text
stringlengths 938
1.05M
|
---|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2005 by Wilson Snyder.
module t_case_huge_sub (/*AUTOARG*/
// Outputs
outa, outb, outc,
// Inputs
index
);
input [7:0] index;
output [9:0] outa;
output [1:0] outb;
output outc;
// =============================
/*AUTOREG*/
// Beginning of automatic regs (for this module's undeclared outputs)
reg [9:0] outa;
reg [1:0] outb;
reg outc;
// End of automatics
// =============================
// Created from perl
// for $i (0..1023) { printf "\t10'h%03x: begin outa = 10'h%03x; outb = 2'b%02b; outc = 1'b%d; end\n", $i, rand(1024),rand(4),rand(2); };
always @(/*AS*/index) begin
case (index)
8'h00: begin outa = 10'h152; outb = 2'b00; outc = 1'b1; end
8'h01: begin outa = 10'h318; outb = 2'b11; outc = 1'b1; end
8'h02: begin outa = 10'h29f; outb = 2'b11; outc = 1'b0; end
8'h03: begin outa = 10'h392; outb = 2'b01; outc = 1'b1; end
8'h04: begin outa = 10'h1ef; outb = 2'b00; outc = 1'b0; end
8'h05: begin outa = 10'h06c; outb = 2'b10; outc = 1'b1; end
8'h06: begin outa = 10'h29f; outb = 2'b11; outc = 1'b0; end
8'h07: begin outa = 10'h29a; outb = 2'b10; outc = 1'b0; end
8'h08: begin outa = 10'h3ce; outb = 2'b01; outc = 1'b0; end
8'h09: begin outa = 10'h37c; outb = 2'b01; outc = 1'b0; end
8'h0a: begin outa = 10'h058; outb = 2'b10; outc = 1'b0; end
8'h0b: begin outa = 10'h3b2; outb = 2'b01; outc = 1'b1; end
8'h0c: begin outa = 10'h36f; outb = 2'b11; outc = 1'b0; end
8'h0d: begin outa = 10'h2c5; outb = 2'b11; outc = 1'b0; end
8'h0e: begin outa = 10'h23a; outb = 2'b00; outc = 1'b0; end
8'h0f: begin outa = 10'h222; outb = 2'b01; outc = 1'b1; end
8'h10: begin outa = 10'h328; outb = 2'b00; outc = 1'b1; end
8'h11: begin outa = 10'h3c3; outb = 2'b00; outc = 1'b1; end
8'h12: begin outa = 10'h12c; outb = 2'b01; outc = 1'b0; end
8'h13: begin outa = 10'h1d0; outb = 2'b00; outc = 1'b1; end
8'h14: begin outa = 10'h3ff; outb = 2'b01; outc = 1'b1; end
8'h15: begin outa = 10'h115; outb = 2'b11; outc = 1'b1; end
8'h16: begin outa = 10'h3ba; outb = 2'b10; outc = 1'b0; end
8'h17: begin outa = 10'h3ba; outb = 2'b00; outc = 1'b0; end
8'h18: begin outa = 10'h10d; outb = 2'b00; outc = 1'b1; end
8'h19: begin outa = 10'h13b; outb = 2'b01; outc = 1'b1; end
8'h1a: begin outa = 10'h0a0; outb = 2'b10; outc = 1'b1; end
8'h1b: begin outa = 10'h264; outb = 2'b11; outc = 1'b0; end
8'h1c: begin outa = 10'h3a2; outb = 2'b10; outc = 1'b0; end
8'h1d: begin outa = 10'h07c; outb = 2'b00; outc = 1'b1; end
8'h1e: begin outa = 10'h291; outb = 2'b00; outc = 1'b0; end
8'h1f: begin outa = 10'h1d1; outb = 2'b10; outc = 1'b0; end
8'h20: begin outa = 10'h354; outb = 2'b11; outc = 1'b1; end
8'h21: begin outa = 10'h0c0; outb = 2'b00; outc = 1'b1; end
8'h22: begin outa = 10'h191; outb = 2'b00; outc = 1'b0; end
8'h23: begin outa = 10'h379; outb = 2'b01; outc = 1'b0; end
8'h24: begin outa = 10'h073; outb = 2'b00; outc = 1'b0; end
8'h25: begin outa = 10'h2fd; outb = 2'b11; outc = 1'b1; end
8'h26: begin outa = 10'h2e0; outb = 2'b11; outc = 1'b1; end
8'h27: begin outa = 10'h337; outb = 2'b01; outc = 1'b1; end
8'h28: begin outa = 10'h2c7; outb = 2'b11; outc = 1'b1; end
8'h29: begin outa = 10'h19e; outb = 2'b11; outc = 1'b0; end
8'h2a: begin outa = 10'h107; outb = 2'b10; outc = 1'b0; end
8'h2b: begin outa = 10'h06a; outb = 2'b01; outc = 1'b1; end
8'h2c: begin outa = 10'h1c7; outb = 2'b01; outc = 1'b1; end
8'h2d: begin outa = 10'h107; outb = 2'b10; outc = 1'b0; end
8'h2e: begin outa = 10'h0cf; outb = 2'b01; outc = 1'b1; end
8'h2f: begin outa = 10'h009; outb = 2'b11; outc = 1'b1; end
8'h30: begin outa = 10'h09d; outb = 2'b00; outc = 1'b1; end
8'h31: begin outa = 10'h28e; outb = 2'b00; outc = 1'b0; end
8'h32: begin outa = 10'h010; outb = 2'b01; outc = 1'b0; end
8'h33: begin outa = 10'h1e0; outb = 2'b10; outc = 1'b0; end
8'h34: begin outa = 10'h079; outb = 2'b01; outc = 1'b1; end
8'h35: begin outa = 10'h13e; outb = 2'b10; outc = 1'b1; end
8'h36: begin outa = 10'h282; outb = 2'b11; outc = 1'b0; end
8'h37: begin outa = 10'h21c; outb = 2'b11; outc = 1'b1; end
8'h38: begin outa = 10'h148; outb = 2'b00; outc = 1'b1; end
8'h39: begin outa = 10'h3c0; outb = 2'b10; outc = 1'b0; end
8'h3a: begin outa = 10'h176; outb = 2'b01; outc = 1'b1; end
8'h3b: begin outa = 10'h3fc; outb = 2'b10; outc = 1'b1; end
8'h3c: begin outa = 10'h295; outb = 2'b11; outc = 1'b1; end
8'h3d: begin outa = 10'h113; outb = 2'b10; outc = 1'b1; end
8'h3e: begin outa = 10'h354; outb = 2'b01; outc = 1'b1; end
8'h3f: begin outa = 10'h0db; outb = 2'b11; outc = 1'b0; end
8'h40: begin outa = 10'h238; outb = 2'b01; outc = 1'b0; end
8'h41: begin outa = 10'h12b; outb = 2'b01; outc = 1'b1; end
8'h42: begin outa = 10'h1dc; outb = 2'b10; outc = 1'b0; end
8'h43: begin outa = 10'h137; outb = 2'b01; outc = 1'b1; end
8'h44: begin outa = 10'h1e2; outb = 2'b01; outc = 1'b1; end
8'h45: begin outa = 10'h3d5; outb = 2'b11; outc = 1'b1; end
8'h46: begin outa = 10'h30c; outb = 2'b11; outc = 1'b0; end
8'h47: begin outa = 10'h298; outb = 2'b11; outc = 1'b0; end
8'h48: begin outa = 10'h080; outb = 2'b00; outc = 1'b1; end
8'h49: begin outa = 10'h35a; outb = 2'b11; outc = 1'b1; end
8'h4a: begin outa = 10'h01b; outb = 2'b00; outc = 1'b0; end
8'h4b: begin outa = 10'h0a3; outb = 2'b11; outc = 1'b0; end
8'h4c: begin outa = 10'h0b3; outb = 2'b11; outc = 1'b1; end
8'h4d: begin outa = 10'h17a; outb = 2'b00; outc = 1'b0; end
8'h4e: begin outa = 10'h3ae; outb = 2'b11; outc = 1'b0; end
8'h4f: begin outa = 10'h078; outb = 2'b11; outc = 1'b0; end
8'h50: begin outa = 10'h322; outb = 2'b00; outc = 1'b1; end
8'h51: begin outa = 10'h213; outb = 2'b11; outc = 1'b0; end
8'h52: begin outa = 10'h11a; outb = 2'b11; outc = 1'b0; end
8'h53: begin outa = 10'h1a7; outb = 2'b00; outc = 1'b0; end
8'h54: begin outa = 10'h35a; outb = 2'b00; outc = 1'b1; end
8'h55: begin outa = 10'h233; outb = 2'b00; outc = 1'b0; end
8'h56: begin outa = 10'h01d; outb = 2'b01; outc = 1'b1; end
8'h57: begin outa = 10'h2d5; outb = 2'b00; outc = 1'b0; end
8'h58: begin outa = 10'h1a0; outb = 2'b00; outc = 1'b1; end
8'h59: begin outa = 10'h3d0; outb = 2'b00; outc = 1'b1; end
8'h5a: begin outa = 10'h181; outb = 2'b01; outc = 1'b1; end
8'h5b: begin outa = 10'h219; outb = 2'b01; outc = 1'b1; end
8'h5c: begin outa = 10'h26a; outb = 2'b01; outc = 1'b1; end
8'h5d: begin outa = 10'h050; outb = 2'b10; outc = 1'b0; end
8'h5e: begin outa = 10'h189; outb = 2'b10; outc = 1'b0; end
8'h5f: begin outa = 10'h1eb; outb = 2'b01; outc = 1'b1; end
8'h60: begin outa = 10'h224; outb = 2'b00; outc = 1'b1; end
8'h61: begin outa = 10'h2fe; outb = 2'b00; outc = 1'b0; end
8'h62: begin outa = 10'h0ae; outb = 2'b00; outc = 1'b1; end
8'h63: begin outa = 10'h1cd; outb = 2'b00; outc = 1'b0; end
8'h64: begin outa = 10'h273; outb = 2'b10; outc = 1'b1; end
8'h65: begin outa = 10'h268; outb = 2'b10; outc = 1'b0; end
8'h66: begin outa = 10'h111; outb = 2'b01; outc = 1'b0; end
8'h67: begin outa = 10'h1f9; outb = 2'b00; outc = 1'b0; end
8'h68: begin outa = 10'h232; outb = 2'b00; outc = 1'b1; end
8'h69: begin outa = 10'h255; outb = 2'b11; outc = 1'b0; end
8'h6a: begin outa = 10'h34c; outb = 2'b01; outc = 1'b1; end
8'h6b: begin outa = 10'h049; outb = 2'b01; outc = 1'b1; end
8'h6c: begin outa = 10'h197; outb = 2'b11; outc = 1'b0; end
8'h6d: begin outa = 10'h0fe; outb = 2'b11; outc = 1'b0; end
8'h6e: begin outa = 10'h253; outb = 2'b01; outc = 1'b1; end
8'h6f: begin outa = 10'h2de; outb = 2'b11; outc = 1'b0; end
8'h70: begin outa = 10'h13b; outb = 2'b10; outc = 1'b1; end
8'h71: begin outa = 10'h040; outb = 2'b10; outc = 1'b0; end
8'h72: begin outa = 10'h0b4; outb = 2'b00; outc = 1'b1; end
8'h73: begin outa = 10'h233; outb = 2'b11; outc = 1'b1; end
8'h74: begin outa = 10'h198; outb = 2'b00; outc = 1'b1; end
8'h75: begin outa = 10'h018; outb = 2'b00; outc = 1'b1; end
8'h76: begin outa = 10'h2f7; outb = 2'b00; outc = 1'b1; end
8'h77: begin outa = 10'h134; outb = 2'b11; outc = 1'b0; end
8'h78: begin outa = 10'h1ca; outb = 2'b10; outc = 1'b0; end
8'h79: begin outa = 10'h286; outb = 2'b10; outc = 1'b1; end
8'h7a: begin outa = 10'h0e6; outb = 2'b11; outc = 1'b1; end
8'h7b: begin outa = 10'h064; outb = 2'b10; outc = 1'b1; end
8'h7c: begin outa = 10'h257; outb = 2'b00; outc = 1'b1; end
8'h7d: begin outa = 10'h31a; outb = 2'b10; outc = 1'b1; end
8'h7e: begin outa = 10'h247; outb = 2'b01; outc = 1'b0; end
8'h7f: begin outa = 10'h299; outb = 2'b00; outc = 1'b0; end
8'h80: begin outa = 10'h02c; outb = 2'b00; outc = 1'b0; end
8'h81: begin outa = 10'h2bb; outb = 2'b11; outc = 1'b0; end
8'h82: begin outa = 10'h180; outb = 2'b10; outc = 1'b0; end
8'h83: begin outa = 10'h245; outb = 2'b01; outc = 1'b1; end
8'h84: begin outa = 10'h0da; outb = 2'b10; outc = 1'b0; end
8'h85: begin outa = 10'h367; outb = 2'b10; outc = 1'b0; end
8'h86: begin outa = 10'h304; outb = 2'b01; outc = 1'b0; end
8'h87: begin outa = 10'h38b; outb = 2'b11; outc = 1'b0; end
8'h88: begin outa = 10'h09f; outb = 2'b01; outc = 1'b0; end
8'h89: begin outa = 10'h1f0; outb = 2'b10; outc = 1'b1; end
8'h8a: begin outa = 10'h281; outb = 2'b10; outc = 1'b1; end
8'h8b: begin outa = 10'h019; outb = 2'b00; outc = 1'b0; end
8'h8c: begin outa = 10'h1f2; outb = 2'b10; outc = 1'b0; end
8'h8d: begin outa = 10'h0b1; outb = 2'b01; outc = 1'b1; end
8'h8e: begin outa = 10'h058; outb = 2'b01; outc = 1'b1; end
8'h8f: begin outa = 10'h39b; outb = 2'b00; outc = 1'b1; end
8'h90: begin outa = 10'h2ec; outb = 2'b10; outc = 1'b1; end
8'h91: begin outa = 10'h250; outb = 2'b00; outc = 1'b1; end
8'h92: begin outa = 10'h3f4; outb = 2'b10; outc = 1'b1; end
8'h93: begin outa = 10'h057; outb = 2'b10; outc = 1'b1; end
8'h94: begin outa = 10'h18f; outb = 2'b01; outc = 1'b1; end
8'h95: begin outa = 10'h105; outb = 2'b01; outc = 1'b1; end
8'h96: begin outa = 10'h1ae; outb = 2'b00; outc = 1'b1; end
8'h97: begin outa = 10'h04e; outb = 2'b10; outc = 1'b0; end
8'h98: begin outa = 10'h240; outb = 2'b11; outc = 1'b0; end
8'h99: begin outa = 10'h3e4; outb = 2'b01; outc = 1'b0; end
8'h9a: begin outa = 10'h3c6; outb = 2'b01; outc = 1'b0; end
8'h9b: begin outa = 10'h109; outb = 2'b00; outc = 1'b1; end
8'h9c: begin outa = 10'h073; outb = 2'b10; outc = 1'b1; end
8'h9d: begin outa = 10'h19f; outb = 2'b01; outc = 1'b0; end
8'h9e: begin outa = 10'h3b8; outb = 2'b01; outc = 1'b0; end
8'h9f: begin outa = 10'h00e; outb = 2'b00; outc = 1'b1; end
8'ha0: begin outa = 10'h1b3; outb = 2'b11; outc = 1'b1; end
8'ha1: begin outa = 10'h2bd; outb = 2'b11; outc = 1'b0; end
8'ha2: begin outa = 10'h324; outb = 2'b00; outc = 1'b1; end
8'ha3: begin outa = 10'h343; outb = 2'b10; outc = 1'b0; end
8'ha4: begin outa = 10'h1c9; outb = 2'b01; outc = 1'b0; end
8'ha5: begin outa = 10'h185; outb = 2'b00; outc = 1'b1; end
8'ha6: begin outa = 10'h37a; outb = 2'b00; outc = 1'b1; end
8'ha7: begin outa = 10'h0e0; outb = 2'b01; outc = 1'b1; end
8'ha8: begin outa = 10'h0a3; outb = 2'b10; outc = 1'b0; end
8'ha9: begin outa = 10'h019; outb = 2'b11; outc = 1'b0; end
8'haa: begin outa = 10'h099; outb = 2'b00; outc = 1'b1; end
8'hab: begin outa = 10'h376; outb = 2'b01; outc = 1'b1; end
8'hac: begin outa = 10'h077; outb = 2'b00; outc = 1'b1; end
8'had: begin outa = 10'h2b1; outb = 2'b11; outc = 1'b1; end
8'hae: begin outa = 10'h27f; outb = 2'b00; outc = 1'b0; end
8'haf: begin outa = 10'h265; outb = 2'b11; outc = 1'b0; end
8'hb0: begin outa = 10'h156; outb = 2'b10; outc = 1'b1; end
8'hb1: begin outa = 10'h1ce; outb = 2'b00; outc = 1'b0; end
8'hb2: begin outa = 10'h008; outb = 2'b01; outc = 1'b0; end
8'hb3: begin outa = 10'h12e; outb = 2'b11; outc = 1'b1; end
8'hb4: begin outa = 10'h199; outb = 2'b11; outc = 1'b0; end
8'hb5: begin outa = 10'h330; outb = 2'b10; outc = 1'b0; end
8'hb6: begin outa = 10'h1ab; outb = 2'b01; outc = 1'b1; end
8'hb7: begin outa = 10'h3bd; outb = 2'b00; outc = 1'b0; end
8'hb8: begin outa = 10'h0ca; outb = 2'b10; outc = 1'b0; end
8'hb9: begin outa = 10'h367; outb = 2'b00; outc = 1'b0; end
8'hba: begin outa = 10'h334; outb = 2'b00; outc = 1'b0; end
8'hbb: begin outa = 10'h040; outb = 2'b00; outc = 1'b1; end
8'hbc: begin outa = 10'h1a7; outb = 2'b10; outc = 1'b1; end
8'hbd: begin outa = 10'h036; outb = 2'b11; outc = 1'b1; end
8'hbe: begin outa = 10'h223; outb = 2'b11; outc = 1'b1; end
8'hbf: begin outa = 10'h075; outb = 2'b01; outc = 1'b0; end
8'hc0: begin outa = 10'h3c4; outb = 2'b00; outc = 1'b1; end
8'hc1: begin outa = 10'h2cc; outb = 2'b01; outc = 1'b0; end
8'hc2: begin outa = 10'h123; outb = 2'b01; outc = 1'b0; end
8'hc3: begin outa = 10'h3fd; outb = 2'b01; outc = 1'b1; end
8'hc4: begin outa = 10'h11e; outb = 2'b00; outc = 1'b0; end
8'hc5: begin outa = 10'h27c; outb = 2'b11; outc = 1'b1; end
8'hc6: begin outa = 10'h1e2; outb = 2'b11; outc = 1'b0; end
8'hc7: begin outa = 10'h377; outb = 2'b11; outc = 1'b0; end
8'hc8: begin outa = 10'h33a; outb = 2'b11; outc = 1'b0; end
8'hc9: begin outa = 10'h32d; outb = 2'b11; outc = 1'b1; end
8'hca: begin outa = 10'h014; outb = 2'b11; outc = 1'b0; end
8'hcb: begin outa = 10'h332; outb = 2'b10; outc = 1'b0; end
8'hcc: begin outa = 10'h359; outb = 2'b00; outc = 1'b0; end
8'hcd: begin outa = 10'h0a4; outb = 2'b10; outc = 1'b1; end
8'hce: begin outa = 10'h348; outb = 2'b00; outc = 1'b1; end
8'hcf: begin outa = 10'h04b; outb = 2'b11; outc = 1'b1; end
8'hd0: begin outa = 10'h147; outb = 2'b10; outc = 1'b1; end
8'hd1: begin outa = 10'h026; outb = 2'b00; outc = 1'b1; end
8'hd2: begin outa = 10'h103; outb = 2'b00; outc = 1'b0; end
8'hd3: begin outa = 10'h106; outb = 2'b00; outc = 1'b1; end
8'hd4: begin outa = 10'h35a; outb = 2'b00; outc = 1'b0; end
8'hd5: begin outa = 10'h254; outb = 2'b01; outc = 1'b0; end
8'hd6: begin outa = 10'h0cd; outb = 2'b01; outc = 1'b0; end
8'hd7: begin outa = 10'h17c; outb = 2'b11; outc = 1'b1; end
8'hd8: begin outa = 10'h37e; outb = 2'b10; outc = 1'b1; end
8'hd9: begin outa = 10'h0a9; outb = 2'b11; outc = 1'b1; end
8'hda: begin outa = 10'h0fe; outb = 2'b01; outc = 1'b0; end
8'hdb: begin outa = 10'h3c0; outb = 2'b11; outc = 1'b1; end
8'hdc: begin outa = 10'h1d9; outb = 2'b10; outc = 1'b1; end
8'hdd: begin outa = 10'h10e; outb = 2'b00; outc = 1'b1; end
8'hde: begin outa = 10'h394; outb = 2'b01; outc = 1'b0; end
8'hdf: begin outa = 10'h316; outb = 2'b01; outc = 1'b0; end
8'he0: begin outa = 10'h05b; outb = 2'b11; outc = 1'b0; end
8'he1: begin outa = 10'h126; outb = 2'b01; outc = 1'b1; end
8'he2: begin outa = 10'h369; outb = 2'b11; outc = 1'b0; end
8'he3: begin outa = 10'h291; outb = 2'b10; outc = 1'b1; end
8'he4: begin outa = 10'h2ca; outb = 2'b00; outc = 1'b1; end
8'he5: begin outa = 10'h25b; outb = 2'b01; outc = 1'b1; end
8'he6: begin outa = 10'h106; outb = 2'b00; outc = 1'b0; end
8'he7: begin outa = 10'h172; outb = 2'b11; outc = 1'b1; end
8'he8: begin outa = 10'h2f7; outb = 2'b00; outc = 1'b1; end
8'he9: begin outa = 10'h2d3; outb = 2'b11; outc = 1'b1; end
8'hea: begin outa = 10'h182; outb = 2'b00; outc = 1'b0; end
8'heb: begin outa = 10'h327; outb = 2'b00; outc = 1'b1; end
8'hec: begin outa = 10'h1d0; outb = 2'b10; outc = 1'b0; end
8'hed: begin outa = 10'h204; outb = 2'b00; outc = 1'b1; end
8'hee: begin outa = 10'h11f; outb = 2'b00; outc = 1'b1; end
8'hef: begin outa = 10'h365; outb = 2'b11; outc = 1'b1; end
8'hf0: begin outa = 10'h2c2; outb = 2'b01; outc = 1'b1; end
8'hf1: begin outa = 10'h2b5; outb = 2'b10; outc = 1'b0; end
8'hf2: begin outa = 10'h1f8; outb = 2'b10; outc = 1'b1; end
8'hf3: begin outa = 10'h2a7; outb = 2'b01; outc = 1'b1; end
8'hf4: begin outa = 10'h1be; outb = 2'b10; outc = 1'b1; end
8'hf5: begin outa = 10'h25e; outb = 2'b10; outc = 1'b1; end
8'hf6: begin outa = 10'h032; outb = 2'b10; outc = 1'b0; end
8'hf7: begin outa = 10'h2ef; outb = 2'b00; outc = 1'b0; end
8'hf8: begin outa = 10'h02f; outb = 2'b00; outc = 1'b1; end
8'hf9: begin outa = 10'h201; outb = 2'b10; outc = 1'b0; end
8'hfa: begin outa = 10'h054; outb = 2'b01; outc = 1'b1; end
8'hfb: begin outa = 10'h013; outb = 2'b10; outc = 1'b0; end
8'hfc: begin outa = 10'h249; outb = 2'b01; outc = 1'b0; end
8'hfd: begin outa = 10'h09a; outb = 2'b10; outc = 1'b0; end
8'hfe: begin outa = 10'h012; outb = 2'b00; outc = 1'b0; end
8'hff: begin outa = 10'h114; outb = 2'b10; outc = 1'b1; end
endcase
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2008 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc=0;
reg [63:0] crc;
reg [63:0] sum;
wire [15:-16] sel2 = crc[31:0];
wire [80:-10] sel3 = {crc[26:0],crc};
wire [3:0] out21 = sel2[-3 : -6];
wire [3:0] out22 = sel2[{1'b0,crc[3:0]} - 16 +: 4];
wire [3:0] out23 = sel2[{1'b0,crc[3:0]} - 10 -: 4];
wire [3:0] out31 = sel3[-3 : -6];
wire [3:0] out32 = sel3[crc[5:0] - 6 +: 4];
wire [3:0] out33 = sel3[crc[5:0] - 6 -: 4];
// Aggregate outputs into a single result vector
wire [63:0] result = {40'h0, out21, out22, out23, out31, out32, out33};
reg [15:-16] sel1;
initial begin
// Path clearing
sel1 = 32'h12345678;
if (sel1 != 32'h12345678) $stop;
if (sel1[-13 : -16] != 4'h8) $stop;
if (sel1[3:0] != 4'h4) $stop;
if (sel1[4 +: 4] != 4'h3) $stop;
if (sel1[11 -: 4] != 4'h2) $stop;
end
// Test loop
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] sels=%x,%x,%x %x,%x,%x\n",$time, out21,out22,out23, out31,out32,out33);
$write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result);
`endif
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]};
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
end
else if (cyc<10) begin
sum <= 64'h0;
end
else if (cyc<90) begin
end
else if (cyc==99) begin
$write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum);
if (crc !== 64'hc77bb9b3784ea091) $stop;
`define EXPECTED_SUM 64'hba7fe1e7ac128362
if (sum !== `EXPECTED_SUM) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2004 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc; initial cyc=1;
reg [41:0] aaa;
wire [41:0] bbb;
// verilator public_module
wire [41:0] z_0;
wire [41:0] z_1;
wide w_0(
.xxx( { {40{1'b0}},2'b11 } ),
.yyy( aaa[1:0] ),
.zzz( z_0 )
);
wide w_1(
.xxx( aaa ),
.yyy( 2'b10 ),
.zzz( z_1 )
);
assign bbb= z_0 + z_1;
always @ (posedge clk) begin
if (cyc!=0) begin
cyc <= cyc + 1;
if (cyc==1) begin
aaa <= 42'b01;
end
if (cyc==2) begin
aaa <= 42'b10;
if (z_0 != 42'h4) $stop;
if (z_1 != 42'h3) $stop;
end
if (cyc==3) begin
if (z_0 != 42'h5) $stop;
if (z_1 != 42'h4) $stop;
end
if (cyc==4) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
end
endmodule
module wide (
input [41:0] xxx,
input [1:0] yyy,
output [41:0] zzz
);
// verilator public_module
assign zzz = xxx+ { {40{1'b0}},yyy };
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2004 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc; initial cyc=1;
reg [41:0] aaa;
wire [41:0] bbb;
// verilator public_module
wire [41:0] z_0;
wire [41:0] z_1;
wide w_0(
.xxx( { {40{1'b0}},2'b11 } ),
.yyy( aaa[1:0] ),
.zzz( z_0 )
);
wide w_1(
.xxx( aaa ),
.yyy( 2'b10 ),
.zzz( z_1 )
);
assign bbb= z_0 + z_1;
always @ (posedge clk) begin
if (cyc!=0) begin
cyc <= cyc + 1;
if (cyc==1) begin
aaa <= 42'b01;
end
if (cyc==2) begin
aaa <= 42'b10;
if (z_0 != 42'h4) $stop;
if (z_1 != 42'h3) $stop;
end
if (cyc==3) begin
if (z_0 != 42'h5) $stop;
if (z_1 != 42'h4) $stop;
end
if (cyc==4) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
end
endmodule
module wide (
input [41:0] xxx,
input [1:0] yyy,
output [41:0] zzz
);
// verilator public_module
assign zzz = xxx+ { {40{1'b0}},yyy };
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2010 by Wilson Snyder.
typedef enum { EN_ZERO,
EN_ONE
} En_t;
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
// Insure that we can declare a type with a function declaration
function enum integer {
EF_TRUE = 1,
EF_FALSE = 0 }
f_enum_inv ( input a);
f_enum_inv = a ? EF_FALSE : EF_TRUE;
endfunction
initial begin
if (f_enum_inv(1) != 0) $stop;
if (f_enum_inv(0) != 1) $stop;
end
En_t a, z;
sub sub (/*AUTOINST*/
// Outputs
.z (z),
// Inputs
.a (a));
integer cyc; initial cyc=1;
always @ (posedge clk) begin
if (cyc!=0) begin
cyc <= cyc + 1;
if (cyc==1) begin
a <= EN_ZERO;
end
if (cyc==2) begin
a <= EN_ONE;
if (z != EN_ONE) $stop;
end
if (cyc==3) begin
if (z != EN_ZERO) $stop;
end
if (cyc==9) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
end
endmodule
module sub (input En_t a, output En_t z);
always @* z = (a==EN_ONE) ? EN_ZERO : EN_ONE;
endmodule
// Local Variables:
// verilog-typedef-regexp: "_t$"
// End:
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2003 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer _mode;
reg _guard1;
reg [127:0] r_wide0;
reg _guard2;
wire [63:0] r_wide1;
reg _guard3;
reg _guard4;
reg _guard5;
reg _guard6;
assign r_wide1 = r_wide0[127:64];
// surefire lint_off STMINI
initial _mode = 0;
always @ (posedge clk) begin
if (_mode==0) begin
$write("[%0t] t_equal: Running\n", $time);
_guard1 <= 0;
_guard2 <= 0;
_guard3 <= 0;
_guard4 <= 0;
_guard5 <= 0;
_guard6 <= 0;
_mode<=1;
r_wide0 <= {32'h aa111111,32'hbb222222,32'hcc333333,32'hdd444444};
end
else if (_mode==1) begin
_mode<=2;
//
if (5'd10 != 5'b1010) $stop;
if (5'd10 != 5'd10) $stop;
if (5'd10 != 5'ha) $stop;
if (5'd10 != 5'o12) $stop;
if (5'd10 != 5'B 1010) $stop;
if (5'd10 != 5'D10) $stop;
if (5'd10 != 5'H a) $stop;
if (5'd10 != 5 'O 12) $stop;
//
if (r_wide0 !== {32'haa111111,32'hbb222222,32'hcc333333,32'hdd444444}) $stop;
if (r_wide1 !== {32'haa111111,32'hbb222222}) $stop;
if (|{_guard1,_guard2,_guard3,_guard4,_guard5,_guard6}) begin
$write("Guard error %x %x %x %x %x\n",_guard1,_guard2,_guard3,_guard4,_guard5);
$stop;
end
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2003 by Wilson Snyder.
module t;
real n0; initial n0 = 0.0;
real n1; initial n1 = 1.0;
real n2; initial n2 = 0.1;
real n3; initial n3 = 1.2345e-15;
real n4; initial n4 = 2.579e+15;
reg [7:0] r8; initial r8 = 3;
initial begin
// Display formatting
$display("[%0t] e=%e e1=%1e e30=%3.0e e32=%3.2e", $time, n0,n0,n0,n0);
$display("[%0t] f=%f f1=%1e f30=%3.0e f32=%3.2e", $time, n0,n0,n0,n0);
$display("[%0t] g=%g g1=%1e g30=%3.0e g32=%3.2e", $time, n0,n0,n0,n0);
$display;
$display("[%0t] e=%e e1=%1e e30=%3.0e e32=%3.2e", $time, n1,n1,n1,n1);
$display("[%0t] f=%f f1=%1e f30=%3.0e f32=%3.2e", $time, n1,n1,n1,n1);
$display("[%0t] g=%g g1=%1e g30=%3.0e g32=%3.2e", $time, n1,n1,n1,n1);
$display;
$display("[%0t] e=%e e1=%1e e30=%3.0e e32=%3.2e", $time, n2,n2,n2,n2);
$display("[%0t] f=%f f1=%1e f30=%3.0e f32=%3.2e", $time, n2,n2,n2,n2);
$display("[%0t] g=%g g1=%1e g30=%3.0e g32=%3.2e", $time, n2,n2,n2,n2);
$display;
$display("[%0t] e=%e e1=%1e e30=%3.0e e32=%3.2e", $time, n3,n3,n3,n3);
$display("[%0t] f=%f f1=%1e f30=%3.0e f32=%3.2e", $time, n3,n3,n3,n3);
$display("[%0t] g=%g g1=%1e g30=%3.0e g32=%3.2e", $time, n3,n3,n3,n3);
$display;
$display("[%0t] e=%e e1=%1e e30=%3.0e e32=%3.2e", $time, n4,n4,n4,n4);
$display("[%0t] f=%f f1=%1e f30=%3.0e f32=%3.2e", $time, n4,n4,n4,n4);
$display("[%0t] g=%g g1=%1e g30=%3.0e g32=%3.2e", $time, n4,n4,n4,n4);
$display;
$display("r8=%d n1=%g n2=%g", r8, n1, n2);
$display("n1=%g n2=%g r8=%d", n1, n2, r8);
$write("*-* All Finished *-*\n");
$finish;
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2003 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
// verilator lint_off GENCLK
reg [7:0] cyc; initial cyc=0;
reg [7:0] padd;
reg dsp_ph1, dsp_ph2, dsp_reset;
/*AUTOWIRE*/
// Beginning of automatic wires (for undeclared instantiated-module outputs)
wire [7:0] out; // From dspchip of t_dspchip.v
// End of automatics
t_dspchip dspchip (/*AUTOINST*/
// Outputs
.out (out[7:0]),
// Inputs
.dsp_ph1 (dsp_ph1),
.dsp_ph2 (dsp_ph2),
.dsp_reset (dsp_reset),
.padd (padd[7:0]));
always @ (posedge clk) begin
$write("cyc %d\n",cyc);
if (cyc == 8'd0) begin
cyc <= 8'd1;
dsp_reset <= 0; // Need a posedge
padd <= 0;
end
else if (cyc == 8'd20) begin
$write("*-* All Finished *-*\n");
$finish;
end
else begin
cyc <= cyc + 8'd1;
dsp_ph1 <= ((cyc&8'd3) == 8'd0);
dsp_ph2 <= ((cyc&8'd3) == 8'd2);
dsp_reset <= (cyc == 8'd1);
padd <= cyc;
//$write("[%0t] cyc %d %x->%x\n", $time, cyc, padd, out);
case (cyc)
default: $stop;
8'd01: ;
8'd02: ;
8'd03: ;
8'd04: ;
8'd05: ;
8'd06: ;
8'd07: ;
8'd08: ;
8'd09: if (out!==8'h04) $stop;
8'd10: if (out!==8'h04) $stop;
8'd11: if (out!==8'h08) $stop;
8'd12: if (out!==8'h08) $stop;
8'd13: if (out!==8'h00) $stop;
8'd14: if (out!==8'h00) $stop;
8'd15: if (out!==8'h00) $stop;
8'd16: if (out!==8'h00) $stop;
8'd17: if (out!==8'h0c) $stop;
8'd18: if (out!==8'h0c) $stop;
8'd19: if (out!==8'h10) $stop;
endcase
end
end
endmodule
module t_dspchip (/*AUTOARG*/
// Outputs
out,
// Inputs
dsp_ph1, dsp_ph2, dsp_reset, padd
);
input dsp_ph1, dsp_ph2, dsp_reset;
input [7:0] padd;
output [7:0] out;
wire dsp_ph1, dsp_ph2;
wire [7:0] out;
wire pla_ph1, pla_ph2;
wire out1_r;
wire [7:0] out2_r, padd;
wire clk_en;
t_dspcore t_dspcore (/*AUTOINST*/
// Outputs
.out1_r (out1_r),
.pla_ph1 (pla_ph1),
.pla_ph2 (pla_ph2),
// Inputs
.dsp_ph1 (dsp_ph1),
.dsp_ph2 (dsp_ph2),
.dsp_reset (dsp_reset),
.clk_en (clk_en));
t_dsppla t_dsppla (/*AUTOINST*/
// Outputs
.out2_r (out2_r[7:0]),
// Inputs
.pla_ph1 (pla_ph1),
.pla_ph2 (pla_ph2),
.dsp_reset (dsp_reset),
.padd (padd[7:0]));
assign out = out1_r ? 8'h00 : out2_r;
assign clk_en = 1'b1;
endmodule
module t_dspcore (/*AUTOARG*/
// Outputs
out1_r, pla_ph1, pla_ph2,
// Inputs
dsp_ph1, dsp_ph2, dsp_reset, clk_en
);
input dsp_ph1, dsp_ph2, dsp_reset;
input clk_en;
output out1_r, pla_ph1, pla_ph2;
wire dsp_ph1, dsp_ph2, dsp_reset;
wire pla_ph1, pla_ph2;
reg out1_r;
always @(posedge dsp_ph1 or posedge dsp_reset) begin
if (dsp_reset)
out1_r <= 1'h0;
else
out1_r <= ~out1_r;
end
assign pla_ph1 = dsp_ph1;
assign pla_ph2 = dsp_ph2 & clk_en;
endmodule
module t_dsppla (/*AUTOARG*/
// Outputs
out2_r,
// Inputs
pla_ph1, pla_ph2, dsp_reset, padd
);
input pla_ph1, pla_ph2, dsp_reset;
input [7:0] padd;
output [7:0] out2_r;
wire pla_ph1, pla_ph2, dsp_reset;
wire [7:0] padd;
reg [7:0] out2_r;
reg [7:0] latched_r;
always @(posedge pla_ph1 or posedge dsp_reset) begin
if (dsp_reset)
latched_r <= 8'h00;
else
latched_r <= padd;
end
always @(posedge pla_ph2 or posedge dsp_reset) begin
if (dsp_reset)
out2_r <= 8'h00;
else
out2_r <= latched_r;
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2004 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc; initial cyc=1;
reg [255:0] i;
wire [255:0] q;
assign q = {
i[176],i[168],i[126],i[177],i[097],i[123],i[231],i[039],
i[156],i[026],i[001],i[052],i[005],i[240],i[157],i[048],
i[111],i[088],i[133],i[225],i[046],i[038],i[004],i[234],
i[115],i[008],i[069],i[099],i[137],i[130],i[255],i[122],
i[223],i[195],i[224],i[083],i[094],i[018],i[067],i[034],
i[221],i[105],i[104],i[107],i[053],i[066],i[020],i[174],
i[010],i[196],i[003],i[041],i[071],i[194],i[154],i[110],
i[186],i[210],i[040],i[044],i[243],i[236],i[239],i[183],
i[164],i[064],i[086],i[193],i[055],i[206],i[203],i[128],
i[190],i[233],i[023],i[022],i[135],i[108],i[061],i[139],
i[180],i[043],i[109],i[090],i[229],i[238],i[095],i[173],
i[208],i[054],i[025],i[024],i[148],i[079],i[246],i[142],
i[181],i[129],i[120],i[220],i[036],i[159],i[201],i[119],
i[216],i[152],i[175],i[138],i[242],i[143],i[101],i[035],
i[228],i[082],i[211],i[062],i[076],i[124],i[150],i[149],
i[235],i[227],i[250],i[134],i[068],i[032],i[060],i[144],
i[042],i[163],i[087],i[059],i[213],i[251],i[200],i[070],
i[145],i[204],i[249],i[191],i[127],i[247],i[106],i[017],
i[028],i[045],i[215],i[162],i[205],i[073],i[065],i[084],
i[153],i[158],i[085],i[197],i[212],i[114],i[096],i[118],
i[146],i[030],i[058],i[230],i[141],i[000],i[199],i[171],
i[182],i[185],i[021],i[016],i[033],i[237],i[015],i[112],
i[222],i[253],i[244],i[031],i[248],i[092],i[226],i[179],
i[189],i[056],i[132],i[116],i[072],i[184],i[027],i[002],
i[103],i[125],i[009],i[078],i[178],i[245],i[170],i[161],
i[102],i[047],i[192],i[012],i[057],i[207],i[187],i[151],
i[218],i[254],i[214],i[037],i[131],i[165],i[011],i[098],
i[169],i[209],i[167],i[202],i[100],i[172],i[147],i[013],
i[136],i[166],i[252],i[077],i[051],i[074],i[140],i[050],
i[217],i[198],i[081],i[091],i[075],i[121],i[188],i[219],
i[160],i[241],i[080],i[155],i[019],i[006],i[014],i[029],
i[089],i[049],i[113],i[232],i[007],i[117],i[063],i[093]
};
always @ (posedge clk) begin
if (cyc!=0) begin
cyc <= cyc + 1;
`ifdef TEST_VERBOSE
$write("%x %x\n", q, i);
`endif
if (cyc==1) begin
i <= 256'hed388e646c843d35de489bab2413d77045e0eb7642b148537491f3da147e7f26;
end
if (cyc==2) begin
i <= 256'h0e17c88f3d5fe51a982646c8e2bd68c3e236ddfddddbdad20a48e039c9f395b8;
if (q != 256'h697bad4b0cf2d7fa4ad22809293710bb67d1eb3131e8eb2135f2c7bd820baa84) $stop;
end
if (cyc==3) begin
if (q != 256'h320eda5078b3e942353d16dddc8b29fd773b4fcec8323612dadfb1fa483f602c) $stop;
end
if (cyc==4) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2004 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc; initial cyc=1;
reg [255:0] i;
wire [255:0] q;
assign q = {
i[176],i[168],i[126],i[177],i[097],i[123],i[231],i[039],
i[156],i[026],i[001],i[052],i[005],i[240],i[157],i[048],
i[111],i[088],i[133],i[225],i[046],i[038],i[004],i[234],
i[115],i[008],i[069],i[099],i[137],i[130],i[255],i[122],
i[223],i[195],i[224],i[083],i[094],i[018],i[067],i[034],
i[221],i[105],i[104],i[107],i[053],i[066],i[020],i[174],
i[010],i[196],i[003],i[041],i[071],i[194],i[154],i[110],
i[186],i[210],i[040],i[044],i[243],i[236],i[239],i[183],
i[164],i[064],i[086],i[193],i[055],i[206],i[203],i[128],
i[190],i[233],i[023],i[022],i[135],i[108],i[061],i[139],
i[180],i[043],i[109],i[090],i[229],i[238],i[095],i[173],
i[208],i[054],i[025],i[024],i[148],i[079],i[246],i[142],
i[181],i[129],i[120],i[220],i[036],i[159],i[201],i[119],
i[216],i[152],i[175],i[138],i[242],i[143],i[101],i[035],
i[228],i[082],i[211],i[062],i[076],i[124],i[150],i[149],
i[235],i[227],i[250],i[134],i[068],i[032],i[060],i[144],
i[042],i[163],i[087],i[059],i[213],i[251],i[200],i[070],
i[145],i[204],i[249],i[191],i[127],i[247],i[106],i[017],
i[028],i[045],i[215],i[162],i[205],i[073],i[065],i[084],
i[153],i[158],i[085],i[197],i[212],i[114],i[096],i[118],
i[146],i[030],i[058],i[230],i[141],i[000],i[199],i[171],
i[182],i[185],i[021],i[016],i[033],i[237],i[015],i[112],
i[222],i[253],i[244],i[031],i[248],i[092],i[226],i[179],
i[189],i[056],i[132],i[116],i[072],i[184],i[027],i[002],
i[103],i[125],i[009],i[078],i[178],i[245],i[170],i[161],
i[102],i[047],i[192],i[012],i[057],i[207],i[187],i[151],
i[218],i[254],i[214],i[037],i[131],i[165],i[011],i[098],
i[169],i[209],i[167],i[202],i[100],i[172],i[147],i[013],
i[136],i[166],i[252],i[077],i[051],i[074],i[140],i[050],
i[217],i[198],i[081],i[091],i[075],i[121],i[188],i[219],
i[160],i[241],i[080],i[155],i[019],i[006],i[014],i[029],
i[089],i[049],i[113],i[232],i[007],i[117],i[063],i[093]
};
always @ (posedge clk) begin
if (cyc!=0) begin
cyc <= cyc + 1;
`ifdef TEST_VERBOSE
$write("%x %x\n", q, i);
`endif
if (cyc==1) begin
i <= 256'hed388e646c843d35de489bab2413d77045e0eb7642b148537491f3da147e7f26;
end
if (cyc==2) begin
i <= 256'h0e17c88f3d5fe51a982646c8e2bd68c3e236ddfddddbdad20a48e039c9f395b8;
if (q != 256'h697bad4b0cf2d7fa4ad22809293710bb67d1eb3131e8eb2135f2c7bd820baa84) $stop;
end
if (cyc==3) begin
if (q != 256'h320eda5078b3e942353d16dddc8b29fd773b4fcec8323612dadfb1fa483f602c) $stop;
end
if (cyc==4) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2004 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc; initial cyc=1;
reg [255:0] i;
wire [255:0] q;
assign q = {
i[176],i[168],i[126],i[177],i[097],i[123],i[231],i[039],
i[156],i[026],i[001],i[052],i[005],i[240],i[157],i[048],
i[111],i[088],i[133],i[225],i[046],i[038],i[004],i[234],
i[115],i[008],i[069],i[099],i[137],i[130],i[255],i[122],
i[223],i[195],i[224],i[083],i[094],i[018],i[067],i[034],
i[221],i[105],i[104],i[107],i[053],i[066],i[020],i[174],
i[010],i[196],i[003],i[041],i[071],i[194],i[154],i[110],
i[186],i[210],i[040],i[044],i[243],i[236],i[239],i[183],
i[164],i[064],i[086],i[193],i[055],i[206],i[203],i[128],
i[190],i[233],i[023],i[022],i[135],i[108],i[061],i[139],
i[180],i[043],i[109],i[090],i[229],i[238],i[095],i[173],
i[208],i[054],i[025],i[024],i[148],i[079],i[246],i[142],
i[181],i[129],i[120],i[220],i[036],i[159],i[201],i[119],
i[216],i[152],i[175],i[138],i[242],i[143],i[101],i[035],
i[228],i[082],i[211],i[062],i[076],i[124],i[150],i[149],
i[235],i[227],i[250],i[134],i[068],i[032],i[060],i[144],
i[042],i[163],i[087],i[059],i[213],i[251],i[200],i[070],
i[145],i[204],i[249],i[191],i[127],i[247],i[106],i[017],
i[028],i[045],i[215],i[162],i[205],i[073],i[065],i[084],
i[153],i[158],i[085],i[197],i[212],i[114],i[096],i[118],
i[146],i[030],i[058],i[230],i[141],i[000],i[199],i[171],
i[182],i[185],i[021],i[016],i[033],i[237],i[015],i[112],
i[222],i[253],i[244],i[031],i[248],i[092],i[226],i[179],
i[189],i[056],i[132],i[116],i[072],i[184],i[027],i[002],
i[103],i[125],i[009],i[078],i[178],i[245],i[170],i[161],
i[102],i[047],i[192],i[012],i[057],i[207],i[187],i[151],
i[218],i[254],i[214],i[037],i[131],i[165],i[011],i[098],
i[169],i[209],i[167],i[202],i[100],i[172],i[147],i[013],
i[136],i[166],i[252],i[077],i[051],i[074],i[140],i[050],
i[217],i[198],i[081],i[091],i[075],i[121],i[188],i[219],
i[160],i[241],i[080],i[155],i[019],i[006],i[014],i[029],
i[089],i[049],i[113],i[232],i[007],i[117],i[063],i[093]
};
always @ (posedge clk) begin
if (cyc!=0) begin
cyc <= cyc + 1;
`ifdef TEST_VERBOSE
$write("%x %x\n", q, i);
`endif
if (cyc==1) begin
i <= 256'hed388e646c843d35de489bab2413d77045e0eb7642b148537491f3da147e7f26;
end
if (cyc==2) begin
i <= 256'h0e17c88f3d5fe51a982646c8e2bd68c3e236ddfddddbdad20a48e039c9f395b8;
if (q != 256'h697bad4b0cf2d7fa4ad22809293710bb67d1eb3131e8eb2135f2c7bd820baa84) $stop;
end
if (cyc==3) begin
if (q != 256'h320eda5078b3e942353d16dddc8b29fd773b4fcec8323612dadfb1fa483f602c) $stop;
end
if (cyc==4) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2004 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc; initial cyc=1;
reg [255:0] i;
wire [255:0] q;
assign q = {
i[176],i[168],i[126],i[177],i[097],i[123],i[231],i[039],
i[156],i[026],i[001],i[052],i[005],i[240],i[157],i[048],
i[111],i[088],i[133],i[225],i[046],i[038],i[004],i[234],
i[115],i[008],i[069],i[099],i[137],i[130],i[255],i[122],
i[223],i[195],i[224],i[083],i[094],i[018],i[067],i[034],
i[221],i[105],i[104],i[107],i[053],i[066],i[020],i[174],
i[010],i[196],i[003],i[041],i[071],i[194],i[154],i[110],
i[186],i[210],i[040],i[044],i[243],i[236],i[239],i[183],
i[164],i[064],i[086],i[193],i[055],i[206],i[203],i[128],
i[190],i[233],i[023],i[022],i[135],i[108],i[061],i[139],
i[180],i[043],i[109],i[090],i[229],i[238],i[095],i[173],
i[208],i[054],i[025],i[024],i[148],i[079],i[246],i[142],
i[181],i[129],i[120],i[220],i[036],i[159],i[201],i[119],
i[216],i[152],i[175],i[138],i[242],i[143],i[101],i[035],
i[228],i[082],i[211],i[062],i[076],i[124],i[150],i[149],
i[235],i[227],i[250],i[134],i[068],i[032],i[060],i[144],
i[042],i[163],i[087],i[059],i[213],i[251],i[200],i[070],
i[145],i[204],i[249],i[191],i[127],i[247],i[106],i[017],
i[028],i[045],i[215],i[162],i[205],i[073],i[065],i[084],
i[153],i[158],i[085],i[197],i[212],i[114],i[096],i[118],
i[146],i[030],i[058],i[230],i[141],i[000],i[199],i[171],
i[182],i[185],i[021],i[016],i[033],i[237],i[015],i[112],
i[222],i[253],i[244],i[031],i[248],i[092],i[226],i[179],
i[189],i[056],i[132],i[116],i[072],i[184],i[027],i[002],
i[103],i[125],i[009],i[078],i[178],i[245],i[170],i[161],
i[102],i[047],i[192],i[012],i[057],i[207],i[187],i[151],
i[218],i[254],i[214],i[037],i[131],i[165],i[011],i[098],
i[169],i[209],i[167],i[202],i[100],i[172],i[147],i[013],
i[136],i[166],i[252],i[077],i[051],i[074],i[140],i[050],
i[217],i[198],i[081],i[091],i[075],i[121],i[188],i[219],
i[160],i[241],i[080],i[155],i[019],i[006],i[014],i[029],
i[089],i[049],i[113],i[232],i[007],i[117],i[063],i[093]
};
always @ (posedge clk) begin
if (cyc!=0) begin
cyc <= cyc + 1;
`ifdef TEST_VERBOSE
$write("%x %x\n", q, i);
`endif
if (cyc==1) begin
i <= 256'hed388e646c843d35de489bab2413d77045e0eb7642b148537491f3da147e7f26;
end
if (cyc==2) begin
i <= 256'h0e17c88f3d5fe51a982646c8e2bd68c3e236ddfddddbdad20a48e039c9f395b8;
if (q != 256'h697bad4b0cf2d7fa4ad22809293710bb67d1eb3131e8eb2135f2c7bd820baa84) $stop;
end
if (cyc==3) begin
if (q != 256'h320eda5078b3e942353d16dddc8b29fd773b4fcec8323612dadfb1fa483f602c) $stop;
end
if (cyc==4) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2004 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc; initial cyc=1;
integer j;
reg [63:0] cam_lookup_hit_vector;
integer hit_count;
always @(/*AUTOSENSE*/cam_lookup_hit_vector) begin
hit_count = 0;
for (j=0; j < 64; j=j+1) begin
hit_count = hit_count + {31'h0, cam_lookup_hit_vector[j]};
end
end
integer hit_count2;
always @(/*AUTOSENSE*/cam_lookup_hit_vector) begin
hit_count2 = 0;
for (j=63; j >= 0; j=j-1) begin
hit_count2 = hit_count2 + {31'h0, cam_lookup_hit_vector[j]};
end
end
integer hit_count3;
always @(/*AUTOSENSE*/cam_lookup_hit_vector) begin
hit_count3 = 0;
for (j=63; j > 0; j=j-1) begin
if (cam_lookup_hit_vector[j]) hit_count3 = hit_count3 + 32'd1;
end
end
reg [127:0] wide_for_index;
reg [31:0] wide_for_count;
always @(/*AUTOSENSE*/cam_lookup_hit_vector) begin
wide_for_count = 0;
for (wide_for_index = 128'hff_00000000_00000000;
wide_for_index < 128'hff_00000000_00000100;
wide_for_index = wide_for_index + 2) begin
wide_for_count = wide_for_count+32'h1;
end
end
// While loop
integer w;
initial begin
while (w<10) w=w+1;
if (w!=10) $stop;
while (w<20) begin w=w+2; end
while (w<20) begin w=w+99999; end // NEVER
if (w!=20) $stop;
end
// Do-While loop
integer dw;
initial begin
do dw=dw+1; while (dw<10);
if (dw!=10) $stop;
do dw=dw+2; while (dw<20);
if (dw!=20) $stop;
do dw=dw+5; while (dw<20); // Once
if (dw!=25) $stop;
end
always @ (posedge clk) begin
cam_lookup_hit_vector <= 0;
if (cyc!=0) begin
cyc <= cyc + 1;
if (cyc==1) begin
cam_lookup_hit_vector <= 64'h00010000_00010000;
end
if (cyc==2) begin
if (hit_count != 32'd2) $stop;
if (hit_count2 != 32'd2) $stop;
if (hit_count3 != 32'd2) $stop;
cam_lookup_hit_vector <= 64'h01010010_00010001;
end
if (cyc==3) begin
if (hit_count != 32'd5) $stop;
if (hit_count2 != 32'd5) $stop;
if (hit_count3 != 32'd4) $stop;
if (wide_for_count != 32'h80) $stop;
end
if (cyc==9) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2003-2007 by Wilson Snyder.
module t(/*AUTOARG*/
// Inputs
clk
);
// surefire lint_off NBAJAM
input clk;
reg [7:0] _ranit;
reg [2:0] a;
reg [7:0] vvector;
reg [7:0] vvector_flip;
// surefire lint_off STMINI
initial _ranit = 0;
always @ (posedge clk) begin
a <= a + 3'd1;
vvector[a] <= 1'b1; // This should use "old" value for a
vvector_flip[~a] <= 1'b1; // This should use "old" value for a
//
//========
if (_ranit==8'd0) begin
_ranit <= 8'd1;
$write("[%0t] t_select_index: Running\n", $time);
vvector <= 0;
vvector_flip <= 0;
a <= 3'b1;
end
else _ranit <= _ranit + 8'd1;
//
if (_ranit==8'd3) begin
$write("%x %x\n",vvector,vvector_flip);
if (vvector !== 8'b0000110) $stop;
if (vvector_flip !== 8'b0110_0000) $stop;
//
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2003-2007 by Wilson Snyder.
module t(/*AUTOARG*/
// Inputs
clk
);
// surefire lint_off NBAJAM
input clk;
reg [7:0] _ranit;
reg [2:0] a;
reg [7:0] vvector;
reg [7:0] vvector_flip;
// surefire lint_off STMINI
initial _ranit = 0;
always @ (posedge clk) begin
a <= a + 3'd1;
vvector[a] <= 1'b1; // This should use "old" value for a
vvector_flip[~a] <= 1'b1; // This should use "old" value for a
//
//========
if (_ranit==8'd0) begin
_ranit <= 8'd1;
$write("[%0t] t_select_index: Running\n", $time);
vvector <= 0;
vvector_flip <= 0;
a <= 3'b1;
end
else _ranit <= _ranit + 8'd1;
//
if (_ranit==8'd3) begin
$write("%x %x\n",vvector,vvector_flip);
if (vvector !== 8'b0000110) $stop;
if (vvector_flip !== 8'b0110_0000) $stop;
//
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2003-2007 by Wilson Snyder.
module t(/*AUTOARG*/
// Inputs
clk
);
// surefire lint_off NBAJAM
input clk;
reg [7:0] _ranit;
reg [2:0] a;
reg [7:0] vvector;
reg [7:0] vvector_flip;
// surefire lint_off STMINI
initial _ranit = 0;
always @ (posedge clk) begin
a <= a + 3'd1;
vvector[a] <= 1'b1; // This should use "old" value for a
vvector_flip[~a] <= 1'b1; // This should use "old" value for a
//
//========
if (_ranit==8'd0) begin
_ranit <= 8'd1;
$write("[%0t] t_select_index: Running\n", $time);
vvector <= 0;
vvector_flip <= 0;
a <= 3'b1;
end
else _ranit <= _ranit + 8'd1;
//
if (_ranit==8'd3) begin
$write("%x %x\n",vvector,vvector_flip);
if (vvector !== 8'b0000110) $stop;
if (vvector_flip !== 8'b0110_0000) $stop;
//
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2008 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc=0;
reg [63:0] crc;
reg [63:0] sum;
// Take CRC data and apply to testblock inputs
wire [31:0] Operand1 = crc[31:0];
wire [15:0] Operand2 = crc[47:32];
wire Unsigned = crc[48];
reg rst;
parameter wl = 16;
/*AUTOWIRE*/
// Beginning of automatic wires (for undeclared instantiated-module outputs)
wire [wl-1:0] Quotient; // From test of Test.v
wire [wl-1:0] Remainder; // From test of Test.v
// End of automatics
Test test (/*AUTOINST*/
// Outputs
.Quotient (Quotient[wl-1:0]),
.Remainder (Remainder[wl-1:0]),
// Inputs
.Operand1 (Operand1[wl*2-1:0]),
.Operand2 (Operand2[wl-1:0]),
.clk (clk),
.rst (rst),
.Unsigned (Unsigned));
// Aggregate outputs into a single result vector
wire [63:0] result = {32'h0, Quotient, Remainder};
// What checksum will we end up with
`define EXPECTED_SUM 64'h98d41f89a8be5693
// Test loop
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d crc=%x result=%x it=%x\n",$time, cyc, crc, result, test.Iteration);
`endif
cyc <= cyc + 1;
if (cyc < 20 || test.Iteration==4'd15) begin
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
end
sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]};
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
rst <= 1'b1;
end
else if (cyc<20) begin
sum <= 64'h0;
rst <= 1'b0;
end
else if (cyc<90) begin
end
else if (cyc==99) begin
$write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum);
if (crc !== 64'h8dd70a44972ad809) $stop;
if (sum !== `EXPECTED_SUM) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
module Test(clk, rst, Operand1, Operand2, Unsigned, Quotient, Remainder);
parameter wl = 16;
input [wl*2-1:0] Operand1;
input [wl-1:0] Operand2;
input clk, rst, Unsigned;
output [wl-1:0] Quotient, Remainder;
reg Cy, Overflow, Sign1, Sign2, Zero, Negative;
reg [wl-1:0] ah,al,Quotient, Remainder;
reg [3:0] Iteration;
reg [wl-1:0] sub_quot,op;
reg ah_ext;
reg [1:0] a,b,c,d,e;
always @(posedge clk) begin
if (!rst) begin
{a,b,c,d,e} = Operand1[9:0];
{a,b,c,d,e} = {e,d,c,b,a};
if (a != Operand1[1:0]) $stop;
if (b != Operand1[3:2]) $stop;
if (c != Operand1[5:4]) $stop;
if (d != Operand1[7:6]) $stop;
if (e != Operand1[9:8]) $stop;
end
end
always @(posedge clk) begin
if (rst) begin
Iteration <= 0;
Quotient <= 0;
Remainder <= 0;
end
else begin
if (Iteration == 0) begin
{ah,al} = Operand1;
op = Operand2;
Cy = 0;
Overflow = 0;
Sign1 = (~Unsigned)&ah[wl-1];
Sign2 = (~Unsigned)&(ah[wl-1]^op[wl-1]);
if (Sign1) {ah,al} = -{ah,al};
end
`define BUG1
`ifdef BUG1
{ah_ext,ah,al} = {ah,al,Cy};
`else
ah_ext = ah[15];
ah[15:1] = ah[14:0];
ah[0] = al[15];
al[15:1] = al[14:0];
al[0] = Cy;
`endif
`ifdef TEST_VERBOSE
$display("%x %x %x %x %x %x %x %x %x",
Iteration, ah, al, Quotient, Remainder, Overflow, ah_ext, sub_quot, Cy);
`endif
{Cy,sub_quot} = (~Unsigned)&op[wl-1]? {ah_ext,ah}+op : {ah_ext,ah} - {1'b1,op};
if (Cy)
begin
{ah_ext,ah} = {1'b0,sub_quot};
end
if (Iteration != 15 )
begin
if (ah_ext) Overflow = 1;
end
else
begin
if (al[14] && ~Unsigned) Overflow = 1;
Quotient <= Sign2 ? -{al[14:0],Cy} : {al[14:0],Cy};
Remainder <= Sign1 ? -ah : ah;
if (Overflow)
begin
Quotient <= Sign2 ? 16'h8001 : {Unsigned,{15{1'b1}}};
Remainder <= Unsigned ? 16'hffff : 16'h8000;
Zero = 1;
Negative = 1;
end
end
Iteration <= Iteration + 1; // Count number of times this instruction is repeated
end
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2008 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc=0;
reg [63:0] crc;
reg [63:0] sum;
// Take CRC data and apply to testblock inputs
wire [31:0] Operand1 = crc[31:0];
wire [15:0] Operand2 = crc[47:32];
wire Unsigned = crc[48];
reg rst;
parameter wl = 16;
/*AUTOWIRE*/
// Beginning of automatic wires (for undeclared instantiated-module outputs)
wire [wl-1:0] Quotient; // From test of Test.v
wire [wl-1:0] Remainder; // From test of Test.v
// End of automatics
Test test (/*AUTOINST*/
// Outputs
.Quotient (Quotient[wl-1:0]),
.Remainder (Remainder[wl-1:0]),
// Inputs
.Operand1 (Operand1[wl*2-1:0]),
.Operand2 (Operand2[wl-1:0]),
.clk (clk),
.rst (rst),
.Unsigned (Unsigned));
// Aggregate outputs into a single result vector
wire [63:0] result = {32'h0, Quotient, Remainder};
// What checksum will we end up with
`define EXPECTED_SUM 64'h98d41f89a8be5693
// Test loop
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d crc=%x result=%x it=%x\n",$time, cyc, crc, result, test.Iteration);
`endif
cyc <= cyc + 1;
if (cyc < 20 || test.Iteration==4'd15) begin
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
end
sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]};
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
rst <= 1'b1;
end
else if (cyc<20) begin
sum <= 64'h0;
rst <= 1'b0;
end
else if (cyc<90) begin
end
else if (cyc==99) begin
$write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum);
if (crc !== 64'h8dd70a44972ad809) $stop;
if (sum !== `EXPECTED_SUM) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
module Test(clk, rst, Operand1, Operand2, Unsigned, Quotient, Remainder);
parameter wl = 16;
input [wl*2-1:0] Operand1;
input [wl-1:0] Operand2;
input clk, rst, Unsigned;
output [wl-1:0] Quotient, Remainder;
reg Cy, Overflow, Sign1, Sign2, Zero, Negative;
reg [wl-1:0] ah,al,Quotient, Remainder;
reg [3:0] Iteration;
reg [wl-1:0] sub_quot,op;
reg ah_ext;
reg [1:0] a,b,c,d,e;
always @(posedge clk) begin
if (!rst) begin
{a,b,c,d,e} = Operand1[9:0];
{a,b,c,d,e} = {e,d,c,b,a};
if (a != Operand1[1:0]) $stop;
if (b != Operand1[3:2]) $stop;
if (c != Operand1[5:4]) $stop;
if (d != Operand1[7:6]) $stop;
if (e != Operand1[9:8]) $stop;
end
end
always @(posedge clk) begin
if (rst) begin
Iteration <= 0;
Quotient <= 0;
Remainder <= 0;
end
else begin
if (Iteration == 0) begin
{ah,al} = Operand1;
op = Operand2;
Cy = 0;
Overflow = 0;
Sign1 = (~Unsigned)&ah[wl-1];
Sign2 = (~Unsigned)&(ah[wl-1]^op[wl-1]);
if (Sign1) {ah,al} = -{ah,al};
end
`define BUG1
`ifdef BUG1
{ah_ext,ah,al} = {ah,al,Cy};
`else
ah_ext = ah[15];
ah[15:1] = ah[14:0];
ah[0] = al[15];
al[15:1] = al[14:0];
al[0] = Cy;
`endif
`ifdef TEST_VERBOSE
$display("%x %x %x %x %x %x %x %x %x",
Iteration, ah, al, Quotient, Remainder, Overflow, ah_ext, sub_quot, Cy);
`endif
{Cy,sub_quot} = (~Unsigned)&op[wl-1]? {ah_ext,ah}+op : {ah_ext,ah} - {1'b1,op};
if (Cy)
begin
{ah_ext,ah} = {1'b0,sub_quot};
end
if (Iteration != 15 )
begin
if (ah_ext) Overflow = 1;
end
else
begin
if (al[14] && ~Unsigned) Overflow = 1;
Quotient <= Sign2 ? -{al[14:0],Cy} : {al[14:0],Cy};
Remainder <= Sign1 ? -ah : ah;
if (Overflow)
begin
Quotient <= Sign2 ? 16'h8001 : {Unsigned,{15{1'b1}}};
Remainder <= Unsigned ? 16'hffff : 16'h8000;
Zero = 1;
Negative = 1;
end
end
Iteration <= Iteration + 1; // Count number of times this instruction is repeated
end
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2009 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc=0;
reg [63:0] crc;
reg [63:0] sum;
// Take CRC data and apply to testblock inputs
wire [15:0] in = crc[15:0];
/*AUTOWIRE*/
// Beginning of automatic wires (for undeclared instantiated-module outputs)
wire [15:0] outa; // From test of Test.v
wire [15:0] outb; // From test of Test.v
wire [15:0] outc; // From test of Test.v
// End of automatics
Test test (/*AUTOINST*/
// Outputs
.outa (outa[15:0]),
.outb (outb[15:0]),
.outc (outc[15:0]),
// Inputs
.clk (clk),
.in (in[15:0]));
// Aggregate outputs into a single result vector
wire [63:0] result = {16'h0, outa, outb, outc};
// Test loop
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result);
`endif
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]};
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
sum <= 64'h0;
end
else if (cyc<10) begin
sum <= 64'h0;
end
else if (cyc<90) begin
end
else if (cyc==99) begin
$write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum);
if (crc !== 64'hc77bb9b3784ea091) $stop;
// What checksum will we end up with (above print should match)
`define EXPECTED_SUM 64'h09be74b1b0f8c35d
if (sum !== `EXPECTED_SUM) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
module Test (/*AUTOARG*/
// Outputs
outa, outb, outc,
// Inputs
clk, in
);
input clk;
input [15:0] in;
output reg [15:0] outa;
output reg [15:0] outb;
output reg [15:0] outc;
parameter WIDTH = 0;
always @(posedge clk) begin
outa <= {in};
outb <= {{WIDTH{1'b0}}, in};
outc <= {in, {WIDTH{1'b0}}};
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2009 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc=0;
reg [63:0] crc;
reg [63:0] sum;
// Take CRC data and apply to testblock inputs
wire [15:0] in = crc[15:0];
/*AUTOWIRE*/
// Beginning of automatic wires (for undeclared instantiated-module outputs)
wire [15:0] outa; // From test of Test.v
wire [15:0] outb; // From test of Test.v
wire [15:0] outc; // From test of Test.v
// End of automatics
Test test (/*AUTOINST*/
// Outputs
.outa (outa[15:0]),
.outb (outb[15:0]),
.outc (outc[15:0]),
// Inputs
.clk (clk),
.in (in[15:0]));
// Aggregate outputs into a single result vector
wire [63:0] result = {16'h0, outa, outb, outc};
// Test loop
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result);
`endif
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]};
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
sum <= 64'h0;
end
else if (cyc<10) begin
sum <= 64'h0;
end
else if (cyc<90) begin
end
else if (cyc==99) begin
$write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum);
if (crc !== 64'hc77bb9b3784ea091) $stop;
// What checksum will we end up with (above print should match)
`define EXPECTED_SUM 64'h09be74b1b0f8c35d
if (sum !== `EXPECTED_SUM) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
module Test (/*AUTOARG*/
// Outputs
outa, outb, outc,
// Inputs
clk, in
);
input clk;
input [15:0] in;
output reg [15:0] outa;
output reg [15:0] outb;
output reg [15:0] outc;
parameter WIDTH = 0;
always @(posedge clk) begin
outa <= {in};
outb <= {{WIDTH{1'b0}}, in};
outc <= {in, {WIDTH{1'b0}}};
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2003-2007 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc; initial cyc=1;
reg [15:0] m_din;
// OK
reg [15:0] c_split_1, c_split_2, c_split_3, c_split_4, c_split_5;
always @ (posedge clk) begin
if (cyc==0) begin
/*AUTORESET*/
// Beginning of autoreset for uninitialized flops
c_split_1 <= 16'h0;
c_split_2 <= 16'h0;
c_split_3 <= 16'h0;
c_split_4 <= 0;
c_split_5 <= 0;
// End of automatics
end
else begin
c_split_1 <= m_din;
c_split_2 <= c_split_1;
c_split_3 <= c_split_2 & {16{(cyc!=0)}};
if (cyc==1) begin
c_split_4 <= 16'h4;
c_split_5 <= 16'h5;
end
else begin
c_split_4 <= c_split_3;
c_split_5 <= c_split_4;
end
end
end
// OK
reg [15:0] d_split_1, d_split_2;
always @ (posedge clk) begin
if (cyc==0) begin
/*AUTORESET*/
// Beginning of autoreset for uninitialized flops
d_split_1 <= 16'h0;
d_split_2 <= 16'h0;
// End of automatics
end
else begin
d_split_1 <= m_din;
d_split_2 <= d_split_1;
d_split_1 <= ~m_din;
end
end
// Not OK
always @ (posedge clk) begin
if (cyc==0) begin
/*AUTORESET*/
// Beginning of autoreset for uninitialized flops
// End of automatics
end
else begin
$write(" foo %x", m_din);
$write(" bar %x\n", m_din);
end
end
// Not OK
reg [15:0] e_split_1, e_split_2;
always @ (posedge clk) begin
if (cyc==0) begin
/*AUTORESET*/
// Beginning of autoreset for uninitialized flops
e_split_1 = 16'h0;
e_split_2 = 16'h0;
// End of automatics
end
else begin
e_split_1 = m_din;
e_split_2 = e_split_1;
end
end
// Not OK
reg [15:0] f_split_1, f_split_2;
always @ (posedge clk) begin
if (cyc==0) begin
/*AUTORESET*/
// Beginning of autoreset for uninitialized flops
f_split_1 = 16'h0;
f_split_2 = 16'h0;
// End of automatics
end
else begin
f_split_2 = f_split_1;
f_split_1 = m_din;
end
end
always @ (posedge clk) begin
if (cyc!=0) begin
//$write(" C %d %x %x\n", cyc, c_split_1, c_split_2);
cyc<=cyc+1;
if (cyc==1) begin
m_din <= 16'hfeed;
end
if (cyc==3) begin
end
if (cyc==4) begin
m_din <= 16'he11e;
if (!(d_split_1==16'h0112 && d_split_2==16'h0112)) $stop;
if (!(e_split_1==16'hfeed && e_split_2==16'hfeed)) $stop;
if (!(f_split_1==16'hfeed && f_split_2==16'hfeed)) $stop;
end
if (cyc==5) begin
m_din <= 16'he22e;
if (!(d_split_1==16'h0112 && d_split_2==16'h0112)) $stop;
// Two valid orderings, as we don't know which posedge clk gets evaled first
if (!(e_split_1==16'hfeed && e_split_2==16'hfeed) && !(e_split_1==16'he11e && e_split_2==16'he11e)) $stop;
if (!(f_split_1==16'hfeed && f_split_2==16'hfeed) && !(f_split_1==16'he11e && f_split_2==16'hfeed)) $stop;
end
if (cyc==6) begin
m_din <= 16'he33e;
if (!(c_split_1==16'he11e && c_split_2==16'hfeed && c_split_3==16'hfeed)) $stop;
if (!(d_split_1==16'h1ee1 && d_split_2==16'h0112)) $stop;
// Two valid orderings, as we don't know which posedge clk gets evaled first
if (!(e_split_1==16'he11e && e_split_2==16'he11e) && !(e_split_1==16'he22e && e_split_2==16'he22e)) $stop;
if (!(f_split_1==16'he11e && f_split_2==16'hfeed) && !(f_split_1==16'he22e && f_split_2==16'he11e)) $stop;
end
if (cyc==7) begin
m_din <= 16'he44e;
if (!(c_split_1==16'he22e && c_split_2==16'he11e && c_split_3==16'hfeed)) $stop;
end
if (cyc==8) begin
m_din <= 16'he55e;
if (!(c_split_1==16'he33e && c_split_2==16'he22e && c_split_3==16'he11e
&& c_split_4==16'hfeed && c_split_5==16'hfeed)) $stop;
end
if (cyc==9) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
// This file ONLY is placed into the Public Domain, for any use,
// without warranty.
`timescale 1ns / 1ps
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc; initial cyc=0;
reg [63:0] crc;
reg [31:0] sum;
wire [8:0] Output;
wire [8:0] Input = crc[8:0];
assigns assigns (/*AUTOINST*/
// Outputs
.Output (Output[8:0]),
// Inputs
.Input (Input[8:0]));
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d crc=%x q=%x\n",$time, cyc, crc, sum);
`endif
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
sum <= 32'h0;
end
else if (cyc>10 && cyc<90) begin
sum <= {sum[30:0],sum[31]} ^ {23'h0, crc[8:0]};
end
else if (cyc==99) begin
if (sum !== 32'he8bbd130) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
module assigns(Input, Output);
input [8:0] Input;
output [8:0] Output;
genvar i;
generate
for (i = 0; i < 8; i = i + 1) begin : ap
assign Output[(i>0) ? i-1 : 8] = Input[(i>0) ? i-1 : 8];
end
endgenerate
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
// This file ONLY is placed into the Public Domain, for any use,
// without warranty.
`timescale 1ns / 1ps
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc; initial cyc=0;
reg [63:0] crc;
reg [31:0] sum;
wire [8:0] Output;
wire [8:0] Input = crc[8:0];
assigns assigns (/*AUTOINST*/
// Outputs
.Output (Output[8:0]),
// Inputs
.Input (Input[8:0]));
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d crc=%x q=%x\n",$time, cyc, crc, sum);
`endif
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
sum <= 32'h0;
end
else if (cyc>10 && cyc<90) begin
sum <= {sum[30:0],sum[31]} ^ {23'h0, crc[8:0]};
end
else if (cyc==99) begin
if (sum !== 32'he8bbd130) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
module assigns(Input, Output);
input [8:0] Input;
output [8:0] Output;
genvar i;
generate
for (i = 0; i < 8; i = i + 1) begin : ap
assign Output[(i>0) ? i-1 : 8] = Input[(i>0) ? i-1 : 8];
end
endgenerate
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2009 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc=0;
reg [63:0] crc;
reg [63:0] sum;
// Take CRC data and apply to testblock inputs
wire [31:0] in = crc[31:0];
/*AUTOWIRE*/
// Beginning of automatic wires (for undeclared instantiated-module outputs)
wire [31:0] out; // From test of Test.v
// End of automatics
Test #(16,2) test (/*AUTOINST*/
// Outputs
.out (out[31:0]),
// Inputs
.clk (clk),
.in (in[31:0]));
// Aggregate outputs into a single result vector
wire [63:0] result = {32'h0, out};
// Test loop
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result);
`endif
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]};
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
sum <= 64'h0;
end
else if (cyc<10) begin
sum <= 64'h0;
end
else if (cyc<90) begin
end
else if (cyc==99) begin
$write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum);
if (crc !== 64'hc77bb9b3784ea091) $stop;
// What checksum will we end up with (above print should match)
`define EXPECTED_SUM 64'hf9b3a5000165ed38
if (sum !== `EXPECTED_SUM) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
module Test (/*AUTOARG*/
// Outputs
out,
// Inputs
clk, in
);
input clk;
input [31:0] in;
output [31:0] out;
parameter N = 0;
parameter PASSDOWN = 1;
add #(PASSDOWN) add (.in (in[(2*N)-1:(0*N)]),
.out (out));
endmodule
module add (/*AUTOARG*/
// Outputs
out,
// Inputs
in
);
parameter PASSDOWN = 9999;
input [31:0] in;
output [31:0] out;
wire out = in + PASSDOWN;
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2009 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc=0;
reg [63:0] crc;
reg [63:0] sum;
// Take CRC data and apply to testblock inputs
wire [31:0] in = crc[31:0];
/*AUTOWIRE*/
// Beginning of automatic wires (for undeclared instantiated-module outputs)
wire [31:0] out; // From test of Test.v
// End of automatics
Test #(16,2) test (/*AUTOINST*/
// Outputs
.out (out[31:0]),
// Inputs
.clk (clk),
.in (in[31:0]));
// Aggregate outputs into a single result vector
wire [63:0] result = {32'h0, out};
// Test loop
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result);
`endif
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]};
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
sum <= 64'h0;
end
else if (cyc<10) begin
sum <= 64'h0;
end
else if (cyc<90) begin
end
else if (cyc==99) begin
$write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum);
if (crc !== 64'hc77bb9b3784ea091) $stop;
// What checksum will we end up with (above print should match)
`define EXPECTED_SUM 64'hf9b3a5000165ed38
if (sum !== `EXPECTED_SUM) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
module Test (/*AUTOARG*/
// Outputs
out,
// Inputs
clk, in
);
input clk;
input [31:0] in;
output [31:0] out;
parameter N = 0;
parameter PASSDOWN = 1;
add #(PASSDOWN) add (.in (in[(2*N)-1:(0*N)]),
.out (out));
endmodule
module add (/*AUTOARG*/
// Outputs
out,
// Inputs
in
);
parameter PASSDOWN = 9999;
input [31:0] in;
output [31:0] out;
wire out = in + PASSDOWN;
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2009 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc=0;
reg [63:0] crc;
reg [63:0] sum;
// Take CRC data and apply to testblock inputs
wire [31:0] in = crc[31:0];
/*AUTOWIRE*/
// Beginning of automatic wires (for undeclared instantiated-module outputs)
wire [31:0] out; // From test of Test.v
// End of automatics
Test #(16,2) test (/*AUTOINST*/
// Outputs
.out (out[31:0]),
// Inputs
.clk (clk),
.in (in[31:0]));
// Aggregate outputs into a single result vector
wire [63:0] result = {32'h0, out};
// Test loop
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result);
`endif
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]};
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
sum <= 64'h0;
end
else if (cyc<10) begin
sum <= 64'h0;
end
else if (cyc<90) begin
end
else if (cyc==99) begin
$write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum);
if (crc !== 64'hc77bb9b3784ea091) $stop;
// What checksum will we end up with (above print should match)
`define EXPECTED_SUM 64'hf9b3a5000165ed38
if (sum !== `EXPECTED_SUM) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
module Test (/*AUTOARG*/
// Outputs
out,
// Inputs
clk, in
);
input clk;
input [31:0] in;
output [31:0] out;
parameter N = 0;
parameter PASSDOWN = 1;
add #(PASSDOWN) add (.in (in[(2*N)-1:(0*N)]),
.out (out));
endmodule
module add (/*AUTOARG*/
// Outputs
out,
// Inputs
in
);
parameter PASSDOWN = 9999;
input [31:0] in;
output [31:0] out;
wire out = in + PASSDOWN;
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2003 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
parameter PAR = 3;
input clk;
defparam i.L00 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L01 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L02 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L03 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L04 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L05 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L06 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L07 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L08 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L09 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L0A = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L0B = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L0C = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L0D = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L0E = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L0F = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L10 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L11 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L12 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L13 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L14 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L15 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L16 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L17 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L18 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L19 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L1A = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L1B = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L1C = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L1D = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L1E = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L1F = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L20 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L21 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L22 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L23 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L24 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L25 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L26 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L27 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L28 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L29 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L2A = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L2B = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L2C = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L2D = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L2E = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L2F = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L30 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L31 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L32 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L33 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L34 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L35 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L36 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L37 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L38 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L39 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L3A = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L3B = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L3C = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L3D = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L3E = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L3F = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.A0 = "HELLO_WORLD_BOY_THIS_IS_LONG";
defparam i.A1 = "HELLO_WORLD_BOY_THIS_IS_LONG";
defparam i.A2 = "HELLO_WORLD_BOY_THIS_IS_LONG";
i i (.clk(clk));
integer cyc=1;
always @ (posedge clk) begin
cyc <= cyc + 1;
if (cyc==1) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
module i
(/*AUTOARG*/
// Inputs
clk
);
// verilator public_module
input clk;
parameter [255:0] L00 = 256'h0;
parameter [255:0] L01 = 256'h0;
parameter [255:0] L02 = 256'h0;
parameter [255:0] L03 = 256'h0;
parameter [255:0] L04 = 256'h0;
parameter [255:0] L05 = 256'h0;
parameter [255:0] L06 = 256'h0;
parameter [255:0] L07 = 256'h0;
parameter [255:0] L08 = 256'h0;
parameter [255:0] L09 = 256'h0;
parameter [255:0] L0A = 256'h0;
parameter [255:0] L0B = 256'h0;
parameter [255:0] L0C = 256'h0;
parameter [255:0] L0D = 256'h0;
parameter [255:0] L0E = 256'h0;
parameter [255:0] L0F = 256'h0;
parameter [255:0] L10 = 256'h0;
parameter [255:0] L11 = 256'h0;
parameter [255:0] L12 = 256'h0;
parameter [255:0] L13 = 256'h0;
parameter [255:0] L14 = 256'h0;
parameter [255:0] L15 = 256'h0;
parameter [255:0] L16 = 256'h0;
parameter [255:0] L17 = 256'h0;
parameter [255:0] L18 = 256'h0;
parameter [255:0] L19 = 256'h0;
parameter [255:0] L1A = 256'h0;
parameter [255:0] L1B = 256'h0;
parameter [255:0] L1C = 256'h0;
parameter [255:0] L1D = 256'h0;
parameter [255:0] L1E = 256'h0;
parameter [255:0] L1F = 256'h0;
parameter [255:0] L20 = 256'h0;
parameter [255:0] L21 = 256'h0;
parameter [255:0] L22 = 256'h0;
parameter [255:0] L23 = 256'h0;
parameter [255:0] L24 = 256'h0;
parameter [255:0] L25 = 256'h0;
parameter [255:0] L26 = 256'h0;
parameter [255:0] L27 = 256'h0;
parameter [255:0] L28 = 256'h0;
parameter [255:0] L29 = 256'h0;
parameter [255:0] L2A = 256'h0;
parameter [255:0] L2B = 256'h0;
parameter [255:0] L2C = 256'h0;
parameter [255:0] L2D = 256'h0;
parameter [255:0] L2E = 256'h0;
parameter [255:0] L2F = 256'h0;
parameter [255:0] L30 = 256'h0;
parameter [255:0] L31 = 256'h0;
parameter [255:0] L32 = 256'h0;
parameter [255:0] L33 = 256'h0;
parameter [255:0] L34 = 256'h0;
parameter [255:0] L35 = 256'h0;
parameter [255:0] L36 = 256'h0;
parameter [255:0] L37 = 256'h0;
parameter [255:0] L38 = 256'h0;
parameter [255:0] L39 = 256'h0;
parameter [255:0] L3A = 256'h0;
parameter [255:0] L3B = 256'h0;
parameter [255:0] L3C = 256'h0;
parameter [255:0] L3D = 256'h0;
parameter [255:0] L3E = 256'h0;
parameter [255:0] L3F = 256'h0;
parameter [255:0] A0 = 256'h0;
parameter [255:0] A1 = 256'h0;
parameter [255:0] A2 = 256'h0;
always @ (posedge clk) begin
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2003 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
parameter PAR = 3;
input clk;
defparam i.L00 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L01 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L02 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L03 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L04 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L05 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L06 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L07 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L08 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L09 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L0A = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L0B = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L0C = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L0D = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L0E = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L0F = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L10 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L11 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L12 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L13 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L14 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L15 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L16 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L17 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L18 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L19 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L1A = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L1B = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L1C = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L1D = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L1E = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L1F = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L20 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L21 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L22 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L23 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L24 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L25 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L26 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L27 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L28 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L29 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L2A = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L2B = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L2C = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L2D = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L2E = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L2F = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L30 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L31 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L32 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L33 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L34 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L35 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L36 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L37 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L38 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L39 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L3A = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L3B = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L3C = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L3D = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L3E = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L3F = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.A0 = "HELLO_WORLD_BOY_THIS_IS_LONG";
defparam i.A1 = "HELLO_WORLD_BOY_THIS_IS_LONG";
defparam i.A2 = "HELLO_WORLD_BOY_THIS_IS_LONG";
i i (.clk(clk));
integer cyc=1;
always @ (posedge clk) begin
cyc <= cyc + 1;
if (cyc==1) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
module i
(/*AUTOARG*/
// Inputs
clk
);
// verilator public_module
input clk;
parameter [255:0] L00 = 256'h0;
parameter [255:0] L01 = 256'h0;
parameter [255:0] L02 = 256'h0;
parameter [255:0] L03 = 256'h0;
parameter [255:0] L04 = 256'h0;
parameter [255:0] L05 = 256'h0;
parameter [255:0] L06 = 256'h0;
parameter [255:0] L07 = 256'h0;
parameter [255:0] L08 = 256'h0;
parameter [255:0] L09 = 256'h0;
parameter [255:0] L0A = 256'h0;
parameter [255:0] L0B = 256'h0;
parameter [255:0] L0C = 256'h0;
parameter [255:0] L0D = 256'h0;
parameter [255:0] L0E = 256'h0;
parameter [255:0] L0F = 256'h0;
parameter [255:0] L10 = 256'h0;
parameter [255:0] L11 = 256'h0;
parameter [255:0] L12 = 256'h0;
parameter [255:0] L13 = 256'h0;
parameter [255:0] L14 = 256'h0;
parameter [255:0] L15 = 256'h0;
parameter [255:0] L16 = 256'h0;
parameter [255:0] L17 = 256'h0;
parameter [255:0] L18 = 256'h0;
parameter [255:0] L19 = 256'h0;
parameter [255:0] L1A = 256'h0;
parameter [255:0] L1B = 256'h0;
parameter [255:0] L1C = 256'h0;
parameter [255:0] L1D = 256'h0;
parameter [255:0] L1E = 256'h0;
parameter [255:0] L1F = 256'h0;
parameter [255:0] L20 = 256'h0;
parameter [255:0] L21 = 256'h0;
parameter [255:0] L22 = 256'h0;
parameter [255:0] L23 = 256'h0;
parameter [255:0] L24 = 256'h0;
parameter [255:0] L25 = 256'h0;
parameter [255:0] L26 = 256'h0;
parameter [255:0] L27 = 256'h0;
parameter [255:0] L28 = 256'h0;
parameter [255:0] L29 = 256'h0;
parameter [255:0] L2A = 256'h0;
parameter [255:0] L2B = 256'h0;
parameter [255:0] L2C = 256'h0;
parameter [255:0] L2D = 256'h0;
parameter [255:0] L2E = 256'h0;
parameter [255:0] L2F = 256'h0;
parameter [255:0] L30 = 256'h0;
parameter [255:0] L31 = 256'h0;
parameter [255:0] L32 = 256'h0;
parameter [255:0] L33 = 256'h0;
parameter [255:0] L34 = 256'h0;
parameter [255:0] L35 = 256'h0;
parameter [255:0] L36 = 256'h0;
parameter [255:0] L37 = 256'h0;
parameter [255:0] L38 = 256'h0;
parameter [255:0] L39 = 256'h0;
parameter [255:0] L3A = 256'h0;
parameter [255:0] L3B = 256'h0;
parameter [255:0] L3C = 256'h0;
parameter [255:0] L3D = 256'h0;
parameter [255:0] L3E = 256'h0;
parameter [255:0] L3F = 256'h0;
parameter [255:0] A0 = 256'h0;
parameter [255:0] A1 = 256'h0;
parameter [255:0] A2 = 256'h0;
always @ (posedge clk) begin
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2003 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
parameter PAR = 3;
input clk;
defparam i.L00 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L01 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L02 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L03 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L04 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L05 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L06 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L07 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L08 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L09 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L0A = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L0B = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L0C = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L0D = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L0E = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L0F = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L10 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L11 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L12 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L13 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L14 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L15 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L16 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L17 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L18 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L19 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L1A = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L1B = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L1C = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L1D = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L1E = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L1F = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L20 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L21 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L22 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L23 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L24 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L25 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L26 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L27 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L28 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L29 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L2A = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L2B = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L2C = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L2D = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L2E = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L2F = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L30 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L31 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L32 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L33 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L34 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L35 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L36 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L37 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L38 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L39 = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L3A = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L3B = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L3C = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L3D = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L3E = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.L3F = 256'h000012300000000000000000000000000000000000000000000000000000cdef;
defparam i.A0 = "HELLO_WORLD_BOY_THIS_IS_LONG";
defparam i.A1 = "HELLO_WORLD_BOY_THIS_IS_LONG";
defparam i.A2 = "HELLO_WORLD_BOY_THIS_IS_LONG";
i i (.clk(clk));
integer cyc=1;
always @ (posedge clk) begin
cyc <= cyc + 1;
if (cyc==1) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
module i
(/*AUTOARG*/
// Inputs
clk
);
// verilator public_module
input clk;
parameter [255:0] L00 = 256'h0;
parameter [255:0] L01 = 256'h0;
parameter [255:0] L02 = 256'h0;
parameter [255:0] L03 = 256'h0;
parameter [255:0] L04 = 256'h0;
parameter [255:0] L05 = 256'h0;
parameter [255:0] L06 = 256'h0;
parameter [255:0] L07 = 256'h0;
parameter [255:0] L08 = 256'h0;
parameter [255:0] L09 = 256'h0;
parameter [255:0] L0A = 256'h0;
parameter [255:0] L0B = 256'h0;
parameter [255:0] L0C = 256'h0;
parameter [255:0] L0D = 256'h0;
parameter [255:0] L0E = 256'h0;
parameter [255:0] L0F = 256'h0;
parameter [255:0] L10 = 256'h0;
parameter [255:0] L11 = 256'h0;
parameter [255:0] L12 = 256'h0;
parameter [255:0] L13 = 256'h0;
parameter [255:0] L14 = 256'h0;
parameter [255:0] L15 = 256'h0;
parameter [255:0] L16 = 256'h0;
parameter [255:0] L17 = 256'h0;
parameter [255:0] L18 = 256'h0;
parameter [255:0] L19 = 256'h0;
parameter [255:0] L1A = 256'h0;
parameter [255:0] L1B = 256'h0;
parameter [255:0] L1C = 256'h0;
parameter [255:0] L1D = 256'h0;
parameter [255:0] L1E = 256'h0;
parameter [255:0] L1F = 256'h0;
parameter [255:0] L20 = 256'h0;
parameter [255:0] L21 = 256'h0;
parameter [255:0] L22 = 256'h0;
parameter [255:0] L23 = 256'h0;
parameter [255:0] L24 = 256'h0;
parameter [255:0] L25 = 256'h0;
parameter [255:0] L26 = 256'h0;
parameter [255:0] L27 = 256'h0;
parameter [255:0] L28 = 256'h0;
parameter [255:0] L29 = 256'h0;
parameter [255:0] L2A = 256'h0;
parameter [255:0] L2B = 256'h0;
parameter [255:0] L2C = 256'h0;
parameter [255:0] L2D = 256'h0;
parameter [255:0] L2E = 256'h0;
parameter [255:0] L2F = 256'h0;
parameter [255:0] L30 = 256'h0;
parameter [255:0] L31 = 256'h0;
parameter [255:0] L32 = 256'h0;
parameter [255:0] L33 = 256'h0;
parameter [255:0] L34 = 256'h0;
parameter [255:0] L35 = 256'h0;
parameter [255:0] L36 = 256'h0;
parameter [255:0] L37 = 256'h0;
parameter [255:0] L38 = 256'h0;
parameter [255:0] L39 = 256'h0;
parameter [255:0] L3A = 256'h0;
parameter [255:0] L3B = 256'h0;
parameter [255:0] L3C = 256'h0;
parameter [255:0] L3D = 256'h0;
parameter [255:0] L3E = 256'h0;
parameter [255:0] L3F = 256'h0;
parameter [255:0] A0 = 256'h0;
parameter [255:0] A1 = 256'h0;
parameter [255:0] A2 = 256'h0;
always @ (posedge clk) begin
end
endmodule
|
// (C) 2001-2015 Altera Corporation. All rights reserved.
// Your use of Altera Corporation's design tools, logic functions and other
// software and tools, and its AMPP partner logic functions, and any output
// files any of the foregoing (including device programming or simulation
// files), and any associated documentation or information are expressly subject
// to the terms and conditions of the Altera Program License Subscription
// Agreement, Altera MegaCore Function License Agreement, or other applicable
// license agreement, including, without limitation, that your use is for the
// sole purpose of programming logic devices manufactured by Altera and sold by
// Altera or its authorized distributors. Please refer to the applicable
// agreement for further details.
// $File: //acds/rel/15.1/ip/avalon_st/altera_avalon_st_handshake_clock_crosser/altera_avalon_st_clock_crosser.v $
// $Revision: #1 $
// $Date: 2015/08/09 $
// $Author: swbranch $
//------------------------------------------------------------------------------
`timescale 1ns / 1ns
module altera_avalon_st_clock_crosser(
in_clk,
in_reset,
in_ready,
in_valid,
in_data,
out_clk,
out_reset,
out_ready,
out_valid,
out_data
);
parameter SYMBOLS_PER_BEAT = 1;
parameter BITS_PER_SYMBOL = 8;
parameter FORWARD_SYNC_DEPTH = 2;
parameter BACKWARD_SYNC_DEPTH = 2;
parameter USE_OUTPUT_PIPELINE = 1;
localparam DATA_WIDTH = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL;
input in_clk;
input in_reset;
output in_ready;
input in_valid;
input [DATA_WIDTH-1:0] in_data;
input out_clk;
input out_reset;
input out_ready;
output out_valid;
output [DATA_WIDTH-1:0] out_data;
// Data is guaranteed valid by control signal clock crossing. Cut data
// buffer false path.
(* altera_attribute = {"-name SUPPRESS_DA_RULE_INTERNAL \"D101,D102\""} *) reg [DATA_WIDTH-1:0] in_data_buffer;
reg [DATA_WIDTH-1:0] out_data_buffer;
reg in_data_toggle;
wire in_data_toggle_returned;
wire out_data_toggle;
reg out_data_toggle_flopped;
wire take_in_data;
wire out_data_taken;
wire out_valid_internal;
wire out_ready_internal;
assign in_ready = ~(in_data_toggle_returned ^ in_data_toggle);
assign take_in_data = in_valid & in_ready;
assign out_valid_internal = out_data_toggle ^ out_data_toggle_flopped;
assign out_data_taken = out_ready_internal & out_valid_internal;
always @(posedge in_clk or posedge in_reset) begin
if (in_reset) begin
in_data_buffer <= {DATA_WIDTH{1'b0}};
in_data_toggle <= 1'b0;
end else begin
if (take_in_data) begin
in_data_toggle <= ~in_data_toggle;
in_data_buffer <= in_data;
end
end //in_reset
end //in_clk always block
always @(posedge out_clk or posedge out_reset) begin
if (out_reset) begin
out_data_toggle_flopped <= 1'b0;
out_data_buffer <= {DATA_WIDTH{1'b0}};
end else begin
out_data_buffer <= in_data_buffer;
if (out_data_taken) begin
out_data_toggle_flopped <= out_data_toggle;
end
end //end if
end //out_clk always block
altera_std_synchronizer_nocut #(.depth(FORWARD_SYNC_DEPTH)) in_to_out_synchronizer (
.clk(out_clk),
.reset_n(~out_reset),
.din(in_data_toggle),
.dout(out_data_toggle)
);
altera_std_synchronizer_nocut #(.depth(BACKWARD_SYNC_DEPTH)) out_to_in_synchronizer (
.clk(in_clk),
.reset_n(~in_reset),
.din(out_data_toggle_flopped),
.dout(in_data_toggle_returned)
);
generate if (USE_OUTPUT_PIPELINE == 1) begin
altera_avalon_st_pipeline_base
#(
.BITS_PER_SYMBOL(BITS_PER_SYMBOL),
.SYMBOLS_PER_BEAT(SYMBOLS_PER_BEAT)
) output_stage (
.clk(out_clk),
.reset(out_reset),
.in_ready(out_ready_internal),
.in_valid(out_valid_internal),
.in_data(out_data_buffer),
.out_ready(out_ready),
.out_valid(out_valid),
.out_data(out_data)
);
end else begin
assign out_valid = out_valid_internal;
assign out_ready_internal = out_ready;
assign out_data = out_data_buffer;
end
endgenerate
endmodule
|
// (C) 2001-2015 Altera Corporation. All rights reserved.
// Your use of Altera Corporation's design tools, logic functions and other
// software and tools, and its AMPP partner logic functions, and any output
// files any of the foregoing (including device programming or simulation
// files), and any associated documentation or information are expressly subject
// to the terms and conditions of the Altera Program License Subscription
// Agreement, Altera MegaCore Function License Agreement, or other applicable
// license agreement, including, without limitation, that your use is for the
// sole purpose of programming logic devices manufactured by Altera and sold by
// Altera or its authorized distributors. Please refer to the applicable
// agreement for further details.
// $File: //acds/rel/15.1/ip/avalon_st/altera_avalon_st_handshake_clock_crosser/altera_avalon_st_clock_crosser.v $
// $Revision: #1 $
// $Date: 2015/08/09 $
// $Author: swbranch $
//------------------------------------------------------------------------------
`timescale 1ns / 1ns
module altera_avalon_st_clock_crosser(
in_clk,
in_reset,
in_ready,
in_valid,
in_data,
out_clk,
out_reset,
out_ready,
out_valid,
out_data
);
parameter SYMBOLS_PER_BEAT = 1;
parameter BITS_PER_SYMBOL = 8;
parameter FORWARD_SYNC_DEPTH = 2;
parameter BACKWARD_SYNC_DEPTH = 2;
parameter USE_OUTPUT_PIPELINE = 1;
localparam DATA_WIDTH = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL;
input in_clk;
input in_reset;
output in_ready;
input in_valid;
input [DATA_WIDTH-1:0] in_data;
input out_clk;
input out_reset;
input out_ready;
output out_valid;
output [DATA_WIDTH-1:0] out_data;
// Data is guaranteed valid by control signal clock crossing. Cut data
// buffer false path.
(* altera_attribute = {"-name SUPPRESS_DA_RULE_INTERNAL \"D101,D102\""} *) reg [DATA_WIDTH-1:0] in_data_buffer;
reg [DATA_WIDTH-1:0] out_data_buffer;
reg in_data_toggle;
wire in_data_toggle_returned;
wire out_data_toggle;
reg out_data_toggle_flopped;
wire take_in_data;
wire out_data_taken;
wire out_valid_internal;
wire out_ready_internal;
assign in_ready = ~(in_data_toggle_returned ^ in_data_toggle);
assign take_in_data = in_valid & in_ready;
assign out_valid_internal = out_data_toggle ^ out_data_toggle_flopped;
assign out_data_taken = out_ready_internal & out_valid_internal;
always @(posedge in_clk or posedge in_reset) begin
if (in_reset) begin
in_data_buffer <= {DATA_WIDTH{1'b0}};
in_data_toggle <= 1'b0;
end else begin
if (take_in_data) begin
in_data_toggle <= ~in_data_toggle;
in_data_buffer <= in_data;
end
end //in_reset
end //in_clk always block
always @(posedge out_clk or posedge out_reset) begin
if (out_reset) begin
out_data_toggle_flopped <= 1'b0;
out_data_buffer <= {DATA_WIDTH{1'b0}};
end else begin
out_data_buffer <= in_data_buffer;
if (out_data_taken) begin
out_data_toggle_flopped <= out_data_toggle;
end
end //end if
end //out_clk always block
altera_std_synchronizer_nocut #(.depth(FORWARD_SYNC_DEPTH)) in_to_out_synchronizer (
.clk(out_clk),
.reset_n(~out_reset),
.din(in_data_toggle),
.dout(out_data_toggle)
);
altera_std_synchronizer_nocut #(.depth(BACKWARD_SYNC_DEPTH)) out_to_in_synchronizer (
.clk(in_clk),
.reset_n(~in_reset),
.din(out_data_toggle_flopped),
.dout(in_data_toggle_returned)
);
generate if (USE_OUTPUT_PIPELINE == 1) begin
altera_avalon_st_pipeline_base
#(
.BITS_PER_SYMBOL(BITS_PER_SYMBOL),
.SYMBOLS_PER_BEAT(SYMBOLS_PER_BEAT)
) output_stage (
.clk(out_clk),
.reset(out_reset),
.in_ready(out_ready_internal),
.in_valid(out_valid_internal),
.in_data(out_data_buffer),
.out_ready(out_ready),
.out_valid(out_valid),
.out_data(out_data)
);
end else begin
assign out_valid = out_valid_internal;
assign out_ready_internal = out_ready;
assign out_data = out_data_buffer;
end
endgenerate
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2003-2008 by Wilson Snyder.
module t (clk);
input clk;
integer cyc; initial cyc=1;
integer sum;
integer cpre;
always @ (posedge clk) begin
if (cyc!=0) begin
cpre = cyc;
cyc <= cyc + 1;
if (cyc==1) begin
if (mlog2(32'd0) != 32'd0) $stop;
if (mlog2(32'd1) != 32'd0) $stop;
if (mlog2(32'd3) != 32'd2) $stop;
sum <= 32'd0;
end
else if (cyc<90) begin
// (cyc) so if we trash the variable things will get upset.
sum <= mlog2(cyc) + sum * 32'd42;
if (cpre != cyc) $stop;
end
else if (cyc==90) begin
if (sum !== 32'h0f12bb51) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
end
function integer mlog2;
input [31:0] value;
integer i;
begin
if(value < 32'd1) begin
mlog2 = 0;
end
else begin
value = value - 32'd1;
mlog2 = 0;
for(i=0;i<32;i=i+1) begin
if(value > 32'd0) begin
mlog2 = mlog2 + 1;
end
value = value >> 1;
end
end
end
endfunction
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2007 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc=0;
reg [63:0] crc;
reg [63:0] sum;
// Take CRC data and apply to testblock inputs
wire [31:0] in = crc[31:0];
/*AUTOWIRE*/
// Beginning of automatic wires (for undeclared instantiated-module outputs)
wire [31:0] out; // From test of Test.v
// End of automatics
Test test (/*AUTOINST*/
// Outputs
.out (out[31:0]),
// Inputs
.clk (clk),
.in (in[31:0]));
// Aggregate outputs into a single result vector
wire [63:0] result = {32'h0, out};
// What checksum will we end up with
`define EXPECTED_SUM 64'h966e272fd829e672
// Test loop
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result);
`endif
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]};
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
end
else if (cyc<10) begin
sum <= 64'h0;
end
else if (cyc<90) begin
end
else if (cyc==99) begin
$write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum);
if (crc !== 64'hc77bb9b3784ea091) $stop;
if (sum !== `EXPECTED_SUM) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
module Test (/*AUTOARG*/
// Outputs
out,
// Inputs
clk, in
);
input clk;
input [31:0] in;
output [31:0] out;
/*AUTOREG*/
// Beginning of automatic regs (for this module's undeclared outputs)
reg [31:0] out;
// End of automatics
`ifdef verilator
`define dontOptimize $c1("1")
`else
`define dontOptimize 1'b1
`endif
always @(posedge clk) begin
out <= in;
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (`dontOptimize) if (`dontOptimize) if (`dontOptimize) if (`dontOptimize)
if (in[0])
out <= ~in;
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2005 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
reg [15:0] l;
reg [49:0] q;
reg [79:0] w;
reg [4:0] lc;
reg lo;
reg l0;
reg [5:0] qc;
reg qo;
reg q0;
reg [6:0] wc;
reg wo;
reg w0;
always @* begin
lc = $countones(l);
lo = $onehot(l);
l0 = $onehot0(l);
wc = $countones(w);
wo = $onehot(w);
w0 = $onehot0(w);
qc = $countones(q);
qo = $onehot(q);
q0 = $onehot0(q);
end
integer cyc; initial cyc=1;
integer cyc_com;
always_comb begin
cyc_com = cyc;
end
integer cyc_d1;
always_ff @ (posedge clk) begin
cyc_d1 <= cyc_com;
end
always @ (posedge clk) begin
if (cyc!=0) begin
cyc <= cyc + 1;
//$write("%d %x %d %x %x %x %d %x %x %x %d %x %x\n",
// cyc, l, lc, lo, l0, q,qc,qo,q0, w,wc,wo,w0);
if (cyc_com != cyc_com) $stop;
if (cyc_d1 != cyc-1) $stop;
if (cyc==0) begin
// Constification check
if ($countones(32'b11001011101) != 7) $stop;
if ($countones(32'b0) != 0) $stop;
if ($isunknown(32'b11101x11111) != 1) $stop;
if ($isunknown(32'b11101011111) != 0) $stop;
if ($isunknown(32'b10zzzzzzzzz) != 0) $stop;
if ($bits(0) != 32'd32) $stop;
if ($bits(lc) != 5) $stop;
if ($onehot(32'b00000001000000) != 1'b1) $stop;
if ($onehot(32'b00001001000000) != 1'b0) $stop;
if ($onehot(32'b0) != 1'b0) $stop;
if ($onehot0(32'b00000001000000) != 1'b1) $stop;
if ($onehot0(32'b00001001000000) != 1'b0) $stop;
if ($onehot0(32'b0) != 1'b1) $stop;
end
if (cyc==1) begin
l <= 16'b0;
q <= 50'h0;
w <= 80'h0;
end
if (cyc==2) begin
l <= ~16'b0;
q <= ~50'h0;
w <= ~80'h0;
//
if ({lc,lo,l0} != {5'd0,1'b0,1'b1}) $stop;
if ({qc,qo,q0} != {6'd0,1'b0,1'b1}) $stop;
if ({wc,wo,w0} != {7'd0,1'b0,1'b1}) $stop;
end
if (cyc==3) begin
l <= 16'b0010110010110111;
q <= 50'h01_1111_0001;
w <= 80'h0100_0000_0f00_00f0_0000;
//
if ({lc,lo,l0} != {5'd16,1'b0,1'b0}) $stop;
if ({qc,qo,q0} != {6'd50,1'b0,1'b0}) $stop;
if ({wc,wo,w0} != {7'd80,1'b0,1'b0}) $stop;
end
if (cyc==4) begin
l <= 16'b0000010000000000;
q <= 50'h1_0000_0000;
w <= 80'h010_00000000_00000000;
//
if ({lc,lo,l0} != {5'd9,1'b0,1'b0}) $stop;
if ({qc,qo,q0} != {6'd6,1'b0,1'b0}) $stop;
if ({wc,wo,w0} != {7'd9,1'b0,1'b0}) $stop;
end
if (cyc==5) begin
l <= 16'b0000000100000000;
q <= 50'h8000_0000_0000;
w <= 80'h10_00000000_00000000;
//
if ({lc,lo,l0} != {5'd1,1'b1,1'b1}) $stop;
if ({qc,qo,q0} != {6'd1,1'b1,1'b1}) $stop;
if ({wc,wo,w0} != {7'd1,1'b1,1'b1}) $stop;
end
if (cyc==6) begin
l <= 16'b0000100100000000;
q <= 50'h01_00000100;
w <= 80'h01_00000100_00000000;
//
if ({lc,lo,l0} != {5'd1,1'b1,1'b1}) $stop;
if ({qc,qo,q0} != {6'd1,1'b1,1'b1}) $stop;
if ({wc,wo,w0} != {7'd1,1'b1,1'b1}) $stop;
end
if (cyc==7) begin
//
if ({lc,lo,l0} != {5'd2,1'b0,1'b0}) $stop;
if ({qc,qo,q0} != {6'd2,1'b0,1'b0}) $stop;
if ({wc,wo,w0} != {7'd2,1'b0,1'b0}) $stop;
end
if (cyc==8) begin
end
if (cyc==9) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
end
final begin
$write("Goodbye world, at cycle %0d\n", cyc);
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2005 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
reg [15:0] l;
reg [49:0] q;
reg [79:0] w;
reg [4:0] lc;
reg lo;
reg l0;
reg [5:0] qc;
reg qo;
reg q0;
reg [6:0] wc;
reg wo;
reg w0;
always @* begin
lc = $countones(l);
lo = $onehot(l);
l0 = $onehot0(l);
wc = $countones(w);
wo = $onehot(w);
w0 = $onehot0(w);
qc = $countones(q);
qo = $onehot(q);
q0 = $onehot0(q);
end
integer cyc; initial cyc=1;
integer cyc_com;
always_comb begin
cyc_com = cyc;
end
integer cyc_d1;
always_ff @ (posedge clk) begin
cyc_d1 <= cyc_com;
end
always @ (posedge clk) begin
if (cyc!=0) begin
cyc <= cyc + 1;
//$write("%d %x %d %x %x %x %d %x %x %x %d %x %x\n",
// cyc, l, lc, lo, l0, q,qc,qo,q0, w,wc,wo,w0);
if (cyc_com != cyc_com) $stop;
if (cyc_d1 != cyc-1) $stop;
if (cyc==0) begin
// Constification check
if ($countones(32'b11001011101) != 7) $stop;
if ($countones(32'b0) != 0) $stop;
if ($isunknown(32'b11101x11111) != 1) $stop;
if ($isunknown(32'b11101011111) != 0) $stop;
if ($isunknown(32'b10zzzzzzzzz) != 0) $stop;
if ($bits(0) != 32'd32) $stop;
if ($bits(lc) != 5) $stop;
if ($onehot(32'b00000001000000) != 1'b1) $stop;
if ($onehot(32'b00001001000000) != 1'b0) $stop;
if ($onehot(32'b0) != 1'b0) $stop;
if ($onehot0(32'b00000001000000) != 1'b1) $stop;
if ($onehot0(32'b00001001000000) != 1'b0) $stop;
if ($onehot0(32'b0) != 1'b1) $stop;
end
if (cyc==1) begin
l <= 16'b0;
q <= 50'h0;
w <= 80'h0;
end
if (cyc==2) begin
l <= ~16'b0;
q <= ~50'h0;
w <= ~80'h0;
//
if ({lc,lo,l0} != {5'd0,1'b0,1'b1}) $stop;
if ({qc,qo,q0} != {6'd0,1'b0,1'b1}) $stop;
if ({wc,wo,w0} != {7'd0,1'b0,1'b1}) $stop;
end
if (cyc==3) begin
l <= 16'b0010110010110111;
q <= 50'h01_1111_0001;
w <= 80'h0100_0000_0f00_00f0_0000;
//
if ({lc,lo,l0} != {5'd16,1'b0,1'b0}) $stop;
if ({qc,qo,q0} != {6'd50,1'b0,1'b0}) $stop;
if ({wc,wo,w0} != {7'd80,1'b0,1'b0}) $stop;
end
if (cyc==4) begin
l <= 16'b0000010000000000;
q <= 50'h1_0000_0000;
w <= 80'h010_00000000_00000000;
//
if ({lc,lo,l0} != {5'd9,1'b0,1'b0}) $stop;
if ({qc,qo,q0} != {6'd6,1'b0,1'b0}) $stop;
if ({wc,wo,w0} != {7'd9,1'b0,1'b0}) $stop;
end
if (cyc==5) begin
l <= 16'b0000000100000000;
q <= 50'h8000_0000_0000;
w <= 80'h10_00000000_00000000;
//
if ({lc,lo,l0} != {5'd1,1'b1,1'b1}) $stop;
if ({qc,qo,q0} != {6'd1,1'b1,1'b1}) $stop;
if ({wc,wo,w0} != {7'd1,1'b1,1'b1}) $stop;
end
if (cyc==6) begin
l <= 16'b0000100100000000;
q <= 50'h01_00000100;
w <= 80'h01_00000100_00000000;
//
if ({lc,lo,l0} != {5'd1,1'b1,1'b1}) $stop;
if ({qc,qo,q0} != {6'd1,1'b1,1'b1}) $stop;
if ({wc,wo,w0} != {7'd1,1'b1,1'b1}) $stop;
end
if (cyc==7) begin
//
if ({lc,lo,l0} != {5'd2,1'b0,1'b0}) $stop;
if ({qc,qo,q0} != {6'd2,1'b0,1'b0}) $stop;
if ({wc,wo,w0} != {7'd2,1'b0,1'b0}) $stop;
end
if (cyc==8) begin
end
if (cyc==9) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
end
final begin
$write("Goodbye world, at cycle %0d\n", cyc);
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2003 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc; initial cyc=1;
// Life analysis checks
reg [15:0] life;
// Ding case
reg [7:0] din;
reg [15:0] fixin;
always @* begin
fixin = {din[7:0],din[7:0]};
case (din[1:0])
2'b00: begin
fixin = {fixin[14:0], 1'b1};
if (cyc==101) $display("Prevent ?: optimization a");
end
2'b01: begin
fixin = {fixin[13:0], 2'b11};
if (cyc==101) $display("Prevent ?: optimization b");
end
2'b10: begin
fixin = {fixin[12:0], 3'b111};
if (cyc==101) $display("Prevent ?: optimization c");
end
2'b11: begin
fixin = {fixin[11:0], 4'b1111};
if (cyc==101) $display("Prevent ?: optimization d");
end
endcase
end
always @ (posedge clk) begin
if (cyc!=0) begin
cyc<=cyc+1;
if (cyc==1) begin
life = 16'h8000; // Dropped
life = 16'h0010; // Used below
if (life != 16'h0010) $stop;
//
life = 16'h0020; // Used below
if ($time < 10000)
if (life != 16'h0020) $stop;
//
life = 16'h8000; // Dropped
if ($time > 100000) begin
if ($time != 0) $stop; // Prevent conversion to ?:
life = 16'h1030;
end
else
life = 16'h0030;
if (life != 16'h0030) $stop;
//
life = 16'h0040; // Not dropped, no else below
if ($time > 100000)
life = 16'h1040;
if (life != 16'h0040) $stop;
//
life = 16'h8000; // Dropped
if ($time > 100000) begin
life = 16'h1050;
if (life != 0) $stop; // Ignored, as set is first
end
else begin
if ($time > 100010)
life = 16'h1050;
else life = 16'h0050;
end
if (life != 16'h0050) $stop;
end
if (cyc==2) begin
din <= 8'haa;
end
if (cyc==3) begin
din <= 8'hfb;
if (fixin != 16'h5557) $stop;
end
if (cyc==4) begin
din <= 8'h5c;
if (fixin != 16'hbfbf) $stop;
end
if (cyc==5) begin
din <= 8'hed;
if (fixin != 16'hb8b9) $stop;
end
if (cyc==6) begin
if (fixin != 16'hb7b7) $stop;
end
if (cyc==9) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2003 by Wilson Snyder.
`define INT_RANGE 31:0
`define INT_RANGE 31:0 // Duplicate identical defs are OK
`define INT_RANGE_MAX 31
`define VECTOR_RANGE 511:0
module t (clk);
// verilator lint_off WIDTH
parameter WIDTH = 16; // Must be a power of 2
parameter WIDTH_LOG2 = 4; // set to log2(WIDTH)
parameter USE_BS = 1; // set to 1 for enable
input clk;
function [`VECTOR_RANGE] func_tree_left;
input [`VECTOR_RANGE] x; // x[width-1:0] is the input vector
reg [`VECTOR_RANGE] flip;
begin
flip = 'd0;
func_tree_left = flip;
end
endfunction
reg [WIDTH-1:0] a; // value to be shifted
reg [WIDTH-1:0] tree_left;
always @(a) begin : barrel_shift
tree_left = func_tree_left (a);
end // barrel_shift
integer cyc; initial cyc=1;
always @ (posedge clk) begin
if (cyc!=0) begin
cyc <= cyc + 1;
if (cyc==1) begin
a = 5;
end
if (cyc==2) begin
$display ("%x\n",tree_left);
//if (tree_left != 'd15) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2003 by Wilson Snyder.
`define INT_RANGE 31:0
`define INT_RANGE 31:0 // Duplicate identical defs are OK
`define INT_RANGE_MAX 31
`define VECTOR_RANGE 511:0
module t (clk);
// verilator lint_off WIDTH
parameter WIDTH = 16; // Must be a power of 2
parameter WIDTH_LOG2 = 4; // set to log2(WIDTH)
parameter USE_BS = 1; // set to 1 for enable
input clk;
function [`VECTOR_RANGE] func_tree_left;
input [`VECTOR_RANGE] x; // x[width-1:0] is the input vector
reg [`VECTOR_RANGE] flip;
begin
flip = 'd0;
func_tree_left = flip;
end
endfunction
reg [WIDTH-1:0] a; // value to be shifted
reg [WIDTH-1:0] tree_left;
always @(a) begin : barrel_shift
tree_left = func_tree_left (a);
end // barrel_shift
integer cyc; initial cyc=1;
always @ (posedge clk) begin
if (cyc!=0) begin
cyc <= cyc + 1;
if (cyc==1) begin
a = 5;
end
if (cyc==2) begin
$display ("%x\n",tree_left);
//if (tree_left != 'd15) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2003 by Wilson Snyder.
`define INT_RANGE 31:0
`define INT_RANGE 31:0 // Duplicate identical defs are OK
`define INT_RANGE_MAX 31
`define VECTOR_RANGE 511:0
module t (clk);
// verilator lint_off WIDTH
parameter WIDTH = 16; // Must be a power of 2
parameter WIDTH_LOG2 = 4; // set to log2(WIDTH)
parameter USE_BS = 1; // set to 1 for enable
input clk;
function [`VECTOR_RANGE] func_tree_left;
input [`VECTOR_RANGE] x; // x[width-1:0] is the input vector
reg [`VECTOR_RANGE] flip;
begin
flip = 'd0;
func_tree_left = flip;
end
endfunction
reg [WIDTH-1:0] a; // value to be shifted
reg [WIDTH-1:0] tree_left;
always @(a) begin : barrel_shift
tree_left = func_tree_left (a);
end // barrel_shift
integer cyc; initial cyc=1;
always @ (posedge clk) begin
if (cyc!=0) begin
cyc <= cyc + 1;
if (cyc==1) begin
a = 5;
end
if (cyc==2) begin
$display ("%x\n",tree_left);
//if (tree_left != 'd15) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2005 by Wilson Snyder.
module t_case_huge_sub2 (/*AUTOARG*/
// Outputs
outa,
// Inputs
index
);
input [9:0] index;
output [9:0] outa;
// =============================
/*AUTOREG*/
// Beginning of automatic regs (for this module's undeclared outputs)
reg [9:0] outa;
// End of automatics
// =============================
// Created from perl
// for $i (0..1023) { printf "\t10'h%03x: begin outa = 10'h%03x; outb = 2'b%02b; outc = 1'b%d; end\n", $i, rand(1024),rand(4),rand(2); };
always @(/*AS*/index) begin
case (index[7:0])
`ifdef VERILATOR // Harder test
8'h00: begin outa = $c("0"); end // Makes whole table non-optimizable
`else
8'h00: begin outa = 10'h0; end
`endif
8'h01: begin outa = 10'h318; end
8'h02: begin outa = 10'h29f; end
8'h03: begin outa = 10'h392; end
8'h04: begin outa = 10'h1ef; end
8'h05: begin outa = 10'h06c; end
8'h06: begin outa = 10'h29f; end
8'h07: begin outa = 10'h29a; end
8'h08: begin outa = 10'h3ce; end
8'h09: begin outa = 10'h37c; end
8'h0a: begin outa = 10'h058; end
8'h0b: begin outa = 10'h3b2; end
8'h0c: begin outa = 10'h36f; end
8'h0d: begin outa = 10'h2c5; end
8'h0e: begin outa = 10'h23a; end
8'h0f: begin outa = 10'h222; end
8'h10: begin outa = 10'h328; end
8'h11: begin outa = 10'h3c3; end
8'h12: begin outa = 10'h12c; end
8'h13: begin outa = 10'h1d0; end
8'h14: begin outa = 10'h3ff; end
8'h15: begin outa = 10'h115; end
8'h16: begin outa = 10'h3ba; end
8'h17: begin outa = 10'h3ba; end
8'h18: begin outa = 10'h10d; end
8'h19: begin outa = 10'h13b; end
8'h1a: begin outa = 10'h0a0; end
8'h1b: begin outa = 10'h264; end
8'h1c: begin outa = 10'h3a2; end
8'h1d: begin outa = 10'h07c; end
8'h1e: begin outa = 10'h291; end
8'h1f: begin outa = 10'h1d1; end
8'h20: begin outa = 10'h354; end
8'h21: begin outa = 10'h0c0; end
8'h22: begin outa = 10'h191; end
8'h23: begin outa = 10'h379; end
8'h24: begin outa = 10'h073; end
8'h25: begin outa = 10'h2fd; end
8'h26: begin outa = 10'h2e0; end
8'h27: begin outa = 10'h337; end
8'h28: begin outa = 10'h2c7; end
8'h29: begin outa = 10'h19e; end
8'h2a: begin outa = 10'h107; end
8'h2b: begin outa = 10'h06a; end
8'h2c: begin outa = 10'h1c7; end
8'h2d: begin outa = 10'h107; end
8'h2e: begin outa = 10'h0cf; end
8'h2f: begin outa = 10'h009; end
8'h30: begin outa = 10'h09d; end
8'h31: begin outa = 10'h28e; end
8'h32: begin outa = 10'h010; end
8'h33: begin outa = 10'h1e0; end
8'h34: begin outa = 10'h079; end
8'h35: begin outa = 10'h13e; end
8'h36: begin outa = 10'h282; end
8'h37: begin outa = 10'h21c; end
8'h38: begin outa = 10'h148; end
8'h39: begin outa = 10'h3c0; end
8'h3a: begin outa = 10'h176; end
8'h3b: begin outa = 10'h3fc; end
8'h3c: begin outa = 10'h295; end
8'h3d: begin outa = 10'h113; end
8'h3e: begin outa = 10'h354; end
8'h3f: begin outa = 10'h0db; end
8'h40: begin outa = 10'h238; end
8'h41: begin outa = 10'h12b; end
8'h42: begin outa = 10'h1dc; end
8'h43: begin outa = 10'h137; end
8'h44: begin outa = 10'h1e2; end
8'h45: begin outa = 10'h3d5; end
8'h46: begin outa = 10'h30c; end
8'h47: begin outa = 10'h298; end
8'h48: begin outa = 10'h080; end
8'h49: begin outa = 10'h35a; end
8'h4a: begin outa = 10'h01b; end
8'h4b: begin outa = 10'h0a3; end
8'h4c: begin outa = 10'h0b3; end
8'h4d: begin outa = 10'h17a; end
8'h4e: begin outa = 10'h3ae; end
8'h4f: begin outa = 10'h078; end
8'h50: begin outa = 10'h322; end
8'h51: begin outa = 10'h213; end
8'h52: begin outa = 10'h11a; end
8'h53: begin outa = 10'h1a7; end
8'h54: begin outa = 10'h35a; end
8'h55: begin outa = 10'h233; end
8'h56: begin outa = 10'h01d; end
8'h57: begin outa = 10'h2d5; end
8'h58: begin outa = 10'h1a0; end
8'h59: begin outa = 10'h3d0; end
8'h5a: begin outa = 10'h181; end
8'h5b: begin outa = 10'h219; end
8'h5c: begin outa = 10'h26a; end
8'h5d: begin outa = 10'h050; end
8'h5e: begin outa = 10'h189; end
8'h5f: begin outa = 10'h1eb; end
8'h60: begin outa = 10'h224; end
8'h61: begin outa = 10'h2fe; end
8'h62: begin outa = 10'h0ae; end
8'h63: begin outa = 10'h1cd; end
8'h64: begin outa = 10'h273; end
8'h65: begin outa = 10'h268; end
8'h66: begin outa = 10'h111; end
8'h67: begin outa = 10'h1f9; end
8'h68: begin outa = 10'h232; end
8'h69: begin outa = 10'h255; end
8'h6a: begin outa = 10'h34c; end
8'h6b: begin outa = 10'h049; end
8'h6c: begin outa = 10'h197; end
8'h6d: begin outa = 10'h0fe; end
8'h6e: begin outa = 10'h253; end
8'h6f: begin outa = 10'h2de; end
8'h70: begin outa = 10'h13b; end
8'h71: begin outa = 10'h040; end
8'h72: begin outa = 10'h0b4; end
8'h73: begin outa = 10'h233; end
8'h74: begin outa = 10'h198; end
8'h75: begin outa = 10'h018; end
8'h76: begin outa = 10'h2f7; end
8'h77: begin outa = 10'h134; end
8'h78: begin outa = 10'h1ca; end
8'h79: begin outa = 10'h286; end
8'h7a: begin outa = 10'h0e6; end
8'h7b: begin outa = 10'h064; end
8'h7c: begin outa = 10'h257; end
8'h7d: begin outa = 10'h31a; end
8'h7e: begin outa = 10'h247; end
8'h7f: begin outa = 10'h299; end
8'h80: begin outa = 10'h02c; end
8'h81: begin outa = 10'h2bb; end
8'h82: begin outa = 10'h180; end
8'h83: begin outa = 10'h245; end
8'h84: begin outa = 10'h0da; end
8'h85: begin outa = 10'h367; end
8'h86: begin outa = 10'h304; end
8'h87: begin outa = 10'h38b; end
8'h88: begin outa = 10'h09f; end
8'h89: begin outa = 10'h1f0; end
8'h8a: begin outa = 10'h281; end
8'h8b: begin outa = 10'h019; end
8'h8c: begin outa = 10'h1f2; end
8'h8d: begin outa = 10'h0b1; end
8'h8e: begin outa = 10'h058; end
8'h8f: begin outa = 10'h39b; end
8'h90: begin outa = 10'h2ec; end
8'h91: begin outa = 10'h250; end
8'h92: begin outa = 10'h3f4; end
8'h93: begin outa = 10'h057; end
8'h94: begin outa = 10'h18f; end
8'h95: begin outa = 10'h105; end
8'h96: begin outa = 10'h1ae; end
8'h97: begin outa = 10'h04e; end
8'h98: begin outa = 10'h240; end
8'h99: begin outa = 10'h3e4; end
8'h9a: begin outa = 10'h3c6; end
8'h9b: begin outa = 10'h109; end
8'h9c: begin outa = 10'h073; end
8'h9d: begin outa = 10'h19f; end
8'h9e: begin outa = 10'h3b8; end
8'h9f: begin outa = 10'h00e; end
8'ha0: begin outa = 10'h1b3; end
8'ha1: begin outa = 10'h2bd; end
8'ha2: begin outa = 10'h324; end
8'ha3: begin outa = 10'h343; end
8'ha4: begin outa = 10'h1c9; end
8'ha5: begin outa = 10'h185; end
8'ha6: begin outa = 10'h37a; end
8'ha7: begin outa = 10'h0e0; end
8'ha8: begin outa = 10'h0a3; end
8'ha9: begin outa = 10'h019; end
8'haa: begin outa = 10'h099; end
8'hab: begin outa = 10'h376; end
8'hac: begin outa = 10'h077; end
8'had: begin outa = 10'h2b1; end
8'hae: begin outa = 10'h27f; end
8'haf: begin outa = 10'h265; end
8'hb0: begin outa = 10'h156; end
8'hb1: begin outa = 10'h1ce; end
8'hb2: begin outa = 10'h008; end
8'hb3: begin outa = 10'h12e; end
8'hb4: begin outa = 10'h199; end
8'hb5: begin outa = 10'h330; end
8'hb6: begin outa = 10'h1ab; end
8'hb7: begin outa = 10'h3bd; end
8'hb8: begin outa = 10'h0ca; end
8'hb9: begin outa = 10'h367; end
8'hba: begin outa = 10'h334; end
8'hbb: begin outa = 10'h040; end
8'hbc: begin outa = 10'h1a7; end
8'hbd: begin outa = 10'h036; end
8'hbe: begin outa = 10'h223; end
8'hbf: begin outa = 10'h075; end
8'hc0: begin outa = 10'h3c4; end
8'hc1: begin outa = 10'h2cc; end
8'hc2: begin outa = 10'h123; end
8'hc3: begin outa = 10'h3fd; end
8'hc4: begin outa = 10'h11e; end
8'hc5: begin outa = 10'h27c; end
8'hc6: begin outa = 10'h1e2; end
8'hc7: begin outa = 10'h377; end
8'hc8: begin outa = 10'h33a; end
8'hc9: begin outa = 10'h32d; end
8'hca: begin outa = 10'h014; end
8'hcb: begin outa = 10'h332; end
8'hcc: begin outa = 10'h359; end
8'hcd: begin outa = 10'h0a4; end
8'hce: begin outa = 10'h348; end
8'hcf: begin outa = 10'h04b; end
8'hd0: begin outa = 10'h147; end
8'hd1: begin outa = 10'h026; end
8'hd2: begin outa = 10'h103; end
8'hd3: begin outa = 10'h106; end
8'hd4: begin outa = 10'h35a; end
8'hd5: begin outa = 10'h254; end
8'hd6: begin outa = 10'h0cd; end
8'hd7: begin outa = 10'h17c; end
8'hd8: begin outa = 10'h37e; end
8'hd9: begin outa = 10'h0a9; end
8'hda: begin outa = 10'h0fe; end
8'hdb: begin outa = 10'h3c0; end
8'hdc: begin outa = 10'h1d9; end
8'hdd: begin outa = 10'h10e; end
8'hde: begin outa = 10'h394; end
8'hdf: begin outa = 10'h316; end
8'he0: begin outa = 10'h05b; end
8'he1: begin outa = 10'h126; end
8'he2: begin outa = 10'h369; end
8'he3: begin outa = 10'h291; end
8'he4: begin outa = 10'h2ca; end
8'he5: begin outa = 10'h25b; end
8'he6: begin outa = 10'h106; end
8'he7: begin outa = 10'h172; end
8'he8: begin outa = 10'h2f7; end
8'he9: begin outa = 10'h2d3; end
8'hea: begin outa = 10'h182; end
8'heb: begin outa = 10'h327; end
8'hec: begin outa = 10'h1d0; end
8'hed: begin outa = 10'h204; end
8'hee: begin outa = 10'h11f; end
8'hef: begin outa = 10'h365; end
8'hf0: begin outa = 10'h2c2; end
8'hf1: begin outa = 10'h2b5; end
8'hf2: begin outa = 10'h1f8; end
8'hf3: begin outa = 10'h2a7; end
8'hf4: begin outa = 10'h1be; end
8'hf5: begin outa = 10'h25e; end
8'hf6: begin outa = 10'h032; end
8'hf7: begin outa = 10'h2ef; end
8'hf8: begin outa = 10'h02f; end
8'hf9: begin outa = 10'h201; end
8'hfa: begin outa = 10'h054; end
8'hfb: begin outa = 10'h013; end
8'hfc: begin outa = 10'h249; end
8'hfd: begin outa = 10'h09a; end
8'hfe: begin outa = 10'h012; end
8'hff: begin outa = 10'h114; end
endcase
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2009 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc=0;
reg [63:0] crc;
reg [63:0] sum;
// Take CRC data and apply to testblock inputs
wire [31:0] in = crc[31:0];
/*AUTOWIRE*/
// Beginning of automatic wires (for undeclared instantiated-module outputs)
wire [31:0] out; // From test of Test.v
// End of automatics
Test test (/*AUTOINST*/
// Outputs
.out (out[31:0]),
// Inputs
.in (in[31:0]));
// Aggregate outputs into a single result vector
wire [63:0] result = {32'h0, out};
// Test loop
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result);
`endif
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]};
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
sum <= 64'h0;
end
else if (cyc<10) begin
sum <= 64'h0;
end
else if (cyc<90) begin
end
else if (cyc==99) begin
$write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum);
if (crc !== 64'hc77bb9b3784ea091) $stop;
// What checksum will we end up with (above print should match)
`define EXPECTED_SUM 64'h3e3a62edb61f8c7f
if (sum !== `EXPECTED_SUM) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
module Test (/*AUTOARG*/
// Outputs
out,
// Inputs
in
);
input [31:0] in;
output [31:0] out;
genvar i;
generate
for (i=0; i<16; i=i+1) begin : gblk
assign out[i*2+1:i*2] = in[(30-i*2)+1:(30-i*2)];
end
endgenerate
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2005 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc; initial cyc=1;
reg [127:0] i;
wire [127:0] q1;
wire [127:0] q32;
wire [127:0] q64;
wire [63:0] q64_low;
assign q1 = {
i[24*4], i[25*4], i[26*4], i[27*4], i[28*4], i[29*4], i[30*4], i[31*4],
i[16*4], i[17*4], i[18*4], i[19*4], i[20*4], i[21*4], i[22*4], i[23*4],
i[8*4], i[9*4], i[10*4], i[11*4], i[12*4], i[13*4], i[14*4], i[15*4],
i[0*4], i[1*4], i[2*4], i[3*4], i[4*4], i[5*4], i[6*4], i[7*4],
i[24*4+1], i[25*4+1], i[26*4+1], i[27*4+1], i[28*4+1], i[29*4+1], i[30*4+1], i[31*4+1],
i[16*4+1], i[17*4+1], i[18*4+1], i[19*4+1], i[20*4+1], i[21*4+1], i[22*4+1], i[23*4+1],
i[8*4+1], i[9*4+1], i[10*4+1], i[11*4+1], i[12*4+1], i[13*4+1], i[14*4+1], i[15*4+1],
i[0*4+1], i[1*4+1], i[2*4+1], i[3*4+1], i[4*4+1], i[5*4+1], i[6*4+1], i[7*4+1],
i[24*4+2], i[25*4+2], i[26*4+2], i[27*4+2], i[28*4+2], i[29*4+2], i[30*4+2], i[31*4+2],
i[16*4+2], i[17*4+2], i[18*4+2], i[19*4+2], i[20*4+2], i[21*4+2], i[22*4+2], i[23*4+2],
i[8*4+2], i[9*4+2], i[10*4+2], i[11*4+2], i[12*4+2], i[13*4+2], i[14*4+2], i[15*4+2],
i[0*4+2], i[1*4+2], i[2*4+2], i[3*4+2], i[4*4+2], i[5*4+2], i[6*4+2], i[7*4+2],
i[24*4+3], i[25*4+3], i[26*4+3], i[27*4+3], i[28*4+3], i[29*4+3], i[30*4+3], i[31*4+3],
i[16*4+3], i[17*4+3], i[18*4+3], i[19*4+3], i[20*4+3], i[21*4+3], i[22*4+3], i[23*4+3],
i[8*4+3], i[9*4+3], i[10*4+3], i[11*4+3], i[12*4+3], i[13*4+3], i[14*4+3], i[15*4+3],
i[0*4+3], i[1*4+3], i[2*4+3], i[3*4+3], i[4*4+3], i[5*4+3], i[6*4+3], i[7*4+3]};
assign q64[127:64] = {
i[24*4], i[25*4], i[26*4], i[27*4], i[28*4], i[29*4], i[30*4], i[31*4],
i[16*4], i[17*4], i[18*4], i[19*4], i[20*4], i[21*4], i[22*4], i[23*4],
i[8*4], i[9*4], i[10*4], i[11*4], i[12*4], i[13*4], i[14*4], i[15*4],
i[0*4], i[1*4], i[2*4], i[3*4], i[4*4], i[5*4], i[6*4], i[7*4],
i[24*4+1], i[25*4+1], i[26*4+1], i[27*4+1], i[28*4+1], i[29*4+1], i[30*4+1], i[31*4+1],
i[16*4+1], i[17*4+1], i[18*4+1], i[19*4+1], i[20*4+1], i[21*4+1], i[22*4+1], i[23*4+1],
i[8*4+1], i[9*4+1], i[10*4+1], i[11*4+1], i[12*4+1], i[13*4+1], i[14*4+1], i[15*4+1],
i[0*4+1], i[1*4+1], i[2*4+1], i[3*4+1], i[4*4+1], i[5*4+1], i[6*4+1], i[7*4+1]};
assign q64[63:0] = {
i[24*4+2], i[25*4+2], i[26*4+2], i[27*4+2], i[28*4+2], i[29*4+2], i[30*4+2], i[31*4+2],
i[16*4+2], i[17*4+2], i[18*4+2], i[19*4+2], i[20*4+2], i[21*4+2], i[22*4+2], i[23*4+2],
i[8*4+2], i[9*4+2], i[10*4+2], i[11*4+2], i[12*4+2], i[13*4+2], i[14*4+2], i[15*4+2],
i[0*4+2], i[1*4+2], i[2*4+2], i[3*4+2], i[4*4+2], i[5*4+2], i[6*4+2], i[7*4+2],
i[24*4+3], i[25*4+3], i[26*4+3], i[27*4+3], i[28*4+3], i[29*4+3], i[30*4+3], i[31*4+3],
i[16*4+3], i[17*4+3], i[18*4+3], i[19*4+3], i[20*4+3], i[21*4+3], i[22*4+3], i[23*4+3],
i[8*4+3], i[9*4+3], i[10*4+3], i[11*4+3], i[12*4+3], i[13*4+3], i[14*4+3], i[15*4+3],
i[0*4+3], i[1*4+3], i[2*4+3], i[3*4+3], i[4*4+3], i[5*4+3], i[6*4+3], i[7*4+3]};
assign q64_low = {
i[24*4+2], i[25*4+2], i[26*4+2], i[27*4+2], i[28*4+2], i[29*4+2], i[30*4+2], i[31*4+2],
i[16*4+2], i[17*4+2], i[18*4+2], i[19*4+2], i[20*4+2], i[21*4+2], i[22*4+2], i[23*4+2],
i[8*4+2], i[9*4+2], i[10*4+2], i[11*4+2], i[12*4+2], i[13*4+2], i[14*4+2], i[15*4+2],
i[0*4+2], i[1*4+2], i[2*4+2], i[3*4+2], i[4*4+2], i[5*4+2], i[6*4+2], i[7*4+2],
i[24*4+3], i[25*4+3], i[26*4+3], i[27*4+3], i[28*4+3], i[29*4+3], i[30*4+3], i[31*4+3],
i[16*4+3], i[17*4+3], i[18*4+3], i[19*4+3], i[20*4+3], i[21*4+3], i[22*4+3], i[23*4+3],
i[8*4+3], i[9*4+3], i[10*4+3], i[11*4+3], i[12*4+3], i[13*4+3], i[14*4+3], i[15*4+3],
i[0*4+3], i[1*4+3], i[2*4+3], i[3*4+3], i[4*4+3], i[5*4+3], i[6*4+3], i[7*4+3]};
assign q32[127:96] = {
i[24*4], i[25*4], i[26*4], i[27*4], i[28*4], i[29*4], i[30*4], i[31*4],
i[16*4], i[17*4], i[18*4], i[19*4], i[20*4], i[21*4], i[22*4], i[23*4],
i[8*4], i[9*4], i[10*4], i[11*4], i[12*4], i[13*4], i[14*4], i[15*4],
i[0*4], i[1*4], i[2*4], i[3*4], i[4*4], i[5*4], i[6*4], i[7*4]};
assign q32[95:64] = {
i[24*4+1], i[25*4+1], i[26*4+1], i[27*4+1], i[28*4+1], i[29*4+1], i[30*4+1], i[31*4+1],
i[16*4+1], i[17*4+1], i[18*4+1], i[19*4+1], i[20*4+1], i[21*4+1], i[22*4+1], i[23*4+1],
i[8*4+1], i[9*4+1], i[10*4+1], i[11*4+1], i[12*4+1], i[13*4+1], i[14*4+1], i[15*4+1],
i[0*4+1], i[1*4+1], i[2*4+1], i[3*4+1], i[4*4+1], i[5*4+1], i[6*4+1], i[7*4+1]};
assign q32[63:32] = {
i[24*4+2], i[25*4+2], i[26*4+2], i[27*4+2], i[28*4+2], i[29*4+2], i[30*4+2], i[31*4+2],
i[16*4+2], i[17*4+2], i[18*4+2], i[19*4+2], i[20*4+2], i[21*4+2], i[22*4+2], i[23*4+2],
i[8*4+2], i[9*4+2], i[10*4+2], i[11*4+2], i[12*4+2], i[13*4+2], i[14*4+2], i[15*4+2],
i[0*4+2], i[1*4+2], i[2*4+2], i[3*4+2], i[4*4+2], i[5*4+2], i[6*4+2], i[7*4+2]};
assign q32[31:0] = {
i[24*4+3], i[25*4+3], i[26*4+3], i[27*4+3], i[28*4+3], i[29*4+3], i[30*4+3], i[31*4+3],
i[16*4+3], i[17*4+3], i[18*4+3], i[19*4+3], i[20*4+3], i[21*4+3], i[22*4+3], i[23*4+3],
i[8*4+3], i[9*4+3], i[10*4+3], i[11*4+3], i[12*4+3], i[13*4+3], i[14*4+3], i[15*4+3],
i[0*4+3], i[1*4+3], i[2*4+3], i[3*4+3], i[4*4+3], i[5*4+3], i[6*4+3], i[7*4+3]};
always @ (posedge clk) begin
if (cyc!=0) begin
cyc <= cyc + 1;
`ifdef TEST_VERBOSE
$write("%x %x\n", q1, i);
`endif
if (cyc==1) begin
i <= 128'hed388e646c843d35de489bab2413d770;
end
if (cyc==2) begin
i <= 128'h0e17c88f3d5fe51a982646c8e2bd68c3;
if (q1 != 128'h06f0b17c6551e269e3ab07723b26fb10) $stop;
if (q1 != q32) $stop;
if (q1 != q64) $stop;
if (q1[63:0] != q64_low) $stop;
end
if (cyc==3) begin
i <= 128'he236ddfddddbdad20a48e039c9f395b8;
if (q1 != 128'h8c6f018c8a992c979a3e7859f29ac36d) $stop;
if (q1 != q32) $stop;
if (q1 != q64) $stop;
if (q1[63:0] != q64_low) $stop;
end
if (cyc==4) begin
i <= 128'h45e0eb7642b148537491f3da147e7f26;
if (q1 != 128'hf45fc07e4fa8524cf9571425f17f9ad7) $stop;
if (q1 != q32) $stop;
if (q1 != q64) $stop;
if (q1[63:0] != q64_low) $stop;
end
if (cyc==9) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2005 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc; initial cyc=1;
reg [127:0] i;
wire [127:0] q1;
wire [127:0] q32;
wire [127:0] q64;
wire [63:0] q64_low;
assign q1 = {
i[24*4], i[25*4], i[26*4], i[27*4], i[28*4], i[29*4], i[30*4], i[31*4],
i[16*4], i[17*4], i[18*4], i[19*4], i[20*4], i[21*4], i[22*4], i[23*4],
i[8*4], i[9*4], i[10*4], i[11*4], i[12*4], i[13*4], i[14*4], i[15*4],
i[0*4], i[1*4], i[2*4], i[3*4], i[4*4], i[5*4], i[6*4], i[7*4],
i[24*4+1], i[25*4+1], i[26*4+1], i[27*4+1], i[28*4+1], i[29*4+1], i[30*4+1], i[31*4+1],
i[16*4+1], i[17*4+1], i[18*4+1], i[19*4+1], i[20*4+1], i[21*4+1], i[22*4+1], i[23*4+1],
i[8*4+1], i[9*4+1], i[10*4+1], i[11*4+1], i[12*4+1], i[13*4+1], i[14*4+1], i[15*4+1],
i[0*4+1], i[1*4+1], i[2*4+1], i[3*4+1], i[4*4+1], i[5*4+1], i[6*4+1], i[7*4+1],
i[24*4+2], i[25*4+2], i[26*4+2], i[27*4+2], i[28*4+2], i[29*4+2], i[30*4+2], i[31*4+2],
i[16*4+2], i[17*4+2], i[18*4+2], i[19*4+2], i[20*4+2], i[21*4+2], i[22*4+2], i[23*4+2],
i[8*4+2], i[9*4+2], i[10*4+2], i[11*4+2], i[12*4+2], i[13*4+2], i[14*4+2], i[15*4+2],
i[0*4+2], i[1*4+2], i[2*4+2], i[3*4+2], i[4*4+2], i[5*4+2], i[6*4+2], i[7*4+2],
i[24*4+3], i[25*4+3], i[26*4+3], i[27*4+3], i[28*4+3], i[29*4+3], i[30*4+3], i[31*4+3],
i[16*4+3], i[17*4+3], i[18*4+3], i[19*4+3], i[20*4+3], i[21*4+3], i[22*4+3], i[23*4+3],
i[8*4+3], i[9*4+3], i[10*4+3], i[11*4+3], i[12*4+3], i[13*4+3], i[14*4+3], i[15*4+3],
i[0*4+3], i[1*4+3], i[2*4+3], i[3*4+3], i[4*4+3], i[5*4+3], i[6*4+3], i[7*4+3]};
assign q64[127:64] = {
i[24*4], i[25*4], i[26*4], i[27*4], i[28*4], i[29*4], i[30*4], i[31*4],
i[16*4], i[17*4], i[18*4], i[19*4], i[20*4], i[21*4], i[22*4], i[23*4],
i[8*4], i[9*4], i[10*4], i[11*4], i[12*4], i[13*4], i[14*4], i[15*4],
i[0*4], i[1*4], i[2*4], i[3*4], i[4*4], i[5*4], i[6*4], i[7*4],
i[24*4+1], i[25*4+1], i[26*4+1], i[27*4+1], i[28*4+1], i[29*4+1], i[30*4+1], i[31*4+1],
i[16*4+1], i[17*4+1], i[18*4+1], i[19*4+1], i[20*4+1], i[21*4+1], i[22*4+1], i[23*4+1],
i[8*4+1], i[9*4+1], i[10*4+1], i[11*4+1], i[12*4+1], i[13*4+1], i[14*4+1], i[15*4+1],
i[0*4+1], i[1*4+1], i[2*4+1], i[3*4+1], i[4*4+1], i[5*4+1], i[6*4+1], i[7*4+1]};
assign q64[63:0] = {
i[24*4+2], i[25*4+2], i[26*4+2], i[27*4+2], i[28*4+2], i[29*4+2], i[30*4+2], i[31*4+2],
i[16*4+2], i[17*4+2], i[18*4+2], i[19*4+2], i[20*4+2], i[21*4+2], i[22*4+2], i[23*4+2],
i[8*4+2], i[9*4+2], i[10*4+2], i[11*4+2], i[12*4+2], i[13*4+2], i[14*4+2], i[15*4+2],
i[0*4+2], i[1*4+2], i[2*4+2], i[3*4+2], i[4*4+2], i[5*4+2], i[6*4+2], i[7*4+2],
i[24*4+3], i[25*4+3], i[26*4+3], i[27*4+3], i[28*4+3], i[29*4+3], i[30*4+3], i[31*4+3],
i[16*4+3], i[17*4+3], i[18*4+3], i[19*4+3], i[20*4+3], i[21*4+3], i[22*4+3], i[23*4+3],
i[8*4+3], i[9*4+3], i[10*4+3], i[11*4+3], i[12*4+3], i[13*4+3], i[14*4+3], i[15*4+3],
i[0*4+3], i[1*4+3], i[2*4+3], i[3*4+3], i[4*4+3], i[5*4+3], i[6*4+3], i[7*4+3]};
assign q64_low = {
i[24*4+2], i[25*4+2], i[26*4+2], i[27*4+2], i[28*4+2], i[29*4+2], i[30*4+2], i[31*4+2],
i[16*4+2], i[17*4+2], i[18*4+2], i[19*4+2], i[20*4+2], i[21*4+2], i[22*4+2], i[23*4+2],
i[8*4+2], i[9*4+2], i[10*4+2], i[11*4+2], i[12*4+2], i[13*4+2], i[14*4+2], i[15*4+2],
i[0*4+2], i[1*4+2], i[2*4+2], i[3*4+2], i[4*4+2], i[5*4+2], i[6*4+2], i[7*4+2],
i[24*4+3], i[25*4+3], i[26*4+3], i[27*4+3], i[28*4+3], i[29*4+3], i[30*4+3], i[31*4+3],
i[16*4+3], i[17*4+3], i[18*4+3], i[19*4+3], i[20*4+3], i[21*4+3], i[22*4+3], i[23*4+3],
i[8*4+3], i[9*4+3], i[10*4+3], i[11*4+3], i[12*4+3], i[13*4+3], i[14*4+3], i[15*4+3],
i[0*4+3], i[1*4+3], i[2*4+3], i[3*4+3], i[4*4+3], i[5*4+3], i[6*4+3], i[7*4+3]};
assign q32[127:96] = {
i[24*4], i[25*4], i[26*4], i[27*4], i[28*4], i[29*4], i[30*4], i[31*4],
i[16*4], i[17*4], i[18*4], i[19*4], i[20*4], i[21*4], i[22*4], i[23*4],
i[8*4], i[9*4], i[10*4], i[11*4], i[12*4], i[13*4], i[14*4], i[15*4],
i[0*4], i[1*4], i[2*4], i[3*4], i[4*4], i[5*4], i[6*4], i[7*4]};
assign q32[95:64] = {
i[24*4+1], i[25*4+1], i[26*4+1], i[27*4+1], i[28*4+1], i[29*4+1], i[30*4+1], i[31*4+1],
i[16*4+1], i[17*4+1], i[18*4+1], i[19*4+1], i[20*4+1], i[21*4+1], i[22*4+1], i[23*4+1],
i[8*4+1], i[9*4+1], i[10*4+1], i[11*4+1], i[12*4+1], i[13*4+1], i[14*4+1], i[15*4+1],
i[0*4+1], i[1*4+1], i[2*4+1], i[3*4+1], i[4*4+1], i[5*4+1], i[6*4+1], i[7*4+1]};
assign q32[63:32] = {
i[24*4+2], i[25*4+2], i[26*4+2], i[27*4+2], i[28*4+2], i[29*4+2], i[30*4+2], i[31*4+2],
i[16*4+2], i[17*4+2], i[18*4+2], i[19*4+2], i[20*4+2], i[21*4+2], i[22*4+2], i[23*4+2],
i[8*4+2], i[9*4+2], i[10*4+2], i[11*4+2], i[12*4+2], i[13*4+2], i[14*4+2], i[15*4+2],
i[0*4+2], i[1*4+2], i[2*4+2], i[3*4+2], i[4*4+2], i[5*4+2], i[6*4+2], i[7*4+2]};
assign q32[31:0] = {
i[24*4+3], i[25*4+3], i[26*4+3], i[27*4+3], i[28*4+3], i[29*4+3], i[30*4+3], i[31*4+3],
i[16*4+3], i[17*4+3], i[18*4+3], i[19*4+3], i[20*4+3], i[21*4+3], i[22*4+3], i[23*4+3],
i[8*4+3], i[9*4+3], i[10*4+3], i[11*4+3], i[12*4+3], i[13*4+3], i[14*4+3], i[15*4+3],
i[0*4+3], i[1*4+3], i[2*4+3], i[3*4+3], i[4*4+3], i[5*4+3], i[6*4+3], i[7*4+3]};
always @ (posedge clk) begin
if (cyc!=0) begin
cyc <= cyc + 1;
`ifdef TEST_VERBOSE
$write("%x %x\n", q1, i);
`endif
if (cyc==1) begin
i <= 128'hed388e646c843d35de489bab2413d770;
end
if (cyc==2) begin
i <= 128'h0e17c88f3d5fe51a982646c8e2bd68c3;
if (q1 != 128'h06f0b17c6551e269e3ab07723b26fb10) $stop;
if (q1 != q32) $stop;
if (q1 != q64) $stop;
if (q1[63:0] != q64_low) $stop;
end
if (cyc==3) begin
i <= 128'he236ddfddddbdad20a48e039c9f395b8;
if (q1 != 128'h8c6f018c8a992c979a3e7859f29ac36d) $stop;
if (q1 != q32) $stop;
if (q1 != q64) $stop;
if (q1[63:0] != q64_low) $stop;
end
if (cyc==4) begin
i <= 128'h45e0eb7642b148537491f3da147e7f26;
if (q1 != 128'hf45fc07e4fa8524cf9571425f17f9ad7) $stop;
if (q1 != q32) $stop;
if (q1 != q64) $stop;
if (q1[63:0] != q64_low) $stop;
end
if (cyc==9) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2005 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc; initial cyc=1;
reg [127:0] i;
wire [127:0] q1;
wire [127:0] q32;
wire [127:0] q64;
wire [63:0] q64_low;
assign q1 = {
i[24*4], i[25*4], i[26*4], i[27*4], i[28*4], i[29*4], i[30*4], i[31*4],
i[16*4], i[17*4], i[18*4], i[19*4], i[20*4], i[21*4], i[22*4], i[23*4],
i[8*4], i[9*4], i[10*4], i[11*4], i[12*4], i[13*4], i[14*4], i[15*4],
i[0*4], i[1*4], i[2*4], i[3*4], i[4*4], i[5*4], i[6*4], i[7*4],
i[24*4+1], i[25*4+1], i[26*4+1], i[27*4+1], i[28*4+1], i[29*4+1], i[30*4+1], i[31*4+1],
i[16*4+1], i[17*4+1], i[18*4+1], i[19*4+1], i[20*4+1], i[21*4+1], i[22*4+1], i[23*4+1],
i[8*4+1], i[9*4+1], i[10*4+1], i[11*4+1], i[12*4+1], i[13*4+1], i[14*4+1], i[15*4+1],
i[0*4+1], i[1*4+1], i[2*4+1], i[3*4+1], i[4*4+1], i[5*4+1], i[6*4+1], i[7*4+1],
i[24*4+2], i[25*4+2], i[26*4+2], i[27*4+2], i[28*4+2], i[29*4+2], i[30*4+2], i[31*4+2],
i[16*4+2], i[17*4+2], i[18*4+2], i[19*4+2], i[20*4+2], i[21*4+2], i[22*4+2], i[23*4+2],
i[8*4+2], i[9*4+2], i[10*4+2], i[11*4+2], i[12*4+2], i[13*4+2], i[14*4+2], i[15*4+2],
i[0*4+2], i[1*4+2], i[2*4+2], i[3*4+2], i[4*4+2], i[5*4+2], i[6*4+2], i[7*4+2],
i[24*4+3], i[25*4+3], i[26*4+3], i[27*4+3], i[28*4+3], i[29*4+3], i[30*4+3], i[31*4+3],
i[16*4+3], i[17*4+3], i[18*4+3], i[19*4+3], i[20*4+3], i[21*4+3], i[22*4+3], i[23*4+3],
i[8*4+3], i[9*4+3], i[10*4+3], i[11*4+3], i[12*4+3], i[13*4+3], i[14*4+3], i[15*4+3],
i[0*4+3], i[1*4+3], i[2*4+3], i[3*4+3], i[4*4+3], i[5*4+3], i[6*4+3], i[7*4+3]};
assign q64[127:64] = {
i[24*4], i[25*4], i[26*4], i[27*4], i[28*4], i[29*4], i[30*4], i[31*4],
i[16*4], i[17*4], i[18*4], i[19*4], i[20*4], i[21*4], i[22*4], i[23*4],
i[8*4], i[9*4], i[10*4], i[11*4], i[12*4], i[13*4], i[14*4], i[15*4],
i[0*4], i[1*4], i[2*4], i[3*4], i[4*4], i[5*4], i[6*4], i[7*4],
i[24*4+1], i[25*4+1], i[26*4+1], i[27*4+1], i[28*4+1], i[29*4+1], i[30*4+1], i[31*4+1],
i[16*4+1], i[17*4+1], i[18*4+1], i[19*4+1], i[20*4+1], i[21*4+1], i[22*4+1], i[23*4+1],
i[8*4+1], i[9*4+1], i[10*4+1], i[11*4+1], i[12*4+1], i[13*4+1], i[14*4+1], i[15*4+1],
i[0*4+1], i[1*4+1], i[2*4+1], i[3*4+1], i[4*4+1], i[5*4+1], i[6*4+1], i[7*4+1]};
assign q64[63:0] = {
i[24*4+2], i[25*4+2], i[26*4+2], i[27*4+2], i[28*4+2], i[29*4+2], i[30*4+2], i[31*4+2],
i[16*4+2], i[17*4+2], i[18*4+2], i[19*4+2], i[20*4+2], i[21*4+2], i[22*4+2], i[23*4+2],
i[8*4+2], i[9*4+2], i[10*4+2], i[11*4+2], i[12*4+2], i[13*4+2], i[14*4+2], i[15*4+2],
i[0*4+2], i[1*4+2], i[2*4+2], i[3*4+2], i[4*4+2], i[5*4+2], i[6*4+2], i[7*4+2],
i[24*4+3], i[25*4+3], i[26*4+3], i[27*4+3], i[28*4+3], i[29*4+3], i[30*4+3], i[31*4+3],
i[16*4+3], i[17*4+3], i[18*4+3], i[19*4+3], i[20*4+3], i[21*4+3], i[22*4+3], i[23*4+3],
i[8*4+3], i[9*4+3], i[10*4+3], i[11*4+3], i[12*4+3], i[13*4+3], i[14*4+3], i[15*4+3],
i[0*4+3], i[1*4+3], i[2*4+3], i[3*4+3], i[4*4+3], i[5*4+3], i[6*4+3], i[7*4+3]};
assign q64_low = {
i[24*4+2], i[25*4+2], i[26*4+2], i[27*4+2], i[28*4+2], i[29*4+2], i[30*4+2], i[31*4+2],
i[16*4+2], i[17*4+2], i[18*4+2], i[19*4+2], i[20*4+2], i[21*4+2], i[22*4+2], i[23*4+2],
i[8*4+2], i[9*4+2], i[10*4+2], i[11*4+2], i[12*4+2], i[13*4+2], i[14*4+2], i[15*4+2],
i[0*4+2], i[1*4+2], i[2*4+2], i[3*4+2], i[4*4+2], i[5*4+2], i[6*4+2], i[7*4+2],
i[24*4+3], i[25*4+3], i[26*4+3], i[27*4+3], i[28*4+3], i[29*4+3], i[30*4+3], i[31*4+3],
i[16*4+3], i[17*4+3], i[18*4+3], i[19*4+3], i[20*4+3], i[21*4+3], i[22*4+3], i[23*4+3],
i[8*4+3], i[9*4+3], i[10*4+3], i[11*4+3], i[12*4+3], i[13*4+3], i[14*4+3], i[15*4+3],
i[0*4+3], i[1*4+3], i[2*4+3], i[3*4+3], i[4*4+3], i[5*4+3], i[6*4+3], i[7*4+3]};
assign q32[127:96] = {
i[24*4], i[25*4], i[26*4], i[27*4], i[28*4], i[29*4], i[30*4], i[31*4],
i[16*4], i[17*4], i[18*4], i[19*4], i[20*4], i[21*4], i[22*4], i[23*4],
i[8*4], i[9*4], i[10*4], i[11*4], i[12*4], i[13*4], i[14*4], i[15*4],
i[0*4], i[1*4], i[2*4], i[3*4], i[4*4], i[5*4], i[6*4], i[7*4]};
assign q32[95:64] = {
i[24*4+1], i[25*4+1], i[26*4+1], i[27*4+1], i[28*4+1], i[29*4+1], i[30*4+1], i[31*4+1],
i[16*4+1], i[17*4+1], i[18*4+1], i[19*4+1], i[20*4+1], i[21*4+1], i[22*4+1], i[23*4+1],
i[8*4+1], i[9*4+1], i[10*4+1], i[11*4+1], i[12*4+1], i[13*4+1], i[14*4+1], i[15*4+1],
i[0*4+1], i[1*4+1], i[2*4+1], i[3*4+1], i[4*4+1], i[5*4+1], i[6*4+1], i[7*4+1]};
assign q32[63:32] = {
i[24*4+2], i[25*4+2], i[26*4+2], i[27*4+2], i[28*4+2], i[29*4+2], i[30*4+2], i[31*4+2],
i[16*4+2], i[17*4+2], i[18*4+2], i[19*4+2], i[20*4+2], i[21*4+2], i[22*4+2], i[23*4+2],
i[8*4+2], i[9*4+2], i[10*4+2], i[11*4+2], i[12*4+2], i[13*4+2], i[14*4+2], i[15*4+2],
i[0*4+2], i[1*4+2], i[2*4+2], i[3*4+2], i[4*4+2], i[5*4+2], i[6*4+2], i[7*4+2]};
assign q32[31:0] = {
i[24*4+3], i[25*4+3], i[26*4+3], i[27*4+3], i[28*4+3], i[29*4+3], i[30*4+3], i[31*4+3],
i[16*4+3], i[17*4+3], i[18*4+3], i[19*4+3], i[20*4+3], i[21*4+3], i[22*4+3], i[23*4+3],
i[8*4+3], i[9*4+3], i[10*4+3], i[11*4+3], i[12*4+3], i[13*4+3], i[14*4+3], i[15*4+3],
i[0*4+3], i[1*4+3], i[2*4+3], i[3*4+3], i[4*4+3], i[5*4+3], i[6*4+3], i[7*4+3]};
always @ (posedge clk) begin
if (cyc!=0) begin
cyc <= cyc + 1;
`ifdef TEST_VERBOSE
$write("%x %x\n", q1, i);
`endif
if (cyc==1) begin
i <= 128'hed388e646c843d35de489bab2413d770;
end
if (cyc==2) begin
i <= 128'h0e17c88f3d5fe51a982646c8e2bd68c3;
if (q1 != 128'h06f0b17c6551e269e3ab07723b26fb10) $stop;
if (q1 != q32) $stop;
if (q1 != q64) $stop;
if (q1[63:0] != q64_low) $stop;
end
if (cyc==3) begin
i <= 128'he236ddfddddbdad20a48e039c9f395b8;
if (q1 != 128'h8c6f018c8a992c979a3e7859f29ac36d) $stop;
if (q1 != q32) $stop;
if (q1 != q64) $stop;
if (q1[63:0] != q64_low) $stop;
end
if (cyc==4) begin
i <= 128'h45e0eb7642b148537491f3da147e7f26;
if (q1 != 128'hf45fc07e4fa8524cf9571425f17f9ad7) $stop;
if (q1 != q32) $stop;
if (q1 != q64) $stop;
if (q1[63:0] != q64_low) $stop;
end
if (cyc==9) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
reg [63:0] d;
reg [31:0] c;
wire [31:0] q = crc (d, c);
reg [31:0] q_r;
integer cyc; initial cyc=1;
always @ (posedge clk) begin
if (cyc!=0) begin
cyc <= cyc + 1;
q_r <= q;
c <= q;
d <= {d[62:0], ^d[63:48]};
//$write("%d crc(%x,%x)=%x\n", cyc, d, c, q);
if (cyc==1) begin
// Assign inputs randomly
q_r <= 32'h12345678;
c <= 32'h12345678;
d <= 64'hffffffff_ffffffff;
end
if (cyc==2) begin
d <= 64'hffffffff_ffffffff;
end
if (cyc==3) begin
d <= 64'hffffffff_ffffffff;
end
if (cyc==4) begin
d <= 64'h50183721_81a04b1a;
end
if (cyc==5) begin
end
if (cyc==9) begin
if (q !== 32'h38295e96) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
end
function [31:0] crc;
input [63:0] di;
input [31:0] ci;
reg [63:0] drev;
begin
drev = reverse(di);
crc = newcrc(drev, ci);
end
endfunction
function [63:0] reverse;
input [63:0] di;
integer i;
begin
reverse = 64'b0;
for (i=0; i<64; i=i+1) reverse[i] = di[63-i];
end
endfunction
function [31:0] newcrc;
input [63:0] D;
input [31:0] C;
reg [31:0] N;
reg [31:0] DT;
begin
N = 32'b0;
// Note this isn't a real CRC code; it's been munged for privacy
N[0] = D[59]^D[53]^D[52]^D[49]^D[44]^D[41]^D[40]^D[39]^D[37]^D[32]^D[29]^D[26]^D[22]^D[21]^D[20]^D[16]^D[15]^D[14]^D[9]^D[7]^D[0]
^C[29]^C[27]^C[24]^C[23]^C[22]^C[21]^C[19]^C[15]^C[13]^C[10]^C[8]^C[3]^C[1];
N[1] = D[61]^D[57]^D[51]^D[47]^D[43]^D[37]^D[35]^D[32]^D[28]^D[24]^D[22]^D[21]^D[20]^D[16]^D[12]^D[11]^D[10]^D[8]^D[7]^D[6]^D[1]^D[0]
^C[30]^C[27]^C[26]^C[20]^C[16]^C[14]^C[13]^C[11]^C[10]^C[8]^C[5]^C[0];
N[2] = D[63]^D[62]^D[61]^D[60]^D[55]^D[54]^D[52]^D[44]^D[43]^D[42]^D[37]^D[34]^D[33]^D[29]^D[28]^D[25]^D[24]^D[23]^D[22]^D[18]^D[16]^D[15]^D[13]^D[12]^D[11]
^C[31]^C[30]^C[27]^C[22]^C[21]^C[18]^C[15]^C[12]^C[11]^C[10]^C[7];
N[3] = D[62]^D[54]^D[50]^D[47]^D[46]^D[38]^D[36]^D[35]^D[34]^D[33]^D[32]^D[30]^D[27]^D[25]^D[21]^D[20]^D[19]^D[17]^D[15]^D[11]^D[8]^D[5]^D[3]^D[1]^D[0]
^C[28]^C[25]^C[24]^C[13]^C[11]^C[9]^C[8]^C[7]^C[3]^C[1];
N[4] = D[57]^D[54]^D[53]^D[52]^D[45]^D[44]^D[43]^D[39]^D[37]^D[34]^D[33]^D[32]^D[31]^D[28]^D[24]^D[23]^D[20]^D[19]^D[15]^D[14]^D[10]^D[6]^D[1]^D[0]
^C[30]^C[24]^C[20]^C[16]^C[14]^C[11]^C[8]^C[7]^C[6]^C[5]^C[2];
N[5] = D[58]^D[57]^D[50]^D[49]^D[48]^D[47]^D[43]^D[39]^D[29]^D[26]^D[23]^D[22]^D[20]^D[18]^D[14]^D[10]^D[9]^D[6]^D[5]^D[4]^D[1]
^C[27]^C[24]^C[20]^C[19]^C[18]^C[14]^C[13]^C[12]^C[11]^C[8]^C[7]^C[1];
N[6] = D[63]^D[62]^D[61]^D[57]^D[51]^D[50]^D[47]^D[38]^D[37]^D[34]^D[30]^D[28]^D[27]^D[25]^D[21]^D[16]^D[15]^D[10]^D[9]^D[6]^D[5]^D[2]^D[1]
^C[31]^C[27]^C[25]^C[16]^C[13]^C[9]^C[8]^C[7]^C[0];
N[7] = ^D[62]^D[61]^D[59]^D[54]^D[52]^D[51]^D[49]^D[46]^D[45]^D[42]^D[41]^D[38]^D[35]^D[29]^D[26]^D[24]^D[15]^D[12]^D[11]^D[9]^D[2]^D[0]
^C[28]^C[27]^C[26]^C[20]^C[19]^C[18]^C[15]^C[12]^C[7]^C[4];
N[8] = D[62]^D[61]^D[60]^D[59]^D[52]^D[50]^D[48]^D[47]^D[46]^D[45]^D[44]^D[42]^D[41]^D[40]^D[30]^D[24]^D[23]^D[22]^D[19]^D[17]^D[11]^D[10]^D[7]^D[6]^D[2]
^C[31]^C[29]^C[27]^C[22]^C[21]^C[19]^C[17]^C[11]^C[9]^C[7]^C[6];
N[9] = D[62]^D[59]^D[58]^D[57]^D[54]^D[51]^D[50]^D[43]^D[41]^D[39]^D[28]^D[25]^D[24]^D[23]^D[22]^D[21]^D[18]^D[16]^D[15]^D[7]
^C[30]^C[29]^C[27]^C[25]^C[23]^C[22]^C[13]^C[12]^C[7]^C[6]^C[5]^C[1];
N[10] = D[61]^D[60]^D[58]^D[56]^D[54]^D[53]^D[51]^D[48]^D[46]^D[43]^D[42]^D[38]^D[37]^D[35]^D[33]^D[31]^D[30]^D[27]^D[26]^D[24]^D[19]^D[10]^D[8]^D[6]^D[1]
^C[31]^C[30]^C[26]^C[25]^C[24]^C[21]^C[16]^C[12]^C[3]^C[2];
N[11] = D[59]^D[57]^D[56]^D[50]^D[49]^D[48]^D[47]^D[46]^D[45]^D[42]^D[41]^D[40]^D[33]^D[32]^D[30]^D[25]^D[21]^D[15]^D[14]^D[13]^D[12]^D[11]^D[5]^D[1]
^C[27]^C[25]^C[24]^C[21]^C[16]^C[12]^C[7]^C[3]^C[2]^C[1];
N[12] = D[62]^D[61]^D[59]^D[58]^D[56]^D[55]^D[53]^D[48]^D[47]^D[44]^D[43]^D[35]^D[31]^D[30]^D[28]^D[24]^D[23]^D[21]^D[14]^D[5]^D[2]
^C[28]^C[26]^C[25]^C[23]^C[22]^C[18]^C[16]^C[15]^C[6];
N[13] = D[63]^D[60]^D[58]^D[57]^D[55]^D[54]^D[53]^D[51]^D[47]^D[45]^D[42]^D[41]^D[38]^D[28]^D[26]^D[25]^D[22]^D[20]^D[18]^D[17]^D[15]^D[13]^D[12]^D[11]
^C[29]^C[28]^C[25]^C[22]^C[19]^C[17]^C[16]^C[15]^C[14]^C[12]^C[10]^C[9];
N[14] = D[58]^D[56]^D[55]^D[52]^D[47]^D[43]^D[41]^D[40]^D[39]^D[38]^D[30]^D[26]^D[25]^D[22]^D[19]^D[17]^D[13]^D[11]^D[10]^D[9]^D[8]^D[3]^D[2]^D[0]
^C[31]^C[28]^C[20]^C[18]^C[17]^C[16]^C[15]^C[13]^C[11]^C[4]^C[2]^C[1];
N[15] = D[63]^D[62]^D[61]^D[59]^D[58]^D[48]^D[47]^D[43]^D[42]^D[35]^D[28]^D[26]^D[25]^D[24]^D[23]^D[22]^D[21]^D[20]^D[19]^D[17]^D[11]^D[7]^D[2]
^C[30]^C[29]^C[27]^C[24]^C[20]^C[17]^C[16]^C[15]^C[11]^C[9]^C[5];
N[16] = D[60]^D[57]^D[49]^D[46]^D[45]^D[43]^D[39]^D[36]^D[32]^D[30]^D[29]^D[28]^D[27]^D[26]^D[23]^D[20]^D[19]^D[17]^D[11]^D[8]^D[5]^D[1]
^C[28]^C[26]^C[23]^C[22]^C[18]^C[16]^C[13]^C[12]^C[10]^C[9]^C[6];
N[17] = D[63]^D[62]^D[61]^D[60]^D[58]^D[54]^D[53]^D[51]^D[48]^D[42]^D[41]^D[37]^D[36]^D[34]^D[28]^D[27]^D[26]^D[24]^D[13]^D[12]^D[9]^D[7]^D[4]^D[0]
^C[31]^C[30]^C[27]^C[23]^C[20]^C[17]^C[14]^C[9]^C[6]^C[4]^C[3]^C[0];
N[18] = D[63]^D[61]^D[59]^D[56]^D[52]^D[50]^D[47]^D[42]^D[37]^D[35]^D[34]^D[31]^D[30]^D[29]^D[22]^D[19]^D[17]^D[16]^D[11]^D[9]^D[8]^D[7]
^C[26]^C[22]^C[20]^C[19]^C[16]^C[11]^C[8]^C[6]^C[5]^C[0];
N[19] = D[62]^D[60]^D[52]^D[49]^D[44]^D[43]^D[42]^D[37]^D[33]^D[32]^D[29]^D[26]^D[19]^D[17]^D[16]^D[12]^D[10]^D[7]^D[6]^D[4]^D[3]^D[2]
^C[30]^C[29]^C[26]^C[25]^C[22]^C[19]^C[14]^C[7]^C[6]^C[5]^C[2]^C[0];
N[20] = D[63]^D[58]^D[54]^D[48]^D[47]^D[40]^D[39]^D[35]^D[34]^D[32]^D[31]^D[28]^D[27]^D[25]^D[18]^D[12]^D[9]^D[7]^D[5]^D[4]^D[3]^D[2]^D[1]
^C[31]^C[29]^C[28]^C[25]^C[19]^C[18]^C[17]^C[15]^C[10]^C[9]^C[6]^C[4];
N[21] = D[61]^D[59]^D[57]^D[56]^D[53]^D[48]^D[44]^D[43]^D[41]^D[35]^D[29]^D[26]^D[25]^D[20]^D[18]^D[17]^D[16]^D[12]^D[9]^D[6]^D[5]^D[3]^D[1]
^C[30]^C[27]^C[24]^C[23]^C[22]^C[21]^C[20]^C[13]^C[9]^C[3]^C[2];
N[22] = D[63]^D[62]^D[60]^D[57]^D[53]^D[51]^D[45]^D[44]^D[42]^D[34]^D[33]^D[27]^D[20]^D[19]^D[18]^D[15]^D[10]^D[9]^D[8]^D[4]^D[3]
^C[24]^C[23]^C[18]^C[17]^C[16]^C[14]^C[12]^C[11]^C[10]^C[9]^C[6]^C[5];
N[23] = D[58]^D[56]^D[54]^D[51]^D[47]^D[43]^D[42]^D[40]^D[37]^D[36]^D[33]^D[25]^D[23]^D[20]^D[18]^D[16]^D[15]^D[12]^D[10]^D[8]^D[7]^D[5]^D[3]
^C[31]^C[27]^C[26]^C[23]^C[21]^C[18]^C[15]^C[11]^C[10]^C[8]^C[7]^C[1];
N[24] = D[60]^D[59]^D[52]^D[50]^D[48]^D[44]^D[39]^D[36]^D[35]^D[31]^D[30]^D[28]^D[27]^D[23]^D[22]^D[21]^D[19]^D[14]^D[13]^D[12]^D[9]^D[4]^D[1]^D[0]
^C[27]^C[25]^C[23]^C[21]^C[17]^C[11]^C[10]^C[4]^C[0];
N[25] = D[61]^D[60]^D[56]^D[54]^D[51]^D[46]^D[43]^D[41]^D[40]^D[38]^D[37]^D[36]^D[29]^D[28]^D[27]^D[22]^D[17]^D[15]^D[10]^D[7]^D[4]^D[2]
^C[29]^C[28]^C[26]^C[23]^C[18]^C[14]^C[13]^C[12]^C[11]^C[9]^C[8]^C[6];
N[26] = D[63]^D[62]^D[58]^D[55]^D[54]^D[52]^D[50]^D[39]^D[37]^D[36]^D[35]^D[33]^D[31]^D[29]^D[27]^D[18]^D[14]^D[10]^D[3]^D[2]^D[0]
^C[31]^C[27]^C[26]^C[25]^C[24]^C[21]^C[13]^C[12]^C[10]^C[1];
N[27] = D[62]^D[60]^D[58]^D[56]^D[55]^D[54]^D[51]^D[44]^D[41]^D[36]^D[34]^D[32]^D[31]^D[29]^D[28]^D[27]^D[23]^D[17]^D[12]^D[11]^D[8]^D[6]^D[4]^D[2]
^C[31]^C[30]^C[28]^C[27]^C[23]^C[19]^C[17]^C[16]^C[14]^C[12]^C[11]^C[10]^C[3];
N[28] = D[57]^D[54]^D[53]^D[51]^D[50]^D[48]^D[40]^D[38]^D[34]^D[33]^D[31]^D[30]^D[29]^D[27]^D[23]^D[21]^D[14]^D[9]^D[7]^D[6]^D[5]^D[4]^D[0]
^C[31]^C[30]^C[26]^C[24]^C[15]^C[14]^C[13]^C[7]^C[6]^C[4]^C[3]^C[0];
N[29] = D[62]^D[60]^D[55]^D[46]^D[45]^D[44]^D[43]^D[41]^D[40]^D[35]^D[33]^D[32]^D[30]^D[28]^D[25]^D[23]^D[22]^D[13]^D[8]^D[7]^D[6]^D[5]^D[4]^D[3]^D[1]^D[0]
^C[31]^C[28]^C[27]^C[18]^C[11]^C[8]^C[6]^C[4]^C[2]^C[1]^C[0];
N[30] = D[63]^D[62]^D[59]^D[58]^D[55]^D[52]^D[47]^D[44]^D[36]^D[35]^D[34]^D[31]^D[29]^D[22]^D[21]^D[20]^D[19]^D[15]^D[14]^D[10]^D[6]^D[3]^D[2]^D[0]
^C[28]^C[25]^C[24]^C[22]^C[20]^C[15]^C[14]^C[12]^C[10]^C[9]^C[4]^C[0];
N[31] = D[61]^D[58]^D[56]^D[55]^D[54]^D[52]^D[51]^D[50]^D[49]^D[42]^D[38]^D[37]^D[36]^D[34]^D[31]^D[30]^D[27]^D[26]^D[23]^D[22]^D[21]^D[19]^D[18]^D[12]^D[0]
^C[28]^C[26]^C[24]^C[21]^C[17]^C[16]^C[14]^C[13]^C[10]^C[8]^C[2];
newcrc = N;
end
endfunction
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
reg [63:0] d;
reg [31:0] c;
wire [31:0] q = crc (d, c);
reg [31:0] q_r;
integer cyc; initial cyc=1;
always @ (posedge clk) begin
if (cyc!=0) begin
cyc <= cyc + 1;
q_r <= q;
c <= q;
d <= {d[62:0], ^d[63:48]};
//$write("%d crc(%x,%x)=%x\n", cyc, d, c, q);
if (cyc==1) begin
// Assign inputs randomly
q_r <= 32'h12345678;
c <= 32'h12345678;
d <= 64'hffffffff_ffffffff;
end
if (cyc==2) begin
d <= 64'hffffffff_ffffffff;
end
if (cyc==3) begin
d <= 64'hffffffff_ffffffff;
end
if (cyc==4) begin
d <= 64'h50183721_81a04b1a;
end
if (cyc==5) begin
end
if (cyc==9) begin
if (q !== 32'h38295e96) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
end
function [31:0] crc;
input [63:0] di;
input [31:0] ci;
reg [63:0] drev;
begin
drev = reverse(di);
crc = newcrc(drev, ci);
end
endfunction
function [63:0] reverse;
input [63:0] di;
integer i;
begin
reverse = 64'b0;
for (i=0; i<64; i=i+1) reverse[i] = di[63-i];
end
endfunction
function [31:0] newcrc;
input [63:0] D;
input [31:0] C;
reg [31:0] N;
reg [31:0] DT;
begin
N = 32'b0;
// Note this isn't a real CRC code; it's been munged for privacy
N[0] = D[59]^D[53]^D[52]^D[49]^D[44]^D[41]^D[40]^D[39]^D[37]^D[32]^D[29]^D[26]^D[22]^D[21]^D[20]^D[16]^D[15]^D[14]^D[9]^D[7]^D[0]
^C[29]^C[27]^C[24]^C[23]^C[22]^C[21]^C[19]^C[15]^C[13]^C[10]^C[8]^C[3]^C[1];
N[1] = D[61]^D[57]^D[51]^D[47]^D[43]^D[37]^D[35]^D[32]^D[28]^D[24]^D[22]^D[21]^D[20]^D[16]^D[12]^D[11]^D[10]^D[8]^D[7]^D[6]^D[1]^D[0]
^C[30]^C[27]^C[26]^C[20]^C[16]^C[14]^C[13]^C[11]^C[10]^C[8]^C[5]^C[0];
N[2] = D[63]^D[62]^D[61]^D[60]^D[55]^D[54]^D[52]^D[44]^D[43]^D[42]^D[37]^D[34]^D[33]^D[29]^D[28]^D[25]^D[24]^D[23]^D[22]^D[18]^D[16]^D[15]^D[13]^D[12]^D[11]
^C[31]^C[30]^C[27]^C[22]^C[21]^C[18]^C[15]^C[12]^C[11]^C[10]^C[7];
N[3] = D[62]^D[54]^D[50]^D[47]^D[46]^D[38]^D[36]^D[35]^D[34]^D[33]^D[32]^D[30]^D[27]^D[25]^D[21]^D[20]^D[19]^D[17]^D[15]^D[11]^D[8]^D[5]^D[3]^D[1]^D[0]
^C[28]^C[25]^C[24]^C[13]^C[11]^C[9]^C[8]^C[7]^C[3]^C[1];
N[4] = D[57]^D[54]^D[53]^D[52]^D[45]^D[44]^D[43]^D[39]^D[37]^D[34]^D[33]^D[32]^D[31]^D[28]^D[24]^D[23]^D[20]^D[19]^D[15]^D[14]^D[10]^D[6]^D[1]^D[0]
^C[30]^C[24]^C[20]^C[16]^C[14]^C[11]^C[8]^C[7]^C[6]^C[5]^C[2];
N[5] = D[58]^D[57]^D[50]^D[49]^D[48]^D[47]^D[43]^D[39]^D[29]^D[26]^D[23]^D[22]^D[20]^D[18]^D[14]^D[10]^D[9]^D[6]^D[5]^D[4]^D[1]
^C[27]^C[24]^C[20]^C[19]^C[18]^C[14]^C[13]^C[12]^C[11]^C[8]^C[7]^C[1];
N[6] = D[63]^D[62]^D[61]^D[57]^D[51]^D[50]^D[47]^D[38]^D[37]^D[34]^D[30]^D[28]^D[27]^D[25]^D[21]^D[16]^D[15]^D[10]^D[9]^D[6]^D[5]^D[2]^D[1]
^C[31]^C[27]^C[25]^C[16]^C[13]^C[9]^C[8]^C[7]^C[0];
N[7] = ^D[62]^D[61]^D[59]^D[54]^D[52]^D[51]^D[49]^D[46]^D[45]^D[42]^D[41]^D[38]^D[35]^D[29]^D[26]^D[24]^D[15]^D[12]^D[11]^D[9]^D[2]^D[0]
^C[28]^C[27]^C[26]^C[20]^C[19]^C[18]^C[15]^C[12]^C[7]^C[4];
N[8] = D[62]^D[61]^D[60]^D[59]^D[52]^D[50]^D[48]^D[47]^D[46]^D[45]^D[44]^D[42]^D[41]^D[40]^D[30]^D[24]^D[23]^D[22]^D[19]^D[17]^D[11]^D[10]^D[7]^D[6]^D[2]
^C[31]^C[29]^C[27]^C[22]^C[21]^C[19]^C[17]^C[11]^C[9]^C[7]^C[6];
N[9] = D[62]^D[59]^D[58]^D[57]^D[54]^D[51]^D[50]^D[43]^D[41]^D[39]^D[28]^D[25]^D[24]^D[23]^D[22]^D[21]^D[18]^D[16]^D[15]^D[7]
^C[30]^C[29]^C[27]^C[25]^C[23]^C[22]^C[13]^C[12]^C[7]^C[6]^C[5]^C[1];
N[10] = D[61]^D[60]^D[58]^D[56]^D[54]^D[53]^D[51]^D[48]^D[46]^D[43]^D[42]^D[38]^D[37]^D[35]^D[33]^D[31]^D[30]^D[27]^D[26]^D[24]^D[19]^D[10]^D[8]^D[6]^D[1]
^C[31]^C[30]^C[26]^C[25]^C[24]^C[21]^C[16]^C[12]^C[3]^C[2];
N[11] = D[59]^D[57]^D[56]^D[50]^D[49]^D[48]^D[47]^D[46]^D[45]^D[42]^D[41]^D[40]^D[33]^D[32]^D[30]^D[25]^D[21]^D[15]^D[14]^D[13]^D[12]^D[11]^D[5]^D[1]
^C[27]^C[25]^C[24]^C[21]^C[16]^C[12]^C[7]^C[3]^C[2]^C[1];
N[12] = D[62]^D[61]^D[59]^D[58]^D[56]^D[55]^D[53]^D[48]^D[47]^D[44]^D[43]^D[35]^D[31]^D[30]^D[28]^D[24]^D[23]^D[21]^D[14]^D[5]^D[2]
^C[28]^C[26]^C[25]^C[23]^C[22]^C[18]^C[16]^C[15]^C[6];
N[13] = D[63]^D[60]^D[58]^D[57]^D[55]^D[54]^D[53]^D[51]^D[47]^D[45]^D[42]^D[41]^D[38]^D[28]^D[26]^D[25]^D[22]^D[20]^D[18]^D[17]^D[15]^D[13]^D[12]^D[11]
^C[29]^C[28]^C[25]^C[22]^C[19]^C[17]^C[16]^C[15]^C[14]^C[12]^C[10]^C[9];
N[14] = D[58]^D[56]^D[55]^D[52]^D[47]^D[43]^D[41]^D[40]^D[39]^D[38]^D[30]^D[26]^D[25]^D[22]^D[19]^D[17]^D[13]^D[11]^D[10]^D[9]^D[8]^D[3]^D[2]^D[0]
^C[31]^C[28]^C[20]^C[18]^C[17]^C[16]^C[15]^C[13]^C[11]^C[4]^C[2]^C[1];
N[15] = D[63]^D[62]^D[61]^D[59]^D[58]^D[48]^D[47]^D[43]^D[42]^D[35]^D[28]^D[26]^D[25]^D[24]^D[23]^D[22]^D[21]^D[20]^D[19]^D[17]^D[11]^D[7]^D[2]
^C[30]^C[29]^C[27]^C[24]^C[20]^C[17]^C[16]^C[15]^C[11]^C[9]^C[5];
N[16] = D[60]^D[57]^D[49]^D[46]^D[45]^D[43]^D[39]^D[36]^D[32]^D[30]^D[29]^D[28]^D[27]^D[26]^D[23]^D[20]^D[19]^D[17]^D[11]^D[8]^D[5]^D[1]
^C[28]^C[26]^C[23]^C[22]^C[18]^C[16]^C[13]^C[12]^C[10]^C[9]^C[6];
N[17] = D[63]^D[62]^D[61]^D[60]^D[58]^D[54]^D[53]^D[51]^D[48]^D[42]^D[41]^D[37]^D[36]^D[34]^D[28]^D[27]^D[26]^D[24]^D[13]^D[12]^D[9]^D[7]^D[4]^D[0]
^C[31]^C[30]^C[27]^C[23]^C[20]^C[17]^C[14]^C[9]^C[6]^C[4]^C[3]^C[0];
N[18] = D[63]^D[61]^D[59]^D[56]^D[52]^D[50]^D[47]^D[42]^D[37]^D[35]^D[34]^D[31]^D[30]^D[29]^D[22]^D[19]^D[17]^D[16]^D[11]^D[9]^D[8]^D[7]
^C[26]^C[22]^C[20]^C[19]^C[16]^C[11]^C[8]^C[6]^C[5]^C[0];
N[19] = D[62]^D[60]^D[52]^D[49]^D[44]^D[43]^D[42]^D[37]^D[33]^D[32]^D[29]^D[26]^D[19]^D[17]^D[16]^D[12]^D[10]^D[7]^D[6]^D[4]^D[3]^D[2]
^C[30]^C[29]^C[26]^C[25]^C[22]^C[19]^C[14]^C[7]^C[6]^C[5]^C[2]^C[0];
N[20] = D[63]^D[58]^D[54]^D[48]^D[47]^D[40]^D[39]^D[35]^D[34]^D[32]^D[31]^D[28]^D[27]^D[25]^D[18]^D[12]^D[9]^D[7]^D[5]^D[4]^D[3]^D[2]^D[1]
^C[31]^C[29]^C[28]^C[25]^C[19]^C[18]^C[17]^C[15]^C[10]^C[9]^C[6]^C[4];
N[21] = D[61]^D[59]^D[57]^D[56]^D[53]^D[48]^D[44]^D[43]^D[41]^D[35]^D[29]^D[26]^D[25]^D[20]^D[18]^D[17]^D[16]^D[12]^D[9]^D[6]^D[5]^D[3]^D[1]
^C[30]^C[27]^C[24]^C[23]^C[22]^C[21]^C[20]^C[13]^C[9]^C[3]^C[2];
N[22] = D[63]^D[62]^D[60]^D[57]^D[53]^D[51]^D[45]^D[44]^D[42]^D[34]^D[33]^D[27]^D[20]^D[19]^D[18]^D[15]^D[10]^D[9]^D[8]^D[4]^D[3]
^C[24]^C[23]^C[18]^C[17]^C[16]^C[14]^C[12]^C[11]^C[10]^C[9]^C[6]^C[5];
N[23] = D[58]^D[56]^D[54]^D[51]^D[47]^D[43]^D[42]^D[40]^D[37]^D[36]^D[33]^D[25]^D[23]^D[20]^D[18]^D[16]^D[15]^D[12]^D[10]^D[8]^D[7]^D[5]^D[3]
^C[31]^C[27]^C[26]^C[23]^C[21]^C[18]^C[15]^C[11]^C[10]^C[8]^C[7]^C[1];
N[24] = D[60]^D[59]^D[52]^D[50]^D[48]^D[44]^D[39]^D[36]^D[35]^D[31]^D[30]^D[28]^D[27]^D[23]^D[22]^D[21]^D[19]^D[14]^D[13]^D[12]^D[9]^D[4]^D[1]^D[0]
^C[27]^C[25]^C[23]^C[21]^C[17]^C[11]^C[10]^C[4]^C[0];
N[25] = D[61]^D[60]^D[56]^D[54]^D[51]^D[46]^D[43]^D[41]^D[40]^D[38]^D[37]^D[36]^D[29]^D[28]^D[27]^D[22]^D[17]^D[15]^D[10]^D[7]^D[4]^D[2]
^C[29]^C[28]^C[26]^C[23]^C[18]^C[14]^C[13]^C[12]^C[11]^C[9]^C[8]^C[6];
N[26] = D[63]^D[62]^D[58]^D[55]^D[54]^D[52]^D[50]^D[39]^D[37]^D[36]^D[35]^D[33]^D[31]^D[29]^D[27]^D[18]^D[14]^D[10]^D[3]^D[2]^D[0]
^C[31]^C[27]^C[26]^C[25]^C[24]^C[21]^C[13]^C[12]^C[10]^C[1];
N[27] = D[62]^D[60]^D[58]^D[56]^D[55]^D[54]^D[51]^D[44]^D[41]^D[36]^D[34]^D[32]^D[31]^D[29]^D[28]^D[27]^D[23]^D[17]^D[12]^D[11]^D[8]^D[6]^D[4]^D[2]
^C[31]^C[30]^C[28]^C[27]^C[23]^C[19]^C[17]^C[16]^C[14]^C[12]^C[11]^C[10]^C[3];
N[28] = D[57]^D[54]^D[53]^D[51]^D[50]^D[48]^D[40]^D[38]^D[34]^D[33]^D[31]^D[30]^D[29]^D[27]^D[23]^D[21]^D[14]^D[9]^D[7]^D[6]^D[5]^D[4]^D[0]
^C[31]^C[30]^C[26]^C[24]^C[15]^C[14]^C[13]^C[7]^C[6]^C[4]^C[3]^C[0];
N[29] = D[62]^D[60]^D[55]^D[46]^D[45]^D[44]^D[43]^D[41]^D[40]^D[35]^D[33]^D[32]^D[30]^D[28]^D[25]^D[23]^D[22]^D[13]^D[8]^D[7]^D[6]^D[5]^D[4]^D[3]^D[1]^D[0]
^C[31]^C[28]^C[27]^C[18]^C[11]^C[8]^C[6]^C[4]^C[2]^C[1]^C[0];
N[30] = D[63]^D[62]^D[59]^D[58]^D[55]^D[52]^D[47]^D[44]^D[36]^D[35]^D[34]^D[31]^D[29]^D[22]^D[21]^D[20]^D[19]^D[15]^D[14]^D[10]^D[6]^D[3]^D[2]^D[0]
^C[28]^C[25]^C[24]^C[22]^C[20]^C[15]^C[14]^C[12]^C[10]^C[9]^C[4]^C[0];
N[31] = D[61]^D[58]^D[56]^D[55]^D[54]^D[52]^D[51]^D[50]^D[49]^D[42]^D[38]^D[37]^D[36]^D[34]^D[31]^D[30]^D[27]^D[26]^D[23]^D[22]^D[21]^D[19]^D[18]^D[12]^D[0]
^C[28]^C[26]^C[24]^C[21]^C[17]^C[16]^C[14]^C[13]^C[10]^C[8]^C[2];
newcrc = N;
end
endfunction
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
reg [63:0] d;
reg [31:0] c;
wire [31:0] q = crc (d, c);
reg [31:0] q_r;
integer cyc; initial cyc=1;
always @ (posedge clk) begin
if (cyc!=0) begin
cyc <= cyc + 1;
q_r <= q;
c <= q;
d <= {d[62:0], ^d[63:48]};
//$write("%d crc(%x,%x)=%x\n", cyc, d, c, q);
if (cyc==1) begin
// Assign inputs randomly
q_r <= 32'h12345678;
c <= 32'h12345678;
d <= 64'hffffffff_ffffffff;
end
if (cyc==2) begin
d <= 64'hffffffff_ffffffff;
end
if (cyc==3) begin
d <= 64'hffffffff_ffffffff;
end
if (cyc==4) begin
d <= 64'h50183721_81a04b1a;
end
if (cyc==5) begin
end
if (cyc==9) begin
if (q !== 32'h38295e96) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
end
function [31:0] crc;
input [63:0] di;
input [31:0] ci;
reg [63:0] drev;
begin
drev = reverse(di);
crc = newcrc(drev, ci);
end
endfunction
function [63:0] reverse;
input [63:0] di;
integer i;
begin
reverse = 64'b0;
for (i=0; i<64; i=i+1) reverse[i] = di[63-i];
end
endfunction
function [31:0] newcrc;
input [63:0] D;
input [31:0] C;
reg [31:0] N;
reg [31:0] DT;
begin
N = 32'b0;
// Note this isn't a real CRC code; it's been munged for privacy
N[0] = D[59]^D[53]^D[52]^D[49]^D[44]^D[41]^D[40]^D[39]^D[37]^D[32]^D[29]^D[26]^D[22]^D[21]^D[20]^D[16]^D[15]^D[14]^D[9]^D[7]^D[0]
^C[29]^C[27]^C[24]^C[23]^C[22]^C[21]^C[19]^C[15]^C[13]^C[10]^C[8]^C[3]^C[1];
N[1] = D[61]^D[57]^D[51]^D[47]^D[43]^D[37]^D[35]^D[32]^D[28]^D[24]^D[22]^D[21]^D[20]^D[16]^D[12]^D[11]^D[10]^D[8]^D[7]^D[6]^D[1]^D[0]
^C[30]^C[27]^C[26]^C[20]^C[16]^C[14]^C[13]^C[11]^C[10]^C[8]^C[5]^C[0];
N[2] = D[63]^D[62]^D[61]^D[60]^D[55]^D[54]^D[52]^D[44]^D[43]^D[42]^D[37]^D[34]^D[33]^D[29]^D[28]^D[25]^D[24]^D[23]^D[22]^D[18]^D[16]^D[15]^D[13]^D[12]^D[11]
^C[31]^C[30]^C[27]^C[22]^C[21]^C[18]^C[15]^C[12]^C[11]^C[10]^C[7];
N[3] = D[62]^D[54]^D[50]^D[47]^D[46]^D[38]^D[36]^D[35]^D[34]^D[33]^D[32]^D[30]^D[27]^D[25]^D[21]^D[20]^D[19]^D[17]^D[15]^D[11]^D[8]^D[5]^D[3]^D[1]^D[0]
^C[28]^C[25]^C[24]^C[13]^C[11]^C[9]^C[8]^C[7]^C[3]^C[1];
N[4] = D[57]^D[54]^D[53]^D[52]^D[45]^D[44]^D[43]^D[39]^D[37]^D[34]^D[33]^D[32]^D[31]^D[28]^D[24]^D[23]^D[20]^D[19]^D[15]^D[14]^D[10]^D[6]^D[1]^D[0]
^C[30]^C[24]^C[20]^C[16]^C[14]^C[11]^C[8]^C[7]^C[6]^C[5]^C[2];
N[5] = D[58]^D[57]^D[50]^D[49]^D[48]^D[47]^D[43]^D[39]^D[29]^D[26]^D[23]^D[22]^D[20]^D[18]^D[14]^D[10]^D[9]^D[6]^D[5]^D[4]^D[1]
^C[27]^C[24]^C[20]^C[19]^C[18]^C[14]^C[13]^C[12]^C[11]^C[8]^C[7]^C[1];
N[6] = D[63]^D[62]^D[61]^D[57]^D[51]^D[50]^D[47]^D[38]^D[37]^D[34]^D[30]^D[28]^D[27]^D[25]^D[21]^D[16]^D[15]^D[10]^D[9]^D[6]^D[5]^D[2]^D[1]
^C[31]^C[27]^C[25]^C[16]^C[13]^C[9]^C[8]^C[7]^C[0];
N[7] = ^D[62]^D[61]^D[59]^D[54]^D[52]^D[51]^D[49]^D[46]^D[45]^D[42]^D[41]^D[38]^D[35]^D[29]^D[26]^D[24]^D[15]^D[12]^D[11]^D[9]^D[2]^D[0]
^C[28]^C[27]^C[26]^C[20]^C[19]^C[18]^C[15]^C[12]^C[7]^C[4];
N[8] = D[62]^D[61]^D[60]^D[59]^D[52]^D[50]^D[48]^D[47]^D[46]^D[45]^D[44]^D[42]^D[41]^D[40]^D[30]^D[24]^D[23]^D[22]^D[19]^D[17]^D[11]^D[10]^D[7]^D[6]^D[2]
^C[31]^C[29]^C[27]^C[22]^C[21]^C[19]^C[17]^C[11]^C[9]^C[7]^C[6];
N[9] = D[62]^D[59]^D[58]^D[57]^D[54]^D[51]^D[50]^D[43]^D[41]^D[39]^D[28]^D[25]^D[24]^D[23]^D[22]^D[21]^D[18]^D[16]^D[15]^D[7]
^C[30]^C[29]^C[27]^C[25]^C[23]^C[22]^C[13]^C[12]^C[7]^C[6]^C[5]^C[1];
N[10] = D[61]^D[60]^D[58]^D[56]^D[54]^D[53]^D[51]^D[48]^D[46]^D[43]^D[42]^D[38]^D[37]^D[35]^D[33]^D[31]^D[30]^D[27]^D[26]^D[24]^D[19]^D[10]^D[8]^D[6]^D[1]
^C[31]^C[30]^C[26]^C[25]^C[24]^C[21]^C[16]^C[12]^C[3]^C[2];
N[11] = D[59]^D[57]^D[56]^D[50]^D[49]^D[48]^D[47]^D[46]^D[45]^D[42]^D[41]^D[40]^D[33]^D[32]^D[30]^D[25]^D[21]^D[15]^D[14]^D[13]^D[12]^D[11]^D[5]^D[1]
^C[27]^C[25]^C[24]^C[21]^C[16]^C[12]^C[7]^C[3]^C[2]^C[1];
N[12] = D[62]^D[61]^D[59]^D[58]^D[56]^D[55]^D[53]^D[48]^D[47]^D[44]^D[43]^D[35]^D[31]^D[30]^D[28]^D[24]^D[23]^D[21]^D[14]^D[5]^D[2]
^C[28]^C[26]^C[25]^C[23]^C[22]^C[18]^C[16]^C[15]^C[6];
N[13] = D[63]^D[60]^D[58]^D[57]^D[55]^D[54]^D[53]^D[51]^D[47]^D[45]^D[42]^D[41]^D[38]^D[28]^D[26]^D[25]^D[22]^D[20]^D[18]^D[17]^D[15]^D[13]^D[12]^D[11]
^C[29]^C[28]^C[25]^C[22]^C[19]^C[17]^C[16]^C[15]^C[14]^C[12]^C[10]^C[9];
N[14] = D[58]^D[56]^D[55]^D[52]^D[47]^D[43]^D[41]^D[40]^D[39]^D[38]^D[30]^D[26]^D[25]^D[22]^D[19]^D[17]^D[13]^D[11]^D[10]^D[9]^D[8]^D[3]^D[2]^D[0]
^C[31]^C[28]^C[20]^C[18]^C[17]^C[16]^C[15]^C[13]^C[11]^C[4]^C[2]^C[1];
N[15] = D[63]^D[62]^D[61]^D[59]^D[58]^D[48]^D[47]^D[43]^D[42]^D[35]^D[28]^D[26]^D[25]^D[24]^D[23]^D[22]^D[21]^D[20]^D[19]^D[17]^D[11]^D[7]^D[2]
^C[30]^C[29]^C[27]^C[24]^C[20]^C[17]^C[16]^C[15]^C[11]^C[9]^C[5];
N[16] = D[60]^D[57]^D[49]^D[46]^D[45]^D[43]^D[39]^D[36]^D[32]^D[30]^D[29]^D[28]^D[27]^D[26]^D[23]^D[20]^D[19]^D[17]^D[11]^D[8]^D[5]^D[1]
^C[28]^C[26]^C[23]^C[22]^C[18]^C[16]^C[13]^C[12]^C[10]^C[9]^C[6];
N[17] = D[63]^D[62]^D[61]^D[60]^D[58]^D[54]^D[53]^D[51]^D[48]^D[42]^D[41]^D[37]^D[36]^D[34]^D[28]^D[27]^D[26]^D[24]^D[13]^D[12]^D[9]^D[7]^D[4]^D[0]
^C[31]^C[30]^C[27]^C[23]^C[20]^C[17]^C[14]^C[9]^C[6]^C[4]^C[3]^C[0];
N[18] = D[63]^D[61]^D[59]^D[56]^D[52]^D[50]^D[47]^D[42]^D[37]^D[35]^D[34]^D[31]^D[30]^D[29]^D[22]^D[19]^D[17]^D[16]^D[11]^D[9]^D[8]^D[7]
^C[26]^C[22]^C[20]^C[19]^C[16]^C[11]^C[8]^C[6]^C[5]^C[0];
N[19] = D[62]^D[60]^D[52]^D[49]^D[44]^D[43]^D[42]^D[37]^D[33]^D[32]^D[29]^D[26]^D[19]^D[17]^D[16]^D[12]^D[10]^D[7]^D[6]^D[4]^D[3]^D[2]
^C[30]^C[29]^C[26]^C[25]^C[22]^C[19]^C[14]^C[7]^C[6]^C[5]^C[2]^C[0];
N[20] = D[63]^D[58]^D[54]^D[48]^D[47]^D[40]^D[39]^D[35]^D[34]^D[32]^D[31]^D[28]^D[27]^D[25]^D[18]^D[12]^D[9]^D[7]^D[5]^D[4]^D[3]^D[2]^D[1]
^C[31]^C[29]^C[28]^C[25]^C[19]^C[18]^C[17]^C[15]^C[10]^C[9]^C[6]^C[4];
N[21] = D[61]^D[59]^D[57]^D[56]^D[53]^D[48]^D[44]^D[43]^D[41]^D[35]^D[29]^D[26]^D[25]^D[20]^D[18]^D[17]^D[16]^D[12]^D[9]^D[6]^D[5]^D[3]^D[1]
^C[30]^C[27]^C[24]^C[23]^C[22]^C[21]^C[20]^C[13]^C[9]^C[3]^C[2];
N[22] = D[63]^D[62]^D[60]^D[57]^D[53]^D[51]^D[45]^D[44]^D[42]^D[34]^D[33]^D[27]^D[20]^D[19]^D[18]^D[15]^D[10]^D[9]^D[8]^D[4]^D[3]
^C[24]^C[23]^C[18]^C[17]^C[16]^C[14]^C[12]^C[11]^C[10]^C[9]^C[6]^C[5];
N[23] = D[58]^D[56]^D[54]^D[51]^D[47]^D[43]^D[42]^D[40]^D[37]^D[36]^D[33]^D[25]^D[23]^D[20]^D[18]^D[16]^D[15]^D[12]^D[10]^D[8]^D[7]^D[5]^D[3]
^C[31]^C[27]^C[26]^C[23]^C[21]^C[18]^C[15]^C[11]^C[10]^C[8]^C[7]^C[1];
N[24] = D[60]^D[59]^D[52]^D[50]^D[48]^D[44]^D[39]^D[36]^D[35]^D[31]^D[30]^D[28]^D[27]^D[23]^D[22]^D[21]^D[19]^D[14]^D[13]^D[12]^D[9]^D[4]^D[1]^D[0]
^C[27]^C[25]^C[23]^C[21]^C[17]^C[11]^C[10]^C[4]^C[0];
N[25] = D[61]^D[60]^D[56]^D[54]^D[51]^D[46]^D[43]^D[41]^D[40]^D[38]^D[37]^D[36]^D[29]^D[28]^D[27]^D[22]^D[17]^D[15]^D[10]^D[7]^D[4]^D[2]
^C[29]^C[28]^C[26]^C[23]^C[18]^C[14]^C[13]^C[12]^C[11]^C[9]^C[8]^C[6];
N[26] = D[63]^D[62]^D[58]^D[55]^D[54]^D[52]^D[50]^D[39]^D[37]^D[36]^D[35]^D[33]^D[31]^D[29]^D[27]^D[18]^D[14]^D[10]^D[3]^D[2]^D[0]
^C[31]^C[27]^C[26]^C[25]^C[24]^C[21]^C[13]^C[12]^C[10]^C[1];
N[27] = D[62]^D[60]^D[58]^D[56]^D[55]^D[54]^D[51]^D[44]^D[41]^D[36]^D[34]^D[32]^D[31]^D[29]^D[28]^D[27]^D[23]^D[17]^D[12]^D[11]^D[8]^D[6]^D[4]^D[2]
^C[31]^C[30]^C[28]^C[27]^C[23]^C[19]^C[17]^C[16]^C[14]^C[12]^C[11]^C[10]^C[3];
N[28] = D[57]^D[54]^D[53]^D[51]^D[50]^D[48]^D[40]^D[38]^D[34]^D[33]^D[31]^D[30]^D[29]^D[27]^D[23]^D[21]^D[14]^D[9]^D[7]^D[6]^D[5]^D[4]^D[0]
^C[31]^C[30]^C[26]^C[24]^C[15]^C[14]^C[13]^C[7]^C[6]^C[4]^C[3]^C[0];
N[29] = D[62]^D[60]^D[55]^D[46]^D[45]^D[44]^D[43]^D[41]^D[40]^D[35]^D[33]^D[32]^D[30]^D[28]^D[25]^D[23]^D[22]^D[13]^D[8]^D[7]^D[6]^D[5]^D[4]^D[3]^D[1]^D[0]
^C[31]^C[28]^C[27]^C[18]^C[11]^C[8]^C[6]^C[4]^C[2]^C[1]^C[0];
N[30] = D[63]^D[62]^D[59]^D[58]^D[55]^D[52]^D[47]^D[44]^D[36]^D[35]^D[34]^D[31]^D[29]^D[22]^D[21]^D[20]^D[19]^D[15]^D[14]^D[10]^D[6]^D[3]^D[2]^D[0]
^C[28]^C[25]^C[24]^C[22]^C[20]^C[15]^C[14]^C[12]^C[10]^C[9]^C[4]^C[0];
N[31] = D[61]^D[58]^D[56]^D[55]^D[54]^D[52]^D[51]^D[50]^D[49]^D[42]^D[38]^D[37]^D[36]^D[34]^D[31]^D[30]^D[27]^D[26]^D[23]^D[22]^D[21]^D[19]^D[18]^D[12]^D[0]
^C[28]^C[26]^C[24]^C[21]^C[17]^C[16]^C[14]^C[13]^C[10]^C[8]^C[2];
newcrc = N;
end
endfunction
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2003-2007 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
reg [7:0] cyc; initial cyc=0;
reg [31:0] in;
wire [31:0] out;
t_extend_class_v sub (.in(in), .out(out));
always @ (posedge clk) begin
cyc <= cyc+8'd1;
if (cyc == 8'd1) begin
in <= 32'h10;
end
if (cyc == 8'd2) begin
if (out != 32'h11) $stop;
end
if (cyc == 8'd9) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
module t_extend_class_v (/*AUTOARG*/
// Outputs
out,
// Inputs
in
);
input [31:0] in;
output [31:0] out;
always @* begin
// When "in" changes, call my method
out = $c("m_myobjp->my_math(",in,")");
end
`systemc_header
#include "t_extend_class_c.h" // Header for contained object
`systemc_interface
t_extend_class_c* m_myobjp; // Pointer to object we are embedding
`systemc_ctor
m_myobjp = new t_extend_class_c(); // Construct contained object
`systemc_dtor
delete m_myobjp; // Destruct contained object
`verilog
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2003-2007 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
reg [7:0] cyc; initial cyc=0;
reg [31:0] in;
wire [31:0] out;
t_extend_class_v sub (.in(in), .out(out));
always @ (posedge clk) begin
cyc <= cyc+8'd1;
if (cyc == 8'd1) begin
in <= 32'h10;
end
if (cyc == 8'd2) begin
if (out != 32'h11) $stop;
end
if (cyc == 8'd9) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
module t_extend_class_v (/*AUTOARG*/
// Outputs
out,
// Inputs
in
);
input [31:0] in;
output [31:0] out;
always @* begin
// When "in" changes, call my method
out = $c("m_myobjp->my_math(",in,")");
end
`systemc_header
#include "t_extend_class_c.h" // Header for contained object
`systemc_interface
t_extend_class_c* m_myobjp; // Pointer to object we are embedding
`systemc_ctor
m_myobjp = new t_extend_class_c(); // Construct contained object
`systemc_dtor
delete m_myobjp; // Destruct contained object
`verilog
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2004 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
reg [255:0] a;
reg [60:0] divisor;
reg [60:0] qq;
reg [60:0] rq;
reg signed [60:0] qqs;
reg signed [60:0] rqs;
always @* begin
qq = a[60:0] / divisor;
rq = a[60:0] % divisor;
qqs = $signed(a[60:0]) / $signed(divisor);
rqs = $signed(a[60:0]) % $signed(divisor);
end
integer cyc; initial cyc=1;
always @ (posedge clk) begin
if (cyc!=0) begin
cyc <= cyc + 1;
//$write("%d: %x %x %x %x\n", cyc, qq, rq, qqs, rqs);
if (cyc==1) begin
a <= 256'hed388e646c843d35de489bab2413d77045e0eb7642b148537491f3da147e7f26;
divisor <= 61'h12371;
a[60] <= 1'b0; divisor[60] <= 1'b0; // Unsigned
end
if (cyc==2) begin
a <= 256'h0e17c88f3d5fe51a982646c8e2bd68c3e236ddfddddbdad20a48e039c9f395b8;
divisor <= 61'h1238123771;
a[60] <= 1'b0; divisor[60] <= 1'b0; // Unsigned
if (qq!==61'h00000403ad81c0da) $stop;
if (rq!==61'h00000000000090ec) $stop;
if (qqs!==61'h00000403ad81c0da) $stop;
if (rqs!==61'h00000000000090ec) $stop;
end
if (cyc==3) begin
a <= 256'h0e17c88f00d5fe51a982646c8002bd68c3e236ddfd00ddbdad20a48e00f395b8;
divisor <= 61'hf1b;
a[60] <= 1'b1; divisor[60] <= 1'b0; // Signed
if (qq!==61'h000000000090832e) $stop;
if (rq!==61'h0000000334becc6a) $stop;
if (qqs!==61'h000000000090832e) $stop;
if (rqs!==61'h0000000334becc6a) $stop;
end
if (cyc==4) begin
a[60] <= 1'b0; divisor[60] <= 1'b1; // Signed
if (qq!==61'h0001eda37cca1be8) $stop;
if (rq!==61'h0000000000000c40) $stop;
if (qqs!==61'h1fffcf5187c76510) $stop;
if (rqs!==61'h1ffffffffffffd08) $stop;
end
if (cyc==5) begin
a[60] <= 1'b1; divisor[60] <= 1'b1; // Signed
if (qq!==61'h0000000000000000) $stop;
if (rq!==61'h0d20a48e00f395b8) $stop;
if (qqs!==61'h0000000000000000) $stop;
if (rqs!==61'h0d20a48e00f395b8) $stop;
end
if (cyc==6) begin
if (qq!==61'h0000000000000001) $stop;
if (rq!==61'h0d20a48e00f3869d) $stop;
if (qqs!==61'h0000000000000000) $stop;
if (rqs!==61'h1d20a48e00f395b8) $stop;
end
// Div by zero
if (cyc==9) begin
divisor <= 61'd0;
end
if (cyc==10) begin
`ifdef verilator
if (qq !== {61{1'b0}}) $stop;
if (rq !== {61{1'b0}}) $stop;
`else
if (qq !== {61{1'bx}}) $stop;
if (rq !== {61{1'bx}}) $stop;
`endif
if ({16{1'bx}} !== 16'd1/16'd0) $stop; // No div by zero errors
if ({16{1'bx}} !== 16'd1%16'd0) $stop; // No div by zero errors
end
if (cyc==19) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2007 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc=0;
reg [63:0] crc;
reg [63:0] sum;
wire [3:0] Value = crc[3:0];
wire [3:0] Result;
wire [3:0] Result2;
Testit testit (/*AUTOINST*/
// Outputs
.Result (Result[3:0]),
.Result2 (Result2[3:0]),
// Inputs
.clk (clk),
.Value (Value[3:0]));
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d crc=%x %x %x %x\n",$time, cyc, crc, Result, Result2);
`endif
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
sum <= {56'h0, Result, Result2}
^ {sum[62:0],sum[63]^sum[2]^sum[0]};
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
end
else if (cyc<10) begin
sum <= 64'h0;
end
else if (cyc<90) begin
end
else if (cyc==99) begin
$write("*-* All Finished *-*\n");
$write("[%0t] cyc==%0d crc=%x %x\n",$time, cyc, crc, sum);
if (crc !== 64'hc77bb9b3784ea091) $stop;
if (sum !== 64'h4af37965592f64f9) $stop;
$finish;
end
end
endmodule
module Test (clk, Value, Result);
input clk;
input Value;
output Result;
reg Internal;
assign Result = Internal ^ clk;
always @(posedge clk)
Internal <= #1 Value;
endmodule
module Test_wrap1 (clk, Value, Result);
input clk;
input Value;
output Result;
Test t (clk, Value, Result);
endmodule
module Test_wrap2 (clk, Value, Result);
input clk;
input Value;
output Result;
Test t (clk, Value, Result);
endmodule
module Testit (clk, Value, Result, Result2);
input clk;
input [3:0] Value;
output [3:0] Result;
output [3:0] Result2;
genvar i;
generate
for (i = 0; i < 4; i = i + 1)
begin : a
if ((i == 0) || (i == 2)) begin : gblk
Test_wrap1 test (clk, Value[i] , Result[i]);
end
else begin : gblk
Test_wrap2 test (clk, Value[i], Result[i]);
end
end
endgenerate
assign Result2[0] = a[0].gblk.test.t.Internal;
assign Result2[1] = a[1].gblk.test.t.Internal;
assign Result2[2] = a[2].gblk.test.t.Internal;
assign Result2[3] = a[3].gblk.test.t.Internal;
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2007 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc=0;
reg [63:0] crc;
reg [63:0] sum;
wire [3:0] Value = crc[3:0];
wire [3:0] Result;
wire [3:0] Result2;
Testit testit (/*AUTOINST*/
// Outputs
.Result (Result[3:0]),
.Result2 (Result2[3:0]),
// Inputs
.clk (clk),
.Value (Value[3:0]));
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d crc=%x %x %x %x\n",$time, cyc, crc, Result, Result2);
`endif
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
sum <= {56'h0, Result, Result2}
^ {sum[62:0],sum[63]^sum[2]^sum[0]};
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
end
else if (cyc<10) begin
sum <= 64'h0;
end
else if (cyc<90) begin
end
else if (cyc==99) begin
$write("*-* All Finished *-*\n");
$write("[%0t] cyc==%0d crc=%x %x\n",$time, cyc, crc, sum);
if (crc !== 64'hc77bb9b3784ea091) $stop;
if (sum !== 64'h4af37965592f64f9) $stop;
$finish;
end
end
endmodule
module Test (clk, Value, Result);
input clk;
input Value;
output Result;
reg Internal;
assign Result = Internal ^ clk;
always @(posedge clk)
Internal <= #1 Value;
endmodule
module Test_wrap1 (clk, Value, Result);
input clk;
input Value;
output Result;
Test t (clk, Value, Result);
endmodule
module Test_wrap2 (clk, Value, Result);
input clk;
input Value;
output Result;
Test t (clk, Value, Result);
endmodule
module Testit (clk, Value, Result, Result2);
input clk;
input [3:0] Value;
output [3:0] Result;
output [3:0] Result2;
genvar i;
generate
for (i = 0; i < 4; i = i + 1)
begin : a
if ((i == 0) || (i == 2)) begin : gblk
Test_wrap1 test (clk, Value[i] , Result[i]);
end
else begin : gblk
Test_wrap2 test (clk, Value[i], Result[i]);
end
end
endgenerate
assign Result2[0] = a[0].gblk.test.t.Internal;
assign Result2[1] = a[1].gblk.test.t.Internal;
assign Result2[2] = a[2].gblk.test.t.Internal;
assign Result2[3] = a[3].gblk.test.t.Internal;
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2004 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
reg [2:0] index_a;
reg [2:0] index_b;
prover #(4) p4 (/*AUTOINST*/
// Inputs
.clk (clk),
.index_a (index_a),
.index_b (index_b));
prover #(32) p32 (/*AUTOINST*/
// Inputs
.clk (clk),
.index_a (index_a),
.index_b (index_b));
prover #(63) p63 (/*AUTOINST*/
// Inputs
.clk (clk),
.index_a (index_a),
.index_b (index_b));
prover #(64) p64 (/*AUTOINST*/
// Inputs
.clk (clk),
.index_a (index_a),
.index_b (index_b));
prover #(72) p72 (/*AUTOINST*/
// Inputs
.clk (clk),
.index_a (index_a),
.index_b (index_b));
prover #(126) p126 (/*AUTOINST*/
// Inputs
.clk (clk),
.index_a (index_a),
.index_b (index_b));
prover #(128) p128 (/*AUTOINST*/
// Inputs
.clk (clk),
.index_a (index_a),
.index_b (index_b));
integer cyc; initial cyc=0;
initial index_a = 3'b0;
initial index_b = 3'b0;
always @* begin
index_a = cyc[2:0]; if (index_a>3'd4) index_a=3'd4;
index_b = cyc[5:3]; if (index_b>3'd4) index_b=3'd4;
end
always @ (posedge clk) begin
cyc <= cyc + 1;
if (cyc==99) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
module prover (
input clk,
input [2:0] index_a,
input [2:0] index_b
);
parameter WIDTH = 4;
reg signed [WIDTH-1:0] as;
reg signed [WIDTH-1:0] bs;
wire [WIDTH-1:0] b = bs;
always @* begin
casez (index_a)
3'd0: as = {(WIDTH){1'd0}}; // 0
3'd1: as = {{(WIDTH-1){1'd0}}, 1'b1}; // 1
3'd2: as = {1'b0, {(WIDTH-1){1'd0}}}; // 127 or equiv
3'd3: as = {(WIDTH){1'd1}}; // -1
3'd4: as = {1'b1, {(WIDTH-1){1'd0}}}; // -128 or equiv
default: $stop;
endcase
casez (index_b)
3'd0: bs = {(WIDTH){1'd0}}; // 0
3'd1: bs = {{(WIDTH-1){1'd0}}, 1'b1}; // 1
3'd2: bs = {1'b0, {(WIDTH-1){1'd0}}}; // 127 or equiv
3'd3: bs = {(WIDTH){1'd1}}; // -1
3'd4: bs = {1'b1, {(WIDTH-1){1'd0}}}; // -128 or equiv
default: $stop;
endcase
end
reg [7:0] results[4:0][4:0];
wire gt = as>b;
wire gts = as>bs;
wire gte = as>=b;
wire gtes = as>=bs;
wire lt = as<b;
wire lts = as<bs;
wire lte = as<=b;
wire ltes = as<=bs;
reg [7:0] exp;
reg [7:0] got;
integer cyc=0;
always @ (posedge clk) begin
cyc <= cyc + 1;
if (cyc>2) begin
`ifdef TEST_VERBOSE
$write("results[%d][%d] = 8'b%b_%b_%b_%b_%b_%b_%b_%b;\n",
index_a, index_b,
gt, gts, gte, gtes, lt, lts, lte, ltes);
`endif
exp = results[index_a][index_b];
got = {gt, gts, gte, gtes, lt, lts, lte, ltes};
if (exp !== got) begin
$display("%%Error: bad comparison width=%0d: %d/%d got=%b exp=%b", WIDTH, index_a,index_b,got, exp);
$stop;
end
end
end
// Result table
initial begin
// Indexes: 0, 1, -1, 127, -128
// Gt Gts Gte Gtes Lt Lts Lte Ltes
results[0][0] = 8'b0_0_1_1_0_0_1_1;
results[0][1] = 8'b0_0_0_0_1_1_1_1;
results[0][2] = 8'b0_0_1_1_0_0_1_1;
results[0][3] = 8'b0_1_0_1_1_0_1_0;
results[0][4] = 8'b0_1_0_1_1_0_1_0;
results[1][0] = 8'b1_1_1_1_0_0_0_0;
results[1][1] = 8'b0_0_1_1_0_0_1_1;
results[1][2] = 8'b1_1_1_1_0_0_0_0;
results[1][3] = 8'b0_1_0_1_1_0_1_0;
results[1][4] = 8'b0_1_0_1_1_0_1_0;
results[2][0] = 8'b0_0_1_1_0_0_1_1;
results[2][1] = 8'b0_0_0_0_1_1_1_1;
results[2][2] = 8'b0_0_1_1_0_0_1_1;
results[2][3] = 8'b0_1_0_1_1_0_1_0;
results[2][4] = 8'b0_1_0_1_1_0_1_0;
results[3][0] = 8'b1_0_1_0_0_1_0_1;
results[3][1] = 8'b1_0_1_0_0_1_0_1;
results[3][2] = 8'b1_0_1_0_0_1_0_1;
results[3][3] = 8'b0_0_1_1_0_0_1_1;
results[3][4] = 8'b1_1_1_1_0_0_0_0;
results[4][0] = 8'b1_0_1_0_0_1_0_1;
results[4][1] = 8'b1_0_1_0_0_1_0_1;
results[4][2] = 8'b1_0_1_0_0_1_0_1;
results[4][3] = 8'b0_0_0_0_1_1_1_1;
results[4][4] = 8'b0_0_1_1_0_0_1_1;
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2004 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
reg [2:0] index_a;
reg [2:0] index_b;
prover #(4) p4 (/*AUTOINST*/
// Inputs
.clk (clk),
.index_a (index_a),
.index_b (index_b));
prover #(32) p32 (/*AUTOINST*/
// Inputs
.clk (clk),
.index_a (index_a),
.index_b (index_b));
prover #(63) p63 (/*AUTOINST*/
// Inputs
.clk (clk),
.index_a (index_a),
.index_b (index_b));
prover #(64) p64 (/*AUTOINST*/
// Inputs
.clk (clk),
.index_a (index_a),
.index_b (index_b));
prover #(72) p72 (/*AUTOINST*/
// Inputs
.clk (clk),
.index_a (index_a),
.index_b (index_b));
prover #(126) p126 (/*AUTOINST*/
// Inputs
.clk (clk),
.index_a (index_a),
.index_b (index_b));
prover #(128) p128 (/*AUTOINST*/
// Inputs
.clk (clk),
.index_a (index_a),
.index_b (index_b));
integer cyc; initial cyc=0;
initial index_a = 3'b0;
initial index_b = 3'b0;
always @* begin
index_a = cyc[2:0]; if (index_a>3'd4) index_a=3'd4;
index_b = cyc[5:3]; if (index_b>3'd4) index_b=3'd4;
end
always @ (posedge clk) begin
cyc <= cyc + 1;
if (cyc==99) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
module prover (
input clk,
input [2:0] index_a,
input [2:0] index_b
);
parameter WIDTH = 4;
reg signed [WIDTH-1:0] as;
reg signed [WIDTH-1:0] bs;
wire [WIDTH-1:0] b = bs;
always @* begin
casez (index_a)
3'd0: as = {(WIDTH){1'd0}}; // 0
3'd1: as = {{(WIDTH-1){1'd0}}, 1'b1}; // 1
3'd2: as = {1'b0, {(WIDTH-1){1'd0}}}; // 127 or equiv
3'd3: as = {(WIDTH){1'd1}}; // -1
3'd4: as = {1'b1, {(WIDTH-1){1'd0}}}; // -128 or equiv
default: $stop;
endcase
casez (index_b)
3'd0: bs = {(WIDTH){1'd0}}; // 0
3'd1: bs = {{(WIDTH-1){1'd0}}, 1'b1}; // 1
3'd2: bs = {1'b0, {(WIDTH-1){1'd0}}}; // 127 or equiv
3'd3: bs = {(WIDTH){1'd1}}; // -1
3'd4: bs = {1'b1, {(WIDTH-1){1'd0}}}; // -128 or equiv
default: $stop;
endcase
end
reg [7:0] results[4:0][4:0];
wire gt = as>b;
wire gts = as>bs;
wire gte = as>=b;
wire gtes = as>=bs;
wire lt = as<b;
wire lts = as<bs;
wire lte = as<=b;
wire ltes = as<=bs;
reg [7:0] exp;
reg [7:0] got;
integer cyc=0;
always @ (posedge clk) begin
cyc <= cyc + 1;
if (cyc>2) begin
`ifdef TEST_VERBOSE
$write("results[%d][%d] = 8'b%b_%b_%b_%b_%b_%b_%b_%b;\n",
index_a, index_b,
gt, gts, gte, gtes, lt, lts, lte, ltes);
`endif
exp = results[index_a][index_b];
got = {gt, gts, gte, gtes, lt, lts, lte, ltes};
if (exp !== got) begin
$display("%%Error: bad comparison width=%0d: %d/%d got=%b exp=%b", WIDTH, index_a,index_b,got, exp);
$stop;
end
end
end
// Result table
initial begin
// Indexes: 0, 1, -1, 127, -128
// Gt Gts Gte Gtes Lt Lts Lte Ltes
results[0][0] = 8'b0_0_1_1_0_0_1_1;
results[0][1] = 8'b0_0_0_0_1_1_1_1;
results[0][2] = 8'b0_0_1_1_0_0_1_1;
results[0][3] = 8'b0_1_0_1_1_0_1_0;
results[0][4] = 8'b0_1_0_1_1_0_1_0;
results[1][0] = 8'b1_1_1_1_0_0_0_0;
results[1][1] = 8'b0_0_1_1_0_0_1_1;
results[1][2] = 8'b1_1_1_1_0_0_0_0;
results[1][3] = 8'b0_1_0_1_1_0_1_0;
results[1][4] = 8'b0_1_0_1_1_0_1_0;
results[2][0] = 8'b0_0_1_1_0_0_1_1;
results[2][1] = 8'b0_0_0_0_1_1_1_1;
results[2][2] = 8'b0_0_1_1_0_0_1_1;
results[2][3] = 8'b0_1_0_1_1_0_1_0;
results[2][4] = 8'b0_1_0_1_1_0_1_0;
results[3][0] = 8'b1_0_1_0_0_1_0_1;
results[3][1] = 8'b1_0_1_0_0_1_0_1;
results[3][2] = 8'b1_0_1_0_0_1_0_1;
results[3][3] = 8'b0_0_1_1_0_0_1_1;
results[3][4] = 8'b1_1_1_1_0_0_0_0;
results[4][0] = 8'b1_0_1_0_0_1_0_1;
results[4][1] = 8'b1_0_1_0_0_1_0_1;
results[4][2] = 8'b1_0_1_0_0_1_0_1;
results[4][3] = 8'b0_0_0_0_1_1_1_1;
results[4][4] = 8'b0_0_1_1_0_0_1_1;
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2004 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
reg [2:0] index_a;
reg [2:0] index_b;
prover #(4) p4 (/*AUTOINST*/
// Inputs
.clk (clk),
.index_a (index_a),
.index_b (index_b));
prover #(32) p32 (/*AUTOINST*/
// Inputs
.clk (clk),
.index_a (index_a),
.index_b (index_b));
prover #(63) p63 (/*AUTOINST*/
// Inputs
.clk (clk),
.index_a (index_a),
.index_b (index_b));
prover #(64) p64 (/*AUTOINST*/
// Inputs
.clk (clk),
.index_a (index_a),
.index_b (index_b));
prover #(72) p72 (/*AUTOINST*/
// Inputs
.clk (clk),
.index_a (index_a),
.index_b (index_b));
prover #(126) p126 (/*AUTOINST*/
// Inputs
.clk (clk),
.index_a (index_a),
.index_b (index_b));
prover #(128) p128 (/*AUTOINST*/
// Inputs
.clk (clk),
.index_a (index_a),
.index_b (index_b));
integer cyc; initial cyc=0;
initial index_a = 3'b0;
initial index_b = 3'b0;
always @* begin
index_a = cyc[2:0]; if (index_a>3'd4) index_a=3'd4;
index_b = cyc[5:3]; if (index_b>3'd4) index_b=3'd4;
end
always @ (posedge clk) begin
cyc <= cyc + 1;
if (cyc==99) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
module prover (
input clk,
input [2:0] index_a,
input [2:0] index_b
);
parameter WIDTH = 4;
reg signed [WIDTH-1:0] as;
reg signed [WIDTH-1:0] bs;
wire [WIDTH-1:0] b = bs;
always @* begin
casez (index_a)
3'd0: as = {(WIDTH){1'd0}}; // 0
3'd1: as = {{(WIDTH-1){1'd0}}, 1'b1}; // 1
3'd2: as = {1'b0, {(WIDTH-1){1'd0}}}; // 127 or equiv
3'd3: as = {(WIDTH){1'd1}}; // -1
3'd4: as = {1'b1, {(WIDTH-1){1'd0}}}; // -128 or equiv
default: $stop;
endcase
casez (index_b)
3'd0: bs = {(WIDTH){1'd0}}; // 0
3'd1: bs = {{(WIDTH-1){1'd0}}, 1'b1}; // 1
3'd2: bs = {1'b0, {(WIDTH-1){1'd0}}}; // 127 or equiv
3'd3: bs = {(WIDTH){1'd1}}; // -1
3'd4: bs = {1'b1, {(WIDTH-1){1'd0}}}; // -128 or equiv
default: $stop;
endcase
end
reg [7:0] results[4:0][4:0];
wire gt = as>b;
wire gts = as>bs;
wire gte = as>=b;
wire gtes = as>=bs;
wire lt = as<b;
wire lts = as<bs;
wire lte = as<=b;
wire ltes = as<=bs;
reg [7:0] exp;
reg [7:0] got;
integer cyc=0;
always @ (posedge clk) begin
cyc <= cyc + 1;
if (cyc>2) begin
`ifdef TEST_VERBOSE
$write("results[%d][%d] = 8'b%b_%b_%b_%b_%b_%b_%b_%b;\n",
index_a, index_b,
gt, gts, gte, gtes, lt, lts, lte, ltes);
`endif
exp = results[index_a][index_b];
got = {gt, gts, gte, gtes, lt, lts, lte, ltes};
if (exp !== got) begin
$display("%%Error: bad comparison width=%0d: %d/%d got=%b exp=%b", WIDTH, index_a,index_b,got, exp);
$stop;
end
end
end
// Result table
initial begin
// Indexes: 0, 1, -1, 127, -128
// Gt Gts Gte Gtes Lt Lts Lte Ltes
results[0][0] = 8'b0_0_1_1_0_0_1_1;
results[0][1] = 8'b0_0_0_0_1_1_1_1;
results[0][2] = 8'b0_0_1_1_0_0_1_1;
results[0][3] = 8'b0_1_0_1_1_0_1_0;
results[0][4] = 8'b0_1_0_1_1_0_1_0;
results[1][0] = 8'b1_1_1_1_0_0_0_0;
results[1][1] = 8'b0_0_1_1_0_0_1_1;
results[1][2] = 8'b1_1_1_1_0_0_0_0;
results[1][3] = 8'b0_1_0_1_1_0_1_0;
results[1][4] = 8'b0_1_0_1_1_0_1_0;
results[2][0] = 8'b0_0_1_1_0_0_1_1;
results[2][1] = 8'b0_0_0_0_1_1_1_1;
results[2][2] = 8'b0_0_1_1_0_0_1_1;
results[2][3] = 8'b0_1_0_1_1_0_1_0;
results[2][4] = 8'b0_1_0_1_1_0_1_0;
results[3][0] = 8'b1_0_1_0_0_1_0_1;
results[3][1] = 8'b1_0_1_0_0_1_0_1;
results[3][2] = 8'b1_0_1_0_0_1_0_1;
results[3][3] = 8'b0_0_1_1_0_0_1_1;
results[3][4] = 8'b1_1_1_1_0_0_0_0;
results[4][0] = 8'b1_0_1_0_0_1_0_1;
results[4][1] = 8'b1_0_1_0_0_1_0_1;
results[4][2] = 8'b1_0_1_0_0_1_0_1;
results[4][3] = 8'b0_0_0_0_1_1_1_1;
results[4][4] = 8'b0_0_1_1_0_0_1_1;
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2004 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
reg [2:0] index_a;
reg [2:0] index_b;
prover #(4) p4 (/*AUTOINST*/
// Inputs
.clk (clk),
.index_a (index_a),
.index_b (index_b));
prover #(32) p32 (/*AUTOINST*/
// Inputs
.clk (clk),
.index_a (index_a),
.index_b (index_b));
prover #(63) p63 (/*AUTOINST*/
// Inputs
.clk (clk),
.index_a (index_a),
.index_b (index_b));
prover #(64) p64 (/*AUTOINST*/
// Inputs
.clk (clk),
.index_a (index_a),
.index_b (index_b));
prover #(72) p72 (/*AUTOINST*/
// Inputs
.clk (clk),
.index_a (index_a),
.index_b (index_b));
prover #(126) p126 (/*AUTOINST*/
// Inputs
.clk (clk),
.index_a (index_a),
.index_b (index_b));
prover #(128) p128 (/*AUTOINST*/
// Inputs
.clk (clk),
.index_a (index_a),
.index_b (index_b));
integer cyc; initial cyc=0;
initial index_a = 3'b0;
initial index_b = 3'b0;
always @* begin
index_a = cyc[2:0]; if (index_a>3'd4) index_a=3'd4;
index_b = cyc[5:3]; if (index_b>3'd4) index_b=3'd4;
end
always @ (posedge clk) begin
cyc <= cyc + 1;
if (cyc==99) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
module prover (
input clk,
input [2:0] index_a,
input [2:0] index_b
);
parameter WIDTH = 4;
reg signed [WIDTH-1:0] as;
reg signed [WIDTH-1:0] bs;
wire [WIDTH-1:0] b = bs;
always @* begin
casez (index_a)
3'd0: as = {(WIDTH){1'd0}}; // 0
3'd1: as = {{(WIDTH-1){1'd0}}, 1'b1}; // 1
3'd2: as = {1'b0, {(WIDTH-1){1'd0}}}; // 127 or equiv
3'd3: as = {(WIDTH){1'd1}}; // -1
3'd4: as = {1'b1, {(WIDTH-1){1'd0}}}; // -128 or equiv
default: $stop;
endcase
casez (index_b)
3'd0: bs = {(WIDTH){1'd0}}; // 0
3'd1: bs = {{(WIDTH-1){1'd0}}, 1'b1}; // 1
3'd2: bs = {1'b0, {(WIDTH-1){1'd0}}}; // 127 or equiv
3'd3: bs = {(WIDTH){1'd1}}; // -1
3'd4: bs = {1'b1, {(WIDTH-1){1'd0}}}; // -128 or equiv
default: $stop;
endcase
end
reg [7:0] results[4:0][4:0];
wire gt = as>b;
wire gts = as>bs;
wire gte = as>=b;
wire gtes = as>=bs;
wire lt = as<b;
wire lts = as<bs;
wire lte = as<=b;
wire ltes = as<=bs;
reg [7:0] exp;
reg [7:0] got;
integer cyc=0;
always @ (posedge clk) begin
cyc <= cyc + 1;
if (cyc>2) begin
`ifdef TEST_VERBOSE
$write("results[%d][%d] = 8'b%b_%b_%b_%b_%b_%b_%b_%b;\n",
index_a, index_b,
gt, gts, gte, gtes, lt, lts, lte, ltes);
`endif
exp = results[index_a][index_b];
got = {gt, gts, gte, gtes, lt, lts, lte, ltes};
if (exp !== got) begin
$display("%%Error: bad comparison width=%0d: %d/%d got=%b exp=%b", WIDTH, index_a,index_b,got, exp);
$stop;
end
end
end
// Result table
initial begin
// Indexes: 0, 1, -1, 127, -128
// Gt Gts Gte Gtes Lt Lts Lte Ltes
results[0][0] = 8'b0_0_1_1_0_0_1_1;
results[0][1] = 8'b0_0_0_0_1_1_1_1;
results[0][2] = 8'b0_0_1_1_0_0_1_1;
results[0][3] = 8'b0_1_0_1_1_0_1_0;
results[0][4] = 8'b0_1_0_1_1_0_1_0;
results[1][0] = 8'b1_1_1_1_0_0_0_0;
results[1][1] = 8'b0_0_1_1_0_0_1_1;
results[1][2] = 8'b1_1_1_1_0_0_0_0;
results[1][3] = 8'b0_1_0_1_1_0_1_0;
results[1][4] = 8'b0_1_0_1_1_0_1_0;
results[2][0] = 8'b0_0_1_1_0_0_1_1;
results[2][1] = 8'b0_0_0_0_1_1_1_1;
results[2][2] = 8'b0_0_1_1_0_0_1_1;
results[2][3] = 8'b0_1_0_1_1_0_1_0;
results[2][4] = 8'b0_1_0_1_1_0_1_0;
results[3][0] = 8'b1_0_1_0_0_1_0_1;
results[3][1] = 8'b1_0_1_0_0_1_0_1;
results[3][2] = 8'b1_0_1_0_0_1_0_1;
results[3][3] = 8'b0_0_1_1_0_0_1_1;
results[3][4] = 8'b1_1_1_1_0_0_0_0;
results[4][0] = 8'b1_0_1_0_0_1_0_1;
results[4][1] = 8'b1_0_1_0_0_1_0_1;
results[4][2] = 8'b1_0_1_0_0_1_0_1;
results[4][3] = 8'b0_0_0_0_1_1_1_1;
results[4][4] = 8'b0_0_1_1_0_0_1_1;
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2005 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
reg [31:0] in_a;
reg [31:0] in_b;
reg [31:0] e,f,g,h;
always @ (/*AS*/in_a) begin
e = in_a;
f = {e[15:0], e[31:16]};
g = {f[15:0], f[31:16]};
h = {g[15:0], g[31:16]};
end
// verilator lint_off UNOPTFLAT
reg [31:0] e2,f2,g2,h2;
always @ (/*AS*/f2) begin
h2 = {g2[15:0], g2[31:16]};
g2 = {f2[15:0], f2[31:16]};
end
always @ (/*AS*/in_a) begin
f2 = {e2[15:0], e2[31:16]};
e2 = in_a;
end
// verilator lint_on UNOPTFLAT
integer cyc; initial cyc=1;
always @ (posedge clk) begin
if (cyc!=0) begin
cyc <= cyc + 1;
//$write("%d %x %x\n", cyc, h, h2);
if (h != h2) $stop;
if (cyc==1) begin
in_a <= 32'h89a14fab;
in_b <= 32'h7ab512fa;
end
if (cyc==2) begin
in_a <= 32'hf4c11a42;
in_b <= 32'h359967c6;
if (h != 32'h4fab89a1) $stop;
end
if (cyc==3) begin
if (h != 32'h1a42f4c1) $stop;
end
if (cyc==9) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2005 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
reg [31:0] in_a;
reg [31:0] in_b;
reg [31:0] e,f,g,h;
always @ (/*AS*/in_a) begin
e = in_a;
f = {e[15:0], e[31:16]};
g = {f[15:0], f[31:16]};
h = {g[15:0], g[31:16]};
end
// verilator lint_off UNOPTFLAT
reg [31:0] e2,f2,g2,h2;
always @ (/*AS*/f2) begin
h2 = {g2[15:0], g2[31:16]};
g2 = {f2[15:0], f2[31:16]};
end
always @ (/*AS*/in_a) begin
f2 = {e2[15:0], e2[31:16]};
e2 = in_a;
end
// verilator lint_on UNOPTFLAT
integer cyc; initial cyc=1;
always @ (posedge clk) begin
if (cyc!=0) begin
cyc <= cyc + 1;
//$write("%d %x %x\n", cyc, h, h2);
if (h != h2) $stop;
if (cyc==1) begin
in_a <= 32'h89a14fab;
in_b <= 32'h7ab512fa;
end
if (cyc==2) begin
in_a <= 32'hf4c11a42;
in_b <= 32'h359967c6;
if (h != 32'h4fab89a1) $stop;
end
if (cyc==3) begin
if (h != 32'h1a42f4c1) $stop;
end
if (cyc==9) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2005 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
reg [31:0] in_a;
reg [31:0] in_b;
reg [31:0] e,f,g,h;
always @ (/*AS*/in_a) begin
e = in_a;
f = {e[15:0], e[31:16]};
g = {f[15:0], f[31:16]};
h = {g[15:0], g[31:16]};
end
// verilator lint_off UNOPTFLAT
reg [31:0] e2,f2,g2,h2;
always @ (/*AS*/f2) begin
h2 = {g2[15:0], g2[31:16]};
g2 = {f2[15:0], f2[31:16]};
end
always @ (/*AS*/in_a) begin
f2 = {e2[15:0], e2[31:16]};
e2 = in_a;
end
// verilator lint_on UNOPTFLAT
integer cyc; initial cyc=1;
always @ (posedge clk) begin
if (cyc!=0) begin
cyc <= cyc + 1;
//$write("%d %x %x\n", cyc, h, h2);
if (h != h2) $stop;
if (cyc==1) begin
in_a <= 32'h89a14fab;
in_b <= 32'h7ab512fa;
end
if (cyc==2) begin
in_a <= 32'hf4c11a42;
in_b <= 32'h359967c6;
if (h != 32'h4fab89a1) $stop;
end
if (cyc==3) begin
if (h != 32'h1a42f4c1) $stop;
end
if (cyc==9) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
end
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2009 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
logic [7:0] arr [7:0];
logic [7:0] arri [7:0];
has_array am1 (.clk(clk), .arri(arr), .arro(arri));
integer cyc; initial cyc = 0;
initial begin
for (int i = 0; i < 8; i++) begin
arr[i] = 0;
end
end
always @(posedge clk) begin
cyc <= cyc + 1;
if (cyc == 5 && arri[1] != 8) begin
$stop;
end
for (int i = 0; i < 7; ++i) begin
arr[i+1] <= arr[i];
end
arr[0] <= arr[0] + 1;
end
endmodule : t
module has_array (
input clk,
input logic [7:0] arri [7:0],
output logic [7:0] arro [7:0]
);
integer cyc; initial cyc = 0;
always @(posedge clk) begin
cyc <= cyc + 1;
if (arri[0] == 10 && cyc == 10) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
always @(posedge clk) begin
for (integer i = 0; i < 7; ++i) begin
arro[i+1] <= arro[i];
end
arro[0] = arro[0] + 2;
end
endmodule : has_array
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2009 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
logic [7:0] arr [7:0];
logic [7:0] arri [7:0];
has_array am1 (.clk(clk), .arri(arr), .arro(arri));
integer cyc; initial cyc = 0;
initial begin
for (int i = 0; i < 8; i++) begin
arr[i] = 0;
end
end
always @(posedge clk) begin
cyc <= cyc + 1;
if (cyc == 5 && arri[1] != 8) begin
$stop;
end
for (int i = 0; i < 7; ++i) begin
arr[i+1] <= arr[i];
end
arr[0] <= arr[0] + 1;
end
endmodule : t
module has_array (
input clk,
input logic [7:0] arri [7:0],
output logic [7:0] arro [7:0]
);
integer cyc; initial cyc = 0;
always @(posedge clk) begin
cyc <= cyc + 1;
if (arri[0] == 10 && cyc == 10) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
always @(posedge clk) begin
for (integer i = 0; i < 7; ++i) begin
arro[i+1] <= arro[i];
end
arro[0] = arro[0] + 2;
end
endmodule : has_array
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2004 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc; initial cyc=1;
reg [31:0] wr_data;
reg wr_en;
wire [31:0] rd_data;
wire [1:0] rd_guards;
wire [1:0] rd_guardsok;
regfile regfile (/*AUTOINST*/
// Outputs
.rd_data (rd_data[31:0]),
.rd_guards (rd_guards[1:0]),
.rd_guardsok (rd_guardsok[1:0]),
// Inputs
.wr_data (wr_data[31:0]),
.wr_en (wr_en),
.clk (clk));
initial wr_en = 0;
always @ (posedge clk) begin
if (cyc!=0) begin
cyc <= cyc + 1;
if (cyc==1) begin
if (!rd_guards[0]) $stop;
if (!rd_guardsok[0]) $stop;
wr_en <= 1'b1;
wr_data <= 32'hfeedf;
end
if (cyc==2) begin
wr_en <= 0;
end
if (cyc==3) begin
wr_en <= 0;
if (rd_data != 32'hfeedf) $stop;
if (rd_guards != 2'b11) $stop;
if (rd_guardsok != 2'b11) $stop;
end
if (cyc==4) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
end
endmodule
module regfile (
input [31:0] wr_data,
input wr_en,
output reg [31:0] rd_data,
output [1:0] rd_guards /*verilator public*/,
output [1:0] rd_guardsok /*verilator public*/,
input clk
);
always @(posedge clk) begin
if (wr_en)
begin
rd_data <= wr_data;
end
end
// this initial statement will induce correct initialize behavior
// initial rd_guards= { 2'b11 };
assign rd_guards= {
rd_data[0],
1'b1
};
assign rd_guardsok[0] = 1'b1;
assign rd_guardsok[1] = rd_data[0];
endmodule // regfile
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2004 by Wilson Snyder.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc; initial cyc=1;
reg [31:0] wr_data;
reg wr_en;
wire [31:0] rd_data;
wire [1:0] rd_guards;
wire [1:0] rd_guardsok;
regfile regfile (/*AUTOINST*/
// Outputs
.rd_data (rd_data[31:0]),
.rd_guards (rd_guards[1:0]),
.rd_guardsok (rd_guardsok[1:0]),
// Inputs
.wr_data (wr_data[31:0]),
.wr_en (wr_en),
.clk (clk));
initial wr_en = 0;
always @ (posedge clk) begin
if (cyc!=0) begin
cyc <= cyc + 1;
if (cyc==1) begin
if (!rd_guards[0]) $stop;
if (!rd_guardsok[0]) $stop;
wr_en <= 1'b1;
wr_data <= 32'hfeedf;
end
if (cyc==2) begin
wr_en <= 0;
end
if (cyc==3) begin
wr_en <= 0;
if (rd_data != 32'hfeedf) $stop;
if (rd_guards != 2'b11) $stop;
if (rd_guardsok != 2'b11) $stop;
end
if (cyc==4) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
end
endmodule
module regfile (
input [31:0] wr_data,
input wr_en,
output reg [31:0] rd_data,
output [1:0] rd_guards /*verilator public*/,
output [1:0] rd_guardsok /*verilator public*/,
input clk
);
always @(posedge clk) begin
if (wr_en)
begin
rd_data <= wr_data;
end
end
// this initial statement will induce correct initialize behavior
// initial rd_guards= { 2'b11 };
assign rd_guards= {
rd_data[0],
1'b1
};
assign rd_guardsok[0] = 1'b1;
assign rd_guardsok[1] = rd_data[0];
endmodule // regfile
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2006 by Wilson Snyder.
`include "verilated.v"
module t_case_write1_tasks ();
// verilator lint_off WIDTH
// verilator lint_off CASEINCOMPLETE
parameter STRLEN = 78;
task ozonerab;
input [6:0] rab;
inout [STRLEN*8:1] foobar;
// verilator no_inline_task
begin
case (rab[6:0])
7'h00 : foobar = {foobar, " 0"};
7'h01 : foobar = {foobar, " 1"};
7'h02 : foobar = {foobar, " 2"};
7'h03 : foobar = {foobar, " 3"};
7'h04 : foobar = {foobar, " 4"};
7'h05 : foobar = {foobar, " 5"};
7'h06 : foobar = {foobar, " 6"};
7'h07 : foobar = {foobar, " 7"};
7'h08 : foobar = {foobar, " 8"};
7'h09 : foobar = {foobar, " 9"};
7'h0a : foobar = {foobar, " 10"};
7'h0b : foobar = {foobar, " 11"};
7'h0c : foobar = {foobar, " 12"};
7'h0d : foobar = {foobar, " 13"};
7'h0e : foobar = {foobar, " 14"};
7'h0f : foobar = {foobar, " 15"};
7'h10 : foobar = {foobar, " 16"};
7'h11 : foobar = {foobar, " 17"};
7'h12 : foobar = {foobar, " 18"};
7'h13 : foobar = {foobar, " 19"};
7'h14 : foobar = {foobar, " 20"};
7'h15 : foobar = {foobar, " 21"};
7'h16 : foobar = {foobar, " 22"};
7'h17 : foobar = {foobar, " 23"};
7'h18 : foobar = {foobar, " 24"};
7'h19 : foobar = {foobar, " 25"};
7'h1a : foobar = {foobar, " 26"};
7'h1b : foobar = {foobar, " 27"};
7'h1c : foobar = {foobar, " 28"};
7'h1d : foobar = {foobar, " 29"};
7'h1e : foobar = {foobar, " 30"};
7'h1f : foobar = {foobar, " 31"};
7'h20 : foobar = {foobar, " 32"};
7'h21 : foobar = {foobar, " 33"};
7'h22 : foobar = {foobar, " 34"};
7'h23 : foobar = {foobar, " 35"};
7'h24 : foobar = {foobar, " 36"};
7'h25 : foobar = {foobar, " 37"};
7'h26 : foobar = {foobar, " 38"};
7'h27 : foobar = {foobar, " 39"};
7'h28 : foobar = {foobar, " 40"};
7'h29 : foobar = {foobar, " 41"};
7'h2a : foobar = {foobar, " 42"};
7'h2b : foobar = {foobar, " 43"};
7'h2c : foobar = {foobar, " 44"};
7'h2d : foobar = {foobar, " 45"};
7'h2e : foobar = {foobar, " 46"};
7'h2f : foobar = {foobar, " 47"};
7'h30 : foobar = {foobar, " 48"};
7'h31 : foobar = {foobar, " 49"};
7'h32 : foobar = {foobar, " 50"};
7'h33 : foobar = {foobar, " 51"};
7'h34 : foobar = {foobar, " 52"};
7'h35 : foobar = {foobar, " 53"};
7'h36 : foobar = {foobar, " 54"};
7'h37 : foobar = {foobar, " 55"};
7'h38 : foobar = {foobar, " 56"};
7'h39 : foobar = {foobar, " 57"};
7'h3a : foobar = {foobar, " 58"};
7'h3b : foobar = {foobar, " 59"};
7'h3c : foobar = {foobar, " 60"};
7'h3d : foobar = {foobar, " 61"};
7'h3e : foobar = {foobar, " 62"};
7'h3f : foobar = {foobar, " 63"};
7'h40 : foobar = {foobar, " 64"};
7'h41 : foobar = {foobar, " 65"};
7'h42 : foobar = {foobar, " 66"};
7'h43 : foobar = {foobar, " 67"};
7'h44 : foobar = {foobar, " 68"};
7'h45 : foobar = {foobar, " 69"};
7'h46 : foobar = {foobar, " 70"};
7'h47 : foobar = {foobar, " 71"};
7'h48 : foobar = {foobar, " 72"};
7'h49 : foobar = {foobar, " 73"};
7'h4a : foobar = {foobar, " 74"};
7'h4b : foobar = {foobar, " 75"};
7'h4c : foobar = {foobar, " 76"};
7'h4d : foobar = {foobar, " 77"};
7'h4e : foobar = {foobar, " 78"};
7'h4f : foobar = {foobar, " 79"};
7'h50 : foobar = {foobar, " 80"};
7'h51 : foobar = {foobar, " 81"};
7'h52 : foobar = {foobar, " 82"};
7'h53 : foobar = {foobar, " 83"};
7'h54 : foobar = {foobar, " 84"};
7'h55 : foobar = {foobar, " 85"};
7'h56 : foobar = {foobar, " 86"};
7'h57 : foobar = {foobar, " 87"};
7'h58 : foobar = {foobar, " 88"};
7'h59 : foobar = {foobar, " 89"};
7'h5a : foobar = {foobar, " 90"};
7'h5b : foobar = {foobar, " 91"};
7'h5c : foobar = {foobar, " 92"};
7'h5d : foobar = {foobar, " 93"};
7'h5e : foobar = {foobar, " 94"};
7'h5f : foobar = {foobar, " 95"};
7'h60 : foobar = {foobar, " 96"};
7'h61 : foobar = {foobar, " 97"};
7'h62 : foobar = {foobar, " 98"};
7'h63 : foobar = {foobar, " 99"};
7'h64 : foobar = {foobar, " 100"};
7'h65 : foobar = {foobar, " 101"};
7'h66 : foobar = {foobar, " 102"};
7'h67 : foobar = {foobar, " 103"};
7'h68 : foobar = {foobar, " 104"};
7'h69 : foobar = {foobar, " 105"};
7'h6a : foobar = {foobar, " 106"};
7'h6b : foobar = {foobar, " 107"};
7'h6c : foobar = {foobar, " 108"};
7'h6d : foobar = {foobar, " 109"};
7'h6e : foobar = {foobar, " 110"};
7'h6f : foobar = {foobar, " 111"};
7'h70 : foobar = {foobar, " 112"};
7'h71 : foobar = {foobar, " 113"};
7'h72 : foobar = {foobar, " 114"};
7'h73 : foobar = {foobar, " 115"};
7'h74 : foobar = {foobar, " 116"};
7'h75 : foobar = {foobar, " 117"};
7'h76 : foobar = {foobar, " 118"};
7'h77 : foobar = {foobar, " 119"};
7'h78 : foobar = {foobar, " 120"};
7'h79 : foobar = {foobar, " 121"};
7'h7a : foobar = {foobar, " 122"};
7'h7b : foobar = {foobar, " 123"};
7'h7c : foobar = {foobar, " 124"};
7'h7d : foobar = {foobar, " 125"};
7'h7e : foobar = {foobar, " 126"};
7'h7f : foobar = {foobar, " 127"};
default:foobar = {foobar, " 128"};
endcase
end
endtask
task ozonerb;
input [5:0] rb;
inout [STRLEN*8: 1] foobar;
// verilator no_inline_task
begin
case (rb[5:0])
6'h10,
6'h17,
6'h1e,
6'h1f: foobar = {foobar, " 129"};
default: ozonerab({1'b1, rb}, foobar);
endcase
end
endtask
task ozonef3f4_iext;
input [1:0] foo;
input [15:0] im16;
inout [STRLEN*8: 1] foobar;
// verilator no_inline_task
begin
case (foo)
2'h0 :
begin
skyway({4{im16[15]}}, foobar);
skyway({4{im16[15]}}, foobar);
skyway(im16[15:12], foobar);
skyway(im16[11: 8], foobar);
skyway(im16[ 7: 4], foobar);
skyway(im16[ 3:0], foobar);
foobar = {foobar, " 130"};
end
2'h1 :
begin
foobar = {foobar, " 131"};
skyway(im16[15:12], foobar);
skyway(im16[11: 8], foobar);
skyway(im16[ 7: 4], foobar);
skyway(im16[ 3:0], foobar);
end
2'h2 :
begin
skyway({4{im16[15]}}, foobar);
skyway({4{im16[15]}}, foobar);
skyway(im16[15:12], foobar);
skyway(im16[11: 8], foobar);
skyway(im16[ 7: 4], foobar);
skyway(im16[ 3:0], foobar);
foobar = {foobar, " 132"};
end
2'h3 :
begin
foobar = {foobar, " 133"};
skyway(im16[15:12], foobar);
skyway(im16[11: 8], foobar);
skyway(im16[ 7: 4], foobar);
skyway(im16[ 3:0], foobar);
end
endcase
end
endtask
task skyway;
input [ 3:0] hex;
inout [STRLEN*8: 1] foobar;
// verilator no_inline_task
begin
case (hex)
4'h0 : foobar = {foobar, " 134"};
4'h1 : foobar = {foobar, " 135"};
4'h2 : foobar = {foobar, " 136"};
4'h3 : foobar = {foobar, " 137"};
4'h4 : foobar = {foobar, " 138"};
4'h5 : foobar = {foobar, " 139"};
4'h6 : foobar = {foobar, " 140"};
4'h7 : foobar = {foobar, " 141"};
4'h8 : foobar = {foobar, " 142"};
4'h9 : foobar = {foobar, " 143"};
4'ha : foobar = {foobar, " 144"};
4'hb : foobar = {foobar, " 145"};
4'hc : foobar = {foobar, " 146"};
4'hd : foobar = {foobar, " 147"};
4'he : foobar = {foobar, " 148"};
4'hf : foobar = {foobar, " 149"};
endcase
end
endtask
task ozonesr;
input [ 15:0] foo;
inout [STRLEN*8: 1] foobar;
// verilator no_inline_task
begin
case (foo[11: 9])
3'h0 : foobar = {foobar, " 158"};
3'h1 : foobar = {foobar, " 159"};
3'h2 : foobar = {foobar, " 160"};
3'h3 : foobar = {foobar, " 161"};
3'h4 : foobar = {foobar, " 162"};
3'h5 : foobar = {foobar, " 163"};
3'h6 : foobar = {foobar, " 164"};
3'h7 : foobar = {foobar, " 165"};
endcase
end
endtask
task ozonejk;
input k;
inout [STRLEN*8: 1] foobar;
// verilator no_inline_task
begin
if (k)
foobar = {foobar, " 166"};
else
foobar = {foobar, " 167"};
end
endtask
task ozoneae;
input [ 2:0] ae;
inout [STRLEN*8: 1] foobar;
// verilator no_inline_task
begin
case (ae)
3'b000 : foobar = {foobar, " 168"};
3'b001 : foobar = {foobar, " 169"};
3'b010 : foobar = {foobar, " 170"};
3'b011 : foobar = {foobar, " 171"};
3'b100 : foobar = {foobar, " 172"};
3'b101 : foobar = {foobar, " 173"};
3'b110 : foobar = {foobar, " 174"};
3'b111 : foobar = {foobar, " 175"};
endcase
end
endtask
task ozoneaee;
input [ 2:0] aee;
inout [STRLEN*8: 1] foobar;
// verilator no_inline_task
begin
case (aee)
3'b001,
3'b011,
3'b101,
3'b111 : foobar = {foobar, " 176"};
3'b000 : foobar = {foobar, " 177"};
3'b010 : foobar = {foobar, " 178"};
3'b100 : foobar = {foobar, " 179"};
3'b110 : foobar = {foobar, " 180"};
endcase
end
endtask
task ozoneape;
input [ 2:0] ape;
inout [STRLEN*8: 1] foobar;
// verilator no_inline_task
begin
case (ape)
3'b001,
3'b011,
3'b101,
3'b111 : foobar = {foobar, " 181"};
3'b000 : foobar = {foobar, " 182"};
3'b010 : foobar = {foobar, " 183"};
3'b100 : foobar = {foobar, " 184"};
3'b110 : foobar = {foobar, " 185"};
endcase
end
endtask
task ozonef1;
input [ 31:0] foo;
inout [STRLEN*8: 1] foobar;
// verilator no_inline_task
begin
case (foo[24:21])
4'h0 :
if (foo[26])
foobar = {foobar, " 186"};
else
foobar = {foobar, " 187"};
4'h1 :
case (foo[26:25])
2'b00 : foobar = {foobar, " 188"};
2'b01 : foobar = {foobar, " 189"};
2'b10 : foobar = {foobar, " 190"};
2'b11 : foobar = {foobar, " 191"};
endcase
4'h2 : foobar = {foobar, " 192"};
4'h3 :
case (foo[26:25])
2'b00 : foobar = {foobar, " 193"};
2'b01 : foobar = {foobar, " 194"};
2'b10 : foobar = {foobar, " 195"};
2'b11 : foobar = {foobar, " 196"};
endcase
4'h4 :
if (foo[26])
foobar = {foobar, " 197"};
else
foobar = {foobar, " 198"};
4'h5 :
case (foo[26:25])
2'b00 : foobar = {foobar, " 199"};
2'b01 : foobar = {foobar, " 200"};
2'b10 : foobar = {foobar, " 201"};
2'b11 : foobar = {foobar, " 202"};
endcase
4'h6 : foobar = {foobar, " 203"};
4'h7 :
case (foo[26:25])
2'b00 : foobar = {foobar, " 204"};
2'b01 : foobar = {foobar, " 205"};
2'b10 : foobar = {foobar, " 206"};
2'b11 : foobar = {foobar, " 207"};
endcase
4'h8 :
case (foo[26:25])
2'b00 : foobar = {foobar, " 208"};
2'b01 : foobar = {foobar, " 209"};
2'b10 : foobar = {foobar, " 210"};
2'b11 : foobar = {foobar, " 211"};
endcase
4'h9 :
case (foo[26:25])
2'b00 : foobar = {foobar, " 212"};
2'b01 : foobar = {foobar, " 213"};
2'b10 : foobar = {foobar, " 214"};
2'b11 : foobar = {foobar, " 215"};
endcase
4'ha :
if (foo[25])
foobar = {foobar, " 216"};
else
foobar = {foobar, " 217"};
4'hb :
if (foo[25])
foobar = {foobar, " 218"};
else
foobar = {foobar, " 219"};
4'hc :
if (foo[26])
foobar = {foobar, " 220"};
else
foobar = {foobar, " 221"};
4'hd :
case (foo[26:25])
2'b00 : foobar = {foobar, " 222"};
2'b01 : foobar = {foobar, " 223"};
2'b10 : foobar = {foobar, " 224"};
2'b11 : foobar = {foobar, " 225"};
endcase
4'he :
case (foo[26:25])
2'b00 : foobar = {foobar, " 226"};
2'b01 : foobar = {foobar, " 227"};
2'b10 : foobar = {foobar, " 228"};
2'b11 : foobar = {foobar, " 229"};
endcase
4'hf :
case (foo[26:25])
2'b00 : foobar = {foobar, " 230"};
2'b01 : foobar = {foobar, " 231"};
2'b10 : foobar = {foobar, " 232"};
2'b11 : foobar = {foobar, " 233"};
endcase
endcase
end
endtask
task ozonef1e;
input [ 31:0] foo;
inout [STRLEN*8: 1] foobar;
// verilator no_inline_task
begin
case (foo[27:21])
7'h00:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 234"};
foobar = {foobar, " 235"};
end
7'h01:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 236"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 237"};
foobar = {foobar, " 238"};
end
7'h02:
foobar = {foobar, " 239"};
7'h03:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 240"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 241"};
foobar = {foobar, " 242"};
end
7'h04:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 243"};
foobar = {foobar," 244"};
end
7'h05:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 245"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 246"};
end
7'h06:
foobar = {foobar, " 247"};
7'h07:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 248"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 249"};
end
7'h08:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 250"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 251"};
end
7'h09:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 252"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 253"};
end
7'h0a:
begin
ozoneae(foo[17:15], foobar);
foobar = {foobar," 254"};
end
7'h0b:
begin
ozoneae(foo[17:15], foobar);
foobar = {foobar," 255"};
end
7'h0c:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 256"};
end
7'h0d:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 257"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 258"};
end
7'h0e:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 259"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 260"};
end
7'h0f:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 261"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 262"};
end
7'h10:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 263"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 264"};
foobar = {foobar, " 265"};
foobar = {foobar, " 266"};
end
7'h11:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 267"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 268"};
foobar = {foobar, " 269"};
foobar = {foobar, " 270"};
end
7'h12:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 271"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 272"};
foobar = {foobar, " 273"};
foobar = {foobar, " 274"};
end
7'h13:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 275"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 276"};
foobar = {foobar, " 277"};
foobar = {foobar, " 278"};
end
7'h14:
begin
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 279"};
ozoneaee(foo[17:15], foobar);
foobar = {foobar," 280"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 281"};
ozoneape(foo[17:15], foobar);
foobar = {foobar," 282"};
foobar = {foobar, " 283"};
foobar = {foobar, " 284"};
end
7'h15:
begin
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 285"};
ozoneaee(foo[17:15], foobar);
foobar = {foobar," 286"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 287"};
ozoneape(foo[17:15], foobar);
foobar = {foobar," 288"};
foobar = {foobar, " 289"};
foobar = {foobar, " 290"};
end
7'h16:
begin
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 291"};
ozoneaee(foo[17:15], foobar);
foobar = {foobar," 292"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 293"};
ozoneape(foo[17:15], foobar);
foobar = {foobar," 294"};
foobar = {foobar, " 295"};
foobar = {foobar, " 296"};
end
7'h17:
begin
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 297"};
ozoneaee(foo[17:15], foobar);
foobar = {foobar," 298"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 299"};
ozoneape(foo[17:15], foobar);
foobar = {foobar," 300"};
foobar = {foobar, " 301"};
foobar = {foobar, " 302"};
end
7'h18:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 303"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 304"};
foobar = {foobar, " 305"};
foobar = {foobar, " 306"};
end
7'h19:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 307"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 308"};
foobar = {foobar, " 309"};
foobar = {foobar, " 310"};
end
7'h1a:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 311"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 312"};
foobar = {foobar, " 313"};
foobar = {foobar, " 314"};
end
7'h1b:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 315"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 316"};
foobar = {foobar, " 317"};
foobar = {foobar, " 318"};
end
7'h1c:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 319"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 320"};
foobar = {foobar, " 321"};
foobar = {foobar, " 322"};
end
7'h1d:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 323"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 324"};
foobar = {foobar, " 325"};
foobar = {foobar, " 326"};
end
7'h1e:
begin
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 327"};
ozoneaee(foo[17:15], foobar);
foobar = {foobar," 328"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 329"};
ozoneape(foo[17:15], foobar);
foobar = {foobar," 330"};
foobar = {foobar, " 331"};
foobar = {foobar, " 332"};
end
7'h1f:
begin
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 333"};
ozoneaee(foo[17:15], foobar);
foobar = {foobar," 334"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 335"};
ozoneape(foo[17:15], foobar);
foobar = {foobar," 336"};
foobar = {foobar, " 337"};
foobar = {foobar, " 338"};
end
7'h20:
begin
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 339"};
ozoneaee(foo[17:15], foobar);
foobar = {foobar," 340"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 341"};
ozoneape(foo[17:15], foobar);
foobar = {foobar," 342"};
foobar = {foobar, " 343"};
foobar = {foobar, " 344"};
end
7'h21:
begin
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 345"};
ozoneaee(foo[17:15], foobar);
foobar = {foobar," 346"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 347"};
ozoneape(foo[17:15], foobar);
foobar = {foobar," 348"};
foobar = {foobar, " 349"};
foobar = {foobar, " 350"};
end
7'h22:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 351"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 352"};
foobar = {foobar, " 353"};
foobar = {foobar, " 354"};
end
7'h23:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 355"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 356"};
foobar = {foobar, " 357"};
foobar = {foobar, " 358"};
end
7'h24:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 359"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 360"};
foobar = {foobar, " 361"};
foobar = {foobar, " 362"};
end
7'h25:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 363"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 364"};
foobar = {foobar, " 365"};
foobar = {foobar, " 366"};
end
7'h26:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 367"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 368"};
foobar = {foobar, " 369"};
foobar = {foobar, " 370"};
end
7'h27:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 371"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 372"};
foobar = {foobar, " 373"};
foobar = {foobar, " 374"};
end
7'h28:
begin
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 375"};
ozoneaee(foo[17:15], foobar);
foobar = {foobar," 376"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 377"};
ozoneape(foo[17:15], foobar);
foobar = {foobar," 378"};
foobar = {foobar, " 379"};
foobar = {foobar, " 380"};
end
7'h29:
begin
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 381"};
ozoneaee(foo[17:15], foobar);
foobar = {foobar," 382"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 383"};
ozoneape(foo[17:15], foobar);
foobar = {foobar," 384"};
foobar = {foobar, " 385"};
foobar = {foobar, " 386"};
end
7'h2a:
begin
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 387"};
ozoneaee(foo[17:15], foobar);
foobar = {foobar," 388"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 389"};
ozoneape(foo[17:15], foobar);
foobar = {foobar," 390"};
foobar = {foobar, " 391"};
foobar = {foobar, " 392"};
end
7'h2b:
begin
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 393"};
ozoneaee(foo[17:15], foobar);
foobar = {foobar," 394"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 395"};
ozoneape(foo[17:15], foobar);
foobar = {foobar," 396"};
foobar = {foobar, " 397"};
foobar = {foobar, " 398"};
end
7'h2c:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 399"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 400"};
foobar = {foobar, " 401"};
foobar = {foobar, " 402"};
end
7'h2d:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 403"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 404"};
foobar = {foobar, " 405"};
foobar = {foobar, " 406"};
end
7'h2e:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 407"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 408"};
foobar = {foobar, " 409"};
foobar = {foobar, " 410"};
end
7'h2f:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 411"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 412"};
foobar = {foobar, " 413"};
foobar = {foobar, " 414"};
end
7'h30:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 415"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 416"};
foobar = {foobar, " 417"};
foobar = {foobar, " 418"};
end
7'h31:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 419"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 420"};
foobar = {foobar, " 421"};
foobar = {foobar, " 422"};
end
7'h32:
begin
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 423"};
ozoneaee(foo[17:15], foobar);
foobar = {foobar," 424"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 425"};
ozoneape(foo[17:15], foobar);
foobar = {foobar," 426"};
foobar = {foobar, " 427"};
foobar = {foobar, " 428"};
end
7'h33:
begin
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 429"};
ozoneaee(foo[17:15], foobar);
foobar = {foobar," 430"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 431"};
ozoneape(foo[17:15], foobar);
foobar = {foobar," 432"};
foobar = {foobar, " 433"};
foobar = {foobar, " 434"};
end
7'h34:
begin
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 435"};
ozoneaee(foo[17:15], foobar);
foobar = {foobar," 436"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 437"};
ozoneape(foo[17:15], foobar);
foobar = {foobar," 438"};
foobar = {foobar, " 439"};
foobar = {foobar, " 440"};
end
7'h35:
begin
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 441"};
ozoneaee(foo[17:15], foobar);
foobar = {foobar," 442"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 443"};
ozoneape(foo[17:15], foobar);
foobar = {foobar," 444"};
foobar = {foobar, " 445"};
foobar = {foobar, " 446"};
end
7'h36:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 447"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 448"};
foobar = {foobar, " 449"};
foobar = {foobar, " 450"};
end
7'h37:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 451"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 452"};
foobar = {foobar, " 453"};
foobar = {foobar, " 454"};
end
7'h38:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 455"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 456"};
foobar = {foobar, " 457"};
end
7'h39:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 458"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 459"};
foobar = {foobar, " 460"};
end
7'h3a:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 461"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 462"};
foobar = {foobar, " 463"};
end
7'h3b:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 464"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 465"};
foobar = {foobar, " 466"};
end
7'h3c:
begin
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 467"};
ozoneaee(foo[17:15], foobar);
foobar = {foobar," 468"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 469"};
ozoneape(foo[17:15], foobar);
foobar = {foobar," 470"};
foobar = {foobar, " 471"};
end
7'h3d:
begin
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 472"};
ozoneaee(foo[17:15], foobar);
foobar = {foobar," 473"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 474"};
ozoneape(foo[17:15], foobar);
foobar = {foobar," 475"};
foobar = {foobar, " 476"};
end
7'h3e:
begin
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 477"};
ozoneaee(foo[17:15], foobar);
foobar = {foobar," 478"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 479"};
ozoneape(foo[17:15], foobar);
foobar = {foobar," 480"};
foobar = {foobar, " 481"};
end
7'h3f:
begin
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 482"};
ozoneaee(foo[17:15], foobar);
foobar = {foobar," 483"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 484"};
ozoneape(foo[17:15], foobar);
foobar = {foobar," 485"};
foobar = {foobar, " 486"};
end
7'h40:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 487"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 488"};
foobar = {foobar, " 489"};
foobar = {foobar, " 490"};
end
7'h41:
begin
foobar = {foobar, " 491"};
foobar = {foobar, " 492"};
end
7'h42:
begin
foobar = {foobar, " 493"};
foobar = {foobar, " 494"};
end
7'h43:
begin
foobar = {foobar, " 495"};
foobar = {foobar, " 496"};
end
7'h44:
begin
foobar = {foobar, " 497"};
foobar = {foobar, " 498"};
end
7'h45:
foobar = {foobar, " 499"};
7'h46:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 500"};
foobar = {foobar, " 501"};
foobar = {foobar, " 502"};
end
7'h47:
begin
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 503"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 504"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 505"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 506"};
foobar = {foobar, " 507"};
foobar = {foobar, " 508"};
end
7'h48:
begin
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 509"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 510"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 511"};
ozoneaee(foo[17:15], foobar);
foobar = {foobar," 512"};
ozoneape(foo[17:15], foobar);
foobar = {foobar," 513"};
end
7'h49:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 514"};
ozoneaee(foo[17:15], foobar);
foobar = {foobar," 515"};
ozoneape(foo[17:15], foobar);
foobar = {foobar," 516"};
end
7'h4a:
foobar = {foobar," 517"};
7'h4b:
foobar = {foobar, " 518"};
7'h4c:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 519"};
foobar = {foobar, " 520"};
foobar = {foobar, " 521"};
end
7'h4d:
begin
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 522"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 523"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 524"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 525"};
foobar = {foobar, " 526"};
foobar = {foobar, " 527"};
end
7'h4e:
begin
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 528"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 529"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 530"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 531"};
end
7'h4f:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 532"};
end
7'h50:
begin
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 533"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 534"};
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 535"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 536"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 537"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 538"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 539"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 540"};
end
7'h51:
begin
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 541"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 542"};
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 543"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 544"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 545"};
end
7'h52:
foobar = {foobar, " 546"};
7'h53:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar, " 547"};
end
7'h54:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 548"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 549"};
end
7'h55:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 550"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 551"};
end
7'h56:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 552"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 553"};
foobar = {foobar, " 554"};
end
7'h57:
begin
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 555"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 556"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 557"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 558"};
end
7'h58:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar, " 559"};
end
7'h59:
begin
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 560"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 561"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 562"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 563"};
end
7'h5a:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 564"};
ozoneae(foo[17:15], foobar);
foobar = {foobar, " 565"};
end
7'h5b:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 566"};
ozoneae(foo[17:15], foobar);
foobar = {foobar, " 567"};
end
7'h5c:
begin
foobar = {foobar," 568"};
ozoneape(foo[17:15], foobar);
foobar = {foobar," 569"};
foobar = {foobar," 570"};
ozoneape(foo[17:15], foobar);
foobar = {foobar," 571"};
ozoneae(foo[20:18], foobar);
foobar = {foobar," 572"};
ozoneaee(foo[17:15], foobar);
foobar = {foobar, " 573"};
end
7'h5d:
begin
foobar = {foobar," 574"};
ozoneape(foo[17:15], foobar);
foobar = {foobar," 575"};
foobar = {foobar," 576"};
ozoneape(foo[17:15], foobar);
foobar = {foobar," 577"};
ozoneae(foo[20:18], foobar);
foobar = {foobar," 578"};
ozoneaee(foo[17:15], foobar);
foobar = {foobar, " 579"};
end
7'h5e:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 580"};
ozoneae(foo[17:15], foobar);
foobar = {foobar, " 581"};
end
7'h5f:
begin
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 582"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 583"};
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 584"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 585"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 586"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 587"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 588"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 589"};
end
7'h60:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 590"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 591"};
end
7'h61:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 592"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 593"};
end
7'h62:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 594"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 595"};
end
7'h63:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 596"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 597"};
end
7'h64:
begin
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 598"};
ozoneaee(foo[17:15], foobar);
foobar = {foobar," 599"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 600"};
ozoneape(foo[17:15], foobar);
foobar = {foobar," 601"};
end
7'h65:
begin
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 602"};
ozoneaee(foo[17:15], foobar);
foobar = {foobar," 603"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 604"};
ozoneape(foo[17:15], foobar);
foobar = {foobar," 605"};
end
7'h66:
begin
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 606"};
ozoneaee(foo[17:15], foobar);
foobar = {foobar," 607"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 608"};
ozoneape(foo[17:15], foobar);
foobar = {foobar," 609"};
end
7'h67:
begin
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 610"};
ozoneaee(foo[17:15], foobar);
foobar = {foobar," 611"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 612"};
ozoneape(foo[17:15], foobar);
foobar = {foobar," 613"};
end
7'h68:
begin
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 614"};
ozoneaee(foo[17:15], foobar);
foobar = {foobar," 615"};
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 616"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 617"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 618"};
ozoneape(foo[17:15], foobar);
end
7'h69:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 619"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 620"};
ozoneae(foo[20:18], foobar);
foobar = {foobar," 621"};
end
7'h6a:
begin
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 622"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 623"};
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 624"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 625"};
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 626"};
ozoneae(foo[17:15], foobar);
end
7'h6b:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 627"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 628"};
ozoneae(foo[20:18], foobar);
foobar = {foobar," 629"};
end
7'h6c:
begin
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 630"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 631"};
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 632"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 633"};
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 634"};
ozoneae(foo[17:15], foobar);
end
7'h6d:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 635"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 636"};
ozoneae(foo[20:18], foobar);
foobar = {foobar," 637"};
end
7'h6e:
begin
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 638"};
ozoneaee(foo[17:15], foobar);
foobar = {foobar," 639"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 640"};
ozoneape(foo[17:15], foobar);
foobar = {foobar," 641"};
end
7'h6f:
begin
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 642"};
ozoneaee(foo[17:15], foobar);
foobar = {foobar," 643"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 644"};
ozoneape(foo[17:15], foobar);
foobar = {foobar," 645"};
end
7'h70:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 646"};
ozoneae(foo[20:18], foobar);
foobar = {foobar," 647"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 648"};
ozoneae(foo[17:15], foobar);
foobar = {foobar, " 649"};
end
7'h71:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 650"};
ozoneae(foo[17:15], foobar);
foobar = {foobar, " 651"};
end
7'h72:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 652"};
ozoneae(foo[17:15], foobar);
foobar = {foobar, " 653"};
end
7'h73:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 654"};
ozoneae(foo[20:18], foobar);
foobar = {foobar," 655"};
ozoneae(foo[17:15], foobar);
end
7'h74:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 656"};
ozoneae(foo[20:18], foobar);
foobar = {foobar," 657"};
ozoneae(foo[17:15], foobar);
end
7'h75:
begin
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 658"};
ozoneaee(foo[17:15], foobar);
foobar = {foobar," 659"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 660"};
ozoneape(foo[17:15], foobar);
foobar = {foobar," 661"};
foobar = {foobar, " 662"};
foobar = {foobar, " 663"};
end
7'h76:
begin
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 664"};
ozoneaee(foo[17:15], foobar);
foobar = {foobar," 665"};
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 666"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 667"};
ozoneape(foo[17:15], foobar);
foobar = {foobar," 668"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 669"};
end
7'h77:
begin
ozoneaee(foo[20:18], foobar);
foobar = {foobar," 670"};
ozoneaee(foo[17:15], foobar);
foobar = {foobar," 671"};
ozoneaee(foo[17:15], foobar);
foobar = {foobar," 672"};
ozoneape(foo[20:18], foobar);
foobar = {foobar," 673"};
ozoneape(foo[17:15], foobar);
foobar = {foobar," 674"};
ozoneape(foo[17:15], foobar);
foobar = {foobar," 675"};
end
7'h78,
7'h79,
7'h7a,
7'h7b,
7'h7c,
7'h7d,
7'h7e,
7'h7f:
foobar = {foobar," 676"};
endcase
end
endtask
task ozonef2;
input [ 31:0] foo;
inout [STRLEN*8: 1] foobar;
// verilator no_inline_task
begin
case (foo[24:21])
4'h0 :
case (foo[26:25])
2'b00 : foobar = {foobar," 677"};
2'b01 : foobar = {foobar," 678"};
2'b10 : foobar = {foobar," 679"};
2'b11 : foobar = {foobar," 680"};
endcase
4'h1 :
case (foo[26:25])
2'b00 : foobar = {foobar," 681"};
2'b01 : foobar = {foobar," 682"};
2'b10 : foobar = {foobar," 683"};
2'b11 : foobar = {foobar," 684"};
endcase
4'h2 :
case (foo[26:25])
2'b00 : foobar = {foobar," 685"};
2'b01 : foobar = {foobar," 686"};
2'b10 : foobar = {foobar," 687"};
2'b11 : foobar = {foobar," 688"};
endcase
4'h3 :
case (foo[26:25])
2'b00 : foobar = {foobar," 689"};
2'b01 : foobar = {foobar," 690"};
2'b10 : foobar = {foobar," 691"};
2'b11 : foobar = {foobar," 692"};
endcase
4'h4 :
case (foo[26:25])
2'b00 : foobar = {foobar," 693"};
2'b01 : foobar = {foobar," 694"};
2'b10 : foobar = {foobar," 695"};
2'b11 : foobar = {foobar," 696"};
endcase
4'h5 :
case (foo[26:25])
2'b00 : foobar = {foobar," 697"};
2'b01 : foobar = {foobar," 698"};
2'b10 : foobar = {foobar," 699"};
2'b11 : foobar = {foobar," 700"};
endcase
4'h6 :
case (foo[26:25])
2'b00 : foobar = {foobar," 701"};
2'b01 : foobar = {foobar," 702"};
2'b10 : foobar = {foobar," 703"};
2'b11 : foobar = {foobar," 704"};
endcase
4'h7 :
case (foo[26:25])
2'b00 : foobar = {foobar," 705"};
2'b01 : foobar = {foobar," 706"};
2'b10 : foobar = {foobar," 707"};
2'b11 : foobar = {foobar," 708"};
endcase
4'h8 :
if (foo[26])
foobar = {foobar," 709"};
else
foobar = {foobar," 710"};
4'h9 :
case (foo[26:25])
2'b00 : foobar = {foobar," 711"};
2'b01 : foobar = {foobar," 712"};
2'b10 : foobar = {foobar," 713"};
2'b11 : foobar = {foobar," 714"};
endcase
4'ha :
case (foo[26:25])
2'b00 : foobar = {foobar," 715"};
2'b01 : foobar = {foobar," 716"};
2'b10 : foobar = {foobar," 717"};
2'b11 : foobar = {foobar," 718"};
endcase
4'hb :
case (foo[26:25])
2'b00 : foobar = {foobar," 719"};
2'b01 : foobar = {foobar," 720"};
2'b10 : foobar = {foobar," 721"};
2'b11 : foobar = {foobar," 722"};
endcase
4'hc :
if (foo[26])
foobar = {foobar," 723"};
else
foobar = {foobar," 724"};
4'hd :
case (foo[26:25])
2'b00 : foobar = {foobar," 725"};
2'b01 : foobar = {foobar," 726"};
2'b10 : foobar = {foobar," 727"};
2'b11 : foobar = {foobar," 728"};
endcase
4'he :
case (foo[26:25])
2'b00 : foobar = {foobar," 729"};
2'b01 : foobar = {foobar," 730"};
2'b10 : foobar = {foobar," 731"};
2'b11 : foobar = {foobar," 732"};
endcase
4'hf :
case (foo[26:25])
2'b00 : foobar = {foobar," 733"};
2'b01 : foobar = {foobar," 734"};
2'b10 : foobar = {foobar," 735"};
2'b11 : foobar = {foobar," 736"};
endcase
endcase
end
endtask
task ozonef2e;
input [ 31:0] foo;
inout [STRLEN*8: 1] foobar;
// verilator no_inline_task
begin
casez (foo[25:21])
5'h00 :
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 737"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 738"};
end
5'h01 :
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 739"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 740"};
end
5'h02 :
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 741"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 742"};
end
5'h03 :
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 743"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 744"};
end
5'h04 :
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 745"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 746"};
end
5'h05 :
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 747"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 748"};
end
5'h06 :
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 749"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 750"};
end
5'h07 :
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 751"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 752"};
end
5'h08 :
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 753"};
if (foo[ 6])
foobar = {foobar," 754"};
else
foobar = {foobar," 755"};
end
5'h09 :
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 756"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 757"};
end
5'h0a :
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 758"};
ozoneae(foo[17:15], foobar);
end
5'h0b :
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 759"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 760"};
end
5'h0c :
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 761"};
end
5'h0d :
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 762"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 763"};
end
5'h0e :
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 764"};
ozoneae(foo[17:15], foobar);
end
5'h0f :
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 765"};
ozoneae(foo[17:15], foobar);
end
5'h10 :
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 766"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 767"};
end
5'h11 :
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 768"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 769"};
end
5'h18 :
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 770"};
if (foo[ 6])
foobar = {foobar," 771"};
else
foobar = {foobar," 772"};
end
5'h1a :
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 773"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 774"};
end
5'h1b :
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 775"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 776"};
if (foo[ 6])
foobar = {foobar," 777"};
else
foobar = {foobar," 778"};
foobar = {foobar," 779"};
end
5'h1c :
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 780"};
end
5'h1d :
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 781"};
if (foo[ 6])
foobar = {foobar," 782"};
else
foobar = {foobar," 783"};
foobar = {foobar," 784"};
end
5'h1e :
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 785"};
if (foo[ 6])
foobar = {foobar," 786"};
else
foobar = {foobar," 787"};
foobar = {foobar," 788"};
end
5'h1f :
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 789"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 790"};
if (foo[ 6])
foobar = {foobar," 791"};
else
foobar = {foobar," 792"};
foobar = {foobar," 793"};
end
default :
foobar = {foobar," 794"};
endcase
end
endtask
task ozonef3e;
input [ 31:0] foo;
inout [STRLEN*8: 1] foobar;
// verilator no_inline_task
begin
case (foo[25:21])
5'h00,
5'h01,
5'h02:
begin
ozoneae(foo[20:18], foobar);
case (foo[22:21])
2'h0: foobar = {foobar," 795"};
2'h1: foobar = {foobar," 796"};
2'h2: foobar = {foobar," 797"};
endcase
ozoneae(foo[17:15], foobar);
foobar = {foobar," 798"};
if (foo[ 9])
ozoneae(foo[ 8: 6], foobar);
else
ozonef3e_te(foo[ 8: 6], foobar);
foobar = {foobar," 799"};
end
5'h08,
5'h09,
5'h0d,
5'h0e,
5'h0f:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 800"};
ozoneae(foo[17:15], foobar);
case (foo[23:21])
3'h0: foobar = {foobar," 801"};
3'h1: foobar = {foobar," 802"};
3'h5: foobar = {foobar," 803"};
3'h6: foobar = {foobar," 804"};
3'h7: foobar = {foobar," 805"};
endcase
if (foo[ 9])
ozoneae(foo[ 8: 6], foobar);
else
ozonef3e_te(foo[ 8: 6], foobar);
end
5'h0a,
5'h0b:
begin
ozoneae(foo[17:15], foobar);
if (foo[21])
foobar = {foobar," 806"};
else
foobar = {foobar," 807"};
if (foo[ 9])
ozoneae(foo[ 8: 6], foobar);
else
ozonef3e_te(foo[ 8: 6], foobar);
end
5'h0c:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 808"};
if (foo[ 9])
ozoneae(foo[ 8: 6], foobar);
else
ozonef3e_te(foo[ 8: 6], foobar);
foobar = {foobar," 809"};
ozoneae(foo[17:15], foobar);
end
5'h10,
5'h11,
5'h12,
5'h13:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 810"};
ozoneae(foo[17:15], foobar);
case (foo[22:21])
2'h0,
2'h2:
foobar = {foobar," 811"};
2'h1,
2'h3:
foobar = {foobar," 812"};
endcase
ozoneae(foo[ 8: 6], foobar);
foobar = {foobar," 813"};
ozoneae((foo[20:18]+1), foobar);
foobar = {foobar," 814"};
ozoneae((foo[17:15]+1), foobar);
case (foo[22:21])
2'h0,
2'h3:
foobar = {foobar," 815"};
2'h1,
2'h2:
foobar = {foobar," 816"};
endcase
ozoneae((foo[ 8: 6]+1), foobar);
end
5'h18:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar," 817"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 818"};
ozoneae(foo[ 8: 6], foobar);
foobar = {foobar," 819"};
ozoneae(foo[20:18], foobar);
foobar = {foobar," 820"};
ozoneae(foo[17:15], foobar);
foobar = {foobar," 821"};
ozoneae(foo[ 8: 6], foobar);
end
default :
foobar = {foobar," 822"};
endcase
end
endtask
task ozonef3e_te;
input [ 2:0] te;
inout [STRLEN*8: 1] foobar;
// verilator no_inline_task
begin
case (te)
3'b100 : foobar = {foobar, " 823"};
3'b101 : foobar = {foobar, " 824"};
3'b110 : foobar = {foobar, " 825"};
default: foobar = {foobar, " 826"};
endcase
end
endtask
task ozonearm;
input [ 2:0] ate;
inout [STRLEN*8: 1] foobar;
// verilator no_inline_task
begin
case (ate)
3'b000 : foobar = {foobar, " 827"};
3'b001 : foobar = {foobar, " 828"};
3'b010 : foobar = {foobar, " 829"};
3'b011 : foobar = {foobar, " 830"};
3'b100 : foobar = {foobar, " 831"};
3'b101 : foobar = {foobar, " 832"};
3'b110 : foobar = {foobar, " 833"};
3'b111 : foobar = {foobar, " 834"};
endcase
end
endtask
task ozonebmuop;
input [ 4:0] f4;
inout [STRLEN*8: 1] foobar;
// verilator no_inline_task
begin
case (f4[ 4:0])
5'h00,
5'h04 :
foobar = {foobar, " 835"};
5'h01,
5'h05 :
foobar = {foobar, " 836"};
5'h02,
5'h06 :
foobar = {foobar, " 837"};
5'h03,
5'h07 :
foobar = {foobar, " 838"};
5'h08,
5'h18 :
foobar = {foobar, " 839"};
5'h09,
5'h19 :
foobar = {foobar, " 840"};
5'h0a,
5'h1a :
foobar = {foobar, " 841"};
5'h0b :
foobar = {foobar, " 842"};
5'h1b :
foobar = {foobar, " 843"};
5'h0c,
5'h1c :
foobar = {foobar, " 844"};
5'h0d,
5'h1d :
foobar = {foobar, " 845"};
5'h1e :
foobar = {foobar, " 846"};
endcase
end
endtask
task ozonef3;
input [ 31:0] foo;
inout [STRLEN*8: 1] foobar;
reg nacho;
// verilator no_inline_task
begin : f3_body
nacho = 1'b0;
case (foo[24:21])
4'h0:
case (foo[26:25])
2'b00 : foobar = {foobar, " 847"};
2'b01 : foobar = {foobar, " 848"};
2'b10 : foobar = {foobar, " 849"};
2'b11 : foobar = {foobar, " 850"};
endcase
4'h1:
case (foo[26:25])
2'b00 : foobar = {foobar, " 851"};
2'b01 : foobar = {foobar, " 852"};
2'b10 : foobar = {foobar, " 853"};
2'b11 : foobar = {foobar, " 854"};
endcase
4'h2:
case (foo[26:25])
2'b00 : foobar = {foobar, " 855"};
2'b01 : foobar = {foobar, " 856"};
2'b10 : foobar = {foobar, " 857"};
2'b11 : foobar = {foobar, " 858"};
endcase
4'h8,
4'h9,
4'hd,
4'he,
4'hf :
case (foo[26:25])
2'b00 : foobar = {foobar, " 859"};
2'b01 : foobar = {foobar, " 860"};
2'b10 : foobar = {foobar, " 861"};
2'b11 : foobar = {foobar, " 862"};
endcase
4'ha,
4'hb :
if (foo[25])
foobar = {foobar, " 863"};
else
foobar = {foobar, " 864"};
4'hc :
if (foo[26])
foobar = {foobar, " 865"};
else
foobar = {foobar, " 866"};
default :
begin
foobar = {foobar, " 867"};
nacho = 1'b1;
end
endcase
if (~nacho)
begin
case (foo[24:21])
4'h8 :
foobar = {foobar, " 868"};
4'h9 :
foobar = {foobar, " 869"};
4'ha,
4'he :
foobar = {foobar, " 870"};
4'hb,
4'hf :
foobar = {foobar, " 871"};
4'hd :
foobar = {foobar, " 872"};
endcase
if (foo[20])
case (foo[18:16])
3'b000 : foobar = {foobar, " 873"};
3'b100 : foobar = {foobar, " 874"};
default: foobar = {foobar, " 875"};
endcase
else
ozoneae(foo[18:16], foobar);
if (foo[24:21] === 4'hc)
if (foo[25])
foobar = {foobar, " 876"};
else
foobar = {foobar, " 877"};
case (foo[24:21])
4'h0,
4'h1,
4'h2:
foobar = {foobar, " 878"};
endcase
end
end
endtask
task ozonerx;
input [ 31:0] foo;
inout [STRLEN*8: 1] foobar;
// verilator no_inline_task
begin
case (foo[19:18])
2'h0 : foobar = {foobar, " 879"};
2'h1 : foobar = {foobar, " 880"};
2'h2 : foobar = {foobar, " 881"};
2'h3 : foobar = {foobar, " 882"};
endcase
case (foo[17:16])
2'h1 : foobar = {foobar, " 883"};
2'h2 : foobar = {foobar, " 884"};
2'h3 : foobar = {foobar, " 885"};
endcase
end
endtask
task ozonerme;
input [ 2:0] rme;
inout [STRLEN*8: 1] foobar;
// verilator no_inline_task
begin
case (rme)
3'h0 : foobar = {foobar, " 886"};
3'h1 : foobar = {foobar, " 887"};
3'h2 : foobar = {foobar, " 888"};
3'h3 : foobar = {foobar, " 889"};
3'h4 : foobar = {foobar, " 890"};
3'h5 : foobar = {foobar, " 891"};
3'h6 : foobar = {foobar, " 892"};
3'h7 : foobar = {foobar, " 893"};
endcase
end
endtask
task ozoneye;
input [5:0] ye;
input l;
inout [STRLEN*8: 1] foobar;
// verilator no_inline_task
begin
foobar = {foobar, " 894"};
ozonerme(ye[5:3],foobar);
case ({ye[ 2:0], l})
4'h2,
4'ha: foobar = {foobar, " 895"};
4'h4,
4'hb: foobar = {foobar, " 896"};
4'h6,
4'he: foobar = {foobar, " 897"};
4'h8,
4'hc: foobar = {foobar, " 898"};
endcase
end
endtask
task ozonef1e_ye;
input [5:0] ye;
input l;
inout [STRLEN*8: 1] foobar;
// verilator no_inline_task
begin
foobar = {foobar, " 899"};
ozonerme(ye[5:3],foobar);
ozonef1e_inc_dec(ye[5:0], l ,foobar);
end
endtask
task ozonef1e_h;
input [ 2:0] e;
inout [STRLEN*8: 1] foobar;
// verilator no_inline_task
begin
if (e[ 2:0] <= 3'h4)
foobar = {foobar, " 900"};
end
endtask
task ozonef1e_inc_dec;
input [5:0] ye;
input l;
inout [STRLEN*8: 1] foobar;
// verilator no_inline_task
begin
case ({ye[ 2:0], l})
4'h2,
4'h3,
4'ha: foobar = {foobar, " 901"};
4'h4,
4'h5,
4'hb: foobar = {foobar, " 902"};
4'h6,
4'h7,
4'he: foobar = {foobar, " 903"};
4'h8,
4'h9,
4'hc: foobar = {foobar, " 904"};
4'hf: foobar = {foobar, " 905"};
endcase
end
endtask
task ozonef1e_hl;
input [ 2:0] e;
input l;
inout [STRLEN*8: 1] foobar;
// verilator no_inline_task
begin
case ({e[ 2:0], l})
4'h0,
4'h2,
4'h4,
4'h6,
4'h8: foobar = {foobar, " 906"};
4'h1,
4'h3,
4'h5,
4'h7,
4'h9: foobar = {foobar, " 907"};
endcase
end
endtask
task ozonexe;
input [ 3:0] xe;
inout [STRLEN*8: 1] foobar;
// verilator no_inline_task
begin
case (xe[3])
1'b0 : foobar = {foobar, " 908"};
1'b1 : foobar = {foobar, " 909"};
endcase
case (xe[ 2:0])
3'h1,
3'h5: foobar = {foobar, " 910"};
3'h2,
3'h6: foobar = {foobar, " 911"};
3'h3,
3'h7: foobar = {foobar, " 912"};
3'h4: foobar = {foobar, " 913"};
endcase
end
endtask
task ozonerp;
input [ 2:0] rp;
inout [STRLEN*8: 1] foobar;
// verilator no_inline_task
begin
case (rp)
3'h0 : foobar = {foobar, " 914"};
3'h1 : foobar = {foobar, " 915"};
3'h2 : foobar = {foobar, " 916"};
3'h3 : foobar = {foobar, " 917"};
3'h4 : foobar = {foobar, " 918"};
3'h5 : foobar = {foobar, " 919"};
3'h6 : foobar = {foobar, " 920"};
3'h7 : foobar = {foobar, " 921"};
endcase
end
endtask
task ozonery;
input [ 3:0] ry;
inout [STRLEN*8: 1] foobar;
// verilator no_inline_task
begin
case (ry)
4'h0 : foobar = {foobar, " 922"};
4'h1 : foobar = {foobar, " 923"};
4'h2 : foobar = {foobar, " 924"};
4'h3 : foobar = {foobar, " 925"};
4'h4 : foobar = {foobar, " 926"};
4'h5 : foobar = {foobar, " 927"};
4'h6 : foobar = {foobar, " 928"};
4'h7 : foobar = {foobar, " 929"};
4'h8 : foobar = {foobar, " 930"};
4'h9 : foobar = {foobar, " 931"};
4'ha : foobar = {foobar, " 932"};
4'hb : foobar = {foobar, " 933"};
4'hc : foobar = {foobar, " 934"};
4'hd : foobar = {foobar, " 935"};
4'he : foobar = {foobar, " 936"};
4'hf : foobar = {foobar, " 937"};
endcase
end
endtask
task ozonearx;
input [ 15:0] foo;
inout [STRLEN*8: 1] foobar;
// verilator no_inline_task
begin
case (foo[1:0])
2'h0 : foobar = {foobar, " 938"};
2'h1 : foobar = {foobar, " 939"};
2'h2 : foobar = {foobar, " 940"};
2'h3 : foobar = {foobar, " 941"};
endcase
end
endtask
task ozonef3f4imop;
input [ 4:0] f3f4iml;
inout [STRLEN*8: 1] foobar;
// verilator no_inline_task
begin
casez (f3f4iml)
5'b000??: foobar = {foobar, " 942"};
5'b001??: foobar = {foobar, " 943"};
5'b?10??: foobar = {foobar, " 944"};
5'b0110?: foobar = {foobar, " 945"};
5'b01110: foobar = {foobar, " 946"};
5'b01111: foobar = {foobar, " 947"};
5'b10???: foobar = {foobar, " 948"};
5'b11100: foobar = {foobar, " 949"};
5'b11101: foobar = {foobar, " 950"};
5'b11110: foobar = {foobar, " 951"};
5'b11111: foobar = {foobar, " 952"};
endcase
end
endtask
task ozonecon;
input [ 4:0] con;
inout [STRLEN*8: 1] foobar;
// verilator no_inline_task
begin
case (con)
5'h00 : foobar = {foobar, " 953"};
5'h01 : foobar = {foobar, " 954"};
5'h02 : foobar = {foobar, " 955"};
5'h03 : foobar = {foobar, " 956"};
5'h04 : foobar = {foobar, " 957"};
5'h05 : foobar = {foobar, " 958"};
5'h06 : foobar = {foobar, " 959"};
5'h07 : foobar = {foobar, " 960"};
5'h08 : foobar = {foobar, " 961"};
5'h09 : foobar = {foobar, " 962"};
5'h0a : foobar = {foobar, " 963"};
5'h0b : foobar = {foobar, " 964"};
5'h0c : foobar = {foobar, " 965"};
5'h0d : foobar = {foobar, " 966"};
5'h0e : foobar = {foobar, " 967"};
5'h0f : foobar = {foobar, " 968"};
5'h10 : foobar = {foobar, " 969"};
5'h11 : foobar = {foobar, " 970"};
5'h12 : foobar = {foobar, " 971"};
5'h13 : foobar = {foobar, " 972"};
5'h14 : foobar = {foobar, " 973"};
5'h15 : foobar = {foobar, " 974"};
5'h16 : foobar = {foobar, " 975"};
5'h17 : foobar = {foobar, " 976"};
5'h18 : foobar = {foobar, " 977"};
5'h19 : foobar = {foobar, " 978"};
5'h1a : foobar = {foobar, " 979"};
5'h1b : foobar = {foobar, " 980"};
5'h1c : foobar = {foobar, " 981"};
5'h1d : foobar = {foobar, " 982"};
5'h1e : foobar = {foobar, " 983"};
5'h1f : foobar = {foobar, " 984"};
endcase
end
endtask
task ozonedr;
input [ 15:0] foo;
inout [STRLEN*8: 1] foobar;
// verilator no_inline_task
begin
case (foo[ 9: 6])
4'h0 : foobar = {foobar, " 985"};
4'h1 : foobar = {foobar, " 986"};
4'h2 : foobar = {foobar, " 987"};
4'h3 : foobar = {foobar, " 988"};
4'h4 : foobar = {foobar, " 989"};
4'h5 : foobar = {foobar, " 990"};
4'h6 : foobar = {foobar, " 991"};
4'h7 : foobar = {foobar, " 992"};
4'h8 : foobar = {foobar, " 993"};
4'h9 : foobar = {foobar, " 994"};
4'ha : foobar = {foobar, " 995"};
4'hb : foobar = {foobar, " 996"};
4'hc : foobar = {foobar, " 997"};
4'hd : foobar = {foobar, " 998"};
4'he : foobar = {foobar, " 999"};
4'hf : foobar = {foobar, " 1000"};
endcase
end
endtask
task ozoneshift;
input [ 15:0] foo;
inout [STRLEN*8: 1] foobar;
// verilator no_inline_task
begin
case (foo[ 4: 3])
2'h0 : foobar = {foobar, " 1001"};
2'h1 : foobar = {foobar, " 1002"};
2'h2 : foobar = {foobar, " 1003"};
2'h3 : foobar = {foobar, " 1004"};
endcase
end
endtask
task ozoneacc;
input foo;
inout [STRLEN*8: 1] foobar;
// verilator no_inline_task
begin
case (foo)
2'h0 : foobar = {foobar, " 1005"};
2'h1 : foobar = {foobar, " 1006"};
endcase
end
endtask
task ozonehl;
input foo;
inout [STRLEN*8: 1] foobar;
// verilator no_inline_task
begin
case (foo)
2'h0 : foobar = {foobar, " 1007"};
2'h1 : foobar = {foobar, " 1008"};
endcase
end
endtask
task dude;
inout [STRLEN*8: 1] foobar;
reg [ 7:0] temp;
integer i;
reg nacho;
// verilator no_inline_task
begin : justify_block
nacho = 1'b0;
for (i=STRLEN-1; i>1; i=i-1)
begin
temp = foobar>>((STRLEN-1)*8);
if (temp || nacho)
nacho = 1'b1;
else
begin
foobar = foobar<<8;
foobar[8:1] = 32;
end
end
end
endtask
task big_case;
input [ 31:0] fd;
input [ 31:0] foo;
reg [STRLEN*8: 1] foobar;
// verilator no_inline_task
begin
foobar = " 1009";
if (&foo === 1'bx)
$fwrite(fd, " 1010");
else
casez ( {foo[31:26], foo[19:15], foo[5:0]} )
17'b00_111?_?_????_??_???? :
begin
ozonef1(foo, foobar);
foobar = {foobar, " 1011"};
ozoneacc(~foo[26], foobar);
ozonehl(foo[20], foobar);
foobar = {foobar, " 1012"};
ozonerx(foo, foobar);
dude(foobar);
$fwrite (fd, " 1013:%s", foobar);
end
17'b01_001?_?_????_??_???? :
begin
ozonef1(foo, foobar);
foobar = {foobar, " 1014"};
ozonerx(foo, foobar);
foobar = {foobar, " 1015"};
foobar = {foobar, " 1016"};
ozonehl(foo[20], foobar);
dude(foobar);
$fwrite (fd, " 1017:%s", foobar);
end
17'b10_100?_?_????_??_???? :
begin
ozonef1(foo, foobar);
foobar = {foobar, " 1018"};
ozonerx(foo, foobar);
foobar = {foobar, " 1019"};
foobar = {foobar, " 1020"};
ozonehl(foo[20], foobar);
dude(foobar);
$fwrite (fd, " 1021:%s", foobar);
end
17'b10_101?_?_????_??_???? :
begin
ozonef1(foo, foobar);
foobar = {foobar, " 1022"};
if (foo[20])
begin
foobar = {foobar, " 1023"};
ozoneacc(foo[18], foobar);
foobar = {foobar, " 1024"};
foobar = {foobar, " 1025"};
if (foo[19])
foobar = {foobar, " 1026"};
else
foobar = {foobar, " 1027"};
end
else
ozonerx(foo, foobar);
dude(foobar);
$fwrite (fd, " 1028:%s", foobar);
end
17'b10_110?_?_????_??_???? :
begin
ozonef1(foo, foobar);
foobar = {foobar, " 1029"};
foobar = {foobar, " 1030"};
ozonehl(foo[20], foobar);
foobar = {foobar, " 1031"};
ozonerx(foo, foobar);
dude(foobar);
$fwrite (fd, " 1032:%s", foobar);
end
17'b10_111?_?_????_??_???? :
begin
ozonef1(foo, foobar);
foobar = {foobar, " 1033"};
foobar = {foobar, " 1034"};
ozonehl(foo[20], foobar);
foobar = {foobar, " 1035"};
ozonerx(foo, foobar);
dude(foobar);
$fwrite (fd, " 1036:%s", foobar);
end
17'b11_001?_?_????_??_???? :
begin
ozonef1(foo, foobar);
foobar = {foobar, " 1037"};
ozonerx(foo, foobar);
foobar = {foobar, " 1038"};
foobar = {foobar, " 1039"};
ozonehl(foo[20], foobar);
dude(foobar);
$fwrite (fd, " 1040:%s", foobar);
end
17'b11_111?_?_????_??_???? :
begin
ozonef1(foo, foobar);
foobar = {foobar, " 1041"};
foobar = {foobar, " 1042"};
ozonerx(foo, foobar);
foobar = {foobar, " 1043"};
if (foo[20])
foobar = {foobar, " 1044"};
else
foobar = {foobar, " 1045"};
dude(foobar);
$fwrite (fd, " 1046:%s", foobar);
end
17'b00_10??_?_????_?1_1111 :
casez (foo[11: 5])
7'b??_0_010_0:
begin
foobar = " 1047";
ozonecon(foo[14:10], foobar);
foobar = {foobar, " 1048"};
ozonef1e(foo, foobar);
dude(foobar);
$fwrite (fd, " 1049:%s", foobar);
end
7'b00_?_110_?:
begin
ozonef1e(foo, foobar);
foobar = {foobar, " 1050"};
case ({foo[ 9],foo[ 5]})
2'b00:
begin
foobar = {foobar, " 1051"};
ozoneae(foo[14:12], foobar);
ozonehl(foo[ 5], foobar);
end
2'b01:
begin
foobar = {foobar, " 1052"};
ozoneae(foo[14:12], foobar);
ozonehl(foo[ 5], foobar);
end
2'b10:
begin
foobar = {foobar, " 1053"};
ozoneae(foo[14:12], foobar);
end
2'b11: foobar = {foobar, " 1054"};
endcase
dude(foobar);
$fwrite (fd, " 1055:%s", foobar);
end
7'b01_?_110_?:
begin
ozonef1e(foo, foobar);
foobar = {foobar, " 1056"};
case ({foo[ 9],foo[ 5]})
2'b00:
begin
ozoneae(foo[14:12], foobar);
ozonehl(foo[ 5], foobar);
foobar = {foobar, " 1057"};
end
2'b01:
begin
ozoneae(foo[14:12], foobar);
ozonehl(foo[ 5], foobar);
foobar = {foobar, " 1058"};
end
2'b10:
begin
ozoneae(foo[14:12], foobar);
foobar = {foobar, " 1059"};
end
2'b11: foobar = {foobar, " 1060"};
endcase
dude(foobar);
$fwrite (fd, " 1061:%s", foobar);
end
7'b10_0_110_0:
begin
ozonef1e(foo, foobar);
foobar = {foobar, " 1062"};
foobar = {foobar, " 1063"};
if (foo[12])
foobar = {foobar, " 1064"};
else
ozonerab({4'b1001, foo[14:12]}, foobar);
dude(foobar);
$fwrite (fd, " 1065:%s", foobar);
end
7'b10_0_110_1:
begin
ozonef1e(foo, foobar);
foobar = {foobar, " 1066"};
if (foo[12])
foobar = {foobar, " 1067"};
else
ozonerab({4'b1001, foo[14:12]}, foobar);
foobar = {foobar, " 1068"};
dude(foobar);
$fwrite (fd, " 1069:%s", foobar);
end
7'b??_?_000_?:
begin
ozonef1e(foo, foobar);
foobar = {foobar, " 1070"};
foobar = {foobar, " 1071"};
ozonef1e_hl(foo[11:9],foo[ 5],foobar);
foobar = {foobar, " 1072"};
ozonef1e_ye(foo[14:9],foo[ 5],foobar);
dude(foobar);
$fwrite (fd, " 1073:%s", foobar);
end
7'b??_?_100_?:
begin
ozonef1e(foo, foobar);
foobar = {foobar, " 1074"};
foobar = {foobar, " 1075"};
ozonef1e_hl(foo[11:9],foo[ 5],foobar);
foobar = {foobar, " 1076"};
ozonef1e_ye(foo[14:9],foo[ 5],foobar);
dude(foobar);
$fwrite (fd, " 1077:%s", foobar);
end
7'b??_?_001_?:
begin
ozonef1e(foo, foobar);
foobar = {foobar, " 1078"};
ozonef1e_ye(foo[14:9],foo[ 5],foobar);
foobar = {foobar, " 1079"};
foobar = {foobar, " 1080"};
ozonef1e_hl(foo[11:9],foo[ 5],foobar);
dude(foobar);
$fwrite (fd, " 1081:%s", foobar);
end
7'b??_?_011_?:
begin
ozonef1e(foo, foobar);
foobar = {foobar, " 1082"};
ozonef1e_ye(foo[14:9],foo[ 5],foobar);
foobar = {foobar, " 1083"};
foobar = {foobar, " 1084"};
ozonef1e_hl(foo[11:9],foo[ 5],foobar);
dude(foobar);
$fwrite (fd, " 1085:%s", foobar);
end
7'b??_?_101_?:
begin
ozonef1e(foo, foobar);
foobar = {foobar, " 1086"};
ozonef1e_ye(foo[14:9],foo[ 5],foobar);
dude(foobar);
$fwrite (fd, " 1087:%s", foobar);
end
endcase
17'b00_10??_?_????_?0_0110 :
begin
ozonef1e(foo, foobar);
foobar = {foobar, " 1088"};
ozoneae(foo[ 8: 6], foobar);
ozonef1e_hl(foo[11:9],foo[ 5],foobar);
foobar = {foobar, " 1089"};
ozonef1e_ye(foo[14:9],foo[ 5],foobar);
dude(foobar);
$fwrite (fd, " 1090:%s", foobar);
end
17'b00_10??_?_????_00_0111 :
begin
ozonef1e(foo, foobar);
foobar = {foobar, " 1091"};
if (foo[ 6])
foobar = {foobar, " 1092"};
else
ozonerab({4'b1001, foo[ 8: 6]}, foobar);
foobar = {foobar, " 1093"};
foobar = {foobar, " 1094"};
ozonerme(foo[14:12],foobar);
case (foo[11: 9])
3'h2,
3'h5,
3'h6,
3'h7:
ozonef1e_inc_dec(foo[14:9],1'b0,foobar);
3'h1,
3'h3,
3'h4:
foobar = {foobar, " 1095"};
endcase
dude(foobar);
$fwrite (fd, " 1096:%s", foobar);
end
17'b00_10??_?_????_?0_0100 :
begin
ozonef1e(foo, foobar);
foobar = {foobar, " 1097"};
ozonef1e_ye(foo[14:9],foo[ 5],foobar);
foobar = {foobar, " 1098"};
ozoneae(foo[ 8: 6], foobar);
ozonef1e_hl(foo[11:9],foo[ 5],foobar);
dude(foobar);
$fwrite (fd, " 1099:%s", foobar);
end
17'b00_10??_?_????_10_0111 :
begin
ozonef1e(foo, foobar);
foobar = {foobar, " 1100"};
foobar = {foobar, " 1101"};
ozonerme(foo[14:12],foobar);
case (foo[11: 9])
3'h2,
3'h5,
3'h6,
3'h7:
ozonef1e_inc_dec(foo[14:9],1'b0,foobar);
3'h1,
3'h3,
3'h4:
foobar = {foobar, " 1102"};
endcase
foobar = {foobar, " 1103"};
if (foo[ 6])
foobar = {foobar, " 1104"};
else
ozonerab({4'b1001, foo[ 8: 6]}, foobar);
dude(foobar);
$fwrite (fd, " 1105:%s", foobar);
end
17'b00_10??_?_????_?0_1110 :
begin
ozonef1e(foo, foobar);
foobar = {foobar, " 1106"};
case (foo[11:9])
3'h2:
begin
foobar = {foobar, " 1107"};
if (foo[14:12] == 3'h0)
foobar = {foobar, " 1108"};
else
ozonerme(foo[14:12],foobar);
foobar = {foobar, " 1109"};
end
3'h6:
begin
foobar = {foobar, " 1110"};
if (foo[14:12] == 3'h0)
foobar = {foobar, " 1111"};
else
ozonerme(foo[14:12],foobar);
foobar = {foobar, " 1112"};
end
3'h0:
begin
foobar = {foobar, " 1113"};
if (foo[14:12] == 3'h0)
foobar = {foobar, " 1114"};
else
ozonerme(foo[14:12],foobar);
foobar = {foobar, " 1115"};
if (foo[ 7: 5] >= 3'h5)
foobar = {foobar, " 1116"};
else
ozonexe(foo[ 8: 5], foobar);
end
3'h1:
begin
foobar = {foobar, " 1117"};
if (foo[14:12] == 3'h0)
foobar = {foobar, " 1118"};
else
ozonerme(foo[14:12],foobar);
foobar = {foobar, " 1119"};
if (foo[ 7: 5] >= 3'h5)
foobar = {foobar, " 1120"};
else
ozonexe(foo[ 8: 5], foobar);
end
3'h4:
begin
foobar = {foobar, " 1121"};
if (foo[14:12] == 3'h0)
foobar = {foobar, " 1122"};
else
ozonerme(foo[14:12],foobar);
foobar = {foobar, " 1123"};
if (foo[ 7: 5] >= 3'h5)
foobar = {foobar, " 1124"};
else
ozonexe(foo[ 8: 5], foobar);
end
3'h5:
begin
foobar = {foobar, " 1125"};
if (foo[14:12] == 3'h0)
foobar = {foobar, " 1126"};
else
ozonerme(foo[14:12],foobar);
foobar = {foobar, " 1127"};
if (foo[ 7: 5] >= 3'h5)
foobar = {foobar, " 1128"};
else
ozonexe(foo[ 8: 5], foobar);
end
endcase
dude(foobar);
$fwrite (fd, " 1129:%s", foobar);
end
17'b00_10??_?_????_?0_1111 :
casez (foo[14: 9])
6'b001_10_?:
begin
ozonef1e(foo, foobar);
foobar = {foobar, " 1130"};
foobar = {foobar, " 1131"};
ozonef1e_hl(foo[ 7: 5],foo[ 9],foobar);
foobar = {foobar, " 1132"};
ozonexe(foo[ 8: 5], foobar);
dude(foobar);
$fwrite (fd, " 1133:%s", foobar);
end
6'b???_11_?:
begin
ozonef1e(foo, foobar);
foobar = {foobar, " 1134"};
ozoneae(foo[14:12], foobar);
ozonef1e_hl(foo[ 7: 5],foo[ 9],foobar);
foobar = {foobar, " 1135"};
ozonexe(foo[ 8: 5], foobar);
dude(foobar);
$fwrite (fd, " 1136:%s", foobar);
end
6'b000_10_1,
6'b010_10_1,
6'b100_10_1,
6'b110_10_1:
begin
ozonef1e(foo, foobar);
foobar = {foobar, " 1137"};
ozonerab({4'b1001, foo[14:12]}, foobar);
foobar = {foobar, " 1138"};
if ((foo[ 7: 5] >= 3'h1) & (foo[ 7: 5] <= 3'h3))
foobar = {foobar, " 1139"};
else
ozonexe(foo[ 8: 5], foobar);
dude(foobar);
$fwrite (fd, " 1140:%s", foobar);
end
6'b000_10_0,
6'b010_10_0,
6'b100_10_0,
6'b110_10_0:
begin
ozonef1e(foo, foobar);
foobar = {foobar, " 1141"};
foobar = {foobar, " 1142"};
ozonerab({4'b1001, foo[14:12]}, foobar);
foobar = {foobar, " 1143"};
foobar = {foobar, " 1144"};
ozonef1e_h(foo[ 7: 5],foobar);
foobar = {foobar, " 1145"};
ozonexe(foo[ 8: 5], foobar);
dude(foobar);
$fwrite (fd, " 1146:%s", foobar);
end
6'b???_00_?:
begin
ozonef1e(foo, foobar);
foobar = {foobar, " 1147"};
if (foo[ 9])
begin
foobar = {foobar, " 1148"};
ozoneae(foo[14:12], foobar);
end
else
begin
foobar = {foobar, " 1149"};
ozoneae(foo[14:12], foobar);
foobar = {foobar, " 1150"};
end
foobar = {foobar, " 1151"};
foobar = {foobar, " 1152"};
ozonef1e_h(foo[ 7: 5],foobar);
foobar = {foobar, " 1153"};
ozonexe(foo[ 8: 5], foobar);
dude(foobar);
$fwrite (fd, " 1154:%s", foobar);
end
6'b???_01_?:
begin
ozonef1e(foo, foobar);
foobar = {foobar, " 1155"};
ozoneae(foo[14:12], foobar);
if (foo[ 9])
foobar = {foobar, " 1156"};
else
foobar = {foobar, " 1157"};
foobar = {foobar, " 1158"};
foobar = {foobar, " 1159"};
ozonef1e_h(foo[ 7: 5],foobar);
foobar = {foobar, " 1160"};
ozonexe(foo[ 8: 5], foobar);
dude(foobar);
$fwrite (fd, " 1161:%s", foobar);
end
6'b011_10_0:
begin
ozonef1e(foo, foobar);
foobar = {foobar, " 1162"};
case (foo[ 8: 5])
4'h0: foobar = {foobar, " 1163"};
4'h1: foobar = {foobar, " 1164"};
4'h2: foobar = {foobar, " 1165"};
4'h3: foobar = {foobar, " 1166"};
4'h4: foobar = {foobar, " 1167"};
4'h5: foobar = {foobar, " 1168"};
4'h8: foobar = {foobar, " 1169"};
4'h9: foobar = {foobar, " 1170"};
4'ha: foobar = {foobar, " 1171"};
4'hb: foobar = {foobar, " 1172"};
4'hc: foobar = {foobar, " 1173"};
4'hd: foobar = {foobar, " 1174"};
default: foobar = {foobar, " 1175"};
endcase
dude(foobar);
$fwrite (fd, " 1176:%s", foobar);
end
default: foobar = {foobar, " 1177"};
endcase
17'b00_10??_?_????_?0_110? :
begin
ozonef1e(foo, foobar);
foobar = {foobar, " 1178"};
foobar = {foobar, " 1179"};
ozonef1e_hl(foo[11:9], foo[0], foobar);
foobar = {foobar, " 1180"};
ozonef1e_ye(foo[14:9],1'b0,foobar);
foobar = {foobar, " 1181"};
ozonef1e_h(foo[ 7: 5],foobar);
foobar = {foobar, " 1182"};
ozonexe(foo[ 8: 5], foobar);
dude(foobar);
$fwrite (fd, " 1183:%s", foobar);
end
17'b00_10??_?_????_?1_110? :
begin
ozonef1e(foo, foobar);
foobar = {foobar, " 1184"};
foobar = {foobar, " 1185"};
ozonef1e_hl(foo[11:9],foo[0],foobar);
foobar = {foobar, " 1186"};
ozonef1e_ye(foo[14:9],foo[ 0],foobar);
foobar = {foobar, " 1187"};
foobar = {foobar, " 1188"};
ozonef1e_h(foo[ 7: 5],foobar);
foobar = {foobar, " 1189"};
ozonexe(foo[ 8: 5], foobar);
dude(foobar);
$fwrite (fd, " 1190:%s", foobar);
end
17'b00_10??_?_????_?0_101? :
begin
ozonef1e(foo, foobar);
foobar = {foobar, " 1191"};
ozonef1e_ye(foo[14:9],foo[ 0],foobar);
foobar = {foobar, " 1192"};
foobar = {foobar, " 1193"};
ozonef1e_hl(foo[11:9],foo[0],foobar);
foobar = {foobar, " 1194"};
foobar = {foobar, " 1195"};
ozonef1e_h(foo[ 7: 5],foobar);
foobar = {foobar, " 1196"};
ozonexe(foo[ 8: 5], foobar);
dude(foobar);
$fwrite (fd, " 1197:%s", foobar);
end
17'b00_10??_?_????_?0_1001 :
begin
ozonef1e(foo, foobar);
foobar = {foobar, " 1198"};
foobar = {foobar, " 1199"};
ozonef1e_h(foo[11:9],foobar);
foobar = {foobar, " 1200"};
ozonef1e_ye(foo[14:9],1'b0,foobar);
foobar = {foobar, " 1201"};
case (foo[ 7: 5])
3'h1,
3'h2,
3'h3:
foobar = {foobar, " 1202"};
default:
begin
foobar = {foobar, " 1203"};
foobar = {foobar, " 1204"};
ozonexe(foo[ 8: 5], foobar);
end
endcase
dude(foobar);
$fwrite (fd, " 1205:%s", foobar);
end
17'b00_10??_?_????_?0_0101 :
begin
ozonef1e(foo, foobar);
foobar = {foobar, " 1206"};
case (foo[11: 9])
3'h1,
3'h3,
3'h4:
foobar = {foobar, " 1207"};
default:
begin
ozonef1e_ye(foo[14:9],1'b0,foobar);
foobar = {foobar, " 1208"};
foobar = {foobar, " 1209"};
end
endcase
foobar = {foobar, " 1210"};
foobar = {foobar, " 1211"};
ozonef1e_h(foo[ 7: 5],foobar);
foobar = {foobar, " 1212"};
ozonexe(foo[ 8: 5], foobar);
dude(foobar);
$fwrite (fd, " 1213:%s", foobar);
end
17'b00_10??_?_????_?1_1110 :
begin
ozonef1e(foo, foobar);
foobar = {foobar, " 1214"};
ozonef1e_ye(foo[14:9],1'b0,foobar);
foobar = {foobar, " 1215"};
foobar = {foobar, " 1216"};
ozonef1e_h(foo[11: 9],foobar);
foobar = {foobar, " 1217"};
foobar = {foobar, " 1218"};
ozonef1e_h(foo[ 7: 5],foobar);
foobar = {foobar, " 1219"};
ozonexe(foo[ 8: 5], foobar);
dude(foobar);
$fwrite (fd, " 1220:%s", foobar);
end
17'b00_10??_?_????_?0_1000 :
begin
ozonef1e(foo, foobar);
foobar = {foobar, " 1221"};
ozonef1e_ye(foo[14:9],1'b0,foobar);
foobar = {foobar, " 1222"};
foobar = {foobar, " 1223"};
ozonef1e_h(foo[11: 9],foobar);
foobar = {foobar, " 1224"};
foobar = {foobar, " 1225"};
ozonef1e_h(foo[ 7: 5],foobar);
foobar = {foobar, " 1226"};
ozonexe(foo[ 8: 5], foobar);
dude(foobar);
$fwrite (fd, " 1227:%s", foobar);
end
17'b10_01??_?_????_??_???? :
begin
if (foo[27])
foobar = " 1228";
else
foobar = " 1229";
ozonecon(foo[20:16], foobar);
foobar = {foobar, " 1230"};
ozonef2(foo[31:0], foobar);
dude(foobar);
$fwrite (fd, " 1231:%s", foobar);
end
17'b00_1000_?_????_01_0011 :
if (~|foo[ 9: 8])
begin
if (foo[ 7])
foobar = " 1232";
else
foobar = " 1233";
ozonecon(foo[14:10], foobar);
foobar = {foobar, " 1234"};
ozonef2e(foo[31:0], foobar);
dude(foobar);
$fwrite (fd, " 1235:%s", foobar);
end
else
begin
foobar = " 1236";
ozonecon(foo[14:10], foobar);
foobar = {foobar, " 1237"};
ozonef3e(foo[31:0], foobar);
dude(foobar);
$fwrite (fd, " 1238:%s", foobar);
end
17'b11_110?_1_????_??_???? :
begin
ozonef3(foo[31:0], foobar);
dude(foobar);
$fwrite(fd, " 1239:%s", foobar);
end
17'b11_110?_0_????_??_???? :
begin : f4_body
casez (foo[24:20])
5'b0_1110,
5'b1_0???,
5'b1_1111:
begin
$fwrite (fd, " 1240");
end
5'b0_00??:
begin
ozoneacc(foo[26], foobar);
foobar = {foobar, " 1241"};
ozoneacc(foo[25], foobar);
ozonebmuop(foo[24:20], foobar);
ozoneae(foo[18:16], foobar);
foobar = {foobar, " 1242"};
dude(foobar);
$fwrite(fd, " 1243:%s", foobar);
end
5'b0_01??:
begin
ozoneacc(foo[26], foobar);
foobar = {foobar, " 1244"};
ozoneacc(foo[25], foobar);
ozonebmuop(foo[24:20], foobar);
ozonearm(foo[18:16], foobar);
dude(foobar);
$fwrite(fd, " 1245:%s", foobar);
end
5'b0_1011:
begin
ozoneacc(foo[26], foobar);
foobar = {foobar, " 1246"};
ozonebmuop(foo[24:20], foobar);
foobar = {foobar, " 1247"};
ozoneae(foo[18:16], foobar);
foobar = {foobar, " 1248"};
dude(foobar);
$fwrite(fd, " 1249:%s", foobar);
end
5'b0_100?,
5'b0_1010,
5'b0_110? :
begin
ozoneacc(foo[26], foobar);
foobar = {foobar, " 1250"};
ozonebmuop(foo[24:20], foobar);
foobar = {foobar, " 1251"};
ozoneacc(foo[25], foobar);
foobar = {foobar, " 1252"};
ozoneae(foo[18:16], foobar);
foobar = {foobar, " 1253"};
dude(foobar);
$fwrite(fd, " 1254:%s", foobar);
end
5'b0_1111 :
begin
ozoneacc(foo[26], foobar);
foobar = {foobar, " 1255"};
ozoneacc(foo[25], foobar);
foobar = {foobar, " 1256"};
ozoneae(foo[18:16], foobar);
dude(foobar);
$fwrite(fd, " 1257:%s", foobar);
end
5'b1_10??,
5'b1_110?,
5'b1_1110 :
begin
ozoneacc(foo[26], foobar);
foobar = {foobar, " 1258"};
ozonebmuop(foo[24:20], foobar);
foobar = {foobar, " 1259"};
ozoneacc(foo[25], foobar);
foobar = {foobar, " 1260"};
ozonearm(foo[18:16], foobar);
foobar = {foobar, " 1261"};
dude(foobar);
$fwrite(fd, " 1262:%s", foobar);
end
endcase
end
17'b11_100?_?_????_??_???? :
casez (foo[23:19])
5'b111??,
5'b0111?:
begin
ozoneae(foo[26:24], foobar);
foobar = {foobar, " 1263"};
ozonef3f4imop(foo[23:19], foobar);
foobar = {foobar, " 1264"};
ozoneae(foo[18:16], foobar);
foobar = {foobar, " 1265"};
skyway(foo[15:12], foobar);
skyway(foo[11: 8], foobar);
skyway(foo[ 7: 4], foobar);
skyway(foo[ 3:0], foobar);
foobar = {foobar, " 1266"};
dude(foobar);
$fwrite(fd, " 1267:%s", foobar);
end
5'b?0???,
5'b110??:
begin
ozoneae(foo[26:24], foobar);
foobar = {foobar, " 1268"};
if (foo[23:21] == 3'b100)
foobar = {foobar, " 1269"};
ozoneae(foo[18:16], foobar);
if (foo[19])
foobar = {foobar, " 1270"};
else
foobar = {foobar, " 1271"};
ozonef3f4imop(foo[23:19], foobar);
foobar = {foobar, " 1272"};
ozonef3f4_iext(foo[20:19], foo[15:0], foobar);
dude(foobar);
$fwrite(fd, " 1273:%s", foobar);
end
5'b010??,
5'b0110?:
begin
ozoneae(foo[18:16], foobar);
if (foo[19])
foobar = {foobar, " 1274"};
else
foobar = {foobar, " 1275"};
ozonef3f4imop(foo[23:19], foobar);
foobar = {foobar, " 1276"};
ozonef3f4_iext(foo[20:19], foo[15:0], foobar);
dude(foobar);
$fwrite(fd, " 1277:%s", foobar);
end
endcase
17'b00_1000_?_????_11_0011 :
begin
foobar = " 1278";
ozonecon(foo[14:10], foobar);
foobar = {foobar, " 1279"};
casez (foo[25:21])
5'b0_1110,
5'b1_0???,
5'b1_1111:
begin
$fwrite(fd, " 1280");
end
5'b0_00??:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar, " 1281"};
ozoneae(foo[17:15], foobar);
ozonebmuop(foo[25:21], foobar);
ozoneae(foo[ 8: 6], foobar);
foobar = {foobar, " 1282"};
dude(foobar);
$fwrite(fd, " 1283:%s", foobar);
end
5'b0_01??:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar, " 1284"};
ozoneae(foo[17:15], foobar);
ozonebmuop(foo[25:21], foobar);
ozonearm(foo[ 8: 6], foobar);
dude(foobar);
$fwrite(fd, " 1285:%s", foobar);
end
5'b0_1011:
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar, " 1286"};
ozonebmuop(foo[25:21], foobar);
foobar = {foobar, " 1287"};
ozoneae(foo[ 8: 6], foobar);
foobar = {foobar, " 1288"};
dude(foobar);
$fwrite(fd, " 1289:%s", foobar);
end
5'b0_100?,
5'b0_1010,
5'b0_110? :
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar, " 1290"};
ozonebmuop(foo[25:21], foobar);
foobar = {foobar, " 1291"};
ozoneae(foo[17:15], foobar);
foobar = {foobar, " 1292"};
ozoneae(foo[ 8: 6], foobar);
foobar = {foobar, " 1293"};
dude(foobar);
$fwrite(fd, " 1294:%s", foobar);
end
5'b0_1111 :
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar, " 1295"};
ozoneae(foo[17:15], foobar);
foobar = {foobar, " 1296"};
ozoneae(foo[ 8: 6], foobar);
dude(foobar);
$fwrite(fd, " 1297:%s", foobar);
end
5'b1_10??,
5'b1_110?,
5'b1_1110 :
begin
ozoneae(foo[20:18], foobar);
foobar = {foobar, " 1298"};
ozonebmuop(foo[25:21], foobar);
foobar = {foobar, " 1299"};
ozoneae(foo[17:15], foobar);
foobar = {foobar, " 1300"};
ozonearm(foo[ 8: 6], foobar);
foobar = {foobar, " 1301"};
dude(foobar);
$fwrite(fd, " 1302:%s", foobar);
end
endcase
end
17'b00_0010_?_????_??_???? :
begin
$fwrite(fd, " 1304a:%x;%x", foobar, foo[25:20]);
ozonerab({1'b0, foo[25:20]}, foobar);
$fwrite(fd, " 1304b:%x", foobar);
foobar = {foobar, " 1303"};
$fwrite(fd, " 1304c:%x;%x", foobar, foo[19:16]);
skyway(foo[19:16], foobar);
$fwrite(fd, " 1304d:%x", foobar);
dude(foobar);
$fwrite(fd, " 1304e:%x", foobar);
$fwrite(fd, " 1304:%s", foobar);
end
17'b00_01??_?_????_??_???? :
begin
if (foo[27])
begin
foobar = {foobar, " 1305"};
if (foo[26])
foobar = {foobar, " 1306"};
else
foobar = {foobar, " 1307"};
skyway(foo[19:16], foobar);
foobar = {foobar, " 1308"};
ozonerab({1'b0, foo[25:20]}, foobar);
end
else
begin
ozonerab({1'b0, foo[25:20]}, foobar);
foobar = {foobar, " 1309"};
if (foo[26])
foobar = {foobar, " 1310"};
else
foobar = {foobar, " 1311"};
skyway(foo[19:16], foobar);
foobar = {foobar, " 1312"};
end
dude(foobar);
$fwrite(fd, " 1313:%s", foobar);
end
17'b01_000?_?_????_??_???? :
begin
if (foo[26])
begin
ozonerb(foo[25:20], foobar);
foobar = {foobar, " 1314"};
ozoneae(foo[18:16], foobar);
ozonehl(foo[19], foobar);
end
else
begin
ozoneae(foo[18:16], foobar);
ozonehl(foo[19], foobar);
foobar = {foobar, " 1315"};
ozonerb(foo[25:20], foobar);
end
dude(foobar);
$fwrite(fd, " 1316:%s", foobar);
end
17'b01_10??_?_????_??_???? :
begin
if (foo[27])
begin
ozonerab({1'b0, foo[25:20]}, foobar);
foobar = {foobar, " 1317"};
ozonerx(foo, foobar);
end
else
begin
ozonerx(foo, foobar);
foobar = {foobar, " 1318"};
ozonerab({1'b0, foo[25:20]}, foobar);
end
dude(foobar);
$fwrite(fd, " 1319:%s", foobar);
end
17'b11_101?_?_????_??_???? :
begin
ozonerab (foo[26:20], foobar);
foobar = {foobar, " 1320"};
skyway(foo[19:16], foobar);
skyway(foo[15:12], foobar);
skyway(foo[11: 8], foobar);
skyway(foo[ 7: 4], foobar);
skyway(foo[ 3: 0], foobar);
dude(foobar);
$fwrite(fd, " 1321:%s", foobar);
end
17'b11_0000_?_????_??_???? :
begin
casez (foo[25:23])
3'b00?:
begin
ozonerab(foo[22:16], foobar);
foobar = {foobar, " 1322"};
end
3'b01?:
begin
foobar = {foobar, " 1323"};
if (foo[22:16]>=7'h60)
foobar = {foobar, " 1324"};
else
ozonerab(foo[22:16], foobar);
end
3'b110:
foobar = {foobar, " 1325"};
3'b10?:
begin
foobar = {foobar, " 1326"};
if (foo[22:16]>=7'h60)
foobar = {foobar, " 1327"};
else
ozonerab(foo[22:16], foobar);
end
3'b111:
begin
foobar = {foobar, " 1328"};
ozonerab(foo[22:16], foobar);
foobar = {foobar, " 1329"};
end
endcase
dude(foobar);
$fwrite(fd, " 1330:%s", foobar);
end
17'b00_10??_?_????_?1_0000 :
begin
if (foo[27])
begin
foobar = {foobar, " 1331"};
ozonerp(foo[14:12], foobar);
foobar = {foobar, " 1332"};
skyway(foo[19:16], foobar);
skyway({foo[15],foo[11: 9]}, foobar);
skyway(foo[ 8: 5], foobar);
foobar = {foobar, " 1333"};
if (foo[26:20]>=7'h60)
foobar = {foobar, " 1334"};
else
ozonerab(foo[26:20], foobar);
end
else
begin
ozonerab(foo[26:20], foobar);
foobar = {foobar, " 1335"};
foobar = {foobar, " 1336"};
ozonerp(foo[14:12], foobar);
foobar = {foobar, " 1337"};
skyway(foo[19:16], foobar);
skyway({foo[15],foo[11: 9]}, foobar);
skyway(foo[ 8: 5], foobar);
foobar = {foobar, " 1338"};
end
dude(foobar);
$fwrite(fd, " 1339:%s", foobar);
end
17'b00_101?_1_0000_?1_0010 :
if (~|foo[11: 7])
begin
if (foo[ 6])
begin
foobar = {foobar, " 1340"};
ozonerp(foo[14:12], foobar);
foobar = {foobar, " 1341"};
ozonejk(foo[ 5], foobar);
foobar = {foobar, " 1342"};
if (foo[26:20]>=7'h60)
foobar = {foobar, " 1343"};
else
ozonerab(foo[26:20], foobar);
end
else
begin
ozonerab(foo[26:20], foobar);
foobar = {foobar, " 1344"};
foobar = {foobar, " 1345"};
ozonerp(foo[14:12], foobar);
foobar = {foobar, " 1346"};
ozonejk(foo[ 5], foobar);
foobar = {foobar, " 1347"};
end
dude(foobar);
$fwrite(fd, " 1348:%s", foobar);
end
else
$fwrite(fd, " 1349");
17'b00_100?_0_0011_?1_0101 :
if (~|foo[ 8: 7])
begin
if (foo[6])
begin
ozonerab(foo[26:20], foobar);
foobar = {foobar, " 1350"};
ozoneye(foo[14: 9],foo[ 5], foobar);
end
else
begin
ozoneye(foo[14: 9],foo[ 5], foobar);
foobar = {foobar, " 1351"};
if (foo[26:20]>=7'h60)
foobar = {foobar, " 1352"};
else
ozonerab(foo[26:20], foobar);
end
dude(foobar);
$fwrite(fd, " 1353:%s", foobar);
end
else
$fwrite(fd, " 1354");
17'b00_1001_0_0000_?1_0010 :
if (~|foo[25:20])
begin
ozoneye(foo[14: 9],1'b0, foobar);
foobar = {foobar, " 1355"};
ozonef1e_h(foo[11: 9],foobar);
foobar = {foobar, " 1356"};
ozonef1e_h(foo[ 7: 5],foobar);
foobar = {foobar, " 1357"};
ozonexe(foo[ 8: 5], foobar);
dude(foobar);
$fwrite(fd, " 1358:%s", foobar);
end
else
$fwrite(fd, " 1359");
17'b00_101?_0_????_?1_0010 :
if (~foo[13])
begin
if (foo[12])
begin
foobar = {foobar, " 1360"};
if (foo[26:20]>=7'h60)
foobar = {foobar, " 1361"};
else
ozonerab(foo[26:20], foobar);
foobar = {foobar, " 1362"};
foobar = {foobar, " 1363"};
skyway({1'b0,foo[18:16]}, foobar);
skyway({foo[15],foo[11: 9]}, foobar);
skyway(foo[ 8: 5], foobar);
dude(foobar);
$fwrite(fd, " 1364:%s", foobar);
end
else
begin
ozonerab(foo[26:20], foobar);
foobar = {foobar, " 1365"};
foobar = {foobar, " 1366"};
skyway({1'b0,foo[18:16]}, foobar);
skyway({foo[15],foo[11: 9]}, foobar);
skyway(foo[ 8: 5], foobar);
dude(foobar);
$fwrite(fd, " 1367:%s", foobar);
end
end
else
$fwrite(fd, " 1368");
17'b01_01??_?_????_??_???? :
begin
ozonerab({1'b0,foo[27:26],foo[19:16]}, foobar);
foobar = {foobar, " 1369"};
ozonerab({1'b0,foo[25:20]}, foobar);
dude(foobar);
$fwrite(fd, " 1370:%s", foobar);
end
17'b00_100?_?_???0_11_0101 :
if (~foo[6])
begin
foobar = " 1371";
ozonecon(foo[14:10], foobar);
foobar = {foobar, " 1372"};
ozonerab({foo[ 9: 7],foo[19:16]}, foobar);
foobar = {foobar, " 1373"};
ozonerab({foo[26:20]}, foobar);
dude(foobar);
$fwrite(fd, " 1374:%s", foobar);
end
else
$fwrite(fd, " 1375");
17'b00_1000_?_????_?1_0010 :
if (~|foo[25:24])
begin
ozonery(foo[23:20], foobar);
foobar = {foobar, " 1376"};
ozonerp(foo[14:12], foobar);
foobar = {foobar, " 1377"};
skyway(foo[19:16], foobar);
skyway({foo[15],foo[11: 9]}, foobar);
skyway(foo[ 8: 5], foobar);
dude(foobar);
$fwrite(fd, " 1378:%s", foobar);
end
else if ((foo[25:24] == 2'b10) & ~|foo[19:15] & ~|foo[11: 6])
begin
ozonery(foo[23:20], foobar);
foobar = {foobar, " 1379"};
ozonerp(foo[14:12], foobar);
foobar = {foobar, " 1380"};
ozonejk(foo[ 5], foobar);
dude(foobar);
$fwrite(fd, " 1381:%s", foobar);
end
else
$fwrite(fd, " 1382");
17'b11_01??_?_????_??_????,
17'b10_00??_?_????_??_???? :
if (foo[30])
$fwrite(fd, " 1383:%s", foo[27:16]);
else
$fwrite(fd, " 1384:%s", foo[27:16]);
17'b00_10??_?_????_01_1000 :
if (~foo[6])
begin
if (foo[7])
$fwrite(fd, " 1385:%s", foo[27: 8]);
else
$fwrite(fd, " 1386:%s", foo[27: 8]);
end
else
$fwrite(fd, " 1387");
17'b00_10??_?_????_11_1000 :
begin
foobar = " 1388";
ozonecon(foo[14:10], foobar);
foobar = {foobar, " 1389"};
if (foo[15])
foobar = {foobar, " 1390"};
else
foobar = {foobar, " 1391"};
skyway(foo[27:24], foobar);
skyway(foo[23:20], foobar);
skyway(foo[19:16], foobar);
skyway(foo[ 9: 6], foobar);
dude(foobar);
$fwrite(fd, " 1392:%s", foobar);
end
17'b11_0001_?_????_??_???? :
casez (foo[25:22])
4'b01?? :
begin
foobar = " 1393";
ozonecon(foo[20:16], foobar);
case (foo[23:21])
3'h0 : foobar = {foobar, " 1394"};
3'h1 : foobar = {foobar, " 1395"};
3'h2 : foobar = {foobar, " 1396"};
3'h3 : foobar = {foobar, " 1397"};
3'h4 : foobar = {foobar, " 1398"};
3'h5 : foobar = {foobar, " 1399"};
3'h6 : foobar = {foobar, " 1400"};
3'h7 : foobar = {foobar, " 1401"};
endcase
dude(foobar);
$fwrite(fd, " 1402:%s", foobar);
end
4'b0000 :
$fwrite(fd, " 1403:%s", foo[21:16]);
4'b0010 :
if (~|foo[21:16])
$fwrite(fd, " 1404");
4'b1010 :
if (~|foo[21:17])
begin
if (foo[16])
$fwrite(fd, " 1405");
else
$fwrite(fd, " 1406");
end
default :
$fwrite(fd, " 1407");
endcase
17'b01_11??_?_????_??_???? :
if (foo[27:23] === 5'h00)
$fwrite(fd, " 1408:%s", foo[22:16]);
else
$fwrite(fd, " 1409:%s", foo[22:16]);
default: $fwrite(fd, " 1410");
endcase
end
endtask
//(query-replace-regexp "\\([a-z0-9_]+\\) *( *\\([][a-z0-9_~': ]+\\) *, *\\([][a-z0-9'~: ]+\\) *, *\\([][a-z0-9'~: ]+\\) *);" "$c(\"\\1(\",\\2,\",\",\\3,\",\",\\4,\");\");" nil nil nil)
//(query-replace-regexp "\\([a-z0-9_]+\\) *( *\\([][a-z0-9_~': ]+\\) *, *\\([][a-z0-9'~: ]+\\) *);" "$c(\"\\1(\",\\2,\",\",\\3,\");\");" nil nil nil)
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2005 by Wilson Snyder.
//
// Example module to create problem.
//
// generate a 64 bit value with bits
// [HighMaskSel_Bot : LowMaskSel_Bot ] = 1
// [HighMaskSel_Top+32: LowMaskSel_Top+32] = 1
// all other bits zero.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc; initial cyc=0;
reg [7:0] crc;
reg [63:0] sum;
/*AUTOWIRE*/
// Beginning of automatic wires (for undeclared instantiated-module outputs)
wire [63:0] HighLogicImm; // From example of example.v
wire [63:0] LogicImm; // From example of example.v
wire [63:0] LowLogicImm; // From example of example.v
// End of automatics
wire [5:0] LowMaskSel_Top = crc[5:0];
wire [5:0] LowMaskSel_Bot = crc[5:0];
wire [5:0] HighMaskSel_Top = crc[5:0]+{4'b0,crc[7:6]};
wire [5:0] HighMaskSel_Bot = crc[5:0]+{4'b0,crc[7:6]};
example example (/*AUTOINST*/
// Outputs
.LogicImm (LogicImm[63:0]),
.LowLogicImm (LowLogicImm[63:0]),
.HighLogicImm (HighLogicImm[63:0]),
// Inputs
.LowMaskSel_Top (LowMaskSel_Top[5:0]),
.HighMaskSel_Top (HighMaskSel_Top[5:0]),
.LowMaskSel_Bot (LowMaskSel_Bot[5:0]),
.HighMaskSel_Bot (HighMaskSel_Bot[5:0]));
always @ (posedge clk) begin
cyc <= cyc + 1;
crc <= {crc[6:0], ~^ {crc[7],crc[5],crc[4],crc[3]}};
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d crc=%b %d.%d,%d.%d -> %x.%x -> %x\n",$time, cyc, crc,
LowMaskSel_Top, HighMaskSel_Top, LowMaskSel_Bot, HighMaskSel_Bot,
LowLogicImm, HighLogicImm, LogicImm);
`endif
if (cyc==0) begin
// Single case
crc <= 8'h0;
sum <= 64'h0;
end
else if (cyc==1) begin
// Setup
crc <= 8'hed;
sum <= 64'h0;
end
else if (cyc<90) begin
sum <= {sum[62:0],sum[63]} ^ LogicImm;
end
else if (cyc==99) begin
$write("[%0t] cyc==%0d crc=%b %x\n",$time, cyc, crc, sum);
if (crc !== 8'b00111000) $stop;
if (sum !== 64'h58743ffa61e41075) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
module example (/*AUTOARG*/
// Outputs
LogicImm, LowLogicImm, HighLogicImm,
// Inputs
LowMaskSel_Top, HighMaskSel_Top, LowMaskSel_Bot, HighMaskSel_Bot
);
input [5:0] LowMaskSel_Top, HighMaskSel_Top;
input [5:0] LowMaskSel_Bot, HighMaskSel_Bot;
output [63:0] LogicImm;
output [63:0] LowLogicImm, HighLogicImm;
wire [63:0] LowLogicImm, HighLogicImm;
/* verilator lint_off UNSIGNED */
/* verilator lint_off CMPCONST */
genvar i;
generate
for (i=0;i<64;i=i+1) begin : MaskVal
if (i >= 32) begin
assign LowLogicImm[i] = (LowMaskSel_Top <= i[5:0]);
assign HighLogicImm[i] = (HighMaskSel_Top >= i[5:0]);
end
else begin
assign LowLogicImm[i] = (LowMaskSel_Bot <= i[5:0]);
assign HighLogicImm[i] = (HighMaskSel_Bot >= i[5:0]);
end
end
endgenerate
/* verilator lint_on UNSIGNED */
/* verilator lint_on CMPCONST */
assign LogicImm = LowLogicImm & HighLogicImm;
endmodule
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2005 by Wilson Snyder.
//
// Example module to create problem.
//
// generate a 64 bit value with bits
// [HighMaskSel_Bot : LowMaskSel_Bot ] = 1
// [HighMaskSel_Top+32: LowMaskSel_Top+32] = 1
// all other bits zero.
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc; initial cyc=0;
reg [7:0] crc;
reg [63:0] sum;
/*AUTOWIRE*/
// Beginning of automatic wires (for undeclared instantiated-module outputs)
wire [63:0] HighLogicImm; // From example of example.v
wire [63:0] LogicImm; // From example of example.v
wire [63:0] LowLogicImm; // From example of example.v
// End of automatics
wire [5:0] LowMaskSel_Top = crc[5:0];
wire [5:0] LowMaskSel_Bot = crc[5:0];
wire [5:0] HighMaskSel_Top = crc[5:0]+{4'b0,crc[7:6]};
wire [5:0] HighMaskSel_Bot = crc[5:0]+{4'b0,crc[7:6]};
example example (/*AUTOINST*/
// Outputs
.LogicImm (LogicImm[63:0]),
.LowLogicImm (LowLogicImm[63:0]),
.HighLogicImm (HighLogicImm[63:0]),
// Inputs
.LowMaskSel_Top (LowMaskSel_Top[5:0]),
.HighMaskSel_Top (HighMaskSel_Top[5:0]),
.LowMaskSel_Bot (LowMaskSel_Bot[5:0]),
.HighMaskSel_Bot (HighMaskSel_Bot[5:0]));
always @ (posedge clk) begin
cyc <= cyc + 1;
crc <= {crc[6:0], ~^ {crc[7],crc[5],crc[4],crc[3]}};
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d crc=%b %d.%d,%d.%d -> %x.%x -> %x\n",$time, cyc, crc,
LowMaskSel_Top, HighMaskSel_Top, LowMaskSel_Bot, HighMaskSel_Bot,
LowLogicImm, HighLogicImm, LogicImm);
`endif
if (cyc==0) begin
// Single case
crc <= 8'h0;
sum <= 64'h0;
end
else if (cyc==1) begin
// Setup
crc <= 8'hed;
sum <= 64'h0;
end
else if (cyc<90) begin
sum <= {sum[62:0],sum[63]} ^ LogicImm;
end
else if (cyc==99) begin
$write("[%0t] cyc==%0d crc=%b %x\n",$time, cyc, crc, sum);
if (crc !== 8'b00111000) $stop;
if (sum !== 64'h58743ffa61e41075) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
module example (/*AUTOARG*/
// Outputs
LogicImm, LowLogicImm, HighLogicImm,
// Inputs
LowMaskSel_Top, HighMaskSel_Top, LowMaskSel_Bot, HighMaskSel_Bot
);
input [5:0] LowMaskSel_Top, HighMaskSel_Top;
input [5:0] LowMaskSel_Bot, HighMaskSel_Bot;
output [63:0] LogicImm;
output [63:0] LowLogicImm, HighLogicImm;
wire [63:0] LowLogicImm, HighLogicImm;
/* verilator lint_off UNSIGNED */
/* verilator lint_off CMPCONST */
genvar i;
generate
for (i=0;i<64;i=i+1) begin : MaskVal
if (i >= 32) begin
assign LowLogicImm[i] = (LowMaskSel_Top <= i[5:0]);
assign HighLogicImm[i] = (HighMaskSel_Top >= i[5:0]);
end
else begin
assign LowLogicImm[i] = (LowMaskSel_Bot <= i[5:0]);
assign HighLogicImm[i] = (HighMaskSel_Bot >= i[5:0]);
end
end
endgenerate
/* verilator lint_on UNSIGNED */
/* verilator lint_on CMPCONST */
assign LogicImm = LowLogicImm & HighLogicImm;
endmodule
|
// megafunction wizard: %ALTTEMP_SENSE%
// GENERATION: STANDARD
// VERSION: WM1.0
// MODULE: ALTTEMP_SENSE
// ============================================================
// File Name: temp_sense.v
// Megafunction Name(s):
// ALTTEMP_SENSE
//
// Simulation Library Files(s):
//
// ============================================================
// ************************************************************
// THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE!
//
// 12.0 Build 263 08/02/2012 SP 2 SJ Full Version
// ************************************************************
//Copyright (C) 1991-2012 Altera Corporation
//Your use of Altera Corporation's design tools, logic functions
//and other software and tools, and its AMPP partner logic
//functions, and any output files from any of the foregoing
//(including device programming or simulation files), and any
//associated documentation or information are expressly subject
//to the terms and conditions of the Altera Program License
//Subscription Agreement, Altera MegaCore Function License
//Agreement, or other applicable license agreement, including,
//without limitation, that your use is for the sole purpose of
//programming logic devices manufactured by Altera and sold by
//Altera or its authorized distributors. Please refer to the
//applicable agreement for further details.
//alttemp_sense CBX_AUTO_BLACKBOX="ALL" CLK_FREQUENCY="50.0" CLOCK_DIVIDER_ENABLE="on" CLOCK_DIVIDER_VALUE=80 DEVICE_FAMILY="Stratix V" NUMBER_OF_SAMPLES=128 POI_CAL_TEMPERATURE=85 SIM_TSDCALO=0 USE_WYS="on" USER_OFFSET_ENABLE="off" ce clk clr tsdcaldone tsdcalo ALTERA_INTERNAL_OPTIONS=SUPPRESS_DA_RULE_INTERNAL=C106
//VERSION_BEGIN 12.0SP2 cbx_alttemp_sense 2012:08:02:15:11:11:SJ cbx_cycloneii 2012:08:02:15:11:11:SJ cbx_lpm_add_sub 2012:08:02:15:11:11:SJ cbx_lpm_compare 2012:08:02:15:11:11:SJ cbx_lpm_counter 2012:08:02:15:11:11:SJ cbx_lpm_decode 2012:08:02:15:11:11:SJ cbx_mgl 2012:08:02:15:40:54:SJ cbx_stratix 2012:08:02:15:11:11:SJ cbx_stratixii 2012:08:02:15:11:11:SJ cbx_stratixiii 2012:08:02:15:11:11:SJ cbx_stratixv 2012:08:02:15:11:11:SJ VERSION_END
// synthesis VERILOG_INPUT_VERSION VERILOG_2001
// altera message_off 10463
//synthesis_resources = stratixv_tsdblock 1
//synopsys translate_off
`timescale 1 ps / 1 ps
//synopsys translate_on
(* ALTERA_ATTRIBUTE = {"SUPPRESS_DA_RULE_INTERNAL=C106"} *)
module temp_sense_alttemp_sense_v8t
(
ce,
clk,
clr,
tsdcaldone,
tsdcalo) /* synthesis synthesis_clearbox=2 */;
input ce;
input clk;
input clr;
output tsdcaldone;
output [7:0] tsdcalo;
`ifndef ALTERA_RESERVED_QIS
// synopsys translate_off
`endif
tri1 ce;
tri0 clr;
`ifndef ALTERA_RESERVED_QIS
// synopsys translate_on
`endif
wire wire_sd1_tsdcaldone;
wire [7:0] wire_sd1_tsdcalo;
stratixv_tsdblock sd1
(
.ce(ce),
.clk(clk),
.clr(clr),
.tsdcaldone(wire_sd1_tsdcaldone),
.tsdcalo(wire_sd1_tsdcalo));
defparam
sd1.clock_divider_enable = "true",
sd1.clock_divider_value = 80,
sd1.sim_tsdcalo = 0,
sd1.lpm_type = "stratixv_tsdblock";
assign
tsdcaldone = wire_sd1_tsdcaldone,
tsdcalo = wire_sd1_tsdcalo;
endmodule //temp_sense_alttemp_sense_v8t
//VALID FILE
// synopsys translate_off
`timescale 1 ps / 1 ps
// synopsys translate_on
module temp_sense (
ce,
clk,
clr,
tsdcaldone,
tsdcalo)/* synthesis synthesis_clearbox = 2 */;
input ce;
input clk;
input clr;
output tsdcaldone;
output [7:0] tsdcalo;
wire [7:0] sub_wire0;
wire sub_wire1;
wire [7:0] tsdcalo = sub_wire0[7:0];
wire tsdcaldone = sub_wire1;
temp_sense_alttemp_sense_v8t temp_sense_alttemp_sense_v8t_component (
.ce (ce),
.clk (clk),
.clr (clr),
.tsdcalo (sub_wire0),
.tsdcaldone (sub_wire1))/* synthesis synthesis_clearbox=2
clearbox_macroname = ALTTEMP_SENSE
clearbox_defparam = "clk_frequency=50.0;clock_divider_enable=ON;clock_divider_value=80;intended_device_family=Stratix V;lpm_hint=UNUSED;lpm_type=alttemp_sense;number_of_samples=128;poi_cal_temperature=85;sim_tsdcalo=0;user_offset_enable=off;use_wys=on;" */;
endmodule
// ============================================================
// CNX file retrieval info
// ============================================================
// Retrieval info: LIBRARY: altera_mf altera_mf.altera_mf_components.all
// Retrieval info: PRIVATE: INTENDED_DEVICE_FAMILY STRING "Stratix V"
// Retrieval info: CONSTANT: CLK_FREQUENCY STRING "50.0"
// Retrieval info: CONSTANT: CLOCK_DIVIDER_ENABLE STRING "ON"
// Retrieval info: CONSTANT: CLOCK_DIVIDER_VALUE NUMERIC "80"
// Retrieval info: CONSTANT: INTENDED_DEVICE_FAMILY STRING "Stratix V"
// Retrieval info: CONSTANT: LPM_HINT STRING "UNUSED"
// Retrieval info: CONSTANT: LPM_TYPE STRING "alttemp_sense"
// Retrieval info: CONSTANT: NUMBER_OF_SAMPLES NUMERIC "128"
// Retrieval info: CONSTANT: POI_CAL_TEMPERATURE NUMERIC "85"
// Retrieval info: CONSTANT: SIM_TSDCALO NUMERIC "0"
// Retrieval info: CONSTANT: USER_OFFSET_ENABLE STRING "off"
// Retrieval info: CONSTANT: USE_WYS STRING "on"
// Retrieval info: USED_PORT: ce 0 0 0 0 INPUT NODEFVAL "ce"
// Retrieval info: CONNECT: @ce 0 0 0 0 ce 0 0 0 0
// Retrieval info: USED_PORT: clk 0 0 0 0 INPUT NODEFVAL "clk"
// Retrieval info: CONNECT: @clk 0 0 0 0 clk 0 0 0 0
// Retrieval info: USED_PORT: clr 0 0 0 0 INPUT NODEFVAL "clr"
// Retrieval info: CONNECT: @clr 0 0 0 0 clr 0 0 0 0
// Retrieval info: USED_PORT: tsdcaldone 0 0 0 0 OUTPUT NODEFVAL "tsdcaldone"
// Retrieval info: CONNECT: tsdcaldone 0 0 0 0 @tsdcaldone 0 0 0 0
// Retrieval info: USED_PORT: tsdcalo 0 0 8 0 OUTPUT NODEFVAL "tsdcalo[7..0]"
// Retrieval info: CONNECT: tsdcalo 0 0 8 0 @tsdcalo 0 0 8 0
// Retrieval info: GEN_FILE: TYPE_NORMAL temp_sense.v TRUE FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL temp_sense.qip TRUE FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL temp_sense.bsf FALSE TRUE
// Retrieval info: GEN_FILE: TYPE_NORMAL temp_sense_inst.v FALSE TRUE
// Retrieval info: GEN_FILE: TYPE_NORMAL temp_sense_bb.v FALSE TRUE
// Retrieval info: GEN_FILE: TYPE_NORMAL temp_sense.inc FALSE TRUE
// Retrieval info: GEN_FILE: TYPE_NORMAL temp_sense.cmp FALSE TRUE
|
module usb_packet_fifo
( input reset,
input clock_in,
input clock_out,
input [15:0]ram_data_in,
input write_enable,
output reg [15:0]ram_data_out,
output reg pkt_waiting,
output reg have_space,
input read_enable,
input skip_packet ) ;
/* Some parameters for usage later on */
parameter DATA_WIDTH = 16 ;
parameter NUM_PACKETS = 4 ;
/* Create the RAM here */
reg [DATA_WIDTH-1:0] usb_ram [256*NUM_PACKETS-1:0] ;
/* Create the address signals */
reg [7-2+NUM_PACKETS:0] usb_ram_ain ;
reg [7:0] usb_ram_offset ;
reg [1:0] usb_ram_packet ;
wire [7-2+NUM_PACKETS:0] usb_ram_aout ;
reg isfull;
assign usb_ram_aout = {usb_ram_packet,usb_ram_offset} ;
// Check if there is one full packet to process
always @(usb_ram_ain, usb_ram_aout)
begin
if (reset)
pkt_waiting <= 0;
else if (usb_ram_ain == usb_ram_aout)
pkt_waiting <= isfull;
else if (usb_ram_ain > usb_ram_aout)
pkt_waiting <= (usb_ram_ain - usb_ram_aout) >= 256;
else
pkt_waiting <= (usb_ram_ain + 10'b1111111111 - usb_ram_aout) >= 256;
end
// Check if there is room
always @(usb_ram_ain, usb_ram_aout)
begin
if (reset)
have_space <= 1;
else if (usb_ram_ain == usb_ram_aout)
have_space <= ~isfull;
else if (usb_ram_ain > usb_ram_aout)
have_space <= (usb_ram_ain - usb_ram_aout) <= 256 * (NUM_PACKETS - 1);
else
have_space <= (usb_ram_aout - usb_ram_ain) >= 256;
end
/* RAM Write Address process */
always @(posedge clock_in)
begin
if( reset )
usb_ram_ain <= 0 ;
else
if( write_enable )
begin
usb_ram_ain <= usb_ram_ain + 1 ;
if (usb_ram_ain + 1 == usb_ram_aout)
isfull <= 1;
end
end
/* RAM Writing process */
always @(posedge clock_in)
begin
if( write_enable )
begin
usb_ram[usb_ram_ain] <= ram_data_in ;
end
end
/* RAM Read Address process */
always @(posedge clock_out)
begin
if( reset )
begin
usb_ram_packet <= 0 ;
usb_ram_offset <= 0 ;
isfull <= 0;
end
else
if( skip_packet )
begin
usb_ram_packet <= usb_ram_packet + 1 ;
usb_ram_offset <= 0 ;
end
else if(read_enable)
if( usb_ram_offset == 8'b11111111 )
begin
usb_ram_offset <= 0 ;
usb_ram_packet <= usb_ram_packet + 1 ;
end
else
usb_ram_offset <= usb_ram_offset + 1 ;
if (usb_ram_ain == usb_ram_aout)
isfull <= 0;
end
/* RAM Reading Process */
always @(posedge clock_out)
begin
ram_data_out <= usb_ram[usb_ram_aout] ;
end
endmodule |
module usb_packet_fifo
( input reset,
input clock_in,
input clock_out,
input [15:0]ram_data_in,
input write_enable,
output reg [15:0]ram_data_out,
output reg pkt_waiting,
output reg have_space,
input read_enable,
input skip_packet ) ;
/* Some parameters for usage later on */
parameter DATA_WIDTH = 16 ;
parameter NUM_PACKETS = 4 ;
/* Create the RAM here */
reg [DATA_WIDTH-1:0] usb_ram [256*NUM_PACKETS-1:0] ;
/* Create the address signals */
reg [7-2+NUM_PACKETS:0] usb_ram_ain ;
reg [7:0] usb_ram_offset ;
reg [1:0] usb_ram_packet ;
wire [7-2+NUM_PACKETS:0] usb_ram_aout ;
reg isfull;
assign usb_ram_aout = {usb_ram_packet,usb_ram_offset} ;
// Check if there is one full packet to process
always @(usb_ram_ain, usb_ram_aout)
begin
if (reset)
pkt_waiting <= 0;
else if (usb_ram_ain == usb_ram_aout)
pkt_waiting <= isfull;
else if (usb_ram_ain > usb_ram_aout)
pkt_waiting <= (usb_ram_ain - usb_ram_aout) >= 256;
else
pkt_waiting <= (usb_ram_ain + 10'b1111111111 - usb_ram_aout) >= 256;
end
// Check if there is room
always @(usb_ram_ain, usb_ram_aout)
begin
if (reset)
have_space <= 1;
else if (usb_ram_ain == usb_ram_aout)
have_space <= ~isfull;
else if (usb_ram_ain > usb_ram_aout)
have_space <= (usb_ram_ain - usb_ram_aout) <= 256 * (NUM_PACKETS - 1);
else
have_space <= (usb_ram_aout - usb_ram_ain) >= 256;
end
/* RAM Write Address process */
always @(posedge clock_in)
begin
if( reset )
usb_ram_ain <= 0 ;
else
if( write_enable )
begin
usb_ram_ain <= usb_ram_ain + 1 ;
if (usb_ram_ain + 1 == usb_ram_aout)
isfull <= 1;
end
end
/* RAM Writing process */
always @(posedge clock_in)
begin
if( write_enable )
begin
usb_ram[usb_ram_ain] <= ram_data_in ;
end
end
/* RAM Read Address process */
always @(posedge clock_out)
begin
if( reset )
begin
usb_ram_packet <= 0 ;
usb_ram_offset <= 0 ;
isfull <= 0;
end
else
if( skip_packet )
begin
usb_ram_packet <= usb_ram_packet + 1 ;
usb_ram_offset <= 0 ;
end
else if(read_enable)
if( usb_ram_offset == 8'b11111111 )
begin
usb_ram_offset <= 0 ;
usb_ram_packet <= usb_ram_packet + 1 ;
end
else
usb_ram_offset <= usb_ram_offset + 1 ;
if (usb_ram_ain == usb_ram_aout)
isfull <= 0;
end
/* RAM Reading Process */
always @(posedge clock_out)
begin
ram_data_out <= usb_ram[usb_ram_aout] ;
end
endmodule |
/*
Legal Notice: (C)2009 Altera Corporation. All rights reserved. Your
use of Altera Corporation's design tools, logic functions and other
software and tools, and its AMPP partner logic functions, and any
output files any of the foregoing (including device programming or
simulation files), and any associated documentation or information are
expressly subject to the terms and conditions of the Altera Program
License Subscription Agreement or other applicable license agreement,
including, without limitation, that your use is for the sole purpose
of programming logic devices manufactured by Altera and sold by Altera
or its authorized distributors. Please refer to the applicable
agreement for further details.
*/
/*
Author: JCJB
Date: 06/29/2009
This block is used to breakout the 256 bit streaming ports to and from the write master.
The information sent through the streaming ports is a bundle of wires and buses so it's
fairly inconvenient to constantly refer to them by their position amungst the 256 lines.
This block also provides a layer of abstraction since the descriptor buffers block has
no clue what format the descriptors are in except that the 'go' bit is written to. This
means that using this block you could move descriptor information around without affecting
the top level dispatcher logic.
1.0 06/29/2009 - First version of this block of wires
1.1 11/15/2012 - Added in an additional 32 bits of address for extended descriptors
*/
// synthesis translate_off
`timescale 1ns / 1ps
// synthesis translate_on
// turn off superfluous verilog processor warnings
// altera message_level Level1
// altera message_off 10034 10035 10036 10037 10230 10240 10030
module write_signal_breakout (
write_command_data_in, // descriptor from the write FIFO
write_command_data_out, // reformated descriptor to the write master
// breakout of command information
write_address,
write_length,
write_park,
write_end_on_eop,
write_transfer_complete_IRQ_mask,
write_early_termination_IRQ_mask,
write_error_IRQ_mask,
write_burst_count, // when 'ENHANCED_FEATURES' is 0 this will be driven to ground
write_stride, // when 'ENHANCED_FEATURES' is 0 this will be driven to ground
write_sequence_number, // when 'ENHANCED_FEATURES' is 0 this will be driven to ground
// additional control information that needs to go out asynchronously with the command data
write_stop,
write_sw_reset
);
parameter DATA_WIDTH = 256; // 256 bits when enhanced settings are enabled otherwise 128 bits
input [DATA_WIDTH-1:0] write_command_data_in;
output wire [255:0] write_command_data_out;
output wire [63:0] write_address;
output wire [31:0] write_length;
output wire write_park;
output wire write_end_on_eop;
output wire write_transfer_complete_IRQ_mask;
output wire write_early_termination_IRQ_mask;
output wire [7:0] write_error_IRQ_mask;
output wire [7:0] write_burst_count;
output wire [15:0] write_stride;
output wire [15:0] write_sequence_number;
input write_stop;
input write_sw_reset;
assign write_address[31:0] = write_command_data_in[63:32];
assign write_length = write_command_data_in[95:64];
generate
if (DATA_WIDTH == 256)
begin
assign write_park = write_command_data_in[235];
assign write_end_on_eop = write_command_data_in[236];
assign write_transfer_complete_IRQ_mask = write_command_data_in[238];
assign write_early_termination_IRQ_mask = write_command_data_in[239];
assign write_error_IRQ_mask = write_command_data_in[247:240];
assign write_burst_count = write_command_data_in[127:120];
assign write_stride = write_command_data_in[159:144];
assign write_sequence_number = write_command_data_in[111:96];
assign write_address[63:32] = write_command_data_in[223:192];
end
else
begin
assign write_park = write_command_data_in[107];
assign write_end_on_eop = write_command_data_in[108];
assign write_transfer_complete_IRQ_mask = write_command_data_in[110];
assign write_early_termination_IRQ_mask = write_command_data_in[111];
assign write_error_IRQ_mask = write_command_data_in[119:112];
assign write_burst_count = 8'h00;
assign write_stride = 16'h0000;
assign write_sequence_number = 16'h0000;
assign write_address[63:32] = 32'h00000000;
end
endgenerate
// big concat statement to glue all the signals back together to go out to the write master (MSBs to LSBs)
assign write_command_data_out = {{132{1'b0}}, // zero pad the upper 132 bits
write_address[63:32],
write_stride,
write_burst_count,
write_sw_reset,
write_stop,
1'b0, // used to be the early termination bit so now it's reserved
write_end_on_eop,
write_length,
write_address[31:0]};
endmodule
|
module unpipeline #
(
parameter WIDTH_D = 256,
parameter S_WIDTH_A = 26,
parameter M_WIDTH_A = S_WIDTH_A+$clog2(WIDTH_D/8),
parameter BURSTCOUNT_WIDTH = 1,
parameter BYTEENABLE_WIDTH = WIDTH_D,
parameter MAX_PENDING_READS = 64
)
(
input clk,
input resetn,
// Slave port
input [S_WIDTH_A-1:0] slave_address, // Word address
input [WIDTH_D-1:0] slave_writedata,
input slave_read,
input slave_write,
input [BURSTCOUNT_WIDTH-1:0] slave_burstcount,
input [BYTEENABLE_WIDTH-1:0] slave_byteenable,
output slave_waitrequest,
output [WIDTH_D-1:0] slave_readdata,
output slave_readdatavalid,
output [M_WIDTH_A-1:0] master_address, // Byte address
output [WIDTH_D-1:0] master_writedata,
output master_read,
output master_write,
output [BYTEENABLE_WIDTH-1:0] master_byteenable,
input master_waitrequest,
input [WIDTH_D-1:0] master_readdata
);
assign master_read = slave_read;
assign master_write = slave_write;
assign master_writedata = slave_writedata;
assign master_address = {slave_address,{$clog2(WIDTH_D/8){1'b0}}}; //byteaddr
assign master_byteenable = slave_byteenable;
assign slave_waitrequest = master_waitrequest;
assign slave_readdatavalid = slave_read & ~master_waitrequest;
assign slave_readdata = master_readdata;
endmodule
|
module unpipeline #
(
parameter WIDTH_D = 256,
parameter S_WIDTH_A = 26,
parameter M_WIDTH_A = S_WIDTH_A+$clog2(WIDTH_D/8),
parameter BURSTCOUNT_WIDTH = 1,
parameter BYTEENABLE_WIDTH = WIDTH_D,
parameter MAX_PENDING_READS = 64
)
(
input clk,
input resetn,
// Slave port
input [S_WIDTH_A-1:0] slave_address, // Word address
input [WIDTH_D-1:0] slave_writedata,
input slave_read,
input slave_write,
input [BURSTCOUNT_WIDTH-1:0] slave_burstcount,
input [BYTEENABLE_WIDTH-1:0] slave_byteenable,
output slave_waitrequest,
output [WIDTH_D-1:0] slave_readdata,
output slave_readdatavalid,
output [M_WIDTH_A-1:0] master_address, // Byte address
output [WIDTH_D-1:0] master_writedata,
output master_read,
output master_write,
output [BYTEENABLE_WIDTH-1:0] master_byteenable,
input master_waitrequest,
input [WIDTH_D-1:0] master_readdata
);
assign master_read = slave_read;
assign master_write = slave_write;
assign master_writedata = slave_writedata;
assign master_address = {slave_address,{$clog2(WIDTH_D/8){1'b0}}}; //byteaddr
assign master_byteenable = slave_byteenable;
assign slave_waitrequest = master_waitrequest;
assign slave_readdatavalid = slave_read & ~master_waitrequest;
assign slave_readdata = master_readdata;
endmodule
|
module unpipeline #
(
parameter WIDTH_D = 256,
parameter S_WIDTH_A = 26,
parameter M_WIDTH_A = S_WIDTH_A+$clog2(WIDTH_D/8),
parameter BURSTCOUNT_WIDTH = 1,
parameter BYTEENABLE_WIDTH = WIDTH_D,
parameter MAX_PENDING_READS = 64
)
(
input clk,
input resetn,
// Slave port
input [S_WIDTH_A-1:0] slave_address, // Word address
input [WIDTH_D-1:0] slave_writedata,
input slave_read,
input slave_write,
input [BURSTCOUNT_WIDTH-1:0] slave_burstcount,
input [BYTEENABLE_WIDTH-1:0] slave_byteenable,
output slave_waitrequest,
output [WIDTH_D-1:0] slave_readdata,
output slave_readdatavalid,
output [M_WIDTH_A-1:0] master_address, // Byte address
output [WIDTH_D-1:0] master_writedata,
output master_read,
output master_write,
output [BYTEENABLE_WIDTH-1:0] master_byteenable,
input master_waitrequest,
input [WIDTH_D-1:0] master_readdata
);
assign master_read = slave_read;
assign master_write = slave_write;
assign master_writedata = slave_writedata;
assign master_address = {slave_address,{$clog2(WIDTH_D/8){1'b0}}}; //byteaddr
assign master_byteenable = slave_byteenable;
assign slave_waitrequest = master_waitrequest;
assign slave_readdatavalid = slave_read & ~master_waitrequest;
assign slave_readdata = master_readdata;
endmodule
|
module unpipeline #
(
parameter WIDTH_D = 256,
parameter S_WIDTH_A = 26,
parameter M_WIDTH_A = S_WIDTH_A+$clog2(WIDTH_D/8),
parameter BURSTCOUNT_WIDTH = 1,
parameter BYTEENABLE_WIDTH = WIDTH_D,
parameter MAX_PENDING_READS = 64
)
(
input clk,
input resetn,
// Slave port
input [S_WIDTH_A-1:0] slave_address, // Word address
input [WIDTH_D-1:0] slave_writedata,
input slave_read,
input slave_write,
input [BURSTCOUNT_WIDTH-1:0] slave_burstcount,
input [BYTEENABLE_WIDTH-1:0] slave_byteenable,
output slave_waitrequest,
output [WIDTH_D-1:0] slave_readdata,
output slave_readdatavalid,
output [M_WIDTH_A-1:0] master_address, // Byte address
output [WIDTH_D-1:0] master_writedata,
output master_read,
output master_write,
output [BYTEENABLE_WIDTH-1:0] master_byteenable,
input master_waitrequest,
input [WIDTH_D-1:0] master_readdata
);
assign master_read = slave_read;
assign master_write = slave_write;
assign master_writedata = slave_writedata;
assign master_address = {slave_address,{$clog2(WIDTH_D/8){1'b0}}}; //byteaddr
assign master_byteenable = slave_byteenable;
assign slave_waitrequest = master_waitrequest;
assign slave_readdatavalid = slave_read & ~master_waitrequest;
assign slave_readdata = master_readdata;
endmodule
|
/*
Legal Notice: (C)2009 Altera Corporation. All rights reserved. Your
use of Altera Corporation's design tools, logic functions and other
software and tools, and its AMPP partner logic functions, and any
output files any of the foregoing (including device programming or
simulation files), and any associated documentation or information are
expressly subject to the terms and conditions of the Altera Program
License Subscription Agreement or other applicable license agreement,
including, without limitation, that your use is for the sole purpose
of programming logic devices manufactured by Altera and sold by Altera
or its authorized distributors. Please refer to the applicable
agreement for further details.
*/
/*
Author: JCJB
Date: 06/30/2009
This block is used to communicate information back and forth between the SGDMA
and the host. When the response port is not set to streaming then this block
will be used to generate interrupts for the host. The address span of this block
differs depending on whether the enhanced features are enabled. The enhanced
features enables sequence number readback capabilties. The address map is as follows:
Enhanced features off:
Bytes Access Type Description
----- ----------- -----------
0-3 R Status(1)
4-7 R/W Control(2)
8-12 R Descriptor Watermark (write watermark[15:0],read watermark [15:0])
13-15 R Response Watermark
16-31 N/A <Reserved>
Enhanced features on:
Bytes Access Type Description
----- ----------- -----------
0-3 R Status(1)
4-7 R/W Control(2)
8-12 R Descriptor Watermark (write watermark[15:0],read watermark [15:0])
13-15 R Response Watermark
16-20 R Sequence Number (write sequence[15:0],read sequence[15:0])
21-31 N/A <Reserved>
(1) Writing to the interrupt bit of the status register clears the interrupt bit (when applicable)
(2) Writing to the software reset bit will clear the entire register (as well as all the registers for the entire SGDMA)
Status Register:
Bits Description
---- -----------
0 Busy
1 Descriptor Buffer Empty
2 Descriptor Buffer Full
3 Response Buffer Empty
4 Response Buffer Full
5 Stop State
6 Reset State
7 Stopped on Error
8 Stopped on Early Termination
9 IRQ
10-15 <Reserved>
15-31 Done count (JSF: Added 06/13/2011)
Control Register:
Bits Description
---- -----------
0 Stop (will also be set if a stop on error/early termination condition occurs)
1 Software Reset
2 Stop on Error
3 Stop on Early Termination
4 Global Interrupt Enable Mask
5 Stop descriptors (stops the dispatcher from issuing more read/write commands)
6-31 <Reserved>
Author: JCJB
Date: 08/18/2010
1.0 - Initial release
1.1 - Removed delayed reset, added set and hold sw_reset
1.2 - Updated the sw_reset register to be set when control[1] is set instead of one cycle after.
This will prevent the read or write masters from starting back up when reset while in the stop state.
1.3 - Added the stop dispatcher bit (5) to the control register
*/
// synthesis translate_off
`timescale 1ns / 1ps
// synthesis translate_on
// turn off superfluous verilog processor warnings
// altera message_level Level1
// altera message_off 10034 10035 10036 10037 10230 10240 10030
module csr_block (
clk,
reset,
csr_writedata,
csr_write,
csr_byteenable,
csr_readdata,
csr_read,
csr_address,
csr_irq,
done_strobe,
busy,
descriptor_buffer_empty,
descriptor_buffer_full,
stop_state,
stopped_on_error,
stopped_on_early_termination,
reset_stalled,
stop,
sw_reset,
stop_on_error,
stop_on_early_termination,
stop_descriptors,
sequence_number,
descriptor_watermark,
response_watermark,
response_buffer_empty,
response_buffer_full,
transfer_complete_IRQ_mask,
error_IRQ_mask,
early_termination_IRQ_mask,
error,
early_termination
);
parameter ADDRESS_WIDTH = 3;
localparam CONTROL_REGISTER_ADDRESS = 3'b001;
input clk;
input reset;
input [31:0] csr_writedata;
input csr_write;
input [3:0] csr_byteenable;
output wire [31:0] csr_readdata;
input csr_read;
input [ADDRESS_WIDTH-1:0] csr_address;
output wire csr_irq;
input done_strobe;
input busy;
input descriptor_buffer_empty;
input descriptor_buffer_full;
input stop_state; // when the DMA runs into some error condition and you have enabled the stop on error (or when the stop control bit is written to)
input reset_stalled; // the read or write master could be in the middle of a transfer/burst so it might take a while to flush the buffers
output wire stop;
output reg stopped_on_error;
output reg stopped_on_early_termination;
output reg sw_reset;
output wire stop_on_error;
output wire stop_on_early_termination;
output wire stop_descriptors;
input [31:0] sequence_number;
input [31:0] descriptor_watermark;
input [15:0] response_watermark;
input response_buffer_empty;
input response_buffer_full;
input transfer_complete_IRQ_mask;
input [7:0] error_IRQ_mask;
input early_termination_IRQ_mask;
input [7:0] error;
input early_termination;
/* Internal wires and registers */
wire [31:0] status;
reg [31:0] control;
reg [31:0] readdata;
reg [31:0] readdata_d1;
reg irq; // writing to the status register clears the irq bit
wire set_irq;
wire clear_irq;
reg [15:0] irq_count; // writing to bit 0 clears the counter
wire clear_irq_count;
wire incr_irq_count;
wire set_stopped_on_error;
wire set_stopped_on_early_termination;
wire set_stop;
wire clear_stop;
wire global_interrupt_enable;
wire sw_reset_strobe; // this strobe will be one cycle earlier than sw_reset
wire set_sw_reset;
wire clear_sw_reset;
/********************************************** Registers ***************************************************/
// read latency is 1 cycle
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
readdata_d1 <= 0;
end
else if (csr_read == 1)
begin
readdata_d1 <= readdata;
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
control[31:1] <= 0;
end
else
begin
if (sw_reset_strobe == 1) // reset strobe is a strobe due to this sync reset
begin
control[31:1] <= 0;
end
else
begin
if ((csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[0] == 1))
begin
control[7:1] <= csr_writedata[7:1]; // stop bit will be handled seperately since it can be set by the csr slave port access or the SGDMA hitting an error condition
end
if ((csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[1] == 1))
begin
control[15:8] <= csr_writedata[15:8];
end
if ((csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[2] == 1))
begin
control[23:16] <= csr_writedata[23:16];
end
if ((csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[3] == 1))
begin
control[31:24] <= csr_writedata[31:24];
end
end
end
end
// control bit 0 (stop) is set by different sources so handling it seperately
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
control[0] <= 0;
end
else
begin
if (sw_reset_strobe == 1)
begin
control[0] <= 0;
end
else
begin
case ({set_stop, clear_stop})
2'b00: control[0] <= control[0];
2'b01: control[0] <= 1'b0;
2'b10: control[0] <= 1'b1;
2'b11: control[0] <= 1'b1; // setting will win, this case happens control[0] is being set to 0 (resume) at the same time an error/early termination stop condition occurs
endcase
end
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
sw_reset <= 0;
end
else
begin
if (set_sw_reset == 1)
begin
sw_reset <= 1;
end
else if (clear_sw_reset == 1)
begin
sw_reset <= 0;
end
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
stopped_on_error <= 0;
end
else
begin
case ({set_stopped_on_error, clear_stop})
2'b00: stopped_on_error <= stopped_on_error;
2'b01: stopped_on_error <= 1'b0;
2'b10: stopped_on_error <= 1'b1;
2'b11: stopped_on_error <= 1'b0;
endcase
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
stopped_on_early_termination <= 0;
end
else
begin
case ({set_stopped_on_early_termination, clear_stop})
2'b00: stopped_on_early_termination <= stopped_on_early_termination;
2'b01: stopped_on_early_termination <= 1'b0;
2'b10: stopped_on_early_termination <= 1'b1;
2'b11: stopped_on_early_termination <= 1'b0;
endcase
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
irq <= 0;
end
else
begin
if (sw_reset_strobe == 1)
begin
irq <= 0;
end
else
begin
case ({clear_irq, set_irq})
2'b00: irq <= irq;
2'b01: irq <= 1'b1;
2'b10: irq <= 1'b0;
2'b11: irq <= 1'b1; // setting will win over a clear
endcase
end
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
irq_count <= {16{1'b0}};
end
else
begin
if (sw_reset_strobe == 1)
begin
irq_count <= {16{1'b0}};
end
else
begin
case ({clear_irq_count, incr_irq_count})
2'b00: irq_count <= irq_count;
2'b01: irq_count <= irq_count + 1;
2'b10: irq_count <= {16{1'b0}};
2'b11: irq_count <= {{15{1'b0}}, 1'b1};
endcase
end
end
end
/******************************************** End Registers *************************************************/
/**************************************** Combinational Signals *********************************************/
generate
if (ADDRESS_WIDTH == 3)
begin
always @ (csr_address or status or control or descriptor_watermark or response_watermark or sequence_number)
begin
case (csr_address)
3'b000: readdata = status;
3'b001: readdata = control;
3'b010: readdata = descriptor_watermark;
3'b011: readdata = response_watermark;
default: readdata = sequence_number; // all other addresses will decode to the sequence number
endcase
end
end
else
begin
always @ (csr_address or status or control or descriptor_watermark or response_watermark)
begin
case (csr_address)
3'b000: readdata = status;
3'b001: readdata = control;
3'b010: readdata = descriptor_watermark;
default: readdata = response_watermark; // all other addresses will decode to the response watermark
endcase
end
end
endgenerate
assign clear_irq = (csr_address == 0) & (csr_write == 1) & (csr_byteenable[1] == 1) & (csr_writedata[9] == 1); // this is the IRQ bit
assign set_irq = (global_interrupt_enable == 1) & (done_strobe == 1) & // transfer ended and interrupts are enabled
((transfer_complete_IRQ_mask == 1) | // transfer ended and the transfer complete IRQ is enabled
((error & error_IRQ_mask) != 0) | // transfer ended with an error and this IRQ is enabled
((early_termination & early_termination_IRQ_mask) == 1)); // transfer ended early due to early termination and this IRQ is enabled
assign csr_irq = irq;
// Done count
assign incr_irq_count = set_irq; // Done count just counts the number of interrupts since the last reset
assign clear_irq_count = (csr_address == 0) & (csr_write == 1) & (csr_byteenable[2] == 1) & (csr_writedata[16] == 1); // the LSB irq_count bit
assign clear_stop = (csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[0] == 1) & (csr_writedata[0] == 0);
assign set_stopped_on_error = (done_strobe == 1) & (stop_on_error == 1) & (error != 0); // when clear_stop is set then the stopped_on_error register will be cleared
assign set_stopped_on_early_termination = (done_strobe == 1) & (stop_on_early_termination == 1) & (early_termination == 1); // when clear_stop is set then the stopped_on_early_termination register will be cleared
assign set_stop = ((csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[0] == 1) & (csr_writedata[0] == 1)) | // host set the stop bit
(set_stopped_on_error == 1) | // SGDMA setup to stop when an error occurs from the write master
(set_stopped_on_early_termination == 1) ; // SGDMA setup to stop when the write master overflows
assign stop = control[0];
assign set_sw_reset = (csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[0] == 1) & (csr_writedata[1] == 1);
assign clear_sw_reset = (sw_reset == 1) & (reset_stalled == 0);
assign sw_reset_strobe = control[1];
assign stop_on_error = control[2];
assign stop_on_early_termination = control[3];
assign global_interrupt_enable = control[4];
assign stop_descriptors = control[5];
assign csr_readdata = readdata_d1;
assign status = {irq_count, {6{1'b0}}, irq, stopped_on_early_termination, stopped_on_error, sw_reset, stop_state, response_buffer_full, response_buffer_empty, descriptor_buffer_full, descriptor_buffer_empty, busy}; // writing to the lower byte of the status register clears the irq bit
/**************************************** Combinational Signals *********************************************/
endmodule
|
/*
Legal Notice: (C)2009 Altera Corporation. All rights reserved. Your
use of Altera Corporation's design tools, logic functions and other
software and tools, and its AMPP partner logic functions, and any
output files any of the foregoing (including device programming or
simulation files), and any associated documentation or information are
expressly subject to the terms and conditions of the Altera Program
License Subscription Agreement or other applicable license agreement,
including, without limitation, that your use is for the sole purpose
of programming logic devices manufactured by Altera and sold by Altera
or its authorized distributors. Please refer to the applicable
agreement for further details.
*/
/*
Author: JCJB
Date: 06/30/2009
This block is used to communicate information back and forth between the SGDMA
and the host. When the response port is not set to streaming then this block
will be used to generate interrupts for the host. The address span of this block
differs depending on whether the enhanced features are enabled. The enhanced
features enables sequence number readback capabilties. The address map is as follows:
Enhanced features off:
Bytes Access Type Description
----- ----------- -----------
0-3 R Status(1)
4-7 R/W Control(2)
8-12 R Descriptor Watermark (write watermark[15:0],read watermark [15:0])
13-15 R Response Watermark
16-31 N/A <Reserved>
Enhanced features on:
Bytes Access Type Description
----- ----------- -----------
0-3 R Status(1)
4-7 R/W Control(2)
8-12 R Descriptor Watermark (write watermark[15:0],read watermark [15:0])
13-15 R Response Watermark
16-20 R Sequence Number (write sequence[15:0],read sequence[15:0])
21-31 N/A <Reserved>
(1) Writing to the interrupt bit of the status register clears the interrupt bit (when applicable)
(2) Writing to the software reset bit will clear the entire register (as well as all the registers for the entire SGDMA)
Status Register:
Bits Description
---- -----------
0 Busy
1 Descriptor Buffer Empty
2 Descriptor Buffer Full
3 Response Buffer Empty
4 Response Buffer Full
5 Stop State
6 Reset State
7 Stopped on Error
8 Stopped on Early Termination
9 IRQ
10-15 <Reserved>
15-31 Done count (JSF: Added 06/13/2011)
Control Register:
Bits Description
---- -----------
0 Stop (will also be set if a stop on error/early termination condition occurs)
1 Software Reset
2 Stop on Error
3 Stop on Early Termination
4 Global Interrupt Enable Mask
5 Stop descriptors (stops the dispatcher from issuing more read/write commands)
6-31 <Reserved>
Author: JCJB
Date: 08/18/2010
1.0 - Initial release
1.1 - Removed delayed reset, added set and hold sw_reset
1.2 - Updated the sw_reset register to be set when control[1] is set instead of one cycle after.
This will prevent the read or write masters from starting back up when reset while in the stop state.
1.3 - Added the stop dispatcher bit (5) to the control register
*/
// synthesis translate_off
`timescale 1ns / 1ps
// synthesis translate_on
// turn off superfluous verilog processor warnings
// altera message_level Level1
// altera message_off 10034 10035 10036 10037 10230 10240 10030
module csr_block (
clk,
reset,
csr_writedata,
csr_write,
csr_byteenable,
csr_readdata,
csr_read,
csr_address,
csr_irq,
done_strobe,
busy,
descriptor_buffer_empty,
descriptor_buffer_full,
stop_state,
stopped_on_error,
stopped_on_early_termination,
reset_stalled,
stop,
sw_reset,
stop_on_error,
stop_on_early_termination,
stop_descriptors,
sequence_number,
descriptor_watermark,
response_watermark,
response_buffer_empty,
response_buffer_full,
transfer_complete_IRQ_mask,
error_IRQ_mask,
early_termination_IRQ_mask,
error,
early_termination
);
parameter ADDRESS_WIDTH = 3;
localparam CONTROL_REGISTER_ADDRESS = 3'b001;
input clk;
input reset;
input [31:0] csr_writedata;
input csr_write;
input [3:0] csr_byteenable;
output wire [31:0] csr_readdata;
input csr_read;
input [ADDRESS_WIDTH-1:0] csr_address;
output wire csr_irq;
input done_strobe;
input busy;
input descriptor_buffer_empty;
input descriptor_buffer_full;
input stop_state; // when the DMA runs into some error condition and you have enabled the stop on error (or when the stop control bit is written to)
input reset_stalled; // the read or write master could be in the middle of a transfer/burst so it might take a while to flush the buffers
output wire stop;
output reg stopped_on_error;
output reg stopped_on_early_termination;
output reg sw_reset;
output wire stop_on_error;
output wire stop_on_early_termination;
output wire stop_descriptors;
input [31:0] sequence_number;
input [31:0] descriptor_watermark;
input [15:0] response_watermark;
input response_buffer_empty;
input response_buffer_full;
input transfer_complete_IRQ_mask;
input [7:0] error_IRQ_mask;
input early_termination_IRQ_mask;
input [7:0] error;
input early_termination;
/* Internal wires and registers */
wire [31:0] status;
reg [31:0] control;
reg [31:0] readdata;
reg [31:0] readdata_d1;
reg irq; // writing to the status register clears the irq bit
wire set_irq;
wire clear_irq;
reg [15:0] irq_count; // writing to bit 0 clears the counter
wire clear_irq_count;
wire incr_irq_count;
wire set_stopped_on_error;
wire set_stopped_on_early_termination;
wire set_stop;
wire clear_stop;
wire global_interrupt_enable;
wire sw_reset_strobe; // this strobe will be one cycle earlier than sw_reset
wire set_sw_reset;
wire clear_sw_reset;
/********************************************** Registers ***************************************************/
// read latency is 1 cycle
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
readdata_d1 <= 0;
end
else if (csr_read == 1)
begin
readdata_d1 <= readdata;
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
control[31:1] <= 0;
end
else
begin
if (sw_reset_strobe == 1) // reset strobe is a strobe due to this sync reset
begin
control[31:1] <= 0;
end
else
begin
if ((csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[0] == 1))
begin
control[7:1] <= csr_writedata[7:1]; // stop bit will be handled seperately since it can be set by the csr slave port access or the SGDMA hitting an error condition
end
if ((csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[1] == 1))
begin
control[15:8] <= csr_writedata[15:8];
end
if ((csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[2] == 1))
begin
control[23:16] <= csr_writedata[23:16];
end
if ((csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[3] == 1))
begin
control[31:24] <= csr_writedata[31:24];
end
end
end
end
// control bit 0 (stop) is set by different sources so handling it seperately
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
control[0] <= 0;
end
else
begin
if (sw_reset_strobe == 1)
begin
control[0] <= 0;
end
else
begin
case ({set_stop, clear_stop})
2'b00: control[0] <= control[0];
2'b01: control[0] <= 1'b0;
2'b10: control[0] <= 1'b1;
2'b11: control[0] <= 1'b1; // setting will win, this case happens control[0] is being set to 0 (resume) at the same time an error/early termination stop condition occurs
endcase
end
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
sw_reset <= 0;
end
else
begin
if (set_sw_reset == 1)
begin
sw_reset <= 1;
end
else if (clear_sw_reset == 1)
begin
sw_reset <= 0;
end
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
stopped_on_error <= 0;
end
else
begin
case ({set_stopped_on_error, clear_stop})
2'b00: stopped_on_error <= stopped_on_error;
2'b01: stopped_on_error <= 1'b0;
2'b10: stopped_on_error <= 1'b1;
2'b11: stopped_on_error <= 1'b0;
endcase
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
stopped_on_early_termination <= 0;
end
else
begin
case ({set_stopped_on_early_termination, clear_stop})
2'b00: stopped_on_early_termination <= stopped_on_early_termination;
2'b01: stopped_on_early_termination <= 1'b0;
2'b10: stopped_on_early_termination <= 1'b1;
2'b11: stopped_on_early_termination <= 1'b0;
endcase
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
irq <= 0;
end
else
begin
if (sw_reset_strobe == 1)
begin
irq <= 0;
end
else
begin
case ({clear_irq, set_irq})
2'b00: irq <= irq;
2'b01: irq <= 1'b1;
2'b10: irq <= 1'b0;
2'b11: irq <= 1'b1; // setting will win over a clear
endcase
end
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
irq_count <= {16{1'b0}};
end
else
begin
if (sw_reset_strobe == 1)
begin
irq_count <= {16{1'b0}};
end
else
begin
case ({clear_irq_count, incr_irq_count})
2'b00: irq_count <= irq_count;
2'b01: irq_count <= irq_count + 1;
2'b10: irq_count <= {16{1'b0}};
2'b11: irq_count <= {{15{1'b0}}, 1'b1};
endcase
end
end
end
/******************************************** End Registers *************************************************/
/**************************************** Combinational Signals *********************************************/
generate
if (ADDRESS_WIDTH == 3)
begin
always @ (csr_address or status or control or descriptor_watermark or response_watermark or sequence_number)
begin
case (csr_address)
3'b000: readdata = status;
3'b001: readdata = control;
3'b010: readdata = descriptor_watermark;
3'b011: readdata = response_watermark;
default: readdata = sequence_number; // all other addresses will decode to the sequence number
endcase
end
end
else
begin
always @ (csr_address or status or control or descriptor_watermark or response_watermark)
begin
case (csr_address)
3'b000: readdata = status;
3'b001: readdata = control;
3'b010: readdata = descriptor_watermark;
default: readdata = response_watermark; // all other addresses will decode to the response watermark
endcase
end
end
endgenerate
assign clear_irq = (csr_address == 0) & (csr_write == 1) & (csr_byteenable[1] == 1) & (csr_writedata[9] == 1); // this is the IRQ bit
assign set_irq = (global_interrupt_enable == 1) & (done_strobe == 1) & // transfer ended and interrupts are enabled
((transfer_complete_IRQ_mask == 1) | // transfer ended and the transfer complete IRQ is enabled
((error & error_IRQ_mask) != 0) | // transfer ended with an error and this IRQ is enabled
((early_termination & early_termination_IRQ_mask) == 1)); // transfer ended early due to early termination and this IRQ is enabled
assign csr_irq = irq;
// Done count
assign incr_irq_count = set_irq; // Done count just counts the number of interrupts since the last reset
assign clear_irq_count = (csr_address == 0) & (csr_write == 1) & (csr_byteenable[2] == 1) & (csr_writedata[16] == 1); // the LSB irq_count bit
assign clear_stop = (csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[0] == 1) & (csr_writedata[0] == 0);
assign set_stopped_on_error = (done_strobe == 1) & (stop_on_error == 1) & (error != 0); // when clear_stop is set then the stopped_on_error register will be cleared
assign set_stopped_on_early_termination = (done_strobe == 1) & (stop_on_early_termination == 1) & (early_termination == 1); // when clear_stop is set then the stopped_on_early_termination register will be cleared
assign set_stop = ((csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[0] == 1) & (csr_writedata[0] == 1)) | // host set the stop bit
(set_stopped_on_error == 1) | // SGDMA setup to stop when an error occurs from the write master
(set_stopped_on_early_termination == 1) ; // SGDMA setup to stop when the write master overflows
assign stop = control[0];
assign set_sw_reset = (csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[0] == 1) & (csr_writedata[1] == 1);
assign clear_sw_reset = (sw_reset == 1) & (reset_stalled == 0);
assign sw_reset_strobe = control[1];
assign stop_on_error = control[2];
assign stop_on_early_termination = control[3];
assign global_interrupt_enable = control[4];
assign stop_descriptors = control[5];
assign csr_readdata = readdata_d1;
assign status = {irq_count, {6{1'b0}}, irq, stopped_on_early_termination, stopped_on_error, sw_reset, stop_state, response_buffer_full, response_buffer_empty, descriptor_buffer_full, descriptor_buffer_empty, busy}; // writing to the lower byte of the status register clears the irq bit
/**************************************** Combinational Signals *********************************************/
endmodule
|
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// Description:
// Optimized OR with generic_baseblocks_v2_1_0_carry logic.
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
//
//
//--------------------------------------------------------------------------
`timescale 1ps/1ps
(* DowngradeIPIdentifiedWarnings="yes" *)
module generic_baseblocks_v2_1_0_carry_or #
(
parameter C_FAMILY = "virtex6"
// FPGA Family. Current version: virtex6 or spartan6.
)
(
input wire CIN,
input wire S,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL
assign COUT = CIN | S;
end else begin : USE_FPGA
wire S_n;
assign S_n = ~S;
MUXCY and_inst
(
.O (COUT),
.CI (CIN),
.DI (1'b1),
.S (S_n)
);
end
endgenerate
endmodule
|
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// Description:
// Optimized OR with generic_baseblocks_v2_1_0_carry logic.
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
//
//
//--------------------------------------------------------------------------
`timescale 1ps/1ps
(* DowngradeIPIdentifiedWarnings="yes" *)
module generic_baseblocks_v2_1_0_carry_latch_or #
(
parameter C_FAMILY = "virtex6"
// FPGA Family. Current version: virtex6 or spartan6.
)
(
input wire CIN,
input wire I,
output wire O
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL
assign O = CIN | I;
end else begin : USE_FPGA
OR2L or2l_inst1
(
.O(O),
.DI(CIN),
.SRI(I)
);
end
endgenerate
endmodule
|
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// Description:
// Optimized OR with generic_baseblocks_v2_1_0_carry logic.
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
//
//
//--------------------------------------------------------------------------
`timescale 1ps/1ps
(* DowngradeIPIdentifiedWarnings="yes" *)
module generic_baseblocks_v2_1_0_carry_latch_or #
(
parameter C_FAMILY = "virtex6"
// FPGA Family. Current version: virtex6 or spartan6.
)
(
input wire CIN,
input wire I,
output wire O
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL
assign O = CIN | I;
end else begin : USE_FPGA
OR2L or2l_inst1
(
.O(O),
.DI(CIN),
.SRI(I)
);
end
endgenerate
endmodule
|
/*
Legal Notice: (C)2009 Altera Corporation. All rights reserved. Your
use of Altera Corporation's design tools, logic functions and other
software and tools, and its AMPP partner logic functions, and any
output files any of the foregoing (including device programming or
simulation files), and any associated documentation or information are
expressly subject to the terms and conditions of the Altera Program
License Subscription Agreement or other applicable license agreement,
including, without limitation, that your use is for the sole purpose
of programming logic devices manufactured by Altera and sold by Altera
or its authorized distributors. Please refer to the applicable
agreement for further details.
*/
/*
Author: JCJB
Date: 05/11/2009
Version 2.0
This logic recieves registers the byte address of the master when 'start'
is asserted. This block then barrelshifts the write data based on the byte
address to make sure that the input data (from the FIFO) is reformatted to
line up with memory properly.
The only throttling mechanism in this block is the FIFO not empty signal as
well as waitreqeust from the fabric.
Revision History:
1.0 Initial version
2.0 Removed 'bytes_to_next_boundary' and using the address to determine how
much out of alignment the master begins.
*/
// synthesis translate_off
`timescale 1ns / 1ps
// synthesis translate_on
// turn off superfluous verilog processor warnings
// altera message_level Level1
// altera message_off 10034 10035 10036 10037 10230 10240 10030
module ST_to_MM_Adapter (
clk,
reset,
enable,
address,
start,
waitrequest,
stall,
write_data,
fifo_data,
fifo_empty,
fifo_readack
);
parameter DATA_WIDTH = 32;
parameter BYTEENABLE_WIDTH_LOG2 = 2;
parameter ADDRESS_WIDTH = 32;
parameter UNALIGNED_ACCESS_ENABLE = 0; // when set to 0 this block will be a pass through (save on resources when unaligned accesses are not needed)
localparam BYTES_TO_NEXT_BOUNDARY_WIDTH = BYTEENABLE_WIDTH_LOG2 + 1; // 2, 3, 4, 5, 6 for byte enable widths of 2, 4, 8, 16, 32
input clk;
input reset;
input enable; // must make sure that the adapter doesn't accept data when a transfer it doesn't know what "bytes_to_transfer" is yet
input [ADDRESS_WIDTH-1:0] address;
input start; // one cycle strobe at the start of a transfer used to determine bytes_to_transfer
input waitrequest;
input stall;
output wire [DATA_WIDTH-1:0] write_data;
input [DATA_WIDTH-1:0] fifo_data;
input fifo_empty;
output wire fifo_readack;
wire [BYTES_TO_NEXT_BOUNDARY_WIDTH-1:0] bytes_to_next_boundary;
wire [DATA_WIDTH-1:0] barrelshifter_A;
wire [DATA_WIDTH-1:0] barrelshifter_B;
reg [DATA_WIDTH-1:0] barrelshifter_B_d1;
wire [DATA_WIDTH-1:0] combined_word; // bitwise OR between barrelshifter_A and barrelshifter_B (each has zero padding so that bytelanes don't overlap)
wire [BYTES_TO_NEXT_BOUNDARY_WIDTH-2:0] bytes_to_next_boundary_minus_one; // simplifies barrelshifter select logic
reg [BYTES_TO_NEXT_BOUNDARY_WIDTH-2:0] bytes_to_next_boundary_minus_one_d1;
wire [DATA_WIDTH-1:0] barrelshifter_input_A [0:((DATA_WIDTH/8)-1)]; // will be used to create barrelshifter_A inputs
wire [DATA_WIDTH-1:0] barrelshifter_input_B [0:((DATA_WIDTH/8)-1)]; // will be used to create barrelshifter_B inputs
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
bytes_to_next_boundary_minus_one_d1 <= 0;
end
else if (start)
begin
bytes_to_next_boundary_minus_one_d1 <= bytes_to_next_boundary_minus_one;
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
barrelshifter_B_d1 <= 0;
end
else
begin
if (start == 1)
begin
barrelshifter_B_d1 <= 0;
end
else if (fifo_readack == 1)
begin
barrelshifter_B_d1 <= barrelshifter_B;
end
end
end
assign bytes_to_next_boundary = (DATA_WIDTH/8) - address[BYTEENABLE_WIDTH_LOG2-1:0]; // bytes per word - unaligned byte offset = distance to next boundary
assign bytes_to_next_boundary_minus_one = bytes_to_next_boundary - 1;
assign combined_word = barrelshifter_A | barrelshifter_B_d1;
generate
genvar input_offset;
for(input_offset = 0; input_offset < (DATA_WIDTH/8); input_offset = input_offset + 1)
begin: barrel_shifter_inputs
assign barrelshifter_input_A[input_offset] = fifo_data << (8 * ((DATA_WIDTH/8)-(input_offset+1)));
assign barrelshifter_input_B[input_offset] = fifo_data >> (8 * (input_offset + 1));
end
endgenerate
assign barrelshifter_A = barrelshifter_input_A[bytes_to_next_boundary_minus_one_d1];
assign barrelshifter_B = barrelshifter_input_B[bytes_to_next_boundary_minus_one_d1];
generate
if (UNALIGNED_ACCESS_ENABLE == 1)
begin
assign fifo_readack = (fifo_empty == 0) & (stall == 0) & (waitrequest == 0) & (enable == 1) & (start == 0);
assign write_data = combined_word;
end
else
begin
assign fifo_readack = (fifo_empty == 0) & (stall == 0) & (waitrequest == 0) & (enable == 1);
assign write_data = fifo_data;
end
endgenerate
endmodule
|
/*
Legal Notice: (C)2009 Altera Corporation. All rights reserved. Your
use of Altera Corporation's design tools, logic functions and other
software and tools, and its AMPP partner logic functions, and any
output files any of the foregoing (including device programming or
simulation files), and any associated documentation or information are
expressly subject to the terms and conditions of the Altera Program
License Subscription Agreement or other applicable license agreement,
including, without limitation, that your use is for the sole purpose
of programming logic devices manufactured by Altera and sold by Altera
or its authorized distributors. Please refer to the applicable
agreement for further details.
*/
/*
Author: JCJB
Date: 05/11/2009
Version 2.0
This logic recieves registers the byte address of the master when 'start'
is asserted. This block then barrelshifts the write data based on the byte
address to make sure that the input data (from the FIFO) is reformatted to
line up with memory properly.
The only throttling mechanism in this block is the FIFO not empty signal as
well as waitreqeust from the fabric.
Revision History:
1.0 Initial version
2.0 Removed 'bytes_to_next_boundary' and using the address to determine how
much out of alignment the master begins.
*/
// synthesis translate_off
`timescale 1ns / 1ps
// synthesis translate_on
// turn off superfluous verilog processor warnings
// altera message_level Level1
// altera message_off 10034 10035 10036 10037 10230 10240 10030
module ST_to_MM_Adapter (
clk,
reset,
enable,
address,
start,
waitrequest,
stall,
write_data,
fifo_data,
fifo_empty,
fifo_readack
);
parameter DATA_WIDTH = 32;
parameter BYTEENABLE_WIDTH_LOG2 = 2;
parameter ADDRESS_WIDTH = 32;
parameter UNALIGNED_ACCESS_ENABLE = 0; // when set to 0 this block will be a pass through (save on resources when unaligned accesses are not needed)
localparam BYTES_TO_NEXT_BOUNDARY_WIDTH = BYTEENABLE_WIDTH_LOG2 + 1; // 2, 3, 4, 5, 6 for byte enable widths of 2, 4, 8, 16, 32
input clk;
input reset;
input enable; // must make sure that the adapter doesn't accept data when a transfer it doesn't know what "bytes_to_transfer" is yet
input [ADDRESS_WIDTH-1:0] address;
input start; // one cycle strobe at the start of a transfer used to determine bytes_to_transfer
input waitrequest;
input stall;
output wire [DATA_WIDTH-1:0] write_data;
input [DATA_WIDTH-1:0] fifo_data;
input fifo_empty;
output wire fifo_readack;
wire [BYTES_TO_NEXT_BOUNDARY_WIDTH-1:0] bytes_to_next_boundary;
wire [DATA_WIDTH-1:0] barrelshifter_A;
wire [DATA_WIDTH-1:0] barrelshifter_B;
reg [DATA_WIDTH-1:0] barrelshifter_B_d1;
wire [DATA_WIDTH-1:0] combined_word; // bitwise OR between barrelshifter_A and barrelshifter_B (each has zero padding so that bytelanes don't overlap)
wire [BYTES_TO_NEXT_BOUNDARY_WIDTH-2:0] bytes_to_next_boundary_minus_one; // simplifies barrelshifter select logic
reg [BYTES_TO_NEXT_BOUNDARY_WIDTH-2:0] bytes_to_next_boundary_minus_one_d1;
wire [DATA_WIDTH-1:0] barrelshifter_input_A [0:((DATA_WIDTH/8)-1)]; // will be used to create barrelshifter_A inputs
wire [DATA_WIDTH-1:0] barrelshifter_input_B [0:((DATA_WIDTH/8)-1)]; // will be used to create barrelshifter_B inputs
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
bytes_to_next_boundary_minus_one_d1 <= 0;
end
else if (start)
begin
bytes_to_next_boundary_minus_one_d1 <= bytes_to_next_boundary_minus_one;
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
barrelshifter_B_d1 <= 0;
end
else
begin
if (start == 1)
begin
barrelshifter_B_d1 <= 0;
end
else if (fifo_readack == 1)
begin
barrelshifter_B_d1 <= barrelshifter_B;
end
end
end
assign bytes_to_next_boundary = (DATA_WIDTH/8) - address[BYTEENABLE_WIDTH_LOG2-1:0]; // bytes per word - unaligned byte offset = distance to next boundary
assign bytes_to_next_boundary_minus_one = bytes_to_next_boundary - 1;
assign combined_word = barrelshifter_A | barrelshifter_B_d1;
generate
genvar input_offset;
for(input_offset = 0; input_offset < (DATA_WIDTH/8); input_offset = input_offset + 1)
begin: barrel_shifter_inputs
assign barrelshifter_input_A[input_offset] = fifo_data << (8 * ((DATA_WIDTH/8)-(input_offset+1)));
assign barrelshifter_input_B[input_offset] = fifo_data >> (8 * (input_offset + 1));
end
endgenerate
assign barrelshifter_A = barrelshifter_input_A[bytes_to_next_boundary_minus_one_d1];
assign barrelshifter_B = barrelshifter_input_B[bytes_to_next_boundary_minus_one_d1];
generate
if (UNALIGNED_ACCESS_ENABLE == 1)
begin
assign fifo_readack = (fifo_empty == 0) & (stall == 0) & (waitrequest == 0) & (enable == 1) & (start == 0);
assign write_data = combined_word;
end
else
begin
assign fifo_readack = (fifo_empty == 0) & (stall == 0) & (waitrequest == 0) & (enable == 1);
assign write_data = fifo_data;
end
endgenerate
endmodule
|
/*
Legal Notice: (C)2009 Altera Corporation. All rights reserved. Your
use of Altera Corporation's design tools, logic functions and other
software and tools, and its AMPP partner logic functions, and any
output files any of the foregoing (including device programming or
simulation files), and any associated documentation or information are
expressly subject to the terms and conditions of the Altera Program
License Subscription Agreement or other applicable license agreement,
including, without limitation, that your use is for the sole purpose
of programming logic devices manufactured by Altera and sold by Altera
or its authorized distributors. Please refer to the applicable
agreement for further details.
*/
/*
Author: JCJB
Date: 05/11/2009
Version 2.0
This logic recieves registers the byte address of the master when 'start'
is asserted. This block then barrelshifts the write data based on the byte
address to make sure that the input data (from the FIFO) is reformatted to
line up with memory properly.
The only throttling mechanism in this block is the FIFO not empty signal as
well as waitreqeust from the fabric.
Revision History:
1.0 Initial version
2.0 Removed 'bytes_to_next_boundary' and using the address to determine how
much out of alignment the master begins.
*/
// synthesis translate_off
`timescale 1ns / 1ps
// synthesis translate_on
// turn off superfluous verilog processor warnings
// altera message_level Level1
// altera message_off 10034 10035 10036 10037 10230 10240 10030
module ST_to_MM_Adapter (
clk,
reset,
enable,
address,
start,
waitrequest,
stall,
write_data,
fifo_data,
fifo_empty,
fifo_readack
);
parameter DATA_WIDTH = 32;
parameter BYTEENABLE_WIDTH_LOG2 = 2;
parameter ADDRESS_WIDTH = 32;
parameter UNALIGNED_ACCESS_ENABLE = 0; // when set to 0 this block will be a pass through (save on resources when unaligned accesses are not needed)
localparam BYTES_TO_NEXT_BOUNDARY_WIDTH = BYTEENABLE_WIDTH_LOG2 + 1; // 2, 3, 4, 5, 6 for byte enable widths of 2, 4, 8, 16, 32
input clk;
input reset;
input enable; // must make sure that the adapter doesn't accept data when a transfer it doesn't know what "bytes_to_transfer" is yet
input [ADDRESS_WIDTH-1:0] address;
input start; // one cycle strobe at the start of a transfer used to determine bytes_to_transfer
input waitrequest;
input stall;
output wire [DATA_WIDTH-1:0] write_data;
input [DATA_WIDTH-1:0] fifo_data;
input fifo_empty;
output wire fifo_readack;
wire [BYTES_TO_NEXT_BOUNDARY_WIDTH-1:0] bytes_to_next_boundary;
wire [DATA_WIDTH-1:0] barrelshifter_A;
wire [DATA_WIDTH-1:0] barrelshifter_B;
reg [DATA_WIDTH-1:0] barrelshifter_B_d1;
wire [DATA_WIDTH-1:0] combined_word; // bitwise OR between barrelshifter_A and barrelshifter_B (each has zero padding so that bytelanes don't overlap)
wire [BYTES_TO_NEXT_BOUNDARY_WIDTH-2:0] bytes_to_next_boundary_minus_one; // simplifies barrelshifter select logic
reg [BYTES_TO_NEXT_BOUNDARY_WIDTH-2:0] bytes_to_next_boundary_minus_one_d1;
wire [DATA_WIDTH-1:0] barrelshifter_input_A [0:((DATA_WIDTH/8)-1)]; // will be used to create barrelshifter_A inputs
wire [DATA_WIDTH-1:0] barrelshifter_input_B [0:((DATA_WIDTH/8)-1)]; // will be used to create barrelshifter_B inputs
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
bytes_to_next_boundary_minus_one_d1 <= 0;
end
else if (start)
begin
bytes_to_next_boundary_minus_one_d1 <= bytes_to_next_boundary_minus_one;
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
barrelshifter_B_d1 <= 0;
end
else
begin
if (start == 1)
begin
barrelshifter_B_d1 <= 0;
end
else if (fifo_readack == 1)
begin
barrelshifter_B_d1 <= barrelshifter_B;
end
end
end
assign bytes_to_next_boundary = (DATA_WIDTH/8) - address[BYTEENABLE_WIDTH_LOG2-1:0]; // bytes per word - unaligned byte offset = distance to next boundary
assign bytes_to_next_boundary_minus_one = bytes_to_next_boundary - 1;
assign combined_word = barrelshifter_A | barrelshifter_B_d1;
generate
genvar input_offset;
for(input_offset = 0; input_offset < (DATA_WIDTH/8); input_offset = input_offset + 1)
begin: barrel_shifter_inputs
assign barrelshifter_input_A[input_offset] = fifo_data << (8 * ((DATA_WIDTH/8)-(input_offset+1)));
assign barrelshifter_input_B[input_offset] = fifo_data >> (8 * (input_offset + 1));
end
endgenerate
assign barrelshifter_A = barrelshifter_input_A[bytes_to_next_boundary_minus_one_d1];
assign barrelshifter_B = barrelshifter_input_B[bytes_to_next_boundary_minus_one_d1];
generate
if (UNALIGNED_ACCESS_ENABLE == 1)
begin
assign fifo_readack = (fifo_empty == 0) & (stall == 0) & (waitrequest == 0) & (enable == 1) & (start == 0);
assign write_data = combined_word;
end
else
begin
assign fifo_readack = (fifo_empty == 0) & (stall == 0) & (waitrequest == 0) & (enable == 1);
assign write_data = fifo_data;
end
endgenerate
endmodule
|
/*
Legal Notice: (C)2009 Altera Corporation. All rights reserved. Your
use of Altera Corporation's design tools, logic functions and other
software and tools, and its AMPP partner logic functions, and any
output files any of the foregoing (including device programming or
simulation files), and any associated documentation or information are
expressly subject to the terms and conditions of the Altera Program
License Subscription Agreement or other applicable license agreement,
including, without limitation, that your use is for the sole purpose
of programming logic devices manufactured by Altera and sold by Altera
or its authorized distributors. Please refer to the applicable
agreement for further details.
*/
/*
Author: JCJB
Date: 05/11/2009
Version 2.0
This logic recieves registers the byte address of the master when 'start'
is asserted. This block then barrelshifts the write data based on the byte
address to make sure that the input data (from the FIFO) is reformatted to
line up with memory properly.
The only throttling mechanism in this block is the FIFO not empty signal as
well as waitreqeust from the fabric.
Revision History:
1.0 Initial version
2.0 Removed 'bytes_to_next_boundary' and using the address to determine how
much out of alignment the master begins.
*/
// synthesis translate_off
`timescale 1ns / 1ps
// synthesis translate_on
// turn off superfluous verilog processor warnings
// altera message_level Level1
// altera message_off 10034 10035 10036 10037 10230 10240 10030
module ST_to_MM_Adapter (
clk,
reset,
enable,
address,
start,
waitrequest,
stall,
write_data,
fifo_data,
fifo_empty,
fifo_readack
);
parameter DATA_WIDTH = 32;
parameter BYTEENABLE_WIDTH_LOG2 = 2;
parameter ADDRESS_WIDTH = 32;
parameter UNALIGNED_ACCESS_ENABLE = 0; // when set to 0 this block will be a pass through (save on resources when unaligned accesses are not needed)
localparam BYTES_TO_NEXT_BOUNDARY_WIDTH = BYTEENABLE_WIDTH_LOG2 + 1; // 2, 3, 4, 5, 6 for byte enable widths of 2, 4, 8, 16, 32
input clk;
input reset;
input enable; // must make sure that the adapter doesn't accept data when a transfer it doesn't know what "bytes_to_transfer" is yet
input [ADDRESS_WIDTH-1:0] address;
input start; // one cycle strobe at the start of a transfer used to determine bytes_to_transfer
input waitrequest;
input stall;
output wire [DATA_WIDTH-1:0] write_data;
input [DATA_WIDTH-1:0] fifo_data;
input fifo_empty;
output wire fifo_readack;
wire [BYTES_TO_NEXT_BOUNDARY_WIDTH-1:0] bytes_to_next_boundary;
wire [DATA_WIDTH-1:0] barrelshifter_A;
wire [DATA_WIDTH-1:0] barrelshifter_B;
reg [DATA_WIDTH-1:0] barrelshifter_B_d1;
wire [DATA_WIDTH-1:0] combined_word; // bitwise OR between barrelshifter_A and barrelshifter_B (each has zero padding so that bytelanes don't overlap)
wire [BYTES_TO_NEXT_BOUNDARY_WIDTH-2:0] bytes_to_next_boundary_minus_one; // simplifies barrelshifter select logic
reg [BYTES_TO_NEXT_BOUNDARY_WIDTH-2:0] bytes_to_next_boundary_minus_one_d1;
wire [DATA_WIDTH-1:0] barrelshifter_input_A [0:((DATA_WIDTH/8)-1)]; // will be used to create barrelshifter_A inputs
wire [DATA_WIDTH-1:0] barrelshifter_input_B [0:((DATA_WIDTH/8)-1)]; // will be used to create barrelshifter_B inputs
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
bytes_to_next_boundary_minus_one_d1 <= 0;
end
else if (start)
begin
bytes_to_next_boundary_minus_one_d1 <= bytes_to_next_boundary_minus_one;
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
barrelshifter_B_d1 <= 0;
end
else
begin
if (start == 1)
begin
barrelshifter_B_d1 <= 0;
end
else if (fifo_readack == 1)
begin
barrelshifter_B_d1 <= barrelshifter_B;
end
end
end
assign bytes_to_next_boundary = (DATA_WIDTH/8) - address[BYTEENABLE_WIDTH_LOG2-1:0]; // bytes per word - unaligned byte offset = distance to next boundary
assign bytes_to_next_boundary_minus_one = bytes_to_next_boundary - 1;
assign combined_word = barrelshifter_A | barrelshifter_B_d1;
generate
genvar input_offset;
for(input_offset = 0; input_offset < (DATA_WIDTH/8); input_offset = input_offset + 1)
begin: barrel_shifter_inputs
assign barrelshifter_input_A[input_offset] = fifo_data << (8 * ((DATA_WIDTH/8)-(input_offset+1)));
assign barrelshifter_input_B[input_offset] = fifo_data >> (8 * (input_offset + 1));
end
endgenerate
assign barrelshifter_A = barrelshifter_input_A[bytes_to_next_boundary_minus_one_d1];
assign barrelshifter_B = barrelshifter_input_B[bytes_to_next_boundary_minus_one_d1];
generate
if (UNALIGNED_ACCESS_ENABLE == 1)
begin
assign fifo_readack = (fifo_empty == 0) & (stall == 0) & (waitrequest == 0) & (enable == 1) & (start == 0);
assign write_data = combined_word;
end
else
begin
assign fifo_readack = (fifo_empty == 0) & (stall == 0) & (waitrequest == 0) & (enable == 1);
assign write_data = fifo_data;
end
endgenerate
endmodule
|
// megafunction wizard: %FIFO%
// GENERATION: STANDARD
// VERSION: WM1.0
// MODULE: dcfifo
// ============================================================
// File Name: fifo_4k_18.v
// Megafunction Name(s):
// dcfifo
//
// Simulation Library Files(s):
// altera_mf
// ============================================================
// ************************************************************
// THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE!
//
// 7.1 Build 178 06/25/2007 SP 1 SJ Web Edition
// ************************************************************
//Copyright (C) 1991-2007 Altera Corporation
//Your use of Altera Corporation's design tools, logic functions
//and other software and tools, and its AMPP partner logic
//functions, and any output files from any of the foregoing
//(including device programming or simulation files), and any
//associated documentation or information are expressly subject
//to the terms and conditions of the Altera Program License
//Subscription Agreement, Altera MegaCore Function License
//Agreement, or other applicable license agreement, including,
//without limitation, that your use is for the sole purpose of
//programming logic devices manufactured by Altera and sold by
//Altera or its authorized distributors. Please refer to the
//applicable agreement for further details.
// synopsys translate_off
`timescale 1 ps / 1 ps
// synopsys translate_on
module fifo_4k_18 (
aclr,
data,
rdclk,
rdreq,
wrclk,
wrreq,
q,
rdempty,
rdusedw,
wrfull,
wrusedw);
input aclr;
input [17:0] data;
input rdclk;
input rdreq;
input wrclk;
input wrreq;
output [17:0] q;
output rdempty;
output [11:0] rdusedw;
output wrfull;
output [11:0] wrusedw;
wire sub_wire0;
wire [11:0] sub_wire1;
wire sub_wire2;
wire [17:0] sub_wire3;
wire [11:0] sub_wire4;
wire rdempty = sub_wire0;
wire [11:0] wrusedw = sub_wire1[11:0];
wire wrfull = sub_wire2;
wire [17:0] q = sub_wire3[17:0];
wire [11:0] rdusedw = sub_wire4[11:0];
dcfifo dcfifo_component (
.wrclk (wrclk),
.rdreq (rdreq),
.aclr (aclr),
.rdclk (rdclk),
.wrreq (wrreq),
.data (data),
.rdempty (sub_wire0),
.wrusedw (sub_wire1),
.wrfull (sub_wire2),
.q (sub_wire3),
.rdusedw (sub_wire4)
// synopsys translate_off
,
.rdfull (),
.wrempty ()
// synopsys translate_on
);
defparam
dcfifo_component.add_ram_output_register = "OFF",
dcfifo_component.clocks_are_synchronized = "FALSE",
dcfifo_component.intended_device_family = "Cyclone",
dcfifo_component.lpm_numwords = 4096,
dcfifo_component.lpm_showahead = "ON",
dcfifo_component.lpm_type = "dcfifo",
dcfifo_component.lpm_width = 18,
dcfifo_component.lpm_widthu = 12,
dcfifo_component.overflow_checking = "OFF",
dcfifo_component.underflow_checking = "OFF",
dcfifo_component.use_eab = "ON";
endmodule
// ============================================================
// CNX file retrieval info
// ============================================================
// Retrieval info: PRIVATE: AlmostEmpty NUMERIC "0"
// Retrieval info: PRIVATE: AlmostEmptyThr NUMERIC "-1"
// Retrieval info: PRIVATE: AlmostFull NUMERIC "0"
// Retrieval info: PRIVATE: AlmostFullThr NUMERIC "-1"
// Retrieval info: PRIVATE: CLOCKS_ARE_SYNCHRONIZED NUMERIC "0"
// Retrieval info: PRIVATE: Clock NUMERIC "4"
// Retrieval info: PRIVATE: Depth NUMERIC "4096"
// Retrieval info: PRIVATE: Empty NUMERIC "1"
// Retrieval info: PRIVATE: Full NUMERIC "1"
// Retrieval info: PRIVATE: INTENDED_DEVICE_FAMILY STRING "Cyclone"
// Retrieval info: PRIVATE: LE_BasedFIFO NUMERIC "0"
// Retrieval info: PRIVATE: LegacyRREQ NUMERIC "0"
// Retrieval info: PRIVATE: MAX_DEPTH_BY_9 NUMERIC "0"
// Retrieval info: PRIVATE: OVERFLOW_CHECKING NUMERIC "1"
// Retrieval info: PRIVATE: Optimize NUMERIC "2"
// Retrieval info: PRIVATE: RAM_BLOCK_TYPE NUMERIC "0"
// Retrieval info: PRIVATE: SYNTH_WRAPPER_GEN_POSTFIX STRING "0"
// Retrieval info: PRIVATE: UNDERFLOW_CHECKING NUMERIC "1"
// Retrieval info: PRIVATE: UsedW NUMERIC "1"
// Retrieval info: PRIVATE: Width NUMERIC "18"
// Retrieval info: PRIVATE: dc_aclr NUMERIC "1"
// Retrieval info: PRIVATE: diff_widths NUMERIC "0"
// Retrieval info: PRIVATE: msb_usedw NUMERIC "0"
// Retrieval info: PRIVATE: output_width NUMERIC "18"
// Retrieval info: PRIVATE: rsEmpty NUMERIC "1"
// Retrieval info: PRIVATE: rsFull NUMERIC "0"
// Retrieval info: PRIVATE: rsUsedW NUMERIC "1"
// Retrieval info: PRIVATE: sc_aclr NUMERIC "0"
// Retrieval info: PRIVATE: sc_sclr NUMERIC "0"
// Retrieval info: PRIVATE: wsEmpty NUMERIC "0"
// Retrieval info: PRIVATE: wsFull NUMERIC "1"
// Retrieval info: PRIVATE: wsUsedW NUMERIC "1"
// Retrieval info: CONSTANT: ADD_RAM_OUTPUT_REGISTER STRING "OFF"
// Retrieval info: CONSTANT: CLOCKS_ARE_SYNCHRONIZED STRING "FALSE"
// Retrieval info: CONSTANT: INTENDED_DEVICE_FAMILY STRING "Cyclone"
// Retrieval info: CONSTANT: LPM_NUMWORDS NUMERIC "4096"
// Retrieval info: CONSTANT: LPM_SHOWAHEAD STRING "ON"
// Retrieval info: CONSTANT: LPM_TYPE STRING "dcfifo"
// Retrieval info: CONSTANT: LPM_WIDTH NUMERIC "18"
// Retrieval info: CONSTANT: LPM_WIDTHU NUMERIC "12"
// Retrieval info: CONSTANT: OVERFLOW_CHECKING STRING "OFF"
// Retrieval info: CONSTANT: UNDERFLOW_CHECKING STRING "OFF"
// Retrieval info: CONSTANT: USE_EAB STRING "ON"
// Retrieval info: USED_PORT: aclr 0 0 0 0 INPUT GND aclr
// Retrieval info: USED_PORT: data 0 0 18 0 INPUT NODEFVAL data[17..0]
// Retrieval info: USED_PORT: q 0 0 18 0 OUTPUT NODEFVAL q[17..0]
// Retrieval info: USED_PORT: rdclk 0 0 0 0 INPUT NODEFVAL rdclk
// Retrieval info: USED_PORT: rdempty 0 0 0 0 OUTPUT NODEFVAL rdempty
// Retrieval info: USED_PORT: rdreq 0 0 0 0 INPUT NODEFVAL rdreq
// Retrieval info: USED_PORT: rdusedw 0 0 12 0 OUTPUT NODEFVAL rdusedw[11..0]
// Retrieval info: USED_PORT: wrclk 0 0 0 0 INPUT NODEFVAL wrclk
// Retrieval info: USED_PORT: wrfull 0 0 0 0 OUTPUT NODEFVAL wrfull
// Retrieval info: USED_PORT: wrreq 0 0 0 0 INPUT NODEFVAL wrreq
// Retrieval info: USED_PORT: wrusedw 0 0 12 0 OUTPUT NODEFVAL wrusedw[11..0]
// Retrieval info: CONNECT: @data 0 0 18 0 data 0 0 18 0
// Retrieval info: CONNECT: q 0 0 18 0 @q 0 0 18 0
// Retrieval info: CONNECT: @wrreq 0 0 0 0 wrreq 0 0 0 0
// Retrieval info: CONNECT: @rdreq 0 0 0 0 rdreq 0 0 0 0
// Retrieval info: CONNECT: @rdclk 0 0 0 0 rdclk 0 0 0 0
// Retrieval info: CONNECT: @wrclk 0 0 0 0 wrclk 0 0 0 0
// Retrieval info: CONNECT: rdempty 0 0 0 0 @rdempty 0 0 0 0
// Retrieval info: CONNECT: rdusedw 0 0 12 0 @rdusedw 0 0 12 0
// Retrieval info: CONNECT: wrfull 0 0 0 0 @wrfull 0 0 0 0
// Retrieval info: CONNECT: wrusedw 0 0 12 0 @wrusedw 0 0 12 0
// Retrieval info: CONNECT: @aclr 0 0 0 0 aclr 0 0 0 0
// Retrieval info: LIBRARY: altera_mf altera_mf.altera_mf_components.all
// Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18.v TRUE
// Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18.inc FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18.cmp FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18.bsf FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18_inst.v FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18_bb.v FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18_waveforms.html FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18_wave*.jpg FALSE
// Retrieval info: LIB_FILE: altera_mf
|
// megafunction wizard: %FIFO%
// GENERATION: STANDARD
// VERSION: WM1.0
// MODULE: dcfifo
// ============================================================
// File Name: fifo_4k_18.v
// Megafunction Name(s):
// dcfifo
//
// Simulation Library Files(s):
// altera_mf
// ============================================================
// ************************************************************
// THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE!
//
// 7.1 Build 178 06/25/2007 SP 1 SJ Web Edition
// ************************************************************
//Copyright (C) 1991-2007 Altera Corporation
//Your use of Altera Corporation's design tools, logic functions
//and other software and tools, and its AMPP partner logic
//functions, and any output files from any of the foregoing
//(including device programming or simulation files), and any
//associated documentation or information are expressly subject
//to the terms and conditions of the Altera Program License
//Subscription Agreement, Altera MegaCore Function License
//Agreement, or other applicable license agreement, including,
//without limitation, that your use is for the sole purpose of
//programming logic devices manufactured by Altera and sold by
//Altera or its authorized distributors. Please refer to the
//applicable agreement for further details.
// synopsys translate_off
`timescale 1 ps / 1 ps
// synopsys translate_on
module fifo_4k_18 (
aclr,
data,
rdclk,
rdreq,
wrclk,
wrreq,
q,
rdempty,
rdusedw,
wrfull,
wrusedw);
input aclr;
input [17:0] data;
input rdclk;
input rdreq;
input wrclk;
input wrreq;
output [17:0] q;
output rdempty;
output [11:0] rdusedw;
output wrfull;
output [11:0] wrusedw;
wire sub_wire0;
wire [11:0] sub_wire1;
wire sub_wire2;
wire [17:0] sub_wire3;
wire [11:0] sub_wire4;
wire rdempty = sub_wire0;
wire [11:0] wrusedw = sub_wire1[11:0];
wire wrfull = sub_wire2;
wire [17:0] q = sub_wire3[17:0];
wire [11:0] rdusedw = sub_wire4[11:0];
dcfifo dcfifo_component (
.wrclk (wrclk),
.rdreq (rdreq),
.aclr (aclr),
.rdclk (rdclk),
.wrreq (wrreq),
.data (data),
.rdempty (sub_wire0),
.wrusedw (sub_wire1),
.wrfull (sub_wire2),
.q (sub_wire3),
.rdusedw (sub_wire4)
// synopsys translate_off
,
.rdfull (),
.wrempty ()
// synopsys translate_on
);
defparam
dcfifo_component.add_ram_output_register = "OFF",
dcfifo_component.clocks_are_synchronized = "FALSE",
dcfifo_component.intended_device_family = "Cyclone",
dcfifo_component.lpm_numwords = 4096,
dcfifo_component.lpm_showahead = "ON",
dcfifo_component.lpm_type = "dcfifo",
dcfifo_component.lpm_width = 18,
dcfifo_component.lpm_widthu = 12,
dcfifo_component.overflow_checking = "OFF",
dcfifo_component.underflow_checking = "OFF",
dcfifo_component.use_eab = "ON";
endmodule
// ============================================================
// CNX file retrieval info
// ============================================================
// Retrieval info: PRIVATE: AlmostEmpty NUMERIC "0"
// Retrieval info: PRIVATE: AlmostEmptyThr NUMERIC "-1"
// Retrieval info: PRIVATE: AlmostFull NUMERIC "0"
// Retrieval info: PRIVATE: AlmostFullThr NUMERIC "-1"
// Retrieval info: PRIVATE: CLOCKS_ARE_SYNCHRONIZED NUMERIC "0"
// Retrieval info: PRIVATE: Clock NUMERIC "4"
// Retrieval info: PRIVATE: Depth NUMERIC "4096"
// Retrieval info: PRIVATE: Empty NUMERIC "1"
// Retrieval info: PRIVATE: Full NUMERIC "1"
// Retrieval info: PRIVATE: INTENDED_DEVICE_FAMILY STRING "Cyclone"
// Retrieval info: PRIVATE: LE_BasedFIFO NUMERIC "0"
// Retrieval info: PRIVATE: LegacyRREQ NUMERIC "0"
// Retrieval info: PRIVATE: MAX_DEPTH_BY_9 NUMERIC "0"
// Retrieval info: PRIVATE: OVERFLOW_CHECKING NUMERIC "1"
// Retrieval info: PRIVATE: Optimize NUMERIC "2"
// Retrieval info: PRIVATE: RAM_BLOCK_TYPE NUMERIC "0"
// Retrieval info: PRIVATE: SYNTH_WRAPPER_GEN_POSTFIX STRING "0"
// Retrieval info: PRIVATE: UNDERFLOW_CHECKING NUMERIC "1"
// Retrieval info: PRIVATE: UsedW NUMERIC "1"
// Retrieval info: PRIVATE: Width NUMERIC "18"
// Retrieval info: PRIVATE: dc_aclr NUMERIC "1"
// Retrieval info: PRIVATE: diff_widths NUMERIC "0"
// Retrieval info: PRIVATE: msb_usedw NUMERIC "0"
// Retrieval info: PRIVATE: output_width NUMERIC "18"
// Retrieval info: PRIVATE: rsEmpty NUMERIC "1"
// Retrieval info: PRIVATE: rsFull NUMERIC "0"
// Retrieval info: PRIVATE: rsUsedW NUMERIC "1"
// Retrieval info: PRIVATE: sc_aclr NUMERIC "0"
// Retrieval info: PRIVATE: sc_sclr NUMERIC "0"
// Retrieval info: PRIVATE: wsEmpty NUMERIC "0"
// Retrieval info: PRIVATE: wsFull NUMERIC "1"
// Retrieval info: PRIVATE: wsUsedW NUMERIC "1"
// Retrieval info: CONSTANT: ADD_RAM_OUTPUT_REGISTER STRING "OFF"
// Retrieval info: CONSTANT: CLOCKS_ARE_SYNCHRONIZED STRING "FALSE"
// Retrieval info: CONSTANT: INTENDED_DEVICE_FAMILY STRING "Cyclone"
// Retrieval info: CONSTANT: LPM_NUMWORDS NUMERIC "4096"
// Retrieval info: CONSTANT: LPM_SHOWAHEAD STRING "ON"
// Retrieval info: CONSTANT: LPM_TYPE STRING "dcfifo"
// Retrieval info: CONSTANT: LPM_WIDTH NUMERIC "18"
// Retrieval info: CONSTANT: LPM_WIDTHU NUMERIC "12"
// Retrieval info: CONSTANT: OVERFLOW_CHECKING STRING "OFF"
// Retrieval info: CONSTANT: UNDERFLOW_CHECKING STRING "OFF"
// Retrieval info: CONSTANT: USE_EAB STRING "ON"
// Retrieval info: USED_PORT: aclr 0 0 0 0 INPUT GND aclr
// Retrieval info: USED_PORT: data 0 0 18 0 INPUT NODEFVAL data[17..0]
// Retrieval info: USED_PORT: q 0 0 18 0 OUTPUT NODEFVAL q[17..0]
// Retrieval info: USED_PORT: rdclk 0 0 0 0 INPUT NODEFVAL rdclk
// Retrieval info: USED_PORT: rdempty 0 0 0 0 OUTPUT NODEFVAL rdempty
// Retrieval info: USED_PORT: rdreq 0 0 0 0 INPUT NODEFVAL rdreq
// Retrieval info: USED_PORT: rdusedw 0 0 12 0 OUTPUT NODEFVAL rdusedw[11..0]
// Retrieval info: USED_PORT: wrclk 0 0 0 0 INPUT NODEFVAL wrclk
// Retrieval info: USED_PORT: wrfull 0 0 0 0 OUTPUT NODEFVAL wrfull
// Retrieval info: USED_PORT: wrreq 0 0 0 0 INPUT NODEFVAL wrreq
// Retrieval info: USED_PORT: wrusedw 0 0 12 0 OUTPUT NODEFVAL wrusedw[11..0]
// Retrieval info: CONNECT: @data 0 0 18 0 data 0 0 18 0
// Retrieval info: CONNECT: q 0 0 18 0 @q 0 0 18 0
// Retrieval info: CONNECT: @wrreq 0 0 0 0 wrreq 0 0 0 0
// Retrieval info: CONNECT: @rdreq 0 0 0 0 rdreq 0 0 0 0
// Retrieval info: CONNECT: @rdclk 0 0 0 0 rdclk 0 0 0 0
// Retrieval info: CONNECT: @wrclk 0 0 0 0 wrclk 0 0 0 0
// Retrieval info: CONNECT: rdempty 0 0 0 0 @rdempty 0 0 0 0
// Retrieval info: CONNECT: rdusedw 0 0 12 0 @rdusedw 0 0 12 0
// Retrieval info: CONNECT: wrfull 0 0 0 0 @wrfull 0 0 0 0
// Retrieval info: CONNECT: wrusedw 0 0 12 0 @wrusedw 0 0 12 0
// Retrieval info: CONNECT: @aclr 0 0 0 0 aclr 0 0 0 0
// Retrieval info: LIBRARY: altera_mf altera_mf.altera_mf_components.all
// Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18.v TRUE
// Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18.inc FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18.cmp FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18.bsf FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18_inst.v FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18_bb.v FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18_waveforms.html FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18_wave*.jpg FALSE
// Retrieval info: LIB_FILE: altera_mf
|
// megafunction wizard: %FIFO%
// GENERATION: STANDARD
// VERSION: WM1.0
// MODULE: dcfifo
// ============================================================
// File Name: fifo_4k_18.v
// Megafunction Name(s):
// dcfifo
//
// Simulation Library Files(s):
// altera_mf
// ============================================================
// ************************************************************
// THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE!
//
// 7.1 Build 178 06/25/2007 SP 1 SJ Web Edition
// ************************************************************
//Copyright (C) 1991-2007 Altera Corporation
//Your use of Altera Corporation's design tools, logic functions
//and other software and tools, and its AMPP partner logic
//functions, and any output files from any of the foregoing
//(including device programming or simulation files), and any
//associated documentation or information are expressly subject
//to the terms and conditions of the Altera Program License
//Subscription Agreement, Altera MegaCore Function License
//Agreement, or other applicable license agreement, including,
//without limitation, that your use is for the sole purpose of
//programming logic devices manufactured by Altera and sold by
//Altera or its authorized distributors. Please refer to the
//applicable agreement for further details.
// synopsys translate_off
`timescale 1 ps / 1 ps
// synopsys translate_on
module fifo_4k_18 (
aclr,
data,
rdclk,
rdreq,
wrclk,
wrreq,
q,
rdempty,
rdusedw,
wrfull,
wrusedw);
input aclr;
input [17:0] data;
input rdclk;
input rdreq;
input wrclk;
input wrreq;
output [17:0] q;
output rdempty;
output [11:0] rdusedw;
output wrfull;
output [11:0] wrusedw;
wire sub_wire0;
wire [11:0] sub_wire1;
wire sub_wire2;
wire [17:0] sub_wire3;
wire [11:0] sub_wire4;
wire rdempty = sub_wire0;
wire [11:0] wrusedw = sub_wire1[11:0];
wire wrfull = sub_wire2;
wire [17:0] q = sub_wire3[17:0];
wire [11:0] rdusedw = sub_wire4[11:0];
dcfifo dcfifo_component (
.wrclk (wrclk),
.rdreq (rdreq),
.aclr (aclr),
.rdclk (rdclk),
.wrreq (wrreq),
.data (data),
.rdempty (sub_wire0),
.wrusedw (sub_wire1),
.wrfull (sub_wire2),
.q (sub_wire3),
.rdusedw (sub_wire4)
// synopsys translate_off
,
.rdfull (),
.wrempty ()
// synopsys translate_on
);
defparam
dcfifo_component.add_ram_output_register = "OFF",
dcfifo_component.clocks_are_synchronized = "FALSE",
dcfifo_component.intended_device_family = "Cyclone",
dcfifo_component.lpm_numwords = 4096,
dcfifo_component.lpm_showahead = "ON",
dcfifo_component.lpm_type = "dcfifo",
dcfifo_component.lpm_width = 18,
dcfifo_component.lpm_widthu = 12,
dcfifo_component.overflow_checking = "OFF",
dcfifo_component.underflow_checking = "OFF",
dcfifo_component.use_eab = "ON";
endmodule
// ============================================================
// CNX file retrieval info
// ============================================================
// Retrieval info: PRIVATE: AlmostEmpty NUMERIC "0"
// Retrieval info: PRIVATE: AlmostEmptyThr NUMERIC "-1"
// Retrieval info: PRIVATE: AlmostFull NUMERIC "0"
// Retrieval info: PRIVATE: AlmostFullThr NUMERIC "-1"
// Retrieval info: PRIVATE: CLOCKS_ARE_SYNCHRONIZED NUMERIC "0"
// Retrieval info: PRIVATE: Clock NUMERIC "4"
// Retrieval info: PRIVATE: Depth NUMERIC "4096"
// Retrieval info: PRIVATE: Empty NUMERIC "1"
// Retrieval info: PRIVATE: Full NUMERIC "1"
// Retrieval info: PRIVATE: INTENDED_DEVICE_FAMILY STRING "Cyclone"
// Retrieval info: PRIVATE: LE_BasedFIFO NUMERIC "0"
// Retrieval info: PRIVATE: LegacyRREQ NUMERIC "0"
// Retrieval info: PRIVATE: MAX_DEPTH_BY_9 NUMERIC "0"
// Retrieval info: PRIVATE: OVERFLOW_CHECKING NUMERIC "1"
// Retrieval info: PRIVATE: Optimize NUMERIC "2"
// Retrieval info: PRIVATE: RAM_BLOCK_TYPE NUMERIC "0"
// Retrieval info: PRIVATE: SYNTH_WRAPPER_GEN_POSTFIX STRING "0"
// Retrieval info: PRIVATE: UNDERFLOW_CHECKING NUMERIC "1"
// Retrieval info: PRIVATE: UsedW NUMERIC "1"
// Retrieval info: PRIVATE: Width NUMERIC "18"
// Retrieval info: PRIVATE: dc_aclr NUMERIC "1"
// Retrieval info: PRIVATE: diff_widths NUMERIC "0"
// Retrieval info: PRIVATE: msb_usedw NUMERIC "0"
// Retrieval info: PRIVATE: output_width NUMERIC "18"
// Retrieval info: PRIVATE: rsEmpty NUMERIC "1"
// Retrieval info: PRIVATE: rsFull NUMERIC "0"
// Retrieval info: PRIVATE: rsUsedW NUMERIC "1"
// Retrieval info: PRIVATE: sc_aclr NUMERIC "0"
// Retrieval info: PRIVATE: sc_sclr NUMERIC "0"
// Retrieval info: PRIVATE: wsEmpty NUMERIC "0"
// Retrieval info: PRIVATE: wsFull NUMERIC "1"
// Retrieval info: PRIVATE: wsUsedW NUMERIC "1"
// Retrieval info: CONSTANT: ADD_RAM_OUTPUT_REGISTER STRING "OFF"
// Retrieval info: CONSTANT: CLOCKS_ARE_SYNCHRONIZED STRING "FALSE"
// Retrieval info: CONSTANT: INTENDED_DEVICE_FAMILY STRING "Cyclone"
// Retrieval info: CONSTANT: LPM_NUMWORDS NUMERIC "4096"
// Retrieval info: CONSTANT: LPM_SHOWAHEAD STRING "ON"
// Retrieval info: CONSTANT: LPM_TYPE STRING "dcfifo"
// Retrieval info: CONSTANT: LPM_WIDTH NUMERIC "18"
// Retrieval info: CONSTANT: LPM_WIDTHU NUMERIC "12"
// Retrieval info: CONSTANT: OVERFLOW_CHECKING STRING "OFF"
// Retrieval info: CONSTANT: UNDERFLOW_CHECKING STRING "OFF"
// Retrieval info: CONSTANT: USE_EAB STRING "ON"
// Retrieval info: USED_PORT: aclr 0 0 0 0 INPUT GND aclr
// Retrieval info: USED_PORT: data 0 0 18 0 INPUT NODEFVAL data[17..0]
// Retrieval info: USED_PORT: q 0 0 18 0 OUTPUT NODEFVAL q[17..0]
// Retrieval info: USED_PORT: rdclk 0 0 0 0 INPUT NODEFVAL rdclk
// Retrieval info: USED_PORT: rdempty 0 0 0 0 OUTPUT NODEFVAL rdempty
// Retrieval info: USED_PORT: rdreq 0 0 0 0 INPUT NODEFVAL rdreq
// Retrieval info: USED_PORT: rdusedw 0 0 12 0 OUTPUT NODEFVAL rdusedw[11..0]
// Retrieval info: USED_PORT: wrclk 0 0 0 0 INPUT NODEFVAL wrclk
// Retrieval info: USED_PORT: wrfull 0 0 0 0 OUTPUT NODEFVAL wrfull
// Retrieval info: USED_PORT: wrreq 0 0 0 0 INPUT NODEFVAL wrreq
// Retrieval info: USED_PORT: wrusedw 0 0 12 0 OUTPUT NODEFVAL wrusedw[11..0]
// Retrieval info: CONNECT: @data 0 0 18 0 data 0 0 18 0
// Retrieval info: CONNECT: q 0 0 18 0 @q 0 0 18 0
// Retrieval info: CONNECT: @wrreq 0 0 0 0 wrreq 0 0 0 0
// Retrieval info: CONNECT: @rdreq 0 0 0 0 rdreq 0 0 0 0
// Retrieval info: CONNECT: @rdclk 0 0 0 0 rdclk 0 0 0 0
// Retrieval info: CONNECT: @wrclk 0 0 0 0 wrclk 0 0 0 0
// Retrieval info: CONNECT: rdempty 0 0 0 0 @rdempty 0 0 0 0
// Retrieval info: CONNECT: rdusedw 0 0 12 0 @rdusedw 0 0 12 0
// Retrieval info: CONNECT: wrfull 0 0 0 0 @wrfull 0 0 0 0
// Retrieval info: CONNECT: wrusedw 0 0 12 0 @wrusedw 0 0 12 0
// Retrieval info: CONNECT: @aclr 0 0 0 0 aclr 0 0 0 0
// Retrieval info: LIBRARY: altera_mf altera_mf.altera_mf_components.all
// Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18.v TRUE
// Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18.inc FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18.cmp FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18.bsf FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18_inst.v FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18_bb.v FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18_waveforms.html FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18_wave*.jpg FALSE
// Retrieval info: LIB_FILE: altera_mf
|
// megafunction wizard: %FIFO%
// GENERATION: STANDARD
// VERSION: WM1.0
// MODULE: dcfifo
// ============================================================
// File Name: fifo_4k_18.v
// Megafunction Name(s):
// dcfifo
//
// Simulation Library Files(s):
// altera_mf
// ============================================================
// ************************************************************
// THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE!
//
// 7.1 Build 178 06/25/2007 SP 1 SJ Web Edition
// ************************************************************
//Copyright (C) 1991-2007 Altera Corporation
//Your use of Altera Corporation's design tools, logic functions
//and other software and tools, and its AMPP partner logic
//functions, and any output files from any of the foregoing
//(including device programming or simulation files), and any
//associated documentation or information are expressly subject
//to the terms and conditions of the Altera Program License
//Subscription Agreement, Altera MegaCore Function License
//Agreement, or other applicable license agreement, including,
//without limitation, that your use is for the sole purpose of
//programming logic devices manufactured by Altera and sold by
//Altera or its authorized distributors. Please refer to the
//applicable agreement for further details.
// synopsys translate_off
`timescale 1 ps / 1 ps
// synopsys translate_on
module fifo_4k_18 (
aclr,
data,
rdclk,
rdreq,
wrclk,
wrreq,
q,
rdempty,
rdusedw,
wrfull,
wrusedw);
input aclr;
input [17:0] data;
input rdclk;
input rdreq;
input wrclk;
input wrreq;
output [17:0] q;
output rdempty;
output [11:0] rdusedw;
output wrfull;
output [11:0] wrusedw;
wire sub_wire0;
wire [11:0] sub_wire1;
wire sub_wire2;
wire [17:0] sub_wire3;
wire [11:0] sub_wire4;
wire rdempty = sub_wire0;
wire [11:0] wrusedw = sub_wire1[11:0];
wire wrfull = sub_wire2;
wire [17:0] q = sub_wire3[17:0];
wire [11:0] rdusedw = sub_wire4[11:0];
dcfifo dcfifo_component (
.wrclk (wrclk),
.rdreq (rdreq),
.aclr (aclr),
.rdclk (rdclk),
.wrreq (wrreq),
.data (data),
.rdempty (sub_wire0),
.wrusedw (sub_wire1),
.wrfull (sub_wire2),
.q (sub_wire3),
.rdusedw (sub_wire4)
// synopsys translate_off
,
.rdfull (),
.wrempty ()
// synopsys translate_on
);
defparam
dcfifo_component.add_ram_output_register = "OFF",
dcfifo_component.clocks_are_synchronized = "FALSE",
dcfifo_component.intended_device_family = "Cyclone",
dcfifo_component.lpm_numwords = 4096,
dcfifo_component.lpm_showahead = "ON",
dcfifo_component.lpm_type = "dcfifo",
dcfifo_component.lpm_width = 18,
dcfifo_component.lpm_widthu = 12,
dcfifo_component.overflow_checking = "OFF",
dcfifo_component.underflow_checking = "OFF",
dcfifo_component.use_eab = "ON";
endmodule
// ============================================================
// CNX file retrieval info
// ============================================================
// Retrieval info: PRIVATE: AlmostEmpty NUMERIC "0"
// Retrieval info: PRIVATE: AlmostEmptyThr NUMERIC "-1"
// Retrieval info: PRIVATE: AlmostFull NUMERIC "0"
// Retrieval info: PRIVATE: AlmostFullThr NUMERIC "-1"
// Retrieval info: PRIVATE: CLOCKS_ARE_SYNCHRONIZED NUMERIC "0"
// Retrieval info: PRIVATE: Clock NUMERIC "4"
// Retrieval info: PRIVATE: Depth NUMERIC "4096"
// Retrieval info: PRIVATE: Empty NUMERIC "1"
// Retrieval info: PRIVATE: Full NUMERIC "1"
// Retrieval info: PRIVATE: INTENDED_DEVICE_FAMILY STRING "Cyclone"
// Retrieval info: PRIVATE: LE_BasedFIFO NUMERIC "0"
// Retrieval info: PRIVATE: LegacyRREQ NUMERIC "0"
// Retrieval info: PRIVATE: MAX_DEPTH_BY_9 NUMERIC "0"
// Retrieval info: PRIVATE: OVERFLOW_CHECKING NUMERIC "1"
// Retrieval info: PRIVATE: Optimize NUMERIC "2"
// Retrieval info: PRIVATE: RAM_BLOCK_TYPE NUMERIC "0"
// Retrieval info: PRIVATE: SYNTH_WRAPPER_GEN_POSTFIX STRING "0"
// Retrieval info: PRIVATE: UNDERFLOW_CHECKING NUMERIC "1"
// Retrieval info: PRIVATE: UsedW NUMERIC "1"
// Retrieval info: PRIVATE: Width NUMERIC "18"
// Retrieval info: PRIVATE: dc_aclr NUMERIC "1"
// Retrieval info: PRIVATE: diff_widths NUMERIC "0"
// Retrieval info: PRIVATE: msb_usedw NUMERIC "0"
// Retrieval info: PRIVATE: output_width NUMERIC "18"
// Retrieval info: PRIVATE: rsEmpty NUMERIC "1"
// Retrieval info: PRIVATE: rsFull NUMERIC "0"
// Retrieval info: PRIVATE: rsUsedW NUMERIC "1"
// Retrieval info: PRIVATE: sc_aclr NUMERIC "0"
// Retrieval info: PRIVATE: sc_sclr NUMERIC "0"
// Retrieval info: PRIVATE: wsEmpty NUMERIC "0"
// Retrieval info: PRIVATE: wsFull NUMERIC "1"
// Retrieval info: PRIVATE: wsUsedW NUMERIC "1"
// Retrieval info: CONSTANT: ADD_RAM_OUTPUT_REGISTER STRING "OFF"
// Retrieval info: CONSTANT: CLOCKS_ARE_SYNCHRONIZED STRING "FALSE"
// Retrieval info: CONSTANT: INTENDED_DEVICE_FAMILY STRING "Cyclone"
// Retrieval info: CONSTANT: LPM_NUMWORDS NUMERIC "4096"
// Retrieval info: CONSTANT: LPM_SHOWAHEAD STRING "ON"
// Retrieval info: CONSTANT: LPM_TYPE STRING "dcfifo"
// Retrieval info: CONSTANT: LPM_WIDTH NUMERIC "18"
// Retrieval info: CONSTANT: LPM_WIDTHU NUMERIC "12"
// Retrieval info: CONSTANT: OVERFLOW_CHECKING STRING "OFF"
// Retrieval info: CONSTANT: UNDERFLOW_CHECKING STRING "OFF"
// Retrieval info: CONSTANT: USE_EAB STRING "ON"
// Retrieval info: USED_PORT: aclr 0 0 0 0 INPUT GND aclr
// Retrieval info: USED_PORT: data 0 0 18 0 INPUT NODEFVAL data[17..0]
// Retrieval info: USED_PORT: q 0 0 18 0 OUTPUT NODEFVAL q[17..0]
// Retrieval info: USED_PORT: rdclk 0 0 0 0 INPUT NODEFVAL rdclk
// Retrieval info: USED_PORT: rdempty 0 0 0 0 OUTPUT NODEFVAL rdempty
// Retrieval info: USED_PORT: rdreq 0 0 0 0 INPUT NODEFVAL rdreq
// Retrieval info: USED_PORT: rdusedw 0 0 12 0 OUTPUT NODEFVAL rdusedw[11..0]
// Retrieval info: USED_PORT: wrclk 0 0 0 0 INPUT NODEFVAL wrclk
// Retrieval info: USED_PORT: wrfull 0 0 0 0 OUTPUT NODEFVAL wrfull
// Retrieval info: USED_PORT: wrreq 0 0 0 0 INPUT NODEFVAL wrreq
// Retrieval info: USED_PORT: wrusedw 0 0 12 0 OUTPUT NODEFVAL wrusedw[11..0]
// Retrieval info: CONNECT: @data 0 0 18 0 data 0 0 18 0
// Retrieval info: CONNECT: q 0 0 18 0 @q 0 0 18 0
// Retrieval info: CONNECT: @wrreq 0 0 0 0 wrreq 0 0 0 0
// Retrieval info: CONNECT: @rdreq 0 0 0 0 rdreq 0 0 0 0
// Retrieval info: CONNECT: @rdclk 0 0 0 0 rdclk 0 0 0 0
// Retrieval info: CONNECT: @wrclk 0 0 0 0 wrclk 0 0 0 0
// Retrieval info: CONNECT: rdempty 0 0 0 0 @rdempty 0 0 0 0
// Retrieval info: CONNECT: rdusedw 0 0 12 0 @rdusedw 0 0 12 0
// Retrieval info: CONNECT: wrfull 0 0 0 0 @wrfull 0 0 0 0
// Retrieval info: CONNECT: wrusedw 0 0 12 0 @wrusedw 0 0 12 0
// Retrieval info: CONNECT: @aclr 0 0 0 0 aclr 0 0 0 0
// Retrieval info: LIBRARY: altera_mf altera_mf.altera_mf_components.all
// Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18.v TRUE
// Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18.inc FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18.cmp FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18.bsf FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18_inst.v FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18_bb.v FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18_waveforms.html FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18_wave*.jpg FALSE
// Retrieval info: LIB_FILE: altera_mf
|
// megafunction wizard: %FIFO%
// GENERATION: STANDARD
// VERSION: WM1.0
// MODULE: dcfifo
// ============================================================
// File Name: fifo_4k_18.v
// Megafunction Name(s):
// dcfifo
//
// Simulation Library Files(s):
// altera_mf
// ============================================================
// ************************************************************
// THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE!
//
// 7.1 Build 178 06/25/2007 SP 1 SJ Web Edition
// ************************************************************
//Copyright (C) 1991-2007 Altera Corporation
//Your use of Altera Corporation's design tools, logic functions
//and other software and tools, and its AMPP partner logic
//functions, and any output files from any of the foregoing
//(including device programming or simulation files), and any
//associated documentation or information are expressly subject
//to the terms and conditions of the Altera Program License
//Subscription Agreement, Altera MegaCore Function License
//Agreement, or other applicable license agreement, including,
//without limitation, that your use is for the sole purpose of
//programming logic devices manufactured by Altera and sold by
//Altera or its authorized distributors. Please refer to the
//applicable agreement for further details.
// synopsys translate_off
`timescale 1 ps / 1 ps
// synopsys translate_on
module fifo_4k_18 (
aclr,
data,
rdclk,
rdreq,
wrclk,
wrreq,
q,
rdempty,
rdusedw,
wrfull,
wrusedw);
input aclr;
input [17:0] data;
input rdclk;
input rdreq;
input wrclk;
input wrreq;
output [17:0] q;
output rdempty;
output [11:0] rdusedw;
output wrfull;
output [11:0] wrusedw;
wire sub_wire0;
wire [11:0] sub_wire1;
wire sub_wire2;
wire [17:0] sub_wire3;
wire [11:0] sub_wire4;
wire rdempty = sub_wire0;
wire [11:0] wrusedw = sub_wire1[11:0];
wire wrfull = sub_wire2;
wire [17:0] q = sub_wire3[17:0];
wire [11:0] rdusedw = sub_wire4[11:0];
dcfifo dcfifo_component (
.wrclk (wrclk),
.rdreq (rdreq),
.aclr (aclr),
.rdclk (rdclk),
.wrreq (wrreq),
.data (data),
.rdempty (sub_wire0),
.wrusedw (sub_wire1),
.wrfull (sub_wire2),
.q (sub_wire3),
.rdusedw (sub_wire4)
// synopsys translate_off
,
.rdfull (),
.wrempty ()
// synopsys translate_on
);
defparam
dcfifo_component.add_ram_output_register = "OFF",
dcfifo_component.clocks_are_synchronized = "FALSE",
dcfifo_component.intended_device_family = "Cyclone",
dcfifo_component.lpm_numwords = 4096,
dcfifo_component.lpm_showahead = "ON",
dcfifo_component.lpm_type = "dcfifo",
dcfifo_component.lpm_width = 18,
dcfifo_component.lpm_widthu = 12,
dcfifo_component.overflow_checking = "OFF",
dcfifo_component.underflow_checking = "OFF",
dcfifo_component.use_eab = "ON";
endmodule
// ============================================================
// CNX file retrieval info
// ============================================================
// Retrieval info: PRIVATE: AlmostEmpty NUMERIC "0"
// Retrieval info: PRIVATE: AlmostEmptyThr NUMERIC "-1"
// Retrieval info: PRIVATE: AlmostFull NUMERIC "0"
// Retrieval info: PRIVATE: AlmostFullThr NUMERIC "-1"
// Retrieval info: PRIVATE: CLOCKS_ARE_SYNCHRONIZED NUMERIC "0"
// Retrieval info: PRIVATE: Clock NUMERIC "4"
// Retrieval info: PRIVATE: Depth NUMERIC "4096"
// Retrieval info: PRIVATE: Empty NUMERIC "1"
// Retrieval info: PRIVATE: Full NUMERIC "1"
// Retrieval info: PRIVATE: INTENDED_DEVICE_FAMILY STRING "Cyclone"
// Retrieval info: PRIVATE: LE_BasedFIFO NUMERIC "0"
// Retrieval info: PRIVATE: LegacyRREQ NUMERIC "0"
// Retrieval info: PRIVATE: MAX_DEPTH_BY_9 NUMERIC "0"
// Retrieval info: PRIVATE: OVERFLOW_CHECKING NUMERIC "1"
// Retrieval info: PRIVATE: Optimize NUMERIC "2"
// Retrieval info: PRIVATE: RAM_BLOCK_TYPE NUMERIC "0"
// Retrieval info: PRIVATE: SYNTH_WRAPPER_GEN_POSTFIX STRING "0"
// Retrieval info: PRIVATE: UNDERFLOW_CHECKING NUMERIC "1"
// Retrieval info: PRIVATE: UsedW NUMERIC "1"
// Retrieval info: PRIVATE: Width NUMERIC "18"
// Retrieval info: PRIVATE: dc_aclr NUMERIC "1"
// Retrieval info: PRIVATE: diff_widths NUMERIC "0"
// Retrieval info: PRIVATE: msb_usedw NUMERIC "0"
// Retrieval info: PRIVATE: output_width NUMERIC "18"
// Retrieval info: PRIVATE: rsEmpty NUMERIC "1"
// Retrieval info: PRIVATE: rsFull NUMERIC "0"
// Retrieval info: PRIVATE: rsUsedW NUMERIC "1"
// Retrieval info: PRIVATE: sc_aclr NUMERIC "0"
// Retrieval info: PRIVATE: sc_sclr NUMERIC "0"
// Retrieval info: PRIVATE: wsEmpty NUMERIC "0"
// Retrieval info: PRIVATE: wsFull NUMERIC "1"
// Retrieval info: PRIVATE: wsUsedW NUMERIC "1"
// Retrieval info: CONSTANT: ADD_RAM_OUTPUT_REGISTER STRING "OFF"
// Retrieval info: CONSTANT: CLOCKS_ARE_SYNCHRONIZED STRING "FALSE"
// Retrieval info: CONSTANT: INTENDED_DEVICE_FAMILY STRING "Cyclone"
// Retrieval info: CONSTANT: LPM_NUMWORDS NUMERIC "4096"
// Retrieval info: CONSTANT: LPM_SHOWAHEAD STRING "ON"
// Retrieval info: CONSTANT: LPM_TYPE STRING "dcfifo"
// Retrieval info: CONSTANT: LPM_WIDTH NUMERIC "18"
// Retrieval info: CONSTANT: LPM_WIDTHU NUMERIC "12"
// Retrieval info: CONSTANT: OVERFLOW_CHECKING STRING "OFF"
// Retrieval info: CONSTANT: UNDERFLOW_CHECKING STRING "OFF"
// Retrieval info: CONSTANT: USE_EAB STRING "ON"
// Retrieval info: USED_PORT: aclr 0 0 0 0 INPUT GND aclr
// Retrieval info: USED_PORT: data 0 0 18 0 INPUT NODEFVAL data[17..0]
// Retrieval info: USED_PORT: q 0 0 18 0 OUTPUT NODEFVAL q[17..0]
// Retrieval info: USED_PORT: rdclk 0 0 0 0 INPUT NODEFVAL rdclk
// Retrieval info: USED_PORT: rdempty 0 0 0 0 OUTPUT NODEFVAL rdempty
// Retrieval info: USED_PORT: rdreq 0 0 0 0 INPUT NODEFVAL rdreq
// Retrieval info: USED_PORT: rdusedw 0 0 12 0 OUTPUT NODEFVAL rdusedw[11..0]
// Retrieval info: USED_PORT: wrclk 0 0 0 0 INPUT NODEFVAL wrclk
// Retrieval info: USED_PORT: wrfull 0 0 0 0 OUTPUT NODEFVAL wrfull
// Retrieval info: USED_PORT: wrreq 0 0 0 0 INPUT NODEFVAL wrreq
// Retrieval info: USED_PORT: wrusedw 0 0 12 0 OUTPUT NODEFVAL wrusedw[11..0]
// Retrieval info: CONNECT: @data 0 0 18 0 data 0 0 18 0
// Retrieval info: CONNECT: q 0 0 18 0 @q 0 0 18 0
// Retrieval info: CONNECT: @wrreq 0 0 0 0 wrreq 0 0 0 0
// Retrieval info: CONNECT: @rdreq 0 0 0 0 rdreq 0 0 0 0
// Retrieval info: CONNECT: @rdclk 0 0 0 0 rdclk 0 0 0 0
// Retrieval info: CONNECT: @wrclk 0 0 0 0 wrclk 0 0 0 0
// Retrieval info: CONNECT: rdempty 0 0 0 0 @rdempty 0 0 0 0
// Retrieval info: CONNECT: rdusedw 0 0 12 0 @rdusedw 0 0 12 0
// Retrieval info: CONNECT: wrfull 0 0 0 0 @wrfull 0 0 0 0
// Retrieval info: CONNECT: wrusedw 0 0 12 0 @wrusedw 0 0 12 0
// Retrieval info: CONNECT: @aclr 0 0 0 0 aclr 0 0 0 0
// Retrieval info: LIBRARY: altera_mf altera_mf.altera_mf_components.all
// Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18.v TRUE
// Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18.inc FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18.cmp FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18.bsf FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18_inst.v FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18_bb.v FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18_waveforms.html FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18_wave*.jpg FALSE
// Retrieval info: LIB_FILE: altera_mf
|
module fake_nonburstboundary #
(
parameter WIDTH_D = 256,
parameter S_WIDTH_A = 26,
parameter M_WIDTH_A = S_WIDTH_A+$clog2(WIDTH_D/8),
parameter BURSTCOUNT_WIDTH = 6,
parameter BYTEENABLE_WIDTH = WIDTH_D,
parameter MAX_PENDING_READS = 64
)
(
input clk,
input resetn,
// Slave port
input [S_WIDTH_A-1:0] slave_address, // Word address
input [WIDTH_D-1:0] slave_writedata,
input slave_read,
input slave_write,
input [BURSTCOUNT_WIDTH-1:0] slave_burstcount,
input [BYTEENABLE_WIDTH-1:0] slave_byteenable,
output slave_waitrequest,
output [WIDTH_D-1:0] slave_readdata,
output slave_readdatavalid,
output [M_WIDTH_A-1:0] master_address, // Byte address
output [WIDTH_D-1:0] master_writedata,
output master_read,
output master_write,
output [BURSTCOUNT_WIDTH-1:0] master_burstcount,
output [BYTEENABLE_WIDTH-1:0] master_byteenable,
input master_waitrequest,
input [WIDTH_D-1:0] master_readdata,
input master_readdatavalid
);
assign master_read = slave_read;
assign master_write = slave_write;
assign master_writedata = slave_writedata;
assign master_burstcount = slave_burstcount;
assign master_address = {slave_address,{$clog2(WIDTH_D/8){1'b0}}}; //byteaddr
assign master_byteenable = slave_byteenable;
assign slave_waitrequest = master_waitrequest;
assign slave_readdatavalid = master_readdatavalid;
assign slave_readdata = master_readdata;
endmodule
|
module fake_nonburstboundary #
(
parameter WIDTH_D = 256,
parameter S_WIDTH_A = 26,
parameter M_WIDTH_A = S_WIDTH_A+$clog2(WIDTH_D/8),
parameter BURSTCOUNT_WIDTH = 6,
parameter BYTEENABLE_WIDTH = WIDTH_D,
parameter MAX_PENDING_READS = 64
)
(
input clk,
input resetn,
// Slave port
input [S_WIDTH_A-1:0] slave_address, // Word address
input [WIDTH_D-1:0] slave_writedata,
input slave_read,
input slave_write,
input [BURSTCOUNT_WIDTH-1:0] slave_burstcount,
input [BYTEENABLE_WIDTH-1:0] slave_byteenable,
output slave_waitrequest,
output [WIDTH_D-1:0] slave_readdata,
output slave_readdatavalid,
output [M_WIDTH_A-1:0] master_address, // Byte address
output [WIDTH_D-1:0] master_writedata,
output master_read,
output master_write,
output [BURSTCOUNT_WIDTH-1:0] master_burstcount,
output [BYTEENABLE_WIDTH-1:0] master_byteenable,
input master_waitrequest,
input [WIDTH_D-1:0] master_readdata,
input master_readdatavalid
);
assign master_read = slave_read;
assign master_write = slave_write;
assign master_writedata = slave_writedata;
assign master_burstcount = slave_burstcount;
assign master_address = {slave_address,{$clog2(WIDTH_D/8){1'b0}}}; //byteaddr
assign master_byteenable = slave_byteenable;
assign slave_waitrequest = master_waitrequest;
assign slave_readdatavalid = master_readdatavalid;
assign slave_readdata = master_readdata;
endmodule
|
module fake_nonburstboundary #
(
parameter WIDTH_D = 256,
parameter S_WIDTH_A = 26,
parameter M_WIDTH_A = S_WIDTH_A+$clog2(WIDTH_D/8),
parameter BURSTCOUNT_WIDTH = 6,
parameter BYTEENABLE_WIDTH = WIDTH_D,
parameter MAX_PENDING_READS = 64
)
(
input clk,
input resetn,
// Slave port
input [S_WIDTH_A-1:0] slave_address, // Word address
input [WIDTH_D-1:0] slave_writedata,
input slave_read,
input slave_write,
input [BURSTCOUNT_WIDTH-1:0] slave_burstcount,
input [BYTEENABLE_WIDTH-1:0] slave_byteenable,
output slave_waitrequest,
output [WIDTH_D-1:0] slave_readdata,
output slave_readdatavalid,
output [M_WIDTH_A-1:0] master_address, // Byte address
output [WIDTH_D-1:0] master_writedata,
output master_read,
output master_write,
output [BURSTCOUNT_WIDTH-1:0] master_burstcount,
output [BYTEENABLE_WIDTH-1:0] master_byteenable,
input master_waitrequest,
input [WIDTH_D-1:0] master_readdata,
input master_readdatavalid
);
assign master_read = slave_read;
assign master_write = slave_write;
assign master_writedata = slave_writedata;
assign master_burstcount = slave_burstcount;
assign master_address = {slave_address,{$clog2(WIDTH_D/8){1'b0}}}; //byteaddr
assign master_byteenable = slave_byteenable;
assign slave_waitrequest = master_waitrequest;
assign slave_readdatavalid = master_readdatavalid;
assign slave_readdata = master_readdata;
endmodule
|
module fake_nonburstboundary #
(
parameter WIDTH_D = 256,
parameter S_WIDTH_A = 26,
parameter M_WIDTH_A = S_WIDTH_A+$clog2(WIDTH_D/8),
parameter BURSTCOUNT_WIDTH = 6,
parameter BYTEENABLE_WIDTH = WIDTH_D,
parameter MAX_PENDING_READS = 64
)
(
input clk,
input resetn,
// Slave port
input [S_WIDTH_A-1:0] slave_address, // Word address
input [WIDTH_D-1:0] slave_writedata,
input slave_read,
input slave_write,
input [BURSTCOUNT_WIDTH-1:0] slave_burstcount,
input [BYTEENABLE_WIDTH-1:0] slave_byteenable,
output slave_waitrequest,
output [WIDTH_D-1:0] slave_readdata,
output slave_readdatavalid,
output [M_WIDTH_A-1:0] master_address, // Byte address
output [WIDTH_D-1:0] master_writedata,
output master_read,
output master_write,
output [BURSTCOUNT_WIDTH-1:0] master_burstcount,
output [BYTEENABLE_WIDTH-1:0] master_byteenable,
input master_waitrequest,
input [WIDTH_D-1:0] master_readdata,
input master_readdatavalid
);
assign master_read = slave_read;
assign master_write = slave_write;
assign master_writedata = slave_writedata;
assign master_burstcount = slave_burstcount;
assign master_address = {slave_address,{$clog2(WIDTH_D/8){1'b0}}}; //byteaddr
assign master_byteenable = slave_byteenable;
assign slave_waitrequest = master_waitrequest;
assign slave_readdatavalid = master_readdatavalid;
assign slave_readdata = master_readdata;
endmodule
|
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// Description:
// Optimized COMPARATOR (against constant) with generic_baseblocks_v2_1_0_carry logic.
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
//
//
//--------------------------------------------------------------------------
`timescale 1ps/1ps
(* DowngradeIPIdentifiedWarnings="yes" *)
module generic_baseblocks_v2_1_0_comparator_static #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter C_VALUE = 4'b0,
// Static value to compare against.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire [C_DATA_WIDTH-1:0] A,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar bit_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 6;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = C_VALUE;
end
// Instantiate one generic_baseblocks_v2_1_0_carry and per level.
for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[bit_cnt] = ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ==
b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] );
// Instantiate each LUT level.
generic_baseblocks_v2_1_0_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[bit_cnt+1]),
.CIN (carry_local[bit_cnt]),
.S (sel[bit_cnt])
);
end // end for bit_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// Description:
// Optimized COMPARATOR (against constant) with generic_baseblocks_v2_1_0_carry logic.
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
//
//
//--------------------------------------------------------------------------
`timescale 1ps/1ps
(* DowngradeIPIdentifiedWarnings="yes" *)
module generic_baseblocks_v2_1_0_comparator_mask_static #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter C_VALUE = 4'b0,
// Static value to compare against.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire [C_DATA_WIDTH-1:0] A,
input wire [C_DATA_WIDTH-1:0] M,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar lut_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 3;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_FIX_DATA_WIDTH-1:0] m_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = C_VALUE;
assign m_local = M;
end
// Instantiate one generic_baseblocks_v2_1_0_carry and per level.
for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[lut_cnt] = ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ==
( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) );
// Instantiate each LUT level.
generic_baseblocks_v2_1_0_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[lut_cnt+1]),
.CIN (carry_local[lut_cnt]),
.S (sel[lut_cnt])
);
end // end for lut_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
/*
Legal Notice: (C)2009 Altera Corporation. All rights reserved. Your
use of Altera Corporation's design tools, logic functions and other
software and tools, and its AMPP partner logic functions, and any
output files any of the foregoing (including device programming or
simulation files), and any associated documentation or information are
expressly subject to the terms and conditions of the Altera Program
License Subscription Agreement or other applicable license agreement,
including, without limitation, that your use is for the sole purpose
of programming logic devices manufactured by Altera and sold by Altera
or its authorized distributors. Please refer to the applicable
agreement for further details.
*/
/*
Author: JCJB
Date: 07/05/2009
This FIFO module behaves similar to scfifo in legacy mode. It has an
output latency of 1 or 2 clock cycles and does not support look ahead
mode. Unlike scfifo this FIFO allows you to write to any of the byte
lanes before committing the word. This allows you to write the full
word in multiple clock cycles and then you assert the "push" signal to
commit the data. To read data out of the FIFO assert "pop" and wait
1 or 2 clock cycles for valid data to arrive.
Version 1.1
1.0 - Uses 'altsyncram' which will not be optimized away if the
FIFO inputs are grounded. This will need to be replaced
with inferred memory once Quartus II supports inferred
with byte enables (currently it instantiates multiple
seperate memories.
1.1 - Seperated the asynchronous reset into seperate async. and sync.
resets.
*/
// synthesis translate_off
`timescale 1ns / 1ps
// synthesis translate_on
// turn off superfluous verilog processor warnings
// altera message_level Level1
// altera message_off 10034 10035 10036 10037 10230 10240 10030
module fifo_with_byteenables (
clk,
areset,
sreset,
write_data,
write_byteenables,
write,
push,
read_data,
pop,
used,
full,
empty
);
parameter DATA_WIDTH = 32;
parameter FIFO_DEPTH = 128;
parameter FIFO_DEPTH_LOG2 = 7; // this impacts the width of the used port so it can't be local
parameter LATENCY = 1; // number of clock cycles after asserting 'pop' that valid data comes out
input clk;
input areset;
input sreset;
input [DATA_WIDTH-1:0] write_data;
input [(DATA_WIDTH/8)-1:0] write_byteenables;
input write;
input push; // when you have written to all the byte lanes assert this to commit the word (you can use it at the same time as the byte enables)
output wire [DATA_WIDTH-1:0] read_data;
input pop; // use this to read a word out of the FIFO
output wire [FIFO_DEPTH_LOG2:0] used;
output wire full;
output wire empty;
reg [FIFO_DEPTH_LOG2-1:0] write_address;
reg [FIFO_DEPTH_LOG2-1:0] read_address;
reg [FIFO_DEPTH_LOG2:0] internal_used;
wire internal_full;
wire internal_empty;
always @ (posedge clk or posedge areset)
begin
if (areset)
begin
write_address <= 0;
end
else
begin
if (sreset)
begin
write_address <= 0;
end
else if (push == 1)
begin
write_address <= write_address + 1'b1;
end
end
end
always @ (posedge clk or posedge areset)
begin
if (areset)
begin
read_address <= 0;
end
else
begin
if (sreset)
begin
read_address <= 0;
end
else if (pop == 1)
begin
read_address <= read_address + 1'b1;
end
end
end
// TODO: Change this to an inferrered RAM when Quartus II supports byte enables for inferred RAM
altsyncram the_dp_ram (
.clock0 (clk),
.wren_a (write),
.byteena_a (write_byteenables),
.data_a (write_data),
.address_a (write_address),
.q_b (read_data),
.address_b (read_address)
);
defparam the_dp_ram.operation_mode = "DUAL_PORT"; // simple dual port (one read, one write port)
defparam the_dp_ram.lpm_type = "altsyncram";
defparam the_dp_ram.read_during_write_mode_mixed_ports = "DONT_CARE";
defparam the_dp_ram.power_up_uninitialized = "TRUE";
defparam the_dp_ram.byte_size = 8;
defparam the_dp_ram.width_a = DATA_WIDTH;
defparam the_dp_ram.width_b = DATA_WIDTH;
defparam the_dp_ram.widthad_a = FIFO_DEPTH_LOG2;
defparam the_dp_ram.widthad_b = FIFO_DEPTH_LOG2;
defparam the_dp_ram.width_byteena_a = (DATA_WIDTH/8);
defparam the_dp_ram.numwords_a = FIFO_DEPTH;
defparam the_dp_ram.numwords_b = FIFO_DEPTH;
defparam the_dp_ram.address_reg_b = "CLOCK0";
defparam the_dp_ram.outdata_reg_b = (LATENCY == 2)? "CLOCK0" : "UNREGISTERED";
always @ (posedge clk or posedge areset)
begin
if (areset)
begin
internal_used <= 0;
end
else
begin
if (sreset)
begin
internal_used <= 0;
end
else
begin
case ({push, pop})
2'b01: internal_used <= internal_used - 1'b1;
2'b10: internal_used <= internal_used + 1'b1;
default: internal_used <= internal_used;
endcase
end
end
end
assign internal_empty = (read_address == write_address) & (internal_used == 0);
assign internal_full = (write_address == read_address) & (internal_used != 0);
assign used = internal_used; // this signal reflects the number of words in the FIFO
assign empty = internal_empty; // combinational so it'll glitch a little bit
assign full = internal_full; // dito
endmodule
|
/*
Legal Notice: (C)2009 Altera Corporation. All rights reserved. Your
use of Altera Corporation's design tools, logic functions and other
software and tools, and its AMPP partner logic functions, and any
output files any of the foregoing (including device programming or
simulation files), and any associated documentation or information are
expressly subject to the terms and conditions of the Altera Program
License Subscription Agreement or other applicable license agreement,
including, without limitation, that your use is for the sole purpose
of programming logic devices manufactured by Altera and sold by Altera
or its authorized distributors. Please refer to the applicable
agreement for further details.
*/
/*
Author: JCJB
Date: 07/05/2009
This FIFO module behaves similar to scfifo in legacy mode. It has an
output latency of 1 or 2 clock cycles and does not support look ahead
mode. Unlike scfifo this FIFO allows you to write to any of the byte
lanes before committing the word. This allows you to write the full
word in multiple clock cycles and then you assert the "push" signal to
commit the data. To read data out of the FIFO assert "pop" and wait
1 or 2 clock cycles for valid data to arrive.
Version 1.1
1.0 - Uses 'altsyncram' which will not be optimized away if the
FIFO inputs are grounded. This will need to be replaced
with inferred memory once Quartus II supports inferred
with byte enables (currently it instantiates multiple
seperate memories.
1.1 - Seperated the asynchronous reset into seperate async. and sync.
resets.
*/
// synthesis translate_off
`timescale 1ns / 1ps
// synthesis translate_on
// turn off superfluous verilog processor warnings
// altera message_level Level1
// altera message_off 10034 10035 10036 10037 10230 10240 10030
module fifo_with_byteenables (
clk,
areset,
sreset,
write_data,
write_byteenables,
write,
push,
read_data,
pop,
used,
full,
empty
);
parameter DATA_WIDTH = 32;
parameter FIFO_DEPTH = 128;
parameter FIFO_DEPTH_LOG2 = 7; // this impacts the width of the used port so it can't be local
parameter LATENCY = 1; // number of clock cycles after asserting 'pop' that valid data comes out
input clk;
input areset;
input sreset;
input [DATA_WIDTH-1:0] write_data;
input [(DATA_WIDTH/8)-1:0] write_byteenables;
input write;
input push; // when you have written to all the byte lanes assert this to commit the word (you can use it at the same time as the byte enables)
output wire [DATA_WIDTH-1:0] read_data;
input pop; // use this to read a word out of the FIFO
output wire [FIFO_DEPTH_LOG2:0] used;
output wire full;
output wire empty;
reg [FIFO_DEPTH_LOG2-1:0] write_address;
reg [FIFO_DEPTH_LOG2-1:0] read_address;
reg [FIFO_DEPTH_LOG2:0] internal_used;
wire internal_full;
wire internal_empty;
always @ (posedge clk or posedge areset)
begin
if (areset)
begin
write_address <= 0;
end
else
begin
if (sreset)
begin
write_address <= 0;
end
else if (push == 1)
begin
write_address <= write_address + 1'b1;
end
end
end
always @ (posedge clk or posedge areset)
begin
if (areset)
begin
read_address <= 0;
end
else
begin
if (sreset)
begin
read_address <= 0;
end
else if (pop == 1)
begin
read_address <= read_address + 1'b1;
end
end
end
// TODO: Change this to an inferrered RAM when Quartus II supports byte enables for inferred RAM
altsyncram the_dp_ram (
.clock0 (clk),
.wren_a (write),
.byteena_a (write_byteenables),
.data_a (write_data),
.address_a (write_address),
.q_b (read_data),
.address_b (read_address)
);
defparam the_dp_ram.operation_mode = "DUAL_PORT"; // simple dual port (one read, one write port)
defparam the_dp_ram.lpm_type = "altsyncram";
defparam the_dp_ram.read_during_write_mode_mixed_ports = "DONT_CARE";
defparam the_dp_ram.power_up_uninitialized = "TRUE";
defparam the_dp_ram.byte_size = 8;
defparam the_dp_ram.width_a = DATA_WIDTH;
defparam the_dp_ram.width_b = DATA_WIDTH;
defparam the_dp_ram.widthad_a = FIFO_DEPTH_LOG2;
defparam the_dp_ram.widthad_b = FIFO_DEPTH_LOG2;
defparam the_dp_ram.width_byteena_a = (DATA_WIDTH/8);
defparam the_dp_ram.numwords_a = FIFO_DEPTH;
defparam the_dp_ram.numwords_b = FIFO_DEPTH;
defparam the_dp_ram.address_reg_b = "CLOCK0";
defparam the_dp_ram.outdata_reg_b = (LATENCY == 2)? "CLOCK0" : "UNREGISTERED";
always @ (posedge clk or posedge areset)
begin
if (areset)
begin
internal_used <= 0;
end
else
begin
if (sreset)
begin
internal_used <= 0;
end
else
begin
case ({push, pop})
2'b01: internal_used <= internal_used - 1'b1;
2'b10: internal_used <= internal_used + 1'b1;
default: internal_used <= internal_used;
endcase
end
end
end
assign internal_empty = (read_address == write_address) & (internal_used == 0);
assign internal_full = (write_address == read_address) & (internal_used != 0);
assign used = internal_used; // this signal reflects the number of words in the FIFO
assign empty = internal_empty; // combinational so it'll glitch a little bit
assign full = internal_full; // dito
endmodule
|
(** * Extraction: Extracting ML from Coq *)
(* $Date: 2013-01-16 22:29:57 -0500 (Wed, 16 Jan 2013) $ *)
(** * Basic Extraction *)
(** In its simplest form, program extraction from Coq is completely straightforward. *)
(** First we say what language we want to extract into. Options are OCaml (the
most mature), Haskell (which mostly works), and Scheme (a bit out
of date). *)
Extraction Language Ocaml.
(** Now we load up the Coq environment with some definitions, either
directly or by importing them from other modules. *)
Require Import SfLib.
Require Import ImpCEvalFun.
(** Finally, we tell Coq the name of a definition to extract and the
name of a file to put the extracted code into. *)
Extraction "imp1.ml" ceval_step.
(** When Coq processes this command, it generates a file [imp1.ml]
containing an extracted version of [ceval_step], together with
everything that it recursively depends on. Have a look at this
file now. *)
(* ############################################################## *)
(** * Controlling Extraction of Specific Types *)
(** We can tell Coq to extract certain [Inductive] definitions to
specific OCaml types. For each one, we must say
- how the Coq type itself should be represented in OCaml, and
- how each constructor should be translated. *)
Extract Inductive bool => "bool" [ "true" "false" ].
(** Also, for non-enumeration types (where the constructors take
arguments), we give an OCaml expression that can be used as a
"recursor" over elements of the type. (Think Church numerals.) *)
Extract Inductive nat => "int"
[ "0" "(fun x -> x + 1)" ]
"(fun zero succ n ->
if n=0 then zero () else succ (n-1))".
(** We can also extract defined constants to specific OCaml terms or
operators. *)
Extract Constant plus => "( + )".
Extract Constant mult => "( * )".
Extract Constant beq_nat => "( = )".
(** Important: It is entirely _your responsibility_ to make sure that
the translations you're proving make sense. For example, it might
be tempting to include this one
Extract Constant minus => "( - )".
but doing so could lead to serious confusion! (Why?)
*)
Extraction "imp2.ml" ceval_step.
(** Have a look at the file [imp2.ml]. Notice how the fundamental
definitions have changed from [imp1.ml]. *)
(* ############################################################## *)
(** * A Complete Example *)
(** To use our extracted evaluator to run Imp programs, all we need to
add is a tiny driver program that calls the evaluator and somehow
prints out the result.
For simplicity, we'll print results by dumping out the first four
memory locations in the final state.
Also, to make it easier to type in examples, let's extract a
parser from the [ImpParser] Coq module. To do this, we need a few
more declarations to set up the right correspondence between Coq
strings and lists of OCaml characters. *)
Require Import Ascii String.
Extract Inductive ascii => char
[
"(* If this appears, you're using Ascii internals. Please don't *) (fun (b0,b1,b2,b3,b4,b5,b6,b7) -> let f b i = if b then 1 lsl i else 0 in Char.chr (f b0 0 + f b1 1 + f b2 2 + f b3 3 + f b4 4 + f b5 5 + f b6 6 + f b7 7))"
]
"(* If this appears, you're using Ascii internals. Please don't *) (fun f c -> let n = Char.code c in let h i = (n land (1 lsl i)) <> 0 in f (h 0) (h 1) (h 2) (h 3) (h 4) (h 5) (h 6) (h 7))".
Extract Constant zero => "'\000'".
Extract Constant one => "'\001'".
Extract Constant shift =>
"fun b c -> Char.chr (((Char.code c) lsl 1) land 255 + if b then 1 else 0)".
Extract Inlined Constant ascii_dec => "(=)".
(** We also need one more variant of booleans. *)
Extract Inductive sumbool => "bool" ["true" "false"].
(** The extraction is the same as always. *)
Require Import Imp.
Require Import ImpParser.
Extraction "imp.ml" empty_state ceval_step parse.
(** Now let's run our generated Imp evaluator. First, have a look at
[impdriver.ml]. (This was written by hand, not extracted.)
Next, compile the driver together with the extracted code and
execute it, as follows.
<<
ocamlc -w -20 -w -26 -o impdriver imp.mli imp.ml impdriver.ml
./impdriver
>>
(The [-w] flags to [ocamlc] are just there to suppress a few
spurious warnings.) *)
(* ############################################################## *)
(** * Discussion *)
(** Since we've proved that the [ceval_step] function behaves the same
as the [ceval] relation in an appropriate sense, the extracted
program can be viewed as a _certified_ Imp interpreter. (Of
course, the parser is not certified in any interesting sense,
since we didn't prove anything about it.) *)
|
(** * Extraction: Extracting ML from Coq *)
(* $Date: 2013-01-16 22:29:57 -0500 (Wed, 16 Jan 2013) $ *)
(** * Basic Extraction *)
(** In its simplest form, program extraction from Coq is completely straightforward. *)
(** First we say what language we want to extract into. Options are OCaml (the
most mature), Haskell (which mostly works), and Scheme (a bit out
of date). *)
Extraction Language Ocaml.
(** Now we load up the Coq environment with some definitions, either
directly or by importing them from other modules. *)
Require Import SfLib.
Require Import ImpCEvalFun.
(** Finally, we tell Coq the name of a definition to extract and the
name of a file to put the extracted code into. *)
Extraction "imp1.ml" ceval_step.
(** When Coq processes this command, it generates a file [imp1.ml]
containing an extracted version of [ceval_step], together with
everything that it recursively depends on. Have a look at this
file now. *)
(* ############################################################## *)
(** * Controlling Extraction of Specific Types *)
(** We can tell Coq to extract certain [Inductive] definitions to
specific OCaml types. For each one, we must say
- how the Coq type itself should be represented in OCaml, and
- how each constructor should be translated. *)
Extract Inductive bool => "bool" [ "true" "false" ].
(** Also, for non-enumeration types (where the constructors take
arguments), we give an OCaml expression that can be used as a
"recursor" over elements of the type. (Think Church numerals.) *)
Extract Inductive nat => "int"
[ "0" "(fun x -> x + 1)" ]
"(fun zero succ n ->
if n=0 then zero () else succ (n-1))".
(** We can also extract defined constants to specific OCaml terms or
operators. *)
Extract Constant plus => "( + )".
Extract Constant mult => "( * )".
Extract Constant beq_nat => "( = )".
(** Important: It is entirely _your responsibility_ to make sure that
the translations you're proving make sense. For example, it might
be tempting to include this one
Extract Constant minus => "( - )".
but doing so could lead to serious confusion! (Why?)
*)
Extraction "imp2.ml" ceval_step.
(** Have a look at the file [imp2.ml]. Notice how the fundamental
definitions have changed from [imp1.ml]. *)
(* ############################################################## *)
(** * A Complete Example *)
(** To use our extracted evaluator to run Imp programs, all we need to
add is a tiny driver program that calls the evaluator and somehow
prints out the result.
For simplicity, we'll print results by dumping out the first four
memory locations in the final state.
Also, to make it easier to type in examples, let's extract a
parser from the [ImpParser] Coq module. To do this, we need a few
more declarations to set up the right correspondence between Coq
strings and lists of OCaml characters. *)
Require Import Ascii String.
Extract Inductive ascii => char
[
"(* If this appears, you're using Ascii internals. Please don't *) (fun (b0,b1,b2,b3,b4,b5,b6,b7) -> let f b i = if b then 1 lsl i else 0 in Char.chr (f b0 0 + f b1 1 + f b2 2 + f b3 3 + f b4 4 + f b5 5 + f b6 6 + f b7 7))"
]
"(* If this appears, you're using Ascii internals. Please don't *) (fun f c -> let n = Char.code c in let h i = (n land (1 lsl i)) <> 0 in f (h 0) (h 1) (h 2) (h 3) (h 4) (h 5) (h 6) (h 7))".
Extract Constant zero => "'\000'".
Extract Constant one => "'\001'".
Extract Constant shift =>
"fun b c -> Char.chr (((Char.code c) lsl 1) land 255 + if b then 1 else 0)".
Extract Inlined Constant ascii_dec => "(=)".
(** We also need one more variant of booleans. *)
Extract Inductive sumbool => "bool" ["true" "false"].
(** The extraction is the same as always. *)
Require Import Imp.
Require Import ImpParser.
Extraction "imp.ml" empty_state ceval_step parse.
(** Now let's run our generated Imp evaluator. First, have a look at
[impdriver.ml]. (This was written by hand, not extracted.)
Next, compile the driver together with the extracted code and
execute it, as follows.
<<
ocamlc -w -20 -w -26 -o impdriver imp.mli imp.ml impdriver.ml
./impdriver
>>
(The [-w] flags to [ocamlc] are just there to suppress a few
spurious warnings.) *)
(* ############################################################## *)
(** * Discussion *)
(** Since we've proved that the [ceval_step] function behaves the same
as the [ceval] relation in an appropriate sense, the extracted
program can be viewed as a _certified_ Imp interpreter. (Of
course, the parser is not certified in any interesting sense,
since we didn't prove anything about it.) *)
|
(** * Extraction: Extracting ML from Coq *)
(* $Date: 2013-01-16 22:29:57 -0500 (Wed, 16 Jan 2013) $ *)
(** * Basic Extraction *)
(** In its simplest form, program extraction from Coq is completely straightforward. *)
(** First we say what language we want to extract into. Options are OCaml (the
most mature), Haskell (which mostly works), and Scheme (a bit out
of date). *)
Extraction Language Ocaml.
(** Now we load up the Coq environment with some definitions, either
directly or by importing them from other modules. *)
Require Import SfLib.
Require Import ImpCEvalFun.
(** Finally, we tell Coq the name of a definition to extract and the
name of a file to put the extracted code into. *)
Extraction "imp1.ml" ceval_step.
(** When Coq processes this command, it generates a file [imp1.ml]
containing an extracted version of [ceval_step], together with
everything that it recursively depends on. Have a look at this
file now. *)
(* ############################################################## *)
(** * Controlling Extraction of Specific Types *)
(** We can tell Coq to extract certain [Inductive] definitions to
specific OCaml types. For each one, we must say
- how the Coq type itself should be represented in OCaml, and
- how each constructor should be translated. *)
Extract Inductive bool => "bool" [ "true" "false" ].
(** Also, for non-enumeration types (where the constructors take
arguments), we give an OCaml expression that can be used as a
"recursor" over elements of the type. (Think Church numerals.) *)
Extract Inductive nat => "int"
[ "0" "(fun x -> x + 1)" ]
"(fun zero succ n ->
if n=0 then zero () else succ (n-1))".
(** We can also extract defined constants to specific OCaml terms or
operators. *)
Extract Constant plus => "( + )".
Extract Constant mult => "( * )".
Extract Constant beq_nat => "( = )".
(** Important: It is entirely _your responsibility_ to make sure that
the translations you're proving make sense. For example, it might
be tempting to include this one
Extract Constant minus => "( - )".
but doing so could lead to serious confusion! (Why?)
*)
Extraction "imp2.ml" ceval_step.
(** Have a look at the file [imp2.ml]. Notice how the fundamental
definitions have changed from [imp1.ml]. *)
(* ############################################################## *)
(** * A Complete Example *)
(** To use our extracted evaluator to run Imp programs, all we need to
add is a tiny driver program that calls the evaluator and somehow
prints out the result.
For simplicity, we'll print results by dumping out the first four
memory locations in the final state.
Also, to make it easier to type in examples, let's extract a
parser from the [ImpParser] Coq module. To do this, we need a few
more declarations to set up the right correspondence between Coq
strings and lists of OCaml characters. *)
Require Import Ascii String.
Extract Inductive ascii => char
[
"(* If this appears, you're using Ascii internals. Please don't *) (fun (b0,b1,b2,b3,b4,b5,b6,b7) -> let f b i = if b then 1 lsl i else 0 in Char.chr (f b0 0 + f b1 1 + f b2 2 + f b3 3 + f b4 4 + f b5 5 + f b6 6 + f b7 7))"
]
"(* If this appears, you're using Ascii internals. Please don't *) (fun f c -> let n = Char.code c in let h i = (n land (1 lsl i)) <> 0 in f (h 0) (h 1) (h 2) (h 3) (h 4) (h 5) (h 6) (h 7))".
Extract Constant zero => "'\000'".
Extract Constant one => "'\001'".
Extract Constant shift =>
"fun b c -> Char.chr (((Char.code c) lsl 1) land 255 + if b then 1 else 0)".
Extract Inlined Constant ascii_dec => "(=)".
(** We also need one more variant of booleans. *)
Extract Inductive sumbool => "bool" ["true" "false"].
(** The extraction is the same as always. *)
Require Import Imp.
Require Import ImpParser.
Extraction "imp.ml" empty_state ceval_step parse.
(** Now let's run our generated Imp evaluator. First, have a look at
[impdriver.ml]. (This was written by hand, not extracted.)
Next, compile the driver together with the extracted code and
execute it, as follows.
<<
ocamlc -w -20 -w -26 -o impdriver imp.mli imp.ml impdriver.ml
./impdriver
>>
(The [-w] flags to [ocamlc] are just there to suppress a few
spurious warnings.) *)
(* ############################################################## *)
(** * Discussion *)
(** Since we've proved that the [ceval_step] function behaves the same
as the [ceval] relation in an appropriate sense, the extracted
program can be viewed as a _certified_ Imp interpreter. (Of
course, the parser is not certified in any interesting sense,
since we didn't prove anything about it.) *)
|
// -- (c) Copyright 2009 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// File name: nto1_mux.v
//
// Description: N:1 MUX based on either binary-encoded or one-hot select input
// One-hot mode does not protect against multiple active SEL_ONEHOT inputs.
// Note: All port signals changed to all-upper-case (w.r.t. prior version).
//
//-----------------------------------------------------------------------------
`timescale 1ps/1ps
`default_nettype none
(* DowngradeIPIdentifiedWarnings="yes" *)
module generic_baseblocks_v2_1_0_nto1_mux #
(
parameter integer C_RATIO = 1, // Range: >=1
parameter integer C_SEL_WIDTH = 1, // Range: >=1; recommended: ceil_log2(C_RATIO)
parameter integer C_DATAOUT_WIDTH = 1, // Range: >=1
parameter integer C_ONEHOT = 0 // Values: 0 = binary-encoded (use SEL); 1 = one-hot (use SEL_ONEHOT)
)
(
input wire [C_RATIO-1:0] SEL_ONEHOT, // One-hot generic_baseblocks_v2_1_0_mux select (only used if C_ONEHOT=1)
input wire [C_SEL_WIDTH-1:0] SEL, // Binary-encoded generic_baseblocks_v2_1_0_mux select (only used if C_ONEHOT=0)
input wire [C_RATIO*C_DATAOUT_WIDTH-1:0] IN, // Data input array (num_selections x data_width)
output wire [C_DATAOUT_WIDTH-1:0] OUT // Data output vector
);
wire [C_DATAOUT_WIDTH*C_RATIO-1:0] carry;
genvar i;
generate
if (C_ONEHOT == 0) begin : gen_encoded
assign carry[C_DATAOUT_WIDTH-1:0] = {C_DATAOUT_WIDTH{(SEL==0)?1'b1:1'b0}} & IN[C_DATAOUT_WIDTH-1:0];
for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_enc
assign carry[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH] =
carry[i*C_DATAOUT_WIDTH-1:(i-1)*C_DATAOUT_WIDTH] |
{C_DATAOUT_WIDTH{(SEL==i)?1'b1:1'b0}} & IN[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH];
end
end else begin : gen_onehot
assign carry[C_DATAOUT_WIDTH-1:0] = {C_DATAOUT_WIDTH{SEL_ONEHOT[0]}} & IN[C_DATAOUT_WIDTH-1:0];
for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_hot
assign carry[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH] =
carry[i*C_DATAOUT_WIDTH-1:(i-1)*C_DATAOUT_WIDTH] |
{C_DATAOUT_WIDTH{SEL_ONEHOT[i]}} & IN[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH];
end
end
endgenerate
assign OUT = carry[C_DATAOUT_WIDTH*C_RATIO-1:
C_DATAOUT_WIDTH*(C_RATIO-1)];
endmodule
`default_nettype wire
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.