repetitive to do by hand. Consider for example reducing an arithmetic expression using the small-step relation [astep]. *) Definition amultistep st := multi (astep st). Notation " t '/' st '==>a*' t' " := (amultistep st t t') (at level 40, st at level 39). Example astep_example1 : (APlus (ANum 3) (AMult (ANum 3) (ANum 4))) / empty_state ==>a* (ANum 15). Proof. apply multi_step with (APlus (ANum 3) (ANum 12)). apply AS_Plus2. apply av_num. apply AS_Mult. apply multi_step with (ANum 15). apply AS_Plus. apply multi_refl. Qed. (** We repeatedly apply [multi_step] until we get to a normal form. The proofs that the intermediate steps are possible are simple enough that [auto], with appropriate hints, can solve them. *) Hint Constructors astep aval. Example astep_example1' : (APlus (ANum 3) (AMult (ANum 3) (ANum 4))) / empty_state ==>a* (ANum 15). Proof. eapply multi_step. auto. simpl. eapply multi_step. auto. simpl. apply multi_refl. Qed. (** The following custom [Tactic Notation] definition captures this pattern. In addition, before each [multi_step] we print out the current goal, so that the user can follow how the term is being evaluated. *) Tactic Notation "print_goal" := match goal with |- ?x => idtac x end. Tactic Notation "normalize" := repeat (print_goal; eapply multi_step ; [ (eauto 10; fail) | (instantiate; simpl)]); apply multi_refl. Example astep_example1'' : (APlus (ANum 3) (AMult (ANum 3) (ANum 4))) / empty_state ==>a* (ANum 15). Proof. normalize. (* At this point in the proof script, the Coq response shows a trace of how the expression evaluated. (APlus (ANum 3) (AMult (ANum 3) (ANum 4)) / empty_state ==>a* ANum 15) (multi (astep empty_state) (APlus (ANum 3) (ANum 12)) (ANum 15)) (multi (astep empty_state) (ANum 15) (ANum 15)) *) Qed. (** The [normalize] tactic also provides a simple way to calculate what the normal form of a term is, by proving a goal with an existential variable in it. *) Example astep_example1''' : exists e', (APlus (ANum 3) (AMult (ANum 3) (ANum 4))) / empty_state ==>a* e'. Proof. eapply ex_intro. normalize. (* This time, the trace will be: (APlus (ANum 3) (AMult (ANum 3) (ANum 4)) / empty_state ==>a* ??) (multi (astep empty_state) (APlus (ANum 3) (ANum 12)) ??) (multi (astep empty_state) (ANum 15) ??) where ?? is the variable ``guessed'' by eapply. *) Qed. (** **** Exercise: 1 star (normalize_ex) *) Theorem normalize_ex : exists e', (AMult (ANum 3) (AMult (ANum 2) (ANum 1))) / empty_state ==>a* e'. Proof. (* FILL IN HERE *) Admitted. (** [] *) (** **** Exercise: 1 star, optional (normalize_ex') *) (** For comparison, prove it using [apply] instead of [eapply]. *) Theorem normalize_ex' : exists e', (AMult (ANum 3) (AMult (ANum 2) (ANum 1))) / empty_state ==>a* e'. Proof. (* FILL IN HERE *) Admitted. (** [] *) (* ###################################################################### *) (** ** Additional Exercises *) (** **** Exercise: 2 stars (subject_expansion) *) (** Having seen the subject reduction property, it is reasonable to wonder whether the opposity property -- subject _expansion_ -- also holds. That is, is it always the case that, if [t ==> t'] and [|- t' \in T], then [|- t \in T]? If so, prove it. If not, give a counter-example. (You do not need to prove your counter-example in Coq, but feel free to do so if you like.) (* FILL IN HERE *) [] *) (** **** Exercise: 2 stars (variation1) *) (** Suppose, that we add this new rule to the typing relation: | T_SuccBool : forall t, |- t \in TBool -> |- tsucc t \in TBool Which of the following properties remain true in the presence of this rule? For each one, write either "remains true" or else "becomes false." If a property becomes false, give a counterexample. - Determinism of [step] - Progress - Preservation [] *) (** **** Exercise: 2 stars (variation2) *) (** Suppose, instead, that we add this new rule to the [step] relation: | ST_Funny1 : forall t2 t3, (tif ttrue t2 t3) ==> t3 Which of the above properties become false in the presence of this rule? For each one that does, give a counter-example. [] *) (** **** Exercise: 2 stars, optional (variation3) *) (** Suppose instead that we add this rule: | ST_Funny2 : forall t1 t2 t2' t3, t2 ==> t2' -> (tif t1 t2 t3) ==> (tif t1 t2' t3) Which of the above properties become false in the presence of this rule? For each one that does, give a counter-example. [] *) (** **** Exercise: 2 stars, optional (variation4) *) (** Suppose instead that we add this rule: | ST_Funny3 : (tpred tfalse) ==> (tpred (tpred tfalse)) Which of the above properties become false in the presence of this rule? For each one that does, give a counter-example. [] *) (** **** Exercise: 2 stars, optional (variation5) *) (** Suppose instead that we add this rule: | T_Funny4 : |- tzero \in TBool ]] Which of the above properties become false in the presence of this rule? For each one that does, give a counter-example. [] *) (** **** Exercise: 2 stars, optional (variation6) *) (** Suppose instead that we add this rule: | T_Funny5 : |- tpred tzero \in TBool ]] Which of the above properties become false in the presence of this rule? For each one that does, give a counter-example. [] *) (** **** Exercise: 3 stars, optional (more_variations) *) (** Make up some exercises of your own along the same lines as the ones above. Try to find ways of selectively breaking properties -- i.e., ways of changing the definitions that break just one of the properties and leave the others alone. [] *) (** **** Exercise: 1 star (remove_predzero) *) (** The evaluation rule [E_PredZero] is a bit counter-intuitive: we might feel that it makes more sense for the predecessor of zero to be undefined, rather than being defined to be zero. Can we achieve this simply by removing the rule from the definition of [step]? Would doing so create any problems elsewhere? (* FILL IN HERE *) [] *) (** **** Exercise: 4 stars, advanced (prog_pres_bigstep) *) (** Suppose our evaluation relation is defined in the big-step style. What are the appropriate analogs of the progress and preservation properties? (* FILL IN HERE *) [] *) (** $Date: 2014-12-31 11:17:56 -0500 (Wed, 31 Dec 2014) $ *)
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2009 by Iztok Jeras. module t (/*AUTOARG*/ // Inputs clk ); input clk; // packed structures struct packed { logic e0; logic [1:0] e1; logic [3:0] e2; logic [7:0] e3; } struct_bg; // big endian structure /* verilator lint_off LITENDIAN */ struct packed { logic e0; logic [0:1] e1; logic [0:3] e2; logic [0:7] e3; } struct_lt; // little endian structure /* verilator lint_on LITENDIAN */ integer cnt = 0; // event counter always @ (posedge clk) begin cnt <= cnt + 1; end // finish report always @ (posedge clk) if (cnt==2) begin $write("*-* All Finished *-*\n"); $finish; end always @ (posedge clk) if (cnt==1) begin // big endian if ($bits (struct_bg ) != 15) $stop; if ($bits (struct_bg.e0) != 1) $stop; if ($bits (struct_bg.e1) != 2) $stop; if ($bits (struct_bg.e2) != 4) $stop; if ($bits (struct_bg.e3) != 8) $stop; if ($increment (struct_bg, 1) != 1) $stop; // little endian if ($bits (struct_lt ) != 15) $stop; if ($bits (struct_lt.e0) != 1) $stop; if ($bits (struct_lt.e1) != 2) $stop; if ($bits (struct_lt.e2) != 4) $stop; if ($bits (struct_lt.e3) != 8) $stop; if ($increment (struct_lt, 1) != 1) $stop; // Structure itself always big numbered end endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2008 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; reg [2:0] in; wire a,y,y_fixed; wire b = in[0]; wire en = in[1]; pullup(a); ChildA childa ( .A(a), .B(b), .en(en), .Y(y),.Yfix(y_fixed) ); initial in=0; initial en=0; // Test loop always @ (posedge clk) begin in <= in + 1; $display ( "a %d b %d en %d y %d yfix: %d)" , a, b, en, y, y_fixed); if (en) begin // driving b // a should be b // y and yfix should also be b if (a!=b || y != b || y_fixed != b) begin $display ( "Expected a %d y %b yfix %b" , a, y, y_fixed); $stop; end end else begin // not driving b // a should be 1 (pullup) // y and yfix shold be 1 if (a!=1 || y != 1 || y_fixed != 1) begin $display( "Expected a,y,yfix == 1"); $stop; end end if (in==3) begin $write("*-* All Finished *-*\n"); $finish; end end endmodule module ChildA(inout A, input B, input en, output Y, output Yfix); // workaround wire a_in = A; ChildB childB(.A(A), .Y(Y)); assign A = en ? B : 1'bz; ChildB childBfix(.A(a_in),.Y(Yfix)); endmodule module ChildB(input A, output Y); assign Y = A; endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2008 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; reg [2:0] in; wire a,y,y_fixed; wire b = in[0]; wire en = in[1]; pullup(a); ChildA childa ( .A(a), .B(b), .en(en), .Y(y),.Yfix(y_fixed) ); initial in=0; initial en=0; // Test loop always @ (posedge clk) begin in <= in + 1; $display ( "a %d b %d en %d y %d yfix: %d)" , a, b, en, y, y_fixed); if (en) begin // driving b // a should be b // y and yfix should also be b if (a!=b || y != b || y_fixed != b) begin $display ( "Expected a %d y %b yfix %b" , a, y, y_fixed); $stop; end end else begin // not driving b // a should be 1 (pullup) // y and yfix shold be 1 if (a!=1 || y != 1 || y_fixed != 1) begin $display( "Expected a,y,yfix == 1"); $stop; end end if (in==3) begin $write("*-* All Finished *-*\n"); $finish; end end endmodule module ChildA(inout A, input B, input en, output Y, output Yfix); // workaround wire a_in = A; ChildB childB(.A(A), .Y(Y)); assign A = en ? B : 1'bz; ChildB childBfix(.A(a_in),.Y(Yfix)); endmodule module ChildB(input A, output Y); assign Y = A; endmodule
(** * StlcProp: Properties of STLC *) Require Export Stlc. Module STLCProp. Import STLC. (** In this chapter, we develop the fundamental theory of the Simply Typed Lambda Calculus -- in particular, the type safety theorem. *) (* ###################################################################### *) (** * Canonical Forms *) Lemma canonical_forms_bool : forall t, empty |- t \in TBool -> value t -> (t = ttrue) \/ (t = tfalse). Proof. intros t HT HVal. inversion HVal; intros; subst; try inversion HT; auto. Qed. Lemma canonical_forms_fun : forall t T1 T2, empty |- t \in (TArrow T1 T2) -> value t -> exists x u, t = tabs x T1 u. Proof. intros t T1 T2 HT HVal. inversion HVal; intros; subst; try inversion HT; subst; auto. exists x0. exists t0. auto. Qed. (* ###################################################################### *) (** * Progress *) (** As before, the _progress_ theorem tells us that closed, well-typed terms are not stuck: either a well-typed term is a value, or it can take an evaluation step. The proof is a relatively straightforward extension of the progress proof we saw in the [Types] chapter. *) Theorem progress : forall t T, empty |- t \in T -> value t \/ exists t', t ==> t'. (** _Proof_: by induction on the derivation of [|- t \in T]. - The last rule of the derivation cannot be [T_Var], since a variable is never well typed in an empty context. - The [T_True], [T_False], and [T_Abs] cases are trivial, since in each of these cases we know immediately that [t] is a value. - If the last rule of the derivation was [T_App], then [t = t1 t2], and we know that [t1] and [t2] are also well typed in the empty context; in particular, there exists a type [T2] such that [|- t1 \in T2 -> T] and [|- t2 \in T2]. By the induction hypothesis, either [t1] is a value or it can take an evaluation step. - If [t1] is a value, we now consider [t2], which by the other induction hypothesis must also either be a value or take an evaluation step. - Suppose [t2] is a value. Since [t1] is a value with an arrow type, it must be a lambda abstraction; hence [t1 t2] can take a step by [ST_AppAbs]. - Otherwise, [t2] can take a step, and hence so can [t1 t2] by [ST_App2]. - If [t1] can take a step, then so can [t1 t2] by [ST_App1]. - If the last rule of the derivation was [T_If], then [t = if t1 then t2 else t3], where [t1] has type [Bool]. By the IH, [t1] either is a value or takes a step. - If [t1] is a value, then since it has type [Bool] it must be either [true] or [false]. If it is [true], then [t] steps to [t2]; otherwise it steps to [t3]. - Otherwise, [t1] takes a step, and therefore so does [t] (by [ST_If]). *) Proof with eauto. intros t T Ht. remember (@empty ty) as Gamma. has_type_cases (induction Ht) Case; subst Gamma... Case "T_Var". (* contradictory: variables cannot be typed in an empty context *) inversion H. Case "T_App". (* [t] = [t1 t2]. Proceed by cases on whether [t1] is a value or steps... *) right. destruct IHHt1... SCase "t1 is a value". destruct IHHt2... SSCase "t2 is also a value". assert (exists x0 t0, t1 = tabs x0 T11 t0). eapply canonical_forms_fun; eauto. destruct H1 as [x0 [t0 Heq]]. subst. exists ([x0:=t2]t0)... SSCase "t2 steps". inversion H0 as [t2' Hstp]. exists (tapp t1 t2')... SCase "t1 steps". inversion H as [t1' Hstp]. exists (tapp t1' t2)... Case "T_If". right. destruct IHHt1... SCase "t1 is a value". destruct (canonical_forms_bool t1); subst; eauto. SCase "t1 also steps". inversion H as [t1' Hstp]. exists (tif t1' t2 t3)... Qed. (** **** Exercise: 3 stars, optional (progress_from_term_ind) *) (** Show that progress can also be proved by induction on terms instead of induction on typing derivations. *) Theorem progress' : forall t T, empty |- t \in T -> value t \/ exists t', t ==> t'. Proof. intros t. t_cases (induction t) Case; intros T Ht; auto. (* FILL IN HERE *) Admitted. (** [] *) (* ###################################################################### *) (** * Preservation *) (** The other half of the type soundness property is the preservation of types during reduction. For this, we need to develop some technical machinery for reasoning about variables and substitution. Working from top to bottom (the high-level property we are actually interested in to the lowest-level technical lemmas that are needed by various cases of the more interesting proofs), the story goes like this: - The _preservation theorem_ is proved by induction on a typing derivation, pretty much as we did in the [Types] chapter. The one case that is significantly different is the one for the [ST_AppAbs] rule, which is defined using the substitution operation. To see that this step preserves typing, we need to know that the substitution itself does. So we prove a... - _substitution lemma_, stating that substituting a (closed) term [s] for a variable [x] in a term [t] preserves the type of [t]. The proof goes by induction on the form of [t] and requires looking at all the different cases in the definition of substitition. This time, the tricky cases are the ones for variables and for function abstractions. In both cases, we discover that we need to take a term [s] that has been shown to be well-typed in some context [Gamma] and consider the same term [s] in a slightly different context [Gamma']. For this we prove a... - _context invariance_ lemma, showing that typing is preserved under "inessential changes" to the context [Gamma] -- in particular, changes that do not affect any of the free variables of the term. For this, we need a careful definition of - the _free variables_ of a term -- i.e., the variables occuring in the term that are not in the scope of a function abstraction that binds them. *) (* ###################################################################### *) (** ** Free Occurrences *) (** A variable [x] _appears free in_ a term _t_ if [t] contains some occurrence of [x] that is not under an abstraction labeled [x]. For example: - [y] appears free, but [x] does not, in [\x:T->U. x y] - both [x] and [y] appear free in [(\x:T->U. x y) x] - no variables appear free in [\x:T->U. \y:T. x y] *) Inductive appears_free_in : id -> tm -> Prop := | afi_var : forall x, appears_free_in x (tvar x) | afi_app1 : forall x t1 t2, appears_free_in x t1 -> appears_free_in x (tapp t1 t2) | afi_app2 : forall x t1 t2, appears_free_in x t2 -> appears_free_in x (tapp t1 t2) | afi_abs : forall x y T11 t12, y <> x -> appears_free_in x t12 -> appears_free_in x (tabs y T11 t12) | afi_if1 : forall x t1 t2 t3, appears_free_in x t1 -> appears_free_in x (tif t1 t2 t3) | afi_if2 : forall x t1 t2 t3, appears_free_in x t2 -> appears_free_in x (tif t1 t2 t3) | afi_if3 : forall x t1 t2 t3, appears_free_in x t3 -> appears_free_in x (tif t1 t2 t3). Tactic Notation "afi_cases" tactic(first) ident(c) := first; [ Case_aux c "afi_var" | Case_aux c "afi_app1" | Case_aux c "afi_app2" | Case_aux c "afi_abs" | Case_aux c "afi_if1" | Case_aux c "afi_if2" | Case_aux c "afi_if3" ]. Hint Constructors appears_free_in. (** A term in which no variables appear free is said to be _closed_. *) Definition closed (t:tm) := forall x, ~ appears_free_in x t. (* ###################################################################### *) (** ** Substitution *) (** We first need a technical lemma connecting free variables and typing contexts. If a variable [x] appears free in a term [t], and if we know [t] is well typed in context [Gamma], then it must be the case that [Gamma] assigns a type to [x]. *) Lemma free_in_context : forall x t T Gamma, appears_free_in x t -> Gamma |- t \in T -> exists T', Gamma x = Some T'. (** _Proof_: We show, by induction on the proof that [x] appears free in [t], that, for all contexts [Gamma], if [t] is well typed under [Gamma], then [Gamma] assigns some type to [x]. - If the last rule used was [afi_var], then [t = x], and from the assumption that [t] is well typed under [Gamma] we have immediately that [Gamma] assigns a type to [x]. - If the last rule used was [afi_app1], then [t = t1 t2] and [x] appears free in [t1]. Since [t] is well typed under [Gamma], we can see from the typing rules that [t1] must also be, and the IH then tells us that [Gamma] assigns [x] a type. - Almost all the other cases are similar: [x] appears free in a subterm of [t], and since [t] is well typed under [Gamma], we know the subterm of [t] in which [x] appears is well typed under [Gamma] as well, and the IH gives us exactly the conclusion we want. - The only remaining case is [afi_abs]. In this case [t = \y:T11.t12], and [x] appears free in [t12]; we also know that [x] is different from [y]. The difference from the previous cases is that whereas [t] is well typed under [Gamma], its body [t12] is well typed under [(Gamma, y:T11)], so the IH allows us to conclude that [x] is assigned some type by the extended context [(Gamma, y:T11)]. To conclude that [Gamma] assigns a type to [x], we appeal to lemma [extend_neq], noting that [x] and [y] are different variables. *) Proof. intros x t T Gamma H H0. generalize dependent Gamma. generalize dependent T. afi_cases (induction H) Case; intros; try solve [inversion H0; eauto]. Case "afi_abs". inversion H1; subst. apply IHappears_free_in in H7. rewrite extend_neq in H7; assumption. Qed. (** Next, we'll need the fact that any term [t] which is well typed in the empty context is closed -- that is, it has no free variables. *) (** **** Exercise: 2 stars, optional (typable_empty__closed) *) Corollary typable_empty__closed : forall t T, empty |- t \in T -> closed t. Proof. (* FILL IN HERE *) Admitted. (** [] *) (** Sometimes, when we have a proof [Gamma |- t : T], we will need to replace [Gamma] by a different context [Gamma']. When is it safe to do this? Intuitively, it must at least be the case that [Gamma'] assigns the same types as [Gamma] to all the variables that appear free in [t]. In fact, this is the only condition that is needed. *) Lemma context_invariance : forall Gamma Gamma' t T, Gamma |- t \in T -> (forall x, appears_free_in x t -> Gamma x = Gamma' x) -> Gamma' |- t \in T. (** _Proof_: By induction on the derivation of [Gamma |- t \in T]. - If the last rule in the derivation was [T_Var], then [t = x] and [Gamma x = T]. By assumption, [Gamma' x = T] as well, and hence [Gamma' |- t \in T] by [T_Var]. - If the last rule was [T_Abs], then [t = \y:T11. t12], with [T = T11 -> T12] and [Gamma, y:T11 |- t12 \in T12]. The induction hypothesis is that for any context [Gamma''], if [Gamma, y:T11] and [Gamma''] assign the same types to all the free variables in [t12], then [t12] has type [T12] under [Gamma'']. Let [Gamma'] be a context which agrees with [Gamma] on the free variables in [t]; we must show [Gamma' |- \y:T11. t12 \in T11 -> T12]. By [T_Abs], it suffices to show that [Gamma', y:T11 |- t12 \in T12]. By the IH (setting [Gamma'' = Gamma', y:T11]), it suffices to show that [Gamma, y:T11] and [Gamma', y:T11] agree on all the variables that appear free in [t12]. Any variable occurring free in [t12] must either be [y], or some other variable. [Gamma, y:T11] and [Gamma', y:T11] clearly agree on [y]. Otherwise, we note that any variable other than [y] which occurs free in [t12] also occurs free in [t = \y:T11. t12], and by assumption [Gamma] and [Gamma'] agree on all such variables, and hence so do [Gamma, y:T11] and [Gamma', y:T11]. - If the last rule was [T_App], then [t = t1 t2], with [Gamma |- t1 \in T2 -> T] and [Gamma |- t2 \in T2]. One induction hypothesis states that for all contexts [Gamma'], if [Gamma'] agrees with [Gamma] on the free variables in [t1], then [t1] has type [T2 -> T] under [Gamma']; there is a similar IH for [t2]. We must show that [t1 t2] also has type [T] under [Gamma'], given the assumption that [Gamma'] agrees with [Gamma] on all the free variables in [t1 t2]. By [T_App], it suffices to show that [t1] and [t2] each have the same type under [Gamma'] as under [Gamma]. However, we note that all free variables in [t1] are also free in [t1 t2], and similarly for free variables in [t2]; hence the desired result follows by the two IHs. *) Proof with eauto. intros. generalize dependent Gamma'. has_type_cases (induction H) Case; intros; auto. Case "T_Var". apply T_Var. rewrite <- H0... Case "T_Abs". apply T_Abs. apply IHhas_type. intros x1 Hafi. (* the only tricky step... the [Gamma'] we use to instantiate is [extend Gamma x T11] *) unfold extend. destruct (eq_id_dec x0 x1)... Case "T_App". apply T_App with T11... Qed. (** Now we come to the conceptual heart of the proof that reduction preserves types -- namely, the observation that _substitution_ preserves types. Formally, the so-called _Substitution Lemma_ says this: suppose we have a term [t] with a free variable [x], and suppose we've been able to assign a type [T] to [t] under the assumption that [x] has some type [U]. Also, suppose that we have some other term [v] and that we've shown that [v] has type [U]. Then, since [v] satisfies the assumption we made about [x] when typing [t], we should be able to substitute [v] for each of the occurrences of [x] in [t] and obtain a new term that still has type [T]. *) (** _Lemma_: If [Gamma,x:U |- t \in T] and [|- v \in U], then [Gamma |- [x:=v]t \in T]. *) Lemma substitution_preserves_typing : forall Gamma x U t v T, extend Gamma x U |- t \in T -> empty |- v \in U -> Gamma |- [x:=v]t \in T. (** One technical subtlety in the statement of the lemma is that we assign [v] the type [U] in the _empty_ context -- in other words, we assume [v] is closed. This assumption considerably simplifies the [T_Abs] case of the proof (compared to assuming [Gamma |- v \in U], which would be the other reasonable assumption at this point) because the context invariance lemma then tells us that [v] has type [U] in any context at all -- we don't have to worry about free variables in [v] clashing with the variable being introduced into the context by [T_Abs]. _Proof_: We prove, by induction on [t], that, for all [T] and [Gamma], if [Gamma,x:U |- t \in T] and [|- v \in U], then [Gamma |- [x:=v]t \in T]. - If [t] is a variable, there are two cases to consider, depending on whether [t] is [x] or some other variable. - If [t = x], then from the fact that [Gamma, x:U |- x \in T] we conclude that [U = T]. We must show that [[x:=v]x = v] has type [T] under [Gamma], given the assumption that [v] has type [U = T] under the empty context. This follows from context invariance: if a closed term has type [T] in the empty context, it has that type in any context. - If [t] is some variable [y] that is not equal to [x], then we need only note that [y] has the same type under [Gamma, x:U] as under [Gamma]. - If [t] is an abstraction [\y:T11. t12], then the IH tells us, for all [Gamma'] and [T'], that if [Gamma',x:U |- t12 \in T'] and [|- v \in U], then [Gamma' |- [x:=v]t12 \in T']. The substitution in the conclusion behaves differently, depending on whether [x] and [y] are the same variable name. First, suppose [x = y]. Then, by the definition of substitution, [[x:=v]t = t], so we just need to show [Gamma |- t \in T]. But we know [Gamma,x:U |- t : T], and since the variable [y] does not appear free in [\y:T11. t12], the context invariance lemma yields [Gamma |- t \in T]. Second, suppose [x <> y]. We know [Gamma,x:U,y:T11 |- t12 \in T12] by inversion of the typing relation, and [Gamma,y:T11,x:U |- t12 \in T12] follows from this by the context invariance lemma, so the IH applies, giving us [Gamma,y:T11 |- [x:=v]t12 \in T12]. By [T_Abs], [Gamma |- \y:T11. [x:=v]t12 \in T11->T12], and by the definition of substitution (noting that [x <> y]), [Gamma |- \y:T11. [x:=v]t12 \in T11->T12] as required. - If [t] is an application [t1 t2], the result follows straightforwardly from the definition of substitution and the induction hypotheses. - The remaining cases are similar to the application case. Another technical note: This proof is a rare case where an induction on terms, rather than typing derivations, yields a simpler argument. The reason for this is that the assumption [extend Gamma x U |- t \in T] is not completely generic, in the sense that one of the "slots" in the typing relation -- namely the context -- is not just a variable, and this means that Coq's native induction tactic does not give us the induction hypothesis that we want. It is possible to work around this, but the needed generalization is a little tricky. The term [t], on the other hand, _is_ completely generic. *) Proof with eauto. intros Gamma x U t v T Ht Ht'. generalize dependent Gamma. generalize dependent T. t_cases (induction t) Case; intros T Gamma H; (* in each case, we'll want to get at the derivation of H *) inversion H; subst; simpl... Case "tvar". rename i into y. destruct (eq_id_dec x y). SCase "x=y". subst. rewrite extend_eq in H2. inversion H2; subst. clear H2. eapply context_invariance... intros x Hcontra. destruct (free_in_context _ _ T empty Hcontra) as [T' HT']... inversion HT'. SCase "x<>y". apply T_Var. rewrite extend_neq in H2... Case "tabs". rename i into y. apply T_Abs. destruct (eq_id_dec x y). SCase "x=y". eapply context_invariance... subst. intros x Hafi. unfold extend. destruct (eq_id_dec y x)... SCase "x<>y". apply IHt. eapply context_invariance... intros z Hafi. unfold extend. destruct (eq_id_dec y z)... subst. rewrite neq_id... Qed. (** The substitution lemma can be viewed as a kind of "commutation" property. Intuitively, it says that substitution and typing can be done in either order: we can either assign types to the terms [t] and [v] separately (under suitable contexts) and then combine them using substitution, or we can substitute first and then assign a type to [ [x:=v] t ] -- the result is the same either way. *) (* ###################################################################### *) (** ** Main Theorem *) (** We now have the tools we need to prove preservation: if a closed term [t] has type [T], and takes an evaluation step to [t'], then [t'] is also a closed term with type [T]. In other words, the small-step evaluation relation preserves types. *) Theorem preservation : forall t t' T, empty |- t \in T -> t ==> t' -> empty |- t' \in T. (** _Proof_: by induction on the derivation of [|- t \in T]. - We can immediately rule out [T_Var], [T_Abs], [T_True], and [T_False] as the final rules in the derivation, since in each of these cases [t] cannot take a step. - If the last rule in the derivation was [T_App], then [t = t1 t2]. There are three cases to consider, one for each rule that could have been used to show that [t1 t2] takes a step to [t']. - If [t1 t2] takes a step by [ST_App1], with [t1] stepping to [t1'], then by the IH [t1'] has the same type as [t1], and hence [t1' t2] has the same type as [t1 t2]. - The [ST_App2] case is similar. - If [t1 t2] takes a step by [ST_AppAbs], then [t1 = \x:T11.t12] and [t1 t2] steps to [[x:=t2]t12]; the desired result now follows from the fact that substitution preserves types. - If the last rule in the derivation was [T_If], then [t = if t1 then t2 else t3], and there are again three cases depending on how [t] steps. - If [t] steps to [t2] or [t3], the result is immediate, since [t2] and [t3] have the same type as [t]. - Otherwise, [t] steps by [ST_If], and the desired conclusion follows directly from the induction hypothesis. *) Proof with eauto. remember (@empty ty) as Gamma. intros t t' T HT. generalize dependent t'. has_type_cases (induction HT) Case; intros t' HE; subst Gamma; subst; try solve [inversion HE; subst; auto]. Case "T_App". inversion HE; subst... (* Most of the cases are immediate by induction, and [eauto] takes care of them *) SCase "ST_AppAbs". apply substitution_preserves_typing with T11... inversion HT1... Qed. (** **** Exercise: 2 stars (subject_expansion_stlc) *) (** An exercise in the [Types] chapter asked about the subject expansion property for the simple language of arithmetic and boolean expressions. Does this property hold for STLC? That is, is it always the case that, if [t ==> t'] and [has_type t' T], then [empty |- t \in T]? If so, prove it. If not, give a counter-example not involving conditionals. (* FILL IN HERE *) [] *) (* ###################################################################### *) (** * Type Soundness *) (** **** Exercise: 2 stars, optional (type_soundness) *) (** Put progress and preservation together and show that a well-typed term can _never_ reach a stuck state. *) Definition stuck (t:tm) : Prop := (normal_form step) t /\ ~ value t. Corollary soundness : forall t t' T, empty |- t \in T -> t ==>* t' -> ~(stuck t'). Proof. intros t t' T Hhas_type Hmulti. unfold stuck. intros [Hnf Hnot_val]. unfold normal_form in Hnf. induction Hmulti. (* FILL IN HERE *) Admitted. (* ###################################################################### *) (** * Uniqueness of Types *) (** **** Exercise: 3 stars (types_unique) *) (** Another pleasant property of the STLC is that types are unique: a given term (in a given context) has at most one type. *) (** Formalize this statement and prove it. *) (* FILL IN HERE *) (** [] *) (* ###################################################################### *) (** * Additional Exercises *) (** **** Exercise: 1 star (progress_preservation_statement) *) (** Without peeking, write down the progress and preservation theorems for the simply typed lambda-calculus. *) (** [] *) (** **** Exercise: 2 stars (stlc_variation1) *) (** Suppose we add a new term [zap] with the following reduction rule: --------- (ST_Zap) t ==> zap and the following typing rule: ---------------- (T_Zap) Gamma |- zap : T Which of the following properties of the STLC remain true in the presence of this rule? For each one, write either "remains true" or else "becomes false." If a property becomes false, give a counterexample. - Determinism of [step] - Progress - Preservation [] *) (** **** Exercise: 2 stars (stlc_variation2) *) (** Suppose instead that we add a new term [foo] with the following reduction rules: ----------------- (ST_Foo1) (\x:A. x) ==> foo ------------ (ST_Foo2) foo ==> true Which of the following properties of the STLC remain true in the presence of this rule? For each one, write either "remains true" or else "becomes false." If a property becomes false, give a counterexample. - Determinism of [step] - Progress - Preservation [] *) (** **** Exercise: 2 stars (stlc_variation3) *) (** Suppose instead that we remove the rule [ST_App1] from the [step] relation. Which of the following properties of the STLC remain true in the presence of this rule? For each one, write either "remains true" or else "becomes false." If a property becomes false, give a counterexample. - Determinism of [step] - Progress - Preservation [] *) (** **** Exercise: 2 stars, optional (stlc_variation4) *) (** Suppose instead that we add the following new rule to the reduction relation: ---------------------------------- (ST_FunnyIfTrue) (if true then t1 else t2) ==> true Which of the following properties of the STLC remain true in the presence of this rule? For each one, write either "remains true" or else "becomes false." If a property becomes false, give a counterexample. - Determinism of [step] - Progress - Preservation *) (** **** Exercise: 2 stars, optional (stlc_variation5) *) (** Suppose instead that we add the following new rule to the typing relation: Gamma |- t1 \in Bool->Bool->Bool Gamma |- t2 \in Bool ------------------------------ (T_FunnyApp) Gamma |- t1 t2 \in Bool Which of the following properties of the STLC remain true in the presence of this rule? For each one, write either "remains true" or else "becomes false." If a property becomes false, give a counterexample. - Determinism of [step] - Progress - Preservation *) (** **** Exercise: 2 stars, optional (stlc_variation6) *) (** Suppose instead that we add the following new rule to the typing relation: Gamma |- t1 \in Bool Gamma |- t2 \in Bool --------------------- (T_FunnyApp') Gamma |- t1 t2 \in Bool Which of the following properties of the STLC remain true in the presence of this rule? For each one, write either "remains true" or else "becomes false." If a property becomes false, give a counterexample. - Determinism of [step] - Progress - Preservation *) (** **** Exercise: 2 stars, optional (stlc_variation7) *) (** Suppose we add the following new rule to the typing relation of the STLC: ------------------- (T_FunnyAbs) |- \x:Bool.t \in Bool Which of the following properties of the STLC remain true in the presence of this rule? For each one, write either "remains true" or else "becomes false." If a property becomes false, give a counterexample. - Determinism of [step] - Progress - Preservation [] *) End STLCProp. (* ###################################################################### *) (* ###################################################################### *) (** ** Exercise: STLC with Arithmetic *) (** To see how the STLC might function as the core of a real programming language, let's extend it with a concrete base type of numbers and some constants and primitive operators. *) Module STLCArith. (** To types, we add a base type of natural numbers (and remove booleans, for brevity) *) Inductive ty : Type := | TArrow : ty -> ty -> ty | TNat : ty. (** To terms, we add natural number constants, along with successor, predecessor, multiplication, and zero-testing... *) Inductive tm : Type := | tvar : id -> tm | tapp : tm -> tm -> tm | tabs : id -> ty -> tm -> tm | tnat : nat -> tm | tsucc : tm -> tm | tpred : tm -> tm | tmult : tm -> tm -> tm | tif0 : tm -> tm -> tm -> tm. Tactic Notation "t_cases" tactic(first) ident(c) := first; [ Case_aux c "tvar" | Case_aux c "tapp" | Case_aux c "tabs" | Case_aux c "tnat" | Case_aux c "tsucc" | Case_aux c "tpred" | Case_aux c "tmult" | Case_aux c "tif0" ]. (** **** Exercise: 4 stars (stlc_arith) *) (** Finish formalizing the definition and properties of the STLC extended with arithmetic. Specifically: - Copy the whole development of STLC that we went through above (from the definition of values through the Progress theorem), and paste it into the file at this point. - Extend the definitions of the [subst] operation and the [step] relation to include appropriate clauses for the arithmetic operators. - Extend the proofs of all the properties (up to [soundness]) of the original STLC to deal with the new syntactic forms. Make sure Coq accepts the whole file. *) (* FILL IN HERE *) (** [] *) End STLCArith. (** $Date: 2014-12-31 11:17:56 -0500 (Wed, 31 Dec 2014) $ *)
module ghrd_10m50da_top ( //Clock and Reset input wire clk_50, //input wire clk_ddr3_100_p, input wire fpga_reset_n, //QSPI output wire qspi_clk, inout wire[3:0] qspi_io, output wire qspi_csn, //ddr3 //output wire [13:0] mem_a, //output wire [2:0] mem_ba, //inout wire [0:0] mem_ck, //inout wire [0:0] mem_ck_n, //output wire [0:0] mem_cke, //output wire [0:0] mem_cs_n, //output wire [0:0] mem_dm, //output wire [0:0] mem_ras_n, //output wire [0:0] mem_cas_n, //output wire [0:0] mem_we_n, //output wire mem_reset_n, ///inout wire [7:0] mem_dq, //inout wire [0:0] mem_dqs, //inout wire [0:0] mem_dqs_n, //output wire [0:0] mem_odt, //i2c inout wire i2c_sda, inout wire i2c_scl, //spi input wire spi_miso, output wire spi_mosi, output wire spi_sclk, output wire spi_ssn, //16550 UART input wire uart_rx, output wire uart_tx, output wire [4:0] user_led ); //Heart-beat counter reg [25:0] heart_beat_cnt; //DDR3 interface assignments //wire local_init_done; //wire local_cal_success; //wire local_cal_fail; //i2c interface wire i2c_serial_sda_in ; wire i2c_serial_scl_in ; wire i2c_serial_sda_oe ; wire i2c_serial_scl_oe ; assign i2c_serial_scl_in = i2c_scl; assign i2c_scl = i2c_serial_scl_oe ? 1'b0 : 1'bz; assign i2c_serial_sda_in = i2c_sda; assign i2c_sda = i2c_serial_sda_oe ? 1'b0 : 1'bz; //assign system_resetn = fpga_reset_n & local_init_done; // SoC sub-system module ghrd_10m50da ghrd_10m50da_inst ( .clk_clk (clk_50), //.ref_clock_bridge_in_clk_clk (clk_ddr3_100_p), .reset_reset_n (fpga_reset_n), //.mem_resetn_in_reset_reset_n (fpga_reset_n ), // mem_resetn_in_reset.reset_n .ext_flash_qspi_pins_data (qspi_io), .ext_flash_qspi_pins_dclk (qspi_clk), .ext_flash_qspi_pins_ncs (qspi_csn), //.memory_mem_a (mem_a[12:0] ), // memory.mem_a //.memory_mem_ba (mem_ba ), // .mem_ba //.memory_mem_ck (mem_ck ), // .mem_ck //.memory_mem_ck_n (mem_ck_n ), // .mem_ck_n //.memory_mem_cke (mem_cke ), // .mem_cke //.memory_mem_cs_n (mem_cs_n ), // .mem_cs_n //.memory_mem_dm (mem_dm ), // .mem_dm //.memory_mem_ras_n (mem_ras_n ), // .mem_ras_n //.memory_mem_cas_n (mem_cas_n ), // .mem_cas_n //.memory_mem_we_n (mem_we_n ), // .mem_we_n //.memory_mem_reset_n (mem_reset_n ), // .mem_reset_n //.memory_mem_dq (mem_dq ), // .mem_dq //.memory_mem_dqs (mem_dqs ), // .mem_dqs //.memory_mem_dqs_n (mem_dqs_n ), // .mem_dqs_n //.memory_mem_odt (mem_odt ), // .mem_odt //.mem_if_ddr3_emif_0_status_local_init_done (local_init_done ), // mem_if_ddr3_emif_0_status.local_init_done //.mem_if_ddr3_emif_0_status_local_cal_success (local_cal_success ), // .local_cal_success //.mem_if_ddr3_emif_0_status_local_cal_fail (local_cal_fail ), // .local_cal_fail //i2c .i2c_0_i2c_serial_sda_in (i2c_serial_sda_in), .i2c_0_i2c_serial_scl_in (i2c_serial_scl_in), .i2c_0_i2c_serial_sda_oe (i2c_serial_sda_oe), .i2c_0_i2c_serial_scl_oe (i2c_serial_scl_oe), //spi .spi_0_external_MISO (spi_miso), // spi_0_external.MISO .spi_0_external_MOSI (spi_mosi), // .MOSI .spi_0_external_SCLK (spi_sclk), // .SCLK .spi_0_external_SS_n (spi_ssn), // .SS_n //pio .led_external_connection_export (user_led[3:0]), //16550 UART .a_16550_uart_0_rs_232_serial_sin (uart_rx), // a_16550_uart_0_rs_232_serial.sin .a_16550_uart_0_rs_232_serial_sout (uart_tx), // .sout .a_16550_uart_0_rs_232_serial_sout_oe () // .sout_oe ); //DDR3 Address Bit #13 is not available for DDR3 SDRAM A (64Mx16) //assign mem_a[13] = 1'b0; //Heart beat by 50MHz clock always @(posedge clk_50 or negedge fpga_reset_n) if (!fpga_reset_n) heart_beat_cnt <= 26'h0; //0x3FFFFFF else heart_beat_cnt <= heart_beat_cnt + 1'b1; assign user_led[4] = heart_beat_cnt[25]; endmodule
/*+-------------------------------------------------------------------------- Copyright (c) 2015, Microsoft Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------------*/ ////////////////////////////////////////////////////////////////////////////////// // Company: Microsoft Research Asia // Engineer: Jiansong Zhang // // Create Date: 21:39:39 06/01/2009 // Design Name: // Module Name: tx_engine // Project Name: Sora // Target Devices: Virtex5 LX50T // Tool versions: ISE10.1.03 // Description: // Purpose: A small shadow-RAM to qualify the data entries in the dual-port // compram // // Dependencies: // // Revision: // Revision 0.01 - File Created // Additional Comments: // Modification by zjs, 2009-6-18, pending // (1) move posted packet generator and non-posted packet generator out --- done // (2) add dma write data fifo --------------- done // (3) modify tx sm // scheduling -------------------------- done // disable write dma done -------------- done // register/memory read ---------------- done // ////////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module pending_comp_ram_32x1( input clk, input d_in, input [4:0] addr, input we, output reg [31:0] d_out = 32'h00000000 ); wire [31:0] addr_decode; //binary-to-onehot address decoder for ram assign addr_decode[31:0] = 32'h00000001 << addr[4:0]; //generate a 32-entry ram with //addressable inputs entries //and outputs which are always present; //essentially this is a 32x1 register file genvar i; generate for(i=0;i<32;i=i+1)begin: bitram always@(posedge clk)begin if(addr_decode[i] && we)begin d_out[i] <= d_in; end end end endgenerate endmodule
/*+-------------------------------------------------------------------------- Copyright (c) 2015, Microsoft Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------------*/ ////////////////////////////////////////////////////////////////////////////////// // Company: Microsoft Research Asia // Engineer: Jiansong Zhang // // Create Date: 21:39:39 06/01/2009 // Design Name: // Module Name: tx_engine // Project Name: Sora // Target Devices: Virtex5 LX50T // Tool versions: ISE10.1.03 // Description: // Purpose: A small shadow-RAM to qualify the data entries in the dual-port // compram // // Dependencies: // // Revision: // Revision 0.01 - File Created // Additional Comments: // Modification by zjs, 2009-6-18, pending // (1) move posted packet generator and non-posted packet generator out --- done // (2) add dma write data fifo --------------- done // (3) modify tx sm // scheduling -------------------------- done // disable write dma done -------------- done // register/memory read ---------------- done // ////////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module pending_comp_ram_32x1( input clk, input d_in, input [4:0] addr, input we, output reg [31:0] d_out = 32'h00000000 ); wire [31:0] addr_decode; //binary-to-onehot address decoder for ram assign addr_decode[31:0] = 32'h00000001 << addr[4:0]; //generate a 32-entry ram with //addressable inputs entries //and outputs which are always present; //essentially this is a 32x1 register file genvar i; generate for(i=0;i<32;i=i+1)begin: bitram always@(posedge clk)begin if(addr_decode[i] && we)begin d_out[i] <= d_in; end end end endgenerate endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2004 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; by_width #(1) w1 (.clk(clk)); by_width #(31) w31 (.clk(clk)); by_width #(32) w32 (.clk(clk)); by_width #(33) w33 (.clk(clk)); by_width #(63) w63 (.clk(clk)); by_width #(64) w64 (.clk(clk)); by_width #(65) w65 (.clk(clk)); by_width #(95) w95 (.clk(clk)); by_width #(96) w96 (.clk(clk)); by_width #(97) w97 (.clk(clk)); reg signed [15:0] a; reg signed [4:0] b; reg signed [15:0] sr,srs,sl,sls; reg [15:0] b_s; reg [15:0] b_us; task check_s(input signed [7:0] i, input [7:0] expval); //$display("check_s %x\n", i); if (i !== expval) $stop; endtask task check_us(input signed [7:0] i, input [7:0] expval); //$display("check_us %x\n", i); if (i !== expval) $stop; endtask always @* begin sr = a>>b; srs = copy_signed(a)>>>b; sl = a<<b; sls = a<<<b; // verilator lint_off WIDTH b_s = b>>>4; // Signed b_us = b[4:0]>>>4; // Unsigned, due to extract check_s ( 3'b111, 8'h07); check_s (3'sb111, 8'hff); check_us( 3'b111, 8'h07); check_us(3'sb111, 8'hff); // Note we sign extend ignoring function's input requirements // verilator lint_on WIDTH end reg signed [32:0] bug349; initial begin end integer i; initial begin if ((-1 >>> 3) != -1) $stop; // Decimals are signed // verilator lint_off WIDTH if ((3'b111 >>> 3) != 0) $stop; // Based numbers are unsigned if ((3'sb111 >>> 3) != -1) $stop; // Signed based numbers // verilator lint_on WIDTH if ( (3'sb000 > 3'sb000)) $stop; if (!(3'sb000 > 3'sb111)) $stop; if ( (3'sb111 > 3'sb000)) $stop; if ( (3'sb000 < 3'sb000)) $stop; if ( (3'sb000 < 3'sb111)) $stop; if (!(3'sb111 < 3'sb000)) $stop; if (!(3'sb000 >= 3'sb000)) $stop; if (!(3'sb000 >= 3'sb111)) $stop; if ( (3'sb111 >= 3'sb000)) $stop; if (!(3'sb000 <= 3'sb000)) $stop; if ( (3'sb000 <= 3'sb111)) $stop; if (!(3'sb111 <= 3'sb000)) $stop; // When we multiply overflow, the sign bit stays correct. if ( (4'sd2*4'sd8) != 4'd0) $stop; // From the spec: // verilator lint_off WIDTH i = -12 /3; if (i !== 32'hfffffffc) $stop; i = -'d12 /3; if (i !== 32'h55555551) $stop; i = -'sd12 /3; if (i !== 32'hfffffffc) $stop; i = -4'sd12 /3; if (i !== 32'h00000001) $stop; // verilator lint_on WIDTH // verilator lint_off WIDTH bug349 = 4'sb1111 - 1'b1; if (bug349 != 32'he) $stop; end function signed [15:0] copy_signed; input [15:0] ai; copy_signed = ai; endfunction integer cyc; initial cyc=0; wire [31:0] ucyc = cyc; always @ (posedge clk) begin cyc <= cyc + 1; `ifdef TEST_VERBOSE $write("%x %x %x %x %x %x %x\n", cyc, sr,srs,sl,sls, b_s,b_us); `endif case (cyc) 0: begin a <= 16'sh8b1b; b <= 5'sh1f; // -1 end 1: begin // Check spaces in constants a <= 16 'sh 8b1b; b <= 5'sh01; // -1 end 2: begin a <= 16'sh8b1b; b <= 5'sh1e; // shift AMOUNT is really unsigned if (ucyc / 1 != 32'd2) $stop; if (ucyc / 2 != 32'd1) $stop; if (ucyc * 1 != 32'd2) $stop; if (ucyc * 2 != 32'd4) $stop; if (ucyc * 3 != 32'd6) $stop; if (cyc * 32'sd1 != 32'sd2) $stop; if (cyc * 32'sd2 != 32'sd4) $stop; if (cyc * 32'sd3 != 32'sd6) $stop; end 3: begin a <= 16'sh0048; b <= 5'sh1f; if (ucyc * 1 != 32'd3) $stop; if (ucyc * 2 != 32'd6) $stop; if (ucyc * 3 != 32'd9) $stop; if (ucyc * 4 != 32'd12) $stop; if (cyc * 32'sd1 != 32'sd3) $stop; if (cyc * 32'sd2 != 32'sd6) $stop; if (cyc * 32'sd3 != 32'sd9) $stop; end 4: begin a <= 16'sh4154; b <= 5'sh02; end 5: begin a <= 16'shc3e8; b <= 5'sh12; end 6: begin a <= 16'sh488b; b <= 5'sh02; end 9: begin $write("*-* All Finished *-*\n"); $finish; end default: ; endcase case (cyc) 0: ; 1: if ({sr,srs,sl,sls,b_s,b_us}!==96'sh0000_ffff_0000_0000_ffff_0001) $stop; 2: if ({sr,srs,sl,sls,b_s,b_us}!==96'sh458d_c58d_1636_1636_0000_0000) $stop; 3: if ({sr,srs,sl,sls,b_s,b_us}!==96'sh0000_ffff_0000_0000_ffff_0001) $stop; 4: if ({sr,srs,sl,sls,b_s,b_us}!==96'sh0000_0000_0000_0000_ffff_0001) $stop; 5: if ({sr,srs,sl,sls,b_s,b_us}!==96'sh1055_1055_0550_0550_0000_0000) $stop; 6: if ({sr,srs,sl,sls,b_s,b_us}!==96'sh0000_ffff_0000_0000_ffff_0001) $stop; 7: if ({sr,srs,sl,sls,b_s,b_us}!==96'sh1222_1222_222c_222c_0000_0000) $stop; 8: ; 9: ; endcase end endmodule module by_width ( input clk ); parameter WIDTH=1; reg signed i1; reg signed [62:0] i63; reg signed [64:0] i65; // verilator lint_off WIDTH wire signed [WIDTH-1:0] i1extp /*verilator public*/ = i1; wire signed [WIDTH-1:0] i1ext = i1; wire signed [WIDTH-1:0] i63ext = i63; wire signed [WIDTH-1:0] i65ext = i65; // verilator lint_on WIDTH integer cyc; initial cyc=0; always @ (posedge clk) begin cyc <= cyc + 1; i1 <= cyc[0]; i63 <= {63{cyc[0]}}; i65 <= {65{cyc[0]}}; case (cyc) 1: begin if (i1extp != {WIDTH{1'b0}}) $stop; if (i1ext != {WIDTH{1'b0}}) $stop; if (i63ext != {WIDTH{1'b0}}) $stop; if (i65ext != {WIDTH{1'b0}}) $stop; end 2: begin if (i1extp != {WIDTH{1'b1}}) $stop; if (i1ext != {WIDTH{1'b1}}) $stop; if (i63ext != {WIDTH{1'b1}}) $stop; if (i65ext != {WIDTH{1'b1}}) $stop; end default: ; endcase end endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2004 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; by_width #(1) w1 (.clk(clk)); by_width #(31) w31 (.clk(clk)); by_width #(32) w32 (.clk(clk)); by_width #(33) w33 (.clk(clk)); by_width #(63) w63 (.clk(clk)); by_width #(64) w64 (.clk(clk)); by_width #(65) w65 (.clk(clk)); by_width #(95) w95 (.clk(clk)); by_width #(96) w96 (.clk(clk)); by_width #(97) w97 (.clk(clk)); reg signed [15:0] a; reg signed [4:0] b; reg signed [15:0] sr,srs,sl,sls; reg [15:0] b_s; reg [15:0] b_us; task check_s(input signed [7:0] i, input [7:0] expval); //$display("check_s %x\n", i); if (i !== expval) $stop; endtask task check_us(input signed [7:0] i, input [7:0] expval); //$display("check_us %x\n", i); if (i !== expval) $stop; endtask always @* begin sr = a>>b; srs = copy_signed(a)>>>b; sl = a<<b; sls = a<<<b; // verilator lint_off WIDTH b_s = b>>>4; // Signed b_us = b[4:0]>>>4; // Unsigned, due to extract check_s ( 3'b111, 8'h07); check_s (3'sb111, 8'hff); check_us( 3'b111, 8'h07); check_us(3'sb111, 8'hff); // Note we sign extend ignoring function's input requirements // verilator lint_on WIDTH end reg signed [32:0] bug349; initial begin end integer i; initial begin if ((-1 >>> 3) != -1) $stop; // Decimals are signed // verilator lint_off WIDTH if ((3'b111 >>> 3) != 0) $stop; // Based numbers are unsigned if ((3'sb111 >>> 3) != -1) $stop; // Signed based numbers // verilator lint_on WIDTH if ( (3'sb000 > 3'sb000)) $stop; if (!(3'sb000 > 3'sb111)) $stop; if ( (3'sb111 > 3'sb000)) $stop; if ( (3'sb000 < 3'sb000)) $stop; if ( (3'sb000 < 3'sb111)) $stop; if (!(3'sb111 < 3'sb000)) $stop; if (!(3'sb000 >= 3'sb000)) $stop; if (!(3'sb000 >= 3'sb111)) $stop; if ( (3'sb111 >= 3'sb000)) $stop; if (!(3'sb000 <= 3'sb000)) $stop; if ( (3'sb000 <= 3'sb111)) $stop; if (!(3'sb111 <= 3'sb000)) $stop; // When we multiply overflow, the sign bit stays correct. if ( (4'sd2*4'sd8) != 4'd0) $stop; // From the spec: // verilator lint_off WIDTH i = -12 /3; if (i !== 32'hfffffffc) $stop; i = -'d12 /3; if (i !== 32'h55555551) $stop; i = -'sd12 /3; if (i !== 32'hfffffffc) $stop; i = -4'sd12 /3; if (i !== 32'h00000001) $stop; // verilator lint_on WIDTH // verilator lint_off WIDTH bug349 = 4'sb1111 - 1'b1; if (bug349 != 32'he) $stop; end function signed [15:0] copy_signed; input [15:0] ai; copy_signed = ai; endfunction integer cyc; initial cyc=0; wire [31:0] ucyc = cyc; always @ (posedge clk) begin cyc <= cyc + 1; `ifdef TEST_VERBOSE $write("%x %x %x %x %x %x %x\n", cyc, sr,srs,sl,sls, b_s,b_us); `endif case (cyc) 0: begin a <= 16'sh8b1b; b <= 5'sh1f; // -1 end 1: begin // Check spaces in constants a <= 16 'sh 8b1b; b <= 5'sh01; // -1 end 2: begin a <= 16'sh8b1b; b <= 5'sh1e; // shift AMOUNT is really unsigned if (ucyc / 1 != 32'd2) $stop; if (ucyc / 2 != 32'd1) $stop; if (ucyc * 1 != 32'd2) $stop; if (ucyc * 2 != 32'd4) $stop; if (ucyc * 3 != 32'd6) $stop; if (cyc * 32'sd1 != 32'sd2) $stop; if (cyc * 32'sd2 != 32'sd4) $stop; if (cyc * 32'sd3 != 32'sd6) $stop; end 3: begin a <= 16'sh0048; b <= 5'sh1f; if (ucyc * 1 != 32'd3) $stop; if (ucyc * 2 != 32'd6) $stop; if (ucyc * 3 != 32'd9) $stop; if (ucyc * 4 != 32'd12) $stop; if (cyc * 32'sd1 != 32'sd3) $stop; if (cyc * 32'sd2 != 32'sd6) $stop; if (cyc * 32'sd3 != 32'sd9) $stop; end 4: begin a <= 16'sh4154; b <= 5'sh02; end 5: begin a <= 16'shc3e8; b <= 5'sh12; end 6: begin a <= 16'sh488b; b <= 5'sh02; end 9: begin $write("*-* All Finished *-*\n"); $finish; end default: ; endcase case (cyc) 0: ; 1: if ({sr,srs,sl,sls,b_s,b_us}!==96'sh0000_ffff_0000_0000_ffff_0001) $stop; 2: if ({sr,srs,sl,sls,b_s,b_us}!==96'sh458d_c58d_1636_1636_0000_0000) $stop; 3: if ({sr,srs,sl,sls,b_s,b_us}!==96'sh0000_ffff_0000_0000_ffff_0001) $stop; 4: if ({sr,srs,sl,sls,b_s,b_us}!==96'sh0000_0000_0000_0000_ffff_0001) $stop; 5: if ({sr,srs,sl,sls,b_s,b_us}!==96'sh1055_1055_0550_0550_0000_0000) $stop; 6: if ({sr,srs,sl,sls,b_s,b_us}!==96'sh0000_ffff_0000_0000_ffff_0001) $stop; 7: if ({sr,srs,sl,sls,b_s,b_us}!==96'sh1222_1222_222c_222c_0000_0000) $stop; 8: ; 9: ; endcase end endmodule module by_width ( input clk ); parameter WIDTH=1; reg signed i1; reg signed [62:0] i63; reg signed [64:0] i65; // verilator lint_off WIDTH wire signed [WIDTH-1:0] i1extp /*verilator public*/ = i1; wire signed [WIDTH-1:0] i1ext = i1; wire signed [WIDTH-1:0] i63ext = i63; wire signed [WIDTH-1:0] i65ext = i65; // verilator lint_on WIDTH integer cyc; initial cyc=0; always @ (posedge clk) begin cyc <= cyc + 1; i1 <= cyc[0]; i63 <= {63{cyc[0]}}; i65 <= {65{cyc[0]}}; case (cyc) 1: begin if (i1extp != {WIDTH{1'b0}}) $stop; if (i1ext != {WIDTH{1'b0}}) $stop; if (i63ext != {WIDTH{1'b0}}) $stop; if (i65ext != {WIDTH{1'b0}}) $stop; end 2: begin if (i1extp != {WIDTH{1'b1}}) $stop; if (i1ext != {WIDTH{1'b1}}) $stop; if (i63ext != {WIDTH{1'b1}}) $stop; if (i65ext != {WIDTH{1'b1}}) $stop; end default: ; endcase end endmodule
//------------------------------------------------------------------------ //-- //-- Filename : xlconcat.v //-- //-- Date : 06/05/12 //- //- Description : Verilog description of a concat block. This //- block does not use a core. //- //----------------------------------------------------------------------- `timescale 1ps/1ps module xlconcat (In0, In1, In2, In3, In4, In5, In6, In7, In8, In9, In10, In11, In12, In13, In14, In15, In16, In17, In18, In19, In20, In21, In22, In23, In24, In25, In26, In27, In28, In29, In30, In31, dout); parameter IN0_WIDTH = 1; input [IN0_WIDTH -1:0] In0; parameter IN1_WIDTH = 1; input [IN1_WIDTH -1:0] In1; parameter IN2_WIDTH = 1; input [IN2_WIDTH -1:0] In2; parameter IN3_WIDTH = 1; input [IN3_WIDTH -1:0] In3; parameter IN4_WIDTH = 1; input [IN4_WIDTH -1:0] In4; parameter IN5_WIDTH = 1; input [IN5_WIDTH -1:0] In5; parameter IN6_WIDTH = 1; input [IN6_WIDTH -1:0] In6; parameter IN7_WIDTH = 1; input [IN7_WIDTH -1:0] In7; parameter IN8_WIDTH = 1; input [IN8_WIDTH -1:0] In8; parameter IN9_WIDTH = 1; input [IN9_WIDTH -1:0] In9; parameter IN10_WIDTH = 1; input [IN10_WIDTH -1:0] In10; parameter IN11_WIDTH = 1; input [IN11_WIDTH -1:0] In11; parameter IN12_WIDTH = 1; input [IN12_WIDTH -1:0] In12; parameter IN13_WIDTH = 1; input [IN13_WIDTH -1:0] In13; parameter IN14_WIDTH = 1; input [IN14_WIDTH -1:0] In14; parameter IN15_WIDTH = 1; input [IN15_WIDTH -1:0] In15; parameter IN16_WIDTH = 1; input [IN16_WIDTH -1:0] In16; parameter IN17_WIDTH = 1; input [IN17_WIDTH -1:0] In17; parameter IN18_WIDTH = 1; input [IN18_WIDTH -1:0] In18; parameter IN19_WIDTH = 1; input [IN19_WIDTH -1:0] In19; parameter IN20_WIDTH = 1; input [IN20_WIDTH -1:0] In20; parameter IN21_WIDTH = 1; input [IN21_WIDTH -1:0] In21; parameter IN22_WIDTH = 1; input [IN22_WIDTH -1:0] In22; parameter IN23_WIDTH = 1; input [IN23_WIDTH -1:0] In23; parameter IN24_WIDTH = 1; input [IN24_WIDTH -1:0] In24; parameter IN25_WIDTH = 1; input [IN25_WIDTH -1:0] In25; parameter IN26_WIDTH = 1; input [IN26_WIDTH -1:0] In26; parameter IN27_WIDTH = 1; input [IN27_WIDTH -1:0] In27; parameter IN28_WIDTH = 1; input [IN28_WIDTH -1:0] In28; parameter IN29_WIDTH = 1; input [IN29_WIDTH -1:0] In29; parameter IN30_WIDTH = 1; input [IN30_WIDTH -1:0] In30; parameter IN31_WIDTH = 1; input [IN31_WIDTH -1:0] In31; parameter dout_width = 2; output [dout_width-1:0] dout; parameter NUM_PORTS =2; generate if (NUM_PORTS == 1) begin : C_NUM_1 assign dout = In0; end endgenerate generate if (NUM_PORTS == 2) begin : C_NUM_2 assign dout = {In1,In0}; end endgenerate generate if (NUM_PORTS == 3) begin:C_NUM_3 assign dout = {In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 4) begin:C_NUM_4 assign dout = {In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 5) begin:C_NUM_5 assign dout = {In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 6) begin:C_NUM_6 assign dout = {In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 7) begin:C_NUM_7 assign dout = {In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 8) begin:C_NUM_8 assign dout = {In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 9) begin:C_NUM_9 assign dout = {In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 10) begin:C_NUM_10 assign dout = {In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 11) begin:C_NUM_11 assign dout = {In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 12) begin:C_NUM_12 assign dout = {In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 13) begin:C_NUM_13 assign dout = {In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 14) begin:C_NUM_14 assign dout = {In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 15) begin:C_NUM_15 assign dout = {In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 16) begin:C_NUM_16 assign dout = {In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 17) begin:C_NUM_17 assign dout = {In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 18) begin:C_NUM_18 assign dout = {In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 19) begin:C_NUM_19 assign dout = {In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 20) begin:C_NUM_20 assign dout = {In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 21) begin:C_NUM_21 assign dout = {In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 22) begin:C_NUM_22 assign dout = {In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 23) begin:C_NUM_23 assign dout = {In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 24) begin:C_NUM_24 assign dout = {In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 25) begin:C_NUM_25 assign dout = {In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 26) begin:C_NUM_26 assign dout = {In25, In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 27) begin:C_NUM_27 assign dout = {In26, In25, In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 28) begin:C_NUM_28 assign dout = {In27, In26, In25, In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 29) begin:C_NUM_29 assign dout = {In28, In27, In26, In25, In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 30) begin:C_NUM_30 assign dout = {In29, In28, In27, In26, In25, In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 31) begin:C_NUM_31 assign dout = {In30, In29, In28, In27, In26, In25, In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 32) begin:C_NUM_32 assign dout = {In31, In30, In29, In28, In27, In26, In25, In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate endmodule
//------------------------------------------------------------------------ //-- //-- Filename : xlconcat.v //-- //-- Date : 06/05/12 //- //- Description : Verilog description of a concat block. This //- block does not use a core. //- //----------------------------------------------------------------------- `timescale 1ps/1ps module xlconcat (In0, In1, In2, In3, In4, In5, In6, In7, In8, In9, In10, In11, In12, In13, In14, In15, In16, In17, In18, In19, In20, In21, In22, In23, In24, In25, In26, In27, In28, In29, In30, In31, dout); parameter IN0_WIDTH = 1; input [IN0_WIDTH -1:0] In0; parameter IN1_WIDTH = 1; input [IN1_WIDTH -1:0] In1; parameter IN2_WIDTH = 1; input [IN2_WIDTH -1:0] In2; parameter IN3_WIDTH = 1; input [IN3_WIDTH -1:0] In3; parameter IN4_WIDTH = 1; input [IN4_WIDTH -1:0] In4; parameter IN5_WIDTH = 1; input [IN5_WIDTH -1:0] In5; parameter IN6_WIDTH = 1; input [IN6_WIDTH -1:0] In6; parameter IN7_WIDTH = 1; input [IN7_WIDTH -1:0] In7; parameter IN8_WIDTH = 1; input [IN8_WIDTH -1:0] In8; parameter IN9_WIDTH = 1; input [IN9_WIDTH -1:0] In9; parameter IN10_WIDTH = 1; input [IN10_WIDTH -1:0] In10; parameter IN11_WIDTH = 1; input [IN11_WIDTH -1:0] In11; parameter IN12_WIDTH = 1; input [IN12_WIDTH -1:0] In12; parameter IN13_WIDTH = 1; input [IN13_WIDTH -1:0] In13; parameter IN14_WIDTH = 1; input [IN14_WIDTH -1:0] In14; parameter IN15_WIDTH = 1; input [IN15_WIDTH -1:0] In15; parameter IN16_WIDTH = 1; input [IN16_WIDTH -1:0] In16; parameter IN17_WIDTH = 1; input [IN17_WIDTH -1:0] In17; parameter IN18_WIDTH = 1; input [IN18_WIDTH -1:0] In18; parameter IN19_WIDTH = 1; input [IN19_WIDTH -1:0] In19; parameter IN20_WIDTH = 1; input [IN20_WIDTH -1:0] In20; parameter IN21_WIDTH = 1; input [IN21_WIDTH -1:0] In21; parameter IN22_WIDTH = 1; input [IN22_WIDTH -1:0] In22; parameter IN23_WIDTH = 1; input [IN23_WIDTH -1:0] In23; parameter IN24_WIDTH = 1; input [IN24_WIDTH -1:0] In24; parameter IN25_WIDTH = 1; input [IN25_WIDTH -1:0] In25; parameter IN26_WIDTH = 1; input [IN26_WIDTH -1:0] In26; parameter IN27_WIDTH = 1; input [IN27_WIDTH -1:0] In27; parameter IN28_WIDTH = 1; input [IN28_WIDTH -1:0] In28; parameter IN29_WIDTH = 1; input [IN29_WIDTH -1:0] In29; parameter IN30_WIDTH = 1; input [IN30_WIDTH -1:0] In30; parameter IN31_WIDTH = 1; input [IN31_WIDTH -1:0] In31; parameter dout_width = 2; output [dout_width-1:0] dout; parameter NUM_PORTS =2; generate if (NUM_PORTS == 1) begin : C_NUM_1 assign dout = In0; end endgenerate generate if (NUM_PORTS == 2) begin : C_NUM_2 assign dout = {In1,In0}; end endgenerate generate if (NUM_PORTS == 3) begin:C_NUM_3 assign dout = {In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 4) begin:C_NUM_4 assign dout = {In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 5) begin:C_NUM_5 assign dout = {In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 6) begin:C_NUM_6 assign dout = {In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 7) begin:C_NUM_7 assign dout = {In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 8) begin:C_NUM_8 assign dout = {In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 9) begin:C_NUM_9 assign dout = {In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 10) begin:C_NUM_10 assign dout = {In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 11) begin:C_NUM_11 assign dout = {In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 12) begin:C_NUM_12 assign dout = {In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 13) begin:C_NUM_13 assign dout = {In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 14) begin:C_NUM_14 assign dout = {In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 15) begin:C_NUM_15 assign dout = {In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 16) begin:C_NUM_16 assign dout = {In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 17) begin:C_NUM_17 assign dout = {In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 18) begin:C_NUM_18 assign dout = {In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 19) begin:C_NUM_19 assign dout = {In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 20) begin:C_NUM_20 assign dout = {In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 21) begin:C_NUM_21 assign dout = {In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 22) begin:C_NUM_22 assign dout = {In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 23) begin:C_NUM_23 assign dout = {In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 24) begin:C_NUM_24 assign dout = {In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 25) begin:C_NUM_25 assign dout = {In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 26) begin:C_NUM_26 assign dout = {In25, In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 27) begin:C_NUM_27 assign dout = {In26, In25, In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 28) begin:C_NUM_28 assign dout = {In27, In26, In25, In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 29) begin:C_NUM_29 assign dout = {In28, In27, In26, In25, In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 30) begin:C_NUM_30 assign dout = {In29, In28, In27, In26, In25, In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 31) begin:C_NUM_31 assign dout = {In30, In29, In28, In27, In26, In25, In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 32) begin:C_NUM_32 assign dout = {In31, In30, In29, In28, In27, In26, In25, In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate endmodule
//------------------------------------------------------------------------ //-- //-- Filename : xlconcat.v //-- //-- Date : 06/05/12 //- //- Description : Verilog description of a concat block. This //- block does not use a core. //- //----------------------------------------------------------------------- `timescale 1ps/1ps module xlconcat (In0, In1, In2, In3, In4, In5, In6, In7, In8, In9, In10, In11, In12, In13, In14, In15, In16, In17, In18, In19, In20, In21, In22, In23, In24, In25, In26, In27, In28, In29, In30, In31, dout); parameter IN0_WIDTH = 1; input [IN0_WIDTH -1:0] In0; parameter IN1_WIDTH = 1; input [IN1_WIDTH -1:0] In1; parameter IN2_WIDTH = 1; input [IN2_WIDTH -1:0] In2; parameter IN3_WIDTH = 1; input [IN3_WIDTH -1:0] In3; parameter IN4_WIDTH = 1; input [IN4_WIDTH -1:0] In4; parameter IN5_WIDTH = 1; input [IN5_WIDTH -1:0] In5; parameter IN6_WIDTH = 1; input [IN6_WIDTH -1:0] In6; parameter IN7_WIDTH = 1; input [IN7_WIDTH -1:0] In7; parameter IN8_WIDTH = 1; input [IN8_WIDTH -1:0] In8; parameter IN9_WIDTH = 1; input [IN9_WIDTH -1:0] In9; parameter IN10_WIDTH = 1; input [IN10_WIDTH -1:0] In10; parameter IN11_WIDTH = 1; input [IN11_WIDTH -1:0] In11; parameter IN12_WIDTH = 1; input [IN12_WIDTH -1:0] In12; parameter IN13_WIDTH = 1; input [IN13_WIDTH -1:0] In13; parameter IN14_WIDTH = 1; input [IN14_WIDTH -1:0] In14; parameter IN15_WIDTH = 1; input [IN15_WIDTH -1:0] In15; parameter IN16_WIDTH = 1; input [IN16_WIDTH -1:0] In16; parameter IN17_WIDTH = 1; input [IN17_WIDTH -1:0] In17; parameter IN18_WIDTH = 1; input [IN18_WIDTH -1:0] In18; parameter IN19_WIDTH = 1; input [IN19_WIDTH -1:0] In19; parameter IN20_WIDTH = 1; input [IN20_WIDTH -1:0] In20; parameter IN21_WIDTH = 1; input [IN21_WIDTH -1:0] In21; parameter IN22_WIDTH = 1; input [IN22_WIDTH -1:0] In22; parameter IN23_WIDTH = 1; input [IN23_WIDTH -1:0] In23; parameter IN24_WIDTH = 1; input [IN24_WIDTH -1:0] In24; parameter IN25_WIDTH = 1; input [IN25_WIDTH -1:0] In25; parameter IN26_WIDTH = 1; input [IN26_WIDTH -1:0] In26; parameter IN27_WIDTH = 1; input [IN27_WIDTH -1:0] In27; parameter IN28_WIDTH = 1; input [IN28_WIDTH -1:0] In28; parameter IN29_WIDTH = 1; input [IN29_WIDTH -1:0] In29; parameter IN30_WIDTH = 1; input [IN30_WIDTH -1:0] In30; parameter IN31_WIDTH = 1; input [IN31_WIDTH -1:0] In31; parameter dout_width = 2; output [dout_width-1:0] dout; parameter NUM_PORTS =2; generate if (NUM_PORTS == 1) begin : C_NUM_1 assign dout = In0; end endgenerate generate if (NUM_PORTS == 2) begin : C_NUM_2 assign dout = {In1,In0}; end endgenerate generate if (NUM_PORTS == 3) begin:C_NUM_3 assign dout = {In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 4) begin:C_NUM_4 assign dout = {In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 5) begin:C_NUM_5 assign dout = {In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 6) begin:C_NUM_6 assign dout = {In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 7) begin:C_NUM_7 assign dout = {In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 8) begin:C_NUM_8 assign dout = {In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 9) begin:C_NUM_9 assign dout = {In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 10) begin:C_NUM_10 assign dout = {In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 11) begin:C_NUM_11 assign dout = {In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 12) begin:C_NUM_12 assign dout = {In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 13) begin:C_NUM_13 assign dout = {In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 14) begin:C_NUM_14 assign dout = {In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 15) begin:C_NUM_15 assign dout = {In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 16) begin:C_NUM_16 assign dout = {In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 17) begin:C_NUM_17 assign dout = {In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 18) begin:C_NUM_18 assign dout = {In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 19) begin:C_NUM_19 assign dout = {In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 20) begin:C_NUM_20 assign dout = {In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 21) begin:C_NUM_21 assign dout = {In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 22) begin:C_NUM_22 assign dout = {In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 23) begin:C_NUM_23 assign dout = {In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 24) begin:C_NUM_24 assign dout = {In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 25) begin:C_NUM_25 assign dout = {In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 26) begin:C_NUM_26 assign dout = {In25, In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 27) begin:C_NUM_27 assign dout = {In26, In25, In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 28) begin:C_NUM_28 assign dout = {In27, In26, In25, In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 29) begin:C_NUM_29 assign dout = {In28, In27, In26, In25, In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 30) begin:C_NUM_30 assign dout = {In29, In28, In27, In26, In25, In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 31) begin:C_NUM_31 assign dout = {In30, In29, In28, In27, In26, In25, In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate generate if (NUM_PORTS == 32) begin:C_NUM_32 assign dout = {In31, In30, In29, In28, In27, In26, In25, In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0}; end endgenerate endmodule
/*+-------------------------------------------------------------------------- Copyright (c) 2015, Microsoft Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------------*/ ////////////////////////////////////////////////////////////////////////////////// // Company: Microsoft Research Asia // Engineer: Jiansong Zhang // // Create Date: 21:39:39 06/01/2009 // Design Name: // Module Name: tx_engine // Project Name: Sora // Target Devices: Virtex5 LX50T // Tool versions: ISE10.1.03 // Description: // Purpose: Create tags for the non-posted packet generators. // Uses a simple 5-bit counter which rolls over // // Dependencies: // // Revision: // Revision 0.01 - File Created // Additional Comments: // ////////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module tag_generator( input clk, input rst, output reg np_tag_gnt, input np_tag_inc, output [7:0] tag_value, input [31:0] completion_pending); reg rst_reg; reg [4:0] tag_value_i; always@(posedge clk) rst_reg <= rst; //check to see if the tag is already in use //assert the grant signal if it is not always@(posedge clk)begin if(completion_pending[tag_value_i[4:0]]) np_tag_gnt <= 1'b0; else np_tag_gnt <= 1'b1; end assign tag_value[7:0] = {3'b000,tag_value_i[4:0]}; //tag generator is simply a counter with enable always@(posedge clk)begin if(rst_reg)begin tag_value_i[4:0] <= 5'b00000; end else if(np_tag_inc)begin tag_value_i <= tag_value_i + 1; end end endmodule
/*+-------------------------------------------------------------------------- Copyright (c) 2015, Microsoft Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------------*/ ////////////////////////////////////////////////////////////////////////////////// // Company: Microsoft Research Asia // Engineer: Jiansong Zhang // // Create Date: 21:39:39 06/01/2009 // Design Name: // Module Name: tx_engine // Project Name: Sora // Target Devices: Virtex5 LX50T // Tool versions: ISE10.1.03 // Description: // Purpose: Create tags for the non-posted packet generators. // Uses a simple 5-bit counter which rolls over // // Dependencies: // // Revision: // Revision 0.01 - File Created // Additional Comments: // ////////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module tag_generator( input clk, input rst, output reg np_tag_gnt, input np_tag_inc, output [7:0] tag_value, input [31:0] completion_pending); reg rst_reg; reg [4:0] tag_value_i; always@(posedge clk) rst_reg <= rst; //check to see if the tag is already in use //assert the grant signal if it is not always@(posedge clk)begin if(completion_pending[tag_value_i[4:0]]) np_tag_gnt <= 1'b0; else np_tag_gnt <= 1'b1; end assign tag_value[7:0] = {3'b000,tag_value_i[4:0]}; //tag generator is simply a counter with enable always@(posedge clk)begin if(rst_reg)begin tag_value_i[4:0] <= 5'b00000; end else if(np_tag_inc)begin tag_value_i <= tag_value_i + 1; end end endmodule
// DESCRIPTION: Verilator: initial edge issue // // The module initial_edge drives the output "res" high when the reset signal, // rst, goes high. // // The module initial_edge_n drives the output "res_n" high when the reset // signal, rst_n, goes low. // // For 4-state simulators, that edge occurs when the initial value of rst_n, // X, goes to zero. However, by default for Verilator, being 2-state, the // initial value is zero, so no edge is seen. // // This is not a bug in verilator (it is bad design to rely on an edge // transition from an unitialized signal), but the problem is that there are // quite a few instances of code out there that seems to be dependent on this // behaviour to get out of reset. // // The Verilator --x-initial-edge flag causes these initial edges to trigger, // thus matching the behaviour of a 4-state simulator. This is reportedly also // the behaviour of commercial cycle accurate modelling tools as well. // // This file ONLY is placed into the Public Domain, for any use, without // warranty, 2012 by Wilson Snyder. `timescale 1ns/1ns module t (/*AUTOARG*/ // Inputs clk ); input clk; wire res; wire res_n; reg rst; reg rst_n; integer count = 0; initial_edge i_edge (.res (res), .rst (rst)); initial_edge_n i_edge_n (.res_n (res_n), .rst_n (rst_n)); // run for 3 cycles, with one cycle of reset. always @(posedge clk) begin rst <= (count == 0) ? 1 : 0; rst_n <= (count == 0) ? 0 : 1; if (count == 3) begin if ((res == 1) && (res_n == 1)) begin $write ("*-* All Finished *-*\n"); $finish; end else begin `ifdef TEST_VERBOSE $write ("FAILED: res = %b, res_n = %b\n", res, res_n); `endif $stop; end end count = count + 1; end endmodule module initial_edge_n (res_n, rst_n); output res_n; input rst_n; reg res_n = 1'b0; always @(negedge rst_n) begin if (rst_n == 1'b0) begin res_n <= 1'b1; end end endmodule // initial_edge_n module initial_edge (res, rst); output res; input rst; reg res = 1'b0; always @(posedge rst) begin if (rst == 1'b1) begin res <= 1'b1; end end endmodule // initial_edge
// DESCRIPTION: Verilator: initial edge issue // // The module initial_edge drives the output "res" high when the reset signal, // rst, goes high. // // The module initial_edge_n drives the output "res_n" high when the reset // signal, rst_n, goes low. // // For 4-state simulators, that edge occurs when the initial value of rst_n, // X, goes to zero. However, by default for Verilator, being 2-state, the // initial value is zero, so no edge is seen. // // This is not a bug in verilator (it is bad design to rely on an edge // transition from an unitialized signal), but the problem is that there are // quite a few instances of code out there that seems to be dependent on this // behaviour to get out of reset. // // The Verilator --x-initial-edge flag causes these initial edges to trigger, // thus matching the behaviour of a 4-state simulator. This is reportedly also // the behaviour of commercial cycle accurate modelling tools as well. // // This file ONLY is placed into the Public Domain, for any use, without // warranty, 2012 by Wilson Snyder. `timescale 1ns/1ns module t (/*AUTOARG*/ // Inputs clk ); input clk; wire res; wire res_n; reg rst; reg rst_n; integer count = 0; initial_edge i_edge (.res (res), .rst (rst)); initial_edge_n i_edge_n (.res_n (res_n), .rst_n (rst_n)); // run for 3 cycles, with one cycle of reset. always @(posedge clk) begin rst <= (count == 0) ? 1 : 0; rst_n <= (count == 0) ? 0 : 1; if (count == 3) begin if ((res == 1) && (res_n == 1)) begin $write ("*-* All Finished *-*\n"); $finish; end else begin `ifdef TEST_VERBOSE $write ("FAILED: res = %b, res_n = %b\n", res, res_n); `endif $stop; end end count = count + 1; end endmodule module initial_edge_n (res_n, rst_n); output res_n; input rst_n; reg res_n = 1'b0; always @(negedge rst_n) begin if (rst_n == 1'b0) begin res_n <= 1'b1; end end endmodule // initial_edge_n module initial_edge (res, rst); output res; input rst; reg res = 1'b0; always @(posedge rst) begin if (rst == 1'b1) begin res <= 1'b1; end end endmodule // initial_edge
// DESCRIPTION: Verilator: initial edge issue // // The module initial_edge drives the output "res" high when the reset signal, // rst, goes high. // // The module initial_edge_n drives the output "res_n" high when the reset // signal, rst_n, goes low. // // For 4-state simulators, that edge occurs when the initial value of rst_n, // X, goes to zero. However, by default for Verilator, being 2-state, the // initial value is zero, so no edge is seen. // // This is not a bug in verilator (it is bad design to rely on an edge // transition from an unitialized signal), but the problem is that there are // quite a few instances of code out there that seems to be dependent on this // behaviour to get out of reset. // // The Verilator --x-initial-edge flag causes these initial edges to trigger, // thus matching the behaviour of a 4-state simulator. This is reportedly also // the behaviour of commercial cycle accurate modelling tools as well. // // This file ONLY is placed into the Public Domain, for any use, without // warranty, 2012 by Wilson Snyder. `timescale 1ns/1ns module t (/*AUTOARG*/ // Inputs clk ); input clk; wire res; wire res_n; reg rst; reg rst_n; integer count = 0; initial_edge i_edge (.res (res), .rst (rst)); initial_edge_n i_edge_n (.res_n (res_n), .rst_n (rst_n)); // run for 3 cycles, with one cycle of reset. always @(posedge clk) begin rst <= (count == 0) ? 1 : 0; rst_n <= (count == 0) ? 0 : 1; if (count == 3) begin if ((res == 1) && (res_n == 1)) begin $write ("*-* All Finished *-*\n"); $finish; end else begin `ifdef TEST_VERBOSE $write ("FAILED: res = %b, res_n = %b\n", res, res_n); `endif $stop; end end count = count + 1; end endmodule module initial_edge_n (res_n, rst_n); output res_n; input rst_n; reg res_n = 1'b0; always @(negedge rst_n) begin if (rst_n == 1'b0) begin res_n <= 1'b1; end end endmodule // initial_edge_n module initial_edge (res, rst); output res; input rst; reg res = 1'b0; always @(posedge rst) begin if (rst == 1'b1) begin res <= 1'b1; end end endmodule // initial_edge
// DESCRIPTION: Verilator: initial edge issue // // The module initial_edge drives the output "res" high when the reset signal, // rst, goes high. // // The module initial_edge_n drives the output "res_n" high when the reset // signal, rst_n, goes low. // // For 4-state simulators, that edge occurs when the initial value of rst_n, // X, goes to zero. However, by default for Verilator, being 2-state, the // initial value is zero, so no edge is seen. // // This is not a bug in verilator (it is bad design to rely on an edge // transition from an unitialized signal), but the problem is that there are // quite a few instances of code out there that seems to be dependent on this // behaviour to get out of reset. // // The Verilator --x-initial-edge flag causes these initial edges to trigger, // thus matching the behaviour of a 4-state simulator. This is reportedly also // the behaviour of commercial cycle accurate modelling tools as well. // // This file ONLY is placed into the Public Domain, for any use, without // warranty, 2012 by Wilson Snyder. `timescale 1ns/1ns module t (/*AUTOARG*/ // Inputs clk ); input clk; wire res; wire res_n; reg rst; reg rst_n; integer count = 0; initial_edge i_edge (.res (res), .rst (rst)); initial_edge_n i_edge_n (.res_n (res_n), .rst_n (rst_n)); // run for 3 cycles, with one cycle of reset. always @(posedge clk) begin rst <= (count == 0) ? 1 : 0; rst_n <= (count == 0) ? 0 : 1; if (count == 3) begin if ((res == 1) && (res_n == 1)) begin $write ("*-* All Finished *-*\n"); $finish; end else begin `ifdef TEST_VERBOSE $write ("FAILED: res = %b, res_n = %b\n", res, res_n); `endif $stop; end end count = count + 1; end endmodule module initial_edge_n (res_n, rst_n); output res_n; input rst_n; reg res_n = 1'b0; always @(negedge rst_n) begin if (rst_n == 1'b0) begin res_n <= 1'b1; end end endmodule // initial_edge_n module initial_edge (res, rst); output res; input rst; reg res = 1'b0; always @(posedge rst) begin if (rst == 1'b1) begin res <= 1'b1; end end endmodule // initial_edge
(** * Rel: Properties of Relations *) Require Export SfLib. (** This short, optional chapter develops some basic definitions and a few theorems about binary relations in Coq. The key definitions are repeated where they are actually used (in the [Smallstep] chapter), so readers who are already comfortable with these ideas can safely skim or skip this chapter. However, relations are also a good source of exercises for developing facility with Coq's basic reasoning facilities, so it may be useful to look at it just after the [Logic] chapter. *) (** A (binary) _relation_ on a set [X] is a family of propositions parameterized by two elements of [X] -- i.e., a proposition about pairs of elements of [X]. *) Definition relation (X: Type) := X->X->Prop. (** Somewhat confusingly, the Coq standard library hijacks the generic term "relation" for this specific instance. To maintain consistency with the library, we will do the same. So, henceforth the Coq identifier [relation] will always refer to a binary relation between some set and itself, while the English word "relation" can refer either to the specific Coq concept or the more general concept of a relation between any number of possibly different sets. The context of the discussion should always make clear which is meant. *) (** An example relation on [nat] is [le], the less-that-or-equal-to relation which we usually write like this [n1 <= n2]. *) Print le. (* ====> Inductive le (n : nat) : nat -> Prop := le_n : n <= n | le_S : forall m : nat, n <= m -> n <= S m *) Check le : nat -> nat -> Prop. Check le : relation nat. (* ######################################################### *) (** * Basic Properties of Relations *) (** As anyone knows who has taken an undergraduate discrete math course, there is a lot to be said about relations in general -- ways of classifying relations (are they reflexive, transitive, etc.), theorems that can be proved generically about classes of relations, constructions that build one relation from another, etc. For example... *) (** A relation [R] on a set [X] is a _partial function_ if, for every [x], there is at most one [y] such that [R x y] -- i.e., if [R x y1] and [R x y2] together imply [y1 = y2]. *) Definition partial_function {X: Type} (R: relation X) := forall x y1 y2 : X, R x y1 -> R x y2 -> y1 = y2. (** For example, the [next_nat] relation defined earlier is a partial function. *) Print next_nat. (* ====> Inductive next_nat (n : nat) : nat -> Prop := nn : next_nat n (S n) *) Check next_nat : relation nat. Theorem next_nat_partial_function : partial_function next_nat. Proof. unfold partial_function. intros x y1 y2 H1 H2. inversion H1. inversion H2. reflexivity. Qed. (** However, the [<=] relation on numbers is not a partial function. In short: Assume, for a contradiction, that [<=] is a partial function. But then, since [0 <= 0] and [0 <= 1], it follows that [0 = 1]. This is nonsense, so our assumption was contradictory. *) Theorem le_not_a_partial_function : ~ (partial_function le). Proof. unfold not. unfold partial_function. intros Hc. assert (0 = 1) as Nonsense. Case "Proof of assertion". apply Hc with (x := 0). apply le_n. apply le_S. apply le_n. inversion Nonsense. Qed. (** **** Exercise: 2 stars, optional *) (** Show that the [total_relation] defined in earlier is not a partial function. *) (* FILL IN HERE *) (** [] *) (** **** Exercise: 2 stars, optional *) (** Show that the [empty_relation] defined earlier is a partial function. *) (* FILL IN HERE *) (** [] *) (** A _reflexive_ relation on a set [X] is one for which every element of [X] is related to itself. *) Definition reflexive {X: Type} (R: relation X) := forall a : X, R a a. Theorem le_reflexive : reflexive le. Proof. unfold reflexive. intros n. apply le_n. Qed. (** A relation [R] is _transitive_ if [R a c] holds whenever [R a b] and [R b c] do. *) Definition transitive {X: Type} (R: relation X) := forall a b c : X, (R a b) -> (R b c) -> (R a c). Theorem le_trans : transitive le. Proof. intros n m o Hnm Hmo. induction Hmo. Case "le_n". apply Hnm. Case "le_S". apply le_S. apply IHHmo. Qed. Theorem lt_trans: transitive lt. Proof. unfold lt. unfold transitive. intros n m o Hnm Hmo. apply le_S in Hnm. apply le_trans with (a := (S n)) (b := (S m)) (c := o). apply Hnm. apply Hmo. Qed. (** **** Exercise: 2 stars, optional *) (** We can also prove [lt_trans] more laboriously by induction, without using le_trans. Do this.*) Theorem lt_trans' : transitive lt. Proof. (* Prove this by induction on evidence that [m] is less than [o]. *) unfold lt. unfold transitive. intros n m o Hnm Hmo. induction Hmo as [| m' Hm'o]. (* FILL IN HERE *) Admitted. (** [] *) (** **** Exercise: 2 stars, optional *) (** Prove the same thing again by induction on [o]. *) Theorem lt_trans'' : transitive lt. Proof. unfold lt. unfold transitive. intros n m o Hnm Hmo. induction o as [| o']. (* FILL IN HERE *) Admitted. (** [] *) (** The transitivity of [le], in turn, can be used to prove some facts that will be useful later (e.g., for the proof of antisymmetry below)... *) Theorem le_Sn_le : forall n m, S n <= m -> n <= m. Proof. intros n m H. apply le_trans with (S n). apply le_S. apply le_n. apply H. Qed. (** **** Exercise: 1 star, optional *) Theorem le_S_n : forall n m, (S n <= S m) -> (n <= m). Proof. (* FILL IN HERE *) Admitted. (** [] *) (** **** Exercise: 2 stars, optional (le_Sn_n_inf) *) (** Provide an informal proof of the following theorem: Theorem: For every [n], [~(S n <= n)] A formal proof of this is an optional exercise below, but try the informal proof without doing the formal proof first. Proof: (* FILL IN HERE *) [] *) (** **** Exercise: 1 star, optional *) Theorem le_Sn_n : forall n, ~ (S n <= n). Proof. (* FILL IN HERE *) Admitted. (** [] *) (** Reflexivity and transitivity are the main concepts we'll need for later chapters, but, for a bit of additional practice working with relations in Coq, here are a few more common ones. A relation [R] is _symmetric_ if [R a b] implies [R b a]. *) Definition symmetric {X: Type} (R: relation X) := forall a b : X, (R a b) -> (R b a). (** **** Exercise: 2 stars, optional *) Theorem le_not_symmetric : ~ (symmetric le). Proof. (* FILL IN HERE *) Admitted. (** [] *) (** A relation [R] is _antisymmetric_ if [R a b] and [R b a] together imply [a = b] -- that is, if the only "cycles" in [R] are trivial ones. *) Definition antisymmetric {X: Type} (R: relation X) := forall a b : X, (R a b) -> (R b a) -> a = b. (** **** Exercise: 2 stars, optional *) Theorem le_antisymmetric : antisymmetric le. Proof. (* FILL IN HERE *) Admitted. (** [] *) (** **** Exercise: 2 stars, optional *) Theorem le_step : forall n m p, n < m -> m <= S p -> n <= p. Proof. (* FILL IN HERE *) Admitted. (** [] *) (** A relation is an _equivalence_ if it's reflexive, symmetric, and transitive. *) Definition equivalence {X:Type} (R: relation X) := (reflexive R) /\ (symmetric R) /\ (transitive R). (** A relation is a _partial order_ when it's reflexive, _anti_-symmetric, and transitive. In the Coq standard library it's called just "order" for short. *) Definition order {X:Type} (R: relation X) := (reflexive R) /\ (antisymmetric R) /\ (transitive R). (** A preorder is almost like a partial order, but doesn't have to be antisymmetric. *) Definition preorder {X:Type} (R: relation X) := (reflexive R) /\ (transitive R). Theorem le_order : order le. Proof. unfold order. split. Case "refl". apply le_reflexive. split. Case "antisym". apply le_antisymmetric. Case "transitive.". apply le_trans. Qed. (* ########################################################### *) (** * Reflexive, Transitive Closure *) (** The _reflexive, transitive closure_ of a relation [R] is the smallest relation that contains [R] and that is both reflexive and transitive. Formally, it is defined like this in the Relations module of the Coq standard library: *) Inductive clos_refl_trans {A: Type} (R: relation A) : relation A := | rt_step : forall x y, R x y -> clos_refl_trans R x y | rt_refl : forall x, clos_refl_trans R x x | rt_trans : forall x y z, clos_refl_trans R x y -> clos_refl_trans R y z -> clos_refl_trans R x z. (** For example, the reflexive and transitive closure of the [next_nat] relation coincides with the [le] relation. *) Theorem next_nat_closure_is_le : forall n m, (n <= m) <-> ((clos_refl_trans next_nat) n m). Proof. intros n m. split. Case "->". intro H. induction H. SCase "le_n". apply rt_refl. SCase "le_S". apply rt_trans with m. apply IHle. apply rt_step. apply nn. Case "<-". intro H. induction H. SCase "rt_step". inversion H. apply le_S. apply le_n. SCase "rt_refl". apply le_n. SCase "rt_trans". apply le_trans with y. apply IHclos_refl_trans1. apply IHclos_refl_trans2. Qed. (** The above definition of reflexive, transitive closure is natural -- it says, explicitly, that the reflexive and transitive closure of [R] is the least relation that includes [R] and that is closed under rules of reflexivity and transitivity. But it turns out that this definition is not very convenient for doing proofs -- the "nondeterminism" of the [rt_trans] rule can sometimes lead to tricky inductions. Here is a more useful definition... *) Inductive refl_step_closure {X:Type} (R: relation X) : relation X := | rsc_refl : forall (x : X), refl_step_closure R x x | rsc_step : forall (x y z : X), R x y -> refl_step_closure R y z -> refl_step_closure R x z. (** (Note that, aside from the naming of the constructors, this definition is the same as the [multi] step relation used in many other chapters.) *) (** (The following [Tactic Notation] definitions are explained in another chapter. You can ignore them if you haven't read the explanation yet.) *) Tactic Notation "rt_cases" tactic(first) ident(c) := first; [ Case_aux c "rt_step" | Case_aux c "rt_refl" | Case_aux c "rt_trans" ]. Tactic Notation "rsc_cases" tactic(first) ident(c) := first; [ Case_aux c "rsc_refl" | Case_aux c "rsc_step" ]. (** Our new definition of reflexive, transitive closure "bundles" the [rt_step] and [rt_trans] rules into the single rule step. The left-hand premise of this step is a single use of [R], leading to a much simpler induction principle. Before we go on, we should check that the two definitions do indeed define the same relation... First, we prove two lemmas showing that [refl_step_closure] mimics the behavior of the two "missing" [clos_refl_trans] constructors. *) Theorem rsc_R : forall (X:Type) (R:relation X) (x y : X), R x y -> refl_step_closure R x y. Proof. intros X R x y H. apply rsc_step with y. apply H. apply rsc_refl. Qed. (** **** Exercise: 2 stars, optional (rsc_trans) *) Theorem rsc_trans : forall (X:Type) (R: relation X) (x y z : X), refl_step_closure R x y -> refl_step_closure R y z -> refl_step_closure R x z. Proof. (* FILL IN HERE *) Admitted. (** [] *) (** Then we use these facts to prove that the two definitions of reflexive, transitive closure do indeed define the same relation. *) (** **** Exercise: 3 stars, optional (rtc_rsc_coincide) *) Theorem rtc_rsc_coincide : forall (X:Type) (R: relation X) (x y : X), clos_refl_trans R x y <-> refl_step_closure R x y. Proof. (* FILL IN HERE *) Admitted. (** [] *) (** $Date: 2014-12-31 15:31:47 -0500 (Wed, 31 Dec 2014) $ *)
/*+-------------------------------------------------------------------------- Copyright (c) 2015, Microsoft Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------------*/ ////////////////////////////////////////////////////////////////////////////////// // Company: Microsoft Research Asia // Engineer: Jiansong Zhang // // Create Date: 21:39:39 06/01/2009 // Design Name: // Module Name: tx_engine // Project Name: Sora // Target Devices: Virtex5 LX50T // Tool versions: ISE10.1.03 // Description: // Purpose: Non-Posted Packet Builder module. This module takes the // length info from the Non-Posted Packet Slicer, and requests a tag from // the Tag Generator and uses that info to build a non-posted memory read // header which it writes into a FIFO // // Dependencies: // // Revision: // Revision 0.01 - File Created // Additional Comments: // modified by zjs: // tag content modified: from {length[9:0], addr[21:0]} to {isDes, 8'h000, addr[21:0]} // ////////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module non_posted_pkt_builder( input clk, input rst, input [15:0] req_id, //from pcie block //to/from the non_posted_pkt_slicer input go, output reg ack, input [63:0] dmaras, input [31:0] dmarad, input [9:0] length, /// Jiansong: added for TX des request input isDes, //to/from the tag_generator input [7:0] tag_value, input tag_gnt, output reg tag_inc, //to the non_posted_pkt_header_fifo output reg [63:0] header_data_out, output reg header_data_wren, //to the read_request_wrapper output reg [4:0] tx_waddr, output reg [31:0] tx_wdata, output reg tx_we ); //State machine states localparam IDLE = 4'h0; localparam HEAD1 = 4'h1; localparam HEAD2 = 4'h2; localparam WAIT_FOR_GO_DEASSERT = 4'h3; //parameters used to define fixed header fields localparam rsvd = 1'b0; //reserved and unused header fields to zero localparam MRd = 5'b00000; //format for memory read header localparam TC = 3'b000; //traffic class 0 localparam TD = 1'b0; //digest bit always 0 localparam EP = 1'b0; //poisoned bit always 0 //localparam ATTR = 2'b10;//enable relaxed ordering to allow completions to pass //for completion streaming mode localparam ATTR = 2'b00; //Jiansong: Maybe it's the cause of CPU memory read lock problem localparam LastBE = 4'b1111; //LastBE is always asserted since all transfers //are on 128B boundaries and are always at least //128B long localparam FirstBE = 4'b1111;//FirstBE is always asserted since all transfers //are on 128B boundaries wire [1:0] fmt; reg [3:0] state; reg [63:0] dmaras_reg; reg [31:0] dmarad_reg; reg rst_reg; always@(posedge clk) rst_reg <= rst; //if the upper DWord of the destination address is zero //than make the format of the packet header 3DW; otherwise 4DW assign fmt[1:0] = (dmaras_reg[63:32] == 0) ? 2'b00 : 2'b01; //if the non_posted_pkt_slicer asserts "go" then register the dma read params always@(posedge clk)begin if(rst_reg)begin dmaras_reg[63:0] <= 0; end else if(go)begin dmaras_reg <= dmaras; end end //dmarad is sent to the read_request_wrapper so that the RX engine knows //where to put the incoming completion data in the DDR2 always@(posedge clk)begin if(rst_reg)begin dmarad_reg[31:0] <= 0; end else if(go)begin dmarad_reg <= dmarad; end end // State machine // Builds headers for non-posted memory reads // Writes them into a FIFO always @ (posedge clk) begin if (rst_reg) begin header_data_out <= 0; header_data_wren <= 1'b0; ack <= 1'b0; tag_inc <=1'b0; tx_waddr[4:0] <= 0; tx_wdata[31:0] <= 0; tx_we <= 1'b0; state <= IDLE; end else begin case (state) IDLE : begin header_data_out <= 0; header_data_wren <= 1'b0; ack <= 1'b0; tag_inc <=1'b0; tx_waddr[4:0] <= 0; tx_wdata[31:0] <= 0; tx_we <= 1'b0; if(go) state<= HEAD1; else state<= IDLE; end HEAD1 : begin //wait for the tag_generator to grant a tag via tag_gnt and then //write the first 64-bits of a non-posted header into the //non-posted fifo header_data_out <= {rsvd,fmt[1:0],MRd,rsvd,TC,rsvd,rsvd,rsvd,rsvd, TD,EP,ATTR,rsvd,rsvd,length[9:0],req_id[15:0], tag_value[7:0],LastBE,FirstBE}; ack <= 0; tag_inc <=1'b0; tx_waddr[4:0] <= 0; tx_wdata[31:0] <= 0; tx_we <= 1'b0; if(tag_gnt == 1'b0)begin state <= HEAD1; header_data_wren <= 1'b0; end else begin header_data_wren <= 1'b1; state <= HEAD2; end end HEAD2 : begin //write the next 32 or 64 bits of a non-posted header to the //non-posted header fifo (32 if 3DW - 64 if 4DW header) header_data_out <= (fmt[0]==1'b1) ? {dmaras_reg[63:2],2'b00} : {dmaras_reg[31:2], 2'b00, dmaras_reg[63:32]}; header_data_wren <= 1'b1; //also write needed information by the RX engine into the //Read Request Wrapper tx_waddr[4:0] <= tag_value[4:0]; //// tx_wdata[31:0] <= {length[9:0],dmarad_reg[27:6]}; tx_wdata[31:0] <= {isDes,9'b0_0000_0000,dmarad_reg[27:6]}; tx_we <= 1'b1; ack <= 1'b1; //acknowledge to the non-posted_packet_slicer that //the packet has been queued up for transmission tag_inc <=1'b1;//only assert tag_inc once - the tag gets //incremented for every clock cycle that it is //asserted state <= WAIT_FOR_GO_DEASSERT; end WAIT_FOR_GO_DEASSERT : begin //ack causes "go" to deassert but we need to give the //non-posted_pkt_slicer a chance to deassert "go" before returning //to IDLE header_data_wren <= 1'b0; tx_we <= 1'b0; tag_inc <=1'b0; ack <= 1'b0; state <= IDLE; end default : begin header_data_out <= 0; header_data_wren <= 1'b0; ack <= 1'b0; tag_inc <=1'b0; tx_waddr[4:0] <= 0; tx_wdata[31:0] <= 0; tx_we <= 1'b0; state <= IDLE; end endcase end end endmodule
/*+-------------------------------------------------------------------------- Copyright (c) 2015, Microsoft Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------------*/ ////////////////////////////////////////////////////////////////////////////////// // Company: Microsoft Research Asia // Engineer: Jiansong Zhang // // Create Date: 21:39:39 06/01/2009 // Design Name: // Module Name: tx_engine // Project Name: Sora // Target Devices: Virtex5 LX50T // Tool versions: ISE10.1.03 // Description: // Purpose: Non-Posted Packet Builder module. This module takes the // length info from the Non-Posted Packet Slicer, and requests a tag from // the Tag Generator and uses that info to build a non-posted memory read // header which it writes into a FIFO // // Dependencies: // // Revision: // Revision 0.01 - File Created // Additional Comments: // modified by zjs: // tag content modified: from {length[9:0], addr[21:0]} to {isDes, 8'h000, addr[21:0]} // ////////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module non_posted_pkt_builder( input clk, input rst, input [15:0] req_id, //from pcie block //to/from the non_posted_pkt_slicer input go, output reg ack, input [63:0] dmaras, input [31:0] dmarad, input [9:0] length, /// Jiansong: added for TX des request input isDes, //to/from the tag_generator input [7:0] tag_value, input tag_gnt, output reg tag_inc, //to the non_posted_pkt_header_fifo output reg [63:0] header_data_out, output reg header_data_wren, //to the read_request_wrapper output reg [4:0] tx_waddr, output reg [31:0] tx_wdata, output reg tx_we ); //State machine states localparam IDLE = 4'h0; localparam HEAD1 = 4'h1; localparam HEAD2 = 4'h2; localparam WAIT_FOR_GO_DEASSERT = 4'h3; //parameters used to define fixed header fields localparam rsvd = 1'b0; //reserved and unused header fields to zero localparam MRd = 5'b00000; //format for memory read header localparam TC = 3'b000; //traffic class 0 localparam TD = 1'b0; //digest bit always 0 localparam EP = 1'b0; //poisoned bit always 0 //localparam ATTR = 2'b10;//enable relaxed ordering to allow completions to pass //for completion streaming mode localparam ATTR = 2'b00; //Jiansong: Maybe it's the cause of CPU memory read lock problem localparam LastBE = 4'b1111; //LastBE is always asserted since all transfers //are on 128B boundaries and are always at least //128B long localparam FirstBE = 4'b1111;//FirstBE is always asserted since all transfers //are on 128B boundaries wire [1:0] fmt; reg [3:0] state; reg [63:0] dmaras_reg; reg [31:0] dmarad_reg; reg rst_reg; always@(posedge clk) rst_reg <= rst; //if the upper DWord of the destination address is zero //than make the format of the packet header 3DW; otherwise 4DW assign fmt[1:0] = (dmaras_reg[63:32] == 0) ? 2'b00 : 2'b01; //if the non_posted_pkt_slicer asserts "go" then register the dma read params always@(posedge clk)begin if(rst_reg)begin dmaras_reg[63:0] <= 0; end else if(go)begin dmaras_reg <= dmaras; end end //dmarad is sent to the read_request_wrapper so that the RX engine knows //where to put the incoming completion data in the DDR2 always@(posedge clk)begin if(rst_reg)begin dmarad_reg[31:0] <= 0; end else if(go)begin dmarad_reg <= dmarad; end end // State machine // Builds headers for non-posted memory reads // Writes them into a FIFO always @ (posedge clk) begin if (rst_reg) begin header_data_out <= 0; header_data_wren <= 1'b0; ack <= 1'b0; tag_inc <=1'b0; tx_waddr[4:0] <= 0; tx_wdata[31:0] <= 0; tx_we <= 1'b0; state <= IDLE; end else begin case (state) IDLE : begin header_data_out <= 0; header_data_wren <= 1'b0; ack <= 1'b0; tag_inc <=1'b0; tx_waddr[4:0] <= 0; tx_wdata[31:0] <= 0; tx_we <= 1'b0; if(go) state<= HEAD1; else state<= IDLE; end HEAD1 : begin //wait for the tag_generator to grant a tag via tag_gnt and then //write the first 64-bits of a non-posted header into the //non-posted fifo header_data_out <= {rsvd,fmt[1:0],MRd,rsvd,TC,rsvd,rsvd,rsvd,rsvd, TD,EP,ATTR,rsvd,rsvd,length[9:0],req_id[15:0], tag_value[7:0],LastBE,FirstBE}; ack <= 0; tag_inc <=1'b0; tx_waddr[4:0] <= 0; tx_wdata[31:0] <= 0; tx_we <= 1'b0; if(tag_gnt == 1'b0)begin state <= HEAD1; header_data_wren <= 1'b0; end else begin header_data_wren <= 1'b1; state <= HEAD2; end end HEAD2 : begin //write the next 32 or 64 bits of a non-posted header to the //non-posted header fifo (32 if 3DW - 64 if 4DW header) header_data_out <= (fmt[0]==1'b1) ? {dmaras_reg[63:2],2'b00} : {dmaras_reg[31:2], 2'b00, dmaras_reg[63:32]}; header_data_wren <= 1'b1; //also write needed information by the RX engine into the //Read Request Wrapper tx_waddr[4:0] <= tag_value[4:0]; //// tx_wdata[31:0] <= {length[9:0],dmarad_reg[27:6]}; tx_wdata[31:0] <= {isDes,9'b0_0000_0000,dmarad_reg[27:6]}; tx_we <= 1'b1; ack <= 1'b1; //acknowledge to the non-posted_packet_slicer that //the packet has been queued up for transmission tag_inc <=1'b1;//only assert tag_inc once - the tag gets //incremented for every clock cycle that it is //asserted state <= WAIT_FOR_GO_DEASSERT; end WAIT_FOR_GO_DEASSERT : begin //ack causes "go" to deassert but we need to give the //non-posted_pkt_slicer a chance to deassert "go" before returning //to IDLE header_data_wren <= 1'b0; tx_we <= 1'b0; tag_inc <=1'b0; ack <= 1'b0; state <= IDLE; end default : begin header_data_out <= 0; header_data_wren <= 1'b0; ack <= 1'b0; tag_inc <=1'b0; tx_waddr[4:0] <= 0; tx_wdata[31:0] <= 0; tx_we <= 1'b0; state <= IDLE; end endcase end end endmodule
/*+-------------------------------------------------------------------------- Copyright (c) 2015, Microsoft Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------------*/ ////////////////////////////////////////////////////////////////////////////////// // Company: Microsoft Research Asia // Engineer: Jiansong Zhang // // Create Date: 21:39:39 06/01/2009 // Design Name: // Module Name: tx_engine // Project Name: Sora // Target Devices: Virtex5 LX50T // Tool versions: ISE10.1.03 // Description: // Purpose: Non-Posted Packet Builder module. This module takes the // length info from the Non-Posted Packet Slicer, and requests a tag from // the Tag Generator and uses that info to build a non-posted memory read // header which it writes into a FIFO // // Dependencies: // // Revision: // Revision 0.01 - File Created // Additional Comments: // modified by zjs: // tag content modified: from {length[9:0], addr[21:0]} to {isDes, 8'h000, addr[21:0]} // ////////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module non_posted_pkt_builder( input clk, input rst, input [15:0] req_id, //from pcie block //to/from the non_posted_pkt_slicer input go, output reg ack, input [63:0] dmaras, input [31:0] dmarad, input [9:0] length, /// Jiansong: added for TX des request input isDes, //to/from the tag_generator input [7:0] tag_value, input tag_gnt, output reg tag_inc, //to the non_posted_pkt_header_fifo output reg [63:0] header_data_out, output reg header_data_wren, //to the read_request_wrapper output reg [4:0] tx_waddr, output reg [31:0] tx_wdata, output reg tx_we ); //State machine states localparam IDLE = 4'h0; localparam HEAD1 = 4'h1; localparam HEAD2 = 4'h2; localparam WAIT_FOR_GO_DEASSERT = 4'h3; //parameters used to define fixed header fields localparam rsvd = 1'b0; //reserved and unused header fields to zero localparam MRd = 5'b00000; //format for memory read header localparam TC = 3'b000; //traffic class 0 localparam TD = 1'b0; //digest bit always 0 localparam EP = 1'b0; //poisoned bit always 0 //localparam ATTR = 2'b10;//enable relaxed ordering to allow completions to pass //for completion streaming mode localparam ATTR = 2'b00; //Jiansong: Maybe it's the cause of CPU memory read lock problem localparam LastBE = 4'b1111; //LastBE is always asserted since all transfers //are on 128B boundaries and are always at least //128B long localparam FirstBE = 4'b1111;//FirstBE is always asserted since all transfers //are on 128B boundaries wire [1:0] fmt; reg [3:0] state; reg [63:0] dmaras_reg; reg [31:0] dmarad_reg; reg rst_reg; always@(posedge clk) rst_reg <= rst; //if the upper DWord of the destination address is zero //than make the format of the packet header 3DW; otherwise 4DW assign fmt[1:0] = (dmaras_reg[63:32] == 0) ? 2'b00 : 2'b01; //if the non_posted_pkt_slicer asserts "go" then register the dma read params always@(posedge clk)begin if(rst_reg)begin dmaras_reg[63:0] <= 0; end else if(go)begin dmaras_reg <= dmaras; end end //dmarad is sent to the read_request_wrapper so that the RX engine knows //where to put the incoming completion data in the DDR2 always@(posedge clk)begin if(rst_reg)begin dmarad_reg[31:0] <= 0; end else if(go)begin dmarad_reg <= dmarad; end end // State machine // Builds headers for non-posted memory reads // Writes them into a FIFO always @ (posedge clk) begin if (rst_reg) begin header_data_out <= 0; header_data_wren <= 1'b0; ack <= 1'b0; tag_inc <=1'b0; tx_waddr[4:0] <= 0; tx_wdata[31:0] <= 0; tx_we <= 1'b0; state <= IDLE; end else begin case (state) IDLE : begin header_data_out <= 0; header_data_wren <= 1'b0; ack <= 1'b0; tag_inc <=1'b0; tx_waddr[4:0] <= 0; tx_wdata[31:0] <= 0; tx_we <= 1'b0; if(go) state<= HEAD1; else state<= IDLE; end HEAD1 : begin //wait for the tag_generator to grant a tag via tag_gnt and then //write the first 64-bits of a non-posted header into the //non-posted fifo header_data_out <= {rsvd,fmt[1:0],MRd,rsvd,TC,rsvd,rsvd,rsvd,rsvd, TD,EP,ATTR,rsvd,rsvd,length[9:0],req_id[15:0], tag_value[7:0],LastBE,FirstBE}; ack <= 0; tag_inc <=1'b0; tx_waddr[4:0] <= 0; tx_wdata[31:0] <= 0; tx_we <= 1'b0; if(tag_gnt == 1'b0)begin state <= HEAD1; header_data_wren <= 1'b0; end else begin header_data_wren <= 1'b1; state <= HEAD2; end end HEAD2 : begin //write the next 32 or 64 bits of a non-posted header to the //non-posted header fifo (32 if 3DW - 64 if 4DW header) header_data_out <= (fmt[0]==1'b1) ? {dmaras_reg[63:2],2'b00} : {dmaras_reg[31:2], 2'b00, dmaras_reg[63:32]}; header_data_wren <= 1'b1; //also write needed information by the RX engine into the //Read Request Wrapper tx_waddr[4:0] <= tag_value[4:0]; //// tx_wdata[31:0] <= {length[9:0],dmarad_reg[27:6]}; tx_wdata[31:0] <= {isDes,9'b0_0000_0000,dmarad_reg[27:6]}; tx_we <= 1'b1; ack <= 1'b1; //acknowledge to the non-posted_packet_slicer that //the packet has been queued up for transmission tag_inc <=1'b1;//only assert tag_inc once - the tag gets //incremented for every clock cycle that it is //asserted state <= WAIT_FOR_GO_DEASSERT; end WAIT_FOR_GO_DEASSERT : begin //ack causes "go" to deassert but we need to give the //non-posted_pkt_slicer a chance to deassert "go" before returning //to IDLE header_data_wren <= 1'b0; tx_we <= 1'b0; tag_inc <=1'b0; ack <= 1'b0; state <= IDLE; end default : begin header_data_out <= 0; header_data_wren <= 1'b0; ack <= 1'b0; tag_inc <=1'b0; tx_waddr[4:0] <= 0; tx_wdata[31:0] <= 0; tx_we <= 1'b0; state <= IDLE; end endcase end end endmodule
`timescale 1ns / 1ps ////////////////////////////////////////////////////////////////////////////////// // Company: // Engineer: // // Create Date: 11:39:13 09/04/2015 // Design Name: // Module Name: First_Phase_M // Project Name: // Target Devices: // Tool versions: // Description: // // Dependencies: // // Revision: // Revision 0.01 - File Created // Additional Comments: // ////////////////////////////////////////////////////////////////////////////////// module First_Phase_M //SINGLE PRECISION PARAMETERS # (parameter W = 32) //DOUBLE PRECISION PARAMETERS /*# (parameter W = 64) */ ( input wire clk, //system clock input wire rst, //module reset input wire load, //load signal input wire [W-1:0] Data_MX, //Data X and Y are the operands input wire [W-1:0] Data_MY, output wire [W-1:0] Op_MX, //Both Op signals are the outputs output wire [W-1:0] Op_MY ); //Module's Body //Both registers could be set with the parameter signal //to be 32 or 64 bitwidth RegisterMult #(.W(W)) XMRegister ( //Data X input register .clk(clk), .rst(rst), .load(load), .D(Data_MX), .Q(Op_MX) ); RegisterMult #(.W(W)) YMRegister ( //Data Y input register .clk(clk), .rst(rst), .load(load), .D(Data_MY), .Q(Op_MY) ); endmodule
(** * Stlc: The Simply Typed Lambda-Calculus *) Require Export Types. (* ###################################################################### *) (** * The Simply Typed Lambda-Calculus *) (** The simply typed lambda-calculus (STLC) is a tiny core calculus embodying the key concept of _functional abstraction_, which shows up in pretty much every real-world programming language in some form (functions, procedures, methods, etc.). We will follow exactly the same pattern as in the previous chapter when formalizing this calculus (syntax, small-step semantics, typing rules) and its main properties (progress and preservation). The new technical challenges (which will take some work to deal with) all arise from the mechanisms of _variable binding_ and _substitution_. *) (* ###################################################################### *) (** ** Overview *) (** The STLC is built on some collection of _base types_ -- booleans, numbers, strings, etc. The exact choice of base types doesn't matter -- the construction of the language and its theoretical properties work out pretty much the same -- so for the sake of brevity let's take just [Bool] for the moment. At the end of the chapter we'll see how to add more base types, and in later chapters we'll enrich the pure STLC with other useful constructs like pairs, records, subtyping, and mutable state. Starting from the booleans, we add three things: - variables - function abstractions - application This gives us the following collection of abstract syntax constructors (written out here in informal BNF notation -- we'll formalize it below). *) (** Informal concrete syntax: t ::= x variable | \x:T1.t2 abstraction | t1 t2 application | true constant true | false constant false | if t1 then t2 else t3 conditional *) (** The [\] symbol (backslash, in ascii) in a function abstraction [\x:T1.t2] is generally written as a greek letter "lambda" (hence the name of the calculus). The variable [x] is called the _parameter_ to the function; the term [t2] is its _body_. The annotation [:T] specifies the type of arguments that the function can be applied to. *) (** Some examples: - [\x:Bool. x] The identity function for booleans. - [(\x:Bool. x) true] The identity function for booleans, applied to the boolean [true]. - [\x:Bool. if x then false else true] The boolean "not" function. - [\x:Bool. true] The constant function that takes every (boolean) argument to [true]. *) (** - [\x:Bool. \y:Bool. x] A two-argument function that takes two booleans and returns the first one. (Note that, as in Coq, a two-argument function is really a one-argument function whose body is also a one-argument function.) - [(\x:Bool. \y:Bool. x) false true] A two-argument function that takes two booleans and returns the first one, applied to the booleans [false] and [true]. Note that, as in Coq, application associates to the left -- i.e., this expression is parsed as [((\x:Bool. \y:Bool. x) false) true]. - [\f:Bool->Bool. f (f true)] A higher-order function that takes a _function_ [f] (from booleans to booleans) as an argument, applies [f] to [true], and applies [f] again to the result. - [(\f:Bool->Bool. f (f true)) (\x:Bool. false)] The same higher-order function, applied to the constantly [false] function. *) (** As the last several examples show, the STLC is a language of _higher-order_ functions: we can write down functions that take other functions as arguments and/or return other functions as results. Another point to note is that the STLC doesn't provide any primitive syntax for defining _named_ functions -- all functions are "anonymous." We'll see in chapter [MoreStlc] that it is easy to add named functions to what we've got -- indeed, the fundamental naming and binding mechanisms are exactly the same. The _types_ of the STLC include [Bool], which classifies the boolean constants [true] and [false] as well as more complex computations that yield booleans, plus _arrow types_ that classify functions. *) (** T ::= Bool | T1 -> T2 For example: - [\x:Bool. false] has type [Bool->Bool] - [\x:Bool. x] has type [Bool->Bool] - [(\x:Bool. x) true] has type [Bool] - [\x:Bool. \y:Bool. x] has type [Bool->Bool->Bool] (i.e. [Bool -> (Bool->Bool)]) - [(\x:Bool. \y:Bool. x) false] has type [Bool->Bool] - [(\x:Bool. \y:Bool. x) false true] has type [Bool] *) (* ###################################################################### *) (** ** Syntax *) Module STLC. (* ################################### *) (** *** Types *) Inductive ty : Type := | TBool : ty | TArrow : ty -> ty -> ty. (* ################################### *) (** *** Terms *) Inductive tm : Type := | tvar : id -> tm | tapp : tm -> tm -> tm | tabs : id -> ty -> tm -> tm | ttrue : tm | tfalse : tm | tif : tm -> tm -> tm -> tm. Tactic Notation "t_cases" tactic(first) ident(c) := first; [ Case_aux c "tvar" | Case_aux c "tapp" | Case_aux c "tabs" | Case_aux c "ttrue" | Case_aux c "tfalse" | Case_aux c "tif" ]. (** Note that an abstraction [\x:T.t] (formally, [tabs x T t]) is always annotated with the type [T] of its parameter, in contrast to Coq (and other functional languages like ML, Haskell, etc.), which use _type inference_ to fill in missing annotations. We're not considering type inference here, to keep things simple. *) (** Some examples... *) Definition x := (Id 0). Definition y := (Id 1). Definition z := (Id 2). Hint Unfold x. Hint Unfold y. Hint Unfold z. (** [idB = \x:Bool. x] *) Notation idB := (tabs x TBool (tvar x)). (** [idBB = \x:Bool->Bool. x] *) Notation idBB := (tabs x (TArrow TBool TBool) (tvar x)). (** [idBBBB = \x:(Bool->Bool) -> (Bool->Bool). x] *) Notation idBBBB := (tabs x (TArrow (TArrow TBool TBool) (TArrow TBool TBool)) (tvar x)). (** [k = \x:Bool. \y:Bool. x] *) Notation k := (tabs x TBool (tabs y TBool (tvar x))). (** [notB = \x:Bool. if x then false else true] *) Notation notB := (tabs x TBool (tif (tvar x) tfalse ttrue)). (** (We write these as [Notation]s rather than [Definition]s to make things easier for [auto].) *) (* ###################################################################### *) (** ** Operational Semantics *) (** To define the small-step semantics of STLC terms, we begin -- as always -- by defining the set of values. Next, we define the critical notions of _free variables_ and _substitution_, which are used in the reduction rule for application expressions. And finally we give the small-step relation itself. *) (* ################################### *) (** *** Values *) (** To define the values of the STLC, we have a few cases to consider. First, for the boolean part of the language, the situation is clear: [true] and [false] are the only values. An [if] expression is never a value. *) (** Second, an application is clearly not a value: It represents a function being invoked on some argument, which clearly still has work left to do. *) (** Third, for abstractions, we have a choice: - We can say that [\x:T.t1] is a value only when [t1] is a value -- i.e., only if the function's body has been reduced (as much as it can be without knowing what argument it is going to be applied to). - Or we can say that [\x:T.t1] is always a value, no matter whether [t1] is one or not -- in other words, we can say that reduction stops at abstractions. Coq, in its built-in functional programming langauge, makes the first choice -- for example, Eval simpl in (fun x:bool => 3 + 4) yields [fun x:bool => 7]. Most real-world functional programming languages make the second choice -- reduction of a function's body only begins when the function is actually applied to an argument. We also make the second choice here. *) Inductive value : tm -> Prop := | v_abs : forall x T t, value (tabs x T t) | v_true : value ttrue | v_false : value tfalse. Hint Constructors value. (** Finally, we must consider what constitutes a _complete_ program. Intuitively, a "complete" program must not refer to any undefined variables. We'll see shortly how to define the "free" variables in a STLC term. A program is "closed", that is, it contains no free variables. *) (** Having made the choice not to reduce under abstractions, we don't need to worry about whether variables are values, since we'll always be reducing programs "from the outside in," and that means the [step] relation will always be working with closed terms (ones with no free variables). *) (* ###################################################################### *) (** *** Substitution *) (** Now we come to the heart of the STLC: the operation of substituting one term for a variable in another term. This operation will be used below to define the operational semantics of function application, where we will need to substitute the argument term for the function parameter in the function's body. For example, we reduce (\x:Bool. if x then true else x) false to if false then true else false ]] by substituting [false] for the parameter [x] in the body of the function. In general, we need to be able to substitute some given term [s] for occurrences of some variable [x] in another term [t]. In informal discussions, this is usually written [ [x:=s]t ] and pronounced "substitute [x] with [s] in [t]." *) (** Here are some examples: - [[x:=true] (if x then x else false)] yields [if true then true else false] - [[x:=true] x] yields [true] - [[x:=true] (if x then x else y)] yields [if true then true else y] - [[x:=true] y] yields [y] - [[x:=true] false] yields [false] (vacuous substitution) - [[x:=true] (\y:Bool. if y then x else false)] yields [\y:Bool. if y then true else false] - [[x:=true] (\y:Bool. x)] yields [\y:Bool. true] - [[x:=true] (\y:Bool. y)] yields [\y:Bool. y] - [[x:=true] (\x:Bool. x)] yields [\x:Bool. x] The last example is very important: substituting [x] with [true] in [\x:Bool. x] does _not_ yield [\x:Bool. true]! The reason for this is that the [x] in the body of [\x:Bool. x] is _bound_ by the abstraction: it is a new, local name that just happens to be spelled the same as some global name [x]. *) (** Here is the definition, informally... [x:=s]x = s [x:=s]y = y if x <> y [x:=s](\x:T11.t12) = \x:T11. t12 [x:=s](\y:T11.t12) = \y:T11. [x:=s]t12 if x <> y [x:=s](t1 t2) = ([x:=s]t1) ([x:=s]t2) [x:=s]true = true [x:=s]false = false [x:=s](if t1 then t2 else t3) = if [x:=s]t1 then [x:=s]t2 else [x:=s]t3 ]] *) (** ... and formally: *) Reserved Notation "'[' x ':=' s ']' t" (at level 20). Fixpoint subst (x:id) (s:tm) (t:tm) : tm := match t with | tvar x' => if eq_id_dec x x' then s else t | tabs x' T t1 => tabs x' T (if eq_id_dec x x' then t1 else ([x:=s] t1)) | tapp t1 t2 => tapp ([x:=s] t1) ([x:=s] t2) | ttrue => ttrue | tfalse => tfalse | tif t1 t2 t3 => tif ([x:=s] t1) ([x:=s] t2) ([x:=s] t3) end where "'[' x ':=' s ']' t" := (subst x s t). (** _Technical note_: Substitution becomes trickier to define if we consider the case where [s], the term being substituted for a variable in some other term, may itself contain free variables. Since we are only interested here in defining the [step] relation on closed terms (i.e., terms like [\x:Bool. x], that do not mention variables are not bound by some enclosing lambda), we can skip this extra complexity here, but it must be dealt with when formalizing richer languages. *) (** *** *) (** **** Exercise: 3 stars (substi) *) (** The definition that we gave above uses Coq's [Fixpoint] facility to define substitution as a _function_. Suppose, instead, we wanted to define substitution as an inductive _relation_ [substi]. We've begun the definition by providing the [Inductive] header and one of the constructors; your job is to fill in the rest of the constructors. *) Inductive substi (s:tm) (x:id) : tm -> tm -> Prop := | s_var1 : substi s x (tvar x) s (* FILL IN HERE *) . Hint Constructors substi. Theorem substi_correct : forall s x t t', [x:=s]t = t' <-> substi s x t t'. Proof. (* FILL IN HERE *) Admitted. (** [] *) (* ################################### *) (** *** Reduction *) (** The small-step reduction relation for STLC now follows the same pattern as the ones we have seen before. Intuitively, to reduce a function application, we first reduce its left-hand side until it becomes a literal function; then we reduce its right-hand side (the argument) until it is also a value; and finally we substitute the argument for the bound variable in the body of the function. This last rule, written informally as (\x:T.t12) v2 ==> [x:=v2]t12 is traditionally called "beta-reduction". *) (** value v2 ---------------------------- (ST_AppAbs) (\x:T.t12) v2 ==> [x:=v2]t12 t1 ==> t1' ---------------- (ST_App1) t1 t2 ==> t1' t2 value v1 t2 ==> t2' ---------------- (ST_App2) v1 t2 ==> v1 t2' *) (** ... plus the usual rules for booleans: -------------------------------- (ST_IfTrue) (if true then t1 else t2) ==> t1 --------------------------------- (ST_IfFalse) (if false then t1 else t2) ==> t2 t1 ==> t1' ---------------------------------------------------- (ST_If) (if t1 then t2 else t3) ==> (if t1' then t2 else t3) *) Reserved Notation "t1 '==>' t2" (at level 40). Inductive step : tm -> tm -> Prop := | ST_AppAbs : forall x T t12 v2, value v2 -> (tapp (tabs x T t12) v2) ==> [x:=v2]t12 | ST_App1 : forall t1 t1' t2, t1 ==> t1' -> tapp t1 t2 ==> tapp t1' t2 | ST_App2 : forall v1 t2 t2', value v1 -> t2 ==> t2' -> tapp v1 t2 ==> tapp v1 t2' | ST_IfTrue : forall t1 t2, (tif ttrue t1 t2) ==> t1 | ST_IfFalse : forall t1 t2, (tif tfalse t1 t2) ==> t2 | ST_If : forall t1 t1' t2 t3, t1 ==> t1' -> (tif t1 t2 t3) ==> (tif t1' t2 t3) where "t1 '==>' t2" := (step t1 t2). Tactic Notation "step_cases" tactic(first) ident(c) := first; [ Case_aux c "ST_AppAbs" | Case_aux c "ST_App1" | Case_aux c "ST_App2" | Case_aux c "ST_IfTrue" | Case_aux c "ST_IfFalse" | Case_aux c "ST_If" ]. Hint Constructors step. Notation multistep := (multi step). Notation "t1 '==>*' t2" := (multistep t1 t2) (at level 40). (* ##################################### *) (* ##################################### *) (** *** Examples *) (** Example: ((\x:Bool->Bool. x) (\x:Bool. x)) ==>* (\x:Bool. x) i.e. (idBB idB) ==>* idB *) Lemma step_example1 : (tapp idBB idB) ==>* idB. Proof. eapply multi_step. apply ST_AppAbs. apply v_abs. simpl. apply multi_refl. Qed. (** Example: ((\x:Bool->Bool. x) ((\x:Bool->Bool. x) (\x:Bool. x))) ==>* (\x:Bool. x) i.e. (idBB (idBB idB)) ==>* idB. *) Lemma step_example2 : (tapp idBB (tapp idBB idB)) ==>* idB. Proof. eapply multi_step. apply ST_App2. auto. apply ST_AppAbs. auto. eapply multi_step. apply ST_AppAbs. simpl. auto. simpl. apply multi_refl. Qed. (** Example: ((\x:Bool->Bool. x) (\x:Bool. if x then false else true)) true) ==>* false i.e. ((idBB notB) ttrue) ==>* tfalse. *) Lemma step_example3 : tapp (tapp idBB notB) ttrue ==>* tfalse. Proof. eapply multi_step. apply ST_App1. apply ST_AppAbs. auto. simpl. eapply multi_step. apply ST_AppAbs. auto. simpl. eapply multi_step. apply ST_IfTrue. apply multi_refl. Qed. (** Example: ((\x:Bool -> Bool. x) ((\x:Bool. if x then false else true) true)) ==>* false i.e. (idBB (notB ttrue)) ==>* tfalse. *) Lemma step_example4 : tapp idBB (tapp notB ttrue) ==>* tfalse. Proof. eapply multi_step. apply ST_App2. auto. apply ST_AppAbs. auto. simpl. eapply multi_step. apply ST_App2. auto. apply ST_IfTrue. eapply multi_step. apply ST_AppAbs. auto. simpl. apply multi_refl. Qed. (** A more automatic proof *) Lemma step_example1' : (tapp idBB idB) ==>* idB. Proof. normalize. Qed. (** Again, we can use the [normalize] tactic from above to simplify the proof. *) Lemma step_example2' : (tapp idBB (tapp idBB idB)) ==>* idB. Proof. normalize. Qed. Lemma step_example3' : tapp (tapp idBB notB) ttrue ==>* tfalse. Proof. normalize. Qed. Lemma step_example4' : tapp idBB (tapp notB ttrue) ==>* tfalse. Proof. normalize. Qed. (** **** Exercise: 2 stars (step_example3) *) (** Try to do this one both with and without [normalize]. *) Lemma step_example5 : (tapp (tapp idBBBB idBB) idB) ==>* idB. Proof. (* FILL IN HERE *) Admitted. (* FILL IN HERE *) (** [] *) (* ###################################################################### *) (** ** Typing *) (* ################################### *) (** *** Contexts *) (** _Question_: What is the type of the term "[x y]"? _Answer_: It depends on the types of [x] and [y]! I.e., in order to assign a type to a term, we need to know what assumptions we should make about the types of its free variables. This leads us to a three-place "typing judgment", informally written [Gamma |- t \in T], where [Gamma] is a "typing context" -- a mapping from variables to their types. *) (** We hide the definition of partial maps in a module since it is actually defined in [SfLib]. *) Module PartialMap. Definition partial_map (A:Type) := id -> option A. Definition empty {A:Type} : partial_map A := (fun _ => None). (** Informally, we'll write [Gamma, x:T] for "extend the partial function [Gamma] to also map [x] to [T]." Formally, we use the function [extend] to add a binding to a partial map. *) Definition extend {A:Type} (Gamma : partial_map A) (x:id) (T : A) := fun x' => if eq_id_dec x x' then Some T else Gamma x'. Lemma extend_eq : forall A (ctxt: partial_map A) x T, (extend ctxt x T) x = Some T. Proof. intros. unfold extend. rewrite eq_id. auto. Qed. Lemma extend_neq : forall A (ctxt: partial_map A) x1 T x2, x2 <> x1 -> (extend ctxt x2 T) x1 = ctxt x1. Proof. intros. unfold extend. rewrite neq_id; auto. Qed. End PartialMap. Definition context := partial_map ty. (* ################################### *) (** *** Typing Relation *) (** Gamma x = T -------------- (T_Var) Gamma |- x \in T Gamma , x:T11 |- t12 \in T12 ---------------------------- (T_Abs) Gamma |- \x:T11.t12 \in T11->T12 Gamma |- t1 \in T11->T12 Gamma |- t2 \in T11 ---------------------- (T_App) Gamma |- t1 t2 \in T12 -------------------- (T_True) Gamma |- true \in Bool --------------------- (T_False) Gamma |- false \in Bool Gamma |- t1 \in Bool Gamma |- t2 \in T Gamma |- t3 \in T -------------------------------------------------------- (T_If) Gamma |- if t1 then t2 else t3 \in T We can read the three-place relation [Gamma |- t \in T] as: "to the term [t] we can assign the type [T] using as types for the free variables of [t] the ones specified in the context [Gamma]." *) Reserved Notation "Gamma '|-' t '\in' T" (at level 40). Inductive has_type : context -> tm -> ty -> Prop := | T_Var : forall Gamma x T, Gamma x = Some T -> Gamma |- tvar x \in T | T_Abs : forall Gamma x T11 T12 t12, extend Gamma x T11 |- t12 \in T12 -> Gamma |- tabs x T11 t12 \in TArrow T11 T12 | T_App : forall T11 T12 Gamma t1 t2, Gamma |- t1 \in TArrow T11 T12 -> Gamma |- t2 \in T11 -> Gamma |- tapp t1 t2 \in T12 | T_True : forall Gamma, Gamma |- ttrue \in TBool | T_False : forall Gamma, Gamma |- tfalse \in TBool | T_If : forall t1 t2 t3 T Gamma, Gamma |- t1 \in TBool -> Gamma |- t2 \in T -> Gamma |- t3 \in T -> Gamma |- tif t1 t2 t3 \in T where "Gamma '|-' t '\in' T" := (has_type Gamma t T). Tactic Notation "has_type_cases" tactic(first) ident(c) := first; [ Case_aux c "T_Var" | Case_aux c "T_Abs" | Case_aux c "T_App" | Case_aux c "T_True" | Case_aux c "T_False" | Case_aux c "T_If" ]. Hint Constructors has_type. (* ################################### *) (** *** Examples *) Example typing_example_1 : empty |- tabs x TBool (tvar x) \in TArrow TBool TBool. Proof. apply T_Abs. apply T_Var. reflexivity. Qed. (** Note that since we added the [has_type] constructors to the hints database, auto can actually solve this one immediately. *) Example typing_example_1' : empty |- tabs x TBool (tvar x) \in TArrow TBool TBool. Proof. auto. Qed. (** Another example: empty |- \x:A. \y:A->A. y (y x)) \in A -> (A->A) -> A. *) Example typing_example_2 : empty |- (tabs x TBool (tabs y (TArrow TBool TBool) (tapp (tvar y) (tapp (tvar y) (tvar x))))) \in (TArrow TBool (TArrow (TArrow TBool TBool) TBool)). Proof with auto using extend_eq. apply T_Abs. apply T_Abs. eapply T_App. apply T_Var... eapply T_App. apply T_Var... apply T_Var... Qed. (** **** Exercise: 2 stars, optional (typing_example_2_full) *) (** Prove the same result without using [auto], [eauto], or [eapply]. *) Example typing_example_2_full : empty |- (tabs x TBool (tabs y (TArrow TBool TBool) (tapp (tvar y) (tapp (tvar y) (tvar x))))) \in (TArrow TBool (TArrow (TArrow TBool TBool) TBool)). Proof. (* FILL IN HERE *) Admitted. (** [] *) (** **** Exercise: 2 stars (typing_example_3) *) (** Formally prove the following typing derivation holds: *) (** empty |- \x:Bool->B. \y:Bool->Bool. \z:Bool. y (x z) \in T. *) Example typing_example_3 : exists T, empty |- (tabs x (TArrow TBool TBool) (tabs y (TArrow TBool TBool) (tabs z TBool (tapp (tvar y) (tapp (tvar x) (tvar z)))))) \in T. Proof with auto. (* FILL IN HERE *) Admitted. (** [] *) (** We can also show that terms are _not_ typable. For example, let's formally check that there is no typing derivation assigning a type to the term [\x:Bool. \y:Bool, x y] -- i.e., ~ exists T, empty |- \x:Bool. \y:Bool, x y : T. *) Example typing_nonexample_1 : ~ exists T, empty |- (tabs x TBool (tabs y TBool (tapp (tvar x) (tvar y)))) \in T. Proof. intros Hc. inversion Hc. (* The [clear] tactic is useful here for tidying away bits of the context that we're not going to need again. *) inversion H. subst. clear H. inversion H5. subst. clear H5. inversion H4. subst. clear H4. inversion H2. subst. clear H2. inversion H5. subst. clear H5. (* rewrite extend_neq in H1. rewrite extend_eq in H1. *) inversion H1. Qed. (** **** Exercise: 3 stars, optional (typing_nonexample_3) *) (** Another nonexample: ~ (exists S, exists T, empty |- \x:S. x x : T). *) Example typing_nonexample_3 : ~ (exists S, exists T, empty |- (tabs x S (tapp (tvar x) (tvar x))) \in T). Proof. (* FILL IN HERE *) Admitted. (** [] *) End STLC. (** $Date: 2014-12-31 11:17:56 -0500 (Wed, 31 Dec 2014) $ *)
(** * Stlc: The Simply Typed Lambda-Calculus *) Require Export Types. (* ###################################################################### *) (** * The Simply Typed Lambda-Calculus *) (** The simply typed lambda-calculus (STLC) is a tiny core calculus embodying the key concept of _functional abstraction_, which shows up in pretty much every real-world programming language in some form (functions, procedures, methods, etc.). We will follow exactly the same pattern as in the previous chapter when formalizing this calculus (syntax, small-step semantics, typing rules) and its main properties (progress and preservation). The new technical challenges (which will take some work to deal with) all arise from the mechanisms of _variable binding_ and _substitution_. *) (* ###################################################################### *) (** ** Overview *) (** The STLC is built on some collection of _base types_ -- booleans, numbers, strings, etc. The exact choice of base types doesn't matter -- the construction of the language and its theoretical properties work out pretty much the same -- so for the sake of brevity let's take just [Bool] for the moment. At the end of the chapter we'll see how to add more base types, and in later chapters we'll enrich the pure STLC with other useful constructs like pairs, records, subtyping, and mutable state. Starting from the booleans, we add three things: - variables - function abstractions - application This gives us the following collection of abstract syntax constructors (written out here in informal BNF notation -- we'll formalize it below). *) (** Informal concrete syntax: t ::= x variable | \x:T1.t2 abstraction | t1 t2 application | true constant true | false constant false | if t1 then t2 else t3 conditional *) (** The [\] symbol (backslash, in ascii) in a function abstraction [\x:T1.t2] is generally written as a greek letter "lambda" (hence the name of the calculus). The variable [x] is called the _parameter_ to the function; the term [t2] is its _body_. The annotation [:T] specifies the type of arguments that the function can be applied to. *) (** Some examples: - [\x:Bool. x] The identity function for booleans. - [(\x:Bool. x) true] The identity function for booleans, applied to the boolean [true]. - [\x:Bool. if x then false else true] The boolean "not" function. - [\x:Bool. true] The constant function that takes every (boolean) argument to [true]. *) (** - [\x:Bool. \y:Bool. x] A two-argument function that takes two booleans and returns the first one. (Note that, as in Coq, a two-argument function is really a one-argument function whose body is also a one-argument function.) - [(\x:Bool. \y:Bool. x) false true] A two-argument function that takes two booleans and returns the first one, applied to the booleans [false] and [true]. Note that, as in Coq, application associates to the left -- i.e., this expression is parsed as [((\x:Bool. \y:Bool. x) false) true]. - [\f:Bool->Bool. f (f true)] A higher-order function that takes a _function_ [f] (from booleans to booleans) as an argument, applies [f] to [true], and applies [f] again to the result. - [(\f:Bool->Bool. f (f true)) (\x:Bool. false)] The same higher-order function, applied to the constantly [false] function. *) (** As the last several examples show, the STLC is a language of _higher-order_ functions: we can write down functions that take other functions as arguments and/or return other functions as results. Another point to note is that the STLC doesn't provide any primitive syntax for defining _named_ functions -- all functions are "anonymous." We'll see in chapter [MoreStlc] that it is easy to add named functions to what we've got -- indeed, the fundamental naming and binding mechanisms are exactly the same. The _types_ of the STLC include [Bool], which classifies the boolean constants [true] and [false] as well as more complex computations that yield booleans, plus _arrow types_ that classify functions. *) (** T ::= Bool | T1 -> T2 For example: - [\x:Bool. false] has type [Bool->Bool] - [\x:Bool. x] has type [Bool->Bool] - [(\x:Bool. x) true] has type [Bool] - [\x:Bool. \y:Bool. x] has type [Bool->Bool->Bool] (i.e. [Bool -> (Bool->Bool)]) - [(\x:Bool. \y:Bool. x) false] has type [Bool->Bool] - [(\x:Bool. \y:Bool. x) false true] has type [Bool] *) (* ###################################################################### *) (** ** Syntax *) Module STLC. (* ################################### *) (** *** Types *) Inductive ty : Type := | TBool : ty | TArrow : ty -> ty -> ty. (* ################################### *) (** *** Terms *) Inductive tm : Type := | tvar : id -> tm | tapp : tm -> tm -> tm | tabs : id -> ty -> tm -> tm | ttrue : tm | tfalse : tm | tif : tm -> tm -> tm -> tm. Tactic Notation "t_cases" tactic(first) ident(c) := first; [ Case_aux c "tvar" | Case_aux c "tapp" | Case_aux c "tabs" | Case_aux c "ttrue" | Case_aux c "tfalse" | Case_aux c "tif" ]. (** Note that an abstraction [\x:T.t] (formally, [tabs x T t]) is always annotated with the type [T] of its parameter, in contrast to Coq (and other functional languages like ML, Haskell, etc.), which use _type inference_ to fill in missing annotations. We're not considering type inference here, to keep things simple. *) (** Some examples... *) Definition x := (Id 0). Definition y := (Id 1). Definition z := (Id 2). Hint Unfold x. Hint Unfold y. Hint Unfold z. (** [idB = \x:Bool. x] *) Notation idB := (tabs x TBool (tvar x)). (** [idBB = \x:Bool->Bool. x] *) Notation idBB := (tabs x (TArrow TBool TBool) (tvar x)). (** [idBBBB = \x:(Bool->Bool) -> (Bool->Bool). x] *) Notation idBBBB := (tabs x (TArrow (TArrow TBool TBool) (TArrow TBool TBool)) (tvar x)). (** [k = \x:Bool. \y:Bool. x] *) Notation k := (tabs x TBool (tabs y TBool (tvar x))). (** [notB = \x:Bool. if x then false else true] *) Notation notB := (tabs x TBool (tif (tvar x) tfalse ttrue)). (** (We write these as [Notation]s rather than [Definition]s to make things easier for [auto].) *) (* ###################################################################### *) (** ** Operational Semantics *) (** To define the small-step semantics of STLC terms, we begin -- as always -- by defining the set of values. Next, we define the critical notions of _free variables_ and _substitution_, which are used in the reduction rule for application expressions. And finally we give the small-step relation itself. *) (* ################################### *) (** *** Values *) (** To define the values of the STLC, we have a few cases to consider. First, for the boolean part of the language, the situation is clear: [true] and [false] are the only values. An [if] expression is never a value. *) (** Second, an application is clearly not a value: It represents a function being invoked on some argument, which clearly still has work left to do. *) (** Third, for abstractions, we have a choice: - We can say that [\x:T.t1] is a value only when [t1] is a value -- i.e., only if the function's body has been reduced (as much as it can be without knowing what argument it is going to be applied to). - Or we can say that [\x:T.t1] is always a value, no matter whether [t1] is one or not -- in other words, we can say that reduction stops at abstractions. Coq, in its built-in functional programming langauge, makes the first choice -- for example, Eval simpl in (fun x:bool => 3 + 4) yields [fun x:bool => 7]. Most real-world functional programming languages make the second choice -- reduction of a function's body only begins when the function is actually applied to an argument. We also make the second choice here. *) Inductive value : tm -> Prop := | v_abs : forall x T t, value (tabs x T t) | v_true : value ttrue | v_false : value tfalse. Hint Constructors value. (** Finally, we must consider what constitutes a _complete_ program. Intuitively, a "complete" program must not refer to any undefined variables. We'll see shortly how to define the "free" variables in a STLC term. A program is "closed", that is, it contains no free variables. *) (** Having made the choice not to reduce under abstractions, we don't need to worry about whether variables are values, since we'll always be reducing programs "from the outside in," and that means the [step] relation will always be working with closed terms (ones with no free variables). *) (* ###################################################################### *) (** *** Substitution *) (** Now we come to the heart of the STLC: the operation of substituting one term for a variable in another term. This operation will be used below to define the operational semantics of function application, where we will need to substitute the argument term for the function parameter in the function's body. For example, we reduce (\x:Bool. if x then true else x) false to if false then true else false ]] by substituting [false] for the parameter [x] in the body of the function. In general, we need to be able to substitute some given term [s] for occurrences of some variable [x] in another term [t]. In informal discussions, this is usually written [ [x:=s]t ] and pronounced "substitute [x] with [s] in [t]." *) (** Here are some examples: - [[x:=true] (if x then x else false)] yields [if true then true else false] - [[x:=true] x] yields [true] - [[x:=true] (if x then x else y)] yields [if true then true else y] - [[x:=true] y] yields [y] - [[x:=true] false] yields [false] (vacuous substitution) - [[x:=true] (\y:Bool. if y then x else false)] yields [\y:Bool. if y then true else false] - [[x:=true] (\y:Bool. x)] yields [\y:Bool. true] - [[x:=true] (\y:Bool. y)] yields [\y:Bool. y] - [[x:=true] (\x:Bool. x)] yields [\x:Bool. x] The last example is very important: substituting [x] with [true] in [\x:Bool. x] does _not_ yield [\x:Bool. true]! The reason for this is that the [x] in the body of [\x:Bool. x] is _bound_ by the abstraction: it is a new, local name that just happens to be spelled the same as some global name [x]. *) (** Here is the definition, informally... [x:=s]x = s [x:=s]y = y if x <> y [x:=s](\x:T11.t12) = \x:T11. t12 [x:=s](\y:T11.t12) = \y:T11. [x:=s]t12 if x <> y [x:=s](t1 t2) = ([x:=s]t1) ([x:=s]t2) [x:=s]true = true [x:=s]false = false [x:=s](if t1 then t2 else t3) = if [x:=s]t1 then [x:=s]t2 else [x:=s]t3 ]] *) (** ... and formally: *) Reserved Notation "'[' x ':=' s ']' t" (at level 20). Fixpoint subst (x:id) (s:tm) (t:tm) : tm := match t with | tvar x' => if eq_id_dec x x' then s else t | tabs x' T t1 => tabs x' T (if eq_id_dec x x' then t1 else ([x:=s] t1)) | tapp t1 t2 => tapp ([x:=s] t1) ([x:=s] t2) | ttrue => ttrue | tfalse => tfalse | tif t1 t2 t3 => tif ([x:=s] t1) ([x:=s] t2) ([x:=s] t3) end where "'[' x ':=' s ']' t" := (subst x s t). (** _Technical note_: Substitution becomes trickier to define if we consider the case where [s], the term being substituted for a variable in some other term, may itself contain free variables. Since we are only interested here in defining the [step] relation on closed terms (i.e., terms like [\x:Bool. x], that do not mention variables are not bound by some enclosing lambda), we can skip this extra complexity here, but it must be dealt with when formalizing richer languages. *) (** *** *) (** **** Exercise: 3 stars (substi) *) (** The definition that we gave above uses Coq's [Fixpoint] facility to define substitution as a _function_. Suppose, instead, we wanted to define substitution as an inductive _relation_ [substi]. We've begun the definition by providing the [Inductive] header and one of the constructors; your job is to fill in the rest of the constructors. *) Inductive substi (s:tm) (x:id) : tm -> tm -> Prop := | s_var1 : substi s x (tvar x) s (* FILL IN HERE *) . Hint Constructors substi. Theorem substi_correct : forall s x t t', [x:=s]t = t' <-> substi s x t t'. Proof. (* FILL IN HERE *) Admitted. (** [] *) (* ################################### *) (** *** Reduction *) (** The small-step reduction relation for STLC now follows the same pattern as the ones we have seen before. Intuitively, to reduce a function application, we first reduce its left-hand side until it becomes a literal function; then we reduce its right-hand side (the argument) until it is also a value; and finally we substitute the argument for the bound variable in the body of the function. This last rule, written informally as (\x:T.t12) v2 ==> [x:=v2]t12 is traditionally called "beta-reduction". *) (** value v2 ---------------------------- (ST_AppAbs) (\x:T.t12) v2 ==> [x:=v2]t12 t1 ==> t1' ---------------- (ST_App1) t1 t2 ==> t1' t2 value v1 t2 ==> t2' ---------------- (ST_App2) v1 t2 ==> v1 t2' *) (** ... plus the usual rules for booleans: -------------------------------- (ST_IfTrue) (if true then t1 else t2) ==> t1 --------------------------------- (ST_IfFalse) (if false then t1 else t2) ==> t2 t1 ==> t1' ---------------------------------------------------- (ST_If) (if t1 then t2 else t3) ==> (if t1' then t2 else t3) *) Reserved Notation "t1 '==>' t2" (at level 40). Inductive step : tm -> tm -> Prop := | ST_AppAbs : forall x T t12 v2, value v2 -> (tapp (tabs x T t12) v2) ==> [x:=v2]t12 | ST_App1 : forall t1 t1' t2, t1 ==> t1' -> tapp t1 t2 ==> tapp t1' t2 | ST_App2 : forall v1 t2 t2', value v1 -> t2 ==> t2' -> tapp v1 t2 ==> tapp v1 t2' | ST_IfTrue : forall t1 t2, (tif ttrue t1 t2) ==> t1 | ST_IfFalse : forall t1 t2, (tif tfalse t1 t2) ==> t2 | ST_If : forall t1 t1' t2 t3, t1 ==> t1' -> (tif t1 t2 t3) ==> (tif t1' t2 t3) where "t1 '==>' t2" := (step t1 t2). Tactic Notation "step_cases" tactic(first) ident(c) := first; [ Case_aux c "ST_AppAbs" | Case_aux c "ST_App1" | Case_aux c "ST_App2" | Case_aux c "ST_IfTrue" | Case_aux c "ST_IfFalse" | Case_aux c "ST_If" ]. Hint Constructors step. Notation multistep := (multi step). Notation "t1 '==>*' t2" := (multistep t1 t2) (at level 40). (* ##################################### *) (* ##################################### *) (** *** Examples *) (** Example: ((\x:Bool->Bool. x) (\x:Bool. x)) ==>* (\x:Bool. x) i.e. (idBB idB) ==>* idB *) Lemma step_example1 : (tapp idBB idB) ==>* idB. Proof. eapply multi_step. apply ST_AppAbs. apply v_abs. simpl. apply multi_refl. Qed. (** Example: ((\x:Bool->Bool. x) ((\x:Bool->Bool. x) (\x:Bool. x))) ==>* (\x:Bool. x) i.e. (idBB (idBB idB)) ==>* idB. *) Lemma step_example2 : (tapp idBB (tapp idBB idB)) ==>* idB. Proof. eapply multi_step. apply ST_App2. auto. apply ST_AppAbs. auto. eapply multi_step. apply ST_AppAbs. simpl. auto. simpl. apply multi_refl. Qed. (** Example: ((\x:Bool->Bool. x) (\x:Bool. if x then false else true)) true) ==>* false i.e. ((idBB notB) ttrue) ==>* tfalse. *) Lemma step_example3 : tapp (tapp idBB notB) ttrue ==>* tfalse. Proof. eapply multi_step. apply ST_App1. apply ST_AppAbs. auto. simpl. eapply multi_step. apply ST_AppAbs. auto. simpl. eapply multi_step. apply ST_IfTrue. apply multi_refl. Qed. (** Example: ((\x:Bool -> Bool. x) ((\x:Bool. if x then false else true) true)) ==>* false i.e. (idBB (notB ttrue)) ==>* tfalse. *) Lemma step_example4 : tapp idBB (tapp notB ttrue) ==>* tfalse. Proof. eapply multi_step. apply ST_App2. auto. apply ST_AppAbs. auto. simpl. eapply multi_step. apply ST_App2. auto. apply ST_IfTrue. eapply multi_step. apply ST_AppAbs. auto. simpl. apply multi_refl. Qed. (** A more automatic proof *) Lemma step_example1' : (tapp idBB idB) ==>* idB. Proof. normalize. Qed. (** Again, we can use the [normalize] tactic from above to simplify the proof. *) Lemma step_example2' : (tapp idBB (tapp idBB idB)) ==>* idB. Proof. normalize. Qed. Lemma step_example3' : tapp (tapp idBB notB) ttrue ==>* tfalse. Proof. normalize. Qed. Lemma step_example4' : tapp idBB (tapp notB ttrue) ==>* tfalse. Proof. normalize. Qed. (** **** Exercise: 2 stars (step_example3) *) (** Try to do this one both with and without [normalize]. *) Lemma step_example5 : (tapp (tapp idBBBB idBB) idB) ==>* idB. Proof. (* FILL IN HERE *) Admitted. (* FILL IN HERE *) (** [] *) (* ###################################################################### *) (** ** Typing *) (* ################################### *) (** *** Contexts *) (** _Question_: What is the type of the term "[x y]"? _Answer_: It depends on the types of [x] and [y]! I.e., in order to assign a type to a term, we need to know what assumptions we should make about the types of its free variables. This leads us to a three-place "typing judgment", informally written [Gamma |- t \in T], where [Gamma] is a "typing context" -- a mapping from variables to their types. *) (** We hide the definition of partial maps in a module since it is actually defined in [SfLib]. *) Module PartialMap. Definition partial_map (A:Type) := id -> option A. Definition empty {A:Type} : partial_map A := (fun _ => None). (** Informally, we'll write [Gamma, x:T] for "extend the partial function [Gamma] to also map [x] to [T]." Formally, we use the function [extend] to add a binding to a partial map. *) Definition extend {A:Type} (Gamma : partial_map A) (x:id) (T : A) := fun x' => if eq_id_dec x x' then Some T else Gamma x'. Lemma extend_eq : forall A (ctxt: partial_map A) x T, (extend ctxt x T) x = Some T. Proof. intros. unfold extend. rewrite eq_id. auto. Qed. Lemma extend_neq : forall A (ctxt: partial_map A) x1 T x2, x2 <> x1 -> (extend ctxt x2 T) x1 = ctxt x1. Proof. intros. unfold extend. rewrite neq_id; auto. Qed. End PartialMap. Definition context := partial_map ty. (* ################################### *) (** *** Typing Relation *) (** Gamma x = T -------------- (T_Var) Gamma |- x \in T Gamma , x:T11 |- t12 \in T12 ---------------------------- (T_Abs) Gamma |- \x:T11.t12 \in T11->T12 Gamma |- t1 \in T11->T12 Gamma |- t2 \in T11 ---------------------- (T_App) Gamma |- t1 t2 \in T12 -------------------- (T_True) Gamma |- true \in Bool --------------------- (T_False) Gamma |- false \in Bool Gamma |- t1 \in Bool Gamma |- t2 \in T Gamma |- t3 \in T -------------------------------------------------------- (T_If) Gamma |- if t1 then t2 else t3 \in T We can read the three-place relation [Gamma |- t \in T] as: "to the term [t] we can assign the type [T] using as types for the free variables of [t] the ones specified in the context [Gamma]." *) Reserved Notation "Gamma '|-' t '\in' T" (at level 40). Inductive has_type : context -> tm -> ty -> Prop := | T_Var : forall Gamma x T, Gamma x = Some T -> Gamma |- tvar x \in T | T_Abs : forall Gamma x T11 T12 t12, extend Gamma x T11 |- t12 \in T12 -> Gamma |- tabs x T11 t12 \in TArrow T11 T12 | T_App : forall T11 T12 Gamma t1 t2, Gamma |- t1 \in TArrow T11 T12 -> Gamma |- t2 \in T11 -> Gamma |- tapp t1 t2 \in T12 | T_True : forall Gamma, Gamma |- ttrue \in TBool | T_False : forall Gamma, Gamma |- tfalse \in TBool | T_If : forall t1 t2 t3 T Gamma, Gamma |- t1 \in TBool -> Gamma |- t2 \in T -> Gamma |- t3 \in T -> Gamma |- tif t1 t2 t3 \in T where "Gamma '|-' t '\in' T" := (has_type Gamma t T). Tactic Notation "has_type_cases" tactic(first) ident(c) := first; [ Case_aux c "T_Var" | Case_aux c "T_Abs" | Case_aux c "T_App" | Case_aux c "T_True" | Case_aux c "T_False" | Case_aux c "T_If" ]. Hint Constructors has_type. (* ################################### *) (** *** Examples *) Example typing_example_1 : empty |- tabs x TBool (tvar x) \in TArrow TBool TBool. Proof. apply T_Abs. apply T_Var. reflexivity. Qed. (** Note that since we added the [has_type] constructors to the hints database, auto can actually solve this one immediately. *) Example typing_example_1' : empty |- tabs x TBool (tvar x) \in TArrow TBool TBool. Proof. auto. Qed. (** Another example: empty |- \x:A. \y:A->A. y (y x)) \in A -> (A->A) -> A. *) Example typing_example_2 : empty |- (tabs x TBool (tabs y (TArrow TBool TBool) (tapp (tvar y) (tapp (tvar y) (tvar x))))) \in (TArrow TBool (TArrow (TArrow TBool TBool) TBool)). Proof with auto using extend_eq. apply T_Abs. apply T_Abs. eapply T_App. apply T_Var... eapply T_App. apply T_Var... apply T_Var... Qed. (** **** Exercise: 2 stars, optional (typing_example_2_full) *) (** Prove the same result without using [auto], [eauto], or [eapply]. *) Example typing_example_2_full : empty |- (tabs x TBool (tabs y (TArrow TBool TBool) (tapp (tvar y) (tapp (tvar y) (tvar x))))) \in (TArrow TBool (TArrow (TArrow TBool TBool) TBool)). Proof. (* FILL IN HERE *) Admitted. (** [] *) (** **** Exercise: 2 stars (typing_example_3) *) (** Formally prove the following typing derivation holds: *) (** empty |- \x:Bool->B. \y:Bool->Bool. \z:Bool. y (x z) \in T. *) Example typing_example_3 : exists T, empty |- (tabs x (TArrow TBool TBool) (tabs y (TArrow TBool TBool) (tabs z TBool (tapp (tvar y) (tapp (tvar x) (tvar z)))))) \in T. Proof with auto. (* FILL IN HERE *) Admitted. (** [] *) (** We can also show that terms are _not_ typable. For example, let's formally check that there is no typing derivation assigning a type to the term [\x:Bool. \y:Bool, x y] -- i.e., ~ exists T, empty |- \x:Bool. \y:Bool, x y : T. *) Example typing_nonexample_1 : ~ exists T, empty |- (tabs x TBool (tabs y TBool (tapp (tvar x) (tvar y)))) \in T. Proof. intros Hc. inversion Hc. (* The [clear] tactic is useful here for tidying away bits of the context that we're not going to need again. *) inversion H. subst. clear H. inversion H5. subst. clear H5. inversion H4. subst. clear H4. inversion H2. subst. clear H2. inversion H5. subst. clear H5. (* rewrite extend_neq in H1. rewrite extend_eq in H1. *) inversion H1. Qed. (** **** Exercise: 3 stars, optional (typing_nonexample_3) *) (** Another nonexample: ~ (exists S, exists T, empty |- \x:S. x x : T). *) Example typing_nonexample_3 : ~ (exists S, exists T, empty |- (tabs x S (tapp (tvar x) (tvar x))) \in T). Proof. (* FILL IN HERE *) Admitted. (** [] *) End STLC. (** $Date: 2014-12-31 11:17:56 -0500 (Wed, 31 Dec 2014) $ *)
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2013 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc=0; reg [63:0] crc; reg [63:0] sum; // Take CRC data and apply to testblock inputs wire [19:0] in = crc[19:0]; /*AUTOWIRE*/ // Beginning of automatic wires (for undeclared instantiated-module outputs) wire [19:0] out; // From test of Test.v // End of automatics Test test (/*AUTOINST*/ // Outputs .out (out[19:0]), // Inputs .in (in[19:0])); // Aggregate outputs into a single result vector wire [63:0] result = {44'h0, out}; // Test loop always @ (posedge clk) begin `ifdef TEST_VERBOSE $write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result); `endif cyc <= cyc + 1; crc <= {crc[62:0], crc[63]^crc[2]^crc[0]}; sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]}; if (cyc==0) begin // Setup crc <= 64'h5aef0c8d_d70a4497; sum <= 64'h0; end else if (cyc<10) begin sum <= 64'h0; end else if (cyc<90) begin end else if (cyc==99) begin $write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum); if (crc !== 64'hc77bb9b3784ea091) $stop; // What checksum will we end up with (above print should match) `define EXPECTED_SUM 64'hdb7bc61592f31b99 if (sum !== `EXPECTED_SUM) $stop; $write("*-* All Finished *-*\n"); $finish; end end endmodule typedef struct packed { logic [7:0] cn; logic vbfval; logic vabval; } rel_t; module Test (/*AUTOARG*/ // Outputs out, // Inputs in ); input [19:0] in; output [19:0] out; rel_t [1:0] i; // From ifb0 of ifb.v, ... rel_t [1:0] o; // From ifb0 of ifb.v, ... assign i = in; assign out = o; sub sub ( .i (i[1:0]), .o (o[1:0])); endmodule module sub (/*AUTOARG*/ // Outputs o, // Inputs i ); input rel_t [1:0] i; output rel_t [1:0] o; assign o = i; endmodule // Local Variables: // verilog-typedef-regexp: "_t$" // End:
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2013 by Wilson Snyder. module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc=0; reg [63:0] crc; reg [63:0] sum; // Take CRC data and apply to testblock inputs wire [19:0] in = crc[19:0]; /*AUTOWIRE*/ // Beginning of automatic wires (for undeclared instantiated-module outputs) wire [19:0] out; // From test of Test.v // End of automatics Test test (/*AUTOINST*/ // Outputs .out (out[19:0]), // Inputs .in (in[19:0])); // Aggregate outputs into a single result vector wire [63:0] result = {44'h0, out}; // Test loop always @ (posedge clk) begin `ifdef TEST_VERBOSE $write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result); `endif cyc <= cyc + 1; crc <= {crc[62:0], crc[63]^crc[2]^crc[0]}; sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]}; if (cyc==0) begin // Setup crc <= 64'h5aef0c8d_d70a4497; sum <= 64'h0; end else if (cyc<10) begin sum <= 64'h0; end else if (cyc<90) begin end else if (cyc==99) begin $write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum); if (crc !== 64'hc77bb9b3784ea091) $stop; // What checksum will we end up with (above print should match) `define EXPECTED_SUM 64'hdb7bc61592f31b99 if (sum !== `EXPECTED_SUM) $stop; $write("*-* All Finished *-*\n"); $finish; end end endmodule typedef struct packed { logic [7:0] cn; logic vbfval; logic vabval; } rel_t; module Test (/*AUTOARG*/ // Outputs out, // Inputs in ); input [19:0] in; output [19:0] out; rel_t [1:0] i; // From ifb0 of ifb.v, ... rel_t [1:0] o; // From ifb0 of ifb.v, ... assign i = in; assign out = o; sub sub ( .i (i[1:0]), .o (o[1:0])); endmodule module sub (/*AUTOARG*/ // Outputs o, // Inputs i ); input rel_t [1:0] i; output rel_t [1:0] o; assign o = i; endmodule // Local Variables: // verilog-typedef-regexp: "_t$" // End:
////////////////////////////////////////////////////////////////////// //// //// //// spi_clgen.v //// //// //// //// This file is part of the SPI IP core project //// //// http://www.opencores.org/projects/spi/ //// //// //// //// Author(s): //// //// - Simon Srot ([email protected]) //// //// //// //// All additional information is avaliable in the Readme.txt //// //// file. //// //// //// ////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2002 Authors //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// ////////////////////////////////////////////////////////////////////// module spi_clgen (clk_in, rst, go, enable, last_clk, divider, clk_out, pos_edge, neg_edge); parameter Tp = 1; input clk_in; // input clock (system clock) input rst; // reset input enable; // clock enable input go; // start transfer input last_clk; // last clock input [3:0] divider; // clock divider (output clock is divided by this value) output clk_out; // output clock output pos_edge; // pulse marking positive edge of clk_out output neg_edge; // pulse marking negative edge of clk_out reg clk_out; reg pos_edge; reg neg_edge; reg [3:0] cnt; // clock counter wire cnt_zero; // conter is equal to zero wire cnt_one; // conter is equal to one assign cnt_zero = cnt == {4{1'b0}}; assign cnt_one = cnt == {{3{1'b0}}, 1'b1}; // Counter counts half period always @(posedge clk_in or posedge rst) begin if(rst) cnt <= #Tp {4{1'b1}}; else begin if(!enable || cnt_zero) cnt <= #Tp divider; else cnt <= #Tp cnt - {{3{1'b0}}, 1'b1}; end end // clk_out is asserted every other half period always @(posedge clk_in or posedge rst) begin if(rst) clk_out <= #Tp 1'b0; else clk_out <= #Tp (enable && cnt_zero && (!last_clk || clk_out)) ? ~clk_out : clk_out; end // Pos and neg edge signals always @(posedge clk_in or posedge rst) begin if(rst) begin pos_edge <= #Tp 1'b0; neg_edge <= #Tp 1'b0; end else begin pos_edge <= #Tp (enable && !clk_out && cnt_one) || (!(|divider) && clk_out) || (!(|divider) && go && !enable); neg_edge <= #Tp (enable && clk_out && cnt_one) || (!(|divider) && !clk_out && enable); end end endmodule
(***********************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *) (* \VV/ *************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (***********************************************************************) (**************************************************************) (* MSetDecide.v *) (* *) (* Author: Aaron Bohannon *) (**************************************************************) (** This file implements a decision procedure for a certain class of propositions involving finite sets. *) Require Import Decidable Setoid DecidableTypeEx MSetFacts. (** First, a version for Weak Sets in functorial presentation *) Module WDecideOn (E : DecidableType)(Import M : WSetsOn E). Module F := MSetFacts.WFactsOn E M. (** * Overview This functor defines the tactic [fsetdec], which will solve any valid goal of the form << forall s1 ... sn, forall x1 ... xm, P1 -> ... -> Pk -> P >> where [P]'s are defined by the grammar: << P ::= | Q | Empty F | Subset F F' | Equal F F' Q ::= | E.eq X X' | In X F | Q /\ Q' | Q \/ Q' | Q -> Q' | Q <-> Q' | ~ Q | True | False F ::= | S | empty | singleton X | add X F | remove X F | union F F' | inter F F' | diff F F' X ::= x1 | ... | xm S ::= s1 | ... | sn >> The tactic will also work on some goals that vary slightly from the above form: - The variables and hypotheses may be mixed in any order and may have already been introduced into the context. Moreover, there may be additional, unrelated hypotheses mixed in (these will be ignored). - A conjunction of hypotheses will be handled as easily as separate hypotheses, i.e., [P1 /\ P2 -> P] can be solved iff [P1 -> P2 -> P] can be solved. - [fsetdec] should solve any goal if the MSet-related hypotheses are contradictory. - [fsetdec] will first perform any necessary zeta and beta reductions and will invoke [subst] to eliminate any Coq equalities between finite sets or their elements. - If [E.eq] is convertible with Coq's equality, it will not matter which one is used in the hypotheses or conclusion. - The tactic can solve goals where the finite sets or set elements are expressed by Coq terms that are more complicated than variables. However, non-local definitions are not expanded, and Coq equalities between non-variable terms are not used. For example, this goal will be solved: << forall (f : t -> t), forall (g : elt -> elt), forall (s1 s2 : t), forall (x1 x2 : elt), Equal s1 (f s2) -> E.eq x1 (g (g x2)) -> In x1 s1 -> In (g (g x2)) (f s2) >> This one will not be solved: << forall (f : t -> t), forall (g : elt -> elt), forall (s1 s2 : t), forall (x1 x2 : elt), Equal s1 (f s2) -> E.eq x1 (g x2) -> In x1 s1 -> g x2 = g (g x2) -> In (g (g x2)) (f s2) >> *) (** * Facts and Tactics for Propositional Logic These lemmas and tactics are in a module so that they do not affect the namespace if you import the enclosing module [Decide]. *) Module MSetLogicalFacts. Export Decidable. Export Setoid. (** ** Lemmas and Tactics About Decidable Propositions *) (** ** Propositional Equivalences Involving Negation These are all written with the unfolded form of negation, since I am not sure if setoid rewriting will always perform conversion. *) (** ** Tactics for Negations *) Tactic Notation "fold" "any" "not" := repeat ( match goal with | H: context [?P -> False] |- _ => fold (~ P) in H | |- context [?P -> False] => fold (~ P) end). (** [push not using db] will pushes all negations to the leaves of propositions in the goal, using the lemmas in [db] to assist in checking the decidability of the propositions involved. If [using db] is omitted, then [core] will be used. Additional versions are provided to manipulate the hypotheses or the hypotheses and goal together. XXX: This tactic and the similar subsequent ones should have been defined using [autorewrite]. However, dealing with multiples rewrite sites and side-conditions is done more cleverly with the following explicit analysis of goals. *) Ltac or_not_l_iff P Q tac := (rewrite (or_not_l_iff_1 P Q) by tac) || (rewrite (or_not_l_iff_2 P Q) by tac). Ltac or_not_r_iff P Q tac := (rewrite (or_not_r_iff_1 P Q) by tac) || (rewrite (or_not_r_iff_2 P Q) by tac). Ltac or_not_l_iff_in P Q H tac := (rewrite (or_not_l_iff_1 P Q) in H by tac) || (rewrite (or_not_l_iff_2 P Q) in H by tac). Ltac or_not_r_iff_in P Q H tac := (rewrite (or_not_r_iff_1 P Q) in H by tac) || (rewrite (or_not_r_iff_2 P Q) in H by tac). Tactic Notation "push" "not" "using" ident(db) := let dec := solve_decidable using db in unfold not, iff; repeat ( match goal with | |- context [True -> False] => rewrite not_true_iff | |- context [False -> False] => rewrite not_false_iff | |- context [(?P -> False) -> False] => rewrite (not_not_iff P) by dec | |- context [(?P -> False) -> (?Q -> False)] => rewrite (contrapositive P Q) by dec | |- context [(?P -> False) \/ ?Q] => or_not_l_iff P Q dec | |- context [?P \/ (?Q -> False)] => or_not_r_iff P Q dec | |- context [(?P -> False) -> ?Q] => rewrite (imp_not_l P Q) by dec | |- context [?P \/ ?Q -> False] => rewrite (not_or_iff P Q) | |- context [?P /\ ?Q -> False] => rewrite (not_and_iff P Q) | |- context [(?P -> ?Q) -> False] => rewrite (not_imp_iff P Q) by dec end); fold any not. Tactic Notation "push" "not" := push not using core. Tactic Notation "push" "not" "in" "*" "|-" "using" ident(db) := let dec := solve_decidable using db in unfold not, iff in * |-; repeat ( match goal with | H: context [True -> False] |- _ => rewrite not_true_iff in H | H: context [False -> False] |- _ => rewrite not_false_iff in H | H: context [(?P -> False) -> False] |- _ => rewrite (not_not_iff P) in H by dec | H: context [(?P -> False) -> (?Q -> False)] |- _ => rewrite (contrapositive P Q) in H by dec | H: context [(?P -> False) \/ ?Q] |- _ => or_not_l_iff_in P Q H dec | H: context [?P \/ (?Q -> False)] |- _ => or_not_r_iff_in P Q H dec | H: context [(?P -> False) -> ?Q] |- _ => rewrite (imp_not_l P Q) in H by dec | H: context [?P \/ ?Q -> False] |- _ => rewrite (not_or_iff P Q) in H | H: context [?P /\ ?Q -> False] |- _ => rewrite (not_and_iff P Q) in H | H: context [(?P -> ?Q) -> False] |- _ => rewrite (not_imp_iff P Q) in H by dec end); fold any not. Tactic Notation "push" "not" "in" "*" "|-" := push not in * |- using core. Tactic Notation "push" "not" "in" "*" "using" ident(db) := push not using db; push not in * |- using db. Tactic Notation "push" "not" "in" "*" := push not in * using core. (** A simple test case to see how this works. *) Lemma test_push : forall P Q R : Prop, decidable P -> decidable Q -> (~ True) -> (~ False) -> (~ ~ P) -> (~ (P /\ Q) -> ~ R) -> ((P /\ Q) \/ ~ R) -> (~ (P /\ Q) \/ R) -> (R \/ ~ (P /\ Q)) -> (~ R \/ (P /\ Q)) -> (~ P -> R) -> (~ ((R -> P) \/ (Q -> R))) -> (~ (P /\ R)) -> (~ (P -> R)) -> True. Proof. intros. push not in *. (* note that ~(R->P) remains (since R isnt decidable) *) tauto. Qed. (** [pull not using db] will pull as many negations as possible toward the top of the propositions in the goal, using the lemmas in [db] to assist in checking the decidability of the propositions involved. If [using db] is omitted, then [core] will be used. Additional versions are provided to manipulate the hypotheses or the hypotheses and goal together. *) Tactic Notation "pull" "not" "using" ident(db) := let dec := solve_decidable using db in unfold not, iff; repeat ( match goal with | |- context [True -> False] => rewrite not_true_iff | |- context [False -> False] => rewrite not_false_iff | |- context [(?P -> False) -> False] => rewrite (not_not_iff P) by dec | |- context [(?P -> False) -> (?Q -> False)] => rewrite (contrapositive P Q) by dec | |- context [(?P -> False) \/ ?Q] => or_not_l_iff P Q dec | |- context [?P \/ (?Q -> False)] => or_not_r_iff P Q dec | |- context [(?P -> False) -> ?Q] => rewrite (imp_not_l P Q) by dec | |- context [(?P -> False) /\ (?Q -> False)] => rewrite <- (not_or_iff P Q) | |- context [?P -> ?Q -> False] => rewrite <- (not_and_iff P Q) | |- context [?P /\ (?Q -> False)] => rewrite <- (not_imp_iff P Q) by dec | |- context [(?Q -> False) /\ ?P] => rewrite <- (not_imp_rev_iff P Q) by dec end); fold any not. Tactic Notation "pull" "not" := pull not using core. Tactic Notation "pull" "not" "in" "*" "|-" "using" ident(db) := let dec := solve_decidable using db in unfold not, iff in * |-; repeat ( match goal with | H: context [True -> False] |- _ => rewrite not_true_iff in H | H: context [False -> False] |- _ => rewrite not_false_iff in H | H: context [(?P -> False) -> False] |- _ => rewrite (not_not_iff P) in H by dec | H: context [(?P -> False) -> (?Q -> False)] |- _ => rewrite (contrapositive P Q) in H by dec | H: context [(?P -> False) \/ ?Q] |- _ => or_not_l_iff_in P Q H dec | H: context [?P \/ (?Q -> False)] |- _ => or_not_r_iff_in P Q H dec | H: context [(?P -> False) -> ?Q] |- _ => rewrite (imp_not_l P Q) in H by dec | H: context [(?P -> False) /\ (?Q -> False)] |- _ => rewrite <- (not_or_iff P Q) in H | H: context [?P -> ?Q -> False] |- _ => rewrite <- (not_and_iff P Q) in H | H: context [?P /\ (?Q -> False)] |- _ => rewrite <- (not_imp_iff P Q) in H by dec | H: context [(?Q -> False) /\ ?P] |- _ => rewrite <- (not_imp_rev_iff P Q) in H by dec end); fold any not. Tactic Notation "pull" "not" "in" "*" "|-" := pull not in * |- using core. Tactic Notation "pull" "not" "in" "*" "using" ident(db) := pull not using db; pull not in * |- using db. Tactic Notation "pull" "not" "in" "*" := pull not in * using core. (** A simple test case to see how this works. *) Lemma test_pull : forall P Q R : Prop, decidable P -> decidable Q -> (~ True) -> (~ False) -> (~ ~ P) -> (~ (P /\ Q) -> ~ R) -> ((P /\ Q) \/ ~ R) -> (~ (P /\ Q) \/ R) -> (R \/ ~ (P /\ Q)) -> (~ R \/ (P /\ Q)) -> (~ P -> R) -> (~ (R -> P) /\ ~ (Q -> R)) -> (~ P \/ ~ R) -> (P /\ ~ R) -> (~ R /\ P) -> True. Proof. intros. pull not in *. tauto. Qed. End MSetLogicalFacts. Import MSetLogicalFacts. (** * Auxiliary Tactics Again, these lemmas and tactics are in a module so that they do not affect the namespace if you import the enclosing module [Decide]. *) Module MSetDecideAuxiliary. (** ** Generic Tactics We begin by defining a few generic, useful tactics. *) (** remove logical hypothesis inter-dependencies (fix #2136). *) Ltac no_logical_interdep := match goal with | H : ?P |- _ => match type of P with | Prop => match goal with H' : context [ H ] |- _ => clear dependent H' end | _ => fail end; no_logical_interdep | _ => idtac end. (** [if t then t1 else t2] executes [t] and, if it does not fail, then [t1] will be applied to all subgoals produced. If [t] fails, then [t2] is executed. *) Tactic Notation "if" tactic(t) "then" tactic(t1) "else" tactic(t2) := first [ t; first [ t1 | fail 2 ] | t2 ]. Ltac abstract_term t := if (is_var t) then fail "no need to abstract a variable" else (let x := fresh "x" in set (x := t) in *; try clearbody x). Ltac abstract_elements := repeat (match goal with | |- context [ singleton ?t ] => abstract_term t | _ : context [ singleton ?t ] |- _ => abstract_term t | |- context [ add ?t _ ] => abstract_term t | _ : context [ add ?t _ ] |- _ => abstract_term t | |- context [ remove ?t _ ] => abstract_term t | _ : context [ remove ?t _ ] |- _ => abstract_term t | |- context [ In ?t _ ] => abstract_term t | _ : context [ In ?t _ ] |- _ => abstract_term t end). (** [prop P holds by t] succeeds (but does not modify the goal or context) if the proposition [P] can be proved by [t] in the current context. Otherwise, the tactic fails. *) Tactic Notation "prop" constr(P) "holds" "by" tactic(t) := let H := fresh in assert P as H by t; clear H. (** This tactic acts just like [assert ... by ...] but will fail if the context already contains the proposition. *) Tactic Notation "assert" "new" constr(e) "by" tactic(t) := match goal with | H: e |- _ => fail 1 | _ => assert e by t end. (** [subst++] is similar to [subst] except that - it never fails (as [subst] does on recursive equations), - it substitutes locally defined variable for their definitions, - it performs beta reductions everywhere, which may arise after substituting a locally defined function for its definition. *) Tactic Notation "subst" "++" := repeat ( match goal with | x : _ |- _ => subst x end); cbv zeta beta in *. (** [decompose records] calls [decompose record H] on every relevant hypothesis [H]. *) Tactic Notation "decompose" "records" := repeat ( match goal with | H: _ |- _ => progress (decompose record H); clear H end). (** ** Discarding Irrelevant Hypotheses We will want to clear the context of any non-MSet-related hypotheses in order to increase the speed of the tactic. To do this, we will need to be able to decide which are relevant. We do this by making a simple inductive definition classifying the propositions of interest. *) Inductive MSet_elt_Prop : Prop -> Prop := | eq_Prop : forall (S : Type) (x y : S), MSet_elt_Prop (x = y) | eq_elt_prop : forall x y, MSet_elt_Prop (E.eq x y) | In_elt_prop : forall x s, MSet_elt_Prop (In x s) | True_elt_prop : MSet_elt_Prop True | False_elt_prop : MSet_elt_Prop False | conj_elt_prop : forall P Q, MSet_elt_Prop P -> MSet_elt_Prop Q -> MSet_elt_Prop (P /\ Q) | disj_elt_prop : forall P Q, MSet_elt_Prop P -> MSet_elt_Prop Q -> MSet_elt_Prop (P \/ Q) | impl_elt_prop : forall P Q, MSet_elt_Prop P -> MSet_elt_Prop Q -> MSet_elt_Prop (P -> Q) | not_elt_prop : forall P, MSet_elt_Prop P -> MSet_elt_Prop (~ P). Inductive MSet_Prop : Prop -> Prop := | elt_MSet_Prop : forall P, MSet_elt_Prop P -> MSet_Prop P | Empty_MSet_Prop : forall s, MSet_Prop (Empty s) | Subset_MSet_Prop : forall s1 s2, MSet_Prop (Subset s1 s2) | Equal_MSet_Prop : forall s1 s2, MSet_Prop (Equal s1 s2). (** Here is the tactic that will throw away hypotheses that are not useful (for the intended scope of the [fsetdec] tactic). *) Hint Constructors MSet_elt_Prop MSet_Prop : MSet_Prop. Ltac discard_nonMSet := repeat ( match goal with | H : context [ @Logic.eq ?T ?x ?y ] |- _ => if (change T with E.t in H) then fail else if (change T with t in H) then fail else clear H | H : ?P |- _ => if prop (MSet_Prop P) holds by (auto 100 with MSet_Prop) then fail else clear H end). (** ** Turning Set Operators into Propositional Connectives The lemmas from [MSetFacts] will be used to break down set operations into propositional formulas built over the predicates [In] and [E.eq] applied only to variables. We are going to use them with [autorewrite]. *) Hint Rewrite F.empty_iff F.singleton_iff F.add_iff F.remove_iff F.union_iff F.inter_iff F.diff_iff : set_simpl. Lemma eq_refl_iff (x : E.t) : E.eq x x <-> True. Proof. now split. Qed. Hint Rewrite eq_refl_iff : set_eq_simpl. (** ** Decidability of MSet Propositions *) (** [In] is decidable. *) Lemma dec_In : forall x s, decidable (In x s). Proof. red; intros; generalize (F.mem_iff s x); case (mem x s); intuition. Qed. (** [E.eq] is decidable. *) Lemma dec_eq : forall (x y : E.t), decidable (E.eq x y). Proof. red; intros x y; destruct (E.eq_dec x y); auto. Qed. (** The hint database [MSet_decidability] will be given to the [push_neg] tactic from the module [Negation]. *) Hint Resolve dec_In dec_eq : MSet_decidability. (** ** Normalizing Propositions About Equality We have to deal with the fact that [E.eq] may be convertible with Coq's equality. Thus, we will find the following tactics useful to replace one form with the other everywhere. *) (** The next tactic, [Logic_eq_to_E_eq], mentions the term [E.t]; thus, we must ensure that [E.t] is used in favor of any other convertible but syntactically distinct term. *) Ltac change_to_E_t := repeat ( match goal with | H : ?T |- _ => progress (change T with E.t in H); repeat ( match goal with | J : _ |- _ => progress (change T with E.t in J) | |- _ => progress (change T with E.t) end ) | H : forall x : ?T, _ |- _ => progress (change T with E.t in H); repeat ( match goal with | J : _ |- _ => progress (change T with E.t in J) | |- _ => progress (change T with E.t) end ) end). (** These two tactics take us from Coq's built-in equality to [E.eq] (and vice versa) when possible. *) Ltac Logic_eq_to_E_eq := repeat ( match goal with | H: _ |- _ => progress (change (@Logic.eq E.t) with E.eq in H) | |- _ => progress (change (@Logic.eq E.t) with E.eq) end). Ltac E_eq_to_Logic_eq := repeat ( match goal with | H: _ |- _ => progress (change E.eq with (@Logic.eq E.t) in H) | |- _ => progress (change E.eq with (@Logic.eq E.t)) end). (** This tactic works like the built-in tactic [subst], but at the level of set element equality (which may not be the convertible with Coq's equality). *) Ltac substMSet := repeat ( match goal with | H: E.eq ?x ?x |- _ => clear H | H: E.eq ?x ?y |- _ => rewrite H in *; clear H end); autorewrite with set_eq_simpl in *. (** ** Considering Decidability of Base Propositions This tactic adds assertions about the decidability of [E.eq] and [In] to the context. This is necessary for the completeness of the [fsetdec] tactic. However, in order to minimize the cost of proof search, we should be careful to not add more than we need. Once negations have been pushed to the leaves of the propositions, we only need to worry about decidability for those base propositions that appear in a negated form. *) Ltac assert_decidability := (** We actually don't want these rules to fire if the syntactic context in the patterns below is trivially empty, but we'll just do some clean-up at the afterward. *) repeat ( match goal with | H: context [~ E.eq ?x ?y] |- _ => assert new (E.eq x y \/ ~ E.eq x y) by (apply dec_eq) | H: context [~ In ?x ?s] |- _ => assert new (In x s \/ ~ In x s) by (apply dec_In) | |- context [~ E.eq ?x ?y] => assert new (E.eq x y \/ ~ E.eq x y) by (apply dec_eq) | |- context [~ In ?x ?s] => assert new (In x s \/ ~ In x s) by (apply dec_In) end); (** Now we eliminate the useless facts we added (because they would likely be very harmful to performance). *) repeat ( match goal with | _: ~ ?P, H : ?P \/ ~ ?P |- _ => clear H end). (** ** Handling [Empty], [Subset], and [Equal] This tactic instantiates universally quantified hypotheses (which arise from the unfolding of [Empty], [Subset], and [Equal]) for each of the set element expressions that is involved in some membership or equality fact. Then it throws away those hypotheses, which should no longer be needed. *) Ltac inst_MSet_hypotheses := repeat ( match goal with | H : forall a : E.t, _, _ : context [ In ?x _ ] |- _ => let P := type of (H x) in assert new P by (exact (H x)) | H : forall a : E.t, _ |- context [ In ?x _ ] => let P := type of (H x) in assert new P by (exact (H x)) | H : forall a : E.t, _, _ : context [ E.eq ?x _ ] |- _ => let P := type of (H x) in assert new P by (exact (H x)) | H : forall a : E.t, _ |- context [ E.eq ?x _ ] => let P := type of (H x) in assert new P by (exact (H x)) | H : forall a : E.t, _, _ : context [ E.eq _ ?x ] |- _ => let P := type of (H x) in assert new P by (exact (H x)) | H : forall a : E.t, _ |- context [ E.eq _ ?x ] => let P := type of (H x) in assert new P by (exact (H x)) end); repeat ( match goal with | H : forall a : E.t, _ |- _ => clear H end). (** ** The Core [fsetdec] Auxiliary Tactics *) (** Here is the crux of the proof search. Recursion through [intuition]! (This will terminate if I correctly understand the behavior of [intuition].) *) Ltac fsetdec_rec := progress substMSet; intuition fsetdec_rec. (** If we add [unfold Empty, Subset, Equal in *; intros;] to the beginning of this tactic, it will satisfy the same specification as the [fsetdec] tactic; however, it will be much slower than necessary without the pre-processing done by the wrapper tactic [fsetdec]. *) Ltac fsetdec_body := autorewrite with set_eq_simpl in *; inst_MSet_hypotheses; autorewrite with set_simpl set_eq_simpl in *; push not in * using MSet_decidability; substMSet; assert_decidability; auto; (intuition fsetdec_rec) || fail 1 "because the goal is beyond the scope of this tactic". End MSetDecideAuxiliary. Import MSetDecideAuxiliary. (** * The [fsetdec] Tactic Here is the top-level tactic (the only one intended for clients of this library). It's specification is given at the top of the file. *) Ltac fsetdec := (** We first unfold any occurrences of [iff]. *) unfold iff in *; (** We fold occurrences of [not] because it is better for [intros] to leave us with a goal of [~ P] than a goal of [False]. *) fold any not; intros; (** We don't care about the value of elements : complex ones are abstracted as new variables (avoiding potential dependencies, see bug #2464) *) abstract_elements; (** We remove dependencies to logical hypothesis. This way, later "clear" will work nicely (see bug #2136) *) no_logical_interdep; (** Now we decompose conjunctions, which will allow the [discard_nonMSet] and [assert_decidability] tactics to do a much better job. *) decompose records; discard_nonMSet; (** We unfold these defined propositions on finite sets. If our goal was one of them, then have one more item to introduce now. *) unfold Empty, Subset, Equal in *; intros; (** We now want to get rid of all uses of [=] in favor of [E.eq]. However, the best way to eliminate a [=] is in the context is with [subst], so we will try that first. In fact, we may as well convert uses of [E.eq] into [=] when possible before we do [subst] so that we can even more mileage out of it. Then we will convert all remaining uses of [=] back to [E.eq] when possible. We use [change_to_E_t] to ensure that we have a canonical name for set elements, so that [Logic_eq_to_E_eq] will work properly. *) change_to_E_t; E_eq_to_Logic_eq; subst++; Logic_eq_to_E_eq; (** The next optimization is to swap a negated goal with a negated hypothesis when possible. Any swap will improve performance by eliminating the total number of negations, but we will get the maximum benefit if we swap the goal with a hypotheses mentioning the same set element, so we try that first. If we reach the fourth branch below, we attempt any swap. However, to maintain completeness of this tactic, we can only perform such a swap with a decidable proposition; hence, we first test whether the hypothesis is an [MSet_elt_Prop], noting that any [MSet_elt_Prop] is decidable. *) pull not using MSet_decidability; unfold not in *; match goal with | H: (In ?x ?r) -> False |- (In ?x ?s) -> False => contradict H; fsetdec_body | H: (In ?x ?r) -> False |- (E.eq ?x ?y) -> False => contradict H; fsetdec_body | H: (In ?x ?r) -> False |- (E.eq ?y ?x) -> False => contradict H; fsetdec_body | H: ?P -> False |- ?Q -> False => if prop (MSet_elt_Prop P) holds by (auto 100 with MSet_Prop) then (contradict H; fsetdec_body) else fsetdec_body | |- _ => fsetdec_body end. (** * Examples *) Module MSetDecideTestCases. Lemma test_eq_trans_1 : forall x y z s, E.eq x y -> ~ ~ E.eq z y -> In x s -> In z s. Proof. fsetdec. Qed. Lemma test_eq_trans_2 : forall x y z r s, In x (singleton y) -> ~ In z r -> ~ ~ In z (add y r) -> In x s -> In z s. Proof. fsetdec. Qed. Lemma test_eq_neq_trans_1 : forall w x y z s, E.eq x w -> ~ ~ E.eq x y -> ~ E.eq y z -> In w s -> In w (remove z s). Proof. fsetdec. Qed. Lemma test_eq_neq_trans_2 : forall w x y z r1 r2 s, In x (singleton w) -> ~ In x r1 -> In x (add y r1) -> In y r2 -> In y (remove z r2) -> In w s -> In w (remove z s). Proof. fsetdec. Qed. Lemma test_In_singleton : forall x, In x (singleton x). Proof. fsetdec. Qed. Lemma test_add_In : forall x y s, In x (add y s) -> ~ E.eq x y -> In x s. Proof. fsetdec. Qed. Lemma test_Subset_add_remove : forall x s, s [<=] (add x (remove x s)). Proof. fsetdec. Qed. Lemma test_eq_disjunction : forall w x y z, In w (add x (add y (singleton z))) -> E.eq w x \/ E.eq w y \/ E.eq w z. Proof. fsetdec. Qed. Lemma test_not_In_disj : forall x y s1 s2 s3 s4, ~ In x (union s1 (union s2 (union s3 (add y s4)))) -> ~ (In x s1 \/ In x s4 \/ E.eq y x). Proof. fsetdec. Qed. Lemma test_not_In_conj : forall x y s1 s2 s3 s4, ~ In x (union s1 (union s2 (union s3 (add y s4)))) -> ~ In x s1 /\ ~ In x s4 /\ ~ E.eq y x. Proof. fsetdec. Qed. Lemma test_iff_conj : forall a x s s', (In a s' <-> E.eq x a \/ In a s) -> (In a s' <-> In a (add x s)). Proof. fsetdec. Qed. Lemma test_set_ops_1 : forall x q r s, (singleton x) [<=] s -> Empty (union q r) -> Empty (inter (diff s q) (diff s r)) -> ~ In x s. Proof. fsetdec. Qed. Lemma eq_chain_test : forall x1 x2 x3 x4 s1 s2 s3 s4, Empty s1 -> In x2 (add x1 s1) -> In x3 s2 -> ~ In x3 (remove x2 s2) -> ~ In x4 s3 -> In x4 (add x3 s3) -> In x1 s4 -> Subset (add x4 s4) s4. Proof. fsetdec. Qed. Lemma test_too_complex : forall x y z r s, E.eq x y -> (In x (singleton y) -> r [<=] s) -> In z r -> In z s. Proof. (** [fsetdec] is not intended to solve this directly. *) intros until s; intros Heq H Hr; lapply H; fsetdec. Qed. Lemma function_test_1 : forall (f : t -> t), forall (g : elt -> elt), forall (s1 s2 : t), forall (x1 x2 : elt), Equal s1 (f s2) -> E.eq x1 (g (g x2)) -> In x1 s1 -> In (g (g x2)) (f s2). Proof. fsetdec. Qed. Lemma function_test_2 : forall (f : t -> t), forall (g : elt -> elt), forall (s1 s2 : t), forall (x1 x2 : elt), Equal s1 (f s2) -> E.eq x1 (g x2) -> In x1 s1 -> g x2 = g (g x2) -> In (g (g x2)) (f s2). Proof. (** [fsetdec] is not intended to solve this directly. *) intros until 3. intros g_eq. rewrite <- g_eq. fsetdec. Qed. Lemma test_baydemir : forall (f : t -> t), forall (s : t), forall (x y : elt), In x (add y (f s)) -> ~ E.eq x y -> In x (f s). Proof. fsetdec. Qed. End MSetDecideTestCases. End WDecideOn. Require Import MSetInterface. (** Now comes variants for self-contained weak sets and for full sets. For these variants, only one argument is necessary. Thanks to the subtyping [WS<=S], the [Decide] functor which is meant to be used on modules [(M:S)] can simply be an alias of [WDecide]. *) Module WDecide (M:WSets) := !WDecideOn M.E M. Module Decide := WDecide.
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2013 by Wilson Snyder. // Very simple test for interface pathclearing module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc=1; ifc #(2) itopa(); ifc #(4) itopb(); sub ca (.isub(itopa), .clk); sub cb (.isub(itopb), .clk); always @ (posedge clk) begin `ifdef TEST_VERBOSE $write("[%0t] cyc==%0d result=%b %b\n",$time, cyc, itopa.valueo, itopb.valueo); `endif cyc <= cyc + 1; itopa.valuei <= cyc[1:0]; itopb.valuei <= cyc[3:0]; if (cyc==1) begin if (itopa.WIDTH != 2) $stop; if (itopb.WIDTH != 4) $stop; if ($bits(itopa.valueo) != 2) $stop; if ($bits(itopb.valueo) != 4) $stop; if ($bits(itopa.out_modport.valueo) != 2) $stop; if ($bits(itopb.out_modport.valueo) != 4) $stop; end if (cyc==4) begin if (itopa.valueo != 2'b11) $stop; if (itopb.valueo != 4'b0011) $stop; end if (cyc==5) begin if (itopa.valueo != 2'b00) $stop; if (itopb.valueo != 4'b0100) $stop; end if (cyc==20) begin $write("*-* All Finished *-*\n"); $finish; end end endmodule interface ifc #(parameter WIDTH = 1); // verilator lint_off MULTIDRIVEN logic [WIDTH-1:0] valuei; logic [WIDTH-1:0] valueo; // verilator lint_on MULTIDRIVEN modport out_modport (input valuei, output valueo); endinterface // Note not parameterized module sub ( ifc.out_modport isub, input clk ); always @(posedge clk) isub.valueo <= isub.valuei + 1; endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2013 by Wilson Snyder. // Very simple test for interface pathclearing module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc=1; ifc #(2) itopa(); ifc #(4) itopb(); sub ca (.isub(itopa), .clk); sub cb (.isub(itopb), .clk); always @ (posedge clk) begin `ifdef TEST_VERBOSE $write("[%0t] cyc==%0d result=%b %b\n",$time, cyc, itopa.valueo, itopb.valueo); `endif cyc <= cyc + 1; itopa.valuei <= cyc[1:0]; itopb.valuei <= cyc[3:0]; if (cyc==1) begin if (itopa.WIDTH != 2) $stop; if (itopb.WIDTH != 4) $stop; if ($bits(itopa.valueo) != 2) $stop; if ($bits(itopb.valueo) != 4) $stop; if ($bits(itopa.out_modport.valueo) != 2) $stop; if ($bits(itopb.out_modport.valueo) != 4) $stop; end if (cyc==4) begin if (itopa.valueo != 2'b11) $stop; if (itopb.valueo != 4'b0011) $stop; end if (cyc==5) begin if (itopa.valueo != 2'b00) $stop; if (itopb.valueo != 4'b0100) $stop; end if (cyc==20) begin $write("*-* All Finished *-*\n"); $finish; end end endmodule interface ifc #(parameter WIDTH = 1); // verilator lint_off MULTIDRIVEN logic [WIDTH-1:0] valuei; logic [WIDTH-1:0] valueo; // verilator lint_on MULTIDRIVEN modport out_modport (input valuei, output valueo); endinterface // Note not parameterized module sub ( ifc.out_modport isub, input clk ); always @(posedge clk) isub.valueo <= isub.valuei + 1; endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2013 by Wilson Snyder. // Very simple test for interface pathclearing module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc=1; ifc #(2) itopa(); ifc #(4) itopb(); sub ca (.isub(itopa), .clk); sub cb (.isub(itopb), .clk); always @ (posedge clk) begin `ifdef TEST_VERBOSE $write("[%0t] cyc==%0d result=%b %b\n",$time, cyc, itopa.valueo, itopb.valueo); `endif cyc <= cyc + 1; itopa.valuei <= cyc[1:0]; itopb.valuei <= cyc[3:0]; if (cyc==1) begin if (itopa.WIDTH != 2) $stop; if (itopb.WIDTH != 4) $stop; if ($bits(itopa.valueo) != 2) $stop; if ($bits(itopb.valueo) != 4) $stop; if ($bits(itopa.out_modport.valueo) != 2) $stop; if ($bits(itopb.out_modport.valueo) != 4) $stop; end if (cyc==4) begin if (itopa.valueo != 2'b11) $stop; if (itopb.valueo != 4'b0011) $stop; end if (cyc==5) begin if (itopa.valueo != 2'b00) $stop; if (itopb.valueo != 4'b0100) $stop; end if (cyc==20) begin $write("*-* All Finished *-*\n"); $finish; end end endmodule interface ifc #(parameter WIDTH = 1); // verilator lint_off MULTIDRIVEN logic [WIDTH-1:0] valuei; logic [WIDTH-1:0] valueo; // verilator lint_on MULTIDRIVEN modport out_modport (input valuei, output valueo); endinterface // Note not parameterized module sub ( ifc.out_modport isub, input clk ); always @(posedge clk) isub.valueo <= isub.valuei + 1; endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2013. module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc=0; reg [63:0] crc; reg [63:0] sum; // Take CRC data and apply to testblock inputs wire pick1 = crc[0]; wire [13:0][1:0] data1 = crc[27+1:1]; wire [3:0][2:0][1:0] data2 = crc[23+29:29]; /*AUTOWIRE*/ // Beginning of automatic wires (for undeclared instantiated-module outputs) logic [15:0] [1:0] datao; // From test of Test.v // End of automatics Test test (/*AUTOINST*/ // Outputs .datao (datao/*[15:0][1:0]*/), // Inputs .pick1 (pick1), .data1 (data1/*[13:0][1:0]*/), .data2 (data2/*[2:0][3:0][1:0]*/)); // Aggregate outputs into a single result vector wire [63:0] result = {32'h0, datao}; // Test loop always @ (posedge clk) begin `ifdef TEST_VERBOSE $write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result); `endif cyc <= cyc + 1; crc <= {crc[62:0], crc[63]^crc[2]^crc[0]}; sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]}; if (cyc==0) begin // Setup crc <= 64'h5aef0c8d_d70a4497; sum <= 64'h0; end else if (cyc<10) begin sum <= 64'h0; end else if (cyc<90) begin end else if (cyc==99) begin $write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum); if (crc !== 64'hc77bb9b3784ea091) $stop; // What checksum will we end up with (above print should match) `define EXPECTED_SUM 64'h3ff4bf0e6407b281 if (sum !== `EXPECTED_SUM) $stop; $write("*-* All Finished *-*\n"); $finish; end end endmodule module Test ( input logic pick1, input logic [13:0] [1:0] data1, // 14 x 2 = 28 bits input logic [ 3:0] [2:0] [1:0] data2, // 4 x 3 x 2 = 24 bits output logic [15:0] [1:0] datao // 16 x 2 = 32 bits ); // verilator lint_off WIDTH always_comb datao[13: 0] // 28 bits = (pick1) ? {data1} // 28 bits : {'0, data2}; // 25-28 bits, perhaps not legal as '0 is unsized // verilator lint_on WIDTH always_comb datao[15:14] = '0; endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2013. module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc=0; reg [63:0] crc; reg [63:0] sum; // Take CRC data and apply to testblock inputs wire pick1 = crc[0]; wire [13:0][1:0] data1 = crc[27+1:1]; wire [3:0][2:0][1:0] data2 = crc[23+29:29]; /*AUTOWIRE*/ // Beginning of automatic wires (for undeclared instantiated-module outputs) logic [15:0] [1:0] datao; // From test of Test.v // End of automatics Test test (/*AUTOINST*/ // Outputs .datao (datao/*[15:0][1:0]*/), // Inputs .pick1 (pick1), .data1 (data1/*[13:0][1:0]*/), .data2 (data2/*[2:0][3:0][1:0]*/)); // Aggregate outputs into a single result vector wire [63:0] result = {32'h0, datao}; // Test loop always @ (posedge clk) begin `ifdef TEST_VERBOSE $write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result); `endif cyc <= cyc + 1; crc <= {crc[62:0], crc[63]^crc[2]^crc[0]}; sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]}; if (cyc==0) begin // Setup crc <= 64'h5aef0c8d_d70a4497; sum <= 64'h0; end else if (cyc<10) begin sum <= 64'h0; end else if (cyc<90) begin end else if (cyc==99) begin $write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum); if (crc !== 64'hc77bb9b3784ea091) $stop; // What checksum will we end up with (above print should match) `define EXPECTED_SUM 64'h3ff4bf0e6407b281 if (sum !== `EXPECTED_SUM) $stop; $write("*-* All Finished *-*\n"); $finish; end end endmodule module Test ( input logic pick1, input logic [13:0] [1:0] data1, // 14 x 2 = 28 bits input logic [ 3:0] [2:0] [1:0] data2, // 4 x 3 x 2 = 24 bits output logic [15:0] [1:0] datao // 16 x 2 = 32 bits ); // verilator lint_off WIDTH always_comb datao[13: 0] // 28 bits = (pick1) ? {data1} // 28 bits : {'0, data2}; // 25-28 bits, perhaps not legal as '0 is unsized // verilator lint_on WIDTH always_comb datao[15:14] = '0; endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2013. module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc=0; reg [63:0] crc; reg [63:0] sum; // Take CRC data and apply to testblock inputs wire pick1 = crc[0]; wire [13:0][1:0] data1 = crc[27+1:1]; wire [3:0][2:0][1:0] data2 = crc[23+29:29]; /*AUTOWIRE*/ // Beginning of automatic wires (for undeclared instantiated-module outputs) logic [15:0] [1:0] datao; // From test of Test.v // End of automatics Test test (/*AUTOINST*/ // Outputs .datao (datao/*[15:0][1:0]*/), // Inputs .pick1 (pick1), .data1 (data1/*[13:0][1:0]*/), .data2 (data2/*[2:0][3:0][1:0]*/)); // Aggregate outputs into a single result vector wire [63:0] result = {32'h0, datao}; // Test loop always @ (posedge clk) begin `ifdef TEST_VERBOSE $write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result); `endif cyc <= cyc + 1; crc <= {crc[62:0], crc[63]^crc[2]^crc[0]}; sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]}; if (cyc==0) begin // Setup crc <= 64'h5aef0c8d_d70a4497; sum <= 64'h0; end else if (cyc<10) begin sum <= 64'h0; end else if (cyc<90) begin end else if (cyc==99) begin $write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum); if (crc !== 64'hc77bb9b3784ea091) $stop; // What checksum will we end up with (above print should match) `define EXPECTED_SUM 64'h3ff4bf0e6407b281 if (sum !== `EXPECTED_SUM) $stop; $write("*-* All Finished *-*\n"); $finish; end end endmodule module Test ( input logic pick1, input logic [13:0] [1:0] data1, // 14 x 2 = 28 bits input logic [ 3:0] [2:0] [1:0] data2, // 4 x 3 x 2 = 24 bits output logic [15:0] [1:0] datao // 16 x 2 = 32 bits ); // verilator lint_off WIDTH always_comb datao[13: 0] // 28 bits = (pick1) ? {data1} // 28 bits : {'0, data2}; // 25-28 bits, perhaps not legal as '0 is unsized // verilator lint_on WIDTH always_comb datao[15:14] = '0; endmodule
/* ******************************************************************************* * * FIFO Generator - Verilog Behavioral Model * ******************************************************************************* * * (c) Copyright 1995 - 2009 Xilinx, Inc. All rights reserved. * * This file contains confidential and proprietary information * of Xilinx, Inc. and is protected under U.S. and * international copyright and other intellectual property * laws. * * DISCLAIMER * This disclaimer is not a license and does not grant any * rights to the materials distributed herewith. Except as * otherwise provided in a valid license issued to you by * Xilinx, and to the maximum extent permitted by applicable * law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND * WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES * AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING * BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- * INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and * (2) Xilinx shall not be liable (whether in contract or tort, * including negligence, or under any other theory of * liability) for any loss or damage of any kind or nature * related to, arising under or in connection with these * materials, including for any direct, or any indirect, * special, incidental, or consequential loss or damage * (including loss of data, profits, goodwill, or any type of * loss or damage suffered as a result of any action brought * by a third party) even if such damage or loss was * reasonably foreseeable or Xilinx had been advised of the * possibility of the same. * * CRITICAL APPLICATIONS * Xilinx products are not designed or intended to be fail- * safe, or for use in any application requiring fail-safe * performance, such as life-support or safety devices or * systems, Class III medical devices, nuclear facilities, * applications related to the deployment of airbags, or any * other applications that could lead to death, personal * injury, or severe property or environmental damage * (individually and collectively, "Critical * Applications"). Customer assumes the sole risk and * liability of any use of Xilinx products in Critical * Applications, subject only to applicable laws and * regulations governing limitations on product liability. * * THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS * PART OF THIS FILE AT ALL TIMES. * ******************************************************************************* ******************************************************************************* * * Filename: fifo_generator_vlog_beh.v * * Author : Xilinx * ******************************************************************************* * Structure: * * fifo_generator_vlog_beh.v * | * +-fifo_generator_v12_0_bhv_ver_as * | * +-fifo_generator_v12_0_bhv_ver_ss * | * +-fifo_generator_v12_0_bhv_ver_preload0 * ******************************************************************************* * Description: * * The Verilog behavioral model for the FIFO Generator. * * The behavioral model has three parts: * - The behavioral model for independent clocks FIFOs (_as) * - The behavioral model for common clock FIFOs (_ss) * - The "preload logic" block which implements First-word Fall-through * ******************************************************************************* * Description: * The verilog behavioral model for the FIFO generator core. * ******************************************************************************* */ `timescale 1ps/1ps `ifndef TCQ `define TCQ 100 `endif /******************************************************************************* * Declaration of top-level module ******************************************************************************/ module fifo_generator_vlog_beh #( //----------------------------------------------------------------------- // Generic Declarations //----------------------------------------------------------------------- parameter C_COMMON_CLOCK = 0, parameter C_COUNT_TYPE = 0, parameter C_DATA_COUNT_WIDTH = 2, parameter C_DEFAULT_VALUE = "", parameter C_DIN_WIDTH = 8, parameter C_DOUT_RST_VAL = "", parameter C_DOUT_WIDTH = 8, parameter C_ENABLE_RLOCS = 0, parameter C_FAMILY = "", parameter C_FULL_FLAGS_RST_VAL = 1, parameter C_HAS_ALMOST_EMPTY = 0, parameter C_HAS_ALMOST_FULL = 0, parameter C_HAS_BACKUP = 0, parameter C_HAS_DATA_COUNT = 0, parameter C_HAS_INT_CLK = 0, parameter C_HAS_MEMINIT_FILE = 0, parameter C_HAS_OVERFLOW = 0, parameter C_HAS_RD_DATA_COUNT = 0, parameter C_HAS_RD_RST = 0, parameter C_HAS_RST = 1, parameter C_HAS_SRST = 0, parameter C_HAS_UNDERFLOW = 0, parameter C_HAS_VALID = 0, parameter C_HAS_WR_ACK = 0, parameter C_HAS_WR_DATA_COUNT = 0, parameter C_HAS_WR_RST = 0, parameter C_IMPLEMENTATION_TYPE = 0, parameter C_INIT_WR_PNTR_VAL = 0, parameter C_MEMORY_TYPE = 1, parameter C_MIF_FILE_NAME = "", parameter C_OPTIMIZATION_MODE = 0, parameter C_OVERFLOW_LOW = 0, parameter C_PRELOAD_LATENCY = 1, parameter C_PRELOAD_REGS = 0, parameter C_PRIM_FIFO_TYPE = "4kx4", parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0, parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0, parameter C_PROG_EMPTY_TYPE = 0, parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0, parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0, parameter C_PROG_FULL_TYPE = 0, parameter C_RD_DATA_COUNT_WIDTH = 2, parameter C_RD_DEPTH = 256, parameter C_RD_FREQ = 1, parameter C_RD_PNTR_WIDTH = 8, parameter C_UNDERFLOW_LOW = 0, parameter C_USE_DOUT_RST = 0, parameter C_USE_ECC = 0, parameter C_USE_EMBEDDED_REG = 0, parameter C_USE_PIPELINE_REG = 0, parameter C_POWER_SAVING_MODE = 0, parameter C_USE_FIFO16_FLAGS = 0, parameter C_USE_FWFT_DATA_COUNT = 0, parameter C_VALID_LOW = 0, parameter C_WR_ACK_LOW = 0, parameter C_WR_DATA_COUNT_WIDTH = 2, parameter C_WR_DEPTH = 256, parameter C_WR_FREQ = 1, parameter C_WR_PNTR_WIDTH = 8, parameter C_WR_RESPONSE_LATENCY = 1, parameter C_MSGON_VAL = 1, parameter C_ENABLE_RST_SYNC = 1, parameter C_ERROR_INJECTION_TYPE = 0, parameter C_SYNCHRONIZER_STAGE = 2, // AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, // 0: Native Interface, 1: AXI4 Stream, 2: AXI4/AXI3 parameter C_AXI_TYPE = 0, // 1: AXI4, 2: AXI4 Lite, 3: AXI3 parameter C_HAS_AXI_WR_CHANNEL = 0, parameter C_HAS_AXI_RD_CHANNEL = 0, parameter C_HAS_SLAVE_CE = 0, parameter C_HAS_MASTER_CE = 0, parameter C_ADD_NGC_CONSTRAINT = 0, parameter C_USE_COMMON_UNDERFLOW = 0, parameter C_USE_COMMON_OVERFLOW = 0, parameter C_USE_DEFAULT_SETTINGS = 0, // AXI Full/Lite parameter C_AXI_ID_WIDTH = 0, parameter C_AXI_ADDR_WIDTH = 0, parameter C_AXI_DATA_WIDTH = 0, parameter C_AXI_LEN_WIDTH = 8, parameter C_AXI_LOCK_WIDTH = 2, parameter C_HAS_AXI_ID = 0, parameter C_HAS_AXI_AWUSER = 0, parameter C_HAS_AXI_WUSER = 0, parameter C_HAS_AXI_BUSER = 0, parameter C_HAS_AXI_ARUSER = 0, parameter C_HAS_AXI_RUSER = 0, parameter C_AXI_ARUSER_WIDTH = 0, parameter C_AXI_AWUSER_WIDTH = 0, parameter C_AXI_WUSER_WIDTH = 0, parameter C_AXI_BUSER_WIDTH = 0, parameter C_AXI_RUSER_WIDTH = 0, // AXI Streaming parameter C_HAS_AXIS_TDATA = 0, parameter C_HAS_AXIS_TID = 0, parameter C_HAS_AXIS_TDEST = 0, parameter C_HAS_AXIS_TUSER = 0, parameter C_HAS_AXIS_TREADY = 0, parameter C_HAS_AXIS_TLAST = 0, parameter C_HAS_AXIS_TSTRB = 0, parameter C_HAS_AXIS_TKEEP = 0, parameter C_AXIS_TDATA_WIDTH = 1, parameter C_AXIS_TID_WIDTH = 1, parameter C_AXIS_TDEST_WIDTH = 1, parameter C_AXIS_TUSER_WIDTH = 1, parameter C_AXIS_TSTRB_WIDTH = 1, parameter C_AXIS_TKEEP_WIDTH = 1, // AXI Channel Type // WACH --> Write Address Channel // WDCH --> Write Data Channel // WRCH --> Write Response Channel // RACH --> Read Address Channel // RDCH --> Read Data Channel // AXIS --> AXI Streaming parameter C_WACH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logic parameter C_WDCH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie parameter C_WRCH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie parameter C_RACH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie parameter C_RDCH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie parameter C_AXIS_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie // AXI Implementation Type // 1 = Common Clock Block RAM FIFO // 2 = Common Clock Distributed RAM FIFO // 11 = Independent Clock Block RAM FIFO // 12 = Independent Clock Distributed RAM FIFO parameter C_IMPLEMENTATION_TYPE_WACH = 0, parameter C_IMPLEMENTATION_TYPE_WDCH = 0, parameter C_IMPLEMENTATION_TYPE_WRCH = 0, parameter C_IMPLEMENTATION_TYPE_RACH = 0, parameter C_IMPLEMENTATION_TYPE_RDCH = 0, parameter C_IMPLEMENTATION_TYPE_AXIS = 0, // AXI FIFO Type // 0 = Data FIFO // 1 = Packet FIFO // 2 = Low Latency Sync FIFO // 3 = Low Latency Async FIFO parameter C_APPLICATION_TYPE_WACH = 0, parameter C_APPLICATION_TYPE_WDCH = 0, parameter C_APPLICATION_TYPE_WRCH = 0, parameter C_APPLICATION_TYPE_RACH = 0, parameter C_APPLICATION_TYPE_RDCH = 0, parameter C_APPLICATION_TYPE_AXIS = 0, // AXI Built-in FIFO Primitive Type // 512x36, 1kx18, 2kx9, 4kx4, etc parameter C_PRIM_FIFO_TYPE_WACH = "512x36", parameter C_PRIM_FIFO_TYPE_WDCH = "512x36", parameter C_PRIM_FIFO_TYPE_WRCH = "512x36", parameter C_PRIM_FIFO_TYPE_RACH = "512x36", parameter C_PRIM_FIFO_TYPE_RDCH = "512x36", parameter C_PRIM_FIFO_TYPE_AXIS = "512x36", // Enable ECC // 0 = ECC disabled // 1 = ECC enabled parameter C_USE_ECC_WACH = 0, parameter C_USE_ECC_WDCH = 0, parameter C_USE_ECC_WRCH = 0, parameter C_USE_ECC_RACH = 0, parameter C_USE_ECC_RDCH = 0, parameter C_USE_ECC_AXIS = 0, // ECC Error Injection Type // 0 = No Error Injection // 1 = Single Bit Error Injection // 2 = Double Bit Error Injection // 3 = Single Bit and Double Bit Error Injection parameter C_ERROR_INJECTION_TYPE_WACH = 0, parameter C_ERROR_INJECTION_TYPE_WDCH = 0, parameter C_ERROR_INJECTION_TYPE_WRCH = 0, parameter C_ERROR_INJECTION_TYPE_RACH = 0, parameter C_ERROR_INJECTION_TYPE_RDCH = 0, parameter C_ERROR_INJECTION_TYPE_AXIS = 0, // Input Data Width // Accumulation of all AXI input signal's width parameter C_DIN_WIDTH_WACH = 1, parameter C_DIN_WIDTH_WDCH = 1, parameter C_DIN_WIDTH_WRCH = 1, parameter C_DIN_WIDTH_RACH = 1, parameter C_DIN_WIDTH_RDCH = 1, parameter C_DIN_WIDTH_AXIS = 1, parameter C_WR_DEPTH_WACH = 16, parameter C_WR_DEPTH_WDCH = 16, parameter C_WR_DEPTH_WRCH = 16, parameter C_WR_DEPTH_RACH = 16, parameter C_WR_DEPTH_RDCH = 16, parameter C_WR_DEPTH_AXIS = 16, parameter C_WR_PNTR_WIDTH_WACH = 4, parameter C_WR_PNTR_WIDTH_WDCH = 4, parameter C_WR_PNTR_WIDTH_WRCH = 4, parameter C_WR_PNTR_WIDTH_RACH = 4, parameter C_WR_PNTR_WIDTH_RDCH = 4, parameter C_WR_PNTR_WIDTH_AXIS = 4, parameter C_HAS_DATA_COUNTS_WACH = 0, parameter C_HAS_DATA_COUNTS_WDCH = 0, parameter C_HAS_DATA_COUNTS_WRCH = 0, parameter C_HAS_DATA_COUNTS_RACH = 0, parameter C_HAS_DATA_COUNTS_RDCH = 0, parameter C_HAS_DATA_COUNTS_AXIS = 0, parameter C_HAS_PROG_FLAGS_WACH = 0, parameter C_HAS_PROG_FLAGS_WDCH = 0, parameter C_HAS_PROG_FLAGS_WRCH = 0, parameter C_HAS_PROG_FLAGS_RACH = 0, parameter C_HAS_PROG_FLAGS_RDCH = 0, parameter C_HAS_PROG_FLAGS_AXIS = 0, parameter C_PROG_FULL_TYPE_WACH = 0, parameter C_PROG_FULL_TYPE_WDCH = 0, parameter C_PROG_FULL_TYPE_WRCH = 0, parameter C_PROG_FULL_TYPE_RACH = 0, parameter C_PROG_FULL_TYPE_RDCH = 0, parameter C_PROG_FULL_TYPE_AXIS = 0, parameter C_PROG_FULL_THRESH_ASSERT_VAL_WACH = 0, parameter C_PROG_FULL_THRESH_ASSERT_VAL_WDCH = 0, parameter C_PROG_FULL_THRESH_ASSERT_VAL_WRCH = 0, parameter C_PROG_FULL_THRESH_ASSERT_VAL_RACH = 0, parameter C_PROG_FULL_THRESH_ASSERT_VAL_RDCH = 0, parameter C_PROG_FULL_THRESH_ASSERT_VAL_AXIS = 0, parameter C_PROG_EMPTY_TYPE_WACH = 0, parameter C_PROG_EMPTY_TYPE_WDCH = 0, parameter C_PROG_EMPTY_TYPE_WRCH = 0, parameter C_PROG_EMPTY_TYPE_RACH = 0, parameter C_PROG_EMPTY_TYPE_RDCH = 0, parameter C_PROG_EMPTY_TYPE_AXIS = 0, parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH = 0, parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH = 0, parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH = 0, parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH = 0, parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH = 0, parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS = 0, parameter C_REG_SLICE_MODE_WACH = 0, parameter C_REG_SLICE_MODE_WDCH = 0, parameter C_REG_SLICE_MODE_WRCH = 0, parameter C_REG_SLICE_MODE_RACH = 0, parameter C_REG_SLICE_MODE_RDCH = 0, parameter C_REG_SLICE_MODE_AXIS = 0 ) ( //------------------------------------------------------------------------------ // Input and Output Declarations //------------------------------------------------------------------------------ // Conventional FIFO Interface Signals input backup, input backup_marker, input clk, input rst, input srst, input wr_clk, input wr_rst, input rd_clk, input rd_rst, input [C_DIN_WIDTH-1:0] din, input wr_en, input rd_en, // Optional inputs input [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh, input [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_assert, input [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_negate, input [C_WR_PNTR_WIDTH-1:0] prog_full_thresh, input [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_assert, input [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_negate, input int_clk, input injectdbiterr, input injectsbiterr, input sleep, output [C_DOUT_WIDTH-1:0] dout, output full, output almost_full, output wr_ack, output overflow, output empty, output almost_empty, output valid, output underflow, output [C_DATA_COUNT_WIDTH-1:0] data_count, output [C_RD_DATA_COUNT_WIDTH-1:0] rd_data_count, output [C_WR_DATA_COUNT_WIDTH-1:0] wr_data_count, output prog_full, output prog_empty, output sbiterr, output dbiterr, output wr_rst_busy, output rd_rst_busy, // AXI Global Signal input m_aclk, input s_aclk, input s_aresetn, input s_aclk_en, input m_aclk_en, // AXI Full/Lite Slave Write Channel (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_awid, input [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr, input [C_AXI_LEN_WIDTH-1:0] s_axi_awlen, input [3-1:0] s_axi_awsize, input [2-1:0] s_axi_awburst, input [C_AXI_LOCK_WIDTH-1:0] s_axi_awlock, input [4-1:0] s_axi_awcache, input [3-1:0] s_axi_awprot, input [4-1:0] s_axi_awqos, input [4-1:0] s_axi_awregion, input [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser, input s_axi_awvalid, output s_axi_awready, input [C_AXI_ID_WIDTH-1:0] s_axi_wid, input [C_AXI_DATA_WIDTH-1:0] s_axi_wdata, input [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb, input s_axi_wlast, input [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser, input s_axi_wvalid, output s_axi_wready, output [C_AXI_ID_WIDTH-1:0] s_axi_bid, output [2-1:0] s_axi_bresp, output [C_AXI_BUSER_WIDTH-1:0] s_axi_buser, output s_axi_bvalid, input s_axi_bready, // AXI Full/Lite Master Write Channel (read side) output [C_AXI_ID_WIDTH-1:0] m_axi_awid, output [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr, output [C_AXI_LEN_WIDTH-1:0] m_axi_awlen, output [3-1:0] m_axi_awsize, output [2-1:0] m_axi_awburst, output [C_AXI_LOCK_WIDTH-1:0] m_axi_awlock, output [4-1:0] m_axi_awcache, output [3-1:0] m_axi_awprot, output [4-1:0] m_axi_awqos, output [4-1:0] m_axi_awregion, output [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser, output m_axi_awvalid, input m_axi_awready, output [C_AXI_ID_WIDTH-1:0] m_axi_wid, output [C_AXI_DATA_WIDTH-1:0] m_axi_wdata, output [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb, output m_axi_wlast, output [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser, output m_axi_wvalid, input m_axi_wready, input [C_AXI_ID_WIDTH-1:0] m_axi_bid, input [2-1:0] m_axi_bresp, input [C_AXI_BUSER_WIDTH-1:0] m_axi_buser, input m_axi_bvalid, output m_axi_bready, // AXI Full/Lite Slave Read Channel (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_arid, input [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr, input [C_AXI_LEN_WIDTH-1:0] s_axi_arlen, input [3-1:0] s_axi_arsize, input [2-1:0] s_axi_arburst, input [C_AXI_LOCK_WIDTH-1:0] s_axi_arlock, input [4-1:0] s_axi_arcache, input [3-1:0] s_axi_arprot, input [4-1:0] s_axi_arqos, input [4-1:0] s_axi_arregion, input [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser, input s_axi_arvalid, output s_axi_arready, output [C_AXI_ID_WIDTH-1:0] s_axi_rid, output [C_AXI_DATA_WIDTH-1:0] s_axi_rdata, output [2-1:0] s_axi_rresp, output s_axi_rlast, output [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser, output s_axi_rvalid, input s_axi_rready, // AXI Full/Lite Master Read Channel (read side) output [C_AXI_ID_WIDTH-1:0] m_axi_arid, output [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr, output [C_AXI_LEN_WIDTH-1:0] m_axi_arlen, output [3-1:0] m_axi_arsize, output [2-1:0] m_axi_arburst, output [C_AXI_LOCK_WIDTH-1:0] m_axi_arlock, output [4-1:0] m_axi_arcache, output [3-1:0] m_axi_arprot, output [4-1:0] m_axi_arqos, output [4-1:0] m_axi_arregion, output [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser, output m_axi_arvalid, input m_axi_arready, input [C_AXI_ID_WIDTH-1:0] m_axi_rid, input [C_AXI_DATA_WIDTH-1:0] m_axi_rdata, input [2-1:0] m_axi_rresp, input m_axi_rlast, input [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser, input m_axi_rvalid, output m_axi_rready, // AXI Streaming Slave Signals (Write side) input s_axis_tvalid, output s_axis_tready, input [C_AXIS_TDATA_WIDTH-1:0] s_axis_tdata, input [C_AXIS_TSTRB_WIDTH-1:0] s_axis_tstrb, input [C_AXIS_TKEEP_WIDTH-1:0] s_axis_tkeep, input s_axis_tlast, input [C_AXIS_TID_WIDTH-1:0] s_axis_tid, input [C_AXIS_TDEST_WIDTH-1:0] s_axis_tdest, input [C_AXIS_TUSER_WIDTH-1:0] s_axis_tuser, // AXI Streaming Master Signals (Read side) output m_axis_tvalid, input m_axis_tready, output [C_AXIS_TDATA_WIDTH-1:0] m_axis_tdata, output [C_AXIS_TSTRB_WIDTH-1:0] m_axis_tstrb, output [C_AXIS_TKEEP_WIDTH-1:0] m_axis_tkeep, output m_axis_tlast, output [C_AXIS_TID_WIDTH-1:0] m_axis_tid, output [C_AXIS_TDEST_WIDTH-1:0] m_axis_tdest, output [C_AXIS_TUSER_WIDTH-1:0] m_axis_tuser, // AXI Full/Lite Write Address Channel signals input axi_aw_injectsbiterr, input axi_aw_injectdbiterr, input [C_WR_PNTR_WIDTH_WACH-1:0] axi_aw_prog_full_thresh, input [C_WR_PNTR_WIDTH_WACH-1:0] axi_aw_prog_empty_thresh, output [C_WR_PNTR_WIDTH_WACH:0] axi_aw_data_count, output [C_WR_PNTR_WIDTH_WACH:0] axi_aw_wr_data_count, output [C_WR_PNTR_WIDTH_WACH:0] axi_aw_rd_data_count, output axi_aw_sbiterr, output axi_aw_dbiterr, output axi_aw_overflow, output axi_aw_underflow, output axi_aw_prog_full, output axi_aw_prog_empty, // AXI Full/Lite Write Data Channel signals input axi_w_injectsbiterr, input axi_w_injectdbiterr, input [C_WR_PNTR_WIDTH_WDCH-1:0] axi_w_prog_full_thresh, input [C_WR_PNTR_WIDTH_WDCH-1:0] axi_w_prog_empty_thresh, output [C_WR_PNTR_WIDTH_WDCH:0] axi_w_data_count, output [C_WR_PNTR_WIDTH_WDCH:0] axi_w_wr_data_count, output [C_WR_PNTR_WIDTH_WDCH:0] axi_w_rd_data_count, output axi_w_sbiterr, output axi_w_dbiterr, output axi_w_overflow, output axi_w_underflow, output axi_w_prog_full, output axi_w_prog_empty, // AXI Full/Lite Write Response Channel signals input axi_b_injectsbiterr, input axi_b_injectdbiterr, input [C_WR_PNTR_WIDTH_WRCH-1:0] axi_b_prog_full_thresh, input [C_WR_PNTR_WIDTH_WRCH-1:0] axi_b_prog_empty_thresh, output [C_WR_PNTR_WIDTH_WRCH:0] axi_b_data_count, output [C_WR_PNTR_WIDTH_WRCH:0] axi_b_wr_data_count, output [C_WR_PNTR_WIDTH_WRCH:0] axi_b_rd_data_count, output axi_b_sbiterr, output axi_b_dbiterr, output axi_b_overflow, output axi_b_underflow, output axi_b_prog_full, output axi_b_prog_empty, // AXI Full/Lite Read Address Channel signals input axi_ar_injectsbiterr, input axi_ar_injectdbiterr, input [C_WR_PNTR_WIDTH_RACH-1:0] axi_ar_prog_full_thresh, input [C_WR_PNTR_WIDTH_RACH-1:0] axi_ar_prog_empty_thresh, output [C_WR_PNTR_WIDTH_RACH:0] axi_ar_data_count, output [C_WR_PNTR_WIDTH_RACH:0] axi_ar_wr_data_count, output [C_WR_PNTR_WIDTH_RACH:0] axi_ar_rd_data_count, output axi_ar_sbiterr, output axi_ar_dbiterr, output axi_ar_overflow, output axi_ar_underflow, output axi_ar_prog_full, output axi_ar_prog_empty, // AXI Full/Lite Read Data Channel Signals input axi_r_injectsbiterr, input axi_r_injectdbiterr, input [C_WR_PNTR_WIDTH_RDCH-1:0] axi_r_prog_full_thresh, input [C_WR_PNTR_WIDTH_RDCH-1:0] axi_r_prog_empty_thresh, output [C_WR_PNTR_WIDTH_RDCH:0] axi_r_data_count, output [C_WR_PNTR_WIDTH_RDCH:0] axi_r_wr_data_count, output [C_WR_PNTR_WIDTH_RDCH:0] axi_r_rd_data_count, output axi_r_sbiterr, output axi_r_dbiterr, output axi_r_overflow, output axi_r_underflow, output axi_r_prog_full, output axi_r_prog_empty, // AXI Streaming FIFO Related Signals input axis_injectsbiterr, input axis_injectdbiterr, input [C_WR_PNTR_WIDTH_AXIS-1:0] axis_prog_full_thresh, input [C_WR_PNTR_WIDTH_AXIS-1:0] axis_prog_empty_thresh, output [C_WR_PNTR_WIDTH_AXIS:0] axis_data_count, output [C_WR_PNTR_WIDTH_AXIS:0] axis_wr_data_count, output [C_WR_PNTR_WIDTH_AXIS:0] axis_rd_data_count, output axis_sbiterr, output axis_dbiterr, output axis_overflow, output axis_underflow, output axis_prog_full, output axis_prog_empty ); wire BACKUP; wire BACKUP_MARKER; wire CLK; wire RST; wire SRST; wire WR_CLK; wire WR_RST; wire RD_CLK; wire RD_RST; wire [C_DIN_WIDTH-1:0] DIN; wire WR_EN; wire RD_EN; wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH; wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT; wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE; wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH; wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT; wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE; wire INT_CLK; wire INJECTDBITERR; wire INJECTSBITERR; wire SLEEP; wire [C_DOUT_WIDTH-1:0] DOUT; wire FULL; wire ALMOST_FULL; wire WR_ACK; wire OVERFLOW; wire EMPTY; wire ALMOST_EMPTY; wire VALID; wire UNDERFLOW; wire [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT; wire [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT; wire [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT; wire PROG_FULL; wire PROG_EMPTY; wire SBITERR; wire DBITERR; wire WR_RST_BUSY; wire RD_RST_BUSY; wire M_ACLK; wire S_ACLK; wire S_ARESETN; wire S_ACLK_EN; wire M_ACLK_EN; wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID; wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR; wire [C_AXI_LEN_WIDTH-1:0] S_AXI_AWLEN; wire [3-1:0] S_AXI_AWSIZE; wire [2-1:0] S_AXI_AWBURST; wire [C_AXI_LOCK_WIDTH-1:0] S_AXI_AWLOCK; wire [4-1:0] S_AXI_AWCACHE; wire [3-1:0] S_AXI_AWPROT; wire [4-1:0] S_AXI_AWQOS; wire [4-1:0] S_AXI_AWREGION; wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER; wire S_AXI_AWVALID; wire S_AXI_AWREADY; wire [C_AXI_ID_WIDTH-1:0] S_AXI_WID; wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA; wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB; wire S_AXI_WLAST; wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER; wire S_AXI_WVALID; wire S_AXI_WREADY; wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID; wire [2-1:0] S_AXI_BRESP; wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER; wire S_AXI_BVALID; wire S_AXI_BREADY; wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID; wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR; wire [C_AXI_LEN_WIDTH-1:0] M_AXI_AWLEN; wire [3-1:0] M_AXI_AWSIZE; wire [2-1:0] M_AXI_AWBURST; wire [C_AXI_LOCK_WIDTH-1:0] M_AXI_AWLOCK; wire [4-1:0] M_AXI_AWCACHE; wire [3-1:0] M_AXI_AWPROT; wire [4-1:0] M_AXI_AWQOS; wire [4-1:0] M_AXI_AWREGION; wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER; wire M_AXI_AWVALID; wire M_AXI_AWREADY; wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID; wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA; wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB; wire M_AXI_WLAST; wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER; wire M_AXI_WVALID; wire M_AXI_WREADY; wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID; wire [2-1:0] M_AXI_BRESP; wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER; wire M_AXI_BVALID; wire M_AXI_BREADY; wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID; wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR; wire [C_AXI_LEN_WIDTH-1:0] S_AXI_ARLEN; wire [3-1:0] S_AXI_ARSIZE; wire [2-1:0] S_AXI_ARBURST; wire [C_AXI_LOCK_WIDTH-1:0] S_AXI_ARLOCK; wire [4-1:0] S_AXI_ARCACHE; wire [3-1:0] S_AXI_ARPROT; wire [4-1:0] S_AXI_ARQOS; wire [4-1:0] S_AXI_ARREGION; wire [C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER; wire S_AXI_ARVALID; wire S_AXI_ARREADY; wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID; wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA; wire [2-1:0] S_AXI_RRESP; wire S_AXI_RLAST; wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER; wire S_AXI_RVALID; wire S_AXI_RREADY; wire [C_AXI_ID_WIDTH-1:0] M_AXI_ARID; wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR; wire [C_AXI_LEN_WIDTH-1:0] M_AXI_ARLEN; wire [3-1:0] M_AXI_ARSIZE; wire [2-1:0] M_AXI_ARBURST; wire [C_AXI_LOCK_WIDTH-1:0] M_AXI_ARLOCK; wire [4-1:0] M_AXI_ARCACHE; wire [3-1:0] M_AXI_ARPROT; wire [4-1:0] M_AXI_ARQOS; wire [4-1:0] M_AXI_ARREGION; wire [C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER; wire M_AXI_ARVALID; wire M_AXI_ARREADY; wire [C_AXI_ID_WIDTH-1:0] M_AXI_RID; wire [C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA; wire [2-1:0] M_AXI_RRESP; wire M_AXI_RLAST; wire [C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER; wire M_AXI_RVALID; wire M_AXI_RREADY; wire S_AXIS_TVALID; wire S_AXIS_TREADY; wire [C_AXIS_TDATA_WIDTH-1:0] S_AXIS_TDATA; wire [C_AXIS_TSTRB_WIDTH-1:0] S_AXIS_TSTRB; wire [C_AXIS_TKEEP_WIDTH-1:0] S_AXIS_TKEEP; wire S_AXIS_TLAST; wire [C_AXIS_TID_WIDTH-1:0] S_AXIS_TID; wire [C_AXIS_TDEST_WIDTH-1:0] S_AXIS_TDEST; wire [C_AXIS_TUSER_WIDTH-1:0] S_AXIS_TUSER; wire M_AXIS_TVALID; wire M_AXIS_TREADY; wire [C_AXIS_TDATA_WIDTH-1:0] M_AXIS_TDATA; wire [C_AXIS_TSTRB_WIDTH-1:0] M_AXIS_TSTRB; wire [C_AXIS_TKEEP_WIDTH-1:0] M_AXIS_TKEEP; wire M_AXIS_TLAST; wire [C_AXIS_TID_WIDTH-1:0] M_AXIS_TID; wire [C_AXIS_TDEST_WIDTH-1:0] M_AXIS_TDEST; wire [C_AXIS_TUSER_WIDTH-1:0] M_AXIS_TUSER; wire AXI_AW_INJECTSBITERR; wire AXI_AW_INJECTDBITERR; wire [C_WR_PNTR_WIDTH_WACH-1:0] AXI_AW_PROG_FULL_THRESH; wire [C_WR_PNTR_WIDTH_WACH-1:0] AXI_AW_PROG_EMPTY_THRESH; wire [C_WR_PNTR_WIDTH_WACH:0] AXI_AW_DATA_COUNT; wire [C_WR_PNTR_WIDTH_WACH:0] AXI_AW_WR_DATA_COUNT; wire [C_WR_PNTR_WIDTH_WACH:0] AXI_AW_RD_DATA_COUNT; wire AXI_AW_SBITERR; wire AXI_AW_DBITERR; wire AXI_AW_OVERFLOW; wire AXI_AW_UNDERFLOW; wire AXI_AW_PROG_FULL; wire AXI_AW_PROG_EMPTY; wire AXI_W_INJECTSBITERR; wire AXI_W_INJECTDBITERR; wire [C_WR_PNTR_WIDTH_WDCH-1:0] AXI_W_PROG_FULL_THRESH; wire [C_WR_PNTR_WIDTH_WDCH-1:0] AXI_W_PROG_EMPTY_THRESH; wire [C_WR_PNTR_WIDTH_WDCH:0] AXI_W_DATA_COUNT; wire [C_WR_PNTR_WIDTH_WDCH:0] AXI_W_WR_DATA_COUNT; wire [C_WR_PNTR_WIDTH_WDCH:0] AXI_W_RD_DATA_COUNT; wire AXI_W_SBITERR; wire AXI_W_DBITERR; wire AXI_W_OVERFLOW; wire AXI_W_UNDERFLOW; wire AXI_W_PROG_FULL; wire AXI_W_PROG_EMPTY; wire AXI_B_INJECTSBITERR; wire AXI_B_INJECTDBITERR; wire [C_WR_PNTR_WIDTH_WRCH-1:0] AXI_B_PROG_FULL_THRESH; wire [C_WR_PNTR_WIDTH_WRCH-1:0] AXI_B_PROG_EMPTY_THRESH; wire [C_WR_PNTR_WIDTH_WRCH:0] AXI_B_DATA_COUNT; wire [C_WR_PNTR_WIDTH_WRCH:0] AXI_B_WR_DATA_COUNT; wire [C_WR_PNTR_WIDTH_WRCH:0] AXI_B_RD_DATA_COUNT; wire AXI_B_SBITERR; wire AXI_B_DBITERR; wire AXI_B_OVERFLOW; wire AXI_B_UNDERFLOW; wire AXI_B_PROG_FULL; wire AXI_B_PROG_EMPTY; wire AXI_AR_INJECTSBITERR; wire AXI_AR_INJECTDBITERR; wire [C_WR_PNTR_WIDTH_RACH-1:0] AXI_AR_PROG_FULL_THRESH; wire [C_WR_PNTR_WIDTH_RACH-1:0] AXI_AR_PROG_EMPTY_THRESH; wire [C_WR_PNTR_WIDTH_RACH:0] AXI_AR_DATA_COUNT; wire [C_WR_PNTR_WIDTH_RACH:0] AXI_AR_WR_DATA_COUNT; wire [C_WR_PNTR_WIDTH_RACH:0] AXI_AR_RD_DATA_COUNT; wire AXI_AR_SBITERR; wire AXI_AR_DBITERR; wire AXI_AR_OVERFLOW; wire AXI_AR_UNDERFLOW; wire AXI_AR_PROG_FULL; wire AXI_AR_PROG_EMPTY; wire AXI_R_INJECTSBITERR; wire AXI_R_INJECTDBITERR; wire [C_WR_PNTR_WIDTH_RDCH-1:0] AXI_R_PROG_FULL_THRESH; wire [C_WR_PNTR_WIDTH_RDCH-1:0] AXI_R_PROG_EMPTY_THRESH; wire [C_WR_PNTR_WIDTH_RDCH:0] AXI_R_DATA_COUNT; wire [C_WR_PNTR_WIDTH_RDCH:0] AXI_R_WR_DATA_COUNT; wire [C_WR_PNTR_WIDTH_RDCH:0] AXI_R_RD_DATA_COUNT; wire AXI_R_SBITERR; wire AXI_R_DBITERR; wire AXI_R_OVERFLOW; wire AXI_R_UNDERFLOW; wire AXI_R_PROG_FULL; wire AXI_R_PROG_EMPTY; wire AXIS_INJECTSBITERR; wire AXIS_INJECTDBITERR; wire [C_WR_PNTR_WIDTH_AXIS-1:0] AXIS_PROG_FULL_THRESH; wire [C_WR_PNTR_WIDTH_AXIS-1:0] AXIS_PROG_EMPTY_THRESH; wire [C_WR_PNTR_WIDTH_AXIS:0] AXIS_DATA_COUNT; wire [C_WR_PNTR_WIDTH_AXIS:0] AXIS_WR_DATA_COUNT; wire [C_WR_PNTR_WIDTH_AXIS:0] AXIS_RD_DATA_COUNT; wire AXIS_SBITERR; wire AXIS_DBITERR; wire AXIS_OVERFLOW; wire AXIS_UNDERFLOW; wire AXIS_PROG_FULL; wire AXIS_PROG_EMPTY; wire [C_WR_DATA_COUNT_WIDTH-1:0] wr_data_count_in; wire wr_rst_int; wire rd_rst_int; function integer find_log2; input integer int_val; integer i,j; begin i = 1; j = 0; for (i = 1; i < int_val; i = i*2) begin j = j + 1; end find_log2 = j; end endfunction // Conventional FIFO Interface Signals assign BACKUP = backup; assign BACKUP_MARKER = backup_marker; assign CLK = clk; assign RST = rst; assign SRST = srst; assign WR_CLK = wr_clk; assign WR_RST = wr_rst; assign RD_CLK = rd_clk; assign RD_RST = rd_rst; assign WR_EN = wr_en; assign RD_EN = rd_en; assign INT_CLK = int_clk; assign INJECTDBITERR = injectdbiterr; assign INJECTSBITERR = injectsbiterr; assign SLEEP = sleep; assign full = FULL; assign almost_full = ALMOST_FULL; assign wr_ack = WR_ACK; assign overflow = OVERFLOW; assign empty = EMPTY; assign almost_empty = ALMOST_EMPTY; assign valid = VALID; assign underflow = UNDERFLOW; assign prog_full = PROG_FULL; assign prog_empty = PROG_EMPTY; assign sbiterr = SBITERR; assign dbiterr = DBITERR; assign wr_rst_busy = WR_RST_BUSY; assign rd_rst_busy = RD_RST_BUSY; assign M_ACLK = m_aclk; assign S_ACLK = s_aclk; assign S_ARESETN = s_aresetn; assign S_ACLK_EN = s_aclk_en; assign M_ACLK_EN = m_aclk_en; assign S_AXI_AWVALID = s_axi_awvalid; assign s_axi_awready = S_AXI_AWREADY; assign S_AXI_WLAST = s_axi_wlast; assign S_AXI_WVALID = s_axi_wvalid; assign s_axi_wready = S_AXI_WREADY; assign s_axi_bvalid = S_AXI_BVALID; assign S_AXI_BREADY = s_axi_bready; assign m_axi_awvalid = M_AXI_AWVALID; assign M_AXI_AWREADY = m_axi_awready; assign m_axi_wlast = M_AXI_WLAST; assign m_axi_wvalid = M_AXI_WVALID; assign M_AXI_WREADY = m_axi_wready; assign M_AXI_BVALID = m_axi_bvalid; assign m_axi_bready = M_AXI_BREADY; assign S_AXI_ARVALID = s_axi_arvalid; assign s_axi_arready = S_AXI_ARREADY; assign s_axi_rlast = S_AXI_RLAST; assign s_axi_rvalid = S_AXI_RVALID; assign S_AXI_RREADY = s_axi_rready; assign m_axi_arvalid = M_AXI_ARVALID; assign M_AXI_ARREADY = m_axi_arready; assign M_AXI_RLAST = m_axi_rlast; assign M_AXI_RVALID = m_axi_rvalid; assign m_axi_rready = M_AXI_RREADY; assign S_AXIS_TVALID = s_axis_tvalid; assign s_axis_tready = S_AXIS_TREADY; assign S_AXIS_TLAST = s_axis_tlast; assign m_axis_tvalid = M_AXIS_TVALID; assign M_AXIS_TREADY = m_axis_tready; assign m_axis_tlast = M_AXIS_TLAST; assign AXI_AW_INJECTSBITERR = axi_aw_injectsbiterr; assign AXI_AW_INJECTDBITERR = axi_aw_injectdbiterr; assign axi_aw_sbiterr = AXI_AW_SBITERR; assign axi_aw_dbiterr = AXI_AW_DBITERR; assign axi_aw_overflow = AXI_AW_OVERFLOW; assign axi_aw_underflow = AXI_AW_UNDERFLOW; assign axi_aw_prog_full = AXI_AW_PROG_FULL; assign axi_aw_prog_empty = AXI_AW_PROG_EMPTY; assign AXI_W_INJECTSBITERR = axi_w_injectsbiterr; assign AXI_W_INJECTDBITERR = axi_w_injectdbiterr; assign axi_w_sbiterr = AXI_W_SBITERR; assign axi_w_dbiterr = AXI_W_DBITERR; assign axi_w_overflow = AXI_W_OVERFLOW; assign axi_w_underflow = AXI_W_UNDERFLOW; assign axi_w_prog_full = AXI_W_PROG_FULL; assign axi_w_prog_empty = AXI_W_PROG_EMPTY; assign AXI_B_INJECTSBITERR = axi_b_injectsbiterr; assign AXI_B_INJECTDBITERR = axi_b_injectdbiterr; assign axi_b_sbiterr = AXI_B_SBITERR; assign axi_b_dbiterr = AXI_B_DBITERR; assign axi_b_overflow = AXI_B_OVERFLOW; assign axi_b_underflow = AXI_B_UNDERFLOW; assign axi_b_prog_full = AXI_B_PROG_FULL; assign axi_b_prog_empty = AXI_B_PROG_EMPTY; assign AXI_AR_INJECTSBITERR = axi_ar_injectsbiterr; assign AXI_AR_INJECTDBITERR = axi_ar_injectdbiterr; assign axi_ar_sbiterr = AXI_AR_SBITERR; assign axi_ar_dbiterr = AXI_AR_DBITERR; assign axi_ar_overflow = AXI_AR_OVERFLOW; assign axi_ar_underflow = AXI_AR_UNDERFLOW; assign axi_ar_prog_full = AXI_AR_PROG_FULL; assign axi_ar_prog_empty = AXI_AR_PROG_EMPTY; assign AXI_R_INJECTSBITERR = axi_r_injectsbiterr; assign AXI_R_INJECTDBITERR = axi_r_injectdbiterr; assign axi_r_sbiterr = AXI_R_SBITERR; assign axi_r_dbiterr = AXI_R_DBITERR; assign axi_r_overflow = AXI_R_OVERFLOW; assign axi_r_underflow = AXI_R_UNDERFLOW; assign axi_r_prog_full = AXI_R_PROG_FULL; assign axi_r_prog_empty = AXI_R_PROG_EMPTY; assign AXIS_INJECTSBITERR = axis_injectsbiterr; assign AXIS_INJECTDBITERR = axis_injectdbiterr; assign axis_sbiterr = AXIS_SBITERR; assign axis_dbiterr = AXIS_DBITERR; assign axis_overflow = AXIS_OVERFLOW; assign axis_underflow = AXIS_UNDERFLOW; assign axis_prog_full = AXIS_PROG_FULL; assign axis_prog_empty = AXIS_PROG_EMPTY; assign DIN = din; assign PROG_EMPTY_THRESH = prog_empty_thresh; assign PROG_EMPTY_THRESH_ASSERT = prog_empty_thresh_assert; assign PROG_EMPTY_THRESH_NEGATE = prog_empty_thresh_negate; assign PROG_FULL_THRESH = prog_full_thresh; assign PROG_FULL_THRESH_ASSERT = prog_full_thresh_assert; assign PROG_FULL_THRESH_NEGATE = prog_full_thresh_negate; assign dout = DOUT; assign data_count = DATA_COUNT; assign rd_data_count = RD_DATA_COUNT; assign wr_data_count = WR_DATA_COUNT; assign S_AXI_AWID = s_axi_awid; assign S_AXI_AWADDR = s_axi_awaddr; assign S_AXI_AWLEN = s_axi_awlen; assign S_AXI_AWSIZE = s_axi_awsize; assign S_AXI_AWBURST = s_axi_awburst; assign S_AXI_AWLOCK = s_axi_awlock; assign S_AXI_AWCACHE = s_axi_awcache; assign S_AXI_AWPROT = s_axi_awprot; assign S_AXI_AWQOS = s_axi_awqos; assign S_AXI_AWREGION = s_axi_awregion; assign S_AXI_AWUSER = s_axi_awuser; assign S_AXI_WID = s_axi_wid; assign S_AXI_WDATA = s_axi_wdata; assign S_AXI_WSTRB = s_axi_wstrb; assign S_AXI_WUSER = s_axi_wuser; assign s_axi_bid = S_AXI_BID; assign s_axi_bresp = S_AXI_BRESP; assign s_axi_buser = S_AXI_BUSER; assign m_axi_awid = M_AXI_AWID; assign m_axi_awaddr = M_AXI_AWADDR; assign m_axi_awlen = M_AXI_AWLEN; assign m_axi_awsize = M_AXI_AWSIZE; assign m_axi_awburst = M_AXI_AWBURST; assign m_axi_awlock = M_AXI_AWLOCK; assign m_axi_awcache = M_AXI_AWCACHE; assign m_axi_awprot = M_AXI_AWPROT; assign m_axi_awqos = M_AXI_AWQOS; assign m_axi_awregion = M_AXI_AWREGION; assign m_axi_awuser = M_AXI_AWUSER; assign m_axi_wid = M_AXI_WID; assign m_axi_wdata = M_AXI_WDATA; assign m_axi_wstrb = M_AXI_WSTRB; assign m_axi_wuser = M_AXI_WUSER; assign M_AXI_BID = m_axi_bid; assign M_AXI_BRESP = m_axi_bresp; assign M_AXI_BUSER = m_axi_buser; assign S_AXI_ARID = s_axi_arid; assign S_AXI_ARADDR = s_axi_araddr; assign S_AXI_ARLEN = s_axi_arlen; assign S_AXI_ARSIZE = s_axi_arsize; assign S_AXI_ARBURST = s_axi_arburst; assign S_AXI_ARLOCK = s_axi_arlock; assign S_AXI_ARCACHE = s_axi_arcache; assign S_AXI_ARPROT = s_axi_arprot; assign S_AXI_ARQOS = s_axi_arqos; assign S_AXI_ARREGION = s_axi_arregion; assign S_AXI_ARUSER = s_axi_aruser; assign s_axi_rid = S_AXI_RID; assign s_axi_rdata = S_AXI_RDATA; assign s_axi_rresp = S_AXI_RRESP; assign s_axi_ruser = S_AXI_RUSER; assign m_axi_arid = M_AXI_ARID; assign m_axi_araddr = M_AXI_ARADDR; assign m_axi_arlen = M_AXI_ARLEN; assign m_axi_arsize = M_AXI_ARSIZE; assign m_axi_arburst = M_AXI_ARBURST; assign m_axi_arlock = M_AXI_ARLOCK; assign m_axi_arcache = M_AXI_ARCACHE; assign m_axi_arprot = M_AXI_ARPROT; assign m_axi_arqos = M_AXI_ARQOS; assign m_axi_arregion = M_AXI_ARREGION; assign m_axi_aruser = M_AXI_ARUSER; assign M_AXI_RID = m_axi_rid; assign M_AXI_RDATA = m_axi_rdata; assign M_AXI_RRESP = m_axi_rresp; assign M_AXI_RUSER = m_axi_ruser; assign S_AXIS_TDATA = s_axis_tdata; assign S_AXIS_TSTRB = s_axis_tstrb; assign S_AXIS_TKEEP = s_axis_tkeep; assign S_AXIS_TID = s_axis_tid; assign S_AXIS_TDEST = s_axis_tdest; assign S_AXIS_TUSER = s_axis_tuser; assign m_axis_tdata = M_AXIS_TDATA; assign m_axis_tstrb = M_AXIS_TSTRB; assign m_axis_tkeep = M_AXIS_TKEEP; assign m_axis_tid = M_AXIS_TID; assign m_axis_tdest = M_AXIS_TDEST; assign m_axis_tuser = M_AXIS_TUSER; assign AXI_AW_PROG_FULL_THRESH = axi_aw_prog_full_thresh; assign AXI_AW_PROG_EMPTY_THRESH = axi_aw_prog_empty_thresh; assign axi_aw_data_count = AXI_AW_DATA_COUNT; assign axi_aw_wr_data_count = AXI_AW_WR_DATA_COUNT; assign axi_aw_rd_data_count = AXI_AW_RD_DATA_COUNT; assign AXI_W_PROG_FULL_THRESH = axi_w_prog_full_thresh; assign AXI_W_PROG_EMPTY_THRESH = axi_w_prog_empty_thresh; assign axi_w_data_count = AXI_W_DATA_COUNT; assign axi_w_wr_data_count = AXI_W_WR_DATA_COUNT; assign axi_w_rd_data_count = AXI_W_RD_DATA_COUNT; assign AXI_B_PROG_FULL_THRESH = axi_b_prog_full_thresh; assign AXI_B_PROG_EMPTY_THRESH = axi_b_prog_empty_thresh; assign axi_b_data_count = AXI_B_DATA_COUNT; assign axi_b_wr_data_count = AXI_B_WR_DATA_COUNT; assign axi_b_rd_data_count = AXI_B_RD_DATA_COUNT; assign AXI_AR_PROG_FULL_THRESH = axi_ar_prog_full_thresh; assign AXI_AR_PROG_EMPTY_THRESH = axi_ar_prog_empty_thresh; assign axi_ar_data_count = AXI_AR_DATA_COUNT; assign axi_ar_wr_data_count = AXI_AR_WR_DATA_COUNT; assign axi_ar_rd_data_count = AXI_AR_RD_DATA_COUNT; assign AXI_R_PROG_FULL_THRESH = axi_r_prog_full_thresh; assign AXI_R_PROG_EMPTY_THRESH = axi_r_prog_empty_thresh; assign axi_r_data_count = AXI_R_DATA_COUNT; assign axi_r_wr_data_count = AXI_R_WR_DATA_COUNT; assign axi_r_rd_data_count = AXI_R_RD_DATA_COUNT; assign AXIS_PROG_FULL_THRESH = axis_prog_full_thresh; assign AXIS_PROG_EMPTY_THRESH = axis_prog_empty_thresh; assign axis_data_count = AXIS_DATA_COUNT; assign axis_wr_data_count = AXIS_WR_DATA_COUNT; assign axis_rd_data_count = AXIS_RD_DATA_COUNT; generate if (C_INTERFACE_TYPE == 0) begin : conv_fifo FIFO_GENERATOR_v12_0_CONV_VER #( .C_COMMON_CLOCK (C_COMMON_CLOCK), .C_COUNT_TYPE (C_COUNT_TYPE), .C_DATA_COUNT_WIDTH (C_DATA_COUNT_WIDTH), .C_DEFAULT_VALUE (C_DEFAULT_VALUE), .C_DIN_WIDTH (C_DIN_WIDTH), .C_DOUT_RST_VAL (C_USE_DOUT_RST == 1 ? C_DOUT_RST_VAL : 0), .C_DOUT_WIDTH (C_DOUT_WIDTH), .C_ENABLE_RLOCS (C_ENABLE_RLOCS), .C_FAMILY (C_FAMILY), .C_FULL_FLAGS_RST_VAL (C_FULL_FLAGS_RST_VAL), .C_HAS_ALMOST_EMPTY (C_HAS_ALMOST_EMPTY), .C_HAS_ALMOST_FULL (C_HAS_ALMOST_FULL), .C_HAS_BACKUP (C_HAS_BACKUP), .C_HAS_DATA_COUNT (C_HAS_DATA_COUNT), .C_HAS_INT_CLK (C_HAS_INT_CLK), .C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE), .C_HAS_OVERFLOW (C_HAS_OVERFLOW), .C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT), .C_HAS_RD_RST (C_HAS_RD_RST), .C_HAS_RST (C_HAS_RST), .C_HAS_SRST (C_HAS_SRST), .C_HAS_UNDERFLOW (C_HAS_UNDERFLOW), .C_HAS_VALID (C_HAS_VALID), .C_HAS_WR_ACK (C_HAS_WR_ACK), .C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT), .C_HAS_WR_RST (C_HAS_WR_RST), .C_IMPLEMENTATION_TYPE (C_IMPLEMENTATION_TYPE), .C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL), .C_MEMORY_TYPE (C_MEMORY_TYPE), .C_MIF_FILE_NAME (C_MIF_FILE_NAME), .C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE), .C_OVERFLOW_LOW (C_OVERFLOW_LOW), .C_PRELOAD_LATENCY (C_PRELOAD_LATENCY), .C_PRELOAD_REGS (C_PRELOAD_REGS), .C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE), .C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL), .C_PROG_EMPTY_THRESH_NEGATE_VAL (C_PROG_EMPTY_THRESH_NEGATE_VAL), .C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE), .C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL), .C_PROG_FULL_THRESH_NEGATE_VAL (C_PROG_FULL_THRESH_NEGATE_VAL), .C_PROG_FULL_TYPE (C_PROG_FULL_TYPE), .C_RD_DATA_COUNT_WIDTH (C_RD_DATA_COUNT_WIDTH), .C_RD_DEPTH (C_RD_DEPTH), .C_RD_FREQ (C_RD_FREQ), .C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH), .C_UNDERFLOW_LOW (C_UNDERFLOW_LOW), .C_USE_DOUT_RST (C_USE_DOUT_RST), .C_USE_ECC (C_USE_ECC), .C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG), .C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS), .C_USE_FWFT_DATA_COUNT (C_USE_FWFT_DATA_COUNT), .C_VALID_LOW (C_VALID_LOW), .C_WR_ACK_LOW (C_WR_ACK_LOW), .C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH), .C_WR_DEPTH (C_WR_DEPTH), .C_WR_FREQ (C_WR_FREQ), .C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH), .C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY), .C_MSGON_VAL (C_MSGON_VAL), .C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC), .C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE) ) fifo_generator_v12_0_conv_dut ( .BACKUP (BACKUP), .BACKUP_MARKER (BACKUP_MARKER), .CLK (CLK), .RST (RST), .SRST (SRST), .WR_CLK (WR_CLK), .WR_RST (WR_RST), .RD_CLK (RD_CLK), .RD_RST (RD_RST), .DIN (DIN), .WR_EN (WR_EN), .RD_EN (RD_EN), .PROG_EMPTY_THRESH (PROG_EMPTY_THRESH), .PROG_EMPTY_THRESH_ASSERT (PROG_EMPTY_THRESH_ASSERT), .PROG_EMPTY_THRESH_NEGATE (PROG_EMPTY_THRESH_NEGATE), .PROG_FULL_THRESH (PROG_FULL_THRESH), .PROG_FULL_THRESH_ASSERT (PROG_FULL_THRESH_ASSERT), .PROG_FULL_THRESH_NEGATE (PROG_FULL_THRESH_NEGATE), .INT_CLK (INT_CLK), .INJECTDBITERR (INJECTDBITERR), .INJECTSBITERR (INJECTSBITERR), .DOUT (DOUT), .FULL (FULL), .ALMOST_FULL (ALMOST_FULL), .WR_ACK (WR_ACK), .OVERFLOW (OVERFLOW), .EMPTY (EMPTY), .ALMOST_EMPTY (ALMOST_EMPTY), .VALID (VALID), .UNDERFLOW (UNDERFLOW), .DATA_COUNT (DATA_COUNT), .RD_DATA_COUNT (RD_DATA_COUNT), .WR_DATA_COUNT (wr_data_count_in), .PROG_FULL (PROG_FULL), .PROG_EMPTY (PROG_EMPTY), .SBITERR (SBITERR), .DBITERR (DBITERR), .wr_rst_busy (wr_rst_busy), .rd_rst_busy (rd_rst_busy), .wr_rst_i_out (wr_rst_int), .rd_rst_i_out (rd_rst_int) ); end endgenerate localparam IS_8SERIES = (C_FAMILY == "virtexu" || C_FAMILY == "kintexu" || C_FAMILY == "artixu" || C_FAMILY == "virtexum" || C_FAMILY == "zynque") ? 1 : 0; localparam C_AXI_SIZE_WIDTH = 3; localparam C_AXI_BURST_WIDTH = 2; localparam C_AXI_CACHE_WIDTH = 4; localparam C_AXI_PROT_WIDTH = 3; localparam C_AXI_QOS_WIDTH = 4; localparam C_AXI_REGION_WIDTH = 4; localparam C_AXI_BRESP_WIDTH = 2; localparam C_AXI_RRESP_WIDTH = 2; localparam IS_AXI_STREAMING = C_INTERFACE_TYPE == 1 ? 1 : 0; localparam TDATA_OFFSET = C_HAS_AXIS_TDATA == 1 ? C_DIN_WIDTH_AXIS-C_AXIS_TDATA_WIDTH : C_DIN_WIDTH_AXIS; localparam TSTRB_OFFSET = C_HAS_AXIS_TSTRB == 1 ? TDATA_OFFSET-C_AXIS_TSTRB_WIDTH : TDATA_OFFSET; localparam TKEEP_OFFSET = C_HAS_AXIS_TKEEP == 1 ? TSTRB_OFFSET-C_AXIS_TKEEP_WIDTH : TSTRB_OFFSET; localparam TID_OFFSET = C_HAS_AXIS_TID == 1 ? TKEEP_OFFSET-C_AXIS_TID_WIDTH : TKEEP_OFFSET; localparam TDEST_OFFSET = C_HAS_AXIS_TDEST == 1 ? TID_OFFSET-C_AXIS_TDEST_WIDTH : TID_OFFSET; localparam TUSER_OFFSET = C_HAS_AXIS_TUSER == 1 ? TDEST_OFFSET-C_AXIS_TUSER_WIDTH : TDEST_OFFSET; localparam LOG_DEPTH_AXIS = find_log2(C_WR_DEPTH_AXIS); localparam LOG_WR_DEPTH = find_log2(C_WR_DEPTH); function [LOG_DEPTH_AXIS-1:0] bin2gray; input [LOG_DEPTH_AXIS-1:0] x; begin bin2gray = x ^ (x>>1); end endfunction function [LOG_DEPTH_AXIS-1:0] gray2bin; input [LOG_DEPTH_AXIS-1:0] x; integer i; begin gray2bin[LOG_DEPTH_AXIS-1] = x[LOG_DEPTH_AXIS-1]; for(i=LOG_DEPTH_AXIS-2; i>=0; i=i-1) begin gray2bin[i] = gray2bin[i+1] ^ x[i]; end end endfunction wire [(LOG_WR_DEPTH)-1 : 0] w_cnt_gc_asreg_last; wire [LOG_WR_DEPTH-1 : 0] w_q [0:C_SYNCHRONIZER_STAGE] ; wire [LOG_WR_DEPTH-1 : 0] w_q_temp [1:C_SYNCHRONIZER_STAGE] ; reg [LOG_WR_DEPTH-1 : 0] w_cnt_rd = 0; reg [LOG_WR_DEPTH-1 : 0] w_cnt = 0; reg [LOG_WR_DEPTH-1 : 0] w_cnt_gc = 0; reg [LOG_WR_DEPTH-1 : 0] r_cnt = 0; wire [LOG_WR_DEPTH : 0] adj_w_cnt_rd_pad; wire [LOG_WR_DEPTH : 0] r_inv_pad; wire [LOG_WR_DEPTH-1 : 0] d_cnt; reg [LOG_WR_DEPTH : 0] d_cnt_pad = 0; reg adj_w_cnt_rd_pad_0 = 0; reg r_inv_pad_0 = 0; genvar l; generate for (l = 1; ((l <= C_SYNCHRONIZER_STAGE) && (C_HAS_DATA_COUNTS_AXIS == 3 && C_INTERFACE_TYPE == 0) ); l = l + 1) begin : g_cnt_sync_stage fifo_generator_v12_0_sync_stage #( .C_WIDTH (LOG_WR_DEPTH) ) rd_stg_inst ( .RST (rd_rst_int), .CLK (RD_CLK), .DIN (w_q[l-1]), .DOUT (w_q[l]) ); end endgenerate // gpkt_cnt_sync_stage generate if (C_INTERFACE_TYPE == 0 && C_HAS_DATA_COUNTS_AXIS == 3) begin : fifo_ic_adapter assign wr_eop_ad = WR_EN & !(FULL); assign rd_eop_ad = RD_EN & !(EMPTY); always @ (posedge wr_rst_int or posedge WR_CLK) begin if (wr_rst_int) w_cnt <= 1'b0; else if (wr_eop_ad) w_cnt <= w_cnt + 1; end always @ (posedge wr_rst_int or posedge WR_CLK) begin if (wr_rst_int) w_cnt_gc <= 1'b0; else w_cnt_gc <= bin2gray(w_cnt); end assign w_q[0] = w_cnt_gc; assign w_cnt_gc_asreg_last = w_q[C_SYNCHRONIZER_STAGE]; always @ (posedge rd_rst_int or posedge RD_CLK) begin if (rd_rst_int) w_cnt_rd <= 1'b0; else w_cnt_rd <= gray2bin(w_cnt_gc_asreg_last); end always @ (posedge rd_rst_int or posedge RD_CLK) begin if (rd_rst_int) r_cnt <= 1'b0; else if (rd_eop_ad) r_cnt <= r_cnt + 1; end // Take the difference of write and read packet count // Logic is similar to rd_pe_as assign adj_w_cnt_rd_pad[LOG_WR_DEPTH : 1] = w_cnt_rd; assign r_inv_pad[LOG_WR_DEPTH : 1] = ~r_cnt; assign adj_w_cnt_rd_pad[0] = adj_w_cnt_rd_pad_0; assign r_inv_pad[0] = r_inv_pad_0; always @ ( rd_eop_ad ) begin if (!rd_eop_ad) begin adj_w_cnt_rd_pad_0 <= 1'b1; r_inv_pad_0 <= 1'b1; end else begin adj_w_cnt_rd_pad_0 <= 1'b0; r_inv_pad_0 <= 1'b0; end end always @ (posedge rd_rst_int or posedge RD_CLK) begin if (rd_rst_int) d_cnt_pad <= 1'b0; else d_cnt_pad <= adj_w_cnt_rd_pad + r_inv_pad ; end assign d_cnt = d_cnt_pad [LOG_WR_DEPTH : 1] ; assign WR_DATA_COUNT = d_cnt; end endgenerate // fifo_ic_adapter generate if (C_INTERFACE_TYPE == 0 && C_HAS_DATA_COUNTS_AXIS != 3) begin : fifo_icn_adapter assign WR_DATA_COUNT = wr_data_count_in; end endgenerate // fifo_icn_adapter wire inverted_reset = ~S_ARESETN; wire axi_rs_rst; reg rst_d1 = 0 ; reg rst_d2 = 0 ; wire [C_DIN_WIDTH_AXIS-1:0] axis_din ; wire [C_DIN_WIDTH_AXIS-1:0] axis_dout ; wire axis_full ; wire axis_almost_full ; wire axis_empty ; wire axis_s_axis_tready; wire axis_m_axis_tvalid; wire axis_wr_en ; wire axis_rd_en ; wire axis_we ; wire axis_re ; wire [C_WR_PNTR_WIDTH_AXIS:0] axis_dc; reg axis_pkt_read = 1'b0; wire axis_rd_rst; wire axis_wr_rst; generate if (C_INTERFACE_TYPE > 0 && (C_AXIS_TYPE == 1 || C_WACH_TYPE == 1 || C_WDCH_TYPE == 1 || C_WRCH_TYPE == 1 || C_RACH_TYPE == 1 || C_RDCH_TYPE == 1)) begin : gaxi_rs_rst always @ (posedge inverted_reset or posedge S_ACLK) begin if (inverted_reset) begin rst_d1 <= 1'b1; rst_d2 <= 1'b1; end else begin rst_d1 <= #`TCQ 1'b0; rst_d2 <= #`TCQ rst_d1; end end assign axi_rs_rst = rst_d2; end endgenerate // gaxi_rs_rst generate if (IS_AXI_STREAMING == 1 && C_AXIS_TYPE == 0) begin : axi_streaming // Write protection when almost full or prog_full is high assign axis_we = (C_PROG_FULL_TYPE_AXIS != 0) ? axis_s_axis_tready & S_AXIS_TVALID : (C_APPLICATION_TYPE_AXIS == 1) ? axis_s_axis_tready & S_AXIS_TVALID : S_AXIS_TVALID; // Read protection when almost empty or prog_empty is high assign axis_re = (C_PROG_EMPTY_TYPE_AXIS != 0) ? axis_m_axis_tvalid & M_AXIS_TREADY : (C_APPLICATION_TYPE_AXIS == 1) ? axis_m_axis_tvalid & M_AXIS_TREADY : M_AXIS_TREADY; assign axis_wr_en = (C_HAS_SLAVE_CE == 1) ? axis_we & S_ACLK_EN : axis_we; assign axis_rd_en = (C_HAS_MASTER_CE == 1) ? axis_re & M_ACLK_EN : axis_re; FIFO_GENERATOR_v12_0_CONV_VER #( .C_FAMILY (C_FAMILY), .C_COMMON_CLOCK (C_COMMON_CLOCK), .C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_AXIS == 1 || C_IMPLEMENTATION_TYPE_AXIS == 11) ? 1 : (C_IMPLEMENTATION_TYPE_AXIS == 2 || C_IMPLEMENTATION_TYPE_AXIS == 12) ? 2 : 4), .C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_AXIS == 1 || C_IMPLEMENTATION_TYPE_AXIS == 2) ? 0 : (C_IMPLEMENTATION_TYPE_AXIS == 11 || C_IMPLEMENTATION_TYPE_AXIS == 12) ? 2 : 6), .C_PRELOAD_REGS (1), // always FWFT for AXI .C_PRELOAD_LATENCY (0), // always FWFT for AXI .C_DIN_WIDTH (C_DIN_WIDTH_AXIS), .C_WR_DEPTH (C_WR_DEPTH_AXIS), .C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_AXIS), .C_DOUT_WIDTH (C_DIN_WIDTH_AXIS), .C_RD_DEPTH (C_WR_DEPTH_AXIS), .C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_AXIS), .C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_AXIS), .C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_AXIS), .C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_AXIS), .C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS), .C_USE_ECC (C_USE_ECC_AXIS), .C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_AXIS), .C_HAS_ALMOST_EMPTY (0), .C_HAS_ALMOST_FULL (C_APPLICATION_TYPE_AXIS == 1 ? 1: 0), .C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE), .C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG), .C_FIFO_TYPE (C_APPLICATION_TYPE_AXIS == 1 ? 0: C_APPLICATION_TYPE_AXIS), .C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE), .C_HAS_WR_RST (0), .C_HAS_RD_RST (0), .C_HAS_RST (1), .C_HAS_SRST (0), .C_DOUT_RST_VAL (0), .C_HAS_VALID (0), .C_VALID_LOW (C_VALID_LOW), .C_HAS_UNDERFLOW (C_HAS_UNDERFLOW), .C_UNDERFLOW_LOW (C_UNDERFLOW_LOW), .C_HAS_WR_ACK (0), .C_WR_ACK_LOW (C_WR_ACK_LOW), .C_HAS_OVERFLOW (C_HAS_OVERFLOW), .C_OVERFLOW_LOW (C_OVERFLOW_LOW), .C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_AXIS == 1) ? 1 : 0), .C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_AXIS + 1), .C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_AXIS == 1) ? 1 : 0), .C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_AXIS + 1), .C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true .C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_AXIS == 1) ? 1 : 0), .C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_AXIS + 1), .C_FULL_FLAGS_RST_VAL (1), .C_USE_DOUT_RST (0), .C_MSGON_VAL (C_MSGON_VAL), .C_ENABLE_RST_SYNC (1), .C_COUNT_TYPE (C_COUNT_TYPE), .C_DEFAULT_VALUE (C_DEFAULT_VALUE), .C_ENABLE_RLOCS (C_ENABLE_RLOCS), .C_HAS_BACKUP (C_HAS_BACKUP), .C_HAS_INT_CLK (C_HAS_INT_CLK), .C_MIF_FILE_NAME (C_MIF_FILE_NAME), .C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE), .C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL), .C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE), .C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE), .C_RD_FREQ (C_RD_FREQ), .C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS), .C_WR_FREQ (C_WR_FREQ), .C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY) ) fifo_generator_v12_0_axis_dut ( .CLK (S_ACLK), .WR_CLK (S_ACLK), .RD_CLK (M_ACLK), .RST (inverted_reset), .SRST (1'b0), .WR_RST (inverted_reset), .RD_RST (inverted_reset), .WR_EN (axis_wr_en), .RD_EN (axis_rd_en), .PROG_FULL_THRESH (AXIS_PROG_FULL_THRESH), .PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_AXIS{1'b0}}), .PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_AXIS{1'b0}}), .PROG_EMPTY_THRESH (AXIS_PROG_EMPTY_THRESH), .PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_AXIS{1'b0}}), .PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_AXIS{1'b0}}), .INJECTDBITERR (AXIS_INJECTDBITERR), .INJECTSBITERR (AXIS_INJECTSBITERR), .DIN (axis_din), .DOUT (axis_dout), .FULL (axis_full), .EMPTY (axis_empty), .ALMOST_FULL (axis_almost_full), .PROG_FULL (AXIS_PROG_FULL), .ALMOST_EMPTY (), .PROG_EMPTY (AXIS_PROG_EMPTY), .WR_ACK (), .OVERFLOW (AXIS_OVERFLOW), .VALID (), .UNDERFLOW (AXIS_UNDERFLOW), .DATA_COUNT (axis_dc), .RD_DATA_COUNT (AXIS_RD_DATA_COUNT), .WR_DATA_COUNT (AXIS_WR_DATA_COUNT), .SBITERR (AXIS_SBITERR), .DBITERR (AXIS_DBITERR), .wr_rst_busy (wr_rst_busy_axis), .rd_rst_busy (rd_rst_busy_axis), .wr_rst_i_out (axis_wr_rst), .rd_rst_i_out (axis_rd_rst), .BACKUP (BACKUP), .BACKUP_MARKER (BACKUP_MARKER), .INT_CLK (INT_CLK) ); assign axis_s_axis_tready = (IS_8SERIES == 0) ? ~axis_full : (C_IMPLEMENTATION_TYPE_AXIS == 5 || C_IMPLEMENTATION_TYPE_AXIS == 13) ? ~(axis_full | wr_rst_busy_axis) : ~axis_full; assign axis_m_axis_tvalid = (C_APPLICATION_TYPE_AXIS != 1) ? ~axis_empty : ~axis_empty & axis_pkt_read; assign S_AXIS_TREADY = axis_s_axis_tready; assign M_AXIS_TVALID = axis_m_axis_tvalid; end endgenerate // axi_streaming wire axis_wr_eop; reg axis_wr_eop_d1 = 1'b0; wire axis_rd_eop; integer axis_pkt_cnt; generate if (C_APPLICATION_TYPE_AXIS == 1 && C_COMMON_CLOCK == 1) begin : gaxis_pkt_fifo_cc assign axis_wr_eop = axis_wr_en & S_AXIS_TLAST; assign axis_rd_eop = axis_rd_en & axis_dout[0]; always @ (posedge inverted_reset or posedge S_ACLK) begin if (inverted_reset) axis_pkt_read <= 1'b0; else if (axis_rd_eop && (axis_pkt_cnt == 1) && ~axis_wr_eop_d1) axis_pkt_read <= 1'b0; else if ((axis_pkt_cnt > 0) || (axis_almost_full && ~axis_empty)) axis_pkt_read <= 1'b1; end always @ (posedge inverted_reset or posedge S_ACLK) begin if (inverted_reset) axis_wr_eop_d1 <= 1'b0; else axis_wr_eop_d1 <= axis_wr_eop; end always @ (posedge inverted_reset or posedge S_ACLK) begin if (inverted_reset) axis_pkt_cnt <= 0; else if (axis_wr_eop_d1 && ~axis_rd_eop) axis_pkt_cnt <= axis_pkt_cnt + 1; else if (axis_rd_eop && ~axis_wr_eop_d1) axis_pkt_cnt <= axis_pkt_cnt - 1; end end endgenerate // gaxis_pkt_fifo_cc reg [LOG_DEPTH_AXIS-1 : 0] axis_wpkt_cnt_gc = 0; wire [(LOG_DEPTH_AXIS)-1 : 0] axis_wpkt_cnt_gc_asreg_last; wire axis_rd_has_rst; wire [0:C_SYNCHRONIZER_STAGE] axis_af_q ; wire [LOG_DEPTH_AXIS-1 : 0] wpkt_q [0:C_SYNCHRONIZER_STAGE] ; wire [1:C_SYNCHRONIZER_STAGE] axis_af_q_temp = 0; wire [LOG_DEPTH_AXIS-1 : 0] wpkt_q_temp [1:C_SYNCHRONIZER_STAGE] ; reg [LOG_DEPTH_AXIS-1 : 0] axis_wpkt_cnt_rd = 0; reg [LOG_DEPTH_AXIS-1 : 0] axis_wpkt_cnt = 0; reg [LOG_DEPTH_AXIS-1 : 0] axis_rpkt_cnt = 0; wire [LOG_DEPTH_AXIS : 0] adj_axis_wpkt_cnt_rd_pad; wire [LOG_DEPTH_AXIS : 0] rpkt_inv_pad; wire [LOG_DEPTH_AXIS-1 : 0] diff_pkt_cnt; reg [LOG_DEPTH_AXIS : 0] diff_pkt_cnt_pad = 0; reg adj_axis_wpkt_cnt_rd_pad_0 = 0; reg rpkt_inv_pad_0 = 0; wire axis_af_rd ; generate if (C_HAS_RST == 1) begin : rst_blk_has assign axis_rd_has_rst = axis_rd_rst; end endgenerate //rst_blk_has generate if (C_HAS_RST == 0) begin :rst_blk_no assign axis_rd_has_rst = 1'b0; end endgenerate //rst_blk_no genvar i; generate for (i = 1; ((i <= C_SYNCHRONIZER_STAGE) && (C_APPLICATION_TYPE_AXIS == 1 && C_COMMON_CLOCK == 0) ); i = i + 1) begin : gpkt_cnt_sync_stage fifo_generator_v12_0_sync_stage #( .C_WIDTH (LOG_DEPTH_AXIS) ) rd_stg_inst ( .RST (axis_rd_has_rst), .CLK (M_ACLK), .DIN (wpkt_q[i-1]), .DOUT (wpkt_q[i]) ); fifo_generator_v12_0_sync_stage #( .C_WIDTH (1) ) wr_stg_inst ( .RST (axis_rd_has_rst), .CLK (M_ACLK), .DIN (axis_af_q[i-1]), .DOUT (axis_af_q[i]) ); end endgenerate // gpkt_cnt_sync_stage generate if (C_APPLICATION_TYPE_AXIS == 1 && C_COMMON_CLOCK == 0) begin : gaxis_pkt_fifo_ic assign axis_wr_eop = axis_wr_en & S_AXIS_TLAST; assign axis_rd_eop = axis_rd_en & axis_dout[0]; always @ (posedge axis_rd_has_rst or posedge M_ACLK) begin if (axis_rd_has_rst) axis_pkt_read <= 1'b0; else if (axis_rd_eop && (diff_pkt_cnt == 1)) axis_pkt_read <= 1'b0; else if ((diff_pkt_cnt > 0) || (axis_af_rd && ~axis_empty)) axis_pkt_read <= 1'b1; end always @ (posedge axis_wr_rst or posedge S_ACLK) begin if (axis_wr_rst) axis_wpkt_cnt <= 1'b0; else if (axis_wr_eop) axis_wpkt_cnt <= axis_wpkt_cnt + 1; end always @ (posedge axis_wr_rst or posedge S_ACLK) begin if (axis_wr_rst) axis_wpkt_cnt_gc <= 1'b0; else axis_wpkt_cnt_gc <= bin2gray(axis_wpkt_cnt); end assign wpkt_q[0] = axis_wpkt_cnt_gc; assign axis_wpkt_cnt_gc_asreg_last = wpkt_q[C_SYNCHRONIZER_STAGE]; assign axis_af_q[0] = axis_almost_full; //assign axis_af_q[1:C_SYNCHRONIZER_STAGE] = axis_af_q_temp[1:C_SYNCHRONIZER_STAGE]; assign axis_af_rd = axis_af_q[C_SYNCHRONIZER_STAGE]; always @ (posedge axis_rd_has_rst or posedge M_ACLK) begin if (axis_rd_has_rst) axis_wpkt_cnt_rd <= 1'b0; else axis_wpkt_cnt_rd <= gray2bin(axis_wpkt_cnt_gc_asreg_last); end always @ (posedge axis_rd_rst or posedge M_ACLK) begin if (axis_rd_has_rst) axis_rpkt_cnt <= 1'b0; else if (axis_rd_eop) axis_rpkt_cnt <= axis_rpkt_cnt + 1; end // Take the difference of write and read packet count // Logic is similar to rd_pe_as assign adj_axis_wpkt_cnt_rd_pad[LOG_DEPTH_AXIS : 1] = axis_wpkt_cnt_rd; assign rpkt_inv_pad[LOG_DEPTH_AXIS : 1] = ~axis_rpkt_cnt; assign adj_axis_wpkt_cnt_rd_pad[0] = adj_axis_wpkt_cnt_rd_pad_0; assign rpkt_inv_pad[0] = rpkt_inv_pad_0; always @ ( axis_rd_eop ) begin if (!axis_rd_eop) begin adj_axis_wpkt_cnt_rd_pad_0 <= 1'b1; rpkt_inv_pad_0 <= 1'b1; end else begin adj_axis_wpkt_cnt_rd_pad_0 <= 1'b0; rpkt_inv_pad_0 <= 1'b0; end end always @ (posedge axis_rd_rst or posedge M_ACLK) begin if (axis_rd_has_rst) diff_pkt_cnt_pad <= 1'b0; else diff_pkt_cnt_pad <= adj_axis_wpkt_cnt_rd_pad + rpkt_inv_pad ; end assign diff_pkt_cnt = diff_pkt_cnt_pad [LOG_DEPTH_AXIS : 1] ; end endgenerate // gaxis_pkt_fifo_ic // Generate the accurate data count for axi stream packet fifo configuration reg [C_WR_PNTR_WIDTH_AXIS:0] axis_dc_pkt_fifo = 0; generate if (IS_AXI_STREAMING == 1 && C_HAS_DATA_COUNTS_AXIS == 1 && C_APPLICATION_TYPE_AXIS == 1) begin : gdc_pkt always @ (posedge inverted_reset or posedge S_ACLK) begin if (inverted_reset) axis_dc_pkt_fifo <= 0; else if (axis_wr_en && (~axis_rd_en)) axis_dc_pkt_fifo <= #`TCQ axis_dc_pkt_fifo + 1; else if (~axis_wr_en && axis_rd_en) axis_dc_pkt_fifo <= #`TCQ axis_dc_pkt_fifo - 1; end assign AXIS_DATA_COUNT = axis_dc_pkt_fifo; end endgenerate // gdc_pkt generate if (IS_AXI_STREAMING == 1 && C_HAS_DATA_COUNTS_AXIS == 0 && C_APPLICATION_TYPE_AXIS == 1) begin : gndc_pkt assign AXIS_DATA_COUNT = 0; end endgenerate // gndc_pkt generate if (IS_AXI_STREAMING == 1 && C_APPLICATION_TYPE_AXIS != 1) begin : gdc assign AXIS_DATA_COUNT = axis_dc; end endgenerate // gdc // Register Slice for Write Address Channel generate if (C_AXIS_TYPE == 1) begin : gaxis_reg_slice assign axis_wr_en = (C_HAS_SLAVE_CE == 1) ? S_AXIS_TVALID & S_ACLK_EN : S_AXIS_TVALID; assign axis_rd_en = (C_HAS_MASTER_CE == 1) ? M_AXIS_TREADY & M_ACLK_EN : M_AXIS_TREADY; fifo_generator_v12_0_axic_reg_slice #( .C_FAMILY (C_FAMILY), .C_DATA_WIDTH (C_DIN_WIDTH_AXIS), .C_REG_CONFIG (C_REG_SLICE_MODE_AXIS) ) axis_reg_slice_inst ( // System Signals .ACLK (S_ACLK), .ARESET (axi_rs_rst), // Slave side .S_PAYLOAD_DATA (axis_din), .S_VALID (axis_wr_en), .S_READY (S_AXIS_TREADY), // Master side .M_PAYLOAD_DATA (axis_dout), .M_VALID (M_AXIS_TVALID), .M_READY (axis_rd_en) ); end endgenerate // gaxis_reg_slice generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TDATA == 1) begin : tdata assign axis_din[C_DIN_WIDTH_AXIS-1:TDATA_OFFSET] = S_AXIS_TDATA; assign M_AXIS_TDATA = axis_dout[C_DIN_WIDTH_AXIS-1:TDATA_OFFSET]; end endgenerate generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TSTRB == 1) begin : tstrb assign axis_din[TDATA_OFFSET-1:TSTRB_OFFSET] = S_AXIS_TSTRB; assign M_AXIS_TSTRB = axis_dout[TDATA_OFFSET-1:TSTRB_OFFSET]; end endgenerate generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TKEEP == 1) begin : tkeep assign axis_din[TSTRB_OFFSET-1:TKEEP_OFFSET] = S_AXIS_TKEEP; assign M_AXIS_TKEEP = axis_dout[TSTRB_OFFSET-1:TKEEP_OFFSET]; end endgenerate generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TID == 1) begin : tid assign axis_din[TKEEP_OFFSET-1:TID_OFFSET] = S_AXIS_TID; assign M_AXIS_TID = axis_dout[TKEEP_OFFSET-1:TID_OFFSET]; end endgenerate generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TDEST == 1) begin : tdest assign axis_din[TID_OFFSET-1:TDEST_OFFSET] = S_AXIS_TDEST; assign M_AXIS_TDEST = axis_dout[TID_OFFSET-1:TDEST_OFFSET]; end endgenerate generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TUSER == 1) begin : tuser assign axis_din[TDEST_OFFSET-1:TUSER_OFFSET] = S_AXIS_TUSER; assign M_AXIS_TUSER = axis_dout[TDEST_OFFSET-1:TUSER_OFFSET]; end endgenerate generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TLAST == 1) begin : tlast assign axis_din[0] = S_AXIS_TLAST; assign M_AXIS_TLAST = axis_dout[0]; end endgenerate //########################################################################### // AXI FULL Write Channel (axi_write_channel) //########################################################################### localparam IS_AXI_FULL = ((C_INTERFACE_TYPE == 2) && (C_AXI_TYPE != 2)) ? 1 : 0; localparam IS_AXI_LITE = ((C_INTERFACE_TYPE == 2) && (C_AXI_TYPE == 2)) ? 1 : 0; localparam IS_AXI_FULL_WACH = ((IS_AXI_FULL == 1) && (C_WACH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0; localparam IS_AXI_FULL_WDCH = ((IS_AXI_FULL == 1) && (C_WDCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0; localparam IS_AXI_FULL_WRCH = ((IS_AXI_FULL == 1) && (C_WRCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0; localparam IS_AXI_FULL_RACH = ((IS_AXI_FULL == 1) && (C_RACH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0; localparam IS_AXI_FULL_RDCH = ((IS_AXI_FULL == 1) && (C_RDCH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0; localparam IS_AXI_LITE_WACH = ((IS_AXI_LITE == 1) && (C_WACH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0; localparam IS_AXI_LITE_WDCH = ((IS_AXI_LITE == 1) && (C_WDCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0; localparam IS_AXI_LITE_WRCH = ((IS_AXI_LITE == 1) && (C_WRCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0; localparam IS_AXI_LITE_RACH = ((IS_AXI_LITE == 1) && (C_RACH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0; localparam IS_AXI_LITE_RDCH = ((IS_AXI_LITE == 1) && (C_RDCH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0; localparam IS_WR_ADDR_CH = ((IS_AXI_FULL_WACH == 1) || (IS_AXI_LITE_WACH == 1)) ? 1 : 0; localparam IS_WR_DATA_CH = ((IS_AXI_FULL_WDCH == 1) || (IS_AXI_LITE_WDCH == 1)) ? 1 : 0; localparam IS_WR_RESP_CH = ((IS_AXI_FULL_WRCH == 1) || (IS_AXI_LITE_WRCH == 1)) ? 1 : 0; localparam IS_RD_ADDR_CH = ((IS_AXI_FULL_RACH == 1) || (IS_AXI_LITE_RACH == 1)) ? 1 : 0; localparam IS_RD_DATA_CH = ((IS_AXI_FULL_RDCH == 1) || (IS_AXI_LITE_RDCH == 1)) ? 1 : 0; localparam AWID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_WACH - C_AXI_ID_WIDTH : C_DIN_WIDTH_WACH; localparam AWADDR_OFFSET = AWID_OFFSET - C_AXI_ADDR_WIDTH; localparam AWLEN_OFFSET = C_AXI_TYPE != 2 ? AWADDR_OFFSET - C_AXI_LEN_WIDTH : AWADDR_OFFSET; localparam AWSIZE_OFFSET = C_AXI_TYPE != 2 ? AWLEN_OFFSET - C_AXI_SIZE_WIDTH : AWLEN_OFFSET; localparam AWBURST_OFFSET = C_AXI_TYPE != 2 ? AWSIZE_OFFSET - C_AXI_BURST_WIDTH : AWSIZE_OFFSET; localparam AWLOCK_OFFSET = C_AXI_TYPE != 2 ? AWBURST_OFFSET - C_AXI_LOCK_WIDTH : AWBURST_OFFSET; localparam AWCACHE_OFFSET = C_AXI_TYPE != 2 ? AWLOCK_OFFSET - C_AXI_CACHE_WIDTH : AWLOCK_OFFSET; localparam AWPROT_OFFSET = AWCACHE_OFFSET - C_AXI_PROT_WIDTH; localparam AWQOS_OFFSET = AWPROT_OFFSET - C_AXI_QOS_WIDTH; localparam AWREGION_OFFSET = C_AXI_TYPE == 1 ? AWQOS_OFFSET - C_AXI_REGION_WIDTH : AWQOS_OFFSET; localparam AWUSER_OFFSET = C_HAS_AXI_AWUSER == 1 ? AWREGION_OFFSET-C_AXI_AWUSER_WIDTH : AWREGION_OFFSET; localparam WID_OFFSET = (C_AXI_TYPE == 3 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_WDCH - C_AXI_ID_WIDTH : C_DIN_WIDTH_WDCH; localparam WDATA_OFFSET = WID_OFFSET - C_AXI_DATA_WIDTH; localparam WSTRB_OFFSET = WDATA_OFFSET - C_AXI_DATA_WIDTH/8; localparam WUSER_OFFSET = C_HAS_AXI_WUSER == 1 ? WSTRB_OFFSET-C_AXI_WUSER_WIDTH : WSTRB_OFFSET; localparam BID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_WRCH - C_AXI_ID_WIDTH : C_DIN_WIDTH_WRCH; localparam BRESP_OFFSET = BID_OFFSET - C_AXI_BRESP_WIDTH; localparam BUSER_OFFSET = C_HAS_AXI_BUSER == 1 ? BRESP_OFFSET-C_AXI_BUSER_WIDTH : BRESP_OFFSET; wire [C_DIN_WIDTH_WACH-1:0] wach_din ; wire [C_DIN_WIDTH_WACH-1:0] wach_dout ; wire [C_DIN_WIDTH_WACH-1:0] wach_dout_pkt ; wire wach_full ; wire wach_almost_full ; wire wach_prog_full ; wire wach_empty ; wire wach_almost_empty ; wire wach_prog_empty ; wire [C_DIN_WIDTH_WDCH-1:0] wdch_din ; wire [C_DIN_WIDTH_WDCH-1:0] wdch_dout ; wire wdch_full ; wire wdch_almost_full ; wire wdch_prog_full ; wire wdch_empty ; wire wdch_almost_empty ; wire wdch_prog_empty ; wire [C_DIN_WIDTH_WRCH-1:0] wrch_din ; wire [C_DIN_WIDTH_WRCH-1:0] wrch_dout ; wire wrch_full ; wire wrch_almost_full ; wire wrch_prog_full ; wire wrch_empty ; wire wrch_almost_empty ; wire wrch_prog_empty ; wire axi_aw_underflow_i; wire axi_w_underflow_i ; wire axi_b_underflow_i ; wire axi_aw_overflow_i ; wire axi_w_overflow_i ; wire axi_b_overflow_i ; wire axi_wr_underflow_i; wire axi_wr_overflow_i ; wire wach_s_axi_awready; wire wach_m_axi_awvalid; wire wach_wr_en ; wire wach_rd_en ; wire wdch_s_axi_wready ; wire wdch_m_axi_wvalid ; wire wdch_wr_en ; wire wdch_rd_en ; wire wrch_s_axi_bvalid ; wire wrch_m_axi_bready ; wire wrch_wr_en ; wire wrch_rd_en ; wire txn_count_up ; wire txn_count_down ; wire awvalid_en ; wire awvalid_pkt ; wire awready_pkt ; integer wr_pkt_count ; wire wach_we ; wire wach_re ; wire wdch_we ; wire wdch_re ; wire wrch_we ; wire wrch_re ; generate if (IS_WR_ADDR_CH == 1) begin : axi_write_address_channel // Write protection when almost full or prog_full is high assign wach_we = (C_PROG_FULL_TYPE_WACH != 0) ? wach_s_axi_awready & S_AXI_AWVALID : S_AXI_AWVALID; // Read protection when almost empty or prog_empty is high assign wach_re = (C_PROG_EMPTY_TYPE_WACH != 0 && C_APPLICATION_TYPE_WACH == 1) ? wach_m_axi_awvalid & awready_pkt & awvalid_en : (C_PROG_EMPTY_TYPE_WACH != 0 && C_APPLICATION_TYPE_WACH != 1) ? M_AXI_AWREADY && wach_m_axi_awvalid : (C_PROG_EMPTY_TYPE_WACH == 0 && C_APPLICATION_TYPE_WACH == 1) ? awready_pkt & awvalid_en : (C_PROG_EMPTY_TYPE_WACH == 0 && C_APPLICATION_TYPE_WACH != 1) ? M_AXI_AWREADY : 1'b0; assign wach_wr_en = (C_HAS_SLAVE_CE == 1) ? wach_we & S_ACLK_EN : wach_we; assign wach_rd_en = (C_HAS_MASTER_CE == 1) ? wach_re & M_ACLK_EN : wach_re; FIFO_GENERATOR_v12_0_CONV_VER #( .C_FAMILY (C_FAMILY), .C_COMMON_CLOCK (C_COMMON_CLOCK), .C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_WACH == 1 || C_IMPLEMENTATION_TYPE_WACH == 11) ? 1 : (C_IMPLEMENTATION_TYPE_WACH == 2 || C_IMPLEMENTATION_TYPE_WACH == 12) ? 2 : 4), .C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_WACH == 1 || C_IMPLEMENTATION_TYPE_WACH == 2) ? 0 : (C_IMPLEMENTATION_TYPE_WACH == 11 || C_IMPLEMENTATION_TYPE_WACH == 12) ? 2 : 6), .C_PRELOAD_REGS (1), // always FWFT for AXI .C_PRELOAD_LATENCY (0), // always FWFT for AXI .C_DIN_WIDTH (C_DIN_WIDTH_WACH), .C_WR_DEPTH (C_WR_DEPTH_WACH), .C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_WACH), .C_DOUT_WIDTH (C_DIN_WIDTH_WACH), .C_RD_DEPTH (C_WR_DEPTH_WACH), .C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_WACH), .C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_WACH), .C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_WACH), .C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_WACH), .C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH), .C_USE_ECC (C_USE_ECC_WACH), .C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_WACH), .C_HAS_ALMOST_EMPTY (0), .C_HAS_ALMOST_FULL (0), .C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE), .C_FIFO_TYPE ((C_APPLICATION_TYPE_WACH == 1)?0:C_APPLICATION_TYPE_WACH), .C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE), .C_HAS_WR_RST (0), .C_HAS_RD_RST (0), .C_HAS_RST (1), .C_HAS_SRST (0), .C_DOUT_RST_VAL (0), .C_HAS_VALID (0), .C_VALID_LOW (C_VALID_LOW), .C_HAS_UNDERFLOW (C_HAS_UNDERFLOW), .C_UNDERFLOW_LOW (C_UNDERFLOW_LOW), .C_HAS_WR_ACK (0), .C_WR_ACK_LOW (C_WR_ACK_LOW), .C_HAS_OVERFLOW (C_HAS_OVERFLOW), .C_OVERFLOW_LOW (C_OVERFLOW_LOW), .C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_WACH == 1) ? 1 : 0), .C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WACH + 1), .C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WACH == 1) ? 1 : 0), .C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WACH + 1), .C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true .C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WACH == 1) ? 1 : 0), .C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WACH + 1), .C_FULL_FLAGS_RST_VAL (1), .C_USE_EMBEDDED_REG (0), .C_USE_DOUT_RST (0), .C_MSGON_VAL (C_MSGON_VAL), .C_ENABLE_RST_SYNC (1), .C_COUNT_TYPE (C_COUNT_TYPE), .C_DEFAULT_VALUE (C_DEFAULT_VALUE), .C_ENABLE_RLOCS (C_ENABLE_RLOCS), .C_HAS_BACKUP (C_HAS_BACKUP), .C_HAS_INT_CLK (C_HAS_INT_CLK), .C_MIF_FILE_NAME (C_MIF_FILE_NAME), .C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE), .C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL), .C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE), .C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE), .C_RD_FREQ (C_RD_FREQ), .C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS), .C_WR_FREQ (C_WR_FREQ), .C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY) ) fifo_generator_v12_0_wach_dut ( .CLK (S_ACLK), .WR_CLK (S_ACLK), .RD_CLK (M_ACLK), .RST (inverted_reset), .SRST (1'b0), .WR_RST (inverted_reset), .RD_RST (inverted_reset), .WR_EN (wach_wr_en), .RD_EN (wach_rd_en), .PROG_FULL_THRESH (AXI_AW_PROG_FULL_THRESH), .PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WACH{1'b0}}), .PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WACH{1'b0}}), .PROG_EMPTY_THRESH (AXI_AW_PROG_EMPTY_THRESH), .PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WACH{1'b0}}), .PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WACH{1'b0}}), .INJECTDBITERR (AXI_AW_INJECTDBITERR), .INJECTSBITERR (AXI_AW_INJECTSBITERR), .DIN (wach_din), .DOUT (wach_dout_pkt), .FULL (wach_full), .EMPTY (wach_empty), .ALMOST_FULL (), .PROG_FULL (AXI_AW_PROG_FULL), .ALMOST_EMPTY (), .PROG_EMPTY (AXI_AW_PROG_EMPTY), .WR_ACK (), .OVERFLOW (axi_aw_overflow_i), .VALID (), .UNDERFLOW (axi_aw_underflow_i), .DATA_COUNT (AXI_AW_DATA_COUNT), .RD_DATA_COUNT (AXI_AW_RD_DATA_COUNT), .WR_DATA_COUNT (AXI_AW_WR_DATA_COUNT), .SBITERR (AXI_AW_SBITERR), .DBITERR (AXI_AW_DBITERR), .wr_rst_busy (wr_rst_busy_wach), .rd_rst_busy (rd_rst_busy_wach), .wr_rst_i_out (), .rd_rst_i_out (), .BACKUP (BACKUP), .BACKUP_MARKER (BACKUP_MARKER), .INT_CLK (INT_CLK) ); assign wach_s_axi_awready = (IS_8SERIES == 0) ? ~wach_full : (C_IMPLEMENTATION_TYPE_WACH == 5 || C_IMPLEMENTATION_TYPE_WACH == 13) ? ~(wach_full | wr_rst_busy_wach) : ~wach_full; assign wach_m_axi_awvalid = ~wach_empty; assign S_AXI_AWREADY = wach_s_axi_awready; assign AXI_AW_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_aw_underflow_i : 0; assign AXI_AW_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_aw_overflow_i : 0; end endgenerate // axi_write_address_channel // Register Slice for Write Address Channel generate if (C_WACH_TYPE == 1) begin : gwach_reg_slice fifo_generator_v12_0_axic_reg_slice #( .C_FAMILY (C_FAMILY), .C_DATA_WIDTH (C_DIN_WIDTH_WACH), .C_REG_CONFIG (C_REG_SLICE_MODE_WACH) ) wach_reg_slice_inst ( // System Signals .ACLK (S_ACLK), .ARESET (axi_rs_rst), // Slave side .S_PAYLOAD_DATA (wach_din), .S_VALID (S_AXI_AWVALID), .S_READY (S_AXI_AWREADY), // Master side .M_PAYLOAD_DATA (wach_dout), .M_VALID (M_AXI_AWVALID), .M_READY (M_AXI_AWREADY) ); end endgenerate // gwach_reg_slice generate if (C_APPLICATION_TYPE_WACH == 1 && C_HAS_AXI_WR_CHANNEL == 1) begin : axi_mm_pkt_fifo_wr fifo_generator_v12_0_axic_reg_slice #( .C_FAMILY (C_FAMILY), .C_DATA_WIDTH (C_DIN_WIDTH_WACH), .C_REG_CONFIG (1) ) wach_pkt_reg_slice_inst ( // System Signals .ACLK (S_ACLK), .ARESET (inverted_reset), // Slave side .S_PAYLOAD_DATA (wach_dout_pkt), .S_VALID (awvalid_pkt), .S_READY (awready_pkt), // Master side .M_PAYLOAD_DATA (wach_dout), .M_VALID (M_AXI_AWVALID), .M_READY (M_AXI_AWREADY) ); assign awvalid_pkt = wach_m_axi_awvalid && awvalid_en; assign txn_count_up = wdch_s_axi_wready && wdch_wr_en && wdch_din[0]; assign txn_count_down = wach_m_axi_awvalid && awready_pkt && awvalid_en; always@(posedge S_ACLK or posedge inverted_reset) begin if(inverted_reset == 1) begin wr_pkt_count <= 0; end else begin if(txn_count_up == 1 && txn_count_down == 0) begin wr_pkt_count <= wr_pkt_count + 1; end else if(txn_count_up == 0 && txn_count_down == 1) begin wr_pkt_count <= wr_pkt_count - 1; end end end //Always end assign awvalid_en = (wr_pkt_count > 0)?1:0; end endgenerate generate if (C_APPLICATION_TYPE_WACH != 1) begin : axi_mm_fifo_wr assign awvalid_en = 1; assign wach_dout = wach_dout_pkt; assign M_AXI_AWVALID = wach_m_axi_awvalid; end endgenerate generate if (IS_WR_DATA_CH == 1) begin : axi_write_data_channel // Write protection when almost full or prog_full is high assign wdch_we = (C_PROG_FULL_TYPE_WDCH != 0) ? wdch_s_axi_wready & S_AXI_WVALID : S_AXI_WVALID; // Read protection when almost empty or prog_empty is high assign wdch_re = (C_PROG_EMPTY_TYPE_WDCH != 0) ? wdch_m_axi_wvalid & M_AXI_WREADY : M_AXI_WREADY; assign wdch_wr_en = (C_HAS_SLAVE_CE == 1) ? wdch_we & S_ACLK_EN : wdch_we; assign wdch_rd_en = (C_HAS_MASTER_CE == 1) ? wdch_re & M_ACLK_EN : wdch_re; FIFO_GENERATOR_v12_0_CONV_VER #( .C_FAMILY (C_FAMILY), .C_COMMON_CLOCK (C_COMMON_CLOCK), .C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_WDCH == 1 || C_IMPLEMENTATION_TYPE_WDCH == 11) ? 1 : (C_IMPLEMENTATION_TYPE_WDCH == 2 || C_IMPLEMENTATION_TYPE_WDCH == 12) ? 2 : 4), .C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_WDCH == 1 || C_IMPLEMENTATION_TYPE_WDCH == 2) ? 0 : (C_IMPLEMENTATION_TYPE_WDCH == 11 || C_IMPLEMENTATION_TYPE_WDCH == 12) ? 2 : 6), .C_PRELOAD_REGS (1), // always FWFT for AXI .C_PRELOAD_LATENCY (0), // always FWFT for AXI .C_DIN_WIDTH (C_DIN_WIDTH_WDCH), .C_WR_DEPTH (C_WR_DEPTH_WDCH), .C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_WDCH), .C_DOUT_WIDTH (C_DIN_WIDTH_WDCH), .C_RD_DEPTH (C_WR_DEPTH_WDCH), .C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_WDCH), .C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_WDCH), .C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_WDCH), .C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_WDCH), .C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH), .C_USE_ECC (C_USE_ECC_WDCH), .C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_WDCH), .C_HAS_ALMOST_EMPTY (0), .C_HAS_ALMOST_FULL (0), .C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE), .C_FIFO_TYPE (C_APPLICATION_TYPE_WDCH), .C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE), .C_HAS_WR_RST (0), .C_HAS_RD_RST (0), .C_HAS_RST (1), .C_HAS_SRST (0), .C_DOUT_RST_VAL (0), .C_HAS_VALID (0), .C_VALID_LOW (C_VALID_LOW), .C_HAS_UNDERFLOW (C_HAS_UNDERFLOW), .C_UNDERFLOW_LOW (C_UNDERFLOW_LOW), .C_HAS_WR_ACK (0), .C_WR_ACK_LOW (C_WR_ACK_LOW), .C_HAS_OVERFLOW (C_HAS_OVERFLOW), .C_OVERFLOW_LOW (C_OVERFLOW_LOW), .C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_WDCH == 1) ? 1 : 0), .C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WDCH + 1), .C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WDCH == 1) ? 1 : 0), .C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WDCH + 1), .C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true .C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WDCH == 1) ? 1 : 0), .C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WDCH + 1), .C_FULL_FLAGS_RST_VAL (1), .C_USE_EMBEDDED_REG (0), .C_USE_DOUT_RST (0), .C_MSGON_VAL (C_MSGON_VAL), .C_ENABLE_RST_SYNC (1), .C_COUNT_TYPE (C_COUNT_TYPE), .C_DEFAULT_VALUE (C_DEFAULT_VALUE), .C_ENABLE_RLOCS (C_ENABLE_RLOCS), .C_HAS_BACKUP (C_HAS_BACKUP), .C_HAS_INT_CLK (C_HAS_INT_CLK), .C_MIF_FILE_NAME (C_MIF_FILE_NAME), .C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE), .C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL), .C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE), .C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE), .C_RD_FREQ (C_RD_FREQ), .C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS), .C_WR_FREQ (C_WR_FREQ), .C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY) ) fifo_generator_v12_0_wdch_dut ( .CLK (S_ACLK), .WR_CLK (S_ACLK), .RD_CLK (M_ACLK), .RST (inverted_reset), .SRST (1'b0), .WR_RST (inverted_reset), .RD_RST (inverted_reset), .WR_EN (wdch_wr_en), .RD_EN (wdch_rd_en), .PROG_FULL_THRESH (AXI_W_PROG_FULL_THRESH), .PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WDCH{1'b0}}), .PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WDCH{1'b0}}), .PROG_EMPTY_THRESH (AXI_W_PROG_EMPTY_THRESH), .PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WDCH{1'b0}}), .PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WDCH{1'b0}}), .INJECTDBITERR (AXI_W_INJECTDBITERR), .INJECTSBITERR (AXI_W_INJECTSBITERR), .DIN (wdch_din), .DOUT (wdch_dout), .FULL (wdch_full), .EMPTY (wdch_empty), .ALMOST_FULL (), .PROG_FULL (AXI_W_PROG_FULL), .ALMOST_EMPTY (), .PROG_EMPTY (AXI_W_PROG_EMPTY), .WR_ACK (), .OVERFLOW (axi_w_overflow_i), .VALID (), .UNDERFLOW (axi_w_underflow_i), .DATA_COUNT (AXI_W_DATA_COUNT), .RD_DATA_COUNT (AXI_W_RD_DATA_COUNT), .WR_DATA_COUNT (AXI_W_WR_DATA_COUNT), .SBITERR (AXI_W_SBITERR), .DBITERR (AXI_W_DBITERR), .wr_rst_busy (wr_rst_busy_wdch), .rd_rst_busy (rd_rst_busy_wdch), .wr_rst_i_out (), .rd_rst_i_out (), .BACKUP (BACKUP), .BACKUP_MARKER (BACKUP_MARKER), .INT_CLK (INT_CLK) ); assign wdch_s_axi_wready = (IS_8SERIES == 0) ? ~wdch_full : (C_IMPLEMENTATION_TYPE_WDCH == 5 || C_IMPLEMENTATION_TYPE_WDCH == 13) ? ~(wdch_full | wr_rst_busy_wdch) : ~wdch_full; assign wdch_m_axi_wvalid = ~wdch_empty; assign S_AXI_WREADY = wdch_s_axi_wready; assign M_AXI_WVALID = wdch_m_axi_wvalid; assign AXI_W_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_w_underflow_i : 0; assign AXI_W_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_w_overflow_i : 0; end endgenerate // axi_write_data_channel // Register Slice for Write Data Channel generate if (C_WDCH_TYPE == 1) begin : gwdch_reg_slice fifo_generator_v12_0_axic_reg_slice #( .C_FAMILY (C_FAMILY), .C_DATA_WIDTH (C_DIN_WIDTH_WDCH), .C_REG_CONFIG (C_REG_SLICE_MODE_WDCH) ) wdch_reg_slice_inst ( // System Signals .ACLK (S_ACLK), .ARESET (axi_rs_rst), // Slave side .S_PAYLOAD_DATA (wdch_din), .S_VALID (S_AXI_WVALID), .S_READY (S_AXI_WREADY), // Master side .M_PAYLOAD_DATA (wdch_dout), .M_VALID (M_AXI_WVALID), .M_READY (M_AXI_WREADY) ); end endgenerate // gwdch_reg_slice generate if (IS_WR_RESP_CH == 1) begin : axi_write_resp_channel // Write protection when almost full or prog_full is high assign wrch_we = (C_PROG_FULL_TYPE_WRCH != 0) ? wrch_m_axi_bready & M_AXI_BVALID : M_AXI_BVALID; // Read protection when almost empty or prog_empty is high assign wrch_re = (C_PROG_EMPTY_TYPE_WRCH != 0) ? wrch_s_axi_bvalid & S_AXI_BREADY : S_AXI_BREADY; assign wrch_wr_en = (C_HAS_SLAVE_CE == 1) ? wrch_we & S_ACLK_EN : wrch_we; assign wrch_rd_en = (C_HAS_MASTER_CE == 1) ? wrch_re & M_ACLK_EN : wrch_re; FIFO_GENERATOR_v12_0_CONV_VER #( .C_FAMILY (C_FAMILY), .C_COMMON_CLOCK (C_COMMON_CLOCK), .C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_WRCH == 1 || C_IMPLEMENTATION_TYPE_WRCH == 11) ? 1 : (C_IMPLEMENTATION_TYPE_WRCH == 2 || C_IMPLEMENTATION_TYPE_WRCH == 12) ? 2 : 4), .C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_WRCH == 1 || C_IMPLEMENTATION_TYPE_WRCH == 2) ? 0 : (C_IMPLEMENTATION_TYPE_WRCH == 11 || C_IMPLEMENTATION_TYPE_WRCH == 12) ? 2 : 6), .C_PRELOAD_REGS (1), // always FWFT for AXI .C_PRELOAD_LATENCY (0), // always FWFT for AXI .C_DIN_WIDTH (C_DIN_WIDTH_WRCH), .C_WR_DEPTH (C_WR_DEPTH_WRCH), .C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_WRCH), .C_DOUT_WIDTH (C_DIN_WIDTH_WRCH), .C_RD_DEPTH (C_WR_DEPTH_WRCH), .C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_WRCH), .C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_WRCH), .C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_WRCH), .C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_WRCH), .C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH), .C_USE_ECC (C_USE_ECC_WRCH), .C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_WRCH), .C_HAS_ALMOST_EMPTY (0), .C_HAS_ALMOST_FULL (0), .C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE), .C_FIFO_TYPE (C_APPLICATION_TYPE_WRCH), .C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE), .C_HAS_WR_RST (0), .C_HAS_RD_RST (0), .C_HAS_RST (1), .C_HAS_SRST (0), .C_DOUT_RST_VAL (0), .C_HAS_VALID (0), .C_VALID_LOW (C_VALID_LOW), .C_HAS_UNDERFLOW (C_HAS_UNDERFLOW), .C_UNDERFLOW_LOW (C_UNDERFLOW_LOW), .C_HAS_WR_ACK (0), .C_WR_ACK_LOW (C_WR_ACK_LOW), .C_HAS_OVERFLOW (C_HAS_OVERFLOW), .C_OVERFLOW_LOW (C_OVERFLOW_LOW), .C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_WRCH == 1) ? 1 : 0), .C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WRCH + 1), .C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WRCH == 1) ? 1 : 0), .C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WRCH + 1), .C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true .C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WRCH == 1) ? 1 : 0), .C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WRCH + 1), .C_FULL_FLAGS_RST_VAL (1), .C_USE_EMBEDDED_REG (0), .C_USE_DOUT_RST (0), .C_MSGON_VAL (C_MSGON_VAL), .C_ENABLE_RST_SYNC (1), .C_COUNT_TYPE (C_COUNT_TYPE), .C_DEFAULT_VALUE (C_DEFAULT_VALUE), .C_ENABLE_RLOCS (C_ENABLE_RLOCS), .C_HAS_BACKUP (C_HAS_BACKUP), .C_HAS_INT_CLK (C_HAS_INT_CLK), .C_MIF_FILE_NAME (C_MIF_FILE_NAME), .C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE), .C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL), .C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE), .C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE), .C_RD_FREQ (C_RD_FREQ), .C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS), .C_WR_FREQ (C_WR_FREQ), .C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY) ) fifo_generator_v12_0_wrch_dut ( .CLK (S_ACLK), .WR_CLK (M_ACLK), .RD_CLK (S_ACLK), .RST (inverted_reset), .SRST (1'b0), .WR_RST (inverted_reset), .RD_RST (inverted_reset), .WR_EN (wrch_wr_en), .RD_EN (wrch_rd_en), .PROG_FULL_THRESH (AXI_B_PROG_FULL_THRESH), .PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WRCH{1'b0}}), .PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WRCH{1'b0}}), .PROG_EMPTY_THRESH (AXI_B_PROG_EMPTY_THRESH), .PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WRCH{1'b0}}), .PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WRCH{1'b0}}), .INJECTDBITERR (AXI_B_INJECTDBITERR), .INJECTSBITERR (AXI_B_INJECTSBITERR), .DIN (wrch_din), .DOUT (wrch_dout), .FULL (wrch_full), .EMPTY (wrch_empty), .ALMOST_FULL (), .ALMOST_EMPTY (), .PROG_FULL (AXI_B_PROG_FULL), .PROG_EMPTY (AXI_B_PROG_EMPTY), .WR_ACK (), .OVERFLOW (axi_b_overflow_i), .VALID (), .UNDERFLOW (axi_b_underflow_i), .DATA_COUNT (AXI_B_DATA_COUNT), .RD_DATA_COUNT (AXI_B_RD_DATA_COUNT), .WR_DATA_COUNT (AXI_B_WR_DATA_COUNT), .SBITERR (AXI_B_SBITERR), .DBITERR (AXI_B_DBITERR), .wr_rst_busy (wr_rst_busy_wrch), .rd_rst_busy (rd_rst_busy_wrch), .wr_rst_i_out (), .rd_rst_i_out (), .BACKUP (BACKUP), .BACKUP_MARKER (BACKUP_MARKER), .INT_CLK (INT_CLK) ); assign wrch_s_axi_bvalid = ~wrch_empty; assign wrch_m_axi_bready = (IS_8SERIES == 0) ? ~wrch_full : (C_IMPLEMENTATION_TYPE_WRCH == 5 || C_IMPLEMENTATION_TYPE_WRCH == 13) ? ~(wrch_full | wr_rst_busy_wrch) : ~wrch_full; assign S_AXI_BVALID = wrch_s_axi_bvalid; assign M_AXI_BREADY = wrch_m_axi_bready; assign AXI_B_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_b_underflow_i : 0; assign AXI_B_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_b_overflow_i : 0; end endgenerate // axi_write_resp_channel // Register Slice for Write Response Channel generate if (C_WRCH_TYPE == 1) begin : gwrch_reg_slice fifo_generator_v12_0_axic_reg_slice #( .C_FAMILY (C_FAMILY), .C_DATA_WIDTH (C_DIN_WIDTH_WRCH), .C_REG_CONFIG (C_REG_SLICE_MODE_WRCH) ) wrch_reg_slice_inst ( // System Signals .ACLK (S_ACLK), .ARESET (axi_rs_rst), // Slave side .S_PAYLOAD_DATA (wrch_din), .S_VALID (M_AXI_BVALID), .S_READY (M_AXI_BREADY), // Master side .M_PAYLOAD_DATA (wrch_dout), .M_VALID (S_AXI_BVALID), .M_READY (S_AXI_BREADY) ); end endgenerate // gwrch_reg_slice assign axi_wr_underflow_i = C_USE_COMMON_UNDERFLOW == 1 ? (axi_aw_underflow_i || axi_w_underflow_i || axi_b_underflow_i) : 0; assign axi_wr_overflow_i = C_USE_COMMON_OVERFLOW == 1 ? (axi_aw_overflow_i || axi_w_overflow_i || axi_b_overflow_i) : 0; generate if (IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) begin : axi_wach_output assign M_AXI_AWADDR = wach_dout[AWID_OFFSET-1:AWADDR_OFFSET]; assign M_AXI_AWLEN = wach_dout[AWADDR_OFFSET-1:AWLEN_OFFSET]; assign M_AXI_AWSIZE = wach_dout[AWLEN_OFFSET-1:AWSIZE_OFFSET]; assign M_AXI_AWBURST = wach_dout[AWSIZE_OFFSET-1:AWBURST_OFFSET]; assign M_AXI_AWLOCK = wach_dout[AWBURST_OFFSET-1:AWLOCK_OFFSET]; assign M_AXI_AWCACHE = wach_dout[AWLOCK_OFFSET-1:AWCACHE_OFFSET]; assign M_AXI_AWPROT = wach_dout[AWCACHE_OFFSET-1:AWPROT_OFFSET]; assign M_AXI_AWQOS = wach_dout[AWPROT_OFFSET-1:AWQOS_OFFSET]; assign wach_din[AWID_OFFSET-1:AWADDR_OFFSET] = S_AXI_AWADDR; assign wach_din[AWADDR_OFFSET-1:AWLEN_OFFSET] = S_AXI_AWLEN; assign wach_din[AWLEN_OFFSET-1:AWSIZE_OFFSET] = S_AXI_AWSIZE; assign wach_din[AWSIZE_OFFSET-1:AWBURST_OFFSET] = S_AXI_AWBURST; assign wach_din[AWBURST_OFFSET-1:AWLOCK_OFFSET] = S_AXI_AWLOCK; assign wach_din[AWLOCK_OFFSET-1:AWCACHE_OFFSET] = S_AXI_AWCACHE; assign wach_din[AWCACHE_OFFSET-1:AWPROT_OFFSET] = S_AXI_AWPROT; assign wach_din[AWPROT_OFFSET-1:AWQOS_OFFSET] = S_AXI_AWQOS; end endgenerate // axi_wach_output generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_AXI_TYPE == 1) begin : axi_awregion assign M_AXI_AWREGION = wach_dout[AWQOS_OFFSET-1:AWREGION_OFFSET]; end endgenerate // axi_awregion generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_AXI_TYPE != 1) begin : naxi_awregion assign M_AXI_AWREGION = 0; end endgenerate // naxi_awregion generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_AWUSER == 1) begin : axi_awuser assign M_AXI_AWUSER = wach_dout[AWREGION_OFFSET-1:AWUSER_OFFSET]; end endgenerate // axi_awuser generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_AWUSER == 0) begin : naxi_awuser assign M_AXI_AWUSER = 0; end endgenerate // naxi_awuser generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_awid assign M_AXI_AWID = wach_dout[C_DIN_WIDTH_WACH-1:AWID_OFFSET]; end endgenerate //axi_awid generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_awid assign M_AXI_AWID = 0; end endgenerate //naxi_awid generate if (IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) begin : axi_wdch_output assign M_AXI_WDATA = wdch_dout[WID_OFFSET-1:WDATA_OFFSET]; assign M_AXI_WSTRB = wdch_dout[WDATA_OFFSET-1:WSTRB_OFFSET]; assign M_AXI_WLAST = wdch_dout[0]; assign wdch_din[WID_OFFSET-1:WDATA_OFFSET] = S_AXI_WDATA; assign wdch_din[WDATA_OFFSET-1:WSTRB_OFFSET] = S_AXI_WSTRB; assign wdch_din[0] = S_AXI_WLAST; end endgenerate // axi_wdch_output generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_ID == 1 && C_AXI_TYPE == 3) begin assign M_AXI_WID = wdch_dout[C_DIN_WIDTH_WDCH-1:WID_OFFSET]; end endgenerate generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && (C_HAS_AXI_ID == 0 || C_AXI_TYPE != 3)) begin assign M_AXI_WID = 0; end endgenerate generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_WUSER == 1 ) begin assign M_AXI_WUSER = wdch_dout[WSTRB_OFFSET-1:WUSER_OFFSET]; end endgenerate generate if (C_HAS_AXI_WUSER == 0) begin assign M_AXI_WUSER = 0; end endgenerate generate if (IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) begin : axi_wrch_output assign S_AXI_BRESP = wrch_dout[BID_OFFSET-1:BRESP_OFFSET]; assign wrch_din[BID_OFFSET-1:BRESP_OFFSET] = M_AXI_BRESP; end endgenerate // axi_wrch_output generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_BUSER == 1) begin : axi_buser assign S_AXI_BUSER = wrch_dout[BRESP_OFFSET-1:BUSER_OFFSET]; end endgenerate // axi_buser generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_BUSER == 0) begin : naxi_buser assign S_AXI_BUSER = 0; end endgenerate // naxi_buser generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_bid assign S_AXI_BID = wrch_dout[C_DIN_WIDTH_WRCH-1:BID_OFFSET]; end endgenerate // axi_bid generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_bid assign S_AXI_BID = 0 ; end endgenerate // naxi_bid generate if (IS_AXI_LITE_WACH == 1 || (IS_AXI_LITE == 1 && C_WACH_TYPE == 1)) begin : axi_wach_output1 assign wach_din = {S_AXI_AWADDR, S_AXI_AWPROT}; assign M_AXI_AWADDR = wach_dout[C_DIN_WIDTH_WACH-1:AWADDR_OFFSET]; assign M_AXI_AWPROT = wach_dout[AWADDR_OFFSET-1:AWPROT_OFFSET]; end endgenerate // axi_wach_output1 generate if (IS_AXI_LITE_WDCH == 1 || (IS_AXI_LITE == 1 && C_WDCH_TYPE == 1)) begin : axi_wdch_output1 assign wdch_din = {S_AXI_WDATA, S_AXI_WSTRB}; assign M_AXI_WDATA = wdch_dout[C_DIN_WIDTH_WDCH-1:WDATA_OFFSET]; assign M_AXI_WSTRB = wdch_dout[WDATA_OFFSET-1:WSTRB_OFFSET]; end endgenerate // axi_wdch_output1 generate if (IS_AXI_LITE_WRCH == 1 || (IS_AXI_LITE == 1 && C_WRCH_TYPE == 1)) begin : axi_wrch_output1 assign wrch_din = M_AXI_BRESP; assign S_AXI_BRESP = wrch_dout[C_DIN_WIDTH_WRCH-1:BRESP_OFFSET]; end endgenerate // axi_wrch_output1 generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_AWUSER == 1) begin : gwach_din1 assign wach_din[AWREGION_OFFSET-1:AWUSER_OFFSET] = S_AXI_AWUSER; end endgenerate // gwach_din1 generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : gwach_din2 assign wach_din[C_DIN_WIDTH_WACH-1:AWID_OFFSET] = S_AXI_AWID; end endgenerate // gwach_din2 generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_AXI_TYPE == 1) begin : gwach_din3 assign wach_din[AWQOS_OFFSET-1:AWREGION_OFFSET] = S_AXI_AWREGION; end endgenerate // gwach_din3 generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_WUSER == 1) begin : gwdch_din1 assign wdch_din[WSTRB_OFFSET-1:WUSER_OFFSET] = S_AXI_WUSER; end endgenerate // gwdch_din1 generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_ID == 1 && C_AXI_TYPE == 3) begin : gwdch_din2 assign wdch_din[C_DIN_WIDTH_WDCH-1:WID_OFFSET] = S_AXI_WID; end endgenerate // gwdch_din2 generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_BUSER == 1) begin : gwrch_din1 assign wrch_din[BRESP_OFFSET-1:BUSER_OFFSET] = M_AXI_BUSER; end endgenerate // gwrch_din1 generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : gwrch_din2 assign wrch_din[C_DIN_WIDTH_WRCH-1:BID_OFFSET] = M_AXI_BID; end endgenerate // gwrch_din2 //end of axi_write_channel //########################################################################### // AXI FULL Read Channel (axi_read_channel) //########################################################################### wire [C_DIN_WIDTH_RACH-1:0] rach_din ; wire [C_DIN_WIDTH_RACH-1:0] rach_dout ; wire [C_DIN_WIDTH_RACH-1:0] rach_dout_pkt ; wire rach_full ; wire rach_almost_full ; wire rach_prog_full ; wire rach_empty ; wire rach_almost_empty ; wire rach_prog_empty ; wire [C_DIN_WIDTH_RDCH-1:0] rdch_din ; wire [C_DIN_WIDTH_RDCH-1:0] rdch_dout ; wire rdch_full ; wire rdch_almost_full ; wire rdch_prog_full ; wire rdch_empty ; wire rdch_almost_empty ; wire rdch_prog_empty ; wire axi_ar_underflow_i ; wire axi_r_underflow_i ; wire axi_ar_overflow_i ; wire axi_r_overflow_i ; wire axi_rd_underflow_i ; wire axi_rd_overflow_i ; wire rach_s_axi_arready ; wire rach_m_axi_arvalid ; wire rach_wr_en ; wire rach_rd_en ; wire rdch_m_axi_rready ; wire rdch_s_axi_rvalid ; wire rdch_wr_en ; wire rdch_rd_en ; wire arvalid_pkt ; wire arready_pkt ; wire arvalid_en ; wire rdch_rd_ok ; wire accept_next_pkt ; integer rdch_free_space ; integer rdch_commited_space ; wire rach_we ; wire rach_re ; wire rdch_we ; wire rdch_re ; localparam ARID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_RACH - C_AXI_ID_WIDTH : C_DIN_WIDTH_RACH; localparam ARADDR_OFFSET = ARID_OFFSET - C_AXI_ADDR_WIDTH; localparam ARLEN_OFFSET = C_AXI_TYPE != 2 ? ARADDR_OFFSET - C_AXI_LEN_WIDTH : ARADDR_OFFSET; localparam ARSIZE_OFFSET = C_AXI_TYPE != 2 ? ARLEN_OFFSET - C_AXI_SIZE_WIDTH : ARLEN_OFFSET; localparam ARBURST_OFFSET = C_AXI_TYPE != 2 ? ARSIZE_OFFSET - C_AXI_BURST_WIDTH : ARSIZE_OFFSET; localparam ARLOCK_OFFSET = C_AXI_TYPE != 2 ? ARBURST_OFFSET - C_AXI_LOCK_WIDTH : ARBURST_OFFSET; localparam ARCACHE_OFFSET = C_AXI_TYPE != 2 ? ARLOCK_OFFSET - C_AXI_CACHE_WIDTH : ARLOCK_OFFSET; localparam ARPROT_OFFSET = ARCACHE_OFFSET - C_AXI_PROT_WIDTH; localparam ARQOS_OFFSET = ARPROT_OFFSET - C_AXI_QOS_WIDTH; localparam ARREGION_OFFSET = C_AXI_TYPE == 1 ? ARQOS_OFFSET - C_AXI_REGION_WIDTH : ARQOS_OFFSET; localparam ARUSER_OFFSET = C_HAS_AXI_ARUSER == 1 ? ARREGION_OFFSET-C_AXI_ARUSER_WIDTH : ARREGION_OFFSET; localparam RID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_RDCH - C_AXI_ID_WIDTH : C_DIN_WIDTH_RDCH; localparam RDATA_OFFSET = RID_OFFSET - C_AXI_DATA_WIDTH; localparam RRESP_OFFSET = RDATA_OFFSET - C_AXI_RRESP_WIDTH; localparam RUSER_OFFSET = C_HAS_AXI_RUSER == 1 ? RRESP_OFFSET-C_AXI_RUSER_WIDTH : RRESP_OFFSET; generate if (IS_RD_ADDR_CH == 1) begin : axi_read_addr_channel // Write protection when almost full or prog_full is high assign rach_we = (C_PROG_FULL_TYPE_RACH != 0) ? rach_s_axi_arready & S_AXI_ARVALID : S_AXI_ARVALID; // Read protection when almost empty or prog_empty is high // assign rach_rd_en = (C_PROG_EMPTY_TYPE_RACH != 5) ? rach_m_axi_arvalid & M_AXI_ARREADY : M_AXI_ARREADY && arvalid_en; assign rach_re = (C_PROG_EMPTY_TYPE_RACH != 0 && C_APPLICATION_TYPE_RACH == 1) ? rach_m_axi_arvalid & arready_pkt & arvalid_en : (C_PROG_EMPTY_TYPE_RACH != 0 && C_APPLICATION_TYPE_RACH != 1) ? M_AXI_ARREADY && rach_m_axi_arvalid : (C_PROG_EMPTY_TYPE_RACH == 0 && C_APPLICATION_TYPE_RACH == 1) ? arready_pkt & arvalid_en : (C_PROG_EMPTY_TYPE_RACH == 0 && C_APPLICATION_TYPE_RACH != 1) ? M_AXI_ARREADY : 1'b0; assign rach_wr_en = (C_HAS_SLAVE_CE == 1) ? rach_we & S_ACLK_EN : rach_we; assign rach_rd_en = (C_HAS_MASTER_CE == 1) ? rach_re & M_ACLK_EN : rach_re; FIFO_GENERATOR_v12_0_CONV_VER #( .C_FAMILY (C_FAMILY), .C_COMMON_CLOCK (C_COMMON_CLOCK), .C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_RACH == 1 || C_IMPLEMENTATION_TYPE_RACH == 11) ? 1 : (C_IMPLEMENTATION_TYPE_RACH == 2 || C_IMPLEMENTATION_TYPE_RACH == 12) ? 2 : 4), .C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_RACH == 1 || C_IMPLEMENTATION_TYPE_RACH == 2) ? 0 : (C_IMPLEMENTATION_TYPE_RACH == 11 || C_IMPLEMENTATION_TYPE_RACH == 12) ? 2 : 6), .C_PRELOAD_REGS (1), // always FWFT for AXI .C_PRELOAD_LATENCY (0), // always FWFT for AXI .C_DIN_WIDTH (C_DIN_WIDTH_RACH), .C_WR_DEPTH (C_WR_DEPTH_RACH), .C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_RACH), .C_DOUT_WIDTH (C_DIN_WIDTH_RACH), .C_RD_DEPTH (C_WR_DEPTH_RACH), .C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_RACH), .C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_RACH), .C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_RACH), .C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_RACH), .C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH), .C_USE_ECC (C_USE_ECC_RACH), .C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_RACH), .C_HAS_ALMOST_EMPTY (0), .C_HAS_ALMOST_FULL (0), .C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE), .C_FIFO_TYPE ((C_APPLICATION_TYPE_RACH == 1)?0:C_APPLICATION_TYPE_RACH), .C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE), .C_HAS_WR_RST (0), .C_HAS_RD_RST (0), .C_HAS_RST (1), .C_HAS_SRST (0), .C_DOUT_RST_VAL (0), .C_HAS_VALID (0), .C_VALID_LOW (C_VALID_LOW), .C_HAS_UNDERFLOW (C_HAS_UNDERFLOW), .C_UNDERFLOW_LOW (C_UNDERFLOW_LOW), .C_HAS_WR_ACK (0), .C_WR_ACK_LOW (C_WR_ACK_LOW), .C_HAS_OVERFLOW (C_HAS_OVERFLOW), .C_OVERFLOW_LOW (C_OVERFLOW_LOW), .C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_RACH == 1) ? 1 : 0), .C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RACH + 1), .C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RACH == 1) ? 1 : 0), .C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RACH + 1), .C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true .C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RACH == 1) ? 1 : 0), .C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RACH + 1), .C_FULL_FLAGS_RST_VAL (1), .C_USE_EMBEDDED_REG (0), .C_USE_DOUT_RST (0), .C_MSGON_VAL (C_MSGON_VAL), .C_ENABLE_RST_SYNC (1), .C_COUNT_TYPE (C_COUNT_TYPE), .C_DEFAULT_VALUE (C_DEFAULT_VALUE), .C_ENABLE_RLOCS (C_ENABLE_RLOCS), .C_HAS_BACKUP (C_HAS_BACKUP), .C_HAS_INT_CLK (C_HAS_INT_CLK), .C_MIF_FILE_NAME (C_MIF_FILE_NAME), .C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE), .C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL), .C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE), .C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE), .C_RD_FREQ (C_RD_FREQ), .C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS), .C_WR_FREQ (C_WR_FREQ), .C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY) ) fifo_generator_v12_0_rach_dut ( .CLK (S_ACLK), .WR_CLK (S_ACLK), .RD_CLK (M_ACLK), .RST (inverted_reset), .SRST (1'b0), .WR_RST (inverted_reset), .RD_RST (inverted_reset), .WR_EN (rach_wr_en), .RD_EN (rach_rd_en), .PROG_FULL_THRESH (AXI_AR_PROG_FULL_THRESH), .PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RACH{1'b0}}), .PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RACH{1'b0}}), .PROG_EMPTY_THRESH (AXI_AR_PROG_EMPTY_THRESH), .PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RACH{1'b0}}), .PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RACH{1'b0}}), .INJECTDBITERR (AXI_AR_INJECTDBITERR), .INJECTSBITERR (AXI_AR_INJECTSBITERR), .DIN (rach_din), .DOUT (rach_dout_pkt), .FULL (rach_full), .EMPTY (rach_empty), .ALMOST_FULL (), .ALMOST_EMPTY (), .PROG_FULL (AXI_AR_PROG_FULL), .PROG_EMPTY (AXI_AR_PROG_EMPTY), .WR_ACK (), .OVERFLOW (axi_ar_overflow_i), .VALID (), .UNDERFLOW (axi_ar_underflow_i), .DATA_COUNT (AXI_AR_DATA_COUNT), .RD_DATA_COUNT (AXI_AR_RD_DATA_COUNT), .WR_DATA_COUNT (AXI_AR_WR_DATA_COUNT), .SBITERR (AXI_AR_SBITERR), .DBITERR (AXI_AR_DBITERR), .wr_rst_busy (wr_rst_busy_rach), .rd_rst_busy (rd_rst_busy_rach), .wr_rst_i_out (), .rd_rst_i_out (), .BACKUP (BACKUP), .BACKUP_MARKER (BACKUP_MARKER), .INT_CLK (INT_CLK) ); assign rach_s_axi_arready = (IS_8SERIES == 0) ? ~rach_full : (C_IMPLEMENTATION_TYPE_RACH == 5 || C_IMPLEMENTATION_TYPE_RACH == 13) ? ~(rach_full | wr_rst_busy_rach) : ~rach_full; assign rach_m_axi_arvalid = ~rach_empty; assign S_AXI_ARREADY = rach_s_axi_arready; assign AXI_AR_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_ar_underflow_i : 0; assign AXI_AR_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_ar_overflow_i : 0; end endgenerate // axi_read_addr_channel // Register Slice for Read Address Channel generate if (C_RACH_TYPE == 1) begin : grach_reg_slice fifo_generator_v12_0_axic_reg_slice #( .C_FAMILY (C_FAMILY), .C_DATA_WIDTH (C_DIN_WIDTH_RACH), .C_REG_CONFIG (C_REG_SLICE_MODE_RACH) ) rach_reg_slice_inst ( // System Signals .ACLK (S_ACLK), .ARESET (axi_rs_rst), // Slave side .S_PAYLOAD_DATA (rach_din), .S_VALID (S_AXI_ARVALID), .S_READY (S_AXI_ARREADY), // Master side .M_PAYLOAD_DATA (rach_dout), .M_VALID (M_AXI_ARVALID), .M_READY (M_AXI_ARREADY) ); end endgenerate // grach_reg_slice // Register Slice for Read Address Channel for MM Packet FIFO generate if (C_RACH_TYPE == 0 && C_APPLICATION_TYPE_RACH == 1) begin : grach_reg_slice_mm_pkt_fifo fifo_generator_v12_0_axic_reg_slice #( .C_FAMILY (C_FAMILY), .C_DATA_WIDTH (C_DIN_WIDTH_RACH), .C_REG_CONFIG (1) ) reg_slice_mm_pkt_fifo_inst ( // System Signals .ACLK (S_ACLK), .ARESET (inverted_reset), // Slave side .S_PAYLOAD_DATA (rach_dout_pkt), .S_VALID (arvalid_pkt), .S_READY (arready_pkt), // Master side .M_PAYLOAD_DATA (rach_dout), .M_VALID (M_AXI_ARVALID), .M_READY (M_AXI_ARREADY) ); end endgenerate // grach_reg_slice_mm_pkt_fifo generate if (C_RACH_TYPE == 0 && C_APPLICATION_TYPE_RACH != 1) begin : grach_m_axi_arvalid assign M_AXI_ARVALID = rach_m_axi_arvalid; assign rach_dout = rach_dout_pkt; end endgenerate // grach_m_axi_arvalid generate if (C_APPLICATION_TYPE_RACH == 1 && C_HAS_AXI_RD_CHANNEL == 1) begin : axi_mm_pkt_fifo_rd assign rdch_rd_ok = rdch_s_axi_rvalid && rdch_rd_en; assign arvalid_pkt = rach_m_axi_arvalid && arvalid_en; assign accept_next_pkt = rach_m_axi_arvalid && arready_pkt && arvalid_en; always@(posedge S_ACLK or posedge inverted_reset) begin if(inverted_reset) begin rdch_commited_space <= 0; end else begin if(rdch_rd_ok && !accept_next_pkt) begin rdch_commited_space <= rdch_commited_space-1; end else if(!rdch_rd_ok && accept_next_pkt) begin rdch_commited_space <= rdch_commited_space+(rach_dout_pkt[ARADDR_OFFSET-1:ARLEN_OFFSET]+1); end else if(rdch_rd_ok && accept_next_pkt) begin rdch_commited_space <= rdch_commited_space+(rach_dout_pkt[ARADDR_OFFSET-1:ARLEN_OFFSET]); end end end //Always end always@(*) begin rdch_free_space <= (C_WR_DEPTH_RDCH-(rdch_commited_space+rach_dout_pkt[ARADDR_OFFSET-1:ARLEN_OFFSET]+1)); end assign arvalid_en = (rdch_free_space >= 0)?1:0; end endgenerate generate if (C_APPLICATION_TYPE_RACH != 1) begin : axi_mm_fifo_rd assign arvalid_en = 1; end endgenerate generate if (IS_RD_DATA_CH == 1) begin : axi_read_data_channel // Write protection when almost full or prog_full is high assign rdch_we = (C_PROG_FULL_TYPE_RDCH != 0) ? rdch_m_axi_rready & M_AXI_RVALID : M_AXI_RVALID; // Read protection when almost empty or prog_empty is high assign rdch_re = (C_PROG_EMPTY_TYPE_RDCH != 0) ? rdch_s_axi_rvalid & S_AXI_RREADY : S_AXI_RREADY; assign rdch_wr_en = (C_HAS_SLAVE_CE == 1) ? rdch_we & S_ACLK_EN : rdch_we; assign rdch_rd_en = (C_HAS_MASTER_CE == 1) ? rdch_re & M_ACLK_EN : rdch_re; FIFO_GENERATOR_v12_0_CONV_VER #( .C_FAMILY (C_FAMILY), .C_COMMON_CLOCK (C_COMMON_CLOCK), .C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_RDCH == 1 || C_IMPLEMENTATION_TYPE_RDCH == 11) ? 1 : (C_IMPLEMENTATION_TYPE_RDCH == 2 || C_IMPLEMENTATION_TYPE_RDCH == 12) ? 2 : 4), .C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_RDCH == 1 || C_IMPLEMENTATION_TYPE_RDCH == 2) ? 0 : (C_IMPLEMENTATION_TYPE_RDCH == 11 || C_IMPLEMENTATION_TYPE_RDCH == 12) ? 2 : 6), .C_PRELOAD_REGS (1), // always FWFT for AXI .C_PRELOAD_LATENCY (0), // always FWFT for AXI .C_DIN_WIDTH (C_DIN_WIDTH_RDCH), .C_WR_DEPTH (C_WR_DEPTH_RDCH), .C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_RDCH), .C_DOUT_WIDTH (C_DIN_WIDTH_RDCH), .C_RD_DEPTH (C_WR_DEPTH_RDCH), .C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_RDCH), .C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_RDCH), .C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_RDCH), .C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_RDCH), .C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH), .C_USE_ECC (C_USE_ECC_RDCH), .C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_RDCH), .C_HAS_ALMOST_EMPTY (0), .C_HAS_ALMOST_FULL (0), .C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE), .C_FIFO_TYPE (C_APPLICATION_TYPE_RDCH), .C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE), .C_HAS_WR_RST (0), .C_HAS_RD_RST (0), .C_HAS_RST (1), .C_HAS_SRST (0), .C_DOUT_RST_VAL (0), .C_HAS_VALID (0), .C_VALID_LOW (C_VALID_LOW), .C_HAS_UNDERFLOW (C_HAS_UNDERFLOW), .C_UNDERFLOW_LOW (C_UNDERFLOW_LOW), .C_HAS_WR_ACK (0), .C_WR_ACK_LOW (C_WR_ACK_LOW), .C_HAS_OVERFLOW (C_HAS_OVERFLOW), .C_OVERFLOW_LOW (C_OVERFLOW_LOW), .C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_RDCH == 1) ? 1 : 0), .C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RDCH + 1), .C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RDCH == 1) ? 1 : 0), .C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RDCH + 1), .C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true .C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RDCH == 1) ? 1 : 0), .C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RDCH + 1), .C_FULL_FLAGS_RST_VAL (1), .C_USE_EMBEDDED_REG (0), .C_USE_DOUT_RST (0), .C_MSGON_VAL (C_MSGON_VAL), .C_ENABLE_RST_SYNC (1), .C_COUNT_TYPE (C_COUNT_TYPE), .C_DEFAULT_VALUE (C_DEFAULT_VALUE), .C_ENABLE_RLOCS (C_ENABLE_RLOCS), .C_HAS_BACKUP (C_HAS_BACKUP), .C_HAS_INT_CLK (C_HAS_INT_CLK), .C_MIF_FILE_NAME (C_MIF_FILE_NAME), .C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE), .C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL), .C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE), .C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE), .C_RD_FREQ (C_RD_FREQ), .C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS), .C_WR_FREQ (C_WR_FREQ), .C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY) ) fifo_generator_v12_0_rdch_dut ( .CLK (S_ACLK), .WR_CLK (M_ACLK), .RD_CLK (S_ACLK), .RST (inverted_reset), .SRST (1'b0), .WR_RST (inverted_reset), .RD_RST (inverted_reset), .WR_EN (rdch_wr_en), .RD_EN (rdch_rd_en), .PROG_FULL_THRESH (AXI_R_PROG_FULL_THRESH), .PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RDCH{1'b0}}), .PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RDCH{1'b0}}), .PROG_EMPTY_THRESH (AXI_R_PROG_EMPTY_THRESH), .PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RDCH{1'b0}}), .PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RDCH{1'b0}}), .INJECTDBITERR (AXI_R_INJECTDBITERR), .INJECTSBITERR (AXI_R_INJECTSBITERR), .DIN (rdch_din), .DOUT (rdch_dout), .FULL (rdch_full), .EMPTY (rdch_empty), .ALMOST_FULL (), .ALMOST_EMPTY (), .PROG_FULL (AXI_R_PROG_FULL), .PROG_EMPTY (AXI_R_PROG_EMPTY), .WR_ACK (), .OVERFLOW (axi_r_overflow_i), .VALID (), .UNDERFLOW (axi_r_underflow_i), .DATA_COUNT (AXI_R_DATA_COUNT), .RD_DATA_COUNT (AXI_R_RD_DATA_COUNT), .WR_DATA_COUNT (AXI_R_WR_DATA_COUNT), .SBITERR (AXI_R_SBITERR), .DBITERR (AXI_R_DBITERR), .wr_rst_busy (wr_rst_busy_rdch), .rd_rst_busy (rd_rst_busy_rdch), .wr_rst_i_out (), .rd_rst_i_out (), .BACKUP (BACKUP), .BACKUP_MARKER (BACKUP_MARKER), .INT_CLK (INT_CLK) ); assign rdch_s_axi_rvalid = ~rdch_empty; assign rdch_m_axi_rready = (IS_8SERIES == 0) ? ~rdch_full : (C_IMPLEMENTATION_TYPE_RDCH == 5 || C_IMPLEMENTATION_TYPE_RDCH == 13) ? ~(rdch_full | wr_rst_busy_rdch) : ~rdch_full; assign S_AXI_RVALID = rdch_s_axi_rvalid; assign M_AXI_RREADY = rdch_m_axi_rready; assign AXI_R_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_r_underflow_i : 0; assign AXI_R_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_r_overflow_i : 0; end endgenerate //axi_read_data_channel // Register Slice for read Data Channel generate if (C_RDCH_TYPE == 1) begin : grdch_reg_slice fifo_generator_v12_0_axic_reg_slice #( .C_FAMILY (C_FAMILY), .C_DATA_WIDTH (C_DIN_WIDTH_RDCH), .C_REG_CONFIG (C_REG_SLICE_MODE_RDCH) ) rdch_reg_slice_inst ( // System Signals .ACLK (S_ACLK), .ARESET (axi_rs_rst), // Slave side .S_PAYLOAD_DATA (rdch_din), .S_VALID (M_AXI_RVALID), .S_READY (M_AXI_RREADY), // Master side .M_PAYLOAD_DATA (rdch_dout), .M_VALID (S_AXI_RVALID), .M_READY (S_AXI_RREADY) ); end endgenerate // grdch_reg_slice assign axi_rd_underflow_i = C_USE_COMMON_UNDERFLOW == 1 ? (axi_ar_underflow_i || axi_r_underflow_i) : 0; assign axi_rd_overflow_i = C_USE_COMMON_OVERFLOW == 1 ? (axi_ar_overflow_i || axi_r_overflow_i) : 0; generate if (IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) begin : axi_full_rach_output assign M_AXI_ARADDR = rach_dout[ARID_OFFSET-1:ARADDR_OFFSET]; assign M_AXI_ARLEN = rach_dout[ARADDR_OFFSET-1:ARLEN_OFFSET]; assign M_AXI_ARSIZE = rach_dout[ARLEN_OFFSET-1:ARSIZE_OFFSET]; assign M_AXI_ARBURST = rach_dout[ARSIZE_OFFSET-1:ARBURST_OFFSET]; assign M_AXI_ARLOCK = rach_dout[ARBURST_OFFSET-1:ARLOCK_OFFSET]; assign M_AXI_ARCACHE = rach_dout[ARLOCK_OFFSET-1:ARCACHE_OFFSET]; assign M_AXI_ARPROT = rach_dout[ARCACHE_OFFSET-1:ARPROT_OFFSET]; assign M_AXI_ARQOS = rach_dout[ARPROT_OFFSET-1:ARQOS_OFFSET]; assign rach_din[ARID_OFFSET-1:ARADDR_OFFSET] = S_AXI_ARADDR; assign rach_din[ARADDR_OFFSET-1:ARLEN_OFFSET] = S_AXI_ARLEN; assign rach_din[ARLEN_OFFSET-1:ARSIZE_OFFSET] = S_AXI_ARSIZE; assign rach_din[ARSIZE_OFFSET-1:ARBURST_OFFSET] = S_AXI_ARBURST; assign rach_din[ARBURST_OFFSET-1:ARLOCK_OFFSET] = S_AXI_ARLOCK; assign rach_din[ARLOCK_OFFSET-1:ARCACHE_OFFSET] = S_AXI_ARCACHE; assign rach_din[ARCACHE_OFFSET-1:ARPROT_OFFSET] = S_AXI_ARPROT; assign rach_din[ARPROT_OFFSET-1:ARQOS_OFFSET] = S_AXI_ARQOS; end endgenerate // axi_full_rach_output generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_AXI_TYPE == 1) begin : axi_arregion assign M_AXI_ARREGION = rach_dout[ARQOS_OFFSET-1:ARREGION_OFFSET]; end endgenerate // axi_arregion generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_AXI_TYPE != 1) begin : naxi_arregion assign M_AXI_ARREGION = 0; end endgenerate // naxi_arregion generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ARUSER == 1) begin : axi_aruser assign M_AXI_ARUSER = rach_dout[ARREGION_OFFSET-1:ARUSER_OFFSET]; end endgenerate // axi_aruser generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ARUSER == 0) begin : naxi_aruser assign M_AXI_ARUSER = 0; end endgenerate // naxi_aruser generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_arid assign M_AXI_ARID = rach_dout[C_DIN_WIDTH_RACH-1:ARID_OFFSET]; end endgenerate // axi_arid generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_arid assign M_AXI_ARID = 0; end endgenerate // naxi_arid generate if (IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) begin : axi_full_rdch_output assign S_AXI_RDATA = rdch_dout[RID_OFFSET-1:RDATA_OFFSET]; assign S_AXI_RRESP = rdch_dout[RDATA_OFFSET-1:RRESP_OFFSET]; assign S_AXI_RLAST = rdch_dout[0]; assign rdch_din[RID_OFFSET-1:RDATA_OFFSET] = M_AXI_RDATA; assign rdch_din[RDATA_OFFSET-1:RRESP_OFFSET] = M_AXI_RRESP; assign rdch_din[0] = M_AXI_RLAST; end endgenerate // axi_full_rdch_output generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_RUSER == 1) begin : axi_full_ruser_output assign S_AXI_RUSER = rdch_dout[RRESP_OFFSET-1:RUSER_OFFSET]; end endgenerate // axi_full_ruser_output generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_RUSER == 0) begin : axi_full_nruser_output assign S_AXI_RUSER = 0; end endgenerate // axi_full_nruser_output generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_rid assign S_AXI_RID = rdch_dout[C_DIN_WIDTH_RDCH-1:RID_OFFSET]; end endgenerate // axi_rid generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_rid assign S_AXI_RID = 0; end endgenerate // naxi_rid generate if (IS_AXI_LITE_RACH == 1 || (IS_AXI_LITE == 1 && C_RACH_TYPE == 1)) begin : axi_lite_rach_output1 assign rach_din = {S_AXI_ARADDR, S_AXI_ARPROT}; assign M_AXI_ARADDR = rach_dout[C_DIN_WIDTH_RACH-1:ARADDR_OFFSET]; assign M_AXI_ARPROT = rach_dout[ARADDR_OFFSET-1:ARPROT_OFFSET]; end endgenerate // axi_lite_rach_output generate if (IS_AXI_LITE_RDCH == 1 || (IS_AXI_LITE == 1 && C_RDCH_TYPE == 1)) begin : axi_lite_rdch_output1 assign rdch_din = {M_AXI_RDATA, M_AXI_RRESP}; assign S_AXI_RDATA = rdch_dout[C_DIN_WIDTH_RDCH-1:RDATA_OFFSET]; assign S_AXI_RRESP = rdch_dout[RDATA_OFFSET-1:RRESP_OFFSET]; end endgenerate // axi_lite_rdch_output generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ARUSER == 1) begin : grach_din1 assign rach_din[ARREGION_OFFSET-1:ARUSER_OFFSET] = S_AXI_ARUSER; end endgenerate // grach_din1 generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : grach_din2 assign rach_din[C_DIN_WIDTH_RACH-1:ARID_OFFSET] = S_AXI_ARID; end endgenerate // grach_din2 generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_AXI_TYPE == 1) begin assign rach_din[ARQOS_OFFSET-1:ARREGION_OFFSET] = S_AXI_ARREGION; end endgenerate generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_RUSER == 1) begin : grdch_din1 assign rdch_din[RRESP_OFFSET-1:RUSER_OFFSET] = M_AXI_RUSER; end endgenerate // grdch_din1 generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : grdch_din2 assign rdch_din[C_DIN_WIDTH_RDCH-1:RID_OFFSET] = M_AXI_RID; end endgenerate // grdch_din2 //end of axi_read_channel generate if (C_INTERFACE_TYPE == 1 && C_USE_COMMON_UNDERFLOW == 1) begin : gaxi_comm_uf assign UNDERFLOW = (C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 1) ? (axi_wr_underflow_i || axi_rd_underflow_i) : (C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 0) ? axi_wr_underflow_i : (C_HAS_AXI_WR_CHANNEL == 0 && C_HAS_AXI_RD_CHANNEL == 1) ? axi_rd_underflow_i : 0; end endgenerate // gaxi_comm_uf generate if (C_INTERFACE_TYPE == 1 && C_USE_COMMON_OVERFLOW == 1) begin : gaxi_comm_of assign OVERFLOW = (C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 1) ? (axi_wr_overflow_i || axi_rd_overflow_i) : (C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 0) ? axi_wr_overflow_i : (C_HAS_AXI_WR_CHANNEL == 0 && C_HAS_AXI_RD_CHANNEL == 1) ? axi_rd_overflow_i : 0; end endgenerate // gaxi_comm_of //------------------------------------------------------------------------- //------------------------------------------------------------------------- //------------------------------------------------------------------------- // Pass Through Logic or Wiring Logic //------------------------------------------------------------------------- //------------------------------------------------------------------------- //------------------------------------------------------------------------- //------------------------------------------------------------------------- // Pass Through Logic for Read Channel //------------------------------------------------------------------------- // Wiring logic for Write Address Channel generate if (C_WACH_TYPE == 2) begin : gwach_pass_through assign M_AXI_AWID = S_AXI_AWID; assign M_AXI_AWADDR = S_AXI_AWADDR; assign M_AXI_AWLEN = S_AXI_AWLEN; assign M_AXI_AWSIZE = S_AXI_AWSIZE; assign M_AXI_AWBURST = S_AXI_AWBURST; assign M_AXI_AWLOCK = S_AXI_AWLOCK; assign M_AXI_AWCACHE = S_AXI_AWCACHE; assign M_AXI_AWPROT = S_AXI_AWPROT; assign M_AXI_AWQOS = S_AXI_AWQOS; assign M_AXI_AWREGION = S_AXI_AWREGION; assign M_AXI_AWUSER = S_AXI_AWUSER; assign S_AXI_AWREADY = M_AXI_AWREADY; assign M_AXI_AWVALID = S_AXI_AWVALID; end endgenerate // gwach_pass_through; // Wiring logic for Write Data Channel generate if (C_WDCH_TYPE == 2) begin : gwdch_pass_through assign M_AXI_WID = S_AXI_WID; assign M_AXI_WDATA = S_AXI_WDATA; assign M_AXI_WSTRB = S_AXI_WSTRB; assign M_AXI_WLAST = S_AXI_WLAST; assign M_AXI_WUSER = S_AXI_WUSER; assign S_AXI_WREADY = M_AXI_WREADY; assign M_AXI_WVALID = S_AXI_WVALID; end endgenerate // gwdch_pass_through; // Wiring logic for Write Response Channel generate if (C_WRCH_TYPE == 2) begin : gwrch_pass_through assign S_AXI_BID = M_AXI_BID; assign S_AXI_BRESP = M_AXI_BRESP; assign S_AXI_BUSER = M_AXI_BUSER; assign M_AXI_BREADY = S_AXI_BREADY; assign S_AXI_BVALID = M_AXI_BVALID; end endgenerate // gwrch_pass_through; //------------------------------------------------------------------------- // Pass Through Logic for Read Channel //------------------------------------------------------------------------- // Wiring logic for Read Address Channel generate if (C_RACH_TYPE == 2) begin : grach_pass_through assign M_AXI_ARID = S_AXI_ARID; assign M_AXI_ARADDR = S_AXI_ARADDR; assign M_AXI_ARLEN = S_AXI_ARLEN; assign M_AXI_ARSIZE = S_AXI_ARSIZE; assign M_AXI_ARBURST = S_AXI_ARBURST; assign M_AXI_ARLOCK = S_AXI_ARLOCK; assign M_AXI_ARCACHE = S_AXI_ARCACHE; assign M_AXI_ARPROT = S_AXI_ARPROT; assign M_AXI_ARQOS = S_AXI_ARQOS; assign M_AXI_ARREGION = S_AXI_ARREGION; assign M_AXI_ARUSER = S_AXI_ARUSER; assign S_AXI_ARREADY = M_AXI_ARREADY; assign M_AXI_ARVALID = S_AXI_ARVALID; end endgenerate // grach_pass_through; // Wiring logic for Read Data Channel generate if (C_RDCH_TYPE == 2) begin : grdch_pass_through assign S_AXI_RID = M_AXI_RID; assign S_AXI_RLAST = M_AXI_RLAST; assign S_AXI_RUSER = M_AXI_RUSER; assign S_AXI_RDATA = M_AXI_RDATA; assign S_AXI_RRESP = M_AXI_RRESP; assign S_AXI_RVALID = M_AXI_RVALID; assign M_AXI_RREADY = S_AXI_RREADY; end endgenerate // grdch_pass_through; // Wiring logic for AXI Streaming generate if (C_AXIS_TYPE == 2) begin : gaxis_pass_through assign M_AXIS_TDATA = S_AXIS_TDATA; assign M_AXIS_TSTRB = S_AXIS_TSTRB; assign M_AXIS_TKEEP = S_AXIS_TKEEP; assign M_AXIS_TID = S_AXIS_TID; assign M_AXIS_TDEST = S_AXIS_TDEST; assign M_AXIS_TUSER = S_AXIS_TUSER; assign M_AXIS_TLAST = S_AXIS_TLAST; assign S_AXIS_TREADY = M_AXIS_TREADY; assign M_AXIS_TVALID = S_AXIS_TVALID; end endgenerate // gaxis_pass_through; endmodule //FIFO_GENERATOR_v12_0 /******************************************************************************* * Declaration of top-level module for Conventional FIFO ******************************************************************************/ module FIFO_GENERATOR_v12_0_CONV_VER #( parameter C_COMMON_CLOCK = 0, parameter C_COUNT_TYPE = 0, parameter C_DATA_COUNT_WIDTH = 2, parameter C_DEFAULT_VALUE = "", parameter C_DIN_WIDTH = 8, parameter C_DOUT_RST_VAL = "", parameter C_DOUT_WIDTH = 8, parameter C_ENABLE_RLOCS = 0, parameter C_FAMILY = "virtex7", //Not allowed in Verilog model parameter C_FULL_FLAGS_RST_VAL = 1, parameter C_HAS_ALMOST_EMPTY = 0, parameter C_HAS_ALMOST_FULL = 0, parameter C_HAS_BACKUP = 0, parameter C_HAS_DATA_COUNT = 0, parameter C_HAS_INT_CLK = 0, parameter C_HAS_MEMINIT_FILE = 0, parameter C_HAS_OVERFLOW = 0, parameter C_HAS_RD_DATA_COUNT = 0, parameter C_HAS_RD_RST = 0, parameter C_HAS_RST = 0, parameter C_HAS_SRST = 0, parameter C_HAS_UNDERFLOW = 0, parameter C_HAS_VALID = 0, parameter C_HAS_WR_ACK = 0, parameter C_HAS_WR_DATA_COUNT = 0, parameter C_HAS_WR_RST = 0, parameter C_IMPLEMENTATION_TYPE = 0, parameter C_INIT_WR_PNTR_VAL = 0, parameter C_MEMORY_TYPE = 1, parameter C_MIF_FILE_NAME = "", parameter C_OPTIMIZATION_MODE = 0, parameter C_OVERFLOW_LOW = 0, parameter C_PRELOAD_LATENCY = 1, parameter C_PRELOAD_REGS = 0, parameter C_PRIM_FIFO_TYPE = "", parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0, parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0, parameter C_PROG_EMPTY_TYPE = 0, parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0, parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0, parameter C_PROG_FULL_TYPE = 0, parameter C_RD_DATA_COUNT_WIDTH = 2, parameter C_RD_DEPTH = 256, parameter C_RD_FREQ = 1, parameter C_RD_PNTR_WIDTH = 8, parameter C_UNDERFLOW_LOW = 0, parameter C_USE_DOUT_RST = 0, parameter C_USE_ECC = 0, parameter C_USE_EMBEDDED_REG = 0, parameter C_USE_FIFO16_FLAGS = 0, parameter C_USE_FWFT_DATA_COUNT = 0, parameter C_VALID_LOW = 0, parameter C_WR_ACK_LOW = 0, parameter C_WR_DATA_COUNT_WIDTH = 2, parameter C_WR_DEPTH = 256, parameter C_WR_FREQ = 1, parameter C_WR_PNTR_WIDTH = 8, parameter C_WR_RESPONSE_LATENCY = 1, parameter C_MSGON_VAL = 1, parameter C_ENABLE_RST_SYNC = 1, parameter C_ERROR_INJECTION_TYPE = 0, parameter C_FIFO_TYPE = 0, parameter C_SYNCHRONIZER_STAGE = 2, parameter C_AXI_TYPE = 0 ) ( input BACKUP, input BACKUP_MARKER, input CLK, input RST, input SRST, input WR_CLK, input WR_RST, input RD_CLK, input RD_RST, input [C_DIN_WIDTH-1:0] DIN, input WR_EN, input RD_EN, input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH, input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT, input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE, input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH, input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT, input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE, input INT_CLK, input INJECTDBITERR, input INJECTSBITERR, output [C_DOUT_WIDTH-1:0] DOUT, output FULL, output ALMOST_FULL, output WR_ACK, output OVERFLOW, output EMPTY, output ALMOST_EMPTY, output VALID, output UNDERFLOW, output [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT, output [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT, output [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT, output PROG_FULL, output PROG_EMPTY, output SBITERR, output DBITERR, output wr_rst_busy, output rd_rst_busy, output wr_rst_i_out, output rd_rst_i_out ); /* ****************************************************************************** * Definition of Parameters ****************************************************************************** * C_COMMON_CLOCK : Common Clock (1), Independent Clocks (0) * C_COUNT_TYPE : *not used * C_DATA_COUNT_WIDTH : Width of DATA_COUNT bus * C_DEFAULT_VALUE : *not used * C_DIN_WIDTH : Width of DIN bus * C_DOUT_RST_VAL : Reset value of DOUT * C_DOUT_WIDTH : Width of DOUT bus * C_ENABLE_RLOCS : *not used * C_FAMILY : not used in bhv model * C_FULL_FLAGS_RST_VAL : Full flags rst val (0 or 1) * C_HAS_ALMOST_EMPTY : 1=Core has ALMOST_EMPTY flag * C_HAS_ALMOST_FULL : 1=Core has ALMOST_FULL flag * C_HAS_BACKUP : *not used * C_HAS_DATA_COUNT : 1=Core has DATA_COUNT bus * C_HAS_INT_CLK : not used in bhv model * C_HAS_MEMINIT_FILE : *not used * C_HAS_OVERFLOW : 1=Core has OVERFLOW flag * C_HAS_RD_DATA_COUNT : 1=Core has RD_DATA_COUNT bus * C_HAS_RD_RST : *not used * C_HAS_RST : 1=Core has Async Rst * C_HAS_SRST : 1=Core has Sync Rst * C_HAS_UNDERFLOW : 1=Core has UNDERFLOW flag * C_HAS_VALID : 1=Core has VALID flag * C_HAS_WR_ACK : 1=Core has WR_ACK flag * C_HAS_WR_DATA_COUNT : 1=Core has WR_DATA_COUNT bus * C_HAS_WR_RST : *not used * C_IMPLEMENTATION_TYPE : 0=Common-Clock Bram/Dram * 1=Common-Clock ShiftRam * 2=Indep. Clocks Bram/Dram * 3=Virtex-4 Built-in * 4=Virtex-5 Built-in * C_INIT_WR_PNTR_VAL : *not used * C_MEMORY_TYPE : 1=Block RAM * 2=Distributed RAM * 3=Shift RAM * 4=Built-in FIFO * C_MIF_FILE_NAME : *not used * C_OPTIMIZATION_MODE : *not used * C_OVERFLOW_LOW : 1=OVERFLOW active low * C_PRELOAD_LATENCY : Latency of read: 0, 1, 2 * C_PRELOAD_REGS : 1=Use output registers * C_PRIM_FIFO_TYPE : not used in bhv model * C_PROG_EMPTY_THRESH_ASSERT_VAL: PROG_EMPTY assert threshold * C_PROG_EMPTY_THRESH_NEGATE_VAL: PROG_EMPTY negate threshold * C_PROG_EMPTY_TYPE : 0=No programmable empty * 1=Single prog empty thresh constant * 2=Multiple prog empty thresh constants * 3=Single prog empty thresh input * 4=Multiple prog empty thresh inputs * C_PROG_FULL_THRESH_ASSERT_VAL : PROG_FULL assert threshold * C_PROG_FULL_THRESH_NEGATE_VAL : PROG_FULL negate threshold * C_PROG_FULL_TYPE : 0=No prog full * 1=Single prog full thresh constant * 2=Multiple prog full thresh constants * 3=Single prog full thresh input * 4=Multiple prog full thresh inputs * C_RD_DATA_COUNT_WIDTH : Width of RD_DATA_COUNT bus * C_RD_DEPTH : Depth of read interface (2^N) * C_RD_FREQ : not used in bhv model * C_RD_PNTR_WIDTH : always log2(C_RD_DEPTH) * C_UNDERFLOW_LOW : 1=UNDERFLOW active low * C_USE_DOUT_RST : 1=Resets DOUT on RST * C_USE_ECC : Used for error injection purpose * C_USE_EMBEDDED_REG : 1=Use BRAM embedded output register * C_USE_FIFO16_FLAGS : not used in bhv model * C_USE_FWFT_DATA_COUNT : 1=Use extra logic for FWFT data count * C_VALID_LOW : 1=VALID active low * C_WR_ACK_LOW : 1=WR_ACK active low * C_WR_DATA_COUNT_WIDTH : Width of WR_DATA_COUNT bus * C_WR_DEPTH : Depth of write interface (2^N) * C_WR_FREQ : not used in bhv model * C_WR_PNTR_WIDTH : always log2(C_WR_DEPTH) * C_WR_RESPONSE_LATENCY : *not used * C_MSGON_VAL : *not used by bhv model * C_ENABLE_RST_SYNC : 0 = Use WR_RST & RD_RST * 1 = Use RST * C_ERROR_INJECTION_TYPE : 0 = No error injection * 1 = Single bit error injection only * 2 = Double bit error injection only * 3 = Single and double bit error injection ****************************************************************************** * Definition of Ports ****************************************************************************** * BACKUP : Not used * BACKUP_MARKER: Not used * CLK : Clock * DIN : Input data bus * PROG_EMPTY_THRESH : Threshold for Programmable Empty Flag * PROG_EMPTY_THRESH_ASSERT: Threshold for Programmable Empty Flag * PROG_EMPTY_THRESH_NEGATE: Threshold for Programmable Empty Flag * PROG_FULL_THRESH : Threshold for Programmable Full Flag * PROG_FULL_THRESH_ASSERT : Threshold for Programmable Full Flag * PROG_FULL_THRESH_NEGATE : Threshold for Programmable Full Flag * RD_CLK : Read Domain Clock * RD_EN : Read enable * RD_RST : Read Reset * RST : Asynchronous Reset * SRST : Synchronous Reset * WR_CLK : Write Domain Clock * WR_EN : Write enable * WR_RST : Write Reset * INT_CLK : Internal Clock * INJECTSBITERR: Inject Signle bit error * INJECTDBITERR: Inject Double bit error * ALMOST_EMPTY : One word remaining in FIFO * ALMOST_FULL : One empty space remaining in FIFO * DATA_COUNT : Number of data words in fifo( synchronous to CLK) * DOUT : Output data bus * EMPTY : Empty flag * FULL : Full flag * OVERFLOW : Last write rejected * PROG_EMPTY : Programmable Empty Flag * PROG_FULL : Programmable Full Flag * RD_DATA_COUNT: Number of data words in fifo (synchronous to RD_CLK) * UNDERFLOW : Last read rejected * VALID : Last read acknowledged, DOUT bus VALID * WR_ACK : Last write acknowledged * WR_DATA_COUNT: Number of data words in fifo (synchronous to WR_CLK) * SBITERR : Single Bit ECC Error Detected * DBITERR : Double Bit ECC Error Detected ****************************************************************************** */ //---------------------------------------------------------------------------- //- Internal Signals for delayed input signals //- All the input signals except Clock are delayed by 100 ps and then given to //- the models. //---------------------------------------------------------------------------- reg rst_delayed ; reg empty_fb ; reg srst_delayed ; reg wr_rst_delayed ; reg rd_rst_delayed ; reg wr_en_delayed ; reg rd_en_delayed ; reg [C_DIN_WIDTH-1:0] din_delayed ; reg [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_delayed ; reg [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_assert_delayed ; reg [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_negate_delayed ; reg [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_delayed ; reg [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_assert_delayed ; reg [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_negate_delayed ; reg injectdbiterr_delayed ; reg injectsbiterr_delayed ; wire empty_p0_out; always @* rst_delayed <= #`TCQ RST ; always @* empty_fb <= #`TCQ empty_p0_out ; always @* srst_delayed <= #`TCQ SRST ; always @* wr_rst_delayed <= #`TCQ WR_RST ; always @* rd_rst_delayed <= #`TCQ RD_RST ; always @* din_delayed <= #`TCQ DIN ; always @* wr_en_delayed <= #`TCQ WR_EN ; always @* rd_en_delayed <= #`TCQ RD_EN ; always @* prog_empty_thresh_delayed <= #`TCQ PROG_EMPTY_THRESH ; always @* prog_empty_thresh_assert_delayed <= #`TCQ PROG_EMPTY_THRESH_ASSERT ; always @* prog_empty_thresh_negate_delayed <= #`TCQ PROG_EMPTY_THRESH_NEGATE ; always @* prog_full_thresh_delayed <= #`TCQ PROG_FULL_THRESH ; always @* prog_full_thresh_assert_delayed <= #`TCQ PROG_FULL_THRESH_ASSERT ; always @* prog_full_thresh_negate_delayed <= #`TCQ PROG_FULL_THRESH_NEGATE ; always @* injectdbiterr_delayed <= #`TCQ INJECTDBITERR ; always @* injectsbiterr_delayed <= #`TCQ INJECTSBITERR ; /***************************************************************************** * Derived parameters ****************************************************************************/ //There are 2 Verilog behavioral models // 0 = Common-Clock FIFO/ShiftRam FIFO // 1 = Independent Clocks FIFO // 2 = Low Latency Synchronous FIFO // 3 = Low Latency Asynchronous FIFO localparam C_VERILOG_IMPL = (C_FIFO_TYPE == 3) ? 2 : (C_IMPLEMENTATION_TYPE == 2) ? 1 : 0; localparam IS_8SERIES = (C_FAMILY == "virtexu" || C_FAMILY == "kintexu" || C_FAMILY == "artixu" || C_FAMILY == "virtexum" || C_FAMILY == "zynque") ? 1 : 0; //Internal reset signals reg rd_rst_asreg = 0; reg rd_rst_asreg_d1 = 0; reg rd_rst_asreg_d2 = 0; reg rd_rst_asreg_d3 = 0; reg rd_rst_reg = 0; wire rd_rst_comb; reg wr_rst_d0 = 0; reg wr_rst_d1 = 0; reg wr_rst_d2 = 0; reg rd_rst_d0 = 0; reg rd_rst_d1 = 0; reg rd_rst_d2 = 0; reg rd_rst_d3 = 0; reg wrrst_done = 0; reg rdrst_done = 0; reg wr_rst_asreg = 0; reg wr_rst_asreg_d1 = 0; reg wr_rst_asreg_d2 = 0; reg wr_rst_asreg_d3 = 0; reg rd_rst_wr_d0 = 0; reg rd_rst_wr_d1 = 0; reg rd_rst_wr_d2 = 0; reg wr_rst_reg = 0; reg rst_active_i = 1'b1; reg rst_delayed_d1 = 1'b1; reg rst_delayed_d2 = 1'b1; wire wr_rst_comb; wire wr_rst_i; wire rd_rst_i; wire rst_i; //Internal reset signals reg rst_asreg = 0; reg srst_asreg = 0; reg rst_asreg_d1 = 0; reg rst_asreg_d2 = 0; reg srst_asreg_d1 = 0; reg srst_asreg_d2 = 0; reg rst_reg = 0; reg srst_reg = 0; wire rst_comb; wire srst_comb; reg rst_full_gen_i = 0; reg rst_full_ff_i = 0; wire RD_CLK_P0_IN; wire RST_P0_IN; wire RD_EN_FIFO_IN; wire RD_EN_P0_IN; wire ALMOST_EMPTY_FIFO_OUT; wire ALMOST_FULL_FIFO_OUT; wire [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT_FIFO_OUT; wire [C_DOUT_WIDTH-1:0] DOUT_FIFO_OUT; wire EMPTY_FIFO_OUT; wire FULL_FIFO_OUT; wire OVERFLOW_FIFO_OUT; wire PROG_EMPTY_FIFO_OUT; wire PROG_FULL_FIFO_OUT; wire VALID_FIFO_OUT; wire [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT_FIFO_OUT; wire UNDERFLOW_FIFO_OUT; wire WR_ACK_FIFO_OUT; wire [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT_FIFO_OUT; //*************************************************************************** // Internal Signals // The core uses either the internal_ wires or the preload0_ wires depending // on whether the core uses Preload0 or not. // When using preload0, the internal signals connect the internal core to // the preload logic, and the external core's interfaces are tied to the // preload0 signals from the preload logic. //*************************************************************************** wire [C_DOUT_WIDTH-1:0] DATA_P0_OUT; wire VALID_P0_OUT; wire EMPTY_P0_OUT; wire ALMOSTEMPTY_P0_OUT; reg EMPTY_P0_OUT_Q; reg ALMOSTEMPTY_P0_OUT_Q; wire UNDERFLOW_P0_OUT; wire RDEN_P0_OUT; wire [C_DOUT_WIDTH-1:0] DATA_P0_IN; wire EMPTY_P0_IN; reg [31:0] DATA_COUNT_FWFT; reg SS_FWFT_WR ; reg SS_FWFT_RD ; wire sbiterr_fifo_out; wire dbiterr_fifo_out; wire inject_sbit_err; wire inject_dbit_err; // Assign 0 if not selected to avoid 'X' propogation to S/DBITERR. assign inject_sbit_err = ((C_ERROR_INJECTION_TYPE == 1) || (C_ERROR_INJECTION_TYPE == 3)) ? injectsbiterr_delayed : 0; assign inject_dbit_err = ((C_ERROR_INJECTION_TYPE == 2) || (C_ERROR_INJECTION_TYPE == 3)) ? injectdbiterr_delayed : 0; assign wr_rst_i_out = wr_rst_i; assign rd_rst_i_out = rd_rst_i; // Choose the behavioral model to instantiate based on the C_VERILOG_IMPL // parameter (1=Independent Clocks, 0=Common Clock) localparam FULL_FLAGS_RST_VAL = (C_HAS_SRST == 1) ? 0 : C_FULL_FLAGS_RST_VAL; generate case (C_VERILOG_IMPL) 0 : begin : block1 //Common Clock Behavioral Model fifo_generator_v12_0_bhv_ver_ss #( .C_FAMILY (C_FAMILY), .C_DATA_COUNT_WIDTH (C_DATA_COUNT_WIDTH), .C_DIN_WIDTH (C_DIN_WIDTH), .C_DOUT_RST_VAL (C_DOUT_RST_VAL), .C_DOUT_WIDTH (C_DOUT_WIDTH), .C_FULL_FLAGS_RST_VAL (FULL_FLAGS_RST_VAL), .C_HAS_ALMOST_EMPTY (C_HAS_ALMOST_EMPTY), .C_HAS_ALMOST_FULL ((C_AXI_TYPE == 0 && C_FIFO_TYPE == 1) ? 1 : C_HAS_ALMOST_FULL), .C_HAS_DATA_COUNT (C_HAS_DATA_COUNT), .C_HAS_OVERFLOW (C_HAS_OVERFLOW), .C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT), .C_HAS_RST (C_HAS_RST), .C_HAS_SRST (C_HAS_SRST), .C_HAS_UNDERFLOW (C_HAS_UNDERFLOW), .C_HAS_VALID (C_HAS_VALID), .C_HAS_WR_ACK (C_HAS_WR_ACK), .C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT), .C_IMPLEMENTATION_TYPE (C_IMPLEMENTATION_TYPE), .C_MEMORY_TYPE (C_MEMORY_TYPE), .C_OVERFLOW_LOW (C_OVERFLOW_LOW), .C_PRELOAD_LATENCY (C_PRELOAD_LATENCY), .C_PRELOAD_REGS (C_PRELOAD_REGS), .C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL), .C_PROG_EMPTY_THRESH_NEGATE_VAL (C_PROG_EMPTY_THRESH_NEGATE_VAL), .C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE), .C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL), .C_PROG_FULL_THRESH_NEGATE_VAL (C_PROG_FULL_THRESH_NEGATE_VAL), .C_PROG_FULL_TYPE (C_PROG_FULL_TYPE), .C_RD_DATA_COUNT_WIDTH (C_RD_DATA_COUNT_WIDTH), .C_RD_DEPTH (C_RD_DEPTH), .C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH), .C_UNDERFLOW_LOW (C_UNDERFLOW_LOW), .C_USE_DOUT_RST (C_USE_DOUT_RST), .C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG), .C_USE_FWFT_DATA_COUNT (C_USE_FWFT_DATA_COUNT), .C_VALID_LOW (C_VALID_LOW), .C_WR_ACK_LOW (C_WR_ACK_LOW), .C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH), .C_WR_DEPTH (C_WR_DEPTH), .C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH), .C_USE_ECC (C_USE_ECC), .C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC), .C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE), .C_FIFO_TYPE (C_FIFO_TYPE) ) gen_ss ( .CLK (CLK), .RST (rst_i), .SRST (srst_delayed), .RST_FULL_GEN (rst_full_gen_i), .RST_FULL_FF (rst_full_ff_i), .DIN (din_delayed), .WR_EN (wr_en_delayed), .RD_EN (RD_EN_FIFO_IN), .RD_EN_USER (rd_en_delayed), .USER_EMPTY_FB (empty_fb), .PROG_EMPTY_THRESH (prog_empty_thresh_delayed), .PROG_EMPTY_THRESH_ASSERT (prog_empty_thresh_assert_delayed), .PROG_EMPTY_THRESH_NEGATE (prog_empty_thresh_negate_delayed), .PROG_FULL_THRESH (prog_full_thresh_delayed), .PROG_FULL_THRESH_ASSERT (prog_full_thresh_assert_delayed), .PROG_FULL_THRESH_NEGATE (prog_full_thresh_negate_delayed), .INJECTSBITERR (inject_sbit_err), .INJECTDBITERR (inject_dbit_err), .DOUT (DOUT_FIFO_OUT), .FULL (FULL_FIFO_OUT), .ALMOST_FULL (ALMOST_FULL_FIFO_OUT), .WR_ACK (WR_ACK_FIFO_OUT), .OVERFLOW (OVERFLOW_FIFO_OUT), .EMPTY (EMPTY_FIFO_OUT), .ALMOST_EMPTY (ALMOST_EMPTY_FIFO_OUT), .VALID (VALID_FIFO_OUT), .UNDERFLOW (UNDERFLOW_FIFO_OUT), .DATA_COUNT (DATA_COUNT_FIFO_OUT), .RD_DATA_COUNT (RD_DATA_COUNT_FIFO_OUT), .WR_DATA_COUNT (WR_DATA_COUNT_FIFO_OUT), .PROG_FULL (PROG_FULL_FIFO_OUT), .PROG_EMPTY (PROG_EMPTY_FIFO_OUT), .WR_RST_BUSY (wr_rst_busy), .RD_RST_BUSY (rd_rst_busy), .SBITERR (sbiterr_fifo_out), .DBITERR (dbiterr_fifo_out) ); end 1 : begin : block1 //Independent Clocks Behavioral Model fifo_generator_v12_0_bhv_ver_as #( .C_FAMILY (C_FAMILY), .C_DATA_COUNT_WIDTH (C_DATA_COUNT_WIDTH), .C_DIN_WIDTH (C_DIN_WIDTH), .C_DOUT_RST_VAL (C_DOUT_RST_VAL), .C_DOUT_WIDTH (C_DOUT_WIDTH), .C_FULL_FLAGS_RST_VAL (C_FULL_FLAGS_RST_VAL), .C_HAS_ALMOST_EMPTY (C_HAS_ALMOST_EMPTY), .C_HAS_ALMOST_FULL (C_HAS_ALMOST_FULL), .C_HAS_DATA_COUNT (C_HAS_DATA_COUNT), .C_HAS_OVERFLOW (C_HAS_OVERFLOW), .C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT), .C_HAS_RST (C_HAS_RST), .C_HAS_UNDERFLOW (C_HAS_UNDERFLOW), .C_HAS_VALID (C_HAS_VALID), .C_HAS_WR_ACK (C_HAS_WR_ACK), .C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT), .C_IMPLEMENTATION_TYPE (C_IMPLEMENTATION_TYPE), .C_MEMORY_TYPE (C_MEMORY_TYPE), .C_OVERFLOW_LOW (C_OVERFLOW_LOW), .C_PRELOAD_LATENCY (C_PRELOAD_LATENCY), .C_PRELOAD_REGS (C_PRELOAD_REGS), .C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL), .C_PROG_EMPTY_THRESH_NEGATE_VAL (C_PROG_EMPTY_THRESH_NEGATE_VAL), .C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE), .C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL), .C_PROG_FULL_THRESH_NEGATE_VAL (C_PROG_FULL_THRESH_NEGATE_VAL), .C_PROG_FULL_TYPE (C_PROG_FULL_TYPE), .C_RD_DATA_COUNT_WIDTH (C_RD_DATA_COUNT_WIDTH), .C_RD_DEPTH (C_RD_DEPTH), .C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH), .C_UNDERFLOW_LOW (C_UNDERFLOW_LOW), .C_USE_DOUT_RST (C_USE_DOUT_RST), .C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG), .C_USE_FWFT_DATA_COUNT (C_USE_FWFT_DATA_COUNT), .C_VALID_LOW (C_VALID_LOW), .C_WR_ACK_LOW (C_WR_ACK_LOW), .C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH), .C_WR_DEPTH (C_WR_DEPTH), .C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH), .C_USE_ECC (C_USE_ECC), .C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE), .C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC), .C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE) ) gen_as ( .WR_CLK (WR_CLK), .RD_CLK (RD_CLK), .RST (rst_i), .RST_FULL_GEN (rst_full_gen_i), .RST_FULL_FF (rst_full_ff_i), .WR_RST (wr_rst_i), .RD_RST (rd_rst_i), .DIN (din_delayed), .WR_EN (wr_en_delayed), .RD_EN (RD_EN_FIFO_IN), .RD_EN_USER (rd_en_delayed), .PROG_EMPTY_THRESH (prog_empty_thresh_delayed), .PROG_EMPTY_THRESH_ASSERT (prog_empty_thresh_assert_delayed), .PROG_EMPTY_THRESH_NEGATE (prog_empty_thresh_negate_delayed), .PROG_FULL_THRESH (prog_full_thresh_delayed), .PROG_FULL_THRESH_ASSERT (prog_full_thresh_assert_delayed), .PROG_FULL_THRESH_NEGATE (prog_full_thresh_negate_delayed), .INJECTSBITERR (inject_sbit_err), .INJECTDBITERR (inject_dbit_err), .USER_EMPTY_FB (EMPTY_P0_OUT), .DOUT (DOUT_FIFO_OUT), .FULL (FULL_FIFO_OUT), .ALMOST_FULL (ALMOST_FULL_FIFO_OUT), .WR_ACK (WR_ACK_FIFO_OUT), .OVERFLOW (OVERFLOW_FIFO_OUT), .EMPTY (EMPTY_FIFO_OUT), .ALMOST_EMPTY (ALMOST_EMPTY_FIFO_OUT), .VALID (VALID_FIFO_OUT), .UNDERFLOW (UNDERFLOW_FIFO_OUT), .RD_DATA_COUNT (RD_DATA_COUNT_FIFO_OUT), .WR_DATA_COUNT (WR_DATA_COUNT_FIFO_OUT), .PROG_FULL (PROG_FULL_FIFO_OUT), .PROG_EMPTY (PROG_EMPTY_FIFO_OUT), .SBITERR (sbiterr_fifo_out), .DBITERR (dbiterr_fifo_out) ); end 2 : begin : ll_afifo_inst fifo_generator_v12_0_beh_ver_ll_afifo #( .C_DIN_WIDTH (C_DIN_WIDTH), .C_DOUT_RST_VAL (C_DOUT_RST_VAL), .C_DOUT_WIDTH (C_DOUT_WIDTH), .C_FULL_FLAGS_RST_VAL (C_FULL_FLAGS_RST_VAL), .C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT), .C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT), .C_RD_DEPTH (C_RD_DEPTH), .C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH), .C_USE_DOUT_RST (C_USE_DOUT_RST), .C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH), .C_WR_DEPTH (C_WR_DEPTH), .C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH), .C_FIFO_TYPE (C_FIFO_TYPE) ) gen_ll_afifo ( .DIN (din_delayed), .RD_CLK (RD_CLK), .RD_EN (rd_en_delayed), .WR_RST (wr_rst_i), .RD_RST (rd_rst_i), .WR_CLK (WR_CLK), .WR_EN (wr_en_delayed), .DOUT (DOUT), .EMPTY (EMPTY), .FULL (FULL) ); end default : begin : block1 //Independent Clocks Behavioral Model fifo_generator_v12_0_bhv_ver_as #( .C_FAMILY (C_FAMILY), .C_DATA_COUNT_WIDTH (C_DATA_COUNT_WIDTH), .C_DIN_WIDTH (C_DIN_WIDTH), .C_DOUT_RST_VAL (C_DOUT_RST_VAL), .C_DOUT_WIDTH (C_DOUT_WIDTH), .C_FULL_FLAGS_RST_VAL (C_FULL_FLAGS_RST_VAL), .C_HAS_ALMOST_EMPTY (C_HAS_ALMOST_EMPTY), .C_HAS_ALMOST_FULL (C_HAS_ALMOST_FULL), .C_HAS_DATA_COUNT (C_HAS_DATA_COUNT), .C_HAS_OVERFLOW (C_HAS_OVERFLOW), .C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT), .C_HAS_RST (C_HAS_RST), .C_HAS_UNDERFLOW (C_HAS_UNDERFLOW), .C_HAS_VALID (C_HAS_VALID), .C_HAS_WR_ACK (C_HAS_WR_ACK), .C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT), .C_IMPLEMENTATION_TYPE (C_IMPLEMENTATION_TYPE), .C_MEMORY_TYPE (C_MEMORY_TYPE), .C_OVERFLOW_LOW (C_OVERFLOW_LOW), .C_PRELOAD_LATENCY (C_PRELOAD_LATENCY), .C_PRELOAD_REGS (C_PRELOAD_REGS), .C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL), .C_PROG_EMPTY_THRESH_NEGATE_VAL (C_PROG_EMPTY_THRESH_NEGATE_VAL), .C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE), .C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL), .C_PROG_FULL_THRESH_NEGATE_VAL (C_PROG_FULL_THRESH_NEGATE_VAL), .C_PROG_FULL_TYPE (C_PROG_FULL_TYPE), .C_RD_DATA_COUNT_WIDTH (C_RD_DATA_COUNT_WIDTH), .C_RD_DEPTH (C_RD_DEPTH), .C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH), .C_UNDERFLOW_LOW (C_UNDERFLOW_LOW), .C_USE_DOUT_RST (C_USE_DOUT_RST), .C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG), .C_USE_FWFT_DATA_COUNT (C_USE_FWFT_DATA_COUNT), .C_VALID_LOW (C_VALID_LOW), .C_WR_ACK_LOW (C_WR_ACK_LOW), .C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH), .C_WR_DEPTH (C_WR_DEPTH), .C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH), .C_USE_ECC (C_USE_ECC), .C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE), .C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC), .C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE) ) gen_as ( .WR_CLK (WR_CLK), .RD_CLK (RD_CLK), .RST (rst_i), .RST_FULL_GEN (rst_full_gen_i), .RST_FULL_FF (rst_full_ff_i), .WR_RST (wr_rst_i), .RD_RST (rd_rst_i), .DIN (din_delayed), .WR_EN (wr_en_delayed), .RD_EN (RD_EN_FIFO_IN), .RD_EN_USER (rd_en_delayed), .PROG_EMPTY_THRESH (prog_empty_thresh_delayed), .PROG_EMPTY_THRESH_ASSERT (prog_empty_thresh_assert_delayed), .PROG_EMPTY_THRESH_NEGATE (prog_empty_thresh_negate_delayed), .PROG_FULL_THRESH (prog_full_thresh_delayed), .PROG_FULL_THRESH_ASSERT (prog_full_thresh_assert_delayed), .PROG_FULL_THRESH_NEGATE (prog_full_thresh_negate_delayed), .INJECTSBITERR (inject_sbit_err), .INJECTDBITERR (inject_dbit_err), .USER_EMPTY_FB (EMPTY_P0_OUT), .DOUT (DOUT_FIFO_OUT), .FULL (FULL_FIFO_OUT), .ALMOST_FULL (ALMOST_FULL_FIFO_OUT), .WR_ACK (WR_ACK_FIFO_OUT), .OVERFLOW (OVERFLOW_FIFO_OUT), .EMPTY (EMPTY_FIFO_OUT), .ALMOST_EMPTY (ALMOST_EMPTY_FIFO_OUT), .VALID (VALID_FIFO_OUT), .UNDERFLOW (UNDERFLOW_FIFO_OUT), .RD_DATA_COUNT (RD_DATA_COUNT_FIFO_OUT), .WR_DATA_COUNT (WR_DATA_COUNT_FIFO_OUT), .PROG_FULL (PROG_FULL_FIFO_OUT), .PROG_EMPTY (PROG_EMPTY_FIFO_OUT), .SBITERR (sbiterr_fifo_out), .DBITERR (dbiterr_fifo_out) ); end endcase endgenerate //************************************************************************** // Connect Internal Signals // (Signals labeled internal_*) // In the normal case, these signals tie directly to the FIFO's inputs and // outputs. // In the case of Preload Latency 0 or 1, there are intermediate // signals between the internal FIFO and the preload logic. //************************************************************************** //*********************************************** // If First-Word Fall-Through, instantiate // the preload0 (FWFT) module //*********************************************** wire rd_en_to_fwft_fifo; wire sbiterr_fwft; wire dbiterr_fwft; wire [C_DOUT_WIDTH-1:0] dout_fwft; wire empty_fwft; wire rd_en_fifo_in; wire stage2_reg_en_i; wire [1:0] valid_stages_i; wire rst_fwft; //wire empty_p0_out; reg [C_SYNCHRONIZER_STAGE-1:0] pkt_empty_sync = 'b1; localparam IS_FWFT = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ? 1 : 0; localparam IS_PKT_FIFO = (C_FIFO_TYPE == 1) ? 1 : 0; localparam IS_AXIS_PKT_FIFO = (C_FIFO_TYPE == 1 && C_AXI_TYPE == 0) ? 1 : 0; assign rst_fwft = (C_COMMON_CLOCK == 0) ? rd_rst_i : (C_HAS_RST == 1) ? rst_i : 1'b0; generate if (IS_FWFT == 1 && C_FIFO_TYPE != 3) begin : block2 fifo_generator_v12_0_bhv_ver_preload0 #( .C_DOUT_RST_VAL (C_DOUT_RST_VAL), .C_DOUT_WIDTH (C_DOUT_WIDTH), .C_HAS_RST (C_HAS_RST), .C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC), .C_HAS_SRST (C_HAS_SRST), .C_USE_DOUT_RST (C_USE_DOUT_RST), .C_USE_ECC (C_USE_ECC), .C_USERVALID_LOW (C_VALID_LOW), .C_USERUNDERFLOW_LOW (C_UNDERFLOW_LOW), .C_MEMORY_TYPE (C_MEMORY_TYPE), .C_FIFO_TYPE (C_FIFO_TYPE) ) fgpl0 ( .RD_CLK (RD_CLK_P0_IN), .RD_RST (RST_P0_IN), .SRST (srst_delayed), .WR_RST_BUSY (wr_rst_busy), .RD_RST_BUSY (rd_rst_busy), .RD_EN (RD_EN_P0_IN), .FIFOEMPTY (EMPTY_P0_IN), .FIFODATA (DATA_P0_IN), .FIFOSBITERR (sbiterr_fifo_out), .FIFODBITERR (dbiterr_fifo_out), // Output .USERDATA (dout_fwft), .USERVALID (VALID_P0_OUT), .USEREMPTY (empty_fwft), .USERALMOSTEMPTY (ALMOSTEMPTY_P0_OUT), .USERUNDERFLOW (UNDERFLOW_P0_OUT), .RAMVALID (), .FIFORDEN (rd_en_fifo_in), .USERSBITERR (sbiterr_fwft), .USERDBITERR (dbiterr_fwft), .STAGE2_REG_EN (stage2_reg_en_i), .VALID_STAGES (valid_stages_i) ); //*********************************************** // Connect inputs to preload (FWFT) module //*********************************************** //Connect the RD_CLK of the Preload (FWFT) module to CLK if we // have a common-clock FIFO, or RD_CLK if we have an // independent clock FIFO assign RD_CLK_P0_IN = ((C_VERILOG_IMPL == 0) ? CLK : RD_CLK); assign RST_P0_IN = (C_COMMON_CLOCK == 0) ? rd_rst_i : (C_HAS_RST == 1) ? rst_i : 0; assign RD_EN_P0_IN = (C_FIFO_TYPE != 1) ? rd_en_delayed : rd_en_to_fwft_fifo; assign EMPTY_P0_IN = EMPTY_FIFO_OUT; assign DATA_P0_IN = DOUT_FIFO_OUT; //*********************************************** // Connect outputs from preload (FWFT) module //*********************************************** assign VALID = VALID_P0_OUT ; assign ALMOST_EMPTY = ALMOSTEMPTY_P0_OUT; assign UNDERFLOW = UNDERFLOW_P0_OUT ; assign RD_EN_FIFO_IN = rd_en_fifo_in; //*********************************************** // Create DATA_COUNT from First-Word Fall-Through // data count //*********************************************** assign DATA_COUNT = (C_USE_FWFT_DATA_COUNT == 0)? DATA_COUNT_FIFO_OUT: (C_DATA_COUNT_WIDTH>C_RD_PNTR_WIDTH) ? DATA_COUNT_FWFT[C_RD_PNTR_WIDTH:0] : DATA_COUNT_FWFT[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH-C_DATA_COUNT_WIDTH+1]; //*********************************************** // Create DATA_COUNT from First-Word Fall-Through // data count //*********************************************** always @ (posedge RD_CLK_P0_IN or posedge RST_P0_IN) begin if (RST_P0_IN) begin EMPTY_P0_OUT_Q <= #`TCQ 1; ALMOSTEMPTY_P0_OUT_Q <= #`TCQ 1; end else begin EMPTY_P0_OUT_Q <= #`TCQ empty_p0_out; // EMPTY_P0_OUT_Q <= #`TCQ EMPTY_FIFO_OUT; ALMOSTEMPTY_P0_OUT_Q <= #`TCQ ALMOSTEMPTY_P0_OUT; end end //always //*********************************************** // logic for common-clock data count when FWFT is selected //*********************************************** initial begin SS_FWFT_RD = 1'b0; DATA_COUNT_FWFT = 0 ; SS_FWFT_WR = 1'b0 ; end //initial //*********************************************** // common-clock data count is implemented as an // up-down counter. SS_FWFT_WR and SS_FWFT_RD // are the up/down enables for the counter. //*********************************************** always @ (RD_EN or VALID_P0_OUT or WR_EN or FULL_FIFO_OUT or empty_p0_out) begin if (C_VALID_LOW == 1) begin SS_FWFT_RD = (C_FIFO_TYPE != 1) ? (RD_EN && ~VALID_P0_OUT) : (~empty_p0_out && RD_EN && ~VALID_P0_OUT) ; end else begin SS_FWFT_RD = (C_FIFO_TYPE != 1) ? (RD_EN && VALID_P0_OUT) : (~empty_p0_out && RD_EN && VALID_P0_OUT) ; end SS_FWFT_WR = (WR_EN && (~FULL_FIFO_OUT)) ; end //*********************************************** // common-clock data count is implemented as an // up-down counter for FWFT. This always block // calculates the counter. //*********************************************** always @ (posedge RD_CLK_P0_IN or posedge RST_P0_IN) begin if (RST_P0_IN) begin DATA_COUNT_FWFT <= #`TCQ 0; end else begin //if (srst_delayed && (C_HAS_SRST == 1) ) begin if ((srst_delayed | wr_rst_busy | rd_rst_busy) && (C_HAS_SRST == 1) ) begin DATA_COUNT_FWFT <= #`TCQ 0; end else begin case ( {SS_FWFT_WR, SS_FWFT_RD}) 2'b00: DATA_COUNT_FWFT <= #`TCQ DATA_COUNT_FWFT ; 2'b01: DATA_COUNT_FWFT <= #`TCQ DATA_COUNT_FWFT - 1 ; 2'b10: DATA_COUNT_FWFT <= #`TCQ DATA_COUNT_FWFT + 1 ; 2'b11: DATA_COUNT_FWFT <= #`TCQ DATA_COUNT_FWFT ; endcase end //if SRST end //IF RST end //always end endgenerate // : block2 // AXI Streaming Packet FIFO reg [C_WR_PNTR_WIDTH-1:0] wr_pkt_count = 0; reg [C_RD_PNTR_WIDTH-1:0] rd_pkt_count = 0; reg [C_RD_PNTR_WIDTH-1:0] rd_pkt_count_plus1 = 0; reg [C_RD_PNTR_WIDTH-1:0] rd_pkt_count_reg = 0; reg partial_packet = 0; reg stage1_eop_d1 = 0; reg rd_en_fifo_in_d1 = 0; reg eop_at_stage2 = 0; reg ram_pkt_empty = 0; reg ram_pkt_empty_d1 = 0; wire [C_DOUT_WIDTH-1:0] dout_p0_out; wire packet_empty_wr; wire wr_rst_fwft_pkt_fifo; wire dummy_wr_eop; wire ram_wr_en_pkt_fifo; wire wr_eop; wire ram_rd_en_compare; wire stage1_eop; wire pkt_ready_to_read; wire rd_en_2_stage2; // Generate Dummy WR_EOP for partial packet (Only for AXI Streaming) // When Packet EMPTY is high, and FIFO is full, then generate the dummy WR_EOP // When dummy WR_EOP is high, mask the actual EOP to avoid double increment of // write packet count generate if (IS_FWFT == 1 && IS_AXIS_PKT_FIFO == 1) begin // gdummy_wr_eop always @ (posedge wr_rst_fwft_pkt_fifo or posedge WR_CLK) begin if (wr_rst_fwft_pkt_fifo) partial_packet <= 1'b0; else begin if (srst_delayed | wr_rst_busy | rd_rst_busy) partial_packet <= #`TCQ 1'b0; else if (ALMOST_FULL_FIFO_OUT && ram_wr_en_pkt_fifo && packet_empty_wr && (~din_delayed[0])) partial_packet <= #`TCQ 1'b1; else if (partial_packet && din_delayed[0] && ram_wr_en_pkt_fifo) partial_packet <= #`TCQ 1'b0; end end end endgenerate // gdummy_wr_eop generate if (IS_FWFT == 1 && IS_PKT_FIFO == 1) begin // gpkt_fifo_fwft assign wr_rst_fwft_pkt_fifo = (C_COMMON_CLOCK == 0) ? wr_rst_i : (C_HAS_RST == 1) ? rst_i:1'b0; assign dummy_wr_eop = ALMOST_FULL_FIFO_OUT && ram_wr_en_pkt_fifo && packet_empty_wr && (~din_delayed[0]) && (~partial_packet); assign packet_empty_wr = (C_COMMON_CLOCK == 1) ? empty_p0_out : pkt_empty_sync[C_SYNCHRONIZER_STAGE-1]; always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin if (rst_fwft) begin stage1_eop_d1 <= 1'b0; rd_en_fifo_in_d1 <= 1'b0; end else begin if (srst_delayed | wr_rst_busy | rd_rst_busy) begin stage1_eop_d1 <= #`TCQ 1'b0; rd_en_fifo_in_d1 <= #`TCQ 1'b0; end else begin stage1_eop_d1 <= #`TCQ stage1_eop; rd_en_fifo_in_d1 <= #`TCQ rd_en_fifo_in; end end end assign stage1_eop = (rd_en_fifo_in_d1) ? DOUT_FIFO_OUT[0] : stage1_eop_d1; assign ram_wr_en_pkt_fifo = wr_en_delayed && (~FULL_FIFO_OUT); assign wr_eop = ram_wr_en_pkt_fifo && ((din_delayed[0] && (~partial_packet)) || dummy_wr_eop); assign ram_rd_en_compare = stage2_reg_en_i && stage1_eop; fifo_generator_v12_0_bhv_ver_preload0 #( .C_DOUT_RST_VAL (C_DOUT_RST_VAL), .C_DOUT_WIDTH (C_DOUT_WIDTH), .C_HAS_RST (C_HAS_RST), .C_HAS_SRST (C_HAS_SRST), .C_USE_DOUT_RST (C_USE_DOUT_RST), .C_USE_ECC (C_USE_ECC), .C_USERVALID_LOW (C_VALID_LOW), .C_USERUNDERFLOW_LOW (C_UNDERFLOW_LOW), .C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC), .C_MEMORY_TYPE (C_MEMORY_TYPE), .C_FIFO_TYPE (2) // Enable low latency fwft logic ) pkt_fifo_fwft ( .RD_CLK (RD_CLK_P0_IN), .RD_RST (rst_fwft), .SRST (srst_delayed), .WR_RST_BUSY (wr_rst_busy), .RD_RST_BUSY (rd_rst_busy), .RD_EN (rd_en_delayed), .FIFOEMPTY (pkt_ready_to_read), .FIFODATA (dout_fwft), .FIFOSBITERR (sbiterr_fwft), .FIFODBITERR (dbiterr_fwft), // Output .USERDATA (dout_p0_out), .USERVALID (), .USEREMPTY (empty_p0_out), .USERALMOSTEMPTY (), .USERUNDERFLOW (), .RAMVALID (), .FIFORDEN (rd_en_2_stage2), .USERSBITERR (SBITERR), .USERDBITERR (DBITERR), .STAGE2_REG_EN (), .VALID_STAGES () ); assign pkt_ready_to_read = ~(!(ram_pkt_empty || empty_fwft) && ((valid_stages_i[0] && valid_stages_i[1]) || eop_at_stage2)); assign rd_en_to_fwft_fifo = ~empty_fwft && rd_en_2_stage2; always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin if (rst_fwft) eop_at_stage2 <= 1'b0; else if (stage2_reg_en_i) eop_at_stage2 <= #`TCQ stage1_eop; end //--------------------------------------------------------------------------- // Write and Read Packet Count //--------------------------------------------------------------------------- always @ (posedge wr_rst_fwft_pkt_fifo or posedge WR_CLK) begin if (wr_rst_fwft_pkt_fifo) wr_pkt_count <= 0; else if (srst_delayed | wr_rst_busy | rd_rst_busy) wr_pkt_count <= #`TCQ 0; else if (wr_eop) wr_pkt_count <= #`TCQ wr_pkt_count + 1; end end endgenerate // gpkt_fifo_fwft assign DOUT = (C_FIFO_TYPE != 1) ? dout_fwft : dout_p0_out; assign EMPTY = (C_FIFO_TYPE != 1) ? empty_fwft : empty_p0_out; generate if (IS_FWFT == 1 && IS_PKT_FIFO == 1 && C_COMMON_CLOCK == 1) begin // grss_pkt_cnt always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin if (rst_fwft) begin rd_pkt_count <= 0; rd_pkt_count_plus1 <= 1; end else if (srst_delayed | wr_rst_busy | rd_rst_busy) begin rd_pkt_count <= #`TCQ 0; rd_pkt_count_plus1 <= #`TCQ 1; end else if (stage2_reg_en_i && stage1_eop) begin rd_pkt_count <= #`TCQ rd_pkt_count + 1; rd_pkt_count_plus1 <= #`TCQ rd_pkt_count_plus1 + 1; end end always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin if (rst_fwft) begin ram_pkt_empty <= 1'b1; ram_pkt_empty_d1 <= 1'b1; end else if (SRST | wr_rst_busy | rd_rst_busy) begin ram_pkt_empty <= #`TCQ 1'b1; ram_pkt_empty_d1 <= #`TCQ 1'b1; end else if ((rd_pkt_count == wr_pkt_count) && wr_eop) begin ram_pkt_empty <= #`TCQ 1'b0; ram_pkt_empty_d1 <= #`TCQ 1'b0; end else if (ram_pkt_empty_d1 && rd_en_to_fwft_fifo) begin ram_pkt_empty <= #`TCQ 1'b1; end else if ((rd_pkt_count_plus1 == wr_pkt_count) && ~wr_eop && ~ALMOST_FULL_FIFO_OUT && ram_rd_en_compare) begin ram_pkt_empty_d1 <= #`TCQ 1'b1; end end end endgenerate //grss_pkt_cnt localparam SYNC_STAGE_WIDTH = (C_SYNCHRONIZER_STAGE+1)*C_WR_PNTR_WIDTH; reg [SYNC_STAGE_WIDTH-1:0] wr_pkt_count_q = 0; reg [C_WR_PNTR_WIDTH-1:0] wr_pkt_count_b2g = 0; wire [C_WR_PNTR_WIDTH-1:0] wr_pkt_count_rd; generate if (IS_FWFT == 1 && IS_PKT_FIFO == 1 && C_COMMON_CLOCK == 0) begin // gras_pkt_cnt // Delay the write packet count in write clock domain to accomodate the binary to gray conversion delay always @ (posedge wr_rst_fwft_pkt_fifo or posedge WR_CLK) begin if (wr_rst_fwft_pkt_fifo) wr_pkt_count_b2g <= 0; else wr_pkt_count_b2g <= #`TCQ wr_pkt_count; end // Synchronize the delayed write packet count in read domain, and also compensate the gray to binay conversion delay always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin if (rst_fwft) wr_pkt_count_q <= 0; else wr_pkt_count_q <= #`TCQ {wr_pkt_count_q[SYNC_STAGE_WIDTH-C_WR_PNTR_WIDTH-1:0],wr_pkt_count_b2g}; end always @* begin if (stage1_eop) rd_pkt_count <= rd_pkt_count_reg + 1; else rd_pkt_count <= rd_pkt_count_reg; end assign wr_pkt_count_rd = wr_pkt_count_q[SYNC_STAGE_WIDTH-1:SYNC_STAGE_WIDTH-C_WR_PNTR_WIDTH]; always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin if (rst_fwft) rd_pkt_count_reg <= 0; else if (rd_en_fifo_in) rd_pkt_count_reg <= #`TCQ rd_pkt_count; end always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin if (rst_fwft) begin ram_pkt_empty <= 1'b1; ram_pkt_empty_d1 <= 1'b1; end else if (rd_pkt_count != wr_pkt_count_rd) begin ram_pkt_empty <= #`TCQ 1'b0; ram_pkt_empty_d1 <= #`TCQ 1'b0; end else if (ram_pkt_empty_d1 && rd_en_to_fwft_fifo) begin ram_pkt_empty <= #`TCQ 1'b1; end else if ((rd_pkt_count == wr_pkt_count_rd) && stage2_reg_en_i) begin ram_pkt_empty_d1 <= #`TCQ 1'b1; end end // Synchronize the empty in write domain always @ (posedge wr_rst_fwft_pkt_fifo or posedge WR_CLK) begin if (wr_rst_fwft_pkt_fifo) pkt_empty_sync <= 'b1; else pkt_empty_sync <= #`TCQ {pkt_empty_sync[C_SYNCHRONIZER_STAGE-2:0], empty_p0_out}; end end endgenerate //gras_pkt_cnt generate if (IS_FWFT == 0 || C_FIFO_TYPE == 3) begin : STD_FIFO //*********************************************** // If NOT First-Word Fall-Through, wire the outputs // of the internal _ss or _as FIFO directly to the // output, and do not instantiate the preload0 // module. //*********************************************** assign RD_CLK_P0_IN = 0; assign RST_P0_IN = 0; assign RD_EN_P0_IN = 0; assign RD_EN_FIFO_IN = rd_en_delayed; assign DOUT = DOUT_FIFO_OUT; assign DATA_P0_IN = 0; assign VALID = VALID_FIFO_OUT; assign EMPTY = EMPTY_FIFO_OUT; assign ALMOST_EMPTY = ALMOST_EMPTY_FIFO_OUT; assign EMPTY_P0_IN = 0; assign UNDERFLOW = UNDERFLOW_FIFO_OUT; assign DATA_COUNT = DATA_COUNT_FIFO_OUT; assign SBITERR = sbiterr_fifo_out; assign DBITERR = dbiterr_fifo_out; end endgenerate // STD_FIFO generate if (IS_FWFT == 1 && C_FIFO_TYPE != 1) begin : NO_PKT_FIFO assign empty_p0_out = empty_fwft; assign SBITERR = sbiterr_fwft; assign DBITERR = dbiterr_fwft; assign DOUT = dout_fwft; assign RD_EN_P0_IN = (C_FIFO_TYPE != 1) ? rd_en_delayed : rd_en_to_fwft_fifo; end endgenerate // NO_PKT_FIFO //*********************************************** // Connect user flags to internal signals //*********************************************** //If we are using extra logic for the FWFT data count, then override the //RD_DATA_COUNT output when we are EMPTY or ALMOST_EMPTY. //RD_DATA_COUNT is 0 when EMPTY and 1 when ALMOST_EMPTY. generate if (C_USE_FWFT_DATA_COUNT==1 && (C_RD_DATA_COUNT_WIDTH>C_RD_PNTR_WIDTH) ) begin : block3 if (C_COMMON_CLOCK == 0) begin : block_ic assign RD_DATA_COUNT = (EMPTY_P0_OUT_Q | RST_P0_IN) ? 0 : (ALMOSTEMPTY_P0_OUT_Q ? 1 : RD_DATA_COUNT_FIFO_OUT); end //block_ic else begin assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT; end end //block3 endgenerate //If we are using extra logic for the FWFT data count, then override the //RD_DATA_COUNT output when we are EMPTY or ALMOST_EMPTY. //Due to asymmetric ports, RD_DATA_COUNT is 0 when EMPTY or ALMOST_EMPTY. generate if (C_USE_FWFT_DATA_COUNT==1 && (C_RD_DATA_COUNT_WIDTH <=C_RD_PNTR_WIDTH) ) begin : block30 if (C_COMMON_CLOCK == 0) begin : block_ic assign RD_DATA_COUNT = (EMPTY_P0_OUT_Q | RST_P0_IN) ? 0 : (ALMOSTEMPTY_P0_OUT_Q ? 0 : RD_DATA_COUNT_FIFO_OUT); end else begin assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT; end end //block30 endgenerate //If we are not using extra logic for the FWFT data count, //then connect RD_DATA_COUNT to the RD_DATA_COUNT from the //internal FIFO instance generate if (C_USE_FWFT_DATA_COUNT==0 ) begin : block31 assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT; end endgenerate //Always connect WR_DATA_COUNT to the WR_DATA_COUNT from the internal //FIFO instance generate if (C_USE_FWFT_DATA_COUNT==1) begin : block4 assign WR_DATA_COUNT = WR_DATA_COUNT_FIFO_OUT; end else begin : block4 assign WR_DATA_COUNT = WR_DATA_COUNT_FIFO_OUT; end endgenerate //Connect other flags to the internal FIFO instance assign FULL = FULL_FIFO_OUT; assign ALMOST_FULL = ALMOST_FULL_FIFO_OUT; assign WR_ACK = WR_ACK_FIFO_OUT; assign OVERFLOW = OVERFLOW_FIFO_OUT; assign PROG_FULL = PROG_FULL_FIFO_OUT; assign PROG_EMPTY = PROG_EMPTY_FIFO_OUT; /************************************************************************** * find_log2 * Returns the 'log2' value for the input value for the supported ratios ***************************************************************************/ function integer find_log2; input integer int_val; integer i,j; begin i = 1; j = 0; for (i = 1; i < int_val; i = i*2) begin j = j + 1; end find_log2 = j; end endfunction // if an asynchronous FIFO has been selected, display a message that the FIFO // will not be cycle-accurate in simulation initial begin if (C_IMPLEMENTATION_TYPE == 2) begin $display("WARNING: Behavioral models for independent clock FIFO configurations do not model synchronization delays. The behavioral models are functionally correct, and will represent the behavior of the configured FIFO. See the FIFO Generator User Guide for more information."); end else if (C_MEMORY_TYPE == 4) begin $display("FAILURE : Behavioral models do not support built-in FIFO configurations. Please use post-synthesis or post-implement simulation in Vivado."); $finish; end if (C_WR_PNTR_WIDTH != find_log2(C_WR_DEPTH)) begin $display("FAILURE : C_WR_PNTR_WIDTH is not log2 of C_WR_DEPTH."); $finish; end if (C_RD_PNTR_WIDTH != find_log2(C_RD_DEPTH)) begin $display("FAILURE : C_RD_PNTR_WIDTH is not log2 of C_RD_DEPTH."); $finish; end if (C_USE_ECC == 1) begin if (C_DIN_WIDTH != C_DOUT_WIDTH) begin $display("FAILURE : C_DIN_WIDTH and C_DOUT_WIDTH must be equal for ECC configuration."); $finish; end if (C_DIN_WIDTH == 1 && C_ERROR_INJECTION_TYPE > 1) begin $display("FAILURE : C_DIN_WIDTH and C_DOUT_WIDTH must be > 1 for double bit error injection."); $finish; end end end //initial /************************************************************************** * Internal reset logic **************************************************************************/ assign wr_rst_i = (C_HAS_RST == 1 || C_ENABLE_RST_SYNC == 0) ? wr_rst_reg : 0; assign rd_rst_i = (C_HAS_RST == 1 || C_ENABLE_RST_SYNC == 0) ? rd_rst_reg : 0; assign rst_i = C_HAS_RST ? rst_reg : 0; wire rst_2_sync; wire clk_2_sync = (C_COMMON_CLOCK == 1) ? CLK : WR_CLK; generate if (C_ENABLE_RST_SYNC == 0) begin : gnrst_sync always @* begin wr_rst_reg <= wr_rst_delayed; rd_rst_reg <= rd_rst_delayed; rst_reg <= 1'b0; srst_reg <= 1'b0; end assign rst_2_sync = wr_rst_delayed; assign wr_rst_busy = 1'b0; assign rd_rst_busy = 1'b0; end else if (C_HAS_RST == 1 && C_COMMON_CLOCK == 0) begin : g7s_ic_rst assign wr_rst_comb = !wr_rst_asreg_d2 && wr_rst_asreg; assign rd_rst_comb = !rd_rst_asreg_d2 && rd_rst_asreg; assign rst_2_sync = rst_delayed; assign wr_rst_busy = 1'b0; assign rd_rst_busy = 1'b0; always @(posedge WR_CLK or posedge rst_delayed) begin if (rst_delayed == 1'b1) begin wr_rst_asreg <= #`TCQ 1'b1; end else begin if (wr_rst_asreg_d1 == 1'b1) begin wr_rst_asreg <= #`TCQ 1'b0; end else begin wr_rst_asreg <= #`TCQ wr_rst_asreg; end end end always @(posedge WR_CLK) begin wr_rst_asreg_d1 <= #`TCQ wr_rst_asreg; wr_rst_asreg_d2 <= #`TCQ wr_rst_asreg_d1; end always @(posedge WR_CLK or posedge wr_rst_comb) begin if (wr_rst_comb == 1'b1) begin wr_rst_reg <= #`TCQ 1'b1; end else begin wr_rst_reg <= #`TCQ 1'b0; end end always @(posedge RD_CLK or posedge rst_delayed) begin if (rst_delayed == 1'b1) begin rd_rst_asreg <= #`TCQ 1'b1; end else begin if (rd_rst_asreg_d1 == 1'b1) begin rd_rst_asreg <= #`TCQ 1'b0; end else begin rd_rst_asreg <= #`TCQ rd_rst_asreg; end end end always @(posedge RD_CLK) begin rd_rst_asreg_d1 <= #`TCQ rd_rst_asreg; rd_rst_asreg_d2 <= #`TCQ rd_rst_asreg_d1; end always @(posedge RD_CLK or posedge rd_rst_comb) begin if (rd_rst_comb == 1'b1) begin rd_rst_reg <= #`TCQ 1'b1; end else begin rd_rst_reg <= #`TCQ 1'b0; end end end else if (C_HAS_RST == 1 && C_COMMON_CLOCK == 1) begin : g7s_cc_rst assign rst_comb = !rst_asreg_d2 && rst_asreg; assign rst_2_sync = rst_delayed; assign wr_rst_busy = 1'b0; assign rd_rst_busy = 1'b0; always @(posedge CLK or posedge rst_delayed) begin if (rst_delayed == 1'b1) begin rst_asreg <= #`TCQ 1'b1; end else begin if (rst_asreg_d1 == 1'b1) begin rst_asreg <= #`TCQ 1'b0; end else begin rst_asreg <= #`TCQ rst_asreg; end end end always @(posedge CLK) begin rst_asreg_d1 <= #`TCQ rst_asreg; rst_asreg_d2 <= #`TCQ rst_asreg_d1; end always @(posedge CLK or posedge rst_comb) begin if (rst_comb == 1'b1) begin rst_reg <= #`TCQ 1'b1; end else begin rst_reg <= #`TCQ 1'b0; end end end else if (IS_8SERIES == 1 && C_HAS_SRST == 1 && C_COMMON_CLOCK == 1) begin : g8s_cc_rst assign wr_rst_busy = (C_MEMORY_TYPE != 4) ? rst_reg : rst_active_i; assign rd_rst_busy = rst_reg; assign rst_2_sync = srst_delayed; always @* rst_full_ff_i <= rst_reg; always @* rst_full_gen_i <= C_FULL_FLAGS_RST_VAL == 1 ? rst_active_i : 0; always @(posedge CLK) begin rst_delayed_d1 <= #`TCQ srst_delayed; rst_delayed_d2 <= #`TCQ rst_delayed_d1; if (rst_reg || rst_delayed_d2) begin rst_active_i <= #`TCQ 1'b1; end else begin rst_active_i <= #`TCQ rst_reg; end end always @(posedge CLK) begin if (~rst_reg && srst_delayed) begin rst_reg <= #`TCQ 1'b1; end else if (rst_reg) begin rst_reg <= #`TCQ 1'b0; end else begin rst_reg <= #`TCQ rst_reg; end end end else begin assign wr_rst_busy = 1'b0; assign rd_rst_busy = 1'b0; end // end g8s_cc_rst endgenerate reg rst_d1 = 1'b0; reg rst_d2 = 1'b0; reg rst_d3 = 1'b0; reg rst_d4 = 1'b0; generate if ((C_HAS_RST == 1 || C_HAS_SRST == 1 || C_ENABLE_RST_SYNC == 0) && C_FULL_FLAGS_RST_VAL == 1) begin : grstd1 // RST_FULL_GEN replaces the reset falling edge detection used to de-assert // FULL, ALMOST_FULL & PROG_FULL flags if C_FULL_FLAGS_RST_VAL = 1. // RST_FULL_FF goes to the reset pin of the final flop of FULL, ALMOST_FULL & // PROG_FULL always @ (posedge rst_2_sync or posedge clk_2_sync) begin if (rst_2_sync) begin rst_d1 <= 1'b1; rst_d2 <= 1'b1; rst_d3 <= 1'b1; rst_d4 <= 1'b0; end else begin if (srst_delayed) begin rst_d1 <= #`TCQ 1'b1; rst_d2 <= #`TCQ 1'b1; rst_d3 <= #`TCQ 1'b1; rst_d4 <= #`TCQ 1'b0; end else begin rst_d1 <= #`TCQ 1'b0; rst_d2 <= #`TCQ rst_d1; rst_d3 <= #`TCQ rst_d2; rst_d4 <= #`TCQ rst_d3; end end end always @* rst_full_ff_i <= (C_HAS_SRST == 0) ? rst_d2 : 1'b0 ; always @* rst_full_gen_i <= rst_d4; end else if ((C_HAS_RST == 1 || C_HAS_SRST == 1 || C_ENABLE_RST_SYNC == 0) && C_FULL_FLAGS_RST_VAL == 0) begin : gnrst_full always @* rst_full_ff_i <= (C_COMMON_CLOCK == 0) ? wr_rst_i : rst_i; end endgenerate // grstd1 endmodule //FIFO_GENERATOR_v12_0_CONV_VER module fifo_generator_v12_0_sync_stage #( parameter C_WIDTH = 10 ) ( input RST, input CLK, input [C_WIDTH-1:0] DIN, output reg [C_WIDTH-1:0] DOUT = 0 ); always @ (posedge RST or posedge CLK) begin if (RST) DOUT <= 0; else DOUT <= #`TCQ DIN; end endmodule // fifo_generator_v12_0_sync_stage /******************************************************************************* * Declaration of Independent-Clocks FIFO Module ******************************************************************************/ module fifo_generator_v12_0_bhv_ver_as /*************************************************************************** * Declare user parameters and their defaults ***************************************************************************/ #( parameter C_FAMILY = "virtex7", parameter C_DATA_COUNT_WIDTH = 2, parameter C_DIN_WIDTH = 8, parameter C_DOUT_RST_VAL = "", parameter C_DOUT_WIDTH = 8, parameter C_FULL_FLAGS_RST_VAL = 1, parameter C_HAS_ALMOST_EMPTY = 0, parameter C_HAS_ALMOST_FULL = 0, parameter C_HAS_DATA_COUNT = 0, parameter C_HAS_OVERFLOW = 0, parameter C_HAS_RD_DATA_COUNT = 0, parameter C_HAS_RST = 0, parameter C_HAS_UNDERFLOW = 0, parameter C_HAS_VALID = 0, parameter C_HAS_WR_ACK = 0, parameter C_HAS_WR_DATA_COUNT = 0, parameter C_IMPLEMENTATION_TYPE = 0, parameter C_MEMORY_TYPE = 1, parameter C_OVERFLOW_LOW = 0, parameter C_PRELOAD_LATENCY = 1, parameter C_PRELOAD_REGS = 0, parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0, parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0, parameter C_PROG_EMPTY_TYPE = 0, parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0, parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0, parameter C_PROG_FULL_TYPE = 0, parameter C_RD_DATA_COUNT_WIDTH = 2, parameter C_RD_DEPTH = 256, parameter C_RD_PNTR_WIDTH = 8, parameter C_UNDERFLOW_LOW = 0, parameter C_USE_DOUT_RST = 0, parameter C_USE_EMBEDDED_REG = 0, parameter C_USE_FWFT_DATA_COUNT = 0, parameter C_VALID_LOW = 0, parameter C_WR_ACK_LOW = 0, parameter C_WR_DATA_COUNT_WIDTH = 2, parameter C_WR_DEPTH = 256, parameter C_WR_PNTR_WIDTH = 8, parameter C_USE_ECC = 0, parameter C_ENABLE_RST_SYNC = 1, parameter C_ERROR_INJECTION_TYPE = 0, parameter C_SYNCHRONIZER_STAGE = 2 ) /*************************************************************************** * Declare Input and Output Ports ***************************************************************************/ ( input [C_DIN_WIDTH-1:0] DIN, input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH, input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT, input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE, input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH, input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT, input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE, input RD_CLK, input RD_EN, input RD_EN_USER, input RST, input RST_FULL_GEN, input RST_FULL_FF, input WR_RST, input RD_RST, input WR_CLK, input WR_EN, input INJECTDBITERR, input INJECTSBITERR, input USER_EMPTY_FB, output reg ALMOST_EMPTY = 1'b1, output reg ALMOST_FULL = C_FULL_FLAGS_RST_VAL, output [C_DOUT_WIDTH-1:0] DOUT, output reg EMPTY = 1'b1, output reg FULL = C_FULL_FLAGS_RST_VAL, output OVERFLOW, output PROG_EMPTY, output PROG_FULL, output VALID, output [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT, output UNDERFLOW, output WR_ACK, output [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT, output SBITERR, output DBITERR ); reg [C_RD_PNTR_WIDTH:0] rd_data_count_int = 0; reg [C_WR_PNTR_WIDTH:0] wr_data_count_int = 0; reg [C_WR_PNTR_WIDTH:0] wdc_fwft_ext_as = 0; /*************************************************************************** * Parameters used as constants **************************************************************************/ localparam IS_8SERIES = (C_FAMILY == "virtexu" || C_FAMILY == "kintexu" || C_FAMILY == "artixu" || C_FAMILY == "virtexum" || C_FAMILY == "zynque") ? 1 : 0; //When RST is present, set FULL reset value to '1'. //If core has no RST, make sure FULL powers-on as '0'. localparam C_DEPTH_RATIO_WR = (C_WR_DEPTH>C_RD_DEPTH) ? (C_WR_DEPTH/C_RD_DEPTH) : 1; localparam C_DEPTH_RATIO_RD = (C_RD_DEPTH>C_WR_DEPTH) ? (C_RD_DEPTH/C_WR_DEPTH) : 1; localparam C_FIFO_WR_DEPTH = C_WR_DEPTH - 1; localparam C_FIFO_RD_DEPTH = C_RD_DEPTH - 1; // C_DEPTH_RATIO_WR | C_DEPTH_RATIO_RD | C_PNTR_WIDTH | EXTRA_WORDS_DC // -----------------|------------------|-----------------|--------------- // 1 | 8 | C_RD_PNTR_WIDTH | 2 // 1 | 4 | C_RD_PNTR_WIDTH | 2 // 1 | 2 | C_RD_PNTR_WIDTH | 2 // 1 | 1 | C_WR_PNTR_WIDTH | 2 // 2 | 1 | C_WR_PNTR_WIDTH | 4 // 4 | 1 | C_WR_PNTR_WIDTH | 8 // 8 | 1 | C_WR_PNTR_WIDTH | 16 localparam C_PNTR_WIDTH = (C_WR_PNTR_WIDTH>=C_RD_PNTR_WIDTH) ? C_WR_PNTR_WIDTH : C_RD_PNTR_WIDTH; wire [C_PNTR_WIDTH:0] EXTRA_WORDS_DC = (C_DEPTH_RATIO_WR == 1) ? 2 : (2 * C_DEPTH_RATIO_WR/C_DEPTH_RATIO_RD); localparam [31:0] reads_per_write = C_DIN_WIDTH/C_DOUT_WIDTH; localparam [31:0] log2_reads_per_write = log2_val(reads_per_write); localparam [31:0] writes_per_read = C_DOUT_WIDTH/C_DIN_WIDTH; localparam [31:0] log2_writes_per_read = log2_val(writes_per_read); /************************************************************************** * FIFO Contents Tracking and Data Count Calculations *************************************************************************/ // Memory which will be used to simulate a FIFO reg [C_DIN_WIDTH-1:0] memory[C_WR_DEPTH-1:0]; // Local parameters used to determine whether to inject ECC error or not localparam SYMMETRIC_PORT = (C_DIN_WIDTH == C_DOUT_WIDTH) ? 1 : 0; localparam ERR_INJECTION = (C_ERROR_INJECTION_TYPE != 0) ? 1 : 0; localparam ENABLE_ERR_INJECTION = C_USE_ECC && SYMMETRIC_PORT && ERR_INJECTION; // Array that holds the error injection type (single/double bit error) on // a specific write operation, which is returned on read to corrupt the // output data. reg [1:0] ecc_err[C_WR_DEPTH-1:0]; //The amount of data stored in the FIFO at any time is given // by num_wr_bits (in the WR_CLK domain) and num_rd_bits (in the RD_CLK // domain. //num_wr_bits is calculated by considering the total words in the FIFO, // and the state of the read pointer (which may not have yet crossed clock // domains.) //num_rd_bits is calculated by considering the total words in the FIFO, // and the state of the write pointer (which may not have yet crossed clock // domains.) reg [31:0] num_wr_bits; reg [31:0] num_rd_bits; reg [31:0] next_num_wr_bits; reg [31:0] next_num_rd_bits; //The write pointer - tracks write operations // (Works opposite to core: wr_ptr is a DOWN counter) reg [31:0] wr_ptr; reg [C_WR_PNTR_WIDTH-1:0] wr_pntr = 0; // UP counter: Rolls back to 0 when reaches to max value. reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd1 = 0; reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd2 = 0; reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd3 = 0; wire [C_RD_PNTR_WIDTH-1:0] adj_wr_pntr_rd; reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd = 0; wire wr_rst_i = WR_RST; reg wr_rst_d1 =0; //The read pointer - tracks read operations // (rd_ptr Works opposite to core: rd_ptr is a DOWN counter) reg [31:0] rd_ptr; reg [C_RD_PNTR_WIDTH-1:0] rd_pntr = 0; // UP counter: Rolls back to 0 when reaches to max value. reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr1 = 0; reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr2 = 0; reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr3 = 0; reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr4 = 0; wire [C_WR_PNTR_WIDTH-1:0] adj_rd_pntr_wr; reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr = 0; wire rd_rst_i = RD_RST; wire ram_rd_en; wire empty_int; wire almost_empty_int; wire ram_wr_en; wire full_int; wire almost_full_int; reg ram_rd_en_d1 = 1'b0; // Delayed ram_rd_en is needed only for STD Embedded register option generate if (C_PRELOAD_LATENCY == 2) begin : grd_d always @ (posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i) ram_rd_en_d1 <= #`TCQ 1'b0; else ram_rd_en_d1 <= #`TCQ ram_rd_en; end end endgenerate // Write pointer adjustment based on pointers width for EMPTY/ALMOST_EMPTY generation generate if (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) begin : rdg // Read depth greater than write depth assign adj_wr_pntr_rd[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr_rd; assign adj_wr_pntr_rd[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1:0] = 0; end else begin : rdl // Read depth lesser than or equal to write depth assign adj_wr_pntr_rd = wr_pntr_rd[C_WR_PNTR_WIDTH-1:C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH]; end endgenerate // Generate Empty and Almost Empty // ram_rd_en used to determine EMPTY should depend on the EMPTY. assign ram_rd_en = RD_EN & !EMPTY; assign empty_int = ((adj_wr_pntr_rd == rd_pntr) || (ram_rd_en && (adj_wr_pntr_rd == (rd_pntr+1'h1)))); assign almost_empty_int = ((adj_wr_pntr_rd == (rd_pntr+1'h1)) || (ram_rd_en && (adj_wr_pntr_rd == (rd_pntr+2'h2)))); // Register Empty and Almost Empty always @ (posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i) begin EMPTY <= #`TCQ 1'b1; ALMOST_EMPTY <= #`TCQ 1'b1; rd_data_count_int <= #`TCQ {C_RD_PNTR_WIDTH{1'b0}}; end else begin rd_data_count_int <= #`TCQ {(adj_wr_pntr_rd[C_RD_PNTR_WIDTH-1:0] - rd_pntr[C_RD_PNTR_WIDTH-1:0]), 1'b0}; if (empty_int) EMPTY <= #`TCQ 1'b1; else EMPTY <= #`TCQ 1'b0; if (!EMPTY) begin if (almost_empty_int) ALMOST_EMPTY <= #`TCQ 1'b1; else ALMOST_EMPTY <= #`TCQ 1'b0; end end // rd_rst_i end // always // Read pointer adjustment based on pointers width for EMPTY/ALMOST_EMPTY generation generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : wdg // Write depth greater than read depth assign adj_rd_pntr_wr[C_WR_PNTR_WIDTH-1:C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH] = rd_pntr_wr; assign adj_rd_pntr_wr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1:0] = 0; end else begin : wdl // Write depth lesser than or equal to read depth assign adj_rd_pntr_wr = rd_pntr_wr[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH]; end endgenerate // Generate FULL and ALMOST_FULL // ram_wr_en used to determine FULL should depend on the FULL. assign ram_wr_en = WR_EN & !FULL; assign full_int = ((adj_rd_pntr_wr == (wr_pntr+1'h1)) || (ram_wr_en && (adj_rd_pntr_wr == (wr_pntr+2'h2)))); assign almost_full_int = ((adj_rd_pntr_wr == (wr_pntr+2'h2)) || (ram_wr_en && (adj_rd_pntr_wr == (wr_pntr+3'h3)))); // Register FULL and ALMOST_FULL Empty always @ (posedge WR_CLK or posedge RST_FULL_FF) begin if (RST_FULL_FF) begin FULL <= #`TCQ C_FULL_FLAGS_RST_VAL; ALMOST_FULL <= #`TCQ C_FULL_FLAGS_RST_VAL; end else begin if (full_int) begin FULL <= #`TCQ 1'b1; end else begin FULL <= #`TCQ 1'b0; end if (RST_FULL_GEN) begin ALMOST_FULL <= #`TCQ 1'b0; end else if (!FULL) begin if (almost_full_int) ALMOST_FULL <= #`TCQ 1'b1; else ALMOST_FULL <= #`TCQ 1'b0; end end // wr_rst_i end // always always @ (posedge WR_CLK or posedge wr_rst_i) begin if (wr_rst_i) begin wr_data_count_int <= #`TCQ {C_WR_DATA_COUNT_WIDTH{1'b0}}; end else begin wr_data_count_int <= #`TCQ {(wr_pntr[C_WR_PNTR_WIDTH-1:0] - adj_rd_pntr_wr[C_WR_PNTR_WIDTH-1:0]), 1'b0}; end // wr_rst_i end // always // Determine which stage in FWFT registers are valid reg stage1_valid = 0; reg stage2_valid = 0; generate if (C_PRELOAD_LATENCY == 0) begin : grd_fwft_proc always @ (posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i) begin stage1_valid <= #`TCQ 0; stage2_valid <= #`TCQ 0; end else begin if (!stage1_valid && !stage2_valid) begin if (!EMPTY) stage1_valid <= #`TCQ 1'b1; else stage1_valid <= #`TCQ 1'b0; end else if (stage1_valid && !stage2_valid) begin if (EMPTY) begin stage1_valid <= #`TCQ 1'b0; stage2_valid <= #`TCQ 1'b1; end else begin stage1_valid <= #`TCQ 1'b1; stage2_valid <= #`TCQ 1'b1; end end else if (!stage1_valid && stage2_valid) begin if (EMPTY && RD_EN_USER) begin stage1_valid <= #`TCQ 1'b0; stage2_valid <= #`TCQ 1'b0; end else if (!EMPTY && RD_EN_USER) begin stage1_valid <= #`TCQ 1'b1; stage2_valid <= #`TCQ 1'b0; end else if (!EMPTY && !RD_EN_USER) begin stage1_valid <= #`TCQ 1'b1; stage2_valid <= #`TCQ 1'b1; end else begin stage1_valid <= #`TCQ 1'b0; stage2_valid <= #`TCQ 1'b1; end end else if (stage1_valid && stage2_valid) begin if (EMPTY && RD_EN_USER) begin stage1_valid <= #`TCQ 1'b0; stage2_valid <= #`TCQ 1'b1; end else begin stage1_valid <= #`TCQ 1'b1; stage2_valid <= #`TCQ 1'b1; end end else begin stage1_valid <= #`TCQ 1'b0; stage2_valid <= #`TCQ 1'b0; end end // rd_rst_i end // always end endgenerate //Pointers passed into opposite clock domain reg [31:0] wr_ptr_rdclk; reg [31:0] wr_ptr_rdclk_next; reg [31:0] rd_ptr_wrclk; reg [31:0] rd_ptr_wrclk_next; //Amount of data stored in the FIFO scaled to the narrowest (deepest) port // (Do not include data in FWFT stages) //Used to calculate PROG_EMPTY. wire [31:0] num_read_words_pe = num_rd_bits/(C_DOUT_WIDTH/C_DEPTH_RATIO_WR); //Amount of data stored in the FIFO scaled to the narrowest (deepest) port // (Do not include data in FWFT stages) //Used to calculate PROG_FULL. wire [31:0] num_write_words_pf = num_wr_bits/(C_DIN_WIDTH/C_DEPTH_RATIO_RD); /************************** * Read Data Count *************************/ reg [31:0] num_read_words_dc; reg [C_RD_DATA_COUNT_WIDTH-1:0] num_read_words_sized_i; always @(num_rd_bits) begin if (C_USE_FWFT_DATA_COUNT) begin //If using extra logic for FWFT Data Counts, // then scale FIFO contents to read domain, // and add two read words for FWFT stages //This value is only a temporary value and not used in the code. num_read_words_dc = (num_rd_bits/C_DOUT_WIDTH+2); //Trim the read words for use with RD_DATA_COUNT num_read_words_sized_i = num_read_words_dc[C_RD_PNTR_WIDTH : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH+1]; end else begin //If not using extra logic for FWFT Data Counts, // then scale FIFO contents to read domain. //This value is only a temporary value and not used in the code. num_read_words_dc = num_rd_bits/C_DOUT_WIDTH; //Trim the read words for use with RD_DATA_COUNT num_read_words_sized_i = num_read_words_dc[C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH]; end //if (C_USE_FWFT_DATA_COUNT) end //always /************************** * Write Data Count *************************/ reg [31:0] num_write_words_dc; reg [C_WR_DATA_COUNT_WIDTH-1:0] num_write_words_sized_i; always @(num_wr_bits) begin if (C_USE_FWFT_DATA_COUNT) begin //Calculate the Data Count value for the number of write words, // when using First-Word Fall-Through with extra logic for Data // Counts. This takes into consideration the number of words that // are expected to be stored in the FWFT register stages (it always // assumes they are filled). //This value is scaled to the Write Domain. //The expression (((A-1)/B))+1 divides A/B, but takes the // ceiling of the result. //When num_wr_bits==0, set the result manually to prevent // division errors. //EXTRA_WORDS_DC is the number of words added to write_words // due to FWFT. //This value is only a temporary value and not used in the code. num_write_words_dc = (num_wr_bits==0) ? EXTRA_WORDS_DC : (((num_wr_bits-1)/C_DIN_WIDTH)+1) + EXTRA_WORDS_DC ; //Trim the write words for use with WR_DATA_COUNT num_write_words_sized_i = num_write_words_dc[C_WR_PNTR_WIDTH : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH+1]; end else begin //Calculate the Data Count value for the number of write words, when NOT // using First-Word Fall-Through with extra logic for Data Counts. This // calculates only the number of words in the internal FIFO. //The expression (((A-1)/B))+1 divides A/B, but takes the // ceiling of the result. //This value is scaled to the Write Domain. //When num_wr_bits==0, set the result manually to prevent // division errors. //This value is only a temporary value and not used in the code. num_write_words_dc = (num_wr_bits==0) ? 0 : ((num_wr_bits-1)/C_DIN_WIDTH)+1; //Trim the read words for use with RD_DATA_COUNT num_write_words_sized_i = num_write_words_dc[C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH]; end //if (C_USE_FWFT_DATA_COUNT) end //always /*************************************************************************** * Internal registers and wires **************************************************************************/ //Temporary signals used for calculating the model's outputs. These //are only used in the assign statements immediately following wire, //parameter, and function declarations. wire [C_DOUT_WIDTH-1:0] ideal_dout_out; wire valid_i; wire valid_out; wire underflow_i; //Ideal FIFO signals. These are the raw output of the behavioral model, //which behaves like an ideal FIFO. reg [1:0] err_type = 0; reg [1:0] err_type_d1 = 0; reg [C_DOUT_WIDTH-1:0] ideal_dout = 0; reg [C_DOUT_WIDTH-1:0] ideal_dout_d1 = 0; reg ideal_wr_ack = 0; reg ideal_valid = 0; reg ideal_overflow = C_OVERFLOW_LOW; reg ideal_underflow = C_UNDERFLOW_LOW; reg ideal_prog_full = 0; reg ideal_prog_empty = 1; reg [C_WR_DATA_COUNT_WIDTH-1 : 0] ideal_wr_count = 0; reg [C_RD_DATA_COUNT_WIDTH-1 : 0] ideal_rd_count = 0; //Assorted reg values for delayed versions of signals reg valid_d1 = 0; //user specified value for reseting the size of the fifo reg [C_DOUT_WIDTH-1:0] dout_reset_val = 0; //temporary registers for WR_RESPONSE_LATENCY feature integer tmp_wr_listsize; integer tmp_rd_listsize; //Signal for registered version of prog full and empty //Threshold values for Programmable Flags integer prog_empty_actual_thresh_assert; integer prog_empty_actual_thresh_negate; integer prog_full_actual_thresh_assert; integer prog_full_actual_thresh_negate; /**************************************************************************** * Function Declarations ***************************************************************************/ /************************************************************************** * write_fifo * This task writes a word to the FIFO memory and updates the * write pointer. * FIFO size is relative to write domain. ***************************************************************************/ task write_fifo; begin memory[wr_ptr] <= DIN; wr_pntr <= #`TCQ wr_pntr + 1; // Store the type of error injection (double/single) on write case (C_ERROR_INJECTION_TYPE) 3: ecc_err[wr_ptr] <= {INJECTDBITERR,INJECTSBITERR}; 2: ecc_err[wr_ptr] <= {INJECTDBITERR,1'b0}; 1: ecc_err[wr_ptr] <= {1'b0,INJECTSBITERR}; default: ecc_err[wr_ptr] <= 0; endcase // (Works opposite to core: wr_ptr is a DOWN counter) if (wr_ptr == 0) begin wr_ptr <= C_WR_DEPTH - 1; end else begin wr_ptr <= wr_ptr - 1; end end endtask // write_fifo /************************************************************************** * read_fifo * This task reads a word from the FIFO memory and updates the read * pointer. It's output is the ideal_dout bus. * FIFO size is relative to write domain. ***************************************************************************/ task read_fifo; integer i; reg [C_DOUT_WIDTH-1:0] tmp_dout; reg [C_DIN_WIDTH-1:0] memory_read; reg [31:0] tmp_rd_ptr; reg [31:0] rd_ptr_high; reg [31:0] rd_ptr_low; reg [1:0] tmp_ecc_err; begin rd_pntr <= #`TCQ rd_pntr + 1; // output is wider than input if (reads_per_write == 0) begin tmp_dout = 0; tmp_rd_ptr = (rd_ptr << log2_writes_per_read)+(writes_per_read-1); for (i = writes_per_read - 1; i >= 0; i = i - 1) begin tmp_dout = tmp_dout << C_DIN_WIDTH; tmp_dout = tmp_dout | memory[tmp_rd_ptr]; // (Works opposite to core: rd_ptr is a DOWN counter) if (tmp_rd_ptr == 0) begin tmp_rd_ptr = C_WR_DEPTH - 1; end else begin tmp_rd_ptr = tmp_rd_ptr - 1; end end // output is symmetric end else if (reads_per_write == 1) begin tmp_dout = memory[rd_ptr][C_DIN_WIDTH-1:0]; // Retreive the error injection type. Based on the error injection type // corrupt the output data. tmp_ecc_err = ecc_err[rd_ptr]; if (ENABLE_ERR_INJECTION && C_DIN_WIDTH == C_DOUT_WIDTH) begin if (tmp_ecc_err[1]) begin // Corrupt the output data only for double bit error if (C_DOUT_WIDTH == 1) begin $display("FAILURE : Data width must be >= 2 for double bit error injection."); $finish; end else if (C_DOUT_WIDTH == 2) tmp_dout = {~tmp_dout[C_DOUT_WIDTH-1],~tmp_dout[C_DOUT_WIDTH-2]}; else tmp_dout = {~tmp_dout[C_DOUT_WIDTH-1],~tmp_dout[C_DOUT_WIDTH-2],(tmp_dout << 2)}; end else begin tmp_dout = tmp_dout[C_DOUT_WIDTH-1:0]; end err_type <= {tmp_ecc_err[1], tmp_ecc_err[0] & !tmp_ecc_err[1]}; end else begin err_type <= 0; end // input is wider than output end else begin rd_ptr_high = rd_ptr >> log2_reads_per_write; rd_ptr_low = rd_ptr & (reads_per_write - 1); memory_read = memory[rd_ptr_high]; tmp_dout = memory_read >> (rd_ptr_low*C_DOUT_WIDTH); end ideal_dout <= tmp_dout; // (Works opposite to core: rd_ptr is a DOWN counter) if (rd_ptr == 0) begin rd_ptr <= C_RD_DEPTH - 1; end else begin rd_ptr <= rd_ptr - 1; end end endtask /************************************************************************** * log2_val * Returns the 'log2' value for the input value for the supported ratios ***************************************************************************/ function [31:0] log2_val; input [31:0] binary_val; begin if (binary_val == 8) begin log2_val = 3; end else if (binary_val == 4) begin log2_val = 2; end else begin log2_val = 1; end end endfunction /*********************************************************************** * hexstr_conv * Converts a string of type hex to a binary value (for C_DOUT_RST_VAL) ***********************************************************************/ function [C_DOUT_WIDTH-1:0] hexstr_conv; input [(C_DOUT_WIDTH*8)-1:0] def_data; integer index,i,j; reg [3:0] bin; begin index = 0; hexstr_conv = 'b0; for( i=C_DOUT_WIDTH-1; i>=0; i=i-1 ) begin case (def_data[7:0]) 8'b00000000 : begin bin = 4'b0000; i = -1; end 8'b00110000 : bin = 4'b0000; 8'b00110001 : bin = 4'b0001; 8'b00110010 : bin = 4'b0010; 8'b00110011 : bin = 4'b0011; 8'b00110100 : bin = 4'b0100; 8'b00110101 : bin = 4'b0101; 8'b00110110 : bin = 4'b0110; 8'b00110111 : bin = 4'b0111; 8'b00111000 : bin = 4'b1000; 8'b00111001 : bin = 4'b1001; 8'b01000001 : bin = 4'b1010; 8'b01000010 : bin = 4'b1011; 8'b01000011 : bin = 4'b1100; 8'b01000100 : bin = 4'b1101; 8'b01000101 : bin = 4'b1110; 8'b01000110 : bin = 4'b1111; 8'b01100001 : bin = 4'b1010; 8'b01100010 : bin = 4'b1011; 8'b01100011 : bin = 4'b1100; 8'b01100100 : bin = 4'b1101; 8'b01100101 : bin = 4'b1110; 8'b01100110 : bin = 4'b1111; default : begin bin = 4'bx; end endcase for( j=0; j<4; j=j+1) begin if ((index*4)+j < C_DOUT_WIDTH) begin hexstr_conv[(index*4)+j] = bin[j]; end end index = index + 1; def_data = def_data >> 8; end end endfunction /************************************************************************* * Initialize Signals for clean power-on simulation *************************************************************************/ initial begin num_wr_bits = 0; num_rd_bits = 0; next_num_wr_bits = 0; next_num_rd_bits = 0; rd_ptr = C_RD_DEPTH - 1; wr_ptr = C_WR_DEPTH - 1; wr_pntr = 0; rd_pntr = 0; rd_ptr_wrclk = rd_ptr; wr_ptr_rdclk = wr_ptr; dout_reset_val = hexstr_conv(C_DOUT_RST_VAL); ideal_dout = dout_reset_val; err_type = 0; ideal_dout_d1 = dout_reset_val; ideal_wr_ack = 1'b0; ideal_valid = 1'b0; valid_d1 = 1'b0; ideal_overflow = C_OVERFLOW_LOW; ideal_underflow = C_UNDERFLOW_LOW; ideal_wr_count = 0; ideal_rd_count = 0; ideal_prog_full = 1'b0; ideal_prog_empty = 1'b1; end /************************************************************************* * Connect the module inputs and outputs to the internal signals of the * behavioral model. *************************************************************************/ //Inputs /* wire [C_DIN_WIDTH-1:0] DIN; wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH; wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT; wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE; wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH; wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT; wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE; wire RD_CLK; wire RD_EN; wire RST; wire WR_CLK; wire WR_EN; */ //*************************************************************************** // Dout may change behavior based on latency //*************************************************************************** assign ideal_dout_out[C_DOUT_WIDTH-1:0] = (C_PRELOAD_LATENCY==2 && (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1))? ideal_dout_d1: ideal_dout; assign DOUT[C_DOUT_WIDTH-1:0] = ideal_dout_out; //*************************************************************************** // Assign SBITERR and DBITERR based on latency //*************************************************************************** assign SBITERR = (C_ERROR_INJECTION_TYPE == 1 || C_ERROR_INJECTION_TYPE == 3) && (C_PRELOAD_LATENCY == 2 && (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1)) ? err_type_d1[0]: err_type[0]; assign DBITERR = (C_ERROR_INJECTION_TYPE == 2 || C_ERROR_INJECTION_TYPE == 3) && (C_PRELOAD_LATENCY==2 && (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1)) ? err_type_d1[1]: err_type[1]; //*************************************************************************** // Overflow may be active-low //*************************************************************************** generate if (C_HAS_OVERFLOW==1) begin : blockOF1 assign OVERFLOW = ideal_overflow ? !C_OVERFLOW_LOW : C_OVERFLOW_LOW; end endgenerate assign PROG_EMPTY = ideal_prog_empty; assign PROG_FULL = ideal_prog_full; //*************************************************************************** // Valid may change behavior based on latency or active-low //*************************************************************************** generate if (C_HAS_VALID==1) begin : blockVL1 assign valid_i = (C_PRELOAD_LATENCY==0) ? (RD_EN & ~EMPTY) : ideal_valid; assign valid_out = (C_PRELOAD_LATENCY==2 && (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1))? valid_d1: valid_i; assign VALID = valid_out ? !C_VALID_LOW : C_VALID_LOW; end endgenerate //*************************************************************************** // Underflow may change behavior based on latency or active-low //*************************************************************************** generate if (C_HAS_UNDERFLOW==1) begin : blockUF1 assign underflow_i = (C_PRELOAD_LATENCY==0) ? (RD_EN & EMPTY) : ideal_underflow; assign UNDERFLOW = underflow_i ? !C_UNDERFLOW_LOW : C_UNDERFLOW_LOW; end endgenerate //*************************************************************************** // Write acknowledge may be active low //*************************************************************************** generate if (C_HAS_WR_ACK==1) begin : blockWK1 assign WR_ACK = ideal_wr_ack ? !C_WR_ACK_LOW : C_WR_ACK_LOW; end endgenerate //*************************************************************************** // Generate RD_DATA_COUNT if Use Extra Logic option is selected //*************************************************************************** generate if (C_HAS_WR_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT == 1) begin : wdc_fwft_ext reg [C_PNTR_WIDTH-1:0] adjusted_wr_pntr = 0; reg [C_PNTR_WIDTH-1:0] adjusted_rd_pntr = 0; wire [C_PNTR_WIDTH-1:0] diff_wr_rd_tmp; wire [C_PNTR_WIDTH:0] diff_wr_rd; reg [C_PNTR_WIDTH:0] wr_data_count_i = 0; always @* begin if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin adjusted_wr_pntr = wr_pntr; adjusted_rd_pntr = 0; adjusted_rd_pntr[C_PNTR_WIDTH-1:C_PNTR_WIDTH-C_RD_PNTR_WIDTH] = rd_pntr_wr; end else if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin adjusted_rd_pntr = rd_pntr_wr; adjusted_wr_pntr = 0; adjusted_wr_pntr[C_PNTR_WIDTH-1:C_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr; end else begin adjusted_wr_pntr = wr_pntr; adjusted_rd_pntr = rd_pntr_wr; end end // always @* assign diff_wr_rd_tmp = adjusted_wr_pntr - adjusted_rd_pntr; assign diff_wr_rd = {1'b0,diff_wr_rd_tmp}; always @ (posedge wr_rst_i or posedge WR_CLK) begin if (wr_rst_i) wr_data_count_i <= #`TCQ 0; else wr_data_count_i <= #`TCQ diff_wr_rd + EXTRA_WORDS_DC; end // always @ (posedge WR_CLK or posedge WR_CLK) always @* begin if (C_WR_PNTR_WIDTH >= C_RD_PNTR_WIDTH) wdc_fwft_ext_as = wr_data_count_i[C_PNTR_WIDTH:0]; else wdc_fwft_ext_as = wr_data_count_i[C_PNTR_WIDTH:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH]; end // always @* end // wdc_fwft_ext endgenerate //*************************************************************************** // Generate RD_DATA_COUNT if Use Extra Logic option is selected //*************************************************************************** reg [C_RD_PNTR_WIDTH:0] rdc_fwft_ext_as = 0; generate if (C_HAS_RD_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT == 1) begin : rdc_fwft_ext reg [C_RD_PNTR_WIDTH-1:0] adjusted_wr_pntr_rd = 0; wire [C_RD_PNTR_WIDTH-1:0] diff_rd_wr_tmp; wire [C_RD_PNTR_WIDTH:0] diff_rd_wr; always @* begin if (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) begin adjusted_wr_pntr_rd = 0; adjusted_wr_pntr_rd[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr_rd; end else begin adjusted_wr_pntr_rd = wr_pntr_rd[C_WR_PNTR_WIDTH-1:C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH]; end end // always @* assign diff_rd_wr_tmp = adjusted_wr_pntr_rd - rd_pntr; assign diff_rd_wr = {1'b0,diff_rd_wr_tmp}; always @ (posedge rd_rst_i or posedge RD_CLK) begin if (rd_rst_i) begin rdc_fwft_ext_as <= #`TCQ 0; end else begin if (!stage2_valid) rdc_fwft_ext_as <= #`TCQ 0; else if (!stage1_valid && stage2_valid) rdc_fwft_ext_as <= #`TCQ 1; else rdc_fwft_ext_as <= #`TCQ diff_rd_wr + 2'h2; end end // always @ (posedge WR_CLK or posedge WR_CLK) end // rdc_fwft_ext endgenerate //*************************************************************************** // Assign the read data count value only if it is selected, // otherwise output zeros. //*************************************************************************** generate if (C_HAS_RD_DATA_COUNT == 1) begin : grdc assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = C_USE_FWFT_DATA_COUNT ? rdc_fwft_ext_as[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH+1-C_RD_DATA_COUNT_WIDTH] : rd_data_count_int[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH+1-C_RD_DATA_COUNT_WIDTH]; end endgenerate generate if (C_HAS_RD_DATA_COUNT == 0) begin : gnrdc assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = {C_RD_DATA_COUNT_WIDTH{1'b0}}; end endgenerate //*************************************************************************** // Assign the write data count value only if it is selected, // otherwise output zeros //*************************************************************************** generate if (C_HAS_WR_DATA_COUNT == 1) begin : gwdc assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = (C_USE_FWFT_DATA_COUNT == 1) ? wdc_fwft_ext_as[C_WR_PNTR_WIDTH:C_WR_PNTR_WIDTH+1-C_WR_DATA_COUNT_WIDTH] : wr_data_count_int[C_WR_PNTR_WIDTH:C_WR_PNTR_WIDTH+1-C_WR_DATA_COUNT_WIDTH]; end endgenerate generate if (C_HAS_WR_DATA_COUNT == 0) begin : gnwdc assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = {C_WR_DATA_COUNT_WIDTH{1'b0}}; end endgenerate /************************************************************************** * Assorted registers for delayed versions of signals **************************************************************************/ //Capture delayed version of valid generate if (C_HAS_VALID==1) begin : blockVL2 always @(posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i == 1'b1) begin valid_d1 <= #`TCQ 1'b0; end else begin valid_d1 <= #`TCQ valid_i; end end end endgenerate //Capture delayed version of dout always @(posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i == 1'b1) begin // Reset err_type only if ECC is not selected if (C_USE_ECC == 0) err_type_d1 <= #`TCQ 0; end else if (ram_rd_en_d1) begin ideal_dout_d1 <= #`TCQ ideal_dout; err_type_d1 <= #`TCQ err_type; end end /************************************************************************** * Overflow and Underflow Flag calculation * (handled separately because they don't support rst) **************************************************************************/ generate if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 0) begin : g7s_ovflw always @(posedge WR_CLK) begin ideal_overflow <= #`TCQ WR_EN & FULL; end end else if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 1) begin : g8s_ovflw always @(posedge WR_CLK) begin //ideal_overflow <= #`TCQ WR_EN & (FULL | wr_rst_i); ideal_overflow <= #`TCQ WR_EN & (FULL ); end end endgenerate generate if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 0) begin : g7s_unflw always @(posedge RD_CLK) begin ideal_underflow <= #`TCQ EMPTY & RD_EN; end end else if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 1) begin : g8s_unflw always @(posedge RD_CLK) begin ideal_underflow <= #`TCQ (EMPTY) & RD_EN; //ideal_underflow <= #`TCQ (rd_rst_i | EMPTY) & RD_EN; end end endgenerate /************************************************************************** * Write/Read Pointer Synchronization **************************************************************************/ localparam NO_OF_SYNC_STAGE_INC_G2B = C_SYNCHRONIZER_STAGE + 1; wire [C_WR_PNTR_WIDTH-1:0] wr_pntr_sync_stgs [0:NO_OF_SYNC_STAGE_INC_G2B]; wire [C_RD_PNTR_WIDTH-1:0] rd_pntr_sync_stgs [0:NO_OF_SYNC_STAGE_INC_G2B]; genvar gss; generate for (gss = 1; gss <= NO_OF_SYNC_STAGE_INC_G2B; gss = gss + 1) begin : Sync_stage_inst fifo_generator_v12_0_sync_stage #( .C_WIDTH (C_WR_PNTR_WIDTH) ) rd_stg_inst ( .RST (rd_rst_i), .CLK (RD_CLK), .DIN (wr_pntr_sync_stgs[gss-1]), .DOUT (wr_pntr_sync_stgs[gss]) ); fifo_generator_v12_0_sync_stage #( .C_WIDTH (C_RD_PNTR_WIDTH) ) wr_stg_inst ( .RST (wr_rst_i), .CLK (WR_CLK), .DIN (rd_pntr_sync_stgs[gss-1]), .DOUT (rd_pntr_sync_stgs[gss]) ); end endgenerate // Sync_stage_inst assign wr_pntr_sync_stgs[0] = wr_pntr_rd1; assign rd_pntr_sync_stgs[0] = rd_pntr_wr1; always@* begin wr_pntr_rd <= wr_pntr_sync_stgs[NO_OF_SYNC_STAGE_INC_G2B]; rd_pntr_wr <= rd_pntr_sync_stgs[NO_OF_SYNC_STAGE_INC_G2B]; end /************************************************************************** * Write Domain Logic **************************************************************************/ reg [C_WR_PNTR_WIDTH-1:0] diff_pntr = 0; always @(posedge WR_CLK or posedge wr_rst_i) begin : gen_fifo_w /****** Reset fifo (case 1)***************************************/ if (wr_rst_i == 1'b1) begin num_wr_bits <= #`TCQ 0; next_num_wr_bits = #`TCQ 0; wr_ptr <= #`TCQ C_WR_DEPTH - 1; rd_ptr_wrclk <= #`TCQ C_RD_DEPTH - 1; ideal_wr_ack <= #`TCQ 0; ideal_wr_count <= #`TCQ 0; tmp_wr_listsize = #`TCQ 0; rd_ptr_wrclk_next <= #`TCQ 0; wr_pntr <= #`TCQ 0; wr_pntr_rd1 <= #`TCQ 0; end else begin //wr_rst_i==0 wr_pntr_rd1 <= #`TCQ wr_pntr; //Determine the current number of words in the FIFO tmp_wr_listsize = (C_DEPTH_RATIO_RD > 1) ? num_wr_bits/C_DOUT_WIDTH : num_wr_bits/C_DIN_WIDTH; rd_ptr_wrclk_next = rd_ptr; if (rd_ptr_wrclk < rd_ptr_wrclk_next) begin next_num_wr_bits = num_wr_bits - C_DOUT_WIDTH*(rd_ptr_wrclk + C_RD_DEPTH - rd_ptr_wrclk_next); end else begin next_num_wr_bits = num_wr_bits - C_DOUT_WIDTH*(rd_ptr_wrclk - rd_ptr_wrclk_next); end //If this is a write, handle the write by adding the value // to the linked list, and updating all outputs appropriately if (WR_EN == 1'b1) begin if (FULL == 1'b1) begin //If the FIFO is full, do NOT perform the write, // update flags accordingly if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD >= C_FIFO_WR_DEPTH) begin //write unsuccessful - do not change contents //Do not acknowledge the write ideal_wr_ack <= #`TCQ 0; //Reminder that FIFO is still full ideal_wr_count <= #`TCQ num_write_words_sized_i; //If the FIFO is one from full, but reporting full end else if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD == C_FIFO_WR_DEPTH-1) begin //No change to FIFO //Write not successful ideal_wr_ack <= #`TCQ 0; //With DEPTH-1 words in the FIFO, it is almost_full ideal_wr_count <= #`TCQ num_write_words_sized_i; //If the FIFO is completely empty, but it is // reporting FULL for some reason (like reset) end else if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD <= C_FIFO_WR_DEPTH-2) begin //No change to FIFO //Write not successful ideal_wr_ack <= #`TCQ 0; //FIFO is really not close to full, so change flag status. ideal_wr_count <= #`TCQ num_write_words_sized_i; end //(tmp_wr_listsize == 0) end else begin //If the FIFO is full, do NOT perform the write, // update flags accordingly if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD >= C_FIFO_WR_DEPTH) begin //write unsuccessful - do not change contents //Do not acknowledge the write ideal_wr_ack <= #`TCQ 0; //Reminder that FIFO is still full ideal_wr_count <= #`TCQ num_write_words_sized_i; //If the FIFO is one from full end else if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD == C_FIFO_WR_DEPTH-1) begin //Add value on DIN port to FIFO write_fifo; next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH; //Write successful, so issue acknowledge // and no error ideal_wr_ack <= #`TCQ 1; //This write is CAUSING the FIFO to go full ideal_wr_count <= #`TCQ num_write_words_sized_i; //If the FIFO is 2 from full end else if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD == C_FIFO_WR_DEPTH-2) begin //Add value on DIN port to FIFO write_fifo; next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH; //Write successful, so issue acknowledge // and no error ideal_wr_ack <= #`TCQ 1; //Still 2 from full ideal_wr_count <= #`TCQ num_write_words_sized_i; //If the FIFO is not close to being full end else if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD < C_FIFO_WR_DEPTH-2) begin //Add value on DIN port to FIFO write_fifo; next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH; //Write successful, so issue acknowledge // and no error ideal_wr_ack <= #`TCQ 1; //Not even close to full. ideal_wr_count <= num_write_words_sized_i; end end end else begin //(WR_EN == 1'b1) //If user did not attempt a write, then do not // give ack or err ideal_wr_ack <= #`TCQ 0; ideal_wr_count <= #`TCQ num_write_words_sized_i; end num_wr_bits <= #`TCQ next_num_wr_bits; rd_ptr_wrclk <= #`TCQ rd_ptr; end //wr_rst_i==0 end // gen_fifo_w /*************************************************************************** * Programmable FULL flags ***************************************************************************/ wire [C_WR_PNTR_WIDTH-1:0] pf_thr_assert_val; wire [C_WR_PNTR_WIDTH-1:0] pf_thr_negate_val; generate if (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) begin : FWFT assign pf_thr_assert_val = C_PROG_FULL_THRESH_ASSERT_VAL - EXTRA_WORDS_DC; assign pf_thr_negate_val = C_PROG_FULL_THRESH_NEGATE_VAL - EXTRA_WORDS_DC; end else begin // STD assign pf_thr_assert_val = C_PROG_FULL_THRESH_ASSERT_VAL; assign pf_thr_negate_val = C_PROG_FULL_THRESH_NEGATE_VAL; end endgenerate always @(posedge WR_CLK or posedge wr_rst_i) begin if (wr_rst_i == 1'b1) begin diff_pntr <= 0; end else begin if (ram_wr_en) diff_pntr <= #`TCQ (wr_pntr - adj_rd_pntr_wr + 2'h1); else if (!ram_wr_en) diff_pntr <= #`TCQ (wr_pntr - adj_rd_pntr_wr); end end always @(posedge WR_CLK or posedge RST_FULL_FF) begin : gen_pf if (RST_FULL_FF == 1'b1) begin ideal_prog_full <= #`TCQ C_FULL_FLAGS_RST_VAL; end else begin if (RST_FULL_GEN) ideal_prog_full <= #`TCQ 0; //Single Programmable Full Constant Threshold else if (C_PROG_FULL_TYPE == 1) begin if (FULL == 0) begin if (diff_pntr >= pf_thr_assert_val) ideal_prog_full <= #`TCQ 1; else ideal_prog_full <= #`TCQ 0; end else ideal_prog_full <= #`TCQ ideal_prog_full; //Two Programmable Full Constant Thresholds end else if (C_PROG_FULL_TYPE == 2) begin if (FULL == 0) begin if (diff_pntr >= pf_thr_assert_val) ideal_prog_full <= #`TCQ 1; else if (diff_pntr < pf_thr_negate_val) ideal_prog_full <= #`TCQ 0; else ideal_prog_full <= #`TCQ ideal_prog_full; end else ideal_prog_full <= #`TCQ ideal_prog_full; //Single Programmable Full Threshold Input end else if (C_PROG_FULL_TYPE == 3) begin if (FULL == 0) begin if (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) begin // FWFT if (diff_pntr >= (PROG_FULL_THRESH - EXTRA_WORDS_DC)) ideal_prog_full <= #`TCQ 1; else ideal_prog_full <= #`TCQ 0; end else begin // STD if (diff_pntr >= PROG_FULL_THRESH) ideal_prog_full <= #`TCQ 1; else ideal_prog_full <= #`TCQ 0; end end else ideal_prog_full <= #`TCQ ideal_prog_full; //Two Programmable Full Threshold Inputs end else if (C_PROG_FULL_TYPE == 4) begin if (FULL == 0) begin if (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) begin // FWFT if (diff_pntr >= (PROG_FULL_THRESH_ASSERT - EXTRA_WORDS_DC)) ideal_prog_full <= #`TCQ 1; else if (diff_pntr < (PROG_FULL_THRESH_NEGATE - EXTRA_WORDS_DC)) ideal_prog_full <= #`TCQ 0; else ideal_prog_full <= #`TCQ ideal_prog_full; end else begin // STD if (diff_pntr >= PROG_FULL_THRESH_ASSERT) ideal_prog_full <= #`TCQ 1; else if (diff_pntr < PROG_FULL_THRESH_NEGATE) ideal_prog_full <= #`TCQ 0; else ideal_prog_full <= #`TCQ ideal_prog_full; end end else ideal_prog_full <= #`TCQ ideal_prog_full; end // C_PROG_FULL_TYPE end //wr_rst_i==0 end // /************************************************************************** * Read Domain Logic **************************************************************************/ /********************************************************* * Programmable EMPTY flags *********************************************************/ //Determine the Assert and Negate thresholds for Programmable Empty wire [C_RD_PNTR_WIDTH-1:0] pe_thr_assert_val; wire [C_RD_PNTR_WIDTH-1:0] pe_thr_negate_val; reg [C_RD_PNTR_WIDTH-1:0] diff_pntr_rd = 0; always @(posedge RD_CLK or posedge rd_rst_i) begin : gen_pe if (rd_rst_i) begin diff_pntr_rd <= #`TCQ 0; ideal_prog_empty <= #`TCQ 1'b1; end else begin if (ram_rd_en) diff_pntr_rd <= #`TCQ (adj_wr_pntr_rd - rd_pntr) - 1'h1; else if (!ram_rd_en) diff_pntr_rd <= #`TCQ (adj_wr_pntr_rd - rd_pntr); else diff_pntr_rd <= #`TCQ diff_pntr_rd; if (C_PROG_EMPTY_TYPE == 1) begin if (EMPTY == 0) begin if (diff_pntr_rd <= pe_thr_assert_val) ideal_prog_empty <= #`TCQ 1; else ideal_prog_empty <= #`TCQ 0; end else ideal_prog_empty <= #`TCQ ideal_prog_empty; end else if (C_PROG_EMPTY_TYPE == 2) begin if (EMPTY == 0) begin if (diff_pntr_rd <= pe_thr_assert_val) ideal_prog_empty <= #`TCQ 1; else if (diff_pntr_rd > pe_thr_negate_val) ideal_prog_empty <= #`TCQ 0; else ideal_prog_empty <= #`TCQ ideal_prog_empty; end else ideal_prog_empty <= #`TCQ ideal_prog_empty; end else if (C_PROG_EMPTY_TYPE == 3) begin if (EMPTY == 0) begin if (diff_pntr_rd <= pe_thr_assert_val) ideal_prog_empty <= #`TCQ 1; else ideal_prog_empty <= #`TCQ 0; end else ideal_prog_empty <= #`TCQ ideal_prog_empty; end else if (C_PROG_EMPTY_TYPE == 4) begin if (EMPTY == 0) begin if (diff_pntr_rd <= pe_thr_assert_val) ideal_prog_empty <= #`TCQ 1; else if (diff_pntr_rd > pe_thr_negate_val) ideal_prog_empty <= #`TCQ 0; else ideal_prog_empty <= #`TCQ ideal_prog_empty; end else ideal_prog_empty <= #`TCQ ideal_prog_empty; end //C_PROG_EMPTY_TYPE end end // gen_pe generate if (C_PROG_EMPTY_TYPE == 3) begin : single_pe_thr_input assign pe_thr_assert_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ? PROG_EMPTY_THRESH - 2'h2 : PROG_EMPTY_THRESH; end endgenerate // single_pe_thr_input generate if (C_PROG_EMPTY_TYPE == 4) begin : multiple_pe_thr_input assign pe_thr_assert_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ? PROG_EMPTY_THRESH_ASSERT - 2'h2 : PROG_EMPTY_THRESH_ASSERT; assign pe_thr_negate_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ? PROG_EMPTY_THRESH_NEGATE - 2'h2 : PROG_EMPTY_THRESH_NEGATE; end endgenerate // multiple_pe_thr_input generate if (C_PROG_EMPTY_TYPE < 3) begin : single_multiple_pe_thr_const assign pe_thr_assert_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ? C_PROG_EMPTY_THRESH_ASSERT_VAL - 2'h2 : C_PROG_EMPTY_THRESH_ASSERT_VAL; assign pe_thr_negate_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ? C_PROG_EMPTY_THRESH_NEGATE_VAL - 2'h2 : C_PROG_EMPTY_THRESH_NEGATE_VAL; end endgenerate // single_multiple_pe_thr_const // block memory has a synchronous reset always @(posedge RD_CLK) begin : gen_fifo_blkmemdout // make it consistent with the core. if (rd_rst_i) begin // Reset err_type only if ECC is not selected if (C_USE_ECC == 0 && C_MEMORY_TYPE < 2) err_type <= #`TCQ 0; // BRAM resets synchronously if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE < 2) begin ideal_dout <= #`TCQ dout_reset_val; ideal_dout_d1 <= #`TCQ dout_reset_val; end end end //always always @(posedge RD_CLK or posedge rd_rst_i) begin : gen_fifo_r /****** Reset fifo (case 1)***************************************/ if (rd_rst_i) begin num_rd_bits <= #`TCQ 0; next_num_rd_bits = #`TCQ 0; rd_ptr <= #`TCQ C_RD_DEPTH -1; rd_pntr <= #`TCQ 0; rd_pntr_wr1 <= #`TCQ 0; wr_ptr_rdclk <= #`TCQ C_WR_DEPTH -1; // DRAM resets asynchronously if (C_MEMORY_TYPE == 2 && C_USE_DOUT_RST == 1) ideal_dout <= #`TCQ dout_reset_val; // Reset err_type only if ECC is not selected if (C_USE_ECC == 0) err_type <= #`TCQ 0; ideal_valid <= #`TCQ 1'b0; ideal_rd_count <= #`TCQ 0; end else begin //rd_rst_i==0 rd_pntr_wr1 <= #`TCQ rd_pntr; //Determine the current number of words in the FIFO tmp_rd_listsize = (C_DEPTH_RATIO_WR > 1) ? num_rd_bits/C_DIN_WIDTH : num_rd_bits/C_DOUT_WIDTH; wr_ptr_rdclk_next = wr_ptr; if (wr_ptr_rdclk < wr_ptr_rdclk_next) begin next_num_rd_bits = num_rd_bits + C_DIN_WIDTH*(wr_ptr_rdclk +C_WR_DEPTH - wr_ptr_rdclk_next); end else begin next_num_rd_bits = num_rd_bits + C_DIN_WIDTH*(wr_ptr_rdclk - wr_ptr_rdclk_next); end /*****************************************************************/ // Read Operation - Read Latency 1 /*****************************************************************/ if (C_PRELOAD_LATENCY==1 || C_PRELOAD_LATENCY==2) begin ideal_valid <= #`TCQ 1'b0; if (ram_rd_en == 1'b1) begin if (EMPTY == 1'b1) begin //If the FIFO is completely empty, and is reporting empty if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0) begin //Do not change the contents of the FIFO //Do not acknowledge the read from empty FIFO ideal_valid <= #`TCQ 1'b0; //Reminder that FIFO is still empty ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if (tmp_rd_listsize <= 0) //If the FIFO is one from empty, but it is reporting empty else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 1) begin //Do not change the contents of the FIFO //Do not acknowledge the read from empty FIFO ideal_valid <= #`TCQ 1'b0; //Note that FIFO is no longer empty, but is almost empty (has one word left) ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if (tmp_rd_listsize == 1) //If the FIFO is two from empty, and is reporting empty else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2) begin //Do not change the contents of the FIFO //Do not acknowledge the read from empty FIFO ideal_valid <= #`TCQ 1'b0; //Fifo has two words, so is neither empty or almost empty ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if (tmp_rd_listsize == 2) //If the FIFO is not close to empty, but is reporting that it is // Treat the FIFO as empty this time, but unset EMPTY flags. if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) && (tmp_rd_listsize/C_DEPTH_RATIO_WR<C_FIFO_RD_DEPTH)) begin //Do not change the contents of the FIFO //Do not acknowledge the read from empty FIFO ideal_valid <= #`TCQ 1'b0; //Note that the FIFO is No Longer Empty or Almost Empty ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if ((tmp_rd_listsize > 2) && (tmp_rd_listsize<=C_FIFO_RD_DEPTH-1)) end // else: if(ideal_empty == 1'b1) else //if (ideal_empty == 1'b0) begin //If the FIFO is completely full, and we are successfully reading from it if (tmp_rd_listsize/C_DEPTH_RATIO_WR >= C_FIFO_RD_DEPTH) begin //Read the value from the FIFO read_fifo; next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH; //Acknowledge the read from the FIFO, no error ideal_valid <= #`TCQ 1'b1; //Not close to empty ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if (tmp_rd_listsize == C_FIFO_RD_DEPTH) //If the FIFO is not close to being empty else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) && (tmp_rd_listsize/C_DEPTH_RATIO_WR<=C_FIFO_RD_DEPTH)) begin //Read the value from the FIFO read_fifo; next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH; //Acknowledge the read from the FIFO, no error ideal_valid <= #`TCQ 1'b1; //Not close to empty ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if ((tmp_rd_listsize > 2) && (tmp_rd_listsize<=C_FIFO_RD_DEPTH-1)) //If the FIFO is two from empty else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2) begin //Read the value from the FIFO read_fifo; next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH; //Acknowledge the read from the FIFO, no error ideal_valid <= #`TCQ 1'b1; //Fifo is not yet empty. It is going almost_empty ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if (tmp_rd_listsize == 2) //If the FIFO is one from empty else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR == 1)) begin //Read the value from the FIFO read_fifo; next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH; //Acknowledge the read from the FIFO, no error ideal_valid <= #`TCQ 1'b1; //Note that FIFO is GOING empty ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if (tmp_rd_listsize == 1) //If the FIFO is completely empty else if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0) begin //Do not change the contents of the FIFO //Do not acknowledge the read from empty FIFO ideal_valid <= #`TCQ 1'b0; ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if (tmp_rd_listsize <= 0) end // if (ideal_empty == 1'b0) end //(RD_EN == 1'b1) else //if (RD_EN == 1'b0) begin //If user did not attempt a read, do not give an ack or err ideal_valid <= #`TCQ 1'b0; ideal_rd_count <= #`TCQ num_read_words_sized_i; end // else: !if(RD_EN == 1'b1) /*****************************************************************/ // Read Operation - Read Latency 0 /*****************************************************************/ end else if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) begin ideal_valid <= #`TCQ 1'b0; if (ram_rd_en == 1'b1) begin if (EMPTY == 1'b1) begin //If the FIFO is completely empty, and is reporting empty if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0) begin //Do not change the contents of the FIFO //Do not acknowledge the read from empty FIFO ideal_valid <= #`TCQ 1'b0; //Reminder that FIFO is still empty ideal_rd_count <= #`TCQ num_read_words_sized_i; //If the FIFO is one from empty, but it is reporting empty end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 1) begin //Do not change the contents of the FIFO //Do not acknowledge the read from empty FIFO ideal_valid <= #`TCQ 1'b0; //Note that FIFO is no longer empty, but is almost empty (has one word left) ideal_rd_count <= #`TCQ num_read_words_sized_i; //If the FIFO is two from empty, and is reporting empty end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2) begin //Do not change the contents of the FIFO //Do not acknowledge the read from empty FIFO ideal_valid <= #`TCQ 1'b0; //Fifo has two words, so is neither empty or almost empty ideal_rd_count <= #`TCQ num_read_words_sized_i; //If the FIFO is not close to empty, but is reporting that it is // Treat the FIFO as empty this time, but unset EMPTY flags. end else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) && (tmp_rd_listsize/C_DEPTH_RATIO_WR<C_FIFO_RD_DEPTH)) begin //Do not change the contents of the FIFO //Do not acknowledge the read from empty FIFO ideal_valid <= #`TCQ 1'b0; //Note that the FIFO is No Longer Empty or Almost Empty ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if ((tmp_rd_listsize > 2) && (tmp_rd_listsize<=C_FIFO_RD_DEPTH-1)) end else begin //If the FIFO is completely full, and we are successfully reading from it if (tmp_rd_listsize/C_DEPTH_RATIO_WR >= C_FIFO_RD_DEPTH) begin //Read the value from the FIFO read_fifo; next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH; //Acknowledge the read from the FIFO, no error ideal_valid <= #`TCQ 1'b1; //Not close to empty ideal_rd_count <= #`TCQ num_read_words_sized_i; //If the FIFO is not close to being empty end else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) && (tmp_rd_listsize/C_DEPTH_RATIO_WR<=C_FIFO_RD_DEPTH)) begin //Read the value from the FIFO read_fifo; next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH; //Acknowledge the read from the FIFO, no error ideal_valid <= #`TCQ 1'b1; //Not close to empty ideal_rd_count <= #`TCQ num_read_words_sized_i; //If the FIFO is two from empty end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2) begin //Read the value from the FIFO read_fifo; next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH; //Acknowledge the read from the FIFO, no error ideal_valid <= #`TCQ 1'b1; //Fifo is not yet empty. It is going almost_empty ideal_rd_count <= #`TCQ num_read_words_sized_i; //If the FIFO is one from empty end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 1) begin //Read the value from the FIFO read_fifo; next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH; //Acknowledge the read from the FIFO, no error ideal_valid <= #`TCQ 1'b1; //Note that FIFO is GOING empty ideal_rd_count <= #`TCQ num_read_words_sized_i; //If the FIFO is completely empty end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0) begin //Do not change the contents of the FIFO //Do not acknowledge the read from empty FIFO ideal_valid <= #`TCQ 1'b0; //Reminder that FIFO is still empty ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if (tmp_rd_listsize <= 0) end // if (ideal_empty == 1'b0) end else begin//(RD_EN == 1'b0) //If user did not attempt a read, do not give an ack or err ideal_valid <= #`TCQ 1'b0; ideal_rd_count <= #`TCQ num_read_words_sized_i; end // else: !if(RD_EN == 1'b1) end //if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) num_rd_bits <= #`TCQ next_num_rd_bits; wr_ptr_rdclk <= #`TCQ wr_ptr; end //rd_rst_i==0 end //always endmodule // fifo_generator_v12_0_bhv_ver_as /******************************************************************************* * Declaration of Low Latency Asynchronous FIFO ******************************************************************************/ module fifo_generator_v12_0_beh_ver_ll_afifo /*************************************************************************** * Declare user parameters and their defaults ***************************************************************************/ #( parameter C_DIN_WIDTH = 8, parameter C_DOUT_RST_VAL = "", parameter C_DOUT_WIDTH = 8, parameter C_FULL_FLAGS_RST_VAL = 1, parameter C_HAS_RD_DATA_COUNT = 0, parameter C_HAS_WR_DATA_COUNT = 0, parameter C_RD_DEPTH = 256, parameter C_RD_PNTR_WIDTH = 8, parameter C_USE_DOUT_RST = 0, parameter C_WR_DATA_COUNT_WIDTH = 2, parameter C_WR_DEPTH = 256, parameter C_WR_PNTR_WIDTH = 8, parameter C_FIFO_TYPE = 0 ) /*************************************************************************** * Declare Input and Output Ports ***************************************************************************/ ( input [C_DIN_WIDTH-1:0] DIN, input RD_CLK, input RD_EN, input WR_RST, input RD_RST, input WR_CLK, input WR_EN, output reg [C_DOUT_WIDTH-1:0] DOUT = 0, output reg EMPTY = 1'b1, output reg FULL = C_FULL_FLAGS_RST_VAL ); //----------------------------------------------------------------------------- // Low Latency Asynchronous FIFO //----------------------------------------------------------------------------- // Memory which will be used to simulate a FIFO reg [C_DIN_WIDTH-1:0] memory[C_WR_DEPTH-1:0]; integer i; initial begin for (i = 0; i < C_WR_DEPTH; i = i + 1) memory[i] = 0; end reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_ll_afifo = 0; wire [C_RD_PNTR_WIDTH-1:0] rd_pntr_ll_afifo; reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_ll_afifo_q = 0; reg ll_afifo_full = 1'b0; reg ll_afifo_empty = 1'b1; wire write_allow; wire read_allow; assign write_allow = WR_EN & ~ll_afifo_full; assign read_allow = RD_EN & ~ll_afifo_empty; //----------------------------------------------------------------------------- // Write Pointer Generation //----------------------------------------------------------------------------- always @(posedge WR_CLK or posedge WR_RST) begin if (WR_RST) wr_pntr_ll_afifo <= 0; else if (write_allow) wr_pntr_ll_afifo <= #`TCQ wr_pntr_ll_afifo + 1; end //----------------------------------------------------------------------------- // Read Pointer Generation //----------------------------------------------------------------------------- always @(posedge RD_CLK or posedge RD_RST) begin if (RD_RST) rd_pntr_ll_afifo_q <= 0; else rd_pntr_ll_afifo_q <= #`TCQ rd_pntr_ll_afifo; end assign rd_pntr_ll_afifo = read_allow ? rd_pntr_ll_afifo_q + 1 : rd_pntr_ll_afifo_q; //----------------------------------------------------------------------------- // Fill the Memory //----------------------------------------------------------------------------- always @(posedge WR_CLK) begin if (write_allow) memory[wr_pntr_ll_afifo] <= #`TCQ DIN; end //----------------------------------------------------------------------------- // Generate DOUT //----------------------------------------------------------------------------- always @(posedge RD_CLK) begin DOUT <= #`TCQ memory[rd_pntr_ll_afifo]; end //----------------------------------------------------------------------------- // Generate EMPTY //----------------------------------------------------------------------------- always @(posedge RD_CLK or posedge RD_RST) begin if (RD_RST) ll_afifo_empty <= 1'b1; else ll_afifo_empty <= ((wr_pntr_ll_afifo == rd_pntr_ll_afifo_q) | (read_allow & (wr_pntr_ll_afifo == (rd_pntr_ll_afifo_q + 2'h1)))); end //----------------------------------------------------------------------------- // Generate FULL //----------------------------------------------------------------------------- always @(posedge WR_CLK or posedge WR_RST) begin if (WR_RST) ll_afifo_full <= 1'b1; else ll_afifo_full <= ((rd_pntr_ll_afifo_q == (wr_pntr_ll_afifo + 2'h1)) | (write_allow & (rd_pntr_ll_afifo_q == (wr_pntr_ll_afifo + 2'h2)))); end always @* begin FULL <= ll_afifo_full; EMPTY <= ll_afifo_empty; end endmodule // fifo_generator_v12_0_beh_ver_ll_afifo /******************************************************************************* * Declaration of top-level module ******************************************************************************/ module fifo_generator_v12_0_bhv_ver_ss /************************************************************************** * Declare user parameters and their defaults *************************************************************************/ #( parameter C_FAMILY = "virtex7", parameter C_DATA_COUNT_WIDTH = 2, parameter C_DIN_WIDTH = 8, parameter C_DOUT_RST_VAL = "", parameter C_DOUT_WIDTH = 8, parameter C_FULL_FLAGS_RST_VAL = 1, parameter C_HAS_ALMOST_EMPTY = 0, parameter C_HAS_ALMOST_FULL = 0, parameter C_HAS_DATA_COUNT = 0, parameter C_HAS_OVERFLOW = 0, parameter C_HAS_RD_DATA_COUNT = 0, parameter C_HAS_RST = 0, parameter C_HAS_SRST = 0, parameter C_HAS_UNDERFLOW = 0, parameter C_HAS_VALID = 0, parameter C_HAS_WR_ACK = 0, parameter C_HAS_WR_DATA_COUNT = 0, parameter C_IMPLEMENTATION_TYPE = 0, parameter C_MEMORY_TYPE = 1, parameter C_OVERFLOW_LOW = 0, parameter C_PRELOAD_LATENCY = 1, parameter C_PRELOAD_REGS = 0, parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0, parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0, parameter C_PROG_EMPTY_TYPE = 0, parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0, parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0, parameter C_PROG_FULL_TYPE = 0, parameter C_RD_DATA_COUNT_WIDTH = 2, parameter C_RD_DEPTH = 256, parameter C_RD_PNTR_WIDTH = 8, parameter C_UNDERFLOW_LOW = 0, parameter C_USE_DOUT_RST = 0, parameter C_USE_EMBEDDED_REG = 0, parameter C_USE_FWFT_DATA_COUNT = 0, parameter C_VALID_LOW = 0, parameter C_WR_ACK_LOW = 0, parameter C_WR_DATA_COUNT_WIDTH = 2, parameter C_WR_DEPTH = 256, parameter C_WR_PNTR_WIDTH = 8, parameter C_USE_ECC = 0, parameter C_ENABLE_RST_SYNC = 1, parameter C_ERROR_INJECTION_TYPE = 0, parameter C_FIFO_TYPE = 0 ) /************************************************************************** * Declare Input and Output Ports *************************************************************************/ ( //Inputs input CLK, input [C_DIN_WIDTH-1:0] DIN, input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH, input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT, input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE, input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH, input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT, input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE, input RD_EN, input RD_EN_USER, input USER_EMPTY_FB, input RST, input RST_FULL_GEN, input RST_FULL_FF, input SRST, input WR_EN, input INJECTDBITERR, input INJECTSBITERR, input WR_RST_BUSY, input RD_RST_BUSY, //Outputs output ALMOST_EMPTY, output ALMOST_FULL, output reg [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT = 0, output [C_DOUT_WIDTH-1:0] DOUT, output EMPTY, output FULL, output OVERFLOW, output [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT, output [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT, output PROG_EMPTY, output PROG_FULL, output VALID, output UNDERFLOW, output WR_ACK, output SBITERR, output DBITERR ); reg [C_RD_PNTR_WIDTH:0] rd_data_count_int = 0; reg [C_WR_PNTR_WIDTH:0] wr_data_count_int = 0; wire [C_RD_PNTR_WIDTH:0] rd_data_count_i_ss; wire [C_WR_PNTR_WIDTH:0] wr_data_count_i_ss; reg [C_WR_PNTR_WIDTH:0] wdc_fwft_ext_as = 0; /*************************************************************************** * Parameters used as constants **************************************************************************/ localparam IS_8SERIES = (C_FAMILY == "virtexu" || C_FAMILY == "kintexu" || C_FAMILY == "artixu" || C_FAMILY == "virtexum" || C_FAMILY == "zynque") ? 1 : 0; localparam C_DEPTH_RATIO_WR = (C_WR_DEPTH>C_RD_DEPTH) ? (C_WR_DEPTH/C_RD_DEPTH) : 1; localparam C_DEPTH_RATIO_RD = (C_RD_DEPTH>C_WR_DEPTH) ? (C_RD_DEPTH/C_WR_DEPTH) : 1; //localparam C_FIFO_WR_DEPTH = C_WR_DEPTH - 1; //localparam C_FIFO_RD_DEPTH = C_RD_DEPTH - 1; localparam C_GRTR_PNTR_WIDTH = (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) ? C_WR_PNTR_WIDTH : C_RD_PNTR_WIDTH ; // C_DEPTH_RATIO_WR | C_DEPTH_RATIO_RD | C_PNTR_WIDTH | EXTRA_WORDS_DC // -----------------|------------------|-----------------|--------------- // 1 | 8 | C_RD_PNTR_WIDTH | 2 // 1 | 4 | C_RD_PNTR_WIDTH | 2 // 1 | 2 | C_RD_PNTR_WIDTH | 2 // 1 | 1 | C_WR_PNTR_WIDTH | 2 // 2 | 1 | C_WR_PNTR_WIDTH | 4 // 4 | 1 | C_WR_PNTR_WIDTH | 8 // 8 | 1 | C_WR_PNTR_WIDTH | 16 localparam C_PNTR_WIDTH = (C_WR_PNTR_WIDTH>=C_RD_PNTR_WIDTH) ? C_WR_PNTR_WIDTH : C_RD_PNTR_WIDTH; wire [C_PNTR_WIDTH:0] EXTRA_WORDS_DC = (C_DEPTH_RATIO_WR == 1) ? 2 : (2 * C_DEPTH_RATIO_WR/C_DEPTH_RATIO_RD); wire [C_WR_PNTR_WIDTH:0] EXTRA_WORDS_PF = (C_DEPTH_RATIO_WR == 1) ? 2 : (2 * C_DEPTH_RATIO_WR/C_DEPTH_RATIO_RD); //wire [C_RD_PNTR_WIDTH:0] EXTRA_WORDS_PE = (C_DEPTH_RATIO_RD == 1) ? 2 : (2 * C_DEPTH_RATIO_RD/C_DEPTH_RATIO_WR); localparam EXTRA_WORDS_PF_PARAM = (C_DEPTH_RATIO_WR == 1) ? 2 : (2 * C_DEPTH_RATIO_WR/C_DEPTH_RATIO_RD); //localparam EXTRA_WORDS_PE_PARAM = (C_DEPTH_RATIO_RD == 1) ? 2 : (2 * C_DEPTH_RATIO_RD/C_DEPTH_RATIO_WR); localparam [31:0] reads_per_write = C_DIN_WIDTH/C_DOUT_WIDTH; localparam [31:0] log2_reads_per_write = log2_val(reads_per_write); localparam [31:0] writes_per_read = C_DOUT_WIDTH/C_DIN_WIDTH; localparam [31:0] log2_writes_per_read = log2_val(writes_per_read); //When RST is present, set FULL reset value to '1'. //If core has no RST, make sure FULL powers-on as '0'. //The reset value assignments for FULL, ALMOST_FULL, and PROG_FULL are not //changed for v3.2(IP2_Im). When the core has Sync Reset, C_HAS_SRST=1 and C_HAS_RST=0. // Therefore, during SRST, all the FULL flags reset to 0. localparam C_HAS_FAST_FIFO = 0; localparam C_FIFO_WR_DEPTH = C_WR_DEPTH; localparam C_FIFO_RD_DEPTH = C_RD_DEPTH; // Local parameters used to determine whether to inject ECC error or not localparam SYMMETRIC_PORT = (C_DIN_WIDTH == C_DOUT_WIDTH) ? 1 : 0; localparam ERR_INJECTION = (C_ERROR_INJECTION_TYPE != 0) ? 1 : 0; localparam ENABLE_ERR_INJECTION = C_USE_ECC && SYMMETRIC_PORT && ERR_INJECTION; localparam C_DATA_WIDTH = (ENABLE_ERR_INJECTION == 1) ? (C_DIN_WIDTH+2) : C_DIN_WIDTH; localparam IS_ASYMMETRY = (C_DIN_WIDTH == C_DOUT_WIDTH) ? 0 : 1; localparam LESSER_WIDTH = (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) ? C_WR_PNTR_WIDTH : C_RD_PNTR_WIDTH; localparam [C_RD_PNTR_WIDTH-1 : 0] DIFF_MAX_RD = {C_RD_PNTR_WIDTH{1'b1}}; localparam [C_WR_PNTR_WIDTH-1 : 0] DIFF_MAX_WR = {C_WR_PNTR_WIDTH{1'b1}}; /************************************************************************** * FIFO Contents Tracking and Data Count Calculations *************************************************************************/ // Memory which will be used to simulate a FIFO reg [C_DIN_WIDTH-1:0] memory[C_WR_DEPTH-1:0]; reg [1:0] ecc_err[C_WR_DEPTH-1:0]; /************************************************************************** * Internal Registers and wires *************************************************************************/ //Temporary signals used for calculating the model's outputs. These //are only used in the assign statements immediately following wire, //parameter, and function declarations. wire underflow_i; wire valid_i; wire valid_out; reg [31:0] num_wr_bits; reg [31:0] num_rd_bits; reg [31:0] next_num_wr_bits; reg [31:0] next_num_rd_bits; //The write pointer - tracks write operations // (Works opposite to core: wr_ptr is a DOWN counter) reg [31:0] wr_ptr; reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd1 = 0; reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd2 = 0; reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd3 = 0; reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd = 0; reg wr_rst_d1 =0; //The read pointer - tracks read operations // (rd_ptr Works opposite to core: rd_ptr is a DOWN counter) reg [31:0] rd_ptr; reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr1 = 0; reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr2 = 0; reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr3 = 0; reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr4 = 0; reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr = 0; wire ram_rd_en; wire empty_int; wire almost_empty_int; wire ram_wr_en; wire full_int; wire almost_full_int; reg ram_rd_en_reg = 1'b0; //Ideal FIFO signals. These are the raw output of the behavioral model, //which behaves like an ideal FIFO. reg [1:0] err_type = 0; reg [1:0] err_type_d1 = 0; reg [C_DOUT_WIDTH-1:0] ideal_dout = 0; reg [C_DOUT_WIDTH-1:0] ideal_dout_d1 = 0; wire [C_DOUT_WIDTH-1:0] ideal_dout_out; wire fwft_enabled; reg ideal_wr_ack = 0; reg ideal_valid = 0; reg ideal_overflow = C_OVERFLOW_LOW; reg ideal_underflow = C_UNDERFLOW_LOW; reg full_i = C_FULL_FLAGS_RST_VAL; reg full_i_temp = 0; reg empty_i = 1; reg almost_full_i = 0; reg almost_empty_i = 1; reg prog_full_i = 0; reg prog_empty_i = 1; reg [C_WR_PNTR_WIDTH-1:0] wr_pntr = 0; reg [C_RD_PNTR_WIDTH-1:0] rd_pntr = 0; wire [C_RD_PNTR_WIDTH-1:0] adj_wr_pntr_rd; wire [C_WR_PNTR_WIDTH-1:0] adj_rd_pntr_wr; reg [C_RD_PNTR_WIDTH-1:0] diff_count = 0; reg write_allow_q = 0; reg read_allow_q = 0; reg valid_d1 = 0; wire rst_i; wire srst_i; //user specified value for reseting the size of the fifo reg [C_DOUT_WIDTH-1:0] dout_reset_val = 0; reg [31:0] wr_ptr_rdclk; reg [31:0] wr_ptr_rdclk_next; reg [31:0] rd_ptr_wrclk; reg [31:0] rd_ptr_wrclk_next; /**************************************************************************** * Function Declarations ***************************************************************************/ /**************************************************************************** * hexstr_conv * Converts a string of type hex to a binary value (for C_DOUT_RST_VAL) ***************************************************************************/ function [C_DOUT_WIDTH-1:0] hexstr_conv; input [(C_DOUT_WIDTH*8)-1:0] def_data; integer index,i,j; reg [3:0] bin; begin index = 0; hexstr_conv = 'b0; for( i=C_DOUT_WIDTH-1; i>=0; i=i-1 ) begin case (def_data[7:0]) 8'b00000000 : begin bin = 4'b0000; i = -1; end 8'b00110000 : bin = 4'b0000; 8'b00110001 : bin = 4'b0001; 8'b00110010 : bin = 4'b0010; 8'b00110011 : bin = 4'b0011; 8'b00110100 : bin = 4'b0100; 8'b00110101 : bin = 4'b0101; 8'b00110110 : bin = 4'b0110; 8'b00110111 : bin = 4'b0111; 8'b00111000 : bin = 4'b1000; 8'b00111001 : bin = 4'b1001; 8'b01000001 : bin = 4'b1010; 8'b01000010 : bin = 4'b1011; 8'b01000011 : bin = 4'b1100; 8'b01000100 : bin = 4'b1101; 8'b01000101 : bin = 4'b1110; 8'b01000110 : bin = 4'b1111; 8'b01100001 : bin = 4'b1010; 8'b01100010 : bin = 4'b1011; 8'b01100011 : bin = 4'b1100; 8'b01100100 : bin = 4'b1101; 8'b01100101 : bin = 4'b1110; 8'b01100110 : bin = 4'b1111; default : begin bin = 4'bx; end endcase for( j=0; j<4; j=j+1) begin if ((index*4)+j < C_DOUT_WIDTH) begin hexstr_conv[(index*4)+j] = bin[j]; end end index = index + 1; def_data = def_data >> 8; end end endfunction /************************************************************************** * log2_val * Returns the 'log2' value for the input value for the supported ratios ***************************************************************************/ function [31:0] log2_val; input [31:0] binary_val; begin if (binary_val == 8) begin log2_val = 3; end else if (binary_val == 4) begin log2_val = 2; end else begin log2_val = 1; end end endfunction reg ideal_prog_full = 0; reg ideal_prog_empty = 1; reg [C_WR_DATA_COUNT_WIDTH-1 : 0] ideal_wr_count = 0; reg [C_RD_DATA_COUNT_WIDTH-1 : 0] ideal_rd_count = 0; //Assorted reg values for delayed versions of signals //reg valid_d1 = 0; //user specified value for reseting the size of the fifo //reg [C_DOUT_WIDTH-1:0] dout_reset_val = 0; //temporary registers for WR_RESPONSE_LATENCY feature integer tmp_wr_listsize; integer tmp_rd_listsize; //Signal for registered version of prog full and empty //Threshold values for Programmable Flags integer prog_empty_actual_thresh_assert; integer prog_empty_actual_thresh_negate; integer prog_full_actual_thresh_assert; integer prog_full_actual_thresh_negate; /************************************************************************** * write_fifo * This task writes a word to the FIFO memory and updates the * write pointer. * FIFO size is relative to write domain. ***************************************************************************/ task write_fifo; begin memory[wr_ptr] <= DIN; wr_pntr <= #`TCQ wr_pntr + 1; // Store the type of error injection (double/single) on write case (C_ERROR_INJECTION_TYPE) 3: ecc_err[wr_ptr] <= {INJECTDBITERR,INJECTSBITERR}; 2: ecc_err[wr_ptr] <= {INJECTDBITERR,1'b0}; 1: ecc_err[wr_ptr] <= {1'b0,INJECTSBITERR}; default: ecc_err[wr_ptr] <= 0; endcase // (Works opposite to core: wr_ptr is a DOWN counter) if (wr_ptr == 0) begin wr_ptr <= C_WR_DEPTH - 1; end else begin wr_ptr <= wr_ptr - 1; end end endtask // write_fifo /************************************************************************** * read_fifo * This task reads a word from the FIFO memory and updates the read * pointer. It's output is the ideal_dout bus. * FIFO size is relative to write domain. ***************************************************************************/ task read_fifo; integer i; reg [C_DOUT_WIDTH-1:0] tmp_dout; reg [C_DIN_WIDTH-1:0] memory_read; reg [31:0] tmp_rd_ptr; reg [31:0] rd_ptr_high; reg [31:0] rd_ptr_low; reg [1:0] tmp_ecc_err; begin rd_pntr <= #`TCQ rd_pntr + 1; // output is wider than input if (reads_per_write == 0) begin tmp_dout = 0; tmp_rd_ptr = (rd_ptr << log2_writes_per_read)+(writes_per_read-1); for (i = writes_per_read - 1; i >= 0; i = i - 1) begin tmp_dout = tmp_dout << C_DIN_WIDTH; tmp_dout = tmp_dout | memory[tmp_rd_ptr]; // (Works opposite to core: rd_ptr is a DOWN counter) if (tmp_rd_ptr == 0) begin tmp_rd_ptr = C_WR_DEPTH - 1; end else begin tmp_rd_ptr = tmp_rd_ptr - 1; end end // output is symmetric end else if (reads_per_write == 1) begin tmp_dout = memory[rd_ptr][C_DIN_WIDTH-1:0]; // Retreive the error injection type. Based on the error injection type // corrupt the output data. tmp_ecc_err = ecc_err[rd_ptr]; if (ENABLE_ERR_INJECTION && C_DIN_WIDTH == C_DOUT_WIDTH) begin if (tmp_ecc_err[1]) begin // Corrupt the output data only for double bit error if (C_DOUT_WIDTH == 1) begin $display("FAILURE : Data width must be >= 2 for double bit error injection."); $finish; end else if (C_DOUT_WIDTH == 2) tmp_dout = {~tmp_dout[C_DOUT_WIDTH-1],~tmp_dout[C_DOUT_WIDTH-2]}; else tmp_dout = {~tmp_dout[C_DOUT_WIDTH-1],~tmp_dout[C_DOUT_WIDTH-2],(tmp_dout << 2)}; end else begin tmp_dout = tmp_dout[C_DOUT_WIDTH-1:0]; end err_type <= {tmp_ecc_err[1], tmp_ecc_err[0] & !tmp_ecc_err[1]}; end else begin err_type <= 0; end // input is wider than output end else begin rd_ptr_high = rd_ptr >> log2_reads_per_write; rd_ptr_low = rd_ptr & (reads_per_write - 1); memory_read = memory[rd_ptr_high]; tmp_dout = memory_read >> (rd_ptr_low*C_DOUT_WIDTH); end ideal_dout <= tmp_dout; // (Works opposite to core: rd_ptr is a DOWN counter) if (rd_ptr == 0) begin rd_ptr <= C_RD_DEPTH - 1; end else begin rd_ptr <= rd_ptr - 1; end end endtask /************************************************************************* * Initialize Signals for clean power-on simulation *************************************************************************/ initial begin num_wr_bits = 0; num_rd_bits = 0; next_num_wr_bits = 0; next_num_rd_bits = 0; rd_ptr = C_RD_DEPTH - 1; wr_ptr = C_WR_DEPTH - 1; wr_pntr = 0; rd_pntr = 0; rd_ptr_wrclk = rd_ptr; wr_ptr_rdclk = wr_ptr; dout_reset_val = hexstr_conv(C_DOUT_RST_VAL); ideal_dout = dout_reset_val; err_type = 0; ideal_dout_d1 = dout_reset_val; ideal_wr_ack = 1'b0; ideal_valid = 1'b0; valid_d1 = 1'b0; ideal_overflow = C_OVERFLOW_LOW; ideal_underflow = C_UNDERFLOW_LOW; ideal_wr_count = 0; ideal_rd_count = 0; ideal_prog_full = 1'b0; ideal_prog_empty = 1'b1; end /************************************************************************* * Connect the module inputs and outputs to the internal signals of the * behavioral model. *************************************************************************/ //Inputs /* wire CLK; wire [C_DIN_WIDTH-1:0] DIN; wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH; wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT; wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE; wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH; wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT; wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE; wire RD_EN; wire RST; wire WR_EN; */ // Assign ALMOST_EPMTY generate if (C_HAS_ALMOST_EMPTY == 1) begin : gae assign ALMOST_EMPTY = almost_empty_i; end else begin : gnae assign ALMOST_EMPTY = 0; end endgenerate // gae // Assign ALMOST_FULL generate if (C_HAS_ALMOST_FULL==1) begin : gaf assign ALMOST_FULL = almost_full_i; end else begin : gnaf assign ALMOST_FULL = 0; end endgenerate // gaf // Dout may change behavior based on latency assign fwft_enabled = (C_PRELOAD_LATENCY == 0 && C_PRELOAD_REGS == 1)? 1: 0; assign ideal_dout_out= ((C_USE_EMBEDDED_REG==1 && (fwft_enabled == 0)) && (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1))? ideal_dout_d1: ideal_dout; assign DOUT = ideal_dout_out; // Assign SBITERR and DBITERR based on latency assign SBITERR = (C_ERROR_INJECTION_TYPE == 1 || C_ERROR_INJECTION_TYPE == 3) && ((C_USE_EMBEDDED_REG==1 && (fwft_enabled == 0)) && (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1)) ? err_type_d1[0]: err_type[0]; assign DBITERR = (C_ERROR_INJECTION_TYPE == 2 || C_ERROR_INJECTION_TYPE == 3) && ((C_USE_EMBEDDED_REG==1 && (fwft_enabled == 0)) && (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1)) ? err_type_d1[1]: err_type[1]; assign EMPTY = empty_i; assign FULL = full_i; //Overflow may be active-low generate if (C_HAS_OVERFLOW==1) begin : gof assign OVERFLOW = ideal_overflow ? !C_OVERFLOW_LOW : C_OVERFLOW_LOW; end else begin : gnof assign OVERFLOW = 0; end endgenerate // gof assign PROG_EMPTY = prog_empty_i; assign PROG_FULL = prog_full_i; //Valid may change behavior based on latency or active-low generate if (C_HAS_VALID==1) begin : gvalid assign valid_i = (C_PRELOAD_LATENCY == 0) ? (RD_EN & ~EMPTY) : ideal_valid; assign valid_out = (C_PRELOAD_LATENCY == 2 && C_MEMORY_TYPE < 2) ? valid_d1 : valid_i; assign VALID = valid_out ? !C_VALID_LOW : C_VALID_LOW; end else begin : gnvalid assign VALID = 0; end endgenerate // gvalid //Trim data count differently depending on set widths generate if (C_HAS_DATA_COUNT == 1) begin : gdc always @* begin diff_count <= wr_pntr - rd_pntr; if (C_DATA_COUNT_WIDTH > C_RD_PNTR_WIDTH) begin DATA_COUNT[C_RD_PNTR_WIDTH-1:0] <= diff_count; DATA_COUNT[C_DATA_COUNT_WIDTH-1] <= 1'b0 ; end else begin DATA_COUNT <= diff_count[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_DATA_COUNT_WIDTH]; end end // end else begin : gndc // always @* DATA_COUNT <= 0; end endgenerate // gdc //Underflow may change behavior based on latency or active-low generate if (C_HAS_UNDERFLOW==1) begin : guf assign underflow_i = ideal_underflow; assign UNDERFLOW = underflow_i ? !C_UNDERFLOW_LOW : C_UNDERFLOW_LOW; end else begin : gnuf assign UNDERFLOW = 0; end endgenerate // guf //Write acknowledge may be active low generate if (C_HAS_WR_ACK==1) begin : gwr_ack assign WR_ACK = ideal_wr_ack ? !C_WR_ACK_LOW : C_WR_ACK_LOW; end else begin : gnwr_ack assign WR_ACK = 0; end endgenerate // gwr_ack /***************************************************************************** * Internal reset logic ****************************************************************************/ assign srst_i = C_HAS_SRST ? SRST : 0; assign srst_wrst_busy = C_HAS_SRST ? (SRST || WR_RST_BUSY) : 0; assign srst_rrst_busy = C_HAS_SRST ? (SRST || RD_RST_BUSY) : 0; assign rst_i = C_HAS_RST ? RST : 0; /************************************************************************** * Assorted registers for delayed versions of signals **************************************************************************/ //Capture delayed version of valid generate if (C_HAS_VALID == 1) begin : blockVL20 always @(posedge CLK or posedge rst_i) begin if (rst_i == 1'b1) begin valid_d1 <= #`TCQ 1'b0; end else begin if (srst_rrst_busy) begin valid_d1 <= #`TCQ 1'b0; end else begin valid_d1 <= #`TCQ valid_i; end end end // always @ (posedge CLK or posedge rst_i) end endgenerate // blockVL20 // Determine which stage in FWFT registers are valid reg stage1_valid = 0; reg stage2_valid = 0; generate if (C_PRELOAD_LATENCY == 0) begin : grd_fwft_proc always @ (posedge CLK or posedge rst_i) begin if (rst_i) begin stage1_valid <= #`TCQ 0; stage2_valid <= #`TCQ 0; end else begin if (!stage1_valid && !stage2_valid) begin if (!EMPTY) stage1_valid <= #`TCQ 1'b1; else stage1_valid <= #`TCQ 1'b0; end else if (stage1_valid && !stage2_valid) begin if (EMPTY) begin stage1_valid <= #`TCQ 1'b0; stage2_valid <= #`TCQ 1'b1; end else begin stage1_valid <= #`TCQ 1'b1; stage2_valid <= #`TCQ 1'b1; end end else if (!stage1_valid && stage2_valid) begin if (EMPTY && RD_EN) begin stage1_valid <= #`TCQ 1'b0; stage2_valid <= #`TCQ 1'b0; end else if (!EMPTY && RD_EN) begin stage1_valid <= #`TCQ 1'b1; stage2_valid <= #`TCQ 1'b0; end else if (!EMPTY && !RD_EN) begin stage1_valid <= #`TCQ 1'b1; stage2_valid <= #`TCQ 1'b1; end else begin stage1_valid <= #`TCQ 1'b0; stage2_valid <= #`TCQ 1'b1; end end else if (stage1_valid && stage2_valid) begin if (EMPTY && RD_EN) begin stage1_valid <= #`TCQ 1'b0; stage2_valid <= #`TCQ 1'b1; end else begin stage1_valid <= #`TCQ 1'b1; stage2_valid <= #`TCQ 1'b1; end end else begin stage1_valid <= #`TCQ 1'b0; stage2_valid <= #`TCQ 1'b0; end end // rd_rst_i end // always end endgenerate //*************************************************************************** // Assign the read data count value only if it is selected, // otherwise output zeros. //*************************************************************************** generate if (C_HAS_RD_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT ==1) begin : grdc assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = rd_data_count_i_ss[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH+1-C_RD_DATA_COUNT_WIDTH]; end endgenerate generate if (C_HAS_RD_DATA_COUNT == 0) begin : gnrdc assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = {C_RD_DATA_COUNT_WIDTH{1'b0}}; end endgenerate //*************************************************************************** // Assign the write data count value only if it is selected, // otherwise output zeros //*************************************************************************** generate if (C_HAS_WR_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT == 1) begin : gwdc assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = wr_data_count_i_ss[C_WR_PNTR_WIDTH:C_WR_PNTR_WIDTH+1-C_WR_DATA_COUNT_WIDTH] ; end endgenerate generate if (C_HAS_WR_DATA_COUNT == 0) begin : gnwdc assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = {C_WR_DATA_COUNT_WIDTH{1'b0}}; end endgenerate // block memory has a synchronous reset generate if (C_MEMORY_TYPE < 2) begin : gen_fifo_blkmemdout_emb always @(posedge CLK) begin // BRAM resets synchronously // make it consistent with the core. if ((rst_i || srst_rrst_busy) && (C_USE_DOUT_RST == 1)) ideal_dout_d1 <= #`TCQ dout_reset_val; end //always end endgenerate // gen_fifo_blkmemdout_emb reg ram_rd_en_d1 = 1'b0; //Capture delayed version of dout always @(posedge CLK or posedge rst_i) begin if (rst_i == 1'b1) begin // Reset err_type only if ECC is not selected if (C_USE_ECC == 0) err_type_d1 <= #`TCQ 0; // DRAM and SRAM reset asynchronously if ((C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3) && C_USE_DOUT_RST == 1) ideal_dout_d1 <= #`TCQ dout_reset_val; ram_rd_en_d1 <= #`TCQ 1'b0; end else begin ram_rd_en_d1 <= #`TCQ RD_EN & ~EMPTY; if (srst_rrst_busy) begin ram_rd_en_d1 <= #`TCQ 1'b0; // Reset err_type only if ECC is not selected if (C_USE_ECC == 0) err_type_d1 <= #`TCQ 0; // Reset DRAM and SRAM based FIFO, BRAM based FIFO is reset above if ((C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3) && C_USE_DOUT_RST == 1) ideal_dout_d1 <= #`TCQ dout_reset_val; end else if (ram_rd_en_d1) begin ideal_dout_d1 <= #`TCQ ideal_dout; err_type_d1 <= #`TCQ err_type; end end end /************************************************************************** * Overflow and Underflow Flag calculation * (handled separately because they don't support rst) **************************************************************************/ generate if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 0) begin : g7s_ovflw always @(posedge CLK) begin ideal_overflow <= #`TCQ WR_EN & full_i; end end else if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 1) begin : g8s_ovflw always @(posedge CLK) begin //ideal_overflow <= #`TCQ WR_EN & (rst_i | full_i); ideal_overflow <= #`TCQ WR_EN & (WR_RST_BUSY | full_i); end end endgenerate // blockOF20 generate if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 0) begin : g7s_unflw always @(posedge CLK) begin ideal_underflow <= #`TCQ empty_i & RD_EN; end end else if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 1) begin : g8s_unflw always @(posedge CLK) begin //ideal_underflow <= #`TCQ (rst_i | empty_i) & RD_EN; ideal_underflow <= #`TCQ (RD_RST_BUSY | empty_i) & RD_EN; end end endgenerate // blockUF20 /************************** * Read Data Count *************************/ reg [31:0] num_read_words_dc; reg [C_RD_DATA_COUNT_WIDTH-1:0] num_read_words_sized_i; always @(num_rd_bits) begin if (C_USE_FWFT_DATA_COUNT) begin //If using extra logic for FWFT Data Counts, // then scale FIFO contents to read domain, // and add two read words for FWFT stages //This value is only a temporary value and not used in the code. num_read_words_dc = (num_rd_bits/C_DOUT_WIDTH+2); //Trim the read words for use with RD_DATA_COUNT num_read_words_sized_i = num_read_words_dc[C_RD_PNTR_WIDTH : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH+1]; end else begin //If not using extra logic for FWFT Data Counts, // then scale FIFO contents to read domain. //This value is only a temporary value and not used in the code. num_read_words_dc = num_rd_bits/C_DOUT_WIDTH; //Trim the read words for use with RD_DATA_COUNT num_read_words_sized_i = num_read_words_dc[C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH]; end //if (C_USE_FWFT_DATA_COUNT) end //always /************************** * Write Data Count *************************/ reg [31:0] num_write_words_dc; reg [C_WR_DATA_COUNT_WIDTH-1:0] num_write_words_sized_i; always @(num_wr_bits) begin if (C_USE_FWFT_DATA_COUNT) begin //Calculate the Data Count value for the number of write words, // when using First-Word Fall-Through with extra logic for Data // Counts. This takes into consideration the number of words that // are expected to be stored in the FWFT register stages (it always // assumes they are filled). //This value is scaled to the Write Domain. //The expression (((A-1)/B))+1 divides A/B, but takes the // ceiling of the result. //When num_wr_bits==0, set the result manually to prevent // division errors. //EXTRA_WORDS_DC is the number of words added to write_words // due to FWFT. //This value is only a temporary value and not used in the code. num_write_words_dc = (num_wr_bits==0) ? EXTRA_WORDS_DC : (((num_wr_bits-1)/C_DIN_WIDTH)+1) + EXTRA_WORDS_DC ; //Trim the write words for use with WR_DATA_COUNT num_write_words_sized_i = num_write_words_dc[C_WR_PNTR_WIDTH : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH+1]; end else begin //Calculate the Data Count value for the number of write words, when NOT // using First-Word Fall-Through with extra logic for Data Counts. This // calculates only the number of words in the internal FIFO. //The expression (((A-1)/B))+1 divides A/B, but takes the // ceiling of the result. //This value is scaled to the Write Domain. //When num_wr_bits==0, set the result manually to prevent // division errors. //This value is only a temporary value and not used in the code. num_write_words_dc = (num_wr_bits==0) ? 0 : ((num_wr_bits-1)/C_DIN_WIDTH)+1; //Trim the read words for use with RD_DATA_COUNT num_write_words_sized_i = num_write_words_dc[C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH]; end //if (C_USE_FWFT_DATA_COUNT) end //always /************************************************************************* * Write and Read Logic ************************************************************************/ wire write_allow; wire read_allow; wire read_allow_dc; wire write_only; wire read_only; //wire write_only_q; reg write_only_q; //wire read_only_q; reg read_only_q; reg full_reg; reg rst_full_ff_reg1; reg rst_full_ff_reg2; wire ram_full_comb; wire carry; assign write_allow = WR_EN & ~full_i; assign read_allow = RD_EN & ~empty_i; assign read_allow_dc = RD_EN_USER & ~USER_EMPTY_FB; //assign write_only = write_allow & ~read_allow; //assign write_only_q = write_allow_q; //assign read_only = read_allow & ~write_allow; //assign read_only_q = read_allow_q ; wire [C_WR_PNTR_WIDTH-1:0] diff_pntr; wire [C_RD_PNTR_WIDTH-1:0] diff_pntr_pe; reg [C_WR_PNTR_WIDTH-1:0] diff_pntr_reg1 = 0; reg [C_RD_PNTR_WIDTH-1:0] diff_pntr_pe_reg1 = 0; reg [C_RD_PNTR_WIDTH:0] diff_pntr_pe_asym = 0; wire [C_RD_PNTR_WIDTH:0] adj_wr_pntr_rd_asym ; wire [C_RD_PNTR_WIDTH:0] rd_pntr_asym; reg [C_WR_PNTR_WIDTH-1:0] diff_pntr_reg2 = 0; reg [C_WR_PNTR_WIDTH-1:0] diff_pntr_pe_reg2 = 0; wire [C_RD_PNTR_WIDTH-1:0] diff_pntr_pe_max; wire [C_RD_PNTR_WIDTH-1:0] diff_pntr_max; assign diff_pntr_pe_max = DIFF_MAX_RD; assign diff_pntr_max = DIFF_MAX_WR; generate if (IS_ASYMMETRY == 0) begin : diff_pntr_sym assign write_only = write_allow & ~read_allow; assign read_only = read_allow & ~write_allow; end endgenerate generate if ( IS_ASYMMETRY == 1 && C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : wr_grt_rd assign read_only = read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0]) & ~write_allow; assign write_only = write_allow & ~(read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0])); end endgenerate generate if (IS_ASYMMETRY ==1 && C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : rd_grt_wr assign read_only = read_allow & ~(write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0])); assign write_only = write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]) & ~read_allow; end endgenerate //----------------------------------------------------------------------------- // Write and Read pointer generation //----------------------------------------------------------------------------- always @(posedge CLK or posedge rst_i) begin if (rst_i) begin wr_pntr <= 0; rd_pntr <= 0; end else begin if (srst_i || srst_wrst_busy || srst_rrst_busy ) begin if (srst_wrst_busy) wr_pntr <= #`TCQ 0; if (srst_rrst_busy) rd_pntr <= #`TCQ 0; end else begin if (write_allow) wr_pntr <= #`TCQ wr_pntr + 1; if (read_allow) rd_pntr <= #`TCQ rd_pntr + 1; end end end generate if (C_FIFO_TYPE == 2) begin : gll_dm_dout always @(posedge CLK) begin if (write_allow) begin if (ENABLE_ERR_INJECTION == 1) memory[wr_pntr] <= #`TCQ {INJECTDBITERR,INJECTSBITERR,DIN}; else memory[wr_pntr] <= #`TCQ DIN; end end reg [C_DATA_WIDTH-1:0] dout_tmp_q; reg [C_DATA_WIDTH-1:0] dout_tmp = 0; reg [C_DATA_WIDTH-1:0] dout_tmp1 = 0; always @(posedge CLK) begin dout_tmp_q <= #`TCQ ideal_dout; end always @* begin if (read_allow) ideal_dout <= memory[rd_pntr]; else ideal_dout <= dout_tmp_q; end end endgenerate // gll_dm_dout /************************************************************************** * Write Domain Logic **************************************************************************/ assign ram_rd_en = RD_EN & !EMPTY; //reg [C_WR_PNTR_WIDTH-1:0] diff_pntr = 0; generate if (C_FIFO_TYPE != 2) begin : gnll_din always @(posedge CLK or posedge rst_i) begin : gen_fifo_w /****** Reset fifo (case 1)***************************************/ if (rst_i == 1'b1) begin num_wr_bits <= #`TCQ 0; next_num_wr_bits = #`TCQ 0; wr_ptr <= #`TCQ C_WR_DEPTH - 1; rd_ptr_wrclk <= #`TCQ C_RD_DEPTH - 1; ideal_wr_ack <= #`TCQ 0; ideal_wr_count <= #`TCQ 0; tmp_wr_listsize = #`TCQ 0; rd_ptr_wrclk_next <= #`TCQ 0; wr_pntr <= #`TCQ 0; wr_pntr_rd1 <= #`TCQ 0; end else begin //rst_i==0 if (srst_wrst_busy) begin num_wr_bits <= #`TCQ 0; next_num_wr_bits = #`TCQ 0; wr_ptr <= #`TCQ C_WR_DEPTH - 1; rd_ptr_wrclk <= #`TCQ C_RD_DEPTH - 1; ideal_wr_ack <= #`TCQ 0; ideal_wr_count <= #`TCQ 0; tmp_wr_listsize = #`TCQ 0; rd_ptr_wrclk_next <= #`TCQ 0; wr_pntr <= #`TCQ 0; wr_pntr_rd1 <= #`TCQ 0; end else begin//srst_i=0 wr_pntr_rd1 <= #`TCQ wr_pntr; //Determine the current number of words in the FIFO tmp_wr_listsize = (C_DEPTH_RATIO_RD > 1) ? num_wr_bits/C_DOUT_WIDTH : num_wr_bits/C_DIN_WIDTH; rd_ptr_wrclk_next = rd_ptr; if (rd_ptr_wrclk < rd_ptr_wrclk_next) begin next_num_wr_bits = num_wr_bits - C_DOUT_WIDTH*(rd_ptr_wrclk + C_RD_DEPTH - rd_ptr_wrclk_next); end else begin next_num_wr_bits = num_wr_bits - C_DOUT_WIDTH*(rd_ptr_wrclk - rd_ptr_wrclk_next); end if (WR_EN == 1'b1) begin if (FULL == 1'b1) begin ideal_wr_ack <= #`TCQ 0; //Reminder that FIFO is still full ideal_wr_count <= #`TCQ num_write_words_sized_i; end else begin write_fifo; next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH; //Write successful, so issue acknowledge // and no error ideal_wr_ack <= #`TCQ 1; //Not even close to full. ideal_wr_count <= num_write_words_sized_i; //end end end else begin //(WR_EN == 1'b1) //If user did not attempt a write, then do not // give ack or err ideal_wr_ack <= #`TCQ 0; ideal_wr_count <= #`TCQ num_write_words_sized_i; end num_wr_bits <= #`TCQ next_num_wr_bits; rd_ptr_wrclk <= #`TCQ rd_ptr; end //srst_i==0 end //wr_rst_i==0 end // gen_fifo_w end endgenerate generate if (C_FIFO_TYPE < 2 && C_MEMORY_TYPE < 2) begin : gnll_dm_dout always @(posedge CLK) begin if (rst_i || srst_rrst_busy) begin if (C_USE_DOUT_RST == 1) ideal_dout <= #`TCQ dout_reset_val; end end end endgenerate generate if (C_FIFO_TYPE != 2) begin : gnll_dout always @(posedge CLK or posedge rst_i) begin : gen_fifo_r /****** Reset fifo (case 1)***************************************/ if (rst_i) begin num_rd_bits <= #`TCQ 0; next_num_rd_bits = #`TCQ 0; rd_ptr <= #`TCQ C_RD_DEPTH -1; rd_pntr <= #`TCQ 0; //rd_pntr_wr1 <= #`TCQ 0; wr_ptr_rdclk <= #`TCQ C_WR_DEPTH -1; // DRAM resets asynchronously if (C_FIFO_TYPE < 2 && (C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3 )&& C_USE_DOUT_RST == 1) ideal_dout <= #`TCQ dout_reset_val; // Reset err_type only if ECC is not selected if (C_USE_ECC == 0) err_type <= #`TCQ 0; ideal_valid <= #`TCQ 1'b0; ideal_rd_count <= #`TCQ 0; end else begin //rd_rst_i==0 if (srst_rrst_busy) begin num_rd_bits <= #`TCQ 0; next_num_rd_bits = #`TCQ 0; rd_ptr <= #`TCQ C_RD_DEPTH -1; rd_pntr <= #`TCQ 0; //rd_pntr_wr1 <= #`TCQ 0; wr_ptr_rdclk <= #`TCQ C_WR_DEPTH -1; // DRAM resets synchronously if (C_FIFO_TYPE < 2 && (C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3 )&& C_USE_DOUT_RST == 1) ideal_dout <= #`TCQ dout_reset_val; // Reset err_type only if ECC is not selected if (C_USE_ECC == 0) err_type <= #`TCQ 0; ideal_valid <= #`TCQ 1'b0; ideal_rd_count <= #`TCQ 0; end //srst_i else begin //rd_pntr_wr1 <= #`TCQ rd_pntr; //Determine the current number of words in the FIFO tmp_rd_listsize = (C_DEPTH_RATIO_WR > 1) ? num_rd_bits/C_DIN_WIDTH : num_rd_bits/C_DOUT_WIDTH; wr_ptr_rdclk_next = wr_ptr; if (wr_ptr_rdclk < wr_ptr_rdclk_next) begin next_num_rd_bits = num_rd_bits + C_DIN_WIDTH*(wr_ptr_rdclk +C_WR_DEPTH - wr_ptr_rdclk_next); end else begin next_num_rd_bits = num_rd_bits + C_DIN_WIDTH*(wr_ptr_rdclk - wr_ptr_rdclk_next); end if (RD_EN == 1'b1) begin if (EMPTY == 1'b1) begin ideal_valid <= #`TCQ 1'b0; ideal_rd_count <= #`TCQ num_read_words_sized_i; end else begin read_fifo; next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH; //Acknowledge the read from the FIFO, no error ideal_valid <= #`TCQ 1'b1; ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if (tmp_rd_listsize == 2) end num_rd_bits <= #`TCQ next_num_rd_bits; wr_ptr_rdclk <= #`TCQ wr_ptr; end //s_rst_i==0 end //rd_rst_i==0 end //always end endgenerate //----------------------------------------------------------------------------- // Generate diff_pntr for PROG_FULL generation // Generate diff_pntr_pe for PROG_EMPTY generation //----------------------------------------------------------------------------- generate if ((C_PROG_FULL_TYPE != 0 || C_PROG_EMPTY_TYPE != 0) && IS_ASYMMETRY == 0) begin : reg_write_allow always @(posedge CLK ) begin if (rst_i) begin write_only_q <= 1'b0; read_only_q <= 1'b0; diff_pntr_reg1 <= 0; diff_pntr_pe_reg1 <= 0; diff_pntr_reg2 <= 0; diff_pntr_pe_reg2 <= 0; end else begin if (srst_i || srst_wrst_busy || srst_rrst_busy) begin if (srst_rrst_busy) begin read_only_q <= #`TCQ 1'b0; diff_pntr_pe_reg1 <= #`TCQ 0; diff_pntr_pe_reg2 <= #`TCQ 0; end if (srst_wrst_busy) begin write_only_q <= #`TCQ 1'b0; diff_pntr_reg1 <= #`TCQ 0; diff_pntr_reg2 <= #`TCQ 0; end end else begin write_only_q <= #`TCQ write_only; read_only_q <= #`TCQ read_only; diff_pntr_reg2 <= #`TCQ diff_pntr_reg1; diff_pntr_pe_reg2 <= #`TCQ diff_pntr_pe_reg1; // Add 1 to the difference pointer value when only write happens. if (write_only) diff_pntr_reg1 <= #`TCQ wr_pntr - adj_rd_pntr_wr + 1; else diff_pntr_reg1 <= #`TCQ wr_pntr - adj_rd_pntr_wr; // Add 1 to the difference pointer value when write or both write & read or no write & read happen. if (read_only) diff_pntr_pe_reg1 <= #`TCQ adj_wr_pntr_rd - rd_pntr - 1; else diff_pntr_pe_reg1 <= #`TCQ adj_wr_pntr_rd - rd_pntr; end end end assign diff_pntr_pe = diff_pntr_pe_reg1; assign diff_pntr = diff_pntr_reg1; end endgenerate // reg_write_allow generate if ((C_PROG_FULL_TYPE != 0 || C_PROG_EMPTY_TYPE != 0) && IS_ASYMMETRY == 1) begin : reg_write_allow_asym assign adj_wr_pntr_rd_asym[C_RD_PNTR_WIDTH:0] = {adj_wr_pntr_rd,1'b1}; assign rd_pntr_asym[C_RD_PNTR_WIDTH:0] = {~rd_pntr,1'b1}; always @(posedge CLK ) begin if (rst_i) begin diff_pntr_pe_asym <= 0; diff_pntr_reg1 <= 0; full_reg <= 0; rst_full_ff_reg1 <= 1; rst_full_ff_reg2 <= 1; diff_pntr_pe_reg1 <= 0; end else begin if (srst_i || srst_wrst_busy || srst_rrst_busy) begin if (srst_wrst_busy) diff_pntr_reg1 <= #`TCQ 0; if (srst_rrst_busy) full_reg <= #`TCQ 0; rst_full_ff_reg1 <= #`TCQ 1; rst_full_ff_reg2 <= #`TCQ 1; diff_pntr_pe_asym <= #`TCQ 0; diff_pntr_pe_reg1 <= #`TCQ 0; end else begin diff_pntr_pe_asym <= #`TCQ adj_wr_pntr_rd_asym + rd_pntr_asym; full_reg <= #`TCQ full_i; rst_full_ff_reg1 <= #`TCQ RST_FULL_FF; rst_full_ff_reg2 <= #`TCQ rst_full_ff_reg1; if (~full_i) begin diff_pntr_reg1 <= #`TCQ wr_pntr - adj_rd_pntr_wr; end end end end assign carry = (~(|(diff_pntr_pe_asym [C_RD_PNTR_WIDTH : 1]))); assign diff_pntr_pe = (full_reg && ~rst_full_ff_reg2 && carry ) ? diff_pntr_pe_max : diff_pntr_pe_asym[C_RD_PNTR_WIDTH:1]; assign diff_pntr = diff_pntr_reg1; end endgenerate // reg_write_allow_asym //----------------------------------------------------------------------------- // Generate FULL flag //----------------------------------------------------------------------------- wire comp0; wire comp1; wire going_full; wire leaving_full; generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gpad assign adj_rd_pntr_wr [C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH] = rd_pntr; assign adj_rd_pntr_wr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0] = 0; end endgenerate generate if (C_WR_PNTR_WIDTH <= C_RD_PNTR_WIDTH) begin : gtrim assign adj_rd_pntr_wr = rd_pntr[C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH]; end endgenerate assign comp1 = (adj_rd_pntr_wr == (wr_pntr + 1'b1)); assign comp0 = (adj_rd_pntr_wr == wr_pntr); generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : gf_wp_eq_rp assign going_full = (comp1 & write_allow & ~read_allow); assign leaving_full = (comp0 & read_allow) | RST_FULL_GEN; end endgenerate // Write data width is bigger than read data width // Write depth is smaller than read depth // One write could be equal to 2 or 4 or 8 reads generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : gf_asym assign going_full = (comp1 & write_allow & (~ (read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0])))); assign leaving_full = (comp0 & read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0])) | RST_FULL_GEN; end endgenerate generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gf_wp_gt_rp assign going_full = (comp1 & write_allow & ~read_allow); assign leaving_full =(comp0 & read_allow) | RST_FULL_GEN; end endgenerate assign ram_full_comb = going_full | (~leaving_full & full_i); always @(posedge CLK or posedge RST_FULL_FF) begin if (RST_FULL_FF) full_i <= C_FULL_FLAGS_RST_VAL; else if (srst_wrst_busy) full_i <= #`TCQ C_FULL_FLAGS_RST_VAL; else full_i <= #`TCQ ram_full_comb; end //----------------------------------------------------------------------------- // Generate EMPTY flag //----------------------------------------------------------------------------- wire ecomp0; wire ecomp1; wire going_empty; wire leaving_empty; wire ram_empty_comb; generate if (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) begin : pad assign adj_wr_pntr_rd [C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr; assign adj_wr_pntr_rd[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0] = 0; end endgenerate generate if (C_RD_PNTR_WIDTH <= C_WR_PNTR_WIDTH) begin : trim assign adj_wr_pntr_rd = wr_pntr[C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH]; end endgenerate assign ecomp1 = (adj_wr_pntr_rd == (rd_pntr + 1'b1)); assign ecomp0 = (adj_wr_pntr_rd == rd_pntr); generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : ge_wp_eq_rp assign going_empty = (ecomp1 & ~write_allow & read_allow); assign leaving_empty = (ecomp0 & write_allow); end endgenerate generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : ge_wp_gt_rp assign going_empty = (ecomp1 & read_allow & (~(write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0])))); assign leaving_empty = (ecomp0 & write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0])); end endgenerate generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : ge_wp_lt_rp assign going_empty = (ecomp1 & ~write_allow & read_allow); assign leaving_empty =(ecomp0 & write_allow); end endgenerate assign ram_empty_comb = going_empty | (~leaving_empty & empty_i); always @(posedge CLK or posedge rst_i) begin if (rst_i) empty_i <= 1'b1; else if (srst_rrst_busy) empty_i <= #`TCQ 1'b1; else empty_i <= #`TCQ ram_empty_comb; end //----------------------------------------------------------------------------- // Generate Read and write data counts for asymmetic common clock //----------------------------------------------------------------------------- reg [C_GRTR_PNTR_WIDTH :0] count_dc = 0; wire [C_GRTR_PNTR_WIDTH :0] ratio; wire decr_by_one; wire incr_by_ratio; wire incr_by_one; wire decr_by_ratio; localparam IS_FWFT = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ? 1 : 0; generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : rd_depth_gt_wr assign ratio = C_DEPTH_RATIO_RD; assign decr_by_one = (IS_FWFT == 1)? read_allow_dc : read_allow; assign incr_by_ratio = write_allow; always @(posedge CLK or posedge rst_i) begin if (rst_i) count_dc <= #`TCQ 0; else if (srst_wrst_busy) count_dc <= #`TCQ 0; else begin if (decr_by_one) begin if (!incr_by_ratio) count_dc <= #`TCQ count_dc - 1; else count_dc <= #`TCQ count_dc - 1 + ratio ; end else begin if (!incr_by_ratio) count_dc <= #`TCQ count_dc ; else count_dc <= #`TCQ count_dc + ratio ; end end end assign rd_data_count_i_ss[C_RD_PNTR_WIDTH : 0] = count_dc; assign wr_data_count_i_ss[C_WR_PNTR_WIDTH : 0] = count_dc[C_RD_PNTR_WIDTH : C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH]; end endgenerate generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : wr_depth_gt_rd assign ratio = C_DEPTH_RATIO_WR; assign incr_by_one = write_allow; assign decr_by_ratio = (IS_FWFT == 1)? read_allow_dc : read_allow; always @(posedge CLK or posedge rst_i) begin if (rst_i) count_dc <= #`TCQ 0; else if (srst_wrst_busy) count_dc <= #`TCQ 0; else begin if (incr_by_one) begin if (!decr_by_ratio) count_dc <= #`TCQ count_dc + 1; else count_dc <= #`TCQ count_dc + 1 - ratio ; end else begin if (!decr_by_ratio) count_dc <= #`TCQ count_dc ; else count_dc <= #`TCQ count_dc - ratio ; end end end assign wr_data_count_i_ss[C_WR_PNTR_WIDTH : 0] = count_dc; assign rd_data_count_i_ss[C_RD_PNTR_WIDTH : 0] = count_dc[C_WR_PNTR_WIDTH : C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH]; end endgenerate //----------------------------------------------------------------------------- // Generate WR_ACK flag //----------------------------------------------------------------------------- always @(posedge CLK or posedge rst_i) begin if (rst_i) ideal_wr_ack <= 1'b0; else if (srst_wrst_busy) ideal_wr_ack <= #`TCQ 1'b0; else if (WR_EN & ~full_i) ideal_wr_ack <= #`TCQ 1'b1; else ideal_wr_ack <= #`TCQ 1'b0; end //----------------------------------------------------------------------------- // Generate VALID flag //----------------------------------------------------------------------------- always @(posedge CLK or posedge rst_i) begin if (rst_i) ideal_valid <= 1'b0; else if (srst_rrst_busy) ideal_valid <= #`TCQ 1'b0; else if (RD_EN & ~empty_i) ideal_valid <= #`TCQ 1'b1; else ideal_valid <= #`TCQ 1'b0; end //----------------------------------------------------------------------------- // Generate ALMOST_FULL flag //----------------------------------------------------------------------------- //generate if (C_HAS_ALMOST_FULL == 1 || C_PROG_FULL_TYPE > 2 || C_PROG_EMPTY_TYPE > 2) begin : gaf_ss wire fcomp2; wire going_afull; wire leaving_afull; wire ram_afull_comb; assign fcomp2 = (adj_rd_pntr_wr == (wr_pntr + 2'h2)); generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : gaf_wp_eq_rp assign going_afull = (fcomp2 & write_allow & ~read_allow); assign leaving_afull = (comp1 & read_allow & ~write_allow) | RST_FULL_GEN; end endgenerate // Write data width is bigger than read data width // Write depth is smaller than read depth // One write could be equal to 2 or 4 or 8 reads generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : gaf_asym assign going_afull = (fcomp2 & write_allow & (~ (read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0])))); assign leaving_afull = (comp1 & (~write_allow) & read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0])) | RST_FULL_GEN; end endgenerate generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gaf_wp_gt_rp assign going_afull = (fcomp2 & write_allow & ~read_allow); assign leaving_afull =((comp0 | comp1 | fcomp2) & read_allow) | RST_FULL_GEN; end endgenerate assign ram_afull_comb = going_afull | (~leaving_afull & almost_full_i); always @(posedge CLK or posedge RST_FULL_FF) begin if (RST_FULL_FF) almost_full_i <= C_FULL_FLAGS_RST_VAL; else if (srst_wrst_busy) almost_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL; else almost_full_i <= #`TCQ ram_afull_comb; end // end endgenerate // gaf_ss //----------------------------------------------------------------------------- // Generate ALMOST_EMPTY flag //----------------------------------------------------------------------------- //generate if (C_HAS_ALMOST_EMPTY == 1) begin : gae_ss wire ecomp2; wire going_aempty; wire leaving_aempty; wire ram_aempty_comb; assign ecomp2 = (adj_wr_pntr_rd == (rd_pntr + 2'h2)); generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : gae_wp_eq_rp assign going_aempty = (ecomp2 & ~write_allow & read_allow); assign leaving_aempty = (ecomp1 & write_allow & ~read_allow); end endgenerate generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gae_wp_gt_rp assign going_aempty = (ecomp2 & read_allow & (~(write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0])))); assign leaving_aempty = (ecomp1 & ~read_allow & write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0])); end endgenerate generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : gae_wp_lt_rp assign going_aempty = (ecomp2 & ~write_allow & read_allow); assign leaving_aempty =((ecomp2 | ecomp1 |ecomp0) & write_allow); end endgenerate assign ram_aempty_comb = going_aempty | (~leaving_aempty & almost_empty_i); always @(posedge CLK or posedge rst_i) begin if (rst_i) almost_empty_i <= 1'b1; else if (srst_rrst_busy) almost_empty_i <= #`TCQ 1'b1; else almost_empty_i <= #`TCQ ram_aempty_comb; end // end endgenerate // gae_ss //----------------------------------------------------------------------------- // Generate PROG_FULL //----------------------------------------------------------------------------- localparam C_PF_ASSERT_VAL = (C_PRELOAD_LATENCY == 0) ? C_PROG_FULL_THRESH_ASSERT_VAL - EXTRA_WORDS_PF_PARAM : // FWFT C_PROG_FULL_THRESH_ASSERT_VAL; // STD localparam C_PF_NEGATE_VAL = (C_PRELOAD_LATENCY == 0) ? C_PROG_FULL_THRESH_NEGATE_VAL - EXTRA_WORDS_PF_PARAM: // FWFT C_PROG_FULL_THRESH_NEGATE_VAL; // STD //----------------------------------------------------------------------------- // Generate PROG_FULL for single programmable threshold constant //----------------------------------------------------------------------------- wire [C_WR_PNTR_WIDTH-1:0] temp = C_PF_ASSERT_VAL; generate if (C_PROG_FULL_TYPE == 1) begin : single_pf_const always @(posedge CLK or posedge RST_FULL_FF) begin if (RST_FULL_FF && C_HAS_RST) prog_full_i <= C_FULL_FLAGS_RST_VAL; else begin if (srst_wrst_busy) prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL; else if (IS_ASYMMETRY == 0) begin if (RST_FULL_GEN) prog_full_i <= #`TCQ 1'b0; else if (diff_pntr == C_PF_ASSERT_VAL && write_only_q) prog_full_i <= #`TCQ 1'b1; else if (diff_pntr == C_PF_ASSERT_VAL && read_only_q) prog_full_i <= #`TCQ 1'b0; else prog_full_i <= #`TCQ prog_full_i; end else begin if (RST_FULL_GEN) prog_full_i <= #`TCQ 1'b0; else if (~RST_FULL_GEN ) begin if (diff_pntr>= C_PF_ASSERT_VAL ) prog_full_i <= #`TCQ 1'b1; else if ((diff_pntr) < C_PF_ASSERT_VAL ) prog_full_i <= #`TCQ 1'b0; else prog_full_i <= #`TCQ 1'b0; end else prog_full_i <= #`TCQ prog_full_i; end end end end endgenerate // single_pf_const //----------------------------------------------------------------------------- // Generate PROG_FULL for multiple programmable threshold constants //----------------------------------------------------------------------------- generate if (C_PROG_FULL_TYPE == 2) begin : multiple_pf_const always @(posedge CLK or posedge RST_FULL_FF) begin //if (RST_FULL_FF) if (RST_FULL_FF && C_HAS_RST) prog_full_i <= C_FULL_FLAGS_RST_VAL; else begin if (srst_wrst_busy) prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL; else if (IS_ASYMMETRY == 0) begin if (RST_FULL_GEN) prog_full_i <= #`TCQ 1'b0; else if (diff_pntr == C_PF_ASSERT_VAL && write_only_q) prog_full_i <= #`TCQ 1'b1; else if (diff_pntr == C_PF_NEGATE_VAL && read_only_q) prog_full_i <= #`TCQ 1'b0; else prog_full_i <= #`TCQ prog_full_i; end else begin if (RST_FULL_GEN) prog_full_i <= #`TCQ 1'b0; else if (~RST_FULL_GEN ) begin if (diff_pntr >= C_PF_ASSERT_VAL ) prog_full_i <= #`TCQ 1'b1; else if (diff_pntr < C_PF_NEGATE_VAL) prog_full_i <= #`TCQ 1'b0; else prog_full_i <= #`TCQ prog_full_i; end else prog_full_i <= #`TCQ prog_full_i; end end end end endgenerate //multiple_pf_const //----------------------------------------------------------------------------- // Generate PROG_FULL for single programmable threshold input port //----------------------------------------------------------------------------- wire [C_WR_PNTR_WIDTH-1:0] pf3_assert_val = (C_PRELOAD_LATENCY == 0) ? PROG_FULL_THRESH - EXTRA_WORDS_PF: // FWFT PROG_FULL_THRESH; // STD generate if (C_PROG_FULL_TYPE == 3) begin : single_pf_input always @(posedge CLK or posedge RST_FULL_FF) begin//0 //if (RST_FULL_FF) if (RST_FULL_FF && C_HAS_RST) prog_full_i <= C_FULL_FLAGS_RST_VAL; else begin //1 if (srst_wrst_busy) prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL; else if (IS_ASYMMETRY == 0) begin//2 if (RST_FULL_GEN) prog_full_i <= #`TCQ 1'b0; else if (~almost_full_i) begin//3 if (diff_pntr > pf3_assert_val) prog_full_i <= #`TCQ 1'b1; else if (diff_pntr == pf3_assert_val) begin//4 if (read_only_q) prog_full_i <= #`TCQ 1'b0; else prog_full_i <= #`TCQ 1'b1; end else//4 prog_full_i <= #`TCQ 1'b0; end else//3 prog_full_i <= #`TCQ prog_full_i; end //2 else begin//5 if (RST_FULL_GEN) prog_full_i <= #`TCQ 1'b0; else if (~full_i ) begin//6 if (diff_pntr >= pf3_assert_val ) prog_full_i <= #`TCQ 1'b1; else if (diff_pntr < pf3_assert_val) begin//7 prog_full_i <= #`TCQ 1'b0; end//7 end//6 else prog_full_i <= #`TCQ prog_full_i; end//5 end//1 end//0 end endgenerate //single_pf_input //----------------------------------------------------------------------------- // Generate PROG_FULL for multiple programmable threshold input ports //----------------------------------------------------------------------------- wire [C_WR_PNTR_WIDTH-1:0] pf_assert_val = (C_PRELOAD_LATENCY == 0) ? (PROG_FULL_THRESH_ASSERT -EXTRA_WORDS_PF) : // FWFT PROG_FULL_THRESH_ASSERT; // STD wire [C_WR_PNTR_WIDTH-1:0] pf_negate_val = (C_PRELOAD_LATENCY == 0) ? (PROG_FULL_THRESH_NEGATE -EXTRA_WORDS_PF) : // FWFT PROG_FULL_THRESH_NEGATE; // STD generate if (C_PROG_FULL_TYPE == 4) begin : multiple_pf_inputs always @(posedge CLK or posedge RST_FULL_FF) begin if (RST_FULL_FF && C_HAS_RST) prog_full_i <= C_FULL_FLAGS_RST_VAL; else begin if (srst_wrst_busy) prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL; else if (IS_ASYMMETRY == 0) begin if (RST_FULL_GEN) prog_full_i <= #`TCQ 1'b0; else if (~almost_full_i) begin if (diff_pntr >= pf_assert_val) prog_full_i <= #`TCQ 1'b1; else if ((diff_pntr == pf_negate_val && read_only_q) || diff_pntr < pf_negate_val) prog_full_i <= #`TCQ 1'b0; else prog_full_i <= #`TCQ prog_full_i; end else prog_full_i <= #`TCQ prog_full_i; end else begin if (RST_FULL_GEN) prog_full_i <= #`TCQ 1'b0; else if (~full_i ) begin if (diff_pntr >= pf_assert_val ) prog_full_i <= #`TCQ 1'b1; else if (diff_pntr < pf_negate_val) prog_full_i <= #`TCQ 1'b0; else prog_full_i <= #`TCQ prog_full_i; end else prog_full_i <= #`TCQ prog_full_i; end end end end endgenerate //multiple_pf_inputs //----------------------------------------------------------------------------- // Generate PROG_EMPTY //----------------------------------------------------------------------------- localparam C_PE_ASSERT_VAL = (C_PRELOAD_LATENCY == 0) ? C_PROG_EMPTY_THRESH_ASSERT_VAL - 2: // FWFT C_PROG_EMPTY_THRESH_ASSERT_VAL; // STD localparam C_PE_NEGATE_VAL = (C_PRELOAD_LATENCY == 0) ? C_PROG_EMPTY_THRESH_NEGATE_VAL - 2: // FWFT C_PROG_EMPTY_THRESH_NEGATE_VAL; // STD //----------------------------------------------------------------------------- // Generate PROG_EMPTY for single programmable threshold constant //----------------------------------------------------------------------------- generate if (C_PROG_EMPTY_TYPE == 1) begin : single_pe_const always @(posedge CLK or posedge rst_i) begin //if (rst_i) if (rst_i && C_HAS_RST) prog_empty_i <= 1'b1; else begin if (srst_rrst_busy) prog_empty_i <= #`TCQ 1'b1; else if (IS_ASYMMETRY == 0) begin if (diff_pntr_pe == C_PE_ASSERT_VAL && read_only_q) prog_empty_i <= #`TCQ 1'b1; else if (diff_pntr_pe == C_PE_ASSERT_VAL && write_only_q) prog_empty_i <= #`TCQ 1'b0; else prog_empty_i <= #`TCQ prog_empty_i; end else begin if (~rst_i ) begin if (diff_pntr_pe <= C_PE_ASSERT_VAL) prog_empty_i <= #`TCQ 1'b1; else if (diff_pntr_pe > C_PE_ASSERT_VAL) prog_empty_i <= #`TCQ 1'b0; end else prog_empty_i <= #`TCQ prog_empty_i; end end end end endgenerate // single_pe_const //----------------------------------------------------------------------------- // Generate PROG_EMPTY for multiple programmable threshold constants //----------------------------------------------------------------------------- generate if (C_PROG_EMPTY_TYPE == 2) begin : multiple_pe_const always @(posedge CLK or posedge rst_i) begin //if (rst_i) if (rst_i && C_HAS_RST) prog_empty_i <= 1'b1; else begin if (srst_rrst_busy) prog_empty_i <= #`TCQ 1'b1; else if (IS_ASYMMETRY == 0) begin if (diff_pntr_pe == C_PE_ASSERT_VAL && read_only_q) prog_empty_i <= #`TCQ 1'b1; else if (diff_pntr_pe == C_PE_NEGATE_VAL && write_only_q) prog_empty_i <= #`TCQ 1'b0; else prog_empty_i <= #`TCQ prog_empty_i; end else begin if (~rst_i ) begin if (diff_pntr_pe <= C_PE_ASSERT_VAL ) prog_empty_i <= #`TCQ 1'b1; else if (diff_pntr_pe > C_PE_NEGATE_VAL) prog_empty_i <= #`TCQ 1'b0; else prog_empty_i <= #`TCQ prog_empty_i; end else prog_empty_i <= #`TCQ prog_empty_i; end end end end endgenerate //multiple_pe_const //----------------------------------------------------------------------------- // Generate PROG_EMPTY for single programmable threshold input port //----------------------------------------------------------------------------- wire [C_RD_PNTR_WIDTH-1:0] pe3_assert_val = (C_PRELOAD_LATENCY == 0) ? (PROG_EMPTY_THRESH -2) : // FWFT PROG_EMPTY_THRESH; // STD generate if (C_PROG_EMPTY_TYPE == 3) begin : single_pe_input always @(posedge CLK or posedge rst_i) begin //if (rst_i) if (rst_i && C_HAS_RST) prog_empty_i <= 1'b1; else begin if (srst_rrst_busy) prog_empty_i <= #`TCQ 1'b1; else if (IS_ASYMMETRY == 0) begin if (~almost_full_i) begin if (diff_pntr_pe < pe3_assert_val) prog_empty_i <= #`TCQ 1'b1; else if (diff_pntr_pe == pe3_assert_val) begin if (write_only_q) prog_empty_i <= #`TCQ 1'b0; else prog_empty_i <= #`TCQ 1'b1; end else prog_empty_i <= #`TCQ 1'b0; end else prog_empty_i <= #`TCQ prog_empty_i; end else begin if (diff_pntr_pe <= pe3_assert_val ) prog_empty_i <= #`TCQ 1'b1; else if (diff_pntr_pe > pe3_assert_val) prog_empty_i <= #`TCQ 1'b0; else prog_empty_i <= #`TCQ prog_empty_i; end end end end endgenerate // single_pe_input //----------------------------------------------------------------------------- // Generate PROG_EMPTY for multiple programmable threshold input ports //----------------------------------------------------------------------------- wire [C_RD_PNTR_WIDTH-1:0] pe4_assert_val = (C_PRELOAD_LATENCY == 0) ? (PROG_EMPTY_THRESH_ASSERT - 2) : // FWFT PROG_EMPTY_THRESH_ASSERT; // STD wire [C_RD_PNTR_WIDTH-1:0] pe4_negate_val = (C_PRELOAD_LATENCY == 0) ? (PROG_EMPTY_THRESH_NEGATE - 2) : // FWFT PROG_EMPTY_THRESH_NEGATE; // STD generate if (C_PROG_EMPTY_TYPE == 4) begin : multiple_pe_inputs always @(posedge CLK or posedge rst_i) begin //if (rst_i) if (rst_i && C_HAS_RST) prog_empty_i <= 1'b1; else begin if (srst_rrst_busy) prog_empty_i <= #`TCQ 1'b1; else if (IS_ASYMMETRY == 0) begin if (~almost_full_i) begin if (diff_pntr_pe <= pe4_assert_val) prog_empty_i <= #`TCQ 1'b1; else if (((diff_pntr_pe == pe4_negate_val) && write_only_q) || (diff_pntr_pe > pe4_negate_val)) begin prog_empty_i <= #`TCQ 1'b0; end else prog_empty_i <= #`TCQ prog_empty_i; end else prog_empty_i <= #`TCQ prog_empty_i; end else begin if (diff_pntr_pe <= pe4_assert_val ) prog_empty_i <= #`TCQ 1'b1; else if (diff_pntr_pe > pe4_negate_val) prog_empty_i <= #`TCQ 1'b0; else prog_empty_i <= #`TCQ prog_empty_i; end end end end endgenerate // multiple_pe_inputs endmodule // fifo_generator_v12_0_bhv_ver_ss /************************************************************************** * First-Word Fall-Through module (preload 0) **************************************************************************/ module fifo_generator_v12_0_bhv_ver_preload0 #( parameter C_DOUT_RST_VAL = "", parameter C_DOUT_WIDTH = 8, parameter C_HAS_RST = 0, parameter C_ENABLE_RST_SYNC = 0, parameter C_HAS_SRST = 0, parameter C_USE_DOUT_RST = 0, parameter C_USE_ECC = 0, parameter C_USERVALID_LOW = 0, parameter C_USERUNDERFLOW_LOW = 0, parameter C_MEMORY_TYPE = 0, parameter C_FIFO_TYPE = 0 ) ( //Inputs input RD_CLK, input RD_RST, input SRST, input WR_RST_BUSY, input RD_RST_BUSY, input RD_EN, input FIFOEMPTY, input [C_DOUT_WIDTH-1:0] FIFODATA, input FIFOSBITERR, input FIFODBITERR, //Outputs output reg [C_DOUT_WIDTH-1:0] USERDATA, output USERVALID, output USERUNDERFLOW, output USEREMPTY, output USERALMOSTEMPTY, output RAMVALID, output FIFORDEN, output reg USERSBITERR, output reg USERDBITERR, output reg STAGE2_REG_EN, output [1:0] VALID_STAGES ); //Internal signals wire preloadstage1; wire preloadstage2; reg ram_valid_i; reg read_data_valid_i; wire ram_regout_en; wire ram_rd_en; reg empty_i = 1'b1; reg empty_q = 1'b1; reg rd_en_q = 1'b0; reg almost_empty_i = 1'b1; reg almost_empty_q = 1'b1; wire rd_rst_i; wire srst_i; /************************************************************************* * FUNCTIONS *************************************************************************/ /************************************************************************* * hexstr_conv * Converts a string of type hex to a binary value (for C_DOUT_RST_VAL) ***********************************************************************/ function [C_DOUT_WIDTH-1:0] hexstr_conv; input [(C_DOUT_WIDTH*8)-1:0] def_data; integer index,i,j; reg [3:0] bin; begin index = 0; hexstr_conv = 'b0; for( i=C_DOUT_WIDTH-1; i>=0; i=i-1 ) begin case (def_data[7:0]) 8'b00000000 : begin bin = 4'b0000; i = -1; end 8'b00110000 : bin = 4'b0000; 8'b00110001 : bin = 4'b0001; 8'b00110010 : bin = 4'b0010; 8'b00110011 : bin = 4'b0011; 8'b00110100 : bin = 4'b0100; 8'b00110101 : bin = 4'b0101; 8'b00110110 : bin = 4'b0110; 8'b00110111 : bin = 4'b0111; 8'b00111000 : bin = 4'b1000; 8'b00111001 : bin = 4'b1001; 8'b01000001 : bin = 4'b1010; 8'b01000010 : bin = 4'b1011; 8'b01000011 : bin = 4'b1100; 8'b01000100 : bin = 4'b1101; 8'b01000101 : bin = 4'b1110; 8'b01000110 : bin = 4'b1111; 8'b01100001 : bin = 4'b1010; 8'b01100010 : bin = 4'b1011; 8'b01100011 : bin = 4'b1100; 8'b01100100 : bin = 4'b1101; 8'b01100101 : bin = 4'b1110; 8'b01100110 : bin = 4'b1111; default : begin bin = 4'bx; end endcase for( j=0; j<4; j=j+1) begin if ((index*4)+j < C_DOUT_WIDTH) begin hexstr_conv[(index*4)+j] = bin[j]; end end index = index + 1; def_data = def_data >> 8; end end endfunction //************************************************************************* // Set power-on states for regs //************************************************************************* initial begin ram_valid_i = 1'b0; read_data_valid_i = 1'b0; USERDATA = hexstr_conv(C_DOUT_RST_VAL); USERSBITERR = 1'b0; USERDBITERR = 1'b0; end //initial //*************************************************************************** // connect up optional reset //*************************************************************************** assign rd_rst_i = (C_HAS_RST == 1 || C_ENABLE_RST_SYNC == 0) ? RD_RST : 0; assign srst_i = C_HAS_SRST ? SRST || WR_RST_BUSY || RD_RST_BUSY : 0; localparam INVALID = 0; localparam STAGE1_VALID = 2; localparam STAGE2_VALID = 1; localparam BOTH_STAGES_VALID = 3; reg [1:0] curr_fwft_state = INVALID; reg [1:0] next_fwft_state = INVALID; generate if (C_FIFO_TYPE != 2) begin : gnll_fifo always @* begin case (curr_fwft_state) INVALID: begin if (~FIFOEMPTY) next_fwft_state <= STAGE1_VALID; else next_fwft_state <= INVALID; end STAGE1_VALID: begin if (FIFOEMPTY) next_fwft_state <= STAGE2_VALID; else next_fwft_state <= BOTH_STAGES_VALID; end STAGE2_VALID: begin if (FIFOEMPTY && RD_EN) next_fwft_state <= INVALID; else if (~FIFOEMPTY && RD_EN) next_fwft_state <= STAGE1_VALID; else if (~FIFOEMPTY && ~RD_EN) next_fwft_state <= BOTH_STAGES_VALID; else next_fwft_state <= STAGE2_VALID; end BOTH_STAGES_VALID: begin if (FIFOEMPTY && RD_EN) next_fwft_state <= STAGE2_VALID; else if (~FIFOEMPTY && RD_EN) next_fwft_state <= BOTH_STAGES_VALID; else next_fwft_state <= BOTH_STAGES_VALID; end default: next_fwft_state <= INVALID; endcase end always @ (posedge rd_rst_i or posedge RD_CLK) begin if (rd_rst_i) curr_fwft_state <= INVALID; else if (srst_i) curr_fwft_state <= #`TCQ INVALID; else curr_fwft_state <= #`TCQ next_fwft_state; end always @* begin case (curr_fwft_state) INVALID: STAGE2_REG_EN <= 1'b0; STAGE1_VALID: STAGE2_REG_EN <= 1'b1; STAGE2_VALID: STAGE2_REG_EN <= 1'b0; BOTH_STAGES_VALID: STAGE2_REG_EN <= RD_EN; default: STAGE2_REG_EN <= 1'b0; endcase end assign VALID_STAGES = curr_fwft_state; //*************************************************************************** // preloadstage2 indicates that stage2 needs to be updated. This is true // whenever read_data_valid is false, and RAM_valid is true. //*************************************************************************** assign preloadstage2 = ram_valid_i & (~read_data_valid_i | RD_EN); //*************************************************************************** // preloadstage1 indicates that stage1 needs to be updated. This is true // whenever the RAM has data (RAM_EMPTY is false), and either RAM_Valid is // false (indicating that Stage1 needs updating), or preloadstage2 is active // (indicating that Stage2 is going to update, so Stage1, therefore, must // also be updated to keep it valid. //*************************************************************************** assign preloadstage1 = ((~ram_valid_i | preloadstage2) & ~FIFOEMPTY); //*************************************************************************** // Calculate RAM_REGOUT_EN // The output registers are controlled by the ram_regout_en signal. // These registers should be updated either when the output in Stage2 is // invalid (preloadstage2), OR when the user is reading, in which case the // Stage2 value will go invalid unless it is replenished. //*************************************************************************** assign ram_regout_en = preloadstage2; //*************************************************************************** // Calculate RAM_RD_EN // RAM_RD_EN will be asserted whenever the RAM needs to be read in order to // update the value in Stage1. // One case when this happens is when preloadstage1=true, which indicates // that the data in Stage1 or Stage2 is invalid, and needs to automatically // be updated. // The other case is when the user is reading from the FIFO, which // guarantees that Stage1 or Stage2 will be invalid on the next clock // cycle, unless it is replinished by data from the memory. So, as long // as the RAM has data in it, a read of the RAM should occur. //*************************************************************************** assign ram_rd_en = (RD_EN & ~FIFOEMPTY) | preloadstage1; end endgenerate // gnll_fifo reg curr_state = 0; reg next_state = 0; reg leaving_empty_fwft = 0; reg going_empty_fwft = 0; reg empty_i_q = 0; reg ram_rd_en_fwft = 0; generate if (C_FIFO_TYPE == 2) begin : gll_fifo always @* begin // FSM fo FWFT case (curr_state) 1'b0: begin if (~FIFOEMPTY) next_state <= 1'b1; else next_state <= 1'b0; end 1'b1: begin if (FIFOEMPTY && RD_EN) next_state <= 1'b0; else next_state <= 1'b1; end default: next_state <= 1'b0; endcase end always @ (posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i) begin empty_i <= 1'b1; empty_i_q <= 1'b1; curr_state <= 1'b0; ram_valid_i <= 1'b0; end else if (srst_i) begin empty_i <= #`TCQ 1'b1; empty_i_q <= #`TCQ 1'b1; curr_state <= #`TCQ 1'b0; ram_valid_i <= #`TCQ 1'b0; end else begin empty_i <= #`TCQ going_empty_fwft | (~leaving_empty_fwft & empty_i); empty_i_q <= #`TCQ FIFOEMPTY; curr_state <= #`TCQ next_state; ram_valid_i <= #`TCQ next_state; end end //always wire fe_of_empty; assign fe_of_empty = empty_i_q & ~FIFOEMPTY; always @* begin // Finding leaving empty case (curr_state) 1'b0: leaving_empty_fwft <= fe_of_empty; 1'b1: leaving_empty_fwft <= 1'b1; default: leaving_empty_fwft <= 1'b0; endcase end always @* begin // Finding going empty case (curr_state) 1'b1: going_empty_fwft <= FIFOEMPTY & RD_EN; default: going_empty_fwft <= 1'b0; endcase end always @* begin // Generating FWFT rd_en case (curr_state) 1'b0: ram_rd_en_fwft <= ~FIFOEMPTY; 1'b1: ram_rd_en_fwft <= ~FIFOEMPTY & RD_EN; default: ram_rd_en_fwft <= 1'b0; endcase end assign ram_regout_en = ram_rd_en_fwft; assign ram_rd_en = ram_rd_en_fwft; end endgenerate // gll_fifo //*************************************************************************** // Calculate RAMVALID_P0_OUT // RAMVALID_P0_OUT indicates that the data in Stage1 is valid. // // If the RAM is being read from on this clock cycle (ram_rd_en=1), then // RAMVALID_P0_OUT is certainly going to be true. // If the RAM is not being read from, but the output registers are being // updated to fill Stage2 (ram_regout_en=1), then Stage1 will be emptying, // therefore causing RAMVALID_P0_OUT to be false. // Otherwise, RAMVALID_P0_OUT will remain unchanged. //*************************************************************************** // PROCESS regout_valid generate if (C_FIFO_TYPE < 2) begin : gnll_fifo_ram_valid always @ (posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i) begin // asynchronous reset (active high) ram_valid_i <= #`TCQ 1'b0; end else begin if (srst_i) begin // synchronous reset (active high) ram_valid_i <= #`TCQ 1'b0; end else begin if (ram_rd_en == 1'b1) begin ram_valid_i <= #`TCQ 1'b1; end else begin if (ram_regout_en == 1'b1) ram_valid_i <= #`TCQ 1'b0; else ram_valid_i <= #`TCQ ram_valid_i; end end //srst_i end //rd_rst_i end //always end endgenerate // gnll_fifo_ram_valid //*************************************************************************** // Calculate READ_DATA_VALID // READ_DATA_VALID indicates whether the value in Stage2 is valid or not. // Stage2 has valid data whenever Stage1 had valid data and // ram_regout_en_i=1, such that the data in Stage1 is propogated // into Stage2. //*************************************************************************** always @ (posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i) read_data_valid_i <= #`TCQ 1'b0; else if (srst_i) read_data_valid_i <= #`TCQ 1'b0; else read_data_valid_i <= #`TCQ ram_valid_i | (read_data_valid_i & ~RD_EN); end //always //************************************************************************** // Calculate EMPTY // Defined as the inverse of READ_DATA_VALID // // Description: // // If read_data_valid_i indicates that the output is not valid, // and there is no valid data on the output of the ram to preload it // with, then we will report empty. // // If there is no valid data on the output of the ram and we are // reading, then the FIFO will go empty. // //************************************************************************** generate if (C_FIFO_TYPE < 2) begin : gnll_fifo_empty always @ (posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i) begin // asynchronous reset (active high) empty_i <= #`TCQ 1'b1; end else begin if (srst_i) begin // synchronous reset (active high) empty_i <= #`TCQ 1'b1; end else begin // rising clock edge empty_i <= #`TCQ (~ram_valid_i & ~read_data_valid_i) | (~ram_valid_i & RD_EN); end end end //always end endgenerate // gnll_fifo_empty // Register RD_EN from user to calculate USERUNDERFLOW. // Register empty_i to calculate USERUNDERFLOW. always @ (posedge RD_CLK) begin rd_en_q <= #`TCQ RD_EN; empty_q <= #`TCQ empty_i; end //always //*************************************************************************** // Calculate user_almost_empty // user_almost_empty is defined such that, unless more words are written // to the FIFO, the next read will cause the FIFO to go EMPTY. // // In most cases, whenever the output registers are updated (due to a user // read or a preload condition), then user_almost_empty will update to // whatever RAM_EMPTY is. // // The exception is when the output is valid, the user is not reading, and // Stage1 is not empty. In this condition, Stage1 will be preloaded from the // memory, so we need to make sure user_almost_empty deasserts properly under // this condition. //*************************************************************************** always @ (posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i) begin // asynchronous reset (active high) almost_empty_i <= #`TCQ 1'b1; almost_empty_q <= #`TCQ 1'b1; end else begin // rising clock edge if (srst_i) begin // synchronous reset (active high) almost_empty_i <= #`TCQ 1'b1; almost_empty_q <= #`TCQ 1'b1; end else begin if ((ram_regout_en) | (~FIFOEMPTY & read_data_valid_i & ~RD_EN)) begin almost_empty_i <= #`TCQ FIFOEMPTY; end almost_empty_q <= #`TCQ empty_i; end end end //always assign USEREMPTY = empty_i; assign USERALMOSTEMPTY = almost_empty_i; assign FIFORDEN = ram_rd_en; assign RAMVALID = ram_valid_i; assign USERVALID = C_USERVALID_LOW ? ~read_data_valid_i : read_data_valid_i; assign USERUNDERFLOW = C_USERUNDERFLOW_LOW ? ~(empty_q & rd_en_q) : empty_q & rd_en_q; // BRAM resets synchronously always @ (posedge RD_CLK) begin if (rd_rst_i || srst_i) begin if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE < 2) USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL); end end //always always @ (posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i) begin //asynchronous reset (active high) if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF USERSBITERR <= #`TCQ 0; USERDBITERR <= #`TCQ 0; end // DRAM resets asynchronously if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2) //asynchronous reset (active high) USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL); end else begin // rising clock edge if (srst_i) begin if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF USERSBITERR <= #`TCQ 0; USERDBITERR <= #`TCQ 0; end if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2) USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL); end else begin if (ram_regout_en) begin USERDATA <= #`TCQ FIFODATA; USERSBITERR <= #`TCQ FIFOSBITERR; USERDBITERR <= #`TCQ FIFODBITERR; end end end end //always endmodule //----------------------------------------------------------------------------- // // Register Slice // Register one AXI channel on forward and/or reverse signal path // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // reg_slice // //-------------------------------------------------------------------------- module fifo_generator_v12_0_axic_reg_slice # ( parameter C_FAMILY = "virtex7", parameter C_DATA_WIDTH = 32, parameter C_REG_CONFIG = 32'h00000000 ) ( // System Signals input wire ACLK, input wire ARESET, // Slave side input wire [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA, input wire S_VALID, output wire S_READY, // Master side output wire [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA, output wire M_VALID, input wire M_READY ); generate //////////////////////////////////////////////////////////////////// // // Both FWD and REV mode // //////////////////////////////////////////////////////////////////// if (C_REG_CONFIG == 32'h00000000) begin reg [1:0] state; localparam [1:0] ZERO = 2'b10, ONE = 2'b11, TWO = 2'b01; reg [C_DATA_WIDTH-1:0] storage_data1 = 0; reg [C_DATA_WIDTH-1:0] storage_data2 = 0; reg load_s1; wire load_s2; wire load_s1_from_s2; reg s_ready_i; //local signal of output wire m_valid_i; //local signal of output // assign local signal to its output signal assign S_READY = s_ready_i; assign M_VALID = m_valid_i; reg areset_d1; // Reset delay register always @(posedge ACLK) begin areset_d1 <= ARESET; end // Load storage1 with either slave side data or from storage2 always @(posedge ACLK) begin if (load_s1) if (load_s1_from_s2) storage_data1 <= storage_data2; else storage_data1 <= S_PAYLOAD_DATA; end // Load storage2 with slave side data always @(posedge ACLK) begin if (load_s2) storage_data2 <= S_PAYLOAD_DATA; end assign M_PAYLOAD_DATA = storage_data1; // Always load s2 on a valid transaction even if it's unnecessary assign load_s2 = S_VALID & s_ready_i; // Loading s1 always @ * begin if ( ((state == ZERO) && (S_VALID == 1)) || // Load when empty on slave transaction // Load when ONE if we both have read and write at the same time ((state == ONE) && (S_VALID == 1) && (M_READY == 1)) || // Load when TWO and we have a transaction on Master side ((state == TWO) && (M_READY == 1))) load_s1 = 1'b1; else load_s1 = 1'b0; end // always @ * assign load_s1_from_s2 = (state == TWO); // State Machine for handling output signals always @(posedge ACLK) begin if (ARESET) begin s_ready_i <= 1'b0; state <= ZERO; end else if (areset_d1) begin s_ready_i <= 1'b1; end else begin case (state) // No transaction stored locally ZERO: if (S_VALID) state <= ONE; // Got one so move to ONE // One transaction stored locally ONE: begin if (M_READY & ~S_VALID) state <= ZERO; // Read out one so move to ZERO if (~M_READY & S_VALID) begin state <= TWO; // Got another one so move to TWO s_ready_i <= 1'b0; end end // TWO transaction stored locally TWO: if (M_READY) begin state <= ONE; // Read out one so move to ONE s_ready_i <= 1'b1; end endcase // case (state) end end // always @ (posedge ACLK) assign m_valid_i = state[0]; end // if (C_REG_CONFIG == 1) //////////////////////////////////////////////////////////////////// // // 1-stage pipeline register with bubble cycle, both FWD and REV pipelining // Operates same as 1-deep FIFO // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000001) begin reg [C_DATA_WIDTH-1:0] storage_data1 = 0; reg s_ready_i; //local signal of output reg m_valid_i; //local signal of output // assign local signal to its output signal assign S_READY = s_ready_i; assign M_VALID = m_valid_i; reg areset_d1; // Reset delay register always @(posedge ACLK) begin areset_d1 <= ARESET; end // Load storage1 with slave side data always @(posedge ACLK) begin if (ARESET) begin s_ready_i <= 1'b0; m_valid_i <= 1'b0; end else if (areset_d1) begin s_ready_i <= 1'b1; end else if (m_valid_i & M_READY) begin s_ready_i <= 1'b1; m_valid_i <= 1'b0; end else if (S_VALID & s_ready_i) begin s_ready_i <= 1'b0; m_valid_i <= 1'b1; end if (~m_valid_i) begin storage_data1 <= S_PAYLOAD_DATA; end end assign M_PAYLOAD_DATA = storage_data1; end // if (C_REG_CONFIG == 7) else begin : default_case // Passthrough assign M_PAYLOAD_DATA = S_PAYLOAD_DATA; assign M_VALID = S_VALID; assign S_READY = M_READY; end endgenerate endmodule // reg_slice
/* ******************************************************************************* * * FIFO Generator - Verilog Behavioral Model * ******************************************************************************* * * (c) Copyright 1995 - 2009 Xilinx, Inc. All rights reserved. * * This file contains confidential and proprietary information * of Xilinx, Inc. and is protected under U.S. and * international copyright and other intellectual property * laws. * * DISCLAIMER * This disclaimer is not a license and does not grant any * rights to the materials distributed herewith. Except as * otherwise provided in a valid license issued to you by * Xilinx, and to the maximum extent permitted by applicable * law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND * WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES * AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING * BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- * INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and * (2) Xilinx shall not be liable (whether in contract or tort, * including negligence, or under any other theory of * liability) for any loss or damage of any kind or nature * related to, arising under or in connection with these * materials, including for any direct, or any indirect, * special, incidental, or consequential loss or damage * (including loss of data, profits, goodwill, or any type of * loss or damage suffered as a result of any action brought * by a third party) even if such damage or loss was * reasonably foreseeable or Xilinx had been advised of the * possibility of the same. * * CRITICAL APPLICATIONS * Xilinx products are not designed or intended to be fail- * safe, or for use in any application requiring fail-safe * performance, such as life-support or safety devices or * systems, Class III medical devices, nuclear facilities, * applications related to the deployment of airbags, or any * other applications that could lead to death, personal * injury, or severe property or environmental damage * (individually and collectively, "Critical * Applications"). Customer assumes the sole risk and * liability of any use of Xilinx products in Critical * Applications, subject only to applicable laws and * regulations governing limitations on product liability. * * THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS * PART OF THIS FILE AT ALL TIMES. * ******************************************************************************* ******************************************************************************* * * Filename: fifo_generator_vlog_beh.v * * Author : Xilinx * ******************************************************************************* * Structure: * * fifo_generator_vlog_beh.v * | * +-fifo_generator_v12_0_bhv_ver_as * | * +-fifo_generator_v12_0_bhv_ver_ss * | * +-fifo_generator_v12_0_bhv_ver_preload0 * ******************************************************************************* * Description: * * The Verilog behavioral model for the FIFO Generator. * * The behavioral model has three parts: * - The behavioral model for independent clocks FIFOs (_as) * - The behavioral model for common clock FIFOs (_ss) * - The "preload logic" block which implements First-word Fall-through * ******************************************************************************* * Description: * The verilog behavioral model for the FIFO generator core. * ******************************************************************************* */ `timescale 1ps/1ps `ifndef TCQ `define TCQ 100 `endif /******************************************************************************* * Declaration of top-level module ******************************************************************************/ module fifo_generator_vlog_beh #( //----------------------------------------------------------------------- // Generic Declarations //----------------------------------------------------------------------- parameter C_COMMON_CLOCK = 0, parameter C_COUNT_TYPE = 0, parameter C_DATA_COUNT_WIDTH = 2, parameter C_DEFAULT_VALUE = "", parameter C_DIN_WIDTH = 8, parameter C_DOUT_RST_VAL = "", parameter C_DOUT_WIDTH = 8, parameter C_ENABLE_RLOCS = 0, parameter C_FAMILY = "", parameter C_FULL_FLAGS_RST_VAL = 1, parameter C_HAS_ALMOST_EMPTY = 0, parameter C_HAS_ALMOST_FULL = 0, parameter C_HAS_BACKUP = 0, parameter C_HAS_DATA_COUNT = 0, parameter C_HAS_INT_CLK = 0, parameter C_HAS_MEMINIT_FILE = 0, parameter C_HAS_OVERFLOW = 0, parameter C_HAS_RD_DATA_COUNT = 0, parameter C_HAS_RD_RST = 0, parameter C_HAS_RST = 1, parameter C_HAS_SRST = 0, parameter C_HAS_UNDERFLOW = 0, parameter C_HAS_VALID = 0, parameter C_HAS_WR_ACK = 0, parameter C_HAS_WR_DATA_COUNT = 0, parameter C_HAS_WR_RST = 0, parameter C_IMPLEMENTATION_TYPE = 0, parameter C_INIT_WR_PNTR_VAL = 0, parameter C_MEMORY_TYPE = 1, parameter C_MIF_FILE_NAME = "", parameter C_OPTIMIZATION_MODE = 0, parameter C_OVERFLOW_LOW = 0, parameter C_PRELOAD_LATENCY = 1, parameter C_PRELOAD_REGS = 0, parameter C_PRIM_FIFO_TYPE = "4kx4", parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0, parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0, parameter C_PROG_EMPTY_TYPE = 0, parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0, parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0, parameter C_PROG_FULL_TYPE = 0, parameter C_RD_DATA_COUNT_WIDTH = 2, parameter C_RD_DEPTH = 256, parameter C_RD_FREQ = 1, parameter C_RD_PNTR_WIDTH = 8, parameter C_UNDERFLOW_LOW = 0, parameter C_USE_DOUT_RST = 0, parameter C_USE_ECC = 0, parameter C_USE_EMBEDDED_REG = 0, parameter C_USE_PIPELINE_REG = 0, parameter C_POWER_SAVING_MODE = 0, parameter C_USE_FIFO16_FLAGS = 0, parameter C_USE_FWFT_DATA_COUNT = 0, parameter C_VALID_LOW = 0, parameter C_WR_ACK_LOW = 0, parameter C_WR_DATA_COUNT_WIDTH = 2, parameter C_WR_DEPTH = 256, parameter C_WR_FREQ = 1, parameter C_WR_PNTR_WIDTH = 8, parameter C_WR_RESPONSE_LATENCY = 1, parameter C_MSGON_VAL = 1, parameter C_ENABLE_RST_SYNC = 1, parameter C_ERROR_INJECTION_TYPE = 0, parameter C_SYNCHRONIZER_STAGE = 2, // AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, // 0: Native Interface, 1: AXI4 Stream, 2: AXI4/AXI3 parameter C_AXI_TYPE = 0, // 1: AXI4, 2: AXI4 Lite, 3: AXI3 parameter C_HAS_AXI_WR_CHANNEL = 0, parameter C_HAS_AXI_RD_CHANNEL = 0, parameter C_HAS_SLAVE_CE = 0, parameter C_HAS_MASTER_CE = 0, parameter C_ADD_NGC_CONSTRAINT = 0, parameter C_USE_COMMON_UNDERFLOW = 0, parameter C_USE_COMMON_OVERFLOW = 0, parameter C_USE_DEFAULT_SETTINGS = 0, // AXI Full/Lite parameter C_AXI_ID_WIDTH = 0, parameter C_AXI_ADDR_WIDTH = 0, parameter C_AXI_DATA_WIDTH = 0, parameter C_AXI_LEN_WIDTH = 8, parameter C_AXI_LOCK_WIDTH = 2, parameter C_HAS_AXI_ID = 0, parameter C_HAS_AXI_AWUSER = 0, parameter C_HAS_AXI_WUSER = 0, parameter C_HAS_AXI_BUSER = 0, parameter C_HAS_AXI_ARUSER = 0, parameter C_HAS_AXI_RUSER = 0, parameter C_AXI_ARUSER_WIDTH = 0, parameter C_AXI_AWUSER_WIDTH = 0, parameter C_AXI_WUSER_WIDTH = 0, parameter C_AXI_BUSER_WIDTH = 0, parameter C_AXI_RUSER_WIDTH = 0, // AXI Streaming parameter C_HAS_AXIS_TDATA = 0, parameter C_HAS_AXIS_TID = 0, parameter C_HAS_AXIS_TDEST = 0, parameter C_HAS_AXIS_TUSER = 0, parameter C_HAS_AXIS_TREADY = 0, parameter C_HAS_AXIS_TLAST = 0, parameter C_HAS_AXIS_TSTRB = 0, parameter C_HAS_AXIS_TKEEP = 0, parameter C_AXIS_TDATA_WIDTH = 1, parameter C_AXIS_TID_WIDTH = 1, parameter C_AXIS_TDEST_WIDTH = 1, parameter C_AXIS_TUSER_WIDTH = 1, parameter C_AXIS_TSTRB_WIDTH = 1, parameter C_AXIS_TKEEP_WIDTH = 1, // AXI Channel Type // WACH --> Write Address Channel // WDCH --> Write Data Channel // WRCH --> Write Response Channel // RACH --> Read Address Channel // RDCH --> Read Data Channel // AXIS --> AXI Streaming parameter C_WACH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logic parameter C_WDCH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie parameter C_WRCH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie parameter C_RACH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie parameter C_RDCH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie parameter C_AXIS_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie // AXI Implementation Type // 1 = Common Clock Block RAM FIFO // 2 = Common Clock Distributed RAM FIFO // 11 = Independent Clock Block RAM FIFO // 12 = Independent Clock Distributed RAM FIFO parameter C_IMPLEMENTATION_TYPE_WACH = 0, parameter C_IMPLEMENTATION_TYPE_WDCH = 0, parameter C_IMPLEMENTATION_TYPE_WRCH = 0, parameter C_IMPLEMENTATION_TYPE_RACH = 0, parameter C_IMPLEMENTATION_TYPE_RDCH = 0, parameter C_IMPLEMENTATION_TYPE_AXIS = 0, // AXI FIFO Type // 0 = Data FIFO // 1 = Packet FIFO // 2 = Low Latency Sync FIFO // 3 = Low Latency Async FIFO parameter C_APPLICATION_TYPE_WACH = 0, parameter C_APPLICATION_TYPE_WDCH = 0, parameter C_APPLICATION_TYPE_WRCH = 0, parameter C_APPLICATION_TYPE_RACH = 0, parameter C_APPLICATION_TYPE_RDCH = 0, parameter C_APPLICATION_TYPE_AXIS = 0, // AXI Built-in FIFO Primitive Type // 512x36, 1kx18, 2kx9, 4kx4, etc parameter C_PRIM_FIFO_TYPE_WACH = "512x36", parameter C_PRIM_FIFO_TYPE_WDCH = "512x36", parameter C_PRIM_FIFO_TYPE_WRCH = "512x36", parameter C_PRIM_FIFO_TYPE_RACH = "512x36", parameter C_PRIM_FIFO_TYPE_RDCH = "512x36", parameter C_PRIM_FIFO_TYPE_AXIS = "512x36", // Enable ECC // 0 = ECC disabled // 1 = ECC enabled parameter C_USE_ECC_WACH = 0, parameter C_USE_ECC_WDCH = 0, parameter C_USE_ECC_WRCH = 0, parameter C_USE_ECC_RACH = 0, parameter C_USE_ECC_RDCH = 0, parameter C_USE_ECC_AXIS = 0, // ECC Error Injection Type // 0 = No Error Injection // 1 = Single Bit Error Injection // 2 = Double Bit Error Injection // 3 = Single Bit and Double Bit Error Injection parameter C_ERROR_INJECTION_TYPE_WACH = 0, parameter C_ERROR_INJECTION_TYPE_WDCH = 0, parameter C_ERROR_INJECTION_TYPE_WRCH = 0, parameter C_ERROR_INJECTION_TYPE_RACH = 0, parameter C_ERROR_INJECTION_TYPE_RDCH = 0, parameter C_ERROR_INJECTION_TYPE_AXIS = 0, // Input Data Width // Accumulation of all AXI input signal's width parameter C_DIN_WIDTH_WACH = 1, parameter C_DIN_WIDTH_WDCH = 1, parameter C_DIN_WIDTH_WRCH = 1, parameter C_DIN_WIDTH_RACH = 1, parameter C_DIN_WIDTH_RDCH = 1, parameter C_DIN_WIDTH_AXIS = 1, parameter C_WR_DEPTH_WACH = 16, parameter C_WR_DEPTH_WDCH = 16, parameter C_WR_DEPTH_WRCH = 16, parameter C_WR_DEPTH_RACH = 16, parameter C_WR_DEPTH_RDCH = 16, parameter C_WR_DEPTH_AXIS = 16, parameter C_WR_PNTR_WIDTH_WACH = 4, parameter C_WR_PNTR_WIDTH_WDCH = 4, parameter C_WR_PNTR_WIDTH_WRCH = 4, parameter C_WR_PNTR_WIDTH_RACH = 4, parameter C_WR_PNTR_WIDTH_RDCH = 4, parameter C_WR_PNTR_WIDTH_AXIS = 4, parameter C_HAS_DATA_COUNTS_WACH = 0, parameter C_HAS_DATA_COUNTS_WDCH = 0, parameter C_HAS_DATA_COUNTS_WRCH = 0, parameter C_HAS_DATA_COUNTS_RACH = 0, parameter C_HAS_DATA_COUNTS_RDCH = 0, parameter C_HAS_DATA_COUNTS_AXIS = 0, parameter C_HAS_PROG_FLAGS_WACH = 0, parameter C_HAS_PROG_FLAGS_WDCH = 0, parameter C_HAS_PROG_FLAGS_WRCH = 0, parameter C_HAS_PROG_FLAGS_RACH = 0, parameter C_HAS_PROG_FLAGS_RDCH = 0, parameter C_HAS_PROG_FLAGS_AXIS = 0, parameter C_PROG_FULL_TYPE_WACH = 0, parameter C_PROG_FULL_TYPE_WDCH = 0, parameter C_PROG_FULL_TYPE_WRCH = 0, parameter C_PROG_FULL_TYPE_RACH = 0, parameter C_PROG_FULL_TYPE_RDCH = 0, parameter C_PROG_FULL_TYPE_AXIS = 0, parameter C_PROG_FULL_THRESH_ASSERT_VAL_WACH = 0, parameter C_PROG_FULL_THRESH_ASSERT_VAL_WDCH = 0, parameter C_PROG_FULL_THRESH_ASSERT_VAL_WRCH = 0, parameter C_PROG_FULL_THRESH_ASSERT_VAL_RACH = 0, parameter C_PROG_FULL_THRESH_ASSERT_VAL_RDCH = 0, parameter C_PROG_FULL_THRESH_ASSERT_VAL_AXIS = 0, parameter C_PROG_EMPTY_TYPE_WACH = 0, parameter C_PROG_EMPTY_TYPE_WDCH = 0, parameter C_PROG_EMPTY_TYPE_WRCH = 0, parameter C_PROG_EMPTY_TYPE_RACH = 0, parameter C_PROG_EMPTY_TYPE_RDCH = 0, parameter C_PROG_EMPTY_TYPE_AXIS = 0, parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH = 0, parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH = 0, parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH = 0, parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH = 0, parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH = 0, parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS = 0, parameter C_REG_SLICE_MODE_WACH = 0, parameter C_REG_SLICE_MODE_WDCH = 0, parameter C_REG_SLICE_MODE_WRCH = 0, parameter C_REG_SLICE_MODE_RACH = 0, parameter C_REG_SLICE_MODE_RDCH = 0, parameter C_REG_SLICE_MODE_AXIS = 0 ) ( //------------------------------------------------------------------------------ // Input and Output Declarations //------------------------------------------------------------------------------ // Conventional FIFO Interface Signals input backup, input backup_marker, input clk, input rst, input srst, input wr_clk, input wr_rst, input rd_clk, input rd_rst, input [C_DIN_WIDTH-1:0] din, input wr_en, input rd_en, // Optional inputs input [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh, input [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_assert, input [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_negate, input [C_WR_PNTR_WIDTH-1:0] prog_full_thresh, input [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_assert, input [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_negate, input int_clk, input injectdbiterr, input injectsbiterr, input sleep, output [C_DOUT_WIDTH-1:0] dout, output full, output almost_full, output wr_ack, output overflow, output empty, output almost_empty, output valid, output underflow, output [C_DATA_COUNT_WIDTH-1:0] data_count, output [C_RD_DATA_COUNT_WIDTH-1:0] rd_data_count, output [C_WR_DATA_COUNT_WIDTH-1:0] wr_data_count, output prog_full, output prog_empty, output sbiterr, output dbiterr, output wr_rst_busy, output rd_rst_busy, // AXI Global Signal input m_aclk, input s_aclk, input s_aresetn, input s_aclk_en, input m_aclk_en, // AXI Full/Lite Slave Write Channel (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_awid, input [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr, input [C_AXI_LEN_WIDTH-1:0] s_axi_awlen, input [3-1:0] s_axi_awsize, input [2-1:0] s_axi_awburst, input [C_AXI_LOCK_WIDTH-1:0] s_axi_awlock, input [4-1:0] s_axi_awcache, input [3-1:0] s_axi_awprot, input [4-1:0] s_axi_awqos, input [4-1:0] s_axi_awregion, input [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser, input s_axi_awvalid, output s_axi_awready, input [C_AXI_ID_WIDTH-1:0] s_axi_wid, input [C_AXI_DATA_WIDTH-1:0] s_axi_wdata, input [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb, input s_axi_wlast, input [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser, input s_axi_wvalid, output s_axi_wready, output [C_AXI_ID_WIDTH-1:0] s_axi_bid, output [2-1:0] s_axi_bresp, output [C_AXI_BUSER_WIDTH-1:0] s_axi_buser, output s_axi_bvalid, input s_axi_bready, // AXI Full/Lite Master Write Channel (read side) output [C_AXI_ID_WIDTH-1:0] m_axi_awid, output [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr, output [C_AXI_LEN_WIDTH-1:0] m_axi_awlen, output [3-1:0] m_axi_awsize, output [2-1:0] m_axi_awburst, output [C_AXI_LOCK_WIDTH-1:0] m_axi_awlock, output [4-1:0] m_axi_awcache, output [3-1:0] m_axi_awprot, output [4-1:0] m_axi_awqos, output [4-1:0] m_axi_awregion, output [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser, output m_axi_awvalid, input m_axi_awready, output [C_AXI_ID_WIDTH-1:0] m_axi_wid, output [C_AXI_DATA_WIDTH-1:0] m_axi_wdata, output [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb, output m_axi_wlast, output [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser, output m_axi_wvalid, input m_axi_wready, input [C_AXI_ID_WIDTH-1:0] m_axi_bid, input [2-1:0] m_axi_bresp, input [C_AXI_BUSER_WIDTH-1:0] m_axi_buser, input m_axi_bvalid, output m_axi_bready, // AXI Full/Lite Slave Read Channel (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_arid, input [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr, input [C_AXI_LEN_WIDTH-1:0] s_axi_arlen, input [3-1:0] s_axi_arsize, input [2-1:0] s_axi_arburst, input [C_AXI_LOCK_WIDTH-1:0] s_axi_arlock, input [4-1:0] s_axi_arcache, input [3-1:0] s_axi_arprot, input [4-1:0] s_axi_arqos, input [4-1:0] s_axi_arregion, input [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser, input s_axi_arvalid, output s_axi_arready, output [C_AXI_ID_WIDTH-1:0] s_axi_rid, output [C_AXI_DATA_WIDTH-1:0] s_axi_rdata, output [2-1:0] s_axi_rresp, output s_axi_rlast, output [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser, output s_axi_rvalid, input s_axi_rready, // AXI Full/Lite Master Read Channel (read side) output [C_AXI_ID_WIDTH-1:0] m_axi_arid, output [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr, output [C_AXI_LEN_WIDTH-1:0] m_axi_arlen, output [3-1:0] m_axi_arsize, output [2-1:0] m_axi_arburst, output [C_AXI_LOCK_WIDTH-1:0] m_axi_arlock, output [4-1:0] m_axi_arcache, output [3-1:0] m_axi_arprot, output [4-1:0] m_axi_arqos, output [4-1:0] m_axi_arregion, output [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser, output m_axi_arvalid, input m_axi_arready, input [C_AXI_ID_WIDTH-1:0] m_axi_rid, input [C_AXI_DATA_WIDTH-1:0] m_axi_rdata, input [2-1:0] m_axi_rresp, input m_axi_rlast, input [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser, input m_axi_rvalid, output m_axi_rready, // AXI Streaming Slave Signals (Write side) input s_axis_tvalid, output s_axis_tready, input [C_AXIS_TDATA_WIDTH-1:0] s_axis_tdata, input [C_AXIS_TSTRB_WIDTH-1:0] s_axis_tstrb, input [C_AXIS_TKEEP_WIDTH-1:0] s_axis_tkeep, input s_axis_tlast, input [C_AXIS_TID_WIDTH-1:0] s_axis_tid, input [C_AXIS_TDEST_WIDTH-1:0] s_axis_tdest, input [C_AXIS_TUSER_WIDTH-1:0] s_axis_tuser, // AXI Streaming Master Signals (Read side) output m_axis_tvalid, input m_axis_tready, output [C_AXIS_TDATA_WIDTH-1:0] m_axis_tdata, output [C_AXIS_TSTRB_WIDTH-1:0] m_axis_tstrb, output [C_AXIS_TKEEP_WIDTH-1:0] m_axis_tkeep, output m_axis_tlast, output [C_AXIS_TID_WIDTH-1:0] m_axis_tid, output [C_AXIS_TDEST_WIDTH-1:0] m_axis_tdest, output [C_AXIS_TUSER_WIDTH-1:0] m_axis_tuser, // AXI Full/Lite Write Address Channel signals input axi_aw_injectsbiterr, input axi_aw_injectdbiterr, input [C_WR_PNTR_WIDTH_WACH-1:0] axi_aw_prog_full_thresh, input [C_WR_PNTR_WIDTH_WACH-1:0] axi_aw_prog_empty_thresh, output [C_WR_PNTR_WIDTH_WACH:0] axi_aw_data_count, output [C_WR_PNTR_WIDTH_WACH:0] axi_aw_wr_data_count, output [C_WR_PNTR_WIDTH_WACH:0] axi_aw_rd_data_count, output axi_aw_sbiterr, output axi_aw_dbiterr, output axi_aw_overflow, output axi_aw_underflow, output axi_aw_prog_full, output axi_aw_prog_empty, // AXI Full/Lite Write Data Channel signals input axi_w_injectsbiterr, input axi_w_injectdbiterr, input [C_WR_PNTR_WIDTH_WDCH-1:0] axi_w_prog_full_thresh, input [C_WR_PNTR_WIDTH_WDCH-1:0] axi_w_prog_empty_thresh, output [C_WR_PNTR_WIDTH_WDCH:0] axi_w_data_count, output [C_WR_PNTR_WIDTH_WDCH:0] axi_w_wr_data_count, output [C_WR_PNTR_WIDTH_WDCH:0] axi_w_rd_data_count, output axi_w_sbiterr, output axi_w_dbiterr, output axi_w_overflow, output axi_w_underflow, output axi_w_prog_full, output axi_w_prog_empty, // AXI Full/Lite Write Response Channel signals input axi_b_injectsbiterr, input axi_b_injectdbiterr, input [C_WR_PNTR_WIDTH_WRCH-1:0] axi_b_prog_full_thresh, input [C_WR_PNTR_WIDTH_WRCH-1:0] axi_b_prog_empty_thresh, output [C_WR_PNTR_WIDTH_WRCH:0] axi_b_data_count, output [C_WR_PNTR_WIDTH_WRCH:0] axi_b_wr_data_count, output [C_WR_PNTR_WIDTH_WRCH:0] axi_b_rd_data_count, output axi_b_sbiterr, output axi_b_dbiterr, output axi_b_overflow, output axi_b_underflow, output axi_b_prog_full, output axi_b_prog_empty, // AXI Full/Lite Read Address Channel signals input axi_ar_injectsbiterr, input axi_ar_injectdbiterr, input [C_WR_PNTR_WIDTH_RACH-1:0] axi_ar_prog_full_thresh, input [C_WR_PNTR_WIDTH_RACH-1:0] axi_ar_prog_empty_thresh, output [C_WR_PNTR_WIDTH_RACH:0] axi_ar_data_count, output [C_WR_PNTR_WIDTH_RACH:0] axi_ar_wr_data_count, output [C_WR_PNTR_WIDTH_RACH:0] axi_ar_rd_data_count, output axi_ar_sbiterr, output axi_ar_dbiterr, output axi_ar_overflow, output axi_ar_underflow, output axi_ar_prog_full, output axi_ar_prog_empty, // AXI Full/Lite Read Data Channel Signals input axi_r_injectsbiterr, input axi_r_injectdbiterr, input [C_WR_PNTR_WIDTH_RDCH-1:0] axi_r_prog_full_thresh, input [C_WR_PNTR_WIDTH_RDCH-1:0] axi_r_prog_empty_thresh, output [C_WR_PNTR_WIDTH_RDCH:0] axi_r_data_count, output [C_WR_PNTR_WIDTH_RDCH:0] axi_r_wr_data_count, output [C_WR_PNTR_WIDTH_RDCH:0] axi_r_rd_data_count, output axi_r_sbiterr, output axi_r_dbiterr, output axi_r_overflow, output axi_r_underflow, output axi_r_prog_full, output axi_r_prog_empty, // AXI Streaming FIFO Related Signals input axis_injectsbiterr, input axis_injectdbiterr, input [C_WR_PNTR_WIDTH_AXIS-1:0] axis_prog_full_thresh, input [C_WR_PNTR_WIDTH_AXIS-1:0] axis_prog_empty_thresh, output [C_WR_PNTR_WIDTH_AXIS:0] axis_data_count, output [C_WR_PNTR_WIDTH_AXIS:0] axis_wr_data_count, output [C_WR_PNTR_WIDTH_AXIS:0] axis_rd_data_count, output axis_sbiterr, output axis_dbiterr, output axis_overflow, output axis_underflow, output axis_prog_full, output axis_prog_empty ); wire BACKUP; wire BACKUP_MARKER; wire CLK; wire RST; wire SRST; wire WR_CLK; wire WR_RST; wire RD_CLK; wire RD_RST; wire [C_DIN_WIDTH-1:0] DIN; wire WR_EN; wire RD_EN; wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH; wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT; wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE; wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH; wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT; wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE; wire INT_CLK; wire INJECTDBITERR; wire INJECTSBITERR; wire SLEEP; wire [C_DOUT_WIDTH-1:0] DOUT; wire FULL; wire ALMOST_FULL; wire WR_ACK; wire OVERFLOW; wire EMPTY; wire ALMOST_EMPTY; wire VALID; wire UNDERFLOW; wire [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT; wire [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT; wire [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT; wire PROG_FULL; wire PROG_EMPTY; wire SBITERR; wire DBITERR; wire WR_RST_BUSY; wire RD_RST_BUSY; wire M_ACLK; wire S_ACLK; wire S_ARESETN; wire S_ACLK_EN; wire M_ACLK_EN; wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID; wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR; wire [C_AXI_LEN_WIDTH-1:0] S_AXI_AWLEN; wire [3-1:0] S_AXI_AWSIZE; wire [2-1:0] S_AXI_AWBURST; wire [C_AXI_LOCK_WIDTH-1:0] S_AXI_AWLOCK; wire [4-1:0] S_AXI_AWCACHE; wire [3-1:0] S_AXI_AWPROT; wire [4-1:0] S_AXI_AWQOS; wire [4-1:0] S_AXI_AWREGION; wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER; wire S_AXI_AWVALID; wire S_AXI_AWREADY; wire [C_AXI_ID_WIDTH-1:0] S_AXI_WID; wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA; wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB; wire S_AXI_WLAST; wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER; wire S_AXI_WVALID; wire S_AXI_WREADY; wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID; wire [2-1:0] S_AXI_BRESP; wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER; wire S_AXI_BVALID; wire S_AXI_BREADY; wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID; wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR; wire [C_AXI_LEN_WIDTH-1:0] M_AXI_AWLEN; wire [3-1:0] M_AXI_AWSIZE; wire [2-1:0] M_AXI_AWBURST; wire [C_AXI_LOCK_WIDTH-1:0] M_AXI_AWLOCK; wire [4-1:0] M_AXI_AWCACHE; wire [3-1:0] M_AXI_AWPROT; wire [4-1:0] M_AXI_AWQOS; wire [4-1:0] M_AXI_AWREGION; wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER; wire M_AXI_AWVALID; wire M_AXI_AWREADY; wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID; wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA; wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB; wire M_AXI_WLAST; wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER; wire M_AXI_WVALID; wire M_AXI_WREADY; wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID; wire [2-1:0] M_AXI_BRESP; wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER; wire M_AXI_BVALID; wire M_AXI_BREADY; wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID; wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR; wire [C_AXI_LEN_WIDTH-1:0] S_AXI_ARLEN; wire [3-1:0] S_AXI_ARSIZE; wire [2-1:0] S_AXI_ARBURST; wire [C_AXI_LOCK_WIDTH-1:0] S_AXI_ARLOCK; wire [4-1:0] S_AXI_ARCACHE; wire [3-1:0] S_AXI_ARPROT; wire [4-1:0] S_AXI_ARQOS; wire [4-1:0] S_AXI_ARREGION; wire [C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER; wire S_AXI_ARVALID; wire S_AXI_ARREADY; wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID; wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA; wire [2-1:0] S_AXI_RRESP; wire S_AXI_RLAST; wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER; wire S_AXI_RVALID; wire S_AXI_RREADY; wire [C_AXI_ID_WIDTH-1:0] M_AXI_ARID; wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR; wire [C_AXI_LEN_WIDTH-1:0] M_AXI_ARLEN; wire [3-1:0] M_AXI_ARSIZE; wire [2-1:0] M_AXI_ARBURST; wire [C_AXI_LOCK_WIDTH-1:0] M_AXI_ARLOCK; wire [4-1:0] M_AXI_ARCACHE; wire [3-1:0] M_AXI_ARPROT; wire [4-1:0] M_AXI_ARQOS; wire [4-1:0] M_AXI_ARREGION; wire [C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER; wire M_AXI_ARVALID; wire M_AXI_ARREADY; wire [C_AXI_ID_WIDTH-1:0] M_AXI_RID; wire [C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA; wire [2-1:0] M_AXI_RRESP; wire M_AXI_RLAST; wire [C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER; wire M_AXI_RVALID; wire M_AXI_RREADY; wire S_AXIS_TVALID; wire S_AXIS_TREADY; wire [C_AXIS_TDATA_WIDTH-1:0] S_AXIS_TDATA; wire [C_AXIS_TSTRB_WIDTH-1:0] S_AXIS_TSTRB; wire [C_AXIS_TKEEP_WIDTH-1:0] S_AXIS_TKEEP; wire S_AXIS_TLAST; wire [C_AXIS_TID_WIDTH-1:0] S_AXIS_TID; wire [C_AXIS_TDEST_WIDTH-1:0] S_AXIS_TDEST; wire [C_AXIS_TUSER_WIDTH-1:0] S_AXIS_TUSER; wire M_AXIS_TVALID; wire M_AXIS_TREADY; wire [C_AXIS_TDATA_WIDTH-1:0] M_AXIS_TDATA; wire [C_AXIS_TSTRB_WIDTH-1:0] M_AXIS_TSTRB; wire [C_AXIS_TKEEP_WIDTH-1:0] M_AXIS_TKEEP; wire M_AXIS_TLAST; wire [C_AXIS_TID_WIDTH-1:0] M_AXIS_TID; wire [C_AXIS_TDEST_WIDTH-1:0] M_AXIS_TDEST; wire [C_AXIS_TUSER_WIDTH-1:0] M_AXIS_TUSER; wire AXI_AW_INJECTSBITERR; wire AXI_AW_INJECTDBITERR; wire [C_WR_PNTR_WIDTH_WACH-1:0] AXI_AW_PROG_FULL_THRESH; wire [C_WR_PNTR_WIDTH_WACH-1:0] AXI_AW_PROG_EMPTY_THRESH; wire [C_WR_PNTR_WIDTH_WACH:0] AXI_AW_DATA_COUNT; wire [C_WR_PNTR_WIDTH_WACH:0] AXI_AW_WR_DATA_COUNT; wire [C_WR_PNTR_WIDTH_WACH:0] AXI_AW_RD_DATA_COUNT; wire AXI_AW_SBITERR; wire AXI_AW_DBITERR; wire AXI_AW_OVERFLOW; wire AXI_AW_UNDERFLOW; wire AXI_AW_PROG_FULL; wire AXI_AW_PROG_EMPTY; wire AXI_W_INJECTSBITERR; wire AXI_W_INJECTDBITERR; wire [C_WR_PNTR_WIDTH_WDCH-1:0] AXI_W_PROG_FULL_THRESH; wire [C_WR_PNTR_WIDTH_WDCH-1:0] AXI_W_PROG_EMPTY_THRESH; wire [C_WR_PNTR_WIDTH_WDCH:0] AXI_W_DATA_COUNT; wire [C_WR_PNTR_WIDTH_WDCH:0] AXI_W_WR_DATA_COUNT; wire [C_WR_PNTR_WIDTH_WDCH:0] AXI_W_RD_DATA_COUNT; wire AXI_W_SBITERR; wire AXI_W_DBITERR; wire AXI_W_OVERFLOW; wire AXI_W_UNDERFLOW; wire AXI_W_PROG_FULL; wire AXI_W_PROG_EMPTY; wire AXI_B_INJECTSBITERR; wire AXI_B_INJECTDBITERR; wire [C_WR_PNTR_WIDTH_WRCH-1:0] AXI_B_PROG_FULL_THRESH; wire [C_WR_PNTR_WIDTH_WRCH-1:0] AXI_B_PROG_EMPTY_THRESH; wire [C_WR_PNTR_WIDTH_WRCH:0] AXI_B_DATA_COUNT; wire [C_WR_PNTR_WIDTH_WRCH:0] AXI_B_WR_DATA_COUNT; wire [C_WR_PNTR_WIDTH_WRCH:0] AXI_B_RD_DATA_COUNT; wire AXI_B_SBITERR; wire AXI_B_DBITERR; wire AXI_B_OVERFLOW; wire AXI_B_UNDERFLOW; wire AXI_B_PROG_FULL; wire AXI_B_PROG_EMPTY; wire AXI_AR_INJECTSBITERR; wire AXI_AR_INJECTDBITERR; wire [C_WR_PNTR_WIDTH_RACH-1:0] AXI_AR_PROG_FULL_THRESH; wire [C_WR_PNTR_WIDTH_RACH-1:0] AXI_AR_PROG_EMPTY_THRESH; wire [C_WR_PNTR_WIDTH_RACH:0] AXI_AR_DATA_COUNT; wire [C_WR_PNTR_WIDTH_RACH:0] AXI_AR_WR_DATA_COUNT; wire [C_WR_PNTR_WIDTH_RACH:0] AXI_AR_RD_DATA_COUNT; wire AXI_AR_SBITERR; wire AXI_AR_DBITERR; wire AXI_AR_OVERFLOW; wire AXI_AR_UNDERFLOW; wire AXI_AR_PROG_FULL; wire AXI_AR_PROG_EMPTY; wire AXI_R_INJECTSBITERR; wire AXI_R_INJECTDBITERR; wire [C_WR_PNTR_WIDTH_RDCH-1:0] AXI_R_PROG_FULL_THRESH; wire [C_WR_PNTR_WIDTH_RDCH-1:0] AXI_R_PROG_EMPTY_THRESH; wire [C_WR_PNTR_WIDTH_RDCH:0] AXI_R_DATA_COUNT; wire [C_WR_PNTR_WIDTH_RDCH:0] AXI_R_WR_DATA_COUNT; wire [C_WR_PNTR_WIDTH_RDCH:0] AXI_R_RD_DATA_COUNT; wire AXI_R_SBITERR; wire AXI_R_DBITERR; wire AXI_R_OVERFLOW; wire AXI_R_UNDERFLOW; wire AXI_R_PROG_FULL; wire AXI_R_PROG_EMPTY; wire AXIS_INJECTSBITERR; wire AXIS_INJECTDBITERR; wire [C_WR_PNTR_WIDTH_AXIS-1:0] AXIS_PROG_FULL_THRESH; wire [C_WR_PNTR_WIDTH_AXIS-1:0] AXIS_PROG_EMPTY_THRESH; wire [C_WR_PNTR_WIDTH_AXIS:0] AXIS_DATA_COUNT; wire [C_WR_PNTR_WIDTH_AXIS:0] AXIS_WR_DATA_COUNT; wire [C_WR_PNTR_WIDTH_AXIS:0] AXIS_RD_DATA_COUNT; wire AXIS_SBITERR; wire AXIS_DBITERR; wire AXIS_OVERFLOW; wire AXIS_UNDERFLOW; wire AXIS_PROG_FULL; wire AXIS_PROG_EMPTY; wire [C_WR_DATA_COUNT_WIDTH-1:0] wr_data_count_in; wire wr_rst_int; wire rd_rst_int; function integer find_log2; input integer int_val; integer i,j; begin i = 1; j = 0; for (i = 1; i < int_val; i = i*2) begin j = j + 1; end find_log2 = j; end endfunction // Conventional FIFO Interface Signals assign BACKUP = backup; assign BACKUP_MARKER = backup_marker; assign CLK = clk; assign RST = rst; assign SRST = srst; assign WR_CLK = wr_clk; assign WR_RST = wr_rst; assign RD_CLK = rd_clk; assign RD_RST = rd_rst; assign WR_EN = wr_en; assign RD_EN = rd_en; assign INT_CLK = int_clk; assign INJECTDBITERR = injectdbiterr; assign INJECTSBITERR = injectsbiterr; assign SLEEP = sleep; assign full = FULL; assign almost_full = ALMOST_FULL; assign wr_ack = WR_ACK; assign overflow = OVERFLOW; assign empty = EMPTY; assign almost_empty = ALMOST_EMPTY; assign valid = VALID; assign underflow = UNDERFLOW; assign prog_full = PROG_FULL; assign prog_empty = PROG_EMPTY; assign sbiterr = SBITERR; assign dbiterr = DBITERR; assign wr_rst_busy = WR_RST_BUSY; assign rd_rst_busy = RD_RST_BUSY; assign M_ACLK = m_aclk; assign S_ACLK = s_aclk; assign S_ARESETN = s_aresetn; assign S_ACLK_EN = s_aclk_en; assign M_ACLK_EN = m_aclk_en; assign S_AXI_AWVALID = s_axi_awvalid; assign s_axi_awready = S_AXI_AWREADY; assign S_AXI_WLAST = s_axi_wlast; assign S_AXI_WVALID = s_axi_wvalid; assign s_axi_wready = S_AXI_WREADY; assign s_axi_bvalid = S_AXI_BVALID; assign S_AXI_BREADY = s_axi_bready; assign m_axi_awvalid = M_AXI_AWVALID; assign M_AXI_AWREADY = m_axi_awready; assign m_axi_wlast = M_AXI_WLAST; assign m_axi_wvalid = M_AXI_WVALID; assign M_AXI_WREADY = m_axi_wready; assign M_AXI_BVALID = m_axi_bvalid; assign m_axi_bready = M_AXI_BREADY; assign S_AXI_ARVALID = s_axi_arvalid; assign s_axi_arready = S_AXI_ARREADY; assign s_axi_rlast = S_AXI_RLAST; assign s_axi_rvalid = S_AXI_RVALID; assign S_AXI_RREADY = s_axi_rready; assign m_axi_arvalid = M_AXI_ARVALID; assign M_AXI_ARREADY = m_axi_arready; assign M_AXI_RLAST = m_axi_rlast; assign M_AXI_RVALID = m_axi_rvalid; assign m_axi_rready = M_AXI_RREADY; assign S_AXIS_TVALID = s_axis_tvalid; assign s_axis_tready = S_AXIS_TREADY; assign S_AXIS_TLAST = s_axis_tlast; assign m_axis_tvalid = M_AXIS_TVALID; assign M_AXIS_TREADY = m_axis_tready; assign m_axis_tlast = M_AXIS_TLAST; assign AXI_AW_INJECTSBITERR = axi_aw_injectsbiterr; assign AXI_AW_INJECTDBITERR = axi_aw_injectdbiterr; assign axi_aw_sbiterr = AXI_AW_SBITERR; assign axi_aw_dbiterr = AXI_AW_DBITERR; assign axi_aw_overflow = AXI_AW_OVERFLOW; assign axi_aw_underflow = AXI_AW_UNDERFLOW; assign axi_aw_prog_full = AXI_AW_PROG_FULL; assign axi_aw_prog_empty = AXI_AW_PROG_EMPTY; assign AXI_W_INJECTSBITERR = axi_w_injectsbiterr; assign AXI_W_INJECTDBITERR = axi_w_injectdbiterr; assign axi_w_sbiterr = AXI_W_SBITERR; assign axi_w_dbiterr = AXI_W_DBITERR; assign axi_w_overflow = AXI_W_OVERFLOW; assign axi_w_underflow = AXI_W_UNDERFLOW; assign axi_w_prog_full = AXI_W_PROG_FULL; assign axi_w_prog_empty = AXI_W_PROG_EMPTY; assign AXI_B_INJECTSBITERR = axi_b_injectsbiterr; assign AXI_B_INJECTDBITERR = axi_b_injectdbiterr; assign axi_b_sbiterr = AXI_B_SBITERR; assign axi_b_dbiterr = AXI_B_DBITERR; assign axi_b_overflow = AXI_B_OVERFLOW; assign axi_b_underflow = AXI_B_UNDERFLOW; assign axi_b_prog_full = AXI_B_PROG_FULL; assign axi_b_prog_empty = AXI_B_PROG_EMPTY; assign AXI_AR_INJECTSBITERR = axi_ar_injectsbiterr; assign AXI_AR_INJECTDBITERR = axi_ar_injectdbiterr; assign axi_ar_sbiterr = AXI_AR_SBITERR; assign axi_ar_dbiterr = AXI_AR_DBITERR; assign axi_ar_overflow = AXI_AR_OVERFLOW; assign axi_ar_underflow = AXI_AR_UNDERFLOW; assign axi_ar_prog_full = AXI_AR_PROG_FULL; assign axi_ar_prog_empty = AXI_AR_PROG_EMPTY; assign AXI_R_INJECTSBITERR = axi_r_injectsbiterr; assign AXI_R_INJECTDBITERR = axi_r_injectdbiterr; assign axi_r_sbiterr = AXI_R_SBITERR; assign axi_r_dbiterr = AXI_R_DBITERR; assign axi_r_overflow = AXI_R_OVERFLOW; assign axi_r_underflow = AXI_R_UNDERFLOW; assign axi_r_prog_full = AXI_R_PROG_FULL; assign axi_r_prog_empty = AXI_R_PROG_EMPTY; assign AXIS_INJECTSBITERR = axis_injectsbiterr; assign AXIS_INJECTDBITERR = axis_injectdbiterr; assign axis_sbiterr = AXIS_SBITERR; assign axis_dbiterr = AXIS_DBITERR; assign axis_overflow = AXIS_OVERFLOW; assign axis_underflow = AXIS_UNDERFLOW; assign axis_prog_full = AXIS_PROG_FULL; assign axis_prog_empty = AXIS_PROG_EMPTY; assign DIN = din; assign PROG_EMPTY_THRESH = prog_empty_thresh; assign PROG_EMPTY_THRESH_ASSERT = prog_empty_thresh_assert; assign PROG_EMPTY_THRESH_NEGATE = prog_empty_thresh_negate; assign PROG_FULL_THRESH = prog_full_thresh; assign PROG_FULL_THRESH_ASSERT = prog_full_thresh_assert; assign PROG_FULL_THRESH_NEGATE = prog_full_thresh_negate; assign dout = DOUT; assign data_count = DATA_COUNT; assign rd_data_count = RD_DATA_COUNT; assign wr_data_count = WR_DATA_COUNT; assign S_AXI_AWID = s_axi_awid; assign S_AXI_AWADDR = s_axi_awaddr; assign S_AXI_AWLEN = s_axi_awlen; assign S_AXI_AWSIZE = s_axi_awsize; assign S_AXI_AWBURST = s_axi_awburst; assign S_AXI_AWLOCK = s_axi_awlock; assign S_AXI_AWCACHE = s_axi_awcache; assign S_AXI_AWPROT = s_axi_awprot; assign S_AXI_AWQOS = s_axi_awqos; assign S_AXI_AWREGION = s_axi_awregion; assign S_AXI_AWUSER = s_axi_awuser; assign S_AXI_WID = s_axi_wid; assign S_AXI_WDATA = s_axi_wdata; assign S_AXI_WSTRB = s_axi_wstrb; assign S_AXI_WUSER = s_axi_wuser; assign s_axi_bid = S_AXI_BID; assign s_axi_bresp = S_AXI_BRESP; assign s_axi_buser = S_AXI_BUSER; assign m_axi_awid = M_AXI_AWID; assign m_axi_awaddr = M_AXI_AWADDR; assign m_axi_awlen = M_AXI_AWLEN; assign m_axi_awsize = M_AXI_AWSIZE; assign m_axi_awburst = M_AXI_AWBURST; assign m_axi_awlock = M_AXI_AWLOCK; assign m_axi_awcache = M_AXI_AWCACHE; assign m_axi_awprot = M_AXI_AWPROT; assign m_axi_awqos = M_AXI_AWQOS; assign m_axi_awregion = M_AXI_AWREGION; assign m_axi_awuser = M_AXI_AWUSER; assign m_axi_wid = M_AXI_WID; assign m_axi_wdata = M_AXI_WDATA; assign m_axi_wstrb = M_AXI_WSTRB; assign m_axi_wuser = M_AXI_WUSER; assign M_AXI_BID = m_axi_bid; assign M_AXI_BRESP = m_axi_bresp; assign M_AXI_BUSER = m_axi_buser; assign S_AXI_ARID = s_axi_arid; assign S_AXI_ARADDR = s_axi_araddr; assign S_AXI_ARLEN = s_axi_arlen; assign S_AXI_ARSIZE = s_axi_arsize; assign S_AXI_ARBURST = s_axi_arburst; assign S_AXI_ARLOCK = s_axi_arlock; assign S_AXI_ARCACHE = s_axi_arcache; assign S_AXI_ARPROT = s_axi_arprot; assign S_AXI_ARQOS = s_axi_arqos; assign S_AXI_ARREGION = s_axi_arregion; assign S_AXI_ARUSER = s_axi_aruser; assign s_axi_rid = S_AXI_RID; assign s_axi_rdata = S_AXI_RDATA; assign s_axi_rresp = S_AXI_RRESP; assign s_axi_ruser = S_AXI_RUSER; assign m_axi_arid = M_AXI_ARID; assign m_axi_araddr = M_AXI_ARADDR; assign m_axi_arlen = M_AXI_ARLEN; assign m_axi_arsize = M_AXI_ARSIZE; assign m_axi_arburst = M_AXI_ARBURST; assign m_axi_arlock = M_AXI_ARLOCK; assign m_axi_arcache = M_AXI_ARCACHE; assign m_axi_arprot = M_AXI_ARPROT; assign m_axi_arqos = M_AXI_ARQOS; assign m_axi_arregion = M_AXI_ARREGION; assign m_axi_aruser = M_AXI_ARUSER; assign M_AXI_RID = m_axi_rid; assign M_AXI_RDATA = m_axi_rdata; assign M_AXI_RRESP = m_axi_rresp; assign M_AXI_RUSER = m_axi_ruser; assign S_AXIS_TDATA = s_axis_tdata; assign S_AXIS_TSTRB = s_axis_tstrb; assign S_AXIS_TKEEP = s_axis_tkeep; assign S_AXIS_TID = s_axis_tid; assign S_AXIS_TDEST = s_axis_tdest; assign S_AXIS_TUSER = s_axis_tuser; assign m_axis_tdata = M_AXIS_TDATA; assign m_axis_tstrb = M_AXIS_TSTRB; assign m_axis_tkeep = M_AXIS_TKEEP; assign m_axis_tid = M_AXIS_TID; assign m_axis_tdest = M_AXIS_TDEST; assign m_axis_tuser = M_AXIS_TUSER; assign AXI_AW_PROG_FULL_THRESH = axi_aw_prog_full_thresh; assign AXI_AW_PROG_EMPTY_THRESH = axi_aw_prog_empty_thresh; assign axi_aw_data_count = AXI_AW_DATA_COUNT; assign axi_aw_wr_data_count = AXI_AW_WR_DATA_COUNT; assign axi_aw_rd_data_count = AXI_AW_RD_DATA_COUNT; assign AXI_W_PROG_FULL_THRESH = axi_w_prog_full_thresh; assign AXI_W_PROG_EMPTY_THRESH = axi_w_prog_empty_thresh; assign axi_w_data_count = AXI_W_DATA_COUNT; assign axi_w_wr_data_count = AXI_W_WR_DATA_COUNT; assign axi_w_rd_data_count = AXI_W_RD_DATA_COUNT; assign AXI_B_PROG_FULL_THRESH = axi_b_prog_full_thresh; assign AXI_B_PROG_EMPTY_THRESH = axi_b_prog_empty_thresh; assign axi_b_data_count = AXI_B_DATA_COUNT; assign axi_b_wr_data_count = AXI_B_WR_DATA_COUNT; assign axi_b_rd_data_count = AXI_B_RD_DATA_COUNT; assign AXI_AR_PROG_FULL_THRESH = axi_ar_prog_full_thresh; assign AXI_AR_PROG_EMPTY_THRESH = axi_ar_prog_empty_thresh; assign axi_ar_data_count = AXI_AR_DATA_COUNT; assign axi_ar_wr_data_count = AXI_AR_WR_DATA_COUNT; assign axi_ar_rd_data_count = AXI_AR_RD_DATA_COUNT; assign AXI_R_PROG_FULL_THRESH = axi_r_prog_full_thresh; assign AXI_R_PROG_EMPTY_THRESH = axi_r_prog_empty_thresh; assign axi_r_data_count = AXI_R_DATA_COUNT; assign axi_r_wr_data_count = AXI_R_WR_DATA_COUNT; assign axi_r_rd_data_count = AXI_R_RD_DATA_COUNT; assign AXIS_PROG_FULL_THRESH = axis_prog_full_thresh; assign AXIS_PROG_EMPTY_THRESH = axis_prog_empty_thresh; assign axis_data_count = AXIS_DATA_COUNT; assign axis_wr_data_count = AXIS_WR_DATA_COUNT; assign axis_rd_data_count = AXIS_RD_DATA_COUNT; generate if (C_INTERFACE_TYPE == 0) begin : conv_fifo FIFO_GENERATOR_v12_0_CONV_VER #( .C_COMMON_CLOCK (C_COMMON_CLOCK), .C_COUNT_TYPE (C_COUNT_TYPE), .C_DATA_COUNT_WIDTH (C_DATA_COUNT_WIDTH), .C_DEFAULT_VALUE (C_DEFAULT_VALUE), .C_DIN_WIDTH (C_DIN_WIDTH), .C_DOUT_RST_VAL (C_USE_DOUT_RST == 1 ? C_DOUT_RST_VAL : 0), .C_DOUT_WIDTH (C_DOUT_WIDTH), .C_ENABLE_RLOCS (C_ENABLE_RLOCS), .C_FAMILY (C_FAMILY), .C_FULL_FLAGS_RST_VAL (C_FULL_FLAGS_RST_VAL), .C_HAS_ALMOST_EMPTY (C_HAS_ALMOST_EMPTY), .C_HAS_ALMOST_FULL (C_HAS_ALMOST_FULL), .C_HAS_BACKUP (C_HAS_BACKUP), .C_HAS_DATA_COUNT (C_HAS_DATA_COUNT), .C_HAS_INT_CLK (C_HAS_INT_CLK), .C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE), .C_HAS_OVERFLOW (C_HAS_OVERFLOW), .C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT), .C_HAS_RD_RST (C_HAS_RD_RST), .C_HAS_RST (C_HAS_RST), .C_HAS_SRST (C_HAS_SRST), .C_HAS_UNDERFLOW (C_HAS_UNDERFLOW), .C_HAS_VALID (C_HAS_VALID), .C_HAS_WR_ACK (C_HAS_WR_ACK), .C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT), .C_HAS_WR_RST (C_HAS_WR_RST), .C_IMPLEMENTATION_TYPE (C_IMPLEMENTATION_TYPE), .C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL), .C_MEMORY_TYPE (C_MEMORY_TYPE), .C_MIF_FILE_NAME (C_MIF_FILE_NAME), .C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE), .C_OVERFLOW_LOW (C_OVERFLOW_LOW), .C_PRELOAD_LATENCY (C_PRELOAD_LATENCY), .C_PRELOAD_REGS (C_PRELOAD_REGS), .C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE), .C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL), .C_PROG_EMPTY_THRESH_NEGATE_VAL (C_PROG_EMPTY_THRESH_NEGATE_VAL), .C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE), .C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL), .C_PROG_FULL_THRESH_NEGATE_VAL (C_PROG_FULL_THRESH_NEGATE_VAL), .C_PROG_FULL_TYPE (C_PROG_FULL_TYPE), .C_RD_DATA_COUNT_WIDTH (C_RD_DATA_COUNT_WIDTH), .C_RD_DEPTH (C_RD_DEPTH), .C_RD_FREQ (C_RD_FREQ), .C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH), .C_UNDERFLOW_LOW (C_UNDERFLOW_LOW), .C_USE_DOUT_RST (C_USE_DOUT_RST), .C_USE_ECC (C_USE_ECC), .C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG), .C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS), .C_USE_FWFT_DATA_COUNT (C_USE_FWFT_DATA_COUNT), .C_VALID_LOW (C_VALID_LOW), .C_WR_ACK_LOW (C_WR_ACK_LOW), .C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH), .C_WR_DEPTH (C_WR_DEPTH), .C_WR_FREQ (C_WR_FREQ), .C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH), .C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY), .C_MSGON_VAL (C_MSGON_VAL), .C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC), .C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE) ) fifo_generator_v12_0_conv_dut ( .BACKUP (BACKUP), .BACKUP_MARKER (BACKUP_MARKER), .CLK (CLK), .RST (RST), .SRST (SRST), .WR_CLK (WR_CLK), .WR_RST (WR_RST), .RD_CLK (RD_CLK), .RD_RST (RD_RST), .DIN (DIN), .WR_EN (WR_EN), .RD_EN (RD_EN), .PROG_EMPTY_THRESH (PROG_EMPTY_THRESH), .PROG_EMPTY_THRESH_ASSERT (PROG_EMPTY_THRESH_ASSERT), .PROG_EMPTY_THRESH_NEGATE (PROG_EMPTY_THRESH_NEGATE), .PROG_FULL_THRESH (PROG_FULL_THRESH), .PROG_FULL_THRESH_ASSERT (PROG_FULL_THRESH_ASSERT), .PROG_FULL_THRESH_NEGATE (PROG_FULL_THRESH_NEGATE), .INT_CLK (INT_CLK), .INJECTDBITERR (INJECTDBITERR), .INJECTSBITERR (INJECTSBITERR), .DOUT (DOUT), .FULL (FULL), .ALMOST_FULL (ALMOST_FULL), .WR_ACK (WR_ACK), .OVERFLOW (OVERFLOW), .EMPTY (EMPTY), .ALMOST_EMPTY (ALMOST_EMPTY), .VALID (VALID), .UNDERFLOW (UNDERFLOW), .DATA_COUNT (DATA_COUNT), .RD_DATA_COUNT (RD_DATA_COUNT), .WR_DATA_COUNT (wr_data_count_in), .PROG_FULL (PROG_FULL), .PROG_EMPTY (PROG_EMPTY), .SBITERR (SBITERR), .DBITERR (DBITERR), .wr_rst_busy (wr_rst_busy), .rd_rst_busy (rd_rst_busy), .wr_rst_i_out (wr_rst_int), .rd_rst_i_out (rd_rst_int) ); end endgenerate localparam IS_8SERIES = (C_FAMILY == "virtexu" || C_FAMILY == "kintexu" || C_FAMILY == "artixu" || C_FAMILY == "virtexum" || C_FAMILY == "zynque") ? 1 : 0; localparam C_AXI_SIZE_WIDTH = 3; localparam C_AXI_BURST_WIDTH = 2; localparam C_AXI_CACHE_WIDTH = 4; localparam C_AXI_PROT_WIDTH = 3; localparam C_AXI_QOS_WIDTH = 4; localparam C_AXI_REGION_WIDTH = 4; localparam C_AXI_BRESP_WIDTH = 2; localparam C_AXI_RRESP_WIDTH = 2; localparam IS_AXI_STREAMING = C_INTERFACE_TYPE == 1 ? 1 : 0; localparam TDATA_OFFSET = C_HAS_AXIS_TDATA == 1 ? C_DIN_WIDTH_AXIS-C_AXIS_TDATA_WIDTH : C_DIN_WIDTH_AXIS; localparam TSTRB_OFFSET = C_HAS_AXIS_TSTRB == 1 ? TDATA_OFFSET-C_AXIS_TSTRB_WIDTH : TDATA_OFFSET; localparam TKEEP_OFFSET = C_HAS_AXIS_TKEEP == 1 ? TSTRB_OFFSET-C_AXIS_TKEEP_WIDTH : TSTRB_OFFSET; localparam TID_OFFSET = C_HAS_AXIS_TID == 1 ? TKEEP_OFFSET-C_AXIS_TID_WIDTH : TKEEP_OFFSET; localparam TDEST_OFFSET = C_HAS_AXIS_TDEST == 1 ? TID_OFFSET-C_AXIS_TDEST_WIDTH : TID_OFFSET; localparam TUSER_OFFSET = C_HAS_AXIS_TUSER == 1 ? TDEST_OFFSET-C_AXIS_TUSER_WIDTH : TDEST_OFFSET; localparam LOG_DEPTH_AXIS = find_log2(C_WR_DEPTH_AXIS); localparam LOG_WR_DEPTH = find_log2(C_WR_DEPTH); function [LOG_DEPTH_AXIS-1:0] bin2gray; input [LOG_DEPTH_AXIS-1:0] x; begin bin2gray = x ^ (x>>1); end endfunction function [LOG_DEPTH_AXIS-1:0] gray2bin; input [LOG_DEPTH_AXIS-1:0] x; integer i; begin gray2bin[LOG_DEPTH_AXIS-1] = x[LOG_DEPTH_AXIS-1]; for(i=LOG_DEPTH_AXIS-2; i>=0; i=i-1) begin gray2bin[i] = gray2bin[i+1] ^ x[i]; end end endfunction wire [(LOG_WR_DEPTH)-1 : 0] w_cnt_gc_asreg_last; wire [LOG_WR_DEPTH-1 : 0] w_q [0:C_SYNCHRONIZER_STAGE] ; wire [LOG_WR_DEPTH-1 : 0] w_q_temp [1:C_SYNCHRONIZER_STAGE] ; reg [LOG_WR_DEPTH-1 : 0] w_cnt_rd = 0; reg [LOG_WR_DEPTH-1 : 0] w_cnt = 0; reg [LOG_WR_DEPTH-1 : 0] w_cnt_gc = 0; reg [LOG_WR_DEPTH-1 : 0] r_cnt = 0; wire [LOG_WR_DEPTH : 0] adj_w_cnt_rd_pad; wire [LOG_WR_DEPTH : 0] r_inv_pad; wire [LOG_WR_DEPTH-1 : 0] d_cnt; reg [LOG_WR_DEPTH : 0] d_cnt_pad = 0; reg adj_w_cnt_rd_pad_0 = 0; reg r_inv_pad_0 = 0; genvar l; generate for (l = 1; ((l <= C_SYNCHRONIZER_STAGE) && (C_HAS_DATA_COUNTS_AXIS == 3 && C_INTERFACE_TYPE == 0) ); l = l + 1) begin : g_cnt_sync_stage fifo_generator_v12_0_sync_stage #( .C_WIDTH (LOG_WR_DEPTH) ) rd_stg_inst ( .RST (rd_rst_int), .CLK (RD_CLK), .DIN (w_q[l-1]), .DOUT (w_q[l]) ); end endgenerate // gpkt_cnt_sync_stage generate if (C_INTERFACE_TYPE == 0 && C_HAS_DATA_COUNTS_AXIS == 3) begin : fifo_ic_adapter assign wr_eop_ad = WR_EN & !(FULL); assign rd_eop_ad = RD_EN & !(EMPTY); always @ (posedge wr_rst_int or posedge WR_CLK) begin if (wr_rst_int) w_cnt <= 1'b0; else if (wr_eop_ad) w_cnt <= w_cnt + 1; end always @ (posedge wr_rst_int or posedge WR_CLK) begin if (wr_rst_int) w_cnt_gc <= 1'b0; else w_cnt_gc <= bin2gray(w_cnt); end assign w_q[0] = w_cnt_gc; assign w_cnt_gc_asreg_last = w_q[C_SYNCHRONIZER_STAGE]; always @ (posedge rd_rst_int or posedge RD_CLK) begin if (rd_rst_int) w_cnt_rd <= 1'b0; else w_cnt_rd <= gray2bin(w_cnt_gc_asreg_last); end always @ (posedge rd_rst_int or posedge RD_CLK) begin if (rd_rst_int) r_cnt <= 1'b0; else if (rd_eop_ad) r_cnt <= r_cnt + 1; end // Take the difference of write and read packet count // Logic is similar to rd_pe_as assign adj_w_cnt_rd_pad[LOG_WR_DEPTH : 1] = w_cnt_rd; assign r_inv_pad[LOG_WR_DEPTH : 1] = ~r_cnt; assign adj_w_cnt_rd_pad[0] = adj_w_cnt_rd_pad_0; assign r_inv_pad[0] = r_inv_pad_0; always @ ( rd_eop_ad ) begin if (!rd_eop_ad) begin adj_w_cnt_rd_pad_0 <= 1'b1; r_inv_pad_0 <= 1'b1; end else begin adj_w_cnt_rd_pad_0 <= 1'b0; r_inv_pad_0 <= 1'b0; end end always @ (posedge rd_rst_int or posedge RD_CLK) begin if (rd_rst_int) d_cnt_pad <= 1'b0; else d_cnt_pad <= adj_w_cnt_rd_pad + r_inv_pad ; end assign d_cnt = d_cnt_pad [LOG_WR_DEPTH : 1] ; assign WR_DATA_COUNT = d_cnt; end endgenerate // fifo_ic_adapter generate if (C_INTERFACE_TYPE == 0 && C_HAS_DATA_COUNTS_AXIS != 3) begin : fifo_icn_adapter assign WR_DATA_COUNT = wr_data_count_in; end endgenerate // fifo_icn_adapter wire inverted_reset = ~S_ARESETN; wire axi_rs_rst; reg rst_d1 = 0 ; reg rst_d2 = 0 ; wire [C_DIN_WIDTH_AXIS-1:0] axis_din ; wire [C_DIN_WIDTH_AXIS-1:0] axis_dout ; wire axis_full ; wire axis_almost_full ; wire axis_empty ; wire axis_s_axis_tready; wire axis_m_axis_tvalid; wire axis_wr_en ; wire axis_rd_en ; wire axis_we ; wire axis_re ; wire [C_WR_PNTR_WIDTH_AXIS:0] axis_dc; reg axis_pkt_read = 1'b0; wire axis_rd_rst; wire axis_wr_rst; generate if (C_INTERFACE_TYPE > 0 && (C_AXIS_TYPE == 1 || C_WACH_TYPE == 1 || C_WDCH_TYPE == 1 || C_WRCH_TYPE == 1 || C_RACH_TYPE == 1 || C_RDCH_TYPE == 1)) begin : gaxi_rs_rst always @ (posedge inverted_reset or posedge S_ACLK) begin if (inverted_reset) begin rst_d1 <= 1'b1; rst_d2 <= 1'b1; end else begin rst_d1 <= #`TCQ 1'b0; rst_d2 <= #`TCQ rst_d1; end end assign axi_rs_rst = rst_d2; end endgenerate // gaxi_rs_rst generate if (IS_AXI_STREAMING == 1 && C_AXIS_TYPE == 0) begin : axi_streaming // Write protection when almost full or prog_full is high assign axis_we = (C_PROG_FULL_TYPE_AXIS != 0) ? axis_s_axis_tready & S_AXIS_TVALID : (C_APPLICATION_TYPE_AXIS == 1) ? axis_s_axis_tready & S_AXIS_TVALID : S_AXIS_TVALID; // Read protection when almost empty or prog_empty is high assign axis_re = (C_PROG_EMPTY_TYPE_AXIS != 0) ? axis_m_axis_tvalid & M_AXIS_TREADY : (C_APPLICATION_TYPE_AXIS == 1) ? axis_m_axis_tvalid & M_AXIS_TREADY : M_AXIS_TREADY; assign axis_wr_en = (C_HAS_SLAVE_CE == 1) ? axis_we & S_ACLK_EN : axis_we; assign axis_rd_en = (C_HAS_MASTER_CE == 1) ? axis_re & M_ACLK_EN : axis_re; FIFO_GENERATOR_v12_0_CONV_VER #( .C_FAMILY (C_FAMILY), .C_COMMON_CLOCK (C_COMMON_CLOCK), .C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_AXIS == 1 || C_IMPLEMENTATION_TYPE_AXIS == 11) ? 1 : (C_IMPLEMENTATION_TYPE_AXIS == 2 || C_IMPLEMENTATION_TYPE_AXIS == 12) ? 2 : 4), .C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_AXIS == 1 || C_IMPLEMENTATION_TYPE_AXIS == 2) ? 0 : (C_IMPLEMENTATION_TYPE_AXIS == 11 || C_IMPLEMENTATION_TYPE_AXIS == 12) ? 2 : 6), .C_PRELOAD_REGS (1), // always FWFT for AXI .C_PRELOAD_LATENCY (0), // always FWFT for AXI .C_DIN_WIDTH (C_DIN_WIDTH_AXIS), .C_WR_DEPTH (C_WR_DEPTH_AXIS), .C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_AXIS), .C_DOUT_WIDTH (C_DIN_WIDTH_AXIS), .C_RD_DEPTH (C_WR_DEPTH_AXIS), .C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_AXIS), .C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_AXIS), .C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_AXIS), .C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_AXIS), .C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS), .C_USE_ECC (C_USE_ECC_AXIS), .C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_AXIS), .C_HAS_ALMOST_EMPTY (0), .C_HAS_ALMOST_FULL (C_APPLICATION_TYPE_AXIS == 1 ? 1: 0), .C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE), .C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG), .C_FIFO_TYPE (C_APPLICATION_TYPE_AXIS == 1 ? 0: C_APPLICATION_TYPE_AXIS), .C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE), .C_HAS_WR_RST (0), .C_HAS_RD_RST (0), .C_HAS_RST (1), .C_HAS_SRST (0), .C_DOUT_RST_VAL (0), .C_HAS_VALID (0), .C_VALID_LOW (C_VALID_LOW), .C_HAS_UNDERFLOW (C_HAS_UNDERFLOW), .C_UNDERFLOW_LOW (C_UNDERFLOW_LOW), .C_HAS_WR_ACK (0), .C_WR_ACK_LOW (C_WR_ACK_LOW), .C_HAS_OVERFLOW (C_HAS_OVERFLOW), .C_OVERFLOW_LOW (C_OVERFLOW_LOW), .C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_AXIS == 1) ? 1 : 0), .C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_AXIS + 1), .C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_AXIS == 1) ? 1 : 0), .C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_AXIS + 1), .C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true .C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_AXIS == 1) ? 1 : 0), .C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_AXIS + 1), .C_FULL_FLAGS_RST_VAL (1), .C_USE_DOUT_RST (0), .C_MSGON_VAL (C_MSGON_VAL), .C_ENABLE_RST_SYNC (1), .C_COUNT_TYPE (C_COUNT_TYPE), .C_DEFAULT_VALUE (C_DEFAULT_VALUE), .C_ENABLE_RLOCS (C_ENABLE_RLOCS), .C_HAS_BACKUP (C_HAS_BACKUP), .C_HAS_INT_CLK (C_HAS_INT_CLK), .C_MIF_FILE_NAME (C_MIF_FILE_NAME), .C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE), .C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL), .C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE), .C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE), .C_RD_FREQ (C_RD_FREQ), .C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS), .C_WR_FREQ (C_WR_FREQ), .C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY) ) fifo_generator_v12_0_axis_dut ( .CLK (S_ACLK), .WR_CLK (S_ACLK), .RD_CLK (M_ACLK), .RST (inverted_reset), .SRST (1'b0), .WR_RST (inverted_reset), .RD_RST (inverted_reset), .WR_EN (axis_wr_en), .RD_EN (axis_rd_en), .PROG_FULL_THRESH (AXIS_PROG_FULL_THRESH), .PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_AXIS{1'b0}}), .PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_AXIS{1'b0}}), .PROG_EMPTY_THRESH (AXIS_PROG_EMPTY_THRESH), .PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_AXIS{1'b0}}), .PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_AXIS{1'b0}}), .INJECTDBITERR (AXIS_INJECTDBITERR), .INJECTSBITERR (AXIS_INJECTSBITERR), .DIN (axis_din), .DOUT (axis_dout), .FULL (axis_full), .EMPTY (axis_empty), .ALMOST_FULL (axis_almost_full), .PROG_FULL (AXIS_PROG_FULL), .ALMOST_EMPTY (), .PROG_EMPTY (AXIS_PROG_EMPTY), .WR_ACK (), .OVERFLOW (AXIS_OVERFLOW), .VALID (), .UNDERFLOW (AXIS_UNDERFLOW), .DATA_COUNT (axis_dc), .RD_DATA_COUNT (AXIS_RD_DATA_COUNT), .WR_DATA_COUNT (AXIS_WR_DATA_COUNT), .SBITERR (AXIS_SBITERR), .DBITERR (AXIS_DBITERR), .wr_rst_busy (wr_rst_busy_axis), .rd_rst_busy (rd_rst_busy_axis), .wr_rst_i_out (axis_wr_rst), .rd_rst_i_out (axis_rd_rst), .BACKUP (BACKUP), .BACKUP_MARKER (BACKUP_MARKER), .INT_CLK (INT_CLK) ); assign axis_s_axis_tready = (IS_8SERIES == 0) ? ~axis_full : (C_IMPLEMENTATION_TYPE_AXIS == 5 || C_IMPLEMENTATION_TYPE_AXIS == 13) ? ~(axis_full | wr_rst_busy_axis) : ~axis_full; assign axis_m_axis_tvalid = (C_APPLICATION_TYPE_AXIS != 1) ? ~axis_empty : ~axis_empty & axis_pkt_read; assign S_AXIS_TREADY = axis_s_axis_tready; assign M_AXIS_TVALID = axis_m_axis_tvalid; end endgenerate // axi_streaming wire axis_wr_eop; reg axis_wr_eop_d1 = 1'b0; wire axis_rd_eop; integer axis_pkt_cnt; generate if (C_APPLICATION_TYPE_AXIS == 1 && C_COMMON_CLOCK == 1) begin : gaxis_pkt_fifo_cc assign axis_wr_eop = axis_wr_en & S_AXIS_TLAST; assign axis_rd_eop = axis_rd_en & axis_dout[0]; always @ (posedge inverted_reset or posedge S_ACLK) begin if (inverted_reset) axis_pkt_read <= 1'b0; else if (axis_rd_eop && (axis_pkt_cnt == 1) && ~axis_wr_eop_d1) axis_pkt_read <= 1'b0; else if ((axis_pkt_cnt > 0) || (axis_almost_full && ~axis_empty)) axis_pkt_read <= 1'b1; end always @ (posedge inverted_reset or posedge S_ACLK) begin if (inverted_reset) axis_wr_eop_d1 <= 1'b0; else axis_wr_eop_d1 <= axis_wr_eop; end always @ (posedge inverted_reset or posedge S_ACLK) begin if (inverted_reset) axis_pkt_cnt <= 0; else if (axis_wr_eop_d1 && ~axis_rd_eop) axis_pkt_cnt <= axis_pkt_cnt + 1; else if (axis_rd_eop && ~axis_wr_eop_d1) axis_pkt_cnt <= axis_pkt_cnt - 1; end end endgenerate // gaxis_pkt_fifo_cc reg [LOG_DEPTH_AXIS-1 : 0] axis_wpkt_cnt_gc = 0; wire [(LOG_DEPTH_AXIS)-1 : 0] axis_wpkt_cnt_gc_asreg_last; wire axis_rd_has_rst; wire [0:C_SYNCHRONIZER_STAGE] axis_af_q ; wire [LOG_DEPTH_AXIS-1 : 0] wpkt_q [0:C_SYNCHRONIZER_STAGE] ; wire [1:C_SYNCHRONIZER_STAGE] axis_af_q_temp = 0; wire [LOG_DEPTH_AXIS-1 : 0] wpkt_q_temp [1:C_SYNCHRONIZER_STAGE] ; reg [LOG_DEPTH_AXIS-1 : 0] axis_wpkt_cnt_rd = 0; reg [LOG_DEPTH_AXIS-1 : 0] axis_wpkt_cnt = 0; reg [LOG_DEPTH_AXIS-1 : 0] axis_rpkt_cnt = 0; wire [LOG_DEPTH_AXIS : 0] adj_axis_wpkt_cnt_rd_pad; wire [LOG_DEPTH_AXIS : 0] rpkt_inv_pad; wire [LOG_DEPTH_AXIS-1 : 0] diff_pkt_cnt; reg [LOG_DEPTH_AXIS : 0] diff_pkt_cnt_pad = 0; reg adj_axis_wpkt_cnt_rd_pad_0 = 0; reg rpkt_inv_pad_0 = 0; wire axis_af_rd ; generate if (C_HAS_RST == 1) begin : rst_blk_has assign axis_rd_has_rst = axis_rd_rst; end endgenerate //rst_blk_has generate if (C_HAS_RST == 0) begin :rst_blk_no assign axis_rd_has_rst = 1'b0; end endgenerate //rst_blk_no genvar i; generate for (i = 1; ((i <= C_SYNCHRONIZER_STAGE) && (C_APPLICATION_TYPE_AXIS == 1 && C_COMMON_CLOCK == 0) ); i = i + 1) begin : gpkt_cnt_sync_stage fifo_generator_v12_0_sync_stage #( .C_WIDTH (LOG_DEPTH_AXIS) ) rd_stg_inst ( .RST (axis_rd_has_rst), .CLK (M_ACLK), .DIN (wpkt_q[i-1]), .DOUT (wpkt_q[i]) ); fifo_generator_v12_0_sync_stage #( .C_WIDTH (1) ) wr_stg_inst ( .RST (axis_rd_has_rst), .CLK (M_ACLK), .DIN (axis_af_q[i-1]), .DOUT (axis_af_q[i]) ); end endgenerate // gpkt_cnt_sync_stage generate if (C_APPLICATION_TYPE_AXIS == 1 && C_COMMON_CLOCK == 0) begin : gaxis_pkt_fifo_ic assign axis_wr_eop = axis_wr_en & S_AXIS_TLAST; assign axis_rd_eop = axis_rd_en & axis_dout[0]; always @ (posedge axis_rd_has_rst or posedge M_ACLK) begin if (axis_rd_has_rst) axis_pkt_read <= 1'b0; else if (axis_rd_eop && (diff_pkt_cnt == 1)) axis_pkt_read <= 1'b0; else if ((diff_pkt_cnt > 0) || (axis_af_rd && ~axis_empty)) axis_pkt_read <= 1'b1; end always @ (posedge axis_wr_rst or posedge S_ACLK) begin if (axis_wr_rst) axis_wpkt_cnt <= 1'b0; else if (axis_wr_eop) axis_wpkt_cnt <= axis_wpkt_cnt + 1; end always @ (posedge axis_wr_rst or posedge S_ACLK) begin if (axis_wr_rst) axis_wpkt_cnt_gc <= 1'b0; else axis_wpkt_cnt_gc <= bin2gray(axis_wpkt_cnt); end assign wpkt_q[0] = axis_wpkt_cnt_gc; assign axis_wpkt_cnt_gc_asreg_last = wpkt_q[C_SYNCHRONIZER_STAGE]; assign axis_af_q[0] = axis_almost_full; //assign axis_af_q[1:C_SYNCHRONIZER_STAGE] = axis_af_q_temp[1:C_SYNCHRONIZER_STAGE]; assign axis_af_rd = axis_af_q[C_SYNCHRONIZER_STAGE]; always @ (posedge axis_rd_has_rst or posedge M_ACLK) begin if (axis_rd_has_rst) axis_wpkt_cnt_rd <= 1'b0; else axis_wpkt_cnt_rd <= gray2bin(axis_wpkt_cnt_gc_asreg_last); end always @ (posedge axis_rd_rst or posedge M_ACLK) begin if (axis_rd_has_rst) axis_rpkt_cnt <= 1'b0; else if (axis_rd_eop) axis_rpkt_cnt <= axis_rpkt_cnt + 1; end // Take the difference of write and read packet count // Logic is similar to rd_pe_as assign adj_axis_wpkt_cnt_rd_pad[LOG_DEPTH_AXIS : 1] = axis_wpkt_cnt_rd; assign rpkt_inv_pad[LOG_DEPTH_AXIS : 1] = ~axis_rpkt_cnt; assign adj_axis_wpkt_cnt_rd_pad[0] = adj_axis_wpkt_cnt_rd_pad_0; assign rpkt_inv_pad[0] = rpkt_inv_pad_0; always @ ( axis_rd_eop ) begin if (!axis_rd_eop) begin adj_axis_wpkt_cnt_rd_pad_0 <= 1'b1; rpkt_inv_pad_0 <= 1'b1; end else begin adj_axis_wpkt_cnt_rd_pad_0 <= 1'b0; rpkt_inv_pad_0 <= 1'b0; end end always @ (posedge axis_rd_rst or posedge M_ACLK) begin if (axis_rd_has_rst) diff_pkt_cnt_pad <= 1'b0; else diff_pkt_cnt_pad <= adj_axis_wpkt_cnt_rd_pad + rpkt_inv_pad ; end assign diff_pkt_cnt = diff_pkt_cnt_pad [LOG_DEPTH_AXIS : 1] ; end endgenerate // gaxis_pkt_fifo_ic // Generate the accurate data count for axi stream packet fifo configuration reg [C_WR_PNTR_WIDTH_AXIS:0] axis_dc_pkt_fifo = 0; generate if (IS_AXI_STREAMING == 1 && C_HAS_DATA_COUNTS_AXIS == 1 && C_APPLICATION_TYPE_AXIS == 1) begin : gdc_pkt always @ (posedge inverted_reset or posedge S_ACLK) begin if (inverted_reset) axis_dc_pkt_fifo <= 0; else if (axis_wr_en && (~axis_rd_en)) axis_dc_pkt_fifo <= #`TCQ axis_dc_pkt_fifo + 1; else if (~axis_wr_en && axis_rd_en) axis_dc_pkt_fifo <= #`TCQ axis_dc_pkt_fifo - 1; end assign AXIS_DATA_COUNT = axis_dc_pkt_fifo; end endgenerate // gdc_pkt generate if (IS_AXI_STREAMING == 1 && C_HAS_DATA_COUNTS_AXIS == 0 && C_APPLICATION_TYPE_AXIS == 1) begin : gndc_pkt assign AXIS_DATA_COUNT = 0; end endgenerate // gndc_pkt generate if (IS_AXI_STREAMING == 1 && C_APPLICATION_TYPE_AXIS != 1) begin : gdc assign AXIS_DATA_COUNT = axis_dc; end endgenerate // gdc // Register Slice for Write Address Channel generate if (C_AXIS_TYPE == 1) begin : gaxis_reg_slice assign axis_wr_en = (C_HAS_SLAVE_CE == 1) ? S_AXIS_TVALID & S_ACLK_EN : S_AXIS_TVALID; assign axis_rd_en = (C_HAS_MASTER_CE == 1) ? M_AXIS_TREADY & M_ACLK_EN : M_AXIS_TREADY; fifo_generator_v12_0_axic_reg_slice #( .C_FAMILY (C_FAMILY), .C_DATA_WIDTH (C_DIN_WIDTH_AXIS), .C_REG_CONFIG (C_REG_SLICE_MODE_AXIS) ) axis_reg_slice_inst ( // System Signals .ACLK (S_ACLK), .ARESET (axi_rs_rst), // Slave side .S_PAYLOAD_DATA (axis_din), .S_VALID (axis_wr_en), .S_READY (S_AXIS_TREADY), // Master side .M_PAYLOAD_DATA (axis_dout), .M_VALID (M_AXIS_TVALID), .M_READY (axis_rd_en) ); end endgenerate // gaxis_reg_slice generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TDATA == 1) begin : tdata assign axis_din[C_DIN_WIDTH_AXIS-1:TDATA_OFFSET] = S_AXIS_TDATA; assign M_AXIS_TDATA = axis_dout[C_DIN_WIDTH_AXIS-1:TDATA_OFFSET]; end endgenerate generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TSTRB == 1) begin : tstrb assign axis_din[TDATA_OFFSET-1:TSTRB_OFFSET] = S_AXIS_TSTRB; assign M_AXIS_TSTRB = axis_dout[TDATA_OFFSET-1:TSTRB_OFFSET]; end endgenerate generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TKEEP == 1) begin : tkeep assign axis_din[TSTRB_OFFSET-1:TKEEP_OFFSET] = S_AXIS_TKEEP; assign M_AXIS_TKEEP = axis_dout[TSTRB_OFFSET-1:TKEEP_OFFSET]; end endgenerate generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TID == 1) begin : tid assign axis_din[TKEEP_OFFSET-1:TID_OFFSET] = S_AXIS_TID; assign M_AXIS_TID = axis_dout[TKEEP_OFFSET-1:TID_OFFSET]; end endgenerate generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TDEST == 1) begin : tdest assign axis_din[TID_OFFSET-1:TDEST_OFFSET] = S_AXIS_TDEST; assign M_AXIS_TDEST = axis_dout[TID_OFFSET-1:TDEST_OFFSET]; end endgenerate generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TUSER == 1) begin : tuser assign axis_din[TDEST_OFFSET-1:TUSER_OFFSET] = S_AXIS_TUSER; assign M_AXIS_TUSER = axis_dout[TDEST_OFFSET-1:TUSER_OFFSET]; end endgenerate generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TLAST == 1) begin : tlast assign axis_din[0] = S_AXIS_TLAST; assign M_AXIS_TLAST = axis_dout[0]; end endgenerate //########################################################################### // AXI FULL Write Channel (axi_write_channel) //########################################################################### localparam IS_AXI_FULL = ((C_INTERFACE_TYPE == 2) && (C_AXI_TYPE != 2)) ? 1 : 0; localparam IS_AXI_LITE = ((C_INTERFACE_TYPE == 2) && (C_AXI_TYPE == 2)) ? 1 : 0; localparam IS_AXI_FULL_WACH = ((IS_AXI_FULL == 1) && (C_WACH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0; localparam IS_AXI_FULL_WDCH = ((IS_AXI_FULL == 1) && (C_WDCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0; localparam IS_AXI_FULL_WRCH = ((IS_AXI_FULL == 1) && (C_WRCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0; localparam IS_AXI_FULL_RACH = ((IS_AXI_FULL == 1) && (C_RACH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0; localparam IS_AXI_FULL_RDCH = ((IS_AXI_FULL == 1) && (C_RDCH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0; localparam IS_AXI_LITE_WACH = ((IS_AXI_LITE == 1) && (C_WACH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0; localparam IS_AXI_LITE_WDCH = ((IS_AXI_LITE == 1) && (C_WDCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0; localparam IS_AXI_LITE_WRCH = ((IS_AXI_LITE == 1) && (C_WRCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0; localparam IS_AXI_LITE_RACH = ((IS_AXI_LITE == 1) && (C_RACH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0; localparam IS_AXI_LITE_RDCH = ((IS_AXI_LITE == 1) && (C_RDCH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0; localparam IS_WR_ADDR_CH = ((IS_AXI_FULL_WACH == 1) || (IS_AXI_LITE_WACH == 1)) ? 1 : 0; localparam IS_WR_DATA_CH = ((IS_AXI_FULL_WDCH == 1) || (IS_AXI_LITE_WDCH == 1)) ? 1 : 0; localparam IS_WR_RESP_CH = ((IS_AXI_FULL_WRCH == 1) || (IS_AXI_LITE_WRCH == 1)) ? 1 : 0; localparam IS_RD_ADDR_CH = ((IS_AXI_FULL_RACH == 1) || (IS_AXI_LITE_RACH == 1)) ? 1 : 0; localparam IS_RD_DATA_CH = ((IS_AXI_FULL_RDCH == 1) || (IS_AXI_LITE_RDCH == 1)) ? 1 : 0; localparam AWID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_WACH - C_AXI_ID_WIDTH : C_DIN_WIDTH_WACH; localparam AWADDR_OFFSET = AWID_OFFSET - C_AXI_ADDR_WIDTH; localparam AWLEN_OFFSET = C_AXI_TYPE != 2 ? AWADDR_OFFSET - C_AXI_LEN_WIDTH : AWADDR_OFFSET; localparam AWSIZE_OFFSET = C_AXI_TYPE != 2 ? AWLEN_OFFSET - C_AXI_SIZE_WIDTH : AWLEN_OFFSET; localparam AWBURST_OFFSET = C_AXI_TYPE != 2 ? AWSIZE_OFFSET - C_AXI_BURST_WIDTH : AWSIZE_OFFSET; localparam AWLOCK_OFFSET = C_AXI_TYPE != 2 ? AWBURST_OFFSET - C_AXI_LOCK_WIDTH : AWBURST_OFFSET; localparam AWCACHE_OFFSET = C_AXI_TYPE != 2 ? AWLOCK_OFFSET - C_AXI_CACHE_WIDTH : AWLOCK_OFFSET; localparam AWPROT_OFFSET = AWCACHE_OFFSET - C_AXI_PROT_WIDTH; localparam AWQOS_OFFSET = AWPROT_OFFSET - C_AXI_QOS_WIDTH; localparam AWREGION_OFFSET = C_AXI_TYPE == 1 ? AWQOS_OFFSET - C_AXI_REGION_WIDTH : AWQOS_OFFSET; localparam AWUSER_OFFSET = C_HAS_AXI_AWUSER == 1 ? AWREGION_OFFSET-C_AXI_AWUSER_WIDTH : AWREGION_OFFSET; localparam WID_OFFSET = (C_AXI_TYPE == 3 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_WDCH - C_AXI_ID_WIDTH : C_DIN_WIDTH_WDCH; localparam WDATA_OFFSET = WID_OFFSET - C_AXI_DATA_WIDTH; localparam WSTRB_OFFSET = WDATA_OFFSET - C_AXI_DATA_WIDTH/8; localparam WUSER_OFFSET = C_HAS_AXI_WUSER == 1 ? WSTRB_OFFSET-C_AXI_WUSER_WIDTH : WSTRB_OFFSET; localparam BID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_WRCH - C_AXI_ID_WIDTH : C_DIN_WIDTH_WRCH; localparam BRESP_OFFSET = BID_OFFSET - C_AXI_BRESP_WIDTH; localparam BUSER_OFFSET = C_HAS_AXI_BUSER == 1 ? BRESP_OFFSET-C_AXI_BUSER_WIDTH : BRESP_OFFSET; wire [C_DIN_WIDTH_WACH-1:0] wach_din ; wire [C_DIN_WIDTH_WACH-1:0] wach_dout ; wire [C_DIN_WIDTH_WACH-1:0] wach_dout_pkt ; wire wach_full ; wire wach_almost_full ; wire wach_prog_full ; wire wach_empty ; wire wach_almost_empty ; wire wach_prog_empty ; wire [C_DIN_WIDTH_WDCH-1:0] wdch_din ; wire [C_DIN_WIDTH_WDCH-1:0] wdch_dout ; wire wdch_full ; wire wdch_almost_full ; wire wdch_prog_full ; wire wdch_empty ; wire wdch_almost_empty ; wire wdch_prog_empty ; wire [C_DIN_WIDTH_WRCH-1:0] wrch_din ; wire [C_DIN_WIDTH_WRCH-1:0] wrch_dout ; wire wrch_full ; wire wrch_almost_full ; wire wrch_prog_full ; wire wrch_empty ; wire wrch_almost_empty ; wire wrch_prog_empty ; wire axi_aw_underflow_i; wire axi_w_underflow_i ; wire axi_b_underflow_i ; wire axi_aw_overflow_i ; wire axi_w_overflow_i ; wire axi_b_overflow_i ; wire axi_wr_underflow_i; wire axi_wr_overflow_i ; wire wach_s_axi_awready; wire wach_m_axi_awvalid; wire wach_wr_en ; wire wach_rd_en ; wire wdch_s_axi_wready ; wire wdch_m_axi_wvalid ; wire wdch_wr_en ; wire wdch_rd_en ; wire wrch_s_axi_bvalid ; wire wrch_m_axi_bready ; wire wrch_wr_en ; wire wrch_rd_en ; wire txn_count_up ; wire txn_count_down ; wire awvalid_en ; wire awvalid_pkt ; wire awready_pkt ; integer wr_pkt_count ; wire wach_we ; wire wach_re ; wire wdch_we ; wire wdch_re ; wire wrch_we ; wire wrch_re ; generate if (IS_WR_ADDR_CH == 1) begin : axi_write_address_channel // Write protection when almost full or prog_full is high assign wach_we = (C_PROG_FULL_TYPE_WACH != 0) ? wach_s_axi_awready & S_AXI_AWVALID : S_AXI_AWVALID; // Read protection when almost empty or prog_empty is high assign wach_re = (C_PROG_EMPTY_TYPE_WACH != 0 && C_APPLICATION_TYPE_WACH == 1) ? wach_m_axi_awvalid & awready_pkt & awvalid_en : (C_PROG_EMPTY_TYPE_WACH != 0 && C_APPLICATION_TYPE_WACH != 1) ? M_AXI_AWREADY && wach_m_axi_awvalid : (C_PROG_EMPTY_TYPE_WACH == 0 && C_APPLICATION_TYPE_WACH == 1) ? awready_pkt & awvalid_en : (C_PROG_EMPTY_TYPE_WACH == 0 && C_APPLICATION_TYPE_WACH != 1) ? M_AXI_AWREADY : 1'b0; assign wach_wr_en = (C_HAS_SLAVE_CE == 1) ? wach_we & S_ACLK_EN : wach_we; assign wach_rd_en = (C_HAS_MASTER_CE == 1) ? wach_re & M_ACLK_EN : wach_re; FIFO_GENERATOR_v12_0_CONV_VER #( .C_FAMILY (C_FAMILY), .C_COMMON_CLOCK (C_COMMON_CLOCK), .C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_WACH == 1 || C_IMPLEMENTATION_TYPE_WACH == 11) ? 1 : (C_IMPLEMENTATION_TYPE_WACH == 2 || C_IMPLEMENTATION_TYPE_WACH == 12) ? 2 : 4), .C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_WACH == 1 || C_IMPLEMENTATION_TYPE_WACH == 2) ? 0 : (C_IMPLEMENTATION_TYPE_WACH == 11 || C_IMPLEMENTATION_TYPE_WACH == 12) ? 2 : 6), .C_PRELOAD_REGS (1), // always FWFT for AXI .C_PRELOAD_LATENCY (0), // always FWFT for AXI .C_DIN_WIDTH (C_DIN_WIDTH_WACH), .C_WR_DEPTH (C_WR_DEPTH_WACH), .C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_WACH), .C_DOUT_WIDTH (C_DIN_WIDTH_WACH), .C_RD_DEPTH (C_WR_DEPTH_WACH), .C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_WACH), .C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_WACH), .C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_WACH), .C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_WACH), .C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH), .C_USE_ECC (C_USE_ECC_WACH), .C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_WACH), .C_HAS_ALMOST_EMPTY (0), .C_HAS_ALMOST_FULL (0), .C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE), .C_FIFO_TYPE ((C_APPLICATION_TYPE_WACH == 1)?0:C_APPLICATION_TYPE_WACH), .C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE), .C_HAS_WR_RST (0), .C_HAS_RD_RST (0), .C_HAS_RST (1), .C_HAS_SRST (0), .C_DOUT_RST_VAL (0), .C_HAS_VALID (0), .C_VALID_LOW (C_VALID_LOW), .C_HAS_UNDERFLOW (C_HAS_UNDERFLOW), .C_UNDERFLOW_LOW (C_UNDERFLOW_LOW), .C_HAS_WR_ACK (0), .C_WR_ACK_LOW (C_WR_ACK_LOW), .C_HAS_OVERFLOW (C_HAS_OVERFLOW), .C_OVERFLOW_LOW (C_OVERFLOW_LOW), .C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_WACH == 1) ? 1 : 0), .C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WACH + 1), .C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WACH == 1) ? 1 : 0), .C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WACH + 1), .C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true .C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WACH == 1) ? 1 : 0), .C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WACH + 1), .C_FULL_FLAGS_RST_VAL (1), .C_USE_EMBEDDED_REG (0), .C_USE_DOUT_RST (0), .C_MSGON_VAL (C_MSGON_VAL), .C_ENABLE_RST_SYNC (1), .C_COUNT_TYPE (C_COUNT_TYPE), .C_DEFAULT_VALUE (C_DEFAULT_VALUE), .C_ENABLE_RLOCS (C_ENABLE_RLOCS), .C_HAS_BACKUP (C_HAS_BACKUP), .C_HAS_INT_CLK (C_HAS_INT_CLK), .C_MIF_FILE_NAME (C_MIF_FILE_NAME), .C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE), .C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL), .C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE), .C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE), .C_RD_FREQ (C_RD_FREQ), .C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS), .C_WR_FREQ (C_WR_FREQ), .C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY) ) fifo_generator_v12_0_wach_dut ( .CLK (S_ACLK), .WR_CLK (S_ACLK), .RD_CLK (M_ACLK), .RST (inverted_reset), .SRST (1'b0), .WR_RST (inverted_reset), .RD_RST (inverted_reset), .WR_EN (wach_wr_en), .RD_EN (wach_rd_en), .PROG_FULL_THRESH (AXI_AW_PROG_FULL_THRESH), .PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WACH{1'b0}}), .PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WACH{1'b0}}), .PROG_EMPTY_THRESH (AXI_AW_PROG_EMPTY_THRESH), .PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WACH{1'b0}}), .PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WACH{1'b0}}), .INJECTDBITERR (AXI_AW_INJECTDBITERR), .INJECTSBITERR (AXI_AW_INJECTSBITERR), .DIN (wach_din), .DOUT (wach_dout_pkt), .FULL (wach_full), .EMPTY (wach_empty), .ALMOST_FULL (), .PROG_FULL (AXI_AW_PROG_FULL), .ALMOST_EMPTY (), .PROG_EMPTY (AXI_AW_PROG_EMPTY), .WR_ACK (), .OVERFLOW (axi_aw_overflow_i), .VALID (), .UNDERFLOW (axi_aw_underflow_i), .DATA_COUNT (AXI_AW_DATA_COUNT), .RD_DATA_COUNT (AXI_AW_RD_DATA_COUNT), .WR_DATA_COUNT (AXI_AW_WR_DATA_COUNT), .SBITERR (AXI_AW_SBITERR), .DBITERR (AXI_AW_DBITERR), .wr_rst_busy (wr_rst_busy_wach), .rd_rst_busy (rd_rst_busy_wach), .wr_rst_i_out (), .rd_rst_i_out (), .BACKUP (BACKUP), .BACKUP_MARKER (BACKUP_MARKER), .INT_CLK (INT_CLK) ); assign wach_s_axi_awready = (IS_8SERIES == 0) ? ~wach_full : (C_IMPLEMENTATION_TYPE_WACH == 5 || C_IMPLEMENTATION_TYPE_WACH == 13) ? ~(wach_full | wr_rst_busy_wach) : ~wach_full; assign wach_m_axi_awvalid = ~wach_empty; assign S_AXI_AWREADY = wach_s_axi_awready; assign AXI_AW_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_aw_underflow_i : 0; assign AXI_AW_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_aw_overflow_i : 0; end endgenerate // axi_write_address_channel // Register Slice for Write Address Channel generate if (C_WACH_TYPE == 1) begin : gwach_reg_slice fifo_generator_v12_0_axic_reg_slice #( .C_FAMILY (C_FAMILY), .C_DATA_WIDTH (C_DIN_WIDTH_WACH), .C_REG_CONFIG (C_REG_SLICE_MODE_WACH) ) wach_reg_slice_inst ( // System Signals .ACLK (S_ACLK), .ARESET (axi_rs_rst), // Slave side .S_PAYLOAD_DATA (wach_din), .S_VALID (S_AXI_AWVALID), .S_READY (S_AXI_AWREADY), // Master side .M_PAYLOAD_DATA (wach_dout), .M_VALID (M_AXI_AWVALID), .M_READY (M_AXI_AWREADY) ); end endgenerate // gwach_reg_slice generate if (C_APPLICATION_TYPE_WACH == 1 && C_HAS_AXI_WR_CHANNEL == 1) begin : axi_mm_pkt_fifo_wr fifo_generator_v12_0_axic_reg_slice #( .C_FAMILY (C_FAMILY), .C_DATA_WIDTH (C_DIN_WIDTH_WACH), .C_REG_CONFIG (1) ) wach_pkt_reg_slice_inst ( // System Signals .ACLK (S_ACLK), .ARESET (inverted_reset), // Slave side .S_PAYLOAD_DATA (wach_dout_pkt), .S_VALID (awvalid_pkt), .S_READY (awready_pkt), // Master side .M_PAYLOAD_DATA (wach_dout), .M_VALID (M_AXI_AWVALID), .M_READY (M_AXI_AWREADY) ); assign awvalid_pkt = wach_m_axi_awvalid && awvalid_en; assign txn_count_up = wdch_s_axi_wready && wdch_wr_en && wdch_din[0]; assign txn_count_down = wach_m_axi_awvalid && awready_pkt && awvalid_en; always@(posedge S_ACLK or posedge inverted_reset) begin if(inverted_reset == 1) begin wr_pkt_count <= 0; end else begin if(txn_count_up == 1 && txn_count_down == 0) begin wr_pkt_count <= wr_pkt_count + 1; end else if(txn_count_up == 0 && txn_count_down == 1) begin wr_pkt_count <= wr_pkt_count - 1; end end end //Always end assign awvalid_en = (wr_pkt_count > 0)?1:0; end endgenerate generate if (C_APPLICATION_TYPE_WACH != 1) begin : axi_mm_fifo_wr assign awvalid_en = 1; assign wach_dout = wach_dout_pkt; assign M_AXI_AWVALID = wach_m_axi_awvalid; end endgenerate generate if (IS_WR_DATA_CH == 1) begin : axi_write_data_channel // Write protection when almost full or prog_full is high assign wdch_we = (C_PROG_FULL_TYPE_WDCH != 0) ? wdch_s_axi_wready & S_AXI_WVALID : S_AXI_WVALID; // Read protection when almost empty or prog_empty is high assign wdch_re = (C_PROG_EMPTY_TYPE_WDCH != 0) ? wdch_m_axi_wvalid & M_AXI_WREADY : M_AXI_WREADY; assign wdch_wr_en = (C_HAS_SLAVE_CE == 1) ? wdch_we & S_ACLK_EN : wdch_we; assign wdch_rd_en = (C_HAS_MASTER_CE == 1) ? wdch_re & M_ACLK_EN : wdch_re; FIFO_GENERATOR_v12_0_CONV_VER #( .C_FAMILY (C_FAMILY), .C_COMMON_CLOCK (C_COMMON_CLOCK), .C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_WDCH == 1 || C_IMPLEMENTATION_TYPE_WDCH == 11) ? 1 : (C_IMPLEMENTATION_TYPE_WDCH == 2 || C_IMPLEMENTATION_TYPE_WDCH == 12) ? 2 : 4), .C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_WDCH == 1 || C_IMPLEMENTATION_TYPE_WDCH == 2) ? 0 : (C_IMPLEMENTATION_TYPE_WDCH == 11 || C_IMPLEMENTATION_TYPE_WDCH == 12) ? 2 : 6), .C_PRELOAD_REGS (1), // always FWFT for AXI .C_PRELOAD_LATENCY (0), // always FWFT for AXI .C_DIN_WIDTH (C_DIN_WIDTH_WDCH), .C_WR_DEPTH (C_WR_DEPTH_WDCH), .C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_WDCH), .C_DOUT_WIDTH (C_DIN_WIDTH_WDCH), .C_RD_DEPTH (C_WR_DEPTH_WDCH), .C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_WDCH), .C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_WDCH), .C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_WDCH), .C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_WDCH), .C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH), .C_USE_ECC (C_USE_ECC_WDCH), .C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_WDCH), .C_HAS_ALMOST_EMPTY (0), .C_HAS_ALMOST_FULL (0), .C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE), .C_FIFO_TYPE (C_APPLICATION_TYPE_WDCH), .C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE), .C_HAS_WR_RST (0), .C_HAS_RD_RST (0), .C_HAS_RST (1), .C_HAS_SRST (0), .C_DOUT_RST_VAL (0), .C_HAS_VALID (0), .C_VALID_LOW (C_VALID_LOW), .C_HAS_UNDERFLOW (C_HAS_UNDERFLOW), .C_UNDERFLOW_LOW (C_UNDERFLOW_LOW), .C_HAS_WR_ACK (0), .C_WR_ACK_LOW (C_WR_ACK_LOW), .C_HAS_OVERFLOW (C_HAS_OVERFLOW), .C_OVERFLOW_LOW (C_OVERFLOW_LOW), .C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_WDCH == 1) ? 1 : 0), .C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WDCH + 1), .C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WDCH == 1) ? 1 : 0), .C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WDCH + 1), .C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true .C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WDCH == 1) ? 1 : 0), .C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WDCH + 1), .C_FULL_FLAGS_RST_VAL (1), .C_USE_EMBEDDED_REG (0), .C_USE_DOUT_RST (0), .C_MSGON_VAL (C_MSGON_VAL), .C_ENABLE_RST_SYNC (1), .C_COUNT_TYPE (C_COUNT_TYPE), .C_DEFAULT_VALUE (C_DEFAULT_VALUE), .C_ENABLE_RLOCS (C_ENABLE_RLOCS), .C_HAS_BACKUP (C_HAS_BACKUP), .C_HAS_INT_CLK (C_HAS_INT_CLK), .C_MIF_FILE_NAME (C_MIF_FILE_NAME), .C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE), .C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL), .C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE), .C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE), .C_RD_FREQ (C_RD_FREQ), .C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS), .C_WR_FREQ (C_WR_FREQ), .C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY) ) fifo_generator_v12_0_wdch_dut ( .CLK (S_ACLK), .WR_CLK (S_ACLK), .RD_CLK (M_ACLK), .RST (inverted_reset), .SRST (1'b0), .WR_RST (inverted_reset), .RD_RST (inverted_reset), .WR_EN (wdch_wr_en), .RD_EN (wdch_rd_en), .PROG_FULL_THRESH (AXI_W_PROG_FULL_THRESH), .PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WDCH{1'b0}}), .PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WDCH{1'b0}}), .PROG_EMPTY_THRESH (AXI_W_PROG_EMPTY_THRESH), .PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WDCH{1'b0}}), .PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WDCH{1'b0}}), .INJECTDBITERR (AXI_W_INJECTDBITERR), .INJECTSBITERR (AXI_W_INJECTSBITERR), .DIN (wdch_din), .DOUT (wdch_dout), .FULL (wdch_full), .EMPTY (wdch_empty), .ALMOST_FULL (), .PROG_FULL (AXI_W_PROG_FULL), .ALMOST_EMPTY (), .PROG_EMPTY (AXI_W_PROG_EMPTY), .WR_ACK (), .OVERFLOW (axi_w_overflow_i), .VALID (), .UNDERFLOW (axi_w_underflow_i), .DATA_COUNT (AXI_W_DATA_COUNT), .RD_DATA_COUNT (AXI_W_RD_DATA_COUNT), .WR_DATA_COUNT (AXI_W_WR_DATA_COUNT), .SBITERR (AXI_W_SBITERR), .DBITERR (AXI_W_DBITERR), .wr_rst_busy (wr_rst_busy_wdch), .rd_rst_busy (rd_rst_busy_wdch), .wr_rst_i_out (), .rd_rst_i_out (), .BACKUP (BACKUP), .BACKUP_MARKER (BACKUP_MARKER), .INT_CLK (INT_CLK) ); assign wdch_s_axi_wready = (IS_8SERIES == 0) ? ~wdch_full : (C_IMPLEMENTATION_TYPE_WDCH == 5 || C_IMPLEMENTATION_TYPE_WDCH == 13) ? ~(wdch_full | wr_rst_busy_wdch) : ~wdch_full; assign wdch_m_axi_wvalid = ~wdch_empty; assign S_AXI_WREADY = wdch_s_axi_wready; assign M_AXI_WVALID = wdch_m_axi_wvalid; assign AXI_W_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_w_underflow_i : 0; assign AXI_W_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_w_overflow_i : 0; end endgenerate // axi_write_data_channel // Register Slice for Write Data Channel generate if (C_WDCH_TYPE == 1) begin : gwdch_reg_slice fifo_generator_v12_0_axic_reg_slice #( .C_FAMILY (C_FAMILY), .C_DATA_WIDTH (C_DIN_WIDTH_WDCH), .C_REG_CONFIG (C_REG_SLICE_MODE_WDCH) ) wdch_reg_slice_inst ( // System Signals .ACLK (S_ACLK), .ARESET (axi_rs_rst), // Slave side .S_PAYLOAD_DATA (wdch_din), .S_VALID (S_AXI_WVALID), .S_READY (S_AXI_WREADY), // Master side .M_PAYLOAD_DATA (wdch_dout), .M_VALID (M_AXI_WVALID), .M_READY (M_AXI_WREADY) ); end endgenerate // gwdch_reg_slice generate if (IS_WR_RESP_CH == 1) begin : axi_write_resp_channel // Write protection when almost full or prog_full is high assign wrch_we = (C_PROG_FULL_TYPE_WRCH != 0) ? wrch_m_axi_bready & M_AXI_BVALID : M_AXI_BVALID; // Read protection when almost empty or prog_empty is high assign wrch_re = (C_PROG_EMPTY_TYPE_WRCH != 0) ? wrch_s_axi_bvalid & S_AXI_BREADY : S_AXI_BREADY; assign wrch_wr_en = (C_HAS_SLAVE_CE == 1) ? wrch_we & S_ACLK_EN : wrch_we; assign wrch_rd_en = (C_HAS_MASTER_CE == 1) ? wrch_re & M_ACLK_EN : wrch_re; FIFO_GENERATOR_v12_0_CONV_VER #( .C_FAMILY (C_FAMILY), .C_COMMON_CLOCK (C_COMMON_CLOCK), .C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_WRCH == 1 || C_IMPLEMENTATION_TYPE_WRCH == 11) ? 1 : (C_IMPLEMENTATION_TYPE_WRCH == 2 || C_IMPLEMENTATION_TYPE_WRCH == 12) ? 2 : 4), .C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_WRCH == 1 || C_IMPLEMENTATION_TYPE_WRCH == 2) ? 0 : (C_IMPLEMENTATION_TYPE_WRCH == 11 || C_IMPLEMENTATION_TYPE_WRCH == 12) ? 2 : 6), .C_PRELOAD_REGS (1), // always FWFT for AXI .C_PRELOAD_LATENCY (0), // always FWFT for AXI .C_DIN_WIDTH (C_DIN_WIDTH_WRCH), .C_WR_DEPTH (C_WR_DEPTH_WRCH), .C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_WRCH), .C_DOUT_WIDTH (C_DIN_WIDTH_WRCH), .C_RD_DEPTH (C_WR_DEPTH_WRCH), .C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_WRCH), .C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_WRCH), .C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_WRCH), .C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_WRCH), .C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH), .C_USE_ECC (C_USE_ECC_WRCH), .C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_WRCH), .C_HAS_ALMOST_EMPTY (0), .C_HAS_ALMOST_FULL (0), .C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE), .C_FIFO_TYPE (C_APPLICATION_TYPE_WRCH), .C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE), .C_HAS_WR_RST (0), .C_HAS_RD_RST (0), .C_HAS_RST (1), .C_HAS_SRST (0), .C_DOUT_RST_VAL (0), .C_HAS_VALID (0), .C_VALID_LOW (C_VALID_LOW), .C_HAS_UNDERFLOW (C_HAS_UNDERFLOW), .C_UNDERFLOW_LOW (C_UNDERFLOW_LOW), .C_HAS_WR_ACK (0), .C_WR_ACK_LOW (C_WR_ACK_LOW), .C_HAS_OVERFLOW (C_HAS_OVERFLOW), .C_OVERFLOW_LOW (C_OVERFLOW_LOW), .C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_WRCH == 1) ? 1 : 0), .C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WRCH + 1), .C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WRCH == 1) ? 1 : 0), .C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WRCH + 1), .C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true .C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WRCH == 1) ? 1 : 0), .C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WRCH + 1), .C_FULL_FLAGS_RST_VAL (1), .C_USE_EMBEDDED_REG (0), .C_USE_DOUT_RST (0), .C_MSGON_VAL (C_MSGON_VAL), .C_ENABLE_RST_SYNC (1), .C_COUNT_TYPE (C_COUNT_TYPE), .C_DEFAULT_VALUE (C_DEFAULT_VALUE), .C_ENABLE_RLOCS (C_ENABLE_RLOCS), .C_HAS_BACKUP (C_HAS_BACKUP), .C_HAS_INT_CLK (C_HAS_INT_CLK), .C_MIF_FILE_NAME (C_MIF_FILE_NAME), .C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE), .C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL), .C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE), .C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE), .C_RD_FREQ (C_RD_FREQ), .C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS), .C_WR_FREQ (C_WR_FREQ), .C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY) ) fifo_generator_v12_0_wrch_dut ( .CLK (S_ACLK), .WR_CLK (M_ACLK), .RD_CLK (S_ACLK), .RST (inverted_reset), .SRST (1'b0), .WR_RST (inverted_reset), .RD_RST (inverted_reset), .WR_EN (wrch_wr_en), .RD_EN (wrch_rd_en), .PROG_FULL_THRESH (AXI_B_PROG_FULL_THRESH), .PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WRCH{1'b0}}), .PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WRCH{1'b0}}), .PROG_EMPTY_THRESH (AXI_B_PROG_EMPTY_THRESH), .PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WRCH{1'b0}}), .PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WRCH{1'b0}}), .INJECTDBITERR (AXI_B_INJECTDBITERR), .INJECTSBITERR (AXI_B_INJECTSBITERR), .DIN (wrch_din), .DOUT (wrch_dout), .FULL (wrch_full), .EMPTY (wrch_empty), .ALMOST_FULL (), .ALMOST_EMPTY (), .PROG_FULL (AXI_B_PROG_FULL), .PROG_EMPTY (AXI_B_PROG_EMPTY), .WR_ACK (), .OVERFLOW (axi_b_overflow_i), .VALID (), .UNDERFLOW (axi_b_underflow_i), .DATA_COUNT (AXI_B_DATA_COUNT), .RD_DATA_COUNT (AXI_B_RD_DATA_COUNT), .WR_DATA_COUNT (AXI_B_WR_DATA_COUNT), .SBITERR (AXI_B_SBITERR), .DBITERR (AXI_B_DBITERR), .wr_rst_busy (wr_rst_busy_wrch), .rd_rst_busy (rd_rst_busy_wrch), .wr_rst_i_out (), .rd_rst_i_out (), .BACKUP (BACKUP), .BACKUP_MARKER (BACKUP_MARKER), .INT_CLK (INT_CLK) ); assign wrch_s_axi_bvalid = ~wrch_empty; assign wrch_m_axi_bready = (IS_8SERIES == 0) ? ~wrch_full : (C_IMPLEMENTATION_TYPE_WRCH == 5 || C_IMPLEMENTATION_TYPE_WRCH == 13) ? ~(wrch_full | wr_rst_busy_wrch) : ~wrch_full; assign S_AXI_BVALID = wrch_s_axi_bvalid; assign M_AXI_BREADY = wrch_m_axi_bready; assign AXI_B_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_b_underflow_i : 0; assign AXI_B_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_b_overflow_i : 0; end endgenerate // axi_write_resp_channel // Register Slice for Write Response Channel generate if (C_WRCH_TYPE == 1) begin : gwrch_reg_slice fifo_generator_v12_0_axic_reg_slice #( .C_FAMILY (C_FAMILY), .C_DATA_WIDTH (C_DIN_WIDTH_WRCH), .C_REG_CONFIG (C_REG_SLICE_MODE_WRCH) ) wrch_reg_slice_inst ( // System Signals .ACLK (S_ACLK), .ARESET (axi_rs_rst), // Slave side .S_PAYLOAD_DATA (wrch_din), .S_VALID (M_AXI_BVALID), .S_READY (M_AXI_BREADY), // Master side .M_PAYLOAD_DATA (wrch_dout), .M_VALID (S_AXI_BVALID), .M_READY (S_AXI_BREADY) ); end endgenerate // gwrch_reg_slice assign axi_wr_underflow_i = C_USE_COMMON_UNDERFLOW == 1 ? (axi_aw_underflow_i || axi_w_underflow_i || axi_b_underflow_i) : 0; assign axi_wr_overflow_i = C_USE_COMMON_OVERFLOW == 1 ? (axi_aw_overflow_i || axi_w_overflow_i || axi_b_overflow_i) : 0; generate if (IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) begin : axi_wach_output assign M_AXI_AWADDR = wach_dout[AWID_OFFSET-1:AWADDR_OFFSET]; assign M_AXI_AWLEN = wach_dout[AWADDR_OFFSET-1:AWLEN_OFFSET]; assign M_AXI_AWSIZE = wach_dout[AWLEN_OFFSET-1:AWSIZE_OFFSET]; assign M_AXI_AWBURST = wach_dout[AWSIZE_OFFSET-1:AWBURST_OFFSET]; assign M_AXI_AWLOCK = wach_dout[AWBURST_OFFSET-1:AWLOCK_OFFSET]; assign M_AXI_AWCACHE = wach_dout[AWLOCK_OFFSET-1:AWCACHE_OFFSET]; assign M_AXI_AWPROT = wach_dout[AWCACHE_OFFSET-1:AWPROT_OFFSET]; assign M_AXI_AWQOS = wach_dout[AWPROT_OFFSET-1:AWQOS_OFFSET]; assign wach_din[AWID_OFFSET-1:AWADDR_OFFSET] = S_AXI_AWADDR; assign wach_din[AWADDR_OFFSET-1:AWLEN_OFFSET] = S_AXI_AWLEN; assign wach_din[AWLEN_OFFSET-1:AWSIZE_OFFSET] = S_AXI_AWSIZE; assign wach_din[AWSIZE_OFFSET-1:AWBURST_OFFSET] = S_AXI_AWBURST; assign wach_din[AWBURST_OFFSET-1:AWLOCK_OFFSET] = S_AXI_AWLOCK; assign wach_din[AWLOCK_OFFSET-1:AWCACHE_OFFSET] = S_AXI_AWCACHE; assign wach_din[AWCACHE_OFFSET-1:AWPROT_OFFSET] = S_AXI_AWPROT; assign wach_din[AWPROT_OFFSET-1:AWQOS_OFFSET] = S_AXI_AWQOS; end endgenerate // axi_wach_output generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_AXI_TYPE == 1) begin : axi_awregion assign M_AXI_AWREGION = wach_dout[AWQOS_OFFSET-1:AWREGION_OFFSET]; end endgenerate // axi_awregion generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_AXI_TYPE != 1) begin : naxi_awregion assign M_AXI_AWREGION = 0; end endgenerate // naxi_awregion generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_AWUSER == 1) begin : axi_awuser assign M_AXI_AWUSER = wach_dout[AWREGION_OFFSET-1:AWUSER_OFFSET]; end endgenerate // axi_awuser generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_AWUSER == 0) begin : naxi_awuser assign M_AXI_AWUSER = 0; end endgenerate // naxi_awuser generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_awid assign M_AXI_AWID = wach_dout[C_DIN_WIDTH_WACH-1:AWID_OFFSET]; end endgenerate //axi_awid generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_awid assign M_AXI_AWID = 0; end endgenerate //naxi_awid generate if (IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) begin : axi_wdch_output assign M_AXI_WDATA = wdch_dout[WID_OFFSET-1:WDATA_OFFSET]; assign M_AXI_WSTRB = wdch_dout[WDATA_OFFSET-1:WSTRB_OFFSET]; assign M_AXI_WLAST = wdch_dout[0]; assign wdch_din[WID_OFFSET-1:WDATA_OFFSET] = S_AXI_WDATA; assign wdch_din[WDATA_OFFSET-1:WSTRB_OFFSET] = S_AXI_WSTRB; assign wdch_din[0] = S_AXI_WLAST; end endgenerate // axi_wdch_output generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_ID == 1 && C_AXI_TYPE == 3) begin assign M_AXI_WID = wdch_dout[C_DIN_WIDTH_WDCH-1:WID_OFFSET]; end endgenerate generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && (C_HAS_AXI_ID == 0 || C_AXI_TYPE != 3)) begin assign M_AXI_WID = 0; end endgenerate generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_WUSER == 1 ) begin assign M_AXI_WUSER = wdch_dout[WSTRB_OFFSET-1:WUSER_OFFSET]; end endgenerate generate if (C_HAS_AXI_WUSER == 0) begin assign M_AXI_WUSER = 0; end endgenerate generate if (IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) begin : axi_wrch_output assign S_AXI_BRESP = wrch_dout[BID_OFFSET-1:BRESP_OFFSET]; assign wrch_din[BID_OFFSET-1:BRESP_OFFSET] = M_AXI_BRESP; end endgenerate // axi_wrch_output generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_BUSER == 1) begin : axi_buser assign S_AXI_BUSER = wrch_dout[BRESP_OFFSET-1:BUSER_OFFSET]; end endgenerate // axi_buser generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_BUSER == 0) begin : naxi_buser assign S_AXI_BUSER = 0; end endgenerate // naxi_buser generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_bid assign S_AXI_BID = wrch_dout[C_DIN_WIDTH_WRCH-1:BID_OFFSET]; end endgenerate // axi_bid generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_bid assign S_AXI_BID = 0 ; end endgenerate // naxi_bid generate if (IS_AXI_LITE_WACH == 1 || (IS_AXI_LITE == 1 && C_WACH_TYPE == 1)) begin : axi_wach_output1 assign wach_din = {S_AXI_AWADDR, S_AXI_AWPROT}; assign M_AXI_AWADDR = wach_dout[C_DIN_WIDTH_WACH-1:AWADDR_OFFSET]; assign M_AXI_AWPROT = wach_dout[AWADDR_OFFSET-1:AWPROT_OFFSET]; end endgenerate // axi_wach_output1 generate if (IS_AXI_LITE_WDCH == 1 || (IS_AXI_LITE == 1 && C_WDCH_TYPE == 1)) begin : axi_wdch_output1 assign wdch_din = {S_AXI_WDATA, S_AXI_WSTRB}; assign M_AXI_WDATA = wdch_dout[C_DIN_WIDTH_WDCH-1:WDATA_OFFSET]; assign M_AXI_WSTRB = wdch_dout[WDATA_OFFSET-1:WSTRB_OFFSET]; end endgenerate // axi_wdch_output1 generate if (IS_AXI_LITE_WRCH == 1 || (IS_AXI_LITE == 1 && C_WRCH_TYPE == 1)) begin : axi_wrch_output1 assign wrch_din = M_AXI_BRESP; assign S_AXI_BRESP = wrch_dout[C_DIN_WIDTH_WRCH-1:BRESP_OFFSET]; end endgenerate // axi_wrch_output1 generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_AWUSER == 1) begin : gwach_din1 assign wach_din[AWREGION_OFFSET-1:AWUSER_OFFSET] = S_AXI_AWUSER; end endgenerate // gwach_din1 generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : gwach_din2 assign wach_din[C_DIN_WIDTH_WACH-1:AWID_OFFSET] = S_AXI_AWID; end endgenerate // gwach_din2 generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_AXI_TYPE == 1) begin : gwach_din3 assign wach_din[AWQOS_OFFSET-1:AWREGION_OFFSET] = S_AXI_AWREGION; end endgenerate // gwach_din3 generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_WUSER == 1) begin : gwdch_din1 assign wdch_din[WSTRB_OFFSET-1:WUSER_OFFSET] = S_AXI_WUSER; end endgenerate // gwdch_din1 generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_ID == 1 && C_AXI_TYPE == 3) begin : gwdch_din2 assign wdch_din[C_DIN_WIDTH_WDCH-1:WID_OFFSET] = S_AXI_WID; end endgenerate // gwdch_din2 generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_BUSER == 1) begin : gwrch_din1 assign wrch_din[BRESP_OFFSET-1:BUSER_OFFSET] = M_AXI_BUSER; end endgenerate // gwrch_din1 generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : gwrch_din2 assign wrch_din[C_DIN_WIDTH_WRCH-1:BID_OFFSET] = M_AXI_BID; end endgenerate // gwrch_din2 //end of axi_write_channel //########################################################################### // AXI FULL Read Channel (axi_read_channel) //########################################################################### wire [C_DIN_WIDTH_RACH-1:0] rach_din ; wire [C_DIN_WIDTH_RACH-1:0] rach_dout ; wire [C_DIN_WIDTH_RACH-1:0] rach_dout_pkt ; wire rach_full ; wire rach_almost_full ; wire rach_prog_full ; wire rach_empty ; wire rach_almost_empty ; wire rach_prog_empty ; wire [C_DIN_WIDTH_RDCH-1:0] rdch_din ; wire [C_DIN_WIDTH_RDCH-1:0] rdch_dout ; wire rdch_full ; wire rdch_almost_full ; wire rdch_prog_full ; wire rdch_empty ; wire rdch_almost_empty ; wire rdch_prog_empty ; wire axi_ar_underflow_i ; wire axi_r_underflow_i ; wire axi_ar_overflow_i ; wire axi_r_overflow_i ; wire axi_rd_underflow_i ; wire axi_rd_overflow_i ; wire rach_s_axi_arready ; wire rach_m_axi_arvalid ; wire rach_wr_en ; wire rach_rd_en ; wire rdch_m_axi_rready ; wire rdch_s_axi_rvalid ; wire rdch_wr_en ; wire rdch_rd_en ; wire arvalid_pkt ; wire arready_pkt ; wire arvalid_en ; wire rdch_rd_ok ; wire accept_next_pkt ; integer rdch_free_space ; integer rdch_commited_space ; wire rach_we ; wire rach_re ; wire rdch_we ; wire rdch_re ; localparam ARID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_RACH - C_AXI_ID_WIDTH : C_DIN_WIDTH_RACH; localparam ARADDR_OFFSET = ARID_OFFSET - C_AXI_ADDR_WIDTH; localparam ARLEN_OFFSET = C_AXI_TYPE != 2 ? ARADDR_OFFSET - C_AXI_LEN_WIDTH : ARADDR_OFFSET; localparam ARSIZE_OFFSET = C_AXI_TYPE != 2 ? ARLEN_OFFSET - C_AXI_SIZE_WIDTH : ARLEN_OFFSET; localparam ARBURST_OFFSET = C_AXI_TYPE != 2 ? ARSIZE_OFFSET - C_AXI_BURST_WIDTH : ARSIZE_OFFSET; localparam ARLOCK_OFFSET = C_AXI_TYPE != 2 ? ARBURST_OFFSET - C_AXI_LOCK_WIDTH : ARBURST_OFFSET; localparam ARCACHE_OFFSET = C_AXI_TYPE != 2 ? ARLOCK_OFFSET - C_AXI_CACHE_WIDTH : ARLOCK_OFFSET; localparam ARPROT_OFFSET = ARCACHE_OFFSET - C_AXI_PROT_WIDTH; localparam ARQOS_OFFSET = ARPROT_OFFSET - C_AXI_QOS_WIDTH; localparam ARREGION_OFFSET = C_AXI_TYPE == 1 ? ARQOS_OFFSET - C_AXI_REGION_WIDTH : ARQOS_OFFSET; localparam ARUSER_OFFSET = C_HAS_AXI_ARUSER == 1 ? ARREGION_OFFSET-C_AXI_ARUSER_WIDTH : ARREGION_OFFSET; localparam RID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_RDCH - C_AXI_ID_WIDTH : C_DIN_WIDTH_RDCH; localparam RDATA_OFFSET = RID_OFFSET - C_AXI_DATA_WIDTH; localparam RRESP_OFFSET = RDATA_OFFSET - C_AXI_RRESP_WIDTH; localparam RUSER_OFFSET = C_HAS_AXI_RUSER == 1 ? RRESP_OFFSET-C_AXI_RUSER_WIDTH : RRESP_OFFSET; generate if (IS_RD_ADDR_CH == 1) begin : axi_read_addr_channel // Write protection when almost full or prog_full is high assign rach_we = (C_PROG_FULL_TYPE_RACH != 0) ? rach_s_axi_arready & S_AXI_ARVALID : S_AXI_ARVALID; // Read protection when almost empty or prog_empty is high // assign rach_rd_en = (C_PROG_EMPTY_TYPE_RACH != 5) ? rach_m_axi_arvalid & M_AXI_ARREADY : M_AXI_ARREADY && arvalid_en; assign rach_re = (C_PROG_EMPTY_TYPE_RACH != 0 && C_APPLICATION_TYPE_RACH == 1) ? rach_m_axi_arvalid & arready_pkt & arvalid_en : (C_PROG_EMPTY_TYPE_RACH != 0 && C_APPLICATION_TYPE_RACH != 1) ? M_AXI_ARREADY && rach_m_axi_arvalid : (C_PROG_EMPTY_TYPE_RACH == 0 && C_APPLICATION_TYPE_RACH == 1) ? arready_pkt & arvalid_en : (C_PROG_EMPTY_TYPE_RACH == 0 && C_APPLICATION_TYPE_RACH != 1) ? M_AXI_ARREADY : 1'b0; assign rach_wr_en = (C_HAS_SLAVE_CE == 1) ? rach_we & S_ACLK_EN : rach_we; assign rach_rd_en = (C_HAS_MASTER_CE == 1) ? rach_re & M_ACLK_EN : rach_re; FIFO_GENERATOR_v12_0_CONV_VER #( .C_FAMILY (C_FAMILY), .C_COMMON_CLOCK (C_COMMON_CLOCK), .C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_RACH == 1 || C_IMPLEMENTATION_TYPE_RACH == 11) ? 1 : (C_IMPLEMENTATION_TYPE_RACH == 2 || C_IMPLEMENTATION_TYPE_RACH == 12) ? 2 : 4), .C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_RACH == 1 || C_IMPLEMENTATION_TYPE_RACH == 2) ? 0 : (C_IMPLEMENTATION_TYPE_RACH == 11 || C_IMPLEMENTATION_TYPE_RACH == 12) ? 2 : 6), .C_PRELOAD_REGS (1), // always FWFT for AXI .C_PRELOAD_LATENCY (0), // always FWFT for AXI .C_DIN_WIDTH (C_DIN_WIDTH_RACH), .C_WR_DEPTH (C_WR_DEPTH_RACH), .C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_RACH), .C_DOUT_WIDTH (C_DIN_WIDTH_RACH), .C_RD_DEPTH (C_WR_DEPTH_RACH), .C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_RACH), .C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_RACH), .C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_RACH), .C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_RACH), .C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH), .C_USE_ECC (C_USE_ECC_RACH), .C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_RACH), .C_HAS_ALMOST_EMPTY (0), .C_HAS_ALMOST_FULL (0), .C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE), .C_FIFO_TYPE ((C_APPLICATION_TYPE_RACH == 1)?0:C_APPLICATION_TYPE_RACH), .C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE), .C_HAS_WR_RST (0), .C_HAS_RD_RST (0), .C_HAS_RST (1), .C_HAS_SRST (0), .C_DOUT_RST_VAL (0), .C_HAS_VALID (0), .C_VALID_LOW (C_VALID_LOW), .C_HAS_UNDERFLOW (C_HAS_UNDERFLOW), .C_UNDERFLOW_LOW (C_UNDERFLOW_LOW), .C_HAS_WR_ACK (0), .C_WR_ACK_LOW (C_WR_ACK_LOW), .C_HAS_OVERFLOW (C_HAS_OVERFLOW), .C_OVERFLOW_LOW (C_OVERFLOW_LOW), .C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_RACH == 1) ? 1 : 0), .C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RACH + 1), .C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RACH == 1) ? 1 : 0), .C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RACH + 1), .C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true .C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RACH == 1) ? 1 : 0), .C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RACH + 1), .C_FULL_FLAGS_RST_VAL (1), .C_USE_EMBEDDED_REG (0), .C_USE_DOUT_RST (0), .C_MSGON_VAL (C_MSGON_VAL), .C_ENABLE_RST_SYNC (1), .C_COUNT_TYPE (C_COUNT_TYPE), .C_DEFAULT_VALUE (C_DEFAULT_VALUE), .C_ENABLE_RLOCS (C_ENABLE_RLOCS), .C_HAS_BACKUP (C_HAS_BACKUP), .C_HAS_INT_CLK (C_HAS_INT_CLK), .C_MIF_FILE_NAME (C_MIF_FILE_NAME), .C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE), .C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL), .C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE), .C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE), .C_RD_FREQ (C_RD_FREQ), .C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS), .C_WR_FREQ (C_WR_FREQ), .C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY) ) fifo_generator_v12_0_rach_dut ( .CLK (S_ACLK), .WR_CLK (S_ACLK), .RD_CLK (M_ACLK), .RST (inverted_reset), .SRST (1'b0), .WR_RST (inverted_reset), .RD_RST (inverted_reset), .WR_EN (rach_wr_en), .RD_EN (rach_rd_en), .PROG_FULL_THRESH (AXI_AR_PROG_FULL_THRESH), .PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RACH{1'b0}}), .PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RACH{1'b0}}), .PROG_EMPTY_THRESH (AXI_AR_PROG_EMPTY_THRESH), .PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RACH{1'b0}}), .PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RACH{1'b0}}), .INJECTDBITERR (AXI_AR_INJECTDBITERR), .INJECTSBITERR (AXI_AR_INJECTSBITERR), .DIN (rach_din), .DOUT (rach_dout_pkt), .FULL (rach_full), .EMPTY (rach_empty), .ALMOST_FULL (), .ALMOST_EMPTY (), .PROG_FULL (AXI_AR_PROG_FULL), .PROG_EMPTY (AXI_AR_PROG_EMPTY), .WR_ACK (), .OVERFLOW (axi_ar_overflow_i), .VALID (), .UNDERFLOW (axi_ar_underflow_i), .DATA_COUNT (AXI_AR_DATA_COUNT), .RD_DATA_COUNT (AXI_AR_RD_DATA_COUNT), .WR_DATA_COUNT (AXI_AR_WR_DATA_COUNT), .SBITERR (AXI_AR_SBITERR), .DBITERR (AXI_AR_DBITERR), .wr_rst_busy (wr_rst_busy_rach), .rd_rst_busy (rd_rst_busy_rach), .wr_rst_i_out (), .rd_rst_i_out (), .BACKUP (BACKUP), .BACKUP_MARKER (BACKUP_MARKER), .INT_CLK (INT_CLK) ); assign rach_s_axi_arready = (IS_8SERIES == 0) ? ~rach_full : (C_IMPLEMENTATION_TYPE_RACH == 5 || C_IMPLEMENTATION_TYPE_RACH == 13) ? ~(rach_full | wr_rst_busy_rach) : ~rach_full; assign rach_m_axi_arvalid = ~rach_empty; assign S_AXI_ARREADY = rach_s_axi_arready; assign AXI_AR_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_ar_underflow_i : 0; assign AXI_AR_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_ar_overflow_i : 0; end endgenerate // axi_read_addr_channel // Register Slice for Read Address Channel generate if (C_RACH_TYPE == 1) begin : grach_reg_slice fifo_generator_v12_0_axic_reg_slice #( .C_FAMILY (C_FAMILY), .C_DATA_WIDTH (C_DIN_WIDTH_RACH), .C_REG_CONFIG (C_REG_SLICE_MODE_RACH) ) rach_reg_slice_inst ( // System Signals .ACLK (S_ACLK), .ARESET (axi_rs_rst), // Slave side .S_PAYLOAD_DATA (rach_din), .S_VALID (S_AXI_ARVALID), .S_READY (S_AXI_ARREADY), // Master side .M_PAYLOAD_DATA (rach_dout), .M_VALID (M_AXI_ARVALID), .M_READY (M_AXI_ARREADY) ); end endgenerate // grach_reg_slice // Register Slice for Read Address Channel for MM Packet FIFO generate if (C_RACH_TYPE == 0 && C_APPLICATION_TYPE_RACH == 1) begin : grach_reg_slice_mm_pkt_fifo fifo_generator_v12_0_axic_reg_slice #( .C_FAMILY (C_FAMILY), .C_DATA_WIDTH (C_DIN_WIDTH_RACH), .C_REG_CONFIG (1) ) reg_slice_mm_pkt_fifo_inst ( // System Signals .ACLK (S_ACLK), .ARESET (inverted_reset), // Slave side .S_PAYLOAD_DATA (rach_dout_pkt), .S_VALID (arvalid_pkt), .S_READY (arready_pkt), // Master side .M_PAYLOAD_DATA (rach_dout), .M_VALID (M_AXI_ARVALID), .M_READY (M_AXI_ARREADY) ); end endgenerate // grach_reg_slice_mm_pkt_fifo generate if (C_RACH_TYPE == 0 && C_APPLICATION_TYPE_RACH != 1) begin : grach_m_axi_arvalid assign M_AXI_ARVALID = rach_m_axi_arvalid; assign rach_dout = rach_dout_pkt; end endgenerate // grach_m_axi_arvalid generate if (C_APPLICATION_TYPE_RACH == 1 && C_HAS_AXI_RD_CHANNEL == 1) begin : axi_mm_pkt_fifo_rd assign rdch_rd_ok = rdch_s_axi_rvalid && rdch_rd_en; assign arvalid_pkt = rach_m_axi_arvalid && arvalid_en; assign accept_next_pkt = rach_m_axi_arvalid && arready_pkt && arvalid_en; always@(posedge S_ACLK or posedge inverted_reset) begin if(inverted_reset) begin rdch_commited_space <= 0; end else begin if(rdch_rd_ok && !accept_next_pkt) begin rdch_commited_space <= rdch_commited_space-1; end else if(!rdch_rd_ok && accept_next_pkt) begin rdch_commited_space <= rdch_commited_space+(rach_dout_pkt[ARADDR_OFFSET-1:ARLEN_OFFSET]+1); end else if(rdch_rd_ok && accept_next_pkt) begin rdch_commited_space <= rdch_commited_space+(rach_dout_pkt[ARADDR_OFFSET-1:ARLEN_OFFSET]); end end end //Always end always@(*) begin rdch_free_space <= (C_WR_DEPTH_RDCH-(rdch_commited_space+rach_dout_pkt[ARADDR_OFFSET-1:ARLEN_OFFSET]+1)); end assign arvalid_en = (rdch_free_space >= 0)?1:0; end endgenerate generate if (C_APPLICATION_TYPE_RACH != 1) begin : axi_mm_fifo_rd assign arvalid_en = 1; end endgenerate generate if (IS_RD_DATA_CH == 1) begin : axi_read_data_channel // Write protection when almost full or prog_full is high assign rdch_we = (C_PROG_FULL_TYPE_RDCH != 0) ? rdch_m_axi_rready & M_AXI_RVALID : M_AXI_RVALID; // Read protection when almost empty or prog_empty is high assign rdch_re = (C_PROG_EMPTY_TYPE_RDCH != 0) ? rdch_s_axi_rvalid & S_AXI_RREADY : S_AXI_RREADY; assign rdch_wr_en = (C_HAS_SLAVE_CE == 1) ? rdch_we & S_ACLK_EN : rdch_we; assign rdch_rd_en = (C_HAS_MASTER_CE == 1) ? rdch_re & M_ACLK_EN : rdch_re; FIFO_GENERATOR_v12_0_CONV_VER #( .C_FAMILY (C_FAMILY), .C_COMMON_CLOCK (C_COMMON_CLOCK), .C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_RDCH == 1 || C_IMPLEMENTATION_TYPE_RDCH == 11) ? 1 : (C_IMPLEMENTATION_TYPE_RDCH == 2 || C_IMPLEMENTATION_TYPE_RDCH == 12) ? 2 : 4), .C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_RDCH == 1 || C_IMPLEMENTATION_TYPE_RDCH == 2) ? 0 : (C_IMPLEMENTATION_TYPE_RDCH == 11 || C_IMPLEMENTATION_TYPE_RDCH == 12) ? 2 : 6), .C_PRELOAD_REGS (1), // always FWFT for AXI .C_PRELOAD_LATENCY (0), // always FWFT for AXI .C_DIN_WIDTH (C_DIN_WIDTH_RDCH), .C_WR_DEPTH (C_WR_DEPTH_RDCH), .C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_RDCH), .C_DOUT_WIDTH (C_DIN_WIDTH_RDCH), .C_RD_DEPTH (C_WR_DEPTH_RDCH), .C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_RDCH), .C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_RDCH), .C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_RDCH), .C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_RDCH), .C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH), .C_USE_ECC (C_USE_ECC_RDCH), .C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_RDCH), .C_HAS_ALMOST_EMPTY (0), .C_HAS_ALMOST_FULL (0), .C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE), .C_FIFO_TYPE (C_APPLICATION_TYPE_RDCH), .C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE), .C_HAS_WR_RST (0), .C_HAS_RD_RST (0), .C_HAS_RST (1), .C_HAS_SRST (0), .C_DOUT_RST_VAL (0), .C_HAS_VALID (0), .C_VALID_LOW (C_VALID_LOW), .C_HAS_UNDERFLOW (C_HAS_UNDERFLOW), .C_UNDERFLOW_LOW (C_UNDERFLOW_LOW), .C_HAS_WR_ACK (0), .C_WR_ACK_LOW (C_WR_ACK_LOW), .C_HAS_OVERFLOW (C_HAS_OVERFLOW), .C_OVERFLOW_LOW (C_OVERFLOW_LOW), .C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_RDCH == 1) ? 1 : 0), .C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RDCH + 1), .C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RDCH == 1) ? 1 : 0), .C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RDCH + 1), .C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true .C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RDCH == 1) ? 1 : 0), .C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RDCH + 1), .C_FULL_FLAGS_RST_VAL (1), .C_USE_EMBEDDED_REG (0), .C_USE_DOUT_RST (0), .C_MSGON_VAL (C_MSGON_VAL), .C_ENABLE_RST_SYNC (1), .C_COUNT_TYPE (C_COUNT_TYPE), .C_DEFAULT_VALUE (C_DEFAULT_VALUE), .C_ENABLE_RLOCS (C_ENABLE_RLOCS), .C_HAS_BACKUP (C_HAS_BACKUP), .C_HAS_INT_CLK (C_HAS_INT_CLK), .C_MIF_FILE_NAME (C_MIF_FILE_NAME), .C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE), .C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL), .C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE), .C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE), .C_RD_FREQ (C_RD_FREQ), .C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS), .C_WR_FREQ (C_WR_FREQ), .C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY) ) fifo_generator_v12_0_rdch_dut ( .CLK (S_ACLK), .WR_CLK (M_ACLK), .RD_CLK (S_ACLK), .RST (inverted_reset), .SRST (1'b0), .WR_RST (inverted_reset), .RD_RST (inverted_reset), .WR_EN (rdch_wr_en), .RD_EN (rdch_rd_en), .PROG_FULL_THRESH (AXI_R_PROG_FULL_THRESH), .PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RDCH{1'b0}}), .PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RDCH{1'b0}}), .PROG_EMPTY_THRESH (AXI_R_PROG_EMPTY_THRESH), .PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RDCH{1'b0}}), .PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RDCH{1'b0}}), .INJECTDBITERR (AXI_R_INJECTDBITERR), .INJECTSBITERR (AXI_R_INJECTSBITERR), .DIN (rdch_din), .DOUT (rdch_dout), .FULL (rdch_full), .EMPTY (rdch_empty), .ALMOST_FULL (), .ALMOST_EMPTY (), .PROG_FULL (AXI_R_PROG_FULL), .PROG_EMPTY (AXI_R_PROG_EMPTY), .WR_ACK (), .OVERFLOW (axi_r_overflow_i), .VALID (), .UNDERFLOW (axi_r_underflow_i), .DATA_COUNT (AXI_R_DATA_COUNT), .RD_DATA_COUNT (AXI_R_RD_DATA_COUNT), .WR_DATA_COUNT (AXI_R_WR_DATA_COUNT), .SBITERR (AXI_R_SBITERR), .DBITERR (AXI_R_DBITERR), .wr_rst_busy (wr_rst_busy_rdch), .rd_rst_busy (rd_rst_busy_rdch), .wr_rst_i_out (), .rd_rst_i_out (), .BACKUP (BACKUP), .BACKUP_MARKER (BACKUP_MARKER), .INT_CLK (INT_CLK) ); assign rdch_s_axi_rvalid = ~rdch_empty; assign rdch_m_axi_rready = (IS_8SERIES == 0) ? ~rdch_full : (C_IMPLEMENTATION_TYPE_RDCH == 5 || C_IMPLEMENTATION_TYPE_RDCH == 13) ? ~(rdch_full | wr_rst_busy_rdch) : ~rdch_full; assign S_AXI_RVALID = rdch_s_axi_rvalid; assign M_AXI_RREADY = rdch_m_axi_rready; assign AXI_R_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_r_underflow_i : 0; assign AXI_R_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_r_overflow_i : 0; end endgenerate //axi_read_data_channel // Register Slice for read Data Channel generate if (C_RDCH_TYPE == 1) begin : grdch_reg_slice fifo_generator_v12_0_axic_reg_slice #( .C_FAMILY (C_FAMILY), .C_DATA_WIDTH (C_DIN_WIDTH_RDCH), .C_REG_CONFIG (C_REG_SLICE_MODE_RDCH) ) rdch_reg_slice_inst ( // System Signals .ACLK (S_ACLK), .ARESET (axi_rs_rst), // Slave side .S_PAYLOAD_DATA (rdch_din), .S_VALID (M_AXI_RVALID), .S_READY (M_AXI_RREADY), // Master side .M_PAYLOAD_DATA (rdch_dout), .M_VALID (S_AXI_RVALID), .M_READY (S_AXI_RREADY) ); end endgenerate // grdch_reg_slice assign axi_rd_underflow_i = C_USE_COMMON_UNDERFLOW == 1 ? (axi_ar_underflow_i || axi_r_underflow_i) : 0; assign axi_rd_overflow_i = C_USE_COMMON_OVERFLOW == 1 ? (axi_ar_overflow_i || axi_r_overflow_i) : 0; generate if (IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) begin : axi_full_rach_output assign M_AXI_ARADDR = rach_dout[ARID_OFFSET-1:ARADDR_OFFSET]; assign M_AXI_ARLEN = rach_dout[ARADDR_OFFSET-1:ARLEN_OFFSET]; assign M_AXI_ARSIZE = rach_dout[ARLEN_OFFSET-1:ARSIZE_OFFSET]; assign M_AXI_ARBURST = rach_dout[ARSIZE_OFFSET-1:ARBURST_OFFSET]; assign M_AXI_ARLOCK = rach_dout[ARBURST_OFFSET-1:ARLOCK_OFFSET]; assign M_AXI_ARCACHE = rach_dout[ARLOCK_OFFSET-1:ARCACHE_OFFSET]; assign M_AXI_ARPROT = rach_dout[ARCACHE_OFFSET-1:ARPROT_OFFSET]; assign M_AXI_ARQOS = rach_dout[ARPROT_OFFSET-1:ARQOS_OFFSET]; assign rach_din[ARID_OFFSET-1:ARADDR_OFFSET] = S_AXI_ARADDR; assign rach_din[ARADDR_OFFSET-1:ARLEN_OFFSET] = S_AXI_ARLEN; assign rach_din[ARLEN_OFFSET-1:ARSIZE_OFFSET] = S_AXI_ARSIZE; assign rach_din[ARSIZE_OFFSET-1:ARBURST_OFFSET] = S_AXI_ARBURST; assign rach_din[ARBURST_OFFSET-1:ARLOCK_OFFSET] = S_AXI_ARLOCK; assign rach_din[ARLOCK_OFFSET-1:ARCACHE_OFFSET] = S_AXI_ARCACHE; assign rach_din[ARCACHE_OFFSET-1:ARPROT_OFFSET] = S_AXI_ARPROT; assign rach_din[ARPROT_OFFSET-1:ARQOS_OFFSET] = S_AXI_ARQOS; end endgenerate // axi_full_rach_output generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_AXI_TYPE == 1) begin : axi_arregion assign M_AXI_ARREGION = rach_dout[ARQOS_OFFSET-1:ARREGION_OFFSET]; end endgenerate // axi_arregion generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_AXI_TYPE != 1) begin : naxi_arregion assign M_AXI_ARREGION = 0; end endgenerate // naxi_arregion generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ARUSER == 1) begin : axi_aruser assign M_AXI_ARUSER = rach_dout[ARREGION_OFFSET-1:ARUSER_OFFSET]; end endgenerate // axi_aruser generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ARUSER == 0) begin : naxi_aruser assign M_AXI_ARUSER = 0; end endgenerate // naxi_aruser generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_arid assign M_AXI_ARID = rach_dout[C_DIN_WIDTH_RACH-1:ARID_OFFSET]; end endgenerate // axi_arid generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_arid assign M_AXI_ARID = 0; end endgenerate // naxi_arid generate if (IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) begin : axi_full_rdch_output assign S_AXI_RDATA = rdch_dout[RID_OFFSET-1:RDATA_OFFSET]; assign S_AXI_RRESP = rdch_dout[RDATA_OFFSET-1:RRESP_OFFSET]; assign S_AXI_RLAST = rdch_dout[0]; assign rdch_din[RID_OFFSET-1:RDATA_OFFSET] = M_AXI_RDATA; assign rdch_din[RDATA_OFFSET-1:RRESP_OFFSET] = M_AXI_RRESP; assign rdch_din[0] = M_AXI_RLAST; end endgenerate // axi_full_rdch_output generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_RUSER == 1) begin : axi_full_ruser_output assign S_AXI_RUSER = rdch_dout[RRESP_OFFSET-1:RUSER_OFFSET]; end endgenerate // axi_full_ruser_output generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_RUSER == 0) begin : axi_full_nruser_output assign S_AXI_RUSER = 0; end endgenerate // axi_full_nruser_output generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_rid assign S_AXI_RID = rdch_dout[C_DIN_WIDTH_RDCH-1:RID_OFFSET]; end endgenerate // axi_rid generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_rid assign S_AXI_RID = 0; end endgenerate // naxi_rid generate if (IS_AXI_LITE_RACH == 1 || (IS_AXI_LITE == 1 && C_RACH_TYPE == 1)) begin : axi_lite_rach_output1 assign rach_din = {S_AXI_ARADDR, S_AXI_ARPROT}; assign M_AXI_ARADDR = rach_dout[C_DIN_WIDTH_RACH-1:ARADDR_OFFSET]; assign M_AXI_ARPROT = rach_dout[ARADDR_OFFSET-1:ARPROT_OFFSET]; end endgenerate // axi_lite_rach_output generate if (IS_AXI_LITE_RDCH == 1 || (IS_AXI_LITE == 1 && C_RDCH_TYPE == 1)) begin : axi_lite_rdch_output1 assign rdch_din = {M_AXI_RDATA, M_AXI_RRESP}; assign S_AXI_RDATA = rdch_dout[C_DIN_WIDTH_RDCH-1:RDATA_OFFSET]; assign S_AXI_RRESP = rdch_dout[RDATA_OFFSET-1:RRESP_OFFSET]; end endgenerate // axi_lite_rdch_output generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ARUSER == 1) begin : grach_din1 assign rach_din[ARREGION_OFFSET-1:ARUSER_OFFSET] = S_AXI_ARUSER; end endgenerate // grach_din1 generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : grach_din2 assign rach_din[C_DIN_WIDTH_RACH-1:ARID_OFFSET] = S_AXI_ARID; end endgenerate // grach_din2 generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_AXI_TYPE == 1) begin assign rach_din[ARQOS_OFFSET-1:ARREGION_OFFSET] = S_AXI_ARREGION; end endgenerate generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_RUSER == 1) begin : grdch_din1 assign rdch_din[RRESP_OFFSET-1:RUSER_OFFSET] = M_AXI_RUSER; end endgenerate // grdch_din1 generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : grdch_din2 assign rdch_din[C_DIN_WIDTH_RDCH-1:RID_OFFSET] = M_AXI_RID; end endgenerate // grdch_din2 //end of axi_read_channel generate if (C_INTERFACE_TYPE == 1 && C_USE_COMMON_UNDERFLOW == 1) begin : gaxi_comm_uf assign UNDERFLOW = (C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 1) ? (axi_wr_underflow_i || axi_rd_underflow_i) : (C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 0) ? axi_wr_underflow_i : (C_HAS_AXI_WR_CHANNEL == 0 && C_HAS_AXI_RD_CHANNEL == 1) ? axi_rd_underflow_i : 0; end endgenerate // gaxi_comm_uf generate if (C_INTERFACE_TYPE == 1 && C_USE_COMMON_OVERFLOW == 1) begin : gaxi_comm_of assign OVERFLOW = (C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 1) ? (axi_wr_overflow_i || axi_rd_overflow_i) : (C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 0) ? axi_wr_overflow_i : (C_HAS_AXI_WR_CHANNEL == 0 && C_HAS_AXI_RD_CHANNEL == 1) ? axi_rd_overflow_i : 0; end endgenerate // gaxi_comm_of //------------------------------------------------------------------------- //------------------------------------------------------------------------- //------------------------------------------------------------------------- // Pass Through Logic or Wiring Logic //------------------------------------------------------------------------- //------------------------------------------------------------------------- //------------------------------------------------------------------------- //------------------------------------------------------------------------- // Pass Through Logic for Read Channel //------------------------------------------------------------------------- // Wiring logic for Write Address Channel generate if (C_WACH_TYPE == 2) begin : gwach_pass_through assign M_AXI_AWID = S_AXI_AWID; assign M_AXI_AWADDR = S_AXI_AWADDR; assign M_AXI_AWLEN = S_AXI_AWLEN; assign M_AXI_AWSIZE = S_AXI_AWSIZE; assign M_AXI_AWBURST = S_AXI_AWBURST; assign M_AXI_AWLOCK = S_AXI_AWLOCK; assign M_AXI_AWCACHE = S_AXI_AWCACHE; assign M_AXI_AWPROT = S_AXI_AWPROT; assign M_AXI_AWQOS = S_AXI_AWQOS; assign M_AXI_AWREGION = S_AXI_AWREGION; assign M_AXI_AWUSER = S_AXI_AWUSER; assign S_AXI_AWREADY = M_AXI_AWREADY; assign M_AXI_AWVALID = S_AXI_AWVALID; end endgenerate // gwach_pass_through; // Wiring logic for Write Data Channel generate if (C_WDCH_TYPE == 2) begin : gwdch_pass_through assign M_AXI_WID = S_AXI_WID; assign M_AXI_WDATA = S_AXI_WDATA; assign M_AXI_WSTRB = S_AXI_WSTRB; assign M_AXI_WLAST = S_AXI_WLAST; assign M_AXI_WUSER = S_AXI_WUSER; assign S_AXI_WREADY = M_AXI_WREADY; assign M_AXI_WVALID = S_AXI_WVALID; end endgenerate // gwdch_pass_through; // Wiring logic for Write Response Channel generate if (C_WRCH_TYPE == 2) begin : gwrch_pass_through assign S_AXI_BID = M_AXI_BID; assign S_AXI_BRESP = M_AXI_BRESP; assign S_AXI_BUSER = M_AXI_BUSER; assign M_AXI_BREADY = S_AXI_BREADY; assign S_AXI_BVALID = M_AXI_BVALID; end endgenerate // gwrch_pass_through; //------------------------------------------------------------------------- // Pass Through Logic for Read Channel //------------------------------------------------------------------------- // Wiring logic for Read Address Channel generate if (C_RACH_TYPE == 2) begin : grach_pass_through assign M_AXI_ARID = S_AXI_ARID; assign M_AXI_ARADDR = S_AXI_ARADDR; assign M_AXI_ARLEN = S_AXI_ARLEN; assign M_AXI_ARSIZE = S_AXI_ARSIZE; assign M_AXI_ARBURST = S_AXI_ARBURST; assign M_AXI_ARLOCK = S_AXI_ARLOCK; assign M_AXI_ARCACHE = S_AXI_ARCACHE; assign M_AXI_ARPROT = S_AXI_ARPROT; assign M_AXI_ARQOS = S_AXI_ARQOS; assign M_AXI_ARREGION = S_AXI_ARREGION; assign M_AXI_ARUSER = S_AXI_ARUSER; assign S_AXI_ARREADY = M_AXI_ARREADY; assign M_AXI_ARVALID = S_AXI_ARVALID; end endgenerate // grach_pass_through; // Wiring logic for Read Data Channel generate if (C_RDCH_TYPE == 2) begin : grdch_pass_through assign S_AXI_RID = M_AXI_RID; assign S_AXI_RLAST = M_AXI_RLAST; assign S_AXI_RUSER = M_AXI_RUSER; assign S_AXI_RDATA = M_AXI_RDATA; assign S_AXI_RRESP = M_AXI_RRESP; assign S_AXI_RVALID = M_AXI_RVALID; assign M_AXI_RREADY = S_AXI_RREADY; end endgenerate // grdch_pass_through; // Wiring logic for AXI Streaming generate if (C_AXIS_TYPE == 2) begin : gaxis_pass_through assign M_AXIS_TDATA = S_AXIS_TDATA; assign M_AXIS_TSTRB = S_AXIS_TSTRB; assign M_AXIS_TKEEP = S_AXIS_TKEEP; assign M_AXIS_TID = S_AXIS_TID; assign M_AXIS_TDEST = S_AXIS_TDEST; assign M_AXIS_TUSER = S_AXIS_TUSER; assign M_AXIS_TLAST = S_AXIS_TLAST; assign S_AXIS_TREADY = M_AXIS_TREADY; assign M_AXIS_TVALID = S_AXIS_TVALID; end endgenerate // gaxis_pass_through; endmodule //FIFO_GENERATOR_v12_0 /******************************************************************************* * Declaration of top-level module for Conventional FIFO ******************************************************************************/ module FIFO_GENERATOR_v12_0_CONV_VER #( parameter C_COMMON_CLOCK = 0, parameter C_COUNT_TYPE = 0, parameter C_DATA_COUNT_WIDTH = 2, parameter C_DEFAULT_VALUE = "", parameter C_DIN_WIDTH = 8, parameter C_DOUT_RST_VAL = "", parameter C_DOUT_WIDTH = 8, parameter C_ENABLE_RLOCS = 0, parameter C_FAMILY = "virtex7", //Not allowed in Verilog model parameter C_FULL_FLAGS_RST_VAL = 1, parameter C_HAS_ALMOST_EMPTY = 0, parameter C_HAS_ALMOST_FULL = 0, parameter C_HAS_BACKUP = 0, parameter C_HAS_DATA_COUNT = 0, parameter C_HAS_INT_CLK = 0, parameter C_HAS_MEMINIT_FILE = 0, parameter C_HAS_OVERFLOW = 0, parameter C_HAS_RD_DATA_COUNT = 0, parameter C_HAS_RD_RST = 0, parameter C_HAS_RST = 0, parameter C_HAS_SRST = 0, parameter C_HAS_UNDERFLOW = 0, parameter C_HAS_VALID = 0, parameter C_HAS_WR_ACK = 0, parameter C_HAS_WR_DATA_COUNT = 0, parameter C_HAS_WR_RST = 0, parameter C_IMPLEMENTATION_TYPE = 0, parameter C_INIT_WR_PNTR_VAL = 0, parameter C_MEMORY_TYPE = 1, parameter C_MIF_FILE_NAME = "", parameter C_OPTIMIZATION_MODE = 0, parameter C_OVERFLOW_LOW = 0, parameter C_PRELOAD_LATENCY = 1, parameter C_PRELOAD_REGS = 0, parameter C_PRIM_FIFO_TYPE = "", parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0, parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0, parameter C_PROG_EMPTY_TYPE = 0, parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0, parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0, parameter C_PROG_FULL_TYPE = 0, parameter C_RD_DATA_COUNT_WIDTH = 2, parameter C_RD_DEPTH = 256, parameter C_RD_FREQ = 1, parameter C_RD_PNTR_WIDTH = 8, parameter C_UNDERFLOW_LOW = 0, parameter C_USE_DOUT_RST = 0, parameter C_USE_ECC = 0, parameter C_USE_EMBEDDED_REG = 0, parameter C_USE_FIFO16_FLAGS = 0, parameter C_USE_FWFT_DATA_COUNT = 0, parameter C_VALID_LOW = 0, parameter C_WR_ACK_LOW = 0, parameter C_WR_DATA_COUNT_WIDTH = 2, parameter C_WR_DEPTH = 256, parameter C_WR_FREQ = 1, parameter C_WR_PNTR_WIDTH = 8, parameter C_WR_RESPONSE_LATENCY = 1, parameter C_MSGON_VAL = 1, parameter C_ENABLE_RST_SYNC = 1, parameter C_ERROR_INJECTION_TYPE = 0, parameter C_FIFO_TYPE = 0, parameter C_SYNCHRONIZER_STAGE = 2, parameter C_AXI_TYPE = 0 ) ( input BACKUP, input BACKUP_MARKER, input CLK, input RST, input SRST, input WR_CLK, input WR_RST, input RD_CLK, input RD_RST, input [C_DIN_WIDTH-1:0] DIN, input WR_EN, input RD_EN, input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH, input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT, input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE, input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH, input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT, input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE, input INT_CLK, input INJECTDBITERR, input INJECTSBITERR, output [C_DOUT_WIDTH-1:0] DOUT, output FULL, output ALMOST_FULL, output WR_ACK, output OVERFLOW, output EMPTY, output ALMOST_EMPTY, output VALID, output UNDERFLOW, output [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT, output [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT, output [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT, output PROG_FULL, output PROG_EMPTY, output SBITERR, output DBITERR, output wr_rst_busy, output rd_rst_busy, output wr_rst_i_out, output rd_rst_i_out ); /* ****************************************************************************** * Definition of Parameters ****************************************************************************** * C_COMMON_CLOCK : Common Clock (1), Independent Clocks (0) * C_COUNT_TYPE : *not used * C_DATA_COUNT_WIDTH : Width of DATA_COUNT bus * C_DEFAULT_VALUE : *not used * C_DIN_WIDTH : Width of DIN bus * C_DOUT_RST_VAL : Reset value of DOUT * C_DOUT_WIDTH : Width of DOUT bus * C_ENABLE_RLOCS : *not used * C_FAMILY : not used in bhv model * C_FULL_FLAGS_RST_VAL : Full flags rst val (0 or 1) * C_HAS_ALMOST_EMPTY : 1=Core has ALMOST_EMPTY flag * C_HAS_ALMOST_FULL : 1=Core has ALMOST_FULL flag * C_HAS_BACKUP : *not used * C_HAS_DATA_COUNT : 1=Core has DATA_COUNT bus * C_HAS_INT_CLK : not used in bhv model * C_HAS_MEMINIT_FILE : *not used * C_HAS_OVERFLOW : 1=Core has OVERFLOW flag * C_HAS_RD_DATA_COUNT : 1=Core has RD_DATA_COUNT bus * C_HAS_RD_RST : *not used * C_HAS_RST : 1=Core has Async Rst * C_HAS_SRST : 1=Core has Sync Rst * C_HAS_UNDERFLOW : 1=Core has UNDERFLOW flag * C_HAS_VALID : 1=Core has VALID flag * C_HAS_WR_ACK : 1=Core has WR_ACK flag * C_HAS_WR_DATA_COUNT : 1=Core has WR_DATA_COUNT bus * C_HAS_WR_RST : *not used * C_IMPLEMENTATION_TYPE : 0=Common-Clock Bram/Dram * 1=Common-Clock ShiftRam * 2=Indep. Clocks Bram/Dram * 3=Virtex-4 Built-in * 4=Virtex-5 Built-in * C_INIT_WR_PNTR_VAL : *not used * C_MEMORY_TYPE : 1=Block RAM * 2=Distributed RAM * 3=Shift RAM * 4=Built-in FIFO * C_MIF_FILE_NAME : *not used * C_OPTIMIZATION_MODE : *not used * C_OVERFLOW_LOW : 1=OVERFLOW active low * C_PRELOAD_LATENCY : Latency of read: 0, 1, 2 * C_PRELOAD_REGS : 1=Use output registers * C_PRIM_FIFO_TYPE : not used in bhv model * C_PROG_EMPTY_THRESH_ASSERT_VAL: PROG_EMPTY assert threshold * C_PROG_EMPTY_THRESH_NEGATE_VAL: PROG_EMPTY negate threshold * C_PROG_EMPTY_TYPE : 0=No programmable empty * 1=Single prog empty thresh constant * 2=Multiple prog empty thresh constants * 3=Single prog empty thresh input * 4=Multiple prog empty thresh inputs * C_PROG_FULL_THRESH_ASSERT_VAL : PROG_FULL assert threshold * C_PROG_FULL_THRESH_NEGATE_VAL : PROG_FULL negate threshold * C_PROG_FULL_TYPE : 0=No prog full * 1=Single prog full thresh constant * 2=Multiple prog full thresh constants * 3=Single prog full thresh input * 4=Multiple prog full thresh inputs * C_RD_DATA_COUNT_WIDTH : Width of RD_DATA_COUNT bus * C_RD_DEPTH : Depth of read interface (2^N) * C_RD_FREQ : not used in bhv model * C_RD_PNTR_WIDTH : always log2(C_RD_DEPTH) * C_UNDERFLOW_LOW : 1=UNDERFLOW active low * C_USE_DOUT_RST : 1=Resets DOUT on RST * C_USE_ECC : Used for error injection purpose * C_USE_EMBEDDED_REG : 1=Use BRAM embedded output register * C_USE_FIFO16_FLAGS : not used in bhv model * C_USE_FWFT_DATA_COUNT : 1=Use extra logic for FWFT data count * C_VALID_LOW : 1=VALID active low * C_WR_ACK_LOW : 1=WR_ACK active low * C_WR_DATA_COUNT_WIDTH : Width of WR_DATA_COUNT bus * C_WR_DEPTH : Depth of write interface (2^N) * C_WR_FREQ : not used in bhv model * C_WR_PNTR_WIDTH : always log2(C_WR_DEPTH) * C_WR_RESPONSE_LATENCY : *not used * C_MSGON_VAL : *not used by bhv model * C_ENABLE_RST_SYNC : 0 = Use WR_RST & RD_RST * 1 = Use RST * C_ERROR_INJECTION_TYPE : 0 = No error injection * 1 = Single bit error injection only * 2 = Double bit error injection only * 3 = Single and double bit error injection ****************************************************************************** * Definition of Ports ****************************************************************************** * BACKUP : Not used * BACKUP_MARKER: Not used * CLK : Clock * DIN : Input data bus * PROG_EMPTY_THRESH : Threshold for Programmable Empty Flag * PROG_EMPTY_THRESH_ASSERT: Threshold for Programmable Empty Flag * PROG_EMPTY_THRESH_NEGATE: Threshold for Programmable Empty Flag * PROG_FULL_THRESH : Threshold for Programmable Full Flag * PROG_FULL_THRESH_ASSERT : Threshold for Programmable Full Flag * PROG_FULL_THRESH_NEGATE : Threshold for Programmable Full Flag * RD_CLK : Read Domain Clock * RD_EN : Read enable * RD_RST : Read Reset * RST : Asynchronous Reset * SRST : Synchronous Reset * WR_CLK : Write Domain Clock * WR_EN : Write enable * WR_RST : Write Reset * INT_CLK : Internal Clock * INJECTSBITERR: Inject Signle bit error * INJECTDBITERR: Inject Double bit error * ALMOST_EMPTY : One word remaining in FIFO * ALMOST_FULL : One empty space remaining in FIFO * DATA_COUNT : Number of data words in fifo( synchronous to CLK) * DOUT : Output data bus * EMPTY : Empty flag * FULL : Full flag * OVERFLOW : Last write rejected * PROG_EMPTY : Programmable Empty Flag * PROG_FULL : Programmable Full Flag * RD_DATA_COUNT: Number of data words in fifo (synchronous to RD_CLK) * UNDERFLOW : Last read rejected * VALID : Last read acknowledged, DOUT bus VALID * WR_ACK : Last write acknowledged * WR_DATA_COUNT: Number of data words in fifo (synchronous to WR_CLK) * SBITERR : Single Bit ECC Error Detected * DBITERR : Double Bit ECC Error Detected ****************************************************************************** */ //---------------------------------------------------------------------------- //- Internal Signals for delayed input signals //- All the input signals except Clock are delayed by 100 ps and then given to //- the models. //---------------------------------------------------------------------------- reg rst_delayed ; reg empty_fb ; reg srst_delayed ; reg wr_rst_delayed ; reg rd_rst_delayed ; reg wr_en_delayed ; reg rd_en_delayed ; reg [C_DIN_WIDTH-1:0] din_delayed ; reg [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_delayed ; reg [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_assert_delayed ; reg [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_negate_delayed ; reg [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_delayed ; reg [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_assert_delayed ; reg [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_negate_delayed ; reg injectdbiterr_delayed ; reg injectsbiterr_delayed ; wire empty_p0_out; always @* rst_delayed <= #`TCQ RST ; always @* empty_fb <= #`TCQ empty_p0_out ; always @* srst_delayed <= #`TCQ SRST ; always @* wr_rst_delayed <= #`TCQ WR_RST ; always @* rd_rst_delayed <= #`TCQ RD_RST ; always @* din_delayed <= #`TCQ DIN ; always @* wr_en_delayed <= #`TCQ WR_EN ; always @* rd_en_delayed <= #`TCQ RD_EN ; always @* prog_empty_thresh_delayed <= #`TCQ PROG_EMPTY_THRESH ; always @* prog_empty_thresh_assert_delayed <= #`TCQ PROG_EMPTY_THRESH_ASSERT ; always @* prog_empty_thresh_negate_delayed <= #`TCQ PROG_EMPTY_THRESH_NEGATE ; always @* prog_full_thresh_delayed <= #`TCQ PROG_FULL_THRESH ; always @* prog_full_thresh_assert_delayed <= #`TCQ PROG_FULL_THRESH_ASSERT ; always @* prog_full_thresh_negate_delayed <= #`TCQ PROG_FULL_THRESH_NEGATE ; always @* injectdbiterr_delayed <= #`TCQ INJECTDBITERR ; always @* injectsbiterr_delayed <= #`TCQ INJECTSBITERR ; /***************************************************************************** * Derived parameters ****************************************************************************/ //There are 2 Verilog behavioral models // 0 = Common-Clock FIFO/ShiftRam FIFO // 1 = Independent Clocks FIFO // 2 = Low Latency Synchronous FIFO // 3 = Low Latency Asynchronous FIFO localparam C_VERILOG_IMPL = (C_FIFO_TYPE == 3) ? 2 : (C_IMPLEMENTATION_TYPE == 2) ? 1 : 0; localparam IS_8SERIES = (C_FAMILY == "virtexu" || C_FAMILY == "kintexu" || C_FAMILY == "artixu" || C_FAMILY == "virtexum" || C_FAMILY == "zynque") ? 1 : 0; //Internal reset signals reg rd_rst_asreg = 0; reg rd_rst_asreg_d1 = 0; reg rd_rst_asreg_d2 = 0; reg rd_rst_asreg_d3 = 0; reg rd_rst_reg = 0; wire rd_rst_comb; reg wr_rst_d0 = 0; reg wr_rst_d1 = 0; reg wr_rst_d2 = 0; reg rd_rst_d0 = 0; reg rd_rst_d1 = 0; reg rd_rst_d2 = 0; reg rd_rst_d3 = 0; reg wrrst_done = 0; reg rdrst_done = 0; reg wr_rst_asreg = 0; reg wr_rst_asreg_d1 = 0; reg wr_rst_asreg_d2 = 0; reg wr_rst_asreg_d3 = 0; reg rd_rst_wr_d0 = 0; reg rd_rst_wr_d1 = 0; reg rd_rst_wr_d2 = 0; reg wr_rst_reg = 0; reg rst_active_i = 1'b1; reg rst_delayed_d1 = 1'b1; reg rst_delayed_d2 = 1'b1; wire wr_rst_comb; wire wr_rst_i; wire rd_rst_i; wire rst_i; //Internal reset signals reg rst_asreg = 0; reg srst_asreg = 0; reg rst_asreg_d1 = 0; reg rst_asreg_d2 = 0; reg srst_asreg_d1 = 0; reg srst_asreg_d2 = 0; reg rst_reg = 0; reg srst_reg = 0; wire rst_comb; wire srst_comb; reg rst_full_gen_i = 0; reg rst_full_ff_i = 0; wire RD_CLK_P0_IN; wire RST_P0_IN; wire RD_EN_FIFO_IN; wire RD_EN_P0_IN; wire ALMOST_EMPTY_FIFO_OUT; wire ALMOST_FULL_FIFO_OUT; wire [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT_FIFO_OUT; wire [C_DOUT_WIDTH-1:0] DOUT_FIFO_OUT; wire EMPTY_FIFO_OUT; wire FULL_FIFO_OUT; wire OVERFLOW_FIFO_OUT; wire PROG_EMPTY_FIFO_OUT; wire PROG_FULL_FIFO_OUT; wire VALID_FIFO_OUT; wire [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT_FIFO_OUT; wire UNDERFLOW_FIFO_OUT; wire WR_ACK_FIFO_OUT; wire [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT_FIFO_OUT; //*************************************************************************** // Internal Signals // The core uses either the internal_ wires or the preload0_ wires depending // on whether the core uses Preload0 or not. // When using preload0, the internal signals connect the internal core to // the preload logic, and the external core's interfaces are tied to the // preload0 signals from the preload logic. //*************************************************************************** wire [C_DOUT_WIDTH-1:0] DATA_P0_OUT; wire VALID_P0_OUT; wire EMPTY_P0_OUT; wire ALMOSTEMPTY_P0_OUT; reg EMPTY_P0_OUT_Q; reg ALMOSTEMPTY_P0_OUT_Q; wire UNDERFLOW_P0_OUT; wire RDEN_P0_OUT; wire [C_DOUT_WIDTH-1:0] DATA_P0_IN; wire EMPTY_P0_IN; reg [31:0] DATA_COUNT_FWFT; reg SS_FWFT_WR ; reg SS_FWFT_RD ; wire sbiterr_fifo_out; wire dbiterr_fifo_out; wire inject_sbit_err; wire inject_dbit_err; // Assign 0 if not selected to avoid 'X' propogation to S/DBITERR. assign inject_sbit_err = ((C_ERROR_INJECTION_TYPE == 1) || (C_ERROR_INJECTION_TYPE == 3)) ? injectsbiterr_delayed : 0; assign inject_dbit_err = ((C_ERROR_INJECTION_TYPE == 2) || (C_ERROR_INJECTION_TYPE == 3)) ? injectdbiterr_delayed : 0; assign wr_rst_i_out = wr_rst_i; assign rd_rst_i_out = rd_rst_i; // Choose the behavioral model to instantiate based on the C_VERILOG_IMPL // parameter (1=Independent Clocks, 0=Common Clock) localparam FULL_FLAGS_RST_VAL = (C_HAS_SRST == 1) ? 0 : C_FULL_FLAGS_RST_VAL; generate case (C_VERILOG_IMPL) 0 : begin : block1 //Common Clock Behavioral Model fifo_generator_v12_0_bhv_ver_ss #( .C_FAMILY (C_FAMILY), .C_DATA_COUNT_WIDTH (C_DATA_COUNT_WIDTH), .C_DIN_WIDTH (C_DIN_WIDTH), .C_DOUT_RST_VAL (C_DOUT_RST_VAL), .C_DOUT_WIDTH (C_DOUT_WIDTH), .C_FULL_FLAGS_RST_VAL (FULL_FLAGS_RST_VAL), .C_HAS_ALMOST_EMPTY (C_HAS_ALMOST_EMPTY), .C_HAS_ALMOST_FULL ((C_AXI_TYPE == 0 && C_FIFO_TYPE == 1) ? 1 : C_HAS_ALMOST_FULL), .C_HAS_DATA_COUNT (C_HAS_DATA_COUNT), .C_HAS_OVERFLOW (C_HAS_OVERFLOW), .C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT), .C_HAS_RST (C_HAS_RST), .C_HAS_SRST (C_HAS_SRST), .C_HAS_UNDERFLOW (C_HAS_UNDERFLOW), .C_HAS_VALID (C_HAS_VALID), .C_HAS_WR_ACK (C_HAS_WR_ACK), .C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT), .C_IMPLEMENTATION_TYPE (C_IMPLEMENTATION_TYPE), .C_MEMORY_TYPE (C_MEMORY_TYPE), .C_OVERFLOW_LOW (C_OVERFLOW_LOW), .C_PRELOAD_LATENCY (C_PRELOAD_LATENCY), .C_PRELOAD_REGS (C_PRELOAD_REGS), .C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL), .C_PROG_EMPTY_THRESH_NEGATE_VAL (C_PROG_EMPTY_THRESH_NEGATE_VAL), .C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE), .C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL), .C_PROG_FULL_THRESH_NEGATE_VAL (C_PROG_FULL_THRESH_NEGATE_VAL), .C_PROG_FULL_TYPE (C_PROG_FULL_TYPE), .C_RD_DATA_COUNT_WIDTH (C_RD_DATA_COUNT_WIDTH), .C_RD_DEPTH (C_RD_DEPTH), .C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH), .C_UNDERFLOW_LOW (C_UNDERFLOW_LOW), .C_USE_DOUT_RST (C_USE_DOUT_RST), .C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG), .C_USE_FWFT_DATA_COUNT (C_USE_FWFT_DATA_COUNT), .C_VALID_LOW (C_VALID_LOW), .C_WR_ACK_LOW (C_WR_ACK_LOW), .C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH), .C_WR_DEPTH (C_WR_DEPTH), .C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH), .C_USE_ECC (C_USE_ECC), .C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC), .C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE), .C_FIFO_TYPE (C_FIFO_TYPE) ) gen_ss ( .CLK (CLK), .RST (rst_i), .SRST (srst_delayed), .RST_FULL_GEN (rst_full_gen_i), .RST_FULL_FF (rst_full_ff_i), .DIN (din_delayed), .WR_EN (wr_en_delayed), .RD_EN (RD_EN_FIFO_IN), .RD_EN_USER (rd_en_delayed), .USER_EMPTY_FB (empty_fb), .PROG_EMPTY_THRESH (prog_empty_thresh_delayed), .PROG_EMPTY_THRESH_ASSERT (prog_empty_thresh_assert_delayed), .PROG_EMPTY_THRESH_NEGATE (prog_empty_thresh_negate_delayed), .PROG_FULL_THRESH (prog_full_thresh_delayed), .PROG_FULL_THRESH_ASSERT (prog_full_thresh_assert_delayed), .PROG_FULL_THRESH_NEGATE (prog_full_thresh_negate_delayed), .INJECTSBITERR (inject_sbit_err), .INJECTDBITERR (inject_dbit_err), .DOUT (DOUT_FIFO_OUT), .FULL (FULL_FIFO_OUT), .ALMOST_FULL (ALMOST_FULL_FIFO_OUT), .WR_ACK (WR_ACK_FIFO_OUT), .OVERFLOW (OVERFLOW_FIFO_OUT), .EMPTY (EMPTY_FIFO_OUT), .ALMOST_EMPTY (ALMOST_EMPTY_FIFO_OUT), .VALID (VALID_FIFO_OUT), .UNDERFLOW (UNDERFLOW_FIFO_OUT), .DATA_COUNT (DATA_COUNT_FIFO_OUT), .RD_DATA_COUNT (RD_DATA_COUNT_FIFO_OUT), .WR_DATA_COUNT (WR_DATA_COUNT_FIFO_OUT), .PROG_FULL (PROG_FULL_FIFO_OUT), .PROG_EMPTY (PROG_EMPTY_FIFO_OUT), .WR_RST_BUSY (wr_rst_busy), .RD_RST_BUSY (rd_rst_busy), .SBITERR (sbiterr_fifo_out), .DBITERR (dbiterr_fifo_out) ); end 1 : begin : block1 //Independent Clocks Behavioral Model fifo_generator_v12_0_bhv_ver_as #( .C_FAMILY (C_FAMILY), .C_DATA_COUNT_WIDTH (C_DATA_COUNT_WIDTH), .C_DIN_WIDTH (C_DIN_WIDTH), .C_DOUT_RST_VAL (C_DOUT_RST_VAL), .C_DOUT_WIDTH (C_DOUT_WIDTH), .C_FULL_FLAGS_RST_VAL (C_FULL_FLAGS_RST_VAL), .C_HAS_ALMOST_EMPTY (C_HAS_ALMOST_EMPTY), .C_HAS_ALMOST_FULL (C_HAS_ALMOST_FULL), .C_HAS_DATA_COUNT (C_HAS_DATA_COUNT), .C_HAS_OVERFLOW (C_HAS_OVERFLOW), .C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT), .C_HAS_RST (C_HAS_RST), .C_HAS_UNDERFLOW (C_HAS_UNDERFLOW), .C_HAS_VALID (C_HAS_VALID), .C_HAS_WR_ACK (C_HAS_WR_ACK), .C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT), .C_IMPLEMENTATION_TYPE (C_IMPLEMENTATION_TYPE), .C_MEMORY_TYPE (C_MEMORY_TYPE), .C_OVERFLOW_LOW (C_OVERFLOW_LOW), .C_PRELOAD_LATENCY (C_PRELOAD_LATENCY), .C_PRELOAD_REGS (C_PRELOAD_REGS), .C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL), .C_PROG_EMPTY_THRESH_NEGATE_VAL (C_PROG_EMPTY_THRESH_NEGATE_VAL), .C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE), .C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL), .C_PROG_FULL_THRESH_NEGATE_VAL (C_PROG_FULL_THRESH_NEGATE_VAL), .C_PROG_FULL_TYPE (C_PROG_FULL_TYPE), .C_RD_DATA_COUNT_WIDTH (C_RD_DATA_COUNT_WIDTH), .C_RD_DEPTH (C_RD_DEPTH), .C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH), .C_UNDERFLOW_LOW (C_UNDERFLOW_LOW), .C_USE_DOUT_RST (C_USE_DOUT_RST), .C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG), .C_USE_FWFT_DATA_COUNT (C_USE_FWFT_DATA_COUNT), .C_VALID_LOW (C_VALID_LOW), .C_WR_ACK_LOW (C_WR_ACK_LOW), .C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH), .C_WR_DEPTH (C_WR_DEPTH), .C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH), .C_USE_ECC (C_USE_ECC), .C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE), .C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC), .C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE) ) gen_as ( .WR_CLK (WR_CLK), .RD_CLK (RD_CLK), .RST (rst_i), .RST_FULL_GEN (rst_full_gen_i), .RST_FULL_FF (rst_full_ff_i), .WR_RST (wr_rst_i), .RD_RST (rd_rst_i), .DIN (din_delayed), .WR_EN (wr_en_delayed), .RD_EN (RD_EN_FIFO_IN), .RD_EN_USER (rd_en_delayed), .PROG_EMPTY_THRESH (prog_empty_thresh_delayed), .PROG_EMPTY_THRESH_ASSERT (prog_empty_thresh_assert_delayed), .PROG_EMPTY_THRESH_NEGATE (prog_empty_thresh_negate_delayed), .PROG_FULL_THRESH (prog_full_thresh_delayed), .PROG_FULL_THRESH_ASSERT (prog_full_thresh_assert_delayed), .PROG_FULL_THRESH_NEGATE (prog_full_thresh_negate_delayed), .INJECTSBITERR (inject_sbit_err), .INJECTDBITERR (inject_dbit_err), .USER_EMPTY_FB (EMPTY_P0_OUT), .DOUT (DOUT_FIFO_OUT), .FULL (FULL_FIFO_OUT), .ALMOST_FULL (ALMOST_FULL_FIFO_OUT), .WR_ACK (WR_ACK_FIFO_OUT), .OVERFLOW (OVERFLOW_FIFO_OUT), .EMPTY (EMPTY_FIFO_OUT), .ALMOST_EMPTY (ALMOST_EMPTY_FIFO_OUT), .VALID (VALID_FIFO_OUT), .UNDERFLOW (UNDERFLOW_FIFO_OUT), .RD_DATA_COUNT (RD_DATA_COUNT_FIFO_OUT), .WR_DATA_COUNT (WR_DATA_COUNT_FIFO_OUT), .PROG_FULL (PROG_FULL_FIFO_OUT), .PROG_EMPTY (PROG_EMPTY_FIFO_OUT), .SBITERR (sbiterr_fifo_out), .DBITERR (dbiterr_fifo_out) ); end 2 : begin : ll_afifo_inst fifo_generator_v12_0_beh_ver_ll_afifo #( .C_DIN_WIDTH (C_DIN_WIDTH), .C_DOUT_RST_VAL (C_DOUT_RST_VAL), .C_DOUT_WIDTH (C_DOUT_WIDTH), .C_FULL_FLAGS_RST_VAL (C_FULL_FLAGS_RST_VAL), .C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT), .C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT), .C_RD_DEPTH (C_RD_DEPTH), .C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH), .C_USE_DOUT_RST (C_USE_DOUT_RST), .C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH), .C_WR_DEPTH (C_WR_DEPTH), .C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH), .C_FIFO_TYPE (C_FIFO_TYPE) ) gen_ll_afifo ( .DIN (din_delayed), .RD_CLK (RD_CLK), .RD_EN (rd_en_delayed), .WR_RST (wr_rst_i), .RD_RST (rd_rst_i), .WR_CLK (WR_CLK), .WR_EN (wr_en_delayed), .DOUT (DOUT), .EMPTY (EMPTY), .FULL (FULL) ); end default : begin : block1 //Independent Clocks Behavioral Model fifo_generator_v12_0_bhv_ver_as #( .C_FAMILY (C_FAMILY), .C_DATA_COUNT_WIDTH (C_DATA_COUNT_WIDTH), .C_DIN_WIDTH (C_DIN_WIDTH), .C_DOUT_RST_VAL (C_DOUT_RST_VAL), .C_DOUT_WIDTH (C_DOUT_WIDTH), .C_FULL_FLAGS_RST_VAL (C_FULL_FLAGS_RST_VAL), .C_HAS_ALMOST_EMPTY (C_HAS_ALMOST_EMPTY), .C_HAS_ALMOST_FULL (C_HAS_ALMOST_FULL), .C_HAS_DATA_COUNT (C_HAS_DATA_COUNT), .C_HAS_OVERFLOW (C_HAS_OVERFLOW), .C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT), .C_HAS_RST (C_HAS_RST), .C_HAS_UNDERFLOW (C_HAS_UNDERFLOW), .C_HAS_VALID (C_HAS_VALID), .C_HAS_WR_ACK (C_HAS_WR_ACK), .C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT), .C_IMPLEMENTATION_TYPE (C_IMPLEMENTATION_TYPE), .C_MEMORY_TYPE (C_MEMORY_TYPE), .C_OVERFLOW_LOW (C_OVERFLOW_LOW), .C_PRELOAD_LATENCY (C_PRELOAD_LATENCY), .C_PRELOAD_REGS (C_PRELOAD_REGS), .C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL), .C_PROG_EMPTY_THRESH_NEGATE_VAL (C_PROG_EMPTY_THRESH_NEGATE_VAL), .C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE), .C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL), .C_PROG_FULL_THRESH_NEGATE_VAL (C_PROG_FULL_THRESH_NEGATE_VAL), .C_PROG_FULL_TYPE (C_PROG_FULL_TYPE), .C_RD_DATA_COUNT_WIDTH (C_RD_DATA_COUNT_WIDTH), .C_RD_DEPTH (C_RD_DEPTH), .C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH), .C_UNDERFLOW_LOW (C_UNDERFLOW_LOW), .C_USE_DOUT_RST (C_USE_DOUT_RST), .C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG), .C_USE_FWFT_DATA_COUNT (C_USE_FWFT_DATA_COUNT), .C_VALID_LOW (C_VALID_LOW), .C_WR_ACK_LOW (C_WR_ACK_LOW), .C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH), .C_WR_DEPTH (C_WR_DEPTH), .C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH), .C_USE_ECC (C_USE_ECC), .C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE), .C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC), .C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE) ) gen_as ( .WR_CLK (WR_CLK), .RD_CLK (RD_CLK), .RST (rst_i), .RST_FULL_GEN (rst_full_gen_i), .RST_FULL_FF (rst_full_ff_i), .WR_RST (wr_rst_i), .RD_RST (rd_rst_i), .DIN (din_delayed), .WR_EN (wr_en_delayed), .RD_EN (RD_EN_FIFO_IN), .RD_EN_USER (rd_en_delayed), .PROG_EMPTY_THRESH (prog_empty_thresh_delayed), .PROG_EMPTY_THRESH_ASSERT (prog_empty_thresh_assert_delayed), .PROG_EMPTY_THRESH_NEGATE (prog_empty_thresh_negate_delayed), .PROG_FULL_THRESH (prog_full_thresh_delayed), .PROG_FULL_THRESH_ASSERT (prog_full_thresh_assert_delayed), .PROG_FULL_THRESH_NEGATE (prog_full_thresh_negate_delayed), .INJECTSBITERR (inject_sbit_err), .INJECTDBITERR (inject_dbit_err), .USER_EMPTY_FB (EMPTY_P0_OUT), .DOUT (DOUT_FIFO_OUT), .FULL (FULL_FIFO_OUT), .ALMOST_FULL (ALMOST_FULL_FIFO_OUT), .WR_ACK (WR_ACK_FIFO_OUT), .OVERFLOW (OVERFLOW_FIFO_OUT), .EMPTY (EMPTY_FIFO_OUT), .ALMOST_EMPTY (ALMOST_EMPTY_FIFO_OUT), .VALID (VALID_FIFO_OUT), .UNDERFLOW (UNDERFLOW_FIFO_OUT), .RD_DATA_COUNT (RD_DATA_COUNT_FIFO_OUT), .WR_DATA_COUNT (WR_DATA_COUNT_FIFO_OUT), .PROG_FULL (PROG_FULL_FIFO_OUT), .PROG_EMPTY (PROG_EMPTY_FIFO_OUT), .SBITERR (sbiterr_fifo_out), .DBITERR (dbiterr_fifo_out) ); end endcase endgenerate //************************************************************************** // Connect Internal Signals // (Signals labeled internal_*) // In the normal case, these signals tie directly to the FIFO's inputs and // outputs. // In the case of Preload Latency 0 or 1, there are intermediate // signals between the internal FIFO and the preload logic. //************************************************************************** //*********************************************** // If First-Word Fall-Through, instantiate // the preload0 (FWFT) module //*********************************************** wire rd_en_to_fwft_fifo; wire sbiterr_fwft; wire dbiterr_fwft; wire [C_DOUT_WIDTH-1:0] dout_fwft; wire empty_fwft; wire rd_en_fifo_in; wire stage2_reg_en_i; wire [1:0] valid_stages_i; wire rst_fwft; //wire empty_p0_out; reg [C_SYNCHRONIZER_STAGE-1:0] pkt_empty_sync = 'b1; localparam IS_FWFT = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ? 1 : 0; localparam IS_PKT_FIFO = (C_FIFO_TYPE == 1) ? 1 : 0; localparam IS_AXIS_PKT_FIFO = (C_FIFO_TYPE == 1 && C_AXI_TYPE == 0) ? 1 : 0; assign rst_fwft = (C_COMMON_CLOCK == 0) ? rd_rst_i : (C_HAS_RST == 1) ? rst_i : 1'b0; generate if (IS_FWFT == 1 && C_FIFO_TYPE != 3) begin : block2 fifo_generator_v12_0_bhv_ver_preload0 #( .C_DOUT_RST_VAL (C_DOUT_RST_VAL), .C_DOUT_WIDTH (C_DOUT_WIDTH), .C_HAS_RST (C_HAS_RST), .C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC), .C_HAS_SRST (C_HAS_SRST), .C_USE_DOUT_RST (C_USE_DOUT_RST), .C_USE_ECC (C_USE_ECC), .C_USERVALID_LOW (C_VALID_LOW), .C_USERUNDERFLOW_LOW (C_UNDERFLOW_LOW), .C_MEMORY_TYPE (C_MEMORY_TYPE), .C_FIFO_TYPE (C_FIFO_TYPE) ) fgpl0 ( .RD_CLK (RD_CLK_P0_IN), .RD_RST (RST_P0_IN), .SRST (srst_delayed), .WR_RST_BUSY (wr_rst_busy), .RD_RST_BUSY (rd_rst_busy), .RD_EN (RD_EN_P0_IN), .FIFOEMPTY (EMPTY_P0_IN), .FIFODATA (DATA_P0_IN), .FIFOSBITERR (sbiterr_fifo_out), .FIFODBITERR (dbiterr_fifo_out), // Output .USERDATA (dout_fwft), .USERVALID (VALID_P0_OUT), .USEREMPTY (empty_fwft), .USERALMOSTEMPTY (ALMOSTEMPTY_P0_OUT), .USERUNDERFLOW (UNDERFLOW_P0_OUT), .RAMVALID (), .FIFORDEN (rd_en_fifo_in), .USERSBITERR (sbiterr_fwft), .USERDBITERR (dbiterr_fwft), .STAGE2_REG_EN (stage2_reg_en_i), .VALID_STAGES (valid_stages_i) ); //*********************************************** // Connect inputs to preload (FWFT) module //*********************************************** //Connect the RD_CLK of the Preload (FWFT) module to CLK if we // have a common-clock FIFO, or RD_CLK if we have an // independent clock FIFO assign RD_CLK_P0_IN = ((C_VERILOG_IMPL == 0) ? CLK : RD_CLK); assign RST_P0_IN = (C_COMMON_CLOCK == 0) ? rd_rst_i : (C_HAS_RST == 1) ? rst_i : 0; assign RD_EN_P0_IN = (C_FIFO_TYPE != 1) ? rd_en_delayed : rd_en_to_fwft_fifo; assign EMPTY_P0_IN = EMPTY_FIFO_OUT; assign DATA_P0_IN = DOUT_FIFO_OUT; //*********************************************** // Connect outputs from preload (FWFT) module //*********************************************** assign VALID = VALID_P0_OUT ; assign ALMOST_EMPTY = ALMOSTEMPTY_P0_OUT; assign UNDERFLOW = UNDERFLOW_P0_OUT ; assign RD_EN_FIFO_IN = rd_en_fifo_in; //*********************************************** // Create DATA_COUNT from First-Word Fall-Through // data count //*********************************************** assign DATA_COUNT = (C_USE_FWFT_DATA_COUNT == 0)? DATA_COUNT_FIFO_OUT: (C_DATA_COUNT_WIDTH>C_RD_PNTR_WIDTH) ? DATA_COUNT_FWFT[C_RD_PNTR_WIDTH:0] : DATA_COUNT_FWFT[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH-C_DATA_COUNT_WIDTH+1]; //*********************************************** // Create DATA_COUNT from First-Word Fall-Through // data count //*********************************************** always @ (posedge RD_CLK_P0_IN or posedge RST_P0_IN) begin if (RST_P0_IN) begin EMPTY_P0_OUT_Q <= #`TCQ 1; ALMOSTEMPTY_P0_OUT_Q <= #`TCQ 1; end else begin EMPTY_P0_OUT_Q <= #`TCQ empty_p0_out; // EMPTY_P0_OUT_Q <= #`TCQ EMPTY_FIFO_OUT; ALMOSTEMPTY_P0_OUT_Q <= #`TCQ ALMOSTEMPTY_P0_OUT; end end //always //*********************************************** // logic for common-clock data count when FWFT is selected //*********************************************** initial begin SS_FWFT_RD = 1'b0; DATA_COUNT_FWFT = 0 ; SS_FWFT_WR = 1'b0 ; end //initial //*********************************************** // common-clock data count is implemented as an // up-down counter. SS_FWFT_WR and SS_FWFT_RD // are the up/down enables for the counter. //*********************************************** always @ (RD_EN or VALID_P0_OUT or WR_EN or FULL_FIFO_OUT or empty_p0_out) begin if (C_VALID_LOW == 1) begin SS_FWFT_RD = (C_FIFO_TYPE != 1) ? (RD_EN && ~VALID_P0_OUT) : (~empty_p0_out && RD_EN && ~VALID_P0_OUT) ; end else begin SS_FWFT_RD = (C_FIFO_TYPE != 1) ? (RD_EN && VALID_P0_OUT) : (~empty_p0_out && RD_EN && VALID_P0_OUT) ; end SS_FWFT_WR = (WR_EN && (~FULL_FIFO_OUT)) ; end //*********************************************** // common-clock data count is implemented as an // up-down counter for FWFT. This always block // calculates the counter. //*********************************************** always @ (posedge RD_CLK_P0_IN or posedge RST_P0_IN) begin if (RST_P0_IN) begin DATA_COUNT_FWFT <= #`TCQ 0; end else begin //if (srst_delayed && (C_HAS_SRST == 1) ) begin if ((srst_delayed | wr_rst_busy | rd_rst_busy) && (C_HAS_SRST == 1) ) begin DATA_COUNT_FWFT <= #`TCQ 0; end else begin case ( {SS_FWFT_WR, SS_FWFT_RD}) 2'b00: DATA_COUNT_FWFT <= #`TCQ DATA_COUNT_FWFT ; 2'b01: DATA_COUNT_FWFT <= #`TCQ DATA_COUNT_FWFT - 1 ; 2'b10: DATA_COUNT_FWFT <= #`TCQ DATA_COUNT_FWFT + 1 ; 2'b11: DATA_COUNT_FWFT <= #`TCQ DATA_COUNT_FWFT ; endcase end //if SRST end //IF RST end //always end endgenerate // : block2 // AXI Streaming Packet FIFO reg [C_WR_PNTR_WIDTH-1:0] wr_pkt_count = 0; reg [C_RD_PNTR_WIDTH-1:0] rd_pkt_count = 0; reg [C_RD_PNTR_WIDTH-1:0] rd_pkt_count_plus1 = 0; reg [C_RD_PNTR_WIDTH-1:0] rd_pkt_count_reg = 0; reg partial_packet = 0; reg stage1_eop_d1 = 0; reg rd_en_fifo_in_d1 = 0; reg eop_at_stage2 = 0; reg ram_pkt_empty = 0; reg ram_pkt_empty_d1 = 0; wire [C_DOUT_WIDTH-1:0] dout_p0_out; wire packet_empty_wr; wire wr_rst_fwft_pkt_fifo; wire dummy_wr_eop; wire ram_wr_en_pkt_fifo; wire wr_eop; wire ram_rd_en_compare; wire stage1_eop; wire pkt_ready_to_read; wire rd_en_2_stage2; // Generate Dummy WR_EOP for partial packet (Only for AXI Streaming) // When Packet EMPTY is high, and FIFO is full, then generate the dummy WR_EOP // When dummy WR_EOP is high, mask the actual EOP to avoid double increment of // write packet count generate if (IS_FWFT == 1 && IS_AXIS_PKT_FIFO == 1) begin // gdummy_wr_eop always @ (posedge wr_rst_fwft_pkt_fifo or posedge WR_CLK) begin if (wr_rst_fwft_pkt_fifo) partial_packet <= 1'b0; else begin if (srst_delayed | wr_rst_busy | rd_rst_busy) partial_packet <= #`TCQ 1'b0; else if (ALMOST_FULL_FIFO_OUT && ram_wr_en_pkt_fifo && packet_empty_wr && (~din_delayed[0])) partial_packet <= #`TCQ 1'b1; else if (partial_packet && din_delayed[0] && ram_wr_en_pkt_fifo) partial_packet <= #`TCQ 1'b0; end end end endgenerate // gdummy_wr_eop generate if (IS_FWFT == 1 && IS_PKT_FIFO == 1) begin // gpkt_fifo_fwft assign wr_rst_fwft_pkt_fifo = (C_COMMON_CLOCK == 0) ? wr_rst_i : (C_HAS_RST == 1) ? rst_i:1'b0; assign dummy_wr_eop = ALMOST_FULL_FIFO_OUT && ram_wr_en_pkt_fifo && packet_empty_wr && (~din_delayed[0]) && (~partial_packet); assign packet_empty_wr = (C_COMMON_CLOCK == 1) ? empty_p0_out : pkt_empty_sync[C_SYNCHRONIZER_STAGE-1]; always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin if (rst_fwft) begin stage1_eop_d1 <= 1'b0; rd_en_fifo_in_d1 <= 1'b0; end else begin if (srst_delayed | wr_rst_busy | rd_rst_busy) begin stage1_eop_d1 <= #`TCQ 1'b0; rd_en_fifo_in_d1 <= #`TCQ 1'b0; end else begin stage1_eop_d1 <= #`TCQ stage1_eop; rd_en_fifo_in_d1 <= #`TCQ rd_en_fifo_in; end end end assign stage1_eop = (rd_en_fifo_in_d1) ? DOUT_FIFO_OUT[0] : stage1_eop_d1; assign ram_wr_en_pkt_fifo = wr_en_delayed && (~FULL_FIFO_OUT); assign wr_eop = ram_wr_en_pkt_fifo && ((din_delayed[0] && (~partial_packet)) || dummy_wr_eop); assign ram_rd_en_compare = stage2_reg_en_i && stage1_eop; fifo_generator_v12_0_bhv_ver_preload0 #( .C_DOUT_RST_VAL (C_DOUT_RST_VAL), .C_DOUT_WIDTH (C_DOUT_WIDTH), .C_HAS_RST (C_HAS_RST), .C_HAS_SRST (C_HAS_SRST), .C_USE_DOUT_RST (C_USE_DOUT_RST), .C_USE_ECC (C_USE_ECC), .C_USERVALID_LOW (C_VALID_LOW), .C_USERUNDERFLOW_LOW (C_UNDERFLOW_LOW), .C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC), .C_MEMORY_TYPE (C_MEMORY_TYPE), .C_FIFO_TYPE (2) // Enable low latency fwft logic ) pkt_fifo_fwft ( .RD_CLK (RD_CLK_P0_IN), .RD_RST (rst_fwft), .SRST (srst_delayed), .WR_RST_BUSY (wr_rst_busy), .RD_RST_BUSY (rd_rst_busy), .RD_EN (rd_en_delayed), .FIFOEMPTY (pkt_ready_to_read), .FIFODATA (dout_fwft), .FIFOSBITERR (sbiterr_fwft), .FIFODBITERR (dbiterr_fwft), // Output .USERDATA (dout_p0_out), .USERVALID (), .USEREMPTY (empty_p0_out), .USERALMOSTEMPTY (), .USERUNDERFLOW (), .RAMVALID (), .FIFORDEN (rd_en_2_stage2), .USERSBITERR (SBITERR), .USERDBITERR (DBITERR), .STAGE2_REG_EN (), .VALID_STAGES () ); assign pkt_ready_to_read = ~(!(ram_pkt_empty || empty_fwft) && ((valid_stages_i[0] && valid_stages_i[1]) || eop_at_stage2)); assign rd_en_to_fwft_fifo = ~empty_fwft && rd_en_2_stage2; always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin if (rst_fwft) eop_at_stage2 <= 1'b0; else if (stage2_reg_en_i) eop_at_stage2 <= #`TCQ stage1_eop; end //--------------------------------------------------------------------------- // Write and Read Packet Count //--------------------------------------------------------------------------- always @ (posedge wr_rst_fwft_pkt_fifo or posedge WR_CLK) begin if (wr_rst_fwft_pkt_fifo) wr_pkt_count <= 0; else if (srst_delayed | wr_rst_busy | rd_rst_busy) wr_pkt_count <= #`TCQ 0; else if (wr_eop) wr_pkt_count <= #`TCQ wr_pkt_count + 1; end end endgenerate // gpkt_fifo_fwft assign DOUT = (C_FIFO_TYPE != 1) ? dout_fwft : dout_p0_out; assign EMPTY = (C_FIFO_TYPE != 1) ? empty_fwft : empty_p0_out; generate if (IS_FWFT == 1 && IS_PKT_FIFO == 1 && C_COMMON_CLOCK == 1) begin // grss_pkt_cnt always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin if (rst_fwft) begin rd_pkt_count <= 0; rd_pkt_count_plus1 <= 1; end else if (srst_delayed | wr_rst_busy | rd_rst_busy) begin rd_pkt_count <= #`TCQ 0; rd_pkt_count_plus1 <= #`TCQ 1; end else if (stage2_reg_en_i && stage1_eop) begin rd_pkt_count <= #`TCQ rd_pkt_count + 1; rd_pkt_count_plus1 <= #`TCQ rd_pkt_count_plus1 + 1; end end always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin if (rst_fwft) begin ram_pkt_empty <= 1'b1; ram_pkt_empty_d1 <= 1'b1; end else if (SRST | wr_rst_busy | rd_rst_busy) begin ram_pkt_empty <= #`TCQ 1'b1; ram_pkt_empty_d1 <= #`TCQ 1'b1; end else if ((rd_pkt_count == wr_pkt_count) && wr_eop) begin ram_pkt_empty <= #`TCQ 1'b0; ram_pkt_empty_d1 <= #`TCQ 1'b0; end else if (ram_pkt_empty_d1 && rd_en_to_fwft_fifo) begin ram_pkt_empty <= #`TCQ 1'b1; end else if ((rd_pkt_count_plus1 == wr_pkt_count) && ~wr_eop && ~ALMOST_FULL_FIFO_OUT && ram_rd_en_compare) begin ram_pkt_empty_d1 <= #`TCQ 1'b1; end end end endgenerate //grss_pkt_cnt localparam SYNC_STAGE_WIDTH = (C_SYNCHRONIZER_STAGE+1)*C_WR_PNTR_WIDTH; reg [SYNC_STAGE_WIDTH-1:0] wr_pkt_count_q = 0; reg [C_WR_PNTR_WIDTH-1:0] wr_pkt_count_b2g = 0; wire [C_WR_PNTR_WIDTH-1:0] wr_pkt_count_rd; generate if (IS_FWFT == 1 && IS_PKT_FIFO == 1 && C_COMMON_CLOCK == 0) begin // gras_pkt_cnt // Delay the write packet count in write clock domain to accomodate the binary to gray conversion delay always @ (posedge wr_rst_fwft_pkt_fifo or posedge WR_CLK) begin if (wr_rst_fwft_pkt_fifo) wr_pkt_count_b2g <= 0; else wr_pkt_count_b2g <= #`TCQ wr_pkt_count; end // Synchronize the delayed write packet count in read domain, and also compensate the gray to binay conversion delay always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin if (rst_fwft) wr_pkt_count_q <= 0; else wr_pkt_count_q <= #`TCQ {wr_pkt_count_q[SYNC_STAGE_WIDTH-C_WR_PNTR_WIDTH-1:0],wr_pkt_count_b2g}; end always @* begin if (stage1_eop) rd_pkt_count <= rd_pkt_count_reg + 1; else rd_pkt_count <= rd_pkt_count_reg; end assign wr_pkt_count_rd = wr_pkt_count_q[SYNC_STAGE_WIDTH-1:SYNC_STAGE_WIDTH-C_WR_PNTR_WIDTH]; always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin if (rst_fwft) rd_pkt_count_reg <= 0; else if (rd_en_fifo_in) rd_pkt_count_reg <= #`TCQ rd_pkt_count; end always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin if (rst_fwft) begin ram_pkt_empty <= 1'b1; ram_pkt_empty_d1 <= 1'b1; end else if (rd_pkt_count != wr_pkt_count_rd) begin ram_pkt_empty <= #`TCQ 1'b0; ram_pkt_empty_d1 <= #`TCQ 1'b0; end else if (ram_pkt_empty_d1 && rd_en_to_fwft_fifo) begin ram_pkt_empty <= #`TCQ 1'b1; end else if ((rd_pkt_count == wr_pkt_count_rd) && stage2_reg_en_i) begin ram_pkt_empty_d1 <= #`TCQ 1'b1; end end // Synchronize the empty in write domain always @ (posedge wr_rst_fwft_pkt_fifo or posedge WR_CLK) begin if (wr_rst_fwft_pkt_fifo) pkt_empty_sync <= 'b1; else pkt_empty_sync <= #`TCQ {pkt_empty_sync[C_SYNCHRONIZER_STAGE-2:0], empty_p0_out}; end end endgenerate //gras_pkt_cnt generate if (IS_FWFT == 0 || C_FIFO_TYPE == 3) begin : STD_FIFO //*********************************************** // If NOT First-Word Fall-Through, wire the outputs // of the internal _ss or _as FIFO directly to the // output, and do not instantiate the preload0 // module. //*********************************************** assign RD_CLK_P0_IN = 0; assign RST_P0_IN = 0; assign RD_EN_P0_IN = 0; assign RD_EN_FIFO_IN = rd_en_delayed; assign DOUT = DOUT_FIFO_OUT; assign DATA_P0_IN = 0; assign VALID = VALID_FIFO_OUT; assign EMPTY = EMPTY_FIFO_OUT; assign ALMOST_EMPTY = ALMOST_EMPTY_FIFO_OUT; assign EMPTY_P0_IN = 0; assign UNDERFLOW = UNDERFLOW_FIFO_OUT; assign DATA_COUNT = DATA_COUNT_FIFO_OUT; assign SBITERR = sbiterr_fifo_out; assign DBITERR = dbiterr_fifo_out; end endgenerate // STD_FIFO generate if (IS_FWFT == 1 && C_FIFO_TYPE != 1) begin : NO_PKT_FIFO assign empty_p0_out = empty_fwft; assign SBITERR = sbiterr_fwft; assign DBITERR = dbiterr_fwft; assign DOUT = dout_fwft; assign RD_EN_P0_IN = (C_FIFO_TYPE != 1) ? rd_en_delayed : rd_en_to_fwft_fifo; end endgenerate // NO_PKT_FIFO //*********************************************** // Connect user flags to internal signals //*********************************************** //If we are using extra logic for the FWFT data count, then override the //RD_DATA_COUNT output when we are EMPTY or ALMOST_EMPTY. //RD_DATA_COUNT is 0 when EMPTY and 1 when ALMOST_EMPTY. generate if (C_USE_FWFT_DATA_COUNT==1 && (C_RD_DATA_COUNT_WIDTH>C_RD_PNTR_WIDTH) ) begin : block3 if (C_COMMON_CLOCK == 0) begin : block_ic assign RD_DATA_COUNT = (EMPTY_P0_OUT_Q | RST_P0_IN) ? 0 : (ALMOSTEMPTY_P0_OUT_Q ? 1 : RD_DATA_COUNT_FIFO_OUT); end //block_ic else begin assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT; end end //block3 endgenerate //If we are using extra logic for the FWFT data count, then override the //RD_DATA_COUNT output when we are EMPTY or ALMOST_EMPTY. //Due to asymmetric ports, RD_DATA_COUNT is 0 when EMPTY or ALMOST_EMPTY. generate if (C_USE_FWFT_DATA_COUNT==1 && (C_RD_DATA_COUNT_WIDTH <=C_RD_PNTR_WIDTH) ) begin : block30 if (C_COMMON_CLOCK == 0) begin : block_ic assign RD_DATA_COUNT = (EMPTY_P0_OUT_Q | RST_P0_IN) ? 0 : (ALMOSTEMPTY_P0_OUT_Q ? 0 : RD_DATA_COUNT_FIFO_OUT); end else begin assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT; end end //block30 endgenerate //If we are not using extra logic for the FWFT data count, //then connect RD_DATA_COUNT to the RD_DATA_COUNT from the //internal FIFO instance generate if (C_USE_FWFT_DATA_COUNT==0 ) begin : block31 assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT; end endgenerate //Always connect WR_DATA_COUNT to the WR_DATA_COUNT from the internal //FIFO instance generate if (C_USE_FWFT_DATA_COUNT==1) begin : block4 assign WR_DATA_COUNT = WR_DATA_COUNT_FIFO_OUT; end else begin : block4 assign WR_DATA_COUNT = WR_DATA_COUNT_FIFO_OUT; end endgenerate //Connect other flags to the internal FIFO instance assign FULL = FULL_FIFO_OUT; assign ALMOST_FULL = ALMOST_FULL_FIFO_OUT; assign WR_ACK = WR_ACK_FIFO_OUT; assign OVERFLOW = OVERFLOW_FIFO_OUT; assign PROG_FULL = PROG_FULL_FIFO_OUT; assign PROG_EMPTY = PROG_EMPTY_FIFO_OUT; /************************************************************************** * find_log2 * Returns the 'log2' value for the input value for the supported ratios ***************************************************************************/ function integer find_log2; input integer int_val; integer i,j; begin i = 1; j = 0; for (i = 1; i < int_val; i = i*2) begin j = j + 1; end find_log2 = j; end endfunction // if an asynchronous FIFO has been selected, display a message that the FIFO // will not be cycle-accurate in simulation initial begin if (C_IMPLEMENTATION_TYPE == 2) begin $display("WARNING: Behavioral models for independent clock FIFO configurations do not model synchronization delays. The behavioral models are functionally correct, and will represent the behavior of the configured FIFO. See the FIFO Generator User Guide for more information."); end else if (C_MEMORY_TYPE == 4) begin $display("FAILURE : Behavioral models do not support built-in FIFO configurations. Please use post-synthesis or post-implement simulation in Vivado."); $finish; end if (C_WR_PNTR_WIDTH != find_log2(C_WR_DEPTH)) begin $display("FAILURE : C_WR_PNTR_WIDTH is not log2 of C_WR_DEPTH."); $finish; end if (C_RD_PNTR_WIDTH != find_log2(C_RD_DEPTH)) begin $display("FAILURE : C_RD_PNTR_WIDTH is not log2 of C_RD_DEPTH."); $finish; end if (C_USE_ECC == 1) begin if (C_DIN_WIDTH != C_DOUT_WIDTH) begin $display("FAILURE : C_DIN_WIDTH and C_DOUT_WIDTH must be equal for ECC configuration."); $finish; end if (C_DIN_WIDTH == 1 && C_ERROR_INJECTION_TYPE > 1) begin $display("FAILURE : C_DIN_WIDTH and C_DOUT_WIDTH must be > 1 for double bit error injection."); $finish; end end end //initial /************************************************************************** * Internal reset logic **************************************************************************/ assign wr_rst_i = (C_HAS_RST == 1 || C_ENABLE_RST_SYNC == 0) ? wr_rst_reg : 0; assign rd_rst_i = (C_HAS_RST == 1 || C_ENABLE_RST_SYNC == 0) ? rd_rst_reg : 0; assign rst_i = C_HAS_RST ? rst_reg : 0; wire rst_2_sync; wire clk_2_sync = (C_COMMON_CLOCK == 1) ? CLK : WR_CLK; generate if (C_ENABLE_RST_SYNC == 0) begin : gnrst_sync always @* begin wr_rst_reg <= wr_rst_delayed; rd_rst_reg <= rd_rst_delayed; rst_reg <= 1'b0; srst_reg <= 1'b0; end assign rst_2_sync = wr_rst_delayed; assign wr_rst_busy = 1'b0; assign rd_rst_busy = 1'b0; end else if (C_HAS_RST == 1 && C_COMMON_CLOCK == 0) begin : g7s_ic_rst assign wr_rst_comb = !wr_rst_asreg_d2 && wr_rst_asreg; assign rd_rst_comb = !rd_rst_asreg_d2 && rd_rst_asreg; assign rst_2_sync = rst_delayed; assign wr_rst_busy = 1'b0; assign rd_rst_busy = 1'b0; always @(posedge WR_CLK or posedge rst_delayed) begin if (rst_delayed == 1'b1) begin wr_rst_asreg <= #`TCQ 1'b1; end else begin if (wr_rst_asreg_d1 == 1'b1) begin wr_rst_asreg <= #`TCQ 1'b0; end else begin wr_rst_asreg <= #`TCQ wr_rst_asreg; end end end always @(posedge WR_CLK) begin wr_rst_asreg_d1 <= #`TCQ wr_rst_asreg; wr_rst_asreg_d2 <= #`TCQ wr_rst_asreg_d1; end always @(posedge WR_CLK or posedge wr_rst_comb) begin if (wr_rst_comb == 1'b1) begin wr_rst_reg <= #`TCQ 1'b1; end else begin wr_rst_reg <= #`TCQ 1'b0; end end always @(posedge RD_CLK or posedge rst_delayed) begin if (rst_delayed == 1'b1) begin rd_rst_asreg <= #`TCQ 1'b1; end else begin if (rd_rst_asreg_d1 == 1'b1) begin rd_rst_asreg <= #`TCQ 1'b0; end else begin rd_rst_asreg <= #`TCQ rd_rst_asreg; end end end always @(posedge RD_CLK) begin rd_rst_asreg_d1 <= #`TCQ rd_rst_asreg; rd_rst_asreg_d2 <= #`TCQ rd_rst_asreg_d1; end always @(posedge RD_CLK or posedge rd_rst_comb) begin if (rd_rst_comb == 1'b1) begin rd_rst_reg <= #`TCQ 1'b1; end else begin rd_rst_reg <= #`TCQ 1'b0; end end end else if (C_HAS_RST == 1 && C_COMMON_CLOCK == 1) begin : g7s_cc_rst assign rst_comb = !rst_asreg_d2 && rst_asreg; assign rst_2_sync = rst_delayed; assign wr_rst_busy = 1'b0; assign rd_rst_busy = 1'b0; always @(posedge CLK or posedge rst_delayed) begin if (rst_delayed == 1'b1) begin rst_asreg <= #`TCQ 1'b1; end else begin if (rst_asreg_d1 == 1'b1) begin rst_asreg <= #`TCQ 1'b0; end else begin rst_asreg <= #`TCQ rst_asreg; end end end always @(posedge CLK) begin rst_asreg_d1 <= #`TCQ rst_asreg; rst_asreg_d2 <= #`TCQ rst_asreg_d1; end always @(posedge CLK or posedge rst_comb) begin if (rst_comb == 1'b1) begin rst_reg <= #`TCQ 1'b1; end else begin rst_reg <= #`TCQ 1'b0; end end end else if (IS_8SERIES == 1 && C_HAS_SRST == 1 && C_COMMON_CLOCK == 1) begin : g8s_cc_rst assign wr_rst_busy = (C_MEMORY_TYPE != 4) ? rst_reg : rst_active_i; assign rd_rst_busy = rst_reg; assign rst_2_sync = srst_delayed; always @* rst_full_ff_i <= rst_reg; always @* rst_full_gen_i <= C_FULL_FLAGS_RST_VAL == 1 ? rst_active_i : 0; always @(posedge CLK) begin rst_delayed_d1 <= #`TCQ srst_delayed; rst_delayed_d2 <= #`TCQ rst_delayed_d1; if (rst_reg || rst_delayed_d2) begin rst_active_i <= #`TCQ 1'b1; end else begin rst_active_i <= #`TCQ rst_reg; end end always @(posedge CLK) begin if (~rst_reg && srst_delayed) begin rst_reg <= #`TCQ 1'b1; end else if (rst_reg) begin rst_reg <= #`TCQ 1'b0; end else begin rst_reg <= #`TCQ rst_reg; end end end else begin assign wr_rst_busy = 1'b0; assign rd_rst_busy = 1'b0; end // end g8s_cc_rst endgenerate reg rst_d1 = 1'b0; reg rst_d2 = 1'b0; reg rst_d3 = 1'b0; reg rst_d4 = 1'b0; generate if ((C_HAS_RST == 1 || C_HAS_SRST == 1 || C_ENABLE_RST_SYNC == 0) && C_FULL_FLAGS_RST_VAL == 1) begin : grstd1 // RST_FULL_GEN replaces the reset falling edge detection used to de-assert // FULL, ALMOST_FULL & PROG_FULL flags if C_FULL_FLAGS_RST_VAL = 1. // RST_FULL_FF goes to the reset pin of the final flop of FULL, ALMOST_FULL & // PROG_FULL always @ (posedge rst_2_sync or posedge clk_2_sync) begin if (rst_2_sync) begin rst_d1 <= 1'b1; rst_d2 <= 1'b1; rst_d3 <= 1'b1; rst_d4 <= 1'b0; end else begin if (srst_delayed) begin rst_d1 <= #`TCQ 1'b1; rst_d2 <= #`TCQ 1'b1; rst_d3 <= #`TCQ 1'b1; rst_d4 <= #`TCQ 1'b0; end else begin rst_d1 <= #`TCQ 1'b0; rst_d2 <= #`TCQ rst_d1; rst_d3 <= #`TCQ rst_d2; rst_d4 <= #`TCQ rst_d3; end end end always @* rst_full_ff_i <= (C_HAS_SRST == 0) ? rst_d2 : 1'b0 ; always @* rst_full_gen_i <= rst_d4; end else if ((C_HAS_RST == 1 || C_HAS_SRST == 1 || C_ENABLE_RST_SYNC == 0) && C_FULL_FLAGS_RST_VAL == 0) begin : gnrst_full always @* rst_full_ff_i <= (C_COMMON_CLOCK == 0) ? wr_rst_i : rst_i; end endgenerate // grstd1 endmodule //FIFO_GENERATOR_v12_0_CONV_VER module fifo_generator_v12_0_sync_stage #( parameter C_WIDTH = 10 ) ( input RST, input CLK, input [C_WIDTH-1:0] DIN, output reg [C_WIDTH-1:0] DOUT = 0 ); always @ (posedge RST or posedge CLK) begin if (RST) DOUT <= 0; else DOUT <= #`TCQ DIN; end endmodule // fifo_generator_v12_0_sync_stage /******************************************************************************* * Declaration of Independent-Clocks FIFO Module ******************************************************************************/ module fifo_generator_v12_0_bhv_ver_as /*************************************************************************** * Declare user parameters and their defaults ***************************************************************************/ #( parameter C_FAMILY = "virtex7", parameter C_DATA_COUNT_WIDTH = 2, parameter C_DIN_WIDTH = 8, parameter C_DOUT_RST_VAL = "", parameter C_DOUT_WIDTH = 8, parameter C_FULL_FLAGS_RST_VAL = 1, parameter C_HAS_ALMOST_EMPTY = 0, parameter C_HAS_ALMOST_FULL = 0, parameter C_HAS_DATA_COUNT = 0, parameter C_HAS_OVERFLOW = 0, parameter C_HAS_RD_DATA_COUNT = 0, parameter C_HAS_RST = 0, parameter C_HAS_UNDERFLOW = 0, parameter C_HAS_VALID = 0, parameter C_HAS_WR_ACK = 0, parameter C_HAS_WR_DATA_COUNT = 0, parameter C_IMPLEMENTATION_TYPE = 0, parameter C_MEMORY_TYPE = 1, parameter C_OVERFLOW_LOW = 0, parameter C_PRELOAD_LATENCY = 1, parameter C_PRELOAD_REGS = 0, parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0, parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0, parameter C_PROG_EMPTY_TYPE = 0, parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0, parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0, parameter C_PROG_FULL_TYPE = 0, parameter C_RD_DATA_COUNT_WIDTH = 2, parameter C_RD_DEPTH = 256, parameter C_RD_PNTR_WIDTH = 8, parameter C_UNDERFLOW_LOW = 0, parameter C_USE_DOUT_RST = 0, parameter C_USE_EMBEDDED_REG = 0, parameter C_USE_FWFT_DATA_COUNT = 0, parameter C_VALID_LOW = 0, parameter C_WR_ACK_LOW = 0, parameter C_WR_DATA_COUNT_WIDTH = 2, parameter C_WR_DEPTH = 256, parameter C_WR_PNTR_WIDTH = 8, parameter C_USE_ECC = 0, parameter C_ENABLE_RST_SYNC = 1, parameter C_ERROR_INJECTION_TYPE = 0, parameter C_SYNCHRONIZER_STAGE = 2 ) /*************************************************************************** * Declare Input and Output Ports ***************************************************************************/ ( input [C_DIN_WIDTH-1:0] DIN, input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH, input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT, input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE, input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH, input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT, input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE, input RD_CLK, input RD_EN, input RD_EN_USER, input RST, input RST_FULL_GEN, input RST_FULL_FF, input WR_RST, input RD_RST, input WR_CLK, input WR_EN, input INJECTDBITERR, input INJECTSBITERR, input USER_EMPTY_FB, output reg ALMOST_EMPTY = 1'b1, output reg ALMOST_FULL = C_FULL_FLAGS_RST_VAL, output [C_DOUT_WIDTH-1:0] DOUT, output reg EMPTY = 1'b1, output reg FULL = C_FULL_FLAGS_RST_VAL, output OVERFLOW, output PROG_EMPTY, output PROG_FULL, output VALID, output [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT, output UNDERFLOW, output WR_ACK, output [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT, output SBITERR, output DBITERR ); reg [C_RD_PNTR_WIDTH:0] rd_data_count_int = 0; reg [C_WR_PNTR_WIDTH:0] wr_data_count_int = 0; reg [C_WR_PNTR_WIDTH:0] wdc_fwft_ext_as = 0; /*************************************************************************** * Parameters used as constants **************************************************************************/ localparam IS_8SERIES = (C_FAMILY == "virtexu" || C_FAMILY == "kintexu" || C_FAMILY == "artixu" || C_FAMILY == "virtexum" || C_FAMILY == "zynque") ? 1 : 0; //When RST is present, set FULL reset value to '1'. //If core has no RST, make sure FULL powers-on as '0'. localparam C_DEPTH_RATIO_WR = (C_WR_DEPTH>C_RD_DEPTH) ? (C_WR_DEPTH/C_RD_DEPTH) : 1; localparam C_DEPTH_RATIO_RD = (C_RD_DEPTH>C_WR_DEPTH) ? (C_RD_DEPTH/C_WR_DEPTH) : 1; localparam C_FIFO_WR_DEPTH = C_WR_DEPTH - 1; localparam C_FIFO_RD_DEPTH = C_RD_DEPTH - 1; // C_DEPTH_RATIO_WR | C_DEPTH_RATIO_RD | C_PNTR_WIDTH | EXTRA_WORDS_DC // -----------------|------------------|-----------------|--------------- // 1 | 8 | C_RD_PNTR_WIDTH | 2 // 1 | 4 | C_RD_PNTR_WIDTH | 2 // 1 | 2 | C_RD_PNTR_WIDTH | 2 // 1 | 1 | C_WR_PNTR_WIDTH | 2 // 2 | 1 | C_WR_PNTR_WIDTH | 4 // 4 | 1 | C_WR_PNTR_WIDTH | 8 // 8 | 1 | C_WR_PNTR_WIDTH | 16 localparam C_PNTR_WIDTH = (C_WR_PNTR_WIDTH>=C_RD_PNTR_WIDTH) ? C_WR_PNTR_WIDTH : C_RD_PNTR_WIDTH; wire [C_PNTR_WIDTH:0] EXTRA_WORDS_DC = (C_DEPTH_RATIO_WR == 1) ? 2 : (2 * C_DEPTH_RATIO_WR/C_DEPTH_RATIO_RD); localparam [31:0] reads_per_write = C_DIN_WIDTH/C_DOUT_WIDTH; localparam [31:0] log2_reads_per_write = log2_val(reads_per_write); localparam [31:0] writes_per_read = C_DOUT_WIDTH/C_DIN_WIDTH; localparam [31:0] log2_writes_per_read = log2_val(writes_per_read); /************************************************************************** * FIFO Contents Tracking and Data Count Calculations *************************************************************************/ // Memory which will be used to simulate a FIFO reg [C_DIN_WIDTH-1:0] memory[C_WR_DEPTH-1:0]; // Local parameters used to determine whether to inject ECC error or not localparam SYMMETRIC_PORT = (C_DIN_WIDTH == C_DOUT_WIDTH) ? 1 : 0; localparam ERR_INJECTION = (C_ERROR_INJECTION_TYPE != 0) ? 1 : 0; localparam ENABLE_ERR_INJECTION = C_USE_ECC && SYMMETRIC_PORT && ERR_INJECTION; // Array that holds the error injection type (single/double bit error) on // a specific write operation, which is returned on read to corrupt the // output data. reg [1:0] ecc_err[C_WR_DEPTH-1:0]; //The amount of data stored in the FIFO at any time is given // by num_wr_bits (in the WR_CLK domain) and num_rd_bits (in the RD_CLK // domain. //num_wr_bits is calculated by considering the total words in the FIFO, // and the state of the read pointer (which may not have yet crossed clock // domains.) //num_rd_bits is calculated by considering the total words in the FIFO, // and the state of the write pointer (which may not have yet crossed clock // domains.) reg [31:0] num_wr_bits; reg [31:0] num_rd_bits; reg [31:0] next_num_wr_bits; reg [31:0] next_num_rd_bits; //The write pointer - tracks write operations // (Works opposite to core: wr_ptr is a DOWN counter) reg [31:0] wr_ptr; reg [C_WR_PNTR_WIDTH-1:0] wr_pntr = 0; // UP counter: Rolls back to 0 when reaches to max value. reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd1 = 0; reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd2 = 0; reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd3 = 0; wire [C_RD_PNTR_WIDTH-1:0] adj_wr_pntr_rd; reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd = 0; wire wr_rst_i = WR_RST; reg wr_rst_d1 =0; //The read pointer - tracks read operations // (rd_ptr Works opposite to core: rd_ptr is a DOWN counter) reg [31:0] rd_ptr; reg [C_RD_PNTR_WIDTH-1:0] rd_pntr = 0; // UP counter: Rolls back to 0 when reaches to max value. reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr1 = 0; reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr2 = 0; reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr3 = 0; reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr4 = 0; wire [C_WR_PNTR_WIDTH-1:0] adj_rd_pntr_wr; reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr = 0; wire rd_rst_i = RD_RST; wire ram_rd_en; wire empty_int; wire almost_empty_int; wire ram_wr_en; wire full_int; wire almost_full_int; reg ram_rd_en_d1 = 1'b0; // Delayed ram_rd_en is needed only for STD Embedded register option generate if (C_PRELOAD_LATENCY == 2) begin : grd_d always @ (posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i) ram_rd_en_d1 <= #`TCQ 1'b0; else ram_rd_en_d1 <= #`TCQ ram_rd_en; end end endgenerate // Write pointer adjustment based on pointers width for EMPTY/ALMOST_EMPTY generation generate if (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) begin : rdg // Read depth greater than write depth assign adj_wr_pntr_rd[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr_rd; assign adj_wr_pntr_rd[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1:0] = 0; end else begin : rdl // Read depth lesser than or equal to write depth assign adj_wr_pntr_rd = wr_pntr_rd[C_WR_PNTR_WIDTH-1:C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH]; end endgenerate // Generate Empty and Almost Empty // ram_rd_en used to determine EMPTY should depend on the EMPTY. assign ram_rd_en = RD_EN & !EMPTY; assign empty_int = ((adj_wr_pntr_rd == rd_pntr) || (ram_rd_en && (adj_wr_pntr_rd == (rd_pntr+1'h1)))); assign almost_empty_int = ((adj_wr_pntr_rd == (rd_pntr+1'h1)) || (ram_rd_en && (adj_wr_pntr_rd == (rd_pntr+2'h2)))); // Register Empty and Almost Empty always @ (posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i) begin EMPTY <= #`TCQ 1'b1; ALMOST_EMPTY <= #`TCQ 1'b1; rd_data_count_int <= #`TCQ {C_RD_PNTR_WIDTH{1'b0}}; end else begin rd_data_count_int <= #`TCQ {(adj_wr_pntr_rd[C_RD_PNTR_WIDTH-1:0] - rd_pntr[C_RD_PNTR_WIDTH-1:0]), 1'b0}; if (empty_int) EMPTY <= #`TCQ 1'b1; else EMPTY <= #`TCQ 1'b0; if (!EMPTY) begin if (almost_empty_int) ALMOST_EMPTY <= #`TCQ 1'b1; else ALMOST_EMPTY <= #`TCQ 1'b0; end end // rd_rst_i end // always // Read pointer adjustment based on pointers width for EMPTY/ALMOST_EMPTY generation generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : wdg // Write depth greater than read depth assign adj_rd_pntr_wr[C_WR_PNTR_WIDTH-1:C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH] = rd_pntr_wr; assign adj_rd_pntr_wr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1:0] = 0; end else begin : wdl // Write depth lesser than or equal to read depth assign adj_rd_pntr_wr = rd_pntr_wr[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH]; end endgenerate // Generate FULL and ALMOST_FULL // ram_wr_en used to determine FULL should depend on the FULL. assign ram_wr_en = WR_EN & !FULL; assign full_int = ((adj_rd_pntr_wr == (wr_pntr+1'h1)) || (ram_wr_en && (adj_rd_pntr_wr == (wr_pntr+2'h2)))); assign almost_full_int = ((adj_rd_pntr_wr == (wr_pntr+2'h2)) || (ram_wr_en && (adj_rd_pntr_wr == (wr_pntr+3'h3)))); // Register FULL and ALMOST_FULL Empty always @ (posedge WR_CLK or posedge RST_FULL_FF) begin if (RST_FULL_FF) begin FULL <= #`TCQ C_FULL_FLAGS_RST_VAL; ALMOST_FULL <= #`TCQ C_FULL_FLAGS_RST_VAL; end else begin if (full_int) begin FULL <= #`TCQ 1'b1; end else begin FULL <= #`TCQ 1'b0; end if (RST_FULL_GEN) begin ALMOST_FULL <= #`TCQ 1'b0; end else if (!FULL) begin if (almost_full_int) ALMOST_FULL <= #`TCQ 1'b1; else ALMOST_FULL <= #`TCQ 1'b0; end end // wr_rst_i end // always always @ (posedge WR_CLK or posedge wr_rst_i) begin if (wr_rst_i) begin wr_data_count_int <= #`TCQ {C_WR_DATA_COUNT_WIDTH{1'b0}}; end else begin wr_data_count_int <= #`TCQ {(wr_pntr[C_WR_PNTR_WIDTH-1:0] - adj_rd_pntr_wr[C_WR_PNTR_WIDTH-1:0]), 1'b0}; end // wr_rst_i end // always // Determine which stage in FWFT registers are valid reg stage1_valid = 0; reg stage2_valid = 0; generate if (C_PRELOAD_LATENCY == 0) begin : grd_fwft_proc always @ (posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i) begin stage1_valid <= #`TCQ 0; stage2_valid <= #`TCQ 0; end else begin if (!stage1_valid && !stage2_valid) begin if (!EMPTY) stage1_valid <= #`TCQ 1'b1; else stage1_valid <= #`TCQ 1'b0; end else if (stage1_valid && !stage2_valid) begin if (EMPTY) begin stage1_valid <= #`TCQ 1'b0; stage2_valid <= #`TCQ 1'b1; end else begin stage1_valid <= #`TCQ 1'b1; stage2_valid <= #`TCQ 1'b1; end end else if (!stage1_valid && stage2_valid) begin if (EMPTY && RD_EN_USER) begin stage1_valid <= #`TCQ 1'b0; stage2_valid <= #`TCQ 1'b0; end else if (!EMPTY && RD_EN_USER) begin stage1_valid <= #`TCQ 1'b1; stage2_valid <= #`TCQ 1'b0; end else if (!EMPTY && !RD_EN_USER) begin stage1_valid <= #`TCQ 1'b1; stage2_valid <= #`TCQ 1'b1; end else begin stage1_valid <= #`TCQ 1'b0; stage2_valid <= #`TCQ 1'b1; end end else if (stage1_valid && stage2_valid) begin if (EMPTY && RD_EN_USER) begin stage1_valid <= #`TCQ 1'b0; stage2_valid <= #`TCQ 1'b1; end else begin stage1_valid <= #`TCQ 1'b1; stage2_valid <= #`TCQ 1'b1; end end else begin stage1_valid <= #`TCQ 1'b0; stage2_valid <= #`TCQ 1'b0; end end // rd_rst_i end // always end endgenerate //Pointers passed into opposite clock domain reg [31:0] wr_ptr_rdclk; reg [31:0] wr_ptr_rdclk_next; reg [31:0] rd_ptr_wrclk; reg [31:0] rd_ptr_wrclk_next; //Amount of data stored in the FIFO scaled to the narrowest (deepest) port // (Do not include data in FWFT stages) //Used to calculate PROG_EMPTY. wire [31:0] num_read_words_pe = num_rd_bits/(C_DOUT_WIDTH/C_DEPTH_RATIO_WR); //Amount of data stored in the FIFO scaled to the narrowest (deepest) port // (Do not include data in FWFT stages) //Used to calculate PROG_FULL. wire [31:0] num_write_words_pf = num_wr_bits/(C_DIN_WIDTH/C_DEPTH_RATIO_RD); /************************** * Read Data Count *************************/ reg [31:0] num_read_words_dc; reg [C_RD_DATA_COUNT_WIDTH-1:0] num_read_words_sized_i; always @(num_rd_bits) begin if (C_USE_FWFT_DATA_COUNT) begin //If using extra logic for FWFT Data Counts, // then scale FIFO contents to read domain, // and add two read words for FWFT stages //This value is only a temporary value and not used in the code. num_read_words_dc = (num_rd_bits/C_DOUT_WIDTH+2); //Trim the read words for use with RD_DATA_COUNT num_read_words_sized_i = num_read_words_dc[C_RD_PNTR_WIDTH : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH+1]; end else begin //If not using extra logic for FWFT Data Counts, // then scale FIFO contents to read domain. //This value is only a temporary value and not used in the code. num_read_words_dc = num_rd_bits/C_DOUT_WIDTH; //Trim the read words for use with RD_DATA_COUNT num_read_words_sized_i = num_read_words_dc[C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH]; end //if (C_USE_FWFT_DATA_COUNT) end //always /************************** * Write Data Count *************************/ reg [31:0] num_write_words_dc; reg [C_WR_DATA_COUNT_WIDTH-1:0] num_write_words_sized_i; always @(num_wr_bits) begin if (C_USE_FWFT_DATA_COUNT) begin //Calculate the Data Count value for the number of write words, // when using First-Word Fall-Through with extra logic for Data // Counts. This takes into consideration the number of words that // are expected to be stored in the FWFT register stages (it always // assumes they are filled). //This value is scaled to the Write Domain. //The expression (((A-1)/B))+1 divides A/B, but takes the // ceiling of the result. //When num_wr_bits==0, set the result manually to prevent // division errors. //EXTRA_WORDS_DC is the number of words added to write_words // due to FWFT. //This value is only a temporary value and not used in the code. num_write_words_dc = (num_wr_bits==0) ? EXTRA_WORDS_DC : (((num_wr_bits-1)/C_DIN_WIDTH)+1) + EXTRA_WORDS_DC ; //Trim the write words for use with WR_DATA_COUNT num_write_words_sized_i = num_write_words_dc[C_WR_PNTR_WIDTH : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH+1]; end else begin //Calculate the Data Count value for the number of write words, when NOT // using First-Word Fall-Through with extra logic for Data Counts. This // calculates only the number of words in the internal FIFO. //The expression (((A-1)/B))+1 divides A/B, but takes the // ceiling of the result. //This value is scaled to the Write Domain. //When num_wr_bits==0, set the result manually to prevent // division errors. //This value is only a temporary value and not used in the code. num_write_words_dc = (num_wr_bits==0) ? 0 : ((num_wr_bits-1)/C_DIN_WIDTH)+1; //Trim the read words for use with RD_DATA_COUNT num_write_words_sized_i = num_write_words_dc[C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH]; end //if (C_USE_FWFT_DATA_COUNT) end //always /*************************************************************************** * Internal registers and wires **************************************************************************/ //Temporary signals used for calculating the model's outputs. These //are only used in the assign statements immediately following wire, //parameter, and function declarations. wire [C_DOUT_WIDTH-1:0] ideal_dout_out; wire valid_i; wire valid_out; wire underflow_i; //Ideal FIFO signals. These are the raw output of the behavioral model, //which behaves like an ideal FIFO. reg [1:0] err_type = 0; reg [1:0] err_type_d1 = 0; reg [C_DOUT_WIDTH-1:0] ideal_dout = 0; reg [C_DOUT_WIDTH-1:0] ideal_dout_d1 = 0; reg ideal_wr_ack = 0; reg ideal_valid = 0; reg ideal_overflow = C_OVERFLOW_LOW; reg ideal_underflow = C_UNDERFLOW_LOW; reg ideal_prog_full = 0; reg ideal_prog_empty = 1; reg [C_WR_DATA_COUNT_WIDTH-1 : 0] ideal_wr_count = 0; reg [C_RD_DATA_COUNT_WIDTH-1 : 0] ideal_rd_count = 0; //Assorted reg values for delayed versions of signals reg valid_d1 = 0; //user specified value for reseting the size of the fifo reg [C_DOUT_WIDTH-1:0] dout_reset_val = 0; //temporary registers for WR_RESPONSE_LATENCY feature integer tmp_wr_listsize; integer tmp_rd_listsize; //Signal for registered version of prog full and empty //Threshold values for Programmable Flags integer prog_empty_actual_thresh_assert; integer prog_empty_actual_thresh_negate; integer prog_full_actual_thresh_assert; integer prog_full_actual_thresh_negate; /**************************************************************************** * Function Declarations ***************************************************************************/ /************************************************************************** * write_fifo * This task writes a word to the FIFO memory and updates the * write pointer. * FIFO size is relative to write domain. ***************************************************************************/ task write_fifo; begin memory[wr_ptr] <= DIN; wr_pntr <= #`TCQ wr_pntr + 1; // Store the type of error injection (double/single) on write case (C_ERROR_INJECTION_TYPE) 3: ecc_err[wr_ptr] <= {INJECTDBITERR,INJECTSBITERR}; 2: ecc_err[wr_ptr] <= {INJECTDBITERR,1'b0}; 1: ecc_err[wr_ptr] <= {1'b0,INJECTSBITERR}; default: ecc_err[wr_ptr] <= 0; endcase // (Works opposite to core: wr_ptr is a DOWN counter) if (wr_ptr == 0) begin wr_ptr <= C_WR_DEPTH - 1; end else begin wr_ptr <= wr_ptr - 1; end end endtask // write_fifo /************************************************************************** * read_fifo * This task reads a word from the FIFO memory and updates the read * pointer. It's output is the ideal_dout bus. * FIFO size is relative to write domain. ***************************************************************************/ task read_fifo; integer i; reg [C_DOUT_WIDTH-1:0] tmp_dout; reg [C_DIN_WIDTH-1:0] memory_read; reg [31:0] tmp_rd_ptr; reg [31:0] rd_ptr_high; reg [31:0] rd_ptr_low; reg [1:0] tmp_ecc_err; begin rd_pntr <= #`TCQ rd_pntr + 1; // output is wider than input if (reads_per_write == 0) begin tmp_dout = 0; tmp_rd_ptr = (rd_ptr << log2_writes_per_read)+(writes_per_read-1); for (i = writes_per_read - 1; i >= 0; i = i - 1) begin tmp_dout = tmp_dout << C_DIN_WIDTH; tmp_dout = tmp_dout | memory[tmp_rd_ptr]; // (Works opposite to core: rd_ptr is a DOWN counter) if (tmp_rd_ptr == 0) begin tmp_rd_ptr = C_WR_DEPTH - 1; end else begin tmp_rd_ptr = tmp_rd_ptr - 1; end end // output is symmetric end else if (reads_per_write == 1) begin tmp_dout = memory[rd_ptr][C_DIN_WIDTH-1:0]; // Retreive the error injection type. Based on the error injection type // corrupt the output data. tmp_ecc_err = ecc_err[rd_ptr]; if (ENABLE_ERR_INJECTION && C_DIN_WIDTH == C_DOUT_WIDTH) begin if (tmp_ecc_err[1]) begin // Corrupt the output data only for double bit error if (C_DOUT_WIDTH == 1) begin $display("FAILURE : Data width must be >= 2 for double bit error injection."); $finish; end else if (C_DOUT_WIDTH == 2) tmp_dout = {~tmp_dout[C_DOUT_WIDTH-1],~tmp_dout[C_DOUT_WIDTH-2]}; else tmp_dout = {~tmp_dout[C_DOUT_WIDTH-1],~tmp_dout[C_DOUT_WIDTH-2],(tmp_dout << 2)}; end else begin tmp_dout = tmp_dout[C_DOUT_WIDTH-1:0]; end err_type <= {tmp_ecc_err[1], tmp_ecc_err[0] & !tmp_ecc_err[1]}; end else begin err_type <= 0; end // input is wider than output end else begin rd_ptr_high = rd_ptr >> log2_reads_per_write; rd_ptr_low = rd_ptr & (reads_per_write - 1); memory_read = memory[rd_ptr_high]; tmp_dout = memory_read >> (rd_ptr_low*C_DOUT_WIDTH); end ideal_dout <= tmp_dout; // (Works opposite to core: rd_ptr is a DOWN counter) if (rd_ptr == 0) begin rd_ptr <= C_RD_DEPTH - 1; end else begin rd_ptr <= rd_ptr - 1; end end endtask /************************************************************************** * log2_val * Returns the 'log2' value for the input value for the supported ratios ***************************************************************************/ function [31:0] log2_val; input [31:0] binary_val; begin if (binary_val == 8) begin log2_val = 3; end else if (binary_val == 4) begin log2_val = 2; end else begin log2_val = 1; end end endfunction /*********************************************************************** * hexstr_conv * Converts a string of type hex to a binary value (for C_DOUT_RST_VAL) ***********************************************************************/ function [C_DOUT_WIDTH-1:0] hexstr_conv; input [(C_DOUT_WIDTH*8)-1:0] def_data; integer index,i,j; reg [3:0] bin; begin index = 0; hexstr_conv = 'b0; for( i=C_DOUT_WIDTH-1; i>=0; i=i-1 ) begin case (def_data[7:0]) 8'b00000000 : begin bin = 4'b0000; i = -1; end 8'b00110000 : bin = 4'b0000; 8'b00110001 : bin = 4'b0001; 8'b00110010 : bin = 4'b0010; 8'b00110011 : bin = 4'b0011; 8'b00110100 : bin = 4'b0100; 8'b00110101 : bin = 4'b0101; 8'b00110110 : bin = 4'b0110; 8'b00110111 : bin = 4'b0111; 8'b00111000 : bin = 4'b1000; 8'b00111001 : bin = 4'b1001; 8'b01000001 : bin = 4'b1010; 8'b01000010 : bin = 4'b1011; 8'b01000011 : bin = 4'b1100; 8'b01000100 : bin = 4'b1101; 8'b01000101 : bin = 4'b1110; 8'b01000110 : bin = 4'b1111; 8'b01100001 : bin = 4'b1010; 8'b01100010 : bin = 4'b1011; 8'b01100011 : bin = 4'b1100; 8'b01100100 : bin = 4'b1101; 8'b01100101 : bin = 4'b1110; 8'b01100110 : bin = 4'b1111; default : begin bin = 4'bx; end endcase for( j=0; j<4; j=j+1) begin if ((index*4)+j < C_DOUT_WIDTH) begin hexstr_conv[(index*4)+j] = bin[j]; end end index = index + 1; def_data = def_data >> 8; end end endfunction /************************************************************************* * Initialize Signals for clean power-on simulation *************************************************************************/ initial begin num_wr_bits = 0; num_rd_bits = 0; next_num_wr_bits = 0; next_num_rd_bits = 0; rd_ptr = C_RD_DEPTH - 1; wr_ptr = C_WR_DEPTH - 1; wr_pntr = 0; rd_pntr = 0; rd_ptr_wrclk = rd_ptr; wr_ptr_rdclk = wr_ptr; dout_reset_val = hexstr_conv(C_DOUT_RST_VAL); ideal_dout = dout_reset_val; err_type = 0; ideal_dout_d1 = dout_reset_val; ideal_wr_ack = 1'b0; ideal_valid = 1'b0; valid_d1 = 1'b0; ideal_overflow = C_OVERFLOW_LOW; ideal_underflow = C_UNDERFLOW_LOW; ideal_wr_count = 0; ideal_rd_count = 0; ideal_prog_full = 1'b0; ideal_prog_empty = 1'b1; end /************************************************************************* * Connect the module inputs and outputs to the internal signals of the * behavioral model. *************************************************************************/ //Inputs /* wire [C_DIN_WIDTH-1:0] DIN; wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH; wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT; wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE; wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH; wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT; wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE; wire RD_CLK; wire RD_EN; wire RST; wire WR_CLK; wire WR_EN; */ //*************************************************************************** // Dout may change behavior based on latency //*************************************************************************** assign ideal_dout_out[C_DOUT_WIDTH-1:0] = (C_PRELOAD_LATENCY==2 && (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1))? ideal_dout_d1: ideal_dout; assign DOUT[C_DOUT_WIDTH-1:0] = ideal_dout_out; //*************************************************************************** // Assign SBITERR and DBITERR based on latency //*************************************************************************** assign SBITERR = (C_ERROR_INJECTION_TYPE == 1 || C_ERROR_INJECTION_TYPE == 3) && (C_PRELOAD_LATENCY == 2 && (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1)) ? err_type_d1[0]: err_type[0]; assign DBITERR = (C_ERROR_INJECTION_TYPE == 2 || C_ERROR_INJECTION_TYPE == 3) && (C_PRELOAD_LATENCY==2 && (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1)) ? err_type_d1[1]: err_type[1]; //*************************************************************************** // Overflow may be active-low //*************************************************************************** generate if (C_HAS_OVERFLOW==1) begin : blockOF1 assign OVERFLOW = ideal_overflow ? !C_OVERFLOW_LOW : C_OVERFLOW_LOW; end endgenerate assign PROG_EMPTY = ideal_prog_empty; assign PROG_FULL = ideal_prog_full; //*************************************************************************** // Valid may change behavior based on latency or active-low //*************************************************************************** generate if (C_HAS_VALID==1) begin : blockVL1 assign valid_i = (C_PRELOAD_LATENCY==0) ? (RD_EN & ~EMPTY) : ideal_valid; assign valid_out = (C_PRELOAD_LATENCY==2 && (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1))? valid_d1: valid_i; assign VALID = valid_out ? !C_VALID_LOW : C_VALID_LOW; end endgenerate //*************************************************************************** // Underflow may change behavior based on latency or active-low //*************************************************************************** generate if (C_HAS_UNDERFLOW==1) begin : blockUF1 assign underflow_i = (C_PRELOAD_LATENCY==0) ? (RD_EN & EMPTY) : ideal_underflow; assign UNDERFLOW = underflow_i ? !C_UNDERFLOW_LOW : C_UNDERFLOW_LOW; end endgenerate //*************************************************************************** // Write acknowledge may be active low //*************************************************************************** generate if (C_HAS_WR_ACK==1) begin : blockWK1 assign WR_ACK = ideal_wr_ack ? !C_WR_ACK_LOW : C_WR_ACK_LOW; end endgenerate //*************************************************************************** // Generate RD_DATA_COUNT if Use Extra Logic option is selected //*************************************************************************** generate if (C_HAS_WR_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT == 1) begin : wdc_fwft_ext reg [C_PNTR_WIDTH-1:0] adjusted_wr_pntr = 0; reg [C_PNTR_WIDTH-1:0] adjusted_rd_pntr = 0; wire [C_PNTR_WIDTH-1:0] diff_wr_rd_tmp; wire [C_PNTR_WIDTH:0] diff_wr_rd; reg [C_PNTR_WIDTH:0] wr_data_count_i = 0; always @* begin if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin adjusted_wr_pntr = wr_pntr; adjusted_rd_pntr = 0; adjusted_rd_pntr[C_PNTR_WIDTH-1:C_PNTR_WIDTH-C_RD_PNTR_WIDTH] = rd_pntr_wr; end else if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin adjusted_rd_pntr = rd_pntr_wr; adjusted_wr_pntr = 0; adjusted_wr_pntr[C_PNTR_WIDTH-1:C_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr; end else begin adjusted_wr_pntr = wr_pntr; adjusted_rd_pntr = rd_pntr_wr; end end // always @* assign diff_wr_rd_tmp = adjusted_wr_pntr - adjusted_rd_pntr; assign diff_wr_rd = {1'b0,diff_wr_rd_tmp}; always @ (posedge wr_rst_i or posedge WR_CLK) begin if (wr_rst_i) wr_data_count_i <= #`TCQ 0; else wr_data_count_i <= #`TCQ diff_wr_rd + EXTRA_WORDS_DC; end // always @ (posedge WR_CLK or posedge WR_CLK) always @* begin if (C_WR_PNTR_WIDTH >= C_RD_PNTR_WIDTH) wdc_fwft_ext_as = wr_data_count_i[C_PNTR_WIDTH:0]; else wdc_fwft_ext_as = wr_data_count_i[C_PNTR_WIDTH:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH]; end // always @* end // wdc_fwft_ext endgenerate //*************************************************************************** // Generate RD_DATA_COUNT if Use Extra Logic option is selected //*************************************************************************** reg [C_RD_PNTR_WIDTH:0] rdc_fwft_ext_as = 0; generate if (C_HAS_RD_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT == 1) begin : rdc_fwft_ext reg [C_RD_PNTR_WIDTH-1:0] adjusted_wr_pntr_rd = 0; wire [C_RD_PNTR_WIDTH-1:0] diff_rd_wr_tmp; wire [C_RD_PNTR_WIDTH:0] diff_rd_wr; always @* begin if (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) begin adjusted_wr_pntr_rd = 0; adjusted_wr_pntr_rd[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr_rd; end else begin adjusted_wr_pntr_rd = wr_pntr_rd[C_WR_PNTR_WIDTH-1:C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH]; end end // always @* assign diff_rd_wr_tmp = adjusted_wr_pntr_rd - rd_pntr; assign diff_rd_wr = {1'b0,diff_rd_wr_tmp}; always @ (posedge rd_rst_i or posedge RD_CLK) begin if (rd_rst_i) begin rdc_fwft_ext_as <= #`TCQ 0; end else begin if (!stage2_valid) rdc_fwft_ext_as <= #`TCQ 0; else if (!stage1_valid && stage2_valid) rdc_fwft_ext_as <= #`TCQ 1; else rdc_fwft_ext_as <= #`TCQ diff_rd_wr + 2'h2; end end // always @ (posedge WR_CLK or posedge WR_CLK) end // rdc_fwft_ext endgenerate //*************************************************************************** // Assign the read data count value only if it is selected, // otherwise output zeros. //*************************************************************************** generate if (C_HAS_RD_DATA_COUNT == 1) begin : grdc assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = C_USE_FWFT_DATA_COUNT ? rdc_fwft_ext_as[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH+1-C_RD_DATA_COUNT_WIDTH] : rd_data_count_int[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH+1-C_RD_DATA_COUNT_WIDTH]; end endgenerate generate if (C_HAS_RD_DATA_COUNT == 0) begin : gnrdc assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = {C_RD_DATA_COUNT_WIDTH{1'b0}}; end endgenerate //*************************************************************************** // Assign the write data count value only if it is selected, // otherwise output zeros //*************************************************************************** generate if (C_HAS_WR_DATA_COUNT == 1) begin : gwdc assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = (C_USE_FWFT_DATA_COUNT == 1) ? wdc_fwft_ext_as[C_WR_PNTR_WIDTH:C_WR_PNTR_WIDTH+1-C_WR_DATA_COUNT_WIDTH] : wr_data_count_int[C_WR_PNTR_WIDTH:C_WR_PNTR_WIDTH+1-C_WR_DATA_COUNT_WIDTH]; end endgenerate generate if (C_HAS_WR_DATA_COUNT == 0) begin : gnwdc assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = {C_WR_DATA_COUNT_WIDTH{1'b0}}; end endgenerate /************************************************************************** * Assorted registers for delayed versions of signals **************************************************************************/ //Capture delayed version of valid generate if (C_HAS_VALID==1) begin : blockVL2 always @(posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i == 1'b1) begin valid_d1 <= #`TCQ 1'b0; end else begin valid_d1 <= #`TCQ valid_i; end end end endgenerate //Capture delayed version of dout always @(posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i == 1'b1) begin // Reset err_type only if ECC is not selected if (C_USE_ECC == 0) err_type_d1 <= #`TCQ 0; end else if (ram_rd_en_d1) begin ideal_dout_d1 <= #`TCQ ideal_dout; err_type_d1 <= #`TCQ err_type; end end /************************************************************************** * Overflow and Underflow Flag calculation * (handled separately because they don't support rst) **************************************************************************/ generate if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 0) begin : g7s_ovflw always @(posedge WR_CLK) begin ideal_overflow <= #`TCQ WR_EN & FULL; end end else if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 1) begin : g8s_ovflw always @(posedge WR_CLK) begin //ideal_overflow <= #`TCQ WR_EN & (FULL | wr_rst_i); ideal_overflow <= #`TCQ WR_EN & (FULL ); end end endgenerate generate if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 0) begin : g7s_unflw always @(posedge RD_CLK) begin ideal_underflow <= #`TCQ EMPTY & RD_EN; end end else if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 1) begin : g8s_unflw always @(posedge RD_CLK) begin ideal_underflow <= #`TCQ (EMPTY) & RD_EN; //ideal_underflow <= #`TCQ (rd_rst_i | EMPTY) & RD_EN; end end endgenerate /************************************************************************** * Write/Read Pointer Synchronization **************************************************************************/ localparam NO_OF_SYNC_STAGE_INC_G2B = C_SYNCHRONIZER_STAGE + 1; wire [C_WR_PNTR_WIDTH-1:0] wr_pntr_sync_stgs [0:NO_OF_SYNC_STAGE_INC_G2B]; wire [C_RD_PNTR_WIDTH-1:0] rd_pntr_sync_stgs [0:NO_OF_SYNC_STAGE_INC_G2B]; genvar gss; generate for (gss = 1; gss <= NO_OF_SYNC_STAGE_INC_G2B; gss = gss + 1) begin : Sync_stage_inst fifo_generator_v12_0_sync_stage #( .C_WIDTH (C_WR_PNTR_WIDTH) ) rd_stg_inst ( .RST (rd_rst_i), .CLK (RD_CLK), .DIN (wr_pntr_sync_stgs[gss-1]), .DOUT (wr_pntr_sync_stgs[gss]) ); fifo_generator_v12_0_sync_stage #( .C_WIDTH (C_RD_PNTR_WIDTH) ) wr_stg_inst ( .RST (wr_rst_i), .CLK (WR_CLK), .DIN (rd_pntr_sync_stgs[gss-1]), .DOUT (rd_pntr_sync_stgs[gss]) ); end endgenerate // Sync_stage_inst assign wr_pntr_sync_stgs[0] = wr_pntr_rd1; assign rd_pntr_sync_stgs[0] = rd_pntr_wr1; always@* begin wr_pntr_rd <= wr_pntr_sync_stgs[NO_OF_SYNC_STAGE_INC_G2B]; rd_pntr_wr <= rd_pntr_sync_stgs[NO_OF_SYNC_STAGE_INC_G2B]; end /************************************************************************** * Write Domain Logic **************************************************************************/ reg [C_WR_PNTR_WIDTH-1:0] diff_pntr = 0; always @(posedge WR_CLK or posedge wr_rst_i) begin : gen_fifo_w /****** Reset fifo (case 1)***************************************/ if (wr_rst_i == 1'b1) begin num_wr_bits <= #`TCQ 0; next_num_wr_bits = #`TCQ 0; wr_ptr <= #`TCQ C_WR_DEPTH - 1; rd_ptr_wrclk <= #`TCQ C_RD_DEPTH - 1; ideal_wr_ack <= #`TCQ 0; ideal_wr_count <= #`TCQ 0; tmp_wr_listsize = #`TCQ 0; rd_ptr_wrclk_next <= #`TCQ 0; wr_pntr <= #`TCQ 0; wr_pntr_rd1 <= #`TCQ 0; end else begin //wr_rst_i==0 wr_pntr_rd1 <= #`TCQ wr_pntr; //Determine the current number of words in the FIFO tmp_wr_listsize = (C_DEPTH_RATIO_RD > 1) ? num_wr_bits/C_DOUT_WIDTH : num_wr_bits/C_DIN_WIDTH; rd_ptr_wrclk_next = rd_ptr; if (rd_ptr_wrclk < rd_ptr_wrclk_next) begin next_num_wr_bits = num_wr_bits - C_DOUT_WIDTH*(rd_ptr_wrclk + C_RD_DEPTH - rd_ptr_wrclk_next); end else begin next_num_wr_bits = num_wr_bits - C_DOUT_WIDTH*(rd_ptr_wrclk - rd_ptr_wrclk_next); end //If this is a write, handle the write by adding the value // to the linked list, and updating all outputs appropriately if (WR_EN == 1'b1) begin if (FULL == 1'b1) begin //If the FIFO is full, do NOT perform the write, // update flags accordingly if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD >= C_FIFO_WR_DEPTH) begin //write unsuccessful - do not change contents //Do not acknowledge the write ideal_wr_ack <= #`TCQ 0; //Reminder that FIFO is still full ideal_wr_count <= #`TCQ num_write_words_sized_i; //If the FIFO is one from full, but reporting full end else if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD == C_FIFO_WR_DEPTH-1) begin //No change to FIFO //Write not successful ideal_wr_ack <= #`TCQ 0; //With DEPTH-1 words in the FIFO, it is almost_full ideal_wr_count <= #`TCQ num_write_words_sized_i; //If the FIFO is completely empty, but it is // reporting FULL for some reason (like reset) end else if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD <= C_FIFO_WR_DEPTH-2) begin //No change to FIFO //Write not successful ideal_wr_ack <= #`TCQ 0; //FIFO is really not close to full, so change flag status. ideal_wr_count <= #`TCQ num_write_words_sized_i; end //(tmp_wr_listsize == 0) end else begin //If the FIFO is full, do NOT perform the write, // update flags accordingly if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD >= C_FIFO_WR_DEPTH) begin //write unsuccessful - do not change contents //Do not acknowledge the write ideal_wr_ack <= #`TCQ 0; //Reminder that FIFO is still full ideal_wr_count <= #`TCQ num_write_words_sized_i; //If the FIFO is one from full end else if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD == C_FIFO_WR_DEPTH-1) begin //Add value on DIN port to FIFO write_fifo; next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH; //Write successful, so issue acknowledge // and no error ideal_wr_ack <= #`TCQ 1; //This write is CAUSING the FIFO to go full ideal_wr_count <= #`TCQ num_write_words_sized_i; //If the FIFO is 2 from full end else if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD == C_FIFO_WR_DEPTH-2) begin //Add value on DIN port to FIFO write_fifo; next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH; //Write successful, so issue acknowledge // and no error ideal_wr_ack <= #`TCQ 1; //Still 2 from full ideal_wr_count <= #`TCQ num_write_words_sized_i; //If the FIFO is not close to being full end else if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD < C_FIFO_WR_DEPTH-2) begin //Add value on DIN port to FIFO write_fifo; next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH; //Write successful, so issue acknowledge // and no error ideal_wr_ack <= #`TCQ 1; //Not even close to full. ideal_wr_count <= num_write_words_sized_i; end end end else begin //(WR_EN == 1'b1) //If user did not attempt a write, then do not // give ack or err ideal_wr_ack <= #`TCQ 0; ideal_wr_count <= #`TCQ num_write_words_sized_i; end num_wr_bits <= #`TCQ next_num_wr_bits; rd_ptr_wrclk <= #`TCQ rd_ptr; end //wr_rst_i==0 end // gen_fifo_w /*************************************************************************** * Programmable FULL flags ***************************************************************************/ wire [C_WR_PNTR_WIDTH-1:0] pf_thr_assert_val; wire [C_WR_PNTR_WIDTH-1:0] pf_thr_negate_val; generate if (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) begin : FWFT assign pf_thr_assert_val = C_PROG_FULL_THRESH_ASSERT_VAL - EXTRA_WORDS_DC; assign pf_thr_negate_val = C_PROG_FULL_THRESH_NEGATE_VAL - EXTRA_WORDS_DC; end else begin // STD assign pf_thr_assert_val = C_PROG_FULL_THRESH_ASSERT_VAL; assign pf_thr_negate_val = C_PROG_FULL_THRESH_NEGATE_VAL; end endgenerate always @(posedge WR_CLK or posedge wr_rst_i) begin if (wr_rst_i == 1'b1) begin diff_pntr <= 0; end else begin if (ram_wr_en) diff_pntr <= #`TCQ (wr_pntr - adj_rd_pntr_wr + 2'h1); else if (!ram_wr_en) diff_pntr <= #`TCQ (wr_pntr - adj_rd_pntr_wr); end end always @(posedge WR_CLK or posedge RST_FULL_FF) begin : gen_pf if (RST_FULL_FF == 1'b1) begin ideal_prog_full <= #`TCQ C_FULL_FLAGS_RST_VAL; end else begin if (RST_FULL_GEN) ideal_prog_full <= #`TCQ 0; //Single Programmable Full Constant Threshold else if (C_PROG_FULL_TYPE == 1) begin if (FULL == 0) begin if (diff_pntr >= pf_thr_assert_val) ideal_prog_full <= #`TCQ 1; else ideal_prog_full <= #`TCQ 0; end else ideal_prog_full <= #`TCQ ideal_prog_full; //Two Programmable Full Constant Thresholds end else if (C_PROG_FULL_TYPE == 2) begin if (FULL == 0) begin if (diff_pntr >= pf_thr_assert_val) ideal_prog_full <= #`TCQ 1; else if (diff_pntr < pf_thr_negate_val) ideal_prog_full <= #`TCQ 0; else ideal_prog_full <= #`TCQ ideal_prog_full; end else ideal_prog_full <= #`TCQ ideal_prog_full; //Single Programmable Full Threshold Input end else if (C_PROG_FULL_TYPE == 3) begin if (FULL == 0) begin if (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) begin // FWFT if (diff_pntr >= (PROG_FULL_THRESH - EXTRA_WORDS_DC)) ideal_prog_full <= #`TCQ 1; else ideal_prog_full <= #`TCQ 0; end else begin // STD if (diff_pntr >= PROG_FULL_THRESH) ideal_prog_full <= #`TCQ 1; else ideal_prog_full <= #`TCQ 0; end end else ideal_prog_full <= #`TCQ ideal_prog_full; //Two Programmable Full Threshold Inputs end else if (C_PROG_FULL_TYPE == 4) begin if (FULL == 0) begin if (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) begin // FWFT if (diff_pntr >= (PROG_FULL_THRESH_ASSERT - EXTRA_WORDS_DC)) ideal_prog_full <= #`TCQ 1; else if (diff_pntr < (PROG_FULL_THRESH_NEGATE - EXTRA_WORDS_DC)) ideal_prog_full <= #`TCQ 0; else ideal_prog_full <= #`TCQ ideal_prog_full; end else begin // STD if (diff_pntr >= PROG_FULL_THRESH_ASSERT) ideal_prog_full <= #`TCQ 1; else if (diff_pntr < PROG_FULL_THRESH_NEGATE) ideal_prog_full <= #`TCQ 0; else ideal_prog_full <= #`TCQ ideal_prog_full; end end else ideal_prog_full <= #`TCQ ideal_prog_full; end // C_PROG_FULL_TYPE end //wr_rst_i==0 end // /************************************************************************** * Read Domain Logic **************************************************************************/ /********************************************************* * Programmable EMPTY flags *********************************************************/ //Determine the Assert and Negate thresholds for Programmable Empty wire [C_RD_PNTR_WIDTH-1:0] pe_thr_assert_val; wire [C_RD_PNTR_WIDTH-1:0] pe_thr_negate_val; reg [C_RD_PNTR_WIDTH-1:0] diff_pntr_rd = 0; always @(posedge RD_CLK or posedge rd_rst_i) begin : gen_pe if (rd_rst_i) begin diff_pntr_rd <= #`TCQ 0; ideal_prog_empty <= #`TCQ 1'b1; end else begin if (ram_rd_en) diff_pntr_rd <= #`TCQ (adj_wr_pntr_rd - rd_pntr) - 1'h1; else if (!ram_rd_en) diff_pntr_rd <= #`TCQ (adj_wr_pntr_rd - rd_pntr); else diff_pntr_rd <= #`TCQ diff_pntr_rd; if (C_PROG_EMPTY_TYPE == 1) begin if (EMPTY == 0) begin if (diff_pntr_rd <= pe_thr_assert_val) ideal_prog_empty <= #`TCQ 1; else ideal_prog_empty <= #`TCQ 0; end else ideal_prog_empty <= #`TCQ ideal_prog_empty; end else if (C_PROG_EMPTY_TYPE == 2) begin if (EMPTY == 0) begin if (diff_pntr_rd <= pe_thr_assert_val) ideal_prog_empty <= #`TCQ 1; else if (diff_pntr_rd > pe_thr_negate_val) ideal_prog_empty <= #`TCQ 0; else ideal_prog_empty <= #`TCQ ideal_prog_empty; end else ideal_prog_empty <= #`TCQ ideal_prog_empty; end else if (C_PROG_EMPTY_TYPE == 3) begin if (EMPTY == 0) begin if (diff_pntr_rd <= pe_thr_assert_val) ideal_prog_empty <= #`TCQ 1; else ideal_prog_empty <= #`TCQ 0; end else ideal_prog_empty <= #`TCQ ideal_prog_empty; end else if (C_PROG_EMPTY_TYPE == 4) begin if (EMPTY == 0) begin if (diff_pntr_rd <= pe_thr_assert_val) ideal_prog_empty <= #`TCQ 1; else if (diff_pntr_rd > pe_thr_negate_val) ideal_prog_empty <= #`TCQ 0; else ideal_prog_empty <= #`TCQ ideal_prog_empty; end else ideal_prog_empty <= #`TCQ ideal_prog_empty; end //C_PROG_EMPTY_TYPE end end // gen_pe generate if (C_PROG_EMPTY_TYPE == 3) begin : single_pe_thr_input assign pe_thr_assert_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ? PROG_EMPTY_THRESH - 2'h2 : PROG_EMPTY_THRESH; end endgenerate // single_pe_thr_input generate if (C_PROG_EMPTY_TYPE == 4) begin : multiple_pe_thr_input assign pe_thr_assert_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ? PROG_EMPTY_THRESH_ASSERT - 2'h2 : PROG_EMPTY_THRESH_ASSERT; assign pe_thr_negate_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ? PROG_EMPTY_THRESH_NEGATE - 2'h2 : PROG_EMPTY_THRESH_NEGATE; end endgenerate // multiple_pe_thr_input generate if (C_PROG_EMPTY_TYPE < 3) begin : single_multiple_pe_thr_const assign pe_thr_assert_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ? C_PROG_EMPTY_THRESH_ASSERT_VAL - 2'h2 : C_PROG_EMPTY_THRESH_ASSERT_VAL; assign pe_thr_negate_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ? C_PROG_EMPTY_THRESH_NEGATE_VAL - 2'h2 : C_PROG_EMPTY_THRESH_NEGATE_VAL; end endgenerate // single_multiple_pe_thr_const // block memory has a synchronous reset always @(posedge RD_CLK) begin : gen_fifo_blkmemdout // make it consistent with the core. if (rd_rst_i) begin // Reset err_type only if ECC is not selected if (C_USE_ECC == 0 && C_MEMORY_TYPE < 2) err_type <= #`TCQ 0; // BRAM resets synchronously if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE < 2) begin ideal_dout <= #`TCQ dout_reset_val; ideal_dout_d1 <= #`TCQ dout_reset_val; end end end //always always @(posedge RD_CLK or posedge rd_rst_i) begin : gen_fifo_r /****** Reset fifo (case 1)***************************************/ if (rd_rst_i) begin num_rd_bits <= #`TCQ 0; next_num_rd_bits = #`TCQ 0; rd_ptr <= #`TCQ C_RD_DEPTH -1; rd_pntr <= #`TCQ 0; rd_pntr_wr1 <= #`TCQ 0; wr_ptr_rdclk <= #`TCQ C_WR_DEPTH -1; // DRAM resets asynchronously if (C_MEMORY_TYPE == 2 && C_USE_DOUT_RST == 1) ideal_dout <= #`TCQ dout_reset_val; // Reset err_type only if ECC is not selected if (C_USE_ECC == 0) err_type <= #`TCQ 0; ideal_valid <= #`TCQ 1'b0; ideal_rd_count <= #`TCQ 0; end else begin //rd_rst_i==0 rd_pntr_wr1 <= #`TCQ rd_pntr; //Determine the current number of words in the FIFO tmp_rd_listsize = (C_DEPTH_RATIO_WR > 1) ? num_rd_bits/C_DIN_WIDTH : num_rd_bits/C_DOUT_WIDTH; wr_ptr_rdclk_next = wr_ptr; if (wr_ptr_rdclk < wr_ptr_rdclk_next) begin next_num_rd_bits = num_rd_bits + C_DIN_WIDTH*(wr_ptr_rdclk +C_WR_DEPTH - wr_ptr_rdclk_next); end else begin next_num_rd_bits = num_rd_bits + C_DIN_WIDTH*(wr_ptr_rdclk - wr_ptr_rdclk_next); end /*****************************************************************/ // Read Operation - Read Latency 1 /*****************************************************************/ if (C_PRELOAD_LATENCY==1 || C_PRELOAD_LATENCY==2) begin ideal_valid <= #`TCQ 1'b0; if (ram_rd_en == 1'b1) begin if (EMPTY == 1'b1) begin //If the FIFO is completely empty, and is reporting empty if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0) begin //Do not change the contents of the FIFO //Do not acknowledge the read from empty FIFO ideal_valid <= #`TCQ 1'b0; //Reminder that FIFO is still empty ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if (tmp_rd_listsize <= 0) //If the FIFO is one from empty, but it is reporting empty else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 1) begin //Do not change the contents of the FIFO //Do not acknowledge the read from empty FIFO ideal_valid <= #`TCQ 1'b0; //Note that FIFO is no longer empty, but is almost empty (has one word left) ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if (tmp_rd_listsize == 1) //If the FIFO is two from empty, and is reporting empty else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2) begin //Do not change the contents of the FIFO //Do not acknowledge the read from empty FIFO ideal_valid <= #`TCQ 1'b0; //Fifo has two words, so is neither empty or almost empty ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if (tmp_rd_listsize == 2) //If the FIFO is not close to empty, but is reporting that it is // Treat the FIFO as empty this time, but unset EMPTY flags. if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) && (tmp_rd_listsize/C_DEPTH_RATIO_WR<C_FIFO_RD_DEPTH)) begin //Do not change the contents of the FIFO //Do not acknowledge the read from empty FIFO ideal_valid <= #`TCQ 1'b0; //Note that the FIFO is No Longer Empty or Almost Empty ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if ((tmp_rd_listsize > 2) && (tmp_rd_listsize<=C_FIFO_RD_DEPTH-1)) end // else: if(ideal_empty == 1'b1) else //if (ideal_empty == 1'b0) begin //If the FIFO is completely full, and we are successfully reading from it if (tmp_rd_listsize/C_DEPTH_RATIO_WR >= C_FIFO_RD_DEPTH) begin //Read the value from the FIFO read_fifo; next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH; //Acknowledge the read from the FIFO, no error ideal_valid <= #`TCQ 1'b1; //Not close to empty ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if (tmp_rd_listsize == C_FIFO_RD_DEPTH) //If the FIFO is not close to being empty else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) && (tmp_rd_listsize/C_DEPTH_RATIO_WR<=C_FIFO_RD_DEPTH)) begin //Read the value from the FIFO read_fifo; next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH; //Acknowledge the read from the FIFO, no error ideal_valid <= #`TCQ 1'b1; //Not close to empty ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if ((tmp_rd_listsize > 2) && (tmp_rd_listsize<=C_FIFO_RD_DEPTH-1)) //If the FIFO is two from empty else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2) begin //Read the value from the FIFO read_fifo; next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH; //Acknowledge the read from the FIFO, no error ideal_valid <= #`TCQ 1'b1; //Fifo is not yet empty. It is going almost_empty ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if (tmp_rd_listsize == 2) //If the FIFO is one from empty else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR == 1)) begin //Read the value from the FIFO read_fifo; next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH; //Acknowledge the read from the FIFO, no error ideal_valid <= #`TCQ 1'b1; //Note that FIFO is GOING empty ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if (tmp_rd_listsize == 1) //If the FIFO is completely empty else if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0) begin //Do not change the contents of the FIFO //Do not acknowledge the read from empty FIFO ideal_valid <= #`TCQ 1'b0; ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if (tmp_rd_listsize <= 0) end // if (ideal_empty == 1'b0) end //(RD_EN == 1'b1) else //if (RD_EN == 1'b0) begin //If user did not attempt a read, do not give an ack or err ideal_valid <= #`TCQ 1'b0; ideal_rd_count <= #`TCQ num_read_words_sized_i; end // else: !if(RD_EN == 1'b1) /*****************************************************************/ // Read Operation - Read Latency 0 /*****************************************************************/ end else if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) begin ideal_valid <= #`TCQ 1'b0; if (ram_rd_en == 1'b1) begin if (EMPTY == 1'b1) begin //If the FIFO is completely empty, and is reporting empty if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0) begin //Do not change the contents of the FIFO //Do not acknowledge the read from empty FIFO ideal_valid <= #`TCQ 1'b0; //Reminder that FIFO is still empty ideal_rd_count <= #`TCQ num_read_words_sized_i; //If the FIFO is one from empty, but it is reporting empty end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 1) begin //Do not change the contents of the FIFO //Do not acknowledge the read from empty FIFO ideal_valid <= #`TCQ 1'b0; //Note that FIFO is no longer empty, but is almost empty (has one word left) ideal_rd_count <= #`TCQ num_read_words_sized_i; //If the FIFO is two from empty, and is reporting empty end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2) begin //Do not change the contents of the FIFO //Do not acknowledge the read from empty FIFO ideal_valid <= #`TCQ 1'b0; //Fifo has two words, so is neither empty or almost empty ideal_rd_count <= #`TCQ num_read_words_sized_i; //If the FIFO is not close to empty, but is reporting that it is // Treat the FIFO as empty this time, but unset EMPTY flags. end else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) && (tmp_rd_listsize/C_DEPTH_RATIO_WR<C_FIFO_RD_DEPTH)) begin //Do not change the contents of the FIFO //Do not acknowledge the read from empty FIFO ideal_valid <= #`TCQ 1'b0; //Note that the FIFO is No Longer Empty or Almost Empty ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if ((tmp_rd_listsize > 2) && (tmp_rd_listsize<=C_FIFO_RD_DEPTH-1)) end else begin //If the FIFO is completely full, and we are successfully reading from it if (tmp_rd_listsize/C_DEPTH_RATIO_WR >= C_FIFO_RD_DEPTH) begin //Read the value from the FIFO read_fifo; next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH; //Acknowledge the read from the FIFO, no error ideal_valid <= #`TCQ 1'b1; //Not close to empty ideal_rd_count <= #`TCQ num_read_words_sized_i; //If the FIFO is not close to being empty end else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) && (tmp_rd_listsize/C_DEPTH_RATIO_WR<=C_FIFO_RD_DEPTH)) begin //Read the value from the FIFO read_fifo; next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH; //Acknowledge the read from the FIFO, no error ideal_valid <= #`TCQ 1'b1; //Not close to empty ideal_rd_count <= #`TCQ num_read_words_sized_i; //If the FIFO is two from empty end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2) begin //Read the value from the FIFO read_fifo; next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH; //Acknowledge the read from the FIFO, no error ideal_valid <= #`TCQ 1'b1; //Fifo is not yet empty. It is going almost_empty ideal_rd_count <= #`TCQ num_read_words_sized_i; //If the FIFO is one from empty end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 1) begin //Read the value from the FIFO read_fifo; next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH; //Acknowledge the read from the FIFO, no error ideal_valid <= #`TCQ 1'b1; //Note that FIFO is GOING empty ideal_rd_count <= #`TCQ num_read_words_sized_i; //If the FIFO is completely empty end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0) begin //Do not change the contents of the FIFO //Do not acknowledge the read from empty FIFO ideal_valid <= #`TCQ 1'b0; //Reminder that FIFO is still empty ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if (tmp_rd_listsize <= 0) end // if (ideal_empty == 1'b0) end else begin//(RD_EN == 1'b0) //If user did not attempt a read, do not give an ack or err ideal_valid <= #`TCQ 1'b0; ideal_rd_count <= #`TCQ num_read_words_sized_i; end // else: !if(RD_EN == 1'b1) end //if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) num_rd_bits <= #`TCQ next_num_rd_bits; wr_ptr_rdclk <= #`TCQ wr_ptr; end //rd_rst_i==0 end //always endmodule // fifo_generator_v12_0_bhv_ver_as /******************************************************************************* * Declaration of Low Latency Asynchronous FIFO ******************************************************************************/ module fifo_generator_v12_0_beh_ver_ll_afifo /*************************************************************************** * Declare user parameters and their defaults ***************************************************************************/ #( parameter C_DIN_WIDTH = 8, parameter C_DOUT_RST_VAL = "", parameter C_DOUT_WIDTH = 8, parameter C_FULL_FLAGS_RST_VAL = 1, parameter C_HAS_RD_DATA_COUNT = 0, parameter C_HAS_WR_DATA_COUNT = 0, parameter C_RD_DEPTH = 256, parameter C_RD_PNTR_WIDTH = 8, parameter C_USE_DOUT_RST = 0, parameter C_WR_DATA_COUNT_WIDTH = 2, parameter C_WR_DEPTH = 256, parameter C_WR_PNTR_WIDTH = 8, parameter C_FIFO_TYPE = 0 ) /*************************************************************************** * Declare Input and Output Ports ***************************************************************************/ ( input [C_DIN_WIDTH-1:0] DIN, input RD_CLK, input RD_EN, input WR_RST, input RD_RST, input WR_CLK, input WR_EN, output reg [C_DOUT_WIDTH-1:0] DOUT = 0, output reg EMPTY = 1'b1, output reg FULL = C_FULL_FLAGS_RST_VAL ); //----------------------------------------------------------------------------- // Low Latency Asynchronous FIFO //----------------------------------------------------------------------------- // Memory which will be used to simulate a FIFO reg [C_DIN_WIDTH-1:0] memory[C_WR_DEPTH-1:0]; integer i; initial begin for (i = 0; i < C_WR_DEPTH; i = i + 1) memory[i] = 0; end reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_ll_afifo = 0; wire [C_RD_PNTR_WIDTH-1:0] rd_pntr_ll_afifo; reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_ll_afifo_q = 0; reg ll_afifo_full = 1'b0; reg ll_afifo_empty = 1'b1; wire write_allow; wire read_allow; assign write_allow = WR_EN & ~ll_afifo_full; assign read_allow = RD_EN & ~ll_afifo_empty; //----------------------------------------------------------------------------- // Write Pointer Generation //----------------------------------------------------------------------------- always @(posedge WR_CLK or posedge WR_RST) begin if (WR_RST) wr_pntr_ll_afifo <= 0; else if (write_allow) wr_pntr_ll_afifo <= #`TCQ wr_pntr_ll_afifo + 1; end //----------------------------------------------------------------------------- // Read Pointer Generation //----------------------------------------------------------------------------- always @(posedge RD_CLK or posedge RD_RST) begin if (RD_RST) rd_pntr_ll_afifo_q <= 0; else rd_pntr_ll_afifo_q <= #`TCQ rd_pntr_ll_afifo; end assign rd_pntr_ll_afifo = read_allow ? rd_pntr_ll_afifo_q + 1 : rd_pntr_ll_afifo_q; //----------------------------------------------------------------------------- // Fill the Memory //----------------------------------------------------------------------------- always @(posedge WR_CLK) begin if (write_allow) memory[wr_pntr_ll_afifo] <= #`TCQ DIN; end //----------------------------------------------------------------------------- // Generate DOUT //----------------------------------------------------------------------------- always @(posedge RD_CLK) begin DOUT <= #`TCQ memory[rd_pntr_ll_afifo]; end //----------------------------------------------------------------------------- // Generate EMPTY //----------------------------------------------------------------------------- always @(posedge RD_CLK or posedge RD_RST) begin if (RD_RST) ll_afifo_empty <= 1'b1; else ll_afifo_empty <= ((wr_pntr_ll_afifo == rd_pntr_ll_afifo_q) | (read_allow & (wr_pntr_ll_afifo == (rd_pntr_ll_afifo_q + 2'h1)))); end //----------------------------------------------------------------------------- // Generate FULL //----------------------------------------------------------------------------- always @(posedge WR_CLK or posedge WR_RST) begin if (WR_RST) ll_afifo_full <= 1'b1; else ll_afifo_full <= ((rd_pntr_ll_afifo_q == (wr_pntr_ll_afifo + 2'h1)) | (write_allow & (rd_pntr_ll_afifo_q == (wr_pntr_ll_afifo + 2'h2)))); end always @* begin FULL <= ll_afifo_full; EMPTY <= ll_afifo_empty; end endmodule // fifo_generator_v12_0_beh_ver_ll_afifo /******************************************************************************* * Declaration of top-level module ******************************************************************************/ module fifo_generator_v12_0_bhv_ver_ss /************************************************************************** * Declare user parameters and their defaults *************************************************************************/ #( parameter C_FAMILY = "virtex7", parameter C_DATA_COUNT_WIDTH = 2, parameter C_DIN_WIDTH = 8, parameter C_DOUT_RST_VAL = "", parameter C_DOUT_WIDTH = 8, parameter C_FULL_FLAGS_RST_VAL = 1, parameter C_HAS_ALMOST_EMPTY = 0, parameter C_HAS_ALMOST_FULL = 0, parameter C_HAS_DATA_COUNT = 0, parameter C_HAS_OVERFLOW = 0, parameter C_HAS_RD_DATA_COUNT = 0, parameter C_HAS_RST = 0, parameter C_HAS_SRST = 0, parameter C_HAS_UNDERFLOW = 0, parameter C_HAS_VALID = 0, parameter C_HAS_WR_ACK = 0, parameter C_HAS_WR_DATA_COUNT = 0, parameter C_IMPLEMENTATION_TYPE = 0, parameter C_MEMORY_TYPE = 1, parameter C_OVERFLOW_LOW = 0, parameter C_PRELOAD_LATENCY = 1, parameter C_PRELOAD_REGS = 0, parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0, parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0, parameter C_PROG_EMPTY_TYPE = 0, parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0, parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0, parameter C_PROG_FULL_TYPE = 0, parameter C_RD_DATA_COUNT_WIDTH = 2, parameter C_RD_DEPTH = 256, parameter C_RD_PNTR_WIDTH = 8, parameter C_UNDERFLOW_LOW = 0, parameter C_USE_DOUT_RST = 0, parameter C_USE_EMBEDDED_REG = 0, parameter C_USE_FWFT_DATA_COUNT = 0, parameter C_VALID_LOW = 0, parameter C_WR_ACK_LOW = 0, parameter C_WR_DATA_COUNT_WIDTH = 2, parameter C_WR_DEPTH = 256, parameter C_WR_PNTR_WIDTH = 8, parameter C_USE_ECC = 0, parameter C_ENABLE_RST_SYNC = 1, parameter C_ERROR_INJECTION_TYPE = 0, parameter C_FIFO_TYPE = 0 ) /************************************************************************** * Declare Input and Output Ports *************************************************************************/ ( //Inputs input CLK, input [C_DIN_WIDTH-1:0] DIN, input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH, input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT, input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE, input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH, input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT, input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE, input RD_EN, input RD_EN_USER, input USER_EMPTY_FB, input RST, input RST_FULL_GEN, input RST_FULL_FF, input SRST, input WR_EN, input INJECTDBITERR, input INJECTSBITERR, input WR_RST_BUSY, input RD_RST_BUSY, //Outputs output ALMOST_EMPTY, output ALMOST_FULL, output reg [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT = 0, output [C_DOUT_WIDTH-1:0] DOUT, output EMPTY, output FULL, output OVERFLOW, output [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT, output [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT, output PROG_EMPTY, output PROG_FULL, output VALID, output UNDERFLOW, output WR_ACK, output SBITERR, output DBITERR ); reg [C_RD_PNTR_WIDTH:0] rd_data_count_int = 0; reg [C_WR_PNTR_WIDTH:0] wr_data_count_int = 0; wire [C_RD_PNTR_WIDTH:0] rd_data_count_i_ss; wire [C_WR_PNTR_WIDTH:0] wr_data_count_i_ss; reg [C_WR_PNTR_WIDTH:0] wdc_fwft_ext_as = 0; /*************************************************************************** * Parameters used as constants **************************************************************************/ localparam IS_8SERIES = (C_FAMILY == "virtexu" || C_FAMILY == "kintexu" || C_FAMILY == "artixu" || C_FAMILY == "virtexum" || C_FAMILY == "zynque") ? 1 : 0; localparam C_DEPTH_RATIO_WR = (C_WR_DEPTH>C_RD_DEPTH) ? (C_WR_DEPTH/C_RD_DEPTH) : 1; localparam C_DEPTH_RATIO_RD = (C_RD_DEPTH>C_WR_DEPTH) ? (C_RD_DEPTH/C_WR_DEPTH) : 1; //localparam C_FIFO_WR_DEPTH = C_WR_DEPTH - 1; //localparam C_FIFO_RD_DEPTH = C_RD_DEPTH - 1; localparam C_GRTR_PNTR_WIDTH = (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) ? C_WR_PNTR_WIDTH : C_RD_PNTR_WIDTH ; // C_DEPTH_RATIO_WR | C_DEPTH_RATIO_RD | C_PNTR_WIDTH | EXTRA_WORDS_DC // -----------------|------------------|-----------------|--------------- // 1 | 8 | C_RD_PNTR_WIDTH | 2 // 1 | 4 | C_RD_PNTR_WIDTH | 2 // 1 | 2 | C_RD_PNTR_WIDTH | 2 // 1 | 1 | C_WR_PNTR_WIDTH | 2 // 2 | 1 | C_WR_PNTR_WIDTH | 4 // 4 | 1 | C_WR_PNTR_WIDTH | 8 // 8 | 1 | C_WR_PNTR_WIDTH | 16 localparam C_PNTR_WIDTH = (C_WR_PNTR_WIDTH>=C_RD_PNTR_WIDTH) ? C_WR_PNTR_WIDTH : C_RD_PNTR_WIDTH; wire [C_PNTR_WIDTH:0] EXTRA_WORDS_DC = (C_DEPTH_RATIO_WR == 1) ? 2 : (2 * C_DEPTH_RATIO_WR/C_DEPTH_RATIO_RD); wire [C_WR_PNTR_WIDTH:0] EXTRA_WORDS_PF = (C_DEPTH_RATIO_WR == 1) ? 2 : (2 * C_DEPTH_RATIO_WR/C_DEPTH_RATIO_RD); //wire [C_RD_PNTR_WIDTH:0] EXTRA_WORDS_PE = (C_DEPTH_RATIO_RD == 1) ? 2 : (2 * C_DEPTH_RATIO_RD/C_DEPTH_RATIO_WR); localparam EXTRA_WORDS_PF_PARAM = (C_DEPTH_RATIO_WR == 1) ? 2 : (2 * C_DEPTH_RATIO_WR/C_DEPTH_RATIO_RD); //localparam EXTRA_WORDS_PE_PARAM = (C_DEPTH_RATIO_RD == 1) ? 2 : (2 * C_DEPTH_RATIO_RD/C_DEPTH_RATIO_WR); localparam [31:0] reads_per_write = C_DIN_WIDTH/C_DOUT_WIDTH; localparam [31:0] log2_reads_per_write = log2_val(reads_per_write); localparam [31:0] writes_per_read = C_DOUT_WIDTH/C_DIN_WIDTH; localparam [31:0] log2_writes_per_read = log2_val(writes_per_read); //When RST is present, set FULL reset value to '1'. //If core has no RST, make sure FULL powers-on as '0'. //The reset value assignments for FULL, ALMOST_FULL, and PROG_FULL are not //changed for v3.2(IP2_Im). When the core has Sync Reset, C_HAS_SRST=1 and C_HAS_RST=0. // Therefore, during SRST, all the FULL flags reset to 0. localparam C_HAS_FAST_FIFO = 0; localparam C_FIFO_WR_DEPTH = C_WR_DEPTH; localparam C_FIFO_RD_DEPTH = C_RD_DEPTH; // Local parameters used to determine whether to inject ECC error or not localparam SYMMETRIC_PORT = (C_DIN_WIDTH == C_DOUT_WIDTH) ? 1 : 0; localparam ERR_INJECTION = (C_ERROR_INJECTION_TYPE != 0) ? 1 : 0; localparam ENABLE_ERR_INJECTION = C_USE_ECC && SYMMETRIC_PORT && ERR_INJECTION; localparam C_DATA_WIDTH = (ENABLE_ERR_INJECTION == 1) ? (C_DIN_WIDTH+2) : C_DIN_WIDTH; localparam IS_ASYMMETRY = (C_DIN_WIDTH == C_DOUT_WIDTH) ? 0 : 1; localparam LESSER_WIDTH = (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) ? C_WR_PNTR_WIDTH : C_RD_PNTR_WIDTH; localparam [C_RD_PNTR_WIDTH-1 : 0] DIFF_MAX_RD = {C_RD_PNTR_WIDTH{1'b1}}; localparam [C_WR_PNTR_WIDTH-1 : 0] DIFF_MAX_WR = {C_WR_PNTR_WIDTH{1'b1}}; /************************************************************************** * FIFO Contents Tracking and Data Count Calculations *************************************************************************/ // Memory which will be used to simulate a FIFO reg [C_DIN_WIDTH-1:0] memory[C_WR_DEPTH-1:0]; reg [1:0] ecc_err[C_WR_DEPTH-1:0]; /************************************************************************** * Internal Registers and wires *************************************************************************/ //Temporary signals used for calculating the model's outputs. These //are only used in the assign statements immediately following wire, //parameter, and function declarations. wire underflow_i; wire valid_i; wire valid_out; reg [31:0] num_wr_bits; reg [31:0] num_rd_bits; reg [31:0] next_num_wr_bits; reg [31:0] next_num_rd_bits; //The write pointer - tracks write operations // (Works opposite to core: wr_ptr is a DOWN counter) reg [31:0] wr_ptr; reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd1 = 0; reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd2 = 0; reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd3 = 0; reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd = 0; reg wr_rst_d1 =0; //The read pointer - tracks read operations // (rd_ptr Works opposite to core: rd_ptr is a DOWN counter) reg [31:0] rd_ptr; reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr1 = 0; reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr2 = 0; reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr3 = 0; reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr4 = 0; reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr = 0; wire ram_rd_en; wire empty_int; wire almost_empty_int; wire ram_wr_en; wire full_int; wire almost_full_int; reg ram_rd_en_reg = 1'b0; //Ideal FIFO signals. These are the raw output of the behavioral model, //which behaves like an ideal FIFO. reg [1:0] err_type = 0; reg [1:0] err_type_d1 = 0; reg [C_DOUT_WIDTH-1:0] ideal_dout = 0; reg [C_DOUT_WIDTH-1:0] ideal_dout_d1 = 0; wire [C_DOUT_WIDTH-1:0] ideal_dout_out; wire fwft_enabled; reg ideal_wr_ack = 0; reg ideal_valid = 0; reg ideal_overflow = C_OVERFLOW_LOW; reg ideal_underflow = C_UNDERFLOW_LOW; reg full_i = C_FULL_FLAGS_RST_VAL; reg full_i_temp = 0; reg empty_i = 1; reg almost_full_i = 0; reg almost_empty_i = 1; reg prog_full_i = 0; reg prog_empty_i = 1; reg [C_WR_PNTR_WIDTH-1:0] wr_pntr = 0; reg [C_RD_PNTR_WIDTH-1:0] rd_pntr = 0; wire [C_RD_PNTR_WIDTH-1:0] adj_wr_pntr_rd; wire [C_WR_PNTR_WIDTH-1:0] adj_rd_pntr_wr; reg [C_RD_PNTR_WIDTH-1:0] diff_count = 0; reg write_allow_q = 0; reg read_allow_q = 0; reg valid_d1 = 0; wire rst_i; wire srst_i; //user specified value for reseting the size of the fifo reg [C_DOUT_WIDTH-1:0] dout_reset_val = 0; reg [31:0] wr_ptr_rdclk; reg [31:0] wr_ptr_rdclk_next; reg [31:0] rd_ptr_wrclk; reg [31:0] rd_ptr_wrclk_next; /**************************************************************************** * Function Declarations ***************************************************************************/ /**************************************************************************** * hexstr_conv * Converts a string of type hex to a binary value (for C_DOUT_RST_VAL) ***************************************************************************/ function [C_DOUT_WIDTH-1:0] hexstr_conv; input [(C_DOUT_WIDTH*8)-1:0] def_data; integer index,i,j; reg [3:0] bin; begin index = 0; hexstr_conv = 'b0; for( i=C_DOUT_WIDTH-1; i>=0; i=i-1 ) begin case (def_data[7:0]) 8'b00000000 : begin bin = 4'b0000; i = -1; end 8'b00110000 : bin = 4'b0000; 8'b00110001 : bin = 4'b0001; 8'b00110010 : bin = 4'b0010; 8'b00110011 : bin = 4'b0011; 8'b00110100 : bin = 4'b0100; 8'b00110101 : bin = 4'b0101; 8'b00110110 : bin = 4'b0110; 8'b00110111 : bin = 4'b0111; 8'b00111000 : bin = 4'b1000; 8'b00111001 : bin = 4'b1001; 8'b01000001 : bin = 4'b1010; 8'b01000010 : bin = 4'b1011; 8'b01000011 : bin = 4'b1100; 8'b01000100 : bin = 4'b1101; 8'b01000101 : bin = 4'b1110; 8'b01000110 : bin = 4'b1111; 8'b01100001 : bin = 4'b1010; 8'b01100010 : bin = 4'b1011; 8'b01100011 : bin = 4'b1100; 8'b01100100 : bin = 4'b1101; 8'b01100101 : bin = 4'b1110; 8'b01100110 : bin = 4'b1111; default : begin bin = 4'bx; end endcase for( j=0; j<4; j=j+1) begin if ((index*4)+j < C_DOUT_WIDTH) begin hexstr_conv[(index*4)+j] = bin[j]; end end index = index + 1; def_data = def_data >> 8; end end endfunction /************************************************************************** * log2_val * Returns the 'log2' value for the input value for the supported ratios ***************************************************************************/ function [31:0] log2_val; input [31:0] binary_val; begin if (binary_val == 8) begin log2_val = 3; end else if (binary_val == 4) begin log2_val = 2; end else begin log2_val = 1; end end endfunction reg ideal_prog_full = 0; reg ideal_prog_empty = 1; reg [C_WR_DATA_COUNT_WIDTH-1 : 0] ideal_wr_count = 0; reg [C_RD_DATA_COUNT_WIDTH-1 : 0] ideal_rd_count = 0; //Assorted reg values for delayed versions of signals //reg valid_d1 = 0; //user specified value for reseting the size of the fifo //reg [C_DOUT_WIDTH-1:0] dout_reset_val = 0; //temporary registers for WR_RESPONSE_LATENCY feature integer tmp_wr_listsize; integer tmp_rd_listsize; //Signal for registered version of prog full and empty //Threshold values for Programmable Flags integer prog_empty_actual_thresh_assert; integer prog_empty_actual_thresh_negate; integer prog_full_actual_thresh_assert; integer prog_full_actual_thresh_negate; /************************************************************************** * write_fifo * This task writes a word to the FIFO memory and updates the * write pointer. * FIFO size is relative to write domain. ***************************************************************************/ task write_fifo; begin memory[wr_ptr] <= DIN; wr_pntr <= #`TCQ wr_pntr + 1; // Store the type of error injection (double/single) on write case (C_ERROR_INJECTION_TYPE) 3: ecc_err[wr_ptr] <= {INJECTDBITERR,INJECTSBITERR}; 2: ecc_err[wr_ptr] <= {INJECTDBITERR,1'b0}; 1: ecc_err[wr_ptr] <= {1'b0,INJECTSBITERR}; default: ecc_err[wr_ptr] <= 0; endcase // (Works opposite to core: wr_ptr is a DOWN counter) if (wr_ptr == 0) begin wr_ptr <= C_WR_DEPTH - 1; end else begin wr_ptr <= wr_ptr - 1; end end endtask // write_fifo /************************************************************************** * read_fifo * This task reads a word from the FIFO memory and updates the read * pointer. It's output is the ideal_dout bus. * FIFO size is relative to write domain. ***************************************************************************/ task read_fifo; integer i; reg [C_DOUT_WIDTH-1:0] tmp_dout; reg [C_DIN_WIDTH-1:0] memory_read; reg [31:0] tmp_rd_ptr; reg [31:0] rd_ptr_high; reg [31:0] rd_ptr_low; reg [1:0] tmp_ecc_err; begin rd_pntr <= #`TCQ rd_pntr + 1; // output is wider than input if (reads_per_write == 0) begin tmp_dout = 0; tmp_rd_ptr = (rd_ptr << log2_writes_per_read)+(writes_per_read-1); for (i = writes_per_read - 1; i >= 0; i = i - 1) begin tmp_dout = tmp_dout << C_DIN_WIDTH; tmp_dout = tmp_dout | memory[tmp_rd_ptr]; // (Works opposite to core: rd_ptr is a DOWN counter) if (tmp_rd_ptr == 0) begin tmp_rd_ptr = C_WR_DEPTH - 1; end else begin tmp_rd_ptr = tmp_rd_ptr - 1; end end // output is symmetric end else if (reads_per_write == 1) begin tmp_dout = memory[rd_ptr][C_DIN_WIDTH-1:0]; // Retreive the error injection type. Based on the error injection type // corrupt the output data. tmp_ecc_err = ecc_err[rd_ptr]; if (ENABLE_ERR_INJECTION && C_DIN_WIDTH == C_DOUT_WIDTH) begin if (tmp_ecc_err[1]) begin // Corrupt the output data only for double bit error if (C_DOUT_WIDTH == 1) begin $display("FAILURE : Data width must be >= 2 for double bit error injection."); $finish; end else if (C_DOUT_WIDTH == 2) tmp_dout = {~tmp_dout[C_DOUT_WIDTH-1],~tmp_dout[C_DOUT_WIDTH-2]}; else tmp_dout = {~tmp_dout[C_DOUT_WIDTH-1],~tmp_dout[C_DOUT_WIDTH-2],(tmp_dout << 2)}; end else begin tmp_dout = tmp_dout[C_DOUT_WIDTH-1:0]; end err_type <= {tmp_ecc_err[1], tmp_ecc_err[0] & !tmp_ecc_err[1]}; end else begin err_type <= 0; end // input is wider than output end else begin rd_ptr_high = rd_ptr >> log2_reads_per_write; rd_ptr_low = rd_ptr & (reads_per_write - 1); memory_read = memory[rd_ptr_high]; tmp_dout = memory_read >> (rd_ptr_low*C_DOUT_WIDTH); end ideal_dout <= tmp_dout; // (Works opposite to core: rd_ptr is a DOWN counter) if (rd_ptr == 0) begin rd_ptr <= C_RD_DEPTH - 1; end else begin rd_ptr <= rd_ptr - 1; end end endtask /************************************************************************* * Initialize Signals for clean power-on simulation *************************************************************************/ initial begin num_wr_bits = 0; num_rd_bits = 0; next_num_wr_bits = 0; next_num_rd_bits = 0; rd_ptr = C_RD_DEPTH - 1; wr_ptr = C_WR_DEPTH - 1; wr_pntr = 0; rd_pntr = 0; rd_ptr_wrclk = rd_ptr; wr_ptr_rdclk = wr_ptr; dout_reset_val = hexstr_conv(C_DOUT_RST_VAL); ideal_dout = dout_reset_val; err_type = 0; ideal_dout_d1 = dout_reset_val; ideal_wr_ack = 1'b0; ideal_valid = 1'b0; valid_d1 = 1'b0; ideal_overflow = C_OVERFLOW_LOW; ideal_underflow = C_UNDERFLOW_LOW; ideal_wr_count = 0; ideal_rd_count = 0; ideal_prog_full = 1'b0; ideal_prog_empty = 1'b1; end /************************************************************************* * Connect the module inputs and outputs to the internal signals of the * behavioral model. *************************************************************************/ //Inputs /* wire CLK; wire [C_DIN_WIDTH-1:0] DIN; wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH; wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT; wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE; wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH; wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT; wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE; wire RD_EN; wire RST; wire WR_EN; */ // Assign ALMOST_EPMTY generate if (C_HAS_ALMOST_EMPTY == 1) begin : gae assign ALMOST_EMPTY = almost_empty_i; end else begin : gnae assign ALMOST_EMPTY = 0; end endgenerate // gae // Assign ALMOST_FULL generate if (C_HAS_ALMOST_FULL==1) begin : gaf assign ALMOST_FULL = almost_full_i; end else begin : gnaf assign ALMOST_FULL = 0; end endgenerate // gaf // Dout may change behavior based on latency assign fwft_enabled = (C_PRELOAD_LATENCY == 0 && C_PRELOAD_REGS == 1)? 1: 0; assign ideal_dout_out= ((C_USE_EMBEDDED_REG==1 && (fwft_enabled == 0)) && (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1))? ideal_dout_d1: ideal_dout; assign DOUT = ideal_dout_out; // Assign SBITERR and DBITERR based on latency assign SBITERR = (C_ERROR_INJECTION_TYPE == 1 || C_ERROR_INJECTION_TYPE == 3) && ((C_USE_EMBEDDED_REG==1 && (fwft_enabled == 0)) && (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1)) ? err_type_d1[0]: err_type[0]; assign DBITERR = (C_ERROR_INJECTION_TYPE == 2 || C_ERROR_INJECTION_TYPE == 3) && ((C_USE_EMBEDDED_REG==1 && (fwft_enabled == 0)) && (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1)) ? err_type_d1[1]: err_type[1]; assign EMPTY = empty_i; assign FULL = full_i; //Overflow may be active-low generate if (C_HAS_OVERFLOW==1) begin : gof assign OVERFLOW = ideal_overflow ? !C_OVERFLOW_LOW : C_OVERFLOW_LOW; end else begin : gnof assign OVERFLOW = 0; end endgenerate // gof assign PROG_EMPTY = prog_empty_i; assign PROG_FULL = prog_full_i; //Valid may change behavior based on latency or active-low generate if (C_HAS_VALID==1) begin : gvalid assign valid_i = (C_PRELOAD_LATENCY == 0) ? (RD_EN & ~EMPTY) : ideal_valid; assign valid_out = (C_PRELOAD_LATENCY == 2 && C_MEMORY_TYPE < 2) ? valid_d1 : valid_i; assign VALID = valid_out ? !C_VALID_LOW : C_VALID_LOW; end else begin : gnvalid assign VALID = 0; end endgenerate // gvalid //Trim data count differently depending on set widths generate if (C_HAS_DATA_COUNT == 1) begin : gdc always @* begin diff_count <= wr_pntr - rd_pntr; if (C_DATA_COUNT_WIDTH > C_RD_PNTR_WIDTH) begin DATA_COUNT[C_RD_PNTR_WIDTH-1:0] <= diff_count; DATA_COUNT[C_DATA_COUNT_WIDTH-1] <= 1'b0 ; end else begin DATA_COUNT <= diff_count[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_DATA_COUNT_WIDTH]; end end // end else begin : gndc // always @* DATA_COUNT <= 0; end endgenerate // gdc //Underflow may change behavior based on latency or active-low generate if (C_HAS_UNDERFLOW==1) begin : guf assign underflow_i = ideal_underflow; assign UNDERFLOW = underflow_i ? !C_UNDERFLOW_LOW : C_UNDERFLOW_LOW; end else begin : gnuf assign UNDERFLOW = 0; end endgenerate // guf //Write acknowledge may be active low generate if (C_HAS_WR_ACK==1) begin : gwr_ack assign WR_ACK = ideal_wr_ack ? !C_WR_ACK_LOW : C_WR_ACK_LOW; end else begin : gnwr_ack assign WR_ACK = 0; end endgenerate // gwr_ack /***************************************************************************** * Internal reset logic ****************************************************************************/ assign srst_i = C_HAS_SRST ? SRST : 0; assign srst_wrst_busy = C_HAS_SRST ? (SRST || WR_RST_BUSY) : 0; assign srst_rrst_busy = C_HAS_SRST ? (SRST || RD_RST_BUSY) : 0; assign rst_i = C_HAS_RST ? RST : 0; /************************************************************************** * Assorted registers for delayed versions of signals **************************************************************************/ //Capture delayed version of valid generate if (C_HAS_VALID == 1) begin : blockVL20 always @(posedge CLK or posedge rst_i) begin if (rst_i == 1'b1) begin valid_d1 <= #`TCQ 1'b0; end else begin if (srst_rrst_busy) begin valid_d1 <= #`TCQ 1'b0; end else begin valid_d1 <= #`TCQ valid_i; end end end // always @ (posedge CLK or posedge rst_i) end endgenerate // blockVL20 // Determine which stage in FWFT registers are valid reg stage1_valid = 0; reg stage2_valid = 0; generate if (C_PRELOAD_LATENCY == 0) begin : grd_fwft_proc always @ (posedge CLK or posedge rst_i) begin if (rst_i) begin stage1_valid <= #`TCQ 0; stage2_valid <= #`TCQ 0; end else begin if (!stage1_valid && !stage2_valid) begin if (!EMPTY) stage1_valid <= #`TCQ 1'b1; else stage1_valid <= #`TCQ 1'b0; end else if (stage1_valid && !stage2_valid) begin if (EMPTY) begin stage1_valid <= #`TCQ 1'b0; stage2_valid <= #`TCQ 1'b1; end else begin stage1_valid <= #`TCQ 1'b1; stage2_valid <= #`TCQ 1'b1; end end else if (!stage1_valid && stage2_valid) begin if (EMPTY && RD_EN) begin stage1_valid <= #`TCQ 1'b0; stage2_valid <= #`TCQ 1'b0; end else if (!EMPTY && RD_EN) begin stage1_valid <= #`TCQ 1'b1; stage2_valid <= #`TCQ 1'b0; end else if (!EMPTY && !RD_EN) begin stage1_valid <= #`TCQ 1'b1; stage2_valid <= #`TCQ 1'b1; end else begin stage1_valid <= #`TCQ 1'b0; stage2_valid <= #`TCQ 1'b1; end end else if (stage1_valid && stage2_valid) begin if (EMPTY && RD_EN) begin stage1_valid <= #`TCQ 1'b0; stage2_valid <= #`TCQ 1'b1; end else begin stage1_valid <= #`TCQ 1'b1; stage2_valid <= #`TCQ 1'b1; end end else begin stage1_valid <= #`TCQ 1'b0; stage2_valid <= #`TCQ 1'b0; end end // rd_rst_i end // always end endgenerate //*************************************************************************** // Assign the read data count value only if it is selected, // otherwise output zeros. //*************************************************************************** generate if (C_HAS_RD_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT ==1) begin : grdc assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = rd_data_count_i_ss[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH+1-C_RD_DATA_COUNT_WIDTH]; end endgenerate generate if (C_HAS_RD_DATA_COUNT == 0) begin : gnrdc assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = {C_RD_DATA_COUNT_WIDTH{1'b0}}; end endgenerate //*************************************************************************** // Assign the write data count value only if it is selected, // otherwise output zeros //*************************************************************************** generate if (C_HAS_WR_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT == 1) begin : gwdc assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = wr_data_count_i_ss[C_WR_PNTR_WIDTH:C_WR_PNTR_WIDTH+1-C_WR_DATA_COUNT_WIDTH] ; end endgenerate generate if (C_HAS_WR_DATA_COUNT == 0) begin : gnwdc assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = {C_WR_DATA_COUNT_WIDTH{1'b0}}; end endgenerate // block memory has a synchronous reset generate if (C_MEMORY_TYPE < 2) begin : gen_fifo_blkmemdout_emb always @(posedge CLK) begin // BRAM resets synchronously // make it consistent with the core. if ((rst_i || srst_rrst_busy) && (C_USE_DOUT_RST == 1)) ideal_dout_d1 <= #`TCQ dout_reset_val; end //always end endgenerate // gen_fifo_blkmemdout_emb reg ram_rd_en_d1 = 1'b0; //Capture delayed version of dout always @(posedge CLK or posedge rst_i) begin if (rst_i == 1'b1) begin // Reset err_type only if ECC is not selected if (C_USE_ECC == 0) err_type_d1 <= #`TCQ 0; // DRAM and SRAM reset asynchronously if ((C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3) && C_USE_DOUT_RST == 1) ideal_dout_d1 <= #`TCQ dout_reset_val; ram_rd_en_d1 <= #`TCQ 1'b0; end else begin ram_rd_en_d1 <= #`TCQ RD_EN & ~EMPTY; if (srst_rrst_busy) begin ram_rd_en_d1 <= #`TCQ 1'b0; // Reset err_type only if ECC is not selected if (C_USE_ECC == 0) err_type_d1 <= #`TCQ 0; // Reset DRAM and SRAM based FIFO, BRAM based FIFO is reset above if ((C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3) && C_USE_DOUT_RST == 1) ideal_dout_d1 <= #`TCQ dout_reset_val; end else if (ram_rd_en_d1) begin ideal_dout_d1 <= #`TCQ ideal_dout; err_type_d1 <= #`TCQ err_type; end end end /************************************************************************** * Overflow and Underflow Flag calculation * (handled separately because they don't support rst) **************************************************************************/ generate if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 0) begin : g7s_ovflw always @(posedge CLK) begin ideal_overflow <= #`TCQ WR_EN & full_i; end end else if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 1) begin : g8s_ovflw always @(posedge CLK) begin //ideal_overflow <= #`TCQ WR_EN & (rst_i | full_i); ideal_overflow <= #`TCQ WR_EN & (WR_RST_BUSY | full_i); end end endgenerate // blockOF20 generate if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 0) begin : g7s_unflw always @(posedge CLK) begin ideal_underflow <= #`TCQ empty_i & RD_EN; end end else if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 1) begin : g8s_unflw always @(posedge CLK) begin //ideal_underflow <= #`TCQ (rst_i | empty_i) & RD_EN; ideal_underflow <= #`TCQ (RD_RST_BUSY | empty_i) & RD_EN; end end endgenerate // blockUF20 /************************** * Read Data Count *************************/ reg [31:0] num_read_words_dc; reg [C_RD_DATA_COUNT_WIDTH-1:0] num_read_words_sized_i; always @(num_rd_bits) begin if (C_USE_FWFT_DATA_COUNT) begin //If using extra logic for FWFT Data Counts, // then scale FIFO contents to read domain, // and add two read words for FWFT stages //This value is only a temporary value and not used in the code. num_read_words_dc = (num_rd_bits/C_DOUT_WIDTH+2); //Trim the read words for use with RD_DATA_COUNT num_read_words_sized_i = num_read_words_dc[C_RD_PNTR_WIDTH : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH+1]; end else begin //If not using extra logic for FWFT Data Counts, // then scale FIFO contents to read domain. //This value is only a temporary value and not used in the code. num_read_words_dc = num_rd_bits/C_DOUT_WIDTH; //Trim the read words for use with RD_DATA_COUNT num_read_words_sized_i = num_read_words_dc[C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH]; end //if (C_USE_FWFT_DATA_COUNT) end //always /************************** * Write Data Count *************************/ reg [31:0] num_write_words_dc; reg [C_WR_DATA_COUNT_WIDTH-1:0] num_write_words_sized_i; always @(num_wr_bits) begin if (C_USE_FWFT_DATA_COUNT) begin //Calculate the Data Count value for the number of write words, // when using First-Word Fall-Through with extra logic for Data // Counts. This takes into consideration the number of words that // are expected to be stored in the FWFT register stages (it always // assumes they are filled). //This value is scaled to the Write Domain. //The expression (((A-1)/B))+1 divides A/B, but takes the // ceiling of the result. //When num_wr_bits==0, set the result manually to prevent // division errors. //EXTRA_WORDS_DC is the number of words added to write_words // due to FWFT. //This value is only a temporary value and not used in the code. num_write_words_dc = (num_wr_bits==0) ? EXTRA_WORDS_DC : (((num_wr_bits-1)/C_DIN_WIDTH)+1) + EXTRA_WORDS_DC ; //Trim the write words for use with WR_DATA_COUNT num_write_words_sized_i = num_write_words_dc[C_WR_PNTR_WIDTH : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH+1]; end else begin //Calculate the Data Count value for the number of write words, when NOT // using First-Word Fall-Through with extra logic for Data Counts. This // calculates only the number of words in the internal FIFO. //The expression (((A-1)/B))+1 divides A/B, but takes the // ceiling of the result. //This value is scaled to the Write Domain. //When num_wr_bits==0, set the result manually to prevent // division errors. //This value is only a temporary value and not used in the code. num_write_words_dc = (num_wr_bits==0) ? 0 : ((num_wr_bits-1)/C_DIN_WIDTH)+1; //Trim the read words for use with RD_DATA_COUNT num_write_words_sized_i = num_write_words_dc[C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH]; end //if (C_USE_FWFT_DATA_COUNT) end //always /************************************************************************* * Write and Read Logic ************************************************************************/ wire write_allow; wire read_allow; wire read_allow_dc; wire write_only; wire read_only; //wire write_only_q; reg write_only_q; //wire read_only_q; reg read_only_q; reg full_reg; reg rst_full_ff_reg1; reg rst_full_ff_reg2; wire ram_full_comb; wire carry; assign write_allow = WR_EN & ~full_i; assign read_allow = RD_EN & ~empty_i; assign read_allow_dc = RD_EN_USER & ~USER_EMPTY_FB; //assign write_only = write_allow & ~read_allow; //assign write_only_q = write_allow_q; //assign read_only = read_allow & ~write_allow; //assign read_only_q = read_allow_q ; wire [C_WR_PNTR_WIDTH-1:0] diff_pntr; wire [C_RD_PNTR_WIDTH-1:0] diff_pntr_pe; reg [C_WR_PNTR_WIDTH-1:0] diff_pntr_reg1 = 0; reg [C_RD_PNTR_WIDTH-1:0] diff_pntr_pe_reg1 = 0; reg [C_RD_PNTR_WIDTH:0] diff_pntr_pe_asym = 0; wire [C_RD_PNTR_WIDTH:0] adj_wr_pntr_rd_asym ; wire [C_RD_PNTR_WIDTH:0] rd_pntr_asym; reg [C_WR_PNTR_WIDTH-1:0] diff_pntr_reg2 = 0; reg [C_WR_PNTR_WIDTH-1:0] diff_pntr_pe_reg2 = 0; wire [C_RD_PNTR_WIDTH-1:0] diff_pntr_pe_max; wire [C_RD_PNTR_WIDTH-1:0] diff_pntr_max; assign diff_pntr_pe_max = DIFF_MAX_RD; assign diff_pntr_max = DIFF_MAX_WR; generate if (IS_ASYMMETRY == 0) begin : diff_pntr_sym assign write_only = write_allow & ~read_allow; assign read_only = read_allow & ~write_allow; end endgenerate generate if ( IS_ASYMMETRY == 1 && C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : wr_grt_rd assign read_only = read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0]) & ~write_allow; assign write_only = write_allow & ~(read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0])); end endgenerate generate if (IS_ASYMMETRY ==1 && C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : rd_grt_wr assign read_only = read_allow & ~(write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0])); assign write_only = write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]) & ~read_allow; end endgenerate //----------------------------------------------------------------------------- // Write and Read pointer generation //----------------------------------------------------------------------------- always @(posedge CLK or posedge rst_i) begin if (rst_i) begin wr_pntr <= 0; rd_pntr <= 0; end else begin if (srst_i || srst_wrst_busy || srst_rrst_busy ) begin if (srst_wrst_busy) wr_pntr <= #`TCQ 0; if (srst_rrst_busy) rd_pntr <= #`TCQ 0; end else begin if (write_allow) wr_pntr <= #`TCQ wr_pntr + 1; if (read_allow) rd_pntr <= #`TCQ rd_pntr + 1; end end end generate if (C_FIFO_TYPE == 2) begin : gll_dm_dout always @(posedge CLK) begin if (write_allow) begin if (ENABLE_ERR_INJECTION == 1) memory[wr_pntr] <= #`TCQ {INJECTDBITERR,INJECTSBITERR,DIN}; else memory[wr_pntr] <= #`TCQ DIN; end end reg [C_DATA_WIDTH-1:0] dout_tmp_q; reg [C_DATA_WIDTH-1:0] dout_tmp = 0; reg [C_DATA_WIDTH-1:0] dout_tmp1 = 0; always @(posedge CLK) begin dout_tmp_q <= #`TCQ ideal_dout; end always @* begin if (read_allow) ideal_dout <= memory[rd_pntr]; else ideal_dout <= dout_tmp_q; end end endgenerate // gll_dm_dout /************************************************************************** * Write Domain Logic **************************************************************************/ assign ram_rd_en = RD_EN & !EMPTY; //reg [C_WR_PNTR_WIDTH-1:0] diff_pntr = 0; generate if (C_FIFO_TYPE != 2) begin : gnll_din always @(posedge CLK or posedge rst_i) begin : gen_fifo_w /****** Reset fifo (case 1)***************************************/ if (rst_i == 1'b1) begin num_wr_bits <= #`TCQ 0; next_num_wr_bits = #`TCQ 0; wr_ptr <= #`TCQ C_WR_DEPTH - 1; rd_ptr_wrclk <= #`TCQ C_RD_DEPTH - 1; ideal_wr_ack <= #`TCQ 0; ideal_wr_count <= #`TCQ 0; tmp_wr_listsize = #`TCQ 0; rd_ptr_wrclk_next <= #`TCQ 0; wr_pntr <= #`TCQ 0; wr_pntr_rd1 <= #`TCQ 0; end else begin //rst_i==0 if (srst_wrst_busy) begin num_wr_bits <= #`TCQ 0; next_num_wr_bits = #`TCQ 0; wr_ptr <= #`TCQ C_WR_DEPTH - 1; rd_ptr_wrclk <= #`TCQ C_RD_DEPTH - 1; ideal_wr_ack <= #`TCQ 0; ideal_wr_count <= #`TCQ 0; tmp_wr_listsize = #`TCQ 0; rd_ptr_wrclk_next <= #`TCQ 0; wr_pntr <= #`TCQ 0; wr_pntr_rd1 <= #`TCQ 0; end else begin//srst_i=0 wr_pntr_rd1 <= #`TCQ wr_pntr; //Determine the current number of words in the FIFO tmp_wr_listsize = (C_DEPTH_RATIO_RD > 1) ? num_wr_bits/C_DOUT_WIDTH : num_wr_bits/C_DIN_WIDTH; rd_ptr_wrclk_next = rd_ptr; if (rd_ptr_wrclk < rd_ptr_wrclk_next) begin next_num_wr_bits = num_wr_bits - C_DOUT_WIDTH*(rd_ptr_wrclk + C_RD_DEPTH - rd_ptr_wrclk_next); end else begin next_num_wr_bits = num_wr_bits - C_DOUT_WIDTH*(rd_ptr_wrclk - rd_ptr_wrclk_next); end if (WR_EN == 1'b1) begin if (FULL == 1'b1) begin ideal_wr_ack <= #`TCQ 0; //Reminder that FIFO is still full ideal_wr_count <= #`TCQ num_write_words_sized_i; end else begin write_fifo; next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH; //Write successful, so issue acknowledge // and no error ideal_wr_ack <= #`TCQ 1; //Not even close to full. ideal_wr_count <= num_write_words_sized_i; //end end end else begin //(WR_EN == 1'b1) //If user did not attempt a write, then do not // give ack or err ideal_wr_ack <= #`TCQ 0; ideal_wr_count <= #`TCQ num_write_words_sized_i; end num_wr_bits <= #`TCQ next_num_wr_bits; rd_ptr_wrclk <= #`TCQ rd_ptr; end //srst_i==0 end //wr_rst_i==0 end // gen_fifo_w end endgenerate generate if (C_FIFO_TYPE < 2 && C_MEMORY_TYPE < 2) begin : gnll_dm_dout always @(posedge CLK) begin if (rst_i || srst_rrst_busy) begin if (C_USE_DOUT_RST == 1) ideal_dout <= #`TCQ dout_reset_val; end end end endgenerate generate if (C_FIFO_TYPE != 2) begin : gnll_dout always @(posedge CLK or posedge rst_i) begin : gen_fifo_r /****** Reset fifo (case 1)***************************************/ if (rst_i) begin num_rd_bits <= #`TCQ 0; next_num_rd_bits = #`TCQ 0; rd_ptr <= #`TCQ C_RD_DEPTH -1; rd_pntr <= #`TCQ 0; //rd_pntr_wr1 <= #`TCQ 0; wr_ptr_rdclk <= #`TCQ C_WR_DEPTH -1; // DRAM resets asynchronously if (C_FIFO_TYPE < 2 && (C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3 )&& C_USE_DOUT_RST == 1) ideal_dout <= #`TCQ dout_reset_val; // Reset err_type only if ECC is not selected if (C_USE_ECC == 0) err_type <= #`TCQ 0; ideal_valid <= #`TCQ 1'b0; ideal_rd_count <= #`TCQ 0; end else begin //rd_rst_i==0 if (srst_rrst_busy) begin num_rd_bits <= #`TCQ 0; next_num_rd_bits = #`TCQ 0; rd_ptr <= #`TCQ C_RD_DEPTH -1; rd_pntr <= #`TCQ 0; //rd_pntr_wr1 <= #`TCQ 0; wr_ptr_rdclk <= #`TCQ C_WR_DEPTH -1; // DRAM resets synchronously if (C_FIFO_TYPE < 2 && (C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3 )&& C_USE_DOUT_RST == 1) ideal_dout <= #`TCQ dout_reset_val; // Reset err_type only if ECC is not selected if (C_USE_ECC == 0) err_type <= #`TCQ 0; ideal_valid <= #`TCQ 1'b0; ideal_rd_count <= #`TCQ 0; end //srst_i else begin //rd_pntr_wr1 <= #`TCQ rd_pntr; //Determine the current number of words in the FIFO tmp_rd_listsize = (C_DEPTH_RATIO_WR > 1) ? num_rd_bits/C_DIN_WIDTH : num_rd_bits/C_DOUT_WIDTH; wr_ptr_rdclk_next = wr_ptr; if (wr_ptr_rdclk < wr_ptr_rdclk_next) begin next_num_rd_bits = num_rd_bits + C_DIN_WIDTH*(wr_ptr_rdclk +C_WR_DEPTH - wr_ptr_rdclk_next); end else begin next_num_rd_bits = num_rd_bits + C_DIN_WIDTH*(wr_ptr_rdclk - wr_ptr_rdclk_next); end if (RD_EN == 1'b1) begin if (EMPTY == 1'b1) begin ideal_valid <= #`TCQ 1'b0; ideal_rd_count <= #`TCQ num_read_words_sized_i; end else begin read_fifo; next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH; //Acknowledge the read from the FIFO, no error ideal_valid <= #`TCQ 1'b1; ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if (tmp_rd_listsize == 2) end num_rd_bits <= #`TCQ next_num_rd_bits; wr_ptr_rdclk <= #`TCQ wr_ptr; end //s_rst_i==0 end //rd_rst_i==0 end //always end endgenerate //----------------------------------------------------------------------------- // Generate diff_pntr for PROG_FULL generation // Generate diff_pntr_pe for PROG_EMPTY generation //----------------------------------------------------------------------------- generate if ((C_PROG_FULL_TYPE != 0 || C_PROG_EMPTY_TYPE != 0) && IS_ASYMMETRY == 0) begin : reg_write_allow always @(posedge CLK ) begin if (rst_i) begin write_only_q <= 1'b0; read_only_q <= 1'b0; diff_pntr_reg1 <= 0; diff_pntr_pe_reg1 <= 0; diff_pntr_reg2 <= 0; diff_pntr_pe_reg2 <= 0; end else begin if (srst_i || srst_wrst_busy || srst_rrst_busy) begin if (srst_rrst_busy) begin read_only_q <= #`TCQ 1'b0; diff_pntr_pe_reg1 <= #`TCQ 0; diff_pntr_pe_reg2 <= #`TCQ 0; end if (srst_wrst_busy) begin write_only_q <= #`TCQ 1'b0; diff_pntr_reg1 <= #`TCQ 0; diff_pntr_reg2 <= #`TCQ 0; end end else begin write_only_q <= #`TCQ write_only; read_only_q <= #`TCQ read_only; diff_pntr_reg2 <= #`TCQ diff_pntr_reg1; diff_pntr_pe_reg2 <= #`TCQ diff_pntr_pe_reg1; // Add 1 to the difference pointer value when only write happens. if (write_only) diff_pntr_reg1 <= #`TCQ wr_pntr - adj_rd_pntr_wr + 1; else diff_pntr_reg1 <= #`TCQ wr_pntr - adj_rd_pntr_wr; // Add 1 to the difference pointer value when write or both write & read or no write & read happen. if (read_only) diff_pntr_pe_reg1 <= #`TCQ adj_wr_pntr_rd - rd_pntr - 1; else diff_pntr_pe_reg1 <= #`TCQ adj_wr_pntr_rd - rd_pntr; end end end assign diff_pntr_pe = diff_pntr_pe_reg1; assign diff_pntr = diff_pntr_reg1; end endgenerate // reg_write_allow generate if ((C_PROG_FULL_TYPE != 0 || C_PROG_EMPTY_TYPE != 0) && IS_ASYMMETRY == 1) begin : reg_write_allow_asym assign adj_wr_pntr_rd_asym[C_RD_PNTR_WIDTH:0] = {adj_wr_pntr_rd,1'b1}; assign rd_pntr_asym[C_RD_PNTR_WIDTH:0] = {~rd_pntr,1'b1}; always @(posedge CLK ) begin if (rst_i) begin diff_pntr_pe_asym <= 0; diff_pntr_reg1 <= 0; full_reg <= 0; rst_full_ff_reg1 <= 1; rst_full_ff_reg2 <= 1; diff_pntr_pe_reg1 <= 0; end else begin if (srst_i || srst_wrst_busy || srst_rrst_busy) begin if (srst_wrst_busy) diff_pntr_reg1 <= #`TCQ 0; if (srst_rrst_busy) full_reg <= #`TCQ 0; rst_full_ff_reg1 <= #`TCQ 1; rst_full_ff_reg2 <= #`TCQ 1; diff_pntr_pe_asym <= #`TCQ 0; diff_pntr_pe_reg1 <= #`TCQ 0; end else begin diff_pntr_pe_asym <= #`TCQ adj_wr_pntr_rd_asym + rd_pntr_asym; full_reg <= #`TCQ full_i; rst_full_ff_reg1 <= #`TCQ RST_FULL_FF; rst_full_ff_reg2 <= #`TCQ rst_full_ff_reg1; if (~full_i) begin diff_pntr_reg1 <= #`TCQ wr_pntr - adj_rd_pntr_wr; end end end end assign carry = (~(|(diff_pntr_pe_asym [C_RD_PNTR_WIDTH : 1]))); assign diff_pntr_pe = (full_reg && ~rst_full_ff_reg2 && carry ) ? diff_pntr_pe_max : diff_pntr_pe_asym[C_RD_PNTR_WIDTH:1]; assign diff_pntr = diff_pntr_reg1; end endgenerate // reg_write_allow_asym //----------------------------------------------------------------------------- // Generate FULL flag //----------------------------------------------------------------------------- wire comp0; wire comp1; wire going_full; wire leaving_full; generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gpad assign adj_rd_pntr_wr [C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH] = rd_pntr; assign adj_rd_pntr_wr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0] = 0; end endgenerate generate if (C_WR_PNTR_WIDTH <= C_RD_PNTR_WIDTH) begin : gtrim assign adj_rd_pntr_wr = rd_pntr[C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH]; end endgenerate assign comp1 = (adj_rd_pntr_wr == (wr_pntr + 1'b1)); assign comp0 = (adj_rd_pntr_wr == wr_pntr); generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : gf_wp_eq_rp assign going_full = (comp1 & write_allow & ~read_allow); assign leaving_full = (comp0 & read_allow) | RST_FULL_GEN; end endgenerate // Write data width is bigger than read data width // Write depth is smaller than read depth // One write could be equal to 2 or 4 or 8 reads generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : gf_asym assign going_full = (comp1 & write_allow & (~ (read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0])))); assign leaving_full = (comp0 & read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0])) | RST_FULL_GEN; end endgenerate generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gf_wp_gt_rp assign going_full = (comp1 & write_allow & ~read_allow); assign leaving_full =(comp0 & read_allow) | RST_FULL_GEN; end endgenerate assign ram_full_comb = going_full | (~leaving_full & full_i); always @(posedge CLK or posedge RST_FULL_FF) begin if (RST_FULL_FF) full_i <= C_FULL_FLAGS_RST_VAL; else if (srst_wrst_busy) full_i <= #`TCQ C_FULL_FLAGS_RST_VAL; else full_i <= #`TCQ ram_full_comb; end //----------------------------------------------------------------------------- // Generate EMPTY flag //----------------------------------------------------------------------------- wire ecomp0; wire ecomp1; wire going_empty; wire leaving_empty; wire ram_empty_comb; generate if (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) begin : pad assign adj_wr_pntr_rd [C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr; assign adj_wr_pntr_rd[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0] = 0; end endgenerate generate if (C_RD_PNTR_WIDTH <= C_WR_PNTR_WIDTH) begin : trim assign adj_wr_pntr_rd = wr_pntr[C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH]; end endgenerate assign ecomp1 = (adj_wr_pntr_rd == (rd_pntr + 1'b1)); assign ecomp0 = (adj_wr_pntr_rd == rd_pntr); generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : ge_wp_eq_rp assign going_empty = (ecomp1 & ~write_allow & read_allow); assign leaving_empty = (ecomp0 & write_allow); end endgenerate generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : ge_wp_gt_rp assign going_empty = (ecomp1 & read_allow & (~(write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0])))); assign leaving_empty = (ecomp0 & write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0])); end endgenerate generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : ge_wp_lt_rp assign going_empty = (ecomp1 & ~write_allow & read_allow); assign leaving_empty =(ecomp0 & write_allow); end endgenerate assign ram_empty_comb = going_empty | (~leaving_empty & empty_i); always @(posedge CLK or posedge rst_i) begin if (rst_i) empty_i <= 1'b1; else if (srst_rrst_busy) empty_i <= #`TCQ 1'b1; else empty_i <= #`TCQ ram_empty_comb; end //----------------------------------------------------------------------------- // Generate Read and write data counts for asymmetic common clock //----------------------------------------------------------------------------- reg [C_GRTR_PNTR_WIDTH :0] count_dc = 0; wire [C_GRTR_PNTR_WIDTH :0] ratio; wire decr_by_one; wire incr_by_ratio; wire incr_by_one; wire decr_by_ratio; localparam IS_FWFT = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ? 1 : 0; generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : rd_depth_gt_wr assign ratio = C_DEPTH_RATIO_RD; assign decr_by_one = (IS_FWFT == 1)? read_allow_dc : read_allow; assign incr_by_ratio = write_allow; always @(posedge CLK or posedge rst_i) begin if (rst_i) count_dc <= #`TCQ 0; else if (srst_wrst_busy) count_dc <= #`TCQ 0; else begin if (decr_by_one) begin if (!incr_by_ratio) count_dc <= #`TCQ count_dc - 1; else count_dc <= #`TCQ count_dc - 1 + ratio ; end else begin if (!incr_by_ratio) count_dc <= #`TCQ count_dc ; else count_dc <= #`TCQ count_dc + ratio ; end end end assign rd_data_count_i_ss[C_RD_PNTR_WIDTH : 0] = count_dc; assign wr_data_count_i_ss[C_WR_PNTR_WIDTH : 0] = count_dc[C_RD_PNTR_WIDTH : C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH]; end endgenerate generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : wr_depth_gt_rd assign ratio = C_DEPTH_RATIO_WR; assign incr_by_one = write_allow; assign decr_by_ratio = (IS_FWFT == 1)? read_allow_dc : read_allow; always @(posedge CLK or posedge rst_i) begin if (rst_i) count_dc <= #`TCQ 0; else if (srst_wrst_busy) count_dc <= #`TCQ 0; else begin if (incr_by_one) begin if (!decr_by_ratio) count_dc <= #`TCQ count_dc + 1; else count_dc <= #`TCQ count_dc + 1 - ratio ; end else begin if (!decr_by_ratio) count_dc <= #`TCQ count_dc ; else count_dc <= #`TCQ count_dc - ratio ; end end end assign wr_data_count_i_ss[C_WR_PNTR_WIDTH : 0] = count_dc; assign rd_data_count_i_ss[C_RD_PNTR_WIDTH : 0] = count_dc[C_WR_PNTR_WIDTH : C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH]; end endgenerate //----------------------------------------------------------------------------- // Generate WR_ACK flag //----------------------------------------------------------------------------- always @(posedge CLK or posedge rst_i) begin if (rst_i) ideal_wr_ack <= 1'b0; else if (srst_wrst_busy) ideal_wr_ack <= #`TCQ 1'b0; else if (WR_EN & ~full_i) ideal_wr_ack <= #`TCQ 1'b1; else ideal_wr_ack <= #`TCQ 1'b0; end //----------------------------------------------------------------------------- // Generate VALID flag //----------------------------------------------------------------------------- always @(posedge CLK or posedge rst_i) begin if (rst_i) ideal_valid <= 1'b0; else if (srst_rrst_busy) ideal_valid <= #`TCQ 1'b0; else if (RD_EN & ~empty_i) ideal_valid <= #`TCQ 1'b1; else ideal_valid <= #`TCQ 1'b0; end //----------------------------------------------------------------------------- // Generate ALMOST_FULL flag //----------------------------------------------------------------------------- //generate if (C_HAS_ALMOST_FULL == 1 || C_PROG_FULL_TYPE > 2 || C_PROG_EMPTY_TYPE > 2) begin : gaf_ss wire fcomp2; wire going_afull; wire leaving_afull; wire ram_afull_comb; assign fcomp2 = (adj_rd_pntr_wr == (wr_pntr + 2'h2)); generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : gaf_wp_eq_rp assign going_afull = (fcomp2 & write_allow & ~read_allow); assign leaving_afull = (comp1 & read_allow & ~write_allow) | RST_FULL_GEN; end endgenerate // Write data width is bigger than read data width // Write depth is smaller than read depth // One write could be equal to 2 or 4 or 8 reads generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : gaf_asym assign going_afull = (fcomp2 & write_allow & (~ (read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0])))); assign leaving_afull = (comp1 & (~write_allow) & read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0])) | RST_FULL_GEN; end endgenerate generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gaf_wp_gt_rp assign going_afull = (fcomp2 & write_allow & ~read_allow); assign leaving_afull =((comp0 | comp1 | fcomp2) & read_allow) | RST_FULL_GEN; end endgenerate assign ram_afull_comb = going_afull | (~leaving_afull & almost_full_i); always @(posedge CLK or posedge RST_FULL_FF) begin if (RST_FULL_FF) almost_full_i <= C_FULL_FLAGS_RST_VAL; else if (srst_wrst_busy) almost_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL; else almost_full_i <= #`TCQ ram_afull_comb; end // end endgenerate // gaf_ss //----------------------------------------------------------------------------- // Generate ALMOST_EMPTY flag //----------------------------------------------------------------------------- //generate if (C_HAS_ALMOST_EMPTY == 1) begin : gae_ss wire ecomp2; wire going_aempty; wire leaving_aempty; wire ram_aempty_comb; assign ecomp2 = (adj_wr_pntr_rd == (rd_pntr + 2'h2)); generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : gae_wp_eq_rp assign going_aempty = (ecomp2 & ~write_allow & read_allow); assign leaving_aempty = (ecomp1 & write_allow & ~read_allow); end endgenerate generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gae_wp_gt_rp assign going_aempty = (ecomp2 & read_allow & (~(write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0])))); assign leaving_aempty = (ecomp1 & ~read_allow & write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0])); end endgenerate generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : gae_wp_lt_rp assign going_aempty = (ecomp2 & ~write_allow & read_allow); assign leaving_aempty =((ecomp2 | ecomp1 |ecomp0) & write_allow); end endgenerate assign ram_aempty_comb = going_aempty | (~leaving_aempty & almost_empty_i); always @(posedge CLK or posedge rst_i) begin if (rst_i) almost_empty_i <= 1'b1; else if (srst_rrst_busy) almost_empty_i <= #`TCQ 1'b1; else almost_empty_i <= #`TCQ ram_aempty_comb; end // end endgenerate // gae_ss //----------------------------------------------------------------------------- // Generate PROG_FULL //----------------------------------------------------------------------------- localparam C_PF_ASSERT_VAL = (C_PRELOAD_LATENCY == 0) ? C_PROG_FULL_THRESH_ASSERT_VAL - EXTRA_WORDS_PF_PARAM : // FWFT C_PROG_FULL_THRESH_ASSERT_VAL; // STD localparam C_PF_NEGATE_VAL = (C_PRELOAD_LATENCY == 0) ? C_PROG_FULL_THRESH_NEGATE_VAL - EXTRA_WORDS_PF_PARAM: // FWFT C_PROG_FULL_THRESH_NEGATE_VAL; // STD //----------------------------------------------------------------------------- // Generate PROG_FULL for single programmable threshold constant //----------------------------------------------------------------------------- wire [C_WR_PNTR_WIDTH-1:0] temp = C_PF_ASSERT_VAL; generate if (C_PROG_FULL_TYPE == 1) begin : single_pf_const always @(posedge CLK or posedge RST_FULL_FF) begin if (RST_FULL_FF && C_HAS_RST) prog_full_i <= C_FULL_FLAGS_RST_VAL; else begin if (srst_wrst_busy) prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL; else if (IS_ASYMMETRY == 0) begin if (RST_FULL_GEN) prog_full_i <= #`TCQ 1'b0; else if (diff_pntr == C_PF_ASSERT_VAL && write_only_q) prog_full_i <= #`TCQ 1'b1; else if (diff_pntr == C_PF_ASSERT_VAL && read_only_q) prog_full_i <= #`TCQ 1'b0; else prog_full_i <= #`TCQ prog_full_i; end else begin if (RST_FULL_GEN) prog_full_i <= #`TCQ 1'b0; else if (~RST_FULL_GEN ) begin if (diff_pntr>= C_PF_ASSERT_VAL ) prog_full_i <= #`TCQ 1'b1; else if ((diff_pntr) < C_PF_ASSERT_VAL ) prog_full_i <= #`TCQ 1'b0; else prog_full_i <= #`TCQ 1'b0; end else prog_full_i <= #`TCQ prog_full_i; end end end end endgenerate // single_pf_const //----------------------------------------------------------------------------- // Generate PROG_FULL for multiple programmable threshold constants //----------------------------------------------------------------------------- generate if (C_PROG_FULL_TYPE == 2) begin : multiple_pf_const always @(posedge CLK or posedge RST_FULL_FF) begin //if (RST_FULL_FF) if (RST_FULL_FF && C_HAS_RST) prog_full_i <= C_FULL_FLAGS_RST_VAL; else begin if (srst_wrst_busy) prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL; else if (IS_ASYMMETRY == 0) begin if (RST_FULL_GEN) prog_full_i <= #`TCQ 1'b0; else if (diff_pntr == C_PF_ASSERT_VAL && write_only_q) prog_full_i <= #`TCQ 1'b1; else if (diff_pntr == C_PF_NEGATE_VAL && read_only_q) prog_full_i <= #`TCQ 1'b0; else prog_full_i <= #`TCQ prog_full_i; end else begin if (RST_FULL_GEN) prog_full_i <= #`TCQ 1'b0; else if (~RST_FULL_GEN ) begin if (diff_pntr >= C_PF_ASSERT_VAL ) prog_full_i <= #`TCQ 1'b1; else if (diff_pntr < C_PF_NEGATE_VAL) prog_full_i <= #`TCQ 1'b0; else prog_full_i <= #`TCQ prog_full_i; end else prog_full_i <= #`TCQ prog_full_i; end end end end endgenerate //multiple_pf_const //----------------------------------------------------------------------------- // Generate PROG_FULL for single programmable threshold input port //----------------------------------------------------------------------------- wire [C_WR_PNTR_WIDTH-1:0] pf3_assert_val = (C_PRELOAD_LATENCY == 0) ? PROG_FULL_THRESH - EXTRA_WORDS_PF: // FWFT PROG_FULL_THRESH; // STD generate if (C_PROG_FULL_TYPE == 3) begin : single_pf_input always @(posedge CLK or posedge RST_FULL_FF) begin//0 //if (RST_FULL_FF) if (RST_FULL_FF && C_HAS_RST) prog_full_i <= C_FULL_FLAGS_RST_VAL; else begin //1 if (srst_wrst_busy) prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL; else if (IS_ASYMMETRY == 0) begin//2 if (RST_FULL_GEN) prog_full_i <= #`TCQ 1'b0; else if (~almost_full_i) begin//3 if (diff_pntr > pf3_assert_val) prog_full_i <= #`TCQ 1'b1; else if (diff_pntr == pf3_assert_val) begin//4 if (read_only_q) prog_full_i <= #`TCQ 1'b0; else prog_full_i <= #`TCQ 1'b1; end else//4 prog_full_i <= #`TCQ 1'b0; end else//3 prog_full_i <= #`TCQ prog_full_i; end //2 else begin//5 if (RST_FULL_GEN) prog_full_i <= #`TCQ 1'b0; else if (~full_i ) begin//6 if (diff_pntr >= pf3_assert_val ) prog_full_i <= #`TCQ 1'b1; else if (diff_pntr < pf3_assert_val) begin//7 prog_full_i <= #`TCQ 1'b0; end//7 end//6 else prog_full_i <= #`TCQ prog_full_i; end//5 end//1 end//0 end endgenerate //single_pf_input //----------------------------------------------------------------------------- // Generate PROG_FULL for multiple programmable threshold input ports //----------------------------------------------------------------------------- wire [C_WR_PNTR_WIDTH-1:0] pf_assert_val = (C_PRELOAD_LATENCY == 0) ? (PROG_FULL_THRESH_ASSERT -EXTRA_WORDS_PF) : // FWFT PROG_FULL_THRESH_ASSERT; // STD wire [C_WR_PNTR_WIDTH-1:0] pf_negate_val = (C_PRELOAD_LATENCY == 0) ? (PROG_FULL_THRESH_NEGATE -EXTRA_WORDS_PF) : // FWFT PROG_FULL_THRESH_NEGATE; // STD generate if (C_PROG_FULL_TYPE == 4) begin : multiple_pf_inputs always @(posedge CLK or posedge RST_FULL_FF) begin if (RST_FULL_FF && C_HAS_RST) prog_full_i <= C_FULL_FLAGS_RST_VAL; else begin if (srst_wrst_busy) prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL; else if (IS_ASYMMETRY == 0) begin if (RST_FULL_GEN) prog_full_i <= #`TCQ 1'b0; else if (~almost_full_i) begin if (diff_pntr >= pf_assert_val) prog_full_i <= #`TCQ 1'b1; else if ((diff_pntr == pf_negate_val && read_only_q) || diff_pntr < pf_negate_val) prog_full_i <= #`TCQ 1'b0; else prog_full_i <= #`TCQ prog_full_i; end else prog_full_i <= #`TCQ prog_full_i; end else begin if (RST_FULL_GEN) prog_full_i <= #`TCQ 1'b0; else if (~full_i ) begin if (diff_pntr >= pf_assert_val ) prog_full_i <= #`TCQ 1'b1; else if (diff_pntr < pf_negate_val) prog_full_i <= #`TCQ 1'b0; else prog_full_i <= #`TCQ prog_full_i; end else prog_full_i <= #`TCQ prog_full_i; end end end end endgenerate //multiple_pf_inputs //----------------------------------------------------------------------------- // Generate PROG_EMPTY //----------------------------------------------------------------------------- localparam C_PE_ASSERT_VAL = (C_PRELOAD_LATENCY == 0) ? C_PROG_EMPTY_THRESH_ASSERT_VAL - 2: // FWFT C_PROG_EMPTY_THRESH_ASSERT_VAL; // STD localparam C_PE_NEGATE_VAL = (C_PRELOAD_LATENCY == 0) ? C_PROG_EMPTY_THRESH_NEGATE_VAL - 2: // FWFT C_PROG_EMPTY_THRESH_NEGATE_VAL; // STD //----------------------------------------------------------------------------- // Generate PROG_EMPTY for single programmable threshold constant //----------------------------------------------------------------------------- generate if (C_PROG_EMPTY_TYPE == 1) begin : single_pe_const always @(posedge CLK or posedge rst_i) begin //if (rst_i) if (rst_i && C_HAS_RST) prog_empty_i <= 1'b1; else begin if (srst_rrst_busy) prog_empty_i <= #`TCQ 1'b1; else if (IS_ASYMMETRY == 0) begin if (diff_pntr_pe == C_PE_ASSERT_VAL && read_only_q) prog_empty_i <= #`TCQ 1'b1; else if (diff_pntr_pe == C_PE_ASSERT_VAL && write_only_q) prog_empty_i <= #`TCQ 1'b0; else prog_empty_i <= #`TCQ prog_empty_i; end else begin if (~rst_i ) begin if (diff_pntr_pe <= C_PE_ASSERT_VAL) prog_empty_i <= #`TCQ 1'b1; else if (diff_pntr_pe > C_PE_ASSERT_VAL) prog_empty_i <= #`TCQ 1'b0; end else prog_empty_i <= #`TCQ prog_empty_i; end end end end endgenerate // single_pe_const //----------------------------------------------------------------------------- // Generate PROG_EMPTY for multiple programmable threshold constants //----------------------------------------------------------------------------- generate if (C_PROG_EMPTY_TYPE == 2) begin : multiple_pe_const always @(posedge CLK or posedge rst_i) begin //if (rst_i) if (rst_i && C_HAS_RST) prog_empty_i <= 1'b1; else begin if (srst_rrst_busy) prog_empty_i <= #`TCQ 1'b1; else if (IS_ASYMMETRY == 0) begin if (diff_pntr_pe == C_PE_ASSERT_VAL && read_only_q) prog_empty_i <= #`TCQ 1'b1; else if (diff_pntr_pe == C_PE_NEGATE_VAL && write_only_q) prog_empty_i <= #`TCQ 1'b0; else prog_empty_i <= #`TCQ prog_empty_i; end else begin if (~rst_i ) begin if (diff_pntr_pe <= C_PE_ASSERT_VAL ) prog_empty_i <= #`TCQ 1'b1; else if (diff_pntr_pe > C_PE_NEGATE_VAL) prog_empty_i <= #`TCQ 1'b0; else prog_empty_i <= #`TCQ prog_empty_i; end else prog_empty_i <= #`TCQ prog_empty_i; end end end end endgenerate //multiple_pe_const //----------------------------------------------------------------------------- // Generate PROG_EMPTY for single programmable threshold input port //----------------------------------------------------------------------------- wire [C_RD_PNTR_WIDTH-1:0] pe3_assert_val = (C_PRELOAD_LATENCY == 0) ? (PROG_EMPTY_THRESH -2) : // FWFT PROG_EMPTY_THRESH; // STD generate if (C_PROG_EMPTY_TYPE == 3) begin : single_pe_input always @(posedge CLK or posedge rst_i) begin //if (rst_i) if (rst_i && C_HAS_RST) prog_empty_i <= 1'b1; else begin if (srst_rrst_busy) prog_empty_i <= #`TCQ 1'b1; else if (IS_ASYMMETRY == 0) begin if (~almost_full_i) begin if (diff_pntr_pe < pe3_assert_val) prog_empty_i <= #`TCQ 1'b1; else if (diff_pntr_pe == pe3_assert_val) begin if (write_only_q) prog_empty_i <= #`TCQ 1'b0; else prog_empty_i <= #`TCQ 1'b1; end else prog_empty_i <= #`TCQ 1'b0; end else prog_empty_i <= #`TCQ prog_empty_i; end else begin if (diff_pntr_pe <= pe3_assert_val ) prog_empty_i <= #`TCQ 1'b1; else if (diff_pntr_pe > pe3_assert_val) prog_empty_i <= #`TCQ 1'b0; else prog_empty_i <= #`TCQ prog_empty_i; end end end end endgenerate // single_pe_input //----------------------------------------------------------------------------- // Generate PROG_EMPTY for multiple programmable threshold input ports //----------------------------------------------------------------------------- wire [C_RD_PNTR_WIDTH-1:0] pe4_assert_val = (C_PRELOAD_LATENCY == 0) ? (PROG_EMPTY_THRESH_ASSERT - 2) : // FWFT PROG_EMPTY_THRESH_ASSERT; // STD wire [C_RD_PNTR_WIDTH-1:0] pe4_negate_val = (C_PRELOAD_LATENCY == 0) ? (PROG_EMPTY_THRESH_NEGATE - 2) : // FWFT PROG_EMPTY_THRESH_NEGATE; // STD generate if (C_PROG_EMPTY_TYPE == 4) begin : multiple_pe_inputs always @(posedge CLK or posedge rst_i) begin //if (rst_i) if (rst_i && C_HAS_RST) prog_empty_i <= 1'b1; else begin if (srst_rrst_busy) prog_empty_i <= #`TCQ 1'b1; else if (IS_ASYMMETRY == 0) begin if (~almost_full_i) begin if (diff_pntr_pe <= pe4_assert_val) prog_empty_i <= #`TCQ 1'b1; else if (((diff_pntr_pe == pe4_negate_val) && write_only_q) || (diff_pntr_pe > pe4_negate_val)) begin prog_empty_i <= #`TCQ 1'b0; end else prog_empty_i <= #`TCQ prog_empty_i; end else prog_empty_i <= #`TCQ prog_empty_i; end else begin if (diff_pntr_pe <= pe4_assert_val ) prog_empty_i <= #`TCQ 1'b1; else if (diff_pntr_pe > pe4_negate_val) prog_empty_i <= #`TCQ 1'b0; else prog_empty_i <= #`TCQ prog_empty_i; end end end end endgenerate // multiple_pe_inputs endmodule // fifo_generator_v12_0_bhv_ver_ss /************************************************************************** * First-Word Fall-Through module (preload 0) **************************************************************************/ module fifo_generator_v12_0_bhv_ver_preload0 #( parameter C_DOUT_RST_VAL = "", parameter C_DOUT_WIDTH = 8, parameter C_HAS_RST = 0, parameter C_ENABLE_RST_SYNC = 0, parameter C_HAS_SRST = 0, parameter C_USE_DOUT_RST = 0, parameter C_USE_ECC = 0, parameter C_USERVALID_LOW = 0, parameter C_USERUNDERFLOW_LOW = 0, parameter C_MEMORY_TYPE = 0, parameter C_FIFO_TYPE = 0 ) ( //Inputs input RD_CLK, input RD_RST, input SRST, input WR_RST_BUSY, input RD_RST_BUSY, input RD_EN, input FIFOEMPTY, input [C_DOUT_WIDTH-1:0] FIFODATA, input FIFOSBITERR, input FIFODBITERR, //Outputs output reg [C_DOUT_WIDTH-1:0] USERDATA, output USERVALID, output USERUNDERFLOW, output USEREMPTY, output USERALMOSTEMPTY, output RAMVALID, output FIFORDEN, output reg USERSBITERR, output reg USERDBITERR, output reg STAGE2_REG_EN, output [1:0] VALID_STAGES ); //Internal signals wire preloadstage1; wire preloadstage2; reg ram_valid_i; reg read_data_valid_i; wire ram_regout_en; wire ram_rd_en; reg empty_i = 1'b1; reg empty_q = 1'b1; reg rd_en_q = 1'b0; reg almost_empty_i = 1'b1; reg almost_empty_q = 1'b1; wire rd_rst_i; wire srst_i; /************************************************************************* * FUNCTIONS *************************************************************************/ /************************************************************************* * hexstr_conv * Converts a string of type hex to a binary value (for C_DOUT_RST_VAL) ***********************************************************************/ function [C_DOUT_WIDTH-1:0] hexstr_conv; input [(C_DOUT_WIDTH*8)-1:0] def_data; integer index,i,j; reg [3:0] bin; begin index = 0; hexstr_conv = 'b0; for( i=C_DOUT_WIDTH-1; i>=0; i=i-1 ) begin case (def_data[7:0]) 8'b00000000 : begin bin = 4'b0000; i = -1; end 8'b00110000 : bin = 4'b0000; 8'b00110001 : bin = 4'b0001; 8'b00110010 : bin = 4'b0010; 8'b00110011 : bin = 4'b0011; 8'b00110100 : bin = 4'b0100; 8'b00110101 : bin = 4'b0101; 8'b00110110 : bin = 4'b0110; 8'b00110111 : bin = 4'b0111; 8'b00111000 : bin = 4'b1000; 8'b00111001 : bin = 4'b1001; 8'b01000001 : bin = 4'b1010; 8'b01000010 : bin = 4'b1011; 8'b01000011 : bin = 4'b1100; 8'b01000100 : bin = 4'b1101; 8'b01000101 : bin = 4'b1110; 8'b01000110 : bin = 4'b1111; 8'b01100001 : bin = 4'b1010; 8'b01100010 : bin = 4'b1011; 8'b01100011 : bin = 4'b1100; 8'b01100100 : bin = 4'b1101; 8'b01100101 : bin = 4'b1110; 8'b01100110 : bin = 4'b1111; default : begin bin = 4'bx; end endcase for( j=0; j<4; j=j+1) begin if ((index*4)+j < C_DOUT_WIDTH) begin hexstr_conv[(index*4)+j] = bin[j]; end end index = index + 1; def_data = def_data >> 8; end end endfunction //************************************************************************* // Set power-on states for regs //************************************************************************* initial begin ram_valid_i = 1'b0; read_data_valid_i = 1'b0; USERDATA = hexstr_conv(C_DOUT_RST_VAL); USERSBITERR = 1'b0; USERDBITERR = 1'b0; end //initial //*************************************************************************** // connect up optional reset //*************************************************************************** assign rd_rst_i = (C_HAS_RST == 1 || C_ENABLE_RST_SYNC == 0) ? RD_RST : 0; assign srst_i = C_HAS_SRST ? SRST || WR_RST_BUSY || RD_RST_BUSY : 0; localparam INVALID = 0; localparam STAGE1_VALID = 2; localparam STAGE2_VALID = 1; localparam BOTH_STAGES_VALID = 3; reg [1:0] curr_fwft_state = INVALID; reg [1:0] next_fwft_state = INVALID; generate if (C_FIFO_TYPE != 2) begin : gnll_fifo always @* begin case (curr_fwft_state) INVALID: begin if (~FIFOEMPTY) next_fwft_state <= STAGE1_VALID; else next_fwft_state <= INVALID; end STAGE1_VALID: begin if (FIFOEMPTY) next_fwft_state <= STAGE2_VALID; else next_fwft_state <= BOTH_STAGES_VALID; end STAGE2_VALID: begin if (FIFOEMPTY && RD_EN) next_fwft_state <= INVALID; else if (~FIFOEMPTY && RD_EN) next_fwft_state <= STAGE1_VALID; else if (~FIFOEMPTY && ~RD_EN) next_fwft_state <= BOTH_STAGES_VALID; else next_fwft_state <= STAGE2_VALID; end BOTH_STAGES_VALID: begin if (FIFOEMPTY && RD_EN) next_fwft_state <= STAGE2_VALID; else if (~FIFOEMPTY && RD_EN) next_fwft_state <= BOTH_STAGES_VALID; else next_fwft_state <= BOTH_STAGES_VALID; end default: next_fwft_state <= INVALID; endcase end always @ (posedge rd_rst_i or posedge RD_CLK) begin if (rd_rst_i) curr_fwft_state <= INVALID; else if (srst_i) curr_fwft_state <= #`TCQ INVALID; else curr_fwft_state <= #`TCQ next_fwft_state; end always @* begin case (curr_fwft_state) INVALID: STAGE2_REG_EN <= 1'b0; STAGE1_VALID: STAGE2_REG_EN <= 1'b1; STAGE2_VALID: STAGE2_REG_EN <= 1'b0; BOTH_STAGES_VALID: STAGE2_REG_EN <= RD_EN; default: STAGE2_REG_EN <= 1'b0; endcase end assign VALID_STAGES = curr_fwft_state; //*************************************************************************** // preloadstage2 indicates that stage2 needs to be updated. This is true // whenever read_data_valid is false, and RAM_valid is true. //*************************************************************************** assign preloadstage2 = ram_valid_i & (~read_data_valid_i | RD_EN); //*************************************************************************** // preloadstage1 indicates that stage1 needs to be updated. This is true // whenever the RAM has data (RAM_EMPTY is false), and either RAM_Valid is // false (indicating that Stage1 needs updating), or preloadstage2 is active // (indicating that Stage2 is going to update, so Stage1, therefore, must // also be updated to keep it valid. //*************************************************************************** assign preloadstage1 = ((~ram_valid_i | preloadstage2) & ~FIFOEMPTY); //*************************************************************************** // Calculate RAM_REGOUT_EN // The output registers are controlled by the ram_regout_en signal. // These registers should be updated either when the output in Stage2 is // invalid (preloadstage2), OR when the user is reading, in which case the // Stage2 value will go invalid unless it is replenished. //*************************************************************************** assign ram_regout_en = preloadstage2; //*************************************************************************** // Calculate RAM_RD_EN // RAM_RD_EN will be asserted whenever the RAM needs to be read in order to // update the value in Stage1. // One case when this happens is when preloadstage1=true, which indicates // that the data in Stage1 or Stage2 is invalid, and needs to automatically // be updated. // The other case is when the user is reading from the FIFO, which // guarantees that Stage1 or Stage2 will be invalid on the next clock // cycle, unless it is replinished by data from the memory. So, as long // as the RAM has data in it, a read of the RAM should occur. //*************************************************************************** assign ram_rd_en = (RD_EN & ~FIFOEMPTY) | preloadstage1; end endgenerate // gnll_fifo reg curr_state = 0; reg next_state = 0; reg leaving_empty_fwft = 0; reg going_empty_fwft = 0; reg empty_i_q = 0; reg ram_rd_en_fwft = 0; generate if (C_FIFO_TYPE == 2) begin : gll_fifo always @* begin // FSM fo FWFT case (curr_state) 1'b0: begin if (~FIFOEMPTY) next_state <= 1'b1; else next_state <= 1'b0; end 1'b1: begin if (FIFOEMPTY && RD_EN) next_state <= 1'b0; else next_state <= 1'b1; end default: next_state <= 1'b0; endcase end always @ (posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i) begin empty_i <= 1'b1; empty_i_q <= 1'b1; curr_state <= 1'b0; ram_valid_i <= 1'b0; end else if (srst_i) begin empty_i <= #`TCQ 1'b1; empty_i_q <= #`TCQ 1'b1; curr_state <= #`TCQ 1'b0; ram_valid_i <= #`TCQ 1'b0; end else begin empty_i <= #`TCQ going_empty_fwft | (~leaving_empty_fwft & empty_i); empty_i_q <= #`TCQ FIFOEMPTY; curr_state <= #`TCQ next_state; ram_valid_i <= #`TCQ next_state; end end //always wire fe_of_empty; assign fe_of_empty = empty_i_q & ~FIFOEMPTY; always @* begin // Finding leaving empty case (curr_state) 1'b0: leaving_empty_fwft <= fe_of_empty; 1'b1: leaving_empty_fwft <= 1'b1; default: leaving_empty_fwft <= 1'b0; endcase end always @* begin // Finding going empty case (curr_state) 1'b1: going_empty_fwft <= FIFOEMPTY & RD_EN; default: going_empty_fwft <= 1'b0; endcase end always @* begin // Generating FWFT rd_en case (curr_state) 1'b0: ram_rd_en_fwft <= ~FIFOEMPTY; 1'b1: ram_rd_en_fwft <= ~FIFOEMPTY & RD_EN; default: ram_rd_en_fwft <= 1'b0; endcase end assign ram_regout_en = ram_rd_en_fwft; assign ram_rd_en = ram_rd_en_fwft; end endgenerate // gll_fifo //*************************************************************************** // Calculate RAMVALID_P0_OUT // RAMVALID_P0_OUT indicates that the data in Stage1 is valid. // // If the RAM is being read from on this clock cycle (ram_rd_en=1), then // RAMVALID_P0_OUT is certainly going to be true. // If the RAM is not being read from, but the output registers are being // updated to fill Stage2 (ram_regout_en=1), then Stage1 will be emptying, // therefore causing RAMVALID_P0_OUT to be false. // Otherwise, RAMVALID_P0_OUT will remain unchanged. //*************************************************************************** // PROCESS regout_valid generate if (C_FIFO_TYPE < 2) begin : gnll_fifo_ram_valid always @ (posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i) begin // asynchronous reset (active high) ram_valid_i <= #`TCQ 1'b0; end else begin if (srst_i) begin // synchronous reset (active high) ram_valid_i <= #`TCQ 1'b0; end else begin if (ram_rd_en == 1'b1) begin ram_valid_i <= #`TCQ 1'b1; end else begin if (ram_regout_en == 1'b1) ram_valid_i <= #`TCQ 1'b0; else ram_valid_i <= #`TCQ ram_valid_i; end end //srst_i end //rd_rst_i end //always end endgenerate // gnll_fifo_ram_valid //*************************************************************************** // Calculate READ_DATA_VALID // READ_DATA_VALID indicates whether the value in Stage2 is valid or not. // Stage2 has valid data whenever Stage1 had valid data and // ram_regout_en_i=1, such that the data in Stage1 is propogated // into Stage2. //*************************************************************************** always @ (posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i) read_data_valid_i <= #`TCQ 1'b0; else if (srst_i) read_data_valid_i <= #`TCQ 1'b0; else read_data_valid_i <= #`TCQ ram_valid_i | (read_data_valid_i & ~RD_EN); end //always //************************************************************************** // Calculate EMPTY // Defined as the inverse of READ_DATA_VALID // // Description: // // If read_data_valid_i indicates that the output is not valid, // and there is no valid data on the output of the ram to preload it // with, then we will report empty. // // If there is no valid data on the output of the ram and we are // reading, then the FIFO will go empty. // //************************************************************************** generate if (C_FIFO_TYPE < 2) begin : gnll_fifo_empty always @ (posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i) begin // asynchronous reset (active high) empty_i <= #`TCQ 1'b1; end else begin if (srst_i) begin // synchronous reset (active high) empty_i <= #`TCQ 1'b1; end else begin // rising clock edge empty_i <= #`TCQ (~ram_valid_i & ~read_data_valid_i) | (~ram_valid_i & RD_EN); end end end //always end endgenerate // gnll_fifo_empty // Register RD_EN from user to calculate USERUNDERFLOW. // Register empty_i to calculate USERUNDERFLOW. always @ (posedge RD_CLK) begin rd_en_q <= #`TCQ RD_EN; empty_q <= #`TCQ empty_i; end //always //*************************************************************************** // Calculate user_almost_empty // user_almost_empty is defined such that, unless more words are written // to the FIFO, the next read will cause the FIFO to go EMPTY. // // In most cases, whenever the output registers are updated (due to a user // read or a preload condition), then user_almost_empty will update to // whatever RAM_EMPTY is. // // The exception is when the output is valid, the user is not reading, and // Stage1 is not empty. In this condition, Stage1 will be preloaded from the // memory, so we need to make sure user_almost_empty deasserts properly under // this condition. //*************************************************************************** always @ (posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i) begin // asynchronous reset (active high) almost_empty_i <= #`TCQ 1'b1; almost_empty_q <= #`TCQ 1'b1; end else begin // rising clock edge if (srst_i) begin // synchronous reset (active high) almost_empty_i <= #`TCQ 1'b1; almost_empty_q <= #`TCQ 1'b1; end else begin if ((ram_regout_en) | (~FIFOEMPTY & read_data_valid_i & ~RD_EN)) begin almost_empty_i <= #`TCQ FIFOEMPTY; end almost_empty_q <= #`TCQ empty_i; end end end //always assign USEREMPTY = empty_i; assign USERALMOSTEMPTY = almost_empty_i; assign FIFORDEN = ram_rd_en; assign RAMVALID = ram_valid_i; assign USERVALID = C_USERVALID_LOW ? ~read_data_valid_i : read_data_valid_i; assign USERUNDERFLOW = C_USERUNDERFLOW_LOW ? ~(empty_q & rd_en_q) : empty_q & rd_en_q; // BRAM resets synchronously always @ (posedge RD_CLK) begin if (rd_rst_i || srst_i) begin if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE < 2) USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL); end end //always always @ (posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i) begin //asynchronous reset (active high) if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF USERSBITERR <= #`TCQ 0; USERDBITERR <= #`TCQ 0; end // DRAM resets asynchronously if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2) //asynchronous reset (active high) USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL); end else begin // rising clock edge if (srst_i) begin if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF USERSBITERR <= #`TCQ 0; USERDBITERR <= #`TCQ 0; end if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2) USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL); end else begin if (ram_regout_en) begin USERDATA <= #`TCQ FIFODATA; USERSBITERR <= #`TCQ FIFOSBITERR; USERDBITERR <= #`TCQ FIFODBITERR; end end end end //always endmodule //----------------------------------------------------------------------------- // // Register Slice // Register one AXI channel on forward and/or reverse signal path // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // reg_slice // //-------------------------------------------------------------------------- module fifo_generator_v12_0_axic_reg_slice # ( parameter C_FAMILY = "virtex7", parameter C_DATA_WIDTH = 32, parameter C_REG_CONFIG = 32'h00000000 ) ( // System Signals input wire ACLK, input wire ARESET, // Slave side input wire [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA, input wire S_VALID, output wire S_READY, // Master side output wire [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA, output wire M_VALID, input wire M_READY ); generate //////////////////////////////////////////////////////////////////// // // Both FWD and REV mode // //////////////////////////////////////////////////////////////////// if (C_REG_CONFIG == 32'h00000000) begin reg [1:0] state; localparam [1:0] ZERO = 2'b10, ONE = 2'b11, TWO = 2'b01; reg [C_DATA_WIDTH-1:0] storage_data1 = 0; reg [C_DATA_WIDTH-1:0] storage_data2 = 0; reg load_s1; wire load_s2; wire load_s1_from_s2; reg s_ready_i; //local signal of output wire m_valid_i; //local signal of output // assign local signal to its output signal assign S_READY = s_ready_i; assign M_VALID = m_valid_i; reg areset_d1; // Reset delay register always @(posedge ACLK) begin areset_d1 <= ARESET; end // Load storage1 with either slave side data or from storage2 always @(posedge ACLK) begin if (load_s1) if (load_s1_from_s2) storage_data1 <= storage_data2; else storage_data1 <= S_PAYLOAD_DATA; end // Load storage2 with slave side data always @(posedge ACLK) begin if (load_s2) storage_data2 <= S_PAYLOAD_DATA; end assign M_PAYLOAD_DATA = storage_data1; // Always load s2 on a valid transaction even if it's unnecessary assign load_s2 = S_VALID & s_ready_i; // Loading s1 always @ * begin if ( ((state == ZERO) && (S_VALID == 1)) || // Load when empty on slave transaction // Load when ONE if we both have read and write at the same time ((state == ONE) && (S_VALID == 1) && (M_READY == 1)) || // Load when TWO and we have a transaction on Master side ((state == TWO) && (M_READY == 1))) load_s1 = 1'b1; else load_s1 = 1'b0; end // always @ * assign load_s1_from_s2 = (state == TWO); // State Machine for handling output signals always @(posedge ACLK) begin if (ARESET) begin s_ready_i <= 1'b0; state <= ZERO; end else if (areset_d1) begin s_ready_i <= 1'b1; end else begin case (state) // No transaction stored locally ZERO: if (S_VALID) state <= ONE; // Got one so move to ONE // One transaction stored locally ONE: begin if (M_READY & ~S_VALID) state <= ZERO; // Read out one so move to ZERO if (~M_READY & S_VALID) begin state <= TWO; // Got another one so move to TWO s_ready_i <= 1'b0; end end // TWO transaction stored locally TWO: if (M_READY) begin state <= ONE; // Read out one so move to ONE s_ready_i <= 1'b1; end endcase // case (state) end end // always @ (posedge ACLK) assign m_valid_i = state[0]; end // if (C_REG_CONFIG == 1) //////////////////////////////////////////////////////////////////// // // 1-stage pipeline register with bubble cycle, both FWD and REV pipelining // Operates same as 1-deep FIFO // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000001) begin reg [C_DATA_WIDTH-1:0] storage_data1 = 0; reg s_ready_i; //local signal of output reg m_valid_i; //local signal of output // assign local signal to its output signal assign S_READY = s_ready_i; assign M_VALID = m_valid_i; reg areset_d1; // Reset delay register always @(posedge ACLK) begin areset_d1 <= ARESET; end // Load storage1 with slave side data always @(posedge ACLK) begin if (ARESET) begin s_ready_i <= 1'b0; m_valid_i <= 1'b0; end else if (areset_d1) begin s_ready_i <= 1'b1; end else if (m_valid_i & M_READY) begin s_ready_i <= 1'b1; m_valid_i <= 1'b0; end else if (S_VALID & s_ready_i) begin s_ready_i <= 1'b0; m_valid_i <= 1'b1; end if (~m_valid_i) begin storage_data1 <= S_PAYLOAD_DATA; end end assign M_PAYLOAD_DATA = storage_data1; end // if (C_REG_CONFIG == 7) else begin : default_case // Passthrough assign M_PAYLOAD_DATA = S_PAYLOAD_DATA; assign M_VALID = S_VALID; assign S_READY = M_READY; end endgenerate endmodule // reg_slice
/* ******************************************************************************* * * FIFO Generator - Verilog Behavioral Model * ******************************************************************************* * * (c) Copyright 1995 - 2009 Xilinx, Inc. All rights reserved. * * This file contains confidential and proprietary information * of Xilinx, Inc. and is protected under U.S. and * international copyright and other intellectual property * laws. * * DISCLAIMER * This disclaimer is not a license and does not grant any * rights to the materials distributed herewith. Except as * otherwise provided in a valid license issued to you by * Xilinx, and to the maximum extent permitted by applicable * law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND * WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES * AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING * BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- * INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and * (2) Xilinx shall not be liable (whether in contract or tort, * including negligence, or under any other theory of * liability) for any loss or damage of any kind or nature * related to, arising under or in connection with these * materials, including for any direct, or any indirect, * special, incidental, or consequential loss or damage * (including loss of data, profits, goodwill, or any type of * loss or damage suffered as a result of any action brought * by a third party) even if such damage or loss was * reasonably foreseeable or Xilinx had been advised of the * possibility of the same. * * CRITICAL APPLICATIONS * Xilinx products are not designed or intended to be fail- * safe, or for use in any application requiring fail-safe * performance, such as life-support or safety devices or * systems, Class III medical devices, nuclear facilities, * applications related to the deployment of airbags, or any * other applications that could lead to death, personal * injury, or severe property or environmental damage * (individually and collectively, "Critical * Applications"). Customer assumes the sole risk and * liability of any use of Xilinx products in Critical * Applications, subject only to applicable laws and * regulations governing limitations on product liability. * * THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS * PART OF THIS FILE AT ALL TIMES. * ******************************************************************************* ******************************************************************************* * * Filename: fifo_generator_vlog_beh.v * * Author : Xilinx * ******************************************************************************* * Structure: * * fifo_generator_vlog_beh.v * | * +-fifo_generator_v12_0_bhv_ver_as * | * +-fifo_generator_v12_0_bhv_ver_ss * | * +-fifo_generator_v12_0_bhv_ver_preload0 * ******************************************************************************* * Description: * * The Verilog behavioral model for the FIFO Generator. * * The behavioral model has three parts: * - The behavioral model for independent clocks FIFOs (_as) * - The behavioral model for common clock FIFOs (_ss) * - The "preload logic" block which implements First-word Fall-through * ******************************************************************************* * Description: * The verilog behavioral model for the FIFO generator core. * ******************************************************************************* */ `timescale 1ps/1ps `ifndef TCQ `define TCQ 100 `endif /******************************************************************************* * Declaration of top-level module ******************************************************************************/ module fifo_generator_vlog_beh #( //----------------------------------------------------------------------- // Generic Declarations //----------------------------------------------------------------------- parameter C_COMMON_CLOCK = 0, parameter C_COUNT_TYPE = 0, parameter C_DATA_COUNT_WIDTH = 2, parameter C_DEFAULT_VALUE = "", parameter C_DIN_WIDTH = 8, parameter C_DOUT_RST_VAL = "", parameter C_DOUT_WIDTH = 8, parameter C_ENABLE_RLOCS = 0, parameter C_FAMILY = "", parameter C_FULL_FLAGS_RST_VAL = 1, parameter C_HAS_ALMOST_EMPTY = 0, parameter C_HAS_ALMOST_FULL = 0, parameter C_HAS_BACKUP = 0, parameter C_HAS_DATA_COUNT = 0, parameter C_HAS_INT_CLK = 0, parameter C_HAS_MEMINIT_FILE = 0, parameter C_HAS_OVERFLOW = 0, parameter C_HAS_RD_DATA_COUNT = 0, parameter C_HAS_RD_RST = 0, parameter C_HAS_RST = 1, parameter C_HAS_SRST = 0, parameter C_HAS_UNDERFLOW = 0, parameter C_HAS_VALID = 0, parameter C_HAS_WR_ACK = 0, parameter C_HAS_WR_DATA_COUNT = 0, parameter C_HAS_WR_RST = 0, parameter C_IMPLEMENTATION_TYPE = 0, parameter C_INIT_WR_PNTR_VAL = 0, parameter C_MEMORY_TYPE = 1, parameter C_MIF_FILE_NAME = "", parameter C_OPTIMIZATION_MODE = 0, parameter C_OVERFLOW_LOW = 0, parameter C_PRELOAD_LATENCY = 1, parameter C_PRELOAD_REGS = 0, parameter C_PRIM_FIFO_TYPE = "4kx4", parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0, parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0, parameter C_PROG_EMPTY_TYPE = 0, parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0, parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0, parameter C_PROG_FULL_TYPE = 0, parameter C_RD_DATA_COUNT_WIDTH = 2, parameter C_RD_DEPTH = 256, parameter C_RD_FREQ = 1, parameter C_RD_PNTR_WIDTH = 8, parameter C_UNDERFLOW_LOW = 0, parameter C_USE_DOUT_RST = 0, parameter C_USE_ECC = 0, parameter C_USE_EMBEDDED_REG = 0, parameter C_USE_PIPELINE_REG = 0, parameter C_POWER_SAVING_MODE = 0, parameter C_USE_FIFO16_FLAGS = 0, parameter C_USE_FWFT_DATA_COUNT = 0, parameter C_VALID_LOW = 0, parameter C_WR_ACK_LOW = 0, parameter C_WR_DATA_COUNT_WIDTH = 2, parameter C_WR_DEPTH = 256, parameter C_WR_FREQ = 1, parameter C_WR_PNTR_WIDTH = 8, parameter C_WR_RESPONSE_LATENCY = 1, parameter C_MSGON_VAL = 1, parameter C_ENABLE_RST_SYNC = 1, parameter C_ERROR_INJECTION_TYPE = 0, parameter C_SYNCHRONIZER_STAGE = 2, // AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, // 0: Native Interface, 1: AXI4 Stream, 2: AXI4/AXI3 parameter C_AXI_TYPE = 0, // 1: AXI4, 2: AXI4 Lite, 3: AXI3 parameter C_HAS_AXI_WR_CHANNEL = 0, parameter C_HAS_AXI_RD_CHANNEL = 0, parameter C_HAS_SLAVE_CE = 0, parameter C_HAS_MASTER_CE = 0, parameter C_ADD_NGC_CONSTRAINT = 0, parameter C_USE_COMMON_UNDERFLOW = 0, parameter C_USE_COMMON_OVERFLOW = 0, parameter C_USE_DEFAULT_SETTINGS = 0, // AXI Full/Lite parameter C_AXI_ID_WIDTH = 0, parameter C_AXI_ADDR_WIDTH = 0, parameter C_AXI_DATA_WIDTH = 0, parameter C_AXI_LEN_WIDTH = 8, parameter C_AXI_LOCK_WIDTH = 2, parameter C_HAS_AXI_ID = 0, parameter C_HAS_AXI_AWUSER = 0, parameter C_HAS_AXI_WUSER = 0, parameter C_HAS_AXI_BUSER = 0, parameter C_HAS_AXI_ARUSER = 0, parameter C_HAS_AXI_RUSER = 0, parameter C_AXI_ARUSER_WIDTH = 0, parameter C_AXI_AWUSER_WIDTH = 0, parameter C_AXI_WUSER_WIDTH = 0, parameter C_AXI_BUSER_WIDTH = 0, parameter C_AXI_RUSER_WIDTH = 0, // AXI Streaming parameter C_HAS_AXIS_TDATA = 0, parameter C_HAS_AXIS_TID = 0, parameter C_HAS_AXIS_TDEST = 0, parameter C_HAS_AXIS_TUSER = 0, parameter C_HAS_AXIS_TREADY = 0, parameter C_HAS_AXIS_TLAST = 0, parameter C_HAS_AXIS_TSTRB = 0, parameter C_HAS_AXIS_TKEEP = 0, parameter C_AXIS_TDATA_WIDTH = 1, parameter C_AXIS_TID_WIDTH = 1, parameter C_AXIS_TDEST_WIDTH = 1, parameter C_AXIS_TUSER_WIDTH = 1, parameter C_AXIS_TSTRB_WIDTH = 1, parameter C_AXIS_TKEEP_WIDTH = 1, // AXI Channel Type // WACH --> Write Address Channel // WDCH --> Write Data Channel // WRCH --> Write Response Channel // RACH --> Read Address Channel // RDCH --> Read Data Channel // AXIS --> AXI Streaming parameter C_WACH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logic parameter C_WDCH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie parameter C_WRCH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie parameter C_RACH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie parameter C_RDCH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie parameter C_AXIS_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie // AXI Implementation Type // 1 = Common Clock Block RAM FIFO // 2 = Common Clock Distributed RAM FIFO // 11 = Independent Clock Block RAM FIFO // 12 = Independent Clock Distributed RAM FIFO parameter C_IMPLEMENTATION_TYPE_WACH = 0, parameter C_IMPLEMENTATION_TYPE_WDCH = 0, parameter C_IMPLEMENTATION_TYPE_WRCH = 0, parameter C_IMPLEMENTATION_TYPE_RACH = 0, parameter C_IMPLEMENTATION_TYPE_RDCH = 0, parameter C_IMPLEMENTATION_TYPE_AXIS = 0, // AXI FIFO Type // 0 = Data FIFO // 1 = Packet FIFO // 2 = Low Latency Sync FIFO // 3 = Low Latency Async FIFO parameter C_APPLICATION_TYPE_WACH = 0, parameter C_APPLICATION_TYPE_WDCH = 0, parameter C_APPLICATION_TYPE_WRCH = 0, parameter C_APPLICATION_TYPE_RACH = 0, parameter C_APPLICATION_TYPE_RDCH = 0, parameter C_APPLICATION_TYPE_AXIS = 0, // AXI Built-in FIFO Primitive Type // 512x36, 1kx18, 2kx9, 4kx4, etc parameter C_PRIM_FIFO_TYPE_WACH = "512x36", parameter C_PRIM_FIFO_TYPE_WDCH = "512x36", parameter C_PRIM_FIFO_TYPE_WRCH = "512x36", parameter C_PRIM_FIFO_TYPE_RACH = "512x36", parameter C_PRIM_FIFO_TYPE_RDCH = "512x36", parameter C_PRIM_FIFO_TYPE_AXIS = "512x36", // Enable ECC // 0 = ECC disabled // 1 = ECC enabled parameter C_USE_ECC_WACH = 0, parameter C_USE_ECC_WDCH = 0, parameter C_USE_ECC_WRCH = 0, parameter C_USE_ECC_RACH = 0, parameter C_USE_ECC_RDCH = 0, parameter C_USE_ECC_AXIS = 0, // ECC Error Injection Type // 0 = No Error Injection // 1 = Single Bit Error Injection // 2 = Double Bit Error Injection // 3 = Single Bit and Double Bit Error Injection parameter C_ERROR_INJECTION_TYPE_WACH = 0, parameter C_ERROR_INJECTION_TYPE_WDCH = 0, parameter C_ERROR_INJECTION_TYPE_WRCH = 0, parameter C_ERROR_INJECTION_TYPE_RACH = 0, parameter C_ERROR_INJECTION_TYPE_RDCH = 0, parameter C_ERROR_INJECTION_TYPE_AXIS = 0, // Input Data Width // Accumulation of all AXI input signal's width parameter C_DIN_WIDTH_WACH = 1, parameter C_DIN_WIDTH_WDCH = 1, parameter C_DIN_WIDTH_WRCH = 1, parameter C_DIN_WIDTH_RACH = 1, parameter C_DIN_WIDTH_RDCH = 1, parameter C_DIN_WIDTH_AXIS = 1, parameter C_WR_DEPTH_WACH = 16, parameter C_WR_DEPTH_WDCH = 16, parameter C_WR_DEPTH_WRCH = 16, parameter C_WR_DEPTH_RACH = 16, parameter C_WR_DEPTH_RDCH = 16, parameter C_WR_DEPTH_AXIS = 16, parameter C_WR_PNTR_WIDTH_WACH = 4, parameter C_WR_PNTR_WIDTH_WDCH = 4, parameter C_WR_PNTR_WIDTH_WRCH = 4, parameter C_WR_PNTR_WIDTH_RACH = 4, parameter C_WR_PNTR_WIDTH_RDCH = 4, parameter C_WR_PNTR_WIDTH_AXIS = 4, parameter C_HAS_DATA_COUNTS_WACH = 0, parameter C_HAS_DATA_COUNTS_WDCH = 0, parameter C_HAS_DATA_COUNTS_WRCH = 0, parameter C_HAS_DATA_COUNTS_RACH = 0, parameter C_HAS_DATA_COUNTS_RDCH = 0, parameter C_HAS_DATA_COUNTS_AXIS = 0, parameter C_HAS_PROG_FLAGS_WACH = 0, parameter C_HAS_PROG_FLAGS_WDCH = 0, parameter C_HAS_PROG_FLAGS_WRCH = 0, parameter C_HAS_PROG_FLAGS_RACH = 0, parameter C_HAS_PROG_FLAGS_RDCH = 0, parameter C_HAS_PROG_FLAGS_AXIS = 0, parameter C_PROG_FULL_TYPE_WACH = 0, parameter C_PROG_FULL_TYPE_WDCH = 0, parameter C_PROG_FULL_TYPE_WRCH = 0, parameter C_PROG_FULL_TYPE_RACH = 0, parameter C_PROG_FULL_TYPE_RDCH = 0, parameter C_PROG_FULL_TYPE_AXIS = 0, parameter C_PROG_FULL_THRESH_ASSERT_VAL_WACH = 0, parameter C_PROG_FULL_THRESH_ASSERT_VAL_WDCH = 0, parameter C_PROG_FULL_THRESH_ASSERT_VAL_WRCH = 0, parameter C_PROG_FULL_THRESH_ASSERT_VAL_RACH = 0, parameter C_PROG_FULL_THRESH_ASSERT_VAL_RDCH = 0, parameter C_PROG_FULL_THRESH_ASSERT_VAL_AXIS = 0, parameter C_PROG_EMPTY_TYPE_WACH = 0, parameter C_PROG_EMPTY_TYPE_WDCH = 0, parameter C_PROG_EMPTY_TYPE_WRCH = 0, parameter C_PROG_EMPTY_TYPE_RACH = 0, parameter C_PROG_EMPTY_TYPE_RDCH = 0, parameter C_PROG_EMPTY_TYPE_AXIS = 0, parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH = 0, parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH = 0, parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH = 0, parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH = 0, parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH = 0, parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS = 0, parameter C_REG_SLICE_MODE_WACH = 0, parameter C_REG_SLICE_MODE_WDCH = 0, parameter C_REG_SLICE_MODE_WRCH = 0, parameter C_REG_SLICE_MODE_RACH = 0, parameter C_REG_SLICE_MODE_RDCH = 0, parameter C_REG_SLICE_MODE_AXIS = 0 ) ( //------------------------------------------------------------------------------ // Input and Output Declarations //------------------------------------------------------------------------------ // Conventional FIFO Interface Signals input backup, input backup_marker, input clk, input rst, input srst, input wr_clk, input wr_rst, input rd_clk, input rd_rst, input [C_DIN_WIDTH-1:0] din, input wr_en, input rd_en, // Optional inputs input [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh, input [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_assert, input [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_negate, input [C_WR_PNTR_WIDTH-1:0] prog_full_thresh, input [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_assert, input [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_negate, input int_clk, input injectdbiterr, input injectsbiterr, input sleep, output [C_DOUT_WIDTH-1:0] dout, output full, output almost_full, output wr_ack, output overflow, output empty, output almost_empty, output valid, output underflow, output [C_DATA_COUNT_WIDTH-1:0] data_count, output [C_RD_DATA_COUNT_WIDTH-1:0] rd_data_count, output [C_WR_DATA_COUNT_WIDTH-1:0] wr_data_count, output prog_full, output prog_empty, output sbiterr, output dbiterr, output wr_rst_busy, output rd_rst_busy, // AXI Global Signal input m_aclk, input s_aclk, input s_aresetn, input s_aclk_en, input m_aclk_en, // AXI Full/Lite Slave Write Channel (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_awid, input [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr, input [C_AXI_LEN_WIDTH-1:0] s_axi_awlen, input [3-1:0] s_axi_awsize, input [2-1:0] s_axi_awburst, input [C_AXI_LOCK_WIDTH-1:0] s_axi_awlock, input [4-1:0] s_axi_awcache, input [3-1:0] s_axi_awprot, input [4-1:0] s_axi_awqos, input [4-1:0] s_axi_awregion, input [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser, input s_axi_awvalid, output s_axi_awready, input [C_AXI_ID_WIDTH-1:0] s_axi_wid, input [C_AXI_DATA_WIDTH-1:0] s_axi_wdata, input [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb, input s_axi_wlast, input [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser, input s_axi_wvalid, output s_axi_wready, output [C_AXI_ID_WIDTH-1:0] s_axi_bid, output [2-1:0] s_axi_bresp, output [C_AXI_BUSER_WIDTH-1:0] s_axi_buser, output s_axi_bvalid, input s_axi_bready, // AXI Full/Lite Master Write Channel (read side) output [C_AXI_ID_WIDTH-1:0] m_axi_awid, output [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr, output [C_AXI_LEN_WIDTH-1:0] m_axi_awlen, output [3-1:0] m_axi_awsize, output [2-1:0] m_axi_awburst, output [C_AXI_LOCK_WIDTH-1:0] m_axi_awlock, output [4-1:0] m_axi_awcache, output [3-1:0] m_axi_awprot, output [4-1:0] m_axi_awqos, output [4-1:0] m_axi_awregion, output [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser, output m_axi_awvalid, input m_axi_awready, output [C_AXI_ID_WIDTH-1:0] m_axi_wid, output [C_AXI_DATA_WIDTH-1:0] m_axi_wdata, output [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb, output m_axi_wlast, output [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser, output m_axi_wvalid, input m_axi_wready, input [C_AXI_ID_WIDTH-1:0] m_axi_bid, input [2-1:0] m_axi_bresp, input [C_AXI_BUSER_WIDTH-1:0] m_axi_buser, input m_axi_bvalid, output m_axi_bready, // AXI Full/Lite Slave Read Channel (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_arid, input [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr, input [C_AXI_LEN_WIDTH-1:0] s_axi_arlen, input [3-1:0] s_axi_arsize, input [2-1:0] s_axi_arburst, input [C_AXI_LOCK_WIDTH-1:0] s_axi_arlock, input [4-1:0] s_axi_arcache, input [3-1:0] s_axi_arprot, input [4-1:0] s_axi_arqos, input [4-1:0] s_axi_arregion, input [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser, input s_axi_arvalid, output s_axi_arready, output [C_AXI_ID_WIDTH-1:0] s_axi_rid, output [C_AXI_DATA_WIDTH-1:0] s_axi_rdata, output [2-1:0] s_axi_rresp, output s_axi_rlast, output [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser, output s_axi_rvalid, input s_axi_rready, // AXI Full/Lite Master Read Channel (read side) output [C_AXI_ID_WIDTH-1:0] m_axi_arid, output [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr, output [C_AXI_LEN_WIDTH-1:0] m_axi_arlen, output [3-1:0] m_axi_arsize, output [2-1:0] m_axi_arburst, output [C_AXI_LOCK_WIDTH-1:0] m_axi_arlock, output [4-1:0] m_axi_arcache, output [3-1:0] m_axi_arprot, output [4-1:0] m_axi_arqos, output [4-1:0] m_axi_arregion, output [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser, output m_axi_arvalid, input m_axi_arready, input [C_AXI_ID_WIDTH-1:0] m_axi_rid, input [C_AXI_DATA_WIDTH-1:0] m_axi_rdata, input [2-1:0] m_axi_rresp, input m_axi_rlast, input [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser, input m_axi_rvalid, output m_axi_rready, // AXI Streaming Slave Signals (Write side) input s_axis_tvalid, output s_axis_tready, input [C_AXIS_TDATA_WIDTH-1:0] s_axis_tdata, input [C_AXIS_TSTRB_WIDTH-1:0] s_axis_tstrb, input [C_AXIS_TKEEP_WIDTH-1:0] s_axis_tkeep, input s_axis_tlast, input [C_AXIS_TID_WIDTH-1:0] s_axis_tid, input [C_AXIS_TDEST_WIDTH-1:0] s_axis_tdest, input [C_AXIS_TUSER_WIDTH-1:0] s_axis_tuser, // AXI Streaming Master Signals (Read side) output m_axis_tvalid, input m_axis_tready, output [C_AXIS_TDATA_WIDTH-1:0] m_axis_tdata, output [C_AXIS_TSTRB_WIDTH-1:0] m_axis_tstrb, output [C_AXIS_TKEEP_WIDTH-1:0] m_axis_tkeep, output m_axis_tlast, output [C_AXIS_TID_WIDTH-1:0] m_axis_tid, output [C_AXIS_TDEST_WIDTH-1:0] m_axis_tdest, output [C_AXIS_TUSER_WIDTH-1:0] m_axis_tuser, // AXI Full/Lite Write Address Channel signals input axi_aw_injectsbiterr, input axi_aw_injectdbiterr, input [C_WR_PNTR_WIDTH_WACH-1:0] axi_aw_prog_full_thresh, input [C_WR_PNTR_WIDTH_WACH-1:0] axi_aw_prog_empty_thresh, output [C_WR_PNTR_WIDTH_WACH:0] axi_aw_data_count, output [C_WR_PNTR_WIDTH_WACH:0] axi_aw_wr_data_count, output [C_WR_PNTR_WIDTH_WACH:0] axi_aw_rd_data_count, output axi_aw_sbiterr, output axi_aw_dbiterr, output axi_aw_overflow, output axi_aw_underflow, output axi_aw_prog_full, output axi_aw_prog_empty, // AXI Full/Lite Write Data Channel signals input axi_w_injectsbiterr, input axi_w_injectdbiterr, input [C_WR_PNTR_WIDTH_WDCH-1:0] axi_w_prog_full_thresh, input [C_WR_PNTR_WIDTH_WDCH-1:0] axi_w_prog_empty_thresh, output [C_WR_PNTR_WIDTH_WDCH:0] axi_w_data_count, output [C_WR_PNTR_WIDTH_WDCH:0] axi_w_wr_data_count, output [C_WR_PNTR_WIDTH_WDCH:0] axi_w_rd_data_count, output axi_w_sbiterr, output axi_w_dbiterr, output axi_w_overflow, output axi_w_underflow, output axi_w_prog_full, output axi_w_prog_empty, // AXI Full/Lite Write Response Channel signals input axi_b_injectsbiterr, input axi_b_injectdbiterr, input [C_WR_PNTR_WIDTH_WRCH-1:0] axi_b_prog_full_thresh, input [C_WR_PNTR_WIDTH_WRCH-1:0] axi_b_prog_empty_thresh, output [C_WR_PNTR_WIDTH_WRCH:0] axi_b_data_count, output [C_WR_PNTR_WIDTH_WRCH:0] axi_b_wr_data_count, output [C_WR_PNTR_WIDTH_WRCH:0] axi_b_rd_data_count, output axi_b_sbiterr, output axi_b_dbiterr, output axi_b_overflow, output axi_b_underflow, output axi_b_prog_full, output axi_b_prog_empty, // AXI Full/Lite Read Address Channel signals input axi_ar_injectsbiterr, input axi_ar_injectdbiterr, input [C_WR_PNTR_WIDTH_RACH-1:0] axi_ar_prog_full_thresh, input [C_WR_PNTR_WIDTH_RACH-1:0] axi_ar_prog_empty_thresh, output [C_WR_PNTR_WIDTH_RACH:0] axi_ar_data_count, output [C_WR_PNTR_WIDTH_RACH:0] axi_ar_wr_data_count, output [C_WR_PNTR_WIDTH_RACH:0] axi_ar_rd_data_count, output axi_ar_sbiterr, output axi_ar_dbiterr, output axi_ar_overflow, output axi_ar_underflow, output axi_ar_prog_full, output axi_ar_prog_empty, // AXI Full/Lite Read Data Channel Signals input axi_r_injectsbiterr, input axi_r_injectdbiterr, input [C_WR_PNTR_WIDTH_RDCH-1:0] axi_r_prog_full_thresh, input [C_WR_PNTR_WIDTH_RDCH-1:0] axi_r_prog_empty_thresh, output [C_WR_PNTR_WIDTH_RDCH:0] axi_r_data_count, output [C_WR_PNTR_WIDTH_RDCH:0] axi_r_wr_data_count, output [C_WR_PNTR_WIDTH_RDCH:0] axi_r_rd_data_count, output axi_r_sbiterr, output axi_r_dbiterr, output axi_r_overflow, output axi_r_underflow, output axi_r_prog_full, output axi_r_prog_empty, // AXI Streaming FIFO Related Signals input axis_injectsbiterr, input axis_injectdbiterr, input [C_WR_PNTR_WIDTH_AXIS-1:0] axis_prog_full_thresh, input [C_WR_PNTR_WIDTH_AXIS-1:0] axis_prog_empty_thresh, output [C_WR_PNTR_WIDTH_AXIS:0] axis_data_count, output [C_WR_PNTR_WIDTH_AXIS:0] axis_wr_data_count, output [C_WR_PNTR_WIDTH_AXIS:0] axis_rd_data_count, output axis_sbiterr, output axis_dbiterr, output axis_overflow, output axis_underflow, output axis_prog_full, output axis_prog_empty ); wire BACKUP; wire BACKUP_MARKER; wire CLK; wire RST; wire SRST; wire WR_CLK; wire WR_RST; wire RD_CLK; wire RD_RST; wire [C_DIN_WIDTH-1:0] DIN; wire WR_EN; wire RD_EN; wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH; wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT; wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE; wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH; wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT; wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE; wire INT_CLK; wire INJECTDBITERR; wire INJECTSBITERR; wire SLEEP; wire [C_DOUT_WIDTH-1:0] DOUT; wire FULL; wire ALMOST_FULL; wire WR_ACK; wire OVERFLOW; wire EMPTY; wire ALMOST_EMPTY; wire VALID; wire UNDERFLOW; wire [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT; wire [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT; wire [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT; wire PROG_FULL; wire PROG_EMPTY; wire SBITERR; wire DBITERR; wire WR_RST_BUSY; wire RD_RST_BUSY; wire M_ACLK; wire S_ACLK; wire S_ARESETN; wire S_ACLK_EN; wire M_ACLK_EN; wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID; wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR; wire [C_AXI_LEN_WIDTH-1:0] S_AXI_AWLEN; wire [3-1:0] S_AXI_AWSIZE; wire [2-1:0] S_AXI_AWBURST; wire [C_AXI_LOCK_WIDTH-1:0] S_AXI_AWLOCK; wire [4-1:0] S_AXI_AWCACHE; wire [3-1:0] S_AXI_AWPROT; wire [4-1:0] S_AXI_AWQOS; wire [4-1:0] S_AXI_AWREGION; wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER; wire S_AXI_AWVALID; wire S_AXI_AWREADY; wire [C_AXI_ID_WIDTH-1:0] S_AXI_WID; wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA; wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB; wire S_AXI_WLAST; wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER; wire S_AXI_WVALID; wire S_AXI_WREADY; wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID; wire [2-1:0] S_AXI_BRESP; wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER; wire S_AXI_BVALID; wire S_AXI_BREADY; wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID; wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR; wire [C_AXI_LEN_WIDTH-1:0] M_AXI_AWLEN; wire [3-1:0] M_AXI_AWSIZE; wire [2-1:0] M_AXI_AWBURST; wire [C_AXI_LOCK_WIDTH-1:0] M_AXI_AWLOCK; wire [4-1:0] M_AXI_AWCACHE; wire [3-1:0] M_AXI_AWPROT; wire [4-1:0] M_AXI_AWQOS; wire [4-1:0] M_AXI_AWREGION; wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER; wire M_AXI_AWVALID; wire M_AXI_AWREADY; wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID; wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA; wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB; wire M_AXI_WLAST; wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER; wire M_AXI_WVALID; wire M_AXI_WREADY; wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID; wire [2-1:0] M_AXI_BRESP; wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER; wire M_AXI_BVALID; wire M_AXI_BREADY; wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID; wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR; wire [C_AXI_LEN_WIDTH-1:0] S_AXI_ARLEN; wire [3-1:0] S_AXI_ARSIZE; wire [2-1:0] S_AXI_ARBURST; wire [C_AXI_LOCK_WIDTH-1:0] S_AXI_ARLOCK; wire [4-1:0] S_AXI_ARCACHE; wire [3-1:0] S_AXI_ARPROT; wire [4-1:0] S_AXI_ARQOS; wire [4-1:0] S_AXI_ARREGION; wire [C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER; wire S_AXI_ARVALID; wire S_AXI_ARREADY; wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID; wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA; wire [2-1:0] S_AXI_RRESP; wire S_AXI_RLAST; wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER; wire S_AXI_RVALID; wire S_AXI_RREADY; wire [C_AXI_ID_WIDTH-1:0] M_AXI_ARID; wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR; wire [C_AXI_LEN_WIDTH-1:0] M_AXI_ARLEN; wire [3-1:0] M_AXI_ARSIZE; wire [2-1:0] M_AXI_ARBURST; wire [C_AXI_LOCK_WIDTH-1:0] M_AXI_ARLOCK; wire [4-1:0] M_AXI_ARCACHE; wire [3-1:0] M_AXI_ARPROT; wire [4-1:0] M_AXI_ARQOS; wire [4-1:0] M_AXI_ARREGION; wire [C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER; wire M_AXI_ARVALID; wire M_AXI_ARREADY; wire [C_AXI_ID_WIDTH-1:0] M_AXI_RID; wire [C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA; wire [2-1:0] M_AXI_RRESP; wire M_AXI_RLAST; wire [C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER; wire M_AXI_RVALID; wire M_AXI_RREADY; wire S_AXIS_TVALID; wire S_AXIS_TREADY; wire [C_AXIS_TDATA_WIDTH-1:0] S_AXIS_TDATA; wire [C_AXIS_TSTRB_WIDTH-1:0] S_AXIS_TSTRB; wire [C_AXIS_TKEEP_WIDTH-1:0] S_AXIS_TKEEP; wire S_AXIS_TLAST; wire [C_AXIS_TID_WIDTH-1:0] S_AXIS_TID; wire [C_AXIS_TDEST_WIDTH-1:0] S_AXIS_TDEST; wire [C_AXIS_TUSER_WIDTH-1:0] S_AXIS_TUSER; wire M_AXIS_TVALID; wire M_AXIS_TREADY; wire [C_AXIS_TDATA_WIDTH-1:0] M_AXIS_TDATA; wire [C_AXIS_TSTRB_WIDTH-1:0] M_AXIS_TSTRB; wire [C_AXIS_TKEEP_WIDTH-1:0] M_AXIS_TKEEP; wire M_AXIS_TLAST; wire [C_AXIS_TID_WIDTH-1:0] M_AXIS_TID; wire [C_AXIS_TDEST_WIDTH-1:0] M_AXIS_TDEST; wire [C_AXIS_TUSER_WIDTH-1:0] M_AXIS_TUSER; wire AXI_AW_INJECTSBITERR; wire AXI_AW_INJECTDBITERR; wire [C_WR_PNTR_WIDTH_WACH-1:0] AXI_AW_PROG_FULL_THRESH; wire [C_WR_PNTR_WIDTH_WACH-1:0] AXI_AW_PROG_EMPTY_THRESH; wire [C_WR_PNTR_WIDTH_WACH:0] AXI_AW_DATA_COUNT; wire [C_WR_PNTR_WIDTH_WACH:0] AXI_AW_WR_DATA_COUNT; wire [C_WR_PNTR_WIDTH_WACH:0] AXI_AW_RD_DATA_COUNT; wire AXI_AW_SBITERR; wire AXI_AW_DBITERR; wire AXI_AW_OVERFLOW; wire AXI_AW_UNDERFLOW; wire AXI_AW_PROG_FULL; wire AXI_AW_PROG_EMPTY; wire AXI_W_INJECTSBITERR; wire AXI_W_INJECTDBITERR; wire [C_WR_PNTR_WIDTH_WDCH-1:0] AXI_W_PROG_FULL_THRESH; wire [C_WR_PNTR_WIDTH_WDCH-1:0] AXI_W_PROG_EMPTY_THRESH; wire [C_WR_PNTR_WIDTH_WDCH:0] AXI_W_DATA_COUNT; wire [C_WR_PNTR_WIDTH_WDCH:0] AXI_W_WR_DATA_COUNT; wire [C_WR_PNTR_WIDTH_WDCH:0] AXI_W_RD_DATA_COUNT; wire AXI_W_SBITERR; wire AXI_W_DBITERR; wire AXI_W_OVERFLOW; wire AXI_W_UNDERFLOW; wire AXI_W_PROG_FULL; wire AXI_W_PROG_EMPTY; wire AXI_B_INJECTSBITERR; wire AXI_B_INJECTDBITERR; wire [C_WR_PNTR_WIDTH_WRCH-1:0] AXI_B_PROG_FULL_THRESH; wire [C_WR_PNTR_WIDTH_WRCH-1:0] AXI_B_PROG_EMPTY_THRESH; wire [C_WR_PNTR_WIDTH_WRCH:0] AXI_B_DATA_COUNT; wire [C_WR_PNTR_WIDTH_WRCH:0] AXI_B_WR_DATA_COUNT; wire [C_WR_PNTR_WIDTH_WRCH:0] AXI_B_RD_DATA_COUNT; wire AXI_B_SBITERR; wire AXI_B_DBITERR; wire AXI_B_OVERFLOW; wire AXI_B_UNDERFLOW; wire AXI_B_PROG_FULL; wire AXI_B_PROG_EMPTY; wire AXI_AR_INJECTSBITERR; wire AXI_AR_INJECTDBITERR; wire [C_WR_PNTR_WIDTH_RACH-1:0] AXI_AR_PROG_FULL_THRESH; wire [C_WR_PNTR_WIDTH_RACH-1:0] AXI_AR_PROG_EMPTY_THRESH; wire [C_WR_PNTR_WIDTH_RACH:0] AXI_AR_DATA_COUNT; wire [C_WR_PNTR_WIDTH_RACH:0] AXI_AR_WR_DATA_COUNT; wire [C_WR_PNTR_WIDTH_RACH:0] AXI_AR_RD_DATA_COUNT; wire AXI_AR_SBITERR; wire AXI_AR_DBITERR; wire AXI_AR_OVERFLOW; wire AXI_AR_UNDERFLOW; wire AXI_AR_PROG_FULL; wire AXI_AR_PROG_EMPTY; wire AXI_R_INJECTSBITERR; wire AXI_R_INJECTDBITERR; wire [C_WR_PNTR_WIDTH_RDCH-1:0] AXI_R_PROG_FULL_THRESH; wire [C_WR_PNTR_WIDTH_RDCH-1:0] AXI_R_PROG_EMPTY_THRESH; wire [C_WR_PNTR_WIDTH_RDCH:0] AXI_R_DATA_COUNT; wire [C_WR_PNTR_WIDTH_RDCH:0] AXI_R_WR_DATA_COUNT; wire [C_WR_PNTR_WIDTH_RDCH:0] AXI_R_RD_DATA_COUNT; wire AXI_R_SBITERR; wire AXI_R_DBITERR; wire AXI_R_OVERFLOW; wire AXI_R_UNDERFLOW; wire AXI_R_PROG_FULL; wire AXI_R_PROG_EMPTY; wire AXIS_INJECTSBITERR; wire AXIS_INJECTDBITERR; wire [C_WR_PNTR_WIDTH_AXIS-1:0] AXIS_PROG_FULL_THRESH; wire [C_WR_PNTR_WIDTH_AXIS-1:0] AXIS_PROG_EMPTY_THRESH; wire [C_WR_PNTR_WIDTH_AXIS:0] AXIS_DATA_COUNT; wire [C_WR_PNTR_WIDTH_AXIS:0] AXIS_WR_DATA_COUNT; wire [C_WR_PNTR_WIDTH_AXIS:0] AXIS_RD_DATA_COUNT; wire AXIS_SBITERR; wire AXIS_DBITERR; wire AXIS_OVERFLOW; wire AXIS_UNDERFLOW; wire AXIS_PROG_FULL; wire AXIS_PROG_EMPTY; wire [C_WR_DATA_COUNT_WIDTH-1:0] wr_data_count_in; wire wr_rst_int; wire rd_rst_int; function integer find_log2; input integer int_val; integer i,j; begin i = 1; j = 0; for (i = 1; i < int_val; i = i*2) begin j = j + 1; end find_log2 = j; end endfunction // Conventional FIFO Interface Signals assign BACKUP = backup; assign BACKUP_MARKER = backup_marker; assign CLK = clk; assign RST = rst; assign SRST = srst; assign WR_CLK = wr_clk; assign WR_RST = wr_rst; assign RD_CLK = rd_clk; assign RD_RST = rd_rst; assign WR_EN = wr_en; assign RD_EN = rd_en; assign INT_CLK = int_clk; assign INJECTDBITERR = injectdbiterr; assign INJECTSBITERR = injectsbiterr; assign SLEEP = sleep; assign full = FULL; assign almost_full = ALMOST_FULL; assign wr_ack = WR_ACK; assign overflow = OVERFLOW; assign empty = EMPTY; assign almost_empty = ALMOST_EMPTY; assign valid = VALID; assign underflow = UNDERFLOW; assign prog_full = PROG_FULL; assign prog_empty = PROG_EMPTY; assign sbiterr = SBITERR; assign dbiterr = DBITERR; assign wr_rst_busy = WR_RST_BUSY; assign rd_rst_busy = RD_RST_BUSY; assign M_ACLK = m_aclk; assign S_ACLK = s_aclk; assign S_ARESETN = s_aresetn; assign S_ACLK_EN = s_aclk_en; assign M_ACLK_EN = m_aclk_en; assign S_AXI_AWVALID = s_axi_awvalid; assign s_axi_awready = S_AXI_AWREADY; assign S_AXI_WLAST = s_axi_wlast; assign S_AXI_WVALID = s_axi_wvalid; assign s_axi_wready = S_AXI_WREADY; assign s_axi_bvalid = S_AXI_BVALID; assign S_AXI_BREADY = s_axi_bready; assign m_axi_awvalid = M_AXI_AWVALID; assign M_AXI_AWREADY = m_axi_awready; assign m_axi_wlast = M_AXI_WLAST; assign m_axi_wvalid = M_AXI_WVALID; assign M_AXI_WREADY = m_axi_wready; assign M_AXI_BVALID = m_axi_bvalid; assign m_axi_bready = M_AXI_BREADY; assign S_AXI_ARVALID = s_axi_arvalid; assign s_axi_arready = S_AXI_ARREADY; assign s_axi_rlast = S_AXI_RLAST; assign s_axi_rvalid = S_AXI_RVALID; assign S_AXI_RREADY = s_axi_rready; assign m_axi_arvalid = M_AXI_ARVALID; assign M_AXI_ARREADY = m_axi_arready; assign M_AXI_RLAST = m_axi_rlast; assign M_AXI_RVALID = m_axi_rvalid; assign m_axi_rready = M_AXI_RREADY; assign S_AXIS_TVALID = s_axis_tvalid; assign s_axis_tready = S_AXIS_TREADY; assign S_AXIS_TLAST = s_axis_tlast; assign m_axis_tvalid = M_AXIS_TVALID; assign M_AXIS_TREADY = m_axis_tready; assign m_axis_tlast = M_AXIS_TLAST; assign AXI_AW_INJECTSBITERR = axi_aw_injectsbiterr; assign AXI_AW_INJECTDBITERR = axi_aw_injectdbiterr; assign axi_aw_sbiterr = AXI_AW_SBITERR; assign axi_aw_dbiterr = AXI_AW_DBITERR; assign axi_aw_overflow = AXI_AW_OVERFLOW; assign axi_aw_underflow = AXI_AW_UNDERFLOW; assign axi_aw_prog_full = AXI_AW_PROG_FULL; assign axi_aw_prog_empty = AXI_AW_PROG_EMPTY; assign AXI_W_INJECTSBITERR = axi_w_injectsbiterr; assign AXI_W_INJECTDBITERR = axi_w_injectdbiterr; assign axi_w_sbiterr = AXI_W_SBITERR; assign axi_w_dbiterr = AXI_W_DBITERR; assign axi_w_overflow = AXI_W_OVERFLOW; assign axi_w_underflow = AXI_W_UNDERFLOW; assign axi_w_prog_full = AXI_W_PROG_FULL; assign axi_w_prog_empty = AXI_W_PROG_EMPTY; assign AXI_B_INJECTSBITERR = axi_b_injectsbiterr; assign AXI_B_INJECTDBITERR = axi_b_injectdbiterr; assign axi_b_sbiterr = AXI_B_SBITERR; assign axi_b_dbiterr = AXI_B_DBITERR; assign axi_b_overflow = AXI_B_OVERFLOW; assign axi_b_underflow = AXI_B_UNDERFLOW; assign axi_b_prog_full = AXI_B_PROG_FULL; assign axi_b_prog_empty = AXI_B_PROG_EMPTY; assign AXI_AR_INJECTSBITERR = axi_ar_injectsbiterr; assign AXI_AR_INJECTDBITERR = axi_ar_injectdbiterr; assign axi_ar_sbiterr = AXI_AR_SBITERR; assign axi_ar_dbiterr = AXI_AR_DBITERR; assign axi_ar_overflow = AXI_AR_OVERFLOW; assign axi_ar_underflow = AXI_AR_UNDERFLOW; assign axi_ar_prog_full = AXI_AR_PROG_FULL; assign axi_ar_prog_empty = AXI_AR_PROG_EMPTY; assign AXI_R_INJECTSBITERR = axi_r_injectsbiterr; assign AXI_R_INJECTDBITERR = axi_r_injectdbiterr; assign axi_r_sbiterr = AXI_R_SBITERR; assign axi_r_dbiterr = AXI_R_DBITERR; assign axi_r_overflow = AXI_R_OVERFLOW; assign axi_r_underflow = AXI_R_UNDERFLOW; assign axi_r_prog_full = AXI_R_PROG_FULL; assign axi_r_prog_empty = AXI_R_PROG_EMPTY; assign AXIS_INJECTSBITERR = axis_injectsbiterr; assign AXIS_INJECTDBITERR = axis_injectdbiterr; assign axis_sbiterr = AXIS_SBITERR; assign axis_dbiterr = AXIS_DBITERR; assign axis_overflow = AXIS_OVERFLOW; assign axis_underflow = AXIS_UNDERFLOW; assign axis_prog_full = AXIS_PROG_FULL; assign axis_prog_empty = AXIS_PROG_EMPTY; assign DIN = din; assign PROG_EMPTY_THRESH = prog_empty_thresh; assign PROG_EMPTY_THRESH_ASSERT = prog_empty_thresh_assert; assign PROG_EMPTY_THRESH_NEGATE = prog_empty_thresh_negate; assign PROG_FULL_THRESH = prog_full_thresh; assign PROG_FULL_THRESH_ASSERT = prog_full_thresh_assert; assign PROG_FULL_THRESH_NEGATE = prog_full_thresh_negate; assign dout = DOUT; assign data_count = DATA_COUNT; assign rd_data_count = RD_DATA_COUNT; assign wr_data_count = WR_DATA_COUNT; assign S_AXI_AWID = s_axi_awid; assign S_AXI_AWADDR = s_axi_awaddr; assign S_AXI_AWLEN = s_axi_awlen; assign S_AXI_AWSIZE = s_axi_awsize; assign S_AXI_AWBURST = s_axi_awburst; assign S_AXI_AWLOCK = s_axi_awlock; assign S_AXI_AWCACHE = s_axi_awcache; assign S_AXI_AWPROT = s_axi_awprot; assign S_AXI_AWQOS = s_axi_awqos; assign S_AXI_AWREGION = s_axi_awregion; assign S_AXI_AWUSER = s_axi_awuser; assign S_AXI_WID = s_axi_wid; assign S_AXI_WDATA = s_axi_wdata; assign S_AXI_WSTRB = s_axi_wstrb; assign S_AXI_WUSER = s_axi_wuser; assign s_axi_bid = S_AXI_BID; assign s_axi_bresp = S_AXI_BRESP; assign s_axi_buser = S_AXI_BUSER; assign m_axi_awid = M_AXI_AWID; assign m_axi_awaddr = M_AXI_AWADDR; assign m_axi_awlen = M_AXI_AWLEN; assign m_axi_awsize = M_AXI_AWSIZE; assign m_axi_awburst = M_AXI_AWBURST; assign m_axi_awlock = M_AXI_AWLOCK; assign m_axi_awcache = M_AXI_AWCACHE; assign m_axi_awprot = M_AXI_AWPROT; assign m_axi_awqos = M_AXI_AWQOS; assign m_axi_awregion = M_AXI_AWREGION; assign m_axi_awuser = M_AXI_AWUSER; assign m_axi_wid = M_AXI_WID; assign m_axi_wdata = M_AXI_WDATA; assign m_axi_wstrb = M_AXI_WSTRB; assign m_axi_wuser = M_AXI_WUSER; assign M_AXI_BID = m_axi_bid; assign M_AXI_BRESP = m_axi_bresp; assign M_AXI_BUSER = m_axi_buser; assign S_AXI_ARID = s_axi_arid; assign S_AXI_ARADDR = s_axi_araddr; assign S_AXI_ARLEN = s_axi_arlen; assign S_AXI_ARSIZE = s_axi_arsize; assign S_AXI_ARBURST = s_axi_arburst; assign S_AXI_ARLOCK = s_axi_arlock; assign S_AXI_ARCACHE = s_axi_arcache; assign S_AXI_ARPROT = s_axi_arprot; assign S_AXI_ARQOS = s_axi_arqos; assign S_AXI_ARREGION = s_axi_arregion; assign S_AXI_ARUSER = s_axi_aruser; assign s_axi_rid = S_AXI_RID; assign s_axi_rdata = S_AXI_RDATA; assign s_axi_rresp = S_AXI_RRESP; assign s_axi_ruser = S_AXI_RUSER; assign m_axi_arid = M_AXI_ARID; assign m_axi_araddr = M_AXI_ARADDR; assign m_axi_arlen = M_AXI_ARLEN; assign m_axi_arsize = M_AXI_ARSIZE; assign m_axi_arburst = M_AXI_ARBURST; assign m_axi_arlock = M_AXI_ARLOCK; assign m_axi_arcache = M_AXI_ARCACHE; assign m_axi_arprot = M_AXI_ARPROT; assign m_axi_arqos = M_AXI_ARQOS; assign m_axi_arregion = M_AXI_ARREGION; assign m_axi_aruser = M_AXI_ARUSER; assign M_AXI_RID = m_axi_rid; assign M_AXI_RDATA = m_axi_rdata; assign M_AXI_RRESP = m_axi_rresp; assign M_AXI_RUSER = m_axi_ruser; assign S_AXIS_TDATA = s_axis_tdata; assign S_AXIS_TSTRB = s_axis_tstrb; assign S_AXIS_TKEEP = s_axis_tkeep; assign S_AXIS_TID = s_axis_tid; assign S_AXIS_TDEST = s_axis_tdest; assign S_AXIS_TUSER = s_axis_tuser; assign m_axis_tdata = M_AXIS_TDATA; assign m_axis_tstrb = M_AXIS_TSTRB; assign m_axis_tkeep = M_AXIS_TKEEP; assign m_axis_tid = M_AXIS_TID; assign m_axis_tdest = M_AXIS_TDEST; assign m_axis_tuser = M_AXIS_TUSER; assign AXI_AW_PROG_FULL_THRESH = axi_aw_prog_full_thresh; assign AXI_AW_PROG_EMPTY_THRESH = axi_aw_prog_empty_thresh; assign axi_aw_data_count = AXI_AW_DATA_COUNT; assign axi_aw_wr_data_count = AXI_AW_WR_DATA_COUNT; assign axi_aw_rd_data_count = AXI_AW_RD_DATA_COUNT; assign AXI_W_PROG_FULL_THRESH = axi_w_prog_full_thresh; assign AXI_W_PROG_EMPTY_THRESH = axi_w_prog_empty_thresh; assign axi_w_data_count = AXI_W_DATA_COUNT; assign axi_w_wr_data_count = AXI_W_WR_DATA_COUNT; assign axi_w_rd_data_count = AXI_W_RD_DATA_COUNT; assign AXI_B_PROG_FULL_THRESH = axi_b_prog_full_thresh; assign AXI_B_PROG_EMPTY_THRESH = axi_b_prog_empty_thresh; assign axi_b_data_count = AXI_B_DATA_COUNT; assign axi_b_wr_data_count = AXI_B_WR_DATA_COUNT; assign axi_b_rd_data_count = AXI_B_RD_DATA_COUNT; assign AXI_AR_PROG_FULL_THRESH = axi_ar_prog_full_thresh; assign AXI_AR_PROG_EMPTY_THRESH = axi_ar_prog_empty_thresh; assign axi_ar_data_count = AXI_AR_DATA_COUNT; assign axi_ar_wr_data_count = AXI_AR_WR_DATA_COUNT; assign axi_ar_rd_data_count = AXI_AR_RD_DATA_COUNT; assign AXI_R_PROG_FULL_THRESH = axi_r_prog_full_thresh; assign AXI_R_PROG_EMPTY_THRESH = axi_r_prog_empty_thresh; assign axi_r_data_count = AXI_R_DATA_COUNT; assign axi_r_wr_data_count = AXI_R_WR_DATA_COUNT; assign axi_r_rd_data_count = AXI_R_RD_DATA_COUNT; assign AXIS_PROG_FULL_THRESH = axis_prog_full_thresh; assign AXIS_PROG_EMPTY_THRESH = axis_prog_empty_thresh; assign axis_data_count = AXIS_DATA_COUNT; assign axis_wr_data_count = AXIS_WR_DATA_COUNT; assign axis_rd_data_count = AXIS_RD_DATA_COUNT; generate if (C_INTERFACE_TYPE == 0) begin : conv_fifo FIFO_GENERATOR_v12_0_CONV_VER #( .C_COMMON_CLOCK (C_COMMON_CLOCK), .C_COUNT_TYPE (C_COUNT_TYPE), .C_DATA_COUNT_WIDTH (C_DATA_COUNT_WIDTH), .C_DEFAULT_VALUE (C_DEFAULT_VALUE), .C_DIN_WIDTH (C_DIN_WIDTH), .C_DOUT_RST_VAL (C_USE_DOUT_RST == 1 ? C_DOUT_RST_VAL : 0), .C_DOUT_WIDTH (C_DOUT_WIDTH), .C_ENABLE_RLOCS (C_ENABLE_RLOCS), .C_FAMILY (C_FAMILY), .C_FULL_FLAGS_RST_VAL (C_FULL_FLAGS_RST_VAL), .C_HAS_ALMOST_EMPTY (C_HAS_ALMOST_EMPTY), .C_HAS_ALMOST_FULL (C_HAS_ALMOST_FULL), .C_HAS_BACKUP (C_HAS_BACKUP), .C_HAS_DATA_COUNT (C_HAS_DATA_COUNT), .C_HAS_INT_CLK (C_HAS_INT_CLK), .C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE), .C_HAS_OVERFLOW (C_HAS_OVERFLOW), .C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT), .C_HAS_RD_RST (C_HAS_RD_RST), .C_HAS_RST (C_HAS_RST), .C_HAS_SRST (C_HAS_SRST), .C_HAS_UNDERFLOW (C_HAS_UNDERFLOW), .C_HAS_VALID (C_HAS_VALID), .C_HAS_WR_ACK (C_HAS_WR_ACK), .C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT), .C_HAS_WR_RST (C_HAS_WR_RST), .C_IMPLEMENTATION_TYPE (C_IMPLEMENTATION_TYPE), .C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL), .C_MEMORY_TYPE (C_MEMORY_TYPE), .C_MIF_FILE_NAME (C_MIF_FILE_NAME), .C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE), .C_OVERFLOW_LOW (C_OVERFLOW_LOW), .C_PRELOAD_LATENCY (C_PRELOAD_LATENCY), .C_PRELOAD_REGS (C_PRELOAD_REGS), .C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE), .C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL), .C_PROG_EMPTY_THRESH_NEGATE_VAL (C_PROG_EMPTY_THRESH_NEGATE_VAL), .C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE), .C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL), .C_PROG_FULL_THRESH_NEGATE_VAL (C_PROG_FULL_THRESH_NEGATE_VAL), .C_PROG_FULL_TYPE (C_PROG_FULL_TYPE), .C_RD_DATA_COUNT_WIDTH (C_RD_DATA_COUNT_WIDTH), .C_RD_DEPTH (C_RD_DEPTH), .C_RD_FREQ (C_RD_FREQ), .C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH), .C_UNDERFLOW_LOW (C_UNDERFLOW_LOW), .C_USE_DOUT_RST (C_USE_DOUT_RST), .C_USE_ECC (C_USE_ECC), .C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG), .C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS), .C_USE_FWFT_DATA_COUNT (C_USE_FWFT_DATA_COUNT), .C_VALID_LOW (C_VALID_LOW), .C_WR_ACK_LOW (C_WR_ACK_LOW), .C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH), .C_WR_DEPTH (C_WR_DEPTH), .C_WR_FREQ (C_WR_FREQ), .C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH), .C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY), .C_MSGON_VAL (C_MSGON_VAL), .C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC), .C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE) ) fifo_generator_v12_0_conv_dut ( .BACKUP (BACKUP), .BACKUP_MARKER (BACKUP_MARKER), .CLK (CLK), .RST (RST), .SRST (SRST), .WR_CLK (WR_CLK), .WR_RST (WR_RST), .RD_CLK (RD_CLK), .RD_RST (RD_RST), .DIN (DIN), .WR_EN (WR_EN), .RD_EN (RD_EN), .PROG_EMPTY_THRESH (PROG_EMPTY_THRESH), .PROG_EMPTY_THRESH_ASSERT (PROG_EMPTY_THRESH_ASSERT), .PROG_EMPTY_THRESH_NEGATE (PROG_EMPTY_THRESH_NEGATE), .PROG_FULL_THRESH (PROG_FULL_THRESH), .PROG_FULL_THRESH_ASSERT (PROG_FULL_THRESH_ASSERT), .PROG_FULL_THRESH_NEGATE (PROG_FULL_THRESH_NEGATE), .INT_CLK (INT_CLK), .INJECTDBITERR (INJECTDBITERR), .INJECTSBITERR (INJECTSBITERR), .DOUT (DOUT), .FULL (FULL), .ALMOST_FULL (ALMOST_FULL), .WR_ACK (WR_ACK), .OVERFLOW (OVERFLOW), .EMPTY (EMPTY), .ALMOST_EMPTY (ALMOST_EMPTY), .VALID (VALID), .UNDERFLOW (UNDERFLOW), .DATA_COUNT (DATA_COUNT), .RD_DATA_COUNT (RD_DATA_COUNT), .WR_DATA_COUNT (wr_data_count_in), .PROG_FULL (PROG_FULL), .PROG_EMPTY (PROG_EMPTY), .SBITERR (SBITERR), .DBITERR (DBITERR), .wr_rst_busy (wr_rst_busy), .rd_rst_busy (rd_rst_busy), .wr_rst_i_out (wr_rst_int), .rd_rst_i_out (rd_rst_int) ); end endgenerate localparam IS_8SERIES = (C_FAMILY == "virtexu" || C_FAMILY == "kintexu" || C_FAMILY == "artixu" || C_FAMILY == "virtexum" || C_FAMILY == "zynque") ? 1 : 0; localparam C_AXI_SIZE_WIDTH = 3; localparam C_AXI_BURST_WIDTH = 2; localparam C_AXI_CACHE_WIDTH = 4; localparam C_AXI_PROT_WIDTH = 3; localparam C_AXI_QOS_WIDTH = 4; localparam C_AXI_REGION_WIDTH = 4; localparam C_AXI_BRESP_WIDTH = 2; localparam C_AXI_RRESP_WIDTH = 2; localparam IS_AXI_STREAMING = C_INTERFACE_TYPE == 1 ? 1 : 0; localparam TDATA_OFFSET = C_HAS_AXIS_TDATA == 1 ? C_DIN_WIDTH_AXIS-C_AXIS_TDATA_WIDTH : C_DIN_WIDTH_AXIS; localparam TSTRB_OFFSET = C_HAS_AXIS_TSTRB == 1 ? TDATA_OFFSET-C_AXIS_TSTRB_WIDTH : TDATA_OFFSET; localparam TKEEP_OFFSET = C_HAS_AXIS_TKEEP == 1 ? TSTRB_OFFSET-C_AXIS_TKEEP_WIDTH : TSTRB_OFFSET; localparam TID_OFFSET = C_HAS_AXIS_TID == 1 ? TKEEP_OFFSET-C_AXIS_TID_WIDTH : TKEEP_OFFSET; localparam TDEST_OFFSET = C_HAS_AXIS_TDEST == 1 ? TID_OFFSET-C_AXIS_TDEST_WIDTH : TID_OFFSET; localparam TUSER_OFFSET = C_HAS_AXIS_TUSER == 1 ? TDEST_OFFSET-C_AXIS_TUSER_WIDTH : TDEST_OFFSET; localparam LOG_DEPTH_AXIS = find_log2(C_WR_DEPTH_AXIS); localparam LOG_WR_DEPTH = find_log2(C_WR_DEPTH); function [LOG_DEPTH_AXIS-1:0] bin2gray; input [LOG_DEPTH_AXIS-1:0] x; begin bin2gray = x ^ (x>>1); end endfunction function [LOG_DEPTH_AXIS-1:0] gray2bin; input [LOG_DEPTH_AXIS-1:0] x; integer i; begin gray2bin[LOG_DEPTH_AXIS-1] = x[LOG_DEPTH_AXIS-1]; for(i=LOG_DEPTH_AXIS-2; i>=0; i=i-1) begin gray2bin[i] = gray2bin[i+1] ^ x[i]; end end endfunction wire [(LOG_WR_DEPTH)-1 : 0] w_cnt_gc_asreg_last; wire [LOG_WR_DEPTH-1 : 0] w_q [0:C_SYNCHRONIZER_STAGE] ; wire [LOG_WR_DEPTH-1 : 0] w_q_temp [1:C_SYNCHRONIZER_STAGE] ; reg [LOG_WR_DEPTH-1 : 0] w_cnt_rd = 0; reg [LOG_WR_DEPTH-1 : 0] w_cnt = 0; reg [LOG_WR_DEPTH-1 : 0] w_cnt_gc = 0; reg [LOG_WR_DEPTH-1 : 0] r_cnt = 0; wire [LOG_WR_DEPTH : 0] adj_w_cnt_rd_pad; wire [LOG_WR_DEPTH : 0] r_inv_pad; wire [LOG_WR_DEPTH-1 : 0] d_cnt; reg [LOG_WR_DEPTH : 0] d_cnt_pad = 0; reg adj_w_cnt_rd_pad_0 = 0; reg r_inv_pad_0 = 0; genvar l; generate for (l = 1; ((l <= C_SYNCHRONIZER_STAGE) && (C_HAS_DATA_COUNTS_AXIS == 3 && C_INTERFACE_TYPE == 0) ); l = l + 1) begin : g_cnt_sync_stage fifo_generator_v12_0_sync_stage #( .C_WIDTH (LOG_WR_DEPTH) ) rd_stg_inst ( .RST (rd_rst_int), .CLK (RD_CLK), .DIN (w_q[l-1]), .DOUT (w_q[l]) ); end endgenerate // gpkt_cnt_sync_stage generate if (C_INTERFACE_TYPE == 0 && C_HAS_DATA_COUNTS_AXIS == 3) begin : fifo_ic_adapter assign wr_eop_ad = WR_EN & !(FULL); assign rd_eop_ad = RD_EN & !(EMPTY); always @ (posedge wr_rst_int or posedge WR_CLK) begin if (wr_rst_int) w_cnt <= 1'b0; else if (wr_eop_ad) w_cnt <= w_cnt + 1; end always @ (posedge wr_rst_int or posedge WR_CLK) begin if (wr_rst_int) w_cnt_gc <= 1'b0; else w_cnt_gc <= bin2gray(w_cnt); end assign w_q[0] = w_cnt_gc; assign w_cnt_gc_asreg_last = w_q[C_SYNCHRONIZER_STAGE]; always @ (posedge rd_rst_int or posedge RD_CLK) begin if (rd_rst_int) w_cnt_rd <= 1'b0; else w_cnt_rd <= gray2bin(w_cnt_gc_asreg_last); end always @ (posedge rd_rst_int or posedge RD_CLK) begin if (rd_rst_int) r_cnt <= 1'b0; else if (rd_eop_ad) r_cnt <= r_cnt + 1; end // Take the difference of write and read packet count // Logic is similar to rd_pe_as assign adj_w_cnt_rd_pad[LOG_WR_DEPTH : 1] = w_cnt_rd; assign r_inv_pad[LOG_WR_DEPTH : 1] = ~r_cnt; assign adj_w_cnt_rd_pad[0] = adj_w_cnt_rd_pad_0; assign r_inv_pad[0] = r_inv_pad_0; always @ ( rd_eop_ad ) begin if (!rd_eop_ad) begin adj_w_cnt_rd_pad_0 <= 1'b1; r_inv_pad_0 <= 1'b1; end else begin adj_w_cnt_rd_pad_0 <= 1'b0; r_inv_pad_0 <= 1'b0; end end always @ (posedge rd_rst_int or posedge RD_CLK) begin if (rd_rst_int) d_cnt_pad <= 1'b0; else d_cnt_pad <= adj_w_cnt_rd_pad + r_inv_pad ; end assign d_cnt = d_cnt_pad [LOG_WR_DEPTH : 1] ; assign WR_DATA_COUNT = d_cnt; end endgenerate // fifo_ic_adapter generate if (C_INTERFACE_TYPE == 0 && C_HAS_DATA_COUNTS_AXIS != 3) begin : fifo_icn_adapter assign WR_DATA_COUNT = wr_data_count_in; end endgenerate // fifo_icn_adapter wire inverted_reset = ~S_ARESETN; wire axi_rs_rst; reg rst_d1 = 0 ; reg rst_d2 = 0 ; wire [C_DIN_WIDTH_AXIS-1:0] axis_din ; wire [C_DIN_WIDTH_AXIS-1:0] axis_dout ; wire axis_full ; wire axis_almost_full ; wire axis_empty ; wire axis_s_axis_tready; wire axis_m_axis_tvalid; wire axis_wr_en ; wire axis_rd_en ; wire axis_we ; wire axis_re ; wire [C_WR_PNTR_WIDTH_AXIS:0] axis_dc; reg axis_pkt_read = 1'b0; wire axis_rd_rst; wire axis_wr_rst; generate if (C_INTERFACE_TYPE > 0 && (C_AXIS_TYPE == 1 || C_WACH_TYPE == 1 || C_WDCH_TYPE == 1 || C_WRCH_TYPE == 1 || C_RACH_TYPE == 1 || C_RDCH_TYPE == 1)) begin : gaxi_rs_rst always @ (posedge inverted_reset or posedge S_ACLK) begin if (inverted_reset) begin rst_d1 <= 1'b1; rst_d2 <= 1'b1; end else begin rst_d1 <= #`TCQ 1'b0; rst_d2 <= #`TCQ rst_d1; end end assign axi_rs_rst = rst_d2; end endgenerate // gaxi_rs_rst generate if (IS_AXI_STREAMING == 1 && C_AXIS_TYPE == 0) begin : axi_streaming // Write protection when almost full or prog_full is high assign axis_we = (C_PROG_FULL_TYPE_AXIS != 0) ? axis_s_axis_tready & S_AXIS_TVALID : (C_APPLICATION_TYPE_AXIS == 1) ? axis_s_axis_tready & S_AXIS_TVALID : S_AXIS_TVALID; // Read protection when almost empty or prog_empty is high assign axis_re = (C_PROG_EMPTY_TYPE_AXIS != 0) ? axis_m_axis_tvalid & M_AXIS_TREADY : (C_APPLICATION_TYPE_AXIS == 1) ? axis_m_axis_tvalid & M_AXIS_TREADY : M_AXIS_TREADY; assign axis_wr_en = (C_HAS_SLAVE_CE == 1) ? axis_we & S_ACLK_EN : axis_we; assign axis_rd_en = (C_HAS_MASTER_CE == 1) ? axis_re & M_ACLK_EN : axis_re; FIFO_GENERATOR_v12_0_CONV_VER #( .C_FAMILY (C_FAMILY), .C_COMMON_CLOCK (C_COMMON_CLOCK), .C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_AXIS == 1 || C_IMPLEMENTATION_TYPE_AXIS == 11) ? 1 : (C_IMPLEMENTATION_TYPE_AXIS == 2 || C_IMPLEMENTATION_TYPE_AXIS == 12) ? 2 : 4), .C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_AXIS == 1 || C_IMPLEMENTATION_TYPE_AXIS == 2) ? 0 : (C_IMPLEMENTATION_TYPE_AXIS == 11 || C_IMPLEMENTATION_TYPE_AXIS == 12) ? 2 : 6), .C_PRELOAD_REGS (1), // always FWFT for AXI .C_PRELOAD_LATENCY (0), // always FWFT for AXI .C_DIN_WIDTH (C_DIN_WIDTH_AXIS), .C_WR_DEPTH (C_WR_DEPTH_AXIS), .C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_AXIS), .C_DOUT_WIDTH (C_DIN_WIDTH_AXIS), .C_RD_DEPTH (C_WR_DEPTH_AXIS), .C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_AXIS), .C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_AXIS), .C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_AXIS), .C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_AXIS), .C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS), .C_USE_ECC (C_USE_ECC_AXIS), .C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_AXIS), .C_HAS_ALMOST_EMPTY (0), .C_HAS_ALMOST_FULL (C_APPLICATION_TYPE_AXIS == 1 ? 1: 0), .C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE), .C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG), .C_FIFO_TYPE (C_APPLICATION_TYPE_AXIS == 1 ? 0: C_APPLICATION_TYPE_AXIS), .C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE), .C_HAS_WR_RST (0), .C_HAS_RD_RST (0), .C_HAS_RST (1), .C_HAS_SRST (0), .C_DOUT_RST_VAL (0), .C_HAS_VALID (0), .C_VALID_LOW (C_VALID_LOW), .C_HAS_UNDERFLOW (C_HAS_UNDERFLOW), .C_UNDERFLOW_LOW (C_UNDERFLOW_LOW), .C_HAS_WR_ACK (0), .C_WR_ACK_LOW (C_WR_ACK_LOW), .C_HAS_OVERFLOW (C_HAS_OVERFLOW), .C_OVERFLOW_LOW (C_OVERFLOW_LOW), .C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_AXIS == 1) ? 1 : 0), .C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_AXIS + 1), .C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_AXIS == 1) ? 1 : 0), .C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_AXIS + 1), .C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true .C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_AXIS == 1) ? 1 : 0), .C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_AXIS + 1), .C_FULL_FLAGS_RST_VAL (1), .C_USE_DOUT_RST (0), .C_MSGON_VAL (C_MSGON_VAL), .C_ENABLE_RST_SYNC (1), .C_COUNT_TYPE (C_COUNT_TYPE), .C_DEFAULT_VALUE (C_DEFAULT_VALUE), .C_ENABLE_RLOCS (C_ENABLE_RLOCS), .C_HAS_BACKUP (C_HAS_BACKUP), .C_HAS_INT_CLK (C_HAS_INT_CLK), .C_MIF_FILE_NAME (C_MIF_FILE_NAME), .C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE), .C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL), .C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE), .C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE), .C_RD_FREQ (C_RD_FREQ), .C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS), .C_WR_FREQ (C_WR_FREQ), .C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY) ) fifo_generator_v12_0_axis_dut ( .CLK (S_ACLK), .WR_CLK (S_ACLK), .RD_CLK (M_ACLK), .RST (inverted_reset), .SRST (1'b0), .WR_RST (inverted_reset), .RD_RST (inverted_reset), .WR_EN (axis_wr_en), .RD_EN (axis_rd_en), .PROG_FULL_THRESH (AXIS_PROG_FULL_THRESH), .PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_AXIS{1'b0}}), .PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_AXIS{1'b0}}), .PROG_EMPTY_THRESH (AXIS_PROG_EMPTY_THRESH), .PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_AXIS{1'b0}}), .PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_AXIS{1'b0}}), .INJECTDBITERR (AXIS_INJECTDBITERR), .INJECTSBITERR (AXIS_INJECTSBITERR), .DIN (axis_din), .DOUT (axis_dout), .FULL (axis_full), .EMPTY (axis_empty), .ALMOST_FULL (axis_almost_full), .PROG_FULL (AXIS_PROG_FULL), .ALMOST_EMPTY (), .PROG_EMPTY (AXIS_PROG_EMPTY), .WR_ACK (), .OVERFLOW (AXIS_OVERFLOW), .VALID (), .UNDERFLOW (AXIS_UNDERFLOW), .DATA_COUNT (axis_dc), .RD_DATA_COUNT (AXIS_RD_DATA_COUNT), .WR_DATA_COUNT (AXIS_WR_DATA_COUNT), .SBITERR (AXIS_SBITERR), .DBITERR (AXIS_DBITERR), .wr_rst_busy (wr_rst_busy_axis), .rd_rst_busy (rd_rst_busy_axis), .wr_rst_i_out (axis_wr_rst), .rd_rst_i_out (axis_rd_rst), .BACKUP (BACKUP), .BACKUP_MARKER (BACKUP_MARKER), .INT_CLK (INT_CLK) ); assign axis_s_axis_tready = (IS_8SERIES == 0) ? ~axis_full : (C_IMPLEMENTATION_TYPE_AXIS == 5 || C_IMPLEMENTATION_TYPE_AXIS == 13) ? ~(axis_full | wr_rst_busy_axis) : ~axis_full; assign axis_m_axis_tvalid = (C_APPLICATION_TYPE_AXIS != 1) ? ~axis_empty : ~axis_empty & axis_pkt_read; assign S_AXIS_TREADY = axis_s_axis_tready; assign M_AXIS_TVALID = axis_m_axis_tvalid; end endgenerate // axi_streaming wire axis_wr_eop; reg axis_wr_eop_d1 = 1'b0; wire axis_rd_eop; integer axis_pkt_cnt; generate if (C_APPLICATION_TYPE_AXIS == 1 && C_COMMON_CLOCK == 1) begin : gaxis_pkt_fifo_cc assign axis_wr_eop = axis_wr_en & S_AXIS_TLAST; assign axis_rd_eop = axis_rd_en & axis_dout[0]; always @ (posedge inverted_reset or posedge S_ACLK) begin if (inverted_reset) axis_pkt_read <= 1'b0; else if (axis_rd_eop && (axis_pkt_cnt == 1) && ~axis_wr_eop_d1) axis_pkt_read <= 1'b0; else if ((axis_pkt_cnt > 0) || (axis_almost_full && ~axis_empty)) axis_pkt_read <= 1'b1; end always @ (posedge inverted_reset or posedge S_ACLK) begin if (inverted_reset) axis_wr_eop_d1 <= 1'b0; else axis_wr_eop_d1 <= axis_wr_eop; end always @ (posedge inverted_reset or posedge S_ACLK) begin if (inverted_reset) axis_pkt_cnt <= 0; else if (axis_wr_eop_d1 && ~axis_rd_eop) axis_pkt_cnt <= axis_pkt_cnt + 1; else if (axis_rd_eop && ~axis_wr_eop_d1) axis_pkt_cnt <= axis_pkt_cnt - 1; end end endgenerate // gaxis_pkt_fifo_cc reg [LOG_DEPTH_AXIS-1 : 0] axis_wpkt_cnt_gc = 0; wire [(LOG_DEPTH_AXIS)-1 : 0] axis_wpkt_cnt_gc_asreg_last; wire axis_rd_has_rst; wire [0:C_SYNCHRONIZER_STAGE] axis_af_q ; wire [LOG_DEPTH_AXIS-1 : 0] wpkt_q [0:C_SYNCHRONIZER_STAGE] ; wire [1:C_SYNCHRONIZER_STAGE] axis_af_q_temp = 0; wire [LOG_DEPTH_AXIS-1 : 0] wpkt_q_temp [1:C_SYNCHRONIZER_STAGE] ; reg [LOG_DEPTH_AXIS-1 : 0] axis_wpkt_cnt_rd = 0; reg [LOG_DEPTH_AXIS-1 : 0] axis_wpkt_cnt = 0; reg [LOG_DEPTH_AXIS-1 : 0] axis_rpkt_cnt = 0; wire [LOG_DEPTH_AXIS : 0] adj_axis_wpkt_cnt_rd_pad; wire [LOG_DEPTH_AXIS : 0] rpkt_inv_pad; wire [LOG_DEPTH_AXIS-1 : 0] diff_pkt_cnt; reg [LOG_DEPTH_AXIS : 0] diff_pkt_cnt_pad = 0; reg adj_axis_wpkt_cnt_rd_pad_0 = 0; reg rpkt_inv_pad_0 = 0; wire axis_af_rd ; generate if (C_HAS_RST == 1) begin : rst_blk_has assign axis_rd_has_rst = axis_rd_rst; end endgenerate //rst_blk_has generate if (C_HAS_RST == 0) begin :rst_blk_no assign axis_rd_has_rst = 1'b0; end endgenerate //rst_blk_no genvar i; generate for (i = 1; ((i <= C_SYNCHRONIZER_STAGE) && (C_APPLICATION_TYPE_AXIS == 1 && C_COMMON_CLOCK == 0) ); i = i + 1) begin : gpkt_cnt_sync_stage fifo_generator_v12_0_sync_stage #( .C_WIDTH (LOG_DEPTH_AXIS) ) rd_stg_inst ( .RST (axis_rd_has_rst), .CLK (M_ACLK), .DIN (wpkt_q[i-1]), .DOUT (wpkt_q[i]) ); fifo_generator_v12_0_sync_stage #( .C_WIDTH (1) ) wr_stg_inst ( .RST (axis_rd_has_rst), .CLK (M_ACLK), .DIN (axis_af_q[i-1]), .DOUT (axis_af_q[i]) ); end endgenerate // gpkt_cnt_sync_stage generate if (C_APPLICATION_TYPE_AXIS == 1 && C_COMMON_CLOCK == 0) begin : gaxis_pkt_fifo_ic assign axis_wr_eop = axis_wr_en & S_AXIS_TLAST; assign axis_rd_eop = axis_rd_en & axis_dout[0]; always @ (posedge axis_rd_has_rst or posedge M_ACLK) begin if (axis_rd_has_rst) axis_pkt_read <= 1'b0; else if (axis_rd_eop && (diff_pkt_cnt == 1)) axis_pkt_read <= 1'b0; else if ((diff_pkt_cnt > 0) || (axis_af_rd && ~axis_empty)) axis_pkt_read <= 1'b1; end always @ (posedge axis_wr_rst or posedge S_ACLK) begin if (axis_wr_rst) axis_wpkt_cnt <= 1'b0; else if (axis_wr_eop) axis_wpkt_cnt <= axis_wpkt_cnt + 1; end always @ (posedge axis_wr_rst or posedge S_ACLK) begin if (axis_wr_rst) axis_wpkt_cnt_gc <= 1'b0; else axis_wpkt_cnt_gc <= bin2gray(axis_wpkt_cnt); end assign wpkt_q[0] = axis_wpkt_cnt_gc; assign axis_wpkt_cnt_gc_asreg_last = wpkt_q[C_SYNCHRONIZER_STAGE]; assign axis_af_q[0] = axis_almost_full; //assign axis_af_q[1:C_SYNCHRONIZER_STAGE] = axis_af_q_temp[1:C_SYNCHRONIZER_STAGE]; assign axis_af_rd = axis_af_q[C_SYNCHRONIZER_STAGE]; always @ (posedge axis_rd_has_rst or posedge M_ACLK) begin if (axis_rd_has_rst) axis_wpkt_cnt_rd <= 1'b0; else axis_wpkt_cnt_rd <= gray2bin(axis_wpkt_cnt_gc_asreg_last); end always @ (posedge axis_rd_rst or posedge M_ACLK) begin if (axis_rd_has_rst) axis_rpkt_cnt <= 1'b0; else if (axis_rd_eop) axis_rpkt_cnt <= axis_rpkt_cnt + 1; end // Take the difference of write and read packet count // Logic is similar to rd_pe_as assign adj_axis_wpkt_cnt_rd_pad[LOG_DEPTH_AXIS : 1] = axis_wpkt_cnt_rd; assign rpkt_inv_pad[LOG_DEPTH_AXIS : 1] = ~axis_rpkt_cnt; assign adj_axis_wpkt_cnt_rd_pad[0] = adj_axis_wpkt_cnt_rd_pad_0; assign rpkt_inv_pad[0] = rpkt_inv_pad_0; always @ ( axis_rd_eop ) begin if (!axis_rd_eop) begin adj_axis_wpkt_cnt_rd_pad_0 <= 1'b1; rpkt_inv_pad_0 <= 1'b1; end else begin adj_axis_wpkt_cnt_rd_pad_0 <= 1'b0; rpkt_inv_pad_0 <= 1'b0; end end always @ (posedge axis_rd_rst or posedge M_ACLK) begin if (axis_rd_has_rst) diff_pkt_cnt_pad <= 1'b0; else diff_pkt_cnt_pad <= adj_axis_wpkt_cnt_rd_pad + rpkt_inv_pad ; end assign diff_pkt_cnt = diff_pkt_cnt_pad [LOG_DEPTH_AXIS : 1] ; end endgenerate // gaxis_pkt_fifo_ic // Generate the accurate data count for axi stream packet fifo configuration reg [C_WR_PNTR_WIDTH_AXIS:0] axis_dc_pkt_fifo = 0; generate if (IS_AXI_STREAMING == 1 && C_HAS_DATA_COUNTS_AXIS == 1 && C_APPLICATION_TYPE_AXIS == 1) begin : gdc_pkt always @ (posedge inverted_reset or posedge S_ACLK) begin if (inverted_reset) axis_dc_pkt_fifo <= 0; else if (axis_wr_en && (~axis_rd_en)) axis_dc_pkt_fifo <= #`TCQ axis_dc_pkt_fifo + 1; else if (~axis_wr_en && axis_rd_en) axis_dc_pkt_fifo <= #`TCQ axis_dc_pkt_fifo - 1; end assign AXIS_DATA_COUNT = axis_dc_pkt_fifo; end endgenerate // gdc_pkt generate if (IS_AXI_STREAMING == 1 && C_HAS_DATA_COUNTS_AXIS == 0 && C_APPLICATION_TYPE_AXIS == 1) begin : gndc_pkt assign AXIS_DATA_COUNT = 0; end endgenerate // gndc_pkt generate if (IS_AXI_STREAMING == 1 && C_APPLICATION_TYPE_AXIS != 1) begin : gdc assign AXIS_DATA_COUNT = axis_dc; end endgenerate // gdc // Register Slice for Write Address Channel generate if (C_AXIS_TYPE == 1) begin : gaxis_reg_slice assign axis_wr_en = (C_HAS_SLAVE_CE == 1) ? S_AXIS_TVALID & S_ACLK_EN : S_AXIS_TVALID; assign axis_rd_en = (C_HAS_MASTER_CE == 1) ? M_AXIS_TREADY & M_ACLK_EN : M_AXIS_TREADY; fifo_generator_v12_0_axic_reg_slice #( .C_FAMILY (C_FAMILY), .C_DATA_WIDTH (C_DIN_WIDTH_AXIS), .C_REG_CONFIG (C_REG_SLICE_MODE_AXIS) ) axis_reg_slice_inst ( // System Signals .ACLK (S_ACLK), .ARESET (axi_rs_rst), // Slave side .S_PAYLOAD_DATA (axis_din), .S_VALID (axis_wr_en), .S_READY (S_AXIS_TREADY), // Master side .M_PAYLOAD_DATA (axis_dout), .M_VALID (M_AXIS_TVALID), .M_READY (axis_rd_en) ); end endgenerate // gaxis_reg_slice generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TDATA == 1) begin : tdata assign axis_din[C_DIN_WIDTH_AXIS-1:TDATA_OFFSET] = S_AXIS_TDATA; assign M_AXIS_TDATA = axis_dout[C_DIN_WIDTH_AXIS-1:TDATA_OFFSET]; end endgenerate generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TSTRB == 1) begin : tstrb assign axis_din[TDATA_OFFSET-1:TSTRB_OFFSET] = S_AXIS_TSTRB; assign M_AXIS_TSTRB = axis_dout[TDATA_OFFSET-1:TSTRB_OFFSET]; end endgenerate generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TKEEP == 1) begin : tkeep assign axis_din[TSTRB_OFFSET-1:TKEEP_OFFSET] = S_AXIS_TKEEP; assign M_AXIS_TKEEP = axis_dout[TSTRB_OFFSET-1:TKEEP_OFFSET]; end endgenerate generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TID == 1) begin : tid assign axis_din[TKEEP_OFFSET-1:TID_OFFSET] = S_AXIS_TID; assign M_AXIS_TID = axis_dout[TKEEP_OFFSET-1:TID_OFFSET]; end endgenerate generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TDEST == 1) begin : tdest assign axis_din[TID_OFFSET-1:TDEST_OFFSET] = S_AXIS_TDEST; assign M_AXIS_TDEST = axis_dout[TID_OFFSET-1:TDEST_OFFSET]; end endgenerate generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TUSER == 1) begin : tuser assign axis_din[TDEST_OFFSET-1:TUSER_OFFSET] = S_AXIS_TUSER; assign M_AXIS_TUSER = axis_dout[TDEST_OFFSET-1:TUSER_OFFSET]; end endgenerate generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TLAST == 1) begin : tlast assign axis_din[0] = S_AXIS_TLAST; assign M_AXIS_TLAST = axis_dout[0]; end endgenerate //########################################################################### // AXI FULL Write Channel (axi_write_channel) //########################################################################### localparam IS_AXI_FULL = ((C_INTERFACE_TYPE == 2) && (C_AXI_TYPE != 2)) ? 1 : 0; localparam IS_AXI_LITE = ((C_INTERFACE_TYPE == 2) && (C_AXI_TYPE == 2)) ? 1 : 0; localparam IS_AXI_FULL_WACH = ((IS_AXI_FULL == 1) && (C_WACH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0; localparam IS_AXI_FULL_WDCH = ((IS_AXI_FULL == 1) && (C_WDCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0; localparam IS_AXI_FULL_WRCH = ((IS_AXI_FULL == 1) && (C_WRCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0; localparam IS_AXI_FULL_RACH = ((IS_AXI_FULL == 1) && (C_RACH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0; localparam IS_AXI_FULL_RDCH = ((IS_AXI_FULL == 1) && (C_RDCH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0; localparam IS_AXI_LITE_WACH = ((IS_AXI_LITE == 1) && (C_WACH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0; localparam IS_AXI_LITE_WDCH = ((IS_AXI_LITE == 1) && (C_WDCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0; localparam IS_AXI_LITE_WRCH = ((IS_AXI_LITE == 1) && (C_WRCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0; localparam IS_AXI_LITE_RACH = ((IS_AXI_LITE == 1) && (C_RACH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0; localparam IS_AXI_LITE_RDCH = ((IS_AXI_LITE == 1) && (C_RDCH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0; localparam IS_WR_ADDR_CH = ((IS_AXI_FULL_WACH == 1) || (IS_AXI_LITE_WACH == 1)) ? 1 : 0; localparam IS_WR_DATA_CH = ((IS_AXI_FULL_WDCH == 1) || (IS_AXI_LITE_WDCH == 1)) ? 1 : 0; localparam IS_WR_RESP_CH = ((IS_AXI_FULL_WRCH == 1) || (IS_AXI_LITE_WRCH == 1)) ? 1 : 0; localparam IS_RD_ADDR_CH = ((IS_AXI_FULL_RACH == 1) || (IS_AXI_LITE_RACH == 1)) ? 1 : 0; localparam IS_RD_DATA_CH = ((IS_AXI_FULL_RDCH == 1) || (IS_AXI_LITE_RDCH == 1)) ? 1 : 0; localparam AWID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_WACH - C_AXI_ID_WIDTH : C_DIN_WIDTH_WACH; localparam AWADDR_OFFSET = AWID_OFFSET - C_AXI_ADDR_WIDTH; localparam AWLEN_OFFSET = C_AXI_TYPE != 2 ? AWADDR_OFFSET - C_AXI_LEN_WIDTH : AWADDR_OFFSET; localparam AWSIZE_OFFSET = C_AXI_TYPE != 2 ? AWLEN_OFFSET - C_AXI_SIZE_WIDTH : AWLEN_OFFSET; localparam AWBURST_OFFSET = C_AXI_TYPE != 2 ? AWSIZE_OFFSET - C_AXI_BURST_WIDTH : AWSIZE_OFFSET; localparam AWLOCK_OFFSET = C_AXI_TYPE != 2 ? AWBURST_OFFSET - C_AXI_LOCK_WIDTH : AWBURST_OFFSET; localparam AWCACHE_OFFSET = C_AXI_TYPE != 2 ? AWLOCK_OFFSET - C_AXI_CACHE_WIDTH : AWLOCK_OFFSET; localparam AWPROT_OFFSET = AWCACHE_OFFSET - C_AXI_PROT_WIDTH; localparam AWQOS_OFFSET = AWPROT_OFFSET - C_AXI_QOS_WIDTH; localparam AWREGION_OFFSET = C_AXI_TYPE == 1 ? AWQOS_OFFSET - C_AXI_REGION_WIDTH : AWQOS_OFFSET; localparam AWUSER_OFFSET = C_HAS_AXI_AWUSER == 1 ? AWREGION_OFFSET-C_AXI_AWUSER_WIDTH : AWREGION_OFFSET; localparam WID_OFFSET = (C_AXI_TYPE == 3 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_WDCH - C_AXI_ID_WIDTH : C_DIN_WIDTH_WDCH; localparam WDATA_OFFSET = WID_OFFSET - C_AXI_DATA_WIDTH; localparam WSTRB_OFFSET = WDATA_OFFSET - C_AXI_DATA_WIDTH/8; localparam WUSER_OFFSET = C_HAS_AXI_WUSER == 1 ? WSTRB_OFFSET-C_AXI_WUSER_WIDTH : WSTRB_OFFSET; localparam BID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_WRCH - C_AXI_ID_WIDTH : C_DIN_WIDTH_WRCH; localparam BRESP_OFFSET = BID_OFFSET - C_AXI_BRESP_WIDTH; localparam BUSER_OFFSET = C_HAS_AXI_BUSER == 1 ? BRESP_OFFSET-C_AXI_BUSER_WIDTH : BRESP_OFFSET; wire [C_DIN_WIDTH_WACH-1:0] wach_din ; wire [C_DIN_WIDTH_WACH-1:0] wach_dout ; wire [C_DIN_WIDTH_WACH-1:0] wach_dout_pkt ; wire wach_full ; wire wach_almost_full ; wire wach_prog_full ; wire wach_empty ; wire wach_almost_empty ; wire wach_prog_empty ; wire [C_DIN_WIDTH_WDCH-1:0] wdch_din ; wire [C_DIN_WIDTH_WDCH-1:0] wdch_dout ; wire wdch_full ; wire wdch_almost_full ; wire wdch_prog_full ; wire wdch_empty ; wire wdch_almost_empty ; wire wdch_prog_empty ; wire [C_DIN_WIDTH_WRCH-1:0] wrch_din ; wire [C_DIN_WIDTH_WRCH-1:0] wrch_dout ; wire wrch_full ; wire wrch_almost_full ; wire wrch_prog_full ; wire wrch_empty ; wire wrch_almost_empty ; wire wrch_prog_empty ; wire axi_aw_underflow_i; wire axi_w_underflow_i ; wire axi_b_underflow_i ; wire axi_aw_overflow_i ; wire axi_w_overflow_i ; wire axi_b_overflow_i ; wire axi_wr_underflow_i; wire axi_wr_overflow_i ; wire wach_s_axi_awready; wire wach_m_axi_awvalid; wire wach_wr_en ; wire wach_rd_en ; wire wdch_s_axi_wready ; wire wdch_m_axi_wvalid ; wire wdch_wr_en ; wire wdch_rd_en ; wire wrch_s_axi_bvalid ; wire wrch_m_axi_bready ; wire wrch_wr_en ; wire wrch_rd_en ; wire txn_count_up ; wire txn_count_down ; wire awvalid_en ; wire awvalid_pkt ; wire awready_pkt ; integer wr_pkt_count ; wire wach_we ; wire wach_re ; wire wdch_we ; wire wdch_re ; wire wrch_we ; wire wrch_re ; generate if (IS_WR_ADDR_CH == 1) begin : axi_write_address_channel // Write protection when almost full or prog_full is high assign wach_we = (C_PROG_FULL_TYPE_WACH != 0) ? wach_s_axi_awready & S_AXI_AWVALID : S_AXI_AWVALID; // Read protection when almost empty or prog_empty is high assign wach_re = (C_PROG_EMPTY_TYPE_WACH != 0 && C_APPLICATION_TYPE_WACH == 1) ? wach_m_axi_awvalid & awready_pkt & awvalid_en : (C_PROG_EMPTY_TYPE_WACH != 0 && C_APPLICATION_TYPE_WACH != 1) ? M_AXI_AWREADY && wach_m_axi_awvalid : (C_PROG_EMPTY_TYPE_WACH == 0 && C_APPLICATION_TYPE_WACH == 1) ? awready_pkt & awvalid_en : (C_PROG_EMPTY_TYPE_WACH == 0 && C_APPLICATION_TYPE_WACH != 1) ? M_AXI_AWREADY : 1'b0; assign wach_wr_en = (C_HAS_SLAVE_CE == 1) ? wach_we & S_ACLK_EN : wach_we; assign wach_rd_en = (C_HAS_MASTER_CE == 1) ? wach_re & M_ACLK_EN : wach_re; FIFO_GENERATOR_v12_0_CONV_VER #( .C_FAMILY (C_FAMILY), .C_COMMON_CLOCK (C_COMMON_CLOCK), .C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_WACH == 1 || C_IMPLEMENTATION_TYPE_WACH == 11) ? 1 : (C_IMPLEMENTATION_TYPE_WACH == 2 || C_IMPLEMENTATION_TYPE_WACH == 12) ? 2 : 4), .C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_WACH == 1 || C_IMPLEMENTATION_TYPE_WACH == 2) ? 0 : (C_IMPLEMENTATION_TYPE_WACH == 11 || C_IMPLEMENTATION_TYPE_WACH == 12) ? 2 : 6), .C_PRELOAD_REGS (1), // always FWFT for AXI .C_PRELOAD_LATENCY (0), // always FWFT for AXI .C_DIN_WIDTH (C_DIN_WIDTH_WACH), .C_WR_DEPTH (C_WR_DEPTH_WACH), .C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_WACH), .C_DOUT_WIDTH (C_DIN_WIDTH_WACH), .C_RD_DEPTH (C_WR_DEPTH_WACH), .C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_WACH), .C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_WACH), .C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_WACH), .C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_WACH), .C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH), .C_USE_ECC (C_USE_ECC_WACH), .C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_WACH), .C_HAS_ALMOST_EMPTY (0), .C_HAS_ALMOST_FULL (0), .C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE), .C_FIFO_TYPE ((C_APPLICATION_TYPE_WACH == 1)?0:C_APPLICATION_TYPE_WACH), .C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE), .C_HAS_WR_RST (0), .C_HAS_RD_RST (0), .C_HAS_RST (1), .C_HAS_SRST (0), .C_DOUT_RST_VAL (0), .C_HAS_VALID (0), .C_VALID_LOW (C_VALID_LOW), .C_HAS_UNDERFLOW (C_HAS_UNDERFLOW), .C_UNDERFLOW_LOW (C_UNDERFLOW_LOW), .C_HAS_WR_ACK (0), .C_WR_ACK_LOW (C_WR_ACK_LOW), .C_HAS_OVERFLOW (C_HAS_OVERFLOW), .C_OVERFLOW_LOW (C_OVERFLOW_LOW), .C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_WACH == 1) ? 1 : 0), .C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WACH + 1), .C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WACH == 1) ? 1 : 0), .C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WACH + 1), .C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true .C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WACH == 1) ? 1 : 0), .C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WACH + 1), .C_FULL_FLAGS_RST_VAL (1), .C_USE_EMBEDDED_REG (0), .C_USE_DOUT_RST (0), .C_MSGON_VAL (C_MSGON_VAL), .C_ENABLE_RST_SYNC (1), .C_COUNT_TYPE (C_COUNT_TYPE), .C_DEFAULT_VALUE (C_DEFAULT_VALUE), .C_ENABLE_RLOCS (C_ENABLE_RLOCS), .C_HAS_BACKUP (C_HAS_BACKUP), .C_HAS_INT_CLK (C_HAS_INT_CLK), .C_MIF_FILE_NAME (C_MIF_FILE_NAME), .C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE), .C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL), .C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE), .C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE), .C_RD_FREQ (C_RD_FREQ), .C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS), .C_WR_FREQ (C_WR_FREQ), .C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY) ) fifo_generator_v12_0_wach_dut ( .CLK (S_ACLK), .WR_CLK (S_ACLK), .RD_CLK (M_ACLK), .RST (inverted_reset), .SRST (1'b0), .WR_RST (inverted_reset), .RD_RST (inverted_reset), .WR_EN (wach_wr_en), .RD_EN (wach_rd_en), .PROG_FULL_THRESH (AXI_AW_PROG_FULL_THRESH), .PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WACH{1'b0}}), .PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WACH{1'b0}}), .PROG_EMPTY_THRESH (AXI_AW_PROG_EMPTY_THRESH), .PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WACH{1'b0}}), .PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WACH{1'b0}}), .INJECTDBITERR (AXI_AW_INJECTDBITERR), .INJECTSBITERR (AXI_AW_INJECTSBITERR), .DIN (wach_din), .DOUT (wach_dout_pkt), .FULL (wach_full), .EMPTY (wach_empty), .ALMOST_FULL (), .PROG_FULL (AXI_AW_PROG_FULL), .ALMOST_EMPTY (), .PROG_EMPTY (AXI_AW_PROG_EMPTY), .WR_ACK (), .OVERFLOW (axi_aw_overflow_i), .VALID (), .UNDERFLOW (axi_aw_underflow_i), .DATA_COUNT (AXI_AW_DATA_COUNT), .RD_DATA_COUNT (AXI_AW_RD_DATA_COUNT), .WR_DATA_COUNT (AXI_AW_WR_DATA_COUNT), .SBITERR (AXI_AW_SBITERR), .DBITERR (AXI_AW_DBITERR), .wr_rst_busy (wr_rst_busy_wach), .rd_rst_busy (rd_rst_busy_wach), .wr_rst_i_out (), .rd_rst_i_out (), .BACKUP (BACKUP), .BACKUP_MARKER (BACKUP_MARKER), .INT_CLK (INT_CLK) ); assign wach_s_axi_awready = (IS_8SERIES == 0) ? ~wach_full : (C_IMPLEMENTATION_TYPE_WACH == 5 || C_IMPLEMENTATION_TYPE_WACH == 13) ? ~(wach_full | wr_rst_busy_wach) : ~wach_full; assign wach_m_axi_awvalid = ~wach_empty; assign S_AXI_AWREADY = wach_s_axi_awready; assign AXI_AW_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_aw_underflow_i : 0; assign AXI_AW_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_aw_overflow_i : 0; end endgenerate // axi_write_address_channel // Register Slice for Write Address Channel generate if (C_WACH_TYPE == 1) begin : gwach_reg_slice fifo_generator_v12_0_axic_reg_slice #( .C_FAMILY (C_FAMILY), .C_DATA_WIDTH (C_DIN_WIDTH_WACH), .C_REG_CONFIG (C_REG_SLICE_MODE_WACH) ) wach_reg_slice_inst ( // System Signals .ACLK (S_ACLK), .ARESET (axi_rs_rst), // Slave side .S_PAYLOAD_DATA (wach_din), .S_VALID (S_AXI_AWVALID), .S_READY (S_AXI_AWREADY), // Master side .M_PAYLOAD_DATA (wach_dout), .M_VALID (M_AXI_AWVALID), .M_READY (M_AXI_AWREADY) ); end endgenerate // gwach_reg_slice generate if (C_APPLICATION_TYPE_WACH == 1 && C_HAS_AXI_WR_CHANNEL == 1) begin : axi_mm_pkt_fifo_wr fifo_generator_v12_0_axic_reg_slice #( .C_FAMILY (C_FAMILY), .C_DATA_WIDTH (C_DIN_WIDTH_WACH), .C_REG_CONFIG (1) ) wach_pkt_reg_slice_inst ( // System Signals .ACLK (S_ACLK), .ARESET (inverted_reset), // Slave side .S_PAYLOAD_DATA (wach_dout_pkt), .S_VALID (awvalid_pkt), .S_READY (awready_pkt), // Master side .M_PAYLOAD_DATA (wach_dout), .M_VALID (M_AXI_AWVALID), .M_READY (M_AXI_AWREADY) ); assign awvalid_pkt = wach_m_axi_awvalid && awvalid_en; assign txn_count_up = wdch_s_axi_wready && wdch_wr_en && wdch_din[0]; assign txn_count_down = wach_m_axi_awvalid && awready_pkt && awvalid_en; always@(posedge S_ACLK or posedge inverted_reset) begin if(inverted_reset == 1) begin wr_pkt_count <= 0; end else begin if(txn_count_up == 1 && txn_count_down == 0) begin wr_pkt_count <= wr_pkt_count + 1; end else if(txn_count_up == 0 && txn_count_down == 1) begin wr_pkt_count <= wr_pkt_count - 1; end end end //Always end assign awvalid_en = (wr_pkt_count > 0)?1:0; end endgenerate generate if (C_APPLICATION_TYPE_WACH != 1) begin : axi_mm_fifo_wr assign awvalid_en = 1; assign wach_dout = wach_dout_pkt; assign M_AXI_AWVALID = wach_m_axi_awvalid; end endgenerate generate if (IS_WR_DATA_CH == 1) begin : axi_write_data_channel // Write protection when almost full or prog_full is high assign wdch_we = (C_PROG_FULL_TYPE_WDCH != 0) ? wdch_s_axi_wready & S_AXI_WVALID : S_AXI_WVALID; // Read protection when almost empty or prog_empty is high assign wdch_re = (C_PROG_EMPTY_TYPE_WDCH != 0) ? wdch_m_axi_wvalid & M_AXI_WREADY : M_AXI_WREADY; assign wdch_wr_en = (C_HAS_SLAVE_CE == 1) ? wdch_we & S_ACLK_EN : wdch_we; assign wdch_rd_en = (C_HAS_MASTER_CE == 1) ? wdch_re & M_ACLK_EN : wdch_re; FIFO_GENERATOR_v12_0_CONV_VER #( .C_FAMILY (C_FAMILY), .C_COMMON_CLOCK (C_COMMON_CLOCK), .C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_WDCH == 1 || C_IMPLEMENTATION_TYPE_WDCH == 11) ? 1 : (C_IMPLEMENTATION_TYPE_WDCH == 2 || C_IMPLEMENTATION_TYPE_WDCH == 12) ? 2 : 4), .C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_WDCH == 1 || C_IMPLEMENTATION_TYPE_WDCH == 2) ? 0 : (C_IMPLEMENTATION_TYPE_WDCH == 11 || C_IMPLEMENTATION_TYPE_WDCH == 12) ? 2 : 6), .C_PRELOAD_REGS (1), // always FWFT for AXI .C_PRELOAD_LATENCY (0), // always FWFT for AXI .C_DIN_WIDTH (C_DIN_WIDTH_WDCH), .C_WR_DEPTH (C_WR_DEPTH_WDCH), .C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_WDCH), .C_DOUT_WIDTH (C_DIN_WIDTH_WDCH), .C_RD_DEPTH (C_WR_DEPTH_WDCH), .C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_WDCH), .C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_WDCH), .C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_WDCH), .C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_WDCH), .C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH), .C_USE_ECC (C_USE_ECC_WDCH), .C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_WDCH), .C_HAS_ALMOST_EMPTY (0), .C_HAS_ALMOST_FULL (0), .C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE), .C_FIFO_TYPE (C_APPLICATION_TYPE_WDCH), .C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE), .C_HAS_WR_RST (0), .C_HAS_RD_RST (0), .C_HAS_RST (1), .C_HAS_SRST (0), .C_DOUT_RST_VAL (0), .C_HAS_VALID (0), .C_VALID_LOW (C_VALID_LOW), .C_HAS_UNDERFLOW (C_HAS_UNDERFLOW), .C_UNDERFLOW_LOW (C_UNDERFLOW_LOW), .C_HAS_WR_ACK (0), .C_WR_ACK_LOW (C_WR_ACK_LOW), .C_HAS_OVERFLOW (C_HAS_OVERFLOW), .C_OVERFLOW_LOW (C_OVERFLOW_LOW), .C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_WDCH == 1) ? 1 : 0), .C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WDCH + 1), .C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WDCH == 1) ? 1 : 0), .C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WDCH + 1), .C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true .C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WDCH == 1) ? 1 : 0), .C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WDCH + 1), .C_FULL_FLAGS_RST_VAL (1), .C_USE_EMBEDDED_REG (0), .C_USE_DOUT_RST (0), .C_MSGON_VAL (C_MSGON_VAL), .C_ENABLE_RST_SYNC (1), .C_COUNT_TYPE (C_COUNT_TYPE), .C_DEFAULT_VALUE (C_DEFAULT_VALUE), .C_ENABLE_RLOCS (C_ENABLE_RLOCS), .C_HAS_BACKUP (C_HAS_BACKUP), .C_HAS_INT_CLK (C_HAS_INT_CLK), .C_MIF_FILE_NAME (C_MIF_FILE_NAME), .C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE), .C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL), .C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE), .C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE), .C_RD_FREQ (C_RD_FREQ), .C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS), .C_WR_FREQ (C_WR_FREQ), .C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY) ) fifo_generator_v12_0_wdch_dut ( .CLK (S_ACLK), .WR_CLK (S_ACLK), .RD_CLK (M_ACLK), .RST (inverted_reset), .SRST (1'b0), .WR_RST (inverted_reset), .RD_RST (inverted_reset), .WR_EN (wdch_wr_en), .RD_EN (wdch_rd_en), .PROG_FULL_THRESH (AXI_W_PROG_FULL_THRESH), .PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WDCH{1'b0}}), .PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WDCH{1'b0}}), .PROG_EMPTY_THRESH (AXI_W_PROG_EMPTY_THRESH), .PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WDCH{1'b0}}), .PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WDCH{1'b0}}), .INJECTDBITERR (AXI_W_INJECTDBITERR), .INJECTSBITERR (AXI_W_INJECTSBITERR), .DIN (wdch_din), .DOUT (wdch_dout), .FULL (wdch_full), .EMPTY (wdch_empty), .ALMOST_FULL (), .PROG_FULL (AXI_W_PROG_FULL), .ALMOST_EMPTY (), .PROG_EMPTY (AXI_W_PROG_EMPTY), .WR_ACK (), .OVERFLOW (axi_w_overflow_i), .VALID (), .UNDERFLOW (axi_w_underflow_i), .DATA_COUNT (AXI_W_DATA_COUNT), .RD_DATA_COUNT (AXI_W_RD_DATA_COUNT), .WR_DATA_COUNT (AXI_W_WR_DATA_COUNT), .SBITERR (AXI_W_SBITERR), .DBITERR (AXI_W_DBITERR), .wr_rst_busy (wr_rst_busy_wdch), .rd_rst_busy (rd_rst_busy_wdch), .wr_rst_i_out (), .rd_rst_i_out (), .BACKUP (BACKUP), .BACKUP_MARKER (BACKUP_MARKER), .INT_CLK (INT_CLK) ); assign wdch_s_axi_wready = (IS_8SERIES == 0) ? ~wdch_full : (C_IMPLEMENTATION_TYPE_WDCH == 5 || C_IMPLEMENTATION_TYPE_WDCH == 13) ? ~(wdch_full | wr_rst_busy_wdch) : ~wdch_full; assign wdch_m_axi_wvalid = ~wdch_empty; assign S_AXI_WREADY = wdch_s_axi_wready; assign M_AXI_WVALID = wdch_m_axi_wvalid; assign AXI_W_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_w_underflow_i : 0; assign AXI_W_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_w_overflow_i : 0; end endgenerate // axi_write_data_channel // Register Slice for Write Data Channel generate if (C_WDCH_TYPE == 1) begin : gwdch_reg_slice fifo_generator_v12_0_axic_reg_slice #( .C_FAMILY (C_FAMILY), .C_DATA_WIDTH (C_DIN_WIDTH_WDCH), .C_REG_CONFIG (C_REG_SLICE_MODE_WDCH) ) wdch_reg_slice_inst ( // System Signals .ACLK (S_ACLK), .ARESET (axi_rs_rst), // Slave side .S_PAYLOAD_DATA (wdch_din), .S_VALID (S_AXI_WVALID), .S_READY (S_AXI_WREADY), // Master side .M_PAYLOAD_DATA (wdch_dout), .M_VALID (M_AXI_WVALID), .M_READY (M_AXI_WREADY) ); end endgenerate // gwdch_reg_slice generate if (IS_WR_RESP_CH == 1) begin : axi_write_resp_channel // Write protection when almost full or prog_full is high assign wrch_we = (C_PROG_FULL_TYPE_WRCH != 0) ? wrch_m_axi_bready & M_AXI_BVALID : M_AXI_BVALID; // Read protection when almost empty or prog_empty is high assign wrch_re = (C_PROG_EMPTY_TYPE_WRCH != 0) ? wrch_s_axi_bvalid & S_AXI_BREADY : S_AXI_BREADY; assign wrch_wr_en = (C_HAS_SLAVE_CE == 1) ? wrch_we & S_ACLK_EN : wrch_we; assign wrch_rd_en = (C_HAS_MASTER_CE == 1) ? wrch_re & M_ACLK_EN : wrch_re; FIFO_GENERATOR_v12_0_CONV_VER #( .C_FAMILY (C_FAMILY), .C_COMMON_CLOCK (C_COMMON_CLOCK), .C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_WRCH == 1 || C_IMPLEMENTATION_TYPE_WRCH == 11) ? 1 : (C_IMPLEMENTATION_TYPE_WRCH == 2 || C_IMPLEMENTATION_TYPE_WRCH == 12) ? 2 : 4), .C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_WRCH == 1 || C_IMPLEMENTATION_TYPE_WRCH == 2) ? 0 : (C_IMPLEMENTATION_TYPE_WRCH == 11 || C_IMPLEMENTATION_TYPE_WRCH == 12) ? 2 : 6), .C_PRELOAD_REGS (1), // always FWFT for AXI .C_PRELOAD_LATENCY (0), // always FWFT for AXI .C_DIN_WIDTH (C_DIN_WIDTH_WRCH), .C_WR_DEPTH (C_WR_DEPTH_WRCH), .C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_WRCH), .C_DOUT_WIDTH (C_DIN_WIDTH_WRCH), .C_RD_DEPTH (C_WR_DEPTH_WRCH), .C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_WRCH), .C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_WRCH), .C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_WRCH), .C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_WRCH), .C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH), .C_USE_ECC (C_USE_ECC_WRCH), .C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_WRCH), .C_HAS_ALMOST_EMPTY (0), .C_HAS_ALMOST_FULL (0), .C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE), .C_FIFO_TYPE (C_APPLICATION_TYPE_WRCH), .C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE), .C_HAS_WR_RST (0), .C_HAS_RD_RST (0), .C_HAS_RST (1), .C_HAS_SRST (0), .C_DOUT_RST_VAL (0), .C_HAS_VALID (0), .C_VALID_LOW (C_VALID_LOW), .C_HAS_UNDERFLOW (C_HAS_UNDERFLOW), .C_UNDERFLOW_LOW (C_UNDERFLOW_LOW), .C_HAS_WR_ACK (0), .C_WR_ACK_LOW (C_WR_ACK_LOW), .C_HAS_OVERFLOW (C_HAS_OVERFLOW), .C_OVERFLOW_LOW (C_OVERFLOW_LOW), .C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_WRCH == 1) ? 1 : 0), .C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WRCH + 1), .C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WRCH == 1) ? 1 : 0), .C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WRCH + 1), .C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true .C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WRCH == 1) ? 1 : 0), .C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WRCH + 1), .C_FULL_FLAGS_RST_VAL (1), .C_USE_EMBEDDED_REG (0), .C_USE_DOUT_RST (0), .C_MSGON_VAL (C_MSGON_VAL), .C_ENABLE_RST_SYNC (1), .C_COUNT_TYPE (C_COUNT_TYPE), .C_DEFAULT_VALUE (C_DEFAULT_VALUE), .C_ENABLE_RLOCS (C_ENABLE_RLOCS), .C_HAS_BACKUP (C_HAS_BACKUP), .C_HAS_INT_CLK (C_HAS_INT_CLK), .C_MIF_FILE_NAME (C_MIF_FILE_NAME), .C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE), .C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL), .C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE), .C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE), .C_RD_FREQ (C_RD_FREQ), .C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS), .C_WR_FREQ (C_WR_FREQ), .C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY) ) fifo_generator_v12_0_wrch_dut ( .CLK (S_ACLK), .WR_CLK (M_ACLK), .RD_CLK (S_ACLK), .RST (inverted_reset), .SRST (1'b0), .WR_RST (inverted_reset), .RD_RST (inverted_reset), .WR_EN (wrch_wr_en), .RD_EN (wrch_rd_en), .PROG_FULL_THRESH (AXI_B_PROG_FULL_THRESH), .PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WRCH{1'b0}}), .PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WRCH{1'b0}}), .PROG_EMPTY_THRESH (AXI_B_PROG_EMPTY_THRESH), .PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WRCH{1'b0}}), .PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WRCH{1'b0}}), .INJECTDBITERR (AXI_B_INJECTDBITERR), .INJECTSBITERR (AXI_B_INJECTSBITERR), .DIN (wrch_din), .DOUT (wrch_dout), .FULL (wrch_full), .EMPTY (wrch_empty), .ALMOST_FULL (), .ALMOST_EMPTY (), .PROG_FULL (AXI_B_PROG_FULL), .PROG_EMPTY (AXI_B_PROG_EMPTY), .WR_ACK (), .OVERFLOW (axi_b_overflow_i), .VALID (), .UNDERFLOW (axi_b_underflow_i), .DATA_COUNT (AXI_B_DATA_COUNT), .RD_DATA_COUNT (AXI_B_RD_DATA_COUNT), .WR_DATA_COUNT (AXI_B_WR_DATA_COUNT), .SBITERR (AXI_B_SBITERR), .DBITERR (AXI_B_DBITERR), .wr_rst_busy (wr_rst_busy_wrch), .rd_rst_busy (rd_rst_busy_wrch), .wr_rst_i_out (), .rd_rst_i_out (), .BACKUP (BACKUP), .BACKUP_MARKER (BACKUP_MARKER), .INT_CLK (INT_CLK) ); assign wrch_s_axi_bvalid = ~wrch_empty; assign wrch_m_axi_bready = (IS_8SERIES == 0) ? ~wrch_full : (C_IMPLEMENTATION_TYPE_WRCH == 5 || C_IMPLEMENTATION_TYPE_WRCH == 13) ? ~(wrch_full | wr_rst_busy_wrch) : ~wrch_full; assign S_AXI_BVALID = wrch_s_axi_bvalid; assign M_AXI_BREADY = wrch_m_axi_bready; assign AXI_B_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_b_underflow_i : 0; assign AXI_B_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_b_overflow_i : 0; end endgenerate // axi_write_resp_channel // Register Slice for Write Response Channel generate if (C_WRCH_TYPE == 1) begin : gwrch_reg_slice fifo_generator_v12_0_axic_reg_slice #( .C_FAMILY (C_FAMILY), .C_DATA_WIDTH (C_DIN_WIDTH_WRCH), .C_REG_CONFIG (C_REG_SLICE_MODE_WRCH) ) wrch_reg_slice_inst ( // System Signals .ACLK (S_ACLK), .ARESET (axi_rs_rst), // Slave side .S_PAYLOAD_DATA (wrch_din), .S_VALID (M_AXI_BVALID), .S_READY (M_AXI_BREADY), // Master side .M_PAYLOAD_DATA (wrch_dout), .M_VALID (S_AXI_BVALID), .M_READY (S_AXI_BREADY) ); end endgenerate // gwrch_reg_slice assign axi_wr_underflow_i = C_USE_COMMON_UNDERFLOW == 1 ? (axi_aw_underflow_i || axi_w_underflow_i || axi_b_underflow_i) : 0; assign axi_wr_overflow_i = C_USE_COMMON_OVERFLOW == 1 ? (axi_aw_overflow_i || axi_w_overflow_i || axi_b_overflow_i) : 0; generate if (IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) begin : axi_wach_output assign M_AXI_AWADDR = wach_dout[AWID_OFFSET-1:AWADDR_OFFSET]; assign M_AXI_AWLEN = wach_dout[AWADDR_OFFSET-1:AWLEN_OFFSET]; assign M_AXI_AWSIZE = wach_dout[AWLEN_OFFSET-1:AWSIZE_OFFSET]; assign M_AXI_AWBURST = wach_dout[AWSIZE_OFFSET-1:AWBURST_OFFSET]; assign M_AXI_AWLOCK = wach_dout[AWBURST_OFFSET-1:AWLOCK_OFFSET]; assign M_AXI_AWCACHE = wach_dout[AWLOCK_OFFSET-1:AWCACHE_OFFSET]; assign M_AXI_AWPROT = wach_dout[AWCACHE_OFFSET-1:AWPROT_OFFSET]; assign M_AXI_AWQOS = wach_dout[AWPROT_OFFSET-1:AWQOS_OFFSET]; assign wach_din[AWID_OFFSET-1:AWADDR_OFFSET] = S_AXI_AWADDR; assign wach_din[AWADDR_OFFSET-1:AWLEN_OFFSET] = S_AXI_AWLEN; assign wach_din[AWLEN_OFFSET-1:AWSIZE_OFFSET] = S_AXI_AWSIZE; assign wach_din[AWSIZE_OFFSET-1:AWBURST_OFFSET] = S_AXI_AWBURST; assign wach_din[AWBURST_OFFSET-1:AWLOCK_OFFSET] = S_AXI_AWLOCK; assign wach_din[AWLOCK_OFFSET-1:AWCACHE_OFFSET] = S_AXI_AWCACHE; assign wach_din[AWCACHE_OFFSET-1:AWPROT_OFFSET] = S_AXI_AWPROT; assign wach_din[AWPROT_OFFSET-1:AWQOS_OFFSET] = S_AXI_AWQOS; end endgenerate // axi_wach_output generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_AXI_TYPE == 1) begin : axi_awregion assign M_AXI_AWREGION = wach_dout[AWQOS_OFFSET-1:AWREGION_OFFSET]; end endgenerate // axi_awregion generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_AXI_TYPE != 1) begin : naxi_awregion assign M_AXI_AWREGION = 0; end endgenerate // naxi_awregion generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_AWUSER == 1) begin : axi_awuser assign M_AXI_AWUSER = wach_dout[AWREGION_OFFSET-1:AWUSER_OFFSET]; end endgenerate // axi_awuser generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_AWUSER == 0) begin : naxi_awuser assign M_AXI_AWUSER = 0; end endgenerate // naxi_awuser generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_awid assign M_AXI_AWID = wach_dout[C_DIN_WIDTH_WACH-1:AWID_OFFSET]; end endgenerate //axi_awid generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_awid assign M_AXI_AWID = 0; end endgenerate //naxi_awid generate if (IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) begin : axi_wdch_output assign M_AXI_WDATA = wdch_dout[WID_OFFSET-1:WDATA_OFFSET]; assign M_AXI_WSTRB = wdch_dout[WDATA_OFFSET-1:WSTRB_OFFSET]; assign M_AXI_WLAST = wdch_dout[0]; assign wdch_din[WID_OFFSET-1:WDATA_OFFSET] = S_AXI_WDATA; assign wdch_din[WDATA_OFFSET-1:WSTRB_OFFSET] = S_AXI_WSTRB; assign wdch_din[0] = S_AXI_WLAST; end endgenerate // axi_wdch_output generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_ID == 1 && C_AXI_TYPE == 3) begin assign M_AXI_WID = wdch_dout[C_DIN_WIDTH_WDCH-1:WID_OFFSET]; end endgenerate generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && (C_HAS_AXI_ID == 0 || C_AXI_TYPE != 3)) begin assign M_AXI_WID = 0; end endgenerate generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_WUSER == 1 ) begin assign M_AXI_WUSER = wdch_dout[WSTRB_OFFSET-1:WUSER_OFFSET]; end endgenerate generate if (C_HAS_AXI_WUSER == 0) begin assign M_AXI_WUSER = 0; end endgenerate generate if (IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) begin : axi_wrch_output assign S_AXI_BRESP = wrch_dout[BID_OFFSET-1:BRESP_OFFSET]; assign wrch_din[BID_OFFSET-1:BRESP_OFFSET] = M_AXI_BRESP; end endgenerate // axi_wrch_output generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_BUSER == 1) begin : axi_buser assign S_AXI_BUSER = wrch_dout[BRESP_OFFSET-1:BUSER_OFFSET]; end endgenerate // axi_buser generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_BUSER == 0) begin : naxi_buser assign S_AXI_BUSER = 0; end endgenerate // naxi_buser generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_bid assign S_AXI_BID = wrch_dout[C_DIN_WIDTH_WRCH-1:BID_OFFSET]; end endgenerate // axi_bid generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_bid assign S_AXI_BID = 0 ; end endgenerate // naxi_bid generate if (IS_AXI_LITE_WACH == 1 || (IS_AXI_LITE == 1 && C_WACH_TYPE == 1)) begin : axi_wach_output1 assign wach_din = {S_AXI_AWADDR, S_AXI_AWPROT}; assign M_AXI_AWADDR = wach_dout[C_DIN_WIDTH_WACH-1:AWADDR_OFFSET]; assign M_AXI_AWPROT = wach_dout[AWADDR_OFFSET-1:AWPROT_OFFSET]; end endgenerate // axi_wach_output1 generate if (IS_AXI_LITE_WDCH == 1 || (IS_AXI_LITE == 1 && C_WDCH_TYPE == 1)) begin : axi_wdch_output1 assign wdch_din = {S_AXI_WDATA, S_AXI_WSTRB}; assign M_AXI_WDATA = wdch_dout[C_DIN_WIDTH_WDCH-1:WDATA_OFFSET]; assign M_AXI_WSTRB = wdch_dout[WDATA_OFFSET-1:WSTRB_OFFSET]; end endgenerate // axi_wdch_output1 generate if (IS_AXI_LITE_WRCH == 1 || (IS_AXI_LITE == 1 && C_WRCH_TYPE == 1)) begin : axi_wrch_output1 assign wrch_din = M_AXI_BRESP; assign S_AXI_BRESP = wrch_dout[C_DIN_WIDTH_WRCH-1:BRESP_OFFSET]; end endgenerate // axi_wrch_output1 generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_AWUSER == 1) begin : gwach_din1 assign wach_din[AWREGION_OFFSET-1:AWUSER_OFFSET] = S_AXI_AWUSER; end endgenerate // gwach_din1 generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : gwach_din2 assign wach_din[C_DIN_WIDTH_WACH-1:AWID_OFFSET] = S_AXI_AWID; end endgenerate // gwach_din2 generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_AXI_TYPE == 1) begin : gwach_din3 assign wach_din[AWQOS_OFFSET-1:AWREGION_OFFSET] = S_AXI_AWREGION; end endgenerate // gwach_din3 generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_WUSER == 1) begin : gwdch_din1 assign wdch_din[WSTRB_OFFSET-1:WUSER_OFFSET] = S_AXI_WUSER; end endgenerate // gwdch_din1 generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_ID == 1 && C_AXI_TYPE == 3) begin : gwdch_din2 assign wdch_din[C_DIN_WIDTH_WDCH-1:WID_OFFSET] = S_AXI_WID; end endgenerate // gwdch_din2 generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_BUSER == 1) begin : gwrch_din1 assign wrch_din[BRESP_OFFSET-1:BUSER_OFFSET] = M_AXI_BUSER; end endgenerate // gwrch_din1 generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : gwrch_din2 assign wrch_din[C_DIN_WIDTH_WRCH-1:BID_OFFSET] = M_AXI_BID; end endgenerate // gwrch_din2 //end of axi_write_channel //########################################################################### // AXI FULL Read Channel (axi_read_channel) //########################################################################### wire [C_DIN_WIDTH_RACH-1:0] rach_din ; wire [C_DIN_WIDTH_RACH-1:0] rach_dout ; wire [C_DIN_WIDTH_RACH-1:0] rach_dout_pkt ; wire rach_full ; wire rach_almost_full ; wire rach_prog_full ; wire rach_empty ; wire rach_almost_empty ; wire rach_prog_empty ; wire [C_DIN_WIDTH_RDCH-1:0] rdch_din ; wire [C_DIN_WIDTH_RDCH-1:0] rdch_dout ; wire rdch_full ; wire rdch_almost_full ; wire rdch_prog_full ; wire rdch_empty ; wire rdch_almost_empty ; wire rdch_prog_empty ; wire axi_ar_underflow_i ; wire axi_r_underflow_i ; wire axi_ar_overflow_i ; wire axi_r_overflow_i ; wire axi_rd_underflow_i ; wire axi_rd_overflow_i ; wire rach_s_axi_arready ; wire rach_m_axi_arvalid ; wire rach_wr_en ; wire rach_rd_en ; wire rdch_m_axi_rready ; wire rdch_s_axi_rvalid ; wire rdch_wr_en ; wire rdch_rd_en ; wire arvalid_pkt ; wire arready_pkt ; wire arvalid_en ; wire rdch_rd_ok ; wire accept_next_pkt ; integer rdch_free_space ; integer rdch_commited_space ; wire rach_we ; wire rach_re ; wire rdch_we ; wire rdch_re ; localparam ARID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_RACH - C_AXI_ID_WIDTH : C_DIN_WIDTH_RACH; localparam ARADDR_OFFSET = ARID_OFFSET - C_AXI_ADDR_WIDTH; localparam ARLEN_OFFSET = C_AXI_TYPE != 2 ? ARADDR_OFFSET - C_AXI_LEN_WIDTH : ARADDR_OFFSET; localparam ARSIZE_OFFSET = C_AXI_TYPE != 2 ? ARLEN_OFFSET - C_AXI_SIZE_WIDTH : ARLEN_OFFSET; localparam ARBURST_OFFSET = C_AXI_TYPE != 2 ? ARSIZE_OFFSET - C_AXI_BURST_WIDTH : ARSIZE_OFFSET; localparam ARLOCK_OFFSET = C_AXI_TYPE != 2 ? ARBURST_OFFSET - C_AXI_LOCK_WIDTH : ARBURST_OFFSET; localparam ARCACHE_OFFSET = C_AXI_TYPE != 2 ? ARLOCK_OFFSET - C_AXI_CACHE_WIDTH : ARLOCK_OFFSET; localparam ARPROT_OFFSET = ARCACHE_OFFSET - C_AXI_PROT_WIDTH; localparam ARQOS_OFFSET = ARPROT_OFFSET - C_AXI_QOS_WIDTH; localparam ARREGION_OFFSET = C_AXI_TYPE == 1 ? ARQOS_OFFSET - C_AXI_REGION_WIDTH : ARQOS_OFFSET; localparam ARUSER_OFFSET = C_HAS_AXI_ARUSER == 1 ? ARREGION_OFFSET-C_AXI_ARUSER_WIDTH : ARREGION_OFFSET; localparam RID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_RDCH - C_AXI_ID_WIDTH : C_DIN_WIDTH_RDCH; localparam RDATA_OFFSET = RID_OFFSET - C_AXI_DATA_WIDTH; localparam RRESP_OFFSET = RDATA_OFFSET - C_AXI_RRESP_WIDTH; localparam RUSER_OFFSET = C_HAS_AXI_RUSER == 1 ? RRESP_OFFSET-C_AXI_RUSER_WIDTH : RRESP_OFFSET; generate if (IS_RD_ADDR_CH == 1) begin : axi_read_addr_channel // Write protection when almost full or prog_full is high assign rach_we = (C_PROG_FULL_TYPE_RACH != 0) ? rach_s_axi_arready & S_AXI_ARVALID : S_AXI_ARVALID; // Read protection when almost empty or prog_empty is high // assign rach_rd_en = (C_PROG_EMPTY_TYPE_RACH != 5) ? rach_m_axi_arvalid & M_AXI_ARREADY : M_AXI_ARREADY && arvalid_en; assign rach_re = (C_PROG_EMPTY_TYPE_RACH != 0 && C_APPLICATION_TYPE_RACH == 1) ? rach_m_axi_arvalid & arready_pkt & arvalid_en : (C_PROG_EMPTY_TYPE_RACH != 0 && C_APPLICATION_TYPE_RACH != 1) ? M_AXI_ARREADY && rach_m_axi_arvalid : (C_PROG_EMPTY_TYPE_RACH == 0 && C_APPLICATION_TYPE_RACH == 1) ? arready_pkt & arvalid_en : (C_PROG_EMPTY_TYPE_RACH == 0 && C_APPLICATION_TYPE_RACH != 1) ? M_AXI_ARREADY : 1'b0; assign rach_wr_en = (C_HAS_SLAVE_CE == 1) ? rach_we & S_ACLK_EN : rach_we; assign rach_rd_en = (C_HAS_MASTER_CE == 1) ? rach_re & M_ACLK_EN : rach_re; FIFO_GENERATOR_v12_0_CONV_VER #( .C_FAMILY (C_FAMILY), .C_COMMON_CLOCK (C_COMMON_CLOCK), .C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_RACH == 1 || C_IMPLEMENTATION_TYPE_RACH == 11) ? 1 : (C_IMPLEMENTATION_TYPE_RACH == 2 || C_IMPLEMENTATION_TYPE_RACH == 12) ? 2 : 4), .C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_RACH == 1 || C_IMPLEMENTATION_TYPE_RACH == 2) ? 0 : (C_IMPLEMENTATION_TYPE_RACH == 11 || C_IMPLEMENTATION_TYPE_RACH == 12) ? 2 : 6), .C_PRELOAD_REGS (1), // always FWFT for AXI .C_PRELOAD_LATENCY (0), // always FWFT for AXI .C_DIN_WIDTH (C_DIN_WIDTH_RACH), .C_WR_DEPTH (C_WR_DEPTH_RACH), .C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_RACH), .C_DOUT_WIDTH (C_DIN_WIDTH_RACH), .C_RD_DEPTH (C_WR_DEPTH_RACH), .C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_RACH), .C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_RACH), .C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_RACH), .C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_RACH), .C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH), .C_USE_ECC (C_USE_ECC_RACH), .C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_RACH), .C_HAS_ALMOST_EMPTY (0), .C_HAS_ALMOST_FULL (0), .C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE), .C_FIFO_TYPE ((C_APPLICATION_TYPE_RACH == 1)?0:C_APPLICATION_TYPE_RACH), .C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE), .C_HAS_WR_RST (0), .C_HAS_RD_RST (0), .C_HAS_RST (1), .C_HAS_SRST (0), .C_DOUT_RST_VAL (0), .C_HAS_VALID (0), .C_VALID_LOW (C_VALID_LOW), .C_HAS_UNDERFLOW (C_HAS_UNDERFLOW), .C_UNDERFLOW_LOW (C_UNDERFLOW_LOW), .C_HAS_WR_ACK (0), .C_WR_ACK_LOW (C_WR_ACK_LOW), .C_HAS_OVERFLOW (C_HAS_OVERFLOW), .C_OVERFLOW_LOW (C_OVERFLOW_LOW), .C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_RACH == 1) ? 1 : 0), .C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RACH + 1), .C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RACH == 1) ? 1 : 0), .C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RACH + 1), .C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true .C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RACH == 1) ? 1 : 0), .C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RACH + 1), .C_FULL_FLAGS_RST_VAL (1), .C_USE_EMBEDDED_REG (0), .C_USE_DOUT_RST (0), .C_MSGON_VAL (C_MSGON_VAL), .C_ENABLE_RST_SYNC (1), .C_COUNT_TYPE (C_COUNT_TYPE), .C_DEFAULT_VALUE (C_DEFAULT_VALUE), .C_ENABLE_RLOCS (C_ENABLE_RLOCS), .C_HAS_BACKUP (C_HAS_BACKUP), .C_HAS_INT_CLK (C_HAS_INT_CLK), .C_MIF_FILE_NAME (C_MIF_FILE_NAME), .C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE), .C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL), .C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE), .C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE), .C_RD_FREQ (C_RD_FREQ), .C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS), .C_WR_FREQ (C_WR_FREQ), .C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY) ) fifo_generator_v12_0_rach_dut ( .CLK (S_ACLK), .WR_CLK (S_ACLK), .RD_CLK (M_ACLK), .RST (inverted_reset), .SRST (1'b0), .WR_RST (inverted_reset), .RD_RST (inverted_reset), .WR_EN (rach_wr_en), .RD_EN (rach_rd_en), .PROG_FULL_THRESH (AXI_AR_PROG_FULL_THRESH), .PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RACH{1'b0}}), .PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RACH{1'b0}}), .PROG_EMPTY_THRESH (AXI_AR_PROG_EMPTY_THRESH), .PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RACH{1'b0}}), .PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RACH{1'b0}}), .INJECTDBITERR (AXI_AR_INJECTDBITERR), .INJECTSBITERR (AXI_AR_INJECTSBITERR), .DIN (rach_din), .DOUT (rach_dout_pkt), .FULL (rach_full), .EMPTY (rach_empty), .ALMOST_FULL (), .ALMOST_EMPTY (), .PROG_FULL (AXI_AR_PROG_FULL), .PROG_EMPTY (AXI_AR_PROG_EMPTY), .WR_ACK (), .OVERFLOW (axi_ar_overflow_i), .VALID (), .UNDERFLOW (axi_ar_underflow_i), .DATA_COUNT (AXI_AR_DATA_COUNT), .RD_DATA_COUNT (AXI_AR_RD_DATA_COUNT), .WR_DATA_COUNT (AXI_AR_WR_DATA_COUNT), .SBITERR (AXI_AR_SBITERR), .DBITERR (AXI_AR_DBITERR), .wr_rst_busy (wr_rst_busy_rach), .rd_rst_busy (rd_rst_busy_rach), .wr_rst_i_out (), .rd_rst_i_out (), .BACKUP (BACKUP), .BACKUP_MARKER (BACKUP_MARKER), .INT_CLK (INT_CLK) ); assign rach_s_axi_arready = (IS_8SERIES == 0) ? ~rach_full : (C_IMPLEMENTATION_TYPE_RACH == 5 || C_IMPLEMENTATION_TYPE_RACH == 13) ? ~(rach_full | wr_rst_busy_rach) : ~rach_full; assign rach_m_axi_arvalid = ~rach_empty; assign S_AXI_ARREADY = rach_s_axi_arready; assign AXI_AR_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_ar_underflow_i : 0; assign AXI_AR_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_ar_overflow_i : 0; end endgenerate // axi_read_addr_channel // Register Slice for Read Address Channel generate if (C_RACH_TYPE == 1) begin : grach_reg_slice fifo_generator_v12_0_axic_reg_slice #( .C_FAMILY (C_FAMILY), .C_DATA_WIDTH (C_DIN_WIDTH_RACH), .C_REG_CONFIG (C_REG_SLICE_MODE_RACH) ) rach_reg_slice_inst ( // System Signals .ACLK (S_ACLK), .ARESET (axi_rs_rst), // Slave side .S_PAYLOAD_DATA (rach_din), .S_VALID (S_AXI_ARVALID), .S_READY (S_AXI_ARREADY), // Master side .M_PAYLOAD_DATA (rach_dout), .M_VALID (M_AXI_ARVALID), .M_READY (M_AXI_ARREADY) ); end endgenerate // grach_reg_slice // Register Slice for Read Address Channel for MM Packet FIFO generate if (C_RACH_TYPE == 0 && C_APPLICATION_TYPE_RACH == 1) begin : grach_reg_slice_mm_pkt_fifo fifo_generator_v12_0_axic_reg_slice #( .C_FAMILY (C_FAMILY), .C_DATA_WIDTH (C_DIN_WIDTH_RACH), .C_REG_CONFIG (1) ) reg_slice_mm_pkt_fifo_inst ( // System Signals .ACLK (S_ACLK), .ARESET (inverted_reset), // Slave side .S_PAYLOAD_DATA (rach_dout_pkt), .S_VALID (arvalid_pkt), .S_READY (arready_pkt), // Master side .M_PAYLOAD_DATA (rach_dout), .M_VALID (M_AXI_ARVALID), .M_READY (M_AXI_ARREADY) ); end endgenerate // grach_reg_slice_mm_pkt_fifo generate if (C_RACH_TYPE == 0 && C_APPLICATION_TYPE_RACH != 1) begin : grach_m_axi_arvalid assign M_AXI_ARVALID = rach_m_axi_arvalid; assign rach_dout = rach_dout_pkt; end endgenerate // grach_m_axi_arvalid generate if (C_APPLICATION_TYPE_RACH == 1 && C_HAS_AXI_RD_CHANNEL == 1) begin : axi_mm_pkt_fifo_rd assign rdch_rd_ok = rdch_s_axi_rvalid && rdch_rd_en; assign arvalid_pkt = rach_m_axi_arvalid && arvalid_en; assign accept_next_pkt = rach_m_axi_arvalid && arready_pkt && arvalid_en; always@(posedge S_ACLK or posedge inverted_reset) begin if(inverted_reset) begin rdch_commited_space <= 0; end else begin if(rdch_rd_ok && !accept_next_pkt) begin rdch_commited_space <= rdch_commited_space-1; end else if(!rdch_rd_ok && accept_next_pkt) begin rdch_commited_space <= rdch_commited_space+(rach_dout_pkt[ARADDR_OFFSET-1:ARLEN_OFFSET]+1); end else if(rdch_rd_ok && accept_next_pkt) begin rdch_commited_space <= rdch_commited_space+(rach_dout_pkt[ARADDR_OFFSET-1:ARLEN_OFFSET]); end end end //Always end always@(*) begin rdch_free_space <= (C_WR_DEPTH_RDCH-(rdch_commited_space+rach_dout_pkt[ARADDR_OFFSET-1:ARLEN_OFFSET]+1)); end assign arvalid_en = (rdch_free_space >= 0)?1:0; end endgenerate generate if (C_APPLICATION_TYPE_RACH != 1) begin : axi_mm_fifo_rd assign arvalid_en = 1; end endgenerate generate if (IS_RD_DATA_CH == 1) begin : axi_read_data_channel // Write protection when almost full or prog_full is high assign rdch_we = (C_PROG_FULL_TYPE_RDCH != 0) ? rdch_m_axi_rready & M_AXI_RVALID : M_AXI_RVALID; // Read protection when almost empty or prog_empty is high assign rdch_re = (C_PROG_EMPTY_TYPE_RDCH != 0) ? rdch_s_axi_rvalid & S_AXI_RREADY : S_AXI_RREADY; assign rdch_wr_en = (C_HAS_SLAVE_CE == 1) ? rdch_we & S_ACLK_EN : rdch_we; assign rdch_rd_en = (C_HAS_MASTER_CE == 1) ? rdch_re & M_ACLK_EN : rdch_re; FIFO_GENERATOR_v12_0_CONV_VER #( .C_FAMILY (C_FAMILY), .C_COMMON_CLOCK (C_COMMON_CLOCK), .C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_RDCH == 1 || C_IMPLEMENTATION_TYPE_RDCH == 11) ? 1 : (C_IMPLEMENTATION_TYPE_RDCH == 2 || C_IMPLEMENTATION_TYPE_RDCH == 12) ? 2 : 4), .C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_RDCH == 1 || C_IMPLEMENTATION_TYPE_RDCH == 2) ? 0 : (C_IMPLEMENTATION_TYPE_RDCH == 11 || C_IMPLEMENTATION_TYPE_RDCH == 12) ? 2 : 6), .C_PRELOAD_REGS (1), // always FWFT for AXI .C_PRELOAD_LATENCY (0), // always FWFT for AXI .C_DIN_WIDTH (C_DIN_WIDTH_RDCH), .C_WR_DEPTH (C_WR_DEPTH_RDCH), .C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_RDCH), .C_DOUT_WIDTH (C_DIN_WIDTH_RDCH), .C_RD_DEPTH (C_WR_DEPTH_RDCH), .C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_RDCH), .C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_RDCH), .C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_RDCH), .C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_RDCH), .C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH), .C_USE_ECC (C_USE_ECC_RDCH), .C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_RDCH), .C_HAS_ALMOST_EMPTY (0), .C_HAS_ALMOST_FULL (0), .C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE), .C_FIFO_TYPE (C_APPLICATION_TYPE_RDCH), .C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE), .C_HAS_WR_RST (0), .C_HAS_RD_RST (0), .C_HAS_RST (1), .C_HAS_SRST (0), .C_DOUT_RST_VAL (0), .C_HAS_VALID (0), .C_VALID_LOW (C_VALID_LOW), .C_HAS_UNDERFLOW (C_HAS_UNDERFLOW), .C_UNDERFLOW_LOW (C_UNDERFLOW_LOW), .C_HAS_WR_ACK (0), .C_WR_ACK_LOW (C_WR_ACK_LOW), .C_HAS_OVERFLOW (C_HAS_OVERFLOW), .C_OVERFLOW_LOW (C_OVERFLOW_LOW), .C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_RDCH == 1) ? 1 : 0), .C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RDCH + 1), .C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RDCH == 1) ? 1 : 0), .C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RDCH + 1), .C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true .C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RDCH == 1) ? 1 : 0), .C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RDCH + 1), .C_FULL_FLAGS_RST_VAL (1), .C_USE_EMBEDDED_REG (0), .C_USE_DOUT_RST (0), .C_MSGON_VAL (C_MSGON_VAL), .C_ENABLE_RST_SYNC (1), .C_COUNT_TYPE (C_COUNT_TYPE), .C_DEFAULT_VALUE (C_DEFAULT_VALUE), .C_ENABLE_RLOCS (C_ENABLE_RLOCS), .C_HAS_BACKUP (C_HAS_BACKUP), .C_HAS_INT_CLK (C_HAS_INT_CLK), .C_MIF_FILE_NAME (C_MIF_FILE_NAME), .C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE), .C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL), .C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE), .C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE), .C_RD_FREQ (C_RD_FREQ), .C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS), .C_WR_FREQ (C_WR_FREQ), .C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY) ) fifo_generator_v12_0_rdch_dut ( .CLK (S_ACLK), .WR_CLK (M_ACLK), .RD_CLK (S_ACLK), .RST (inverted_reset), .SRST (1'b0), .WR_RST (inverted_reset), .RD_RST (inverted_reset), .WR_EN (rdch_wr_en), .RD_EN (rdch_rd_en), .PROG_FULL_THRESH (AXI_R_PROG_FULL_THRESH), .PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RDCH{1'b0}}), .PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RDCH{1'b0}}), .PROG_EMPTY_THRESH (AXI_R_PROG_EMPTY_THRESH), .PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RDCH{1'b0}}), .PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RDCH{1'b0}}), .INJECTDBITERR (AXI_R_INJECTDBITERR), .INJECTSBITERR (AXI_R_INJECTSBITERR), .DIN (rdch_din), .DOUT (rdch_dout), .FULL (rdch_full), .EMPTY (rdch_empty), .ALMOST_FULL (), .ALMOST_EMPTY (), .PROG_FULL (AXI_R_PROG_FULL), .PROG_EMPTY (AXI_R_PROG_EMPTY), .WR_ACK (), .OVERFLOW (axi_r_overflow_i), .VALID (), .UNDERFLOW (axi_r_underflow_i), .DATA_COUNT (AXI_R_DATA_COUNT), .RD_DATA_COUNT (AXI_R_RD_DATA_COUNT), .WR_DATA_COUNT (AXI_R_WR_DATA_COUNT), .SBITERR (AXI_R_SBITERR), .DBITERR (AXI_R_DBITERR), .wr_rst_busy (wr_rst_busy_rdch), .rd_rst_busy (rd_rst_busy_rdch), .wr_rst_i_out (), .rd_rst_i_out (), .BACKUP (BACKUP), .BACKUP_MARKER (BACKUP_MARKER), .INT_CLK (INT_CLK) ); assign rdch_s_axi_rvalid = ~rdch_empty; assign rdch_m_axi_rready = (IS_8SERIES == 0) ? ~rdch_full : (C_IMPLEMENTATION_TYPE_RDCH == 5 || C_IMPLEMENTATION_TYPE_RDCH == 13) ? ~(rdch_full | wr_rst_busy_rdch) : ~rdch_full; assign S_AXI_RVALID = rdch_s_axi_rvalid; assign M_AXI_RREADY = rdch_m_axi_rready; assign AXI_R_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_r_underflow_i : 0; assign AXI_R_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_r_overflow_i : 0; end endgenerate //axi_read_data_channel // Register Slice for read Data Channel generate if (C_RDCH_TYPE == 1) begin : grdch_reg_slice fifo_generator_v12_0_axic_reg_slice #( .C_FAMILY (C_FAMILY), .C_DATA_WIDTH (C_DIN_WIDTH_RDCH), .C_REG_CONFIG (C_REG_SLICE_MODE_RDCH) ) rdch_reg_slice_inst ( // System Signals .ACLK (S_ACLK), .ARESET (axi_rs_rst), // Slave side .S_PAYLOAD_DATA (rdch_din), .S_VALID (M_AXI_RVALID), .S_READY (M_AXI_RREADY), // Master side .M_PAYLOAD_DATA (rdch_dout), .M_VALID (S_AXI_RVALID), .M_READY (S_AXI_RREADY) ); end endgenerate // grdch_reg_slice assign axi_rd_underflow_i = C_USE_COMMON_UNDERFLOW == 1 ? (axi_ar_underflow_i || axi_r_underflow_i) : 0; assign axi_rd_overflow_i = C_USE_COMMON_OVERFLOW == 1 ? (axi_ar_overflow_i || axi_r_overflow_i) : 0; generate if (IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) begin : axi_full_rach_output assign M_AXI_ARADDR = rach_dout[ARID_OFFSET-1:ARADDR_OFFSET]; assign M_AXI_ARLEN = rach_dout[ARADDR_OFFSET-1:ARLEN_OFFSET]; assign M_AXI_ARSIZE = rach_dout[ARLEN_OFFSET-1:ARSIZE_OFFSET]; assign M_AXI_ARBURST = rach_dout[ARSIZE_OFFSET-1:ARBURST_OFFSET]; assign M_AXI_ARLOCK = rach_dout[ARBURST_OFFSET-1:ARLOCK_OFFSET]; assign M_AXI_ARCACHE = rach_dout[ARLOCK_OFFSET-1:ARCACHE_OFFSET]; assign M_AXI_ARPROT = rach_dout[ARCACHE_OFFSET-1:ARPROT_OFFSET]; assign M_AXI_ARQOS = rach_dout[ARPROT_OFFSET-1:ARQOS_OFFSET]; assign rach_din[ARID_OFFSET-1:ARADDR_OFFSET] = S_AXI_ARADDR; assign rach_din[ARADDR_OFFSET-1:ARLEN_OFFSET] = S_AXI_ARLEN; assign rach_din[ARLEN_OFFSET-1:ARSIZE_OFFSET] = S_AXI_ARSIZE; assign rach_din[ARSIZE_OFFSET-1:ARBURST_OFFSET] = S_AXI_ARBURST; assign rach_din[ARBURST_OFFSET-1:ARLOCK_OFFSET] = S_AXI_ARLOCK; assign rach_din[ARLOCK_OFFSET-1:ARCACHE_OFFSET] = S_AXI_ARCACHE; assign rach_din[ARCACHE_OFFSET-1:ARPROT_OFFSET] = S_AXI_ARPROT; assign rach_din[ARPROT_OFFSET-1:ARQOS_OFFSET] = S_AXI_ARQOS; end endgenerate // axi_full_rach_output generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_AXI_TYPE == 1) begin : axi_arregion assign M_AXI_ARREGION = rach_dout[ARQOS_OFFSET-1:ARREGION_OFFSET]; end endgenerate // axi_arregion generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_AXI_TYPE != 1) begin : naxi_arregion assign M_AXI_ARREGION = 0; end endgenerate // naxi_arregion generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ARUSER == 1) begin : axi_aruser assign M_AXI_ARUSER = rach_dout[ARREGION_OFFSET-1:ARUSER_OFFSET]; end endgenerate // axi_aruser generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ARUSER == 0) begin : naxi_aruser assign M_AXI_ARUSER = 0; end endgenerate // naxi_aruser generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_arid assign M_AXI_ARID = rach_dout[C_DIN_WIDTH_RACH-1:ARID_OFFSET]; end endgenerate // axi_arid generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_arid assign M_AXI_ARID = 0; end endgenerate // naxi_arid generate if (IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) begin : axi_full_rdch_output assign S_AXI_RDATA = rdch_dout[RID_OFFSET-1:RDATA_OFFSET]; assign S_AXI_RRESP = rdch_dout[RDATA_OFFSET-1:RRESP_OFFSET]; assign S_AXI_RLAST = rdch_dout[0]; assign rdch_din[RID_OFFSET-1:RDATA_OFFSET] = M_AXI_RDATA; assign rdch_din[RDATA_OFFSET-1:RRESP_OFFSET] = M_AXI_RRESP; assign rdch_din[0] = M_AXI_RLAST; end endgenerate // axi_full_rdch_output generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_RUSER == 1) begin : axi_full_ruser_output assign S_AXI_RUSER = rdch_dout[RRESP_OFFSET-1:RUSER_OFFSET]; end endgenerate // axi_full_ruser_output generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_RUSER == 0) begin : axi_full_nruser_output assign S_AXI_RUSER = 0; end endgenerate // axi_full_nruser_output generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_rid assign S_AXI_RID = rdch_dout[C_DIN_WIDTH_RDCH-1:RID_OFFSET]; end endgenerate // axi_rid generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_rid assign S_AXI_RID = 0; end endgenerate // naxi_rid generate if (IS_AXI_LITE_RACH == 1 || (IS_AXI_LITE == 1 && C_RACH_TYPE == 1)) begin : axi_lite_rach_output1 assign rach_din = {S_AXI_ARADDR, S_AXI_ARPROT}; assign M_AXI_ARADDR = rach_dout[C_DIN_WIDTH_RACH-1:ARADDR_OFFSET]; assign M_AXI_ARPROT = rach_dout[ARADDR_OFFSET-1:ARPROT_OFFSET]; end endgenerate // axi_lite_rach_output generate if (IS_AXI_LITE_RDCH == 1 || (IS_AXI_LITE == 1 && C_RDCH_TYPE == 1)) begin : axi_lite_rdch_output1 assign rdch_din = {M_AXI_RDATA, M_AXI_RRESP}; assign S_AXI_RDATA = rdch_dout[C_DIN_WIDTH_RDCH-1:RDATA_OFFSET]; assign S_AXI_RRESP = rdch_dout[RDATA_OFFSET-1:RRESP_OFFSET]; end endgenerate // axi_lite_rdch_output generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ARUSER == 1) begin : grach_din1 assign rach_din[ARREGION_OFFSET-1:ARUSER_OFFSET] = S_AXI_ARUSER; end endgenerate // grach_din1 generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : grach_din2 assign rach_din[C_DIN_WIDTH_RACH-1:ARID_OFFSET] = S_AXI_ARID; end endgenerate // grach_din2 generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_AXI_TYPE == 1) begin assign rach_din[ARQOS_OFFSET-1:ARREGION_OFFSET] = S_AXI_ARREGION; end endgenerate generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_RUSER == 1) begin : grdch_din1 assign rdch_din[RRESP_OFFSET-1:RUSER_OFFSET] = M_AXI_RUSER; end endgenerate // grdch_din1 generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : grdch_din2 assign rdch_din[C_DIN_WIDTH_RDCH-1:RID_OFFSET] = M_AXI_RID; end endgenerate // grdch_din2 //end of axi_read_channel generate if (C_INTERFACE_TYPE == 1 && C_USE_COMMON_UNDERFLOW == 1) begin : gaxi_comm_uf assign UNDERFLOW = (C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 1) ? (axi_wr_underflow_i || axi_rd_underflow_i) : (C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 0) ? axi_wr_underflow_i : (C_HAS_AXI_WR_CHANNEL == 0 && C_HAS_AXI_RD_CHANNEL == 1) ? axi_rd_underflow_i : 0; end endgenerate // gaxi_comm_uf generate if (C_INTERFACE_TYPE == 1 && C_USE_COMMON_OVERFLOW == 1) begin : gaxi_comm_of assign OVERFLOW = (C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 1) ? (axi_wr_overflow_i || axi_rd_overflow_i) : (C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 0) ? axi_wr_overflow_i : (C_HAS_AXI_WR_CHANNEL == 0 && C_HAS_AXI_RD_CHANNEL == 1) ? axi_rd_overflow_i : 0; end endgenerate // gaxi_comm_of //------------------------------------------------------------------------- //------------------------------------------------------------------------- //------------------------------------------------------------------------- // Pass Through Logic or Wiring Logic //------------------------------------------------------------------------- //------------------------------------------------------------------------- //------------------------------------------------------------------------- //------------------------------------------------------------------------- // Pass Through Logic for Read Channel //------------------------------------------------------------------------- // Wiring logic for Write Address Channel generate if (C_WACH_TYPE == 2) begin : gwach_pass_through assign M_AXI_AWID = S_AXI_AWID; assign M_AXI_AWADDR = S_AXI_AWADDR; assign M_AXI_AWLEN = S_AXI_AWLEN; assign M_AXI_AWSIZE = S_AXI_AWSIZE; assign M_AXI_AWBURST = S_AXI_AWBURST; assign M_AXI_AWLOCK = S_AXI_AWLOCK; assign M_AXI_AWCACHE = S_AXI_AWCACHE; assign M_AXI_AWPROT = S_AXI_AWPROT; assign M_AXI_AWQOS = S_AXI_AWQOS; assign M_AXI_AWREGION = S_AXI_AWREGION; assign M_AXI_AWUSER = S_AXI_AWUSER; assign S_AXI_AWREADY = M_AXI_AWREADY; assign M_AXI_AWVALID = S_AXI_AWVALID; end endgenerate // gwach_pass_through; // Wiring logic for Write Data Channel generate if (C_WDCH_TYPE == 2) begin : gwdch_pass_through assign M_AXI_WID = S_AXI_WID; assign M_AXI_WDATA = S_AXI_WDATA; assign M_AXI_WSTRB = S_AXI_WSTRB; assign M_AXI_WLAST = S_AXI_WLAST; assign M_AXI_WUSER = S_AXI_WUSER; assign S_AXI_WREADY = M_AXI_WREADY; assign M_AXI_WVALID = S_AXI_WVALID; end endgenerate // gwdch_pass_through; // Wiring logic for Write Response Channel generate if (C_WRCH_TYPE == 2) begin : gwrch_pass_through assign S_AXI_BID = M_AXI_BID; assign S_AXI_BRESP = M_AXI_BRESP; assign S_AXI_BUSER = M_AXI_BUSER; assign M_AXI_BREADY = S_AXI_BREADY; assign S_AXI_BVALID = M_AXI_BVALID; end endgenerate // gwrch_pass_through; //------------------------------------------------------------------------- // Pass Through Logic for Read Channel //------------------------------------------------------------------------- // Wiring logic for Read Address Channel generate if (C_RACH_TYPE == 2) begin : grach_pass_through assign M_AXI_ARID = S_AXI_ARID; assign M_AXI_ARADDR = S_AXI_ARADDR; assign M_AXI_ARLEN = S_AXI_ARLEN; assign M_AXI_ARSIZE = S_AXI_ARSIZE; assign M_AXI_ARBURST = S_AXI_ARBURST; assign M_AXI_ARLOCK = S_AXI_ARLOCK; assign M_AXI_ARCACHE = S_AXI_ARCACHE; assign M_AXI_ARPROT = S_AXI_ARPROT; assign M_AXI_ARQOS = S_AXI_ARQOS; assign M_AXI_ARREGION = S_AXI_ARREGION; assign M_AXI_ARUSER = S_AXI_ARUSER; assign S_AXI_ARREADY = M_AXI_ARREADY; assign M_AXI_ARVALID = S_AXI_ARVALID; end endgenerate // grach_pass_through; // Wiring logic for Read Data Channel generate if (C_RDCH_TYPE == 2) begin : grdch_pass_through assign S_AXI_RID = M_AXI_RID; assign S_AXI_RLAST = M_AXI_RLAST; assign S_AXI_RUSER = M_AXI_RUSER; assign S_AXI_RDATA = M_AXI_RDATA; assign S_AXI_RRESP = M_AXI_RRESP; assign S_AXI_RVALID = M_AXI_RVALID; assign M_AXI_RREADY = S_AXI_RREADY; end endgenerate // grdch_pass_through; // Wiring logic for AXI Streaming generate if (C_AXIS_TYPE == 2) begin : gaxis_pass_through assign M_AXIS_TDATA = S_AXIS_TDATA; assign M_AXIS_TSTRB = S_AXIS_TSTRB; assign M_AXIS_TKEEP = S_AXIS_TKEEP; assign M_AXIS_TID = S_AXIS_TID; assign M_AXIS_TDEST = S_AXIS_TDEST; assign M_AXIS_TUSER = S_AXIS_TUSER; assign M_AXIS_TLAST = S_AXIS_TLAST; assign S_AXIS_TREADY = M_AXIS_TREADY; assign M_AXIS_TVALID = S_AXIS_TVALID; end endgenerate // gaxis_pass_through; endmodule //FIFO_GENERATOR_v12_0 /******************************************************************************* * Declaration of top-level module for Conventional FIFO ******************************************************************************/ module FIFO_GENERATOR_v12_0_CONV_VER #( parameter C_COMMON_CLOCK = 0, parameter C_COUNT_TYPE = 0, parameter C_DATA_COUNT_WIDTH = 2, parameter C_DEFAULT_VALUE = "", parameter C_DIN_WIDTH = 8, parameter C_DOUT_RST_VAL = "", parameter C_DOUT_WIDTH = 8, parameter C_ENABLE_RLOCS = 0, parameter C_FAMILY = "virtex7", //Not allowed in Verilog model parameter C_FULL_FLAGS_RST_VAL = 1, parameter C_HAS_ALMOST_EMPTY = 0, parameter C_HAS_ALMOST_FULL = 0, parameter C_HAS_BACKUP = 0, parameter C_HAS_DATA_COUNT = 0, parameter C_HAS_INT_CLK = 0, parameter C_HAS_MEMINIT_FILE = 0, parameter C_HAS_OVERFLOW = 0, parameter C_HAS_RD_DATA_COUNT = 0, parameter C_HAS_RD_RST = 0, parameter C_HAS_RST = 0, parameter C_HAS_SRST = 0, parameter C_HAS_UNDERFLOW = 0, parameter C_HAS_VALID = 0, parameter C_HAS_WR_ACK = 0, parameter C_HAS_WR_DATA_COUNT = 0, parameter C_HAS_WR_RST = 0, parameter C_IMPLEMENTATION_TYPE = 0, parameter C_INIT_WR_PNTR_VAL = 0, parameter C_MEMORY_TYPE = 1, parameter C_MIF_FILE_NAME = "", parameter C_OPTIMIZATION_MODE = 0, parameter C_OVERFLOW_LOW = 0, parameter C_PRELOAD_LATENCY = 1, parameter C_PRELOAD_REGS = 0, parameter C_PRIM_FIFO_TYPE = "", parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0, parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0, parameter C_PROG_EMPTY_TYPE = 0, parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0, parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0, parameter C_PROG_FULL_TYPE = 0, parameter C_RD_DATA_COUNT_WIDTH = 2, parameter C_RD_DEPTH = 256, parameter C_RD_FREQ = 1, parameter C_RD_PNTR_WIDTH = 8, parameter C_UNDERFLOW_LOW = 0, parameter C_USE_DOUT_RST = 0, parameter C_USE_ECC = 0, parameter C_USE_EMBEDDED_REG = 0, parameter C_USE_FIFO16_FLAGS = 0, parameter C_USE_FWFT_DATA_COUNT = 0, parameter C_VALID_LOW = 0, parameter C_WR_ACK_LOW = 0, parameter C_WR_DATA_COUNT_WIDTH = 2, parameter C_WR_DEPTH = 256, parameter C_WR_FREQ = 1, parameter C_WR_PNTR_WIDTH = 8, parameter C_WR_RESPONSE_LATENCY = 1, parameter C_MSGON_VAL = 1, parameter C_ENABLE_RST_SYNC = 1, parameter C_ERROR_INJECTION_TYPE = 0, parameter C_FIFO_TYPE = 0, parameter C_SYNCHRONIZER_STAGE = 2, parameter C_AXI_TYPE = 0 ) ( input BACKUP, input BACKUP_MARKER, input CLK, input RST, input SRST, input WR_CLK, input WR_RST, input RD_CLK, input RD_RST, input [C_DIN_WIDTH-1:0] DIN, input WR_EN, input RD_EN, input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH, input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT, input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE, input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH, input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT, input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE, input INT_CLK, input INJECTDBITERR, input INJECTSBITERR, output [C_DOUT_WIDTH-1:0] DOUT, output FULL, output ALMOST_FULL, output WR_ACK, output OVERFLOW, output EMPTY, output ALMOST_EMPTY, output VALID, output UNDERFLOW, output [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT, output [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT, output [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT, output PROG_FULL, output PROG_EMPTY, output SBITERR, output DBITERR, output wr_rst_busy, output rd_rst_busy, output wr_rst_i_out, output rd_rst_i_out ); /* ****************************************************************************** * Definition of Parameters ****************************************************************************** * C_COMMON_CLOCK : Common Clock (1), Independent Clocks (0) * C_COUNT_TYPE : *not used * C_DATA_COUNT_WIDTH : Width of DATA_COUNT bus * C_DEFAULT_VALUE : *not used * C_DIN_WIDTH : Width of DIN bus * C_DOUT_RST_VAL : Reset value of DOUT * C_DOUT_WIDTH : Width of DOUT bus * C_ENABLE_RLOCS : *not used * C_FAMILY : not used in bhv model * C_FULL_FLAGS_RST_VAL : Full flags rst val (0 or 1) * C_HAS_ALMOST_EMPTY : 1=Core has ALMOST_EMPTY flag * C_HAS_ALMOST_FULL : 1=Core has ALMOST_FULL flag * C_HAS_BACKUP : *not used * C_HAS_DATA_COUNT : 1=Core has DATA_COUNT bus * C_HAS_INT_CLK : not used in bhv model * C_HAS_MEMINIT_FILE : *not used * C_HAS_OVERFLOW : 1=Core has OVERFLOW flag * C_HAS_RD_DATA_COUNT : 1=Core has RD_DATA_COUNT bus * C_HAS_RD_RST : *not used * C_HAS_RST : 1=Core has Async Rst * C_HAS_SRST : 1=Core has Sync Rst * C_HAS_UNDERFLOW : 1=Core has UNDERFLOW flag * C_HAS_VALID : 1=Core has VALID flag * C_HAS_WR_ACK : 1=Core has WR_ACK flag * C_HAS_WR_DATA_COUNT : 1=Core has WR_DATA_COUNT bus * C_HAS_WR_RST : *not used * C_IMPLEMENTATION_TYPE : 0=Common-Clock Bram/Dram * 1=Common-Clock ShiftRam * 2=Indep. Clocks Bram/Dram * 3=Virtex-4 Built-in * 4=Virtex-5 Built-in * C_INIT_WR_PNTR_VAL : *not used * C_MEMORY_TYPE : 1=Block RAM * 2=Distributed RAM * 3=Shift RAM * 4=Built-in FIFO * C_MIF_FILE_NAME : *not used * C_OPTIMIZATION_MODE : *not used * C_OVERFLOW_LOW : 1=OVERFLOW active low * C_PRELOAD_LATENCY : Latency of read: 0, 1, 2 * C_PRELOAD_REGS : 1=Use output registers * C_PRIM_FIFO_TYPE : not used in bhv model * C_PROG_EMPTY_THRESH_ASSERT_VAL: PROG_EMPTY assert threshold * C_PROG_EMPTY_THRESH_NEGATE_VAL: PROG_EMPTY negate threshold * C_PROG_EMPTY_TYPE : 0=No programmable empty * 1=Single prog empty thresh constant * 2=Multiple prog empty thresh constants * 3=Single prog empty thresh input * 4=Multiple prog empty thresh inputs * C_PROG_FULL_THRESH_ASSERT_VAL : PROG_FULL assert threshold * C_PROG_FULL_THRESH_NEGATE_VAL : PROG_FULL negate threshold * C_PROG_FULL_TYPE : 0=No prog full * 1=Single prog full thresh constant * 2=Multiple prog full thresh constants * 3=Single prog full thresh input * 4=Multiple prog full thresh inputs * C_RD_DATA_COUNT_WIDTH : Width of RD_DATA_COUNT bus * C_RD_DEPTH : Depth of read interface (2^N) * C_RD_FREQ : not used in bhv model * C_RD_PNTR_WIDTH : always log2(C_RD_DEPTH) * C_UNDERFLOW_LOW : 1=UNDERFLOW active low * C_USE_DOUT_RST : 1=Resets DOUT on RST * C_USE_ECC : Used for error injection purpose * C_USE_EMBEDDED_REG : 1=Use BRAM embedded output register * C_USE_FIFO16_FLAGS : not used in bhv model * C_USE_FWFT_DATA_COUNT : 1=Use extra logic for FWFT data count * C_VALID_LOW : 1=VALID active low * C_WR_ACK_LOW : 1=WR_ACK active low * C_WR_DATA_COUNT_WIDTH : Width of WR_DATA_COUNT bus * C_WR_DEPTH : Depth of write interface (2^N) * C_WR_FREQ : not used in bhv model * C_WR_PNTR_WIDTH : always log2(C_WR_DEPTH) * C_WR_RESPONSE_LATENCY : *not used * C_MSGON_VAL : *not used by bhv model * C_ENABLE_RST_SYNC : 0 = Use WR_RST & RD_RST * 1 = Use RST * C_ERROR_INJECTION_TYPE : 0 = No error injection * 1 = Single bit error injection only * 2 = Double bit error injection only * 3 = Single and double bit error injection ****************************************************************************** * Definition of Ports ****************************************************************************** * BACKUP : Not used * BACKUP_MARKER: Not used * CLK : Clock * DIN : Input data bus * PROG_EMPTY_THRESH : Threshold for Programmable Empty Flag * PROG_EMPTY_THRESH_ASSERT: Threshold for Programmable Empty Flag * PROG_EMPTY_THRESH_NEGATE: Threshold for Programmable Empty Flag * PROG_FULL_THRESH : Threshold for Programmable Full Flag * PROG_FULL_THRESH_ASSERT : Threshold for Programmable Full Flag * PROG_FULL_THRESH_NEGATE : Threshold for Programmable Full Flag * RD_CLK : Read Domain Clock * RD_EN : Read enable * RD_RST : Read Reset * RST : Asynchronous Reset * SRST : Synchronous Reset * WR_CLK : Write Domain Clock * WR_EN : Write enable * WR_RST : Write Reset * INT_CLK : Internal Clock * INJECTSBITERR: Inject Signle bit error * INJECTDBITERR: Inject Double bit error * ALMOST_EMPTY : One word remaining in FIFO * ALMOST_FULL : One empty space remaining in FIFO * DATA_COUNT : Number of data words in fifo( synchronous to CLK) * DOUT : Output data bus * EMPTY : Empty flag * FULL : Full flag * OVERFLOW : Last write rejected * PROG_EMPTY : Programmable Empty Flag * PROG_FULL : Programmable Full Flag * RD_DATA_COUNT: Number of data words in fifo (synchronous to RD_CLK) * UNDERFLOW : Last read rejected * VALID : Last read acknowledged, DOUT bus VALID * WR_ACK : Last write acknowledged * WR_DATA_COUNT: Number of data words in fifo (synchronous to WR_CLK) * SBITERR : Single Bit ECC Error Detected * DBITERR : Double Bit ECC Error Detected ****************************************************************************** */ //---------------------------------------------------------------------------- //- Internal Signals for delayed input signals //- All the input signals except Clock are delayed by 100 ps and then given to //- the models. //---------------------------------------------------------------------------- reg rst_delayed ; reg empty_fb ; reg srst_delayed ; reg wr_rst_delayed ; reg rd_rst_delayed ; reg wr_en_delayed ; reg rd_en_delayed ; reg [C_DIN_WIDTH-1:0] din_delayed ; reg [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_delayed ; reg [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_assert_delayed ; reg [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_negate_delayed ; reg [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_delayed ; reg [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_assert_delayed ; reg [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_negate_delayed ; reg injectdbiterr_delayed ; reg injectsbiterr_delayed ; wire empty_p0_out; always @* rst_delayed <= #`TCQ RST ; always @* empty_fb <= #`TCQ empty_p0_out ; always @* srst_delayed <= #`TCQ SRST ; always @* wr_rst_delayed <= #`TCQ WR_RST ; always @* rd_rst_delayed <= #`TCQ RD_RST ; always @* din_delayed <= #`TCQ DIN ; always @* wr_en_delayed <= #`TCQ WR_EN ; always @* rd_en_delayed <= #`TCQ RD_EN ; always @* prog_empty_thresh_delayed <= #`TCQ PROG_EMPTY_THRESH ; always @* prog_empty_thresh_assert_delayed <= #`TCQ PROG_EMPTY_THRESH_ASSERT ; always @* prog_empty_thresh_negate_delayed <= #`TCQ PROG_EMPTY_THRESH_NEGATE ; always @* prog_full_thresh_delayed <= #`TCQ PROG_FULL_THRESH ; always @* prog_full_thresh_assert_delayed <= #`TCQ PROG_FULL_THRESH_ASSERT ; always @* prog_full_thresh_negate_delayed <= #`TCQ PROG_FULL_THRESH_NEGATE ; always @* injectdbiterr_delayed <= #`TCQ INJECTDBITERR ; always @* injectsbiterr_delayed <= #`TCQ INJECTSBITERR ; /***************************************************************************** * Derived parameters ****************************************************************************/ //There are 2 Verilog behavioral models // 0 = Common-Clock FIFO/ShiftRam FIFO // 1 = Independent Clocks FIFO // 2 = Low Latency Synchronous FIFO // 3 = Low Latency Asynchronous FIFO localparam C_VERILOG_IMPL = (C_FIFO_TYPE == 3) ? 2 : (C_IMPLEMENTATION_TYPE == 2) ? 1 : 0; localparam IS_8SERIES = (C_FAMILY == "virtexu" || C_FAMILY == "kintexu" || C_FAMILY == "artixu" || C_FAMILY == "virtexum" || C_FAMILY == "zynque") ? 1 : 0; //Internal reset signals reg rd_rst_asreg = 0; reg rd_rst_asreg_d1 = 0; reg rd_rst_asreg_d2 = 0; reg rd_rst_asreg_d3 = 0; reg rd_rst_reg = 0; wire rd_rst_comb; reg wr_rst_d0 = 0; reg wr_rst_d1 = 0; reg wr_rst_d2 = 0; reg rd_rst_d0 = 0; reg rd_rst_d1 = 0; reg rd_rst_d2 = 0; reg rd_rst_d3 = 0; reg wrrst_done = 0; reg rdrst_done = 0; reg wr_rst_asreg = 0; reg wr_rst_asreg_d1 = 0; reg wr_rst_asreg_d2 = 0; reg wr_rst_asreg_d3 = 0; reg rd_rst_wr_d0 = 0; reg rd_rst_wr_d1 = 0; reg rd_rst_wr_d2 = 0; reg wr_rst_reg = 0; reg rst_active_i = 1'b1; reg rst_delayed_d1 = 1'b1; reg rst_delayed_d2 = 1'b1; wire wr_rst_comb; wire wr_rst_i; wire rd_rst_i; wire rst_i; //Internal reset signals reg rst_asreg = 0; reg srst_asreg = 0; reg rst_asreg_d1 = 0; reg rst_asreg_d2 = 0; reg srst_asreg_d1 = 0; reg srst_asreg_d2 = 0; reg rst_reg = 0; reg srst_reg = 0; wire rst_comb; wire srst_comb; reg rst_full_gen_i = 0; reg rst_full_ff_i = 0; wire RD_CLK_P0_IN; wire RST_P0_IN; wire RD_EN_FIFO_IN; wire RD_EN_P0_IN; wire ALMOST_EMPTY_FIFO_OUT; wire ALMOST_FULL_FIFO_OUT; wire [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT_FIFO_OUT; wire [C_DOUT_WIDTH-1:0] DOUT_FIFO_OUT; wire EMPTY_FIFO_OUT; wire FULL_FIFO_OUT; wire OVERFLOW_FIFO_OUT; wire PROG_EMPTY_FIFO_OUT; wire PROG_FULL_FIFO_OUT; wire VALID_FIFO_OUT; wire [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT_FIFO_OUT; wire UNDERFLOW_FIFO_OUT; wire WR_ACK_FIFO_OUT; wire [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT_FIFO_OUT; //*************************************************************************** // Internal Signals // The core uses either the internal_ wires or the preload0_ wires depending // on whether the core uses Preload0 or not. // When using preload0, the internal signals connect the internal core to // the preload logic, and the external core's interfaces are tied to the // preload0 signals from the preload logic. //*************************************************************************** wire [C_DOUT_WIDTH-1:0] DATA_P0_OUT; wire VALID_P0_OUT; wire EMPTY_P0_OUT; wire ALMOSTEMPTY_P0_OUT; reg EMPTY_P0_OUT_Q; reg ALMOSTEMPTY_P0_OUT_Q; wire UNDERFLOW_P0_OUT; wire RDEN_P0_OUT; wire [C_DOUT_WIDTH-1:0] DATA_P0_IN; wire EMPTY_P0_IN; reg [31:0] DATA_COUNT_FWFT; reg SS_FWFT_WR ; reg SS_FWFT_RD ; wire sbiterr_fifo_out; wire dbiterr_fifo_out; wire inject_sbit_err; wire inject_dbit_err; // Assign 0 if not selected to avoid 'X' propogation to S/DBITERR. assign inject_sbit_err = ((C_ERROR_INJECTION_TYPE == 1) || (C_ERROR_INJECTION_TYPE == 3)) ? injectsbiterr_delayed : 0; assign inject_dbit_err = ((C_ERROR_INJECTION_TYPE == 2) || (C_ERROR_INJECTION_TYPE == 3)) ? injectdbiterr_delayed : 0; assign wr_rst_i_out = wr_rst_i; assign rd_rst_i_out = rd_rst_i; // Choose the behavioral model to instantiate based on the C_VERILOG_IMPL // parameter (1=Independent Clocks, 0=Common Clock) localparam FULL_FLAGS_RST_VAL = (C_HAS_SRST == 1) ? 0 : C_FULL_FLAGS_RST_VAL; generate case (C_VERILOG_IMPL) 0 : begin : block1 //Common Clock Behavioral Model fifo_generator_v12_0_bhv_ver_ss #( .C_FAMILY (C_FAMILY), .C_DATA_COUNT_WIDTH (C_DATA_COUNT_WIDTH), .C_DIN_WIDTH (C_DIN_WIDTH), .C_DOUT_RST_VAL (C_DOUT_RST_VAL), .C_DOUT_WIDTH (C_DOUT_WIDTH), .C_FULL_FLAGS_RST_VAL (FULL_FLAGS_RST_VAL), .C_HAS_ALMOST_EMPTY (C_HAS_ALMOST_EMPTY), .C_HAS_ALMOST_FULL ((C_AXI_TYPE == 0 && C_FIFO_TYPE == 1) ? 1 : C_HAS_ALMOST_FULL), .C_HAS_DATA_COUNT (C_HAS_DATA_COUNT), .C_HAS_OVERFLOW (C_HAS_OVERFLOW), .C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT), .C_HAS_RST (C_HAS_RST), .C_HAS_SRST (C_HAS_SRST), .C_HAS_UNDERFLOW (C_HAS_UNDERFLOW), .C_HAS_VALID (C_HAS_VALID), .C_HAS_WR_ACK (C_HAS_WR_ACK), .C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT), .C_IMPLEMENTATION_TYPE (C_IMPLEMENTATION_TYPE), .C_MEMORY_TYPE (C_MEMORY_TYPE), .C_OVERFLOW_LOW (C_OVERFLOW_LOW), .C_PRELOAD_LATENCY (C_PRELOAD_LATENCY), .C_PRELOAD_REGS (C_PRELOAD_REGS), .C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL), .C_PROG_EMPTY_THRESH_NEGATE_VAL (C_PROG_EMPTY_THRESH_NEGATE_VAL), .C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE), .C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL), .C_PROG_FULL_THRESH_NEGATE_VAL (C_PROG_FULL_THRESH_NEGATE_VAL), .C_PROG_FULL_TYPE (C_PROG_FULL_TYPE), .C_RD_DATA_COUNT_WIDTH (C_RD_DATA_COUNT_WIDTH), .C_RD_DEPTH (C_RD_DEPTH), .C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH), .C_UNDERFLOW_LOW (C_UNDERFLOW_LOW), .C_USE_DOUT_RST (C_USE_DOUT_RST), .C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG), .C_USE_FWFT_DATA_COUNT (C_USE_FWFT_DATA_COUNT), .C_VALID_LOW (C_VALID_LOW), .C_WR_ACK_LOW (C_WR_ACK_LOW), .C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH), .C_WR_DEPTH (C_WR_DEPTH), .C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH), .C_USE_ECC (C_USE_ECC), .C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC), .C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE), .C_FIFO_TYPE (C_FIFO_TYPE) ) gen_ss ( .CLK (CLK), .RST (rst_i), .SRST (srst_delayed), .RST_FULL_GEN (rst_full_gen_i), .RST_FULL_FF (rst_full_ff_i), .DIN (din_delayed), .WR_EN (wr_en_delayed), .RD_EN (RD_EN_FIFO_IN), .RD_EN_USER (rd_en_delayed), .USER_EMPTY_FB (empty_fb), .PROG_EMPTY_THRESH (prog_empty_thresh_delayed), .PROG_EMPTY_THRESH_ASSERT (prog_empty_thresh_assert_delayed), .PROG_EMPTY_THRESH_NEGATE (prog_empty_thresh_negate_delayed), .PROG_FULL_THRESH (prog_full_thresh_delayed), .PROG_FULL_THRESH_ASSERT (prog_full_thresh_assert_delayed), .PROG_FULL_THRESH_NEGATE (prog_full_thresh_negate_delayed), .INJECTSBITERR (inject_sbit_err), .INJECTDBITERR (inject_dbit_err), .DOUT (DOUT_FIFO_OUT), .FULL (FULL_FIFO_OUT), .ALMOST_FULL (ALMOST_FULL_FIFO_OUT), .WR_ACK (WR_ACK_FIFO_OUT), .OVERFLOW (OVERFLOW_FIFO_OUT), .EMPTY (EMPTY_FIFO_OUT), .ALMOST_EMPTY (ALMOST_EMPTY_FIFO_OUT), .VALID (VALID_FIFO_OUT), .UNDERFLOW (UNDERFLOW_FIFO_OUT), .DATA_COUNT (DATA_COUNT_FIFO_OUT), .RD_DATA_COUNT (RD_DATA_COUNT_FIFO_OUT), .WR_DATA_COUNT (WR_DATA_COUNT_FIFO_OUT), .PROG_FULL (PROG_FULL_FIFO_OUT), .PROG_EMPTY (PROG_EMPTY_FIFO_OUT), .WR_RST_BUSY (wr_rst_busy), .RD_RST_BUSY (rd_rst_busy), .SBITERR (sbiterr_fifo_out), .DBITERR (dbiterr_fifo_out) ); end 1 : begin : block1 //Independent Clocks Behavioral Model fifo_generator_v12_0_bhv_ver_as #( .C_FAMILY (C_FAMILY), .C_DATA_COUNT_WIDTH (C_DATA_COUNT_WIDTH), .C_DIN_WIDTH (C_DIN_WIDTH), .C_DOUT_RST_VAL (C_DOUT_RST_VAL), .C_DOUT_WIDTH (C_DOUT_WIDTH), .C_FULL_FLAGS_RST_VAL (C_FULL_FLAGS_RST_VAL), .C_HAS_ALMOST_EMPTY (C_HAS_ALMOST_EMPTY), .C_HAS_ALMOST_FULL (C_HAS_ALMOST_FULL), .C_HAS_DATA_COUNT (C_HAS_DATA_COUNT), .C_HAS_OVERFLOW (C_HAS_OVERFLOW), .C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT), .C_HAS_RST (C_HAS_RST), .C_HAS_UNDERFLOW (C_HAS_UNDERFLOW), .C_HAS_VALID (C_HAS_VALID), .C_HAS_WR_ACK (C_HAS_WR_ACK), .C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT), .C_IMPLEMENTATION_TYPE (C_IMPLEMENTATION_TYPE), .C_MEMORY_TYPE (C_MEMORY_TYPE), .C_OVERFLOW_LOW (C_OVERFLOW_LOW), .C_PRELOAD_LATENCY (C_PRELOAD_LATENCY), .C_PRELOAD_REGS (C_PRELOAD_REGS), .C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL), .C_PROG_EMPTY_THRESH_NEGATE_VAL (C_PROG_EMPTY_THRESH_NEGATE_VAL), .C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE), .C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL), .C_PROG_FULL_THRESH_NEGATE_VAL (C_PROG_FULL_THRESH_NEGATE_VAL), .C_PROG_FULL_TYPE (C_PROG_FULL_TYPE), .C_RD_DATA_COUNT_WIDTH (C_RD_DATA_COUNT_WIDTH), .C_RD_DEPTH (C_RD_DEPTH), .C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH), .C_UNDERFLOW_LOW (C_UNDERFLOW_LOW), .C_USE_DOUT_RST (C_USE_DOUT_RST), .C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG), .C_USE_FWFT_DATA_COUNT (C_USE_FWFT_DATA_COUNT), .C_VALID_LOW (C_VALID_LOW), .C_WR_ACK_LOW (C_WR_ACK_LOW), .C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH), .C_WR_DEPTH (C_WR_DEPTH), .C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH), .C_USE_ECC (C_USE_ECC), .C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE), .C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC), .C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE) ) gen_as ( .WR_CLK (WR_CLK), .RD_CLK (RD_CLK), .RST (rst_i), .RST_FULL_GEN (rst_full_gen_i), .RST_FULL_FF (rst_full_ff_i), .WR_RST (wr_rst_i), .RD_RST (rd_rst_i), .DIN (din_delayed), .WR_EN (wr_en_delayed), .RD_EN (RD_EN_FIFO_IN), .RD_EN_USER (rd_en_delayed), .PROG_EMPTY_THRESH (prog_empty_thresh_delayed), .PROG_EMPTY_THRESH_ASSERT (prog_empty_thresh_assert_delayed), .PROG_EMPTY_THRESH_NEGATE (prog_empty_thresh_negate_delayed), .PROG_FULL_THRESH (prog_full_thresh_delayed), .PROG_FULL_THRESH_ASSERT (prog_full_thresh_assert_delayed), .PROG_FULL_THRESH_NEGATE (prog_full_thresh_negate_delayed), .INJECTSBITERR (inject_sbit_err), .INJECTDBITERR (inject_dbit_err), .USER_EMPTY_FB (EMPTY_P0_OUT), .DOUT (DOUT_FIFO_OUT), .FULL (FULL_FIFO_OUT), .ALMOST_FULL (ALMOST_FULL_FIFO_OUT), .WR_ACK (WR_ACK_FIFO_OUT), .OVERFLOW (OVERFLOW_FIFO_OUT), .EMPTY (EMPTY_FIFO_OUT), .ALMOST_EMPTY (ALMOST_EMPTY_FIFO_OUT), .VALID (VALID_FIFO_OUT), .UNDERFLOW (UNDERFLOW_FIFO_OUT), .RD_DATA_COUNT (RD_DATA_COUNT_FIFO_OUT), .WR_DATA_COUNT (WR_DATA_COUNT_FIFO_OUT), .PROG_FULL (PROG_FULL_FIFO_OUT), .PROG_EMPTY (PROG_EMPTY_FIFO_OUT), .SBITERR (sbiterr_fifo_out), .DBITERR (dbiterr_fifo_out) ); end 2 : begin : ll_afifo_inst fifo_generator_v12_0_beh_ver_ll_afifo #( .C_DIN_WIDTH (C_DIN_WIDTH), .C_DOUT_RST_VAL (C_DOUT_RST_VAL), .C_DOUT_WIDTH (C_DOUT_WIDTH), .C_FULL_FLAGS_RST_VAL (C_FULL_FLAGS_RST_VAL), .C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT), .C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT), .C_RD_DEPTH (C_RD_DEPTH), .C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH), .C_USE_DOUT_RST (C_USE_DOUT_RST), .C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH), .C_WR_DEPTH (C_WR_DEPTH), .C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH), .C_FIFO_TYPE (C_FIFO_TYPE) ) gen_ll_afifo ( .DIN (din_delayed), .RD_CLK (RD_CLK), .RD_EN (rd_en_delayed), .WR_RST (wr_rst_i), .RD_RST (rd_rst_i), .WR_CLK (WR_CLK), .WR_EN (wr_en_delayed), .DOUT (DOUT), .EMPTY (EMPTY), .FULL (FULL) ); end default : begin : block1 //Independent Clocks Behavioral Model fifo_generator_v12_0_bhv_ver_as #( .C_FAMILY (C_FAMILY), .C_DATA_COUNT_WIDTH (C_DATA_COUNT_WIDTH), .C_DIN_WIDTH (C_DIN_WIDTH), .C_DOUT_RST_VAL (C_DOUT_RST_VAL), .C_DOUT_WIDTH (C_DOUT_WIDTH), .C_FULL_FLAGS_RST_VAL (C_FULL_FLAGS_RST_VAL), .C_HAS_ALMOST_EMPTY (C_HAS_ALMOST_EMPTY), .C_HAS_ALMOST_FULL (C_HAS_ALMOST_FULL), .C_HAS_DATA_COUNT (C_HAS_DATA_COUNT), .C_HAS_OVERFLOW (C_HAS_OVERFLOW), .C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT), .C_HAS_RST (C_HAS_RST), .C_HAS_UNDERFLOW (C_HAS_UNDERFLOW), .C_HAS_VALID (C_HAS_VALID), .C_HAS_WR_ACK (C_HAS_WR_ACK), .C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT), .C_IMPLEMENTATION_TYPE (C_IMPLEMENTATION_TYPE), .C_MEMORY_TYPE (C_MEMORY_TYPE), .C_OVERFLOW_LOW (C_OVERFLOW_LOW), .C_PRELOAD_LATENCY (C_PRELOAD_LATENCY), .C_PRELOAD_REGS (C_PRELOAD_REGS), .C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL), .C_PROG_EMPTY_THRESH_NEGATE_VAL (C_PROG_EMPTY_THRESH_NEGATE_VAL), .C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE), .C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL), .C_PROG_FULL_THRESH_NEGATE_VAL (C_PROG_FULL_THRESH_NEGATE_VAL), .C_PROG_FULL_TYPE (C_PROG_FULL_TYPE), .C_RD_DATA_COUNT_WIDTH (C_RD_DATA_COUNT_WIDTH), .C_RD_DEPTH (C_RD_DEPTH), .C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH), .C_UNDERFLOW_LOW (C_UNDERFLOW_LOW), .C_USE_DOUT_RST (C_USE_DOUT_RST), .C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG), .C_USE_FWFT_DATA_COUNT (C_USE_FWFT_DATA_COUNT), .C_VALID_LOW (C_VALID_LOW), .C_WR_ACK_LOW (C_WR_ACK_LOW), .C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH), .C_WR_DEPTH (C_WR_DEPTH), .C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH), .C_USE_ECC (C_USE_ECC), .C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE), .C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC), .C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE) ) gen_as ( .WR_CLK (WR_CLK), .RD_CLK (RD_CLK), .RST (rst_i), .RST_FULL_GEN (rst_full_gen_i), .RST_FULL_FF (rst_full_ff_i), .WR_RST (wr_rst_i), .RD_RST (rd_rst_i), .DIN (din_delayed), .WR_EN (wr_en_delayed), .RD_EN (RD_EN_FIFO_IN), .RD_EN_USER (rd_en_delayed), .PROG_EMPTY_THRESH (prog_empty_thresh_delayed), .PROG_EMPTY_THRESH_ASSERT (prog_empty_thresh_assert_delayed), .PROG_EMPTY_THRESH_NEGATE (prog_empty_thresh_negate_delayed), .PROG_FULL_THRESH (prog_full_thresh_delayed), .PROG_FULL_THRESH_ASSERT (prog_full_thresh_assert_delayed), .PROG_FULL_THRESH_NEGATE (prog_full_thresh_negate_delayed), .INJECTSBITERR (inject_sbit_err), .INJECTDBITERR (inject_dbit_err), .USER_EMPTY_FB (EMPTY_P0_OUT), .DOUT (DOUT_FIFO_OUT), .FULL (FULL_FIFO_OUT), .ALMOST_FULL (ALMOST_FULL_FIFO_OUT), .WR_ACK (WR_ACK_FIFO_OUT), .OVERFLOW (OVERFLOW_FIFO_OUT), .EMPTY (EMPTY_FIFO_OUT), .ALMOST_EMPTY (ALMOST_EMPTY_FIFO_OUT), .VALID (VALID_FIFO_OUT), .UNDERFLOW (UNDERFLOW_FIFO_OUT), .RD_DATA_COUNT (RD_DATA_COUNT_FIFO_OUT), .WR_DATA_COUNT (WR_DATA_COUNT_FIFO_OUT), .PROG_FULL (PROG_FULL_FIFO_OUT), .PROG_EMPTY (PROG_EMPTY_FIFO_OUT), .SBITERR (sbiterr_fifo_out), .DBITERR (dbiterr_fifo_out) ); end endcase endgenerate //************************************************************************** // Connect Internal Signals // (Signals labeled internal_*) // In the normal case, these signals tie directly to the FIFO's inputs and // outputs. // In the case of Preload Latency 0 or 1, there are intermediate // signals between the internal FIFO and the preload logic. //************************************************************************** //*********************************************** // If First-Word Fall-Through, instantiate // the preload0 (FWFT) module //*********************************************** wire rd_en_to_fwft_fifo; wire sbiterr_fwft; wire dbiterr_fwft; wire [C_DOUT_WIDTH-1:0] dout_fwft; wire empty_fwft; wire rd_en_fifo_in; wire stage2_reg_en_i; wire [1:0] valid_stages_i; wire rst_fwft; //wire empty_p0_out; reg [C_SYNCHRONIZER_STAGE-1:0] pkt_empty_sync = 'b1; localparam IS_FWFT = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ? 1 : 0; localparam IS_PKT_FIFO = (C_FIFO_TYPE == 1) ? 1 : 0; localparam IS_AXIS_PKT_FIFO = (C_FIFO_TYPE == 1 && C_AXI_TYPE == 0) ? 1 : 0; assign rst_fwft = (C_COMMON_CLOCK == 0) ? rd_rst_i : (C_HAS_RST == 1) ? rst_i : 1'b0; generate if (IS_FWFT == 1 && C_FIFO_TYPE != 3) begin : block2 fifo_generator_v12_0_bhv_ver_preload0 #( .C_DOUT_RST_VAL (C_DOUT_RST_VAL), .C_DOUT_WIDTH (C_DOUT_WIDTH), .C_HAS_RST (C_HAS_RST), .C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC), .C_HAS_SRST (C_HAS_SRST), .C_USE_DOUT_RST (C_USE_DOUT_RST), .C_USE_ECC (C_USE_ECC), .C_USERVALID_LOW (C_VALID_LOW), .C_USERUNDERFLOW_LOW (C_UNDERFLOW_LOW), .C_MEMORY_TYPE (C_MEMORY_TYPE), .C_FIFO_TYPE (C_FIFO_TYPE) ) fgpl0 ( .RD_CLK (RD_CLK_P0_IN), .RD_RST (RST_P0_IN), .SRST (srst_delayed), .WR_RST_BUSY (wr_rst_busy), .RD_RST_BUSY (rd_rst_busy), .RD_EN (RD_EN_P0_IN), .FIFOEMPTY (EMPTY_P0_IN), .FIFODATA (DATA_P0_IN), .FIFOSBITERR (sbiterr_fifo_out), .FIFODBITERR (dbiterr_fifo_out), // Output .USERDATA (dout_fwft), .USERVALID (VALID_P0_OUT), .USEREMPTY (empty_fwft), .USERALMOSTEMPTY (ALMOSTEMPTY_P0_OUT), .USERUNDERFLOW (UNDERFLOW_P0_OUT), .RAMVALID (), .FIFORDEN (rd_en_fifo_in), .USERSBITERR (sbiterr_fwft), .USERDBITERR (dbiterr_fwft), .STAGE2_REG_EN (stage2_reg_en_i), .VALID_STAGES (valid_stages_i) ); //*********************************************** // Connect inputs to preload (FWFT) module //*********************************************** //Connect the RD_CLK of the Preload (FWFT) module to CLK if we // have a common-clock FIFO, or RD_CLK if we have an // independent clock FIFO assign RD_CLK_P0_IN = ((C_VERILOG_IMPL == 0) ? CLK : RD_CLK); assign RST_P0_IN = (C_COMMON_CLOCK == 0) ? rd_rst_i : (C_HAS_RST == 1) ? rst_i : 0; assign RD_EN_P0_IN = (C_FIFO_TYPE != 1) ? rd_en_delayed : rd_en_to_fwft_fifo; assign EMPTY_P0_IN = EMPTY_FIFO_OUT; assign DATA_P0_IN = DOUT_FIFO_OUT; //*********************************************** // Connect outputs from preload (FWFT) module //*********************************************** assign VALID = VALID_P0_OUT ; assign ALMOST_EMPTY = ALMOSTEMPTY_P0_OUT; assign UNDERFLOW = UNDERFLOW_P0_OUT ; assign RD_EN_FIFO_IN = rd_en_fifo_in; //*********************************************** // Create DATA_COUNT from First-Word Fall-Through // data count //*********************************************** assign DATA_COUNT = (C_USE_FWFT_DATA_COUNT == 0)? DATA_COUNT_FIFO_OUT: (C_DATA_COUNT_WIDTH>C_RD_PNTR_WIDTH) ? DATA_COUNT_FWFT[C_RD_PNTR_WIDTH:0] : DATA_COUNT_FWFT[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH-C_DATA_COUNT_WIDTH+1]; //*********************************************** // Create DATA_COUNT from First-Word Fall-Through // data count //*********************************************** always @ (posedge RD_CLK_P0_IN or posedge RST_P0_IN) begin if (RST_P0_IN) begin EMPTY_P0_OUT_Q <= #`TCQ 1; ALMOSTEMPTY_P0_OUT_Q <= #`TCQ 1; end else begin EMPTY_P0_OUT_Q <= #`TCQ empty_p0_out; // EMPTY_P0_OUT_Q <= #`TCQ EMPTY_FIFO_OUT; ALMOSTEMPTY_P0_OUT_Q <= #`TCQ ALMOSTEMPTY_P0_OUT; end end //always //*********************************************** // logic for common-clock data count when FWFT is selected //*********************************************** initial begin SS_FWFT_RD = 1'b0; DATA_COUNT_FWFT = 0 ; SS_FWFT_WR = 1'b0 ; end //initial //*********************************************** // common-clock data count is implemented as an // up-down counter. SS_FWFT_WR and SS_FWFT_RD // are the up/down enables for the counter. //*********************************************** always @ (RD_EN or VALID_P0_OUT or WR_EN or FULL_FIFO_OUT or empty_p0_out) begin if (C_VALID_LOW == 1) begin SS_FWFT_RD = (C_FIFO_TYPE != 1) ? (RD_EN && ~VALID_P0_OUT) : (~empty_p0_out && RD_EN && ~VALID_P0_OUT) ; end else begin SS_FWFT_RD = (C_FIFO_TYPE != 1) ? (RD_EN && VALID_P0_OUT) : (~empty_p0_out && RD_EN && VALID_P0_OUT) ; end SS_FWFT_WR = (WR_EN && (~FULL_FIFO_OUT)) ; end //*********************************************** // common-clock data count is implemented as an // up-down counter for FWFT. This always block // calculates the counter. //*********************************************** always @ (posedge RD_CLK_P0_IN or posedge RST_P0_IN) begin if (RST_P0_IN) begin DATA_COUNT_FWFT <= #`TCQ 0; end else begin //if (srst_delayed && (C_HAS_SRST == 1) ) begin if ((srst_delayed | wr_rst_busy | rd_rst_busy) && (C_HAS_SRST == 1) ) begin DATA_COUNT_FWFT <= #`TCQ 0; end else begin case ( {SS_FWFT_WR, SS_FWFT_RD}) 2'b00: DATA_COUNT_FWFT <= #`TCQ DATA_COUNT_FWFT ; 2'b01: DATA_COUNT_FWFT <= #`TCQ DATA_COUNT_FWFT - 1 ; 2'b10: DATA_COUNT_FWFT <= #`TCQ DATA_COUNT_FWFT + 1 ; 2'b11: DATA_COUNT_FWFT <= #`TCQ DATA_COUNT_FWFT ; endcase end //if SRST end //IF RST end //always end endgenerate // : block2 // AXI Streaming Packet FIFO reg [C_WR_PNTR_WIDTH-1:0] wr_pkt_count = 0; reg [C_RD_PNTR_WIDTH-1:0] rd_pkt_count = 0; reg [C_RD_PNTR_WIDTH-1:0] rd_pkt_count_plus1 = 0; reg [C_RD_PNTR_WIDTH-1:0] rd_pkt_count_reg = 0; reg partial_packet = 0; reg stage1_eop_d1 = 0; reg rd_en_fifo_in_d1 = 0; reg eop_at_stage2 = 0; reg ram_pkt_empty = 0; reg ram_pkt_empty_d1 = 0; wire [C_DOUT_WIDTH-1:0] dout_p0_out; wire packet_empty_wr; wire wr_rst_fwft_pkt_fifo; wire dummy_wr_eop; wire ram_wr_en_pkt_fifo; wire wr_eop; wire ram_rd_en_compare; wire stage1_eop; wire pkt_ready_to_read; wire rd_en_2_stage2; // Generate Dummy WR_EOP for partial packet (Only for AXI Streaming) // When Packet EMPTY is high, and FIFO is full, then generate the dummy WR_EOP // When dummy WR_EOP is high, mask the actual EOP to avoid double increment of // write packet count generate if (IS_FWFT == 1 && IS_AXIS_PKT_FIFO == 1) begin // gdummy_wr_eop always @ (posedge wr_rst_fwft_pkt_fifo or posedge WR_CLK) begin if (wr_rst_fwft_pkt_fifo) partial_packet <= 1'b0; else begin if (srst_delayed | wr_rst_busy | rd_rst_busy) partial_packet <= #`TCQ 1'b0; else if (ALMOST_FULL_FIFO_OUT && ram_wr_en_pkt_fifo && packet_empty_wr && (~din_delayed[0])) partial_packet <= #`TCQ 1'b1; else if (partial_packet && din_delayed[0] && ram_wr_en_pkt_fifo) partial_packet <= #`TCQ 1'b0; end end end endgenerate // gdummy_wr_eop generate if (IS_FWFT == 1 && IS_PKT_FIFO == 1) begin // gpkt_fifo_fwft assign wr_rst_fwft_pkt_fifo = (C_COMMON_CLOCK == 0) ? wr_rst_i : (C_HAS_RST == 1) ? rst_i:1'b0; assign dummy_wr_eop = ALMOST_FULL_FIFO_OUT && ram_wr_en_pkt_fifo && packet_empty_wr && (~din_delayed[0]) && (~partial_packet); assign packet_empty_wr = (C_COMMON_CLOCK == 1) ? empty_p0_out : pkt_empty_sync[C_SYNCHRONIZER_STAGE-1]; always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin if (rst_fwft) begin stage1_eop_d1 <= 1'b0; rd_en_fifo_in_d1 <= 1'b0; end else begin if (srst_delayed | wr_rst_busy | rd_rst_busy) begin stage1_eop_d1 <= #`TCQ 1'b0; rd_en_fifo_in_d1 <= #`TCQ 1'b0; end else begin stage1_eop_d1 <= #`TCQ stage1_eop; rd_en_fifo_in_d1 <= #`TCQ rd_en_fifo_in; end end end assign stage1_eop = (rd_en_fifo_in_d1) ? DOUT_FIFO_OUT[0] : stage1_eop_d1; assign ram_wr_en_pkt_fifo = wr_en_delayed && (~FULL_FIFO_OUT); assign wr_eop = ram_wr_en_pkt_fifo && ((din_delayed[0] && (~partial_packet)) || dummy_wr_eop); assign ram_rd_en_compare = stage2_reg_en_i && stage1_eop; fifo_generator_v12_0_bhv_ver_preload0 #( .C_DOUT_RST_VAL (C_DOUT_RST_VAL), .C_DOUT_WIDTH (C_DOUT_WIDTH), .C_HAS_RST (C_HAS_RST), .C_HAS_SRST (C_HAS_SRST), .C_USE_DOUT_RST (C_USE_DOUT_RST), .C_USE_ECC (C_USE_ECC), .C_USERVALID_LOW (C_VALID_LOW), .C_USERUNDERFLOW_LOW (C_UNDERFLOW_LOW), .C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC), .C_MEMORY_TYPE (C_MEMORY_TYPE), .C_FIFO_TYPE (2) // Enable low latency fwft logic ) pkt_fifo_fwft ( .RD_CLK (RD_CLK_P0_IN), .RD_RST (rst_fwft), .SRST (srst_delayed), .WR_RST_BUSY (wr_rst_busy), .RD_RST_BUSY (rd_rst_busy), .RD_EN (rd_en_delayed), .FIFOEMPTY (pkt_ready_to_read), .FIFODATA (dout_fwft), .FIFOSBITERR (sbiterr_fwft), .FIFODBITERR (dbiterr_fwft), // Output .USERDATA (dout_p0_out), .USERVALID (), .USEREMPTY (empty_p0_out), .USERALMOSTEMPTY (), .USERUNDERFLOW (), .RAMVALID (), .FIFORDEN (rd_en_2_stage2), .USERSBITERR (SBITERR), .USERDBITERR (DBITERR), .STAGE2_REG_EN (), .VALID_STAGES () ); assign pkt_ready_to_read = ~(!(ram_pkt_empty || empty_fwft) && ((valid_stages_i[0] && valid_stages_i[1]) || eop_at_stage2)); assign rd_en_to_fwft_fifo = ~empty_fwft && rd_en_2_stage2; always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin if (rst_fwft) eop_at_stage2 <= 1'b0; else if (stage2_reg_en_i) eop_at_stage2 <= #`TCQ stage1_eop; end //--------------------------------------------------------------------------- // Write and Read Packet Count //--------------------------------------------------------------------------- always @ (posedge wr_rst_fwft_pkt_fifo or posedge WR_CLK) begin if (wr_rst_fwft_pkt_fifo) wr_pkt_count <= 0; else if (srst_delayed | wr_rst_busy | rd_rst_busy) wr_pkt_count <= #`TCQ 0; else if (wr_eop) wr_pkt_count <= #`TCQ wr_pkt_count + 1; end end endgenerate // gpkt_fifo_fwft assign DOUT = (C_FIFO_TYPE != 1) ? dout_fwft : dout_p0_out; assign EMPTY = (C_FIFO_TYPE != 1) ? empty_fwft : empty_p0_out; generate if (IS_FWFT == 1 && IS_PKT_FIFO == 1 && C_COMMON_CLOCK == 1) begin // grss_pkt_cnt always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin if (rst_fwft) begin rd_pkt_count <= 0; rd_pkt_count_plus1 <= 1; end else if (srst_delayed | wr_rst_busy | rd_rst_busy) begin rd_pkt_count <= #`TCQ 0; rd_pkt_count_plus1 <= #`TCQ 1; end else if (stage2_reg_en_i && stage1_eop) begin rd_pkt_count <= #`TCQ rd_pkt_count + 1; rd_pkt_count_plus1 <= #`TCQ rd_pkt_count_plus1 + 1; end end always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin if (rst_fwft) begin ram_pkt_empty <= 1'b1; ram_pkt_empty_d1 <= 1'b1; end else if (SRST | wr_rst_busy | rd_rst_busy) begin ram_pkt_empty <= #`TCQ 1'b1; ram_pkt_empty_d1 <= #`TCQ 1'b1; end else if ((rd_pkt_count == wr_pkt_count) && wr_eop) begin ram_pkt_empty <= #`TCQ 1'b0; ram_pkt_empty_d1 <= #`TCQ 1'b0; end else if (ram_pkt_empty_d1 && rd_en_to_fwft_fifo) begin ram_pkt_empty <= #`TCQ 1'b1; end else if ((rd_pkt_count_plus1 == wr_pkt_count) && ~wr_eop && ~ALMOST_FULL_FIFO_OUT && ram_rd_en_compare) begin ram_pkt_empty_d1 <= #`TCQ 1'b1; end end end endgenerate //grss_pkt_cnt localparam SYNC_STAGE_WIDTH = (C_SYNCHRONIZER_STAGE+1)*C_WR_PNTR_WIDTH; reg [SYNC_STAGE_WIDTH-1:0] wr_pkt_count_q = 0; reg [C_WR_PNTR_WIDTH-1:0] wr_pkt_count_b2g = 0; wire [C_WR_PNTR_WIDTH-1:0] wr_pkt_count_rd; generate if (IS_FWFT == 1 && IS_PKT_FIFO == 1 && C_COMMON_CLOCK == 0) begin // gras_pkt_cnt // Delay the write packet count in write clock domain to accomodate the binary to gray conversion delay always @ (posedge wr_rst_fwft_pkt_fifo or posedge WR_CLK) begin if (wr_rst_fwft_pkt_fifo) wr_pkt_count_b2g <= 0; else wr_pkt_count_b2g <= #`TCQ wr_pkt_count; end // Synchronize the delayed write packet count in read domain, and also compensate the gray to binay conversion delay always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin if (rst_fwft) wr_pkt_count_q <= 0; else wr_pkt_count_q <= #`TCQ {wr_pkt_count_q[SYNC_STAGE_WIDTH-C_WR_PNTR_WIDTH-1:0],wr_pkt_count_b2g}; end always @* begin if (stage1_eop) rd_pkt_count <= rd_pkt_count_reg + 1; else rd_pkt_count <= rd_pkt_count_reg; end assign wr_pkt_count_rd = wr_pkt_count_q[SYNC_STAGE_WIDTH-1:SYNC_STAGE_WIDTH-C_WR_PNTR_WIDTH]; always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin if (rst_fwft) rd_pkt_count_reg <= 0; else if (rd_en_fifo_in) rd_pkt_count_reg <= #`TCQ rd_pkt_count; end always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin if (rst_fwft) begin ram_pkt_empty <= 1'b1; ram_pkt_empty_d1 <= 1'b1; end else if (rd_pkt_count != wr_pkt_count_rd) begin ram_pkt_empty <= #`TCQ 1'b0; ram_pkt_empty_d1 <= #`TCQ 1'b0; end else if (ram_pkt_empty_d1 && rd_en_to_fwft_fifo) begin ram_pkt_empty <= #`TCQ 1'b1; end else if ((rd_pkt_count == wr_pkt_count_rd) && stage2_reg_en_i) begin ram_pkt_empty_d1 <= #`TCQ 1'b1; end end // Synchronize the empty in write domain always @ (posedge wr_rst_fwft_pkt_fifo or posedge WR_CLK) begin if (wr_rst_fwft_pkt_fifo) pkt_empty_sync <= 'b1; else pkt_empty_sync <= #`TCQ {pkt_empty_sync[C_SYNCHRONIZER_STAGE-2:0], empty_p0_out}; end end endgenerate //gras_pkt_cnt generate if (IS_FWFT == 0 || C_FIFO_TYPE == 3) begin : STD_FIFO //*********************************************** // If NOT First-Word Fall-Through, wire the outputs // of the internal _ss or _as FIFO directly to the // output, and do not instantiate the preload0 // module. //*********************************************** assign RD_CLK_P0_IN = 0; assign RST_P0_IN = 0; assign RD_EN_P0_IN = 0; assign RD_EN_FIFO_IN = rd_en_delayed; assign DOUT = DOUT_FIFO_OUT; assign DATA_P0_IN = 0; assign VALID = VALID_FIFO_OUT; assign EMPTY = EMPTY_FIFO_OUT; assign ALMOST_EMPTY = ALMOST_EMPTY_FIFO_OUT; assign EMPTY_P0_IN = 0; assign UNDERFLOW = UNDERFLOW_FIFO_OUT; assign DATA_COUNT = DATA_COUNT_FIFO_OUT; assign SBITERR = sbiterr_fifo_out; assign DBITERR = dbiterr_fifo_out; end endgenerate // STD_FIFO generate if (IS_FWFT == 1 && C_FIFO_TYPE != 1) begin : NO_PKT_FIFO assign empty_p0_out = empty_fwft; assign SBITERR = sbiterr_fwft; assign DBITERR = dbiterr_fwft; assign DOUT = dout_fwft; assign RD_EN_P0_IN = (C_FIFO_TYPE != 1) ? rd_en_delayed : rd_en_to_fwft_fifo; end endgenerate // NO_PKT_FIFO //*********************************************** // Connect user flags to internal signals //*********************************************** //If we are using extra logic for the FWFT data count, then override the //RD_DATA_COUNT output when we are EMPTY or ALMOST_EMPTY. //RD_DATA_COUNT is 0 when EMPTY and 1 when ALMOST_EMPTY. generate if (C_USE_FWFT_DATA_COUNT==1 && (C_RD_DATA_COUNT_WIDTH>C_RD_PNTR_WIDTH) ) begin : block3 if (C_COMMON_CLOCK == 0) begin : block_ic assign RD_DATA_COUNT = (EMPTY_P0_OUT_Q | RST_P0_IN) ? 0 : (ALMOSTEMPTY_P0_OUT_Q ? 1 : RD_DATA_COUNT_FIFO_OUT); end //block_ic else begin assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT; end end //block3 endgenerate //If we are using extra logic for the FWFT data count, then override the //RD_DATA_COUNT output when we are EMPTY or ALMOST_EMPTY. //Due to asymmetric ports, RD_DATA_COUNT is 0 when EMPTY or ALMOST_EMPTY. generate if (C_USE_FWFT_DATA_COUNT==1 && (C_RD_DATA_COUNT_WIDTH <=C_RD_PNTR_WIDTH) ) begin : block30 if (C_COMMON_CLOCK == 0) begin : block_ic assign RD_DATA_COUNT = (EMPTY_P0_OUT_Q | RST_P0_IN) ? 0 : (ALMOSTEMPTY_P0_OUT_Q ? 0 : RD_DATA_COUNT_FIFO_OUT); end else begin assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT; end end //block30 endgenerate //If we are not using extra logic for the FWFT data count, //then connect RD_DATA_COUNT to the RD_DATA_COUNT from the //internal FIFO instance generate if (C_USE_FWFT_DATA_COUNT==0 ) begin : block31 assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT; end endgenerate //Always connect WR_DATA_COUNT to the WR_DATA_COUNT from the internal //FIFO instance generate if (C_USE_FWFT_DATA_COUNT==1) begin : block4 assign WR_DATA_COUNT = WR_DATA_COUNT_FIFO_OUT; end else begin : block4 assign WR_DATA_COUNT = WR_DATA_COUNT_FIFO_OUT; end endgenerate //Connect other flags to the internal FIFO instance assign FULL = FULL_FIFO_OUT; assign ALMOST_FULL = ALMOST_FULL_FIFO_OUT; assign WR_ACK = WR_ACK_FIFO_OUT; assign OVERFLOW = OVERFLOW_FIFO_OUT; assign PROG_FULL = PROG_FULL_FIFO_OUT; assign PROG_EMPTY = PROG_EMPTY_FIFO_OUT; /************************************************************************** * find_log2 * Returns the 'log2' value for the input value for the supported ratios ***************************************************************************/ function integer find_log2; input integer int_val; integer i,j; begin i = 1; j = 0; for (i = 1; i < int_val; i = i*2) begin j = j + 1; end find_log2 = j; end endfunction // if an asynchronous FIFO has been selected, display a message that the FIFO // will not be cycle-accurate in simulation initial begin if (C_IMPLEMENTATION_TYPE == 2) begin $display("WARNING: Behavioral models for independent clock FIFO configurations do not model synchronization delays. The behavioral models are functionally correct, and will represent the behavior of the configured FIFO. See the FIFO Generator User Guide for more information."); end else if (C_MEMORY_TYPE == 4) begin $display("FAILURE : Behavioral models do not support built-in FIFO configurations. Please use post-synthesis or post-implement simulation in Vivado."); $finish; end if (C_WR_PNTR_WIDTH != find_log2(C_WR_DEPTH)) begin $display("FAILURE : C_WR_PNTR_WIDTH is not log2 of C_WR_DEPTH."); $finish; end if (C_RD_PNTR_WIDTH != find_log2(C_RD_DEPTH)) begin $display("FAILURE : C_RD_PNTR_WIDTH is not log2 of C_RD_DEPTH."); $finish; end if (C_USE_ECC == 1) begin if (C_DIN_WIDTH != C_DOUT_WIDTH) begin $display("FAILURE : C_DIN_WIDTH and C_DOUT_WIDTH must be equal for ECC configuration."); $finish; end if (C_DIN_WIDTH == 1 && C_ERROR_INJECTION_TYPE > 1) begin $display("FAILURE : C_DIN_WIDTH and C_DOUT_WIDTH must be > 1 for double bit error injection."); $finish; end end end //initial /************************************************************************** * Internal reset logic **************************************************************************/ assign wr_rst_i = (C_HAS_RST == 1 || C_ENABLE_RST_SYNC == 0) ? wr_rst_reg : 0; assign rd_rst_i = (C_HAS_RST == 1 || C_ENABLE_RST_SYNC == 0) ? rd_rst_reg : 0; assign rst_i = C_HAS_RST ? rst_reg : 0; wire rst_2_sync; wire clk_2_sync = (C_COMMON_CLOCK == 1) ? CLK : WR_CLK; generate if (C_ENABLE_RST_SYNC == 0) begin : gnrst_sync always @* begin wr_rst_reg <= wr_rst_delayed; rd_rst_reg <= rd_rst_delayed; rst_reg <= 1'b0; srst_reg <= 1'b0; end assign rst_2_sync = wr_rst_delayed; assign wr_rst_busy = 1'b0; assign rd_rst_busy = 1'b0; end else if (C_HAS_RST == 1 && C_COMMON_CLOCK == 0) begin : g7s_ic_rst assign wr_rst_comb = !wr_rst_asreg_d2 && wr_rst_asreg; assign rd_rst_comb = !rd_rst_asreg_d2 && rd_rst_asreg; assign rst_2_sync = rst_delayed; assign wr_rst_busy = 1'b0; assign rd_rst_busy = 1'b0; always @(posedge WR_CLK or posedge rst_delayed) begin if (rst_delayed == 1'b1) begin wr_rst_asreg <= #`TCQ 1'b1; end else begin if (wr_rst_asreg_d1 == 1'b1) begin wr_rst_asreg <= #`TCQ 1'b0; end else begin wr_rst_asreg <= #`TCQ wr_rst_asreg; end end end always @(posedge WR_CLK) begin wr_rst_asreg_d1 <= #`TCQ wr_rst_asreg; wr_rst_asreg_d2 <= #`TCQ wr_rst_asreg_d1; end always @(posedge WR_CLK or posedge wr_rst_comb) begin if (wr_rst_comb == 1'b1) begin wr_rst_reg <= #`TCQ 1'b1; end else begin wr_rst_reg <= #`TCQ 1'b0; end end always @(posedge RD_CLK or posedge rst_delayed) begin if (rst_delayed == 1'b1) begin rd_rst_asreg <= #`TCQ 1'b1; end else begin if (rd_rst_asreg_d1 == 1'b1) begin rd_rst_asreg <= #`TCQ 1'b0; end else begin rd_rst_asreg <= #`TCQ rd_rst_asreg; end end end always @(posedge RD_CLK) begin rd_rst_asreg_d1 <= #`TCQ rd_rst_asreg; rd_rst_asreg_d2 <= #`TCQ rd_rst_asreg_d1; end always @(posedge RD_CLK or posedge rd_rst_comb) begin if (rd_rst_comb == 1'b1) begin rd_rst_reg <= #`TCQ 1'b1; end else begin rd_rst_reg <= #`TCQ 1'b0; end end end else if (C_HAS_RST == 1 && C_COMMON_CLOCK == 1) begin : g7s_cc_rst assign rst_comb = !rst_asreg_d2 && rst_asreg; assign rst_2_sync = rst_delayed; assign wr_rst_busy = 1'b0; assign rd_rst_busy = 1'b0; always @(posedge CLK or posedge rst_delayed) begin if (rst_delayed == 1'b1) begin rst_asreg <= #`TCQ 1'b1; end else begin if (rst_asreg_d1 == 1'b1) begin rst_asreg <= #`TCQ 1'b0; end else begin rst_asreg <= #`TCQ rst_asreg; end end end always @(posedge CLK) begin rst_asreg_d1 <= #`TCQ rst_asreg; rst_asreg_d2 <= #`TCQ rst_asreg_d1; end always @(posedge CLK or posedge rst_comb) begin if (rst_comb == 1'b1) begin rst_reg <= #`TCQ 1'b1; end else begin rst_reg <= #`TCQ 1'b0; end end end else if (IS_8SERIES == 1 && C_HAS_SRST == 1 && C_COMMON_CLOCK == 1) begin : g8s_cc_rst assign wr_rst_busy = (C_MEMORY_TYPE != 4) ? rst_reg : rst_active_i; assign rd_rst_busy = rst_reg; assign rst_2_sync = srst_delayed; always @* rst_full_ff_i <= rst_reg; always @* rst_full_gen_i <= C_FULL_FLAGS_RST_VAL == 1 ? rst_active_i : 0; always @(posedge CLK) begin rst_delayed_d1 <= #`TCQ srst_delayed; rst_delayed_d2 <= #`TCQ rst_delayed_d1; if (rst_reg || rst_delayed_d2) begin rst_active_i <= #`TCQ 1'b1; end else begin rst_active_i <= #`TCQ rst_reg; end end always @(posedge CLK) begin if (~rst_reg && srst_delayed) begin rst_reg <= #`TCQ 1'b1; end else if (rst_reg) begin rst_reg <= #`TCQ 1'b0; end else begin rst_reg <= #`TCQ rst_reg; end end end else begin assign wr_rst_busy = 1'b0; assign rd_rst_busy = 1'b0; end // end g8s_cc_rst endgenerate reg rst_d1 = 1'b0; reg rst_d2 = 1'b0; reg rst_d3 = 1'b0; reg rst_d4 = 1'b0; generate if ((C_HAS_RST == 1 || C_HAS_SRST == 1 || C_ENABLE_RST_SYNC == 0) && C_FULL_FLAGS_RST_VAL == 1) begin : grstd1 // RST_FULL_GEN replaces the reset falling edge detection used to de-assert // FULL, ALMOST_FULL & PROG_FULL flags if C_FULL_FLAGS_RST_VAL = 1. // RST_FULL_FF goes to the reset pin of the final flop of FULL, ALMOST_FULL & // PROG_FULL always @ (posedge rst_2_sync or posedge clk_2_sync) begin if (rst_2_sync) begin rst_d1 <= 1'b1; rst_d2 <= 1'b1; rst_d3 <= 1'b1; rst_d4 <= 1'b0; end else begin if (srst_delayed) begin rst_d1 <= #`TCQ 1'b1; rst_d2 <= #`TCQ 1'b1; rst_d3 <= #`TCQ 1'b1; rst_d4 <= #`TCQ 1'b0; end else begin rst_d1 <= #`TCQ 1'b0; rst_d2 <= #`TCQ rst_d1; rst_d3 <= #`TCQ rst_d2; rst_d4 <= #`TCQ rst_d3; end end end always @* rst_full_ff_i <= (C_HAS_SRST == 0) ? rst_d2 : 1'b0 ; always @* rst_full_gen_i <= rst_d4; end else if ((C_HAS_RST == 1 || C_HAS_SRST == 1 || C_ENABLE_RST_SYNC == 0) && C_FULL_FLAGS_RST_VAL == 0) begin : gnrst_full always @* rst_full_ff_i <= (C_COMMON_CLOCK == 0) ? wr_rst_i : rst_i; end endgenerate // grstd1 endmodule //FIFO_GENERATOR_v12_0_CONV_VER module fifo_generator_v12_0_sync_stage #( parameter C_WIDTH = 10 ) ( input RST, input CLK, input [C_WIDTH-1:0] DIN, output reg [C_WIDTH-1:0] DOUT = 0 ); always @ (posedge RST or posedge CLK) begin if (RST) DOUT <= 0; else DOUT <= #`TCQ DIN; end endmodule // fifo_generator_v12_0_sync_stage /******************************************************************************* * Declaration of Independent-Clocks FIFO Module ******************************************************************************/ module fifo_generator_v12_0_bhv_ver_as /*************************************************************************** * Declare user parameters and their defaults ***************************************************************************/ #( parameter C_FAMILY = "virtex7", parameter C_DATA_COUNT_WIDTH = 2, parameter C_DIN_WIDTH = 8, parameter C_DOUT_RST_VAL = "", parameter C_DOUT_WIDTH = 8, parameter C_FULL_FLAGS_RST_VAL = 1, parameter C_HAS_ALMOST_EMPTY = 0, parameter C_HAS_ALMOST_FULL = 0, parameter C_HAS_DATA_COUNT = 0, parameter C_HAS_OVERFLOW = 0, parameter C_HAS_RD_DATA_COUNT = 0, parameter C_HAS_RST = 0, parameter C_HAS_UNDERFLOW = 0, parameter C_HAS_VALID = 0, parameter C_HAS_WR_ACK = 0, parameter C_HAS_WR_DATA_COUNT = 0, parameter C_IMPLEMENTATION_TYPE = 0, parameter C_MEMORY_TYPE = 1, parameter C_OVERFLOW_LOW = 0, parameter C_PRELOAD_LATENCY = 1, parameter C_PRELOAD_REGS = 0, parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0, parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0, parameter C_PROG_EMPTY_TYPE = 0, parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0, parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0, parameter C_PROG_FULL_TYPE = 0, parameter C_RD_DATA_COUNT_WIDTH = 2, parameter C_RD_DEPTH = 256, parameter C_RD_PNTR_WIDTH = 8, parameter C_UNDERFLOW_LOW = 0, parameter C_USE_DOUT_RST = 0, parameter C_USE_EMBEDDED_REG = 0, parameter C_USE_FWFT_DATA_COUNT = 0, parameter C_VALID_LOW = 0, parameter C_WR_ACK_LOW = 0, parameter C_WR_DATA_COUNT_WIDTH = 2, parameter C_WR_DEPTH = 256, parameter C_WR_PNTR_WIDTH = 8, parameter C_USE_ECC = 0, parameter C_ENABLE_RST_SYNC = 1, parameter C_ERROR_INJECTION_TYPE = 0, parameter C_SYNCHRONIZER_STAGE = 2 ) /*************************************************************************** * Declare Input and Output Ports ***************************************************************************/ ( input [C_DIN_WIDTH-1:0] DIN, input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH, input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT, input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE, input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH, input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT, input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE, input RD_CLK, input RD_EN, input RD_EN_USER, input RST, input RST_FULL_GEN, input RST_FULL_FF, input WR_RST, input RD_RST, input WR_CLK, input WR_EN, input INJECTDBITERR, input INJECTSBITERR, input USER_EMPTY_FB, output reg ALMOST_EMPTY = 1'b1, output reg ALMOST_FULL = C_FULL_FLAGS_RST_VAL, output [C_DOUT_WIDTH-1:0] DOUT, output reg EMPTY = 1'b1, output reg FULL = C_FULL_FLAGS_RST_VAL, output OVERFLOW, output PROG_EMPTY, output PROG_FULL, output VALID, output [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT, output UNDERFLOW, output WR_ACK, output [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT, output SBITERR, output DBITERR ); reg [C_RD_PNTR_WIDTH:0] rd_data_count_int = 0; reg [C_WR_PNTR_WIDTH:0] wr_data_count_int = 0; reg [C_WR_PNTR_WIDTH:0] wdc_fwft_ext_as = 0; /*************************************************************************** * Parameters used as constants **************************************************************************/ localparam IS_8SERIES = (C_FAMILY == "virtexu" || C_FAMILY == "kintexu" || C_FAMILY == "artixu" || C_FAMILY == "virtexum" || C_FAMILY == "zynque") ? 1 : 0; //When RST is present, set FULL reset value to '1'. //If core has no RST, make sure FULL powers-on as '0'. localparam C_DEPTH_RATIO_WR = (C_WR_DEPTH>C_RD_DEPTH) ? (C_WR_DEPTH/C_RD_DEPTH) : 1; localparam C_DEPTH_RATIO_RD = (C_RD_DEPTH>C_WR_DEPTH) ? (C_RD_DEPTH/C_WR_DEPTH) : 1; localparam C_FIFO_WR_DEPTH = C_WR_DEPTH - 1; localparam C_FIFO_RD_DEPTH = C_RD_DEPTH - 1; // C_DEPTH_RATIO_WR | C_DEPTH_RATIO_RD | C_PNTR_WIDTH | EXTRA_WORDS_DC // -----------------|------------------|-----------------|--------------- // 1 | 8 | C_RD_PNTR_WIDTH | 2 // 1 | 4 | C_RD_PNTR_WIDTH | 2 // 1 | 2 | C_RD_PNTR_WIDTH | 2 // 1 | 1 | C_WR_PNTR_WIDTH | 2 // 2 | 1 | C_WR_PNTR_WIDTH | 4 // 4 | 1 | C_WR_PNTR_WIDTH | 8 // 8 | 1 | C_WR_PNTR_WIDTH | 16 localparam C_PNTR_WIDTH = (C_WR_PNTR_WIDTH>=C_RD_PNTR_WIDTH) ? C_WR_PNTR_WIDTH : C_RD_PNTR_WIDTH; wire [C_PNTR_WIDTH:0] EXTRA_WORDS_DC = (C_DEPTH_RATIO_WR == 1) ? 2 : (2 * C_DEPTH_RATIO_WR/C_DEPTH_RATIO_RD); localparam [31:0] reads_per_write = C_DIN_WIDTH/C_DOUT_WIDTH; localparam [31:0] log2_reads_per_write = log2_val(reads_per_write); localparam [31:0] writes_per_read = C_DOUT_WIDTH/C_DIN_WIDTH; localparam [31:0] log2_writes_per_read = log2_val(writes_per_read); /************************************************************************** * FIFO Contents Tracking and Data Count Calculations *************************************************************************/ // Memory which will be used to simulate a FIFO reg [C_DIN_WIDTH-1:0] memory[C_WR_DEPTH-1:0]; // Local parameters used to determine whether to inject ECC error or not localparam SYMMETRIC_PORT = (C_DIN_WIDTH == C_DOUT_WIDTH) ? 1 : 0; localparam ERR_INJECTION = (C_ERROR_INJECTION_TYPE != 0) ? 1 : 0; localparam ENABLE_ERR_INJECTION = C_USE_ECC && SYMMETRIC_PORT && ERR_INJECTION; // Array that holds the error injection type (single/double bit error) on // a specific write operation, which is returned on read to corrupt the // output data. reg [1:0] ecc_err[C_WR_DEPTH-1:0]; //The amount of data stored in the FIFO at any time is given // by num_wr_bits (in the WR_CLK domain) and num_rd_bits (in the RD_CLK // domain. //num_wr_bits is calculated by considering the total words in the FIFO, // and the state of the read pointer (which may not have yet crossed clock // domains.) //num_rd_bits is calculated by considering the total words in the FIFO, // and the state of the write pointer (which may not have yet crossed clock // domains.) reg [31:0] num_wr_bits; reg [31:0] num_rd_bits; reg [31:0] next_num_wr_bits; reg [31:0] next_num_rd_bits; //The write pointer - tracks write operations // (Works opposite to core: wr_ptr is a DOWN counter) reg [31:0] wr_ptr; reg [C_WR_PNTR_WIDTH-1:0] wr_pntr = 0; // UP counter: Rolls back to 0 when reaches to max value. reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd1 = 0; reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd2 = 0; reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd3 = 0; wire [C_RD_PNTR_WIDTH-1:0] adj_wr_pntr_rd; reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd = 0; wire wr_rst_i = WR_RST; reg wr_rst_d1 =0; //The read pointer - tracks read operations // (rd_ptr Works opposite to core: rd_ptr is a DOWN counter) reg [31:0] rd_ptr; reg [C_RD_PNTR_WIDTH-1:0] rd_pntr = 0; // UP counter: Rolls back to 0 when reaches to max value. reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr1 = 0; reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr2 = 0; reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr3 = 0; reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr4 = 0; wire [C_WR_PNTR_WIDTH-1:0] adj_rd_pntr_wr; reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr = 0; wire rd_rst_i = RD_RST; wire ram_rd_en; wire empty_int; wire almost_empty_int; wire ram_wr_en; wire full_int; wire almost_full_int; reg ram_rd_en_d1 = 1'b0; // Delayed ram_rd_en is needed only for STD Embedded register option generate if (C_PRELOAD_LATENCY == 2) begin : grd_d always @ (posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i) ram_rd_en_d1 <= #`TCQ 1'b0; else ram_rd_en_d1 <= #`TCQ ram_rd_en; end end endgenerate // Write pointer adjustment based on pointers width for EMPTY/ALMOST_EMPTY generation generate if (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) begin : rdg // Read depth greater than write depth assign adj_wr_pntr_rd[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr_rd; assign adj_wr_pntr_rd[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1:0] = 0; end else begin : rdl // Read depth lesser than or equal to write depth assign adj_wr_pntr_rd = wr_pntr_rd[C_WR_PNTR_WIDTH-1:C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH]; end endgenerate // Generate Empty and Almost Empty // ram_rd_en used to determine EMPTY should depend on the EMPTY. assign ram_rd_en = RD_EN & !EMPTY; assign empty_int = ((adj_wr_pntr_rd == rd_pntr) || (ram_rd_en && (adj_wr_pntr_rd == (rd_pntr+1'h1)))); assign almost_empty_int = ((adj_wr_pntr_rd == (rd_pntr+1'h1)) || (ram_rd_en && (adj_wr_pntr_rd == (rd_pntr+2'h2)))); // Register Empty and Almost Empty always @ (posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i) begin EMPTY <= #`TCQ 1'b1; ALMOST_EMPTY <= #`TCQ 1'b1; rd_data_count_int <= #`TCQ {C_RD_PNTR_WIDTH{1'b0}}; end else begin rd_data_count_int <= #`TCQ {(adj_wr_pntr_rd[C_RD_PNTR_WIDTH-1:0] - rd_pntr[C_RD_PNTR_WIDTH-1:0]), 1'b0}; if (empty_int) EMPTY <= #`TCQ 1'b1; else EMPTY <= #`TCQ 1'b0; if (!EMPTY) begin if (almost_empty_int) ALMOST_EMPTY <= #`TCQ 1'b1; else ALMOST_EMPTY <= #`TCQ 1'b0; end end // rd_rst_i end // always // Read pointer adjustment based on pointers width for EMPTY/ALMOST_EMPTY generation generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : wdg // Write depth greater than read depth assign adj_rd_pntr_wr[C_WR_PNTR_WIDTH-1:C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH] = rd_pntr_wr; assign adj_rd_pntr_wr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1:0] = 0; end else begin : wdl // Write depth lesser than or equal to read depth assign adj_rd_pntr_wr = rd_pntr_wr[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH]; end endgenerate // Generate FULL and ALMOST_FULL // ram_wr_en used to determine FULL should depend on the FULL. assign ram_wr_en = WR_EN & !FULL; assign full_int = ((adj_rd_pntr_wr == (wr_pntr+1'h1)) || (ram_wr_en && (adj_rd_pntr_wr == (wr_pntr+2'h2)))); assign almost_full_int = ((adj_rd_pntr_wr == (wr_pntr+2'h2)) || (ram_wr_en && (adj_rd_pntr_wr == (wr_pntr+3'h3)))); // Register FULL and ALMOST_FULL Empty always @ (posedge WR_CLK or posedge RST_FULL_FF) begin if (RST_FULL_FF) begin FULL <= #`TCQ C_FULL_FLAGS_RST_VAL; ALMOST_FULL <= #`TCQ C_FULL_FLAGS_RST_VAL; end else begin if (full_int) begin FULL <= #`TCQ 1'b1; end else begin FULL <= #`TCQ 1'b0; end if (RST_FULL_GEN) begin ALMOST_FULL <= #`TCQ 1'b0; end else if (!FULL) begin if (almost_full_int) ALMOST_FULL <= #`TCQ 1'b1; else ALMOST_FULL <= #`TCQ 1'b0; end end // wr_rst_i end // always always @ (posedge WR_CLK or posedge wr_rst_i) begin if (wr_rst_i) begin wr_data_count_int <= #`TCQ {C_WR_DATA_COUNT_WIDTH{1'b0}}; end else begin wr_data_count_int <= #`TCQ {(wr_pntr[C_WR_PNTR_WIDTH-1:0] - adj_rd_pntr_wr[C_WR_PNTR_WIDTH-1:0]), 1'b0}; end // wr_rst_i end // always // Determine which stage in FWFT registers are valid reg stage1_valid = 0; reg stage2_valid = 0; generate if (C_PRELOAD_LATENCY == 0) begin : grd_fwft_proc always @ (posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i) begin stage1_valid <= #`TCQ 0; stage2_valid <= #`TCQ 0; end else begin if (!stage1_valid && !stage2_valid) begin if (!EMPTY) stage1_valid <= #`TCQ 1'b1; else stage1_valid <= #`TCQ 1'b0; end else if (stage1_valid && !stage2_valid) begin if (EMPTY) begin stage1_valid <= #`TCQ 1'b0; stage2_valid <= #`TCQ 1'b1; end else begin stage1_valid <= #`TCQ 1'b1; stage2_valid <= #`TCQ 1'b1; end end else if (!stage1_valid && stage2_valid) begin if (EMPTY && RD_EN_USER) begin stage1_valid <= #`TCQ 1'b0; stage2_valid <= #`TCQ 1'b0; end else if (!EMPTY && RD_EN_USER) begin stage1_valid <= #`TCQ 1'b1; stage2_valid <= #`TCQ 1'b0; end else if (!EMPTY && !RD_EN_USER) begin stage1_valid <= #`TCQ 1'b1; stage2_valid <= #`TCQ 1'b1; end else begin stage1_valid <= #`TCQ 1'b0; stage2_valid <= #`TCQ 1'b1; end end else if (stage1_valid && stage2_valid) begin if (EMPTY && RD_EN_USER) begin stage1_valid <= #`TCQ 1'b0; stage2_valid <= #`TCQ 1'b1; end else begin stage1_valid <= #`TCQ 1'b1; stage2_valid <= #`TCQ 1'b1; end end else begin stage1_valid <= #`TCQ 1'b0; stage2_valid <= #`TCQ 1'b0; end end // rd_rst_i end // always end endgenerate //Pointers passed into opposite clock domain reg [31:0] wr_ptr_rdclk; reg [31:0] wr_ptr_rdclk_next; reg [31:0] rd_ptr_wrclk; reg [31:0] rd_ptr_wrclk_next; //Amount of data stored in the FIFO scaled to the narrowest (deepest) port // (Do not include data in FWFT stages) //Used to calculate PROG_EMPTY. wire [31:0] num_read_words_pe = num_rd_bits/(C_DOUT_WIDTH/C_DEPTH_RATIO_WR); //Amount of data stored in the FIFO scaled to the narrowest (deepest) port // (Do not include data in FWFT stages) //Used to calculate PROG_FULL. wire [31:0] num_write_words_pf = num_wr_bits/(C_DIN_WIDTH/C_DEPTH_RATIO_RD); /************************** * Read Data Count *************************/ reg [31:0] num_read_words_dc; reg [C_RD_DATA_COUNT_WIDTH-1:0] num_read_words_sized_i; always @(num_rd_bits) begin if (C_USE_FWFT_DATA_COUNT) begin //If using extra logic for FWFT Data Counts, // then scale FIFO contents to read domain, // and add two read words for FWFT stages //This value is only a temporary value and not used in the code. num_read_words_dc = (num_rd_bits/C_DOUT_WIDTH+2); //Trim the read words for use with RD_DATA_COUNT num_read_words_sized_i = num_read_words_dc[C_RD_PNTR_WIDTH : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH+1]; end else begin //If not using extra logic for FWFT Data Counts, // then scale FIFO contents to read domain. //This value is only a temporary value and not used in the code. num_read_words_dc = num_rd_bits/C_DOUT_WIDTH; //Trim the read words for use with RD_DATA_COUNT num_read_words_sized_i = num_read_words_dc[C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH]; end //if (C_USE_FWFT_DATA_COUNT) end //always /************************** * Write Data Count *************************/ reg [31:0] num_write_words_dc; reg [C_WR_DATA_COUNT_WIDTH-1:0] num_write_words_sized_i; always @(num_wr_bits) begin if (C_USE_FWFT_DATA_COUNT) begin //Calculate the Data Count value for the number of write words, // when using First-Word Fall-Through with extra logic for Data // Counts. This takes into consideration the number of words that // are expected to be stored in the FWFT register stages (it always // assumes they are filled). //This value is scaled to the Write Domain. //The expression (((A-1)/B))+1 divides A/B, but takes the // ceiling of the result. //When num_wr_bits==0, set the result manually to prevent // division errors. //EXTRA_WORDS_DC is the number of words added to write_words // due to FWFT. //This value is only a temporary value and not used in the code. num_write_words_dc = (num_wr_bits==0) ? EXTRA_WORDS_DC : (((num_wr_bits-1)/C_DIN_WIDTH)+1) + EXTRA_WORDS_DC ; //Trim the write words for use with WR_DATA_COUNT num_write_words_sized_i = num_write_words_dc[C_WR_PNTR_WIDTH : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH+1]; end else begin //Calculate the Data Count value for the number of write words, when NOT // using First-Word Fall-Through with extra logic for Data Counts. This // calculates only the number of words in the internal FIFO. //The expression (((A-1)/B))+1 divides A/B, but takes the // ceiling of the result. //This value is scaled to the Write Domain. //When num_wr_bits==0, set the result manually to prevent // division errors. //This value is only a temporary value and not used in the code. num_write_words_dc = (num_wr_bits==0) ? 0 : ((num_wr_bits-1)/C_DIN_WIDTH)+1; //Trim the read words for use with RD_DATA_COUNT num_write_words_sized_i = num_write_words_dc[C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH]; end //if (C_USE_FWFT_DATA_COUNT) end //always /*************************************************************************** * Internal registers and wires **************************************************************************/ //Temporary signals used for calculating the model's outputs. These //are only used in the assign statements immediately following wire, //parameter, and function declarations. wire [C_DOUT_WIDTH-1:0] ideal_dout_out; wire valid_i; wire valid_out; wire underflow_i; //Ideal FIFO signals. These are the raw output of the behavioral model, //which behaves like an ideal FIFO. reg [1:0] err_type = 0; reg [1:0] err_type_d1 = 0; reg [C_DOUT_WIDTH-1:0] ideal_dout = 0; reg [C_DOUT_WIDTH-1:0] ideal_dout_d1 = 0; reg ideal_wr_ack = 0; reg ideal_valid = 0; reg ideal_overflow = C_OVERFLOW_LOW; reg ideal_underflow = C_UNDERFLOW_LOW; reg ideal_prog_full = 0; reg ideal_prog_empty = 1; reg [C_WR_DATA_COUNT_WIDTH-1 : 0] ideal_wr_count = 0; reg [C_RD_DATA_COUNT_WIDTH-1 : 0] ideal_rd_count = 0; //Assorted reg values for delayed versions of signals reg valid_d1 = 0; //user specified value for reseting the size of the fifo reg [C_DOUT_WIDTH-1:0] dout_reset_val = 0; //temporary registers for WR_RESPONSE_LATENCY feature integer tmp_wr_listsize; integer tmp_rd_listsize; //Signal for registered version of prog full and empty //Threshold values for Programmable Flags integer prog_empty_actual_thresh_assert; integer prog_empty_actual_thresh_negate; integer prog_full_actual_thresh_assert; integer prog_full_actual_thresh_negate; /**************************************************************************** * Function Declarations ***************************************************************************/ /************************************************************************** * write_fifo * This task writes a word to the FIFO memory and updates the * write pointer. * FIFO size is relative to write domain. ***************************************************************************/ task write_fifo; begin memory[wr_ptr] <= DIN; wr_pntr <= #`TCQ wr_pntr + 1; // Store the type of error injection (double/single) on write case (C_ERROR_INJECTION_TYPE) 3: ecc_err[wr_ptr] <= {INJECTDBITERR,INJECTSBITERR}; 2: ecc_err[wr_ptr] <= {INJECTDBITERR,1'b0}; 1: ecc_err[wr_ptr] <= {1'b0,INJECTSBITERR}; default: ecc_err[wr_ptr] <= 0; endcase // (Works opposite to core: wr_ptr is a DOWN counter) if (wr_ptr == 0) begin wr_ptr <= C_WR_DEPTH - 1; end else begin wr_ptr <= wr_ptr - 1; end end endtask // write_fifo /************************************************************************** * read_fifo * This task reads a word from the FIFO memory and updates the read * pointer. It's output is the ideal_dout bus. * FIFO size is relative to write domain. ***************************************************************************/ task read_fifo; integer i; reg [C_DOUT_WIDTH-1:0] tmp_dout; reg [C_DIN_WIDTH-1:0] memory_read; reg [31:0] tmp_rd_ptr; reg [31:0] rd_ptr_high; reg [31:0] rd_ptr_low; reg [1:0] tmp_ecc_err; begin rd_pntr <= #`TCQ rd_pntr + 1; // output is wider than input if (reads_per_write == 0) begin tmp_dout = 0; tmp_rd_ptr = (rd_ptr << log2_writes_per_read)+(writes_per_read-1); for (i = writes_per_read - 1; i >= 0; i = i - 1) begin tmp_dout = tmp_dout << C_DIN_WIDTH; tmp_dout = tmp_dout | memory[tmp_rd_ptr]; // (Works opposite to core: rd_ptr is a DOWN counter) if (tmp_rd_ptr == 0) begin tmp_rd_ptr = C_WR_DEPTH - 1; end else begin tmp_rd_ptr = tmp_rd_ptr - 1; end end // output is symmetric end else if (reads_per_write == 1) begin tmp_dout = memory[rd_ptr][C_DIN_WIDTH-1:0]; // Retreive the error injection type. Based on the error injection type // corrupt the output data. tmp_ecc_err = ecc_err[rd_ptr]; if (ENABLE_ERR_INJECTION && C_DIN_WIDTH == C_DOUT_WIDTH) begin if (tmp_ecc_err[1]) begin // Corrupt the output data only for double bit error if (C_DOUT_WIDTH == 1) begin $display("FAILURE : Data width must be >= 2 for double bit error injection."); $finish; end else if (C_DOUT_WIDTH == 2) tmp_dout = {~tmp_dout[C_DOUT_WIDTH-1],~tmp_dout[C_DOUT_WIDTH-2]}; else tmp_dout = {~tmp_dout[C_DOUT_WIDTH-1],~tmp_dout[C_DOUT_WIDTH-2],(tmp_dout << 2)}; end else begin tmp_dout = tmp_dout[C_DOUT_WIDTH-1:0]; end err_type <= {tmp_ecc_err[1], tmp_ecc_err[0] & !tmp_ecc_err[1]}; end else begin err_type <= 0; end // input is wider than output end else begin rd_ptr_high = rd_ptr >> log2_reads_per_write; rd_ptr_low = rd_ptr & (reads_per_write - 1); memory_read = memory[rd_ptr_high]; tmp_dout = memory_read >> (rd_ptr_low*C_DOUT_WIDTH); end ideal_dout <= tmp_dout; // (Works opposite to core: rd_ptr is a DOWN counter) if (rd_ptr == 0) begin rd_ptr <= C_RD_DEPTH - 1; end else begin rd_ptr <= rd_ptr - 1; end end endtask /************************************************************************** * log2_val * Returns the 'log2' value for the input value for the supported ratios ***************************************************************************/ function [31:0] log2_val; input [31:0] binary_val; begin if (binary_val == 8) begin log2_val = 3; end else if (binary_val == 4) begin log2_val = 2; end else begin log2_val = 1; end end endfunction /*********************************************************************** * hexstr_conv * Converts a string of type hex to a binary value (for C_DOUT_RST_VAL) ***********************************************************************/ function [C_DOUT_WIDTH-1:0] hexstr_conv; input [(C_DOUT_WIDTH*8)-1:0] def_data; integer index,i,j; reg [3:0] bin; begin index = 0; hexstr_conv = 'b0; for( i=C_DOUT_WIDTH-1; i>=0; i=i-1 ) begin case (def_data[7:0]) 8'b00000000 : begin bin = 4'b0000; i = -1; end 8'b00110000 : bin = 4'b0000; 8'b00110001 : bin = 4'b0001; 8'b00110010 : bin = 4'b0010; 8'b00110011 : bin = 4'b0011; 8'b00110100 : bin = 4'b0100; 8'b00110101 : bin = 4'b0101; 8'b00110110 : bin = 4'b0110; 8'b00110111 : bin = 4'b0111; 8'b00111000 : bin = 4'b1000; 8'b00111001 : bin = 4'b1001; 8'b01000001 : bin = 4'b1010; 8'b01000010 : bin = 4'b1011; 8'b01000011 : bin = 4'b1100; 8'b01000100 : bin = 4'b1101; 8'b01000101 : bin = 4'b1110; 8'b01000110 : bin = 4'b1111; 8'b01100001 : bin = 4'b1010; 8'b01100010 : bin = 4'b1011; 8'b01100011 : bin = 4'b1100; 8'b01100100 : bin = 4'b1101; 8'b01100101 : bin = 4'b1110; 8'b01100110 : bin = 4'b1111; default : begin bin = 4'bx; end endcase for( j=0; j<4; j=j+1) begin if ((index*4)+j < C_DOUT_WIDTH) begin hexstr_conv[(index*4)+j] = bin[j]; end end index = index + 1; def_data = def_data >> 8; end end endfunction /************************************************************************* * Initialize Signals for clean power-on simulation *************************************************************************/ initial begin num_wr_bits = 0; num_rd_bits = 0; next_num_wr_bits = 0; next_num_rd_bits = 0; rd_ptr = C_RD_DEPTH - 1; wr_ptr = C_WR_DEPTH - 1; wr_pntr = 0; rd_pntr = 0; rd_ptr_wrclk = rd_ptr; wr_ptr_rdclk = wr_ptr; dout_reset_val = hexstr_conv(C_DOUT_RST_VAL); ideal_dout = dout_reset_val; err_type = 0; ideal_dout_d1 = dout_reset_val; ideal_wr_ack = 1'b0; ideal_valid = 1'b0; valid_d1 = 1'b0; ideal_overflow = C_OVERFLOW_LOW; ideal_underflow = C_UNDERFLOW_LOW; ideal_wr_count = 0; ideal_rd_count = 0; ideal_prog_full = 1'b0; ideal_prog_empty = 1'b1; end /************************************************************************* * Connect the module inputs and outputs to the internal signals of the * behavioral model. *************************************************************************/ //Inputs /* wire [C_DIN_WIDTH-1:0] DIN; wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH; wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT; wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE; wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH; wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT; wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE; wire RD_CLK; wire RD_EN; wire RST; wire WR_CLK; wire WR_EN; */ //*************************************************************************** // Dout may change behavior based on latency //*************************************************************************** assign ideal_dout_out[C_DOUT_WIDTH-1:0] = (C_PRELOAD_LATENCY==2 && (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1))? ideal_dout_d1: ideal_dout; assign DOUT[C_DOUT_WIDTH-1:0] = ideal_dout_out; //*************************************************************************** // Assign SBITERR and DBITERR based on latency //*************************************************************************** assign SBITERR = (C_ERROR_INJECTION_TYPE == 1 || C_ERROR_INJECTION_TYPE == 3) && (C_PRELOAD_LATENCY == 2 && (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1)) ? err_type_d1[0]: err_type[0]; assign DBITERR = (C_ERROR_INJECTION_TYPE == 2 || C_ERROR_INJECTION_TYPE == 3) && (C_PRELOAD_LATENCY==2 && (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1)) ? err_type_d1[1]: err_type[1]; //*************************************************************************** // Overflow may be active-low //*************************************************************************** generate if (C_HAS_OVERFLOW==1) begin : blockOF1 assign OVERFLOW = ideal_overflow ? !C_OVERFLOW_LOW : C_OVERFLOW_LOW; end endgenerate assign PROG_EMPTY = ideal_prog_empty; assign PROG_FULL = ideal_prog_full; //*************************************************************************** // Valid may change behavior based on latency or active-low //*************************************************************************** generate if (C_HAS_VALID==1) begin : blockVL1 assign valid_i = (C_PRELOAD_LATENCY==0) ? (RD_EN & ~EMPTY) : ideal_valid; assign valid_out = (C_PRELOAD_LATENCY==2 && (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1))? valid_d1: valid_i; assign VALID = valid_out ? !C_VALID_LOW : C_VALID_LOW; end endgenerate //*************************************************************************** // Underflow may change behavior based on latency or active-low //*************************************************************************** generate if (C_HAS_UNDERFLOW==1) begin : blockUF1 assign underflow_i = (C_PRELOAD_LATENCY==0) ? (RD_EN & EMPTY) : ideal_underflow; assign UNDERFLOW = underflow_i ? !C_UNDERFLOW_LOW : C_UNDERFLOW_LOW; end endgenerate //*************************************************************************** // Write acknowledge may be active low //*************************************************************************** generate if (C_HAS_WR_ACK==1) begin : blockWK1 assign WR_ACK = ideal_wr_ack ? !C_WR_ACK_LOW : C_WR_ACK_LOW; end endgenerate //*************************************************************************** // Generate RD_DATA_COUNT if Use Extra Logic option is selected //*************************************************************************** generate if (C_HAS_WR_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT == 1) begin : wdc_fwft_ext reg [C_PNTR_WIDTH-1:0] adjusted_wr_pntr = 0; reg [C_PNTR_WIDTH-1:0] adjusted_rd_pntr = 0; wire [C_PNTR_WIDTH-1:0] diff_wr_rd_tmp; wire [C_PNTR_WIDTH:0] diff_wr_rd; reg [C_PNTR_WIDTH:0] wr_data_count_i = 0; always @* begin if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin adjusted_wr_pntr = wr_pntr; adjusted_rd_pntr = 0; adjusted_rd_pntr[C_PNTR_WIDTH-1:C_PNTR_WIDTH-C_RD_PNTR_WIDTH] = rd_pntr_wr; end else if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin adjusted_rd_pntr = rd_pntr_wr; adjusted_wr_pntr = 0; adjusted_wr_pntr[C_PNTR_WIDTH-1:C_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr; end else begin adjusted_wr_pntr = wr_pntr; adjusted_rd_pntr = rd_pntr_wr; end end // always @* assign diff_wr_rd_tmp = adjusted_wr_pntr - adjusted_rd_pntr; assign diff_wr_rd = {1'b0,diff_wr_rd_tmp}; always @ (posedge wr_rst_i or posedge WR_CLK) begin if (wr_rst_i) wr_data_count_i <= #`TCQ 0; else wr_data_count_i <= #`TCQ diff_wr_rd + EXTRA_WORDS_DC; end // always @ (posedge WR_CLK or posedge WR_CLK) always @* begin if (C_WR_PNTR_WIDTH >= C_RD_PNTR_WIDTH) wdc_fwft_ext_as = wr_data_count_i[C_PNTR_WIDTH:0]; else wdc_fwft_ext_as = wr_data_count_i[C_PNTR_WIDTH:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH]; end // always @* end // wdc_fwft_ext endgenerate //*************************************************************************** // Generate RD_DATA_COUNT if Use Extra Logic option is selected //*************************************************************************** reg [C_RD_PNTR_WIDTH:0] rdc_fwft_ext_as = 0; generate if (C_HAS_RD_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT == 1) begin : rdc_fwft_ext reg [C_RD_PNTR_WIDTH-1:0] adjusted_wr_pntr_rd = 0; wire [C_RD_PNTR_WIDTH-1:0] diff_rd_wr_tmp; wire [C_RD_PNTR_WIDTH:0] diff_rd_wr; always @* begin if (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) begin adjusted_wr_pntr_rd = 0; adjusted_wr_pntr_rd[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr_rd; end else begin adjusted_wr_pntr_rd = wr_pntr_rd[C_WR_PNTR_WIDTH-1:C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH]; end end // always @* assign diff_rd_wr_tmp = adjusted_wr_pntr_rd - rd_pntr; assign diff_rd_wr = {1'b0,diff_rd_wr_tmp}; always @ (posedge rd_rst_i or posedge RD_CLK) begin if (rd_rst_i) begin rdc_fwft_ext_as <= #`TCQ 0; end else begin if (!stage2_valid) rdc_fwft_ext_as <= #`TCQ 0; else if (!stage1_valid && stage2_valid) rdc_fwft_ext_as <= #`TCQ 1; else rdc_fwft_ext_as <= #`TCQ diff_rd_wr + 2'h2; end end // always @ (posedge WR_CLK or posedge WR_CLK) end // rdc_fwft_ext endgenerate //*************************************************************************** // Assign the read data count value only if it is selected, // otherwise output zeros. //*************************************************************************** generate if (C_HAS_RD_DATA_COUNT == 1) begin : grdc assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = C_USE_FWFT_DATA_COUNT ? rdc_fwft_ext_as[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH+1-C_RD_DATA_COUNT_WIDTH] : rd_data_count_int[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH+1-C_RD_DATA_COUNT_WIDTH]; end endgenerate generate if (C_HAS_RD_DATA_COUNT == 0) begin : gnrdc assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = {C_RD_DATA_COUNT_WIDTH{1'b0}}; end endgenerate //*************************************************************************** // Assign the write data count value only if it is selected, // otherwise output zeros //*************************************************************************** generate if (C_HAS_WR_DATA_COUNT == 1) begin : gwdc assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = (C_USE_FWFT_DATA_COUNT == 1) ? wdc_fwft_ext_as[C_WR_PNTR_WIDTH:C_WR_PNTR_WIDTH+1-C_WR_DATA_COUNT_WIDTH] : wr_data_count_int[C_WR_PNTR_WIDTH:C_WR_PNTR_WIDTH+1-C_WR_DATA_COUNT_WIDTH]; end endgenerate generate if (C_HAS_WR_DATA_COUNT == 0) begin : gnwdc assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = {C_WR_DATA_COUNT_WIDTH{1'b0}}; end endgenerate /************************************************************************** * Assorted registers for delayed versions of signals **************************************************************************/ //Capture delayed version of valid generate if (C_HAS_VALID==1) begin : blockVL2 always @(posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i == 1'b1) begin valid_d1 <= #`TCQ 1'b0; end else begin valid_d1 <= #`TCQ valid_i; end end end endgenerate //Capture delayed version of dout always @(posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i == 1'b1) begin // Reset err_type only if ECC is not selected if (C_USE_ECC == 0) err_type_d1 <= #`TCQ 0; end else if (ram_rd_en_d1) begin ideal_dout_d1 <= #`TCQ ideal_dout; err_type_d1 <= #`TCQ err_type; end end /************************************************************************** * Overflow and Underflow Flag calculation * (handled separately because they don't support rst) **************************************************************************/ generate if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 0) begin : g7s_ovflw always @(posedge WR_CLK) begin ideal_overflow <= #`TCQ WR_EN & FULL; end end else if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 1) begin : g8s_ovflw always @(posedge WR_CLK) begin //ideal_overflow <= #`TCQ WR_EN & (FULL | wr_rst_i); ideal_overflow <= #`TCQ WR_EN & (FULL ); end end endgenerate generate if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 0) begin : g7s_unflw always @(posedge RD_CLK) begin ideal_underflow <= #`TCQ EMPTY & RD_EN; end end else if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 1) begin : g8s_unflw always @(posedge RD_CLK) begin ideal_underflow <= #`TCQ (EMPTY) & RD_EN; //ideal_underflow <= #`TCQ (rd_rst_i | EMPTY) & RD_EN; end end endgenerate /************************************************************************** * Write/Read Pointer Synchronization **************************************************************************/ localparam NO_OF_SYNC_STAGE_INC_G2B = C_SYNCHRONIZER_STAGE + 1; wire [C_WR_PNTR_WIDTH-1:0] wr_pntr_sync_stgs [0:NO_OF_SYNC_STAGE_INC_G2B]; wire [C_RD_PNTR_WIDTH-1:0] rd_pntr_sync_stgs [0:NO_OF_SYNC_STAGE_INC_G2B]; genvar gss; generate for (gss = 1; gss <= NO_OF_SYNC_STAGE_INC_G2B; gss = gss + 1) begin : Sync_stage_inst fifo_generator_v12_0_sync_stage #( .C_WIDTH (C_WR_PNTR_WIDTH) ) rd_stg_inst ( .RST (rd_rst_i), .CLK (RD_CLK), .DIN (wr_pntr_sync_stgs[gss-1]), .DOUT (wr_pntr_sync_stgs[gss]) ); fifo_generator_v12_0_sync_stage #( .C_WIDTH (C_RD_PNTR_WIDTH) ) wr_stg_inst ( .RST (wr_rst_i), .CLK (WR_CLK), .DIN (rd_pntr_sync_stgs[gss-1]), .DOUT (rd_pntr_sync_stgs[gss]) ); end endgenerate // Sync_stage_inst assign wr_pntr_sync_stgs[0] = wr_pntr_rd1; assign rd_pntr_sync_stgs[0] = rd_pntr_wr1; always@* begin wr_pntr_rd <= wr_pntr_sync_stgs[NO_OF_SYNC_STAGE_INC_G2B]; rd_pntr_wr <= rd_pntr_sync_stgs[NO_OF_SYNC_STAGE_INC_G2B]; end /************************************************************************** * Write Domain Logic **************************************************************************/ reg [C_WR_PNTR_WIDTH-1:0] diff_pntr = 0; always @(posedge WR_CLK or posedge wr_rst_i) begin : gen_fifo_w /****** Reset fifo (case 1)***************************************/ if (wr_rst_i == 1'b1) begin num_wr_bits <= #`TCQ 0; next_num_wr_bits = #`TCQ 0; wr_ptr <= #`TCQ C_WR_DEPTH - 1; rd_ptr_wrclk <= #`TCQ C_RD_DEPTH - 1; ideal_wr_ack <= #`TCQ 0; ideal_wr_count <= #`TCQ 0; tmp_wr_listsize = #`TCQ 0; rd_ptr_wrclk_next <= #`TCQ 0; wr_pntr <= #`TCQ 0; wr_pntr_rd1 <= #`TCQ 0; end else begin //wr_rst_i==0 wr_pntr_rd1 <= #`TCQ wr_pntr; //Determine the current number of words in the FIFO tmp_wr_listsize = (C_DEPTH_RATIO_RD > 1) ? num_wr_bits/C_DOUT_WIDTH : num_wr_bits/C_DIN_WIDTH; rd_ptr_wrclk_next = rd_ptr; if (rd_ptr_wrclk < rd_ptr_wrclk_next) begin next_num_wr_bits = num_wr_bits - C_DOUT_WIDTH*(rd_ptr_wrclk + C_RD_DEPTH - rd_ptr_wrclk_next); end else begin next_num_wr_bits = num_wr_bits - C_DOUT_WIDTH*(rd_ptr_wrclk - rd_ptr_wrclk_next); end //If this is a write, handle the write by adding the value // to the linked list, and updating all outputs appropriately if (WR_EN == 1'b1) begin if (FULL == 1'b1) begin //If the FIFO is full, do NOT perform the write, // update flags accordingly if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD >= C_FIFO_WR_DEPTH) begin //write unsuccessful - do not change contents //Do not acknowledge the write ideal_wr_ack <= #`TCQ 0; //Reminder that FIFO is still full ideal_wr_count <= #`TCQ num_write_words_sized_i; //If the FIFO is one from full, but reporting full end else if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD == C_FIFO_WR_DEPTH-1) begin //No change to FIFO //Write not successful ideal_wr_ack <= #`TCQ 0; //With DEPTH-1 words in the FIFO, it is almost_full ideal_wr_count <= #`TCQ num_write_words_sized_i; //If the FIFO is completely empty, but it is // reporting FULL for some reason (like reset) end else if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD <= C_FIFO_WR_DEPTH-2) begin //No change to FIFO //Write not successful ideal_wr_ack <= #`TCQ 0; //FIFO is really not close to full, so change flag status. ideal_wr_count <= #`TCQ num_write_words_sized_i; end //(tmp_wr_listsize == 0) end else begin //If the FIFO is full, do NOT perform the write, // update flags accordingly if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD >= C_FIFO_WR_DEPTH) begin //write unsuccessful - do not change contents //Do not acknowledge the write ideal_wr_ack <= #`TCQ 0; //Reminder that FIFO is still full ideal_wr_count <= #`TCQ num_write_words_sized_i; //If the FIFO is one from full end else if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD == C_FIFO_WR_DEPTH-1) begin //Add value on DIN port to FIFO write_fifo; next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH; //Write successful, so issue acknowledge // and no error ideal_wr_ack <= #`TCQ 1; //This write is CAUSING the FIFO to go full ideal_wr_count <= #`TCQ num_write_words_sized_i; //If the FIFO is 2 from full end else if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD == C_FIFO_WR_DEPTH-2) begin //Add value on DIN port to FIFO write_fifo; next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH; //Write successful, so issue acknowledge // and no error ideal_wr_ack <= #`TCQ 1; //Still 2 from full ideal_wr_count <= #`TCQ num_write_words_sized_i; //If the FIFO is not close to being full end else if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD < C_FIFO_WR_DEPTH-2) begin //Add value on DIN port to FIFO write_fifo; next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH; //Write successful, so issue acknowledge // and no error ideal_wr_ack <= #`TCQ 1; //Not even close to full. ideal_wr_count <= num_write_words_sized_i; end end end else begin //(WR_EN == 1'b1) //If user did not attempt a write, then do not // give ack or err ideal_wr_ack <= #`TCQ 0; ideal_wr_count <= #`TCQ num_write_words_sized_i; end num_wr_bits <= #`TCQ next_num_wr_bits; rd_ptr_wrclk <= #`TCQ rd_ptr; end //wr_rst_i==0 end // gen_fifo_w /*************************************************************************** * Programmable FULL flags ***************************************************************************/ wire [C_WR_PNTR_WIDTH-1:0] pf_thr_assert_val; wire [C_WR_PNTR_WIDTH-1:0] pf_thr_negate_val; generate if (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) begin : FWFT assign pf_thr_assert_val = C_PROG_FULL_THRESH_ASSERT_VAL - EXTRA_WORDS_DC; assign pf_thr_negate_val = C_PROG_FULL_THRESH_NEGATE_VAL - EXTRA_WORDS_DC; end else begin // STD assign pf_thr_assert_val = C_PROG_FULL_THRESH_ASSERT_VAL; assign pf_thr_negate_val = C_PROG_FULL_THRESH_NEGATE_VAL; end endgenerate always @(posedge WR_CLK or posedge wr_rst_i) begin if (wr_rst_i == 1'b1) begin diff_pntr <= 0; end else begin if (ram_wr_en) diff_pntr <= #`TCQ (wr_pntr - adj_rd_pntr_wr + 2'h1); else if (!ram_wr_en) diff_pntr <= #`TCQ (wr_pntr - adj_rd_pntr_wr); end end always @(posedge WR_CLK or posedge RST_FULL_FF) begin : gen_pf if (RST_FULL_FF == 1'b1) begin ideal_prog_full <= #`TCQ C_FULL_FLAGS_RST_VAL; end else begin if (RST_FULL_GEN) ideal_prog_full <= #`TCQ 0; //Single Programmable Full Constant Threshold else if (C_PROG_FULL_TYPE == 1) begin if (FULL == 0) begin if (diff_pntr >= pf_thr_assert_val) ideal_prog_full <= #`TCQ 1; else ideal_prog_full <= #`TCQ 0; end else ideal_prog_full <= #`TCQ ideal_prog_full; //Two Programmable Full Constant Thresholds end else if (C_PROG_FULL_TYPE == 2) begin if (FULL == 0) begin if (diff_pntr >= pf_thr_assert_val) ideal_prog_full <= #`TCQ 1; else if (diff_pntr < pf_thr_negate_val) ideal_prog_full <= #`TCQ 0; else ideal_prog_full <= #`TCQ ideal_prog_full; end else ideal_prog_full <= #`TCQ ideal_prog_full; //Single Programmable Full Threshold Input end else if (C_PROG_FULL_TYPE == 3) begin if (FULL == 0) begin if (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) begin // FWFT if (diff_pntr >= (PROG_FULL_THRESH - EXTRA_WORDS_DC)) ideal_prog_full <= #`TCQ 1; else ideal_prog_full <= #`TCQ 0; end else begin // STD if (diff_pntr >= PROG_FULL_THRESH) ideal_prog_full <= #`TCQ 1; else ideal_prog_full <= #`TCQ 0; end end else ideal_prog_full <= #`TCQ ideal_prog_full; //Two Programmable Full Threshold Inputs end else if (C_PROG_FULL_TYPE == 4) begin if (FULL == 0) begin if (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) begin // FWFT if (diff_pntr >= (PROG_FULL_THRESH_ASSERT - EXTRA_WORDS_DC)) ideal_prog_full <= #`TCQ 1; else if (diff_pntr < (PROG_FULL_THRESH_NEGATE - EXTRA_WORDS_DC)) ideal_prog_full <= #`TCQ 0; else ideal_prog_full <= #`TCQ ideal_prog_full; end else begin // STD if (diff_pntr >= PROG_FULL_THRESH_ASSERT) ideal_prog_full <= #`TCQ 1; else if (diff_pntr < PROG_FULL_THRESH_NEGATE) ideal_prog_full <= #`TCQ 0; else ideal_prog_full <= #`TCQ ideal_prog_full; end end else ideal_prog_full <= #`TCQ ideal_prog_full; end // C_PROG_FULL_TYPE end //wr_rst_i==0 end // /************************************************************************** * Read Domain Logic **************************************************************************/ /********************************************************* * Programmable EMPTY flags *********************************************************/ //Determine the Assert and Negate thresholds for Programmable Empty wire [C_RD_PNTR_WIDTH-1:0] pe_thr_assert_val; wire [C_RD_PNTR_WIDTH-1:0] pe_thr_negate_val; reg [C_RD_PNTR_WIDTH-1:0] diff_pntr_rd = 0; always @(posedge RD_CLK or posedge rd_rst_i) begin : gen_pe if (rd_rst_i) begin diff_pntr_rd <= #`TCQ 0; ideal_prog_empty <= #`TCQ 1'b1; end else begin if (ram_rd_en) diff_pntr_rd <= #`TCQ (adj_wr_pntr_rd - rd_pntr) - 1'h1; else if (!ram_rd_en) diff_pntr_rd <= #`TCQ (adj_wr_pntr_rd - rd_pntr); else diff_pntr_rd <= #`TCQ diff_pntr_rd; if (C_PROG_EMPTY_TYPE == 1) begin if (EMPTY == 0) begin if (diff_pntr_rd <= pe_thr_assert_val) ideal_prog_empty <= #`TCQ 1; else ideal_prog_empty <= #`TCQ 0; end else ideal_prog_empty <= #`TCQ ideal_prog_empty; end else if (C_PROG_EMPTY_TYPE == 2) begin if (EMPTY == 0) begin if (diff_pntr_rd <= pe_thr_assert_val) ideal_prog_empty <= #`TCQ 1; else if (diff_pntr_rd > pe_thr_negate_val) ideal_prog_empty <= #`TCQ 0; else ideal_prog_empty <= #`TCQ ideal_prog_empty; end else ideal_prog_empty <= #`TCQ ideal_prog_empty; end else if (C_PROG_EMPTY_TYPE == 3) begin if (EMPTY == 0) begin if (diff_pntr_rd <= pe_thr_assert_val) ideal_prog_empty <= #`TCQ 1; else ideal_prog_empty <= #`TCQ 0; end else ideal_prog_empty <= #`TCQ ideal_prog_empty; end else if (C_PROG_EMPTY_TYPE == 4) begin if (EMPTY == 0) begin if (diff_pntr_rd <= pe_thr_assert_val) ideal_prog_empty <= #`TCQ 1; else if (diff_pntr_rd > pe_thr_negate_val) ideal_prog_empty <= #`TCQ 0; else ideal_prog_empty <= #`TCQ ideal_prog_empty; end else ideal_prog_empty <= #`TCQ ideal_prog_empty; end //C_PROG_EMPTY_TYPE end end // gen_pe generate if (C_PROG_EMPTY_TYPE == 3) begin : single_pe_thr_input assign pe_thr_assert_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ? PROG_EMPTY_THRESH - 2'h2 : PROG_EMPTY_THRESH; end endgenerate // single_pe_thr_input generate if (C_PROG_EMPTY_TYPE == 4) begin : multiple_pe_thr_input assign pe_thr_assert_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ? PROG_EMPTY_THRESH_ASSERT - 2'h2 : PROG_EMPTY_THRESH_ASSERT; assign pe_thr_negate_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ? PROG_EMPTY_THRESH_NEGATE - 2'h2 : PROG_EMPTY_THRESH_NEGATE; end endgenerate // multiple_pe_thr_input generate if (C_PROG_EMPTY_TYPE < 3) begin : single_multiple_pe_thr_const assign pe_thr_assert_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ? C_PROG_EMPTY_THRESH_ASSERT_VAL - 2'h2 : C_PROG_EMPTY_THRESH_ASSERT_VAL; assign pe_thr_negate_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ? C_PROG_EMPTY_THRESH_NEGATE_VAL - 2'h2 : C_PROG_EMPTY_THRESH_NEGATE_VAL; end endgenerate // single_multiple_pe_thr_const // block memory has a synchronous reset always @(posedge RD_CLK) begin : gen_fifo_blkmemdout // make it consistent with the core. if (rd_rst_i) begin // Reset err_type only if ECC is not selected if (C_USE_ECC == 0 && C_MEMORY_TYPE < 2) err_type <= #`TCQ 0; // BRAM resets synchronously if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE < 2) begin ideal_dout <= #`TCQ dout_reset_val; ideal_dout_d1 <= #`TCQ dout_reset_val; end end end //always always @(posedge RD_CLK or posedge rd_rst_i) begin : gen_fifo_r /****** Reset fifo (case 1)***************************************/ if (rd_rst_i) begin num_rd_bits <= #`TCQ 0; next_num_rd_bits = #`TCQ 0; rd_ptr <= #`TCQ C_RD_DEPTH -1; rd_pntr <= #`TCQ 0; rd_pntr_wr1 <= #`TCQ 0; wr_ptr_rdclk <= #`TCQ C_WR_DEPTH -1; // DRAM resets asynchronously if (C_MEMORY_TYPE == 2 && C_USE_DOUT_RST == 1) ideal_dout <= #`TCQ dout_reset_val; // Reset err_type only if ECC is not selected if (C_USE_ECC == 0) err_type <= #`TCQ 0; ideal_valid <= #`TCQ 1'b0; ideal_rd_count <= #`TCQ 0; end else begin //rd_rst_i==0 rd_pntr_wr1 <= #`TCQ rd_pntr; //Determine the current number of words in the FIFO tmp_rd_listsize = (C_DEPTH_RATIO_WR > 1) ? num_rd_bits/C_DIN_WIDTH : num_rd_bits/C_DOUT_WIDTH; wr_ptr_rdclk_next = wr_ptr; if (wr_ptr_rdclk < wr_ptr_rdclk_next) begin next_num_rd_bits = num_rd_bits + C_DIN_WIDTH*(wr_ptr_rdclk +C_WR_DEPTH - wr_ptr_rdclk_next); end else begin next_num_rd_bits = num_rd_bits + C_DIN_WIDTH*(wr_ptr_rdclk - wr_ptr_rdclk_next); end /*****************************************************************/ // Read Operation - Read Latency 1 /*****************************************************************/ if (C_PRELOAD_LATENCY==1 || C_PRELOAD_LATENCY==2) begin ideal_valid <= #`TCQ 1'b0; if (ram_rd_en == 1'b1) begin if (EMPTY == 1'b1) begin //If the FIFO is completely empty, and is reporting empty if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0) begin //Do not change the contents of the FIFO //Do not acknowledge the read from empty FIFO ideal_valid <= #`TCQ 1'b0; //Reminder that FIFO is still empty ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if (tmp_rd_listsize <= 0) //If the FIFO is one from empty, but it is reporting empty else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 1) begin //Do not change the contents of the FIFO //Do not acknowledge the read from empty FIFO ideal_valid <= #`TCQ 1'b0; //Note that FIFO is no longer empty, but is almost empty (has one word left) ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if (tmp_rd_listsize == 1) //If the FIFO is two from empty, and is reporting empty else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2) begin //Do not change the contents of the FIFO //Do not acknowledge the read from empty FIFO ideal_valid <= #`TCQ 1'b0; //Fifo has two words, so is neither empty or almost empty ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if (tmp_rd_listsize == 2) //If the FIFO is not close to empty, but is reporting that it is // Treat the FIFO as empty this time, but unset EMPTY flags. if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) && (tmp_rd_listsize/C_DEPTH_RATIO_WR<C_FIFO_RD_DEPTH)) begin //Do not change the contents of the FIFO //Do not acknowledge the read from empty FIFO ideal_valid <= #`TCQ 1'b0; //Note that the FIFO is No Longer Empty or Almost Empty ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if ((tmp_rd_listsize > 2) && (tmp_rd_listsize<=C_FIFO_RD_DEPTH-1)) end // else: if(ideal_empty == 1'b1) else //if (ideal_empty == 1'b0) begin //If the FIFO is completely full, and we are successfully reading from it if (tmp_rd_listsize/C_DEPTH_RATIO_WR >= C_FIFO_RD_DEPTH) begin //Read the value from the FIFO read_fifo; next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH; //Acknowledge the read from the FIFO, no error ideal_valid <= #`TCQ 1'b1; //Not close to empty ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if (tmp_rd_listsize == C_FIFO_RD_DEPTH) //If the FIFO is not close to being empty else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) && (tmp_rd_listsize/C_DEPTH_RATIO_WR<=C_FIFO_RD_DEPTH)) begin //Read the value from the FIFO read_fifo; next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH; //Acknowledge the read from the FIFO, no error ideal_valid <= #`TCQ 1'b1; //Not close to empty ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if ((tmp_rd_listsize > 2) && (tmp_rd_listsize<=C_FIFO_RD_DEPTH-1)) //If the FIFO is two from empty else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2) begin //Read the value from the FIFO read_fifo; next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH; //Acknowledge the read from the FIFO, no error ideal_valid <= #`TCQ 1'b1; //Fifo is not yet empty. It is going almost_empty ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if (tmp_rd_listsize == 2) //If the FIFO is one from empty else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR == 1)) begin //Read the value from the FIFO read_fifo; next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH; //Acknowledge the read from the FIFO, no error ideal_valid <= #`TCQ 1'b1; //Note that FIFO is GOING empty ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if (tmp_rd_listsize == 1) //If the FIFO is completely empty else if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0) begin //Do not change the contents of the FIFO //Do not acknowledge the read from empty FIFO ideal_valid <= #`TCQ 1'b0; ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if (tmp_rd_listsize <= 0) end // if (ideal_empty == 1'b0) end //(RD_EN == 1'b1) else //if (RD_EN == 1'b0) begin //If user did not attempt a read, do not give an ack or err ideal_valid <= #`TCQ 1'b0; ideal_rd_count <= #`TCQ num_read_words_sized_i; end // else: !if(RD_EN == 1'b1) /*****************************************************************/ // Read Operation - Read Latency 0 /*****************************************************************/ end else if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) begin ideal_valid <= #`TCQ 1'b0; if (ram_rd_en == 1'b1) begin if (EMPTY == 1'b1) begin //If the FIFO is completely empty, and is reporting empty if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0) begin //Do not change the contents of the FIFO //Do not acknowledge the read from empty FIFO ideal_valid <= #`TCQ 1'b0; //Reminder that FIFO is still empty ideal_rd_count <= #`TCQ num_read_words_sized_i; //If the FIFO is one from empty, but it is reporting empty end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 1) begin //Do not change the contents of the FIFO //Do not acknowledge the read from empty FIFO ideal_valid <= #`TCQ 1'b0; //Note that FIFO is no longer empty, but is almost empty (has one word left) ideal_rd_count <= #`TCQ num_read_words_sized_i; //If the FIFO is two from empty, and is reporting empty end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2) begin //Do not change the contents of the FIFO //Do not acknowledge the read from empty FIFO ideal_valid <= #`TCQ 1'b0; //Fifo has two words, so is neither empty or almost empty ideal_rd_count <= #`TCQ num_read_words_sized_i; //If the FIFO is not close to empty, but is reporting that it is // Treat the FIFO as empty this time, but unset EMPTY flags. end else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) && (tmp_rd_listsize/C_DEPTH_RATIO_WR<C_FIFO_RD_DEPTH)) begin //Do not change the contents of the FIFO //Do not acknowledge the read from empty FIFO ideal_valid <= #`TCQ 1'b0; //Note that the FIFO is No Longer Empty or Almost Empty ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if ((tmp_rd_listsize > 2) && (tmp_rd_listsize<=C_FIFO_RD_DEPTH-1)) end else begin //If the FIFO is completely full, and we are successfully reading from it if (tmp_rd_listsize/C_DEPTH_RATIO_WR >= C_FIFO_RD_DEPTH) begin //Read the value from the FIFO read_fifo; next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH; //Acknowledge the read from the FIFO, no error ideal_valid <= #`TCQ 1'b1; //Not close to empty ideal_rd_count <= #`TCQ num_read_words_sized_i; //If the FIFO is not close to being empty end else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) && (tmp_rd_listsize/C_DEPTH_RATIO_WR<=C_FIFO_RD_DEPTH)) begin //Read the value from the FIFO read_fifo; next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH; //Acknowledge the read from the FIFO, no error ideal_valid <= #`TCQ 1'b1; //Not close to empty ideal_rd_count <= #`TCQ num_read_words_sized_i; //If the FIFO is two from empty end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2) begin //Read the value from the FIFO read_fifo; next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH; //Acknowledge the read from the FIFO, no error ideal_valid <= #`TCQ 1'b1; //Fifo is not yet empty. It is going almost_empty ideal_rd_count <= #`TCQ num_read_words_sized_i; //If the FIFO is one from empty end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 1) begin //Read the value from the FIFO read_fifo; next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH; //Acknowledge the read from the FIFO, no error ideal_valid <= #`TCQ 1'b1; //Note that FIFO is GOING empty ideal_rd_count <= #`TCQ num_read_words_sized_i; //If the FIFO is completely empty end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0) begin //Do not change the contents of the FIFO //Do not acknowledge the read from empty FIFO ideal_valid <= #`TCQ 1'b0; //Reminder that FIFO is still empty ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if (tmp_rd_listsize <= 0) end // if (ideal_empty == 1'b0) end else begin//(RD_EN == 1'b0) //If user did not attempt a read, do not give an ack or err ideal_valid <= #`TCQ 1'b0; ideal_rd_count <= #`TCQ num_read_words_sized_i; end // else: !if(RD_EN == 1'b1) end //if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) num_rd_bits <= #`TCQ next_num_rd_bits; wr_ptr_rdclk <= #`TCQ wr_ptr; end //rd_rst_i==0 end //always endmodule // fifo_generator_v12_0_bhv_ver_as /******************************************************************************* * Declaration of Low Latency Asynchronous FIFO ******************************************************************************/ module fifo_generator_v12_0_beh_ver_ll_afifo /*************************************************************************** * Declare user parameters and their defaults ***************************************************************************/ #( parameter C_DIN_WIDTH = 8, parameter C_DOUT_RST_VAL = "", parameter C_DOUT_WIDTH = 8, parameter C_FULL_FLAGS_RST_VAL = 1, parameter C_HAS_RD_DATA_COUNT = 0, parameter C_HAS_WR_DATA_COUNT = 0, parameter C_RD_DEPTH = 256, parameter C_RD_PNTR_WIDTH = 8, parameter C_USE_DOUT_RST = 0, parameter C_WR_DATA_COUNT_WIDTH = 2, parameter C_WR_DEPTH = 256, parameter C_WR_PNTR_WIDTH = 8, parameter C_FIFO_TYPE = 0 ) /*************************************************************************** * Declare Input and Output Ports ***************************************************************************/ ( input [C_DIN_WIDTH-1:0] DIN, input RD_CLK, input RD_EN, input WR_RST, input RD_RST, input WR_CLK, input WR_EN, output reg [C_DOUT_WIDTH-1:0] DOUT = 0, output reg EMPTY = 1'b1, output reg FULL = C_FULL_FLAGS_RST_VAL ); //----------------------------------------------------------------------------- // Low Latency Asynchronous FIFO //----------------------------------------------------------------------------- // Memory which will be used to simulate a FIFO reg [C_DIN_WIDTH-1:0] memory[C_WR_DEPTH-1:0]; integer i; initial begin for (i = 0; i < C_WR_DEPTH; i = i + 1) memory[i] = 0; end reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_ll_afifo = 0; wire [C_RD_PNTR_WIDTH-1:0] rd_pntr_ll_afifo; reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_ll_afifo_q = 0; reg ll_afifo_full = 1'b0; reg ll_afifo_empty = 1'b1; wire write_allow; wire read_allow; assign write_allow = WR_EN & ~ll_afifo_full; assign read_allow = RD_EN & ~ll_afifo_empty; //----------------------------------------------------------------------------- // Write Pointer Generation //----------------------------------------------------------------------------- always @(posedge WR_CLK or posedge WR_RST) begin if (WR_RST) wr_pntr_ll_afifo <= 0; else if (write_allow) wr_pntr_ll_afifo <= #`TCQ wr_pntr_ll_afifo + 1; end //----------------------------------------------------------------------------- // Read Pointer Generation //----------------------------------------------------------------------------- always @(posedge RD_CLK or posedge RD_RST) begin if (RD_RST) rd_pntr_ll_afifo_q <= 0; else rd_pntr_ll_afifo_q <= #`TCQ rd_pntr_ll_afifo; end assign rd_pntr_ll_afifo = read_allow ? rd_pntr_ll_afifo_q + 1 : rd_pntr_ll_afifo_q; //----------------------------------------------------------------------------- // Fill the Memory //----------------------------------------------------------------------------- always @(posedge WR_CLK) begin if (write_allow) memory[wr_pntr_ll_afifo] <= #`TCQ DIN; end //----------------------------------------------------------------------------- // Generate DOUT //----------------------------------------------------------------------------- always @(posedge RD_CLK) begin DOUT <= #`TCQ memory[rd_pntr_ll_afifo]; end //----------------------------------------------------------------------------- // Generate EMPTY //----------------------------------------------------------------------------- always @(posedge RD_CLK or posedge RD_RST) begin if (RD_RST) ll_afifo_empty <= 1'b1; else ll_afifo_empty <= ((wr_pntr_ll_afifo == rd_pntr_ll_afifo_q) | (read_allow & (wr_pntr_ll_afifo == (rd_pntr_ll_afifo_q + 2'h1)))); end //----------------------------------------------------------------------------- // Generate FULL //----------------------------------------------------------------------------- always @(posedge WR_CLK or posedge WR_RST) begin if (WR_RST) ll_afifo_full <= 1'b1; else ll_afifo_full <= ((rd_pntr_ll_afifo_q == (wr_pntr_ll_afifo + 2'h1)) | (write_allow & (rd_pntr_ll_afifo_q == (wr_pntr_ll_afifo + 2'h2)))); end always @* begin FULL <= ll_afifo_full; EMPTY <= ll_afifo_empty; end endmodule // fifo_generator_v12_0_beh_ver_ll_afifo /******************************************************************************* * Declaration of top-level module ******************************************************************************/ module fifo_generator_v12_0_bhv_ver_ss /************************************************************************** * Declare user parameters and their defaults *************************************************************************/ #( parameter C_FAMILY = "virtex7", parameter C_DATA_COUNT_WIDTH = 2, parameter C_DIN_WIDTH = 8, parameter C_DOUT_RST_VAL = "", parameter C_DOUT_WIDTH = 8, parameter C_FULL_FLAGS_RST_VAL = 1, parameter C_HAS_ALMOST_EMPTY = 0, parameter C_HAS_ALMOST_FULL = 0, parameter C_HAS_DATA_COUNT = 0, parameter C_HAS_OVERFLOW = 0, parameter C_HAS_RD_DATA_COUNT = 0, parameter C_HAS_RST = 0, parameter C_HAS_SRST = 0, parameter C_HAS_UNDERFLOW = 0, parameter C_HAS_VALID = 0, parameter C_HAS_WR_ACK = 0, parameter C_HAS_WR_DATA_COUNT = 0, parameter C_IMPLEMENTATION_TYPE = 0, parameter C_MEMORY_TYPE = 1, parameter C_OVERFLOW_LOW = 0, parameter C_PRELOAD_LATENCY = 1, parameter C_PRELOAD_REGS = 0, parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0, parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0, parameter C_PROG_EMPTY_TYPE = 0, parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0, parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0, parameter C_PROG_FULL_TYPE = 0, parameter C_RD_DATA_COUNT_WIDTH = 2, parameter C_RD_DEPTH = 256, parameter C_RD_PNTR_WIDTH = 8, parameter C_UNDERFLOW_LOW = 0, parameter C_USE_DOUT_RST = 0, parameter C_USE_EMBEDDED_REG = 0, parameter C_USE_FWFT_DATA_COUNT = 0, parameter C_VALID_LOW = 0, parameter C_WR_ACK_LOW = 0, parameter C_WR_DATA_COUNT_WIDTH = 2, parameter C_WR_DEPTH = 256, parameter C_WR_PNTR_WIDTH = 8, parameter C_USE_ECC = 0, parameter C_ENABLE_RST_SYNC = 1, parameter C_ERROR_INJECTION_TYPE = 0, parameter C_FIFO_TYPE = 0 ) /************************************************************************** * Declare Input and Output Ports *************************************************************************/ ( //Inputs input CLK, input [C_DIN_WIDTH-1:0] DIN, input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH, input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT, input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE, input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH, input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT, input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE, input RD_EN, input RD_EN_USER, input USER_EMPTY_FB, input RST, input RST_FULL_GEN, input RST_FULL_FF, input SRST, input WR_EN, input INJECTDBITERR, input INJECTSBITERR, input WR_RST_BUSY, input RD_RST_BUSY, //Outputs output ALMOST_EMPTY, output ALMOST_FULL, output reg [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT = 0, output [C_DOUT_WIDTH-1:0] DOUT, output EMPTY, output FULL, output OVERFLOW, output [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT, output [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT, output PROG_EMPTY, output PROG_FULL, output VALID, output UNDERFLOW, output WR_ACK, output SBITERR, output DBITERR ); reg [C_RD_PNTR_WIDTH:0] rd_data_count_int = 0; reg [C_WR_PNTR_WIDTH:0] wr_data_count_int = 0; wire [C_RD_PNTR_WIDTH:0] rd_data_count_i_ss; wire [C_WR_PNTR_WIDTH:0] wr_data_count_i_ss; reg [C_WR_PNTR_WIDTH:0] wdc_fwft_ext_as = 0; /*************************************************************************** * Parameters used as constants **************************************************************************/ localparam IS_8SERIES = (C_FAMILY == "virtexu" || C_FAMILY == "kintexu" || C_FAMILY == "artixu" || C_FAMILY == "virtexum" || C_FAMILY == "zynque") ? 1 : 0; localparam C_DEPTH_RATIO_WR = (C_WR_DEPTH>C_RD_DEPTH) ? (C_WR_DEPTH/C_RD_DEPTH) : 1; localparam C_DEPTH_RATIO_RD = (C_RD_DEPTH>C_WR_DEPTH) ? (C_RD_DEPTH/C_WR_DEPTH) : 1; //localparam C_FIFO_WR_DEPTH = C_WR_DEPTH - 1; //localparam C_FIFO_RD_DEPTH = C_RD_DEPTH - 1; localparam C_GRTR_PNTR_WIDTH = (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) ? C_WR_PNTR_WIDTH : C_RD_PNTR_WIDTH ; // C_DEPTH_RATIO_WR | C_DEPTH_RATIO_RD | C_PNTR_WIDTH | EXTRA_WORDS_DC // -----------------|------------------|-----------------|--------------- // 1 | 8 | C_RD_PNTR_WIDTH | 2 // 1 | 4 | C_RD_PNTR_WIDTH | 2 // 1 | 2 | C_RD_PNTR_WIDTH | 2 // 1 | 1 | C_WR_PNTR_WIDTH | 2 // 2 | 1 | C_WR_PNTR_WIDTH | 4 // 4 | 1 | C_WR_PNTR_WIDTH | 8 // 8 | 1 | C_WR_PNTR_WIDTH | 16 localparam C_PNTR_WIDTH = (C_WR_PNTR_WIDTH>=C_RD_PNTR_WIDTH) ? C_WR_PNTR_WIDTH : C_RD_PNTR_WIDTH; wire [C_PNTR_WIDTH:0] EXTRA_WORDS_DC = (C_DEPTH_RATIO_WR == 1) ? 2 : (2 * C_DEPTH_RATIO_WR/C_DEPTH_RATIO_RD); wire [C_WR_PNTR_WIDTH:0] EXTRA_WORDS_PF = (C_DEPTH_RATIO_WR == 1) ? 2 : (2 * C_DEPTH_RATIO_WR/C_DEPTH_RATIO_RD); //wire [C_RD_PNTR_WIDTH:0] EXTRA_WORDS_PE = (C_DEPTH_RATIO_RD == 1) ? 2 : (2 * C_DEPTH_RATIO_RD/C_DEPTH_RATIO_WR); localparam EXTRA_WORDS_PF_PARAM = (C_DEPTH_RATIO_WR == 1) ? 2 : (2 * C_DEPTH_RATIO_WR/C_DEPTH_RATIO_RD); //localparam EXTRA_WORDS_PE_PARAM = (C_DEPTH_RATIO_RD == 1) ? 2 : (2 * C_DEPTH_RATIO_RD/C_DEPTH_RATIO_WR); localparam [31:0] reads_per_write = C_DIN_WIDTH/C_DOUT_WIDTH; localparam [31:0] log2_reads_per_write = log2_val(reads_per_write); localparam [31:0] writes_per_read = C_DOUT_WIDTH/C_DIN_WIDTH; localparam [31:0] log2_writes_per_read = log2_val(writes_per_read); //When RST is present, set FULL reset value to '1'. //If core has no RST, make sure FULL powers-on as '0'. //The reset value assignments for FULL, ALMOST_FULL, and PROG_FULL are not //changed for v3.2(IP2_Im). When the core has Sync Reset, C_HAS_SRST=1 and C_HAS_RST=0. // Therefore, during SRST, all the FULL flags reset to 0. localparam C_HAS_FAST_FIFO = 0; localparam C_FIFO_WR_DEPTH = C_WR_DEPTH; localparam C_FIFO_RD_DEPTH = C_RD_DEPTH; // Local parameters used to determine whether to inject ECC error or not localparam SYMMETRIC_PORT = (C_DIN_WIDTH == C_DOUT_WIDTH) ? 1 : 0; localparam ERR_INJECTION = (C_ERROR_INJECTION_TYPE != 0) ? 1 : 0; localparam ENABLE_ERR_INJECTION = C_USE_ECC && SYMMETRIC_PORT && ERR_INJECTION; localparam C_DATA_WIDTH = (ENABLE_ERR_INJECTION == 1) ? (C_DIN_WIDTH+2) : C_DIN_WIDTH; localparam IS_ASYMMETRY = (C_DIN_WIDTH == C_DOUT_WIDTH) ? 0 : 1; localparam LESSER_WIDTH = (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) ? C_WR_PNTR_WIDTH : C_RD_PNTR_WIDTH; localparam [C_RD_PNTR_WIDTH-1 : 0] DIFF_MAX_RD = {C_RD_PNTR_WIDTH{1'b1}}; localparam [C_WR_PNTR_WIDTH-1 : 0] DIFF_MAX_WR = {C_WR_PNTR_WIDTH{1'b1}}; /************************************************************************** * FIFO Contents Tracking and Data Count Calculations *************************************************************************/ // Memory which will be used to simulate a FIFO reg [C_DIN_WIDTH-1:0] memory[C_WR_DEPTH-1:0]; reg [1:0] ecc_err[C_WR_DEPTH-1:0]; /************************************************************************** * Internal Registers and wires *************************************************************************/ //Temporary signals used for calculating the model's outputs. These //are only used in the assign statements immediately following wire, //parameter, and function declarations. wire underflow_i; wire valid_i; wire valid_out; reg [31:0] num_wr_bits; reg [31:0] num_rd_bits; reg [31:0] next_num_wr_bits; reg [31:0] next_num_rd_bits; //The write pointer - tracks write operations // (Works opposite to core: wr_ptr is a DOWN counter) reg [31:0] wr_ptr; reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd1 = 0; reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd2 = 0; reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd3 = 0; reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd = 0; reg wr_rst_d1 =0; //The read pointer - tracks read operations // (rd_ptr Works opposite to core: rd_ptr is a DOWN counter) reg [31:0] rd_ptr; reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr1 = 0; reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr2 = 0; reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr3 = 0; reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr4 = 0; reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr = 0; wire ram_rd_en; wire empty_int; wire almost_empty_int; wire ram_wr_en; wire full_int; wire almost_full_int; reg ram_rd_en_reg = 1'b0; //Ideal FIFO signals. These are the raw output of the behavioral model, //which behaves like an ideal FIFO. reg [1:0] err_type = 0; reg [1:0] err_type_d1 = 0; reg [C_DOUT_WIDTH-1:0] ideal_dout = 0; reg [C_DOUT_WIDTH-1:0] ideal_dout_d1 = 0; wire [C_DOUT_WIDTH-1:0] ideal_dout_out; wire fwft_enabled; reg ideal_wr_ack = 0; reg ideal_valid = 0; reg ideal_overflow = C_OVERFLOW_LOW; reg ideal_underflow = C_UNDERFLOW_LOW; reg full_i = C_FULL_FLAGS_RST_VAL; reg full_i_temp = 0; reg empty_i = 1; reg almost_full_i = 0; reg almost_empty_i = 1; reg prog_full_i = 0; reg prog_empty_i = 1; reg [C_WR_PNTR_WIDTH-1:0] wr_pntr = 0; reg [C_RD_PNTR_WIDTH-1:0] rd_pntr = 0; wire [C_RD_PNTR_WIDTH-1:0] adj_wr_pntr_rd; wire [C_WR_PNTR_WIDTH-1:0] adj_rd_pntr_wr; reg [C_RD_PNTR_WIDTH-1:0] diff_count = 0; reg write_allow_q = 0; reg read_allow_q = 0; reg valid_d1 = 0; wire rst_i; wire srst_i; //user specified value for reseting the size of the fifo reg [C_DOUT_WIDTH-1:0] dout_reset_val = 0; reg [31:0] wr_ptr_rdclk; reg [31:0] wr_ptr_rdclk_next; reg [31:0] rd_ptr_wrclk; reg [31:0] rd_ptr_wrclk_next; /**************************************************************************** * Function Declarations ***************************************************************************/ /**************************************************************************** * hexstr_conv * Converts a string of type hex to a binary value (for C_DOUT_RST_VAL) ***************************************************************************/ function [C_DOUT_WIDTH-1:0] hexstr_conv; input [(C_DOUT_WIDTH*8)-1:0] def_data; integer index,i,j; reg [3:0] bin; begin index = 0; hexstr_conv = 'b0; for( i=C_DOUT_WIDTH-1; i>=0; i=i-1 ) begin case (def_data[7:0]) 8'b00000000 : begin bin = 4'b0000; i = -1; end 8'b00110000 : bin = 4'b0000; 8'b00110001 : bin = 4'b0001; 8'b00110010 : bin = 4'b0010; 8'b00110011 : bin = 4'b0011; 8'b00110100 : bin = 4'b0100; 8'b00110101 : bin = 4'b0101; 8'b00110110 : bin = 4'b0110; 8'b00110111 : bin = 4'b0111; 8'b00111000 : bin = 4'b1000; 8'b00111001 : bin = 4'b1001; 8'b01000001 : bin = 4'b1010; 8'b01000010 : bin = 4'b1011; 8'b01000011 : bin = 4'b1100; 8'b01000100 : bin = 4'b1101; 8'b01000101 : bin = 4'b1110; 8'b01000110 : bin = 4'b1111; 8'b01100001 : bin = 4'b1010; 8'b01100010 : bin = 4'b1011; 8'b01100011 : bin = 4'b1100; 8'b01100100 : bin = 4'b1101; 8'b01100101 : bin = 4'b1110; 8'b01100110 : bin = 4'b1111; default : begin bin = 4'bx; end endcase for( j=0; j<4; j=j+1) begin if ((index*4)+j < C_DOUT_WIDTH) begin hexstr_conv[(index*4)+j] = bin[j]; end end index = index + 1; def_data = def_data >> 8; end end endfunction /************************************************************************** * log2_val * Returns the 'log2' value for the input value for the supported ratios ***************************************************************************/ function [31:0] log2_val; input [31:0] binary_val; begin if (binary_val == 8) begin log2_val = 3; end else if (binary_val == 4) begin log2_val = 2; end else begin log2_val = 1; end end endfunction reg ideal_prog_full = 0; reg ideal_prog_empty = 1; reg [C_WR_DATA_COUNT_WIDTH-1 : 0] ideal_wr_count = 0; reg [C_RD_DATA_COUNT_WIDTH-1 : 0] ideal_rd_count = 0; //Assorted reg values for delayed versions of signals //reg valid_d1 = 0; //user specified value for reseting the size of the fifo //reg [C_DOUT_WIDTH-1:0] dout_reset_val = 0; //temporary registers for WR_RESPONSE_LATENCY feature integer tmp_wr_listsize; integer tmp_rd_listsize; //Signal for registered version of prog full and empty //Threshold values for Programmable Flags integer prog_empty_actual_thresh_assert; integer prog_empty_actual_thresh_negate; integer prog_full_actual_thresh_assert; integer prog_full_actual_thresh_negate; /************************************************************************** * write_fifo * This task writes a word to the FIFO memory and updates the * write pointer. * FIFO size is relative to write domain. ***************************************************************************/ task write_fifo; begin memory[wr_ptr] <= DIN; wr_pntr <= #`TCQ wr_pntr + 1; // Store the type of error injection (double/single) on write case (C_ERROR_INJECTION_TYPE) 3: ecc_err[wr_ptr] <= {INJECTDBITERR,INJECTSBITERR}; 2: ecc_err[wr_ptr] <= {INJECTDBITERR,1'b0}; 1: ecc_err[wr_ptr] <= {1'b0,INJECTSBITERR}; default: ecc_err[wr_ptr] <= 0; endcase // (Works opposite to core: wr_ptr is a DOWN counter) if (wr_ptr == 0) begin wr_ptr <= C_WR_DEPTH - 1; end else begin wr_ptr <= wr_ptr - 1; end end endtask // write_fifo /************************************************************************** * read_fifo * This task reads a word from the FIFO memory and updates the read * pointer. It's output is the ideal_dout bus. * FIFO size is relative to write domain. ***************************************************************************/ task read_fifo; integer i; reg [C_DOUT_WIDTH-1:0] tmp_dout; reg [C_DIN_WIDTH-1:0] memory_read; reg [31:0] tmp_rd_ptr; reg [31:0] rd_ptr_high; reg [31:0] rd_ptr_low; reg [1:0] tmp_ecc_err; begin rd_pntr <= #`TCQ rd_pntr + 1; // output is wider than input if (reads_per_write == 0) begin tmp_dout = 0; tmp_rd_ptr = (rd_ptr << log2_writes_per_read)+(writes_per_read-1); for (i = writes_per_read - 1; i >= 0; i = i - 1) begin tmp_dout = tmp_dout << C_DIN_WIDTH; tmp_dout = tmp_dout | memory[tmp_rd_ptr]; // (Works opposite to core: rd_ptr is a DOWN counter) if (tmp_rd_ptr == 0) begin tmp_rd_ptr = C_WR_DEPTH - 1; end else begin tmp_rd_ptr = tmp_rd_ptr - 1; end end // output is symmetric end else if (reads_per_write == 1) begin tmp_dout = memory[rd_ptr][C_DIN_WIDTH-1:0]; // Retreive the error injection type. Based on the error injection type // corrupt the output data. tmp_ecc_err = ecc_err[rd_ptr]; if (ENABLE_ERR_INJECTION && C_DIN_WIDTH == C_DOUT_WIDTH) begin if (tmp_ecc_err[1]) begin // Corrupt the output data only for double bit error if (C_DOUT_WIDTH == 1) begin $display("FAILURE : Data width must be >= 2 for double bit error injection."); $finish; end else if (C_DOUT_WIDTH == 2) tmp_dout = {~tmp_dout[C_DOUT_WIDTH-1],~tmp_dout[C_DOUT_WIDTH-2]}; else tmp_dout = {~tmp_dout[C_DOUT_WIDTH-1],~tmp_dout[C_DOUT_WIDTH-2],(tmp_dout << 2)}; end else begin tmp_dout = tmp_dout[C_DOUT_WIDTH-1:0]; end err_type <= {tmp_ecc_err[1], tmp_ecc_err[0] & !tmp_ecc_err[1]}; end else begin err_type <= 0; end // input is wider than output end else begin rd_ptr_high = rd_ptr >> log2_reads_per_write; rd_ptr_low = rd_ptr & (reads_per_write - 1); memory_read = memory[rd_ptr_high]; tmp_dout = memory_read >> (rd_ptr_low*C_DOUT_WIDTH); end ideal_dout <= tmp_dout; // (Works opposite to core: rd_ptr is a DOWN counter) if (rd_ptr == 0) begin rd_ptr <= C_RD_DEPTH - 1; end else begin rd_ptr <= rd_ptr - 1; end end endtask /************************************************************************* * Initialize Signals for clean power-on simulation *************************************************************************/ initial begin num_wr_bits = 0; num_rd_bits = 0; next_num_wr_bits = 0; next_num_rd_bits = 0; rd_ptr = C_RD_DEPTH - 1; wr_ptr = C_WR_DEPTH - 1; wr_pntr = 0; rd_pntr = 0; rd_ptr_wrclk = rd_ptr; wr_ptr_rdclk = wr_ptr; dout_reset_val = hexstr_conv(C_DOUT_RST_VAL); ideal_dout = dout_reset_val; err_type = 0; ideal_dout_d1 = dout_reset_val; ideal_wr_ack = 1'b0; ideal_valid = 1'b0; valid_d1 = 1'b0; ideal_overflow = C_OVERFLOW_LOW; ideal_underflow = C_UNDERFLOW_LOW; ideal_wr_count = 0; ideal_rd_count = 0; ideal_prog_full = 1'b0; ideal_prog_empty = 1'b1; end /************************************************************************* * Connect the module inputs and outputs to the internal signals of the * behavioral model. *************************************************************************/ //Inputs /* wire CLK; wire [C_DIN_WIDTH-1:0] DIN; wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH; wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT; wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE; wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH; wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT; wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE; wire RD_EN; wire RST; wire WR_EN; */ // Assign ALMOST_EPMTY generate if (C_HAS_ALMOST_EMPTY == 1) begin : gae assign ALMOST_EMPTY = almost_empty_i; end else begin : gnae assign ALMOST_EMPTY = 0; end endgenerate // gae // Assign ALMOST_FULL generate if (C_HAS_ALMOST_FULL==1) begin : gaf assign ALMOST_FULL = almost_full_i; end else begin : gnaf assign ALMOST_FULL = 0; end endgenerate // gaf // Dout may change behavior based on latency assign fwft_enabled = (C_PRELOAD_LATENCY == 0 && C_PRELOAD_REGS == 1)? 1: 0; assign ideal_dout_out= ((C_USE_EMBEDDED_REG==1 && (fwft_enabled == 0)) && (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1))? ideal_dout_d1: ideal_dout; assign DOUT = ideal_dout_out; // Assign SBITERR and DBITERR based on latency assign SBITERR = (C_ERROR_INJECTION_TYPE == 1 || C_ERROR_INJECTION_TYPE == 3) && ((C_USE_EMBEDDED_REG==1 && (fwft_enabled == 0)) && (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1)) ? err_type_d1[0]: err_type[0]; assign DBITERR = (C_ERROR_INJECTION_TYPE == 2 || C_ERROR_INJECTION_TYPE == 3) && ((C_USE_EMBEDDED_REG==1 && (fwft_enabled == 0)) && (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1)) ? err_type_d1[1]: err_type[1]; assign EMPTY = empty_i; assign FULL = full_i; //Overflow may be active-low generate if (C_HAS_OVERFLOW==1) begin : gof assign OVERFLOW = ideal_overflow ? !C_OVERFLOW_LOW : C_OVERFLOW_LOW; end else begin : gnof assign OVERFLOW = 0; end endgenerate // gof assign PROG_EMPTY = prog_empty_i; assign PROG_FULL = prog_full_i; //Valid may change behavior based on latency or active-low generate if (C_HAS_VALID==1) begin : gvalid assign valid_i = (C_PRELOAD_LATENCY == 0) ? (RD_EN & ~EMPTY) : ideal_valid; assign valid_out = (C_PRELOAD_LATENCY == 2 && C_MEMORY_TYPE < 2) ? valid_d1 : valid_i; assign VALID = valid_out ? !C_VALID_LOW : C_VALID_LOW; end else begin : gnvalid assign VALID = 0; end endgenerate // gvalid //Trim data count differently depending on set widths generate if (C_HAS_DATA_COUNT == 1) begin : gdc always @* begin diff_count <= wr_pntr - rd_pntr; if (C_DATA_COUNT_WIDTH > C_RD_PNTR_WIDTH) begin DATA_COUNT[C_RD_PNTR_WIDTH-1:0] <= diff_count; DATA_COUNT[C_DATA_COUNT_WIDTH-1] <= 1'b0 ; end else begin DATA_COUNT <= diff_count[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_DATA_COUNT_WIDTH]; end end // end else begin : gndc // always @* DATA_COUNT <= 0; end endgenerate // gdc //Underflow may change behavior based on latency or active-low generate if (C_HAS_UNDERFLOW==1) begin : guf assign underflow_i = ideal_underflow; assign UNDERFLOW = underflow_i ? !C_UNDERFLOW_LOW : C_UNDERFLOW_LOW; end else begin : gnuf assign UNDERFLOW = 0; end endgenerate // guf //Write acknowledge may be active low generate if (C_HAS_WR_ACK==1) begin : gwr_ack assign WR_ACK = ideal_wr_ack ? !C_WR_ACK_LOW : C_WR_ACK_LOW; end else begin : gnwr_ack assign WR_ACK = 0; end endgenerate // gwr_ack /***************************************************************************** * Internal reset logic ****************************************************************************/ assign srst_i = C_HAS_SRST ? SRST : 0; assign srst_wrst_busy = C_HAS_SRST ? (SRST || WR_RST_BUSY) : 0; assign srst_rrst_busy = C_HAS_SRST ? (SRST || RD_RST_BUSY) : 0; assign rst_i = C_HAS_RST ? RST : 0; /************************************************************************** * Assorted registers for delayed versions of signals **************************************************************************/ //Capture delayed version of valid generate if (C_HAS_VALID == 1) begin : blockVL20 always @(posedge CLK or posedge rst_i) begin if (rst_i == 1'b1) begin valid_d1 <= #`TCQ 1'b0; end else begin if (srst_rrst_busy) begin valid_d1 <= #`TCQ 1'b0; end else begin valid_d1 <= #`TCQ valid_i; end end end // always @ (posedge CLK or posedge rst_i) end endgenerate // blockVL20 // Determine which stage in FWFT registers are valid reg stage1_valid = 0; reg stage2_valid = 0; generate if (C_PRELOAD_LATENCY == 0) begin : grd_fwft_proc always @ (posedge CLK or posedge rst_i) begin if (rst_i) begin stage1_valid <= #`TCQ 0; stage2_valid <= #`TCQ 0; end else begin if (!stage1_valid && !stage2_valid) begin if (!EMPTY) stage1_valid <= #`TCQ 1'b1; else stage1_valid <= #`TCQ 1'b0; end else if (stage1_valid && !stage2_valid) begin if (EMPTY) begin stage1_valid <= #`TCQ 1'b0; stage2_valid <= #`TCQ 1'b1; end else begin stage1_valid <= #`TCQ 1'b1; stage2_valid <= #`TCQ 1'b1; end end else if (!stage1_valid && stage2_valid) begin if (EMPTY && RD_EN) begin stage1_valid <= #`TCQ 1'b0; stage2_valid <= #`TCQ 1'b0; end else if (!EMPTY && RD_EN) begin stage1_valid <= #`TCQ 1'b1; stage2_valid <= #`TCQ 1'b0; end else if (!EMPTY && !RD_EN) begin stage1_valid <= #`TCQ 1'b1; stage2_valid <= #`TCQ 1'b1; end else begin stage1_valid <= #`TCQ 1'b0; stage2_valid <= #`TCQ 1'b1; end end else if (stage1_valid && stage2_valid) begin if (EMPTY && RD_EN) begin stage1_valid <= #`TCQ 1'b0; stage2_valid <= #`TCQ 1'b1; end else begin stage1_valid <= #`TCQ 1'b1; stage2_valid <= #`TCQ 1'b1; end end else begin stage1_valid <= #`TCQ 1'b0; stage2_valid <= #`TCQ 1'b0; end end // rd_rst_i end // always end endgenerate //*************************************************************************** // Assign the read data count value only if it is selected, // otherwise output zeros. //*************************************************************************** generate if (C_HAS_RD_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT ==1) begin : grdc assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = rd_data_count_i_ss[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH+1-C_RD_DATA_COUNT_WIDTH]; end endgenerate generate if (C_HAS_RD_DATA_COUNT == 0) begin : gnrdc assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = {C_RD_DATA_COUNT_WIDTH{1'b0}}; end endgenerate //*************************************************************************** // Assign the write data count value only if it is selected, // otherwise output zeros //*************************************************************************** generate if (C_HAS_WR_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT == 1) begin : gwdc assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = wr_data_count_i_ss[C_WR_PNTR_WIDTH:C_WR_PNTR_WIDTH+1-C_WR_DATA_COUNT_WIDTH] ; end endgenerate generate if (C_HAS_WR_DATA_COUNT == 0) begin : gnwdc assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = {C_WR_DATA_COUNT_WIDTH{1'b0}}; end endgenerate // block memory has a synchronous reset generate if (C_MEMORY_TYPE < 2) begin : gen_fifo_blkmemdout_emb always @(posedge CLK) begin // BRAM resets synchronously // make it consistent with the core. if ((rst_i || srst_rrst_busy) && (C_USE_DOUT_RST == 1)) ideal_dout_d1 <= #`TCQ dout_reset_val; end //always end endgenerate // gen_fifo_blkmemdout_emb reg ram_rd_en_d1 = 1'b0; //Capture delayed version of dout always @(posedge CLK or posedge rst_i) begin if (rst_i == 1'b1) begin // Reset err_type only if ECC is not selected if (C_USE_ECC == 0) err_type_d1 <= #`TCQ 0; // DRAM and SRAM reset asynchronously if ((C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3) && C_USE_DOUT_RST == 1) ideal_dout_d1 <= #`TCQ dout_reset_val; ram_rd_en_d1 <= #`TCQ 1'b0; end else begin ram_rd_en_d1 <= #`TCQ RD_EN & ~EMPTY; if (srst_rrst_busy) begin ram_rd_en_d1 <= #`TCQ 1'b0; // Reset err_type only if ECC is not selected if (C_USE_ECC == 0) err_type_d1 <= #`TCQ 0; // Reset DRAM and SRAM based FIFO, BRAM based FIFO is reset above if ((C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3) && C_USE_DOUT_RST == 1) ideal_dout_d1 <= #`TCQ dout_reset_val; end else if (ram_rd_en_d1) begin ideal_dout_d1 <= #`TCQ ideal_dout; err_type_d1 <= #`TCQ err_type; end end end /************************************************************************** * Overflow and Underflow Flag calculation * (handled separately because they don't support rst) **************************************************************************/ generate if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 0) begin : g7s_ovflw always @(posedge CLK) begin ideal_overflow <= #`TCQ WR_EN & full_i; end end else if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 1) begin : g8s_ovflw always @(posedge CLK) begin //ideal_overflow <= #`TCQ WR_EN & (rst_i | full_i); ideal_overflow <= #`TCQ WR_EN & (WR_RST_BUSY | full_i); end end endgenerate // blockOF20 generate if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 0) begin : g7s_unflw always @(posedge CLK) begin ideal_underflow <= #`TCQ empty_i & RD_EN; end end else if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 1) begin : g8s_unflw always @(posedge CLK) begin //ideal_underflow <= #`TCQ (rst_i | empty_i) & RD_EN; ideal_underflow <= #`TCQ (RD_RST_BUSY | empty_i) & RD_EN; end end endgenerate // blockUF20 /************************** * Read Data Count *************************/ reg [31:0] num_read_words_dc; reg [C_RD_DATA_COUNT_WIDTH-1:0] num_read_words_sized_i; always @(num_rd_bits) begin if (C_USE_FWFT_DATA_COUNT) begin //If using extra logic for FWFT Data Counts, // then scale FIFO contents to read domain, // and add two read words for FWFT stages //This value is only a temporary value and not used in the code. num_read_words_dc = (num_rd_bits/C_DOUT_WIDTH+2); //Trim the read words for use with RD_DATA_COUNT num_read_words_sized_i = num_read_words_dc[C_RD_PNTR_WIDTH : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH+1]; end else begin //If not using extra logic for FWFT Data Counts, // then scale FIFO contents to read domain. //This value is only a temporary value and not used in the code. num_read_words_dc = num_rd_bits/C_DOUT_WIDTH; //Trim the read words for use with RD_DATA_COUNT num_read_words_sized_i = num_read_words_dc[C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH]; end //if (C_USE_FWFT_DATA_COUNT) end //always /************************** * Write Data Count *************************/ reg [31:0] num_write_words_dc; reg [C_WR_DATA_COUNT_WIDTH-1:0] num_write_words_sized_i; always @(num_wr_bits) begin if (C_USE_FWFT_DATA_COUNT) begin //Calculate the Data Count value for the number of write words, // when using First-Word Fall-Through with extra logic for Data // Counts. This takes into consideration the number of words that // are expected to be stored in the FWFT register stages (it always // assumes they are filled). //This value is scaled to the Write Domain. //The expression (((A-1)/B))+1 divides A/B, but takes the // ceiling of the result. //When num_wr_bits==0, set the result manually to prevent // division errors. //EXTRA_WORDS_DC is the number of words added to write_words // due to FWFT. //This value is only a temporary value and not used in the code. num_write_words_dc = (num_wr_bits==0) ? EXTRA_WORDS_DC : (((num_wr_bits-1)/C_DIN_WIDTH)+1) + EXTRA_WORDS_DC ; //Trim the write words for use with WR_DATA_COUNT num_write_words_sized_i = num_write_words_dc[C_WR_PNTR_WIDTH : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH+1]; end else begin //Calculate the Data Count value for the number of write words, when NOT // using First-Word Fall-Through with extra logic for Data Counts. This // calculates only the number of words in the internal FIFO. //The expression (((A-1)/B))+1 divides A/B, but takes the // ceiling of the result. //This value is scaled to the Write Domain. //When num_wr_bits==0, set the result manually to prevent // division errors. //This value is only a temporary value and not used in the code. num_write_words_dc = (num_wr_bits==0) ? 0 : ((num_wr_bits-1)/C_DIN_WIDTH)+1; //Trim the read words for use with RD_DATA_COUNT num_write_words_sized_i = num_write_words_dc[C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH]; end //if (C_USE_FWFT_DATA_COUNT) end //always /************************************************************************* * Write and Read Logic ************************************************************************/ wire write_allow; wire read_allow; wire read_allow_dc; wire write_only; wire read_only; //wire write_only_q; reg write_only_q; //wire read_only_q; reg read_only_q; reg full_reg; reg rst_full_ff_reg1; reg rst_full_ff_reg2; wire ram_full_comb; wire carry; assign write_allow = WR_EN & ~full_i; assign read_allow = RD_EN & ~empty_i; assign read_allow_dc = RD_EN_USER & ~USER_EMPTY_FB; //assign write_only = write_allow & ~read_allow; //assign write_only_q = write_allow_q; //assign read_only = read_allow & ~write_allow; //assign read_only_q = read_allow_q ; wire [C_WR_PNTR_WIDTH-1:0] diff_pntr; wire [C_RD_PNTR_WIDTH-1:0] diff_pntr_pe; reg [C_WR_PNTR_WIDTH-1:0] diff_pntr_reg1 = 0; reg [C_RD_PNTR_WIDTH-1:0] diff_pntr_pe_reg1 = 0; reg [C_RD_PNTR_WIDTH:0] diff_pntr_pe_asym = 0; wire [C_RD_PNTR_WIDTH:0] adj_wr_pntr_rd_asym ; wire [C_RD_PNTR_WIDTH:0] rd_pntr_asym; reg [C_WR_PNTR_WIDTH-1:0] diff_pntr_reg2 = 0; reg [C_WR_PNTR_WIDTH-1:0] diff_pntr_pe_reg2 = 0; wire [C_RD_PNTR_WIDTH-1:0] diff_pntr_pe_max; wire [C_RD_PNTR_WIDTH-1:0] diff_pntr_max; assign diff_pntr_pe_max = DIFF_MAX_RD; assign diff_pntr_max = DIFF_MAX_WR; generate if (IS_ASYMMETRY == 0) begin : diff_pntr_sym assign write_only = write_allow & ~read_allow; assign read_only = read_allow & ~write_allow; end endgenerate generate if ( IS_ASYMMETRY == 1 && C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : wr_grt_rd assign read_only = read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0]) & ~write_allow; assign write_only = write_allow & ~(read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0])); end endgenerate generate if (IS_ASYMMETRY ==1 && C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : rd_grt_wr assign read_only = read_allow & ~(write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0])); assign write_only = write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]) & ~read_allow; end endgenerate //----------------------------------------------------------------------------- // Write and Read pointer generation //----------------------------------------------------------------------------- always @(posedge CLK or posedge rst_i) begin if (rst_i) begin wr_pntr <= 0; rd_pntr <= 0; end else begin if (srst_i || srst_wrst_busy || srst_rrst_busy ) begin if (srst_wrst_busy) wr_pntr <= #`TCQ 0; if (srst_rrst_busy) rd_pntr <= #`TCQ 0; end else begin if (write_allow) wr_pntr <= #`TCQ wr_pntr + 1; if (read_allow) rd_pntr <= #`TCQ rd_pntr + 1; end end end generate if (C_FIFO_TYPE == 2) begin : gll_dm_dout always @(posedge CLK) begin if (write_allow) begin if (ENABLE_ERR_INJECTION == 1) memory[wr_pntr] <= #`TCQ {INJECTDBITERR,INJECTSBITERR,DIN}; else memory[wr_pntr] <= #`TCQ DIN; end end reg [C_DATA_WIDTH-1:0] dout_tmp_q; reg [C_DATA_WIDTH-1:0] dout_tmp = 0; reg [C_DATA_WIDTH-1:0] dout_tmp1 = 0; always @(posedge CLK) begin dout_tmp_q <= #`TCQ ideal_dout; end always @* begin if (read_allow) ideal_dout <= memory[rd_pntr]; else ideal_dout <= dout_tmp_q; end end endgenerate // gll_dm_dout /************************************************************************** * Write Domain Logic **************************************************************************/ assign ram_rd_en = RD_EN & !EMPTY; //reg [C_WR_PNTR_WIDTH-1:0] diff_pntr = 0; generate if (C_FIFO_TYPE != 2) begin : gnll_din always @(posedge CLK or posedge rst_i) begin : gen_fifo_w /****** Reset fifo (case 1)***************************************/ if (rst_i == 1'b1) begin num_wr_bits <= #`TCQ 0; next_num_wr_bits = #`TCQ 0; wr_ptr <= #`TCQ C_WR_DEPTH - 1; rd_ptr_wrclk <= #`TCQ C_RD_DEPTH - 1; ideal_wr_ack <= #`TCQ 0; ideal_wr_count <= #`TCQ 0; tmp_wr_listsize = #`TCQ 0; rd_ptr_wrclk_next <= #`TCQ 0; wr_pntr <= #`TCQ 0; wr_pntr_rd1 <= #`TCQ 0; end else begin //rst_i==0 if (srst_wrst_busy) begin num_wr_bits <= #`TCQ 0; next_num_wr_bits = #`TCQ 0; wr_ptr <= #`TCQ C_WR_DEPTH - 1; rd_ptr_wrclk <= #`TCQ C_RD_DEPTH - 1; ideal_wr_ack <= #`TCQ 0; ideal_wr_count <= #`TCQ 0; tmp_wr_listsize = #`TCQ 0; rd_ptr_wrclk_next <= #`TCQ 0; wr_pntr <= #`TCQ 0; wr_pntr_rd1 <= #`TCQ 0; end else begin//srst_i=0 wr_pntr_rd1 <= #`TCQ wr_pntr; //Determine the current number of words in the FIFO tmp_wr_listsize = (C_DEPTH_RATIO_RD > 1) ? num_wr_bits/C_DOUT_WIDTH : num_wr_bits/C_DIN_WIDTH; rd_ptr_wrclk_next = rd_ptr; if (rd_ptr_wrclk < rd_ptr_wrclk_next) begin next_num_wr_bits = num_wr_bits - C_DOUT_WIDTH*(rd_ptr_wrclk + C_RD_DEPTH - rd_ptr_wrclk_next); end else begin next_num_wr_bits = num_wr_bits - C_DOUT_WIDTH*(rd_ptr_wrclk - rd_ptr_wrclk_next); end if (WR_EN == 1'b1) begin if (FULL == 1'b1) begin ideal_wr_ack <= #`TCQ 0; //Reminder that FIFO is still full ideal_wr_count <= #`TCQ num_write_words_sized_i; end else begin write_fifo; next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH; //Write successful, so issue acknowledge // and no error ideal_wr_ack <= #`TCQ 1; //Not even close to full. ideal_wr_count <= num_write_words_sized_i; //end end end else begin //(WR_EN == 1'b1) //If user did not attempt a write, then do not // give ack or err ideal_wr_ack <= #`TCQ 0; ideal_wr_count <= #`TCQ num_write_words_sized_i; end num_wr_bits <= #`TCQ next_num_wr_bits; rd_ptr_wrclk <= #`TCQ rd_ptr; end //srst_i==0 end //wr_rst_i==0 end // gen_fifo_w end endgenerate generate if (C_FIFO_TYPE < 2 && C_MEMORY_TYPE < 2) begin : gnll_dm_dout always @(posedge CLK) begin if (rst_i || srst_rrst_busy) begin if (C_USE_DOUT_RST == 1) ideal_dout <= #`TCQ dout_reset_val; end end end endgenerate generate if (C_FIFO_TYPE != 2) begin : gnll_dout always @(posedge CLK or posedge rst_i) begin : gen_fifo_r /****** Reset fifo (case 1)***************************************/ if (rst_i) begin num_rd_bits <= #`TCQ 0; next_num_rd_bits = #`TCQ 0; rd_ptr <= #`TCQ C_RD_DEPTH -1; rd_pntr <= #`TCQ 0; //rd_pntr_wr1 <= #`TCQ 0; wr_ptr_rdclk <= #`TCQ C_WR_DEPTH -1; // DRAM resets asynchronously if (C_FIFO_TYPE < 2 && (C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3 )&& C_USE_DOUT_RST == 1) ideal_dout <= #`TCQ dout_reset_val; // Reset err_type only if ECC is not selected if (C_USE_ECC == 0) err_type <= #`TCQ 0; ideal_valid <= #`TCQ 1'b0; ideal_rd_count <= #`TCQ 0; end else begin //rd_rst_i==0 if (srst_rrst_busy) begin num_rd_bits <= #`TCQ 0; next_num_rd_bits = #`TCQ 0; rd_ptr <= #`TCQ C_RD_DEPTH -1; rd_pntr <= #`TCQ 0; //rd_pntr_wr1 <= #`TCQ 0; wr_ptr_rdclk <= #`TCQ C_WR_DEPTH -1; // DRAM resets synchronously if (C_FIFO_TYPE < 2 && (C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3 )&& C_USE_DOUT_RST == 1) ideal_dout <= #`TCQ dout_reset_val; // Reset err_type only if ECC is not selected if (C_USE_ECC == 0) err_type <= #`TCQ 0; ideal_valid <= #`TCQ 1'b0; ideal_rd_count <= #`TCQ 0; end //srst_i else begin //rd_pntr_wr1 <= #`TCQ rd_pntr; //Determine the current number of words in the FIFO tmp_rd_listsize = (C_DEPTH_RATIO_WR > 1) ? num_rd_bits/C_DIN_WIDTH : num_rd_bits/C_DOUT_WIDTH; wr_ptr_rdclk_next = wr_ptr; if (wr_ptr_rdclk < wr_ptr_rdclk_next) begin next_num_rd_bits = num_rd_bits + C_DIN_WIDTH*(wr_ptr_rdclk +C_WR_DEPTH - wr_ptr_rdclk_next); end else begin next_num_rd_bits = num_rd_bits + C_DIN_WIDTH*(wr_ptr_rdclk - wr_ptr_rdclk_next); end if (RD_EN == 1'b1) begin if (EMPTY == 1'b1) begin ideal_valid <= #`TCQ 1'b0; ideal_rd_count <= #`TCQ num_read_words_sized_i; end else begin read_fifo; next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH; //Acknowledge the read from the FIFO, no error ideal_valid <= #`TCQ 1'b1; ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if (tmp_rd_listsize == 2) end num_rd_bits <= #`TCQ next_num_rd_bits; wr_ptr_rdclk <= #`TCQ wr_ptr; end //s_rst_i==0 end //rd_rst_i==0 end //always end endgenerate //----------------------------------------------------------------------------- // Generate diff_pntr for PROG_FULL generation // Generate diff_pntr_pe for PROG_EMPTY generation //----------------------------------------------------------------------------- generate if ((C_PROG_FULL_TYPE != 0 || C_PROG_EMPTY_TYPE != 0) && IS_ASYMMETRY == 0) begin : reg_write_allow always @(posedge CLK ) begin if (rst_i) begin write_only_q <= 1'b0; read_only_q <= 1'b0; diff_pntr_reg1 <= 0; diff_pntr_pe_reg1 <= 0; diff_pntr_reg2 <= 0; diff_pntr_pe_reg2 <= 0; end else begin if (srst_i || srst_wrst_busy || srst_rrst_busy) begin if (srst_rrst_busy) begin read_only_q <= #`TCQ 1'b0; diff_pntr_pe_reg1 <= #`TCQ 0; diff_pntr_pe_reg2 <= #`TCQ 0; end if (srst_wrst_busy) begin write_only_q <= #`TCQ 1'b0; diff_pntr_reg1 <= #`TCQ 0; diff_pntr_reg2 <= #`TCQ 0; end end else begin write_only_q <= #`TCQ write_only; read_only_q <= #`TCQ read_only; diff_pntr_reg2 <= #`TCQ diff_pntr_reg1; diff_pntr_pe_reg2 <= #`TCQ diff_pntr_pe_reg1; // Add 1 to the difference pointer value when only write happens. if (write_only) diff_pntr_reg1 <= #`TCQ wr_pntr - adj_rd_pntr_wr + 1; else diff_pntr_reg1 <= #`TCQ wr_pntr - adj_rd_pntr_wr; // Add 1 to the difference pointer value when write or both write & read or no write & read happen. if (read_only) diff_pntr_pe_reg1 <= #`TCQ adj_wr_pntr_rd - rd_pntr - 1; else diff_pntr_pe_reg1 <= #`TCQ adj_wr_pntr_rd - rd_pntr; end end end assign diff_pntr_pe = diff_pntr_pe_reg1; assign diff_pntr = diff_pntr_reg1; end endgenerate // reg_write_allow generate if ((C_PROG_FULL_TYPE != 0 || C_PROG_EMPTY_TYPE != 0) && IS_ASYMMETRY == 1) begin : reg_write_allow_asym assign adj_wr_pntr_rd_asym[C_RD_PNTR_WIDTH:0] = {adj_wr_pntr_rd,1'b1}; assign rd_pntr_asym[C_RD_PNTR_WIDTH:0] = {~rd_pntr,1'b1}; always @(posedge CLK ) begin if (rst_i) begin diff_pntr_pe_asym <= 0; diff_pntr_reg1 <= 0; full_reg <= 0; rst_full_ff_reg1 <= 1; rst_full_ff_reg2 <= 1; diff_pntr_pe_reg1 <= 0; end else begin if (srst_i || srst_wrst_busy || srst_rrst_busy) begin if (srst_wrst_busy) diff_pntr_reg1 <= #`TCQ 0; if (srst_rrst_busy) full_reg <= #`TCQ 0; rst_full_ff_reg1 <= #`TCQ 1; rst_full_ff_reg2 <= #`TCQ 1; diff_pntr_pe_asym <= #`TCQ 0; diff_pntr_pe_reg1 <= #`TCQ 0; end else begin diff_pntr_pe_asym <= #`TCQ adj_wr_pntr_rd_asym + rd_pntr_asym; full_reg <= #`TCQ full_i; rst_full_ff_reg1 <= #`TCQ RST_FULL_FF; rst_full_ff_reg2 <= #`TCQ rst_full_ff_reg1; if (~full_i) begin diff_pntr_reg1 <= #`TCQ wr_pntr - adj_rd_pntr_wr; end end end end assign carry = (~(|(diff_pntr_pe_asym [C_RD_PNTR_WIDTH : 1]))); assign diff_pntr_pe = (full_reg && ~rst_full_ff_reg2 && carry ) ? diff_pntr_pe_max : diff_pntr_pe_asym[C_RD_PNTR_WIDTH:1]; assign diff_pntr = diff_pntr_reg1; end endgenerate // reg_write_allow_asym //----------------------------------------------------------------------------- // Generate FULL flag //----------------------------------------------------------------------------- wire comp0; wire comp1; wire going_full; wire leaving_full; generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gpad assign adj_rd_pntr_wr [C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH] = rd_pntr; assign adj_rd_pntr_wr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0] = 0; end endgenerate generate if (C_WR_PNTR_WIDTH <= C_RD_PNTR_WIDTH) begin : gtrim assign adj_rd_pntr_wr = rd_pntr[C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH]; end endgenerate assign comp1 = (adj_rd_pntr_wr == (wr_pntr + 1'b1)); assign comp0 = (adj_rd_pntr_wr == wr_pntr); generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : gf_wp_eq_rp assign going_full = (comp1 & write_allow & ~read_allow); assign leaving_full = (comp0 & read_allow) | RST_FULL_GEN; end endgenerate // Write data width is bigger than read data width // Write depth is smaller than read depth // One write could be equal to 2 or 4 or 8 reads generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : gf_asym assign going_full = (comp1 & write_allow & (~ (read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0])))); assign leaving_full = (comp0 & read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0])) | RST_FULL_GEN; end endgenerate generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gf_wp_gt_rp assign going_full = (comp1 & write_allow & ~read_allow); assign leaving_full =(comp0 & read_allow) | RST_FULL_GEN; end endgenerate assign ram_full_comb = going_full | (~leaving_full & full_i); always @(posedge CLK or posedge RST_FULL_FF) begin if (RST_FULL_FF) full_i <= C_FULL_FLAGS_RST_VAL; else if (srst_wrst_busy) full_i <= #`TCQ C_FULL_FLAGS_RST_VAL; else full_i <= #`TCQ ram_full_comb; end //----------------------------------------------------------------------------- // Generate EMPTY flag //----------------------------------------------------------------------------- wire ecomp0; wire ecomp1; wire going_empty; wire leaving_empty; wire ram_empty_comb; generate if (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) begin : pad assign adj_wr_pntr_rd [C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr; assign adj_wr_pntr_rd[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0] = 0; end endgenerate generate if (C_RD_PNTR_WIDTH <= C_WR_PNTR_WIDTH) begin : trim assign adj_wr_pntr_rd = wr_pntr[C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH]; end endgenerate assign ecomp1 = (adj_wr_pntr_rd == (rd_pntr + 1'b1)); assign ecomp0 = (adj_wr_pntr_rd == rd_pntr); generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : ge_wp_eq_rp assign going_empty = (ecomp1 & ~write_allow & read_allow); assign leaving_empty = (ecomp0 & write_allow); end endgenerate generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : ge_wp_gt_rp assign going_empty = (ecomp1 & read_allow & (~(write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0])))); assign leaving_empty = (ecomp0 & write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0])); end endgenerate generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : ge_wp_lt_rp assign going_empty = (ecomp1 & ~write_allow & read_allow); assign leaving_empty =(ecomp0 & write_allow); end endgenerate assign ram_empty_comb = going_empty | (~leaving_empty & empty_i); always @(posedge CLK or posedge rst_i) begin if (rst_i) empty_i <= 1'b1; else if (srst_rrst_busy) empty_i <= #`TCQ 1'b1; else empty_i <= #`TCQ ram_empty_comb; end //----------------------------------------------------------------------------- // Generate Read and write data counts for asymmetic common clock //----------------------------------------------------------------------------- reg [C_GRTR_PNTR_WIDTH :0] count_dc = 0; wire [C_GRTR_PNTR_WIDTH :0] ratio; wire decr_by_one; wire incr_by_ratio; wire incr_by_one; wire decr_by_ratio; localparam IS_FWFT = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ? 1 : 0; generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : rd_depth_gt_wr assign ratio = C_DEPTH_RATIO_RD; assign decr_by_one = (IS_FWFT == 1)? read_allow_dc : read_allow; assign incr_by_ratio = write_allow; always @(posedge CLK or posedge rst_i) begin if (rst_i) count_dc <= #`TCQ 0; else if (srst_wrst_busy) count_dc <= #`TCQ 0; else begin if (decr_by_one) begin if (!incr_by_ratio) count_dc <= #`TCQ count_dc - 1; else count_dc <= #`TCQ count_dc - 1 + ratio ; end else begin if (!incr_by_ratio) count_dc <= #`TCQ count_dc ; else count_dc <= #`TCQ count_dc + ratio ; end end end assign rd_data_count_i_ss[C_RD_PNTR_WIDTH : 0] = count_dc; assign wr_data_count_i_ss[C_WR_PNTR_WIDTH : 0] = count_dc[C_RD_PNTR_WIDTH : C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH]; end endgenerate generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : wr_depth_gt_rd assign ratio = C_DEPTH_RATIO_WR; assign incr_by_one = write_allow; assign decr_by_ratio = (IS_FWFT == 1)? read_allow_dc : read_allow; always @(posedge CLK or posedge rst_i) begin if (rst_i) count_dc <= #`TCQ 0; else if (srst_wrst_busy) count_dc <= #`TCQ 0; else begin if (incr_by_one) begin if (!decr_by_ratio) count_dc <= #`TCQ count_dc + 1; else count_dc <= #`TCQ count_dc + 1 - ratio ; end else begin if (!decr_by_ratio) count_dc <= #`TCQ count_dc ; else count_dc <= #`TCQ count_dc - ratio ; end end end assign wr_data_count_i_ss[C_WR_PNTR_WIDTH : 0] = count_dc; assign rd_data_count_i_ss[C_RD_PNTR_WIDTH : 0] = count_dc[C_WR_PNTR_WIDTH : C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH]; end endgenerate //----------------------------------------------------------------------------- // Generate WR_ACK flag //----------------------------------------------------------------------------- always @(posedge CLK or posedge rst_i) begin if (rst_i) ideal_wr_ack <= 1'b0; else if (srst_wrst_busy) ideal_wr_ack <= #`TCQ 1'b0; else if (WR_EN & ~full_i) ideal_wr_ack <= #`TCQ 1'b1; else ideal_wr_ack <= #`TCQ 1'b0; end //----------------------------------------------------------------------------- // Generate VALID flag //----------------------------------------------------------------------------- always @(posedge CLK or posedge rst_i) begin if (rst_i) ideal_valid <= 1'b0; else if (srst_rrst_busy) ideal_valid <= #`TCQ 1'b0; else if (RD_EN & ~empty_i) ideal_valid <= #`TCQ 1'b1; else ideal_valid <= #`TCQ 1'b0; end //----------------------------------------------------------------------------- // Generate ALMOST_FULL flag //----------------------------------------------------------------------------- //generate if (C_HAS_ALMOST_FULL == 1 || C_PROG_FULL_TYPE > 2 || C_PROG_EMPTY_TYPE > 2) begin : gaf_ss wire fcomp2; wire going_afull; wire leaving_afull; wire ram_afull_comb; assign fcomp2 = (adj_rd_pntr_wr == (wr_pntr + 2'h2)); generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : gaf_wp_eq_rp assign going_afull = (fcomp2 & write_allow & ~read_allow); assign leaving_afull = (comp1 & read_allow & ~write_allow) | RST_FULL_GEN; end endgenerate // Write data width is bigger than read data width // Write depth is smaller than read depth // One write could be equal to 2 or 4 or 8 reads generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : gaf_asym assign going_afull = (fcomp2 & write_allow & (~ (read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0])))); assign leaving_afull = (comp1 & (~write_allow) & read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0])) | RST_FULL_GEN; end endgenerate generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gaf_wp_gt_rp assign going_afull = (fcomp2 & write_allow & ~read_allow); assign leaving_afull =((comp0 | comp1 | fcomp2) & read_allow) | RST_FULL_GEN; end endgenerate assign ram_afull_comb = going_afull | (~leaving_afull & almost_full_i); always @(posedge CLK or posedge RST_FULL_FF) begin if (RST_FULL_FF) almost_full_i <= C_FULL_FLAGS_RST_VAL; else if (srst_wrst_busy) almost_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL; else almost_full_i <= #`TCQ ram_afull_comb; end // end endgenerate // gaf_ss //----------------------------------------------------------------------------- // Generate ALMOST_EMPTY flag //----------------------------------------------------------------------------- //generate if (C_HAS_ALMOST_EMPTY == 1) begin : gae_ss wire ecomp2; wire going_aempty; wire leaving_aempty; wire ram_aempty_comb; assign ecomp2 = (adj_wr_pntr_rd == (rd_pntr + 2'h2)); generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : gae_wp_eq_rp assign going_aempty = (ecomp2 & ~write_allow & read_allow); assign leaving_aempty = (ecomp1 & write_allow & ~read_allow); end endgenerate generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gae_wp_gt_rp assign going_aempty = (ecomp2 & read_allow & (~(write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0])))); assign leaving_aempty = (ecomp1 & ~read_allow & write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0])); end endgenerate generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : gae_wp_lt_rp assign going_aempty = (ecomp2 & ~write_allow & read_allow); assign leaving_aempty =((ecomp2 | ecomp1 |ecomp0) & write_allow); end endgenerate assign ram_aempty_comb = going_aempty | (~leaving_aempty & almost_empty_i); always @(posedge CLK or posedge rst_i) begin if (rst_i) almost_empty_i <= 1'b1; else if (srst_rrst_busy) almost_empty_i <= #`TCQ 1'b1; else almost_empty_i <= #`TCQ ram_aempty_comb; end // end endgenerate // gae_ss //----------------------------------------------------------------------------- // Generate PROG_FULL //----------------------------------------------------------------------------- localparam C_PF_ASSERT_VAL = (C_PRELOAD_LATENCY == 0) ? C_PROG_FULL_THRESH_ASSERT_VAL - EXTRA_WORDS_PF_PARAM : // FWFT C_PROG_FULL_THRESH_ASSERT_VAL; // STD localparam C_PF_NEGATE_VAL = (C_PRELOAD_LATENCY == 0) ? C_PROG_FULL_THRESH_NEGATE_VAL - EXTRA_WORDS_PF_PARAM: // FWFT C_PROG_FULL_THRESH_NEGATE_VAL; // STD //----------------------------------------------------------------------------- // Generate PROG_FULL for single programmable threshold constant //----------------------------------------------------------------------------- wire [C_WR_PNTR_WIDTH-1:0] temp = C_PF_ASSERT_VAL; generate if (C_PROG_FULL_TYPE == 1) begin : single_pf_const always @(posedge CLK or posedge RST_FULL_FF) begin if (RST_FULL_FF && C_HAS_RST) prog_full_i <= C_FULL_FLAGS_RST_VAL; else begin if (srst_wrst_busy) prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL; else if (IS_ASYMMETRY == 0) begin if (RST_FULL_GEN) prog_full_i <= #`TCQ 1'b0; else if (diff_pntr == C_PF_ASSERT_VAL && write_only_q) prog_full_i <= #`TCQ 1'b1; else if (diff_pntr == C_PF_ASSERT_VAL && read_only_q) prog_full_i <= #`TCQ 1'b0; else prog_full_i <= #`TCQ prog_full_i; end else begin if (RST_FULL_GEN) prog_full_i <= #`TCQ 1'b0; else if (~RST_FULL_GEN ) begin if (diff_pntr>= C_PF_ASSERT_VAL ) prog_full_i <= #`TCQ 1'b1; else if ((diff_pntr) < C_PF_ASSERT_VAL ) prog_full_i <= #`TCQ 1'b0; else prog_full_i <= #`TCQ 1'b0; end else prog_full_i <= #`TCQ prog_full_i; end end end end endgenerate // single_pf_const //----------------------------------------------------------------------------- // Generate PROG_FULL for multiple programmable threshold constants //----------------------------------------------------------------------------- generate if (C_PROG_FULL_TYPE == 2) begin : multiple_pf_const always @(posedge CLK or posedge RST_FULL_FF) begin //if (RST_FULL_FF) if (RST_FULL_FF && C_HAS_RST) prog_full_i <= C_FULL_FLAGS_RST_VAL; else begin if (srst_wrst_busy) prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL; else if (IS_ASYMMETRY == 0) begin if (RST_FULL_GEN) prog_full_i <= #`TCQ 1'b0; else if (diff_pntr == C_PF_ASSERT_VAL && write_only_q) prog_full_i <= #`TCQ 1'b1; else if (diff_pntr == C_PF_NEGATE_VAL && read_only_q) prog_full_i <= #`TCQ 1'b0; else prog_full_i <= #`TCQ prog_full_i; end else begin if (RST_FULL_GEN) prog_full_i <= #`TCQ 1'b0; else if (~RST_FULL_GEN ) begin if (diff_pntr >= C_PF_ASSERT_VAL ) prog_full_i <= #`TCQ 1'b1; else if (diff_pntr < C_PF_NEGATE_VAL) prog_full_i <= #`TCQ 1'b0; else prog_full_i <= #`TCQ prog_full_i; end else prog_full_i <= #`TCQ prog_full_i; end end end end endgenerate //multiple_pf_const //----------------------------------------------------------------------------- // Generate PROG_FULL for single programmable threshold input port //----------------------------------------------------------------------------- wire [C_WR_PNTR_WIDTH-1:0] pf3_assert_val = (C_PRELOAD_LATENCY == 0) ? PROG_FULL_THRESH - EXTRA_WORDS_PF: // FWFT PROG_FULL_THRESH; // STD generate if (C_PROG_FULL_TYPE == 3) begin : single_pf_input always @(posedge CLK or posedge RST_FULL_FF) begin//0 //if (RST_FULL_FF) if (RST_FULL_FF && C_HAS_RST) prog_full_i <= C_FULL_FLAGS_RST_VAL; else begin //1 if (srst_wrst_busy) prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL; else if (IS_ASYMMETRY == 0) begin//2 if (RST_FULL_GEN) prog_full_i <= #`TCQ 1'b0; else if (~almost_full_i) begin//3 if (diff_pntr > pf3_assert_val) prog_full_i <= #`TCQ 1'b1; else if (diff_pntr == pf3_assert_val) begin//4 if (read_only_q) prog_full_i <= #`TCQ 1'b0; else prog_full_i <= #`TCQ 1'b1; end else//4 prog_full_i <= #`TCQ 1'b0; end else//3 prog_full_i <= #`TCQ prog_full_i; end //2 else begin//5 if (RST_FULL_GEN) prog_full_i <= #`TCQ 1'b0; else if (~full_i ) begin//6 if (diff_pntr >= pf3_assert_val ) prog_full_i <= #`TCQ 1'b1; else if (diff_pntr < pf3_assert_val) begin//7 prog_full_i <= #`TCQ 1'b0; end//7 end//6 else prog_full_i <= #`TCQ prog_full_i; end//5 end//1 end//0 end endgenerate //single_pf_input //----------------------------------------------------------------------------- // Generate PROG_FULL for multiple programmable threshold input ports //----------------------------------------------------------------------------- wire [C_WR_PNTR_WIDTH-1:0] pf_assert_val = (C_PRELOAD_LATENCY == 0) ? (PROG_FULL_THRESH_ASSERT -EXTRA_WORDS_PF) : // FWFT PROG_FULL_THRESH_ASSERT; // STD wire [C_WR_PNTR_WIDTH-1:0] pf_negate_val = (C_PRELOAD_LATENCY == 0) ? (PROG_FULL_THRESH_NEGATE -EXTRA_WORDS_PF) : // FWFT PROG_FULL_THRESH_NEGATE; // STD generate if (C_PROG_FULL_TYPE == 4) begin : multiple_pf_inputs always @(posedge CLK or posedge RST_FULL_FF) begin if (RST_FULL_FF && C_HAS_RST) prog_full_i <= C_FULL_FLAGS_RST_VAL; else begin if (srst_wrst_busy) prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL; else if (IS_ASYMMETRY == 0) begin if (RST_FULL_GEN) prog_full_i <= #`TCQ 1'b0; else if (~almost_full_i) begin if (diff_pntr >= pf_assert_val) prog_full_i <= #`TCQ 1'b1; else if ((diff_pntr == pf_negate_val && read_only_q) || diff_pntr < pf_negate_val) prog_full_i <= #`TCQ 1'b0; else prog_full_i <= #`TCQ prog_full_i; end else prog_full_i <= #`TCQ prog_full_i; end else begin if (RST_FULL_GEN) prog_full_i <= #`TCQ 1'b0; else if (~full_i ) begin if (diff_pntr >= pf_assert_val ) prog_full_i <= #`TCQ 1'b1; else if (diff_pntr < pf_negate_val) prog_full_i <= #`TCQ 1'b0; else prog_full_i <= #`TCQ prog_full_i; end else prog_full_i <= #`TCQ prog_full_i; end end end end endgenerate //multiple_pf_inputs //----------------------------------------------------------------------------- // Generate PROG_EMPTY //----------------------------------------------------------------------------- localparam C_PE_ASSERT_VAL = (C_PRELOAD_LATENCY == 0) ? C_PROG_EMPTY_THRESH_ASSERT_VAL - 2: // FWFT C_PROG_EMPTY_THRESH_ASSERT_VAL; // STD localparam C_PE_NEGATE_VAL = (C_PRELOAD_LATENCY == 0) ? C_PROG_EMPTY_THRESH_NEGATE_VAL - 2: // FWFT C_PROG_EMPTY_THRESH_NEGATE_VAL; // STD //----------------------------------------------------------------------------- // Generate PROG_EMPTY for single programmable threshold constant //----------------------------------------------------------------------------- generate if (C_PROG_EMPTY_TYPE == 1) begin : single_pe_const always @(posedge CLK or posedge rst_i) begin //if (rst_i) if (rst_i && C_HAS_RST) prog_empty_i <= 1'b1; else begin if (srst_rrst_busy) prog_empty_i <= #`TCQ 1'b1; else if (IS_ASYMMETRY == 0) begin if (diff_pntr_pe == C_PE_ASSERT_VAL && read_only_q) prog_empty_i <= #`TCQ 1'b1; else if (diff_pntr_pe == C_PE_ASSERT_VAL && write_only_q) prog_empty_i <= #`TCQ 1'b0; else prog_empty_i <= #`TCQ prog_empty_i; end else begin if (~rst_i ) begin if (diff_pntr_pe <= C_PE_ASSERT_VAL) prog_empty_i <= #`TCQ 1'b1; else if (diff_pntr_pe > C_PE_ASSERT_VAL) prog_empty_i <= #`TCQ 1'b0; end else prog_empty_i <= #`TCQ prog_empty_i; end end end end endgenerate // single_pe_const //----------------------------------------------------------------------------- // Generate PROG_EMPTY for multiple programmable threshold constants //----------------------------------------------------------------------------- generate if (C_PROG_EMPTY_TYPE == 2) begin : multiple_pe_const always @(posedge CLK or posedge rst_i) begin //if (rst_i) if (rst_i && C_HAS_RST) prog_empty_i <= 1'b1; else begin if (srst_rrst_busy) prog_empty_i <= #`TCQ 1'b1; else if (IS_ASYMMETRY == 0) begin if (diff_pntr_pe == C_PE_ASSERT_VAL && read_only_q) prog_empty_i <= #`TCQ 1'b1; else if (diff_pntr_pe == C_PE_NEGATE_VAL && write_only_q) prog_empty_i <= #`TCQ 1'b0; else prog_empty_i <= #`TCQ prog_empty_i; end else begin if (~rst_i ) begin if (diff_pntr_pe <= C_PE_ASSERT_VAL ) prog_empty_i <= #`TCQ 1'b1; else if (diff_pntr_pe > C_PE_NEGATE_VAL) prog_empty_i <= #`TCQ 1'b0; else prog_empty_i <= #`TCQ prog_empty_i; end else prog_empty_i <= #`TCQ prog_empty_i; end end end end endgenerate //multiple_pe_const //----------------------------------------------------------------------------- // Generate PROG_EMPTY for single programmable threshold input port //----------------------------------------------------------------------------- wire [C_RD_PNTR_WIDTH-1:0] pe3_assert_val = (C_PRELOAD_LATENCY == 0) ? (PROG_EMPTY_THRESH -2) : // FWFT PROG_EMPTY_THRESH; // STD generate if (C_PROG_EMPTY_TYPE == 3) begin : single_pe_input always @(posedge CLK or posedge rst_i) begin //if (rst_i) if (rst_i && C_HAS_RST) prog_empty_i <= 1'b1; else begin if (srst_rrst_busy) prog_empty_i <= #`TCQ 1'b1; else if (IS_ASYMMETRY == 0) begin if (~almost_full_i) begin if (diff_pntr_pe < pe3_assert_val) prog_empty_i <= #`TCQ 1'b1; else if (diff_pntr_pe == pe3_assert_val) begin if (write_only_q) prog_empty_i <= #`TCQ 1'b0; else prog_empty_i <= #`TCQ 1'b1; end else prog_empty_i <= #`TCQ 1'b0; end else prog_empty_i <= #`TCQ prog_empty_i; end else begin if (diff_pntr_pe <= pe3_assert_val ) prog_empty_i <= #`TCQ 1'b1; else if (diff_pntr_pe > pe3_assert_val) prog_empty_i <= #`TCQ 1'b0; else prog_empty_i <= #`TCQ prog_empty_i; end end end end endgenerate // single_pe_input //----------------------------------------------------------------------------- // Generate PROG_EMPTY for multiple programmable threshold input ports //----------------------------------------------------------------------------- wire [C_RD_PNTR_WIDTH-1:0] pe4_assert_val = (C_PRELOAD_LATENCY == 0) ? (PROG_EMPTY_THRESH_ASSERT - 2) : // FWFT PROG_EMPTY_THRESH_ASSERT; // STD wire [C_RD_PNTR_WIDTH-1:0] pe4_negate_val = (C_PRELOAD_LATENCY == 0) ? (PROG_EMPTY_THRESH_NEGATE - 2) : // FWFT PROG_EMPTY_THRESH_NEGATE; // STD generate if (C_PROG_EMPTY_TYPE == 4) begin : multiple_pe_inputs always @(posedge CLK or posedge rst_i) begin //if (rst_i) if (rst_i && C_HAS_RST) prog_empty_i <= 1'b1; else begin if (srst_rrst_busy) prog_empty_i <= #`TCQ 1'b1; else if (IS_ASYMMETRY == 0) begin if (~almost_full_i) begin if (diff_pntr_pe <= pe4_assert_val) prog_empty_i <= #`TCQ 1'b1; else if (((diff_pntr_pe == pe4_negate_val) && write_only_q) || (diff_pntr_pe > pe4_negate_val)) begin prog_empty_i <= #`TCQ 1'b0; end else prog_empty_i <= #`TCQ prog_empty_i; end else prog_empty_i <= #`TCQ prog_empty_i; end else begin if (diff_pntr_pe <= pe4_assert_val ) prog_empty_i <= #`TCQ 1'b1; else if (diff_pntr_pe > pe4_negate_val) prog_empty_i <= #`TCQ 1'b0; else prog_empty_i <= #`TCQ prog_empty_i; end end end end endgenerate // multiple_pe_inputs endmodule // fifo_generator_v12_0_bhv_ver_ss /************************************************************************** * First-Word Fall-Through module (preload 0) **************************************************************************/ module fifo_generator_v12_0_bhv_ver_preload0 #( parameter C_DOUT_RST_VAL = "", parameter C_DOUT_WIDTH = 8, parameter C_HAS_RST = 0, parameter C_ENABLE_RST_SYNC = 0, parameter C_HAS_SRST = 0, parameter C_USE_DOUT_RST = 0, parameter C_USE_ECC = 0, parameter C_USERVALID_LOW = 0, parameter C_USERUNDERFLOW_LOW = 0, parameter C_MEMORY_TYPE = 0, parameter C_FIFO_TYPE = 0 ) ( //Inputs input RD_CLK, input RD_RST, input SRST, input WR_RST_BUSY, input RD_RST_BUSY, input RD_EN, input FIFOEMPTY, input [C_DOUT_WIDTH-1:0] FIFODATA, input FIFOSBITERR, input FIFODBITERR, //Outputs output reg [C_DOUT_WIDTH-1:0] USERDATA, output USERVALID, output USERUNDERFLOW, output USEREMPTY, output USERALMOSTEMPTY, output RAMVALID, output FIFORDEN, output reg USERSBITERR, output reg USERDBITERR, output reg STAGE2_REG_EN, output [1:0] VALID_STAGES ); //Internal signals wire preloadstage1; wire preloadstage2; reg ram_valid_i; reg read_data_valid_i; wire ram_regout_en; wire ram_rd_en; reg empty_i = 1'b1; reg empty_q = 1'b1; reg rd_en_q = 1'b0; reg almost_empty_i = 1'b1; reg almost_empty_q = 1'b1; wire rd_rst_i; wire srst_i; /************************************************************************* * FUNCTIONS *************************************************************************/ /************************************************************************* * hexstr_conv * Converts a string of type hex to a binary value (for C_DOUT_RST_VAL) ***********************************************************************/ function [C_DOUT_WIDTH-1:0] hexstr_conv; input [(C_DOUT_WIDTH*8)-1:0] def_data; integer index,i,j; reg [3:0] bin; begin index = 0; hexstr_conv = 'b0; for( i=C_DOUT_WIDTH-1; i>=0; i=i-1 ) begin case (def_data[7:0]) 8'b00000000 : begin bin = 4'b0000; i = -1; end 8'b00110000 : bin = 4'b0000; 8'b00110001 : bin = 4'b0001; 8'b00110010 : bin = 4'b0010; 8'b00110011 : bin = 4'b0011; 8'b00110100 : bin = 4'b0100; 8'b00110101 : bin = 4'b0101; 8'b00110110 : bin = 4'b0110; 8'b00110111 : bin = 4'b0111; 8'b00111000 : bin = 4'b1000; 8'b00111001 : bin = 4'b1001; 8'b01000001 : bin = 4'b1010; 8'b01000010 : bin = 4'b1011; 8'b01000011 : bin = 4'b1100; 8'b01000100 : bin = 4'b1101; 8'b01000101 : bin = 4'b1110; 8'b01000110 : bin = 4'b1111; 8'b01100001 : bin = 4'b1010; 8'b01100010 : bin = 4'b1011; 8'b01100011 : bin = 4'b1100; 8'b01100100 : bin = 4'b1101; 8'b01100101 : bin = 4'b1110; 8'b01100110 : bin = 4'b1111; default : begin bin = 4'bx; end endcase for( j=0; j<4; j=j+1) begin if ((index*4)+j < C_DOUT_WIDTH) begin hexstr_conv[(index*4)+j] = bin[j]; end end index = index + 1; def_data = def_data >> 8; end end endfunction //************************************************************************* // Set power-on states for regs //************************************************************************* initial begin ram_valid_i = 1'b0; read_data_valid_i = 1'b0; USERDATA = hexstr_conv(C_DOUT_RST_VAL); USERSBITERR = 1'b0; USERDBITERR = 1'b0; end //initial //*************************************************************************** // connect up optional reset //*************************************************************************** assign rd_rst_i = (C_HAS_RST == 1 || C_ENABLE_RST_SYNC == 0) ? RD_RST : 0; assign srst_i = C_HAS_SRST ? SRST || WR_RST_BUSY || RD_RST_BUSY : 0; localparam INVALID = 0; localparam STAGE1_VALID = 2; localparam STAGE2_VALID = 1; localparam BOTH_STAGES_VALID = 3; reg [1:0] curr_fwft_state = INVALID; reg [1:0] next_fwft_state = INVALID; generate if (C_FIFO_TYPE != 2) begin : gnll_fifo always @* begin case (curr_fwft_state) INVALID: begin if (~FIFOEMPTY) next_fwft_state <= STAGE1_VALID; else next_fwft_state <= INVALID; end STAGE1_VALID: begin if (FIFOEMPTY) next_fwft_state <= STAGE2_VALID; else next_fwft_state <= BOTH_STAGES_VALID; end STAGE2_VALID: begin if (FIFOEMPTY && RD_EN) next_fwft_state <= INVALID; else if (~FIFOEMPTY && RD_EN) next_fwft_state <= STAGE1_VALID; else if (~FIFOEMPTY && ~RD_EN) next_fwft_state <= BOTH_STAGES_VALID; else next_fwft_state <= STAGE2_VALID; end BOTH_STAGES_VALID: begin if (FIFOEMPTY && RD_EN) next_fwft_state <= STAGE2_VALID; else if (~FIFOEMPTY && RD_EN) next_fwft_state <= BOTH_STAGES_VALID; else next_fwft_state <= BOTH_STAGES_VALID; end default: next_fwft_state <= INVALID; endcase end always @ (posedge rd_rst_i or posedge RD_CLK) begin if (rd_rst_i) curr_fwft_state <= INVALID; else if (srst_i) curr_fwft_state <= #`TCQ INVALID; else curr_fwft_state <= #`TCQ next_fwft_state; end always @* begin case (curr_fwft_state) INVALID: STAGE2_REG_EN <= 1'b0; STAGE1_VALID: STAGE2_REG_EN <= 1'b1; STAGE2_VALID: STAGE2_REG_EN <= 1'b0; BOTH_STAGES_VALID: STAGE2_REG_EN <= RD_EN; default: STAGE2_REG_EN <= 1'b0; endcase end assign VALID_STAGES = curr_fwft_state; //*************************************************************************** // preloadstage2 indicates that stage2 needs to be updated. This is true // whenever read_data_valid is false, and RAM_valid is true. //*************************************************************************** assign preloadstage2 = ram_valid_i & (~read_data_valid_i | RD_EN); //*************************************************************************** // preloadstage1 indicates that stage1 needs to be updated. This is true // whenever the RAM has data (RAM_EMPTY is false), and either RAM_Valid is // false (indicating that Stage1 needs updating), or preloadstage2 is active // (indicating that Stage2 is going to update, so Stage1, therefore, must // also be updated to keep it valid. //*************************************************************************** assign preloadstage1 = ((~ram_valid_i | preloadstage2) & ~FIFOEMPTY); //*************************************************************************** // Calculate RAM_REGOUT_EN // The output registers are controlled by the ram_regout_en signal. // These registers should be updated either when the output in Stage2 is // invalid (preloadstage2), OR when the user is reading, in which case the // Stage2 value will go invalid unless it is replenished. //*************************************************************************** assign ram_regout_en = preloadstage2; //*************************************************************************** // Calculate RAM_RD_EN // RAM_RD_EN will be asserted whenever the RAM needs to be read in order to // update the value in Stage1. // One case when this happens is when preloadstage1=true, which indicates // that the data in Stage1 or Stage2 is invalid, and needs to automatically // be updated. // The other case is when the user is reading from the FIFO, which // guarantees that Stage1 or Stage2 will be invalid on the next clock // cycle, unless it is replinished by data from the memory. So, as long // as the RAM has data in it, a read of the RAM should occur. //*************************************************************************** assign ram_rd_en = (RD_EN & ~FIFOEMPTY) | preloadstage1; end endgenerate // gnll_fifo reg curr_state = 0; reg next_state = 0; reg leaving_empty_fwft = 0; reg going_empty_fwft = 0; reg empty_i_q = 0; reg ram_rd_en_fwft = 0; generate if (C_FIFO_TYPE == 2) begin : gll_fifo always @* begin // FSM fo FWFT case (curr_state) 1'b0: begin if (~FIFOEMPTY) next_state <= 1'b1; else next_state <= 1'b0; end 1'b1: begin if (FIFOEMPTY && RD_EN) next_state <= 1'b0; else next_state <= 1'b1; end default: next_state <= 1'b0; endcase end always @ (posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i) begin empty_i <= 1'b1; empty_i_q <= 1'b1; curr_state <= 1'b0; ram_valid_i <= 1'b0; end else if (srst_i) begin empty_i <= #`TCQ 1'b1; empty_i_q <= #`TCQ 1'b1; curr_state <= #`TCQ 1'b0; ram_valid_i <= #`TCQ 1'b0; end else begin empty_i <= #`TCQ going_empty_fwft | (~leaving_empty_fwft & empty_i); empty_i_q <= #`TCQ FIFOEMPTY; curr_state <= #`TCQ next_state; ram_valid_i <= #`TCQ next_state; end end //always wire fe_of_empty; assign fe_of_empty = empty_i_q & ~FIFOEMPTY; always @* begin // Finding leaving empty case (curr_state) 1'b0: leaving_empty_fwft <= fe_of_empty; 1'b1: leaving_empty_fwft <= 1'b1; default: leaving_empty_fwft <= 1'b0; endcase end always @* begin // Finding going empty case (curr_state) 1'b1: going_empty_fwft <= FIFOEMPTY & RD_EN; default: going_empty_fwft <= 1'b0; endcase end always @* begin // Generating FWFT rd_en case (curr_state) 1'b0: ram_rd_en_fwft <= ~FIFOEMPTY; 1'b1: ram_rd_en_fwft <= ~FIFOEMPTY & RD_EN; default: ram_rd_en_fwft <= 1'b0; endcase end assign ram_regout_en = ram_rd_en_fwft; assign ram_rd_en = ram_rd_en_fwft; end endgenerate // gll_fifo //*************************************************************************** // Calculate RAMVALID_P0_OUT // RAMVALID_P0_OUT indicates that the data in Stage1 is valid. // // If the RAM is being read from on this clock cycle (ram_rd_en=1), then // RAMVALID_P0_OUT is certainly going to be true. // If the RAM is not being read from, but the output registers are being // updated to fill Stage2 (ram_regout_en=1), then Stage1 will be emptying, // therefore causing RAMVALID_P0_OUT to be false. // Otherwise, RAMVALID_P0_OUT will remain unchanged. //*************************************************************************** // PROCESS regout_valid generate if (C_FIFO_TYPE < 2) begin : gnll_fifo_ram_valid always @ (posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i) begin // asynchronous reset (active high) ram_valid_i <= #`TCQ 1'b0; end else begin if (srst_i) begin // synchronous reset (active high) ram_valid_i <= #`TCQ 1'b0; end else begin if (ram_rd_en == 1'b1) begin ram_valid_i <= #`TCQ 1'b1; end else begin if (ram_regout_en == 1'b1) ram_valid_i <= #`TCQ 1'b0; else ram_valid_i <= #`TCQ ram_valid_i; end end //srst_i end //rd_rst_i end //always end endgenerate // gnll_fifo_ram_valid //*************************************************************************** // Calculate READ_DATA_VALID // READ_DATA_VALID indicates whether the value in Stage2 is valid or not. // Stage2 has valid data whenever Stage1 had valid data and // ram_regout_en_i=1, such that the data in Stage1 is propogated // into Stage2. //*************************************************************************** always @ (posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i) read_data_valid_i <= #`TCQ 1'b0; else if (srst_i) read_data_valid_i <= #`TCQ 1'b0; else read_data_valid_i <= #`TCQ ram_valid_i | (read_data_valid_i & ~RD_EN); end //always //************************************************************************** // Calculate EMPTY // Defined as the inverse of READ_DATA_VALID // // Description: // // If read_data_valid_i indicates that the output is not valid, // and there is no valid data on the output of the ram to preload it // with, then we will report empty. // // If there is no valid data on the output of the ram and we are // reading, then the FIFO will go empty. // //************************************************************************** generate if (C_FIFO_TYPE < 2) begin : gnll_fifo_empty always @ (posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i) begin // asynchronous reset (active high) empty_i <= #`TCQ 1'b1; end else begin if (srst_i) begin // synchronous reset (active high) empty_i <= #`TCQ 1'b1; end else begin // rising clock edge empty_i <= #`TCQ (~ram_valid_i & ~read_data_valid_i) | (~ram_valid_i & RD_EN); end end end //always end endgenerate // gnll_fifo_empty // Register RD_EN from user to calculate USERUNDERFLOW. // Register empty_i to calculate USERUNDERFLOW. always @ (posedge RD_CLK) begin rd_en_q <= #`TCQ RD_EN; empty_q <= #`TCQ empty_i; end //always //*************************************************************************** // Calculate user_almost_empty // user_almost_empty is defined such that, unless more words are written // to the FIFO, the next read will cause the FIFO to go EMPTY. // // In most cases, whenever the output registers are updated (due to a user // read or a preload condition), then user_almost_empty will update to // whatever RAM_EMPTY is. // // The exception is when the output is valid, the user is not reading, and // Stage1 is not empty. In this condition, Stage1 will be preloaded from the // memory, so we need to make sure user_almost_empty deasserts properly under // this condition. //*************************************************************************** always @ (posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i) begin // asynchronous reset (active high) almost_empty_i <= #`TCQ 1'b1; almost_empty_q <= #`TCQ 1'b1; end else begin // rising clock edge if (srst_i) begin // synchronous reset (active high) almost_empty_i <= #`TCQ 1'b1; almost_empty_q <= #`TCQ 1'b1; end else begin if ((ram_regout_en) | (~FIFOEMPTY & read_data_valid_i & ~RD_EN)) begin almost_empty_i <= #`TCQ FIFOEMPTY; end almost_empty_q <= #`TCQ empty_i; end end end //always assign USEREMPTY = empty_i; assign USERALMOSTEMPTY = almost_empty_i; assign FIFORDEN = ram_rd_en; assign RAMVALID = ram_valid_i; assign USERVALID = C_USERVALID_LOW ? ~read_data_valid_i : read_data_valid_i; assign USERUNDERFLOW = C_USERUNDERFLOW_LOW ? ~(empty_q & rd_en_q) : empty_q & rd_en_q; // BRAM resets synchronously always @ (posedge RD_CLK) begin if (rd_rst_i || srst_i) begin if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE < 2) USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL); end end //always always @ (posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i) begin //asynchronous reset (active high) if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF USERSBITERR <= #`TCQ 0; USERDBITERR <= #`TCQ 0; end // DRAM resets asynchronously if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2) //asynchronous reset (active high) USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL); end else begin // rising clock edge if (srst_i) begin if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF USERSBITERR <= #`TCQ 0; USERDBITERR <= #`TCQ 0; end if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2) USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL); end else begin if (ram_regout_en) begin USERDATA <= #`TCQ FIFODATA; USERSBITERR <= #`TCQ FIFOSBITERR; USERDBITERR <= #`TCQ FIFODBITERR; end end end end //always endmodule //----------------------------------------------------------------------------- // // Register Slice // Register one AXI channel on forward and/or reverse signal path // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // reg_slice // //-------------------------------------------------------------------------- module fifo_generator_v12_0_axic_reg_slice # ( parameter C_FAMILY = "virtex7", parameter C_DATA_WIDTH = 32, parameter C_REG_CONFIG = 32'h00000000 ) ( // System Signals input wire ACLK, input wire ARESET, // Slave side input wire [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA, input wire S_VALID, output wire S_READY, // Master side output wire [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA, output wire M_VALID, input wire M_READY ); generate //////////////////////////////////////////////////////////////////// // // Both FWD and REV mode // //////////////////////////////////////////////////////////////////// if (C_REG_CONFIG == 32'h00000000) begin reg [1:0] state; localparam [1:0] ZERO = 2'b10, ONE = 2'b11, TWO = 2'b01; reg [C_DATA_WIDTH-1:0] storage_data1 = 0; reg [C_DATA_WIDTH-1:0] storage_data2 = 0; reg load_s1; wire load_s2; wire load_s1_from_s2; reg s_ready_i; //local signal of output wire m_valid_i; //local signal of output // assign local signal to its output signal assign S_READY = s_ready_i; assign M_VALID = m_valid_i; reg areset_d1; // Reset delay register always @(posedge ACLK) begin areset_d1 <= ARESET; end // Load storage1 with either slave side data or from storage2 always @(posedge ACLK) begin if (load_s1) if (load_s1_from_s2) storage_data1 <= storage_data2; else storage_data1 <= S_PAYLOAD_DATA; end // Load storage2 with slave side data always @(posedge ACLK) begin if (load_s2) storage_data2 <= S_PAYLOAD_DATA; end assign M_PAYLOAD_DATA = storage_data1; // Always load s2 on a valid transaction even if it's unnecessary assign load_s2 = S_VALID & s_ready_i; // Loading s1 always @ * begin if ( ((state == ZERO) && (S_VALID == 1)) || // Load when empty on slave transaction // Load when ONE if we both have read and write at the same time ((state == ONE) && (S_VALID == 1) && (M_READY == 1)) || // Load when TWO and we have a transaction on Master side ((state == TWO) && (M_READY == 1))) load_s1 = 1'b1; else load_s1 = 1'b0; end // always @ * assign load_s1_from_s2 = (state == TWO); // State Machine for handling output signals always @(posedge ACLK) begin if (ARESET) begin s_ready_i <= 1'b0; state <= ZERO; end else if (areset_d1) begin s_ready_i <= 1'b1; end else begin case (state) // No transaction stored locally ZERO: if (S_VALID) state <= ONE; // Got one so move to ONE // One transaction stored locally ONE: begin if (M_READY & ~S_VALID) state <= ZERO; // Read out one so move to ZERO if (~M_READY & S_VALID) begin state <= TWO; // Got another one so move to TWO s_ready_i <= 1'b0; end end // TWO transaction stored locally TWO: if (M_READY) begin state <= ONE; // Read out one so move to ONE s_ready_i <= 1'b1; end endcase // case (state) end end // always @ (posedge ACLK) assign m_valid_i = state[0]; end // if (C_REG_CONFIG == 1) //////////////////////////////////////////////////////////////////// // // 1-stage pipeline register with bubble cycle, both FWD and REV pipelining // Operates same as 1-deep FIFO // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000001) begin reg [C_DATA_WIDTH-1:0] storage_data1 = 0; reg s_ready_i; //local signal of output reg m_valid_i; //local signal of output // assign local signal to its output signal assign S_READY = s_ready_i; assign M_VALID = m_valid_i; reg areset_d1; // Reset delay register always @(posedge ACLK) begin areset_d1 <= ARESET; end // Load storage1 with slave side data always @(posedge ACLK) begin if (ARESET) begin s_ready_i <= 1'b0; m_valid_i <= 1'b0; end else if (areset_d1) begin s_ready_i <= 1'b1; end else if (m_valid_i & M_READY) begin s_ready_i <= 1'b1; m_valid_i <= 1'b0; end else if (S_VALID & s_ready_i) begin s_ready_i <= 1'b0; m_valid_i <= 1'b1; end if (~m_valid_i) begin storage_data1 <= S_PAYLOAD_DATA; end end assign M_PAYLOAD_DATA = storage_data1; end // if (C_REG_CONFIG == 7) else begin : default_case // Passthrough assign M_PAYLOAD_DATA = S_PAYLOAD_DATA; assign M_VALID = S_VALID; assign S_READY = M_READY; end endgenerate endmodule // reg_slice
(** * MoreInd: More on Induction *) Require Export "ProofObjects". (* ##################################################### *) (** * Induction Principles *) (** This is a good point to pause and take a deeper look at induction principles. Every time we declare a new [Inductive] datatype, Coq automatically generates and proves an _induction principle_ for this type. The induction principle for a type [t] is called [t_ind]. Here is the one for natural numbers: *) Check nat_ind. (* ===> nat_ind : forall P : nat -> Prop, P 0 -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n *) (** *** *) (** The [induction] tactic is a straightforward wrapper that, at its core, simply performs [apply t_ind]. To see this more clearly, let's experiment a little with using [apply nat_ind] directly, instead of the [induction] tactic, to carry out some proofs. Here, for example, is an alternate proof of a theorem that we saw in the [Basics] chapter. *) Theorem mult_0_r' : forall n:nat, n * 0 = 0. Proof. apply nat_ind. Case "O". reflexivity. Case "S". simpl. intros n IHn. rewrite -> IHn. reflexivity. Qed. (** This proof is basically the same as the earlier one, but a few minor differences are worth noting. First, in the induction step of the proof (the ["S"] case), we have to do a little bookkeeping manually (the [intros]) that [induction] does automatically. Second, we do not introduce [n] into the context before applying [nat_ind] -- the conclusion of [nat_ind] is a quantified formula, and [apply] needs this conclusion to exactly match the shape of the goal state, including the quantifier. The [induction] tactic works either with a variable in the context or a quantified variable in the goal. Third, the [apply] tactic automatically chooses variable names for us (in the second subgoal, here), whereas [induction] lets us specify (with the [as...] clause) what names should be used. The automatic choice is actually a little unfortunate, since it re-uses the name [n] for a variable that is different from the [n] in the original theorem. This is why the [Case] annotation is just [S] -- if we tried to write it out in the more explicit form that we've been using for most proofs, we'd have to write [n = S n], which doesn't make a lot of sense! All of these conveniences make [induction] nicer to use in practice than applying induction principles like [nat_ind] directly. But it is important to realize that, modulo this little bit of bookkeeping, applying [nat_ind] is what we are really doing. *) (** **** Exercise: 2 stars, optional (plus_one_r') *) (** Complete this proof as we did [mult_0_r'] above, without using the [induction] tactic. *) Theorem plus_one_r' : forall n:nat, n + 1 = S n. Proof. (* FILL IN HERE *) Admitted. (** [] *) (** Coq generates induction principles for every datatype defined with [Inductive], including those that aren't recursive. (Although we don't need induction to prove properties of non-recursive datatypes, the idea of an induction principle still makes sense for them: it gives a way to prove that a property holds for all values of the type.) These generated principles follow a similar pattern. If we define a type [t] with constructors [c1] ... [cn], Coq generates a theorem with this shape: t_ind : forall P : t -> Prop, ... case for c1 ... -> ... case for c2 ... -> ... ... case for cn ... -> forall n : t, P n The specific shape of each case depends on the arguments to the corresponding constructor. Before trying to write down a general rule, let's look at some more examples. First, an example where the constructors take no arguments: *) Inductive yesno : Type := | yes : yesno | no : yesno. Check yesno_ind. (* ===> yesno_ind : forall P : yesno -> Prop, P yes -> P no -> forall y : yesno, P y *) (** **** Exercise: 1 star, optional (rgb) *) (** Write out the induction principle that Coq will generate for the following datatype. Write down your answer on paper or type it into a comment, and then compare it with what Coq prints. *) Inductive rgb : Type := | red : rgb | green : rgb | blue : rgb. Check rgb_ind. (** [] *) (** Here's another example, this time with one of the constructors taking some arguments. *) Inductive natlist : Type := | nnil : natlist | ncons : nat -> natlist -> natlist. Check natlist_ind. (* ===> (modulo a little variable renaming for clarity) natlist_ind : forall P : natlist -> Prop, P nnil -> (forall (n : nat) (l : natlist), P l -> P (ncons n l)) -> forall n : natlist, P n *) (** **** Exercise: 1 star, optional (natlist1) *) (** Suppose we had written the above definition a little differently: *) Inductive natlist1 : Type := | nnil1 : natlist1 | nsnoc1 : natlist1 -> nat -> natlist1. (** Now what will the induction principle look like? *) (** [] *) (** From these examples, we can extract this general rule: - The type declaration gives several constructors; each corresponds to one clause of the induction principle. - Each constructor [c] takes argument types [a1]...[an]. - Each [ai] can be either [t] (the datatype we are defining) or some other type [s]. - The corresponding case of the induction principle says (in English): - "for all values [x1]...[xn] of types [a1]...[an], if [P] holds for each of the inductive arguments (each [xi] of type [t]), then [P] holds for [c x1 ... xn]". *) (** **** Exercise: 1 star, optional (byntree_ind) *) (** Write out the induction principle that Coq will generate for the following datatype. Write down your answer on paper or type it into a comment, and then compare it with what Coq prints. *) Inductive byntree : Type := | bempty : byntree | bleaf : yesno -> byntree | nbranch : yesno -> byntree -> byntree -> byntree. (** [] *) (** **** Exercise: 1 star, optional (ex_set) *) (** Here is an induction principle for an inductively defined set. ExSet_ind : forall P : ExSet -> Prop, (forall b : bool, P (con1 b)) -> (forall (n : nat) (e : ExSet), P e -> P (con2 n e)) -> forall e : ExSet, P e Give an [Inductive] definition of [ExSet]: *) Inductive ExSet : Type := (* FILL IN HERE *) . (** [] *) (** What about polymorphic datatypes? The inductive definition of polymorphic lists Inductive list (X:Type) : Type := | nil : list X | cons : X -> list X -> list X. is very similar to that of [natlist]. The main difference is that, here, the whole definition is _parameterized_ on a set [X]: that is, we are defining a _family_ of inductive types [list X], one for each [X]. (Note that, wherever [list] appears in the body of the declaration, it is always applied to the parameter [X].) The induction principle is likewise parameterized on [X]: list_ind : forall (X : Type) (P : list X -> Prop), P [] -> (forall (x : X) (l : list X), P l -> P (x :: l)) -> forall l : list X, P l Note the wording here (and, accordingly, the form of [list_ind]): The _whole_ induction principle is parameterized on [X]. That is, [list_ind] can be thought of as a polymorphic function that, when applied to a type [X], gives us back an induction principle specialized to the type [list X]. *) (** **** Exercise: 1 star, optional (tree) *) (** Write out the induction principle that Coq will generate for the following datatype. Compare your answer with what Coq prints. *) Inductive tree (X:Type) : Type := | leaf : X -> tree X | node : tree X -> tree X -> tree X. Check tree_ind. (** [] *) (** **** Exercise: 1 star, optional (mytype) *) (** Find an inductive definition that gives rise to the following induction principle: mytype_ind : forall (X : Type) (P : mytype X -> Prop), (forall x : X, P (constr1 X x)) -> (forall n : nat, P (constr2 X n)) -> (forall m : mytype X, P m -> forall n : nat, P (constr3 X m n)) -> forall m : mytype X, P m *) (** [] *) (** **** Exercise: 1 star, optional (foo) *) (** Find an inductive definition that gives rise to the following induction principle: foo_ind : forall (X Y : Type) (P : foo X Y -> Prop), (forall x : X, P (bar X Y x)) -> (forall y : Y, P (baz X Y y)) -> (forall f1 : nat -> foo X Y, (forall n : nat, P (f1 n)) -> P (quux X Y f1)) -> forall f2 : foo X Y, P f2 *) (** [] *) (** **** Exercise: 1 star, optional (foo') *) (** Consider the following inductive definition: *) Inductive foo' (X:Type) : Type := | C1 : list X -> foo' X -> foo' X | C2 : foo' X. (** What induction principle will Coq generate for [foo']? Fill in the blanks, then check your answer with Coq.) foo'_ind : forall (X : Type) (P : foo' X -> Prop), (forall (l : list X) (f : foo' X), _______________________ -> _______________________ ) -> ___________________________________________ -> forall f : foo' X, ________________________ *) (** [] *) (* ##################################################### *) (** ** Induction Hypotheses *) (** Where does the phrase "induction hypothesis" fit into this story? The induction principle for numbers forall P : nat -> Prop, P 0 -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n is a generic statement that holds for all propositions [P] (strictly speaking, for all families of propositions [P] indexed by a number [n]). Each time we use this principle, we are choosing [P] to be a particular expression of type [nat->Prop]. We can make the proof more explicit by giving this expression a name. For example, instead of stating the theorem [mult_0_r] as "[forall n, n * 0 = 0]," we can write it as "[forall n, P_m0r n]", where [P_m0r] is defined as... *) Definition P_m0r (n:nat) : Prop := n * 0 = 0. (** ... or equivalently... *) Definition P_m0r' : nat->Prop := fun n => n * 0 = 0. (** Now when we do the proof it is easier to see where [P_m0r] appears. *) Theorem mult_0_r'' : forall n:nat, P_m0r n. Proof. apply nat_ind. Case "n = O". reflexivity. Case "n = S n'". (* Note the proof state at this point! *) intros n IHn. unfold P_m0r in IHn. unfold P_m0r. simpl. apply IHn. Qed. (** This extra naming step isn't something that we'll do in normal proofs, but it is useful to do it explicitly for an example or two, because it allows us to see exactly what the induction hypothesis is. If we prove [forall n, P_m0r n] by induction on [n] (using either [induction] or [apply nat_ind]), we see that the first subgoal requires us to prove [P_m0r 0] ("[P] holds for zero"), while the second subgoal requires us to prove [forall n', P_m0r n' -> P_m0r n' (S n')] (that is "[P] holds of [S n'] if it holds of [n']" or, more elegantly, "[P] is preserved by [S]"). The _induction hypothesis_ is the premise of this latter implication -- the assumption that [P] holds of [n'], which we are allowed to use in proving that [P] holds for [S n']. *) (* ##################################################### *) (** ** More on the [induction] Tactic *) (** The [induction] tactic actually does even more low-level bookkeeping for us than we discussed above. Recall the informal statement of the induction principle for natural numbers: - If [P n] is some proposition involving a natural number n, and we want to show that P holds for _all_ numbers n, we can reason like this: - show that [P O] holds - show that, if [P n'] holds, then so does [P (S n')] - conclude that [P n] holds for all n. So, when we begin a proof with [intros n] and then [induction n], we are first telling Coq to consider a _particular_ [n] (by introducing it into the context) and then telling it to prove something about _all_ numbers (by using induction). What Coq actually does in this situation, internally, is to "re-generalize" the variable we perform induction on. For example, in our original proof that [plus] is associative... *) Theorem plus_assoc' : forall n m p : nat, n + (m + p) = (n + m) + p. Proof. (* ...we first introduce all 3 variables into the context, which amounts to saying "Consider an arbitrary [n], [m], and [p]..." *) intros n m p. (* ...We now use the [induction] tactic to prove [P n] (that is, [n + (m + p) = (n + m) + p]) for _all_ [n], and hence also for the particular [n] that is in the context at the moment. *) induction n as [| n']. Case "n = O". reflexivity. Case "n = S n'". (* In the second subgoal generated by [induction] -- the "inductive step" -- we must prove that [P n'] implies [P (S n')] for all [n']. The [induction] tactic automatically introduces [n'] and [P n'] into the context for us, leaving just [P (S n')] as the goal. *) simpl. rewrite -> IHn'. reflexivity. Qed. (** It also works to apply [induction] to a variable that is quantified in the goal. *) Theorem plus_comm' : forall n m : nat, n + m = m + n. Proof. induction n as [| n']. Case "n = O". intros m. rewrite -> plus_0_r. reflexivity. Case "n = S n'". intros m. simpl. rewrite -> IHn'. rewrite <- plus_n_Sm. reflexivity. Qed. (** Note that [induction n] leaves [m] still bound in the goal -- i.e., what we are proving inductively is a statement beginning with [forall m]. If we do [induction] on a variable that is quantified in the goal _after_ some other quantifiers, the [induction] tactic will automatically introduce the variables bound by these quantifiers into the context. *) Theorem plus_comm'' : forall n m : nat, n + m = m + n. Proof. (* Let's do induction on [m] this time, instead of [n]... *) induction m as [| m']. Case "m = O". simpl. rewrite -> plus_0_r. reflexivity. Case "m = S m'". simpl. rewrite <- IHm'. rewrite <- plus_n_Sm. reflexivity. Qed. (** **** Exercise: 1 star, optional (plus_explicit_prop) *) (** Rewrite both [plus_assoc'] and [plus_comm'] and their proofs in the same style as [mult_0_r''] above -- that is, for each theorem, give an explicit [Definition] of the proposition being proved by induction, and state the theorem and proof in terms of this defined proposition. *) (* FILL IN HERE *) (** [] *) (** ** Generalizing Inductions. *) (** One potentially confusing feature of the [induction] tactic is that it happily lets you try to set up an induction over a term that isn't sufficiently general. The net effect of this will be to lose information (much as [destruct] can do), and leave you unable to complete the proof. Here's an example: *) Lemma one_not_beautiful_FAILED: ~ beautiful 1. Proof. intro H. (* Just doing an [inversion] on [H] won't get us very far in the [b_sum] case. (Try it!). So we'll need induction. A naive first attempt: *) induction H. (* But now, although we get four cases, as we would expect from the definition of [beautiful], we lose all information about [H] ! *) Abort. (** The problem is that [induction] over a Prop only works properly over completely general instances of the Prop, i.e. one in which all the arguments are free (unconstrained) variables. In this respect it behaves more like [destruct] than like [inversion]. When you're tempted to do use [induction] like this, it is generally an indication that you need to be proving something more general. But in some cases, it suffices to pull out any concrete arguments into separate equations, like this: *) Lemma one_not_beautiful: forall n, n = 1 -> ~ beautiful n. Proof. intros n E H. induction H as [| | | p q Hp IHp Hq IHq]. Case "b_0". inversion E. Case "b_3". inversion E. Case "b_5". inversion E. Case "b_sum". (* the rest is a tedious case analysis *) destruct p as [|p']. SCase "p = 0". destruct q as [|q']. SSCase "q = 0". inversion E. SSCase "q = S q'". apply IHq. apply E. SCase "p = S p'". destruct q as [|q']. SSCase "q = 0". apply IHp. rewrite plus_0_r in E. apply E. SSCase "q = S q'". simpl in E. inversion E. destruct p'. inversion H0. inversion H0. Qed. (** There's a handy [remember] tactic that can generate the second proof state out of the original one. *) Lemma one_not_beautiful': ~ beautiful 1. Proof. intros H. remember 1 as n eqn:E. (* now carry on as above *) induction H. Admitted. (* ####################################################### *) (** * Informal Proofs (Advanced) *) (** Q: What is the relation between a formal proof of a proposition [P] and an informal proof of the same proposition [P]? A: The latter should _teach_ the reader how to produce the former. Q: How much detail is needed?? Unfortunately, There is no single right answer; rather, there is a range of choices. At one end of the spectrum, we can essentially give the reader the whole formal proof (i.e., the informal proof amounts to just transcribing the formal one into words). This gives the reader the _ability_ to reproduce the formal one for themselves, but it doesn't _teach_ them anything. At the other end of the spectrum, we can say "The theorem is true and you can figure out why for yourself if you think about it hard enough." This is also not a good teaching strategy, because usually writing the proof requires some deep insights into the thing we're proving, and most readers will give up before they rediscover all the same insights as we did. In the middle is the golden mean -- a proof that includes all of the essential insights (saving the reader the hard part of work that we went through to find the proof in the first place) and clear high-level suggestions for the more routine parts to save the reader from spending too much time reconstructing these parts (e.g., what the IH says and what must be shown in each case of an inductive proof), but not so much detail that the main ideas are obscured. Another key point: if we're comparing a formal proof of a proposition [P] and an informal proof of [P], the proposition [P] doesn't change. That is, formal and informal proofs are _talking about the same world_ and they _must play by the same rules_. *) (** ** Informal Proofs by Induction *) (** Since we've spent much of this chapter looking "under the hood" at formal proofs by induction, now is a good moment to talk a little about _informal_ proofs by induction. In the real world of mathematical communication, written proofs range from extremely longwinded and pedantic to extremely brief and telegraphic. The ideal is somewhere in between, of course, but while you are getting used to the style it is better to start out at the pedantic end. Also, during the learning phase, it is probably helpful to have a clear standard to compare against. With this in mind, we offer two templates below -- one for proofs by induction over _data_ (i.e., where the thing we're doing induction on lives in [Type]) and one for proofs by induction over _evidence_ (i.e., where the inductively defined thing lives in [Prop]). In the rest of this course, please follow one of the two for _all_ of your inductive proofs. *) (** *** Induction Over an Inductively Defined Set *) (** _Template_: - _Theorem_: <Universally quantified proposition of the form "For all [n:S], [P(n)]," where [S] is some inductively defined set.> _Proof_: By induction on [n]. <one case for each constructor [c] of [S]...> - Suppose [n = c a1 ... ak], where <...and here we state the IH for each of the [a]'s that has type [S], if any>. We must show <...and here we restate [P(c a1 ... ak)]>. <go on and prove [P(n)] to finish the case...> - <other cases similarly...> [] _Example_: - _Theorem_: For all sets [X], lists [l : list X], and numbers [n], if [length l = n] then [index (S n) l = None]. _Proof_: By induction on [l]. - Suppose [l = []]. We must show, for all numbers [n], that, if length [[] = n], then [index (S n) [] = None]. This follows immediately from the definition of index. - Suppose [l = x :: l'] for some [x] and [l'], where [length l' = n'] implies [index (S n') l' = None], for any number [n']. We must show, for all [n], that, if [length (x::l') = n] then [index (S n) (x::l') = None]. Let [n] be a number with [length l = n]. Since length l = length (x::l') = S (length l'), it suffices to show that index (S (length l')) l' = None. ]] But this follows directly from the induction hypothesis, picking [n'] to be length [l']. [] *) (** *** Induction Over an Inductively Defined Proposition *) (** Since inductively defined proof objects are often called "derivation trees," this form of proof is also known as _induction on derivations_. _Template_: - _Theorem_: <Proposition of the form "[Q -> P]," where [Q] is some inductively defined proposition (more generally, "For all [x] [y] [z], [Q x y z -> P x y z]")> _Proof_: By induction on a derivation of [Q]. <Or, more generally, "Suppose we are given [x], [y], and [z]. We show that [Q x y z] implies [P x y z], by induction on a derivation of [Q x y z]"...> <one case for each constructor [c] of [Q]...> - Suppose the final rule used to show [Q] is [c]. Then <...and here we state the types of all of the [a]'s together with any equalities that follow from the definition of the constructor and the IH for each of the [a]'s that has type [Q], if there are any>. We must show <...and here we restate [P]>. <go on and prove [P] to finish the case...> - <other cases similarly...> [] _Example_ - _Theorem_: The [<=] relation is transitive -- i.e., for all numbers [n], [m], and [o], if [n <= m] and [m <= o], then [n <= o]. _Proof_: By induction on a derivation of [m <= o]. - Suppose the final rule used to show [m <= o] is [le_n]. Then [m = o] and we must show that [n <= m], which is immediate by hypothesis. - Suppose the final rule used to show [m <= o] is [le_S]. Then [o = S o'] for some [o'] with [m <= o']. We must show that [n <= S o']. By induction hypothesis, [n <= o']. But then, by [le_S], [n <= S o']. [] *) (* ##################################################### *) (** * Induction Principles in [Prop] (Advanced) *) (** The remainder of this chapter offers some additional details on how induction works in Coq, the process of building proof trees, and the "trusted computing base" that underlies Coq proofs. It can safely be skimmed on a first reading. (As with the other advanced sections, we recommend skimming rather than skipping over it outright: it answers some questions that occur to many Coq users at some point, so it is useful to have a rough idea of what's here.) *) (** Earlier, we looked in detail at the induction principles that Coq generates for inductively defined _sets_. The induction principles for inductively defined _propositions_ like [gorgeous] are a tiny bit more complicated. As with all induction principles, we want to use the induction principle on [gorgeous] to prove things by inductively considering the possible shapes that something in [gorgeous] can have -- either it is evidence that [0] is gorgeous, or it is evidence that, for some [n], [3+n] is gorgeous, or it is evidence that, for some [n], [5+n] is gorgeous and it includes evidence that [n] itself is. Intuitively speaking, however, what we want to prove are not statements about _evidence_ but statements about _numbers_. So we want an induction principle that lets us prove properties of numbers by induction on evidence. For example, from what we've said so far, you might expect the inductive definition of [gorgeous]... Inductive gorgeous : nat -> Prop := g_0 : gorgeous 0 | g_plus3 : forall n, gorgeous n -> gorgeous (3+m) | g_plus5 : forall n, gorgeous n -> gorgeous (5+m). ...to give rise to an induction principle that looks like this... gorgeous_ind_max : forall P : (forall n : nat, gorgeous n -> Prop), P O g_0 -> (forall (m : nat) (e : gorgeous m), P m e -> P (3+m) (g_plus3 m e) -> (forall (m : nat) (e : gorgeous m), P m e -> P (5+m) (g_plus5 m e) -> forall (n : nat) (e : gorgeous n), P n e ... because: - Since [gorgeous] is indexed by a number [n] (every [gorgeous] object [e] is a piece of evidence that some particular number [n] is gorgeous), the proposition [P] is parameterized by both [n] and [e] -- that is, the induction principle can be used to prove assertions involving both a gorgeous number and the evidence that it is gorgeous. - Since there are three ways of giving evidence of gorgeousness ([gorgeous] has three constructors), applying the induction principle generates three subgoals: - We must prove that [P] holds for [O] and [b_0]. - We must prove that, whenever [n] is a gorgeous number and [e] is an evidence of its gorgeousness, if [P] holds of [n] and [e], then it also holds of [3+m] and [g_plus3 n e]. - We must prove that, whenever [n] is a gorgeous number and [e] is an evidence of its gorgeousness, if [P] holds of [n] and [e], then it also holds of [5+m] and [g_plus5 n e]. - If these subgoals can be proved, then the induction principle tells us that [P] is true for _all_ gorgeous numbers [n] and evidence [e] of their gorgeousness. But this is a little more flexibility than we actually need or want: it is giving us a way to prove logical assertions where the assertion involves properties of some piece of _evidence_ of gorgeousness, while all we really care about is proving properties of _numbers_ that are gorgeous -- we are interested in assertions about numbers, not about evidence. It would therefore be more convenient to have an induction principle for proving propositions [P] that are parameterized just by [n] and whose conclusion establishes [P] for all gorgeous numbers [n]: forall P : nat -> Prop, ... -> forall n : nat, gorgeous n -> P n For this reason, Coq actually generates the following simplified induction principle for [gorgeous]: *) Check gorgeous_ind. (* ===> gorgeous_ind : forall P : nat -> Prop, P 0 -> (forall n : nat, gorgeous n -> P n -> P (3 + n)) -> (forall n : nat, gorgeous n -> P n -> P (5 + n)) -> forall n : nat, gorgeous n -> P n *) (** In particular, Coq has dropped the evidence term [e] as a parameter of the the proposition [P], and consequently has rewritten the assumption [forall (n : nat) (e: gorgeous n), ...] to be [forall (n : nat), gorgeous n -> ...]; i.e., we no longer require explicit evidence of the provability of [gorgeous n]. *) (** In English, [gorgeous_ind] says: - Suppose, [P] is a property of natural numbers (that is, [P n] is a [Prop] for every [n]). To show that [P n] holds whenever [n] is gorgeous, it suffices to show: - [P] holds for [0], - for any [n], if [n] is gorgeous and [P] holds for [n], then [P] holds for [3+n], - for any [n], if [n] is gorgeous and [P] holds for [n], then [P] holds for [5+n]. *) (** As expected, we can apply [gorgeous_ind] directly instead of using [induction]. *) Theorem gorgeous__beautiful' : forall n, gorgeous n -> beautiful n. Proof. intros. apply gorgeous_ind. Case "g_0". apply b_0. Case "g_plus3". intros. apply b_sum. apply b_3. apply H1. Case "g_plus5". intros. apply b_sum. apply b_5. apply H1. apply H. Qed. (** The precise form of an Inductive definition can affect the induction principle Coq generates. For example, in [Logic], we have defined [<=] as: *) (* Inductive le : nat -> nat -> Prop := | le_n : forall n, le n n | le_S : forall n m, (le n m) -> (le n (S m)). *) (** This definition can be streamlined a little by observing that the left-hand argument [n] is the same everywhere in the definition, so we can actually make it a "general parameter" to the whole definition, rather than an argument to each constructor. *) Inductive le (n:nat) : nat -> Prop := | le_n : le n n | le_S : forall m, (le n m) -> (le n (S m)). Notation "m <= n" := (le m n). (** The second one is better, even though it looks less symmetric. Why? Because it gives us a simpler induction principle. *) Check le_ind. (* ===> forall (n : nat) (P : nat -> Prop), P n -> (forall m : nat, n <= m -> P m -> P (S m)) -> forall n0 : nat, n <= n0 -> P n0 *) (** By contrast, the induction principle that Coq calculates for the first definition has a lot of extra quantifiers, which makes it messier to work with when proving things by induction. Here is the induction principle for the first [le]: *) (* le_ind : forall P : nat -> nat -> Prop, (forall n : nat, P n n) -> (forall n m : nat, le n m -> P n m -> P n (S m)) -> forall n n0 : nat, le n n0 -> P n n0 *) (* ##################################################### *) (** * Additional Exercises *) (** **** Exercise: 2 stars, optional (foo_ind_principle) *) (** Suppose we make the following inductive definition: Inductive foo (X : Set) (Y : Set) : Set := | foo1 : X -> foo X Y | foo2 : Y -> foo X Y | foo3 : foo X Y -> foo X Y. Fill in the blanks to complete the induction principle that will be generated by Coq. foo_ind : forall (X Y : Set) (P : foo X Y -> Prop), (forall x : X, __________________________________) -> (forall y : Y, __________________________________) -> (________________________________________________) -> ________________________________________________ *) (** [] *) (** **** Exercise: 2 stars, optional (bar_ind_principle) *) (** Consider the following induction principle: bar_ind : forall P : bar -> Prop, (forall n : nat, P (bar1 n)) -> (forall b : bar, P b -> P (bar2 b)) -> (forall (b : bool) (b0 : bar), P b0 -> P (bar3 b b0)) -> forall b : bar, P b Write out the corresponding inductive set definition. Inductive bar : Set := | bar1 : ________________________________________ | bar2 : ________________________________________ | bar3 : ________________________________________. *) (** [] *) (** **** Exercise: 2 stars, optional (no_longer_than_ind) *) (** Given the following inductively defined proposition: Inductive no_longer_than (X : Set) : (list X) -> nat -> Prop := | nlt_nil : forall n, no_longer_than X [] n | nlt_cons : forall x l n, no_longer_than X l n -> no_longer_than X (x::l) (S n) | nlt_succ : forall l n, no_longer_than X l n -> no_longer_than X l (S n). write the induction principle generated by Coq. no_longer_than_ind : forall (X : Set) (P : list X -> nat -> Prop), (forall n : nat, ____________________) -> (forall (x : X) (l : list X) (n : nat), no_longer_than X l n -> ____________________ -> _____________________________ -> (forall (l : list X) (n : nat), no_longer_than X l n -> ____________________ -> _____________________________ -> forall (l : list X) (n : nat), no_longer_than X l n -> ____________________ *) (** [] *) (* ##################################################### *) (** ** Induction Principles for other Logical Propositions *) (** Similarly, in [Logic] we have defined [eq] as: *) (* Inductive eq (X:Type) : X -> X -> Prop := refl_equal : forall x, eq X x x. *) (** In the Coq standard library, the definition of equality is slightly different: *) Inductive eq' (X:Type) (x:X) : X -> Prop := refl_equal' : eq' X x x. (** The advantage of this definition is that the induction principle that Coq derives for it is precisely the familiar principle of _Leibniz equality_: what we mean when we say "[x] and [y] are equal" is that every property on [P] that is true of [x] is also true of [y]. (One philosophical quibble should be noted, though: Here, the "Leibniz equality principle" is a _consequence_ of the way we've defined equality as an inductive type. Leibniz viewed things exactly the other way around: for him, this principle itself _is the definition_ of equality.) *) Check eq'_ind. (* ===> forall (X : Type) (x : X) (P : X -> Prop), P x -> forall y : X, x =' y -> P y ===> (i.e., after a little reorganization) forall (X : Type) (x : X) forall y : X, x =' y -> forall P : X -> Prop, P x -> P y *) (** The induction principles for conjunction and disjunction are a good illustration of Coq's way of generating simplified induction principles for [Inductive]ly defined propositions, which we discussed above. You try first: *) (** **** Exercise: 1 star, optional (and_ind_principle) *) (** See if you can predict the induction principle for conjunction. *) (* Check and_ind. *) (** [] *) (** **** Exercise: 1 star, optional (or_ind_principle) *) (** See if you can predict the induction principle for disjunction. *) (* Check or_ind. *) (** [] *) Check and_ind. (** From the inductive definition of the proposition [and P Q] Inductive and (P Q : Prop) : Prop := conj : P -> Q -> (and P Q). we might expect Coq to generate this induction principle and_ind_max : forall (P Q : Prop) (P0 : P /\ Q -> Prop), (forall (a : P) (b : Q), P0 (conj P Q a b)) -> forall a : P /\ Q, P0 a but actually it generates this simpler and more useful one: and_ind : forall P Q P0 : Prop, (P -> Q -> P0) -> P /\ Q -> P0 In the same way, when given the inductive definition of [or P Q] Inductive or (P Q : Prop) : Prop := | or_introl : P -> or P Q | or_intror : Q -> or P Q. instead of the "maximal induction principle" or_ind_max : forall (P Q : Prop) (P0 : P \/ Q -> Prop), (forall a : P, P0 (or_introl P Q a)) -> (forall b : Q, P0 (or_intror P Q b)) -> forall o : P \/ Q, P0 o what Coq actually generates is this: or_ind : forall P Q P0 : Prop, (P -> P0) -> (Q -> P0) -> P \/ Q -> P0 ]] *) (** **** Exercise: 1 star, optional (False_ind_principle) *) (** Can you predict the induction principle for falsehood? *) (* Check False_ind. *) (** [] *) (** Here's the induction principle that Coq generates for existentials: *) Check ex_ind. (* ===> forall (X:Type) (P: X->Prop) (Q: Prop), (forall witness:X, P witness -> Q) -> ex X P -> Q *) (** This induction principle can be understood as follows: If we have a function [f] that can construct evidence for [Q] given _any_ witness of type [X] together with evidence that this witness has property [P], then from a proof of [ex X P] we can extract the witness and evidence that must have been supplied to the constructor, give these to [f], and thus obtain a proof of [Q]. *) (* ######################################################### *) (** ** Explicit Proof Objects for Induction *) (** Although tactic-based proofs are normally much easier to work with, the ability to write a proof term directly is sometimes very handy, particularly when we want Coq to do something slightly non-standard. *) (** Recall the induction principle on naturals that Coq generates for us automatically from the Inductive declation for [nat]. *) Check nat_ind. (* ===> nat_ind : forall P : nat -> Prop, P 0 -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n *) (** There's nothing magic about this induction lemma: it's just another Coq lemma that requires a proof. Coq generates the proof automatically too... *) Print nat_ind. Print nat_rect. (* ===> (after some manual inlining and tidying) nat_ind = fun (P : nat -> Prop) (f : P 0) (f0 : forall n : nat, P n -> P (S n)) => fix F (n : nat) : P n := match n with | 0 => f | S n0 => f0 n0 (F n0) end. *) (** We can read this as follows: Suppose we have evidence [f] that [P] holds on 0, and evidence [f0] that [forall n:nat, P n -> P (S n)]. Then we can prove that [P] holds of an arbitrary nat [n] via a recursive function [F] (here defined using the expression form [Fix] rather than by a top-level [Fixpoint] declaration). [F] pattern matches on [n]: - If it finds 0, [F] uses [f] to show that [P n] holds. - If it finds [S n0], [F] applies itself recursively on [n0] to obtain evidence that [P n0] holds; then it applies [f0] on that evidence to show that [P (S n)] holds. [F] is just an ordinary recursive function that happens to operate on evidence in [Prop] rather than on terms in [Set]. *) (** We can adapt this approach to proving [nat_ind] to help prove _non-standard_ induction principles too. Recall our desire to prove that [forall n : nat, even n -> ev n]. Attempts to do this by standard induction on [n] fail, because the induction principle only lets us proceed when we can prove that [even n -> even (S n)] -- which is of course never provable. What we did in [Logic] was a bit of a hack: [Theorem even__ev : forall n : nat, (even n -> ev n) /\ (even (S n) -> ev (S n))]. We can make a much better proof by defining and proving a non-standard induction principle that goes "by twos": *) Definition nat_ind2 : forall (P : nat -> Prop), P 0 -> P 1 -> (forall n : nat, P n -> P (S(S n))) -> forall n : nat , P n := fun P => fun P0 => fun P1 => fun PSS => fix f (n:nat) := match n with 0 => P0 | 1 => P1 | S (S n') => PSS n' (f n') end. (** Once you get the hang of it, it is entirely straightforward to give an explicit proof term for induction principles like this. Proving this as a lemma using tactics is much less intuitive (try it!). The [induction ... using] tactic variant gives a convenient way to specify a non-standard induction principle like this. *) Lemma even__ev' : forall n, even n -> ev n. Proof. intros. induction n as [ | |n'] using nat_ind2. Case "even 0". apply ev_0. Case "even 1". inversion H. Case "even (S(S n'))". apply ev_SS. apply IHn'. unfold even. unfold even in H. simpl in H. apply H. Qed. (* ######################################################### *) (** ** The Coq Trusted Computing Base *) (** One issue that arises with any automated proof assistant is "why trust it?": what if there is a bug in the implementation that renders all its reasoning suspect? While it is impossible to allay such concerns completely, the fact that Coq is based on the Curry-Howard correspondence gives it a strong foundation. Because propositions are just types and proofs are just terms, checking that an alleged proof of a proposition is valid just amounts to _type-checking_ the term. Type checkers are relatively small and straightforward programs, so the "trusted computing base" for Coq -- the part of the code that we have to believe is operating correctly -- is small too. What must a typechecker do? Its primary job is to make sure that in each function application the expected and actual argument types match, that the arms of a [match] expression are constructor patterns belonging to the inductive type being matched over and all arms of the [match] return the same type, and so on. There are a few additional wrinkles: - Since Coq types can themselves be expressions, the checker must normalize these (by using the computation rules) before comparing them. - The checker must make sure that [match] expressions are _exhaustive_. That is, there must be an arm for every possible constructor. To see why, consider the following alleged proof object: Definition or_bogus : forall P Q, P \/ Q -> P := fun (P Q : Prop) (A : P \/ Q) => match A with | or_introl H => H end. All the types here match correctly, but the [match] only considers one of the possible constructors for [or]. Coq's exhaustiveness check will reject this definition. - The checker must make sure that each [fix] expression terminates. It does this using a syntactic check to make sure that each recursive call is on a subexpression of the original argument. To see why this is essential, consider this alleged proof: Definition nat_false : forall (n:nat), False := fix f (n:nat) : False := f n. Again, this is perfectly well-typed, but (fortunately) Coq will reject it. *) (** Note that the soundness of Coq depends only on the correctness of this typechecking engine, not on the tactic machinery. If there is a bug in a tactic implementation (and this certainly does happen!), that tactic might construct an invalid proof term. But when you type [Qed], Coq checks the term for validity from scratch. Only lemmas whose proofs pass the type-checker can be used in further proof developments. *) (** $Date: 2014-12-31 15:31:47 -0500 (Wed, 31 Dec 2014) $ *)
(** * MoreInd: More on Induction *) Require Export "ProofObjects". (* ##################################################### *) (** * Induction Principles *) (** This is a good point to pause and take a deeper look at induction principles. Every time we declare a new [Inductive] datatype, Coq automatically generates and proves an _induction principle_ for this type. The induction principle for a type [t] is called [t_ind]. Here is the one for natural numbers: *) Check nat_ind. (* ===> nat_ind : forall P : nat -> Prop, P 0 -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n *) (** *** *) (** The [induction] tactic is a straightforward wrapper that, at its core, simply performs [apply t_ind]. To see this more clearly, let's experiment a little with using [apply nat_ind] directly, instead of the [induction] tactic, to carry out some proofs. Here, for example, is an alternate proof of a theorem that we saw in the [Basics] chapter. *) Theorem mult_0_r' : forall n:nat, n * 0 = 0. Proof. apply nat_ind. Case "O". reflexivity. Case "S". simpl. intros n IHn. rewrite -> IHn. reflexivity. Qed. (** This proof is basically the same as the earlier one, but a few minor differences are worth noting. First, in the induction step of the proof (the ["S"] case), we have to do a little bookkeeping manually (the [intros]) that [induction] does automatically. Second, we do not introduce [n] into the context before applying [nat_ind] -- the conclusion of [nat_ind] is a quantified formula, and [apply] needs this conclusion to exactly match the shape of the goal state, including the quantifier. The [induction] tactic works either with a variable in the context or a quantified variable in the goal. Third, the [apply] tactic automatically chooses variable names for us (in the second subgoal, here), whereas [induction] lets us specify (with the [as...] clause) what names should be used. The automatic choice is actually a little unfortunate, since it re-uses the name [n] for a variable that is different from the [n] in the original theorem. This is why the [Case] annotation is just [S] -- if we tried to write it out in the more explicit form that we've been using for most proofs, we'd have to write [n = S n], which doesn't make a lot of sense! All of these conveniences make [induction] nicer to use in practice than applying induction principles like [nat_ind] directly. But it is important to realize that, modulo this little bit of bookkeeping, applying [nat_ind] is what we are really doing. *) (** **** Exercise: 2 stars, optional (plus_one_r') *) (** Complete this proof as we did [mult_0_r'] above, without using the [induction] tactic. *) Theorem plus_one_r' : forall n:nat, n + 1 = S n. Proof. (* FILL IN HERE *) Admitted. (** [] *) (** Coq generates induction principles for every datatype defined with [Inductive], including those that aren't recursive. (Although we don't need induction to prove properties of non-recursive datatypes, the idea of an induction principle still makes sense for them: it gives a way to prove that a property holds for all values of the type.) These generated principles follow a similar pattern. If we define a type [t] with constructors [c1] ... [cn], Coq generates a theorem with this shape: t_ind : forall P : t -> Prop, ... case for c1 ... -> ... case for c2 ... -> ... ... case for cn ... -> forall n : t, P n The specific shape of each case depends on the arguments to the corresponding constructor. Before trying to write down a general rule, let's look at some more examples. First, an example where the constructors take no arguments: *) Inductive yesno : Type := | yes : yesno | no : yesno. Check yesno_ind. (* ===> yesno_ind : forall P : yesno -> Prop, P yes -> P no -> forall y : yesno, P y *) (** **** Exercise: 1 star, optional (rgb) *) (** Write out the induction principle that Coq will generate for the following datatype. Write down your answer on paper or type it into a comment, and then compare it with what Coq prints. *) Inductive rgb : Type := | red : rgb | green : rgb | blue : rgb. Check rgb_ind. (** [] *) (** Here's another example, this time with one of the constructors taking some arguments. *) Inductive natlist : Type := | nnil : natlist | ncons : nat -> natlist -> natlist. Check natlist_ind. (* ===> (modulo a little variable renaming for clarity) natlist_ind : forall P : natlist -> Prop, P nnil -> (forall (n : nat) (l : natlist), P l -> P (ncons n l)) -> forall n : natlist, P n *) (** **** Exercise: 1 star, optional (natlist1) *) (** Suppose we had written the above definition a little differently: *) Inductive natlist1 : Type := | nnil1 : natlist1 | nsnoc1 : natlist1 -> nat -> natlist1. (** Now what will the induction principle look like? *) (** [] *) (** From these examples, we can extract this general rule: - The type declaration gives several constructors; each corresponds to one clause of the induction principle. - Each constructor [c] takes argument types [a1]...[an]. - Each [ai] can be either [t] (the datatype we are defining) or some other type [s]. - The corresponding case of the induction principle says (in English): - "for all values [x1]...[xn] of types [a1]...[an], if [P] holds for each of the inductive arguments (each [xi] of type [t]), then [P] holds for [c x1 ... xn]". *) (** **** Exercise: 1 star, optional (byntree_ind) *) (** Write out the induction principle that Coq will generate for the following datatype. Write down your answer on paper or type it into a comment, and then compare it with what Coq prints. *) Inductive byntree : Type := | bempty : byntree | bleaf : yesno -> byntree | nbranch : yesno -> byntree -> byntree -> byntree. (** [] *) (** **** Exercise: 1 star, optional (ex_set) *) (** Here is an induction principle for an inductively defined set. ExSet_ind : forall P : ExSet -> Prop, (forall b : bool, P (con1 b)) -> (forall (n : nat) (e : ExSet), P e -> P (con2 n e)) -> forall e : ExSet, P e Give an [Inductive] definition of [ExSet]: *) Inductive ExSet : Type := (* FILL IN HERE *) . (** [] *) (** What about polymorphic datatypes? The inductive definition of polymorphic lists Inductive list (X:Type) : Type := | nil : list X | cons : X -> list X -> list X. is very similar to that of [natlist]. The main difference is that, here, the whole definition is _parameterized_ on a set [X]: that is, we are defining a _family_ of inductive types [list X], one for each [X]. (Note that, wherever [list] appears in the body of the declaration, it is always applied to the parameter [X].) The induction principle is likewise parameterized on [X]: list_ind : forall (X : Type) (P : list X -> Prop), P [] -> (forall (x : X) (l : list X), P l -> P (x :: l)) -> forall l : list X, P l Note the wording here (and, accordingly, the form of [list_ind]): The _whole_ induction principle is parameterized on [X]. That is, [list_ind] can be thought of as a polymorphic function that, when applied to a type [X], gives us back an induction principle specialized to the type [list X]. *) (** **** Exercise: 1 star, optional (tree) *) (** Write out the induction principle that Coq will generate for the following datatype. Compare your answer with what Coq prints. *) Inductive tree (X:Type) : Type := | leaf : X -> tree X | node : tree X -> tree X -> tree X. Check tree_ind. (** [] *) (** **** Exercise: 1 star, optional (mytype) *) (** Find an inductive definition that gives rise to the following induction principle: mytype_ind : forall (X : Type) (P : mytype X -> Prop), (forall x : X, P (constr1 X x)) -> (forall n : nat, P (constr2 X n)) -> (forall m : mytype X, P m -> forall n : nat, P (constr3 X m n)) -> forall m : mytype X, P m *) (** [] *) (** **** Exercise: 1 star, optional (foo) *) (** Find an inductive definition that gives rise to the following induction principle: foo_ind : forall (X Y : Type) (P : foo X Y -> Prop), (forall x : X, P (bar X Y x)) -> (forall y : Y, P (baz X Y y)) -> (forall f1 : nat -> foo X Y, (forall n : nat, P (f1 n)) -> P (quux X Y f1)) -> forall f2 : foo X Y, P f2 *) (** [] *) (** **** Exercise: 1 star, optional (foo') *) (** Consider the following inductive definition: *) Inductive foo' (X:Type) : Type := | C1 : list X -> foo' X -> foo' X | C2 : foo' X. (** What induction principle will Coq generate for [foo']? Fill in the blanks, then check your answer with Coq.) foo'_ind : forall (X : Type) (P : foo' X -> Prop), (forall (l : list X) (f : foo' X), _______________________ -> _______________________ ) -> ___________________________________________ -> forall f : foo' X, ________________________ *) (** [] *) (* ##################################################### *) (** ** Induction Hypotheses *) (** Where does the phrase "induction hypothesis" fit into this story? The induction principle for numbers forall P : nat -> Prop, P 0 -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n is a generic statement that holds for all propositions [P] (strictly speaking, for all families of propositions [P] indexed by a number [n]). Each time we use this principle, we are choosing [P] to be a particular expression of type [nat->Prop]. We can make the proof more explicit by giving this expression a name. For example, instead of stating the theorem [mult_0_r] as "[forall n, n * 0 = 0]," we can write it as "[forall n, P_m0r n]", where [P_m0r] is defined as... *) Definition P_m0r (n:nat) : Prop := n * 0 = 0. (** ... or equivalently... *) Definition P_m0r' : nat->Prop := fun n => n * 0 = 0. (** Now when we do the proof it is easier to see where [P_m0r] appears. *) Theorem mult_0_r'' : forall n:nat, P_m0r n. Proof. apply nat_ind. Case "n = O". reflexivity. Case "n = S n'". (* Note the proof state at this point! *) intros n IHn. unfold P_m0r in IHn. unfold P_m0r. simpl. apply IHn. Qed. (** This extra naming step isn't something that we'll do in normal proofs, but it is useful to do it explicitly for an example or two, because it allows us to see exactly what the induction hypothesis is. If we prove [forall n, P_m0r n] by induction on [n] (using either [induction] or [apply nat_ind]), we see that the first subgoal requires us to prove [P_m0r 0] ("[P] holds for zero"), while the second subgoal requires us to prove [forall n', P_m0r n' -> P_m0r n' (S n')] (that is "[P] holds of [S n'] if it holds of [n']" or, more elegantly, "[P] is preserved by [S]"). The _induction hypothesis_ is the premise of this latter implication -- the assumption that [P] holds of [n'], which we are allowed to use in proving that [P] holds for [S n']. *) (* ##################################################### *) (** ** More on the [induction] Tactic *) (** The [induction] tactic actually does even more low-level bookkeeping for us than we discussed above. Recall the informal statement of the induction principle for natural numbers: - If [P n] is some proposition involving a natural number n, and we want to show that P holds for _all_ numbers n, we can reason like this: - show that [P O] holds - show that, if [P n'] holds, then so does [P (S n')] - conclude that [P n] holds for all n. So, when we begin a proof with [intros n] and then [induction n], we are first telling Coq to consider a _particular_ [n] (by introducing it into the context) and then telling it to prove something about _all_ numbers (by using induction). What Coq actually does in this situation, internally, is to "re-generalize" the variable we perform induction on. For example, in our original proof that [plus] is associative... *) Theorem plus_assoc' : forall n m p : nat, n + (m + p) = (n + m) + p. Proof. (* ...we first introduce all 3 variables into the context, which amounts to saying "Consider an arbitrary [n], [m], and [p]..." *) intros n m p. (* ...We now use the [induction] tactic to prove [P n] (that is, [n + (m + p) = (n + m) + p]) for _all_ [n], and hence also for the particular [n] that is in the context at the moment. *) induction n as [| n']. Case "n = O". reflexivity. Case "n = S n'". (* In the second subgoal generated by [induction] -- the "inductive step" -- we must prove that [P n'] implies [P (S n')] for all [n']. The [induction] tactic automatically introduces [n'] and [P n'] into the context for us, leaving just [P (S n')] as the goal. *) simpl. rewrite -> IHn'. reflexivity. Qed. (** It also works to apply [induction] to a variable that is quantified in the goal. *) Theorem plus_comm' : forall n m : nat, n + m = m + n. Proof. induction n as [| n']. Case "n = O". intros m. rewrite -> plus_0_r. reflexivity. Case "n = S n'". intros m. simpl. rewrite -> IHn'. rewrite <- plus_n_Sm. reflexivity. Qed. (** Note that [induction n] leaves [m] still bound in the goal -- i.e., what we are proving inductively is a statement beginning with [forall m]. If we do [induction] on a variable that is quantified in the goal _after_ some other quantifiers, the [induction] tactic will automatically introduce the variables bound by these quantifiers into the context. *) Theorem plus_comm'' : forall n m : nat, n + m = m + n. Proof. (* Let's do induction on [m] this time, instead of [n]... *) induction m as [| m']. Case "m = O". simpl. rewrite -> plus_0_r. reflexivity. Case "m = S m'". simpl. rewrite <- IHm'. rewrite <- plus_n_Sm. reflexivity. Qed. (** **** Exercise: 1 star, optional (plus_explicit_prop) *) (** Rewrite both [plus_assoc'] and [plus_comm'] and their proofs in the same style as [mult_0_r''] above -- that is, for each theorem, give an explicit [Definition] of the proposition being proved by induction, and state the theorem and proof in terms of this defined proposition. *) (* FILL IN HERE *) (** [] *) (** ** Generalizing Inductions. *) (** One potentially confusing feature of the [induction] tactic is that it happily lets you try to set up an induction over a term that isn't sufficiently general. The net effect of this will be to lose information (much as [destruct] can do), and leave you unable to complete the proof. Here's an example: *) Lemma one_not_beautiful_FAILED: ~ beautiful 1. Proof. intro H. (* Just doing an [inversion] on [H] won't get us very far in the [b_sum] case. (Try it!). So we'll need induction. A naive first attempt: *) induction H. (* But now, although we get four cases, as we would expect from the definition of [beautiful], we lose all information about [H] ! *) Abort. (** The problem is that [induction] over a Prop only works properly over completely general instances of the Prop, i.e. one in which all the arguments are free (unconstrained) variables. In this respect it behaves more like [destruct] than like [inversion]. When you're tempted to do use [induction] like this, it is generally an indication that you need to be proving something more general. But in some cases, it suffices to pull out any concrete arguments into separate equations, like this: *) Lemma one_not_beautiful: forall n, n = 1 -> ~ beautiful n. Proof. intros n E H. induction H as [| | | p q Hp IHp Hq IHq]. Case "b_0". inversion E. Case "b_3". inversion E. Case "b_5". inversion E. Case "b_sum". (* the rest is a tedious case analysis *) destruct p as [|p']. SCase "p = 0". destruct q as [|q']. SSCase "q = 0". inversion E. SSCase "q = S q'". apply IHq. apply E. SCase "p = S p'". destruct q as [|q']. SSCase "q = 0". apply IHp. rewrite plus_0_r in E. apply E. SSCase "q = S q'". simpl in E. inversion E. destruct p'. inversion H0. inversion H0. Qed. (** There's a handy [remember] tactic that can generate the second proof state out of the original one. *) Lemma one_not_beautiful': ~ beautiful 1. Proof. intros H. remember 1 as n eqn:E. (* now carry on as above *) induction H. Admitted. (* ####################################################### *) (** * Informal Proofs (Advanced) *) (** Q: What is the relation between a formal proof of a proposition [P] and an informal proof of the same proposition [P]? A: The latter should _teach_ the reader how to produce the former. Q: How much detail is needed?? Unfortunately, There is no single right answer; rather, there is a range of choices. At one end of the spectrum, we can essentially give the reader the whole formal proof (i.e., the informal proof amounts to just transcribing the formal one into words). This gives the reader the _ability_ to reproduce the formal one for themselves, but it doesn't _teach_ them anything. At the other end of the spectrum, we can say "The theorem is true and you can figure out why for yourself if you think about it hard enough." This is also not a good teaching strategy, because usually writing the proof requires some deep insights into the thing we're proving, and most readers will give up before they rediscover all the same insights as we did. In the middle is the golden mean -- a proof that includes all of the essential insights (saving the reader the hard part of work that we went through to find the proof in the first place) and clear high-level suggestions for the more routine parts to save the reader from spending too much time reconstructing these parts (e.g., what the IH says and what must be shown in each case of an inductive proof), but not so much detail that the main ideas are obscured. Another key point: if we're comparing a formal proof of a proposition [P] and an informal proof of [P], the proposition [P] doesn't change. That is, formal and informal proofs are _talking about the same world_ and they _must play by the same rules_. *) (** ** Informal Proofs by Induction *) (** Since we've spent much of this chapter looking "under the hood" at formal proofs by induction, now is a good moment to talk a little about _informal_ proofs by induction. In the real world of mathematical communication, written proofs range from extremely longwinded and pedantic to extremely brief and telegraphic. The ideal is somewhere in between, of course, but while you are getting used to the style it is better to start out at the pedantic end. Also, during the learning phase, it is probably helpful to have a clear standard to compare against. With this in mind, we offer two templates below -- one for proofs by induction over _data_ (i.e., where the thing we're doing induction on lives in [Type]) and one for proofs by induction over _evidence_ (i.e., where the inductively defined thing lives in [Prop]). In the rest of this course, please follow one of the two for _all_ of your inductive proofs. *) (** *** Induction Over an Inductively Defined Set *) (** _Template_: - _Theorem_: <Universally quantified proposition of the form "For all [n:S], [P(n)]," where [S] is some inductively defined set.> _Proof_: By induction on [n]. <one case for each constructor [c] of [S]...> - Suppose [n = c a1 ... ak], where <...and here we state the IH for each of the [a]'s that has type [S], if any>. We must show <...and here we restate [P(c a1 ... ak)]>. <go on and prove [P(n)] to finish the case...> - <other cases similarly...> [] _Example_: - _Theorem_: For all sets [X], lists [l : list X], and numbers [n], if [length l = n] then [index (S n) l = None]. _Proof_: By induction on [l]. - Suppose [l = []]. We must show, for all numbers [n], that, if length [[] = n], then [index (S n) [] = None]. This follows immediately from the definition of index. - Suppose [l = x :: l'] for some [x] and [l'], where [length l' = n'] implies [index (S n') l' = None], for any number [n']. We must show, for all [n], that, if [length (x::l') = n] then [index (S n) (x::l') = None]. Let [n] be a number with [length l = n]. Since length l = length (x::l') = S (length l'), it suffices to show that index (S (length l')) l' = None. ]] But this follows directly from the induction hypothesis, picking [n'] to be length [l']. [] *) (** *** Induction Over an Inductively Defined Proposition *) (** Since inductively defined proof objects are often called "derivation trees," this form of proof is also known as _induction on derivations_. _Template_: - _Theorem_: <Proposition of the form "[Q -> P]," where [Q] is some inductively defined proposition (more generally, "For all [x] [y] [z], [Q x y z -> P x y z]")> _Proof_: By induction on a derivation of [Q]. <Or, more generally, "Suppose we are given [x], [y], and [z]. We show that [Q x y z] implies [P x y z], by induction on a derivation of [Q x y z]"...> <one case for each constructor [c] of [Q]...> - Suppose the final rule used to show [Q] is [c]. Then <...and here we state the types of all of the [a]'s together with any equalities that follow from the definition of the constructor and the IH for each of the [a]'s that has type [Q], if there are any>. We must show <...and here we restate [P]>. <go on and prove [P] to finish the case...> - <other cases similarly...> [] _Example_ - _Theorem_: The [<=] relation is transitive -- i.e., for all numbers [n], [m], and [o], if [n <= m] and [m <= o], then [n <= o]. _Proof_: By induction on a derivation of [m <= o]. - Suppose the final rule used to show [m <= o] is [le_n]. Then [m = o] and we must show that [n <= m], which is immediate by hypothesis. - Suppose the final rule used to show [m <= o] is [le_S]. Then [o = S o'] for some [o'] with [m <= o']. We must show that [n <= S o']. By induction hypothesis, [n <= o']. But then, by [le_S], [n <= S o']. [] *) (* ##################################################### *) (** * Induction Principles in [Prop] (Advanced) *) (** The remainder of this chapter offers some additional details on how induction works in Coq, the process of building proof trees, and the "trusted computing base" that underlies Coq proofs. It can safely be skimmed on a first reading. (As with the other advanced sections, we recommend skimming rather than skipping over it outright: it answers some questions that occur to many Coq users at some point, so it is useful to have a rough idea of what's here.) *) (** Earlier, we looked in detail at the induction principles that Coq generates for inductively defined _sets_. The induction principles for inductively defined _propositions_ like [gorgeous] are a tiny bit more complicated. As with all induction principles, we want to use the induction principle on [gorgeous] to prove things by inductively considering the possible shapes that something in [gorgeous] can have -- either it is evidence that [0] is gorgeous, or it is evidence that, for some [n], [3+n] is gorgeous, or it is evidence that, for some [n], [5+n] is gorgeous and it includes evidence that [n] itself is. Intuitively speaking, however, what we want to prove are not statements about _evidence_ but statements about _numbers_. So we want an induction principle that lets us prove properties of numbers by induction on evidence. For example, from what we've said so far, you might expect the inductive definition of [gorgeous]... Inductive gorgeous : nat -> Prop := g_0 : gorgeous 0 | g_plus3 : forall n, gorgeous n -> gorgeous (3+m) | g_plus5 : forall n, gorgeous n -> gorgeous (5+m). ...to give rise to an induction principle that looks like this... gorgeous_ind_max : forall P : (forall n : nat, gorgeous n -> Prop), P O g_0 -> (forall (m : nat) (e : gorgeous m), P m e -> P (3+m) (g_plus3 m e) -> (forall (m : nat) (e : gorgeous m), P m e -> P (5+m) (g_plus5 m e) -> forall (n : nat) (e : gorgeous n), P n e ... because: - Since [gorgeous] is indexed by a number [n] (every [gorgeous] object [e] is a piece of evidence that some particular number [n] is gorgeous), the proposition [P] is parameterized by both [n] and [e] -- that is, the induction principle can be used to prove assertions involving both a gorgeous number and the evidence that it is gorgeous. - Since there are three ways of giving evidence of gorgeousness ([gorgeous] has three constructors), applying the induction principle generates three subgoals: - We must prove that [P] holds for [O] and [b_0]. - We must prove that, whenever [n] is a gorgeous number and [e] is an evidence of its gorgeousness, if [P] holds of [n] and [e], then it also holds of [3+m] and [g_plus3 n e]. - We must prove that, whenever [n] is a gorgeous number and [e] is an evidence of its gorgeousness, if [P] holds of [n] and [e], then it also holds of [5+m] and [g_plus5 n e]. - If these subgoals can be proved, then the induction principle tells us that [P] is true for _all_ gorgeous numbers [n] and evidence [e] of their gorgeousness. But this is a little more flexibility than we actually need or want: it is giving us a way to prove logical assertions where the assertion involves properties of some piece of _evidence_ of gorgeousness, while all we really care about is proving properties of _numbers_ that are gorgeous -- we are interested in assertions about numbers, not about evidence. It would therefore be more convenient to have an induction principle for proving propositions [P] that are parameterized just by [n] and whose conclusion establishes [P] for all gorgeous numbers [n]: forall P : nat -> Prop, ... -> forall n : nat, gorgeous n -> P n For this reason, Coq actually generates the following simplified induction principle for [gorgeous]: *) Check gorgeous_ind. (* ===> gorgeous_ind : forall P : nat -> Prop, P 0 -> (forall n : nat, gorgeous n -> P n -> P (3 + n)) -> (forall n : nat, gorgeous n -> P n -> P (5 + n)) -> forall n : nat, gorgeous n -> P n *) (** In particular, Coq has dropped the evidence term [e] as a parameter of the the proposition [P], and consequently has rewritten the assumption [forall (n : nat) (e: gorgeous n), ...] to be [forall (n : nat), gorgeous n -> ...]; i.e., we no longer require explicit evidence of the provability of [gorgeous n]. *) (** In English, [gorgeous_ind] says: - Suppose, [P] is a property of natural numbers (that is, [P n] is a [Prop] for every [n]). To show that [P n] holds whenever [n] is gorgeous, it suffices to show: - [P] holds for [0], - for any [n], if [n] is gorgeous and [P] holds for [n], then [P] holds for [3+n], - for any [n], if [n] is gorgeous and [P] holds for [n], then [P] holds for [5+n]. *) (** As expected, we can apply [gorgeous_ind] directly instead of using [induction]. *) Theorem gorgeous__beautiful' : forall n, gorgeous n -> beautiful n. Proof. intros. apply gorgeous_ind. Case "g_0". apply b_0. Case "g_plus3". intros. apply b_sum. apply b_3. apply H1. Case "g_plus5". intros. apply b_sum. apply b_5. apply H1. apply H. Qed. (** The precise form of an Inductive definition can affect the induction principle Coq generates. For example, in [Logic], we have defined [<=] as: *) (* Inductive le : nat -> nat -> Prop := | le_n : forall n, le n n | le_S : forall n m, (le n m) -> (le n (S m)). *) (** This definition can be streamlined a little by observing that the left-hand argument [n] is the same everywhere in the definition, so we can actually make it a "general parameter" to the whole definition, rather than an argument to each constructor. *) Inductive le (n:nat) : nat -> Prop := | le_n : le n n | le_S : forall m, (le n m) -> (le n (S m)). Notation "m <= n" := (le m n). (** The second one is better, even though it looks less symmetric. Why? Because it gives us a simpler induction principle. *) Check le_ind. (* ===> forall (n : nat) (P : nat -> Prop), P n -> (forall m : nat, n <= m -> P m -> P (S m)) -> forall n0 : nat, n <= n0 -> P n0 *) (** By contrast, the induction principle that Coq calculates for the first definition has a lot of extra quantifiers, which makes it messier to work with when proving things by induction. Here is the induction principle for the first [le]: *) (* le_ind : forall P : nat -> nat -> Prop, (forall n : nat, P n n) -> (forall n m : nat, le n m -> P n m -> P n (S m)) -> forall n n0 : nat, le n n0 -> P n n0 *) (* ##################################################### *) (** * Additional Exercises *) (** **** Exercise: 2 stars, optional (foo_ind_principle) *) (** Suppose we make the following inductive definition: Inductive foo (X : Set) (Y : Set) : Set := | foo1 : X -> foo X Y | foo2 : Y -> foo X Y | foo3 : foo X Y -> foo X Y. Fill in the blanks to complete the induction principle that will be generated by Coq. foo_ind : forall (X Y : Set) (P : foo X Y -> Prop), (forall x : X, __________________________________) -> (forall y : Y, __________________________________) -> (________________________________________________) -> ________________________________________________ *) (** [] *) (** **** Exercise: 2 stars, optional (bar_ind_principle) *) (** Consider the following induction principle: bar_ind : forall P : bar -> Prop, (forall n : nat, P (bar1 n)) -> (forall b : bar, P b -> P (bar2 b)) -> (forall (b : bool) (b0 : bar), P b0 -> P (bar3 b b0)) -> forall b : bar, P b Write out the corresponding inductive set definition. Inductive bar : Set := | bar1 : ________________________________________ | bar2 : ________________________________________ | bar3 : ________________________________________. *) (** [] *) (** **** Exercise: 2 stars, optional (no_longer_than_ind) *) (** Given the following inductively defined proposition: Inductive no_longer_than (X : Set) : (list X) -> nat -> Prop := | nlt_nil : forall n, no_longer_than X [] n | nlt_cons : forall x l n, no_longer_than X l n -> no_longer_than X (x::l) (S n) | nlt_succ : forall l n, no_longer_than X l n -> no_longer_than X l (S n). write the induction principle generated by Coq. no_longer_than_ind : forall (X : Set) (P : list X -> nat -> Prop), (forall n : nat, ____________________) -> (forall (x : X) (l : list X) (n : nat), no_longer_than X l n -> ____________________ -> _____________________________ -> (forall (l : list X) (n : nat), no_longer_than X l n -> ____________________ -> _____________________________ -> forall (l : list X) (n : nat), no_longer_than X l n -> ____________________ *) (** [] *) (* ##################################################### *) (** ** Induction Principles for other Logical Propositions *) (** Similarly, in [Logic] we have defined [eq] as: *) (* Inductive eq (X:Type) : X -> X -> Prop := refl_equal : forall x, eq X x x. *) (** In the Coq standard library, the definition of equality is slightly different: *) Inductive eq' (X:Type) (x:X) : X -> Prop := refl_equal' : eq' X x x. (** The advantage of this definition is that the induction principle that Coq derives for it is precisely the familiar principle of _Leibniz equality_: what we mean when we say "[x] and [y] are equal" is that every property on [P] that is true of [x] is also true of [y]. (One philosophical quibble should be noted, though: Here, the "Leibniz equality principle" is a _consequence_ of the way we've defined equality as an inductive type. Leibniz viewed things exactly the other way around: for him, this principle itself _is the definition_ of equality.) *) Check eq'_ind. (* ===> forall (X : Type) (x : X) (P : X -> Prop), P x -> forall y : X, x =' y -> P y ===> (i.e., after a little reorganization) forall (X : Type) (x : X) forall y : X, x =' y -> forall P : X -> Prop, P x -> P y *) (** The induction principles for conjunction and disjunction are a good illustration of Coq's way of generating simplified induction principles for [Inductive]ly defined propositions, which we discussed above. You try first: *) (** **** Exercise: 1 star, optional (and_ind_principle) *) (** See if you can predict the induction principle for conjunction. *) (* Check and_ind. *) (** [] *) (** **** Exercise: 1 star, optional (or_ind_principle) *) (** See if you can predict the induction principle for disjunction. *) (* Check or_ind. *) (** [] *) Check and_ind. (** From the inductive definition of the proposition [and P Q] Inductive and (P Q : Prop) : Prop := conj : P -> Q -> (and P Q). we might expect Coq to generate this induction principle and_ind_max : forall (P Q : Prop) (P0 : P /\ Q -> Prop), (forall (a : P) (b : Q), P0 (conj P Q a b)) -> forall a : P /\ Q, P0 a but actually it generates this simpler and more useful one: and_ind : forall P Q P0 : Prop, (P -> Q -> P0) -> P /\ Q -> P0 In the same way, when given the inductive definition of [or P Q] Inductive or (P Q : Prop) : Prop := | or_introl : P -> or P Q | or_intror : Q -> or P Q. instead of the "maximal induction principle" or_ind_max : forall (P Q : Prop) (P0 : P \/ Q -> Prop), (forall a : P, P0 (or_introl P Q a)) -> (forall b : Q, P0 (or_intror P Q b)) -> forall o : P \/ Q, P0 o what Coq actually generates is this: or_ind : forall P Q P0 : Prop, (P -> P0) -> (Q -> P0) -> P \/ Q -> P0 ]] *) (** **** Exercise: 1 star, optional (False_ind_principle) *) (** Can you predict the induction principle for falsehood? *) (* Check False_ind. *) (** [] *) (** Here's the induction principle that Coq generates for existentials: *) Check ex_ind. (* ===> forall (X:Type) (P: X->Prop) (Q: Prop), (forall witness:X, P witness -> Q) -> ex X P -> Q *) (** This induction principle can be understood as follows: If we have a function [f] that can construct evidence for [Q] given _any_ witness of type [X] together with evidence that this witness has property [P], then from a proof of [ex X P] we can extract the witness and evidence that must have been supplied to the constructor, give these to [f], and thus obtain a proof of [Q]. *) (* ######################################################### *) (** ** Explicit Proof Objects for Induction *) (** Although tactic-based proofs are normally much easier to work with, the ability to write a proof term directly is sometimes very handy, particularly when we want Coq to do something slightly non-standard. *) (** Recall the induction principle on naturals that Coq generates for us automatically from the Inductive declation for [nat]. *) Check nat_ind. (* ===> nat_ind : forall P : nat -> Prop, P 0 -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n *) (** There's nothing magic about this induction lemma: it's just another Coq lemma that requires a proof. Coq generates the proof automatically too... *) Print nat_ind. Print nat_rect. (* ===> (after some manual inlining and tidying) nat_ind = fun (P : nat -> Prop) (f : P 0) (f0 : forall n : nat, P n -> P (S n)) => fix F (n : nat) : P n := match n with | 0 => f | S n0 => f0 n0 (F n0) end. *) (** We can read this as follows: Suppose we have evidence [f] that [P] holds on 0, and evidence [f0] that [forall n:nat, P n -> P (S n)]. Then we can prove that [P] holds of an arbitrary nat [n] via a recursive function [F] (here defined using the expression form [Fix] rather than by a top-level [Fixpoint] declaration). [F] pattern matches on [n]: - If it finds 0, [F] uses [f] to show that [P n] holds. - If it finds [S n0], [F] applies itself recursively on [n0] to obtain evidence that [P n0] holds; then it applies [f0] on that evidence to show that [P (S n)] holds. [F] is just an ordinary recursive function that happens to operate on evidence in [Prop] rather than on terms in [Set]. *) (** We can adapt this approach to proving [nat_ind] to help prove _non-standard_ induction principles too. Recall our desire to prove that [forall n : nat, even n -> ev n]. Attempts to do this by standard induction on [n] fail, because the induction principle only lets us proceed when we can prove that [even n -> even (S n)] -- which is of course never provable. What we did in [Logic] was a bit of a hack: [Theorem even__ev : forall n : nat, (even n -> ev n) /\ (even (S n) -> ev (S n))]. We can make a much better proof by defining and proving a non-standard induction principle that goes "by twos": *) Definition nat_ind2 : forall (P : nat -> Prop), P 0 -> P 1 -> (forall n : nat, P n -> P (S(S n))) -> forall n : nat , P n := fun P => fun P0 => fun P1 => fun PSS => fix f (n:nat) := match n with 0 => P0 | 1 => P1 | S (S n') => PSS n' (f n') end. (** Once you get the hang of it, it is entirely straightforward to give an explicit proof term for induction principles like this. Proving this as a lemma using tactics is much less intuitive (try it!). The [induction ... using] tactic variant gives a convenient way to specify a non-standard induction principle like this. *) Lemma even__ev' : forall n, even n -> ev n. Proof. intros. induction n as [ | |n'] using nat_ind2. Case "even 0". apply ev_0. Case "even 1". inversion H. Case "even (S(S n'))". apply ev_SS. apply IHn'. unfold even. unfold even in H. simpl in H. apply H. Qed. (* ######################################################### *) (** ** The Coq Trusted Computing Base *) (** One issue that arises with any automated proof assistant is "why trust it?": what if there is a bug in the implementation that renders all its reasoning suspect? While it is impossible to allay such concerns completely, the fact that Coq is based on the Curry-Howard correspondence gives it a strong foundation. Because propositions are just types and proofs are just terms, checking that an alleged proof of a proposition is valid just amounts to _type-checking_ the term. Type checkers are relatively small and straightforward programs, so the "trusted computing base" for Coq -- the part of the code that we have to believe is operating correctly -- is small too. What must a typechecker do? Its primary job is to make sure that in each function application the expected and actual argument types match, that the arms of a [match] expression are constructor patterns belonging to the inductive type being matched over and all arms of the [match] return the same type, and so on. There are a few additional wrinkles: - Since Coq types can themselves be expressions, the checker must normalize these (by using the computation rules) before comparing them. - The checker must make sure that [match] expressions are _exhaustive_. That is, there must be an arm for every possible constructor. To see why, consider the following alleged proof object: Definition or_bogus : forall P Q, P \/ Q -> P := fun (P Q : Prop) (A : P \/ Q) => match A with | or_introl H => H end. All the types here match correctly, but the [match] only considers one of the possible constructors for [or]. Coq's exhaustiveness check will reject this definition. - The checker must make sure that each [fix] expression terminates. It does this using a syntactic check to make sure that each recursive call is on a subexpression of the original argument. To see why this is essential, consider this alleged proof: Definition nat_false : forall (n:nat), False := fix f (n:nat) : False := f n. Again, this is perfectly well-typed, but (fortunately) Coq will reject it. *) (** Note that the soundness of Coq depends only on the correctness of this typechecking engine, not on the tactic machinery. If there is a bug in a tactic implementation (and this certainly does happen!), that tactic might construct an invalid proof term. But when you type [Qed], Coq checks the term for validity from scratch. Only lemmas whose proofs pass the type-checker can be used in further proof developments. *) (** $Date: 2014-12-31 15:31:47 -0500 (Wed, 31 Dec 2014) $ *)
(** * MoreInd: More on Induction *) Require Export "ProofObjects". (* ##################################################### *) (** * Induction Principles *) (** This is a good point to pause and take a deeper look at induction principles. Every time we declare a new [Inductive] datatype, Coq automatically generates and proves an _induction principle_ for this type. The induction principle for a type [t] is called [t_ind]. Here is the one for natural numbers: *) Check nat_ind. (* ===> nat_ind : forall P : nat -> Prop, P 0 -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n *) (** *** *) (** The [induction] tactic is a straightforward wrapper that, at its core, simply performs [apply t_ind]. To see this more clearly, let's experiment a little with using [apply nat_ind] directly, instead of the [induction] tactic, to carry out some proofs. Here, for example, is an alternate proof of a theorem that we saw in the [Basics] chapter. *) Theorem mult_0_r' : forall n:nat, n * 0 = 0. Proof. apply nat_ind. Case "O". reflexivity. Case "S". simpl. intros n IHn. rewrite -> IHn. reflexivity. Qed. (** This proof is basically the same as the earlier one, but a few minor differences are worth noting. First, in the induction step of the proof (the ["S"] case), we have to do a little bookkeeping manually (the [intros]) that [induction] does automatically. Second, we do not introduce [n] into the context before applying [nat_ind] -- the conclusion of [nat_ind] is a quantified formula, and [apply] needs this conclusion to exactly match the shape of the goal state, including the quantifier. The [induction] tactic works either with a variable in the context or a quantified variable in the goal. Third, the [apply] tactic automatically chooses variable names for us (in the second subgoal, here), whereas [induction] lets us specify (with the [as...] clause) what names should be used. The automatic choice is actually a little unfortunate, since it re-uses the name [n] for a variable that is different from the [n] in the original theorem. This is why the [Case] annotation is just [S] -- if we tried to write it out in the more explicit form that we've been using for most proofs, we'd have to write [n = S n], which doesn't make a lot of sense! All of these conveniences make [induction] nicer to use in practice than applying induction principles like [nat_ind] directly. But it is important to realize that, modulo this little bit of bookkeeping, applying [nat_ind] is what we are really doing. *) (** **** Exercise: 2 stars, optional (plus_one_r') *) (** Complete this proof as we did [mult_0_r'] above, without using the [induction] tactic. *) Theorem plus_one_r' : forall n:nat, n + 1 = S n. Proof. (* FILL IN HERE *) Admitted. (** [] *) (** Coq generates induction principles for every datatype defined with [Inductive], including those that aren't recursive. (Although we don't need induction to prove properties of non-recursive datatypes, the idea of an induction principle still makes sense for them: it gives a way to prove that a property holds for all values of the type.) These generated principles follow a similar pattern. If we define a type [t] with constructors [c1] ... [cn], Coq generates a theorem with this shape: t_ind : forall P : t -> Prop, ... case for c1 ... -> ... case for c2 ... -> ... ... case for cn ... -> forall n : t, P n The specific shape of each case depends on the arguments to the corresponding constructor. Before trying to write down a general rule, let's look at some more examples. First, an example where the constructors take no arguments: *) Inductive yesno : Type := | yes : yesno | no : yesno. Check yesno_ind. (* ===> yesno_ind : forall P : yesno -> Prop, P yes -> P no -> forall y : yesno, P y *) (** **** Exercise: 1 star, optional (rgb) *) (** Write out the induction principle that Coq will generate for the following datatype. Write down your answer on paper or type it into a comment, and then compare it with what Coq prints. *) Inductive rgb : Type := | red : rgb | green : rgb | blue : rgb. Check rgb_ind. (** [] *) (** Here's another example, this time with one of the constructors taking some arguments. *) Inductive natlist : Type := | nnil : natlist | ncons : nat -> natlist -> natlist. Check natlist_ind. (* ===> (modulo a little variable renaming for clarity) natlist_ind : forall P : natlist -> Prop, P nnil -> (forall (n : nat) (l : natlist), P l -> P (ncons n l)) -> forall n : natlist, P n *) (** **** Exercise: 1 star, optional (natlist1) *) (** Suppose we had written the above definition a little differently: *) Inductive natlist1 : Type := | nnil1 : natlist1 | nsnoc1 : natlist1 -> nat -> natlist1. (** Now what will the induction principle look like? *) (** [] *) (** From these examples, we can extract this general rule: - The type declaration gives several constructors; each corresponds to one clause of the induction principle. - Each constructor [c] takes argument types [a1]...[an]. - Each [ai] can be either [t] (the datatype we are defining) or some other type [s]. - The corresponding case of the induction principle says (in English): - "for all values [x1]...[xn] of types [a1]...[an], if [P] holds for each of the inductive arguments (each [xi] of type [t]), then [P] holds for [c x1 ... xn]". *) (** **** Exercise: 1 star, optional (byntree_ind) *) (** Write out the induction principle that Coq will generate for the following datatype. Write down your answer on paper or type it into a comment, and then compare it with what Coq prints. *) Inductive byntree : Type := | bempty : byntree | bleaf : yesno -> byntree | nbranch : yesno -> byntree -> byntree -> byntree. (** [] *) (** **** Exercise: 1 star, optional (ex_set) *) (** Here is an induction principle for an inductively defined set. ExSet_ind : forall P : ExSet -> Prop, (forall b : bool, P (con1 b)) -> (forall (n : nat) (e : ExSet), P e -> P (con2 n e)) -> forall e : ExSet, P e Give an [Inductive] definition of [ExSet]: *) Inductive ExSet : Type := (* FILL IN HERE *) . (** [] *) (** What about polymorphic datatypes? The inductive definition of polymorphic lists Inductive list (X:Type) : Type := | nil : list X | cons : X -> list X -> list X. is very similar to that of [natlist]. The main difference is that, here, the whole definition is _parameterized_ on a set [X]: that is, we are defining a _family_ of inductive types [list X], one for each [X]. (Note that, wherever [list] appears in the body of the declaration, it is always applied to the parameter [X].) The induction principle is likewise parameterized on [X]: list_ind : forall (X : Type) (P : list X -> Prop), P [] -> (forall (x : X) (l : list X), P l -> P (x :: l)) -> forall l : list X, P l Note the wording here (and, accordingly, the form of [list_ind]): The _whole_ induction principle is parameterized on [X]. That is, [list_ind] can be thought of as a polymorphic function that, when applied to a type [X], gives us back an induction principle specialized to the type [list X]. *) (** **** Exercise: 1 star, optional (tree) *) (** Write out the induction principle that Coq will generate for the following datatype. Compare your answer with what Coq prints. *) Inductive tree (X:Type) : Type := | leaf : X -> tree X | node : tree X -> tree X -> tree X. Check tree_ind. (** [] *) (** **** Exercise: 1 star, optional (mytype) *) (** Find an inductive definition that gives rise to the following induction principle: mytype_ind : forall (X : Type) (P : mytype X -> Prop), (forall x : X, P (constr1 X x)) -> (forall n : nat, P (constr2 X n)) -> (forall m : mytype X, P m -> forall n : nat, P (constr3 X m n)) -> forall m : mytype X, P m *) (** [] *) (** **** Exercise: 1 star, optional (foo) *) (** Find an inductive definition that gives rise to the following induction principle: foo_ind : forall (X Y : Type) (P : foo X Y -> Prop), (forall x : X, P (bar X Y x)) -> (forall y : Y, P (baz X Y y)) -> (forall f1 : nat -> foo X Y, (forall n : nat, P (f1 n)) -> P (quux X Y f1)) -> forall f2 : foo X Y, P f2 *) (** [] *) (** **** Exercise: 1 star, optional (foo') *) (** Consider the following inductive definition: *) Inductive foo' (X:Type) : Type := | C1 : list X -> foo' X -> foo' X | C2 : foo' X. (** What induction principle will Coq generate for [foo']? Fill in the blanks, then check your answer with Coq.) foo'_ind : forall (X : Type) (P : foo' X -> Prop), (forall (l : list X) (f : foo' X), _______________________ -> _______________________ ) -> ___________________________________________ -> forall f : foo' X, ________________________ *) (** [] *) (* ##################################################### *) (** ** Induction Hypotheses *) (** Where does the phrase "induction hypothesis" fit into this story? The induction principle for numbers forall P : nat -> Prop, P 0 -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n is a generic statement that holds for all propositions [P] (strictly speaking, for all families of propositions [P] indexed by a number [n]). Each time we use this principle, we are choosing [P] to be a particular expression of type [nat->Prop]. We can make the proof more explicit by giving this expression a name. For example, instead of stating the theorem [mult_0_r] as "[forall n, n * 0 = 0]," we can write it as "[forall n, P_m0r n]", where [P_m0r] is defined as... *) Definition P_m0r (n:nat) : Prop := n * 0 = 0. (** ... or equivalently... *) Definition P_m0r' : nat->Prop := fun n => n * 0 = 0. (** Now when we do the proof it is easier to see where [P_m0r] appears. *) Theorem mult_0_r'' : forall n:nat, P_m0r n. Proof. apply nat_ind. Case "n = O". reflexivity. Case "n = S n'". (* Note the proof state at this point! *) intros n IHn. unfold P_m0r in IHn. unfold P_m0r. simpl. apply IHn. Qed. (** This extra naming step isn't something that we'll do in normal proofs, but it is useful to do it explicitly for an example or two, because it allows us to see exactly what the induction hypothesis is. If we prove [forall n, P_m0r n] by induction on [n] (using either [induction] or [apply nat_ind]), we see that the first subgoal requires us to prove [P_m0r 0] ("[P] holds for zero"), while the second subgoal requires us to prove [forall n', P_m0r n' -> P_m0r n' (S n')] (that is "[P] holds of [S n'] if it holds of [n']" or, more elegantly, "[P] is preserved by [S]"). The _induction hypothesis_ is the premise of this latter implication -- the assumption that [P] holds of [n'], which we are allowed to use in proving that [P] holds for [S n']. *) (* ##################################################### *) (** ** More on the [induction] Tactic *) (** The [induction] tactic actually does even more low-level bookkeeping for us than we discussed above. Recall the informal statement of the induction principle for natural numbers: - If [P n] is some proposition involving a natural number n, and we want to show that P holds for _all_ numbers n, we can reason like this: - show that [P O] holds - show that, if [P n'] holds, then so does [P (S n')] - conclude that [P n] holds for all n. So, when we begin a proof with [intros n] and then [induction n], we are first telling Coq to consider a _particular_ [n] (by introducing it into the context) and then telling it to prove something about _all_ numbers (by using induction). What Coq actually does in this situation, internally, is to "re-generalize" the variable we perform induction on. For example, in our original proof that [plus] is associative... *) Theorem plus_assoc' : forall n m p : nat, n + (m + p) = (n + m) + p. Proof. (* ...we first introduce all 3 variables into the context, which amounts to saying "Consider an arbitrary [n], [m], and [p]..." *) intros n m p. (* ...We now use the [induction] tactic to prove [P n] (that is, [n + (m + p) = (n + m) + p]) for _all_ [n], and hence also for the particular [n] that is in the context at the moment. *) induction n as [| n']. Case "n = O". reflexivity. Case "n = S n'". (* In the second subgoal generated by [induction] -- the "inductive step" -- we must prove that [P n'] implies [P (S n')] for all [n']. The [induction] tactic automatically introduces [n'] and [P n'] into the context for us, leaving just [P (S n')] as the goal. *) simpl. rewrite -> IHn'. reflexivity. Qed. (** It also works to apply [induction] to a variable that is quantified in the goal. *) Theorem plus_comm' : forall n m : nat, n + m = m + n. Proof. induction n as [| n']. Case "n = O". intros m. rewrite -> plus_0_r. reflexivity. Case "n = S n'". intros m. simpl. rewrite -> IHn'. rewrite <- plus_n_Sm. reflexivity. Qed. (** Note that [induction n] leaves [m] still bound in the goal -- i.e., what we are proving inductively is a statement beginning with [forall m]. If we do [induction] on a variable that is quantified in the goal _after_ some other quantifiers, the [induction] tactic will automatically introduce the variables bound by these quantifiers into the context. *) Theorem plus_comm'' : forall n m : nat, n + m = m + n. Proof. (* Let's do induction on [m] this time, instead of [n]... *) induction m as [| m']. Case "m = O". simpl. rewrite -> plus_0_r. reflexivity. Case "m = S m'". simpl. rewrite <- IHm'. rewrite <- plus_n_Sm. reflexivity. Qed. (** **** Exercise: 1 star, optional (plus_explicit_prop) *) (** Rewrite both [plus_assoc'] and [plus_comm'] and their proofs in the same style as [mult_0_r''] above -- that is, for each theorem, give an explicit [Definition] of the proposition being proved by induction, and state the theorem and proof in terms of this defined proposition. *) (* FILL IN HERE *) (** [] *) (** ** Generalizing Inductions. *) (** One potentially confusing feature of the [induction] tactic is that it happily lets you try to set up an induction over a term that isn't sufficiently general. The net effect of this will be to lose information (much as [destruct] can do), and leave you unable to complete the proof. Here's an example: *) Lemma one_not_beautiful_FAILED: ~ beautiful 1. Proof. intro H. (* Just doing an [inversion] on [H] won't get us very far in the [b_sum] case. (Try it!). So we'll need induction. A naive first attempt: *) induction H. (* But now, although we get four cases, as we would expect from the definition of [beautiful], we lose all information about [H] ! *) Abort. (** The problem is that [induction] over a Prop only works properly over completely general instances of the Prop, i.e. one in which all the arguments are free (unconstrained) variables. In this respect it behaves more like [destruct] than like [inversion]. When you're tempted to do use [induction] like this, it is generally an indication that you need to be proving something more general. But in some cases, it suffices to pull out any concrete arguments into separate equations, like this: *) Lemma one_not_beautiful: forall n, n = 1 -> ~ beautiful n. Proof. intros n E H. induction H as [| | | p q Hp IHp Hq IHq]. Case "b_0". inversion E. Case "b_3". inversion E. Case "b_5". inversion E. Case "b_sum". (* the rest is a tedious case analysis *) destruct p as [|p']. SCase "p = 0". destruct q as [|q']. SSCase "q = 0". inversion E. SSCase "q = S q'". apply IHq. apply E. SCase "p = S p'". destruct q as [|q']. SSCase "q = 0". apply IHp. rewrite plus_0_r in E. apply E. SSCase "q = S q'". simpl in E. inversion E. destruct p'. inversion H0. inversion H0. Qed. (** There's a handy [remember] tactic that can generate the second proof state out of the original one. *) Lemma one_not_beautiful': ~ beautiful 1. Proof. intros H. remember 1 as n eqn:E. (* now carry on as above *) induction H. Admitted. (* ####################################################### *) (** * Informal Proofs (Advanced) *) (** Q: What is the relation between a formal proof of a proposition [P] and an informal proof of the same proposition [P]? A: The latter should _teach_ the reader how to produce the former. Q: How much detail is needed?? Unfortunately, There is no single right answer; rather, there is a range of choices. At one end of the spectrum, we can essentially give the reader the whole formal proof (i.e., the informal proof amounts to just transcribing the formal one into words). This gives the reader the _ability_ to reproduce the formal one for themselves, but it doesn't _teach_ them anything. At the other end of the spectrum, we can say "The theorem is true and you can figure out why for yourself if you think about it hard enough." This is also not a good teaching strategy, because usually writing the proof requires some deep insights into the thing we're proving, and most readers will give up before they rediscover all the same insights as we did. In the middle is the golden mean -- a proof that includes all of the essential insights (saving the reader the hard part of work that we went through to find the proof in the first place) and clear high-level suggestions for the more routine parts to save the reader from spending too much time reconstructing these parts (e.g., what the IH says and what must be shown in each case of an inductive proof), but not so much detail that the main ideas are obscured. Another key point: if we're comparing a formal proof of a proposition [P] and an informal proof of [P], the proposition [P] doesn't change. That is, formal and informal proofs are _talking about the same world_ and they _must play by the same rules_. *) (** ** Informal Proofs by Induction *) (** Since we've spent much of this chapter looking "under the hood" at formal proofs by induction, now is a good moment to talk a little about _informal_ proofs by induction. In the real world of mathematical communication, written proofs range from extremely longwinded and pedantic to extremely brief and telegraphic. The ideal is somewhere in between, of course, but while you are getting used to the style it is better to start out at the pedantic end. Also, during the learning phase, it is probably helpful to have a clear standard to compare against. With this in mind, we offer two templates below -- one for proofs by induction over _data_ (i.e., where the thing we're doing induction on lives in [Type]) and one for proofs by induction over _evidence_ (i.e., where the inductively defined thing lives in [Prop]). In the rest of this course, please follow one of the two for _all_ of your inductive proofs. *) (** *** Induction Over an Inductively Defined Set *) (** _Template_: - _Theorem_: <Universally quantified proposition of the form "For all [n:S], [P(n)]," where [S] is some inductively defined set.> _Proof_: By induction on [n]. <one case for each constructor [c] of [S]...> - Suppose [n = c a1 ... ak], where <...and here we state the IH for each of the [a]'s that has type [S], if any>. We must show <...and here we restate [P(c a1 ... ak)]>. <go on and prove [P(n)] to finish the case...> - <other cases similarly...> [] _Example_: - _Theorem_: For all sets [X], lists [l : list X], and numbers [n], if [length l = n] then [index (S n) l = None]. _Proof_: By induction on [l]. - Suppose [l = []]. We must show, for all numbers [n], that, if length [[] = n], then [index (S n) [] = None]. This follows immediately from the definition of index. - Suppose [l = x :: l'] for some [x] and [l'], where [length l' = n'] implies [index (S n') l' = None], for any number [n']. We must show, for all [n], that, if [length (x::l') = n] then [index (S n) (x::l') = None]. Let [n] be a number with [length l = n]. Since length l = length (x::l') = S (length l'), it suffices to show that index (S (length l')) l' = None. ]] But this follows directly from the induction hypothesis, picking [n'] to be length [l']. [] *) (** *** Induction Over an Inductively Defined Proposition *) (** Since inductively defined proof objects are often called "derivation trees," this form of proof is also known as _induction on derivations_. _Template_: - _Theorem_: <Proposition of the form "[Q -> P]," where [Q] is some inductively defined proposition (more generally, "For all [x] [y] [z], [Q x y z -> P x y z]")> _Proof_: By induction on a derivation of [Q]. <Or, more generally, "Suppose we are given [x], [y], and [z]. We show that [Q x y z] implies [P x y z], by induction on a derivation of [Q x y z]"...> <one case for each constructor [c] of [Q]...> - Suppose the final rule used to show [Q] is [c]. Then <...and here we state the types of all of the [a]'s together with any equalities that follow from the definition of the constructor and the IH for each of the [a]'s that has type [Q], if there are any>. We must show <...and here we restate [P]>. <go on and prove [P] to finish the case...> - <other cases similarly...> [] _Example_ - _Theorem_: The [<=] relation is transitive -- i.e., for all numbers [n], [m], and [o], if [n <= m] and [m <= o], then [n <= o]. _Proof_: By induction on a derivation of [m <= o]. - Suppose the final rule used to show [m <= o] is [le_n]. Then [m = o] and we must show that [n <= m], which is immediate by hypothesis. - Suppose the final rule used to show [m <= o] is [le_S]. Then [o = S o'] for some [o'] with [m <= o']. We must show that [n <= S o']. By induction hypothesis, [n <= o']. But then, by [le_S], [n <= S o']. [] *) (* ##################################################### *) (** * Induction Principles in [Prop] (Advanced) *) (** The remainder of this chapter offers some additional details on how induction works in Coq, the process of building proof trees, and the "trusted computing base" that underlies Coq proofs. It can safely be skimmed on a first reading. (As with the other advanced sections, we recommend skimming rather than skipping over it outright: it answers some questions that occur to many Coq users at some point, so it is useful to have a rough idea of what's here.) *) (** Earlier, we looked in detail at the induction principles that Coq generates for inductively defined _sets_. The induction principles for inductively defined _propositions_ like [gorgeous] are a tiny bit more complicated. As with all induction principles, we want to use the induction principle on [gorgeous] to prove things by inductively considering the possible shapes that something in [gorgeous] can have -- either it is evidence that [0] is gorgeous, or it is evidence that, for some [n], [3+n] is gorgeous, or it is evidence that, for some [n], [5+n] is gorgeous and it includes evidence that [n] itself is. Intuitively speaking, however, what we want to prove are not statements about _evidence_ but statements about _numbers_. So we want an induction principle that lets us prove properties of numbers by induction on evidence. For example, from what we've said so far, you might expect the inductive definition of [gorgeous]... Inductive gorgeous : nat -> Prop := g_0 : gorgeous 0 | g_plus3 : forall n, gorgeous n -> gorgeous (3+m) | g_plus5 : forall n, gorgeous n -> gorgeous (5+m). ...to give rise to an induction principle that looks like this... gorgeous_ind_max : forall P : (forall n : nat, gorgeous n -> Prop), P O g_0 -> (forall (m : nat) (e : gorgeous m), P m e -> P (3+m) (g_plus3 m e) -> (forall (m : nat) (e : gorgeous m), P m e -> P (5+m) (g_plus5 m e) -> forall (n : nat) (e : gorgeous n), P n e ... because: - Since [gorgeous] is indexed by a number [n] (every [gorgeous] object [e] is a piece of evidence that some particular number [n] is gorgeous), the proposition [P] is parameterized by both [n] and [e] -- that is, the induction principle can be used to prove assertions involving both a gorgeous number and the evidence that it is gorgeous. - Since there are three ways of giving evidence of gorgeousness ([gorgeous] has three constructors), applying the induction principle generates three subgoals: - We must prove that [P] holds for [O] and [b_0]. - We must prove that, whenever [n] is a gorgeous number and [e] is an evidence of its gorgeousness, if [P] holds of [n] and [e], then it also holds of [3+m] and [g_plus3 n e]. - We must prove that, whenever [n] is a gorgeous number and [e] is an evidence of its gorgeousness, if [P] holds of [n] and [e], then it also holds of [5+m] and [g_plus5 n e]. - If these subgoals can be proved, then the induction principle tells us that [P] is true for _all_ gorgeous numbers [n] and evidence [e] of their gorgeousness. But this is a little more flexibility than we actually need or want: it is giving us a way to prove logical assertions where the assertion involves properties of some piece of _evidence_ of gorgeousness, while all we really care about is proving properties of _numbers_ that are gorgeous -- we are interested in assertions about numbers, not about evidence. It would therefore be more convenient to have an induction principle for proving propositions [P] that are parameterized just by [n] and whose conclusion establishes [P] for all gorgeous numbers [n]: forall P : nat -> Prop, ... -> forall n : nat, gorgeous n -> P n For this reason, Coq actually generates the following simplified induction principle for [gorgeous]: *) Check gorgeous_ind. (* ===> gorgeous_ind : forall P : nat -> Prop, P 0 -> (forall n : nat, gorgeous n -> P n -> P (3 + n)) -> (forall n : nat, gorgeous n -> P n -> P (5 + n)) -> forall n : nat, gorgeous n -> P n *) (** In particular, Coq has dropped the evidence term [e] as a parameter of the the proposition [P], and consequently has rewritten the assumption [forall (n : nat) (e: gorgeous n), ...] to be [forall (n : nat), gorgeous n -> ...]; i.e., we no longer require explicit evidence of the provability of [gorgeous n]. *) (** In English, [gorgeous_ind] says: - Suppose, [P] is a property of natural numbers (that is, [P n] is a [Prop] for every [n]). To show that [P n] holds whenever [n] is gorgeous, it suffices to show: - [P] holds for [0], - for any [n], if [n] is gorgeous and [P] holds for [n], then [P] holds for [3+n], - for any [n], if [n] is gorgeous and [P] holds for [n], then [P] holds for [5+n]. *) (** As expected, we can apply [gorgeous_ind] directly instead of using [induction]. *) Theorem gorgeous__beautiful' : forall n, gorgeous n -> beautiful n. Proof. intros. apply gorgeous_ind. Case "g_0". apply b_0. Case "g_plus3". intros. apply b_sum. apply b_3. apply H1. Case "g_plus5". intros. apply b_sum. apply b_5. apply H1. apply H. Qed. (** The precise form of an Inductive definition can affect the induction principle Coq generates. For example, in [Logic], we have defined [<=] as: *) (* Inductive le : nat -> nat -> Prop := | le_n : forall n, le n n | le_S : forall n m, (le n m) -> (le n (S m)). *) (** This definition can be streamlined a little by observing that the left-hand argument [n] is the same everywhere in the definition, so we can actually make it a "general parameter" to the whole definition, rather than an argument to each constructor. *) Inductive le (n:nat) : nat -> Prop := | le_n : le n n | le_S : forall m, (le n m) -> (le n (S m)). Notation "m <= n" := (le m n). (** The second one is better, even though it looks less symmetric. Why? Because it gives us a simpler induction principle. *) Check le_ind. (* ===> forall (n : nat) (P : nat -> Prop), P n -> (forall m : nat, n <= m -> P m -> P (S m)) -> forall n0 : nat, n <= n0 -> P n0 *) (** By contrast, the induction principle that Coq calculates for the first definition has a lot of extra quantifiers, which makes it messier to work with when proving things by induction. Here is the induction principle for the first [le]: *) (* le_ind : forall P : nat -> nat -> Prop, (forall n : nat, P n n) -> (forall n m : nat, le n m -> P n m -> P n (S m)) -> forall n n0 : nat, le n n0 -> P n n0 *) (* ##################################################### *) (** * Additional Exercises *) (** **** Exercise: 2 stars, optional (foo_ind_principle) *) (** Suppose we make the following inductive definition: Inductive foo (X : Set) (Y : Set) : Set := | foo1 : X -> foo X Y | foo2 : Y -> foo X Y | foo3 : foo X Y -> foo X Y. Fill in the blanks to complete the induction principle that will be generated by Coq. foo_ind : forall (X Y : Set) (P : foo X Y -> Prop), (forall x : X, __________________________________) -> (forall y : Y, __________________________________) -> (________________________________________________) -> ________________________________________________ *) (** [] *) (** **** Exercise: 2 stars, optional (bar_ind_principle) *) (** Consider the following induction principle: bar_ind : forall P : bar -> Prop, (forall n : nat, P (bar1 n)) -> (forall b : bar, P b -> P (bar2 b)) -> (forall (b : bool) (b0 : bar), P b0 -> P (bar3 b b0)) -> forall b : bar, P b Write out the corresponding inductive set definition. Inductive bar : Set := | bar1 : ________________________________________ | bar2 : ________________________________________ | bar3 : ________________________________________. *) (** [] *) (** **** Exercise: 2 stars, optional (no_longer_than_ind) *) (** Given the following inductively defined proposition: Inductive no_longer_than (X : Set) : (list X) -> nat -> Prop := | nlt_nil : forall n, no_longer_than X [] n | nlt_cons : forall x l n, no_longer_than X l n -> no_longer_than X (x::l) (S n) | nlt_succ : forall l n, no_longer_than X l n -> no_longer_than X l (S n). write the induction principle generated by Coq. no_longer_than_ind : forall (X : Set) (P : list X -> nat -> Prop), (forall n : nat, ____________________) -> (forall (x : X) (l : list X) (n : nat), no_longer_than X l n -> ____________________ -> _____________________________ -> (forall (l : list X) (n : nat), no_longer_than X l n -> ____________________ -> _____________________________ -> forall (l : list X) (n : nat), no_longer_than X l n -> ____________________ *) (** [] *) (* ##################################################### *) (** ** Induction Principles for other Logical Propositions *) (** Similarly, in [Logic] we have defined [eq] as: *) (* Inductive eq (X:Type) : X -> X -> Prop := refl_equal : forall x, eq X x x. *) (** In the Coq standard library, the definition of equality is slightly different: *) Inductive eq' (X:Type) (x:X) : X -> Prop := refl_equal' : eq' X x x. (** The advantage of this definition is that the induction principle that Coq derives for it is precisely the familiar principle of _Leibniz equality_: what we mean when we say "[x] and [y] are equal" is that every property on [P] that is true of [x] is also true of [y]. (One philosophical quibble should be noted, though: Here, the "Leibniz equality principle" is a _consequence_ of the way we've defined equality as an inductive type. Leibniz viewed things exactly the other way around: for him, this principle itself _is the definition_ of equality.) *) Check eq'_ind. (* ===> forall (X : Type) (x : X) (P : X -> Prop), P x -> forall y : X, x =' y -> P y ===> (i.e., after a little reorganization) forall (X : Type) (x : X) forall y : X, x =' y -> forall P : X -> Prop, P x -> P y *) (** The induction principles for conjunction and disjunction are a good illustration of Coq's way of generating simplified induction principles for [Inductive]ly defined propositions, which we discussed above. You try first: *) (** **** Exercise: 1 star, optional (and_ind_principle) *) (** See if you can predict the induction principle for conjunction. *) (* Check and_ind. *) (** [] *) (** **** Exercise: 1 star, optional (or_ind_principle) *) (** See if you can predict the induction principle for disjunction. *) (* Check or_ind. *) (** [] *) Check and_ind. (** From the inductive definition of the proposition [and P Q] Inductive and (P Q : Prop) : Prop := conj : P -> Q -> (and P Q). we might expect Coq to generate this induction principle and_ind_max : forall (P Q : Prop) (P0 : P /\ Q -> Prop), (forall (a : P) (b : Q), P0 (conj P Q a b)) -> forall a : P /\ Q, P0 a but actually it generates this simpler and more useful one: and_ind : forall P Q P0 : Prop, (P -> Q -> P0) -> P /\ Q -> P0 In the same way, when given the inductive definition of [or P Q] Inductive or (P Q : Prop) : Prop := | or_introl : P -> or P Q | or_intror : Q -> or P Q. instead of the "maximal induction principle" or_ind_max : forall (P Q : Prop) (P0 : P \/ Q -> Prop), (forall a : P, P0 (or_introl P Q a)) -> (forall b : Q, P0 (or_intror P Q b)) -> forall o : P \/ Q, P0 o what Coq actually generates is this: or_ind : forall P Q P0 : Prop, (P -> P0) -> (Q -> P0) -> P \/ Q -> P0 ]] *) (** **** Exercise: 1 star, optional (False_ind_principle) *) (** Can you predict the induction principle for falsehood? *) (* Check False_ind. *) (** [] *) (** Here's the induction principle that Coq generates for existentials: *) Check ex_ind. (* ===> forall (X:Type) (P: X->Prop) (Q: Prop), (forall witness:X, P witness -> Q) -> ex X P -> Q *) (** This induction principle can be understood as follows: If we have a function [f] that can construct evidence for [Q] given _any_ witness of type [X] together with evidence that this witness has property [P], then from a proof of [ex X P] we can extract the witness and evidence that must have been supplied to the constructor, give these to [f], and thus obtain a proof of [Q]. *) (* ######################################################### *) (** ** Explicit Proof Objects for Induction *) (** Although tactic-based proofs are normally much easier to work with, the ability to write a proof term directly is sometimes very handy, particularly when we want Coq to do something slightly non-standard. *) (** Recall the induction principle on naturals that Coq generates for us automatically from the Inductive declation for [nat]. *) Check nat_ind. (* ===> nat_ind : forall P : nat -> Prop, P 0 -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n *) (** There's nothing magic about this induction lemma: it's just another Coq lemma that requires a proof. Coq generates the proof automatically too... *) Print nat_ind. Print nat_rect. (* ===> (after some manual inlining and tidying) nat_ind = fun (P : nat -> Prop) (f : P 0) (f0 : forall n : nat, P n -> P (S n)) => fix F (n : nat) : P n := match n with | 0 => f | S n0 => f0 n0 (F n0) end. *) (** We can read this as follows: Suppose we have evidence [f] that [P] holds on 0, and evidence [f0] that [forall n:nat, P n -> P (S n)]. Then we can prove that [P] holds of an arbitrary nat [n] via a recursive function [F] (here defined using the expression form [Fix] rather than by a top-level [Fixpoint] declaration). [F] pattern matches on [n]: - If it finds 0, [F] uses [f] to show that [P n] holds. - If it finds [S n0], [F] applies itself recursively on [n0] to obtain evidence that [P n0] holds; then it applies [f0] on that evidence to show that [P (S n)] holds. [F] is just an ordinary recursive function that happens to operate on evidence in [Prop] rather than on terms in [Set]. *) (** We can adapt this approach to proving [nat_ind] to help prove _non-standard_ induction principles too. Recall our desire to prove that [forall n : nat, even n -> ev n]. Attempts to do this by standard induction on [n] fail, because the induction principle only lets us proceed when we can prove that [even n -> even (S n)] -- which is of course never provable. What we did in [Logic] was a bit of a hack: [Theorem even__ev : forall n : nat, (even n -> ev n) /\ (even (S n) -> ev (S n))]. We can make a much better proof by defining and proving a non-standard induction principle that goes "by twos": *) Definition nat_ind2 : forall (P : nat -> Prop), P 0 -> P 1 -> (forall n : nat, P n -> P (S(S n))) -> forall n : nat , P n := fun P => fun P0 => fun P1 => fun PSS => fix f (n:nat) := match n with 0 => P0 | 1 => P1 | S (S n') => PSS n' (f n') end. (** Once you get the hang of it, it is entirely straightforward to give an explicit proof term for induction principles like this. Proving this as a lemma using tactics is much less intuitive (try it!). The [induction ... using] tactic variant gives a convenient way to specify a non-standard induction principle like this. *) Lemma even__ev' : forall n, even n -> ev n. Proof. intros. induction n as [ | |n'] using nat_ind2. Case "even 0". apply ev_0. Case "even 1". inversion H. Case "even (S(S n'))". apply ev_SS. apply IHn'. unfold even. unfold even in H. simpl in H. apply H. Qed. (* ######################################################### *) (** ** The Coq Trusted Computing Base *) (** One issue that arises with any automated proof assistant is "why trust it?": what if there is a bug in the implementation that renders all its reasoning suspect? While it is impossible to allay such concerns completely, the fact that Coq is based on the Curry-Howard correspondence gives it a strong foundation. Because propositions are just types and proofs are just terms, checking that an alleged proof of a proposition is valid just amounts to _type-checking_ the term. Type checkers are relatively small and straightforward programs, so the "trusted computing base" for Coq -- the part of the code that we have to believe is operating correctly -- is small too. What must a typechecker do? Its primary job is to make sure that in each function application the expected and actual argument types match, that the arms of a [match] expression are constructor patterns belonging to the inductive type being matched over and all arms of the [match] return the same type, and so on. There are a few additional wrinkles: - Since Coq types can themselves be expressions, the checker must normalize these (by using the computation rules) before comparing them. - The checker must make sure that [match] expressions are _exhaustive_. That is, there must be an arm for every possible constructor. To see why, consider the following alleged proof object: Definition or_bogus : forall P Q, P \/ Q -> P := fun (P Q : Prop) (A : P \/ Q) => match A with | or_introl H => H end. All the types here match correctly, but the [match] only considers one of the possible constructors for [or]. Coq's exhaustiveness check will reject this definition. - The checker must make sure that each [fix] expression terminates. It does this using a syntactic check to make sure that each recursive call is on a subexpression of the original argument. To see why this is essential, consider this alleged proof: Definition nat_false : forall (n:nat), False := fix f (n:nat) : False := f n. Again, this is perfectly well-typed, but (fortunately) Coq will reject it. *) (** Note that the soundness of Coq depends only on the correctness of this typechecking engine, not on the tactic machinery. If there is a bug in a tactic implementation (and this certainly does happen!), that tactic might construct an invalid proof term. But when you type [Qed], Coq checks the term for validity from scratch. Only lemmas whose proofs pass the type-checker can be used in further proof developments. *) (** $Date: 2014-12-31 15:31:47 -0500 (Wed, 31 Dec 2014) $ *)
//***************************************************************************** // Copyright (c) 2006 Xilinx, Inc. // This design is confidential and proprietary of Xilinx, Inc. // All Rights Reserved //***************************************************************************** // ____ ____ // / /\/ / // /___/ \ / Vendor: Xilinx // \ \ \/ Version: $Name: i+IP+125372 $ // \ \ Application: MIG // / / Filename: mem_interface_top.v // /___/ /\ Date Last Modified: $Date: 2007/04/18 13:49:32 $ // \ \ / \ Date Created: Wed Aug 16 2006 // \___\/\___\ // //Device: Virtex-5 //Design Name: DDR2 //Purpose: // Top-level module. Simple model for what the user might use // Typically, the user will only instantiate MEM_INTERFACE_TOP in their // code, and generate all the other infrastructure and backend logic // separately. This module serves both as an example, and allows the user // to synthesize a self-contained design, which they can use to test their // hardware. // In addition to the memory controller, the module instantiates: // 1. Clock generation/distribution, reset logic // 2. IDELAY control block // 3. Synthesizable testbench - used to model user's backend logic //Reference: //Revision History: //***************************************************************************** `timescale 1ns/1ps module mem_interface_top # ( parameter BANK_WIDTH = 3, // # of memory bank addr bits parameter CKE_WIDTH = 1, // # of memory clock enable outputs parameter CLK_WIDTH = 1, // # of clock outputs parameter COL_WIDTH = 10, // # of memory column bits parameter CS_NUM = 1, // # of separate memory chip selects parameter CS_WIDTH = 1, // # of total memory chip selects parameter CS_BITS = 0, // set to log2(CS_NUM) (rounded up) parameter DM_WIDTH = 9, // # of data mask bits parameter DQ_WIDTH = 72, // # of data width parameter DQ_PER_DQS = 8, // # of DQ data bits per strobe parameter DQS_WIDTH = 9, // # of DQS strobes parameter DQ_BITS = 7, // set to log2(DQS_WIDTH*DQ_PER_DQS) parameter DQS_BITS = 4, // set to log2(DQS_WIDTH) parameter ODT_WIDTH = 1, // # of memory on-die term enables parameter ROW_WIDTH = 14, // # of memory row and # of addr bits parameter ADDITIVE_LAT = 0, // additive write latency parameter BURST_LEN = 4, // burst length (in double words) parameter BURST_TYPE = 0, // burst type (=0 seq; =1 interleaved) parameter CAS_LAT = 3, // CAS latency parameter ECC_ENABLE = 0, // enable ECC (=1 enable) parameter MULTI_BANK_EN = 1, // Keeps multiple banks open. (= 1 enable) parameter ODT_TYPE = 0, // ODT (=0(none),=1(75),=2(150),=3(50)) parameter REDUCE_DRV = 0, // reduced strength mem I/O (=1 yes) parameter REG_ENABLE = 1, // registered addr/ctrl (=1 yes) parameter TREFI_NS = 7800, // auto refresh interval (uS) parameter TRAS = 40000, // active->precharge delay parameter TRCD = 15000, // active->read/write delay parameter TRFC = 127500, // refresh->refresh, refresh->active delay parameter TRP = 15000, // precharge->command delay parameter TRTP = 7500, // read->precharge delay parameter TWR = 15000, // used to determine write->precharge parameter TWTR = 10000, // write->read delay parameter IDEL_HIGH_PERF = "TRUE", // # initial # taps for DQ IDELAY parameter SIM_ONLY = 0, // = 1 to skip SDRAM power up delay parameter CLK_PERIOD = 5000, // Core/Memory clock period (in ps) parameter RST_ACT_LOW = 1, // =1 for active low reset, =0 for active high parameter DLL_FREQ_MODE = "HIGH" // DCM Frequency range ) ( inout [DQ_WIDTH-1:0] ddr2_dq, output [ROW_WIDTH-1:0] ddr2_a, output [BANK_WIDTH-1:0] ddr2_ba, output ddr2_ras_n, output ddr2_cas_n, output ddr2_we_n, output [CS_WIDTH-1:0] ddr2_cs_n, output [ODT_WIDTH-1:0] ddr2_odt, output [CKE_WIDTH-1:0] ddr2_cke, output ddr2_reset_n, output [DM_WIDTH-1:0] ddr2_dm, //// input sys_clk_p, //// input sys_clk_n, input sys_clk, input clk200_p, input clk200_n, /// Jiansong: 200MHz clock output output clk200_o, input sys_rst_n, output phy_init_done, output rst0_tb, output clk0_tb, output app_wdf_afull, output app_af_afull, output rd_data_valid, input app_wdf_wren, input app_af_wren, input [30:0] app_af_addr, input [2:0] app_af_cmd, output [(2*DQ_WIDTH)-1:0] rd_data_fifo_out, input [(2*DQ_WIDTH)-1:0] app_wdf_data, input [(2*DM_WIDTH)-1:0] app_wdf_mask_data, inout [DQS_WIDTH-1:0] ddr2_dqs, inout [DQS_WIDTH-1:0] ddr2_dqs_n, output [CLK_WIDTH-1:0] ddr2_ck, output [CLK_WIDTH-1:0] ddr2_ck_n ); wire rst0; wire rst90; wire rst200; wire clk0; wire clk90; wire clk200; wire idelay_ctrl_rdy; //*************************************************************************** assign rst0_tb = rst0; assign clk0_tb = clk0; assign ddr2_reset_n= ~rst0; /// Jiansong: assign clk200_o = clk200; mem_interface_top_idelay_ctrl u_idelay_ctrl ( .rst200(rst200), .clk200(clk200), .idelay_ctrl_rdy(idelay_ctrl_rdy) ); mem_interface_top_infrastructure # ( .CLK_PERIOD(CLK_PERIOD), .RST_ACT_LOW(RST_ACT_LOW), .DLL_FREQ_MODE(DLL_FREQ_MODE) ) u_infrastructure ( //// .sys_clk_p(sys_clk_p), //// .sys_clk_n(sys_clk_n), .sys_clk(sys_clk), .clk200_p(clk200_p), .clk200_n(clk200_n), .sys_rst_n(sys_rst_n), .rst0(rst0), .rst90(rst90), .rst200(rst200), .clk0(clk0), .clk90(clk90), .clk200(clk200), .idelay_ctrl_rdy(idelay_ctrl_rdy) ); mem_interface_top_ddr2_top_0 # ( .BANK_WIDTH(BANK_WIDTH), .CKE_WIDTH(CKE_WIDTH), .CLK_WIDTH(CLK_WIDTH), .COL_WIDTH(COL_WIDTH), .CS_NUM(CS_NUM), .CS_WIDTH(CS_WIDTH), .CS_BITS(CS_BITS), .DM_WIDTH(DM_WIDTH), .DQ_WIDTH(DQ_WIDTH), .DQ_PER_DQS(DQ_PER_DQS), .DQS_WIDTH(DQS_WIDTH), .DQ_BITS(DQ_BITS), .DQS_BITS(DQS_BITS), .ODT_WIDTH(ODT_WIDTH), .ROW_WIDTH(ROW_WIDTH), .ADDITIVE_LAT(ADDITIVE_LAT), .BURST_LEN(BURST_LEN), .BURST_TYPE(BURST_TYPE), .CAS_LAT(CAS_LAT), .ECC_ENABLE(ECC_ENABLE), .MULTI_BANK_EN(MULTI_BANK_EN), .ODT_TYPE(ODT_TYPE), .REDUCE_DRV(REDUCE_DRV), .REG_ENABLE(REG_ENABLE), .TREFI_NS(TREFI_NS), .TRAS(TRAS), .TRCD(TRCD), .TRFC(TRFC), .TRP(TRP), .TRTP(TRTP), .TWR(TWR), .TWTR(TWTR), .IDEL_HIGH_PERF(IDEL_HIGH_PERF), .SIM_ONLY(SIM_ONLY), .CLK_PERIOD(CLK_PERIOD) ) u_ddr2_top_0 ( .ddr2_dq(ddr2_dq), .ddr2_a(ddr2_a), .ddr2_ba(ddr2_ba), .ddr2_ras_n(ddr2_ras_n), .ddr2_cas_n(ddr2_cas_n), .ddr2_we_n(ddr2_we_n), .ddr2_cs_n(ddr2_cs_n), .ddr2_odt(ddr2_odt), .ddr2_cke(ddr2_cke), .ddr2_dm(ddr2_dm), .phy_init_done(phy_init_done), .rst0(rst0), .rst90(rst90), .clk0(clk0), .clk90(clk90), .app_wdf_afull(app_wdf_afull), .app_af_afull(app_af_afull), .rd_data_valid(rd_data_valid), .app_wdf_wren(app_wdf_wren), .app_af_wren(app_af_wren), .app_af_addr(app_af_addr), .app_af_cmd(app_af_cmd), .rd_data_fifo_out(rd_data_fifo_out), .app_wdf_data(app_wdf_data), .app_wdf_mask_data(app_wdf_mask_data), .ddr2_dqs(ddr2_dqs), .ddr2_dqs_n(ddr2_dqs_n), .ddr2_ck(ddr2_ck), .ddr2_ck_n(ddr2_ck_n) ); endmodule
//***************************************************************************** // Copyright (c) 2006 Xilinx, Inc. // This design is confidential and proprietary of Xilinx, Inc. // All Rights Reserved //***************************************************************************** // ____ ____ // / /\/ / // /___/ \ / Vendor: Xilinx // \ \ \/ Version: $Name: i+IP+125372 $ // \ \ Application: MIG // / / Filename: mem_interface_top.v // /___/ /\ Date Last Modified: $Date: 2007/04/18 13:49:32 $ // \ \ / \ Date Created: Wed Aug 16 2006 // \___\/\___\ // //Device: Virtex-5 //Design Name: DDR2 //Purpose: // Top-level module. Simple model for what the user might use // Typically, the user will only instantiate MEM_INTERFACE_TOP in their // code, and generate all the other infrastructure and backend logic // separately. This module serves both as an example, and allows the user // to synthesize a self-contained design, which they can use to test their // hardware. // In addition to the memory controller, the module instantiates: // 1. Clock generation/distribution, reset logic // 2. IDELAY control block // 3. Synthesizable testbench - used to model user's backend logic //Reference: //Revision History: //***************************************************************************** `timescale 1ns/1ps module mem_interface_top # ( parameter BANK_WIDTH = 3, // # of memory bank addr bits parameter CKE_WIDTH = 1, // # of memory clock enable outputs parameter CLK_WIDTH = 1, // # of clock outputs parameter COL_WIDTH = 10, // # of memory column bits parameter CS_NUM = 1, // # of separate memory chip selects parameter CS_WIDTH = 1, // # of total memory chip selects parameter CS_BITS = 0, // set to log2(CS_NUM) (rounded up) parameter DM_WIDTH = 9, // # of data mask bits parameter DQ_WIDTH = 72, // # of data width parameter DQ_PER_DQS = 8, // # of DQ data bits per strobe parameter DQS_WIDTH = 9, // # of DQS strobes parameter DQ_BITS = 7, // set to log2(DQS_WIDTH*DQ_PER_DQS) parameter DQS_BITS = 4, // set to log2(DQS_WIDTH) parameter ODT_WIDTH = 1, // # of memory on-die term enables parameter ROW_WIDTH = 14, // # of memory row and # of addr bits parameter ADDITIVE_LAT = 0, // additive write latency parameter BURST_LEN = 4, // burst length (in double words) parameter BURST_TYPE = 0, // burst type (=0 seq; =1 interleaved) parameter CAS_LAT = 3, // CAS latency parameter ECC_ENABLE = 0, // enable ECC (=1 enable) parameter MULTI_BANK_EN = 1, // Keeps multiple banks open. (= 1 enable) parameter ODT_TYPE = 0, // ODT (=0(none),=1(75),=2(150),=3(50)) parameter REDUCE_DRV = 0, // reduced strength mem I/O (=1 yes) parameter REG_ENABLE = 1, // registered addr/ctrl (=1 yes) parameter TREFI_NS = 7800, // auto refresh interval (uS) parameter TRAS = 40000, // active->precharge delay parameter TRCD = 15000, // active->read/write delay parameter TRFC = 127500, // refresh->refresh, refresh->active delay parameter TRP = 15000, // precharge->command delay parameter TRTP = 7500, // read->precharge delay parameter TWR = 15000, // used to determine write->precharge parameter TWTR = 10000, // write->read delay parameter IDEL_HIGH_PERF = "TRUE", // # initial # taps for DQ IDELAY parameter SIM_ONLY = 0, // = 1 to skip SDRAM power up delay parameter CLK_PERIOD = 5000, // Core/Memory clock period (in ps) parameter RST_ACT_LOW = 1, // =1 for active low reset, =0 for active high parameter DLL_FREQ_MODE = "HIGH" // DCM Frequency range ) ( inout [DQ_WIDTH-1:0] ddr2_dq, output [ROW_WIDTH-1:0] ddr2_a, output [BANK_WIDTH-1:0] ddr2_ba, output ddr2_ras_n, output ddr2_cas_n, output ddr2_we_n, output [CS_WIDTH-1:0] ddr2_cs_n, output [ODT_WIDTH-1:0] ddr2_odt, output [CKE_WIDTH-1:0] ddr2_cke, output ddr2_reset_n, output [DM_WIDTH-1:0] ddr2_dm, //// input sys_clk_p, //// input sys_clk_n, input sys_clk, input clk200_p, input clk200_n, /// Jiansong: 200MHz clock output output clk200_o, input sys_rst_n, output phy_init_done, output rst0_tb, output clk0_tb, output app_wdf_afull, output app_af_afull, output rd_data_valid, input app_wdf_wren, input app_af_wren, input [30:0] app_af_addr, input [2:0] app_af_cmd, output [(2*DQ_WIDTH)-1:0] rd_data_fifo_out, input [(2*DQ_WIDTH)-1:0] app_wdf_data, input [(2*DM_WIDTH)-1:0] app_wdf_mask_data, inout [DQS_WIDTH-1:0] ddr2_dqs, inout [DQS_WIDTH-1:0] ddr2_dqs_n, output [CLK_WIDTH-1:0] ddr2_ck, output [CLK_WIDTH-1:0] ddr2_ck_n ); wire rst0; wire rst90; wire rst200; wire clk0; wire clk90; wire clk200; wire idelay_ctrl_rdy; //*************************************************************************** assign rst0_tb = rst0; assign clk0_tb = clk0; assign ddr2_reset_n= ~rst0; /// Jiansong: assign clk200_o = clk200; mem_interface_top_idelay_ctrl u_idelay_ctrl ( .rst200(rst200), .clk200(clk200), .idelay_ctrl_rdy(idelay_ctrl_rdy) ); mem_interface_top_infrastructure # ( .CLK_PERIOD(CLK_PERIOD), .RST_ACT_LOW(RST_ACT_LOW), .DLL_FREQ_MODE(DLL_FREQ_MODE) ) u_infrastructure ( //// .sys_clk_p(sys_clk_p), //// .sys_clk_n(sys_clk_n), .sys_clk(sys_clk), .clk200_p(clk200_p), .clk200_n(clk200_n), .sys_rst_n(sys_rst_n), .rst0(rst0), .rst90(rst90), .rst200(rst200), .clk0(clk0), .clk90(clk90), .clk200(clk200), .idelay_ctrl_rdy(idelay_ctrl_rdy) ); mem_interface_top_ddr2_top_0 # ( .BANK_WIDTH(BANK_WIDTH), .CKE_WIDTH(CKE_WIDTH), .CLK_WIDTH(CLK_WIDTH), .COL_WIDTH(COL_WIDTH), .CS_NUM(CS_NUM), .CS_WIDTH(CS_WIDTH), .CS_BITS(CS_BITS), .DM_WIDTH(DM_WIDTH), .DQ_WIDTH(DQ_WIDTH), .DQ_PER_DQS(DQ_PER_DQS), .DQS_WIDTH(DQS_WIDTH), .DQ_BITS(DQ_BITS), .DQS_BITS(DQS_BITS), .ODT_WIDTH(ODT_WIDTH), .ROW_WIDTH(ROW_WIDTH), .ADDITIVE_LAT(ADDITIVE_LAT), .BURST_LEN(BURST_LEN), .BURST_TYPE(BURST_TYPE), .CAS_LAT(CAS_LAT), .ECC_ENABLE(ECC_ENABLE), .MULTI_BANK_EN(MULTI_BANK_EN), .ODT_TYPE(ODT_TYPE), .REDUCE_DRV(REDUCE_DRV), .REG_ENABLE(REG_ENABLE), .TREFI_NS(TREFI_NS), .TRAS(TRAS), .TRCD(TRCD), .TRFC(TRFC), .TRP(TRP), .TRTP(TRTP), .TWR(TWR), .TWTR(TWTR), .IDEL_HIGH_PERF(IDEL_HIGH_PERF), .SIM_ONLY(SIM_ONLY), .CLK_PERIOD(CLK_PERIOD) ) u_ddr2_top_0 ( .ddr2_dq(ddr2_dq), .ddr2_a(ddr2_a), .ddr2_ba(ddr2_ba), .ddr2_ras_n(ddr2_ras_n), .ddr2_cas_n(ddr2_cas_n), .ddr2_we_n(ddr2_we_n), .ddr2_cs_n(ddr2_cs_n), .ddr2_odt(ddr2_odt), .ddr2_cke(ddr2_cke), .ddr2_dm(ddr2_dm), .phy_init_done(phy_init_done), .rst0(rst0), .rst90(rst90), .clk0(clk0), .clk90(clk90), .app_wdf_afull(app_wdf_afull), .app_af_afull(app_af_afull), .rd_data_valid(rd_data_valid), .app_wdf_wren(app_wdf_wren), .app_af_wren(app_af_wren), .app_af_addr(app_af_addr), .app_af_cmd(app_af_cmd), .rd_data_fifo_out(rd_data_fifo_out), .app_wdf_data(app_wdf_data), .app_wdf_mask_data(app_wdf_mask_data), .ddr2_dqs(ddr2_dqs), .ddr2_dqs_n(ddr2_dqs_n), .ddr2_ck(ddr2_ck), .ddr2_ck_n(ddr2_ck_n) ); endmodule
//----------------------------------------------------------------------------- // Copyright (C) 2014 iZsh <izsh at fail0verflow.com> // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Butterworth low pass IIR filter // input: 8bit ADC signal, 1MS/s // output: 8bit value, Fc=20khz // // coef: (using http://www-users.cs.york.ac.uk/~fisher/mkfilter/trad.html) // Recurrence relation: // y[n] = ( 1 * x[n- 2]) // + ( 2 * x[n- 1]) // + ( 1 * x[n- 0]) // + ( -0.8371816513 * y[n- 2]) // + ( 1.8226949252 * y[n- 1]) // // therefore: // a = [1,2,1] // b = [-0.8371816513, 1.8226949252] // b is approximated to b = [-0xd6/0x100, 0x1d3 / 0x100] (for optimization) // gain = 2.761139367e2 // // See details about its design see // https://fail0verflow.com/blog/2014/proxmark3-fpga-iir-filter.html module lp20khz_1MSa_iir_filter(input clk, input [7:0] adc_d, output rdy, output [7:0] out); // clk is 24Mhz, the IIR filter is designed for 1MS/s // hence we need to divide it by 24 // using a shift register takes less area than a counter reg [23:0] cnt = 1; assign rdy = cnt[0]; always @(posedge clk) cnt <= {cnt[22:0], cnt[23]}; reg [7:0] x0 = 0; reg [7:0] x1 = 0; reg [16:0] y0 = 0; reg [16:0] y1 = 0; always @(posedge clk) begin if (rdy) begin x0 <= x1; x1 <= adc_d; y0 <= y1; y1 <= // center the signal: // input range is [0; 255] // We want "128" to be at the center of the 17bit register // (128+z)*gain = 17bit center // z = (1<<16)/gain - 128 = 109 // We could use 9bit x registers for that, but that would be // a waste, let's just add the constant during the computation // (x0+109) + 2*(x1+109) + (x2+109) = x0 + 2*x1 + x2 + 436 x0 + {x1, 1'b0} + adc_d + 436 // we want "- y0 * 0xd6 / 0x100" using only shift and add // 0xd6 == 0b11010110 // so *0xd6/0x100 is equivalent to // ((x << 1) + (x << 2) + (x << 4) + (x << 6) + (x << 7)) >> 8 // which is also equivalent to // (x >> 7) + (x >> 6) + (x >> 4) + (x >> 2) + (x >> 1) - ((y0 >> 7) + (y0 >> 6) + (y0 >> 4) + (y0 >> 2) + (y0 >> 1)) // - y0 * 0xd6 / 0x100 // we want "+ y1 * 0x1d3 / 0x100" // 0x1d3 == 0b111010011 // so this is equivalent to // ((x << 0) + (x << 1) + (x << 4) + (x << 6) + (x << 7) + (x << 8)) >> 8 // which is also equivalent to // (x >> 8) + (x >> 7) + (x >> 4) + (x >> 2) + (x >> 1) + (x >> 0) + ((y1 >> 8) + (y1 >> 7) + (y1 >> 4) + (y1 >> 2) + (y1 >> 1) + y1); end end // output: reduce to 8bit assign out = y1[16:9]; endmodule
/*+-------------------------------------------------------------------------- Copyright (c) 2015, Microsoft Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------------*/ `timescale 1ns / 1ps module RCB_FRL_OSERDES(OQ, CLK, CLKDIV, DI, OCE, SR); output OQ; input CLK, CLKDIV; input [7:0] DI; input OCE, SR; wire SHIFT1, SHIFT2; OSERDES OSERDES_inst1 ( .OQ(OQ), // 1-bit data path output .SHIFTOUT1(), // 1-bit data expansion output .SHIFTOUT2(), // 1-bit data expansion output .TQ(), // 1-bit 3-state control output .CLK(CLK), // 1-bit clock input .CLKDIV(CLKDIV), // 1-bit divided clock input .D1(DI[7]), // 1-bit parallel data input .D2(DI[6]), // 1-bit parallel data input .D3(DI[5]), // 1-bit parallel data input .D4(DI[4]), // 1-bit parallel data input .D5(DI[3]), // 1-bit parallel data input .D6(DI[2]), // 1-bit parallel data input .OCE(OCE), // 1-bit clock enable input .REV(1'b0), // 1-bit reverse SR input .SHIFTIN1(SHIFT1), // 1-bit data expansion input .SHIFTIN2(SHIFT2), // 1-bit data expansion input .SR(SR), // 1-bit set/reset input .T1(), // 1-bit parallel 3-state input .T2(), // 1-bit parallel 3-state input .T3(), // 1-bit parallel 3-state input .T4(), // 1-bit parallel 3-state input .TCE(1'b1) // 1-bit 3-state signal clock enable input ); defparam OSERDES_inst1.DATA_RATE_OQ = "DDR"; defparam OSERDES_inst1.DATA_RATE_TQ = "DDR"; defparam OSERDES_inst1.DATA_WIDTH = 8; defparam OSERDES_inst1.SERDES_MODE = "MASTER"; defparam OSERDES_inst1.TRISTATE_WIDTH = 1; OSERDES OSERDES_inst2 ( .OQ(), // 1-bit data path output .SHIFTOUT1(SHIFT1), // 1-bit data expansion output .SHIFTOUT2(SHIFT2), // 1-bit data expansion output .TQ(), // 1-bit 3-state control output .CLK(CLK), // 1-bit clock input .CLKDIV(CLKDIV), // 1-bit divided clock input .D1(), // 1-bit parallel data input .D2(), // 1-bit parallel data input .D3(DI[1]), // 1-bit parallel data input .D4(DI[0]), // 1-bit parallel data input .D5(), // 1-bit parallel data input .D6(), // 1-bit parallel data input .OCE(OCE), // 1-bit clock enable input .REV(1'b0), // 1-bit reverse SR input .SHIFTIN1(), // 1-bit data expansion input .SHIFTIN2(), // 1-bit data expansion input .SR(SR), // 1-bit set/reset input .T1(), // 1-bit parallel 3-state input .T2(), // 1-bit parallel 3-state input .T3(), // 1-bit parallel 3-state input .T4(), // 1-bit parallel 3-state input .TCE(1'b1) // 1-bit 3-state signal clock enable input ); defparam OSERDES_inst2.DATA_RATE_OQ = "DDR"; defparam OSERDES_inst2.DATA_RATE_TQ = "DDR"; defparam OSERDES_inst2.DATA_WIDTH = 8; defparam OSERDES_inst2.SERDES_MODE = "SLAVE"; defparam OSERDES_inst2.TRISTATE_WIDTH = 1; endmodule
/*+-------------------------------------------------------------------------- Copyright (c) 2015, Microsoft Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------------*/ `timescale 1ns / 1ps module RCB_FRL_OSERDES(OQ, CLK, CLKDIV, DI, OCE, SR); output OQ; input CLK, CLKDIV; input [7:0] DI; input OCE, SR; wire SHIFT1, SHIFT2; OSERDES OSERDES_inst1 ( .OQ(OQ), // 1-bit data path output .SHIFTOUT1(), // 1-bit data expansion output .SHIFTOUT2(), // 1-bit data expansion output .TQ(), // 1-bit 3-state control output .CLK(CLK), // 1-bit clock input .CLKDIV(CLKDIV), // 1-bit divided clock input .D1(DI[7]), // 1-bit parallel data input .D2(DI[6]), // 1-bit parallel data input .D3(DI[5]), // 1-bit parallel data input .D4(DI[4]), // 1-bit parallel data input .D5(DI[3]), // 1-bit parallel data input .D6(DI[2]), // 1-bit parallel data input .OCE(OCE), // 1-bit clock enable input .REV(1'b0), // 1-bit reverse SR input .SHIFTIN1(SHIFT1), // 1-bit data expansion input .SHIFTIN2(SHIFT2), // 1-bit data expansion input .SR(SR), // 1-bit set/reset input .T1(), // 1-bit parallel 3-state input .T2(), // 1-bit parallel 3-state input .T3(), // 1-bit parallel 3-state input .T4(), // 1-bit parallel 3-state input .TCE(1'b1) // 1-bit 3-state signal clock enable input ); defparam OSERDES_inst1.DATA_RATE_OQ = "DDR"; defparam OSERDES_inst1.DATA_RATE_TQ = "DDR"; defparam OSERDES_inst1.DATA_WIDTH = 8; defparam OSERDES_inst1.SERDES_MODE = "MASTER"; defparam OSERDES_inst1.TRISTATE_WIDTH = 1; OSERDES OSERDES_inst2 ( .OQ(), // 1-bit data path output .SHIFTOUT1(SHIFT1), // 1-bit data expansion output .SHIFTOUT2(SHIFT2), // 1-bit data expansion output .TQ(), // 1-bit 3-state control output .CLK(CLK), // 1-bit clock input .CLKDIV(CLKDIV), // 1-bit divided clock input .D1(), // 1-bit parallel data input .D2(), // 1-bit parallel data input .D3(DI[1]), // 1-bit parallel data input .D4(DI[0]), // 1-bit parallel data input .D5(), // 1-bit parallel data input .D6(), // 1-bit parallel data input .OCE(OCE), // 1-bit clock enable input .REV(1'b0), // 1-bit reverse SR input .SHIFTIN1(), // 1-bit data expansion input .SHIFTIN2(), // 1-bit data expansion input .SR(SR), // 1-bit set/reset input .T1(), // 1-bit parallel 3-state input .T2(), // 1-bit parallel 3-state input .T3(), // 1-bit parallel 3-state input .T4(), // 1-bit parallel 3-state input .TCE(1'b1) // 1-bit 3-state signal clock enable input ); defparam OSERDES_inst2.DATA_RATE_OQ = "DDR"; defparam OSERDES_inst2.DATA_RATE_TQ = "DDR"; defparam OSERDES_inst2.DATA_WIDTH = 8; defparam OSERDES_inst2.SERDES_MODE = "SLAVE"; defparam OSERDES_inst2.TRISTATE_WIDTH = 1; endmodule
`timescale 1ns / 1ps ////////////////////////////////////////////////////////////////////////////////// // Company: // Engineer: // // Create Date: 04/26/2016 06:19:33 AM // Design Name: // Module Name: Barrel_Shifter_M // Project Name: // Target Devices: // Tool Versions: // Description: // // Dependencies: // // Revision: // Revision 0.01 - File Created // Additional Comments: // ////////////////////////////////////////////////////////////////////////////////// module Barrel_Shifter_M #(parameter SW=26) ( input wire clk, input wire rst, input wire load_i, input wire Shift_Value_i, input wire [SW-1:0] Shift_Data_i, /////////////////////////////////////////////7 output wire [SW-1:0] N_mant_o ); wire [SW-1:0] Data_Reg; ////////////////////////////////////////////////////7 shift_mux_array #(.SWR(SW), .LEVEL(0)) shift_mux_array( .Data_i(Shift_Data_i), .select_i(Shift_Value_i), .bit_shift_i(1'b1), .Data_o(Data_Reg) ); RegisterMult #(.W(SW)) Output_Reg( .clk(clk), .rst(rst), .load(load_i), .D(Data_Reg), .Q(N_mant_o) ); endmodule
`timescale 1ns / 1ps ////////////////////////////////////////////////////////////////////////////////// // Company: // Engineer: // // Create Date: 04/26/2016 06:19:33 AM // Design Name: // Module Name: Barrel_Shifter_M // Project Name: // Target Devices: // Tool Versions: // Description: // // Dependencies: // // Revision: // Revision 0.01 - File Created // Additional Comments: // ////////////////////////////////////////////////////////////////////////////////// module Barrel_Shifter_M #(parameter SW=26) ( input wire clk, input wire rst, input wire load_i, input wire Shift_Value_i, input wire [SW-1:0] Shift_Data_i, /////////////////////////////////////////////7 output wire [SW-1:0] N_mant_o ); wire [SW-1:0] Data_Reg; ////////////////////////////////////////////////////7 shift_mux_array #(.SWR(SW), .LEVEL(0)) shift_mux_array( .Data_i(Shift_Data_i), .select_i(Shift_Value_i), .bit_shift_i(1'b1), .Data_o(Data_Reg) ); RegisterMult #(.W(SW)) Output_Reg( .clk(clk), .rst(rst), .load(load_i), .D(Data_Reg), .Q(N_mant_o) ); endmodule
`timescale 1ns / 1ps ////////////////////////////////////////////////////////////////////////////////// // Company: // Engineer: // // Create Date: 04/26/2016 06:19:33 AM // Design Name: // Module Name: Barrel_Shifter_M // Project Name: // Target Devices: // Tool Versions: // Description: // // Dependencies: // // Revision: // Revision 0.01 - File Created // Additional Comments: // ////////////////////////////////////////////////////////////////////////////////// module Barrel_Shifter_M #(parameter SW=26) ( input wire clk, input wire rst, input wire load_i, input wire Shift_Value_i, input wire [SW-1:0] Shift_Data_i, /////////////////////////////////////////////7 output wire [SW-1:0] N_mant_o ); wire [SW-1:0] Data_Reg; ////////////////////////////////////////////////////7 shift_mux_array #(.SWR(SW), .LEVEL(0)) shift_mux_array( .Data_i(Shift_Data_i), .select_i(Shift_Value_i), .bit_shift_i(1'b1), .Data_o(Data_Reg) ); RegisterMult #(.W(SW)) Output_Reg( .clk(clk), .rst(rst), .load(load_i), .D(Data_Reg), .Q(N_mant_o) ); endmodule
`timescale 1ns / 1ps ////////////////////////////////////////////////////////////////////////////////// // Company: // Engineer: // // Create Date: 04/26/2016 07:00:53 AM // Design Name: // Module Name: Adder_Round // Project Name: // Target Devices: // Tool Versions: // Description: // // Dependencies: // // Revision: // Revision 0.01 - File Created // Additional Comments: // ////////////////////////////////////////////////////////////////////////////////// module Adder_Round #(parameter SW=26) ( input wire clk, input wire rst, input wire load_i,//Reg load input input wire [SW-1:0] Data_A_i, input wire [SW-1:0] Data_B_i, ///////////////////////////////////////////////////////////// output wire [SW-1:0] Data_Result_o, output wire FSM_C_o ); wire [SW:0] result_A_adder; adder #(.W(SW)) A_operation ( .Data_A_i(Data_A_i), .Data_B_i(Data_B_i), .Data_S_o(result_A_adder) ); RegisterAdd #(.W(SW)) Add_Subt_Result( .clk (clk), .rst (rst), .load (load_i), .D (result_A_adder[SW-1:0]), .Q (Data_Result_o) ); RegisterAdd #(.W(1)) Add_overflow_Result( .clk (clk), .rst (rst), .load (load_i), .D (result_A_adder[SW]), .Q (FSM_C_o) ); endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2010 by Wilson Snyder. `ifndef VERILATOR module t; /*AUTOREGINPUT*/ // Beginning of automatic reg inputs (for undeclared instantiated-module inputs) reg c0; // To t2 of t2.v reg c1; // To t2 of t2.v reg check; // To t2 of t2.v reg [1:0] clks; // To t2 of t2.v // End of automatics t2 t2 (/*AUTOINST*/ // Inputs .clks (clks[1:0]), .c0 (c0), .c1 (c1), .check (check)); task clockit (input v1, v0); c1 = v1; c0 = v0; clks[1] = v1; clks[0] = v0; `ifdef TEST_VERBOSE $write("[%0t] c1=%x c0=%x\n", $time,v0,v1); `endif #1; endtask initial begin check = '0; c0 = '0; c1 = '0; clks = '0; #1 t2.clear(); #10; for (int i=0; i<2; i++) begin clockit(0, 0); clockit(0, 0); clockit(0, 1); clockit(1, 1); clockit(0, 0); clockit(1, 1); clockit(1, 0); clockit(0, 0); clockit(1, 0); clockit(0, 1); clockit(0, 0); end check = 1; clockit(0, 0); end endmodule `endif `ifdef VERILATOR `define t2 t `else `define t2 t2 `endif module `t2 ( input [1:0] clks, input c0, input c1, input check ); `ifdef T_CLK_2IN_VEC wire clk0 = clks[0]; wire clk1 = clks[1]; `else wire clk0 = c0; wire clk1 = c1; `endif integer p0 = 0; integer p1 = 0; integer p01 = 0; integer n0 = 0; integer n1 = 0; integer n01 = 0; integer vp = 0; integer vn = 0; integer vpn = 0; task clear; `ifdef TEST_VERBOSE $display("[%0t] clear\n",$time); `endif p0 = 0; p1 = 0; p01 = 0; n0 = 0; n1 = 0; n01 = 0; vp = 0; vn = 0; vpn = 0; endtask `define display_counts(text) begin \ $write("[%0t] ",$time); \ `ifdef T_CLK_2IN_VEC $write(" 2v "); `endif \ $write(text); \ $write(": %0d %0d %0d %0d %0d %0d %0d %0d %0d\n", p0, p1, p01, n0, n1, n01, vp, vn, vpn); \ end always @ (posedge clk0) begin p0 = p0 + 1; // Want blocking, so don't miss clock counts `ifdef TEST_VERBOSE `display_counts("posedge 0"); `endif end always @ (posedge clk1) begin p1 = p1 + 1; `ifdef TEST_VERBOSE `display_counts("posedge 1"); `endif end always @ (posedge clk0 or posedge clk1) begin p01 = p01 + 1; `ifdef TEST_VERBOSE `display_counts("posedge *"); `endif end always @ (negedge clk0) begin n0 = n0 + 1; `ifdef TEST_VERBOSE `display_counts("negedge 0"); `endif end always @ (negedge clk1) begin n1 = n1 + 1; `ifdef TEST_VERBOSE `display_counts("negedge 1"); `endif end always @ (negedge clk0 or negedge clk1) begin n01 = n01 + 1; `ifdef TEST_VERBOSE `display_counts("negedge *"); `endif end `ifndef VERILATOR always @ (posedge clks) begin vp = vp + 1; `ifdef TEST_VERBOSE `display_counts("pos vec"); `endif end always @ (negedge clks) begin vn = vn + 1; `ifdef TEST_VERBOSE `display_counts("neg vec"); `endif end always @ (posedge clks or negedge clks) begin vpn = vpn + 1; `ifdef TEST_VERBOSE `display_counts("or vec"); `endif end `endif always @ (posedge check) begin if (p0!=6) $stop; if (p1!=6) $stop; if (p01!=10) $stop; if (n0!=6) $stop; if (n1!=6) $stop; if (n01!=10) $stop; `ifndef VERILATOR if (vp!=6) $stop; if (vn!=6) $stop; if (vpn!=12) $stop; `endif $write("*-* All Finished *-*\n"); end endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2009 by Iztok Jeras. module t (/*AUTOARG*/ // Inputs clk ); input clk; localparam NO = 7; // number of access events // packed structures struct packed { logic e0; logic [1:0] e1; logic [3:0] e2; logic [7:0] e3; } struct_bg; // big endian structure /* verilator lint_off LITENDIAN */ struct packed { logic e0; logic [0:1] e1; logic [0:3] e2; logic [0:7] e3; } struct_lt; // little endian structure /* verilator lint_on LITENDIAN */ localparam WS = 15; // $bits(struct_bg) integer cnt = 0; // event counter always @ (posedge clk) begin cnt <= cnt + 1; end // finish report always @ (posedge clk) if ((cnt[30:2]==(NO-1)) && (cnt[1:0]==2'd3)) begin $write("*-* All Finished *-*\n"); $finish; end // big endian always @ (posedge clk) if (cnt[1:0]==2'd0) begin // initialize to defaults (all bits 1'b0) if (cnt[30:2]==0) struct_bg <= '0; else if (cnt[30:2]==1) struct_bg <= '0; else if (cnt[30:2]==2) struct_bg <= '0; else if (cnt[30:2]==3) struct_bg <= '0; else if (cnt[30:2]==4) struct_bg <= '0; else if (cnt[30:2]==5) struct_bg <= '0; else if (cnt[30:2]==6) struct_bg <= '0; end else if (cnt[1:0]==2'd1) begin // write data into whole or part of the array using literals if (cnt[30:2]==0) begin end else if (cnt[30:2]==1) struct_bg <= '{0 ,1 , 2, 3}; else if (cnt[30:2]==2) struct_bg <= '{e0:1, e1:2, e2:3, e3:4}; else if (cnt[30:2]==3) struct_bg <= '{e3:6, e2:4, e1:2, e0:0}; // verilator lint_off WIDTH else if (cnt[30:2]==4) struct_bg <= '{default:13}; else if (cnt[30:2]==5) struct_bg <= '{e2:8'haa, default:1}; else if (cnt[30:2]==6) struct_bg <= '{cnt+0 ,cnt+1 , cnt+2, cnt+3}; // verilator lint_on WIDTH end else if (cnt[1:0]==2'd2) begin // chack array agains expected value if (cnt[30:2]==0) begin if (struct_bg !== 15'b0_00_0000_00000000) begin $display("%b", struct_bg); $stop(); end end else if (cnt[30:2]==1) begin if (struct_bg !== 15'b0_01_0010_00000011) begin $display("%b", struct_bg); $stop(); end end else if (cnt[30:2]==2) begin if (struct_bg !== 15'b1_10_0011_00000100) begin $display("%b", struct_bg); $stop(); end end else if (cnt[30:2]==3) begin if (struct_bg !== 15'b0_10_0100_00000110) begin $display("%b", struct_bg); $stop(); end end else if (cnt[30:2]==4) begin if (struct_bg !== 15'b1_01_1101_00001101) begin $display("%b", struct_bg); $stop(); end end else if (cnt[30:2]==5) begin if (struct_bg !== 15'b1_01_1010_00000001) begin $display("%b", struct_bg); $stop(); end end else if (cnt[30:2]==6) begin if (struct_bg !== 15'b1_10_1011_00011100) begin $display("%b", struct_bg); $stop(); end end end // little endian always @ (posedge clk) if (cnt[1:0]==2'd0) begin // initialize to defaults (all bits 1'b0) if (cnt[30:2]==0) struct_lt <= '0; else if (cnt[30:2]==1) struct_lt <= '0; else if (cnt[30:2]==2) struct_lt <= '0; else if (cnt[30:2]==3) struct_lt <= '0; else if (cnt[30:2]==4) struct_lt <= '0; else if (cnt[30:2]==5) struct_lt <= '0; else if (cnt[30:2]==6) struct_lt <= '0; end else if (cnt[1:0]==2'd1) begin // write data into whole or part of the array using literals if (cnt[30:2]==0) begin end else if (cnt[30:2]==1) struct_lt <= '{0 ,1 , 2, 3}; else if (cnt[30:2]==2) struct_lt <= '{e0:1, e1:2, e2:3, e3:4}; else if (cnt[30:2]==3) struct_lt <= '{e3:6, e2:4, e1:2, e0:0}; // verilator lint_off WIDTH else if (cnt[30:2]==4) struct_lt <= '{default:13}; else if (cnt[30:2]==5) struct_lt <= '{e2:8'haa, default:1}; else if (cnt[30:2]==6) struct_lt <= '{cnt+0 ,cnt+1 , cnt+2, cnt+3}; // verilator lint_on WIDTH end else if (cnt[1:0]==2'd2) begin // chack array agains expected value if (cnt[30:2]==0) begin if (struct_lt !== 15'b0_00_0000_00000000) begin $display("%b", struct_lt); $stop(); end end else if (cnt[30:2]==1) begin if (struct_lt !== 15'b0_01_0010_00000011) begin $display("%b", struct_lt); $stop(); end end else if (cnt[30:2]==2) begin if (struct_lt !== 15'b1_10_0011_00000100) begin $display("%b", struct_lt); $stop(); end end else if (cnt[30:2]==3) begin if (struct_lt !== 15'b0_10_0100_00000110) begin $display("%b", struct_lt); $stop(); end end else if (cnt[30:2]==4) begin if (struct_lt !== 15'b1_01_1101_00001101) begin $display("%b", struct_lt); $stop(); end end else if (cnt[30:2]==5) begin if (struct_lt !== 15'b1_01_1010_00000001) begin $display("%b", struct_lt); $stop(); end end else if (cnt[30:2]==6) begin if (struct_lt !== 15'b1_10_1011_00011100) begin $display("%b", struct_lt); $stop(); end end end endmodule
// DESCRIPTION: Verilator: Simple test of unoptflat // // Demonstration of an UNOPTFLAT combinatorial loop using 3 bits and looping // through 2 sub-modules. // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2013 by Jeremy Bennett. module t (/*AUTOARG*/ // Inputs clk ); input clk; wire [2:0] x; initial begin x = 3'b000; end test1 test1i ( .clk (clk), .xvecin (x[1:0]), .xvecout (x[2:1])); test2 test2i ( .clk (clk), .xvecin (x[2:1]), .xvecout (x[1:0])); always @(posedge clk or negedge clk) begin `ifdef TEST_VERBOSE $write("x = %x\n", x); `endif if (x[1] != 0) begin $write("*-* All Finished *-*\n"); $finish; end end endmodule // t module test1 (/*AUTOARG*/ // Inputs clk, xvecin, // Outputs xvecout ); input clk; input wire [1:0] xvecin; output wire [1:0] xvecout; assign xvecout = {xvecin[0], clk}; endmodule // test module test2 (/*AUTOARG*/ // Inputs clk, xvecin, // Outputs xvecout ); input clk; input wire [1:0] xvecin; output wire [1:0] xvecout; assign xvecout = {clk, xvecin[1]}; endmodule // test
// DESCRIPTION: Verilator: Simple test of unoptflat // // Demonstration of an UNOPTFLAT combinatorial loop using 3 bits and looping // through 2 sub-modules. // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2013 by Jeremy Bennett. module t (/*AUTOARG*/ // Inputs clk ); input clk; wire [2:0] x; initial begin x = 3'b000; end test1 test1i ( .clk (clk), .xvecin (x[1:0]), .xvecout (x[2:1])); test2 test2i ( .clk (clk), .xvecin (x[2:1]), .xvecout (x[1:0])); always @(posedge clk or negedge clk) begin `ifdef TEST_VERBOSE $write("x = %x\n", x); `endif if (x[1] != 0) begin $write("*-* All Finished *-*\n"); $finish; end end endmodule // t module test1 (/*AUTOARG*/ // Inputs clk, xvecin, // Outputs xvecout ); input clk; input wire [1:0] xvecin; output wire [1:0] xvecout; assign xvecout = {xvecin[0], clk}; endmodule // test module test2 (/*AUTOARG*/ // Inputs clk, xvecin, // Outputs xvecout ); input clk; input wire [1:0] xvecin; output wire [1:0] xvecout; assign xvecout = {clk, xvecin[1]}; endmodule // test
// DESCRIPTION: Verilator: Simple test of unoptflat // // Demonstration of an UNOPTFLAT combinatorial loop using 3 bits and looping // through 2 sub-modules. // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2013 by Jeremy Bennett. module t (/*AUTOARG*/ // Inputs clk ); input clk; wire [2:0] x; initial begin x = 3'b000; end test1 test1i ( .clk (clk), .xvecin (x[1:0]), .xvecout (x[2:1])); test2 test2i ( .clk (clk), .xvecin (x[2:1]), .xvecout (x[1:0])); always @(posedge clk or negedge clk) begin `ifdef TEST_VERBOSE $write("x = %x\n", x); `endif if (x[1] != 0) begin $write("*-* All Finished *-*\n"); $finish; end end endmodule // t module test1 (/*AUTOARG*/ // Inputs clk, xvecin, // Outputs xvecout ); input clk; input wire [1:0] xvecin; output wire [1:0] xvecout; assign xvecout = {xvecin[0], clk}; endmodule // test module test2 (/*AUTOARG*/ // Inputs clk, xvecin, // Outputs xvecout ); input clk; input wire [1:0] xvecin; output wire [1:0] xvecout; assign xvecout = {clk, xvecin[1]}; endmodule // test
// DESCRIPTION: Verilator: Simple test of unoptflat // // Demonstration of an UNOPTFLAT combinatorial loop using 3 bits and looping // through 2 sub-modules. // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2013 by Jeremy Bennett. module t (/*AUTOARG*/ // Inputs clk ); input clk; wire [2:0] x; initial begin x = 3'b000; end test1 test1i ( .clk (clk), .xvecin (x[1:0]), .xvecout (x[2:1])); test2 test2i ( .clk (clk), .xvecin (x[2:1]), .xvecout (x[1:0])); always @(posedge clk or negedge clk) begin `ifdef TEST_VERBOSE $write("x = %x\n", x); `endif if (x[1] != 0) begin $write("*-* All Finished *-*\n"); $finish; end end endmodule // t module test1 (/*AUTOARG*/ // Inputs clk, xvecin, // Outputs xvecout ); input clk; input wire [1:0] xvecin; output wire [1:0] xvecout; assign xvecout = {xvecin[0], clk}; endmodule // test module test2 (/*AUTOARG*/ // Inputs clk, xvecin, // Outputs xvecout ); input clk; input wire [1:0] xvecin; output wire [1:0] xvecout; assign xvecout = {clk, xvecin[1]}; endmodule // test
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2012 by Wilson Snyder. // bug511 module t (/*AUTOARG*/ // Inputs clk ); input clk; wire [7:0] au; wire [7:0] as; Test1 test1 (.au); Test2 test2 (.as); // Test loop always @ (posedge clk) begin `ifdef TEST_VERBOSE $write("[%0t] result=%x %x\n",$time, au, as); `endif if (au != 'h12) $stop; if (as != 'h02) $stop; $write("*-* All Finished *-*\n"); $finish; end endmodule module Test1 (output [7:0] au); wire [7:0] b; wire signed [3:0] c; // verilator lint_off WIDTH assign c=-1; // 'hf assign b=3; // 'h3 assign au=b+c; // 'h12 // verilator lint_on WIDTH endmodule module Test2 (output [7:0] as); wire signed [7:0] b; wire signed [3:0] c; // verilator lint_off WIDTH assign c=-1; // 'hf assign b=3; // 'h3 assign as=b+c; // 'h12 // verilator lint_on WIDTH endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2012 by Wilson Snyder. // bug511 module t (/*AUTOARG*/ // Inputs clk ); input clk; wire [7:0] au; wire [7:0] as; Test1 test1 (.au); Test2 test2 (.as); // Test loop always @ (posedge clk) begin `ifdef TEST_VERBOSE $write("[%0t] result=%x %x\n",$time, au, as); `endif if (au != 'h12) $stop; if (as != 'h02) $stop; $write("*-* All Finished *-*\n"); $finish; end endmodule module Test1 (output [7:0] au); wire [7:0] b; wire signed [3:0] c; // verilator lint_off WIDTH assign c=-1; // 'hf assign b=3; // 'h3 assign au=b+c; // 'h12 // verilator lint_on WIDTH endmodule module Test2 (output [7:0] as); wire signed [7:0] b; wire signed [3:0] c; // verilator lint_off WIDTH assign c=-1; // 'hf assign b=3; // 'h3 assign as=b+c; // 'h12 // verilator lint_on WIDTH endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2012 by Wilson Snyder. // bug511 module t (/*AUTOARG*/ // Inputs clk ); input clk; wire [7:0] au; wire [7:0] as; Test1 test1 (.au); Test2 test2 (.as); // Test loop always @ (posedge clk) begin `ifdef TEST_VERBOSE $write("[%0t] result=%x %x\n",$time, au, as); `endif if (au != 'h12) $stop; if (as != 'h02) $stop; $write("*-* All Finished *-*\n"); $finish; end endmodule module Test1 (output [7:0] au); wire [7:0] b; wire signed [3:0] c; // verilator lint_off WIDTH assign c=-1; // 'hf assign b=3; // 'h3 assign au=b+c; // 'h12 // verilator lint_on WIDTH endmodule module Test2 (output [7:0] as); wire signed [7:0] b; wire signed [3:0] c; // verilator lint_off WIDTH assign c=-1; // 'hf assign b=3; // 'h3 assign as=b+c; // 'h12 // verilator lint_on WIDTH endmodule
//----------------------------------------------------------------------------- // Copyright (C) 2014 iZsh <izsh at fail0verflow.com> // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // input clk is 24Mhz `include "min_max_tracker.v" module lf_edge_detect(input clk, input [7:0] adc_d, input [7:0] lf_ed_threshold, output [7:0] max, output [7:0] min, output [7:0] high_threshold, output [7:0] highz_threshold, output [7:0] lowz_threshold, output [7:0] low_threshold, output edge_state, output edge_toggle); min_max_tracker tracker(clk, adc_d, lf_ed_threshold, min, max); // auto-tune assign high_threshold = (max + min) / 2 + (max - min) / 4; assign highz_threshold = (max + min) / 2 + (max - min) / 8; assign lowz_threshold = (max + min) / 2 - (max - min) / 8; assign low_threshold = (max + min) / 2 - (max - min) / 4; // heuristic to see if it makes sense to try to detect an edge wire enabled = (high_threshold > highz_threshold) & (highz_threshold > lowz_threshold) & (lowz_threshold > low_threshold) & ((high_threshold - highz_threshold) > 8) & ((highz_threshold - lowz_threshold) > 16) & ((lowz_threshold - low_threshold) > 8); // Toggle the output with hysteresis // Set to high if the ADC value is above the threshold // Set to low if the ADC value is below the threshold reg is_high = 0; reg is_low = 0; reg is_zero = 0; reg trigger_enabled = 1; reg output_edge = 0; reg output_state; always @(posedge clk) begin is_high <= (adc_d >= high_threshold); is_low <= (adc_d <= low_threshold); is_zero <= ((adc_d > lowz_threshold) & (adc_d < highz_threshold)); end // all edges detection always @(posedge clk) if (enabled) begin // To enable detecting two consecutive peaks at the same level // (low or high) we check whether or not we went back near 0 in-between. // This extra check is necessary to prevent from noise artifacts // around the threshold values. if (trigger_enabled & (is_high | is_low)) begin output_edge <= ~output_edge; trigger_enabled <= 0; end else trigger_enabled <= trigger_enabled | is_zero; end // edge states always @(posedge clk) if (enabled) begin if (is_high) output_state <= 1'd1; else if (is_low) output_state <= 1'd0; end assign edge_state = output_state; assign edge_toggle = output_edge; endmodule