text
stringlengths 938
1.05M
|
---|
`timescale 1ns / 1ps
//////////////////////////////////////////////////////////////////////////////////
// Company:
// Engineer:
//
// Create Date: 11:05:40 09/06/2015
// Design Name:
// Module Name: Deco_Round_Mult
// Project Name:
// Target Devices:
// Tool versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//////////////////////////////////////////////////////////////////////////////////
module Deco_Round_Mult(
input wire [1:0] round_mode,
input wire or_info, //23 less significant bits from the product of significands
input wire xor_info, //Brings information about the sign of the operation
output reg ctrl //control signal mux --- control of the rounded significand
);
always @*
case ({xor_info,or_info,round_mode})
// Round to infinity - (Round down)
//1'b0: Let pass the significand without rounding
//1'b1: Let pass the rounded significand
//Round towards - infinity
//0: positive number ; 01: Round towards - inifnity ; XX rounding bits
//Positive Number
//xor, or, round
4'b0101: ctrl <= 1'b0;
//Negative Number
4'b1101: ctrl <= 1'b1;
//Round towards + infinity
//Positive Number
4'b0110: ctrl <= 1'b1;
//Negative Number
4'b1110: ctrl <= 1'b0;
default: ctrl <= 1'b0; //Truncation
endcase
endmodule |
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2013 by Wilson Snyder.
// Very simple test for interface pathclearing
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc=1;
ifc #(2) itopa();
ifc #(4) itopb();
sub ca (.isub(itopa.out_modport),
.clk);
sub cb (.isub(itopb.out_modport),
.clk);
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d result=%b %b\n",$time, cyc, itopa.valueo, itopb.valueo);
`endif
cyc <= cyc + 1;
itopa.valuei <= cyc[1:0];
itopb.valuei <= cyc[3:0];
if (cyc==1) begin
if (itopa.WIDTH != 2) $stop;
if (itopb.WIDTH != 4) $stop;
if ($bits(itopa.valueo) != 2) $stop;
if ($bits(itopb.valueo) != 4) $stop;
if ($bits(itopa.out_modport.valueo) != 2) $stop;
if ($bits(itopb.out_modport.valueo) != 4) $stop;
end
if (cyc==4) begin
if (itopa.valueo != 2'b11) $stop;
if (itopb.valueo != 4'b0011) $stop;
end
if (cyc==5) begin
if (itopa.valueo != 2'b00) $stop;
if (itopb.valueo != 4'b0100) $stop;
end
if (cyc==20) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
interface ifc
#(parameter WIDTH = 1);
// verilator lint_off MULTIDRIVEN
logic [WIDTH-1:0] valuei;
logic [WIDTH-1:0] valueo;
// verilator lint_on MULTIDRIVEN
modport out_modport (input valuei, output valueo);
endinterface
// Note not parameterized
module sub
(
ifc.out_modport isub,
input clk
);
always @(posedge clk) isub.valueo <= isub.valuei + 1;
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2012 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
`define checkh(gotv,expv) do if ((gotv) !== (expv)) begin $write("%%Error: %s:%0d: got='h%x exp='h%x\n", `__FILE__,`__LINE__, (gotv), (expv)); $stop; end while(0);
`define checkr(gotv,expv) do if ((gotv) != (expv)) begin $write("%%Error: %s:%0d: got=%g exp=%g\n", `__FILE__,`__LINE__, (gotv), (expv)); $stop; end while(0);
// IEEE: integer_atom_type
wire byte w_byte;
wire shortint w_shortint;
wire int w_int;
wire longint w_longint;
wire integer w_integer;
// IEEE: integer_atom_type
wire bit w_bit;
wire logic w_logic;
wire bit [1:0] w_bit2;
wire logic [1:0] w_logic2;
// IEEE: non_integer_type
//UNSUP shortreal w_shortreal;
wire real w_real;
assign w_byte = 8'h12;
assign w_shortint = 16'h1234;
assign w_int = -123456;
assign w_longint = -1234567;
assign w_integer = -123456;
assign w_bit = 1'b1;
assign w_logic = 1'b1;
assign w_bit2 = 2'b10;
assign w_logic2 = 2'b10;
assign w_real = 3.14;
always @ (posedge clk) begin
`checkh(w_byte, 8'h12);
`checkh(w_shortint, 16'h1234);
`checkh(w_int, -123456);
`checkh(w_longint, -1234567);
`checkh(w_integer, -123456);
`checkh(w_bit, 1'b1);
`checkh(w_logic, 1'b1);
`checkh(w_bit2, 2'b10);
`checkh(w_logic2, 2'b10);
`checkr(w_real, 3.14);
$write("*-* All Finished *-*\n");
$finish;
end
endmodule
|
/*+--------------------------------------------------------------------------
Copyright (c) 2015, Microsoft Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------*/
//////////////////////////////////////////////////////////////////////////////////
// Company: Microsoft Research Asia
// Engineer: Jiansong Zhang
//
// Create Date: 21:39:39 06/01/2009
// Design Name:
// Module Name: tx_engine
// Project Name: Sora
// Target Devices: Virtex5 LX50T
// Tool versions: ISE10.1.03
// Description:
// Purpose: Posted Packet Builder module. This module takes the
// length info from the Posted Packet Slicer, and requests a tag from
// the Tag Generator and uses that info to build a posted memory write header
// which it writes into a FIFO
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module posted_pkt_builder(
input clk,
input rst,
input [15:0] req_id, //from pcie block
//to/from posted_pkt_slicer
input posted_fifo_full,
input go,
output reg ack,
input [63:0] dmawad,
input [9:0] length,
//to posted_pkt_header_fifo
output reg [63:0] header_data_out,
output reg header_data_wren
);
//State machine states
localparam IDLE = 4'h0;
localparam HEAD1 = 4'h1;
localparam HEAD2 = 4'h2;
localparam WAIT_FOR_GO_DEASSERT = 4'h3;
//parameters used to define fixed header fields
localparam rsvd = 1'b0; //reserved and unused header fields to zero
localparam MWr = 5'b00000; //format for memory write header
localparam TC = 3'b000; //traffic class 0
localparam TD = 1'b0; //digest bit always 0
localparam EP = 1'b0; //poisoned bit always 0
localparam ATTR = 2'b00; //no snoop or relaxed-ordering
localparam LastBE = 4'b1111; //LastBE is always asserted since all transfers
//are on 128B boundaries and are always at least
//128B long
localparam FirstBE = 4'b1111;//FirstBE is always asserted since all transfers
//are on 128B boundaries
wire [1:0] fmt;
reg [3:0] state;
reg [63:0] dmawad_reg;
reg rst_reg;
always@(posedge clk) rst_reg <= rst;
//if the upper DWord of the destination address is zero
//than make the format of the packet header 3DW; otherwise 4DW
assign fmt[1:0] = (dmawad_reg[63:32] == 0) ? 2'b10 : 2'b11;
//if the posted_pkt_slicer asserts "go" then register the dma write params
always@(posedge clk)begin
if(rst_reg)begin
dmawad_reg[63:0] <= 0;
end else if(go)begin
dmawad_reg <= dmawad;
end
end
// State machine
// Builds headers for posted memory writes
// Writes them into a FIFO
always @ (posedge clk) begin
if (rst_reg) begin
header_data_out <= 0;
header_data_wren <= 1'b0;
ack <= 1'b0;
state <= IDLE;
end else begin
case (state)
IDLE : begin
header_data_out <= 0;
header_data_wren <= 1'b0;
ack <= 1'b0;
if(go & ~posted_fifo_full) // Jiansong: prevent p_hdr_fifo overflow
state<= HEAD1;
else
state<= IDLE;
end
HEAD1 : begin
//write the first 64-bits of a posted header into the
//posted fifo
header_data_out <= {rsvd,fmt[1:0],MWr,rsvd,TC,rsvd,rsvd,rsvd,rsvd,
TD,EP,ATTR,rsvd,rsvd,length[9:0],req_id[15:0],
8'b00000000 ,LastBE,FirstBE};
ack <= 0;
header_data_wren <= 1'b1;
state <= HEAD2;
end
HEAD2 : begin
//write the next 32 or 64 bits of a posted header to the
//posted header fifo (32 if 3DW - 64 if 4DW header)
header_data_out <= (fmt[0]==1'b1)
? {dmawad_reg[63:2],2'b00}
: {dmawad_reg[31:2], 2'b00, dmawad_reg[63:32]};
header_data_wren <= 1'b1;
ack <= 1'b1; //acknowledge to the posted_packet_slicer that
//the packet has been queued up for transmission
state <= WAIT_FOR_GO_DEASSERT;
end
WAIT_FOR_GO_DEASSERT: begin
//ack causes "go" to deassert but we need to give the
//posted_pkt_slicer a chance to deassert "go" before returning
//to IDLE
header_data_out <= 0;
header_data_wren <= 1'b0;
ack <= 1'b0;
state <= IDLE;
end
default : begin
header_data_out <= 0;
header_data_wren <= 1'b0;
ack <= 1'b0;
state <= IDLE;
end
endcase
end
end
endmodule
|
/*+--------------------------------------------------------------------------
Copyright (c) 2015, Microsoft Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------*/
//////////////////////////////////////////////////////////////////////////////////
// Company: Microsoft Research Asia
// Engineer: Jiansong Zhang
//
// Create Date: 21:39:39 06/01/2009
// Design Name:
// Module Name: tx_engine
// Project Name: Sora
// Target Devices: Virtex5 LX50T
// Tool versions: ISE10.1.03
// Description:
// Purpose: Detects rising edge of input signal and outputs a single-shot
// signal upon detection
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module rising_edge_detect(
input clk,
input rst,
input in,
output one_shot_out);
reg in_reg;
//register the input
always@(posedge clk)begin
if(rst)begin
in_reg <= 1'b0;
end else begin
in_reg <= in;
end
end
//detect the rising edge
assign one_shot_out = ~in_reg & in;
endmodule
|
/*+--------------------------------------------------------------------------
Copyright (c) 2015, Microsoft Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------*/
//////////////////////////////////////////////////////////////////////////////////
// Company: Microsoft Research Asia
// Engineer: Jiansong Zhang
//
// Create Date: 21:39:39 06/01/2009
// Design Name:
// Module Name: tx_engine
// Project Name: Sora
// Target Devices: Virtex5 LX50T
// Tool versions: ISE10.1.03
// Description:
// Purpose: Detects rising edge of input signal and outputs a single-shot
// signal upon detection
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module rising_edge_detect(
input clk,
input rst,
input in,
output one_shot_out);
reg in_reg;
//register the input
always@(posedge clk)begin
if(rst)begin
in_reg <= 1'b0;
end else begin
in_reg <= in;
end
end
//detect the rising edge
assign one_shot_out = ~in_reg & in;
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This test case is used for testing a modeule parameterized with a typed
// localparam.
//
// We find Verilator appears to mis-evaluate the parameter WIDTH as -16 when
// used in the test module to set the value of MSB. A number of warnings and
// errors follow, starting with:
//
// %Warning-LITENDIAN: t/t_param_module.v:42: Little bit endian vector: MSB
// < LSB of bit range: -17:0
//
// This file ONLY is placed into the Public Domain, for any use, without
// warranty, 2013 by Jie Xu.
// bug606
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
localparam logic[4:0] WID = 16;
//localparam WID = 16; // No problem if defined like this
wire [15:0] b33;
test #(WID) i_test_33(.clk (clk),
.b (b33));
endmodule
module test (/*AUTOARG*/
//Inputs
clk,
// Outputs
b
);
parameter WIDTH = 10;
localparam MSB = WIDTH - 1;
input clk;
output wire [MSB:0] b;
wire [MSB:0] a;
assign b = {~a[MSB-1:0], clk};
initial begin
if ($bits(WIDTH)!=5) $stop; // Comes from the parent!
if ($bits(MSB)!=32) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This test case is used for testing a modeule parameterized with a typed
// localparam.
//
// We find Verilator appears to mis-evaluate the parameter WIDTH as -16 when
// used in the test module to set the value of MSB. A number of warnings and
// errors follow, starting with:
//
// %Warning-LITENDIAN: t/t_param_module.v:42: Little bit endian vector: MSB
// < LSB of bit range: -17:0
//
// This file ONLY is placed into the Public Domain, for any use, without
// warranty, 2013 by Jie Xu.
// bug606
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
localparam logic[4:0] WID = 16;
//localparam WID = 16; // No problem if defined like this
wire [15:0] b33;
test #(WID) i_test_33(.clk (clk),
.b (b33));
endmodule
module test (/*AUTOARG*/
//Inputs
clk,
// Outputs
b
);
parameter WIDTH = 10;
localparam MSB = WIDTH - 1;
input clk;
output wire [MSB:0] b;
wire [MSB:0] a;
assign b = {~a[MSB-1:0], clk};
initial begin
if ($bits(WIDTH)!=5) $stop; // Comes from the parent!
if ($bits(MSB)!=32) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
endmodule
|
/*+--------------------------------------------------------------------------
Copyright (c) 2015, Microsoft Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------*/
//////////////////////////////////////////////////////////////////////////////////
// Company: Microsoft Research Asia
// Engineer: Jiansong Zhang
//
// Create Date: 21:39:39 06/01/2009
// Design Name:
// Module Name: tx_engine
// Project Name: Sora
// Target Devices: Virtex5 LX50T
// Tool versions: ISE10.1.03
// Description:
// Purpose: Detects rising and falling edge of input signal and outputs a
// single-cycle signal upon detection
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module edge_detect(
input clk,
input rst,
input in,
output rise_out, //single-shot output
output fall_out); //single-shot output
reg in_reg;
//one pipeline reg for the input signal
always@(posedge clk)begin
if(rst)begin
in_reg <= 1'b0;
end else begin
in_reg <= in;
end
end
//detect the rising edge
assign rise_out = ~in_reg & in;
//detect the falling edge
assign fall_out = in_reg & ~in;
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2013 by Alex Solomatnikov.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
logic [6-1:0] foo[4-1:0];
//initial $display("%m: %p\n", foo);
//initial $display("%m: %p\n", foo[3:0]); // VCS not supported %p with slice
//logic [6-1:0] foo2[4-1:0][5:6];
//initial $display("%m: %p\n", foo2[3:0][5:6]); // This is not legal
dut #(.W(6),
.D(4)) udut(.clk(clk),
.foo(foo[4-1:0]));
endmodule
module dut
#(parameter W = 1,
parameter D = 1)
(input logic clk,
input logic [W-1:0] foo[D-1:0]);
genvar i, j;
generate
for (j = 0; j < D; j++) begin
for (i = 0; i < W; i++) begin
suba ua(.clk(clk), .foo(foo[j][i]));
end
end
endgenerate
endmodule
module suba
(input logic clk,
input logic foo);
always @(posedge clk) begin
$write("*-* All Finished *-*\n");
$finish;
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2013 by Alex Solomatnikov.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
logic [6-1:0] foo[4-1:0];
//initial $display("%m: %p\n", foo);
//initial $display("%m: %p\n", foo[3:0]); // VCS not supported %p with slice
//logic [6-1:0] foo2[4-1:0][5:6];
//initial $display("%m: %p\n", foo2[3:0][5:6]); // This is not legal
dut #(.W(6),
.D(4)) udut(.clk(clk),
.foo(foo[4-1:0]));
endmodule
module dut
#(parameter W = 1,
parameter D = 1)
(input logic clk,
input logic [W-1:0] foo[D-1:0]);
genvar i, j;
generate
for (j = 0; j < D; j++) begin
for (i = 0; i < W; i++) begin
suba ua(.clk(clk), .foo(foo[j][i]));
end
end
endgenerate
endmodule
module suba
(input logic clk,
input logic foo);
always @(posedge clk) begin
$write("*-* All Finished *-*\n");
$finish;
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2013 by Alex Solomatnikov.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
logic [6-1:0] foo[4-1:0];
//initial $display("%m: %p\n", foo);
//initial $display("%m: %p\n", foo[3:0]); // VCS not supported %p with slice
//logic [6-1:0] foo2[4-1:0][5:6];
//initial $display("%m: %p\n", foo2[3:0][5:6]); // This is not legal
dut #(.W(6),
.D(4)) udut(.clk(clk),
.foo(foo[4-1:0]));
endmodule
module dut
#(parameter W = 1,
parameter D = 1)
(input logic clk,
input logic [W-1:0] foo[D-1:0]);
genvar i, j;
generate
for (j = 0; j < D; j++) begin
for (i = 0; i < W; i++) begin
suba ua(.clk(clk), .foo(foo[j][i]));
end
end
endgenerate
endmodule
module suba
(input logic clk,
input logic foo);
always @(posedge clk) begin
$write("*-* All Finished *-*\n");
$finish;
end
endmodule
|
/*+--------------------------------------------------------------------------
Copyright (c) 2015, Microsoft Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------*/
`timescale 1ns / 1ps
//////////////////////////////////////////////////////////////////////////////////
// Company:
// Engineer:
//
// Create Date: 14:54:18 08/11/2009
// Design Name:
// Module Name: STATUS_OUT
// Project Name:
// Target Devices:
// Tool versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////
/////
///// Generate four patterns for specific states
///// Idle 00000000
///// Reset 01010101
///// FIFO full 00001111
///// Training_done 00110011
/////
/////////////////////////////////////////////////////////////////////////////////
module RCB_FRL_STATUS_OUT( CLK,
RESET, // input indicating whether channel is reset, reset pulse of the whole lvds channel
MODULE_RST, // reset pulse for this module only, should be shorter than RESET
FIFO_FULL, // input indicating whether FIFO is FULL
TRAINING_DONE, // input indicating whether TRAINING is done
STATUS,
INT_SAT // coded status output
);
/////////////////////////////////////////////////////////////////////////////////
input CLK;
input MODULE_RST;
input RESET,
FIFO_FULL,
TRAINING_DONE;
output STATUS;
/////////////////////////////////////////////////////////////////////////////////
reg STATUS;
output reg [1:0] INT_SAT;
parameter RST = 2'b00;
parameter FULL = 2'b01;
parameter DONE = 2'b10;
parameter IDLE = 2'b11;
reg [2:0] counter;
wire MODULE_RST_one;
rising_edge_detect MODULE_RESET_one_inst(
.clk(CLK),
.rst(1'b0),
.in(MODULE_RST),
.one_shot_out(MODULE_RST_one)
);
/////////////////////////////////////////////////////////////////////////////////
/// Determine which state it is
always @ ( posedge CLK ) begin
if ( counter == 3'b000 ) begin
if ( RESET == 1'b1 ) begin
INT_SAT <= RST;
end
else if ( FIFO_FULL == 1'b1 & TRAINING_DONE == 1'b1 ) begin
INT_SAT <= FULL;
end
else if ( TRAINING_DONE == 1'b1 ) begin
INT_SAT <= DONE;
end
else begin
INT_SAT <= IDLE;
end
end
end
/////////////////////////////////////////////////////////////////////////////////
/// Counter runs
always @ ( posedge CLK ) begin
// if ( MODULE_RST == 1'b1 ) begin // Jiansong: how can it send out reset status
if ( MODULE_RST_one == 1'b1 ) begin
counter <= 3'b000;
end
else begin
counter <= counter + 3'b001;
end
end
/////////////////////////////////////////////////////////////////////////////////
/// pattern encode
/// Idle 00000000
/// Reset 01010101
/// FIFO_full 00001111
/// Train Done 00110011
always @ ( posedge CLK) begin
if ( INT_SAT == RST ) begin
if ( counter == 3'b000 | counter == 3'b010 | counter == 3'b100 | counter == 3'b110 ) begin
STATUS <= 1'b0;
end
else if (counter == 3'b001 | counter == 3'b011 | counter == 3'b101 | counter == 3'b111 ) begin
STATUS <= 1'b1;
end
end
else if ( INT_SAT == FULL) begin
if (counter == 3'b000 | counter == 3'b001 | counter == 3'b010 | counter == 3'b011 ) begin
STATUS <= 1'b0;
end
else if ( counter == 3'b100 | counter == 3'b101 | counter == 3'b110 | counter == 3'b111 ) begin
STATUS <= 1'b1;
end
end
else if ( INT_SAT == DONE) begin
if ( counter == 3'b000 | counter == 3'b001 | counter == 3'b100 | counter == 3'b101 ) begin
STATUS <= 1'b0;
end
else if ( counter == 3'b010 | counter == 3'b011 | counter == 3'b110 | counter == 3'b111 )begin
STATUS <= 1'b1;
end
end
else if ( INT_SAT == IDLE) begin
STATUS <= 1'b0;
end
end
endmodule
|
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2008 by Lane Brooks
module t (clk);
input clk;
reg [31:0] state; initial state=0;
wire A = state[0];
wire OE = state[1];
wire Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9;
wire [3:0] Z10;
wire Z11;
Test1 test1(/*AUTOINST*/
// Inouts
.Z1 (Z1),
// Inputs
.OE (OE),
.A (A));
Test2 test2(/*AUTOINST*/
// Inouts
.Z2 (Z2),
// Inputs
.OE (OE),
.A (A));
Test3 test3(/*AUTOINST*/
// Inouts
.Z3 (Z3),
// Inputs
.OE (OE),
.A (A));
Test4 test4(/*AUTOINST*/
// Outputs
.Z4 (Z4),
// Inouts
.Z5 (Z5));
Test5 test5(/*AUTOINST*/
// Inouts
.Z6 (Z6),
.Z7 (Z7),
.Z8 (Z8),
.Z9 (Z9),
// Inputs
.OE (OE));
Test6 test6(/*AUTOINST*/
// Inouts
.Z10 (Z10[3:0]),
// Inputs
.OE (OE));
Test7 test7(/*AUTOINST*/
// Outputs
.Z11 (Z11),
// Inputs
.state (state[2:0]));
always @(posedge clk) begin
state <= state + 1;
`ifdef TEST_VERBOSE
$write("[%0t] state=%d Z1=%b 2=%b 3=%b 4=%b 5=%b 6=%b 7=%b 8=%b 9=%b 10=%b 11=%b\n",
$time, state, Z1,Z2,Z3,Z4,Z5,Z6,Z7,Z8,Z9,Z10,Z11);
`endif
if(state == 0) begin
if(Z1 !== 1'b1) $stop; // tests pullups
if(Z2 !== 1'b1) $stop;
if(Z3 !== 1'b1) $stop;
`ifndef VERILATOR
if(Z4 !== 1'b1) $stop;
`endif
if(Z5 !== 1'b1) $stop;
if(Z6 !== 1'b1) $stop;
if(Z7 !== 1'b0) $stop;
if(Z8 !== 1'b0) $stop;
if(Z9 !== 1'b1) $stop;
if(Z10 !== 4'b0001) $stop;
if(Z11 !== 1'b0) $stop;
end
else if(state == 1) begin
if(Z1 !== 1'b1) $stop; // tests pullup
if(Z2 !== 1'b1) $stop;
if(Z3 !== 1'b1) $stop;
`ifndef VERILATOR
if(Z4 !== 1'b1) $stop;
`endif
if(Z5 !== 1'b1) $stop;
if(Z6 !== 1'b1) $stop;
if(Z7 !== 1'b0) $stop;
if(Z8 !== 1'b0) $stop;
if(Z9 !== 1'b1) $stop;
if(Z10 !== 4'b0001) $stop;
if(Z11 !== 1'b1) $stop;
end
else if(state == 2) begin
if(Z1 !== 1'b0) $stop; // tests output driver low
if(Z2 !== 1'b0) $stop;
if(Z3 !== 1'b1 && Z3 !== 1'bx) $stop; // Conflicts
`ifndef VERILATOR
if(Z4 !== 1'b1) $stop;
`endif
if(Z5 !== 1'b1) $stop;
if(Z6 !== 1'b0) $stop;
if(Z7 !== 1'b1) $stop;
if(Z8 !== 1'b1) $stop;
if(Z9 !== 1'b0) $stop;
if(Z10 !== 4'b0010) $stop;
//if(Z11 !== 1'bx) $stop; // Doesn't matter
end
else if(state == 3) begin
if(Z1 !== 1'b1) $stop; // tests output driver high
if(Z2 !== 1'b1) $stop;
if(Z3 !== 1'b1) $stop;
`ifndef VERILATOR
if(Z4 !== 1'b1) $stop;
`endif
if(Z5 !== 1'b1) $stop;
if(Z6 !== 1'b0) $stop;
if(Z7 !== 1'b1) $stop;
if(Z8 !== 1'b1) $stop;
if(Z9 !== 1'b0) $stop;
if(Z10 !== 4'b0010) $stop;
if(Z11 !== 1'b1) $stop;
end
else if(state == 4) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
pullup(Z1);
pullup(Z2);
pullup(Z3);
pullup(Z4);
pullup(Z5);
pullup(Z6);
pulldown(Z7);
pullup(Z8);
pulldown(Z9);
pulldown pd10[3:0] (Z10);
endmodule
module Test1(input OE, input A, inout Z1);
assign Z1 = (OE) ? A : 1'bz;
endmodule
module Test2(input OE, input A, inout Z2);
assign Z2 = (OE) ? A : 1'bz;
endmodule
// mixed low-Z and tristate
module Test3(input OE, input A, inout Z3);
assign Z3 = (OE) ? A : 1'bz;
assign Z3 = 1'b1;
endmodule
// floating output and inout
`ifndef VERILATOR
// Note verilator doesn't know to make Z4 a tristate unless marked an inout
`endif
module Test4(output Z4, inout Z5);
endmodule
// AND gate tristates
module Test5(input OE, inout Z6, inout Z7, inout Z8, inout Z9);
assign Z6 = (OE) ? 1'b0 : 1'bz;
assign Z7 = (OE) ? 1'b1 : 1'bz;
assign Z8 = (OE) ? 1'bz : 1'b0;
assign Z9 = (OE) ? 1'bz : 1'b1;
endmodule
// AND gate tristates
module Test6(input OE, inout [3:0] Z10);
wire [1:0] i;
Test6a a (.OE(OE), .Z({Z10[0],Z10[1]}));
Test6a b (.OE(~OE), .Z({Z10[2],Z10[0]}));
endmodule
module Test6a(input OE, inout [1:0] Z);
assign Z = (OE) ? 2'b01 : 2'bzz;
endmodule
module Test7(input [2:0] state, output reg Z11);
always @(*) begin
casez (state)
3'b000: Z11 = 1'b0;
3'b0?1: Z11 = 1'b1;
default: Z11 = 1'bx;
endcase
end
endmodule
// This is not implemented yet
//module Test3(input OE, input A, inout Z3);
// always @(*) begin
// if(OE) begin
// Z3 = A;
// end else begin
// Z3 = 1'bz;
// end
// end
//endmodule
|
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2008 by Lane Brooks
module t (clk);
input clk;
reg [31:0] state; initial state=0;
wire A = state[0];
wire OE = state[1];
wire Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9;
wire [3:0] Z10;
wire Z11;
Test1 test1(/*AUTOINST*/
// Inouts
.Z1 (Z1),
// Inputs
.OE (OE),
.A (A));
Test2 test2(/*AUTOINST*/
// Inouts
.Z2 (Z2),
// Inputs
.OE (OE),
.A (A));
Test3 test3(/*AUTOINST*/
// Inouts
.Z3 (Z3),
// Inputs
.OE (OE),
.A (A));
Test4 test4(/*AUTOINST*/
// Outputs
.Z4 (Z4),
// Inouts
.Z5 (Z5));
Test5 test5(/*AUTOINST*/
// Inouts
.Z6 (Z6),
.Z7 (Z7),
.Z8 (Z8),
.Z9 (Z9),
// Inputs
.OE (OE));
Test6 test6(/*AUTOINST*/
// Inouts
.Z10 (Z10[3:0]),
// Inputs
.OE (OE));
Test7 test7(/*AUTOINST*/
// Outputs
.Z11 (Z11),
// Inputs
.state (state[2:0]));
always @(posedge clk) begin
state <= state + 1;
`ifdef TEST_VERBOSE
$write("[%0t] state=%d Z1=%b 2=%b 3=%b 4=%b 5=%b 6=%b 7=%b 8=%b 9=%b 10=%b 11=%b\n",
$time, state, Z1,Z2,Z3,Z4,Z5,Z6,Z7,Z8,Z9,Z10,Z11);
`endif
if(state == 0) begin
if(Z1 !== 1'b1) $stop; // tests pullups
if(Z2 !== 1'b1) $stop;
if(Z3 !== 1'b1) $stop;
`ifndef VERILATOR
if(Z4 !== 1'b1) $stop;
`endif
if(Z5 !== 1'b1) $stop;
if(Z6 !== 1'b1) $stop;
if(Z7 !== 1'b0) $stop;
if(Z8 !== 1'b0) $stop;
if(Z9 !== 1'b1) $stop;
if(Z10 !== 4'b0001) $stop;
if(Z11 !== 1'b0) $stop;
end
else if(state == 1) begin
if(Z1 !== 1'b1) $stop; // tests pullup
if(Z2 !== 1'b1) $stop;
if(Z3 !== 1'b1) $stop;
`ifndef VERILATOR
if(Z4 !== 1'b1) $stop;
`endif
if(Z5 !== 1'b1) $stop;
if(Z6 !== 1'b1) $stop;
if(Z7 !== 1'b0) $stop;
if(Z8 !== 1'b0) $stop;
if(Z9 !== 1'b1) $stop;
if(Z10 !== 4'b0001) $stop;
if(Z11 !== 1'b1) $stop;
end
else if(state == 2) begin
if(Z1 !== 1'b0) $stop; // tests output driver low
if(Z2 !== 1'b0) $stop;
if(Z3 !== 1'b1 && Z3 !== 1'bx) $stop; // Conflicts
`ifndef VERILATOR
if(Z4 !== 1'b1) $stop;
`endif
if(Z5 !== 1'b1) $stop;
if(Z6 !== 1'b0) $stop;
if(Z7 !== 1'b1) $stop;
if(Z8 !== 1'b1) $stop;
if(Z9 !== 1'b0) $stop;
if(Z10 !== 4'b0010) $stop;
//if(Z11 !== 1'bx) $stop; // Doesn't matter
end
else if(state == 3) begin
if(Z1 !== 1'b1) $stop; // tests output driver high
if(Z2 !== 1'b1) $stop;
if(Z3 !== 1'b1) $stop;
`ifndef VERILATOR
if(Z4 !== 1'b1) $stop;
`endif
if(Z5 !== 1'b1) $stop;
if(Z6 !== 1'b0) $stop;
if(Z7 !== 1'b1) $stop;
if(Z8 !== 1'b1) $stop;
if(Z9 !== 1'b0) $stop;
if(Z10 !== 4'b0010) $stop;
if(Z11 !== 1'b1) $stop;
end
else if(state == 4) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
pullup(Z1);
pullup(Z2);
pullup(Z3);
pullup(Z4);
pullup(Z5);
pullup(Z6);
pulldown(Z7);
pullup(Z8);
pulldown(Z9);
pulldown pd10[3:0] (Z10);
endmodule
module Test1(input OE, input A, inout Z1);
assign Z1 = (OE) ? A : 1'bz;
endmodule
module Test2(input OE, input A, inout Z2);
assign Z2 = (OE) ? A : 1'bz;
endmodule
// mixed low-Z and tristate
module Test3(input OE, input A, inout Z3);
assign Z3 = (OE) ? A : 1'bz;
assign Z3 = 1'b1;
endmodule
// floating output and inout
`ifndef VERILATOR
// Note verilator doesn't know to make Z4 a tristate unless marked an inout
`endif
module Test4(output Z4, inout Z5);
endmodule
// AND gate tristates
module Test5(input OE, inout Z6, inout Z7, inout Z8, inout Z9);
assign Z6 = (OE) ? 1'b0 : 1'bz;
assign Z7 = (OE) ? 1'b1 : 1'bz;
assign Z8 = (OE) ? 1'bz : 1'b0;
assign Z9 = (OE) ? 1'bz : 1'b1;
endmodule
// AND gate tristates
module Test6(input OE, inout [3:0] Z10);
wire [1:0] i;
Test6a a (.OE(OE), .Z({Z10[0],Z10[1]}));
Test6a b (.OE(~OE), .Z({Z10[2],Z10[0]}));
endmodule
module Test6a(input OE, inout [1:0] Z);
assign Z = (OE) ? 2'b01 : 2'bzz;
endmodule
module Test7(input [2:0] state, output reg Z11);
always @(*) begin
casez (state)
3'b000: Z11 = 1'b0;
3'b0?1: Z11 = 1'b1;
default: Z11 = 1'bx;
endcase
end
endmodule
// This is not implemented yet
//module Test3(input OE, input A, inout Z3);
// always @(*) begin
// if(OE) begin
// Z3 = A;
// end else begin
// Z3 = 1'bz;
// end
// end
//endmodule
|
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2008 by Lane Brooks
module t (clk);
input clk;
reg [31:0] state; initial state=0;
wire A = state[0];
wire OE = state[1];
wire Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9;
wire [3:0] Z10;
wire Z11;
Test1 test1(/*AUTOINST*/
// Inouts
.Z1 (Z1),
// Inputs
.OE (OE),
.A (A));
Test2 test2(/*AUTOINST*/
// Inouts
.Z2 (Z2),
// Inputs
.OE (OE),
.A (A));
Test3 test3(/*AUTOINST*/
// Inouts
.Z3 (Z3),
// Inputs
.OE (OE),
.A (A));
Test4 test4(/*AUTOINST*/
// Outputs
.Z4 (Z4),
// Inouts
.Z5 (Z5));
Test5 test5(/*AUTOINST*/
// Inouts
.Z6 (Z6),
.Z7 (Z7),
.Z8 (Z8),
.Z9 (Z9),
// Inputs
.OE (OE));
Test6 test6(/*AUTOINST*/
// Inouts
.Z10 (Z10[3:0]),
// Inputs
.OE (OE));
Test7 test7(/*AUTOINST*/
// Outputs
.Z11 (Z11),
// Inputs
.state (state[2:0]));
always @(posedge clk) begin
state <= state + 1;
`ifdef TEST_VERBOSE
$write("[%0t] state=%d Z1=%b 2=%b 3=%b 4=%b 5=%b 6=%b 7=%b 8=%b 9=%b 10=%b 11=%b\n",
$time, state, Z1,Z2,Z3,Z4,Z5,Z6,Z7,Z8,Z9,Z10,Z11);
`endif
if(state == 0) begin
if(Z1 !== 1'b1) $stop; // tests pullups
if(Z2 !== 1'b1) $stop;
if(Z3 !== 1'b1) $stop;
`ifndef VERILATOR
if(Z4 !== 1'b1) $stop;
`endif
if(Z5 !== 1'b1) $stop;
if(Z6 !== 1'b1) $stop;
if(Z7 !== 1'b0) $stop;
if(Z8 !== 1'b0) $stop;
if(Z9 !== 1'b1) $stop;
if(Z10 !== 4'b0001) $stop;
if(Z11 !== 1'b0) $stop;
end
else if(state == 1) begin
if(Z1 !== 1'b1) $stop; // tests pullup
if(Z2 !== 1'b1) $stop;
if(Z3 !== 1'b1) $stop;
`ifndef VERILATOR
if(Z4 !== 1'b1) $stop;
`endif
if(Z5 !== 1'b1) $stop;
if(Z6 !== 1'b1) $stop;
if(Z7 !== 1'b0) $stop;
if(Z8 !== 1'b0) $stop;
if(Z9 !== 1'b1) $stop;
if(Z10 !== 4'b0001) $stop;
if(Z11 !== 1'b1) $stop;
end
else if(state == 2) begin
if(Z1 !== 1'b0) $stop; // tests output driver low
if(Z2 !== 1'b0) $stop;
if(Z3 !== 1'b1 && Z3 !== 1'bx) $stop; // Conflicts
`ifndef VERILATOR
if(Z4 !== 1'b1) $stop;
`endif
if(Z5 !== 1'b1) $stop;
if(Z6 !== 1'b0) $stop;
if(Z7 !== 1'b1) $stop;
if(Z8 !== 1'b1) $stop;
if(Z9 !== 1'b0) $stop;
if(Z10 !== 4'b0010) $stop;
//if(Z11 !== 1'bx) $stop; // Doesn't matter
end
else if(state == 3) begin
if(Z1 !== 1'b1) $stop; // tests output driver high
if(Z2 !== 1'b1) $stop;
if(Z3 !== 1'b1) $stop;
`ifndef VERILATOR
if(Z4 !== 1'b1) $stop;
`endif
if(Z5 !== 1'b1) $stop;
if(Z6 !== 1'b0) $stop;
if(Z7 !== 1'b1) $stop;
if(Z8 !== 1'b1) $stop;
if(Z9 !== 1'b0) $stop;
if(Z10 !== 4'b0010) $stop;
if(Z11 !== 1'b1) $stop;
end
else if(state == 4) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
pullup(Z1);
pullup(Z2);
pullup(Z3);
pullup(Z4);
pullup(Z5);
pullup(Z6);
pulldown(Z7);
pullup(Z8);
pulldown(Z9);
pulldown pd10[3:0] (Z10);
endmodule
module Test1(input OE, input A, inout Z1);
assign Z1 = (OE) ? A : 1'bz;
endmodule
module Test2(input OE, input A, inout Z2);
assign Z2 = (OE) ? A : 1'bz;
endmodule
// mixed low-Z and tristate
module Test3(input OE, input A, inout Z3);
assign Z3 = (OE) ? A : 1'bz;
assign Z3 = 1'b1;
endmodule
// floating output and inout
`ifndef VERILATOR
// Note verilator doesn't know to make Z4 a tristate unless marked an inout
`endif
module Test4(output Z4, inout Z5);
endmodule
// AND gate tristates
module Test5(input OE, inout Z6, inout Z7, inout Z8, inout Z9);
assign Z6 = (OE) ? 1'b0 : 1'bz;
assign Z7 = (OE) ? 1'b1 : 1'bz;
assign Z8 = (OE) ? 1'bz : 1'b0;
assign Z9 = (OE) ? 1'bz : 1'b1;
endmodule
// AND gate tristates
module Test6(input OE, inout [3:0] Z10);
wire [1:0] i;
Test6a a (.OE(OE), .Z({Z10[0],Z10[1]}));
Test6a b (.OE(~OE), .Z({Z10[2],Z10[0]}));
endmodule
module Test6a(input OE, inout [1:0] Z);
assign Z = (OE) ? 2'b01 : 2'bzz;
endmodule
module Test7(input [2:0] state, output reg Z11);
always @(*) begin
casez (state)
3'b000: Z11 = 1'b0;
3'b0?1: Z11 = 1'b1;
default: Z11 = 1'bx;
endcase
end
endmodule
// This is not implemented yet
//module Test3(input OE, input A, inout Z3);
// always @(*) begin
// if(OE) begin
// Z3 = A;
// end else begin
// Z3 = 1'bz;
// end
// end
//endmodule
|
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2008 by Lane Brooks
module t (clk);
input clk;
reg [31:0] state; initial state=0;
wire A = state[0];
wire OE = state[1];
wire Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9;
wire [3:0] Z10;
wire Z11;
Test1 test1(/*AUTOINST*/
// Inouts
.Z1 (Z1),
// Inputs
.OE (OE),
.A (A));
Test2 test2(/*AUTOINST*/
// Inouts
.Z2 (Z2),
// Inputs
.OE (OE),
.A (A));
Test3 test3(/*AUTOINST*/
// Inouts
.Z3 (Z3),
// Inputs
.OE (OE),
.A (A));
Test4 test4(/*AUTOINST*/
// Outputs
.Z4 (Z4),
// Inouts
.Z5 (Z5));
Test5 test5(/*AUTOINST*/
// Inouts
.Z6 (Z6),
.Z7 (Z7),
.Z8 (Z8),
.Z9 (Z9),
// Inputs
.OE (OE));
Test6 test6(/*AUTOINST*/
// Inouts
.Z10 (Z10[3:0]),
// Inputs
.OE (OE));
Test7 test7(/*AUTOINST*/
// Outputs
.Z11 (Z11),
// Inputs
.state (state[2:0]));
always @(posedge clk) begin
state <= state + 1;
`ifdef TEST_VERBOSE
$write("[%0t] state=%d Z1=%b 2=%b 3=%b 4=%b 5=%b 6=%b 7=%b 8=%b 9=%b 10=%b 11=%b\n",
$time, state, Z1,Z2,Z3,Z4,Z5,Z6,Z7,Z8,Z9,Z10,Z11);
`endif
if(state == 0) begin
if(Z1 !== 1'b1) $stop; // tests pullups
if(Z2 !== 1'b1) $stop;
if(Z3 !== 1'b1) $stop;
`ifndef VERILATOR
if(Z4 !== 1'b1) $stop;
`endif
if(Z5 !== 1'b1) $stop;
if(Z6 !== 1'b1) $stop;
if(Z7 !== 1'b0) $stop;
if(Z8 !== 1'b0) $stop;
if(Z9 !== 1'b1) $stop;
if(Z10 !== 4'b0001) $stop;
if(Z11 !== 1'b0) $stop;
end
else if(state == 1) begin
if(Z1 !== 1'b1) $stop; // tests pullup
if(Z2 !== 1'b1) $stop;
if(Z3 !== 1'b1) $stop;
`ifndef VERILATOR
if(Z4 !== 1'b1) $stop;
`endif
if(Z5 !== 1'b1) $stop;
if(Z6 !== 1'b1) $stop;
if(Z7 !== 1'b0) $stop;
if(Z8 !== 1'b0) $stop;
if(Z9 !== 1'b1) $stop;
if(Z10 !== 4'b0001) $stop;
if(Z11 !== 1'b1) $stop;
end
else if(state == 2) begin
if(Z1 !== 1'b0) $stop; // tests output driver low
if(Z2 !== 1'b0) $stop;
if(Z3 !== 1'b1 && Z3 !== 1'bx) $stop; // Conflicts
`ifndef VERILATOR
if(Z4 !== 1'b1) $stop;
`endif
if(Z5 !== 1'b1) $stop;
if(Z6 !== 1'b0) $stop;
if(Z7 !== 1'b1) $stop;
if(Z8 !== 1'b1) $stop;
if(Z9 !== 1'b0) $stop;
if(Z10 !== 4'b0010) $stop;
//if(Z11 !== 1'bx) $stop; // Doesn't matter
end
else if(state == 3) begin
if(Z1 !== 1'b1) $stop; // tests output driver high
if(Z2 !== 1'b1) $stop;
if(Z3 !== 1'b1) $stop;
`ifndef VERILATOR
if(Z4 !== 1'b1) $stop;
`endif
if(Z5 !== 1'b1) $stop;
if(Z6 !== 1'b0) $stop;
if(Z7 !== 1'b1) $stop;
if(Z8 !== 1'b1) $stop;
if(Z9 !== 1'b0) $stop;
if(Z10 !== 4'b0010) $stop;
if(Z11 !== 1'b1) $stop;
end
else if(state == 4) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
pullup(Z1);
pullup(Z2);
pullup(Z3);
pullup(Z4);
pullup(Z5);
pullup(Z6);
pulldown(Z7);
pullup(Z8);
pulldown(Z9);
pulldown pd10[3:0] (Z10);
endmodule
module Test1(input OE, input A, inout Z1);
assign Z1 = (OE) ? A : 1'bz;
endmodule
module Test2(input OE, input A, inout Z2);
assign Z2 = (OE) ? A : 1'bz;
endmodule
// mixed low-Z and tristate
module Test3(input OE, input A, inout Z3);
assign Z3 = (OE) ? A : 1'bz;
assign Z3 = 1'b1;
endmodule
// floating output and inout
`ifndef VERILATOR
// Note verilator doesn't know to make Z4 a tristate unless marked an inout
`endif
module Test4(output Z4, inout Z5);
endmodule
// AND gate tristates
module Test5(input OE, inout Z6, inout Z7, inout Z8, inout Z9);
assign Z6 = (OE) ? 1'b0 : 1'bz;
assign Z7 = (OE) ? 1'b1 : 1'bz;
assign Z8 = (OE) ? 1'bz : 1'b0;
assign Z9 = (OE) ? 1'bz : 1'b1;
endmodule
// AND gate tristates
module Test6(input OE, inout [3:0] Z10);
wire [1:0] i;
Test6a a (.OE(OE), .Z({Z10[0],Z10[1]}));
Test6a b (.OE(~OE), .Z({Z10[2],Z10[0]}));
endmodule
module Test6a(input OE, inout [1:0] Z);
assign Z = (OE) ? 2'b01 : 2'bzz;
endmodule
module Test7(input [2:0] state, output reg Z11);
always @(*) begin
casez (state)
3'b000: Z11 = 1'b0;
3'b0?1: Z11 = 1'b1;
default: Z11 = 1'bx;
endcase
end
endmodule
// This is not implemented yet
//module Test3(input OE, input A, inout Z3);
// always @(*) begin
// if(OE) begin
// Z3 = A;
// end else begin
// Z3 = 1'bz;
// end
// end
//endmodule
|
// DESCRIPTION: Verilator: SystemVerilog interface test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2012 by Iztok Jeras.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
logic rst = 1'b1; // reset
integer rst_cnt = 0;
// reset is removed after a delay
always @ (posedge clk)
begin
rst_cnt <= rst_cnt + 1;
rst <= rst_cnt <= 3;
end
// counters
int cnt;
int cnt_src;
int cnt_drn;
// add all counters
assign cnt = cnt_src + cnt_drn + inf.cnt;
// finish report
always @ (posedge clk)
if (cnt == 3*16) begin
$write("*-* All Finished *-*\n");
$finish;
end
// interface instance
handshake inf (
.clk (clk),
.rst (rst)
);
// source instance
source #(
.RW (8),
.RP (8'b11100001)
) source (
.clk (clk),
.rst (rst),
.inf (inf),
.cnt (cnt_src)
);
// drain instance
drain #(
.RW (8),
.RP (8'b11010100)
) drain (
.clk (clk),
.rst (rst),
.inf (inf),
.cnt (cnt_drn)
);
endmodule : t
// interface definition
interface handshake #(
parameter int unsigned WC = 32
)(
input logic clk,
input logic rst
);
// modport signals
logic req; // request
logic grt; // grant
logic inc; // increment
// local signals
integer cnt; // counter
// source
modport src (
output req,
input grt
);
// drain
modport drn (
input req,
output grt
);
// incremet condition
assign inc = req & grt;
// local logic (counter)
always @ (posedge clk, posedge rst)
if (rst) cnt <= '0;
else cnt <= cnt + {31'h0, inc};
endinterface : handshake
// source module
module source #(
// random generator parameters
parameter int unsigned RW=1, // LFSR width
parameter bit [RW-1:0] RP='0, // LFSR polinom
parameter bit [RW-1:0] RR='1 // LFSR reset state
)(
input logic clk,
input logic rst,
handshake.src inf,
output integer cnt
);
// LFSR
logic [RW-1:0] rnd;
// LFSR in Galois form
always @ (posedge clk, posedge rst)
if (rst) rnd <= RR;
else rnd <= {rnd[0], rnd[RW-1:1]} ^ ({RW{rnd[0]}} & RP);
// counter
always @ (posedge clk, posedge rst)
if (rst) cnt <= 32'd0;
else cnt <= cnt + {31'd0, (inf.req & inf.grt)};
// request signal
assign inf.req = rnd[0];
endmodule : source
// drain module
module drain #(
// random generator parameters
parameter int unsigned RW=1, // LFSR width
parameter bit [RW-1:0] RP='0, // LFSR polinom
parameter bit [RW-1:0] RR='1 // LFSR reset state
)(
input logic clk,
input logic rst,
handshake.drn inf,
output integer cnt
);
// LFSR
logic [RW-1:0] rnd;
// LFSR in Galois form
always @ (posedge clk, posedge rst)
if (rst) rnd <= RR;
else rnd <= {rnd[0], rnd[RW-1:1]} ^ ({RW{rnd[0]}} & RP);
// counter
always @ (posedge clk, posedge rst)
if (rst) cnt <= 32'd0;
else cnt <= cnt + {31'd0, (inf.req & inf.grt)};
// grant signal
assign inf.grt = rnd[0];
endmodule : drain
|
// DESCRIPTION: Verilator: SystemVerilog interface test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2012 by Iztok Jeras.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
logic rst = 1'b1; // reset
integer rst_cnt = 0;
// reset is removed after a delay
always @ (posedge clk)
begin
rst_cnt <= rst_cnt + 1;
rst <= rst_cnt <= 3;
end
// counters
int cnt;
int cnt_src;
int cnt_drn;
// add all counters
assign cnt = cnt_src + cnt_drn + inf.cnt;
// finish report
always @ (posedge clk)
if (cnt == 3*16) begin
$write("*-* All Finished *-*\n");
$finish;
end
// interface instance
handshake inf (
.clk (clk),
.rst (rst)
);
// source instance
source #(
.RW (8),
.RP (8'b11100001)
) source (
.clk (clk),
.rst (rst),
.inf (inf),
.cnt (cnt_src)
);
// drain instance
drain #(
.RW (8),
.RP (8'b11010100)
) drain (
.clk (clk),
.rst (rst),
.inf (inf),
.cnt (cnt_drn)
);
endmodule : t
// interface definition
interface handshake #(
parameter int unsigned WC = 32
)(
input logic clk,
input logic rst
);
// modport signals
logic req; // request
logic grt; // grant
logic inc; // increment
// local signals
integer cnt; // counter
// source
modport src (
output req,
input grt
);
// drain
modport drn (
input req,
output grt
);
// incremet condition
assign inc = req & grt;
// local logic (counter)
always @ (posedge clk, posedge rst)
if (rst) cnt <= '0;
else cnt <= cnt + {31'h0, inc};
endinterface : handshake
// source module
module source #(
// random generator parameters
parameter int unsigned RW=1, // LFSR width
parameter bit [RW-1:0] RP='0, // LFSR polinom
parameter bit [RW-1:0] RR='1 // LFSR reset state
)(
input logic clk,
input logic rst,
handshake.src inf,
output integer cnt
);
// LFSR
logic [RW-1:0] rnd;
// LFSR in Galois form
always @ (posedge clk, posedge rst)
if (rst) rnd <= RR;
else rnd <= {rnd[0], rnd[RW-1:1]} ^ ({RW{rnd[0]}} & RP);
// counter
always @ (posedge clk, posedge rst)
if (rst) cnt <= 32'd0;
else cnt <= cnt + {31'd0, (inf.req & inf.grt)};
// request signal
assign inf.req = rnd[0];
endmodule : source
// drain module
module drain #(
// random generator parameters
parameter int unsigned RW=1, // LFSR width
parameter bit [RW-1:0] RP='0, // LFSR polinom
parameter bit [RW-1:0] RR='1 // LFSR reset state
)(
input logic clk,
input logic rst,
handshake.drn inf,
output integer cnt
);
// LFSR
logic [RW-1:0] rnd;
// LFSR in Galois form
always @ (posedge clk, posedge rst)
if (rst) rnd <= RR;
else rnd <= {rnd[0], rnd[RW-1:1]} ^ ({RW{rnd[0]}} & RP);
// counter
always @ (posedge clk, posedge rst)
if (rst) cnt <= 32'd0;
else cnt <= cnt + {31'd0, (inf.req & inf.grt)};
// grant signal
assign inf.grt = rnd[0];
endmodule : drain
|
/*+--------------------------------------------------------------------------
Copyright (c) 2015, Microsoft Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------*/
//////////////////////////////////////////////////////////////////////////////////
// Company: Microsoft Research Asia
// Engineer: Jiansong Zhang
//
// Create Date: 21:39:39 06/01/2009
// Design Name:
// Module Name: tx_engine
// Project Name: Sora
// Target Devices: Virtex5 LX50T
// Tool versions: ISE10.1.03
// Description:
// Purpose: Contains 25 ms timers for each outstanding read request. If any
// timer reaches 0 than completion timeout is signalled.
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module completion_timeout(
input clk,
input rst,
input [31:0] pending_req,
output reg comp_timeout
);
`ifdef ML505
reg [15:0] count;
`else
reg [17:0] count; //free running counter creates 1.048576 ms timer
`endif
wire [31:0] pending_req_rise;
wire [31:0] pending_req_fall;
reg [31:0] shift_in = 0;
reg [4:0] reset_count[31:0];
wire [31:0] srl_reset;
wire [31:0] comp_timeout_vector;
reg [31:0] comp_timeout_vector_d1;
wire comp_timeout_or;
wire comp_timeout_one;
reg comp_timeout_d1;
always@(posedge clk)begin
if(rst)
count <= 0;
else
count <= count + 1;
end
//timer is asserted every 1.045876 ms
assign timer = (count == 0) ? 1'b1 : 1'b0;
//create 32 shift register instances and associated logic
genvar i;
generate
for(i=0;i<32;i=i+1)begin: replicate
edge_detect edge_detect_inst(
.clk(clk),
.rst(rst),
.in(pending_req[i]),
.rise_out(pending_req_rise[i]),
.fall_out(pending_req_fall[i])
);
//pending req logic
//create a signal that sets when pending req is high and resets
//timer pulses. Pending req gets priority over timer if both
//signals occur simultaneously
always@(posedge clk)begin
if(pending_req_rise[i]) //set latch
shift_in[i] <= 1'b1;
else if(timer || pending_req_fall[i]) //reset latch
shift_in[i] <= 1'b0;
end
always@(posedge clk)begin
if(rst)
reset_count[i][4:0] <= 5'b00000;
else if (pending_req_fall[i] == 1'b1)
reset_count[i][4:0] <= 5'b11001;
else if (reset_count[i][4:0] == 5'b00000)
reset_count[i][4:0] <= 5'b00000;
else
reset_count[i][4:0] <= reset_count[i][4:0] - 1;
end
assign srl_reset[i] = | reset_count[i][4:0];
SRLC32E #(
.INIT(32'h00000000)
) SRLC32E_inst (
.Q(comp_timeout_vector[i]), // SRL data output
.Q31(), // SRL cascade output pin
.A(5'b11000), // 5-bit shift depth select input
.CE((srl_reset[i]) ? srl_reset[i] : timer), // Clock enable input
.CLK(clk), // Clock input
.D((srl_reset[i]) ? ~srl_reset[i] : shift_in[i]) // SRL data input
);
end
endgenerate
always@(posedge clk)begin
comp_timeout_vector_d1[31:0] <= comp_timeout_vector[31:0];
end
assign comp_timeout_or = |comp_timeout_vector_d1[31:0];
rising_edge_detect comp_timeout_one_inst(
.clk(clk),
.rst(rst),
.in(comp_timeout_or),
.one_shot_out(comp_timeout_one)
);
always@(posedge clk)begin
comp_timeout_d1 <= comp_timeout_one;
comp_timeout <= comp_timeout_d1;
end
endmodule
|
// -----------------------------------------------------------
// Legal Notice: (C)2007 Altera Corporation. All rights reserved. Your
// use of Altera Corporation's design tools, logic functions and other
// software and tools, and its AMPP partner logic functions, and any
// output files any of the foregoing (including device programming or
// simulation files), and any associated documentation or information are
// expressly subject to the terms and conditions of the Altera Program
// License Subscription Agreement or other applicable license agreement,
// including, without limitation, that your use is for the sole purpose
// of programming logic devices manufactured by Altera and sold by Altera
// or its authorized distributors. Please refer to the applicable
// agreement for further details.
//
// Description: Single clock Avalon-ST FIFO.
// -----------------------------------------------------------
`timescale 1 ns / 1 ns
//altera message_off 10036
module altera_avalon_sc_fifo
#(
// --------------------------------------------------
// Parameters
// --------------------------------------------------
parameter SYMBOLS_PER_BEAT = 1,
parameter BITS_PER_SYMBOL = 8,
parameter FIFO_DEPTH = 16,
parameter CHANNEL_WIDTH = 0,
parameter ERROR_WIDTH = 0,
parameter USE_PACKETS = 0,
parameter USE_FILL_LEVEL = 0,
parameter USE_STORE_FORWARD = 0,
parameter USE_ALMOST_FULL_IF = 0,
parameter USE_ALMOST_EMPTY_IF = 0,
// --------------------------------------------------
// Empty latency is defined as the number of cycles
// required for a write to deassert the empty flag.
// For example, a latency of 1 means that the empty
// flag is deasserted on the cycle after a write.
//
// Another way to think of it is the latency for a
// write to propagate to the output.
//
// An empty latency of 0 implies lookahead, which is
// only implemented for the register-based FIFO.
// --------------------------------------------------
parameter EMPTY_LATENCY = 3,
parameter USE_MEMORY_BLOCKS = 1,
// --------------------------------------------------
// Internal Parameters
// --------------------------------------------------
parameter DATA_WIDTH = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL,
parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT)
)
(
// --------------------------------------------------
// Ports
// --------------------------------------------------
input clk,
input reset,
input [DATA_WIDTH-1: 0] in_data,
input in_valid,
input in_startofpacket,
input in_endofpacket,
input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] in_empty,
input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] in_error,
input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] in_channel,
output in_ready,
output [DATA_WIDTH-1 : 0] out_data,
output reg out_valid,
output out_startofpacket,
output out_endofpacket,
output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] out_empty,
output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] out_error,
output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel,
input out_ready,
input [(USE_STORE_FORWARD ? 2 : 1) : 0] csr_address,
input csr_write,
input csr_read,
input [31 : 0] csr_writedata,
output reg [31 : 0] csr_readdata,
output wire almost_full_data,
output wire almost_empty_data
);
// --------------------------------------------------
// Local Parameters
// --------------------------------------------------
localparam ADDR_WIDTH = log2ceil(FIFO_DEPTH);
localparam DEPTH = FIFO_DEPTH;
localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH;
localparam PAYLOAD_WIDTH = (USE_PACKETS == 1) ?
2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH:
DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH;
// --------------------------------------------------
// Internal Signals
// --------------------------------------------------
genvar i;
reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0];
reg [ADDR_WIDTH-1 : 0] wr_ptr;
reg [ADDR_WIDTH-1 : 0] rd_ptr;
reg [DEPTH-1 : 0] mem_used;
wire [ADDR_WIDTH-1 : 0] next_wr_ptr;
wire [ADDR_WIDTH-1 : 0] next_rd_ptr;
wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr;
wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr;
wire [ADDR_WIDTH-1 : 0] mem_rd_ptr;
wire read;
wire write;
reg empty;
reg next_empty;
reg full;
reg next_full;
wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals;
wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals;
wire [PAYLOAD_WIDTH-1 : 0] in_payload;
reg [PAYLOAD_WIDTH-1 : 0] internal_out_payload;
reg [PAYLOAD_WIDTH-1 : 0] out_payload;
reg internal_out_valid;
wire internal_out_ready;
reg [ADDR_WIDTH : 0] fifo_fill_level;
reg [ADDR_WIDTH : 0] fill_level;
reg [ADDR_WIDTH-1 : 0] sop_ptr = 0;
reg [23:0] almost_full_threshold;
reg [23:0] almost_empty_threshold;
reg [23:0] cut_through_threshold;
reg [15:0] pkt_cnt;
reg [15:0] pkt_cnt_r;
reg [15:0] pkt_cnt_plusone;
reg [15:0] pkt_cnt_minusone;
reg drop_on_error_en;
reg error_in_pkt;
reg pkt_has_started;
reg sop_has_left_fifo;
reg fifo_too_small_r;
reg pkt_cnt_eq_zero;
reg pkt_cnt_eq_one;
reg pkt_cnt_changed;
wire wait_for_threshold;
reg pkt_mode;
wire wait_for_pkt;
wire ok_to_forward;
wire in_pkt_eop_arrive;
wire out_pkt_leave;
wire in_pkt_start;
wire in_pkt_error;
wire drop_on_error;
wire fifo_too_small;
wire out_pkt_sop_leave;
wire [31:0] max_fifo_size;
reg fifo_fill_level_lt_cut_through_threshold;
// --------------------------------------------------
// Define Payload
//
// Icky part where we decide which signals form the
// payload to the FIFO with generate blocks.
// --------------------------------------------------
generate
if (EMPTY_WIDTH > 0) begin
assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty};
assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals;
end
else begin
assign out_empty = in_error;
assign in_packet_signals = {in_startofpacket, in_endofpacket};
assign {out_startofpacket, out_endofpacket} = out_packet_signals;
end
endgenerate
generate
if (USE_PACKETS) begin
if (ERROR_WIDTH > 0) begin
if (CHANNEL_WIDTH > 0) begin
assign in_payload = {in_packet_signals, in_data, in_error, in_channel};
assign {out_packet_signals, out_data, out_error, out_channel} = out_payload;
end
else begin
assign out_channel = in_channel;
assign in_payload = {in_packet_signals, in_data, in_error};
assign {out_packet_signals, out_data, out_error} = out_payload;
end
end
else begin
assign out_error = in_error;
if (CHANNEL_WIDTH > 0) begin
assign in_payload = {in_packet_signals, in_data, in_channel};
assign {out_packet_signals, out_data, out_channel} = out_payload;
end
else begin
assign out_channel = in_channel;
assign in_payload = {in_packet_signals, in_data};
assign {out_packet_signals, out_data} = out_payload;
end
end
end
else begin
assign out_packet_signals = 0;
if (ERROR_WIDTH > 0) begin
if (CHANNEL_WIDTH > 0) begin
assign in_payload = {in_data, in_error, in_channel};
assign {out_data, out_error, out_channel} = out_payload;
end
else begin
assign out_channel = in_channel;
assign in_payload = {in_data, in_error};
assign {out_data, out_error} = out_payload;
end
end
else begin
assign out_error = in_error;
if (CHANNEL_WIDTH > 0) begin
assign in_payload = {in_data, in_channel};
assign {out_data, out_channel} = out_payload;
end
else begin
assign out_channel = in_channel;
assign in_payload = in_data;
assign out_data = out_payload;
end
end
end
endgenerate
// --------------------------------------------------
// Memory-based FIFO storage
//
// To allow a ready latency of 0, the read index is
// obtained from the next read pointer and memory
// outputs are unregistered.
//
// If the empty latency is 1, we infer bypass logic
// around the memory so writes propagate to the
// outputs on the next cycle.
//
// Do not change the way this is coded: Quartus needs
// a perfect match to the template, and any attempt to
// refactor the two always blocks into one will break
// memory inference.
// --------------------------------------------------
generate if (USE_MEMORY_BLOCKS == 1) begin
if (EMPTY_LATENCY == 1) begin
always @(posedge clk) begin
if (in_valid && in_ready)
mem[wr_ptr] = in_payload;
internal_out_payload = mem[mem_rd_ptr];
end
end else begin
always @(posedge clk) begin
if (in_valid && in_ready)
mem[wr_ptr] <= in_payload;
internal_out_payload <= mem[mem_rd_ptr];
end
end
assign mem_rd_ptr = next_rd_ptr;
end else begin
// --------------------------------------------------
// Register-based FIFO storage
//
// Uses a shift register as the storage element. Each
// shift register slot has a bit which indicates if
// the slot is occupied (credit to Sam H for the idea).
// The occupancy bits are contiguous and start from the
// lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep
// FIFO.
//
// Each slot is enabled during a read or when it
// is unoccupied. New data is always written to every
// going-to-be-empty slot (we keep track of which ones
// are actually useful with the occupancy bits). On a
// read we shift occupied slots.
//
// The exception is the last slot, which always gets
// new data when it is unoccupied.
// --------------------------------------------------
for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg
always @(posedge clk or posedge reset) begin
if (reset) begin
mem[i] <= 0;
end
else if (read || !mem_used[i]) begin
if (!mem_used[i+1])
mem[i] <= in_payload;
else
mem[i] <= mem[i+1];
end
end
end
always @(posedge clk, posedge reset) begin
if (reset) begin
mem[DEPTH-1] <= 0;
end
else begin
if (!mem_used[DEPTH-1])
mem[DEPTH-1] <= in_payload;
if (DEPTH == 1) begin
if (write)
mem[DEPTH-1] <= in_payload;
end
end
end
end
endgenerate
assign read = internal_out_ready && internal_out_valid && ok_to_forward;
assign write = in_ready && in_valid;
// --------------------------------------------------
// Pointer Management
// --------------------------------------------------
generate if (USE_MEMORY_BLOCKS == 1) begin
assign incremented_wr_ptr = wr_ptr + 1'b1;
assign incremented_rd_ptr = rd_ptr + 1'b1;
assign next_wr_ptr = drop_on_error ? sop_ptr : write ? incremented_wr_ptr : wr_ptr;
assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr;
always @(posedge clk or posedge reset) begin
if (reset) begin
wr_ptr <= 0;
rd_ptr <= 0;
end
else begin
wr_ptr <= next_wr_ptr;
rd_ptr <= next_rd_ptr;
end
end
end else begin
// --------------------------------------------------
// Shift Register Occupancy Bits
//
// Consider a 4-deep FIFO with 2 entries: 0011
// On a read and write, do not modify the bits.
// On a write, left-shift the bits to get 0111.
// On a read, right-shift the bits to get 0001.
//
// Also, on a write we set bit0 (the head), while
// clearing the tail on a read.
// --------------------------------------------------
always @(posedge clk or posedge reset) begin
if (reset) begin
mem_used[0] <= 0;
end
else begin
if (write ^ read) begin
if (read) begin
if (DEPTH > 1)
mem_used[0] <= mem_used[1];
else
mem_used[0] <= 0;
end
if (write)
mem_used[0] <= 1;
end
end
end
if (DEPTH > 1) begin
always @(posedge clk or posedge reset) begin
if (reset) begin
mem_used[DEPTH-1] <= 0;
end
else begin
if (write ^ read) begin
mem_used[DEPTH-1] <= 0;
if (write)
mem_used[DEPTH-1] <= mem_used[DEPTH-2];
end
end
end
end
for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic
always @(posedge clk, posedge reset) begin
if (reset) begin
mem_used[i] <= 0;
end
else begin
if (write ^ read) begin
if (read)
mem_used[i] <= mem_used[i+1];
if (write)
mem_used[i] <= mem_used[i-1];
end
end
end
end
end
endgenerate
// --------------------------------------------------
// Memory FIFO Status Management
//
// Generates the full and empty signals from the
// pointers. The FIFO is full when the next write
// pointer will be equal to the read pointer after
// a write. Reading from a FIFO clears full.
//
// The FIFO is empty when the next read pointer will
// be equal to the write pointer after a read. Writing
// to a FIFO clears empty.
//
// A simultaneous read and write must not change any of
// the empty or full flags unless there is a drop on error event.
// --------------------------------------------------
generate if (USE_MEMORY_BLOCKS == 1) begin
always @* begin
next_full = full;
next_empty = empty;
if (read && !write) begin
next_full = 1'b0;
if (incremented_rd_ptr == wr_ptr)
next_empty = 1'b1;
end
if (write && !read) begin
if (!drop_on_error)
next_empty = 1'b0;
else if (sop_ptr == rd_ptr) // drop on error and only 1 pkt in fifo
next_empty = 1'b1;
if (incremented_wr_ptr == rd_ptr && !drop_on_error)
next_full = 1'b1;
end
if (write && read && drop_on_error) begin
if (sop_ptr == next_rd_ptr)
next_empty = 1'b1;
end
end
always @(posedge clk or posedge reset) begin
if (reset) begin
empty <= 1;
full <= 0;
end
else begin
empty <= next_empty;
full <= next_full;
end
end
end else begin
// --------------------------------------------------
// Register FIFO Status Management
//
// Full when the tail occupancy bit is 1. Empty when
// the head occupancy bit is 0.
// --------------------------------------------------
always @* begin
full = mem_used[DEPTH-1];
empty = !mem_used[0];
// ------------------------------------------
// For a single slot FIFO, reading clears the
// full status immediately.
// ------------------------------------------
if (DEPTH == 1)
full = mem_used[0] && !read;
internal_out_payload = mem[0];
// ------------------------------------------
// Writes clear empty immediately for lookahead modes.
// Note that we use in_valid instead of write to avoid
// combinational loops (in lookahead mode, qualifying
// with in_ready is meaningless).
//
// In a 1-deep FIFO, a possible combinational loop runs
// from write -> out_valid -> out_ready -> write
// ------------------------------------------
if (EMPTY_LATENCY == 0) begin
empty = !mem_used[0] && !in_valid;
if (!mem_used[0] && in_valid)
internal_out_payload = in_payload;
end
end
end
endgenerate
// --------------------------------------------------
// Avalon-ST Signals
//
// The in_ready signal is straightforward.
//
// To match memory latency when empty latency > 1,
// out_valid assertions must be delayed by one clock
// cycle.
//
// Note: out_valid deassertions must not be delayed or
// the FIFO will underflow.
// --------------------------------------------------
assign in_ready = !full;
assign internal_out_ready = out_ready || !out_valid;
generate if (EMPTY_LATENCY > 1) begin
always @(posedge clk or posedge reset) begin
if (reset)
internal_out_valid <= 0;
else begin
internal_out_valid <= !empty & ok_to_forward & ~drop_on_error;
if (read) begin
if (incremented_rd_ptr == wr_ptr)
internal_out_valid <= 1'b0;
end
end
end
end else begin
always @* begin
internal_out_valid = !empty & ok_to_forward;
end
end
endgenerate
// --------------------------------------------------
// Single Output Pipeline Stage
//
// This output pipeline stage is enabled if the FIFO's
// empty latency is set to 3 (default). It is disabled
// for all other allowed latencies.
//
// Reason: The memory outputs are unregistered, so we have to
// register the output or fmax will drop if combinatorial
// logic is present on the output datapath.
//
// Q: The Avalon-ST spec says that I have to register my outputs
// But isn't the memory counted as a register?
// A: The path from the address lookup to the memory output is
// slow. Registering the memory outputs is a good idea.
//
// The registers get packed into the memory by the fitter
// which means minimal resources are consumed (the result
// is a altsyncram with registered outputs, available on
// all modern Altera devices).
//
// This output stage acts as an extra slot in the FIFO,
// and complicates the fill level.
// --------------------------------------------------
generate if (EMPTY_LATENCY == 3) begin
always @(posedge clk or posedge reset) begin
if (reset) begin
out_valid <= 0;
out_payload <= 0;
end
else begin
if (internal_out_ready) begin
out_valid <= internal_out_valid & ok_to_forward;
out_payload <= internal_out_payload;
end
end
end
end
else begin
always @* begin
out_valid = internal_out_valid;
out_payload = internal_out_payload;
end
end
endgenerate
// --------------------------------------------------
// Fill Level
//
// The fill level is calculated from the next write
// and read pointers to avoid unnecessary latency.
//
// If the output pipeline is enabled, the fill level
// must account for it, or we'll always be off by one.
// This may, or may not be important depending on the
// application.
//
// For now, we'll always calculate the exact fill level
// at the cost of an extra adder when the output stage
// is enabled.
// --------------------------------------------------
generate if (USE_FILL_LEVEL) begin
wire [31:0] depth32;
assign depth32 = DEPTH;
always @(posedge clk or posedge reset) begin
if (reset)
fifo_fill_level <= 0;
else if (next_full & !drop_on_error)
fifo_fill_level <= depth32[ADDR_WIDTH:0];
else begin
fifo_fill_level[ADDR_WIDTH] <= 1'b0;
fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr;
end
end
always @* begin
fill_level = fifo_fill_level;
if (EMPTY_LATENCY == 3)
fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid};
end
end
else begin
always @* begin
fill_level = 0;
end
end
endgenerate
generate if (USE_ALMOST_FULL_IF) begin
assign almost_full_data = (fill_level >= almost_full_threshold);
end
else
assign almost_full_data = 0;
endgenerate
generate if (USE_ALMOST_EMPTY_IF) begin
assign almost_empty_data = (fill_level <= almost_empty_threshold);
end
else
assign almost_empty_data = 0;
endgenerate
// --------------------------------------------------
// Avalon-MM Status & Control Connection Point
//
// Register map:
//
// | Addr | RW | 31 - 0 |
// | 0 | R | Fill level |
//
// The registering of this connection point means
// that there is a cycle of latency between
// reads/writes and the updating of the fill level.
// --------------------------------------------------
generate if (USE_STORE_FORWARD) begin
assign max_fifo_size = FIFO_DEPTH - 1;
always @(posedge clk or posedge reset) begin
if (reset) begin
almost_full_threshold <= max_fifo_size[23 : 0];
almost_empty_threshold <= 0;
cut_through_threshold <= 0;
drop_on_error_en <= 0;
csr_readdata <= 0;
pkt_mode <= 1'b1;
end
else begin
if (csr_write) begin
if(csr_address == 3'b010)
almost_full_threshold <= csr_writedata[23:0];
if(csr_address == 3'b011)
almost_empty_threshold <= csr_writedata[23:0];
if(csr_address == 3'b100) begin
cut_through_threshold <= csr_writedata[23:0];
pkt_mode <= (csr_writedata[23:0] == 0);
end
if(csr_address == 3'b101)
drop_on_error_en <= csr_writedata[0];
end
if (csr_read) begin
csr_readdata <= 32'b0;
if (csr_address == 0)
csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
if (csr_address == 2)
csr_readdata <= {8'b0, almost_full_threshold};
if (csr_address == 3)
csr_readdata <= {8'b0, almost_empty_threshold};
if (csr_address == 4)
csr_readdata <= {8'b0, cut_through_threshold};
if (csr_address == 5)
csr_readdata <= {31'b0, drop_on_error_en};
end
end
end
end
else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin
assign max_fifo_size = FIFO_DEPTH - 1;
always @(posedge clk or posedge reset) begin
if (reset) begin
almost_full_threshold <= max_fifo_size[23 : 0];
almost_empty_threshold <= 0;
csr_readdata <= 0;
end
else begin
if (csr_write) begin
if(csr_address == 3'b010)
almost_full_threshold <= csr_writedata[23:0];
if(csr_address == 3'b011)
almost_empty_threshold <= csr_writedata[23:0];
end
if (csr_read) begin
csr_readdata <= 32'b0;
if (csr_address == 0)
csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
if (csr_address == 2)
csr_readdata <= {8'b0, almost_full_threshold};
if (csr_address == 3)
csr_readdata <= {8'b0, almost_empty_threshold};
end
end
end
end
else begin
always @(posedge clk or posedge reset) begin
if (reset) begin
csr_readdata <= 0;
end
else if (csr_read) begin
csr_readdata <= 0;
if (csr_address == 0)
csr_readdata <= fill_level;
end
end
end
endgenerate
// --------------------------------------------------
// Store and forward logic
// --------------------------------------------------
// if the fifo gets full before the entire packet or the
// cut-threshold condition is met then start sending out
// data in order to avoid dead-lock situation
generate if (USE_STORE_FORWARD) begin
assign wait_for_threshold = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ;
assign wait_for_pkt = pkt_cnt_eq_zero | (pkt_cnt_eq_one & out_pkt_leave);
assign ok_to_forward = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) :
~wait_for_threshold) | fifo_too_small_r;
assign in_pkt_eop_arrive = in_valid & in_ready & in_endofpacket;
assign in_pkt_start = in_valid & in_ready & in_startofpacket;
assign in_pkt_error = in_valid & in_ready & |in_error;
assign out_pkt_sop_leave = out_valid & out_ready & out_startofpacket;
assign out_pkt_leave = out_valid & out_ready & out_endofpacket;
assign fifo_too_small = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready;
// count packets coming and going into the fifo
always @(posedge clk or posedge reset) begin
if (reset) begin
pkt_cnt <= 0;
pkt_cnt_r <= 0;
pkt_cnt_plusone <= 1;
pkt_cnt_minusone <= 0;
pkt_cnt_changed <= 0;
pkt_has_started <= 0;
sop_has_left_fifo <= 0;
fifo_too_small_r <= 0;
pkt_cnt_eq_zero <= 1'b1;
pkt_cnt_eq_one <= 1'b0;
fifo_fill_level_lt_cut_through_threshold <= 1'b1;
end
else begin
fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold;
fifo_too_small_r <= fifo_too_small;
pkt_cnt_plusone <= pkt_cnt + 1'b1;
pkt_cnt_minusone <= pkt_cnt - 1'b1;
pkt_cnt_r <= pkt_cnt;
pkt_cnt_changed <= 1'b0;
if( in_pkt_eop_arrive )
sop_has_left_fifo <= 1'b0;
else if (out_pkt_sop_leave & pkt_cnt_eq_zero )
sop_has_left_fifo <= 1'b1;
if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin
pkt_cnt_changed <= 1'b1;
pkt_cnt <= pkt_cnt_changed ? pkt_cnt_r : pkt_cnt_plusone;
pkt_cnt_eq_zero <= 0;
if (pkt_cnt == 0)
pkt_cnt_eq_one <= 1'b1;
else
pkt_cnt_eq_one <= 1'b0;
end
else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin
pkt_cnt_changed <= 1'b1;
pkt_cnt <= pkt_cnt_changed ? pkt_cnt_r : pkt_cnt_minusone;
if (pkt_cnt == 1)
pkt_cnt_eq_zero <= 1'b1;
else
pkt_cnt_eq_zero <= 1'b0;
if (pkt_cnt == 2)
pkt_cnt_eq_one <= 1'b1;
else
pkt_cnt_eq_one <= 1'b0;
end
if (in_pkt_start)
pkt_has_started <= 1'b1;
else if (in_pkt_eop_arrive)
pkt_has_started <= 1'b0;
end
end
// drop on error logic
always @(posedge clk or posedge reset) begin
if (reset) begin
sop_ptr <= 0;
error_in_pkt <= 0;
end
else begin
// save the location of the SOP
if ( in_pkt_start )
sop_ptr <= wr_ptr;
// remember if error in pkt
// log error only if packet has already started
if (in_pkt_eop_arrive)
error_in_pkt <= 1'b0;
else if ( in_pkt_error & (pkt_has_started | in_pkt_start))
error_in_pkt <= 1'b1;
end
end
assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive &
~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero);
end
else begin
assign ok_to_forward = 1'b1;
assign drop_on_error = 1'b0;
end
endgenerate
// --------------------------------------------------
// Calculates the log2ceil of the input value
// --------------------------------------------------
function integer log2ceil;
input integer val;
integer i;
begin
i = 1;
log2ceil = 0;
while (i < val) begin
log2ceil = log2ceil + 1;
i = i << 1;
end
end
endfunction
endmodule
|
//-----------------------------------------------------------------------------
// Copyright (C) 2014 iZsh <izsh at fail0verflow.com>
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// testbench for min_max_tracker
`include "min_max_tracker.v"
`define FIN "tb_tmp/data.filtered.gold"
`define FOUT_MIN "tb_tmp/data.min"
`define FOUT_MAX "tb_tmp/data.max"
module min_max_tracker_tb;
integer fin;
integer fout_min, fout_max;
integer r;
reg clk;
reg [7:0] adc_d;
wire [7:0] min;
wire [7:0] max;
initial
begin
clk = 0;
fin = $fopen(`FIN, "r");
if (!fin) begin
$display("ERROR: can't open the data file");
$finish;
end
fout_min = $fopen(`FOUT_MIN, "w+");
fout_max = $fopen(`FOUT_MAX, "w+");
if (!$feof(fin))
adc_d = $fgetc(fin); // read the first value
end
always
# 1 clk = !clk;
// input
initial
begin
while (!$feof(fin)) begin
@(negedge clk) adc_d <= $fgetc(fin);
end
if ($feof(fin))
begin
# 3 $fclose(fin);
$fclose(fout_min);
$fclose(fout_max);
$finish;
end
end
initial
begin
// $monitor("%d\t min: %x, max: %x", $time, min, max);
end
// output
always @(negedge clk)
if ($time > 2) begin
r = $fputc(min, fout_min);
r = $fputc(max, fout_max);
end
// module to test
min_max_tracker tracker(clk, adc_d, 8'd127, min, max);
endmodule |
//-----------------------------------------------------------------------------
// Copyright (C) 2014 iZsh <izsh at fail0verflow.com>
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// testbench for min_max_tracker
`include "min_max_tracker.v"
`define FIN "tb_tmp/data.filtered.gold"
`define FOUT_MIN "tb_tmp/data.min"
`define FOUT_MAX "tb_tmp/data.max"
module min_max_tracker_tb;
integer fin;
integer fout_min, fout_max;
integer r;
reg clk;
reg [7:0] adc_d;
wire [7:0] min;
wire [7:0] max;
initial
begin
clk = 0;
fin = $fopen(`FIN, "r");
if (!fin) begin
$display("ERROR: can't open the data file");
$finish;
end
fout_min = $fopen(`FOUT_MIN, "w+");
fout_max = $fopen(`FOUT_MAX, "w+");
if (!$feof(fin))
adc_d = $fgetc(fin); // read the first value
end
always
# 1 clk = !clk;
// input
initial
begin
while (!$feof(fin)) begin
@(negedge clk) adc_d <= $fgetc(fin);
end
if ($feof(fin))
begin
# 3 $fclose(fin);
$fclose(fout_min);
$fclose(fout_max);
$finish;
end
end
initial
begin
// $monitor("%d\t min: %x, max: %x", $time, min, max);
end
// output
always @(negedge clk)
if ($time > 2) begin
r = $fputc(min, fout_min);
r = $fputc(max, fout_max);
end
// module to test
min_max_tracker tracker(clk, adc_d, 8'd127, min, max);
endmodule |
/*+--------------------------------------------------------------------------
Copyright (c) 2015, Microsoft Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------*/
`timescale 1ns / 1ps
module RCB_FRL_fifo_MSG(ALMOSTEMPTY, ALMOSTFULL, DO, EMPTY, FULL, DI, RDCLK, RDEN, WRCLK, WREN, RST);
output ALMOSTEMPTY, ALMOSTFULL, EMPTY, FULL;
output [39:0] DO;
input [39:0] DI;
input RDCLK, RDEN, WRCLK, WREN, RST;
wire [63:40] zero;
FIFO36_72 #(
.ALMOST_FULL_OFFSET(9'h080), // Sets almost full threshold
.ALMOST_EMPTY_OFFSET(9'h080), // Sets the almost empty threshold
.DO_REG(1), // Enable output register (0 or 1)
// Must be 1 if EN_SYN = "FALSE"
.EN_ECC_READ("FALSE"), // Enable ECC decoder, "TRUE" or "FALSE"
.EN_ECC_WRITE("FALSE"), // Enable ECC encoder, "TRUE" or "FALSE"
.EN_SYN("FALSE"), // Specifies FIFO as Asynchronous ("FALSE")
// or Synchronous ("TRUE")
.FIRST_WORD_FALL_THROUGH("FALSE") // Sets the FIFO FWFT to "TRUE" or "FALSE"
) FIFO36_72_inst (
.ALMOSTEMPTY(ALMOSTEMPTY), // 1-bit almost empty output flag
.ALMOSTFULL(ALMOSTFULL), // 1-bit almost full output flag
.DBITERR(), // 1-bit double bit error status output
.DO({zero[63:40],DO[39:0]}), // 32-bit data output
.DOP(), // 4-bit parity data output
.ECCPARITY(), // 8-bit generated error correction parity
.EMPTY(EMPTY), // 1-bit empty output flag
.FULL(FULL), // 1-bit full output flag
.RDCOUNT(), // 9-bit read count output
.RDERR(), // 1-bit read error output
.SBITERR(), // 1-bit single bit error status output
.WRCOUNT(), // 9-bit write count output
.WRERR(), // 1-bit write error
.DI({24'h000,DI}), // 32-bit data input
.DIP(), // 4-bit parity input
.RDCLK(RDCLK), // 1-bit read clock input
.RDEN(RDEN), // 1-bit read enable input
.RST(RST), // 1-bit reset input
.WRCLK(WRCLK), // 1-bit write clock input
.WREN(WREN) // 1-bit write enable input
);
endmodule
|
/*+--------------------------------------------------------------------------
Copyright (c) 2015, Microsoft Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------*/
`timescale 1ns / 1ps
module RCB_FRL_fifo_MSG(ALMOSTEMPTY, ALMOSTFULL, DO, EMPTY, FULL, DI, RDCLK, RDEN, WRCLK, WREN, RST);
output ALMOSTEMPTY, ALMOSTFULL, EMPTY, FULL;
output [39:0] DO;
input [39:0] DI;
input RDCLK, RDEN, WRCLK, WREN, RST;
wire [63:40] zero;
FIFO36_72 #(
.ALMOST_FULL_OFFSET(9'h080), // Sets almost full threshold
.ALMOST_EMPTY_OFFSET(9'h080), // Sets the almost empty threshold
.DO_REG(1), // Enable output register (0 or 1)
// Must be 1 if EN_SYN = "FALSE"
.EN_ECC_READ("FALSE"), // Enable ECC decoder, "TRUE" or "FALSE"
.EN_ECC_WRITE("FALSE"), // Enable ECC encoder, "TRUE" or "FALSE"
.EN_SYN("FALSE"), // Specifies FIFO as Asynchronous ("FALSE")
// or Synchronous ("TRUE")
.FIRST_WORD_FALL_THROUGH("FALSE") // Sets the FIFO FWFT to "TRUE" or "FALSE"
) FIFO36_72_inst (
.ALMOSTEMPTY(ALMOSTEMPTY), // 1-bit almost empty output flag
.ALMOSTFULL(ALMOSTFULL), // 1-bit almost full output flag
.DBITERR(), // 1-bit double bit error status output
.DO({zero[63:40],DO[39:0]}), // 32-bit data output
.DOP(), // 4-bit parity data output
.ECCPARITY(), // 8-bit generated error correction parity
.EMPTY(EMPTY), // 1-bit empty output flag
.FULL(FULL), // 1-bit full output flag
.RDCOUNT(), // 9-bit read count output
.RDERR(), // 1-bit read error output
.SBITERR(), // 1-bit single bit error status output
.WRCOUNT(), // 9-bit write count output
.WRERR(), // 1-bit write error
.DI({24'h000,DI}), // 32-bit data input
.DIP(), // 4-bit parity input
.RDCLK(RDCLK), // 1-bit read clock input
.RDEN(RDEN), // 1-bit read enable input
.RST(RST), // 1-bit reset input
.WRCLK(WRCLK), // 1-bit write clock input
.WREN(WREN) // 1-bit write enable input
);
endmodule
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
(**************************************************************)
(* FSetDecide.v *)
(* *)
(* Author: Aaron Bohannon *)
(**************************************************************)
(** This file implements a decision procedure for a certain
class of propositions involving finite sets. *)
Require Import Decidable Setoid DecidableTypeEx FSetFacts.
(** First, a version for Weak Sets in functorial presentation *)
Module WDecide_fun (E : DecidableType)(Import M : WSfun E).
Module F := FSetFacts.WFacts_fun E M.
(** * Overview
This functor defines the tactic [fsetdec], which will
solve any valid goal of the form
<<
forall s1 ... sn,
forall x1 ... xm,
P1 -> ... -> Pk -> P
>>
where [P]'s are defined by the grammar:
<<
P ::=
| Q
| Empty F
| Subset F F'
| Equal F F'
Q ::=
| E.eq X X'
| In X F
| Q /\ Q'
| Q \/ Q'
| Q -> Q'
| Q <-> Q'
| ~ Q
| True
| False
F ::=
| S
| empty
| singleton X
| add X F
| remove X F
| union F F'
| inter F F'
| diff F F'
X ::= x1 | ... | xm
S ::= s1 | ... | sn
>>
The tactic will also work on some goals that vary slightly from
the above form:
- The variables and hypotheses may be mixed in any order and may
have already been introduced into the context. Moreover,
there may be additional, unrelated hypotheses mixed in (these
will be ignored).
- A conjunction of hypotheses will be handled as easily as
separate hypotheses, i.e., [P1 /\ P2 -> P] can be solved iff
[P1 -> P2 -> P] can be solved.
- [fsetdec] should solve any goal if the FSet-related hypotheses
are contradictory.
- [fsetdec] will first perform any necessary zeta and beta
reductions and will invoke [subst] to eliminate any Coq
equalities between finite sets or their elements.
- If [E.eq] is convertible with Coq's equality, it will not
matter which one is used in the hypotheses or conclusion.
- The tactic can solve goals where the finite sets or set
elements are expressed by Coq terms that are more complicated
than variables. However, non-local definitions are not
expanded, and Coq equalities between non-variable terms are
not used. For example, this goal will be solved:
<<
forall (f : t -> t),
forall (g : elt -> elt),
forall (s1 s2 : t),
forall (x1 x2 : elt),
Equal s1 (f s2) ->
E.eq x1 (g (g x2)) ->
In x1 s1 ->
In (g (g x2)) (f s2)
>>
This one will not be solved:
<<
forall (f : t -> t),
forall (g : elt -> elt),
forall (s1 s2 : t),
forall (x1 x2 : elt),
Equal s1 (f s2) ->
E.eq x1 (g x2) ->
In x1 s1 ->
g x2 = g (g x2) ->
In (g (g x2)) (f s2)
>>
*)
(** * Facts and Tactics for Propositional Logic
These lemmas and tactics are in a module so that they do
not affect the namespace if you import the enclosing
module [Decide]. *)
Module FSetLogicalFacts.
Export Decidable.
Export Setoid.
(** ** Lemmas and Tactics About Decidable Propositions *)
(** ** Propositional Equivalences Involving Negation
These are all written with the unfolded form of
negation, since I am not sure if setoid rewriting will
always perform conversion. *)
(** ** Tactics for Negations *)
Tactic Notation "fold" "any" "not" :=
repeat (
match goal with
| H: context [?P -> False] |- _ =>
fold (~ P) in H
| |- context [?P -> False] =>
fold (~ P)
end).
(** [push not using db] will pushes all negations to the
leaves of propositions in the goal, using the lemmas in
[db] to assist in checking the decidability of the
propositions involved. If [using db] is omitted, then
[core] will be used. Additional versions are provided
to manipulate the hypotheses or the hypotheses and goal
together.
XXX: This tactic and the similar subsequent ones should
have been defined using [autorewrite]. However, dealing
with multiples rewrite sites and side-conditions is
done more cleverly with the following explicit
analysis of goals. *)
Ltac or_not_l_iff P Q tac :=
(rewrite (or_not_l_iff_1 P Q) by tac) ||
(rewrite (or_not_l_iff_2 P Q) by tac).
Ltac or_not_r_iff P Q tac :=
(rewrite (or_not_r_iff_1 P Q) by tac) ||
(rewrite (or_not_r_iff_2 P Q) by tac).
Ltac or_not_l_iff_in P Q H tac :=
(rewrite (or_not_l_iff_1 P Q) in H by tac) ||
(rewrite (or_not_l_iff_2 P Q) in H by tac).
Ltac or_not_r_iff_in P Q H tac :=
(rewrite (or_not_r_iff_1 P Q) in H by tac) ||
(rewrite (or_not_r_iff_2 P Q) in H by tac).
Tactic Notation "push" "not" "using" ident(db) :=
let dec := solve_decidable using db in
unfold not, iff;
repeat (
match goal with
| |- context [True -> False] => rewrite not_true_iff
| |- context [False -> False] => rewrite not_false_iff
| |- context [(?P -> False) -> False] => rewrite (not_not_iff P) by dec
| |- context [(?P -> False) -> (?Q -> False)] =>
rewrite (contrapositive P Q) by dec
| |- context [(?P -> False) \/ ?Q] => or_not_l_iff P Q dec
| |- context [?P \/ (?Q -> False)] => or_not_r_iff P Q dec
| |- context [(?P -> False) -> ?Q] => rewrite (imp_not_l P Q) by dec
| |- context [?P \/ ?Q -> False] => rewrite (not_or_iff P Q)
| |- context [?P /\ ?Q -> False] => rewrite (not_and_iff P Q)
| |- context [(?P -> ?Q) -> False] => rewrite (not_imp_iff P Q) by dec
end);
fold any not.
Tactic Notation "push" "not" :=
push not using core.
Tactic Notation
"push" "not" "in" "*" "|-" "using" ident(db) :=
let dec := solve_decidable using db in
unfold not, iff in * |-;
repeat (
match goal with
| H: context [True -> False] |- _ => rewrite not_true_iff in H
| H: context [False -> False] |- _ => rewrite not_false_iff in H
| H: context [(?P -> False) -> False] |- _ =>
rewrite (not_not_iff P) in H by dec
| H: context [(?P -> False) -> (?Q -> False)] |- _ =>
rewrite (contrapositive P Q) in H by dec
| H: context [(?P -> False) \/ ?Q] |- _ => or_not_l_iff_in P Q H dec
| H: context [?P \/ (?Q -> False)] |- _ => or_not_r_iff_in P Q H dec
| H: context [(?P -> False) -> ?Q] |- _ =>
rewrite (imp_not_l P Q) in H by dec
| H: context [?P \/ ?Q -> False] |- _ => rewrite (not_or_iff P Q) in H
| H: context [?P /\ ?Q -> False] |- _ => rewrite (not_and_iff P Q) in H
| H: context [(?P -> ?Q) -> False] |- _ =>
rewrite (not_imp_iff P Q) in H by dec
end);
fold any not.
Tactic Notation "push" "not" "in" "*" "|-" :=
push not in * |- using core.
Tactic Notation "push" "not" "in" "*" "using" ident(db) :=
push not using db; push not in * |- using db.
Tactic Notation "push" "not" "in" "*" :=
push not in * using core.
(** A simple test case to see how this works. *)
Lemma test_push : forall P Q R : Prop,
decidable P ->
decidable Q ->
(~ True) ->
(~ False) ->
(~ ~ P) ->
(~ (P /\ Q) -> ~ R) ->
((P /\ Q) \/ ~ R) ->
(~ (P /\ Q) \/ R) ->
(R \/ ~ (P /\ Q)) ->
(~ R \/ (P /\ Q)) ->
(~ P -> R) ->
(~ ((R -> P) \/ (Q -> R))) ->
(~ (P /\ R)) ->
(~ (P -> R)) ->
True.
Proof.
intros. push not in *.
(* note that ~(R->P) remains (since R isnt decidable) *)
tauto.
Qed.
(** [pull not using db] will pull as many negations as
possible toward the top of the propositions in the goal,
using the lemmas in [db] to assist in checking the
decidability of the propositions involved. If [using
db] is omitted, then [core] will be used. Additional
versions are provided to manipulate the hypotheses or
the hypotheses and goal together. *)
Tactic Notation "pull" "not" "using" ident(db) :=
let dec := solve_decidable using db in
unfold not, iff;
repeat (
match goal with
| |- context [True -> False] => rewrite not_true_iff
| |- context [False -> False] => rewrite not_false_iff
| |- context [(?P -> False) -> False] => rewrite (not_not_iff P) by dec
| |- context [(?P -> False) -> (?Q -> False)] =>
rewrite (contrapositive P Q) by dec
| |- context [(?P -> False) \/ ?Q] => or_not_l_iff P Q dec
| |- context [?P \/ (?Q -> False)] => or_not_r_iff P Q dec
| |- context [(?P -> False) -> ?Q] => rewrite (imp_not_l P Q) by dec
| |- context [(?P -> False) /\ (?Q -> False)] =>
rewrite <- (not_or_iff P Q)
| |- context [?P -> ?Q -> False] => rewrite <- (not_and_iff P Q)
| |- context [?P /\ (?Q -> False)] => rewrite <- (not_imp_iff P Q) by dec
| |- context [(?Q -> False) /\ ?P] =>
rewrite <- (not_imp_rev_iff P Q) by dec
end);
fold any not.
Tactic Notation "pull" "not" :=
pull not using core.
Tactic Notation
"pull" "not" "in" "*" "|-" "using" ident(db) :=
let dec := solve_decidable using db in
unfold not, iff in * |-;
repeat (
match goal with
| H: context [True -> False] |- _ => rewrite not_true_iff in H
| H: context [False -> False] |- _ => rewrite not_false_iff in H
| H: context [(?P -> False) -> False] |- _ =>
rewrite (not_not_iff P) in H by dec
| H: context [(?P -> False) -> (?Q -> False)] |- _ =>
rewrite (contrapositive P Q) in H by dec
| H: context [(?P -> False) \/ ?Q] |- _ => or_not_l_iff_in P Q H dec
| H: context [?P \/ (?Q -> False)] |- _ => or_not_r_iff_in P Q H dec
| H: context [(?P -> False) -> ?Q] |- _ =>
rewrite (imp_not_l P Q) in H by dec
| H: context [(?P -> False) /\ (?Q -> False)] |- _ =>
rewrite <- (not_or_iff P Q) in H
| H: context [?P -> ?Q -> False] |- _ =>
rewrite <- (not_and_iff P Q) in H
| H: context [?P /\ (?Q -> False)] |- _ =>
rewrite <- (not_imp_iff P Q) in H by dec
| H: context [(?Q -> False) /\ ?P] |- _ =>
rewrite <- (not_imp_rev_iff P Q) in H by dec
end);
fold any not.
Tactic Notation "pull" "not" "in" "*" "|-" :=
pull not in * |- using core.
Tactic Notation "pull" "not" "in" "*" "using" ident(db) :=
pull not using db; pull not in * |- using db.
Tactic Notation "pull" "not" "in" "*" :=
pull not in * using core.
(** A simple test case to see how this works. *)
Lemma test_pull : forall P Q R : Prop,
decidable P ->
decidable Q ->
(~ True) ->
(~ False) ->
(~ ~ P) ->
(~ (P /\ Q) -> ~ R) ->
((P /\ Q) \/ ~ R) ->
(~ (P /\ Q) \/ R) ->
(R \/ ~ (P /\ Q)) ->
(~ R \/ (P /\ Q)) ->
(~ P -> R) ->
(~ (R -> P) /\ ~ (Q -> R)) ->
(~ P \/ ~ R) ->
(P /\ ~ R) ->
(~ R /\ P) ->
True.
Proof.
intros. pull not in *. tauto.
Qed.
End FSetLogicalFacts.
Import FSetLogicalFacts.
(** * Auxiliary Tactics
Again, these lemmas and tactics are in a module so that
they do not affect the namespace if you import the
enclosing module [Decide]. *)
Module FSetDecideAuxiliary.
(** ** Generic Tactics
We begin by defining a few generic, useful tactics. *)
(** remove logical hypothesis inter-dependencies (fix #2136). *)
Ltac no_logical_interdep :=
match goal with
| H : ?P |- _ =>
match type of P with
| Prop =>
match goal with H' : context [ H ] |- _ => clear dependent H' end
| _ => fail
end; no_logical_interdep
| _ => idtac
end.
(** [if t then t1 else t2] executes [t] and, if it does not
fail, then [t1] will be applied to all subgoals
produced. If [t] fails, then [t2] is executed. *)
Tactic Notation
"if" tactic(t)
"then" tactic(t1)
"else" tactic(t2) :=
first [ t; first [ t1 | fail 2 ] | t2 ].
Ltac abstract_term t :=
if (is_var t) then fail "no need to abstract a variable"
else (let x := fresh "x" in set (x := t) in *; try clearbody x).
Ltac abstract_elements :=
repeat
(match goal with
| |- context [ singleton ?t ] => abstract_term t
| _ : context [ singleton ?t ] |- _ => abstract_term t
| |- context [ add ?t _ ] => abstract_term t
| _ : context [ add ?t _ ] |- _ => abstract_term t
| |- context [ remove ?t _ ] => abstract_term t
| _ : context [ remove ?t _ ] |- _ => abstract_term t
| |- context [ In ?t _ ] => abstract_term t
| _ : context [ In ?t _ ] |- _ => abstract_term t
end).
(** [prop P holds by t] succeeds (but does not modify the
goal or context) if the proposition [P] can be proved by
[t] in the current context. Otherwise, the tactic
fails. *)
Tactic Notation "prop" constr(P) "holds" "by" tactic(t) :=
let H := fresh in
assert P as H by t;
clear H.
(** This tactic acts just like [assert ... by ...] but will
fail if the context already contains the proposition. *)
Tactic Notation "assert" "new" constr(e) "by" tactic(t) :=
match goal with
| H: e |- _ => fail 1
| _ => assert e by t
end.
(** [subst++] is similar to [subst] except that
- it never fails (as [subst] does on recursive
equations),
- it substitutes locally defined variable for their
definitions,
- it performs beta reductions everywhere, which may
arise after substituting a locally defined function
for its definition.
*)
Tactic Notation "subst" "++" :=
repeat (
match goal with
| x : _ |- _ => subst x
end);
cbv zeta beta in *.
(** [decompose records] calls [decompose record H] on every
relevant hypothesis [H]. *)
Tactic Notation "decompose" "records" :=
repeat (
match goal with
| H: _ |- _ => progress (decompose record H); clear H
end).
(** ** Discarding Irrelevant Hypotheses
We will want to clear the context of any
non-FSet-related hypotheses in order to increase the
speed of the tactic. To do this, we will need to be
able to decide which are relevant. We do this by making
a simple inductive definition classifying the
propositions of interest. *)
Inductive FSet_elt_Prop : Prop -> Prop :=
| eq_Prop : forall (S : Type) (x y : S),
FSet_elt_Prop (x = y)
| eq_elt_prop : forall x y,
FSet_elt_Prop (E.eq x y)
| In_elt_prop : forall x s,
FSet_elt_Prop (In x s)
| True_elt_prop :
FSet_elt_Prop True
| False_elt_prop :
FSet_elt_Prop False
| conj_elt_prop : forall P Q,
FSet_elt_Prop P ->
FSet_elt_Prop Q ->
FSet_elt_Prop (P /\ Q)
| disj_elt_prop : forall P Q,
FSet_elt_Prop P ->
FSet_elt_Prop Q ->
FSet_elt_Prop (P \/ Q)
| impl_elt_prop : forall P Q,
FSet_elt_Prop P ->
FSet_elt_Prop Q ->
FSet_elt_Prop (P -> Q)
| not_elt_prop : forall P,
FSet_elt_Prop P ->
FSet_elt_Prop (~ P).
Inductive FSet_Prop : Prop -> Prop :=
| elt_FSet_Prop : forall P,
FSet_elt_Prop P ->
FSet_Prop P
| Empty_FSet_Prop : forall s,
FSet_Prop (Empty s)
| Subset_FSet_Prop : forall s1 s2,
FSet_Prop (Subset s1 s2)
| Equal_FSet_Prop : forall s1 s2,
FSet_Prop (Equal s1 s2).
(** Here is the tactic that will throw away hypotheses that
are not useful (for the intended scope of the [fsetdec]
tactic). *)
Hint Constructors FSet_elt_Prop FSet_Prop : FSet_Prop.
Ltac discard_nonFSet :=
repeat (
match goal with
| H : context [ @Logic.eq ?T ?x ?y ] |- _ =>
if (change T with E.t in H) then fail
else if (change T with t in H) then fail
else clear H
| H : ?P |- _ =>
if prop (FSet_Prop P) holds by
(auto 100 with FSet_Prop)
then fail
else clear H
end).
(** ** Turning Set Operators into Propositional Connectives
The lemmas from [FSetFacts] will be used to break down
set operations into propositional formulas built over
the predicates [In] and [E.eq] applied only to
variables. We are going to use them with [autorewrite].
*)
Hint Rewrite
F.empty_iff F.singleton_iff F.add_iff F.remove_iff
F.union_iff F.inter_iff F.diff_iff
: set_simpl.
Lemma eq_refl_iff (x : E.t) : E.eq x x <-> True.
Proof.
now split.
Qed.
Hint Rewrite eq_refl_iff : set_eq_simpl.
(** ** Decidability of FSet Propositions *)
(** [In] is decidable. *)
Lemma dec_In : forall x s,
decidable (In x s).
Proof.
red; intros; generalize (F.mem_iff s x); case (mem x s); intuition.
Qed.
(** [E.eq] is decidable. *)
Lemma dec_eq : forall (x y : E.t),
decidable (E.eq x y).
Proof.
red; intros x y; destruct (E.eq_dec x y); auto.
Qed.
(** The hint database [FSet_decidability] will be given to
the [push_neg] tactic from the module [Negation]. *)
Hint Resolve dec_In dec_eq : FSet_decidability.
(** ** Normalizing Propositions About Equality
We have to deal with the fact that [E.eq] may be
convertible with Coq's equality. Thus, we will find the
following tactics useful to replace one form with the
other everywhere. *)
(** The next tactic, [Logic_eq_to_E_eq], mentions the term
[E.t]; thus, we must ensure that [E.t] is used in favor
of any other convertible but syntactically distinct
term. *)
Ltac change_to_E_t :=
repeat (
match goal with
| H : ?T |- _ =>
progress (change T with E.t in H);
repeat (
match goal with
| J : _ |- _ => progress (change T with E.t in J)
| |- _ => progress (change T with E.t)
end )
| H : forall x : ?T, _ |- _ =>
progress (change T with E.t in H);
repeat (
match goal with
| J : _ |- _ => progress (change T with E.t in J)
| |- _ => progress (change T with E.t)
end )
end).
(** These two tactics take us from Coq's built-in equality
to [E.eq] (and vice versa) when possible. *)
Ltac Logic_eq_to_E_eq :=
repeat (
match goal with
| H: _ |- _ =>
progress (change (@Logic.eq E.t) with E.eq in H)
| |- _ =>
progress (change (@Logic.eq E.t) with E.eq)
end).
Ltac E_eq_to_Logic_eq :=
repeat (
match goal with
| H: _ |- _ =>
progress (change E.eq with (@Logic.eq E.t) in H)
| |- _ =>
progress (change E.eq with (@Logic.eq E.t))
end).
(** This tactic works like the built-in tactic [subst], but
at the level of set element equality (which may not be
the convertible with Coq's equality). *)
Ltac substFSet :=
repeat (
match goal with
| H: E.eq ?x ?x |- _ => clear H
| H: E.eq ?x ?y |- _ => rewrite H in *; clear H
end);
autorewrite with set_eq_simpl in *.
(** ** Considering Decidability of Base Propositions
This tactic adds assertions about the decidability of
[E.eq] and [In] to the context. This is necessary for
the completeness of the [fsetdec] tactic. However, in
order to minimize the cost of proof search, we should be
careful to not add more than we need. Once negations
have been pushed to the leaves of the propositions, we
only need to worry about decidability for those base
propositions that appear in a negated form. *)
Ltac assert_decidability :=
(** We actually don't want these rules to fire if the
syntactic context in the patterns below is trivially
empty, but we'll just do some clean-up at the
afterward. *)
repeat (
match goal with
| H: context [~ E.eq ?x ?y] |- _ =>
assert new (E.eq x y \/ ~ E.eq x y) by (apply dec_eq)
| H: context [~ In ?x ?s] |- _ =>
assert new (In x s \/ ~ In x s) by (apply dec_In)
| |- context [~ E.eq ?x ?y] =>
assert new (E.eq x y \/ ~ E.eq x y) by (apply dec_eq)
| |- context [~ In ?x ?s] =>
assert new (In x s \/ ~ In x s) by (apply dec_In)
end);
(** Now we eliminate the useless facts we added (because
they would likely be very harmful to performance). *)
repeat (
match goal with
| _: ~ ?P, H : ?P \/ ~ ?P |- _ => clear H
end).
(** ** Handling [Empty], [Subset], and [Equal]
This tactic instantiates universally quantified
hypotheses (which arise from the unfolding of [Empty],
[Subset], and [Equal]) for each of the set element
expressions that is involved in some membership or
equality fact. Then it throws away those hypotheses,
which should no longer be needed. *)
Ltac inst_FSet_hypotheses :=
repeat (
match goal with
| H : forall a : E.t, _,
_ : context [ In ?x _ ] |- _ =>
let P := type of (H x) in
assert new P by (exact (H x))
| H : forall a : E.t, _
|- context [ In ?x _ ] =>
let P := type of (H x) in
assert new P by (exact (H x))
| H : forall a : E.t, _,
_ : context [ E.eq ?x _ ] |- _ =>
let P := type of (H x) in
assert new P by (exact (H x))
| H : forall a : E.t, _
|- context [ E.eq ?x _ ] =>
let P := type of (H x) in
assert new P by (exact (H x))
| H : forall a : E.t, _,
_ : context [ E.eq _ ?x ] |- _ =>
let P := type of (H x) in
assert new P by (exact (H x))
| H : forall a : E.t, _
|- context [ E.eq _ ?x ] =>
let P := type of (H x) in
assert new P by (exact (H x))
end);
repeat (
match goal with
| H : forall a : E.t, _ |- _ =>
clear H
end).
(** ** The Core [fsetdec] Auxiliary Tactics *)
(** Here is the crux of the proof search. Recursion through
[intuition]! (This will terminate if I correctly
understand the behavior of [intuition].) *)
Ltac fsetdec_rec := progress substFSet; intuition fsetdec_rec.
(** If we add [unfold Empty, Subset, Equal in *; intros;] to
the beginning of this tactic, it will satisfy the same
specification as the [fsetdec] tactic; however, it will
be much slower than necessary without the pre-processing
done by the wrapper tactic [fsetdec]. *)
Ltac fsetdec_body :=
autorewrite with set_eq_simpl in *;
inst_FSet_hypotheses;
autorewrite with set_simpl set_eq_simpl in *;
push not in * using FSet_decidability;
substFSet;
assert_decidability;
auto;
(intuition fsetdec_rec) ||
fail 1
"because the goal is beyond the scope of this tactic".
End FSetDecideAuxiliary.
Import FSetDecideAuxiliary.
(** * The [fsetdec] Tactic
Here is the top-level tactic (the only one intended for
clients of this library). It's specification is given at
the top of the file. *)
Ltac fsetdec :=
(** We first unfold any occurrences of [iff]. *)
unfold iff in *;
(** We fold occurrences of [not] because it is better for
[intros] to leave us with a goal of [~ P] than a goal of
[False]. *)
fold any not; intros;
(** We don't care about the value of elements : complex ones are
abstracted as new variables (avoiding potential dependencies,
see bug #2464) *)
abstract_elements;
(** We remove dependencies to logical hypothesis. This way,
later "clear" will work nicely (see bug #2136) *)
no_logical_interdep;
(** Now we decompose conjunctions, which will allow the
[discard_nonFSet] and [assert_decidability] tactics to
do a much better job. *)
decompose records;
discard_nonFSet;
(** We unfold these defined propositions on finite sets. If
our goal was one of them, then have one more item to
introduce now. *)
unfold Empty, Subset, Equal in *; intros;
(** We now want to get rid of all uses of [=] in favor of
[E.eq]. However, the best way to eliminate a [=] is in
the context is with [subst], so we will try that first.
In fact, we may as well convert uses of [E.eq] into [=]
when possible before we do [subst] so that we can even
more mileage out of it. Then we will convert all
remaining uses of [=] back to [E.eq] when possible. We
use [change_to_E_t] to ensure that we have a canonical
name for set elements, so that [Logic_eq_to_E_eq] will
work properly. *)
change_to_E_t; E_eq_to_Logic_eq; subst++; Logic_eq_to_E_eq;
(** The next optimization is to swap a negated goal with a
negated hypothesis when possible. Any swap will improve
performance by eliminating the total number of
negations, but we will get the maximum benefit if we
swap the goal with a hypotheses mentioning the same set
element, so we try that first. If we reach the fourth
branch below, we attempt any swap. However, to maintain
completeness of this tactic, we can only perform such a
swap with a decidable proposition; hence, we first test
whether the hypothesis is an [FSet_elt_Prop], noting
that any [FSet_elt_Prop] is decidable. *)
pull not using FSet_decidability;
unfold not in *;
match goal with
| H: (In ?x ?r) -> False |- (In ?x ?s) -> False =>
contradict H; fsetdec_body
| H: (In ?x ?r) -> False |- (E.eq ?x ?y) -> False =>
contradict H; fsetdec_body
| H: (In ?x ?r) -> False |- (E.eq ?y ?x) -> False =>
contradict H; fsetdec_body
| H: ?P -> False |- ?Q -> False =>
if prop (FSet_elt_Prop P) holds by
(auto 100 with FSet_Prop)
then (contradict H; fsetdec_body)
else fsetdec_body
| |- _ =>
fsetdec_body
end.
(** * Examples *)
Module FSetDecideTestCases.
Lemma test_eq_trans_1 : forall x y z s,
E.eq x y ->
~ ~ E.eq z y ->
In x s ->
In z s.
Proof. fsetdec. Qed.
Lemma test_eq_trans_2 : forall x y z r s,
In x (singleton y) ->
~ In z r ->
~ ~ In z (add y r) ->
In x s ->
In z s.
Proof. fsetdec. Qed.
Lemma test_eq_neq_trans_1 : forall w x y z s,
E.eq x w ->
~ ~ E.eq x y ->
~ E.eq y z ->
In w s ->
In w (remove z s).
Proof. fsetdec. Qed.
Lemma test_eq_neq_trans_2 : forall w x y z r1 r2 s,
In x (singleton w) ->
~ In x r1 ->
In x (add y r1) ->
In y r2 ->
In y (remove z r2) ->
In w s ->
In w (remove z s).
Proof. fsetdec. Qed.
Lemma test_In_singleton : forall x,
In x (singleton x).
Proof. fsetdec. Qed.
Lemma test_add_In : forall x y s,
In x (add y s) ->
~ E.eq x y ->
In x s.
Proof. fsetdec. Qed.
Lemma test_Subset_add_remove : forall x s,
s [<=] (add x (remove x s)).
Proof. fsetdec. Qed.
Lemma test_eq_disjunction : forall w x y z,
In w (add x (add y (singleton z))) ->
E.eq w x \/ E.eq w y \/ E.eq w z.
Proof. fsetdec. Qed.
Lemma test_not_In_disj : forall x y s1 s2 s3 s4,
~ In x (union s1 (union s2 (union s3 (add y s4)))) ->
~ (In x s1 \/ In x s4 \/ E.eq y x).
Proof. fsetdec. Qed.
Lemma test_not_In_conj : forall x y s1 s2 s3 s4,
~ In x (union s1 (union s2 (union s3 (add y s4)))) ->
~ In x s1 /\ ~ In x s4 /\ ~ E.eq y x.
Proof. fsetdec. Qed.
Lemma test_iff_conj : forall a x s s',
(In a s' <-> E.eq x a \/ In a s) ->
(In a s' <-> In a (add x s)).
Proof. fsetdec. Qed.
Lemma test_set_ops_1 : forall x q r s,
(singleton x) [<=] s ->
Empty (union q r) ->
Empty (inter (diff s q) (diff s r)) ->
~ In x s.
Proof. fsetdec. Qed.
Lemma eq_chain_test : forall x1 x2 x3 x4 s1 s2 s3 s4,
Empty s1 ->
In x2 (add x1 s1) ->
In x3 s2 ->
~ In x3 (remove x2 s2) ->
~ In x4 s3 ->
In x4 (add x3 s3) ->
In x1 s4 ->
Subset (add x4 s4) s4.
Proof. fsetdec. Qed.
Lemma test_too_complex : forall x y z r s,
E.eq x y ->
(In x (singleton y) -> r [<=] s) ->
In z r ->
In z s.
Proof.
(** [fsetdec] is not intended to solve this directly. *)
intros until s; intros Heq H Hr; lapply H; fsetdec.
Qed.
Lemma function_test_1 :
forall (f : t -> t),
forall (g : elt -> elt),
forall (s1 s2 : t),
forall (x1 x2 : elt),
Equal s1 (f s2) ->
E.eq x1 (g (g x2)) ->
In x1 s1 ->
In (g (g x2)) (f s2).
Proof. fsetdec. Qed.
Lemma function_test_2 :
forall (f : t -> t),
forall (g : elt -> elt),
forall (s1 s2 : t),
forall (x1 x2 : elt),
Equal s1 (f s2) ->
E.eq x1 (g x2) ->
In x1 s1 ->
g x2 = g (g x2) ->
In (g (g x2)) (f s2).
Proof.
(** [fsetdec] is not intended to solve this directly. *)
intros until 3. intros g_eq. rewrite <- g_eq. fsetdec.
Qed.
Lemma test_baydemir :
forall (f : t -> t),
forall (s : t),
forall (x y : elt),
In x (add y (f s)) ->
~ E.eq x y ->
In x (f s).
Proof.
fsetdec.
Qed.
End FSetDecideTestCases.
End WDecide_fun.
Require Import FSetInterface.
(** Now comes variants for self-contained weak sets and for full sets.
For these variants, only one argument is necessary. Thanks to
the subtyping [WS<=S], the [Decide] functor which is meant to be
used on modules [(M:S)] can simply be an alias of [WDecide]. *)
Module WDecide (M:WS) := !WDecide_fun M.E M.
Module Decide := WDecide.
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2010 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc=1;
counter_io c1_data();
counter_io c2_data();
//counter_io c3_data; // IEEE illegal, and VCS doesn't allow non-() as it does with cells
counter_io c3_data();
counter_ansi c1 (.clkm(clk),
.c_data(c1_data),
.i_value(4'h1));
counter_ansi c2 (.clkm(clk),
.c_data(c2_data),
.i_value(4'h2));
`ifdef VERILATOR counter_ansi `else counter_nansi `endif
/**/ c3 (.clkm(clk),
.c_data(c3_data),
.i_value(4'h3));
initial begin
c1_data.value = 4'h4;
c2_data.value = 4'h5;
c3_data.value = 4'h6;
end
always @ (posedge clk) begin
cyc <= cyc + 1;
if (cyc<2) begin
c1_data.reset <= 1;
c2_data.reset <= 1;
c3_data.reset <= 1;
end
if (cyc==2) begin
c1_data.reset <= 0;
c2_data.reset <= 0;
c3_data.reset <= 0;
end
if (cyc==3) begin
if (c1_data.get_lcl() != 12345) $stop;
end
if (cyc==20) begin
$write("[%0t] c1 cyc%0d: c1 %0x %0x c2 %0x %0x c3 %0x %0x\n", $time, cyc,
c1_data.value, c1_data.reset,
c2_data.value, c2_data.reset,
c3_data.value, c3_data.reset);
if (c1_data.value != 2) $stop;
if (c2_data.value != 3) $stop;
if (c3_data.value != 4) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
interface counter_io;
logic [3:0] value;
logic reset;
integer lcl;
task set_lcl (input integer a); lcl=a; endtask
function integer get_lcl (); return lcl; endfunction
endinterface
interface ifunused;
logic unused;
endinterface
module counter_ansi
(
input clkm,
counter_io c_data,
input logic [3:0] i_value
);
initial begin
c_data.set_lcl(12345);
end
always @ (posedge clkm) begin
c_data.value <= c_data.reset ? i_value : c_data.value + 1;
end
endmodule : counter_ansi
`ifndef VERILATOR
// non-ansi modports not seen in the wild yet. Verilog-Perl needs parser improvement too.
module counter_nansi(clkm, c_data, i_value);
input clkm;
counter_io c_data;
input logic [3:0] i_value;
always @ (posedge clkm) begin
c_data.value <= c_data.reset ? i_value : c_data.value + 1;
end
endmodule : counter_nansi
`endif
module modunused (ifunused ifinunused);
ifunused ifunused();
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2013 by Wilson Snyder.
interface ifc;
integer value;
endinterface
module t (/*AUTOARG*/
// Inputs
clk
);
`ifdef INLINE_A //verilator inline_module
`else //verilator no_inline_module
`endif
input clk;
integer cyc=1;
ifc itop1a();
ifc itop1b();
ifc itop2a();
ifc itop2b();
wrapper c1 (.isuba(itop1a),
.isubb(itop1b),
.i_valuea(14),
.i_valueb(15));
wrapper c2 (.isuba(itop2a),
.isubb(itop2b),
.i_valuea(24),
.i_valueb(25));
always @ (posedge clk) begin
cyc <= cyc + 1;
if (cyc==20) begin
if (itop1a.value != 14) $stop;
if (itop1b.value != 15) $stop;
if (itop2a.value != 24) $stop;
if (itop2b.value != 25) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
module wrapper
(
ifc isuba,
ifc isubb,
input integer i_valuea,
input integer i_valueb
);
`ifdef INLINE_B //verilator inline_module
`else //verilator no_inline_module
`endif
lower subsuba (.isub(isuba), .i_value(i_valuea));
lower subsubb (.isub(isubb), .i_value(i_valueb));
endmodule
module lower
(
ifc isub,
input integer i_value
);
`ifdef INLINE_C //verilator inline_module
`else //verilator no_inline_module
`endif
always @* begin
isub.value = i_value;
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2013 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc=0;
reg [63:0] crc;
reg [63:0] sum;
// Take CRC data and apply to testblock inputs
wire [3:0] datai = crc[3:0];
/*AUTOWIRE*/
// Beginning of automatic wires (for undeclared instantiated-module outputs)
logic [3:0] datao; // From test of Test.v
// End of automatics
Test test (/*AUTOINST*/
// Outputs
.datao (datao[3:0]),
// Inputs
.clk (clk),
.datai (datai[3:0]));
// Aggregate outputs into a single result vector
wire [63:0] result = {60'h0, datao};
// Test loop
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result);
`endif
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]};
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
sum <= 64'h0;
end
else if (cyc<10) begin
sum <= 64'h0;
end
else if (cyc<90) begin
end
else if (cyc==99) begin
$write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum);
if (crc !== 64'hc77bb9b3784ea091) $stop;
// What checksum will we end up with (above print should match)
`define EXPECTED_SUM 64'h3db7bc8bfe61f983
if (sum !== `EXPECTED_SUM) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
module Test
(
input logic clk,
input logic [3:0] datai,
output logic [3:0] datao
);
genvar i;
parameter SIZE = 4;
logic [SIZE:1][3:0] delay;
always_ff @(posedge clk) begin
delay[1][3:0] <= datai;
end
generate
for (i = 2; i < (SIZE+1); i++) begin
always_ff @(posedge clk) begin
delay[i][3:0] <= delay[i-1][3:0];
end
end
endgenerate
always_comb datao = delay[SIZE][3:0];
endmodule
|
/*+--------------------------------------------------------------------------
Copyright (c) 2015, Microsoft Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------*/
`timescale 1ns / 1ps
module RCB_FRL_data_check(CLK,RST,RDEN_DATA,RDEN_MSG,DATA,MSG,ERR0,ERR1,ERR2,ERR3,ERR_MSG);
input CLK,RST,RDEN_DATA,RDEN_MSG;
input [31:0] DATA;
input [39:0] MSG;
output reg [3:0] ERR0,ERR1,ERR2,ERR3,ERR_MSG;
reg [31:0] DATA_TEMP;
reg [7:0] MSG_TEMP;
always @ (posedge CLK)
begin
if(RST)
begin
ERR0 <= 0;
ERR1 <= 0;
ERR2 <= 0;
ERR3 <= 0;
ERR_MSG <= 0;
DATA_TEMP <= 0;
MSG_TEMP <= 0;
end
else if(RDEN_DATA)
begin
DATA_TEMP <= DATA;
MSG_TEMP <= MSG;
if(DATA_TEMP[7:0] + 1 != DATA[7:0] && DATA[7:0] != 0)
ERR0 <= ERR0 + 1;
if(DATA_TEMP[15:8] + 1 != DATA[15:8] && DATA[15:8] != 0)
ERR1 <= ERR1 + 1;
if(DATA_TEMP[23:16] + 1 != DATA[23:16] && DATA[23:16] != 0)
ERR2 <= ERR2 + 1;
if(DATA_TEMP[31:24] + 1 != DATA[31:24] && DATA[31:24] != 0)
ERR3 <= ERR3 + 1;
if(MSG[39:32] + 1 != MSG[31:24] || MSG[31:24] + 1 != MSG[23:16] || MSG[23:16] + 1 != MSG[15:8] || MSG[15:8] + 1 != MSG[7:0])
ERR_MSG <= ERR_MSG + 1;
end
end
endmodule
|
`timescale 1ns / 1ps
//////////////////////////////////////////////////////////////////////////////////
// Company:
// Engineer:
//
// Create Date: 04/14/2016 06:25:09 AM
// Design Name:
// Module Name: Exp_operation_m
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//////////////////////////////////////////////////////////////////////////////////
module Exp_Operation_m
#(parameter EW = 8) //Exponent Width
(
input wire clk, //system clock
input wire rst, //reset of the module
input wire load_a_i,//underflow
input wire load_b_i,//overflow
input wire load_c_i,//result
input wire [EW:0] Data_A_i,
input wire [EW:0] Data_B_i,
input wire Add_Subt_i,
///////////////////////////////////////////////////////////////////77
output wire [EW:0] Data_Result_o,
output wire Overflow_flag_o,
output wire Underflow_flag_o
);
///////////////////////////////////////////////
wire [EW:0] Data_S;
wire Overflow_A;
wire Overflow_flag_A;
wire underflow_exp_reg;
wire [EW:0] U_Limit;
/////////////////////////////Exponent calculation///
add_sub_carry_out #(.W(EW+1)) exp_add_subt_m(
.op_mode (Add_Subt_i),
.Data_A (Data_A_i),
.Data_B (Data_B_i),
.Data_S ({Overflow_A,Data_S})
);
RegisterMult #(.W(EW+1)) exp_result_m(
.clk (clk),
.rst (rst),
.load (load_c_i),
.D (Data_S),
.Q (Data_Result_o)
);
//Overflow/////////////////////////////////
RegisterMult#(.W(1)) Oflow_A_m (
.clk(clk),
.rst(rst),
.load(load_b_i),
.D(Overflow_A),
.Q(Overflow_flag_A)
);
assign Overflow_flag_o = Overflow_flag_A | Data_Result_o[EW];
//Underflow//////////////////////////////
Comparator_Less #(.W(EW+1)) Exp_unflow_Comparator_m (
.Data_A(Data_S),
.Data_B(U_Limit),
.less(underflow_exp_reg)
);
RegisterMult #(.W(1)) Underflow_m (
.clk(clk),
.rst(rst),
.load(load_a_i),
.D(underflow_exp_reg),
.Q(Underflow_flag_o)
);
generate
if (EW == 8)
assign U_Limit = 9'd127;
else
assign U_Limit = 12'd1023;
endgenerate
endmodule
|
`timescale 1ns / 1ps
//////////////////////////////////////////////////////////////////////////////////
// Company:
// Engineer:
//
// Create Date: 04/14/2016 06:25:09 AM
// Design Name:
// Module Name: Exp_operation_m
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//////////////////////////////////////////////////////////////////////////////////
module Exp_Operation_m
#(parameter EW = 8) //Exponent Width
(
input wire clk, //system clock
input wire rst, //reset of the module
input wire load_a_i,//underflow
input wire load_b_i,//overflow
input wire load_c_i,//result
input wire [EW:0] Data_A_i,
input wire [EW:0] Data_B_i,
input wire Add_Subt_i,
///////////////////////////////////////////////////////////////////77
output wire [EW:0] Data_Result_o,
output wire Overflow_flag_o,
output wire Underflow_flag_o
);
///////////////////////////////////////////////
wire [EW:0] Data_S;
wire Overflow_A;
wire Overflow_flag_A;
wire underflow_exp_reg;
wire [EW:0] U_Limit;
/////////////////////////////Exponent calculation///
add_sub_carry_out #(.W(EW+1)) exp_add_subt_m(
.op_mode (Add_Subt_i),
.Data_A (Data_A_i),
.Data_B (Data_B_i),
.Data_S ({Overflow_A,Data_S})
);
RegisterMult #(.W(EW+1)) exp_result_m(
.clk (clk),
.rst (rst),
.load (load_c_i),
.D (Data_S),
.Q (Data_Result_o)
);
//Overflow/////////////////////////////////
RegisterMult#(.W(1)) Oflow_A_m (
.clk(clk),
.rst(rst),
.load(load_b_i),
.D(Overflow_A),
.Q(Overflow_flag_A)
);
assign Overflow_flag_o = Overflow_flag_A | Data_Result_o[EW];
//Underflow//////////////////////////////
Comparator_Less #(.W(EW+1)) Exp_unflow_Comparator_m (
.Data_A(Data_S),
.Data_B(U_Limit),
.less(underflow_exp_reg)
);
RegisterMult #(.W(1)) Underflow_m (
.clk(clk),
.rst(rst),
.load(load_a_i),
.D(underflow_exp_reg),
.Q(Underflow_flag_o)
);
generate
if (EW == 8)
assign U_Limit = 9'd127;
else
assign U_Limit = 12'd1023;
endgenerate
endmodule
|
`timescale 1ns / 1ps
//////////////////////////////////////////////////////////////////////////////////
// Company:
// Engineer:
//
// Create Date: 04/14/2016 06:25:09 AM
// Design Name:
// Module Name: Exp_operation_m
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//////////////////////////////////////////////////////////////////////////////////
module Exp_Operation_m
#(parameter EW = 8) //Exponent Width
(
input wire clk, //system clock
input wire rst, //reset of the module
input wire load_a_i,//underflow
input wire load_b_i,//overflow
input wire load_c_i,//result
input wire [EW:0] Data_A_i,
input wire [EW:0] Data_B_i,
input wire Add_Subt_i,
///////////////////////////////////////////////////////////////////77
output wire [EW:0] Data_Result_o,
output wire Overflow_flag_o,
output wire Underflow_flag_o
);
///////////////////////////////////////////////
wire [EW:0] Data_S;
wire Overflow_A;
wire Overflow_flag_A;
wire underflow_exp_reg;
wire [EW:0] U_Limit;
/////////////////////////////Exponent calculation///
add_sub_carry_out #(.W(EW+1)) exp_add_subt_m(
.op_mode (Add_Subt_i),
.Data_A (Data_A_i),
.Data_B (Data_B_i),
.Data_S ({Overflow_A,Data_S})
);
RegisterMult #(.W(EW+1)) exp_result_m(
.clk (clk),
.rst (rst),
.load (load_c_i),
.D (Data_S),
.Q (Data_Result_o)
);
//Overflow/////////////////////////////////
RegisterMult#(.W(1)) Oflow_A_m (
.clk(clk),
.rst(rst),
.load(load_b_i),
.D(Overflow_A),
.Q(Overflow_flag_A)
);
assign Overflow_flag_o = Overflow_flag_A | Data_Result_o[EW];
//Underflow//////////////////////////////
Comparator_Less #(.W(EW+1)) Exp_unflow_Comparator_m (
.Data_A(Data_S),
.Data_B(U_Limit),
.less(underflow_exp_reg)
);
RegisterMult #(.W(1)) Underflow_m (
.clk(clk),
.rst(rst),
.load(load_a_i),
.D(underflow_exp_reg),
.Q(Underflow_flag_o)
);
generate
if (EW == 8)
assign U_Limit = 9'd127;
else
assign U_Limit = 12'd1023;
endgenerate
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2003 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc; initial cyc=1;
supply0 [1:0] low;
supply1 [1:0] high;
reg [7:0] isizedwire;
reg ionewire;
`ifdef never_just_for_verilog_mode
wire oonewire; // From sub of t_inst_v2k__sub.v
`endif
wire [7:0] osizedreg; // From sub of t_inst_v2k__sub.v
wire [1:0] tied;
wire [3:0] tied_also;
hello hsub (.tied_also);
// Double underscore tests bug631
t_inst_v2k__sub sub
(
// Outputs
.osizedreg (osizedreg[7:0]),
// verilator lint_off IMPLICIT
.oonewire (oonewire),
// verilator lint_on IMPLICIT
.tied (tied[1:0]),
// Inputs
.isizedwire (isizedwire[7:0]),
.ionewire (ionewire));
always @ (posedge clk) begin
if (cyc!=0) begin
cyc <= cyc + 1;
if (cyc==1) begin
ionewire <= 1'b1;
isizedwire <= 8'd8;
end
if (cyc==2) begin
if (low != 2'b00) $stop;
if (high != 2'b11) $stop;
if (oonewire !== 1'b1) $stop;
if (isizedwire !== 8'd8) $stop;
if (tied != 2'b10) $stop;
if (tied_also != 4'b1010) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
end
endmodule
module hello(tied_also);
initial $write ("Hello\n");
output reg [3:0] tied_also = 4'b1010;
endmodule
|
/////////////////////////////////////////////////////////////////////////
//
// pLIB
// D-FLIP-FLOPS
/////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////
// p_I_FD FD error at input
/////////////////////////////////////////////////////////////////////////
module p_I_FD (Q,D,C,E);
parameter INIT=1'b0;
output Q;
input D;
input C;
input E;
wire Dtemp;
// Xilinx FD instance
defparam FD_z.INIT=INIT;
FD FD_z (.Q(Q),.D(Dtemp),.C(C));
// Error injection
xor (Dtemp,D,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_O_FD FD error at output
/////////////////////////////////////////////////////////////////////////
module p_O_FD (Q,D,C,E);
parameter INIT = 1'b0;
output Q;
input D;
input C;
input E;
wire Qtemp;
// Xilinx FD instance
FD #(.INIT(INIT)) FD_z (.Q(Qtemp),.D(D),.C(C));
// Error injection
xor (Q,Qtemp,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_I_FD_1 FD_1 error at input
/////////////////////////////////////////////////////////////////////////
module p_I_FD_1 (Q,D,C,E);
output Q;
input D;
input C;
input E;
wire Dtemp;
// Xilinx FD instance
FD_1 FD_z (.Q(Q),.D(Dtemp),.C(C));
// Error injection
xor (Dtemp,D,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_O_FD_1 FD_1 error at output
/////////////////////////////////////////////////////////////////////////
module p_O_FD_1 (Q,D,C,E);
output Q;
input D;
input C;
input E;
wire Qtemp;
// Xilinx FD instance
FD_1 FD_z (.Q(Qtemp),.D(D),.C(C));
// Error injection
xor (Q,Qtemp,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_I_FDC FDC error at input
/////////////////////////////////////////////////////////////////////////
module p_I_FDC (Q,D,C,CLR,E);
output Q;
input D;
input C;
input E;
input CLR;
wire Dtemp;
// Xilinx FD instance
FDC FD_z (.Q(Q),.D(Dtemp),.C(C),.CLR(CLR));
// Error injection
xor (Dtemp,D,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_O_FDC FDC error at output
/////////////////////////////////////////////////////////////////////////
module p_O_FDC (Q,D,C,CLR,E);
output Q;
input D;
input C;
input E;
input CLR;
wire Qtemp;
// Xilinx FD instance
FDC FD_z (.Q(Qtemp),.D(D),.C(C),.CLR(CLR));
// Error injection
xor (Q,Qtemp,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_I_FDC_1 FDC_1 error at input
/////////////////////////////////////////////////////////////////////////
module p_I_FDC_1 (Q,D,C,CLR,E);
output Q;
input D;
input C;
input E;
input CLR;
wire Dtemp;
// Xilinx FD instance
FDC_1 FD_z (.Q(Q),.D(Dtemp),.C(C),.CLR(CLR));
// Error injection
xor (Dtemp,D,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_O_FDC_1 FDC_1 error at output
/////////////////////////////////////////////////////////////////////////
module p_O_FDC_1 (Q,D,C,CLR,E);
output Q;
input D;
input C;
input E;
input CLR;
wire Qtemp;
// Xilinx FD instance
FDC_1 FD_z (.Q(Qtemp),.D(D),.C(C),.CLR(CLR));
// Error injection
xor (Q,Qtemp,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_I_FDCE FDCE error at input
/////////////////////////////////////////////////////////////////////////
module p_I_FDCE (Q,D,C,CLR,CE,E);
output Q;
input D;
input C;
input E;
input CLR;
input CE;
wire Dtemp;
// Xilinx FD instance
FDCE FD_z (.Q(Q),.D(Dtemp),.C(C),.CLR(CLR),.CE(CE));
// Error injection
xor (Dtemp,D,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_O_FDCE FDCE error at output
/////////////////////////////////////////////////////////////////////////
module p_O_FDCE (Q,D,C,CLR,CE,E);
output Q;
input D;
input C;
input E;
input CLR;
input CE;
wire Qtemp;
// Xilinx FD instance
FDCE FD_z (.Q(Qtemp),.D(D),.C(C),.CLR(CLR),.CE(CE));
// Error injection
xor (Q,Qtemp,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_I_FDCE_1 FDCE error at input
/////////////////////////////////////////////////////////////////////////
module p_I_FDCE_1 (Q,D,C,CLR,CE,E);
output Q;
input D;
input C;
input E;
input CLR;
input CE;
wire Dtemp;
// Xilinx FD instance
FDCE_1 FD_z (.Q(Q),.D(Dtemp),.C(C),.CLR(CLR),.CE(CE));
// Error injection
xor (Dtemp,D,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_O_FDCE_1 FDCE_1 error at output
/////////////////////////////////////////////////////////////////////////
module p_O_FDCE_1 (Q,D,C,CLR,CE,E);
output Q;
input D;
input C;
input E;
input CLR;
input CE;
wire Qtemp;
// Xilinx FD instance
FDCE_1 FD_z (.Q(Qtemp),.D(D),.C(C),.CLR(CLR),.CE(CE));
// Error injection
xor (Q,Qtemp,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_I_FDCP FDCP error at input
/////////////////////////////////////////////////////////////////////////
module p_I_FDCP (Q,D,C,CLR,PRE,E);
output Q;
input D;
input C;
input E;
input CLR;
input PRE;
wire Dtemp;
// Xilinx FD instance
FDCP FD_z (.Q(Q),.D(Dtemp),.C(C),.CLR(CLR),.PRE(PRE));
// Error injection
xor (Dtemp,D,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_O_FDCP FDCP error at output
/////////////////////////////////////////////////////////////////////////
module p_O_FDCP (Q,D,C,CLR,PRE,E);
output Q;
input D;
input C;
input E;
input CLR;
input PRE;
wire Qtemp;
// Xilinx FD instance
FDCP FD_z (.Q(Qtemp),.D(D),.C(C),.CLR(CLR),.PRE(PRE));
// Error injection
xor (Q,Qtemp,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_I_FDCP_1 FDCP_1 error at input
/////////////////////////////////////////////////////////////////////////
module p_I_FDCP_1 (Q,D,C,CLR,PRE,E);
output Q;
input D;
input C;
input E;
input CLR;
input PRE;
wire Dtemp;
// Xilinx FD instance
FDCP_1 FD_z (.Q(Q),.D(Dtemp),.C(C),.CLR(CLR),.PRE(PRE));
// Error injection
xor (Dtemp,D,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_O_FDCP_1 FDCP_1 error at output
/////////////////////////////////////////////////////////////////////////
module p_O_FDCP_1 (Q,D,C,CLR,PRE,E);
output Q;
input D;
input C;
input E;
input CLR;
input PRE;
wire Qtemp;
// Xilinx FD instance
FDCP_1 FD_z (.Q(Qtemp),.D(D),.C(C),.CLR(CLR),.PRE(PRE));
// Error injection
xor (Q,Qtemp,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_I_FDCPE FDCPE error at input
/////////////////////////////////////////////////////////////////////////
module p_I_FDCPE (Q,D,C,CLR,PRE,CE,E);
output Q;
input D;
input C;
input E;
input CLR;
input PRE;
input CE;
wire Dtemp;
// Xilinx FD instance
FDCPE FD_z (.Q(Q),.D(Dtemp),.C(C),.CLR(CLR),.PRE(PRE),.CE(CE));
// Error injection
xor (Dtemp,D,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_O_FDCPE FDCPE error at output
/////////////////////////////////////////////////////////////////////////
module p_O_FDCPE (Q,D,C,CLR,PRE,CE,E);
output Q;
input D;
input C;
input E;
input CLR;
input PRE;
input CE;
wire Qtemp;
// Xilinx FD instance
FDCPE FD_z (.Q(Qtemp),.D(D),.C(C),.CLR(CLR),.PRE(PRE),.CE(CE));
// Error injection
xor (Q,Qtemp,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_I_FDCPE_1 FDCPE_1 error at input
/////////////////////////////////////////////////////////////////////////
module p_I_FDCPE_1 (Q,D,C,CLR,PRE,CE,E);
output Q;
input D;
input C;
input E;
input CLR;
input PRE;
input CE;
wire Dtemp;
// Xilinx FD instance
FDCPE_1 FD_z (.Q(Q),.D(Dtemp),.C(C),.CLR(CLR),.PRE(PRE),.CE(CE));
// Error injection
xor (Dtemp,D,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_O_FDCPE_1 FDCPE_1 error at output
/////////////////////////////////////////////////////////////////////////
module p_O_FDCPE_1 (Q,D,C,CLR,PRE,CE,E);
output Q;
input D;
input C;
input E;
input CLR;
input PRE;
input CE;
wire Qtemp;
// Xilinx FD instance
FDCPE_1 FD_z (.Q(Qtemp),.D(D),.C(C),.CLR(CLR),.PRE(PRE),.CE(CE));
// Error injection
xor (Q,Qtemp,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_I_FDE FDE error at input
/////////////////////////////////////////////////////////////////////////
module p_I_FDE (Q,D,C,CE,E);
output Q;
input D;
input C;
input E;
input CE;
wire Dtemp;
// Xilinx FD instance
FDE FD_z (.Q(Q),.D(Dtemp),.C(C),.CE(CE));
// Error injection
xor (Dtemp,D,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_O_FDE FDE error at output
/////////////////////////////////////////////////////////////////////////
module p_O_FDE (Q,D,C,CE,E);
output Q;
input D;
input C;
input E;
input CE;
wire Qtemp;
// Xilinx FD instance
FDE FD_z (.Q(Qtemp),.D(D),.C(C),.CE(CE));
// Error injection
xor (Q,Qtemp,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_I_FDE_1 FDE_1 error at input
/////////////////////////////////////////////////////////////////////////
module p_I_FDE_1 (Q,D,C,CE,E);
output Q;
input D;
input C;
input E;
input CE;
wire Dtemp;
// Xilinx FD instance
FDE_1 FD_z (.Q(Q),.D(Dtemp),.C(C),.CE(CE));
// Error injection
xor (Dtemp,D,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_O_FDE_1 FDE_1 error at output
/////////////////////////////////////////////////////////////////////////
module p_O_FDE_1 (Q,D,C,CE,E);
output Q;
input D;
input C;
input E;
input CE;
wire Qtemp;
// Xilinx FD instance
FDE_1 FD_z (.Q(Qtemp),.D(D),.C(C),.CE(CE));
// Error injection
xor (Q,Qtemp,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_I_FDP FDP error at input
/////////////////////////////////////////////////////////////////////////
module p_I_FDP (Q,D,C,PRE,E);
output Q;
input D;
input C;
input E;
input PRE;
wire Dtemp;
// Xilinx FD instance
FDP FD_z (.Q(Q),.D(Dtemp),.C(C),.PRE(PRE));
// Error injection
xor (Dtemp,D,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_O_FDP FDP error at output
/////////////////////////////////////////////////////////////////////////
module p_O_FDP (Q,D,C,PRE,E);
output Q;
input D;
input C;
input E;
input PRE;
wire Qtemp;
// Xilinx FD instance
FDP FD_z (.Q(Qtemp),.D(D),.C(C),.PRE(PRE));
// Error injection
xor (Q,Qtemp,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_I_FDP_1 FDP_1 error at input
/////////////////////////////////////////////////////////////////////////
module p_I_FDP_1 (Q,D,C,PRE,E);
output Q;
input D;
input C;
input E;
input PRE;
wire Dtemp;
// Xilinx FD instance
FDP_1 FD_z (.Q(Q),.D(Dtemp),.C(C),.PRE(PRE));
// Error injection
xor (Dtemp,D,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_O_FDP_1 FDP_1 error at output
/////////////////////////////////////////////////////////////////////////
module p_O_FDP_1 (Q,D,C,PRE,E);
output Q;
input D;
input C;
input E;
input PRE;
wire Qtemp;
// Xilinx FD instance
FDP_1 FD_z (.Q(Qtemp),.D(D),.C(C),.PRE(PRE));
// Error injection
xor (Q,Qtemp,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_I_FDPE FDPE error at input
/////////////////////////////////////////////////////////////////////////
module p_I_FDPE (Q,D,C,PRE,CE,E);
output Q;
input D;
input C;
input E;
input PRE;
input CE;
wire Dtemp;
// Xilinx FD instance
FDPE FD_z (.Q(Q),.D(Dtemp),.C(C),.PRE(PRE),.CE(CE));
// Error injection
xor (Dtemp,D,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_O_FDPE FDPE error at output
/////////////////////////////////////////////////////////////////////////
module p_O_FDPE (Q,D,C,PRE,CE,E);
output Q;
input D;
input C;
input E;
input PRE;
input CE;
wire Qtemp;
// Xilinx FD instance
FDPE FD_z (.Q(Qtemp),.D(D),.C(C),.PRE(PRE),.CE(CE));
// Error injection
xor (Q,Qtemp,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_I_FDPE_1 FDPE_1 error at input
/////////////////////////////////////////////////////////////////////////
module p_I_FDPE_1 (Q,D,C,PRE,CE,E);
output Q;
input D;
input C;
input E;
input PRE;
input CE;
wire Dtemp;
// Xilinx FD instance
FDPE_1 FD_z (.Q(Q),.D(Dtemp),.C(C),.PRE(PRE),.CE(CE));
// Error injection
xor (Dtemp,D,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_O_FDPE_1 FDPE_1 error at output
/////////////////////////////////////////////////////////////////////////
module p_O_FDPE_1 (Q,D,C,PRE,CE,E);
output Q;
input D;
input C;
input E;
input PRE;
input CE;
wire Qtemp;
// Xilinx FD instance
FDPE_1 FD_z (.Q(Qtemp),.D(D),.C(C),.PRE(PRE),.CE(CE));
// Error injection
xor (Q,Qtemp,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_I_FDR FDR error at input
/////////////////////////////////////////////////////////////////////////
module p_I_FDR (Q,D,C,R,E);
output Q;
input D;
input C;
input E;
input R;
wire Dtemp;
// Xilinx FD instance
FDR FD_z (.Q(Q),.D(Dtemp),.C(C),.R(R));
// Error injection
xor (Dtemp,D,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_O_FDR FDR error at output
/////////////////////////////////////////////////////////////////////////
module p_O_FDR (Q,D,C,R,E);
parameter INIT=1'b0;
output Q;
input D;
input C;
input E;
input R;
wire Qtemp;
defparam FD_z.INIT=INIT;
// Xilinx FD instance
FDR FD_z (.Q(Qtemp),.D(D),.C(C),.R(R));
// Error injection
xor (Q,Qtemp,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_I_FDR_1 FDR_1 error at input
/////////////////////////////////////////////////////////////////////////
module p_I_FDR_1 (Q,D,C,R,E);
output Q;
input D;
input C;
input E;
input R;
wire Dtemp;
// Xilinx FD instance
FDR_1 FD_z (.Q(Q),.D(Dtemp),.C(C),.R(R));
// Error injection
xor (Dtemp,D,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_O_FDR_1 FDR_1 error at output
/////////////////////////////////////////////////////////////////////////
module p_O_FDR_1 (Q,D,C,R,E);
output Q;
input D;
input C;
input E;
input R;
wire Qtemp;
// Xilinx FD instance
FDR_1 FD_z (.Q(Qtemp),.D(D),.C(C),.R(R));
// Error injection
xor (Q,Qtemp,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_I_FDRE FDRE error at input
/////////////////////////////////////////////////////////////////////////
module p_I_FDRE (Q,D,C,R,CE,E);
output Q;
input D;
input C;
input E;
input R;
input CE;
wire Dtemp;
// Xilinx FD instance
FDRE FD_z (.Q(Q),.D(Dtemp),.C(C),.R(R),.CE(CE));
// Error injection
xor (Dtemp,D,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_O_FDRE FDRE error at output
/////////////////////////////////////////////////////////////////////////
module p_O_FDRE (Q,D,C,R,CE,E);
parameter INIT=1'b0;
output Q;
input D;
input C;
input E;
input R;
input CE;
wire Qtemp;
// Xilinx FD instance
FDRE #(.INIT(INIT)) FD_z (.Q(Qtemp),.D(D),.C(C),.R(R),.CE(CE));
// Error injection
xor (Q,Qtemp,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_I_FDRE_1 FDRE_1 error at input
/////////////////////////////////////////////////////////////////////////
module p_I_FDRE_1 (Q,D,C,R,CE,E);
output Q;
input D;
input C;
input E;
input R;
input CE;
wire Dtemp;
// Xilinx FD instance
FDRE_1 FD_z (.Q(Q),.D(Dtemp),.C(C),.R(R),.CE(CE));
// Error injection
xor (Dtemp,D,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_O_FDRE_1 FDRE_1 error at output
/////////////////////////////////////////////////////////////////////////
module p_O_FDRE_1 (Q,D,C,R,CE,E);
output Q;
input D;
input C;
input E;
input R;
input CE;
wire Qtemp;
// Xilinx FD instance
FDRE_1 FD_z (.Q(Qtemp),.D(D),.C(C),.R(R),.CE(CE));
// Error injection
xor (Q,Qtemp,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_I_FDRS FDRS error at input
/////////////////////////////////////////////////////////////////////////
module p_I_FDRS (Q,D,C,R,S,E);
output Q;
input D;
input C;
input E;
input R;
input S;
wire Dtemp;
// Xilinx FD instance
FDRS FD_z (.Q(Q),.D(Dtemp),.C(C),.R(R),.S(S));
// Error injection
xor (Dtemp,D,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_O_FDRS FDRS error at output
/////////////////////////////////////////////////////////////////////////
module p_O_FDRS (Q,D,C,R,S,E);
output Q;
input D;
input C;
input E;
input R;
input S;
wire Qtemp;
// Xilinx FD instance
FDRS FD_z (.Q(Qtemp),.D(D),.C(C),.R(R),.S(S));
// Error injection
xor (Q,Qtemp,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_I_FDRS_1 FDRS_1 error at input
/////////////////////////////////////////////////////////////////////////
module p_I_FDRS_1 (Q,D,C,R,S,E);
output Q;
input D;
input C;
input E;
input R;
input S;
wire Dtemp;
// Xilinx FD instance
FDRS_1 FD_z (.Q(Q),.D(Dtemp),.C(C),.R(R),.S(S));
// Error injection
xor (Dtemp,D,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_O_FDRS_1 FDRS_1 error at output
/////////////////////////////////////////////////////////////////////////
module p_O_FDRS_1 (Q,D,C,R,S,E);
output Q;
input D;
input C;
input E;
input R;
input S;
wire Qtemp;
// Xilinx FD instance
FDRS_1 FD_z (.Q(Qtemp),.D(D),.C(C),.R(R),.S(S));
// Error injection
xor (Q,Qtemp,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_I_FDRSE FDRS error at input
/////////////////////////////////////////////////////////////////////////
module p_I_FDRSE (Q,D,C,R,S,CE,E);
output Q;
input D;
input C;
input E;
input R;
input S;
input CE;
wire Dtemp;
// Xilinx FD instance
FDRSE FD_z (.Q(Q),.D(Dtemp),.C(C),.R(R),.S(S),.CE(CE));
// Error injection
xor (Dtemp,D,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_O_FDRSE FDRSE error at output
/////////////////////////////////////////////////////////////////////////
module p_O_FDRSE (Q,D,C,R,S,CE,E);
output Q;
input D;
input C;
input E;
input R;
input S;
input CE;
wire Qtemp;
// Xilinx FD instance
FDRSE FD_z (.Q(Qtemp),.D(D),.C(C),.R(R),.S(S),.CE(CE));
// Error injection
xor (Q,Qtemp,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_I_FDRSE_1 FDRSE_1 error at input
/////////////////////////////////////////////////////////////////////////
module p_I_FDRSE_1 (Q,D,C,R,S,CE,E);
output Q;
input D;
input C;
input E;
input R;
input S;
input CE;
wire Dtemp;
// Xilinx FD instance
FDRSE_1 FD_z (.Q(Q),.D(Dtemp),.C(C),.R(R),.S(S),.CE(CE));
// Error injection
xor (Dtemp,D,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_O_FDRSE_1 FDRSE_1 error at output
/////////////////////////////////////////////////////////////////////////
module p_O_FDRSE_1 (Q,D,C,R,S,CE,E);
output Q;
input D;
input C;
input E;
input R;
input S;
input CE;
wire Qtemp;
// Xilinx FD instance
FDRSE_1 FD_z (.Q(Qtemp),.D(D),.C(C),.R(R),.S(S),.CE(CE));
// Error injection
xor (Q,Qtemp,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_I_FDS FDS error at input
/////////////////////////////////////////////////////////////////////////
module p_I_FDS (Q,D,C,S,E);
output Q;
input D;
input C;
input E;
input S;
wire Dtemp;
// Xilinx FD instance
FDS FD_z (.Q(Q),.D(Dtemp),.C(C),.S(S));
// Error injection
xor (Dtemp,D,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_O_FDS FDS error at output
/////////////////////////////////////////////////////////////////////////
module p_O_FDS (Q,D,C,S,E);
output Q;
input D;
input C;
input E;
input S;
wire Qtemp;
// Xilinx FD instance
FDS FD_z (.Q(Qtemp),.D(D),.C(C),.S(S));
// Error injection
xor (Q,Qtemp,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_I_FDS_1 FDS_1 error at input
/////////////////////////////////////////////////////////////////////////
module p_I_FDS_1 (Q,D,C,S,E);
output Q;
input D;
input C;
input E;
input S;
wire Dtemp;
// Xilinx FD instance
FDS_1 FD_z (.Q(Q),.D(Dtemp),.C(C),.S(S));
// Error injection
xor (Dtemp,D,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_O_FDS_1 FDS_1 error at output
/////////////////////////////////////////////////////////////////////////
module p_O_FDS_1 (Q,D,C,S,E);
output Q;
input D;
input C;
input E;
input S;
wire Qtemp;
// Xilinx FD instance
FDS_1 FD_z (.Q(Qtemp),.D(D),.C(C),.S(S));
// Error injection
xor (Q,Qtemp,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_I_FDSE FDSE error at input
/////////////////////////////////////////////////////////////////////////
module p_I_FDSE (Q,D,C,S,CE,E);
output Q;
input D;
input C;
input E;
input S;
input CE;
wire Dtemp;
// Xilinx FD instance
FDSE FD_z (.Q(Q),.D(Dtemp),.C(C),.S(S),.CE(CE));
// Error injection
xor (Dtemp,D,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_O_FDSE FDSE error at output
/////////////////////////////////////////////////////////////////////////
module p_O_FDSE (Q,D,C,S,CE,E);
output Q;
input D;
input C;
input E;
input S;
input CE;
wire Qtemp;
// Xilinx FD instance
FDSE FD_z (.Q(Qtemp),.D(D),.C(C),.S(S),.CE(CE));
// Error injection
xor (Q,Qtemp,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_I_FDSE_1 FDSE_1 error at input
/////////////////////////////////////////////////////////////////////////
module p_I_FDSE_1 (Q,D,C,S,CE,E);
output Q;
input D;
input C;
input E;
input S;
input CE;
wire Dtemp;
// Xilinx FD instance
FDSE_1 FD_z (.Q(Q),.D(Dtemp),.C(C),.S(S),.CE(CE));
// Error injection
xor (Dtemp,D,E);
endmodule
/////////////////////////////////////////////////////////////////////////
// p_O_FDSE_1 FDSE_1 error at output
/////////////////////////////////////////////////////////////////////////
module p_O_FDSE_1 (Q,D,C,S,CE,E);
output Q;
input D;
input C;
input E;
input S;
input CE;
wire Qtemp;
// Xilinx FD instance
FDSE_1 FD_z (.Q(Qtemp),.D(D),.C(C),.S(S),.CE(CE));
// Error injection
xor (Q,Qtemp,E);
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2013 by Wilson Snyder.
// This test demonstrates how not only parameters but the type of a parent
// interface could propagate down to child modules, changing their data type
// determinations. Note presently unsupported in all commercial simulators.
interface ifc;
parameter MODE = 0;
generate
// Note block must be named per SystemVerilog 2005
if (MODE==1) begin : g
integer value;
end
else if (MODE==2) begin : g
real value;
end
endgenerate
endinterface
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc=1;
ifc #(1) itop1a();
ifc #(1) itop1b();
ifc #(2) itop2a();
ifc #(2) itop2b();
wrapper c1 (.isuba(itop1a),
.isubb(itop1b),
.i_valuea(14.1),
.i_valueb(15.2));
wrapper c2 (.isuba(itop2a),
.isubb(itop2b),
.i_valuea(24.3),
.i_valueb(25.4));
always @ (posedge clk) begin
cyc <= cyc + 1;
if (cyc==20) begin
if (itop1a.g.value != 14) $stop;
if (itop1b.g.value != 15) $stop;
if (itop2a.g.value != 24) $stop;
if (itop2b.g.value != 25) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
module wrapper
(
ifc isuba,
ifc isubb,
input real i_valuea,
input real i_valueb
);
lower subsuba (.isub(isuba), .i_value(i_valuea));
lower subsubb (.isub(isubb), .i_value(i_valueb));
endmodule
module lower
(
ifc isub,
input real i_value
);
always @* begin
`error Commercial sims choke on cross ref here
isub.g.value = i_value;
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2012 by Iztok Jeras.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
// counters
int cnt;
int cnt_bit ;
int cnt_byte;
int cnt_int ;
int cnt_ar1d;
int cnt_ar2d;
// sizes
int siz_bit ;
int siz_byte;
int siz_int ;
int siz_ar1d;
int siz_ar2d;
// add all counters
assign cnt = cnt_bit + cnt_byte + cnt_int + cnt_ar1d + cnt_ar2d;
// finish report
always @ (posedge clk)
if (cnt == 5) begin
if (siz_bit != 1) $stop();
if (siz_byte != 8) $stop();
if (siz_int != 32) $stop();
if (siz_ar1d != 24) $stop();
if (siz_ar2d != 16) $stop();
end else if (cnt > 5) begin
$write("*-* All Finished *-*\n");
$finish;
end
// instances with various types
mod_typ #(.TYP (bit )) mod_bit (clk, cnt_bit [ 1-1:0], siz_bit );
mod_typ #(.TYP (byte )) mod_byte (clk, cnt_byte[ 8-1:0], siz_byte);
mod_typ #(.TYP (int )) mod_int (clk, cnt_int [32-1:0], siz_int );
mod_typ #(.TYP (bit [23:0] )) mod_ar1d (clk, cnt_ar1d[24-1:0], siz_ar1d);
mod_typ #(.TYP (bit [3:0][3:0])) mod_ar2d (clk, cnt_ar2d[16-1:0], siz_ar2d);
endmodule : t
module mod_typ #(
parameter type TYP = byte
)(
input logic clk,
output TYP cnt = 0,
output int siz
);
always @ (posedge clk)
cnt <= cnt + 1;
assign siz = $bits (cnt);
endmodule
|
/*+--------------------------------------------------------------------------
Copyright (c) 2015, Microsoft Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------*/
//////////////////////////////////////////////////////////////////////////////////
// Company: Microsoft Research Asia
// Engineer: Jiansong Zhang
//
// Create Date: 21:39:39 06/01/2009
// Design Name:
// Module Name: completer_pkt_gen
// Project Name: Sora
// Target Devices: Virtex5 LX50T
// Tool versions: ISE10.1.03
// Description:
// Purpose: Completer Packet Generator module. This block creates the header
// info for completer packets- it also passes along the data source and
// address info for the TRN state machine block to request the data from
// the egress data presenter.
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module completer_pkt_gen(
input clk,
input rst,
//interface from RX Engine
input [6:0] bar_hit, //denotes which base address was hit
input comp_req, //gets asserted when the rx engine recevies a MemRd request
input [31:0] MEM_addr, //needed to fetch data from egress_data_presenter
input [15:0] MEM_req_id,//needed for completion header
input [15:0] comp_id, //needed for completion header
input [7:0] MEM_tag, //neede for completion header
//interface to completion header fifo
output reg comp_fifo_wren,
output reg [63:0] comp_fifo_data
);
//State machine states
localparam IDLE = 4'h0;
localparam HEAD1 = 4'h1;
localparam HEAD2 = 4'h2;
//parameters used to define fixed header fields
localparam rsvd = 1'b0;
localparam fmt = 2'b10; //always with data
localparam CplD = 5'b01010; //completer
localparam TC = 3'b000;
localparam TD = 1'b0;
localparam EP = 1'b0;
localparam ATTR = 2'b00;
localparam Length = 10'b0000000001; //length is always one DWORD
localparam ByteCount = 12'b000000000100; //BC is always one DWORD
localparam BCM = 1'b0;
reg [3:0] state;
reg [6:0] bar_hit_reg;
reg [26:0] MEM_addr_reg;
reg [15:0] MEM_req_id_reg;
reg [15:0] comp_id_reg;
reg [7:0] MEM_tag_reg;
reg rst_reg;
always@(posedge clk) rst_reg <= rst;
//if there is a memory read request then latch the header information
//needed to create the completion TLP header
always@(posedge clk)begin
if(comp_req)begin
bar_hit_reg <= bar_hit;
MEM_addr_reg[26:0] <= MEM_addr[26:0];
MEM_req_id_reg <= MEM_req_id;
comp_id_reg <= comp_id;
MEM_tag_reg <= MEM_tag;
end
end
// State machine
// Builds headers for completion TLP headers
// Writes them into a FIFO
always @ (posedge clk) begin
if (rst_reg) begin
comp_fifo_data <= 0;
comp_fifo_wren <= 1'b0;
state <= IDLE;
end else begin
case (state)
IDLE : begin
comp_fifo_data <= 0;
comp_fifo_wren <= 1'b0;
if(comp_req)
state<= HEAD1;
else
state<= IDLE;
end
HEAD1 : begin //create first 64-bit completion TLP header
//NOTE: bar_hit_reg[6:0],MEM_addr_reg[26:2] are not part of completion TLP
//header but are used by tx_trn_sm module to fetch data from the
//egress_data_presenter
comp_fifo_data <= {bar_hit_reg[6:0],MEM_addr_reg[26:2],
rsvd,fmt,CplD,rsvd,TC,rsvd,rsvd,rsvd,rsvd,
TD,EP,ATTR,rsvd,rsvd,Length};
comp_fifo_wren <= 1'b1; //write to comp header fifo
state <= HEAD2;
end
HEAD2 : begin //create second 64-bit completion TLP header
comp_fifo_data <= {comp_id_reg[15:0],3'b000, BCM,ByteCount,
MEM_req_id_reg[15:0],MEM_tag_reg[7:0],rsvd,
MEM_addr_reg[6:0]};
comp_fifo_wren <= 1'b1; //write to comp header fifo
state <= IDLE;
end
default : begin
comp_fifo_data <= 0;
comp_fifo_wren <= 1'b0;
state <= IDLE;
end
endcase
end
end
endmodule
|
/*+--------------------------------------------------------------------------
Copyright (c) 2015, Microsoft Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------*/
//////////////////////////////////////////////////////////////////////////////////
// Company: Microsoft Research Asia
// Engineer: Jiansong Zhang
//
// Create Date: 21:39:39 06/01/2009
// Design Name:
// Module Name: completer_pkt_gen
// Project Name: Sora
// Target Devices: Virtex5 LX50T
// Tool versions: ISE10.1.03
// Description:
// Purpose: Completer Packet Generator module. This block creates the header
// info for completer packets- it also passes along the data source and
// address info for the TRN state machine block to request the data from
// the egress data presenter.
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module completer_pkt_gen(
input clk,
input rst,
//interface from RX Engine
input [6:0] bar_hit, //denotes which base address was hit
input comp_req, //gets asserted when the rx engine recevies a MemRd request
input [31:0] MEM_addr, //needed to fetch data from egress_data_presenter
input [15:0] MEM_req_id,//needed for completion header
input [15:0] comp_id, //needed for completion header
input [7:0] MEM_tag, //neede for completion header
//interface to completion header fifo
output reg comp_fifo_wren,
output reg [63:0] comp_fifo_data
);
//State machine states
localparam IDLE = 4'h0;
localparam HEAD1 = 4'h1;
localparam HEAD2 = 4'h2;
//parameters used to define fixed header fields
localparam rsvd = 1'b0;
localparam fmt = 2'b10; //always with data
localparam CplD = 5'b01010; //completer
localparam TC = 3'b000;
localparam TD = 1'b0;
localparam EP = 1'b0;
localparam ATTR = 2'b00;
localparam Length = 10'b0000000001; //length is always one DWORD
localparam ByteCount = 12'b000000000100; //BC is always one DWORD
localparam BCM = 1'b0;
reg [3:0] state;
reg [6:0] bar_hit_reg;
reg [26:0] MEM_addr_reg;
reg [15:0] MEM_req_id_reg;
reg [15:0] comp_id_reg;
reg [7:0] MEM_tag_reg;
reg rst_reg;
always@(posedge clk) rst_reg <= rst;
//if there is a memory read request then latch the header information
//needed to create the completion TLP header
always@(posedge clk)begin
if(comp_req)begin
bar_hit_reg <= bar_hit;
MEM_addr_reg[26:0] <= MEM_addr[26:0];
MEM_req_id_reg <= MEM_req_id;
comp_id_reg <= comp_id;
MEM_tag_reg <= MEM_tag;
end
end
// State machine
// Builds headers for completion TLP headers
// Writes them into a FIFO
always @ (posedge clk) begin
if (rst_reg) begin
comp_fifo_data <= 0;
comp_fifo_wren <= 1'b0;
state <= IDLE;
end else begin
case (state)
IDLE : begin
comp_fifo_data <= 0;
comp_fifo_wren <= 1'b0;
if(comp_req)
state<= HEAD1;
else
state<= IDLE;
end
HEAD1 : begin //create first 64-bit completion TLP header
//NOTE: bar_hit_reg[6:0],MEM_addr_reg[26:2] are not part of completion TLP
//header but are used by tx_trn_sm module to fetch data from the
//egress_data_presenter
comp_fifo_data <= {bar_hit_reg[6:0],MEM_addr_reg[26:2],
rsvd,fmt,CplD,rsvd,TC,rsvd,rsvd,rsvd,rsvd,
TD,EP,ATTR,rsvd,rsvd,Length};
comp_fifo_wren <= 1'b1; //write to comp header fifo
state <= HEAD2;
end
HEAD2 : begin //create second 64-bit completion TLP header
comp_fifo_data <= {comp_id_reg[15:0],3'b000, BCM,ByteCount,
MEM_req_id_reg[15:0],MEM_tag_reg[7:0],rsvd,
MEM_addr_reg[6:0]};
comp_fifo_wren <= 1'b1; //write to comp header fifo
state <= IDLE;
end
default : begin
comp_fifo_data <= 0;
comp_fifo_wren <= 1'b0;
state <= IDLE;
end
endcase
end
end
endmodule
|
(** * Types: Type Systems *)
Require Export Smallstep.
Hint Constructors multi.
(** Our next major topic is _type systems_ -- static program
analyses that classify expressions according to the "shapes" of
their results. We'll begin with a typed version of a very simple
language with just booleans and numbers, to introduce the basic
ideas of types, typing rules, and the fundamental theorems about
type systems: _type preservation_ and _progress_. Then we'll move
on to the _simply typed lambda-calculus_, which lives at the core
of every modern functional programming language (including
Coq). *)
(* ###################################################################### *)
(** * Typed Arithmetic Expressions *)
(** To motivate the discussion of type systems, let's begin as
usual with an extremely simple toy language. We want it to have
the potential for programs "going wrong" because of runtime type
errors, so we need something a tiny bit more complex than the
language of constants and addition that we used in chapter
[Smallstep]: a single kind of data (just numbers) is too simple,
but just two kinds (numbers and booleans) already gives us enough
material to tell an interesting story.
The language definition is completely routine. *)
(* ###################################################################### *)
(** ** Syntax *)
(** Informally:
t ::= true
| false
| if t then t else t
| 0
| succ t
| pred t
| iszero t
Formally:
*)
Inductive tm : Type :=
| ttrue : tm
| tfalse : tm
| tif : tm -> tm -> tm -> tm
| tzero : tm
| tsucc : tm -> tm
| tpred : tm -> tm
| tiszero : tm -> tm.
(** _Values_ are [true], [false], and numeric values... *)
Inductive bvalue : tm -> Prop :=
| bv_true : bvalue ttrue
| bv_false : bvalue tfalse.
Inductive nvalue : tm -> Prop :=
| nv_zero : nvalue tzero
| nv_succ : forall t, nvalue t -> nvalue (tsucc t).
Definition value (t:tm) := bvalue t \/ nvalue t.
Hint Constructors bvalue nvalue.
Hint Unfold value.
Hint Unfold extend.
(* ###################################################################### *)
(** ** Operational Semantics *)
(** Informally: *)
(**
------------------------------ (ST_IfTrue)
if true then t1 else t2 ==> t1
------------------------------- (ST_IfFalse)
if false then t1 else t2 ==> t2
t1 ==> t1'
------------------------- (ST_If)
if t1 then t2 else t3 ==>
if t1' then t2 else t3
t1 ==> t1'
-------------------- (ST_Succ)
succ t1 ==> succ t1'
------------ (ST_PredZero)
pred 0 ==> 0
numeric value v1
--------------------- (ST_PredSucc)
pred (succ v1) ==> v1
t1 ==> t1'
-------------------- (ST_Pred)
pred t1 ==> pred t1'
----------------- (ST_IszeroZero)
iszero 0 ==> true
numeric value v1
-------------------------- (ST_IszeroSucc)
iszero (succ v1) ==> false
t1 ==> t1'
------------------------ (ST_Iszero)
iszero t1 ==> iszero t1'
*)
(** Formally: *)
Reserved Notation "t1 '==>' t2" (at level 40).
Inductive step : tm -> tm -> Prop :=
| ST_IfTrue : forall t1 t2,
(tif ttrue t1 t2) ==> t1
| ST_IfFalse : forall t1 t2,
(tif tfalse t1 t2) ==> t2
| ST_If : forall t1 t1' t2 t3,
t1 ==> t1' ->
(tif t1 t2 t3) ==> (tif t1' t2 t3)
| ST_Succ : forall t1 t1',
t1 ==> t1' ->
(tsucc t1) ==> (tsucc t1')
| ST_PredZero :
(tpred tzero) ==> tzero
| ST_PredSucc : forall t1,
nvalue t1 ->
(tpred (tsucc t1)) ==> t1
| ST_Pred : forall t1 t1',
t1 ==> t1' ->
(tpred t1) ==> (tpred t1')
| ST_IszeroZero :
(tiszero tzero) ==> ttrue
| ST_IszeroSucc : forall t1,
nvalue t1 ->
(tiszero (tsucc t1)) ==> tfalse
| ST_Iszero : forall t1 t1',
t1 ==> t1' ->
(tiszero t1) ==> (tiszero t1')
where "t1 '==>' t2" := (step t1 t2).
Tactic Notation "step_cases" tactic(first) ident(c) :=
first;
[ Case_aux c "ST_IfTrue" | Case_aux c "ST_IfFalse" | Case_aux c "ST_If"
| Case_aux c "ST_Succ" | Case_aux c "ST_PredZero"
| Case_aux c "ST_PredSucc" | Case_aux c "ST_Pred"
| Case_aux c "ST_IszeroZero" | Case_aux c "ST_IszeroSucc"
| Case_aux c "ST_Iszero" ].
Hint Constructors step.
(** Notice that the [step] relation doesn't care about whether
expressions make global sense -- it just checks that the operation
in the _next_ reduction step is being applied to the right kinds
of operands.
For example, the term [succ true] (i.e., [tsucc ttrue] in the
formal syntax) cannot take a step, but the almost as obviously
nonsensical term
succ (if true then true else true)
can take a step (once, before becoming stuck). *)
(* ###################################################################### *)
(** ** Normal Forms and Values *)
(** The first interesting thing about the [step] relation in this
language is that the strong progress theorem from the Smallstep
chapter fails! That is, there are terms that are normal
forms (they can't take a step) but not values (because we have not
included them in our definition of possible "results of
evaluation"). Such terms are _stuck_. *)
Notation step_normal_form := (normal_form step).
Definition stuck (t:tm) : Prop :=
step_normal_form t /\ ~ value t.
Hint Unfold stuck.
(** **** Exercise: 2 stars (some_term_is_stuck) *)
Example some_term_is_stuck :
exists t, stuck t.
Proof.
(* FILL IN HERE *) Admitted.
(** [] *)
(** However, although values and normal forms are not the same in this
language, the former set is included in the latter. This is
important because it shows we did not accidentally define things
so that some value could still take a step. *)
(** **** Exercise: 3 stars, advanced (value_is_nf) *)
(** Hint: You will reach a point in this proof where you need to
use an induction to reason about a term that is known to be a
numeric value. This induction can be performed either over the
term itself or over the evidence that it is a numeric value. The
proof goes through in either case, but you will find that one way
is quite a bit shorter than the other. For the sake of the
exercise, try to complete the proof both ways. *)
Lemma value_is_nf : forall t,
value t -> step_normal_form t.
Proof.
(* FILL IN HERE *) Admitted.
(** [] *)
(** **** Exercise: 3 stars, optional (step_deterministic) *)
(** Using [value_is_nf], we can show that the [step] relation is
also deterministic... *)
Theorem step_deterministic:
deterministic step.
Proof with eauto.
(* FILL IN HERE *) Admitted.
(** [] *)
(* ###################################################################### *)
(** ** Typing *)
(** The next critical observation about this language is that,
although there are stuck terms, they are all "nonsensical", mixing
booleans and numbers in a way that we don't even _want_ to have a
meaning. We can easily exclude such ill-typed terms by defining a
_typing relation_ that relates terms to the types (either numeric
or boolean) of their final results. *)
Inductive ty : Type :=
| TBool : ty
| TNat : ty.
(** In informal notation, the typing relation is often written
[|- t \in T], pronounced "[t] has type [T]." The [|-] symbol is
called a "turnstile". (Below, we're going to see richer typing
relations where an additional "context" argument is written to the
left of the turnstile. Here, the context is always empty.) *)
(**
---------------- (T_True)
|- true \in Bool
----------------- (T_False)
|- false \in Bool
|- t1 \in Bool |- t2 \in T |- t3 \in T
-------------------------------------------- (T_If)
|- if t1 then t2 else t3 \in T
------------ (T_Zero)
|- 0 \in Nat
|- t1 \in Nat
------------------ (T_Succ)
|- succ t1 \in Nat
|- t1 \in Nat
------------------ (T_Pred)
|- pred t1 \in Nat
|- t1 \in Nat
--------------------- (T_IsZero)
|- iszero t1 \in Bool
*)
Reserved Notation "'|-' t '\in' T" (at level 40).
Inductive has_type : tm -> ty -> Prop :=
| T_True :
|- ttrue \in TBool
| T_False :
|- tfalse \in TBool
| T_If : forall t1 t2 t3 T,
|- t1 \in TBool ->
|- t2 \in T ->
|- t3 \in T ->
|- tif t1 t2 t3 \in T
| T_Zero :
|- tzero \in TNat
| T_Succ : forall t1,
|- t1 \in TNat ->
|- tsucc t1 \in TNat
| T_Pred : forall t1,
|- t1 \in TNat ->
|- tpred t1 \in TNat
| T_Iszero : forall t1,
|- t1 \in TNat ->
|- tiszero t1 \in TBool
where "'|-' t '\in' T" := (has_type t T).
Tactic Notation "has_type_cases" tactic(first) ident(c) :=
first;
[ Case_aux c "T_True" | Case_aux c "T_False" | Case_aux c "T_If"
| Case_aux c "T_Zero" | Case_aux c "T_Succ" | Case_aux c "T_Pred"
| Case_aux c "T_Iszero" ].
Hint Constructors has_type.
(* ###################################################################### *)
(** *** Examples *)
(** It's important to realize that the typing relation is a
_conservative_ (or _static_) approximation: it does not calculate
the type of the normal form of a term. *)
Example has_type_1 :
|- tif tfalse tzero (tsucc tzero) \in TNat.
Proof.
apply T_If.
apply T_False.
apply T_Zero.
apply T_Succ.
apply T_Zero.
Qed.
(** (Since we've included all the constructors of the typing relation
in the hint database, the [auto] tactic can actually find this
proof automatically.) *)
Example has_type_not :
~ (|- tif tfalse tzero ttrue \in TBool).
Proof.
intros Contra. solve by inversion 2. Qed.
(** **** Exercise: 1 star, optional (succ_hastype_nat__hastype_nat) *)
Example succ_hastype_nat__hastype_nat : forall t,
|- tsucc t \in TNat ->
|- t \in TNat.
Proof.
(* FILL IN HERE *) Admitted.
(** [] *)
(* ###################################################################### *)
(** ** Canonical forms *)
(** The following two lemmas capture the basic property that defines
the shape of well-typed values. They say that the definition of value
and the typing relation agree. *)
Lemma bool_canonical : forall t,
|- t \in TBool -> value t -> bvalue t.
Proof.
intros t HT HV.
inversion HV; auto.
induction H; inversion HT; auto.
Qed.
Lemma nat_canonical : forall t,
|- t \in TNat -> value t -> nvalue t.
Proof.
intros t HT HV.
inversion HV.
inversion H; subst; inversion HT.
auto.
Qed.
(* ###################################################################### *)
(** ** Progress *)
(** The typing relation enjoys two critical properties. The first is
that well-typed normal forms are values (i.e., not stuck). *)
Theorem progress : forall t T,
|- t \in T ->
value t \/ exists t', t ==> t'.
(** **** Exercise: 3 stars (finish_progress) *)
(** Complete the formal proof of the [progress] property. (Make sure
you understand the informal proof fragment in the following
exercise before starting -- this will save you a lot of time.) *)
Proof with auto.
intros t T HT.
has_type_cases (induction HT) Case...
(* The cases that were obviously values, like T_True and
T_False, were eliminated immediately by auto *)
Case "T_If".
right. inversion IHHT1; clear IHHT1.
SCase "t1 is a value".
apply (bool_canonical t1 HT1) in H.
inversion H; subst; clear H.
exists t2...
exists t3...
SCase "t1 can take a step".
inversion H as [t1' H1].
exists (tif t1' t2 t3)...
(* FILL IN HERE *) Admitted.
(** [] *)
(** **** Exercise: 3 stars, advanced (finish_progress_informal) *)
(** Complete the corresponding informal proof: *)
(** _Theorem_: If [|- t \in T], then either [t] is a value or else
[t ==> t'] for some [t']. *)
(** _Proof_: By induction on a derivation of [|- t \in T].
- If the last rule in the derivation is [T_If], then [t = if t1
then t2 else t3], with [|- t1 \in Bool], [|- t2 \in T] and [|- t3
\in T]. By the IH, either [t1] is a value or else [t1] can step
to some [t1'].
- If [t1] is a value, then by the canonical forms lemmas
and the fact that [|- t1 \in Bool] we have that [t1]
is a [bvalue] -- i.e., it is either [true] or [false].
If [t1 = true], then [t] steps to [t2] by [ST_IfTrue],
while if [t1 = false], then [t] steps to [t3] by
[ST_IfFalse]. Either way, [t] can step, which is what
we wanted to show.
- If [t1] itself can take a step, then, by [ST_If], so can
[t].
(* FILL IN HERE *)
[] *)
(** This is more interesting than the strong progress theorem that we
saw in the Smallstep chapter, where _all_ normal forms were
values. Here, a term can be stuck, but only if it is ill
typed. *)
(** **** Exercise: 1 star (step_review) *)
(** Quick review. Answer _true_ or _false_. In this language...
- Every well-typed normal form is a value.
- Every value is a normal form.
- The single-step evaluation relation is
a partial function (i.e., it is deterministic).
- The single-step evaluation relation is a _total_ function.
*)
(** [] *)
(* ###################################################################### *)
(** ** Type Preservation *)
(** The second critical property of typing is that, when a well-typed
term takes a step, the result is also a well-typed term.
This theorem is often called the _subject reduction_ property,
because it tells us what happens when the "subject" of the typing
relation is reduced. This terminology comes from thinking of
typing statements as sentences, where the term is the subject and
the type is the predicate. *)
Theorem preservation : forall t t' T,
|- t \in T ->
t ==> t' ->
|- t' \in T.
(** **** Exercise: 2 stars (finish_preservation) *)
(** Complete the formal proof of the [preservation] property. (Again,
make sure you understand the informal proof fragment in the
following exercise first.) *)
Proof with auto.
intros t t' T HT HE.
generalize dependent t'.
has_type_cases (induction HT) Case;
(* every case needs to introduce a couple of things *)
intros t' HE;
(* and we can deal with several impossible
cases all at once *)
try (solve by inversion).
Case "T_If". inversion HE; subst; clear HE.
SCase "ST_IFTrue". assumption.
SCase "ST_IfFalse". assumption.
SCase "ST_If". apply T_If; try assumption.
apply IHHT1; assumption.
(* FILL IN HERE *) Admitted.
(** [] *)
(** **** Exercise: 3 stars, advanced (finish_preservation_informal) *)
(** Complete the following proof: *)
(** _Theorem_: If [|- t \in T] and [t ==> t'], then [|- t' \in T]. *)
(** _Proof_: By induction on a derivation of [|- t \in T].
- If the last rule in the derivation is [T_If], then [t = if t1
then t2 else t3], with [|- t1 \in Bool], [|- t2 \in T] and [|- t3
\in T].
Inspecting the rules for the small-step reduction relation and
remembering that [t] has the form [if ...], we see that the
only ones that could have been used to prove [t ==> t'] are
[ST_IfTrue], [ST_IfFalse], or [ST_If].
- If the last rule was [ST_IfTrue], then [t' = t2]. But we
know that [|- t2 \in T], so we are done.
- If the last rule was [ST_IfFalse], then [t' = t3]. But we
know that [|- t3 \in T], so we are done.
- If the last rule was [ST_If], then [t' = if t1' then t2
else t3], where [t1 ==> t1']. We know [|- t1 \in Bool] so,
by the IH, [|- t1' \in Bool]. The [T_If] rule then gives us
[|- if t1' then t2 else t3 \in T], as required.
(* FILL IN HERE *)
[] *)
(** **** Exercise: 3 stars (preservation_alternate_proof) *)
(** Now prove the same property again by induction on the
_evaluation_ derivation instead of on the typing derivation.
Begin by carefully reading and thinking about the first few
lines of the above proof to make sure you understand what
each one is doing. The set-up for this proof is similar, but
not exactly the same. *)
Theorem preservation' : forall t t' T,
|- t \in T ->
t ==> t' ->
|- t' \in T.
Proof with eauto.
(* FILL IN HERE *) Admitted.
(** [] *)
(* ###################################################################### *)
(** ** Type Soundness *)
(** Putting progress and preservation together, we can see that a
well-typed term can _never_ reach a stuck state. *)
Definition multistep := (multi step).
Notation "t1 '==>*' t2" := (multistep t1 t2) (at level 40).
Corollary soundness : forall t t' T,
|- t \in T ->
t ==>* t' ->
~(stuck t').
Proof.
intros t t' T HT P. induction P; intros [R S].
destruct (progress x T HT); auto.
apply IHP. apply (preservation x y T HT H).
unfold stuck. split; auto. Qed.
(* ###################################################################### *)
(** * Aside: the [normalize] Tactic *)
(** When experimenting with definitions of programming languages in
Coq, we often want to see what a particular concrete term steps
to -- i.e., we want to find proofs for goals of the form [t ==>*
t'], where [t] is a completely concrete term and [t'] is unknown.
These proofs are simple but repetitive to do by hand. Consider for
example reducing an arithmetic expression using the small-step
relation [astep]. *)
Definition amultistep st := multi (astep st).
Notation " t '/' st '==>a*' t' " := (amultistep st t t')
(at level 40, st at level 39).
Example astep_example1 :
(APlus (ANum 3) (AMult (ANum 3) (ANum 4))) / empty_state
==>a* (ANum 15).
Proof.
apply multi_step with (APlus (ANum 3) (ANum 12)).
apply AS_Plus2.
apply av_num.
apply AS_Mult.
apply multi_step with (ANum 15).
apply AS_Plus.
apply multi_refl.
Qed.
(** We repeatedly apply [multi_step] until we get to a normal
form. The proofs that the intermediate steps are possible are
simple enough that [auto], with appropriate hints, can solve
them. *)
Hint Constructors astep aval.
Example astep_example1' :
(APlus (ANum 3) (AMult (ANum 3) (ANum 4))) / empty_state
==>a* (ANum 15).
Proof.
eapply multi_step. auto. simpl.
eapply multi_step. auto. simpl.
apply multi_refl.
Qed.
(** The following custom [Tactic Notation] definition captures this
pattern. In addition, before each [multi_step] we print out the
current goal, so that the user can follow how the term is being
evaluated. *)
Tactic Notation "print_goal" := match goal with |- ?x => idtac x end.
Tactic Notation "normalize" :=
repeat (print_goal; eapply multi_step ;
[ (eauto 10; fail) | (instantiate; simpl)]);
apply multi_refl.
Example astep_example1'' :
(APlus (ANum 3) (AMult (ANum 3) (ANum 4))) / empty_state
==>a* (ANum 15).
Proof.
normalize.
(* At this point in the proof script, the Coq response shows
a trace of how the expression evaluated.
(APlus (ANum 3) (AMult (ANum 3) (ANum 4)) / empty_state ==>a* ANum 15)
(multi (astep empty_state) (APlus (ANum 3) (ANum 12)) (ANum 15))
(multi (astep empty_state) (ANum 15) (ANum 15))
*)
Qed.
(** The [normalize] tactic also provides a simple way to calculate
what the normal form of a term is, by proving a goal with an
existential variable in it. *)
Example astep_example1''' : exists e',
(APlus (ANum 3) (AMult (ANum 3) (ANum 4))) / empty_state
==>a* e'.
Proof.
eapply ex_intro. normalize.
(* This time, the trace will be:
(APlus (ANum 3) (AMult (ANum 3) (ANum 4)) / empty_state ==>a* ??)
(multi (astep empty_state) (APlus (ANum 3) (ANum 12)) ??)
(multi (astep empty_state) (ANum 15) ??)
where ?? is the variable ``guessed'' by eapply.
*)
Qed.
(** **** Exercise: 1 star (normalize_ex) *)
Theorem normalize_ex : exists e',
(AMult (ANum 3) (AMult (ANum 2) (ANum 1))) / empty_state
==>a* e'.
Proof.
(* FILL IN HERE *) Admitted.
(** [] *)
(** **** Exercise: 1 star, optional (normalize_ex') *)
(** For comparison, prove it using [apply] instead of [eapply]. *)
Theorem normalize_ex' : exists e',
(AMult (ANum 3) (AMult (ANum 2) (ANum 1))) / empty_state
==>a* e'.
Proof.
(* FILL IN HERE *) Admitted.
(** [] *)
(* ###################################################################### *)
(** ** Additional Exercises *)
(** **** Exercise: 2 stars (subject_expansion) *)
(** Having seen the subject reduction property, it is reasonable to
wonder whether the opposity property -- subject _expansion_ --
also holds. That is, is it always the case that, if [t ==> t']
and [|- t' \in T], then [|- t \in T]? If so, prove it. If
not, give a counter-example. (You do not need to prove your
counter-example in Coq, but feel free to do so if you like.)
(* FILL IN HERE *)
[] *)
(** **** Exercise: 2 stars (variation1) *)
(** Suppose, that we add this new rule to the typing relation:
| T_SuccBool : forall t,
|- t \in TBool ->
|- tsucc t \in TBool
Which of the following properties remain true in the presence of
this rule? For each one, write either "remains true" or
else "becomes false." If a property becomes false, give a
counterexample.
- Determinism of [step]
- Progress
- Preservation
[] *)
(** **** Exercise: 2 stars (variation2) *)
(** Suppose, instead, that we add this new rule to the [step] relation:
| ST_Funny1 : forall t2 t3,
(tif ttrue t2 t3) ==> t3
Which of the above properties become false in the presence of
this rule? For each one that does, give a counter-example.
[] *)
(** **** Exercise: 2 stars, optional (variation3) *)
(** Suppose instead that we add this rule:
| ST_Funny2 : forall t1 t2 t2' t3,
t2 ==> t2' ->
(tif t1 t2 t3) ==> (tif t1 t2' t3)
Which of the above properties become false in the presence of
this rule? For each one that does, give a counter-example.
[] *)
(** **** Exercise: 2 stars, optional (variation4) *)
(** Suppose instead that we add this rule:
| ST_Funny3 :
(tpred tfalse) ==> (tpred (tpred tfalse))
Which of the above properties become false in the presence of
this rule? For each one that does, give a counter-example.
[] *)
(** **** Exercise: 2 stars, optional (variation5) *)
(** Suppose instead that we add this rule:
| T_Funny4 :
|- tzero \in TBool
]]
Which of the above properties become false in the presence of
this rule? For each one that does, give a counter-example.
[] *)
(** **** Exercise: 2 stars, optional (variation6) *)
(** Suppose instead that we add this rule:
| T_Funny5 :
|- tpred tzero \in TBool
]]
Which of the above properties become false in the presence of
this rule? For each one that does, give a counter-example.
[] *)
(** **** Exercise: 3 stars, optional (more_variations) *)
(** Make up some exercises of your own along the same lines as
the ones above. Try to find ways of selectively breaking
properties -- i.e., ways of changing the definitions that
break just one of the properties and leave the others alone.
[] *)
(** **** Exercise: 1 star (remove_predzero) *)
(** The evaluation rule [E_PredZero] is a bit counter-intuitive: we
might feel that it makes more sense for the predecessor of zero to
be undefined, rather than being defined to be zero. Can we
achieve this simply by removing the rule from the definition of
[step]? Would doing so create any problems elsewhere?
(* FILL IN HERE *)
[] *)
(** **** Exercise: 4 stars, advanced (prog_pres_bigstep) *)
(** Suppose our evaluation relation is defined in the big-step style.
What are the appropriate analogs of the progress and preservation
properties?
(* FILL IN HERE *)
[] *)
(** $Date: 2014-12-31 11:17:56 -0500 (Wed, 31 Dec 2014) $ *)
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2009 by Iztok Jeras.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
// packed structures
struct packed {
logic e0;
logic [1:0] e1;
logic [3:0] e2;
logic [7:0] e3;
} struct_bg; // big endian structure
/* verilator lint_off LITENDIAN */
struct packed {
logic e0;
logic [0:1] e1;
logic [0:3] e2;
logic [0:7] e3;
} struct_lt; // little endian structure
/* verilator lint_on LITENDIAN */
integer cnt = 0;
// event counter
always @ (posedge clk)
begin
cnt <= cnt + 1;
end
// finish report
always @ (posedge clk)
if (cnt==2) begin
$write("*-* All Finished *-*\n");
$finish;
end
always @ (posedge clk)
if (cnt==1) begin
// big endian
if ($bits (struct_bg ) != 15) $stop;
if ($bits (struct_bg.e0) != 1) $stop;
if ($bits (struct_bg.e1) != 2) $stop;
if ($bits (struct_bg.e2) != 4) $stop;
if ($bits (struct_bg.e3) != 8) $stop;
if ($increment (struct_bg, 1) != 1) $stop;
// little endian
if ($bits (struct_lt ) != 15) $stop;
if ($bits (struct_lt.e0) != 1) $stop;
if ($bits (struct_lt.e1) != 2) $stop;
if ($bits (struct_lt.e2) != 4) $stop;
if ($bits (struct_lt.e3) != 8) $stop;
if ($increment (struct_lt, 1) != 1) $stop; // Structure itself always big numbered
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2008 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
reg [2:0] in;
wire a,y,y_fixed;
wire b = in[0];
wire en = in[1];
pullup(a);
ChildA childa ( .A(a), .B(b), .en(en), .Y(y),.Yfix(y_fixed) );
initial in=0;
initial en=0;
// Test loop
always @ (posedge clk) begin
in <= in + 1;
$display ( "a %d b %d en %d y %d yfix: %d)" , a, b, en, y, y_fixed);
if (en) begin
// driving b
// a should be b
// y and yfix should also be b
if (a!=b || y != b || y_fixed != b) begin
$display ( "Expected a %d y %b yfix %b" , a, y, y_fixed);
$stop;
end
end else begin
// not driving b
// a should be 1 (pullup)
// y and yfix shold be 1
if (a!=1 || y != 1 || y_fixed != 1) begin
$display( "Expected a,y,yfix == 1");
$stop;
end
end
if (in==3) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
module ChildA(inout A, input B, input en, output Y, output Yfix);
// workaround
wire a_in = A;
ChildB childB(.A(A), .Y(Y));
assign A = en ? B : 1'bz;
ChildB childBfix(.A(a_in),.Y(Yfix));
endmodule
module ChildB(input A, output Y);
assign Y = A;
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2008 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
reg [2:0] in;
wire a,y,y_fixed;
wire b = in[0];
wire en = in[1];
pullup(a);
ChildA childa ( .A(a), .B(b), .en(en), .Y(y),.Yfix(y_fixed) );
initial in=0;
initial en=0;
// Test loop
always @ (posedge clk) begin
in <= in + 1;
$display ( "a %d b %d en %d y %d yfix: %d)" , a, b, en, y, y_fixed);
if (en) begin
// driving b
// a should be b
// y and yfix should also be b
if (a!=b || y != b || y_fixed != b) begin
$display ( "Expected a %d y %b yfix %b" , a, y, y_fixed);
$stop;
end
end else begin
// not driving b
// a should be 1 (pullup)
// y and yfix shold be 1
if (a!=1 || y != 1 || y_fixed != 1) begin
$display( "Expected a,y,yfix == 1");
$stop;
end
end
if (in==3) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
module ChildA(inout A, input B, input en, output Y, output Yfix);
// workaround
wire a_in = A;
ChildB childB(.A(A), .Y(Y));
assign A = en ? B : 1'bz;
ChildB childBfix(.A(a_in),.Y(Yfix));
endmodule
module ChildB(input A, output Y);
assign Y = A;
endmodule
|
(** * StlcProp: Properties of STLC *)
Require Export Stlc.
Module STLCProp.
Import STLC.
(** In this chapter, we develop the fundamental theory of the Simply
Typed Lambda Calculus -- in particular, the type safety
theorem. *)
(* ###################################################################### *)
(** * Canonical Forms *)
Lemma canonical_forms_bool : forall t,
empty |- t \in TBool ->
value t ->
(t = ttrue) \/ (t = tfalse).
Proof.
intros t HT HVal.
inversion HVal; intros; subst; try inversion HT; auto.
Qed.
Lemma canonical_forms_fun : forall t T1 T2,
empty |- t \in (TArrow T1 T2) ->
value t ->
exists x u, t = tabs x T1 u.
Proof.
intros t T1 T2 HT HVal.
inversion HVal; intros; subst; try inversion HT; subst; auto.
exists x0. exists t0. auto.
Qed.
(* ###################################################################### *)
(** * Progress *)
(** As before, the _progress_ theorem tells us that closed, well-typed
terms are not stuck: either a well-typed term is a value, or it
can take an evaluation step. The proof is a relatively
straightforward extension of the progress proof we saw in the
[Types] chapter. *)
Theorem progress : forall t T,
empty |- t \in T ->
value t \/ exists t', t ==> t'.
(** _Proof_: by induction on the derivation of [|- t \in T].
- The last rule of the derivation cannot be [T_Var], since a
variable is never well typed in an empty context.
- The [T_True], [T_False], and [T_Abs] cases are trivial, since in
each of these cases we know immediately that [t] is a value.
- If the last rule of the derivation was [T_App], then [t = t1
t2], and we know that [t1] and [t2] are also well typed in the
empty context; in particular, there exists a type [T2] such that
[|- t1 \in T2 -> T] and [|- t2 \in T2]. By the induction
hypothesis, either [t1] is a value or it can take an evaluation
step.
- If [t1] is a value, we now consider [t2], which by the other
induction hypothesis must also either be a value or take an
evaluation step.
- Suppose [t2] is a value. Since [t1] is a value with an
arrow type, it must be a lambda abstraction; hence [t1
t2] can take a step by [ST_AppAbs].
- Otherwise, [t2] can take a step, and hence so can [t1
t2] by [ST_App2].
- If [t1] can take a step, then so can [t1 t2] by [ST_App1].
- If the last rule of the derivation was [T_If], then [t = if t1
then t2 else t3], where [t1] has type [Bool]. By the IH, [t1]
either is a value or takes a step.
- If [t1] is a value, then since it has type [Bool] it must be
either [true] or [false]. If it is [true], then [t] steps
to [t2]; otherwise it steps to [t3].
- Otherwise, [t1] takes a step, and therefore so does [t] (by
[ST_If]).
*)
Proof with eauto.
intros t T Ht.
remember (@empty ty) as Gamma.
has_type_cases (induction Ht) Case; subst Gamma...
Case "T_Var".
(* contradictory: variables cannot be typed in an
empty context *)
inversion H.
Case "T_App".
(* [t] = [t1 t2]. Proceed by cases on whether [t1] is a
value or steps... *)
right. destruct IHHt1...
SCase "t1 is a value".
destruct IHHt2...
SSCase "t2 is also a value".
assert (exists x0 t0, t1 = tabs x0 T11 t0).
eapply canonical_forms_fun; eauto.
destruct H1 as [x0 [t0 Heq]]. subst.
exists ([x0:=t2]t0)...
SSCase "t2 steps".
inversion H0 as [t2' Hstp]. exists (tapp t1 t2')...
SCase "t1 steps".
inversion H as [t1' Hstp]. exists (tapp t1' t2)...
Case "T_If".
right. destruct IHHt1...
SCase "t1 is a value".
destruct (canonical_forms_bool t1); subst; eauto.
SCase "t1 also steps".
inversion H as [t1' Hstp]. exists (tif t1' t2 t3)...
Qed.
(** **** Exercise: 3 stars, optional (progress_from_term_ind) *)
(** Show that progress can also be proved by induction on terms
instead of induction on typing derivations. *)
Theorem progress' : forall t T,
empty |- t \in T ->
value t \/ exists t', t ==> t'.
Proof.
intros t.
t_cases (induction t) Case; intros T Ht; auto.
(* FILL IN HERE *) Admitted.
(** [] *)
(* ###################################################################### *)
(** * Preservation *)
(** The other half of the type soundness property is the preservation
of types during reduction. For this, we need to develop some
technical machinery for reasoning about variables and
substitution. Working from top to bottom (the high-level property
we are actually interested in to the lowest-level technical lemmas
that are needed by various cases of the more interesting proofs),
the story goes like this:
- The _preservation theorem_ is proved by induction on a typing
derivation, pretty much as we did in the [Types] chapter. The
one case that is significantly different is the one for the
[ST_AppAbs] rule, which is defined using the substitution
operation. To see that this step preserves typing, we need to
know that the substitution itself does. So we prove a...
- _substitution lemma_, stating that substituting a (closed)
term [s] for a variable [x] in a term [t] preserves the type
of [t]. The proof goes by induction on the form of [t] and
requires looking at all the different cases in the definition
of substitition. This time, the tricky cases are the ones for
variables and for function abstractions. In both cases, we
discover that we need to take a term [s] that has been shown
to be well-typed in some context [Gamma] and consider the same
term [s] in a slightly different context [Gamma']. For this
we prove a...
- _context invariance_ lemma, showing that typing is preserved
under "inessential changes" to the context [Gamma] -- in
particular, changes that do not affect any of the free
variables of the term. For this, we need a careful definition
of
- the _free variables_ of a term -- i.e., the variables occuring
in the term that are not in the scope of a function
abstraction that binds them.
*)
(* ###################################################################### *)
(** ** Free Occurrences *)
(** A variable [x] _appears free in_ a term _t_ if [t] contains some
occurrence of [x] that is not under an abstraction labeled [x]. For example:
- [y] appears free, but [x] does not, in [\x:T->U. x y]
- both [x] and [y] appear free in [(\x:T->U. x y) x]
- no variables appear free in [\x:T->U. \y:T. x y] *)
Inductive appears_free_in : id -> tm -> Prop :=
| afi_var : forall x,
appears_free_in x (tvar x)
| afi_app1 : forall x t1 t2,
appears_free_in x t1 -> appears_free_in x (tapp t1 t2)
| afi_app2 : forall x t1 t2,
appears_free_in x t2 -> appears_free_in x (tapp t1 t2)
| afi_abs : forall x y T11 t12,
y <> x ->
appears_free_in x t12 ->
appears_free_in x (tabs y T11 t12)
| afi_if1 : forall x t1 t2 t3,
appears_free_in x t1 ->
appears_free_in x (tif t1 t2 t3)
| afi_if2 : forall x t1 t2 t3,
appears_free_in x t2 ->
appears_free_in x (tif t1 t2 t3)
| afi_if3 : forall x t1 t2 t3,
appears_free_in x t3 ->
appears_free_in x (tif t1 t2 t3).
Tactic Notation "afi_cases" tactic(first) ident(c) :=
first;
[ Case_aux c "afi_var"
| Case_aux c "afi_app1" | Case_aux c "afi_app2"
| Case_aux c "afi_abs"
| Case_aux c "afi_if1" | Case_aux c "afi_if2"
| Case_aux c "afi_if3" ].
Hint Constructors appears_free_in.
(** A term in which no variables appear free is said to be _closed_. *)
Definition closed (t:tm) :=
forall x, ~ appears_free_in x t.
(* ###################################################################### *)
(** ** Substitution *)
(** We first need a technical lemma connecting free variables and
typing contexts. If a variable [x] appears free in a term [t],
and if we know [t] is well typed in context [Gamma], then it must
be the case that [Gamma] assigns a type to [x]. *)
Lemma free_in_context : forall x t T Gamma,
appears_free_in x t ->
Gamma |- t \in T ->
exists T', Gamma x = Some T'.
(** _Proof_: We show, by induction on the proof that [x] appears free
in [t], that, for all contexts [Gamma], if [t] is well typed
under [Gamma], then [Gamma] assigns some type to [x].
- If the last rule used was [afi_var], then [t = x], and from
the assumption that [t] is well typed under [Gamma] we have
immediately that [Gamma] assigns a type to [x].
- If the last rule used was [afi_app1], then [t = t1 t2] and [x]
appears free in [t1]. Since [t] is well typed under [Gamma],
we can see from the typing rules that [t1] must also be, and
the IH then tells us that [Gamma] assigns [x] a type.
- Almost all the other cases are similar: [x] appears free in a
subterm of [t], and since [t] is well typed under [Gamma], we
know the subterm of [t] in which [x] appears is well typed
under [Gamma] as well, and the IH gives us exactly the
conclusion we want.
- The only remaining case is [afi_abs]. In this case [t =
\y:T11.t12], and [x] appears free in [t12]; we also know that
[x] is different from [y]. The difference from the previous
cases is that whereas [t] is well typed under [Gamma], its
body [t12] is well typed under [(Gamma, y:T11)], so the IH
allows us to conclude that [x] is assigned some type by the
extended context [(Gamma, y:T11)]. To conclude that [Gamma]
assigns a type to [x], we appeal to lemma [extend_neq], noting
that [x] and [y] are different variables. *)
Proof.
intros x t T Gamma H H0. generalize dependent Gamma.
generalize dependent T.
afi_cases (induction H) Case;
intros; try solve [inversion H0; eauto].
Case "afi_abs".
inversion H1; subst.
apply IHappears_free_in in H7.
rewrite extend_neq in H7; assumption.
Qed.
(** Next, we'll need the fact that any term [t] which is well typed in
the empty context is closed -- that is, it has no free variables. *)
(** **** Exercise: 2 stars, optional (typable_empty__closed) *)
Corollary typable_empty__closed : forall t T,
empty |- t \in T ->
closed t.
Proof.
(* FILL IN HERE *) Admitted.
(** [] *)
(** Sometimes, when we have a proof [Gamma |- t : T], we will need to
replace [Gamma] by a different context [Gamma']. When is it safe
to do this? Intuitively, it must at least be the case that
[Gamma'] assigns the same types as [Gamma] to all the variables
that appear free in [t]. In fact, this is the only condition that
is needed. *)
Lemma context_invariance : forall Gamma Gamma' t T,
Gamma |- t \in T ->
(forall x, appears_free_in x t -> Gamma x = Gamma' x) ->
Gamma' |- t \in T.
(** _Proof_: By induction on the derivation of [Gamma |- t \in T].
- If the last rule in the derivation was [T_Var], then [t = x]
and [Gamma x = T]. By assumption, [Gamma' x = T] as well, and
hence [Gamma' |- t \in T] by [T_Var].
- If the last rule was [T_Abs], then [t = \y:T11. t12], with [T
= T11 -> T12] and [Gamma, y:T11 |- t12 \in T12]. The induction
hypothesis is that for any context [Gamma''], if [Gamma,
y:T11] and [Gamma''] assign the same types to all the free
variables in [t12], then [t12] has type [T12] under [Gamma''].
Let [Gamma'] be a context which agrees with [Gamma] on the
free variables in [t]; we must show [Gamma' |- \y:T11. t12 \in
T11 -> T12].
By [T_Abs], it suffices to show that [Gamma', y:T11 |- t12 \in
T12]. By the IH (setting [Gamma'' = Gamma', y:T11]), it
suffices to show that [Gamma, y:T11] and [Gamma', y:T11] agree
on all the variables that appear free in [t12].
Any variable occurring free in [t12] must either be [y], or
some other variable. [Gamma, y:T11] and [Gamma', y:T11]
clearly agree on [y]. Otherwise, we note that any variable
other than [y] which occurs free in [t12] also occurs free in
[t = \y:T11. t12], and by assumption [Gamma] and [Gamma']
agree on all such variables, and hence so do [Gamma, y:T11]
and [Gamma', y:T11].
- If the last rule was [T_App], then [t = t1 t2], with [Gamma |-
t1 \in T2 -> T] and [Gamma |- t2 \in T2]. One induction
hypothesis states that for all contexts [Gamma'], if [Gamma']
agrees with [Gamma] on the free variables in [t1], then [t1]
has type [T2 -> T] under [Gamma']; there is a similar IH for
[t2]. We must show that [t1 t2] also has type [T] under
[Gamma'], given the assumption that [Gamma'] agrees with
[Gamma] on all the free variables in [t1 t2]. By [T_App], it
suffices to show that [t1] and [t2] each have the same type
under [Gamma'] as under [Gamma]. However, we note that all
free variables in [t1] are also free in [t1 t2], and similarly
for free variables in [t2]; hence the desired result follows
by the two IHs.
*)
Proof with eauto.
intros.
generalize dependent Gamma'.
has_type_cases (induction H) Case; intros; auto.
Case "T_Var".
apply T_Var. rewrite <- H0...
Case "T_Abs".
apply T_Abs.
apply IHhas_type. intros x1 Hafi.
(* the only tricky step... the [Gamma'] we use to
instantiate is [extend Gamma x T11] *)
unfold extend. destruct (eq_id_dec x0 x1)...
Case "T_App".
apply T_App with T11...
Qed.
(** Now we come to the conceptual heart of the proof that reduction
preserves types -- namely, the observation that _substitution_
preserves types.
Formally, the so-called _Substitution Lemma_ says this: suppose we
have a term [t] with a free variable [x], and suppose we've been
able to assign a type [T] to [t] under the assumption that [x] has
some type [U]. Also, suppose that we have some other term [v] and
that we've shown that [v] has type [U]. Then, since [v] satisfies
the assumption we made about [x] when typing [t], we should be
able to substitute [v] for each of the occurrences of [x] in [t]
and obtain a new term that still has type [T]. *)
(** _Lemma_: If [Gamma,x:U |- t \in T] and [|- v \in U], then [Gamma |-
[x:=v]t \in T]. *)
Lemma substitution_preserves_typing : forall Gamma x U t v T,
extend Gamma x U |- t \in T ->
empty |- v \in U ->
Gamma |- [x:=v]t \in T.
(** One technical subtlety in the statement of the lemma is that we
assign [v] the type [U] in the _empty_ context -- in other words,
we assume [v] is closed. This assumption considerably simplifies
the [T_Abs] case of the proof (compared to assuming [Gamma |- v \in
U], which would be the other reasonable assumption at this point)
because the context invariance lemma then tells us that [v] has
type [U] in any context at all -- we don't have to worry about
free variables in [v] clashing with the variable being introduced
into the context by [T_Abs].
_Proof_: We prove, by induction on [t], that, for all [T] and
[Gamma], if [Gamma,x:U |- t \in T] and [|- v \in U], then [Gamma |-
[x:=v]t \in T].
- If [t] is a variable, there are two cases to consider, depending
on whether [t] is [x] or some other variable.
- If [t = x], then from the fact that [Gamma, x:U |- x \in T] we
conclude that [U = T]. We must show that [[x:=v]x = v] has
type [T] under [Gamma], given the assumption that [v] has
type [U = T] under the empty context. This follows from
context invariance: if a closed term has type [T] in the
empty context, it has that type in any context.
- If [t] is some variable [y] that is not equal to [x], then
we need only note that [y] has the same type under [Gamma,
x:U] as under [Gamma].
- If [t] is an abstraction [\y:T11. t12], then the IH tells us,
for all [Gamma'] and [T'], that if [Gamma',x:U |- t12 \in T']
and [|- v \in U], then [Gamma' |- [x:=v]t12 \in T'].
The substitution in the conclusion behaves differently,
depending on whether [x] and [y] are the same variable name.
First, suppose [x = y]. Then, by the definition of
substitution, [[x:=v]t = t], so we just need to show [Gamma |-
t \in T]. But we know [Gamma,x:U |- t : T], and since the
variable [y] does not appear free in [\y:T11. t12], the
context invariance lemma yields [Gamma |- t \in T].
Second, suppose [x <> y]. We know [Gamma,x:U,y:T11 |- t12 \in
T12] by inversion of the typing relation, and [Gamma,y:T11,x:U
|- t12 \in T12] follows from this by the context invariance
lemma, so the IH applies, giving us [Gamma,y:T11 |- [x:=v]t12 \in
T12]. By [T_Abs], [Gamma |- \y:T11. [x:=v]t12 \in T11->T12], and
by the definition of substitution (noting that [x <> y]),
[Gamma |- \y:T11. [x:=v]t12 \in T11->T12] as required.
- If [t] is an application [t1 t2], the result follows
straightforwardly from the definition of substitution and the
induction hypotheses.
- The remaining cases are similar to the application case.
Another technical note: This proof is a rare case where an
induction on terms, rather than typing derivations, yields a
simpler argument. The reason for this is that the assumption
[extend Gamma x U |- t \in T] is not completely generic, in
the sense that one of the "slots" in the typing relation -- namely
the context -- is not just a variable, and this means that Coq's
native induction tactic does not give us the induction hypothesis
that we want. It is possible to work around this, but the needed
generalization is a little tricky. The term [t], on the other
hand, _is_ completely generic. *)
Proof with eauto.
intros Gamma x U t v T Ht Ht'.
generalize dependent Gamma. generalize dependent T.
t_cases (induction t) Case; intros T Gamma H;
(* in each case, we'll want to get at the derivation of H *)
inversion H; subst; simpl...
Case "tvar".
rename i into y. destruct (eq_id_dec x y).
SCase "x=y".
subst.
rewrite extend_eq in H2.
inversion H2; subst. clear H2.
eapply context_invariance... intros x Hcontra.
destruct (free_in_context _ _ T empty Hcontra) as [T' HT']...
inversion HT'.
SCase "x<>y".
apply T_Var. rewrite extend_neq in H2...
Case "tabs".
rename i into y. apply T_Abs.
destruct (eq_id_dec x y).
SCase "x=y".
eapply context_invariance...
subst.
intros x Hafi. unfold extend.
destruct (eq_id_dec y x)...
SCase "x<>y".
apply IHt. eapply context_invariance...
intros z Hafi. unfold extend.
destruct (eq_id_dec y z)...
subst. rewrite neq_id...
Qed.
(** The substitution lemma can be viewed as a kind of "commutation"
property. Intuitively, it says that substitution and typing can
be done in either order: we can either assign types to the terms
[t] and [v] separately (under suitable contexts) and then combine
them using substitution, or we can substitute first and then
assign a type to [ [x:=v] t ] -- the result is the same either
way. *)
(* ###################################################################### *)
(** ** Main Theorem *)
(** We now have the tools we need to prove preservation: if a closed
term [t] has type [T], and takes an evaluation step to [t'], then [t']
is also a closed term with type [T]. In other words, the small-step
evaluation relation preserves types.
*)
Theorem preservation : forall t t' T,
empty |- t \in T ->
t ==> t' ->
empty |- t' \in T.
(** _Proof_: by induction on the derivation of [|- t \in T].
- We can immediately rule out [T_Var], [T_Abs], [T_True], and
[T_False] as the final rules in the derivation, since in each of
these cases [t] cannot take a step.
- If the last rule in the derivation was [T_App], then [t = t1
t2]. There are three cases to consider, one for each rule that
could have been used to show that [t1 t2] takes a step to [t'].
- If [t1 t2] takes a step by [ST_App1], with [t1] stepping to
[t1'], then by the IH [t1'] has the same type as [t1], and
hence [t1' t2] has the same type as [t1 t2].
- The [ST_App2] case is similar.
- If [t1 t2] takes a step by [ST_AppAbs], then [t1 =
\x:T11.t12] and [t1 t2] steps to [[x:=t2]t12]; the
desired result now follows from the fact that substitution
preserves types.
- If the last rule in the derivation was [T_If], then [t = if t1
then t2 else t3], and there are again three cases depending on
how [t] steps.
- If [t] steps to [t2] or [t3], the result is immediate, since
[t2] and [t3] have the same type as [t].
- Otherwise, [t] steps by [ST_If], and the desired conclusion
follows directly from the induction hypothesis.
*)
Proof with eauto.
remember (@empty ty) as Gamma.
intros t t' T HT. generalize dependent t'.
has_type_cases (induction HT) Case;
intros t' HE; subst Gamma; subst;
try solve [inversion HE; subst; auto].
Case "T_App".
inversion HE; subst...
(* Most of the cases are immediate by induction,
and [eauto] takes care of them *)
SCase "ST_AppAbs".
apply substitution_preserves_typing with T11...
inversion HT1...
Qed.
(** **** Exercise: 2 stars (subject_expansion_stlc) *)
(** An exercise in the [Types] chapter asked about the subject
expansion property for the simple language of arithmetic and
boolean expressions. Does this property hold for STLC? That is,
is it always the case that, if [t ==> t'] and [has_type t' T],
then [empty |- t \in T]? If so, prove it. If not, give a
counter-example not involving conditionals.
(* FILL IN HERE *)
[]
*)
(* ###################################################################### *)
(** * Type Soundness *)
(** **** Exercise: 2 stars, optional (type_soundness) *)
(** Put progress and preservation together and show that a well-typed
term can _never_ reach a stuck state. *)
Definition stuck (t:tm) : Prop :=
(normal_form step) t /\ ~ value t.
Corollary soundness : forall t t' T,
empty |- t \in T ->
t ==>* t' ->
~(stuck t').
Proof.
intros t t' T Hhas_type Hmulti. unfold stuck.
intros [Hnf Hnot_val]. unfold normal_form in Hnf.
induction Hmulti.
(* FILL IN HERE *) Admitted.
(* ###################################################################### *)
(** * Uniqueness of Types *)
(** **** Exercise: 3 stars (types_unique) *)
(** Another pleasant property of the STLC is that types are
unique: a given term (in a given context) has at most one
type. *)
(** Formalize this statement and prove it. *)
(* FILL IN HERE *)
(** [] *)
(* ###################################################################### *)
(** * Additional Exercises *)
(** **** Exercise: 1 star (progress_preservation_statement) *)
(** Without peeking, write down the progress and preservation
theorems for the simply typed lambda-calculus. *)
(** [] *)
(** **** Exercise: 2 stars (stlc_variation1) *)
(** Suppose we add a new term [zap] with the following reduction rule:
--------- (ST_Zap)
t ==> zap
and the following typing rule:
---------------- (T_Zap)
Gamma |- zap : T
Which of the following properties of the STLC remain true in
the presence of this rule? For each one, write either
"remains true" or else "becomes false." If a property becomes
false, give a counterexample.
- Determinism of [step]
- Progress
- Preservation
[]
*)
(** **** Exercise: 2 stars (stlc_variation2) *)
(** Suppose instead that we add a new term [foo] with the following reduction rules:
----------------- (ST_Foo1)
(\x:A. x) ==> foo
------------ (ST_Foo2)
foo ==> true
Which of the following properties of the STLC remain true in
the presence of this rule? For each one, write either
"remains true" or else "becomes false." If a property becomes
false, give a counterexample.
- Determinism of [step]
- Progress
- Preservation
[]
*)
(** **** Exercise: 2 stars (stlc_variation3) *)
(** Suppose instead that we remove the rule [ST_App1] from the [step]
relation. Which of the following properties of the STLC remain
true in the presence of this rule? For each one, write either
"remains true" or else "becomes false." If a property becomes
false, give a counterexample.
- Determinism of [step]
- Progress
- Preservation
[]
*)
(** **** Exercise: 2 stars, optional (stlc_variation4) *)
(** Suppose instead that we add the following new rule to the reduction relation:
---------------------------------- (ST_FunnyIfTrue)
(if true then t1 else t2) ==> true
Which of the following properties of the STLC remain true in
the presence of this rule? For each one, write either
"remains true" or else "becomes false." If a property becomes
false, give a counterexample.
- Determinism of [step]
- Progress
- Preservation
*)
(** **** Exercise: 2 stars, optional (stlc_variation5) *)
(** Suppose instead that we add the following new rule to the typing relation:
Gamma |- t1 \in Bool->Bool->Bool
Gamma |- t2 \in Bool
------------------------------ (T_FunnyApp)
Gamma |- t1 t2 \in Bool
Which of the following properties of the STLC remain true in
the presence of this rule? For each one, write either
"remains true" or else "becomes false." If a property becomes
false, give a counterexample.
- Determinism of [step]
- Progress
- Preservation
*)
(** **** Exercise: 2 stars, optional (stlc_variation6) *)
(** Suppose instead that we add the following new rule to the typing relation:
Gamma |- t1 \in Bool
Gamma |- t2 \in Bool
--------------------- (T_FunnyApp')
Gamma |- t1 t2 \in Bool
Which of the following properties of the STLC remain true in
the presence of this rule? For each one, write either
"remains true" or else "becomes false." If a property becomes
false, give a counterexample.
- Determinism of [step]
- Progress
- Preservation
*)
(** **** Exercise: 2 stars, optional (stlc_variation7) *)
(** Suppose we add the following new rule to the typing
relation of the STLC:
------------------- (T_FunnyAbs)
|- \x:Bool.t \in Bool
Which of the following properties of the STLC remain true in
the presence of this rule? For each one, write either
"remains true" or else "becomes false." If a property becomes
false, give a counterexample.
- Determinism of [step]
- Progress
- Preservation
[]
*)
End STLCProp.
(* ###################################################################### *)
(* ###################################################################### *)
(** ** Exercise: STLC with Arithmetic *)
(** To see how the STLC might function as the core of a real
programming language, let's extend it with a concrete base
type of numbers and some constants and primitive
operators. *)
Module STLCArith.
(** To types, we add a base type of natural numbers (and remove
booleans, for brevity) *)
Inductive ty : Type :=
| TArrow : ty -> ty -> ty
| TNat : ty.
(** To terms, we add natural number constants, along with
successor, predecessor, multiplication, and zero-testing... *)
Inductive tm : Type :=
| tvar : id -> tm
| tapp : tm -> tm -> tm
| tabs : id -> ty -> tm -> tm
| tnat : nat -> tm
| tsucc : tm -> tm
| tpred : tm -> tm
| tmult : tm -> tm -> tm
| tif0 : tm -> tm -> tm -> tm.
Tactic Notation "t_cases" tactic(first) ident(c) :=
first;
[ Case_aux c "tvar" | Case_aux c "tapp"
| Case_aux c "tabs" | Case_aux c "tnat"
| Case_aux c "tsucc" | Case_aux c "tpred"
| Case_aux c "tmult" | Case_aux c "tif0" ].
(** **** Exercise: 4 stars (stlc_arith) *)
(** Finish formalizing the definition and properties of the STLC extended
with arithmetic. Specifically:
- Copy the whole development of STLC that we went through above (from
the definition of values through the Progress theorem), and
paste it into the file at this point.
- Extend the definitions of the [subst] operation and the [step]
relation to include appropriate clauses for the arithmetic operators.
- Extend the proofs of all the properties (up to [soundness]) of
the original STLC to deal with the new syntactic forms. Make
sure Coq accepts the whole file. *)
(* FILL IN HERE *)
(** [] *)
End STLCArith.
(** $Date: 2014-12-31 11:17:56 -0500 (Wed, 31 Dec 2014) $ *)
|
module ghrd_10m50da_top (
//Clock and Reset
input wire clk_50,
//input wire clk_ddr3_100_p,
input wire fpga_reset_n,
//QSPI
output wire qspi_clk,
inout wire[3:0] qspi_io,
output wire qspi_csn,
//ddr3
//output wire [13:0] mem_a,
//output wire [2:0] mem_ba,
//inout wire [0:0] mem_ck,
//inout wire [0:0] mem_ck_n,
//output wire [0:0] mem_cke,
//output wire [0:0] mem_cs_n,
//output wire [0:0] mem_dm,
//output wire [0:0] mem_ras_n,
//output wire [0:0] mem_cas_n,
//output wire [0:0] mem_we_n,
//output wire mem_reset_n,
///inout wire [7:0] mem_dq,
//inout wire [0:0] mem_dqs,
//inout wire [0:0] mem_dqs_n,
//output wire [0:0] mem_odt,
//i2c
inout wire i2c_sda,
inout wire i2c_scl,
//spi
input wire spi_miso,
output wire spi_mosi,
output wire spi_sclk,
output wire spi_ssn,
//16550 UART
input wire uart_rx,
output wire uart_tx,
output wire [4:0] user_led
);
//Heart-beat counter
reg [25:0] heart_beat_cnt;
//DDR3 interface assignments
//wire local_init_done;
//wire local_cal_success;
//wire local_cal_fail;
//i2c interface
wire i2c_serial_sda_in ;
wire i2c_serial_scl_in ;
wire i2c_serial_sda_oe ;
wire i2c_serial_scl_oe ;
assign i2c_serial_scl_in = i2c_scl;
assign i2c_scl = i2c_serial_scl_oe ? 1'b0 : 1'bz;
assign i2c_serial_sda_in = i2c_sda;
assign i2c_sda = i2c_serial_sda_oe ? 1'b0 : 1'bz;
//assign system_resetn = fpga_reset_n & local_init_done;
// SoC sub-system module
ghrd_10m50da ghrd_10m50da_inst (
.clk_clk (clk_50),
//.ref_clock_bridge_in_clk_clk (clk_ddr3_100_p),
.reset_reset_n (fpga_reset_n),
//.mem_resetn_in_reset_reset_n (fpga_reset_n ), // mem_resetn_in_reset.reset_n
.ext_flash_qspi_pins_data (qspi_io),
.ext_flash_qspi_pins_dclk (qspi_clk),
.ext_flash_qspi_pins_ncs (qspi_csn),
//.memory_mem_a (mem_a[12:0] ), // memory.mem_a
//.memory_mem_ba (mem_ba ), // .mem_ba
//.memory_mem_ck (mem_ck ), // .mem_ck
//.memory_mem_ck_n (mem_ck_n ), // .mem_ck_n
//.memory_mem_cke (mem_cke ), // .mem_cke
//.memory_mem_cs_n (mem_cs_n ), // .mem_cs_n
//.memory_mem_dm (mem_dm ), // .mem_dm
//.memory_mem_ras_n (mem_ras_n ), // .mem_ras_n
//.memory_mem_cas_n (mem_cas_n ), // .mem_cas_n
//.memory_mem_we_n (mem_we_n ), // .mem_we_n
//.memory_mem_reset_n (mem_reset_n ), // .mem_reset_n
//.memory_mem_dq (mem_dq ), // .mem_dq
//.memory_mem_dqs (mem_dqs ), // .mem_dqs
//.memory_mem_dqs_n (mem_dqs_n ), // .mem_dqs_n
//.memory_mem_odt (mem_odt ), // .mem_odt
//.mem_if_ddr3_emif_0_status_local_init_done (local_init_done ), // mem_if_ddr3_emif_0_status.local_init_done
//.mem_if_ddr3_emif_0_status_local_cal_success (local_cal_success ), // .local_cal_success
//.mem_if_ddr3_emif_0_status_local_cal_fail (local_cal_fail ), // .local_cal_fail
//i2c
.i2c_0_i2c_serial_sda_in (i2c_serial_sda_in),
.i2c_0_i2c_serial_scl_in (i2c_serial_scl_in),
.i2c_0_i2c_serial_sda_oe (i2c_serial_sda_oe),
.i2c_0_i2c_serial_scl_oe (i2c_serial_scl_oe),
//spi
.spi_0_external_MISO (spi_miso), // spi_0_external.MISO
.spi_0_external_MOSI (spi_mosi), // .MOSI
.spi_0_external_SCLK (spi_sclk), // .SCLK
.spi_0_external_SS_n (spi_ssn), // .SS_n
//pio
.led_external_connection_export (user_led[3:0]),
//16550 UART
.a_16550_uart_0_rs_232_serial_sin (uart_rx), // a_16550_uart_0_rs_232_serial.sin
.a_16550_uart_0_rs_232_serial_sout (uart_tx), // .sout
.a_16550_uart_0_rs_232_serial_sout_oe () // .sout_oe
);
//DDR3 Address Bit #13 is not available for DDR3 SDRAM A (64Mx16)
//assign mem_a[13] = 1'b0;
//Heart beat by 50MHz clock
always @(posedge clk_50 or negedge fpga_reset_n)
if (!fpga_reset_n)
heart_beat_cnt <= 26'h0; //0x3FFFFFF
else
heart_beat_cnt <= heart_beat_cnt + 1'b1;
assign user_led[4] = heart_beat_cnt[25];
endmodule
|
/*+--------------------------------------------------------------------------
Copyright (c) 2015, Microsoft Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------*/
//////////////////////////////////////////////////////////////////////////////////
// Company: Microsoft Research Asia
// Engineer: Jiansong Zhang
//
// Create Date: 21:39:39 06/01/2009
// Design Name:
// Module Name: tx_engine
// Project Name: Sora
// Target Devices: Virtex5 LX50T
// Tool versions: ISE10.1.03
// Description:
// Purpose: A small shadow-RAM to qualify the data entries in the dual-port
// compram
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
// Modification by zjs, 2009-6-18, pending
// (1) move posted packet generator and non-posted packet generator out --- done
// (2) add dma write data fifo --------------- done
// (3) modify tx sm
// scheduling -------------------------- done
// disable write dma done -------------- done
// register/memory read ---------------- done
//
//////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module pending_comp_ram_32x1(
input clk,
input d_in,
input [4:0] addr,
input we,
output reg [31:0] d_out = 32'h00000000
);
wire [31:0] addr_decode;
//binary-to-onehot address decoder for ram
assign addr_decode[31:0] = 32'h00000001 << addr[4:0];
//generate a 32-entry ram with
//addressable inputs entries
//and outputs which are always present;
//essentially this is a 32x1 register file
genvar i;
generate
for(i=0;i<32;i=i+1)begin: bitram
always@(posedge clk)begin
if(addr_decode[i] && we)begin
d_out[i] <= d_in;
end
end
end
endgenerate
endmodule
|
/*+--------------------------------------------------------------------------
Copyright (c) 2015, Microsoft Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------*/
//////////////////////////////////////////////////////////////////////////////////
// Company: Microsoft Research Asia
// Engineer: Jiansong Zhang
//
// Create Date: 21:39:39 06/01/2009
// Design Name:
// Module Name: tx_engine
// Project Name: Sora
// Target Devices: Virtex5 LX50T
// Tool versions: ISE10.1.03
// Description:
// Purpose: A small shadow-RAM to qualify the data entries in the dual-port
// compram
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
// Modification by zjs, 2009-6-18, pending
// (1) move posted packet generator and non-posted packet generator out --- done
// (2) add dma write data fifo --------------- done
// (3) modify tx sm
// scheduling -------------------------- done
// disable write dma done -------------- done
// register/memory read ---------------- done
//
//////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module pending_comp_ram_32x1(
input clk,
input d_in,
input [4:0] addr,
input we,
output reg [31:0] d_out = 32'h00000000
);
wire [31:0] addr_decode;
//binary-to-onehot address decoder for ram
assign addr_decode[31:0] = 32'h00000001 << addr[4:0];
//generate a 32-entry ram with
//addressable inputs entries
//and outputs which are always present;
//essentially this is a 32x1 register file
genvar i;
generate
for(i=0;i<32;i=i+1)begin: bitram
always@(posedge clk)begin
if(addr_decode[i] && we)begin
d_out[i] <= d_in;
end
end
end
endgenerate
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2004 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
by_width #(1) w1 (.clk(clk));
by_width #(31) w31 (.clk(clk));
by_width #(32) w32 (.clk(clk));
by_width #(33) w33 (.clk(clk));
by_width #(63) w63 (.clk(clk));
by_width #(64) w64 (.clk(clk));
by_width #(65) w65 (.clk(clk));
by_width #(95) w95 (.clk(clk));
by_width #(96) w96 (.clk(clk));
by_width #(97) w97 (.clk(clk));
reg signed [15:0] a;
reg signed [4:0] b;
reg signed [15:0] sr,srs,sl,sls;
reg [15:0] b_s;
reg [15:0] b_us;
task check_s(input signed [7:0] i, input [7:0] expval);
//$display("check_s %x\n", i);
if (i !== expval) $stop;
endtask
task check_us(input signed [7:0] i, input [7:0] expval);
//$display("check_us %x\n", i);
if (i !== expval) $stop;
endtask
always @* begin
sr = a>>b;
srs = copy_signed(a)>>>b;
sl = a<<b;
sls = a<<<b;
// verilator lint_off WIDTH
b_s = b>>>4; // Signed
b_us = b[4:0]>>>4; // Unsigned, due to extract
check_s ( 3'b111, 8'h07);
check_s (3'sb111, 8'hff);
check_us( 3'b111, 8'h07);
check_us(3'sb111, 8'hff); // Note we sign extend ignoring function's input requirements
// verilator lint_on WIDTH
end
reg signed [32:0] bug349;
initial
begin
end
integer i;
initial begin
if ((-1 >>> 3) != -1) $stop; // Decimals are signed
// verilator lint_off WIDTH
if ((3'b111 >>> 3) != 0) $stop; // Based numbers are unsigned
if ((3'sb111 >>> 3) != -1) $stop; // Signed based numbers
// verilator lint_on WIDTH
if ( (3'sb000 > 3'sb000)) $stop;
if (!(3'sb000 > 3'sb111)) $stop;
if ( (3'sb111 > 3'sb000)) $stop;
if ( (3'sb000 < 3'sb000)) $stop;
if ( (3'sb000 < 3'sb111)) $stop;
if (!(3'sb111 < 3'sb000)) $stop;
if (!(3'sb000 >= 3'sb000)) $stop;
if (!(3'sb000 >= 3'sb111)) $stop;
if ( (3'sb111 >= 3'sb000)) $stop;
if (!(3'sb000 <= 3'sb000)) $stop;
if ( (3'sb000 <= 3'sb111)) $stop;
if (!(3'sb111 <= 3'sb000)) $stop;
// When we multiply overflow, the sign bit stays correct.
if ( (4'sd2*4'sd8) != 4'd0) $stop;
// From the spec:
// verilator lint_off WIDTH
i = -12 /3; if (i !== 32'hfffffffc) $stop;
i = -'d12 /3; if (i !== 32'h55555551) $stop;
i = -'sd12 /3; if (i !== 32'hfffffffc) $stop;
i = -4'sd12 /3; if (i !== 32'h00000001) $stop;
// verilator lint_on WIDTH
// verilator lint_off WIDTH
bug349 = 4'sb1111 - 1'b1;
if (bug349 != 32'he) $stop;
end
function signed [15:0] copy_signed;
input [15:0] ai;
copy_signed = ai;
endfunction
integer cyc; initial cyc=0;
wire [31:0] ucyc = cyc;
always @ (posedge clk) begin
cyc <= cyc + 1;
`ifdef TEST_VERBOSE
$write("%x %x %x %x %x %x %x\n", cyc, sr,srs,sl,sls, b_s,b_us);
`endif
case (cyc)
0: begin
a <= 16'sh8b1b; b <= 5'sh1f; // -1
end
1: begin
// Check spaces in constants
a <= 16 'sh 8b1b; b <= 5'sh01; // -1
end
2: begin
a <= 16'sh8b1b; b <= 5'sh1e; // shift AMOUNT is really unsigned
if (ucyc / 1 != 32'd2) $stop;
if (ucyc / 2 != 32'd1) $stop;
if (ucyc * 1 != 32'd2) $stop;
if (ucyc * 2 != 32'd4) $stop;
if (ucyc * 3 != 32'd6) $stop;
if (cyc * 32'sd1 != 32'sd2) $stop;
if (cyc * 32'sd2 != 32'sd4) $stop;
if (cyc * 32'sd3 != 32'sd6) $stop;
end
3: begin
a <= 16'sh0048; b <= 5'sh1f;
if (ucyc * 1 != 32'd3) $stop;
if (ucyc * 2 != 32'd6) $stop;
if (ucyc * 3 != 32'd9) $stop;
if (ucyc * 4 != 32'd12) $stop;
if (cyc * 32'sd1 != 32'sd3) $stop;
if (cyc * 32'sd2 != 32'sd6) $stop;
if (cyc * 32'sd3 != 32'sd9) $stop;
end
4: begin
a <= 16'sh4154; b <= 5'sh02;
end
5: begin
a <= 16'shc3e8; b <= 5'sh12;
end
6: begin
a <= 16'sh488b; b <= 5'sh02;
end
9: begin
$write("*-* All Finished *-*\n");
$finish;
end
default: ;
endcase
case (cyc)
0: ;
1: if ({sr,srs,sl,sls,b_s,b_us}!==96'sh0000_ffff_0000_0000_ffff_0001) $stop;
2: if ({sr,srs,sl,sls,b_s,b_us}!==96'sh458d_c58d_1636_1636_0000_0000) $stop;
3: if ({sr,srs,sl,sls,b_s,b_us}!==96'sh0000_ffff_0000_0000_ffff_0001) $stop;
4: if ({sr,srs,sl,sls,b_s,b_us}!==96'sh0000_0000_0000_0000_ffff_0001) $stop;
5: if ({sr,srs,sl,sls,b_s,b_us}!==96'sh1055_1055_0550_0550_0000_0000) $stop;
6: if ({sr,srs,sl,sls,b_s,b_us}!==96'sh0000_ffff_0000_0000_ffff_0001) $stop;
7: if ({sr,srs,sl,sls,b_s,b_us}!==96'sh1222_1222_222c_222c_0000_0000) $stop;
8: ;
9: ;
endcase
end
endmodule
module by_width (
input clk
);
parameter WIDTH=1;
reg signed i1;
reg signed [62:0] i63;
reg signed [64:0] i65;
// verilator lint_off WIDTH
wire signed [WIDTH-1:0] i1extp /*verilator public*/ = i1;
wire signed [WIDTH-1:0] i1ext = i1;
wire signed [WIDTH-1:0] i63ext = i63;
wire signed [WIDTH-1:0] i65ext = i65;
// verilator lint_on WIDTH
integer cyc; initial cyc=0;
always @ (posedge clk) begin
cyc <= cyc + 1;
i1 <= cyc[0];
i63 <= {63{cyc[0]}};
i65 <= {65{cyc[0]}};
case (cyc)
1: begin
if (i1extp != {WIDTH{1'b0}}) $stop;
if (i1ext != {WIDTH{1'b0}}) $stop;
if (i63ext != {WIDTH{1'b0}}) $stop;
if (i65ext != {WIDTH{1'b0}}) $stop;
end
2: begin
if (i1extp != {WIDTH{1'b1}}) $stop;
if (i1ext != {WIDTH{1'b1}}) $stop;
if (i63ext != {WIDTH{1'b1}}) $stop;
if (i65ext != {WIDTH{1'b1}}) $stop;
end
default: ;
endcase
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2004 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
by_width #(1) w1 (.clk(clk));
by_width #(31) w31 (.clk(clk));
by_width #(32) w32 (.clk(clk));
by_width #(33) w33 (.clk(clk));
by_width #(63) w63 (.clk(clk));
by_width #(64) w64 (.clk(clk));
by_width #(65) w65 (.clk(clk));
by_width #(95) w95 (.clk(clk));
by_width #(96) w96 (.clk(clk));
by_width #(97) w97 (.clk(clk));
reg signed [15:0] a;
reg signed [4:0] b;
reg signed [15:0] sr,srs,sl,sls;
reg [15:0] b_s;
reg [15:0] b_us;
task check_s(input signed [7:0] i, input [7:0] expval);
//$display("check_s %x\n", i);
if (i !== expval) $stop;
endtask
task check_us(input signed [7:0] i, input [7:0] expval);
//$display("check_us %x\n", i);
if (i !== expval) $stop;
endtask
always @* begin
sr = a>>b;
srs = copy_signed(a)>>>b;
sl = a<<b;
sls = a<<<b;
// verilator lint_off WIDTH
b_s = b>>>4; // Signed
b_us = b[4:0]>>>4; // Unsigned, due to extract
check_s ( 3'b111, 8'h07);
check_s (3'sb111, 8'hff);
check_us( 3'b111, 8'h07);
check_us(3'sb111, 8'hff); // Note we sign extend ignoring function's input requirements
// verilator lint_on WIDTH
end
reg signed [32:0] bug349;
initial
begin
end
integer i;
initial begin
if ((-1 >>> 3) != -1) $stop; // Decimals are signed
// verilator lint_off WIDTH
if ((3'b111 >>> 3) != 0) $stop; // Based numbers are unsigned
if ((3'sb111 >>> 3) != -1) $stop; // Signed based numbers
// verilator lint_on WIDTH
if ( (3'sb000 > 3'sb000)) $stop;
if (!(3'sb000 > 3'sb111)) $stop;
if ( (3'sb111 > 3'sb000)) $stop;
if ( (3'sb000 < 3'sb000)) $stop;
if ( (3'sb000 < 3'sb111)) $stop;
if (!(3'sb111 < 3'sb000)) $stop;
if (!(3'sb000 >= 3'sb000)) $stop;
if (!(3'sb000 >= 3'sb111)) $stop;
if ( (3'sb111 >= 3'sb000)) $stop;
if (!(3'sb000 <= 3'sb000)) $stop;
if ( (3'sb000 <= 3'sb111)) $stop;
if (!(3'sb111 <= 3'sb000)) $stop;
// When we multiply overflow, the sign bit stays correct.
if ( (4'sd2*4'sd8) != 4'd0) $stop;
// From the spec:
// verilator lint_off WIDTH
i = -12 /3; if (i !== 32'hfffffffc) $stop;
i = -'d12 /3; if (i !== 32'h55555551) $stop;
i = -'sd12 /3; if (i !== 32'hfffffffc) $stop;
i = -4'sd12 /3; if (i !== 32'h00000001) $stop;
// verilator lint_on WIDTH
// verilator lint_off WIDTH
bug349 = 4'sb1111 - 1'b1;
if (bug349 != 32'he) $stop;
end
function signed [15:0] copy_signed;
input [15:0] ai;
copy_signed = ai;
endfunction
integer cyc; initial cyc=0;
wire [31:0] ucyc = cyc;
always @ (posedge clk) begin
cyc <= cyc + 1;
`ifdef TEST_VERBOSE
$write("%x %x %x %x %x %x %x\n", cyc, sr,srs,sl,sls, b_s,b_us);
`endif
case (cyc)
0: begin
a <= 16'sh8b1b; b <= 5'sh1f; // -1
end
1: begin
// Check spaces in constants
a <= 16 'sh 8b1b; b <= 5'sh01; // -1
end
2: begin
a <= 16'sh8b1b; b <= 5'sh1e; // shift AMOUNT is really unsigned
if (ucyc / 1 != 32'd2) $stop;
if (ucyc / 2 != 32'd1) $stop;
if (ucyc * 1 != 32'd2) $stop;
if (ucyc * 2 != 32'd4) $stop;
if (ucyc * 3 != 32'd6) $stop;
if (cyc * 32'sd1 != 32'sd2) $stop;
if (cyc * 32'sd2 != 32'sd4) $stop;
if (cyc * 32'sd3 != 32'sd6) $stop;
end
3: begin
a <= 16'sh0048; b <= 5'sh1f;
if (ucyc * 1 != 32'd3) $stop;
if (ucyc * 2 != 32'd6) $stop;
if (ucyc * 3 != 32'd9) $stop;
if (ucyc * 4 != 32'd12) $stop;
if (cyc * 32'sd1 != 32'sd3) $stop;
if (cyc * 32'sd2 != 32'sd6) $stop;
if (cyc * 32'sd3 != 32'sd9) $stop;
end
4: begin
a <= 16'sh4154; b <= 5'sh02;
end
5: begin
a <= 16'shc3e8; b <= 5'sh12;
end
6: begin
a <= 16'sh488b; b <= 5'sh02;
end
9: begin
$write("*-* All Finished *-*\n");
$finish;
end
default: ;
endcase
case (cyc)
0: ;
1: if ({sr,srs,sl,sls,b_s,b_us}!==96'sh0000_ffff_0000_0000_ffff_0001) $stop;
2: if ({sr,srs,sl,sls,b_s,b_us}!==96'sh458d_c58d_1636_1636_0000_0000) $stop;
3: if ({sr,srs,sl,sls,b_s,b_us}!==96'sh0000_ffff_0000_0000_ffff_0001) $stop;
4: if ({sr,srs,sl,sls,b_s,b_us}!==96'sh0000_0000_0000_0000_ffff_0001) $stop;
5: if ({sr,srs,sl,sls,b_s,b_us}!==96'sh1055_1055_0550_0550_0000_0000) $stop;
6: if ({sr,srs,sl,sls,b_s,b_us}!==96'sh0000_ffff_0000_0000_ffff_0001) $stop;
7: if ({sr,srs,sl,sls,b_s,b_us}!==96'sh1222_1222_222c_222c_0000_0000) $stop;
8: ;
9: ;
endcase
end
endmodule
module by_width (
input clk
);
parameter WIDTH=1;
reg signed i1;
reg signed [62:0] i63;
reg signed [64:0] i65;
// verilator lint_off WIDTH
wire signed [WIDTH-1:0] i1extp /*verilator public*/ = i1;
wire signed [WIDTH-1:0] i1ext = i1;
wire signed [WIDTH-1:0] i63ext = i63;
wire signed [WIDTH-1:0] i65ext = i65;
// verilator lint_on WIDTH
integer cyc; initial cyc=0;
always @ (posedge clk) begin
cyc <= cyc + 1;
i1 <= cyc[0];
i63 <= {63{cyc[0]}};
i65 <= {65{cyc[0]}};
case (cyc)
1: begin
if (i1extp != {WIDTH{1'b0}}) $stop;
if (i1ext != {WIDTH{1'b0}}) $stop;
if (i63ext != {WIDTH{1'b0}}) $stop;
if (i65ext != {WIDTH{1'b0}}) $stop;
end
2: begin
if (i1extp != {WIDTH{1'b1}}) $stop;
if (i1ext != {WIDTH{1'b1}}) $stop;
if (i63ext != {WIDTH{1'b1}}) $stop;
if (i65ext != {WIDTH{1'b1}}) $stop;
end
default: ;
endcase
end
endmodule
|
//------------------------------------------------------------------------
//--
//-- Filename : xlconcat.v
//--
//-- Date : 06/05/12
//-
//- Description : Verilog description of a concat block. This
//- block does not use a core.
//-
//-----------------------------------------------------------------------
`timescale 1ps/1ps
module xlconcat (In0, In1, In2, In3, In4, In5, In6, In7, In8, In9, In10, In11, In12, In13, In14, In15, In16, In17, In18, In19, In20, In21, In22, In23, In24, In25, In26, In27, In28, In29, In30, In31, dout);
parameter IN0_WIDTH = 1;
input [IN0_WIDTH -1:0] In0;
parameter IN1_WIDTH = 1;
input [IN1_WIDTH -1:0] In1;
parameter IN2_WIDTH = 1;
input [IN2_WIDTH -1:0] In2;
parameter IN3_WIDTH = 1;
input [IN3_WIDTH -1:0] In3;
parameter IN4_WIDTH = 1;
input [IN4_WIDTH -1:0] In4;
parameter IN5_WIDTH = 1;
input [IN5_WIDTH -1:0] In5;
parameter IN6_WIDTH = 1;
input [IN6_WIDTH -1:0] In6;
parameter IN7_WIDTH = 1;
input [IN7_WIDTH -1:0] In7;
parameter IN8_WIDTH = 1;
input [IN8_WIDTH -1:0] In8;
parameter IN9_WIDTH = 1;
input [IN9_WIDTH -1:0] In9;
parameter IN10_WIDTH = 1;
input [IN10_WIDTH -1:0] In10;
parameter IN11_WIDTH = 1;
input [IN11_WIDTH -1:0] In11;
parameter IN12_WIDTH = 1;
input [IN12_WIDTH -1:0] In12;
parameter IN13_WIDTH = 1;
input [IN13_WIDTH -1:0] In13;
parameter IN14_WIDTH = 1;
input [IN14_WIDTH -1:0] In14;
parameter IN15_WIDTH = 1;
input [IN15_WIDTH -1:0] In15;
parameter IN16_WIDTH = 1;
input [IN16_WIDTH -1:0] In16;
parameter IN17_WIDTH = 1;
input [IN17_WIDTH -1:0] In17;
parameter IN18_WIDTH = 1;
input [IN18_WIDTH -1:0] In18;
parameter IN19_WIDTH = 1;
input [IN19_WIDTH -1:0] In19;
parameter IN20_WIDTH = 1;
input [IN20_WIDTH -1:0] In20;
parameter IN21_WIDTH = 1;
input [IN21_WIDTH -1:0] In21;
parameter IN22_WIDTH = 1;
input [IN22_WIDTH -1:0] In22;
parameter IN23_WIDTH = 1;
input [IN23_WIDTH -1:0] In23;
parameter IN24_WIDTH = 1;
input [IN24_WIDTH -1:0] In24;
parameter IN25_WIDTH = 1;
input [IN25_WIDTH -1:0] In25;
parameter IN26_WIDTH = 1;
input [IN26_WIDTH -1:0] In26;
parameter IN27_WIDTH = 1;
input [IN27_WIDTH -1:0] In27;
parameter IN28_WIDTH = 1;
input [IN28_WIDTH -1:0] In28;
parameter IN29_WIDTH = 1;
input [IN29_WIDTH -1:0] In29;
parameter IN30_WIDTH = 1;
input [IN30_WIDTH -1:0] In30;
parameter IN31_WIDTH = 1;
input [IN31_WIDTH -1:0] In31;
parameter dout_width = 2;
output [dout_width-1:0] dout;
parameter NUM_PORTS =2;
generate if (NUM_PORTS == 1)
begin : C_NUM_1
assign dout = In0;
end
endgenerate
generate if (NUM_PORTS == 2)
begin : C_NUM_2
assign dout = {In1,In0};
end
endgenerate
generate if (NUM_PORTS == 3)
begin:C_NUM_3
assign dout = {In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 4)
begin:C_NUM_4
assign dout = {In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 5)
begin:C_NUM_5
assign dout = {In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 6)
begin:C_NUM_6
assign dout = {In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 7)
begin:C_NUM_7
assign dout = {In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 8)
begin:C_NUM_8
assign dout = {In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 9)
begin:C_NUM_9
assign dout = {In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 10)
begin:C_NUM_10
assign dout = {In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 11)
begin:C_NUM_11
assign dout = {In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 12)
begin:C_NUM_12
assign dout = {In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 13)
begin:C_NUM_13
assign dout = {In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 14)
begin:C_NUM_14
assign dout = {In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 15)
begin:C_NUM_15
assign dout = {In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 16)
begin:C_NUM_16
assign dout = {In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 17)
begin:C_NUM_17
assign dout = {In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 18)
begin:C_NUM_18
assign dout = {In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 19)
begin:C_NUM_19
assign dout = {In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 20)
begin:C_NUM_20
assign dout = {In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 21)
begin:C_NUM_21
assign dout = {In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 22)
begin:C_NUM_22
assign dout = {In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 23)
begin:C_NUM_23
assign dout = {In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 24)
begin:C_NUM_24
assign dout = {In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 25)
begin:C_NUM_25
assign dout = {In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 26)
begin:C_NUM_26
assign dout = {In25, In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 27)
begin:C_NUM_27
assign dout = {In26, In25, In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 28)
begin:C_NUM_28
assign dout = {In27, In26, In25, In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 29)
begin:C_NUM_29
assign dout = {In28, In27, In26, In25, In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 30)
begin:C_NUM_30
assign dout = {In29, In28, In27, In26, In25, In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 31)
begin:C_NUM_31
assign dout = {In30, In29, In28, In27, In26, In25, In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 32)
begin:C_NUM_32
assign dout = {In31, In30, In29, In28, In27, In26, In25, In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
endmodule
|
//------------------------------------------------------------------------
//--
//-- Filename : xlconcat.v
//--
//-- Date : 06/05/12
//-
//- Description : Verilog description of a concat block. This
//- block does not use a core.
//-
//-----------------------------------------------------------------------
`timescale 1ps/1ps
module xlconcat (In0, In1, In2, In3, In4, In5, In6, In7, In8, In9, In10, In11, In12, In13, In14, In15, In16, In17, In18, In19, In20, In21, In22, In23, In24, In25, In26, In27, In28, In29, In30, In31, dout);
parameter IN0_WIDTH = 1;
input [IN0_WIDTH -1:0] In0;
parameter IN1_WIDTH = 1;
input [IN1_WIDTH -1:0] In1;
parameter IN2_WIDTH = 1;
input [IN2_WIDTH -1:0] In2;
parameter IN3_WIDTH = 1;
input [IN3_WIDTH -1:0] In3;
parameter IN4_WIDTH = 1;
input [IN4_WIDTH -1:0] In4;
parameter IN5_WIDTH = 1;
input [IN5_WIDTH -1:0] In5;
parameter IN6_WIDTH = 1;
input [IN6_WIDTH -1:0] In6;
parameter IN7_WIDTH = 1;
input [IN7_WIDTH -1:0] In7;
parameter IN8_WIDTH = 1;
input [IN8_WIDTH -1:0] In8;
parameter IN9_WIDTH = 1;
input [IN9_WIDTH -1:0] In9;
parameter IN10_WIDTH = 1;
input [IN10_WIDTH -1:0] In10;
parameter IN11_WIDTH = 1;
input [IN11_WIDTH -1:0] In11;
parameter IN12_WIDTH = 1;
input [IN12_WIDTH -1:0] In12;
parameter IN13_WIDTH = 1;
input [IN13_WIDTH -1:0] In13;
parameter IN14_WIDTH = 1;
input [IN14_WIDTH -1:0] In14;
parameter IN15_WIDTH = 1;
input [IN15_WIDTH -1:0] In15;
parameter IN16_WIDTH = 1;
input [IN16_WIDTH -1:0] In16;
parameter IN17_WIDTH = 1;
input [IN17_WIDTH -1:0] In17;
parameter IN18_WIDTH = 1;
input [IN18_WIDTH -1:0] In18;
parameter IN19_WIDTH = 1;
input [IN19_WIDTH -1:0] In19;
parameter IN20_WIDTH = 1;
input [IN20_WIDTH -1:0] In20;
parameter IN21_WIDTH = 1;
input [IN21_WIDTH -1:0] In21;
parameter IN22_WIDTH = 1;
input [IN22_WIDTH -1:0] In22;
parameter IN23_WIDTH = 1;
input [IN23_WIDTH -1:0] In23;
parameter IN24_WIDTH = 1;
input [IN24_WIDTH -1:0] In24;
parameter IN25_WIDTH = 1;
input [IN25_WIDTH -1:0] In25;
parameter IN26_WIDTH = 1;
input [IN26_WIDTH -1:0] In26;
parameter IN27_WIDTH = 1;
input [IN27_WIDTH -1:0] In27;
parameter IN28_WIDTH = 1;
input [IN28_WIDTH -1:0] In28;
parameter IN29_WIDTH = 1;
input [IN29_WIDTH -1:0] In29;
parameter IN30_WIDTH = 1;
input [IN30_WIDTH -1:0] In30;
parameter IN31_WIDTH = 1;
input [IN31_WIDTH -1:0] In31;
parameter dout_width = 2;
output [dout_width-1:0] dout;
parameter NUM_PORTS =2;
generate if (NUM_PORTS == 1)
begin : C_NUM_1
assign dout = In0;
end
endgenerate
generate if (NUM_PORTS == 2)
begin : C_NUM_2
assign dout = {In1,In0};
end
endgenerate
generate if (NUM_PORTS == 3)
begin:C_NUM_3
assign dout = {In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 4)
begin:C_NUM_4
assign dout = {In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 5)
begin:C_NUM_5
assign dout = {In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 6)
begin:C_NUM_6
assign dout = {In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 7)
begin:C_NUM_7
assign dout = {In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 8)
begin:C_NUM_8
assign dout = {In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 9)
begin:C_NUM_9
assign dout = {In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 10)
begin:C_NUM_10
assign dout = {In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 11)
begin:C_NUM_11
assign dout = {In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 12)
begin:C_NUM_12
assign dout = {In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 13)
begin:C_NUM_13
assign dout = {In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 14)
begin:C_NUM_14
assign dout = {In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 15)
begin:C_NUM_15
assign dout = {In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 16)
begin:C_NUM_16
assign dout = {In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 17)
begin:C_NUM_17
assign dout = {In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 18)
begin:C_NUM_18
assign dout = {In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 19)
begin:C_NUM_19
assign dout = {In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 20)
begin:C_NUM_20
assign dout = {In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 21)
begin:C_NUM_21
assign dout = {In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 22)
begin:C_NUM_22
assign dout = {In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 23)
begin:C_NUM_23
assign dout = {In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 24)
begin:C_NUM_24
assign dout = {In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 25)
begin:C_NUM_25
assign dout = {In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 26)
begin:C_NUM_26
assign dout = {In25, In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 27)
begin:C_NUM_27
assign dout = {In26, In25, In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 28)
begin:C_NUM_28
assign dout = {In27, In26, In25, In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 29)
begin:C_NUM_29
assign dout = {In28, In27, In26, In25, In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 30)
begin:C_NUM_30
assign dout = {In29, In28, In27, In26, In25, In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 31)
begin:C_NUM_31
assign dout = {In30, In29, In28, In27, In26, In25, In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 32)
begin:C_NUM_32
assign dout = {In31, In30, In29, In28, In27, In26, In25, In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
endmodule
|
//------------------------------------------------------------------------
//--
//-- Filename : xlconcat.v
//--
//-- Date : 06/05/12
//-
//- Description : Verilog description of a concat block. This
//- block does not use a core.
//-
//-----------------------------------------------------------------------
`timescale 1ps/1ps
module xlconcat (In0, In1, In2, In3, In4, In5, In6, In7, In8, In9, In10, In11, In12, In13, In14, In15, In16, In17, In18, In19, In20, In21, In22, In23, In24, In25, In26, In27, In28, In29, In30, In31, dout);
parameter IN0_WIDTH = 1;
input [IN0_WIDTH -1:0] In0;
parameter IN1_WIDTH = 1;
input [IN1_WIDTH -1:0] In1;
parameter IN2_WIDTH = 1;
input [IN2_WIDTH -1:0] In2;
parameter IN3_WIDTH = 1;
input [IN3_WIDTH -1:0] In3;
parameter IN4_WIDTH = 1;
input [IN4_WIDTH -1:0] In4;
parameter IN5_WIDTH = 1;
input [IN5_WIDTH -1:0] In5;
parameter IN6_WIDTH = 1;
input [IN6_WIDTH -1:0] In6;
parameter IN7_WIDTH = 1;
input [IN7_WIDTH -1:0] In7;
parameter IN8_WIDTH = 1;
input [IN8_WIDTH -1:0] In8;
parameter IN9_WIDTH = 1;
input [IN9_WIDTH -1:0] In9;
parameter IN10_WIDTH = 1;
input [IN10_WIDTH -1:0] In10;
parameter IN11_WIDTH = 1;
input [IN11_WIDTH -1:0] In11;
parameter IN12_WIDTH = 1;
input [IN12_WIDTH -1:0] In12;
parameter IN13_WIDTH = 1;
input [IN13_WIDTH -1:0] In13;
parameter IN14_WIDTH = 1;
input [IN14_WIDTH -1:0] In14;
parameter IN15_WIDTH = 1;
input [IN15_WIDTH -1:0] In15;
parameter IN16_WIDTH = 1;
input [IN16_WIDTH -1:0] In16;
parameter IN17_WIDTH = 1;
input [IN17_WIDTH -1:0] In17;
parameter IN18_WIDTH = 1;
input [IN18_WIDTH -1:0] In18;
parameter IN19_WIDTH = 1;
input [IN19_WIDTH -1:0] In19;
parameter IN20_WIDTH = 1;
input [IN20_WIDTH -1:0] In20;
parameter IN21_WIDTH = 1;
input [IN21_WIDTH -1:0] In21;
parameter IN22_WIDTH = 1;
input [IN22_WIDTH -1:0] In22;
parameter IN23_WIDTH = 1;
input [IN23_WIDTH -1:0] In23;
parameter IN24_WIDTH = 1;
input [IN24_WIDTH -1:0] In24;
parameter IN25_WIDTH = 1;
input [IN25_WIDTH -1:0] In25;
parameter IN26_WIDTH = 1;
input [IN26_WIDTH -1:0] In26;
parameter IN27_WIDTH = 1;
input [IN27_WIDTH -1:0] In27;
parameter IN28_WIDTH = 1;
input [IN28_WIDTH -1:0] In28;
parameter IN29_WIDTH = 1;
input [IN29_WIDTH -1:0] In29;
parameter IN30_WIDTH = 1;
input [IN30_WIDTH -1:0] In30;
parameter IN31_WIDTH = 1;
input [IN31_WIDTH -1:0] In31;
parameter dout_width = 2;
output [dout_width-1:0] dout;
parameter NUM_PORTS =2;
generate if (NUM_PORTS == 1)
begin : C_NUM_1
assign dout = In0;
end
endgenerate
generate if (NUM_PORTS == 2)
begin : C_NUM_2
assign dout = {In1,In0};
end
endgenerate
generate if (NUM_PORTS == 3)
begin:C_NUM_3
assign dout = {In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 4)
begin:C_NUM_4
assign dout = {In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 5)
begin:C_NUM_5
assign dout = {In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 6)
begin:C_NUM_6
assign dout = {In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 7)
begin:C_NUM_7
assign dout = {In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 8)
begin:C_NUM_8
assign dout = {In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 9)
begin:C_NUM_9
assign dout = {In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 10)
begin:C_NUM_10
assign dout = {In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 11)
begin:C_NUM_11
assign dout = {In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 12)
begin:C_NUM_12
assign dout = {In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 13)
begin:C_NUM_13
assign dout = {In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 14)
begin:C_NUM_14
assign dout = {In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 15)
begin:C_NUM_15
assign dout = {In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 16)
begin:C_NUM_16
assign dout = {In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 17)
begin:C_NUM_17
assign dout = {In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 18)
begin:C_NUM_18
assign dout = {In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 19)
begin:C_NUM_19
assign dout = {In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 20)
begin:C_NUM_20
assign dout = {In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 21)
begin:C_NUM_21
assign dout = {In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 22)
begin:C_NUM_22
assign dout = {In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 23)
begin:C_NUM_23
assign dout = {In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 24)
begin:C_NUM_24
assign dout = {In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 25)
begin:C_NUM_25
assign dout = {In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 26)
begin:C_NUM_26
assign dout = {In25, In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 27)
begin:C_NUM_27
assign dout = {In26, In25, In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 28)
begin:C_NUM_28
assign dout = {In27, In26, In25, In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 29)
begin:C_NUM_29
assign dout = {In28, In27, In26, In25, In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 30)
begin:C_NUM_30
assign dout = {In29, In28, In27, In26, In25, In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 31)
begin:C_NUM_31
assign dout = {In30, In29, In28, In27, In26, In25, In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
generate if (NUM_PORTS == 32)
begin:C_NUM_32
assign dout = {In31, In30, In29, In28, In27, In26, In25, In24, In23, In22, In21, In20, In19, In18, In17, In16, In15, In14, In13, In12, In11, In10, In9, In8, In7, In6, In5, In4, In3, In2, In1, In0};
end
endgenerate
endmodule
|
/*+--------------------------------------------------------------------------
Copyright (c) 2015, Microsoft Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------*/
//////////////////////////////////////////////////////////////////////////////////
// Company: Microsoft Research Asia
// Engineer: Jiansong Zhang
//
// Create Date: 21:39:39 06/01/2009
// Design Name:
// Module Name: tx_engine
// Project Name: Sora
// Target Devices: Virtex5 LX50T
// Tool versions: ISE10.1.03
// Description:
// Purpose: Create tags for the non-posted packet generators.
// Uses a simple 5-bit counter which rolls over
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module tag_generator(
input clk,
input rst,
output reg np_tag_gnt,
input np_tag_inc,
output [7:0] tag_value,
input [31:0] completion_pending);
reg rst_reg;
reg [4:0] tag_value_i;
always@(posedge clk) rst_reg <= rst;
//check to see if the tag is already in use
//assert the grant signal if it is not
always@(posedge clk)begin
if(completion_pending[tag_value_i[4:0]])
np_tag_gnt <= 1'b0;
else
np_tag_gnt <= 1'b1;
end
assign tag_value[7:0] = {3'b000,tag_value_i[4:0]};
//tag generator is simply a counter with enable
always@(posedge clk)begin
if(rst_reg)begin
tag_value_i[4:0] <= 5'b00000;
end else if(np_tag_inc)begin
tag_value_i <= tag_value_i + 1;
end
end
endmodule
|
/*+--------------------------------------------------------------------------
Copyright (c) 2015, Microsoft Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------*/
//////////////////////////////////////////////////////////////////////////////////
// Company: Microsoft Research Asia
// Engineer: Jiansong Zhang
//
// Create Date: 21:39:39 06/01/2009
// Design Name:
// Module Name: tx_engine
// Project Name: Sora
// Target Devices: Virtex5 LX50T
// Tool versions: ISE10.1.03
// Description:
// Purpose: Create tags for the non-posted packet generators.
// Uses a simple 5-bit counter which rolls over
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module tag_generator(
input clk,
input rst,
output reg np_tag_gnt,
input np_tag_inc,
output [7:0] tag_value,
input [31:0] completion_pending);
reg rst_reg;
reg [4:0] tag_value_i;
always@(posedge clk) rst_reg <= rst;
//check to see if the tag is already in use
//assert the grant signal if it is not
always@(posedge clk)begin
if(completion_pending[tag_value_i[4:0]])
np_tag_gnt <= 1'b0;
else
np_tag_gnt <= 1'b1;
end
assign tag_value[7:0] = {3'b000,tag_value_i[4:0]};
//tag generator is simply a counter with enable
always@(posedge clk)begin
if(rst_reg)begin
tag_value_i[4:0] <= 5'b00000;
end else if(np_tag_inc)begin
tag_value_i <= tag_value_i + 1;
end
end
endmodule
|
// DESCRIPTION: Verilator: initial edge issue
//
// The module initial_edge drives the output "res" high when the reset signal,
// rst, goes high.
//
// The module initial_edge_n drives the output "res_n" high when the reset
// signal, rst_n, goes low.
//
// For 4-state simulators, that edge occurs when the initial value of rst_n,
// X, goes to zero. However, by default for Verilator, being 2-state, the
// initial value is zero, so no edge is seen.
//
// This is not a bug in verilator (it is bad design to rely on an edge
// transition from an unitialized signal), but the problem is that there are
// quite a few instances of code out there that seems to be dependent on this
// behaviour to get out of reset.
//
// The Verilator --x-initial-edge flag causes these initial edges to trigger,
// thus matching the behaviour of a 4-state simulator. This is reportedly also
// the behaviour of commercial cycle accurate modelling tools as well.
//
// This file ONLY is placed into the Public Domain, for any use, without
// warranty, 2012 by Wilson Snyder.
`timescale 1ns/1ns
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
wire res;
wire res_n;
reg rst;
reg rst_n;
integer count = 0;
initial_edge i_edge (.res (res),
.rst (rst));
initial_edge_n i_edge_n (.res_n (res_n),
.rst_n (rst_n));
// run for 3 cycles, with one cycle of reset.
always @(posedge clk) begin
rst <= (count == 0) ? 1 : 0;
rst_n <= (count == 0) ? 0 : 1;
if (count == 3) begin
if ((res == 1) && (res_n == 1)) begin
$write ("*-* All Finished *-*\n");
$finish;
end
else begin
`ifdef TEST_VERBOSE
$write ("FAILED: res = %b, res_n = %b\n", res, res_n);
`endif
$stop;
end
end
count = count + 1;
end
endmodule
module initial_edge_n (res_n,
rst_n);
output res_n;
input rst_n;
reg res_n = 1'b0;
always @(negedge rst_n) begin
if (rst_n == 1'b0) begin
res_n <= 1'b1;
end
end
endmodule // initial_edge_n
module initial_edge (res,
rst);
output res;
input rst;
reg res = 1'b0;
always @(posedge rst) begin
if (rst == 1'b1) begin
res <= 1'b1;
end
end
endmodule // initial_edge
|
// DESCRIPTION: Verilator: initial edge issue
//
// The module initial_edge drives the output "res" high when the reset signal,
// rst, goes high.
//
// The module initial_edge_n drives the output "res_n" high when the reset
// signal, rst_n, goes low.
//
// For 4-state simulators, that edge occurs when the initial value of rst_n,
// X, goes to zero. However, by default for Verilator, being 2-state, the
// initial value is zero, so no edge is seen.
//
// This is not a bug in verilator (it is bad design to rely on an edge
// transition from an unitialized signal), but the problem is that there are
// quite a few instances of code out there that seems to be dependent on this
// behaviour to get out of reset.
//
// The Verilator --x-initial-edge flag causes these initial edges to trigger,
// thus matching the behaviour of a 4-state simulator. This is reportedly also
// the behaviour of commercial cycle accurate modelling tools as well.
//
// This file ONLY is placed into the Public Domain, for any use, without
// warranty, 2012 by Wilson Snyder.
`timescale 1ns/1ns
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
wire res;
wire res_n;
reg rst;
reg rst_n;
integer count = 0;
initial_edge i_edge (.res (res),
.rst (rst));
initial_edge_n i_edge_n (.res_n (res_n),
.rst_n (rst_n));
// run for 3 cycles, with one cycle of reset.
always @(posedge clk) begin
rst <= (count == 0) ? 1 : 0;
rst_n <= (count == 0) ? 0 : 1;
if (count == 3) begin
if ((res == 1) && (res_n == 1)) begin
$write ("*-* All Finished *-*\n");
$finish;
end
else begin
`ifdef TEST_VERBOSE
$write ("FAILED: res = %b, res_n = %b\n", res, res_n);
`endif
$stop;
end
end
count = count + 1;
end
endmodule
module initial_edge_n (res_n,
rst_n);
output res_n;
input rst_n;
reg res_n = 1'b0;
always @(negedge rst_n) begin
if (rst_n == 1'b0) begin
res_n <= 1'b1;
end
end
endmodule // initial_edge_n
module initial_edge (res,
rst);
output res;
input rst;
reg res = 1'b0;
always @(posedge rst) begin
if (rst == 1'b1) begin
res <= 1'b1;
end
end
endmodule // initial_edge
|
// DESCRIPTION: Verilator: initial edge issue
//
// The module initial_edge drives the output "res" high when the reset signal,
// rst, goes high.
//
// The module initial_edge_n drives the output "res_n" high when the reset
// signal, rst_n, goes low.
//
// For 4-state simulators, that edge occurs when the initial value of rst_n,
// X, goes to zero. However, by default for Verilator, being 2-state, the
// initial value is zero, so no edge is seen.
//
// This is not a bug in verilator (it is bad design to rely on an edge
// transition from an unitialized signal), but the problem is that there are
// quite a few instances of code out there that seems to be dependent on this
// behaviour to get out of reset.
//
// The Verilator --x-initial-edge flag causes these initial edges to trigger,
// thus matching the behaviour of a 4-state simulator. This is reportedly also
// the behaviour of commercial cycle accurate modelling tools as well.
//
// This file ONLY is placed into the Public Domain, for any use, without
// warranty, 2012 by Wilson Snyder.
`timescale 1ns/1ns
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
wire res;
wire res_n;
reg rst;
reg rst_n;
integer count = 0;
initial_edge i_edge (.res (res),
.rst (rst));
initial_edge_n i_edge_n (.res_n (res_n),
.rst_n (rst_n));
// run for 3 cycles, with one cycle of reset.
always @(posedge clk) begin
rst <= (count == 0) ? 1 : 0;
rst_n <= (count == 0) ? 0 : 1;
if (count == 3) begin
if ((res == 1) && (res_n == 1)) begin
$write ("*-* All Finished *-*\n");
$finish;
end
else begin
`ifdef TEST_VERBOSE
$write ("FAILED: res = %b, res_n = %b\n", res, res_n);
`endif
$stop;
end
end
count = count + 1;
end
endmodule
module initial_edge_n (res_n,
rst_n);
output res_n;
input rst_n;
reg res_n = 1'b0;
always @(negedge rst_n) begin
if (rst_n == 1'b0) begin
res_n <= 1'b1;
end
end
endmodule // initial_edge_n
module initial_edge (res,
rst);
output res;
input rst;
reg res = 1'b0;
always @(posedge rst) begin
if (rst == 1'b1) begin
res <= 1'b1;
end
end
endmodule // initial_edge
|
// DESCRIPTION: Verilator: initial edge issue
//
// The module initial_edge drives the output "res" high when the reset signal,
// rst, goes high.
//
// The module initial_edge_n drives the output "res_n" high when the reset
// signal, rst_n, goes low.
//
// For 4-state simulators, that edge occurs when the initial value of rst_n,
// X, goes to zero. However, by default for Verilator, being 2-state, the
// initial value is zero, so no edge is seen.
//
// This is not a bug in verilator (it is bad design to rely on an edge
// transition from an unitialized signal), but the problem is that there are
// quite a few instances of code out there that seems to be dependent on this
// behaviour to get out of reset.
//
// The Verilator --x-initial-edge flag causes these initial edges to trigger,
// thus matching the behaviour of a 4-state simulator. This is reportedly also
// the behaviour of commercial cycle accurate modelling tools as well.
//
// This file ONLY is placed into the Public Domain, for any use, without
// warranty, 2012 by Wilson Snyder.
`timescale 1ns/1ns
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
wire res;
wire res_n;
reg rst;
reg rst_n;
integer count = 0;
initial_edge i_edge (.res (res),
.rst (rst));
initial_edge_n i_edge_n (.res_n (res_n),
.rst_n (rst_n));
// run for 3 cycles, with one cycle of reset.
always @(posedge clk) begin
rst <= (count == 0) ? 1 : 0;
rst_n <= (count == 0) ? 0 : 1;
if (count == 3) begin
if ((res == 1) && (res_n == 1)) begin
$write ("*-* All Finished *-*\n");
$finish;
end
else begin
`ifdef TEST_VERBOSE
$write ("FAILED: res = %b, res_n = %b\n", res, res_n);
`endif
$stop;
end
end
count = count + 1;
end
endmodule
module initial_edge_n (res_n,
rst_n);
output res_n;
input rst_n;
reg res_n = 1'b0;
always @(negedge rst_n) begin
if (rst_n == 1'b0) begin
res_n <= 1'b1;
end
end
endmodule // initial_edge_n
module initial_edge (res,
rst);
output res;
input rst;
reg res = 1'b0;
always @(posedge rst) begin
if (rst == 1'b1) begin
res <= 1'b1;
end
end
endmodule // initial_edge
|
(** * Rel: Properties of Relations *)
Require Export SfLib.
(** This short, optional chapter develops some basic definitions and a
few theorems about binary relations in Coq. The key definitions
are repeated where they are actually used (in the [Smallstep]
chapter), so readers who are already comfortable with these ideas
can safely skim or skip this chapter. However, relations are also
a good source of exercises for developing facility with Coq's
basic reasoning facilities, so it may be useful to look at it just
after the [Logic] chapter. *)
(** A (binary) _relation_ on a set [X] is a family of propositions
parameterized by two elements of [X] -- i.e., a proposition about
pairs of elements of [X]. *)
Definition relation (X: Type) := X->X->Prop.
(** Somewhat confusingly, the Coq standard library hijacks the generic
term "relation" for this specific instance. To maintain
consistency with the library, we will do the same. So, henceforth
the Coq identifier [relation] will always refer to a binary
relation between some set and itself, while the English word
"relation" can refer either to the specific Coq concept or the
more general concept of a relation between any number of possibly
different sets. The context of the discussion should always make
clear which is meant. *)
(** An example relation on [nat] is [le], the less-that-or-equal-to
relation which we usually write like this [n1 <= n2]. *)
Print le.
(* ====> Inductive le (n : nat) : nat -> Prop :=
le_n : n <= n
| le_S : forall m : nat, n <= m -> n <= S m *)
Check le : nat -> nat -> Prop.
Check le : relation nat.
(* ######################################################### *)
(** * Basic Properties of Relations *)
(** As anyone knows who has taken an undergraduate discrete math
course, there is a lot to be said about relations in general --
ways of classifying relations (are they reflexive, transitive,
etc.), theorems that can be proved generically about classes of
relations, constructions that build one relation from another,
etc. For example... *)
(** A relation [R] on a set [X] is a _partial function_ if, for every
[x], there is at most one [y] such that [R x y] -- i.e., if [R x
y1] and [R x y2] together imply [y1 = y2]. *)
Definition partial_function {X: Type} (R: relation X) :=
forall x y1 y2 : X, R x y1 -> R x y2 -> y1 = y2.
(** For example, the [next_nat] relation defined earlier is a partial
function. *)
Print next_nat.
(* ====> Inductive next_nat (n : nat) : nat -> Prop :=
nn : next_nat n (S n) *)
Check next_nat : relation nat.
Theorem next_nat_partial_function :
partial_function next_nat.
Proof.
unfold partial_function.
intros x y1 y2 H1 H2.
inversion H1. inversion H2.
reflexivity. Qed.
(** However, the [<=] relation on numbers is not a partial function.
In short: Assume, for a contradiction, that [<=] is a partial
function. But then, since [0 <= 0] and [0 <= 1], it follows that
[0 = 1]. This is nonsense, so our assumption was
contradictory. *)
Theorem le_not_a_partial_function :
~ (partial_function le).
Proof.
unfold not. unfold partial_function. intros Hc.
assert (0 = 1) as Nonsense.
Case "Proof of assertion".
apply Hc with (x := 0).
apply le_n.
apply le_S. apply le_n.
inversion Nonsense. Qed.
(** **** Exercise: 2 stars, optional *)
(** Show that the [total_relation] defined in earlier is not a partial
function. *)
(* FILL IN HERE *)
(** [] *)
(** **** Exercise: 2 stars, optional *)
(** Show that the [empty_relation] defined earlier is a partial
function. *)
(* FILL IN HERE *)
(** [] *)
(** A _reflexive_ relation on a set [X] is one for which every element
of [X] is related to itself. *)
Definition reflexive {X: Type} (R: relation X) :=
forall a : X, R a a.
Theorem le_reflexive :
reflexive le.
Proof.
unfold reflexive. intros n. apply le_n. Qed.
(** A relation [R] is _transitive_ if [R a c] holds whenever [R a b]
and [R b c] do. *)
Definition transitive {X: Type} (R: relation X) :=
forall a b c : X, (R a b) -> (R b c) -> (R a c).
Theorem le_trans :
transitive le.
Proof.
intros n m o Hnm Hmo.
induction Hmo.
Case "le_n". apply Hnm.
Case "le_S". apply le_S. apply IHHmo. Qed.
Theorem lt_trans:
transitive lt.
Proof.
unfold lt. unfold transitive.
intros n m o Hnm Hmo.
apply le_S in Hnm.
apply le_trans with (a := (S n)) (b := (S m)) (c := o).
apply Hnm.
apply Hmo. Qed.
(** **** Exercise: 2 stars, optional *)
(** We can also prove [lt_trans] more laboriously by induction,
without using le_trans. Do this.*)
Theorem lt_trans' :
transitive lt.
Proof.
(* Prove this by induction on evidence that [m] is less than [o]. *)
unfold lt. unfold transitive.
intros n m o Hnm Hmo.
induction Hmo as [| m' Hm'o].
(* FILL IN HERE *) Admitted.
(** [] *)
(** **** Exercise: 2 stars, optional *)
(** Prove the same thing again by induction on [o]. *)
Theorem lt_trans'' :
transitive lt.
Proof.
unfold lt. unfold transitive.
intros n m o Hnm Hmo.
induction o as [| o'].
(* FILL IN HERE *) Admitted.
(** [] *)
(** The transitivity of [le], in turn, can be used to prove some facts
that will be useful later (e.g., for the proof of antisymmetry
below)... *)
Theorem le_Sn_le : forall n m, S n <= m -> n <= m.
Proof.
intros n m H. apply le_trans with (S n).
apply le_S. apply le_n.
apply H. Qed.
(** **** Exercise: 1 star, optional *)
Theorem le_S_n : forall n m,
(S n <= S m) -> (n <= m).
Proof.
(* FILL IN HERE *) Admitted.
(** [] *)
(** **** Exercise: 2 stars, optional (le_Sn_n_inf) *)
(** Provide an informal proof of the following theorem:
Theorem: For every [n], [~(S n <= n)]
A formal proof of this is an optional exercise below, but try
the informal proof without doing the formal proof first.
Proof:
(* FILL IN HERE *)
[]
*)
(** **** Exercise: 1 star, optional *)
Theorem le_Sn_n : forall n,
~ (S n <= n).
Proof.
(* FILL IN HERE *) Admitted.
(** [] *)
(** Reflexivity and transitivity are the main concepts we'll need for
later chapters, but, for a bit of additional practice working with
relations in Coq, here are a few more common ones.
A relation [R] is _symmetric_ if [R a b] implies [R b a]. *)
Definition symmetric {X: Type} (R: relation X) :=
forall a b : X, (R a b) -> (R b a).
(** **** Exercise: 2 stars, optional *)
Theorem le_not_symmetric :
~ (symmetric le).
Proof.
(* FILL IN HERE *) Admitted.
(** [] *)
(** A relation [R] is _antisymmetric_ if [R a b] and [R b a] together
imply [a = b] -- that is, if the only "cycles" in [R] are trivial
ones. *)
Definition antisymmetric {X: Type} (R: relation X) :=
forall a b : X, (R a b) -> (R b a) -> a = b.
(** **** Exercise: 2 stars, optional *)
Theorem le_antisymmetric :
antisymmetric le.
Proof.
(* FILL IN HERE *) Admitted.
(** [] *)
(** **** Exercise: 2 stars, optional *)
Theorem le_step : forall n m p,
n < m ->
m <= S p ->
n <= p.
Proof.
(* FILL IN HERE *) Admitted.
(** [] *)
(** A relation is an _equivalence_ if it's reflexive, symmetric, and
transitive. *)
Definition equivalence {X:Type} (R: relation X) :=
(reflexive R) /\ (symmetric R) /\ (transitive R).
(** A relation is a _partial order_ when it's reflexive,
_anti_-symmetric, and transitive. In the Coq standard library
it's called just "order" for short. *)
Definition order {X:Type} (R: relation X) :=
(reflexive R) /\ (antisymmetric R) /\ (transitive R).
(** A preorder is almost like a partial order, but doesn't have to be
antisymmetric. *)
Definition preorder {X:Type} (R: relation X) :=
(reflexive R) /\ (transitive R).
Theorem le_order :
order le.
Proof.
unfold order. split.
Case "refl". apply le_reflexive.
split.
Case "antisym". apply le_antisymmetric.
Case "transitive.". apply le_trans. Qed.
(* ########################################################### *)
(** * Reflexive, Transitive Closure *)
(** The _reflexive, transitive closure_ of a relation [R] is the
smallest relation that contains [R] and that is both reflexive and
transitive. Formally, it is defined like this in the Relations
module of the Coq standard library: *)
Inductive clos_refl_trans {A: Type} (R: relation A) : relation A :=
| rt_step : forall x y, R x y -> clos_refl_trans R x y
| rt_refl : forall x, clos_refl_trans R x x
| rt_trans : forall x y z,
clos_refl_trans R x y ->
clos_refl_trans R y z ->
clos_refl_trans R x z.
(** For example, the reflexive and transitive closure of the
[next_nat] relation coincides with the [le] relation. *)
Theorem next_nat_closure_is_le : forall n m,
(n <= m) <-> ((clos_refl_trans next_nat) n m).
Proof.
intros n m. split.
Case "->".
intro H. induction H.
SCase "le_n". apply rt_refl.
SCase "le_S".
apply rt_trans with m. apply IHle. apply rt_step. apply nn.
Case "<-".
intro H. induction H.
SCase "rt_step". inversion H. apply le_S. apply le_n.
SCase "rt_refl". apply le_n.
SCase "rt_trans".
apply le_trans with y.
apply IHclos_refl_trans1.
apply IHclos_refl_trans2. Qed.
(** The above definition of reflexive, transitive closure is
natural -- it says, explicitly, that the reflexive and transitive
closure of [R] is the least relation that includes [R] and that is
closed under rules of reflexivity and transitivity. But it turns
out that this definition is not very convenient for doing
proofs -- the "nondeterminism" of the [rt_trans] rule can sometimes
lead to tricky inductions.
Here is a more useful definition... *)
Inductive refl_step_closure {X:Type} (R: relation X) : relation X :=
| rsc_refl : forall (x : X), refl_step_closure R x x
| rsc_step : forall (x y z : X),
R x y ->
refl_step_closure R y z ->
refl_step_closure R x z.
(** (Note that, aside from the naming of the constructors, this
definition is the same as the [multi] step relation used in many
other chapters.) *)
(** (The following [Tactic Notation] definitions are explained in
another chapter. You can ignore them if you haven't read the
explanation yet.) *)
Tactic Notation "rt_cases" tactic(first) ident(c) :=
first;
[ Case_aux c "rt_step" | Case_aux c "rt_refl"
| Case_aux c "rt_trans" ].
Tactic Notation "rsc_cases" tactic(first) ident(c) :=
first;
[ Case_aux c "rsc_refl" | Case_aux c "rsc_step" ].
(** Our new definition of reflexive, transitive closure "bundles"
the [rt_step] and [rt_trans] rules into the single rule step.
The left-hand premise of this step is a single use of [R],
leading to a much simpler induction principle.
Before we go on, we should check that the two definitions do
indeed define the same relation...
First, we prove two lemmas showing that [refl_step_closure] mimics
the behavior of the two "missing" [clos_refl_trans]
constructors. *)
Theorem rsc_R : forall (X:Type) (R:relation X) (x y : X),
R x y -> refl_step_closure R x y.
Proof.
intros X R x y H.
apply rsc_step with y. apply H. apply rsc_refl. Qed.
(** **** Exercise: 2 stars, optional (rsc_trans) *)
Theorem rsc_trans :
forall (X:Type) (R: relation X) (x y z : X),
refl_step_closure R x y ->
refl_step_closure R y z ->
refl_step_closure R x z.
Proof.
(* FILL IN HERE *) Admitted.
(** [] *)
(** Then we use these facts to prove that the two definitions of
reflexive, transitive closure do indeed define the same
relation. *)
(** **** Exercise: 3 stars, optional (rtc_rsc_coincide) *)
Theorem rtc_rsc_coincide :
forall (X:Type) (R: relation X) (x y : X),
clos_refl_trans R x y <-> refl_step_closure R x y.
Proof.
(* FILL IN HERE *) Admitted.
(** [] *)
(** $Date: 2014-12-31 15:31:47 -0500 (Wed, 31 Dec 2014) $ *)
|
/*+--------------------------------------------------------------------------
Copyright (c) 2015, Microsoft Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------*/
//////////////////////////////////////////////////////////////////////////////////
// Company: Microsoft Research Asia
// Engineer: Jiansong Zhang
//
// Create Date: 21:39:39 06/01/2009
// Design Name:
// Module Name: tx_engine
// Project Name: Sora
// Target Devices: Virtex5 LX50T
// Tool versions: ISE10.1.03
// Description:
// Purpose: Non-Posted Packet Builder module. This module takes the
// length info from the Non-Posted Packet Slicer, and requests a tag from
// the Tag Generator and uses that info to build a non-posted memory read
// header which it writes into a FIFO
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
// modified by zjs:
// tag content modified: from {length[9:0], addr[21:0]} to {isDes, 8'h000, addr[21:0]}
//
//////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module non_posted_pkt_builder(
input clk,
input rst,
input [15:0] req_id, //from pcie block
//to/from the non_posted_pkt_slicer
input go,
output reg ack,
input [63:0] dmaras,
input [31:0] dmarad,
input [9:0] length,
/// Jiansong: added for TX des request
input isDes,
//to/from the tag_generator
input [7:0] tag_value,
input tag_gnt,
output reg tag_inc,
//to the non_posted_pkt_header_fifo
output reg [63:0] header_data_out,
output reg header_data_wren,
//to the read_request_wrapper
output reg [4:0] tx_waddr,
output reg [31:0] tx_wdata,
output reg tx_we
);
//State machine states
localparam IDLE = 4'h0;
localparam HEAD1 = 4'h1;
localparam HEAD2 = 4'h2;
localparam WAIT_FOR_GO_DEASSERT = 4'h3;
//parameters used to define fixed header fields
localparam rsvd = 1'b0; //reserved and unused header fields to zero
localparam MRd = 5'b00000; //format for memory read header
localparam TC = 3'b000; //traffic class 0
localparam TD = 1'b0; //digest bit always 0
localparam EP = 1'b0; //poisoned bit always 0
//localparam ATTR = 2'b10;//enable relaxed ordering to allow completions to pass
//for completion streaming mode
localparam ATTR = 2'b00; //Jiansong: Maybe it's the cause of CPU memory read lock problem
localparam LastBE = 4'b1111; //LastBE is always asserted since all transfers
//are on 128B boundaries and are always at least
//128B long
localparam FirstBE = 4'b1111;//FirstBE is always asserted since all transfers
//are on 128B boundaries
wire [1:0] fmt;
reg [3:0] state;
reg [63:0] dmaras_reg;
reg [31:0] dmarad_reg;
reg rst_reg;
always@(posedge clk) rst_reg <= rst;
//if the upper DWord of the destination address is zero
//than make the format of the packet header 3DW; otherwise 4DW
assign fmt[1:0] = (dmaras_reg[63:32] == 0) ? 2'b00 : 2'b01;
//if the non_posted_pkt_slicer asserts "go" then register the dma read params
always@(posedge clk)begin
if(rst_reg)begin
dmaras_reg[63:0] <= 0;
end else if(go)begin
dmaras_reg <= dmaras;
end
end
//dmarad is sent to the read_request_wrapper so that the RX engine knows
//where to put the incoming completion data in the DDR2
always@(posedge clk)begin
if(rst_reg)begin
dmarad_reg[31:0] <= 0;
end else if(go)begin
dmarad_reg <= dmarad;
end
end
// State machine
// Builds headers for non-posted memory reads
// Writes them into a FIFO
always @ (posedge clk) begin
if (rst_reg) begin
header_data_out <= 0;
header_data_wren <= 1'b0;
ack <= 1'b0;
tag_inc <=1'b0;
tx_waddr[4:0] <= 0;
tx_wdata[31:0] <= 0;
tx_we <= 1'b0;
state <= IDLE;
end else begin
case (state)
IDLE : begin
header_data_out <= 0;
header_data_wren <= 1'b0;
ack <= 1'b0;
tag_inc <=1'b0;
tx_waddr[4:0] <= 0;
tx_wdata[31:0] <= 0;
tx_we <= 1'b0;
if(go)
state<= HEAD1;
else
state<= IDLE;
end
HEAD1 : begin
//wait for the tag_generator to grant a tag via tag_gnt and then
//write the first 64-bits of a non-posted header into the
//non-posted fifo
header_data_out <= {rsvd,fmt[1:0],MRd,rsvd,TC,rsvd,rsvd,rsvd,rsvd,
TD,EP,ATTR,rsvd,rsvd,length[9:0],req_id[15:0],
tag_value[7:0],LastBE,FirstBE};
ack <= 0;
tag_inc <=1'b0;
tx_waddr[4:0] <= 0;
tx_wdata[31:0] <= 0;
tx_we <= 1'b0;
if(tag_gnt == 1'b0)begin
state <= HEAD1;
header_data_wren <= 1'b0;
end else begin
header_data_wren <= 1'b1;
state <= HEAD2;
end
end
HEAD2 : begin
//write the next 32 or 64 bits of a non-posted header to the
//non-posted header fifo (32 if 3DW - 64 if 4DW header)
header_data_out <= (fmt[0]==1'b1)
? {dmaras_reg[63:2],2'b00}
: {dmaras_reg[31:2], 2'b00, dmaras_reg[63:32]};
header_data_wren <= 1'b1;
//also write needed information by the RX engine into the
//Read Request Wrapper
tx_waddr[4:0] <= tag_value[4:0];
//// tx_wdata[31:0] <= {length[9:0],dmarad_reg[27:6]};
tx_wdata[31:0] <= {isDes,9'b0_0000_0000,dmarad_reg[27:6]};
tx_we <= 1'b1;
ack <= 1'b1; //acknowledge to the non-posted_packet_slicer that
//the packet has been queued up for transmission
tag_inc <=1'b1;//only assert tag_inc once - the tag gets
//incremented for every clock cycle that it is
//asserted
state <= WAIT_FOR_GO_DEASSERT;
end
WAIT_FOR_GO_DEASSERT : begin
//ack causes "go" to deassert but we need to give the
//non-posted_pkt_slicer a chance to deassert "go" before returning
//to IDLE
header_data_wren <= 1'b0;
tx_we <= 1'b0;
tag_inc <=1'b0;
ack <= 1'b0;
state <= IDLE;
end
default : begin
header_data_out <= 0;
header_data_wren <= 1'b0;
ack <= 1'b0;
tag_inc <=1'b0;
tx_waddr[4:0] <= 0;
tx_wdata[31:0] <= 0;
tx_we <= 1'b0;
state <= IDLE;
end
endcase
end
end
endmodule
|
/*+--------------------------------------------------------------------------
Copyright (c) 2015, Microsoft Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------*/
//////////////////////////////////////////////////////////////////////////////////
// Company: Microsoft Research Asia
// Engineer: Jiansong Zhang
//
// Create Date: 21:39:39 06/01/2009
// Design Name:
// Module Name: tx_engine
// Project Name: Sora
// Target Devices: Virtex5 LX50T
// Tool versions: ISE10.1.03
// Description:
// Purpose: Non-Posted Packet Builder module. This module takes the
// length info from the Non-Posted Packet Slicer, and requests a tag from
// the Tag Generator and uses that info to build a non-posted memory read
// header which it writes into a FIFO
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
// modified by zjs:
// tag content modified: from {length[9:0], addr[21:0]} to {isDes, 8'h000, addr[21:0]}
//
//////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module non_posted_pkt_builder(
input clk,
input rst,
input [15:0] req_id, //from pcie block
//to/from the non_posted_pkt_slicer
input go,
output reg ack,
input [63:0] dmaras,
input [31:0] dmarad,
input [9:0] length,
/// Jiansong: added for TX des request
input isDes,
//to/from the tag_generator
input [7:0] tag_value,
input tag_gnt,
output reg tag_inc,
//to the non_posted_pkt_header_fifo
output reg [63:0] header_data_out,
output reg header_data_wren,
//to the read_request_wrapper
output reg [4:0] tx_waddr,
output reg [31:0] tx_wdata,
output reg tx_we
);
//State machine states
localparam IDLE = 4'h0;
localparam HEAD1 = 4'h1;
localparam HEAD2 = 4'h2;
localparam WAIT_FOR_GO_DEASSERT = 4'h3;
//parameters used to define fixed header fields
localparam rsvd = 1'b0; //reserved and unused header fields to zero
localparam MRd = 5'b00000; //format for memory read header
localparam TC = 3'b000; //traffic class 0
localparam TD = 1'b0; //digest bit always 0
localparam EP = 1'b0; //poisoned bit always 0
//localparam ATTR = 2'b10;//enable relaxed ordering to allow completions to pass
//for completion streaming mode
localparam ATTR = 2'b00; //Jiansong: Maybe it's the cause of CPU memory read lock problem
localparam LastBE = 4'b1111; //LastBE is always asserted since all transfers
//are on 128B boundaries and are always at least
//128B long
localparam FirstBE = 4'b1111;//FirstBE is always asserted since all transfers
//are on 128B boundaries
wire [1:0] fmt;
reg [3:0] state;
reg [63:0] dmaras_reg;
reg [31:0] dmarad_reg;
reg rst_reg;
always@(posedge clk) rst_reg <= rst;
//if the upper DWord of the destination address is zero
//than make the format of the packet header 3DW; otherwise 4DW
assign fmt[1:0] = (dmaras_reg[63:32] == 0) ? 2'b00 : 2'b01;
//if the non_posted_pkt_slicer asserts "go" then register the dma read params
always@(posedge clk)begin
if(rst_reg)begin
dmaras_reg[63:0] <= 0;
end else if(go)begin
dmaras_reg <= dmaras;
end
end
//dmarad is sent to the read_request_wrapper so that the RX engine knows
//where to put the incoming completion data in the DDR2
always@(posedge clk)begin
if(rst_reg)begin
dmarad_reg[31:0] <= 0;
end else if(go)begin
dmarad_reg <= dmarad;
end
end
// State machine
// Builds headers for non-posted memory reads
// Writes them into a FIFO
always @ (posedge clk) begin
if (rst_reg) begin
header_data_out <= 0;
header_data_wren <= 1'b0;
ack <= 1'b0;
tag_inc <=1'b0;
tx_waddr[4:0] <= 0;
tx_wdata[31:0] <= 0;
tx_we <= 1'b0;
state <= IDLE;
end else begin
case (state)
IDLE : begin
header_data_out <= 0;
header_data_wren <= 1'b0;
ack <= 1'b0;
tag_inc <=1'b0;
tx_waddr[4:0] <= 0;
tx_wdata[31:0] <= 0;
tx_we <= 1'b0;
if(go)
state<= HEAD1;
else
state<= IDLE;
end
HEAD1 : begin
//wait for the tag_generator to grant a tag via tag_gnt and then
//write the first 64-bits of a non-posted header into the
//non-posted fifo
header_data_out <= {rsvd,fmt[1:0],MRd,rsvd,TC,rsvd,rsvd,rsvd,rsvd,
TD,EP,ATTR,rsvd,rsvd,length[9:0],req_id[15:0],
tag_value[7:0],LastBE,FirstBE};
ack <= 0;
tag_inc <=1'b0;
tx_waddr[4:0] <= 0;
tx_wdata[31:0] <= 0;
tx_we <= 1'b0;
if(tag_gnt == 1'b0)begin
state <= HEAD1;
header_data_wren <= 1'b0;
end else begin
header_data_wren <= 1'b1;
state <= HEAD2;
end
end
HEAD2 : begin
//write the next 32 or 64 bits of a non-posted header to the
//non-posted header fifo (32 if 3DW - 64 if 4DW header)
header_data_out <= (fmt[0]==1'b1)
? {dmaras_reg[63:2],2'b00}
: {dmaras_reg[31:2], 2'b00, dmaras_reg[63:32]};
header_data_wren <= 1'b1;
//also write needed information by the RX engine into the
//Read Request Wrapper
tx_waddr[4:0] <= tag_value[4:0];
//// tx_wdata[31:0] <= {length[9:0],dmarad_reg[27:6]};
tx_wdata[31:0] <= {isDes,9'b0_0000_0000,dmarad_reg[27:6]};
tx_we <= 1'b1;
ack <= 1'b1; //acknowledge to the non-posted_packet_slicer that
//the packet has been queued up for transmission
tag_inc <=1'b1;//only assert tag_inc once - the tag gets
//incremented for every clock cycle that it is
//asserted
state <= WAIT_FOR_GO_DEASSERT;
end
WAIT_FOR_GO_DEASSERT : begin
//ack causes "go" to deassert but we need to give the
//non-posted_pkt_slicer a chance to deassert "go" before returning
//to IDLE
header_data_wren <= 1'b0;
tx_we <= 1'b0;
tag_inc <=1'b0;
ack <= 1'b0;
state <= IDLE;
end
default : begin
header_data_out <= 0;
header_data_wren <= 1'b0;
ack <= 1'b0;
tag_inc <=1'b0;
tx_waddr[4:0] <= 0;
tx_wdata[31:0] <= 0;
tx_we <= 1'b0;
state <= IDLE;
end
endcase
end
end
endmodule
|
/*+--------------------------------------------------------------------------
Copyright (c) 2015, Microsoft Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------*/
//////////////////////////////////////////////////////////////////////////////////
// Company: Microsoft Research Asia
// Engineer: Jiansong Zhang
//
// Create Date: 21:39:39 06/01/2009
// Design Name:
// Module Name: tx_engine
// Project Name: Sora
// Target Devices: Virtex5 LX50T
// Tool versions: ISE10.1.03
// Description:
// Purpose: Non-Posted Packet Builder module. This module takes the
// length info from the Non-Posted Packet Slicer, and requests a tag from
// the Tag Generator and uses that info to build a non-posted memory read
// header which it writes into a FIFO
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
// modified by zjs:
// tag content modified: from {length[9:0], addr[21:0]} to {isDes, 8'h000, addr[21:0]}
//
//////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module non_posted_pkt_builder(
input clk,
input rst,
input [15:0] req_id, //from pcie block
//to/from the non_posted_pkt_slicer
input go,
output reg ack,
input [63:0] dmaras,
input [31:0] dmarad,
input [9:0] length,
/// Jiansong: added for TX des request
input isDes,
//to/from the tag_generator
input [7:0] tag_value,
input tag_gnt,
output reg tag_inc,
//to the non_posted_pkt_header_fifo
output reg [63:0] header_data_out,
output reg header_data_wren,
//to the read_request_wrapper
output reg [4:0] tx_waddr,
output reg [31:0] tx_wdata,
output reg tx_we
);
//State machine states
localparam IDLE = 4'h0;
localparam HEAD1 = 4'h1;
localparam HEAD2 = 4'h2;
localparam WAIT_FOR_GO_DEASSERT = 4'h3;
//parameters used to define fixed header fields
localparam rsvd = 1'b0; //reserved and unused header fields to zero
localparam MRd = 5'b00000; //format for memory read header
localparam TC = 3'b000; //traffic class 0
localparam TD = 1'b0; //digest bit always 0
localparam EP = 1'b0; //poisoned bit always 0
//localparam ATTR = 2'b10;//enable relaxed ordering to allow completions to pass
//for completion streaming mode
localparam ATTR = 2'b00; //Jiansong: Maybe it's the cause of CPU memory read lock problem
localparam LastBE = 4'b1111; //LastBE is always asserted since all transfers
//are on 128B boundaries and are always at least
//128B long
localparam FirstBE = 4'b1111;//FirstBE is always asserted since all transfers
//are on 128B boundaries
wire [1:0] fmt;
reg [3:0] state;
reg [63:0] dmaras_reg;
reg [31:0] dmarad_reg;
reg rst_reg;
always@(posedge clk) rst_reg <= rst;
//if the upper DWord of the destination address is zero
//than make the format of the packet header 3DW; otherwise 4DW
assign fmt[1:0] = (dmaras_reg[63:32] == 0) ? 2'b00 : 2'b01;
//if the non_posted_pkt_slicer asserts "go" then register the dma read params
always@(posedge clk)begin
if(rst_reg)begin
dmaras_reg[63:0] <= 0;
end else if(go)begin
dmaras_reg <= dmaras;
end
end
//dmarad is sent to the read_request_wrapper so that the RX engine knows
//where to put the incoming completion data in the DDR2
always@(posedge clk)begin
if(rst_reg)begin
dmarad_reg[31:0] <= 0;
end else if(go)begin
dmarad_reg <= dmarad;
end
end
// State machine
// Builds headers for non-posted memory reads
// Writes them into a FIFO
always @ (posedge clk) begin
if (rst_reg) begin
header_data_out <= 0;
header_data_wren <= 1'b0;
ack <= 1'b0;
tag_inc <=1'b0;
tx_waddr[4:0] <= 0;
tx_wdata[31:0] <= 0;
tx_we <= 1'b0;
state <= IDLE;
end else begin
case (state)
IDLE : begin
header_data_out <= 0;
header_data_wren <= 1'b0;
ack <= 1'b0;
tag_inc <=1'b0;
tx_waddr[4:0] <= 0;
tx_wdata[31:0] <= 0;
tx_we <= 1'b0;
if(go)
state<= HEAD1;
else
state<= IDLE;
end
HEAD1 : begin
//wait for the tag_generator to grant a tag via tag_gnt and then
//write the first 64-bits of a non-posted header into the
//non-posted fifo
header_data_out <= {rsvd,fmt[1:0],MRd,rsvd,TC,rsvd,rsvd,rsvd,rsvd,
TD,EP,ATTR,rsvd,rsvd,length[9:0],req_id[15:0],
tag_value[7:0],LastBE,FirstBE};
ack <= 0;
tag_inc <=1'b0;
tx_waddr[4:0] <= 0;
tx_wdata[31:0] <= 0;
tx_we <= 1'b0;
if(tag_gnt == 1'b0)begin
state <= HEAD1;
header_data_wren <= 1'b0;
end else begin
header_data_wren <= 1'b1;
state <= HEAD2;
end
end
HEAD2 : begin
//write the next 32 or 64 bits of a non-posted header to the
//non-posted header fifo (32 if 3DW - 64 if 4DW header)
header_data_out <= (fmt[0]==1'b1)
? {dmaras_reg[63:2],2'b00}
: {dmaras_reg[31:2], 2'b00, dmaras_reg[63:32]};
header_data_wren <= 1'b1;
//also write needed information by the RX engine into the
//Read Request Wrapper
tx_waddr[4:0] <= tag_value[4:0];
//// tx_wdata[31:0] <= {length[9:0],dmarad_reg[27:6]};
tx_wdata[31:0] <= {isDes,9'b0_0000_0000,dmarad_reg[27:6]};
tx_we <= 1'b1;
ack <= 1'b1; //acknowledge to the non-posted_packet_slicer that
//the packet has been queued up for transmission
tag_inc <=1'b1;//only assert tag_inc once - the tag gets
//incremented for every clock cycle that it is
//asserted
state <= WAIT_FOR_GO_DEASSERT;
end
WAIT_FOR_GO_DEASSERT : begin
//ack causes "go" to deassert but we need to give the
//non-posted_pkt_slicer a chance to deassert "go" before returning
//to IDLE
header_data_wren <= 1'b0;
tx_we <= 1'b0;
tag_inc <=1'b0;
ack <= 1'b0;
state <= IDLE;
end
default : begin
header_data_out <= 0;
header_data_wren <= 1'b0;
ack <= 1'b0;
tag_inc <=1'b0;
tx_waddr[4:0] <= 0;
tx_wdata[31:0] <= 0;
tx_we <= 1'b0;
state <= IDLE;
end
endcase
end
end
endmodule
|
`timescale 1ns / 1ps
//////////////////////////////////////////////////////////////////////////////////
// Company:
// Engineer:
//
// Create Date: 11:39:13 09/04/2015
// Design Name:
// Module Name: First_Phase_M
// Project Name:
// Target Devices:
// Tool versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//////////////////////////////////////////////////////////////////////////////////
module First_Phase_M
//SINGLE PRECISION PARAMETERS
# (parameter W = 32)
//DOUBLE PRECISION PARAMETERS
/*# (parameter W = 64) */
(
input wire clk, //system clock
input wire rst, //module reset
input wire load, //load signal
input wire [W-1:0] Data_MX, //Data X and Y are the operands
input wire [W-1:0] Data_MY,
output wire [W-1:0] Op_MX, //Both Op signals are the outputs
output wire [W-1:0] Op_MY
);
//Module's Body
//Both registers could be set with the parameter signal
//to be 32 or 64 bitwidth
RegisterMult #(.W(W)) XMRegister ( //Data X input register
.clk(clk),
.rst(rst),
.load(load),
.D(Data_MX),
.Q(Op_MX)
);
RegisterMult #(.W(W)) YMRegister ( //Data Y input register
.clk(clk),
.rst(rst),
.load(load),
.D(Data_MY),
.Q(Op_MY)
);
endmodule
|
(** * Stlc: The Simply Typed Lambda-Calculus *)
Require Export Types.
(* ###################################################################### *)
(** * The Simply Typed Lambda-Calculus *)
(** The simply typed lambda-calculus (STLC) is a tiny core calculus
embodying the key concept of _functional abstraction_, which shows
up in pretty much every real-world programming language in some
form (functions, procedures, methods, etc.).
We will follow exactly the same pattern as in the previous
chapter when formalizing this calculus (syntax, small-step
semantics, typing rules) and its main properties (progress and
preservation). The new technical challenges (which will take some
work to deal with) all arise from the mechanisms of _variable
binding_ and _substitution_. *)
(* ###################################################################### *)
(** ** Overview *)
(** The STLC is built on some collection of _base types_ -- booleans,
numbers, strings, etc. The exact choice of base types doesn't
matter -- the construction of the language and its theoretical
properties work out pretty much the same -- so for the sake of
brevity let's take just [Bool] for the moment. At the end of the
chapter we'll see how to add more base types, and in later
chapters we'll enrich the pure STLC with other useful constructs
like pairs, records, subtyping, and mutable state.
Starting from the booleans, we add three things:
- variables
- function abstractions
- application
This gives us the following collection of abstract syntax
constructors (written out here in informal BNF notation -- we'll
formalize it below).
*)
(** Informal concrete syntax:
t ::= x variable
| \x:T1.t2 abstraction
| t1 t2 application
| true constant true
| false constant false
| if t1 then t2 else t3 conditional
*)
(** The [\] symbol (backslash, in ascii) in a function abstraction
[\x:T1.t2] is generally written as a greek letter "lambda" (hence
the name of the calculus). The variable [x] is called the
_parameter_ to the function; the term [t2] is its _body_. The
annotation [:T] specifies the type of arguments that the function
can be applied to. *)
(** Some examples:
- [\x:Bool. x]
The identity function for booleans.
- [(\x:Bool. x) true]
The identity function for booleans, applied to the boolean [true].
- [\x:Bool. if x then false else true]
The boolean "not" function.
- [\x:Bool. true]
The constant function that takes every (boolean) argument to
[true]. *)
(**
- [\x:Bool. \y:Bool. x]
A two-argument function that takes two booleans and returns
the first one. (Note that, as in Coq, a two-argument function
is really a one-argument function whose body is also a
one-argument function.)
- [(\x:Bool. \y:Bool. x) false true]
A two-argument function that takes two booleans and returns
the first one, applied to the booleans [false] and [true].
Note that, as in Coq, application associates to the left --
i.e., this expression is parsed as [((\x:Bool. \y:Bool. x)
false) true].
- [\f:Bool->Bool. f (f true)]
A higher-order function that takes a _function_ [f] (from
booleans to booleans) as an argument, applies [f] to [true],
and applies [f] again to the result.
- [(\f:Bool->Bool. f (f true)) (\x:Bool. false)]
The same higher-order function, applied to the constantly
[false] function. *)
(** As the last several examples show, the STLC is a language of
_higher-order_ functions: we can write down functions that take
other functions as arguments and/or return other functions as
results.
Another point to note is that the STLC doesn't provide any
primitive syntax for defining _named_ functions -- all functions
are "anonymous." We'll see in chapter [MoreStlc] that it is easy
to add named functions to what we've got -- indeed, the
fundamental naming and binding mechanisms are exactly the same.
The _types_ of the STLC include [Bool], which classifies the
boolean constants [true] and [false] as well as more complex
computations that yield booleans, plus _arrow types_ that classify
functions. *)
(**
T ::= Bool
| T1 -> T2
For example:
- [\x:Bool. false] has type [Bool->Bool]
- [\x:Bool. x] has type [Bool->Bool]
- [(\x:Bool. x) true] has type [Bool]
- [\x:Bool. \y:Bool. x] has type [Bool->Bool->Bool] (i.e. [Bool -> (Bool->Bool)])
- [(\x:Bool. \y:Bool. x) false] has type [Bool->Bool]
- [(\x:Bool. \y:Bool. x) false true] has type [Bool]
*)
(* ###################################################################### *)
(** ** Syntax *)
Module STLC.
(* ################################### *)
(** *** Types *)
Inductive ty : Type :=
| TBool : ty
| TArrow : ty -> ty -> ty.
(* ################################### *)
(** *** Terms *)
Inductive tm : Type :=
| tvar : id -> tm
| tapp : tm -> tm -> tm
| tabs : id -> ty -> tm -> tm
| ttrue : tm
| tfalse : tm
| tif : tm -> tm -> tm -> tm.
Tactic Notation "t_cases" tactic(first) ident(c) :=
first;
[ Case_aux c "tvar" | Case_aux c "tapp"
| Case_aux c "tabs" | Case_aux c "ttrue"
| Case_aux c "tfalse" | Case_aux c "tif" ].
(** Note that an abstraction [\x:T.t] (formally, [tabs x T t]) is
always annotated with the type [T] of its parameter, in contrast
to Coq (and other functional languages like ML, Haskell, etc.),
which use _type inference_ to fill in missing annotations. We're
not considering type inference here, to keep things simple. *)
(** Some examples... *)
Definition x := (Id 0).
Definition y := (Id 1).
Definition z := (Id 2).
Hint Unfold x.
Hint Unfold y.
Hint Unfold z.
(** [idB = \x:Bool. x] *)
Notation idB :=
(tabs x TBool (tvar x)).
(** [idBB = \x:Bool->Bool. x] *)
Notation idBB :=
(tabs x (TArrow TBool TBool) (tvar x)).
(** [idBBBB = \x:(Bool->Bool) -> (Bool->Bool). x] *)
Notation idBBBB :=
(tabs x (TArrow (TArrow TBool TBool)
(TArrow TBool TBool))
(tvar x)).
(** [k = \x:Bool. \y:Bool. x] *)
Notation k := (tabs x TBool (tabs y TBool (tvar x))).
(** [notB = \x:Bool. if x then false else true] *)
Notation notB := (tabs x TBool (tif (tvar x) tfalse ttrue)).
(** (We write these as [Notation]s rather than [Definition]s to make
things easier for [auto].) *)
(* ###################################################################### *)
(** ** Operational Semantics *)
(** To define the small-step semantics of STLC terms, we begin -- as
always -- by defining the set of values. Next, we define the
critical notions of _free variables_ and _substitution_, which are
used in the reduction rule for application expressions. And
finally we give the small-step relation itself. *)
(* ################################### *)
(** *** Values *)
(** To define the values of the STLC, we have a few cases to consider.
First, for the boolean part of the language, the situation is
clear: [true] and [false] are the only values. An [if]
expression is never a value. *)
(** Second, an application is clearly not a value: It represents a
function being invoked on some argument, which clearly still has
work left to do. *)
(** Third, for abstractions, we have a choice:
- We can say that [\x:T.t1] is a value only when [t1] is a
value -- i.e., only if the function's body has been
reduced (as much as it can be without knowing what argument it
is going to be applied to).
- Or we can say that [\x:T.t1] is always a value, no matter
whether [t1] is one or not -- in other words, we can say that
reduction stops at abstractions.
Coq, in its built-in functional programming langauge, makes the
first choice -- for example,
Eval simpl in (fun x:bool => 3 + 4)
yields [fun x:bool => 7].
Most real-world functional programming languages make the second
choice -- reduction of a function's body only begins when the
function is actually applied to an argument. We also make the
second choice here. *)
Inductive value : tm -> Prop :=
| v_abs : forall x T t,
value (tabs x T t)
| v_true :
value ttrue
| v_false :
value tfalse.
Hint Constructors value.
(** Finally, we must consider what constitutes a _complete_ program.
Intuitively, a "complete" program must not refer to any undefined
variables. We'll see shortly how to define the "free" variables
in a STLC term. A program is "closed", that is, it contains no
free variables.
*)
(** Having made the choice not to reduce under abstractions,
we don't need to worry about whether variables are values, since
we'll always be reducing programs "from the outside in," and that
means the [step] relation will always be working with closed
terms (ones with no free variables). *)
(* ###################################################################### *)
(** *** Substitution *)
(** Now we come to the heart of the STLC: the operation of
substituting one term for a variable in another term.
This operation will be used below to define the operational
semantics of function application, where we will need to
substitute the argument term for the function parameter in the
function's body. For example, we reduce
(\x:Bool. if x then true else x) false
to
if false then true else false
]]
by substituting [false] for the parameter [x] in the body of the
function.
In general, we need to be able to substitute some given
term [s] for occurrences of some variable [x] in another term [t].
In informal discussions, this is usually written [ [x:=s]t ] and
pronounced "substitute [x] with [s] in [t]." *)
(** Here are some examples:
- [[x:=true] (if x then x else false)] yields [if true then true else false]
- [[x:=true] x] yields [true]
- [[x:=true] (if x then x else y)] yields [if true then true else y]
- [[x:=true] y] yields [y]
- [[x:=true] false] yields [false] (vacuous substitution)
- [[x:=true] (\y:Bool. if y then x else false)] yields [\y:Bool. if y then true else false]
- [[x:=true] (\y:Bool. x)] yields [\y:Bool. true]
- [[x:=true] (\y:Bool. y)] yields [\y:Bool. y]
- [[x:=true] (\x:Bool. x)] yields [\x:Bool. x]
The last example is very important: substituting [x] with [true] in
[\x:Bool. x] does _not_ yield [\x:Bool. true]! The reason for
this is that the [x] in the body of [\x:Bool. x] is _bound_ by the
abstraction: it is a new, local name that just happens to be
spelled the same as some global name [x]. *)
(** Here is the definition, informally...
[x:=s]x = s
[x:=s]y = y if x <> y
[x:=s](\x:T11.t12) = \x:T11. t12
[x:=s](\y:T11.t12) = \y:T11. [x:=s]t12 if x <> y
[x:=s](t1 t2) = ([x:=s]t1) ([x:=s]t2)
[x:=s]true = true
[x:=s]false = false
[x:=s](if t1 then t2 else t3) =
if [x:=s]t1 then [x:=s]t2 else [x:=s]t3
]]
*)
(** ... and formally: *)
Reserved Notation "'[' x ':=' s ']' t" (at level 20).
Fixpoint subst (x:id) (s:tm) (t:tm) : tm :=
match t with
| tvar x' =>
if eq_id_dec x x' then s else t
| tabs x' T t1 =>
tabs x' T (if eq_id_dec x x' then t1 else ([x:=s] t1))
| tapp t1 t2 =>
tapp ([x:=s] t1) ([x:=s] t2)
| ttrue =>
ttrue
| tfalse =>
tfalse
| tif t1 t2 t3 =>
tif ([x:=s] t1) ([x:=s] t2) ([x:=s] t3)
end
where "'[' x ':=' s ']' t" := (subst x s t).
(** _Technical note_: Substitution becomes trickier to define if we
consider the case where [s], the term being substituted for a
variable in some other term, may itself contain free variables.
Since we are only interested here in defining the [step] relation
on closed terms (i.e., terms like [\x:Bool. x], that do not mention
variables are not bound by some enclosing lambda), we can skip
this extra complexity here, but it must be dealt with when
formalizing richer languages. *)
(** *** *)
(** **** Exercise: 3 stars (substi) *)
(** The definition that we gave above uses Coq's [Fixpoint] facility
to define substitution as a _function_. Suppose, instead, we
wanted to define substitution as an inductive _relation_ [substi].
We've begun the definition by providing the [Inductive] header and
one of the constructors; your job is to fill in the rest of the
constructors. *)
Inductive substi (s:tm) (x:id) : tm -> tm -> Prop :=
| s_var1 :
substi s x (tvar x) s
(* FILL IN HERE *)
.
Hint Constructors substi.
Theorem substi_correct : forall s x t t',
[x:=s]t = t' <-> substi s x t t'.
Proof.
(* FILL IN HERE *) Admitted.
(** [] *)
(* ################################### *)
(** *** Reduction *)
(** The small-step reduction relation for STLC now follows the same
pattern as the ones we have seen before. Intuitively, to reduce a
function application, we first reduce its left-hand side until it
becomes a literal function; then we reduce its right-hand
side (the argument) until it is also a value; and finally we
substitute the argument for the bound variable in the body of the
function. This last rule, written informally as
(\x:T.t12) v2 ==> [x:=v2]t12
is traditionally called "beta-reduction". *)
(**
value v2
---------------------------- (ST_AppAbs)
(\x:T.t12) v2 ==> [x:=v2]t12
t1 ==> t1'
---------------- (ST_App1)
t1 t2 ==> t1' t2
value v1
t2 ==> t2'
---------------- (ST_App2)
v1 t2 ==> v1 t2'
*)
(** ... plus the usual rules for booleans:
-------------------------------- (ST_IfTrue)
(if true then t1 else t2) ==> t1
--------------------------------- (ST_IfFalse)
(if false then t1 else t2) ==> t2
t1 ==> t1'
---------------------------------------------------- (ST_If)
(if t1 then t2 else t3) ==> (if t1' then t2 else t3)
*)
Reserved Notation "t1 '==>' t2" (at level 40).
Inductive step : tm -> tm -> Prop :=
| ST_AppAbs : forall x T t12 v2,
value v2 ->
(tapp (tabs x T t12) v2) ==> [x:=v2]t12
| ST_App1 : forall t1 t1' t2,
t1 ==> t1' ->
tapp t1 t2 ==> tapp t1' t2
| ST_App2 : forall v1 t2 t2',
value v1 ->
t2 ==> t2' ->
tapp v1 t2 ==> tapp v1 t2'
| ST_IfTrue : forall t1 t2,
(tif ttrue t1 t2) ==> t1
| ST_IfFalse : forall t1 t2,
(tif tfalse t1 t2) ==> t2
| ST_If : forall t1 t1' t2 t3,
t1 ==> t1' ->
(tif t1 t2 t3) ==> (tif t1' t2 t3)
where "t1 '==>' t2" := (step t1 t2).
Tactic Notation "step_cases" tactic(first) ident(c) :=
first;
[ Case_aux c "ST_AppAbs" | Case_aux c "ST_App1"
| Case_aux c "ST_App2" | Case_aux c "ST_IfTrue"
| Case_aux c "ST_IfFalse" | Case_aux c "ST_If" ].
Hint Constructors step.
Notation multistep := (multi step).
Notation "t1 '==>*' t2" := (multistep t1 t2) (at level 40).
(* ##################################### *)
(* ##################################### *)
(** *** Examples *)
(** Example:
((\x:Bool->Bool. x) (\x:Bool. x)) ==>* (\x:Bool. x)
i.e.
(idBB idB) ==>* idB
*)
Lemma step_example1 :
(tapp idBB idB) ==>* idB.
Proof.
eapply multi_step.
apply ST_AppAbs.
apply v_abs.
simpl.
apply multi_refl. Qed.
(** Example:
((\x:Bool->Bool. x) ((\x:Bool->Bool. x) (\x:Bool. x)))
==>* (\x:Bool. x)
i.e.
(idBB (idBB idB)) ==>* idB.
*)
Lemma step_example2 :
(tapp idBB (tapp idBB idB)) ==>* idB.
Proof.
eapply multi_step.
apply ST_App2. auto.
apply ST_AppAbs. auto.
eapply multi_step.
apply ST_AppAbs. simpl. auto.
simpl. apply multi_refl. Qed.
(** Example:
((\x:Bool->Bool. x) (\x:Bool. if x then false
else true)) true)
==>* false
i.e.
((idBB notB) ttrue) ==>* tfalse.
*)
Lemma step_example3 :
tapp (tapp idBB notB) ttrue ==>* tfalse.
Proof.
eapply multi_step.
apply ST_App1. apply ST_AppAbs. auto. simpl.
eapply multi_step.
apply ST_AppAbs. auto. simpl.
eapply multi_step.
apply ST_IfTrue. apply multi_refl. Qed.
(** Example:
((\x:Bool -> Bool. x) ((\x:Bool. if x then false
else true) true))
==>* false
i.e.
(idBB (notB ttrue)) ==>* tfalse.
*)
Lemma step_example4 :
tapp idBB (tapp notB ttrue) ==>* tfalse.
Proof.
eapply multi_step.
apply ST_App2. auto.
apply ST_AppAbs. auto. simpl.
eapply multi_step.
apply ST_App2. auto.
apply ST_IfTrue.
eapply multi_step.
apply ST_AppAbs. auto. simpl.
apply multi_refl. Qed.
(** A more automatic proof *)
Lemma step_example1' :
(tapp idBB idB) ==>* idB.
Proof. normalize. Qed.
(** Again, we can use the [normalize] tactic from above to simplify
the proof. *)
Lemma step_example2' :
(tapp idBB (tapp idBB idB)) ==>* idB.
Proof.
normalize.
Qed.
Lemma step_example3' :
tapp (tapp idBB notB) ttrue ==>* tfalse.
Proof. normalize. Qed.
Lemma step_example4' :
tapp idBB (tapp notB ttrue) ==>* tfalse.
Proof. normalize. Qed.
(** **** Exercise: 2 stars (step_example3) *)
(** Try to do this one both with and without [normalize]. *)
Lemma step_example5 :
(tapp (tapp idBBBB idBB) idB)
==>* idB.
Proof.
(* FILL IN HERE *) Admitted.
(* FILL IN HERE *)
(** [] *)
(* ###################################################################### *)
(** ** Typing *)
(* ################################### *)
(** *** Contexts *)
(** _Question_: What is the type of the term "[x y]"?
_Answer_: It depends on the types of [x] and [y]!
I.e., in order to assign a type to a term, we need to know
what assumptions we should make about the types of its free
variables.
This leads us to a three-place "typing judgment", informally
written [Gamma |- t \in T], where [Gamma] is a
"typing context" -- a mapping from variables to their types. *)
(** We hide the definition of partial maps in a module since it is
actually defined in [SfLib]. *)
Module PartialMap.
Definition partial_map (A:Type) := id -> option A.
Definition empty {A:Type} : partial_map A := (fun _ => None).
(** Informally, we'll write [Gamma, x:T] for "extend the partial
function [Gamma] to also map [x] to [T]." Formally, we use the
function [extend] to add a binding to a partial map. *)
Definition extend {A:Type} (Gamma : partial_map A) (x:id) (T : A) :=
fun x' => if eq_id_dec x x' then Some T else Gamma x'.
Lemma extend_eq : forall A (ctxt: partial_map A) x T,
(extend ctxt x T) x = Some T.
Proof.
intros. unfold extend. rewrite eq_id. auto.
Qed.
Lemma extend_neq : forall A (ctxt: partial_map A) x1 T x2,
x2 <> x1 ->
(extend ctxt x2 T) x1 = ctxt x1.
Proof.
intros. unfold extend. rewrite neq_id; auto.
Qed.
End PartialMap.
Definition context := partial_map ty.
(* ################################### *)
(** *** Typing Relation *)
(**
Gamma x = T
-------------- (T_Var)
Gamma |- x \in T
Gamma , x:T11 |- t12 \in T12
---------------------------- (T_Abs)
Gamma |- \x:T11.t12 \in T11->T12
Gamma |- t1 \in T11->T12
Gamma |- t2 \in T11
---------------------- (T_App)
Gamma |- t1 t2 \in T12
-------------------- (T_True)
Gamma |- true \in Bool
--------------------- (T_False)
Gamma |- false \in Bool
Gamma |- t1 \in Bool Gamma |- t2 \in T Gamma |- t3 \in T
-------------------------------------------------------- (T_If)
Gamma |- if t1 then t2 else t3 \in T
We can read the three-place relation [Gamma |- t \in T] as:
"to the term [t] we can assign the type [T] using as types for
the free variables of [t] the ones specified in the context
[Gamma]." *)
Reserved Notation "Gamma '|-' t '\in' T" (at level 40).
Inductive has_type : context -> tm -> ty -> Prop :=
| T_Var : forall Gamma x T,
Gamma x = Some T ->
Gamma |- tvar x \in T
| T_Abs : forall Gamma x T11 T12 t12,
extend Gamma x T11 |- t12 \in T12 ->
Gamma |- tabs x T11 t12 \in TArrow T11 T12
| T_App : forall T11 T12 Gamma t1 t2,
Gamma |- t1 \in TArrow T11 T12 ->
Gamma |- t2 \in T11 ->
Gamma |- tapp t1 t2 \in T12
| T_True : forall Gamma,
Gamma |- ttrue \in TBool
| T_False : forall Gamma,
Gamma |- tfalse \in TBool
| T_If : forall t1 t2 t3 T Gamma,
Gamma |- t1 \in TBool ->
Gamma |- t2 \in T ->
Gamma |- t3 \in T ->
Gamma |- tif t1 t2 t3 \in T
where "Gamma '|-' t '\in' T" := (has_type Gamma t T).
Tactic Notation "has_type_cases" tactic(first) ident(c) :=
first;
[ Case_aux c "T_Var" | Case_aux c "T_Abs"
| Case_aux c "T_App" | Case_aux c "T_True"
| Case_aux c "T_False" | Case_aux c "T_If" ].
Hint Constructors has_type.
(* ################################### *)
(** *** Examples *)
Example typing_example_1 :
empty |- tabs x TBool (tvar x) \in TArrow TBool TBool.
Proof.
apply T_Abs. apply T_Var. reflexivity. Qed.
(** Note that since we added the [has_type] constructors to the hints
database, auto can actually solve this one immediately. *)
Example typing_example_1' :
empty |- tabs x TBool (tvar x) \in TArrow TBool TBool.
Proof. auto. Qed.
(** Another example:
empty |- \x:A. \y:A->A. y (y x))
\in A -> (A->A) -> A.
*)
Example typing_example_2 :
empty |-
(tabs x TBool
(tabs y (TArrow TBool TBool)
(tapp (tvar y) (tapp (tvar y) (tvar x))))) \in
(TArrow TBool (TArrow (TArrow TBool TBool) TBool)).
Proof with auto using extend_eq.
apply T_Abs.
apply T_Abs.
eapply T_App. apply T_Var...
eapply T_App. apply T_Var...
apply T_Var...
Qed.
(** **** Exercise: 2 stars, optional (typing_example_2_full) *)
(** Prove the same result without using [auto], [eauto], or
[eapply]. *)
Example typing_example_2_full :
empty |-
(tabs x TBool
(tabs y (TArrow TBool TBool)
(tapp (tvar y) (tapp (tvar y) (tvar x))))) \in
(TArrow TBool (TArrow (TArrow TBool TBool) TBool)).
Proof.
(* FILL IN HERE *) Admitted.
(** [] *)
(** **** Exercise: 2 stars (typing_example_3) *)
(** Formally prove the following typing derivation holds: *)
(**
empty |- \x:Bool->B. \y:Bool->Bool. \z:Bool.
y (x z)
\in T.
*)
Example typing_example_3 :
exists T,
empty |-
(tabs x (TArrow TBool TBool)
(tabs y (TArrow TBool TBool)
(tabs z TBool
(tapp (tvar y) (tapp (tvar x) (tvar z)))))) \in
T.
Proof with auto.
(* FILL IN HERE *) Admitted.
(** [] *)
(** We can also show that terms are _not_ typable. For example, let's
formally check that there is no typing derivation assigning a type
to the term [\x:Bool. \y:Bool, x y] -- i.e.,
~ exists T,
empty |- \x:Bool. \y:Bool, x y : T.
*)
Example typing_nonexample_1 :
~ exists T,
empty |-
(tabs x TBool
(tabs y TBool
(tapp (tvar x) (tvar y)))) \in
T.
Proof.
intros Hc. inversion Hc.
(* The [clear] tactic is useful here for tidying away bits of
the context that we're not going to need again. *)
inversion H. subst. clear H.
inversion H5. subst. clear H5.
inversion H4. subst. clear H4.
inversion H2. subst. clear H2.
inversion H5. subst. clear H5.
(* rewrite extend_neq in H1. rewrite extend_eq in H1. *)
inversion H1. Qed.
(** **** Exercise: 3 stars, optional (typing_nonexample_3) *)
(** Another nonexample:
~ (exists S, exists T,
empty |- \x:S. x x : T).
*)
Example typing_nonexample_3 :
~ (exists S, exists T,
empty |-
(tabs x S
(tapp (tvar x) (tvar x))) \in
T).
Proof.
(* FILL IN HERE *) Admitted.
(** [] *)
End STLC.
(** $Date: 2014-12-31 11:17:56 -0500 (Wed, 31 Dec 2014) $ *)
|
(** * Stlc: The Simply Typed Lambda-Calculus *)
Require Export Types.
(* ###################################################################### *)
(** * The Simply Typed Lambda-Calculus *)
(** The simply typed lambda-calculus (STLC) is a tiny core calculus
embodying the key concept of _functional abstraction_, which shows
up in pretty much every real-world programming language in some
form (functions, procedures, methods, etc.).
We will follow exactly the same pattern as in the previous
chapter when formalizing this calculus (syntax, small-step
semantics, typing rules) and its main properties (progress and
preservation). The new technical challenges (which will take some
work to deal with) all arise from the mechanisms of _variable
binding_ and _substitution_. *)
(* ###################################################################### *)
(** ** Overview *)
(** The STLC is built on some collection of _base types_ -- booleans,
numbers, strings, etc. The exact choice of base types doesn't
matter -- the construction of the language and its theoretical
properties work out pretty much the same -- so for the sake of
brevity let's take just [Bool] for the moment. At the end of the
chapter we'll see how to add more base types, and in later
chapters we'll enrich the pure STLC with other useful constructs
like pairs, records, subtyping, and mutable state.
Starting from the booleans, we add three things:
- variables
- function abstractions
- application
This gives us the following collection of abstract syntax
constructors (written out here in informal BNF notation -- we'll
formalize it below).
*)
(** Informal concrete syntax:
t ::= x variable
| \x:T1.t2 abstraction
| t1 t2 application
| true constant true
| false constant false
| if t1 then t2 else t3 conditional
*)
(** The [\] symbol (backslash, in ascii) in a function abstraction
[\x:T1.t2] is generally written as a greek letter "lambda" (hence
the name of the calculus). The variable [x] is called the
_parameter_ to the function; the term [t2] is its _body_. The
annotation [:T] specifies the type of arguments that the function
can be applied to. *)
(** Some examples:
- [\x:Bool. x]
The identity function for booleans.
- [(\x:Bool. x) true]
The identity function for booleans, applied to the boolean [true].
- [\x:Bool. if x then false else true]
The boolean "not" function.
- [\x:Bool. true]
The constant function that takes every (boolean) argument to
[true]. *)
(**
- [\x:Bool. \y:Bool. x]
A two-argument function that takes two booleans and returns
the first one. (Note that, as in Coq, a two-argument function
is really a one-argument function whose body is also a
one-argument function.)
- [(\x:Bool. \y:Bool. x) false true]
A two-argument function that takes two booleans and returns
the first one, applied to the booleans [false] and [true].
Note that, as in Coq, application associates to the left --
i.e., this expression is parsed as [((\x:Bool. \y:Bool. x)
false) true].
- [\f:Bool->Bool. f (f true)]
A higher-order function that takes a _function_ [f] (from
booleans to booleans) as an argument, applies [f] to [true],
and applies [f] again to the result.
- [(\f:Bool->Bool. f (f true)) (\x:Bool. false)]
The same higher-order function, applied to the constantly
[false] function. *)
(** As the last several examples show, the STLC is a language of
_higher-order_ functions: we can write down functions that take
other functions as arguments and/or return other functions as
results.
Another point to note is that the STLC doesn't provide any
primitive syntax for defining _named_ functions -- all functions
are "anonymous." We'll see in chapter [MoreStlc] that it is easy
to add named functions to what we've got -- indeed, the
fundamental naming and binding mechanisms are exactly the same.
The _types_ of the STLC include [Bool], which classifies the
boolean constants [true] and [false] as well as more complex
computations that yield booleans, plus _arrow types_ that classify
functions. *)
(**
T ::= Bool
| T1 -> T2
For example:
- [\x:Bool. false] has type [Bool->Bool]
- [\x:Bool. x] has type [Bool->Bool]
- [(\x:Bool. x) true] has type [Bool]
- [\x:Bool. \y:Bool. x] has type [Bool->Bool->Bool] (i.e. [Bool -> (Bool->Bool)])
- [(\x:Bool. \y:Bool. x) false] has type [Bool->Bool]
- [(\x:Bool. \y:Bool. x) false true] has type [Bool]
*)
(* ###################################################################### *)
(** ** Syntax *)
Module STLC.
(* ################################### *)
(** *** Types *)
Inductive ty : Type :=
| TBool : ty
| TArrow : ty -> ty -> ty.
(* ################################### *)
(** *** Terms *)
Inductive tm : Type :=
| tvar : id -> tm
| tapp : tm -> tm -> tm
| tabs : id -> ty -> tm -> tm
| ttrue : tm
| tfalse : tm
| tif : tm -> tm -> tm -> tm.
Tactic Notation "t_cases" tactic(first) ident(c) :=
first;
[ Case_aux c "tvar" | Case_aux c "tapp"
| Case_aux c "tabs" | Case_aux c "ttrue"
| Case_aux c "tfalse" | Case_aux c "tif" ].
(** Note that an abstraction [\x:T.t] (formally, [tabs x T t]) is
always annotated with the type [T] of its parameter, in contrast
to Coq (and other functional languages like ML, Haskell, etc.),
which use _type inference_ to fill in missing annotations. We're
not considering type inference here, to keep things simple. *)
(** Some examples... *)
Definition x := (Id 0).
Definition y := (Id 1).
Definition z := (Id 2).
Hint Unfold x.
Hint Unfold y.
Hint Unfold z.
(** [idB = \x:Bool. x] *)
Notation idB :=
(tabs x TBool (tvar x)).
(** [idBB = \x:Bool->Bool. x] *)
Notation idBB :=
(tabs x (TArrow TBool TBool) (tvar x)).
(** [idBBBB = \x:(Bool->Bool) -> (Bool->Bool). x] *)
Notation idBBBB :=
(tabs x (TArrow (TArrow TBool TBool)
(TArrow TBool TBool))
(tvar x)).
(** [k = \x:Bool. \y:Bool. x] *)
Notation k := (tabs x TBool (tabs y TBool (tvar x))).
(** [notB = \x:Bool. if x then false else true] *)
Notation notB := (tabs x TBool (tif (tvar x) tfalse ttrue)).
(** (We write these as [Notation]s rather than [Definition]s to make
things easier for [auto].) *)
(* ###################################################################### *)
(** ** Operational Semantics *)
(** To define the small-step semantics of STLC terms, we begin -- as
always -- by defining the set of values. Next, we define the
critical notions of _free variables_ and _substitution_, which are
used in the reduction rule for application expressions. And
finally we give the small-step relation itself. *)
(* ################################### *)
(** *** Values *)
(** To define the values of the STLC, we have a few cases to consider.
First, for the boolean part of the language, the situation is
clear: [true] and [false] are the only values. An [if]
expression is never a value. *)
(** Second, an application is clearly not a value: It represents a
function being invoked on some argument, which clearly still has
work left to do. *)
(** Third, for abstractions, we have a choice:
- We can say that [\x:T.t1] is a value only when [t1] is a
value -- i.e., only if the function's body has been
reduced (as much as it can be without knowing what argument it
is going to be applied to).
- Or we can say that [\x:T.t1] is always a value, no matter
whether [t1] is one or not -- in other words, we can say that
reduction stops at abstractions.
Coq, in its built-in functional programming langauge, makes the
first choice -- for example,
Eval simpl in (fun x:bool => 3 + 4)
yields [fun x:bool => 7].
Most real-world functional programming languages make the second
choice -- reduction of a function's body only begins when the
function is actually applied to an argument. We also make the
second choice here. *)
Inductive value : tm -> Prop :=
| v_abs : forall x T t,
value (tabs x T t)
| v_true :
value ttrue
| v_false :
value tfalse.
Hint Constructors value.
(** Finally, we must consider what constitutes a _complete_ program.
Intuitively, a "complete" program must not refer to any undefined
variables. We'll see shortly how to define the "free" variables
in a STLC term. A program is "closed", that is, it contains no
free variables.
*)
(** Having made the choice not to reduce under abstractions,
we don't need to worry about whether variables are values, since
we'll always be reducing programs "from the outside in," and that
means the [step] relation will always be working with closed
terms (ones with no free variables). *)
(* ###################################################################### *)
(** *** Substitution *)
(** Now we come to the heart of the STLC: the operation of
substituting one term for a variable in another term.
This operation will be used below to define the operational
semantics of function application, where we will need to
substitute the argument term for the function parameter in the
function's body. For example, we reduce
(\x:Bool. if x then true else x) false
to
if false then true else false
]]
by substituting [false] for the parameter [x] in the body of the
function.
In general, we need to be able to substitute some given
term [s] for occurrences of some variable [x] in another term [t].
In informal discussions, this is usually written [ [x:=s]t ] and
pronounced "substitute [x] with [s] in [t]." *)
(** Here are some examples:
- [[x:=true] (if x then x else false)] yields [if true then true else false]
- [[x:=true] x] yields [true]
- [[x:=true] (if x then x else y)] yields [if true then true else y]
- [[x:=true] y] yields [y]
- [[x:=true] false] yields [false] (vacuous substitution)
- [[x:=true] (\y:Bool. if y then x else false)] yields [\y:Bool. if y then true else false]
- [[x:=true] (\y:Bool. x)] yields [\y:Bool. true]
- [[x:=true] (\y:Bool. y)] yields [\y:Bool. y]
- [[x:=true] (\x:Bool. x)] yields [\x:Bool. x]
The last example is very important: substituting [x] with [true] in
[\x:Bool. x] does _not_ yield [\x:Bool. true]! The reason for
this is that the [x] in the body of [\x:Bool. x] is _bound_ by the
abstraction: it is a new, local name that just happens to be
spelled the same as some global name [x]. *)
(** Here is the definition, informally...
[x:=s]x = s
[x:=s]y = y if x <> y
[x:=s](\x:T11.t12) = \x:T11. t12
[x:=s](\y:T11.t12) = \y:T11. [x:=s]t12 if x <> y
[x:=s](t1 t2) = ([x:=s]t1) ([x:=s]t2)
[x:=s]true = true
[x:=s]false = false
[x:=s](if t1 then t2 else t3) =
if [x:=s]t1 then [x:=s]t2 else [x:=s]t3
]]
*)
(** ... and formally: *)
Reserved Notation "'[' x ':=' s ']' t" (at level 20).
Fixpoint subst (x:id) (s:tm) (t:tm) : tm :=
match t with
| tvar x' =>
if eq_id_dec x x' then s else t
| tabs x' T t1 =>
tabs x' T (if eq_id_dec x x' then t1 else ([x:=s] t1))
| tapp t1 t2 =>
tapp ([x:=s] t1) ([x:=s] t2)
| ttrue =>
ttrue
| tfalse =>
tfalse
| tif t1 t2 t3 =>
tif ([x:=s] t1) ([x:=s] t2) ([x:=s] t3)
end
where "'[' x ':=' s ']' t" := (subst x s t).
(** _Technical note_: Substitution becomes trickier to define if we
consider the case where [s], the term being substituted for a
variable in some other term, may itself contain free variables.
Since we are only interested here in defining the [step] relation
on closed terms (i.e., terms like [\x:Bool. x], that do not mention
variables are not bound by some enclosing lambda), we can skip
this extra complexity here, but it must be dealt with when
formalizing richer languages. *)
(** *** *)
(** **** Exercise: 3 stars (substi) *)
(** The definition that we gave above uses Coq's [Fixpoint] facility
to define substitution as a _function_. Suppose, instead, we
wanted to define substitution as an inductive _relation_ [substi].
We've begun the definition by providing the [Inductive] header and
one of the constructors; your job is to fill in the rest of the
constructors. *)
Inductive substi (s:tm) (x:id) : tm -> tm -> Prop :=
| s_var1 :
substi s x (tvar x) s
(* FILL IN HERE *)
.
Hint Constructors substi.
Theorem substi_correct : forall s x t t',
[x:=s]t = t' <-> substi s x t t'.
Proof.
(* FILL IN HERE *) Admitted.
(** [] *)
(* ################################### *)
(** *** Reduction *)
(** The small-step reduction relation for STLC now follows the same
pattern as the ones we have seen before. Intuitively, to reduce a
function application, we first reduce its left-hand side until it
becomes a literal function; then we reduce its right-hand
side (the argument) until it is also a value; and finally we
substitute the argument for the bound variable in the body of the
function. This last rule, written informally as
(\x:T.t12) v2 ==> [x:=v2]t12
is traditionally called "beta-reduction". *)
(**
value v2
---------------------------- (ST_AppAbs)
(\x:T.t12) v2 ==> [x:=v2]t12
t1 ==> t1'
---------------- (ST_App1)
t1 t2 ==> t1' t2
value v1
t2 ==> t2'
---------------- (ST_App2)
v1 t2 ==> v1 t2'
*)
(** ... plus the usual rules for booleans:
-------------------------------- (ST_IfTrue)
(if true then t1 else t2) ==> t1
--------------------------------- (ST_IfFalse)
(if false then t1 else t2) ==> t2
t1 ==> t1'
---------------------------------------------------- (ST_If)
(if t1 then t2 else t3) ==> (if t1' then t2 else t3)
*)
Reserved Notation "t1 '==>' t2" (at level 40).
Inductive step : tm -> tm -> Prop :=
| ST_AppAbs : forall x T t12 v2,
value v2 ->
(tapp (tabs x T t12) v2) ==> [x:=v2]t12
| ST_App1 : forall t1 t1' t2,
t1 ==> t1' ->
tapp t1 t2 ==> tapp t1' t2
| ST_App2 : forall v1 t2 t2',
value v1 ->
t2 ==> t2' ->
tapp v1 t2 ==> tapp v1 t2'
| ST_IfTrue : forall t1 t2,
(tif ttrue t1 t2) ==> t1
| ST_IfFalse : forall t1 t2,
(tif tfalse t1 t2) ==> t2
| ST_If : forall t1 t1' t2 t3,
t1 ==> t1' ->
(tif t1 t2 t3) ==> (tif t1' t2 t3)
where "t1 '==>' t2" := (step t1 t2).
Tactic Notation "step_cases" tactic(first) ident(c) :=
first;
[ Case_aux c "ST_AppAbs" | Case_aux c "ST_App1"
| Case_aux c "ST_App2" | Case_aux c "ST_IfTrue"
| Case_aux c "ST_IfFalse" | Case_aux c "ST_If" ].
Hint Constructors step.
Notation multistep := (multi step).
Notation "t1 '==>*' t2" := (multistep t1 t2) (at level 40).
(* ##################################### *)
(* ##################################### *)
(** *** Examples *)
(** Example:
((\x:Bool->Bool. x) (\x:Bool. x)) ==>* (\x:Bool. x)
i.e.
(idBB idB) ==>* idB
*)
Lemma step_example1 :
(tapp idBB idB) ==>* idB.
Proof.
eapply multi_step.
apply ST_AppAbs.
apply v_abs.
simpl.
apply multi_refl. Qed.
(** Example:
((\x:Bool->Bool. x) ((\x:Bool->Bool. x) (\x:Bool. x)))
==>* (\x:Bool. x)
i.e.
(idBB (idBB idB)) ==>* idB.
*)
Lemma step_example2 :
(tapp idBB (tapp idBB idB)) ==>* idB.
Proof.
eapply multi_step.
apply ST_App2. auto.
apply ST_AppAbs. auto.
eapply multi_step.
apply ST_AppAbs. simpl. auto.
simpl. apply multi_refl. Qed.
(** Example:
((\x:Bool->Bool. x) (\x:Bool. if x then false
else true)) true)
==>* false
i.e.
((idBB notB) ttrue) ==>* tfalse.
*)
Lemma step_example3 :
tapp (tapp idBB notB) ttrue ==>* tfalse.
Proof.
eapply multi_step.
apply ST_App1. apply ST_AppAbs. auto. simpl.
eapply multi_step.
apply ST_AppAbs. auto. simpl.
eapply multi_step.
apply ST_IfTrue. apply multi_refl. Qed.
(** Example:
((\x:Bool -> Bool. x) ((\x:Bool. if x then false
else true) true))
==>* false
i.e.
(idBB (notB ttrue)) ==>* tfalse.
*)
Lemma step_example4 :
tapp idBB (tapp notB ttrue) ==>* tfalse.
Proof.
eapply multi_step.
apply ST_App2. auto.
apply ST_AppAbs. auto. simpl.
eapply multi_step.
apply ST_App2. auto.
apply ST_IfTrue.
eapply multi_step.
apply ST_AppAbs. auto. simpl.
apply multi_refl. Qed.
(** A more automatic proof *)
Lemma step_example1' :
(tapp idBB idB) ==>* idB.
Proof. normalize. Qed.
(** Again, we can use the [normalize] tactic from above to simplify
the proof. *)
Lemma step_example2' :
(tapp idBB (tapp idBB idB)) ==>* idB.
Proof.
normalize.
Qed.
Lemma step_example3' :
tapp (tapp idBB notB) ttrue ==>* tfalse.
Proof. normalize. Qed.
Lemma step_example4' :
tapp idBB (tapp notB ttrue) ==>* tfalse.
Proof. normalize. Qed.
(** **** Exercise: 2 stars (step_example3) *)
(** Try to do this one both with and without [normalize]. *)
Lemma step_example5 :
(tapp (tapp idBBBB idBB) idB)
==>* idB.
Proof.
(* FILL IN HERE *) Admitted.
(* FILL IN HERE *)
(** [] *)
(* ###################################################################### *)
(** ** Typing *)
(* ################################### *)
(** *** Contexts *)
(** _Question_: What is the type of the term "[x y]"?
_Answer_: It depends on the types of [x] and [y]!
I.e., in order to assign a type to a term, we need to know
what assumptions we should make about the types of its free
variables.
This leads us to a three-place "typing judgment", informally
written [Gamma |- t \in T], where [Gamma] is a
"typing context" -- a mapping from variables to their types. *)
(** We hide the definition of partial maps in a module since it is
actually defined in [SfLib]. *)
Module PartialMap.
Definition partial_map (A:Type) := id -> option A.
Definition empty {A:Type} : partial_map A := (fun _ => None).
(** Informally, we'll write [Gamma, x:T] for "extend the partial
function [Gamma] to also map [x] to [T]." Formally, we use the
function [extend] to add a binding to a partial map. *)
Definition extend {A:Type} (Gamma : partial_map A) (x:id) (T : A) :=
fun x' => if eq_id_dec x x' then Some T else Gamma x'.
Lemma extend_eq : forall A (ctxt: partial_map A) x T,
(extend ctxt x T) x = Some T.
Proof.
intros. unfold extend. rewrite eq_id. auto.
Qed.
Lemma extend_neq : forall A (ctxt: partial_map A) x1 T x2,
x2 <> x1 ->
(extend ctxt x2 T) x1 = ctxt x1.
Proof.
intros. unfold extend. rewrite neq_id; auto.
Qed.
End PartialMap.
Definition context := partial_map ty.
(* ################################### *)
(** *** Typing Relation *)
(**
Gamma x = T
-------------- (T_Var)
Gamma |- x \in T
Gamma , x:T11 |- t12 \in T12
---------------------------- (T_Abs)
Gamma |- \x:T11.t12 \in T11->T12
Gamma |- t1 \in T11->T12
Gamma |- t2 \in T11
---------------------- (T_App)
Gamma |- t1 t2 \in T12
-------------------- (T_True)
Gamma |- true \in Bool
--------------------- (T_False)
Gamma |- false \in Bool
Gamma |- t1 \in Bool Gamma |- t2 \in T Gamma |- t3 \in T
-------------------------------------------------------- (T_If)
Gamma |- if t1 then t2 else t3 \in T
We can read the three-place relation [Gamma |- t \in T] as:
"to the term [t] we can assign the type [T] using as types for
the free variables of [t] the ones specified in the context
[Gamma]." *)
Reserved Notation "Gamma '|-' t '\in' T" (at level 40).
Inductive has_type : context -> tm -> ty -> Prop :=
| T_Var : forall Gamma x T,
Gamma x = Some T ->
Gamma |- tvar x \in T
| T_Abs : forall Gamma x T11 T12 t12,
extend Gamma x T11 |- t12 \in T12 ->
Gamma |- tabs x T11 t12 \in TArrow T11 T12
| T_App : forall T11 T12 Gamma t1 t2,
Gamma |- t1 \in TArrow T11 T12 ->
Gamma |- t2 \in T11 ->
Gamma |- tapp t1 t2 \in T12
| T_True : forall Gamma,
Gamma |- ttrue \in TBool
| T_False : forall Gamma,
Gamma |- tfalse \in TBool
| T_If : forall t1 t2 t3 T Gamma,
Gamma |- t1 \in TBool ->
Gamma |- t2 \in T ->
Gamma |- t3 \in T ->
Gamma |- tif t1 t2 t3 \in T
where "Gamma '|-' t '\in' T" := (has_type Gamma t T).
Tactic Notation "has_type_cases" tactic(first) ident(c) :=
first;
[ Case_aux c "T_Var" | Case_aux c "T_Abs"
| Case_aux c "T_App" | Case_aux c "T_True"
| Case_aux c "T_False" | Case_aux c "T_If" ].
Hint Constructors has_type.
(* ################################### *)
(** *** Examples *)
Example typing_example_1 :
empty |- tabs x TBool (tvar x) \in TArrow TBool TBool.
Proof.
apply T_Abs. apply T_Var. reflexivity. Qed.
(** Note that since we added the [has_type] constructors to the hints
database, auto can actually solve this one immediately. *)
Example typing_example_1' :
empty |- tabs x TBool (tvar x) \in TArrow TBool TBool.
Proof. auto. Qed.
(** Another example:
empty |- \x:A. \y:A->A. y (y x))
\in A -> (A->A) -> A.
*)
Example typing_example_2 :
empty |-
(tabs x TBool
(tabs y (TArrow TBool TBool)
(tapp (tvar y) (tapp (tvar y) (tvar x))))) \in
(TArrow TBool (TArrow (TArrow TBool TBool) TBool)).
Proof with auto using extend_eq.
apply T_Abs.
apply T_Abs.
eapply T_App. apply T_Var...
eapply T_App. apply T_Var...
apply T_Var...
Qed.
(** **** Exercise: 2 stars, optional (typing_example_2_full) *)
(** Prove the same result without using [auto], [eauto], or
[eapply]. *)
Example typing_example_2_full :
empty |-
(tabs x TBool
(tabs y (TArrow TBool TBool)
(tapp (tvar y) (tapp (tvar y) (tvar x))))) \in
(TArrow TBool (TArrow (TArrow TBool TBool) TBool)).
Proof.
(* FILL IN HERE *) Admitted.
(** [] *)
(** **** Exercise: 2 stars (typing_example_3) *)
(** Formally prove the following typing derivation holds: *)
(**
empty |- \x:Bool->B. \y:Bool->Bool. \z:Bool.
y (x z)
\in T.
*)
Example typing_example_3 :
exists T,
empty |-
(tabs x (TArrow TBool TBool)
(tabs y (TArrow TBool TBool)
(tabs z TBool
(tapp (tvar y) (tapp (tvar x) (tvar z)))))) \in
T.
Proof with auto.
(* FILL IN HERE *) Admitted.
(** [] *)
(** We can also show that terms are _not_ typable. For example, let's
formally check that there is no typing derivation assigning a type
to the term [\x:Bool. \y:Bool, x y] -- i.e.,
~ exists T,
empty |- \x:Bool. \y:Bool, x y : T.
*)
Example typing_nonexample_1 :
~ exists T,
empty |-
(tabs x TBool
(tabs y TBool
(tapp (tvar x) (tvar y)))) \in
T.
Proof.
intros Hc. inversion Hc.
(* The [clear] tactic is useful here for tidying away bits of
the context that we're not going to need again. *)
inversion H. subst. clear H.
inversion H5. subst. clear H5.
inversion H4. subst. clear H4.
inversion H2. subst. clear H2.
inversion H5. subst. clear H5.
(* rewrite extend_neq in H1. rewrite extend_eq in H1. *)
inversion H1. Qed.
(** **** Exercise: 3 stars, optional (typing_nonexample_3) *)
(** Another nonexample:
~ (exists S, exists T,
empty |- \x:S. x x : T).
*)
Example typing_nonexample_3 :
~ (exists S, exists T,
empty |-
(tabs x S
(tapp (tvar x) (tvar x))) \in
T).
Proof.
(* FILL IN HERE *) Admitted.
(** [] *)
End STLC.
(** $Date: 2014-12-31 11:17:56 -0500 (Wed, 31 Dec 2014) $ *)
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2013 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc=0;
reg [63:0] crc;
reg [63:0] sum;
// Take CRC data and apply to testblock inputs
wire [19:0] in = crc[19:0];
/*AUTOWIRE*/
// Beginning of automatic wires (for undeclared instantiated-module outputs)
wire [19:0] out; // From test of Test.v
// End of automatics
Test test (/*AUTOINST*/
// Outputs
.out (out[19:0]),
// Inputs
.in (in[19:0]));
// Aggregate outputs into a single result vector
wire [63:0] result = {44'h0, out};
// Test loop
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result);
`endif
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]};
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
sum <= 64'h0;
end
else if (cyc<10) begin
sum <= 64'h0;
end
else if (cyc<90) begin
end
else if (cyc==99) begin
$write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum);
if (crc !== 64'hc77bb9b3784ea091) $stop;
// What checksum will we end up with (above print should match)
`define EXPECTED_SUM 64'hdb7bc61592f31b99
if (sum !== `EXPECTED_SUM) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
typedef struct packed {
logic [7:0] cn;
logic vbfval;
logic vabval;
} rel_t;
module Test (/*AUTOARG*/
// Outputs
out,
// Inputs
in
);
input [19:0] in;
output [19:0] out;
rel_t [1:0] i; // From ifb0 of ifb.v, ...
rel_t [1:0] o; // From ifb0 of ifb.v, ...
assign i = in;
assign out = o;
sub sub
(
.i (i[1:0]),
.o (o[1:0]));
endmodule
module sub (/*AUTOARG*/
// Outputs
o,
// Inputs
i
);
input rel_t [1:0] i;
output rel_t [1:0] o;
assign o = i;
endmodule
// Local Variables:
// verilog-typedef-regexp: "_t$"
// End:
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2013 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc=0;
reg [63:0] crc;
reg [63:0] sum;
// Take CRC data and apply to testblock inputs
wire [19:0] in = crc[19:0];
/*AUTOWIRE*/
// Beginning of automatic wires (for undeclared instantiated-module outputs)
wire [19:0] out; // From test of Test.v
// End of automatics
Test test (/*AUTOINST*/
// Outputs
.out (out[19:0]),
// Inputs
.in (in[19:0]));
// Aggregate outputs into a single result vector
wire [63:0] result = {44'h0, out};
// Test loop
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result);
`endif
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]};
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
sum <= 64'h0;
end
else if (cyc<10) begin
sum <= 64'h0;
end
else if (cyc<90) begin
end
else if (cyc==99) begin
$write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum);
if (crc !== 64'hc77bb9b3784ea091) $stop;
// What checksum will we end up with (above print should match)
`define EXPECTED_SUM 64'hdb7bc61592f31b99
if (sum !== `EXPECTED_SUM) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
typedef struct packed {
logic [7:0] cn;
logic vbfval;
logic vabval;
} rel_t;
module Test (/*AUTOARG*/
// Outputs
out,
// Inputs
in
);
input [19:0] in;
output [19:0] out;
rel_t [1:0] i; // From ifb0 of ifb.v, ...
rel_t [1:0] o; // From ifb0 of ifb.v, ...
assign i = in;
assign out = o;
sub sub
(
.i (i[1:0]),
.o (o[1:0]));
endmodule
module sub (/*AUTOARG*/
// Outputs
o,
// Inputs
i
);
input rel_t [1:0] i;
output rel_t [1:0] o;
assign o = i;
endmodule
// Local Variables:
// verilog-typedef-regexp: "_t$"
// End:
|
//////////////////////////////////////////////////////////////////////
//// ////
//// spi_clgen.v ////
//// ////
//// This file is part of the SPI IP core project ////
//// http://www.opencores.org/projects/spi/ ////
//// ////
//// Author(s): ////
//// - Simon Srot ([email protected]) ////
//// ////
//// All additional information is avaliable in the Readme.txt ////
//// file. ////
//// ////
//////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2002 Authors ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// ////
//////////////////////////////////////////////////////////////////////
module spi_clgen (clk_in, rst, go, enable, last_clk, divider, clk_out, pos_edge, neg_edge);
parameter Tp = 1;
input clk_in; // input clock (system clock)
input rst; // reset
input enable; // clock enable
input go; // start transfer
input last_clk; // last clock
input [3:0] divider; // clock divider (output clock is divided by this value)
output clk_out; // output clock
output pos_edge; // pulse marking positive edge of clk_out
output neg_edge; // pulse marking negative edge of clk_out
reg clk_out;
reg pos_edge;
reg neg_edge;
reg [3:0] cnt; // clock counter
wire cnt_zero; // conter is equal to zero
wire cnt_one; // conter is equal to one
assign cnt_zero = cnt == {4{1'b0}};
assign cnt_one = cnt == {{3{1'b0}}, 1'b1};
// Counter counts half period
always @(posedge clk_in or posedge rst)
begin
if(rst)
cnt <= #Tp {4{1'b1}};
else
begin
if(!enable || cnt_zero)
cnt <= #Tp divider;
else
cnt <= #Tp cnt - {{3{1'b0}}, 1'b1};
end
end
// clk_out is asserted every other half period
always @(posedge clk_in or posedge rst)
begin
if(rst)
clk_out <= #Tp 1'b0;
else
clk_out <= #Tp (enable && cnt_zero && (!last_clk || clk_out)) ? ~clk_out : clk_out;
end
// Pos and neg edge signals
always @(posedge clk_in or posedge rst)
begin
if(rst)
begin
pos_edge <= #Tp 1'b0;
neg_edge <= #Tp 1'b0;
end
else
begin
pos_edge <= #Tp (enable && !clk_out && cnt_one) || (!(|divider) && clk_out) || (!(|divider) && go && !enable);
neg_edge <= #Tp (enable && clk_out && cnt_one) || (!(|divider) && !clk_out && enable);
end
end
endmodule
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
(**************************************************************)
(* MSetDecide.v *)
(* *)
(* Author: Aaron Bohannon *)
(**************************************************************)
(** This file implements a decision procedure for a certain
class of propositions involving finite sets. *)
Require Import Decidable Setoid DecidableTypeEx MSetFacts.
(** First, a version for Weak Sets in functorial presentation *)
Module WDecideOn (E : DecidableType)(Import M : WSetsOn E).
Module F := MSetFacts.WFactsOn E M.
(** * Overview
This functor defines the tactic [fsetdec], which will
solve any valid goal of the form
<<
forall s1 ... sn,
forall x1 ... xm,
P1 -> ... -> Pk -> P
>>
where [P]'s are defined by the grammar:
<<
P ::=
| Q
| Empty F
| Subset F F'
| Equal F F'
Q ::=
| E.eq X X'
| In X F
| Q /\ Q'
| Q \/ Q'
| Q -> Q'
| Q <-> Q'
| ~ Q
| True
| False
F ::=
| S
| empty
| singleton X
| add X F
| remove X F
| union F F'
| inter F F'
| diff F F'
X ::= x1 | ... | xm
S ::= s1 | ... | sn
>>
The tactic will also work on some goals that vary slightly from
the above form:
- The variables and hypotheses may be mixed in any order and may
have already been introduced into the context. Moreover,
there may be additional, unrelated hypotheses mixed in (these
will be ignored).
- A conjunction of hypotheses will be handled as easily as
separate hypotheses, i.e., [P1 /\ P2 -> P] can be solved iff
[P1 -> P2 -> P] can be solved.
- [fsetdec] should solve any goal if the MSet-related hypotheses
are contradictory.
- [fsetdec] will first perform any necessary zeta and beta
reductions and will invoke [subst] to eliminate any Coq
equalities between finite sets or their elements.
- If [E.eq] is convertible with Coq's equality, it will not
matter which one is used in the hypotheses or conclusion.
- The tactic can solve goals where the finite sets or set
elements are expressed by Coq terms that are more complicated
than variables. However, non-local definitions are not
expanded, and Coq equalities between non-variable terms are
not used. For example, this goal will be solved:
<<
forall (f : t -> t),
forall (g : elt -> elt),
forall (s1 s2 : t),
forall (x1 x2 : elt),
Equal s1 (f s2) ->
E.eq x1 (g (g x2)) ->
In x1 s1 ->
In (g (g x2)) (f s2)
>>
This one will not be solved:
<<
forall (f : t -> t),
forall (g : elt -> elt),
forall (s1 s2 : t),
forall (x1 x2 : elt),
Equal s1 (f s2) ->
E.eq x1 (g x2) ->
In x1 s1 ->
g x2 = g (g x2) ->
In (g (g x2)) (f s2)
>>
*)
(** * Facts and Tactics for Propositional Logic
These lemmas and tactics are in a module so that they do
not affect the namespace if you import the enclosing
module [Decide]. *)
Module MSetLogicalFacts.
Export Decidable.
Export Setoid.
(** ** Lemmas and Tactics About Decidable Propositions *)
(** ** Propositional Equivalences Involving Negation
These are all written with the unfolded form of
negation, since I am not sure if setoid rewriting will
always perform conversion. *)
(** ** Tactics for Negations *)
Tactic Notation "fold" "any" "not" :=
repeat (
match goal with
| H: context [?P -> False] |- _ =>
fold (~ P) in H
| |- context [?P -> False] =>
fold (~ P)
end).
(** [push not using db] will pushes all negations to the
leaves of propositions in the goal, using the lemmas in
[db] to assist in checking the decidability of the
propositions involved. If [using db] is omitted, then
[core] will be used. Additional versions are provided
to manipulate the hypotheses or the hypotheses and goal
together.
XXX: This tactic and the similar subsequent ones should
have been defined using [autorewrite]. However, dealing
with multiples rewrite sites and side-conditions is
done more cleverly with the following explicit
analysis of goals. *)
Ltac or_not_l_iff P Q tac :=
(rewrite (or_not_l_iff_1 P Q) by tac) ||
(rewrite (or_not_l_iff_2 P Q) by tac).
Ltac or_not_r_iff P Q tac :=
(rewrite (or_not_r_iff_1 P Q) by tac) ||
(rewrite (or_not_r_iff_2 P Q) by tac).
Ltac or_not_l_iff_in P Q H tac :=
(rewrite (or_not_l_iff_1 P Q) in H by tac) ||
(rewrite (or_not_l_iff_2 P Q) in H by tac).
Ltac or_not_r_iff_in P Q H tac :=
(rewrite (or_not_r_iff_1 P Q) in H by tac) ||
(rewrite (or_not_r_iff_2 P Q) in H by tac).
Tactic Notation "push" "not" "using" ident(db) :=
let dec := solve_decidable using db in
unfold not, iff;
repeat (
match goal with
| |- context [True -> False] => rewrite not_true_iff
| |- context [False -> False] => rewrite not_false_iff
| |- context [(?P -> False) -> False] => rewrite (not_not_iff P) by dec
| |- context [(?P -> False) -> (?Q -> False)] =>
rewrite (contrapositive P Q) by dec
| |- context [(?P -> False) \/ ?Q] => or_not_l_iff P Q dec
| |- context [?P \/ (?Q -> False)] => or_not_r_iff P Q dec
| |- context [(?P -> False) -> ?Q] => rewrite (imp_not_l P Q) by dec
| |- context [?P \/ ?Q -> False] => rewrite (not_or_iff P Q)
| |- context [?P /\ ?Q -> False] => rewrite (not_and_iff P Q)
| |- context [(?P -> ?Q) -> False] => rewrite (not_imp_iff P Q) by dec
end);
fold any not.
Tactic Notation "push" "not" :=
push not using core.
Tactic Notation
"push" "not" "in" "*" "|-" "using" ident(db) :=
let dec := solve_decidable using db in
unfold not, iff in * |-;
repeat (
match goal with
| H: context [True -> False] |- _ => rewrite not_true_iff in H
| H: context [False -> False] |- _ => rewrite not_false_iff in H
| H: context [(?P -> False) -> False] |- _ =>
rewrite (not_not_iff P) in H by dec
| H: context [(?P -> False) -> (?Q -> False)] |- _ =>
rewrite (contrapositive P Q) in H by dec
| H: context [(?P -> False) \/ ?Q] |- _ => or_not_l_iff_in P Q H dec
| H: context [?P \/ (?Q -> False)] |- _ => or_not_r_iff_in P Q H dec
| H: context [(?P -> False) -> ?Q] |- _ =>
rewrite (imp_not_l P Q) in H by dec
| H: context [?P \/ ?Q -> False] |- _ => rewrite (not_or_iff P Q) in H
| H: context [?P /\ ?Q -> False] |- _ => rewrite (not_and_iff P Q) in H
| H: context [(?P -> ?Q) -> False] |- _ =>
rewrite (not_imp_iff P Q) in H by dec
end);
fold any not.
Tactic Notation "push" "not" "in" "*" "|-" :=
push not in * |- using core.
Tactic Notation "push" "not" "in" "*" "using" ident(db) :=
push not using db; push not in * |- using db.
Tactic Notation "push" "not" "in" "*" :=
push not in * using core.
(** A simple test case to see how this works. *)
Lemma test_push : forall P Q R : Prop,
decidable P ->
decidable Q ->
(~ True) ->
(~ False) ->
(~ ~ P) ->
(~ (P /\ Q) -> ~ R) ->
((P /\ Q) \/ ~ R) ->
(~ (P /\ Q) \/ R) ->
(R \/ ~ (P /\ Q)) ->
(~ R \/ (P /\ Q)) ->
(~ P -> R) ->
(~ ((R -> P) \/ (Q -> R))) ->
(~ (P /\ R)) ->
(~ (P -> R)) ->
True.
Proof.
intros. push not in *.
(* note that ~(R->P) remains (since R isnt decidable) *)
tauto.
Qed.
(** [pull not using db] will pull as many negations as
possible toward the top of the propositions in the goal,
using the lemmas in [db] to assist in checking the
decidability of the propositions involved. If [using
db] is omitted, then [core] will be used. Additional
versions are provided to manipulate the hypotheses or
the hypotheses and goal together. *)
Tactic Notation "pull" "not" "using" ident(db) :=
let dec := solve_decidable using db in
unfold not, iff;
repeat (
match goal with
| |- context [True -> False] => rewrite not_true_iff
| |- context [False -> False] => rewrite not_false_iff
| |- context [(?P -> False) -> False] => rewrite (not_not_iff P) by dec
| |- context [(?P -> False) -> (?Q -> False)] =>
rewrite (contrapositive P Q) by dec
| |- context [(?P -> False) \/ ?Q] => or_not_l_iff P Q dec
| |- context [?P \/ (?Q -> False)] => or_not_r_iff P Q dec
| |- context [(?P -> False) -> ?Q] => rewrite (imp_not_l P Q) by dec
| |- context [(?P -> False) /\ (?Q -> False)] =>
rewrite <- (not_or_iff P Q)
| |- context [?P -> ?Q -> False] => rewrite <- (not_and_iff P Q)
| |- context [?P /\ (?Q -> False)] => rewrite <- (not_imp_iff P Q) by dec
| |- context [(?Q -> False) /\ ?P] =>
rewrite <- (not_imp_rev_iff P Q) by dec
end);
fold any not.
Tactic Notation "pull" "not" :=
pull not using core.
Tactic Notation
"pull" "not" "in" "*" "|-" "using" ident(db) :=
let dec := solve_decidable using db in
unfold not, iff in * |-;
repeat (
match goal with
| H: context [True -> False] |- _ => rewrite not_true_iff in H
| H: context [False -> False] |- _ => rewrite not_false_iff in H
| H: context [(?P -> False) -> False] |- _ =>
rewrite (not_not_iff P) in H by dec
| H: context [(?P -> False) -> (?Q -> False)] |- _ =>
rewrite (contrapositive P Q) in H by dec
| H: context [(?P -> False) \/ ?Q] |- _ => or_not_l_iff_in P Q H dec
| H: context [?P \/ (?Q -> False)] |- _ => or_not_r_iff_in P Q H dec
| H: context [(?P -> False) -> ?Q] |- _ =>
rewrite (imp_not_l P Q) in H by dec
| H: context [(?P -> False) /\ (?Q -> False)] |- _ =>
rewrite <- (not_or_iff P Q) in H
| H: context [?P -> ?Q -> False] |- _ =>
rewrite <- (not_and_iff P Q) in H
| H: context [?P /\ (?Q -> False)] |- _ =>
rewrite <- (not_imp_iff P Q) in H by dec
| H: context [(?Q -> False) /\ ?P] |- _ =>
rewrite <- (not_imp_rev_iff P Q) in H by dec
end);
fold any not.
Tactic Notation "pull" "not" "in" "*" "|-" :=
pull not in * |- using core.
Tactic Notation "pull" "not" "in" "*" "using" ident(db) :=
pull not using db; pull not in * |- using db.
Tactic Notation "pull" "not" "in" "*" :=
pull not in * using core.
(** A simple test case to see how this works. *)
Lemma test_pull : forall P Q R : Prop,
decidable P ->
decidable Q ->
(~ True) ->
(~ False) ->
(~ ~ P) ->
(~ (P /\ Q) -> ~ R) ->
((P /\ Q) \/ ~ R) ->
(~ (P /\ Q) \/ R) ->
(R \/ ~ (P /\ Q)) ->
(~ R \/ (P /\ Q)) ->
(~ P -> R) ->
(~ (R -> P) /\ ~ (Q -> R)) ->
(~ P \/ ~ R) ->
(P /\ ~ R) ->
(~ R /\ P) ->
True.
Proof.
intros. pull not in *. tauto.
Qed.
End MSetLogicalFacts.
Import MSetLogicalFacts.
(** * Auxiliary Tactics
Again, these lemmas and tactics are in a module so that
they do not affect the namespace if you import the
enclosing module [Decide]. *)
Module MSetDecideAuxiliary.
(** ** Generic Tactics
We begin by defining a few generic, useful tactics. *)
(** remove logical hypothesis inter-dependencies (fix #2136). *)
Ltac no_logical_interdep :=
match goal with
| H : ?P |- _ =>
match type of P with
| Prop =>
match goal with H' : context [ H ] |- _ => clear dependent H' end
| _ => fail
end; no_logical_interdep
| _ => idtac
end.
(** [if t then t1 else t2] executes [t] and, if it does not
fail, then [t1] will be applied to all subgoals
produced. If [t] fails, then [t2] is executed. *)
Tactic Notation
"if" tactic(t)
"then" tactic(t1)
"else" tactic(t2) :=
first [ t; first [ t1 | fail 2 ] | t2 ].
Ltac abstract_term t :=
if (is_var t) then fail "no need to abstract a variable"
else (let x := fresh "x" in set (x := t) in *; try clearbody x).
Ltac abstract_elements :=
repeat
(match goal with
| |- context [ singleton ?t ] => abstract_term t
| _ : context [ singleton ?t ] |- _ => abstract_term t
| |- context [ add ?t _ ] => abstract_term t
| _ : context [ add ?t _ ] |- _ => abstract_term t
| |- context [ remove ?t _ ] => abstract_term t
| _ : context [ remove ?t _ ] |- _ => abstract_term t
| |- context [ In ?t _ ] => abstract_term t
| _ : context [ In ?t _ ] |- _ => abstract_term t
end).
(** [prop P holds by t] succeeds (but does not modify the
goal or context) if the proposition [P] can be proved by
[t] in the current context. Otherwise, the tactic
fails. *)
Tactic Notation "prop" constr(P) "holds" "by" tactic(t) :=
let H := fresh in
assert P as H by t;
clear H.
(** This tactic acts just like [assert ... by ...] but will
fail if the context already contains the proposition. *)
Tactic Notation "assert" "new" constr(e) "by" tactic(t) :=
match goal with
| H: e |- _ => fail 1
| _ => assert e by t
end.
(** [subst++] is similar to [subst] except that
- it never fails (as [subst] does on recursive
equations),
- it substitutes locally defined variable for their
definitions,
- it performs beta reductions everywhere, which may
arise after substituting a locally defined function
for its definition.
*)
Tactic Notation "subst" "++" :=
repeat (
match goal with
| x : _ |- _ => subst x
end);
cbv zeta beta in *.
(** [decompose records] calls [decompose record H] on every
relevant hypothesis [H]. *)
Tactic Notation "decompose" "records" :=
repeat (
match goal with
| H: _ |- _ => progress (decompose record H); clear H
end).
(** ** Discarding Irrelevant Hypotheses
We will want to clear the context of any
non-MSet-related hypotheses in order to increase the
speed of the tactic. To do this, we will need to be
able to decide which are relevant. We do this by making
a simple inductive definition classifying the
propositions of interest. *)
Inductive MSet_elt_Prop : Prop -> Prop :=
| eq_Prop : forall (S : Type) (x y : S),
MSet_elt_Prop (x = y)
| eq_elt_prop : forall x y,
MSet_elt_Prop (E.eq x y)
| In_elt_prop : forall x s,
MSet_elt_Prop (In x s)
| True_elt_prop :
MSet_elt_Prop True
| False_elt_prop :
MSet_elt_Prop False
| conj_elt_prop : forall P Q,
MSet_elt_Prop P ->
MSet_elt_Prop Q ->
MSet_elt_Prop (P /\ Q)
| disj_elt_prop : forall P Q,
MSet_elt_Prop P ->
MSet_elt_Prop Q ->
MSet_elt_Prop (P \/ Q)
| impl_elt_prop : forall P Q,
MSet_elt_Prop P ->
MSet_elt_Prop Q ->
MSet_elt_Prop (P -> Q)
| not_elt_prop : forall P,
MSet_elt_Prop P ->
MSet_elt_Prop (~ P).
Inductive MSet_Prop : Prop -> Prop :=
| elt_MSet_Prop : forall P,
MSet_elt_Prop P ->
MSet_Prop P
| Empty_MSet_Prop : forall s,
MSet_Prop (Empty s)
| Subset_MSet_Prop : forall s1 s2,
MSet_Prop (Subset s1 s2)
| Equal_MSet_Prop : forall s1 s2,
MSet_Prop (Equal s1 s2).
(** Here is the tactic that will throw away hypotheses that
are not useful (for the intended scope of the [fsetdec]
tactic). *)
Hint Constructors MSet_elt_Prop MSet_Prop : MSet_Prop.
Ltac discard_nonMSet :=
repeat (
match goal with
| H : context [ @Logic.eq ?T ?x ?y ] |- _ =>
if (change T with E.t in H) then fail
else if (change T with t in H) then fail
else clear H
| H : ?P |- _ =>
if prop (MSet_Prop P) holds by
(auto 100 with MSet_Prop)
then fail
else clear H
end).
(** ** Turning Set Operators into Propositional Connectives
The lemmas from [MSetFacts] will be used to break down
set operations into propositional formulas built over
the predicates [In] and [E.eq] applied only to
variables. We are going to use them with [autorewrite].
*)
Hint Rewrite
F.empty_iff F.singleton_iff F.add_iff F.remove_iff
F.union_iff F.inter_iff F.diff_iff
: set_simpl.
Lemma eq_refl_iff (x : E.t) : E.eq x x <-> True.
Proof.
now split.
Qed.
Hint Rewrite eq_refl_iff : set_eq_simpl.
(** ** Decidability of MSet Propositions *)
(** [In] is decidable. *)
Lemma dec_In : forall x s,
decidable (In x s).
Proof.
red; intros; generalize (F.mem_iff s x); case (mem x s); intuition.
Qed.
(** [E.eq] is decidable. *)
Lemma dec_eq : forall (x y : E.t),
decidable (E.eq x y).
Proof.
red; intros x y; destruct (E.eq_dec x y); auto.
Qed.
(** The hint database [MSet_decidability] will be given to
the [push_neg] tactic from the module [Negation]. *)
Hint Resolve dec_In dec_eq : MSet_decidability.
(** ** Normalizing Propositions About Equality
We have to deal with the fact that [E.eq] may be
convertible with Coq's equality. Thus, we will find the
following tactics useful to replace one form with the
other everywhere. *)
(** The next tactic, [Logic_eq_to_E_eq], mentions the term
[E.t]; thus, we must ensure that [E.t] is used in favor
of any other convertible but syntactically distinct
term. *)
Ltac change_to_E_t :=
repeat (
match goal with
| H : ?T |- _ =>
progress (change T with E.t in H);
repeat (
match goal with
| J : _ |- _ => progress (change T with E.t in J)
| |- _ => progress (change T with E.t)
end )
| H : forall x : ?T, _ |- _ =>
progress (change T with E.t in H);
repeat (
match goal with
| J : _ |- _ => progress (change T with E.t in J)
| |- _ => progress (change T with E.t)
end )
end).
(** These two tactics take us from Coq's built-in equality
to [E.eq] (and vice versa) when possible. *)
Ltac Logic_eq_to_E_eq :=
repeat (
match goal with
| H: _ |- _ =>
progress (change (@Logic.eq E.t) with E.eq in H)
| |- _ =>
progress (change (@Logic.eq E.t) with E.eq)
end).
Ltac E_eq_to_Logic_eq :=
repeat (
match goal with
| H: _ |- _ =>
progress (change E.eq with (@Logic.eq E.t) in H)
| |- _ =>
progress (change E.eq with (@Logic.eq E.t))
end).
(** This tactic works like the built-in tactic [subst], but
at the level of set element equality (which may not be
the convertible with Coq's equality). *)
Ltac substMSet :=
repeat (
match goal with
| H: E.eq ?x ?x |- _ => clear H
| H: E.eq ?x ?y |- _ => rewrite H in *; clear H
end);
autorewrite with set_eq_simpl in *.
(** ** Considering Decidability of Base Propositions
This tactic adds assertions about the decidability of
[E.eq] and [In] to the context. This is necessary for
the completeness of the [fsetdec] tactic. However, in
order to minimize the cost of proof search, we should be
careful to not add more than we need. Once negations
have been pushed to the leaves of the propositions, we
only need to worry about decidability for those base
propositions that appear in a negated form. *)
Ltac assert_decidability :=
(** We actually don't want these rules to fire if the
syntactic context in the patterns below is trivially
empty, but we'll just do some clean-up at the
afterward. *)
repeat (
match goal with
| H: context [~ E.eq ?x ?y] |- _ =>
assert new (E.eq x y \/ ~ E.eq x y) by (apply dec_eq)
| H: context [~ In ?x ?s] |- _ =>
assert new (In x s \/ ~ In x s) by (apply dec_In)
| |- context [~ E.eq ?x ?y] =>
assert new (E.eq x y \/ ~ E.eq x y) by (apply dec_eq)
| |- context [~ In ?x ?s] =>
assert new (In x s \/ ~ In x s) by (apply dec_In)
end);
(** Now we eliminate the useless facts we added (because
they would likely be very harmful to performance). *)
repeat (
match goal with
| _: ~ ?P, H : ?P \/ ~ ?P |- _ => clear H
end).
(** ** Handling [Empty], [Subset], and [Equal]
This tactic instantiates universally quantified
hypotheses (which arise from the unfolding of [Empty],
[Subset], and [Equal]) for each of the set element
expressions that is involved in some membership or
equality fact. Then it throws away those hypotheses,
which should no longer be needed. *)
Ltac inst_MSet_hypotheses :=
repeat (
match goal with
| H : forall a : E.t, _,
_ : context [ In ?x _ ] |- _ =>
let P := type of (H x) in
assert new P by (exact (H x))
| H : forall a : E.t, _
|- context [ In ?x _ ] =>
let P := type of (H x) in
assert new P by (exact (H x))
| H : forall a : E.t, _,
_ : context [ E.eq ?x _ ] |- _ =>
let P := type of (H x) in
assert new P by (exact (H x))
| H : forall a : E.t, _
|- context [ E.eq ?x _ ] =>
let P := type of (H x) in
assert new P by (exact (H x))
| H : forall a : E.t, _,
_ : context [ E.eq _ ?x ] |- _ =>
let P := type of (H x) in
assert new P by (exact (H x))
| H : forall a : E.t, _
|- context [ E.eq _ ?x ] =>
let P := type of (H x) in
assert new P by (exact (H x))
end);
repeat (
match goal with
| H : forall a : E.t, _ |- _ =>
clear H
end).
(** ** The Core [fsetdec] Auxiliary Tactics *)
(** Here is the crux of the proof search. Recursion through
[intuition]! (This will terminate if I correctly
understand the behavior of [intuition].) *)
Ltac fsetdec_rec := progress substMSet; intuition fsetdec_rec.
(** If we add [unfold Empty, Subset, Equal in *; intros;] to
the beginning of this tactic, it will satisfy the same
specification as the [fsetdec] tactic; however, it will
be much slower than necessary without the pre-processing
done by the wrapper tactic [fsetdec]. *)
Ltac fsetdec_body :=
autorewrite with set_eq_simpl in *;
inst_MSet_hypotheses;
autorewrite with set_simpl set_eq_simpl in *;
push not in * using MSet_decidability;
substMSet;
assert_decidability;
auto;
(intuition fsetdec_rec) ||
fail 1
"because the goal is beyond the scope of this tactic".
End MSetDecideAuxiliary.
Import MSetDecideAuxiliary.
(** * The [fsetdec] Tactic
Here is the top-level tactic (the only one intended for
clients of this library). It's specification is given at
the top of the file. *)
Ltac fsetdec :=
(** We first unfold any occurrences of [iff]. *)
unfold iff in *;
(** We fold occurrences of [not] because it is better for
[intros] to leave us with a goal of [~ P] than a goal of
[False]. *)
fold any not; intros;
(** We don't care about the value of elements : complex ones are
abstracted as new variables (avoiding potential dependencies,
see bug #2464) *)
abstract_elements;
(** We remove dependencies to logical hypothesis. This way,
later "clear" will work nicely (see bug #2136) *)
no_logical_interdep;
(** Now we decompose conjunctions, which will allow the
[discard_nonMSet] and [assert_decidability] tactics to
do a much better job. *)
decompose records;
discard_nonMSet;
(** We unfold these defined propositions on finite sets. If
our goal was one of them, then have one more item to
introduce now. *)
unfold Empty, Subset, Equal in *; intros;
(** We now want to get rid of all uses of [=] in favor of
[E.eq]. However, the best way to eliminate a [=] is in
the context is with [subst], so we will try that first.
In fact, we may as well convert uses of [E.eq] into [=]
when possible before we do [subst] so that we can even
more mileage out of it. Then we will convert all
remaining uses of [=] back to [E.eq] when possible. We
use [change_to_E_t] to ensure that we have a canonical
name for set elements, so that [Logic_eq_to_E_eq] will
work properly. *)
change_to_E_t; E_eq_to_Logic_eq; subst++; Logic_eq_to_E_eq;
(** The next optimization is to swap a negated goal with a
negated hypothesis when possible. Any swap will improve
performance by eliminating the total number of
negations, but we will get the maximum benefit if we
swap the goal with a hypotheses mentioning the same set
element, so we try that first. If we reach the fourth
branch below, we attempt any swap. However, to maintain
completeness of this tactic, we can only perform such a
swap with a decidable proposition; hence, we first test
whether the hypothesis is an [MSet_elt_Prop], noting
that any [MSet_elt_Prop] is decidable. *)
pull not using MSet_decidability;
unfold not in *;
match goal with
| H: (In ?x ?r) -> False |- (In ?x ?s) -> False =>
contradict H; fsetdec_body
| H: (In ?x ?r) -> False |- (E.eq ?x ?y) -> False =>
contradict H; fsetdec_body
| H: (In ?x ?r) -> False |- (E.eq ?y ?x) -> False =>
contradict H; fsetdec_body
| H: ?P -> False |- ?Q -> False =>
if prop (MSet_elt_Prop P) holds by
(auto 100 with MSet_Prop)
then (contradict H; fsetdec_body)
else fsetdec_body
| |- _ =>
fsetdec_body
end.
(** * Examples *)
Module MSetDecideTestCases.
Lemma test_eq_trans_1 : forall x y z s,
E.eq x y ->
~ ~ E.eq z y ->
In x s ->
In z s.
Proof. fsetdec. Qed.
Lemma test_eq_trans_2 : forall x y z r s,
In x (singleton y) ->
~ In z r ->
~ ~ In z (add y r) ->
In x s ->
In z s.
Proof. fsetdec. Qed.
Lemma test_eq_neq_trans_1 : forall w x y z s,
E.eq x w ->
~ ~ E.eq x y ->
~ E.eq y z ->
In w s ->
In w (remove z s).
Proof. fsetdec. Qed.
Lemma test_eq_neq_trans_2 : forall w x y z r1 r2 s,
In x (singleton w) ->
~ In x r1 ->
In x (add y r1) ->
In y r2 ->
In y (remove z r2) ->
In w s ->
In w (remove z s).
Proof. fsetdec. Qed.
Lemma test_In_singleton : forall x,
In x (singleton x).
Proof. fsetdec. Qed.
Lemma test_add_In : forall x y s,
In x (add y s) ->
~ E.eq x y ->
In x s.
Proof. fsetdec. Qed.
Lemma test_Subset_add_remove : forall x s,
s [<=] (add x (remove x s)).
Proof. fsetdec. Qed.
Lemma test_eq_disjunction : forall w x y z,
In w (add x (add y (singleton z))) ->
E.eq w x \/ E.eq w y \/ E.eq w z.
Proof. fsetdec. Qed.
Lemma test_not_In_disj : forall x y s1 s2 s3 s4,
~ In x (union s1 (union s2 (union s3 (add y s4)))) ->
~ (In x s1 \/ In x s4 \/ E.eq y x).
Proof. fsetdec. Qed.
Lemma test_not_In_conj : forall x y s1 s2 s3 s4,
~ In x (union s1 (union s2 (union s3 (add y s4)))) ->
~ In x s1 /\ ~ In x s4 /\ ~ E.eq y x.
Proof. fsetdec. Qed.
Lemma test_iff_conj : forall a x s s',
(In a s' <-> E.eq x a \/ In a s) ->
(In a s' <-> In a (add x s)).
Proof. fsetdec. Qed.
Lemma test_set_ops_1 : forall x q r s,
(singleton x) [<=] s ->
Empty (union q r) ->
Empty (inter (diff s q) (diff s r)) ->
~ In x s.
Proof. fsetdec. Qed.
Lemma eq_chain_test : forall x1 x2 x3 x4 s1 s2 s3 s4,
Empty s1 ->
In x2 (add x1 s1) ->
In x3 s2 ->
~ In x3 (remove x2 s2) ->
~ In x4 s3 ->
In x4 (add x3 s3) ->
In x1 s4 ->
Subset (add x4 s4) s4.
Proof. fsetdec. Qed.
Lemma test_too_complex : forall x y z r s,
E.eq x y ->
(In x (singleton y) -> r [<=] s) ->
In z r ->
In z s.
Proof.
(** [fsetdec] is not intended to solve this directly. *)
intros until s; intros Heq H Hr; lapply H; fsetdec.
Qed.
Lemma function_test_1 :
forall (f : t -> t),
forall (g : elt -> elt),
forall (s1 s2 : t),
forall (x1 x2 : elt),
Equal s1 (f s2) ->
E.eq x1 (g (g x2)) ->
In x1 s1 ->
In (g (g x2)) (f s2).
Proof. fsetdec. Qed.
Lemma function_test_2 :
forall (f : t -> t),
forall (g : elt -> elt),
forall (s1 s2 : t),
forall (x1 x2 : elt),
Equal s1 (f s2) ->
E.eq x1 (g x2) ->
In x1 s1 ->
g x2 = g (g x2) ->
In (g (g x2)) (f s2).
Proof.
(** [fsetdec] is not intended to solve this directly. *)
intros until 3. intros g_eq. rewrite <- g_eq. fsetdec.
Qed.
Lemma test_baydemir :
forall (f : t -> t),
forall (s : t),
forall (x y : elt),
In x (add y (f s)) ->
~ E.eq x y ->
In x (f s).
Proof.
fsetdec.
Qed.
End MSetDecideTestCases.
End WDecideOn.
Require Import MSetInterface.
(** Now comes variants for self-contained weak sets and for full sets.
For these variants, only one argument is necessary. Thanks to
the subtyping [WS<=S], the [Decide] functor which is meant to be
used on modules [(M:S)] can simply be an alias of [WDecide]. *)
Module WDecide (M:WSets) := !WDecideOn M.E M.
Module Decide := WDecide.
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2013 by Wilson Snyder.
// Very simple test for interface pathclearing
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc=1;
ifc #(2) itopa();
ifc #(4) itopb();
sub ca (.isub(itopa),
.clk);
sub cb (.isub(itopb),
.clk);
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d result=%b %b\n",$time, cyc, itopa.valueo, itopb.valueo);
`endif
cyc <= cyc + 1;
itopa.valuei <= cyc[1:0];
itopb.valuei <= cyc[3:0];
if (cyc==1) begin
if (itopa.WIDTH != 2) $stop;
if (itopb.WIDTH != 4) $stop;
if ($bits(itopa.valueo) != 2) $stop;
if ($bits(itopb.valueo) != 4) $stop;
if ($bits(itopa.out_modport.valueo) != 2) $stop;
if ($bits(itopb.out_modport.valueo) != 4) $stop;
end
if (cyc==4) begin
if (itopa.valueo != 2'b11) $stop;
if (itopb.valueo != 4'b0011) $stop;
end
if (cyc==5) begin
if (itopa.valueo != 2'b00) $stop;
if (itopb.valueo != 4'b0100) $stop;
end
if (cyc==20) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
interface ifc
#(parameter WIDTH = 1);
// verilator lint_off MULTIDRIVEN
logic [WIDTH-1:0] valuei;
logic [WIDTH-1:0] valueo;
// verilator lint_on MULTIDRIVEN
modport out_modport (input valuei, output valueo);
endinterface
// Note not parameterized
module sub
(
ifc.out_modport isub,
input clk
);
always @(posedge clk) isub.valueo <= isub.valuei + 1;
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2013 by Wilson Snyder.
// Very simple test for interface pathclearing
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc=1;
ifc #(2) itopa();
ifc #(4) itopb();
sub ca (.isub(itopa),
.clk);
sub cb (.isub(itopb),
.clk);
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d result=%b %b\n",$time, cyc, itopa.valueo, itopb.valueo);
`endif
cyc <= cyc + 1;
itopa.valuei <= cyc[1:0];
itopb.valuei <= cyc[3:0];
if (cyc==1) begin
if (itopa.WIDTH != 2) $stop;
if (itopb.WIDTH != 4) $stop;
if ($bits(itopa.valueo) != 2) $stop;
if ($bits(itopb.valueo) != 4) $stop;
if ($bits(itopa.out_modport.valueo) != 2) $stop;
if ($bits(itopb.out_modport.valueo) != 4) $stop;
end
if (cyc==4) begin
if (itopa.valueo != 2'b11) $stop;
if (itopb.valueo != 4'b0011) $stop;
end
if (cyc==5) begin
if (itopa.valueo != 2'b00) $stop;
if (itopb.valueo != 4'b0100) $stop;
end
if (cyc==20) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
interface ifc
#(parameter WIDTH = 1);
// verilator lint_off MULTIDRIVEN
logic [WIDTH-1:0] valuei;
logic [WIDTH-1:0] valueo;
// verilator lint_on MULTIDRIVEN
modport out_modport (input valuei, output valueo);
endinterface
// Note not parameterized
module sub
(
ifc.out_modport isub,
input clk
);
always @(posedge clk) isub.valueo <= isub.valuei + 1;
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2013 by Wilson Snyder.
// Very simple test for interface pathclearing
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc=1;
ifc #(2) itopa();
ifc #(4) itopb();
sub ca (.isub(itopa),
.clk);
sub cb (.isub(itopb),
.clk);
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d result=%b %b\n",$time, cyc, itopa.valueo, itopb.valueo);
`endif
cyc <= cyc + 1;
itopa.valuei <= cyc[1:0];
itopb.valuei <= cyc[3:0];
if (cyc==1) begin
if (itopa.WIDTH != 2) $stop;
if (itopb.WIDTH != 4) $stop;
if ($bits(itopa.valueo) != 2) $stop;
if ($bits(itopb.valueo) != 4) $stop;
if ($bits(itopa.out_modport.valueo) != 2) $stop;
if ($bits(itopb.out_modport.valueo) != 4) $stop;
end
if (cyc==4) begin
if (itopa.valueo != 2'b11) $stop;
if (itopb.valueo != 4'b0011) $stop;
end
if (cyc==5) begin
if (itopa.valueo != 2'b00) $stop;
if (itopb.valueo != 4'b0100) $stop;
end
if (cyc==20) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
interface ifc
#(parameter WIDTH = 1);
// verilator lint_off MULTIDRIVEN
logic [WIDTH-1:0] valuei;
logic [WIDTH-1:0] valueo;
// verilator lint_on MULTIDRIVEN
modport out_modport (input valuei, output valueo);
endinterface
// Note not parameterized
module sub
(
ifc.out_modport isub,
input clk
);
always @(posedge clk) isub.valueo <= isub.valuei + 1;
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2013.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc=0;
reg [63:0] crc;
reg [63:0] sum;
// Take CRC data and apply to testblock inputs
wire pick1 = crc[0];
wire [13:0][1:0] data1 = crc[27+1:1];
wire [3:0][2:0][1:0] data2 = crc[23+29:29];
/*AUTOWIRE*/
// Beginning of automatic wires (for undeclared instantiated-module outputs)
logic [15:0] [1:0] datao; // From test of Test.v
// End of automatics
Test test (/*AUTOINST*/
// Outputs
.datao (datao/*[15:0][1:0]*/),
// Inputs
.pick1 (pick1),
.data1 (data1/*[13:0][1:0]*/),
.data2 (data2/*[2:0][3:0][1:0]*/));
// Aggregate outputs into a single result vector
wire [63:0] result = {32'h0, datao};
// Test loop
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result);
`endif
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]};
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
sum <= 64'h0;
end
else if (cyc<10) begin
sum <= 64'h0;
end
else if (cyc<90) begin
end
else if (cyc==99) begin
$write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum);
if (crc !== 64'hc77bb9b3784ea091) $stop;
// What checksum will we end up with (above print should match)
`define EXPECTED_SUM 64'h3ff4bf0e6407b281
if (sum !== `EXPECTED_SUM) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
module Test
(
input logic pick1,
input logic [13:0] [1:0] data1, // 14 x 2 = 28 bits
input logic [ 3:0] [2:0] [1:0] data2, // 4 x 3 x 2 = 24 bits
output logic [15:0] [1:0] datao // 16 x 2 = 32 bits
);
// verilator lint_off WIDTH
always_comb datao[13: 0] // 28 bits
= (pick1)
? {data1} // 28 bits
: {'0, data2}; // 25-28 bits, perhaps not legal as '0 is unsized
// verilator lint_on WIDTH
always_comb datao[15:14] = '0;
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2013.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc=0;
reg [63:0] crc;
reg [63:0] sum;
// Take CRC data and apply to testblock inputs
wire pick1 = crc[0];
wire [13:0][1:0] data1 = crc[27+1:1];
wire [3:0][2:0][1:0] data2 = crc[23+29:29];
/*AUTOWIRE*/
// Beginning of automatic wires (for undeclared instantiated-module outputs)
logic [15:0] [1:0] datao; // From test of Test.v
// End of automatics
Test test (/*AUTOINST*/
// Outputs
.datao (datao/*[15:0][1:0]*/),
// Inputs
.pick1 (pick1),
.data1 (data1/*[13:0][1:0]*/),
.data2 (data2/*[2:0][3:0][1:0]*/));
// Aggregate outputs into a single result vector
wire [63:0] result = {32'h0, datao};
// Test loop
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result);
`endif
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]};
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
sum <= 64'h0;
end
else if (cyc<10) begin
sum <= 64'h0;
end
else if (cyc<90) begin
end
else if (cyc==99) begin
$write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum);
if (crc !== 64'hc77bb9b3784ea091) $stop;
// What checksum will we end up with (above print should match)
`define EXPECTED_SUM 64'h3ff4bf0e6407b281
if (sum !== `EXPECTED_SUM) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
module Test
(
input logic pick1,
input logic [13:0] [1:0] data1, // 14 x 2 = 28 bits
input logic [ 3:0] [2:0] [1:0] data2, // 4 x 3 x 2 = 24 bits
output logic [15:0] [1:0] datao // 16 x 2 = 32 bits
);
// verilator lint_off WIDTH
always_comb datao[13: 0] // 28 bits
= (pick1)
? {data1} // 28 bits
: {'0, data2}; // 25-28 bits, perhaps not legal as '0 is unsized
// verilator lint_on WIDTH
always_comb datao[15:14] = '0;
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2013.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc=0;
reg [63:0] crc;
reg [63:0] sum;
// Take CRC data and apply to testblock inputs
wire pick1 = crc[0];
wire [13:0][1:0] data1 = crc[27+1:1];
wire [3:0][2:0][1:0] data2 = crc[23+29:29];
/*AUTOWIRE*/
// Beginning of automatic wires (for undeclared instantiated-module outputs)
logic [15:0] [1:0] datao; // From test of Test.v
// End of automatics
Test test (/*AUTOINST*/
// Outputs
.datao (datao/*[15:0][1:0]*/),
// Inputs
.pick1 (pick1),
.data1 (data1/*[13:0][1:0]*/),
.data2 (data2/*[2:0][3:0][1:0]*/));
// Aggregate outputs into a single result vector
wire [63:0] result = {32'h0, datao};
// Test loop
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result);
`endif
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]};
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
sum <= 64'h0;
end
else if (cyc<10) begin
sum <= 64'h0;
end
else if (cyc<90) begin
end
else if (cyc==99) begin
$write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum);
if (crc !== 64'hc77bb9b3784ea091) $stop;
// What checksum will we end up with (above print should match)
`define EXPECTED_SUM 64'h3ff4bf0e6407b281
if (sum !== `EXPECTED_SUM) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
module Test
(
input logic pick1,
input logic [13:0] [1:0] data1, // 14 x 2 = 28 bits
input logic [ 3:0] [2:0] [1:0] data2, // 4 x 3 x 2 = 24 bits
output logic [15:0] [1:0] datao // 16 x 2 = 32 bits
);
// verilator lint_off WIDTH
always_comb datao[13: 0] // 28 bits
= (pick1)
? {data1} // 28 bits
: {'0, data2}; // 25-28 bits, perhaps not legal as '0 is unsized
// verilator lint_on WIDTH
always_comb datao[15:14] = '0;
endmodule
|
/*
*******************************************************************************
*
* FIFO Generator - Verilog Behavioral Model
*
*******************************************************************************
*
* (c) Copyright 1995 - 2009 Xilinx, Inc. All rights reserved.
*
* This file contains confidential and proprietary information
* of Xilinx, Inc. and is protected under U.S. and
* international copyright and other intellectual property
* laws.
*
* DISCLAIMER
* This disclaimer is not a license and does not grant any
* rights to the materials distributed herewith. Except as
* otherwise provided in a valid license issued to you by
* Xilinx, and to the maximum extent permitted by applicable
* law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
* WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
* AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
* BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
* INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
* (2) Xilinx shall not be liable (whether in contract or tort,
* including negligence, or under any other theory of
* liability) for any loss or damage of any kind or nature
* related to, arising under or in connection with these
* materials, including for any direct, or any indirect,
* special, incidental, or consequential loss or damage
* (including loss of data, profits, goodwill, or any type of
* loss or damage suffered as a result of any action brought
* by a third party) even if such damage or loss was
* reasonably foreseeable or Xilinx had been advised of the
* possibility of the same.
*
* CRITICAL APPLICATIONS
* Xilinx products are not designed or intended to be fail-
* safe, or for use in any application requiring fail-safe
* performance, such as life-support or safety devices or
* systems, Class III medical devices, nuclear facilities,
* applications related to the deployment of airbags, or any
* other applications that could lead to death, personal
* injury, or severe property or environmental damage
* (individually and collectively, "Critical
* Applications"). Customer assumes the sole risk and
* liability of any use of Xilinx products in Critical
* Applications, subject only to applicable laws and
* regulations governing limitations on product liability.
*
* THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
* PART OF THIS FILE AT ALL TIMES.
*
*******************************************************************************
*******************************************************************************
*
* Filename: fifo_generator_vlog_beh.v
*
* Author : Xilinx
*
*******************************************************************************
* Structure:
*
* fifo_generator_vlog_beh.v
* |
* +-fifo_generator_v12_0_bhv_ver_as
* |
* +-fifo_generator_v12_0_bhv_ver_ss
* |
* +-fifo_generator_v12_0_bhv_ver_preload0
*
*******************************************************************************
* Description:
*
* The Verilog behavioral model for the FIFO Generator.
*
* The behavioral model has three parts:
* - The behavioral model for independent clocks FIFOs (_as)
* - The behavioral model for common clock FIFOs (_ss)
* - The "preload logic" block which implements First-word Fall-through
*
*******************************************************************************
* Description:
* The verilog behavioral model for the FIFO generator core.
*
*******************************************************************************
*/
`timescale 1ps/1ps
`ifndef TCQ
`define TCQ 100
`endif
/*******************************************************************************
* Declaration of top-level module
******************************************************************************/
module fifo_generator_vlog_beh
#(
//-----------------------------------------------------------------------
// Generic Declarations
//-----------------------------------------------------------------------
parameter C_COMMON_CLOCK = 0,
parameter C_COUNT_TYPE = 0,
parameter C_DATA_COUNT_WIDTH = 2,
parameter C_DEFAULT_VALUE = "",
parameter C_DIN_WIDTH = 8,
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_ENABLE_RLOCS = 0,
parameter C_FAMILY = "",
parameter C_FULL_FLAGS_RST_VAL = 1,
parameter C_HAS_ALMOST_EMPTY = 0,
parameter C_HAS_ALMOST_FULL = 0,
parameter C_HAS_BACKUP = 0,
parameter C_HAS_DATA_COUNT = 0,
parameter C_HAS_INT_CLK = 0,
parameter C_HAS_MEMINIT_FILE = 0,
parameter C_HAS_OVERFLOW = 0,
parameter C_HAS_RD_DATA_COUNT = 0,
parameter C_HAS_RD_RST = 0,
parameter C_HAS_RST = 1,
parameter C_HAS_SRST = 0,
parameter C_HAS_UNDERFLOW = 0,
parameter C_HAS_VALID = 0,
parameter C_HAS_WR_ACK = 0,
parameter C_HAS_WR_DATA_COUNT = 0,
parameter C_HAS_WR_RST = 0,
parameter C_IMPLEMENTATION_TYPE = 0,
parameter C_INIT_WR_PNTR_VAL = 0,
parameter C_MEMORY_TYPE = 1,
parameter C_MIF_FILE_NAME = "",
parameter C_OPTIMIZATION_MODE = 0,
parameter C_OVERFLOW_LOW = 0,
parameter C_PRELOAD_LATENCY = 1,
parameter C_PRELOAD_REGS = 0,
parameter C_PRIM_FIFO_TYPE = "4kx4",
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0,
parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0,
parameter C_PROG_EMPTY_TYPE = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0,
parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0,
parameter C_PROG_FULL_TYPE = 0,
parameter C_RD_DATA_COUNT_WIDTH = 2,
parameter C_RD_DEPTH = 256,
parameter C_RD_FREQ = 1,
parameter C_RD_PNTR_WIDTH = 8,
parameter C_UNDERFLOW_LOW = 0,
parameter C_USE_DOUT_RST = 0,
parameter C_USE_ECC = 0,
parameter C_USE_EMBEDDED_REG = 0,
parameter C_USE_PIPELINE_REG = 0,
parameter C_POWER_SAVING_MODE = 0,
parameter C_USE_FIFO16_FLAGS = 0,
parameter C_USE_FWFT_DATA_COUNT = 0,
parameter C_VALID_LOW = 0,
parameter C_WR_ACK_LOW = 0,
parameter C_WR_DATA_COUNT_WIDTH = 2,
parameter C_WR_DEPTH = 256,
parameter C_WR_FREQ = 1,
parameter C_WR_PNTR_WIDTH = 8,
parameter C_WR_RESPONSE_LATENCY = 1,
parameter C_MSGON_VAL = 1,
parameter C_ENABLE_RST_SYNC = 1,
parameter C_ERROR_INJECTION_TYPE = 0,
parameter C_SYNCHRONIZER_STAGE = 2,
// AXI Interface related parameters start here
parameter C_INTERFACE_TYPE = 0, // 0: Native Interface, 1: AXI4 Stream, 2: AXI4/AXI3
parameter C_AXI_TYPE = 0, // 1: AXI4, 2: AXI4 Lite, 3: AXI3
parameter C_HAS_AXI_WR_CHANNEL = 0,
parameter C_HAS_AXI_RD_CHANNEL = 0,
parameter C_HAS_SLAVE_CE = 0,
parameter C_HAS_MASTER_CE = 0,
parameter C_ADD_NGC_CONSTRAINT = 0,
parameter C_USE_COMMON_UNDERFLOW = 0,
parameter C_USE_COMMON_OVERFLOW = 0,
parameter C_USE_DEFAULT_SETTINGS = 0,
// AXI Full/Lite
parameter C_AXI_ID_WIDTH = 0,
parameter C_AXI_ADDR_WIDTH = 0,
parameter C_AXI_DATA_WIDTH = 0,
parameter C_AXI_LEN_WIDTH = 8,
parameter C_AXI_LOCK_WIDTH = 2,
parameter C_HAS_AXI_ID = 0,
parameter C_HAS_AXI_AWUSER = 0,
parameter C_HAS_AXI_WUSER = 0,
parameter C_HAS_AXI_BUSER = 0,
parameter C_HAS_AXI_ARUSER = 0,
parameter C_HAS_AXI_RUSER = 0,
parameter C_AXI_ARUSER_WIDTH = 0,
parameter C_AXI_AWUSER_WIDTH = 0,
parameter C_AXI_WUSER_WIDTH = 0,
parameter C_AXI_BUSER_WIDTH = 0,
parameter C_AXI_RUSER_WIDTH = 0,
// AXI Streaming
parameter C_HAS_AXIS_TDATA = 0,
parameter C_HAS_AXIS_TID = 0,
parameter C_HAS_AXIS_TDEST = 0,
parameter C_HAS_AXIS_TUSER = 0,
parameter C_HAS_AXIS_TREADY = 0,
parameter C_HAS_AXIS_TLAST = 0,
parameter C_HAS_AXIS_TSTRB = 0,
parameter C_HAS_AXIS_TKEEP = 0,
parameter C_AXIS_TDATA_WIDTH = 1,
parameter C_AXIS_TID_WIDTH = 1,
parameter C_AXIS_TDEST_WIDTH = 1,
parameter C_AXIS_TUSER_WIDTH = 1,
parameter C_AXIS_TSTRB_WIDTH = 1,
parameter C_AXIS_TKEEP_WIDTH = 1,
// AXI Channel Type
// WACH --> Write Address Channel
// WDCH --> Write Data Channel
// WRCH --> Write Response Channel
// RACH --> Read Address Channel
// RDCH --> Read Data Channel
// AXIS --> AXI Streaming
parameter C_WACH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logic
parameter C_WDCH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie
parameter C_WRCH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie
parameter C_RACH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie
parameter C_RDCH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie
parameter C_AXIS_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie
// AXI Implementation Type
// 1 = Common Clock Block RAM FIFO
// 2 = Common Clock Distributed RAM FIFO
// 11 = Independent Clock Block RAM FIFO
// 12 = Independent Clock Distributed RAM FIFO
parameter C_IMPLEMENTATION_TYPE_WACH = 0,
parameter C_IMPLEMENTATION_TYPE_WDCH = 0,
parameter C_IMPLEMENTATION_TYPE_WRCH = 0,
parameter C_IMPLEMENTATION_TYPE_RACH = 0,
parameter C_IMPLEMENTATION_TYPE_RDCH = 0,
parameter C_IMPLEMENTATION_TYPE_AXIS = 0,
// AXI FIFO Type
// 0 = Data FIFO
// 1 = Packet FIFO
// 2 = Low Latency Sync FIFO
// 3 = Low Latency Async FIFO
parameter C_APPLICATION_TYPE_WACH = 0,
parameter C_APPLICATION_TYPE_WDCH = 0,
parameter C_APPLICATION_TYPE_WRCH = 0,
parameter C_APPLICATION_TYPE_RACH = 0,
parameter C_APPLICATION_TYPE_RDCH = 0,
parameter C_APPLICATION_TYPE_AXIS = 0,
// AXI Built-in FIFO Primitive Type
// 512x36, 1kx18, 2kx9, 4kx4, etc
parameter C_PRIM_FIFO_TYPE_WACH = "512x36",
parameter C_PRIM_FIFO_TYPE_WDCH = "512x36",
parameter C_PRIM_FIFO_TYPE_WRCH = "512x36",
parameter C_PRIM_FIFO_TYPE_RACH = "512x36",
parameter C_PRIM_FIFO_TYPE_RDCH = "512x36",
parameter C_PRIM_FIFO_TYPE_AXIS = "512x36",
// Enable ECC
// 0 = ECC disabled
// 1 = ECC enabled
parameter C_USE_ECC_WACH = 0,
parameter C_USE_ECC_WDCH = 0,
parameter C_USE_ECC_WRCH = 0,
parameter C_USE_ECC_RACH = 0,
parameter C_USE_ECC_RDCH = 0,
parameter C_USE_ECC_AXIS = 0,
// ECC Error Injection Type
// 0 = No Error Injection
// 1 = Single Bit Error Injection
// 2 = Double Bit Error Injection
// 3 = Single Bit and Double Bit Error Injection
parameter C_ERROR_INJECTION_TYPE_WACH = 0,
parameter C_ERROR_INJECTION_TYPE_WDCH = 0,
parameter C_ERROR_INJECTION_TYPE_WRCH = 0,
parameter C_ERROR_INJECTION_TYPE_RACH = 0,
parameter C_ERROR_INJECTION_TYPE_RDCH = 0,
parameter C_ERROR_INJECTION_TYPE_AXIS = 0,
// Input Data Width
// Accumulation of all AXI input signal's width
parameter C_DIN_WIDTH_WACH = 1,
parameter C_DIN_WIDTH_WDCH = 1,
parameter C_DIN_WIDTH_WRCH = 1,
parameter C_DIN_WIDTH_RACH = 1,
parameter C_DIN_WIDTH_RDCH = 1,
parameter C_DIN_WIDTH_AXIS = 1,
parameter C_WR_DEPTH_WACH = 16,
parameter C_WR_DEPTH_WDCH = 16,
parameter C_WR_DEPTH_WRCH = 16,
parameter C_WR_DEPTH_RACH = 16,
parameter C_WR_DEPTH_RDCH = 16,
parameter C_WR_DEPTH_AXIS = 16,
parameter C_WR_PNTR_WIDTH_WACH = 4,
parameter C_WR_PNTR_WIDTH_WDCH = 4,
parameter C_WR_PNTR_WIDTH_WRCH = 4,
parameter C_WR_PNTR_WIDTH_RACH = 4,
parameter C_WR_PNTR_WIDTH_RDCH = 4,
parameter C_WR_PNTR_WIDTH_AXIS = 4,
parameter C_HAS_DATA_COUNTS_WACH = 0,
parameter C_HAS_DATA_COUNTS_WDCH = 0,
parameter C_HAS_DATA_COUNTS_WRCH = 0,
parameter C_HAS_DATA_COUNTS_RACH = 0,
parameter C_HAS_DATA_COUNTS_RDCH = 0,
parameter C_HAS_DATA_COUNTS_AXIS = 0,
parameter C_HAS_PROG_FLAGS_WACH = 0,
parameter C_HAS_PROG_FLAGS_WDCH = 0,
parameter C_HAS_PROG_FLAGS_WRCH = 0,
parameter C_HAS_PROG_FLAGS_RACH = 0,
parameter C_HAS_PROG_FLAGS_RDCH = 0,
parameter C_HAS_PROG_FLAGS_AXIS = 0,
parameter C_PROG_FULL_TYPE_WACH = 0,
parameter C_PROG_FULL_TYPE_WDCH = 0,
parameter C_PROG_FULL_TYPE_WRCH = 0,
parameter C_PROG_FULL_TYPE_RACH = 0,
parameter C_PROG_FULL_TYPE_RDCH = 0,
parameter C_PROG_FULL_TYPE_AXIS = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_WACH = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_WDCH = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_WRCH = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_RACH = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_RDCH = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_AXIS = 0,
parameter C_PROG_EMPTY_TYPE_WACH = 0,
parameter C_PROG_EMPTY_TYPE_WDCH = 0,
parameter C_PROG_EMPTY_TYPE_WRCH = 0,
parameter C_PROG_EMPTY_TYPE_RACH = 0,
parameter C_PROG_EMPTY_TYPE_RDCH = 0,
parameter C_PROG_EMPTY_TYPE_AXIS = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS = 0,
parameter C_REG_SLICE_MODE_WACH = 0,
parameter C_REG_SLICE_MODE_WDCH = 0,
parameter C_REG_SLICE_MODE_WRCH = 0,
parameter C_REG_SLICE_MODE_RACH = 0,
parameter C_REG_SLICE_MODE_RDCH = 0,
parameter C_REG_SLICE_MODE_AXIS = 0
)
(
//------------------------------------------------------------------------------
// Input and Output Declarations
//------------------------------------------------------------------------------
// Conventional FIFO Interface Signals
input backup,
input backup_marker,
input clk,
input rst,
input srst,
input wr_clk,
input wr_rst,
input rd_clk,
input rd_rst,
input [C_DIN_WIDTH-1:0] din,
input wr_en,
input rd_en,
// Optional inputs
input [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh,
input [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_assert,
input [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_negate,
input [C_WR_PNTR_WIDTH-1:0] prog_full_thresh,
input [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_assert,
input [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_negate,
input int_clk,
input injectdbiterr,
input injectsbiterr,
input sleep,
output [C_DOUT_WIDTH-1:0] dout,
output full,
output almost_full,
output wr_ack,
output overflow,
output empty,
output almost_empty,
output valid,
output underflow,
output [C_DATA_COUNT_WIDTH-1:0] data_count,
output [C_RD_DATA_COUNT_WIDTH-1:0] rd_data_count,
output [C_WR_DATA_COUNT_WIDTH-1:0] wr_data_count,
output prog_full,
output prog_empty,
output sbiterr,
output dbiterr,
output wr_rst_busy,
output rd_rst_busy,
// AXI Global Signal
input m_aclk,
input s_aclk,
input s_aresetn,
input s_aclk_en,
input m_aclk_en,
// AXI Full/Lite Slave Write Channel (write side)
input [C_AXI_ID_WIDTH-1:0] s_axi_awid,
input [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr,
input [C_AXI_LEN_WIDTH-1:0] s_axi_awlen,
input [3-1:0] s_axi_awsize,
input [2-1:0] s_axi_awburst,
input [C_AXI_LOCK_WIDTH-1:0] s_axi_awlock,
input [4-1:0] s_axi_awcache,
input [3-1:0] s_axi_awprot,
input [4-1:0] s_axi_awqos,
input [4-1:0] s_axi_awregion,
input [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser,
input s_axi_awvalid,
output s_axi_awready,
input [C_AXI_ID_WIDTH-1:0] s_axi_wid,
input [C_AXI_DATA_WIDTH-1:0] s_axi_wdata,
input [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb,
input s_axi_wlast,
input [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser,
input s_axi_wvalid,
output s_axi_wready,
output [C_AXI_ID_WIDTH-1:0] s_axi_bid,
output [2-1:0] s_axi_bresp,
output [C_AXI_BUSER_WIDTH-1:0] s_axi_buser,
output s_axi_bvalid,
input s_axi_bready,
// AXI Full/Lite Master Write Channel (read side)
output [C_AXI_ID_WIDTH-1:0] m_axi_awid,
output [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr,
output [C_AXI_LEN_WIDTH-1:0] m_axi_awlen,
output [3-1:0] m_axi_awsize,
output [2-1:0] m_axi_awburst,
output [C_AXI_LOCK_WIDTH-1:0] m_axi_awlock,
output [4-1:0] m_axi_awcache,
output [3-1:0] m_axi_awprot,
output [4-1:0] m_axi_awqos,
output [4-1:0] m_axi_awregion,
output [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser,
output m_axi_awvalid,
input m_axi_awready,
output [C_AXI_ID_WIDTH-1:0] m_axi_wid,
output [C_AXI_DATA_WIDTH-1:0] m_axi_wdata,
output [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb,
output m_axi_wlast,
output [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser,
output m_axi_wvalid,
input m_axi_wready,
input [C_AXI_ID_WIDTH-1:0] m_axi_bid,
input [2-1:0] m_axi_bresp,
input [C_AXI_BUSER_WIDTH-1:0] m_axi_buser,
input m_axi_bvalid,
output m_axi_bready,
// AXI Full/Lite Slave Read Channel (write side)
input [C_AXI_ID_WIDTH-1:0] s_axi_arid,
input [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr,
input [C_AXI_LEN_WIDTH-1:0] s_axi_arlen,
input [3-1:0] s_axi_arsize,
input [2-1:0] s_axi_arburst,
input [C_AXI_LOCK_WIDTH-1:0] s_axi_arlock,
input [4-1:0] s_axi_arcache,
input [3-1:0] s_axi_arprot,
input [4-1:0] s_axi_arqos,
input [4-1:0] s_axi_arregion,
input [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser,
input s_axi_arvalid,
output s_axi_arready,
output [C_AXI_ID_WIDTH-1:0] s_axi_rid,
output [C_AXI_DATA_WIDTH-1:0] s_axi_rdata,
output [2-1:0] s_axi_rresp,
output s_axi_rlast,
output [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser,
output s_axi_rvalid,
input s_axi_rready,
// AXI Full/Lite Master Read Channel (read side)
output [C_AXI_ID_WIDTH-1:0] m_axi_arid,
output [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr,
output [C_AXI_LEN_WIDTH-1:0] m_axi_arlen,
output [3-1:0] m_axi_arsize,
output [2-1:0] m_axi_arburst,
output [C_AXI_LOCK_WIDTH-1:0] m_axi_arlock,
output [4-1:0] m_axi_arcache,
output [3-1:0] m_axi_arprot,
output [4-1:0] m_axi_arqos,
output [4-1:0] m_axi_arregion,
output [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser,
output m_axi_arvalid,
input m_axi_arready,
input [C_AXI_ID_WIDTH-1:0] m_axi_rid,
input [C_AXI_DATA_WIDTH-1:0] m_axi_rdata,
input [2-1:0] m_axi_rresp,
input m_axi_rlast,
input [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser,
input m_axi_rvalid,
output m_axi_rready,
// AXI Streaming Slave Signals (Write side)
input s_axis_tvalid,
output s_axis_tready,
input [C_AXIS_TDATA_WIDTH-1:0] s_axis_tdata,
input [C_AXIS_TSTRB_WIDTH-1:0] s_axis_tstrb,
input [C_AXIS_TKEEP_WIDTH-1:0] s_axis_tkeep,
input s_axis_tlast,
input [C_AXIS_TID_WIDTH-1:0] s_axis_tid,
input [C_AXIS_TDEST_WIDTH-1:0] s_axis_tdest,
input [C_AXIS_TUSER_WIDTH-1:0] s_axis_tuser,
// AXI Streaming Master Signals (Read side)
output m_axis_tvalid,
input m_axis_tready,
output [C_AXIS_TDATA_WIDTH-1:0] m_axis_tdata,
output [C_AXIS_TSTRB_WIDTH-1:0] m_axis_tstrb,
output [C_AXIS_TKEEP_WIDTH-1:0] m_axis_tkeep,
output m_axis_tlast,
output [C_AXIS_TID_WIDTH-1:0] m_axis_tid,
output [C_AXIS_TDEST_WIDTH-1:0] m_axis_tdest,
output [C_AXIS_TUSER_WIDTH-1:0] m_axis_tuser,
// AXI Full/Lite Write Address Channel signals
input axi_aw_injectsbiterr,
input axi_aw_injectdbiterr,
input [C_WR_PNTR_WIDTH_WACH-1:0] axi_aw_prog_full_thresh,
input [C_WR_PNTR_WIDTH_WACH-1:0] axi_aw_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_WACH:0] axi_aw_data_count,
output [C_WR_PNTR_WIDTH_WACH:0] axi_aw_wr_data_count,
output [C_WR_PNTR_WIDTH_WACH:0] axi_aw_rd_data_count,
output axi_aw_sbiterr,
output axi_aw_dbiterr,
output axi_aw_overflow,
output axi_aw_underflow,
output axi_aw_prog_full,
output axi_aw_prog_empty,
// AXI Full/Lite Write Data Channel signals
input axi_w_injectsbiterr,
input axi_w_injectdbiterr,
input [C_WR_PNTR_WIDTH_WDCH-1:0] axi_w_prog_full_thresh,
input [C_WR_PNTR_WIDTH_WDCH-1:0] axi_w_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_WDCH:0] axi_w_data_count,
output [C_WR_PNTR_WIDTH_WDCH:0] axi_w_wr_data_count,
output [C_WR_PNTR_WIDTH_WDCH:0] axi_w_rd_data_count,
output axi_w_sbiterr,
output axi_w_dbiterr,
output axi_w_overflow,
output axi_w_underflow,
output axi_w_prog_full,
output axi_w_prog_empty,
// AXI Full/Lite Write Response Channel signals
input axi_b_injectsbiterr,
input axi_b_injectdbiterr,
input [C_WR_PNTR_WIDTH_WRCH-1:0] axi_b_prog_full_thresh,
input [C_WR_PNTR_WIDTH_WRCH-1:0] axi_b_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_WRCH:0] axi_b_data_count,
output [C_WR_PNTR_WIDTH_WRCH:0] axi_b_wr_data_count,
output [C_WR_PNTR_WIDTH_WRCH:0] axi_b_rd_data_count,
output axi_b_sbiterr,
output axi_b_dbiterr,
output axi_b_overflow,
output axi_b_underflow,
output axi_b_prog_full,
output axi_b_prog_empty,
// AXI Full/Lite Read Address Channel signals
input axi_ar_injectsbiterr,
input axi_ar_injectdbiterr,
input [C_WR_PNTR_WIDTH_RACH-1:0] axi_ar_prog_full_thresh,
input [C_WR_PNTR_WIDTH_RACH-1:0] axi_ar_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_RACH:0] axi_ar_data_count,
output [C_WR_PNTR_WIDTH_RACH:0] axi_ar_wr_data_count,
output [C_WR_PNTR_WIDTH_RACH:0] axi_ar_rd_data_count,
output axi_ar_sbiterr,
output axi_ar_dbiterr,
output axi_ar_overflow,
output axi_ar_underflow,
output axi_ar_prog_full,
output axi_ar_prog_empty,
// AXI Full/Lite Read Data Channel Signals
input axi_r_injectsbiterr,
input axi_r_injectdbiterr,
input [C_WR_PNTR_WIDTH_RDCH-1:0] axi_r_prog_full_thresh,
input [C_WR_PNTR_WIDTH_RDCH-1:0] axi_r_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_RDCH:0] axi_r_data_count,
output [C_WR_PNTR_WIDTH_RDCH:0] axi_r_wr_data_count,
output [C_WR_PNTR_WIDTH_RDCH:0] axi_r_rd_data_count,
output axi_r_sbiterr,
output axi_r_dbiterr,
output axi_r_overflow,
output axi_r_underflow,
output axi_r_prog_full,
output axi_r_prog_empty,
// AXI Streaming FIFO Related Signals
input axis_injectsbiterr,
input axis_injectdbiterr,
input [C_WR_PNTR_WIDTH_AXIS-1:0] axis_prog_full_thresh,
input [C_WR_PNTR_WIDTH_AXIS-1:0] axis_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_AXIS:0] axis_data_count,
output [C_WR_PNTR_WIDTH_AXIS:0] axis_wr_data_count,
output [C_WR_PNTR_WIDTH_AXIS:0] axis_rd_data_count,
output axis_sbiterr,
output axis_dbiterr,
output axis_overflow,
output axis_underflow,
output axis_prog_full,
output axis_prog_empty
);
wire BACKUP;
wire BACKUP_MARKER;
wire CLK;
wire RST;
wire SRST;
wire WR_CLK;
wire WR_RST;
wire RD_CLK;
wire RD_RST;
wire [C_DIN_WIDTH-1:0] DIN;
wire WR_EN;
wire RD_EN;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE;
wire INT_CLK;
wire INJECTDBITERR;
wire INJECTSBITERR;
wire SLEEP;
wire [C_DOUT_WIDTH-1:0] DOUT;
wire FULL;
wire ALMOST_FULL;
wire WR_ACK;
wire OVERFLOW;
wire EMPTY;
wire ALMOST_EMPTY;
wire VALID;
wire UNDERFLOW;
wire [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT;
wire [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT;
wire [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT;
wire PROG_FULL;
wire PROG_EMPTY;
wire SBITERR;
wire DBITERR;
wire WR_RST_BUSY;
wire RD_RST_BUSY;
wire M_ACLK;
wire S_ACLK;
wire S_ARESETN;
wire S_ACLK_EN;
wire M_ACLK_EN;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID;
wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR;
wire [C_AXI_LEN_WIDTH-1:0] S_AXI_AWLEN;
wire [3-1:0] S_AXI_AWSIZE;
wire [2-1:0] S_AXI_AWBURST;
wire [C_AXI_LOCK_WIDTH-1:0] S_AXI_AWLOCK;
wire [4-1:0] S_AXI_AWCACHE;
wire [3-1:0] S_AXI_AWPROT;
wire [4-1:0] S_AXI_AWQOS;
wire [4-1:0] S_AXI_AWREGION;
wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER;
wire S_AXI_AWVALID;
wire S_AXI_AWREADY;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_WID;
wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA;
wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB;
wire S_AXI_WLAST;
wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER;
wire S_AXI_WVALID;
wire S_AXI_WREADY;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID;
wire [2-1:0] S_AXI_BRESP;
wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER;
wire S_AXI_BVALID;
wire S_AXI_BREADY;
wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID;
wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR;
wire [C_AXI_LEN_WIDTH-1:0] M_AXI_AWLEN;
wire [3-1:0] M_AXI_AWSIZE;
wire [2-1:0] M_AXI_AWBURST;
wire [C_AXI_LOCK_WIDTH-1:0] M_AXI_AWLOCK;
wire [4-1:0] M_AXI_AWCACHE;
wire [3-1:0] M_AXI_AWPROT;
wire [4-1:0] M_AXI_AWQOS;
wire [4-1:0] M_AXI_AWREGION;
wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER;
wire M_AXI_AWVALID;
wire M_AXI_AWREADY;
wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID;
wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA;
wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB;
wire M_AXI_WLAST;
wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER;
wire M_AXI_WVALID;
wire M_AXI_WREADY;
wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID;
wire [2-1:0] M_AXI_BRESP;
wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER;
wire M_AXI_BVALID;
wire M_AXI_BREADY;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID;
wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR;
wire [C_AXI_LEN_WIDTH-1:0] S_AXI_ARLEN;
wire [3-1:0] S_AXI_ARSIZE;
wire [2-1:0] S_AXI_ARBURST;
wire [C_AXI_LOCK_WIDTH-1:0] S_AXI_ARLOCK;
wire [4-1:0] S_AXI_ARCACHE;
wire [3-1:0] S_AXI_ARPROT;
wire [4-1:0] S_AXI_ARQOS;
wire [4-1:0] S_AXI_ARREGION;
wire [C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER;
wire S_AXI_ARVALID;
wire S_AXI_ARREADY;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID;
wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA;
wire [2-1:0] S_AXI_RRESP;
wire S_AXI_RLAST;
wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER;
wire S_AXI_RVALID;
wire S_AXI_RREADY;
wire [C_AXI_ID_WIDTH-1:0] M_AXI_ARID;
wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR;
wire [C_AXI_LEN_WIDTH-1:0] M_AXI_ARLEN;
wire [3-1:0] M_AXI_ARSIZE;
wire [2-1:0] M_AXI_ARBURST;
wire [C_AXI_LOCK_WIDTH-1:0] M_AXI_ARLOCK;
wire [4-1:0] M_AXI_ARCACHE;
wire [3-1:0] M_AXI_ARPROT;
wire [4-1:0] M_AXI_ARQOS;
wire [4-1:0] M_AXI_ARREGION;
wire [C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER;
wire M_AXI_ARVALID;
wire M_AXI_ARREADY;
wire [C_AXI_ID_WIDTH-1:0] M_AXI_RID;
wire [C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA;
wire [2-1:0] M_AXI_RRESP;
wire M_AXI_RLAST;
wire [C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER;
wire M_AXI_RVALID;
wire M_AXI_RREADY;
wire S_AXIS_TVALID;
wire S_AXIS_TREADY;
wire [C_AXIS_TDATA_WIDTH-1:0] S_AXIS_TDATA;
wire [C_AXIS_TSTRB_WIDTH-1:0] S_AXIS_TSTRB;
wire [C_AXIS_TKEEP_WIDTH-1:0] S_AXIS_TKEEP;
wire S_AXIS_TLAST;
wire [C_AXIS_TID_WIDTH-1:0] S_AXIS_TID;
wire [C_AXIS_TDEST_WIDTH-1:0] S_AXIS_TDEST;
wire [C_AXIS_TUSER_WIDTH-1:0] S_AXIS_TUSER;
wire M_AXIS_TVALID;
wire M_AXIS_TREADY;
wire [C_AXIS_TDATA_WIDTH-1:0] M_AXIS_TDATA;
wire [C_AXIS_TSTRB_WIDTH-1:0] M_AXIS_TSTRB;
wire [C_AXIS_TKEEP_WIDTH-1:0] M_AXIS_TKEEP;
wire M_AXIS_TLAST;
wire [C_AXIS_TID_WIDTH-1:0] M_AXIS_TID;
wire [C_AXIS_TDEST_WIDTH-1:0] M_AXIS_TDEST;
wire [C_AXIS_TUSER_WIDTH-1:0] M_AXIS_TUSER;
wire AXI_AW_INJECTSBITERR;
wire AXI_AW_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_WACH-1:0] AXI_AW_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_WACH-1:0] AXI_AW_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_WACH:0] AXI_AW_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WACH:0] AXI_AW_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WACH:0] AXI_AW_RD_DATA_COUNT;
wire AXI_AW_SBITERR;
wire AXI_AW_DBITERR;
wire AXI_AW_OVERFLOW;
wire AXI_AW_UNDERFLOW;
wire AXI_AW_PROG_FULL;
wire AXI_AW_PROG_EMPTY;
wire AXI_W_INJECTSBITERR;
wire AXI_W_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_WDCH-1:0] AXI_W_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_WDCH-1:0] AXI_W_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_WDCH:0] AXI_W_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WDCH:0] AXI_W_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WDCH:0] AXI_W_RD_DATA_COUNT;
wire AXI_W_SBITERR;
wire AXI_W_DBITERR;
wire AXI_W_OVERFLOW;
wire AXI_W_UNDERFLOW;
wire AXI_W_PROG_FULL;
wire AXI_W_PROG_EMPTY;
wire AXI_B_INJECTSBITERR;
wire AXI_B_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_WRCH-1:0] AXI_B_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_WRCH-1:0] AXI_B_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_WRCH:0] AXI_B_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WRCH:0] AXI_B_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WRCH:0] AXI_B_RD_DATA_COUNT;
wire AXI_B_SBITERR;
wire AXI_B_DBITERR;
wire AXI_B_OVERFLOW;
wire AXI_B_UNDERFLOW;
wire AXI_B_PROG_FULL;
wire AXI_B_PROG_EMPTY;
wire AXI_AR_INJECTSBITERR;
wire AXI_AR_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_RACH-1:0] AXI_AR_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_RACH-1:0] AXI_AR_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_RACH:0] AXI_AR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_RACH:0] AXI_AR_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_RACH:0] AXI_AR_RD_DATA_COUNT;
wire AXI_AR_SBITERR;
wire AXI_AR_DBITERR;
wire AXI_AR_OVERFLOW;
wire AXI_AR_UNDERFLOW;
wire AXI_AR_PROG_FULL;
wire AXI_AR_PROG_EMPTY;
wire AXI_R_INJECTSBITERR;
wire AXI_R_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_RDCH-1:0] AXI_R_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_RDCH-1:0] AXI_R_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_RDCH:0] AXI_R_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_RDCH:0] AXI_R_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_RDCH:0] AXI_R_RD_DATA_COUNT;
wire AXI_R_SBITERR;
wire AXI_R_DBITERR;
wire AXI_R_OVERFLOW;
wire AXI_R_UNDERFLOW;
wire AXI_R_PROG_FULL;
wire AXI_R_PROG_EMPTY;
wire AXIS_INJECTSBITERR;
wire AXIS_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_AXIS-1:0] AXIS_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_AXIS-1:0] AXIS_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_AXIS:0] AXIS_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_AXIS:0] AXIS_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_AXIS:0] AXIS_RD_DATA_COUNT;
wire AXIS_SBITERR;
wire AXIS_DBITERR;
wire AXIS_OVERFLOW;
wire AXIS_UNDERFLOW;
wire AXIS_PROG_FULL;
wire AXIS_PROG_EMPTY;
wire [C_WR_DATA_COUNT_WIDTH-1:0] wr_data_count_in;
wire wr_rst_int;
wire rd_rst_int;
function integer find_log2;
input integer int_val;
integer i,j;
begin
i = 1;
j = 0;
for (i = 1; i < int_val; i = i*2) begin
j = j + 1;
end
find_log2 = j;
end
endfunction
// Conventional FIFO Interface Signals
assign BACKUP = backup;
assign BACKUP_MARKER = backup_marker;
assign CLK = clk;
assign RST = rst;
assign SRST = srst;
assign WR_CLK = wr_clk;
assign WR_RST = wr_rst;
assign RD_CLK = rd_clk;
assign RD_RST = rd_rst;
assign WR_EN = wr_en;
assign RD_EN = rd_en;
assign INT_CLK = int_clk;
assign INJECTDBITERR = injectdbiterr;
assign INJECTSBITERR = injectsbiterr;
assign SLEEP = sleep;
assign full = FULL;
assign almost_full = ALMOST_FULL;
assign wr_ack = WR_ACK;
assign overflow = OVERFLOW;
assign empty = EMPTY;
assign almost_empty = ALMOST_EMPTY;
assign valid = VALID;
assign underflow = UNDERFLOW;
assign prog_full = PROG_FULL;
assign prog_empty = PROG_EMPTY;
assign sbiterr = SBITERR;
assign dbiterr = DBITERR;
assign wr_rst_busy = WR_RST_BUSY;
assign rd_rst_busy = RD_RST_BUSY;
assign M_ACLK = m_aclk;
assign S_ACLK = s_aclk;
assign S_ARESETN = s_aresetn;
assign S_ACLK_EN = s_aclk_en;
assign M_ACLK_EN = m_aclk_en;
assign S_AXI_AWVALID = s_axi_awvalid;
assign s_axi_awready = S_AXI_AWREADY;
assign S_AXI_WLAST = s_axi_wlast;
assign S_AXI_WVALID = s_axi_wvalid;
assign s_axi_wready = S_AXI_WREADY;
assign s_axi_bvalid = S_AXI_BVALID;
assign S_AXI_BREADY = s_axi_bready;
assign m_axi_awvalid = M_AXI_AWVALID;
assign M_AXI_AWREADY = m_axi_awready;
assign m_axi_wlast = M_AXI_WLAST;
assign m_axi_wvalid = M_AXI_WVALID;
assign M_AXI_WREADY = m_axi_wready;
assign M_AXI_BVALID = m_axi_bvalid;
assign m_axi_bready = M_AXI_BREADY;
assign S_AXI_ARVALID = s_axi_arvalid;
assign s_axi_arready = S_AXI_ARREADY;
assign s_axi_rlast = S_AXI_RLAST;
assign s_axi_rvalid = S_AXI_RVALID;
assign S_AXI_RREADY = s_axi_rready;
assign m_axi_arvalid = M_AXI_ARVALID;
assign M_AXI_ARREADY = m_axi_arready;
assign M_AXI_RLAST = m_axi_rlast;
assign M_AXI_RVALID = m_axi_rvalid;
assign m_axi_rready = M_AXI_RREADY;
assign S_AXIS_TVALID = s_axis_tvalid;
assign s_axis_tready = S_AXIS_TREADY;
assign S_AXIS_TLAST = s_axis_tlast;
assign m_axis_tvalid = M_AXIS_TVALID;
assign M_AXIS_TREADY = m_axis_tready;
assign m_axis_tlast = M_AXIS_TLAST;
assign AXI_AW_INJECTSBITERR = axi_aw_injectsbiterr;
assign AXI_AW_INJECTDBITERR = axi_aw_injectdbiterr;
assign axi_aw_sbiterr = AXI_AW_SBITERR;
assign axi_aw_dbiterr = AXI_AW_DBITERR;
assign axi_aw_overflow = AXI_AW_OVERFLOW;
assign axi_aw_underflow = AXI_AW_UNDERFLOW;
assign axi_aw_prog_full = AXI_AW_PROG_FULL;
assign axi_aw_prog_empty = AXI_AW_PROG_EMPTY;
assign AXI_W_INJECTSBITERR = axi_w_injectsbiterr;
assign AXI_W_INJECTDBITERR = axi_w_injectdbiterr;
assign axi_w_sbiterr = AXI_W_SBITERR;
assign axi_w_dbiterr = AXI_W_DBITERR;
assign axi_w_overflow = AXI_W_OVERFLOW;
assign axi_w_underflow = AXI_W_UNDERFLOW;
assign axi_w_prog_full = AXI_W_PROG_FULL;
assign axi_w_prog_empty = AXI_W_PROG_EMPTY;
assign AXI_B_INJECTSBITERR = axi_b_injectsbiterr;
assign AXI_B_INJECTDBITERR = axi_b_injectdbiterr;
assign axi_b_sbiterr = AXI_B_SBITERR;
assign axi_b_dbiterr = AXI_B_DBITERR;
assign axi_b_overflow = AXI_B_OVERFLOW;
assign axi_b_underflow = AXI_B_UNDERFLOW;
assign axi_b_prog_full = AXI_B_PROG_FULL;
assign axi_b_prog_empty = AXI_B_PROG_EMPTY;
assign AXI_AR_INJECTSBITERR = axi_ar_injectsbiterr;
assign AXI_AR_INJECTDBITERR = axi_ar_injectdbiterr;
assign axi_ar_sbiterr = AXI_AR_SBITERR;
assign axi_ar_dbiterr = AXI_AR_DBITERR;
assign axi_ar_overflow = AXI_AR_OVERFLOW;
assign axi_ar_underflow = AXI_AR_UNDERFLOW;
assign axi_ar_prog_full = AXI_AR_PROG_FULL;
assign axi_ar_prog_empty = AXI_AR_PROG_EMPTY;
assign AXI_R_INJECTSBITERR = axi_r_injectsbiterr;
assign AXI_R_INJECTDBITERR = axi_r_injectdbiterr;
assign axi_r_sbiterr = AXI_R_SBITERR;
assign axi_r_dbiterr = AXI_R_DBITERR;
assign axi_r_overflow = AXI_R_OVERFLOW;
assign axi_r_underflow = AXI_R_UNDERFLOW;
assign axi_r_prog_full = AXI_R_PROG_FULL;
assign axi_r_prog_empty = AXI_R_PROG_EMPTY;
assign AXIS_INJECTSBITERR = axis_injectsbiterr;
assign AXIS_INJECTDBITERR = axis_injectdbiterr;
assign axis_sbiterr = AXIS_SBITERR;
assign axis_dbiterr = AXIS_DBITERR;
assign axis_overflow = AXIS_OVERFLOW;
assign axis_underflow = AXIS_UNDERFLOW;
assign axis_prog_full = AXIS_PROG_FULL;
assign axis_prog_empty = AXIS_PROG_EMPTY;
assign DIN = din;
assign PROG_EMPTY_THRESH = prog_empty_thresh;
assign PROG_EMPTY_THRESH_ASSERT = prog_empty_thresh_assert;
assign PROG_EMPTY_THRESH_NEGATE = prog_empty_thresh_negate;
assign PROG_FULL_THRESH = prog_full_thresh;
assign PROG_FULL_THRESH_ASSERT = prog_full_thresh_assert;
assign PROG_FULL_THRESH_NEGATE = prog_full_thresh_negate;
assign dout = DOUT;
assign data_count = DATA_COUNT;
assign rd_data_count = RD_DATA_COUNT;
assign wr_data_count = WR_DATA_COUNT;
assign S_AXI_AWID = s_axi_awid;
assign S_AXI_AWADDR = s_axi_awaddr;
assign S_AXI_AWLEN = s_axi_awlen;
assign S_AXI_AWSIZE = s_axi_awsize;
assign S_AXI_AWBURST = s_axi_awburst;
assign S_AXI_AWLOCK = s_axi_awlock;
assign S_AXI_AWCACHE = s_axi_awcache;
assign S_AXI_AWPROT = s_axi_awprot;
assign S_AXI_AWQOS = s_axi_awqos;
assign S_AXI_AWREGION = s_axi_awregion;
assign S_AXI_AWUSER = s_axi_awuser;
assign S_AXI_WID = s_axi_wid;
assign S_AXI_WDATA = s_axi_wdata;
assign S_AXI_WSTRB = s_axi_wstrb;
assign S_AXI_WUSER = s_axi_wuser;
assign s_axi_bid = S_AXI_BID;
assign s_axi_bresp = S_AXI_BRESP;
assign s_axi_buser = S_AXI_BUSER;
assign m_axi_awid = M_AXI_AWID;
assign m_axi_awaddr = M_AXI_AWADDR;
assign m_axi_awlen = M_AXI_AWLEN;
assign m_axi_awsize = M_AXI_AWSIZE;
assign m_axi_awburst = M_AXI_AWBURST;
assign m_axi_awlock = M_AXI_AWLOCK;
assign m_axi_awcache = M_AXI_AWCACHE;
assign m_axi_awprot = M_AXI_AWPROT;
assign m_axi_awqos = M_AXI_AWQOS;
assign m_axi_awregion = M_AXI_AWREGION;
assign m_axi_awuser = M_AXI_AWUSER;
assign m_axi_wid = M_AXI_WID;
assign m_axi_wdata = M_AXI_WDATA;
assign m_axi_wstrb = M_AXI_WSTRB;
assign m_axi_wuser = M_AXI_WUSER;
assign M_AXI_BID = m_axi_bid;
assign M_AXI_BRESP = m_axi_bresp;
assign M_AXI_BUSER = m_axi_buser;
assign S_AXI_ARID = s_axi_arid;
assign S_AXI_ARADDR = s_axi_araddr;
assign S_AXI_ARLEN = s_axi_arlen;
assign S_AXI_ARSIZE = s_axi_arsize;
assign S_AXI_ARBURST = s_axi_arburst;
assign S_AXI_ARLOCK = s_axi_arlock;
assign S_AXI_ARCACHE = s_axi_arcache;
assign S_AXI_ARPROT = s_axi_arprot;
assign S_AXI_ARQOS = s_axi_arqos;
assign S_AXI_ARREGION = s_axi_arregion;
assign S_AXI_ARUSER = s_axi_aruser;
assign s_axi_rid = S_AXI_RID;
assign s_axi_rdata = S_AXI_RDATA;
assign s_axi_rresp = S_AXI_RRESP;
assign s_axi_ruser = S_AXI_RUSER;
assign m_axi_arid = M_AXI_ARID;
assign m_axi_araddr = M_AXI_ARADDR;
assign m_axi_arlen = M_AXI_ARLEN;
assign m_axi_arsize = M_AXI_ARSIZE;
assign m_axi_arburst = M_AXI_ARBURST;
assign m_axi_arlock = M_AXI_ARLOCK;
assign m_axi_arcache = M_AXI_ARCACHE;
assign m_axi_arprot = M_AXI_ARPROT;
assign m_axi_arqos = M_AXI_ARQOS;
assign m_axi_arregion = M_AXI_ARREGION;
assign m_axi_aruser = M_AXI_ARUSER;
assign M_AXI_RID = m_axi_rid;
assign M_AXI_RDATA = m_axi_rdata;
assign M_AXI_RRESP = m_axi_rresp;
assign M_AXI_RUSER = m_axi_ruser;
assign S_AXIS_TDATA = s_axis_tdata;
assign S_AXIS_TSTRB = s_axis_tstrb;
assign S_AXIS_TKEEP = s_axis_tkeep;
assign S_AXIS_TID = s_axis_tid;
assign S_AXIS_TDEST = s_axis_tdest;
assign S_AXIS_TUSER = s_axis_tuser;
assign m_axis_tdata = M_AXIS_TDATA;
assign m_axis_tstrb = M_AXIS_TSTRB;
assign m_axis_tkeep = M_AXIS_TKEEP;
assign m_axis_tid = M_AXIS_TID;
assign m_axis_tdest = M_AXIS_TDEST;
assign m_axis_tuser = M_AXIS_TUSER;
assign AXI_AW_PROG_FULL_THRESH = axi_aw_prog_full_thresh;
assign AXI_AW_PROG_EMPTY_THRESH = axi_aw_prog_empty_thresh;
assign axi_aw_data_count = AXI_AW_DATA_COUNT;
assign axi_aw_wr_data_count = AXI_AW_WR_DATA_COUNT;
assign axi_aw_rd_data_count = AXI_AW_RD_DATA_COUNT;
assign AXI_W_PROG_FULL_THRESH = axi_w_prog_full_thresh;
assign AXI_W_PROG_EMPTY_THRESH = axi_w_prog_empty_thresh;
assign axi_w_data_count = AXI_W_DATA_COUNT;
assign axi_w_wr_data_count = AXI_W_WR_DATA_COUNT;
assign axi_w_rd_data_count = AXI_W_RD_DATA_COUNT;
assign AXI_B_PROG_FULL_THRESH = axi_b_prog_full_thresh;
assign AXI_B_PROG_EMPTY_THRESH = axi_b_prog_empty_thresh;
assign axi_b_data_count = AXI_B_DATA_COUNT;
assign axi_b_wr_data_count = AXI_B_WR_DATA_COUNT;
assign axi_b_rd_data_count = AXI_B_RD_DATA_COUNT;
assign AXI_AR_PROG_FULL_THRESH = axi_ar_prog_full_thresh;
assign AXI_AR_PROG_EMPTY_THRESH = axi_ar_prog_empty_thresh;
assign axi_ar_data_count = AXI_AR_DATA_COUNT;
assign axi_ar_wr_data_count = AXI_AR_WR_DATA_COUNT;
assign axi_ar_rd_data_count = AXI_AR_RD_DATA_COUNT;
assign AXI_R_PROG_FULL_THRESH = axi_r_prog_full_thresh;
assign AXI_R_PROG_EMPTY_THRESH = axi_r_prog_empty_thresh;
assign axi_r_data_count = AXI_R_DATA_COUNT;
assign axi_r_wr_data_count = AXI_R_WR_DATA_COUNT;
assign axi_r_rd_data_count = AXI_R_RD_DATA_COUNT;
assign AXIS_PROG_FULL_THRESH = axis_prog_full_thresh;
assign AXIS_PROG_EMPTY_THRESH = axis_prog_empty_thresh;
assign axis_data_count = AXIS_DATA_COUNT;
assign axis_wr_data_count = AXIS_WR_DATA_COUNT;
assign axis_rd_data_count = AXIS_RD_DATA_COUNT;
generate if (C_INTERFACE_TYPE == 0) begin : conv_fifo
FIFO_GENERATOR_v12_0_CONV_VER
#(
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DATA_COUNT_WIDTH (C_DATA_COUNT_WIDTH),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_DIN_WIDTH (C_DIN_WIDTH),
.C_DOUT_RST_VAL (C_USE_DOUT_RST == 1 ? C_DOUT_RST_VAL : 0),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_FAMILY (C_FAMILY),
.C_FULL_FLAGS_RST_VAL (C_FULL_FLAGS_RST_VAL),
.C_HAS_ALMOST_EMPTY (C_HAS_ALMOST_EMPTY),
.C_HAS_ALMOST_FULL (C_HAS_ALMOST_FULL),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_DATA_COUNT (C_HAS_DATA_COUNT),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT),
.C_HAS_RD_RST (C_HAS_RD_RST),
.C_HAS_RST (C_HAS_RST),
.C_HAS_SRST (C_HAS_SRST),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_HAS_VALID (C_HAS_VALID),
.C_HAS_WR_ACK (C_HAS_WR_ACK),
.C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT),
.C_HAS_WR_RST (C_HAS_WR_RST),
.C_IMPLEMENTATION_TYPE (C_IMPLEMENTATION_TYPE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_MEMORY_TYPE (C_MEMORY_TYPE),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_PRELOAD_LATENCY (C_PRELOAD_LATENCY),
.C_PRELOAD_REGS (C_PRELOAD_REGS),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL),
.C_PROG_EMPTY_THRESH_NEGATE_VAL (C_PROG_EMPTY_THRESH_NEGATE_VAL),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL),
.C_PROG_FULL_THRESH_NEGATE_VAL (C_PROG_FULL_THRESH_NEGATE_VAL),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE),
.C_RD_DATA_COUNT_WIDTH (C_RD_DATA_COUNT_WIDTH),
.C_RD_DEPTH (C_RD_DEPTH),
.C_RD_FREQ (C_RD_FREQ),
.C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_USE_ECC (C_USE_ECC),
.C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_USE_FWFT_DATA_COUNT (C_USE_FWFT_DATA_COUNT),
.C_VALID_LOW (C_VALID_LOW),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH),
.C_WR_DEPTH (C_WR_DEPTH),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE),
.C_AXI_TYPE (C_AXI_TYPE),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE)
)
fifo_generator_v12_0_conv_dut
(
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.CLK (CLK),
.RST (RST),
.SRST (SRST),
.WR_CLK (WR_CLK),
.WR_RST (WR_RST),
.RD_CLK (RD_CLK),
.RD_RST (RD_RST),
.DIN (DIN),
.WR_EN (WR_EN),
.RD_EN (RD_EN),
.PROG_EMPTY_THRESH (PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT (PROG_EMPTY_THRESH_ASSERT),
.PROG_EMPTY_THRESH_NEGATE (PROG_EMPTY_THRESH_NEGATE),
.PROG_FULL_THRESH (PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT (PROG_FULL_THRESH_ASSERT),
.PROG_FULL_THRESH_NEGATE (PROG_FULL_THRESH_NEGATE),
.INT_CLK (INT_CLK),
.INJECTDBITERR (INJECTDBITERR),
.INJECTSBITERR (INJECTSBITERR),
.DOUT (DOUT),
.FULL (FULL),
.ALMOST_FULL (ALMOST_FULL),
.WR_ACK (WR_ACK),
.OVERFLOW (OVERFLOW),
.EMPTY (EMPTY),
.ALMOST_EMPTY (ALMOST_EMPTY),
.VALID (VALID),
.UNDERFLOW (UNDERFLOW),
.DATA_COUNT (DATA_COUNT),
.RD_DATA_COUNT (RD_DATA_COUNT),
.WR_DATA_COUNT (wr_data_count_in),
.PROG_FULL (PROG_FULL),
.PROG_EMPTY (PROG_EMPTY),
.SBITERR (SBITERR),
.DBITERR (DBITERR),
.wr_rst_busy (wr_rst_busy),
.rd_rst_busy (rd_rst_busy),
.wr_rst_i_out (wr_rst_int),
.rd_rst_i_out (rd_rst_int)
);
end endgenerate
localparam IS_8SERIES = (C_FAMILY == "virtexu" || C_FAMILY == "kintexu" || C_FAMILY == "artixu" || C_FAMILY == "virtexum" || C_FAMILY == "zynque") ? 1 : 0;
localparam C_AXI_SIZE_WIDTH = 3;
localparam C_AXI_BURST_WIDTH = 2;
localparam C_AXI_CACHE_WIDTH = 4;
localparam C_AXI_PROT_WIDTH = 3;
localparam C_AXI_QOS_WIDTH = 4;
localparam C_AXI_REGION_WIDTH = 4;
localparam C_AXI_BRESP_WIDTH = 2;
localparam C_AXI_RRESP_WIDTH = 2;
localparam IS_AXI_STREAMING = C_INTERFACE_TYPE == 1 ? 1 : 0;
localparam TDATA_OFFSET = C_HAS_AXIS_TDATA == 1 ? C_DIN_WIDTH_AXIS-C_AXIS_TDATA_WIDTH : C_DIN_WIDTH_AXIS;
localparam TSTRB_OFFSET = C_HAS_AXIS_TSTRB == 1 ? TDATA_OFFSET-C_AXIS_TSTRB_WIDTH : TDATA_OFFSET;
localparam TKEEP_OFFSET = C_HAS_AXIS_TKEEP == 1 ? TSTRB_OFFSET-C_AXIS_TKEEP_WIDTH : TSTRB_OFFSET;
localparam TID_OFFSET = C_HAS_AXIS_TID == 1 ? TKEEP_OFFSET-C_AXIS_TID_WIDTH : TKEEP_OFFSET;
localparam TDEST_OFFSET = C_HAS_AXIS_TDEST == 1 ? TID_OFFSET-C_AXIS_TDEST_WIDTH : TID_OFFSET;
localparam TUSER_OFFSET = C_HAS_AXIS_TUSER == 1 ? TDEST_OFFSET-C_AXIS_TUSER_WIDTH : TDEST_OFFSET;
localparam LOG_DEPTH_AXIS = find_log2(C_WR_DEPTH_AXIS);
localparam LOG_WR_DEPTH = find_log2(C_WR_DEPTH);
function [LOG_DEPTH_AXIS-1:0] bin2gray;
input [LOG_DEPTH_AXIS-1:0] x;
begin
bin2gray = x ^ (x>>1);
end
endfunction
function [LOG_DEPTH_AXIS-1:0] gray2bin;
input [LOG_DEPTH_AXIS-1:0] x;
integer i;
begin
gray2bin[LOG_DEPTH_AXIS-1] = x[LOG_DEPTH_AXIS-1];
for(i=LOG_DEPTH_AXIS-2; i>=0; i=i-1) begin
gray2bin[i] = gray2bin[i+1] ^ x[i];
end
end
endfunction
wire [(LOG_WR_DEPTH)-1 : 0] w_cnt_gc_asreg_last;
wire [LOG_WR_DEPTH-1 : 0] w_q [0:C_SYNCHRONIZER_STAGE] ;
wire [LOG_WR_DEPTH-1 : 0] w_q_temp [1:C_SYNCHRONIZER_STAGE] ;
reg [LOG_WR_DEPTH-1 : 0] w_cnt_rd = 0;
reg [LOG_WR_DEPTH-1 : 0] w_cnt = 0;
reg [LOG_WR_DEPTH-1 : 0] w_cnt_gc = 0;
reg [LOG_WR_DEPTH-1 : 0] r_cnt = 0;
wire [LOG_WR_DEPTH : 0] adj_w_cnt_rd_pad;
wire [LOG_WR_DEPTH : 0] r_inv_pad;
wire [LOG_WR_DEPTH-1 : 0] d_cnt;
reg [LOG_WR_DEPTH : 0] d_cnt_pad = 0;
reg adj_w_cnt_rd_pad_0 = 0;
reg r_inv_pad_0 = 0;
genvar l;
generate for (l = 1; ((l <= C_SYNCHRONIZER_STAGE) && (C_HAS_DATA_COUNTS_AXIS == 3 && C_INTERFACE_TYPE == 0) ); l = l + 1) begin : g_cnt_sync_stage
fifo_generator_v12_0_sync_stage
#(
.C_WIDTH (LOG_WR_DEPTH)
)
rd_stg_inst
(
.RST (rd_rst_int),
.CLK (RD_CLK),
.DIN (w_q[l-1]),
.DOUT (w_q[l])
);
end endgenerate // gpkt_cnt_sync_stage
generate if (C_INTERFACE_TYPE == 0 && C_HAS_DATA_COUNTS_AXIS == 3) begin : fifo_ic_adapter
assign wr_eop_ad = WR_EN & !(FULL);
assign rd_eop_ad = RD_EN & !(EMPTY);
always @ (posedge wr_rst_int or posedge WR_CLK)
begin
if (wr_rst_int)
w_cnt <= 1'b0;
else if (wr_eop_ad)
w_cnt <= w_cnt + 1;
end
always @ (posedge wr_rst_int or posedge WR_CLK)
begin
if (wr_rst_int)
w_cnt_gc <= 1'b0;
else
w_cnt_gc <= bin2gray(w_cnt);
end
assign w_q[0] = w_cnt_gc;
assign w_cnt_gc_asreg_last = w_q[C_SYNCHRONIZER_STAGE];
always @ (posedge rd_rst_int or posedge RD_CLK)
begin
if (rd_rst_int)
w_cnt_rd <= 1'b0;
else
w_cnt_rd <= gray2bin(w_cnt_gc_asreg_last);
end
always @ (posedge rd_rst_int or posedge RD_CLK)
begin
if (rd_rst_int)
r_cnt <= 1'b0;
else if (rd_eop_ad)
r_cnt <= r_cnt + 1;
end
// Take the difference of write and read packet count
// Logic is similar to rd_pe_as
assign adj_w_cnt_rd_pad[LOG_WR_DEPTH : 1] = w_cnt_rd;
assign r_inv_pad[LOG_WR_DEPTH : 1] = ~r_cnt;
assign adj_w_cnt_rd_pad[0] = adj_w_cnt_rd_pad_0;
assign r_inv_pad[0] = r_inv_pad_0;
always @ ( rd_eop_ad )
begin
if (!rd_eop_ad) begin
adj_w_cnt_rd_pad_0 <= 1'b1;
r_inv_pad_0 <= 1'b1;
end else begin
adj_w_cnt_rd_pad_0 <= 1'b0;
r_inv_pad_0 <= 1'b0;
end
end
always @ (posedge rd_rst_int or posedge RD_CLK)
begin
if (rd_rst_int)
d_cnt_pad <= 1'b0;
else
d_cnt_pad <= adj_w_cnt_rd_pad + r_inv_pad ;
end
assign d_cnt = d_cnt_pad [LOG_WR_DEPTH : 1] ;
assign WR_DATA_COUNT = d_cnt;
end endgenerate // fifo_ic_adapter
generate if (C_INTERFACE_TYPE == 0 && C_HAS_DATA_COUNTS_AXIS != 3) begin : fifo_icn_adapter
assign WR_DATA_COUNT = wr_data_count_in;
end endgenerate // fifo_icn_adapter
wire inverted_reset = ~S_ARESETN;
wire axi_rs_rst;
reg rst_d1 = 0 ;
reg rst_d2 = 0 ;
wire [C_DIN_WIDTH_AXIS-1:0] axis_din ;
wire [C_DIN_WIDTH_AXIS-1:0] axis_dout ;
wire axis_full ;
wire axis_almost_full ;
wire axis_empty ;
wire axis_s_axis_tready;
wire axis_m_axis_tvalid;
wire axis_wr_en ;
wire axis_rd_en ;
wire axis_we ;
wire axis_re ;
wire [C_WR_PNTR_WIDTH_AXIS:0] axis_dc;
reg axis_pkt_read = 1'b0;
wire axis_rd_rst;
wire axis_wr_rst;
generate if (C_INTERFACE_TYPE > 0 && (C_AXIS_TYPE == 1 || C_WACH_TYPE == 1 ||
C_WDCH_TYPE == 1 || C_WRCH_TYPE == 1 || C_RACH_TYPE == 1 || C_RDCH_TYPE == 1)) begin : gaxi_rs_rst
always @ (posedge inverted_reset or posedge S_ACLK) begin
if (inverted_reset) begin
rst_d1 <= 1'b1;
rst_d2 <= 1'b1;
end else begin
rst_d1 <= #`TCQ 1'b0;
rst_d2 <= #`TCQ rst_d1;
end
end
assign axi_rs_rst = rst_d2;
end endgenerate // gaxi_rs_rst
generate if (IS_AXI_STREAMING == 1 && C_AXIS_TYPE == 0) begin : axi_streaming
// Write protection when almost full or prog_full is high
assign axis_we = (C_PROG_FULL_TYPE_AXIS != 0) ? axis_s_axis_tready & S_AXIS_TVALID :
(C_APPLICATION_TYPE_AXIS == 1) ? axis_s_axis_tready & S_AXIS_TVALID : S_AXIS_TVALID;
// Read protection when almost empty or prog_empty is high
assign axis_re = (C_PROG_EMPTY_TYPE_AXIS != 0) ? axis_m_axis_tvalid & M_AXIS_TREADY :
(C_APPLICATION_TYPE_AXIS == 1) ? axis_m_axis_tvalid & M_AXIS_TREADY : M_AXIS_TREADY;
assign axis_wr_en = (C_HAS_SLAVE_CE == 1) ? axis_we & S_ACLK_EN : axis_we;
assign axis_rd_en = (C_HAS_MASTER_CE == 1) ? axis_re & M_ACLK_EN : axis_re;
FIFO_GENERATOR_v12_0_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_AXIS == 1 || C_IMPLEMENTATION_TYPE_AXIS == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_AXIS == 2 || C_IMPLEMENTATION_TYPE_AXIS == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_AXIS == 1 || C_IMPLEMENTATION_TYPE_AXIS == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_AXIS == 11 || C_IMPLEMENTATION_TYPE_AXIS == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_AXIS),
.C_WR_DEPTH (C_WR_DEPTH_AXIS),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_AXIS),
.C_DOUT_WIDTH (C_DIN_WIDTH_AXIS),
.C_RD_DEPTH (C_WR_DEPTH_AXIS),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_AXIS),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_AXIS),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_AXIS),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_AXIS),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS),
.C_USE_ECC (C_USE_ECC_AXIS),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_AXIS),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (C_APPLICATION_TYPE_AXIS == 1 ? 1: 0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG),
.C_FIFO_TYPE (C_APPLICATION_TYPE_AXIS == 1 ? 0: C_APPLICATION_TYPE_AXIS),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_AXIS == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_AXIS + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_AXIS == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_AXIS + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_AXIS == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_AXIS + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v12_0_axis_dut
(
.CLK (S_ACLK),
.WR_CLK (S_ACLK),
.RD_CLK (M_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (axis_wr_en),
.RD_EN (axis_rd_en),
.PROG_FULL_THRESH (AXIS_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_AXIS{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_AXIS{1'b0}}),
.PROG_EMPTY_THRESH (AXIS_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_AXIS{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_AXIS{1'b0}}),
.INJECTDBITERR (AXIS_INJECTDBITERR),
.INJECTSBITERR (AXIS_INJECTSBITERR),
.DIN (axis_din),
.DOUT (axis_dout),
.FULL (axis_full),
.EMPTY (axis_empty),
.ALMOST_FULL (axis_almost_full),
.PROG_FULL (AXIS_PROG_FULL),
.ALMOST_EMPTY (),
.PROG_EMPTY (AXIS_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (AXIS_OVERFLOW),
.VALID (),
.UNDERFLOW (AXIS_UNDERFLOW),
.DATA_COUNT (axis_dc),
.RD_DATA_COUNT (AXIS_RD_DATA_COUNT),
.WR_DATA_COUNT (AXIS_WR_DATA_COUNT),
.SBITERR (AXIS_SBITERR),
.DBITERR (AXIS_DBITERR),
.wr_rst_busy (wr_rst_busy_axis),
.rd_rst_busy (rd_rst_busy_axis),
.wr_rst_i_out (axis_wr_rst),
.rd_rst_i_out (axis_rd_rst),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign axis_s_axis_tready = (IS_8SERIES == 0) ? ~axis_full : (C_IMPLEMENTATION_TYPE_AXIS == 5 || C_IMPLEMENTATION_TYPE_AXIS == 13) ? ~(axis_full | wr_rst_busy_axis) : ~axis_full;
assign axis_m_axis_tvalid = (C_APPLICATION_TYPE_AXIS != 1) ? ~axis_empty : ~axis_empty & axis_pkt_read;
assign S_AXIS_TREADY = axis_s_axis_tready;
assign M_AXIS_TVALID = axis_m_axis_tvalid;
end endgenerate // axi_streaming
wire axis_wr_eop;
reg axis_wr_eop_d1 = 1'b0;
wire axis_rd_eop;
integer axis_pkt_cnt;
generate if (C_APPLICATION_TYPE_AXIS == 1 && C_COMMON_CLOCK == 1) begin : gaxis_pkt_fifo_cc
assign axis_wr_eop = axis_wr_en & S_AXIS_TLAST;
assign axis_rd_eop = axis_rd_en & axis_dout[0];
always @ (posedge inverted_reset or posedge S_ACLK)
begin
if (inverted_reset)
axis_pkt_read <= 1'b0;
else if (axis_rd_eop && (axis_pkt_cnt == 1) && ~axis_wr_eop_d1)
axis_pkt_read <= 1'b0;
else if ((axis_pkt_cnt > 0) || (axis_almost_full && ~axis_empty))
axis_pkt_read <= 1'b1;
end
always @ (posedge inverted_reset or posedge S_ACLK)
begin
if (inverted_reset)
axis_wr_eop_d1 <= 1'b0;
else
axis_wr_eop_d1 <= axis_wr_eop;
end
always @ (posedge inverted_reset or posedge S_ACLK)
begin
if (inverted_reset)
axis_pkt_cnt <= 0;
else if (axis_wr_eop_d1 && ~axis_rd_eop)
axis_pkt_cnt <= axis_pkt_cnt + 1;
else if (axis_rd_eop && ~axis_wr_eop_d1)
axis_pkt_cnt <= axis_pkt_cnt - 1;
end
end endgenerate // gaxis_pkt_fifo_cc
reg [LOG_DEPTH_AXIS-1 : 0] axis_wpkt_cnt_gc = 0;
wire [(LOG_DEPTH_AXIS)-1 : 0] axis_wpkt_cnt_gc_asreg_last;
wire axis_rd_has_rst;
wire [0:C_SYNCHRONIZER_STAGE] axis_af_q ;
wire [LOG_DEPTH_AXIS-1 : 0] wpkt_q [0:C_SYNCHRONIZER_STAGE] ;
wire [1:C_SYNCHRONIZER_STAGE] axis_af_q_temp = 0;
wire [LOG_DEPTH_AXIS-1 : 0] wpkt_q_temp [1:C_SYNCHRONIZER_STAGE] ;
reg [LOG_DEPTH_AXIS-1 : 0] axis_wpkt_cnt_rd = 0;
reg [LOG_DEPTH_AXIS-1 : 0] axis_wpkt_cnt = 0;
reg [LOG_DEPTH_AXIS-1 : 0] axis_rpkt_cnt = 0;
wire [LOG_DEPTH_AXIS : 0] adj_axis_wpkt_cnt_rd_pad;
wire [LOG_DEPTH_AXIS : 0] rpkt_inv_pad;
wire [LOG_DEPTH_AXIS-1 : 0] diff_pkt_cnt;
reg [LOG_DEPTH_AXIS : 0] diff_pkt_cnt_pad = 0;
reg adj_axis_wpkt_cnt_rd_pad_0 = 0;
reg rpkt_inv_pad_0 = 0;
wire axis_af_rd ;
generate if (C_HAS_RST == 1) begin : rst_blk_has
assign axis_rd_has_rst = axis_rd_rst;
end endgenerate //rst_blk_has
generate if (C_HAS_RST == 0) begin :rst_blk_no
assign axis_rd_has_rst = 1'b0;
end endgenerate //rst_blk_no
genvar i;
generate for (i = 1; ((i <= C_SYNCHRONIZER_STAGE) && (C_APPLICATION_TYPE_AXIS == 1 && C_COMMON_CLOCK == 0) ); i = i + 1) begin : gpkt_cnt_sync_stage
fifo_generator_v12_0_sync_stage
#(
.C_WIDTH (LOG_DEPTH_AXIS)
)
rd_stg_inst
(
.RST (axis_rd_has_rst),
.CLK (M_ACLK),
.DIN (wpkt_q[i-1]),
.DOUT (wpkt_q[i])
);
fifo_generator_v12_0_sync_stage
#(
.C_WIDTH (1)
)
wr_stg_inst
(
.RST (axis_rd_has_rst),
.CLK (M_ACLK),
.DIN (axis_af_q[i-1]),
.DOUT (axis_af_q[i])
);
end endgenerate // gpkt_cnt_sync_stage
generate if (C_APPLICATION_TYPE_AXIS == 1 && C_COMMON_CLOCK == 0) begin : gaxis_pkt_fifo_ic
assign axis_wr_eop = axis_wr_en & S_AXIS_TLAST;
assign axis_rd_eop = axis_rd_en & axis_dout[0];
always @ (posedge axis_rd_has_rst or posedge M_ACLK)
begin
if (axis_rd_has_rst)
axis_pkt_read <= 1'b0;
else if (axis_rd_eop && (diff_pkt_cnt == 1))
axis_pkt_read <= 1'b0;
else if ((diff_pkt_cnt > 0) || (axis_af_rd && ~axis_empty))
axis_pkt_read <= 1'b1;
end
always @ (posedge axis_wr_rst or posedge S_ACLK)
begin
if (axis_wr_rst)
axis_wpkt_cnt <= 1'b0;
else if (axis_wr_eop)
axis_wpkt_cnt <= axis_wpkt_cnt + 1;
end
always @ (posedge axis_wr_rst or posedge S_ACLK)
begin
if (axis_wr_rst)
axis_wpkt_cnt_gc <= 1'b0;
else
axis_wpkt_cnt_gc <= bin2gray(axis_wpkt_cnt);
end
assign wpkt_q[0] = axis_wpkt_cnt_gc;
assign axis_wpkt_cnt_gc_asreg_last = wpkt_q[C_SYNCHRONIZER_STAGE];
assign axis_af_q[0] = axis_almost_full;
//assign axis_af_q[1:C_SYNCHRONIZER_STAGE] = axis_af_q_temp[1:C_SYNCHRONIZER_STAGE];
assign axis_af_rd = axis_af_q[C_SYNCHRONIZER_STAGE];
always @ (posedge axis_rd_has_rst or posedge M_ACLK)
begin
if (axis_rd_has_rst)
axis_wpkt_cnt_rd <= 1'b0;
else
axis_wpkt_cnt_rd <= gray2bin(axis_wpkt_cnt_gc_asreg_last);
end
always @ (posedge axis_rd_rst or posedge M_ACLK)
begin
if (axis_rd_has_rst)
axis_rpkt_cnt <= 1'b0;
else if (axis_rd_eop)
axis_rpkt_cnt <= axis_rpkt_cnt + 1;
end
// Take the difference of write and read packet count
// Logic is similar to rd_pe_as
assign adj_axis_wpkt_cnt_rd_pad[LOG_DEPTH_AXIS : 1] = axis_wpkt_cnt_rd;
assign rpkt_inv_pad[LOG_DEPTH_AXIS : 1] = ~axis_rpkt_cnt;
assign adj_axis_wpkt_cnt_rd_pad[0] = adj_axis_wpkt_cnt_rd_pad_0;
assign rpkt_inv_pad[0] = rpkt_inv_pad_0;
always @ ( axis_rd_eop )
begin
if (!axis_rd_eop) begin
adj_axis_wpkt_cnt_rd_pad_0 <= 1'b1;
rpkt_inv_pad_0 <= 1'b1;
end else begin
adj_axis_wpkt_cnt_rd_pad_0 <= 1'b0;
rpkt_inv_pad_0 <= 1'b0;
end
end
always @ (posedge axis_rd_rst or posedge M_ACLK)
begin
if (axis_rd_has_rst)
diff_pkt_cnt_pad <= 1'b0;
else
diff_pkt_cnt_pad <= adj_axis_wpkt_cnt_rd_pad + rpkt_inv_pad ;
end
assign diff_pkt_cnt = diff_pkt_cnt_pad [LOG_DEPTH_AXIS : 1] ;
end endgenerate // gaxis_pkt_fifo_ic
// Generate the accurate data count for axi stream packet fifo configuration
reg [C_WR_PNTR_WIDTH_AXIS:0] axis_dc_pkt_fifo = 0;
generate if (IS_AXI_STREAMING == 1 && C_HAS_DATA_COUNTS_AXIS == 1 && C_APPLICATION_TYPE_AXIS == 1) begin : gdc_pkt
always @ (posedge inverted_reset or posedge S_ACLK)
begin
if (inverted_reset)
axis_dc_pkt_fifo <= 0;
else if (axis_wr_en && (~axis_rd_en))
axis_dc_pkt_fifo <= #`TCQ axis_dc_pkt_fifo + 1;
else if (~axis_wr_en && axis_rd_en)
axis_dc_pkt_fifo <= #`TCQ axis_dc_pkt_fifo - 1;
end
assign AXIS_DATA_COUNT = axis_dc_pkt_fifo;
end endgenerate // gdc_pkt
generate if (IS_AXI_STREAMING == 1 && C_HAS_DATA_COUNTS_AXIS == 0 && C_APPLICATION_TYPE_AXIS == 1) begin : gndc_pkt
assign AXIS_DATA_COUNT = 0;
end endgenerate // gndc_pkt
generate if (IS_AXI_STREAMING == 1 && C_APPLICATION_TYPE_AXIS != 1) begin : gdc
assign AXIS_DATA_COUNT = axis_dc;
end endgenerate // gdc
// Register Slice for Write Address Channel
generate if (C_AXIS_TYPE == 1) begin : gaxis_reg_slice
assign axis_wr_en = (C_HAS_SLAVE_CE == 1) ? S_AXIS_TVALID & S_ACLK_EN : S_AXIS_TVALID;
assign axis_rd_en = (C_HAS_MASTER_CE == 1) ? M_AXIS_TREADY & M_ACLK_EN : M_AXIS_TREADY;
fifo_generator_v12_0_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_AXIS),
.C_REG_CONFIG (C_REG_SLICE_MODE_AXIS)
)
axis_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (axis_din),
.S_VALID (axis_wr_en),
.S_READY (S_AXIS_TREADY),
// Master side
.M_PAYLOAD_DATA (axis_dout),
.M_VALID (M_AXIS_TVALID),
.M_READY (axis_rd_en)
);
end endgenerate // gaxis_reg_slice
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TDATA == 1) begin : tdata
assign axis_din[C_DIN_WIDTH_AXIS-1:TDATA_OFFSET] = S_AXIS_TDATA;
assign M_AXIS_TDATA = axis_dout[C_DIN_WIDTH_AXIS-1:TDATA_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TSTRB == 1) begin : tstrb
assign axis_din[TDATA_OFFSET-1:TSTRB_OFFSET] = S_AXIS_TSTRB;
assign M_AXIS_TSTRB = axis_dout[TDATA_OFFSET-1:TSTRB_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TKEEP == 1) begin : tkeep
assign axis_din[TSTRB_OFFSET-1:TKEEP_OFFSET] = S_AXIS_TKEEP;
assign M_AXIS_TKEEP = axis_dout[TSTRB_OFFSET-1:TKEEP_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TID == 1) begin : tid
assign axis_din[TKEEP_OFFSET-1:TID_OFFSET] = S_AXIS_TID;
assign M_AXIS_TID = axis_dout[TKEEP_OFFSET-1:TID_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TDEST == 1) begin : tdest
assign axis_din[TID_OFFSET-1:TDEST_OFFSET] = S_AXIS_TDEST;
assign M_AXIS_TDEST = axis_dout[TID_OFFSET-1:TDEST_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TUSER == 1) begin : tuser
assign axis_din[TDEST_OFFSET-1:TUSER_OFFSET] = S_AXIS_TUSER;
assign M_AXIS_TUSER = axis_dout[TDEST_OFFSET-1:TUSER_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TLAST == 1) begin : tlast
assign axis_din[0] = S_AXIS_TLAST;
assign M_AXIS_TLAST = axis_dout[0];
end endgenerate
//###########################################################################
// AXI FULL Write Channel (axi_write_channel)
//###########################################################################
localparam IS_AXI_FULL = ((C_INTERFACE_TYPE == 2) && (C_AXI_TYPE != 2)) ? 1 : 0;
localparam IS_AXI_LITE = ((C_INTERFACE_TYPE == 2) && (C_AXI_TYPE == 2)) ? 1 : 0;
localparam IS_AXI_FULL_WACH = ((IS_AXI_FULL == 1) && (C_WACH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_FULL_WDCH = ((IS_AXI_FULL == 1) && (C_WDCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_FULL_WRCH = ((IS_AXI_FULL == 1) && (C_WRCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_FULL_RACH = ((IS_AXI_FULL == 1) && (C_RACH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_FULL_RDCH = ((IS_AXI_FULL == 1) && (C_RDCH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_LITE_WACH = ((IS_AXI_LITE == 1) && (C_WACH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_LITE_WDCH = ((IS_AXI_LITE == 1) && (C_WDCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_LITE_WRCH = ((IS_AXI_LITE == 1) && (C_WRCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_LITE_RACH = ((IS_AXI_LITE == 1) && (C_RACH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_LITE_RDCH = ((IS_AXI_LITE == 1) && (C_RDCH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0;
localparam IS_WR_ADDR_CH = ((IS_AXI_FULL_WACH == 1) || (IS_AXI_LITE_WACH == 1)) ? 1 : 0;
localparam IS_WR_DATA_CH = ((IS_AXI_FULL_WDCH == 1) || (IS_AXI_LITE_WDCH == 1)) ? 1 : 0;
localparam IS_WR_RESP_CH = ((IS_AXI_FULL_WRCH == 1) || (IS_AXI_LITE_WRCH == 1)) ? 1 : 0;
localparam IS_RD_ADDR_CH = ((IS_AXI_FULL_RACH == 1) || (IS_AXI_LITE_RACH == 1)) ? 1 : 0;
localparam IS_RD_DATA_CH = ((IS_AXI_FULL_RDCH == 1) || (IS_AXI_LITE_RDCH == 1)) ? 1 : 0;
localparam AWID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_WACH - C_AXI_ID_WIDTH : C_DIN_WIDTH_WACH;
localparam AWADDR_OFFSET = AWID_OFFSET - C_AXI_ADDR_WIDTH;
localparam AWLEN_OFFSET = C_AXI_TYPE != 2 ? AWADDR_OFFSET - C_AXI_LEN_WIDTH : AWADDR_OFFSET;
localparam AWSIZE_OFFSET = C_AXI_TYPE != 2 ? AWLEN_OFFSET - C_AXI_SIZE_WIDTH : AWLEN_OFFSET;
localparam AWBURST_OFFSET = C_AXI_TYPE != 2 ? AWSIZE_OFFSET - C_AXI_BURST_WIDTH : AWSIZE_OFFSET;
localparam AWLOCK_OFFSET = C_AXI_TYPE != 2 ? AWBURST_OFFSET - C_AXI_LOCK_WIDTH : AWBURST_OFFSET;
localparam AWCACHE_OFFSET = C_AXI_TYPE != 2 ? AWLOCK_OFFSET - C_AXI_CACHE_WIDTH : AWLOCK_OFFSET;
localparam AWPROT_OFFSET = AWCACHE_OFFSET - C_AXI_PROT_WIDTH;
localparam AWQOS_OFFSET = AWPROT_OFFSET - C_AXI_QOS_WIDTH;
localparam AWREGION_OFFSET = C_AXI_TYPE == 1 ? AWQOS_OFFSET - C_AXI_REGION_WIDTH : AWQOS_OFFSET;
localparam AWUSER_OFFSET = C_HAS_AXI_AWUSER == 1 ? AWREGION_OFFSET-C_AXI_AWUSER_WIDTH : AWREGION_OFFSET;
localparam WID_OFFSET = (C_AXI_TYPE == 3 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_WDCH - C_AXI_ID_WIDTH : C_DIN_WIDTH_WDCH;
localparam WDATA_OFFSET = WID_OFFSET - C_AXI_DATA_WIDTH;
localparam WSTRB_OFFSET = WDATA_OFFSET - C_AXI_DATA_WIDTH/8;
localparam WUSER_OFFSET = C_HAS_AXI_WUSER == 1 ? WSTRB_OFFSET-C_AXI_WUSER_WIDTH : WSTRB_OFFSET;
localparam BID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_WRCH - C_AXI_ID_WIDTH : C_DIN_WIDTH_WRCH;
localparam BRESP_OFFSET = BID_OFFSET - C_AXI_BRESP_WIDTH;
localparam BUSER_OFFSET = C_HAS_AXI_BUSER == 1 ? BRESP_OFFSET-C_AXI_BUSER_WIDTH : BRESP_OFFSET;
wire [C_DIN_WIDTH_WACH-1:0] wach_din ;
wire [C_DIN_WIDTH_WACH-1:0] wach_dout ;
wire [C_DIN_WIDTH_WACH-1:0] wach_dout_pkt ;
wire wach_full ;
wire wach_almost_full ;
wire wach_prog_full ;
wire wach_empty ;
wire wach_almost_empty ;
wire wach_prog_empty ;
wire [C_DIN_WIDTH_WDCH-1:0] wdch_din ;
wire [C_DIN_WIDTH_WDCH-1:0] wdch_dout ;
wire wdch_full ;
wire wdch_almost_full ;
wire wdch_prog_full ;
wire wdch_empty ;
wire wdch_almost_empty ;
wire wdch_prog_empty ;
wire [C_DIN_WIDTH_WRCH-1:0] wrch_din ;
wire [C_DIN_WIDTH_WRCH-1:0] wrch_dout ;
wire wrch_full ;
wire wrch_almost_full ;
wire wrch_prog_full ;
wire wrch_empty ;
wire wrch_almost_empty ;
wire wrch_prog_empty ;
wire axi_aw_underflow_i;
wire axi_w_underflow_i ;
wire axi_b_underflow_i ;
wire axi_aw_overflow_i ;
wire axi_w_overflow_i ;
wire axi_b_overflow_i ;
wire axi_wr_underflow_i;
wire axi_wr_overflow_i ;
wire wach_s_axi_awready;
wire wach_m_axi_awvalid;
wire wach_wr_en ;
wire wach_rd_en ;
wire wdch_s_axi_wready ;
wire wdch_m_axi_wvalid ;
wire wdch_wr_en ;
wire wdch_rd_en ;
wire wrch_s_axi_bvalid ;
wire wrch_m_axi_bready ;
wire wrch_wr_en ;
wire wrch_rd_en ;
wire txn_count_up ;
wire txn_count_down ;
wire awvalid_en ;
wire awvalid_pkt ;
wire awready_pkt ;
integer wr_pkt_count ;
wire wach_we ;
wire wach_re ;
wire wdch_we ;
wire wdch_re ;
wire wrch_we ;
wire wrch_re ;
generate if (IS_WR_ADDR_CH == 1) begin : axi_write_address_channel
// Write protection when almost full or prog_full is high
assign wach_we = (C_PROG_FULL_TYPE_WACH != 0) ? wach_s_axi_awready & S_AXI_AWVALID : S_AXI_AWVALID;
// Read protection when almost empty or prog_empty is high
assign wach_re = (C_PROG_EMPTY_TYPE_WACH != 0 && C_APPLICATION_TYPE_WACH == 1) ?
wach_m_axi_awvalid & awready_pkt & awvalid_en :
(C_PROG_EMPTY_TYPE_WACH != 0 && C_APPLICATION_TYPE_WACH != 1) ?
M_AXI_AWREADY && wach_m_axi_awvalid :
(C_PROG_EMPTY_TYPE_WACH == 0 && C_APPLICATION_TYPE_WACH == 1) ?
awready_pkt & awvalid_en :
(C_PROG_EMPTY_TYPE_WACH == 0 && C_APPLICATION_TYPE_WACH != 1) ?
M_AXI_AWREADY : 1'b0;
assign wach_wr_en = (C_HAS_SLAVE_CE == 1) ? wach_we & S_ACLK_EN : wach_we;
assign wach_rd_en = (C_HAS_MASTER_CE == 1) ? wach_re & M_ACLK_EN : wach_re;
FIFO_GENERATOR_v12_0_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_WACH == 1 || C_IMPLEMENTATION_TYPE_WACH == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_WACH == 2 || C_IMPLEMENTATION_TYPE_WACH == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_WACH == 1 || C_IMPLEMENTATION_TYPE_WACH == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_WACH == 11 || C_IMPLEMENTATION_TYPE_WACH == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_WACH),
.C_WR_DEPTH (C_WR_DEPTH_WACH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_WACH),
.C_DOUT_WIDTH (C_DIN_WIDTH_WACH),
.C_RD_DEPTH (C_WR_DEPTH_WACH),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_WACH),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_WACH),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_WACH),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_WACH),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH),
.C_USE_ECC (C_USE_ECC_WACH),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_WACH),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_FIFO_TYPE ((C_APPLICATION_TYPE_WACH == 1)?0:C_APPLICATION_TYPE_WACH),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_WACH == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WACH + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WACH == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WACH + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WACH == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WACH + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_EMBEDDED_REG (0),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v12_0_wach_dut
(
.CLK (S_ACLK),
.WR_CLK (S_ACLK),
.RD_CLK (M_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (wach_wr_en),
.RD_EN (wach_rd_en),
.PROG_FULL_THRESH (AXI_AW_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WACH{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WACH{1'b0}}),
.PROG_EMPTY_THRESH (AXI_AW_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WACH{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WACH{1'b0}}),
.INJECTDBITERR (AXI_AW_INJECTDBITERR),
.INJECTSBITERR (AXI_AW_INJECTSBITERR),
.DIN (wach_din),
.DOUT (wach_dout_pkt),
.FULL (wach_full),
.EMPTY (wach_empty),
.ALMOST_FULL (),
.PROG_FULL (AXI_AW_PROG_FULL),
.ALMOST_EMPTY (),
.PROG_EMPTY (AXI_AW_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (axi_aw_overflow_i),
.VALID (),
.UNDERFLOW (axi_aw_underflow_i),
.DATA_COUNT (AXI_AW_DATA_COUNT),
.RD_DATA_COUNT (AXI_AW_RD_DATA_COUNT),
.WR_DATA_COUNT (AXI_AW_WR_DATA_COUNT),
.SBITERR (AXI_AW_SBITERR),
.DBITERR (AXI_AW_DBITERR),
.wr_rst_busy (wr_rst_busy_wach),
.rd_rst_busy (rd_rst_busy_wach),
.wr_rst_i_out (),
.rd_rst_i_out (),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign wach_s_axi_awready = (IS_8SERIES == 0) ? ~wach_full : (C_IMPLEMENTATION_TYPE_WACH == 5 || C_IMPLEMENTATION_TYPE_WACH == 13) ? ~(wach_full | wr_rst_busy_wach) : ~wach_full;
assign wach_m_axi_awvalid = ~wach_empty;
assign S_AXI_AWREADY = wach_s_axi_awready;
assign AXI_AW_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_aw_underflow_i : 0;
assign AXI_AW_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_aw_overflow_i : 0;
end endgenerate // axi_write_address_channel
// Register Slice for Write Address Channel
generate if (C_WACH_TYPE == 1) begin : gwach_reg_slice
fifo_generator_v12_0_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_WACH),
.C_REG_CONFIG (C_REG_SLICE_MODE_WACH)
)
wach_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (wach_din),
.S_VALID (S_AXI_AWVALID),
.S_READY (S_AXI_AWREADY),
// Master side
.M_PAYLOAD_DATA (wach_dout),
.M_VALID (M_AXI_AWVALID),
.M_READY (M_AXI_AWREADY)
);
end endgenerate // gwach_reg_slice
generate if (C_APPLICATION_TYPE_WACH == 1 && C_HAS_AXI_WR_CHANNEL == 1) begin : axi_mm_pkt_fifo_wr
fifo_generator_v12_0_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_WACH),
.C_REG_CONFIG (1)
)
wach_pkt_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (inverted_reset),
// Slave side
.S_PAYLOAD_DATA (wach_dout_pkt),
.S_VALID (awvalid_pkt),
.S_READY (awready_pkt),
// Master side
.M_PAYLOAD_DATA (wach_dout),
.M_VALID (M_AXI_AWVALID),
.M_READY (M_AXI_AWREADY)
);
assign awvalid_pkt = wach_m_axi_awvalid && awvalid_en;
assign txn_count_up = wdch_s_axi_wready && wdch_wr_en && wdch_din[0];
assign txn_count_down = wach_m_axi_awvalid && awready_pkt && awvalid_en;
always@(posedge S_ACLK or posedge inverted_reset) begin
if(inverted_reset == 1) begin
wr_pkt_count <= 0;
end else begin
if(txn_count_up == 1 && txn_count_down == 0) begin
wr_pkt_count <= wr_pkt_count + 1;
end else if(txn_count_up == 0 && txn_count_down == 1) begin
wr_pkt_count <= wr_pkt_count - 1;
end
end
end //Always end
assign awvalid_en = (wr_pkt_count > 0)?1:0;
end endgenerate
generate if (C_APPLICATION_TYPE_WACH != 1) begin : axi_mm_fifo_wr
assign awvalid_en = 1;
assign wach_dout = wach_dout_pkt;
assign M_AXI_AWVALID = wach_m_axi_awvalid;
end
endgenerate
generate if (IS_WR_DATA_CH == 1) begin : axi_write_data_channel
// Write protection when almost full or prog_full is high
assign wdch_we = (C_PROG_FULL_TYPE_WDCH != 0) ? wdch_s_axi_wready & S_AXI_WVALID : S_AXI_WVALID;
// Read protection when almost empty or prog_empty is high
assign wdch_re = (C_PROG_EMPTY_TYPE_WDCH != 0) ? wdch_m_axi_wvalid & M_AXI_WREADY : M_AXI_WREADY;
assign wdch_wr_en = (C_HAS_SLAVE_CE == 1) ? wdch_we & S_ACLK_EN : wdch_we;
assign wdch_rd_en = (C_HAS_MASTER_CE == 1) ? wdch_re & M_ACLK_EN : wdch_re;
FIFO_GENERATOR_v12_0_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_WDCH == 1 || C_IMPLEMENTATION_TYPE_WDCH == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_WDCH == 2 || C_IMPLEMENTATION_TYPE_WDCH == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_WDCH == 1 || C_IMPLEMENTATION_TYPE_WDCH == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_WDCH == 11 || C_IMPLEMENTATION_TYPE_WDCH == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_WDCH),
.C_WR_DEPTH (C_WR_DEPTH_WDCH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_WDCH),
.C_DOUT_WIDTH (C_DIN_WIDTH_WDCH),
.C_RD_DEPTH (C_WR_DEPTH_WDCH),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_WDCH),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_WDCH),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_WDCH),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_WDCH),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH),
.C_USE_ECC (C_USE_ECC_WDCH),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_WDCH),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_FIFO_TYPE (C_APPLICATION_TYPE_WDCH),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_WDCH == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WDCH + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WDCH == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WDCH + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WDCH == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WDCH + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_EMBEDDED_REG (0),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v12_0_wdch_dut
(
.CLK (S_ACLK),
.WR_CLK (S_ACLK),
.RD_CLK (M_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (wdch_wr_en),
.RD_EN (wdch_rd_en),
.PROG_FULL_THRESH (AXI_W_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WDCH{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WDCH{1'b0}}),
.PROG_EMPTY_THRESH (AXI_W_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WDCH{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WDCH{1'b0}}),
.INJECTDBITERR (AXI_W_INJECTDBITERR),
.INJECTSBITERR (AXI_W_INJECTSBITERR),
.DIN (wdch_din),
.DOUT (wdch_dout),
.FULL (wdch_full),
.EMPTY (wdch_empty),
.ALMOST_FULL (),
.PROG_FULL (AXI_W_PROG_FULL),
.ALMOST_EMPTY (),
.PROG_EMPTY (AXI_W_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (axi_w_overflow_i),
.VALID (),
.UNDERFLOW (axi_w_underflow_i),
.DATA_COUNT (AXI_W_DATA_COUNT),
.RD_DATA_COUNT (AXI_W_RD_DATA_COUNT),
.WR_DATA_COUNT (AXI_W_WR_DATA_COUNT),
.SBITERR (AXI_W_SBITERR),
.DBITERR (AXI_W_DBITERR),
.wr_rst_busy (wr_rst_busy_wdch),
.rd_rst_busy (rd_rst_busy_wdch),
.wr_rst_i_out (),
.rd_rst_i_out (),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign wdch_s_axi_wready = (IS_8SERIES == 0) ? ~wdch_full : (C_IMPLEMENTATION_TYPE_WDCH == 5 || C_IMPLEMENTATION_TYPE_WDCH == 13) ? ~(wdch_full | wr_rst_busy_wdch) : ~wdch_full;
assign wdch_m_axi_wvalid = ~wdch_empty;
assign S_AXI_WREADY = wdch_s_axi_wready;
assign M_AXI_WVALID = wdch_m_axi_wvalid;
assign AXI_W_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_w_underflow_i : 0;
assign AXI_W_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_w_overflow_i : 0;
end endgenerate // axi_write_data_channel
// Register Slice for Write Data Channel
generate if (C_WDCH_TYPE == 1) begin : gwdch_reg_slice
fifo_generator_v12_0_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_WDCH),
.C_REG_CONFIG (C_REG_SLICE_MODE_WDCH)
)
wdch_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (wdch_din),
.S_VALID (S_AXI_WVALID),
.S_READY (S_AXI_WREADY),
// Master side
.M_PAYLOAD_DATA (wdch_dout),
.M_VALID (M_AXI_WVALID),
.M_READY (M_AXI_WREADY)
);
end endgenerate // gwdch_reg_slice
generate if (IS_WR_RESP_CH == 1) begin : axi_write_resp_channel
// Write protection when almost full or prog_full is high
assign wrch_we = (C_PROG_FULL_TYPE_WRCH != 0) ? wrch_m_axi_bready & M_AXI_BVALID : M_AXI_BVALID;
// Read protection when almost empty or prog_empty is high
assign wrch_re = (C_PROG_EMPTY_TYPE_WRCH != 0) ? wrch_s_axi_bvalid & S_AXI_BREADY : S_AXI_BREADY;
assign wrch_wr_en = (C_HAS_SLAVE_CE == 1) ? wrch_we & S_ACLK_EN : wrch_we;
assign wrch_rd_en = (C_HAS_MASTER_CE == 1) ? wrch_re & M_ACLK_EN : wrch_re;
FIFO_GENERATOR_v12_0_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_WRCH == 1 || C_IMPLEMENTATION_TYPE_WRCH == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_WRCH == 2 || C_IMPLEMENTATION_TYPE_WRCH == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_WRCH == 1 || C_IMPLEMENTATION_TYPE_WRCH == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_WRCH == 11 || C_IMPLEMENTATION_TYPE_WRCH == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_WRCH),
.C_WR_DEPTH (C_WR_DEPTH_WRCH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_WRCH),
.C_DOUT_WIDTH (C_DIN_WIDTH_WRCH),
.C_RD_DEPTH (C_WR_DEPTH_WRCH),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_WRCH),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_WRCH),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_WRCH),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_WRCH),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH),
.C_USE_ECC (C_USE_ECC_WRCH),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_WRCH),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_FIFO_TYPE (C_APPLICATION_TYPE_WRCH),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_WRCH == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WRCH + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WRCH == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WRCH + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WRCH == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WRCH + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_EMBEDDED_REG (0),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v12_0_wrch_dut
(
.CLK (S_ACLK),
.WR_CLK (M_ACLK),
.RD_CLK (S_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (wrch_wr_en),
.RD_EN (wrch_rd_en),
.PROG_FULL_THRESH (AXI_B_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WRCH{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WRCH{1'b0}}),
.PROG_EMPTY_THRESH (AXI_B_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WRCH{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WRCH{1'b0}}),
.INJECTDBITERR (AXI_B_INJECTDBITERR),
.INJECTSBITERR (AXI_B_INJECTSBITERR),
.DIN (wrch_din),
.DOUT (wrch_dout),
.FULL (wrch_full),
.EMPTY (wrch_empty),
.ALMOST_FULL (),
.ALMOST_EMPTY (),
.PROG_FULL (AXI_B_PROG_FULL),
.PROG_EMPTY (AXI_B_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (axi_b_overflow_i),
.VALID (),
.UNDERFLOW (axi_b_underflow_i),
.DATA_COUNT (AXI_B_DATA_COUNT),
.RD_DATA_COUNT (AXI_B_RD_DATA_COUNT),
.WR_DATA_COUNT (AXI_B_WR_DATA_COUNT),
.SBITERR (AXI_B_SBITERR),
.DBITERR (AXI_B_DBITERR),
.wr_rst_busy (wr_rst_busy_wrch),
.rd_rst_busy (rd_rst_busy_wrch),
.wr_rst_i_out (),
.rd_rst_i_out (),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign wrch_s_axi_bvalid = ~wrch_empty;
assign wrch_m_axi_bready = (IS_8SERIES == 0) ? ~wrch_full : (C_IMPLEMENTATION_TYPE_WRCH == 5 || C_IMPLEMENTATION_TYPE_WRCH == 13) ? ~(wrch_full | wr_rst_busy_wrch) : ~wrch_full;
assign S_AXI_BVALID = wrch_s_axi_bvalid;
assign M_AXI_BREADY = wrch_m_axi_bready;
assign AXI_B_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_b_underflow_i : 0;
assign AXI_B_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_b_overflow_i : 0;
end endgenerate // axi_write_resp_channel
// Register Slice for Write Response Channel
generate if (C_WRCH_TYPE == 1) begin : gwrch_reg_slice
fifo_generator_v12_0_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_WRCH),
.C_REG_CONFIG (C_REG_SLICE_MODE_WRCH)
)
wrch_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (wrch_din),
.S_VALID (M_AXI_BVALID),
.S_READY (M_AXI_BREADY),
// Master side
.M_PAYLOAD_DATA (wrch_dout),
.M_VALID (S_AXI_BVALID),
.M_READY (S_AXI_BREADY)
);
end endgenerate // gwrch_reg_slice
assign axi_wr_underflow_i = C_USE_COMMON_UNDERFLOW == 1 ? (axi_aw_underflow_i || axi_w_underflow_i || axi_b_underflow_i) : 0;
assign axi_wr_overflow_i = C_USE_COMMON_OVERFLOW == 1 ? (axi_aw_overflow_i || axi_w_overflow_i || axi_b_overflow_i) : 0;
generate if (IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) begin : axi_wach_output
assign M_AXI_AWADDR = wach_dout[AWID_OFFSET-1:AWADDR_OFFSET];
assign M_AXI_AWLEN = wach_dout[AWADDR_OFFSET-1:AWLEN_OFFSET];
assign M_AXI_AWSIZE = wach_dout[AWLEN_OFFSET-1:AWSIZE_OFFSET];
assign M_AXI_AWBURST = wach_dout[AWSIZE_OFFSET-1:AWBURST_OFFSET];
assign M_AXI_AWLOCK = wach_dout[AWBURST_OFFSET-1:AWLOCK_OFFSET];
assign M_AXI_AWCACHE = wach_dout[AWLOCK_OFFSET-1:AWCACHE_OFFSET];
assign M_AXI_AWPROT = wach_dout[AWCACHE_OFFSET-1:AWPROT_OFFSET];
assign M_AXI_AWQOS = wach_dout[AWPROT_OFFSET-1:AWQOS_OFFSET];
assign wach_din[AWID_OFFSET-1:AWADDR_OFFSET] = S_AXI_AWADDR;
assign wach_din[AWADDR_OFFSET-1:AWLEN_OFFSET] = S_AXI_AWLEN;
assign wach_din[AWLEN_OFFSET-1:AWSIZE_OFFSET] = S_AXI_AWSIZE;
assign wach_din[AWSIZE_OFFSET-1:AWBURST_OFFSET] = S_AXI_AWBURST;
assign wach_din[AWBURST_OFFSET-1:AWLOCK_OFFSET] = S_AXI_AWLOCK;
assign wach_din[AWLOCK_OFFSET-1:AWCACHE_OFFSET] = S_AXI_AWCACHE;
assign wach_din[AWCACHE_OFFSET-1:AWPROT_OFFSET] = S_AXI_AWPROT;
assign wach_din[AWPROT_OFFSET-1:AWQOS_OFFSET] = S_AXI_AWQOS;
end endgenerate // axi_wach_output
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_AXI_TYPE == 1) begin : axi_awregion
assign M_AXI_AWREGION = wach_dout[AWQOS_OFFSET-1:AWREGION_OFFSET];
end endgenerate // axi_awregion
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_AXI_TYPE != 1) begin : naxi_awregion
assign M_AXI_AWREGION = 0;
end endgenerate // naxi_awregion
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_AWUSER == 1) begin : axi_awuser
assign M_AXI_AWUSER = wach_dout[AWREGION_OFFSET-1:AWUSER_OFFSET];
end endgenerate // axi_awuser
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_AWUSER == 0) begin : naxi_awuser
assign M_AXI_AWUSER = 0;
end endgenerate // naxi_awuser
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_awid
assign M_AXI_AWID = wach_dout[C_DIN_WIDTH_WACH-1:AWID_OFFSET];
end endgenerate //axi_awid
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_awid
assign M_AXI_AWID = 0;
end endgenerate //naxi_awid
generate if (IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) begin : axi_wdch_output
assign M_AXI_WDATA = wdch_dout[WID_OFFSET-1:WDATA_OFFSET];
assign M_AXI_WSTRB = wdch_dout[WDATA_OFFSET-1:WSTRB_OFFSET];
assign M_AXI_WLAST = wdch_dout[0];
assign wdch_din[WID_OFFSET-1:WDATA_OFFSET] = S_AXI_WDATA;
assign wdch_din[WDATA_OFFSET-1:WSTRB_OFFSET] = S_AXI_WSTRB;
assign wdch_din[0] = S_AXI_WLAST;
end endgenerate // axi_wdch_output
generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_ID == 1 && C_AXI_TYPE == 3) begin
assign M_AXI_WID = wdch_dout[C_DIN_WIDTH_WDCH-1:WID_OFFSET];
end endgenerate
generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && (C_HAS_AXI_ID == 0 || C_AXI_TYPE != 3)) begin
assign M_AXI_WID = 0;
end endgenerate
generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_WUSER == 1 ) begin
assign M_AXI_WUSER = wdch_dout[WSTRB_OFFSET-1:WUSER_OFFSET];
end endgenerate
generate if (C_HAS_AXI_WUSER == 0) begin
assign M_AXI_WUSER = 0;
end endgenerate
generate if (IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) begin : axi_wrch_output
assign S_AXI_BRESP = wrch_dout[BID_OFFSET-1:BRESP_OFFSET];
assign wrch_din[BID_OFFSET-1:BRESP_OFFSET] = M_AXI_BRESP;
end endgenerate // axi_wrch_output
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_BUSER == 1) begin : axi_buser
assign S_AXI_BUSER = wrch_dout[BRESP_OFFSET-1:BUSER_OFFSET];
end endgenerate // axi_buser
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_BUSER == 0) begin : naxi_buser
assign S_AXI_BUSER = 0;
end endgenerate // naxi_buser
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_bid
assign S_AXI_BID = wrch_dout[C_DIN_WIDTH_WRCH-1:BID_OFFSET];
end endgenerate // axi_bid
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_bid
assign S_AXI_BID = 0 ;
end endgenerate // naxi_bid
generate if (IS_AXI_LITE_WACH == 1 || (IS_AXI_LITE == 1 && C_WACH_TYPE == 1)) begin : axi_wach_output1
assign wach_din = {S_AXI_AWADDR, S_AXI_AWPROT};
assign M_AXI_AWADDR = wach_dout[C_DIN_WIDTH_WACH-1:AWADDR_OFFSET];
assign M_AXI_AWPROT = wach_dout[AWADDR_OFFSET-1:AWPROT_OFFSET];
end endgenerate // axi_wach_output1
generate if (IS_AXI_LITE_WDCH == 1 || (IS_AXI_LITE == 1 && C_WDCH_TYPE == 1)) begin : axi_wdch_output1
assign wdch_din = {S_AXI_WDATA, S_AXI_WSTRB};
assign M_AXI_WDATA = wdch_dout[C_DIN_WIDTH_WDCH-1:WDATA_OFFSET];
assign M_AXI_WSTRB = wdch_dout[WDATA_OFFSET-1:WSTRB_OFFSET];
end endgenerate // axi_wdch_output1
generate if (IS_AXI_LITE_WRCH == 1 || (IS_AXI_LITE == 1 && C_WRCH_TYPE == 1)) begin : axi_wrch_output1
assign wrch_din = M_AXI_BRESP;
assign S_AXI_BRESP = wrch_dout[C_DIN_WIDTH_WRCH-1:BRESP_OFFSET];
end endgenerate // axi_wrch_output1
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_AWUSER == 1) begin : gwach_din1
assign wach_din[AWREGION_OFFSET-1:AWUSER_OFFSET] = S_AXI_AWUSER;
end endgenerate // gwach_din1
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : gwach_din2
assign wach_din[C_DIN_WIDTH_WACH-1:AWID_OFFSET] = S_AXI_AWID;
end endgenerate // gwach_din2
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_AXI_TYPE == 1) begin : gwach_din3
assign wach_din[AWQOS_OFFSET-1:AWREGION_OFFSET] = S_AXI_AWREGION;
end endgenerate // gwach_din3
generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_WUSER == 1) begin : gwdch_din1
assign wdch_din[WSTRB_OFFSET-1:WUSER_OFFSET] = S_AXI_WUSER;
end endgenerate // gwdch_din1
generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_ID == 1 && C_AXI_TYPE == 3) begin : gwdch_din2
assign wdch_din[C_DIN_WIDTH_WDCH-1:WID_OFFSET] = S_AXI_WID;
end endgenerate // gwdch_din2
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_BUSER == 1) begin : gwrch_din1
assign wrch_din[BRESP_OFFSET-1:BUSER_OFFSET] = M_AXI_BUSER;
end endgenerate // gwrch_din1
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : gwrch_din2
assign wrch_din[C_DIN_WIDTH_WRCH-1:BID_OFFSET] = M_AXI_BID;
end endgenerate // gwrch_din2
//end of axi_write_channel
//###########################################################################
// AXI FULL Read Channel (axi_read_channel)
//###########################################################################
wire [C_DIN_WIDTH_RACH-1:0] rach_din ;
wire [C_DIN_WIDTH_RACH-1:0] rach_dout ;
wire [C_DIN_WIDTH_RACH-1:0] rach_dout_pkt ;
wire rach_full ;
wire rach_almost_full ;
wire rach_prog_full ;
wire rach_empty ;
wire rach_almost_empty ;
wire rach_prog_empty ;
wire [C_DIN_WIDTH_RDCH-1:0] rdch_din ;
wire [C_DIN_WIDTH_RDCH-1:0] rdch_dout ;
wire rdch_full ;
wire rdch_almost_full ;
wire rdch_prog_full ;
wire rdch_empty ;
wire rdch_almost_empty ;
wire rdch_prog_empty ;
wire axi_ar_underflow_i ;
wire axi_r_underflow_i ;
wire axi_ar_overflow_i ;
wire axi_r_overflow_i ;
wire axi_rd_underflow_i ;
wire axi_rd_overflow_i ;
wire rach_s_axi_arready ;
wire rach_m_axi_arvalid ;
wire rach_wr_en ;
wire rach_rd_en ;
wire rdch_m_axi_rready ;
wire rdch_s_axi_rvalid ;
wire rdch_wr_en ;
wire rdch_rd_en ;
wire arvalid_pkt ;
wire arready_pkt ;
wire arvalid_en ;
wire rdch_rd_ok ;
wire accept_next_pkt ;
integer rdch_free_space ;
integer rdch_commited_space ;
wire rach_we ;
wire rach_re ;
wire rdch_we ;
wire rdch_re ;
localparam ARID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_RACH - C_AXI_ID_WIDTH : C_DIN_WIDTH_RACH;
localparam ARADDR_OFFSET = ARID_OFFSET - C_AXI_ADDR_WIDTH;
localparam ARLEN_OFFSET = C_AXI_TYPE != 2 ? ARADDR_OFFSET - C_AXI_LEN_WIDTH : ARADDR_OFFSET;
localparam ARSIZE_OFFSET = C_AXI_TYPE != 2 ? ARLEN_OFFSET - C_AXI_SIZE_WIDTH : ARLEN_OFFSET;
localparam ARBURST_OFFSET = C_AXI_TYPE != 2 ? ARSIZE_OFFSET - C_AXI_BURST_WIDTH : ARSIZE_OFFSET;
localparam ARLOCK_OFFSET = C_AXI_TYPE != 2 ? ARBURST_OFFSET - C_AXI_LOCK_WIDTH : ARBURST_OFFSET;
localparam ARCACHE_OFFSET = C_AXI_TYPE != 2 ? ARLOCK_OFFSET - C_AXI_CACHE_WIDTH : ARLOCK_OFFSET;
localparam ARPROT_OFFSET = ARCACHE_OFFSET - C_AXI_PROT_WIDTH;
localparam ARQOS_OFFSET = ARPROT_OFFSET - C_AXI_QOS_WIDTH;
localparam ARREGION_OFFSET = C_AXI_TYPE == 1 ? ARQOS_OFFSET - C_AXI_REGION_WIDTH : ARQOS_OFFSET;
localparam ARUSER_OFFSET = C_HAS_AXI_ARUSER == 1 ? ARREGION_OFFSET-C_AXI_ARUSER_WIDTH : ARREGION_OFFSET;
localparam RID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_RDCH - C_AXI_ID_WIDTH : C_DIN_WIDTH_RDCH;
localparam RDATA_OFFSET = RID_OFFSET - C_AXI_DATA_WIDTH;
localparam RRESP_OFFSET = RDATA_OFFSET - C_AXI_RRESP_WIDTH;
localparam RUSER_OFFSET = C_HAS_AXI_RUSER == 1 ? RRESP_OFFSET-C_AXI_RUSER_WIDTH : RRESP_OFFSET;
generate if (IS_RD_ADDR_CH == 1) begin : axi_read_addr_channel
// Write protection when almost full or prog_full is high
assign rach_we = (C_PROG_FULL_TYPE_RACH != 0) ? rach_s_axi_arready & S_AXI_ARVALID : S_AXI_ARVALID;
// Read protection when almost empty or prog_empty is high
// assign rach_rd_en = (C_PROG_EMPTY_TYPE_RACH != 5) ? rach_m_axi_arvalid & M_AXI_ARREADY : M_AXI_ARREADY && arvalid_en;
assign rach_re = (C_PROG_EMPTY_TYPE_RACH != 0 && C_APPLICATION_TYPE_RACH == 1) ?
rach_m_axi_arvalid & arready_pkt & arvalid_en :
(C_PROG_EMPTY_TYPE_RACH != 0 && C_APPLICATION_TYPE_RACH != 1) ?
M_AXI_ARREADY && rach_m_axi_arvalid :
(C_PROG_EMPTY_TYPE_RACH == 0 && C_APPLICATION_TYPE_RACH == 1) ?
arready_pkt & arvalid_en :
(C_PROG_EMPTY_TYPE_RACH == 0 && C_APPLICATION_TYPE_RACH != 1) ?
M_AXI_ARREADY : 1'b0;
assign rach_wr_en = (C_HAS_SLAVE_CE == 1) ? rach_we & S_ACLK_EN : rach_we;
assign rach_rd_en = (C_HAS_MASTER_CE == 1) ? rach_re & M_ACLK_EN : rach_re;
FIFO_GENERATOR_v12_0_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_RACH == 1 || C_IMPLEMENTATION_TYPE_RACH == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_RACH == 2 || C_IMPLEMENTATION_TYPE_RACH == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_RACH == 1 || C_IMPLEMENTATION_TYPE_RACH == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_RACH == 11 || C_IMPLEMENTATION_TYPE_RACH == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_RACH),
.C_WR_DEPTH (C_WR_DEPTH_RACH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_RACH),
.C_DOUT_WIDTH (C_DIN_WIDTH_RACH),
.C_RD_DEPTH (C_WR_DEPTH_RACH),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_RACH),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_RACH),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_RACH),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_RACH),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH),
.C_USE_ECC (C_USE_ECC_RACH),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_RACH),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_FIFO_TYPE ((C_APPLICATION_TYPE_RACH == 1)?0:C_APPLICATION_TYPE_RACH),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_RACH == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RACH + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RACH == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RACH + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RACH == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RACH + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_EMBEDDED_REG (0),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v12_0_rach_dut
(
.CLK (S_ACLK),
.WR_CLK (S_ACLK),
.RD_CLK (M_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (rach_wr_en),
.RD_EN (rach_rd_en),
.PROG_FULL_THRESH (AXI_AR_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RACH{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RACH{1'b0}}),
.PROG_EMPTY_THRESH (AXI_AR_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RACH{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RACH{1'b0}}),
.INJECTDBITERR (AXI_AR_INJECTDBITERR),
.INJECTSBITERR (AXI_AR_INJECTSBITERR),
.DIN (rach_din),
.DOUT (rach_dout_pkt),
.FULL (rach_full),
.EMPTY (rach_empty),
.ALMOST_FULL (),
.ALMOST_EMPTY (),
.PROG_FULL (AXI_AR_PROG_FULL),
.PROG_EMPTY (AXI_AR_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (axi_ar_overflow_i),
.VALID (),
.UNDERFLOW (axi_ar_underflow_i),
.DATA_COUNT (AXI_AR_DATA_COUNT),
.RD_DATA_COUNT (AXI_AR_RD_DATA_COUNT),
.WR_DATA_COUNT (AXI_AR_WR_DATA_COUNT),
.SBITERR (AXI_AR_SBITERR),
.DBITERR (AXI_AR_DBITERR),
.wr_rst_busy (wr_rst_busy_rach),
.rd_rst_busy (rd_rst_busy_rach),
.wr_rst_i_out (),
.rd_rst_i_out (),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign rach_s_axi_arready = (IS_8SERIES == 0) ? ~rach_full : (C_IMPLEMENTATION_TYPE_RACH == 5 || C_IMPLEMENTATION_TYPE_RACH == 13) ? ~(rach_full | wr_rst_busy_rach) : ~rach_full;
assign rach_m_axi_arvalid = ~rach_empty;
assign S_AXI_ARREADY = rach_s_axi_arready;
assign AXI_AR_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_ar_underflow_i : 0;
assign AXI_AR_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_ar_overflow_i : 0;
end endgenerate // axi_read_addr_channel
// Register Slice for Read Address Channel
generate if (C_RACH_TYPE == 1) begin : grach_reg_slice
fifo_generator_v12_0_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_RACH),
.C_REG_CONFIG (C_REG_SLICE_MODE_RACH)
)
rach_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (rach_din),
.S_VALID (S_AXI_ARVALID),
.S_READY (S_AXI_ARREADY),
// Master side
.M_PAYLOAD_DATA (rach_dout),
.M_VALID (M_AXI_ARVALID),
.M_READY (M_AXI_ARREADY)
);
end endgenerate // grach_reg_slice
// Register Slice for Read Address Channel for MM Packet FIFO
generate if (C_RACH_TYPE == 0 && C_APPLICATION_TYPE_RACH == 1) begin : grach_reg_slice_mm_pkt_fifo
fifo_generator_v12_0_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_RACH),
.C_REG_CONFIG (1)
)
reg_slice_mm_pkt_fifo_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (inverted_reset),
// Slave side
.S_PAYLOAD_DATA (rach_dout_pkt),
.S_VALID (arvalid_pkt),
.S_READY (arready_pkt),
// Master side
.M_PAYLOAD_DATA (rach_dout),
.M_VALID (M_AXI_ARVALID),
.M_READY (M_AXI_ARREADY)
);
end endgenerate // grach_reg_slice_mm_pkt_fifo
generate if (C_RACH_TYPE == 0 && C_APPLICATION_TYPE_RACH != 1) begin : grach_m_axi_arvalid
assign M_AXI_ARVALID = rach_m_axi_arvalid;
assign rach_dout = rach_dout_pkt;
end endgenerate // grach_m_axi_arvalid
generate if (C_APPLICATION_TYPE_RACH == 1 && C_HAS_AXI_RD_CHANNEL == 1) begin : axi_mm_pkt_fifo_rd
assign rdch_rd_ok = rdch_s_axi_rvalid && rdch_rd_en;
assign arvalid_pkt = rach_m_axi_arvalid && arvalid_en;
assign accept_next_pkt = rach_m_axi_arvalid && arready_pkt && arvalid_en;
always@(posedge S_ACLK or posedge inverted_reset) begin
if(inverted_reset) begin
rdch_commited_space <= 0;
end else begin
if(rdch_rd_ok && !accept_next_pkt) begin
rdch_commited_space <= rdch_commited_space-1;
end else if(!rdch_rd_ok && accept_next_pkt) begin
rdch_commited_space <= rdch_commited_space+(rach_dout_pkt[ARADDR_OFFSET-1:ARLEN_OFFSET]+1);
end else if(rdch_rd_ok && accept_next_pkt) begin
rdch_commited_space <= rdch_commited_space+(rach_dout_pkt[ARADDR_OFFSET-1:ARLEN_OFFSET]);
end
end
end //Always end
always@(*) begin
rdch_free_space <= (C_WR_DEPTH_RDCH-(rdch_commited_space+rach_dout_pkt[ARADDR_OFFSET-1:ARLEN_OFFSET]+1));
end
assign arvalid_en = (rdch_free_space >= 0)?1:0;
end
endgenerate
generate if (C_APPLICATION_TYPE_RACH != 1) begin : axi_mm_fifo_rd
assign arvalid_en = 1;
end
endgenerate
generate if (IS_RD_DATA_CH == 1) begin : axi_read_data_channel
// Write protection when almost full or prog_full is high
assign rdch_we = (C_PROG_FULL_TYPE_RDCH != 0) ? rdch_m_axi_rready & M_AXI_RVALID : M_AXI_RVALID;
// Read protection when almost empty or prog_empty is high
assign rdch_re = (C_PROG_EMPTY_TYPE_RDCH != 0) ? rdch_s_axi_rvalid & S_AXI_RREADY : S_AXI_RREADY;
assign rdch_wr_en = (C_HAS_SLAVE_CE == 1) ? rdch_we & S_ACLK_EN : rdch_we;
assign rdch_rd_en = (C_HAS_MASTER_CE == 1) ? rdch_re & M_ACLK_EN : rdch_re;
FIFO_GENERATOR_v12_0_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_RDCH == 1 || C_IMPLEMENTATION_TYPE_RDCH == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_RDCH == 2 || C_IMPLEMENTATION_TYPE_RDCH == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_RDCH == 1 || C_IMPLEMENTATION_TYPE_RDCH == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_RDCH == 11 || C_IMPLEMENTATION_TYPE_RDCH == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_RDCH),
.C_WR_DEPTH (C_WR_DEPTH_RDCH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_RDCH),
.C_DOUT_WIDTH (C_DIN_WIDTH_RDCH),
.C_RD_DEPTH (C_WR_DEPTH_RDCH),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_RDCH),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_RDCH),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_RDCH),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_RDCH),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH),
.C_USE_ECC (C_USE_ECC_RDCH),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_RDCH),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_FIFO_TYPE (C_APPLICATION_TYPE_RDCH),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_RDCH == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RDCH + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RDCH == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RDCH + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RDCH == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RDCH + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_EMBEDDED_REG (0),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v12_0_rdch_dut
(
.CLK (S_ACLK),
.WR_CLK (M_ACLK),
.RD_CLK (S_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (rdch_wr_en),
.RD_EN (rdch_rd_en),
.PROG_FULL_THRESH (AXI_R_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RDCH{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RDCH{1'b0}}),
.PROG_EMPTY_THRESH (AXI_R_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RDCH{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RDCH{1'b0}}),
.INJECTDBITERR (AXI_R_INJECTDBITERR),
.INJECTSBITERR (AXI_R_INJECTSBITERR),
.DIN (rdch_din),
.DOUT (rdch_dout),
.FULL (rdch_full),
.EMPTY (rdch_empty),
.ALMOST_FULL (),
.ALMOST_EMPTY (),
.PROG_FULL (AXI_R_PROG_FULL),
.PROG_EMPTY (AXI_R_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (axi_r_overflow_i),
.VALID (),
.UNDERFLOW (axi_r_underflow_i),
.DATA_COUNT (AXI_R_DATA_COUNT),
.RD_DATA_COUNT (AXI_R_RD_DATA_COUNT),
.WR_DATA_COUNT (AXI_R_WR_DATA_COUNT),
.SBITERR (AXI_R_SBITERR),
.DBITERR (AXI_R_DBITERR),
.wr_rst_busy (wr_rst_busy_rdch),
.rd_rst_busy (rd_rst_busy_rdch),
.wr_rst_i_out (),
.rd_rst_i_out (),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign rdch_s_axi_rvalid = ~rdch_empty;
assign rdch_m_axi_rready = (IS_8SERIES == 0) ? ~rdch_full : (C_IMPLEMENTATION_TYPE_RDCH == 5 || C_IMPLEMENTATION_TYPE_RDCH == 13) ? ~(rdch_full | wr_rst_busy_rdch) : ~rdch_full;
assign S_AXI_RVALID = rdch_s_axi_rvalid;
assign M_AXI_RREADY = rdch_m_axi_rready;
assign AXI_R_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_r_underflow_i : 0;
assign AXI_R_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_r_overflow_i : 0;
end endgenerate //axi_read_data_channel
// Register Slice for read Data Channel
generate if (C_RDCH_TYPE == 1) begin : grdch_reg_slice
fifo_generator_v12_0_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_RDCH),
.C_REG_CONFIG (C_REG_SLICE_MODE_RDCH)
)
rdch_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (rdch_din),
.S_VALID (M_AXI_RVALID),
.S_READY (M_AXI_RREADY),
// Master side
.M_PAYLOAD_DATA (rdch_dout),
.M_VALID (S_AXI_RVALID),
.M_READY (S_AXI_RREADY)
);
end endgenerate // grdch_reg_slice
assign axi_rd_underflow_i = C_USE_COMMON_UNDERFLOW == 1 ? (axi_ar_underflow_i || axi_r_underflow_i) : 0;
assign axi_rd_overflow_i = C_USE_COMMON_OVERFLOW == 1 ? (axi_ar_overflow_i || axi_r_overflow_i) : 0;
generate if (IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) begin : axi_full_rach_output
assign M_AXI_ARADDR = rach_dout[ARID_OFFSET-1:ARADDR_OFFSET];
assign M_AXI_ARLEN = rach_dout[ARADDR_OFFSET-1:ARLEN_OFFSET];
assign M_AXI_ARSIZE = rach_dout[ARLEN_OFFSET-1:ARSIZE_OFFSET];
assign M_AXI_ARBURST = rach_dout[ARSIZE_OFFSET-1:ARBURST_OFFSET];
assign M_AXI_ARLOCK = rach_dout[ARBURST_OFFSET-1:ARLOCK_OFFSET];
assign M_AXI_ARCACHE = rach_dout[ARLOCK_OFFSET-1:ARCACHE_OFFSET];
assign M_AXI_ARPROT = rach_dout[ARCACHE_OFFSET-1:ARPROT_OFFSET];
assign M_AXI_ARQOS = rach_dout[ARPROT_OFFSET-1:ARQOS_OFFSET];
assign rach_din[ARID_OFFSET-1:ARADDR_OFFSET] = S_AXI_ARADDR;
assign rach_din[ARADDR_OFFSET-1:ARLEN_OFFSET] = S_AXI_ARLEN;
assign rach_din[ARLEN_OFFSET-1:ARSIZE_OFFSET] = S_AXI_ARSIZE;
assign rach_din[ARSIZE_OFFSET-1:ARBURST_OFFSET] = S_AXI_ARBURST;
assign rach_din[ARBURST_OFFSET-1:ARLOCK_OFFSET] = S_AXI_ARLOCK;
assign rach_din[ARLOCK_OFFSET-1:ARCACHE_OFFSET] = S_AXI_ARCACHE;
assign rach_din[ARCACHE_OFFSET-1:ARPROT_OFFSET] = S_AXI_ARPROT;
assign rach_din[ARPROT_OFFSET-1:ARQOS_OFFSET] = S_AXI_ARQOS;
end endgenerate // axi_full_rach_output
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_AXI_TYPE == 1) begin : axi_arregion
assign M_AXI_ARREGION = rach_dout[ARQOS_OFFSET-1:ARREGION_OFFSET];
end endgenerate // axi_arregion
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_AXI_TYPE != 1) begin : naxi_arregion
assign M_AXI_ARREGION = 0;
end endgenerate // naxi_arregion
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ARUSER == 1) begin : axi_aruser
assign M_AXI_ARUSER = rach_dout[ARREGION_OFFSET-1:ARUSER_OFFSET];
end endgenerate // axi_aruser
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ARUSER == 0) begin : naxi_aruser
assign M_AXI_ARUSER = 0;
end endgenerate // naxi_aruser
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_arid
assign M_AXI_ARID = rach_dout[C_DIN_WIDTH_RACH-1:ARID_OFFSET];
end endgenerate // axi_arid
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_arid
assign M_AXI_ARID = 0;
end endgenerate // naxi_arid
generate if (IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) begin : axi_full_rdch_output
assign S_AXI_RDATA = rdch_dout[RID_OFFSET-1:RDATA_OFFSET];
assign S_AXI_RRESP = rdch_dout[RDATA_OFFSET-1:RRESP_OFFSET];
assign S_AXI_RLAST = rdch_dout[0];
assign rdch_din[RID_OFFSET-1:RDATA_OFFSET] = M_AXI_RDATA;
assign rdch_din[RDATA_OFFSET-1:RRESP_OFFSET] = M_AXI_RRESP;
assign rdch_din[0] = M_AXI_RLAST;
end endgenerate // axi_full_rdch_output
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_RUSER == 1) begin : axi_full_ruser_output
assign S_AXI_RUSER = rdch_dout[RRESP_OFFSET-1:RUSER_OFFSET];
end endgenerate // axi_full_ruser_output
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_RUSER == 0) begin : axi_full_nruser_output
assign S_AXI_RUSER = 0;
end endgenerate // axi_full_nruser_output
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_rid
assign S_AXI_RID = rdch_dout[C_DIN_WIDTH_RDCH-1:RID_OFFSET];
end endgenerate // axi_rid
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_rid
assign S_AXI_RID = 0;
end endgenerate // naxi_rid
generate if (IS_AXI_LITE_RACH == 1 || (IS_AXI_LITE == 1 && C_RACH_TYPE == 1)) begin : axi_lite_rach_output1
assign rach_din = {S_AXI_ARADDR, S_AXI_ARPROT};
assign M_AXI_ARADDR = rach_dout[C_DIN_WIDTH_RACH-1:ARADDR_OFFSET];
assign M_AXI_ARPROT = rach_dout[ARADDR_OFFSET-1:ARPROT_OFFSET];
end endgenerate // axi_lite_rach_output
generate if (IS_AXI_LITE_RDCH == 1 || (IS_AXI_LITE == 1 && C_RDCH_TYPE == 1)) begin : axi_lite_rdch_output1
assign rdch_din = {M_AXI_RDATA, M_AXI_RRESP};
assign S_AXI_RDATA = rdch_dout[C_DIN_WIDTH_RDCH-1:RDATA_OFFSET];
assign S_AXI_RRESP = rdch_dout[RDATA_OFFSET-1:RRESP_OFFSET];
end endgenerate // axi_lite_rdch_output
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ARUSER == 1) begin : grach_din1
assign rach_din[ARREGION_OFFSET-1:ARUSER_OFFSET] = S_AXI_ARUSER;
end endgenerate // grach_din1
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : grach_din2
assign rach_din[C_DIN_WIDTH_RACH-1:ARID_OFFSET] = S_AXI_ARID;
end endgenerate // grach_din2
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_AXI_TYPE == 1) begin
assign rach_din[ARQOS_OFFSET-1:ARREGION_OFFSET] = S_AXI_ARREGION;
end endgenerate
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_RUSER == 1) begin : grdch_din1
assign rdch_din[RRESP_OFFSET-1:RUSER_OFFSET] = M_AXI_RUSER;
end endgenerate // grdch_din1
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : grdch_din2
assign rdch_din[C_DIN_WIDTH_RDCH-1:RID_OFFSET] = M_AXI_RID;
end endgenerate // grdch_din2
//end of axi_read_channel
generate if (C_INTERFACE_TYPE == 1 && C_USE_COMMON_UNDERFLOW == 1) begin : gaxi_comm_uf
assign UNDERFLOW = (C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 1) ? (axi_wr_underflow_i || axi_rd_underflow_i) :
(C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 0) ? axi_wr_underflow_i :
(C_HAS_AXI_WR_CHANNEL == 0 && C_HAS_AXI_RD_CHANNEL == 1) ? axi_rd_underflow_i : 0;
end endgenerate // gaxi_comm_uf
generate if (C_INTERFACE_TYPE == 1 && C_USE_COMMON_OVERFLOW == 1) begin : gaxi_comm_of
assign OVERFLOW = (C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 1) ? (axi_wr_overflow_i || axi_rd_overflow_i) :
(C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 0) ? axi_wr_overflow_i :
(C_HAS_AXI_WR_CHANNEL == 0 && C_HAS_AXI_RD_CHANNEL == 1) ? axi_rd_overflow_i : 0;
end endgenerate // gaxi_comm_of
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
// Pass Through Logic or Wiring Logic
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
// Pass Through Logic for Read Channel
//-------------------------------------------------------------------------
// Wiring logic for Write Address Channel
generate if (C_WACH_TYPE == 2) begin : gwach_pass_through
assign M_AXI_AWID = S_AXI_AWID;
assign M_AXI_AWADDR = S_AXI_AWADDR;
assign M_AXI_AWLEN = S_AXI_AWLEN;
assign M_AXI_AWSIZE = S_AXI_AWSIZE;
assign M_AXI_AWBURST = S_AXI_AWBURST;
assign M_AXI_AWLOCK = S_AXI_AWLOCK;
assign M_AXI_AWCACHE = S_AXI_AWCACHE;
assign M_AXI_AWPROT = S_AXI_AWPROT;
assign M_AXI_AWQOS = S_AXI_AWQOS;
assign M_AXI_AWREGION = S_AXI_AWREGION;
assign M_AXI_AWUSER = S_AXI_AWUSER;
assign S_AXI_AWREADY = M_AXI_AWREADY;
assign M_AXI_AWVALID = S_AXI_AWVALID;
end endgenerate // gwach_pass_through;
// Wiring logic for Write Data Channel
generate if (C_WDCH_TYPE == 2) begin : gwdch_pass_through
assign M_AXI_WID = S_AXI_WID;
assign M_AXI_WDATA = S_AXI_WDATA;
assign M_AXI_WSTRB = S_AXI_WSTRB;
assign M_AXI_WLAST = S_AXI_WLAST;
assign M_AXI_WUSER = S_AXI_WUSER;
assign S_AXI_WREADY = M_AXI_WREADY;
assign M_AXI_WVALID = S_AXI_WVALID;
end endgenerate // gwdch_pass_through;
// Wiring logic for Write Response Channel
generate if (C_WRCH_TYPE == 2) begin : gwrch_pass_through
assign S_AXI_BID = M_AXI_BID;
assign S_AXI_BRESP = M_AXI_BRESP;
assign S_AXI_BUSER = M_AXI_BUSER;
assign M_AXI_BREADY = S_AXI_BREADY;
assign S_AXI_BVALID = M_AXI_BVALID;
end endgenerate // gwrch_pass_through;
//-------------------------------------------------------------------------
// Pass Through Logic for Read Channel
//-------------------------------------------------------------------------
// Wiring logic for Read Address Channel
generate if (C_RACH_TYPE == 2) begin : grach_pass_through
assign M_AXI_ARID = S_AXI_ARID;
assign M_AXI_ARADDR = S_AXI_ARADDR;
assign M_AXI_ARLEN = S_AXI_ARLEN;
assign M_AXI_ARSIZE = S_AXI_ARSIZE;
assign M_AXI_ARBURST = S_AXI_ARBURST;
assign M_AXI_ARLOCK = S_AXI_ARLOCK;
assign M_AXI_ARCACHE = S_AXI_ARCACHE;
assign M_AXI_ARPROT = S_AXI_ARPROT;
assign M_AXI_ARQOS = S_AXI_ARQOS;
assign M_AXI_ARREGION = S_AXI_ARREGION;
assign M_AXI_ARUSER = S_AXI_ARUSER;
assign S_AXI_ARREADY = M_AXI_ARREADY;
assign M_AXI_ARVALID = S_AXI_ARVALID;
end endgenerate // grach_pass_through;
// Wiring logic for Read Data Channel
generate if (C_RDCH_TYPE == 2) begin : grdch_pass_through
assign S_AXI_RID = M_AXI_RID;
assign S_AXI_RLAST = M_AXI_RLAST;
assign S_AXI_RUSER = M_AXI_RUSER;
assign S_AXI_RDATA = M_AXI_RDATA;
assign S_AXI_RRESP = M_AXI_RRESP;
assign S_AXI_RVALID = M_AXI_RVALID;
assign M_AXI_RREADY = S_AXI_RREADY;
end endgenerate // grdch_pass_through;
// Wiring logic for AXI Streaming
generate if (C_AXIS_TYPE == 2) begin : gaxis_pass_through
assign M_AXIS_TDATA = S_AXIS_TDATA;
assign M_AXIS_TSTRB = S_AXIS_TSTRB;
assign M_AXIS_TKEEP = S_AXIS_TKEEP;
assign M_AXIS_TID = S_AXIS_TID;
assign M_AXIS_TDEST = S_AXIS_TDEST;
assign M_AXIS_TUSER = S_AXIS_TUSER;
assign M_AXIS_TLAST = S_AXIS_TLAST;
assign S_AXIS_TREADY = M_AXIS_TREADY;
assign M_AXIS_TVALID = S_AXIS_TVALID;
end endgenerate // gaxis_pass_through;
endmodule //FIFO_GENERATOR_v12_0
/*******************************************************************************
* Declaration of top-level module for Conventional FIFO
******************************************************************************/
module FIFO_GENERATOR_v12_0_CONV_VER
#(
parameter C_COMMON_CLOCK = 0,
parameter C_COUNT_TYPE = 0,
parameter C_DATA_COUNT_WIDTH = 2,
parameter C_DEFAULT_VALUE = "",
parameter C_DIN_WIDTH = 8,
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_ENABLE_RLOCS = 0,
parameter C_FAMILY = "virtex7", //Not allowed in Verilog model
parameter C_FULL_FLAGS_RST_VAL = 1,
parameter C_HAS_ALMOST_EMPTY = 0,
parameter C_HAS_ALMOST_FULL = 0,
parameter C_HAS_BACKUP = 0,
parameter C_HAS_DATA_COUNT = 0,
parameter C_HAS_INT_CLK = 0,
parameter C_HAS_MEMINIT_FILE = 0,
parameter C_HAS_OVERFLOW = 0,
parameter C_HAS_RD_DATA_COUNT = 0,
parameter C_HAS_RD_RST = 0,
parameter C_HAS_RST = 0,
parameter C_HAS_SRST = 0,
parameter C_HAS_UNDERFLOW = 0,
parameter C_HAS_VALID = 0,
parameter C_HAS_WR_ACK = 0,
parameter C_HAS_WR_DATA_COUNT = 0,
parameter C_HAS_WR_RST = 0,
parameter C_IMPLEMENTATION_TYPE = 0,
parameter C_INIT_WR_PNTR_VAL = 0,
parameter C_MEMORY_TYPE = 1,
parameter C_MIF_FILE_NAME = "",
parameter C_OPTIMIZATION_MODE = 0,
parameter C_OVERFLOW_LOW = 0,
parameter C_PRELOAD_LATENCY = 1,
parameter C_PRELOAD_REGS = 0,
parameter C_PRIM_FIFO_TYPE = "",
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0,
parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0,
parameter C_PROG_EMPTY_TYPE = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0,
parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0,
parameter C_PROG_FULL_TYPE = 0,
parameter C_RD_DATA_COUNT_WIDTH = 2,
parameter C_RD_DEPTH = 256,
parameter C_RD_FREQ = 1,
parameter C_RD_PNTR_WIDTH = 8,
parameter C_UNDERFLOW_LOW = 0,
parameter C_USE_DOUT_RST = 0,
parameter C_USE_ECC = 0,
parameter C_USE_EMBEDDED_REG = 0,
parameter C_USE_FIFO16_FLAGS = 0,
parameter C_USE_FWFT_DATA_COUNT = 0,
parameter C_VALID_LOW = 0,
parameter C_WR_ACK_LOW = 0,
parameter C_WR_DATA_COUNT_WIDTH = 2,
parameter C_WR_DEPTH = 256,
parameter C_WR_FREQ = 1,
parameter C_WR_PNTR_WIDTH = 8,
parameter C_WR_RESPONSE_LATENCY = 1,
parameter C_MSGON_VAL = 1,
parameter C_ENABLE_RST_SYNC = 1,
parameter C_ERROR_INJECTION_TYPE = 0,
parameter C_FIFO_TYPE = 0,
parameter C_SYNCHRONIZER_STAGE = 2,
parameter C_AXI_TYPE = 0
)
(
input BACKUP,
input BACKUP_MARKER,
input CLK,
input RST,
input SRST,
input WR_CLK,
input WR_RST,
input RD_CLK,
input RD_RST,
input [C_DIN_WIDTH-1:0] DIN,
input WR_EN,
input RD_EN,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE,
input INT_CLK,
input INJECTDBITERR,
input INJECTSBITERR,
output [C_DOUT_WIDTH-1:0] DOUT,
output FULL,
output ALMOST_FULL,
output WR_ACK,
output OVERFLOW,
output EMPTY,
output ALMOST_EMPTY,
output VALID,
output UNDERFLOW,
output [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT,
output [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT,
output [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT,
output PROG_FULL,
output PROG_EMPTY,
output SBITERR,
output DBITERR,
output wr_rst_busy,
output rd_rst_busy,
output wr_rst_i_out,
output rd_rst_i_out
);
/*
******************************************************************************
* Definition of Parameters
******************************************************************************
* C_COMMON_CLOCK : Common Clock (1), Independent Clocks (0)
* C_COUNT_TYPE : *not used
* C_DATA_COUNT_WIDTH : Width of DATA_COUNT bus
* C_DEFAULT_VALUE : *not used
* C_DIN_WIDTH : Width of DIN bus
* C_DOUT_RST_VAL : Reset value of DOUT
* C_DOUT_WIDTH : Width of DOUT bus
* C_ENABLE_RLOCS : *not used
* C_FAMILY : not used in bhv model
* C_FULL_FLAGS_RST_VAL : Full flags rst val (0 or 1)
* C_HAS_ALMOST_EMPTY : 1=Core has ALMOST_EMPTY flag
* C_HAS_ALMOST_FULL : 1=Core has ALMOST_FULL flag
* C_HAS_BACKUP : *not used
* C_HAS_DATA_COUNT : 1=Core has DATA_COUNT bus
* C_HAS_INT_CLK : not used in bhv model
* C_HAS_MEMINIT_FILE : *not used
* C_HAS_OVERFLOW : 1=Core has OVERFLOW flag
* C_HAS_RD_DATA_COUNT : 1=Core has RD_DATA_COUNT bus
* C_HAS_RD_RST : *not used
* C_HAS_RST : 1=Core has Async Rst
* C_HAS_SRST : 1=Core has Sync Rst
* C_HAS_UNDERFLOW : 1=Core has UNDERFLOW flag
* C_HAS_VALID : 1=Core has VALID flag
* C_HAS_WR_ACK : 1=Core has WR_ACK flag
* C_HAS_WR_DATA_COUNT : 1=Core has WR_DATA_COUNT bus
* C_HAS_WR_RST : *not used
* C_IMPLEMENTATION_TYPE : 0=Common-Clock Bram/Dram
* 1=Common-Clock ShiftRam
* 2=Indep. Clocks Bram/Dram
* 3=Virtex-4 Built-in
* 4=Virtex-5 Built-in
* C_INIT_WR_PNTR_VAL : *not used
* C_MEMORY_TYPE : 1=Block RAM
* 2=Distributed RAM
* 3=Shift RAM
* 4=Built-in FIFO
* C_MIF_FILE_NAME : *not used
* C_OPTIMIZATION_MODE : *not used
* C_OVERFLOW_LOW : 1=OVERFLOW active low
* C_PRELOAD_LATENCY : Latency of read: 0, 1, 2
* C_PRELOAD_REGS : 1=Use output registers
* C_PRIM_FIFO_TYPE : not used in bhv model
* C_PROG_EMPTY_THRESH_ASSERT_VAL: PROG_EMPTY assert threshold
* C_PROG_EMPTY_THRESH_NEGATE_VAL: PROG_EMPTY negate threshold
* C_PROG_EMPTY_TYPE : 0=No programmable empty
* 1=Single prog empty thresh constant
* 2=Multiple prog empty thresh constants
* 3=Single prog empty thresh input
* 4=Multiple prog empty thresh inputs
* C_PROG_FULL_THRESH_ASSERT_VAL : PROG_FULL assert threshold
* C_PROG_FULL_THRESH_NEGATE_VAL : PROG_FULL negate threshold
* C_PROG_FULL_TYPE : 0=No prog full
* 1=Single prog full thresh constant
* 2=Multiple prog full thresh constants
* 3=Single prog full thresh input
* 4=Multiple prog full thresh inputs
* C_RD_DATA_COUNT_WIDTH : Width of RD_DATA_COUNT bus
* C_RD_DEPTH : Depth of read interface (2^N)
* C_RD_FREQ : not used in bhv model
* C_RD_PNTR_WIDTH : always log2(C_RD_DEPTH)
* C_UNDERFLOW_LOW : 1=UNDERFLOW active low
* C_USE_DOUT_RST : 1=Resets DOUT on RST
* C_USE_ECC : Used for error injection purpose
* C_USE_EMBEDDED_REG : 1=Use BRAM embedded output register
* C_USE_FIFO16_FLAGS : not used in bhv model
* C_USE_FWFT_DATA_COUNT : 1=Use extra logic for FWFT data count
* C_VALID_LOW : 1=VALID active low
* C_WR_ACK_LOW : 1=WR_ACK active low
* C_WR_DATA_COUNT_WIDTH : Width of WR_DATA_COUNT bus
* C_WR_DEPTH : Depth of write interface (2^N)
* C_WR_FREQ : not used in bhv model
* C_WR_PNTR_WIDTH : always log2(C_WR_DEPTH)
* C_WR_RESPONSE_LATENCY : *not used
* C_MSGON_VAL : *not used by bhv model
* C_ENABLE_RST_SYNC : 0 = Use WR_RST & RD_RST
* 1 = Use RST
* C_ERROR_INJECTION_TYPE : 0 = No error injection
* 1 = Single bit error injection only
* 2 = Double bit error injection only
* 3 = Single and double bit error injection
******************************************************************************
* Definition of Ports
******************************************************************************
* BACKUP : Not used
* BACKUP_MARKER: Not used
* CLK : Clock
* DIN : Input data bus
* PROG_EMPTY_THRESH : Threshold for Programmable Empty Flag
* PROG_EMPTY_THRESH_ASSERT: Threshold for Programmable Empty Flag
* PROG_EMPTY_THRESH_NEGATE: Threshold for Programmable Empty Flag
* PROG_FULL_THRESH : Threshold for Programmable Full Flag
* PROG_FULL_THRESH_ASSERT : Threshold for Programmable Full Flag
* PROG_FULL_THRESH_NEGATE : Threshold for Programmable Full Flag
* RD_CLK : Read Domain Clock
* RD_EN : Read enable
* RD_RST : Read Reset
* RST : Asynchronous Reset
* SRST : Synchronous Reset
* WR_CLK : Write Domain Clock
* WR_EN : Write enable
* WR_RST : Write Reset
* INT_CLK : Internal Clock
* INJECTSBITERR: Inject Signle bit error
* INJECTDBITERR: Inject Double bit error
* ALMOST_EMPTY : One word remaining in FIFO
* ALMOST_FULL : One empty space remaining in FIFO
* DATA_COUNT : Number of data words in fifo( synchronous to CLK)
* DOUT : Output data bus
* EMPTY : Empty flag
* FULL : Full flag
* OVERFLOW : Last write rejected
* PROG_EMPTY : Programmable Empty Flag
* PROG_FULL : Programmable Full Flag
* RD_DATA_COUNT: Number of data words in fifo (synchronous to RD_CLK)
* UNDERFLOW : Last read rejected
* VALID : Last read acknowledged, DOUT bus VALID
* WR_ACK : Last write acknowledged
* WR_DATA_COUNT: Number of data words in fifo (synchronous to WR_CLK)
* SBITERR : Single Bit ECC Error Detected
* DBITERR : Double Bit ECC Error Detected
******************************************************************************
*/
//----------------------------------------------------------------------------
//- Internal Signals for delayed input signals
//- All the input signals except Clock are delayed by 100 ps and then given to
//- the models.
//----------------------------------------------------------------------------
reg rst_delayed ;
reg empty_fb ;
reg srst_delayed ;
reg wr_rst_delayed ;
reg rd_rst_delayed ;
reg wr_en_delayed ;
reg rd_en_delayed ;
reg [C_DIN_WIDTH-1:0] din_delayed ;
reg [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_delayed ;
reg [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_assert_delayed ;
reg [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_negate_delayed ;
reg [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_delayed ;
reg [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_assert_delayed ;
reg [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_negate_delayed ;
reg injectdbiterr_delayed ;
reg injectsbiterr_delayed ;
wire empty_p0_out;
always @* rst_delayed <= #`TCQ RST ;
always @* empty_fb <= #`TCQ empty_p0_out ;
always @* srst_delayed <= #`TCQ SRST ;
always @* wr_rst_delayed <= #`TCQ WR_RST ;
always @* rd_rst_delayed <= #`TCQ RD_RST ;
always @* din_delayed <= #`TCQ DIN ;
always @* wr_en_delayed <= #`TCQ WR_EN ;
always @* rd_en_delayed <= #`TCQ RD_EN ;
always @* prog_empty_thresh_delayed <= #`TCQ PROG_EMPTY_THRESH ;
always @* prog_empty_thresh_assert_delayed <= #`TCQ PROG_EMPTY_THRESH_ASSERT ;
always @* prog_empty_thresh_negate_delayed <= #`TCQ PROG_EMPTY_THRESH_NEGATE ;
always @* prog_full_thresh_delayed <= #`TCQ PROG_FULL_THRESH ;
always @* prog_full_thresh_assert_delayed <= #`TCQ PROG_FULL_THRESH_ASSERT ;
always @* prog_full_thresh_negate_delayed <= #`TCQ PROG_FULL_THRESH_NEGATE ;
always @* injectdbiterr_delayed <= #`TCQ INJECTDBITERR ;
always @* injectsbiterr_delayed <= #`TCQ INJECTSBITERR ;
/*****************************************************************************
* Derived parameters
****************************************************************************/
//There are 2 Verilog behavioral models
// 0 = Common-Clock FIFO/ShiftRam FIFO
// 1 = Independent Clocks FIFO
// 2 = Low Latency Synchronous FIFO
// 3 = Low Latency Asynchronous FIFO
localparam C_VERILOG_IMPL = (C_FIFO_TYPE == 3) ? 2 :
(C_IMPLEMENTATION_TYPE == 2) ? 1 : 0;
localparam IS_8SERIES = (C_FAMILY == "virtexu" || C_FAMILY == "kintexu" || C_FAMILY == "artixu" || C_FAMILY == "virtexum" || C_FAMILY == "zynque") ? 1 : 0;
//Internal reset signals
reg rd_rst_asreg = 0;
reg rd_rst_asreg_d1 = 0;
reg rd_rst_asreg_d2 = 0;
reg rd_rst_asreg_d3 = 0;
reg rd_rst_reg = 0;
wire rd_rst_comb;
reg wr_rst_d0 = 0;
reg wr_rst_d1 = 0;
reg wr_rst_d2 = 0;
reg rd_rst_d0 = 0;
reg rd_rst_d1 = 0;
reg rd_rst_d2 = 0;
reg rd_rst_d3 = 0;
reg wrrst_done = 0;
reg rdrst_done = 0;
reg wr_rst_asreg = 0;
reg wr_rst_asreg_d1 = 0;
reg wr_rst_asreg_d2 = 0;
reg wr_rst_asreg_d3 = 0;
reg rd_rst_wr_d0 = 0;
reg rd_rst_wr_d1 = 0;
reg rd_rst_wr_d2 = 0;
reg wr_rst_reg = 0;
reg rst_active_i = 1'b1;
reg rst_delayed_d1 = 1'b1;
reg rst_delayed_d2 = 1'b1;
wire wr_rst_comb;
wire wr_rst_i;
wire rd_rst_i;
wire rst_i;
//Internal reset signals
reg rst_asreg = 0;
reg srst_asreg = 0;
reg rst_asreg_d1 = 0;
reg rst_asreg_d2 = 0;
reg srst_asreg_d1 = 0;
reg srst_asreg_d2 = 0;
reg rst_reg = 0;
reg srst_reg = 0;
wire rst_comb;
wire srst_comb;
reg rst_full_gen_i = 0;
reg rst_full_ff_i = 0;
wire RD_CLK_P0_IN;
wire RST_P0_IN;
wire RD_EN_FIFO_IN;
wire RD_EN_P0_IN;
wire ALMOST_EMPTY_FIFO_OUT;
wire ALMOST_FULL_FIFO_OUT;
wire [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT_FIFO_OUT;
wire [C_DOUT_WIDTH-1:0] DOUT_FIFO_OUT;
wire EMPTY_FIFO_OUT;
wire FULL_FIFO_OUT;
wire OVERFLOW_FIFO_OUT;
wire PROG_EMPTY_FIFO_OUT;
wire PROG_FULL_FIFO_OUT;
wire VALID_FIFO_OUT;
wire [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT_FIFO_OUT;
wire UNDERFLOW_FIFO_OUT;
wire WR_ACK_FIFO_OUT;
wire [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT_FIFO_OUT;
//***************************************************************************
// Internal Signals
// The core uses either the internal_ wires or the preload0_ wires depending
// on whether the core uses Preload0 or not.
// When using preload0, the internal signals connect the internal core to
// the preload logic, and the external core's interfaces are tied to the
// preload0 signals from the preload logic.
//***************************************************************************
wire [C_DOUT_WIDTH-1:0] DATA_P0_OUT;
wire VALID_P0_OUT;
wire EMPTY_P0_OUT;
wire ALMOSTEMPTY_P0_OUT;
reg EMPTY_P0_OUT_Q;
reg ALMOSTEMPTY_P0_OUT_Q;
wire UNDERFLOW_P0_OUT;
wire RDEN_P0_OUT;
wire [C_DOUT_WIDTH-1:0] DATA_P0_IN;
wire EMPTY_P0_IN;
reg [31:0] DATA_COUNT_FWFT;
reg SS_FWFT_WR ;
reg SS_FWFT_RD ;
wire sbiterr_fifo_out;
wire dbiterr_fifo_out;
wire inject_sbit_err;
wire inject_dbit_err;
// Assign 0 if not selected to avoid 'X' propogation to S/DBITERR.
assign inject_sbit_err = ((C_ERROR_INJECTION_TYPE == 1) || (C_ERROR_INJECTION_TYPE == 3)) ?
injectsbiterr_delayed : 0;
assign inject_dbit_err = ((C_ERROR_INJECTION_TYPE == 2) || (C_ERROR_INJECTION_TYPE == 3)) ?
injectdbiterr_delayed : 0;
assign wr_rst_i_out = wr_rst_i;
assign rd_rst_i_out = rd_rst_i;
// Choose the behavioral model to instantiate based on the C_VERILOG_IMPL
// parameter (1=Independent Clocks, 0=Common Clock)
localparam FULL_FLAGS_RST_VAL = (C_HAS_SRST == 1) ? 0 : C_FULL_FLAGS_RST_VAL;
generate
case (C_VERILOG_IMPL)
0 : begin : block1
//Common Clock Behavioral Model
fifo_generator_v12_0_bhv_ver_ss
#(
.C_FAMILY (C_FAMILY),
.C_DATA_COUNT_WIDTH (C_DATA_COUNT_WIDTH),
.C_DIN_WIDTH (C_DIN_WIDTH),
.C_DOUT_RST_VAL (C_DOUT_RST_VAL),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_FULL_FLAGS_RST_VAL (FULL_FLAGS_RST_VAL),
.C_HAS_ALMOST_EMPTY (C_HAS_ALMOST_EMPTY),
.C_HAS_ALMOST_FULL ((C_AXI_TYPE == 0 && C_FIFO_TYPE == 1) ? 1 : C_HAS_ALMOST_FULL),
.C_HAS_DATA_COUNT (C_HAS_DATA_COUNT),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT),
.C_HAS_RST (C_HAS_RST),
.C_HAS_SRST (C_HAS_SRST),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_HAS_VALID (C_HAS_VALID),
.C_HAS_WR_ACK (C_HAS_WR_ACK),
.C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT),
.C_IMPLEMENTATION_TYPE (C_IMPLEMENTATION_TYPE),
.C_MEMORY_TYPE (C_MEMORY_TYPE),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_PRELOAD_LATENCY (C_PRELOAD_LATENCY),
.C_PRELOAD_REGS (C_PRELOAD_REGS),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL),
.C_PROG_EMPTY_THRESH_NEGATE_VAL (C_PROG_EMPTY_THRESH_NEGATE_VAL),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL),
.C_PROG_FULL_THRESH_NEGATE_VAL (C_PROG_FULL_THRESH_NEGATE_VAL),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE),
.C_RD_DATA_COUNT_WIDTH (C_RD_DATA_COUNT_WIDTH),
.C_RD_DEPTH (C_RD_DEPTH),
.C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG),
.C_USE_FWFT_DATA_COUNT (C_USE_FWFT_DATA_COUNT),
.C_VALID_LOW (C_VALID_LOW),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH),
.C_WR_DEPTH (C_WR_DEPTH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH),
.C_USE_ECC (C_USE_ECC),
.C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE),
.C_FIFO_TYPE (C_FIFO_TYPE)
)
gen_ss
(
.CLK (CLK),
.RST (rst_i),
.SRST (srst_delayed),
.RST_FULL_GEN (rst_full_gen_i),
.RST_FULL_FF (rst_full_ff_i),
.DIN (din_delayed),
.WR_EN (wr_en_delayed),
.RD_EN (RD_EN_FIFO_IN),
.RD_EN_USER (rd_en_delayed),
.USER_EMPTY_FB (empty_fb),
.PROG_EMPTY_THRESH (prog_empty_thresh_delayed),
.PROG_EMPTY_THRESH_ASSERT (prog_empty_thresh_assert_delayed),
.PROG_EMPTY_THRESH_NEGATE (prog_empty_thresh_negate_delayed),
.PROG_FULL_THRESH (prog_full_thresh_delayed),
.PROG_FULL_THRESH_ASSERT (prog_full_thresh_assert_delayed),
.PROG_FULL_THRESH_NEGATE (prog_full_thresh_negate_delayed),
.INJECTSBITERR (inject_sbit_err),
.INJECTDBITERR (inject_dbit_err),
.DOUT (DOUT_FIFO_OUT),
.FULL (FULL_FIFO_OUT),
.ALMOST_FULL (ALMOST_FULL_FIFO_OUT),
.WR_ACK (WR_ACK_FIFO_OUT),
.OVERFLOW (OVERFLOW_FIFO_OUT),
.EMPTY (EMPTY_FIFO_OUT),
.ALMOST_EMPTY (ALMOST_EMPTY_FIFO_OUT),
.VALID (VALID_FIFO_OUT),
.UNDERFLOW (UNDERFLOW_FIFO_OUT),
.DATA_COUNT (DATA_COUNT_FIFO_OUT),
.RD_DATA_COUNT (RD_DATA_COUNT_FIFO_OUT),
.WR_DATA_COUNT (WR_DATA_COUNT_FIFO_OUT),
.PROG_FULL (PROG_FULL_FIFO_OUT),
.PROG_EMPTY (PROG_EMPTY_FIFO_OUT),
.WR_RST_BUSY (wr_rst_busy),
.RD_RST_BUSY (rd_rst_busy),
.SBITERR (sbiterr_fifo_out),
.DBITERR (dbiterr_fifo_out)
);
end
1 : begin : block1
//Independent Clocks Behavioral Model
fifo_generator_v12_0_bhv_ver_as
#(
.C_FAMILY (C_FAMILY),
.C_DATA_COUNT_WIDTH (C_DATA_COUNT_WIDTH),
.C_DIN_WIDTH (C_DIN_WIDTH),
.C_DOUT_RST_VAL (C_DOUT_RST_VAL),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_FULL_FLAGS_RST_VAL (C_FULL_FLAGS_RST_VAL),
.C_HAS_ALMOST_EMPTY (C_HAS_ALMOST_EMPTY),
.C_HAS_ALMOST_FULL (C_HAS_ALMOST_FULL),
.C_HAS_DATA_COUNT (C_HAS_DATA_COUNT),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT),
.C_HAS_RST (C_HAS_RST),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_HAS_VALID (C_HAS_VALID),
.C_HAS_WR_ACK (C_HAS_WR_ACK),
.C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT),
.C_IMPLEMENTATION_TYPE (C_IMPLEMENTATION_TYPE),
.C_MEMORY_TYPE (C_MEMORY_TYPE),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_PRELOAD_LATENCY (C_PRELOAD_LATENCY),
.C_PRELOAD_REGS (C_PRELOAD_REGS),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL),
.C_PROG_EMPTY_THRESH_NEGATE_VAL (C_PROG_EMPTY_THRESH_NEGATE_VAL),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL),
.C_PROG_FULL_THRESH_NEGATE_VAL (C_PROG_FULL_THRESH_NEGATE_VAL),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE),
.C_RD_DATA_COUNT_WIDTH (C_RD_DATA_COUNT_WIDTH),
.C_RD_DEPTH (C_RD_DEPTH),
.C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG),
.C_USE_FWFT_DATA_COUNT (C_USE_FWFT_DATA_COUNT),
.C_VALID_LOW (C_VALID_LOW),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH),
.C_WR_DEPTH (C_WR_DEPTH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH),
.C_USE_ECC (C_USE_ECC),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE)
)
gen_as
(
.WR_CLK (WR_CLK),
.RD_CLK (RD_CLK),
.RST (rst_i),
.RST_FULL_GEN (rst_full_gen_i),
.RST_FULL_FF (rst_full_ff_i),
.WR_RST (wr_rst_i),
.RD_RST (rd_rst_i),
.DIN (din_delayed),
.WR_EN (wr_en_delayed),
.RD_EN (RD_EN_FIFO_IN),
.RD_EN_USER (rd_en_delayed),
.PROG_EMPTY_THRESH (prog_empty_thresh_delayed),
.PROG_EMPTY_THRESH_ASSERT (prog_empty_thresh_assert_delayed),
.PROG_EMPTY_THRESH_NEGATE (prog_empty_thresh_negate_delayed),
.PROG_FULL_THRESH (prog_full_thresh_delayed),
.PROG_FULL_THRESH_ASSERT (prog_full_thresh_assert_delayed),
.PROG_FULL_THRESH_NEGATE (prog_full_thresh_negate_delayed),
.INJECTSBITERR (inject_sbit_err),
.INJECTDBITERR (inject_dbit_err),
.USER_EMPTY_FB (EMPTY_P0_OUT),
.DOUT (DOUT_FIFO_OUT),
.FULL (FULL_FIFO_OUT),
.ALMOST_FULL (ALMOST_FULL_FIFO_OUT),
.WR_ACK (WR_ACK_FIFO_OUT),
.OVERFLOW (OVERFLOW_FIFO_OUT),
.EMPTY (EMPTY_FIFO_OUT),
.ALMOST_EMPTY (ALMOST_EMPTY_FIFO_OUT),
.VALID (VALID_FIFO_OUT),
.UNDERFLOW (UNDERFLOW_FIFO_OUT),
.RD_DATA_COUNT (RD_DATA_COUNT_FIFO_OUT),
.WR_DATA_COUNT (WR_DATA_COUNT_FIFO_OUT),
.PROG_FULL (PROG_FULL_FIFO_OUT),
.PROG_EMPTY (PROG_EMPTY_FIFO_OUT),
.SBITERR (sbiterr_fifo_out),
.DBITERR (dbiterr_fifo_out)
);
end
2 : begin : ll_afifo_inst
fifo_generator_v12_0_beh_ver_ll_afifo
#(
.C_DIN_WIDTH (C_DIN_WIDTH),
.C_DOUT_RST_VAL (C_DOUT_RST_VAL),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_FULL_FLAGS_RST_VAL (C_FULL_FLAGS_RST_VAL),
.C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT),
.C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT),
.C_RD_DEPTH (C_RD_DEPTH),
.C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH),
.C_WR_DEPTH (C_WR_DEPTH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH),
.C_FIFO_TYPE (C_FIFO_TYPE)
)
gen_ll_afifo
(
.DIN (din_delayed),
.RD_CLK (RD_CLK),
.RD_EN (rd_en_delayed),
.WR_RST (wr_rst_i),
.RD_RST (rd_rst_i),
.WR_CLK (WR_CLK),
.WR_EN (wr_en_delayed),
.DOUT (DOUT),
.EMPTY (EMPTY),
.FULL (FULL)
);
end
default : begin : block1
//Independent Clocks Behavioral Model
fifo_generator_v12_0_bhv_ver_as
#(
.C_FAMILY (C_FAMILY),
.C_DATA_COUNT_WIDTH (C_DATA_COUNT_WIDTH),
.C_DIN_WIDTH (C_DIN_WIDTH),
.C_DOUT_RST_VAL (C_DOUT_RST_VAL),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_FULL_FLAGS_RST_VAL (C_FULL_FLAGS_RST_VAL),
.C_HAS_ALMOST_EMPTY (C_HAS_ALMOST_EMPTY),
.C_HAS_ALMOST_FULL (C_HAS_ALMOST_FULL),
.C_HAS_DATA_COUNT (C_HAS_DATA_COUNT),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT),
.C_HAS_RST (C_HAS_RST),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_HAS_VALID (C_HAS_VALID),
.C_HAS_WR_ACK (C_HAS_WR_ACK),
.C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT),
.C_IMPLEMENTATION_TYPE (C_IMPLEMENTATION_TYPE),
.C_MEMORY_TYPE (C_MEMORY_TYPE),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_PRELOAD_LATENCY (C_PRELOAD_LATENCY),
.C_PRELOAD_REGS (C_PRELOAD_REGS),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL),
.C_PROG_EMPTY_THRESH_NEGATE_VAL (C_PROG_EMPTY_THRESH_NEGATE_VAL),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL),
.C_PROG_FULL_THRESH_NEGATE_VAL (C_PROG_FULL_THRESH_NEGATE_VAL),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE),
.C_RD_DATA_COUNT_WIDTH (C_RD_DATA_COUNT_WIDTH),
.C_RD_DEPTH (C_RD_DEPTH),
.C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG),
.C_USE_FWFT_DATA_COUNT (C_USE_FWFT_DATA_COUNT),
.C_VALID_LOW (C_VALID_LOW),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH),
.C_WR_DEPTH (C_WR_DEPTH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH),
.C_USE_ECC (C_USE_ECC),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE)
)
gen_as
(
.WR_CLK (WR_CLK),
.RD_CLK (RD_CLK),
.RST (rst_i),
.RST_FULL_GEN (rst_full_gen_i),
.RST_FULL_FF (rst_full_ff_i),
.WR_RST (wr_rst_i),
.RD_RST (rd_rst_i),
.DIN (din_delayed),
.WR_EN (wr_en_delayed),
.RD_EN (RD_EN_FIFO_IN),
.RD_EN_USER (rd_en_delayed),
.PROG_EMPTY_THRESH (prog_empty_thresh_delayed),
.PROG_EMPTY_THRESH_ASSERT (prog_empty_thresh_assert_delayed),
.PROG_EMPTY_THRESH_NEGATE (prog_empty_thresh_negate_delayed),
.PROG_FULL_THRESH (prog_full_thresh_delayed),
.PROG_FULL_THRESH_ASSERT (prog_full_thresh_assert_delayed),
.PROG_FULL_THRESH_NEGATE (prog_full_thresh_negate_delayed),
.INJECTSBITERR (inject_sbit_err),
.INJECTDBITERR (inject_dbit_err),
.USER_EMPTY_FB (EMPTY_P0_OUT),
.DOUT (DOUT_FIFO_OUT),
.FULL (FULL_FIFO_OUT),
.ALMOST_FULL (ALMOST_FULL_FIFO_OUT),
.WR_ACK (WR_ACK_FIFO_OUT),
.OVERFLOW (OVERFLOW_FIFO_OUT),
.EMPTY (EMPTY_FIFO_OUT),
.ALMOST_EMPTY (ALMOST_EMPTY_FIFO_OUT),
.VALID (VALID_FIFO_OUT),
.UNDERFLOW (UNDERFLOW_FIFO_OUT),
.RD_DATA_COUNT (RD_DATA_COUNT_FIFO_OUT),
.WR_DATA_COUNT (WR_DATA_COUNT_FIFO_OUT),
.PROG_FULL (PROG_FULL_FIFO_OUT),
.PROG_EMPTY (PROG_EMPTY_FIFO_OUT),
.SBITERR (sbiterr_fifo_out),
.DBITERR (dbiterr_fifo_out)
);
end
endcase
endgenerate
//**************************************************************************
// Connect Internal Signals
// (Signals labeled internal_*)
// In the normal case, these signals tie directly to the FIFO's inputs and
// outputs.
// In the case of Preload Latency 0 or 1, there are intermediate
// signals between the internal FIFO and the preload logic.
//**************************************************************************
//***********************************************
// If First-Word Fall-Through, instantiate
// the preload0 (FWFT) module
//***********************************************
wire rd_en_to_fwft_fifo;
wire sbiterr_fwft;
wire dbiterr_fwft;
wire [C_DOUT_WIDTH-1:0] dout_fwft;
wire empty_fwft;
wire rd_en_fifo_in;
wire stage2_reg_en_i;
wire [1:0] valid_stages_i;
wire rst_fwft;
//wire empty_p0_out;
reg [C_SYNCHRONIZER_STAGE-1:0] pkt_empty_sync = 'b1;
localparam IS_FWFT = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ? 1 : 0;
localparam IS_PKT_FIFO = (C_FIFO_TYPE == 1) ? 1 : 0;
localparam IS_AXIS_PKT_FIFO = (C_FIFO_TYPE == 1 && C_AXI_TYPE == 0) ? 1 : 0;
assign rst_fwft = (C_COMMON_CLOCK == 0) ? rd_rst_i : (C_HAS_RST == 1) ? rst_i : 1'b0;
generate if (IS_FWFT == 1 && C_FIFO_TYPE != 3) begin : block2
fifo_generator_v12_0_bhv_ver_preload0
#(
.C_DOUT_RST_VAL (C_DOUT_RST_VAL),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_HAS_RST (C_HAS_RST),
.C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC),
.C_HAS_SRST (C_HAS_SRST),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_USE_ECC (C_USE_ECC),
.C_USERVALID_LOW (C_VALID_LOW),
.C_USERUNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_MEMORY_TYPE (C_MEMORY_TYPE),
.C_FIFO_TYPE (C_FIFO_TYPE)
)
fgpl0
(
.RD_CLK (RD_CLK_P0_IN),
.RD_RST (RST_P0_IN),
.SRST (srst_delayed),
.WR_RST_BUSY (wr_rst_busy),
.RD_RST_BUSY (rd_rst_busy),
.RD_EN (RD_EN_P0_IN),
.FIFOEMPTY (EMPTY_P0_IN),
.FIFODATA (DATA_P0_IN),
.FIFOSBITERR (sbiterr_fifo_out),
.FIFODBITERR (dbiterr_fifo_out),
// Output
.USERDATA (dout_fwft),
.USERVALID (VALID_P0_OUT),
.USEREMPTY (empty_fwft),
.USERALMOSTEMPTY (ALMOSTEMPTY_P0_OUT),
.USERUNDERFLOW (UNDERFLOW_P0_OUT),
.RAMVALID (),
.FIFORDEN (rd_en_fifo_in),
.USERSBITERR (sbiterr_fwft),
.USERDBITERR (dbiterr_fwft),
.STAGE2_REG_EN (stage2_reg_en_i),
.VALID_STAGES (valid_stages_i)
);
//***********************************************
// Connect inputs to preload (FWFT) module
//***********************************************
//Connect the RD_CLK of the Preload (FWFT) module to CLK if we
// have a common-clock FIFO, or RD_CLK if we have an
// independent clock FIFO
assign RD_CLK_P0_IN = ((C_VERILOG_IMPL == 0) ? CLK : RD_CLK);
assign RST_P0_IN = (C_COMMON_CLOCK == 0) ? rd_rst_i : (C_HAS_RST == 1) ? rst_i : 0;
assign RD_EN_P0_IN = (C_FIFO_TYPE != 1) ? rd_en_delayed : rd_en_to_fwft_fifo;
assign EMPTY_P0_IN = EMPTY_FIFO_OUT;
assign DATA_P0_IN = DOUT_FIFO_OUT;
//***********************************************
// Connect outputs from preload (FWFT) module
//***********************************************
assign VALID = VALID_P0_OUT ;
assign ALMOST_EMPTY = ALMOSTEMPTY_P0_OUT;
assign UNDERFLOW = UNDERFLOW_P0_OUT ;
assign RD_EN_FIFO_IN = rd_en_fifo_in;
//***********************************************
// Create DATA_COUNT from First-Word Fall-Through
// data count
//***********************************************
assign DATA_COUNT = (C_USE_FWFT_DATA_COUNT == 0)? DATA_COUNT_FIFO_OUT:
(C_DATA_COUNT_WIDTH>C_RD_PNTR_WIDTH) ? DATA_COUNT_FWFT[C_RD_PNTR_WIDTH:0] :
DATA_COUNT_FWFT[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH-C_DATA_COUNT_WIDTH+1];
//***********************************************
// Create DATA_COUNT from First-Word Fall-Through
// data count
//***********************************************
always @ (posedge RD_CLK_P0_IN or posedge RST_P0_IN) begin
if (RST_P0_IN) begin
EMPTY_P0_OUT_Q <= #`TCQ 1;
ALMOSTEMPTY_P0_OUT_Q <= #`TCQ 1;
end else begin
EMPTY_P0_OUT_Q <= #`TCQ empty_p0_out;
// EMPTY_P0_OUT_Q <= #`TCQ EMPTY_FIFO_OUT;
ALMOSTEMPTY_P0_OUT_Q <= #`TCQ ALMOSTEMPTY_P0_OUT;
end
end //always
//***********************************************
// logic for common-clock data count when FWFT is selected
//***********************************************
initial begin
SS_FWFT_RD = 1'b0;
DATA_COUNT_FWFT = 0 ;
SS_FWFT_WR = 1'b0 ;
end //initial
//***********************************************
// common-clock data count is implemented as an
// up-down counter. SS_FWFT_WR and SS_FWFT_RD
// are the up/down enables for the counter.
//***********************************************
always @ (RD_EN or VALID_P0_OUT or WR_EN or FULL_FIFO_OUT or empty_p0_out) begin
if (C_VALID_LOW == 1) begin
SS_FWFT_RD = (C_FIFO_TYPE != 1) ? (RD_EN && ~VALID_P0_OUT) : (~empty_p0_out && RD_EN && ~VALID_P0_OUT) ;
end else begin
SS_FWFT_RD = (C_FIFO_TYPE != 1) ? (RD_EN && VALID_P0_OUT) : (~empty_p0_out && RD_EN && VALID_P0_OUT) ;
end
SS_FWFT_WR = (WR_EN && (~FULL_FIFO_OUT)) ;
end
//***********************************************
// common-clock data count is implemented as an
// up-down counter for FWFT. This always block
// calculates the counter.
//***********************************************
always @ (posedge RD_CLK_P0_IN or posedge RST_P0_IN) begin
if (RST_P0_IN) begin
DATA_COUNT_FWFT <= #`TCQ 0;
end else begin
//if (srst_delayed && (C_HAS_SRST == 1) ) begin
if ((srst_delayed | wr_rst_busy | rd_rst_busy) && (C_HAS_SRST == 1) ) begin
DATA_COUNT_FWFT <= #`TCQ 0;
end else begin
case ( {SS_FWFT_WR, SS_FWFT_RD})
2'b00: DATA_COUNT_FWFT <= #`TCQ DATA_COUNT_FWFT ;
2'b01: DATA_COUNT_FWFT <= #`TCQ DATA_COUNT_FWFT - 1 ;
2'b10: DATA_COUNT_FWFT <= #`TCQ DATA_COUNT_FWFT + 1 ;
2'b11: DATA_COUNT_FWFT <= #`TCQ DATA_COUNT_FWFT ;
endcase
end //if SRST
end //IF RST
end //always
end endgenerate // : block2
// AXI Streaming Packet FIFO
reg [C_WR_PNTR_WIDTH-1:0] wr_pkt_count = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pkt_count = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pkt_count_plus1 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pkt_count_reg = 0;
reg partial_packet = 0;
reg stage1_eop_d1 = 0;
reg rd_en_fifo_in_d1 = 0;
reg eop_at_stage2 = 0;
reg ram_pkt_empty = 0;
reg ram_pkt_empty_d1 = 0;
wire [C_DOUT_WIDTH-1:0] dout_p0_out;
wire packet_empty_wr;
wire wr_rst_fwft_pkt_fifo;
wire dummy_wr_eop;
wire ram_wr_en_pkt_fifo;
wire wr_eop;
wire ram_rd_en_compare;
wire stage1_eop;
wire pkt_ready_to_read;
wire rd_en_2_stage2;
// Generate Dummy WR_EOP for partial packet (Only for AXI Streaming)
// When Packet EMPTY is high, and FIFO is full, then generate the dummy WR_EOP
// When dummy WR_EOP is high, mask the actual EOP to avoid double increment of
// write packet count
generate if (IS_FWFT == 1 && IS_AXIS_PKT_FIFO == 1) begin // gdummy_wr_eop
always @ (posedge wr_rst_fwft_pkt_fifo or posedge WR_CLK) begin
if (wr_rst_fwft_pkt_fifo)
partial_packet <= 1'b0;
else begin
if (srst_delayed | wr_rst_busy | rd_rst_busy)
partial_packet <= #`TCQ 1'b0;
else if (ALMOST_FULL_FIFO_OUT && ram_wr_en_pkt_fifo && packet_empty_wr && (~din_delayed[0]))
partial_packet <= #`TCQ 1'b1;
else if (partial_packet && din_delayed[0] && ram_wr_en_pkt_fifo)
partial_packet <= #`TCQ 1'b0;
end
end
end endgenerate // gdummy_wr_eop
generate if (IS_FWFT == 1 && IS_PKT_FIFO == 1) begin // gpkt_fifo_fwft
assign wr_rst_fwft_pkt_fifo = (C_COMMON_CLOCK == 0) ? wr_rst_i : (C_HAS_RST == 1) ? rst_i:1'b0;
assign dummy_wr_eop = ALMOST_FULL_FIFO_OUT && ram_wr_en_pkt_fifo && packet_empty_wr && (~din_delayed[0]) && (~partial_packet);
assign packet_empty_wr = (C_COMMON_CLOCK == 1) ? empty_p0_out : pkt_empty_sync[C_SYNCHRONIZER_STAGE-1];
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft) begin
stage1_eop_d1 <= 1'b0;
rd_en_fifo_in_d1 <= 1'b0;
end else begin
if (srst_delayed | wr_rst_busy | rd_rst_busy) begin
stage1_eop_d1 <= #`TCQ 1'b0;
rd_en_fifo_in_d1 <= #`TCQ 1'b0;
end else begin
stage1_eop_d1 <= #`TCQ stage1_eop;
rd_en_fifo_in_d1 <= #`TCQ rd_en_fifo_in;
end
end
end
assign stage1_eop = (rd_en_fifo_in_d1) ? DOUT_FIFO_OUT[0] : stage1_eop_d1;
assign ram_wr_en_pkt_fifo = wr_en_delayed && (~FULL_FIFO_OUT);
assign wr_eop = ram_wr_en_pkt_fifo && ((din_delayed[0] && (~partial_packet)) || dummy_wr_eop);
assign ram_rd_en_compare = stage2_reg_en_i && stage1_eop;
fifo_generator_v12_0_bhv_ver_preload0
#(
.C_DOUT_RST_VAL (C_DOUT_RST_VAL),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_HAS_RST (C_HAS_RST),
.C_HAS_SRST (C_HAS_SRST),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_USE_ECC (C_USE_ECC),
.C_USERVALID_LOW (C_VALID_LOW),
.C_USERUNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC),
.C_MEMORY_TYPE (C_MEMORY_TYPE),
.C_FIFO_TYPE (2) // Enable low latency fwft logic
)
pkt_fifo_fwft
(
.RD_CLK (RD_CLK_P0_IN),
.RD_RST (rst_fwft),
.SRST (srst_delayed),
.WR_RST_BUSY (wr_rst_busy),
.RD_RST_BUSY (rd_rst_busy),
.RD_EN (rd_en_delayed),
.FIFOEMPTY (pkt_ready_to_read),
.FIFODATA (dout_fwft),
.FIFOSBITERR (sbiterr_fwft),
.FIFODBITERR (dbiterr_fwft),
// Output
.USERDATA (dout_p0_out),
.USERVALID (),
.USEREMPTY (empty_p0_out),
.USERALMOSTEMPTY (),
.USERUNDERFLOW (),
.RAMVALID (),
.FIFORDEN (rd_en_2_stage2),
.USERSBITERR (SBITERR),
.USERDBITERR (DBITERR),
.STAGE2_REG_EN (),
.VALID_STAGES ()
);
assign pkt_ready_to_read = ~(!(ram_pkt_empty || empty_fwft) && ((valid_stages_i[0] && valid_stages_i[1]) || eop_at_stage2));
assign rd_en_to_fwft_fifo = ~empty_fwft && rd_en_2_stage2;
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft)
eop_at_stage2 <= 1'b0;
else if (stage2_reg_en_i)
eop_at_stage2 <= #`TCQ stage1_eop;
end
//---------------------------------------------------------------------------
// Write and Read Packet Count
//---------------------------------------------------------------------------
always @ (posedge wr_rst_fwft_pkt_fifo or posedge WR_CLK) begin
if (wr_rst_fwft_pkt_fifo)
wr_pkt_count <= 0;
else if (srst_delayed | wr_rst_busy | rd_rst_busy)
wr_pkt_count <= #`TCQ 0;
else if (wr_eop)
wr_pkt_count <= #`TCQ wr_pkt_count + 1;
end
end endgenerate // gpkt_fifo_fwft
assign DOUT = (C_FIFO_TYPE != 1) ? dout_fwft : dout_p0_out;
assign EMPTY = (C_FIFO_TYPE != 1) ? empty_fwft : empty_p0_out;
generate if (IS_FWFT == 1 && IS_PKT_FIFO == 1 && C_COMMON_CLOCK == 1) begin // grss_pkt_cnt
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft) begin
rd_pkt_count <= 0;
rd_pkt_count_plus1 <= 1;
end else if (srst_delayed | wr_rst_busy | rd_rst_busy) begin
rd_pkt_count <= #`TCQ 0;
rd_pkt_count_plus1 <= #`TCQ 1;
end else if (stage2_reg_en_i && stage1_eop) begin
rd_pkt_count <= #`TCQ rd_pkt_count + 1;
rd_pkt_count_plus1 <= #`TCQ rd_pkt_count_plus1 + 1;
end
end
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft) begin
ram_pkt_empty <= 1'b1;
ram_pkt_empty_d1 <= 1'b1;
end else if (SRST | wr_rst_busy | rd_rst_busy) begin
ram_pkt_empty <= #`TCQ 1'b1;
ram_pkt_empty_d1 <= #`TCQ 1'b1;
end else if ((rd_pkt_count == wr_pkt_count) && wr_eop) begin
ram_pkt_empty <= #`TCQ 1'b0;
ram_pkt_empty_d1 <= #`TCQ 1'b0;
end else if (ram_pkt_empty_d1 && rd_en_to_fwft_fifo) begin
ram_pkt_empty <= #`TCQ 1'b1;
end else if ((rd_pkt_count_plus1 == wr_pkt_count) && ~wr_eop && ~ALMOST_FULL_FIFO_OUT && ram_rd_en_compare) begin
ram_pkt_empty_d1 <= #`TCQ 1'b1;
end
end
end endgenerate //grss_pkt_cnt
localparam SYNC_STAGE_WIDTH = (C_SYNCHRONIZER_STAGE+1)*C_WR_PNTR_WIDTH;
reg [SYNC_STAGE_WIDTH-1:0] wr_pkt_count_q = 0;
reg [C_WR_PNTR_WIDTH-1:0] wr_pkt_count_b2g = 0;
wire [C_WR_PNTR_WIDTH-1:0] wr_pkt_count_rd;
generate if (IS_FWFT == 1 && IS_PKT_FIFO == 1 && C_COMMON_CLOCK == 0) begin // gras_pkt_cnt
// Delay the write packet count in write clock domain to accomodate the binary to gray conversion delay
always @ (posedge wr_rst_fwft_pkt_fifo or posedge WR_CLK) begin
if (wr_rst_fwft_pkt_fifo)
wr_pkt_count_b2g <= 0;
else
wr_pkt_count_b2g <= #`TCQ wr_pkt_count;
end
// Synchronize the delayed write packet count in read domain, and also compensate the gray to binay conversion delay
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft)
wr_pkt_count_q <= 0;
else
wr_pkt_count_q <= #`TCQ {wr_pkt_count_q[SYNC_STAGE_WIDTH-C_WR_PNTR_WIDTH-1:0],wr_pkt_count_b2g};
end
always @* begin
if (stage1_eop)
rd_pkt_count <= rd_pkt_count_reg + 1;
else
rd_pkt_count <= rd_pkt_count_reg;
end
assign wr_pkt_count_rd = wr_pkt_count_q[SYNC_STAGE_WIDTH-1:SYNC_STAGE_WIDTH-C_WR_PNTR_WIDTH];
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft)
rd_pkt_count_reg <= 0;
else if (rd_en_fifo_in)
rd_pkt_count_reg <= #`TCQ rd_pkt_count;
end
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft) begin
ram_pkt_empty <= 1'b1;
ram_pkt_empty_d1 <= 1'b1;
end else if (rd_pkt_count != wr_pkt_count_rd) begin
ram_pkt_empty <= #`TCQ 1'b0;
ram_pkt_empty_d1 <= #`TCQ 1'b0;
end else if (ram_pkt_empty_d1 && rd_en_to_fwft_fifo) begin
ram_pkt_empty <= #`TCQ 1'b1;
end else if ((rd_pkt_count == wr_pkt_count_rd) && stage2_reg_en_i) begin
ram_pkt_empty_d1 <= #`TCQ 1'b1;
end
end
// Synchronize the empty in write domain
always @ (posedge wr_rst_fwft_pkt_fifo or posedge WR_CLK) begin
if (wr_rst_fwft_pkt_fifo)
pkt_empty_sync <= 'b1;
else
pkt_empty_sync <= #`TCQ {pkt_empty_sync[C_SYNCHRONIZER_STAGE-2:0], empty_p0_out};
end
end endgenerate //gras_pkt_cnt
generate if (IS_FWFT == 0 || C_FIFO_TYPE == 3) begin : STD_FIFO
//***********************************************
// If NOT First-Word Fall-Through, wire the outputs
// of the internal _ss or _as FIFO directly to the
// output, and do not instantiate the preload0
// module.
//***********************************************
assign RD_CLK_P0_IN = 0;
assign RST_P0_IN = 0;
assign RD_EN_P0_IN = 0;
assign RD_EN_FIFO_IN = rd_en_delayed;
assign DOUT = DOUT_FIFO_OUT;
assign DATA_P0_IN = 0;
assign VALID = VALID_FIFO_OUT;
assign EMPTY = EMPTY_FIFO_OUT;
assign ALMOST_EMPTY = ALMOST_EMPTY_FIFO_OUT;
assign EMPTY_P0_IN = 0;
assign UNDERFLOW = UNDERFLOW_FIFO_OUT;
assign DATA_COUNT = DATA_COUNT_FIFO_OUT;
assign SBITERR = sbiterr_fifo_out;
assign DBITERR = dbiterr_fifo_out;
end endgenerate // STD_FIFO
generate if (IS_FWFT == 1 && C_FIFO_TYPE != 1) begin : NO_PKT_FIFO
assign empty_p0_out = empty_fwft;
assign SBITERR = sbiterr_fwft;
assign DBITERR = dbiterr_fwft;
assign DOUT = dout_fwft;
assign RD_EN_P0_IN = (C_FIFO_TYPE != 1) ? rd_en_delayed : rd_en_to_fwft_fifo;
end endgenerate // NO_PKT_FIFO
//***********************************************
// Connect user flags to internal signals
//***********************************************
//If we are using extra logic for the FWFT data count, then override the
//RD_DATA_COUNT output when we are EMPTY or ALMOST_EMPTY.
//RD_DATA_COUNT is 0 when EMPTY and 1 when ALMOST_EMPTY.
generate
if (C_USE_FWFT_DATA_COUNT==1 && (C_RD_DATA_COUNT_WIDTH>C_RD_PNTR_WIDTH) ) begin : block3
if (C_COMMON_CLOCK == 0) begin : block_ic
assign RD_DATA_COUNT = (EMPTY_P0_OUT_Q | RST_P0_IN) ? 0 : (ALMOSTEMPTY_P0_OUT_Q ? 1 : RD_DATA_COUNT_FIFO_OUT);
end //block_ic
else begin
assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT;
end
end //block3
endgenerate
//If we are using extra logic for the FWFT data count, then override the
//RD_DATA_COUNT output when we are EMPTY or ALMOST_EMPTY.
//Due to asymmetric ports, RD_DATA_COUNT is 0 when EMPTY or ALMOST_EMPTY.
generate
if (C_USE_FWFT_DATA_COUNT==1 && (C_RD_DATA_COUNT_WIDTH <=C_RD_PNTR_WIDTH) ) begin : block30
if (C_COMMON_CLOCK == 0) begin : block_ic
assign RD_DATA_COUNT = (EMPTY_P0_OUT_Q | RST_P0_IN) ? 0 : (ALMOSTEMPTY_P0_OUT_Q ? 0 : RD_DATA_COUNT_FIFO_OUT);
end
else begin
assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT;
end
end //block30
endgenerate
//If we are not using extra logic for the FWFT data count,
//then connect RD_DATA_COUNT to the RD_DATA_COUNT from the
//internal FIFO instance
generate
if (C_USE_FWFT_DATA_COUNT==0 ) begin : block31
assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT;
end
endgenerate
//Always connect WR_DATA_COUNT to the WR_DATA_COUNT from the internal
//FIFO instance
generate
if (C_USE_FWFT_DATA_COUNT==1) begin : block4
assign WR_DATA_COUNT = WR_DATA_COUNT_FIFO_OUT;
end
else begin : block4
assign WR_DATA_COUNT = WR_DATA_COUNT_FIFO_OUT;
end
endgenerate
//Connect other flags to the internal FIFO instance
assign FULL = FULL_FIFO_OUT;
assign ALMOST_FULL = ALMOST_FULL_FIFO_OUT;
assign WR_ACK = WR_ACK_FIFO_OUT;
assign OVERFLOW = OVERFLOW_FIFO_OUT;
assign PROG_FULL = PROG_FULL_FIFO_OUT;
assign PROG_EMPTY = PROG_EMPTY_FIFO_OUT;
/**************************************************************************
* find_log2
* Returns the 'log2' value for the input value for the supported ratios
***************************************************************************/
function integer find_log2;
input integer int_val;
integer i,j;
begin
i = 1;
j = 0;
for (i = 1; i < int_val; i = i*2) begin
j = j + 1;
end
find_log2 = j;
end
endfunction
// if an asynchronous FIFO has been selected, display a message that the FIFO
// will not be cycle-accurate in simulation
initial begin
if (C_IMPLEMENTATION_TYPE == 2) begin
$display("WARNING: Behavioral models for independent clock FIFO configurations do not model synchronization delays. The behavioral models are functionally correct, and will represent the behavior of the configured FIFO. See the FIFO Generator User Guide for more information.");
end else if (C_MEMORY_TYPE == 4) begin
$display("FAILURE : Behavioral models do not support built-in FIFO configurations. Please use post-synthesis or post-implement simulation in Vivado.");
$finish;
end
if (C_WR_PNTR_WIDTH != find_log2(C_WR_DEPTH)) begin
$display("FAILURE : C_WR_PNTR_WIDTH is not log2 of C_WR_DEPTH.");
$finish;
end
if (C_RD_PNTR_WIDTH != find_log2(C_RD_DEPTH)) begin
$display("FAILURE : C_RD_PNTR_WIDTH is not log2 of C_RD_DEPTH.");
$finish;
end
if (C_USE_ECC == 1) begin
if (C_DIN_WIDTH != C_DOUT_WIDTH) begin
$display("FAILURE : C_DIN_WIDTH and C_DOUT_WIDTH must be equal for ECC configuration.");
$finish;
end
if (C_DIN_WIDTH == 1 && C_ERROR_INJECTION_TYPE > 1) begin
$display("FAILURE : C_DIN_WIDTH and C_DOUT_WIDTH must be > 1 for double bit error injection.");
$finish;
end
end
end //initial
/**************************************************************************
* Internal reset logic
**************************************************************************/
assign wr_rst_i = (C_HAS_RST == 1 || C_ENABLE_RST_SYNC == 0) ? wr_rst_reg : 0;
assign rd_rst_i = (C_HAS_RST == 1 || C_ENABLE_RST_SYNC == 0) ? rd_rst_reg : 0;
assign rst_i = C_HAS_RST ? rst_reg : 0;
wire rst_2_sync;
wire clk_2_sync = (C_COMMON_CLOCK == 1) ? CLK : WR_CLK;
generate
if (C_ENABLE_RST_SYNC == 0) begin : gnrst_sync
always @* begin
wr_rst_reg <= wr_rst_delayed;
rd_rst_reg <= rd_rst_delayed;
rst_reg <= 1'b0;
srst_reg <= 1'b0;
end
assign rst_2_sync = wr_rst_delayed;
assign wr_rst_busy = 1'b0;
assign rd_rst_busy = 1'b0;
end else if (C_HAS_RST == 1 && C_COMMON_CLOCK == 0) begin : g7s_ic_rst
assign wr_rst_comb = !wr_rst_asreg_d2 && wr_rst_asreg;
assign rd_rst_comb = !rd_rst_asreg_d2 && rd_rst_asreg;
assign rst_2_sync = rst_delayed;
assign wr_rst_busy = 1'b0;
assign rd_rst_busy = 1'b0;
always @(posedge WR_CLK or posedge rst_delayed) begin
if (rst_delayed == 1'b1) begin
wr_rst_asreg <= #`TCQ 1'b1;
end else begin
if (wr_rst_asreg_d1 == 1'b1) begin
wr_rst_asreg <= #`TCQ 1'b0;
end else begin
wr_rst_asreg <= #`TCQ wr_rst_asreg;
end
end
end
always @(posedge WR_CLK) begin
wr_rst_asreg_d1 <= #`TCQ wr_rst_asreg;
wr_rst_asreg_d2 <= #`TCQ wr_rst_asreg_d1;
end
always @(posedge WR_CLK or posedge wr_rst_comb) begin
if (wr_rst_comb == 1'b1) begin
wr_rst_reg <= #`TCQ 1'b1;
end else begin
wr_rst_reg <= #`TCQ 1'b0;
end
end
always @(posedge RD_CLK or posedge rst_delayed) begin
if (rst_delayed == 1'b1) begin
rd_rst_asreg <= #`TCQ 1'b1;
end else begin
if (rd_rst_asreg_d1 == 1'b1) begin
rd_rst_asreg <= #`TCQ 1'b0;
end else begin
rd_rst_asreg <= #`TCQ rd_rst_asreg;
end
end
end
always @(posedge RD_CLK) begin
rd_rst_asreg_d1 <= #`TCQ rd_rst_asreg;
rd_rst_asreg_d2 <= #`TCQ rd_rst_asreg_d1;
end
always @(posedge RD_CLK or posedge rd_rst_comb) begin
if (rd_rst_comb == 1'b1) begin
rd_rst_reg <= #`TCQ 1'b1;
end else begin
rd_rst_reg <= #`TCQ 1'b0;
end
end
end else if (C_HAS_RST == 1 && C_COMMON_CLOCK == 1) begin : g7s_cc_rst
assign rst_comb = !rst_asreg_d2 && rst_asreg;
assign rst_2_sync = rst_delayed;
assign wr_rst_busy = 1'b0;
assign rd_rst_busy = 1'b0;
always @(posedge CLK or posedge rst_delayed) begin
if (rst_delayed == 1'b1) begin
rst_asreg <= #`TCQ 1'b1;
end else begin
if (rst_asreg_d1 == 1'b1) begin
rst_asreg <= #`TCQ 1'b0;
end else begin
rst_asreg <= #`TCQ rst_asreg;
end
end
end
always @(posedge CLK) begin
rst_asreg_d1 <= #`TCQ rst_asreg;
rst_asreg_d2 <= #`TCQ rst_asreg_d1;
end
always @(posedge CLK or posedge rst_comb) begin
if (rst_comb == 1'b1) begin
rst_reg <= #`TCQ 1'b1;
end else begin
rst_reg <= #`TCQ 1'b0;
end
end
end else if (IS_8SERIES == 1 && C_HAS_SRST == 1 && C_COMMON_CLOCK == 1) begin : g8s_cc_rst
assign wr_rst_busy = (C_MEMORY_TYPE != 4) ? rst_reg : rst_active_i;
assign rd_rst_busy = rst_reg;
assign rst_2_sync = srst_delayed;
always @* rst_full_ff_i <= rst_reg;
always @* rst_full_gen_i <= C_FULL_FLAGS_RST_VAL == 1 ? rst_active_i : 0;
always @(posedge CLK) begin
rst_delayed_d1 <= #`TCQ srst_delayed;
rst_delayed_d2 <= #`TCQ rst_delayed_d1;
if (rst_reg || rst_delayed_d2) begin
rst_active_i <= #`TCQ 1'b1;
end else begin
rst_active_i <= #`TCQ rst_reg;
end
end
always @(posedge CLK) begin
if (~rst_reg && srst_delayed) begin
rst_reg <= #`TCQ 1'b1;
end else if (rst_reg) begin
rst_reg <= #`TCQ 1'b0;
end else begin
rst_reg <= #`TCQ rst_reg;
end
end
end else begin
assign wr_rst_busy = 1'b0;
assign rd_rst_busy = 1'b0;
end
// end g8s_cc_rst
endgenerate
reg rst_d1 = 1'b0;
reg rst_d2 = 1'b0;
reg rst_d3 = 1'b0;
reg rst_d4 = 1'b0;
generate
if ((C_HAS_RST == 1 || C_HAS_SRST == 1 || C_ENABLE_RST_SYNC == 0) && C_FULL_FLAGS_RST_VAL == 1) begin : grstd1
// RST_FULL_GEN replaces the reset falling edge detection used to de-assert
// FULL, ALMOST_FULL & PROG_FULL flags if C_FULL_FLAGS_RST_VAL = 1.
// RST_FULL_FF goes to the reset pin of the final flop of FULL, ALMOST_FULL &
// PROG_FULL
always @ (posedge rst_2_sync or posedge clk_2_sync) begin
if (rst_2_sync) begin
rst_d1 <= 1'b1;
rst_d2 <= 1'b1;
rst_d3 <= 1'b1;
rst_d4 <= 1'b0;
end else begin
if (srst_delayed) begin
rst_d1 <= #`TCQ 1'b1;
rst_d2 <= #`TCQ 1'b1;
rst_d3 <= #`TCQ 1'b1;
rst_d4 <= #`TCQ 1'b0;
end else begin
rst_d1 <= #`TCQ 1'b0;
rst_d2 <= #`TCQ rst_d1;
rst_d3 <= #`TCQ rst_d2;
rst_d4 <= #`TCQ rst_d3;
end
end
end
always @* rst_full_ff_i <= (C_HAS_SRST == 0) ? rst_d2 : 1'b0 ;
always @* rst_full_gen_i <= rst_d4;
end else if ((C_HAS_RST == 1 || C_HAS_SRST == 1 || C_ENABLE_RST_SYNC == 0) && C_FULL_FLAGS_RST_VAL == 0) begin : gnrst_full
always @* rst_full_ff_i <= (C_COMMON_CLOCK == 0) ? wr_rst_i : rst_i;
end
endgenerate // grstd1
endmodule //FIFO_GENERATOR_v12_0_CONV_VER
module fifo_generator_v12_0_sync_stage
#(
parameter C_WIDTH = 10
)
(
input RST,
input CLK,
input [C_WIDTH-1:0] DIN,
output reg [C_WIDTH-1:0] DOUT = 0
);
always @ (posedge RST or posedge CLK) begin
if (RST)
DOUT <= 0;
else
DOUT <= #`TCQ DIN;
end
endmodule // fifo_generator_v12_0_sync_stage
/*******************************************************************************
* Declaration of Independent-Clocks FIFO Module
******************************************************************************/
module fifo_generator_v12_0_bhv_ver_as
/***************************************************************************
* Declare user parameters and their defaults
***************************************************************************/
#(
parameter C_FAMILY = "virtex7",
parameter C_DATA_COUNT_WIDTH = 2,
parameter C_DIN_WIDTH = 8,
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_FULL_FLAGS_RST_VAL = 1,
parameter C_HAS_ALMOST_EMPTY = 0,
parameter C_HAS_ALMOST_FULL = 0,
parameter C_HAS_DATA_COUNT = 0,
parameter C_HAS_OVERFLOW = 0,
parameter C_HAS_RD_DATA_COUNT = 0,
parameter C_HAS_RST = 0,
parameter C_HAS_UNDERFLOW = 0,
parameter C_HAS_VALID = 0,
parameter C_HAS_WR_ACK = 0,
parameter C_HAS_WR_DATA_COUNT = 0,
parameter C_IMPLEMENTATION_TYPE = 0,
parameter C_MEMORY_TYPE = 1,
parameter C_OVERFLOW_LOW = 0,
parameter C_PRELOAD_LATENCY = 1,
parameter C_PRELOAD_REGS = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0,
parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0,
parameter C_PROG_EMPTY_TYPE = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0,
parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0,
parameter C_PROG_FULL_TYPE = 0,
parameter C_RD_DATA_COUNT_WIDTH = 2,
parameter C_RD_DEPTH = 256,
parameter C_RD_PNTR_WIDTH = 8,
parameter C_UNDERFLOW_LOW = 0,
parameter C_USE_DOUT_RST = 0,
parameter C_USE_EMBEDDED_REG = 0,
parameter C_USE_FWFT_DATA_COUNT = 0,
parameter C_VALID_LOW = 0,
parameter C_WR_ACK_LOW = 0,
parameter C_WR_DATA_COUNT_WIDTH = 2,
parameter C_WR_DEPTH = 256,
parameter C_WR_PNTR_WIDTH = 8,
parameter C_USE_ECC = 0,
parameter C_ENABLE_RST_SYNC = 1,
parameter C_ERROR_INJECTION_TYPE = 0,
parameter C_SYNCHRONIZER_STAGE = 2
)
/***************************************************************************
* Declare Input and Output Ports
***************************************************************************/
(
input [C_DIN_WIDTH-1:0] DIN,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE,
input RD_CLK,
input RD_EN,
input RD_EN_USER,
input RST,
input RST_FULL_GEN,
input RST_FULL_FF,
input WR_RST,
input RD_RST,
input WR_CLK,
input WR_EN,
input INJECTDBITERR,
input INJECTSBITERR,
input USER_EMPTY_FB,
output reg ALMOST_EMPTY = 1'b1,
output reg ALMOST_FULL = C_FULL_FLAGS_RST_VAL,
output [C_DOUT_WIDTH-1:0] DOUT,
output reg EMPTY = 1'b1,
output reg FULL = C_FULL_FLAGS_RST_VAL,
output OVERFLOW,
output PROG_EMPTY,
output PROG_FULL,
output VALID,
output [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT,
output UNDERFLOW,
output WR_ACK,
output [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT,
output SBITERR,
output DBITERR
);
reg [C_RD_PNTR_WIDTH:0] rd_data_count_int = 0;
reg [C_WR_PNTR_WIDTH:0] wr_data_count_int = 0;
reg [C_WR_PNTR_WIDTH:0] wdc_fwft_ext_as = 0;
/***************************************************************************
* Parameters used as constants
**************************************************************************/
localparam IS_8SERIES = (C_FAMILY == "virtexu" || C_FAMILY == "kintexu" || C_FAMILY == "artixu" || C_FAMILY == "virtexum" || C_FAMILY == "zynque") ? 1 : 0;
//When RST is present, set FULL reset value to '1'.
//If core has no RST, make sure FULL powers-on as '0'.
localparam C_DEPTH_RATIO_WR =
(C_WR_DEPTH>C_RD_DEPTH) ? (C_WR_DEPTH/C_RD_DEPTH) : 1;
localparam C_DEPTH_RATIO_RD =
(C_RD_DEPTH>C_WR_DEPTH) ? (C_RD_DEPTH/C_WR_DEPTH) : 1;
localparam C_FIFO_WR_DEPTH = C_WR_DEPTH - 1;
localparam C_FIFO_RD_DEPTH = C_RD_DEPTH - 1;
// C_DEPTH_RATIO_WR | C_DEPTH_RATIO_RD | C_PNTR_WIDTH | EXTRA_WORDS_DC
// -----------------|------------------|-----------------|---------------
// 1 | 8 | C_RD_PNTR_WIDTH | 2
// 1 | 4 | C_RD_PNTR_WIDTH | 2
// 1 | 2 | C_RD_PNTR_WIDTH | 2
// 1 | 1 | C_WR_PNTR_WIDTH | 2
// 2 | 1 | C_WR_PNTR_WIDTH | 4
// 4 | 1 | C_WR_PNTR_WIDTH | 8
// 8 | 1 | C_WR_PNTR_WIDTH | 16
localparam C_PNTR_WIDTH = (C_WR_PNTR_WIDTH>=C_RD_PNTR_WIDTH) ? C_WR_PNTR_WIDTH : C_RD_PNTR_WIDTH;
wire [C_PNTR_WIDTH:0] EXTRA_WORDS_DC = (C_DEPTH_RATIO_WR == 1) ? 2 : (2 * C_DEPTH_RATIO_WR/C_DEPTH_RATIO_RD);
localparam [31:0] reads_per_write = C_DIN_WIDTH/C_DOUT_WIDTH;
localparam [31:0] log2_reads_per_write = log2_val(reads_per_write);
localparam [31:0] writes_per_read = C_DOUT_WIDTH/C_DIN_WIDTH;
localparam [31:0] log2_writes_per_read = log2_val(writes_per_read);
/**************************************************************************
* FIFO Contents Tracking and Data Count Calculations
*************************************************************************/
// Memory which will be used to simulate a FIFO
reg [C_DIN_WIDTH-1:0] memory[C_WR_DEPTH-1:0];
// Local parameters used to determine whether to inject ECC error or not
localparam SYMMETRIC_PORT = (C_DIN_WIDTH == C_DOUT_WIDTH) ? 1 : 0;
localparam ERR_INJECTION = (C_ERROR_INJECTION_TYPE != 0) ? 1 : 0;
localparam ENABLE_ERR_INJECTION = C_USE_ECC && SYMMETRIC_PORT && ERR_INJECTION;
// Array that holds the error injection type (single/double bit error) on
// a specific write operation, which is returned on read to corrupt the
// output data.
reg [1:0] ecc_err[C_WR_DEPTH-1:0];
//The amount of data stored in the FIFO at any time is given
// by num_wr_bits (in the WR_CLK domain) and num_rd_bits (in the RD_CLK
// domain.
//num_wr_bits is calculated by considering the total words in the FIFO,
// and the state of the read pointer (which may not have yet crossed clock
// domains.)
//num_rd_bits is calculated by considering the total words in the FIFO,
// and the state of the write pointer (which may not have yet crossed clock
// domains.)
reg [31:0] num_wr_bits;
reg [31:0] num_rd_bits;
reg [31:0] next_num_wr_bits;
reg [31:0] next_num_rd_bits;
//The write pointer - tracks write operations
// (Works opposite to core: wr_ptr is a DOWN counter)
reg [31:0] wr_ptr;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr = 0; // UP counter: Rolls back to 0 when reaches to max value.
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd1 = 0;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd2 = 0;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd3 = 0;
wire [C_RD_PNTR_WIDTH-1:0] adj_wr_pntr_rd;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd = 0;
wire wr_rst_i = WR_RST;
reg wr_rst_d1 =0;
//The read pointer - tracks read operations
// (rd_ptr Works opposite to core: rd_ptr is a DOWN counter)
reg [31:0] rd_ptr;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr = 0; // UP counter: Rolls back to 0 when reaches to max value.
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr1 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr2 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr3 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr4 = 0;
wire [C_WR_PNTR_WIDTH-1:0] adj_rd_pntr_wr;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr = 0;
wire rd_rst_i = RD_RST;
wire ram_rd_en;
wire empty_int;
wire almost_empty_int;
wire ram_wr_en;
wire full_int;
wire almost_full_int;
reg ram_rd_en_d1 = 1'b0;
// Delayed ram_rd_en is needed only for STD Embedded register option
generate
if (C_PRELOAD_LATENCY == 2) begin : grd_d
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i)
ram_rd_en_d1 <= #`TCQ 1'b0;
else
ram_rd_en_d1 <= #`TCQ ram_rd_en;
end
end
endgenerate
// Write pointer adjustment based on pointers width for EMPTY/ALMOST_EMPTY generation
generate
if (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) begin : rdg // Read depth greater than write depth
assign adj_wr_pntr_rd[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr_rd;
assign adj_wr_pntr_rd[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1:0] = 0;
end else begin : rdl // Read depth lesser than or equal to write depth
assign adj_wr_pntr_rd = wr_pntr_rd[C_WR_PNTR_WIDTH-1:C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH];
end
endgenerate
// Generate Empty and Almost Empty
// ram_rd_en used to determine EMPTY should depend on the EMPTY.
assign ram_rd_en = RD_EN & !EMPTY;
assign empty_int = ((adj_wr_pntr_rd == rd_pntr) || (ram_rd_en && (adj_wr_pntr_rd == (rd_pntr+1'h1))));
assign almost_empty_int = ((adj_wr_pntr_rd == (rd_pntr+1'h1)) || (ram_rd_en && (adj_wr_pntr_rd == (rd_pntr+2'h2))));
// Register Empty and Almost Empty
always @ (posedge RD_CLK or posedge rd_rst_i)
begin
if (rd_rst_i) begin
EMPTY <= #`TCQ 1'b1;
ALMOST_EMPTY <= #`TCQ 1'b1;
rd_data_count_int <= #`TCQ {C_RD_PNTR_WIDTH{1'b0}};
end else begin
rd_data_count_int <= #`TCQ {(adj_wr_pntr_rd[C_RD_PNTR_WIDTH-1:0] - rd_pntr[C_RD_PNTR_WIDTH-1:0]), 1'b0};
if (empty_int)
EMPTY <= #`TCQ 1'b1;
else
EMPTY <= #`TCQ 1'b0;
if (!EMPTY) begin
if (almost_empty_int)
ALMOST_EMPTY <= #`TCQ 1'b1;
else
ALMOST_EMPTY <= #`TCQ 1'b0;
end
end // rd_rst_i
end // always
// Read pointer adjustment based on pointers width for EMPTY/ALMOST_EMPTY generation
generate
if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : wdg // Write depth greater than read depth
assign adj_rd_pntr_wr[C_WR_PNTR_WIDTH-1:C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH] = rd_pntr_wr;
assign adj_rd_pntr_wr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1:0] = 0;
end else begin : wdl // Write depth lesser than or equal to read depth
assign adj_rd_pntr_wr = rd_pntr_wr[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH];
end
endgenerate
// Generate FULL and ALMOST_FULL
// ram_wr_en used to determine FULL should depend on the FULL.
assign ram_wr_en = WR_EN & !FULL;
assign full_int = ((adj_rd_pntr_wr == (wr_pntr+1'h1)) || (ram_wr_en && (adj_rd_pntr_wr == (wr_pntr+2'h2))));
assign almost_full_int = ((adj_rd_pntr_wr == (wr_pntr+2'h2)) || (ram_wr_en && (adj_rd_pntr_wr == (wr_pntr+3'h3))));
// Register FULL and ALMOST_FULL Empty
always @ (posedge WR_CLK or posedge RST_FULL_FF)
begin
if (RST_FULL_FF) begin
FULL <= #`TCQ C_FULL_FLAGS_RST_VAL;
ALMOST_FULL <= #`TCQ C_FULL_FLAGS_RST_VAL;
end else begin
if (full_int) begin
FULL <= #`TCQ 1'b1;
end else begin
FULL <= #`TCQ 1'b0;
end
if (RST_FULL_GEN) begin
ALMOST_FULL <= #`TCQ 1'b0;
end else if (!FULL) begin
if (almost_full_int)
ALMOST_FULL <= #`TCQ 1'b1;
else
ALMOST_FULL <= #`TCQ 1'b0;
end
end // wr_rst_i
end // always
always @ (posedge WR_CLK or posedge wr_rst_i)
begin
if (wr_rst_i) begin
wr_data_count_int <= #`TCQ {C_WR_DATA_COUNT_WIDTH{1'b0}};
end else begin
wr_data_count_int <= #`TCQ {(wr_pntr[C_WR_PNTR_WIDTH-1:0] - adj_rd_pntr_wr[C_WR_PNTR_WIDTH-1:0]), 1'b0};
end // wr_rst_i
end // always
// Determine which stage in FWFT registers are valid
reg stage1_valid = 0;
reg stage2_valid = 0;
generate
if (C_PRELOAD_LATENCY == 0) begin : grd_fwft_proc
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
stage1_valid <= #`TCQ 0;
stage2_valid <= #`TCQ 0;
end else begin
if (!stage1_valid && !stage2_valid) begin
if (!EMPTY)
stage1_valid <= #`TCQ 1'b1;
else
stage1_valid <= #`TCQ 1'b0;
end else if (stage1_valid && !stage2_valid) begin
if (EMPTY) begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b1;
end else begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b1;
end
end else if (!stage1_valid && stage2_valid) begin
if (EMPTY && RD_EN_USER) begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b0;
end else if (!EMPTY && RD_EN_USER) begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b0;
end else if (!EMPTY && !RD_EN_USER) begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b1;
end else begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b1;
end
end else if (stage1_valid && stage2_valid) begin
if (EMPTY && RD_EN_USER) begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b1;
end else begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b1;
end
end else begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b0;
end
end // rd_rst_i
end // always
end
endgenerate
//Pointers passed into opposite clock domain
reg [31:0] wr_ptr_rdclk;
reg [31:0] wr_ptr_rdclk_next;
reg [31:0] rd_ptr_wrclk;
reg [31:0] rd_ptr_wrclk_next;
//Amount of data stored in the FIFO scaled to the narrowest (deepest) port
// (Do not include data in FWFT stages)
//Used to calculate PROG_EMPTY.
wire [31:0] num_read_words_pe =
num_rd_bits/(C_DOUT_WIDTH/C_DEPTH_RATIO_WR);
//Amount of data stored in the FIFO scaled to the narrowest (deepest) port
// (Do not include data in FWFT stages)
//Used to calculate PROG_FULL.
wire [31:0] num_write_words_pf =
num_wr_bits/(C_DIN_WIDTH/C_DEPTH_RATIO_RD);
/**************************
* Read Data Count
*************************/
reg [31:0] num_read_words_dc;
reg [C_RD_DATA_COUNT_WIDTH-1:0] num_read_words_sized_i;
always @(num_rd_bits) begin
if (C_USE_FWFT_DATA_COUNT) begin
//If using extra logic for FWFT Data Counts,
// then scale FIFO contents to read domain,
// and add two read words for FWFT stages
//This value is only a temporary value and not used in the code.
num_read_words_dc = (num_rd_bits/C_DOUT_WIDTH+2);
//Trim the read words for use with RD_DATA_COUNT
num_read_words_sized_i =
num_read_words_dc[C_RD_PNTR_WIDTH : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH+1];
end else begin
//If not using extra logic for FWFT Data Counts,
// then scale FIFO contents to read domain.
//This value is only a temporary value and not used in the code.
num_read_words_dc = num_rd_bits/C_DOUT_WIDTH;
//Trim the read words for use with RD_DATA_COUNT
num_read_words_sized_i =
num_read_words_dc[C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH];
end //if (C_USE_FWFT_DATA_COUNT)
end //always
/**************************
* Write Data Count
*************************/
reg [31:0] num_write_words_dc;
reg [C_WR_DATA_COUNT_WIDTH-1:0] num_write_words_sized_i;
always @(num_wr_bits) begin
if (C_USE_FWFT_DATA_COUNT) begin
//Calculate the Data Count value for the number of write words,
// when using First-Word Fall-Through with extra logic for Data
// Counts. This takes into consideration the number of words that
// are expected to be stored in the FWFT register stages (it always
// assumes they are filled).
//This value is scaled to the Write Domain.
//The expression (((A-1)/B))+1 divides A/B, but takes the
// ceiling of the result.
//When num_wr_bits==0, set the result manually to prevent
// division errors.
//EXTRA_WORDS_DC is the number of words added to write_words
// due to FWFT.
//This value is only a temporary value and not used in the code.
num_write_words_dc = (num_wr_bits==0) ? EXTRA_WORDS_DC : (((num_wr_bits-1)/C_DIN_WIDTH)+1) + EXTRA_WORDS_DC ;
//Trim the write words for use with WR_DATA_COUNT
num_write_words_sized_i =
num_write_words_dc[C_WR_PNTR_WIDTH : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH+1];
end else begin
//Calculate the Data Count value for the number of write words, when NOT
// using First-Word Fall-Through with extra logic for Data Counts. This
// calculates only the number of words in the internal FIFO.
//The expression (((A-1)/B))+1 divides A/B, but takes the
// ceiling of the result.
//This value is scaled to the Write Domain.
//When num_wr_bits==0, set the result manually to prevent
// division errors.
//This value is only a temporary value and not used in the code.
num_write_words_dc = (num_wr_bits==0) ? 0 : ((num_wr_bits-1)/C_DIN_WIDTH)+1;
//Trim the read words for use with RD_DATA_COUNT
num_write_words_sized_i =
num_write_words_dc[C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH];
end //if (C_USE_FWFT_DATA_COUNT)
end //always
/***************************************************************************
* Internal registers and wires
**************************************************************************/
//Temporary signals used for calculating the model's outputs. These
//are only used in the assign statements immediately following wire,
//parameter, and function declarations.
wire [C_DOUT_WIDTH-1:0] ideal_dout_out;
wire valid_i;
wire valid_out;
wire underflow_i;
//Ideal FIFO signals. These are the raw output of the behavioral model,
//which behaves like an ideal FIFO.
reg [1:0] err_type = 0;
reg [1:0] err_type_d1 = 0;
reg [C_DOUT_WIDTH-1:0] ideal_dout = 0;
reg [C_DOUT_WIDTH-1:0] ideal_dout_d1 = 0;
reg ideal_wr_ack = 0;
reg ideal_valid = 0;
reg ideal_overflow = C_OVERFLOW_LOW;
reg ideal_underflow = C_UNDERFLOW_LOW;
reg ideal_prog_full = 0;
reg ideal_prog_empty = 1;
reg [C_WR_DATA_COUNT_WIDTH-1 : 0] ideal_wr_count = 0;
reg [C_RD_DATA_COUNT_WIDTH-1 : 0] ideal_rd_count = 0;
//Assorted reg values for delayed versions of signals
reg valid_d1 = 0;
//user specified value for reseting the size of the fifo
reg [C_DOUT_WIDTH-1:0] dout_reset_val = 0;
//temporary registers for WR_RESPONSE_LATENCY feature
integer tmp_wr_listsize;
integer tmp_rd_listsize;
//Signal for registered version of prog full and empty
//Threshold values for Programmable Flags
integer prog_empty_actual_thresh_assert;
integer prog_empty_actual_thresh_negate;
integer prog_full_actual_thresh_assert;
integer prog_full_actual_thresh_negate;
/****************************************************************************
* Function Declarations
***************************************************************************/
/**************************************************************************
* write_fifo
* This task writes a word to the FIFO memory and updates the
* write pointer.
* FIFO size is relative to write domain.
***************************************************************************/
task write_fifo;
begin
memory[wr_ptr] <= DIN;
wr_pntr <= #`TCQ wr_pntr + 1;
// Store the type of error injection (double/single) on write
case (C_ERROR_INJECTION_TYPE)
3: ecc_err[wr_ptr] <= {INJECTDBITERR,INJECTSBITERR};
2: ecc_err[wr_ptr] <= {INJECTDBITERR,1'b0};
1: ecc_err[wr_ptr] <= {1'b0,INJECTSBITERR};
default: ecc_err[wr_ptr] <= 0;
endcase
// (Works opposite to core: wr_ptr is a DOWN counter)
if (wr_ptr == 0) begin
wr_ptr <= C_WR_DEPTH - 1;
end else begin
wr_ptr <= wr_ptr - 1;
end
end
endtask // write_fifo
/**************************************************************************
* read_fifo
* This task reads a word from the FIFO memory and updates the read
* pointer. It's output is the ideal_dout bus.
* FIFO size is relative to write domain.
***************************************************************************/
task read_fifo;
integer i;
reg [C_DOUT_WIDTH-1:0] tmp_dout;
reg [C_DIN_WIDTH-1:0] memory_read;
reg [31:0] tmp_rd_ptr;
reg [31:0] rd_ptr_high;
reg [31:0] rd_ptr_low;
reg [1:0] tmp_ecc_err;
begin
rd_pntr <= #`TCQ rd_pntr + 1;
// output is wider than input
if (reads_per_write == 0) begin
tmp_dout = 0;
tmp_rd_ptr = (rd_ptr << log2_writes_per_read)+(writes_per_read-1);
for (i = writes_per_read - 1; i >= 0; i = i - 1) begin
tmp_dout = tmp_dout << C_DIN_WIDTH;
tmp_dout = tmp_dout | memory[tmp_rd_ptr];
// (Works opposite to core: rd_ptr is a DOWN counter)
if (tmp_rd_ptr == 0) begin
tmp_rd_ptr = C_WR_DEPTH - 1;
end else begin
tmp_rd_ptr = tmp_rd_ptr - 1;
end
end
// output is symmetric
end else if (reads_per_write == 1) begin
tmp_dout = memory[rd_ptr][C_DIN_WIDTH-1:0];
// Retreive the error injection type. Based on the error injection type
// corrupt the output data.
tmp_ecc_err = ecc_err[rd_ptr];
if (ENABLE_ERR_INJECTION && C_DIN_WIDTH == C_DOUT_WIDTH) begin
if (tmp_ecc_err[1]) begin // Corrupt the output data only for double bit error
if (C_DOUT_WIDTH == 1) begin
$display("FAILURE : Data width must be >= 2 for double bit error injection.");
$finish;
end else if (C_DOUT_WIDTH == 2)
tmp_dout = {~tmp_dout[C_DOUT_WIDTH-1],~tmp_dout[C_DOUT_WIDTH-2]};
else
tmp_dout = {~tmp_dout[C_DOUT_WIDTH-1],~tmp_dout[C_DOUT_WIDTH-2],(tmp_dout << 2)};
end else begin
tmp_dout = tmp_dout[C_DOUT_WIDTH-1:0];
end
err_type <= {tmp_ecc_err[1], tmp_ecc_err[0] & !tmp_ecc_err[1]};
end else begin
err_type <= 0;
end
// input is wider than output
end else begin
rd_ptr_high = rd_ptr >> log2_reads_per_write;
rd_ptr_low = rd_ptr & (reads_per_write - 1);
memory_read = memory[rd_ptr_high];
tmp_dout = memory_read >> (rd_ptr_low*C_DOUT_WIDTH);
end
ideal_dout <= tmp_dout;
// (Works opposite to core: rd_ptr is a DOWN counter)
if (rd_ptr == 0) begin
rd_ptr <= C_RD_DEPTH - 1;
end else begin
rd_ptr <= rd_ptr - 1;
end
end
endtask
/**************************************************************************
* log2_val
* Returns the 'log2' value for the input value for the supported ratios
***************************************************************************/
function [31:0] log2_val;
input [31:0] binary_val;
begin
if (binary_val == 8) begin
log2_val = 3;
end else if (binary_val == 4) begin
log2_val = 2;
end else begin
log2_val = 1;
end
end
endfunction
/***********************************************************************
* hexstr_conv
* Converts a string of type hex to a binary value (for C_DOUT_RST_VAL)
***********************************************************************/
function [C_DOUT_WIDTH-1:0] hexstr_conv;
input [(C_DOUT_WIDTH*8)-1:0] def_data;
integer index,i,j;
reg [3:0] bin;
begin
index = 0;
hexstr_conv = 'b0;
for( i=C_DOUT_WIDTH-1; i>=0; i=i-1 )
begin
case (def_data[7:0])
8'b00000000 :
begin
bin = 4'b0000;
i = -1;
end
8'b00110000 : bin = 4'b0000;
8'b00110001 : bin = 4'b0001;
8'b00110010 : bin = 4'b0010;
8'b00110011 : bin = 4'b0011;
8'b00110100 : bin = 4'b0100;
8'b00110101 : bin = 4'b0101;
8'b00110110 : bin = 4'b0110;
8'b00110111 : bin = 4'b0111;
8'b00111000 : bin = 4'b1000;
8'b00111001 : bin = 4'b1001;
8'b01000001 : bin = 4'b1010;
8'b01000010 : bin = 4'b1011;
8'b01000011 : bin = 4'b1100;
8'b01000100 : bin = 4'b1101;
8'b01000101 : bin = 4'b1110;
8'b01000110 : bin = 4'b1111;
8'b01100001 : bin = 4'b1010;
8'b01100010 : bin = 4'b1011;
8'b01100011 : bin = 4'b1100;
8'b01100100 : bin = 4'b1101;
8'b01100101 : bin = 4'b1110;
8'b01100110 : bin = 4'b1111;
default :
begin
bin = 4'bx;
end
endcase
for( j=0; j<4; j=j+1)
begin
if ((index*4)+j < C_DOUT_WIDTH)
begin
hexstr_conv[(index*4)+j] = bin[j];
end
end
index = index + 1;
def_data = def_data >> 8;
end
end
endfunction
/*************************************************************************
* Initialize Signals for clean power-on simulation
*************************************************************************/
initial begin
num_wr_bits = 0;
num_rd_bits = 0;
next_num_wr_bits = 0;
next_num_rd_bits = 0;
rd_ptr = C_RD_DEPTH - 1;
wr_ptr = C_WR_DEPTH - 1;
wr_pntr = 0;
rd_pntr = 0;
rd_ptr_wrclk = rd_ptr;
wr_ptr_rdclk = wr_ptr;
dout_reset_val = hexstr_conv(C_DOUT_RST_VAL);
ideal_dout = dout_reset_val;
err_type = 0;
ideal_dout_d1 = dout_reset_val;
ideal_wr_ack = 1'b0;
ideal_valid = 1'b0;
valid_d1 = 1'b0;
ideal_overflow = C_OVERFLOW_LOW;
ideal_underflow = C_UNDERFLOW_LOW;
ideal_wr_count = 0;
ideal_rd_count = 0;
ideal_prog_full = 1'b0;
ideal_prog_empty = 1'b1;
end
/*************************************************************************
* Connect the module inputs and outputs to the internal signals of the
* behavioral model.
*************************************************************************/
//Inputs
/*
wire [C_DIN_WIDTH-1:0] DIN;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE;
wire RD_CLK;
wire RD_EN;
wire RST;
wire WR_CLK;
wire WR_EN;
*/
//***************************************************************************
// Dout may change behavior based on latency
//***************************************************************************
assign ideal_dout_out[C_DOUT_WIDTH-1:0] = (C_PRELOAD_LATENCY==2 &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1))?
ideal_dout_d1: ideal_dout;
assign DOUT[C_DOUT_WIDTH-1:0] = ideal_dout_out;
//***************************************************************************
// Assign SBITERR and DBITERR based on latency
//***************************************************************************
assign SBITERR = (C_ERROR_INJECTION_TYPE == 1 || C_ERROR_INJECTION_TYPE == 3) &&
(C_PRELOAD_LATENCY == 2 &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1)) ?
err_type_d1[0]: err_type[0];
assign DBITERR = (C_ERROR_INJECTION_TYPE == 2 || C_ERROR_INJECTION_TYPE == 3) &&
(C_PRELOAD_LATENCY==2 && (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1)) ?
err_type_d1[1]: err_type[1];
//***************************************************************************
// Overflow may be active-low
//***************************************************************************
generate
if (C_HAS_OVERFLOW==1) begin : blockOF1
assign OVERFLOW = ideal_overflow ? !C_OVERFLOW_LOW : C_OVERFLOW_LOW;
end
endgenerate
assign PROG_EMPTY = ideal_prog_empty;
assign PROG_FULL = ideal_prog_full;
//***************************************************************************
// Valid may change behavior based on latency or active-low
//***************************************************************************
generate
if (C_HAS_VALID==1) begin : blockVL1
assign valid_i = (C_PRELOAD_LATENCY==0) ? (RD_EN & ~EMPTY) : ideal_valid;
assign valid_out = (C_PRELOAD_LATENCY==2 &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1))?
valid_d1: valid_i;
assign VALID = valid_out ? !C_VALID_LOW : C_VALID_LOW;
end
endgenerate
//***************************************************************************
// Underflow may change behavior based on latency or active-low
//***************************************************************************
generate
if (C_HAS_UNDERFLOW==1) begin : blockUF1
assign underflow_i = (C_PRELOAD_LATENCY==0) ? (RD_EN & EMPTY) : ideal_underflow;
assign UNDERFLOW = underflow_i ? !C_UNDERFLOW_LOW : C_UNDERFLOW_LOW;
end
endgenerate
//***************************************************************************
// Write acknowledge may be active low
//***************************************************************************
generate
if (C_HAS_WR_ACK==1) begin : blockWK1
assign WR_ACK = ideal_wr_ack ? !C_WR_ACK_LOW : C_WR_ACK_LOW;
end
endgenerate
//***************************************************************************
// Generate RD_DATA_COUNT if Use Extra Logic option is selected
//***************************************************************************
generate
if (C_HAS_WR_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT == 1) begin : wdc_fwft_ext
reg [C_PNTR_WIDTH-1:0] adjusted_wr_pntr = 0;
reg [C_PNTR_WIDTH-1:0] adjusted_rd_pntr = 0;
wire [C_PNTR_WIDTH-1:0] diff_wr_rd_tmp;
wire [C_PNTR_WIDTH:0] diff_wr_rd;
reg [C_PNTR_WIDTH:0] wr_data_count_i = 0;
always @* begin
if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin
adjusted_wr_pntr = wr_pntr;
adjusted_rd_pntr = 0;
adjusted_rd_pntr[C_PNTR_WIDTH-1:C_PNTR_WIDTH-C_RD_PNTR_WIDTH] = rd_pntr_wr;
end else if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin
adjusted_rd_pntr = rd_pntr_wr;
adjusted_wr_pntr = 0;
adjusted_wr_pntr[C_PNTR_WIDTH-1:C_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr;
end else begin
adjusted_wr_pntr = wr_pntr;
adjusted_rd_pntr = rd_pntr_wr;
end
end // always @*
assign diff_wr_rd_tmp = adjusted_wr_pntr - adjusted_rd_pntr;
assign diff_wr_rd = {1'b0,diff_wr_rd_tmp};
always @ (posedge wr_rst_i or posedge WR_CLK)
begin
if (wr_rst_i)
wr_data_count_i <= #`TCQ 0;
else
wr_data_count_i <= #`TCQ diff_wr_rd + EXTRA_WORDS_DC;
end // always @ (posedge WR_CLK or posedge WR_CLK)
always @* begin
if (C_WR_PNTR_WIDTH >= C_RD_PNTR_WIDTH)
wdc_fwft_ext_as = wr_data_count_i[C_PNTR_WIDTH:0];
else
wdc_fwft_ext_as = wr_data_count_i[C_PNTR_WIDTH:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH];
end // always @*
end // wdc_fwft_ext
endgenerate
//***************************************************************************
// Generate RD_DATA_COUNT if Use Extra Logic option is selected
//***************************************************************************
reg [C_RD_PNTR_WIDTH:0] rdc_fwft_ext_as = 0;
generate
if (C_HAS_RD_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT == 1) begin : rdc_fwft_ext
reg [C_RD_PNTR_WIDTH-1:0] adjusted_wr_pntr_rd = 0;
wire [C_RD_PNTR_WIDTH-1:0] diff_rd_wr_tmp;
wire [C_RD_PNTR_WIDTH:0] diff_rd_wr;
always @* begin
if (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) begin
adjusted_wr_pntr_rd = 0;
adjusted_wr_pntr_rd[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr_rd;
end else begin
adjusted_wr_pntr_rd = wr_pntr_rd[C_WR_PNTR_WIDTH-1:C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH];
end
end // always @*
assign diff_rd_wr_tmp = adjusted_wr_pntr_rd - rd_pntr;
assign diff_rd_wr = {1'b0,diff_rd_wr_tmp};
always @ (posedge rd_rst_i or posedge RD_CLK)
begin
if (rd_rst_i) begin
rdc_fwft_ext_as <= #`TCQ 0;
end else begin
if (!stage2_valid)
rdc_fwft_ext_as <= #`TCQ 0;
else if (!stage1_valid && stage2_valid)
rdc_fwft_ext_as <= #`TCQ 1;
else
rdc_fwft_ext_as <= #`TCQ diff_rd_wr + 2'h2;
end
end // always @ (posedge WR_CLK or posedge WR_CLK)
end // rdc_fwft_ext
endgenerate
//***************************************************************************
// Assign the read data count value only if it is selected,
// otherwise output zeros.
//***************************************************************************
generate
if (C_HAS_RD_DATA_COUNT == 1) begin : grdc
assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = C_USE_FWFT_DATA_COUNT ?
rdc_fwft_ext_as[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH+1-C_RD_DATA_COUNT_WIDTH] :
rd_data_count_int[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH+1-C_RD_DATA_COUNT_WIDTH];
end
endgenerate
generate
if (C_HAS_RD_DATA_COUNT == 0) begin : gnrdc
assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = {C_RD_DATA_COUNT_WIDTH{1'b0}};
end
endgenerate
//***************************************************************************
// Assign the write data count value only if it is selected,
// otherwise output zeros
//***************************************************************************
generate
if (C_HAS_WR_DATA_COUNT == 1) begin : gwdc
assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = (C_USE_FWFT_DATA_COUNT == 1) ?
wdc_fwft_ext_as[C_WR_PNTR_WIDTH:C_WR_PNTR_WIDTH+1-C_WR_DATA_COUNT_WIDTH] :
wr_data_count_int[C_WR_PNTR_WIDTH:C_WR_PNTR_WIDTH+1-C_WR_DATA_COUNT_WIDTH];
end
endgenerate
generate
if (C_HAS_WR_DATA_COUNT == 0) begin : gnwdc
assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = {C_WR_DATA_COUNT_WIDTH{1'b0}};
end
endgenerate
/**************************************************************************
* Assorted registers for delayed versions of signals
**************************************************************************/
//Capture delayed version of valid
generate
if (C_HAS_VALID==1) begin : blockVL2
always @(posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i == 1'b1) begin
valid_d1 <= #`TCQ 1'b0;
end else begin
valid_d1 <= #`TCQ valid_i;
end
end
end
endgenerate
//Capture delayed version of dout
always @(posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i == 1'b1) begin
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type_d1 <= #`TCQ 0;
end else if (ram_rd_en_d1) begin
ideal_dout_d1 <= #`TCQ ideal_dout;
err_type_d1 <= #`TCQ err_type;
end
end
/**************************************************************************
* Overflow and Underflow Flag calculation
* (handled separately because they don't support rst)
**************************************************************************/
generate
if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 0) begin : g7s_ovflw
always @(posedge WR_CLK) begin
ideal_overflow <= #`TCQ WR_EN & FULL;
end
end else if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 1) begin : g8s_ovflw
always @(posedge WR_CLK) begin
//ideal_overflow <= #`TCQ WR_EN & (FULL | wr_rst_i);
ideal_overflow <= #`TCQ WR_EN & (FULL );
end
end
endgenerate
generate
if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 0) begin : g7s_unflw
always @(posedge RD_CLK) begin
ideal_underflow <= #`TCQ EMPTY & RD_EN;
end
end else if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 1) begin : g8s_unflw
always @(posedge RD_CLK) begin
ideal_underflow <= #`TCQ (EMPTY) & RD_EN;
//ideal_underflow <= #`TCQ (rd_rst_i | EMPTY) & RD_EN;
end
end
endgenerate
/**************************************************************************
* Write/Read Pointer Synchronization
**************************************************************************/
localparam NO_OF_SYNC_STAGE_INC_G2B = C_SYNCHRONIZER_STAGE + 1;
wire [C_WR_PNTR_WIDTH-1:0] wr_pntr_sync_stgs [0:NO_OF_SYNC_STAGE_INC_G2B];
wire [C_RD_PNTR_WIDTH-1:0] rd_pntr_sync_stgs [0:NO_OF_SYNC_STAGE_INC_G2B];
genvar gss;
generate for (gss = 1; gss <= NO_OF_SYNC_STAGE_INC_G2B; gss = gss + 1) begin : Sync_stage_inst
fifo_generator_v12_0_sync_stage
#(
.C_WIDTH (C_WR_PNTR_WIDTH)
)
rd_stg_inst
(
.RST (rd_rst_i),
.CLK (RD_CLK),
.DIN (wr_pntr_sync_stgs[gss-1]),
.DOUT (wr_pntr_sync_stgs[gss])
);
fifo_generator_v12_0_sync_stage
#(
.C_WIDTH (C_RD_PNTR_WIDTH)
)
wr_stg_inst
(
.RST (wr_rst_i),
.CLK (WR_CLK),
.DIN (rd_pntr_sync_stgs[gss-1]),
.DOUT (rd_pntr_sync_stgs[gss])
);
end endgenerate // Sync_stage_inst
assign wr_pntr_sync_stgs[0] = wr_pntr_rd1;
assign rd_pntr_sync_stgs[0] = rd_pntr_wr1;
always@* begin
wr_pntr_rd <= wr_pntr_sync_stgs[NO_OF_SYNC_STAGE_INC_G2B];
rd_pntr_wr <= rd_pntr_sync_stgs[NO_OF_SYNC_STAGE_INC_G2B];
end
/**************************************************************************
* Write Domain Logic
**************************************************************************/
reg [C_WR_PNTR_WIDTH-1:0] diff_pntr = 0;
always @(posedge WR_CLK or posedge wr_rst_i) begin : gen_fifo_w
/****** Reset fifo (case 1)***************************************/
if (wr_rst_i == 1'b1) begin
num_wr_bits <= #`TCQ 0;
next_num_wr_bits = #`TCQ 0;
wr_ptr <= #`TCQ C_WR_DEPTH - 1;
rd_ptr_wrclk <= #`TCQ C_RD_DEPTH - 1;
ideal_wr_ack <= #`TCQ 0;
ideal_wr_count <= #`TCQ 0;
tmp_wr_listsize = #`TCQ 0;
rd_ptr_wrclk_next <= #`TCQ 0;
wr_pntr <= #`TCQ 0;
wr_pntr_rd1 <= #`TCQ 0;
end else begin //wr_rst_i==0
wr_pntr_rd1 <= #`TCQ wr_pntr;
//Determine the current number of words in the FIFO
tmp_wr_listsize = (C_DEPTH_RATIO_RD > 1) ? num_wr_bits/C_DOUT_WIDTH :
num_wr_bits/C_DIN_WIDTH;
rd_ptr_wrclk_next = rd_ptr;
if (rd_ptr_wrclk < rd_ptr_wrclk_next) begin
next_num_wr_bits = num_wr_bits -
C_DOUT_WIDTH*(rd_ptr_wrclk + C_RD_DEPTH
- rd_ptr_wrclk_next);
end else begin
next_num_wr_bits = num_wr_bits -
C_DOUT_WIDTH*(rd_ptr_wrclk - rd_ptr_wrclk_next);
end
//If this is a write, handle the write by adding the value
// to the linked list, and updating all outputs appropriately
if (WR_EN == 1'b1) begin
if (FULL == 1'b1) begin
//If the FIFO is full, do NOT perform the write,
// update flags accordingly
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD
>= C_FIFO_WR_DEPTH) begin
//write unsuccessful - do not change contents
//Do not acknowledge the write
ideal_wr_ack <= #`TCQ 0;
//Reminder that FIFO is still full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
//If the FIFO is one from full, but reporting full
end else
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD ==
C_FIFO_WR_DEPTH-1) begin
//No change to FIFO
//Write not successful
ideal_wr_ack <= #`TCQ 0;
//With DEPTH-1 words in the FIFO, it is almost_full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
//If the FIFO is completely empty, but it is
// reporting FULL for some reason (like reset)
end else
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD <=
C_FIFO_WR_DEPTH-2) begin
//No change to FIFO
//Write not successful
ideal_wr_ack <= #`TCQ 0;
//FIFO is really not close to full, so change flag status.
ideal_wr_count <= #`TCQ num_write_words_sized_i;
end //(tmp_wr_listsize == 0)
end else begin
//If the FIFO is full, do NOT perform the write,
// update flags accordingly
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD >=
C_FIFO_WR_DEPTH) begin
//write unsuccessful - do not change contents
//Do not acknowledge the write
ideal_wr_ack <= #`TCQ 0;
//Reminder that FIFO is still full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
//If the FIFO is one from full
end else
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD ==
C_FIFO_WR_DEPTH-1) begin
//Add value on DIN port to FIFO
write_fifo;
next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH;
//Write successful, so issue acknowledge
// and no error
ideal_wr_ack <= #`TCQ 1;
//This write is CAUSING the FIFO to go full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
//If the FIFO is 2 from full
end else
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD ==
C_FIFO_WR_DEPTH-2) begin
//Add value on DIN port to FIFO
write_fifo;
next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH;
//Write successful, so issue acknowledge
// and no error
ideal_wr_ack <= #`TCQ 1;
//Still 2 from full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
//If the FIFO is not close to being full
end else
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD <
C_FIFO_WR_DEPTH-2) begin
//Add value on DIN port to FIFO
write_fifo;
next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH;
//Write successful, so issue acknowledge
// and no error
ideal_wr_ack <= #`TCQ 1;
//Not even close to full.
ideal_wr_count <= num_write_words_sized_i;
end
end
end else begin //(WR_EN == 1'b1)
//If user did not attempt a write, then do not
// give ack or err
ideal_wr_ack <= #`TCQ 0;
ideal_wr_count <= #`TCQ num_write_words_sized_i;
end
num_wr_bits <= #`TCQ next_num_wr_bits;
rd_ptr_wrclk <= #`TCQ rd_ptr;
end //wr_rst_i==0
end // gen_fifo_w
/***************************************************************************
* Programmable FULL flags
***************************************************************************/
wire [C_WR_PNTR_WIDTH-1:0] pf_thr_assert_val;
wire [C_WR_PNTR_WIDTH-1:0] pf_thr_negate_val;
generate if (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) begin : FWFT
assign pf_thr_assert_val = C_PROG_FULL_THRESH_ASSERT_VAL - EXTRA_WORDS_DC;
assign pf_thr_negate_val = C_PROG_FULL_THRESH_NEGATE_VAL - EXTRA_WORDS_DC;
end else begin // STD
assign pf_thr_assert_val = C_PROG_FULL_THRESH_ASSERT_VAL;
assign pf_thr_negate_val = C_PROG_FULL_THRESH_NEGATE_VAL;
end endgenerate
always @(posedge WR_CLK or posedge wr_rst_i) begin
if (wr_rst_i == 1'b1) begin
diff_pntr <= 0;
end else begin
if (ram_wr_en)
diff_pntr <= #`TCQ (wr_pntr - adj_rd_pntr_wr + 2'h1);
else if (!ram_wr_en)
diff_pntr <= #`TCQ (wr_pntr - adj_rd_pntr_wr);
end
end
always @(posedge WR_CLK or posedge RST_FULL_FF) begin : gen_pf
if (RST_FULL_FF == 1'b1) begin
ideal_prog_full <= #`TCQ C_FULL_FLAGS_RST_VAL;
end else begin
if (RST_FULL_GEN)
ideal_prog_full <= #`TCQ 0;
//Single Programmable Full Constant Threshold
else if (C_PROG_FULL_TYPE == 1) begin
if (FULL == 0) begin
if (diff_pntr >= pf_thr_assert_val)
ideal_prog_full <= #`TCQ 1;
else
ideal_prog_full <= #`TCQ 0;
end else
ideal_prog_full <= #`TCQ ideal_prog_full;
//Two Programmable Full Constant Thresholds
end else if (C_PROG_FULL_TYPE == 2) begin
if (FULL == 0) begin
if (diff_pntr >= pf_thr_assert_val)
ideal_prog_full <= #`TCQ 1;
else if (diff_pntr < pf_thr_negate_val)
ideal_prog_full <= #`TCQ 0;
else
ideal_prog_full <= #`TCQ ideal_prog_full;
end else
ideal_prog_full <= #`TCQ ideal_prog_full;
//Single Programmable Full Threshold Input
end else if (C_PROG_FULL_TYPE == 3) begin
if (FULL == 0) begin
if (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) begin // FWFT
if (diff_pntr >= (PROG_FULL_THRESH - EXTRA_WORDS_DC))
ideal_prog_full <= #`TCQ 1;
else
ideal_prog_full <= #`TCQ 0;
end else begin // STD
if (diff_pntr >= PROG_FULL_THRESH)
ideal_prog_full <= #`TCQ 1;
else
ideal_prog_full <= #`TCQ 0;
end
end else
ideal_prog_full <= #`TCQ ideal_prog_full;
//Two Programmable Full Threshold Inputs
end else if (C_PROG_FULL_TYPE == 4) begin
if (FULL == 0) begin
if (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) begin // FWFT
if (diff_pntr >= (PROG_FULL_THRESH_ASSERT - EXTRA_WORDS_DC))
ideal_prog_full <= #`TCQ 1;
else if (diff_pntr < (PROG_FULL_THRESH_NEGATE - EXTRA_WORDS_DC))
ideal_prog_full <= #`TCQ 0;
else
ideal_prog_full <= #`TCQ ideal_prog_full;
end else begin // STD
if (diff_pntr >= PROG_FULL_THRESH_ASSERT)
ideal_prog_full <= #`TCQ 1;
else if (diff_pntr < PROG_FULL_THRESH_NEGATE)
ideal_prog_full <= #`TCQ 0;
else
ideal_prog_full <= #`TCQ ideal_prog_full;
end
end else
ideal_prog_full <= #`TCQ ideal_prog_full;
end // C_PROG_FULL_TYPE
end //wr_rst_i==0
end //
/**************************************************************************
* Read Domain Logic
**************************************************************************/
/*********************************************************
* Programmable EMPTY flags
*********************************************************/
//Determine the Assert and Negate thresholds for Programmable Empty
wire [C_RD_PNTR_WIDTH-1:0] pe_thr_assert_val;
wire [C_RD_PNTR_WIDTH-1:0] pe_thr_negate_val;
reg [C_RD_PNTR_WIDTH-1:0] diff_pntr_rd = 0;
always @(posedge RD_CLK or posedge rd_rst_i) begin : gen_pe
if (rd_rst_i) begin
diff_pntr_rd <= #`TCQ 0;
ideal_prog_empty <= #`TCQ 1'b1;
end else begin
if (ram_rd_en)
diff_pntr_rd <= #`TCQ (adj_wr_pntr_rd - rd_pntr) - 1'h1;
else if (!ram_rd_en)
diff_pntr_rd <= #`TCQ (adj_wr_pntr_rd - rd_pntr);
else
diff_pntr_rd <= #`TCQ diff_pntr_rd;
if (C_PROG_EMPTY_TYPE == 1) begin
if (EMPTY == 0) begin
if (diff_pntr_rd <= pe_thr_assert_val)
ideal_prog_empty <= #`TCQ 1;
else
ideal_prog_empty <= #`TCQ 0;
end else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end else if (C_PROG_EMPTY_TYPE == 2) begin
if (EMPTY == 0) begin
if (diff_pntr_rd <= pe_thr_assert_val)
ideal_prog_empty <= #`TCQ 1;
else if (diff_pntr_rd > pe_thr_negate_val)
ideal_prog_empty <= #`TCQ 0;
else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end else if (C_PROG_EMPTY_TYPE == 3) begin
if (EMPTY == 0) begin
if (diff_pntr_rd <= pe_thr_assert_val)
ideal_prog_empty <= #`TCQ 1;
else
ideal_prog_empty <= #`TCQ 0;
end else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end else if (C_PROG_EMPTY_TYPE == 4) begin
if (EMPTY == 0) begin
if (diff_pntr_rd <= pe_thr_assert_val)
ideal_prog_empty <= #`TCQ 1;
else if (diff_pntr_rd > pe_thr_negate_val)
ideal_prog_empty <= #`TCQ 0;
else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end //C_PROG_EMPTY_TYPE
end
end // gen_pe
generate if (C_PROG_EMPTY_TYPE == 3) begin : single_pe_thr_input
assign pe_thr_assert_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ?
PROG_EMPTY_THRESH - 2'h2 : PROG_EMPTY_THRESH;
end endgenerate // single_pe_thr_input
generate if (C_PROG_EMPTY_TYPE == 4) begin : multiple_pe_thr_input
assign pe_thr_assert_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ?
PROG_EMPTY_THRESH_ASSERT - 2'h2 : PROG_EMPTY_THRESH_ASSERT;
assign pe_thr_negate_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ?
PROG_EMPTY_THRESH_NEGATE - 2'h2 : PROG_EMPTY_THRESH_NEGATE;
end endgenerate // multiple_pe_thr_input
generate if (C_PROG_EMPTY_TYPE < 3) begin : single_multiple_pe_thr_const
assign pe_thr_assert_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ?
C_PROG_EMPTY_THRESH_ASSERT_VAL - 2'h2 : C_PROG_EMPTY_THRESH_ASSERT_VAL;
assign pe_thr_negate_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ?
C_PROG_EMPTY_THRESH_NEGATE_VAL - 2'h2 : C_PROG_EMPTY_THRESH_NEGATE_VAL;
end endgenerate // single_multiple_pe_thr_const
// block memory has a synchronous reset
always @(posedge RD_CLK) begin : gen_fifo_blkmemdout
// make it consistent with the core.
if (rd_rst_i) begin
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0 && C_MEMORY_TYPE < 2)
err_type <= #`TCQ 0;
// BRAM resets synchronously
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE < 2) begin
ideal_dout <= #`TCQ dout_reset_val;
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
end
end //always
always @(posedge RD_CLK or posedge rd_rst_i) begin : gen_fifo_r
/****** Reset fifo (case 1)***************************************/
if (rd_rst_i) begin
num_rd_bits <= #`TCQ 0;
next_num_rd_bits = #`TCQ 0;
rd_ptr <= #`TCQ C_RD_DEPTH -1;
rd_pntr <= #`TCQ 0;
rd_pntr_wr1 <= #`TCQ 0;
wr_ptr_rdclk <= #`TCQ C_WR_DEPTH -1;
// DRAM resets asynchronously
if (C_MEMORY_TYPE == 2 && C_USE_DOUT_RST == 1)
ideal_dout <= #`TCQ dout_reset_val;
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type <= #`TCQ 0;
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ 0;
end else begin //rd_rst_i==0
rd_pntr_wr1 <= #`TCQ rd_pntr;
//Determine the current number of words in the FIFO
tmp_rd_listsize = (C_DEPTH_RATIO_WR > 1) ? num_rd_bits/C_DIN_WIDTH :
num_rd_bits/C_DOUT_WIDTH;
wr_ptr_rdclk_next = wr_ptr;
if (wr_ptr_rdclk < wr_ptr_rdclk_next) begin
next_num_rd_bits = num_rd_bits +
C_DIN_WIDTH*(wr_ptr_rdclk +C_WR_DEPTH
- wr_ptr_rdclk_next);
end else begin
next_num_rd_bits = num_rd_bits +
C_DIN_WIDTH*(wr_ptr_rdclk - wr_ptr_rdclk_next);
end
/*****************************************************************/
// Read Operation - Read Latency 1
/*****************************************************************/
if (C_PRELOAD_LATENCY==1 || C_PRELOAD_LATENCY==2) begin
ideal_valid <= #`TCQ 1'b0;
if (ram_rd_en == 1'b1) begin
if (EMPTY == 1'b1) begin
//If the FIFO is completely empty, and is reporting empty
if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0)
begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Reminder that FIFO is still empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize <= 0)
//If the FIFO is one from empty, but it is reporting empty
else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 1)
begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Note that FIFO is no longer empty, but is almost empty (has one word left)
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == 1)
//If the FIFO is two from empty, and is reporting empty
else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2)
begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Fifo has two words, so is neither empty or almost empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == 2)
//If the FIFO is not close to empty, but is reporting that it is
// Treat the FIFO as empty this time, but unset EMPTY flags.
if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) && (tmp_rd_listsize/C_DEPTH_RATIO_WR<C_FIFO_RD_DEPTH))
begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Note that the FIFO is No Longer Empty or Almost Empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if ((tmp_rd_listsize > 2) && (tmp_rd_listsize<=C_FIFO_RD_DEPTH-1))
end // else: if(ideal_empty == 1'b1)
else //if (ideal_empty == 1'b0)
begin
//If the FIFO is completely full, and we are successfully reading from it
if (tmp_rd_listsize/C_DEPTH_RATIO_WR >= C_FIFO_RD_DEPTH)
begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Not close to empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == C_FIFO_RD_DEPTH)
//If the FIFO is not close to being empty
else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) && (tmp_rd_listsize/C_DEPTH_RATIO_WR<=C_FIFO_RD_DEPTH))
begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Not close to empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if ((tmp_rd_listsize > 2) && (tmp_rd_listsize<=C_FIFO_RD_DEPTH-1))
//If the FIFO is two from empty
else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2)
begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Fifo is not yet empty. It is going almost_empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == 2)
//If the FIFO is one from empty
else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR == 1))
begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Note that FIFO is GOING empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == 1)
//If the FIFO is completely empty
else if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0)
begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize <= 0)
end // if (ideal_empty == 1'b0)
end //(RD_EN == 1'b1)
else //if (RD_EN == 1'b0)
begin
//If user did not attempt a read, do not give an ack or err
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // else: !if(RD_EN == 1'b1)
/*****************************************************************/
// Read Operation - Read Latency 0
/*****************************************************************/
end else if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) begin
ideal_valid <= #`TCQ 1'b0;
if (ram_rd_en == 1'b1) begin
if (EMPTY == 1'b1) begin
//If the FIFO is completely empty, and is reporting empty
if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0) begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Reminder that FIFO is still empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is one from empty, but it is reporting empty
end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 1) begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Note that FIFO is no longer empty, but is almost empty (has one word left)
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is two from empty, and is reporting empty
end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2) begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Fifo has two words, so is neither empty or almost empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is not close to empty, but is reporting that it is
// Treat the FIFO as empty this time, but unset EMPTY flags.
end else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) &&
(tmp_rd_listsize/C_DEPTH_RATIO_WR<C_FIFO_RD_DEPTH)) begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Note that the FIFO is No Longer Empty or Almost Empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if ((tmp_rd_listsize > 2) && (tmp_rd_listsize<=C_FIFO_RD_DEPTH-1))
end else begin
//If the FIFO is completely full, and we are successfully reading from it
if (tmp_rd_listsize/C_DEPTH_RATIO_WR >= C_FIFO_RD_DEPTH) begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Not close to empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is not close to being empty
end else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) &&
(tmp_rd_listsize/C_DEPTH_RATIO_WR<=C_FIFO_RD_DEPTH)) begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Not close to empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is two from empty
end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2) begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Fifo is not yet empty. It is going almost_empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is one from empty
end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 1) begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Note that FIFO is GOING empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is completely empty
end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0) begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Reminder that FIFO is still empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize <= 0)
end // if (ideal_empty == 1'b0)
end else begin//(RD_EN == 1'b0)
//If user did not attempt a read, do not give an ack or err
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // else: !if(RD_EN == 1'b1)
end //if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0)
num_rd_bits <= #`TCQ next_num_rd_bits;
wr_ptr_rdclk <= #`TCQ wr_ptr;
end //rd_rst_i==0
end //always
endmodule // fifo_generator_v12_0_bhv_ver_as
/*******************************************************************************
* Declaration of Low Latency Asynchronous FIFO
******************************************************************************/
module fifo_generator_v12_0_beh_ver_ll_afifo
/***************************************************************************
* Declare user parameters and their defaults
***************************************************************************/
#(
parameter C_DIN_WIDTH = 8,
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_FULL_FLAGS_RST_VAL = 1,
parameter C_HAS_RD_DATA_COUNT = 0,
parameter C_HAS_WR_DATA_COUNT = 0,
parameter C_RD_DEPTH = 256,
parameter C_RD_PNTR_WIDTH = 8,
parameter C_USE_DOUT_RST = 0,
parameter C_WR_DATA_COUNT_WIDTH = 2,
parameter C_WR_DEPTH = 256,
parameter C_WR_PNTR_WIDTH = 8,
parameter C_FIFO_TYPE = 0
)
/***************************************************************************
* Declare Input and Output Ports
***************************************************************************/
(
input [C_DIN_WIDTH-1:0] DIN,
input RD_CLK,
input RD_EN,
input WR_RST,
input RD_RST,
input WR_CLK,
input WR_EN,
output reg [C_DOUT_WIDTH-1:0] DOUT = 0,
output reg EMPTY = 1'b1,
output reg FULL = C_FULL_FLAGS_RST_VAL
);
//-----------------------------------------------------------------------------
// Low Latency Asynchronous FIFO
//-----------------------------------------------------------------------------
// Memory which will be used to simulate a FIFO
reg [C_DIN_WIDTH-1:0] memory[C_WR_DEPTH-1:0];
integer i;
initial begin
for (i = 0; i < C_WR_DEPTH; i = i + 1)
memory[i] = 0;
end
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_ll_afifo = 0;
wire [C_RD_PNTR_WIDTH-1:0] rd_pntr_ll_afifo;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_ll_afifo_q = 0;
reg ll_afifo_full = 1'b0;
reg ll_afifo_empty = 1'b1;
wire write_allow;
wire read_allow;
assign write_allow = WR_EN & ~ll_afifo_full;
assign read_allow = RD_EN & ~ll_afifo_empty;
//-----------------------------------------------------------------------------
// Write Pointer Generation
//-----------------------------------------------------------------------------
always @(posedge WR_CLK or posedge WR_RST) begin
if (WR_RST)
wr_pntr_ll_afifo <= 0;
else if (write_allow)
wr_pntr_ll_afifo <= #`TCQ wr_pntr_ll_afifo + 1;
end
//-----------------------------------------------------------------------------
// Read Pointer Generation
//-----------------------------------------------------------------------------
always @(posedge RD_CLK or posedge RD_RST) begin
if (RD_RST)
rd_pntr_ll_afifo_q <= 0;
else
rd_pntr_ll_afifo_q <= #`TCQ rd_pntr_ll_afifo;
end
assign rd_pntr_ll_afifo = read_allow ? rd_pntr_ll_afifo_q + 1 : rd_pntr_ll_afifo_q;
//-----------------------------------------------------------------------------
// Fill the Memory
//-----------------------------------------------------------------------------
always @(posedge WR_CLK) begin
if (write_allow)
memory[wr_pntr_ll_afifo] <= #`TCQ DIN;
end
//-----------------------------------------------------------------------------
// Generate DOUT
//-----------------------------------------------------------------------------
always @(posedge RD_CLK) begin
DOUT <= #`TCQ memory[rd_pntr_ll_afifo];
end
//-----------------------------------------------------------------------------
// Generate EMPTY
//-----------------------------------------------------------------------------
always @(posedge RD_CLK or posedge RD_RST) begin
if (RD_RST)
ll_afifo_empty <= 1'b1;
else
ll_afifo_empty <= ((wr_pntr_ll_afifo == rd_pntr_ll_afifo_q) |
(read_allow & (wr_pntr_ll_afifo == (rd_pntr_ll_afifo_q + 2'h1))));
end
//-----------------------------------------------------------------------------
// Generate FULL
//-----------------------------------------------------------------------------
always @(posedge WR_CLK or posedge WR_RST) begin
if (WR_RST)
ll_afifo_full <= 1'b1;
else
ll_afifo_full <= ((rd_pntr_ll_afifo_q == (wr_pntr_ll_afifo + 2'h1)) |
(write_allow & (rd_pntr_ll_afifo_q == (wr_pntr_ll_afifo + 2'h2))));
end
always @* begin
FULL <= ll_afifo_full;
EMPTY <= ll_afifo_empty;
end
endmodule // fifo_generator_v12_0_beh_ver_ll_afifo
/*******************************************************************************
* Declaration of top-level module
******************************************************************************/
module fifo_generator_v12_0_bhv_ver_ss
/**************************************************************************
* Declare user parameters and their defaults
*************************************************************************/
#(
parameter C_FAMILY = "virtex7",
parameter C_DATA_COUNT_WIDTH = 2,
parameter C_DIN_WIDTH = 8,
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_FULL_FLAGS_RST_VAL = 1,
parameter C_HAS_ALMOST_EMPTY = 0,
parameter C_HAS_ALMOST_FULL = 0,
parameter C_HAS_DATA_COUNT = 0,
parameter C_HAS_OVERFLOW = 0,
parameter C_HAS_RD_DATA_COUNT = 0,
parameter C_HAS_RST = 0,
parameter C_HAS_SRST = 0,
parameter C_HAS_UNDERFLOW = 0,
parameter C_HAS_VALID = 0,
parameter C_HAS_WR_ACK = 0,
parameter C_HAS_WR_DATA_COUNT = 0,
parameter C_IMPLEMENTATION_TYPE = 0,
parameter C_MEMORY_TYPE = 1,
parameter C_OVERFLOW_LOW = 0,
parameter C_PRELOAD_LATENCY = 1,
parameter C_PRELOAD_REGS = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0,
parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0,
parameter C_PROG_EMPTY_TYPE = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0,
parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0,
parameter C_PROG_FULL_TYPE = 0,
parameter C_RD_DATA_COUNT_WIDTH = 2,
parameter C_RD_DEPTH = 256,
parameter C_RD_PNTR_WIDTH = 8,
parameter C_UNDERFLOW_LOW = 0,
parameter C_USE_DOUT_RST = 0,
parameter C_USE_EMBEDDED_REG = 0,
parameter C_USE_FWFT_DATA_COUNT = 0,
parameter C_VALID_LOW = 0,
parameter C_WR_ACK_LOW = 0,
parameter C_WR_DATA_COUNT_WIDTH = 2,
parameter C_WR_DEPTH = 256,
parameter C_WR_PNTR_WIDTH = 8,
parameter C_USE_ECC = 0,
parameter C_ENABLE_RST_SYNC = 1,
parameter C_ERROR_INJECTION_TYPE = 0,
parameter C_FIFO_TYPE = 0
)
/**************************************************************************
* Declare Input and Output Ports
*************************************************************************/
(
//Inputs
input CLK,
input [C_DIN_WIDTH-1:0] DIN,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE,
input RD_EN,
input RD_EN_USER,
input USER_EMPTY_FB,
input RST,
input RST_FULL_GEN,
input RST_FULL_FF,
input SRST,
input WR_EN,
input INJECTDBITERR,
input INJECTSBITERR,
input WR_RST_BUSY,
input RD_RST_BUSY,
//Outputs
output ALMOST_EMPTY,
output ALMOST_FULL,
output reg [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT = 0,
output [C_DOUT_WIDTH-1:0] DOUT,
output EMPTY,
output FULL,
output OVERFLOW,
output [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT,
output [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT,
output PROG_EMPTY,
output PROG_FULL,
output VALID,
output UNDERFLOW,
output WR_ACK,
output SBITERR,
output DBITERR
);
reg [C_RD_PNTR_WIDTH:0] rd_data_count_int = 0;
reg [C_WR_PNTR_WIDTH:0] wr_data_count_int = 0;
wire [C_RD_PNTR_WIDTH:0] rd_data_count_i_ss;
wire [C_WR_PNTR_WIDTH:0] wr_data_count_i_ss;
reg [C_WR_PNTR_WIDTH:0] wdc_fwft_ext_as = 0;
/***************************************************************************
* Parameters used as constants
**************************************************************************/
localparam IS_8SERIES = (C_FAMILY == "virtexu" || C_FAMILY == "kintexu" || C_FAMILY == "artixu" || C_FAMILY == "virtexum" || C_FAMILY == "zynque") ? 1 : 0;
localparam C_DEPTH_RATIO_WR =
(C_WR_DEPTH>C_RD_DEPTH) ? (C_WR_DEPTH/C_RD_DEPTH) : 1;
localparam C_DEPTH_RATIO_RD =
(C_RD_DEPTH>C_WR_DEPTH) ? (C_RD_DEPTH/C_WR_DEPTH) : 1;
//localparam C_FIFO_WR_DEPTH = C_WR_DEPTH - 1;
//localparam C_FIFO_RD_DEPTH = C_RD_DEPTH - 1;
localparam C_GRTR_PNTR_WIDTH = (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) ? C_WR_PNTR_WIDTH : C_RD_PNTR_WIDTH ;
// C_DEPTH_RATIO_WR | C_DEPTH_RATIO_RD | C_PNTR_WIDTH | EXTRA_WORDS_DC
// -----------------|------------------|-----------------|---------------
// 1 | 8 | C_RD_PNTR_WIDTH | 2
// 1 | 4 | C_RD_PNTR_WIDTH | 2
// 1 | 2 | C_RD_PNTR_WIDTH | 2
// 1 | 1 | C_WR_PNTR_WIDTH | 2
// 2 | 1 | C_WR_PNTR_WIDTH | 4
// 4 | 1 | C_WR_PNTR_WIDTH | 8
// 8 | 1 | C_WR_PNTR_WIDTH | 16
localparam C_PNTR_WIDTH = (C_WR_PNTR_WIDTH>=C_RD_PNTR_WIDTH) ? C_WR_PNTR_WIDTH : C_RD_PNTR_WIDTH;
wire [C_PNTR_WIDTH:0] EXTRA_WORDS_DC = (C_DEPTH_RATIO_WR == 1) ? 2 : (2 * C_DEPTH_RATIO_WR/C_DEPTH_RATIO_RD);
wire [C_WR_PNTR_WIDTH:0] EXTRA_WORDS_PF = (C_DEPTH_RATIO_WR == 1) ? 2 : (2 * C_DEPTH_RATIO_WR/C_DEPTH_RATIO_RD);
//wire [C_RD_PNTR_WIDTH:0] EXTRA_WORDS_PE = (C_DEPTH_RATIO_RD == 1) ? 2 : (2 * C_DEPTH_RATIO_RD/C_DEPTH_RATIO_WR);
localparam EXTRA_WORDS_PF_PARAM = (C_DEPTH_RATIO_WR == 1) ? 2 : (2 * C_DEPTH_RATIO_WR/C_DEPTH_RATIO_RD);
//localparam EXTRA_WORDS_PE_PARAM = (C_DEPTH_RATIO_RD == 1) ? 2 : (2 * C_DEPTH_RATIO_RD/C_DEPTH_RATIO_WR);
localparam [31:0] reads_per_write = C_DIN_WIDTH/C_DOUT_WIDTH;
localparam [31:0] log2_reads_per_write = log2_val(reads_per_write);
localparam [31:0] writes_per_read = C_DOUT_WIDTH/C_DIN_WIDTH;
localparam [31:0] log2_writes_per_read = log2_val(writes_per_read);
//When RST is present, set FULL reset value to '1'.
//If core has no RST, make sure FULL powers-on as '0'.
//The reset value assignments for FULL, ALMOST_FULL, and PROG_FULL are not
//changed for v3.2(IP2_Im). When the core has Sync Reset, C_HAS_SRST=1 and C_HAS_RST=0.
// Therefore, during SRST, all the FULL flags reset to 0.
localparam C_HAS_FAST_FIFO = 0;
localparam C_FIFO_WR_DEPTH = C_WR_DEPTH;
localparam C_FIFO_RD_DEPTH = C_RD_DEPTH;
// Local parameters used to determine whether to inject ECC error or not
localparam SYMMETRIC_PORT = (C_DIN_WIDTH == C_DOUT_WIDTH) ? 1 : 0;
localparam ERR_INJECTION = (C_ERROR_INJECTION_TYPE != 0) ? 1 : 0;
localparam ENABLE_ERR_INJECTION = C_USE_ECC && SYMMETRIC_PORT && ERR_INJECTION;
localparam C_DATA_WIDTH = (ENABLE_ERR_INJECTION == 1) ? (C_DIN_WIDTH+2) : C_DIN_WIDTH;
localparam IS_ASYMMETRY = (C_DIN_WIDTH == C_DOUT_WIDTH) ? 0 : 1;
localparam LESSER_WIDTH = (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) ? C_WR_PNTR_WIDTH : C_RD_PNTR_WIDTH;
localparam [C_RD_PNTR_WIDTH-1 : 0] DIFF_MAX_RD = {C_RD_PNTR_WIDTH{1'b1}};
localparam [C_WR_PNTR_WIDTH-1 : 0] DIFF_MAX_WR = {C_WR_PNTR_WIDTH{1'b1}};
/**************************************************************************
* FIFO Contents Tracking and Data Count Calculations
*************************************************************************/
// Memory which will be used to simulate a FIFO
reg [C_DIN_WIDTH-1:0] memory[C_WR_DEPTH-1:0];
reg [1:0] ecc_err[C_WR_DEPTH-1:0];
/**************************************************************************
* Internal Registers and wires
*************************************************************************/
//Temporary signals used for calculating the model's outputs. These
//are only used in the assign statements immediately following wire,
//parameter, and function declarations.
wire underflow_i;
wire valid_i;
wire valid_out;
reg [31:0] num_wr_bits;
reg [31:0] num_rd_bits;
reg [31:0] next_num_wr_bits;
reg [31:0] next_num_rd_bits;
//The write pointer - tracks write operations
// (Works opposite to core: wr_ptr is a DOWN counter)
reg [31:0] wr_ptr;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd1 = 0;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd2 = 0;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd3 = 0;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd = 0;
reg wr_rst_d1 =0;
//The read pointer - tracks read operations
// (rd_ptr Works opposite to core: rd_ptr is a DOWN counter)
reg [31:0] rd_ptr;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr1 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr2 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr3 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr4 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr = 0;
wire ram_rd_en;
wire empty_int;
wire almost_empty_int;
wire ram_wr_en;
wire full_int;
wire almost_full_int;
reg ram_rd_en_reg = 1'b0;
//Ideal FIFO signals. These are the raw output of the behavioral model,
//which behaves like an ideal FIFO.
reg [1:0] err_type = 0;
reg [1:0] err_type_d1 = 0;
reg [C_DOUT_WIDTH-1:0] ideal_dout = 0;
reg [C_DOUT_WIDTH-1:0] ideal_dout_d1 = 0;
wire [C_DOUT_WIDTH-1:0] ideal_dout_out;
wire fwft_enabled;
reg ideal_wr_ack = 0;
reg ideal_valid = 0;
reg ideal_overflow = C_OVERFLOW_LOW;
reg ideal_underflow = C_UNDERFLOW_LOW;
reg full_i = C_FULL_FLAGS_RST_VAL;
reg full_i_temp = 0;
reg empty_i = 1;
reg almost_full_i = 0;
reg almost_empty_i = 1;
reg prog_full_i = 0;
reg prog_empty_i = 1;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr = 0;
wire [C_RD_PNTR_WIDTH-1:0] adj_wr_pntr_rd;
wire [C_WR_PNTR_WIDTH-1:0] adj_rd_pntr_wr;
reg [C_RD_PNTR_WIDTH-1:0] diff_count = 0;
reg write_allow_q = 0;
reg read_allow_q = 0;
reg valid_d1 = 0;
wire rst_i;
wire srst_i;
//user specified value for reseting the size of the fifo
reg [C_DOUT_WIDTH-1:0] dout_reset_val = 0;
reg [31:0] wr_ptr_rdclk;
reg [31:0] wr_ptr_rdclk_next;
reg [31:0] rd_ptr_wrclk;
reg [31:0] rd_ptr_wrclk_next;
/****************************************************************************
* Function Declarations
***************************************************************************/
/****************************************************************************
* hexstr_conv
* Converts a string of type hex to a binary value (for C_DOUT_RST_VAL)
***************************************************************************/
function [C_DOUT_WIDTH-1:0] hexstr_conv;
input [(C_DOUT_WIDTH*8)-1:0] def_data;
integer index,i,j;
reg [3:0] bin;
begin
index = 0;
hexstr_conv = 'b0;
for( i=C_DOUT_WIDTH-1; i>=0; i=i-1 ) begin
case (def_data[7:0])
8'b00000000 : begin
bin = 4'b0000;
i = -1;
end
8'b00110000 : bin = 4'b0000;
8'b00110001 : bin = 4'b0001;
8'b00110010 : bin = 4'b0010;
8'b00110011 : bin = 4'b0011;
8'b00110100 : bin = 4'b0100;
8'b00110101 : bin = 4'b0101;
8'b00110110 : bin = 4'b0110;
8'b00110111 : bin = 4'b0111;
8'b00111000 : bin = 4'b1000;
8'b00111001 : bin = 4'b1001;
8'b01000001 : bin = 4'b1010;
8'b01000010 : bin = 4'b1011;
8'b01000011 : bin = 4'b1100;
8'b01000100 : bin = 4'b1101;
8'b01000101 : bin = 4'b1110;
8'b01000110 : bin = 4'b1111;
8'b01100001 : bin = 4'b1010;
8'b01100010 : bin = 4'b1011;
8'b01100011 : bin = 4'b1100;
8'b01100100 : bin = 4'b1101;
8'b01100101 : bin = 4'b1110;
8'b01100110 : bin = 4'b1111;
default : begin
bin = 4'bx;
end
endcase
for( j=0; j<4; j=j+1) begin
if ((index*4)+j < C_DOUT_WIDTH) begin
hexstr_conv[(index*4)+j] = bin[j];
end
end
index = index + 1;
def_data = def_data >> 8;
end
end
endfunction
/**************************************************************************
* log2_val
* Returns the 'log2' value for the input value for the supported ratios
***************************************************************************/
function [31:0] log2_val;
input [31:0] binary_val;
begin
if (binary_val == 8) begin
log2_val = 3;
end else if (binary_val == 4) begin
log2_val = 2;
end else begin
log2_val = 1;
end
end
endfunction
reg ideal_prog_full = 0;
reg ideal_prog_empty = 1;
reg [C_WR_DATA_COUNT_WIDTH-1 : 0] ideal_wr_count = 0;
reg [C_RD_DATA_COUNT_WIDTH-1 : 0] ideal_rd_count = 0;
//Assorted reg values for delayed versions of signals
//reg valid_d1 = 0;
//user specified value for reseting the size of the fifo
//reg [C_DOUT_WIDTH-1:0] dout_reset_val = 0;
//temporary registers for WR_RESPONSE_LATENCY feature
integer tmp_wr_listsize;
integer tmp_rd_listsize;
//Signal for registered version of prog full and empty
//Threshold values for Programmable Flags
integer prog_empty_actual_thresh_assert;
integer prog_empty_actual_thresh_negate;
integer prog_full_actual_thresh_assert;
integer prog_full_actual_thresh_negate;
/**************************************************************************
* write_fifo
* This task writes a word to the FIFO memory and updates the
* write pointer.
* FIFO size is relative to write domain.
***************************************************************************/
task write_fifo;
begin
memory[wr_ptr] <= DIN;
wr_pntr <= #`TCQ wr_pntr + 1;
// Store the type of error injection (double/single) on write
case (C_ERROR_INJECTION_TYPE)
3: ecc_err[wr_ptr] <= {INJECTDBITERR,INJECTSBITERR};
2: ecc_err[wr_ptr] <= {INJECTDBITERR,1'b0};
1: ecc_err[wr_ptr] <= {1'b0,INJECTSBITERR};
default: ecc_err[wr_ptr] <= 0;
endcase
// (Works opposite to core: wr_ptr is a DOWN counter)
if (wr_ptr == 0) begin
wr_ptr <= C_WR_DEPTH - 1;
end else begin
wr_ptr <= wr_ptr - 1;
end
end
endtask // write_fifo
/**************************************************************************
* read_fifo
* This task reads a word from the FIFO memory and updates the read
* pointer. It's output is the ideal_dout bus.
* FIFO size is relative to write domain.
***************************************************************************/
task read_fifo;
integer i;
reg [C_DOUT_WIDTH-1:0] tmp_dout;
reg [C_DIN_WIDTH-1:0] memory_read;
reg [31:0] tmp_rd_ptr;
reg [31:0] rd_ptr_high;
reg [31:0] rd_ptr_low;
reg [1:0] tmp_ecc_err;
begin
rd_pntr <= #`TCQ rd_pntr + 1;
// output is wider than input
if (reads_per_write == 0) begin
tmp_dout = 0;
tmp_rd_ptr = (rd_ptr << log2_writes_per_read)+(writes_per_read-1);
for (i = writes_per_read - 1; i >= 0; i = i - 1) begin
tmp_dout = tmp_dout << C_DIN_WIDTH;
tmp_dout = tmp_dout | memory[tmp_rd_ptr];
// (Works opposite to core: rd_ptr is a DOWN counter)
if (tmp_rd_ptr == 0) begin
tmp_rd_ptr = C_WR_DEPTH - 1;
end else begin
tmp_rd_ptr = tmp_rd_ptr - 1;
end
end
// output is symmetric
end else if (reads_per_write == 1) begin
tmp_dout = memory[rd_ptr][C_DIN_WIDTH-1:0];
// Retreive the error injection type. Based on the error injection type
// corrupt the output data.
tmp_ecc_err = ecc_err[rd_ptr];
if (ENABLE_ERR_INJECTION && C_DIN_WIDTH == C_DOUT_WIDTH) begin
if (tmp_ecc_err[1]) begin // Corrupt the output data only for double bit error
if (C_DOUT_WIDTH == 1) begin
$display("FAILURE : Data width must be >= 2 for double bit error injection.");
$finish;
end else if (C_DOUT_WIDTH == 2)
tmp_dout = {~tmp_dout[C_DOUT_WIDTH-1],~tmp_dout[C_DOUT_WIDTH-2]};
else
tmp_dout = {~tmp_dout[C_DOUT_WIDTH-1],~tmp_dout[C_DOUT_WIDTH-2],(tmp_dout << 2)};
end else begin
tmp_dout = tmp_dout[C_DOUT_WIDTH-1:0];
end
err_type <= {tmp_ecc_err[1], tmp_ecc_err[0] & !tmp_ecc_err[1]};
end else begin
err_type <= 0;
end
// input is wider than output
end else begin
rd_ptr_high = rd_ptr >> log2_reads_per_write;
rd_ptr_low = rd_ptr & (reads_per_write - 1);
memory_read = memory[rd_ptr_high];
tmp_dout = memory_read >> (rd_ptr_low*C_DOUT_WIDTH);
end
ideal_dout <= tmp_dout;
// (Works opposite to core: rd_ptr is a DOWN counter)
if (rd_ptr == 0) begin
rd_ptr <= C_RD_DEPTH - 1;
end else begin
rd_ptr <= rd_ptr - 1;
end
end
endtask
/*************************************************************************
* Initialize Signals for clean power-on simulation
*************************************************************************/
initial begin
num_wr_bits = 0;
num_rd_bits = 0;
next_num_wr_bits = 0;
next_num_rd_bits = 0;
rd_ptr = C_RD_DEPTH - 1;
wr_ptr = C_WR_DEPTH - 1;
wr_pntr = 0;
rd_pntr = 0;
rd_ptr_wrclk = rd_ptr;
wr_ptr_rdclk = wr_ptr;
dout_reset_val = hexstr_conv(C_DOUT_RST_VAL);
ideal_dout = dout_reset_val;
err_type = 0;
ideal_dout_d1 = dout_reset_val;
ideal_wr_ack = 1'b0;
ideal_valid = 1'b0;
valid_d1 = 1'b0;
ideal_overflow = C_OVERFLOW_LOW;
ideal_underflow = C_UNDERFLOW_LOW;
ideal_wr_count = 0;
ideal_rd_count = 0;
ideal_prog_full = 1'b0;
ideal_prog_empty = 1'b1;
end
/*************************************************************************
* Connect the module inputs and outputs to the internal signals of the
* behavioral model.
*************************************************************************/
//Inputs
/*
wire CLK;
wire [C_DIN_WIDTH-1:0] DIN;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE;
wire RD_EN;
wire RST;
wire WR_EN;
*/
// Assign ALMOST_EPMTY
generate if (C_HAS_ALMOST_EMPTY == 1) begin : gae
assign ALMOST_EMPTY = almost_empty_i;
end else begin : gnae
assign ALMOST_EMPTY = 0;
end endgenerate // gae
// Assign ALMOST_FULL
generate if (C_HAS_ALMOST_FULL==1) begin : gaf
assign ALMOST_FULL = almost_full_i;
end else begin : gnaf
assign ALMOST_FULL = 0;
end endgenerate // gaf
// Dout may change behavior based on latency
assign fwft_enabled = (C_PRELOAD_LATENCY == 0 && C_PRELOAD_REGS == 1)?
1: 0;
assign ideal_dout_out= ((C_USE_EMBEDDED_REG==1 && (fwft_enabled == 0)) &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1))?
ideal_dout_d1: ideal_dout;
assign DOUT = ideal_dout_out;
// Assign SBITERR and DBITERR based on latency
assign SBITERR = (C_ERROR_INJECTION_TYPE == 1 || C_ERROR_INJECTION_TYPE == 3) &&
((C_USE_EMBEDDED_REG==1 && (fwft_enabled == 0)) &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1)) ?
err_type_d1[0]: err_type[0];
assign DBITERR = (C_ERROR_INJECTION_TYPE == 2 || C_ERROR_INJECTION_TYPE == 3) &&
((C_USE_EMBEDDED_REG==1 && (fwft_enabled == 0)) &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1)) ?
err_type_d1[1]: err_type[1];
assign EMPTY = empty_i;
assign FULL = full_i;
//Overflow may be active-low
generate if (C_HAS_OVERFLOW==1) begin : gof
assign OVERFLOW = ideal_overflow ? !C_OVERFLOW_LOW : C_OVERFLOW_LOW;
end else begin : gnof
assign OVERFLOW = 0;
end endgenerate // gof
assign PROG_EMPTY = prog_empty_i;
assign PROG_FULL = prog_full_i;
//Valid may change behavior based on latency or active-low
generate if (C_HAS_VALID==1) begin : gvalid
assign valid_i = (C_PRELOAD_LATENCY == 0) ? (RD_EN & ~EMPTY) : ideal_valid;
assign valid_out = (C_PRELOAD_LATENCY == 2 && C_MEMORY_TYPE < 2) ?
valid_d1 : valid_i;
assign VALID = valid_out ? !C_VALID_LOW : C_VALID_LOW;
end else begin : gnvalid
assign VALID = 0;
end endgenerate // gvalid
//Trim data count differently depending on set widths
generate if (C_HAS_DATA_COUNT == 1) begin : gdc
always @* begin
diff_count <= wr_pntr - rd_pntr;
if (C_DATA_COUNT_WIDTH > C_RD_PNTR_WIDTH) begin
DATA_COUNT[C_RD_PNTR_WIDTH-1:0] <= diff_count;
DATA_COUNT[C_DATA_COUNT_WIDTH-1] <= 1'b0 ;
end else begin
DATA_COUNT <= diff_count[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_DATA_COUNT_WIDTH];
end
end
// end else begin : gndc
// always @* DATA_COUNT <= 0;
end endgenerate // gdc
//Underflow may change behavior based on latency or active-low
generate if (C_HAS_UNDERFLOW==1) begin : guf
assign underflow_i = ideal_underflow;
assign UNDERFLOW = underflow_i ? !C_UNDERFLOW_LOW : C_UNDERFLOW_LOW;
end else begin : gnuf
assign UNDERFLOW = 0;
end endgenerate // guf
//Write acknowledge may be active low
generate if (C_HAS_WR_ACK==1) begin : gwr_ack
assign WR_ACK = ideal_wr_ack ? !C_WR_ACK_LOW : C_WR_ACK_LOW;
end else begin : gnwr_ack
assign WR_ACK = 0;
end endgenerate // gwr_ack
/*****************************************************************************
* Internal reset logic
****************************************************************************/
assign srst_i = C_HAS_SRST ? SRST : 0;
assign srst_wrst_busy = C_HAS_SRST ? (SRST || WR_RST_BUSY) : 0;
assign srst_rrst_busy = C_HAS_SRST ? (SRST || RD_RST_BUSY) : 0;
assign rst_i = C_HAS_RST ? RST : 0;
/**************************************************************************
* Assorted registers for delayed versions of signals
**************************************************************************/
//Capture delayed version of valid
generate if (C_HAS_VALID == 1) begin : blockVL20
always @(posedge CLK or posedge rst_i) begin
if (rst_i == 1'b1) begin
valid_d1 <= #`TCQ 1'b0;
end else begin
if (srst_rrst_busy) begin
valid_d1 <= #`TCQ 1'b0;
end else begin
valid_d1 <= #`TCQ valid_i;
end
end
end // always @ (posedge CLK or posedge rst_i)
end endgenerate // blockVL20
// Determine which stage in FWFT registers are valid
reg stage1_valid = 0;
reg stage2_valid = 0;
generate
if (C_PRELOAD_LATENCY == 0) begin : grd_fwft_proc
always @ (posedge CLK or posedge rst_i) begin
if (rst_i) begin
stage1_valid <= #`TCQ 0;
stage2_valid <= #`TCQ 0;
end else begin
if (!stage1_valid && !stage2_valid) begin
if (!EMPTY)
stage1_valid <= #`TCQ 1'b1;
else
stage1_valid <= #`TCQ 1'b0;
end else if (stage1_valid && !stage2_valid) begin
if (EMPTY) begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b1;
end else begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b1;
end
end else if (!stage1_valid && stage2_valid) begin
if (EMPTY && RD_EN) begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b0;
end else if (!EMPTY && RD_EN) begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b0;
end else if (!EMPTY && !RD_EN) begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b1;
end else begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b1;
end
end else if (stage1_valid && stage2_valid) begin
if (EMPTY && RD_EN) begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b1;
end else begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b1;
end
end else begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b0;
end
end // rd_rst_i
end // always
end
endgenerate
//***************************************************************************
// Assign the read data count value only if it is selected,
// otherwise output zeros.
//***************************************************************************
generate
if (C_HAS_RD_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT ==1) begin : grdc
assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = rd_data_count_i_ss[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH+1-C_RD_DATA_COUNT_WIDTH];
end
endgenerate
generate
if (C_HAS_RD_DATA_COUNT == 0) begin : gnrdc
assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = {C_RD_DATA_COUNT_WIDTH{1'b0}};
end
endgenerate
//***************************************************************************
// Assign the write data count value only if it is selected,
// otherwise output zeros
//***************************************************************************
generate
if (C_HAS_WR_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT == 1) begin : gwdc
assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = wr_data_count_i_ss[C_WR_PNTR_WIDTH:C_WR_PNTR_WIDTH+1-C_WR_DATA_COUNT_WIDTH] ;
end
endgenerate
generate
if (C_HAS_WR_DATA_COUNT == 0) begin : gnwdc
assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = {C_WR_DATA_COUNT_WIDTH{1'b0}};
end
endgenerate
// block memory has a synchronous reset
generate if (C_MEMORY_TYPE < 2) begin : gen_fifo_blkmemdout_emb
always @(posedge CLK) begin
// BRAM resets synchronously
// make it consistent with the core.
if ((rst_i || srst_rrst_busy) && (C_USE_DOUT_RST == 1))
ideal_dout_d1 <= #`TCQ dout_reset_val;
end //always
end endgenerate // gen_fifo_blkmemdout_emb
reg ram_rd_en_d1 = 1'b0;
//Capture delayed version of dout
always @(posedge CLK or posedge rst_i) begin
if (rst_i == 1'b1) begin
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type_d1 <= #`TCQ 0;
// DRAM and SRAM reset asynchronously
if ((C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3) && C_USE_DOUT_RST == 1)
ideal_dout_d1 <= #`TCQ dout_reset_val;
ram_rd_en_d1 <= #`TCQ 1'b0;
end else begin
ram_rd_en_d1 <= #`TCQ RD_EN & ~EMPTY;
if (srst_rrst_busy) begin
ram_rd_en_d1 <= #`TCQ 1'b0;
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type_d1 <= #`TCQ 0;
// Reset DRAM and SRAM based FIFO, BRAM based FIFO is reset above
if ((C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3) && C_USE_DOUT_RST == 1)
ideal_dout_d1 <= #`TCQ dout_reset_val;
end else if (ram_rd_en_d1) begin
ideal_dout_d1 <= #`TCQ ideal_dout;
err_type_d1 <= #`TCQ err_type;
end
end
end
/**************************************************************************
* Overflow and Underflow Flag calculation
* (handled separately because they don't support rst)
**************************************************************************/
generate if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 0) begin : g7s_ovflw
always @(posedge CLK) begin
ideal_overflow <= #`TCQ WR_EN & full_i;
end
end else if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 1) begin : g8s_ovflw
always @(posedge CLK) begin
//ideal_overflow <= #`TCQ WR_EN & (rst_i | full_i);
ideal_overflow <= #`TCQ WR_EN & (WR_RST_BUSY | full_i);
end
end endgenerate // blockOF20
generate if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 0) begin : g7s_unflw
always @(posedge CLK) begin
ideal_underflow <= #`TCQ empty_i & RD_EN;
end
end else if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 1) begin : g8s_unflw
always @(posedge CLK) begin
//ideal_underflow <= #`TCQ (rst_i | empty_i) & RD_EN;
ideal_underflow <= #`TCQ (RD_RST_BUSY | empty_i) & RD_EN;
end
end endgenerate // blockUF20
/**************************
* Read Data Count
*************************/
reg [31:0] num_read_words_dc;
reg [C_RD_DATA_COUNT_WIDTH-1:0] num_read_words_sized_i;
always @(num_rd_bits) begin
if (C_USE_FWFT_DATA_COUNT) begin
//If using extra logic for FWFT Data Counts,
// then scale FIFO contents to read domain,
// and add two read words for FWFT stages
//This value is only a temporary value and not used in the code.
num_read_words_dc = (num_rd_bits/C_DOUT_WIDTH+2);
//Trim the read words for use with RD_DATA_COUNT
num_read_words_sized_i =
num_read_words_dc[C_RD_PNTR_WIDTH : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH+1];
end else begin
//If not using extra logic for FWFT Data Counts,
// then scale FIFO contents to read domain.
//This value is only a temporary value and not used in the code.
num_read_words_dc = num_rd_bits/C_DOUT_WIDTH;
//Trim the read words for use with RD_DATA_COUNT
num_read_words_sized_i =
num_read_words_dc[C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH];
end //if (C_USE_FWFT_DATA_COUNT)
end //always
/**************************
* Write Data Count
*************************/
reg [31:0] num_write_words_dc;
reg [C_WR_DATA_COUNT_WIDTH-1:0] num_write_words_sized_i;
always @(num_wr_bits) begin
if (C_USE_FWFT_DATA_COUNT) begin
//Calculate the Data Count value for the number of write words,
// when using First-Word Fall-Through with extra logic for Data
// Counts. This takes into consideration the number of words that
// are expected to be stored in the FWFT register stages (it always
// assumes they are filled).
//This value is scaled to the Write Domain.
//The expression (((A-1)/B))+1 divides A/B, but takes the
// ceiling of the result.
//When num_wr_bits==0, set the result manually to prevent
// division errors.
//EXTRA_WORDS_DC is the number of words added to write_words
// due to FWFT.
//This value is only a temporary value and not used in the code.
num_write_words_dc = (num_wr_bits==0) ? EXTRA_WORDS_DC : (((num_wr_bits-1)/C_DIN_WIDTH)+1) + EXTRA_WORDS_DC ;
//Trim the write words for use with WR_DATA_COUNT
num_write_words_sized_i =
num_write_words_dc[C_WR_PNTR_WIDTH : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH+1];
end else begin
//Calculate the Data Count value for the number of write words, when NOT
// using First-Word Fall-Through with extra logic for Data Counts. This
// calculates only the number of words in the internal FIFO.
//The expression (((A-1)/B))+1 divides A/B, but takes the
// ceiling of the result.
//This value is scaled to the Write Domain.
//When num_wr_bits==0, set the result manually to prevent
// division errors.
//This value is only a temporary value and not used in the code.
num_write_words_dc = (num_wr_bits==0) ? 0 : ((num_wr_bits-1)/C_DIN_WIDTH)+1;
//Trim the read words for use with RD_DATA_COUNT
num_write_words_sized_i =
num_write_words_dc[C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH];
end //if (C_USE_FWFT_DATA_COUNT)
end //always
/*************************************************************************
* Write and Read Logic
************************************************************************/
wire write_allow;
wire read_allow;
wire read_allow_dc;
wire write_only;
wire read_only;
//wire write_only_q;
reg write_only_q;
//wire read_only_q;
reg read_only_q;
reg full_reg;
reg rst_full_ff_reg1;
reg rst_full_ff_reg2;
wire ram_full_comb;
wire carry;
assign write_allow = WR_EN & ~full_i;
assign read_allow = RD_EN & ~empty_i;
assign read_allow_dc = RD_EN_USER & ~USER_EMPTY_FB;
//assign write_only = write_allow & ~read_allow;
//assign write_only_q = write_allow_q;
//assign read_only = read_allow & ~write_allow;
//assign read_only_q = read_allow_q ;
wire [C_WR_PNTR_WIDTH-1:0] diff_pntr;
wire [C_RD_PNTR_WIDTH-1:0] diff_pntr_pe;
reg [C_WR_PNTR_WIDTH-1:0] diff_pntr_reg1 = 0;
reg [C_RD_PNTR_WIDTH-1:0] diff_pntr_pe_reg1 = 0;
reg [C_RD_PNTR_WIDTH:0] diff_pntr_pe_asym = 0;
wire [C_RD_PNTR_WIDTH:0] adj_wr_pntr_rd_asym ;
wire [C_RD_PNTR_WIDTH:0] rd_pntr_asym;
reg [C_WR_PNTR_WIDTH-1:0] diff_pntr_reg2 = 0;
reg [C_WR_PNTR_WIDTH-1:0] diff_pntr_pe_reg2 = 0;
wire [C_RD_PNTR_WIDTH-1:0] diff_pntr_pe_max;
wire [C_RD_PNTR_WIDTH-1:0] diff_pntr_max;
assign diff_pntr_pe_max = DIFF_MAX_RD;
assign diff_pntr_max = DIFF_MAX_WR;
generate if (IS_ASYMMETRY == 0) begin : diff_pntr_sym
assign write_only = write_allow & ~read_allow;
assign read_only = read_allow & ~write_allow;
end endgenerate
generate if ( IS_ASYMMETRY == 1 && C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : wr_grt_rd
assign read_only = read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0]) & ~write_allow;
assign write_only = write_allow & ~(read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0]));
end endgenerate
generate if (IS_ASYMMETRY ==1 && C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : rd_grt_wr
assign read_only = read_allow & ~(write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]));
assign write_only = write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]) & ~read_allow;
end endgenerate
//-----------------------------------------------------------------------------
// Write and Read pointer generation
//-----------------------------------------------------------------------------
always @(posedge CLK or posedge rst_i) begin
if (rst_i) begin
wr_pntr <= 0;
rd_pntr <= 0;
end else begin
if (srst_i || srst_wrst_busy || srst_rrst_busy ) begin
if (srst_wrst_busy)
wr_pntr <= #`TCQ 0;
if (srst_rrst_busy)
rd_pntr <= #`TCQ 0;
end else begin
if (write_allow) wr_pntr <= #`TCQ wr_pntr + 1;
if (read_allow) rd_pntr <= #`TCQ rd_pntr + 1;
end
end
end
generate if (C_FIFO_TYPE == 2) begin : gll_dm_dout
always @(posedge CLK) begin
if (write_allow) begin
if (ENABLE_ERR_INJECTION == 1)
memory[wr_pntr] <= #`TCQ {INJECTDBITERR,INJECTSBITERR,DIN};
else
memory[wr_pntr] <= #`TCQ DIN;
end
end
reg [C_DATA_WIDTH-1:0] dout_tmp_q;
reg [C_DATA_WIDTH-1:0] dout_tmp = 0;
reg [C_DATA_WIDTH-1:0] dout_tmp1 = 0;
always @(posedge CLK) begin
dout_tmp_q <= #`TCQ ideal_dout;
end
always @* begin
if (read_allow)
ideal_dout <= memory[rd_pntr];
else
ideal_dout <= dout_tmp_q;
end
end endgenerate // gll_dm_dout
/**************************************************************************
* Write Domain Logic
**************************************************************************/
assign ram_rd_en = RD_EN & !EMPTY;
//reg [C_WR_PNTR_WIDTH-1:0] diff_pntr = 0;
generate if (C_FIFO_TYPE != 2) begin : gnll_din
always @(posedge CLK or posedge rst_i) begin : gen_fifo_w
/****** Reset fifo (case 1)***************************************/
if (rst_i == 1'b1) begin
num_wr_bits <= #`TCQ 0;
next_num_wr_bits = #`TCQ 0;
wr_ptr <= #`TCQ C_WR_DEPTH - 1;
rd_ptr_wrclk <= #`TCQ C_RD_DEPTH - 1;
ideal_wr_ack <= #`TCQ 0;
ideal_wr_count <= #`TCQ 0;
tmp_wr_listsize = #`TCQ 0;
rd_ptr_wrclk_next <= #`TCQ 0;
wr_pntr <= #`TCQ 0;
wr_pntr_rd1 <= #`TCQ 0;
end else begin //rst_i==0
if (srst_wrst_busy) begin
num_wr_bits <= #`TCQ 0;
next_num_wr_bits = #`TCQ 0;
wr_ptr <= #`TCQ C_WR_DEPTH - 1;
rd_ptr_wrclk <= #`TCQ C_RD_DEPTH - 1;
ideal_wr_ack <= #`TCQ 0;
ideal_wr_count <= #`TCQ 0;
tmp_wr_listsize = #`TCQ 0;
rd_ptr_wrclk_next <= #`TCQ 0;
wr_pntr <= #`TCQ 0;
wr_pntr_rd1 <= #`TCQ 0;
end else begin//srst_i=0
wr_pntr_rd1 <= #`TCQ wr_pntr;
//Determine the current number of words in the FIFO
tmp_wr_listsize = (C_DEPTH_RATIO_RD > 1) ? num_wr_bits/C_DOUT_WIDTH :
num_wr_bits/C_DIN_WIDTH;
rd_ptr_wrclk_next = rd_ptr;
if (rd_ptr_wrclk < rd_ptr_wrclk_next) begin
next_num_wr_bits = num_wr_bits -
C_DOUT_WIDTH*(rd_ptr_wrclk + C_RD_DEPTH
- rd_ptr_wrclk_next);
end else begin
next_num_wr_bits = num_wr_bits -
C_DOUT_WIDTH*(rd_ptr_wrclk - rd_ptr_wrclk_next);
end
if (WR_EN == 1'b1) begin
if (FULL == 1'b1) begin
ideal_wr_ack <= #`TCQ 0;
//Reminder that FIFO is still full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
end else begin
write_fifo;
next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH;
//Write successful, so issue acknowledge
// and no error
ideal_wr_ack <= #`TCQ 1;
//Not even close to full.
ideal_wr_count <= num_write_words_sized_i;
//end
end
end else begin //(WR_EN == 1'b1)
//If user did not attempt a write, then do not
// give ack or err
ideal_wr_ack <= #`TCQ 0;
ideal_wr_count <= #`TCQ num_write_words_sized_i;
end
num_wr_bits <= #`TCQ next_num_wr_bits;
rd_ptr_wrclk <= #`TCQ rd_ptr;
end //srst_i==0
end //wr_rst_i==0
end // gen_fifo_w
end endgenerate
generate if (C_FIFO_TYPE < 2 && C_MEMORY_TYPE < 2) begin : gnll_dm_dout
always @(posedge CLK) begin
if (rst_i || srst_rrst_busy) begin
if (C_USE_DOUT_RST == 1)
ideal_dout <= #`TCQ dout_reset_val;
end
end
end endgenerate
generate if (C_FIFO_TYPE != 2) begin : gnll_dout
always @(posedge CLK or posedge rst_i) begin : gen_fifo_r
/****** Reset fifo (case 1)***************************************/
if (rst_i) begin
num_rd_bits <= #`TCQ 0;
next_num_rd_bits = #`TCQ 0;
rd_ptr <= #`TCQ C_RD_DEPTH -1;
rd_pntr <= #`TCQ 0;
//rd_pntr_wr1 <= #`TCQ 0;
wr_ptr_rdclk <= #`TCQ C_WR_DEPTH -1;
// DRAM resets asynchronously
if (C_FIFO_TYPE < 2 && (C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3 )&& C_USE_DOUT_RST == 1)
ideal_dout <= #`TCQ dout_reset_val;
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type <= #`TCQ 0;
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ 0;
end else begin //rd_rst_i==0
if (srst_rrst_busy) begin
num_rd_bits <= #`TCQ 0;
next_num_rd_bits = #`TCQ 0;
rd_ptr <= #`TCQ C_RD_DEPTH -1;
rd_pntr <= #`TCQ 0;
//rd_pntr_wr1 <= #`TCQ 0;
wr_ptr_rdclk <= #`TCQ C_WR_DEPTH -1;
// DRAM resets synchronously
if (C_FIFO_TYPE < 2 && (C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3 )&& C_USE_DOUT_RST == 1)
ideal_dout <= #`TCQ dout_reset_val;
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type <= #`TCQ 0;
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ 0;
end //srst_i
else begin
//rd_pntr_wr1 <= #`TCQ rd_pntr;
//Determine the current number of words in the FIFO
tmp_rd_listsize = (C_DEPTH_RATIO_WR > 1) ? num_rd_bits/C_DIN_WIDTH :
num_rd_bits/C_DOUT_WIDTH;
wr_ptr_rdclk_next = wr_ptr;
if (wr_ptr_rdclk < wr_ptr_rdclk_next) begin
next_num_rd_bits = num_rd_bits +
C_DIN_WIDTH*(wr_ptr_rdclk +C_WR_DEPTH
- wr_ptr_rdclk_next);
end else begin
next_num_rd_bits = num_rd_bits +
C_DIN_WIDTH*(wr_ptr_rdclk - wr_ptr_rdclk_next);
end
if (RD_EN == 1'b1) begin
if (EMPTY == 1'b1) begin
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end
else
begin
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == 2)
end
num_rd_bits <= #`TCQ next_num_rd_bits;
wr_ptr_rdclk <= #`TCQ wr_ptr;
end //s_rst_i==0
end //rd_rst_i==0
end //always
end endgenerate
//-----------------------------------------------------------------------------
// Generate diff_pntr for PROG_FULL generation
// Generate diff_pntr_pe for PROG_EMPTY generation
//-----------------------------------------------------------------------------
generate if ((C_PROG_FULL_TYPE != 0 || C_PROG_EMPTY_TYPE != 0) && IS_ASYMMETRY == 0) begin : reg_write_allow
always @(posedge CLK ) begin
if (rst_i) begin
write_only_q <= 1'b0;
read_only_q <= 1'b0;
diff_pntr_reg1 <= 0;
diff_pntr_pe_reg1 <= 0;
diff_pntr_reg2 <= 0;
diff_pntr_pe_reg2 <= 0;
end else begin
if (srst_i || srst_wrst_busy || srst_rrst_busy) begin
if (srst_rrst_busy) begin
read_only_q <= #`TCQ 1'b0;
diff_pntr_pe_reg1 <= #`TCQ 0;
diff_pntr_pe_reg2 <= #`TCQ 0;
end
if (srst_wrst_busy) begin
write_only_q <= #`TCQ 1'b0;
diff_pntr_reg1 <= #`TCQ 0;
diff_pntr_reg2 <= #`TCQ 0;
end
end else begin
write_only_q <= #`TCQ write_only;
read_only_q <= #`TCQ read_only;
diff_pntr_reg2 <= #`TCQ diff_pntr_reg1;
diff_pntr_pe_reg2 <= #`TCQ diff_pntr_pe_reg1;
// Add 1 to the difference pointer value when only write happens.
if (write_only)
diff_pntr_reg1 <= #`TCQ wr_pntr - adj_rd_pntr_wr + 1;
else
diff_pntr_reg1 <= #`TCQ wr_pntr - adj_rd_pntr_wr;
// Add 1 to the difference pointer value when write or both write & read or no write & read happen.
if (read_only)
diff_pntr_pe_reg1 <= #`TCQ adj_wr_pntr_rd - rd_pntr - 1;
else
diff_pntr_pe_reg1 <= #`TCQ adj_wr_pntr_rd - rd_pntr;
end
end
end
assign diff_pntr_pe = diff_pntr_pe_reg1;
assign diff_pntr = diff_pntr_reg1;
end endgenerate // reg_write_allow
generate if ((C_PROG_FULL_TYPE != 0 || C_PROG_EMPTY_TYPE != 0) && IS_ASYMMETRY == 1) begin : reg_write_allow_asym
assign adj_wr_pntr_rd_asym[C_RD_PNTR_WIDTH:0] = {adj_wr_pntr_rd,1'b1};
assign rd_pntr_asym[C_RD_PNTR_WIDTH:0] = {~rd_pntr,1'b1};
always @(posedge CLK ) begin
if (rst_i) begin
diff_pntr_pe_asym <= 0;
diff_pntr_reg1 <= 0;
full_reg <= 0;
rst_full_ff_reg1 <= 1;
rst_full_ff_reg2 <= 1;
diff_pntr_pe_reg1 <= 0;
end else begin
if (srst_i || srst_wrst_busy || srst_rrst_busy) begin
if (srst_wrst_busy)
diff_pntr_reg1 <= #`TCQ 0;
if (srst_rrst_busy)
full_reg <= #`TCQ 0;
rst_full_ff_reg1 <= #`TCQ 1;
rst_full_ff_reg2 <= #`TCQ 1;
diff_pntr_pe_asym <= #`TCQ 0;
diff_pntr_pe_reg1 <= #`TCQ 0;
end else begin
diff_pntr_pe_asym <= #`TCQ adj_wr_pntr_rd_asym + rd_pntr_asym;
full_reg <= #`TCQ full_i;
rst_full_ff_reg1 <= #`TCQ RST_FULL_FF;
rst_full_ff_reg2 <= #`TCQ rst_full_ff_reg1;
if (~full_i) begin
diff_pntr_reg1 <= #`TCQ wr_pntr - adj_rd_pntr_wr;
end
end
end
end
assign carry = (~(|(diff_pntr_pe_asym [C_RD_PNTR_WIDTH : 1])));
assign diff_pntr_pe = (full_reg && ~rst_full_ff_reg2 && carry ) ? diff_pntr_pe_max : diff_pntr_pe_asym[C_RD_PNTR_WIDTH:1];
assign diff_pntr = diff_pntr_reg1;
end endgenerate // reg_write_allow_asym
//-----------------------------------------------------------------------------
// Generate FULL flag
//-----------------------------------------------------------------------------
wire comp0;
wire comp1;
wire going_full;
wire leaving_full;
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gpad
assign adj_rd_pntr_wr [C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH] = rd_pntr;
assign adj_rd_pntr_wr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0] = 0;
end endgenerate
generate if (C_WR_PNTR_WIDTH <= C_RD_PNTR_WIDTH) begin : gtrim
assign adj_rd_pntr_wr = rd_pntr[C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH];
end endgenerate
assign comp1 = (adj_rd_pntr_wr == (wr_pntr + 1'b1));
assign comp0 = (adj_rd_pntr_wr == wr_pntr);
generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : gf_wp_eq_rp
assign going_full = (comp1 & write_allow & ~read_allow);
assign leaving_full = (comp0 & read_allow) | RST_FULL_GEN;
end endgenerate
// Write data width is bigger than read data width
// Write depth is smaller than read depth
// One write could be equal to 2 or 4 or 8 reads
generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : gf_asym
assign going_full = (comp1 & write_allow & (~ (read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0]))));
assign leaving_full = (comp0 & read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0])) | RST_FULL_GEN;
end endgenerate
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gf_wp_gt_rp
assign going_full = (comp1 & write_allow & ~read_allow);
assign leaving_full =(comp0 & read_allow) | RST_FULL_GEN;
end endgenerate
assign ram_full_comb = going_full | (~leaving_full & full_i);
always @(posedge CLK or posedge RST_FULL_FF) begin
if (RST_FULL_FF)
full_i <= C_FULL_FLAGS_RST_VAL;
else if (srst_wrst_busy)
full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else
full_i <= #`TCQ ram_full_comb;
end
//-----------------------------------------------------------------------------
// Generate EMPTY flag
//-----------------------------------------------------------------------------
wire ecomp0;
wire ecomp1;
wire going_empty;
wire leaving_empty;
wire ram_empty_comb;
generate if (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) begin : pad
assign adj_wr_pntr_rd [C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr;
assign adj_wr_pntr_rd[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0] = 0;
end endgenerate
generate if (C_RD_PNTR_WIDTH <= C_WR_PNTR_WIDTH) begin : trim
assign adj_wr_pntr_rd = wr_pntr[C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH];
end endgenerate
assign ecomp1 = (adj_wr_pntr_rd == (rd_pntr + 1'b1));
assign ecomp0 = (adj_wr_pntr_rd == rd_pntr);
generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : ge_wp_eq_rp
assign going_empty = (ecomp1 & ~write_allow & read_allow);
assign leaving_empty = (ecomp0 & write_allow);
end endgenerate
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : ge_wp_gt_rp
assign going_empty = (ecomp1 & read_allow & (~(write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]))));
assign leaving_empty = (ecomp0 & write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]));
end endgenerate
generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : ge_wp_lt_rp
assign going_empty = (ecomp1 & ~write_allow & read_allow);
assign leaving_empty =(ecomp0 & write_allow);
end endgenerate
assign ram_empty_comb = going_empty | (~leaving_empty & empty_i);
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
empty_i <= 1'b1;
else if (srst_rrst_busy)
empty_i <= #`TCQ 1'b1;
else
empty_i <= #`TCQ ram_empty_comb;
end
//-----------------------------------------------------------------------------
// Generate Read and write data counts for asymmetic common clock
//-----------------------------------------------------------------------------
reg [C_GRTR_PNTR_WIDTH :0] count_dc = 0;
wire [C_GRTR_PNTR_WIDTH :0] ratio;
wire decr_by_one;
wire incr_by_ratio;
wire incr_by_one;
wire decr_by_ratio;
localparam IS_FWFT = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ? 1 : 0;
generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : rd_depth_gt_wr
assign ratio = C_DEPTH_RATIO_RD;
assign decr_by_one = (IS_FWFT == 1)? read_allow_dc : read_allow;
assign incr_by_ratio = write_allow;
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
count_dc <= #`TCQ 0;
else if (srst_wrst_busy)
count_dc <= #`TCQ 0;
else begin
if (decr_by_one) begin
if (!incr_by_ratio)
count_dc <= #`TCQ count_dc - 1;
else
count_dc <= #`TCQ count_dc - 1 + ratio ;
end
else begin
if (!incr_by_ratio)
count_dc <= #`TCQ count_dc ;
else
count_dc <= #`TCQ count_dc + ratio ;
end
end
end
assign rd_data_count_i_ss[C_RD_PNTR_WIDTH : 0] = count_dc;
assign wr_data_count_i_ss[C_WR_PNTR_WIDTH : 0] = count_dc[C_RD_PNTR_WIDTH : C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH];
end endgenerate
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : wr_depth_gt_rd
assign ratio = C_DEPTH_RATIO_WR;
assign incr_by_one = write_allow;
assign decr_by_ratio = (IS_FWFT == 1)? read_allow_dc : read_allow;
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
count_dc <= #`TCQ 0;
else if (srst_wrst_busy)
count_dc <= #`TCQ 0;
else begin
if (incr_by_one) begin
if (!decr_by_ratio)
count_dc <= #`TCQ count_dc + 1;
else
count_dc <= #`TCQ count_dc + 1 - ratio ;
end
else begin
if (!decr_by_ratio)
count_dc <= #`TCQ count_dc ;
else
count_dc <= #`TCQ count_dc - ratio ;
end
end
end
assign wr_data_count_i_ss[C_WR_PNTR_WIDTH : 0] = count_dc;
assign rd_data_count_i_ss[C_RD_PNTR_WIDTH : 0] = count_dc[C_WR_PNTR_WIDTH : C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH];
end endgenerate
//-----------------------------------------------------------------------------
// Generate WR_ACK flag
//-----------------------------------------------------------------------------
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
ideal_wr_ack <= 1'b0;
else if (srst_wrst_busy)
ideal_wr_ack <= #`TCQ 1'b0;
else if (WR_EN & ~full_i)
ideal_wr_ack <= #`TCQ 1'b1;
else
ideal_wr_ack <= #`TCQ 1'b0;
end
//-----------------------------------------------------------------------------
// Generate VALID flag
//-----------------------------------------------------------------------------
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
ideal_valid <= 1'b0;
else if (srst_rrst_busy)
ideal_valid <= #`TCQ 1'b0;
else if (RD_EN & ~empty_i)
ideal_valid <= #`TCQ 1'b1;
else
ideal_valid <= #`TCQ 1'b0;
end
//-----------------------------------------------------------------------------
// Generate ALMOST_FULL flag
//-----------------------------------------------------------------------------
//generate if (C_HAS_ALMOST_FULL == 1 || C_PROG_FULL_TYPE > 2 || C_PROG_EMPTY_TYPE > 2) begin : gaf_ss
wire fcomp2;
wire going_afull;
wire leaving_afull;
wire ram_afull_comb;
assign fcomp2 = (adj_rd_pntr_wr == (wr_pntr + 2'h2));
generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : gaf_wp_eq_rp
assign going_afull = (fcomp2 & write_allow & ~read_allow);
assign leaving_afull = (comp1 & read_allow & ~write_allow) | RST_FULL_GEN;
end endgenerate
// Write data width is bigger than read data width
// Write depth is smaller than read depth
// One write could be equal to 2 or 4 or 8 reads
generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : gaf_asym
assign going_afull = (fcomp2 & write_allow & (~ (read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0]))));
assign leaving_afull = (comp1 & (~write_allow) & read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0])) | RST_FULL_GEN;
end endgenerate
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gaf_wp_gt_rp
assign going_afull = (fcomp2 & write_allow & ~read_allow);
assign leaving_afull =((comp0 | comp1 | fcomp2) & read_allow) | RST_FULL_GEN;
end endgenerate
assign ram_afull_comb = going_afull | (~leaving_afull & almost_full_i);
always @(posedge CLK or posedge RST_FULL_FF) begin
if (RST_FULL_FF)
almost_full_i <= C_FULL_FLAGS_RST_VAL;
else if (srst_wrst_busy)
almost_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else
almost_full_i <= #`TCQ ram_afull_comb;
end
// end endgenerate // gaf_ss
//-----------------------------------------------------------------------------
// Generate ALMOST_EMPTY flag
//-----------------------------------------------------------------------------
//generate if (C_HAS_ALMOST_EMPTY == 1) begin : gae_ss
wire ecomp2;
wire going_aempty;
wire leaving_aempty;
wire ram_aempty_comb;
assign ecomp2 = (adj_wr_pntr_rd == (rd_pntr + 2'h2));
generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : gae_wp_eq_rp
assign going_aempty = (ecomp2 & ~write_allow & read_allow);
assign leaving_aempty = (ecomp1 & write_allow & ~read_allow);
end endgenerate
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gae_wp_gt_rp
assign going_aempty = (ecomp2 & read_allow & (~(write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]))));
assign leaving_aempty = (ecomp1 & ~read_allow & write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]));
end endgenerate
generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : gae_wp_lt_rp
assign going_aempty = (ecomp2 & ~write_allow & read_allow);
assign leaving_aempty =((ecomp2 | ecomp1 |ecomp0) & write_allow);
end endgenerate
assign ram_aempty_comb = going_aempty | (~leaving_aempty & almost_empty_i);
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
almost_empty_i <= 1'b1;
else if (srst_rrst_busy)
almost_empty_i <= #`TCQ 1'b1;
else
almost_empty_i <= #`TCQ ram_aempty_comb;
end
// end endgenerate // gae_ss
//-----------------------------------------------------------------------------
// Generate PROG_FULL
//-----------------------------------------------------------------------------
localparam C_PF_ASSERT_VAL = (C_PRELOAD_LATENCY == 0) ?
C_PROG_FULL_THRESH_ASSERT_VAL - EXTRA_WORDS_PF_PARAM : // FWFT
C_PROG_FULL_THRESH_ASSERT_VAL; // STD
localparam C_PF_NEGATE_VAL = (C_PRELOAD_LATENCY == 0) ?
C_PROG_FULL_THRESH_NEGATE_VAL - EXTRA_WORDS_PF_PARAM: // FWFT
C_PROG_FULL_THRESH_NEGATE_VAL; // STD
//-----------------------------------------------------------------------------
// Generate PROG_FULL for single programmable threshold constant
//-----------------------------------------------------------------------------
wire [C_WR_PNTR_WIDTH-1:0] temp = C_PF_ASSERT_VAL;
generate if (C_PROG_FULL_TYPE == 1) begin : single_pf_const
always @(posedge CLK or posedge RST_FULL_FF) begin
if (RST_FULL_FF && C_HAS_RST)
prog_full_i <= C_FULL_FLAGS_RST_VAL;
else begin
if (srst_wrst_busy)
prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else if (IS_ASYMMETRY == 0) begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (diff_pntr == C_PF_ASSERT_VAL && write_only_q)
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr == C_PF_ASSERT_VAL && read_only_q)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ prog_full_i;
end
else begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~RST_FULL_GEN ) begin
if (diff_pntr>= C_PF_ASSERT_VAL )
prog_full_i <= #`TCQ 1'b1;
else if ((diff_pntr) < C_PF_ASSERT_VAL )
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ 1'b0;
end
else
prog_full_i <= #`TCQ prog_full_i;
end
end
end
end endgenerate // single_pf_const
//-----------------------------------------------------------------------------
// Generate PROG_FULL for multiple programmable threshold constants
//-----------------------------------------------------------------------------
generate if (C_PROG_FULL_TYPE == 2) begin : multiple_pf_const
always @(posedge CLK or posedge RST_FULL_FF) begin
//if (RST_FULL_FF)
if (RST_FULL_FF && C_HAS_RST)
prog_full_i <= C_FULL_FLAGS_RST_VAL;
else begin
if (srst_wrst_busy)
prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else if (IS_ASYMMETRY == 0) begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (diff_pntr == C_PF_ASSERT_VAL && write_only_q)
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr == C_PF_NEGATE_VAL && read_only_q)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ prog_full_i;
end
else begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~RST_FULL_GEN ) begin
if (diff_pntr >= C_PF_ASSERT_VAL )
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr < C_PF_NEGATE_VAL)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ prog_full_i;
end
else
prog_full_i <= #`TCQ prog_full_i;
end
end
end
end endgenerate //multiple_pf_const
//-----------------------------------------------------------------------------
// Generate PROG_FULL for single programmable threshold input port
//-----------------------------------------------------------------------------
wire [C_WR_PNTR_WIDTH-1:0] pf3_assert_val = (C_PRELOAD_LATENCY == 0) ?
PROG_FULL_THRESH - EXTRA_WORDS_PF: // FWFT
PROG_FULL_THRESH; // STD
generate if (C_PROG_FULL_TYPE == 3) begin : single_pf_input
always @(posedge CLK or posedge RST_FULL_FF) begin//0
//if (RST_FULL_FF)
if (RST_FULL_FF && C_HAS_RST)
prog_full_i <= C_FULL_FLAGS_RST_VAL;
else begin //1
if (srst_wrst_busy)
prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else if (IS_ASYMMETRY == 0) begin//2
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~almost_full_i) begin//3
if (diff_pntr > pf3_assert_val)
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr == pf3_assert_val) begin//4
if (read_only_q)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ 1'b1;
end else//4
prog_full_i <= #`TCQ 1'b0;
end else//3
prog_full_i <= #`TCQ prog_full_i;
end //2
else begin//5
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~full_i ) begin//6
if (diff_pntr >= pf3_assert_val )
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr < pf3_assert_val) begin//7
prog_full_i <= #`TCQ 1'b0;
end//7
end//6
else
prog_full_i <= #`TCQ prog_full_i;
end//5
end//1
end//0
end endgenerate //single_pf_input
//-----------------------------------------------------------------------------
// Generate PROG_FULL for multiple programmable threshold input ports
//-----------------------------------------------------------------------------
wire [C_WR_PNTR_WIDTH-1:0] pf_assert_val = (C_PRELOAD_LATENCY == 0) ?
(PROG_FULL_THRESH_ASSERT -EXTRA_WORDS_PF) : // FWFT
PROG_FULL_THRESH_ASSERT; // STD
wire [C_WR_PNTR_WIDTH-1:0] pf_negate_val = (C_PRELOAD_LATENCY == 0) ?
(PROG_FULL_THRESH_NEGATE -EXTRA_WORDS_PF) : // FWFT
PROG_FULL_THRESH_NEGATE; // STD
generate if (C_PROG_FULL_TYPE == 4) begin : multiple_pf_inputs
always @(posedge CLK or posedge RST_FULL_FF) begin
if (RST_FULL_FF && C_HAS_RST)
prog_full_i <= C_FULL_FLAGS_RST_VAL;
else begin
if (srst_wrst_busy)
prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else if (IS_ASYMMETRY == 0) begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~almost_full_i) begin
if (diff_pntr >= pf_assert_val)
prog_full_i <= #`TCQ 1'b1;
else if ((diff_pntr == pf_negate_val && read_only_q) ||
diff_pntr < pf_negate_val)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ prog_full_i;
end else
prog_full_i <= #`TCQ prog_full_i;
end
else begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~full_i ) begin
if (diff_pntr >= pf_assert_val )
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr < pf_negate_val)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ prog_full_i;
end
else
prog_full_i <= #`TCQ prog_full_i;
end
end
end
end endgenerate //multiple_pf_inputs
//-----------------------------------------------------------------------------
// Generate PROG_EMPTY
//-----------------------------------------------------------------------------
localparam C_PE_ASSERT_VAL = (C_PRELOAD_LATENCY == 0) ?
C_PROG_EMPTY_THRESH_ASSERT_VAL - 2: // FWFT
C_PROG_EMPTY_THRESH_ASSERT_VAL; // STD
localparam C_PE_NEGATE_VAL = (C_PRELOAD_LATENCY == 0) ?
C_PROG_EMPTY_THRESH_NEGATE_VAL - 2: // FWFT
C_PROG_EMPTY_THRESH_NEGATE_VAL; // STD
//-----------------------------------------------------------------------------
// Generate PROG_EMPTY for single programmable threshold constant
//-----------------------------------------------------------------------------
generate if (C_PROG_EMPTY_TYPE == 1) begin : single_pe_const
always @(posedge CLK or posedge rst_i) begin
//if (rst_i)
if (rst_i && C_HAS_RST)
prog_empty_i <= 1'b1;
else begin
if (srst_rrst_busy)
prog_empty_i <= #`TCQ 1'b1;
else if (IS_ASYMMETRY == 0) begin
if (diff_pntr_pe == C_PE_ASSERT_VAL && read_only_q)
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe == C_PE_ASSERT_VAL && write_only_q)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ prog_empty_i;
end
else begin
if (~rst_i ) begin
if (diff_pntr_pe <= C_PE_ASSERT_VAL)
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe > C_PE_ASSERT_VAL)
prog_empty_i <= #`TCQ 1'b0;
end
else
prog_empty_i <= #`TCQ prog_empty_i;
end
end
end
end endgenerate // single_pe_const
//-----------------------------------------------------------------------------
// Generate PROG_EMPTY for multiple programmable threshold constants
//-----------------------------------------------------------------------------
generate if (C_PROG_EMPTY_TYPE == 2) begin : multiple_pe_const
always @(posedge CLK or posedge rst_i) begin
//if (rst_i)
if (rst_i && C_HAS_RST)
prog_empty_i <= 1'b1;
else begin
if (srst_rrst_busy)
prog_empty_i <= #`TCQ 1'b1;
else if (IS_ASYMMETRY == 0) begin
if (diff_pntr_pe == C_PE_ASSERT_VAL && read_only_q)
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe == C_PE_NEGATE_VAL && write_only_q)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ prog_empty_i;
end
else begin
if (~rst_i ) begin
if (diff_pntr_pe <= C_PE_ASSERT_VAL )
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe > C_PE_NEGATE_VAL)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ prog_empty_i;
end
else
prog_empty_i <= #`TCQ prog_empty_i;
end
end
end
end endgenerate //multiple_pe_const
//-----------------------------------------------------------------------------
// Generate PROG_EMPTY for single programmable threshold input port
//-----------------------------------------------------------------------------
wire [C_RD_PNTR_WIDTH-1:0] pe3_assert_val = (C_PRELOAD_LATENCY == 0) ?
(PROG_EMPTY_THRESH -2) : // FWFT
PROG_EMPTY_THRESH; // STD
generate if (C_PROG_EMPTY_TYPE == 3) begin : single_pe_input
always @(posedge CLK or posedge rst_i) begin
//if (rst_i)
if (rst_i && C_HAS_RST)
prog_empty_i <= 1'b1;
else begin
if (srst_rrst_busy)
prog_empty_i <= #`TCQ 1'b1;
else if (IS_ASYMMETRY == 0) begin
if (~almost_full_i) begin
if (diff_pntr_pe < pe3_assert_val)
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe == pe3_assert_val) begin
if (write_only_q)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ 1'b1;
end else
prog_empty_i <= #`TCQ 1'b0;
end else
prog_empty_i <= #`TCQ prog_empty_i;
end
else begin
if (diff_pntr_pe <= pe3_assert_val )
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe > pe3_assert_val)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ prog_empty_i;
end
end
end
end endgenerate // single_pe_input
//-----------------------------------------------------------------------------
// Generate PROG_EMPTY for multiple programmable threshold input ports
//-----------------------------------------------------------------------------
wire [C_RD_PNTR_WIDTH-1:0] pe4_assert_val = (C_PRELOAD_LATENCY == 0) ?
(PROG_EMPTY_THRESH_ASSERT - 2) : // FWFT
PROG_EMPTY_THRESH_ASSERT; // STD
wire [C_RD_PNTR_WIDTH-1:0] pe4_negate_val = (C_PRELOAD_LATENCY == 0) ?
(PROG_EMPTY_THRESH_NEGATE - 2) : // FWFT
PROG_EMPTY_THRESH_NEGATE; // STD
generate if (C_PROG_EMPTY_TYPE == 4) begin : multiple_pe_inputs
always @(posedge CLK or posedge rst_i) begin
//if (rst_i)
if (rst_i && C_HAS_RST)
prog_empty_i <= 1'b1;
else begin
if (srst_rrst_busy)
prog_empty_i <= #`TCQ 1'b1;
else if (IS_ASYMMETRY == 0) begin
if (~almost_full_i) begin
if (diff_pntr_pe <= pe4_assert_val)
prog_empty_i <= #`TCQ 1'b1;
else if (((diff_pntr_pe == pe4_negate_val) && write_only_q) ||
(diff_pntr_pe > pe4_negate_val)) begin
prog_empty_i <= #`TCQ 1'b0;
end else
prog_empty_i <= #`TCQ prog_empty_i;
end else
prog_empty_i <= #`TCQ prog_empty_i;
end
else begin
if (diff_pntr_pe <= pe4_assert_val )
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe > pe4_negate_val)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ prog_empty_i;
end
end
end
end endgenerate // multiple_pe_inputs
endmodule // fifo_generator_v12_0_bhv_ver_ss
/**************************************************************************
* First-Word Fall-Through module (preload 0)
**************************************************************************/
module fifo_generator_v12_0_bhv_ver_preload0
#(
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_HAS_RST = 0,
parameter C_ENABLE_RST_SYNC = 0,
parameter C_HAS_SRST = 0,
parameter C_USE_DOUT_RST = 0,
parameter C_USE_ECC = 0,
parameter C_USERVALID_LOW = 0,
parameter C_USERUNDERFLOW_LOW = 0,
parameter C_MEMORY_TYPE = 0,
parameter C_FIFO_TYPE = 0
)
(
//Inputs
input RD_CLK,
input RD_RST,
input SRST,
input WR_RST_BUSY,
input RD_RST_BUSY,
input RD_EN,
input FIFOEMPTY,
input [C_DOUT_WIDTH-1:0] FIFODATA,
input FIFOSBITERR,
input FIFODBITERR,
//Outputs
output reg [C_DOUT_WIDTH-1:0] USERDATA,
output USERVALID,
output USERUNDERFLOW,
output USEREMPTY,
output USERALMOSTEMPTY,
output RAMVALID,
output FIFORDEN,
output reg USERSBITERR,
output reg USERDBITERR,
output reg STAGE2_REG_EN,
output [1:0] VALID_STAGES
);
//Internal signals
wire preloadstage1;
wire preloadstage2;
reg ram_valid_i;
reg read_data_valid_i;
wire ram_regout_en;
wire ram_rd_en;
reg empty_i = 1'b1;
reg empty_q = 1'b1;
reg rd_en_q = 1'b0;
reg almost_empty_i = 1'b1;
reg almost_empty_q = 1'b1;
wire rd_rst_i;
wire srst_i;
/*************************************************************************
* FUNCTIONS
*************************************************************************/
/*************************************************************************
* hexstr_conv
* Converts a string of type hex to a binary value (for C_DOUT_RST_VAL)
***********************************************************************/
function [C_DOUT_WIDTH-1:0] hexstr_conv;
input [(C_DOUT_WIDTH*8)-1:0] def_data;
integer index,i,j;
reg [3:0] bin;
begin
index = 0;
hexstr_conv = 'b0;
for( i=C_DOUT_WIDTH-1; i>=0; i=i-1 )
begin
case (def_data[7:0])
8'b00000000 :
begin
bin = 4'b0000;
i = -1;
end
8'b00110000 : bin = 4'b0000;
8'b00110001 : bin = 4'b0001;
8'b00110010 : bin = 4'b0010;
8'b00110011 : bin = 4'b0011;
8'b00110100 : bin = 4'b0100;
8'b00110101 : bin = 4'b0101;
8'b00110110 : bin = 4'b0110;
8'b00110111 : bin = 4'b0111;
8'b00111000 : bin = 4'b1000;
8'b00111001 : bin = 4'b1001;
8'b01000001 : bin = 4'b1010;
8'b01000010 : bin = 4'b1011;
8'b01000011 : bin = 4'b1100;
8'b01000100 : bin = 4'b1101;
8'b01000101 : bin = 4'b1110;
8'b01000110 : bin = 4'b1111;
8'b01100001 : bin = 4'b1010;
8'b01100010 : bin = 4'b1011;
8'b01100011 : bin = 4'b1100;
8'b01100100 : bin = 4'b1101;
8'b01100101 : bin = 4'b1110;
8'b01100110 : bin = 4'b1111;
default :
begin
bin = 4'bx;
end
endcase
for( j=0; j<4; j=j+1)
begin
if ((index*4)+j < C_DOUT_WIDTH)
begin
hexstr_conv[(index*4)+j] = bin[j];
end
end
index = index + 1;
def_data = def_data >> 8;
end
end
endfunction
//*************************************************************************
// Set power-on states for regs
//*************************************************************************
initial begin
ram_valid_i = 1'b0;
read_data_valid_i = 1'b0;
USERDATA = hexstr_conv(C_DOUT_RST_VAL);
USERSBITERR = 1'b0;
USERDBITERR = 1'b0;
end //initial
//***************************************************************************
// connect up optional reset
//***************************************************************************
assign rd_rst_i = (C_HAS_RST == 1 || C_ENABLE_RST_SYNC == 0) ? RD_RST : 0;
assign srst_i = C_HAS_SRST ? SRST || WR_RST_BUSY || RD_RST_BUSY : 0;
localparam INVALID = 0;
localparam STAGE1_VALID = 2;
localparam STAGE2_VALID = 1;
localparam BOTH_STAGES_VALID = 3;
reg [1:0] curr_fwft_state = INVALID;
reg [1:0] next_fwft_state = INVALID;
generate if (C_FIFO_TYPE != 2) begin : gnll_fifo
always @* begin
case (curr_fwft_state)
INVALID: begin
if (~FIFOEMPTY)
next_fwft_state <= STAGE1_VALID;
else
next_fwft_state <= INVALID;
end
STAGE1_VALID: begin
if (FIFOEMPTY)
next_fwft_state <= STAGE2_VALID;
else
next_fwft_state <= BOTH_STAGES_VALID;
end
STAGE2_VALID: begin
if (FIFOEMPTY && RD_EN)
next_fwft_state <= INVALID;
else if (~FIFOEMPTY && RD_EN)
next_fwft_state <= STAGE1_VALID;
else if (~FIFOEMPTY && ~RD_EN)
next_fwft_state <= BOTH_STAGES_VALID;
else
next_fwft_state <= STAGE2_VALID;
end
BOTH_STAGES_VALID: begin
if (FIFOEMPTY && RD_EN)
next_fwft_state <= STAGE2_VALID;
else if (~FIFOEMPTY && RD_EN)
next_fwft_state <= BOTH_STAGES_VALID;
else
next_fwft_state <= BOTH_STAGES_VALID;
end
default: next_fwft_state <= INVALID;
endcase
end
always @ (posedge rd_rst_i or posedge RD_CLK) begin
if (rd_rst_i)
curr_fwft_state <= INVALID;
else if (srst_i)
curr_fwft_state <= #`TCQ INVALID;
else
curr_fwft_state <= #`TCQ next_fwft_state;
end
always @* begin
case (curr_fwft_state)
INVALID: STAGE2_REG_EN <= 1'b0;
STAGE1_VALID: STAGE2_REG_EN <= 1'b1;
STAGE2_VALID: STAGE2_REG_EN <= 1'b0;
BOTH_STAGES_VALID: STAGE2_REG_EN <= RD_EN;
default: STAGE2_REG_EN <= 1'b0;
endcase
end
assign VALID_STAGES = curr_fwft_state;
//***************************************************************************
// preloadstage2 indicates that stage2 needs to be updated. This is true
// whenever read_data_valid is false, and RAM_valid is true.
//***************************************************************************
assign preloadstage2 = ram_valid_i & (~read_data_valid_i | RD_EN);
//***************************************************************************
// preloadstage1 indicates that stage1 needs to be updated. This is true
// whenever the RAM has data (RAM_EMPTY is false), and either RAM_Valid is
// false (indicating that Stage1 needs updating), or preloadstage2 is active
// (indicating that Stage2 is going to update, so Stage1, therefore, must
// also be updated to keep it valid.
//***************************************************************************
assign preloadstage1 = ((~ram_valid_i | preloadstage2) & ~FIFOEMPTY);
//***************************************************************************
// Calculate RAM_REGOUT_EN
// The output registers are controlled by the ram_regout_en signal.
// These registers should be updated either when the output in Stage2 is
// invalid (preloadstage2), OR when the user is reading, in which case the
// Stage2 value will go invalid unless it is replenished.
//***************************************************************************
assign ram_regout_en = preloadstage2;
//***************************************************************************
// Calculate RAM_RD_EN
// RAM_RD_EN will be asserted whenever the RAM needs to be read in order to
// update the value in Stage1.
// One case when this happens is when preloadstage1=true, which indicates
// that the data in Stage1 or Stage2 is invalid, and needs to automatically
// be updated.
// The other case is when the user is reading from the FIFO, which
// guarantees that Stage1 or Stage2 will be invalid on the next clock
// cycle, unless it is replinished by data from the memory. So, as long
// as the RAM has data in it, a read of the RAM should occur.
//***************************************************************************
assign ram_rd_en = (RD_EN & ~FIFOEMPTY) | preloadstage1;
end endgenerate // gnll_fifo
reg curr_state = 0;
reg next_state = 0;
reg leaving_empty_fwft = 0;
reg going_empty_fwft = 0;
reg empty_i_q = 0;
reg ram_rd_en_fwft = 0;
generate if (C_FIFO_TYPE == 2) begin : gll_fifo
always @* begin // FSM fo FWFT
case (curr_state)
1'b0: begin
if (~FIFOEMPTY)
next_state <= 1'b1;
else
next_state <= 1'b0;
end
1'b1: begin
if (FIFOEMPTY && RD_EN)
next_state <= 1'b0;
else
next_state <= 1'b1;
end
default: next_state <= 1'b0;
endcase
end
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
empty_i <= 1'b1;
empty_i_q <= 1'b1;
curr_state <= 1'b0;
ram_valid_i <= 1'b0;
end else if (srst_i) begin
empty_i <= #`TCQ 1'b1;
empty_i_q <= #`TCQ 1'b1;
curr_state <= #`TCQ 1'b0;
ram_valid_i <= #`TCQ 1'b0;
end else begin
empty_i <= #`TCQ going_empty_fwft | (~leaving_empty_fwft & empty_i);
empty_i_q <= #`TCQ FIFOEMPTY;
curr_state <= #`TCQ next_state;
ram_valid_i <= #`TCQ next_state;
end
end //always
wire fe_of_empty;
assign fe_of_empty = empty_i_q & ~FIFOEMPTY;
always @* begin // Finding leaving empty
case (curr_state)
1'b0: leaving_empty_fwft <= fe_of_empty;
1'b1: leaving_empty_fwft <= 1'b1;
default: leaving_empty_fwft <= 1'b0;
endcase
end
always @* begin // Finding going empty
case (curr_state)
1'b1: going_empty_fwft <= FIFOEMPTY & RD_EN;
default: going_empty_fwft <= 1'b0;
endcase
end
always @* begin // Generating FWFT rd_en
case (curr_state)
1'b0: ram_rd_en_fwft <= ~FIFOEMPTY;
1'b1: ram_rd_en_fwft <= ~FIFOEMPTY & RD_EN;
default: ram_rd_en_fwft <= 1'b0;
endcase
end
assign ram_regout_en = ram_rd_en_fwft;
assign ram_rd_en = ram_rd_en_fwft;
end endgenerate // gll_fifo
//***************************************************************************
// Calculate RAMVALID_P0_OUT
// RAMVALID_P0_OUT indicates that the data in Stage1 is valid.
//
// If the RAM is being read from on this clock cycle (ram_rd_en=1), then
// RAMVALID_P0_OUT is certainly going to be true.
// If the RAM is not being read from, but the output registers are being
// updated to fill Stage2 (ram_regout_en=1), then Stage1 will be emptying,
// therefore causing RAMVALID_P0_OUT to be false.
// Otherwise, RAMVALID_P0_OUT will remain unchanged.
//***************************************************************************
// PROCESS regout_valid
generate if (C_FIFO_TYPE < 2) begin : gnll_fifo_ram_valid
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
// asynchronous reset (active high)
ram_valid_i <= #`TCQ 1'b0;
end else begin
if (srst_i) begin
// synchronous reset (active high)
ram_valid_i <= #`TCQ 1'b0;
end else begin
if (ram_rd_en == 1'b1) begin
ram_valid_i <= #`TCQ 1'b1;
end else begin
if (ram_regout_en == 1'b1)
ram_valid_i <= #`TCQ 1'b0;
else
ram_valid_i <= #`TCQ ram_valid_i;
end
end //srst_i
end //rd_rst_i
end //always
end endgenerate // gnll_fifo_ram_valid
//***************************************************************************
// Calculate READ_DATA_VALID
// READ_DATA_VALID indicates whether the value in Stage2 is valid or not.
// Stage2 has valid data whenever Stage1 had valid data and
// ram_regout_en_i=1, such that the data in Stage1 is propogated
// into Stage2.
//***************************************************************************
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i)
read_data_valid_i <= #`TCQ 1'b0;
else if (srst_i)
read_data_valid_i <= #`TCQ 1'b0;
else
read_data_valid_i <= #`TCQ ram_valid_i | (read_data_valid_i & ~RD_EN);
end //always
//**************************************************************************
// Calculate EMPTY
// Defined as the inverse of READ_DATA_VALID
//
// Description:
//
// If read_data_valid_i indicates that the output is not valid,
// and there is no valid data on the output of the ram to preload it
// with, then we will report empty.
//
// If there is no valid data on the output of the ram and we are
// reading, then the FIFO will go empty.
//
//**************************************************************************
generate if (C_FIFO_TYPE < 2) begin : gnll_fifo_empty
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
// asynchronous reset (active high)
empty_i <= #`TCQ 1'b1;
end else begin
if (srst_i) begin
// synchronous reset (active high)
empty_i <= #`TCQ 1'b1;
end else begin
// rising clock edge
empty_i <= #`TCQ (~ram_valid_i & ~read_data_valid_i) | (~ram_valid_i & RD_EN);
end
end
end //always
end endgenerate // gnll_fifo_empty
// Register RD_EN from user to calculate USERUNDERFLOW.
// Register empty_i to calculate USERUNDERFLOW.
always @ (posedge RD_CLK) begin
rd_en_q <= #`TCQ RD_EN;
empty_q <= #`TCQ empty_i;
end //always
//***************************************************************************
// Calculate user_almost_empty
// user_almost_empty is defined such that, unless more words are written
// to the FIFO, the next read will cause the FIFO to go EMPTY.
//
// In most cases, whenever the output registers are updated (due to a user
// read or a preload condition), then user_almost_empty will update to
// whatever RAM_EMPTY is.
//
// The exception is when the output is valid, the user is not reading, and
// Stage1 is not empty. In this condition, Stage1 will be preloaded from the
// memory, so we need to make sure user_almost_empty deasserts properly under
// this condition.
//***************************************************************************
always @ (posedge RD_CLK or posedge rd_rst_i)
begin
if (rd_rst_i) begin // asynchronous reset (active high)
almost_empty_i <= #`TCQ 1'b1;
almost_empty_q <= #`TCQ 1'b1;
end else begin // rising clock edge
if (srst_i) begin // synchronous reset (active high)
almost_empty_i <= #`TCQ 1'b1;
almost_empty_q <= #`TCQ 1'b1;
end else begin
if ((ram_regout_en) | (~FIFOEMPTY & read_data_valid_i & ~RD_EN)) begin
almost_empty_i <= #`TCQ FIFOEMPTY;
end
almost_empty_q <= #`TCQ empty_i;
end
end
end //always
assign USEREMPTY = empty_i;
assign USERALMOSTEMPTY = almost_empty_i;
assign FIFORDEN = ram_rd_en;
assign RAMVALID = ram_valid_i;
assign USERVALID = C_USERVALID_LOW ? ~read_data_valid_i : read_data_valid_i;
assign USERUNDERFLOW = C_USERUNDERFLOW_LOW ? ~(empty_q & rd_en_q) : empty_q & rd_en_q;
// BRAM resets synchronously
always @ (posedge RD_CLK)
begin
if (rd_rst_i || srst_i) begin
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE < 2)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end //always
always @ (posedge RD_CLK or posedge rd_rst_i)
begin
if (rd_rst_i) begin //asynchronous reset (active high)
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
// DRAM resets asynchronously
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2) //asynchronous reset (active high)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end else begin // rising clock edge
if (srst_i) begin
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end else begin
if (ram_regout_en) begin
USERDATA <= #`TCQ FIFODATA;
USERSBITERR <= #`TCQ FIFOSBITERR;
USERDBITERR <= #`TCQ FIFODBITERR;
end
end
end
end //always
endmodule
//-----------------------------------------------------------------------------
//
// Register Slice
// Register one AXI channel on forward and/or reverse signal path
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
// reg_slice
//
//--------------------------------------------------------------------------
module fifo_generator_v12_0_axic_reg_slice #
(
parameter C_FAMILY = "virtex7",
parameter C_DATA_WIDTH = 32,
parameter C_REG_CONFIG = 32'h00000000
)
(
// System Signals
input wire ACLK,
input wire ARESET,
// Slave side
input wire [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA,
input wire S_VALID,
output wire S_READY,
// Master side
output wire [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA,
output wire M_VALID,
input wire M_READY
);
generate
////////////////////////////////////////////////////////////////////
//
// Both FWD and REV mode
//
////////////////////////////////////////////////////////////////////
if (C_REG_CONFIG == 32'h00000000)
begin
reg [1:0] state;
localparam [1:0]
ZERO = 2'b10,
ONE = 2'b11,
TWO = 2'b01;
reg [C_DATA_WIDTH-1:0] storage_data1 = 0;
reg [C_DATA_WIDTH-1:0] storage_data2 = 0;
reg load_s1;
wire load_s2;
wire load_s1_from_s2;
reg s_ready_i; //local signal of output
wire m_valid_i; //local signal of output
// assign local signal to its output signal
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
reg areset_d1; // Reset delay register
always @(posedge ACLK) begin
areset_d1 <= ARESET;
end
// Load storage1 with either slave side data or from storage2
always @(posedge ACLK)
begin
if (load_s1)
if (load_s1_from_s2)
storage_data1 <= storage_data2;
else
storage_data1 <= S_PAYLOAD_DATA;
end
// Load storage2 with slave side data
always @(posedge ACLK)
begin
if (load_s2)
storage_data2 <= S_PAYLOAD_DATA;
end
assign M_PAYLOAD_DATA = storage_data1;
// Always load s2 on a valid transaction even if it's unnecessary
assign load_s2 = S_VALID & s_ready_i;
// Loading s1
always @ *
begin
if ( ((state == ZERO) && (S_VALID == 1)) || // Load when empty on slave transaction
// Load when ONE if we both have read and write at the same time
((state == ONE) && (S_VALID == 1) && (M_READY == 1)) ||
// Load when TWO and we have a transaction on Master side
((state == TWO) && (M_READY == 1)))
load_s1 = 1'b1;
else
load_s1 = 1'b0;
end // always @ *
assign load_s1_from_s2 = (state == TWO);
// State Machine for handling output signals
always @(posedge ACLK) begin
if (ARESET) begin
s_ready_i <= 1'b0;
state <= ZERO;
end else if (areset_d1) begin
s_ready_i <= 1'b1;
end else begin
case (state)
// No transaction stored locally
ZERO: if (S_VALID) state <= ONE; // Got one so move to ONE
// One transaction stored locally
ONE: begin
if (M_READY & ~S_VALID) state <= ZERO; // Read out one so move to ZERO
if (~M_READY & S_VALID) begin
state <= TWO; // Got another one so move to TWO
s_ready_i <= 1'b0;
end
end
// TWO transaction stored locally
TWO: if (M_READY) begin
state <= ONE; // Read out one so move to ONE
s_ready_i <= 1'b1;
end
endcase // case (state)
end
end // always @ (posedge ACLK)
assign m_valid_i = state[0];
end // if (C_REG_CONFIG == 1)
////////////////////////////////////////////////////////////////////
//
// 1-stage pipeline register with bubble cycle, both FWD and REV pipelining
// Operates same as 1-deep FIFO
//
////////////////////////////////////////////////////////////////////
else if (C_REG_CONFIG == 32'h00000001)
begin
reg [C_DATA_WIDTH-1:0] storage_data1 = 0;
reg s_ready_i; //local signal of output
reg m_valid_i; //local signal of output
// assign local signal to its output signal
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
reg areset_d1; // Reset delay register
always @(posedge ACLK) begin
areset_d1 <= ARESET;
end
// Load storage1 with slave side data
always @(posedge ACLK)
begin
if (ARESET) begin
s_ready_i <= 1'b0;
m_valid_i <= 1'b0;
end else if (areset_d1) begin
s_ready_i <= 1'b1;
end else if (m_valid_i & M_READY) begin
s_ready_i <= 1'b1;
m_valid_i <= 1'b0;
end else if (S_VALID & s_ready_i) begin
s_ready_i <= 1'b0;
m_valid_i <= 1'b1;
end
if (~m_valid_i) begin
storage_data1 <= S_PAYLOAD_DATA;
end
end
assign M_PAYLOAD_DATA = storage_data1;
end // if (C_REG_CONFIG == 7)
else begin : default_case
// Passthrough
assign M_PAYLOAD_DATA = S_PAYLOAD_DATA;
assign M_VALID = S_VALID;
assign S_READY = M_READY;
end
endgenerate
endmodule // reg_slice
|
/*
*******************************************************************************
*
* FIFO Generator - Verilog Behavioral Model
*
*******************************************************************************
*
* (c) Copyright 1995 - 2009 Xilinx, Inc. All rights reserved.
*
* This file contains confidential and proprietary information
* of Xilinx, Inc. and is protected under U.S. and
* international copyright and other intellectual property
* laws.
*
* DISCLAIMER
* This disclaimer is not a license and does not grant any
* rights to the materials distributed herewith. Except as
* otherwise provided in a valid license issued to you by
* Xilinx, and to the maximum extent permitted by applicable
* law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
* WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
* AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
* BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
* INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
* (2) Xilinx shall not be liable (whether in contract or tort,
* including negligence, or under any other theory of
* liability) for any loss or damage of any kind or nature
* related to, arising under or in connection with these
* materials, including for any direct, or any indirect,
* special, incidental, or consequential loss or damage
* (including loss of data, profits, goodwill, or any type of
* loss or damage suffered as a result of any action brought
* by a third party) even if such damage or loss was
* reasonably foreseeable or Xilinx had been advised of the
* possibility of the same.
*
* CRITICAL APPLICATIONS
* Xilinx products are not designed or intended to be fail-
* safe, or for use in any application requiring fail-safe
* performance, such as life-support or safety devices or
* systems, Class III medical devices, nuclear facilities,
* applications related to the deployment of airbags, or any
* other applications that could lead to death, personal
* injury, or severe property or environmental damage
* (individually and collectively, "Critical
* Applications"). Customer assumes the sole risk and
* liability of any use of Xilinx products in Critical
* Applications, subject only to applicable laws and
* regulations governing limitations on product liability.
*
* THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
* PART OF THIS FILE AT ALL TIMES.
*
*******************************************************************************
*******************************************************************************
*
* Filename: fifo_generator_vlog_beh.v
*
* Author : Xilinx
*
*******************************************************************************
* Structure:
*
* fifo_generator_vlog_beh.v
* |
* +-fifo_generator_v12_0_bhv_ver_as
* |
* +-fifo_generator_v12_0_bhv_ver_ss
* |
* +-fifo_generator_v12_0_bhv_ver_preload0
*
*******************************************************************************
* Description:
*
* The Verilog behavioral model for the FIFO Generator.
*
* The behavioral model has three parts:
* - The behavioral model for independent clocks FIFOs (_as)
* - The behavioral model for common clock FIFOs (_ss)
* - The "preload logic" block which implements First-word Fall-through
*
*******************************************************************************
* Description:
* The verilog behavioral model for the FIFO generator core.
*
*******************************************************************************
*/
`timescale 1ps/1ps
`ifndef TCQ
`define TCQ 100
`endif
/*******************************************************************************
* Declaration of top-level module
******************************************************************************/
module fifo_generator_vlog_beh
#(
//-----------------------------------------------------------------------
// Generic Declarations
//-----------------------------------------------------------------------
parameter C_COMMON_CLOCK = 0,
parameter C_COUNT_TYPE = 0,
parameter C_DATA_COUNT_WIDTH = 2,
parameter C_DEFAULT_VALUE = "",
parameter C_DIN_WIDTH = 8,
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_ENABLE_RLOCS = 0,
parameter C_FAMILY = "",
parameter C_FULL_FLAGS_RST_VAL = 1,
parameter C_HAS_ALMOST_EMPTY = 0,
parameter C_HAS_ALMOST_FULL = 0,
parameter C_HAS_BACKUP = 0,
parameter C_HAS_DATA_COUNT = 0,
parameter C_HAS_INT_CLK = 0,
parameter C_HAS_MEMINIT_FILE = 0,
parameter C_HAS_OVERFLOW = 0,
parameter C_HAS_RD_DATA_COUNT = 0,
parameter C_HAS_RD_RST = 0,
parameter C_HAS_RST = 1,
parameter C_HAS_SRST = 0,
parameter C_HAS_UNDERFLOW = 0,
parameter C_HAS_VALID = 0,
parameter C_HAS_WR_ACK = 0,
parameter C_HAS_WR_DATA_COUNT = 0,
parameter C_HAS_WR_RST = 0,
parameter C_IMPLEMENTATION_TYPE = 0,
parameter C_INIT_WR_PNTR_VAL = 0,
parameter C_MEMORY_TYPE = 1,
parameter C_MIF_FILE_NAME = "",
parameter C_OPTIMIZATION_MODE = 0,
parameter C_OVERFLOW_LOW = 0,
parameter C_PRELOAD_LATENCY = 1,
parameter C_PRELOAD_REGS = 0,
parameter C_PRIM_FIFO_TYPE = "4kx4",
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0,
parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0,
parameter C_PROG_EMPTY_TYPE = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0,
parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0,
parameter C_PROG_FULL_TYPE = 0,
parameter C_RD_DATA_COUNT_WIDTH = 2,
parameter C_RD_DEPTH = 256,
parameter C_RD_FREQ = 1,
parameter C_RD_PNTR_WIDTH = 8,
parameter C_UNDERFLOW_LOW = 0,
parameter C_USE_DOUT_RST = 0,
parameter C_USE_ECC = 0,
parameter C_USE_EMBEDDED_REG = 0,
parameter C_USE_PIPELINE_REG = 0,
parameter C_POWER_SAVING_MODE = 0,
parameter C_USE_FIFO16_FLAGS = 0,
parameter C_USE_FWFT_DATA_COUNT = 0,
parameter C_VALID_LOW = 0,
parameter C_WR_ACK_LOW = 0,
parameter C_WR_DATA_COUNT_WIDTH = 2,
parameter C_WR_DEPTH = 256,
parameter C_WR_FREQ = 1,
parameter C_WR_PNTR_WIDTH = 8,
parameter C_WR_RESPONSE_LATENCY = 1,
parameter C_MSGON_VAL = 1,
parameter C_ENABLE_RST_SYNC = 1,
parameter C_ERROR_INJECTION_TYPE = 0,
parameter C_SYNCHRONIZER_STAGE = 2,
// AXI Interface related parameters start here
parameter C_INTERFACE_TYPE = 0, // 0: Native Interface, 1: AXI4 Stream, 2: AXI4/AXI3
parameter C_AXI_TYPE = 0, // 1: AXI4, 2: AXI4 Lite, 3: AXI3
parameter C_HAS_AXI_WR_CHANNEL = 0,
parameter C_HAS_AXI_RD_CHANNEL = 0,
parameter C_HAS_SLAVE_CE = 0,
parameter C_HAS_MASTER_CE = 0,
parameter C_ADD_NGC_CONSTRAINT = 0,
parameter C_USE_COMMON_UNDERFLOW = 0,
parameter C_USE_COMMON_OVERFLOW = 0,
parameter C_USE_DEFAULT_SETTINGS = 0,
// AXI Full/Lite
parameter C_AXI_ID_WIDTH = 0,
parameter C_AXI_ADDR_WIDTH = 0,
parameter C_AXI_DATA_WIDTH = 0,
parameter C_AXI_LEN_WIDTH = 8,
parameter C_AXI_LOCK_WIDTH = 2,
parameter C_HAS_AXI_ID = 0,
parameter C_HAS_AXI_AWUSER = 0,
parameter C_HAS_AXI_WUSER = 0,
parameter C_HAS_AXI_BUSER = 0,
parameter C_HAS_AXI_ARUSER = 0,
parameter C_HAS_AXI_RUSER = 0,
parameter C_AXI_ARUSER_WIDTH = 0,
parameter C_AXI_AWUSER_WIDTH = 0,
parameter C_AXI_WUSER_WIDTH = 0,
parameter C_AXI_BUSER_WIDTH = 0,
parameter C_AXI_RUSER_WIDTH = 0,
// AXI Streaming
parameter C_HAS_AXIS_TDATA = 0,
parameter C_HAS_AXIS_TID = 0,
parameter C_HAS_AXIS_TDEST = 0,
parameter C_HAS_AXIS_TUSER = 0,
parameter C_HAS_AXIS_TREADY = 0,
parameter C_HAS_AXIS_TLAST = 0,
parameter C_HAS_AXIS_TSTRB = 0,
parameter C_HAS_AXIS_TKEEP = 0,
parameter C_AXIS_TDATA_WIDTH = 1,
parameter C_AXIS_TID_WIDTH = 1,
parameter C_AXIS_TDEST_WIDTH = 1,
parameter C_AXIS_TUSER_WIDTH = 1,
parameter C_AXIS_TSTRB_WIDTH = 1,
parameter C_AXIS_TKEEP_WIDTH = 1,
// AXI Channel Type
// WACH --> Write Address Channel
// WDCH --> Write Data Channel
// WRCH --> Write Response Channel
// RACH --> Read Address Channel
// RDCH --> Read Data Channel
// AXIS --> AXI Streaming
parameter C_WACH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logic
parameter C_WDCH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie
parameter C_WRCH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie
parameter C_RACH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie
parameter C_RDCH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie
parameter C_AXIS_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie
// AXI Implementation Type
// 1 = Common Clock Block RAM FIFO
// 2 = Common Clock Distributed RAM FIFO
// 11 = Independent Clock Block RAM FIFO
// 12 = Independent Clock Distributed RAM FIFO
parameter C_IMPLEMENTATION_TYPE_WACH = 0,
parameter C_IMPLEMENTATION_TYPE_WDCH = 0,
parameter C_IMPLEMENTATION_TYPE_WRCH = 0,
parameter C_IMPLEMENTATION_TYPE_RACH = 0,
parameter C_IMPLEMENTATION_TYPE_RDCH = 0,
parameter C_IMPLEMENTATION_TYPE_AXIS = 0,
// AXI FIFO Type
// 0 = Data FIFO
// 1 = Packet FIFO
// 2 = Low Latency Sync FIFO
// 3 = Low Latency Async FIFO
parameter C_APPLICATION_TYPE_WACH = 0,
parameter C_APPLICATION_TYPE_WDCH = 0,
parameter C_APPLICATION_TYPE_WRCH = 0,
parameter C_APPLICATION_TYPE_RACH = 0,
parameter C_APPLICATION_TYPE_RDCH = 0,
parameter C_APPLICATION_TYPE_AXIS = 0,
// AXI Built-in FIFO Primitive Type
// 512x36, 1kx18, 2kx9, 4kx4, etc
parameter C_PRIM_FIFO_TYPE_WACH = "512x36",
parameter C_PRIM_FIFO_TYPE_WDCH = "512x36",
parameter C_PRIM_FIFO_TYPE_WRCH = "512x36",
parameter C_PRIM_FIFO_TYPE_RACH = "512x36",
parameter C_PRIM_FIFO_TYPE_RDCH = "512x36",
parameter C_PRIM_FIFO_TYPE_AXIS = "512x36",
// Enable ECC
// 0 = ECC disabled
// 1 = ECC enabled
parameter C_USE_ECC_WACH = 0,
parameter C_USE_ECC_WDCH = 0,
parameter C_USE_ECC_WRCH = 0,
parameter C_USE_ECC_RACH = 0,
parameter C_USE_ECC_RDCH = 0,
parameter C_USE_ECC_AXIS = 0,
// ECC Error Injection Type
// 0 = No Error Injection
// 1 = Single Bit Error Injection
// 2 = Double Bit Error Injection
// 3 = Single Bit and Double Bit Error Injection
parameter C_ERROR_INJECTION_TYPE_WACH = 0,
parameter C_ERROR_INJECTION_TYPE_WDCH = 0,
parameter C_ERROR_INJECTION_TYPE_WRCH = 0,
parameter C_ERROR_INJECTION_TYPE_RACH = 0,
parameter C_ERROR_INJECTION_TYPE_RDCH = 0,
parameter C_ERROR_INJECTION_TYPE_AXIS = 0,
// Input Data Width
// Accumulation of all AXI input signal's width
parameter C_DIN_WIDTH_WACH = 1,
parameter C_DIN_WIDTH_WDCH = 1,
parameter C_DIN_WIDTH_WRCH = 1,
parameter C_DIN_WIDTH_RACH = 1,
parameter C_DIN_WIDTH_RDCH = 1,
parameter C_DIN_WIDTH_AXIS = 1,
parameter C_WR_DEPTH_WACH = 16,
parameter C_WR_DEPTH_WDCH = 16,
parameter C_WR_DEPTH_WRCH = 16,
parameter C_WR_DEPTH_RACH = 16,
parameter C_WR_DEPTH_RDCH = 16,
parameter C_WR_DEPTH_AXIS = 16,
parameter C_WR_PNTR_WIDTH_WACH = 4,
parameter C_WR_PNTR_WIDTH_WDCH = 4,
parameter C_WR_PNTR_WIDTH_WRCH = 4,
parameter C_WR_PNTR_WIDTH_RACH = 4,
parameter C_WR_PNTR_WIDTH_RDCH = 4,
parameter C_WR_PNTR_WIDTH_AXIS = 4,
parameter C_HAS_DATA_COUNTS_WACH = 0,
parameter C_HAS_DATA_COUNTS_WDCH = 0,
parameter C_HAS_DATA_COUNTS_WRCH = 0,
parameter C_HAS_DATA_COUNTS_RACH = 0,
parameter C_HAS_DATA_COUNTS_RDCH = 0,
parameter C_HAS_DATA_COUNTS_AXIS = 0,
parameter C_HAS_PROG_FLAGS_WACH = 0,
parameter C_HAS_PROG_FLAGS_WDCH = 0,
parameter C_HAS_PROG_FLAGS_WRCH = 0,
parameter C_HAS_PROG_FLAGS_RACH = 0,
parameter C_HAS_PROG_FLAGS_RDCH = 0,
parameter C_HAS_PROG_FLAGS_AXIS = 0,
parameter C_PROG_FULL_TYPE_WACH = 0,
parameter C_PROG_FULL_TYPE_WDCH = 0,
parameter C_PROG_FULL_TYPE_WRCH = 0,
parameter C_PROG_FULL_TYPE_RACH = 0,
parameter C_PROG_FULL_TYPE_RDCH = 0,
parameter C_PROG_FULL_TYPE_AXIS = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_WACH = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_WDCH = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_WRCH = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_RACH = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_RDCH = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_AXIS = 0,
parameter C_PROG_EMPTY_TYPE_WACH = 0,
parameter C_PROG_EMPTY_TYPE_WDCH = 0,
parameter C_PROG_EMPTY_TYPE_WRCH = 0,
parameter C_PROG_EMPTY_TYPE_RACH = 0,
parameter C_PROG_EMPTY_TYPE_RDCH = 0,
parameter C_PROG_EMPTY_TYPE_AXIS = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS = 0,
parameter C_REG_SLICE_MODE_WACH = 0,
parameter C_REG_SLICE_MODE_WDCH = 0,
parameter C_REG_SLICE_MODE_WRCH = 0,
parameter C_REG_SLICE_MODE_RACH = 0,
parameter C_REG_SLICE_MODE_RDCH = 0,
parameter C_REG_SLICE_MODE_AXIS = 0
)
(
//------------------------------------------------------------------------------
// Input and Output Declarations
//------------------------------------------------------------------------------
// Conventional FIFO Interface Signals
input backup,
input backup_marker,
input clk,
input rst,
input srst,
input wr_clk,
input wr_rst,
input rd_clk,
input rd_rst,
input [C_DIN_WIDTH-1:0] din,
input wr_en,
input rd_en,
// Optional inputs
input [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh,
input [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_assert,
input [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_negate,
input [C_WR_PNTR_WIDTH-1:0] prog_full_thresh,
input [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_assert,
input [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_negate,
input int_clk,
input injectdbiterr,
input injectsbiterr,
input sleep,
output [C_DOUT_WIDTH-1:0] dout,
output full,
output almost_full,
output wr_ack,
output overflow,
output empty,
output almost_empty,
output valid,
output underflow,
output [C_DATA_COUNT_WIDTH-1:0] data_count,
output [C_RD_DATA_COUNT_WIDTH-1:0] rd_data_count,
output [C_WR_DATA_COUNT_WIDTH-1:0] wr_data_count,
output prog_full,
output prog_empty,
output sbiterr,
output dbiterr,
output wr_rst_busy,
output rd_rst_busy,
// AXI Global Signal
input m_aclk,
input s_aclk,
input s_aresetn,
input s_aclk_en,
input m_aclk_en,
// AXI Full/Lite Slave Write Channel (write side)
input [C_AXI_ID_WIDTH-1:0] s_axi_awid,
input [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr,
input [C_AXI_LEN_WIDTH-1:0] s_axi_awlen,
input [3-1:0] s_axi_awsize,
input [2-1:0] s_axi_awburst,
input [C_AXI_LOCK_WIDTH-1:0] s_axi_awlock,
input [4-1:0] s_axi_awcache,
input [3-1:0] s_axi_awprot,
input [4-1:0] s_axi_awqos,
input [4-1:0] s_axi_awregion,
input [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser,
input s_axi_awvalid,
output s_axi_awready,
input [C_AXI_ID_WIDTH-1:0] s_axi_wid,
input [C_AXI_DATA_WIDTH-1:0] s_axi_wdata,
input [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb,
input s_axi_wlast,
input [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser,
input s_axi_wvalid,
output s_axi_wready,
output [C_AXI_ID_WIDTH-1:0] s_axi_bid,
output [2-1:0] s_axi_bresp,
output [C_AXI_BUSER_WIDTH-1:0] s_axi_buser,
output s_axi_bvalid,
input s_axi_bready,
// AXI Full/Lite Master Write Channel (read side)
output [C_AXI_ID_WIDTH-1:0] m_axi_awid,
output [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr,
output [C_AXI_LEN_WIDTH-1:0] m_axi_awlen,
output [3-1:0] m_axi_awsize,
output [2-1:0] m_axi_awburst,
output [C_AXI_LOCK_WIDTH-1:0] m_axi_awlock,
output [4-1:0] m_axi_awcache,
output [3-1:0] m_axi_awprot,
output [4-1:0] m_axi_awqos,
output [4-1:0] m_axi_awregion,
output [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser,
output m_axi_awvalid,
input m_axi_awready,
output [C_AXI_ID_WIDTH-1:0] m_axi_wid,
output [C_AXI_DATA_WIDTH-1:0] m_axi_wdata,
output [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb,
output m_axi_wlast,
output [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser,
output m_axi_wvalid,
input m_axi_wready,
input [C_AXI_ID_WIDTH-1:0] m_axi_bid,
input [2-1:0] m_axi_bresp,
input [C_AXI_BUSER_WIDTH-1:0] m_axi_buser,
input m_axi_bvalid,
output m_axi_bready,
// AXI Full/Lite Slave Read Channel (write side)
input [C_AXI_ID_WIDTH-1:0] s_axi_arid,
input [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr,
input [C_AXI_LEN_WIDTH-1:0] s_axi_arlen,
input [3-1:0] s_axi_arsize,
input [2-1:0] s_axi_arburst,
input [C_AXI_LOCK_WIDTH-1:0] s_axi_arlock,
input [4-1:0] s_axi_arcache,
input [3-1:0] s_axi_arprot,
input [4-1:0] s_axi_arqos,
input [4-1:0] s_axi_arregion,
input [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser,
input s_axi_arvalid,
output s_axi_arready,
output [C_AXI_ID_WIDTH-1:0] s_axi_rid,
output [C_AXI_DATA_WIDTH-1:0] s_axi_rdata,
output [2-1:0] s_axi_rresp,
output s_axi_rlast,
output [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser,
output s_axi_rvalid,
input s_axi_rready,
// AXI Full/Lite Master Read Channel (read side)
output [C_AXI_ID_WIDTH-1:0] m_axi_arid,
output [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr,
output [C_AXI_LEN_WIDTH-1:0] m_axi_arlen,
output [3-1:0] m_axi_arsize,
output [2-1:0] m_axi_arburst,
output [C_AXI_LOCK_WIDTH-1:0] m_axi_arlock,
output [4-1:0] m_axi_arcache,
output [3-1:0] m_axi_arprot,
output [4-1:0] m_axi_arqos,
output [4-1:0] m_axi_arregion,
output [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser,
output m_axi_arvalid,
input m_axi_arready,
input [C_AXI_ID_WIDTH-1:0] m_axi_rid,
input [C_AXI_DATA_WIDTH-1:0] m_axi_rdata,
input [2-1:0] m_axi_rresp,
input m_axi_rlast,
input [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser,
input m_axi_rvalid,
output m_axi_rready,
// AXI Streaming Slave Signals (Write side)
input s_axis_tvalid,
output s_axis_tready,
input [C_AXIS_TDATA_WIDTH-1:0] s_axis_tdata,
input [C_AXIS_TSTRB_WIDTH-1:0] s_axis_tstrb,
input [C_AXIS_TKEEP_WIDTH-1:0] s_axis_tkeep,
input s_axis_tlast,
input [C_AXIS_TID_WIDTH-1:0] s_axis_tid,
input [C_AXIS_TDEST_WIDTH-1:0] s_axis_tdest,
input [C_AXIS_TUSER_WIDTH-1:0] s_axis_tuser,
// AXI Streaming Master Signals (Read side)
output m_axis_tvalid,
input m_axis_tready,
output [C_AXIS_TDATA_WIDTH-1:0] m_axis_tdata,
output [C_AXIS_TSTRB_WIDTH-1:0] m_axis_tstrb,
output [C_AXIS_TKEEP_WIDTH-1:0] m_axis_tkeep,
output m_axis_tlast,
output [C_AXIS_TID_WIDTH-1:0] m_axis_tid,
output [C_AXIS_TDEST_WIDTH-1:0] m_axis_tdest,
output [C_AXIS_TUSER_WIDTH-1:0] m_axis_tuser,
// AXI Full/Lite Write Address Channel signals
input axi_aw_injectsbiterr,
input axi_aw_injectdbiterr,
input [C_WR_PNTR_WIDTH_WACH-1:0] axi_aw_prog_full_thresh,
input [C_WR_PNTR_WIDTH_WACH-1:0] axi_aw_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_WACH:0] axi_aw_data_count,
output [C_WR_PNTR_WIDTH_WACH:0] axi_aw_wr_data_count,
output [C_WR_PNTR_WIDTH_WACH:0] axi_aw_rd_data_count,
output axi_aw_sbiterr,
output axi_aw_dbiterr,
output axi_aw_overflow,
output axi_aw_underflow,
output axi_aw_prog_full,
output axi_aw_prog_empty,
// AXI Full/Lite Write Data Channel signals
input axi_w_injectsbiterr,
input axi_w_injectdbiterr,
input [C_WR_PNTR_WIDTH_WDCH-1:0] axi_w_prog_full_thresh,
input [C_WR_PNTR_WIDTH_WDCH-1:0] axi_w_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_WDCH:0] axi_w_data_count,
output [C_WR_PNTR_WIDTH_WDCH:0] axi_w_wr_data_count,
output [C_WR_PNTR_WIDTH_WDCH:0] axi_w_rd_data_count,
output axi_w_sbiterr,
output axi_w_dbiterr,
output axi_w_overflow,
output axi_w_underflow,
output axi_w_prog_full,
output axi_w_prog_empty,
// AXI Full/Lite Write Response Channel signals
input axi_b_injectsbiterr,
input axi_b_injectdbiterr,
input [C_WR_PNTR_WIDTH_WRCH-1:0] axi_b_prog_full_thresh,
input [C_WR_PNTR_WIDTH_WRCH-1:0] axi_b_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_WRCH:0] axi_b_data_count,
output [C_WR_PNTR_WIDTH_WRCH:0] axi_b_wr_data_count,
output [C_WR_PNTR_WIDTH_WRCH:0] axi_b_rd_data_count,
output axi_b_sbiterr,
output axi_b_dbiterr,
output axi_b_overflow,
output axi_b_underflow,
output axi_b_prog_full,
output axi_b_prog_empty,
// AXI Full/Lite Read Address Channel signals
input axi_ar_injectsbiterr,
input axi_ar_injectdbiterr,
input [C_WR_PNTR_WIDTH_RACH-1:0] axi_ar_prog_full_thresh,
input [C_WR_PNTR_WIDTH_RACH-1:0] axi_ar_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_RACH:0] axi_ar_data_count,
output [C_WR_PNTR_WIDTH_RACH:0] axi_ar_wr_data_count,
output [C_WR_PNTR_WIDTH_RACH:0] axi_ar_rd_data_count,
output axi_ar_sbiterr,
output axi_ar_dbiterr,
output axi_ar_overflow,
output axi_ar_underflow,
output axi_ar_prog_full,
output axi_ar_prog_empty,
// AXI Full/Lite Read Data Channel Signals
input axi_r_injectsbiterr,
input axi_r_injectdbiterr,
input [C_WR_PNTR_WIDTH_RDCH-1:0] axi_r_prog_full_thresh,
input [C_WR_PNTR_WIDTH_RDCH-1:0] axi_r_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_RDCH:0] axi_r_data_count,
output [C_WR_PNTR_WIDTH_RDCH:0] axi_r_wr_data_count,
output [C_WR_PNTR_WIDTH_RDCH:0] axi_r_rd_data_count,
output axi_r_sbiterr,
output axi_r_dbiterr,
output axi_r_overflow,
output axi_r_underflow,
output axi_r_prog_full,
output axi_r_prog_empty,
// AXI Streaming FIFO Related Signals
input axis_injectsbiterr,
input axis_injectdbiterr,
input [C_WR_PNTR_WIDTH_AXIS-1:0] axis_prog_full_thresh,
input [C_WR_PNTR_WIDTH_AXIS-1:0] axis_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_AXIS:0] axis_data_count,
output [C_WR_PNTR_WIDTH_AXIS:0] axis_wr_data_count,
output [C_WR_PNTR_WIDTH_AXIS:0] axis_rd_data_count,
output axis_sbiterr,
output axis_dbiterr,
output axis_overflow,
output axis_underflow,
output axis_prog_full,
output axis_prog_empty
);
wire BACKUP;
wire BACKUP_MARKER;
wire CLK;
wire RST;
wire SRST;
wire WR_CLK;
wire WR_RST;
wire RD_CLK;
wire RD_RST;
wire [C_DIN_WIDTH-1:0] DIN;
wire WR_EN;
wire RD_EN;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE;
wire INT_CLK;
wire INJECTDBITERR;
wire INJECTSBITERR;
wire SLEEP;
wire [C_DOUT_WIDTH-1:0] DOUT;
wire FULL;
wire ALMOST_FULL;
wire WR_ACK;
wire OVERFLOW;
wire EMPTY;
wire ALMOST_EMPTY;
wire VALID;
wire UNDERFLOW;
wire [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT;
wire [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT;
wire [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT;
wire PROG_FULL;
wire PROG_EMPTY;
wire SBITERR;
wire DBITERR;
wire WR_RST_BUSY;
wire RD_RST_BUSY;
wire M_ACLK;
wire S_ACLK;
wire S_ARESETN;
wire S_ACLK_EN;
wire M_ACLK_EN;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID;
wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR;
wire [C_AXI_LEN_WIDTH-1:0] S_AXI_AWLEN;
wire [3-1:0] S_AXI_AWSIZE;
wire [2-1:0] S_AXI_AWBURST;
wire [C_AXI_LOCK_WIDTH-1:0] S_AXI_AWLOCK;
wire [4-1:0] S_AXI_AWCACHE;
wire [3-1:0] S_AXI_AWPROT;
wire [4-1:0] S_AXI_AWQOS;
wire [4-1:0] S_AXI_AWREGION;
wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER;
wire S_AXI_AWVALID;
wire S_AXI_AWREADY;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_WID;
wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA;
wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB;
wire S_AXI_WLAST;
wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER;
wire S_AXI_WVALID;
wire S_AXI_WREADY;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID;
wire [2-1:0] S_AXI_BRESP;
wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER;
wire S_AXI_BVALID;
wire S_AXI_BREADY;
wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID;
wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR;
wire [C_AXI_LEN_WIDTH-1:0] M_AXI_AWLEN;
wire [3-1:0] M_AXI_AWSIZE;
wire [2-1:0] M_AXI_AWBURST;
wire [C_AXI_LOCK_WIDTH-1:0] M_AXI_AWLOCK;
wire [4-1:0] M_AXI_AWCACHE;
wire [3-1:0] M_AXI_AWPROT;
wire [4-1:0] M_AXI_AWQOS;
wire [4-1:0] M_AXI_AWREGION;
wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER;
wire M_AXI_AWVALID;
wire M_AXI_AWREADY;
wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID;
wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA;
wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB;
wire M_AXI_WLAST;
wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER;
wire M_AXI_WVALID;
wire M_AXI_WREADY;
wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID;
wire [2-1:0] M_AXI_BRESP;
wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER;
wire M_AXI_BVALID;
wire M_AXI_BREADY;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID;
wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR;
wire [C_AXI_LEN_WIDTH-1:0] S_AXI_ARLEN;
wire [3-1:0] S_AXI_ARSIZE;
wire [2-1:0] S_AXI_ARBURST;
wire [C_AXI_LOCK_WIDTH-1:0] S_AXI_ARLOCK;
wire [4-1:0] S_AXI_ARCACHE;
wire [3-1:0] S_AXI_ARPROT;
wire [4-1:0] S_AXI_ARQOS;
wire [4-1:0] S_AXI_ARREGION;
wire [C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER;
wire S_AXI_ARVALID;
wire S_AXI_ARREADY;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID;
wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA;
wire [2-1:0] S_AXI_RRESP;
wire S_AXI_RLAST;
wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER;
wire S_AXI_RVALID;
wire S_AXI_RREADY;
wire [C_AXI_ID_WIDTH-1:0] M_AXI_ARID;
wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR;
wire [C_AXI_LEN_WIDTH-1:0] M_AXI_ARLEN;
wire [3-1:0] M_AXI_ARSIZE;
wire [2-1:0] M_AXI_ARBURST;
wire [C_AXI_LOCK_WIDTH-1:0] M_AXI_ARLOCK;
wire [4-1:0] M_AXI_ARCACHE;
wire [3-1:0] M_AXI_ARPROT;
wire [4-1:0] M_AXI_ARQOS;
wire [4-1:0] M_AXI_ARREGION;
wire [C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER;
wire M_AXI_ARVALID;
wire M_AXI_ARREADY;
wire [C_AXI_ID_WIDTH-1:0] M_AXI_RID;
wire [C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA;
wire [2-1:0] M_AXI_RRESP;
wire M_AXI_RLAST;
wire [C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER;
wire M_AXI_RVALID;
wire M_AXI_RREADY;
wire S_AXIS_TVALID;
wire S_AXIS_TREADY;
wire [C_AXIS_TDATA_WIDTH-1:0] S_AXIS_TDATA;
wire [C_AXIS_TSTRB_WIDTH-1:0] S_AXIS_TSTRB;
wire [C_AXIS_TKEEP_WIDTH-1:0] S_AXIS_TKEEP;
wire S_AXIS_TLAST;
wire [C_AXIS_TID_WIDTH-1:0] S_AXIS_TID;
wire [C_AXIS_TDEST_WIDTH-1:0] S_AXIS_TDEST;
wire [C_AXIS_TUSER_WIDTH-1:0] S_AXIS_TUSER;
wire M_AXIS_TVALID;
wire M_AXIS_TREADY;
wire [C_AXIS_TDATA_WIDTH-1:0] M_AXIS_TDATA;
wire [C_AXIS_TSTRB_WIDTH-1:0] M_AXIS_TSTRB;
wire [C_AXIS_TKEEP_WIDTH-1:0] M_AXIS_TKEEP;
wire M_AXIS_TLAST;
wire [C_AXIS_TID_WIDTH-1:0] M_AXIS_TID;
wire [C_AXIS_TDEST_WIDTH-1:0] M_AXIS_TDEST;
wire [C_AXIS_TUSER_WIDTH-1:0] M_AXIS_TUSER;
wire AXI_AW_INJECTSBITERR;
wire AXI_AW_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_WACH-1:0] AXI_AW_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_WACH-1:0] AXI_AW_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_WACH:0] AXI_AW_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WACH:0] AXI_AW_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WACH:0] AXI_AW_RD_DATA_COUNT;
wire AXI_AW_SBITERR;
wire AXI_AW_DBITERR;
wire AXI_AW_OVERFLOW;
wire AXI_AW_UNDERFLOW;
wire AXI_AW_PROG_FULL;
wire AXI_AW_PROG_EMPTY;
wire AXI_W_INJECTSBITERR;
wire AXI_W_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_WDCH-1:0] AXI_W_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_WDCH-1:0] AXI_W_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_WDCH:0] AXI_W_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WDCH:0] AXI_W_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WDCH:0] AXI_W_RD_DATA_COUNT;
wire AXI_W_SBITERR;
wire AXI_W_DBITERR;
wire AXI_W_OVERFLOW;
wire AXI_W_UNDERFLOW;
wire AXI_W_PROG_FULL;
wire AXI_W_PROG_EMPTY;
wire AXI_B_INJECTSBITERR;
wire AXI_B_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_WRCH-1:0] AXI_B_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_WRCH-1:0] AXI_B_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_WRCH:0] AXI_B_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WRCH:0] AXI_B_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WRCH:0] AXI_B_RD_DATA_COUNT;
wire AXI_B_SBITERR;
wire AXI_B_DBITERR;
wire AXI_B_OVERFLOW;
wire AXI_B_UNDERFLOW;
wire AXI_B_PROG_FULL;
wire AXI_B_PROG_EMPTY;
wire AXI_AR_INJECTSBITERR;
wire AXI_AR_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_RACH-1:0] AXI_AR_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_RACH-1:0] AXI_AR_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_RACH:0] AXI_AR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_RACH:0] AXI_AR_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_RACH:0] AXI_AR_RD_DATA_COUNT;
wire AXI_AR_SBITERR;
wire AXI_AR_DBITERR;
wire AXI_AR_OVERFLOW;
wire AXI_AR_UNDERFLOW;
wire AXI_AR_PROG_FULL;
wire AXI_AR_PROG_EMPTY;
wire AXI_R_INJECTSBITERR;
wire AXI_R_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_RDCH-1:0] AXI_R_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_RDCH-1:0] AXI_R_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_RDCH:0] AXI_R_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_RDCH:0] AXI_R_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_RDCH:0] AXI_R_RD_DATA_COUNT;
wire AXI_R_SBITERR;
wire AXI_R_DBITERR;
wire AXI_R_OVERFLOW;
wire AXI_R_UNDERFLOW;
wire AXI_R_PROG_FULL;
wire AXI_R_PROG_EMPTY;
wire AXIS_INJECTSBITERR;
wire AXIS_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_AXIS-1:0] AXIS_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_AXIS-1:0] AXIS_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_AXIS:0] AXIS_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_AXIS:0] AXIS_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_AXIS:0] AXIS_RD_DATA_COUNT;
wire AXIS_SBITERR;
wire AXIS_DBITERR;
wire AXIS_OVERFLOW;
wire AXIS_UNDERFLOW;
wire AXIS_PROG_FULL;
wire AXIS_PROG_EMPTY;
wire [C_WR_DATA_COUNT_WIDTH-1:0] wr_data_count_in;
wire wr_rst_int;
wire rd_rst_int;
function integer find_log2;
input integer int_val;
integer i,j;
begin
i = 1;
j = 0;
for (i = 1; i < int_val; i = i*2) begin
j = j + 1;
end
find_log2 = j;
end
endfunction
// Conventional FIFO Interface Signals
assign BACKUP = backup;
assign BACKUP_MARKER = backup_marker;
assign CLK = clk;
assign RST = rst;
assign SRST = srst;
assign WR_CLK = wr_clk;
assign WR_RST = wr_rst;
assign RD_CLK = rd_clk;
assign RD_RST = rd_rst;
assign WR_EN = wr_en;
assign RD_EN = rd_en;
assign INT_CLK = int_clk;
assign INJECTDBITERR = injectdbiterr;
assign INJECTSBITERR = injectsbiterr;
assign SLEEP = sleep;
assign full = FULL;
assign almost_full = ALMOST_FULL;
assign wr_ack = WR_ACK;
assign overflow = OVERFLOW;
assign empty = EMPTY;
assign almost_empty = ALMOST_EMPTY;
assign valid = VALID;
assign underflow = UNDERFLOW;
assign prog_full = PROG_FULL;
assign prog_empty = PROG_EMPTY;
assign sbiterr = SBITERR;
assign dbiterr = DBITERR;
assign wr_rst_busy = WR_RST_BUSY;
assign rd_rst_busy = RD_RST_BUSY;
assign M_ACLK = m_aclk;
assign S_ACLK = s_aclk;
assign S_ARESETN = s_aresetn;
assign S_ACLK_EN = s_aclk_en;
assign M_ACLK_EN = m_aclk_en;
assign S_AXI_AWVALID = s_axi_awvalid;
assign s_axi_awready = S_AXI_AWREADY;
assign S_AXI_WLAST = s_axi_wlast;
assign S_AXI_WVALID = s_axi_wvalid;
assign s_axi_wready = S_AXI_WREADY;
assign s_axi_bvalid = S_AXI_BVALID;
assign S_AXI_BREADY = s_axi_bready;
assign m_axi_awvalid = M_AXI_AWVALID;
assign M_AXI_AWREADY = m_axi_awready;
assign m_axi_wlast = M_AXI_WLAST;
assign m_axi_wvalid = M_AXI_WVALID;
assign M_AXI_WREADY = m_axi_wready;
assign M_AXI_BVALID = m_axi_bvalid;
assign m_axi_bready = M_AXI_BREADY;
assign S_AXI_ARVALID = s_axi_arvalid;
assign s_axi_arready = S_AXI_ARREADY;
assign s_axi_rlast = S_AXI_RLAST;
assign s_axi_rvalid = S_AXI_RVALID;
assign S_AXI_RREADY = s_axi_rready;
assign m_axi_arvalid = M_AXI_ARVALID;
assign M_AXI_ARREADY = m_axi_arready;
assign M_AXI_RLAST = m_axi_rlast;
assign M_AXI_RVALID = m_axi_rvalid;
assign m_axi_rready = M_AXI_RREADY;
assign S_AXIS_TVALID = s_axis_tvalid;
assign s_axis_tready = S_AXIS_TREADY;
assign S_AXIS_TLAST = s_axis_tlast;
assign m_axis_tvalid = M_AXIS_TVALID;
assign M_AXIS_TREADY = m_axis_tready;
assign m_axis_tlast = M_AXIS_TLAST;
assign AXI_AW_INJECTSBITERR = axi_aw_injectsbiterr;
assign AXI_AW_INJECTDBITERR = axi_aw_injectdbiterr;
assign axi_aw_sbiterr = AXI_AW_SBITERR;
assign axi_aw_dbiterr = AXI_AW_DBITERR;
assign axi_aw_overflow = AXI_AW_OVERFLOW;
assign axi_aw_underflow = AXI_AW_UNDERFLOW;
assign axi_aw_prog_full = AXI_AW_PROG_FULL;
assign axi_aw_prog_empty = AXI_AW_PROG_EMPTY;
assign AXI_W_INJECTSBITERR = axi_w_injectsbiterr;
assign AXI_W_INJECTDBITERR = axi_w_injectdbiterr;
assign axi_w_sbiterr = AXI_W_SBITERR;
assign axi_w_dbiterr = AXI_W_DBITERR;
assign axi_w_overflow = AXI_W_OVERFLOW;
assign axi_w_underflow = AXI_W_UNDERFLOW;
assign axi_w_prog_full = AXI_W_PROG_FULL;
assign axi_w_prog_empty = AXI_W_PROG_EMPTY;
assign AXI_B_INJECTSBITERR = axi_b_injectsbiterr;
assign AXI_B_INJECTDBITERR = axi_b_injectdbiterr;
assign axi_b_sbiterr = AXI_B_SBITERR;
assign axi_b_dbiterr = AXI_B_DBITERR;
assign axi_b_overflow = AXI_B_OVERFLOW;
assign axi_b_underflow = AXI_B_UNDERFLOW;
assign axi_b_prog_full = AXI_B_PROG_FULL;
assign axi_b_prog_empty = AXI_B_PROG_EMPTY;
assign AXI_AR_INJECTSBITERR = axi_ar_injectsbiterr;
assign AXI_AR_INJECTDBITERR = axi_ar_injectdbiterr;
assign axi_ar_sbiterr = AXI_AR_SBITERR;
assign axi_ar_dbiterr = AXI_AR_DBITERR;
assign axi_ar_overflow = AXI_AR_OVERFLOW;
assign axi_ar_underflow = AXI_AR_UNDERFLOW;
assign axi_ar_prog_full = AXI_AR_PROG_FULL;
assign axi_ar_prog_empty = AXI_AR_PROG_EMPTY;
assign AXI_R_INJECTSBITERR = axi_r_injectsbiterr;
assign AXI_R_INJECTDBITERR = axi_r_injectdbiterr;
assign axi_r_sbiterr = AXI_R_SBITERR;
assign axi_r_dbiterr = AXI_R_DBITERR;
assign axi_r_overflow = AXI_R_OVERFLOW;
assign axi_r_underflow = AXI_R_UNDERFLOW;
assign axi_r_prog_full = AXI_R_PROG_FULL;
assign axi_r_prog_empty = AXI_R_PROG_EMPTY;
assign AXIS_INJECTSBITERR = axis_injectsbiterr;
assign AXIS_INJECTDBITERR = axis_injectdbiterr;
assign axis_sbiterr = AXIS_SBITERR;
assign axis_dbiterr = AXIS_DBITERR;
assign axis_overflow = AXIS_OVERFLOW;
assign axis_underflow = AXIS_UNDERFLOW;
assign axis_prog_full = AXIS_PROG_FULL;
assign axis_prog_empty = AXIS_PROG_EMPTY;
assign DIN = din;
assign PROG_EMPTY_THRESH = prog_empty_thresh;
assign PROG_EMPTY_THRESH_ASSERT = prog_empty_thresh_assert;
assign PROG_EMPTY_THRESH_NEGATE = prog_empty_thresh_negate;
assign PROG_FULL_THRESH = prog_full_thresh;
assign PROG_FULL_THRESH_ASSERT = prog_full_thresh_assert;
assign PROG_FULL_THRESH_NEGATE = prog_full_thresh_negate;
assign dout = DOUT;
assign data_count = DATA_COUNT;
assign rd_data_count = RD_DATA_COUNT;
assign wr_data_count = WR_DATA_COUNT;
assign S_AXI_AWID = s_axi_awid;
assign S_AXI_AWADDR = s_axi_awaddr;
assign S_AXI_AWLEN = s_axi_awlen;
assign S_AXI_AWSIZE = s_axi_awsize;
assign S_AXI_AWBURST = s_axi_awburst;
assign S_AXI_AWLOCK = s_axi_awlock;
assign S_AXI_AWCACHE = s_axi_awcache;
assign S_AXI_AWPROT = s_axi_awprot;
assign S_AXI_AWQOS = s_axi_awqos;
assign S_AXI_AWREGION = s_axi_awregion;
assign S_AXI_AWUSER = s_axi_awuser;
assign S_AXI_WID = s_axi_wid;
assign S_AXI_WDATA = s_axi_wdata;
assign S_AXI_WSTRB = s_axi_wstrb;
assign S_AXI_WUSER = s_axi_wuser;
assign s_axi_bid = S_AXI_BID;
assign s_axi_bresp = S_AXI_BRESP;
assign s_axi_buser = S_AXI_BUSER;
assign m_axi_awid = M_AXI_AWID;
assign m_axi_awaddr = M_AXI_AWADDR;
assign m_axi_awlen = M_AXI_AWLEN;
assign m_axi_awsize = M_AXI_AWSIZE;
assign m_axi_awburst = M_AXI_AWBURST;
assign m_axi_awlock = M_AXI_AWLOCK;
assign m_axi_awcache = M_AXI_AWCACHE;
assign m_axi_awprot = M_AXI_AWPROT;
assign m_axi_awqos = M_AXI_AWQOS;
assign m_axi_awregion = M_AXI_AWREGION;
assign m_axi_awuser = M_AXI_AWUSER;
assign m_axi_wid = M_AXI_WID;
assign m_axi_wdata = M_AXI_WDATA;
assign m_axi_wstrb = M_AXI_WSTRB;
assign m_axi_wuser = M_AXI_WUSER;
assign M_AXI_BID = m_axi_bid;
assign M_AXI_BRESP = m_axi_bresp;
assign M_AXI_BUSER = m_axi_buser;
assign S_AXI_ARID = s_axi_arid;
assign S_AXI_ARADDR = s_axi_araddr;
assign S_AXI_ARLEN = s_axi_arlen;
assign S_AXI_ARSIZE = s_axi_arsize;
assign S_AXI_ARBURST = s_axi_arburst;
assign S_AXI_ARLOCK = s_axi_arlock;
assign S_AXI_ARCACHE = s_axi_arcache;
assign S_AXI_ARPROT = s_axi_arprot;
assign S_AXI_ARQOS = s_axi_arqos;
assign S_AXI_ARREGION = s_axi_arregion;
assign S_AXI_ARUSER = s_axi_aruser;
assign s_axi_rid = S_AXI_RID;
assign s_axi_rdata = S_AXI_RDATA;
assign s_axi_rresp = S_AXI_RRESP;
assign s_axi_ruser = S_AXI_RUSER;
assign m_axi_arid = M_AXI_ARID;
assign m_axi_araddr = M_AXI_ARADDR;
assign m_axi_arlen = M_AXI_ARLEN;
assign m_axi_arsize = M_AXI_ARSIZE;
assign m_axi_arburst = M_AXI_ARBURST;
assign m_axi_arlock = M_AXI_ARLOCK;
assign m_axi_arcache = M_AXI_ARCACHE;
assign m_axi_arprot = M_AXI_ARPROT;
assign m_axi_arqos = M_AXI_ARQOS;
assign m_axi_arregion = M_AXI_ARREGION;
assign m_axi_aruser = M_AXI_ARUSER;
assign M_AXI_RID = m_axi_rid;
assign M_AXI_RDATA = m_axi_rdata;
assign M_AXI_RRESP = m_axi_rresp;
assign M_AXI_RUSER = m_axi_ruser;
assign S_AXIS_TDATA = s_axis_tdata;
assign S_AXIS_TSTRB = s_axis_tstrb;
assign S_AXIS_TKEEP = s_axis_tkeep;
assign S_AXIS_TID = s_axis_tid;
assign S_AXIS_TDEST = s_axis_tdest;
assign S_AXIS_TUSER = s_axis_tuser;
assign m_axis_tdata = M_AXIS_TDATA;
assign m_axis_tstrb = M_AXIS_TSTRB;
assign m_axis_tkeep = M_AXIS_TKEEP;
assign m_axis_tid = M_AXIS_TID;
assign m_axis_tdest = M_AXIS_TDEST;
assign m_axis_tuser = M_AXIS_TUSER;
assign AXI_AW_PROG_FULL_THRESH = axi_aw_prog_full_thresh;
assign AXI_AW_PROG_EMPTY_THRESH = axi_aw_prog_empty_thresh;
assign axi_aw_data_count = AXI_AW_DATA_COUNT;
assign axi_aw_wr_data_count = AXI_AW_WR_DATA_COUNT;
assign axi_aw_rd_data_count = AXI_AW_RD_DATA_COUNT;
assign AXI_W_PROG_FULL_THRESH = axi_w_prog_full_thresh;
assign AXI_W_PROG_EMPTY_THRESH = axi_w_prog_empty_thresh;
assign axi_w_data_count = AXI_W_DATA_COUNT;
assign axi_w_wr_data_count = AXI_W_WR_DATA_COUNT;
assign axi_w_rd_data_count = AXI_W_RD_DATA_COUNT;
assign AXI_B_PROG_FULL_THRESH = axi_b_prog_full_thresh;
assign AXI_B_PROG_EMPTY_THRESH = axi_b_prog_empty_thresh;
assign axi_b_data_count = AXI_B_DATA_COUNT;
assign axi_b_wr_data_count = AXI_B_WR_DATA_COUNT;
assign axi_b_rd_data_count = AXI_B_RD_DATA_COUNT;
assign AXI_AR_PROG_FULL_THRESH = axi_ar_prog_full_thresh;
assign AXI_AR_PROG_EMPTY_THRESH = axi_ar_prog_empty_thresh;
assign axi_ar_data_count = AXI_AR_DATA_COUNT;
assign axi_ar_wr_data_count = AXI_AR_WR_DATA_COUNT;
assign axi_ar_rd_data_count = AXI_AR_RD_DATA_COUNT;
assign AXI_R_PROG_FULL_THRESH = axi_r_prog_full_thresh;
assign AXI_R_PROG_EMPTY_THRESH = axi_r_prog_empty_thresh;
assign axi_r_data_count = AXI_R_DATA_COUNT;
assign axi_r_wr_data_count = AXI_R_WR_DATA_COUNT;
assign axi_r_rd_data_count = AXI_R_RD_DATA_COUNT;
assign AXIS_PROG_FULL_THRESH = axis_prog_full_thresh;
assign AXIS_PROG_EMPTY_THRESH = axis_prog_empty_thresh;
assign axis_data_count = AXIS_DATA_COUNT;
assign axis_wr_data_count = AXIS_WR_DATA_COUNT;
assign axis_rd_data_count = AXIS_RD_DATA_COUNT;
generate if (C_INTERFACE_TYPE == 0) begin : conv_fifo
FIFO_GENERATOR_v12_0_CONV_VER
#(
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DATA_COUNT_WIDTH (C_DATA_COUNT_WIDTH),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_DIN_WIDTH (C_DIN_WIDTH),
.C_DOUT_RST_VAL (C_USE_DOUT_RST == 1 ? C_DOUT_RST_VAL : 0),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_FAMILY (C_FAMILY),
.C_FULL_FLAGS_RST_VAL (C_FULL_FLAGS_RST_VAL),
.C_HAS_ALMOST_EMPTY (C_HAS_ALMOST_EMPTY),
.C_HAS_ALMOST_FULL (C_HAS_ALMOST_FULL),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_DATA_COUNT (C_HAS_DATA_COUNT),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT),
.C_HAS_RD_RST (C_HAS_RD_RST),
.C_HAS_RST (C_HAS_RST),
.C_HAS_SRST (C_HAS_SRST),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_HAS_VALID (C_HAS_VALID),
.C_HAS_WR_ACK (C_HAS_WR_ACK),
.C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT),
.C_HAS_WR_RST (C_HAS_WR_RST),
.C_IMPLEMENTATION_TYPE (C_IMPLEMENTATION_TYPE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_MEMORY_TYPE (C_MEMORY_TYPE),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_PRELOAD_LATENCY (C_PRELOAD_LATENCY),
.C_PRELOAD_REGS (C_PRELOAD_REGS),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL),
.C_PROG_EMPTY_THRESH_NEGATE_VAL (C_PROG_EMPTY_THRESH_NEGATE_VAL),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL),
.C_PROG_FULL_THRESH_NEGATE_VAL (C_PROG_FULL_THRESH_NEGATE_VAL),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE),
.C_RD_DATA_COUNT_WIDTH (C_RD_DATA_COUNT_WIDTH),
.C_RD_DEPTH (C_RD_DEPTH),
.C_RD_FREQ (C_RD_FREQ),
.C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_USE_ECC (C_USE_ECC),
.C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_USE_FWFT_DATA_COUNT (C_USE_FWFT_DATA_COUNT),
.C_VALID_LOW (C_VALID_LOW),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH),
.C_WR_DEPTH (C_WR_DEPTH),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE),
.C_AXI_TYPE (C_AXI_TYPE),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE)
)
fifo_generator_v12_0_conv_dut
(
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.CLK (CLK),
.RST (RST),
.SRST (SRST),
.WR_CLK (WR_CLK),
.WR_RST (WR_RST),
.RD_CLK (RD_CLK),
.RD_RST (RD_RST),
.DIN (DIN),
.WR_EN (WR_EN),
.RD_EN (RD_EN),
.PROG_EMPTY_THRESH (PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT (PROG_EMPTY_THRESH_ASSERT),
.PROG_EMPTY_THRESH_NEGATE (PROG_EMPTY_THRESH_NEGATE),
.PROG_FULL_THRESH (PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT (PROG_FULL_THRESH_ASSERT),
.PROG_FULL_THRESH_NEGATE (PROG_FULL_THRESH_NEGATE),
.INT_CLK (INT_CLK),
.INJECTDBITERR (INJECTDBITERR),
.INJECTSBITERR (INJECTSBITERR),
.DOUT (DOUT),
.FULL (FULL),
.ALMOST_FULL (ALMOST_FULL),
.WR_ACK (WR_ACK),
.OVERFLOW (OVERFLOW),
.EMPTY (EMPTY),
.ALMOST_EMPTY (ALMOST_EMPTY),
.VALID (VALID),
.UNDERFLOW (UNDERFLOW),
.DATA_COUNT (DATA_COUNT),
.RD_DATA_COUNT (RD_DATA_COUNT),
.WR_DATA_COUNT (wr_data_count_in),
.PROG_FULL (PROG_FULL),
.PROG_EMPTY (PROG_EMPTY),
.SBITERR (SBITERR),
.DBITERR (DBITERR),
.wr_rst_busy (wr_rst_busy),
.rd_rst_busy (rd_rst_busy),
.wr_rst_i_out (wr_rst_int),
.rd_rst_i_out (rd_rst_int)
);
end endgenerate
localparam IS_8SERIES = (C_FAMILY == "virtexu" || C_FAMILY == "kintexu" || C_FAMILY == "artixu" || C_FAMILY == "virtexum" || C_FAMILY == "zynque") ? 1 : 0;
localparam C_AXI_SIZE_WIDTH = 3;
localparam C_AXI_BURST_WIDTH = 2;
localparam C_AXI_CACHE_WIDTH = 4;
localparam C_AXI_PROT_WIDTH = 3;
localparam C_AXI_QOS_WIDTH = 4;
localparam C_AXI_REGION_WIDTH = 4;
localparam C_AXI_BRESP_WIDTH = 2;
localparam C_AXI_RRESP_WIDTH = 2;
localparam IS_AXI_STREAMING = C_INTERFACE_TYPE == 1 ? 1 : 0;
localparam TDATA_OFFSET = C_HAS_AXIS_TDATA == 1 ? C_DIN_WIDTH_AXIS-C_AXIS_TDATA_WIDTH : C_DIN_WIDTH_AXIS;
localparam TSTRB_OFFSET = C_HAS_AXIS_TSTRB == 1 ? TDATA_OFFSET-C_AXIS_TSTRB_WIDTH : TDATA_OFFSET;
localparam TKEEP_OFFSET = C_HAS_AXIS_TKEEP == 1 ? TSTRB_OFFSET-C_AXIS_TKEEP_WIDTH : TSTRB_OFFSET;
localparam TID_OFFSET = C_HAS_AXIS_TID == 1 ? TKEEP_OFFSET-C_AXIS_TID_WIDTH : TKEEP_OFFSET;
localparam TDEST_OFFSET = C_HAS_AXIS_TDEST == 1 ? TID_OFFSET-C_AXIS_TDEST_WIDTH : TID_OFFSET;
localparam TUSER_OFFSET = C_HAS_AXIS_TUSER == 1 ? TDEST_OFFSET-C_AXIS_TUSER_WIDTH : TDEST_OFFSET;
localparam LOG_DEPTH_AXIS = find_log2(C_WR_DEPTH_AXIS);
localparam LOG_WR_DEPTH = find_log2(C_WR_DEPTH);
function [LOG_DEPTH_AXIS-1:0] bin2gray;
input [LOG_DEPTH_AXIS-1:0] x;
begin
bin2gray = x ^ (x>>1);
end
endfunction
function [LOG_DEPTH_AXIS-1:0] gray2bin;
input [LOG_DEPTH_AXIS-1:0] x;
integer i;
begin
gray2bin[LOG_DEPTH_AXIS-1] = x[LOG_DEPTH_AXIS-1];
for(i=LOG_DEPTH_AXIS-2; i>=0; i=i-1) begin
gray2bin[i] = gray2bin[i+1] ^ x[i];
end
end
endfunction
wire [(LOG_WR_DEPTH)-1 : 0] w_cnt_gc_asreg_last;
wire [LOG_WR_DEPTH-1 : 0] w_q [0:C_SYNCHRONIZER_STAGE] ;
wire [LOG_WR_DEPTH-1 : 0] w_q_temp [1:C_SYNCHRONIZER_STAGE] ;
reg [LOG_WR_DEPTH-1 : 0] w_cnt_rd = 0;
reg [LOG_WR_DEPTH-1 : 0] w_cnt = 0;
reg [LOG_WR_DEPTH-1 : 0] w_cnt_gc = 0;
reg [LOG_WR_DEPTH-1 : 0] r_cnt = 0;
wire [LOG_WR_DEPTH : 0] adj_w_cnt_rd_pad;
wire [LOG_WR_DEPTH : 0] r_inv_pad;
wire [LOG_WR_DEPTH-1 : 0] d_cnt;
reg [LOG_WR_DEPTH : 0] d_cnt_pad = 0;
reg adj_w_cnt_rd_pad_0 = 0;
reg r_inv_pad_0 = 0;
genvar l;
generate for (l = 1; ((l <= C_SYNCHRONIZER_STAGE) && (C_HAS_DATA_COUNTS_AXIS == 3 && C_INTERFACE_TYPE == 0) ); l = l + 1) begin : g_cnt_sync_stage
fifo_generator_v12_0_sync_stage
#(
.C_WIDTH (LOG_WR_DEPTH)
)
rd_stg_inst
(
.RST (rd_rst_int),
.CLK (RD_CLK),
.DIN (w_q[l-1]),
.DOUT (w_q[l])
);
end endgenerate // gpkt_cnt_sync_stage
generate if (C_INTERFACE_TYPE == 0 && C_HAS_DATA_COUNTS_AXIS == 3) begin : fifo_ic_adapter
assign wr_eop_ad = WR_EN & !(FULL);
assign rd_eop_ad = RD_EN & !(EMPTY);
always @ (posedge wr_rst_int or posedge WR_CLK)
begin
if (wr_rst_int)
w_cnt <= 1'b0;
else if (wr_eop_ad)
w_cnt <= w_cnt + 1;
end
always @ (posedge wr_rst_int or posedge WR_CLK)
begin
if (wr_rst_int)
w_cnt_gc <= 1'b0;
else
w_cnt_gc <= bin2gray(w_cnt);
end
assign w_q[0] = w_cnt_gc;
assign w_cnt_gc_asreg_last = w_q[C_SYNCHRONIZER_STAGE];
always @ (posedge rd_rst_int or posedge RD_CLK)
begin
if (rd_rst_int)
w_cnt_rd <= 1'b0;
else
w_cnt_rd <= gray2bin(w_cnt_gc_asreg_last);
end
always @ (posedge rd_rst_int or posedge RD_CLK)
begin
if (rd_rst_int)
r_cnt <= 1'b0;
else if (rd_eop_ad)
r_cnt <= r_cnt + 1;
end
// Take the difference of write and read packet count
// Logic is similar to rd_pe_as
assign adj_w_cnt_rd_pad[LOG_WR_DEPTH : 1] = w_cnt_rd;
assign r_inv_pad[LOG_WR_DEPTH : 1] = ~r_cnt;
assign adj_w_cnt_rd_pad[0] = adj_w_cnt_rd_pad_0;
assign r_inv_pad[0] = r_inv_pad_0;
always @ ( rd_eop_ad )
begin
if (!rd_eop_ad) begin
adj_w_cnt_rd_pad_0 <= 1'b1;
r_inv_pad_0 <= 1'b1;
end else begin
adj_w_cnt_rd_pad_0 <= 1'b0;
r_inv_pad_0 <= 1'b0;
end
end
always @ (posedge rd_rst_int or posedge RD_CLK)
begin
if (rd_rst_int)
d_cnt_pad <= 1'b0;
else
d_cnt_pad <= adj_w_cnt_rd_pad + r_inv_pad ;
end
assign d_cnt = d_cnt_pad [LOG_WR_DEPTH : 1] ;
assign WR_DATA_COUNT = d_cnt;
end endgenerate // fifo_ic_adapter
generate if (C_INTERFACE_TYPE == 0 && C_HAS_DATA_COUNTS_AXIS != 3) begin : fifo_icn_adapter
assign WR_DATA_COUNT = wr_data_count_in;
end endgenerate // fifo_icn_adapter
wire inverted_reset = ~S_ARESETN;
wire axi_rs_rst;
reg rst_d1 = 0 ;
reg rst_d2 = 0 ;
wire [C_DIN_WIDTH_AXIS-1:0] axis_din ;
wire [C_DIN_WIDTH_AXIS-1:0] axis_dout ;
wire axis_full ;
wire axis_almost_full ;
wire axis_empty ;
wire axis_s_axis_tready;
wire axis_m_axis_tvalid;
wire axis_wr_en ;
wire axis_rd_en ;
wire axis_we ;
wire axis_re ;
wire [C_WR_PNTR_WIDTH_AXIS:0] axis_dc;
reg axis_pkt_read = 1'b0;
wire axis_rd_rst;
wire axis_wr_rst;
generate if (C_INTERFACE_TYPE > 0 && (C_AXIS_TYPE == 1 || C_WACH_TYPE == 1 ||
C_WDCH_TYPE == 1 || C_WRCH_TYPE == 1 || C_RACH_TYPE == 1 || C_RDCH_TYPE == 1)) begin : gaxi_rs_rst
always @ (posedge inverted_reset or posedge S_ACLK) begin
if (inverted_reset) begin
rst_d1 <= 1'b1;
rst_d2 <= 1'b1;
end else begin
rst_d1 <= #`TCQ 1'b0;
rst_d2 <= #`TCQ rst_d1;
end
end
assign axi_rs_rst = rst_d2;
end endgenerate // gaxi_rs_rst
generate if (IS_AXI_STREAMING == 1 && C_AXIS_TYPE == 0) begin : axi_streaming
// Write protection when almost full or prog_full is high
assign axis_we = (C_PROG_FULL_TYPE_AXIS != 0) ? axis_s_axis_tready & S_AXIS_TVALID :
(C_APPLICATION_TYPE_AXIS == 1) ? axis_s_axis_tready & S_AXIS_TVALID : S_AXIS_TVALID;
// Read protection when almost empty or prog_empty is high
assign axis_re = (C_PROG_EMPTY_TYPE_AXIS != 0) ? axis_m_axis_tvalid & M_AXIS_TREADY :
(C_APPLICATION_TYPE_AXIS == 1) ? axis_m_axis_tvalid & M_AXIS_TREADY : M_AXIS_TREADY;
assign axis_wr_en = (C_HAS_SLAVE_CE == 1) ? axis_we & S_ACLK_EN : axis_we;
assign axis_rd_en = (C_HAS_MASTER_CE == 1) ? axis_re & M_ACLK_EN : axis_re;
FIFO_GENERATOR_v12_0_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_AXIS == 1 || C_IMPLEMENTATION_TYPE_AXIS == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_AXIS == 2 || C_IMPLEMENTATION_TYPE_AXIS == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_AXIS == 1 || C_IMPLEMENTATION_TYPE_AXIS == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_AXIS == 11 || C_IMPLEMENTATION_TYPE_AXIS == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_AXIS),
.C_WR_DEPTH (C_WR_DEPTH_AXIS),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_AXIS),
.C_DOUT_WIDTH (C_DIN_WIDTH_AXIS),
.C_RD_DEPTH (C_WR_DEPTH_AXIS),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_AXIS),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_AXIS),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_AXIS),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_AXIS),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS),
.C_USE_ECC (C_USE_ECC_AXIS),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_AXIS),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (C_APPLICATION_TYPE_AXIS == 1 ? 1: 0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG),
.C_FIFO_TYPE (C_APPLICATION_TYPE_AXIS == 1 ? 0: C_APPLICATION_TYPE_AXIS),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_AXIS == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_AXIS + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_AXIS == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_AXIS + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_AXIS == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_AXIS + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v12_0_axis_dut
(
.CLK (S_ACLK),
.WR_CLK (S_ACLK),
.RD_CLK (M_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (axis_wr_en),
.RD_EN (axis_rd_en),
.PROG_FULL_THRESH (AXIS_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_AXIS{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_AXIS{1'b0}}),
.PROG_EMPTY_THRESH (AXIS_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_AXIS{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_AXIS{1'b0}}),
.INJECTDBITERR (AXIS_INJECTDBITERR),
.INJECTSBITERR (AXIS_INJECTSBITERR),
.DIN (axis_din),
.DOUT (axis_dout),
.FULL (axis_full),
.EMPTY (axis_empty),
.ALMOST_FULL (axis_almost_full),
.PROG_FULL (AXIS_PROG_FULL),
.ALMOST_EMPTY (),
.PROG_EMPTY (AXIS_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (AXIS_OVERFLOW),
.VALID (),
.UNDERFLOW (AXIS_UNDERFLOW),
.DATA_COUNT (axis_dc),
.RD_DATA_COUNT (AXIS_RD_DATA_COUNT),
.WR_DATA_COUNT (AXIS_WR_DATA_COUNT),
.SBITERR (AXIS_SBITERR),
.DBITERR (AXIS_DBITERR),
.wr_rst_busy (wr_rst_busy_axis),
.rd_rst_busy (rd_rst_busy_axis),
.wr_rst_i_out (axis_wr_rst),
.rd_rst_i_out (axis_rd_rst),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign axis_s_axis_tready = (IS_8SERIES == 0) ? ~axis_full : (C_IMPLEMENTATION_TYPE_AXIS == 5 || C_IMPLEMENTATION_TYPE_AXIS == 13) ? ~(axis_full | wr_rst_busy_axis) : ~axis_full;
assign axis_m_axis_tvalid = (C_APPLICATION_TYPE_AXIS != 1) ? ~axis_empty : ~axis_empty & axis_pkt_read;
assign S_AXIS_TREADY = axis_s_axis_tready;
assign M_AXIS_TVALID = axis_m_axis_tvalid;
end endgenerate // axi_streaming
wire axis_wr_eop;
reg axis_wr_eop_d1 = 1'b0;
wire axis_rd_eop;
integer axis_pkt_cnt;
generate if (C_APPLICATION_TYPE_AXIS == 1 && C_COMMON_CLOCK == 1) begin : gaxis_pkt_fifo_cc
assign axis_wr_eop = axis_wr_en & S_AXIS_TLAST;
assign axis_rd_eop = axis_rd_en & axis_dout[0];
always @ (posedge inverted_reset or posedge S_ACLK)
begin
if (inverted_reset)
axis_pkt_read <= 1'b0;
else if (axis_rd_eop && (axis_pkt_cnt == 1) && ~axis_wr_eop_d1)
axis_pkt_read <= 1'b0;
else if ((axis_pkt_cnt > 0) || (axis_almost_full && ~axis_empty))
axis_pkt_read <= 1'b1;
end
always @ (posedge inverted_reset or posedge S_ACLK)
begin
if (inverted_reset)
axis_wr_eop_d1 <= 1'b0;
else
axis_wr_eop_d1 <= axis_wr_eop;
end
always @ (posedge inverted_reset or posedge S_ACLK)
begin
if (inverted_reset)
axis_pkt_cnt <= 0;
else if (axis_wr_eop_d1 && ~axis_rd_eop)
axis_pkt_cnt <= axis_pkt_cnt + 1;
else if (axis_rd_eop && ~axis_wr_eop_d1)
axis_pkt_cnt <= axis_pkt_cnt - 1;
end
end endgenerate // gaxis_pkt_fifo_cc
reg [LOG_DEPTH_AXIS-1 : 0] axis_wpkt_cnt_gc = 0;
wire [(LOG_DEPTH_AXIS)-1 : 0] axis_wpkt_cnt_gc_asreg_last;
wire axis_rd_has_rst;
wire [0:C_SYNCHRONIZER_STAGE] axis_af_q ;
wire [LOG_DEPTH_AXIS-1 : 0] wpkt_q [0:C_SYNCHRONIZER_STAGE] ;
wire [1:C_SYNCHRONIZER_STAGE] axis_af_q_temp = 0;
wire [LOG_DEPTH_AXIS-1 : 0] wpkt_q_temp [1:C_SYNCHRONIZER_STAGE] ;
reg [LOG_DEPTH_AXIS-1 : 0] axis_wpkt_cnt_rd = 0;
reg [LOG_DEPTH_AXIS-1 : 0] axis_wpkt_cnt = 0;
reg [LOG_DEPTH_AXIS-1 : 0] axis_rpkt_cnt = 0;
wire [LOG_DEPTH_AXIS : 0] adj_axis_wpkt_cnt_rd_pad;
wire [LOG_DEPTH_AXIS : 0] rpkt_inv_pad;
wire [LOG_DEPTH_AXIS-1 : 0] diff_pkt_cnt;
reg [LOG_DEPTH_AXIS : 0] diff_pkt_cnt_pad = 0;
reg adj_axis_wpkt_cnt_rd_pad_0 = 0;
reg rpkt_inv_pad_0 = 0;
wire axis_af_rd ;
generate if (C_HAS_RST == 1) begin : rst_blk_has
assign axis_rd_has_rst = axis_rd_rst;
end endgenerate //rst_blk_has
generate if (C_HAS_RST == 0) begin :rst_blk_no
assign axis_rd_has_rst = 1'b0;
end endgenerate //rst_blk_no
genvar i;
generate for (i = 1; ((i <= C_SYNCHRONIZER_STAGE) && (C_APPLICATION_TYPE_AXIS == 1 && C_COMMON_CLOCK == 0) ); i = i + 1) begin : gpkt_cnt_sync_stage
fifo_generator_v12_0_sync_stage
#(
.C_WIDTH (LOG_DEPTH_AXIS)
)
rd_stg_inst
(
.RST (axis_rd_has_rst),
.CLK (M_ACLK),
.DIN (wpkt_q[i-1]),
.DOUT (wpkt_q[i])
);
fifo_generator_v12_0_sync_stage
#(
.C_WIDTH (1)
)
wr_stg_inst
(
.RST (axis_rd_has_rst),
.CLK (M_ACLK),
.DIN (axis_af_q[i-1]),
.DOUT (axis_af_q[i])
);
end endgenerate // gpkt_cnt_sync_stage
generate if (C_APPLICATION_TYPE_AXIS == 1 && C_COMMON_CLOCK == 0) begin : gaxis_pkt_fifo_ic
assign axis_wr_eop = axis_wr_en & S_AXIS_TLAST;
assign axis_rd_eop = axis_rd_en & axis_dout[0];
always @ (posedge axis_rd_has_rst or posedge M_ACLK)
begin
if (axis_rd_has_rst)
axis_pkt_read <= 1'b0;
else if (axis_rd_eop && (diff_pkt_cnt == 1))
axis_pkt_read <= 1'b0;
else if ((diff_pkt_cnt > 0) || (axis_af_rd && ~axis_empty))
axis_pkt_read <= 1'b1;
end
always @ (posedge axis_wr_rst or posedge S_ACLK)
begin
if (axis_wr_rst)
axis_wpkt_cnt <= 1'b0;
else if (axis_wr_eop)
axis_wpkt_cnt <= axis_wpkt_cnt + 1;
end
always @ (posedge axis_wr_rst or posedge S_ACLK)
begin
if (axis_wr_rst)
axis_wpkt_cnt_gc <= 1'b0;
else
axis_wpkt_cnt_gc <= bin2gray(axis_wpkt_cnt);
end
assign wpkt_q[0] = axis_wpkt_cnt_gc;
assign axis_wpkt_cnt_gc_asreg_last = wpkt_q[C_SYNCHRONIZER_STAGE];
assign axis_af_q[0] = axis_almost_full;
//assign axis_af_q[1:C_SYNCHRONIZER_STAGE] = axis_af_q_temp[1:C_SYNCHRONIZER_STAGE];
assign axis_af_rd = axis_af_q[C_SYNCHRONIZER_STAGE];
always @ (posedge axis_rd_has_rst or posedge M_ACLK)
begin
if (axis_rd_has_rst)
axis_wpkt_cnt_rd <= 1'b0;
else
axis_wpkt_cnt_rd <= gray2bin(axis_wpkt_cnt_gc_asreg_last);
end
always @ (posedge axis_rd_rst or posedge M_ACLK)
begin
if (axis_rd_has_rst)
axis_rpkt_cnt <= 1'b0;
else if (axis_rd_eop)
axis_rpkt_cnt <= axis_rpkt_cnt + 1;
end
// Take the difference of write and read packet count
// Logic is similar to rd_pe_as
assign adj_axis_wpkt_cnt_rd_pad[LOG_DEPTH_AXIS : 1] = axis_wpkt_cnt_rd;
assign rpkt_inv_pad[LOG_DEPTH_AXIS : 1] = ~axis_rpkt_cnt;
assign adj_axis_wpkt_cnt_rd_pad[0] = adj_axis_wpkt_cnt_rd_pad_0;
assign rpkt_inv_pad[0] = rpkt_inv_pad_0;
always @ ( axis_rd_eop )
begin
if (!axis_rd_eop) begin
adj_axis_wpkt_cnt_rd_pad_0 <= 1'b1;
rpkt_inv_pad_0 <= 1'b1;
end else begin
adj_axis_wpkt_cnt_rd_pad_0 <= 1'b0;
rpkt_inv_pad_0 <= 1'b0;
end
end
always @ (posedge axis_rd_rst or posedge M_ACLK)
begin
if (axis_rd_has_rst)
diff_pkt_cnt_pad <= 1'b0;
else
diff_pkt_cnt_pad <= adj_axis_wpkt_cnt_rd_pad + rpkt_inv_pad ;
end
assign diff_pkt_cnt = diff_pkt_cnt_pad [LOG_DEPTH_AXIS : 1] ;
end endgenerate // gaxis_pkt_fifo_ic
// Generate the accurate data count for axi stream packet fifo configuration
reg [C_WR_PNTR_WIDTH_AXIS:0] axis_dc_pkt_fifo = 0;
generate if (IS_AXI_STREAMING == 1 && C_HAS_DATA_COUNTS_AXIS == 1 && C_APPLICATION_TYPE_AXIS == 1) begin : gdc_pkt
always @ (posedge inverted_reset or posedge S_ACLK)
begin
if (inverted_reset)
axis_dc_pkt_fifo <= 0;
else if (axis_wr_en && (~axis_rd_en))
axis_dc_pkt_fifo <= #`TCQ axis_dc_pkt_fifo + 1;
else if (~axis_wr_en && axis_rd_en)
axis_dc_pkt_fifo <= #`TCQ axis_dc_pkt_fifo - 1;
end
assign AXIS_DATA_COUNT = axis_dc_pkt_fifo;
end endgenerate // gdc_pkt
generate if (IS_AXI_STREAMING == 1 && C_HAS_DATA_COUNTS_AXIS == 0 && C_APPLICATION_TYPE_AXIS == 1) begin : gndc_pkt
assign AXIS_DATA_COUNT = 0;
end endgenerate // gndc_pkt
generate if (IS_AXI_STREAMING == 1 && C_APPLICATION_TYPE_AXIS != 1) begin : gdc
assign AXIS_DATA_COUNT = axis_dc;
end endgenerate // gdc
// Register Slice for Write Address Channel
generate if (C_AXIS_TYPE == 1) begin : gaxis_reg_slice
assign axis_wr_en = (C_HAS_SLAVE_CE == 1) ? S_AXIS_TVALID & S_ACLK_EN : S_AXIS_TVALID;
assign axis_rd_en = (C_HAS_MASTER_CE == 1) ? M_AXIS_TREADY & M_ACLK_EN : M_AXIS_TREADY;
fifo_generator_v12_0_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_AXIS),
.C_REG_CONFIG (C_REG_SLICE_MODE_AXIS)
)
axis_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (axis_din),
.S_VALID (axis_wr_en),
.S_READY (S_AXIS_TREADY),
// Master side
.M_PAYLOAD_DATA (axis_dout),
.M_VALID (M_AXIS_TVALID),
.M_READY (axis_rd_en)
);
end endgenerate // gaxis_reg_slice
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TDATA == 1) begin : tdata
assign axis_din[C_DIN_WIDTH_AXIS-1:TDATA_OFFSET] = S_AXIS_TDATA;
assign M_AXIS_TDATA = axis_dout[C_DIN_WIDTH_AXIS-1:TDATA_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TSTRB == 1) begin : tstrb
assign axis_din[TDATA_OFFSET-1:TSTRB_OFFSET] = S_AXIS_TSTRB;
assign M_AXIS_TSTRB = axis_dout[TDATA_OFFSET-1:TSTRB_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TKEEP == 1) begin : tkeep
assign axis_din[TSTRB_OFFSET-1:TKEEP_OFFSET] = S_AXIS_TKEEP;
assign M_AXIS_TKEEP = axis_dout[TSTRB_OFFSET-1:TKEEP_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TID == 1) begin : tid
assign axis_din[TKEEP_OFFSET-1:TID_OFFSET] = S_AXIS_TID;
assign M_AXIS_TID = axis_dout[TKEEP_OFFSET-1:TID_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TDEST == 1) begin : tdest
assign axis_din[TID_OFFSET-1:TDEST_OFFSET] = S_AXIS_TDEST;
assign M_AXIS_TDEST = axis_dout[TID_OFFSET-1:TDEST_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TUSER == 1) begin : tuser
assign axis_din[TDEST_OFFSET-1:TUSER_OFFSET] = S_AXIS_TUSER;
assign M_AXIS_TUSER = axis_dout[TDEST_OFFSET-1:TUSER_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TLAST == 1) begin : tlast
assign axis_din[0] = S_AXIS_TLAST;
assign M_AXIS_TLAST = axis_dout[0];
end endgenerate
//###########################################################################
// AXI FULL Write Channel (axi_write_channel)
//###########################################################################
localparam IS_AXI_FULL = ((C_INTERFACE_TYPE == 2) && (C_AXI_TYPE != 2)) ? 1 : 0;
localparam IS_AXI_LITE = ((C_INTERFACE_TYPE == 2) && (C_AXI_TYPE == 2)) ? 1 : 0;
localparam IS_AXI_FULL_WACH = ((IS_AXI_FULL == 1) && (C_WACH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_FULL_WDCH = ((IS_AXI_FULL == 1) && (C_WDCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_FULL_WRCH = ((IS_AXI_FULL == 1) && (C_WRCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_FULL_RACH = ((IS_AXI_FULL == 1) && (C_RACH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_FULL_RDCH = ((IS_AXI_FULL == 1) && (C_RDCH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_LITE_WACH = ((IS_AXI_LITE == 1) && (C_WACH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_LITE_WDCH = ((IS_AXI_LITE == 1) && (C_WDCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_LITE_WRCH = ((IS_AXI_LITE == 1) && (C_WRCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_LITE_RACH = ((IS_AXI_LITE == 1) && (C_RACH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_LITE_RDCH = ((IS_AXI_LITE == 1) && (C_RDCH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0;
localparam IS_WR_ADDR_CH = ((IS_AXI_FULL_WACH == 1) || (IS_AXI_LITE_WACH == 1)) ? 1 : 0;
localparam IS_WR_DATA_CH = ((IS_AXI_FULL_WDCH == 1) || (IS_AXI_LITE_WDCH == 1)) ? 1 : 0;
localparam IS_WR_RESP_CH = ((IS_AXI_FULL_WRCH == 1) || (IS_AXI_LITE_WRCH == 1)) ? 1 : 0;
localparam IS_RD_ADDR_CH = ((IS_AXI_FULL_RACH == 1) || (IS_AXI_LITE_RACH == 1)) ? 1 : 0;
localparam IS_RD_DATA_CH = ((IS_AXI_FULL_RDCH == 1) || (IS_AXI_LITE_RDCH == 1)) ? 1 : 0;
localparam AWID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_WACH - C_AXI_ID_WIDTH : C_DIN_WIDTH_WACH;
localparam AWADDR_OFFSET = AWID_OFFSET - C_AXI_ADDR_WIDTH;
localparam AWLEN_OFFSET = C_AXI_TYPE != 2 ? AWADDR_OFFSET - C_AXI_LEN_WIDTH : AWADDR_OFFSET;
localparam AWSIZE_OFFSET = C_AXI_TYPE != 2 ? AWLEN_OFFSET - C_AXI_SIZE_WIDTH : AWLEN_OFFSET;
localparam AWBURST_OFFSET = C_AXI_TYPE != 2 ? AWSIZE_OFFSET - C_AXI_BURST_WIDTH : AWSIZE_OFFSET;
localparam AWLOCK_OFFSET = C_AXI_TYPE != 2 ? AWBURST_OFFSET - C_AXI_LOCK_WIDTH : AWBURST_OFFSET;
localparam AWCACHE_OFFSET = C_AXI_TYPE != 2 ? AWLOCK_OFFSET - C_AXI_CACHE_WIDTH : AWLOCK_OFFSET;
localparam AWPROT_OFFSET = AWCACHE_OFFSET - C_AXI_PROT_WIDTH;
localparam AWQOS_OFFSET = AWPROT_OFFSET - C_AXI_QOS_WIDTH;
localparam AWREGION_OFFSET = C_AXI_TYPE == 1 ? AWQOS_OFFSET - C_AXI_REGION_WIDTH : AWQOS_OFFSET;
localparam AWUSER_OFFSET = C_HAS_AXI_AWUSER == 1 ? AWREGION_OFFSET-C_AXI_AWUSER_WIDTH : AWREGION_OFFSET;
localparam WID_OFFSET = (C_AXI_TYPE == 3 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_WDCH - C_AXI_ID_WIDTH : C_DIN_WIDTH_WDCH;
localparam WDATA_OFFSET = WID_OFFSET - C_AXI_DATA_WIDTH;
localparam WSTRB_OFFSET = WDATA_OFFSET - C_AXI_DATA_WIDTH/8;
localparam WUSER_OFFSET = C_HAS_AXI_WUSER == 1 ? WSTRB_OFFSET-C_AXI_WUSER_WIDTH : WSTRB_OFFSET;
localparam BID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_WRCH - C_AXI_ID_WIDTH : C_DIN_WIDTH_WRCH;
localparam BRESP_OFFSET = BID_OFFSET - C_AXI_BRESP_WIDTH;
localparam BUSER_OFFSET = C_HAS_AXI_BUSER == 1 ? BRESP_OFFSET-C_AXI_BUSER_WIDTH : BRESP_OFFSET;
wire [C_DIN_WIDTH_WACH-1:0] wach_din ;
wire [C_DIN_WIDTH_WACH-1:0] wach_dout ;
wire [C_DIN_WIDTH_WACH-1:0] wach_dout_pkt ;
wire wach_full ;
wire wach_almost_full ;
wire wach_prog_full ;
wire wach_empty ;
wire wach_almost_empty ;
wire wach_prog_empty ;
wire [C_DIN_WIDTH_WDCH-1:0] wdch_din ;
wire [C_DIN_WIDTH_WDCH-1:0] wdch_dout ;
wire wdch_full ;
wire wdch_almost_full ;
wire wdch_prog_full ;
wire wdch_empty ;
wire wdch_almost_empty ;
wire wdch_prog_empty ;
wire [C_DIN_WIDTH_WRCH-1:0] wrch_din ;
wire [C_DIN_WIDTH_WRCH-1:0] wrch_dout ;
wire wrch_full ;
wire wrch_almost_full ;
wire wrch_prog_full ;
wire wrch_empty ;
wire wrch_almost_empty ;
wire wrch_prog_empty ;
wire axi_aw_underflow_i;
wire axi_w_underflow_i ;
wire axi_b_underflow_i ;
wire axi_aw_overflow_i ;
wire axi_w_overflow_i ;
wire axi_b_overflow_i ;
wire axi_wr_underflow_i;
wire axi_wr_overflow_i ;
wire wach_s_axi_awready;
wire wach_m_axi_awvalid;
wire wach_wr_en ;
wire wach_rd_en ;
wire wdch_s_axi_wready ;
wire wdch_m_axi_wvalid ;
wire wdch_wr_en ;
wire wdch_rd_en ;
wire wrch_s_axi_bvalid ;
wire wrch_m_axi_bready ;
wire wrch_wr_en ;
wire wrch_rd_en ;
wire txn_count_up ;
wire txn_count_down ;
wire awvalid_en ;
wire awvalid_pkt ;
wire awready_pkt ;
integer wr_pkt_count ;
wire wach_we ;
wire wach_re ;
wire wdch_we ;
wire wdch_re ;
wire wrch_we ;
wire wrch_re ;
generate if (IS_WR_ADDR_CH == 1) begin : axi_write_address_channel
// Write protection when almost full or prog_full is high
assign wach_we = (C_PROG_FULL_TYPE_WACH != 0) ? wach_s_axi_awready & S_AXI_AWVALID : S_AXI_AWVALID;
// Read protection when almost empty or prog_empty is high
assign wach_re = (C_PROG_EMPTY_TYPE_WACH != 0 && C_APPLICATION_TYPE_WACH == 1) ?
wach_m_axi_awvalid & awready_pkt & awvalid_en :
(C_PROG_EMPTY_TYPE_WACH != 0 && C_APPLICATION_TYPE_WACH != 1) ?
M_AXI_AWREADY && wach_m_axi_awvalid :
(C_PROG_EMPTY_TYPE_WACH == 0 && C_APPLICATION_TYPE_WACH == 1) ?
awready_pkt & awvalid_en :
(C_PROG_EMPTY_TYPE_WACH == 0 && C_APPLICATION_TYPE_WACH != 1) ?
M_AXI_AWREADY : 1'b0;
assign wach_wr_en = (C_HAS_SLAVE_CE == 1) ? wach_we & S_ACLK_EN : wach_we;
assign wach_rd_en = (C_HAS_MASTER_CE == 1) ? wach_re & M_ACLK_EN : wach_re;
FIFO_GENERATOR_v12_0_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_WACH == 1 || C_IMPLEMENTATION_TYPE_WACH == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_WACH == 2 || C_IMPLEMENTATION_TYPE_WACH == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_WACH == 1 || C_IMPLEMENTATION_TYPE_WACH == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_WACH == 11 || C_IMPLEMENTATION_TYPE_WACH == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_WACH),
.C_WR_DEPTH (C_WR_DEPTH_WACH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_WACH),
.C_DOUT_WIDTH (C_DIN_WIDTH_WACH),
.C_RD_DEPTH (C_WR_DEPTH_WACH),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_WACH),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_WACH),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_WACH),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_WACH),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH),
.C_USE_ECC (C_USE_ECC_WACH),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_WACH),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_FIFO_TYPE ((C_APPLICATION_TYPE_WACH == 1)?0:C_APPLICATION_TYPE_WACH),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_WACH == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WACH + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WACH == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WACH + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WACH == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WACH + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_EMBEDDED_REG (0),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v12_0_wach_dut
(
.CLK (S_ACLK),
.WR_CLK (S_ACLK),
.RD_CLK (M_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (wach_wr_en),
.RD_EN (wach_rd_en),
.PROG_FULL_THRESH (AXI_AW_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WACH{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WACH{1'b0}}),
.PROG_EMPTY_THRESH (AXI_AW_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WACH{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WACH{1'b0}}),
.INJECTDBITERR (AXI_AW_INJECTDBITERR),
.INJECTSBITERR (AXI_AW_INJECTSBITERR),
.DIN (wach_din),
.DOUT (wach_dout_pkt),
.FULL (wach_full),
.EMPTY (wach_empty),
.ALMOST_FULL (),
.PROG_FULL (AXI_AW_PROG_FULL),
.ALMOST_EMPTY (),
.PROG_EMPTY (AXI_AW_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (axi_aw_overflow_i),
.VALID (),
.UNDERFLOW (axi_aw_underflow_i),
.DATA_COUNT (AXI_AW_DATA_COUNT),
.RD_DATA_COUNT (AXI_AW_RD_DATA_COUNT),
.WR_DATA_COUNT (AXI_AW_WR_DATA_COUNT),
.SBITERR (AXI_AW_SBITERR),
.DBITERR (AXI_AW_DBITERR),
.wr_rst_busy (wr_rst_busy_wach),
.rd_rst_busy (rd_rst_busy_wach),
.wr_rst_i_out (),
.rd_rst_i_out (),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign wach_s_axi_awready = (IS_8SERIES == 0) ? ~wach_full : (C_IMPLEMENTATION_TYPE_WACH == 5 || C_IMPLEMENTATION_TYPE_WACH == 13) ? ~(wach_full | wr_rst_busy_wach) : ~wach_full;
assign wach_m_axi_awvalid = ~wach_empty;
assign S_AXI_AWREADY = wach_s_axi_awready;
assign AXI_AW_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_aw_underflow_i : 0;
assign AXI_AW_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_aw_overflow_i : 0;
end endgenerate // axi_write_address_channel
// Register Slice for Write Address Channel
generate if (C_WACH_TYPE == 1) begin : gwach_reg_slice
fifo_generator_v12_0_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_WACH),
.C_REG_CONFIG (C_REG_SLICE_MODE_WACH)
)
wach_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (wach_din),
.S_VALID (S_AXI_AWVALID),
.S_READY (S_AXI_AWREADY),
// Master side
.M_PAYLOAD_DATA (wach_dout),
.M_VALID (M_AXI_AWVALID),
.M_READY (M_AXI_AWREADY)
);
end endgenerate // gwach_reg_slice
generate if (C_APPLICATION_TYPE_WACH == 1 && C_HAS_AXI_WR_CHANNEL == 1) begin : axi_mm_pkt_fifo_wr
fifo_generator_v12_0_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_WACH),
.C_REG_CONFIG (1)
)
wach_pkt_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (inverted_reset),
// Slave side
.S_PAYLOAD_DATA (wach_dout_pkt),
.S_VALID (awvalid_pkt),
.S_READY (awready_pkt),
// Master side
.M_PAYLOAD_DATA (wach_dout),
.M_VALID (M_AXI_AWVALID),
.M_READY (M_AXI_AWREADY)
);
assign awvalid_pkt = wach_m_axi_awvalid && awvalid_en;
assign txn_count_up = wdch_s_axi_wready && wdch_wr_en && wdch_din[0];
assign txn_count_down = wach_m_axi_awvalid && awready_pkt && awvalid_en;
always@(posedge S_ACLK or posedge inverted_reset) begin
if(inverted_reset == 1) begin
wr_pkt_count <= 0;
end else begin
if(txn_count_up == 1 && txn_count_down == 0) begin
wr_pkt_count <= wr_pkt_count + 1;
end else if(txn_count_up == 0 && txn_count_down == 1) begin
wr_pkt_count <= wr_pkt_count - 1;
end
end
end //Always end
assign awvalid_en = (wr_pkt_count > 0)?1:0;
end endgenerate
generate if (C_APPLICATION_TYPE_WACH != 1) begin : axi_mm_fifo_wr
assign awvalid_en = 1;
assign wach_dout = wach_dout_pkt;
assign M_AXI_AWVALID = wach_m_axi_awvalid;
end
endgenerate
generate if (IS_WR_DATA_CH == 1) begin : axi_write_data_channel
// Write protection when almost full or prog_full is high
assign wdch_we = (C_PROG_FULL_TYPE_WDCH != 0) ? wdch_s_axi_wready & S_AXI_WVALID : S_AXI_WVALID;
// Read protection when almost empty or prog_empty is high
assign wdch_re = (C_PROG_EMPTY_TYPE_WDCH != 0) ? wdch_m_axi_wvalid & M_AXI_WREADY : M_AXI_WREADY;
assign wdch_wr_en = (C_HAS_SLAVE_CE == 1) ? wdch_we & S_ACLK_EN : wdch_we;
assign wdch_rd_en = (C_HAS_MASTER_CE == 1) ? wdch_re & M_ACLK_EN : wdch_re;
FIFO_GENERATOR_v12_0_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_WDCH == 1 || C_IMPLEMENTATION_TYPE_WDCH == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_WDCH == 2 || C_IMPLEMENTATION_TYPE_WDCH == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_WDCH == 1 || C_IMPLEMENTATION_TYPE_WDCH == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_WDCH == 11 || C_IMPLEMENTATION_TYPE_WDCH == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_WDCH),
.C_WR_DEPTH (C_WR_DEPTH_WDCH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_WDCH),
.C_DOUT_WIDTH (C_DIN_WIDTH_WDCH),
.C_RD_DEPTH (C_WR_DEPTH_WDCH),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_WDCH),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_WDCH),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_WDCH),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_WDCH),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH),
.C_USE_ECC (C_USE_ECC_WDCH),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_WDCH),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_FIFO_TYPE (C_APPLICATION_TYPE_WDCH),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_WDCH == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WDCH + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WDCH == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WDCH + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WDCH == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WDCH + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_EMBEDDED_REG (0),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v12_0_wdch_dut
(
.CLK (S_ACLK),
.WR_CLK (S_ACLK),
.RD_CLK (M_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (wdch_wr_en),
.RD_EN (wdch_rd_en),
.PROG_FULL_THRESH (AXI_W_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WDCH{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WDCH{1'b0}}),
.PROG_EMPTY_THRESH (AXI_W_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WDCH{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WDCH{1'b0}}),
.INJECTDBITERR (AXI_W_INJECTDBITERR),
.INJECTSBITERR (AXI_W_INJECTSBITERR),
.DIN (wdch_din),
.DOUT (wdch_dout),
.FULL (wdch_full),
.EMPTY (wdch_empty),
.ALMOST_FULL (),
.PROG_FULL (AXI_W_PROG_FULL),
.ALMOST_EMPTY (),
.PROG_EMPTY (AXI_W_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (axi_w_overflow_i),
.VALID (),
.UNDERFLOW (axi_w_underflow_i),
.DATA_COUNT (AXI_W_DATA_COUNT),
.RD_DATA_COUNT (AXI_W_RD_DATA_COUNT),
.WR_DATA_COUNT (AXI_W_WR_DATA_COUNT),
.SBITERR (AXI_W_SBITERR),
.DBITERR (AXI_W_DBITERR),
.wr_rst_busy (wr_rst_busy_wdch),
.rd_rst_busy (rd_rst_busy_wdch),
.wr_rst_i_out (),
.rd_rst_i_out (),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign wdch_s_axi_wready = (IS_8SERIES == 0) ? ~wdch_full : (C_IMPLEMENTATION_TYPE_WDCH == 5 || C_IMPLEMENTATION_TYPE_WDCH == 13) ? ~(wdch_full | wr_rst_busy_wdch) : ~wdch_full;
assign wdch_m_axi_wvalid = ~wdch_empty;
assign S_AXI_WREADY = wdch_s_axi_wready;
assign M_AXI_WVALID = wdch_m_axi_wvalid;
assign AXI_W_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_w_underflow_i : 0;
assign AXI_W_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_w_overflow_i : 0;
end endgenerate // axi_write_data_channel
// Register Slice for Write Data Channel
generate if (C_WDCH_TYPE == 1) begin : gwdch_reg_slice
fifo_generator_v12_0_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_WDCH),
.C_REG_CONFIG (C_REG_SLICE_MODE_WDCH)
)
wdch_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (wdch_din),
.S_VALID (S_AXI_WVALID),
.S_READY (S_AXI_WREADY),
// Master side
.M_PAYLOAD_DATA (wdch_dout),
.M_VALID (M_AXI_WVALID),
.M_READY (M_AXI_WREADY)
);
end endgenerate // gwdch_reg_slice
generate if (IS_WR_RESP_CH == 1) begin : axi_write_resp_channel
// Write protection when almost full or prog_full is high
assign wrch_we = (C_PROG_FULL_TYPE_WRCH != 0) ? wrch_m_axi_bready & M_AXI_BVALID : M_AXI_BVALID;
// Read protection when almost empty or prog_empty is high
assign wrch_re = (C_PROG_EMPTY_TYPE_WRCH != 0) ? wrch_s_axi_bvalid & S_AXI_BREADY : S_AXI_BREADY;
assign wrch_wr_en = (C_HAS_SLAVE_CE == 1) ? wrch_we & S_ACLK_EN : wrch_we;
assign wrch_rd_en = (C_HAS_MASTER_CE == 1) ? wrch_re & M_ACLK_EN : wrch_re;
FIFO_GENERATOR_v12_0_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_WRCH == 1 || C_IMPLEMENTATION_TYPE_WRCH == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_WRCH == 2 || C_IMPLEMENTATION_TYPE_WRCH == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_WRCH == 1 || C_IMPLEMENTATION_TYPE_WRCH == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_WRCH == 11 || C_IMPLEMENTATION_TYPE_WRCH == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_WRCH),
.C_WR_DEPTH (C_WR_DEPTH_WRCH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_WRCH),
.C_DOUT_WIDTH (C_DIN_WIDTH_WRCH),
.C_RD_DEPTH (C_WR_DEPTH_WRCH),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_WRCH),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_WRCH),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_WRCH),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_WRCH),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH),
.C_USE_ECC (C_USE_ECC_WRCH),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_WRCH),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_FIFO_TYPE (C_APPLICATION_TYPE_WRCH),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_WRCH == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WRCH + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WRCH == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WRCH + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WRCH == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WRCH + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_EMBEDDED_REG (0),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v12_0_wrch_dut
(
.CLK (S_ACLK),
.WR_CLK (M_ACLK),
.RD_CLK (S_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (wrch_wr_en),
.RD_EN (wrch_rd_en),
.PROG_FULL_THRESH (AXI_B_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WRCH{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WRCH{1'b0}}),
.PROG_EMPTY_THRESH (AXI_B_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WRCH{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WRCH{1'b0}}),
.INJECTDBITERR (AXI_B_INJECTDBITERR),
.INJECTSBITERR (AXI_B_INJECTSBITERR),
.DIN (wrch_din),
.DOUT (wrch_dout),
.FULL (wrch_full),
.EMPTY (wrch_empty),
.ALMOST_FULL (),
.ALMOST_EMPTY (),
.PROG_FULL (AXI_B_PROG_FULL),
.PROG_EMPTY (AXI_B_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (axi_b_overflow_i),
.VALID (),
.UNDERFLOW (axi_b_underflow_i),
.DATA_COUNT (AXI_B_DATA_COUNT),
.RD_DATA_COUNT (AXI_B_RD_DATA_COUNT),
.WR_DATA_COUNT (AXI_B_WR_DATA_COUNT),
.SBITERR (AXI_B_SBITERR),
.DBITERR (AXI_B_DBITERR),
.wr_rst_busy (wr_rst_busy_wrch),
.rd_rst_busy (rd_rst_busy_wrch),
.wr_rst_i_out (),
.rd_rst_i_out (),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign wrch_s_axi_bvalid = ~wrch_empty;
assign wrch_m_axi_bready = (IS_8SERIES == 0) ? ~wrch_full : (C_IMPLEMENTATION_TYPE_WRCH == 5 || C_IMPLEMENTATION_TYPE_WRCH == 13) ? ~(wrch_full | wr_rst_busy_wrch) : ~wrch_full;
assign S_AXI_BVALID = wrch_s_axi_bvalid;
assign M_AXI_BREADY = wrch_m_axi_bready;
assign AXI_B_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_b_underflow_i : 0;
assign AXI_B_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_b_overflow_i : 0;
end endgenerate // axi_write_resp_channel
// Register Slice for Write Response Channel
generate if (C_WRCH_TYPE == 1) begin : gwrch_reg_slice
fifo_generator_v12_0_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_WRCH),
.C_REG_CONFIG (C_REG_SLICE_MODE_WRCH)
)
wrch_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (wrch_din),
.S_VALID (M_AXI_BVALID),
.S_READY (M_AXI_BREADY),
// Master side
.M_PAYLOAD_DATA (wrch_dout),
.M_VALID (S_AXI_BVALID),
.M_READY (S_AXI_BREADY)
);
end endgenerate // gwrch_reg_slice
assign axi_wr_underflow_i = C_USE_COMMON_UNDERFLOW == 1 ? (axi_aw_underflow_i || axi_w_underflow_i || axi_b_underflow_i) : 0;
assign axi_wr_overflow_i = C_USE_COMMON_OVERFLOW == 1 ? (axi_aw_overflow_i || axi_w_overflow_i || axi_b_overflow_i) : 0;
generate if (IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) begin : axi_wach_output
assign M_AXI_AWADDR = wach_dout[AWID_OFFSET-1:AWADDR_OFFSET];
assign M_AXI_AWLEN = wach_dout[AWADDR_OFFSET-1:AWLEN_OFFSET];
assign M_AXI_AWSIZE = wach_dout[AWLEN_OFFSET-1:AWSIZE_OFFSET];
assign M_AXI_AWBURST = wach_dout[AWSIZE_OFFSET-1:AWBURST_OFFSET];
assign M_AXI_AWLOCK = wach_dout[AWBURST_OFFSET-1:AWLOCK_OFFSET];
assign M_AXI_AWCACHE = wach_dout[AWLOCK_OFFSET-1:AWCACHE_OFFSET];
assign M_AXI_AWPROT = wach_dout[AWCACHE_OFFSET-1:AWPROT_OFFSET];
assign M_AXI_AWQOS = wach_dout[AWPROT_OFFSET-1:AWQOS_OFFSET];
assign wach_din[AWID_OFFSET-1:AWADDR_OFFSET] = S_AXI_AWADDR;
assign wach_din[AWADDR_OFFSET-1:AWLEN_OFFSET] = S_AXI_AWLEN;
assign wach_din[AWLEN_OFFSET-1:AWSIZE_OFFSET] = S_AXI_AWSIZE;
assign wach_din[AWSIZE_OFFSET-1:AWBURST_OFFSET] = S_AXI_AWBURST;
assign wach_din[AWBURST_OFFSET-1:AWLOCK_OFFSET] = S_AXI_AWLOCK;
assign wach_din[AWLOCK_OFFSET-1:AWCACHE_OFFSET] = S_AXI_AWCACHE;
assign wach_din[AWCACHE_OFFSET-1:AWPROT_OFFSET] = S_AXI_AWPROT;
assign wach_din[AWPROT_OFFSET-1:AWQOS_OFFSET] = S_AXI_AWQOS;
end endgenerate // axi_wach_output
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_AXI_TYPE == 1) begin : axi_awregion
assign M_AXI_AWREGION = wach_dout[AWQOS_OFFSET-1:AWREGION_OFFSET];
end endgenerate // axi_awregion
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_AXI_TYPE != 1) begin : naxi_awregion
assign M_AXI_AWREGION = 0;
end endgenerate // naxi_awregion
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_AWUSER == 1) begin : axi_awuser
assign M_AXI_AWUSER = wach_dout[AWREGION_OFFSET-1:AWUSER_OFFSET];
end endgenerate // axi_awuser
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_AWUSER == 0) begin : naxi_awuser
assign M_AXI_AWUSER = 0;
end endgenerate // naxi_awuser
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_awid
assign M_AXI_AWID = wach_dout[C_DIN_WIDTH_WACH-1:AWID_OFFSET];
end endgenerate //axi_awid
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_awid
assign M_AXI_AWID = 0;
end endgenerate //naxi_awid
generate if (IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) begin : axi_wdch_output
assign M_AXI_WDATA = wdch_dout[WID_OFFSET-1:WDATA_OFFSET];
assign M_AXI_WSTRB = wdch_dout[WDATA_OFFSET-1:WSTRB_OFFSET];
assign M_AXI_WLAST = wdch_dout[0];
assign wdch_din[WID_OFFSET-1:WDATA_OFFSET] = S_AXI_WDATA;
assign wdch_din[WDATA_OFFSET-1:WSTRB_OFFSET] = S_AXI_WSTRB;
assign wdch_din[0] = S_AXI_WLAST;
end endgenerate // axi_wdch_output
generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_ID == 1 && C_AXI_TYPE == 3) begin
assign M_AXI_WID = wdch_dout[C_DIN_WIDTH_WDCH-1:WID_OFFSET];
end endgenerate
generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && (C_HAS_AXI_ID == 0 || C_AXI_TYPE != 3)) begin
assign M_AXI_WID = 0;
end endgenerate
generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_WUSER == 1 ) begin
assign M_AXI_WUSER = wdch_dout[WSTRB_OFFSET-1:WUSER_OFFSET];
end endgenerate
generate if (C_HAS_AXI_WUSER == 0) begin
assign M_AXI_WUSER = 0;
end endgenerate
generate if (IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) begin : axi_wrch_output
assign S_AXI_BRESP = wrch_dout[BID_OFFSET-1:BRESP_OFFSET];
assign wrch_din[BID_OFFSET-1:BRESP_OFFSET] = M_AXI_BRESP;
end endgenerate // axi_wrch_output
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_BUSER == 1) begin : axi_buser
assign S_AXI_BUSER = wrch_dout[BRESP_OFFSET-1:BUSER_OFFSET];
end endgenerate // axi_buser
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_BUSER == 0) begin : naxi_buser
assign S_AXI_BUSER = 0;
end endgenerate // naxi_buser
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_bid
assign S_AXI_BID = wrch_dout[C_DIN_WIDTH_WRCH-1:BID_OFFSET];
end endgenerate // axi_bid
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_bid
assign S_AXI_BID = 0 ;
end endgenerate // naxi_bid
generate if (IS_AXI_LITE_WACH == 1 || (IS_AXI_LITE == 1 && C_WACH_TYPE == 1)) begin : axi_wach_output1
assign wach_din = {S_AXI_AWADDR, S_AXI_AWPROT};
assign M_AXI_AWADDR = wach_dout[C_DIN_WIDTH_WACH-1:AWADDR_OFFSET];
assign M_AXI_AWPROT = wach_dout[AWADDR_OFFSET-1:AWPROT_OFFSET];
end endgenerate // axi_wach_output1
generate if (IS_AXI_LITE_WDCH == 1 || (IS_AXI_LITE == 1 && C_WDCH_TYPE == 1)) begin : axi_wdch_output1
assign wdch_din = {S_AXI_WDATA, S_AXI_WSTRB};
assign M_AXI_WDATA = wdch_dout[C_DIN_WIDTH_WDCH-1:WDATA_OFFSET];
assign M_AXI_WSTRB = wdch_dout[WDATA_OFFSET-1:WSTRB_OFFSET];
end endgenerate // axi_wdch_output1
generate if (IS_AXI_LITE_WRCH == 1 || (IS_AXI_LITE == 1 && C_WRCH_TYPE == 1)) begin : axi_wrch_output1
assign wrch_din = M_AXI_BRESP;
assign S_AXI_BRESP = wrch_dout[C_DIN_WIDTH_WRCH-1:BRESP_OFFSET];
end endgenerate // axi_wrch_output1
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_AWUSER == 1) begin : gwach_din1
assign wach_din[AWREGION_OFFSET-1:AWUSER_OFFSET] = S_AXI_AWUSER;
end endgenerate // gwach_din1
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : gwach_din2
assign wach_din[C_DIN_WIDTH_WACH-1:AWID_OFFSET] = S_AXI_AWID;
end endgenerate // gwach_din2
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_AXI_TYPE == 1) begin : gwach_din3
assign wach_din[AWQOS_OFFSET-1:AWREGION_OFFSET] = S_AXI_AWREGION;
end endgenerate // gwach_din3
generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_WUSER == 1) begin : gwdch_din1
assign wdch_din[WSTRB_OFFSET-1:WUSER_OFFSET] = S_AXI_WUSER;
end endgenerate // gwdch_din1
generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_ID == 1 && C_AXI_TYPE == 3) begin : gwdch_din2
assign wdch_din[C_DIN_WIDTH_WDCH-1:WID_OFFSET] = S_AXI_WID;
end endgenerate // gwdch_din2
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_BUSER == 1) begin : gwrch_din1
assign wrch_din[BRESP_OFFSET-1:BUSER_OFFSET] = M_AXI_BUSER;
end endgenerate // gwrch_din1
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : gwrch_din2
assign wrch_din[C_DIN_WIDTH_WRCH-1:BID_OFFSET] = M_AXI_BID;
end endgenerate // gwrch_din2
//end of axi_write_channel
//###########################################################################
// AXI FULL Read Channel (axi_read_channel)
//###########################################################################
wire [C_DIN_WIDTH_RACH-1:0] rach_din ;
wire [C_DIN_WIDTH_RACH-1:0] rach_dout ;
wire [C_DIN_WIDTH_RACH-1:0] rach_dout_pkt ;
wire rach_full ;
wire rach_almost_full ;
wire rach_prog_full ;
wire rach_empty ;
wire rach_almost_empty ;
wire rach_prog_empty ;
wire [C_DIN_WIDTH_RDCH-1:0] rdch_din ;
wire [C_DIN_WIDTH_RDCH-1:0] rdch_dout ;
wire rdch_full ;
wire rdch_almost_full ;
wire rdch_prog_full ;
wire rdch_empty ;
wire rdch_almost_empty ;
wire rdch_prog_empty ;
wire axi_ar_underflow_i ;
wire axi_r_underflow_i ;
wire axi_ar_overflow_i ;
wire axi_r_overflow_i ;
wire axi_rd_underflow_i ;
wire axi_rd_overflow_i ;
wire rach_s_axi_arready ;
wire rach_m_axi_arvalid ;
wire rach_wr_en ;
wire rach_rd_en ;
wire rdch_m_axi_rready ;
wire rdch_s_axi_rvalid ;
wire rdch_wr_en ;
wire rdch_rd_en ;
wire arvalid_pkt ;
wire arready_pkt ;
wire arvalid_en ;
wire rdch_rd_ok ;
wire accept_next_pkt ;
integer rdch_free_space ;
integer rdch_commited_space ;
wire rach_we ;
wire rach_re ;
wire rdch_we ;
wire rdch_re ;
localparam ARID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_RACH - C_AXI_ID_WIDTH : C_DIN_WIDTH_RACH;
localparam ARADDR_OFFSET = ARID_OFFSET - C_AXI_ADDR_WIDTH;
localparam ARLEN_OFFSET = C_AXI_TYPE != 2 ? ARADDR_OFFSET - C_AXI_LEN_WIDTH : ARADDR_OFFSET;
localparam ARSIZE_OFFSET = C_AXI_TYPE != 2 ? ARLEN_OFFSET - C_AXI_SIZE_WIDTH : ARLEN_OFFSET;
localparam ARBURST_OFFSET = C_AXI_TYPE != 2 ? ARSIZE_OFFSET - C_AXI_BURST_WIDTH : ARSIZE_OFFSET;
localparam ARLOCK_OFFSET = C_AXI_TYPE != 2 ? ARBURST_OFFSET - C_AXI_LOCK_WIDTH : ARBURST_OFFSET;
localparam ARCACHE_OFFSET = C_AXI_TYPE != 2 ? ARLOCK_OFFSET - C_AXI_CACHE_WIDTH : ARLOCK_OFFSET;
localparam ARPROT_OFFSET = ARCACHE_OFFSET - C_AXI_PROT_WIDTH;
localparam ARQOS_OFFSET = ARPROT_OFFSET - C_AXI_QOS_WIDTH;
localparam ARREGION_OFFSET = C_AXI_TYPE == 1 ? ARQOS_OFFSET - C_AXI_REGION_WIDTH : ARQOS_OFFSET;
localparam ARUSER_OFFSET = C_HAS_AXI_ARUSER == 1 ? ARREGION_OFFSET-C_AXI_ARUSER_WIDTH : ARREGION_OFFSET;
localparam RID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_RDCH - C_AXI_ID_WIDTH : C_DIN_WIDTH_RDCH;
localparam RDATA_OFFSET = RID_OFFSET - C_AXI_DATA_WIDTH;
localparam RRESP_OFFSET = RDATA_OFFSET - C_AXI_RRESP_WIDTH;
localparam RUSER_OFFSET = C_HAS_AXI_RUSER == 1 ? RRESP_OFFSET-C_AXI_RUSER_WIDTH : RRESP_OFFSET;
generate if (IS_RD_ADDR_CH == 1) begin : axi_read_addr_channel
// Write protection when almost full or prog_full is high
assign rach_we = (C_PROG_FULL_TYPE_RACH != 0) ? rach_s_axi_arready & S_AXI_ARVALID : S_AXI_ARVALID;
// Read protection when almost empty or prog_empty is high
// assign rach_rd_en = (C_PROG_EMPTY_TYPE_RACH != 5) ? rach_m_axi_arvalid & M_AXI_ARREADY : M_AXI_ARREADY && arvalid_en;
assign rach_re = (C_PROG_EMPTY_TYPE_RACH != 0 && C_APPLICATION_TYPE_RACH == 1) ?
rach_m_axi_arvalid & arready_pkt & arvalid_en :
(C_PROG_EMPTY_TYPE_RACH != 0 && C_APPLICATION_TYPE_RACH != 1) ?
M_AXI_ARREADY && rach_m_axi_arvalid :
(C_PROG_EMPTY_TYPE_RACH == 0 && C_APPLICATION_TYPE_RACH == 1) ?
arready_pkt & arvalid_en :
(C_PROG_EMPTY_TYPE_RACH == 0 && C_APPLICATION_TYPE_RACH != 1) ?
M_AXI_ARREADY : 1'b0;
assign rach_wr_en = (C_HAS_SLAVE_CE == 1) ? rach_we & S_ACLK_EN : rach_we;
assign rach_rd_en = (C_HAS_MASTER_CE == 1) ? rach_re & M_ACLK_EN : rach_re;
FIFO_GENERATOR_v12_0_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_RACH == 1 || C_IMPLEMENTATION_TYPE_RACH == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_RACH == 2 || C_IMPLEMENTATION_TYPE_RACH == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_RACH == 1 || C_IMPLEMENTATION_TYPE_RACH == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_RACH == 11 || C_IMPLEMENTATION_TYPE_RACH == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_RACH),
.C_WR_DEPTH (C_WR_DEPTH_RACH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_RACH),
.C_DOUT_WIDTH (C_DIN_WIDTH_RACH),
.C_RD_DEPTH (C_WR_DEPTH_RACH),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_RACH),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_RACH),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_RACH),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_RACH),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH),
.C_USE_ECC (C_USE_ECC_RACH),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_RACH),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_FIFO_TYPE ((C_APPLICATION_TYPE_RACH == 1)?0:C_APPLICATION_TYPE_RACH),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_RACH == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RACH + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RACH == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RACH + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RACH == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RACH + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_EMBEDDED_REG (0),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v12_0_rach_dut
(
.CLK (S_ACLK),
.WR_CLK (S_ACLK),
.RD_CLK (M_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (rach_wr_en),
.RD_EN (rach_rd_en),
.PROG_FULL_THRESH (AXI_AR_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RACH{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RACH{1'b0}}),
.PROG_EMPTY_THRESH (AXI_AR_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RACH{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RACH{1'b0}}),
.INJECTDBITERR (AXI_AR_INJECTDBITERR),
.INJECTSBITERR (AXI_AR_INJECTSBITERR),
.DIN (rach_din),
.DOUT (rach_dout_pkt),
.FULL (rach_full),
.EMPTY (rach_empty),
.ALMOST_FULL (),
.ALMOST_EMPTY (),
.PROG_FULL (AXI_AR_PROG_FULL),
.PROG_EMPTY (AXI_AR_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (axi_ar_overflow_i),
.VALID (),
.UNDERFLOW (axi_ar_underflow_i),
.DATA_COUNT (AXI_AR_DATA_COUNT),
.RD_DATA_COUNT (AXI_AR_RD_DATA_COUNT),
.WR_DATA_COUNT (AXI_AR_WR_DATA_COUNT),
.SBITERR (AXI_AR_SBITERR),
.DBITERR (AXI_AR_DBITERR),
.wr_rst_busy (wr_rst_busy_rach),
.rd_rst_busy (rd_rst_busy_rach),
.wr_rst_i_out (),
.rd_rst_i_out (),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign rach_s_axi_arready = (IS_8SERIES == 0) ? ~rach_full : (C_IMPLEMENTATION_TYPE_RACH == 5 || C_IMPLEMENTATION_TYPE_RACH == 13) ? ~(rach_full | wr_rst_busy_rach) : ~rach_full;
assign rach_m_axi_arvalid = ~rach_empty;
assign S_AXI_ARREADY = rach_s_axi_arready;
assign AXI_AR_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_ar_underflow_i : 0;
assign AXI_AR_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_ar_overflow_i : 0;
end endgenerate // axi_read_addr_channel
// Register Slice for Read Address Channel
generate if (C_RACH_TYPE == 1) begin : grach_reg_slice
fifo_generator_v12_0_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_RACH),
.C_REG_CONFIG (C_REG_SLICE_MODE_RACH)
)
rach_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (rach_din),
.S_VALID (S_AXI_ARVALID),
.S_READY (S_AXI_ARREADY),
// Master side
.M_PAYLOAD_DATA (rach_dout),
.M_VALID (M_AXI_ARVALID),
.M_READY (M_AXI_ARREADY)
);
end endgenerate // grach_reg_slice
// Register Slice for Read Address Channel for MM Packet FIFO
generate if (C_RACH_TYPE == 0 && C_APPLICATION_TYPE_RACH == 1) begin : grach_reg_slice_mm_pkt_fifo
fifo_generator_v12_0_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_RACH),
.C_REG_CONFIG (1)
)
reg_slice_mm_pkt_fifo_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (inverted_reset),
// Slave side
.S_PAYLOAD_DATA (rach_dout_pkt),
.S_VALID (arvalid_pkt),
.S_READY (arready_pkt),
// Master side
.M_PAYLOAD_DATA (rach_dout),
.M_VALID (M_AXI_ARVALID),
.M_READY (M_AXI_ARREADY)
);
end endgenerate // grach_reg_slice_mm_pkt_fifo
generate if (C_RACH_TYPE == 0 && C_APPLICATION_TYPE_RACH != 1) begin : grach_m_axi_arvalid
assign M_AXI_ARVALID = rach_m_axi_arvalid;
assign rach_dout = rach_dout_pkt;
end endgenerate // grach_m_axi_arvalid
generate if (C_APPLICATION_TYPE_RACH == 1 && C_HAS_AXI_RD_CHANNEL == 1) begin : axi_mm_pkt_fifo_rd
assign rdch_rd_ok = rdch_s_axi_rvalid && rdch_rd_en;
assign arvalid_pkt = rach_m_axi_arvalid && arvalid_en;
assign accept_next_pkt = rach_m_axi_arvalid && arready_pkt && arvalid_en;
always@(posedge S_ACLK or posedge inverted_reset) begin
if(inverted_reset) begin
rdch_commited_space <= 0;
end else begin
if(rdch_rd_ok && !accept_next_pkt) begin
rdch_commited_space <= rdch_commited_space-1;
end else if(!rdch_rd_ok && accept_next_pkt) begin
rdch_commited_space <= rdch_commited_space+(rach_dout_pkt[ARADDR_OFFSET-1:ARLEN_OFFSET]+1);
end else if(rdch_rd_ok && accept_next_pkt) begin
rdch_commited_space <= rdch_commited_space+(rach_dout_pkt[ARADDR_OFFSET-1:ARLEN_OFFSET]);
end
end
end //Always end
always@(*) begin
rdch_free_space <= (C_WR_DEPTH_RDCH-(rdch_commited_space+rach_dout_pkt[ARADDR_OFFSET-1:ARLEN_OFFSET]+1));
end
assign arvalid_en = (rdch_free_space >= 0)?1:0;
end
endgenerate
generate if (C_APPLICATION_TYPE_RACH != 1) begin : axi_mm_fifo_rd
assign arvalid_en = 1;
end
endgenerate
generate if (IS_RD_DATA_CH == 1) begin : axi_read_data_channel
// Write protection when almost full or prog_full is high
assign rdch_we = (C_PROG_FULL_TYPE_RDCH != 0) ? rdch_m_axi_rready & M_AXI_RVALID : M_AXI_RVALID;
// Read protection when almost empty or prog_empty is high
assign rdch_re = (C_PROG_EMPTY_TYPE_RDCH != 0) ? rdch_s_axi_rvalid & S_AXI_RREADY : S_AXI_RREADY;
assign rdch_wr_en = (C_HAS_SLAVE_CE == 1) ? rdch_we & S_ACLK_EN : rdch_we;
assign rdch_rd_en = (C_HAS_MASTER_CE == 1) ? rdch_re & M_ACLK_EN : rdch_re;
FIFO_GENERATOR_v12_0_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_RDCH == 1 || C_IMPLEMENTATION_TYPE_RDCH == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_RDCH == 2 || C_IMPLEMENTATION_TYPE_RDCH == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_RDCH == 1 || C_IMPLEMENTATION_TYPE_RDCH == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_RDCH == 11 || C_IMPLEMENTATION_TYPE_RDCH == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_RDCH),
.C_WR_DEPTH (C_WR_DEPTH_RDCH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_RDCH),
.C_DOUT_WIDTH (C_DIN_WIDTH_RDCH),
.C_RD_DEPTH (C_WR_DEPTH_RDCH),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_RDCH),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_RDCH),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_RDCH),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_RDCH),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH),
.C_USE_ECC (C_USE_ECC_RDCH),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_RDCH),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_FIFO_TYPE (C_APPLICATION_TYPE_RDCH),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_RDCH == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RDCH + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RDCH == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RDCH + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RDCH == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RDCH + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_EMBEDDED_REG (0),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v12_0_rdch_dut
(
.CLK (S_ACLK),
.WR_CLK (M_ACLK),
.RD_CLK (S_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (rdch_wr_en),
.RD_EN (rdch_rd_en),
.PROG_FULL_THRESH (AXI_R_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RDCH{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RDCH{1'b0}}),
.PROG_EMPTY_THRESH (AXI_R_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RDCH{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RDCH{1'b0}}),
.INJECTDBITERR (AXI_R_INJECTDBITERR),
.INJECTSBITERR (AXI_R_INJECTSBITERR),
.DIN (rdch_din),
.DOUT (rdch_dout),
.FULL (rdch_full),
.EMPTY (rdch_empty),
.ALMOST_FULL (),
.ALMOST_EMPTY (),
.PROG_FULL (AXI_R_PROG_FULL),
.PROG_EMPTY (AXI_R_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (axi_r_overflow_i),
.VALID (),
.UNDERFLOW (axi_r_underflow_i),
.DATA_COUNT (AXI_R_DATA_COUNT),
.RD_DATA_COUNT (AXI_R_RD_DATA_COUNT),
.WR_DATA_COUNT (AXI_R_WR_DATA_COUNT),
.SBITERR (AXI_R_SBITERR),
.DBITERR (AXI_R_DBITERR),
.wr_rst_busy (wr_rst_busy_rdch),
.rd_rst_busy (rd_rst_busy_rdch),
.wr_rst_i_out (),
.rd_rst_i_out (),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign rdch_s_axi_rvalid = ~rdch_empty;
assign rdch_m_axi_rready = (IS_8SERIES == 0) ? ~rdch_full : (C_IMPLEMENTATION_TYPE_RDCH == 5 || C_IMPLEMENTATION_TYPE_RDCH == 13) ? ~(rdch_full | wr_rst_busy_rdch) : ~rdch_full;
assign S_AXI_RVALID = rdch_s_axi_rvalid;
assign M_AXI_RREADY = rdch_m_axi_rready;
assign AXI_R_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_r_underflow_i : 0;
assign AXI_R_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_r_overflow_i : 0;
end endgenerate //axi_read_data_channel
// Register Slice for read Data Channel
generate if (C_RDCH_TYPE == 1) begin : grdch_reg_slice
fifo_generator_v12_0_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_RDCH),
.C_REG_CONFIG (C_REG_SLICE_MODE_RDCH)
)
rdch_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (rdch_din),
.S_VALID (M_AXI_RVALID),
.S_READY (M_AXI_RREADY),
// Master side
.M_PAYLOAD_DATA (rdch_dout),
.M_VALID (S_AXI_RVALID),
.M_READY (S_AXI_RREADY)
);
end endgenerate // grdch_reg_slice
assign axi_rd_underflow_i = C_USE_COMMON_UNDERFLOW == 1 ? (axi_ar_underflow_i || axi_r_underflow_i) : 0;
assign axi_rd_overflow_i = C_USE_COMMON_OVERFLOW == 1 ? (axi_ar_overflow_i || axi_r_overflow_i) : 0;
generate if (IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) begin : axi_full_rach_output
assign M_AXI_ARADDR = rach_dout[ARID_OFFSET-1:ARADDR_OFFSET];
assign M_AXI_ARLEN = rach_dout[ARADDR_OFFSET-1:ARLEN_OFFSET];
assign M_AXI_ARSIZE = rach_dout[ARLEN_OFFSET-1:ARSIZE_OFFSET];
assign M_AXI_ARBURST = rach_dout[ARSIZE_OFFSET-1:ARBURST_OFFSET];
assign M_AXI_ARLOCK = rach_dout[ARBURST_OFFSET-1:ARLOCK_OFFSET];
assign M_AXI_ARCACHE = rach_dout[ARLOCK_OFFSET-1:ARCACHE_OFFSET];
assign M_AXI_ARPROT = rach_dout[ARCACHE_OFFSET-1:ARPROT_OFFSET];
assign M_AXI_ARQOS = rach_dout[ARPROT_OFFSET-1:ARQOS_OFFSET];
assign rach_din[ARID_OFFSET-1:ARADDR_OFFSET] = S_AXI_ARADDR;
assign rach_din[ARADDR_OFFSET-1:ARLEN_OFFSET] = S_AXI_ARLEN;
assign rach_din[ARLEN_OFFSET-1:ARSIZE_OFFSET] = S_AXI_ARSIZE;
assign rach_din[ARSIZE_OFFSET-1:ARBURST_OFFSET] = S_AXI_ARBURST;
assign rach_din[ARBURST_OFFSET-1:ARLOCK_OFFSET] = S_AXI_ARLOCK;
assign rach_din[ARLOCK_OFFSET-1:ARCACHE_OFFSET] = S_AXI_ARCACHE;
assign rach_din[ARCACHE_OFFSET-1:ARPROT_OFFSET] = S_AXI_ARPROT;
assign rach_din[ARPROT_OFFSET-1:ARQOS_OFFSET] = S_AXI_ARQOS;
end endgenerate // axi_full_rach_output
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_AXI_TYPE == 1) begin : axi_arregion
assign M_AXI_ARREGION = rach_dout[ARQOS_OFFSET-1:ARREGION_OFFSET];
end endgenerate // axi_arregion
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_AXI_TYPE != 1) begin : naxi_arregion
assign M_AXI_ARREGION = 0;
end endgenerate // naxi_arregion
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ARUSER == 1) begin : axi_aruser
assign M_AXI_ARUSER = rach_dout[ARREGION_OFFSET-1:ARUSER_OFFSET];
end endgenerate // axi_aruser
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ARUSER == 0) begin : naxi_aruser
assign M_AXI_ARUSER = 0;
end endgenerate // naxi_aruser
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_arid
assign M_AXI_ARID = rach_dout[C_DIN_WIDTH_RACH-1:ARID_OFFSET];
end endgenerate // axi_arid
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_arid
assign M_AXI_ARID = 0;
end endgenerate // naxi_arid
generate if (IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) begin : axi_full_rdch_output
assign S_AXI_RDATA = rdch_dout[RID_OFFSET-1:RDATA_OFFSET];
assign S_AXI_RRESP = rdch_dout[RDATA_OFFSET-1:RRESP_OFFSET];
assign S_AXI_RLAST = rdch_dout[0];
assign rdch_din[RID_OFFSET-1:RDATA_OFFSET] = M_AXI_RDATA;
assign rdch_din[RDATA_OFFSET-1:RRESP_OFFSET] = M_AXI_RRESP;
assign rdch_din[0] = M_AXI_RLAST;
end endgenerate // axi_full_rdch_output
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_RUSER == 1) begin : axi_full_ruser_output
assign S_AXI_RUSER = rdch_dout[RRESP_OFFSET-1:RUSER_OFFSET];
end endgenerate // axi_full_ruser_output
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_RUSER == 0) begin : axi_full_nruser_output
assign S_AXI_RUSER = 0;
end endgenerate // axi_full_nruser_output
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_rid
assign S_AXI_RID = rdch_dout[C_DIN_WIDTH_RDCH-1:RID_OFFSET];
end endgenerate // axi_rid
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_rid
assign S_AXI_RID = 0;
end endgenerate // naxi_rid
generate if (IS_AXI_LITE_RACH == 1 || (IS_AXI_LITE == 1 && C_RACH_TYPE == 1)) begin : axi_lite_rach_output1
assign rach_din = {S_AXI_ARADDR, S_AXI_ARPROT};
assign M_AXI_ARADDR = rach_dout[C_DIN_WIDTH_RACH-1:ARADDR_OFFSET];
assign M_AXI_ARPROT = rach_dout[ARADDR_OFFSET-1:ARPROT_OFFSET];
end endgenerate // axi_lite_rach_output
generate if (IS_AXI_LITE_RDCH == 1 || (IS_AXI_LITE == 1 && C_RDCH_TYPE == 1)) begin : axi_lite_rdch_output1
assign rdch_din = {M_AXI_RDATA, M_AXI_RRESP};
assign S_AXI_RDATA = rdch_dout[C_DIN_WIDTH_RDCH-1:RDATA_OFFSET];
assign S_AXI_RRESP = rdch_dout[RDATA_OFFSET-1:RRESP_OFFSET];
end endgenerate // axi_lite_rdch_output
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ARUSER == 1) begin : grach_din1
assign rach_din[ARREGION_OFFSET-1:ARUSER_OFFSET] = S_AXI_ARUSER;
end endgenerate // grach_din1
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : grach_din2
assign rach_din[C_DIN_WIDTH_RACH-1:ARID_OFFSET] = S_AXI_ARID;
end endgenerate // grach_din2
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_AXI_TYPE == 1) begin
assign rach_din[ARQOS_OFFSET-1:ARREGION_OFFSET] = S_AXI_ARREGION;
end endgenerate
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_RUSER == 1) begin : grdch_din1
assign rdch_din[RRESP_OFFSET-1:RUSER_OFFSET] = M_AXI_RUSER;
end endgenerate // grdch_din1
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : grdch_din2
assign rdch_din[C_DIN_WIDTH_RDCH-1:RID_OFFSET] = M_AXI_RID;
end endgenerate // grdch_din2
//end of axi_read_channel
generate if (C_INTERFACE_TYPE == 1 && C_USE_COMMON_UNDERFLOW == 1) begin : gaxi_comm_uf
assign UNDERFLOW = (C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 1) ? (axi_wr_underflow_i || axi_rd_underflow_i) :
(C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 0) ? axi_wr_underflow_i :
(C_HAS_AXI_WR_CHANNEL == 0 && C_HAS_AXI_RD_CHANNEL == 1) ? axi_rd_underflow_i : 0;
end endgenerate // gaxi_comm_uf
generate if (C_INTERFACE_TYPE == 1 && C_USE_COMMON_OVERFLOW == 1) begin : gaxi_comm_of
assign OVERFLOW = (C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 1) ? (axi_wr_overflow_i || axi_rd_overflow_i) :
(C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 0) ? axi_wr_overflow_i :
(C_HAS_AXI_WR_CHANNEL == 0 && C_HAS_AXI_RD_CHANNEL == 1) ? axi_rd_overflow_i : 0;
end endgenerate // gaxi_comm_of
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
// Pass Through Logic or Wiring Logic
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
// Pass Through Logic for Read Channel
//-------------------------------------------------------------------------
// Wiring logic for Write Address Channel
generate if (C_WACH_TYPE == 2) begin : gwach_pass_through
assign M_AXI_AWID = S_AXI_AWID;
assign M_AXI_AWADDR = S_AXI_AWADDR;
assign M_AXI_AWLEN = S_AXI_AWLEN;
assign M_AXI_AWSIZE = S_AXI_AWSIZE;
assign M_AXI_AWBURST = S_AXI_AWBURST;
assign M_AXI_AWLOCK = S_AXI_AWLOCK;
assign M_AXI_AWCACHE = S_AXI_AWCACHE;
assign M_AXI_AWPROT = S_AXI_AWPROT;
assign M_AXI_AWQOS = S_AXI_AWQOS;
assign M_AXI_AWREGION = S_AXI_AWREGION;
assign M_AXI_AWUSER = S_AXI_AWUSER;
assign S_AXI_AWREADY = M_AXI_AWREADY;
assign M_AXI_AWVALID = S_AXI_AWVALID;
end endgenerate // gwach_pass_through;
// Wiring logic for Write Data Channel
generate if (C_WDCH_TYPE == 2) begin : gwdch_pass_through
assign M_AXI_WID = S_AXI_WID;
assign M_AXI_WDATA = S_AXI_WDATA;
assign M_AXI_WSTRB = S_AXI_WSTRB;
assign M_AXI_WLAST = S_AXI_WLAST;
assign M_AXI_WUSER = S_AXI_WUSER;
assign S_AXI_WREADY = M_AXI_WREADY;
assign M_AXI_WVALID = S_AXI_WVALID;
end endgenerate // gwdch_pass_through;
// Wiring logic for Write Response Channel
generate if (C_WRCH_TYPE == 2) begin : gwrch_pass_through
assign S_AXI_BID = M_AXI_BID;
assign S_AXI_BRESP = M_AXI_BRESP;
assign S_AXI_BUSER = M_AXI_BUSER;
assign M_AXI_BREADY = S_AXI_BREADY;
assign S_AXI_BVALID = M_AXI_BVALID;
end endgenerate // gwrch_pass_through;
//-------------------------------------------------------------------------
// Pass Through Logic for Read Channel
//-------------------------------------------------------------------------
// Wiring logic for Read Address Channel
generate if (C_RACH_TYPE == 2) begin : grach_pass_through
assign M_AXI_ARID = S_AXI_ARID;
assign M_AXI_ARADDR = S_AXI_ARADDR;
assign M_AXI_ARLEN = S_AXI_ARLEN;
assign M_AXI_ARSIZE = S_AXI_ARSIZE;
assign M_AXI_ARBURST = S_AXI_ARBURST;
assign M_AXI_ARLOCK = S_AXI_ARLOCK;
assign M_AXI_ARCACHE = S_AXI_ARCACHE;
assign M_AXI_ARPROT = S_AXI_ARPROT;
assign M_AXI_ARQOS = S_AXI_ARQOS;
assign M_AXI_ARREGION = S_AXI_ARREGION;
assign M_AXI_ARUSER = S_AXI_ARUSER;
assign S_AXI_ARREADY = M_AXI_ARREADY;
assign M_AXI_ARVALID = S_AXI_ARVALID;
end endgenerate // grach_pass_through;
// Wiring logic for Read Data Channel
generate if (C_RDCH_TYPE == 2) begin : grdch_pass_through
assign S_AXI_RID = M_AXI_RID;
assign S_AXI_RLAST = M_AXI_RLAST;
assign S_AXI_RUSER = M_AXI_RUSER;
assign S_AXI_RDATA = M_AXI_RDATA;
assign S_AXI_RRESP = M_AXI_RRESP;
assign S_AXI_RVALID = M_AXI_RVALID;
assign M_AXI_RREADY = S_AXI_RREADY;
end endgenerate // grdch_pass_through;
// Wiring logic for AXI Streaming
generate if (C_AXIS_TYPE == 2) begin : gaxis_pass_through
assign M_AXIS_TDATA = S_AXIS_TDATA;
assign M_AXIS_TSTRB = S_AXIS_TSTRB;
assign M_AXIS_TKEEP = S_AXIS_TKEEP;
assign M_AXIS_TID = S_AXIS_TID;
assign M_AXIS_TDEST = S_AXIS_TDEST;
assign M_AXIS_TUSER = S_AXIS_TUSER;
assign M_AXIS_TLAST = S_AXIS_TLAST;
assign S_AXIS_TREADY = M_AXIS_TREADY;
assign M_AXIS_TVALID = S_AXIS_TVALID;
end endgenerate // gaxis_pass_through;
endmodule //FIFO_GENERATOR_v12_0
/*******************************************************************************
* Declaration of top-level module for Conventional FIFO
******************************************************************************/
module FIFO_GENERATOR_v12_0_CONV_VER
#(
parameter C_COMMON_CLOCK = 0,
parameter C_COUNT_TYPE = 0,
parameter C_DATA_COUNT_WIDTH = 2,
parameter C_DEFAULT_VALUE = "",
parameter C_DIN_WIDTH = 8,
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_ENABLE_RLOCS = 0,
parameter C_FAMILY = "virtex7", //Not allowed in Verilog model
parameter C_FULL_FLAGS_RST_VAL = 1,
parameter C_HAS_ALMOST_EMPTY = 0,
parameter C_HAS_ALMOST_FULL = 0,
parameter C_HAS_BACKUP = 0,
parameter C_HAS_DATA_COUNT = 0,
parameter C_HAS_INT_CLK = 0,
parameter C_HAS_MEMINIT_FILE = 0,
parameter C_HAS_OVERFLOW = 0,
parameter C_HAS_RD_DATA_COUNT = 0,
parameter C_HAS_RD_RST = 0,
parameter C_HAS_RST = 0,
parameter C_HAS_SRST = 0,
parameter C_HAS_UNDERFLOW = 0,
parameter C_HAS_VALID = 0,
parameter C_HAS_WR_ACK = 0,
parameter C_HAS_WR_DATA_COUNT = 0,
parameter C_HAS_WR_RST = 0,
parameter C_IMPLEMENTATION_TYPE = 0,
parameter C_INIT_WR_PNTR_VAL = 0,
parameter C_MEMORY_TYPE = 1,
parameter C_MIF_FILE_NAME = "",
parameter C_OPTIMIZATION_MODE = 0,
parameter C_OVERFLOW_LOW = 0,
parameter C_PRELOAD_LATENCY = 1,
parameter C_PRELOAD_REGS = 0,
parameter C_PRIM_FIFO_TYPE = "",
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0,
parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0,
parameter C_PROG_EMPTY_TYPE = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0,
parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0,
parameter C_PROG_FULL_TYPE = 0,
parameter C_RD_DATA_COUNT_WIDTH = 2,
parameter C_RD_DEPTH = 256,
parameter C_RD_FREQ = 1,
parameter C_RD_PNTR_WIDTH = 8,
parameter C_UNDERFLOW_LOW = 0,
parameter C_USE_DOUT_RST = 0,
parameter C_USE_ECC = 0,
parameter C_USE_EMBEDDED_REG = 0,
parameter C_USE_FIFO16_FLAGS = 0,
parameter C_USE_FWFT_DATA_COUNT = 0,
parameter C_VALID_LOW = 0,
parameter C_WR_ACK_LOW = 0,
parameter C_WR_DATA_COUNT_WIDTH = 2,
parameter C_WR_DEPTH = 256,
parameter C_WR_FREQ = 1,
parameter C_WR_PNTR_WIDTH = 8,
parameter C_WR_RESPONSE_LATENCY = 1,
parameter C_MSGON_VAL = 1,
parameter C_ENABLE_RST_SYNC = 1,
parameter C_ERROR_INJECTION_TYPE = 0,
parameter C_FIFO_TYPE = 0,
parameter C_SYNCHRONIZER_STAGE = 2,
parameter C_AXI_TYPE = 0
)
(
input BACKUP,
input BACKUP_MARKER,
input CLK,
input RST,
input SRST,
input WR_CLK,
input WR_RST,
input RD_CLK,
input RD_RST,
input [C_DIN_WIDTH-1:0] DIN,
input WR_EN,
input RD_EN,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE,
input INT_CLK,
input INJECTDBITERR,
input INJECTSBITERR,
output [C_DOUT_WIDTH-1:0] DOUT,
output FULL,
output ALMOST_FULL,
output WR_ACK,
output OVERFLOW,
output EMPTY,
output ALMOST_EMPTY,
output VALID,
output UNDERFLOW,
output [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT,
output [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT,
output [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT,
output PROG_FULL,
output PROG_EMPTY,
output SBITERR,
output DBITERR,
output wr_rst_busy,
output rd_rst_busy,
output wr_rst_i_out,
output rd_rst_i_out
);
/*
******************************************************************************
* Definition of Parameters
******************************************************************************
* C_COMMON_CLOCK : Common Clock (1), Independent Clocks (0)
* C_COUNT_TYPE : *not used
* C_DATA_COUNT_WIDTH : Width of DATA_COUNT bus
* C_DEFAULT_VALUE : *not used
* C_DIN_WIDTH : Width of DIN bus
* C_DOUT_RST_VAL : Reset value of DOUT
* C_DOUT_WIDTH : Width of DOUT bus
* C_ENABLE_RLOCS : *not used
* C_FAMILY : not used in bhv model
* C_FULL_FLAGS_RST_VAL : Full flags rst val (0 or 1)
* C_HAS_ALMOST_EMPTY : 1=Core has ALMOST_EMPTY flag
* C_HAS_ALMOST_FULL : 1=Core has ALMOST_FULL flag
* C_HAS_BACKUP : *not used
* C_HAS_DATA_COUNT : 1=Core has DATA_COUNT bus
* C_HAS_INT_CLK : not used in bhv model
* C_HAS_MEMINIT_FILE : *not used
* C_HAS_OVERFLOW : 1=Core has OVERFLOW flag
* C_HAS_RD_DATA_COUNT : 1=Core has RD_DATA_COUNT bus
* C_HAS_RD_RST : *not used
* C_HAS_RST : 1=Core has Async Rst
* C_HAS_SRST : 1=Core has Sync Rst
* C_HAS_UNDERFLOW : 1=Core has UNDERFLOW flag
* C_HAS_VALID : 1=Core has VALID flag
* C_HAS_WR_ACK : 1=Core has WR_ACK flag
* C_HAS_WR_DATA_COUNT : 1=Core has WR_DATA_COUNT bus
* C_HAS_WR_RST : *not used
* C_IMPLEMENTATION_TYPE : 0=Common-Clock Bram/Dram
* 1=Common-Clock ShiftRam
* 2=Indep. Clocks Bram/Dram
* 3=Virtex-4 Built-in
* 4=Virtex-5 Built-in
* C_INIT_WR_PNTR_VAL : *not used
* C_MEMORY_TYPE : 1=Block RAM
* 2=Distributed RAM
* 3=Shift RAM
* 4=Built-in FIFO
* C_MIF_FILE_NAME : *not used
* C_OPTIMIZATION_MODE : *not used
* C_OVERFLOW_LOW : 1=OVERFLOW active low
* C_PRELOAD_LATENCY : Latency of read: 0, 1, 2
* C_PRELOAD_REGS : 1=Use output registers
* C_PRIM_FIFO_TYPE : not used in bhv model
* C_PROG_EMPTY_THRESH_ASSERT_VAL: PROG_EMPTY assert threshold
* C_PROG_EMPTY_THRESH_NEGATE_VAL: PROG_EMPTY negate threshold
* C_PROG_EMPTY_TYPE : 0=No programmable empty
* 1=Single prog empty thresh constant
* 2=Multiple prog empty thresh constants
* 3=Single prog empty thresh input
* 4=Multiple prog empty thresh inputs
* C_PROG_FULL_THRESH_ASSERT_VAL : PROG_FULL assert threshold
* C_PROG_FULL_THRESH_NEGATE_VAL : PROG_FULL negate threshold
* C_PROG_FULL_TYPE : 0=No prog full
* 1=Single prog full thresh constant
* 2=Multiple prog full thresh constants
* 3=Single prog full thresh input
* 4=Multiple prog full thresh inputs
* C_RD_DATA_COUNT_WIDTH : Width of RD_DATA_COUNT bus
* C_RD_DEPTH : Depth of read interface (2^N)
* C_RD_FREQ : not used in bhv model
* C_RD_PNTR_WIDTH : always log2(C_RD_DEPTH)
* C_UNDERFLOW_LOW : 1=UNDERFLOW active low
* C_USE_DOUT_RST : 1=Resets DOUT on RST
* C_USE_ECC : Used for error injection purpose
* C_USE_EMBEDDED_REG : 1=Use BRAM embedded output register
* C_USE_FIFO16_FLAGS : not used in bhv model
* C_USE_FWFT_DATA_COUNT : 1=Use extra logic for FWFT data count
* C_VALID_LOW : 1=VALID active low
* C_WR_ACK_LOW : 1=WR_ACK active low
* C_WR_DATA_COUNT_WIDTH : Width of WR_DATA_COUNT bus
* C_WR_DEPTH : Depth of write interface (2^N)
* C_WR_FREQ : not used in bhv model
* C_WR_PNTR_WIDTH : always log2(C_WR_DEPTH)
* C_WR_RESPONSE_LATENCY : *not used
* C_MSGON_VAL : *not used by bhv model
* C_ENABLE_RST_SYNC : 0 = Use WR_RST & RD_RST
* 1 = Use RST
* C_ERROR_INJECTION_TYPE : 0 = No error injection
* 1 = Single bit error injection only
* 2 = Double bit error injection only
* 3 = Single and double bit error injection
******************************************************************************
* Definition of Ports
******************************************************************************
* BACKUP : Not used
* BACKUP_MARKER: Not used
* CLK : Clock
* DIN : Input data bus
* PROG_EMPTY_THRESH : Threshold for Programmable Empty Flag
* PROG_EMPTY_THRESH_ASSERT: Threshold for Programmable Empty Flag
* PROG_EMPTY_THRESH_NEGATE: Threshold for Programmable Empty Flag
* PROG_FULL_THRESH : Threshold for Programmable Full Flag
* PROG_FULL_THRESH_ASSERT : Threshold for Programmable Full Flag
* PROG_FULL_THRESH_NEGATE : Threshold for Programmable Full Flag
* RD_CLK : Read Domain Clock
* RD_EN : Read enable
* RD_RST : Read Reset
* RST : Asynchronous Reset
* SRST : Synchronous Reset
* WR_CLK : Write Domain Clock
* WR_EN : Write enable
* WR_RST : Write Reset
* INT_CLK : Internal Clock
* INJECTSBITERR: Inject Signle bit error
* INJECTDBITERR: Inject Double bit error
* ALMOST_EMPTY : One word remaining in FIFO
* ALMOST_FULL : One empty space remaining in FIFO
* DATA_COUNT : Number of data words in fifo( synchronous to CLK)
* DOUT : Output data bus
* EMPTY : Empty flag
* FULL : Full flag
* OVERFLOW : Last write rejected
* PROG_EMPTY : Programmable Empty Flag
* PROG_FULL : Programmable Full Flag
* RD_DATA_COUNT: Number of data words in fifo (synchronous to RD_CLK)
* UNDERFLOW : Last read rejected
* VALID : Last read acknowledged, DOUT bus VALID
* WR_ACK : Last write acknowledged
* WR_DATA_COUNT: Number of data words in fifo (synchronous to WR_CLK)
* SBITERR : Single Bit ECC Error Detected
* DBITERR : Double Bit ECC Error Detected
******************************************************************************
*/
//----------------------------------------------------------------------------
//- Internal Signals for delayed input signals
//- All the input signals except Clock are delayed by 100 ps and then given to
//- the models.
//----------------------------------------------------------------------------
reg rst_delayed ;
reg empty_fb ;
reg srst_delayed ;
reg wr_rst_delayed ;
reg rd_rst_delayed ;
reg wr_en_delayed ;
reg rd_en_delayed ;
reg [C_DIN_WIDTH-1:0] din_delayed ;
reg [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_delayed ;
reg [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_assert_delayed ;
reg [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_negate_delayed ;
reg [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_delayed ;
reg [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_assert_delayed ;
reg [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_negate_delayed ;
reg injectdbiterr_delayed ;
reg injectsbiterr_delayed ;
wire empty_p0_out;
always @* rst_delayed <= #`TCQ RST ;
always @* empty_fb <= #`TCQ empty_p0_out ;
always @* srst_delayed <= #`TCQ SRST ;
always @* wr_rst_delayed <= #`TCQ WR_RST ;
always @* rd_rst_delayed <= #`TCQ RD_RST ;
always @* din_delayed <= #`TCQ DIN ;
always @* wr_en_delayed <= #`TCQ WR_EN ;
always @* rd_en_delayed <= #`TCQ RD_EN ;
always @* prog_empty_thresh_delayed <= #`TCQ PROG_EMPTY_THRESH ;
always @* prog_empty_thresh_assert_delayed <= #`TCQ PROG_EMPTY_THRESH_ASSERT ;
always @* prog_empty_thresh_negate_delayed <= #`TCQ PROG_EMPTY_THRESH_NEGATE ;
always @* prog_full_thresh_delayed <= #`TCQ PROG_FULL_THRESH ;
always @* prog_full_thresh_assert_delayed <= #`TCQ PROG_FULL_THRESH_ASSERT ;
always @* prog_full_thresh_negate_delayed <= #`TCQ PROG_FULL_THRESH_NEGATE ;
always @* injectdbiterr_delayed <= #`TCQ INJECTDBITERR ;
always @* injectsbiterr_delayed <= #`TCQ INJECTSBITERR ;
/*****************************************************************************
* Derived parameters
****************************************************************************/
//There are 2 Verilog behavioral models
// 0 = Common-Clock FIFO/ShiftRam FIFO
// 1 = Independent Clocks FIFO
// 2 = Low Latency Synchronous FIFO
// 3 = Low Latency Asynchronous FIFO
localparam C_VERILOG_IMPL = (C_FIFO_TYPE == 3) ? 2 :
(C_IMPLEMENTATION_TYPE == 2) ? 1 : 0;
localparam IS_8SERIES = (C_FAMILY == "virtexu" || C_FAMILY == "kintexu" || C_FAMILY == "artixu" || C_FAMILY == "virtexum" || C_FAMILY == "zynque") ? 1 : 0;
//Internal reset signals
reg rd_rst_asreg = 0;
reg rd_rst_asreg_d1 = 0;
reg rd_rst_asreg_d2 = 0;
reg rd_rst_asreg_d3 = 0;
reg rd_rst_reg = 0;
wire rd_rst_comb;
reg wr_rst_d0 = 0;
reg wr_rst_d1 = 0;
reg wr_rst_d2 = 0;
reg rd_rst_d0 = 0;
reg rd_rst_d1 = 0;
reg rd_rst_d2 = 0;
reg rd_rst_d3 = 0;
reg wrrst_done = 0;
reg rdrst_done = 0;
reg wr_rst_asreg = 0;
reg wr_rst_asreg_d1 = 0;
reg wr_rst_asreg_d2 = 0;
reg wr_rst_asreg_d3 = 0;
reg rd_rst_wr_d0 = 0;
reg rd_rst_wr_d1 = 0;
reg rd_rst_wr_d2 = 0;
reg wr_rst_reg = 0;
reg rst_active_i = 1'b1;
reg rst_delayed_d1 = 1'b1;
reg rst_delayed_d2 = 1'b1;
wire wr_rst_comb;
wire wr_rst_i;
wire rd_rst_i;
wire rst_i;
//Internal reset signals
reg rst_asreg = 0;
reg srst_asreg = 0;
reg rst_asreg_d1 = 0;
reg rst_asreg_d2 = 0;
reg srst_asreg_d1 = 0;
reg srst_asreg_d2 = 0;
reg rst_reg = 0;
reg srst_reg = 0;
wire rst_comb;
wire srst_comb;
reg rst_full_gen_i = 0;
reg rst_full_ff_i = 0;
wire RD_CLK_P0_IN;
wire RST_P0_IN;
wire RD_EN_FIFO_IN;
wire RD_EN_P0_IN;
wire ALMOST_EMPTY_FIFO_OUT;
wire ALMOST_FULL_FIFO_OUT;
wire [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT_FIFO_OUT;
wire [C_DOUT_WIDTH-1:0] DOUT_FIFO_OUT;
wire EMPTY_FIFO_OUT;
wire FULL_FIFO_OUT;
wire OVERFLOW_FIFO_OUT;
wire PROG_EMPTY_FIFO_OUT;
wire PROG_FULL_FIFO_OUT;
wire VALID_FIFO_OUT;
wire [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT_FIFO_OUT;
wire UNDERFLOW_FIFO_OUT;
wire WR_ACK_FIFO_OUT;
wire [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT_FIFO_OUT;
//***************************************************************************
// Internal Signals
// The core uses either the internal_ wires or the preload0_ wires depending
// on whether the core uses Preload0 or not.
// When using preload0, the internal signals connect the internal core to
// the preload logic, and the external core's interfaces are tied to the
// preload0 signals from the preload logic.
//***************************************************************************
wire [C_DOUT_WIDTH-1:0] DATA_P0_OUT;
wire VALID_P0_OUT;
wire EMPTY_P0_OUT;
wire ALMOSTEMPTY_P0_OUT;
reg EMPTY_P0_OUT_Q;
reg ALMOSTEMPTY_P0_OUT_Q;
wire UNDERFLOW_P0_OUT;
wire RDEN_P0_OUT;
wire [C_DOUT_WIDTH-1:0] DATA_P0_IN;
wire EMPTY_P0_IN;
reg [31:0] DATA_COUNT_FWFT;
reg SS_FWFT_WR ;
reg SS_FWFT_RD ;
wire sbiterr_fifo_out;
wire dbiterr_fifo_out;
wire inject_sbit_err;
wire inject_dbit_err;
// Assign 0 if not selected to avoid 'X' propogation to S/DBITERR.
assign inject_sbit_err = ((C_ERROR_INJECTION_TYPE == 1) || (C_ERROR_INJECTION_TYPE == 3)) ?
injectsbiterr_delayed : 0;
assign inject_dbit_err = ((C_ERROR_INJECTION_TYPE == 2) || (C_ERROR_INJECTION_TYPE == 3)) ?
injectdbiterr_delayed : 0;
assign wr_rst_i_out = wr_rst_i;
assign rd_rst_i_out = rd_rst_i;
// Choose the behavioral model to instantiate based on the C_VERILOG_IMPL
// parameter (1=Independent Clocks, 0=Common Clock)
localparam FULL_FLAGS_RST_VAL = (C_HAS_SRST == 1) ? 0 : C_FULL_FLAGS_RST_VAL;
generate
case (C_VERILOG_IMPL)
0 : begin : block1
//Common Clock Behavioral Model
fifo_generator_v12_0_bhv_ver_ss
#(
.C_FAMILY (C_FAMILY),
.C_DATA_COUNT_WIDTH (C_DATA_COUNT_WIDTH),
.C_DIN_WIDTH (C_DIN_WIDTH),
.C_DOUT_RST_VAL (C_DOUT_RST_VAL),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_FULL_FLAGS_RST_VAL (FULL_FLAGS_RST_VAL),
.C_HAS_ALMOST_EMPTY (C_HAS_ALMOST_EMPTY),
.C_HAS_ALMOST_FULL ((C_AXI_TYPE == 0 && C_FIFO_TYPE == 1) ? 1 : C_HAS_ALMOST_FULL),
.C_HAS_DATA_COUNT (C_HAS_DATA_COUNT),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT),
.C_HAS_RST (C_HAS_RST),
.C_HAS_SRST (C_HAS_SRST),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_HAS_VALID (C_HAS_VALID),
.C_HAS_WR_ACK (C_HAS_WR_ACK),
.C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT),
.C_IMPLEMENTATION_TYPE (C_IMPLEMENTATION_TYPE),
.C_MEMORY_TYPE (C_MEMORY_TYPE),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_PRELOAD_LATENCY (C_PRELOAD_LATENCY),
.C_PRELOAD_REGS (C_PRELOAD_REGS),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL),
.C_PROG_EMPTY_THRESH_NEGATE_VAL (C_PROG_EMPTY_THRESH_NEGATE_VAL),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL),
.C_PROG_FULL_THRESH_NEGATE_VAL (C_PROG_FULL_THRESH_NEGATE_VAL),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE),
.C_RD_DATA_COUNT_WIDTH (C_RD_DATA_COUNT_WIDTH),
.C_RD_DEPTH (C_RD_DEPTH),
.C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG),
.C_USE_FWFT_DATA_COUNT (C_USE_FWFT_DATA_COUNT),
.C_VALID_LOW (C_VALID_LOW),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH),
.C_WR_DEPTH (C_WR_DEPTH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH),
.C_USE_ECC (C_USE_ECC),
.C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE),
.C_FIFO_TYPE (C_FIFO_TYPE)
)
gen_ss
(
.CLK (CLK),
.RST (rst_i),
.SRST (srst_delayed),
.RST_FULL_GEN (rst_full_gen_i),
.RST_FULL_FF (rst_full_ff_i),
.DIN (din_delayed),
.WR_EN (wr_en_delayed),
.RD_EN (RD_EN_FIFO_IN),
.RD_EN_USER (rd_en_delayed),
.USER_EMPTY_FB (empty_fb),
.PROG_EMPTY_THRESH (prog_empty_thresh_delayed),
.PROG_EMPTY_THRESH_ASSERT (prog_empty_thresh_assert_delayed),
.PROG_EMPTY_THRESH_NEGATE (prog_empty_thresh_negate_delayed),
.PROG_FULL_THRESH (prog_full_thresh_delayed),
.PROG_FULL_THRESH_ASSERT (prog_full_thresh_assert_delayed),
.PROG_FULL_THRESH_NEGATE (prog_full_thresh_negate_delayed),
.INJECTSBITERR (inject_sbit_err),
.INJECTDBITERR (inject_dbit_err),
.DOUT (DOUT_FIFO_OUT),
.FULL (FULL_FIFO_OUT),
.ALMOST_FULL (ALMOST_FULL_FIFO_OUT),
.WR_ACK (WR_ACK_FIFO_OUT),
.OVERFLOW (OVERFLOW_FIFO_OUT),
.EMPTY (EMPTY_FIFO_OUT),
.ALMOST_EMPTY (ALMOST_EMPTY_FIFO_OUT),
.VALID (VALID_FIFO_OUT),
.UNDERFLOW (UNDERFLOW_FIFO_OUT),
.DATA_COUNT (DATA_COUNT_FIFO_OUT),
.RD_DATA_COUNT (RD_DATA_COUNT_FIFO_OUT),
.WR_DATA_COUNT (WR_DATA_COUNT_FIFO_OUT),
.PROG_FULL (PROG_FULL_FIFO_OUT),
.PROG_EMPTY (PROG_EMPTY_FIFO_OUT),
.WR_RST_BUSY (wr_rst_busy),
.RD_RST_BUSY (rd_rst_busy),
.SBITERR (sbiterr_fifo_out),
.DBITERR (dbiterr_fifo_out)
);
end
1 : begin : block1
//Independent Clocks Behavioral Model
fifo_generator_v12_0_bhv_ver_as
#(
.C_FAMILY (C_FAMILY),
.C_DATA_COUNT_WIDTH (C_DATA_COUNT_WIDTH),
.C_DIN_WIDTH (C_DIN_WIDTH),
.C_DOUT_RST_VAL (C_DOUT_RST_VAL),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_FULL_FLAGS_RST_VAL (C_FULL_FLAGS_RST_VAL),
.C_HAS_ALMOST_EMPTY (C_HAS_ALMOST_EMPTY),
.C_HAS_ALMOST_FULL (C_HAS_ALMOST_FULL),
.C_HAS_DATA_COUNT (C_HAS_DATA_COUNT),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT),
.C_HAS_RST (C_HAS_RST),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_HAS_VALID (C_HAS_VALID),
.C_HAS_WR_ACK (C_HAS_WR_ACK),
.C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT),
.C_IMPLEMENTATION_TYPE (C_IMPLEMENTATION_TYPE),
.C_MEMORY_TYPE (C_MEMORY_TYPE),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_PRELOAD_LATENCY (C_PRELOAD_LATENCY),
.C_PRELOAD_REGS (C_PRELOAD_REGS),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL),
.C_PROG_EMPTY_THRESH_NEGATE_VAL (C_PROG_EMPTY_THRESH_NEGATE_VAL),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL),
.C_PROG_FULL_THRESH_NEGATE_VAL (C_PROG_FULL_THRESH_NEGATE_VAL),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE),
.C_RD_DATA_COUNT_WIDTH (C_RD_DATA_COUNT_WIDTH),
.C_RD_DEPTH (C_RD_DEPTH),
.C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG),
.C_USE_FWFT_DATA_COUNT (C_USE_FWFT_DATA_COUNT),
.C_VALID_LOW (C_VALID_LOW),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH),
.C_WR_DEPTH (C_WR_DEPTH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH),
.C_USE_ECC (C_USE_ECC),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE)
)
gen_as
(
.WR_CLK (WR_CLK),
.RD_CLK (RD_CLK),
.RST (rst_i),
.RST_FULL_GEN (rst_full_gen_i),
.RST_FULL_FF (rst_full_ff_i),
.WR_RST (wr_rst_i),
.RD_RST (rd_rst_i),
.DIN (din_delayed),
.WR_EN (wr_en_delayed),
.RD_EN (RD_EN_FIFO_IN),
.RD_EN_USER (rd_en_delayed),
.PROG_EMPTY_THRESH (prog_empty_thresh_delayed),
.PROG_EMPTY_THRESH_ASSERT (prog_empty_thresh_assert_delayed),
.PROG_EMPTY_THRESH_NEGATE (prog_empty_thresh_negate_delayed),
.PROG_FULL_THRESH (prog_full_thresh_delayed),
.PROG_FULL_THRESH_ASSERT (prog_full_thresh_assert_delayed),
.PROG_FULL_THRESH_NEGATE (prog_full_thresh_negate_delayed),
.INJECTSBITERR (inject_sbit_err),
.INJECTDBITERR (inject_dbit_err),
.USER_EMPTY_FB (EMPTY_P0_OUT),
.DOUT (DOUT_FIFO_OUT),
.FULL (FULL_FIFO_OUT),
.ALMOST_FULL (ALMOST_FULL_FIFO_OUT),
.WR_ACK (WR_ACK_FIFO_OUT),
.OVERFLOW (OVERFLOW_FIFO_OUT),
.EMPTY (EMPTY_FIFO_OUT),
.ALMOST_EMPTY (ALMOST_EMPTY_FIFO_OUT),
.VALID (VALID_FIFO_OUT),
.UNDERFLOW (UNDERFLOW_FIFO_OUT),
.RD_DATA_COUNT (RD_DATA_COUNT_FIFO_OUT),
.WR_DATA_COUNT (WR_DATA_COUNT_FIFO_OUT),
.PROG_FULL (PROG_FULL_FIFO_OUT),
.PROG_EMPTY (PROG_EMPTY_FIFO_OUT),
.SBITERR (sbiterr_fifo_out),
.DBITERR (dbiterr_fifo_out)
);
end
2 : begin : ll_afifo_inst
fifo_generator_v12_0_beh_ver_ll_afifo
#(
.C_DIN_WIDTH (C_DIN_WIDTH),
.C_DOUT_RST_VAL (C_DOUT_RST_VAL),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_FULL_FLAGS_RST_VAL (C_FULL_FLAGS_RST_VAL),
.C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT),
.C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT),
.C_RD_DEPTH (C_RD_DEPTH),
.C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH),
.C_WR_DEPTH (C_WR_DEPTH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH),
.C_FIFO_TYPE (C_FIFO_TYPE)
)
gen_ll_afifo
(
.DIN (din_delayed),
.RD_CLK (RD_CLK),
.RD_EN (rd_en_delayed),
.WR_RST (wr_rst_i),
.RD_RST (rd_rst_i),
.WR_CLK (WR_CLK),
.WR_EN (wr_en_delayed),
.DOUT (DOUT),
.EMPTY (EMPTY),
.FULL (FULL)
);
end
default : begin : block1
//Independent Clocks Behavioral Model
fifo_generator_v12_0_bhv_ver_as
#(
.C_FAMILY (C_FAMILY),
.C_DATA_COUNT_WIDTH (C_DATA_COUNT_WIDTH),
.C_DIN_WIDTH (C_DIN_WIDTH),
.C_DOUT_RST_VAL (C_DOUT_RST_VAL),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_FULL_FLAGS_RST_VAL (C_FULL_FLAGS_RST_VAL),
.C_HAS_ALMOST_EMPTY (C_HAS_ALMOST_EMPTY),
.C_HAS_ALMOST_FULL (C_HAS_ALMOST_FULL),
.C_HAS_DATA_COUNT (C_HAS_DATA_COUNT),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT),
.C_HAS_RST (C_HAS_RST),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_HAS_VALID (C_HAS_VALID),
.C_HAS_WR_ACK (C_HAS_WR_ACK),
.C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT),
.C_IMPLEMENTATION_TYPE (C_IMPLEMENTATION_TYPE),
.C_MEMORY_TYPE (C_MEMORY_TYPE),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_PRELOAD_LATENCY (C_PRELOAD_LATENCY),
.C_PRELOAD_REGS (C_PRELOAD_REGS),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL),
.C_PROG_EMPTY_THRESH_NEGATE_VAL (C_PROG_EMPTY_THRESH_NEGATE_VAL),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL),
.C_PROG_FULL_THRESH_NEGATE_VAL (C_PROG_FULL_THRESH_NEGATE_VAL),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE),
.C_RD_DATA_COUNT_WIDTH (C_RD_DATA_COUNT_WIDTH),
.C_RD_DEPTH (C_RD_DEPTH),
.C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG),
.C_USE_FWFT_DATA_COUNT (C_USE_FWFT_DATA_COUNT),
.C_VALID_LOW (C_VALID_LOW),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH),
.C_WR_DEPTH (C_WR_DEPTH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH),
.C_USE_ECC (C_USE_ECC),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE)
)
gen_as
(
.WR_CLK (WR_CLK),
.RD_CLK (RD_CLK),
.RST (rst_i),
.RST_FULL_GEN (rst_full_gen_i),
.RST_FULL_FF (rst_full_ff_i),
.WR_RST (wr_rst_i),
.RD_RST (rd_rst_i),
.DIN (din_delayed),
.WR_EN (wr_en_delayed),
.RD_EN (RD_EN_FIFO_IN),
.RD_EN_USER (rd_en_delayed),
.PROG_EMPTY_THRESH (prog_empty_thresh_delayed),
.PROG_EMPTY_THRESH_ASSERT (prog_empty_thresh_assert_delayed),
.PROG_EMPTY_THRESH_NEGATE (prog_empty_thresh_negate_delayed),
.PROG_FULL_THRESH (prog_full_thresh_delayed),
.PROG_FULL_THRESH_ASSERT (prog_full_thresh_assert_delayed),
.PROG_FULL_THRESH_NEGATE (prog_full_thresh_negate_delayed),
.INJECTSBITERR (inject_sbit_err),
.INJECTDBITERR (inject_dbit_err),
.USER_EMPTY_FB (EMPTY_P0_OUT),
.DOUT (DOUT_FIFO_OUT),
.FULL (FULL_FIFO_OUT),
.ALMOST_FULL (ALMOST_FULL_FIFO_OUT),
.WR_ACK (WR_ACK_FIFO_OUT),
.OVERFLOW (OVERFLOW_FIFO_OUT),
.EMPTY (EMPTY_FIFO_OUT),
.ALMOST_EMPTY (ALMOST_EMPTY_FIFO_OUT),
.VALID (VALID_FIFO_OUT),
.UNDERFLOW (UNDERFLOW_FIFO_OUT),
.RD_DATA_COUNT (RD_DATA_COUNT_FIFO_OUT),
.WR_DATA_COUNT (WR_DATA_COUNT_FIFO_OUT),
.PROG_FULL (PROG_FULL_FIFO_OUT),
.PROG_EMPTY (PROG_EMPTY_FIFO_OUT),
.SBITERR (sbiterr_fifo_out),
.DBITERR (dbiterr_fifo_out)
);
end
endcase
endgenerate
//**************************************************************************
// Connect Internal Signals
// (Signals labeled internal_*)
// In the normal case, these signals tie directly to the FIFO's inputs and
// outputs.
// In the case of Preload Latency 0 or 1, there are intermediate
// signals between the internal FIFO and the preload logic.
//**************************************************************************
//***********************************************
// If First-Word Fall-Through, instantiate
// the preload0 (FWFT) module
//***********************************************
wire rd_en_to_fwft_fifo;
wire sbiterr_fwft;
wire dbiterr_fwft;
wire [C_DOUT_WIDTH-1:0] dout_fwft;
wire empty_fwft;
wire rd_en_fifo_in;
wire stage2_reg_en_i;
wire [1:0] valid_stages_i;
wire rst_fwft;
//wire empty_p0_out;
reg [C_SYNCHRONIZER_STAGE-1:0] pkt_empty_sync = 'b1;
localparam IS_FWFT = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ? 1 : 0;
localparam IS_PKT_FIFO = (C_FIFO_TYPE == 1) ? 1 : 0;
localparam IS_AXIS_PKT_FIFO = (C_FIFO_TYPE == 1 && C_AXI_TYPE == 0) ? 1 : 0;
assign rst_fwft = (C_COMMON_CLOCK == 0) ? rd_rst_i : (C_HAS_RST == 1) ? rst_i : 1'b0;
generate if (IS_FWFT == 1 && C_FIFO_TYPE != 3) begin : block2
fifo_generator_v12_0_bhv_ver_preload0
#(
.C_DOUT_RST_VAL (C_DOUT_RST_VAL),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_HAS_RST (C_HAS_RST),
.C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC),
.C_HAS_SRST (C_HAS_SRST),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_USE_ECC (C_USE_ECC),
.C_USERVALID_LOW (C_VALID_LOW),
.C_USERUNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_MEMORY_TYPE (C_MEMORY_TYPE),
.C_FIFO_TYPE (C_FIFO_TYPE)
)
fgpl0
(
.RD_CLK (RD_CLK_P0_IN),
.RD_RST (RST_P0_IN),
.SRST (srst_delayed),
.WR_RST_BUSY (wr_rst_busy),
.RD_RST_BUSY (rd_rst_busy),
.RD_EN (RD_EN_P0_IN),
.FIFOEMPTY (EMPTY_P0_IN),
.FIFODATA (DATA_P0_IN),
.FIFOSBITERR (sbiterr_fifo_out),
.FIFODBITERR (dbiterr_fifo_out),
// Output
.USERDATA (dout_fwft),
.USERVALID (VALID_P0_OUT),
.USEREMPTY (empty_fwft),
.USERALMOSTEMPTY (ALMOSTEMPTY_P0_OUT),
.USERUNDERFLOW (UNDERFLOW_P0_OUT),
.RAMVALID (),
.FIFORDEN (rd_en_fifo_in),
.USERSBITERR (sbiterr_fwft),
.USERDBITERR (dbiterr_fwft),
.STAGE2_REG_EN (stage2_reg_en_i),
.VALID_STAGES (valid_stages_i)
);
//***********************************************
// Connect inputs to preload (FWFT) module
//***********************************************
//Connect the RD_CLK of the Preload (FWFT) module to CLK if we
// have a common-clock FIFO, or RD_CLK if we have an
// independent clock FIFO
assign RD_CLK_P0_IN = ((C_VERILOG_IMPL == 0) ? CLK : RD_CLK);
assign RST_P0_IN = (C_COMMON_CLOCK == 0) ? rd_rst_i : (C_HAS_RST == 1) ? rst_i : 0;
assign RD_EN_P0_IN = (C_FIFO_TYPE != 1) ? rd_en_delayed : rd_en_to_fwft_fifo;
assign EMPTY_P0_IN = EMPTY_FIFO_OUT;
assign DATA_P0_IN = DOUT_FIFO_OUT;
//***********************************************
// Connect outputs from preload (FWFT) module
//***********************************************
assign VALID = VALID_P0_OUT ;
assign ALMOST_EMPTY = ALMOSTEMPTY_P0_OUT;
assign UNDERFLOW = UNDERFLOW_P0_OUT ;
assign RD_EN_FIFO_IN = rd_en_fifo_in;
//***********************************************
// Create DATA_COUNT from First-Word Fall-Through
// data count
//***********************************************
assign DATA_COUNT = (C_USE_FWFT_DATA_COUNT == 0)? DATA_COUNT_FIFO_OUT:
(C_DATA_COUNT_WIDTH>C_RD_PNTR_WIDTH) ? DATA_COUNT_FWFT[C_RD_PNTR_WIDTH:0] :
DATA_COUNT_FWFT[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH-C_DATA_COUNT_WIDTH+1];
//***********************************************
// Create DATA_COUNT from First-Word Fall-Through
// data count
//***********************************************
always @ (posedge RD_CLK_P0_IN or posedge RST_P0_IN) begin
if (RST_P0_IN) begin
EMPTY_P0_OUT_Q <= #`TCQ 1;
ALMOSTEMPTY_P0_OUT_Q <= #`TCQ 1;
end else begin
EMPTY_P0_OUT_Q <= #`TCQ empty_p0_out;
// EMPTY_P0_OUT_Q <= #`TCQ EMPTY_FIFO_OUT;
ALMOSTEMPTY_P0_OUT_Q <= #`TCQ ALMOSTEMPTY_P0_OUT;
end
end //always
//***********************************************
// logic for common-clock data count when FWFT is selected
//***********************************************
initial begin
SS_FWFT_RD = 1'b0;
DATA_COUNT_FWFT = 0 ;
SS_FWFT_WR = 1'b0 ;
end //initial
//***********************************************
// common-clock data count is implemented as an
// up-down counter. SS_FWFT_WR and SS_FWFT_RD
// are the up/down enables for the counter.
//***********************************************
always @ (RD_EN or VALID_P0_OUT or WR_EN or FULL_FIFO_OUT or empty_p0_out) begin
if (C_VALID_LOW == 1) begin
SS_FWFT_RD = (C_FIFO_TYPE != 1) ? (RD_EN && ~VALID_P0_OUT) : (~empty_p0_out && RD_EN && ~VALID_P0_OUT) ;
end else begin
SS_FWFT_RD = (C_FIFO_TYPE != 1) ? (RD_EN && VALID_P0_OUT) : (~empty_p0_out && RD_EN && VALID_P0_OUT) ;
end
SS_FWFT_WR = (WR_EN && (~FULL_FIFO_OUT)) ;
end
//***********************************************
// common-clock data count is implemented as an
// up-down counter for FWFT. This always block
// calculates the counter.
//***********************************************
always @ (posedge RD_CLK_P0_IN or posedge RST_P0_IN) begin
if (RST_P0_IN) begin
DATA_COUNT_FWFT <= #`TCQ 0;
end else begin
//if (srst_delayed && (C_HAS_SRST == 1) ) begin
if ((srst_delayed | wr_rst_busy | rd_rst_busy) && (C_HAS_SRST == 1) ) begin
DATA_COUNT_FWFT <= #`TCQ 0;
end else begin
case ( {SS_FWFT_WR, SS_FWFT_RD})
2'b00: DATA_COUNT_FWFT <= #`TCQ DATA_COUNT_FWFT ;
2'b01: DATA_COUNT_FWFT <= #`TCQ DATA_COUNT_FWFT - 1 ;
2'b10: DATA_COUNT_FWFT <= #`TCQ DATA_COUNT_FWFT + 1 ;
2'b11: DATA_COUNT_FWFT <= #`TCQ DATA_COUNT_FWFT ;
endcase
end //if SRST
end //IF RST
end //always
end endgenerate // : block2
// AXI Streaming Packet FIFO
reg [C_WR_PNTR_WIDTH-1:0] wr_pkt_count = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pkt_count = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pkt_count_plus1 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pkt_count_reg = 0;
reg partial_packet = 0;
reg stage1_eop_d1 = 0;
reg rd_en_fifo_in_d1 = 0;
reg eop_at_stage2 = 0;
reg ram_pkt_empty = 0;
reg ram_pkt_empty_d1 = 0;
wire [C_DOUT_WIDTH-1:0] dout_p0_out;
wire packet_empty_wr;
wire wr_rst_fwft_pkt_fifo;
wire dummy_wr_eop;
wire ram_wr_en_pkt_fifo;
wire wr_eop;
wire ram_rd_en_compare;
wire stage1_eop;
wire pkt_ready_to_read;
wire rd_en_2_stage2;
// Generate Dummy WR_EOP for partial packet (Only for AXI Streaming)
// When Packet EMPTY is high, and FIFO is full, then generate the dummy WR_EOP
// When dummy WR_EOP is high, mask the actual EOP to avoid double increment of
// write packet count
generate if (IS_FWFT == 1 && IS_AXIS_PKT_FIFO == 1) begin // gdummy_wr_eop
always @ (posedge wr_rst_fwft_pkt_fifo or posedge WR_CLK) begin
if (wr_rst_fwft_pkt_fifo)
partial_packet <= 1'b0;
else begin
if (srst_delayed | wr_rst_busy | rd_rst_busy)
partial_packet <= #`TCQ 1'b0;
else if (ALMOST_FULL_FIFO_OUT && ram_wr_en_pkt_fifo && packet_empty_wr && (~din_delayed[0]))
partial_packet <= #`TCQ 1'b1;
else if (partial_packet && din_delayed[0] && ram_wr_en_pkt_fifo)
partial_packet <= #`TCQ 1'b0;
end
end
end endgenerate // gdummy_wr_eop
generate if (IS_FWFT == 1 && IS_PKT_FIFO == 1) begin // gpkt_fifo_fwft
assign wr_rst_fwft_pkt_fifo = (C_COMMON_CLOCK == 0) ? wr_rst_i : (C_HAS_RST == 1) ? rst_i:1'b0;
assign dummy_wr_eop = ALMOST_FULL_FIFO_OUT && ram_wr_en_pkt_fifo && packet_empty_wr && (~din_delayed[0]) && (~partial_packet);
assign packet_empty_wr = (C_COMMON_CLOCK == 1) ? empty_p0_out : pkt_empty_sync[C_SYNCHRONIZER_STAGE-1];
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft) begin
stage1_eop_d1 <= 1'b0;
rd_en_fifo_in_d1 <= 1'b0;
end else begin
if (srst_delayed | wr_rst_busy | rd_rst_busy) begin
stage1_eop_d1 <= #`TCQ 1'b0;
rd_en_fifo_in_d1 <= #`TCQ 1'b0;
end else begin
stage1_eop_d1 <= #`TCQ stage1_eop;
rd_en_fifo_in_d1 <= #`TCQ rd_en_fifo_in;
end
end
end
assign stage1_eop = (rd_en_fifo_in_d1) ? DOUT_FIFO_OUT[0] : stage1_eop_d1;
assign ram_wr_en_pkt_fifo = wr_en_delayed && (~FULL_FIFO_OUT);
assign wr_eop = ram_wr_en_pkt_fifo && ((din_delayed[0] && (~partial_packet)) || dummy_wr_eop);
assign ram_rd_en_compare = stage2_reg_en_i && stage1_eop;
fifo_generator_v12_0_bhv_ver_preload0
#(
.C_DOUT_RST_VAL (C_DOUT_RST_VAL),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_HAS_RST (C_HAS_RST),
.C_HAS_SRST (C_HAS_SRST),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_USE_ECC (C_USE_ECC),
.C_USERVALID_LOW (C_VALID_LOW),
.C_USERUNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC),
.C_MEMORY_TYPE (C_MEMORY_TYPE),
.C_FIFO_TYPE (2) // Enable low latency fwft logic
)
pkt_fifo_fwft
(
.RD_CLK (RD_CLK_P0_IN),
.RD_RST (rst_fwft),
.SRST (srst_delayed),
.WR_RST_BUSY (wr_rst_busy),
.RD_RST_BUSY (rd_rst_busy),
.RD_EN (rd_en_delayed),
.FIFOEMPTY (pkt_ready_to_read),
.FIFODATA (dout_fwft),
.FIFOSBITERR (sbiterr_fwft),
.FIFODBITERR (dbiterr_fwft),
// Output
.USERDATA (dout_p0_out),
.USERVALID (),
.USEREMPTY (empty_p0_out),
.USERALMOSTEMPTY (),
.USERUNDERFLOW (),
.RAMVALID (),
.FIFORDEN (rd_en_2_stage2),
.USERSBITERR (SBITERR),
.USERDBITERR (DBITERR),
.STAGE2_REG_EN (),
.VALID_STAGES ()
);
assign pkt_ready_to_read = ~(!(ram_pkt_empty || empty_fwft) && ((valid_stages_i[0] && valid_stages_i[1]) || eop_at_stage2));
assign rd_en_to_fwft_fifo = ~empty_fwft && rd_en_2_stage2;
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft)
eop_at_stage2 <= 1'b0;
else if (stage2_reg_en_i)
eop_at_stage2 <= #`TCQ stage1_eop;
end
//---------------------------------------------------------------------------
// Write and Read Packet Count
//---------------------------------------------------------------------------
always @ (posedge wr_rst_fwft_pkt_fifo or posedge WR_CLK) begin
if (wr_rst_fwft_pkt_fifo)
wr_pkt_count <= 0;
else if (srst_delayed | wr_rst_busy | rd_rst_busy)
wr_pkt_count <= #`TCQ 0;
else if (wr_eop)
wr_pkt_count <= #`TCQ wr_pkt_count + 1;
end
end endgenerate // gpkt_fifo_fwft
assign DOUT = (C_FIFO_TYPE != 1) ? dout_fwft : dout_p0_out;
assign EMPTY = (C_FIFO_TYPE != 1) ? empty_fwft : empty_p0_out;
generate if (IS_FWFT == 1 && IS_PKT_FIFO == 1 && C_COMMON_CLOCK == 1) begin // grss_pkt_cnt
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft) begin
rd_pkt_count <= 0;
rd_pkt_count_plus1 <= 1;
end else if (srst_delayed | wr_rst_busy | rd_rst_busy) begin
rd_pkt_count <= #`TCQ 0;
rd_pkt_count_plus1 <= #`TCQ 1;
end else if (stage2_reg_en_i && stage1_eop) begin
rd_pkt_count <= #`TCQ rd_pkt_count + 1;
rd_pkt_count_plus1 <= #`TCQ rd_pkt_count_plus1 + 1;
end
end
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft) begin
ram_pkt_empty <= 1'b1;
ram_pkt_empty_d1 <= 1'b1;
end else if (SRST | wr_rst_busy | rd_rst_busy) begin
ram_pkt_empty <= #`TCQ 1'b1;
ram_pkt_empty_d1 <= #`TCQ 1'b1;
end else if ((rd_pkt_count == wr_pkt_count) && wr_eop) begin
ram_pkt_empty <= #`TCQ 1'b0;
ram_pkt_empty_d1 <= #`TCQ 1'b0;
end else if (ram_pkt_empty_d1 && rd_en_to_fwft_fifo) begin
ram_pkt_empty <= #`TCQ 1'b1;
end else if ((rd_pkt_count_plus1 == wr_pkt_count) && ~wr_eop && ~ALMOST_FULL_FIFO_OUT && ram_rd_en_compare) begin
ram_pkt_empty_d1 <= #`TCQ 1'b1;
end
end
end endgenerate //grss_pkt_cnt
localparam SYNC_STAGE_WIDTH = (C_SYNCHRONIZER_STAGE+1)*C_WR_PNTR_WIDTH;
reg [SYNC_STAGE_WIDTH-1:0] wr_pkt_count_q = 0;
reg [C_WR_PNTR_WIDTH-1:0] wr_pkt_count_b2g = 0;
wire [C_WR_PNTR_WIDTH-1:0] wr_pkt_count_rd;
generate if (IS_FWFT == 1 && IS_PKT_FIFO == 1 && C_COMMON_CLOCK == 0) begin // gras_pkt_cnt
// Delay the write packet count in write clock domain to accomodate the binary to gray conversion delay
always @ (posedge wr_rst_fwft_pkt_fifo or posedge WR_CLK) begin
if (wr_rst_fwft_pkt_fifo)
wr_pkt_count_b2g <= 0;
else
wr_pkt_count_b2g <= #`TCQ wr_pkt_count;
end
// Synchronize the delayed write packet count in read domain, and also compensate the gray to binay conversion delay
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft)
wr_pkt_count_q <= 0;
else
wr_pkt_count_q <= #`TCQ {wr_pkt_count_q[SYNC_STAGE_WIDTH-C_WR_PNTR_WIDTH-1:0],wr_pkt_count_b2g};
end
always @* begin
if (stage1_eop)
rd_pkt_count <= rd_pkt_count_reg + 1;
else
rd_pkt_count <= rd_pkt_count_reg;
end
assign wr_pkt_count_rd = wr_pkt_count_q[SYNC_STAGE_WIDTH-1:SYNC_STAGE_WIDTH-C_WR_PNTR_WIDTH];
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft)
rd_pkt_count_reg <= 0;
else if (rd_en_fifo_in)
rd_pkt_count_reg <= #`TCQ rd_pkt_count;
end
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft) begin
ram_pkt_empty <= 1'b1;
ram_pkt_empty_d1 <= 1'b1;
end else if (rd_pkt_count != wr_pkt_count_rd) begin
ram_pkt_empty <= #`TCQ 1'b0;
ram_pkt_empty_d1 <= #`TCQ 1'b0;
end else if (ram_pkt_empty_d1 && rd_en_to_fwft_fifo) begin
ram_pkt_empty <= #`TCQ 1'b1;
end else if ((rd_pkt_count == wr_pkt_count_rd) && stage2_reg_en_i) begin
ram_pkt_empty_d1 <= #`TCQ 1'b1;
end
end
// Synchronize the empty in write domain
always @ (posedge wr_rst_fwft_pkt_fifo or posedge WR_CLK) begin
if (wr_rst_fwft_pkt_fifo)
pkt_empty_sync <= 'b1;
else
pkt_empty_sync <= #`TCQ {pkt_empty_sync[C_SYNCHRONIZER_STAGE-2:0], empty_p0_out};
end
end endgenerate //gras_pkt_cnt
generate if (IS_FWFT == 0 || C_FIFO_TYPE == 3) begin : STD_FIFO
//***********************************************
// If NOT First-Word Fall-Through, wire the outputs
// of the internal _ss or _as FIFO directly to the
// output, and do not instantiate the preload0
// module.
//***********************************************
assign RD_CLK_P0_IN = 0;
assign RST_P0_IN = 0;
assign RD_EN_P0_IN = 0;
assign RD_EN_FIFO_IN = rd_en_delayed;
assign DOUT = DOUT_FIFO_OUT;
assign DATA_P0_IN = 0;
assign VALID = VALID_FIFO_OUT;
assign EMPTY = EMPTY_FIFO_OUT;
assign ALMOST_EMPTY = ALMOST_EMPTY_FIFO_OUT;
assign EMPTY_P0_IN = 0;
assign UNDERFLOW = UNDERFLOW_FIFO_OUT;
assign DATA_COUNT = DATA_COUNT_FIFO_OUT;
assign SBITERR = sbiterr_fifo_out;
assign DBITERR = dbiterr_fifo_out;
end endgenerate // STD_FIFO
generate if (IS_FWFT == 1 && C_FIFO_TYPE != 1) begin : NO_PKT_FIFO
assign empty_p0_out = empty_fwft;
assign SBITERR = sbiterr_fwft;
assign DBITERR = dbiterr_fwft;
assign DOUT = dout_fwft;
assign RD_EN_P0_IN = (C_FIFO_TYPE != 1) ? rd_en_delayed : rd_en_to_fwft_fifo;
end endgenerate // NO_PKT_FIFO
//***********************************************
// Connect user flags to internal signals
//***********************************************
//If we are using extra logic for the FWFT data count, then override the
//RD_DATA_COUNT output when we are EMPTY or ALMOST_EMPTY.
//RD_DATA_COUNT is 0 when EMPTY and 1 when ALMOST_EMPTY.
generate
if (C_USE_FWFT_DATA_COUNT==1 && (C_RD_DATA_COUNT_WIDTH>C_RD_PNTR_WIDTH) ) begin : block3
if (C_COMMON_CLOCK == 0) begin : block_ic
assign RD_DATA_COUNT = (EMPTY_P0_OUT_Q | RST_P0_IN) ? 0 : (ALMOSTEMPTY_P0_OUT_Q ? 1 : RD_DATA_COUNT_FIFO_OUT);
end //block_ic
else begin
assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT;
end
end //block3
endgenerate
//If we are using extra logic for the FWFT data count, then override the
//RD_DATA_COUNT output when we are EMPTY or ALMOST_EMPTY.
//Due to asymmetric ports, RD_DATA_COUNT is 0 when EMPTY or ALMOST_EMPTY.
generate
if (C_USE_FWFT_DATA_COUNT==1 && (C_RD_DATA_COUNT_WIDTH <=C_RD_PNTR_WIDTH) ) begin : block30
if (C_COMMON_CLOCK == 0) begin : block_ic
assign RD_DATA_COUNT = (EMPTY_P0_OUT_Q | RST_P0_IN) ? 0 : (ALMOSTEMPTY_P0_OUT_Q ? 0 : RD_DATA_COUNT_FIFO_OUT);
end
else begin
assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT;
end
end //block30
endgenerate
//If we are not using extra logic for the FWFT data count,
//then connect RD_DATA_COUNT to the RD_DATA_COUNT from the
//internal FIFO instance
generate
if (C_USE_FWFT_DATA_COUNT==0 ) begin : block31
assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT;
end
endgenerate
//Always connect WR_DATA_COUNT to the WR_DATA_COUNT from the internal
//FIFO instance
generate
if (C_USE_FWFT_DATA_COUNT==1) begin : block4
assign WR_DATA_COUNT = WR_DATA_COUNT_FIFO_OUT;
end
else begin : block4
assign WR_DATA_COUNT = WR_DATA_COUNT_FIFO_OUT;
end
endgenerate
//Connect other flags to the internal FIFO instance
assign FULL = FULL_FIFO_OUT;
assign ALMOST_FULL = ALMOST_FULL_FIFO_OUT;
assign WR_ACK = WR_ACK_FIFO_OUT;
assign OVERFLOW = OVERFLOW_FIFO_OUT;
assign PROG_FULL = PROG_FULL_FIFO_OUT;
assign PROG_EMPTY = PROG_EMPTY_FIFO_OUT;
/**************************************************************************
* find_log2
* Returns the 'log2' value for the input value for the supported ratios
***************************************************************************/
function integer find_log2;
input integer int_val;
integer i,j;
begin
i = 1;
j = 0;
for (i = 1; i < int_val; i = i*2) begin
j = j + 1;
end
find_log2 = j;
end
endfunction
// if an asynchronous FIFO has been selected, display a message that the FIFO
// will not be cycle-accurate in simulation
initial begin
if (C_IMPLEMENTATION_TYPE == 2) begin
$display("WARNING: Behavioral models for independent clock FIFO configurations do not model synchronization delays. The behavioral models are functionally correct, and will represent the behavior of the configured FIFO. See the FIFO Generator User Guide for more information.");
end else if (C_MEMORY_TYPE == 4) begin
$display("FAILURE : Behavioral models do not support built-in FIFO configurations. Please use post-synthesis or post-implement simulation in Vivado.");
$finish;
end
if (C_WR_PNTR_WIDTH != find_log2(C_WR_DEPTH)) begin
$display("FAILURE : C_WR_PNTR_WIDTH is not log2 of C_WR_DEPTH.");
$finish;
end
if (C_RD_PNTR_WIDTH != find_log2(C_RD_DEPTH)) begin
$display("FAILURE : C_RD_PNTR_WIDTH is not log2 of C_RD_DEPTH.");
$finish;
end
if (C_USE_ECC == 1) begin
if (C_DIN_WIDTH != C_DOUT_WIDTH) begin
$display("FAILURE : C_DIN_WIDTH and C_DOUT_WIDTH must be equal for ECC configuration.");
$finish;
end
if (C_DIN_WIDTH == 1 && C_ERROR_INJECTION_TYPE > 1) begin
$display("FAILURE : C_DIN_WIDTH and C_DOUT_WIDTH must be > 1 for double bit error injection.");
$finish;
end
end
end //initial
/**************************************************************************
* Internal reset logic
**************************************************************************/
assign wr_rst_i = (C_HAS_RST == 1 || C_ENABLE_RST_SYNC == 0) ? wr_rst_reg : 0;
assign rd_rst_i = (C_HAS_RST == 1 || C_ENABLE_RST_SYNC == 0) ? rd_rst_reg : 0;
assign rst_i = C_HAS_RST ? rst_reg : 0;
wire rst_2_sync;
wire clk_2_sync = (C_COMMON_CLOCK == 1) ? CLK : WR_CLK;
generate
if (C_ENABLE_RST_SYNC == 0) begin : gnrst_sync
always @* begin
wr_rst_reg <= wr_rst_delayed;
rd_rst_reg <= rd_rst_delayed;
rst_reg <= 1'b0;
srst_reg <= 1'b0;
end
assign rst_2_sync = wr_rst_delayed;
assign wr_rst_busy = 1'b0;
assign rd_rst_busy = 1'b0;
end else if (C_HAS_RST == 1 && C_COMMON_CLOCK == 0) begin : g7s_ic_rst
assign wr_rst_comb = !wr_rst_asreg_d2 && wr_rst_asreg;
assign rd_rst_comb = !rd_rst_asreg_d2 && rd_rst_asreg;
assign rst_2_sync = rst_delayed;
assign wr_rst_busy = 1'b0;
assign rd_rst_busy = 1'b0;
always @(posedge WR_CLK or posedge rst_delayed) begin
if (rst_delayed == 1'b1) begin
wr_rst_asreg <= #`TCQ 1'b1;
end else begin
if (wr_rst_asreg_d1 == 1'b1) begin
wr_rst_asreg <= #`TCQ 1'b0;
end else begin
wr_rst_asreg <= #`TCQ wr_rst_asreg;
end
end
end
always @(posedge WR_CLK) begin
wr_rst_asreg_d1 <= #`TCQ wr_rst_asreg;
wr_rst_asreg_d2 <= #`TCQ wr_rst_asreg_d1;
end
always @(posedge WR_CLK or posedge wr_rst_comb) begin
if (wr_rst_comb == 1'b1) begin
wr_rst_reg <= #`TCQ 1'b1;
end else begin
wr_rst_reg <= #`TCQ 1'b0;
end
end
always @(posedge RD_CLK or posedge rst_delayed) begin
if (rst_delayed == 1'b1) begin
rd_rst_asreg <= #`TCQ 1'b1;
end else begin
if (rd_rst_asreg_d1 == 1'b1) begin
rd_rst_asreg <= #`TCQ 1'b0;
end else begin
rd_rst_asreg <= #`TCQ rd_rst_asreg;
end
end
end
always @(posedge RD_CLK) begin
rd_rst_asreg_d1 <= #`TCQ rd_rst_asreg;
rd_rst_asreg_d2 <= #`TCQ rd_rst_asreg_d1;
end
always @(posedge RD_CLK or posedge rd_rst_comb) begin
if (rd_rst_comb == 1'b1) begin
rd_rst_reg <= #`TCQ 1'b1;
end else begin
rd_rst_reg <= #`TCQ 1'b0;
end
end
end else if (C_HAS_RST == 1 && C_COMMON_CLOCK == 1) begin : g7s_cc_rst
assign rst_comb = !rst_asreg_d2 && rst_asreg;
assign rst_2_sync = rst_delayed;
assign wr_rst_busy = 1'b0;
assign rd_rst_busy = 1'b0;
always @(posedge CLK or posedge rst_delayed) begin
if (rst_delayed == 1'b1) begin
rst_asreg <= #`TCQ 1'b1;
end else begin
if (rst_asreg_d1 == 1'b1) begin
rst_asreg <= #`TCQ 1'b0;
end else begin
rst_asreg <= #`TCQ rst_asreg;
end
end
end
always @(posedge CLK) begin
rst_asreg_d1 <= #`TCQ rst_asreg;
rst_asreg_d2 <= #`TCQ rst_asreg_d1;
end
always @(posedge CLK or posedge rst_comb) begin
if (rst_comb == 1'b1) begin
rst_reg <= #`TCQ 1'b1;
end else begin
rst_reg <= #`TCQ 1'b0;
end
end
end else if (IS_8SERIES == 1 && C_HAS_SRST == 1 && C_COMMON_CLOCK == 1) begin : g8s_cc_rst
assign wr_rst_busy = (C_MEMORY_TYPE != 4) ? rst_reg : rst_active_i;
assign rd_rst_busy = rst_reg;
assign rst_2_sync = srst_delayed;
always @* rst_full_ff_i <= rst_reg;
always @* rst_full_gen_i <= C_FULL_FLAGS_RST_VAL == 1 ? rst_active_i : 0;
always @(posedge CLK) begin
rst_delayed_d1 <= #`TCQ srst_delayed;
rst_delayed_d2 <= #`TCQ rst_delayed_d1;
if (rst_reg || rst_delayed_d2) begin
rst_active_i <= #`TCQ 1'b1;
end else begin
rst_active_i <= #`TCQ rst_reg;
end
end
always @(posedge CLK) begin
if (~rst_reg && srst_delayed) begin
rst_reg <= #`TCQ 1'b1;
end else if (rst_reg) begin
rst_reg <= #`TCQ 1'b0;
end else begin
rst_reg <= #`TCQ rst_reg;
end
end
end else begin
assign wr_rst_busy = 1'b0;
assign rd_rst_busy = 1'b0;
end
// end g8s_cc_rst
endgenerate
reg rst_d1 = 1'b0;
reg rst_d2 = 1'b0;
reg rst_d3 = 1'b0;
reg rst_d4 = 1'b0;
generate
if ((C_HAS_RST == 1 || C_HAS_SRST == 1 || C_ENABLE_RST_SYNC == 0) && C_FULL_FLAGS_RST_VAL == 1) begin : grstd1
// RST_FULL_GEN replaces the reset falling edge detection used to de-assert
// FULL, ALMOST_FULL & PROG_FULL flags if C_FULL_FLAGS_RST_VAL = 1.
// RST_FULL_FF goes to the reset pin of the final flop of FULL, ALMOST_FULL &
// PROG_FULL
always @ (posedge rst_2_sync or posedge clk_2_sync) begin
if (rst_2_sync) begin
rst_d1 <= 1'b1;
rst_d2 <= 1'b1;
rst_d3 <= 1'b1;
rst_d4 <= 1'b0;
end else begin
if (srst_delayed) begin
rst_d1 <= #`TCQ 1'b1;
rst_d2 <= #`TCQ 1'b1;
rst_d3 <= #`TCQ 1'b1;
rst_d4 <= #`TCQ 1'b0;
end else begin
rst_d1 <= #`TCQ 1'b0;
rst_d2 <= #`TCQ rst_d1;
rst_d3 <= #`TCQ rst_d2;
rst_d4 <= #`TCQ rst_d3;
end
end
end
always @* rst_full_ff_i <= (C_HAS_SRST == 0) ? rst_d2 : 1'b0 ;
always @* rst_full_gen_i <= rst_d4;
end else if ((C_HAS_RST == 1 || C_HAS_SRST == 1 || C_ENABLE_RST_SYNC == 0) && C_FULL_FLAGS_RST_VAL == 0) begin : gnrst_full
always @* rst_full_ff_i <= (C_COMMON_CLOCK == 0) ? wr_rst_i : rst_i;
end
endgenerate // grstd1
endmodule //FIFO_GENERATOR_v12_0_CONV_VER
module fifo_generator_v12_0_sync_stage
#(
parameter C_WIDTH = 10
)
(
input RST,
input CLK,
input [C_WIDTH-1:0] DIN,
output reg [C_WIDTH-1:0] DOUT = 0
);
always @ (posedge RST or posedge CLK) begin
if (RST)
DOUT <= 0;
else
DOUT <= #`TCQ DIN;
end
endmodule // fifo_generator_v12_0_sync_stage
/*******************************************************************************
* Declaration of Independent-Clocks FIFO Module
******************************************************************************/
module fifo_generator_v12_0_bhv_ver_as
/***************************************************************************
* Declare user parameters and their defaults
***************************************************************************/
#(
parameter C_FAMILY = "virtex7",
parameter C_DATA_COUNT_WIDTH = 2,
parameter C_DIN_WIDTH = 8,
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_FULL_FLAGS_RST_VAL = 1,
parameter C_HAS_ALMOST_EMPTY = 0,
parameter C_HAS_ALMOST_FULL = 0,
parameter C_HAS_DATA_COUNT = 0,
parameter C_HAS_OVERFLOW = 0,
parameter C_HAS_RD_DATA_COUNT = 0,
parameter C_HAS_RST = 0,
parameter C_HAS_UNDERFLOW = 0,
parameter C_HAS_VALID = 0,
parameter C_HAS_WR_ACK = 0,
parameter C_HAS_WR_DATA_COUNT = 0,
parameter C_IMPLEMENTATION_TYPE = 0,
parameter C_MEMORY_TYPE = 1,
parameter C_OVERFLOW_LOW = 0,
parameter C_PRELOAD_LATENCY = 1,
parameter C_PRELOAD_REGS = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0,
parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0,
parameter C_PROG_EMPTY_TYPE = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0,
parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0,
parameter C_PROG_FULL_TYPE = 0,
parameter C_RD_DATA_COUNT_WIDTH = 2,
parameter C_RD_DEPTH = 256,
parameter C_RD_PNTR_WIDTH = 8,
parameter C_UNDERFLOW_LOW = 0,
parameter C_USE_DOUT_RST = 0,
parameter C_USE_EMBEDDED_REG = 0,
parameter C_USE_FWFT_DATA_COUNT = 0,
parameter C_VALID_LOW = 0,
parameter C_WR_ACK_LOW = 0,
parameter C_WR_DATA_COUNT_WIDTH = 2,
parameter C_WR_DEPTH = 256,
parameter C_WR_PNTR_WIDTH = 8,
parameter C_USE_ECC = 0,
parameter C_ENABLE_RST_SYNC = 1,
parameter C_ERROR_INJECTION_TYPE = 0,
parameter C_SYNCHRONIZER_STAGE = 2
)
/***************************************************************************
* Declare Input and Output Ports
***************************************************************************/
(
input [C_DIN_WIDTH-1:0] DIN,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE,
input RD_CLK,
input RD_EN,
input RD_EN_USER,
input RST,
input RST_FULL_GEN,
input RST_FULL_FF,
input WR_RST,
input RD_RST,
input WR_CLK,
input WR_EN,
input INJECTDBITERR,
input INJECTSBITERR,
input USER_EMPTY_FB,
output reg ALMOST_EMPTY = 1'b1,
output reg ALMOST_FULL = C_FULL_FLAGS_RST_VAL,
output [C_DOUT_WIDTH-1:0] DOUT,
output reg EMPTY = 1'b1,
output reg FULL = C_FULL_FLAGS_RST_VAL,
output OVERFLOW,
output PROG_EMPTY,
output PROG_FULL,
output VALID,
output [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT,
output UNDERFLOW,
output WR_ACK,
output [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT,
output SBITERR,
output DBITERR
);
reg [C_RD_PNTR_WIDTH:0] rd_data_count_int = 0;
reg [C_WR_PNTR_WIDTH:0] wr_data_count_int = 0;
reg [C_WR_PNTR_WIDTH:0] wdc_fwft_ext_as = 0;
/***************************************************************************
* Parameters used as constants
**************************************************************************/
localparam IS_8SERIES = (C_FAMILY == "virtexu" || C_FAMILY == "kintexu" || C_FAMILY == "artixu" || C_FAMILY == "virtexum" || C_FAMILY == "zynque") ? 1 : 0;
//When RST is present, set FULL reset value to '1'.
//If core has no RST, make sure FULL powers-on as '0'.
localparam C_DEPTH_RATIO_WR =
(C_WR_DEPTH>C_RD_DEPTH) ? (C_WR_DEPTH/C_RD_DEPTH) : 1;
localparam C_DEPTH_RATIO_RD =
(C_RD_DEPTH>C_WR_DEPTH) ? (C_RD_DEPTH/C_WR_DEPTH) : 1;
localparam C_FIFO_WR_DEPTH = C_WR_DEPTH - 1;
localparam C_FIFO_RD_DEPTH = C_RD_DEPTH - 1;
// C_DEPTH_RATIO_WR | C_DEPTH_RATIO_RD | C_PNTR_WIDTH | EXTRA_WORDS_DC
// -----------------|------------------|-----------------|---------------
// 1 | 8 | C_RD_PNTR_WIDTH | 2
// 1 | 4 | C_RD_PNTR_WIDTH | 2
// 1 | 2 | C_RD_PNTR_WIDTH | 2
// 1 | 1 | C_WR_PNTR_WIDTH | 2
// 2 | 1 | C_WR_PNTR_WIDTH | 4
// 4 | 1 | C_WR_PNTR_WIDTH | 8
// 8 | 1 | C_WR_PNTR_WIDTH | 16
localparam C_PNTR_WIDTH = (C_WR_PNTR_WIDTH>=C_RD_PNTR_WIDTH) ? C_WR_PNTR_WIDTH : C_RD_PNTR_WIDTH;
wire [C_PNTR_WIDTH:0] EXTRA_WORDS_DC = (C_DEPTH_RATIO_WR == 1) ? 2 : (2 * C_DEPTH_RATIO_WR/C_DEPTH_RATIO_RD);
localparam [31:0] reads_per_write = C_DIN_WIDTH/C_DOUT_WIDTH;
localparam [31:0] log2_reads_per_write = log2_val(reads_per_write);
localparam [31:0] writes_per_read = C_DOUT_WIDTH/C_DIN_WIDTH;
localparam [31:0] log2_writes_per_read = log2_val(writes_per_read);
/**************************************************************************
* FIFO Contents Tracking and Data Count Calculations
*************************************************************************/
// Memory which will be used to simulate a FIFO
reg [C_DIN_WIDTH-1:0] memory[C_WR_DEPTH-1:0];
// Local parameters used to determine whether to inject ECC error or not
localparam SYMMETRIC_PORT = (C_DIN_WIDTH == C_DOUT_WIDTH) ? 1 : 0;
localparam ERR_INJECTION = (C_ERROR_INJECTION_TYPE != 0) ? 1 : 0;
localparam ENABLE_ERR_INJECTION = C_USE_ECC && SYMMETRIC_PORT && ERR_INJECTION;
// Array that holds the error injection type (single/double bit error) on
// a specific write operation, which is returned on read to corrupt the
// output data.
reg [1:0] ecc_err[C_WR_DEPTH-1:0];
//The amount of data stored in the FIFO at any time is given
// by num_wr_bits (in the WR_CLK domain) and num_rd_bits (in the RD_CLK
// domain.
//num_wr_bits is calculated by considering the total words in the FIFO,
// and the state of the read pointer (which may not have yet crossed clock
// domains.)
//num_rd_bits is calculated by considering the total words in the FIFO,
// and the state of the write pointer (which may not have yet crossed clock
// domains.)
reg [31:0] num_wr_bits;
reg [31:0] num_rd_bits;
reg [31:0] next_num_wr_bits;
reg [31:0] next_num_rd_bits;
//The write pointer - tracks write operations
// (Works opposite to core: wr_ptr is a DOWN counter)
reg [31:0] wr_ptr;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr = 0; // UP counter: Rolls back to 0 when reaches to max value.
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd1 = 0;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd2 = 0;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd3 = 0;
wire [C_RD_PNTR_WIDTH-1:0] adj_wr_pntr_rd;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd = 0;
wire wr_rst_i = WR_RST;
reg wr_rst_d1 =0;
//The read pointer - tracks read operations
// (rd_ptr Works opposite to core: rd_ptr is a DOWN counter)
reg [31:0] rd_ptr;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr = 0; // UP counter: Rolls back to 0 when reaches to max value.
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr1 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr2 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr3 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr4 = 0;
wire [C_WR_PNTR_WIDTH-1:0] adj_rd_pntr_wr;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr = 0;
wire rd_rst_i = RD_RST;
wire ram_rd_en;
wire empty_int;
wire almost_empty_int;
wire ram_wr_en;
wire full_int;
wire almost_full_int;
reg ram_rd_en_d1 = 1'b0;
// Delayed ram_rd_en is needed only for STD Embedded register option
generate
if (C_PRELOAD_LATENCY == 2) begin : grd_d
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i)
ram_rd_en_d1 <= #`TCQ 1'b0;
else
ram_rd_en_d1 <= #`TCQ ram_rd_en;
end
end
endgenerate
// Write pointer adjustment based on pointers width for EMPTY/ALMOST_EMPTY generation
generate
if (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) begin : rdg // Read depth greater than write depth
assign adj_wr_pntr_rd[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr_rd;
assign adj_wr_pntr_rd[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1:0] = 0;
end else begin : rdl // Read depth lesser than or equal to write depth
assign adj_wr_pntr_rd = wr_pntr_rd[C_WR_PNTR_WIDTH-1:C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH];
end
endgenerate
// Generate Empty and Almost Empty
// ram_rd_en used to determine EMPTY should depend on the EMPTY.
assign ram_rd_en = RD_EN & !EMPTY;
assign empty_int = ((adj_wr_pntr_rd == rd_pntr) || (ram_rd_en && (adj_wr_pntr_rd == (rd_pntr+1'h1))));
assign almost_empty_int = ((adj_wr_pntr_rd == (rd_pntr+1'h1)) || (ram_rd_en && (adj_wr_pntr_rd == (rd_pntr+2'h2))));
// Register Empty and Almost Empty
always @ (posedge RD_CLK or posedge rd_rst_i)
begin
if (rd_rst_i) begin
EMPTY <= #`TCQ 1'b1;
ALMOST_EMPTY <= #`TCQ 1'b1;
rd_data_count_int <= #`TCQ {C_RD_PNTR_WIDTH{1'b0}};
end else begin
rd_data_count_int <= #`TCQ {(adj_wr_pntr_rd[C_RD_PNTR_WIDTH-1:0] - rd_pntr[C_RD_PNTR_WIDTH-1:0]), 1'b0};
if (empty_int)
EMPTY <= #`TCQ 1'b1;
else
EMPTY <= #`TCQ 1'b0;
if (!EMPTY) begin
if (almost_empty_int)
ALMOST_EMPTY <= #`TCQ 1'b1;
else
ALMOST_EMPTY <= #`TCQ 1'b0;
end
end // rd_rst_i
end // always
// Read pointer adjustment based on pointers width for EMPTY/ALMOST_EMPTY generation
generate
if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : wdg // Write depth greater than read depth
assign adj_rd_pntr_wr[C_WR_PNTR_WIDTH-1:C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH] = rd_pntr_wr;
assign adj_rd_pntr_wr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1:0] = 0;
end else begin : wdl // Write depth lesser than or equal to read depth
assign adj_rd_pntr_wr = rd_pntr_wr[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH];
end
endgenerate
// Generate FULL and ALMOST_FULL
// ram_wr_en used to determine FULL should depend on the FULL.
assign ram_wr_en = WR_EN & !FULL;
assign full_int = ((adj_rd_pntr_wr == (wr_pntr+1'h1)) || (ram_wr_en && (adj_rd_pntr_wr == (wr_pntr+2'h2))));
assign almost_full_int = ((adj_rd_pntr_wr == (wr_pntr+2'h2)) || (ram_wr_en && (adj_rd_pntr_wr == (wr_pntr+3'h3))));
// Register FULL and ALMOST_FULL Empty
always @ (posedge WR_CLK or posedge RST_FULL_FF)
begin
if (RST_FULL_FF) begin
FULL <= #`TCQ C_FULL_FLAGS_RST_VAL;
ALMOST_FULL <= #`TCQ C_FULL_FLAGS_RST_VAL;
end else begin
if (full_int) begin
FULL <= #`TCQ 1'b1;
end else begin
FULL <= #`TCQ 1'b0;
end
if (RST_FULL_GEN) begin
ALMOST_FULL <= #`TCQ 1'b0;
end else if (!FULL) begin
if (almost_full_int)
ALMOST_FULL <= #`TCQ 1'b1;
else
ALMOST_FULL <= #`TCQ 1'b0;
end
end // wr_rst_i
end // always
always @ (posedge WR_CLK or posedge wr_rst_i)
begin
if (wr_rst_i) begin
wr_data_count_int <= #`TCQ {C_WR_DATA_COUNT_WIDTH{1'b0}};
end else begin
wr_data_count_int <= #`TCQ {(wr_pntr[C_WR_PNTR_WIDTH-1:0] - adj_rd_pntr_wr[C_WR_PNTR_WIDTH-1:0]), 1'b0};
end // wr_rst_i
end // always
// Determine which stage in FWFT registers are valid
reg stage1_valid = 0;
reg stage2_valid = 0;
generate
if (C_PRELOAD_LATENCY == 0) begin : grd_fwft_proc
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
stage1_valid <= #`TCQ 0;
stage2_valid <= #`TCQ 0;
end else begin
if (!stage1_valid && !stage2_valid) begin
if (!EMPTY)
stage1_valid <= #`TCQ 1'b1;
else
stage1_valid <= #`TCQ 1'b0;
end else if (stage1_valid && !stage2_valid) begin
if (EMPTY) begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b1;
end else begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b1;
end
end else if (!stage1_valid && stage2_valid) begin
if (EMPTY && RD_EN_USER) begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b0;
end else if (!EMPTY && RD_EN_USER) begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b0;
end else if (!EMPTY && !RD_EN_USER) begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b1;
end else begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b1;
end
end else if (stage1_valid && stage2_valid) begin
if (EMPTY && RD_EN_USER) begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b1;
end else begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b1;
end
end else begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b0;
end
end // rd_rst_i
end // always
end
endgenerate
//Pointers passed into opposite clock domain
reg [31:0] wr_ptr_rdclk;
reg [31:0] wr_ptr_rdclk_next;
reg [31:0] rd_ptr_wrclk;
reg [31:0] rd_ptr_wrclk_next;
//Amount of data stored in the FIFO scaled to the narrowest (deepest) port
// (Do not include data in FWFT stages)
//Used to calculate PROG_EMPTY.
wire [31:0] num_read_words_pe =
num_rd_bits/(C_DOUT_WIDTH/C_DEPTH_RATIO_WR);
//Amount of data stored in the FIFO scaled to the narrowest (deepest) port
// (Do not include data in FWFT stages)
//Used to calculate PROG_FULL.
wire [31:0] num_write_words_pf =
num_wr_bits/(C_DIN_WIDTH/C_DEPTH_RATIO_RD);
/**************************
* Read Data Count
*************************/
reg [31:0] num_read_words_dc;
reg [C_RD_DATA_COUNT_WIDTH-1:0] num_read_words_sized_i;
always @(num_rd_bits) begin
if (C_USE_FWFT_DATA_COUNT) begin
//If using extra logic for FWFT Data Counts,
// then scale FIFO contents to read domain,
// and add two read words for FWFT stages
//This value is only a temporary value and not used in the code.
num_read_words_dc = (num_rd_bits/C_DOUT_WIDTH+2);
//Trim the read words for use with RD_DATA_COUNT
num_read_words_sized_i =
num_read_words_dc[C_RD_PNTR_WIDTH : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH+1];
end else begin
//If not using extra logic for FWFT Data Counts,
// then scale FIFO contents to read domain.
//This value is only a temporary value and not used in the code.
num_read_words_dc = num_rd_bits/C_DOUT_WIDTH;
//Trim the read words for use with RD_DATA_COUNT
num_read_words_sized_i =
num_read_words_dc[C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH];
end //if (C_USE_FWFT_DATA_COUNT)
end //always
/**************************
* Write Data Count
*************************/
reg [31:0] num_write_words_dc;
reg [C_WR_DATA_COUNT_WIDTH-1:0] num_write_words_sized_i;
always @(num_wr_bits) begin
if (C_USE_FWFT_DATA_COUNT) begin
//Calculate the Data Count value for the number of write words,
// when using First-Word Fall-Through with extra logic for Data
// Counts. This takes into consideration the number of words that
// are expected to be stored in the FWFT register stages (it always
// assumes they are filled).
//This value is scaled to the Write Domain.
//The expression (((A-1)/B))+1 divides A/B, but takes the
// ceiling of the result.
//When num_wr_bits==0, set the result manually to prevent
// division errors.
//EXTRA_WORDS_DC is the number of words added to write_words
// due to FWFT.
//This value is only a temporary value and not used in the code.
num_write_words_dc = (num_wr_bits==0) ? EXTRA_WORDS_DC : (((num_wr_bits-1)/C_DIN_WIDTH)+1) + EXTRA_WORDS_DC ;
//Trim the write words for use with WR_DATA_COUNT
num_write_words_sized_i =
num_write_words_dc[C_WR_PNTR_WIDTH : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH+1];
end else begin
//Calculate the Data Count value for the number of write words, when NOT
// using First-Word Fall-Through with extra logic for Data Counts. This
// calculates only the number of words in the internal FIFO.
//The expression (((A-1)/B))+1 divides A/B, but takes the
// ceiling of the result.
//This value is scaled to the Write Domain.
//When num_wr_bits==0, set the result manually to prevent
// division errors.
//This value is only a temporary value and not used in the code.
num_write_words_dc = (num_wr_bits==0) ? 0 : ((num_wr_bits-1)/C_DIN_WIDTH)+1;
//Trim the read words for use with RD_DATA_COUNT
num_write_words_sized_i =
num_write_words_dc[C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH];
end //if (C_USE_FWFT_DATA_COUNT)
end //always
/***************************************************************************
* Internal registers and wires
**************************************************************************/
//Temporary signals used for calculating the model's outputs. These
//are only used in the assign statements immediately following wire,
//parameter, and function declarations.
wire [C_DOUT_WIDTH-1:0] ideal_dout_out;
wire valid_i;
wire valid_out;
wire underflow_i;
//Ideal FIFO signals. These are the raw output of the behavioral model,
//which behaves like an ideal FIFO.
reg [1:0] err_type = 0;
reg [1:0] err_type_d1 = 0;
reg [C_DOUT_WIDTH-1:0] ideal_dout = 0;
reg [C_DOUT_WIDTH-1:0] ideal_dout_d1 = 0;
reg ideal_wr_ack = 0;
reg ideal_valid = 0;
reg ideal_overflow = C_OVERFLOW_LOW;
reg ideal_underflow = C_UNDERFLOW_LOW;
reg ideal_prog_full = 0;
reg ideal_prog_empty = 1;
reg [C_WR_DATA_COUNT_WIDTH-1 : 0] ideal_wr_count = 0;
reg [C_RD_DATA_COUNT_WIDTH-1 : 0] ideal_rd_count = 0;
//Assorted reg values for delayed versions of signals
reg valid_d1 = 0;
//user specified value for reseting the size of the fifo
reg [C_DOUT_WIDTH-1:0] dout_reset_val = 0;
//temporary registers for WR_RESPONSE_LATENCY feature
integer tmp_wr_listsize;
integer tmp_rd_listsize;
//Signal for registered version of prog full and empty
//Threshold values for Programmable Flags
integer prog_empty_actual_thresh_assert;
integer prog_empty_actual_thresh_negate;
integer prog_full_actual_thresh_assert;
integer prog_full_actual_thresh_negate;
/****************************************************************************
* Function Declarations
***************************************************************************/
/**************************************************************************
* write_fifo
* This task writes a word to the FIFO memory and updates the
* write pointer.
* FIFO size is relative to write domain.
***************************************************************************/
task write_fifo;
begin
memory[wr_ptr] <= DIN;
wr_pntr <= #`TCQ wr_pntr + 1;
// Store the type of error injection (double/single) on write
case (C_ERROR_INJECTION_TYPE)
3: ecc_err[wr_ptr] <= {INJECTDBITERR,INJECTSBITERR};
2: ecc_err[wr_ptr] <= {INJECTDBITERR,1'b0};
1: ecc_err[wr_ptr] <= {1'b0,INJECTSBITERR};
default: ecc_err[wr_ptr] <= 0;
endcase
// (Works opposite to core: wr_ptr is a DOWN counter)
if (wr_ptr == 0) begin
wr_ptr <= C_WR_DEPTH - 1;
end else begin
wr_ptr <= wr_ptr - 1;
end
end
endtask // write_fifo
/**************************************************************************
* read_fifo
* This task reads a word from the FIFO memory and updates the read
* pointer. It's output is the ideal_dout bus.
* FIFO size is relative to write domain.
***************************************************************************/
task read_fifo;
integer i;
reg [C_DOUT_WIDTH-1:0] tmp_dout;
reg [C_DIN_WIDTH-1:0] memory_read;
reg [31:0] tmp_rd_ptr;
reg [31:0] rd_ptr_high;
reg [31:0] rd_ptr_low;
reg [1:0] tmp_ecc_err;
begin
rd_pntr <= #`TCQ rd_pntr + 1;
// output is wider than input
if (reads_per_write == 0) begin
tmp_dout = 0;
tmp_rd_ptr = (rd_ptr << log2_writes_per_read)+(writes_per_read-1);
for (i = writes_per_read - 1; i >= 0; i = i - 1) begin
tmp_dout = tmp_dout << C_DIN_WIDTH;
tmp_dout = tmp_dout | memory[tmp_rd_ptr];
// (Works opposite to core: rd_ptr is a DOWN counter)
if (tmp_rd_ptr == 0) begin
tmp_rd_ptr = C_WR_DEPTH - 1;
end else begin
tmp_rd_ptr = tmp_rd_ptr - 1;
end
end
// output is symmetric
end else if (reads_per_write == 1) begin
tmp_dout = memory[rd_ptr][C_DIN_WIDTH-1:0];
// Retreive the error injection type. Based on the error injection type
// corrupt the output data.
tmp_ecc_err = ecc_err[rd_ptr];
if (ENABLE_ERR_INJECTION && C_DIN_WIDTH == C_DOUT_WIDTH) begin
if (tmp_ecc_err[1]) begin // Corrupt the output data only for double bit error
if (C_DOUT_WIDTH == 1) begin
$display("FAILURE : Data width must be >= 2 for double bit error injection.");
$finish;
end else if (C_DOUT_WIDTH == 2)
tmp_dout = {~tmp_dout[C_DOUT_WIDTH-1],~tmp_dout[C_DOUT_WIDTH-2]};
else
tmp_dout = {~tmp_dout[C_DOUT_WIDTH-1],~tmp_dout[C_DOUT_WIDTH-2],(tmp_dout << 2)};
end else begin
tmp_dout = tmp_dout[C_DOUT_WIDTH-1:0];
end
err_type <= {tmp_ecc_err[1], tmp_ecc_err[0] & !tmp_ecc_err[1]};
end else begin
err_type <= 0;
end
// input is wider than output
end else begin
rd_ptr_high = rd_ptr >> log2_reads_per_write;
rd_ptr_low = rd_ptr & (reads_per_write - 1);
memory_read = memory[rd_ptr_high];
tmp_dout = memory_read >> (rd_ptr_low*C_DOUT_WIDTH);
end
ideal_dout <= tmp_dout;
// (Works opposite to core: rd_ptr is a DOWN counter)
if (rd_ptr == 0) begin
rd_ptr <= C_RD_DEPTH - 1;
end else begin
rd_ptr <= rd_ptr - 1;
end
end
endtask
/**************************************************************************
* log2_val
* Returns the 'log2' value for the input value for the supported ratios
***************************************************************************/
function [31:0] log2_val;
input [31:0] binary_val;
begin
if (binary_val == 8) begin
log2_val = 3;
end else if (binary_val == 4) begin
log2_val = 2;
end else begin
log2_val = 1;
end
end
endfunction
/***********************************************************************
* hexstr_conv
* Converts a string of type hex to a binary value (for C_DOUT_RST_VAL)
***********************************************************************/
function [C_DOUT_WIDTH-1:0] hexstr_conv;
input [(C_DOUT_WIDTH*8)-1:0] def_data;
integer index,i,j;
reg [3:0] bin;
begin
index = 0;
hexstr_conv = 'b0;
for( i=C_DOUT_WIDTH-1; i>=0; i=i-1 )
begin
case (def_data[7:0])
8'b00000000 :
begin
bin = 4'b0000;
i = -1;
end
8'b00110000 : bin = 4'b0000;
8'b00110001 : bin = 4'b0001;
8'b00110010 : bin = 4'b0010;
8'b00110011 : bin = 4'b0011;
8'b00110100 : bin = 4'b0100;
8'b00110101 : bin = 4'b0101;
8'b00110110 : bin = 4'b0110;
8'b00110111 : bin = 4'b0111;
8'b00111000 : bin = 4'b1000;
8'b00111001 : bin = 4'b1001;
8'b01000001 : bin = 4'b1010;
8'b01000010 : bin = 4'b1011;
8'b01000011 : bin = 4'b1100;
8'b01000100 : bin = 4'b1101;
8'b01000101 : bin = 4'b1110;
8'b01000110 : bin = 4'b1111;
8'b01100001 : bin = 4'b1010;
8'b01100010 : bin = 4'b1011;
8'b01100011 : bin = 4'b1100;
8'b01100100 : bin = 4'b1101;
8'b01100101 : bin = 4'b1110;
8'b01100110 : bin = 4'b1111;
default :
begin
bin = 4'bx;
end
endcase
for( j=0; j<4; j=j+1)
begin
if ((index*4)+j < C_DOUT_WIDTH)
begin
hexstr_conv[(index*4)+j] = bin[j];
end
end
index = index + 1;
def_data = def_data >> 8;
end
end
endfunction
/*************************************************************************
* Initialize Signals for clean power-on simulation
*************************************************************************/
initial begin
num_wr_bits = 0;
num_rd_bits = 0;
next_num_wr_bits = 0;
next_num_rd_bits = 0;
rd_ptr = C_RD_DEPTH - 1;
wr_ptr = C_WR_DEPTH - 1;
wr_pntr = 0;
rd_pntr = 0;
rd_ptr_wrclk = rd_ptr;
wr_ptr_rdclk = wr_ptr;
dout_reset_val = hexstr_conv(C_DOUT_RST_VAL);
ideal_dout = dout_reset_val;
err_type = 0;
ideal_dout_d1 = dout_reset_val;
ideal_wr_ack = 1'b0;
ideal_valid = 1'b0;
valid_d1 = 1'b0;
ideal_overflow = C_OVERFLOW_LOW;
ideal_underflow = C_UNDERFLOW_LOW;
ideal_wr_count = 0;
ideal_rd_count = 0;
ideal_prog_full = 1'b0;
ideal_prog_empty = 1'b1;
end
/*************************************************************************
* Connect the module inputs and outputs to the internal signals of the
* behavioral model.
*************************************************************************/
//Inputs
/*
wire [C_DIN_WIDTH-1:0] DIN;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE;
wire RD_CLK;
wire RD_EN;
wire RST;
wire WR_CLK;
wire WR_EN;
*/
//***************************************************************************
// Dout may change behavior based on latency
//***************************************************************************
assign ideal_dout_out[C_DOUT_WIDTH-1:0] = (C_PRELOAD_LATENCY==2 &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1))?
ideal_dout_d1: ideal_dout;
assign DOUT[C_DOUT_WIDTH-1:0] = ideal_dout_out;
//***************************************************************************
// Assign SBITERR and DBITERR based on latency
//***************************************************************************
assign SBITERR = (C_ERROR_INJECTION_TYPE == 1 || C_ERROR_INJECTION_TYPE == 3) &&
(C_PRELOAD_LATENCY == 2 &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1)) ?
err_type_d1[0]: err_type[0];
assign DBITERR = (C_ERROR_INJECTION_TYPE == 2 || C_ERROR_INJECTION_TYPE == 3) &&
(C_PRELOAD_LATENCY==2 && (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1)) ?
err_type_d1[1]: err_type[1];
//***************************************************************************
// Overflow may be active-low
//***************************************************************************
generate
if (C_HAS_OVERFLOW==1) begin : blockOF1
assign OVERFLOW = ideal_overflow ? !C_OVERFLOW_LOW : C_OVERFLOW_LOW;
end
endgenerate
assign PROG_EMPTY = ideal_prog_empty;
assign PROG_FULL = ideal_prog_full;
//***************************************************************************
// Valid may change behavior based on latency or active-low
//***************************************************************************
generate
if (C_HAS_VALID==1) begin : blockVL1
assign valid_i = (C_PRELOAD_LATENCY==0) ? (RD_EN & ~EMPTY) : ideal_valid;
assign valid_out = (C_PRELOAD_LATENCY==2 &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1))?
valid_d1: valid_i;
assign VALID = valid_out ? !C_VALID_LOW : C_VALID_LOW;
end
endgenerate
//***************************************************************************
// Underflow may change behavior based on latency or active-low
//***************************************************************************
generate
if (C_HAS_UNDERFLOW==1) begin : blockUF1
assign underflow_i = (C_PRELOAD_LATENCY==0) ? (RD_EN & EMPTY) : ideal_underflow;
assign UNDERFLOW = underflow_i ? !C_UNDERFLOW_LOW : C_UNDERFLOW_LOW;
end
endgenerate
//***************************************************************************
// Write acknowledge may be active low
//***************************************************************************
generate
if (C_HAS_WR_ACK==1) begin : blockWK1
assign WR_ACK = ideal_wr_ack ? !C_WR_ACK_LOW : C_WR_ACK_LOW;
end
endgenerate
//***************************************************************************
// Generate RD_DATA_COUNT if Use Extra Logic option is selected
//***************************************************************************
generate
if (C_HAS_WR_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT == 1) begin : wdc_fwft_ext
reg [C_PNTR_WIDTH-1:0] adjusted_wr_pntr = 0;
reg [C_PNTR_WIDTH-1:0] adjusted_rd_pntr = 0;
wire [C_PNTR_WIDTH-1:0] diff_wr_rd_tmp;
wire [C_PNTR_WIDTH:0] diff_wr_rd;
reg [C_PNTR_WIDTH:0] wr_data_count_i = 0;
always @* begin
if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin
adjusted_wr_pntr = wr_pntr;
adjusted_rd_pntr = 0;
adjusted_rd_pntr[C_PNTR_WIDTH-1:C_PNTR_WIDTH-C_RD_PNTR_WIDTH] = rd_pntr_wr;
end else if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin
adjusted_rd_pntr = rd_pntr_wr;
adjusted_wr_pntr = 0;
adjusted_wr_pntr[C_PNTR_WIDTH-1:C_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr;
end else begin
adjusted_wr_pntr = wr_pntr;
adjusted_rd_pntr = rd_pntr_wr;
end
end // always @*
assign diff_wr_rd_tmp = adjusted_wr_pntr - adjusted_rd_pntr;
assign diff_wr_rd = {1'b0,diff_wr_rd_tmp};
always @ (posedge wr_rst_i or posedge WR_CLK)
begin
if (wr_rst_i)
wr_data_count_i <= #`TCQ 0;
else
wr_data_count_i <= #`TCQ diff_wr_rd + EXTRA_WORDS_DC;
end // always @ (posedge WR_CLK or posedge WR_CLK)
always @* begin
if (C_WR_PNTR_WIDTH >= C_RD_PNTR_WIDTH)
wdc_fwft_ext_as = wr_data_count_i[C_PNTR_WIDTH:0];
else
wdc_fwft_ext_as = wr_data_count_i[C_PNTR_WIDTH:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH];
end // always @*
end // wdc_fwft_ext
endgenerate
//***************************************************************************
// Generate RD_DATA_COUNT if Use Extra Logic option is selected
//***************************************************************************
reg [C_RD_PNTR_WIDTH:0] rdc_fwft_ext_as = 0;
generate
if (C_HAS_RD_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT == 1) begin : rdc_fwft_ext
reg [C_RD_PNTR_WIDTH-1:0] adjusted_wr_pntr_rd = 0;
wire [C_RD_PNTR_WIDTH-1:0] diff_rd_wr_tmp;
wire [C_RD_PNTR_WIDTH:0] diff_rd_wr;
always @* begin
if (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) begin
adjusted_wr_pntr_rd = 0;
adjusted_wr_pntr_rd[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr_rd;
end else begin
adjusted_wr_pntr_rd = wr_pntr_rd[C_WR_PNTR_WIDTH-1:C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH];
end
end // always @*
assign diff_rd_wr_tmp = adjusted_wr_pntr_rd - rd_pntr;
assign diff_rd_wr = {1'b0,diff_rd_wr_tmp};
always @ (posedge rd_rst_i or posedge RD_CLK)
begin
if (rd_rst_i) begin
rdc_fwft_ext_as <= #`TCQ 0;
end else begin
if (!stage2_valid)
rdc_fwft_ext_as <= #`TCQ 0;
else if (!stage1_valid && stage2_valid)
rdc_fwft_ext_as <= #`TCQ 1;
else
rdc_fwft_ext_as <= #`TCQ diff_rd_wr + 2'h2;
end
end // always @ (posedge WR_CLK or posedge WR_CLK)
end // rdc_fwft_ext
endgenerate
//***************************************************************************
// Assign the read data count value only if it is selected,
// otherwise output zeros.
//***************************************************************************
generate
if (C_HAS_RD_DATA_COUNT == 1) begin : grdc
assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = C_USE_FWFT_DATA_COUNT ?
rdc_fwft_ext_as[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH+1-C_RD_DATA_COUNT_WIDTH] :
rd_data_count_int[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH+1-C_RD_DATA_COUNT_WIDTH];
end
endgenerate
generate
if (C_HAS_RD_DATA_COUNT == 0) begin : gnrdc
assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = {C_RD_DATA_COUNT_WIDTH{1'b0}};
end
endgenerate
//***************************************************************************
// Assign the write data count value only if it is selected,
// otherwise output zeros
//***************************************************************************
generate
if (C_HAS_WR_DATA_COUNT == 1) begin : gwdc
assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = (C_USE_FWFT_DATA_COUNT == 1) ?
wdc_fwft_ext_as[C_WR_PNTR_WIDTH:C_WR_PNTR_WIDTH+1-C_WR_DATA_COUNT_WIDTH] :
wr_data_count_int[C_WR_PNTR_WIDTH:C_WR_PNTR_WIDTH+1-C_WR_DATA_COUNT_WIDTH];
end
endgenerate
generate
if (C_HAS_WR_DATA_COUNT == 0) begin : gnwdc
assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = {C_WR_DATA_COUNT_WIDTH{1'b0}};
end
endgenerate
/**************************************************************************
* Assorted registers for delayed versions of signals
**************************************************************************/
//Capture delayed version of valid
generate
if (C_HAS_VALID==1) begin : blockVL2
always @(posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i == 1'b1) begin
valid_d1 <= #`TCQ 1'b0;
end else begin
valid_d1 <= #`TCQ valid_i;
end
end
end
endgenerate
//Capture delayed version of dout
always @(posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i == 1'b1) begin
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type_d1 <= #`TCQ 0;
end else if (ram_rd_en_d1) begin
ideal_dout_d1 <= #`TCQ ideal_dout;
err_type_d1 <= #`TCQ err_type;
end
end
/**************************************************************************
* Overflow and Underflow Flag calculation
* (handled separately because they don't support rst)
**************************************************************************/
generate
if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 0) begin : g7s_ovflw
always @(posedge WR_CLK) begin
ideal_overflow <= #`TCQ WR_EN & FULL;
end
end else if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 1) begin : g8s_ovflw
always @(posedge WR_CLK) begin
//ideal_overflow <= #`TCQ WR_EN & (FULL | wr_rst_i);
ideal_overflow <= #`TCQ WR_EN & (FULL );
end
end
endgenerate
generate
if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 0) begin : g7s_unflw
always @(posedge RD_CLK) begin
ideal_underflow <= #`TCQ EMPTY & RD_EN;
end
end else if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 1) begin : g8s_unflw
always @(posedge RD_CLK) begin
ideal_underflow <= #`TCQ (EMPTY) & RD_EN;
//ideal_underflow <= #`TCQ (rd_rst_i | EMPTY) & RD_EN;
end
end
endgenerate
/**************************************************************************
* Write/Read Pointer Synchronization
**************************************************************************/
localparam NO_OF_SYNC_STAGE_INC_G2B = C_SYNCHRONIZER_STAGE + 1;
wire [C_WR_PNTR_WIDTH-1:0] wr_pntr_sync_stgs [0:NO_OF_SYNC_STAGE_INC_G2B];
wire [C_RD_PNTR_WIDTH-1:0] rd_pntr_sync_stgs [0:NO_OF_SYNC_STAGE_INC_G2B];
genvar gss;
generate for (gss = 1; gss <= NO_OF_SYNC_STAGE_INC_G2B; gss = gss + 1) begin : Sync_stage_inst
fifo_generator_v12_0_sync_stage
#(
.C_WIDTH (C_WR_PNTR_WIDTH)
)
rd_stg_inst
(
.RST (rd_rst_i),
.CLK (RD_CLK),
.DIN (wr_pntr_sync_stgs[gss-1]),
.DOUT (wr_pntr_sync_stgs[gss])
);
fifo_generator_v12_0_sync_stage
#(
.C_WIDTH (C_RD_PNTR_WIDTH)
)
wr_stg_inst
(
.RST (wr_rst_i),
.CLK (WR_CLK),
.DIN (rd_pntr_sync_stgs[gss-1]),
.DOUT (rd_pntr_sync_stgs[gss])
);
end endgenerate // Sync_stage_inst
assign wr_pntr_sync_stgs[0] = wr_pntr_rd1;
assign rd_pntr_sync_stgs[0] = rd_pntr_wr1;
always@* begin
wr_pntr_rd <= wr_pntr_sync_stgs[NO_OF_SYNC_STAGE_INC_G2B];
rd_pntr_wr <= rd_pntr_sync_stgs[NO_OF_SYNC_STAGE_INC_G2B];
end
/**************************************************************************
* Write Domain Logic
**************************************************************************/
reg [C_WR_PNTR_WIDTH-1:0] diff_pntr = 0;
always @(posedge WR_CLK or posedge wr_rst_i) begin : gen_fifo_w
/****** Reset fifo (case 1)***************************************/
if (wr_rst_i == 1'b1) begin
num_wr_bits <= #`TCQ 0;
next_num_wr_bits = #`TCQ 0;
wr_ptr <= #`TCQ C_WR_DEPTH - 1;
rd_ptr_wrclk <= #`TCQ C_RD_DEPTH - 1;
ideal_wr_ack <= #`TCQ 0;
ideal_wr_count <= #`TCQ 0;
tmp_wr_listsize = #`TCQ 0;
rd_ptr_wrclk_next <= #`TCQ 0;
wr_pntr <= #`TCQ 0;
wr_pntr_rd1 <= #`TCQ 0;
end else begin //wr_rst_i==0
wr_pntr_rd1 <= #`TCQ wr_pntr;
//Determine the current number of words in the FIFO
tmp_wr_listsize = (C_DEPTH_RATIO_RD > 1) ? num_wr_bits/C_DOUT_WIDTH :
num_wr_bits/C_DIN_WIDTH;
rd_ptr_wrclk_next = rd_ptr;
if (rd_ptr_wrclk < rd_ptr_wrclk_next) begin
next_num_wr_bits = num_wr_bits -
C_DOUT_WIDTH*(rd_ptr_wrclk + C_RD_DEPTH
- rd_ptr_wrclk_next);
end else begin
next_num_wr_bits = num_wr_bits -
C_DOUT_WIDTH*(rd_ptr_wrclk - rd_ptr_wrclk_next);
end
//If this is a write, handle the write by adding the value
// to the linked list, and updating all outputs appropriately
if (WR_EN == 1'b1) begin
if (FULL == 1'b1) begin
//If the FIFO is full, do NOT perform the write,
// update flags accordingly
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD
>= C_FIFO_WR_DEPTH) begin
//write unsuccessful - do not change contents
//Do not acknowledge the write
ideal_wr_ack <= #`TCQ 0;
//Reminder that FIFO is still full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
//If the FIFO is one from full, but reporting full
end else
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD ==
C_FIFO_WR_DEPTH-1) begin
//No change to FIFO
//Write not successful
ideal_wr_ack <= #`TCQ 0;
//With DEPTH-1 words in the FIFO, it is almost_full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
//If the FIFO is completely empty, but it is
// reporting FULL for some reason (like reset)
end else
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD <=
C_FIFO_WR_DEPTH-2) begin
//No change to FIFO
//Write not successful
ideal_wr_ack <= #`TCQ 0;
//FIFO is really not close to full, so change flag status.
ideal_wr_count <= #`TCQ num_write_words_sized_i;
end //(tmp_wr_listsize == 0)
end else begin
//If the FIFO is full, do NOT perform the write,
// update flags accordingly
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD >=
C_FIFO_WR_DEPTH) begin
//write unsuccessful - do not change contents
//Do not acknowledge the write
ideal_wr_ack <= #`TCQ 0;
//Reminder that FIFO is still full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
//If the FIFO is one from full
end else
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD ==
C_FIFO_WR_DEPTH-1) begin
//Add value on DIN port to FIFO
write_fifo;
next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH;
//Write successful, so issue acknowledge
// and no error
ideal_wr_ack <= #`TCQ 1;
//This write is CAUSING the FIFO to go full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
//If the FIFO is 2 from full
end else
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD ==
C_FIFO_WR_DEPTH-2) begin
//Add value on DIN port to FIFO
write_fifo;
next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH;
//Write successful, so issue acknowledge
// and no error
ideal_wr_ack <= #`TCQ 1;
//Still 2 from full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
//If the FIFO is not close to being full
end else
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD <
C_FIFO_WR_DEPTH-2) begin
//Add value on DIN port to FIFO
write_fifo;
next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH;
//Write successful, so issue acknowledge
// and no error
ideal_wr_ack <= #`TCQ 1;
//Not even close to full.
ideal_wr_count <= num_write_words_sized_i;
end
end
end else begin //(WR_EN == 1'b1)
//If user did not attempt a write, then do not
// give ack or err
ideal_wr_ack <= #`TCQ 0;
ideal_wr_count <= #`TCQ num_write_words_sized_i;
end
num_wr_bits <= #`TCQ next_num_wr_bits;
rd_ptr_wrclk <= #`TCQ rd_ptr;
end //wr_rst_i==0
end // gen_fifo_w
/***************************************************************************
* Programmable FULL flags
***************************************************************************/
wire [C_WR_PNTR_WIDTH-1:0] pf_thr_assert_val;
wire [C_WR_PNTR_WIDTH-1:0] pf_thr_negate_val;
generate if (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) begin : FWFT
assign pf_thr_assert_val = C_PROG_FULL_THRESH_ASSERT_VAL - EXTRA_WORDS_DC;
assign pf_thr_negate_val = C_PROG_FULL_THRESH_NEGATE_VAL - EXTRA_WORDS_DC;
end else begin // STD
assign pf_thr_assert_val = C_PROG_FULL_THRESH_ASSERT_VAL;
assign pf_thr_negate_val = C_PROG_FULL_THRESH_NEGATE_VAL;
end endgenerate
always @(posedge WR_CLK or posedge wr_rst_i) begin
if (wr_rst_i == 1'b1) begin
diff_pntr <= 0;
end else begin
if (ram_wr_en)
diff_pntr <= #`TCQ (wr_pntr - adj_rd_pntr_wr + 2'h1);
else if (!ram_wr_en)
diff_pntr <= #`TCQ (wr_pntr - adj_rd_pntr_wr);
end
end
always @(posedge WR_CLK or posedge RST_FULL_FF) begin : gen_pf
if (RST_FULL_FF == 1'b1) begin
ideal_prog_full <= #`TCQ C_FULL_FLAGS_RST_VAL;
end else begin
if (RST_FULL_GEN)
ideal_prog_full <= #`TCQ 0;
//Single Programmable Full Constant Threshold
else if (C_PROG_FULL_TYPE == 1) begin
if (FULL == 0) begin
if (diff_pntr >= pf_thr_assert_val)
ideal_prog_full <= #`TCQ 1;
else
ideal_prog_full <= #`TCQ 0;
end else
ideal_prog_full <= #`TCQ ideal_prog_full;
//Two Programmable Full Constant Thresholds
end else if (C_PROG_FULL_TYPE == 2) begin
if (FULL == 0) begin
if (diff_pntr >= pf_thr_assert_val)
ideal_prog_full <= #`TCQ 1;
else if (diff_pntr < pf_thr_negate_val)
ideal_prog_full <= #`TCQ 0;
else
ideal_prog_full <= #`TCQ ideal_prog_full;
end else
ideal_prog_full <= #`TCQ ideal_prog_full;
//Single Programmable Full Threshold Input
end else if (C_PROG_FULL_TYPE == 3) begin
if (FULL == 0) begin
if (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) begin // FWFT
if (diff_pntr >= (PROG_FULL_THRESH - EXTRA_WORDS_DC))
ideal_prog_full <= #`TCQ 1;
else
ideal_prog_full <= #`TCQ 0;
end else begin // STD
if (diff_pntr >= PROG_FULL_THRESH)
ideal_prog_full <= #`TCQ 1;
else
ideal_prog_full <= #`TCQ 0;
end
end else
ideal_prog_full <= #`TCQ ideal_prog_full;
//Two Programmable Full Threshold Inputs
end else if (C_PROG_FULL_TYPE == 4) begin
if (FULL == 0) begin
if (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) begin // FWFT
if (diff_pntr >= (PROG_FULL_THRESH_ASSERT - EXTRA_WORDS_DC))
ideal_prog_full <= #`TCQ 1;
else if (diff_pntr < (PROG_FULL_THRESH_NEGATE - EXTRA_WORDS_DC))
ideal_prog_full <= #`TCQ 0;
else
ideal_prog_full <= #`TCQ ideal_prog_full;
end else begin // STD
if (diff_pntr >= PROG_FULL_THRESH_ASSERT)
ideal_prog_full <= #`TCQ 1;
else if (diff_pntr < PROG_FULL_THRESH_NEGATE)
ideal_prog_full <= #`TCQ 0;
else
ideal_prog_full <= #`TCQ ideal_prog_full;
end
end else
ideal_prog_full <= #`TCQ ideal_prog_full;
end // C_PROG_FULL_TYPE
end //wr_rst_i==0
end //
/**************************************************************************
* Read Domain Logic
**************************************************************************/
/*********************************************************
* Programmable EMPTY flags
*********************************************************/
//Determine the Assert and Negate thresholds for Programmable Empty
wire [C_RD_PNTR_WIDTH-1:0] pe_thr_assert_val;
wire [C_RD_PNTR_WIDTH-1:0] pe_thr_negate_val;
reg [C_RD_PNTR_WIDTH-1:0] diff_pntr_rd = 0;
always @(posedge RD_CLK or posedge rd_rst_i) begin : gen_pe
if (rd_rst_i) begin
diff_pntr_rd <= #`TCQ 0;
ideal_prog_empty <= #`TCQ 1'b1;
end else begin
if (ram_rd_en)
diff_pntr_rd <= #`TCQ (adj_wr_pntr_rd - rd_pntr) - 1'h1;
else if (!ram_rd_en)
diff_pntr_rd <= #`TCQ (adj_wr_pntr_rd - rd_pntr);
else
diff_pntr_rd <= #`TCQ diff_pntr_rd;
if (C_PROG_EMPTY_TYPE == 1) begin
if (EMPTY == 0) begin
if (diff_pntr_rd <= pe_thr_assert_val)
ideal_prog_empty <= #`TCQ 1;
else
ideal_prog_empty <= #`TCQ 0;
end else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end else if (C_PROG_EMPTY_TYPE == 2) begin
if (EMPTY == 0) begin
if (diff_pntr_rd <= pe_thr_assert_val)
ideal_prog_empty <= #`TCQ 1;
else if (diff_pntr_rd > pe_thr_negate_val)
ideal_prog_empty <= #`TCQ 0;
else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end else if (C_PROG_EMPTY_TYPE == 3) begin
if (EMPTY == 0) begin
if (diff_pntr_rd <= pe_thr_assert_val)
ideal_prog_empty <= #`TCQ 1;
else
ideal_prog_empty <= #`TCQ 0;
end else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end else if (C_PROG_EMPTY_TYPE == 4) begin
if (EMPTY == 0) begin
if (diff_pntr_rd <= pe_thr_assert_val)
ideal_prog_empty <= #`TCQ 1;
else if (diff_pntr_rd > pe_thr_negate_val)
ideal_prog_empty <= #`TCQ 0;
else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end //C_PROG_EMPTY_TYPE
end
end // gen_pe
generate if (C_PROG_EMPTY_TYPE == 3) begin : single_pe_thr_input
assign pe_thr_assert_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ?
PROG_EMPTY_THRESH - 2'h2 : PROG_EMPTY_THRESH;
end endgenerate // single_pe_thr_input
generate if (C_PROG_EMPTY_TYPE == 4) begin : multiple_pe_thr_input
assign pe_thr_assert_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ?
PROG_EMPTY_THRESH_ASSERT - 2'h2 : PROG_EMPTY_THRESH_ASSERT;
assign pe_thr_negate_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ?
PROG_EMPTY_THRESH_NEGATE - 2'h2 : PROG_EMPTY_THRESH_NEGATE;
end endgenerate // multiple_pe_thr_input
generate if (C_PROG_EMPTY_TYPE < 3) begin : single_multiple_pe_thr_const
assign pe_thr_assert_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ?
C_PROG_EMPTY_THRESH_ASSERT_VAL - 2'h2 : C_PROG_EMPTY_THRESH_ASSERT_VAL;
assign pe_thr_negate_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ?
C_PROG_EMPTY_THRESH_NEGATE_VAL - 2'h2 : C_PROG_EMPTY_THRESH_NEGATE_VAL;
end endgenerate // single_multiple_pe_thr_const
// block memory has a synchronous reset
always @(posedge RD_CLK) begin : gen_fifo_blkmemdout
// make it consistent with the core.
if (rd_rst_i) begin
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0 && C_MEMORY_TYPE < 2)
err_type <= #`TCQ 0;
// BRAM resets synchronously
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE < 2) begin
ideal_dout <= #`TCQ dout_reset_val;
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
end
end //always
always @(posedge RD_CLK or posedge rd_rst_i) begin : gen_fifo_r
/****** Reset fifo (case 1)***************************************/
if (rd_rst_i) begin
num_rd_bits <= #`TCQ 0;
next_num_rd_bits = #`TCQ 0;
rd_ptr <= #`TCQ C_RD_DEPTH -1;
rd_pntr <= #`TCQ 0;
rd_pntr_wr1 <= #`TCQ 0;
wr_ptr_rdclk <= #`TCQ C_WR_DEPTH -1;
// DRAM resets asynchronously
if (C_MEMORY_TYPE == 2 && C_USE_DOUT_RST == 1)
ideal_dout <= #`TCQ dout_reset_val;
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type <= #`TCQ 0;
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ 0;
end else begin //rd_rst_i==0
rd_pntr_wr1 <= #`TCQ rd_pntr;
//Determine the current number of words in the FIFO
tmp_rd_listsize = (C_DEPTH_RATIO_WR > 1) ? num_rd_bits/C_DIN_WIDTH :
num_rd_bits/C_DOUT_WIDTH;
wr_ptr_rdclk_next = wr_ptr;
if (wr_ptr_rdclk < wr_ptr_rdclk_next) begin
next_num_rd_bits = num_rd_bits +
C_DIN_WIDTH*(wr_ptr_rdclk +C_WR_DEPTH
- wr_ptr_rdclk_next);
end else begin
next_num_rd_bits = num_rd_bits +
C_DIN_WIDTH*(wr_ptr_rdclk - wr_ptr_rdclk_next);
end
/*****************************************************************/
// Read Operation - Read Latency 1
/*****************************************************************/
if (C_PRELOAD_LATENCY==1 || C_PRELOAD_LATENCY==2) begin
ideal_valid <= #`TCQ 1'b0;
if (ram_rd_en == 1'b1) begin
if (EMPTY == 1'b1) begin
//If the FIFO is completely empty, and is reporting empty
if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0)
begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Reminder that FIFO is still empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize <= 0)
//If the FIFO is one from empty, but it is reporting empty
else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 1)
begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Note that FIFO is no longer empty, but is almost empty (has one word left)
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == 1)
//If the FIFO is two from empty, and is reporting empty
else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2)
begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Fifo has two words, so is neither empty or almost empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == 2)
//If the FIFO is not close to empty, but is reporting that it is
// Treat the FIFO as empty this time, but unset EMPTY flags.
if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) && (tmp_rd_listsize/C_DEPTH_RATIO_WR<C_FIFO_RD_DEPTH))
begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Note that the FIFO is No Longer Empty or Almost Empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if ((tmp_rd_listsize > 2) && (tmp_rd_listsize<=C_FIFO_RD_DEPTH-1))
end // else: if(ideal_empty == 1'b1)
else //if (ideal_empty == 1'b0)
begin
//If the FIFO is completely full, and we are successfully reading from it
if (tmp_rd_listsize/C_DEPTH_RATIO_WR >= C_FIFO_RD_DEPTH)
begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Not close to empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == C_FIFO_RD_DEPTH)
//If the FIFO is not close to being empty
else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) && (tmp_rd_listsize/C_DEPTH_RATIO_WR<=C_FIFO_RD_DEPTH))
begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Not close to empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if ((tmp_rd_listsize > 2) && (tmp_rd_listsize<=C_FIFO_RD_DEPTH-1))
//If the FIFO is two from empty
else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2)
begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Fifo is not yet empty. It is going almost_empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == 2)
//If the FIFO is one from empty
else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR == 1))
begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Note that FIFO is GOING empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == 1)
//If the FIFO is completely empty
else if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0)
begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize <= 0)
end // if (ideal_empty == 1'b0)
end //(RD_EN == 1'b1)
else //if (RD_EN == 1'b0)
begin
//If user did not attempt a read, do not give an ack or err
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // else: !if(RD_EN == 1'b1)
/*****************************************************************/
// Read Operation - Read Latency 0
/*****************************************************************/
end else if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) begin
ideal_valid <= #`TCQ 1'b0;
if (ram_rd_en == 1'b1) begin
if (EMPTY == 1'b1) begin
//If the FIFO is completely empty, and is reporting empty
if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0) begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Reminder that FIFO is still empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is one from empty, but it is reporting empty
end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 1) begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Note that FIFO is no longer empty, but is almost empty (has one word left)
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is two from empty, and is reporting empty
end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2) begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Fifo has two words, so is neither empty or almost empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is not close to empty, but is reporting that it is
// Treat the FIFO as empty this time, but unset EMPTY flags.
end else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) &&
(tmp_rd_listsize/C_DEPTH_RATIO_WR<C_FIFO_RD_DEPTH)) begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Note that the FIFO is No Longer Empty or Almost Empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if ((tmp_rd_listsize > 2) && (tmp_rd_listsize<=C_FIFO_RD_DEPTH-1))
end else begin
//If the FIFO is completely full, and we are successfully reading from it
if (tmp_rd_listsize/C_DEPTH_RATIO_WR >= C_FIFO_RD_DEPTH) begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Not close to empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is not close to being empty
end else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) &&
(tmp_rd_listsize/C_DEPTH_RATIO_WR<=C_FIFO_RD_DEPTH)) begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Not close to empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is two from empty
end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2) begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Fifo is not yet empty. It is going almost_empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is one from empty
end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 1) begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Note that FIFO is GOING empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is completely empty
end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0) begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Reminder that FIFO is still empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize <= 0)
end // if (ideal_empty == 1'b0)
end else begin//(RD_EN == 1'b0)
//If user did not attempt a read, do not give an ack or err
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // else: !if(RD_EN == 1'b1)
end //if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0)
num_rd_bits <= #`TCQ next_num_rd_bits;
wr_ptr_rdclk <= #`TCQ wr_ptr;
end //rd_rst_i==0
end //always
endmodule // fifo_generator_v12_0_bhv_ver_as
/*******************************************************************************
* Declaration of Low Latency Asynchronous FIFO
******************************************************************************/
module fifo_generator_v12_0_beh_ver_ll_afifo
/***************************************************************************
* Declare user parameters and their defaults
***************************************************************************/
#(
parameter C_DIN_WIDTH = 8,
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_FULL_FLAGS_RST_VAL = 1,
parameter C_HAS_RD_DATA_COUNT = 0,
parameter C_HAS_WR_DATA_COUNT = 0,
parameter C_RD_DEPTH = 256,
parameter C_RD_PNTR_WIDTH = 8,
parameter C_USE_DOUT_RST = 0,
parameter C_WR_DATA_COUNT_WIDTH = 2,
parameter C_WR_DEPTH = 256,
parameter C_WR_PNTR_WIDTH = 8,
parameter C_FIFO_TYPE = 0
)
/***************************************************************************
* Declare Input and Output Ports
***************************************************************************/
(
input [C_DIN_WIDTH-1:0] DIN,
input RD_CLK,
input RD_EN,
input WR_RST,
input RD_RST,
input WR_CLK,
input WR_EN,
output reg [C_DOUT_WIDTH-1:0] DOUT = 0,
output reg EMPTY = 1'b1,
output reg FULL = C_FULL_FLAGS_RST_VAL
);
//-----------------------------------------------------------------------------
// Low Latency Asynchronous FIFO
//-----------------------------------------------------------------------------
// Memory which will be used to simulate a FIFO
reg [C_DIN_WIDTH-1:0] memory[C_WR_DEPTH-1:0];
integer i;
initial begin
for (i = 0; i < C_WR_DEPTH; i = i + 1)
memory[i] = 0;
end
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_ll_afifo = 0;
wire [C_RD_PNTR_WIDTH-1:0] rd_pntr_ll_afifo;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_ll_afifo_q = 0;
reg ll_afifo_full = 1'b0;
reg ll_afifo_empty = 1'b1;
wire write_allow;
wire read_allow;
assign write_allow = WR_EN & ~ll_afifo_full;
assign read_allow = RD_EN & ~ll_afifo_empty;
//-----------------------------------------------------------------------------
// Write Pointer Generation
//-----------------------------------------------------------------------------
always @(posedge WR_CLK or posedge WR_RST) begin
if (WR_RST)
wr_pntr_ll_afifo <= 0;
else if (write_allow)
wr_pntr_ll_afifo <= #`TCQ wr_pntr_ll_afifo + 1;
end
//-----------------------------------------------------------------------------
// Read Pointer Generation
//-----------------------------------------------------------------------------
always @(posedge RD_CLK or posedge RD_RST) begin
if (RD_RST)
rd_pntr_ll_afifo_q <= 0;
else
rd_pntr_ll_afifo_q <= #`TCQ rd_pntr_ll_afifo;
end
assign rd_pntr_ll_afifo = read_allow ? rd_pntr_ll_afifo_q + 1 : rd_pntr_ll_afifo_q;
//-----------------------------------------------------------------------------
// Fill the Memory
//-----------------------------------------------------------------------------
always @(posedge WR_CLK) begin
if (write_allow)
memory[wr_pntr_ll_afifo] <= #`TCQ DIN;
end
//-----------------------------------------------------------------------------
// Generate DOUT
//-----------------------------------------------------------------------------
always @(posedge RD_CLK) begin
DOUT <= #`TCQ memory[rd_pntr_ll_afifo];
end
//-----------------------------------------------------------------------------
// Generate EMPTY
//-----------------------------------------------------------------------------
always @(posedge RD_CLK or posedge RD_RST) begin
if (RD_RST)
ll_afifo_empty <= 1'b1;
else
ll_afifo_empty <= ((wr_pntr_ll_afifo == rd_pntr_ll_afifo_q) |
(read_allow & (wr_pntr_ll_afifo == (rd_pntr_ll_afifo_q + 2'h1))));
end
//-----------------------------------------------------------------------------
// Generate FULL
//-----------------------------------------------------------------------------
always @(posedge WR_CLK or posedge WR_RST) begin
if (WR_RST)
ll_afifo_full <= 1'b1;
else
ll_afifo_full <= ((rd_pntr_ll_afifo_q == (wr_pntr_ll_afifo + 2'h1)) |
(write_allow & (rd_pntr_ll_afifo_q == (wr_pntr_ll_afifo + 2'h2))));
end
always @* begin
FULL <= ll_afifo_full;
EMPTY <= ll_afifo_empty;
end
endmodule // fifo_generator_v12_0_beh_ver_ll_afifo
/*******************************************************************************
* Declaration of top-level module
******************************************************************************/
module fifo_generator_v12_0_bhv_ver_ss
/**************************************************************************
* Declare user parameters and their defaults
*************************************************************************/
#(
parameter C_FAMILY = "virtex7",
parameter C_DATA_COUNT_WIDTH = 2,
parameter C_DIN_WIDTH = 8,
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_FULL_FLAGS_RST_VAL = 1,
parameter C_HAS_ALMOST_EMPTY = 0,
parameter C_HAS_ALMOST_FULL = 0,
parameter C_HAS_DATA_COUNT = 0,
parameter C_HAS_OVERFLOW = 0,
parameter C_HAS_RD_DATA_COUNT = 0,
parameter C_HAS_RST = 0,
parameter C_HAS_SRST = 0,
parameter C_HAS_UNDERFLOW = 0,
parameter C_HAS_VALID = 0,
parameter C_HAS_WR_ACK = 0,
parameter C_HAS_WR_DATA_COUNT = 0,
parameter C_IMPLEMENTATION_TYPE = 0,
parameter C_MEMORY_TYPE = 1,
parameter C_OVERFLOW_LOW = 0,
parameter C_PRELOAD_LATENCY = 1,
parameter C_PRELOAD_REGS = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0,
parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0,
parameter C_PROG_EMPTY_TYPE = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0,
parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0,
parameter C_PROG_FULL_TYPE = 0,
parameter C_RD_DATA_COUNT_WIDTH = 2,
parameter C_RD_DEPTH = 256,
parameter C_RD_PNTR_WIDTH = 8,
parameter C_UNDERFLOW_LOW = 0,
parameter C_USE_DOUT_RST = 0,
parameter C_USE_EMBEDDED_REG = 0,
parameter C_USE_FWFT_DATA_COUNT = 0,
parameter C_VALID_LOW = 0,
parameter C_WR_ACK_LOW = 0,
parameter C_WR_DATA_COUNT_WIDTH = 2,
parameter C_WR_DEPTH = 256,
parameter C_WR_PNTR_WIDTH = 8,
parameter C_USE_ECC = 0,
parameter C_ENABLE_RST_SYNC = 1,
parameter C_ERROR_INJECTION_TYPE = 0,
parameter C_FIFO_TYPE = 0
)
/**************************************************************************
* Declare Input and Output Ports
*************************************************************************/
(
//Inputs
input CLK,
input [C_DIN_WIDTH-1:0] DIN,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE,
input RD_EN,
input RD_EN_USER,
input USER_EMPTY_FB,
input RST,
input RST_FULL_GEN,
input RST_FULL_FF,
input SRST,
input WR_EN,
input INJECTDBITERR,
input INJECTSBITERR,
input WR_RST_BUSY,
input RD_RST_BUSY,
//Outputs
output ALMOST_EMPTY,
output ALMOST_FULL,
output reg [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT = 0,
output [C_DOUT_WIDTH-1:0] DOUT,
output EMPTY,
output FULL,
output OVERFLOW,
output [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT,
output [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT,
output PROG_EMPTY,
output PROG_FULL,
output VALID,
output UNDERFLOW,
output WR_ACK,
output SBITERR,
output DBITERR
);
reg [C_RD_PNTR_WIDTH:0] rd_data_count_int = 0;
reg [C_WR_PNTR_WIDTH:0] wr_data_count_int = 0;
wire [C_RD_PNTR_WIDTH:0] rd_data_count_i_ss;
wire [C_WR_PNTR_WIDTH:0] wr_data_count_i_ss;
reg [C_WR_PNTR_WIDTH:0] wdc_fwft_ext_as = 0;
/***************************************************************************
* Parameters used as constants
**************************************************************************/
localparam IS_8SERIES = (C_FAMILY == "virtexu" || C_FAMILY == "kintexu" || C_FAMILY == "artixu" || C_FAMILY == "virtexum" || C_FAMILY == "zynque") ? 1 : 0;
localparam C_DEPTH_RATIO_WR =
(C_WR_DEPTH>C_RD_DEPTH) ? (C_WR_DEPTH/C_RD_DEPTH) : 1;
localparam C_DEPTH_RATIO_RD =
(C_RD_DEPTH>C_WR_DEPTH) ? (C_RD_DEPTH/C_WR_DEPTH) : 1;
//localparam C_FIFO_WR_DEPTH = C_WR_DEPTH - 1;
//localparam C_FIFO_RD_DEPTH = C_RD_DEPTH - 1;
localparam C_GRTR_PNTR_WIDTH = (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) ? C_WR_PNTR_WIDTH : C_RD_PNTR_WIDTH ;
// C_DEPTH_RATIO_WR | C_DEPTH_RATIO_RD | C_PNTR_WIDTH | EXTRA_WORDS_DC
// -----------------|------------------|-----------------|---------------
// 1 | 8 | C_RD_PNTR_WIDTH | 2
// 1 | 4 | C_RD_PNTR_WIDTH | 2
// 1 | 2 | C_RD_PNTR_WIDTH | 2
// 1 | 1 | C_WR_PNTR_WIDTH | 2
// 2 | 1 | C_WR_PNTR_WIDTH | 4
// 4 | 1 | C_WR_PNTR_WIDTH | 8
// 8 | 1 | C_WR_PNTR_WIDTH | 16
localparam C_PNTR_WIDTH = (C_WR_PNTR_WIDTH>=C_RD_PNTR_WIDTH) ? C_WR_PNTR_WIDTH : C_RD_PNTR_WIDTH;
wire [C_PNTR_WIDTH:0] EXTRA_WORDS_DC = (C_DEPTH_RATIO_WR == 1) ? 2 : (2 * C_DEPTH_RATIO_WR/C_DEPTH_RATIO_RD);
wire [C_WR_PNTR_WIDTH:0] EXTRA_WORDS_PF = (C_DEPTH_RATIO_WR == 1) ? 2 : (2 * C_DEPTH_RATIO_WR/C_DEPTH_RATIO_RD);
//wire [C_RD_PNTR_WIDTH:0] EXTRA_WORDS_PE = (C_DEPTH_RATIO_RD == 1) ? 2 : (2 * C_DEPTH_RATIO_RD/C_DEPTH_RATIO_WR);
localparam EXTRA_WORDS_PF_PARAM = (C_DEPTH_RATIO_WR == 1) ? 2 : (2 * C_DEPTH_RATIO_WR/C_DEPTH_RATIO_RD);
//localparam EXTRA_WORDS_PE_PARAM = (C_DEPTH_RATIO_RD == 1) ? 2 : (2 * C_DEPTH_RATIO_RD/C_DEPTH_RATIO_WR);
localparam [31:0] reads_per_write = C_DIN_WIDTH/C_DOUT_WIDTH;
localparam [31:0] log2_reads_per_write = log2_val(reads_per_write);
localparam [31:0] writes_per_read = C_DOUT_WIDTH/C_DIN_WIDTH;
localparam [31:0] log2_writes_per_read = log2_val(writes_per_read);
//When RST is present, set FULL reset value to '1'.
//If core has no RST, make sure FULL powers-on as '0'.
//The reset value assignments for FULL, ALMOST_FULL, and PROG_FULL are not
//changed for v3.2(IP2_Im). When the core has Sync Reset, C_HAS_SRST=1 and C_HAS_RST=0.
// Therefore, during SRST, all the FULL flags reset to 0.
localparam C_HAS_FAST_FIFO = 0;
localparam C_FIFO_WR_DEPTH = C_WR_DEPTH;
localparam C_FIFO_RD_DEPTH = C_RD_DEPTH;
// Local parameters used to determine whether to inject ECC error or not
localparam SYMMETRIC_PORT = (C_DIN_WIDTH == C_DOUT_WIDTH) ? 1 : 0;
localparam ERR_INJECTION = (C_ERROR_INJECTION_TYPE != 0) ? 1 : 0;
localparam ENABLE_ERR_INJECTION = C_USE_ECC && SYMMETRIC_PORT && ERR_INJECTION;
localparam C_DATA_WIDTH = (ENABLE_ERR_INJECTION == 1) ? (C_DIN_WIDTH+2) : C_DIN_WIDTH;
localparam IS_ASYMMETRY = (C_DIN_WIDTH == C_DOUT_WIDTH) ? 0 : 1;
localparam LESSER_WIDTH = (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) ? C_WR_PNTR_WIDTH : C_RD_PNTR_WIDTH;
localparam [C_RD_PNTR_WIDTH-1 : 0] DIFF_MAX_RD = {C_RD_PNTR_WIDTH{1'b1}};
localparam [C_WR_PNTR_WIDTH-1 : 0] DIFF_MAX_WR = {C_WR_PNTR_WIDTH{1'b1}};
/**************************************************************************
* FIFO Contents Tracking and Data Count Calculations
*************************************************************************/
// Memory which will be used to simulate a FIFO
reg [C_DIN_WIDTH-1:0] memory[C_WR_DEPTH-1:0];
reg [1:0] ecc_err[C_WR_DEPTH-1:0];
/**************************************************************************
* Internal Registers and wires
*************************************************************************/
//Temporary signals used for calculating the model's outputs. These
//are only used in the assign statements immediately following wire,
//parameter, and function declarations.
wire underflow_i;
wire valid_i;
wire valid_out;
reg [31:0] num_wr_bits;
reg [31:0] num_rd_bits;
reg [31:0] next_num_wr_bits;
reg [31:0] next_num_rd_bits;
//The write pointer - tracks write operations
// (Works opposite to core: wr_ptr is a DOWN counter)
reg [31:0] wr_ptr;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd1 = 0;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd2 = 0;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd3 = 0;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd = 0;
reg wr_rst_d1 =0;
//The read pointer - tracks read operations
// (rd_ptr Works opposite to core: rd_ptr is a DOWN counter)
reg [31:0] rd_ptr;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr1 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr2 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr3 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr4 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr = 0;
wire ram_rd_en;
wire empty_int;
wire almost_empty_int;
wire ram_wr_en;
wire full_int;
wire almost_full_int;
reg ram_rd_en_reg = 1'b0;
//Ideal FIFO signals. These are the raw output of the behavioral model,
//which behaves like an ideal FIFO.
reg [1:0] err_type = 0;
reg [1:0] err_type_d1 = 0;
reg [C_DOUT_WIDTH-1:0] ideal_dout = 0;
reg [C_DOUT_WIDTH-1:0] ideal_dout_d1 = 0;
wire [C_DOUT_WIDTH-1:0] ideal_dout_out;
wire fwft_enabled;
reg ideal_wr_ack = 0;
reg ideal_valid = 0;
reg ideal_overflow = C_OVERFLOW_LOW;
reg ideal_underflow = C_UNDERFLOW_LOW;
reg full_i = C_FULL_FLAGS_RST_VAL;
reg full_i_temp = 0;
reg empty_i = 1;
reg almost_full_i = 0;
reg almost_empty_i = 1;
reg prog_full_i = 0;
reg prog_empty_i = 1;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr = 0;
wire [C_RD_PNTR_WIDTH-1:0] adj_wr_pntr_rd;
wire [C_WR_PNTR_WIDTH-1:0] adj_rd_pntr_wr;
reg [C_RD_PNTR_WIDTH-1:0] diff_count = 0;
reg write_allow_q = 0;
reg read_allow_q = 0;
reg valid_d1 = 0;
wire rst_i;
wire srst_i;
//user specified value for reseting the size of the fifo
reg [C_DOUT_WIDTH-1:0] dout_reset_val = 0;
reg [31:0] wr_ptr_rdclk;
reg [31:0] wr_ptr_rdclk_next;
reg [31:0] rd_ptr_wrclk;
reg [31:0] rd_ptr_wrclk_next;
/****************************************************************************
* Function Declarations
***************************************************************************/
/****************************************************************************
* hexstr_conv
* Converts a string of type hex to a binary value (for C_DOUT_RST_VAL)
***************************************************************************/
function [C_DOUT_WIDTH-1:0] hexstr_conv;
input [(C_DOUT_WIDTH*8)-1:0] def_data;
integer index,i,j;
reg [3:0] bin;
begin
index = 0;
hexstr_conv = 'b0;
for( i=C_DOUT_WIDTH-1; i>=0; i=i-1 ) begin
case (def_data[7:0])
8'b00000000 : begin
bin = 4'b0000;
i = -1;
end
8'b00110000 : bin = 4'b0000;
8'b00110001 : bin = 4'b0001;
8'b00110010 : bin = 4'b0010;
8'b00110011 : bin = 4'b0011;
8'b00110100 : bin = 4'b0100;
8'b00110101 : bin = 4'b0101;
8'b00110110 : bin = 4'b0110;
8'b00110111 : bin = 4'b0111;
8'b00111000 : bin = 4'b1000;
8'b00111001 : bin = 4'b1001;
8'b01000001 : bin = 4'b1010;
8'b01000010 : bin = 4'b1011;
8'b01000011 : bin = 4'b1100;
8'b01000100 : bin = 4'b1101;
8'b01000101 : bin = 4'b1110;
8'b01000110 : bin = 4'b1111;
8'b01100001 : bin = 4'b1010;
8'b01100010 : bin = 4'b1011;
8'b01100011 : bin = 4'b1100;
8'b01100100 : bin = 4'b1101;
8'b01100101 : bin = 4'b1110;
8'b01100110 : bin = 4'b1111;
default : begin
bin = 4'bx;
end
endcase
for( j=0; j<4; j=j+1) begin
if ((index*4)+j < C_DOUT_WIDTH) begin
hexstr_conv[(index*4)+j] = bin[j];
end
end
index = index + 1;
def_data = def_data >> 8;
end
end
endfunction
/**************************************************************************
* log2_val
* Returns the 'log2' value for the input value for the supported ratios
***************************************************************************/
function [31:0] log2_val;
input [31:0] binary_val;
begin
if (binary_val == 8) begin
log2_val = 3;
end else if (binary_val == 4) begin
log2_val = 2;
end else begin
log2_val = 1;
end
end
endfunction
reg ideal_prog_full = 0;
reg ideal_prog_empty = 1;
reg [C_WR_DATA_COUNT_WIDTH-1 : 0] ideal_wr_count = 0;
reg [C_RD_DATA_COUNT_WIDTH-1 : 0] ideal_rd_count = 0;
//Assorted reg values for delayed versions of signals
//reg valid_d1 = 0;
//user specified value for reseting the size of the fifo
//reg [C_DOUT_WIDTH-1:0] dout_reset_val = 0;
//temporary registers for WR_RESPONSE_LATENCY feature
integer tmp_wr_listsize;
integer tmp_rd_listsize;
//Signal for registered version of prog full and empty
//Threshold values for Programmable Flags
integer prog_empty_actual_thresh_assert;
integer prog_empty_actual_thresh_negate;
integer prog_full_actual_thresh_assert;
integer prog_full_actual_thresh_negate;
/**************************************************************************
* write_fifo
* This task writes a word to the FIFO memory and updates the
* write pointer.
* FIFO size is relative to write domain.
***************************************************************************/
task write_fifo;
begin
memory[wr_ptr] <= DIN;
wr_pntr <= #`TCQ wr_pntr + 1;
// Store the type of error injection (double/single) on write
case (C_ERROR_INJECTION_TYPE)
3: ecc_err[wr_ptr] <= {INJECTDBITERR,INJECTSBITERR};
2: ecc_err[wr_ptr] <= {INJECTDBITERR,1'b0};
1: ecc_err[wr_ptr] <= {1'b0,INJECTSBITERR};
default: ecc_err[wr_ptr] <= 0;
endcase
// (Works opposite to core: wr_ptr is a DOWN counter)
if (wr_ptr == 0) begin
wr_ptr <= C_WR_DEPTH - 1;
end else begin
wr_ptr <= wr_ptr - 1;
end
end
endtask // write_fifo
/**************************************************************************
* read_fifo
* This task reads a word from the FIFO memory and updates the read
* pointer. It's output is the ideal_dout bus.
* FIFO size is relative to write domain.
***************************************************************************/
task read_fifo;
integer i;
reg [C_DOUT_WIDTH-1:0] tmp_dout;
reg [C_DIN_WIDTH-1:0] memory_read;
reg [31:0] tmp_rd_ptr;
reg [31:0] rd_ptr_high;
reg [31:0] rd_ptr_low;
reg [1:0] tmp_ecc_err;
begin
rd_pntr <= #`TCQ rd_pntr + 1;
// output is wider than input
if (reads_per_write == 0) begin
tmp_dout = 0;
tmp_rd_ptr = (rd_ptr << log2_writes_per_read)+(writes_per_read-1);
for (i = writes_per_read - 1; i >= 0; i = i - 1) begin
tmp_dout = tmp_dout << C_DIN_WIDTH;
tmp_dout = tmp_dout | memory[tmp_rd_ptr];
// (Works opposite to core: rd_ptr is a DOWN counter)
if (tmp_rd_ptr == 0) begin
tmp_rd_ptr = C_WR_DEPTH - 1;
end else begin
tmp_rd_ptr = tmp_rd_ptr - 1;
end
end
// output is symmetric
end else if (reads_per_write == 1) begin
tmp_dout = memory[rd_ptr][C_DIN_WIDTH-1:0];
// Retreive the error injection type. Based on the error injection type
// corrupt the output data.
tmp_ecc_err = ecc_err[rd_ptr];
if (ENABLE_ERR_INJECTION && C_DIN_WIDTH == C_DOUT_WIDTH) begin
if (tmp_ecc_err[1]) begin // Corrupt the output data only for double bit error
if (C_DOUT_WIDTH == 1) begin
$display("FAILURE : Data width must be >= 2 for double bit error injection.");
$finish;
end else if (C_DOUT_WIDTH == 2)
tmp_dout = {~tmp_dout[C_DOUT_WIDTH-1],~tmp_dout[C_DOUT_WIDTH-2]};
else
tmp_dout = {~tmp_dout[C_DOUT_WIDTH-1],~tmp_dout[C_DOUT_WIDTH-2],(tmp_dout << 2)};
end else begin
tmp_dout = tmp_dout[C_DOUT_WIDTH-1:0];
end
err_type <= {tmp_ecc_err[1], tmp_ecc_err[0] & !tmp_ecc_err[1]};
end else begin
err_type <= 0;
end
// input is wider than output
end else begin
rd_ptr_high = rd_ptr >> log2_reads_per_write;
rd_ptr_low = rd_ptr & (reads_per_write - 1);
memory_read = memory[rd_ptr_high];
tmp_dout = memory_read >> (rd_ptr_low*C_DOUT_WIDTH);
end
ideal_dout <= tmp_dout;
// (Works opposite to core: rd_ptr is a DOWN counter)
if (rd_ptr == 0) begin
rd_ptr <= C_RD_DEPTH - 1;
end else begin
rd_ptr <= rd_ptr - 1;
end
end
endtask
/*************************************************************************
* Initialize Signals for clean power-on simulation
*************************************************************************/
initial begin
num_wr_bits = 0;
num_rd_bits = 0;
next_num_wr_bits = 0;
next_num_rd_bits = 0;
rd_ptr = C_RD_DEPTH - 1;
wr_ptr = C_WR_DEPTH - 1;
wr_pntr = 0;
rd_pntr = 0;
rd_ptr_wrclk = rd_ptr;
wr_ptr_rdclk = wr_ptr;
dout_reset_val = hexstr_conv(C_DOUT_RST_VAL);
ideal_dout = dout_reset_val;
err_type = 0;
ideal_dout_d1 = dout_reset_val;
ideal_wr_ack = 1'b0;
ideal_valid = 1'b0;
valid_d1 = 1'b0;
ideal_overflow = C_OVERFLOW_LOW;
ideal_underflow = C_UNDERFLOW_LOW;
ideal_wr_count = 0;
ideal_rd_count = 0;
ideal_prog_full = 1'b0;
ideal_prog_empty = 1'b1;
end
/*************************************************************************
* Connect the module inputs and outputs to the internal signals of the
* behavioral model.
*************************************************************************/
//Inputs
/*
wire CLK;
wire [C_DIN_WIDTH-1:0] DIN;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE;
wire RD_EN;
wire RST;
wire WR_EN;
*/
// Assign ALMOST_EPMTY
generate if (C_HAS_ALMOST_EMPTY == 1) begin : gae
assign ALMOST_EMPTY = almost_empty_i;
end else begin : gnae
assign ALMOST_EMPTY = 0;
end endgenerate // gae
// Assign ALMOST_FULL
generate if (C_HAS_ALMOST_FULL==1) begin : gaf
assign ALMOST_FULL = almost_full_i;
end else begin : gnaf
assign ALMOST_FULL = 0;
end endgenerate // gaf
// Dout may change behavior based on latency
assign fwft_enabled = (C_PRELOAD_LATENCY == 0 && C_PRELOAD_REGS == 1)?
1: 0;
assign ideal_dout_out= ((C_USE_EMBEDDED_REG==1 && (fwft_enabled == 0)) &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1))?
ideal_dout_d1: ideal_dout;
assign DOUT = ideal_dout_out;
// Assign SBITERR and DBITERR based on latency
assign SBITERR = (C_ERROR_INJECTION_TYPE == 1 || C_ERROR_INJECTION_TYPE == 3) &&
((C_USE_EMBEDDED_REG==1 && (fwft_enabled == 0)) &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1)) ?
err_type_d1[0]: err_type[0];
assign DBITERR = (C_ERROR_INJECTION_TYPE == 2 || C_ERROR_INJECTION_TYPE == 3) &&
((C_USE_EMBEDDED_REG==1 && (fwft_enabled == 0)) &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1)) ?
err_type_d1[1]: err_type[1];
assign EMPTY = empty_i;
assign FULL = full_i;
//Overflow may be active-low
generate if (C_HAS_OVERFLOW==1) begin : gof
assign OVERFLOW = ideal_overflow ? !C_OVERFLOW_LOW : C_OVERFLOW_LOW;
end else begin : gnof
assign OVERFLOW = 0;
end endgenerate // gof
assign PROG_EMPTY = prog_empty_i;
assign PROG_FULL = prog_full_i;
//Valid may change behavior based on latency or active-low
generate if (C_HAS_VALID==1) begin : gvalid
assign valid_i = (C_PRELOAD_LATENCY == 0) ? (RD_EN & ~EMPTY) : ideal_valid;
assign valid_out = (C_PRELOAD_LATENCY == 2 && C_MEMORY_TYPE < 2) ?
valid_d1 : valid_i;
assign VALID = valid_out ? !C_VALID_LOW : C_VALID_LOW;
end else begin : gnvalid
assign VALID = 0;
end endgenerate // gvalid
//Trim data count differently depending on set widths
generate if (C_HAS_DATA_COUNT == 1) begin : gdc
always @* begin
diff_count <= wr_pntr - rd_pntr;
if (C_DATA_COUNT_WIDTH > C_RD_PNTR_WIDTH) begin
DATA_COUNT[C_RD_PNTR_WIDTH-1:0] <= diff_count;
DATA_COUNT[C_DATA_COUNT_WIDTH-1] <= 1'b0 ;
end else begin
DATA_COUNT <= diff_count[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_DATA_COUNT_WIDTH];
end
end
// end else begin : gndc
// always @* DATA_COUNT <= 0;
end endgenerate // gdc
//Underflow may change behavior based on latency or active-low
generate if (C_HAS_UNDERFLOW==1) begin : guf
assign underflow_i = ideal_underflow;
assign UNDERFLOW = underflow_i ? !C_UNDERFLOW_LOW : C_UNDERFLOW_LOW;
end else begin : gnuf
assign UNDERFLOW = 0;
end endgenerate // guf
//Write acknowledge may be active low
generate if (C_HAS_WR_ACK==1) begin : gwr_ack
assign WR_ACK = ideal_wr_ack ? !C_WR_ACK_LOW : C_WR_ACK_LOW;
end else begin : gnwr_ack
assign WR_ACK = 0;
end endgenerate // gwr_ack
/*****************************************************************************
* Internal reset logic
****************************************************************************/
assign srst_i = C_HAS_SRST ? SRST : 0;
assign srst_wrst_busy = C_HAS_SRST ? (SRST || WR_RST_BUSY) : 0;
assign srst_rrst_busy = C_HAS_SRST ? (SRST || RD_RST_BUSY) : 0;
assign rst_i = C_HAS_RST ? RST : 0;
/**************************************************************************
* Assorted registers for delayed versions of signals
**************************************************************************/
//Capture delayed version of valid
generate if (C_HAS_VALID == 1) begin : blockVL20
always @(posedge CLK or posedge rst_i) begin
if (rst_i == 1'b1) begin
valid_d1 <= #`TCQ 1'b0;
end else begin
if (srst_rrst_busy) begin
valid_d1 <= #`TCQ 1'b0;
end else begin
valid_d1 <= #`TCQ valid_i;
end
end
end // always @ (posedge CLK or posedge rst_i)
end endgenerate // blockVL20
// Determine which stage in FWFT registers are valid
reg stage1_valid = 0;
reg stage2_valid = 0;
generate
if (C_PRELOAD_LATENCY == 0) begin : grd_fwft_proc
always @ (posedge CLK or posedge rst_i) begin
if (rst_i) begin
stage1_valid <= #`TCQ 0;
stage2_valid <= #`TCQ 0;
end else begin
if (!stage1_valid && !stage2_valid) begin
if (!EMPTY)
stage1_valid <= #`TCQ 1'b1;
else
stage1_valid <= #`TCQ 1'b0;
end else if (stage1_valid && !stage2_valid) begin
if (EMPTY) begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b1;
end else begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b1;
end
end else if (!stage1_valid && stage2_valid) begin
if (EMPTY && RD_EN) begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b0;
end else if (!EMPTY && RD_EN) begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b0;
end else if (!EMPTY && !RD_EN) begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b1;
end else begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b1;
end
end else if (stage1_valid && stage2_valid) begin
if (EMPTY && RD_EN) begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b1;
end else begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b1;
end
end else begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b0;
end
end // rd_rst_i
end // always
end
endgenerate
//***************************************************************************
// Assign the read data count value only if it is selected,
// otherwise output zeros.
//***************************************************************************
generate
if (C_HAS_RD_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT ==1) begin : grdc
assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = rd_data_count_i_ss[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH+1-C_RD_DATA_COUNT_WIDTH];
end
endgenerate
generate
if (C_HAS_RD_DATA_COUNT == 0) begin : gnrdc
assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = {C_RD_DATA_COUNT_WIDTH{1'b0}};
end
endgenerate
//***************************************************************************
// Assign the write data count value only if it is selected,
// otherwise output zeros
//***************************************************************************
generate
if (C_HAS_WR_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT == 1) begin : gwdc
assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = wr_data_count_i_ss[C_WR_PNTR_WIDTH:C_WR_PNTR_WIDTH+1-C_WR_DATA_COUNT_WIDTH] ;
end
endgenerate
generate
if (C_HAS_WR_DATA_COUNT == 0) begin : gnwdc
assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = {C_WR_DATA_COUNT_WIDTH{1'b0}};
end
endgenerate
// block memory has a synchronous reset
generate if (C_MEMORY_TYPE < 2) begin : gen_fifo_blkmemdout_emb
always @(posedge CLK) begin
// BRAM resets synchronously
// make it consistent with the core.
if ((rst_i || srst_rrst_busy) && (C_USE_DOUT_RST == 1))
ideal_dout_d1 <= #`TCQ dout_reset_val;
end //always
end endgenerate // gen_fifo_blkmemdout_emb
reg ram_rd_en_d1 = 1'b0;
//Capture delayed version of dout
always @(posedge CLK or posedge rst_i) begin
if (rst_i == 1'b1) begin
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type_d1 <= #`TCQ 0;
// DRAM and SRAM reset asynchronously
if ((C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3) && C_USE_DOUT_RST == 1)
ideal_dout_d1 <= #`TCQ dout_reset_val;
ram_rd_en_d1 <= #`TCQ 1'b0;
end else begin
ram_rd_en_d1 <= #`TCQ RD_EN & ~EMPTY;
if (srst_rrst_busy) begin
ram_rd_en_d1 <= #`TCQ 1'b0;
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type_d1 <= #`TCQ 0;
// Reset DRAM and SRAM based FIFO, BRAM based FIFO is reset above
if ((C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3) && C_USE_DOUT_RST == 1)
ideal_dout_d1 <= #`TCQ dout_reset_val;
end else if (ram_rd_en_d1) begin
ideal_dout_d1 <= #`TCQ ideal_dout;
err_type_d1 <= #`TCQ err_type;
end
end
end
/**************************************************************************
* Overflow and Underflow Flag calculation
* (handled separately because they don't support rst)
**************************************************************************/
generate if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 0) begin : g7s_ovflw
always @(posedge CLK) begin
ideal_overflow <= #`TCQ WR_EN & full_i;
end
end else if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 1) begin : g8s_ovflw
always @(posedge CLK) begin
//ideal_overflow <= #`TCQ WR_EN & (rst_i | full_i);
ideal_overflow <= #`TCQ WR_EN & (WR_RST_BUSY | full_i);
end
end endgenerate // blockOF20
generate if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 0) begin : g7s_unflw
always @(posedge CLK) begin
ideal_underflow <= #`TCQ empty_i & RD_EN;
end
end else if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 1) begin : g8s_unflw
always @(posedge CLK) begin
//ideal_underflow <= #`TCQ (rst_i | empty_i) & RD_EN;
ideal_underflow <= #`TCQ (RD_RST_BUSY | empty_i) & RD_EN;
end
end endgenerate // blockUF20
/**************************
* Read Data Count
*************************/
reg [31:0] num_read_words_dc;
reg [C_RD_DATA_COUNT_WIDTH-1:0] num_read_words_sized_i;
always @(num_rd_bits) begin
if (C_USE_FWFT_DATA_COUNT) begin
//If using extra logic for FWFT Data Counts,
// then scale FIFO contents to read domain,
// and add two read words for FWFT stages
//This value is only a temporary value and not used in the code.
num_read_words_dc = (num_rd_bits/C_DOUT_WIDTH+2);
//Trim the read words for use with RD_DATA_COUNT
num_read_words_sized_i =
num_read_words_dc[C_RD_PNTR_WIDTH : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH+1];
end else begin
//If not using extra logic for FWFT Data Counts,
// then scale FIFO contents to read domain.
//This value is only a temporary value and not used in the code.
num_read_words_dc = num_rd_bits/C_DOUT_WIDTH;
//Trim the read words for use with RD_DATA_COUNT
num_read_words_sized_i =
num_read_words_dc[C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH];
end //if (C_USE_FWFT_DATA_COUNT)
end //always
/**************************
* Write Data Count
*************************/
reg [31:0] num_write_words_dc;
reg [C_WR_DATA_COUNT_WIDTH-1:0] num_write_words_sized_i;
always @(num_wr_bits) begin
if (C_USE_FWFT_DATA_COUNT) begin
//Calculate the Data Count value for the number of write words,
// when using First-Word Fall-Through with extra logic for Data
// Counts. This takes into consideration the number of words that
// are expected to be stored in the FWFT register stages (it always
// assumes they are filled).
//This value is scaled to the Write Domain.
//The expression (((A-1)/B))+1 divides A/B, but takes the
// ceiling of the result.
//When num_wr_bits==0, set the result manually to prevent
// division errors.
//EXTRA_WORDS_DC is the number of words added to write_words
// due to FWFT.
//This value is only a temporary value and not used in the code.
num_write_words_dc = (num_wr_bits==0) ? EXTRA_WORDS_DC : (((num_wr_bits-1)/C_DIN_WIDTH)+1) + EXTRA_WORDS_DC ;
//Trim the write words for use with WR_DATA_COUNT
num_write_words_sized_i =
num_write_words_dc[C_WR_PNTR_WIDTH : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH+1];
end else begin
//Calculate the Data Count value for the number of write words, when NOT
// using First-Word Fall-Through with extra logic for Data Counts. This
// calculates only the number of words in the internal FIFO.
//The expression (((A-1)/B))+1 divides A/B, but takes the
// ceiling of the result.
//This value is scaled to the Write Domain.
//When num_wr_bits==0, set the result manually to prevent
// division errors.
//This value is only a temporary value and not used in the code.
num_write_words_dc = (num_wr_bits==0) ? 0 : ((num_wr_bits-1)/C_DIN_WIDTH)+1;
//Trim the read words for use with RD_DATA_COUNT
num_write_words_sized_i =
num_write_words_dc[C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH];
end //if (C_USE_FWFT_DATA_COUNT)
end //always
/*************************************************************************
* Write and Read Logic
************************************************************************/
wire write_allow;
wire read_allow;
wire read_allow_dc;
wire write_only;
wire read_only;
//wire write_only_q;
reg write_only_q;
//wire read_only_q;
reg read_only_q;
reg full_reg;
reg rst_full_ff_reg1;
reg rst_full_ff_reg2;
wire ram_full_comb;
wire carry;
assign write_allow = WR_EN & ~full_i;
assign read_allow = RD_EN & ~empty_i;
assign read_allow_dc = RD_EN_USER & ~USER_EMPTY_FB;
//assign write_only = write_allow & ~read_allow;
//assign write_only_q = write_allow_q;
//assign read_only = read_allow & ~write_allow;
//assign read_only_q = read_allow_q ;
wire [C_WR_PNTR_WIDTH-1:0] diff_pntr;
wire [C_RD_PNTR_WIDTH-1:0] diff_pntr_pe;
reg [C_WR_PNTR_WIDTH-1:0] diff_pntr_reg1 = 0;
reg [C_RD_PNTR_WIDTH-1:0] diff_pntr_pe_reg1 = 0;
reg [C_RD_PNTR_WIDTH:0] diff_pntr_pe_asym = 0;
wire [C_RD_PNTR_WIDTH:0] adj_wr_pntr_rd_asym ;
wire [C_RD_PNTR_WIDTH:0] rd_pntr_asym;
reg [C_WR_PNTR_WIDTH-1:0] diff_pntr_reg2 = 0;
reg [C_WR_PNTR_WIDTH-1:0] diff_pntr_pe_reg2 = 0;
wire [C_RD_PNTR_WIDTH-1:0] diff_pntr_pe_max;
wire [C_RD_PNTR_WIDTH-1:0] diff_pntr_max;
assign diff_pntr_pe_max = DIFF_MAX_RD;
assign diff_pntr_max = DIFF_MAX_WR;
generate if (IS_ASYMMETRY == 0) begin : diff_pntr_sym
assign write_only = write_allow & ~read_allow;
assign read_only = read_allow & ~write_allow;
end endgenerate
generate if ( IS_ASYMMETRY == 1 && C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : wr_grt_rd
assign read_only = read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0]) & ~write_allow;
assign write_only = write_allow & ~(read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0]));
end endgenerate
generate if (IS_ASYMMETRY ==1 && C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : rd_grt_wr
assign read_only = read_allow & ~(write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]));
assign write_only = write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]) & ~read_allow;
end endgenerate
//-----------------------------------------------------------------------------
// Write and Read pointer generation
//-----------------------------------------------------------------------------
always @(posedge CLK or posedge rst_i) begin
if (rst_i) begin
wr_pntr <= 0;
rd_pntr <= 0;
end else begin
if (srst_i || srst_wrst_busy || srst_rrst_busy ) begin
if (srst_wrst_busy)
wr_pntr <= #`TCQ 0;
if (srst_rrst_busy)
rd_pntr <= #`TCQ 0;
end else begin
if (write_allow) wr_pntr <= #`TCQ wr_pntr + 1;
if (read_allow) rd_pntr <= #`TCQ rd_pntr + 1;
end
end
end
generate if (C_FIFO_TYPE == 2) begin : gll_dm_dout
always @(posedge CLK) begin
if (write_allow) begin
if (ENABLE_ERR_INJECTION == 1)
memory[wr_pntr] <= #`TCQ {INJECTDBITERR,INJECTSBITERR,DIN};
else
memory[wr_pntr] <= #`TCQ DIN;
end
end
reg [C_DATA_WIDTH-1:0] dout_tmp_q;
reg [C_DATA_WIDTH-1:0] dout_tmp = 0;
reg [C_DATA_WIDTH-1:0] dout_tmp1 = 0;
always @(posedge CLK) begin
dout_tmp_q <= #`TCQ ideal_dout;
end
always @* begin
if (read_allow)
ideal_dout <= memory[rd_pntr];
else
ideal_dout <= dout_tmp_q;
end
end endgenerate // gll_dm_dout
/**************************************************************************
* Write Domain Logic
**************************************************************************/
assign ram_rd_en = RD_EN & !EMPTY;
//reg [C_WR_PNTR_WIDTH-1:0] diff_pntr = 0;
generate if (C_FIFO_TYPE != 2) begin : gnll_din
always @(posedge CLK or posedge rst_i) begin : gen_fifo_w
/****** Reset fifo (case 1)***************************************/
if (rst_i == 1'b1) begin
num_wr_bits <= #`TCQ 0;
next_num_wr_bits = #`TCQ 0;
wr_ptr <= #`TCQ C_WR_DEPTH - 1;
rd_ptr_wrclk <= #`TCQ C_RD_DEPTH - 1;
ideal_wr_ack <= #`TCQ 0;
ideal_wr_count <= #`TCQ 0;
tmp_wr_listsize = #`TCQ 0;
rd_ptr_wrclk_next <= #`TCQ 0;
wr_pntr <= #`TCQ 0;
wr_pntr_rd1 <= #`TCQ 0;
end else begin //rst_i==0
if (srst_wrst_busy) begin
num_wr_bits <= #`TCQ 0;
next_num_wr_bits = #`TCQ 0;
wr_ptr <= #`TCQ C_WR_DEPTH - 1;
rd_ptr_wrclk <= #`TCQ C_RD_DEPTH - 1;
ideal_wr_ack <= #`TCQ 0;
ideal_wr_count <= #`TCQ 0;
tmp_wr_listsize = #`TCQ 0;
rd_ptr_wrclk_next <= #`TCQ 0;
wr_pntr <= #`TCQ 0;
wr_pntr_rd1 <= #`TCQ 0;
end else begin//srst_i=0
wr_pntr_rd1 <= #`TCQ wr_pntr;
//Determine the current number of words in the FIFO
tmp_wr_listsize = (C_DEPTH_RATIO_RD > 1) ? num_wr_bits/C_DOUT_WIDTH :
num_wr_bits/C_DIN_WIDTH;
rd_ptr_wrclk_next = rd_ptr;
if (rd_ptr_wrclk < rd_ptr_wrclk_next) begin
next_num_wr_bits = num_wr_bits -
C_DOUT_WIDTH*(rd_ptr_wrclk + C_RD_DEPTH
- rd_ptr_wrclk_next);
end else begin
next_num_wr_bits = num_wr_bits -
C_DOUT_WIDTH*(rd_ptr_wrclk - rd_ptr_wrclk_next);
end
if (WR_EN == 1'b1) begin
if (FULL == 1'b1) begin
ideal_wr_ack <= #`TCQ 0;
//Reminder that FIFO is still full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
end else begin
write_fifo;
next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH;
//Write successful, so issue acknowledge
// and no error
ideal_wr_ack <= #`TCQ 1;
//Not even close to full.
ideal_wr_count <= num_write_words_sized_i;
//end
end
end else begin //(WR_EN == 1'b1)
//If user did not attempt a write, then do not
// give ack or err
ideal_wr_ack <= #`TCQ 0;
ideal_wr_count <= #`TCQ num_write_words_sized_i;
end
num_wr_bits <= #`TCQ next_num_wr_bits;
rd_ptr_wrclk <= #`TCQ rd_ptr;
end //srst_i==0
end //wr_rst_i==0
end // gen_fifo_w
end endgenerate
generate if (C_FIFO_TYPE < 2 && C_MEMORY_TYPE < 2) begin : gnll_dm_dout
always @(posedge CLK) begin
if (rst_i || srst_rrst_busy) begin
if (C_USE_DOUT_RST == 1)
ideal_dout <= #`TCQ dout_reset_val;
end
end
end endgenerate
generate if (C_FIFO_TYPE != 2) begin : gnll_dout
always @(posedge CLK or posedge rst_i) begin : gen_fifo_r
/****** Reset fifo (case 1)***************************************/
if (rst_i) begin
num_rd_bits <= #`TCQ 0;
next_num_rd_bits = #`TCQ 0;
rd_ptr <= #`TCQ C_RD_DEPTH -1;
rd_pntr <= #`TCQ 0;
//rd_pntr_wr1 <= #`TCQ 0;
wr_ptr_rdclk <= #`TCQ C_WR_DEPTH -1;
// DRAM resets asynchronously
if (C_FIFO_TYPE < 2 && (C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3 )&& C_USE_DOUT_RST == 1)
ideal_dout <= #`TCQ dout_reset_val;
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type <= #`TCQ 0;
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ 0;
end else begin //rd_rst_i==0
if (srst_rrst_busy) begin
num_rd_bits <= #`TCQ 0;
next_num_rd_bits = #`TCQ 0;
rd_ptr <= #`TCQ C_RD_DEPTH -1;
rd_pntr <= #`TCQ 0;
//rd_pntr_wr1 <= #`TCQ 0;
wr_ptr_rdclk <= #`TCQ C_WR_DEPTH -1;
// DRAM resets synchronously
if (C_FIFO_TYPE < 2 && (C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3 )&& C_USE_DOUT_RST == 1)
ideal_dout <= #`TCQ dout_reset_val;
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type <= #`TCQ 0;
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ 0;
end //srst_i
else begin
//rd_pntr_wr1 <= #`TCQ rd_pntr;
//Determine the current number of words in the FIFO
tmp_rd_listsize = (C_DEPTH_RATIO_WR > 1) ? num_rd_bits/C_DIN_WIDTH :
num_rd_bits/C_DOUT_WIDTH;
wr_ptr_rdclk_next = wr_ptr;
if (wr_ptr_rdclk < wr_ptr_rdclk_next) begin
next_num_rd_bits = num_rd_bits +
C_DIN_WIDTH*(wr_ptr_rdclk +C_WR_DEPTH
- wr_ptr_rdclk_next);
end else begin
next_num_rd_bits = num_rd_bits +
C_DIN_WIDTH*(wr_ptr_rdclk - wr_ptr_rdclk_next);
end
if (RD_EN == 1'b1) begin
if (EMPTY == 1'b1) begin
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end
else
begin
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == 2)
end
num_rd_bits <= #`TCQ next_num_rd_bits;
wr_ptr_rdclk <= #`TCQ wr_ptr;
end //s_rst_i==0
end //rd_rst_i==0
end //always
end endgenerate
//-----------------------------------------------------------------------------
// Generate diff_pntr for PROG_FULL generation
// Generate diff_pntr_pe for PROG_EMPTY generation
//-----------------------------------------------------------------------------
generate if ((C_PROG_FULL_TYPE != 0 || C_PROG_EMPTY_TYPE != 0) && IS_ASYMMETRY == 0) begin : reg_write_allow
always @(posedge CLK ) begin
if (rst_i) begin
write_only_q <= 1'b0;
read_only_q <= 1'b0;
diff_pntr_reg1 <= 0;
diff_pntr_pe_reg1 <= 0;
diff_pntr_reg2 <= 0;
diff_pntr_pe_reg2 <= 0;
end else begin
if (srst_i || srst_wrst_busy || srst_rrst_busy) begin
if (srst_rrst_busy) begin
read_only_q <= #`TCQ 1'b0;
diff_pntr_pe_reg1 <= #`TCQ 0;
diff_pntr_pe_reg2 <= #`TCQ 0;
end
if (srst_wrst_busy) begin
write_only_q <= #`TCQ 1'b0;
diff_pntr_reg1 <= #`TCQ 0;
diff_pntr_reg2 <= #`TCQ 0;
end
end else begin
write_only_q <= #`TCQ write_only;
read_only_q <= #`TCQ read_only;
diff_pntr_reg2 <= #`TCQ diff_pntr_reg1;
diff_pntr_pe_reg2 <= #`TCQ diff_pntr_pe_reg1;
// Add 1 to the difference pointer value when only write happens.
if (write_only)
diff_pntr_reg1 <= #`TCQ wr_pntr - adj_rd_pntr_wr + 1;
else
diff_pntr_reg1 <= #`TCQ wr_pntr - adj_rd_pntr_wr;
// Add 1 to the difference pointer value when write or both write & read or no write & read happen.
if (read_only)
diff_pntr_pe_reg1 <= #`TCQ adj_wr_pntr_rd - rd_pntr - 1;
else
diff_pntr_pe_reg1 <= #`TCQ adj_wr_pntr_rd - rd_pntr;
end
end
end
assign diff_pntr_pe = diff_pntr_pe_reg1;
assign diff_pntr = diff_pntr_reg1;
end endgenerate // reg_write_allow
generate if ((C_PROG_FULL_TYPE != 0 || C_PROG_EMPTY_TYPE != 0) && IS_ASYMMETRY == 1) begin : reg_write_allow_asym
assign adj_wr_pntr_rd_asym[C_RD_PNTR_WIDTH:0] = {adj_wr_pntr_rd,1'b1};
assign rd_pntr_asym[C_RD_PNTR_WIDTH:0] = {~rd_pntr,1'b1};
always @(posedge CLK ) begin
if (rst_i) begin
diff_pntr_pe_asym <= 0;
diff_pntr_reg1 <= 0;
full_reg <= 0;
rst_full_ff_reg1 <= 1;
rst_full_ff_reg2 <= 1;
diff_pntr_pe_reg1 <= 0;
end else begin
if (srst_i || srst_wrst_busy || srst_rrst_busy) begin
if (srst_wrst_busy)
diff_pntr_reg1 <= #`TCQ 0;
if (srst_rrst_busy)
full_reg <= #`TCQ 0;
rst_full_ff_reg1 <= #`TCQ 1;
rst_full_ff_reg2 <= #`TCQ 1;
diff_pntr_pe_asym <= #`TCQ 0;
diff_pntr_pe_reg1 <= #`TCQ 0;
end else begin
diff_pntr_pe_asym <= #`TCQ adj_wr_pntr_rd_asym + rd_pntr_asym;
full_reg <= #`TCQ full_i;
rst_full_ff_reg1 <= #`TCQ RST_FULL_FF;
rst_full_ff_reg2 <= #`TCQ rst_full_ff_reg1;
if (~full_i) begin
diff_pntr_reg1 <= #`TCQ wr_pntr - adj_rd_pntr_wr;
end
end
end
end
assign carry = (~(|(diff_pntr_pe_asym [C_RD_PNTR_WIDTH : 1])));
assign diff_pntr_pe = (full_reg && ~rst_full_ff_reg2 && carry ) ? diff_pntr_pe_max : diff_pntr_pe_asym[C_RD_PNTR_WIDTH:1];
assign diff_pntr = diff_pntr_reg1;
end endgenerate // reg_write_allow_asym
//-----------------------------------------------------------------------------
// Generate FULL flag
//-----------------------------------------------------------------------------
wire comp0;
wire comp1;
wire going_full;
wire leaving_full;
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gpad
assign adj_rd_pntr_wr [C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH] = rd_pntr;
assign adj_rd_pntr_wr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0] = 0;
end endgenerate
generate if (C_WR_PNTR_WIDTH <= C_RD_PNTR_WIDTH) begin : gtrim
assign adj_rd_pntr_wr = rd_pntr[C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH];
end endgenerate
assign comp1 = (adj_rd_pntr_wr == (wr_pntr + 1'b1));
assign comp0 = (adj_rd_pntr_wr == wr_pntr);
generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : gf_wp_eq_rp
assign going_full = (comp1 & write_allow & ~read_allow);
assign leaving_full = (comp0 & read_allow) | RST_FULL_GEN;
end endgenerate
// Write data width is bigger than read data width
// Write depth is smaller than read depth
// One write could be equal to 2 or 4 or 8 reads
generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : gf_asym
assign going_full = (comp1 & write_allow & (~ (read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0]))));
assign leaving_full = (comp0 & read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0])) | RST_FULL_GEN;
end endgenerate
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gf_wp_gt_rp
assign going_full = (comp1 & write_allow & ~read_allow);
assign leaving_full =(comp0 & read_allow) | RST_FULL_GEN;
end endgenerate
assign ram_full_comb = going_full | (~leaving_full & full_i);
always @(posedge CLK or posedge RST_FULL_FF) begin
if (RST_FULL_FF)
full_i <= C_FULL_FLAGS_RST_VAL;
else if (srst_wrst_busy)
full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else
full_i <= #`TCQ ram_full_comb;
end
//-----------------------------------------------------------------------------
// Generate EMPTY flag
//-----------------------------------------------------------------------------
wire ecomp0;
wire ecomp1;
wire going_empty;
wire leaving_empty;
wire ram_empty_comb;
generate if (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) begin : pad
assign adj_wr_pntr_rd [C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr;
assign adj_wr_pntr_rd[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0] = 0;
end endgenerate
generate if (C_RD_PNTR_WIDTH <= C_WR_PNTR_WIDTH) begin : trim
assign adj_wr_pntr_rd = wr_pntr[C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH];
end endgenerate
assign ecomp1 = (adj_wr_pntr_rd == (rd_pntr + 1'b1));
assign ecomp0 = (adj_wr_pntr_rd == rd_pntr);
generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : ge_wp_eq_rp
assign going_empty = (ecomp1 & ~write_allow & read_allow);
assign leaving_empty = (ecomp0 & write_allow);
end endgenerate
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : ge_wp_gt_rp
assign going_empty = (ecomp1 & read_allow & (~(write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]))));
assign leaving_empty = (ecomp0 & write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]));
end endgenerate
generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : ge_wp_lt_rp
assign going_empty = (ecomp1 & ~write_allow & read_allow);
assign leaving_empty =(ecomp0 & write_allow);
end endgenerate
assign ram_empty_comb = going_empty | (~leaving_empty & empty_i);
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
empty_i <= 1'b1;
else if (srst_rrst_busy)
empty_i <= #`TCQ 1'b1;
else
empty_i <= #`TCQ ram_empty_comb;
end
//-----------------------------------------------------------------------------
// Generate Read and write data counts for asymmetic common clock
//-----------------------------------------------------------------------------
reg [C_GRTR_PNTR_WIDTH :0] count_dc = 0;
wire [C_GRTR_PNTR_WIDTH :0] ratio;
wire decr_by_one;
wire incr_by_ratio;
wire incr_by_one;
wire decr_by_ratio;
localparam IS_FWFT = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ? 1 : 0;
generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : rd_depth_gt_wr
assign ratio = C_DEPTH_RATIO_RD;
assign decr_by_one = (IS_FWFT == 1)? read_allow_dc : read_allow;
assign incr_by_ratio = write_allow;
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
count_dc <= #`TCQ 0;
else if (srst_wrst_busy)
count_dc <= #`TCQ 0;
else begin
if (decr_by_one) begin
if (!incr_by_ratio)
count_dc <= #`TCQ count_dc - 1;
else
count_dc <= #`TCQ count_dc - 1 + ratio ;
end
else begin
if (!incr_by_ratio)
count_dc <= #`TCQ count_dc ;
else
count_dc <= #`TCQ count_dc + ratio ;
end
end
end
assign rd_data_count_i_ss[C_RD_PNTR_WIDTH : 0] = count_dc;
assign wr_data_count_i_ss[C_WR_PNTR_WIDTH : 0] = count_dc[C_RD_PNTR_WIDTH : C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH];
end endgenerate
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : wr_depth_gt_rd
assign ratio = C_DEPTH_RATIO_WR;
assign incr_by_one = write_allow;
assign decr_by_ratio = (IS_FWFT == 1)? read_allow_dc : read_allow;
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
count_dc <= #`TCQ 0;
else if (srst_wrst_busy)
count_dc <= #`TCQ 0;
else begin
if (incr_by_one) begin
if (!decr_by_ratio)
count_dc <= #`TCQ count_dc + 1;
else
count_dc <= #`TCQ count_dc + 1 - ratio ;
end
else begin
if (!decr_by_ratio)
count_dc <= #`TCQ count_dc ;
else
count_dc <= #`TCQ count_dc - ratio ;
end
end
end
assign wr_data_count_i_ss[C_WR_PNTR_WIDTH : 0] = count_dc;
assign rd_data_count_i_ss[C_RD_PNTR_WIDTH : 0] = count_dc[C_WR_PNTR_WIDTH : C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH];
end endgenerate
//-----------------------------------------------------------------------------
// Generate WR_ACK flag
//-----------------------------------------------------------------------------
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
ideal_wr_ack <= 1'b0;
else if (srst_wrst_busy)
ideal_wr_ack <= #`TCQ 1'b0;
else if (WR_EN & ~full_i)
ideal_wr_ack <= #`TCQ 1'b1;
else
ideal_wr_ack <= #`TCQ 1'b0;
end
//-----------------------------------------------------------------------------
// Generate VALID flag
//-----------------------------------------------------------------------------
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
ideal_valid <= 1'b0;
else if (srst_rrst_busy)
ideal_valid <= #`TCQ 1'b0;
else if (RD_EN & ~empty_i)
ideal_valid <= #`TCQ 1'b1;
else
ideal_valid <= #`TCQ 1'b0;
end
//-----------------------------------------------------------------------------
// Generate ALMOST_FULL flag
//-----------------------------------------------------------------------------
//generate if (C_HAS_ALMOST_FULL == 1 || C_PROG_FULL_TYPE > 2 || C_PROG_EMPTY_TYPE > 2) begin : gaf_ss
wire fcomp2;
wire going_afull;
wire leaving_afull;
wire ram_afull_comb;
assign fcomp2 = (adj_rd_pntr_wr == (wr_pntr + 2'h2));
generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : gaf_wp_eq_rp
assign going_afull = (fcomp2 & write_allow & ~read_allow);
assign leaving_afull = (comp1 & read_allow & ~write_allow) | RST_FULL_GEN;
end endgenerate
// Write data width is bigger than read data width
// Write depth is smaller than read depth
// One write could be equal to 2 or 4 or 8 reads
generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : gaf_asym
assign going_afull = (fcomp2 & write_allow & (~ (read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0]))));
assign leaving_afull = (comp1 & (~write_allow) & read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0])) | RST_FULL_GEN;
end endgenerate
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gaf_wp_gt_rp
assign going_afull = (fcomp2 & write_allow & ~read_allow);
assign leaving_afull =((comp0 | comp1 | fcomp2) & read_allow) | RST_FULL_GEN;
end endgenerate
assign ram_afull_comb = going_afull | (~leaving_afull & almost_full_i);
always @(posedge CLK or posedge RST_FULL_FF) begin
if (RST_FULL_FF)
almost_full_i <= C_FULL_FLAGS_RST_VAL;
else if (srst_wrst_busy)
almost_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else
almost_full_i <= #`TCQ ram_afull_comb;
end
// end endgenerate // gaf_ss
//-----------------------------------------------------------------------------
// Generate ALMOST_EMPTY flag
//-----------------------------------------------------------------------------
//generate if (C_HAS_ALMOST_EMPTY == 1) begin : gae_ss
wire ecomp2;
wire going_aempty;
wire leaving_aempty;
wire ram_aempty_comb;
assign ecomp2 = (adj_wr_pntr_rd == (rd_pntr + 2'h2));
generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : gae_wp_eq_rp
assign going_aempty = (ecomp2 & ~write_allow & read_allow);
assign leaving_aempty = (ecomp1 & write_allow & ~read_allow);
end endgenerate
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gae_wp_gt_rp
assign going_aempty = (ecomp2 & read_allow & (~(write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]))));
assign leaving_aempty = (ecomp1 & ~read_allow & write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]));
end endgenerate
generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : gae_wp_lt_rp
assign going_aempty = (ecomp2 & ~write_allow & read_allow);
assign leaving_aempty =((ecomp2 | ecomp1 |ecomp0) & write_allow);
end endgenerate
assign ram_aempty_comb = going_aempty | (~leaving_aempty & almost_empty_i);
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
almost_empty_i <= 1'b1;
else if (srst_rrst_busy)
almost_empty_i <= #`TCQ 1'b1;
else
almost_empty_i <= #`TCQ ram_aempty_comb;
end
// end endgenerate // gae_ss
//-----------------------------------------------------------------------------
// Generate PROG_FULL
//-----------------------------------------------------------------------------
localparam C_PF_ASSERT_VAL = (C_PRELOAD_LATENCY == 0) ?
C_PROG_FULL_THRESH_ASSERT_VAL - EXTRA_WORDS_PF_PARAM : // FWFT
C_PROG_FULL_THRESH_ASSERT_VAL; // STD
localparam C_PF_NEGATE_VAL = (C_PRELOAD_LATENCY == 0) ?
C_PROG_FULL_THRESH_NEGATE_VAL - EXTRA_WORDS_PF_PARAM: // FWFT
C_PROG_FULL_THRESH_NEGATE_VAL; // STD
//-----------------------------------------------------------------------------
// Generate PROG_FULL for single programmable threshold constant
//-----------------------------------------------------------------------------
wire [C_WR_PNTR_WIDTH-1:0] temp = C_PF_ASSERT_VAL;
generate if (C_PROG_FULL_TYPE == 1) begin : single_pf_const
always @(posedge CLK or posedge RST_FULL_FF) begin
if (RST_FULL_FF && C_HAS_RST)
prog_full_i <= C_FULL_FLAGS_RST_VAL;
else begin
if (srst_wrst_busy)
prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else if (IS_ASYMMETRY == 0) begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (diff_pntr == C_PF_ASSERT_VAL && write_only_q)
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr == C_PF_ASSERT_VAL && read_only_q)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ prog_full_i;
end
else begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~RST_FULL_GEN ) begin
if (diff_pntr>= C_PF_ASSERT_VAL )
prog_full_i <= #`TCQ 1'b1;
else if ((diff_pntr) < C_PF_ASSERT_VAL )
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ 1'b0;
end
else
prog_full_i <= #`TCQ prog_full_i;
end
end
end
end endgenerate // single_pf_const
//-----------------------------------------------------------------------------
// Generate PROG_FULL for multiple programmable threshold constants
//-----------------------------------------------------------------------------
generate if (C_PROG_FULL_TYPE == 2) begin : multiple_pf_const
always @(posedge CLK or posedge RST_FULL_FF) begin
//if (RST_FULL_FF)
if (RST_FULL_FF && C_HAS_RST)
prog_full_i <= C_FULL_FLAGS_RST_VAL;
else begin
if (srst_wrst_busy)
prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else if (IS_ASYMMETRY == 0) begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (diff_pntr == C_PF_ASSERT_VAL && write_only_q)
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr == C_PF_NEGATE_VAL && read_only_q)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ prog_full_i;
end
else begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~RST_FULL_GEN ) begin
if (diff_pntr >= C_PF_ASSERT_VAL )
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr < C_PF_NEGATE_VAL)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ prog_full_i;
end
else
prog_full_i <= #`TCQ prog_full_i;
end
end
end
end endgenerate //multiple_pf_const
//-----------------------------------------------------------------------------
// Generate PROG_FULL for single programmable threshold input port
//-----------------------------------------------------------------------------
wire [C_WR_PNTR_WIDTH-1:0] pf3_assert_val = (C_PRELOAD_LATENCY == 0) ?
PROG_FULL_THRESH - EXTRA_WORDS_PF: // FWFT
PROG_FULL_THRESH; // STD
generate if (C_PROG_FULL_TYPE == 3) begin : single_pf_input
always @(posedge CLK or posedge RST_FULL_FF) begin//0
//if (RST_FULL_FF)
if (RST_FULL_FF && C_HAS_RST)
prog_full_i <= C_FULL_FLAGS_RST_VAL;
else begin //1
if (srst_wrst_busy)
prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else if (IS_ASYMMETRY == 0) begin//2
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~almost_full_i) begin//3
if (diff_pntr > pf3_assert_val)
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr == pf3_assert_val) begin//4
if (read_only_q)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ 1'b1;
end else//4
prog_full_i <= #`TCQ 1'b0;
end else//3
prog_full_i <= #`TCQ prog_full_i;
end //2
else begin//5
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~full_i ) begin//6
if (diff_pntr >= pf3_assert_val )
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr < pf3_assert_val) begin//7
prog_full_i <= #`TCQ 1'b0;
end//7
end//6
else
prog_full_i <= #`TCQ prog_full_i;
end//5
end//1
end//0
end endgenerate //single_pf_input
//-----------------------------------------------------------------------------
// Generate PROG_FULL for multiple programmable threshold input ports
//-----------------------------------------------------------------------------
wire [C_WR_PNTR_WIDTH-1:0] pf_assert_val = (C_PRELOAD_LATENCY == 0) ?
(PROG_FULL_THRESH_ASSERT -EXTRA_WORDS_PF) : // FWFT
PROG_FULL_THRESH_ASSERT; // STD
wire [C_WR_PNTR_WIDTH-1:0] pf_negate_val = (C_PRELOAD_LATENCY == 0) ?
(PROG_FULL_THRESH_NEGATE -EXTRA_WORDS_PF) : // FWFT
PROG_FULL_THRESH_NEGATE; // STD
generate if (C_PROG_FULL_TYPE == 4) begin : multiple_pf_inputs
always @(posedge CLK or posedge RST_FULL_FF) begin
if (RST_FULL_FF && C_HAS_RST)
prog_full_i <= C_FULL_FLAGS_RST_VAL;
else begin
if (srst_wrst_busy)
prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else if (IS_ASYMMETRY == 0) begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~almost_full_i) begin
if (diff_pntr >= pf_assert_val)
prog_full_i <= #`TCQ 1'b1;
else if ((diff_pntr == pf_negate_val && read_only_q) ||
diff_pntr < pf_negate_val)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ prog_full_i;
end else
prog_full_i <= #`TCQ prog_full_i;
end
else begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~full_i ) begin
if (diff_pntr >= pf_assert_val )
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr < pf_negate_val)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ prog_full_i;
end
else
prog_full_i <= #`TCQ prog_full_i;
end
end
end
end endgenerate //multiple_pf_inputs
//-----------------------------------------------------------------------------
// Generate PROG_EMPTY
//-----------------------------------------------------------------------------
localparam C_PE_ASSERT_VAL = (C_PRELOAD_LATENCY == 0) ?
C_PROG_EMPTY_THRESH_ASSERT_VAL - 2: // FWFT
C_PROG_EMPTY_THRESH_ASSERT_VAL; // STD
localparam C_PE_NEGATE_VAL = (C_PRELOAD_LATENCY == 0) ?
C_PROG_EMPTY_THRESH_NEGATE_VAL - 2: // FWFT
C_PROG_EMPTY_THRESH_NEGATE_VAL; // STD
//-----------------------------------------------------------------------------
// Generate PROG_EMPTY for single programmable threshold constant
//-----------------------------------------------------------------------------
generate if (C_PROG_EMPTY_TYPE == 1) begin : single_pe_const
always @(posedge CLK or posedge rst_i) begin
//if (rst_i)
if (rst_i && C_HAS_RST)
prog_empty_i <= 1'b1;
else begin
if (srst_rrst_busy)
prog_empty_i <= #`TCQ 1'b1;
else if (IS_ASYMMETRY == 0) begin
if (diff_pntr_pe == C_PE_ASSERT_VAL && read_only_q)
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe == C_PE_ASSERT_VAL && write_only_q)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ prog_empty_i;
end
else begin
if (~rst_i ) begin
if (diff_pntr_pe <= C_PE_ASSERT_VAL)
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe > C_PE_ASSERT_VAL)
prog_empty_i <= #`TCQ 1'b0;
end
else
prog_empty_i <= #`TCQ prog_empty_i;
end
end
end
end endgenerate // single_pe_const
//-----------------------------------------------------------------------------
// Generate PROG_EMPTY for multiple programmable threshold constants
//-----------------------------------------------------------------------------
generate if (C_PROG_EMPTY_TYPE == 2) begin : multiple_pe_const
always @(posedge CLK or posedge rst_i) begin
//if (rst_i)
if (rst_i && C_HAS_RST)
prog_empty_i <= 1'b1;
else begin
if (srst_rrst_busy)
prog_empty_i <= #`TCQ 1'b1;
else if (IS_ASYMMETRY == 0) begin
if (diff_pntr_pe == C_PE_ASSERT_VAL && read_only_q)
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe == C_PE_NEGATE_VAL && write_only_q)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ prog_empty_i;
end
else begin
if (~rst_i ) begin
if (diff_pntr_pe <= C_PE_ASSERT_VAL )
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe > C_PE_NEGATE_VAL)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ prog_empty_i;
end
else
prog_empty_i <= #`TCQ prog_empty_i;
end
end
end
end endgenerate //multiple_pe_const
//-----------------------------------------------------------------------------
// Generate PROG_EMPTY for single programmable threshold input port
//-----------------------------------------------------------------------------
wire [C_RD_PNTR_WIDTH-1:0] pe3_assert_val = (C_PRELOAD_LATENCY == 0) ?
(PROG_EMPTY_THRESH -2) : // FWFT
PROG_EMPTY_THRESH; // STD
generate if (C_PROG_EMPTY_TYPE == 3) begin : single_pe_input
always @(posedge CLK or posedge rst_i) begin
//if (rst_i)
if (rst_i && C_HAS_RST)
prog_empty_i <= 1'b1;
else begin
if (srst_rrst_busy)
prog_empty_i <= #`TCQ 1'b1;
else if (IS_ASYMMETRY == 0) begin
if (~almost_full_i) begin
if (diff_pntr_pe < pe3_assert_val)
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe == pe3_assert_val) begin
if (write_only_q)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ 1'b1;
end else
prog_empty_i <= #`TCQ 1'b0;
end else
prog_empty_i <= #`TCQ prog_empty_i;
end
else begin
if (diff_pntr_pe <= pe3_assert_val )
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe > pe3_assert_val)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ prog_empty_i;
end
end
end
end endgenerate // single_pe_input
//-----------------------------------------------------------------------------
// Generate PROG_EMPTY for multiple programmable threshold input ports
//-----------------------------------------------------------------------------
wire [C_RD_PNTR_WIDTH-1:0] pe4_assert_val = (C_PRELOAD_LATENCY == 0) ?
(PROG_EMPTY_THRESH_ASSERT - 2) : // FWFT
PROG_EMPTY_THRESH_ASSERT; // STD
wire [C_RD_PNTR_WIDTH-1:0] pe4_negate_val = (C_PRELOAD_LATENCY == 0) ?
(PROG_EMPTY_THRESH_NEGATE - 2) : // FWFT
PROG_EMPTY_THRESH_NEGATE; // STD
generate if (C_PROG_EMPTY_TYPE == 4) begin : multiple_pe_inputs
always @(posedge CLK or posedge rst_i) begin
//if (rst_i)
if (rst_i && C_HAS_RST)
prog_empty_i <= 1'b1;
else begin
if (srst_rrst_busy)
prog_empty_i <= #`TCQ 1'b1;
else if (IS_ASYMMETRY == 0) begin
if (~almost_full_i) begin
if (diff_pntr_pe <= pe4_assert_val)
prog_empty_i <= #`TCQ 1'b1;
else if (((diff_pntr_pe == pe4_negate_val) && write_only_q) ||
(diff_pntr_pe > pe4_negate_val)) begin
prog_empty_i <= #`TCQ 1'b0;
end else
prog_empty_i <= #`TCQ prog_empty_i;
end else
prog_empty_i <= #`TCQ prog_empty_i;
end
else begin
if (diff_pntr_pe <= pe4_assert_val )
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe > pe4_negate_val)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ prog_empty_i;
end
end
end
end endgenerate // multiple_pe_inputs
endmodule // fifo_generator_v12_0_bhv_ver_ss
/**************************************************************************
* First-Word Fall-Through module (preload 0)
**************************************************************************/
module fifo_generator_v12_0_bhv_ver_preload0
#(
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_HAS_RST = 0,
parameter C_ENABLE_RST_SYNC = 0,
parameter C_HAS_SRST = 0,
parameter C_USE_DOUT_RST = 0,
parameter C_USE_ECC = 0,
parameter C_USERVALID_LOW = 0,
parameter C_USERUNDERFLOW_LOW = 0,
parameter C_MEMORY_TYPE = 0,
parameter C_FIFO_TYPE = 0
)
(
//Inputs
input RD_CLK,
input RD_RST,
input SRST,
input WR_RST_BUSY,
input RD_RST_BUSY,
input RD_EN,
input FIFOEMPTY,
input [C_DOUT_WIDTH-1:0] FIFODATA,
input FIFOSBITERR,
input FIFODBITERR,
//Outputs
output reg [C_DOUT_WIDTH-1:0] USERDATA,
output USERVALID,
output USERUNDERFLOW,
output USEREMPTY,
output USERALMOSTEMPTY,
output RAMVALID,
output FIFORDEN,
output reg USERSBITERR,
output reg USERDBITERR,
output reg STAGE2_REG_EN,
output [1:0] VALID_STAGES
);
//Internal signals
wire preloadstage1;
wire preloadstage2;
reg ram_valid_i;
reg read_data_valid_i;
wire ram_regout_en;
wire ram_rd_en;
reg empty_i = 1'b1;
reg empty_q = 1'b1;
reg rd_en_q = 1'b0;
reg almost_empty_i = 1'b1;
reg almost_empty_q = 1'b1;
wire rd_rst_i;
wire srst_i;
/*************************************************************************
* FUNCTIONS
*************************************************************************/
/*************************************************************************
* hexstr_conv
* Converts a string of type hex to a binary value (for C_DOUT_RST_VAL)
***********************************************************************/
function [C_DOUT_WIDTH-1:0] hexstr_conv;
input [(C_DOUT_WIDTH*8)-1:0] def_data;
integer index,i,j;
reg [3:0] bin;
begin
index = 0;
hexstr_conv = 'b0;
for( i=C_DOUT_WIDTH-1; i>=0; i=i-1 )
begin
case (def_data[7:0])
8'b00000000 :
begin
bin = 4'b0000;
i = -1;
end
8'b00110000 : bin = 4'b0000;
8'b00110001 : bin = 4'b0001;
8'b00110010 : bin = 4'b0010;
8'b00110011 : bin = 4'b0011;
8'b00110100 : bin = 4'b0100;
8'b00110101 : bin = 4'b0101;
8'b00110110 : bin = 4'b0110;
8'b00110111 : bin = 4'b0111;
8'b00111000 : bin = 4'b1000;
8'b00111001 : bin = 4'b1001;
8'b01000001 : bin = 4'b1010;
8'b01000010 : bin = 4'b1011;
8'b01000011 : bin = 4'b1100;
8'b01000100 : bin = 4'b1101;
8'b01000101 : bin = 4'b1110;
8'b01000110 : bin = 4'b1111;
8'b01100001 : bin = 4'b1010;
8'b01100010 : bin = 4'b1011;
8'b01100011 : bin = 4'b1100;
8'b01100100 : bin = 4'b1101;
8'b01100101 : bin = 4'b1110;
8'b01100110 : bin = 4'b1111;
default :
begin
bin = 4'bx;
end
endcase
for( j=0; j<4; j=j+1)
begin
if ((index*4)+j < C_DOUT_WIDTH)
begin
hexstr_conv[(index*4)+j] = bin[j];
end
end
index = index + 1;
def_data = def_data >> 8;
end
end
endfunction
//*************************************************************************
// Set power-on states for regs
//*************************************************************************
initial begin
ram_valid_i = 1'b0;
read_data_valid_i = 1'b0;
USERDATA = hexstr_conv(C_DOUT_RST_VAL);
USERSBITERR = 1'b0;
USERDBITERR = 1'b0;
end //initial
//***************************************************************************
// connect up optional reset
//***************************************************************************
assign rd_rst_i = (C_HAS_RST == 1 || C_ENABLE_RST_SYNC == 0) ? RD_RST : 0;
assign srst_i = C_HAS_SRST ? SRST || WR_RST_BUSY || RD_RST_BUSY : 0;
localparam INVALID = 0;
localparam STAGE1_VALID = 2;
localparam STAGE2_VALID = 1;
localparam BOTH_STAGES_VALID = 3;
reg [1:0] curr_fwft_state = INVALID;
reg [1:0] next_fwft_state = INVALID;
generate if (C_FIFO_TYPE != 2) begin : gnll_fifo
always @* begin
case (curr_fwft_state)
INVALID: begin
if (~FIFOEMPTY)
next_fwft_state <= STAGE1_VALID;
else
next_fwft_state <= INVALID;
end
STAGE1_VALID: begin
if (FIFOEMPTY)
next_fwft_state <= STAGE2_VALID;
else
next_fwft_state <= BOTH_STAGES_VALID;
end
STAGE2_VALID: begin
if (FIFOEMPTY && RD_EN)
next_fwft_state <= INVALID;
else if (~FIFOEMPTY && RD_EN)
next_fwft_state <= STAGE1_VALID;
else if (~FIFOEMPTY && ~RD_EN)
next_fwft_state <= BOTH_STAGES_VALID;
else
next_fwft_state <= STAGE2_VALID;
end
BOTH_STAGES_VALID: begin
if (FIFOEMPTY && RD_EN)
next_fwft_state <= STAGE2_VALID;
else if (~FIFOEMPTY && RD_EN)
next_fwft_state <= BOTH_STAGES_VALID;
else
next_fwft_state <= BOTH_STAGES_VALID;
end
default: next_fwft_state <= INVALID;
endcase
end
always @ (posedge rd_rst_i or posedge RD_CLK) begin
if (rd_rst_i)
curr_fwft_state <= INVALID;
else if (srst_i)
curr_fwft_state <= #`TCQ INVALID;
else
curr_fwft_state <= #`TCQ next_fwft_state;
end
always @* begin
case (curr_fwft_state)
INVALID: STAGE2_REG_EN <= 1'b0;
STAGE1_VALID: STAGE2_REG_EN <= 1'b1;
STAGE2_VALID: STAGE2_REG_EN <= 1'b0;
BOTH_STAGES_VALID: STAGE2_REG_EN <= RD_EN;
default: STAGE2_REG_EN <= 1'b0;
endcase
end
assign VALID_STAGES = curr_fwft_state;
//***************************************************************************
// preloadstage2 indicates that stage2 needs to be updated. This is true
// whenever read_data_valid is false, and RAM_valid is true.
//***************************************************************************
assign preloadstage2 = ram_valid_i & (~read_data_valid_i | RD_EN);
//***************************************************************************
// preloadstage1 indicates that stage1 needs to be updated. This is true
// whenever the RAM has data (RAM_EMPTY is false), and either RAM_Valid is
// false (indicating that Stage1 needs updating), or preloadstage2 is active
// (indicating that Stage2 is going to update, so Stage1, therefore, must
// also be updated to keep it valid.
//***************************************************************************
assign preloadstage1 = ((~ram_valid_i | preloadstage2) & ~FIFOEMPTY);
//***************************************************************************
// Calculate RAM_REGOUT_EN
// The output registers are controlled by the ram_regout_en signal.
// These registers should be updated either when the output in Stage2 is
// invalid (preloadstage2), OR when the user is reading, in which case the
// Stage2 value will go invalid unless it is replenished.
//***************************************************************************
assign ram_regout_en = preloadstage2;
//***************************************************************************
// Calculate RAM_RD_EN
// RAM_RD_EN will be asserted whenever the RAM needs to be read in order to
// update the value in Stage1.
// One case when this happens is when preloadstage1=true, which indicates
// that the data in Stage1 or Stage2 is invalid, and needs to automatically
// be updated.
// The other case is when the user is reading from the FIFO, which
// guarantees that Stage1 or Stage2 will be invalid on the next clock
// cycle, unless it is replinished by data from the memory. So, as long
// as the RAM has data in it, a read of the RAM should occur.
//***************************************************************************
assign ram_rd_en = (RD_EN & ~FIFOEMPTY) | preloadstage1;
end endgenerate // gnll_fifo
reg curr_state = 0;
reg next_state = 0;
reg leaving_empty_fwft = 0;
reg going_empty_fwft = 0;
reg empty_i_q = 0;
reg ram_rd_en_fwft = 0;
generate if (C_FIFO_TYPE == 2) begin : gll_fifo
always @* begin // FSM fo FWFT
case (curr_state)
1'b0: begin
if (~FIFOEMPTY)
next_state <= 1'b1;
else
next_state <= 1'b0;
end
1'b1: begin
if (FIFOEMPTY && RD_EN)
next_state <= 1'b0;
else
next_state <= 1'b1;
end
default: next_state <= 1'b0;
endcase
end
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
empty_i <= 1'b1;
empty_i_q <= 1'b1;
curr_state <= 1'b0;
ram_valid_i <= 1'b0;
end else if (srst_i) begin
empty_i <= #`TCQ 1'b1;
empty_i_q <= #`TCQ 1'b1;
curr_state <= #`TCQ 1'b0;
ram_valid_i <= #`TCQ 1'b0;
end else begin
empty_i <= #`TCQ going_empty_fwft | (~leaving_empty_fwft & empty_i);
empty_i_q <= #`TCQ FIFOEMPTY;
curr_state <= #`TCQ next_state;
ram_valid_i <= #`TCQ next_state;
end
end //always
wire fe_of_empty;
assign fe_of_empty = empty_i_q & ~FIFOEMPTY;
always @* begin // Finding leaving empty
case (curr_state)
1'b0: leaving_empty_fwft <= fe_of_empty;
1'b1: leaving_empty_fwft <= 1'b1;
default: leaving_empty_fwft <= 1'b0;
endcase
end
always @* begin // Finding going empty
case (curr_state)
1'b1: going_empty_fwft <= FIFOEMPTY & RD_EN;
default: going_empty_fwft <= 1'b0;
endcase
end
always @* begin // Generating FWFT rd_en
case (curr_state)
1'b0: ram_rd_en_fwft <= ~FIFOEMPTY;
1'b1: ram_rd_en_fwft <= ~FIFOEMPTY & RD_EN;
default: ram_rd_en_fwft <= 1'b0;
endcase
end
assign ram_regout_en = ram_rd_en_fwft;
assign ram_rd_en = ram_rd_en_fwft;
end endgenerate // gll_fifo
//***************************************************************************
// Calculate RAMVALID_P0_OUT
// RAMVALID_P0_OUT indicates that the data in Stage1 is valid.
//
// If the RAM is being read from on this clock cycle (ram_rd_en=1), then
// RAMVALID_P0_OUT is certainly going to be true.
// If the RAM is not being read from, but the output registers are being
// updated to fill Stage2 (ram_regout_en=1), then Stage1 will be emptying,
// therefore causing RAMVALID_P0_OUT to be false.
// Otherwise, RAMVALID_P0_OUT will remain unchanged.
//***************************************************************************
// PROCESS regout_valid
generate if (C_FIFO_TYPE < 2) begin : gnll_fifo_ram_valid
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
// asynchronous reset (active high)
ram_valid_i <= #`TCQ 1'b0;
end else begin
if (srst_i) begin
// synchronous reset (active high)
ram_valid_i <= #`TCQ 1'b0;
end else begin
if (ram_rd_en == 1'b1) begin
ram_valid_i <= #`TCQ 1'b1;
end else begin
if (ram_regout_en == 1'b1)
ram_valid_i <= #`TCQ 1'b0;
else
ram_valid_i <= #`TCQ ram_valid_i;
end
end //srst_i
end //rd_rst_i
end //always
end endgenerate // gnll_fifo_ram_valid
//***************************************************************************
// Calculate READ_DATA_VALID
// READ_DATA_VALID indicates whether the value in Stage2 is valid or not.
// Stage2 has valid data whenever Stage1 had valid data and
// ram_regout_en_i=1, such that the data in Stage1 is propogated
// into Stage2.
//***************************************************************************
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i)
read_data_valid_i <= #`TCQ 1'b0;
else if (srst_i)
read_data_valid_i <= #`TCQ 1'b0;
else
read_data_valid_i <= #`TCQ ram_valid_i | (read_data_valid_i & ~RD_EN);
end //always
//**************************************************************************
// Calculate EMPTY
// Defined as the inverse of READ_DATA_VALID
//
// Description:
//
// If read_data_valid_i indicates that the output is not valid,
// and there is no valid data on the output of the ram to preload it
// with, then we will report empty.
//
// If there is no valid data on the output of the ram and we are
// reading, then the FIFO will go empty.
//
//**************************************************************************
generate if (C_FIFO_TYPE < 2) begin : gnll_fifo_empty
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
// asynchronous reset (active high)
empty_i <= #`TCQ 1'b1;
end else begin
if (srst_i) begin
// synchronous reset (active high)
empty_i <= #`TCQ 1'b1;
end else begin
// rising clock edge
empty_i <= #`TCQ (~ram_valid_i & ~read_data_valid_i) | (~ram_valid_i & RD_EN);
end
end
end //always
end endgenerate // gnll_fifo_empty
// Register RD_EN from user to calculate USERUNDERFLOW.
// Register empty_i to calculate USERUNDERFLOW.
always @ (posedge RD_CLK) begin
rd_en_q <= #`TCQ RD_EN;
empty_q <= #`TCQ empty_i;
end //always
//***************************************************************************
// Calculate user_almost_empty
// user_almost_empty is defined such that, unless more words are written
// to the FIFO, the next read will cause the FIFO to go EMPTY.
//
// In most cases, whenever the output registers are updated (due to a user
// read or a preload condition), then user_almost_empty will update to
// whatever RAM_EMPTY is.
//
// The exception is when the output is valid, the user is not reading, and
// Stage1 is not empty. In this condition, Stage1 will be preloaded from the
// memory, so we need to make sure user_almost_empty deasserts properly under
// this condition.
//***************************************************************************
always @ (posedge RD_CLK or posedge rd_rst_i)
begin
if (rd_rst_i) begin // asynchronous reset (active high)
almost_empty_i <= #`TCQ 1'b1;
almost_empty_q <= #`TCQ 1'b1;
end else begin // rising clock edge
if (srst_i) begin // synchronous reset (active high)
almost_empty_i <= #`TCQ 1'b1;
almost_empty_q <= #`TCQ 1'b1;
end else begin
if ((ram_regout_en) | (~FIFOEMPTY & read_data_valid_i & ~RD_EN)) begin
almost_empty_i <= #`TCQ FIFOEMPTY;
end
almost_empty_q <= #`TCQ empty_i;
end
end
end //always
assign USEREMPTY = empty_i;
assign USERALMOSTEMPTY = almost_empty_i;
assign FIFORDEN = ram_rd_en;
assign RAMVALID = ram_valid_i;
assign USERVALID = C_USERVALID_LOW ? ~read_data_valid_i : read_data_valid_i;
assign USERUNDERFLOW = C_USERUNDERFLOW_LOW ? ~(empty_q & rd_en_q) : empty_q & rd_en_q;
// BRAM resets synchronously
always @ (posedge RD_CLK)
begin
if (rd_rst_i || srst_i) begin
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE < 2)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end //always
always @ (posedge RD_CLK or posedge rd_rst_i)
begin
if (rd_rst_i) begin //asynchronous reset (active high)
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
// DRAM resets asynchronously
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2) //asynchronous reset (active high)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end else begin // rising clock edge
if (srst_i) begin
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end else begin
if (ram_regout_en) begin
USERDATA <= #`TCQ FIFODATA;
USERSBITERR <= #`TCQ FIFOSBITERR;
USERDBITERR <= #`TCQ FIFODBITERR;
end
end
end
end //always
endmodule
//-----------------------------------------------------------------------------
//
// Register Slice
// Register one AXI channel on forward and/or reverse signal path
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
// reg_slice
//
//--------------------------------------------------------------------------
module fifo_generator_v12_0_axic_reg_slice #
(
parameter C_FAMILY = "virtex7",
parameter C_DATA_WIDTH = 32,
parameter C_REG_CONFIG = 32'h00000000
)
(
// System Signals
input wire ACLK,
input wire ARESET,
// Slave side
input wire [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA,
input wire S_VALID,
output wire S_READY,
// Master side
output wire [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA,
output wire M_VALID,
input wire M_READY
);
generate
////////////////////////////////////////////////////////////////////
//
// Both FWD and REV mode
//
////////////////////////////////////////////////////////////////////
if (C_REG_CONFIG == 32'h00000000)
begin
reg [1:0] state;
localparam [1:0]
ZERO = 2'b10,
ONE = 2'b11,
TWO = 2'b01;
reg [C_DATA_WIDTH-1:0] storage_data1 = 0;
reg [C_DATA_WIDTH-1:0] storage_data2 = 0;
reg load_s1;
wire load_s2;
wire load_s1_from_s2;
reg s_ready_i; //local signal of output
wire m_valid_i; //local signal of output
// assign local signal to its output signal
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
reg areset_d1; // Reset delay register
always @(posedge ACLK) begin
areset_d1 <= ARESET;
end
// Load storage1 with either slave side data or from storage2
always @(posedge ACLK)
begin
if (load_s1)
if (load_s1_from_s2)
storage_data1 <= storage_data2;
else
storage_data1 <= S_PAYLOAD_DATA;
end
// Load storage2 with slave side data
always @(posedge ACLK)
begin
if (load_s2)
storage_data2 <= S_PAYLOAD_DATA;
end
assign M_PAYLOAD_DATA = storage_data1;
// Always load s2 on a valid transaction even if it's unnecessary
assign load_s2 = S_VALID & s_ready_i;
// Loading s1
always @ *
begin
if ( ((state == ZERO) && (S_VALID == 1)) || // Load when empty on slave transaction
// Load when ONE if we both have read and write at the same time
((state == ONE) && (S_VALID == 1) && (M_READY == 1)) ||
// Load when TWO and we have a transaction on Master side
((state == TWO) && (M_READY == 1)))
load_s1 = 1'b1;
else
load_s1 = 1'b0;
end // always @ *
assign load_s1_from_s2 = (state == TWO);
// State Machine for handling output signals
always @(posedge ACLK) begin
if (ARESET) begin
s_ready_i <= 1'b0;
state <= ZERO;
end else if (areset_d1) begin
s_ready_i <= 1'b1;
end else begin
case (state)
// No transaction stored locally
ZERO: if (S_VALID) state <= ONE; // Got one so move to ONE
// One transaction stored locally
ONE: begin
if (M_READY & ~S_VALID) state <= ZERO; // Read out one so move to ZERO
if (~M_READY & S_VALID) begin
state <= TWO; // Got another one so move to TWO
s_ready_i <= 1'b0;
end
end
// TWO transaction stored locally
TWO: if (M_READY) begin
state <= ONE; // Read out one so move to ONE
s_ready_i <= 1'b1;
end
endcase // case (state)
end
end // always @ (posedge ACLK)
assign m_valid_i = state[0];
end // if (C_REG_CONFIG == 1)
////////////////////////////////////////////////////////////////////
//
// 1-stage pipeline register with bubble cycle, both FWD and REV pipelining
// Operates same as 1-deep FIFO
//
////////////////////////////////////////////////////////////////////
else if (C_REG_CONFIG == 32'h00000001)
begin
reg [C_DATA_WIDTH-1:0] storage_data1 = 0;
reg s_ready_i; //local signal of output
reg m_valid_i; //local signal of output
// assign local signal to its output signal
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
reg areset_d1; // Reset delay register
always @(posedge ACLK) begin
areset_d1 <= ARESET;
end
// Load storage1 with slave side data
always @(posedge ACLK)
begin
if (ARESET) begin
s_ready_i <= 1'b0;
m_valid_i <= 1'b0;
end else if (areset_d1) begin
s_ready_i <= 1'b1;
end else if (m_valid_i & M_READY) begin
s_ready_i <= 1'b1;
m_valid_i <= 1'b0;
end else if (S_VALID & s_ready_i) begin
s_ready_i <= 1'b0;
m_valid_i <= 1'b1;
end
if (~m_valid_i) begin
storage_data1 <= S_PAYLOAD_DATA;
end
end
assign M_PAYLOAD_DATA = storage_data1;
end // if (C_REG_CONFIG == 7)
else begin : default_case
// Passthrough
assign M_PAYLOAD_DATA = S_PAYLOAD_DATA;
assign M_VALID = S_VALID;
assign S_READY = M_READY;
end
endgenerate
endmodule // reg_slice
|
/*
*******************************************************************************
*
* FIFO Generator - Verilog Behavioral Model
*
*******************************************************************************
*
* (c) Copyright 1995 - 2009 Xilinx, Inc. All rights reserved.
*
* This file contains confidential and proprietary information
* of Xilinx, Inc. and is protected under U.S. and
* international copyright and other intellectual property
* laws.
*
* DISCLAIMER
* This disclaimer is not a license and does not grant any
* rights to the materials distributed herewith. Except as
* otherwise provided in a valid license issued to you by
* Xilinx, and to the maximum extent permitted by applicable
* law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
* WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
* AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
* BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
* INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
* (2) Xilinx shall not be liable (whether in contract or tort,
* including negligence, or under any other theory of
* liability) for any loss or damage of any kind or nature
* related to, arising under or in connection with these
* materials, including for any direct, or any indirect,
* special, incidental, or consequential loss or damage
* (including loss of data, profits, goodwill, or any type of
* loss or damage suffered as a result of any action brought
* by a third party) even if such damage or loss was
* reasonably foreseeable or Xilinx had been advised of the
* possibility of the same.
*
* CRITICAL APPLICATIONS
* Xilinx products are not designed or intended to be fail-
* safe, or for use in any application requiring fail-safe
* performance, such as life-support or safety devices or
* systems, Class III medical devices, nuclear facilities,
* applications related to the deployment of airbags, or any
* other applications that could lead to death, personal
* injury, or severe property or environmental damage
* (individually and collectively, "Critical
* Applications"). Customer assumes the sole risk and
* liability of any use of Xilinx products in Critical
* Applications, subject only to applicable laws and
* regulations governing limitations on product liability.
*
* THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
* PART OF THIS FILE AT ALL TIMES.
*
*******************************************************************************
*******************************************************************************
*
* Filename: fifo_generator_vlog_beh.v
*
* Author : Xilinx
*
*******************************************************************************
* Structure:
*
* fifo_generator_vlog_beh.v
* |
* +-fifo_generator_v12_0_bhv_ver_as
* |
* +-fifo_generator_v12_0_bhv_ver_ss
* |
* +-fifo_generator_v12_0_bhv_ver_preload0
*
*******************************************************************************
* Description:
*
* The Verilog behavioral model for the FIFO Generator.
*
* The behavioral model has three parts:
* - The behavioral model for independent clocks FIFOs (_as)
* - The behavioral model for common clock FIFOs (_ss)
* - The "preload logic" block which implements First-word Fall-through
*
*******************************************************************************
* Description:
* The verilog behavioral model for the FIFO generator core.
*
*******************************************************************************
*/
`timescale 1ps/1ps
`ifndef TCQ
`define TCQ 100
`endif
/*******************************************************************************
* Declaration of top-level module
******************************************************************************/
module fifo_generator_vlog_beh
#(
//-----------------------------------------------------------------------
// Generic Declarations
//-----------------------------------------------------------------------
parameter C_COMMON_CLOCK = 0,
parameter C_COUNT_TYPE = 0,
parameter C_DATA_COUNT_WIDTH = 2,
parameter C_DEFAULT_VALUE = "",
parameter C_DIN_WIDTH = 8,
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_ENABLE_RLOCS = 0,
parameter C_FAMILY = "",
parameter C_FULL_FLAGS_RST_VAL = 1,
parameter C_HAS_ALMOST_EMPTY = 0,
parameter C_HAS_ALMOST_FULL = 0,
parameter C_HAS_BACKUP = 0,
parameter C_HAS_DATA_COUNT = 0,
parameter C_HAS_INT_CLK = 0,
parameter C_HAS_MEMINIT_FILE = 0,
parameter C_HAS_OVERFLOW = 0,
parameter C_HAS_RD_DATA_COUNT = 0,
parameter C_HAS_RD_RST = 0,
parameter C_HAS_RST = 1,
parameter C_HAS_SRST = 0,
parameter C_HAS_UNDERFLOW = 0,
parameter C_HAS_VALID = 0,
parameter C_HAS_WR_ACK = 0,
parameter C_HAS_WR_DATA_COUNT = 0,
parameter C_HAS_WR_RST = 0,
parameter C_IMPLEMENTATION_TYPE = 0,
parameter C_INIT_WR_PNTR_VAL = 0,
parameter C_MEMORY_TYPE = 1,
parameter C_MIF_FILE_NAME = "",
parameter C_OPTIMIZATION_MODE = 0,
parameter C_OVERFLOW_LOW = 0,
parameter C_PRELOAD_LATENCY = 1,
parameter C_PRELOAD_REGS = 0,
parameter C_PRIM_FIFO_TYPE = "4kx4",
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0,
parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0,
parameter C_PROG_EMPTY_TYPE = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0,
parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0,
parameter C_PROG_FULL_TYPE = 0,
parameter C_RD_DATA_COUNT_WIDTH = 2,
parameter C_RD_DEPTH = 256,
parameter C_RD_FREQ = 1,
parameter C_RD_PNTR_WIDTH = 8,
parameter C_UNDERFLOW_LOW = 0,
parameter C_USE_DOUT_RST = 0,
parameter C_USE_ECC = 0,
parameter C_USE_EMBEDDED_REG = 0,
parameter C_USE_PIPELINE_REG = 0,
parameter C_POWER_SAVING_MODE = 0,
parameter C_USE_FIFO16_FLAGS = 0,
parameter C_USE_FWFT_DATA_COUNT = 0,
parameter C_VALID_LOW = 0,
parameter C_WR_ACK_LOW = 0,
parameter C_WR_DATA_COUNT_WIDTH = 2,
parameter C_WR_DEPTH = 256,
parameter C_WR_FREQ = 1,
parameter C_WR_PNTR_WIDTH = 8,
parameter C_WR_RESPONSE_LATENCY = 1,
parameter C_MSGON_VAL = 1,
parameter C_ENABLE_RST_SYNC = 1,
parameter C_ERROR_INJECTION_TYPE = 0,
parameter C_SYNCHRONIZER_STAGE = 2,
// AXI Interface related parameters start here
parameter C_INTERFACE_TYPE = 0, // 0: Native Interface, 1: AXI4 Stream, 2: AXI4/AXI3
parameter C_AXI_TYPE = 0, // 1: AXI4, 2: AXI4 Lite, 3: AXI3
parameter C_HAS_AXI_WR_CHANNEL = 0,
parameter C_HAS_AXI_RD_CHANNEL = 0,
parameter C_HAS_SLAVE_CE = 0,
parameter C_HAS_MASTER_CE = 0,
parameter C_ADD_NGC_CONSTRAINT = 0,
parameter C_USE_COMMON_UNDERFLOW = 0,
parameter C_USE_COMMON_OVERFLOW = 0,
parameter C_USE_DEFAULT_SETTINGS = 0,
// AXI Full/Lite
parameter C_AXI_ID_WIDTH = 0,
parameter C_AXI_ADDR_WIDTH = 0,
parameter C_AXI_DATA_WIDTH = 0,
parameter C_AXI_LEN_WIDTH = 8,
parameter C_AXI_LOCK_WIDTH = 2,
parameter C_HAS_AXI_ID = 0,
parameter C_HAS_AXI_AWUSER = 0,
parameter C_HAS_AXI_WUSER = 0,
parameter C_HAS_AXI_BUSER = 0,
parameter C_HAS_AXI_ARUSER = 0,
parameter C_HAS_AXI_RUSER = 0,
parameter C_AXI_ARUSER_WIDTH = 0,
parameter C_AXI_AWUSER_WIDTH = 0,
parameter C_AXI_WUSER_WIDTH = 0,
parameter C_AXI_BUSER_WIDTH = 0,
parameter C_AXI_RUSER_WIDTH = 0,
// AXI Streaming
parameter C_HAS_AXIS_TDATA = 0,
parameter C_HAS_AXIS_TID = 0,
parameter C_HAS_AXIS_TDEST = 0,
parameter C_HAS_AXIS_TUSER = 0,
parameter C_HAS_AXIS_TREADY = 0,
parameter C_HAS_AXIS_TLAST = 0,
parameter C_HAS_AXIS_TSTRB = 0,
parameter C_HAS_AXIS_TKEEP = 0,
parameter C_AXIS_TDATA_WIDTH = 1,
parameter C_AXIS_TID_WIDTH = 1,
parameter C_AXIS_TDEST_WIDTH = 1,
parameter C_AXIS_TUSER_WIDTH = 1,
parameter C_AXIS_TSTRB_WIDTH = 1,
parameter C_AXIS_TKEEP_WIDTH = 1,
// AXI Channel Type
// WACH --> Write Address Channel
// WDCH --> Write Data Channel
// WRCH --> Write Response Channel
// RACH --> Read Address Channel
// RDCH --> Read Data Channel
// AXIS --> AXI Streaming
parameter C_WACH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logic
parameter C_WDCH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie
parameter C_WRCH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie
parameter C_RACH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie
parameter C_RDCH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie
parameter C_AXIS_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie
// AXI Implementation Type
// 1 = Common Clock Block RAM FIFO
// 2 = Common Clock Distributed RAM FIFO
// 11 = Independent Clock Block RAM FIFO
// 12 = Independent Clock Distributed RAM FIFO
parameter C_IMPLEMENTATION_TYPE_WACH = 0,
parameter C_IMPLEMENTATION_TYPE_WDCH = 0,
parameter C_IMPLEMENTATION_TYPE_WRCH = 0,
parameter C_IMPLEMENTATION_TYPE_RACH = 0,
parameter C_IMPLEMENTATION_TYPE_RDCH = 0,
parameter C_IMPLEMENTATION_TYPE_AXIS = 0,
// AXI FIFO Type
// 0 = Data FIFO
// 1 = Packet FIFO
// 2 = Low Latency Sync FIFO
// 3 = Low Latency Async FIFO
parameter C_APPLICATION_TYPE_WACH = 0,
parameter C_APPLICATION_TYPE_WDCH = 0,
parameter C_APPLICATION_TYPE_WRCH = 0,
parameter C_APPLICATION_TYPE_RACH = 0,
parameter C_APPLICATION_TYPE_RDCH = 0,
parameter C_APPLICATION_TYPE_AXIS = 0,
// AXI Built-in FIFO Primitive Type
// 512x36, 1kx18, 2kx9, 4kx4, etc
parameter C_PRIM_FIFO_TYPE_WACH = "512x36",
parameter C_PRIM_FIFO_TYPE_WDCH = "512x36",
parameter C_PRIM_FIFO_TYPE_WRCH = "512x36",
parameter C_PRIM_FIFO_TYPE_RACH = "512x36",
parameter C_PRIM_FIFO_TYPE_RDCH = "512x36",
parameter C_PRIM_FIFO_TYPE_AXIS = "512x36",
// Enable ECC
// 0 = ECC disabled
// 1 = ECC enabled
parameter C_USE_ECC_WACH = 0,
parameter C_USE_ECC_WDCH = 0,
parameter C_USE_ECC_WRCH = 0,
parameter C_USE_ECC_RACH = 0,
parameter C_USE_ECC_RDCH = 0,
parameter C_USE_ECC_AXIS = 0,
// ECC Error Injection Type
// 0 = No Error Injection
// 1 = Single Bit Error Injection
// 2 = Double Bit Error Injection
// 3 = Single Bit and Double Bit Error Injection
parameter C_ERROR_INJECTION_TYPE_WACH = 0,
parameter C_ERROR_INJECTION_TYPE_WDCH = 0,
parameter C_ERROR_INJECTION_TYPE_WRCH = 0,
parameter C_ERROR_INJECTION_TYPE_RACH = 0,
parameter C_ERROR_INJECTION_TYPE_RDCH = 0,
parameter C_ERROR_INJECTION_TYPE_AXIS = 0,
// Input Data Width
// Accumulation of all AXI input signal's width
parameter C_DIN_WIDTH_WACH = 1,
parameter C_DIN_WIDTH_WDCH = 1,
parameter C_DIN_WIDTH_WRCH = 1,
parameter C_DIN_WIDTH_RACH = 1,
parameter C_DIN_WIDTH_RDCH = 1,
parameter C_DIN_WIDTH_AXIS = 1,
parameter C_WR_DEPTH_WACH = 16,
parameter C_WR_DEPTH_WDCH = 16,
parameter C_WR_DEPTH_WRCH = 16,
parameter C_WR_DEPTH_RACH = 16,
parameter C_WR_DEPTH_RDCH = 16,
parameter C_WR_DEPTH_AXIS = 16,
parameter C_WR_PNTR_WIDTH_WACH = 4,
parameter C_WR_PNTR_WIDTH_WDCH = 4,
parameter C_WR_PNTR_WIDTH_WRCH = 4,
parameter C_WR_PNTR_WIDTH_RACH = 4,
parameter C_WR_PNTR_WIDTH_RDCH = 4,
parameter C_WR_PNTR_WIDTH_AXIS = 4,
parameter C_HAS_DATA_COUNTS_WACH = 0,
parameter C_HAS_DATA_COUNTS_WDCH = 0,
parameter C_HAS_DATA_COUNTS_WRCH = 0,
parameter C_HAS_DATA_COUNTS_RACH = 0,
parameter C_HAS_DATA_COUNTS_RDCH = 0,
parameter C_HAS_DATA_COUNTS_AXIS = 0,
parameter C_HAS_PROG_FLAGS_WACH = 0,
parameter C_HAS_PROG_FLAGS_WDCH = 0,
parameter C_HAS_PROG_FLAGS_WRCH = 0,
parameter C_HAS_PROG_FLAGS_RACH = 0,
parameter C_HAS_PROG_FLAGS_RDCH = 0,
parameter C_HAS_PROG_FLAGS_AXIS = 0,
parameter C_PROG_FULL_TYPE_WACH = 0,
parameter C_PROG_FULL_TYPE_WDCH = 0,
parameter C_PROG_FULL_TYPE_WRCH = 0,
parameter C_PROG_FULL_TYPE_RACH = 0,
parameter C_PROG_FULL_TYPE_RDCH = 0,
parameter C_PROG_FULL_TYPE_AXIS = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_WACH = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_WDCH = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_WRCH = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_RACH = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_RDCH = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_AXIS = 0,
parameter C_PROG_EMPTY_TYPE_WACH = 0,
parameter C_PROG_EMPTY_TYPE_WDCH = 0,
parameter C_PROG_EMPTY_TYPE_WRCH = 0,
parameter C_PROG_EMPTY_TYPE_RACH = 0,
parameter C_PROG_EMPTY_TYPE_RDCH = 0,
parameter C_PROG_EMPTY_TYPE_AXIS = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS = 0,
parameter C_REG_SLICE_MODE_WACH = 0,
parameter C_REG_SLICE_MODE_WDCH = 0,
parameter C_REG_SLICE_MODE_WRCH = 0,
parameter C_REG_SLICE_MODE_RACH = 0,
parameter C_REG_SLICE_MODE_RDCH = 0,
parameter C_REG_SLICE_MODE_AXIS = 0
)
(
//------------------------------------------------------------------------------
// Input and Output Declarations
//------------------------------------------------------------------------------
// Conventional FIFO Interface Signals
input backup,
input backup_marker,
input clk,
input rst,
input srst,
input wr_clk,
input wr_rst,
input rd_clk,
input rd_rst,
input [C_DIN_WIDTH-1:0] din,
input wr_en,
input rd_en,
// Optional inputs
input [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh,
input [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_assert,
input [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_negate,
input [C_WR_PNTR_WIDTH-1:0] prog_full_thresh,
input [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_assert,
input [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_negate,
input int_clk,
input injectdbiterr,
input injectsbiterr,
input sleep,
output [C_DOUT_WIDTH-1:0] dout,
output full,
output almost_full,
output wr_ack,
output overflow,
output empty,
output almost_empty,
output valid,
output underflow,
output [C_DATA_COUNT_WIDTH-1:0] data_count,
output [C_RD_DATA_COUNT_WIDTH-1:0] rd_data_count,
output [C_WR_DATA_COUNT_WIDTH-1:0] wr_data_count,
output prog_full,
output prog_empty,
output sbiterr,
output dbiterr,
output wr_rst_busy,
output rd_rst_busy,
// AXI Global Signal
input m_aclk,
input s_aclk,
input s_aresetn,
input s_aclk_en,
input m_aclk_en,
// AXI Full/Lite Slave Write Channel (write side)
input [C_AXI_ID_WIDTH-1:0] s_axi_awid,
input [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr,
input [C_AXI_LEN_WIDTH-1:0] s_axi_awlen,
input [3-1:0] s_axi_awsize,
input [2-1:0] s_axi_awburst,
input [C_AXI_LOCK_WIDTH-1:0] s_axi_awlock,
input [4-1:0] s_axi_awcache,
input [3-1:0] s_axi_awprot,
input [4-1:0] s_axi_awqos,
input [4-1:0] s_axi_awregion,
input [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser,
input s_axi_awvalid,
output s_axi_awready,
input [C_AXI_ID_WIDTH-1:0] s_axi_wid,
input [C_AXI_DATA_WIDTH-1:0] s_axi_wdata,
input [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb,
input s_axi_wlast,
input [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser,
input s_axi_wvalid,
output s_axi_wready,
output [C_AXI_ID_WIDTH-1:0] s_axi_bid,
output [2-1:0] s_axi_bresp,
output [C_AXI_BUSER_WIDTH-1:0] s_axi_buser,
output s_axi_bvalid,
input s_axi_bready,
// AXI Full/Lite Master Write Channel (read side)
output [C_AXI_ID_WIDTH-1:0] m_axi_awid,
output [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr,
output [C_AXI_LEN_WIDTH-1:0] m_axi_awlen,
output [3-1:0] m_axi_awsize,
output [2-1:0] m_axi_awburst,
output [C_AXI_LOCK_WIDTH-1:0] m_axi_awlock,
output [4-1:0] m_axi_awcache,
output [3-1:0] m_axi_awprot,
output [4-1:0] m_axi_awqos,
output [4-1:0] m_axi_awregion,
output [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser,
output m_axi_awvalid,
input m_axi_awready,
output [C_AXI_ID_WIDTH-1:0] m_axi_wid,
output [C_AXI_DATA_WIDTH-1:0] m_axi_wdata,
output [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb,
output m_axi_wlast,
output [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser,
output m_axi_wvalid,
input m_axi_wready,
input [C_AXI_ID_WIDTH-1:0] m_axi_bid,
input [2-1:0] m_axi_bresp,
input [C_AXI_BUSER_WIDTH-1:0] m_axi_buser,
input m_axi_bvalid,
output m_axi_bready,
// AXI Full/Lite Slave Read Channel (write side)
input [C_AXI_ID_WIDTH-1:0] s_axi_arid,
input [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr,
input [C_AXI_LEN_WIDTH-1:0] s_axi_arlen,
input [3-1:0] s_axi_arsize,
input [2-1:0] s_axi_arburst,
input [C_AXI_LOCK_WIDTH-1:0] s_axi_arlock,
input [4-1:0] s_axi_arcache,
input [3-1:0] s_axi_arprot,
input [4-1:0] s_axi_arqos,
input [4-1:0] s_axi_arregion,
input [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser,
input s_axi_arvalid,
output s_axi_arready,
output [C_AXI_ID_WIDTH-1:0] s_axi_rid,
output [C_AXI_DATA_WIDTH-1:0] s_axi_rdata,
output [2-1:0] s_axi_rresp,
output s_axi_rlast,
output [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser,
output s_axi_rvalid,
input s_axi_rready,
// AXI Full/Lite Master Read Channel (read side)
output [C_AXI_ID_WIDTH-1:0] m_axi_arid,
output [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr,
output [C_AXI_LEN_WIDTH-1:0] m_axi_arlen,
output [3-1:0] m_axi_arsize,
output [2-1:0] m_axi_arburst,
output [C_AXI_LOCK_WIDTH-1:0] m_axi_arlock,
output [4-1:0] m_axi_arcache,
output [3-1:0] m_axi_arprot,
output [4-1:0] m_axi_arqos,
output [4-1:0] m_axi_arregion,
output [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser,
output m_axi_arvalid,
input m_axi_arready,
input [C_AXI_ID_WIDTH-1:0] m_axi_rid,
input [C_AXI_DATA_WIDTH-1:0] m_axi_rdata,
input [2-1:0] m_axi_rresp,
input m_axi_rlast,
input [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser,
input m_axi_rvalid,
output m_axi_rready,
// AXI Streaming Slave Signals (Write side)
input s_axis_tvalid,
output s_axis_tready,
input [C_AXIS_TDATA_WIDTH-1:0] s_axis_tdata,
input [C_AXIS_TSTRB_WIDTH-1:0] s_axis_tstrb,
input [C_AXIS_TKEEP_WIDTH-1:0] s_axis_tkeep,
input s_axis_tlast,
input [C_AXIS_TID_WIDTH-1:0] s_axis_tid,
input [C_AXIS_TDEST_WIDTH-1:0] s_axis_tdest,
input [C_AXIS_TUSER_WIDTH-1:0] s_axis_tuser,
// AXI Streaming Master Signals (Read side)
output m_axis_tvalid,
input m_axis_tready,
output [C_AXIS_TDATA_WIDTH-1:0] m_axis_tdata,
output [C_AXIS_TSTRB_WIDTH-1:0] m_axis_tstrb,
output [C_AXIS_TKEEP_WIDTH-1:0] m_axis_tkeep,
output m_axis_tlast,
output [C_AXIS_TID_WIDTH-1:0] m_axis_tid,
output [C_AXIS_TDEST_WIDTH-1:0] m_axis_tdest,
output [C_AXIS_TUSER_WIDTH-1:0] m_axis_tuser,
// AXI Full/Lite Write Address Channel signals
input axi_aw_injectsbiterr,
input axi_aw_injectdbiterr,
input [C_WR_PNTR_WIDTH_WACH-1:0] axi_aw_prog_full_thresh,
input [C_WR_PNTR_WIDTH_WACH-1:0] axi_aw_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_WACH:0] axi_aw_data_count,
output [C_WR_PNTR_WIDTH_WACH:0] axi_aw_wr_data_count,
output [C_WR_PNTR_WIDTH_WACH:0] axi_aw_rd_data_count,
output axi_aw_sbiterr,
output axi_aw_dbiterr,
output axi_aw_overflow,
output axi_aw_underflow,
output axi_aw_prog_full,
output axi_aw_prog_empty,
// AXI Full/Lite Write Data Channel signals
input axi_w_injectsbiterr,
input axi_w_injectdbiterr,
input [C_WR_PNTR_WIDTH_WDCH-1:0] axi_w_prog_full_thresh,
input [C_WR_PNTR_WIDTH_WDCH-1:0] axi_w_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_WDCH:0] axi_w_data_count,
output [C_WR_PNTR_WIDTH_WDCH:0] axi_w_wr_data_count,
output [C_WR_PNTR_WIDTH_WDCH:0] axi_w_rd_data_count,
output axi_w_sbiterr,
output axi_w_dbiterr,
output axi_w_overflow,
output axi_w_underflow,
output axi_w_prog_full,
output axi_w_prog_empty,
// AXI Full/Lite Write Response Channel signals
input axi_b_injectsbiterr,
input axi_b_injectdbiterr,
input [C_WR_PNTR_WIDTH_WRCH-1:0] axi_b_prog_full_thresh,
input [C_WR_PNTR_WIDTH_WRCH-1:0] axi_b_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_WRCH:0] axi_b_data_count,
output [C_WR_PNTR_WIDTH_WRCH:0] axi_b_wr_data_count,
output [C_WR_PNTR_WIDTH_WRCH:0] axi_b_rd_data_count,
output axi_b_sbiterr,
output axi_b_dbiterr,
output axi_b_overflow,
output axi_b_underflow,
output axi_b_prog_full,
output axi_b_prog_empty,
// AXI Full/Lite Read Address Channel signals
input axi_ar_injectsbiterr,
input axi_ar_injectdbiterr,
input [C_WR_PNTR_WIDTH_RACH-1:0] axi_ar_prog_full_thresh,
input [C_WR_PNTR_WIDTH_RACH-1:0] axi_ar_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_RACH:0] axi_ar_data_count,
output [C_WR_PNTR_WIDTH_RACH:0] axi_ar_wr_data_count,
output [C_WR_PNTR_WIDTH_RACH:0] axi_ar_rd_data_count,
output axi_ar_sbiterr,
output axi_ar_dbiterr,
output axi_ar_overflow,
output axi_ar_underflow,
output axi_ar_prog_full,
output axi_ar_prog_empty,
// AXI Full/Lite Read Data Channel Signals
input axi_r_injectsbiterr,
input axi_r_injectdbiterr,
input [C_WR_PNTR_WIDTH_RDCH-1:0] axi_r_prog_full_thresh,
input [C_WR_PNTR_WIDTH_RDCH-1:0] axi_r_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_RDCH:0] axi_r_data_count,
output [C_WR_PNTR_WIDTH_RDCH:0] axi_r_wr_data_count,
output [C_WR_PNTR_WIDTH_RDCH:0] axi_r_rd_data_count,
output axi_r_sbiterr,
output axi_r_dbiterr,
output axi_r_overflow,
output axi_r_underflow,
output axi_r_prog_full,
output axi_r_prog_empty,
// AXI Streaming FIFO Related Signals
input axis_injectsbiterr,
input axis_injectdbiterr,
input [C_WR_PNTR_WIDTH_AXIS-1:0] axis_prog_full_thresh,
input [C_WR_PNTR_WIDTH_AXIS-1:0] axis_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_AXIS:0] axis_data_count,
output [C_WR_PNTR_WIDTH_AXIS:0] axis_wr_data_count,
output [C_WR_PNTR_WIDTH_AXIS:0] axis_rd_data_count,
output axis_sbiterr,
output axis_dbiterr,
output axis_overflow,
output axis_underflow,
output axis_prog_full,
output axis_prog_empty
);
wire BACKUP;
wire BACKUP_MARKER;
wire CLK;
wire RST;
wire SRST;
wire WR_CLK;
wire WR_RST;
wire RD_CLK;
wire RD_RST;
wire [C_DIN_WIDTH-1:0] DIN;
wire WR_EN;
wire RD_EN;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE;
wire INT_CLK;
wire INJECTDBITERR;
wire INJECTSBITERR;
wire SLEEP;
wire [C_DOUT_WIDTH-1:0] DOUT;
wire FULL;
wire ALMOST_FULL;
wire WR_ACK;
wire OVERFLOW;
wire EMPTY;
wire ALMOST_EMPTY;
wire VALID;
wire UNDERFLOW;
wire [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT;
wire [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT;
wire [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT;
wire PROG_FULL;
wire PROG_EMPTY;
wire SBITERR;
wire DBITERR;
wire WR_RST_BUSY;
wire RD_RST_BUSY;
wire M_ACLK;
wire S_ACLK;
wire S_ARESETN;
wire S_ACLK_EN;
wire M_ACLK_EN;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID;
wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR;
wire [C_AXI_LEN_WIDTH-1:0] S_AXI_AWLEN;
wire [3-1:0] S_AXI_AWSIZE;
wire [2-1:0] S_AXI_AWBURST;
wire [C_AXI_LOCK_WIDTH-1:0] S_AXI_AWLOCK;
wire [4-1:0] S_AXI_AWCACHE;
wire [3-1:0] S_AXI_AWPROT;
wire [4-1:0] S_AXI_AWQOS;
wire [4-1:0] S_AXI_AWREGION;
wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER;
wire S_AXI_AWVALID;
wire S_AXI_AWREADY;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_WID;
wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA;
wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB;
wire S_AXI_WLAST;
wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER;
wire S_AXI_WVALID;
wire S_AXI_WREADY;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID;
wire [2-1:0] S_AXI_BRESP;
wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER;
wire S_AXI_BVALID;
wire S_AXI_BREADY;
wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID;
wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR;
wire [C_AXI_LEN_WIDTH-1:0] M_AXI_AWLEN;
wire [3-1:0] M_AXI_AWSIZE;
wire [2-1:0] M_AXI_AWBURST;
wire [C_AXI_LOCK_WIDTH-1:0] M_AXI_AWLOCK;
wire [4-1:0] M_AXI_AWCACHE;
wire [3-1:0] M_AXI_AWPROT;
wire [4-1:0] M_AXI_AWQOS;
wire [4-1:0] M_AXI_AWREGION;
wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER;
wire M_AXI_AWVALID;
wire M_AXI_AWREADY;
wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID;
wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA;
wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB;
wire M_AXI_WLAST;
wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER;
wire M_AXI_WVALID;
wire M_AXI_WREADY;
wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID;
wire [2-1:0] M_AXI_BRESP;
wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER;
wire M_AXI_BVALID;
wire M_AXI_BREADY;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID;
wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR;
wire [C_AXI_LEN_WIDTH-1:0] S_AXI_ARLEN;
wire [3-1:0] S_AXI_ARSIZE;
wire [2-1:0] S_AXI_ARBURST;
wire [C_AXI_LOCK_WIDTH-1:0] S_AXI_ARLOCK;
wire [4-1:0] S_AXI_ARCACHE;
wire [3-1:0] S_AXI_ARPROT;
wire [4-1:0] S_AXI_ARQOS;
wire [4-1:0] S_AXI_ARREGION;
wire [C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER;
wire S_AXI_ARVALID;
wire S_AXI_ARREADY;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID;
wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA;
wire [2-1:0] S_AXI_RRESP;
wire S_AXI_RLAST;
wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER;
wire S_AXI_RVALID;
wire S_AXI_RREADY;
wire [C_AXI_ID_WIDTH-1:0] M_AXI_ARID;
wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR;
wire [C_AXI_LEN_WIDTH-1:0] M_AXI_ARLEN;
wire [3-1:0] M_AXI_ARSIZE;
wire [2-1:0] M_AXI_ARBURST;
wire [C_AXI_LOCK_WIDTH-1:0] M_AXI_ARLOCK;
wire [4-1:0] M_AXI_ARCACHE;
wire [3-1:0] M_AXI_ARPROT;
wire [4-1:0] M_AXI_ARQOS;
wire [4-1:0] M_AXI_ARREGION;
wire [C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER;
wire M_AXI_ARVALID;
wire M_AXI_ARREADY;
wire [C_AXI_ID_WIDTH-1:0] M_AXI_RID;
wire [C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA;
wire [2-1:0] M_AXI_RRESP;
wire M_AXI_RLAST;
wire [C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER;
wire M_AXI_RVALID;
wire M_AXI_RREADY;
wire S_AXIS_TVALID;
wire S_AXIS_TREADY;
wire [C_AXIS_TDATA_WIDTH-1:0] S_AXIS_TDATA;
wire [C_AXIS_TSTRB_WIDTH-1:0] S_AXIS_TSTRB;
wire [C_AXIS_TKEEP_WIDTH-1:0] S_AXIS_TKEEP;
wire S_AXIS_TLAST;
wire [C_AXIS_TID_WIDTH-1:0] S_AXIS_TID;
wire [C_AXIS_TDEST_WIDTH-1:0] S_AXIS_TDEST;
wire [C_AXIS_TUSER_WIDTH-1:0] S_AXIS_TUSER;
wire M_AXIS_TVALID;
wire M_AXIS_TREADY;
wire [C_AXIS_TDATA_WIDTH-1:0] M_AXIS_TDATA;
wire [C_AXIS_TSTRB_WIDTH-1:0] M_AXIS_TSTRB;
wire [C_AXIS_TKEEP_WIDTH-1:0] M_AXIS_TKEEP;
wire M_AXIS_TLAST;
wire [C_AXIS_TID_WIDTH-1:0] M_AXIS_TID;
wire [C_AXIS_TDEST_WIDTH-1:0] M_AXIS_TDEST;
wire [C_AXIS_TUSER_WIDTH-1:0] M_AXIS_TUSER;
wire AXI_AW_INJECTSBITERR;
wire AXI_AW_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_WACH-1:0] AXI_AW_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_WACH-1:0] AXI_AW_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_WACH:0] AXI_AW_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WACH:0] AXI_AW_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WACH:0] AXI_AW_RD_DATA_COUNT;
wire AXI_AW_SBITERR;
wire AXI_AW_DBITERR;
wire AXI_AW_OVERFLOW;
wire AXI_AW_UNDERFLOW;
wire AXI_AW_PROG_FULL;
wire AXI_AW_PROG_EMPTY;
wire AXI_W_INJECTSBITERR;
wire AXI_W_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_WDCH-1:0] AXI_W_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_WDCH-1:0] AXI_W_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_WDCH:0] AXI_W_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WDCH:0] AXI_W_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WDCH:0] AXI_W_RD_DATA_COUNT;
wire AXI_W_SBITERR;
wire AXI_W_DBITERR;
wire AXI_W_OVERFLOW;
wire AXI_W_UNDERFLOW;
wire AXI_W_PROG_FULL;
wire AXI_W_PROG_EMPTY;
wire AXI_B_INJECTSBITERR;
wire AXI_B_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_WRCH-1:0] AXI_B_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_WRCH-1:0] AXI_B_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_WRCH:0] AXI_B_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WRCH:0] AXI_B_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WRCH:0] AXI_B_RD_DATA_COUNT;
wire AXI_B_SBITERR;
wire AXI_B_DBITERR;
wire AXI_B_OVERFLOW;
wire AXI_B_UNDERFLOW;
wire AXI_B_PROG_FULL;
wire AXI_B_PROG_EMPTY;
wire AXI_AR_INJECTSBITERR;
wire AXI_AR_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_RACH-1:0] AXI_AR_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_RACH-1:0] AXI_AR_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_RACH:0] AXI_AR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_RACH:0] AXI_AR_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_RACH:0] AXI_AR_RD_DATA_COUNT;
wire AXI_AR_SBITERR;
wire AXI_AR_DBITERR;
wire AXI_AR_OVERFLOW;
wire AXI_AR_UNDERFLOW;
wire AXI_AR_PROG_FULL;
wire AXI_AR_PROG_EMPTY;
wire AXI_R_INJECTSBITERR;
wire AXI_R_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_RDCH-1:0] AXI_R_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_RDCH-1:0] AXI_R_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_RDCH:0] AXI_R_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_RDCH:0] AXI_R_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_RDCH:0] AXI_R_RD_DATA_COUNT;
wire AXI_R_SBITERR;
wire AXI_R_DBITERR;
wire AXI_R_OVERFLOW;
wire AXI_R_UNDERFLOW;
wire AXI_R_PROG_FULL;
wire AXI_R_PROG_EMPTY;
wire AXIS_INJECTSBITERR;
wire AXIS_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_AXIS-1:0] AXIS_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_AXIS-1:0] AXIS_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_AXIS:0] AXIS_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_AXIS:0] AXIS_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_AXIS:0] AXIS_RD_DATA_COUNT;
wire AXIS_SBITERR;
wire AXIS_DBITERR;
wire AXIS_OVERFLOW;
wire AXIS_UNDERFLOW;
wire AXIS_PROG_FULL;
wire AXIS_PROG_EMPTY;
wire [C_WR_DATA_COUNT_WIDTH-1:0] wr_data_count_in;
wire wr_rst_int;
wire rd_rst_int;
function integer find_log2;
input integer int_val;
integer i,j;
begin
i = 1;
j = 0;
for (i = 1; i < int_val; i = i*2) begin
j = j + 1;
end
find_log2 = j;
end
endfunction
// Conventional FIFO Interface Signals
assign BACKUP = backup;
assign BACKUP_MARKER = backup_marker;
assign CLK = clk;
assign RST = rst;
assign SRST = srst;
assign WR_CLK = wr_clk;
assign WR_RST = wr_rst;
assign RD_CLK = rd_clk;
assign RD_RST = rd_rst;
assign WR_EN = wr_en;
assign RD_EN = rd_en;
assign INT_CLK = int_clk;
assign INJECTDBITERR = injectdbiterr;
assign INJECTSBITERR = injectsbiterr;
assign SLEEP = sleep;
assign full = FULL;
assign almost_full = ALMOST_FULL;
assign wr_ack = WR_ACK;
assign overflow = OVERFLOW;
assign empty = EMPTY;
assign almost_empty = ALMOST_EMPTY;
assign valid = VALID;
assign underflow = UNDERFLOW;
assign prog_full = PROG_FULL;
assign prog_empty = PROG_EMPTY;
assign sbiterr = SBITERR;
assign dbiterr = DBITERR;
assign wr_rst_busy = WR_RST_BUSY;
assign rd_rst_busy = RD_RST_BUSY;
assign M_ACLK = m_aclk;
assign S_ACLK = s_aclk;
assign S_ARESETN = s_aresetn;
assign S_ACLK_EN = s_aclk_en;
assign M_ACLK_EN = m_aclk_en;
assign S_AXI_AWVALID = s_axi_awvalid;
assign s_axi_awready = S_AXI_AWREADY;
assign S_AXI_WLAST = s_axi_wlast;
assign S_AXI_WVALID = s_axi_wvalid;
assign s_axi_wready = S_AXI_WREADY;
assign s_axi_bvalid = S_AXI_BVALID;
assign S_AXI_BREADY = s_axi_bready;
assign m_axi_awvalid = M_AXI_AWVALID;
assign M_AXI_AWREADY = m_axi_awready;
assign m_axi_wlast = M_AXI_WLAST;
assign m_axi_wvalid = M_AXI_WVALID;
assign M_AXI_WREADY = m_axi_wready;
assign M_AXI_BVALID = m_axi_bvalid;
assign m_axi_bready = M_AXI_BREADY;
assign S_AXI_ARVALID = s_axi_arvalid;
assign s_axi_arready = S_AXI_ARREADY;
assign s_axi_rlast = S_AXI_RLAST;
assign s_axi_rvalid = S_AXI_RVALID;
assign S_AXI_RREADY = s_axi_rready;
assign m_axi_arvalid = M_AXI_ARVALID;
assign M_AXI_ARREADY = m_axi_arready;
assign M_AXI_RLAST = m_axi_rlast;
assign M_AXI_RVALID = m_axi_rvalid;
assign m_axi_rready = M_AXI_RREADY;
assign S_AXIS_TVALID = s_axis_tvalid;
assign s_axis_tready = S_AXIS_TREADY;
assign S_AXIS_TLAST = s_axis_tlast;
assign m_axis_tvalid = M_AXIS_TVALID;
assign M_AXIS_TREADY = m_axis_tready;
assign m_axis_tlast = M_AXIS_TLAST;
assign AXI_AW_INJECTSBITERR = axi_aw_injectsbiterr;
assign AXI_AW_INJECTDBITERR = axi_aw_injectdbiterr;
assign axi_aw_sbiterr = AXI_AW_SBITERR;
assign axi_aw_dbiterr = AXI_AW_DBITERR;
assign axi_aw_overflow = AXI_AW_OVERFLOW;
assign axi_aw_underflow = AXI_AW_UNDERFLOW;
assign axi_aw_prog_full = AXI_AW_PROG_FULL;
assign axi_aw_prog_empty = AXI_AW_PROG_EMPTY;
assign AXI_W_INJECTSBITERR = axi_w_injectsbiterr;
assign AXI_W_INJECTDBITERR = axi_w_injectdbiterr;
assign axi_w_sbiterr = AXI_W_SBITERR;
assign axi_w_dbiterr = AXI_W_DBITERR;
assign axi_w_overflow = AXI_W_OVERFLOW;
assign axi_w_underflow = AXI_W_UNDERFLOW;
assign axi_w_prog_full = AXI_W_PROG_FULL;
assign axi_w_prog_empty = AXI_W_PROG_EMPTY;
assign AXI_B_INJECTSBITERR = axi_b_injectsbiterr;
assign AXI_B_INJECTDBITERR = axi_b_injectdbiterr;
assign axi_b_sbiterr = AXI_B_SBITERR;
assign axi_b_dbiterr = AXI_B_DBITERR;
assign axi_b_overflow = AXI_B_OVERFLOW;
assign axi_b_underflow = AXI_B_UNDERFLOW;
assign axi_b_prog_full = AXI_B_PROG_FULL;
assign axi_b_prog_empty = AXI_B_PROG_EMPTY;
assign AXI_AR_INJECTSBITERR = axi_ar_injectsbiterr;
assign AXI_AR_INJECTDBITERR = axi_ar_injectdbiterr;
assign axi_ar_sbiterr = AXI_AR_SBITERR;
assign axi_ar_dbiterr = AXI_AR_DBITERR;
assign axi_ar_overflow = AXI_AR_OVERFLOW;
assign axi_ar_underflow = AXI_AR_UNDERFLOW;
assign axi_ar_prog_full = AXI_AR_PROG_FULL;
assign axi_ar_prog_empty = AXI_AR_PROG_EMPTY;
assign AXI_R_INJECTSBITERR = axi_r_injectsbiterr;
assign AXI_R_INJECTDBITERR = axi_r_injectdbiterr;
assign axi_r_sbiterr = AXI_R_SBITERR;
assign axi_r_dbiterr = AXI_R_DBITERR;
assign axi_r_overflow = AXI_R_OVERFLOW;
assign axi_r_underflow = AXI_R_UNDERFLOW;
assign axi_r_prog_full = AXI_R_PROG_FULL;
assign axi_r_prog_empty = AXI_R_PROG_EMPTY;
assign AXIS_INJECTSBITERR = axis_injectsbiterr;
assign AXIS_INJECTDBITERR = axis_injectdbiterr;
assign axis_sbiterr = AXIS_SBITERR;
assign axis_dbiterr = AXIS_DBITERR;
assign axis_overflow = AXIS_OVERFLOW;
assign axis_underflow = AXIS_UNDERFLOW;
assign axis_prog_full = AXIS_PROG_FULL;
assign axis_prog_empty = AXIS_PROG_EMPTY;
assign DIN = din;
assign PROG_EMPTY_THRESH = prog_empty_thresh;
assign PROG_EMPTY_THRESH_ASSERT = prog_empty_thresh_assert;
assign PROG_EMPTY_THRESH_NEGATE = prog_empty_thresh_negate;
assign PROG_FULL_THRESH = prog_full_thresh;
assign PROG_FULL_THRESH_ASSERT = prog_full_thresh_assert;
assign PROG_FULL_THRESH_NEGATE = prog_full_thresh_negate;
assign dout = DOUT;
assign data_count = DATA_COUNT;
assign rd_data_count = RD_DATA_COUNT;
assign wr_data_count = WR_DATA_COUNT;
assign S_AXI_AWID = s_axi_awid;
assign S_AXI_AWADDR = s_axi_awaddr;
assign S_AXI_AWLEN = s_axi_awlen;
assign S_AXI_AWSIZE = s_axi_awsize;
assign S_AXI_AWBURST = s_axi_awburst;
assign S_AXI_AWLOCK = s_axi_awlock;
assign S_AXI_AWCACHE = s_axi_awcache;
assign S_AXI_AWPROT = s_axi_awprot;
assign S_AXI_AWQOS = s_axi_awqos;
assign S_AXI_AWREGION = s_axi_awregion;
assign S_AXI_AWUSER = s_axi_awuser;
assign S_AXI_WID = s_axi_wid;
assign S_AXI_WDATA = s_axi_wdata;
assign S_AXI_WSTRB = s_axi_wstrb;
assign S_AXI_WUSER = s_axi_wuser;
assign s_axi_bid = S_AXI_BID;
assign s_axi_bresp = S_AXI_BRESP;
assign s_axi_buser = S_AXI_BUSER;
assign m_axi_awid = M_AXI_AWID;
assign m_axi_awaddr = M_AXI_AWADDR;
assign m_axi_awlen = M_AXI_AWLEN;
assign m_axi_awsize = M_AXI_AWSIZE;
assign m_axi_awburst = M_AXI_AWBURST;
assign m_axi_awlock = M_AXI_AWLOCK;
assign m_axi_awcache = M_AXI_AWCACHE;
assign m_axi_awprot = M_AXI_AWPROT;
assign m_axi_awqos = M_AXI_AWQOS;
assign m_axi_awregion = M_AXI_AWREGION;
assign m_axi_awuser = M_AXI_AWUSER;
assign m_axi_wid = M_AXI_WID;
assign m_axi_wdata = M_AXI_WDATA;
assign m_axi_wstrb = M_AXI_WSTRB;
assign m_axi_wuser = M_AXI_WUSER;
assign M_AXI_BID = m_axi_bid;
assign M_AXI_BRESP = m_axi_bresp;
assign M_AXI_BUSER = m_axi_buser;
assign S_AXI_ARID = s_axi_arid;
assign S_AXI_ARADDR = s_axi_araddr;
assign S_AXI_ARLEN = s_axi_arlen;
assign S_AXI_ARSIZE = s_axi_arsize;
assign S_AXI_ARBURST = s_axi_arburst;
assign S_AXI_ARLOCK = s_axi_arlock;
assign S_AXI_ARCACHE = s_axi_arcache;
assign S_AXI_ARPROT = s_axi_arprot;
assign S_AXI_ARQOS = s_axi_arqos;
assign S_AXI_ARREGION = s_axi_arregion;
assign S_AXI_ARUSER = s_axi_aruser;
assign s_axi_rid = S_AXI_RID;
assign s_axi_rdata = S_AXI_RDATA;
assign s_axi_rresp = S_AXI_RRESP;
assign s_axi_ruser = S_AXI_RUSER;
assign m_axi_arid = M_AXI_ARID;
assign m_axi_araddr = M_AXI_ARADDR;
assign m_axi_arlen = M_AXI_ARLEN;
assign m_axi_arsize = M_AXI_ARSIZE;
assign m_axi_arburst = M_AXI_ARBURST;
assign m_axi_arlock = M_AXI_ARLOCK;
assign m_axi_arcache = M_AXI_ARCACHE;
assign m_axi_arprot = M_AXI_ARPROT;
assign m_axi_arqos = M_AXI_ARQOS;
assign m_axi_arregion = M_AXI_ARREGION;
assign m_axi_aruser = M_AXI_ARUSER;
assign M_AXI_RID = m_axi_rid;
assign M_AXI_RDATA = m_axi_rdata;
assign M_AXI_RRESP = m_axi_rresp;
assign M_AXI_RUSER = m_axi_ruser;
assign S_AXIS_TDATA = s_axis_tdata;
assign S_AXIS_TSTRB = s_axis_tstrb;
assign S_AXIS_TKEEP = s_axis_tkeep;
assign S_AXIS_TID = s_axis_tid;
assign S_AXIS_TDEST = s_axis_tdest;
assign S_AXIS_TUSER = s_axis_tuser;
assign m_axis_tdata = M_AXIS_TDATA;
assign m_axis_tstrb = M_AXIS_TSTRB;
assign m_axis_tkeep = M_AXIS_TKEEP;
assign m_axis_tid = M_AXIS_TID;
assign m_axis_tdest = M_AXIS_TDEST;
assign m_axis_tuser = M_AXIS_TUSER;
assign AXI_AW_PROG_FULL_THRESH = axi_aw_prog_full_thresh;
assign AXI_AW_PROG_EMPTY_THRESH = axi_aw_prog_empty_thresh;
assign axi_aw_data_count = AXI_AW_DATA_COUNT;
assign axi_aw_wr_data_count = AXI_AW_WR_DATA_COUNT;
assign axi_aw_rd_data_count = AXI_AW_RD_DATA_COUNT;
assign AXI_W_PROG_FULL_THRESH = axi_w_prog_full_thresh;
assign AXI_W_PROG_EMPTY_THRESH = axi_w_prog_empty_thresh;
assign axi_w_data_count = AXI_W_DATA_COUNT;
assign axi_w_wr_data_count = AXI_W_WR_DATA_COUNT;
assign axi_w_rd_data_count = AXI_W_RD_DATA_COUNT;
assign AXI_B_PROG_FULL_THRESH = axi_b_prog_full_thresh;
assign AXI_B_PROG_EMPTY_THRESH = axi_b_prog_empty_thresh;
assign axi_b_data_count = AXI_B_DATA_COUNT;
assign axi_b_wr_data_count = AXI_B_WR_DATA_COUNT;
assign axi_b_rd_data_count = AXI_B_RD_DATA_COUNT;
assign AXI_AR_PROG_FULL_THRESH = axi_ar_prog_full_thresh;
assign AXI_AR_PROG_EMPTY_THRESH = axi_ar_prog_empty_thresh;
assign axi_ar_data_count = AXI_AR_DATA_COUNT;
assign axi_ar_wr_data_count = AXI_AR_WR_DATA_COUNT;
assign axi_ar_rd_data_count = AXI_AR_RD_DATA_COUNT;
assign AXI_R_PROG_FULL_THRESH = axi_r_prog_full_thresh;
assign AXI_R_PROG_EMPTY_THRESH = axi_r_prog_empty_thresh;
assign axi_r_data_count = AXI_R_DATA_COUNT;
assign axi_r_wr_data_count = AXI_R_WR_DATA_COUNT;
assign axi_r_rd_data_count = AXI_R_RD_DATA_COUNT;
assign AXIS_PROG_FULL_THRESH = axis_prog_full_thresh;
assign AXIS_PROG_EMPTY_THRESH = axis_prog_empty_thresh;
assign axis_data_count = AXIS_DATA_COUNT;
assign axis_wr_data_count = AXIS_WR_DATA_COUNT;
assign axis_rd_data_count = AXIS_RD_DATA_COUNT;
generate if (C_INTERFACE_TYPE == 0) begin : conv_fifo
FIFO_GENERATOR_v12_0_CONV_VER
#(
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DATA_COUNT_WIDTH (C_DATA_COUNT_WIDTH),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_DIN_WIDTH (C_DIN_WIDTH),
.C_DOUT_RST_VAL (C_USE_DOUT_RST == 1 ? C_DOUT_RST_VAL : 0),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_FAMILY (C_FAMILY),
.C_FULL_FLAGS_RST_VAL (C_FULL_FLAGS_RST_VAL),
.C_HAS_ALMOST_EMPTY (C_HAS_ALMOST_EMPTY),
.C_HAS_ALMOST_FULL (C_HAS_ALMOST_FULL),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_DATA_COUNT (C_HAS_DATA_COUNT),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT),
.C_HAS_RD_RST (C_HAS_RD_RST),
.C_HAS_RST (C_HAS_RST),
.C_HAS_SRST (C_HAS_SRST),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_HAS_VALID (C_HAS_VALID),
.C_HAS_WR_ACK (C_HAS_WR_ACK),
.C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT),
.C_HAS_WR_RST (C_HAS_WR_RST),
.C_IMPLEMENTATION_TYPE (C_IMPLEMENTATION_TYPE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_MEMORY_TYPE (C_MEMORY_TYPE),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_PRELOAD_LATENCY (C_PRELOAD_LATENCY),
.C_PRELOAD_REGS (C_PRELOAD_REGS),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL),
.C_PROG_EMPTY_THRESH_NEGATE_VAL (C_PROG_EMPTY_THRESH_NEGATE_VAL),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL),
.C_PROG_FULL_THRESH_NEGATE_VAL (C_PROG_FULL_THRESH_NEGATE_VAL),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE),
.C_RD_DATA_COUNT_WIDTH (C_RD_DATA_COUNT_WIDTH),
.C_RD_DEPTH (C_RD_DEPTH),
.C_RD_FREQ (C_RD_FREQ),
.C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_USE_ECC (C_USE_ECC),
.C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_USE_FWFT_DATA_COUNT (C_USE_FWFT_DATA_COUNT),
.C_VALID_LOW (C_VALID_LOW),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH),
.C_WR_DEPTH (C_WR_DEPTH),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE),
.C_AXI_TYPE (C_AXI_TYPE),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE)
)
fifo_generator_v12_0_conv_dut
(
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.CLK (CLK),
.RST (RST),
.SRST (SRST),
.WR_CLK (WR_CLK),
.WR_RST (WR_RST),
.RD_CLK (RD_CLK),
.RD_RST (RD_RST),
.DIN (DIN),
.WR_EN (WR_EN),
.RD_EN (RD_EN),
.PROG_EMPTY_THRESH (PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT (PROG_EMPTY_THRESH_ASSERT),
.PROG_EMPTY_THRESH_NEGATE (PROG_EMPTY_THRESH_NEGATE),
.PROG_FULL_THRESH (PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT (PROG_FULL_THRESH_ASSERT),
.PROG_FULL_THRESH_NEGATE (PROG_FULL_THRESH_NEGATE),
.INT_CLK (INT_CLK),
.INJECTDBITERR (INJECTDBITERR),
.INJECTSBITERR (INJECTSBITERR),
.DOUT (DOUT),
.FULL (FULL),
.ALMOST_FULL (ALMOST_FULL),
.WR_ACK (WR_ACK),
.OVERFLOW (OVERFLOW),
.EMPTY (EMPTY),
.ALMOST_EMPTY (ALMOST_EMPTY),
.VALID (VALID),
.UNDERFLOW (UNDERFLOW),
.DATA_COUNT (DATA_COUNT),
.RD_DATA_COUNT (RD_DATA_COUNT),
.WR_DATA_COUNT (wr_data_count_in),
.PROG_FULL (PROG_FULL),
.PROG_EMPTY (PROG_EMPTY),
.SBITERR (SBITERR),
.DBITERR (DBITERR),
.wr_rst_busy (wr_rst_busy),
.rd_rst_busy (rd_rst_busy),
.wr_rst_i_out (wr_rst_int),
.rd_rst_i_out (rd_rst_int)
);
end endgenerate
localparam IS_8SERIES = (C_FAMILY == "virtexu" || C_FAMILY == "kintexu" || C_FAMILY == "artixu" || C_FAMILY == "virtexum" || C_FAMILY == "zynque") ? 1 : 0;
localparam C_AXI_SIZE_WIDTH = 3;
localparam C_AXI_BURST_WIDTH = 2;
localparam C_AXI_CACHE_WIDTH = 4;
localparam C_AXI_PROT_WIDTH = 3;
localparam C_AXI_QOS_WIDTH = 4;
localparam C_AXI_REGION_WIDTH = 4;
localparam C_AXI_BRESP_WIDTH = 2;
localparam C_AXI_RRESP_WIDTH = 2;
localparam IS_AXI_STREAMING = C_INTERFACE_TYPE == 1 ? 1 : 0;
localparam TDATA_OFFSET = C_HAS_AXIS_TDATA == 1 ? C_DIN_WIDTH_AXIS-C_AXIS_TDATA_WIDTH : C_DIN_WIDTH_AXIS;
localparam TSTRB_OFFSET = C_HAS_AXIS_TSTRB == 1 ? TDATA_OFFSET-C_AXIS_TSTRB_WIDTH : TDATA_OFFSET;
localparam TKEEP_OFFSET = C_HAS_AXIS_TKEEP == 1 ? TSTRB_OFFSET-C_AXIS_TKEEP_WIDTH : TSTRB_OFFSET;
localparam TID_OFFSET = C_HAS_AXIS_TID == 1 ? TKEEP_OFFSET-C_AXIS_TID_WIDTH : TKEEP_OFFSET;
localparam TDEST_OFFSET = C_HAS_AXIS_TDEST == 1 ? TID_OFFSET-C_AXIS_TDEST_WIDTH : TID_OFFSET;
localparam TUSER_OFFSET = C_HAS_AXIS_TUSER == 1 ? TDEST_OFFSET-C_AXIS_TUSER_WIDTH : TDEST_OFFSET;
localparam LOG_DEPTH_AXIS = find_log2(C_WR_DEPTH_AXIS);
localparam LOG_WR_DEPTH = find_log2(C_WR_DEPTH);
function [LOG_DEPTH_AXIS-1:0] bin2gray;
input [LOG_DEPTH_AXIS-1:0] x;
begin
bin2gray = x ^ (x>>1);
end
endfunction
function [LOG_DEPTH_AXIS-1:0] gray2bin;
input [LOG_DEPTH_AXIS-1:0] x;
integer i;
begin
gray2bin[LOG_DEPTH_AXIS-1] = x[LOG_DEPTH_AXIS-1];
for(i=LOG_DEPTH_AXIS-2; i>=0; i=i-1) begin
gray2bin[i] = gray2bin[i+1] ^ x[i];
end
end
endfunction
wire [(LOG_WR_DEPTH)-1 : 0] w_cnt_gc_asreg_last;
wire [LOG_WR_DEPTH-1 : 0] w_q [0:C_SYNCHRONIZER_STAGE] ;
wire [LOG_WR_DEPTH-1 : 0] w_q_temp [1:C_SYNCHRONIZER_STAGE] ;
reg [LOG_WR_DEPTH-1 : 0] w_cnt_rd = 0;
reg [LOG_WR_DEPTH-1 : 0] w_cnt = 0;
reg [LOG_WR_DEPTH-1 : 0] w_cnt_gc = 0;
reg [LOG_WR_DEPTH-1 : 0] r_cnt = 0;
wire [LOG_WR_DEPTH : 0] adj_w_cnt_rd_pad;
wire [LOG_WR_DEPTH : 0] r_inv_pad;
wire [LOG_WR_DEPTH-1 : 0] d_cnt;
reg [LOG_WR_DEPTH : 0] d_cnt_pad = 0;
reg adj_w_cnt_rd_pad_0 = 0;
reg r_inv_pad_0 = 0;
genvar l;
generate for (l = 1; ((l <= C_SYNCHRONIZER_STAGE) && (C_HAS_DATA_COUNTS_AXIS == 3 && C_INTERFACE_TYPE == 0) ); l = l + 1) begin : g_cnt_sync_stage
fifo_generator_v12_0_sync_stage
#(
.C_WIDTH (LOG_WR_DEPTH)
)
rd_stg_inst
(
.RST (rd_rst_int),
.CLK (RD_CLK),
.DIN (w_q[l-1]),
.DOUT (w_q[l])
);
end endgenerate // gpkt_cnt_sync_stage
generate if (C_INTERFACE_TYPE == 0 && C_HAS_DATA_COUNTS_AXIS == 3) begin : fifo_ic_adapter
assign wr_eop_ad = WR_EN & !(FULL);
assign rd_eop_ad = RD_EN & !(EMPTY);
always @ (posedge wr_rst_int or posedge WR_CLK)
begin
if (wr_rst_int)
w_cnt <= 1'b0;
else if (wr_eop_ad)
w_cnt <= w_cnt + 1;
end
always @ (posedge wr_rst_int or posedge WR_CLK)
begin
if (wr_rst_int)
w_cnt_gc <= 1'b0;
else
w_cnt_gc <= bin2gray(w_cnt);
end
assign w_q[0] = w_cnt_gc;
assign w_cnt_gc_asreg_last = w_q[C_SYNCHRONIZER_STAGE];
always @ (posedge rd_rst_int or posedge RD_CLK)
begin
if (rd_rst_int)
w_cnt_rd <= 1'b0;
else
w_cnt_rd <= gray2bin(w_cnt_gc_asreg_last);
end
always @ (posedge rd_rst_int or posedge RD_CLK)
begin
if (rd_rst_int)
r_cnt <= 1'b0;
else if (rd_eop_ad)
r_cnt <= r_cnt + 1;
end
// Take the difference of write and read packet count
// Logic is similar to rd_pe_as
assign adj_w_cnt_rd_pad[LOG_WR_DEPTH : 1] = w_cnt_rd;
assign r_inv_pad[LOG_WR_DEPTH : 1] = ~r_cnt;
assign adj_w_cnt_rd_pad[0] = adj_w_cnt_rd_pad_0;
assign r_inv_pad[0] = r_inv_pad_0;
always @ ( rd_eop_ad )
begin
if (!rd_eop_ad) begin
adj_w_cnt_rd_pad_0 <= 1'b1;
r_inv_pad_0 <= 1'b1;
end else begin
adj_w_cnt_rd_pad_0 <= 1'b0;
r_inv_pad_0 <= 1'b0;
end
end
always @ (posedge rd_rst_int or posedge RD_CLK)
begin
if (rd_rst_int)
d_cnt_pad <= 1'b0;
else
d_cnt_pad <= adj_w_cnt_rd_pad + r_inv_pad ;
end
assign d_cnt = d_cnt_pad [LOG_WR_DEPTH : 1] ;
assign WR_DATA_COUNT = d_cnt;
end endgenerate // fifo_ic_adapter
generate if (C_INTERFACE_TYPE == 0 && C_HAS_DATA_COUNTS_AXIS != 3) begin : fifo_icn_adapter
assign WR_DATA_COUNT = wr_data_count_in;
end endgenerate // fifo_icn_adapter
wire inverted_reset = ~S_ARESETN;
wire axi_rs_rst;
reg rst_d1 = 0 ;
reg rst_d2 = 0 ;
wire [C_DIN_WIDTH_AXIS-1:0] axis_din ;
wire [C_DIN_WIDTH_AXIS-1:0] axis_dout ;
wire axis_full ;
wire axis_almost_full ;
wire axis_empty ;
wire axis_s_axis_tready;
wire axis_m_axis_tvalid;
wire axis_wr_en ;
wire axis_rd_en ;
wire axis_we ;
wire axis_re ;
wire [C_WR_PNTR_WIDTH_AXIS:0] axis_dc;
reg axis_pkt_read = 1'b0;
wire axis_rd_rst;
wire axis_wr_rst;
generate if (C_INTERFACE_TYPE > 0 && (C_AXIS_TYPE == 1 || C_WACH_TYPE == 1 ||
C_WDCH_TYPE == 1 || C_WRCH_TYPE == 1 || C_RACH_TYPE == 1 || C_RDCH_TYPE == 1)) begin : gaxi_rs_rst
always @ (posedge inverted_reset or posedge S_ACLK) begin
if (inverted_reset) begin
rst_d1 <= 1'b1;
rst_d2 <= 1'b1;
end else begin
rst_d1 <= #`TCQ 1'b0;
rst_d2 <= #`TCQ rst_d1;
end
end
assign axi_rs_rst = rst_d2;
end endgenerate // gaxi_rs_rst
generate if (IS_AXI_STREAMING == 1 && C_AXIS_TYPE == 0) begin : axi_streaming
// Write protection when almost full or prog_full is high
assign axis_we = (C_PROG_FULL_TYPE_AXIS != 0) ? axis_s_axis_tready & S_AXIS_TVALID :
(C_APPLICATION_TYPE_AXIS == 1) ? axis_s_axis_tready & S_AXIS_TVALID : S_AXIS_TVALID;
// Read protection when almost empty or prog_empty is high
assign axis_re = (C_PROG_EMPTY_TYPE_AXIS != 0) ? axis_m_axis_tvalid & M_AXIS_TREADY :
(C_APPLICATION_TYPE_AXIS == 1) ? axis_m_axis_tvalid & M_AXIS_TREADY : M_AXIS_TREADY;
assign axis_wr_en = (C_HAS_SLAVE_CE == 1) ? axis_we & S_ACLK_EN : axis_we;
assign axis_rd_en = (C_HAS_MASTER_CE == 1) ? axis_re & M_ACLK_EN : axis_re;
FIFO_GENERATOR_v12_0_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_AXIS == 1 || C_IMPLEMENTATION_TYPE_AXIS == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_AXIS == 2 || C_IMPLEMENTATION_TYPE_AXIS == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_AXIS == 1 || C_IMPLEMENTATION_TYPE_AXIS == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_AXIS == 11 || C_IMPLEMENTATION_TYPE_AXIS == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_AXIS),
.C_WR_DEPTH (C_WR_DEPTH_AXIS),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_AXIS),
.C_DOUT_WIDTH (C_DIN_WIDTH_AXIS),
.C_RD_DEPTH (C_WR_DEPTH_AXIS),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_AXIS),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_AXIS),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_AXIS),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_AXIS),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS),
.C_USE_ECC (C_USE_ECC_AXIS),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_AXIS),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (C_APPLICATION_TYPE_AXIS == 1 ? 1: 0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG),
.C_FIFO_TYPE (C_APPLICATION_TYPE_AXIS == 1 ? 0: C_APPLICATION_TYPE_AXIS),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_AXIS == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_AXIS + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_AXIS == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_AXIS + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_AXIS == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_AXIS + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v12_0_axis_dut
(
.CLK (S_ACLK),
.WR_CLK (S_ACLK),
.RD_CLK (M_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (axis_wr_en),
.RD_EN (axis_rd_en),
.PROG_FULL_THRESH (AXIS_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_AXIS{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_AXIS{1'b0}}),
.PROG_EMPTY_THRESH (AXIS_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_AXIS{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_AXIS{1'b0}}),
.INJECTDBITERR (AXIS_INJECTDBITERR),
.INJECTSBITERR (AXIS_INJECTSBITERR),
.DIN (axis_din),
.DOUT (axis_dout),
.FULL (axis_full),
.EMPTY (axis_empty),
.ALMOST_FULL (axis_almost_full),
.PROG_FULL (AXIS_PROG_FULL),
.ALMOST_EMPTY (),
.PROG_EMPTY (AXIS_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (AXIS_OVERFLOW),
.VALID (),
.UNDERFLOW (AXIS_UNDERFLOW),
.DATA_COUNT (axis_dc),
.RD_DATA_COUNT (AXIS_RD_DATA_COUNT),
.WR_DATA_COUNT (AXIS_WR_DATA_COUNT),
.SBITERR (AXIS_SBITERR),
.DBITERR (AXIS_DBITERR),
.wr_rst_busy (wr_rst_busy_axis),
.rd_rst_busy (rd_rst_busy_axis),
.wr_rst_i_out (axis_wr_rst),
.rd_rst_i_out (axis_rd_rst),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign axis_s_axis_tready = (IS_8SERIES == 0) ? ~axis_full : (C_IMPLEMENTATION_TYPE_AXIS == 5 || C_IMPLEMENTATION_TYPE_AXIS == 13) ? ~(axis_full | wr_rst_busy_axis) : ~axis_full;
assign axis_m_axis_tvalid = (C_APPLICATION_TYPE_AXIS != 1) ? ~axis_empty : ~axis_empty & axis_pkt_read;
assign S_AXIS_TREADY = axis_s_axis_tready;
assign M_AXIS_TVALID = axis_m_axis_tvalid;
end endgenerate // axi_streaming
wire axis_wr_eop;
reg axis_wr_eop_d1 = 1'b0;
wire axis_rd_eop;
integer axis_pkt_cnt;
generate if (C_APPLICATION_TYPE_AXIS == 1 && C_COMMON_CLOCK == 1) begin : gaxis_pkt_fifo_cc
assign axis_wr_eop = axis_wr_en & S_AXIS_TLAST;
assign axis_rd_eop = axis_rd_en & axis_dout[0];
always @ (posedge inverted_reset or posedge S_ACLK)
begin
if (inverted_reset)
axis_pkt_read <= 1'b0;
else if (axis_rd_eop && (axis_pkt_cnt == 1) && ~axis_wr_eop_d1)
axis_pkt_read <= 1'b0;
else if ((axis_pkt_cnt > 0) || (axis_almost_full && ~axis_empty))
axis_pkt_read <= 1'b1;
end
always @ (posedge inverted_reset or posedge S_ACLK)
begin
if (inverted_reset)
axis_wr_eop_d1 <= 1'b0;
else
axis_wr_eop_d1 <= axis_wr_eop;
end
always @ (posedge inverted_reset or posedge S_ACLK)
begin
if (inverted_reset)
axis_pkt_cnt <= 0;
else if (axis_wr_eop_d1 && ~axis_rd_eop)
axis_pkt_cnt <= axis_pkt_cnt + 1;
else if (axis_rd_eop && ~axis_wr_eop_d1)
axis_pkt_cnt <= axis_pkt_cnt - 1;
end
end endgenerate // gaxis_pkt_fifo_cc
reg [LOG_DEPTH_AXIS-1 : 0] axis_wpkt_cnt_gc = 0;
wire [(LOG_DEPTH_AXIS)-1 : 0] axis_wpkt_cnt_gc_asreg_last;
wire axis_rd_has_rst;
wire [0:C_SYNCHRONIZER_STAGE] axis_af_q ;
wire [LOG_DEPTH_AXIS-1 : 0] wpkt_q [0:C_SYNCHRONIZER_STAGE] ;
wire [1:C_SYNCHRONIZER_STAGE] axis_af_q_temp = 0;
wire [LOG_DEPTH_AXIS-1 : 0] wpkt_q_temp [1:C_SYNCHRONIZER_STAGE] ;
reg [LOG_DEPTH_AXIS-1 : 0] axis_wpkt_cnt_rd = 0;
reg [LOG_DEPTH_AXIS-1 : 0] axis_wpkt_cnt = 0;
reg [LOG_DEPTH_AXIS-1 : 0] axis_rpkt_cnt = 0;
wire [LOG_DEPTH_AXIS : 0] adj_axis_wpkt_cnt_rd_pad;
wire [LOG_DEPTH_AXIS : 0] rpkt_inv_pad;
wire [LOG_DEPTH_AXIS-1 : 0] diff_pkt_cnt;
reg [LOG_DEPTH_AXIS : 0] diff_pkt_cnt_pad = 0;
reg adj_axis_wpkt_cnt_rd_pad_0 = 0;
reg rpkt_inv_pad_0 = 0;
wire axis_af_rd ;
generate if (C_HAS_RST == 1) begin : rst_blk_has
assign axis_rd_has_rst = axis_rd_rst;
end endgenerate //rst_blk_has
generate if (C_HAS_RST == 0) begin :rst_blk_no
assign axis_rd_has_rst = 1'b0;
end endgenerate //rst_blk_no
genvar i;
generate for (i = 1; ((i <= C_SYNCHRONIZER_STAGE) && (C_APPLICATION_TYPE_AXIS == 1 && C_COMMON_CLOCK == 0) ); i = i + 1) begin : gpkt_cnt_sync_stage
fifo_generator_v12_0_sync_stage
#(
.C_WIDTH (LOG_DEPTH_AXIS)
)
rd_stg_inst
(
.RST (axis_rd_has_rst),
.CLK (M_ACLK),
.DIN (wpkt_q[i-1]),
.DOUT (wpkt_q[i])
);
fifo_generator_v12_0_sync_stage
#(
.C_WIDTH (1)
)
wr_stg_inst
(
.RST (axis_rd_has_rst),
.CLK (M_ACLK),
.DIN (axis_af_q[i-1]),
.DOUT (axis_af_q[i])
);
end endgenerate // gpkt_cnt_sync_stage
generate if (C_APPLICATION_TYPE_AXIS == 1 && C_COMMON_CLOCK == 0) begin : gaxis_pkt_fifo_ic
assign axis_wr_eop = axis_wr_en & S_AXIS_TLAST;
assign axis_rd_eop = axis_rd_en & axis_dout[0];
always @ (posedge axis_rd_has_rst or posedge M_ACLK)
begin
if (axis_rd_has_rst)
axis_pkt_read <= 1'b0;
else if (axis_rd_eop && (diff_pkt_cnt == 1))
axis_pkt_read <= 1'b0;
else if ((diff_pkt_cnt > 0) || (axis_af_rd && ~axis_empty))
axis_pkt_read <= 1'b1;
end
always @ (posedge axis_wr_rst or posedge S_ACLK)
begin
if (axis_wr_rst)
axis_wpkt_cnt <= 1'b0;
else if (axis_wr_eop)
axis_wpkt_cnt <= axis_wpkt_cnt + 1;
end
always @ (posedge axis_wr_rst or posedge S_ACLK)
begin
if (axis_wr_rst)
axis_wpkt_cnt_gc <= 1'b0;
else
axis_wpkt_cnt_gc <= bin2gray(axis_wpkt_cnt);
end
assign wpkt_q[0] = axis_wpkt_cnt_gc;
assign axis_wpkt_cnt_gc_asreg_last = wpkt_q[C_SYNCHRONIZER_STAGE];
assign axis_af_q[0] = axis_almost_full;
//assign axis_af_q[1:C_SYNCHRONIZER_STAGE] = axis_af_q_temp[1:C_SYNCHRONIZER_STAGE];
assign axis_af_rd = axis_af_q[C_SYNCHRONIZER_STAGE];
always @ (posedge axis_rd_has_rst or posedge M_ACLK)
begin
if (axis_rd_has_rst)
axis_wpkt_cnt_rd <= 1'b0;
else
axis_wpkt_cnt_rd <= gray2bin(axis_wpkt_cnt_gc_asreg_last);
end
always @ (posedge axis_rd_rst or posedge M_ACLK)
begin
if (axis_rd_has_rst)
axis_rpkt_cnt <= 1'b0;
else if (axis_rd_eop)
axis_rpkt_cnt <= axis_rpkt_cnt + 1;
end
// Take the difference of write and read packet count
// Logic is similar to rd_pe_as
assign adj_axis_wpkt_cnt_rd_pad[LOG_DEPTH_AXIS : 1] = axis_wpkt_cnt_rd;
assign rpkt_inv_pad[LOG_DEPTH_AXIS : 1] = ~axis_rpkt_cnt;
assign adj_axis_wpkt_cnt_rd_pad[0] = adj_axis_wpkt_cnt_rd_pad_0;
assign rpkt_inv_pad[0] = rpkt_inv_pad_0;
always @ ( axis_rd_eop )
begin
if (!axis_rd_eop) begin
adj_axis_wpkt_cnt_rd_pad_0 <= 1'b1;
rpkt_inv_pad_0 <= 1'b1;
end else begin
adj_axis_wpkt_cnt_rd_pad_0 <= 1'b0;
rpkt_inv_pad_0 <= 1'b0;
end
end
always @ (posedge axis_rd_rst or posedge M_ACLK)
begin
if (axis_rd_has_rst)
diff_pkt_cnt_pad <= 1'b0;
else
diff_pkt_cnt_pad <= adj_axis_wpkt_cnt_rd_pad + rpkt_inv_pad ;
end
assign diff_pkt_cnt = diff_pkt_cnt_pad [LOG_DEPTH_AXIS : 1] ;
end endgenerate // gaxis_pkt_fifo_ic
// Generate the accurate data count for axi stream packet fifo configuration
reg [C_WR_PNTR_WIDTH_AXIS:0] axis_dc_pkt_fifo = 0;
generate if (IS_AXI_STREAMING == 1 && C_HAS_DATA_COUNTS_AXIS == 1 && C_APPLICATION_TYPE_AXIS == 1) begin : gdc_pkt
always @ (posedge inverted_reset or posedge S_ACLK)
begin
if (inverted_reset)
axis_dc_pkt_fifo <= 0;
else if (axis_wr_en && (~axis_rd_en))
axis_dc_pkt_fifo <= #`TCQ axis_dc_pkt_fifo + 1;
else if (~axis_wr_en && axis_rd_en)
axis_dc_pkt_fifo <= #`TCQ axis_dc_pkt_fifo - 1;
end
assign AXIS_DATA_COUNT = axis_dc_pkt_fifo;
end endgenerate // gdc_pkt
generate if (IS_AXI_STREAMING == 1 && C_HAS_DATA_COUNTS_AXIS == 0 && C_APPLICATION_TYPE_AXIS == 1) begin : gndc_pkt
assign AXIS_DATA_COUNT = 0;
end endgenerate // gndc_pkt
generate if (IS_AXI_STREAMING == 1 && C_APPLICATION_TYPE_AXIS != 1) begin : gdc
assign AXIS_DATA_COUNT = axis_dc;
end endgenerate // gdc
// Register Slice for Write Address Channel
generate if (C_AXIS_TYPE == 1) begin : gaxis_reg_slice
assign axis_wr_en = (C_HAS_SLAVE_CE == 1) ? S_AXIS_TVALID & S_ACLK_EN : S_AXIS_TVALID;
assign axis_rd_en = (C_HAS_MASTER_CE == 1) ? M_AXIS_TREADY & M_ACLK_EN : M_AXIS_TREADY;
fifo_generator_v12_0_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_AXIS),
.C_REG_CONFIG (C_REG_SLICE_MODE_AXIS)
)
axis_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (axis_din),
.S_VALID (axis_wr_en),
.S_READY (S_AXIS_TREADY),
// Master side
.M_PAYLOAD_DATA (axis_dout),
.M_VALID (M_AXIS_TVALID),
.M_READY (axis_rd_en)
);
end endgenerate // gaxis_reg_slice
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TDATA == 1) begin : tdata
assign axis_din[C_DIN_WIDTH_AXIS-1:TDATA_OFFSET] = S_AXIS_TDATA;
assign M_AXIS_TDATA = axis_dout[C_DIN_WIDTH_AXIS-1:TDATA_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TSTRB == 1) begin : tstrb
assign axis_din[TDATA_OFFSET-1:TSTRB_OFFSET] = S_AXIS_TSTRB;
assign M_AXIS_TSTRB = axis_dout[TDATA_OFFSET-1:TSTRB_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TKEEP == 1) begin : tkeep
assign axis_din[TSTRB_OFFSET-1:TKEEP_OFFSET] = S_AXIS_TKEEP;
assign M_AXIS_TKEEP = axis_dout[TSTRB_OFFSET-1:TKEEP_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TID == 1) begin : tid
assign axis_din[TKEEP_OFFSET-1:TID_OFFSET] = S_AXIS_TID;
assign M_AXIS_TID = axis_dout[TKEEP_OFFSET-1:TID_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TDEST == 1) begin : tdest
assign axis_din[TID_OFFSET-1:TDEST_OFFSET] = S_AXIS_TDEST;
assign M_AXIS_TDEST = axis_dout[TID_OFFSET-1:TDEST_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TUSER == 1) begin : tuser
assign axis_din[TDEST_OFFSET-1:TUSER_OFFSET] = S_AXIS_TUSER;
assign M_AXIS_TUSER = axis_dout[TDEST_OFFSET-1:TUSER_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TLAST == 1) begin : tlast
assign axis_din[0] = S_AXIS_TLAST;
assign M_AXIS_TLAST = axis_dout[0];
end endgenerate
//###########################################################################
// AXI FULL Write Channel (axi_write_channel)
//###########################################################################
localparam IS_AXI_FULL = ((C_INTERFACE_TYPE == 2) && (C_AXI_TYPE != 2)) ? 1 : 0;
localparam IS_AXI_LITE = ((C_INTERFACE_TYPE == 2) && (C_AXI_TYPE == 2)) ? 1 : 0;
localparam IS_AXI_FULL_WACH = ((IS_AXI_FULL == 1) && (C_WACH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_FULL_WDCH = ((IS_AXI_FULL == 1) && (C_WDCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_FULL_WRCH = ((IS_AXI_FULL == 1) && (C_WRCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_FULL_RACH = ((IS_AXI_FULL == 1) && (C_RACH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_FULL_RDCH = ((IS_AXI_FULL == 1) && (C_RDCH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_LITE_WACH = ((IS_AXI_LITE == 1) && (C_WACH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_LITE_WDCH = ((IS_AXI_LITE == 1) && (C_WDCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_LITE_WRCH = ((IS_AXI_LITE == 1) && (C_WRCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_LITE_RACH = ((IS_AXI_LITE == 1) && (C_RACH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_LITE_RDCH = ((IS_AXI_LITE == 1) && (C_RDCH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0;
localparam IS_WR_ADDR_CH = ((IS_AXI_FULL_WACH == 1) || (IS_AXI_LITE_WACH == 1)) ? 1 : 0;
localparam IS_WR_DATA_CH = ((IS_AXI_FULL_WDCH == 1) || (IS_AXI_LITE_WDCH == 1)) ? 1 : 0;
localparam IS_WR_RESP_CH = ((IS_AXI_FULL_WRCH == 1) || (IS_AXI_LITE_WRCH == 1)) ? 1 : 0;
localparam IS_RD_ADDR_CH = ((IS_AXI_FULL_RACH == 1) || (IS_AXI_LITE_RACH == 1)) ? 1 : 0;
localparam IS_RD_DATA_CH = ((IS_AXI_FULL_RDCH == 1) || (IS_AXI_LITE_RDCH == 1)) ? 1 : 0;
localparam AWID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_WACH - C_AXI_ID_WIDTH : C_DIN_WIDTH_WACH;
localparam AWADDR_OFFSET = AWID_OFFSET - C_AXI_ADDR_WIDTH;
localparam AWLEN_OFFSET = C_AXI_TYPE != 2 ? AWADDR_OFFSET - C_AXI_LEN_WIDTH : AWADDR_OFFSET;
localparam AWSIZE_OFFSET = C_AXI_TYPE != 2 ? AWLEN_OFFSET - C_AXI_SIZE_WIDTH : AWLEN_OFFSET;
localparam AWBURST_OFFSET = C_AXI_TYPE != 2 ? AWSIZE_OFFSET - C_AXI_BURST_WIDTH : AWSIZE_OFFSET;
localparam AWLOCK_OFFSET = C_AXI_TYPE != 2 ? AWBURST_OFFSET - C_AXI_LOCK_WIDTH : AWBURST_OFFSET;
localparam AWCACHE_OFFSET = C_AXI_TYPE != 2 ? AWLOCK_OFFSET - C_AXI_CACHE_WIDTH : AWLOCK_OFFSET;
localparam AWPROT_OFFSET = AWCACHE_OFFSET - C_AXI_PROT_WIDTH;
localparam AWQOS_OFFSET = AWPROT_OFFSET - C_AXI_QOS_WIDTH;
localparam AWREGION_OFFSET = C_AXI_TYPE == 1 ? AWQOS_OFFSET - C_AXI_REGION_WIDTH : AWQOS_OFFSET;
localparam AWUSER_OFFSET = C_HAS_AXI_AWUSER == 1 ? AWREGION_OFFSET-C_AXI_AWUSER_WIDTH : AWREGION_OFFSET;
localparam WID_OFFSET = (C_AXI_TYPE == 3 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_WDCH - C_AXI_ID_WIDTH : C_DIN_WIDTH_WDCH;
localparam WDATA_OFFSET = WID_OFFSET - C_AXI_DATA_WIDTH;
localparam WSTRB_OFFSET = WDATA_OFFSET - C_AXI_DATA_WIDTH/8;
localparam WUSER_OFFSET = C_HAS_AXI_WUSER == 1 ? WSTRB_OFFSET-C_AXI_WUSER_WIDTH : WSTRB_OFFSET;
localparam BID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_WRCH - C_AXI_ID_WIDTH : C_DIN_WIDTH_WRCH;
localparam BRESP_OFFSET = BID_OFFSET - C_AXI_BRESP_WIDTH;
localparam BUSER_OFFSET = C_HAS_AXI_BUSER == 1 ? BRESP_OFFSET-C_AXI_BUSER_WIDTH : BRESP_OFFSET;
wire [C_DIN_WIDTH_WACH-1:0] wach_din ;
wire [C_DIN_WIDTH_WACH-1:0] wach_dout ;
wire [C_DIN_WIDTH_WACH-1:0] wach_dout_pkt ;
wire wach_full ;
wire wach_almost_full ;
wire wach_prog_full ;
wire wach_empty ;
wire wach_almost_empty ;
wire wach_prog_empty ;
wire [C_DIN_WIDTH_WDCH-1:0] wdch_din ;
wire [C_DIN_WIDTH_WDCH-1:0] wdch_dout ;
wire wdch_full ;
wire wdch_almost_full ;
wire wdch_prog_full ;
wire wdch_empty ;
wire wdch_almost_empty ;
wire wdch_prog_empty ;
wire [C_DIN_WIDTH_WRCH-1:0] wrch_din ;
wire [C_DIN_WIDTH_WRCH-1:0] wrch_dout ;
wire wrch_full ;
wire wrch_almost_full ;
wire wrch_prog_full ;
wire wrch_empty ;
wire wrch_almost_empty ;
wire wrch_prog_empty ;
wire axi_aw_underflow_i;
wire axi_w_underflow_i ;
wire axi_b_underflow_i ;
wire axi_aw_overflow_i ;
wire axi_w_overflow_i ;
wire axi_b_overflow_i ;
wire axi_wr_underflow_i;
wire axi_wr_overflow_i ;
wire wach_s_axi_awready;
wire wach_m_axi_awvalid;
wire wach_wr_en ;
wire wach_rd_en ;
wire wdch_s_axi_wready ;
wire wdch_m_axi_wvalid ;
wire wdch_wr_en ;
wire wdch_rd_en ;
wire wrch_s_axi_bvalid ;
wire wrch_m_axi_bready ;
wire wrch_wr_en ;
wire wrch_rd_en ;
wire txn_count_up ;
wire txn_count_down ;
wire awvalid_en ;
wire awvalid_pkt ;
wire awready_pkt ;
integer wr_pkt_count ;
wire wach_we ;
wire wach_re ;
wire wdch_we ;
wire wdch_re ;
wire wrch_we ;
wire wrch_re ;
generate if (IS_WR_ADDR_CH == 1) begin : axi_write_address_channel
// Write protection when almost full or prog_full is high
assign wach_we = (C_PROG_FULL_TYPE_WACH != 0) ? wach_s_axi_awready & S_AXI_AWVALID : S_AXI_AWVALID;
// Read protection when almost empty or prog_empty is high
assign wach_re = (C_PROG_EMPTY_TYPE_WACH != 0 && C_APPLICATION_TYPE_WACH == 1) ?
wach_m_axi_awvalid & awready_pkt & awvalid_en :
(C_PROG_EMPTY_TYPE_WACH != 0 && C_APPLICATION_TYPE_WACH != 1) ?
M_AXI_AWREADY && wach_m_axi_awvalid :
(C_PROG_EMPTY_TYPE_WACH == 0 && C_APPLICATION_TYPE_WACH == 1) ?
awready_pkt & awvalid_en :
(C_PROG_EMPTY_TYPE_WACH == 0 && C_APPLICATION_TYPE_WACH != 1) ?
M_AXI_AWREADY : 1'b0;
assign wach_wr_en = (C_HAS_SLAVE_CE == 1) ? wach_we & S_ACLK_EN : wach_we;
assign wach_rd_en = (C_HAS_MASTER_CE == 1) ? wach_re & M_ACLK_EN : wach_re;
FIFO_GENERATOR_v12_0_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_WACH == 1 || C_IMPLEMENTATION_TYPE_WACH == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_WACH == 2 || C_IMPLEMENTATION_TYPE_WACH == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_WACH == 1 || C_IMPLEMENTATION_TYPE_WACH == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_WACH == 11 || C_IMPLEMENTATION_TYPE_WACH == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_WACH),
.C_WR_DEPTH (C_WR_DEPTH_WACH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_WACH),
.C_DOUT_WIDTH (C_DIN_WIDTH_WACH),
.C_RD_DEPTH (C_WR_DEPTH_WACH),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_WACH),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_WACH),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_WACH),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_WACH),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH),
.C_USE_ECC (C_USE_ECC_WACH),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_WACH),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_FIFO_TYPE ((C_APPLICATION_TYPE_WACH == 1)?0:C_APPLICATION_TYPE_WACH),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_WACH == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WACH + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WACH == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WACH + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WACH == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WACH + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_EMBEDDED_REG (0),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v12_0_wach_dut
(
.CLK (S_ACLK),
.WR_CLK (S_ACLK),
.RD_CLK (M_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (wach_wr_en),
.RD_EN (wach_rd_en),
.PROG_FULL_THRESH (AXI_AW_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WACH{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WACH{1'b0}}),
.PROG_EMPTY_THRESH (AXI_AW_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WACH{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WACH{1'b0}}),
.INJECTDBITERR (AXI_AW_INJECTDBITERR),
.INJECTSBITERR (AXI_AW_INJECTSBITERR),
.DIN (wach_din),
.DOUT (wach_dout_pkt),
.FULL (wach_full),
.EMPTY (wach_empty),
.ALMOST_FULL (),
.PROG_FULL (AXI_AW_PROG_FULL),
.ALMOST_EMPTY (),
.PROG_EMPTY (AXI_AW_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (axi_aw_overflow_i),
.VALID (),
.UNDERFLOW (axi_aw_underflow_i),
.DATA_COUNT (AXI_AW_DATA_COUNT),
.RD_DATA_COUNT (AXI_AW_RD_DATA_COUNT),
.WR_DATA_COUNT (AXI_AW_WR_DATA_COUNT),
.SBITERR (AXI_AW_SBITERR),
.DBITERR (AXI_AW_DBITERR),
.wr_rst_busy (wr_rst_busy_wach),
.rd_rst_busy (rd_rst_busy_wach),
.wr_rst_i_out (),
.rd_rst_i_out (),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign wach_s_axi_awready = (IS_8SERIES == 0) ? ~wach_full : (C_IMPLEMENTATION_TYPE_WACH == 5 || C_IMPLEMENTATION_TYPE_WACH == 13) ? ~(wach_full | wr_rst_busy_wach) : ~wach_full;
assign wach_m_axi_awvalid = ~wach_empty;
assign S_AXI_AWREADY = wach_s_axi_awready;
assign AXI_AW_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_aw_underflow_i : 0;
assign AXI_AW_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_aw_overflow_i : 0;
end endgenerate // axi_write_address_channel
// Register Slice for Write Address Channel
generate if (C_WACH_TYPE == 1) begin : gwach_reg_slice
fifo_generator_v12_0_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_WACH),
.C_REG_CONFIG (C_REG_SLICE_MODE_WACH)
)
wach_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (wach_din),
.S_VALID (S_AXI_AWVALID),
.S_READY (S_AXI_AWREADY),
// Master side
.M_PAYLOAD_DATA (wach_dout),
.M_VALID (M_AXI_AWVALID),
.M_READY (M_AXI_AWREADY)
);
end endgenerate // gwach_reg_slice
generate if (C_APPLICATION_TYPE_WACH == 1 && C_HAS_AXI_WR_CHANNEL == 1) begin : axi_mm_pkt_fifo_wr
fifo_generator_v12_0_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_WACH),
.C_REG_CONFIG (1)
)
wach_pkt_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (inverted_reset),
// Slave side
.S_PAYLOAD_DATA (wach_dout_pkt),
.S_VALID (awvalid_pkt),
.S_READY (awready_pkt),
// Master side
.M_PAYLOAD_DATA (wach_dout),
.M_VALID (M_AXI_AWVALID),
.M_READY (M_AXI_AWREADY)
);
assign awvalid_pkt = wach_m_axi_awvalid && awvalid_en;
assign txn_count_up = wdch_s_axi_wready && wdch_wr_en && wdch_din[0];
assign txn_count_down = wach_m_axi_awvalid && awready_pkt && awvalid_en;
always@(posedge S_ACLK or posedge inverted_reset) begin
if(inverted_reset == 1) begin
wr_pkt_count <= 0;
end else begin
if(txn_count_up == 1 && txn_count_down == 0) begin
wr_pkt_count <= wr_pkt_count + 1;
end else if(txn_count_up == 0 && txn_count_down == 1) begin
wr_pkt_count <= wr_pkt_count - 1;
end
end
end //Always end
assign awvalid_en = (wr_pkt_count > 0)?1:0;
end endgenerate
generate if (C_APPLICATION_TYPE_WACH != 1) begin : axi_mm_fifo_wr
assign awvalid_en = 1;
assign wach_dout = wach_dout_pkt;
assign M_AXI_AWVALID = wach_m_axi_awvalid;
end
endgenerate
generate if (IS_WR_DATA_CH == 1) begin : axi_write_data_channel
// Write protection when almost full or prog_full is high
assign wdch_we = (C_PROG_FULL_TYPE_WDCH != 0) ? wdch_s_axi_wready & S_AXI_WVALID : S_AXI_WVALID;
// Read protection when almost empty or prog_empty is high
assign wdch_re = (C_PROG_EMPTY_TYPE_WDCH != 0) ? wdch_m_axi_wvalid & M_AXI_WREADY : M_AXI_WREADY;
assign wdch_wr_en = (C_HAS_SLAVE_CE == 1) ? wdch_we & S_ACLK_EN : wdch_we;
assign wdch_rd_en = (C_HAS_MASTER_CE == 1) ? wdch_re & M_ACLK_EN : wdch_re;
FIFO_GENERATOR_v12_0_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_WDCH == 1 || C_IMPLEMENTATION_TYPE_WDCH == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_WDCH == 2 || C_IMPLEMENTATION_TYPE_WDCH == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_WDCH == 1 || C_IMPLEMENTATION_TYPE_WDCH == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_WDCH == 11 || C_IMPLEMENTATION_TYPE_WDCH == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_WDCH),
.C_WR_DEPTH (C_WR_DEPTH_WDCH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_WDCH),
.C_DOUT_WIDTH (C_DIN_WIDTH_WDCH),
.C_RD_DEPTH (C_WR_DEPTH_WDCH),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_WDCH),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_WDCH),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_WDCH),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_WDCH),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH),
.C_USE_ECC (C_USE_ECC_WDCH),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_WDCH),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_FIFO_TYPE (C_APPLICATION_TYPE_WDCH),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_WDCH == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WDCH + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WDCH == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WDCH + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WDCH == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WDCH + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_EMBEDDED_REG (0),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v12_0_wdch_dut
(
.CLK (S_ACLK),
.WR_CLK (S_ACLK),
.RD_CLK (M_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (wdch_wr_en),
.RD_EN (wdch_rd_en),
.PROG_FULL_THRESH (AXI_W_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WDCH{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WDCH{1'b0}}),
.PROG_EMPTY_THRESH (AXI_W_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WDCH{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WDCH{1'b0}}),
.INJECTDBITERR (AXI_W_INJECTDBITERR),
.INJECTSBITERR (AXI_W_INJECTSBITERR),
.DIN (wdch_din),
.DOUT (wdch_dout),
.FULL (wdch_full),
.EMPTY (wdch_empty),
.ALMOST_FULL (),
.PROG_FULL (AXI_W_PROG_FULL),
.ALMOST_EMPTY (),
.PROG_EMPTY (AXI_W_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (axi_w_overflow_i),
.VALID (),
.UNDERFLOW (axi_w_underflow_i),
.DATA_COUNT (AXI_W_DATA_COUNT),
.RD_DATA_COUNT (AXI_W_RD_DATA_COUNT),
.WR_DATA_COUNT (AXI_W_WR_DATA_COUNT),
.SBITERR (AXI_W_SBITERR),
.DBITERR (AXI_W_DBITERR),
.wr_rst_busy (wr_rst_busy_wdch),
.rd_rst_busy (rd_rst_busy_wdch),
.wr_rst_i_out (),
.rd_rst_i_out (),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign wdch_s_axi_wready = (IS_8SERIES == 0) ? ~wdch_full : (C_IMPLEMENTATION_TYPE_WDCH == 5 || C_IMPLEMENTATION_TYPE_WDCH == 13) ? ~(wdch_full | wr_rst_busy_wdch) : ~wdch_full;
assign wdch_m_axi_wvalid = ~wdch_empty;
assign S_AXI_WREADY = wdch_s_axi_wready;
assign M_AXI_WVALID = wdch_m_axi_wvalid;
assign AXI_W_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_w_underflow_i : 0;
assign AXI_W_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_w_overflow_i : 0;
end endgenerate // axi_write_data_channel
// Register Slice for Write Data Channel
generate if (C_WDCH_TYPE == 1) begin : gwdch_reg_slice
fifo_generator_v12_0_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_WDCH),
.C_REG_CONFIG (C_REG_SLICE_MODE_WDCH)
)
wdch_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (wdch_din),
.S_VALID (S_AXI_WVALID),
.S_READY (S_AXI_WREADY),
// Master side
.M_PAYLOAD_DATA (wdch_dout),
.M_VALID (M_AXI_WVALID),
.M_READY (M_AXI_WREADY)
);
end endgenerate // gwdch_reg_slice
generate if (IS_WR_RESP_CH == 1) begin : axi_write_resp_channel
// Write protection when almost full or prog_full is high
assign wrch_we = (C_PROG_FULL_TYPE_WRCH != 0) ? wrch_m_axi_bready & M_AXI_BVALID : M_AXI_BVALID;
// Read protection when almost empty or prog_empty is high
assign wrch_re = (C_PROG_EMPTY_TYPE_WRCH != 0) ? wrch_s_axi_bvalid & S_AXI_BREADY : S_AXI_BREADY;
assign wrch_wr_en = (C_HAS_SLAVE_CE == 1) ? wrch_we & S_ACLK_EN : wrch_we;
assign wrch_rd_en = (C_HAS_MASTER_CE == 1) ? wrch_re & M_ACLK_EN : wrch_re;
FIFO_GENERATOR_v12_0_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_WRCH == 1 || C_IMPLEMENTATION_TYPE_WRCH == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_WRCH == 2 || C_IMPLEMENTATION_TYPE_WRCH == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_WRCH == 1 || C_IMPLEMENTATION_TYPE_WRCH == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_WRCH == 11 || C_IMPLEMENTATION_TYPE_WRCH == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_WRCH),
.C_WR_DEPTH (C_WR_DEPTH_WRCH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_WRCH),
.C_DOUT_WIDTH (C_DIN_WIDTH_WRCH),
.C_RD_DEPTH (C_WR_DEPTH_WRCH),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_WRCH),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_WRCH),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_WRCH),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_WRCH),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH),
.C_USE_ECC (C_USE_ECC_WRCH),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_WRCH),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_FIFO_TYPE (C_APPLICATION_TYPE_WRCH),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_WRCH == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WRCH + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WRCH == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WRCH + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WRCH == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WRCH + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_EMBEDDED_REG (0),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v12_0_wrch_dut
(
.CLK (S_ACLK),
.WR_CLK (M_ACLK),
.RD_CLK (S_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (wrch_wr_en),
.RD_EN (wrch_rd_en),
.PROG_FULL_THRESH (AXI_B_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WRCH{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WRCH{1'b0}}),
.PROG_EMPTY_THRESH (AXI_B_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WRCH{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WRCH{1'b0}}),
.INJECTDBITERR (AXI_B_INJECTDBITERR),
.INJECTSBITERR (AXI_B_INJECTSBITERR),
.DIN (wrch_din),
.DOUT (wrch_dout),
.FULL (wrch_full),
.EMPTY (wrch_empty),
.ALMOST_FULL (),
.ALMOST_EMPTY (),
.PROG_FULL (AXI_B_PROG_FULL),
.PROG_EMPTY (AXI_B_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (axi_b_overflow_i),
.VALID (),
.UNDERFLOW (axi_b_underflow_i),
.DATA_COUNT (AXI_B_DATA_COUNT),
.RD_DATA_COUNT (AXI_B_RD_DATA_COUNT),
.WR_DATA_COUNT (AXI_B_WR_DATA_COUNT),
.SBITERR (AXI_B_SBITERR),
.DBITERR (AXI_B_DBITERR),
.wr_rst_busy (wr_rst_busy_wrch),
.rd_rst_busy (rd_rst_busy_wrch),
.wr_rst_i_out (),
.rd_rst_i_out (),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign wrch_s_axi_bvalid = ~wrch_empty;
assign wrch_m_axi_bready = (IS_8SERIES == 0) ? ~wrch_full : (C_IMPLEMENTATION_TYPE_WRCH == 5 || C_IMPLEMENTATION_TYPE_WRCH == 13) ? ~(wrch_full | wr_rst_busy_wrch) : ~wrch_full;
assign S_AXI_BVALID = wrch_s_axi_bvalid;
assign M_AXI_BREADY = wrch_m_axi_bready;
assign AXI_B_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_b_underflow_i : 0;
assign AXI_B_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_b_overflow_i : 0;
end endgenerate // axi_write_resp_channel
// Register Slice for Write Response Channel
generate if (C_WRCH_TYPE == 1) begin : gwrch_reg_slice
fifo_generator_v12_0_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_WRCH),
.C_REG_CONFIG (C_REG_SLICE_MODE_WRCH)
)
wrch_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (wrch_din),
.S_VALID (M_AXI_BVALID),
.S_READY (M_AXI_BREADY),
// Master side
.M_PAYLOAD_DATA (wrch_dout),
.M_VALID (S_AXI_BVALID),
.M_READY (S_AXI_BREADY)
);
end endgenerate // gwrch_reg_slice
assign axi_wr_underflow_i = C_USE_COMMON_UNDERFLOW == 1 ? (axi_aw_underflow_i || axi_w_underflow_i || axi_b_underflow_i) : 0;
assign axi_wr_overflow_i = C_USE_COMMON_OVERFLOW == 1 ? (axi_aw_overflow_i || axi_w_overflow_i || axi_b_overflow_i) : 0;
generate if (IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) begin : axi_wach_output
assign M_AXI_AWADDR = wach_dout[AWID_OFFSET-1:AWADDR_OFFSET];
assign M_AXI_AWLEN = wach_dout[AWADDR_OFFSET-1:AWLEN_OFFSET];
assign M_AXI_AWSIZE = wach_dout[AWLEN_OFFSET-1:AWSIZE_OFFSET];
assign M_AXI_AWBURST = wach_dout[AWSIZE_OFFSET-1:AWBURST_OFFSET];
assign M_AXI_AWLOCK = wach_dout[AWBURST_OFFSET-1:AWLOCK_OFFSET];
assign M_AXI_AWCACHE = wach_dout[AWLOCK_OFFSET-1:AWCACHE_OFFSET];
assign M_AXI_AWPROT = wach_dout[AWCACHE_OFFSET-1:AWPROT_OFFSET];
assign M_AXI_AWQOS = wach_dout[AWPROT_OFFSET-1:AWQOS_OFFSET];
assign wach_din[AWID_OFFSET-1:AWADDR_OFFSET] = S_AXI_AWADDR;
assign wach_din[AWADDR_OFFSET-1:AWLEN_OFFSET] = S_AXI_AWLEN;
assign wach_din[AWLEN_OFFSET-1:AWSIZE_OFFSET] = S_AXI_AWSIZE;
assign wach_din[AWSIZE_OFFSET-1:AWBURST_OFFSET] = S_AXI_AWBURST;
assign wach_din[AWBURST_OFFSET-1:AWLOCK_OFFSET] = S_AXI_AWLOCK;
assign wach_din[AWLOCK_OFFSET-1:AWCACHE_OFFSET] = S_AXI_AWCACHE;
assign wach_din[AWCACHE_OFFSET-1:AWPROT_OFFSET] = S_AXI_AWPROT;
assign wach_din[AWPROT_OFFSET-1:AWQOS_OFFSET] = S_AXI_AWQOS;
end endgenerate // axi_wach_output
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_AXI_TYPE == 1) begin : axi_awregion
assign M_AXI_AWREGION = wach_dout[AWQOS_OFFSET-1:AWREGION_OFFSET];
end endgenerate // axi_awregion
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_AXI_TYPE != 1) begin : naxi_awregion
assign M_AXI_AWREGION = 0;
end endgenerate // naxi_awregion
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_AWUSER == 1) begin : axi_awuser
assign M_AXI_AWUSER = wach_dout[AWREGION_OFFSET-1:AWUSER_OFFSET];
end endgenerate // axi_awuser
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_AWUSER == 0) begin : naxi_awuser
assign M_AXI_AWUSER = 0;
end endgenerate // naxi_awuser
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_awid
assign M_AXI_AWID = wach_dout[C_DIN_WIDTH_WACH-1:AWID_OFFSET];
end endgenerate //axi_awid
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_awid
assign M_AXI_AWID = 0;
end endgenerate //naxi_awid
generate if (IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) begin : axi_wdch_output
assign M_AXI_WDATA = wdch_dout[WID_OFFSET-1:WDATA_OFFSET];
assign M_AXI_WSTRB = wdch_dout[WDATA_OFFSET-1:WSTRB_OFFSET];
assign M_AXI_WLAST = wdch_dout[0];
assign wdch_din[WID_OFFSET-1:WDATA_OFFSET] = S_AXI_WDATA;
assign wdch_din[WDATA_OFFSET-1:WSTRB_OFFSET] = S_AXI_WSTRB;
assign wdch_din[0] = S_AXI_WLAST;
end endgenerate // axi_wdch_output
generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_ID == 1 && C_AXI_TYPE == 3) begin
assign M_AXI_WID = wdch_dout[C_DIN_WIDTH_WDCH-1:WID_OFFSET];
end endgenerate
generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && (C_HAS_AXI_ID == 0 || C_AXI_TYPE != 3)) begin
assign M_AXI_WID = 0;
end endgenerate
generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_WUSER == 1 ) begin
assign M_AXI_WUSER = wdch_dout[WSTRB_OFFSET-1:WUSER_OFFSET];
end endgenerate
generate if (C_HAS_AXI_WUSER == 0) begin
assign M_AXI_WUSER = 0;
end endgenerate
generate if (IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) begin : axi_wrch_output
assign S_AXI_BRESP = wrch_dout[BID_OFFSET-1:BRESP_OFFSET];
assign wrch_din[BID_OFFSET-1:BRESP_OFFSET] = M_AXI_BRESP;
end endgenerate // axi_wrch_output
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_BUSER == 1) begin : axi_buser
assign S_AXI_BUSER = wrch_dout[BRESP_OFFSET-1:BUSER_OFFSET];
end endgenerate // axi_buser
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_BUSER == 0) begin : naxi_buser
assign S_AXI_BUSER = 0;
end endgenerate // naxi_buser
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_bid
assign S_AXI_BID = wrch_dout[C_DIN_WIDTH_WRCH-1:BID_OFFSET];
end endgenerate // axi_bid
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_bid
assign S_AXI_BID = 0 ;
end endgenerate // naxi_bid
generate if (IS_AXI_LITE_WACH == 1 || (IS_AXI_LITE == 1 && C_WACH_TYPE == 1)) begin : axi_wach_output1
assign wach_din = {S_AXI_AWADDR, S_AXI_AWPROT};
assign M_AXI_AWADDR = wach_dout[C_DIN_WIDTH_WACH-1:AWADDR_OFFSET];
assign M_AXI_AWPROT = wach_dout[AWADDR_OFFSET-1:AWPROT_OFFSET];
end endgenerate // axi_wach_output1
generate if (IS_AXI_LITE_WDCH == 1 || (IS_AXI_LITE == 1 && C_WDCH_TYPE == 1)) begin : axi_wdch_output1
assign wdch_din = {S_AXI_WDATA, S_AXI_WSTRB};
assign M_AXI_WDATA = wdch_dout[C_DIN_WIDTH_WDCH-1:WDATA_OFFSET];
assign M_AXI_WSTRB = wdch_dout[WDATA_OFFSET-1:WSTRB_OFFSET];
end endgenerate // axi_wdch_output1
generate if (IS_AXI_LITE_WRCH == 1 || (IS_AXI_LITE == 1 && C_WRCH_TYPE == 1)) begin : axi_wrch_output1
assign wrch_din = M_AXI_BRESP;
assign S_AXI_BRESP = wrch_dout[C_DIN_WIDTH_WRCH-1:BRESP_OFFSET];
end endgenerate // axi_wrch_output1
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_AWUSER == 1) begin : gwach_din1
assign wach_din[AWREGION_OFFSET-1:AWUSER_OFFSET] = S_AXI_AWUSER;
end endgenerate // gwach_din1
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : gwach_din2
assign wach_din[C_DIN_WIDTH_WACH-1:AWID_OFFSET] = S_AXI_AWID;
end endgenerate // gwach_din2
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_AXI_TYPE == 1) begin : gwach_din3
assign wach_din[AWQOS_OFFSET-1:AWREGION_OFFSET] = S_AXI_AWREGION;
end endgenerate // gwach_din3
generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_WUSER == 1) begin : gwdch_din1
assign wdch_din[WSTRB_OFFSET-1:WUSER_OFFSET] = S_AXI_WUSER;
end endgenerate // gwdch_din1
generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_ID == 1 && C_AXI_TYPE == 3) begin : gwdch_din2
assign wdch_din[C_DIN_WIDTH_WDCH-1:WID_OFFSET] = S_AXI_WID;
end endgenerate // gwdch_din2
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_BUSER == 1) begin : gwrch_din1
assign wrch_din[BRESP_OFFSET-1:BUSER_OFFSET] = M_AXI_BUSER;
end endgenerate // gwrch_din1
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : gwrch_din2
assign wrch_din[C_DIN_WIDTH_WRCH-1:BID_OFFSET] = M_AXI_BID;
end endgenerate // gwrch_din2
//end of axi_write_channel
//###########################################################################
// AXI FULL Read Channel (axi_read_channel)
//###########################################################################
wire [C_DIN_WIDTH_RACH-1:0] rach_din ;
wire [C_DIN_WIDTH_RACH-1:0] rach_dout ;
wire [C_DIN_WIDTH_RACH-1:0] rach_dout_pkt ;
wire rach_full ;
wire rach_almost_full ;
wire rach_prog_full ;
wire rach_empty ;
wire rach_almost_empty ;
wire rach_prog_empty ;
wire [C_DIN_WIDTH_RDCH-1:0] rdch_din ;
wire [C_DIN_WIDTH_RDCH-1:0] rdch_dout ;
wire rdch_full ;
wire rdch_almost_full ;
wire rdch_prog_full ;
wire rdch_empty ;
wire rdch_almost_empty ;
wire rdch_prog_empty ;
wire axi_ar_underflow_i ;
wire axi_r_underflow_i ;
wire axi_ar_overflow_i ;
wire axi_r_overflow_i ;
wire axi_rd_underflow_i ;
wire axi_rd_overflow_i ;
wire rach_s_axi_arready ;
wire rach_m_axi_arvalid ;
wire rach_wr_en ;
wire rach_rd_en ;
wire rdch_m_axi_rready ;
wire rdch_s_axi_rvalid ;
wire rdch_wr_en ;
wire rdch_rd_en ;
wire arvalid_pkt ;
wire arready_pkt ;
wire arvalid_en ;
wire rdch_rd_ok ;
wire accept_next_pkt ;
integer rdch_free_space ;
integer rdch_commited_space ;
wire rach_we ;
wire rach_re ;
wire rdch_we ;
wire rdch_re ;
localparam ARID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_RACH - C_AXI_ID_WIDTH : C_DIN_WIDTH_RACH;
localparam ARADDR_OFFSET = ARID_OFFSET - C_AXI_ADDR_WIDTH;
localparam ARLEN_OFFSET = C_AXI_TYPE != 2 ? ARADDR_OFFSET - C_AXI_LEN_WIDTH : ARADDR_OFFSET;
localparam ARSIZE_OFFSET = C_AXI_TYPE != 2 ? ARLEN_OFFSET - C_AXI_SIZE_WIDTH : ARLEN_OFFSET;
localparam ARBURST_OFFSET = C_AXI_TYPE != 2 ? ARSIZE_OFFSET - C_AXI_BURST_WIDTH : ARSIZE_OFFSET;
localparam ARLOCK_OFFSET = C_AXI_TYPE != 2 ? ARBURST_OFFSET - C_AXI_LOCK_WIDTH : ARBURST_OFFSET;
localparam ARCACHE_OFFSET = C_AXI_TYPE != 2 ? ARLOCK_OFFSET - C_AXI_CACHE_WIDTH : ARLOCK_OFFSET;
localparam ARPROT_OFFSET = ARCACHE_OFFSET - C_AXI_PROT_WIDTH;
localparam ARQOS_OFFSET = ARPROT_OFFSET - C_AXI_QOS_WIDTH;
localparam ARREGION_OFFSET = C_AXI_TYPE == 1 ? ARQOS_OFFSET - C_AXI_REGION_WIDTH : ARQOS_OFFSET;
localparam ARUSER_OFFSET = C_HAS_AXI_ARUSER == 1 ? ARREGION_OFFSET-C_AXI_ARUSER_WIDTH : ARREGION_OFFSET;
localparam RID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_RDCH - C_AXI_ID_WIDTH : C_DIN_WIDTH_RDCH;
localparam RDATA_OFFSET = RID_OFFSET - C_AXI_DATA_WIDTH;
localparam RRESP_OFFSET = RDATA_OFFSET - C_AXI_RRESP_WIDTH;
localparam RUSER_OFFSET = C_HAS_AXI_RUSER == 1 ? RRESP_OFFSET-C_AXI_RUSER_WIDTH : RRESP_OFFSET;
generate if (IS_RD_ADDR_CH == 1) begin : axi_read_addr_channel
// Write protection when almost full or prog_full is high
assign rach_we = (C_PROG_FULL_TYPE_RACH != 0) ? rach_s_axi_arready & S_AXI_ARVALID : S_AXI_ARVALID;
// Read protection when almost empty or prog_empty is high
// assign rach_rd_en = (C_PROG_EMPTY_TYPE_RACH != 5) ? rach_m_axi_arvalid & M_AXI_ARREADY : M_AXI_ARREADY && arvalid_en;
assign rach_re = (C_PROG_EMPTY_TYPE_RACH != 0 && C_APPLICATION_TYPE_RACH == 1) ?
rach_m_axi_arvalid & arready_pkt & arvalid_en :
(C_PROG_EMPTY_TYPE_RACH != 0 && C_APPLICATION_TYPE_RACH != 1) ?
M_AXI_ARREADY && rach_m_axi_arvalid :
(C_PROG_EMPTY_TYPE_RACH == 0 && C_APPLICATION_TYPE_RACH == 1) ?
arready_pkt & arvalid_en :
(C_PROG_EMPTY_TYPE_RACH == 0 && C_APPLICATION_TYPE_RACH != 1) ?
M_AXI_ARREADY : 1'b0;
assign rach_wr_en = (C_HAS_SLAVE_CE == 1) ? rach_we & S_ACLK_EN : rach_we;
assign rach_rd_en = (C_HAS_MASTER_CE == 1) ? rach_re & M_ACLK_EN : rach_re;
FIFO_GENERATOR_v12_0_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_RACH == 1 || C_IMPLEMENTATION_TYPE_RACH == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_RACH == 2 || C_IMPLEMENTATION_TYPE_RACH == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_RACH == 1 || C_IMPLEMENTATION_TYPE_RACH == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_RACH == 11 || C_IMPLEMENTATION_TYPE_RACH == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_RACH),
.C_WR_DEPTH (C_WR_DEPTH_RACH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_RACH),
.C_DOUT_WIDTH (C_DIN_WIDTH_RACH),
.C_RD_DEPTH (C_WR_DEPTH_RACH),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_RACH),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_RACH),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_RACH),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_RACH),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH),
.C_USE_ECC (C_USE_ECC_RACH),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_RACH),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_FIFO_TYPE ((C_APPLICATION_TYPE_RACH == 1)?0:C_APPLICATION_TYPE_RACH),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_RACH == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RACH + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RACH == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RACH + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RACH == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RACH + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_EMBEDDED_REG (0),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v12_0_rach_dut
(
.CLK (S_ACLK),
.WR_CLK (S_ACLK),
.RD_CLK (M_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (rach_wr_en),
.RD_EN (rach_rd_en),
.PROG_FULL_THRESH (AXI_AR_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RACH{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RACH{1'b0}}),
.PROG_EMPTY_THRESH (AXI_AR_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RACH{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RACH{1'b0}}),
.INJECTDBITERR (AXI_AR_INJECTDBITERR),
.INJECTSBITERR (AXI_AR_INJECTSBITERR),
.DIN (rach_din),
.DOUT (rach_dout_pkt),
.FULL (rach_full),
.EMPTY (rach_empty),
.ALMOST_FULL (),
.ALMOST_EMPTY (),
.PROG_FULL (AXI_AR_PROG_FULL),
.PROG_EMPTY (AXI_AR_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (axi_ar_overflow_i),
.VALID (),
.UNDERFLOW (axi_ar_underflow_i),
.DATA_COUNT (AXI_AR_DATA_COUNT),
.RD_DATA_COUNT (AXI_AR_RD_DATA_COUNT),
.WR_DATA_COUNT (AXI_AR_WR_DATA_COUNT),
.SBITERR (AXI_AR_SBITERR),
.DBITERR (AXI_AR_DBITERR),
.wr_rst_busy (wr_rst_busy_rach),
.rd_rst_busy (rd_rst_busy_rach),
.wr_rst_i_out (),
.rd_rst_i_out (),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign rach_s_axi_arready = (IS_8SERIES == 0) ? ~rach_full : (C_IMPLEMENTATION_TYPE_RACH == 5 || C_IMPLEMENTATION_TYPE_RACH == 13) ? ~(rach_full | wr_rst_busy_rach) : ~rach_full;
assign rach_m_axi_arvalid = ~rach_empty;
assign S_AXI_ARREADY = rach_s_axi_arready;
assign AXI_AR_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_ar_underflow_i : 0;
assign AXI_AR_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_ar_overflow_i : 0;
end endgenerate // axi_read_addr_channel
// Register Slice for Read Address Channel
generate if (C_RACH_TYPE == 1) begin : grach_reg_slice
fifo_generator_v12_0_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_RACH),
.C_REG_CONFIG (C_REG_SLICE_MODE_RACH)
)
rach_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (rach_din),
.S_VALID (S_AXI_ARVALID),
.S_READY (S_AXI_ARREADY),
// Master side
.M_PAYLOAD_DATA (rach_dout),
.M_VALID (M_AXI_ARVALID),
.M_READY (M_AXI_ARREADY)
);
end endgenerate // grach_reg_slice
// Register Slice for Read Address Channel for MM Packet FIFO
generate if (C_RACH_TYPE == 0 && C_APPLICATION_TYPE_RACH == 1) begin : grach_reg_slice_mm_pkt_fifo
fifo_generator_v12_0_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_RACH),
.C_REG_CONFIG (1)
)
reg_slice_mm_pkt_fifo_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (inverted_reset),
// Slave side
.S_PAYLOAD_DATA (rach_dout_pkt),
.S_VALID (arvalid_pkt),
.S_READY (arready_pkt),
// Master side
.M_PAYLOAD_DATA (rach_dout),
.M_VALID (M_AXI_ARVALID),
.M_READY (M_AXI_ARREADY)
);
end endgenerate // grach_reg_slice_mm_pkt_fifo
generate if (C_RACH_TYPE == 0 && C_APPLICATION_TYPE_RACH != 1) begin : grach_m_axi_arvalid
assign M_AXI_ARVALID = rach_m_axi_arvalid;
assign rach_dout = rach_dout_pkt;
end endgenerate // grach_m_axi_arvalid
generate if (C_APPLICATION_TYPE_RACH == 1 && C_HAS_AXI_RD_CHANNEL == 1) begin : axi_mm_pkt_fifo_rd
assign rdch_rd_ok = rdch_s_axi_rvalid && rdch_rd_en;
assign arvalid_pkt = rach_m_axi_arvalid && arvalid_en;
assign accept_next_pkt = rach_m_axi_arvalid && arready_pkt && arvalid_en;
always@(posedge S_ACLK or posedge inverted_reset) begin
if(inverted_reset) begin
rdch_commited_space <= 0;
end else begin
if(rdch_rd_ok && !accept_next_pkt) begin
rdch_commited_space <= rdch_commited_space-1;
end else if(!rdch_rd_ok && accept_next_pkt) begin
rdch_commited_space <= rdch_commited_space+(rach_dout_pkt[ARADDR_OFFSET-1:ARLEN_OFFSET]+1);
end else if(rdch_rd_ok && accept_next_pkt) begin
rdch_commited_space <= rdch_commited_space+(rach_dout_pkt[ARADDR_OFFSET-1:ARLEN_OFFSET]);
end
end
end //Always end
always@(*) begin
rdch_free_space <= (C_WR_DEPTH_RDCH-(rdch_commited_space+rach_dout_pkt[ARADDR_OFFSET-1:ARLEN_OFFSET]+1));
end
assign arvalid_en = (rdch_free_space >= 0)?1:0;
end
endgenerate
generate if (C_APPLICATION_TYPE_RACH != 1) begin : axi_mm_fifo_rd
assign arvalid_en = 1;
end
endgenerate
generate if (IS_RD_DATA_CH == 1) begin : axi_read_data_channel
// Write protection when almost full or prog_full is high
assign rdch_we = (C_PROG_FULL_TYPE_RDCH != 0) ? rdch_m_axi_rready & M_AXI_RVALID : M_AXI_RVALID;
// Read protection when almost empty or prog_empty is high
assign rdch_re = (C_PROG_EMPTY_TYPE_RDCH != 0) ? rdch_s_axi_rvalid & S_AXI_RREADY : S_AXI_RREADY;
assign rdch_wr_en = (C_HAS_SLAVE_CE == 1) ? rdch_we & S_ACLK_EN : rdch_we;
assign rdch_rd_en = (C_HAS_MASTER_CE == 1) ? rdch_re & M_ACLK_EN : rdch_re;
FIFO_GENERATOR_v12_0_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_RDCH == 1 || C_IMPLEMENTATION_TYPE_RDCH == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_RDCH == 2 || C_IMPLEMENTATION_TYPE_RDCH == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_RDCH == 1 || C_IMPLEMENTATION_TYPE_RDCH == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_RDCH == 11 || C_IMPLEMENTATION_TYPE_RDCH == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_RDCH),
.C_WR_DEPTH (C_WR_DEPTH_RDCH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_RDCH),
.C_DOUT_WIDTH (C_DIN_WIDTH_RDCH),
.C_RD_DEPTH (C_WR_DEPTH_RDCH),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_RDCH),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_RDCH),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_RDCH),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_RDCH),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH),
.C_USE_ECC (C_USE_ECC_RDCH),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_RDCH),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_FIFO_TYPE (C_APPLICATION_TYPE_RDCH),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_RDCH == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RDCH + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RDCH == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RDCH + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RDCH == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RDCH + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_EMBEDDED_REG (0),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v12_0_rdch_dut
(
.CLK (S_ACLK),
.WR_CLK (M_ACLK),
.RD_CLK (S_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (rdch_wr_en),
.RD_EN (rdch_rd_en),
.PROG_FULL_THRESH (AXI_R_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RDCH{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RDCH{1'b0}}),
.PROG_EMPTY_THRESH (AXI_R_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RDCH{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RDCH{1'b0}}),
.INJECTDBITERR (AXI_R_INJECTDBITERR),
.INJECTSBITERR (AXI_R_INJECTSBITERR),
.DIN (rdch_din),
.DOUT (rdch_dout),
.FULL (rdch_full),
.EMPTY (rdch_empty),
.ALMOST_FULL (),
.ALMOST_EMPTY (),
.PROG_FULL (AXI_R_PROG_FULL),
.PROG_EMPTY (AXI_R_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (axi_r_overflow_i),
.VALID (),
.UNDERFLOW (axi_r_underflow_i),
.DATA_COUNT (AXI_R_DATA_COUNT),
.RD_DATA_COUNT (AXI_R_RD_DATA_COUNT),
.WR_DATA_COUNT (AXI_R_WR_DATA_COUNT),
.SBITERR (AXI_R_SBITERR),
.DBITERR (AXI_R_DBITERR),
.wr_rst_busy (wr_rst_busy_rdch),
.rd_rst_busy (rd_rst_busy_rdch),
.wr_rst_i_out (),
.rd_rst_i_out (),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign rdch_s_axi_rvalid = ~rdch_empty;
assign rdch_m_axi_rready = (IS_8SERIES == 0) ? ~rdch_full : (C_IMPLEMENTATION_TYPE_RDCH == 5 || C_IMPLEMENTATION_TYPE_RDCH == 13) ? ~(rdch_full | wr_rst_busy_rdch) : ~rdch_full;
assign S_AXI_RVALID = rdch_s_axi_rvalid;
assign M_AXI_RREADY = rdch_m_axi_rready;
assign AXI_R_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_r_underflow_i : 0;
assign AXI_R_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_r_overflow_i : 0;
end endgenerate //axi_read_data_channel
// Register Slice for read Data Channel
generate if (C_RDCH_TYPE == 1) begin : grdch_reg_slice
fifo_generator_v12_0_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_RDCH),
.C_REG_CONFIG (C_REG_SLICE_MODE_RDCH)
)
rdch_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (rdch_din),
.S_VALID (M_AXI_RVALID),
.S_READY (M_AXI_RREADY),
// Master side
.M_PAYLOAD_DATA (rdch_dout),
.M_VALID (S_AXI_RVALID),
.M_READY (S_AXI_RREADY)
);
end endgenerate // grdch_reg_slice
assign axi_rd_underflow_i = C_USE_COMMON_UNDERFLOW == 1 ? (axi_ar_underflow_i || axi_r_underflow_i) : 0;
assign axi_rd_overflow_i = C_USE_COMMON_OVERFLOW == 1 ? (axi_ar_overflow_i || axi_r_overflow_i) : 0;
generate if (IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) begin : axi_full_rach_output
assign M_AXI_ARADDR = rach_dout[ARID_OFFSET-1:ARADDR_OFFSET];
assign M_AXI_ARLEN = rach_dout[ARADDR_OFFSET-1:ARLEN_OFFSET];
assign M_AXI_ARSIZE = rach_dout[ARLEN_OFFSET-1:ARSIZE_OFFSET];
assign M_AXI_ARBURST = rach_dout[ARSIZE_OFFSET-1:ARBURST_OFFSET];
assign M_AXI_ARLOCK = rach_dout[ARBURST_OFFSET-1:ARLOCK_OFFSET];
assign M_AXI_ARCACHE = rach_dout[ARLOCK_OFFSET-1:ARCACHE_OFFSET];
assign M_AXI_ARPROT = rach_dout[ARCACHE_OFFSET-1:ARPROT_OFFSET];
assign M_AXI_ARQOS = rach_dout[ARPROT_OFFSET-1:ARQOS_OFFSET];
assign rach_din[ARID_OFFSET-1:ARADDR_OFFSET] = S_AXI_ARADDR;
assign rach_din[ARADDR_OFFSET-1:ARLEN_OFFSET] = S_AXI_ARLEN;
assign rach_din[ARLEN_OFFSET-1:ARSIZE_OFFSET] = S_AXI_ARSIZE;
assign rach_din[ARSIZE_OFFSET-1:ARBURST_OFFSET] = S_AXI_ARBURST;
assign rach_din[ARBURST_OFFSET-1:ARLOCK_OFFSET] = S_AXI_ARLOCK;
assign rach_din[ARLOCK_OFFSET-1:ARCACHE_OFFSET] = S_AXI_ARCACHE;
assign rach_din[ARCACHE_OFFSET-1:ARPROT_OFFSET] = S_AXI_ARPROT;
assign rach_din[ARPROT_OFFSET-1:ARQOS_OFFSET] = S_AXI_ARQOS;
end endgenerate // axi_full_rach_output
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_AXI_TYPE == 1) begin : axi_arregion
assign M_AXI_ARREGION = rach_dout[ARQOS_OFFSET-1:ARREGION_OFFSET];
end endgenerate // axi_arregion
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_AXI_TYPE != 1) begin : naxi_arregion
assign M_AXI_ARREGION = 0;
end endgenerate // naxi_arregion
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ARUSER == 1) begin : axi_aruser
assign M_AXI_ARUSER = rach_dout[ARREGION_OFFSET-1:ARUSER_OFFSET];
end endgenerate // axi_aruser
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ARUSER == 0) begin : naxi_aruser
assign M_AXI_ARUSER = 0;
end endgenerate // naxi_aruser
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_arid
assign M_AXI_ARID = rach_dout[C_DIN_WIDTH_RACH-1:ARID_OFFSET];
end endgenerate // axi_arid
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_arid
assign M_AXI_ARID = 0;
end endgenerate // naxi_arid
generate if (IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) begin : axi_full_rdch_output
assign S_AXI_RDATA = rdch_dout[RID_OFFSET-1:RDATA_OFFSET];
assign S_AXI_RRESP = rdch_dout[RDATA_OFFSET-1:RRESP_OFFSET];
assign S_AXI_RLAST = rdch_dout[0];
assign rdch_din[RID_OFFSET-1:RDATA_OFFSET] = M_AXI_RDATA;
assign rdch_din[RDATA_OFFSET-1:RRESP_OFFSET] = M_AXI_RRESP;
assign rdch_din[0] = M_AXI_RLAST;
end endgenerate // axi_full_rdch_output
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_RUSER == 1) begin : axi_full_ruser_output
assign S_AXI_RUSER = rdch_dout[RRESP_OFFSET-1:RUSER_OFFSET];
end endgenerate // axi_full_ruser_output
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_RUSER == 0) begin : axi_full_nruser_output
assign S_AXI_RUSER = 0;
end endgenerate // axi_full_nruser_output
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_rid
assign S_AXI_RID = rdch_dout[C_DIN_WIDTH_RDCH-1:RID_OFFSET];
end endgenerate // axi_rid
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_rid
assign S_AXI_RID = 0;
end endgenerate // naxi_rid
generate if (IS_AXI_LITE_RACH == 1 || (IS_AXI_LITE == 1 && C_RACH_TYPE == 1)) begin : axi_lite_rach_output1
assign rach_din = {S_AXI_ARADDR, S_AXI_ARPROT};
assign M_AXI_ARADDR = rach_dout[C_DIN_WIDTH_RACH-1:ARADDR_OFFSET];
assign M_AXI_ARPROT = rach_dout[ARADDR_OFFSET-1:ARPROT_OFFSET];
end endgenerate // axi_lite_rach_output
generate if (IS_AXI_LITE_RDCH == 1 || (IS_AXI_LITE == 1 && C_RDCH_TYPE == 1)) begin : axi_lite_rdch_output1
assign rdch_din = {M_AXI_RDATA, M_AXI_RRESP};
assign S_AXI_RDATA = rdch_dout[C_DIN_WIDTH_RDCH-1:RDATA_OFFSET];
assign S_AXI_RRESP = rdch_dout[RDATA_OFFSET-1:RRESP_OFFSET];
end endgenerate // axi_lite_rdch_output
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ARUSER == 1) begin : grach_din1
assign rach_din[ARREGION_OFFSET-1:ARUSER_OFFSET] = S_AXI_ARUSER;
end endgenerate // grach_din1
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : grach_din2
assign rach_din[C_DIN_WIDTH_RACH-1:ARID_OFFSET] = S_AXI_ARID;
end endgenerate // grach_din2
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_AXI_TYPE == 1) begin
assign rach_din[ARQOS_OFFSET-1:ARREGION_OFFSET] = S_AXI_ARREGION;
end endgenerate
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_RUSER == 1) begin : grdch_din1
assign rdch_din[RRESP_OFFSET-1:RUSER_OFFSET] = M_AXI_RUSER;
end endgenerate // grdch_din1
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : grdch_din2
assign rdch_din[C_DIN_WIDTH_RDCH-1:RID_OFFSET] = M_AXI_RID;
end endgenerate // grdch_din2
//end of axi_read_channel
generate if (C_INTERFACE_TYPE == 1 && C_USE_COMMON_UNDERFLOW == 1) begin : gaxi_comm_uf
assign UNDERFLOW = (C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 1) ? (axi_wr_underflow_i || axi_rd_underflow_i) :
(C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 0) ? axi_wr_underflow_i :
(C_HAS_AXI_WR_CHANNEL == 0 && C_HAS_AXI_RD_CHANNEL == 1) ? axi_rd_underflow_i : 0;
end endgenerate // gaxi_comm_uf
generate if (C_INTERFACE_TYPE == 1 && C_USE_COMMON_OVERFLOW == 1) begin : gaxi_comm_of
assign OVERFLOW = (C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 1) ? (axi_wr_overflow_i || axi_rd_overflow_i) :
(C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 0) ? axi_wr_overflow_i :
(C_HAS_AXI_WR_CHANNEL == 0 && C_HAS_AXI_RD_CHANNEL == 1) ? axi_rd_overflow_i : 0;
end endgenerate // gaxi_comm_of
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
// Pass Through Logic or Wiring Logic
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
// Pass Through Logic for Read Channel
//-------------------------------------------------------------------------
// Wiring logic for Write Address Channel
generate if (C_WACH_TYPE == 2) begin : gwach_pass_through
assign M_AXI_AWID = S_AXI_AWID;
assign M_AXI_AWADDR = S_AXI_AWADDR;
assign M_AXI_AWLEN = S_AXI_AWLEN;
assign M_AXI_AWSIZE = S_AXI_AWSIZE;
assign M_AXI_AWBURST = S_AXI_AWBURST;
assign M_AXI_AWLOCK = S_AXI_AWLOCK;
assign M_AXI_AWCACHE = S_AXI_AWCACHE;
assign M_AXI_AWPROT = S_AXI_AWPROT;
assign M_AXI_AWQOS = S_AXI_AWQOS;
assign M_AXI_AWREGION = S_AXI_AWREGION;
assign M_AXI_AWUSER = S_AXI_AWUSER;
assign S_AXI_AWREADY = M_AXI_AWREADY;
assign M_AXI_AWVALID = S_AXI_AWVALID;
end endgenerate // gwach_pass_through;
// Wiring logic for Write Data Channel
generate if (C_WDCH_TYPE == 2) begin : gwdch_pass_through
assign M_AXI_WID = S_AXI_WID;
assign M_AXI_WDATA = S_AXI_WDATA;
assign M_AXI_WSTRB = S_AXI_WSTRB;
assign M_AXI_WLAST = S_AXI_WLAST;
assign M_AXI_WUSER = S_AXI_WUSER;
assign S_AXI_WREADY = M_AXI_WREADY;
assign M_AXI_WVALID = S_AXI_WVALID;
end endgenerate // gwdch_pass_through;
// Wiring logic for Write Response Channel
generate if (C_WRCH_TYPE == 2) begin : gwrch_pass_through
assign S_AXI_BID = M_AXI_BID;
assign S_AXI_BRESP = M_AXI_BRESP;
assign S_AXI_BUSER = M_AXI_BUSER;
assign M_AXI_BREADY = S_AXI_BREADY;
assign S_AXI_BVALID = M_AXI_BVALID;
end endgenerate // gwrch_pass_through;
//-------------------------------------------------------------------------
// Pass Through Logic for Read Channel
//-------------------------------------------------------------------------
// Wiring logic for Read Address Channel
generate if (C_RACH_TYPE == 2) begin : grach_pass_through
assign M_AXI_ARID = S_AXI_ARID;
assign M_AXI_ARADDR = S_AXI_ARADDR;
assign M_AXI_ARLEN = S_AXI_ARLEN;
assign M_AXI_ARSIZE = S_AXI_ARSIZE;
assign M_AXI_ARBURST = S_AXI_ARBURST;
assign M_AXI_ARLOCK = S_AXI_ARLOCK;
assign M_AXI_ARCACHE = S_AXI_ARCACHE;
assign M_AXI_ARPROT = S_AXI_ARPROT;
assign M_AXI_ARQOS = S_AXI_ARQOS;
assign M_AXI_ARREGION = S_AXI_ARREGION;
assign M_AXI_ARUSER = S_AXI_ARUSER;
assign S_AXI_ARREADY = M_AXI_ARREADY;
assign M_AXI_ARVALID = S_AXI_ARVALID;
end endgenerate // grach_pass_through;
// Wiring logic for Read Data Channel
generate if (C_RDCH_TYPE == 2) begin : grdch_pass_through
assign S_AXI_RID = M_AXI_RID;
assign S_AXI_RLAST = M_AXI_RLAST;
assign S_AXI_RUSER = M_AXI_RUSER;
assign S_AXI_RDATA = M_AXI_RDATA;
assign S_AXI_RRESP = M_AXI_RRESP;
assign S_AXI_RVALID = M_AXI_RVALID;
assign M_AXI_RREADY = S_AXI_RREADY;
end endgenerate // grdch_pass_through;
// Wiring logic for AXI Streaming
generate if (C_AXIS_TYPE == 2) begin : gaxis_pass_through
assign M_AXIS_TDATA = S_AXIS_TDATA;
assign M_AXIS_TSTRB = S_AXIS_TSTRB;
assign M_AXIS_TKEEP = S_AXIS_TKEEP;
assign M_AXIS_TID = S_AXIS_TID;
assign M_AXIS_TDEST = S_AXIS_TDEST;
assign M_AXIS_TUSER = S_AXIS_TUSER;
assign M_AXIS_TLAST = S_AXIS_TLAST;
assign S_AXIS_TREADY = M_AXIS_TREADY;
assign M_AXIS_TVALID = S_AXIS_TVALID;
end endgenerate // gaxis_pass_through;
endmodule //FIFO_GENERATOR_v12_0
/*******************************************************************************
* Declaration of top-level module for Conventional FIFO
******************************************************************************/
module FIFO_GENERATOR_v12_0_CONV_VER
#(
parameter C_COMMON_CLOCK = 0,
parameter C_COUNT_TYPE = 0,
parameter C_DATA_COUNT_WIDTH = 2,
parameter C_DEFAULT_VALUE = "",
parameter C_DIN_WIDTH = 8,
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_ENABLE_RLOCS = 0,
parameter C_FAMILY = "virtex7", //Not allowed in Verilog model
parameter C_FULL_FLAGS_RST_VAL = 1,
parameter C_HAS_ALMOST_EMPTY = 0,
parameter C_HAS_ALMOST_FULL = 0,
parameter C_HAS_BACKUP = 0,
parameter C_HAS_DATA_COUNT = 0,
parameter C_HAS_INT_CLK = 0,
parameter C_HAS_MEMINIT_FILE = 0,
parameter C_HAS_OVERFLOW = 0,
parameter C_HAS_RD_DATA_COUNT = 0,
parameter C_HAS_RD_RST = 0,
parameter C_HAS_RST = 0,
parameter C_HAS_SRST = 0,
parameter C_HAS_UNDERFLOW = 0,
parameter C_HAS_VALID = 0,
parameter C_HAS_WR_ACK = 0,
parameter C_HAS_WR_DATA_COUNT = 0,
parameter C_HAS_WR_RST = 0,
parameter C_IMPLEMENTATION_TYPE = 0,
parameter C_INIT_WR_PNTR_VAL = 0,
parameter C_MEMORY_TYPE = 1,
parameter C_MIF_FILE_NAME = "",
parameter C_OPTIMIZATION_MODE = 0,
parameter C_OVERFLOW_LOW = 0,
parameter C_PRELOAD_LATENCY = 1,
parameter C_PRELOAD_REGS = 0,
parameter C_PRIM_FIFO_TYPE = "",
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0,
parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0,
parameter C_PROG_EMPTY_TYPE = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0,
parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0,
parameter C_PROG_FULL_TYPE = 0,
parameter C_RD_DATA_COUNT_WIDTH = 2,
parameter C_RD_DEPTH = 256,
parameter C_RD_FREQ = 1,
parameter C_RD_PNTR_WIDTH = 8,
parameter C_UNDERFLOW_LOW = 0,
parameter C_USE_DOUT_RST = 0,
parameter C_USE_ECC = 0,
parameter C_USE_EMBEDDED_REG = 0,
parameter C_USE_FIFO16_FLAGS = 0,
parameter C_USE_FWFT_DATA_COUNT = 0,
parameter C_VALID_LOW = 0,
parameter C_WR_ACK_LOW = 0,
parameter C_WR_DATA_COUNT_WIDTH = 2,
parameter C_WR_DEPTH = 256,
parameter C_WR_FREQ = 1,
parameter C_WR_PNTR_WIDTH = 8,
parameter C_WR_RESPONSE_LATENCY = 1,
parameter C_MSGON_VAL = 1,
parameter C_ENABLE_RST_SYNC = 1,
parameter C_ERROR_INJECTION_TYPE = 0,
parameter C_FIFO_TYPE = 0,
parameter C_SYNCHRONIZER_STAGE = 2,
parameter C_AXI_TYPE = 0
)
(
input BACKUP,
input BACKUP_MARKER,
input CLK,
input RST,
input SRST,
input WR_CLK,
input WR_RST,
input RD_CLK,
input RD_RST,
input [C_DIN_WIDTH-1:0] DIN,
input WR_EN,
input RD_EN,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE,
input INT_CLK,
input INJECTDBITERR,
input INJECTSBITERR,
output [C_DOUT_WIDTH-1:0] DOUT,
output FULL,
output ALMOST_FULL,
output WR_ACK,
output OVERFLOW,
output EMPTY,
output ALMOST_EMPTY,
output VALID,
output UNDERFLOW,
output [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT,
output [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT,
output [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT,
output PROG_FULL,
output PROG_EMPTY,
output SBITERR,
output DBITERR,
output wr_rst_busy,
output rd_rst_busy,
output wr_rst_i_out,
output rd_rst_i_out
);
/*
******************************************************************************
* Definition of Parameters
******************************************************************************
* C_COMMON_CLOCK : Common Clock (1), Independent Clocks (0)
* C_COUNT_TYPE : *not used
* C_DATA_COUNT_WIDTH : Width of DATA_COUNT bus
* C_DEFAULT_VALUE : *not used
* C_DIN_WIDTH : Width of DIN bus
* C_DOUT_RST_VAL : Reset value of DOUT
* C_DOUT_WIDTH : Width of DOUT bus
* C_ENABLE_RLOCS : *not used
* C_FAMILY : not used in bhv model
* C_FULL_FLAGS_RST_VAL : Full flags rst val (0 or 1)
* C_HAS_ALMOST_EMPTY : 1=Core has ALMOST_EMPTY flag
* C_HAS_ALMOST_FULL : 1=Core has ALMOST_FULL flag
* C_HAS_BACKUP : *not used
* C_HAS_DATA_COUNT : 1=Core has DATA_COUNT bus
* C_HAS_INT_CLK : not used in bhv model
* C_HAS_MEMINIT_FILE : *not used
* C_HAS_OVERFLOW : 1=Core has OVERFLOW flag
* C_HAS_RD_DATA_COUNT : 1=Core has RD_DATA_COUNT bus
* C_HAS_RD_RST : *not used
* C_HAS_RST : 1=Core has Async Rst
* C_HAS_SRST : 1=Core has Sync Rst
* C_HAS_UNDERFLOW : 1=Core has UNDERFLOW flag
* C_HAS_VALID : 1=Core has VALID flag
* C_HAS_WR_ACK : 1=Core has WR_ACK flag
* C_HAS_WR_DATA_COUNT : 1=Core has WR_DATA_COUNT bus
* C_HAS_WR_RST : *not used
* C_IMPLEMENTATION_TYPE : 0=Common-Clock Bram/Dram
* 1=Common-Clock ShiftRam
* 2=Indep. Clocks Bram/Dram
* 3=Virtex-4 Built-in
* 4=Virtex-5 Built-in
* C_INIT_WR_PNTR_VAL : *not used
* C_MEMORY_TYPE : 1=Block RAM
* 2=Distributed RAM
* 3=Shift RAM
* 4=Built-in FIFO
* C_MIF_FILE_NAME : *not used
* C_OPTIMIZATION_MODE : *not used
* C_OVERFLOW_LOW : 1=OVERFLOW active low
* C_PRELOAD_LATENCY : Latency of read: 0, 1, 2
* C_PRELOAD_REGS : 1=Use output registers
* C_PRIM_FIFO_TYPE : not used in bhv model
* C_PROG_EMPTY_THRESH_ASSERT_VAL: PROG_EMPTY assert threshold
* C_PROG_EMPTY_THRESH_NEGATE_VAL: PROG_EMPTY negate threshold
* C_PROG_EMPTY_TYPE : 0=No programmable empty
* 1=Single prog empty thresh constant
* 2=Multiple prog empty thresh constants
* 3=Single prog empty thresh input
* 4=Multiple prog empty thresh inputs
* C_PROG_FULL_THRESH_ASSERT_VAL : PROG_FULL assert threshold
* C_PROG_FULL_THRESH_NEGATE_VAL : PROG_FULL negate threshold
* C_PROG_FULL_TYPE : 0=No prog full
* 1=Single prog full thresh constant
* 2=Multiple prog full thresh constants
* 3=Single prog full thresh input
* 4=Multiple prog full thresh inputs
* C_RD_DATA_COUNT_WIDTH : Width of RD_DATA_COUNT bus
* C_RD_DEPTH : Depth of read interface (2^N)
* C_RD_FREQ : not used in bhv model
* C_RD_PNTR_WIDTH : always log2(C_RD_DEPTH)
* C_UNDERFLOW_LOW : 1=UNDERFLOW active low
* C_USE_DOUT_RST : 1=Resets DOUT on RST
* C_USE_ECC : Used for error injection purpose
* C_USE_EMBEDDED_REG : 1=Use BRAM embedded output register
* C_USE_FIFO16_FLAGS : not used in bhv model
* C_USE_FWFT_DATA_COUNT : 1=Use extra logic for FWFT data count
* C_VALID_LOW : 1=VALID active low
* C_WR_ACK_LOW : 1=WR_ACK active low
* C_WR_DATA_COUNT_WIDTH : Width of WR_DATA_COUNT bus
* C_WR_DEPTH : Depth of write interface (2^N)
* C_WR_FREQ : not used in bhv model
* C_WR_PNTR_WIDTH : always log2(C_WR_DEPTH)
* C_WR_RESPONSE_LATENCY : *not used
* C_MSGON_VAL : *not used by bhv model
* C_ENABLE_RST_SYNC : 0 = Use WR_RST & RD_RST
* 1 = Use RST
* C_ERROR_INJECTION_TYPE : 0 = No error injection
* 1 = Single bit error injection only
* 2 = Double bit error injection only
* 3 = Single and double bit error injection
******************************************************************************
* Definition of Ports
******************************************************************************
* BACKUP : Not used
* BACKUP_MARKER: Not used
* CLK : Clock
* DIN : Input data bus
* PROG_EMPTY_THRESH : Threshold for Programmable Empty Flag
* PROG_EMPTY_THRESH_ASSERT: Threshold for Programmable Empty Flag
* PROG_EMPTY_THRESH_NEGATE: Threshold for Programmable Empty Flag
* PROG_FULL_THRESH : Threshold for Programmable Full Flag
* PROG_FULL_THRESH_ASSERT : Threshold for Programmable Full Flag
* PROG_FULL_THRESH_NEGATE : Threshold for Programmable Full Flag
* RD_CLK : Read Domain Clock
* RD_EN : Read enable
* RD_RST : Read Reset
* RST : Asynchronous Reset
* SRST : Synchronous Reset
* WR_CLK : Write Domain Clock
* WR_EN : Write enable
* WR_RST : Write Reset
* INT_CLK : Internal Clock
* INJECTSBITERR: Inject Signle bit error
* INJECTDBITERR: Inject Double bit error
* ALMOST_EMPTY : One word remaining in FIFO
* ALMOST_FULL : One empty space remaining in FIFO
* DATA_COUNT : Number of data words in fifo( synchronous to CLK)
* DOUT : Output data bus
* EMPTY : Empty flag
* FULL : Full flag
* OVERFLOW : Last write rejected
* PROG_EMPTY : Programmable Empty Flag
* PROG_FULL : Programmable Full Flag
* RD_DATA_COUNT: Number of data words in fifo (synchronous to RD_CLK)
* UNDERFLOW : Last read rejected
* VALID : Last read acknowledged, DOUT bus VALID
* WR_ACK : Last write acknowledged
* WR_DATA_COUNT: Number of data words in fifo (synchronous to WR_CLK)
* SBITERR : Single Bit ECC Error Detected
* DBITERR : Double Bit ECC Error Detected
******************************************************************************
*/
//----------------------------------------------------------------------------
//- Internal Signals for delayed input signals
//- All the input signals except Clock are delayed by 100 ps and then given to
//- the models.
//----------------------------------------------------------------------------
reg rst_delayed ;
reg empty_fb ;
reg srst_delayed ;
reg wr_rst_delayed ;
reg rd_rst_delayed ;
reg wr_en_delayed ;
reg rd_en_delayed ;
reg [C_DIN_WIDTH-1:0] din_delayed ;
reg [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_delayed ;
reg [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_assert_delayed ;
reg [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_negate_delayed ;
reg [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_delayed ;
reg [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_assert_delayed ;
reg [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_negate_delayed ;
reg injectdbiterr_delayed ;
reg injectsbiterr_delayed ;
wire empty_p0_out;
always @* rst_delayed <= #`TCQ RST ;
always @* empty_fb <= #`TCQ empty_p0_out ;
always @* srst_delayed <= #`TCQ SRST ;
always @* wr_rst_delayed <= #`TCQ WR_RST ;
always @* rd_rst_delayed <= #`TCQ RD_RST ;
always @* din_delayed <= #`TCQ DIN ;
always @* wr_en_delayed <= #`TCQ WR_EN ;
always @* rd_en_delayed <= #`TCQ RD_EN ;
always @* prog_empty_thresh_delayed <= #`TCQ PROG_EMPTY_THRESH ;
always @* prog_empty_thresh_assert_delayed <= #`TCQ PROG_EMPTY_THRESH_ASSERT ;
always @* prog_empty_thresh_negate_delayed <= #`TCQ PROG_EMPTY_THRESH_NEGATE ;
always @* prog_full_thresh_delayed <= #`TCQ PROG_FULL_THRESH ;
always @* prog_full_thresh_assert_delayed <= #`TCQ PROG_FULL_THRESH_ASSERT ;
always @* prog_full_thresh_negate_delayed <= #`TCQ PROG_FULL_THRESH_NEGATE ;
always @* injectdbiterr_delayed <= #`TCQ INJECTDBITERR ;
always @* injectsbiterr_delayed <= #`TCQ INJECTSBITERR ;
/*****************************************************************************
* Derived parameters
****************************************************************************/
//There are 2 Verilog behavioral models
// 0 = Common-Clock FIFO/ShiftRam FIFO
// 1 = Independent Clocks FIFO
// 2 = Low Latency Synchronous FIFO
// 3 = Low Latency Asynchronous FIFO
localparam C_VERILOG_IMPL = (C_FIFO_TYPE == 3) ? 2 :
(C_IMPLEMENTATION_TYPE == 2) ? 1 : 0;
localparam IS_8SERIES = (C_FAMILY == "virtexu" || C_FAMILY == "kintexu" || C_FAMILY == "artixu" || C_FAMILY == "virtexum" || C_FAMILY == "zynque") ? 1 : 0;
//Internal reset signals
reg rd_rst_asreg = 0;
reg rd_rst_asreg_d1 = 0;
reg rd_rst_asreg_d2 = 0;
reg rd_rst_asreg_d3 = 0;
reg rd_rst_reg = 0;
wire rd_rst_comb;
reg wr_rst_d0 = 0;
reg wr_rst_d1 = 0;
reg wr_rst_d2 = 0;
reg rd_rst_d0 = 0;
reg rd_rst_d1 = 0;
reg rd_rst_d2 = 0;
reg rd_rst_d3 = 0;
reg wrrst_done = 0;
reg rdrst_done = 0;
reg wr_rst_asreg = 0;
reg wr_rst_asreg_d1 = 0;
reg wr_rst_asreg_d2 = 0;
reg wr_rst_asreg_d3 = 0;
reg rd_rst_wr_d0 = 0;
reg rd_rst_wr_d1 = 0;
reg rd_rst_wr_d2 = 0;
reg wr_rst_reg = 0;
reg rst_active_i = 1'b1;
reg rst_delayed_d1 = 1'b1;
reg rst_delayed_d2 = 1'b1;
wire wr_rst_comb;
wire wr_rst_i;
wire rd_rst_i;
wire rst_i;
//Internal reset signals
reg rst_asreg = 0;
reg srst_asreg = 0;
reg rst_asreg_d1 = 0;
reg rst_asreg_d2 = 0;
reg srst_asreg_d1 = 0;
reg srst_asreg_d2 = 0;
reg rst_reg = 0;
reg srst_reg = 0;
wire rst_comb;
wire srst_comb;
reg rst_full_gen_i = 0;
reg rst_full_ff_i = 0;
wire RD_CLK_P0_IN;
wire RST_P0_IN;
wire RD_EN_FIFO_IN;
wire RD_EN_P0_IN;
wire ALMOST_EMPTY_FIFO_OUT;
wire ALMOST_FULL_FIFO_OUT;
wire [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT_FIFO_OUT;
wire [C_DOUT_WIDTH-1:0] DOUT_FIFO_OUT;
wire EMPTY_FIFO_OUT;
wire FULL_FIFO_OUT;
wire OVERFLOW_FIFO_OUT;
wire PROG_EMPTY_FIFO_OUT;
wire PROG_FULL_FIFO_OUT;
wire VALID_FIFO_OUT;
wire [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT_FIFO_OUT;
wire UNDERFLOW_FIFO_OUT;
wire WR_ACK_FIFO_OUT;
wire [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT_FIFO_OUT;
//***************************************************************************
// Internal Signals
// The core uses either the internal_ wires or the preload0_ wires depending
// on whether the core uses Preload0 or not.
// When using preload0, the internal signals connect the internal core to
// the preload logic, and the external core's interfaces are tied to the
// preload0 signals from the preload logic.
//***************************************************************************
wire [C_DOUT_WIDTH-1:0] DATA_P0_OUT;
wire VALID_P0_OUT;
wire EMPTY_P0_OUT;
wire ALMOSTEMPTY_P0_OUT;
reg EMPTY_P0_OUT_Q;
reg ALMOSTEMPTY_P0_OUT_Q;
wire UNDERFLOW_P0_OUT;
wire RDEN_P0_OUT;
wire [C_DOUT_WIDTH-1:0] DATA_P0_IN;
wire EMPTY_P0_IN;
reg [31:0] DATA_COUNT_FWFT;
reg SS_FWFT_WR ;
reg SS_FWFT_RD ;
wire sbiterr_fifo_out;
wire dbiterr_fifo_out;
wire inject_sbit_err;
wire inject_dbit_err;
// Assign 0 if not selected to avoid 'X' propogation to S/DBITERR.
assign inject_sbit_err = ((C_ERROR_INJECTION_TYPE == 1) || (C_ERROR_INJECTION_TYPE == 3)) ?
injectsbiterr_delayed : 0;
assign inject_dbit_err = ((C_ERROR_INJECTION_TYPE == 2) || (C_ERROR_INJECTION_TYPE == 3)) ?
injectdbiterr_delayed : 0;
assign wr_rst_i_out = wr_rst_i;
assign rd_rst_i_out = rd_rst_i;
// Choose the behavioral model to instantiate based on the C_VERILOG_IMPL
// parameter (1=Independent Clocks, 0=Common Clock)
localparam FULL_FLAGS_RST_VAL = (C_HAS_SRST == 1) ? 0 : C_FULL_FLAGS_RST_VAL;
generate
case (C_VERILOG_IMPL)
0 : begin : block1
//Common Clock Behavioral Model
fifo_generator_v12_0_bhv_ver_ss
#(
.C_FAMILY (C_FAMILY),
.C_DATA_COUNT_WIDTH (C_DATA_COUNT_WIDTH),
.C_DIN_WIDTH (C_DIN_WIDTH),
.C_DOUT_RST_VAL (C_DOUT_RST_VAL),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_FULL_FLAGS_RST_VAL (FULL_FLAGS_RST_VAL),
.C_HAS_ALMOST_EMPTY (C_HAS_ALMOST_EMPTY),
.C_HAS_ALMOST_FULL ((C_AXI_TYPE == 0 && C_FIFO_TYPE == 1) ? 1 : C_HAS_ALMOST_FULL),
.C_HAS_DATA_COUNT (C_HAS_DATA_COUNT),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT),
.C_HAS_RST (C_HAS_RST),
.C_HAS_SRST (C_HAS_SRST),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_HAS_VALID (C_HAS_VALID),
.C_HAS_WR_ACK (C_HAS_WR_ACK),
.C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT),
.C_IMPLEMENTATION_TYPE (C_IMPLEMENTATION_TYPE),
.C_MEMORY_TYPE (C_MEMORY_TYPE),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_PRELOAD_LATENCY (C_PRELOAD_LATENCY),
.C_PRELOAD_REGS (C_PRELOAD_REGS),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL),
.C_PROG_EMPTY_THRESH_NEGATE_VAL (C_PROG_EMPTY_THRESH_NEGATE_VAL),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL),
.C_PROG_FULL_THRESH_NEGATE_VAL (C_PROG_FULL_THRESH_NEGATE_VAL),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE),
.C_RD_DATA_COUNT_WIDTH (C_RD_DATA_COUNT_WIDTH),
.C_RD_DEPTH (C_RD_DEPTH),
.C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG),
.C_USE_FWFT_DATA_COUNT (C_USE_FWFT_DATA_COUNT),
.C_VALID_LOW (C_VALID_LOW),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH),
.C_WR_DEPTH (C_WR_DEPTH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH),
.C_USE_ECC (C_USE_ECC),
.C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE),
.C_FIFO_TYPE (C_FIFO_TYPE)
)
gen_ss
(
.CLK (CLK),
.RST (rst_i),
.SRST (srst_delayed),
.RST_FULL_GEN (rst_full_gen_i),
.RST_FULL_FF (rst_full_ff_i),
.DIN (din_delayed),
.WR_EN (wr_en_delayed),
.RD_EN (RD_EN_FIFO_IN),
.RD_EN_USER (rd_en_delayed),
.USER_EMPTY_FB (empty_fb),
.PROG_EMPTY_THRESH (prog_empty_thresh_delayed),
.PROG_EMPTY_THRESH_ASSERT (prog_empty_thresh_assert_delayed),
.PROG_EMPTY_THRESH_NEGATE (prog_empty_thresh_negate_delayed),
.PROG_FULL_THRESH (prog_full_thresh_delayed),
.PROG_FULL_THRESH_ASSERT (prog_full_thresh_assert_delayed),
.PROG_FULL_THRESH_NEGATE (prog_full_thresh_negate_delayed),
.INJECTSBITERR (inject_sbit_err),
.INJECTDBITERR (inject_dbit_err),
.DOUT (DOUT_FIFO_OUT),
.FULL (FULL_FIFO_OUT),
.ALMOST_FULL (ALMOST_FULL_FIFO_OUT),
.WR_ACK (WR_ACK_FIFO_OUT),
.OVERFLOW (OVERFLOW_FIFO_OUT),
.EMPTY (EMPTY_FIFO_OUT),
.ALMOST_EMPTY (ALMOST_EMPTY_FIFO_OUT),
.VALID (VALID_FIFO_OUT),
.UNDERFLOW (UNDERFLOW_FIFO_OUT),
.DATA_COUNT (DATA_COUNT_FIFO_OUT),
.RD_DATA_COUNT (RD_DATA_COUNT_FIFO_OUT),
.WR_DATA_COUNT (WR_DATA_COUNT_FIFO_OUT),
.PROG_FULL (PROG_FULL_FIFO_OUT),
.PROG_EMPTY (PROG_EMPTY_FIFO_OUT),
.WR_RST_BUSY (wr_rst_busy),
.RD_RST_BUSY (rd_rst_busy),
.SBITERR (sbiterr_fifo_out),
.DBITERR (dbiterr_fifo_out)
);
end
1 : begin : block1
//Independent Clocks Behavioral Model
fifo_generator_v12_0_bhv_ver_as
#(
.C_FAMILY (C_FAMILY),
.C_DATA_COUNT_WIDTH (C_DATA_COUNT_WIDTH),
.C_DIN_WIDTH (C_DIN_WIDTH),
.C_DOUT_RST_VAL (C_DOUT_RST_VAL),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_FULL_FLAGS_RST_VAL (C_FULL_FLAGS_RST_VAL),
.C_HAS_ALMOST_EMPTY (C_HAS_ALMOST_EMPTY),
.C_HAS_ALMOST_FULL (C_HAS_ALMOST_FULL),
.C_HAS_DATA_COUNT (C_HAS_DATA_COUNT),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT),
.C_HAS_RST (C_HAS_RST),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_HAS_VALID (C_HAS_VALID),
.C_HAS_WR_ACK (C_HAS_WR_ACK),
.C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT),
.C_IMPLEMENTATION_TYPE (C_IMPLEMENTATION_TYPE),
.C_MEMORY_TYPE (C_MEMORY_TYPE),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_PRELOAD_LATENCY (C_PRELOAD_LATENCY),
.C_PRELOAD_REGS (C_PRELOAD_REGS),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL),
.C_PROG_EMPTY_THRESH_NEGATE_VAL (C_PROG_EMPTY_THRESH_NEGATE_VAL),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL),
.C_PROG_FULL_THRESH_NEGATE_VAL (C_PROG_FULL_THRESH_NEGATE_VAL),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE),
.C_RD_DATA_COUNT_WIDTH (C_RD_DATA_COUNT_WIDTH),
.C_RD_DEPTH (C_RD_DEPTH),
.C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG),
.C_USE_FWFT_DATA_COUNT (C_USE_FWFT_DATA_COUNT),
.C_VALID_LOW (C_VALID_LOW),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH),
.C_WR_DEPTH (C_WR_DEPTH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH),
.C_USE_ECC (C_USE_ECC),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE)
)
gen_as
(
.WR_CLK (WR_CLK),
.RD_CLK (RD_CLK),
.RST (rst_i),
.RST_FULL_GEN (rst_full_gen_i),
.RST_FULL_FF (rst_full_ff_i),
.WR_RST (wr_rst_i),
.RD_RST (rd_rst_i),
.DIN (din_delayed),
.WR_EN (wr_en_delayed),
.RD_EN (RD_EN_FIFO_IN),
.RD_EN_USER (rd_en_delayed),
.PROG_EMPTY_THRESH (prog_empty_thresh_delayed),
.PROG_EMPTY_THRESH_ASSERT (prog_empty_thresh_assert_delayed),
.PROG_EMPTY_THRESH_NEGATE (prog_empty_thresh_negate_delayed),
.PROG_FULL_THRESH (prog_full_thresh_delayed),
.PROG_FULL_THRESH_ASSERT (prog_full_thresh_assert_delayed),
.PROG_FULL_THRESH_NEGATE (prog_full_thresh_negate_delayed),
.INJECTSBITERR (inject_sbit_err),
.INJECTDBITERR (inject_dbit_err),
.USER_EMPTY_FB (EMPTY_P0_OUT),
.DOUT (DOUT_FIFO_OUT),
.FULL (FULL_FIFO_OUT),
.ALMOST_FULL (ALMOST_FULL_FIFO_OUT),
.WR_ACK (WR_ACK_FIFO_OUT),
.OVERFLOW (OVERFLOW_FIFO_OUT),
.EMPTY (EMPTY_FIFO_OUT),
.ALMOST_EMPTY (ALMOST_EMPTY_FIFO_OUT),
.VALID (VALID_FIFO_OUT),
.UNDERFLOW (UNDERFLOW_FIFO_OUT),
.RD_DATA_COUNT (RD_DATA_COUNT_FIFO_OUT),
.WR_DATA_COUNT (WR_DATA_COUNT_FIFO_OUT),
.PROG_FULL (PROG_FULL_FIFO_OUT),
.PROG_EMPTY (PROG_EMPTY_FIFO_OUT),
.SBITERR (sbiterr_fifo_out),
.DBITERR (dbiterr_fifo_out)
);
end
2 : begin : ll_afifo_inst
fifo_generator_v12_0_beh_ver_ll_afifo
#(
.C_DIN_WIDTH (C_DIN_WIDTH),
.C_DOUT_RST_VAL (C_DOUT_RST_VAL),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_FULL_FLAGS_RST_VAL (C_FULL_FLAGS_RST_VAL),
.C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT),
.C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT),
.C_RD_DEPTH (C_RD_DEPTH),
.C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH),
.C_WR_DEPTH (C_WR_DEPTH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH),
.C_FIFO_TYPE (C_FIFO_TYPE)
)
gen_ll_afifo
(
.DIN (din_delayed),
.RD_CLK (RD_CLK),
.RD_EN (rd_en_delayed),
.WR_RST (wr_rst_i),
.RD_RST (rd_rst_i),
.WR_CLK (WR_CLK),
.WR_EN (wr_en_delayed),
.DOUT (DOUT),
.EMPTY (EMPTY),
.FULL (FULL)
);
end
default : begin : block1
//Independent Clocks Behavioral Model
fifo_generator_v12_0_bhv_ver_as
#(
.C_FAMILY (C_FAMILY),
.C_DATA_COUNT_WIDTH (C_DATA_COUNT_WIDTH),
.C_DIN_WIDTH (C_DIN_WIDTH),
.C_DOUT_RST_VAL (C_DOUT_RST_VAL),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_FULL_FLAGS_RST_VAL (C_FULL_FLAGS_RST_VAL),
.C_HAS_ALMOST_EMPTY (C_HAS_ALMOST_EMPTY),
.C_HAS_ALMOST_FULL (C_HAS_ALMOST_FULL),
.C_HAS_DATA_COUNT (C_HAS_DATA_COUNT),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT),
.C_HAS_RST (C_HAS_RST),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_HAS_VALID (C_HAS_VALID),
.C_HAS_WR_ACK (C_HAS_WR_ACK),
.C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT),
.C_IMPLEMENTATION_TYPE (C_IMPLEMENTATION_TYPE),
.C_MEMORY_TYPE (C_MEMORY_TYPE),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_PRELOAD_LATENCY (C_PRELOAD_LATENCY),
.C_PRELOAD_REGS (C_PRELOAD_REGS),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL),
.C_PROG_EMPTY_THRESH_NEGATE_VAL (C_PROG_EMPTY_THRESH_NEGATE_VAL),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL),
.C_PROG_FULL_THRESH_NEGATE_VAL (C_PROG_FULL_THRESH_NEGATE_VAL),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE),
.C_RD_DATA_COUNT_WIDTH (C_RD_DATA_COUNT_WIDTH),
.C_RD_DEPTH (C_RD_DEPTH),
.C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG),
.C_USE_FWFT_DATA_COUNT (C_USE_FWFT_DATA_COUNT),
.C_VALID_LOW (C_VALID_LOW),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH),
.C_WR_DEPTH (C_WR_DEPTH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH),
.C_USE_ECC (C_USE_ECC),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE)
)
gen_as
(
.WR_CLK (WR_CLK),
.RD_CLK (RD_CLK),
.RST (rst_i),
.RST_FULL_GEN (rst_full_gen_i),
.RST_FULL_FF (rst_full_ff_i),
.WR_RST (wr_rst_i),
.RD_RST (rd_rst_i),
.DIN (din_delayed),
.WR_EN (wr_en_delayed),
.RD_EN (RD_EN_FIFO_IN),
.RD_EN_USER (rd_en_delayed),
.PROG_EMPTY_THRESH (prog_empty_thresh_delayed),
.PROG_EMPTY_THRESH_ASSERT (prog_empty_thresh_assert_delayed),
.PROG_EMPTY_THRESH_NEGATE (prog_empty_thresh_negate_delayed),
.PROG_FULL_THRESH (prog_full_thresh_delayed),
.PROG_FULL_THRESH_ASSERT (prog_full_thresh_assert_delayed),
.PROG_FULL_THRESH_NEGATE (prog_full_thresh_negate_delayed),
.INJECTSBITERR (inject_sbit_err),
.INJECTDBITERR (inject_dbit_err),
.USER_EMPTY_FB (EMPTY_P0_OUT),
.DOUT (DOUT_FIFO_OUT),
.FULL (FULL_FIFO_OUT),
.ALMOST_FULL (ALMOST_FULL_FIFO_OUT),
.WR_ACK (WR_ACK_FIFO_OUT),
.OVERFLOW (OVERFLOW_FIFO_OUT),
.EMPTY (EMPTY_FIFO_OUT),
.ALMOST_EMPTY (ALMOST_EMPTY_FIFO_OUT),
.VALID (VALID_FIFO_OUT),
.UNDERFLOW (UNDERFLOW_FIFO_OUT),
.RD_DATA_COUNT (RD_DATA_COUNT_FIFO_OUT),
.WR_DATA_COUNT (WR_DATA_COUNT_FIFO_OUT),
.PROG_FULL (PROG_FULL_FIFO_OUT),
.PROG_EMPTY (PROG_EMPTY_FIFO_OUT),
.SBITERR (sbiterr_fifo_out),
.DBITERR (dbiterr_fifo_out)
);
end
endcase
endgenerate
//**************************************************************************
// Connect Internal Signals
// (Signals labeled internal_*)
// In the normal case, these signals tie directly to the FIFO's inputs and
// outputs.
// In the case of Preload Latency 0 or 1, there are intermediate
// signals between the internal FIFO and the preload logic.
//**************************************************************************
//***********************************************
// If First-Word Fall-Through, instantiate
// the preload0 (FWFT) module
//***********************************************
wire rd_en_to_fwft_fifo;
wire sbiterr_fwft;
wire dbiterr_fwft;
wire [C_DOUT_WIDTH-1:0] dout_fwft;
wire empty_fwft;
wire rd_en_fifo_in;
wire stage2_reg_en_i;
wire [1:0] valid_stages_i;
wire rst_fwft;
//wire empty_p0_out;
reg [C_SYNCHRONIZER_STAGE-1:0] pkt_empty_sync = 'b1;
localparam IS_FWFT = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ? 1 : 0;
localparam IS_PKT_FIFO = (C_FIFO_TYPE == 1) ? 1 : 0;
localparam IS_AXIS_PKT_FIFO = (C_FIFO_TYPE == 1 && C_AXI_TYPE == 0) ? 1 : 0;
assign rst_fwft = (C_COMMON_CLOCK == 0) ? rd_rst_i : (C_HAS_RST == 1) ? rst_i : 1'b0;
generate if (IS_FWFT == 1 && C_FIFO_TYPE != 3) begin : block2
fifo_generator_v12_0_bhv_ver_preload0
#(
.C_DOUT_RST_VAL (C_DOUT_RST_VAL),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_HAS_RST (C_HAS_RST),
.C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC),
.C_HAS_SRST (C_HAS_SRST),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_USE_ECC (C_USE_ECC),
.C_USERVALID_LOW (C_VALID_LOW),
.C_USERUNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_MEMORY_TYPE (C_MEMORY_TYPE),
.C_FIFO_TYPE (C_FIFO_TYPE)
)
fgpl0
(
.RD_CLK (RD_CLK_P0_IN),
.RD_RST (RST_P0_IN),
.SRST (srst_delayed),
.WR_RST_BUSY (wr_rst_busy),
.RD_RST_BUSY (rd_rst_busy),
.RD_EN (RD_EN_P0_IN),
.FIFOEMPTY (EMPTY_P0_IN),
.FIFODATA (DATA_P0_IN),
.FIFOSBITERR (sbiterr_fifo_out),
.FIFODBITERR (dbiterr_fifo_out),
// Output
.USERDATA (dout_fwft),
.USERVALID (VALID_P0_OUT),
.USEREMPTY (empty_fwft),
.USERALMOSTEMPTY (ALMOSTEMPTY_P0_OUT),
.USERUNDERFLOW (UNDERFLOW_P0_OUT),
.RAMVALID (),
.FIFORDEN (rd_en_fifo_in),
.USERSBITERR (sbiterr_fwft),
.USERDBITERR (dbiterr_fwft),
.STAGE2_REG_EN (stage2_reg_en_i),
.VALID_STAGES (valid_stages_i)
);
//***********************************************
// Connect inputs to preload (FWFT) module
//***********************************************
//Connect the RD_CLK of the Preload (FWFT) module to CLK if we
// have a common-clock FIFO, or RD_CLK if we have an
// independent clock FIFO
assign RD_CLK_P0_IN = ((C_VERILOG_IMPL == 0) ? CLK : RD_CLK);
assign RST_P0_IN = (C_COMMON_CLOCK == 0) ? rd_rst_i : (C_HAS_RST == 1) ? rst_i : 0;
assign RD_EN_P0_IN = (C_FIFO_TYPE != 1) ? rd_en_delayed : rd_en_to_fwft_fifo;
assign EMPTY_P0_IN = EMPTY_FIFO_OUT;
assign DATA_P0_IN = DOUT_FIFO_OUT;
//***********************************************
// Connect outputs from preload (FWFT) module
//***********************************************
assign VALID = VALID_P0_OUT ;
assign ALMOST_EMPTY = ALMOSTEMPTY_P0_OUT;
assign UNDERFLOW = UNDERFLOW_P0_OUT ;
assign RD_EN_FIFO_IN = rd_en_fifo_in;
//***********************************************
// Create DATA_COUNT from First-Word Fall-Through
// data count
//***********************************************
assign DATA_COUNT = (C_USE_FWFT_DATA_COUNT == 0)? DATA_COUNT_FIFO_OUT:
(C_DATA_COUNT_WIDTH>C_RD_PNTR_WIDTH) ? DATA_COUNT_FWFT[C_RD_PNTR_WIDTH:0] :
DATA_COUNT_FWFT[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH-C_DATA_COUNT_WIDTH+1];
//***********************************************
// Create DATA_COUNT from First-Word Fall-Through
// data count
//***********************************************
always @ (posedge RD_CLK_P0_IN or posedge RST_P0_IN) begin
if (RST_P0_IN) begin
EMPTY_P0_OUT_Q <= #`TCQ 1;
ALMOSTEMPTY_P0_OUT_Q <= #`TCQ 1;
end else begin
EMPTY_P0_OUT_Q <= #`TCQ empty_p0_out;
// EMPTY_P0_OUT_Q <= #`TCQ EMPTY_FIFO_OUT;
ALMOSTEMPTY_P0_OUT_Q <= #`TCQ ALMOSTEMPTY_P0_OUT;
end
end //always
//***********************************************
// logic for common-clock data count when FWFT is selected
//***********************************************
initial begin
SS_FWFT_RD = 1'b0;
DATA_COUNT_FWFT = 0 ;
SS_FWFT_WR = 1'b0 ;
end //initial
//***********************************************
// common-clock data count is implemented as an
// up-down counter. SS_FWFT_WR and SS_FWFT_RD
// are the up/down enables for the counter.
//***********************************************
always @ (RD_EN or VALID_P0_OUT or WR_EN or FULL_FIFO_OUT or empty_p0_out) begin
if (C_VALID_LOW == 1) begin
SS_FWFT_RD = (C_FIFO_TYPE != 1) ? (RD_EN && ~VALID_P0_OUT) : (~empty_p0_out && RD_EN && ~VALID_P0_OUT) ;
end else begin
SS_FWFT_RD = (C_FIFO_TYPE != 1) ? (RD_EN && VALID_P0_OUT) : (~empty_p0_out && RD_EN && VALID_P0_OUT) ;
end
SS_FWFT_WR = (WR_EN && (~FULL_FIFO_OUT)) ;
end
//***********************************************
// common-clock data count is implemented as an
// up-down counter for FWFT. This always block
// calculates the counter.
//***********************************************
always @ (posedge RD_CLK_P0_IN or posedge RST_P0_IN) begin
if (RST_P0_IN) begin
DATA_COUNT_FWFT <= #`TCQ 0;
end else begin
//if (srst_delayed && (C_HAS_SRST == 1) ) begin
if ((srst_delayed | wr_rst_busy | rd_rst_busy) && (C_HAS_SRST == 1) ) begin
DATA_COUNT_FWFT <= #`TCQ 0;
end else begin
case ( {SS_FWFT_WR, SS_FWFT_RD})
2'b00: DATA_COUNT_FWFT <= #`TCQ DATA_COUNT_FWFT ;
2'b01: DATA_COUNT_FWFT <= #`TCQ DATA_COUNT_FWFT - 1 ;
2'b10: DATA_COUNT_FWFT <= #`TCQ DATA_COUNT_FWFT + 1 ;
2'b11: DATA_COUNT_FWFT <= #`TCQ DATA_COUNT_FWFT ;
endcase
end //if SRST
end //IF RST
end //always
end endgenerate // : block2
// AXI Streaming Packet FIFO
reg [C_WR_PNTR_WIDTH-1:0] wr_pkt_count = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pkt_count = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pkt_count_plus1 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pkt_count_reg = 0;
reg partial_packet = 0;
reg stage1_eop_d1 = 0;
reg rd_en_fifo_in_d1 = 0;
reg eop_at_stage2 = 0;
reg ram_pkt_empty = 0;
reg ram_pkt_empty_d1 = 0;
wire [C_DOUT_WIDTH-1:0] dout_p0_out;
wire packet_empty_wr;
wire wr_rst_fwft_pkt_fifo;
wire dummy_wr_eop;
wire ram_wr_en_pkt_fifo;
wire wr_eop;
wire ram_rd_en_compare;
wire stage1_eop;
wire pkt_ready_to_read;
wire rd_en_2_stage2;
// Generate Dummy WR_EOP for partial packet (Only for AXI Streaming)
// When Packet EMPTY is high, and FIFO is full, then generate the dummy WR_EOP
// When dummy WR_EOP is high, mask the actual EOP to avoid double increment of
// write packet count
generate if (IS_FWFT == 1 && IS_AXIS_PKT_FIFO == 1) begin // gdummy_wr_eop
always @ (posedge wr_rst_fwft_pkt_fifo or posedge WR_CLK) begin
if (wr_rst_fwft_pkt_fifo)
partial_packet <= 1'b0;
else begin
if (srst_delayed | wr_rst_busy | rd_rst_busy)
partial_packet <= #`TCQ 1'b0;
else if (ALMOST_FULL_FIFO_OUT && ram_wr_en_pkt_fifo && packet_empty_wr && (~din_delayed[0]))
partial_packet <= #`TCQ 1'b1;
else if (partial_packet && din_delayed[0] && ram_wr_en_pkt_fifo)
partial_packet <= #`TCQ 1'b0;
end
end
end endgenerate // gdummy_wr_eop
generate if (IS_FWFT == 1 && IS_PKT_FIFO == 1) begin // gpkt_fifo_fwft
assign wr_rst_fwft_pkt_fifo = (C_COMMON_CLOCK == 0) ? wr_rst_i : (C_HAS_RST == 1) ? rst_i:1'b0;
assign dummy_wr_eop = ALMOST_FULL_FIFO_OUT && ram_wr_en_pkt_fifo && packet_empty_wr && (~din_delayed[0]) && (~partial_packet);
assign packet_empty_wr = (C_COMMON_CLOCK == 1) ? empty_p0_out : pkt_empty_sync[C_SYNCHRONIZER_STAGE-1];
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft) begin
stage1_eop_d1 <= 1'b0;
rd_en_fifo_in_d1 <= 1'b0;
end else begin
if (srst_delayed | wr_rst_busy | rd_rst_busy) begin
stage1_eop_d1 <= #`TCQ 1'b0;
rd_en_fifo_in_d1 <= #`TCQ 1'b0;
end else begin
stage1_eop_d1 <= #`TCQ stage1_eop;
rd_en_fifo_in_d1 <= #`TCQ rd_en_fifo_in;
end
end
end
assign stage1_eop = (rd_en_fifo_in_d1) ? DOUT_FIFO_OUT[0] : stage1_eop_d1;
assign ram_wr_en_pkt_fifo = wr_en_delayed && (~FULL_FIFO_OUT);
assign wr_eop = ram_wr_en_pkt_fifo && ((din_delayed[0] && (~partial_packet)) || dummy_wr_eop);
assign ram_rd_en_compare = stage2_reg_en_i && stage1_eop;
fifo_generator_v12_0_bhv_ver_preload0
#(
.C_DOUT_RST_VAL (C_DOUT_RST_VAL),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_HAS_RST (C_HAS_RST),
.C_HAS_SRST (C_HAS_SRST),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_USE_ECC (C_USE_ECC),
.C_USERVALID_LOW (C_VALID_LOW),
.C_USERUNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC),
.C_MEMORY_TYPE (C_MEMORY_TYPE),
.C_FIFO_TYPE (2) // Enable low latency fwft logic
)
pkt_fifo_fwft
(
.RD_CLK (RD_CLK_P0_IN),
.RD_RST (rst_fwft),
.SRST (srst_delayed),
.WR_RST_BUSY (wr_rst_busy),
.RD_RST_BUSY (rd_rst_busy),
.RD_EN (rd_en_delayed),
.FIFOEMPTY (pkt_ready_to_read),
.FIFODATA (dout_fwft),
.FIFOSBITERR (sbiterr_fwft),
.FIFODBITERR (dbiterr_fwft),
// Output
.USERDATA (dout_p0_out),
.USERVALID (),
.USEREMPTY (empty_p0_out),
.USERALMOSTEMPTY (),
.USERUNDERFLOW (),
.RAMVALID (),
.FIFORDEN (rd_en_2_stage2),
.USERSBITERR (SBITERR),
.USERDBITERR (DBITERR),
.STAGE2_REG_EN (),
.VALID_STAGES ()
);
assign pkt_ready_to_read = ~(!(ram_pkt_empty || empty_fwft) && ((valid_stages_i[0] && valid_stages_i[1]) || eop_at_stage2));
assign rd_en_to_fwft_fifo = ~empty_fwft && rd_en_2_stage2;
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft)
eop_at_stage2 <= 1'b0;
else if (stage2_reg_en_i)
eop_at_stage2 <= #`TCQ stage1_eop;
end
//---------------------------------------------------------------------------
// Write and Read Packet Count
//---------------------------------------------------------------------------
always @ (posedge wr_rst_fwft_pkt_fifo or posedge WR_CLK) begin
if (wr_rst_fwft_pkt_fifo)
wr_pkt_count <= 0;
else if (srst_delayed | wr_rst_busy | rd_rst_busy)
wr_pkt_count <= #`TCQ 0;
else if (wr_eop)
wr_pkt_count <= #`TCQ wr_pkt_count + 1;
end
end endgenerate // gpkt_fifo_fwft
assign DOUT = (C_FIFO_TYPE != 1) ? dout_fwft : dout_p0_out;
assign EMPTY = (C_FIFO_TYPE != 1) ? empty_fwft : empty_p0_out;
generate if (IS_FWFT == 1 && IS_PKT_FIFO == 1 && C_COMMON_CLOCK == 1) begin // grss_pkt_cnt
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft) begin
rd_pkt_count <= 0;
rd_pkt_count_plus1 <= 1;
end else if (srst_delayed | wr_rst_busy | rd_rst_busy) begin
rd_pkt_count <= #`TCQ 0;
rd_pkt_count_plus1 <= #`TCQ 1;
end else if (stage2_reg_en_i && stage1_eop) begin
rd_pkt_count <= #`TCQ rd_pkt_count + 1;
rd_pkt_count_plus1 <= #`TCQ rd_pkt_count_plus1 + 1;
end
end
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft) begin
ram_pkt_empty <= 1'b1;
ram_pkt_empty_d1 <= 1'b1;
end else if (SRST | wr_rst_busy | rd_rst_busy) begin
ram_pkt_empty <= #`TCQ 1'b1;
ram_pkt_empty_d1 <= #`TCQ 1'b1;
end else if ((rd_pkt_count == wr_pkt_count) && wr_eop) begin
ram_pkt_empty <= #`TCQ 1'b0;
ram_pkt_empty_d1 <= #`TCQ 1'b0;
end else if (ram_pkt_empty_d1 && rd_en_to_fwft_fifo) begin
ram_pkt_empty <= #`TCQ 1'b1;
end else if ((rd_pkt_count_plus1 == wr_pkt_count) && ~wr_eop && ~ALMOST_FULL_FIFO_OUT && ram_rd_en_compare) begin
ram_pkt_empty_d1 <= #`TCQ 1'b1;
end
end
end endgenerate //grss_pkt_cnt
localparam SYNC_STAGE_WIDTH = (C_SYNCHRONIZER_STAGE+1)*C_WR_PNTR_WIDTH;
reg [SYNC_STAGE_WIDTH-1:0] wr_pkt_count_q = 0;
reg [C_WR_PNTR_WIDTH-1:0] wr_pkt_count_b2g = 0;
wire [C_WR_PNTR_WIDTH-1:0] wr_pkt_count_rd;
generate if (IS_FWFT == 1 && IS_PKT_FIFO == 1 && C_COMMON_CLOCK == 0) begin // gras_pkt_cnt
// Delay the write packet count in write clock domain to accomodate the binary to gray conversion delay
always @ (posedge wr_rst_fwft_pkt_fifo or posedge WR_CLK) begin
if (wr_rst_fwft_pkt_fifo)
wr_pkt_count_b2g <= 0;
else
wr_pkt_count_b2g <= #`TCQ wr_pkt_count;
end
// Synchronize the delayed write packet count in read domain, and also compensate the gray to binay conversion delay
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft)
wr_pkt_count_q <= 0;
else
wr_pkt_count_q <= #`TCQ {wr_pkt_count_q[SYNC_STAGE_WIDTH-C_WR_PNTR_WIDTH-1:0],wr_pkt_count_b2g};
end
always @* begin
if (stage1_eop)
rd_pkt_count <= rd_pkt_count_reg + 1;
else
rd_pkt_count <= rd_pkt_count_reg;
end
assign wr_pkt_count_rd = wr_pkt_count_q[SYNC_STAGE_WIDTH-1:SYNC_STAGE_WIDTH-C_WR_PNTR_WIDTH];
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft)
rd_pkt_count_reg <= 0;
else if (rd_en_fifo_in)
rd_pkt_count_reg <= #`TCQ rd_pkt_count;
end
always @ (posedge rst_fwft or posedge RD_CLK_P0_IN) begin
if (rst_fwft) begin
ram_pkt_empty <= 1'b1;
ram_pkt_empty_d1 <= 1'b1;
end else if (rd_pkt_count != wr_pkt_count_rd) begin
ram_pkt_empty <= #`TCQ 1'b0;
ram_pkt_empty_d1 <= #`TCQ 1'b0;
end else if (ram_pkt_empty_d1 && rd_en_to_fwft_fifo) begin
ram_pkt_empty <= #`TCQ 1'b1;
end else if ((rd_pkt_count == wr_pkt_count_rd) && stage2_reg_en_i) begin
ram_pkt_empty_d1 <= #`TCQ 1'b1;
end
end
// Synchronize the empty in write domain
always @ (posedge wr_rst_fwft_pkt_fifo or posedge WR_CLK) begin
if (wr_rst_fwft_pkt_fifo)
pkt_empty_sync <= 'b1;
else
pkt_empty_sync <= #`TCQ {pkt_empty_sync[C_SYNCHRONIZER_STAGE-2:0], empty_p0_out};
end
end endgenerate //gras_pkt_cnt
generate if (IS_FWFT == 0 || C_FIFO_TYPE == 3) begin : STD_FIFO
//***********************************************
// If NOT First-Word Fall-Through, wire the outputs
// of the internal _ss or _as FIFO directly to the
// output, and do not instantiate the preload0
// module.
//***********************************************
assign RD_CLK_P0_IN = 0;
assign RST_P0_IN = 0;
assign RD_EN_P0_IN = 0;
assign RD_EN_FIFO_IN = rd_en_delayed;
assign DOUT = DOUT_FIFO_OUT;
assign DATA_P0_IN = 0;
assign VALID = VALID_FIFO_OUT;
assign EMPTY = EMPTY_FIFO_OUT;
assign ALMOST_EMPTY = ALMOST_EMPTY_FIFO_OUT;
assign EMPTY_P0_IN = 0;
assign UNDERFLOW = UNDERFLOW_FIFO_OUT;
assign DATA_COUNT = DATA_COUNT_FIFO_OUT;
assign SBITERR = sbiterr_fifo_out;
assign DBITERR = dbiterr_fifo_out;
end endgenerate // STD_FIFO
generate if (IS_FWFT == 1 && C_FIFO_TYPE != 1) begin : NO_PKT_FIFO
assign empty_p0_out = empty_fwft;
assign SBITERR = sbiterr_fwft;
assign DBITERR = dbiterr_fwft;
assign DOUT = dout_fwft;
assign RD_EN_P0_IN = (C_FIFO_TYPE != 1) ? rd_en_delayed : rd_en_to_fwft_fifo;
end endgenerate // NO_PKT_FIFO
//***********************************************
// Connect user flags to internal signals
//***********************************************
//If we are using extra logic for the FWFT data count, then override the
//RD_DATA_COUNT output when we are EMPTY or ALMOST_EMPTY.
//RD_DATA_COUNT is 0 when EMPTY and 1 when ALMOST_EMPTY.
generate
if (C_USE_FWFT_DATA_COUNT==1 && (C_RD_DATA_COUNT_WIDTH>C_RD_PNTR_WIDTH) ) begin : block3
if (C_COMMON_CLOCK == 0) begin : block_ic
assign RD_DATA_COUNT = (EMPTY_P0_OUT_Q | RST_P0_IN) ? 0 : (ALMOSTEMPTY_P0_OUT_Q ? 1 : RD_DATA_COUNT_FIFO_OUT);
end //block_ic
else begin
assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT;
end
end //block3
endgenerate
//If we are using extra logic for the FWFT data count, then override the
//RD_DATA_COUNT output when we are EMPTY or ALMOST_EMPTY.
//Due to asymmetric ports, RD_DATA_COUNT is 0 when EMPTY or ALMOST_EMPTY.
generate
if (C_USE_FWFT_DATA_COUNT==1 && (C_RD_DATA_COUNT_WIDTH <=C_RD_PNTR_WIDTH) ) begin : block30
if (C_COMMON_CLOCK == 0) begin : block_ic
assign RD_DATA_COUNT = (EMPTY_P0_OUT_Q | RST_P0_IN) ? 0 : (ALMOSTEMPTY_P0_OUT_Q ? 0 : RD_DATA_COUNT_FIFO_OUT);
end
else begin
assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT;
end
end //block30
endgenerate
//If we are not using extra logic for the FWFT data count,
//then connect RD_DATA_COUNT to the RD_DATA_COUNT from the
//internal FIFO instance
generate
if (C_USE_FWFT_DATA_COUNT==0 ) begin : block31
assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT;
end
endgenerate
//Always connect WR_DATA_COUNT to the WR_DATA_COUNT from the internal
//FIFO instance
generate
if (C_USE_FWFT_DATA_COUNT==1) begin : block4
assign WR_DATA_COUNT = WR_DATA_COUNT_FIFO_OUT;
end
else begin : block4
assign WR_DATA_COUNT = WR_DATA_COUNT_FIFO_OUT;
end
endgenerate
//Connect other flags to the internal FIFO instance
assign FULL = FULL_FIFO_OUT;
assign ALMOST_FULL = ALMOST_FULL_FIFO_OUT;
assign WR_ACK = WR_ACK_FIFO_OUT;
assign OVERFLOW = OVERFLOW_FIFO_OUT;
assign PROG_FULL = PROG_FULL_FIFO_OUT;
assign PROG_EMPTY = PROG_EMPTY_FIFO_OUT;
/**************************************************************************
* find_log2
* Returns the 'log2' value for the input value for the supported ratios
***************************************************************************/
function integer find_log2;
input integer int_val;
integer i,j;
begin
i = 1;
j = 0;
for (i = 1; i < int_val; i = i*2) begin
j = j + 1;
end
find_log2 = j;
end
endfunction
// if an asynchronous FIFO has been selected, display a message that the FIFO
// will not be cycle-accurate in simulation
initial begin
if (C_IMPLEMENTATION_TYPE == 2) begin
$display("WARNING: Behavioral models for independent clock FIFO configurations do not model synchronization delays. The behavioral models are functionally correct, and will represent the behavior of the configured FIFO. See the FIFO Generator User Guide for more information.");
end else if (C_MEMORY_TYPE == 4) begin
$display("FAILURE : Behavioral models do not support built-in FIFO configurations. Please use post-synthesis or post-implement simulation in Vivado.");
$finish;
end
if (C_WR_PNTR_WIDTH != find_log2(C_WR_DEPTH)) begin
$display("FAILURE : C_WR_PNTR_WIDTH is not log2 of C_WR_DEPTH.");
$finish;
end
if (C_RD_PNTR_WIDTH != find_log2(C_RD_DEPTH)) begin
$display("FAILURE : C_RD_PNTR_WIDTH is not log2 of C_RD_DEPTH.");
$finish;
end
if (C_USE_ECC == 1) begin
if (C_DIN_WIDTH != C_DOUT_WIDTH) begin
$display("FAILURE : C_DIN_WIDTH and C_DOUT_WIDTH must be equal for ECC configuration.");
$finish;
end
if (C_DIN_WIDTH == 1 && C_ERROR_INJECTION_TYPE > 1) begin
$display("FAILURE : C_DIN_WIDTH and C_DOUT_WIDTH must be > 1 for double bit error injection.");
$finish;
end
end
end //initial
/**************************************************************************
* Internal reset logic
**************************************************************************/
assign wr_rst_i = (C_HAS_RST == 1 || C_ENABLE_RST_SYNC == 0) ? wr_rst_reg : 0;
assign rd_rst_i = (C_HAS_RST == 1 || C_ENABLE_RST_SYNC == 0) ? rd_rst_reg : 0;
assign rst_i = C_HAS_RST ? rst_reg : 0;
wire rst_2_sync;
wire clk_2_sync = (C_COMMON_CLOCK == 1) ? CLK : WR_CLK;
generate
if (C_ENABLE_RST_SYNC == 0) begin : gnrst_sync
always @* begin
wr_rst_reg <= wr_rst_delayed;
rd_rst_reg <= rd_rst_delayed;
rst_reg <= 1'b0;
srst_reg <= 1'b0;
end
assign rst_2_sync = wr_rst_delayed;
assign wr_rst_busy = 1'b0;
assign rd_rst_busy = 1'b0;
end else if (C_HAS_RST == 1 && C_COMMON_CLOCK == 0) begin : g7s_ic_rst
assign wr_rst_comb = !wr_rst_asreg_d2 && wr_rst_asreg;
assign rd_rst_comb = !rd_rst_asreg_d2 && rd_rst_asreg;
assign rst_2_sync = rst_delayed;
assign wr_rst_busy = 1'b0;
assign rd_rst_busy = 1'b0;
always @(posedge WR_CLK or posedge rst_delayed) begin
if (rst_delayed == 1'b1) begin
wr_rst_asreg <= #`TCQ 1'b1;
end else begin
if (wr_rst_asreg_d1 == 1'b1) begin
wr_rst_asreg <= #`TCQ 1'b0;
end else begin
wr_rst_asreg <= #`TCQ wr_rst_asreg;
end
end
end
always @(posedge WR_CLK) begin
wr_rst_asreg_d1 <= #`TCQ wr_rst_asreg;
wr_rst_asreg_d2 <= #`TCQ wr_rst_asreg_d1;
end
always @(posedge WR_CLK or posedge wr_rst_comb) begin
if (wr_rst_comb == 1'b1) begin
wr_rst_reg <= #`TCQ 1'b1;
end else begin
wr_rst_reg <= #`TCQ 1'b0;
end
end
always @(posedge RD_CLK or posedge rst_delayed) begin
if (rst_delayed == 1'b1) begin
rd_rst_asreg <= #`TCQ 1'b1;
end else begin
if (rd_rst_asreg_d1 == 1'b1) begin
rd_rst_asreg <= #`TCQ 1'b0;
end else begin
rd_rst_asreg <= #`TCQ rd_rst_asreg;
end
end
end
always @(posedge RD_CLK) begin
rd_rst_asreg_d1 <= #`TCQ rd_rst_asreg;
rd_rst_asreg_d2 <= #`TCQ rd_rst_asreg_d1;
end
always @(posedge RD_CLK or posedge rd_rst_comb) begin
if (rd_rst_comb == 1'b1) begin
rd_rst_reg <= #`TCQ 1'b1;
end else begin
rd_rst_reg <= #`TCQ 1'b0;
end
end
end else if (C_HAS_RST == 1 && C_COMMON_CLOCK == 1) begin : g7s_cc_rst
assign rst_comb = !rst_asreg_d2 && rst_asreg;
assign rst_2_sync = rst_delayed;
assign wr_rst_busy = 1'b0;
assign rd_rst_busy = 1'b0;
always @(posedge CLK or posedge rst_delayed) begin
if (rst_delayed == 1'b1) begin
rst_asreg <= #`TCQ 1'b1;
end else begin
if (rst_asreg_d1 == 1'b1) begin
rst_asreg <= #`TCQ 1'b0;
end else begin
rst_asreg <= #`TCQ rst_asreg;
end
end
end
always @(posedge CLK) begin
rst_asreg_d1 <= #`TCQ rst_asreg;
rst_asreg_d2 <= #`TCQ rst_asreg_d1;
end
always @(posedge CLK or posedge rst_comb) begin
if (rst_comb == 1'b1) begin
rst_reg <= #`TCQ 1'b1;
end else begin
rst_reg <= #`TCQ 1'b0;
end
end
end else if (IS_8SERIES == 1 && C_HAS_SRST == 1 && C_COMMON_CLOCK == 1) begin : g8s_cc_rst
assign wr_rst_busy = (C_MEMORY_TYPE != 4) ? rst_reg : rst_active_i;
assign rd_rst_busy = rst_reg;
assign rst_2_sync = srst_delayed;
always @* rst_full_ff_i <= rst_reg;
always @* rst_full_gen_i <= C_FULL_FLAGS_RST_VAL == 1 ? rst_active_i : 0;
always @(posedge CLK) begin
rst_delayed_d1 <= #`TCQ srst_delayed;
rst_delayed_d2 <= #`TCQ rst_delayed_d1;
if (rst_reg || rst_delayed_d2) begin
rst_active_i <= #`TCQ 1'b1;
end else begin
rst_active_i <= #`TCQ rst_reg;
end
end
always @(posedge CLK) begin
if (~rst_reg && srst_delayed) begin
rst_reg <= #`TCQ 1'b1;
end else if (rst_reg) begin
rst_reg <= #`TCQ 1'b0;
end else begin
rst_reg <= #`TCQ rst_reg;
end
end
end else begin
assign wr_rst_busy = 1'b0;
assign rd_rst_busy = 1'b0;
end
// end g8s_cc_rst
endgenerate
reg rst_d1 = 1'b0;
reg rst_d2 = 1'b0;
reg rst_d3 = 1'b0;
reg rst_d4 = 1'b0;
generate
if ((C_HAS_RST == 1 || C_HAS_SRST == 1 || C_ENABLE_RST_SYNC == 0) && C_FULL_FLAGS_RST_VAL == 1) begin : grstd1
// RST_FULL_GEN replaces the reset falling edge detection used to de-assert
// FULL, ALMOST_FULL & PROG_FULL flags if C_FULL_FLAGS_RST_VAL = 1.
// RST_FULL_FF goes to the reset pin of the final flop of FULL, ALMOST_FULL &
// PROG_FULL
always @ (posedge rst_2_sync or posedge clk_2_sync) begin
if (rst_2_sync) begin
rst_d1 <= 1'b1;
rst_d2 <= 1'b1;
rst_d3 <= 1'b1;
rst_d4 <= 1'b0;
end else begin
if (srst_delayed) begin
rst_d1 <= #`TCQ 1'b1;
rst_d2 <= #`TCQ 1'b1;
rst_d3 <= #`TCQ 1'b1;
rst_d4 <= #`TCQ 1'b0;
end else begin
rst_d1 <= #`TCQ 1'b0;
rst_d2 <= #`TCQ rst_d1;
rst_d3 <= #`TCQ rst_d2;
rst_d4 <= #`TCQ rst_d3;
end
end
end
always @* rst_full_ff_i <= (C_HAS_SRST == 0) ? rst_d2 : 1'b0 ;
always @* rst_full_gen_i <= rst_d4;
end else if ((C_HAS_RST == 1 || C_HAS_SRST == 1 || C_ENABLE_RST_SYNC == 0) && C_FULL_FLAGS_RST_VAL == 0) begin : gnrst_full
always @* rst_full_ff_i <= (C_COMMON_CLOCK == 0) ? wr_rst_i : rst_i;
end
endgenerate // grstd1
endmodule //FIFO_GENERATOR_v12_0_CONV_VER
module fifo_generator_v12_0_sync_stage
#(
parameter C_WIDTH = 10
)
(
input RST,
input CLK,
input [C_WIDTH-1:0] DIN,
output reg [C_WIDTH-1:0] DOUT = 0
);
always @ (posedge RST or posedge CLK) begin
if (RST)
DOUT <= 0;
else
DOUT <= #`TCQ DIN;
end
endmodule // fifo_generator_v12_0_sync_stage
/*******************************************************************************
* Declaration of Independent-Clocks FIFO Module
******************************************************************************/
module fifo_generator_v12_0_bhv_ver_as
/***************************************************************************
* Declare user parameters and their defaults
***************************************************************************/
#(
parameter C_FAMILY = "virtex7",
parameter C_DATA_COUNT_WIDTH = 2,
parameter C_DIN_WIDTH = 8,
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_FULL_FLAGS_RST_VAL = 1,
parameter C_HAS_ALMOST_EMPTY = 0,
parameter C_HAS_ALMOST_FULL = 0,
parameter C_HAS_DATA_COUNT = 0,
parameter C_HAS_OVERFLOW = 0,
parameter C_HAS_RD_DATA_COUNT = 0,
parameter C_HAS_RST = 0,
parameter C_HAS_UNDERFLOW = 0,
parameter C_HAS_VALID = 0,
parameter C_HAS_WR_ACK = 0,
parameter C_HAS_WR_DATA_COUNT = 0,
parameter C_IMPLEMENTATION_TYPE = 0,
parameter C_MEMORY_TYPE = 1,
parameter C_OVERFLOW_LOW = 0,
parameter C_PRELOAD_LATENCY = 1,
parameter C_PRELOAD_REGS = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0,
parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0,
parameter C_PROG_EMPTY_TYPE = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0,
parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0,
parameter C_PROG_FULL_TYPE = 0,
parameter C_RD_DATA_COUNT_WIDTH = 2,
parameter C_RD_DEPTH = 256,
parameter C_RD_PNTR_WIDTH = 8,
parameter C_UNDERFLOW_LOW = 0,
parameter C_USE_DOUT_RST = 0,
parameter C_USE_EMBEDDED_REG = 0,
parameter C_USE_FWFT_DATA_COUNT = 0,
parameter C_VALID_LOW = 0,
parameter C_WR_ACK_LOW = 0,
parameter C_WR_DATA_COUNT_WIDTH = 2,
parameter C_WR_DEPTH = 256,
parameter C_WR_PNTR_WIDTH = 8,
parameter C_USE_ECC = 0,
parameter C_ENABLE_RST_SYNC = 1,
parameter C_ERROR_INJECTION_TYPE = 0,
parameter C_SYNCHRONIZER_STAGE = 2
)
/***************************************************************************
* Declare Input and Output Ports
***************************************************************************/
(
input [C_DIN_WIDTH-1:0] DIN,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE,
input RD_CLK,
input RD_EN,
input RD_EN_USER,
input RST,
input RST_FULL_GEN,
input RST_FULL_FF,
input WR_RST,
input RD_RST,
input WR_CLK,
input WR_EN,
input INJECTDBITERR,
input INJECTSBITERR,
input USER_EMPTY_FB,
output reg ALMOST_EMPTY = 1'b1,
output reg ALMOST_FULL = C_FULL_FLAGS_RST_VAL,
output [C_DOUT_WIDTH-1:0] DOUT,
output reg EMPTY = 1'b1,
output reg FULL = C_FULL_FLAGS_RST_VAL,
output OVERFLOW,
output PROG_EMPTY,
output PROG_FULL,
output VALID,
output [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT,
output UNDERFLOW,
output WR_ACK,
output [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT,
output SBITERR,
output DBITERR
);
reg [C_RD_PNTR_WIDTH:0] rd_data_count_int = 0;
reg [C_WR_PNTR_WIDTH:0] wr_data_count_int = 0;
reg [C_WR_PNTR_WIDTH:0] wdc_fwft_ext_as = 0;
/***************************************************************************
* Parameters used as constants
**************************************************************************/
localparam IS_8SERIES = (C_FAMILY == "virtexu" || C_FAMILY == "kintexu" || C_FAMILY == "artixu" || C_FAMILY == "virtexum" || C_FAMILY == "zynque") ? 1 : 0;
//When RST is present, set FULL reset value to '1'.
//If core has no RST, make sure FULL powers-on as '0'.
localparam C_DEPTH_RATIO_WR =
(C_WR_DEPTH>C_RD_DEPTH) ? (C_WR_DEPTH/C_RD_DEPTH) : 1;
localparam C_DEPTH_RATIO_RD =
(C_RD_DEPTH>C_WR_DEPTH) ? (C_RD_DEPTH/C_WR_DEPTH) : 1;
localparam C_FIFO_WR_DEPTH = C_WR_DEPTH - 1;
localparam C_FIFO_RD_DEPTH = C_RD_DEPTH - 1;
// C_DEPTH_RATIO_WR | C_DEPTH_RATIO_RD | C_PNTR_WIDTH | EXTRA_WORDS_DC
// -----------------|------------------|-----------------|---------------
// 1 | 8 | C_RD_PNTR_WIDTH | 2
// 1 | 4 | C_RD_PNTR_WIDTH | 2
// 1 | 2 | C_RD_PNTR_WIDTH | 2
// 1 | 1 | C_WR_PNTR_WIDTH | 2
// 2 | 1 | C_WR_PNTR_WIDTH | 4
// 4 | 1 | C_WR_PNTR_WIDTH | 8
// 8 | 1 | C_WR_PNTR_WIDTH | 16
localparam C_PNTR_WIDTH = (C_WR_PNTR_WIDTH>=C_RD_PNTR_WIDTH) ? C_WR_PNTR_WIDTH : C_RD_PNTR_WIDTH;
wire [C_PNTR_WIDTH:0] EXTRA_WORDS_DC = (C_DEPTH_RATIO_WR == 1) ? 2 : (2 * C_DEPTH_RATIO_WR/C_DEPTH_RATIO_RD);
localparam [31:0] reads_per_write = C_DIN_WIDTH/C_DOUT_WIDTH;
localparam [31:0] log2_reads_per_write = log2_val(reads_per_write);
localparam [31:0] writes_per_read = C_DOUT_WIDTH/C_DIN_WIDTH;
localparam [31:0] log2_writes_per_read = log2_val(writes_per_read);
/**************************************************************************
* FIFO Contents Tracking and Data Count Calculations
*************************************************************************/
// Memory which will be used to simulate a FIFO
reg [C_DIN_WIDTH-1:0] memory[C_WR_DEPTH-1:0];
// Local parameters used to determine whether to inject ECC error or not
localparam SYMMETRIC_PORT = (C_DIN_WIDTH == C_DOUT_WIDTH) ? 1 : 0;
localparam ERR_INJECTION = (C_ERROR_INJECTION_TYPE != 0) ? 1 : 0;
localparam ENABLE_ERR_INJECTION = C_USE_ECC && SYMMETRIC_PORT && ERR_INJECTION;
// Array that holds the error injection type (single/double bit error) on
// a specific write operation, which is returned on read to corrupt the
// output data.
reg [1:0] ecc_err[C_WR_DEPTH-1:0];
//The amount of data stored in the FIFO at any time is given
// by num_wr_bits (in the WR_CLK domain) and num_rd_bits (in the RD_CLK
// domain.
//num_wr_bits is calculated by considering the total words in the FIFO,
// and the state of the read pointer (which may not have yet crossed clock
// domains.)
//num_rd_bits is calculated by considering the total words in the FIFO,
// and the state of the write pointer (which may not have yet crossed clock
// domains.)
reg [31:0] num_wr_bits;
reg [31:0] num_rd_bits;
reg [31:0] next_num_wr_bits;
reg [31:0] next_num_rd_bits;
//The write pointer - tracks write operations
// (Works opposite to core: wr_ptr is a DOWN counter)
reg [31:0] wr_ptr;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr = 0; // UP counter: Rolls back to 0 when reaches to max value.
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd1 = 0;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd2 = 0;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd3 = 0;
wire [C_RD_PNTR_WIDTH-1:0] adj_wr_pntr_rd;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd = 0;
wire wr_rst_i = WR_RST;
reg wr_rst_d1 =0;
//The read pointer - tracks read operations
// (rd_ptr Works opposite to core: rd_ptr is a DOWN counter)
reg [31:0] rd_ptr;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr = 0; // UP counter: Rolls back to 0 when reaches to max value.
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr1 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr2 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr3 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr4 = 0;
wire [C_WR_PNTR_WIDTH-1:0] adj_rd_pntr_wr;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr = 0;
wire rd_rst_i = RD_RST;
wire ram_rd_en;
wire empty_int;
wire almost_empty_int;
wire ram_wr_en;
wire full_int;
wire almost_full_int;
reg ram_rd_en_d1 = 1'b0;
// Delayed ram_rd_en is needed only for STD Embedded register option
generate
if (C_PRELOAD_LATENCY == 2) begin : grd_d
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i)
ram_rd_en_d1 <= #`TCQ 1'b0;
else
ram_rd_en_d1 <= #`TCQ ram_rd_en;
end
end
endgenerate
// Write pointer adjustment based on pointers width for EMPTY/ALMOST_EMPTY generation
generate
if (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) begin : rdg // Read depth greater than write depth
assign adj_wr_pntr_rd[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr_rd;
assign adj_wr_pntr_rd[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1:0] = 0;
end else begin : rdl // Read depth lesser than or equal to write depth
assign adj_wr_pntr_rd = wr_pntr_rd[C_WR_PNTR_WIDTH-1:C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH];
end
endgenerate
// Generate Empty and Almost Empty
// ram_rd_en used to determine EMPTY should depend on the EMPTY.
assign ram_rd_en = RD_EN & !EMPTY;
assign empty_int = ((adj_wr_pntr_rd == rd_pntr) || (ram_rd_en && (adj_wr_pntr_rd == (rd_pntr+1'h1))));
assign almost_empty_int = ((adj_wr_pntr_rd == (rd_pntr+1'h1)) || (ram_rd_en && (adj_wr_pntr_rd == (rd_pntr+2'h2))));
// Register Empty and Almost Empty
always @ (posedge RD_CLK or posedge rd_rst_i)
begin
if (rd_rst_i) begin
EMPTY <= #`TCQ 1'b1;
ALMOST_EMPTY <= #`TCQ 1'b1;
rd_data_count_int <= #`TCQ {C_RD_PNTR_WIDTH{1'b0}};
end else begin
rd_data_count_int <= #`TCQ {(adj_wr_pntr_rd[C_RD_PNTR_WIDTH-1:0] - rd_pntr[C_RD_PNTR_WIDTH-1:0]), 1'b0};
if (empty_int)
EMPTY <= #`TCQ 1'b1;
else
EMPTY <= #`TCQ 1'b0;
if (!EMPTY) begin
if (almost_empty_int)
ALMOST_EMPTY <= #`TCQ 1'b1;
else
ALMOST_EMPTY <= #`TCQ 1'b0;
end
end // rd_rst_i
end // always
// Read pointer adjustment based on pointers width for EMPTY/ALMOST_EMPTY generation
generate
if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : wdg // Write depth greater than read depth
assign adj_rd_pntr_wr[C_WR_PNTR_WIDTH-1:C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH] = rd_pntr_wr;
assign adj_rd_pntr_wr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1:0] = 0;
end else begin : wdl // Write depth lesser than or equal to read depth
assign adj_rd_pntr_wr = rd_pntr_wr[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH];
end
endgenerate
// Generate FULL and ALMOST_FULL
// ram_wr_en used to determine FULL should depend on the FULL.
assign ram_wr_en = WR_EN & !FULL;
assign full_int = ((adj_rd_pntr_wr == (wr_pntr+1'h1)) || (ram_wr_en && (adj_rd_pntr_wr == (wr_pntr+2'h2))));
assign almost_full_int = ((adj_rd_pntr_wr == (wr_pntr+2'h2)) || (ram_wr_en && (adj_rd_pntr_wr == (wr_pntr+3'h3))));
// Register FULL and ALMOST_FULL Empty
always @ (posedge WR_CLK or posedge RST_FULL_FF)
begin
if (RST_FULL_FF) begin
FULL <= #`TCQ C_FULL_FLAGS_RST_VAL;
ALMOST_FULL <= #`TCQ C_FULL_FLAGS_RST_VAL;
end else begin
if (full_int) begin
FULL <= #`TCQ 1'b1;
end else begin
FULL <= #`TCQ 1'b0;
end
if (RST_FULL_GEN) begin
ALMOST_FULL <= #`TCQ 1'b0;
end else if (!FULL) begin
if (almost_full_int)
ALMOST_FULL <= #`TCQ 1'b1;
else
ALMOST_FULL <= #`TCQ 1'b0;
end
end // wr_rst_i
end // always
always @ (posedge WR_CLK or posedge wr_rst_i)
begin
if (wr_rst_i) begin
wr_data_count_int <= #`TCQ {C_WR_DATA_COUNT_WIDTH{1'b0}};
end else begin
wr_data_count_int <= #`TCQ {(wr_pntr[C_WR_PNTR_WIDTH-1:0] - adj_rd_pntr_wr[C_WR_PNTR_WIDTH-1:0]), 1'b0};
end // wr_rst_i
end // always
// Determine which stage in FWFT registers are valid
reg stage1_valid = 0;
reg stage2_valid = 0;
generate
if (C_PRELOAD_LATENCY == 0) begin : grd_fwft_proc
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
stage1_valid <= #`TCQ 0;
stage2_valid <= #`TCQ 0;
end else begin
if (!stage1_valid && !stage2_valid) begin
if (!EMPTY)
stage1_valid <= #`TCQ 1'b1;
else
stage1_valid <= #`TCQ 1'b0;
end else if (stage1_valid && !stage2_valid) begin
if (EMPTY) begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b1;
end else begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b1;
end
end else if (!stage1_valid && stage2_valid) begin
if (EMPTY && RD_EN_USER) begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b0;
end else if (!EMPTY && RD_EN_USER) begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b0;
end else if (!EMPTY && !RD_EN_USER) begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b1;
end else begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b1;
end
end else if (stage1_valid && stage2_valid) begin
if (EMPTY && RD_EN_USER) begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b1;
end else begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b1;
end
end else begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b0;
end
end // rd_rst_i
end // always
end
endgenerate
//Pointers passed into opposite clock domain
reg [31:0] wr_ptr_rdclk;
reg [31:0] wr_ptr_rdclk_next;
reg [31:0] rd_ptr_wrclk;
reg [31:0] rd_ptr_wrclk_next;
//Amount of data stored in the FIFO scaled to the narrowest (deepest) port
// (Do not include data in FWFT stages)
//Used to calculate PROG_EMPTY.
wire [31:0] num_read_words_pe =
num_rd_bits/(C_DOUT_WIDTH/C_DEPTH_RATIO_WR);
//Amount of data stored in the FIFO scaled to the narrowest (deepest) port
// (Do not include data in FWFT stages)
//Used to calculate PROG_FULL.
wire [31:0] num_write_words_pf =
num_wr_bits/(C_DIN_WIDTH/C_DEPTH_RATIO_RD);
/**************************
* Read Data Count
*************************/
reg [31:0] num_read_words_dc;
reg [C_RD_DATA_COUNT_WIDTH-1:0] num_read_words_sized_i;
always @(num_rd_bits) begin
if (C_USE_FWFT_DATA_COUNT) begin
//If using extra logic for FWFT Data Counts,
// then scale FIFO contents to read domain,
// and add two read words for FWFT stages
//This value is only a temporary value and not used in the code.
num_read_words_dc = (num_rd_bits/C_DOUT_WIDTH+2);
//Trim the read words for use with RD_DATA_COUNT
num_read_words_sized_i =
num_read_words_dc[C_RD_PNTR_WIDTH : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH+1];
end else begin
//If not using extra logic for FWFT Data Counts,
// then scale FIFO contents to read domain.
//This value is only a temporary value and not used in the code.
num_read_words_dc = num_rd_bits/C_DOUT_WIDTH;
//Trim the read words for use with RD_DATA_COUNT
num_read_words_sized_i =
num_read_words_dc[C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH];
end //if (C_USE_FWFT_DATA_COUNT)
end //always
/**************************
* Write Data Count
*************************/
reg [31:0] num_write_words_dc;
reg [C_WR_DATA_COUNT_WIDTH-1:0] num_write_words_sized_i;
always @(num_wr_bits) begin
if (C_USE_FWFT_DATA_COUNT) begin
//Calculate the Data Count value for the number of write words,
// when using First-Word Fall-Through with extra logic for Data
// Counts. This takes into consideration the number of words that
// are expected to be stored in the FWFT register stages (it always
// assumes they are filled).
//This value is scaled to the Write Domain.
//The expression (((A-1)/B))+1 divides A/B, but takes the
// ceiling of the result.
//When num_wr_bits==0, set the result manually to prevent
// division errors.
//EXTRA_WORDS_DC is the number of words added to write_words
// due to FWFT.
//This value is only a temporary value and not used in the code.
num_write_words_dc = (num_wr_bits==0) ? EXTRA_WORDS_DC : (((num_wr_bits-1)/C_DIN_WIDTH)+1) + EXTRA_WORDS_DC ;
//Trim the write words for use with WR_DATA_COUNT
num_write_words_sized_i =
num_write_words_dc[C_WR_PNTR_WIDTH : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH+1];
end else begin
//Calculate the Data Count value for the number of write words, when NOT
// using First-Word Fall-Through with extra logic for Data Counts. This
// calculates only the number of words in the internal FIFO.
//The expression (((A-1)/B))+1 divides A/B, but takes the
// ceiling of the result.
//This value is scaled to the Write Domain.
//When num_wr_bits==0, set the result manually to prevent
// division errors.
//This value is only a temporary value and not used in the code.
num_write_words_dc = (num_wr_bits==0) ? 0 : ((num_wr_bits-1)/C_DIN_WIDTH)+1;
//Trim the read words for use with RD_DATA_COUNT
num_write_words_sized_i =
num_write_words_dc[C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH];
end //if (C_USE_FWFT_DATA_COUNT)
end //always
/***************************************************************************
* Internal registers and wires
**************************************************************************/
//Temporary signals used for calculating the model's outputs. These
//are only used in the assign statements immediately following wire,
//parameter, and function declarations.
wire [C_DOUT_WIDTH-1:0] ideal_dout_out;
wire valid_i;
wire valid_out;
wire underflow_i;
//Ideal FIFO signals. These are the raw output of the behavioral model,
//which behaves like an ideal FIFO.
reg [1:0] err_type = 0;
reg [1:0] err_type_d1 = 0;
reg [C_DOUT_WIDTH-1:0] ideal_dout = 0;
reg [C_DOUT_WIDTH-1:0] ideal_dout_d1 = 0;
reg ideal_wr_ack = 0;
reg ideal_valid = 0;
reg ideal_overflow = C_OVERFLOW_LOW;
reg ideal_underflow = C_UNDERFLOW_LOW;
reg ideal_prog_full = 0;
reg ideal_prog_empty = 1;
reg [C_WR_DATA_COUNT_WIDTH-1 : 0] ideal_wr_count = 0;
reg [C_RD_DATA_COUNT_WIDTH-1 : 0] ideal_rd_count = 0;
//Assorted reg values for delayed versions of signals
reg valid_d1 = 0;
//user specified value for reseting the size of the fifo
reg [C_DOUT_WIDTH-1:0] dout_reset_val = 0;
//temporary registers for WR_RESPONSE_LATENCY feature
integer tmp_wr_listsize;
integer tmp_rd_listsize;
//Signal for registered version of prog full and empty
//Threshold values for Programmable Flags
integer prog_empty_actual_thresh_assert;
integer prog_empty_actual_thresh_negate;
integer prog_full_actual_thresh_assert;
integer prog_full_actual_thresh_negate;
/****************************************************************************
* Function Declarations
***************************************************************************/
/**************************************************************************
* write_fifo
* This task writes a word to the FIFO memory and updates the
* write pointer.
* FIFO size is relative to write domain.
***************************************************************************/
task write_fifo;
begin
memory[wr_ptr] <= DIN;
wr_pntr <= #`TCQ wr_pntr + 1;
// Store the type of error injection (double/single) on write
case (C_ERROR_INJECTION_TYPE)
3: ecc_err[wr_ptr] <= {INJECTDBITERR,INJECTSBITERR};
2: ecc_err[wr_ptr] <= {INJECTDBITERR,1'b0};
1: ecc_err[wr_ptr] <= {1'b0,INJECTSBITERR};
default: ecc_err[wr_ptr] <= 0;
endcase
// (Works opposite to core: wr_ptr is a DOWN counter)
if (wr_ptr == 0) begin
wr_ptr <= C_WR_DEPTH - 1;
end else begin
wr_ptr <= wr_ptr - 1;
end
end
endtask // write_fifo
/**************************************************************************
* read_fifo
* This task reads a word from the FIFO memory and updates the read
* pointer. It's output is the ideal_dout bus.
* FIFO size is relative to write domain.
***************************************************************************/
task read_fifo;
integer i;
reg [C_DOUT_WIDTH-1:0] tmp_dout;
reg [C_DIN_WIDTH-1:0] memory_read;
reg [31:0] tmp_rd_ptr;
reg [31:0] rd_ptr_high;
reg [31:0] rd_ptr_low;
reg [1:0] tmp_ecc_err;
begin
rd_pntr <= #`TCQ rd_pntr + 1;
// output is wider than input
if (reads_per_write == 0) begin
tmp_dout = 0;
tmp_rd_ptr = (rd_ptr << log2_writes_per_read)+(writes_per_read-1);
for (i = writes_per_read - 1; i >= 0; i = i - 1) begin
tmp_dout = tmp_dout << C_DIN_WIDTH;
tmp_dout = tmp_dout | memory[tmp_rd_ptr];
// (Works opposite to core: rd_ptr is a DOWN counter)
if (tmp_rd_ptr == 0) begin
tmp_rd_ptr = C_WR_DEPTH - 1;
end else begin
tmp_rd_ptr = tmp_rd_ptr - 1;
end
end
// output is symmetric
end else if (reads_per_write == 1) begin
tmp_dout = memory[rd_ptr][C_DIN_WIDTH-1:0];
// Retreive the error injection type. Based on the error injection type
// corrupt the output data.
tmp_ecc_err = ecc_err[rd_ptr];
if (ENABLE_ERR_INJECTION && C_DIN_WIDTH == C_DOUT_WIDTH) begin
if (tmp_ecc_err[1]) begin // Corrupt the output data only for double bit error
if (C_DOUT_WIDTH == 1) begin
$display("FAILURE : Data width must be >= 2 for double bit error injection.");
$finish;
end else if (C_DOUT_WIDTH == 2)
tmp_dout = {~tmp_dout[C_DOUT_WIDTH-1],~tmp_dout[C_DOUT_WIDTH-2]};
else
tmp_dout = {~tmp_dout[C_DOUT_WIDTH-1],~tmp_dout[C_DOUT_WIDTH-2],(tmp_dout << 2)};
end else begin
tmp_dout = tmp_dout[C_DOUT_WIDTH-1:0];
end
err_type <= {tmp_ecc_err[1], tmp_ecc_err[0] & !tmp_ecc_err[1]};
end else begin
err_type <= 0;
end
// input is wider than output
end else begin
rd_ptr_high = rd_ptr >> log2_reads_per_write;
rd_ptr_low = rd_ptr & (reads_per_write - 1);
memory_read = memory[rd_ptr_high];
tmp_dout = memory_read >> (rd_ptr_low*C_DOUT_WIDTH);
end
ideal_dout <= tmp_dout;
// (Works opposite to core: rd_ptr is a DOWN counter)
if (rd_ptr == 0) begin
rd_ptr <= C_RD_DEPTH - 1;
end else begin
rd_ptr <= rd_ptr - 1;
end
end
endtask
/**************************************************************************
* log2_val
* Returns the 'log2' value for the input value for the supported ratios
***************************************************************************/
function [31:0] log2_val;
input [31:0] binary_val;
begin
if (binary_val == 8) begin
log2_val = 3;
end else if (binary_val == 4) begin
log2_val = 2;
end else begin
log2_val = 1;
end
end
endfunction
/***********************************************************************
* hexstr_conv
* Converts a string of type hex to a binary value (for C_DOUT_RST_VAL)
***********************************************************************/
function [C_DOUT_WIDTH-1:0] hexstr_conv;
input [(C_DOUT_WIDTH*8)-1:0] def_data;
integer index,i,j;
reg [3:0] bin;
begin
index = 0;
hexstr_conv = 'b0;
for( i=C_DOUT_WIDTH-1; i>=0; i=i-1 )
begin
case (def_data[7:0])
8'b00000000 :
begin
bin = 4'b0000;
i = -1;
end
8'b00110000 : bin = 4'b0000;
8'b00110001 : bin = 4'b0001;
8'b00110010 : bin = 4'b0010;
8'b00110011 : bin = 4'b0011;
8'b00110100 : bin = 4'b0100;
8'b00110101 : bin = 4'b0101;
8'b00110110 : bin = 4'b0110;
8'b00110111 : bin = 4'b0111;
8'b00111000 : bin = 4'b1000;
8'b00111001 : bin = 4'b1001;
8'b01000001 : bin = 4'b1010;
8'b01000010 : bin = 4'b1011;
8'b01000011 : bin = 4'b1100;
8'b01000100 : bin = 4'b1101;
8'b01000101 : bin = 4'b1110;
8'b01000110 : bin = 4'b1111;
8'b01100001 : bin = 4'b1010;
8'b01100010 : bin = 4'b1011;
8'b01100011 : bin = 4'b1100;
8'b01100100 : bin = 4'b1101;
8'b01100101 : bin = 4'b1110;
8'b01100110 : bin = 4'b1111;
default :
begin
bin = 4'bx;
end
endcase
for( j=0; j<4; j=j+1)
begin
if ((index*4)+j < C_DOUT_WIDTH)
begin
hexstr_conv[(index*4)+j] = bin[j];
end
end
index = index + 1;
def_data = def_data >> 8;
end
end
endfunction
/*************************************************************************
* Initialize Signals for clean power-on simulation
*************************************************************************/
initial begin
num_wr_bits = 0;
num_rd_bits = 0;
next_num_wr_bits = 0;
next_num_rd_bits = 0;
rd_ptr = C_RD_DEPTH - 1;
wr_ptr = C_WR_DEPTH - 1;
wr_pntr = 0;
rd_pntr = 0;
rd_ptr_wrclk = rd_ptr;
wr_ptr_rdclk = wr_ptr;
dout_reset_val = hexstr_conv(C_DOUT_RST_VAL);
ideal_dout = dout_reset_val;
err_type = 0;
ideal_dout_d1 = dout_reset_val;
ideal_wr_ack = 1'b0;
ideal_valid = 1'b0;
valid_d1 = 1'b0;
ideal_overflow = C_OVERFLOW_LOW;
ideal_underflow = C_UNDERFLOW_LOW;
ideal_wr_count = 0;
ideal_rd_count = 0;
ideal_prog_full = 1'b0;
ideal_prog_empty = 1'b1;
end
/*************************************************************************
* Connect the module inputs and outputs to the internal signals of the
* behavioral model.
*************************************************************************/
//Inputs
/*
wire [C_DIN_WIDTH-1:0] DIN;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE;
wire RD_CLK;
wire RD_EN;
wire RST;
wire WR_CLK;
wire WR_EN;
*/
//***************************************************************************
// Dout may change behavior based on latency
//***************************************************************************
assign ideal_dout_out[C_DOUT_WIDTH-1:0] = (C_PRELOAD_LATENCY==2 &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1))?
ideal_dout_d1: ideal_dout;
assign DOUT[C_DOUT_WIDTH-1:0] = ideal_dout_out;
//***************************************************************************
// Assign SBITERR and DBITERR based on latency
//***************************************************************************
assign SBITERR = (C_ERROR_INJECTION_TYPE == 1 || C_ERROR_INJECTION_TYPE == 3) &&
(C_PRELOAD_LATENCY == 2 &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1)) ?
err_type_d1[0]: err_type[0];
assign DBITERR = (C_ERROR_INJECTION_TYPE == 2 || C_ERROR_INJECTION_TYPE == 3) &&
(C_PRELOAD_LATENCY==2 && (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1)) ?
err_type_d1[1]: err_type[1];
//***************************************************************************
// Overflow may be active-low
//***************************************************************************
generate
if (C_HAS_OVERFLOW==1) begin : blockOF1
assign OVERFLOW = ideal_overflow ? !C_OVERFLOW_LOW : C_OVERFLOW_LOW;
end
endgenerate
assign PROG_EMPTY = ideal_prog_empty;
assign PROG_FULL = ideal_prog_full;
//***************************************************************************
// Valid may change behavior based on latency or active-low
//***************************************************************************
generate
if (C_HAS_VALID==1) begin : blockVL1
assign valid_i = (C_PRELOAD_LATENCY==0) ? (RD_EN & ~EMPTY) : ideal_valid;
assign valid_out = (C_PRELOAD_LATENCY==2 &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1))?
valid_d1: valid_i;
assign VALID = valid_out ? !C_VALID_LOW : C_VALID_LOW;
end
endgenerate
//***************************************************************************
// Underflow may change behavior based on latency or active-low
//***************************************************************************
generate
if (C_HAS_UNDERFLOW==1) begin : blockUF1
assign underflow_i = (C_PRELOAD_LATENCY==0) ? (RD_EN & EMPTY) : ideal_underflow;
assign UNDERFLOW = underflow_i ? !C_UNDERFLOW_LOW : C_UNDERFLOW_LOW;
end
endgenerate
//***************************************************************************
// Write acknowledge may be active low
//***************************************************************************
generate
if (C_HAS_WR_ACK==1) begin : blockWK1
assign WR_ACK = ideal_wr_ack ? !C_WR_ACK_LOW : C_WR_ACK_LOW;
end
endgenerate
//***************************************************************************
// Generate RD_DATA_COUNT if Use Extra Logic option is selected
//***************************************************************************
generate
if (C_HAS_WR_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT == 1) begin : wdc_fwft_ext
reg [C_PNTR_WIDTH-1:0] adjusted_wr_pntr = 0;
reg [C_PNTR_WIDTH-1:0] adjusted_rd_pntr = 0;
wire [C_PNTR_WIDTH-1:0] diff_wr_rd_tmp;
wire [C_PNTR_WIDTH:0] diff_wr_rd;
reg [C_PNTR_WIDTH:0] wr_data_count_i = 0;
always @* begin
if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin
adjusted_wr_pntr = wr_pntr;
adjusted_rd_pntr = 0;
adjusted_rd_pntr[C_PNTR_WIDTH-1:C_PNTR_WIDTH-C_RD_PNTR_WIDTH] = rd_pntr_wr;
end else if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin
adjusted_rd_pntr = rd_pntr_wr;
adjusted_wr_pntr = 0;
adjusted_wr_pntr[C_PNTR_WIDTH-1:C_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr;
end else begin
adjusted_wr_pntr = wr_pntr;
adjusted_rd_pntr = rd_pntr_wr;
end
end // always @*
assign diff_wr_rd_tmp = adjusted_wr_pntr - adjusted_rd_pntr;
assign diff_wr_rd = {1'b0,diff_wr_rd_tmp};
always @ (posedge wr_rst_i or posedge WR_CLK)
begin
if (wr_rst_i)
wr_data_count_i <= #`TCQ 0;
else
wr_data_count_i <= #`TCQ diff_wr_rd + EXTRA_WORDS_DC;
end // always @ (posedge WR_CLK or posedge WR_CLK)
always @* begin
if (C_WR_PNTR_WIDTH >= C_RD_PNTR_WIDTH)
wdc_fwft_ext_as = wr_data_count_i[C_PNTR_WIDTH:0];
else
wdc_fwft_ext_as = wr_data_count_i[C_PNTR_WIDTH:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH];
end // always @*
end // wdc_fwft_ext
endgenerate
//***************************************************************************
// Generate RD_DATA_COUNT if Use Extra Logic option is selected
//***************************************************************************
reg [C_RD_PNTR_WIDTH:0] rdc_fwft_ext_as = 0;
generate
if (C_HAS_RD_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT == 1) begin : rdc_fwft_ext
reg [C_RD_PNTR_WIDTH-1:0] adjusted_wr_pntr_rd = 0;
wire [C_RD_PNTR_WIDTH-1:0] diff_rd_wr_tmp;
wire [C_RD_PNTR_WIDTH:0] diff_rd_wr;
always @* begin
if (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) begin
adjusted_wr_pntr_rd = 0;
adjusted_wr_pntr_rd[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr_rd;
end else begin
adjusted_wr_pntr_rd = wr_pntr_rd[C_WR_PNTR_WIDTH-1:C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH];
end
end // always @*
assign diff_rd_wr_tmp = adjusted_wr_pntr_rd - rd_pntr;
assign diff_rd_wr = {1'b0,diff_rd_wr_tmp};
always @ (posedge rd_rst_i or posedge RD_CLK)
begin
if (rd_rst_i) begin
rdc_fwft_ext_as <= #`TCQ 0;
end else begin
if (!stage2_valid)
rdc_fwft_ext_as <= #`TCQ 0;
else if (!stage1_valid && stage2_valid)
rdc_fwft_ext_as <= #`TCQ 1;
else
rdc_fwft_ext_as <= #`TCQ diff_rd_wr + 2'h2;
end
end // always @ (posedge WR_CLK or posedge WR_CLK)
end // rdc_fwft_ext
endgenerate
//***************************************************************************
// Assign the read data count value only if it is selected,
// otherwise output zeros.
//***************************************************************************
generate
if (C_HAS_RD_DATA_COUNT == 1) begin : grdc
assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = C_USE_FWFT_DATA_COUNT ?
rdc_fwft_ext_as[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH+1-C_RD_DATA_COUNT_WIDTH] :
rd_data_count_int[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH+1-C_RD_DATA_COUNT_WIDTH];
end
endgenerate
generate
if (C_HAS_RD_DATA_COUNT == 0) begin : gnrdc
assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = {C_RD_DATA_COUNT_WIDTH{1'b0}};
end
endgenerate
//***************************************************************************
// Assign the write data count value only if it is selected,
// otherwise output zeros
//***************************************************************************
generate
if (C_HAS_WR_DATA_COUNT == 1) begin : gwdc
assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = (C_USE_FWFT_DATA_COUNT == 1) ?
wdc_fwft_ext_as[C_WR_PNTR_WIDTH:C_WR_PNTR_WIDTH+1-C_WR_DATA_COUNT_WIDTH] :
wr_data_count_int[C_WR_PNTR_WIDTH:C_WR_PNTR_WIDTH+1-C_WR_DATA_COUNT_WIDTH];
end
endgenerate
generate
if (C_HAS_WR_DATA_COUNT == 0) begin : gnwdc
assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = {C_WR_DATA_COUNT_WIDTH{1'b0}};
end
endgenerate
/**************************************************************************
* Assorted registers for delayed versions of signals
**************************************************************************/
//Capture delayed version of valid
generate
if (C_HAS_VALID==1) begin : blockVL2
always @(posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i == 1'b1) begin
valid_d1 <= #`TCQ 1'b0;
end else begin
valid_d1 <= #`TCQ valid_i;
end
end
end
endgenerate
//Capture delayed version of dout
always @(posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i == 1'b1) begin
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type_d1 <= #`TCQ 0;
end else if (ram_rd_en_d1) begin
ideal_dout_d1 <= #`TCQ ideal_dout;
err_type_d1 <= #`TCQ err_type;
end
end
/**************************************************************************
* Overflow and Underflow Flag calculation
* (handled separately because they don't support rst)
**************************************************************************/
generate
if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 0) begin : g7s_ovflw
always @(posedge WR_CLK) begin
ideal_overflow <= #`TCQ WR_EN & FULL;
end
end else if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 1) begin : g8s_ovflw
always @(posedge WR_CLK) begin
//ideal_overflow <= #`TCQ WR_EN & (FULL | wr_rst_i);
ideal_overflow <= #`TCQ WR_EN & (FULL );
end
end
endgenerate
generate
if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 0) begin : g7s_unflw
always @(posedge RD_CLK) begin
ideal_underflow <= #`TCQ EMPTY & RD_EN;
end
end else if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 1) begin : g8s_unflw
always @(posedge RD_CLK) begin
ideal_underflow <= #`TCQ (EMPTY) & RD_EN;
//ideal_underflow <= #`TCQ (rd_rst_i | EMPTY) & RD_EN;
end
end
endgenerate
/**************************************************************************
* Write/Read Pointer Synchronization
**************************************************************************/
localparam NO_OF_SYNC_STAGE_INC_G2B = C_SYNCHRONIZER_STAGE + 1;
wire [C_WR_PNTR_WIDTH-1:0] wr_pntr_sync_stgs [0:NO_OF_SYNC_STAGE_INC_G2B];
wire [C_RD_PNTR_WIDTH-1:0] rd_pntr_sync_stgs [0:NO_OF_SYNC_STAGE_INC_G2B];
genvar gss;
generate for (gss = 1; gss <= NO_OF_SYNC_STAGE_INC_G2B; gss = gss + 1) begin : Sync_stage_inst
fifo_generator_v12_0_sync_stage
#(
.C_WIDTH (C_WR_PNTR_WIDTH)
)
rd_stg_inst
(
.RST (rd_rst_i),
.CLK (RD_CLK),
.DIN (wr_pntr_sync_stgs[gss-1]),
.DOUT (wr_pntr_sync_stgs[gss])
);
fifo_generator_v12_0_sync_stage
#(
.C_WIDTH (C_RD_PNTR_WIDTH)
)
wr_stg_inst
(
.RST (wr_rst_i),
.CLK (WR_CLK),
.DIN (rd_pntr_sync_stgs[gss-1]),
.DOUT (rd_pntr_sync_stgs[gss])
);
end endgenerate // Sync_stage_inst
assign wr_pntr_sync_stgs[0] = wr_pntr_rd1;
assign rd_pntr_sync_stgs[0] = rd_pntr_wr1;
always@* begin
wr_pntr_rd <= wr_pntr_sync_stgs[NO_OF_SYNC_STAGE_INC_G2B];
rd_pntr_wr <= rd_pntr_sync_stgs[NO_OF_SYNC_STAGE_INC_G2B];
end
/**************************************************************************
* Write Domain Logic
**************************************************************************/
reg [C_WR_PNTR_WIDTH-1:0] diff_pntr = 0;
always @(posedge WR_CLK or posedge wr_rst_i) begin : gen_fifo_w
/****** Reset fifo (case 1)***************************************/
if (wr_rst_i == 1'b1) begin
num_wr_bits <= #`TCQ 0;
next_num_wr_bits = #`TCQ 0;
wr_ptr <= #`TCQ C_WR_DEPTH - 1;
rd_ptr_wrclk <= #`TCQ C_RD_DEPTH - 1;
ideal_wr_ack <= #`TCQ 0;
ideal_wr_count <= #`TCQ 0;
tmp_wr_listsize = #`TCQ 0;
rd_ptr_wrclk_next <= #`TCQ 0;
wr_pntr <= #`TCQ 0;
wr_pntr_rd1 <= #`TCQ 0;
end else begin //wr_rst_i==0
wr_pntr_rd1 <= #`TCQ wr_pntr;
//Determine the current number of words in the FIFO
tmp_wr_listsize = (C_DEPTH_RATIO_RD > 1) ? num_wr_bits/C_DOUT_WIDTH :
num_wr_bits/C_DIN_WIDTH;
rd_ptr_wrclk_next = rd_ptr;
if (rd_ptr_wrclk < rd_ptr_wrclk_next) begin
next_num_wr_bits = num_wr_bits -
C_DOUT_WIDTH*(rd_ptr_wrclk + C_RD_DEPTH
- rd_ptr_wrclk_next);
end else begin
next_num_wr_bits = num_wr_bits -
C_DOUT_WIDTH*(rd_ptr_wrclk - rd_ptr_wrclk_next);
end
//If this is a write, handle the write by adding the value
// to the linked list, and updating all outputs appropriately
if (WR_EN == 1'b1) begin
if (FULL == 1'b1) begin
//If the FIFO is full, do NOT perform the write,
// update flags accordingly
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD
>= C_FIFO_WR_DEPTH) begin
//write unsuccessful - do not change contents
//Do not acknowledge the write
ideal_wr_ack <= #`TCQ 0;
//Reminder that FIFO is still full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
//If the FIFO is one from full, but reporting full
end else
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD ==
C_FIFO_WR_DEPTH-1) begin
//No change to FIFO
//Write not successful
ideal_wr_ack <= #`TCQ 0;
//With DEPTH-1 words in the FIFO, it is almost_full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
//If the FIFO is completely empty, but it is
// reporting FULL for some reason (like reset)
end else
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD <=
C_FIFO_WR_DEPTH-2) begin
//No change to FIFO
//Write not successful
ideal_wr_ack <= #`TCQ 0;
//FIFO is really not close to full, so change flag status.
ideal_wr_count <= #`TCQ num_write_words_sized_i;
end //(tmp_wr_listsize == 0)
end else begin
//If the FIFO is full, do NOT perform the write,
// update flags accordingly
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD >=
C_FIFO_WR_DEPTH) begin
//write unsuccessful - do not change contents
//Do not acknowledge the write
ideal_wr_ack <= #`TCQ 0;
//Reminder that FIFO is still full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
//If the FIFO is one from full
end else
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD ==
C_FIFO_WR_DEPTH-1) begin
//Add value on DIN port to FIFO
write_fifo;
next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH;
//Write successful, so issue acknowledge
// and no error
ideal_wr_ack <= #`TCQ 1;
//This write is CAUSING the FIFO to go full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
//If the FIFO is 2 from full
end else
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD ==
C_FIFO_WR_DEPTH-2) begin
//Add value on DIN port to FIFO
write_fifo;
next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH;
//Write successful, so issue acknowledge
// and no error
ideal_wr_ack <= #`TCQ 1;
//Still 2 from full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
//If the FIFO is not close to being full
end else
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD <
C_FIFO_WR_DEPTH-2) begin
//Add value on DIN port to FIFO
write_fifo;
next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH;
//Write successful, so issue acknowledge
// and no error
ideal_wr_ack <= #`TCQ 1;
//Not even close to full.
ideal_wr_count <= num_write_words_sized_i;
end
end
end else begin //(WR_EN == 1'b1)
//If user did not attempt a write, then do not
// give ack or err
ideal_wr_ack <= #`TCQ 0;
ideal_wr_count <= #`TCQ num_write_words_sized_i;
end
num_wr_bits <= #`TCQ next_num_wr_bits;
rd_ptr_wrclk <= #`TCQ rd_ptr;
end //wr_rst_i==0
end // gen_fifo_w
/***************************************************************************
* Programmable FULL flags
***************************************************************************/
wire [C_WR_PNTR_WIDTH-1:0] pf_thr_assert_val;
wire [C_WR_PNTR_WIDTH-1:0] pf_thr_negate_val;
generate if (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) begin : FWFT
assign pf_thr_assert_val = C_PROG_FULL_THRESH_ASSERT_VAL - EXTRA_WORDS_DC;
assign pf_thr_negate_val = C_PROG_FULL_THRESH_NEGATE_VAL - EXTRA_WORDS_DC;
end else begin // STD
assign pf_thr_assert_val = C_PROG_FULL_THRESH_ASSERT_VAL;
assign pf_thr_negate_val = C_PROG_FULL_THRESH_NEGATE_VAL;
end endgenerate
always @(posedge WR_CLK or posedge wr_rst_i) begin
if (wr_rst_i == 1'b1) begin
diff_pntr <= 0;
end else begin
if (ram_wr_en)
diff_pntr <= #`TCQ (wr_pntr - adj_rd_pntr_wr + 2'h1);
else if (!ram_wr_en)
diff_pntr <= #`TCQ (wr_pntr - adj_rd_pntr_wr);
end
end
always @(posedge WR_CLK or posedge RST_FULL_FF) begin : gen_pf
if (RST_FULL_FF == 1'b1) begin
ideal_prog_full <= #`TCQ C_FULL_FLAGS_RST_VAL;
end else begin
if (RST_FULL_GEN)
ideal_prog_full <= #`TCQ 0;
//Single Programmable Full Constant Threshold
else if (C_PROG_FULL_TYPE == 1) begin
if (FULL == 0) begin
if (diff_pntr >= pf_thr_assert_val)
ideal_prog_full <= #`TCQ 1;
else
ideal_prog_full <= #`TCQ 0;
end else
ideal_prog_full <= #`TCQ ideal_prog_full;
//Two Programmable Full Constant Thresholds
end else if (C_PROG_FULL_TYPE == 2) begin
if (FULL == 0) begin
if (diff_pntr >= pf_thr_assert_val)
ideal_prog_full <= #`TCQ 1;
else if (diff_pntr < pf_thr_negate_val)
ideal_prog_full <= #`TCQ 0;
else
ideal_prog_full <= #`TCQ ideal_prog_full;
end else
ideal_prog_full <= #`TCQ ideal_prog_full;
//Single Programmable Full Threshold Input
end else if (C_PROG_FULL_TYPE == 3) begin
if (FULL == 0) begin
if (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) begin // FWFT
if (diff_pntr >= (PROG_FULL_THRESH - EXTRA_WORDS_DC))
ideal_prog_full <= #`TCQ 1;
else
ideal_prog_full <= #`TCQ 0;
end else begin // STD
if (diff_pntr >= PROG_FULL_THRESH)
ideal_prog_full <= #`TCQ 1;
else
ideal_prog_full <= #`TCQ 0;
end
end else
ideal_prog_full <= #`TCQ ideal_prog_full;
//Two Programmable Full Threshold Inputs
end else if (C_PROG_FULL_TYPE == 4) begin
if (FULL == 0) begin
if (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) begin // FWFT
if (diff_pntr >= (PROG_FULL_THRESH_ASSERT - EXTRA_WORDS_DC))
ideal_prog_full <= #`TCQ 1;
else if (diff_pntr < (PROG_FULL_THRESH_NEGATE - EXTRA_WORDS_DC))
ideal_prog_full <= #`TCQ 0;
else
ideal_prog_full <= #`TCQ ideal_prog_full;
end else begin // STD
if (diff_pntr >= PROG_FULL_THRESH_ASSERT)
ideal_prog_full <= #`TCQ 1;
else if (diff_pntr < PROG_FULL_THRESH_NEGATE)
ideal_prog_full <= #`TCQ 0;
else
ideal_prog_full <= #`TCQ ideal_prog_full;
end
end else
ideal_prog_full <= #`TCQ ideal_prog_full;
end // C_PROG_FULL_TYPE
end //wr_rst_i==0
end //
/**************************************************************************
* Read Domain Logic
**************************************************************************/
/*********************************************************
* Programmable EMPTY flags
*********************************************************/
//Determine the Assert and Negate thresholds for Programmable Empty
wire [C_RD_PNTR_WIDTH-1:0] pe_thr_assert_val;
wire [C_RD_PNTR_WIDTH-1:0] pe_thr_negate_val;
reg [C_RD_PNTR_WIDTH-1:0] diff_pntr_rd = 0;
always @(posedge RD_CLK or posedge rd_rst_i) begin : gen_pe
if (rd_rst_i) begin
diff_pntr_rd <= #`TCQ 0;
ideal_prog_empty <= #`TCQ 1'b1;
end else begin
if (ram_rd_en)
diff_pntr_rd <= #`TCQ (adj_wr_pntr_rd - rd_pntr) - 1'h1;
else if (!ram_rd_en)
diff_pntr_rd <= #`TCQ (adj_wr_pntr_rd - rd_pntr);
else
diff_pntr_rd <= #`TCQ diff_pntr_rd;
if (C_PROG_EMPTY_TYPE == 1) begin
if (EMPTY == 0) begin
if (diff_pntr_rd <= pe_thr_assert_val)
ideal_prog_empty <= #`TCQ 1;
else
ideal_prog_empty <= #`TCQ 0;
end else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end else if (C_PROG_EMPTY_TYPE == 2) begin
if (EMPTY == 0) begin
if (diff_pntr_rd <= pe_thr_assert_val)
ideal_prog_empty <= #`TCQ 1;
else if (diff_pntr_rd > pe_thr_negate_val)
ideal_prog_empty <= #`TCQ 0;
else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end else if (C_PROG_EMPTY_TYPE == 3) begin
if (EMPTY == 0) begin
if (diff_pntr_rd <= pe_thr_assert_val)
ideal_prog_empty <= #`TCQ 1;
else
ideal_prog_empty <= #`TCQ 0;
end else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end else if (C_PROG_EMPTY_TYPE == 4) begin
if (EMPTY == 0) begin
if (diff_pntr_rd <= pe_thr_assert_val)
ideal_prog_empty <= #`TCQ 1;
else if (diff_pntr_rd > pe_thr_negate_val)
ideal_prog_empty <= #`TCQ 0;
else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end //C_PROG_EMPTY_TYPE
end
end // gen_pe
generate if (C_PROG_EMPTY_TYPE == 3) begin : single_pe_thr_input
assign pe_thr_assert_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ?
PROG_EMPTY_THRESH - 2'h2 : PROG_EMPTY_THRESH;
end endgenerate // single_pe_thr_input
generate if (C_PROG_EMPTY_TYPE == 4) begin : multiple_pe_thr_input
assign pe_thr_assert_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ?
PROG_EMPTY_THRESH_ASSERT - 2'h2 : PROG_EMPTY_THRESH_ASSERT;
assign pe_thr_negate_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ?
PROG_EMPTY_THRESH_NEGATE - 2'h2 : PROG_EMPTY_THRESH_NEGATE;
end endgenerate // multiple_pe_thr_input
generate if (C_PROG_EMPTY_TYPE < 3) begin : single_multiple_pe_thr_const
assign pe_thr_assert_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ?
C_PROG_EMPTY_THRESH_ASSERT_VAL - 2'h2 : C_PROG_EMPTY_THRESH_ASSERT_VAL;
assign pe_thr_negate_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ?
C_PROG_EMPTY_THRESH_NEGATE_VAL - 2'h2 : C_PROG_EMPTY_THRESH_NEGATE_VAL;
end endgenerate // single_multiple_pe_thr_const
// block memory has a synchronous reset
always @(posedge RD_CLK) begin : gen_fifo_blkmemdout
// make it consistent with the core.
if (rd_rst_i) begin
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0 && C_MEMORY_TYPE < 2)
err_type <= #`TCQ 0;
// BRAM resets synchronously
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE < 2) begin
ideal_dout <= #`TCQ dout_reset_val;
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
end
end //always
always @(posedge RD_CLK or posedge rd_rst_i) begin : gen_fifo_r
/****** Reset fifo (case 1)***************************************/
if (rd_rst_i) begin
num_rd_bits <= #`TCQ 0;
next_num_rd_bits = #`TCQ 0;
rd_ptr <= #`TCQ C_RD_DEPTH -1;
rd_pntr <= #`TCQ 0;
rd_pntr_wr1 <= #`TCQ 0;
wr_ptr_rdclk <= #`TCQ C_WR_DEPTH -1;
// DRAM resets asynchronously
if (C_MEMORY_TYPE == 2 && C_USE_DOUT_RST == 1)
ideal_dout <= #`TCQ dout_reset_val;
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type <= #`TCQ 0;
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ 0;
end else begin //rd_rst_i==0
rd_pntr_wr1 <= #`TCQ rd_pntr;
//Determine the current number of words in the FIFO
tmp_rd_listsize = (C_DEPTH_RATIO_WR > 1) ? num_rd_bits/C_DIN_WIDTH :
num_rd_bits/C_DOUT_WIDTH;
wr_ptr_rdclk_next = wr_ptr;
if (wr_ptr_rdclk < wr_ptr_rdclk_next) begin
next_num_rd_bits = num_rd_bits +
C_DIN_WIDTH*(wr_ptr_rdclk +C_WR_DEPTH
- wr_ptr_rdclk_next);
end else begin
next_num_rd_bits = num_rd_bits +
C_DIN_WIDTH*(wr_ptr_rdclk - wr_ptr_rdclk_next);
end
/*****************************************************************/
// Read Operation - Read Latency 1
/*****************************************************************/
if (C_PRELOAD_LATENCY==1 || C_PRELOAD_LATENCY==2) begin
ideal_valid <= #`TCQ 1'b0;
if (ram_rd_en == 1'b1) begin
if (EMPTY == 1'b1) begin
//If the FIFO is completely empty, and is reporting empty
if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0)
begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Reminder that FIFO is still empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize <= 0)
//If the FIFO is one from empty, but it is reporting empty
else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 1)
begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Note that FIFO is no longer empty, but is almost empty (has one word left)
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == 1)
//If the FIFO is two from empty, and is reporting empty
else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2)
begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Fifo has two words, so is neither empty or almost empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == 2)
//If the FIFO is not close to empty, but is reporting that it is
// Treat the FIFO as empty this time, but unset EMPTY flags.
if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) && (tmp_rd_listsize/C_DEPTH_RATIO_WR<C_FIFO_RD_DEPTH))
begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Note that the FIFO is No Longer Empty or Almost Empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if ((tmp_rd_listsize > 2) && (tmp_rd_listsize<=C_FIFO_RD_DEPTH-1))
end // else: if(ideal_empty == 1'b1)
else //if (ideal_empty == 1'b0)
begin
//If the FIFO is completely full, and we are successfully reading from it
if (tmp_rd_listsize/C_DEPTH_RATIO_WR >= C_FIFO_RD_DEPTH)
begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Not close to empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == C_FIFO_RD_DEPTH)
//If the FIFO is not close to being empty
else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) && (tmp_rd_listsize/C_DEPTH_RATIO_WR<=C_FIFO_RD_DEPTH))
begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Not close to empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if ((tmp_rd_listsize > 2) && (tmp_rd_listsize<=C_FIFO_RD_DEPTH-1))
//If the FIFO is two from empty
else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2)
begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Fifo is not yet empty. It is going almost_empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == 2)
//If the FIFO is one from empty
else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR == 1))
begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Note that FIFO is GOING empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == 1)
//If the FIFO is completely empty
else if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0)
begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize <= 0)
end // if (ideal_empty == 1'b0)
end //(RD_EN == 1'b1)
else //if (RD_EN == 1'b0)
begin
//If user did not attempt a read, do not give an ack or err
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // else: !if(RD_EN == 1'b1)
/*****************************************************************/
// Read Operation - Read Latency 0
/*****************************************************************/
end else if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) begin
ideal_valid <= #`TCQ 1'b0;
if (ram_rd_en == 1'b1) begin
if (EMPTY == 1'b1) begin
//If the FIFO is completely empty, and is reporting empty
if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0) begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Reminder that FIFO is still empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is one from empty, but it is reporting empty
end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 1) begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Note that FIFO is no longer empty, but is almost empty (has one word left)
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is two from empty, and is reporting empty
end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2) begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Fifo has two words, so is neither empty or almost empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is not close to empty, but is reporting that it is
// Treat the FIFO as empty this time, but unset EMPTY flags.
end else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) &&
(tmp_rd_listsize/C_DEPTH_RATIO_WR<C_FIFO_RD_DEPTH)) begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Note that the FIFO is No Longer Empty or Almost Empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if ((tmp_rd_listsize > 2) && (tmp_rd_listsize<=C_FIFO_RD_DEPTH-1))
end else begin
//If the FIFO is completely full, and we are successfully reading from it
if (tmp_rd_listsize/C_DEPTH_RATIO_WR >= C_FIFO_RD_DEPTH) begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Not close to empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is not close to being empty
end else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) &&
(tmp_rd_listsize/C_DEPTH_RATIO_WR<=C_FIFO_RD_DEPTH)) begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Not close to empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is two from empty
end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2) begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Fifo is not yet empty. It is going almost_empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is one from empty
end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 1) begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Note that FIFO is GOING empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is completely empty
end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0) begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Reminder that FIFO is still empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize <= 0)
end // if (ideal_empty == 1'b0)
end else begin//(RD_EN == 1'b0)
//If user did not attempt a read, do not give an ack or err
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // else: !if(RD_EN == 1'b1)
end //if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0)
num_rd_bits <= #`TCQ next_num_rd_bits;
wr_ptr_rdclk <= #`TCQ wr_ptr;
end //rd_rst_i==0
end //always
endmodule // fifo_generator_v12_0_bhv_ver_as
/*******************************************************************************
* Declaration of Low Latency Asynchronous FIFO
******************************************************************************/
module fifo_generator_v12_0_beh_ver_ll_afifo
/***************************************************************************
* Declare user parameters and their defaults
***************************************************************************/
#(
parameter C_DIN_WIDTH = 8,
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_FULL_FLAGS_RST_VAL = 1,
parameter C_HAS_RD_DATA_COUNT = 0,
parameter C_HAS_WR_DATA_COUNT = 0,
parameter C_RD_DEPTH = 256,
parameter C_RD_PNTR_WIDTH = 8,
parameter C_USE_DOUT_RST = 0,
parameter C_WR_DATA_COUNT_WIDTH = 2,
parameter C_WR_DEPTH = 256,
parameter C_WR_PNTR_WIDTH = 8,
parameter C_FIFO_TYPE = 0
)
/***************************************************************************
* Declare Input and Output Ports
***************************************************************************/
(
input [C_DIN_WIDTH-1:0] DIN,
input RD_CLK,
input RD_EN,
input WR_RST,
input RD_RST,
input WR_CLK,
input WR_EN,
output reg [C_DOUT_WIDTH-1:0] DOUT = 0,
output reg EMPTY = 1'b1,
output reg FULL = C_FULL_FLAGS_RST_VAL
);
//-----------------------------------------------------------------------------
// Low Latency Asynchronous FIFO
//-----------------------------------------------------------------------------
// Memory which will be used to simulate a FIFO
reg [C_DIN_WIDTH-1:0] memory[C_WR_DEPTH-1:0];
integer i;
initial begin
for (i = 0; i < C_WR_DEPTH; i = i + 1)
memory[i] = 0;
end
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_ll_afifo = 0;
wire [C_RD_PNTR_WIDTH-1:0] rd_pntr_ll_afifo;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_ll_afifo_q = 0;
reg ll_afifo_full = 1'b0;
reg ll_afifo_empty = 1'b1;
wire write_allow;
wire read_allow;
assign write_allow = WR_EN & ~ll_afifo_full;
assign read_allow = RD_EN & ~ll_afifo_empty;
//-----------------------------------------------------------------------------
// Write Pointer Generation
//-----------------------------------------------------------------------------
always @(posedge WR_CLK or posedge WR_RST) begin
if (WR_RST)
wr_pntr_ll_afifo <= 0;
else if (write_allow)
wr_pntr_ll_afifo <= #`TCQ wr_pntr_ll_afifo + 1;
end
//-----------------------------------------------------------------------------
// Read Pointer Generation
//-----------------------------------------------------------------------------
always @(posedge RD_CLK or posedge RD_RST) begin
if (RD_RST)
rd_pntr_ll_afifo_q <= 0;
else
rd_pntr_ll_afifo_q <= #`TCQ rd_pntr_ll_afifo;
end
assign rd_pntr_ll_afifo = read_allow ? rd_pntr_ll_afifo_q + 1 : rd_pntr_ll_afifo_q;
//-----------------------------------------------------------------------------
// Fill the Memory
//-----------------------------------------------------------------------------
always @(posedge WR_CLK) begin
if (write_allow)
memory[wr_pntr_ll_afifo] <= #`TCQ DIN;
end
//-----------------------------------------------------------------------------
// Generate DOUT
//-----------------------------------------------------------------------------
always @(posedge RD_CLK) begin
DOUT <= #`TCQ memory[rd_pntr_ll_afifo];
end
//-----------------------------------------------------------------------------
// Generate EMPTY
//-----------------------------------------------------------------------------
always @(posedge RD_CLK or posedge RD_RST) begin
if (RD_RST)
ll_afifo_empty <= 1'b1;
else
ll_afifo_empty <= ((wr_pntr_ll_afifo == rd_pntr_ll_afifo_q) |
(read_allow & (wr_pntr_ll_afifo == (rd_pntr_ll_afifo_q + 2'h1))));
end
//-----------------------------------------------------------------------------
// Generate FULL
//-----------------------------------------------------------------------------
always @(posedge WR_CLK or posedge WR_RST) begin
if (WR_RST)
ll_afifo_full <= 1'b1;
else
ll_afifo_full <= ((rd_pntr_ll_afifo_q == (wr_pntr_ll_afifo + 2'h1)) |
(write_allow & (rd_pntr_ll_afifo_q == (wr_pntr_ll_afifo + 2'h2))));
end
always @* begin
FULL <= ll_afifo_full;
EMPTY <= ll_afifo_empty;
end
endmodule // fifo_generator_v12_0_beh_ver_ll_afifo
/*******************************************************************************
* Declaration of top-level module
******************************************************************************/
module fifo_generator_v12_0_bhv_ver_ss
/**************************************************************************
* Declare user parameters and their defaults
*************************************************************************/
#(
parameter C_FAMILY = "virtex7",
parameter C_DATA_COUNT_WIDTH = 2,
parameter C_DIN_WIDTH = 8,
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_FULL_FLAGS_RST_VAL = 1,
parameter C_HAS_ALMOST_EMPTY = 0,
parameter C_HAS_ALMOST_FULL = 0,
parameter C_HAS_DATA_COUNT = 0,
parameter C_HAS_OVERFLOW = 0,
parameter C_HAS_RD_DATA_COUNT = 0,
parameter C_HAS_RST = 0,
parameter C_HAS_SRST = 0,
parameter C_HAS_UNDERFLOW = 0,
parameter C_HAS_VALID = 0,
parameter C_HAS_WR_ACK = 0,
parameter C_HAS_WR_DATA_COUNT = 0,
parameter C_IMPLEMENTATION_TYPE = 0,
parameter C_MEMORY_TYPE = 1,
parameter C_OVERFLOW_LOW = 0,
parameter C_PRELOAD_LATENCY = 1,
parameter C_PRELOAD_REGS = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0,
parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0,
parameter C_PROG_EMPTY_TYPE = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0,
parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0,
parameter C_PROG_FULL_TYPE = 0,
parameter C_RD_DATA_COUNT_WIDTH = 2,
parameter C_RD_DEPTH = 256,
parameter C_RD_PNTR_WIDTH = 8,
parameter C_UNDERFLOW_LOW = 0,
parameter C_USE_DOUT_RST = 0,
parameter C_USE_EMBEDDED_REG = 0,
parameter C_USE_FWFT_DATA_COUNT = 0,
parameter C_VALID_LOW = 0,
parameter C_WR_ACK_LOW = 0,
parameter C_WR_DATA_COUNT_WIDTH = 2,
parameter C_WR_DEPTH = 256,
parameter C_WR_PNTR_WIDTH = 8,
parameter C_USE_ECC = 0,
parameter C_ENABLE_RST_SYNC = 1,
parameter C_ERROR_INJECTION_TYPE = 0,
parameter C_FIFO_TYPE = 0
)
/**************************************************************************
* Declare Input and Output Ports
*************************************************************************/
(
//Inputs
input CLK,
input [C_DIN_WIDTH-1:0] DIN,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT,
input [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT,
input [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE,
input RD_EN,
input RD_EN_USER,
input USER_EMPTY_FB,
input RST,
input RST_FULL_GEN,
input RST_FULL_FF,
input SRST,
input WR_EN,
input INJECTDBITERR,
input INJECTSBITERR,
input WR_RST_BUSY,
input RD_RST_BUSY,
//Outputs
output ALMOST_EMPTY,
output ALMOST_FULL,
output reg [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT = 0,
output [C_DOUT_WIDTH-1:0] DOUT,
output EMPTY,
output FULL,
output OVERFLOW,
output [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT,
output [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT,
output PROG_EMPTY,
output PROG_FULL,
output VALID,
output UNDERFLOW,
output WR_ACK,
output SBITERR,
output DBITERR
);
reg [C_RD_PNTR_WIDTH:0] rd_data_count_int = 0;
reg [C_WR_PNTR_WIDTH:0] wr_data_count_int = 0;
wire [C_RD_PNTR_WIDTH:0] rd_data_count_i_ss;
wire [C_WR_PNTR_WIDTH:0] wr_data_count_i_ss;
reg [C_WR_PNTR_WIDTH:0] wdc_fwft_ext_as = 0;
/***************************************************************************
* Parameters used as constants
**************************************************************************/
localparam IS_8SERIES = (C_FAMILY == "virtexu" || C_FAMILY == "kintexu" || C_FAMILY == "artixu" || C_FAMILY == "virtexum" || C_FAMILY == "zynque") ? 1 : 0;
localparam C_DEPTH_RATIO_WR =
(C_WR_DEPTH>C_RD_DEPTH) ? (C_WR_DEPTH/C_RD_DEPTH) : 1;
localparam C_DEPTH_RATIO_RD =
(C_RD_DEPTH>C_WR_DEPTH) ? (C_RD_DEPTH/C_WR_DEPTH) : 1;
//localparam C_FIFO_WR_DEPTH = C_WR_DEPTH - 1;
//localparam C_FIFO_RD_DEPTH = C_RD_DEPTH - 1;
localparam C_GRTR_PNTR_WIDTH = (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) ? C_WR_PNTR_WIDTH : C_RD_PNTR_WIDTH ;
// C_DEPTH_RATIO_WR | C_DEPTH_RATIO_RD | C_PNTR_WIDTH | EXTRA_WORDS_DC
// -----------------|------------------|-----------------|---------------
// 1 | 8 | C_RD_PNTR_WIDTH | 2
// 1 | 4 | C_RD_PNTR_WIDTH | 2
// 1 | 2 | C_RD_PNTR_WIDTH | 2
// 1 | 1 | C_WR_PNTR_WIDTH | 2
// 2 | 1 | C_WR_PNTR_WIDTH | 4
// 4 | 1 | C_WR_PNTR_WIDTH | 8
// 8 | 1 | C_WR_PNTR_WIDTH | 16
localparam C_PNTR_WIDTH = (C_WR_PNTR_WIDTH>=C_RD_PNTR_WIDTH) ? C_WR_PNTR_WIDTH : C_RD_PNTR_WIDTH;
wire [C_PNTR_WIDTH:0] EXTRA_WORDS_DC = (C_DEPTH_RATIO_WR == 1) ? 2 : (2 * C_DEPTH_RATIO_WR/C_DEPTH_RATIO_RD);
wire [C_WR_PNTR_WIDTH:0] EXTRA_WORDS_PF = (C_DEPTH_RATIO_WR == 1) ? 2 : (2 * C_DEPTH_RATIO_WR/C_DEPTH_RATIO_RD);
//wire [C_RD_PNTR_WIDTH:0] EXTRA_WORDS_PE = (C_DEPTH_RATIO_RD == 1) ? 2 : (2 * C_DEPTH_RATIO_RD/C_DEPTH_RATIO_WR);
localparam EXTRA_WORDS_PF_PARAM = (C_DEPTH_RATIO_WR == 1) ? 2 : (2 * C_DEPTH_RATIO_WR/C_DEPTH_RATIO_RD);
//localparam EXTRA_WORDS_PE_PARAM = (C_DEPTH_RATIO_RD == 1) ? 2 : (2 * C_DEPTH_RATIO_RD/C_DEPTH_RATIO_WR);
localparam [31:0] reads_per_write = C_DIN_WIDTH/C_DOUT_WIDTH;
localparam [31:0] log2_reads_per_write = log2_val(reads_per_write);
localparam [31:0] writes_per_read = C_DOUT_WIDTH/C_DIN_WIDTH;
localparam [31:0] log2_writes_per_read = log2_val(writes_per_read);
//When RST is present, set FULL reset value to '1'.
//If core has no RST, make sure FULL powers-on as '0'.
//The reset value assignments for FULL, ALMOST_FULL, and PROG_FULL are not
//changed for v3.2(IP2_Im). When the core has Sync Reset, C_HAS_SRST=1 and C_HAS_RST=0.
// Therefore, during SRST, all the FULL flags reset to 0.
localparam C_HAS_FAST_FIFO = 0;
localparam C_FIFO_WR_DEPTH = C_WR_DEPTH;
localparam C_FIFO_RD_DEPTH = C_RD_DEPTH;
// Local parameters used to determine whether to inject ECC error or not
localparam SYMMETRIC_PORT = (C_DIN_WIDTH == C_DOUT_WIDTH) ? 1 : 0;
localparam ERR_INJECTION = (C_ERROR_INJECTION_TYPE != 0) ? 1 : 0;
localparam ENABLE_ERR_INJECTION = C_USE_ECC && SYMMETRIC_PORT && ERR_INJECTION;
localparam C_DATA_WIDTH = (ENABLE_ERR_INJECTION == 1) ? (C_DIN_WIDTH+2) : C_DIN_WIDTH;
localparam IS_ASYMMETRY = (C_DIN_WIDTH == C_DOUT_WIDTH) ? 0 : 1;
localparam LESSER_WIDTH = (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) ? C_WR_PNTR_WIDTH : C_RD_PNTR_WIDTH;
localparam [C_RD_PNTR_WIDTH-1 : 0] DIFF_MAX_RD = {C_RD_PNTR_WIDTH{1'b1}};
localparam [C_WR_PNTR_WIDTH-1 : 0] DIFF_MAX_WR = {C_WR_PNTR_WIDTH{1'b1}};
/**************************************************************************
* FIFO Contents Tracking and Data Count Calculations
*************************************************************************/
// Memory which will be used to simulate a FIFO
reg [C_DIN_WIDTH-1:0] memory[C_WR_DEPTH-1:0];
reg [1:0] ecc_err[C_WR_DEPTH-1:0];
/**************************************************************************
* Internal Registers and wires
*************************************************************************/
//Temporary signals used for calculating the model's outputs. These
//are only used in the assign statements immediately following wire,
//parameter, and function declarations.
wire underflow_i;
wire valid_i;
wire valid_out;
reg [31:0] num_wr_bits;
reg [31:0] num_rd_bits;
reg [31:0] next_num_wr_bits;
reg [31:0] next_num_rd_bits;
//The write pointer - tracks write operations
// (Works opposite to core: wr_ptr is a DOWN counter)
reg [31:0] wr_ptr;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd1 = 0;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd2 = 0;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd3 = 0;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_rd = 0;
reg wr_rst_d1 =0;
//The read pointer - tracks read operations
// (rd_ptr Works opposite to core: rd_ptr is a DOWN counter)
reg [31:0] rd_ptr;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr1 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr2 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr3 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr4 = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_wr = 0;
wire ram_rd_en;
wire empty_int;
wire almost_empty_int;
wire ram_wr_en;
wire full_int;
wire almost_full_int;
reg ram_rd_en_reg = 1'b0;
//Ideal FIFO signals. These are the raw output of the behavioral model,
//which behaves like an ideal FIFO.
reg [1:0] err_type = 0;
reg [1:0] err_type_d1 = 0;
reg [C_DOUT_WIDTH-1:0] ideal_dout = 0;
reg [C_DOUT_WIDTH-1:0] ideal_dout_d1 = 0;
wire [C_DOUT_WIDTH-1:0] ideal_dout_out;
wire fwft_enabled;
reg ideal_wr_ack = 0;
reg ideal_valid = 0;
reg ideal_overflow = C_OVERFLOW_LOW;
reg ideal_underflow = C_UNDERFLOW_LOW;
reg full_i = C_FULL_FLAGS_RST_VAL;
reg full_i_temp = 0;
reg empty_i = 1;
reg almost_full_i = 0;
reg almost_empty_i = 1;
reg prog_full_i = 0;
reg prog_empty_i = 1;
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr = 0;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr = 0;
wire [C_RD_PNTR_WIDTH-1:0] adj_wr_pntr_rd;
wire [C_WR_PNTR_WIDTH-1:0] adj_rd_pntr_wr;
reg [C_RD_PNTR_WIDTH-1:0] diff_count = 0;
reg write_allow_q = 0;
reg read_allow_q = 0;
reg valid_d1 = 0;
wire rst_i;
wire srst_i;
//user specified value for reseting the size of the fifo
reg [C_DOUT_WIDTH-1:0] dout_reset_val = 0;
reg [31:0] wr_ptr_rdclk;
reg [31:0] wr_ptr_rdclk_next;
reg [31:0] rd_ptr_wrclk;
reg [31:0] rd_ptr_wrclk_next;
/****************************************************************************
* Function Declarations
***************************************************************************/
/****************************************************************************
* hexstr_conv
* Converts a string of type hex to a binary value (for C_DOUT_RST_VAL)
***************************************************************************/
function [C_DOUT_WIDTH-1:0] hexstr_conv;
input [(C_DOUT_WIDTH*8)-1:0] def_data;
integer index,i,j;
reg [3:0] bin;
begin
index = 0;
hexstr_conv = 'b0;
for( i=C_DOUT_WIDTH-1; i>=0; i=i-1 ) begin
case (def_data[7:0])
8'b00000000 : begin
bin = 4'b0000;
i = -1;
end
8'b00110000 : bin = 4'b0000;
8'b00110001 : bin = 4'b0001;
8'b00110010 : bin = 4'b0010;
8'b00110011 : bin = 4'b0011;
8'b00110100 : bin = 4'b0100;
8'b00110101 : bin = 4'b0101;
8'b00110110 : bin = 4'b0110;
8'b00110111 : bin = 4'b0111;
8'b00111000 : bin = 4'b1000;
8'b00111001 : bin = 4'b1001;
8'b01000001 : bin = 4'b1010;
8'b01000010 : bin = 4'b1011;
8'b01000011 : bin = 4'b1100;
8'b01000100 : bin = 4'b1101;
8'b01000101 : bin = 4'b1110;
8'b01000110 : bin = 4'b1111;
8'b01100001 : bin = 4'b1010;
8'b01100010 : bin = 4'b1011;
8'b01100011 : bin = 4'b1100;
8'b01100100 : bin = 4'b1101;
8'b01100101 : bin = 4'b1110;
8'b01100110 : bin = 4'b1111;
default : begin
bin = 4'bx;
end
endcase
for( j=0; j<4; j=j+1) begin
if ((index*4)+j < C_DOUT_WIDTH) begin
hexstr_conv[(index*4)+j] = bin[j];
end
end
index = index + 1;
def_data = def_data >> 8;
end
end
endfunction
/**************************************************************************
* log2_val
* Returns the 'log2' value for the input value for the supported ratios
***************************************************************************/
function [31:0] log2_val;
input [31:0] binary_val;
begin
if (binary_val == 8) begin
log2_val = 3;
end else if (binary_val == 4) begin
log2_val = 2;
end else begin
log2_val = 1;
end
end
endfunction
reg ideal_prog_full = 0;
reg ideal_prog_empty = 1;
reg [C_WR_DATA_COUNT_WIDTH-1 : 0] ideal_wr_count = 0;
reg [C_RD_DATA_COUNT_WIDTH-1 : 0] ideal_rd_count = 0;
//Assorted reg values for delayed versions of signals
//reg valid_d1 = 0;
//user specified value for reseting the size of the fifo
//reg [C_DOUT_WIDTH-1:0] dout_reset_val = 0;
//temporary registers for WR_RESPONSE_LATENCY feature
integer tmp_wr_listsize;
integer tmp_rd_listsize;
//Signal for registered version of prog full and empty
//Threshold values for Programmable Flags
integer prog_empty_actual_thresh_assert;
integer prog_empty_actual_thresh_negate;
integer prog_full_actual_thresh_assert;
integer prog_full_actual_thresh_negate;
/**************************************************************************
* write_fifo
* This task writes a word to the FIFO memory and updates the
* write pointer.
* FIFO size is relative to write domain.
***************************************************************************/
task write_fifo;
begin
memory[wr_ptr] <= DIN;
wr_pntr <= #`TCQ wr_pntr + 1;
// Store the type of error injection (double/single) on write
case (C_ERROR_INJECTION_TYPE)
3: ecc_err[wr_ptr] <= {INJECTDBITERR,INJECTSBITERR};
2: ecc_err[wr_ptr] <= {INJECTDBITERR,1'b0};
1: ecc_err[wr_ptr] <= {1'b0,INJECTSBITERR};
default: ecc_err[wr_ptr] <= 0;
endcase
// (Works opposite to core: wr_ptr is a DOWN counter)
if (wr_ptr == 0) begin
wr_ptr <= C_WR_DEPTH - 1;
end else begin
wr_ptr <= wr_ptr - 1;
end
end
endtask // write_fifo
/**************************************************************************
* read_fifo
* This task reads a word from the FIFO memory and updates the read
* pointer. It's output is the ideal_dout bus.
* FIFO size is relative to write domain.
***************************************************************************/
task read_fifo;
integer i;
reg [C_DOUT_WIDTH-1:0] tmp_dout;
reg [C_DIN_WIDTH-1:0] memory_read;
reg [31:0] tmp_rd_ptr;
reg [31:0] rd_ptr_high;
reg [31:0] rd_ptr_low;
reg [1:0] tmp_ecc_err;
begin
rd_pntr <= #`TCQ rd_pntr + 1;
// output is wider than input
if (reads_per_write == 0) begin
tmp_dout = 0;
tmp_rd_ptr = (rd_ptr << log2_writes_per_read)+(writes_per_read-1);
for (i = writes_per_read - 1; i >= 0; i = i - 1) begin
tmp_dout = tmp_dout << C_DIN_WIDTH;
tmp_dout = tmp_dout | memory[tmp_rd_ptr];
// (Works opposite to core: rd_ptr is a DOWN counter)
if (tmp_rd_ptr == 0) begin
tmp_rd_ptr = C_WR_DEPTH - 1;
end else begin
tmp_rd_ptr = tmp_rd_ptr - 1;
end
end
// output is symmetric
end else if (reads_per_write == 1) begin
tmp_dout = memory[rd_ptr][C_DIN_WIDTH-1:0];
// Retreive the error injection type. Based on the error injection type
// corrupt the output data.
tmp_ecc_err = ecc_err[rd_ptr];
if (ENABLE_ERR_INJECTION && C_DIN_WIDTH == C_DOUT_WIDTH) begin
if (tmp_ecc_err[1]) begin // Corrupt the output data only for double bit error
if (C_DOUT_WIDTH == 1) begin
$display("FAILURE : Data width must be >= 2 for double bit error injection.");
$finish;
end else if (C_DOUT_WIDTH == 2)
tmp_dout = {~tmp_dout[C_DOUT_WIDTH-1],~tmp_dout[C_DOUT_WIDTH-2]};
else
tmp_dout = {~tmp_dout[C_DOUT_WIDTH-1],~tmp_dout[C_DOUT_WIDTH-2],(tmp_dout << 2)};
end else begin
tmp_dout = tmp_dout[C_DOUT_WIDTH-1:0];
end
err_type <= {tmp_ecc_err[1], tmp_ecc_err[0] & !tmp_ecc_err[1]};
end else begin
err_type <= 0;
end
// input is wider than output
end else begin
rd_ptr_high = rd_ptr >> log2_reads_per_write;
rd_ptr_low = rd_ptr & (reads_per_write - 1);
memory_read = memory[rd_ptr_high];
tmp_dout = memory_read >> (rd_ptr_low*C_DOUT_WIDTH);
end
ideal_dout <= tmp_dout;
// (Works opposite to core: rd_ptr is a DOWN counter)
if (rd_ptr == 0) begin
rd_ptr <= C_RD_DEPTH - 1;
end else begin
rd_ptr <= rd_ptr - 1;
end
end
endtask
/*************************************************************************
* Initialize Signals for clean power-on simulation
*************************************************************************/
initial begin
num_wr_bits = 0;
num_rd_bits = 0;
next_num_wr_bits = 0;
next_num_rd_bits = 0;
rd_ptr = C_RD_DEPTH - 1;
wr_ptr = C_WR_DEPTH - 1;
wr_pntr = 0;
rd_pntr = 0;
rd_ptr_wrclk = rd_ptr;
wr_ptr_rdclk = wr_ptr;
dout_reset_val = hexstr_conv(C_DOUT_RST_VAL);
ideal_dout = dout_reset_val;
err_type = 0;
ideal_dout_d1 = dout_reset_val;
ideal_wr_ack = 1'b0;
ideal_valid = 1'b0;
valid_d1 = 1'b0;
ideal_overflow = C_OVERFLOW_LOW;
ideal_underflow = C_UNDERFLOW_LOW;
ideal_wr_count = 0;
ideal_rd_count = 0;
ideal_prog_full = 1'b0;
ideal_prog_empty = 1'b1;
end
/*************************************************************************
* Connect the module inputs and outputs to the internal signals of the
* behavioral model.
*************************************************************************/
//Inputs
/*
wire CLK;
wire [C_DIN_WIDTH-1:0] DIN;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE;
wire RD_EN;
wire RST;
wire WR_EN;
*/
// Assign ALMOST_EPMTY
generate if (C_HAS_ALMOST_EMPTY == 1) begin : gae
assign ALMOST_EMPTY = almost_empty_i;
end else begin : gnae
assign ALMOST_EMPTY = 0;
end endgenerate // gae
// Assign ALMOST_FULL
generate if (C_HAS_ALMOST_FULL==1) begin : gaf
assign ALMOST_FULL = almost_full_i;
end else begin : gnaf
assign ALMOST_FULL = 0;
end endgenerate // gaf
// Dout may change behavior based on latency
assign fwft_enabled = (C_PRELOAD_LATENCY == 0 && C_PRELOAD_REGS == 1)?
1: 0;
assign ideal_dout_out= ((C_USE_EMBEDDED_REG==1 && (fwft_enabled == 0)) &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1))?
ideal_dout_d1: ideal_dout;
assign DOUT = ideal_dout_out;
// Assign SBITERR and DBITERR based on latency
assign SBITERR = (C_ERROR_INJECTION_TYPE == 1 || C_ERROR_INJECTION_TYPE == 3) &&
((C_USE_EMBEDDED_REG==1 && (fwft_enabled == 0)) &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1)) ?
err_type_d1[0]: err_type[0];
assign DBITERR = (C_ERROR_INJECTION_TYPE == 2 || C_ERROR_INJECTION_TYPE == 3) &&
((C_USE_EMBEDDED_REG==1 && (fwft_enabled == 0)) &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1)) ?
err_type_d1[1]: err_type[1];
assign EMPTY = empty_i;
assign FULL = full_i;
//Overflow may be active-low
generate if (C_HAS_OVERFLOW==1) begin : gof
assign OVERFLOW = ideal_overflow ? !C_OVERFLOW_LOW : C_OVERFLOW_LOW;
end else begin : gnof
assign OVERFLOW = 0;
end endgenerate // gof
assign PROG_EMPTY = prog_empty_i;
assign PROG_FULL = prog_full_i;
//Valid may change behavior based on latency or active-low
generate if (C_HAS_VALID==1) begin : gvalid
assign valid_i = (C_PRELOAD_LATENCY == 0) ? (RD_EN & ~EMPTY) : ideal_valid;
assign valid_out = (C_PRELOAD_LATENCY == 2 && C_MEMORY_TYPE < 2) ?
valid_d1 : valid_i;
assign VALID = valid_out ? !C_VALID_LOW : C_VALID_LOW;
end else begin : gnvalid
assign VALID = 0;
end endgenerate // gvalid
//Trim data count differently depending on set widths
generate if (C_HAS_DATA_COUNT == 1) begin : gdc
always @* begin
diff_count <= wr_pntr - rd_pntr;
if (C_DATA_COUNT_WIDTH > C_RD_PNTR_WIDTH) begin
DATA_COUNT[C_RD_PNTR_WIDTH-1:0] <= diff_count;
DATA_COUNT[C_DATA_COUNT_WIDTH-1] <= 1'b0 ;
end else begin
DATA_COUNT <= diff_count[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_DATA_COUNT_WIDTH];
end
end
// end else begin : gndc
// always @* DATA_COUNT <= 0;
end endgenerate // gdc
//Underflow may change behavior based on latency or active-low
generate if (C_HAS_UNDERFLOW==1) begin : guf
assign underflow_i = ideal_underflow;
assign UNDERFLOW = underflow_i ? !C_UNDERFLOW_LOW : C_UNDERFLOW_LOW;
end else begin : gnuf
assign UNDERFLOW = 0;
end endgenerate // guf
//Write acknowledge may be active low
generate if (C_HAS_WR_ACK==1) begin : gwr_ack
assign WR_ACK = ideal_wr_ack ? !C_WR_ACK_LOW : C_WR_ACK_LOW;
end else begin : gnwr_ack
assign WR_ACK = 0;
end endgenerate // gwr_ack
/*****************************************************************************
* Internal reset logic
****************************************************************************/
assign srst_i = C_HAS_SRST ? SRST : 0;
assign srst_wrst_busy = C_HAS_SRST ? (SRST || WR_RST_BUSY) : 0;
assign srst_rrst_busy = C_HAS_SRST ? (SRST || RD_RST_BUSY) : 0;
assign rst_i = C_HAS_RST ? RST : 0;
/**************************************************************************
* Assorted registers for delayed versions of signals
**************************************************************************/
//Capture delayed version of valid
generate if (C_HAS_VALID == 1) begin : blockVL20
always @(posedge CLK or posedge rst_i) begin
if (rst_i == 1'b1) begin
valid_d1 <= #`TCQ 1'b0;
end else begin
if (srst_rrst_busy) begin
valid_d1 <= #`TCQ 1'b0;
end else begin
valid_d1 <= #`TCQ valid_i;
end
end
end // always @ (posedge CLK or posedge rst_i)
end endgenerate // blockVL20
// Determine which stage in FWFT registers are valid
reg stage1_valid = 0;
reg stage2_valid = 0;
generate
if (C_PRELOAD_LATENCY == 0) begin : grd_fwft_proc
always @ (posedge CLK or posedge rst_i) begin
if (rst_i) begin
stage1_valid <= #`TCQ 0;
stage2_valid <= #`TCQ 0;
end else begin
if (!stage1_valid && !stage2_valid) begin
if (!EMPTY)
stage1_valid <= #`TCQ 1'b1;
else
stage1_valid <= #`TCQ 1'b0;
end else if (stage1_valid && !stage2_valid) begin
if (EMPTY) begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b1;
end else begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b1;
end
end else if (!stage1_valid && stage2_valid) begin
if (EMPTY && RD_EN) begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b0;
end else if (!EMPTY && RD_EN) begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b0;
end else if (!EMPTY && !RD_EN) begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b1;
end else begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b1;
end
end else if (stage1_valid && stage2_valid) begin
if (EMPTY && RD_EN) begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b1;
end else begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b1;
end
end else begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b0;
end
end // rd_rst_i
end // always
end
endgenerate
//***************************************************************************
// Assign the read data count value only if it is selected,
// otherwise output zeros.
//***************************************************************************
generate
if (C_HAS_RD_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT ==1) begin : grdc
assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = rd_data_count_i_ss[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH+1-C_RD_DATA_COUNT_WIDTH];
end
endgenerate
generate
if (C_HAS_RD_DATA_COUNT == 0) begin : gnrdc
assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = {C_RD_DATA_COUNT_WIDTH{1'b0}};
end
endgenerate
//***************************************************************************
// Assign the write data count value only if it is selected,
// otherwise output zeros
//***************************************************************************
generate
if (C_HAS_WR_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT == 1) begin : gwdc
assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = wr_data_count_i_ss[C_WR_PNTR_WIDTH:C_WR_PNTR_WIDTH+1-C_WR_DATA_COUNT_WIDTH] ;
end
endgenerate
generate
if (C_HAS_WR_DATA_COUNT == 0) begin : gnwdc
assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = {C_WR_DATA_COUNT_WIDTH{1'b0}};
end
endgenerate
// block memory has a synchronous reset
generate if (C_MEMORY_TYPE < 2) begin : gen_fifo_blkmemdout_emb
always @(posedge CLK) begin
// BRAM resets synchronously
// make it consistent with the core.
if ((rst_i || srst_rrst_busy) && (C_USE_DOUT_RST == 1))
ideal_dout_d1 <= #`TCQ dout_reset_val;
end //always
end endgenerate // gen_fifo_blkmemdout_emb
reg ram_rd_en_d1 = 1'b0;
//Capture delayed version of dout
always @(posedge CLK or posedge rst_i) begin
if (rst_i == 1'b1) begin
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type_d1 <= #`TCQ 0;
// DRAM and SRAM reset asynchronously
if ((C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3) && C_USE_DOUT_RST == 1)
ideal_dout_d1 <= #`TCQ dout_reset_val;
ram_rd_en_d1 <= #`TCQ 1'b0;
end else begin
ram_rd_en_d1 <= #`TCQ RD_EN & ~EMPTY;
if (srst_rrst_busy) begin
ram_rd_en_d1 <= #`TCQ 1'b0;
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type_d1 <= #`TCQ 0;
// Reset DRAM and SRAM based FIFO, BRAM based FIFO is reset above
if ((C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3) && C_USE_DOUT_RST == 1)
ideal_dout_d1 <= #`TCQ dout_reset_val;
end else if (ram_rd_en_d1) begin
ideal_dout_d1 <= #`TCQ ideal_dout;
err_type_d1 <= #`TCQ err_type;
end
end
end
/**************************************************************************
* Overflow and Underflow Flag calculation
* (handled separately because they don't support rst)
**************************************************************************/
generate if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 0) begin : g7s_ovflw
always @(posedge CLK) begin
ideal_overflow <= #`TCQ WR_EN & full_i;
end
end else if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 1) begin : g8s_ovflw
always @(posedge CLK) begin
//ideal_overflow <= #`TCQ WR_EN & (rst_i | full_i);
ideal_overflow <= #`TCQ WR_EN & (WR_RST_BUSY | full_i);
end
end endgenerate // blockOF20
generate if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 0) begin : g7s_unflw
always @(posedge CLK) begin
ideal_underflow <= #`TCQ empty_i & RD_EN;
end
end else if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 1) begin : g8s_unflw
always @(posedge CLK) begin
//ideal_underflow <= #`TCQ (rst_i | empty_i) & RD_EN;
ideal_underflow <= #`TCQ (RD_RST_BUSY | empty_i) & RD_EN;
end
end endgenerate // blockUF20
/**************************
* Read Data Count
*************************/
reg [31:0] num_read_words_dc;
reg [C_RD_DATA_COUNT_WIDTH-1:0] num_read_words_sized_i;
always @(num_rd_bits) begin
if (C_USE_FWFT_DATA_COUNT) begin
//If using extra logic for FWFT Data Counts,
// then scale FIFO contents to read domain,
// and add two read words for FWFT stages
//This value is only a temporary value and not used in the code.
num_read_words_dc = (num_rd_bits/C_DOUT_WIDTH+2);
//Trim the read words for use with RD_DATA_COUNT
num_read_words_sized_i =
num_read_words_dc[C_RD_PNTR_WIDTH : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH+1];
end else begin
//If not using extra logic for FWFT Data Counts,
// then scale FIFO contents to read domain.
//This value is only a temporary value and not used in the code.
num_read_words_dc = num_rd_bits/C_DOUT_WIDTH;
//Trim the read words for use with RD_DATA_COUNT
num_read_words_sized_i =
num_read_words_dc[C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH];
end //if (C_USE_FWFT_DATA_COUNT)
end //always
/**************************
* Write Data Count
*************************/
reg [31:0] num_write_words_dc;
reg [C_WR_DATA_COUNT_WIDTH-1:0] num_write_words_sized_i;
always @(num_wr_bits) begin
if (C_USE_FWFT_DATA_COUNT) begin
//Calculate the Data Count value for the number of write words,
// when using First-Word Fall-Through with extra logic for Data
// Counts. This takes into consideration the number of words that
// are expected to be stored in the FWFT register stages (it always
// assumes they are filled).
//This value is scaled to the Write Domain.
//The expression (((A-1)/B))+1 divides A/B, but takes the
// ceiling of the result.
//When num_wr_bits==0, set the result manually to prevent
// division errors.
//EXTRA_WORDS_DC is the number of words added to write_words
// due to FWFT.
//This value is only a temporary value and not used in the code.
num_write_words_dc = (num_wr_bits==0) ? EXTRA_WORDS_DC : (((num_wr_bits-1)/C_DIN_WIDTH)+1) + EXTRA_WORDS_DC ;
//Trim the write words for use with WR_DATA_COUNT
num_write_words_sized_i =
num_write_words_dc[C_WR_PNTR_WIDTH : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH+1];
end else begin
//Calculate the Data Count value for the number of write words, when NOT
// using First-Word Fall-Through with extra logic for Data Counts. This
// calculates only the number of words in the internal FIFO.
//The expression (((A-1)/B))+1 divides A/B, but takes the
// ceiling of the result.
//This value is scaled to the Write Domain.
//When num_wr_bits==0, set the result manually to prevent
// division errors.
//This value is only a temporary value and not used in the code.
num_write_words_dc = (num_wr_bits==0) ? 0 : ((num_wr_bits-1)/C_DIN_WIDTH)+1;
//Trim the read words for use with RD_DATA_COUNT
num_write_words_sized_i =
num_write_words_dc[C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH];
end //if (C_USE_FWFT_DATA_COUNT)
end //always
/*************************************************************************
* Write and Read Logic
************************************************************************/
wire write_allow;
wire read_allow;
wire read_allow_dc;
wire write_only;
wire read_only;
//wire write_only_q;
reg write_only_q;
//wire read_only_q;
reg read_only_q;
reg full_reg;
reg rst_full_ff_reg1;
reg rst_full_ff_reg2;
wire ram_full_comb;
wire carry;
assign write_allow = WR_EN & ~full_i;
assign read_allow = RD_EN & ~empty_i;
assign read_allow_dc = RD_EN_USER & ~USER_EMPTY_FB;
//assign write_only = write_allow & ~read_allow;
//assign write_only_q = write_allow_q;
//assign read_only = read_allow & ~write_allow;
//assign read_only_q = read_allow_q ;
wire [C_WR_PNTR_WIDTH-1:0] diff_pntr;
wire [C_RD_PNTR_WIDTH-1:0] diff_pntr_pe;
reg [C_WR_PNTR_WIDTH-1:0] diff_pntr_reg1 = 0;
reg [C_RD_PNTR_WIDTH-1:0] diff_pntr_pe_reg1 = 0;
reg [C_RD_PNTR_WIDTH:0] diff_pntr_pe_asym = 0;
wire [C_RD_PNTR_WIDTH:0] adj_wr_pntr_rd_asym ;
wire [C_RD_PNTR_WIDTH:0] rd_pntr_asym;
reg [C_WR_PNTR_WIDTH-1:0] diff_pntr_reg2 = 0;
reg [C_WR_PNTR_WIDTH-1:0] diff_pntr_pe_reg2 = 0;
wire [C_RD_PNTR_WIDTH-1:0] diff_pntr_pe_max;
wire [C_RD_PNTR_WIDTH-1:0] diff_pntr_max;
assign diff_pntr_pe_max = DIFF_MAX_RD;
assign diff_pntr_max = DIFF_MAX_WR;
generate if (IS_ASYMMETRY == 0) begin : diff_pntr_sym
assign write_only = write_allow & ~read_allow;
assign read_only = read_allow & ~write_allow;
end endgenerate
generate if ( IS_ASYMMETRY == 1 && C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : wr_grt_rd
assign read_only = read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0]) & ~write_allow;
assign write_only = write_allow & ~(read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0]));
end endgenerate
generate if (IS_ASYMMETRY ==1 && C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : rd_grt_wr
assign read_only = read_allow & ~(write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]));
assign write_only = write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]) & ~read_allow;
end endgenerate
//-----------------------------------------------------------------------------
// Write and Read pointer generation
//-----------------------------------------------------------------------------
always @(posedge CLK or posedge rst_i) begin
if (rst_i) begin
wr_pntr <= 0;
rd_pntr <= 0;
end else begin
if (srst_i || srst_wrst_busy || srst_rrst_busy ) begin
if (srst_wrst_busy)
wr_pntr <= #`TCQ 0;
if (srst_rrst_busy)
rd_pntr <= #`TCQ 0;
end else begin
if (write_allow) wr_pntr <= #`TCQ wr_pntr + 1;
if (read_allow) rd_pntr <= #`TCQ rd_pntr + 1;
end
end
end
generate if (C_FIFO_TYPE == 2) begin : gll_dm_dout
always @(posedge CLK) begin
if (write_allow) begin
if (ENABLE_ERR_INJECTION == 1)
memory[wr_pntr] <= #`TCQ {INJECTDBITERR,INJECTSBITERR,DIN};
else
memory[wr_pntr] <= #`TCQ DIN;
end
end
reg [C_DATA_WIDTH-1:0] dout_tmp_q;
reg [C_DATA_WIDTH-1:0] dout_tmp = 0;
reg [C_DATA_WIDTH-1:0] dout_tmp1 = 0;
always @(posedge CLK) begin
dout_tmp_q <= #`TCQ ideal_dout;
end
always @* begin
if (read_allow)
ideal_dout <= memory[rd_pntr];
else
ideal_dout <= dout_tmp_q;
end
end endgenerate // gll_dm_dout
/**************************************************************************
* Write Domain Logic
**************************************************************************/
assign ram_rd_en = RD_EN & !EMPTY;
//reg [C_WR_PNTR_WIDTH-1:0] diff_pntr = 0;
generate if (C_FIFO_TYPE != 2) begin : gnll_din
always @(posedge CLK or posedge rst_i) begin : gen_fifo_w
/****** Reset fifo (case 1)***************************************/
if (rst_i == 1'b1) begin
num_wr_bits <= #`TCQ 0;
next_num_wr_bits = #`TCQ 0;
wr_ptr <= #`TCQ C_WR_DEPTH - 1;
rd_ptr_wrclk <= #`TCQ C_RD_DEPTH - 1;
ideal_wr_ack <= #`TCQ 0;
ideal_wr_count <= #`TCQ 0;
tmp_wr_listsize = #`TCQ 0;
rd_ptr_wrclk_next <= #`TCQ 0;
wr_pntr <= #`TCQ 0;
wr_pntr_rd1 <= #`TCQ 0;
end else begin //rst_i==0
if (srst_wrst_busy) begin
num_wr_bits <= #`TCQ 0;
next_num_wr_bits = #`TCQ 0;
wr_ptr <= #`TCQ C_WR_DEPTH - 1;
rd_ptr_wrclk <= #`TCQ C_RD_DEPTH - 1;
ideal_wr_ack <= #`TCQ 0;
ideal_wr_count <= #`TCQ 0;
tmp_wr_listsize = #`TCQ 0;
rd_ptr_wrclk_next <= #`TCQ 0;
wr_pntr <= #`TCQ 0;
wr_pntr_rd1 <= #`TCQ 0;
end else begin//srst_i=0
wr_pntr_rd1 <= #`TCQ wr_pntr;
//Determine the current number of words in the FIFO
tmp_wr_listsize = (C_DEPTH_RATIO_RD > 1) ? num_wr_bits/C_DOUT_WIDTH :
num_wr_bits/C_DIN_WIDTH;
rd_ptr_wrclk_next = rd_ptr;
if (rd_ptr_wrclk < rd_ptr_wrclk_next) begin
next_num_wr_bits = num_wr_bits -
C_DOUT_WIDTH*(rd_ptr_wrclk + C_RD_DEPTH
- rd_ptr_wrclk_next);
end else begin
next_num_wr_bits = num_wr_bits -
C_DOUT_WIDTH*(rd_ptr_wrclk - rd_ptr_wrclk_next);
end
if (WR_EN == 1'b1) begin
if (FULL == 1'b1) begin
ideal_wr_ack <= #`TCQ 0;
//Reminder that FIFO is still full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
end else begin
write_fifo;
next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH;
//Write successful, so issue acknowledge
// and no error
ideal_wr_ack <= #`TCQ 1;
//Not even close to full.
ideal_wr_count <= num_write_words_sized_i;
//end
end
end else begin //(WR_EN == 1'b1)
//If user did not attempt a write, then do not
// give ack or err
ideal_wr_ack <= #`TCQ 0;
ideal_wr_count <= #`TCQ num_write_words_sized_i;
end
num_wr_bits <= #`TCQ next_num_wr_bits;
rd_ptr_wrclk <= #`TCQ rd_ptr;
end //srst_i==0
end //wr_rst_i==0
end // gen_fifo_w
end endgenerate
generate if (C_FIFO_TYPE < 2 && C_MEMORY_TYPE < 2) begin : gnll_dm_dout
always @(posedge CLK) begin
if (rst_i || srst_rrst_busy) begin
if (C_USE_DOUT_RST == 1)
ideal_dout <= #`TCQ dout_reset_val;
end
end
end endgenerate
generate if (C_FIFO_TYPE != 2) begin : gnll_dout
always @(posedge CLK or posedge rst_i) begin : gen_fifo_r
/****** Reset fifo (case 1)***************************************/
if (rst_i) begin
num_rd_bits <= #`TCQ 0;
next_num_rd_bits = #`TCQ 0;
rd_ptr <= #`TCQ C_RD_DEPTH -1;
rd_pntr <= #`TCQ 0;
//rd_pntr_wr1 <= #`TCQ 0;
wr_ptr_rdclk <= #`TCQ C_WR_DEPTH -1;
// DRAM resets asynchronously
if (C_FIFO_TYPE < 2 && (C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3 )&& C_USE_DOUT_RST == 1)
ideal_dout <= #`TCQ dout_reset_val;
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type <= #`TCQ 0;
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ 0;
end else begin //rd_rst_i==0
if (srst_rrst_busy) begin
num_rd_bits <= #`TCQ 0;
next_num_rd_bits = #`TCQ 0;
rd_ptr <= #`TCQ C_RD_DEPTH -1;
rd_pntr <= #`TCQ 0;
//rd_pntr_wr1 <= #`TCQ 0;
wr_ptr_rdclk <= #`TCQ C_WR_DEPTH -1;
// DRAM resets synchronously
if (C_FIFO_TYPE < 2 && (C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3 )&& C_USE_DOUT_RST == 1)
ideal_dout <= #`TCQ dout_reset_val;
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type <= #`TCQ 0;
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ 0;
end //srst_i
else begin
//rd_pntr_wr1 <= #`TCQ rd_pntr;
//Determine the current number of words in the FIFO
tmp_rd_listsize = (C_DEPTH_RATIO_WR > 1) ? num_rd_bits/C_DIN_WIDTH :
num_rd_bits/C_DOUT_WIDTH;
wr_ptr_rdclk_next = wr_ptr;
if (wr_ptr_rdclk < wr_ptr_rdclk_next) begin
next_num_rd_bits = num_rd_bits +
C_DIN_WIDTH*(wr_ptr_rdclk +C_WR_DEPTH
- wr_ptr_rdclk_next);
end else begin
next_num_rd_bits = num_rd_bits +
C_DIN_WIDTH*(wr_ptr_rdclk - wr_ptr_rdclk_next);
end
if (RD_EN == 1'b1) begin
if (EMPTY == 1'b1) begin
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end
else
begin
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == 2)
end
num_rd_bits <= #`TCQ next_num_rd_bits;
wr_ptr_rdclk <= #`TCQ wr_ptr;
end //s_rst_i==0
end //rd_rst_i==0
end //always
end endgenerate
//-----------------------------------------------------------------------------
// Generate diff_pntr for PROG_FULL generation
// Generate diff_pntr_pe for PROG_EMPTY generation
//-----------------------------------------------------------------------------
generate if ((C_PROG_FULL_TYPE != 0 || C_PROG_EMPTY_TYPE != 0) && IS_ASYMMETRY == 0) begin : reg_write_allow
always @(posedge CLK ) begin
if (rst_i) begin
write_only_q <= 1'b0;
read_only_q <= 1'b0;
diff_pntr_reg1 <= 0;
diff_pntr_pe_reg1 <= 0;
diff_pntr_reg2 <= 0;
diff_pntr_pe_reg2 <= 0;
end else begin
if (srst_i || srst_wrst_busy || srst_rrst_busy) begin
if (srst_rrst_busy) begin
read_only_q <= #`TCQ 1'b0;
diff_pntr_pe_reg1 <= #`TCQ 0;
diff_pntr_pe_reg2 <= #`TCQ 0;
end
if (srst_wrst_busy) begin
write_only_q <= #`TCQ 1'b0;
diff_pntr_reg1 <= #`TCQ 0;
diff_pntr_reg2 <= #`TCQ 0;
end
end else begin
write_only_q <= #`TCQ write_only;
read_only_q <= #`TCQ read_only;
diff_pntr_reg2 <= #`TCQ diff_pntr_reg1;
diff_pntr_pe_reg2 <= #`TCQ diff_pntr_pe_reg1;
// Add 1 to the difference pointer value when only write happens.
if (write_only)
diff_pntr_reg1 <= #`TCQ wr_pntr - adj_rd_pntr_wr + 1;
else
diff_pntr_reg1 <= #`TCQ wr_pntr - adj_rd_pntr_wr;
// Add 1 to the difference pointer value when write or both write & read or no write & read happen.
if (read_only)
diff_pntr_pe_reg1 <= #`TCQ adj_wr_pntr_rd - rd_pntr - 1;
else
diff_pntr_pe_reg1 <= #`TCQ adj_wr_pntr_rd - rd_pntr;
end
end
end
assign diff_pntr_pe = diff_pntr_pe_reg1;
assign diff_pntr = diff_pntr_reg1;
end endgenerate // reg_write_allow
generate if ((C_PROG_FULL_TYPE != 0 || C_PROG_EMPTY_TYPE != 0) && IS_ASYMMETRY == 1) begin : reg_write_allow_asym
assign adj_wr_pntr_rd_asym[C_RD_PNTR_WIDTH:0] = {adj_wr_pntr_rd,1'b1};
assign rd_pntr_asym[C_RD_PNTR_WIDTH:0] = {~rd_pntr,1'b1};
always @(posedge CLK ) begin
if (rst_i) begin
diff_pntr_pe_asym <= 0;
diff_pntr_reg1 <= 0;
full_reg <= 0;
rst_full_ff_reg1 <= 1;
rst_full_ff_reg2 <= 1;
diff_pntr_pe_reg1 <= 0;
end else begin
if (srst_i || srst_wrst_busy || srst_rrst_busy) begin
if (srst_wrst_busy)
diff_pntr_reg1 <= #`TCQ 0;
if (srst_rrst_busy)
full_reg <= #`TCQ 0;
rst_full_ff_reg1 <= #`TCQ 1;
rst_full_ff_reg2 <= #`TCQ 1;
diff_pntr_pe_asym <= #`TCQ 0;
diff_pntr_pe_reg1 <= #`TCQ 0;
end else begin
diff_pntr_pe_asym <= #`TCQ adj_wr_pntr_rd_asym + rd_pntr_asym;
full_reg <= #`TCQ full_i;
rst_full_ff_reg1 <= #`TCQ RST_FULL_FF;
rst_full_ff_reg2 <= #`TCQ rst_full_ff_reg1;
if (~full_i) begin
diff_pntr_reg1 <= #`TCQ wr_pntr - adj_rd_pntr_wr;
end
end
end
end
assign carry = (~(|(diff_pntr_pe_asym [C_RD_PNTR_WIDTH : 1])));
assign diff_pntr_pe = (full_reg && ~rst_full_ff_reg2 && carry ) ? diff_pntr_pe_max : diff_pntr_pe_asym[C_RD_PNTR_WIDTH:1];
assign diff_pntr = diff_pntr_reg1;
end endgenerate // reg_write_allow_asym
//-----------------------------------------------------------------------------
// Generate FULL flag
//-----------------------------------------------------------------------------
wire comp0;
wire comp1;
wire going_full;
wire leaving_full;
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gpad
assign adj_rd_pntr_wr [C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH] = rd_pntr;
assign adj_rd_pntr_wr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0] = 0;
end endgenerate
generate if (C_WR_PNTR_WIDTH <= C_RD_PNTR_WIDTH) begin : gtrim
assign adj_rd_pntr_wr = rd_pntr[C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH];
end endgenerate
assign comp1 = (adj_rd_pntr_wr == (wr_pntr + 1'b1));
assign comp0 = (adj_rd_pntr_wr == wr_pntr);
generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : gf_wp_eq_rp
assign going_full = (comp1 & write_allow & ~read_allow);
assign leaving_full = (comp0 & read_allow) | RST_FULL_GEN;
end endgenerate
// Write data width is bigger than read data width
// Write depth is smaller than read depth
// One write could be equal to 2 or 4 or 8 reads
generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : gf_asym
assign going_full = (comp1 & write_allow & (~ (read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0]))));
assign leaving_full = (comp0 & read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0])) | RST_FULL_GEN;
end endgenerate
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gf_wp_gt_rp
assign going_full = (comp1 & write_allow & ~read_allow);
assign leaving_full =(comp0 & read_allow) | RST_FULL_GEN;
end endgenerate
assign ram_full_comb = going_full | (~leaving_full & full_i);
always @(posedge CLK or posedge RST_FULL_FF) begin
if (RST_FULL_FF)
full_i <= C_FULL_FLAGS_RST_VAL;
else if (srst_wrst_busy)
full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else
full_i <= #`TCQ ram_full_comb;
end
//-----------------------------------------------------------------------------
// Generate EMPTY flag
//-----------------------------------------------------------------------------
wire ecomp0;
wire ecomp1;
wire going_empty;
wire leaving_empty;
wire ram_empty_comb;
generate if (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) begin : pad
assign adj_wr_pntr_rd [C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr;
assign adj_wr_pntr_rd[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0] = 0;
end endgenerate
generate if (C_RD_PNTR_WIDTH <= C_WR_PNTR_WIDTH) begin : trim
assign adj_wr_pntr_rd = wr_pntr[C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH];
end endgenerate
assign ecomp1 = (adj_wr_pntr_rd == (rd_pntr + 1'b1));
assign ecomp0 = (adj_wr_pntr_rd == rd_pntr);
generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : ge_wp_eq_rp
assign going_empty = (ecomp1 & ~write_allow & read_allow);
assign leaving_empty = (ecomp0 & write_allow);
end endgenerate
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : ge_wp_gt_rp
assign going_empty = (ecomp1 & read_allow & (~(write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]))));
assign leaving_empty = (ecomp0 & write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]));
end endgenerate
generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : ge_wp_lt_rp
assign going_empty = (ecomp1 & ~write_allow & read_allow);
assign leaving_empty =(ecomp0 & write_allow);
end endgenerate
assign ram_empty_comb = going_empty | (~leaving_empty & empty_i);
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
empty_i <= 1'b1;
else if (srst_rrst_busy)
empty_i <= #`TCQ 1'b1;
else
empty_i <= #`TCQ ram_empty_comb;
end
//-----------------------------------------------------------------------------
// Generate Read and write data counts for asymmetic common clock
//-----------------------------------------------------------------------------
reg [C_GRTR_PNTR_WIDTH :0] count_dc = 0;
wire [C_GRTR_PNTR_WIDTH :0] ratio;
wire decr_by_one;
wire incr_by_ratio;
wire incr_by_one;
wire decr_by_ratio;
localparam IS_FWFT = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ? 1 : 0;
generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : rd_depth_gt_wr
assign ratio = C_DEPTH_RATIO_RD;
assign decr_by_one = (IS_FWFT == 1)? read_allow_dc : read_allow;
assign incr_by_ratio = write_allow;
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
count_dc <= #`TCQ 0;
else if (srst_wrst_busy)
count_dc <= #`TCQ 0;
else begin
if (decr_by_one) begin
if (!incr_by_ratio)
count_dc <= #`TCQ count_dc - 1;
else
count_dc <= #`TCQ count_dc - 1 + ratio ;
end
else begin
if (!incr_by_ratio)
count_dc <= #`TCQ count_dc ;
else
count_dc <= #`TCQ count_dc + ratio ;
end
end
end
assign rd_data_count_i_ss[C_RD_PNTR_WIDTH : 0] = count_dc;
assign wr_data_count_i_ss[C_WR_PNTR_WIDTH : 0] = count_dc[C_RD_PNTR_WIDTH : C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH];
end endgenerate
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : wr_depth_gt_rd
assign ratio = C_DEPTH_RATIO_WR;
assign incr_by_one = write_allow;
assign decr_by_ratio = (IS_FWFT == 1)? read_allow_dc : read_allow;
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
count_dc <= #`TCQ 0;
else if (srst_wrst_busy)
count_dc <= #`TCQ 0;
else begin
if (incr_by_one) begin
if (!decr_by_ratio)
count_dc <= #`TCQ count_dc + 1;
else
count_dc <= #`TCQ count_dc + 1 - ratio ;
end
else begin
if (!decr_by_ratio)
count_dc <= #`TCQ count_dc ;
else
count_dc <= #`TCQ count_dc - ratio ;
end
end
end
assign wr_data_count_i_ss[C_WR_PNTR_WIDTH : 0] = count_dc;
assign rd_data_count_i_ss[C_RD_PNTR_WIDTH : 0] = count_dc[C_WR_PNTR_WIDTH : C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH];
end endgenerate
//-----------------------------------------------------------------------------
// Generate WR_ACK flag
//-----------------------------------------------------------------------------
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
ideal_wr_ack <= 1'b0;
else if (srst_wrst_busy)
ideal_wr_ack <= #`TCQ 1'b0;
else if (WR_EN & ~full_i)
ideal_wr_ack <= #`TCQ 1'b1;
else
ideal_wr_ack <= #`TCQ 1'b0;
end
//-----------------------------------------------------------------------------
// Generate VALID flag
//-----------------------------------------------------------------------------
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
ideal_valid <= 1'b0;
else if (srst_rrst_busy)
ideal_valid <= #`TCQ 1'b0;
else if (RD_EN & ~empty_i)
ideal_valid <= #`TCQ 1'b1;
else
ideal_valid <= #`TCQ 1'b0;
end
//-----------------------------------------------------------------------------
// Generate ALMOST_FULL flag
//-----------------------------------------------------------------------------
//generate if (C_HAS_ALMOST_FULL == 1 || C_PROG_FULL_TYPE > 2 || C_PROG_EMPTY_TYPE > 2) begin : gaf_ss
wire fcomp2;
wire going_afull;
wire leaving_afull;
wire ram_afull_comb;
assign fcomp2 = (adj_rd_pntr_wr == (wr_pntr + 2'h2));
generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : gaf_wp_eq_rp
assign going_afull = (fcomp2 & write_allow & ~read_allow);
assign leaving_afull = (comp1 & read_allow & ~write_allow) | RST_FULL_GEN;
end endgenerate
// Write data width is bigger than read data width
// Write depth is smaller than read depth
// One write could be equal to 2 or 4 or 8 reads
generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : gaf_asym
assign going_afull = (fcomp2 & write_allow & (~ (read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0]))));
assign leaving_afull = (comp1 & (~write_allow) & read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0])) | RST_FULL_GEN;
end endgenerate
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gaf_wp_gt_rp
assign going_afull = (fcomp2 & write_allow & ~read_allow);
assign leaving_afull =((comp0 | comp1 | fcomp2) & read_allow) | RST_FULL_GEN;
end endgenerate
assign ram_afull_comb = going_afull | (~leaving_afull & almost_full_i);
always @(posedge CLK or posedge RST_FULL_FF) begin
if (RST_FULL_FF)
almost_full_i <= C_FULL_FLAGS_RST_VAL;
else if (srst_wrst_busy)
almost_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else
almost_full_i <= #`TCQ ram_afull_comb;
end
// end endgenerate // gaf_ss
//-----------------------------------------------------------------------------
// Generate ALMOST_EMPTY flag
//-----------------------------------------------------------------------------
//generate if (C_HAS_ALMOST_EMPTY == 1) begin : gae_ss
wire ecomp2;
wire going_aempty;
wire leaving_aempty;
wire ram_aempty_comb;
assign ecomp2 = (adj_wr_pntr_rd == (rd_pntr + 2'h2));
generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : gae_wp_eq_rp
assign going_aempty = (ecomp2 & ~write_allow & read_allow);
assign leaving_aempty = (ecomp1 & write_allow & ~read_allow);
end endgenerate
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gae_wp_gt_rp
assign going_aempty = (ecomp2 & read_allow & (~(write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]))));
assign leaving_aempty = (ecomp1 & ~read_allow & write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]));
end endgenerate
generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : gae_wp_lt_rp
assign going_aempty = (ecomp2 & ~write_allow & read_allow);
assign leaving_aempty =((ecomp2 | ecomp1 |ecomp0) & write_allow);
end endgenerate
assign ram_aempty_comb = going_aempty | (~leaving_aempty & almost_empty_i);
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
almost_empty_i <= 1'b1;
else if (srst_rrst_busy)
almost_empty_i <= #`TCQ 1'b1;
else
almost_empty_i <= #`TCQ ram_aempty_comb;
end
// end endgenerate // gae_ss
//-----------------------------------------------------------------------------
// Generate PROG_FULL
//-----------------------------------------------------------------------------
localparam C_PF_ASSERT_VAL = (C_PRELOAD_LATENCY == 0) ?
C_PROG_FULL_THRESH_ASSERT_VAL - EXTRA_WORDS_PF_PARAM : // FWFT
C_PROG_FULL_THRESH_ASSERT_VAL; // STD
localparam C_PF_NEGATE_VAL = (C_PRELOAD_LATENCY == 0) ?
C_PROG_FULL_THRESH_NEGATE_VAL - EXTRA_WORDS_PF_PARAM: // FWFT
C_PROG_FULL_THRESH_NEGATE_VAL; // STD
//-----------------------------------------------------------------------------
// Generate PROG_FULL for single programmable threshold constant
//-----------------------------------------------------------------------------
wire [C_WR_PNTR_WIDTH-1:0] temp = C_PF_ASSERT_VAL;
generate if (C_PROG_FULL_TYPE == 1) begin : single_pf_const
always @(posedge CLK or posedge RST_FULL_FF) begin
if (RST_FULL_FF && C_HAS_RST)
prog_full_i <= C_FULL_FLAGS_RST_VAL;
else begin
if (srst_wrst_busy)
prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else if (IS_ASYMMETRY == 0) begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (diff_pntr == C_PF_ASSERT_VAL && write_only_q)
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr == C_PF_ASSERT_VAL && read_only_q)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ prog_full_i;
end
else begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~RST_FULL_GEN ) begin
if (diff_pntr>= C_PF_ASSERT_VAL )
prog_full_i <= #`TCQ 1'b1;
else if ((diff_pntr) < C_PF_ASSERT_VAL )
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ 1'b0;
end
else
prog_full_i <= #`TCQ prog_full_i;
end
end
end
end endgenerate // single_pf_const
//-----------------------------------------------------------------------------
// Generate PROG_FULL for multiple programmable threshold constants
//-----------------------------------------------------------------------------
generate if (C_PROG_FULL_TYPE == 2) begin : multiple_pf_const
always @(posedge CLK or posedge RST_FULL_FF) begin
//if (RST_FULL_FF)
if (RST_FULL_FF && C_HAS_RST)
prog_full_i <= C_FULL_FLAGS_RST_VAL;
else begin
if (srst_wrst_busy)
prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else if (IS_ASYMMETRY == 0) begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (diff_pntr == C_PF_ASSERT_VAL && write_only_q)
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr == C_PF_NEGATE_VAL && read_only_q)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ prog_full_i;
end
else begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~RST_FULL_GEN ) begin
if (diff_pntr >= C_PF_ASSERT_VAL )
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr < C_PF_NEGATE_VAL)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ prog_full_i;
end
else
prog_full_i <= #`TCQ prog_full_i;
end
end
end
end endgenerate //multiple_pf_const
//-----------------------------------------------------------------------------
// Generate PROG_FULL for single programmable threshold input port
//-----------------------------------------------------------------------------
wire [C_WR_PNTR_WIDTH-1:0] pf3_assert_val = (C_PRELOAD_LATENCY == 0) ?
PROG_FULL_THRESH - EXTRA_WORDS_PF: // FWFT
PROG_FULL_THRESH; // STD
generate if (C_PROG_FULL_TYPE == 3) begin : single_pf_input
always @(posedge CLK or posedge RST_FULL_FF) begin//0
//if (RST_FULL_FF)
if (RST_FULL_FF && C_HAS_RST)
prog_full_i <= C_FULL_FLAGS_RST_VAL;
else begin //1
if (srst_wrst_busy)
prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else if (IS_ASYMMETRY == 0) begin//2
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~almost_full_i) begin//3
if (diff_pntr > pf3_assert_val)
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr == pf3_assert_val) begin//4
if (read_only_q)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ 1'b1;
end else//4
prog_full_i <= #`TCQ 1'b0;
end else//3
prog_full_i <= #`TCQ prog_full_i;
end //2
else begin//5
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~full_i ) begin//6
if (diff_pntr >= pf3_assert_val )
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr < pf3_assert_val) begin//7
prog_full_i <= #`TCQ 1'b0;
end//7
end//6
else
prog_full_i <= #`TCQ prog_full_i;
end//5
end//1
end//0
end endgenerate //single_pf_input
//-----------------------------------------------------------------------------
// Generate PROG_FULL for multiple programmable threshold input ports
//-----------------------------------------------------------------------------
wire [C_WR_PNTR_WIDTH-1:0] pf_assert_val = (C_PRELOAD_LATENCY == 0) ?
(PROG_FULL_THRESH_ASSERT -EXTRA_WORDS_PF) : // FWFT
PROG_FULL_THRESH_ASSERT; // STD
wire [C_WR_PNTR_WIDTH-1:0] pf_negate_val = (C_PRELOAD_LATENCY == 0) ?
(PROG_FULL_THRESH_NEGATE -EXTRA_WORDS_PF) : // FWFT
PROG_FULL_THRESH_NEGATE; // STD
generate if (C_PROG_FULL_TYPE == 4) begin : multiple_pf_inputs
always @(posedge CLK or posedge RST_FULL_FF) begin
if (RST_FULL_FF && C_HAS_RST)
prog_full_i <= C_FULL_FLAGS_RST_VAL;
else begin
if (srst_wrst_busy)
prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else if (IS_ASYMMETRY == 0) begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~almost_full_i) begin
if (diff_pntr >= pf_assert_val)
prog_full_i <= #`TCQ 1'b1;
else if ((diff_pntr == pf_negate_val && read_only_q) ||
diff_pntr < pf_negate_val)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ prog_full_i;
end else
prog_full_i <= #`TCQ prog_full_i;
end
else begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~full_i ) begin
if (diff_pntr >= pf_assert_val )
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr < pf_negate_val)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ prog_full_i;
end
else
prog_full_i <= #`TCQ prog_full_i;
end
end
end
end endgenerate //multiple_pf_inputs
//-----------------------------------------------------------------------------
// Generate PROG_EMPTY
//-----------------------------------------------------------------------------
localparam C_PE_ASSERT_VAL = (C_PRELOAD_LATENCY == 0) ?
C_PROG_EMPTY_THRESH_ASSERT_VAL - 2: // FWFT
C_PROG_EMPTY_THRESH_ASSERT_VAL; // STD
localparam C_PE_NEGATE_VAL = (C_PRELOAD_LATENCY == 0) ?
C_PROG_EMPTY_THRESH_NEGATE_VAL - 2: // FWFT
C_PROG_EMPTY_THRESH_NEGATE_VAL; // STD
//-----------------------------------------------------------------------------
// Generate PROG_EMPTY for single programmable threshold constant
//-----------------------------------------------------------------------------
generate if (C_PROG_EMPTY_TYPE == 1) begin : single_pe_const
always @(posedge CLK or posedge rst_i) begin
//if (rst_i)
if (rst_i && C_HAS_RST)
prog_empty_i <= 1'b1;
else begin
if (srst_rrst_busy)
prog_empty_i <= #`TCQ 1'b1;
else if (IS_ASYMMETRY == 0) begin
if (diff_pntr_pe == C_PE_ASSERT_VAL && read_only_q)
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe == C_PE_ASSERT_VAL && write_only_q)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ prog_empty_i;
end
else begin
if (~rst_i ) begin
if (diff_pntr_pe <= C_PE_ASSERT_VAL)
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe > C_PE_ASSERT_VAL)
prog_empty_i <= #`TCQ 1'b0;
end
else
prog_empty_i <= #`TCQ prog_empty_i;
end
end
end
end endgenerate // single_pe_const
//-----------------------------------------------------------------------------
// Generate PROG_EMPTY for multiple programmable threshold constants
//-----------------------------------------------------------------------------
generate if (C_PROG_EMPTY_TYPE == 2) begin : multiple_pe_const
always @(posedge CLK or posedge rst_i) begin
//if (rst_i)
if (rst_i && C_HAS_RST)
prog_empty_i <= 1'b1;
else begin
if (srst_rrst_busy)
prog_empty_i <= #`TCQ 1'b1;
else if (IS_ASYMMETRY == 0) begin
if (diff_pntr_pe == C_PE_ASSERT_VAL && read_only_q)
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe == C_PE_NEGATE_VAL && write_only_q)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ prog_empty_i;
end
else begin
if (~rst_i ) begin
if (diff_pntr_pe <= C_PE_ASSERT_VAL )
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe > C_PE_NEGATE_VAL)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ prog_empty_i;
end
else
prog_empty_i <= #`TCQ prog_empty_i;
end
end
end
end endgenerate //multiple_pe_const
//-----------------------------------------------------------------------------
// Generate PROG_EMPTY for single programmable threshold input port
//-----------------------------------------------------------------------------
wire [C_RD_PNTR_WIDTH-1:0] pe3_assert_val = (C_PRELOAD_LATENCY == 0) ?
(PROG_EMPTY_THRESH -2) : // FWFT
PROG_EMPTY_THRESH; // STD
generate if (C_PROG_EMPTY_TYPE == 3) begin : single_pe_input
always @(posedge CLK or posedge rst_i) begin
//if (rst_i)
if (rst_i && C_HAS_RST)
prog_empty_i <= 1'b1;
else begin
if (srst_rrst_busy)
prog_empty_i <= #`TCQ 1'b1;
else if (IS_ASYMMETRY == 0) begin
if (~almost_full_i) begin
if (diff_pntr_pe < pe3_assert_val)
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe == pe3_assert_val) begin
if (write_only_q)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ 1'b1;
end else
prog_empty_i <= #`TCQ 1'b0;
end else
prog_empty_i <= #`TCQ prog_empty_i;
end
else begin
if (diff_pntr_pe <= pe3_assert_val )
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe > pe3_assert_val)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ prog_empty_i;
end
end
end
end endgenerate // single_pe_input
//-----------------------------------------------------------------------------
// Generate PROG_EMPTY for multiple programmable threshold input ports
//-----------------------------------------------------------------------------
wire [C_RD_PNTR_WIDTH-1:0] pe4_assert_val = (C_PRELOAD_LATENCY == 0) ?
(PROG_EMPTY_THRESH_ASSERT - 2) : // FWFT
PROG_EMPTY_THRESH_ASSERT; // STD
wire [C_RD_PNTR_WIDTH-1:0] pe4_negate_val = (C_PRELOAD_LATENCY == 0) ?
(PROG_EMPTY_THRESH_NEGATE - 2) : // FWFT
PROG_EMPTY_THRESH_NEGATE; // STD
generate if (C_PROG_EMPTY_TYPE == 4) begin : multiple_pe_inputs
always @(posedge CLK or posedge rst_i) begin
//if (rst_i)
if (rst_i && C_HAS_RST)
prog_empty_i <= 1'b1;
else begin
if (srst_rrst_busy)
prog_empty_i <= #`TCQ 1'b1;
else if (IS_ASYMMETRY == 0) begin
if (~almost_full_i) begin
if (diff_pntr_pe <= pe4_assert_val)
prog_empty_i <= #`TCQ 1'b1;
else if (((diff_pntr_pe == pe4_negate_val) && write_only_q) ||
(diff_pntr_pe > pe4_negate_val)) begin
prog_empty_i <= #`TCQ 1'b0;
end else
prog_empty_i <= #`TCQ prog_empty_i;
end else
prog_empty_i <= #`TCQ prog_empty_i;
end
else begin
if (diff_pntr_pe <= pe4_assert_val )
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe > pe4_negate_val)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ prog_empty_i;
end
end
end
end endgenerate // multiple_pe_inputs
endmodule // fifo_generator_v12_0_bhv_ver_ss
/**************************************************************************
* First-Word Fall-Through module (preload 0)
**************************************************************************/
module fifo_generator_v12_0_bhv_ver_preload0
#(
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_HAS_RST = 0,
parameter C_ENABLE_RST_SYNC = 0,
parameter C_HAS_SRST = 0,
parameter C_USE_DOUT_RST = 0,
parameter C_USE_ECC = 0,
parameter C_USERVALID_LOW = 0,
parameter C_USERUNDERFLOW_LOW = 0,
parameter C_MEMORY_TYPE = 0,
parameter C_FIFO_TYPE = 0
)
(
//Inputs
input RD_CLK,
input RD_RST,
input SRST,
input WR_RST_BUSY,
input RD_RST_BUSY,
input RD_EN,
input FIFOEMPTY,
input [C_DOUT_WIDTH-1:0] FIFODATA,
input FIFOSBITERR,
input FIFODBITERR,
//Outputs
output reg [C_DOUT_WIDTH-1:0] USERDATA,
output USERVALID,
output USERUNDERFLOW,
output USEREMPTY,
output USERALMOSTEMPTY,
output RAMVALID,
output FIFORDEN,
output reg USERSBITERR,
output reg USERDBITERR,
output reg STAGE2_REG_EN,
output [1:0] VALID_STAGES
);
//Internal signals
wire preloadstage1;
wire preloadstage2;
reg ram_valid_i;
reg read_data_valid_i;
wire ram_regout_en;
wire ram_rd_en;
reg empty_i = 1'b1;
reg empty_q = 1'b1;
reg rd_en_q = 1'b0;
reg almost_empty_i = 1'b1;
reg almost_empty_q = 1'b1;
wire rd_rst_i;
wire srst_i;
/*************************************************************************
* FUNCTIONS
*************************************************************************/
/*************************************************************************
* hexstr_conv
* Converts a string of type hex to a binary value (for C_DOUT_RST_VAL)
***********************************************************************/
function [C_DOUT_WIDTH-1:0] hexstr_conv;
input [(C_DOUT_WIDTH*8)-1:0] def_data;
integer index,i,j;
reg [3:0] bin;
begin
index = 0;
hexstr_conv = 'b0;
for( i=C_DOUT_WIDTH-1; i>=0; i=i-1 )
begin
case (def_data[7:0])
8'b00000000 :
begin
bin = 4'b0000;
i = -1;
end
8'b00110000 : bin = 4'b0000;
8'b00110001 : bin = 4'b0001;
8'b00110010 : bin = 4'b0010;
8'b00110011 : bin = 4'b0011;
8'b00110100 : bin = 4'b0100;
8'b00110101 : bin = 4'b0101;
8'b00110110 : bin = 4'b0110;
8'b00110111 : bin = 4'b0111;
8'b00111000 : bin = 4'b1000;
8'b00111001 : bin = 4'b1001;
8'b01000001 : bin = 4'b1010;
8'b01000010 : bin = 4'b1011;
8'b01000011 : bin = 4'b1100;
8'b01000100 : bin = 4'b1101;
8'b01000101 : bin = 4'b1110;
8'b01000110 : bin = 4'b1111;
8'b01100001 : bin = 4'b1010;
8'b01100010 : bin = 4'b1011;
8'b01100011 : bin = 4'b1100;
8'b01100100 : bin = 4'b1101;
8'b01100101 : bin = 4'b1110;
8'b01100110 : bin = 4'b1111;
default :
begin
bin = 4'bx;
end
endcase
for( j=0; j<4; j=j+1)
begin
if ((index*4)+j < C_DOUT_WIDTH)
begin
hexstr_conv[(index*4)+j] = bin[j];
end
end
index = index + 1;
def_data = def_data >> 8;
end
end
endfunction
//*************************************************************************
// Set power-on states for regs
//*************************************************************************
initial begin
ram_valid_i = 1'b0;
read_data_valid_i = 1'b0;
USERDATA = hexstr_conv(C_DOUT_RST_VAL);
USERSBITERR = 1'b0;
USERDBITERR = 1'b0;
end //initial
//***************************************************************************
// connect up optional reset
//***************************************************************************
assign rd_rst_i = (C_HAS_RST == 1 || C_ENABLE_RST_SYNC == 0) ? RD_RST : 0;
assign srst_i = C_HAS_SRST ? SRST || WR_RST_BUSY || RD_RST_BUSY : 0;
localparam INVALID = 0;
localparam STAGE1_VALID = 2;
localparam STAGE2_VALID = 1;
localparam BOTH_STAGES_VALID = 3;
reg [1:0] curr_fwft_state = INVALID;
reg [1:0] next_fwft_state = INVALID;
generate if (C_FIFO_TYPE != 2) begin : gnll_fifo
always @* begin
case (curr_fwft_state)
INVALID: begin
if (~FIFOEMPTY)
next_fwft_state <= STAGE1_VALID;
else
next_fwft_state <= INVALID;
end
STAGE1_VALID: begin
if (FIFOEMPTY)
next_fwft_state <= STAGE2_VALID;
else
next_fwft_state <= BOTH_STAGES_VALID;
end
STAGE2_VALID: begin
if (FIFOEMPTY && RD_EN)
next_fwft_state <= INVALID;
else if (~FIFOEMPTY && RD_EN)
next_fwft_state <= STAGE1_VALID;
else if (~FIFOEMPTY && ~RD_EN)
next_fwft_state <= BOTH_STAGES_VALID;
else
next_fwft_state <= STAGE2_VALID;
end
BOTH_STAGES_VALID: begin
if (FIFOEMPTY && RD_EN)
next_fwft_state <= STAGE2_VALID;
else if (~FIFOEMPTY && RD_EN)
next_fwft_state <= BOTH_STAGES_VALID;
else
next_fwft_state <= BOTH_STAGES_VALID;
end
default: next_fwft_state <= INVALID;
endcase
end
always @ (posedge rd_rst_i or posedge RD_CLK) begin
if (rd_rst_i)
curr_fwft_state <= INVALID;
else if (srst_i)
curr_fwft_state <= #`TCQ INVALID;
else
curr_fwft_state <= #`TCQ next_fwft_state;
end
always @* begin
case (curr_fwft_state)
INVALID: STAGE2_REG_EN <= 1'b0;
STAGE1_VALID: STAGE2_REG_EN <= 1'b1;
STAGE2_VALID: STAGE2_REG_EN <= 1'b0;
BOTH_STAGES_VALID: STAGE2_REG_EN <= RD_EN;
default: STAGE2_REG_EN <= 1'b0;
endcase
end
assign VALID_STAGES = curr_fwft_state;
//***************************************************************************
// preloadstage2 indicates that stage2 needs to be updated. This is true
// whenever read_data_valid is false, and RAM_valid is true.
//***************************************************************************
assign preloadstage2 = ram_valid_i & (~read_data_valid_i | RD_EN);
//***************************************************************************
// preloadstage1 indicates that stage1 needs to be updated. This is true
// whenever the RAM has data (RAM_EMPTY is false), and either RAM_Valid is
// false (indicating that Stage1 needs updating), or preloadstage2 is active
// (indicating that Stage2 is going to update, so Stage1, therefore, must
// also be updated to keep it valid.
//***************************************************************************
assign preloadstage1 = ((~ram_valid_i | preloadstage2) & ~FIFOEMPTY);
//***************************************************************************
// Calculate RAM_REGOUT_EN
// The output registers are controlled by the ram_regout_en signal.
// These registers should be updated either when the output in Stage2 is
// invalid (preloadstage2), OR when the user is reading, in which case the
// Stage2 value will go invalid unless it is replenished.
//***************************************************************************
assign ram_regout_en = preloadstage2;
//***************************************************************************
// Calculate RAM_RD_EN
// RAM_RD_EN will be asserted whenever the RAM needs to be read in order to
// update the value in Stage1.
// One case when this happens is when preloadstage1=true, which indicates
// that the data in Stage1 or Stage2 is invalid, and needs to automatically
// be updated.
// The other case is when the user is reading from the FIFO, which
// guarantees that Stage1 or Stage2 will be invalid on the next clock
// cycle, unless it is replinished by data from the memory. So, as long
// as the RAM has data in it, a read of the RAM should occur.
//***************************************************************************
assign ram_rd_en = (RD_EN & ~FIFOEMPTY) | preloadstage1;
end endgenerate // gnll_fifo
reg curr_state = 0;
reg next_state = 0;
reg leaving_empty_fwft = 0;
reg going_empty_fwft = 0;
reg empty_i_q = 0;
reg ram_rd_en_fwft = 0;
generate if (C_FIFO_TYPE == 2) begin : gll_fifo
always @* begin // FSM fo FWFT
case (curr_state)
1'b0: begin
if (~FIFOEMPTY)
next_state <= 1'b1;
else
next_state <= 1'b0;
end
1'b1: begin
if (FIFOEMPTY && RD_EN)
next_state <= 1'b0;
else
next_state <= 1'b1;
end
default: next_state <= 1'b0;
endcase
end
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
empty_i <= 1'b1;
empty_i_q <= 1'b1;
curr_state <= 1'b0;
ram_valid_i <= 1'b0;
end else if (srst_i) begin
empty_i <= #`TCQ 1'b1;
empty_i_q <= #`TCQ 1'b1;
curr_state <= #`TCQ 1'b0;
ram_valid_i <= #`TCQ 1'b0;
end else begin
empty_i <= #`TCQ going_empty_fwft | (~leaving_empty_fwft & empty_i);
empty_i_q <= #`TCQ FIFOEMPTY;
curr_state <= #`TCQ next_state;
ram_valid_i <= #`TCQ next_state;
end
end //always
wire fe_of_empty;
assign fe_of_empty = empty_i_q & ~FIFOEMPTY;
always @* begin // Finding leaving empty
case (curr_state)
1'b0: leaving_empty_fwft <= fe_of_empty;
1'b1: leaving_empty_fwft <= 1'b1;
default: leaving_empty_fwft <= 1'b0;
endcase
end
always @* begin // Finding going empty
case (curr_state)
1'b1: going_empty_fwft <= FIFOEMPTY & RD_EN;
default: going_empty_fwft <= 1'b0;
endcase
end
always @* begin // Generating FWFT rd_en
case (curr_state)
1'b0: ram_rd_en_fwft <= ~FIFOEMPTY;
1'b1: ram_rd_en_fwft <= ~FIFOEMPTY & RD_EN;
default: ram_rd_en_fwft <= 1'b0;
endcase
end
assign ram_regout_en = ram_rd_en_fwft;
assign ram_rd_en = ram_rd_en_fwft;
end endgenerate // gll_fifo
//***************************************************************************
// Calculate RAMVALID_P0_OUT
// RAMVALID_P0_OUT indicates that the data in Stage1 is valid.
//
// If the RAM is being read from on this clock cycle (ram_rd_en=1), then
// RAMVALID_P0_OUT is certainly going to be true.
// If the RAM is not being read from, but the output registers are being
// updated to fill Stage2 (ram_regout_en=1), then Stage1 will be emptying,
// therefore causing RAMVALID_P0_OUT to be false.
// Otherwise, RAMVALID_P0_OUT will remain unchanged.
//***************************************************************************
// PROCESS regout_valid
generate if (C_FIFO_TYPE < 2) begin : gnll_fifo_ram_valid
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
// asynchronous reset (active high)
ram_valid_i <= #`TCQ 1'b0;
end else begin
if (srst_i) begin
// synchronous reset (active high)
ram_valid_i <= #`TCQ 1'b0;
end else begin
if (ram_rd_en == 1'b1) begin
ram_valid_i <= #`TCQ 1'b1;
end else begin
if (ram_regout_en == 1'b1)
ram_valid_i <= #`TCQ 1'b0;
else
ram_valid_i <= #`TCQ ram_valid_i;
end
end //srst_i
end //rd_rst_i
end //always
end endgenerate // gnll_fifo_ram_valid
//***************************************************************************
// Calculate READ_DATA_VALID
// READ_DATA_VALID indicates whether the value in Stage2 is valid or not.
// Stage2 has valid data whenever Stage1 had valid data and
// ram_regout_en_i=1, such that the data in Stage1 is propogated
// into Stage2.
//***************************************************************************
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i)
read_data_valid_i <= #`TCQ 1'b0;
else if (srst_i)
read_data_valid_i <= #`TCQ 1'b0;
else
read_data_valid_i <= #`TCQ ram_valid_i | (read_data_valid_i & ~RD_EN);
end //always
//**************************************************************************
// Calculate EMPTY
// Defined as the inverse of READ_DATA_VALID
//
// Description:
//
// If read_data_valid_i indicates that the output is not valid,
// and there is no valid data on the output of the ram to preload it
// with, then we will report empty.
//
// If there is no valid data on the output of the ram and we are
// reading, then the FIFO will go empty.
//
//**************************************************************************
generate if (C_FIFO_TYPE < 2) begin : gnll_fifo_empty
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
// asynchronous reset (active high)
empty_i <= #`TCQ 1'b1;
end else begin
if (srst_i) begin
// synchronous reset (active high)
empty_i <= #`TCQ 1'b1;
end else begin
// rising clock edge
empty_i <= #`TCQ (~ram_valid_i & ~read_data_valid_i) | (~ram_valid_i & RD_EN);
end
end
end //always
end endgenerate // gnll_fifo_empty
// Register RD_EN from user to calculate USERUNDERFLOW.
// Register empty_i to calculate USERUNDERFLOW.
always @ (posedge RD_CLK) begin
rd_en_q <= #`TCQ RD_EN;
empty_q <= #`TCQ empty_i;
end //always
//***************************************************************************
// Calculate user_almost_empty
// user_almost_empty is defined such that, unless more words are written
// to the FIFO, the next read will cause the FIFO to go EMPTY.
//
// In most cases, whenever the output registers are updated (due to a user
// read or a preload condition), then user_almost_empty will update to
// whatever RAM_EMPTY is.
//
// The exception is when the output is valid, the user is not reading, and
// Stage1 is not empty. In this condition, Stage1 will be preloaded from the
// memory, so we need to make sure user_almost_empty deasserts properly under
// this condition.
//***************************************************************************
always @ (posedge RD_CLK or posedge rd_rst_i)
begin
if (rd_rst_i) begin // asynchronous reset (active high)
almost_empty_i <= #`TCQ 1'b1;
almost_empty_q <= #`TCQ 1'b1;
end else begin // rising clock edge
if (srst_i) begin // synchronous reset (active high)
almost_empty_i <= #`TCQ 1'b1;
almost_empty_q <= #`TCQ 1'b1;
end else begin
if ((ram_regout_en) | (~FIFOEMPTY & read_data_valid_i & ~RD_EN)) begin
almost_empty_i <= #`TCQ FIFOEMPTY;
end
almost_empty_q <= #`TCQ empty_i;
end
end
end //always
assign USEREMPTY = empty_i;
assign USERALMOSTEMPTY = almost_empty_i;
assign FIFORDEN = ram_rd_en;
assign RAMVALID = ram_valid_i;
assign USERVALID = C_USERVALID_LOW ? ~read_data_valid_i : read_data_valid_i;
assign USERUNDERFLOW = C_USERUNDERFLOW_LOW ? ~(empty_q & rd_en_q) : empty_q & rd_en_q;
// BRAM resets synchronously
always @ (posedge RD_CLK)
begin
if (rd_rst_i || srst_i) begin
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE < 2)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end //always
always @ (posedge RD_CLK or posedge rd_rst_i)
begin
if (rd_rst_i) begin //asynchronous reset (active high)
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
// DRAM resets asynchronously
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2) //asynchronous reset (active high)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end else begin // rising clock edge
if (srst_i) begin
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end else begin
if (ram_regout_en) begin
USERDATA <= #`TCQ FIFODATA;
USERSBITERR <= #`TCQ FIFOSBITERR;
USERDBITERR <= #`TCQ FIFODBITERR;
end
end
end
end //always
endmodule
//-----------------------------------------------------------------------------
//
// Register Slice
// Register one AXI channel on forward and/or reverse signal path
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
// reg_slice
//
//--------------------------------------------------------------------------
module fifo_generator_v12_0_axic_reg_slice #
(
parameter C_FAMILY = "virtex7",
parameter C_DATA_WIDTH = 32,
parameter C_REG_CONFIG = 32'h00000000
)
(
// System Signals
input wire ACLK,
input wire ARESET,
// Slave side
input wire [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA,
input wire S_VALID,
output wire S_READY,
// Master side
output wire [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA,
output wire M_VALID,
input wire M_READY
);
generate
////////////////////////////////////////////////////////////////////
//
// Both FWD and REV mode
//
////////////////////////////////////////////////////////////////////
if (C_REG_CONFIG == 32'h00000000)
begin
reg [1:0] state;
localparam [1:0]
ZERO = 2'b10,
ONE = 2'b11,
TWO = 2'b01;
reg [C_DATA_WIDTH-1:0] storage_data1 = 0;
reg [C_DATA_WIDTH-1:0] storage_data2 = 0;
reg load_s1;
wire load_s2;
wire load_s1_from_s2;
reg s_ready_i; //local signal of output
wire m_valid_i; //local signal of output
// assign local signal to its output signal
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
reg areset_d1; // Reset delay register
always @(posedge ACLK) begin
areset_d1 <= ARESET;
end
// Load storage1 with either slave side data or from storage2
always @(posedge ACLK)
begin
if (load_s1)
if (load_s1_from_s2)
storage_data1 <= storage_data2;
else
storage_data1 <= S_PAYLOAD_DATA;
end
// Load storage2 with slave side data
always @(posedge ACLK)
begin
if (load_s2)
storage_data2 <= S_PAYLOAD_DATA;
end
assign M_PAYLOAD_DATA = storage_data1;
// Always load s2 on a valid transaction even if it's unnecessary
assign load_s2 = S_VALID & s_ready_i;
// Loading s1
always @ *
begin
if ( ((state == ZERO) && (S_VALID == 1)) || // Load when empty on slave transaction
// Load when ONE if we both have read and write at the same time
((state == ONE) && (S_VALID == 1) && (M_READY == 1)) ||
// Load when TWO and we have a transaction on Master side
((state == TWO) && (M_READY == 1)))
load_s1 = 1'b1;
else
load_s1 = 1'b0;
end // always @ *
assign load_s1_from_s2 = (state == TWO);
// State Machine for handling output signals
always @(posedge ACLK) begin
if (ARESET) begin
s_ready_i <= 1'b0;
state <= ZERO;
end else if (areset_d1) begin
s_ready_i <= 1'b1;
end else begin
case (state)
// No transaction stored locally
ZERO: if (S_VALID) state <= ONE; // Got one so move to ONE
// One transaction stored locally
ONE: begin
if (M_READY & ~S_VALID) state <= ZERO; // Read out one so move to ZERO
if (~M_READY & S_VALID) begin
state <= TWO; // Got another one so move to TWO
s_ready_i <= 1'b0;
end
end
// TWO transaction stored locally
TWO: if (M_READY) begin
state <= ONE; // Read out one so move to ONE
s_ready_i <= 1'b1;
end
endcase // case (state)
end
end // always @ (posedge ACLK)
assign m_valid_i = state[0];
end // if (C_REG_CONFIG == 1)
////////////////////////////////////////////////////////////////////
//
// 1-stage pipeline register with bubble cycle, both FWD and REV pipelining
// Operates same as 1-deep FIFO
//
////////////////////////////////////////////////////////////////////
else if (C_REG_CONFIG == 32'h00000001)
begin
reg [C_DATA_WIDTH-1:0] storage_data1 = 0;
reg s_ready_i; //local signal of output
reg m_valid_i; //local signal of output
// assign local signal to its output signal
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
reg areset_d1; // Reset delay register
always @(posedge ACLK) begin
areset_d1 <= ARESET;
end
// Load storage1 with slave side data
always @(posedge ACLK)
begin
if (ARESET) begin
s_ready_i <= 1'b0;
m_valid_i <= 1'b0;
end else if (areset_d1) begin
s_ready_i <= 1'b1;
end else if (m_valid_i & M_READY) begin
s_ready_i <= 1'b1;
m_valid_i <= 1'b0;
end else if (S_VALID & s_ready_i) begin
s_ready_i <= 1'b0;
m_valid_i <= 1'b1;
end
if (~m_valid_i) begin
storage_data1 <= S_PAYLOAD_DATA;
end
end
assign M_PAYLOAD_DATA = storage_data1;
end // if (C_REG_CONFIG == 7)
else begin : default_case
// Passthrough
assign M_PAYLOAD_DATA = S_PAYLOAD_DATA;
assign M_VALID = S_VALID;
assign S_READY = M_READY;
end
endgenerate
endmodule // reg_slice
|
(** * MoreInd: More on Induction *)
Require Export "ProofObjects".
(* ##################################################### *)
(** * Induction Principles *)
(** This is a good point to pause and take a deeper look at induction
principles.
Every time we declare a new [Inductive] datatype, Coq
automatically generates and proves an _induction principle_
for this type.
The induction principle for a type [t] is called [t_ind]. Here is
the one for natural numbers: *)
Check nat_ind.
(* ===> nat_ind :
forall P : nat -> Prop,
P 0 ->
(forall n : nat, P n -> P (S n)) ->
forall n : nat, P n *)
(** *** *)
(** The [induction] tactic is a straightforward wrapper that, at
its core, simply performs [apply t_ind]. To see this more
clearly, let's experiment a little with using [apply nat_ind]
directly, instead of the [induction] tactic, to carry out some
proofs. Here, for example, is an alternate proof of a theorem
that we saw in the [Basics] chapter. *)
Theorem mult_0_r' : forall n:nat,
n * 0 = 0.
Proof.
apply nat_ind.
Case "O". reflexivity.
Case "S". simpl. intros n IHn. rewrite -> IHn.
reflexivity. Qed.
(** This proof is basically the same as the earlier one, but a
few minor differences are worth noting. First, in the induction
step of the proof (the ["S"] case), we have to do a little
bookkeeping manually (the [intros]) that [induction] does
automatically.
Second, we do not introduce [n] into the context before applying
[nat_ind] -- the conclusion of [nat_ind] is a quantified formula,
and [apply] needs this conclusion to exactly match the shape of
the goal state, including the quantifier. The [induction] tactic
works either with a variable in the context or a quantified
variable in the goal.
Third, the [apply] tactic automatically chooses variable names for
us (in the second subgoal, here), whereas [induction] lets us
specify (with the [as...] clause) what names should be used. The
automatic choice is actually a little unfortunate, since it
re-uses the name [n] for a variable that is different from the [n]
in the original theorem. This is why the [Case] annotation is
just [S] -- if we tried to write it out in the more explicit form
that we've been using for most proofs, we'd have to write [n = S
n], which doesn't make a lot of sense! All of these conveniences
make [induction] nicer to use in practice than applying induction
principles like [nat_ind] directly. But it is important to
realize that, modulo this little bit of bookkeeping, applying
[nat_ind] is what we are really doing. *)
(** **** Exercise: 2 stars, optional (plus_one_r') *)
(** Complete this proof as we did [mult_0_r'] above, without using
the [induction] tactic. *)
Theorem plus_one_r' : forall n:nat,
n + 1 = S n.
Proof.
(* FILL IN HERE *) Admitted.
(** [] *)
(** Coq generates induction principles for every datatype defined with
[Inductive], including those that aren't recursive. (Although
we don't need induction to prove properties of non-recursive
datatypes, the idea of an induction principle still makes sense
for them: it gives a way to prove that a property holds for all
values of the type.)
These generated principles follow a similar pattern. If we define a
type [t] with constructors [c1] ... [cn], Coq generates a theorem
with this shape:
t_ind :
forall P : t -> Prop,
... case for c1 ... ->
... case for c2 ... ->
...
... case for cn ... ->
forall n : t, P n
The specific shape of each case depends on the arguments to the
corresponding constructor. Before trying to write down a general
rule, let's look at some more examples. First, an example where
the constructors take no arguments: *)
Inductive yesno : Type :=
| yes : yesno
| no : yesno.
Check yesno_ind.
(* ===> yesno_ind : forall P : yesno -> Prop,
P yes ->
P no ->
forall y : yesno, P y *)
(** **** Exercise: 1 star, optional (rgb) *)
(** Write out the induction principle that Coq will generate for the
following datatype. Write down your answer on paper or type it
into a comment, and then compare it with what Coq prints. *)
Inductive rgb : Type :=
| red : rgb
| green : rgb
| blue : rgb.
Check rgb_ind.
(** [] *)
(** Here's another example, this time with one of the constructors
taking some arguments. *)
Inductive natlist : Type :=
| nnil : natlist
| ncons : nat -> natlist -> natlist.
Check natlist_ind.
(* ===> (modulo a little variable renaming for clarity)
natlist_ind :
forall P : natlist -> Prop,
P nnil ->
(forall (n : nat) (l : natlist), P l -> P (ncons n l)) ->
forall n : natlist, P n *)
(** **** Exercise: 1 star, optional (natlist1) *)
(** Suppose we had written the above definition a little
differently: *)
Inductive natlist1 : Type :=
| nnil1 : natlist1
| nsnoc1 : natlist1 -> nat -> natlist1.
(** Now what will the induction principle look like? *)
(** [] *)
(** From these examples, we can extract this general rule:
- The type declaration gives several constructors; each
corresponds to one clause of the induction principle.
- Each constructor [c] takes argument types [a1]...[an].
- Each [ai] can be either [t] (the datatype we are defining) or
some other type [s].
- The corresponding case of the induction principle
says (in English):
- "for all values [x1]...[xn] of types [a1]...[an], if [P]
holds for each of the inductive arguments (each [xi] of
type [t]), then [P] holds for [c x1 ... xn]".
*)
(** **** Exercise: 1 star, optional (byntree_ind) *)
(** Write out the induction principle that Coq will generate for the
following datatype. Write down your answer on paper or type it
into a comment, and then compare it with what Coq prints. *)
Inductive byntree : Type :=
| bempty : byntree
| bleaf : yesno -> byntree
| nbranch : yesno -> byntree -> byntree -> byntree.
(** [] *)
(** **** Exercise: 1 star, optional (ex_set) *)
(** Here is an induction principle for an inductively defined
set.
ExSet_ind :
forall P : ExSet -> Prop,
(forall b : bool, P (con1 b)) ->
(forall (n : nat) (e : ExSet), P e -> P (con2 n e)) ->
forall e : ExSet, P e
Give an [Inductive] definition of [ExSet]: *)
Inductive ExSet : Type :=
(* FILL IN HERE *)
.
(** [] *)
(** What about polymorphic datatypes?
The inductive definition of polymorphic lists
Inductive list (X:Type) : Type :=
| nil : list X
| cons : X -> list X -> list X.
is very similar to that of [natlist]. The main difference is
that, here, the whole definition is _parameterized_ on a set [X]:
that is, we are defining a _family_ of inductive types [list X],
one for each [X]. (Note that, wherever [list] appears in the body
of the declaration, it is always applied to the parameter [X].)
The induction principle is likewise parameterized on [X]:
list_ind :
forall (X : Type) (P : list X -> Prop),
P [] ->
(forall (x : X) (l : list X), P l -> P (x :: l)) ->
forall l : list X, P l
Note the wording here (and, accordingly, the form of [list_ind]):
The _whole_ induction principle is parameterized on [X]. That is,
[list_ind] can be thought of as a polymorphic function that, when
applied to a type [X], gives us back an induction principle
specialized to the type [list X]. *)
(** **** Exercise: 1 star, optional (tree) *)
(** Write out the induction principle that Coq will generate for
the following datatype. Compare your answer with what Coq
prints. *)
Inductive tree (X:Type) : Type :=
| leaf : X -> tree X
| node : tree X -> tree X -> tree X.
Check tree_ind.
(** [] *)
(** **** Exercise: 1 star, optional (mytype) *)
(** Find an inductive definition that gives rise to the
following induction principle:
mytype_ind :
forall (X : Type) (P : mytype X -> Prop),
(forall x : X, P (constr1 X x)) ->
(forall n : nat, P (constr2 X n)) ->
(forall m : mytype X, P m ->
forall n : nat, P (constr3 X m n)) ->
forall m : mytype X, P m
*)
(** [] *)
(** **** Exercise: 1 star, optional (foo) *)
(** Find an inductive definition that gives rise to the
following induction principle:
foo_ind :
forall (X Y : Type) (P : foo X Y -> Prop),
(forall x : X, P (bar X Y x)) ->
(forall y : Y, P (baz X Y y)) ->
(forall f1 : nat -> foo X Y,
(forall n : nat, P (f1 n)) -> P (quux X Y f1)) ->
forall f2 : foo X Y, P f2
*)
(** [] *)
(** **** Exercise: 1 star, optional (foo') *)
(** Consider the following inductive definition: *)
Inductive foo' (X:Type) : Type :=
| C1 : list X -> foo' X -> foo' X
| C2 : foo' X.
(** What induction principle will Coq generate for [foo']? Fill
in the blanks, then check your answer with Coq.)
foo'_ind :
forall (X : Type) (P : foo' X -> Prop),
(forall (l : list X) (f : foo' X),
_______________________ ->
_______________________ ) ->
___________________________________________ ->
forall f : foo' X, ________________________
*)
(** [] *)
(* ##################################################### *)
(** ** Induction Hypotheses *)
(** Where does the phrase "induction hypothesis" fit into this story?
The induction principle for numbers
forall P : nat -> Prop,
P 0 ->
(forall n : nat, P n -> P (S n)) ->
forall n : nat, P n
is a generic statement that holds for all propositions
[P] (strictly speaking, for all families of propositions [P]
indexed by a number [n]). Each time we use this principle, we
are choosing [P] to be a particular expression of type
[nat->Prop].
We can make the proof more explicit by giving this expression a
name. For example, instead of stating the theorem [mult_0_r] as
"[forall n, n * 0 = 0]," we can write it as "[forall n, P_m0r
n]", where [P_m0r] is defined as... *)
Definition P_m0r (n:nat) : Prop :=
n * 0 = 0.
(** ... or equivalently... *)
Definition P_m0r' : nat->Prop :=
fun n => n * 0 = 0.
(** Now when we do the proof it is easier to see where [P_m0r]
appears. *)
Theorem mult_0_r'' : forall n:nat,
P_m0r n.
Proof.
apply nat_ind.
Case "n = O". reflexivity.
Case "n = S n'".
(* Note the proof state at this point! *)
intros n IHn.
unfold P_m0r in IHn. unfold P_m0r. simpl. apply IHn. Qed.
(** This extra naming step isn't something that we'll do in
normal proofs, but it is useful to do it explicitly for an example
or two, because it allows us to see exactly what the induction
hypothesis is. If we prove [forall n, P_m0r n] by induction on
[n] (using either [induction] or [apply nat_ind]), we see that the
first subgoal requires us to prove [P_m0r 0] ("[P] holds for
zero"), while the second subgoal requires us to prove [forall n',
P_m0r n' -> P_m0r n' (S n')] (that is "[P] holds of [S n'] if it
holds of [n']" or, more elegantly, "[P] is preserved by [S]").
The _induction hypothesis_ is the premise of this latter
implication -- the assumption that [P] holds of [n'], which we are
allowed to use in proving that [P] holds for [S n']. *)
(* ##################################################### *)
(** ** More on the [induction] Tactic *)
(** The [induction] tactic actually does even more low-level
bookkeeping for us than we discussed above.
Recall the informal statement of the induction principle for
natural numbers:
- If [P n] is some proposition involving a natural number n, and
we want to show that P holds for _all_ numbers n, we can
reason like this:
- show that [P O] holds
- show that, if [P n'] holds, then so does [P (S n')]
- conclude that [P n] holds for all n.
So, when we begin a proof with [intros n] and then [induction n],
we are first telling Coq to consider a _particular_ [n] (by
introducing it into the context) and then telling it to prove
something about _all_ numbers (by using induction).
What Coq actually does in this situation, internally, is to
"re-generalize" the variable we perform induction on. For
example, in our original proof that [plus] is associative...
*)
Theorem plus_assoc' : forall n m p : nat,
n + (m + p) = (n + m) + p.
Proof.
(* ...we first introduce all 3 variables into the context,
which amounts to saying "Consider an arbitrary [n], [m], and
[p]..." *)
intros n m p.
(* ...We now use the [induction] tactic to prove [P n] (that
is, [n + (m + p) = (n + m) + p]) for _all_ [n],
and hence also for the particular [n] that is in the context
at the moment. *)
induction n as [| n'].
Case "n = O". reflexivity.
Case "n = S n'".
(* In the second subgoal generated by [induction] -- the
"inductive step" -- we must prove that [P n'] implies
[P (S n')] for all [n']. The [induction] tactic
automatically introduces [n'] and [P n'] into the context
for us, leaving just [P (S n')] as the goal. *)
simpl. rewrite -> IHn'. reflexivity. Qed.
(** It also works to apply [induction] to a variable that is
quantified in the goal. *)
Theorem plus_comm' : forall n m : nat,
n + m = m + n.
Proof.
induction n as [| n'].
Case "n = O". intros m. rewrite -> plus_0_r. reflexivity.
Case "n = S n'". intros m. simpl. rewrite -> IHn'.
rewrite <- plus_n_Sm. reflexivity. Qed.
(** Note that [induction n] leaves [m] still bound in the goal --
i.e., what we are proving inductively is a statement beginning
with [forall m].
If we do [induction] on a variable that is quantified in the goal
_after_ some other quantifiers, the [induction] tactic will
automatically introduce the variables bound by these quantifiers
into the context. *)
Theorem plus_comm'' : forall n m : nat,
n + m = m + n.
Proof.
(* Let's do induction on [m] this time, instead of [n]... *)
induction m as [| m'].
Case "m = O". simpl. rewrite -> plus_0_r. reflexivity.
Case "m = S m'". simpl. rewrite <- IHm'.
rewrite <- plus_n_Sm. reflexivity. Qed.
(** **** Exercise: 1 star, optional (plus_explicit_prop) *)
(** Rewrite both [plus_assoc'] and [plus_comm'] and their proofs in
the same style as [mult_0_r''] above -- that is, for each theorem,
give an explicit [Definition] of the proposition being proved by
induction, and state the theorem and proof in terms of this
defined proposition. *)
(* FILL IN HERE *)
(** [] *)
(** ** Generalizing Inductions. *)
(** One potentially confusing feature of the [induction] tactic is
that it happily lets you try to set up an induction over a term
that isn't sufficiently general. The net effect of this will be
to lose information (much as [destruct] can do), and leave
you unable to complete the proof. Here's an example: *)
Lemma one_not_beautiful_FAILED: ~ beautiful 1.
Proof.
intro H.
(* Just doing an [inversion] on [H] won't get us very far in the [b_sum]
case. (Try it!). So we'll need induction. A naive first attempt: *)
induction H.
(* But now, although we get four cases, as we would expect from
the definition of [beautiful], we lose all information about [H] ! *)
Abort.
(** The problem is that [induction] over a Prop only works properly over
completely general instances of the Prop, i.e. one in which all
the arguments are free (unconstrained) variables.
In this respect it behaves more
like [destruct] than like [inversion].
When you're tempted to do use [induction] like this, it is generally
an indication that you need to be proving something more general.
But in some cases, it suffices to pull out any concrete arguments
into separate equations, like this: *)
Lemma one_not_beautiful: forall n, n = 1 -> ~ beautiful n.
Proof.
intros n E H.
induction H as [| | | p q Hp IHp Hq IHq].
Case "b_0".
inversion E.
Case "b_3".
inversion E.
Case "b_5".
inversion E.
Case "b_sum".
(* the rest is a tedious case analysis *)
destruct p as [|p'].
SCase "p = 0".
destruct q as [|q'].
SSCase "q = 0".
inversion E.
SSCase "q = S q'".
apply IHq. apply E.
SCase "p = S p'".
destruct q as [|q'].
SSCase "q = 0".
apply IHp. rewrite plus_0_r in E. apply E.
SSCase "q = S q'".
simpl in E. inversion E. destruct p'. inversion H0. inversion H0.
Qed.
(** There's a handy [remember] tactic that can generate the second
proof state out of the original one. *)
Lemma one_not_beautiful': ~ beautiful 1.
Proof.
intros H.
remember 1 as n eqn:E.
(* now carry on as above *)
induction H.
Admitted.
(* ####################################################### *)
(** * Informal Proofs (Advanced) *)
(** Q: What is the relation between a formal proof of a proposition
[P] and an informal proof of the same proposition [P]?
A: The latter should _teach_ the reader how to produce the
former.
Q: How much detail is needed??
Unfortunately, There is no single right answer; rather, there is a
range of choices.
At one end of the spectrum, we can essentially give the reader the
whole formal proof (i.e., the informal proof amounts to just
transcribing the formal one into words). This gives the reader
the _ability_ to reproduce the formal one for themselves, but it
doesn't _teach_ them anything.
At the other end of the spectrum, we can say "The theorem is true
and you can figure out why for yourself if you think about it hard
enough." This is also not a good teaching strategy, because
usually writing the proof requires some deep insights into the
thing we're proving, and most readers will give up before they
rediscover all the same insights as we did.
In the middle is the golden mean -- a proof that includes all of
the essential insights (saving the reader the hard part of work
that we went through to find the proof in the first place) and
clear high-level suggestions for the more routine parts to save the
reader from spending too much time reconstructing these
parts (e.g., what the IH says and what must be shown in each case
of an inductive proof), but not so much detail that the main ideas
are obscured.
Another key point: if we're comparing a formal proof of a
proposition [P] and an informal proof of [P], the proposition [P]
doesn't change. That is, formal and informal proofs are _talking
about the same world_ and they _must play by the same rules_. *)
(** ** Informal Proofs by Induction *)
(** Since we've spent much of this chapter looking "under the hood" at
formal proofs by induction, now is a good moment to talk a little
about _informal_ proofs by induction.
In the real world of mathematical communication, written proofs
range from extremely longwinded and pedantic to extremely brief
and telegraphic. The ideal is somewhere in between, of course,
but while you are getting used to the style it is better to start
out at the pedantic end. Also, during the learning phase, it is
probably helpful to have a clear standard to compare against.
With this in mind, we offer two templates below -- one for proofs
by induction over _data_ (i.e., where the thing we're doing
induction on lives in [Type]) and one for proofs by induction over
_evidence_ (i.e., where the inductively defined thing lives in
[Prop]). In the rest of this course, please follow one of the two
for _all_ of your inductive proofs. *)
(** *** Induction Over an Inductively Defined Set *)
(** _Template_:
- _Theorem_: <Universally quantified proposition of the form
"For all [n:S], [P(n)]," where [S] is some inductively defined
set.>
_Proof_: By induction on [n].
<one case for each constructor [c] of [S]...>
- Suppose [n = c a1 ... ak], where <...and here we state
the IH for each of the [a]'s that has type [S], if any>.
We must show <...and here we restate [P(c a1 ... ak)]>.
<go on and prove [P(n)] to finish the case...>
- <other cases similarly...> []
_Example_:
- _Theorem_: For all sets [X], lists [l : list X], and numbers
[n], if [length l = n] then [index (S n) l = None].
_Proof_: By induction on [l].
- Suppose [l = []]. We must show, for all numbers [n],
that, if length [[] = n], then [index (S n) [] =
None].
This follows immediately from the definition of index.
- Suppose [l = x :: l'] for some [x] and [l'], where
[length l' = n'] implies [index (S n') l' = None], for
any number [n']. We must show, for all [n], that, if
[length (x::l') = n] then [index (S n) (x::l') =
None].
Let [n] be a number with [length l = n]. Since
length l = length (x::l') = S (length l'),
it suffices to show that
index (S (length l')) l' = None.
]]
But this follows directly from the induction hypothesis,
picking [n'] to be length [l']. [] *)
(** *** Induction Over an Inductively Defined Proposition *)
(** Since inductively defined proof objects are often called
"derivation trees," this form of proof is also known as _induction
on derivations_.
_Template_:
- _Theorem_: <Proposition of the form "[Q -> P]," where [Q] is
some inductively defined proposition (more generally,
"For all [x] [y] [z], [Q x y z -> P x y z]")>
_Proof_: By induction on a derivation of [Q]. <Or, more
generally, "Suppose we are given [x], [y], and [z]. We
show that [Q x y z] implies [P x y z], by induction on a
derivation of [Q x y z]"...>
<one case for each constructor [c] of [Q]...>
- Suppose the final rule used to show [Q] is [c]. Then
<...and here we state the types of all of the [a]'s
together with any equalities that follow from the
definition of the constructor and the IH for each of
the [a]'s that has type [Q], if there are any>. We must
show <...and here we restate [P]>.
<go on and prove [P] to finish the case...>
- <other cases similarly...> []
_Example_
- _Theorem_: The [<=] relation is transitive -- i.e., for all
numbers [n], [m], and [o], if [n <= m] and [m <= o], then
[n <= o].
_Proof_: By induction on a derivation of [m <= o].
- Suppose the final rule used to show [m <= o] is
[le_n]. Then [m = o] and we must show that [n <= m],
which is immediate by hypothesis.
- Suppose the final rule used to show [m <= o] is
[le_S]. Then [o = S o'] for some [o'] with [m <= o'].
We must show that [n <= S o'].
By induction hypothesis, [n <= o'].
But then, by [le_S], [n <= S o']. [] *)
(* ##################################################### *)
(** * Induction Principles in [Prop] (Advanced) *)
(** The remainder of this chapter offers some additional details on
how induction works in Coq, the process of building proof trees,
and the "trusted computing base" that underlies Coq proofs. It
can safely be skimmed on a first reading. (As with the other
advanced sections, we recommend skimming rather than skipping over
it outright: it answers some questions that occur to many Coq
users at some point, so it is useful to have a rough idea of
what's here.) *)
(** Earlier, we looked in detail at the induction principles that Coq
generates for inductively defined _sets_. The induction
principles for inductively defined _propositions_ like [gorgeous]
are a tiny bit more complicated. As with all induction
principles, we want to use the induction principle on [gorgeous]
to prove things by inductively considering the possible shapes
that something in [gorgeous] can have -- either it is evidence
that [0] is gorgeous, or it is evidence that, for some [n], [3+n]
is gorgeous, or it is evidence that, for some [n], [5+n] is
gorgeous and it includes evidence that [n] itself is. Intuitively
speaking, however, what we want to prove are not statements about
_evidence_ but statements about _numbers_. So we want an
induction principle that lets us prove properties of numbers by
induction on evidence.
For example, from what we've said so far, you might expect the
inductive definition of [gorgeous]...
Inductive gorgeous : nat -> Prop :=
g_0 : gorgeous 0
| g_plus3 : forall n, gorgeous n -> gorgeous (3+m)
| g_plus5 : forall n, gorgeous n -> gorgeous (5+m).
...to give rise to an induction principle that looks like this...
gorgeous_ind_max :
forall P : (forall n : nat, gorgeous n -> Prop),
P O g_0 ->
(forall (m : nat) (e : gorgeous m),
P m e -> P (3+m) (g_plus3 m e) ->
(forall (m : nat) (e : gorgeous m),
P m e -> P (5+m) (g_plus5 m e) ->
forall (n : nat) (e : gorgeous n), P n e
... because:
- Since [gorgeous] is indexed by a number [n] (every [gorgeous]
object [e] is a piece of evidence that some particular number
[n] is gorgeous), the proposition [P] is parameterized by both
[n] and [e] -- that is, the induction principle can be used to
prove assertions involving both a gorgeous number and the
evidence that it is gorgeous.
- Since there are three ways of giving evidence of gorgeousness
([gorgeous] has three constructors), applying the induction
principle generates three subgoals:
- We must prove that [P] holds for [O] and [b_0].
- We must prove that, whenever [n] is a gorgeous
number and [e] is an evidence of its gorgeousness,
if [P] holds of [n] and [e],
then it also holds of [3+m] and [g_plus3 n e].
- We must prove that, whenever [n] is a gorgeous
number and [e] is an evidence of its gorgeousness,
if [P] holds of [n] and [e],
then it also holds of [5+m] and [g_plus5 n e].
- If these subgoals can be proved, then the induction principle
tells us that [P] is true for _all_ gorgeous numbers [n] and
evidence [e] of their gorgeousness.
But this is a little more flexibility than we actually need or
want: it is giving us a way to prove logical assertions where the
assertion involves properties of some piece of _evidence_ of
gorgeousness, while all we really care about is proving
properties of _numbers_ that are gorgeous -- we are interested in
assertions about numbers, not about evidence. It would therefore
be more convenient to have an induction principle for proving
propositions [P] that are parameterized just by [n] and whose
conclusion establishes [P] for all gorgeous numbers [n]:
forall P : nat -> Prop,
... ->
forall n : nat, gorgeous n -> P n
For this reason, Coq actually generates the following simplified
induction principle for [gorgeous]: *)
Check gorgeous_ind.
(* ===> gorgeous_ind
: forall P : nat -> Prop,
P 0 ->
(forall n : nat, gorgeous n -> P n -> P (3 + n)) ->
(forall n : nat, gorgeous n -> P n -> P (5 + n)) ->
forall n : nat, gorgeous n -> P n *)
(** In particular, Coq has dropped the evidence term [e] as a
parameter of the the proposition [P], and consequently has
rewritten the assumption [forall (n : nat) (e: gorgeous n), ...]
to be [forall (n : nat), gorgeous n -> ...]; i.e., we no longer
require explicit evidence of the provability of [gorgeous n]. *)
(** In English, [gorgeous_ind] says:
- Suppose, [P] is a property of natural numbers (that is, [P n] is
a [Prop] for every [n]). To show that [P n] holds whenever [n]
is gorgeous, it suffices to show:
- [P] holds for [0],
- for any [n], if [n] is gorgeous and [P] holds for
[n], then [P] holds for [3+n],
- for any [n], if [n] is gorgeous and [P] holds for
[n], then [P] holds for [5+n]. *)
(** As expected, we can apply [gorgeous_ind] directly instead of using [induction]. *)
Theorem gorgeous__beautiful' : forall n, gorgeous n -> beautiful n.
Proof.
intros.
apply gorgeous_ind.
Case "g_0".
apply b_0.
Case "g_plus3".
intros.
apply b_sum. apply b_3.
apply H1.
Case "g_plus5".
intros.
apply b_sum. apply b_5.
apply H1.
apply H.
Qed.
(** The precise form of an Inductive definition can affect the
induction principle Coq generates.
For example, in [Logic], we have defined [<=] as: *)
(* Inductive le : nat -> nat -> Prop :=
| le_n : forall n, le n n
| le_S : forall n m, (le n m) -> (le n (S m)). *)
(** This definition can be streamlined a little by observing that the
left-hand argument [n] is the same everywhere in the definition,
so we can actually make it a "general parameter" to the whole
definition, rather than an argument to each constructor. *)
Inductive le (n:nat) : nat -> Prop :=
| le_n : le n n
| le_S : forall m, (le n m) -> (le n (S m)).
Notation "m <= n" := (le m n).
(** The second one is better, even though it looks less symmetric.
Why? Because it gives us a simpler induction principle. *)
Check le_ind.
(* ===> forall (n : nat) (P : nat -> Prop),
P n ->
(forall m : nat, n <= m -> P m -> P (S m)) ->
forall n0 : nat, n <= n0 -> P n0 *)
(** By contrast, the induction principle that Coq calculates for the
first definition has a lot of extra quantifiers, which makes it
messier to work with when proving things by induction. Here is
the induction principle for the first [le]: *)
(* le_ind :
forall P : nat -> nat -> Prop,
(forall n : nat, P n n) ->
(forall n m : nat, le n m -> P n m -> P n (S m)) ->
forall n n0 : nat, le n n0 -> P n n0 *)
(* ##################################################### *)
(** * Additional Exercises *)
(** **** Exercise: 2 stars, optional (foo_ind_principle) *)
(** Suppose we make the following inductive definition:
Inductive foo (X : Set) (Y : Set) : Set :=
| foo1 : X -> foo X Y
| foo2 : Y -> foo X Y
| foo3 : foo X Y -> foo X Y.
Fill in the blanks to complete the induction principle that will be
generated by Coq.
foo_ind
: forall (X Y : Set) (P : foo X Y -> Prop),
(forall x : X, __________________________________) ->
(forall y : Y, __________________________________) ->
(________________________________________________) ->
________________________________________________
*)
(** [] *)
(** **** Exercise: 2 stars, optional (bar_ind_principle) *)
(** Consider the following induction principle:
bar_ind
: forall P : bar -> Prop,
(forall n : nat, P (bar1 n)) ->
(forall b : bar, P b -> P (bar2 b)) ->
(forall (b : bool) (b0 : bar), P b0 -> P (bar3 b b0)) ->
forall b : bar, P b
Write out the corresponding inductive set definition.
Inductive bar : Set :=
| bar1 : ________________________________________
| bar2 : ________________________________________
| bar3 : ________________________________________.
*)
(** [] *)
(** **** Exercise: 2 stars, optional (no_longer_than_ind) *)
(** Given the following inductively defined proposition:
Inductive no_longer_than (X : Set) : (list X) -> nat -> Prop :=
| nlt_nil : forall n, no_longer_than X [] n
| nlt_cons : forall x l n, no_longer_than X l n ->
no_longer_than X (x::l) (S n)
| nlt_succ : forall l n, no_longer_than X l n ->
no_longer_than X l (S n).
write the induction principle generated by Coq.
no_longer_than_ind
: forall (X : Set) (P : list X -> nat -> Prop),
(forall n : nat, ____________________) ->
(forall (x : X) (l : list X) (n : nat),
no_longer_than X l n -> ____________________ ->
_____________________________ ->
(forall (l : list X) (n : nat),
no_longer_than X l n -> ____________________ ->
_____________________________ ->
forall (l : list X) (n : nat), no_longer_than X l n ->
____________________
*)
(** [] *)
(* ##################################################### *)
(** ** Induction Principles for other Logical Propositions *)
(** Similarly, in [Logic] we have defined [eq] as: *)
(* Inductive eq (X:Type) : X -> X -> Prop :=
refl_equal : forall x, eq X x x. *)
(** In the Coq standard library, the definition of equality is
slightly different: *)
Inductive eq' (X:Type) (x:X) : X -> Prop :=
refl_equal' : eq' X x x.
(** The advantage of this definition is that the induction
principle that Coq derives for it is precisely the familiar
principle of _Leibniz equality_: what we mean when we say "[x] and
[y] are equal" is that every property on [P] that is true of [x]
is also true of [y]. (One philosophical quibble should be noted,
though: Here, the "Leibniz equality principle" is a _consequence_
of the way we've defined equality as an inductive type. Leibniz
viewed things exactly the other way around: for him, this
principle itself _is the definition_ of equality.) *)
Check eq'_ind.
(* ===>
forall (X : Type) (x : X) (P : X -> Prop),
P x -> forall y : X, x =' y -> P y
===> (i.e., after a little reorganization)
forall (X : Type) (x : X) forall y : X,
x =' y ->
forall P : X -> Prop, P x -> P y *)
(** The induction principles for conjunction and disjunction are a
good illustration of Coq's way of generating simplified induction
principles for [Inductive]ly defined propositions, which we
discussed above. You try first: *)
(** **** Exercise: 1 star, optional (and_ind_principle) *)
(** See if you can predict the induction principle for conjunction. *)
(* Check and_ind. *)
(** [] *)
(** **** Exercise: 1 star, optional (or_ind_principle) *)
(** See if you can predict the induction principle for disjunction. *)
(* Check or_ind. *)
(** [] *)
Check and_ind.
(** From the inductive definition of the proposition [and P Q]
Inductive and (P Q : Prop) : Prop :=
conj : P -> Q -> (and P Q).
we might expect Coq to generate this induction principle
and_ind_max :
forall (P Q : Prop) (P0 : P /\ Q -> Prop),
(forall (a : P) (b : Q), P0 (conj P Q a b)) ->
forall a : P /\ Q, P0 a
but actually it generates this simpler and more useful one:
and_ind :
forall P Q P0 : Prop,
(P -> Q -> P0) ->
P /\ Q -> P0
In the same way, when given the inductive definition of [or P Q]
Inductive or (P Q : Prop) : Prop :=
| or_introl : P -> or P Q
| or_intror : Q -> or P Q.
instead of the "maximal induction principle"
or_ind_max :
forall (P Q : Prop) (P0 : P \/ Q -> Prop),
(forall a : P, P0 (or_introl P Q a)) ->
(forall b : Q, P0 (or_intror P Q b)) ->
forall o : P \/ Q, P0 o
what Coq actually generates is this:
or_ind :
forall P Q P0 : Prop,
(P -> P0) ->
(Q -> P0) ->
P \/ Q -> P0
]]
*)
(** **** Exercise: 1 star, optional (False_ind_principle) *)
(** Can you predict the induction principle for falsehood? *)
(* Check False_ind. *)
(** [] *)
(** Here's the induction principle that Coq generates for existentials: *)
Check ex_ind.
(* ===> forall (X:Type) (P: X->Prop) (Q: Prop),
(forall witness:X, P witness -> Q) ->
ex X P ->
Q *)
(** This induction principle can be understood as follows: If we have
a function [f] that can construct evidence for [Q] given _any_
witness of type [X] together with evidence that this witness has
property [P], then from a proof of [ex X P] we can extract the
witness and evidence that must have been supplied to the
constructor, give these to [f], and thus obtain a proof of [Q]. *)
(* ######################################################### *)
(** ** Explicit Proof Objects for Induction *)
(** Although tactic-based proofs are normally much easier to
work with, the ability to write a proof term directly is sometimes
very handy, particularly when we want Coq to do something slightly
non-standard. *)
(** Recall the induction principle on naturals that Coq generates for
us automatically from the Inductive declation for [nat]. *)
Check nat_ind.
(* ===>
nat_ind : forall P : nat -> Prop,
P 0 ->
(forall n : nat, P n -> P (S n)) ->
forall n : nat, P n *)
(** There's nothing magic about this induction lemma: it's just
another Coq lemma that requires a proof. Coq generates the proof
automatically too... *)
Print nat_ind.
Print nat_rect.
(* ===> (after some manual inlining and tidying)
nat_ind =
fun (P : nat -> Prop)
(f : P 0)
(f0 : forall n : nat, P n -> P (S n)) =>
fix F (n : nat) : P n :=
match n with
| 0 => f
| S n0 => f0 n0 (F n0)
end.
*)
(** We can read this as follows:
Suppose we have evidence [f] that [P] holds on 0, and
evidence [f0] that [forall n:nat, P n -> P (S n)].
Then we can prove that [P] holds of an arbitrary nat [n] via
a recursive function [F] (here defined using the expression
form [Fix] rather than by a top-level [Fixpoint]
declaration). [F] pattern matches on [n]:
- If it finds 0, [F] uses [f] to show that [P n] holds.
- If it finds [S n0], [F] applies itself recursively on [n0]
to obtain evidence that [P n0] holds; then it applies [f0]
on that evidence to show that [P (S n)] holds.
[F] is just an ordinary recursive function that happens to
operate on evidence in [Prop] rather than on terms in [Set].
*)
(** We can adapt this approach to proving [nat_ind] to help prove
_non-standard_ induction principles too. Recall our desire to
prove that
[forall n : nat, even n -> ev n].
Attempts to do this by standard induction on [n] fail, because the
induction principle only lets us proceed when we can prove that
[even n -> even (S n)] -- which is of course never provable. What
we did in [Logic] was a bit of a hack:
[Theorem even__ev : forall n : nat,
(even n -> ev n) /\ (even (S n) -> ev (S n))].
We can make a much better proof by defining and proving a
non-standard induction principle that goes "by twos":
*)
Definition nat_ind2 :
forall (P : nat -> Prop),
P 0 ->
P 1 ->
(forall n : nat, P n -> P (S(S n))) ->
forall n : nat , P n :=
fun P => fun P0 => fun P1 => fun PSS =>
fix f (n:nat) := match n with
0 => P0
| 1 => P1
| S (S n') => PSS n' (f n')
end.
(** Once you get the hang of it, it is entirely straightforward to
give an explicit proof term for induction principles like this.
Proving this as a lemma using tactics is much less intuitive (try
it!).
The [induction ... using] tactic variant gives a convenient way to
specify a non-standard induction principle like this. *)
Lemma even__ev' : forall n, even n -> ev n.
Proof.
intros.
induction n as [ | |n'] using nat_ind2.
Case "even 0".
apply ev_0.
Case "even 1".
inversion H.
Case "even (S(S n'))".
apply ev_SS.
apply IHn'. unfold even. unfold even in H. simpl in H. apply H.
Qed.
(* ######################################################### *)
(** ** The Coq Trusted Computing Base *)
(** One issue that arises with any automated proof assistant is "why
trust it?": what if there is a bug in the implementation that
renders all its reasoning suspect?
While it is impossible to allay such concerns completely, the fact
that Coq is based on the Curry-Howard correspondence gives it a
strong foundation. Because propositions are just types and proofs
are just terms, checking that an alleged proof of a proposition is
valid just amounts to _type-checking_ the term. Type checkers are
relatively small and straightforward programs, so the "trusted
computing base" for Coq -- the part of the code that we have to
believe is operating correctly -- is small too.
What must a typechecker do? Its primary job is to make sure that
in each function application the expected and actual argument
types match, that the arms of a [match] expression are constructor
patterns belonging to the inductive type being matched over and
all arms of the [match] return the same type, and so on.
There are a few additional wrinkles:
- Since Coq types can themselves be expressions, the checker must
normalize these (by using the computation rules) before
comparing them.
- The checker must make sure that [match] expressions are
_exhaustive_. That is, there must be an arm for every possible
constructor. To see why, consider the following alleged proof
object:
Definition or_bogus : forall P Q, P \/ Q -> P :=
fun (P Q : Prop) (A : P \/ Q) =>
match A with
| or_introl H => H
end.
All the types here match correctly, but the [match] only
considers one of the possible constructors for [or]. Coq's
exhaustiveness check will reject this definition.
- The checker must make sure that each [fix] expression
terminates. It does this using a syntactic check to make sure
that each recursive call is on a subexpression of the original
argument. To see why this is essential, consider this alleged
proof:
Definition nat_false : forall (n:nat), False :=
fix f (n:nat) : False := f n.
Again, this is perfectly well-typed, but (fortunately) Coq will
reject it. *)
(** Note that the soundness of Coq depends only on the correctness of
this typechecking engine, not on the tactic machinery. If there
is a bug in a tactic implementation (and this certainly does
happen!), that tactic might construct an invalid proof term. But
when you type [Qed], Coq checks the term for validity from
scratch. Only lemmas whose proofs pass the type-checker can be
used in further proof developments. *)
(** $Date: 2014-12-31 15:31:47 -0500 (Wed, 31 Dec 2014) $ *)
|
(** * MoreInd: More on Induction *)
Require Export "ProofObjects".
(* ##################################################### *)
(** * Induction Principles *)
(** This is a good point to pause and take a deeper look at induction
principles.
Every time we declare a new [Inductive] datatype, Coq
automatically generates and proves an _induction principle_
for this type.
The induction principle for a type [t] is called [t_ind]. Here is
the one for natural numbers: *)
Check nat_ind.
(* ===> nat_ind :
forall P : nat -> Prop,
P 0 ->
(forall n : nat, P n -> P (S n)) ->
forall n : nat, P n *)
(** *** *)
(** The [induction] tactic is a straightforward wrapper that, at
its core, simply performs [apply t_ind]. To see this more
clearly, let's experiment a little with using [apply nat_ind]
directly, instead of the [induction] tactic, to carry out some
proofs. Here, for example, is an alternate proof of a theorem
that we saw in the [Basics] chapter. *)
Theorem mult_0_r' : forall n:nat,
n * 0 = 0.
Proof.
apply nat_ind.
Case "O". reflexivity.
Case "S". simpl. intros n IHn. rewrite -> IHn.
reflexivity. Qed.
(** This proof is basically the same as the earlier one, but a
few minor differences are worth noting. First, in the induction
step of the proof (the ["S"] case), we have to do a little
bookkeeping manually (the [intros]) that [induction] does
automatically.
Second, we do not introduce [n] into the context before applying
[nat_ind] -- the conclusion of [nat_ind] is a quantified formula,
and [apply] needs this conclusion to exactly match the shape of
the goal state, including the quantifier. The [induction] tactic
works either with a variable in the context or a quantified
variable in the goal.
Third, the [apply] tactic automatically chooses variable names for
us (in the second subgoal, here), whereas [induction] lets us
specify (with the [as...] clause) what names should be used. The
automatic choice is actually a little unfortunate, since it
re-uses the name [n] for a variable that is different from the [n]
in the original theorem. This is why the [Case] annotation is
just [S] -- if we tried to write it out in the more explicit form
that we've been using for most proofs, we'd have to write [n = S
n], which doesn't make a lot of sense! All of these conveniences
make [induction] nicer to use in practice than applying induction
principles like [nat_ind] directly. But it is important to
realize that, modulo this little bit of bookkeeping, applying
[nat_ind] is what we are really doing. *)
(** **** Exercise: 2 stars, optional (plus_one_r') *)
(** Complete this proof as we did [mult_0_r'] above, without using
the [induction] tactic. *)
Theorem plus_one_r' : forall n:nat,
n + 1 = S n.
Proof.
(* FILL IN HERE *) Admitted.
(** [] *)
(** Coq generates induction principles for every datatype defined with
[Inductive], including those that aren't recursive. (Although
we don't need induction to prove properties of non-recursive
datatypes, the idea of an induction principle still makes sense
for them: it gives a way to prove that a property holds for all
values of the type.)
These generated principles follow a similar pattern. If we define a
type [t] with constructors [c1] ... [cn], Coq generates a theorem
with this shape:
t_ind :
forall P : t -> Prop,
... case for c1 ... ->
... case for c2 ... ->
...
... case for cn ... ->
forall n : t, P n
The specific shape of each case depends on the arguments to the
corresponding constructor. Before trying to write down a general
rule, let's look at some more examples. First, an example where
the constructors take no arguments: *)
Inductive yesno : Type :=
| yes : yesno
| no : yesno.
Check yesno_ind.
(* ===> yesno_ind : forall P : yesno -> Prop,
P yes ->
P no ->
forall y : yesno, P y *)
(** **** Exercise: 1 star, optional (rgb) *)
(** Write out the induction principle that Coq will generate for the
following datatype. Write down your answer on paper or type it
into a comment, and then compare it with what Coq prints. *)
Inductive rgb : Type :=
| red : rgb
| green : rgb
| blue : rgb.
Check rgb_ind.
(** [] *)
(** Here's another example, this time with one of the constructors
taking some arguments. *)
Inductive natlist : Type :=
| nnil : natlist
| ncons : nat -> natlist -> natlist.
Check natlist_ind.
(* ===> (modulo a little variable renaming for clarity)
natlist_ind :
forall P : natlist -> Prop,
P nnil ->
(forall (n : nat) (l : natlist), P l -> P (ncons n l)) ->
forall n : natlist, P n *)
(** **** Exercise: 1 star, optional (natlist1) *)
(** Suppose we had written the above definition a little
differently: *)
Inductive natlist1 : Type :=
| nnil1 : natlist1
| nsnoc1 : natlist1 -> nat -> natlist1.
(** Now what will the induction principle look like? *)
(** [] *)
(** From these examples, we can extract this general rule:
- The type declaration gives several constructors; each
corresponds to one clause of the induction principle.
- Each constructor [c] takes argument types [a1]...[an].
- Each [ai] can be either [t] (the datatype we are defining) or
some other type [s].
- The corresponding case of the induction principle
says (in English):
- "for all values [x1]...[xn] of types [a1]...[an], if [P]
holds for each of the inductive arguments (each [xi] of
type [t]), then [P] holds for [c x1 ... xn]".
*)
(** **** Exercise: 1 star, optional (byntree_ind) *)
(** Write out the induction principle that Coq will generate for the
following datatype. Write down your answer on paper or type it
into a comment, and then compare it with what Coq prints. *)
Inductive byntree : Type :=
| bempty : byntree
| bleaf : yesno -> byntree
| nbranch : yesno -> byntree -> byntree -> byntree.
(** [] *)
(** **** Exercise: 1 star, optional (ex_set) *)
(** Here is an induction principle for an inductively defined
set.
ExSet_ind :
forall P : ExSet -> Prop,
(forall b : bool, P (con1 b)) ->
(forall (n : nat) (e : ExSet), P e -> P (con2 n e)) ->
forall e : ExSet, P e
Give an [Inductive] definition of [ExSet]: *)
Inductive ExSet : Type :=
(* FILL IN HERE *)
.
(** [] *)
(** What about polymorphic datatypes?
The inductive definition of polymorphic lists
Inductive list (X:Type) : Type :=
| nil : list X
| cons : X -> list X -> list X.
is very similar to that of [natlist]. The main difference is
that, here, the whole definition is _parameterized_ on a set [X]:
that is, we are defining a _family_ of inductive types [list X],
one for each [X]. (Note that, wherever [list] appears in the body
of the declaration, it is always applied to the parameter [X].)
The induction principle is likewise parameterized on [X]:
list_ind :
forall (X : Type) (P : list X -> Prop),
P [] ->
(forall (x : X) (l : list X), P l -> P (x :: l)) ->
forall l : list X, P l
Note the wording here (and, accordingly, the form of [list_ind]):
The _whole_ induction principle is parameterized on [X]. That is,
[list_ind] can be thought of as a polymorphic function that, when
applied to a type [X], gives us back an induction principle
specialized to the type [list X]. *)
(** **** Exercise: 1 star, optional (tree) *)
(** Write out the induction principle that Coq will generate for
the following datatype. Compare your answer with what Coq
prints. *)
Inductive tree (X:Type) : Type :=
| leaf : X -> tree X
| node : tree X -> tree X -> tree X.
Check tree_ind.
(** [] *)
(** **** Exercise: 1 star, optional (mytype) *)
(** Find an inductive definition that gives rise to the
following induction principle:
mytype_ind :
forall (X : Type) (P : mytype X -> Prop),
(forall x : X, P (constr1 X x)) ->
(forall n : nat, P (constr2 X n)) ->
(forall m : mytype X, P m ->
forall n : nat, P (constr3 X m n)) ->
forall m : mytype X, P m
*)
(** [] *)
(** **** Exercise: 1 star, optional (foo) *)
(** Find an inductive definition that gives rise to the
following induction principle:
foo_ind :
forall (X Y : Type) (P : foo X Y -> Prop),
(forall x : X, P (bar X Y x)) ->
(forall y : Y, P (baz X Y y)) ->
(forall f1 : nat -> foo X Y,
(forall n : nat, P (f1 n)) -> P (quux X Y f1)) ->
forall f2 : foo X Y, P f2
*)
(** [] *)
(** **** Exercise: 1 star, optional (foo') *)
(** Consider the following inductive definition: *)
Inductive foo' (X:Type) : Type :=
| C1 : list X -> foo' X -> foo' X
| C2 : foo' X.
(** What induction principle will Coq generate for [foo']? Fill
in the blanks, then check your answer with Coq.)
foo'_ind :
forall (X : Type) (P : foo' X -> Prop),
(forall (l : list X) (f : foo' X),
_______________________ ->
_______________________ ) ->
___________________________________________ ->
forall f : foo' X, ________________________
*)
(** [] *)
(* ##################################################### *)
(** ** Induction Hypotheses *)
(** Where does the phrase "induction hypothesis" fit into this story?
The induction principle for numbers
forall P : nat -> Prop,
P 0 ->
(forall n : nat, P n -> P (S n)) ->
forall n : nat, P n
is a generic statement that holds for all propositions
[P] (strictly speaking, for all families of propositions [P]
indexed by a number [n]). Each time we use this principle, we
are choosing [P] to be a particular expression of type
[nat->Prop].
We can make the proof more explicit by giving this expression a
name. For example, instead of stating the theorem [mult_0_r] as
"[forall n, n * 0 = 0]," we can write it as "[forall n, P_m0r
n]", where [P_m0r] is defined as... *)
Definition P_m0r (n:nat) : Prop :=
n * 0 = 0.
(** ... or equivalently... *)
Definition P_m0r' : nat->Prop :=
fun n => n * 0 = 0.
(** Now when we do the proof it is easier to see where [P_m0r]
appears. *)
Theorem mult_0_r'' : forall n:nat,
P_m0r n.
Proof.
apply nat_ind.
Case "n = O". reflexivity.
Case "n = S n'".
(* Note the proof state at this point! *)
intros n IHn.
unfold P_m0r in IHn. unfold P_m0r. simpl. apply IHn. Qed.
(** This extra naming step isn't something that we'll do in
normal proofs, but it is useful to do it explicitly for an example
or two, because it allows us to see exactly what the induction
hypothesis is. If we prove [forall n, P_m0r n] by induction on
[n] (using either [induction] or [apply nat_ind]), we see that the
first subgoal requires us to prove [P_m0r 0] ("[P] holds for
zero"), while the second subgoal requires us to prove [forall n',
P_m0r n' -> P_m0r n' (S n')] (that is "[P] holds of [S n'] if it
holds of [n']" or, more elegantly, "[P] is preserved by [S]").
The _induction hypothesis_ is the premise of this latter
implication -- the assumption that [P] holds of [n'], which we are
allowed to use in proving that [P] holds for [S n']. *)
(* ##################################################### *)
(** ** More on the [induction] Tactic *)
(** The [induction] tactic actually does even more low-level
bookkeeping for us than we discussed above.
Recall the informal statement of the induction principle for
natural numbers:
- If [P n] is some proposition involving a natural number n, and
we want to show that P holds for _all_ numbers n, we can
reason like this:
- show that [P O] holds
- show that, if [P n'] holds, then so does [P (S n')]
- conclude that [P n] holds for all n.
So, when we begin a proof with [intros n] and then [induction n],
we are first telling Coq to consider a _particular_ [n] (by
introducing it into the context) and then telling it to prove
something about _all_ numbers (by using induction).
What Coq actually does in this situation, internally, is to
"re-generalize" the variable we perform induction on. For
example, in our original proof that [plus] is associative...
*)
Theorem plus_assoc' : forall n m p : nat,
n + (m + p) = (n + m) + p.
Proof.
(* ...we first introduce all 3 variables into the context,
which amounts to saying "Consider an arbitrary [n], [m], and
[p]..." *)
intros n m p.
(* ...We now use the [induction] tactic to prove [P n] (that
is, [n + (m + p) = (n + m) + p]) for _all_ [n],
and hence also for the particular [n] that is in the context
at the moment. *)
induction n as [| n'].
Case "n = O". reflexivity.
Case "n = S n'".
(* In the second subgoal generated by [induction] -- the
"inductive step" -- we must prove that [P n'] implies
[P (S n')] for all [n']. The [induction] tactic
automatically introduces [n'] and [P n'] into the context
for us, leaving just [P (S n')] as the goal. *)
simpl. rewrite -> IHn'. reflexivity. Qed.
(** It also works to apply [induction] to a variable that is
quantified in the goal. *)
Theorem plus_comm' : forall n m : nat,
n + m = m + n.
Proof.
induction n as [| n'].
Case "n = O". intros m. rewrite -> plus_0_r. reflexivity.
Case "n = S n'". intros m. simpl. rewrite -> IHn'.
rewrite <- plus_n_Sm. reflexivity. Qed.
(** Note that [induction n] leaves [m] still bound in the goal --
i.e., what we are proving inductively is a statement beginning
with [forall m].
If we do [induction] on a variable that is quantified in the goal
_after_ some other quantifiers, the [induction] tactic will
automatically introduce the variables bound by these quantifiers
into the context. *)
Theorem plus_comm'' : forall n m : nat,
n + m = m + n.
Proof.
(* Let's do induction on [m] this time, instead of [n]... *)
induction m as [| m'].
Case "m = O". simpl. rewrite -> plus_0_r. reflexivity.
Case "m = S m'". simpl. rewrite <- IHm'.
rewrite <- plus_n_Sm. reflexivity. Qed.
(** **** Exercise: 1 star, optional (plus_explicit_prop) *)
(** Rewrite both [plus_assoc'] and [plus_comm'] and their proofs in
the same style as [mult_0_r''] above -- that is, for each theorem,
give an explicit [Definition] of the proposition being proved by
induction, and state the theorem and proof in terms of this
defined proposition. *)
(* FILL IN HERE *)
(** [] *)
(** ** Generalizing Inductions. *)
(** One potentially confusing feature of the [induction] tactic is
that it happily lets you try to set up an induction over a term
that isn't sufficiently general. The net effect of this will be
to lose information (much as [destruct] can do), and leave
you unable to complete the proof. Here's an example: *)
Lemma one_not_beautiful_FAILED: ~ beautiful 1.
Proof.
intro H.
(* Just doing an [inversion] on [H] won't get us very far in the [b_sum]
case. (Try it!). So we'll need induction. A naive first attempt: *)
induction H.
(* But now, although we get four cases, as we would expect from
the definition of [beautiful], we lose all information about [H] ! *)
Abort.
(** The problem is that [induction] over a Prop only works properly over
completely general instances of the Prop, i.e. one in which all
the arguments are free (unconstrained) variables.
In this respect it behaves more
like [destruct] than like [inversion].
When you're tempted to do use [induction] like this, it is generally
an indication that you need to be proving something more general.
But in some cases, it suffices to pull out any concrete arguments
into separate equations, like this: *)
Lemma one_not_beautiful: forall n, n = 1 -> ~ beautiful n.
Proof.
intros n E H.
induction H as [| | | p q Hp IHp Hq IHq].
Case "b_0".
inversion E.
Case "b_3".
inversion E.
Case "b_5".
inversion E.
Case "b_sum".
(* the rest is a tedious case analysis *)
destruct p as [|p'].
SCase "p = 0".
destruct q as [|q'].
SSCase "q = 0".
inversion E.
SSCase "q = S q'".
apply IHq. apply E.
SCase "p = S p'".
destruct q as [|q'].
SSCase "q = 0".
apply IHp. rewrite plus_0_r in E. apply E.
SSCase "q = S q'".
simpl in E. inversion E. destruct p'. inversion H0. inversion H0.
Qed.
(** There's a handy [remember] tactic that can generate the second
proof state out of the original one. *)
Lemma one_not_beautiful': ~ beautiful 1.
Proof.
intros H.
remember 1 as n eqn:E.
(* now carry on as above *)
induction H.
Admitted.
(* ####################################################### *)
(** * Informal Proofs (Advanced) *)
(** Q: What is the relation between a formal proof of a proposition
[P] and an informal proof of the same proposition [P]?
A: The latter should _teach_ the reader how to produce the
former.
Q: How much detail is needed??
Unfortunately, There is no single right answer; rather, there is a
range of choices.
At one end of the spectrum, we can essentially give the reader the
whole formal proof (i.e., the informal proof amounts to just
transcribing the formal one into words). This gives the reader
the _ability_ to reproduce the formal one for themselves, but it
doesn't _teach_ them anything.
At the other end of the spectrum, we can say "The theorem is true
and you can figure out why for yourself if you think about it hard
enough." This is also not a good teaching strategy, because
usually writing the proof requires some deep insights into the
thing we're proving, and most readers will give up before they
rediscover all the same insights as we did.
In the middle is the golden mean -- a proof that includes all of
the essential insights (saving the reader the hard part of work
that we went through to find the proof in the first place) and
clear high-level suggestions for the more routine parts to save the
reader from spending too much time reconstructing these
parts (e.g., what the IH says and what must be shown in each case
of an inductive proof), but not so much detail that the main ideas
are obscured.
Another key point: if we're comparing a formal proof of a
proposition [P] and an informal proof of [P], the proposition [P]
doesn't change. That is, formal and informal proofs are _talking
about the same world_ and they _must play by the same rules_. *)
(** ** Informal Proofs by Induction *)
(** Since we've spent much of this chapter looking "under the hood" at
formal proofs by induction, now is a good moment to talk a little
about _informal_ proofs by induction.
In the real world of mathematical communication, written proofs
range from extremely longwinded and pedantic to extremely brief
and telegraphic. The ideal is somewhere in between, of course,
but while you are getting used to the style it is better to start
out at the pedantic end. Also, during the learning phase, it is
probably helpful to have a clear standard to compare against.
With this in mind, we offer two templates below -- one for proofs
by induction over _data_ (i.e., where the thing we're doing
induction on lives in [Type]) and one for proofs by induction over
_evidence_ (i.e., where the inductively defined thing lives in
[Prop]). In the rest of this course, please follow one of the two
for _all_ of your inductive proofs. *)
(** *** Induction Over an Inductively Defined Set *)
(** _Template_:
- _Theorem_: <Universally quantified proposition of the form
"For all [n:S], [P(n)]," where [S] is some inductively defined
set.>
_Proof_: By induction on [n].
<one case for each constructor [c] of [S]...>
- Suppose [n = c a1 ... ak], where <...and here we state
the IH for each of the [a]'s that has type [S], if any>.
We must show <...and here we restate [P(c a1 ... ak)]>.
<go on and prove [P(n)] to finish the case...>
- <other cases similarly...> []
_Example_:
- _Theorem_: For all sets [X], lists [l : list X], and numbers
[n], if [length l = n] then [index (S n) l = None].
_Proof_: By induction on [l].
- Suppose [l = []]. We must show, for all numbers [n],
that, if length [[] = n], then [index (S n) [] =
None].
This follows immediately from the definition of index.
- Suppose [l = x :: l'] for some [x] and [l'], where
[length l' = n'] implies [index (S n') l' = None], for
any number [n']. We must show, for all [n], that, if
[length (x::l') = n] then [index (S n) (x::l') =
None].
Let [n] be a number with [length l = n]. Since
length l = length (x::l') = S (length l'),
it suffices to show that
index (S (length l')) l' = None.
]]
But this follows directly from the induction hypothesis,
picking [n'] to be length [l']. [] *)
(** *** Induction Over an Inductively Defined Proposition *)
(** Since inductively defined proof objects are often called
"derivation trees," this form of proof is also known as _induction
on derivations_.
_Template_:
- _Theorem_: <Proposition of the form "[Q -> P]," where [Q] is
some inductively defined proposition (more generally,
"For all [x] [y] [z], [Q x y z -> P x y z]")>
_Proof_: By induction on a derivation of [Q]. <Or, more
generally, "Suppose we are given [x], [y], and [z]. We
show that [Q x y z] implies [P x y z], by induction on a
derivation of [Q x y z]"...>
<one case for each constructor [c] of [Q]...>
- Suppose the final rule used to show [Q] is [c]. Then
<...and here we state the types of all of the [a]'s
together with any equalities that follow from the
definition of the constructor and the IH for each of
the [a]'s that has type [Q], if there are any>. We must
show <...and here we restate [P]>.
<go on and prove [P] to finish the case...>
- <other cases similarly...> []
_Example_
- _Theorem_: The [<=] relation is transitive -- i.e., for all
numbers [n], [m], and [o], if [n <= m] and [m <= o], then
[n <= o].
_Proof_: By induction on a derivation of [m <= o].
- Suppose the final rule used to show [m <= o] is
[le_n]. Then [m = o] and we must show that [n <= m],
which is immediate by hypothesis.
- Suppose the final rule used to show [m <= o] is
[le_S]. Then [o = S o'] for some [o'] with [m <= o'].
We must show that [n <= S o'].
By induction hypothesis, [n <= o'].
But then, by [le_S], [n <= S o']. [] *)
(* ##################################################### *)
(** * Induction Principles in [Prop] (Advanced) *)
(** The remainder of this chapter offers some additional details on
how induction works in Coq, the process of building proof trees,
and the "trusted computing base" that underlies Coq proofs. It
can safely be skimmed on a first reading. (As with the other
advanced sections, we recommend skimming rather than skipping over
it outright: it answers some questions that occur to many Coq
users at some point, so it is useful to have a rough idea of
what's here.) *)
(** Earlier, we looked in detail at the induction principles that Coq
generates for inductively defined _sets_. The induction
principles for inductively defined _propositions_ like [gorgeous]
are a tiny bit more complicated. As with all induction
principles, we want to use the induction principle on [gorgeous]
to prove things by inductively considering the possible shapes
that something in [gorgeous] can have -- either it is evidence
that [0] is gorgeous, or it is evidence that, for some [n], [3+n]
is gorgeous, or it is evidence that, for some [n], [5+n] is
gorgeous and it includes evidence that [n] itself is. Intuitively
speaking, however, what we want to prove are not statements about
_evidence_ but statements about _numbers_. So we want an
induction principle that lets us prove properties of numbers by
induction on evidence.
For example, from what we've said so far, you might expect the
inductive definition of [gorgeous]...
Inductive gorgeous : nat -> Prop :=
g_0 : gorgeous 0
| g_plus3 : forall n, gorgeous n -> gorgeous (3+m)
| g_plus5 : forall n, gorgeous n -> gorgeous (5+m).
...to give rise to an induction principle that looks like this...
gorgeous_ind_max :
forall P : (forall n : nat, gorgeous n -> Prop),
P O g_0 ->
(forall (m : nat) (e : gorgeous m),
P m e -> P (3+m) (g_plus3 m e) ->
(forall (m : nat) (e : gorgeous m),
P m e -> P (5+m) (g_plus5 m e) ->
forall (n : nat) (e : gorgeous n), P n e
... because:
- Since [gorgeous] is indexed by a number [n] (every [gorgeous]
object [e] is a piece of evidence that some particular number
[n] is gorgeous), the proposition [P] is parameterized by both
[n] and [e] -- that is, the induction principle can be used to
prove assertions involving both a gorgeous number and the
evidence that it is gorgeous.
- Since there are three ways of giving evidence of gorgeousness
([gorgeous] has three constructors), applying the induction
principle generates three subgoals:
- We must prove that [P] holds for [O] and [b_0].
- We must prove that, whenever [n] is a gorgeous
number and [e] is an evidence of its gorgeousness,
if [P] holds of [n] and [e],
then it also holds of [3+m] and [g_plus3 n e].
- We must prove that, whenever [n] is a gorgeous
number and [e] is an evidence of its gorgeousness,
if [P] holds of [n] and [e],
then it also holds of [5+m] and [g_plus5 n e].
- If these subgoals can be proved, then the induction principle
tells us that [P] is true for _all_ gorgeous numbers [n] and
evidence [e] of their gorgeousness.
But this is a little more flexibility than we actually need or
want: it is giving us a way to prove logical assertions where the
assertion involves properties of some piece of _evidence_ of
gorgeousness, while all we really care about is proving
properties of _numbers_ that are gorgeous -- we are interested in
assertions about numbers, not about evidence. It would therefore
be more convenient to have an induction principle for proving
propositions [P] that are parameterized just by [n] and whose
conclusion establishes [P] for all gorgeous numbers [n]:
forall P : nat -> Prop,
... ->
forall n : nat, gorgeous n -> P n
For this reason, Coq actually generates the following simplified
induction principle for [gorgeous]: *)
Check gorgeous_ind.
(* ===> gorgeous_ind
: forall P : nat -> Prop,
P 0 ->
(forall n : nat, gorgeous n -> P n -> P (3 + n)) ->
(forall n : nat, gorgeous n -> P n -> P (5 + n)) ->
forall n : nat, gorgeous n -> P n *)
(** In particular, Coq has dropped the evidence term [e] as a
parameter of the the proposition [P], and consequently has
rewritten the assumption [forall (n : nat) (e: gorgeous n), ...]
to be [forall (n : nat), gorgeous n -> ...]; i.e., we no longer
require explicit evidence of the provability of [gorgeous n]. *)
(** In English, [gorgeous_ind] says:
- Suppose, [P] is a property of natural numbers (that is, [P n] is
a [Prop] for every [n]). To show that [P n] holds whenever [n]
is gorgeous, it suffices to show:
- [P] holds for [0],
- for any [n], if [n] is gorgeous and [P] holds for
[n], then [P] holds for [3+n],
- for any [n], if [n] is gorgeous and [P] holds for
[n], then [P] holds for [5+n]. *)
(** As expected, we can apply [gorgeous_ind] directly instead of using [induction]. *)
Theorem gorgeous__beautiful' : forall n, gorgeous n -> beautiful n.
Proof.
intros.
apply gorgeous_ind.
Case "g_0".
apply b_0.
Case "g_plus3".
intros.
apply b_sum. apply b_3.
apply H1.
Case "g_plus5".
intros.
apply b_sum. apply b_5.
apply H1.
apply H.
Qed.
(** The precise form of an Inductive definition can affect the
induction principle Coq generates.
For example, in [Logic], we have defined [<=] as: *)
(* Inductive le : nat -> nat -> Prop :=
| le_n : forall n, le n n
| le_S : forall n m, (le n m) -> (le n (S m)). *)
(** This definition can be streamlined a little by observing that the
left-hand argument [n] is the same everywhere in the definition,
so we can actually make it a "general parameter" to the whole
definition, rather than an argument to each constructor. *)
Inductive le (n:nat) : nat -> Prop :=
| le_n : le n n
| le_S : forall m, (le n m) -> (le n (S m)).
Notation "m <= n" := (le m n).
(** The second one is better, even though it looks less symmetric.
Why? Because it gives us a simpler induction principle. *)
Check le_ind.
(* ===> forall (n : nat) (P : nat -> Prop),
P n ->
(forall m : nat, n <= m -> P m -> P (S m)) ->
forall n0 : nat, n <= n0 -> P n0 *)
(** By contrast, the induction principle that Coq calculates for the
first definition has a lot of extra quantifiers, which makes it
messier to work with when proving things by induction. Here is
the induction principle for the first [le]: *)
(* le_ind :
forall P : nat -> nat -> Prop,
(forall n : nat, P n n) ->
(forall n m : nat, le n m -> P n m -> P n (S m)) ->
forall n n0 : nat, le n n0 -> P n n0 *)
(* ##################################################### *)
(** * Additional Exercises *)
(** **** Exercise: 2 stars, optional (foo_ind_principle) *)
(** Suppose we make the following inductive definition:
Inductive foo (X : Set) (Y : Set) : Set :=
| foo1 : X -> foo X Y
| foo2 : Y -> foo X Y
| foo3 : foo X Y -> foo X Y.
Fill in the blanks to complete the induction principle that will be
generated by Coq.
foo_ind
: forall (X Y : Set) (P : foo X Y -> Prop),
(forall x : X, __________________________________) ->
(forall y : Y, __________________________________) ->
(________________________________________________) ->
________________________________________________
*)
(** [] *)
(** **** Exercise: 2 stars, optional (bar_ind_principle) *)
(** Consider the following induction principle:
bar_ind
: forall P : bar -> Prop,
(forall n : nat, P (bar1 n)) ->
(forall b : bar, P b -> P (bar2 b)) ->
(forall (b : bool) (b0 : bar), P b0 -> P (bar3 b b0)) ->
forall b : bar, P b
Write out the corresponding inductive set definition.
Inductive bar : Set :=
| bar1 : ________________________________________
| bar2 : ________________________________________
| bar3 : ________________________________________.
*)
(** [] *)
(** **** Exercise: 2 stars, optional (no_longer_than_ind) *)
(** Given the following inductively defined proposition:
Inductive no_longer_than (X : Set) : (list X) -> nat -> Prop :=
| nlt_nil : forall n, no_longer_than X [] n
| nlt_cons : forall x l n, no_longer_than X l n ->
no_longer_than X (x::l) (S n)
| nlt_succ : forall l n, no_longer_than X l n ->
no_longer_than X l (S n).
write the induction principle generated by Coq.
no_longer_than_ind
: forall (X : Set) (P : list X -> nat -> Prop),
(forall n : nat, ____________________) ->
(forall (x : X) (l : list X) (n : nat),
no_longer_than X l n -> ____________________ ->
_____________________________ ->
(forall (l : list X) (n : nat),
no_longer_than X l n -> ____________________ ->
_____________________________ ->
forall (l : list X) (n : nat), no_longer_than X l n ->
____________________
*)
(** [] *)
(* ##################################################### *)
(** ** Induction Principles for other Logical Propositions *)
(** Similarly, in [Logic] we have defined [eq] as: *)
(* Inductive eq (X:Type) : X -> X -> Prop :=
refl_equal : forall x, eq X x x. *)
(** In the Coq standard library, the definition of equality is
slightly different: *)
Inductive eq' (X:Type) (x:X) : X -> Prop :=
refl_equal' : eq' X x x.
(** The advantage of this definition is that the induction
principle that Coq derives for it is precisely the familiar
principle of _Leibniz equality_: what we mean when we say "[x] and
[y] are equal" is that every property on [P] that is true of [x]
is also true of [y]. (One philosophical quibble should be noted,
though: Here, the "Leibniz equality principle" is a _consequence_
of the way we've defined equality as an inductive type. Leibniz
viewed things exactly the other way around: for him, this
principle itself _is the definition_ of equality.) *)
Check eq'_ind.
(* ===>
forall (X : Type) (x : X) (P : X -> Prop),
P x -> forall y : X, x =' y -> P y
===> (i.e., after a little reorganization)
forall (X : Type) (x : X) forall y : X,
x =' y ->
forall P : X -> Prop, P x -> P y *)
(** The induction principles for conjunction and disjunction are a
good illustration of Coq's way of generating simplified induction
principles for [Inductive]ly defined propositions, which we
discussed above. You try first: *)
(** **** Exercise: 1 star, optional (and_ind_principle) *)
(** See if you can predict the induction principle for conjunction. *)
(* Check and_ind. *)
(** [] *)
(** **** Exercise: 1 star, optional (or_ind_principle) *)
(** See if you can predict the induction principle for disjunction. *)
(* Check or_ind. *)
(** [] *)
Check and_ind.
(** From the inductive definition of the proposition [and P Q]
Inductive and (P Q : Prop) : Prop :=
conj : P -> Q -> (and P Q).
we might expect Coq to generate this induction principle
and_ind_max :
forall (P Q : Prop) (P0 : P /\ Q -> Prop),
(forall (a : P) (b : Q), P0 (conj P Q a b)) ->
forall a : P /\ Q, P0 a
but actually it generates this simpler and more useful one:
and_ind :
forall P Q P0 : Prop,
(P -> Q -> P0) ->
P /\ Q -> P0
In the same way, when given the inductive definition of [or P Q]
Inductive or (P Q : Prop) : Prop :=
| or_introl : P -> or P Q
| or_intror : Q -> or P Q.
instead of the "maximal induction principle"
or_ind_max :
forall (P Q : Prop) (P0 : P \/ Q -> Prop),
(forall a : P, P0 (or_introl P Q a)) ->
(forall b : Q, P0 (or_intror P Q b)) ->
forall o : P \/ Q, P0 o
what Coq actually generates is this:
or_ind :
forall P Q P0 : Prop,
(P -> P0) ->
(Q -> P0) ->
P \/ Q -> P0
]]
*)
(** **** Exercise: 1 star, optional (False_ind_principle) *)
(** Can you predict the induction principle for falsehood? *)
(* Check False_ind. *)
(** [] *)
(** Here's the induction principle that Coq generates for existentials: *)
Check ex_ind.
(* ===> forall (X:Type) (P: X->Prop) (Q: Prop),
(forall witness:X, P witness -> Q) ->
ex X P ->
Q *)
(** This induction principle can be understood as follows: If we have
a function [f] that can construct evidence for [Q] given _any_
witness of type [X] together with evidence that this witness has
property [P], then from a proof of [ex X P] we can extract the
witness and evidence that must have been supplied to the
constructor, give these to [f], and thus obtain a proof of [Q]. *)
(* ######################################################### *)
(** ** Explicit Proof Objects for Induction *)
(** Although tactic-based proofs are normally much easier to
work with, the ability to write a proof term directly is sometimes
very handy, particularly when we want Coq to do something slightly
non-standard. *)
(** Recall the induction principle on naturals that Coq generates for
us automatically from the Inductive declation for [nat]. *)
Check nat_ind.
(* ===>
nat_ind : forall P : nat -> Prop,
P 0 ->
(forall n : nat, P n -> P (S n)) ->
forall n : nat, P n *)
(** There's nothing magic about this induction lemma: it's just
another Coq lemma that requires a proof. Coq generates the proof
automatically too... *)
Print nat_ind.
Print nat_rect.
(* ===> (after some manual inlining and tidying)
nat_ind =
fun (P : nat -> Prop)
(f : P 0)
(f0 : forall n : nat, P n -> P (S n)) =>
fix F (n : nat) : P n :=
match n with
| 0 => f
| S n0 => f0 n0 (F n0)
end.
*)
(** We can read this as follows:
Suppose we have evidence [f] that [P] holds on 0, and
evidence [f0] that [forall n:nat, P n -> P (S n)].
Then we can prove that [P] holds of an arbitrary nat [n] via
a recursive function [F] (here defined using the expression
form [Fix] rather than by a top-level [Fixpoint]
declaration). [F] pattern matches on [n]:
- If it finds 0, [F] uses [f] to show that [P n] holds.
- If it finds [S n0], [F] applies itself recursively on [n0]
to obtain evidence that [P n0] holds; then it applies [f0]
on that evidence to show that [P (S n)] holds.
[F] is just an ordinary recursive function that happens to
operate on evidence in [Prop] rather than on terms in [Set].
*)
(** We can adapt this approach to proving [nat_ind] to help prove
_non-standard_ induction principles too. Recall our desire to
prove that
[forall n : nat, even n -> ev n].
Attempts to do this by standard induction on [n] fail, because the
induction principle only lets us proceed when we can prove that
[even n -> even (S n)] -- which is of course never provable. What
we did in [Logic] was a bit of a hack:
[Theorem even__ev : forall n : nat,
(even n -> ev n) /\ (even (S n) -> ev (S n))].
We can make a much better proof by defining and proving a
non-standard induction principle that goes "by twos":
*)
Definition nat_ind2 :
forall (P : nat -> Prop),
P 0 ->
P 1 ->
(forall n : nat, P n -> P (S(S n))) ->
forall n : nat , P n :=
fun P => fun P0 => fun P1 => fun PSS =>
fix f (n:nat) := match n with
0 => P0
| 1 => P1
| S (S n') => PSS n' (f n')
end.
(** Once you get the hang of it, it is entirely straightforward to
give an explicit proof term for induction principles like this.
Proving this as a lemma using tactics is much less intuitive (try
it!).
The [induction ... using] tactic variant gives a convenient way to
specify a non-standard induction principle like this. *)
Lemma even__ev' : forall n, even n -> ev n.
Proof.
intros.
induction n as [ | |n'] using nat_ind2.
Case "even 0".
apply ev_0.
Case "even 1".
inversion H.
Case "even (S(S n'))".
apply ev_SS.
apply IHn'. unfold even. unfold even in H. simpl in H. apply H.
Qed.
(* ######################################################### *)
(** ** The Coq Trusted Computing Base *)
(** One issue that arises with any automated proof assistant is "why
trust it?": what if there is a bug in the implementation that
renders all its reasoning suspect?
While it is impossible to allay such concerns completely, the fact
that Coq is based on the Curry-Howard correspondence gives it a
strong foundation. Because propositions are just types and proofs
are just terms, checking that an alleged proof of a proposition is
valid just amounts to _type-checking_ the term. Type checkers are
relatively small and straightforward programs, so the "trusted
computing base" for Coq -- the part of the code that we have to
believe is operating correctly -- is small too.
What must a typechecker do? Its primary job is to make sure that
in each function application the expected and actual argument
types match, that the arms of a [match] expression are constructor
patterns belonging to the inductive type being matched over and
all arms of the [match] return the same type, and so on.
There are a few additional wrinkles:
- Since Coq types can themselves be expressions, the checker must
normalize these (by using the computation rules) before
comparing them.
- The checker must make sure that [match] expressions are
_exhaustive_. That is, there must be an arm for every possible
constructor. To see why, consider the following alleged proof
object:
Definition or_bogus : forall P Q, P \/ Q -> P :=
fun (P Q : Prop) (A : P \/ Q) =>
match A with
| or_introl H => H
end.
All the types here match correctly, but the [match] only
considers one of the possible constructors for [or]. Coq's
exhaustiveness check will reject this definition.
- The checker must make sure that each [fix] expression
terminates. It does this using a syntactic check to make sure
that each recursive call is on a subexpression of the original
argument. To see why this is essential, consider this alleged
proof:
Definition nat_false : forall (n:nat), False :=
fix f (n:nat) : False := f n.
Again, this is perfectly well-typed, but (fortunately) Coq will
reject it. *)
(** Note that the soundness of Coq depends only on the correctness of
this typechecking engine, not on the tactic machinery. If there
is a bug in a tactic implementation (and this certainly does
happen!), that tactic might construct an invalid proof term. But
when you type [Qed], Coq checks the term for validity from
scratch. Only lemmas whose proofs pass the type-checker can be
used in further proof developments. *)
(** $Date: 2014-12-31 15:31:47 -0500 (Wed, 31 Dec 2014) $ *)
|
(** * MoreInd: More on Induction *)
Require Export "ProofObjects".
(* ##################################################### *)
(** * Induction Principles *)
(** This is a good point to pause and take a deeper look at induction
principles.
Every time we declare a new [Inductive] datatype, Coq
automatically generates and proves an _induction principle_
for this type.
The induction principle for a type [t] is called [t_ind]. Here is
the one for natural numbers: *)
Check nat_ind.
(* ===> nat_ind :
forall P : nat -> Prop,
P 0 ->
(forall n : nat, P n -> P (S n)) ->
forall n : nat, P n *)
(** *** *)
(** The [induction] tactic is a straightforward wrapper that, at
its core, simply performs [apply t_ind]. To see this more
clearly, let's experiment a little with using [apply nat_ind]
directly, instead of the [induction] tactic, to carry out some
proofs. Here, for example, is an alternate proof of a theorem
that we saw in the [Basics] chapter. *)
Theorem mult_0_r' : forall n:nat,
n * 0 = 0.
Proof.
apply nat_ind.
Case "O". reflexivity.
Case "S". simpl. intros n IHn. rewrite -> IHn.
reflexivity. Qed.
(** This proof is basically the same as the earlier one, but a
few minor differences are worth noting. First, in the induction
step of the proof (the ["S"] case), we have to do a little
bookkeeping manually (the [intros]) that [induction] does
automatically.
Second, we do not introduce [n] into the context before applying
[nat_ind] -- the conclusion of [nat_ind] is a quantified formula,
and [apply] needs this conclusion to exactly match the shape of
the goal state, including the quantifier. The [induction] tactic
works either with a variable in the context or a quantified
variable in the goal.
Third, the [apply] tactic automatically chooses variable names for
us (in the second subgoal, here), whereas [induction] lets us
specify (with the [as...] clause) what names should be used. The
automatic choice is actually a little unfortunate, since it
re-uses the name [n] for a variable that is different from the [n]
in the original theorem. This is why the [Case] annotation is
just [S] -- if we tried to write it out in the more explicit form
that we've been using for most proofs, we'd have to write [n = S
n], which doesn't make a lot of sense! All of these conveniences
make [induction] nicer to use in practice than applying induction
principles like [nat_ind] directly. But it is important to
realize that, modulo this little bit of bookkeeping, applying
[nat_ind] is what we are really doing. *)
(** **** Exercise: 2 stars, optional (plus_one_r') *)
(** Complete this proof as we did [mult_0_r'] above, without using
the [induction] tactic. *)
Theorem plus_one_r' : forall n:nat,
n + 1 = S n.
Proof.
(* FILL IN HERE *) Admitted.
(** [] *)
(** Coq generates induction principles for every datatype defined with
[Inductive], including those that aren't recursive. (Although
we don't need induction to prove properties of non-recursive
datatypes, the idea of an induction principle still makes sense
for them: it gives a way to prove that a property holds for all
values of the type.)
These generated principles follow a similar pattern. If we define a
type [t] with constructors [c1] ... [cn], Coq generates a theorem
with this shape:
t_ind :
forall P : t -> Prop,
... case for c1 ... ->
... case for c2 ... ->
...
... case for cn ... ->
forall n : t, P n
The specific shape of each case depends on the arguments to the
corresponding constructor. Before trying to write down a general
rule, let's look at some more examples. First, an example where
the constructors take no arguments: *)
Inductive yesno : Type :=
| yes : yesno
| no : yesno.
Check yesno_ind.
(* ===> yesno_ind : forall P : yesno -> Prop,
P yes ->
P no ->
forall y : yesno, P y *)
(** **** Exercise: 1 star, optional (rgb) *)
(** Write out the induction principle that Coq will generate for the
following datatype. Write down your answer on paper or type it
into a comment, and then compare it with what Coq prints. *)
Inductive rgb : Type :=
| red : rgb
| green : rgb
| blue : rgb.
Check rgb_ind.
(** [] *)
(** Here's another example, this time with one of the constructors
taking some arguments. *)
Inductive natlist : Type :=
| nnil : natlist
| ncons : nat -> natlist -> natlist.
Check natlist_ind.
(* ===> (modulo a little variable renaming for clarity)
natlist_ind :
forall P : natlist -> Prop,
P nnil ->
(forall (n : nat) (l : natlist), P l -> P (ncons n l)) ->
forall n : natlist, P n *)
(** **** Exercise: 1 star, optional (natlist1) *)
(** Suppose we had written the above definition a little
differently: *)
Inductive natlist1 : Type :=
| nnil1 : natlist1
| nsnoc1 : natlist1 -> nat -> natlist1.
(** Now what will the induction principle look like? *)
(** [] *)
(** From these examples, we can extract this general rule:
- The type declaration gives several constructors; each
corresponds to one clause of the induction principle.
- Each constructor [c] takes argument types [a1]...[an].
- Each [ai] can be either [t] (the datatype we are defining) or
some other type [s].
- The corresponding case of the induction principle
says (in English):
- "for all values [x1]...[xn] of types [a1]...[an], if [P]
holds for each of the inductive arguments (each [xi] of
type [t]), then [P] holds for [c x1 ... xn]".
*)
(** **** Exercise: 1 star, optional (byntree_ind) *)
(** Write out the induction principle that Coq will generate for the
following datatype. Write down your answer on paper or type it
into a comment, and then compare it with what Coq prints. *)
Inductive byntree : Type :=
| bempty : byntree
| bleaf : yesno -> byntree
| nbranch : yesno -> byntree -> byntree -> byntree.
(** [] *)
(** **** Exercise: 1 star, optional (ex_set) *)
(** Here is an induction principle for an inductively defined
set.
ExSet_ind :
forall P : ExSet -> Prop,
(forall b : bool, P (con1 b)) ->
(forall (n : nat) (e : ExSet), P e -> P (con2 n e)) ->
forall e : ExSet, P e
Give an [Inductive] definition of [ExSet]: *)
Inductive ExSet : Type :=
(* FILL IN HERE *)
.
(** [] *)
(** What about polymorphic datatypes?
The inductive definition of polymorphic lists
Inductive list (X:Type) : Type :=
| nil : list X
| cons : X -> list X -> list X.
is very similar to that of [natlist]. The main difference is
that, here, the whole definition is _parameterized_ on a set [X]:
that is, we are defining a _family_ of inductive types [list X],
one for each [X]. (Note that, wherever [list] appears in the body
of the declaration, it is always applied to the parameter [X].)
The induction principle is likewise parameterized on [X]:
list_ind :
forall (X : Type) (P : list X -> Prop),
P [] ->
(forall (x : X) (l : list X), P l -> P (x :: l)) ->
forall l : list X, P l
Note the wording here (and, accordingly, the form of [list_ind]):
The _whole_ induction principle is parameterized on [X]. That is,
[list_ind] can be thought of as a polymorphic function that, when
applied to a type [X], gives us back an induction principle
specialized to the type [list X]. *)
(** **** Exercise: 1 star, optional (tree) *)
(** Write out the induction principle that Coq will generate for
the following datatype. Compare your answer with what Coq
prints. *)
Inductive tree (X:Type) : Type :=
| leaf : X -> tree X
| node : tree X -> tree X -> tree X.
Check tree_ind.
(** [] *)
(** **** Exercise: 1 star, optional (mytype) *)
(** Find an inductive definition that gives rise to the
following induction principle:
mytype_ind :
forall (X : Type) (P : mytype X -> Prop),
(forall x : X, P (constr1 X x)) ->
(forall n : nat, P (constr2 X n)) ->
(forall m : mytype X, P m ->
forall n : nat, P (constr3 X m n)) ->
forall m : mytype X, P m
*)
(** [] *)
(** **** Exercise: 1 star, optional (foo) *)
(** Find an inductive definition that gives rise to the
following induction principle:
foo_ind :
forall (X Y : Type) (P : foo X Y -> Prop),
(forall x : X, P (bar X Y x)) ->
(forall y : Y, P (baz X Y y)) ->
(forall f1 : nat -> foo X Y,
(forall n : nat, P (f1 n)) -> P (quux X Y f1)) ->
forall f2 : foo X Y, P f2
*)
(** [] *)
(** **** Exercise: 1 star, optional (foo') *)
(** Consider the following inductive definition: *)
Inductive foo' (X:Type) : Type :=
| C1 : list X -> foo' X -> foo' X
| C2 : foo' X.
(** What induction principle will Coq generate for [foo']? Fill
in the blanks, then check your answer with Coq.)
foo'_ind :
forall (X : Type) (P : foo' X -> Prop),
(forall (l : list X) (f : foo' X),
_______________________ ->
_______________________ ) ->
___________________________________________ ->
forall f : foo' X, ________________________
*)
(** [] *)
(* ##################################################### *)
(** ** Induction Hypotheses *)
(** Where does the phrase "induction hypothesis" fit into this story?
The induction principle for numbers
forall P : nat -> Prop,
P 0 ->
(forall n : nat, P n -> P (S n)) ->
forall n : nat, P n
is a generic statement that holds for all propositions
[P] (strictly speaking, for all families of propositions [P]
indexed by a number [n]). Each time we use this principle, we
are choosing [P] to be a particular expression of type
[nat->Prop].
We can make the proof more explicit by giving this expression a
name. For example, instead of stating the theorem [mult_0_r] as
"[forall n, n * 0 = 0]," we can write it as "[forall n, P_m0r
n]", where [P_m0r] is defined as... *)
Definition P_m0r (n:nat) : Prop :=
n * 0 = 0.
(** ... or equivalently... *)
Definition P_m0r' : nat->Prop :=
fun n => n * 0 = 0.
(** Now when we do the proof it is easier to see where [P_m0r]
appears. *)
Theorem mult_0_r'' : forall n:nat,
P_m0r n.
Proof.
apply nat_ind.
Case "n = O". reflexivity.
Case "n = S n'".
(* Note the proof state at this point! *)
intros n IHn.
unfold P_m0r in IHn. unfold P_m0r. simpl. apply IHn. Qed.
(** This extra naming step isn't something that we'll do in
normal proofs, but it is useful to do it explicitly for an example
or two, because it allows us to see exactly what the induction
hypothesis is. If we prove [forall n, P_m0r n] by induction on
[n] (using either [induction] or [apply nat_ind]), we see that the
first subgoal requires us to prove [P_m0r 0] ("[P] holds for
zero"), while the second subgoal requires us to prove [forall n',
P_m0r n' -> P_m0r n' (S n')] (that is "[P] holds of [S n'] if it
holds of [n']" or, more elegantly, "[P] is preserved by [S]").
The _induction hypothesis_ is the premise of this latter
implication -- the assumption that [P] holds of [n'], which we are
allowed to use in proving that [P] holds for [S n']. *)
(* ##################################################### *)
(** ** More on the [induction] Tactic *)
(** The [induction] tactic actually does even more low-level
bookkeeping for us than we discussed above.
Recall the informal statement of the induction principle for
natural numbers:
- If [P n] is some proposition involving a natural number n, and
we want to show that P holds for _all_ numbers n, we can
reason like this:
- show that [P O] holds
- show that, if [P n'] holds, then so does [P (S n')]
- conclude that [P n] holds for all n.
So, when we begin a proof with [intros n] and then [induction n],
we are first telling Coq to consider a _particular_ [n] (by
introducing it into the context) and then telling it to prove
something about _all_ numbers (by using induction).
What Coq actually does in this situation, internally, is to
"re-generalize" the variable we perform induction on. For
example, in our original proof that [plus] is associative...
*)
Theorem plus_assoc' : forall n m p : nat,
n + (m + p) = (n + m) + p.
Proof.
(* ...we first introduce all 3 variables into the context,
which amounts to saying "Consider an arbitrary [n], [m], and
[p]..." *)
intros n m p.
(* ...We now use the [induction] tactic to prove [P n] (that
is, [n + (m + p) = (n + m) + p]) for _all_ [n],
and hence also for the particular [n] that is in the context
at the moment. *)
induction n as [| n'].
Case "n = O". reflexivity.
Case "n = S n'".
(* In the second subgoal generated by [induction] -- the
"inductive step" -- we must prove that [P n'] implies
[P (S n')] for all [n']. The [induction] tactic
automatically introduces [n'] and [P n'] into the context
for us, leaving just [P (S n')] as the goal. *)
simpl. rewrite -> IHn'. reflexivity. Qed.
(** It also works to apply [induction] to a variable that is
quantified in the goal. *)
Theorem plus_comm' : forall n m : nat,
n + m = m + n.
Proof.
induction n as [| n'].
Case "n = O". intros m. rewrite -> plus_0_r. reflexivity.
Case "n = S n'". intros m. simpl. rewrite -> IHn'.
rewrite <- plus_n_Sm. reflexivity. Qed.
(** Note that [induction n] leaves [m] still bound in the goal --
i.e., what we are proving inductively is a statement beginning
with [forall m].
If we do [induction] on a variable that is quantified in the goal
_after_ some other quantifiers, the [induction] tactic will
automatically introduce the variables bound by these quantifiers
into the context. *)
Theorem plus_comm'' : forall n m : nat,
n + m = m + n.
Proof.
(* Let's do induction on [m] this time, instead of [n]... *)
induction m as [| m'].
Case "m = O". simpl. rewrite -> plus_0_r. reflexivity.
Case "m = S m'". simpl. rewrite <- IHm'.
rewrite <- plus_n_Sm. reflexivity. Qed.
(** **** Exercise: 1 star, optional (plus_explicit_prop) *)
(** Rewrite both [plus_assoc'] and [plus_comm'] and their proofs in
the same style as [mult_0_r''] above -- that is, for each theorem,
give an explicit [Definition] of the proposition being proved by
induction, and state the theorem and proof in terms of this
defined proposition. *)
(* FILL IN HERE *)
(** [] *)
(** ** Generalizing Inductions. *)
(** One potentially confusing feature of the [induction] tactic is
that it happily lets you try to set up an induction over a term
that isn't sufficiently general. The net effect of this will be
to lose information (much as [destruct] can do), and leave
you unable to complete the proof. Here's an example: *)
Lemma one_not_beautiful_FAILED: ~ beautiful 1.
Proof.
intro H.
(* Just doing an [inversion] on [H] won't get us very far in the [b_sum]
case. (Try it!). So we'll need induction. A naive first attempt: *)
induction H.
(* But now, although we get four cases, as we would expect from
the definition of [beautiful], we lose all information about [H] ! *)
Abort.
(** The problem is that [induction] over a Prop only works properly over
completely general instances of the Prop, i.e. one in which all
the arguments are free (unconstrained) variables.
In this respect it behaves more
like [destruct] than like [inversion].
When you're tempted to do use [induction] like this, it is generally
an indication that you need to be proving something more general.
But in some cases, it suffices to pull out any concrete arguments
into separate equations, like this: *)
Lemma one_not_beautiful: forall n, n = 1 -> ~ beautiful n.
Proof.
intros n E H.
induction H as [| | | p q Hp IHp Hq IHq].
Case "b_0".
inversion E.
Case "b_3".
inversion E.
Case "b_5".
inversion E.
Case "b_sum".
(* the rest is a tedious case analysis *)
destruct p as [|p'].
SCase "p = 0".
destruct q as [|q'].
SSCase "q = 0".
inversion E.
SSCase "q = S q'".
apply IHq. apply E.
SCase "p = S p'".
destruct q as [|q'].
SSCase "q = 0".
apply IHp. rewrite plus_0_r in E. apply E.
SSCase "q = S q'".
simpl in E. inversion E. destruct p'. inversion H0. inversion H0.
Qed.
(** There's a handy [remember] tactic that can generate the second
proof state out of the original one. *)
Lemma one_not_beautiful': ~ beautiful 1.
Proof.
intros H.
remember 1 as n eqn:E.
(* now carry on as above *)
induction H.
Admitted.
(* ####################################################### *)
(** * Informal Proofs (Advanced) *)
(** Q: What is the relation between a formal proof of a proposition
[P] and an informal proof of the same proposition [P]?
A: The latter should _teach_ the reader how to produce the
former.
Q: How much detail is needed??
Unfortunately, There is no single right answer; rather, there is a
range of choices.
At one end of the spectrum, we can essentially give the reader the
whole formal proof (i.e., the informal proof amounts to just
transcribing the formal one into words). This gives the reader
the _ability_ to reproduce the formal one for themselves, but it
doesn't _teach_ them anything.
At the other end of the spectrum, we can say "The theorem is true
and you can figure out why for yourself if you think about it hard
enough." This is also not a good teaching strategy, because
usually writing the proof requires some deep insights into the
thing we're proving, and most readers will give up before they
rediscover all the same insights as we did.
In the middle is the golden mean -- a proof that includes all of
the essential insights (saving the reader the hard part of work
that we went through to find the proof in the first place) and
clear high-level suggestions for the more routine parts to save the
reader from spending too much time reconstructing these
parts (e.g., what the IH says and what must be shown in each case
of an inductive proof), but not so much detail that the main ideas
are obscured.
Another key point: if we're comparing a formal proof of a
proposition [P] and an informal proof of [P], the proposition [P]
doesn't change. That is, formal and informal proofs are _talking
about the same world_ and they _must play by the same rules_. *)
(** ** Informal Proofs by Induction *)
(** Since we've spent much of this chapter looking "under the hood" at
formal proofs by induction, now is a good moment to talk a little
about _informal_ proofs by induction.
In the real world of mathematical communication, written proofs
range from extremely longwinded and pedantic to extremely brief
and telegraphic. The ideal is somewhere in between, of course,
but while you are getting used to the style it is better to start
out at the pedantic end. Also, during the learning phase, it is
probably helpful to have a clear standard to compare against.
With this in mind, we offer two templates below -- one for proofs
by induction over _data_ (i.e., where the thing we're doing
induction on lives in [Type]) and one for proofs by induction over
_evidence_ (i.e., where the inductively defined thing lives in
[Prop]). In the rest of this course, please follow one of the two
for _all_ of your inductive proofs. *)
(** *** Induction Over an Inductively Defined Set *)
(** _Template_:
- _Theorem_: <Universally quantified proposition of the form
"For all [n:S], [P(n)]," where [S] is some inductively defined
set.>
_Proof_: By induction on [n].
<one case for each constructor [c] of [S]...>
- Suppose [n = c a1 ... ak], where <...and here we state
the IH for each of the [a]'s that has type [S], if any>.
We must show <...and here we restate [P(c a1 ... ak)]>.
<go on and prove [P(n)] to finish the case...>
- <other cases similarly...> []
_Example_:
- _Theorem_: For all sets [X], lists [l : list X], and numbers
[n], if [length l = n] then [index (S n) l = None].
_Proof_: By induction on [l].
- Suppose [l = []]. We must show, for all numbers [n],
that, if length [[] = n], then [index (S n) [] =
None].
This follows immediately from the definition of index.
- Suppose [l = x :: l'] for some [x] and [l'], where
[length l' = n'] implies [index (S n') l' = None], for
any number [n']. We must show, for all [n], that, if
[length (x::l') = n] then [index (S n) (x::l') =
None].
Let [n] be a number with [length l = n]. Since
length l = length (x::l') = S (length l'),
it suffices to show that
index (S (length l')) l' = None.
]]
But this follows directly from the induction hypothesis,
picking [n'] to be length [l']. [] *)
(** *** Induction Over an Inductively Defined Proposition *)
(** Since inductively defined proof objects are often called
"derivation trees," this form of proof is also known as _induction
on derivations_.
_Template_:
- _Theorem_: <Proposition of the form "[Q -> P]," where [Q] is
some inductively defined proposition (more generally,
"For all [x] [y] [z], [Q x y z -> P x y z]")>
_Proof_: By induction on a derivation of [Q]. <Or, more
generally, "Suppose we are given [x], [y], and [z]. We
show that [Q x y z] implies [P x y z], by induction on a
derivation of [Q x y z]"...>
<one case for each constructor [c] of [Q]...>
- Suppose the final rule used to show [Q] is [c]. Then
<...and here we state the types of all of the [a]'s
together with any equalities that follow from the
definition of the constructor and the IH for each of
the [a]'s that has type [Q], if there are any>. We must
show <...and here we restate [P]>.
<go on and prove [P] to finish the case...>
- <other cases similarly...> []
_Example_
- _Theorem_: The [<=] relation is transitive -- i.e., for all
numbers [n], [m], and [o], if [n <= m] and [m <= o], then
[n <= o].
_Proof_: By induction on a derivation of [m <= o].
- Suppose the final rule used to show [m <= o] is
[le_n]. Then [m = o] and we must show that [n <= m],
which is immediate by hypothesis.
- Suppose the final rule used to show [m <= o] is
[le_S]. Then [o = S o'] for some [o'] with [m <= o'].
We must show that [n <= S o'].
By induction hypothesis, [n <= o'].
But then, by [le_S], [n <= S o']. [] *)
(* ##################################################### *)
(** * Induction Principles in [Prop] (Advanced) *)
(** The remainder of this chapter offers some additional details on
how induction works in Coq, the process of building proof trees,
and the "trusted computing base" that underlies Coq proofs. It
can safely be skimmed on a first reading. (As with the other
advanced sections, we recommend skimming rather than skipping over
it outright: it answers some questions that occur to many Coq
users at some point, so it is useful to have a rough idea of
what's here.) *)
(** Earlier, we looked in detail at the induction principles that Coq
generates for inductively defined _sets_. The induction
principles for inductively defined _propositions_ like [gorgeous]
are a tiny bit more complicated. As with all induction
principles, we want to use the induction principle on [gorgeous]
to prove things by inductively considering the possible shapes
that something in [gorgeous] can have -- either it is evidence
that [0] is gorgeous, or it is evidence that, for some [n], [3+n]
is gorgeous, or it is evidence that, for some [n], [5+n] is
gorgeous and it includes evidence that [n] itself is. Intuitively
speaking, however, what we want to prove are not statements about
_evidence_ but statements about _numbers_. So we want an
induction principle that lets us prove properties of numbers by
induction on evidence.
For example, from what we've said so far, you might expect the
inductive definition of [gorgeous]...
Inductive gorgeous : nat -> Prop :=
g_0 : gorgeous 0
| g_plus3 : forall n, gorgeous n -> gorgeous (3+m)
| g_plus5 : forall n, gorgeous n -> gorgeous (5+m).
...to give rise to an induction principle that looks like this...
gorgeous_ind_max :
forall P : (forall n : nat, gorgeous n -> Prop),
P O g_0 ->
(forall (m : nat) (e : gorgeous m),
P m e -> P (3+m) (g_plus3 m e) ->
(forall (m : nat) (e : gorgeous m),
P m e -> P (5+m) (g_plus5 m e) ->
forall (n : nat) (e : gorgeous n), P n e
... because:
- Since [gorgeous] is indexed by a number [n] (every [gorgeous]
object [e] is a piece of evidence that some particular number
[n] is gorgeous), the proposition [P] is parameterized by both
[n] and [e] -- that is, the induction principle can be used to
prove assertions involving both a gorgeous number and the
evidence that it is gorgeous.
- Since there are three ways of giving evidence of gorgeousness
([gorgeous] has three constructors), applying the induction
principle generates three subgoals:
- We must prove that [P] holds for [O] and [b_0].
- We must prove that, whenever [n] is a gorgeous
number and [e] is an evidence of its gorgeousness,
if [P] holds of [n] and [e],
then it also holds of [3+m] and [g_plus3 n e].
- We must prove that, whenever [n] is a gorgeous
number and [e] is an evidence of its gorgeousness,
if [P] holds of [n] and [e],
then it also holds of [5+m] and [g_plus5 n e].
- If these subgoals can be proved, then the induction principle
tells us that [P] is true for _all_ gorgeous numbers [n] and
evidence [e] of their gorgeousness.
But this is a little more flexibility than we actually need or
want: it is giving us a way to prove logical assertions where the
assertion involves properties of some piece of _evidence_ of
gorgeousness, while all we really care about is proving
properties of _numbers_ that are gorgeous -- we are interested in
assertions about numbers, not about evidence. It would therefore
be more convenient to have an induction principle for proving
propositions [P] that are parameterized just by [n] and whose
conclusion establishes [P] for all gorgeous numbers [n]:
forall P : nat -> Prop,
... ->
forall n : nat, gorgeous n -> P n
For this reason, Coq actually generates the following simplified
induction principle for [gorgeous]: *)
Check gorgeous_ind.
(* ===> gorgeous_ind
: forall P : nat -> Prop,
P 0 ->
(forall n : nat, gorgeous n -> P n -> P (3 + n)) ->
(forall n : nat, gorgeous n -> P n -> P (5 + n)) ->
forall n : nat, gorgeous n -> P n *)
(** In particular, Coq has dropped the evidence term [e] as a
parameter of the the proposition [P], and consequently has
rewritten the assumption [forall (n : nat) (e: gorgeous n), ...]
to be [forall (n : nat), gorgeous n -> ...]; i.e., we no longer
require explicit evidence of the provability of [gorgeous n]. *)
(** In English, [gorgeous_ind] says:
- Suppose, [P] is a property of natural numbers (that is, [P n] is
a [Prop] for every [n]). To show that [P n] holds whenever [n]
is gorgeous, it suffices to show:
- [P] holds for [0],
- for any [n], if [n] is gorgeous and [P] holds for
[n], then [P] holds for [3+n],
- for any [n], if [n] is gorgeous and [P] holds for
[n], then [P] holds for [5+n]. *)
(** As expected, we can apply [gorgeous_ind] directly instead of using [induction]. *)
Theorem gorgeous__beautiful' : forall n, gorgeous n -> beautiful n.
Proof.
intros.
apply gorgeous_ind.
Case "g_0".
apply b_0.
Case "g_plus3".
intros.
apply b_sum. apply b_3.
apply H1.
Case "g_plus5".
intros.
apply b_sum. apply b_5.
apply H1.
apply H.
Qed.
(** The precise form of an Inductive definition can affect the
induction principle Coq generates.
For example, in [Logic], we have defined [<=] as: *)
(* Inductive le : nat -> nat -> Prop :=
| le_n : forall n, le n n
| le_S : forall n m, (le n m) -> (le n (S m)). *)
(** This definition can be streamlined a little by observing that the
left-hand argument [n] is the same everywhere in the definition,
so we can actually make it a "general parameter" to the whole
definition, rather than an argument to each constructor. *)
Inductive le (n:nat) : nat -> Prop :=
| le_n : le n n
| le_S : forall m, (le n m) -> (le n (S m)).
Notation "m <= n" := (le m n).
(** The second one is better, even though it looks less symmetric.
Why? Because it gives us a simpler induction principle. *)
Check le_ind.
(* ===> forall (n : nat) (P : nat -> Prop),
P n ->
(forall m : nat, n <= m -> P m -> P (S m)) ->
forall n0 : nat, n <= n0 -> P n0 *)
(** By contrast, the induction principle that Coq calculates for the
first definition has a lot of extra quantifiers, which makes it
messier to work with when proving things by induction. Here is
the induction principle for the first [le]: *)
(* le_ind :
forall P : nat -> nat -> Prop,
(forall n : nat, P n n) ->
(forall n m : nat, le n m -> P n m -> P n (S m)) ->
forall n n0 : nat, le n n0 -> P n n0 *)
(* ##################################################### *)
(** * Additional Exercises *)
(** **** Exercise: 2 stars, optional (foo_ind_principle) *)
(** Suppose we make the following inductive definition:
Inductive foo (X : Set) (Y : Set) : Set :=
| foo1 : X -> foo X Y
| foo2 : Y -> foo X Y
| foo3 : foo X Y -> foo X Y.
Fill in the blanks to complete the induction principle that will be
generated by Coq.
foo_ind
: forall (X Y : Set) (P : foo X Y -> Prop),
(forall x : X, __________________________________) ->
(forall y : Y, __________________________________) ->
(________________________________________________) ->
________________________________________________
*)
(** [] *)
(** **** Exercise: 2 stars, optional (bar_ind_principle) *)
(** Consider the following induction principle:
bar_ind
: forall P : bar -> Prop,
(forall n : nat, P (bar1 n)) ->
(forall b : bar, P b -> P (bar2 b)) ->
(forall (b : bool) (b0 : bar), P b0 -> P (bar3 b b0)) ->
forall b : bar, P b
Write out the corresponding inductive set definition.
Inductive bar : Set :=
| bar1 : ________________________________________
| bar2 : ________________________________________
| bar3 : ________________________________________.
*)
(** [] *)
(** **** Exercise: 2 stars, optional (no_longer_than_ind) *)
(** Given the following inductively defined proposition:
Inductive no_longer_than (X : Set) : (list X) -> nat -> Prop :=
| nlt_nil : forall n, no_longer_than X [] n
| nlt_cons : forall x l n, no_longer_than X l n ->
no_longer_than X (x::l) (S n)
| nlt_succ : forall l n, no_longer_than X l n ->
no_longer_than X l (S n).
write the induction principle generated by Coq.
no_longer_than_ind
: forall (X : Set) (P : list X -> nat -> Prop),
(forall n : nat, ____________________) ->
(forall (x : X) (l : list X) (n : nat),
no_longer_than X l n -> ____________________ ->
_____________________________ ->
(forall (l : list X) (n : nat),
no_longer_than X l n -> ____________________ ->
_____________________________ ->
forall (l : list X) (n : nat), no_longer_than X l n ->
____________________
*)
(** [] *)
(* ##################################################### *)
(** ** Induction Principles for other Logical Propositions *)
(** Similarly, in [Logic] we have defined [eq] as: *)
(* Inductive eq (X:Type) : X -> X -> Prop :=
refl_equal : forall x, eq X x x. *)
(** In the Coq standard library, the definition of equality is
slightly different: *)
Inductive eq' (X:Type) (x:X) : X -> Prop :=
refl_equal' : eq' X x x.
(** The advantage of this definition is that the induction
principle that Coq derives for it is precisely the familiar
principle of _Leibniz equality_: what we mean when we say "[x] and
[y] are equal" is that every property on [P] that is true of [x]
is also true of [y]. (One philosophical quibble should be noted,
though: Here, the "Leibniz equality principle" is a _consequence_
of the way we've defined equality as an inductive type. Leibniz
viewed things exactly the other way around: for him, this
principle itself _is the definition_ of equality.) *)
Check eq'_ind.
(* ===>
forall (X : Type) (x : X) (P : X -> Prop),
P x -> forall y : X, x =' y -> P y
===> (i.e., after a little reorganization)
forall (X : Type) (x : X) forall y : X,
x =' y ->
forall P : X -> Prop, P x -> P y *)
(** The induction principles for conjunction and disjunction are a
good illustration of Coq's way of generating simplified induction
principles for [Inductive]ly defined propositions, which we
discussed above. You try first: *)
(** **** Exercise: 1 star, optional (and_ind_principle) *)
(** See if you can predict the induction principle for conjunction. *)
(* Check and_ind. *)
(** [] *)
(** **** Exercise: 1 star, optional (or_ind_principle) *)
(** See if you can predict the induction principle for disjunction. *)
(* Check or_ind. *)
(** [] *)
Check and_ind.
(** From the inductive definition of the proposition [and P Q]
Inductive and (P Q : Prop) : Prop :=
conj : P -> Q -> (and P Q).
we might expect Coq to generate this induction principle
and_ind_max :
forall (P Q : Prop) (P0 : P /\ Q -> Prop),
(forall (a : P) (b : Q), P0 (conj P Q a b)) ->
forall a : P /\ Q, P0 a
but actually it generates this simpler and more useful one:
and_ind :
forall P Q P0 : Prop,
(P -> Q -> P0) ->
P /\ Q -> P0
In the same way, when given the inductive definition of [or P Q]
Inductive or (P Q : Prop) : Prop :=
| or_introl : P -> or P Q
| or_intror : Q -> or P Q.
instead of the "maximal induction principle"
or_ind_max :
forall (P Q : Prop) (P0 : P \/ Q -> Prop),
(forall a : P, P0 (or_introl P Q a)) ->
(forall b : Q, P0 (or_intror P Q b)) ->
forall o : P \/ Q, P0 o
what Coq actually generates is this:
or_ind :
forall P Q P0 : Prop,
(P -> P0) ->
(Q -> P0) ->
P \/ Q -> P0
]]
*)
(** **** Exercise: 1 star, optional (False_ind_principle) *)
(** Can you predict the induction principle for falsehood? *)
(* Check False_ind. *)
(** [] *)
(** Here's the induction principle that Coq generates for existentials: *)
Check ex_ind.
(* ===> forall (X:Type) (P: X->Prop) (Q: Prop),
(forall witness:X, P witness -> Q) ->
ex X P ->
Q *)
(** This induction principle can be understood as follows: If we have
a function [f] that can construct evidence for [Q] given _any_
witness of type [X] together with evidence that this witness has
property [P], then from a proof of [ex X P] we can extract the
witness and evidence that must have been supplied to the
constructor, give these to [f], and thus obtain a proof of [Q]. *)
(* ######################################################### *)
(** ** Explicit Proof Objects for Induction *)
(** Although tactic-based proofs are normally much easier to
work with, the ability to write a proof term directly is sometimes
very handy, particularly when we want Coq to do something slightly
non-standard. *)
(** Recall the induction principle on naturals that Coq generates for
us automatically from the Inductive declation for [nat]. *)
Check nat_ind.
(* ===>
nat_ind : forall P : nat -> Prop,
P 0 ->
(forall n : nat, P n -> P (S n)) ->
forall n : nat, P n *)
(** There's nothing magic about this induction lemma: it's just
another Coq lemma that requires a proof. Coq generates the proof
automatically too... *)
Print nat_ind.
Print nat_rect.
(* ===> (after some manual inlining and tidying)
nat_ind =
fun (P : nat -> Prop)
(f : P 0)
(f0 : forall n : nat, P n -> P (S n)) =>
fix F (n : nat) : P n :=
match n with
| 0 => f
| S n0 => f0 n0 (F n0)
end.
*)
(** We can read this as follows:
Suppose we have evidence [f] that [P] holds on 0, and
evidence [f0] that [forall n:nat, P n -> P (S n)].
Then we can prove that [P] holds of an arbitrary nat [n] via
a recursive function [F] (here defined using the expression
form [Fix] rather than by a top-level [Fixpoint]
declaration). [F] pattern matches on [n]:
- If it finds 0, [F] uses [f] to show that [P n] holds.
- If it finds [S n0], [F] applies itself recursively on [n0]
to obtain evidence that [P n0] holds; then it applies [f0]
on that evidence to show that [P (S n)] holds.
[F] is just an ordinary recursive function that happens to
operate on evidence in [Prop] rather than on terms in [Set].
*)
(** We can adapt this approach to proving [nat_ind] to help prove
_non-standard_ induction principles too. Recall our desire to
prove that
[forall n : nat, even n -> ev n].
Attempts to do this by standard induction on [n] fail, because the
induction principle only lets us proceed when we can prove that
[even n -> even (S n)] -- which is of course never provable. What
we did in [Logic] was a bit of a hack:
[Theorem even__ev : forall n : nat,
(even n -> ev n) /\ (even (S n) -> ev (S n))].
We can make a much better proof by defining and proving a
non-standard induction principle that goes "by twos":
*)
Definition nat_ind2 :
forall (P : nat -> Prop),
P 0 ->
P 1 ->
(forall n : nat, P n -> P (S(S n))) ->
forall n : nat , P n :=
fun P => fun P0 => fun P1 => fun PSS =>
fix f (n:nat) := match n with
0 => P0
| 1 => P1
| S (S n') => PSS n' (f n')
end.
(** Once you get the hang of it, it is entirely straightforward to
give an explicit proof term for induction principles like this.
Proving this as a lemma using tactics is much less intuitive (try
it!).
The [induction ... using] tactic variant gives a convenient way to
specify a non-standard induction principle like this. *)
Lemma even__ev' : forall n, even n -> ev n.
Proof.
intros.
induction n as [ | |n'] using nat_ind2.
Case "even 0".
apply ev_0.
Case "even 1".
inversion H.
Case "even (S(S n'))".
apply ev_SS.
apply IHn'. unfold even. unfold even in H. simpl in H. apply H.
Qed.
(* ######################################################### *)
(** ** The Coq Trusted Computing Base *)
(** One issue that arises with any automated proof assistant is "why
trust it?": what if there is a bug in the implementation that
renders all its reasoning suspect?
While it is impossible to allay such concerns completely, the fact
that Coq is based on the Curry-Howard correspondence gives it a
strong foundation. Because propositions are just types and proofs
are just terms, checking that an alleged proof of a proposition is
valid just amounts to _type-checking_ the term. Type checkers are
relatively small and straightforward programs, so the "trusted
computing base" for Coq -- the part of the code that we have to
believe is operating correctly -- is small too.
What must a typechecker do? Its primary job is to make sure that
in each function application the expected and actual argument
types match, that the arms of a [match] expression are constructor
patterns belonging to the inductive type being matched over and
all arms of the [match] return the same type, and so on.
There are a few additional wrinkles:
- Since Coq types can themselves be expressions, the checker must
normalize these (by using the computation rules) before
comparing them.
- The checker must make sure that [match] expressions are
_exhaustive_. That is, there must be an arm for every possible
constructor. To see why, consider the following alleged proof
object:
Definition or_bogus : forall P Q, P \/ Q -> P :=
fun (P Q : Prop) (A : P \/ Q) =>
match A with
| or_introl H => H
end.
All the types here match correctly, but the [match] only
considers one of the possible constructors for [or]. Coq's
exhaustiveness check will reject this definition.
- The checker must make sure that each [fix] expression
terminates. It does this using a syntactic check to make sure
that each recursive call is on a subexpression of the original
argument. To see why this is essential, consider this alleged
proof:
Definition nat_false : forall (n:nat), False :=
fix f (n:nat) : False := f n.
Again, this is perfectly well-typed, but (fortunately) Coq will
reject it. *)
(** Note that the soundness of Coq depends only on the correctness of
this typechecking engine, not on the tactic machinery. If there
is a bug in a tactic implementation (and this certainly does
happen!), that tactic might construct an invalid proof term. But
when you type [Qed], Coq checks the term for validity from
scratch. Only lemmas whose proofs pass the type-checker can be
used in further proof developments. *)
(** $Date: 2014-12-31 15:31:47 -0500 (Wed, 31 Dec 2014) $ *)
|
//*****************************************************************************
// Copyright (c) 2006 Xilinx, Inc.
// This design is confidential and proprietary of Xilinx, Inc.
// All Rights Reserved
//*****************************************************************************
// ____ ____
// / /\/ /
// /___/ \ / Vendor: Xilinx
// \ \ \/ Version: $Name: i+IP+125372 $
// \ \ Application: MIG
// / / Filename: mem_interface_top.v
// /___/ /\ Date Last Modified: $Date: 2007/04/18 13:49:32 $
// \ \ / \ Date Created: Wed Aug 16 2006
// \___\/\___\
//
//Device: Virtex-5
//Design Name: DDR2
//Purpose:
// Top-level module. Simple model for what the user might use
// Typically, the user will only instantiate MEM_INTERFACE_TOP in their
// code, and generate all the other infrastructure and backend logic
// separately. This module serves both as an example, and allows the user
// to synthesize a self-contained design, which they can use to test their
// hardware.
// In addition to the memory controller, the module instantiates:
// 1. Clock generation/distribution, reset logic
// 2. IDELAY control block
// 3. Synthesizable testbench - used to model user's backend logic
//Reference:
//Revision History:
//*****************************************************************************
`timescale 1ns/1ps
module mem_interface_top #
(
parameter BANK_WIDTH = 3, // # of memory bank addr bits
parameter CKE_WIDTH = 1, // # of memory clock enable outputs
parameter CLK_WIDTH = 1, // # of clock outputs
parameter COL_WIDTH = 10, // # of memory column bits
parameter CS_NUM = 1, // # of separate memory chip selects
parameter CS_WIDTH = 1, // # of total memory chip selects
parameter CS_BITS = 0, // set to log2(CS_NUM) (rounded up)
parameter DM_WIDTH = 9, // # of data mask bits
parameter DQ_WIDTH = 72, // # of data width
parameter DQ_PER_DQS = 8, // # of DQ data bits per strobe
parameter DQS_WIDTH = 9, // # of DQS strobes
parameter DQ_BITS = 7, // set to log2(DQS_WIDTH*DQ_PER_DQS)
parameter DQS_BITS = 4, // set to log2(DQS_WIDTH)
parameter ODT_WIDTH = 1, // # of memory on-die term enables
parameter ROW_WIDTH = 14, // # of memory row and # of addr bits
parameter ADDITIVE_LAT = 0, // additive write latency
parameter BURST_LEN = 4, // burst length (in double words)
parameter BURST_TYPE = 0, // burst type (=0 seq; =1 interleaved)
parameter CAS_LAT = 3, // CAS latency
parameter ECC_ENABLE = 0, // enable ECC (=1 enable)
parameter MULTI_BANK_EN = 1, // Keeps multiple banks open. (= 1 enable)
parameter ODT_TYPE = 0, // ODT (=0(none),=1(75),=2(150),=3(50))
parameter REDUCE_DRV = 0, // reduced strength mem I/O (=1 yes)
parameter REG_ENABLE = 1, // registered addr/ctrl (=1 yes)
parameter TREFI_NS = 7800, // auto refresh interval (uS)
parameter TRAS = 40000, // active->precharge delay
parameter TRCD = 15000, // active->read/write delay
parameter TRFC = 127500, // refresh->refresh, refresh->active delay
parameter TRP = 15000, // precharge->command delay
parameter TRTP = 7500, // read->precharge delay
parameter TWR = 15000, // used to determine write->precharge
parameter TWTR = 10000, // write->read delay
parameter IDEL_HIGH_PERF = "TRUE", // # initial # taps for DQ IDELAY
parameter SIM_ONLY = 0, // = 1 to skip SDRAM power up delay
parameter CLK_PERIOD = 5000, // Core/Memory clock period (in ps)
parameter RST_ACT_LOW = 1, // =1 for active low reset, =0 for active high
parameter DLL_FREQ_MODE = "HIGH" // DCM Frequency range
)
(
inout [DQ_WIDTH-1:0] ddr2_dq,
output [ROW_WIDTH-1:0] ddr2_a,
output [BANK_WIDTH-1:0] ddr2_ba,
output ddr2_ras_n,
output ddr2_cas_n,
output ddr2_we_n,
output [CS_WIDTH-1:0] ddr2_cs_n,
output [ODT_WIDTH-1:0] ddr2_odt,
output [CKE_WIDTH-1:0] ddr2_cke,
output ddr2_reset_n,
output [DM_WIDTH-1:0] ddr2_dm,
//// input sys_clk_p,
//// input sys_clk_n,
input sys_clk,
input clk200_p,
input clk200_n,
/// Jiansong: 200MHz clock output
output clk200_o,
input sys_rst_n,
output phy_init_done,
output rst0_tb,
output clk0_tb,
output app_wdf_afull,
output app_af_afull,
output rd_data_valid,
input app_wdf_wren,
input app_af_wren,
input [30:0] app_af_addr,
input [2:0] app_af_cmd,
output [(2*DQ_WIDTH)-1:0] rd_data_fifo_out,
input [(2*DQ_WIDTH)-1:0] app_wdf_data,
input [(2*DM_WIDTH)-1:0] app_wdf_mask_data,
inout [DQS_WIDTH-1:0] ddr2_dqs,
inout [DQS_WIDTH-1:0] ddr2_dqs_n,
output [CLK_WIDTH-1:0] ddr2_ck,
output [CLK_WIDTH-1:0] ddr2_ck_n
);
wire rst0;
wire rst90;
wire rst200;
wire clk0;
wire clk90;
wire clk200;
wire idelay_ctrl_rdy;
//***************************************************************************
assign rst0_tb = rst0;
assign clk0_tb = clk0;
assign ddr2_reset_n= ~rst0;
/// Jiansong:
assign clk200_o = clk200;
mem_interface_top_idelay_ctrl u_idelay_ctrl
(
.rst200(rst200),
.clk200(clk200),
.idelay_ctrl_rdy(idelay_ctrl_rdy)
);
mem_interface_top_infrastructure #
(
.CLK_PERIOD(CLK_PERIOD),
.RST_ACT_LOW(RST_ACT_LOW),
.DLL_FREQ_MODE(DLL_FREQ_MODE)
)
u_infrastructure
(
//// .sys_clk_p(sys_clk_p),
//// .sys_clk_n(sys_clk_n),
.sys_clk(sys_clk),
.clk200_p(clk200_p),
.clk200_n(clk200_n),
.sys_rst_n(sys_rst_n),
.rst0(rst0),
.rst90(rst90),
.rst200(rst200),
.clk0(clk0),
.clk90(clk90),
.clk200(clk200),
.idelay_ctrl_rdy(idelay_ctrl_rdy)
);
mem_interface_top_ddr2_top_0 #
(
.BANK_WIDTH(BANK_WIDTH),
.CKE_WIDTH(CKE_WIDTH),
.CLK_WIDTH(CLK_WIDTH),
.COL_WIDTH(COL_WIDTH),
.CS_NUM(CS_NUM),
.CS_WIDTH(CS_WIDTH),
.CS_BITS(CS_BITS),
.DM_WIDTH(DM_WIDTH),
.DQ_WIDTH(DQ_WIDTH),
.DQ_PER_DQS(DQ_PER_DQS),
.DQS_WIDTH(DQS_WIDTH),
.DQ_BITS(DQ_BITS),
.DQS_BITS(DQS_BITS),
.ODT_WIDTH(ODT_WIDTH),
.ROW_WIDTH(ROW_WIDTH),
.ADDITIVE_LAT(ADDITIVE_LAT),
.BURST_LEN(BURST_LEN),
.BURST_TYPE(BURST_TYPE),
.CAS_LAT(CAS_LAT),
.ECC_ENABLE(ECC_ENABLE),
.MULTI_BANK_EN(MULTI_BANK_EN),
.ODT_TYPE(ODT_TYPE),
.REDUCE_DRV(REDUCE_DRV),
.REG_ENABLE(REG_ENABLE),
.TREFI_NS(TREFI_NS),
.TRAS(TRAS),
.TRCD(TRCD),
.TRFC(TRFC),
.TRP(TRP),
.TRTP(TRTP),
.TWR(TWR),
.TWTR(TWTR),
.IDEL_HIGH_PERF(IDEL_HIGH_PERF),
.SIM_ONLY(SIM_ONLY),
.CLK_PERIOD(CLK_PERIOD)
)
u_ddr2_top_0
(
.ddr2_dq(ddr2_dq),
.ddr2_a(ddr2_a),
.ddr2_ba(ddr2_ba),
.ddr2_ras_n(ddr2_ras_n),
.ddr2_cas_n(ddr2_cas_n),
.ddr2_we_n(ddr2_we_n),
.ddr2_cs_n(ddr2_cs_n),
.ddr2_odt(ddr2_odt),
.ddr2_cke(ddr2_cke),
.ddr2_dm(ddr2_dm),
.phy_init_done(phy_init_done),
.rst0(rst0),
.rst90(rst90),
.clk0(clk0),
.clk90(clk90),
.app_wdf_afull(app_wdf_afull),
.app_af_afull(app_af_afull),
.rd_data_valid(rd_data_valid),
.app_wdf_wren(app_wdf_wren),
.app_af_wren(app_af_wren),
.app_af_addr(app_af_addr),
.app_af_cmd(app_af_cmd),
.rd_data_fifo_out(rd_data_fifo_out),
.app_wdf_data(app_wdf_data),
.app_wdf_mask_data(app_wdf_mask_data),
.ddr2_dqs(ddr2_dqs),
.ddr2_dqs_n(ddr2_dqs_n),
.ddr2_ck(ddr2_ck),
.ddr2_ck_n(ddr2_ck_n)
);
endmodule
|
//*****************************************************************************
// Copyright (c) 2006 Xilinx, Inc.
// This design is confidential and proprietary of Xilinx, Inc.
// All Rights Reserved
//*****************************************************************************
// ____ ____
// / /\/ /
// /___/ \ / Vendor: Xilinx
// \ \ \/ Version: $Name: i+IP+125372 $
// \ \ Application: MIG
// / / Filename: mem_interface_top.v
// /___/ /\ Date Last Modified: $Date: 2007/04/18 13:49:32 $
// \ \ / \ Date Created: Wed Aug 16 2006
// \___\/\___\
//
//Device: Virtex-5
//Design Name: DDR2
//Purpose:
// Top-level module. Simple model for what the user might use
// Typically, the user will only instantiate MEM_INTERFACE_TOP in their
// code, and generate all the other infrastructure and backend logic
// separately. This module serves both as an example, and allows the user
// to synthesize a self-contained design, which they can use to test their
// hardware.
// In addition to the memory controller, the module instantiates:
// 1. Clock generation/distribution, reset logic
// 2. IDELAY control block
// 3. Synthesizable testbench - used to model user's backend logic
//Reference:
//Revision History:
//*****************************************************************************
`timescale 1ns/1ps
module mem_interface_top #
(
parameter BANK_WIDTH = 3, // # of memory bank addr bits
parameter CKE_WIDTH = 1, // # of memory clock enable outputs
parameter CLK_WIDTH = 1, // # of clock outputs
parameter COL_WIDTH = 10, // # of memory column bits
parameter CS_NUM = 1, // # of separate memory chip selects
parameter CS_WIDTH = 1, // # of total memory chip selects
parameter CS_BITS = 0, // set to log2(CS_NUM) (rounded up)
parameter DM_WIDTH = 9, // # of data mask bits
parameter DQ_WIDTH = 72, // # of data width
parameter DQ_PER_DQS = 8, // # of DQ data bits per strobe
parameter DQS_WIDTH = 9, // # of DQS strobes
parameter DQ_BITS = 7, // set to log2(DQS_WIDTH*DQ_PER_DQS)
parameter DQS_BITS = 4, // set to log2(DQS_WIDTH)
parameter ODT_WIDTH = 1, // # of memory on-die term enables
parameter ROW_WIDTH = 14, // # of memory row and # of addr bits
parameter ADDITIVE_LAT = 0, // additive write latency
parameter BURST_LEN = 4, // burst length (in double words)
parameter BURST_TYPE = 0, // burst type (=0 seq; =1 interleaved)
parameter CAS_LAT = 3, // CAS latency
parameter ECC_ENABLE = 0, // enable ECC (=1 enable)
parameter MULTI_BANK_EN = 1, // Keeps multiple banks open. (= 1 enable)
parameter ODT_TYPE = 0, // ODT (=0(none),=1(75),=2(150),=3(50))
parameter REDUCE_DRV = 0, // reduced strength mem I/O (=1 yes)
parameter REG_ENABLE = 1, // registered addr/ctrl (=1 yes)
parameter TREFI_NS = 7800, // auto refresh interval (uS)
parameter TRAS = 40000, // active->precharge delay
parameter TRCD = 15000, // active->read/write delay
parameter TRFC = 127500, // refresh->refresh, refresh->active delay
parameter TRP = 15000, // precharge->command delay
parameter TRTP = 7500, // read->precharge delay
parameter TWR = 15000, // used to determine write->precharge
parameter TWTR = 10000, // write->read delay
parameter IDEL_HIGH_PERF = "TRUE", // # initial # taps for DQ IDELAY
parameter SIM_ONLY = 0, // = 1 to skip SDRAM power up delay
parameter CLK_PERIOD = 5000, // Core/Memory clock period (in ps)
parameter RST_ACT_LOW = 1, // =1 for active low reset, =0 for active high
parameter DLL_FREQ_MODE = "HIGH" // DCM Frequency range
)
(
inout [DQ_WIDTH-1:0] ddr2_dq,
output [ROW_WIDTH-1:0] ddr2_a,
output [BANK_WIDTH-1:0] ddr2_ba,
output ddr2_ras_n,
output ddr2_cas_n,
output ddr2_we_n,
output [CS_WIDTH-1:0] ddr2_cs_n,
output [ODT_WIDTH-1:0] ddr2_odt,
output [CKE_WIDTH-1:0] ddr2_cke,
output ddr2_reset_n,
output [DM_WIDTH-1:0] ddr2_dm,
//// input sys_clk_p,
//// input sys_clk_n,
input sys_clk,
input clk200_p,
input clk200_n,
/// Jiansong: 200MHz clock output
output clk200_o,
input sys_rst_n,
output phy_init_done,
output rst0_tb,
output clk0_tb,
output app_wdf_afull,
output app_af_afull,
output rd_data_valid,
input app_wdf_wren,
input app_af_wren,
input [30:0] app_af_addr,
input [2:0] app_af_cmd,
output [(2*DQ_WIDTH)-1:0] rd_data_fifo_out,
input [(2*DQ_WIDTH)-1:0] app_wdf_data,
input [(2*DM_WIDTH)-1:0] app_wdf_mask_data,
inout [DQS_WIDTH-1:0] ddr2_dqs,
inout [DQS_WIDTH-1:0] ddr2_dqs_n,
output [CLK_WIDTH-1:0] ddr2_ck,
output [CLK_WIDTH-1:0] ddr2_ck_n
);
wire rst0;
wire rst90;
wire rst200;
wire clk0;
wire clk90;
wire clk200;
wire idelay_ctrl_rdy;
//***************************************************************************
assign rst0_tb = rst0;
assign clk0_tb = clk0;
assign ddr2_reset_n= ~rst0;
/// Jiansong:
assign clk200_o = clk200;
mem_interface_top_idelay_ctrl u_idelay_ctrl
(
.rst200(rst200),
.clk200(clk200),
.idelay_ctrl_rdy(idelay_ctrl_rdy)
);
mem_interface_top_infrastructure #
(
.CLK_PERIOD(CLK_PERIOD),
.RST_ACT_LOW(RST_ACT_LOW),
.DLL_FREQ_MODE(DLL_FREQ_MODE)
)
u_infrastructure
(
//// .sys_clk_p(sys_clk_p),
//// .sys_clk_n(sys_clk_n),
.sys_clk(sys_clk),
.clk200_p(clk200_p),
.clk200_n(clk200_n),
.sys_rst_n(sys_rst_n),
.rst0(rst0),
.rst90(rst90),
.rst200(rst200),
.clk0(clk0),
.clk90(clk90),
.clk200(clk200),
.idelay_ctrl_rdy(idelay_ctrl_rdy)
);
mem_interface_top_ddr2_top_0 #
(
.BANK_WIDTH(BANK_WIDTH),
.CKE_WIDTH(CKE_WIDTH),
.CLK_WIDTH(CLK_WIDTH),
.COL_WIDTH(COL_WIDTH),
.CS_NUM(CS_NUM),
.CS_WIDTH(CS_WIDTH),
.CS_BITS(CS_BITS),
.DM_WIDTH(DM_WIDTH),
.DQ_WIDTH(DQ_WIDTH),
.DQ_PER_DQS(DQ_PER_DQS),
.DQS_WIDTH(DQS_WIDTH),
.DQ_BITS(DQ_BITS),
.DQS_BITS(DQS_BITS),
.ODT_WIDTH(ODT_WIDTH),
.ROW_WIDTH(ROW_WIDTH),
.ADDITIVE_LAT(ADDITIVE_LAT),
.BURST_LEN(BURST_LEN),
.BURST_TYPE(BURST_TYPE),
.CAS_LAT(CAS_LAT),
.ECC_ENABLE(ECC_ENABLE),
.MULTI_BANK_EN(MULTI_BANK_EN),
.ODT_TYPE(ODT_TYPE),
.REDUCE_DRV(REDUCE_DRV),
.REG_ENABLE(REG_ENABLE),
.TREFI_NS(TREFI_NS),
.TRAS(TRAS),
.TRCD(TRCD),
.TRFC(TRFC),
.TRP(TRP),
.TRTP(TRTP),
.TWR(TWR),
.TWTR(TWTR),
.IDEL_HIGH_PERF(IDEL_HIGH_PERF),
.SIM_ONLY(SIM_ONLY),
.CLK_PERIOD(CLK_PERIOD)
)
u_ddr2_top_0
(
.ddr2_dq(ddr2_dq),
.ddr2_a(ddr2_a),
.ddr2_ba(ddr2_ba),
.ddr2_ras_n(ddr2_ras_n),
.ddr2_cas_n(ddr2_cas_n),
.ddr2_we_n(ddr2_we_n),
.ddr2_cs_n(ddr2_cs_n),
.ddr2_odt(ddr2_odt),
.ddr2_cke(ddr2_cke),
.ddr2_dm(ddr2_dm),
.phy_init_done(phy_init_done),
.rst0(rst0),
.rst90(rst90),
.clk0(clk0),
.clk90(clk90),
.app_wdf_afull(app_wdf_afull),
.app_af_afull(app_af_afull),
.rd_data_valid(rd_data_valid),
.app_wdf_wren(app_wdf_wren),
.app_af_wren(app_af_wren),
.app_af_addr(app_af_addr),
.app_af_cmd(app_af_cmd),
.rd_data_fifo_out(rd_data_fifo_out),
.app_wdf_data(app_wdf_data),
.app_wdf_mask_data(app_wdf_mask_data),
.ddr2_dqs(ddr2_dqs),
.ddr2_dqs_n(ddr2_dqs_n),
.ddr2_ck(ddr2_ck),
.ddr2_ck_n(ddr2_ck_n)
);
endmodule
|
//-----------------------------------------------------------------------------
// Copyright (C) 2014 iZsh <izsh at fail0verflow.com>
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Butterworth low pass IIR filter
// input: 8bit ADC signal, 1MS/s
// output: 8bit value, Fc=20khz
//
// coef: (using http://www-users.cs.york.ac.uk/~fisher/mkfilter/trad.html)
// Recurrence relation:
// y[n] = ( 1 * x[n- 2])
// + ( 2 * x[n- 1])
// + ( 1 * x[n- 0])
// + ( -0.8371816513 * y[n- 2])
// + ( 1.8226949252 * y[n- 1])
//
// therefore:
// a = [1,2,1]
// b = [-0.8371816513, 1.8226949252]
// b is approximated to b = [-0xd6/0x100, 0x1d3 / 0x100] (for optimization)
// gain = 2.761139367e2
//
// See details about its design see
// https://fail0verflow.com/blog/2014/proxmark3-fpga-iir-filter.html
module lp20khz_1MSa_iir_filter(input clk, input [7:0] adc_d, output rdy, output [7:0] out);
// clk is 24Mhz, the IIR filter is designed for 1MS/s
// hence we need to divide it by 24
// using a shift register takes less area than a counter
reg [23:0] cnt = 1;
assign rdy = cnt[0];
always @(posedge clk)
cnt <= {cnt[22:0], cnt[23]};
reg [7:0] x0 = 0;
reg [7:0] x1 = 0;
reg [16:0] y0 = 0;
reg [16:0] y1 = 0;
always @(posedge clk)
begin
if (rdy)
begin
x0 <= x1;
x1 <= adc_d;
y0 <= y1;
y1 <=
// center the signal:
// input range is [0; 255]
// We want "128" to be at the center of the 17bit register
// (128+z)*gain = 17bit center
// z = (1<<16)/gain - 128 = 109
// We could use 9bit x registers for that, but that would be
// a waste, let's just add the constant during the computation
// (x0+109) + 2*(x1+109) + (x2+109) = x0 + 2*x1 + x2 + 436
x0 + {x1, 1'b0} + adc_d + 436
// we want "- y0 * 0xd6 / 0x100" using only shift and add
// 0xd6 == 0b11010110
// so *0xd6/0x100 is equivalent to
// ((x << 1) + (x << 2) + (x << 4) + (x << 6) + (x << 7)) >> 8
// which is also equivalent to
// (x >> 7) + (x >> 6) + (x >> 4) + (x >> 2) + (x >> 1)
- ((y0 >> 7) + (y0 >> 6) + (y0 >> 4) + (y0 >> 2) + (y0 >> 1)) // - y0 * 0xd6 / 0x100
// we want "+ y1 * 0x1d3 / 0x100"
// 0x1d3 == 0b111010011
// so this is equivalent to
// ((x << 0) + (x << 1) + (x << 4) + (x << 6) + (x << 7) + (x << 8)) >> 8
// which is also equivalent to
// (x >> 8) + (x >> 7) + (x >> 4) + (x >> 2) + (x >> 1) + (x >> 0)
+ ((y1 >> 8) + (y1 >> 7) + (y1 >> 4) + (y1 >> 2) + (y1 >> 1) + y1);
end
end
// output: reduce to 8bit
assign out = y1[16:9];
endmodule
|
/*+--------------------------------------------------------------------------
Copyright (c) 2015, Microsoft Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------*/
`timescale 1ns / 1ps
module RCB_FRL_OSERDES(OQ, CLK, CLKDIV, DI, OCE, SR);
output OQ;
input CLK, CLKDIV;
input [7:0] DI;
input OCE, SR;
wire SHIFT1, SHIFT2;
OSERDES OSERDES_inst1 (
.OQ(OQ), // 1-bit data path output
.SHIFTOUT1(), // 1-bit data expansion output
.SHIFTOUT2(), // 1-bit data expansion output
.TQ(), // 1-bit 3-state control output
.CLK(CLK), // 1-bit clock input
.CLKDIV(CLKDIV), // 1-bit divided clock input
.D1(DI[7]), // 1-bit parallel data input
.D2(DI[6]), // 1-bit parallel data input
.D3(DI[5]), // 1-bit parallel data input
.D4(DI[4]), // 1-bit parallel data input
.D5(DI[3]), // 1-bit parallel data input
.D6(DI[2]), // 1-bit parallel data input
.OCE(OCE), // 1-bit clock enable input
.REV(1'b0), // 1-bit reverse SR input
.SHIFTIN1(SHIFT1), // 1-bit data expansion input
.SHIFTIN2(SHIFT2), // 1-bit data expansion input
.SR(SR), // 1-bit set/reset input
.T1(), // 1-bit parallel 3-state input
.T2(), // 1-bit parallel 3-state input
.T3(), // 1-bit parallel 3-state input
.T4(), // 1-bit parallel 3-state input
.TCE(1'b1) // 1-bit 3-state signal clock enable input
);
defparam OSERDES_inst1.DATA_RATE_OQ = "DDR";
defparam OSERDES_inst1.DATA_RATE_TQ = "DDR";
defparam OSERDES_inst1.DATA_WIDTH = 8;
defparam OSERDES_inst1.SERDES_MODE = "MASTER";
defparam OSERDES_inst1.TRISTATE_WIDTH = 1;
OSERDES OSERDES_inst2 (
.OQ(), // 1-bit data path output
.SHIFTOUT1(SHIFT1), // 1-bit data expansion output
.SHIFTOUT2(SHIFT2), // 1-bit data expansion output
.TQ(), // 1-bit 3-state control output
.CLK(CLK), // 1-bit clock input
.CLKDIV(CLKDIV), // 1-bit divided clock input
.D1(), // 1-bit parallel data input
.D2(), // 1-bit parallel data input
.D3(DI[1]), // 1-bit parallel data input
.D4(DI[0]), // 1-bit parallel data input
.D5(), // 1-bit parallel data input
.D6(), // 1-bit parallel data input
.OCE(OCE), // 1-bit clock enable input
.REV(1'b0), // 1-bit reverse SR input
.SHIFTIN1(), // 1-bit data expansion input
.SHIFTIN2(), // 1-bit data expansion input
.SR(SR), // 1-bit set/reset input
.T1(), // 1-bit parallel 3-state input
.T2(), // 1-bit parallel 3-state input
.T3(), // 1-bit parallel 3-state input
.T4(), // 1-bit parallel 3-state input
.TCE(1'b1) // 1-bit 3-state signal clock enable input
);
defparam OSERDES_inst2.DATA_RATE_OQ = "DDR";
defparam OSERDES_inst2.DATA_RATE_TQ = "DDR";
defparam OSERDES_inst2.DATA_WIDTH = 8;
defparam OSERDES_inst2.SERDES_MODE = "SLAVE";
defparam OSERDES_inst2.TRISTATE_WIDTH = 1;
endmodule
|
/*+--------------------------------------------------------------------------
Copyright (c) 2015, Microsoft Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------*/
`timescale 1ns / 1ps
module RCB_FRL_OSERDES(OQ, CLK, CLKDIV, DI, OCE, SR);
output OQ;
input CLK, CLKDIV;
input [7:0] DI;
input OCE, SR;
wire SHIFT1, SHIFT2;
OSERDES OSERDES_inst1 (
.OQ(OQ), // 1-bit data path output
.SHIFTOUT1(), // 1-bit data expansion output
.SHIFTOUT2(), // 1-bit data expansion output
.TQ(), // 1-bit 3-state control output
.CLK(CLK), // 1-bit clock input
.CLKDIV(CLKDIV), // 1-bit divided clock input
.D1(DI[7]), // 1-bit parallel data input
.D2(DI[6]), // 1-bit parallel data input
.D3(DI[5]), // 1-bit parallel data input
.D4(DI[4]), // 1-bit parallel data input
.D5(DI[3]), // 1-bit parallel data input
.D6(DI[2]), // 1-bit parallel data input
.OCE(OCE), // 1-bit clock enable input
.REV(1'b0), // 1-bit reverse SR input
.SHIFTIN1(SHIFT1), // 1-bit data expansion input
.SHIFTIN2(SHIFT2), // 1-bit data expansion input
.SR(SR), // 1-bit set/reset input
.T1(), // 1-bit parallel 3-state input
.T2(), // 1-bit parallel 3-state input
.T3(), // 1-bit parallel 3-state input
.T4(), // 1-bit parallel 3-state input
.TCE(1'b1) // 1-bit 3-state signal clock enable input
);
defparam OSERDES_inst1.DATA_RATE_OQ = "DDR";
defparam OSERDES_inst1.DATA_RATE_TQ = "DDR";
defparam OSERDES_inst1.DATA_WIDTH = 8;
defparam OSERDES_inst1.SERDES_MODE = "MASTER";
defparam OSERDES_inst1.TRISTATE_WIDTH = 1;
OSERDES OSERDES_inst2 (
.OQ(), // 1-bit data path output
.SHIFTOUT1(SHIFT1), // 1-bit data expansion output
.SHIFTOUT2(SHIFT2), // 1-bit data expansion output
.TQ(), // 1-bit 3-state control output
.CLK(CLK), // 1-bit clock input
.CLKDIV(CLKDIV), // 1-bit divided clock input
.D1(), // 1-bit parallel data input
.D2(), // 1-bit parallel data input
.D3(DI[1]), // 1-bit parallel data input
.D4(DI[0]), // 1-bit parallel data input
.D5(), // 1-bit parallel data input
.D6(), // 1-bit parallel data input
.OCE(OCE), // 1-bit clock enable input
.REV(1'b0), // 1-bit reverse SR input
.SHIFTIN1(), // 1-bit data expansion input
.SHIFTIN2(), // 1-bit data expansion input
.SR(SR), // 1-bit set/reset input
.T1(), // 1-bit parallel 3-state input
.T2(), // 1-bit parallel 3-state input
.T3(), // 1-bit parallel 3-state input
.T4(), // 1-bit parallel 3-state input
.TCE(1'b1) // 1-bit 3-state signal clock enable input
);
defparam OSERDES_inst2.DATA_RATE_OQ = "DDR";
defparam OSERDES_inst2.DATA_RATE_TQ = "DDR";
defparam OSERDES_inst2.DATA_WIDTH = 8;
defparam OSERDES_inst2.SERDES_MODE = "SLAVE";
defparam OSERDES_inst2.TRISTATE_WIDTH = 1;
endmodule
|
`timescale 1ns / 1ps
//////////////////////////////////////////////////////////////////////////////////
// Company:
// Engineer:
//
// Create Date: 04/26/2016 06:19:33 AM
// Design Name:
// Module Name: Barrel_Shifter_M
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//////////////////////////////////////////////////////////////////////////////////
module Barrel_Shifter_M
#(parameter SW=26)
(
input wire clk,
input wire rst,
input wire load_i,
input wire Shift_Value_i,
input wire [SW-1:0] Shift_Data_i,
/////////////////////////////////////////////7
output wire [SW-1:0] N_mant_o
);
wire [SW-1:0] Data_Reg;
////////////////////////////////////////////////////7
shift_mux_array #(.SWR(SW), .LEVEL(0)) shift_mux_array(
.Data_i(Shift_Data_i),
.select_i(Shift_Value_i),
.bit_shift_i(1'b1),
.Data_o(Data_Reg)
);
RegisterMult #(.W(SW)) Output_Reg(
.clk(clk),
.rst(rst),
.load(load_i),
.D(Data_Reg),
.Q(N_mant_o)
);
endmodule
|
`timescale 1ns / 1ps
//////////////////////////////////////////////////////////////////////////////////
// Company:
// Engineer:
//
// Create Date: 04/26/2016 06:19:33 AM
// Design Name:
// Module Name: Barrel_Shifter_M
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//////////////////////////////////////////////////////////////////////////////////
module Barrel_Shifter_M
#(parameter SW=26)
(
input wire clk,
input wire rst,
input wire load_i,
input wire Shift_Value_i,
input wire [SW-1:0] Shift_Data_i,
/////////////////////////////////////////////7
output wire [SW-1:0] N_mant_o
);
wire [SW-1:0] Data_Reg;
////////////////////////////////////////////////////7
shift_mux_array #(.SWR(SW), .LEVEL(0)) shift_mux_array(
.Data_i(Shift_Data_i),
.select_i(Shift_Value_i),
.bit_shift_i(1'b1),
.Data_o(Data_Reg)
);
RegisterMult #(.W(SW)) Output_Reg(
.clk(clk),
.rst(rst),
.load(load_i),
.D(Data_Reg),
.Q(N_mant_o)
);
endmodule
|
`timescale 1ns / 1ps
//////////////////////////////////////////////////////////////////////////////////
// Company:
// Engineer:
//
// Create Date: 04/26/2016 06:19:33 AM
// Design Name:
// Module Name: Barrel_Shifter_M
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//////////////////////////////////////////////////////////////////////////////////
module Barrel_Shifter_M
#(parameter SW=26)
(
input wire clk,
input wire rst,
input wire load_i,
input wire Shift_Value_i,
input wire [SW-1:0] Shift_Data_i,
/////////////////////////////////////////////7
output wire [SW-1:0] N_mant_o
);
wire [SW-1:0] Data_Reg;
////////////////////////////////////////////////////7
shift_mux_array #(.SWR(SW), .LEVEL(0)) shift_mux_array(
.Data_i(Shift_Data_i),
.select_i(Shift_Value_i),
.bit_shift_i(1'b1),
.Data_o(Data_Reg)
);
RegisterMult #(.W(SW)) Output_Reg(
.clk(clk),
.rst(rst),
.load(load_i),
.D(Data_Reg),
.Q(N_mant_o)
);
endmodule
|
`timescale 1ns / 1ps
//////////////////////////////////////////////////////////////////////////////////
// Company:
// Engineer:
//
// Create Date: 04/26/2016 07:00:53 AM
// Design Name:
// Module Name: Adder_Round
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//////////////////////////////////////////////////////////////////////////////////
module Adder_Round
#(parameter SW=26) (
input wire clk,
input wire rst,
input wire load_i,//Reg load input
input wire [SW-1:0] Data_A_i,
input wire [SW-1:0] Data_B_i,
/////////////////////////////////////////////////////////////
output wire [SW-1:0] Data_Result_o,
output wire FSM_C_o
);
wire [SW:0] result_A_adder;
adder #(.W(SW)) A_operation (
.Data_A_i(Data_A_i),
.Data_B_i(Data_B_i),
.Data_S_o(result_A_adder)
);
RegisterAdd #(.W(SW)) Add_Subt_Result(
.clk (clk),
.rst (rst),
.load (load_i),
.D (result_A_adder[SW-1:0]),
.Q (Data_Result_o)
);
RegisterAdd #(.W(1)) Add_overflow_Result(
.clk (clk),
.rst (rst),
.load (load_i),
.D (result_A_adder[SW]),
.Q (FSM_C_o)
);
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2010 by Wilson Snyder.
`ifndef VERILATOR
module t;
/*AUTOREGINPUT*/
// Beginning of automatic reg inputs (for undeclared instantiated-module inputs)
reg c0; // To t2 of t2.v
reg c1; // To t2 of t2.v
reg check; // To t2 of t2.v
reg [1:0] clks; // To t2 of t2.v
// End of automatics
t2 t2 (/*AUTOINST*/
// Inputs
.clks (clks[1:0]),
.c0 (c0),
.c1 (c1),
.check (check));
task clockit (input v1, v0);
c1 = v1;
c0 = v0;
clks[1] = v1;
clks[0] = v0;
`ifdef TEST_VERBOSE $write("[%0t] c1=%x c0=%x\n", $time,v0,v1); `endif
#1;
endtask
initial begin
check = '0;
c0 = '0;
c1 = '0;
clks = '0;
#1
t2.clear();
#10;
for (int i=0; i<2; i++) begin
clockit(0, 0);
clockit(0, 0);
clockit(0, 1);
clockit(1, 1);
clockit(0, 0);
clockit(1, 1);
clockit(1, 0);
clockit(0, 0);
clockit(1, 0);
clockit(0, 1);
clockit(0, 0);
end
check = 1;
clockit(0, 0);
end
endmodule
`endif
`ifdef VERILATOR
`define t2 t
`else
`define t2 t2
`endif
module `t2 (
input [1:0] clks,
input c0,
input c1,
input check
);
`ifdef T_CLK_2IN_VEC
wire clk0 = clks[0];
wire clk1 = clks[1];
`else
wire clk0 = c0;
wire clk1 = c1;
`endif
integer p0 = 0;
integer p1 = 0;
integer p01 = 0;
integer n0 = 0;
integer n1 = 0;
integer n01 = 0;
integer vp = 0;
integer vn = 0;
integer vpn = 0;
task clear;
`ifdef TEST_VERBOSE $display("[%0t] clear\n",$time); `endif
p0 = 0;
p1 = 0;
p01 = 0;
n0 = 0;
n1 = 0;
n01 = 0;
vp = 0;
vn = 0;
vpn = 0;
endtask
`define display_counts(text) begin \
$write("[%0t] ",$time); \
`ifdef T_CLK_2IN_VEC $write(" 2v "); `endif \
$write(text); \
$write(": %0d %0d %0d %0d %0d %0d %0d %0d %0d\n", p0, p1, p01, n0, n1, n01, vp, vn, vpn); \
end
always @ (posedge clk0) begin
p0 = p0 + 1; // Want blocking, so don't miss clock counts
`ifdef TEST_VERBOSE `display_counts("posedge 0"); `endif
end
always @ (posedge clk1) begin
p1 = p1 + 1;
`ifdef TEST_VERBOSE `display_counts("posedge 1"); `endif
end
always @ (posedge clk0 or posedge clk1) begin
p01 = p01 + 1;
`ifdef TEST_VERBOSE `display_counts("posedge *"); `endif
end
always @ (negedge clk0) begin
n0 = n0 + 1;
`ifdef TEST_VERBOSE `display_counts("negedge 0"); `endif
end
always @ (negedge clk1) begin
n1 = n1 + 1;
`ifdef TEST_VERBOSE `display_counts("negedge 1"); `endif
end
always @ (negedge clk0 or negedge clk1) begin
n01 = n01 + 1;
`ifdef TEST_VERBOSE `display_counts("negedge *"); `endif
end
`ifndef VERILATOR
always @ (posedge clks) begin
vp = vp + 1;
`ifdef TEST_VERBOSE `display_counts("pos vec"); `endif
end
always @ (negedge clks) begin
vn = vn + 1;
`ifdef TEST_VERBOSE `display_counts("neg vec"); `endif
end
always @ (posedge clks or negedge clks) begin
vpn = vpn + 1;
`ifdef TEST_VERBOSE `display_counts("or vec"); `endif
end
`endif
always @ (posedge check) begin
if (p0!=6) $stop;
if (p1!=6) $stop;
if (p01!=10) $stop;
if (n0!=6) $stop;
if (n1!=6) $stop;
if (n01!=10) $stop;
`ifndef VERILATOR
if (vp!=6) $stop;
if (vn!=6) $stop;
if (vpn!=12) $stop;
`endif
$write("*-* All Finished *-*\n");
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2009 by Iztok Jeras.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
localparam NO = 7; // number of access events
// packed structures
struct packed {
logic e0;
logic [1:0] e1;
logic [3:0] e2;
logic [7:0] e3;
} struct_bg; // big endian structure
/* verilator lint_off LITENDIAN */
struct packed {
logic e0;
logic [0:1] e1;
logic [0:3] e2;
logic [0:7] e3;
} struct_lt; // little endian structure
/* verilator lint_on LITENDIAN */
localparam WS = 15; // $bits(struct_bg)
integer cnt = 0;
// event counter
always @ (posedge clk)
begin
cnt <= cnt + 1;
end
// finish report
always @ (posedge clk)
if ((cnt[30:2]==(NO-1)) && (cnt[1:0]==2'd3)) begin
$write("*-* All Finished *-*\n");
$finish;
end
// big endian
always @ (posedge clk)
if (cnt[1:0]==2'd0) begin
// initialize to defaults (all bits 1'b0)
if (cnt[30:2]==0) struct_bg <= '0;
else if (cnt[30:2]==1) struct_bg <= '0;
else if (cnt[30:2]==2) struct_bg <= '0;
else if (cnt[30:2]==3) struct_bg <= '0;
else if (cnt[30:2]==4) struct_bg <= '0;
else if (cnt[30:2]==5) struct_bg <= '0;
else if (cnt[30:2]==6) struct_bg <= '0;
end else if (cnt[1:0]==2'd1) begin
// write data into whole or part of the array using literals
if (cnt[30:2]==0) begin end
else if (cnt[30:2]==1) struct_bg <= '{0 ,1 , 2, 3};
else if (cnt[30:2]==2) struct_bg <= '{e0:1, e1:2, e2:3, e3:4};
else if (cnt[30:2]==3) struct_bg <= '{e3:6, e2:4, e1:2, e0:0};
// verilator lint_off WIDTH
else if (cnt[30:2]==4) struct_bg <= '{default:13};
else if (cnt[30:2]==5) struct_bg <= '{e2:8'haa, default:1};
else if (cnt[30:2]==6) struct_bg <= '{cnt+0 ,cnt+1 , cnt+2, cnt+3};
// verilator lint_on WIDTH
end else if (cnt[1:0]==2'd2) begin
// chack array agains expected value
if (cnt[30:2]==0) begin if (struct_bg !== 15'b0_00_0000_00000000) begin $display("%b", struct_bg); $stop(); end end
else if (cnt[30:2]==1) begin if (struct_bg !== 15'b0_01_0010_00000011) begin $display("%b", struct_bg); $stop(); end end
else if (cnt[30:2]==2) begin if (struct_bg !== 15'b1_10_0011_00000100) begin $display("%b", struct_bg); $stop(); end end
else if (cnt[30:2]==3) begin if (struct_bg !== 15'b0_10_0100_00000110) begin $display("%b", struct_bg); $stop(); end end
else if (cnt[30:2]==4) begin if (struct_bg !== 15'b1_01_1101_00001101) begin $display("%b", struct_bg); $stop(); end end
else if (cnt[30:2]==5) begin if (struct_bg !== 15'b1_01_1010_00000001) begin $display("%b", struct_bg); $stop(); end end
else if (cnt[30:2]==6) begin if (struct_bg !== 15'b1_10_1011_00011100) begin $display("%b", struct_bg); $stop(); end end
end
// little endian
always @ (posedge clk)
if (cnt[1:0]==2'd0) begin
// initialize to defaults (all bits 1'b0)
if (cnt[30:2]==0) struct_lt <= '0;
else if (cnt[30:2]==1) struct_lt <= '0;
else if (cnt[30:2]==2) struct_lt <= '0;
else if (cnt[30:2]==3) struct_lt <= '0;
else if (cnt[30:2]==4) struct_lt <= '0;
else if (cnt[30:2]==5) struct_lt <= '0;
else if (cnt[30:2]==6) struct_lt <= '0;
end else if (cnt[1:0]==2'd1) begin
// write data into whole or part of the array using literals
if (cnt[30:2]==0) begin end
else if (cnt[30:2]==1) struct_lt <= '{0 ,1 , 2, 3};
else if (cnt[30:2]==2) struct_lt <= '{e0:1, e1:2, e2:3, e3:4};
else if (cnt[30:2]==3) struct_lt <= '{e3:6, e2:4, e1:2, e0:0};
// verilator lint_off WIDTH
else if (cnt[30:2]==4) struct_lt <= '{default:13};
else if (cnt[30:2]==5) struct_lt <= '{e2:8'haa, default:1};
else if (cnt[30:2]==6) struct_lt <= '{cnt+0 ,cnt+1 , cnt+2, cnt+3};
// verilator lint_on WIDTH
end else if (cnt[1:0]==2'd2) begin
// chack array agains expected value
if (cnt[30:2]==0) begin if (struct_lt !== 15'b0_00_0000_00000000) begin $display("%b", struct_lt); $stop(); end end
else if (cnt[30:2]==1) begin if (struct_lt !== 15'b0_01_0010_00000011) begin $display("%b", struct_lt); $stop(); end end
else if (cnt[30:2]==2) begin if (struct_lt !== 15'b1_10_0011_00000100) begin $display("%b", struct_lt); $stop(); end end
else if (cnt[30:2]==3) begin if (struct_lt !== 15'b0_10_0100_00000110) begin $display("%b", struct_lt); $stop(); end end
else if (cnt[30:2]==4) begin if (struct_lt !== 15'b1_01_1101_00001101) begin $display("%b", struct_lt); $stop(); end end
else if (cnt[30:2]==5) begin if (struct_lt !== 15'b1_01_1010_00000001) begin $display("%b", struct_lt); $stop(); end end
else if (cnt[30:2]==6) begin if (struct_lt !== 15'b1_10_1011_00011100) begin $display("%b", struct_lt); $stop(); end end
end
endmodule
|
// DESCRIPTION: Verilator: Simple test of unoptflat
//
// Demonstration of an UNOPTFLAT combinatorial loop using 3 bits and looping
// through 2 sub-modules.
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2013 by Jeremy Bennett.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
wire [2:0] x;
initial begin
x = 3'b000;
end
test1 test1i ( .clk (clk),
.xvecin (x[1:0]),
.xvecout (x[2:1]));
test2 test2i ( .clk (clk),
.xvecin (x[2:1]),
.xvecout (x[1:0]));
always @(posedge clk or negedge clk) begin
`ifdef TEST_VERBOSE
$write("x = %x\n", x);
`endif
if (x[1] != 0) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule // t
module test1
(/*AUTOARG*/
// Inputs
clk,
xvecin,
// Outputs
xvecout
);
input clk;
input wire [1:0] xvecin;
output wire [1:0] xvecout;
assign xvecout = {xvecin[0], clk};
endmodule // test
module test2
(/*AUTOARG*/
// Inputs
clk,
xvecin,
// Outputs
xvecout
);
input clk;
input wire [1:0] xvecin;
output wire [1:0] xvecout;
assign xvecout = {clk, xvecin[1]};
endmodule // test
|
// DESCRIPTION: Verilator: Simple test of unoptflat
//
// Demonstration of an UNOPTFLAT combinatorial loop using 3 bits and looping
// through 2 sub-modules.
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2013 by Jeremy Bennett.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
wire [2:0] x;
initial begin
x = 3'b000;
end
test1 test1i ( .clk (clk),
.xvecin (x[1:0]),
.xvecout (x[2:1]));
test2 test2i ( .clk (clk),
.xvecin (x[2:1]),
.xvecout (x[1:0]));
always @(posedge clk or negedge clk) begin
`ifdef TEST_VERBOSE
$write("x = %x\n", x);
`endif
if (x[1] != 0) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule // t
module test1
(/*AUTOARG*/
// Inputs
clk,
xvecin,
// Outputs
xvecout
);
input clk;
input wire [1:0] xvecin;
output wire [1:0] xvecout;
assign xvecout = {xvecin[0], clk};
endmodule // test
module test2
(/*AUTOARG*/
// Inputs
clk,
xvecin,
// Outputs
xvecout
);
input clk;
input wire [1:0] xvecin;
output wire [1:0] xvecout;
assign xvecout = {clk, xvecin[1]};
endmodule // test
|
// DESCRIPTION: Verilator: Simple test of unoptflat
//
// Demonstration of an UNOPTFLAT combinatorial loop using 3 bits and looping
// through 2 sub-modules.
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2013 by Jeremy Bennett.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
wire [2:0] x;
initial begin
x = 3'b000;
end
test1 test1i ( .clk (clk),
.xvecin (x[1:0]),
.xvecout (x[2:1]));
test2 test2i ( .clk (clk),
.xvecin (x[2:1]),
.xvecout (x[1:0]));
always @(posedge clk or negedge clk) begin
`ifdef TEST_VERBOSE
$write("x = %x\n", x);
`endif
if (x[1] != 0) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule // t
module test1
(/*AUTOARG*/
// Inputs
clk,
xvecin,
// Outputs
xvecout
);
input clk;
input wire [1:0] xvecin;
output wire [1:0] xvecout;
assign xvecout = {xvecin[0], clk};
endmodule // test
module test2
(/*AUTOARG*/
// Inputs
clk,
xvecin,
// Outputs
xvecout
);
input clk;
input wire [1:0] xvecin;
output wire [1:0] xvecout;
assign xvecout = {clk, xvecin[1]};
endmodule // test
|
// DESCRIPTION: Verilator: Simple test of unoptflat
//
// Demonstration of an UNOPTFLAT combinatorial loop using 3 bits and looping
// through 2 sub-modules.
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2013 by Jeremy Bennett.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
wire [2:0] x;
initial begin
x = 3'b000;
end
test1 test1i ( .clk (clk),
.xvecin (x[1:0]),
.xvecout (x[2:1]));
test2 test2i ( .clk (clk),
.xvecin (x[2:1]),
.xvecout (x[1:0]));
always @(posedge clk or negedge clk) begin
`ifdef TEST_VERBOSE
$write("x = %x\n", x);
`endif
if (x[1] != 0) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule // t
module test1
(/*AUTOARG*/
// Inputs
clk,
xvecin,
// Outputs
xvecout
);
input clk;
input wire [1:0] xvecin;
output wire [1:0] xvecout;
assign xvecout = {xvecin[0], clk};
endmodule // test
module test2
(/*AUTOARG*/
// Inputs
clk,
xvecin,
// Outputs
xvecout
);
input clk;
input wire [1:0] xvecin;
output wire [1:0] xvecout;
assign xvecout = {clk, xvecin[1]};
endmodule // test
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2012 by Wilson Snyder.
// bug511
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
wire [7:0] au;
wire [7:0] as;
Test1 test1 (.au);
Test2 test2 (.as);
// Test loop
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] result=%x %x\n",$time, au, as);
`endif
if (au != 'h12) $stop;
if (as != 'h02) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
endmodule
module Test1 (output [7:0] au);
wire [7:0] b;
wire signed [3:0] c;
// verilator lint_off WIDTH
assign c=-1; // 'hf
assign b=3; // 'h3
assign au=b+c; // 'h12
// verilator lint_on WIDTH
endmodule
module Test2 (output [7:0] as);
wire signed [7:0] b;
wire signed [3:0] c;
// verilator lint_off WIDTH
assign c=-1; // 'hf
assign b=3; // 'h3
assign as=b+c; // 'h12
// verilator lint_on WIDTH
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2012 by Wilson Snyder.
// bug511
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
wire [7:0] au;
wire [7:0] as;
Test1 test1 (.au);
Test2 test2 (.as);
// Test loop
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] result=%x %x\n",$time, au, as);
`endif
if (au != 'h12) $stop;
if (as != 'h02) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
endmodule
module Test1 (output [7:0] au);
wire [7:0] b;
wire signed [3:0] c;
// verilator lint_off WIDTH
assign c=-1; // 'hf
assign b=3; // 'h3
assign au=b+c; // 'h12
// verilator lint_on WIDTH
endmodule
module Test2 (output [7:0] as);
wire signed [7:0] b;
wire signed [3:0] c;
// verilator lint_off WIDTH
assign c=-1; // 'hf
assign b=3; // 'h3
assign as=b+c; // 'h12
// verilator lint_on WIDTH
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2012 by Wilson Snyder.
// bug511
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
wire [7:0] au;
wire [7:0] as;
Test1 test1 (.au);
Test2 test2 (.as);
// Test loop
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] result=%x %x\n",$time, au, as);
`endif
if (au != 'h12) $stop;
if (as != 'h02) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
endmodule
module Test1 (output [7:0] au);
wire [7:0] b;
wire signed [3:0] c;
// verilator lint_off WIDTH
assign c=-1; // 'hf
assign b=3; // 'h3
assign au=b+c; // 'h12
// verilator lint_on WIDTH
endmodule
module Test2 (output [7:0] as);
wire signed [7:0] b;
wire signed [3:0] c;
// verilator lint_off WIDTH
assign c=-1; // 'hf
assign b=3; // 'h3
assign as=b+c; // 'h12
// verilator lint_on WIDTH
endmodule
|
//-----------------------------------------------------------------------------
// Copyright (C) 2014 iZsh <izsh at fail0verflow.com>
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// input clk is 24Mhz
`include "min_max_tracker.v"
module lf_edge_detect(input clk, input [7:0] adc_d, input [7:0] lf_ed_threshold,
output [7:0] max, output [7:0] min,
output [7:0] high_threshold, output [7:0] highz_threshold,
output [7:0] lowz_threshold, output [7:0] low_threshold,
output edge_state, output edge_toggle);
min_max_tracker tracker(clk, adc_d, lf_ed_threshold, min, max);
// auto-tune
assign high_threshold = (max + min) / 2 + (max - min) / 4;
assign highz_threshold = (max + min) / 2 + (max - min) / 8;
assign lowz_threshold = (max + min) / 2 - (max - min) / 8;
assign low_threshold = (max + min) / 2 - (max - min) / 4;
// heuristic to see if it makes sense to try to detect an edge
wire enabled =
(high_threshold > highz_threshold)
& (highz_threshold > lowz_threshold)
& (lowz_threshold > low_threshold)
& ((high_threshold - highz_threshold) > 8)
& ((highz_threshold - lowz_threshold) > 16)
& ((lowz_threshold - low_threshold) > 8);
// Toggle the output with hysteresis
// Set to high if the ADC value is above the threshold
// Set to low if the ADC value is below the threshold
reg is_high = 0;
reg is_low = 0;
reg is_zero = 0;
reg trigger_enabled = 1;
reg output_edge = 0;
reg output_state;
always @(posedge clk)
begin
is_high <= (adc_d >= high_threshold);
is_low <= (adc_d <= low_threshold);
is_zero <= ((adc_d > lowz_threshold) & (adc_d < highz_threshold));
end
// all edges detection
always @(posedge clk)
if (enabled) begin
// To enable detecting two consecutive peaks at the same level
// (low or high) we check whether or not we went back near 0 in-between.
// This extra check is necessary to prevent from noise artifacts
// around the threshold values.
if (trigger_enabled & (is_high | is_low)) begin
output_edge <= ~output_edge;
trigger_enabled <= 0;
end else
trigger_enabled <= trigger_enabled | is_zero;
end
// edge states
always @(posedge clk)
if (enabled) begin
if (is_high)
output_state <= 1'd1;
else if (is_low)
output_state <= 1'd0;
end
assign edge_state = output_state;
assign edge_toggle = output_edge;
endmodule
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.